= Programmable System™ Devices
PSD

Design and Applications Handbook
1990

<criterion.

manufacturers representative

(408) 988-6300

3350 Scott Blvd. Bldg. #44 « Santa Clara, CA 95054-3120

WAFERSCALE INTEGRATION, INC.

Programmable System™ Devices
(PSD)
Design and Applications Handhook

1990

Copyright © 1990 WaferScale Integration, Inc.
(All rights reserved.)

47280 Kato Road, Fremont, California 94538
415-656-5400 Facsimile: 415-657-5916 Telex: 289255

Printed in U.S.A.

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION,

SN
LR
«

i O AN

T

Section Index

General
Information

Table of Contents

... 11
Introduction 10 PSDS 1-3
Company Profile 1-5
Ordering Information. e 1-9

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, call 800-562-6363.

WAFERSCALE INTEGRATION, INC.

Table of Contents

WAFERSCALE INTEGRATION, INC.

General Table Of COMENTSttt ettt ettt ettt 1-1
Information Introduction to PSDs 1-3
Company Profile 1-5
Ordering Information 1-9
PSD Product MAP168/PSD301 User-Configurable Peripheral with Memory 241
Specifications Introduction
MAP168 User-Configurable Peripheral with Memory 2-5
PSD301 User-Configurable Peripheral with Memory 2-23
PAC1000 Introduction User-Configurable Microcontroller 2-63
PAC1000 User-Configurable Microcontroller 2-65
SAM448 Introduction User-Configurable Microsequencer................... 2-113
SAM448 User-Configurable Microsequencer................... 2-115
PSD Development MAP168 — PSD Development SyStemsuoeeeonennnne.. 34
S}'S tems SAM448 — PSD Development Systemsttt 3-5
PAC1000 — PSD Development Systems.t 39
WS6000 MagicPro™ Programmer and Package Adaptors 3-13
PSD Applications Application Note 002 Introduction to the MAP168 User-Configurable
Mappable Memory Subsystem 441
Application Note 010 PAC1000 Introduction 4-13
Application Note 005 PAC1000 as a High-Speed Four-Channel
DMA Controller 4-39
WAFERSCALE INTEGRATION, INC. 11

Table of Contents

PSD Applications Application Brief 006 ~ PAC1000 as a 16 Bi-Directional Serial
(Cont.) Channel Controller 4-71
Application Note 008 PAC1000 User-Configurable Microcontroller with a
Built-In-SelfTest Capability 4-75
Application Note 009 In-Circuit Debugging for the PAC1000
User-Configurable Microcontroller 4-83
Application Brief 007 Hardware Interfacing the PAC1000 as a
Micro Channel Bus Controller 4-99
Application Note 003 High-End SAM Applications Using
Microassembler Design Entry 4-105
Application Note 004 SAM Applications Using State Machine Design Entry 4127
Article Reprint Microprogram an Embedded Controller — PAC1000ccouun.... 5-1
Package
Information ... 6-1
Sales
Representatives
and Distributors 71

12 WAFERSCALE INTEGRATION, INC.

A —
y —— f ——
— AN a—
&Y B 4
Ny By
A A —
A——

WAFERSCALE INTEGRATION, INC.

Introduction to Programmable
System™ Devices (PSD)

Programmable System Devices, or PSDs, [The PAC1000 is a user-configurable

are user-configurable system level building
blocks on-a-chip enabling quick
implementation of application specific
controllers and peripherals.

WSI PSDs are ideal for designers who
require fast time-to-market, low risk,
greater system integration and lower power
consumption. PSDs enable designers to
configure their microcontroller/peripheral to
meet exact design requirements. WSI’s
PSDs are unique in that they are the only
VLSI devices available today that provides
a user-configurable off-the-shelf solution at
the system level.

The user-configurability of PSDs enables
them to be used in many different
applications, including:

[Computers (Workstations and PCs) —
Fixed Disk Control, Modem, Imaging,
Laser Printer Control

[Telecommunications — Modem,
Cellular Phone, Digital PBX, Digital
Speech, FAX, Digital Signal Processing

3 Industrial — Robotics, Power Line
Access, Power Line Monitor

[Medical Instrumentation — Hearing
Aids, Monitoring Equipment, Diagnostic
Tools

3 Military — Missile Guidance, Radar,
Sonar, Secure Communications, RF
Modems

PSDs are available in a variety of space
saving surface mount and through-hole
package configurations for commercial,
industrial, and military applications. WSI
offers windowed package options for
prototyping and low cost OTP (one-time
programmable) packages for high volume
applications. PSDs utilize WSI’s proprietary
split-gate CMOS EPROM technology for
low power consumption.

There are currently four PSD family
devices in production. These include the
PAC1000, MAP168, PSD301, and SAM448.

Q

]

microcontroller. It may be used as a
stand-alone microcontroller or as a
peripheral to microprocessors. It is ideal
for embedded control applications,
including graphics, local area network,
and disk drive control in both military
and commercial applications.

The MAP168 is a user-configurable
peripheral. It is used in DSP applications
including modems, motor control and
medical instrumentation. The MAP168
is ideal for DSP based applications
where fast time-to-market, small form
factor and low power consumption are
essential. When combined together in
an 8- or 16-bit system, virtually any
DSP chip (TMS320 series, etc.) and
the MAP168 work together to create a
very powerful 2-piece chip-set. This
combination provides essentially all of
the required control and peripheral
element of a DSP system.

The PSD301 is a user-configurable
peripheral for microcontroller applications
including disk drives, low cost modems,
and mobile phones. The PSD301 is ideal
for microcontroller based applications
where fast time-to-market, small form
factor and low power consumption are
essential. When combined together in
an 8- or 16-bit system, virtually any
microcontroller (8051, 8096, 16000, etc.)
and the PSD301 work together to create
a very powerful 2-piece chip-set. This
implementation provides the required
control and peripheral element of a
microcontroller based system peripheral
with no external “glue” logic required.

The SAM448 is a user-configurable
sequencer for state machine and bus
interface applications. Its flexible I/O
and architecture make it ideal for use
in interfacing to both existing bus
architectures (AT, VME, MCA-bus), and
evolving bus standards (EISA, NuBUS).

WAFERSCALE INTEGRATION, INC.

1-3

Introduction to

Programmable System™ Devices (PSD)

Application specific features can be easily
programmed into the PSD EPROM array
for quick design implementation. Unlike
the current generation of programmable
gate arrays, which require the use of
unpredictable, and often time unavailable
routing resources, all PSD logic is fully
connected internally. This means that all
timing is predictable ahead of design
implementation, and routing is assured.
This greatly simplifies and reduces the
design implementation and simulation
process, and provides designers with a
significantly more reliable, lower risk path
to market. WSI PSDs also eliminate the
NRE, turn-around-time, and risks associated
with gate arrays and other ASIC solutions.

As product life cycles continue to shrink,
designers can win the race from idea to
marketable product with WSI PSDs. PSDs
are quickly configured and programmed by
the designer by using low cost, easy-to-
use WSI PC-based development tools. The
user-friendly menu-driven software includes
high level design entry, simulation and
programming packages for rapid system
development.

WSI supports its PSD product family with
an applications hotline and bulletin board,
as well as highly trained, technical Field
Applications Engineers. As standard
products, WSI PSDs are available from
WSI’s franchised world-wide distribution
network.

1-4

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Company Profile

Introduction WaferScale Integration, Inc. (WSI) designs WSI’s new ‘“off the shelf” user-configurable
and produces the world’s broadest and PSDs provide system level building blocks
fastest families of CMOS PROMs, RPROMs, on a single chip that enable quick
EPROMs, and Programmable System™ implementation of application specific
Devices (PSD). These product families controllers and peripherals. They are the
target the needs of system designers who first to integrate high-performance EPROM,
must reduce system development time and SRAM and logic and deliver a performance
deliver market competitive products in and integration breakthrough to the
continuously shorter periods of time. WSI’s programmable products market. PSDs are
programmable VLSI products additionally user-configurable on a PC or compatible
enable higher system performance from and can be tailored for use in a variety of
smaller, more compact end products due system applications. As a result, WSI has
to higher levels of system integration at established itself as a leading supplier of
the chip level. high-performance programmable VLSI
WSI’s mission is clear — to build a great solutions to a broad customer base that
company by serving its customers with a includes some pf the world’s largest an_d
portfolio of high-performance programmable most teqhnologlcally advanced electronics
VLSI products that enable designers to companies.
achieve faster time to market with new, Founded in 1983, WSI is headquartered in
advanced electronic systems. a 66,000 square foot facility in Fremont,
The company’s patented self-aligned, split- C@lifornia and has more than 125
gate EPROM technology forms the core of ~ employees. Through a long-term equity,
WSI’s programmable products and delivers ~ Manufacturing and technology license
higher performance and greater density agreement with Sharp Corporation of
than competing “stacked gate” EPROM Japan, WSI producgs its pr.oducts ina
technologies. This core technology has world-class production facility that
enabled WSI to be first in the industry with ~ guarantees the highest quality at
numerous breakthroughs in speed, density, =~ COMPpetitive costs.
process and packaging. WSI has leveraged
this technology into the broadest family of
CMOS PROMs, RPROMs, and EPROMs
available.

Markets and WSI’s high-performance non-volatile Customer applications include image

Applications memory and PSD products are used by processing, digital signal processing, bus

the world’s leading suppliers of high-
performance electronic systems in
communications, data processing, military
and industrial markets. Customer end
products cover a broad spectrum and
typically include cellular telephones,
workstations, DSP computers, navigation
controllers, T1 multiplexers, modems,
image processors, missiles, LAN controllers,
high density disk drives and the like.

control, LAN data and file control, real
time process control, graphics processing,
hard disk control, flight simulators, DMA
control, and others. WSI products are
ideally suited for these applications where
designers are faced with increasingly
shorter product life cycles and must
develop new, competitive high-performance
products in short periods of time.

WAFERSCALE INTEGRATION, INC. 1-5

Company Profile

Products

Memory Products

EPROMs

WSI offers the broadest line of CMOS
EPROM products available featuring
architectures ranging from 8K x 8 to

128K x 8, plus several x16 products, with
speeds ranging from 40 to 200 ns.
Commercial, industrial and MIL-STD-883C/
SMD products are available. A wide variety
of package selections are available
including plastic and hermetic, through-
hole and surface mount types.

“L”’ Family

WSI’s “L’ family memory products are the
industry’s fastest, low power JEDEC pinout
EPROMs and meet the requirements of
many mainstream system applications.
With speeds ranging from 90 to 200 ns
and architectures from 8K x 8 to 128K x 8
including several x16 products, “L’ family
EPROMSs are ideal for high-performance
personal computers and workstations.
Taking advantage of its split-gate EPROM
technology, WSI uses a conservative 1.2
micron lithography to achieve world-class
memory densities that traditionally require
lower yielding sub-micron technologies.
“F’’ Family

The “F” family is WSI’s fastest line of
EPROMSs, featuring speeds ranging from
40 to 110 ns and architectures from 8K x 8
to 32K x 8, plus several x16 products. The
high speed and word width options of the
“F” family EPROMs make them attractive
for use in high-end engineering and
scientific workstations, data communications
and other high-performance applications.

RPROMs

RPROMs provide bipolar PROM pin-out
with matching speed and CMOS low
power operation. The RPROM (Re-
Programmable Read Only Memory)
product series includes architectures

ranging from 2K x 8 to 32K x 8 with
speeds ranging from 25 to 70 ns.

Commercial, industrial and MIL-STD-883C/
SMD configurations are available in a variety
of hermetic and plastic package styles.

Programmable System™ Devices (PSDs)

WSI’s family of Programmable System
Devices (PSDs) represent a new class of
programmable VLSI products, achieving
unparalleled levels of performance,
configurability and integration. Offering a
significantly higher level of integration over
programmable logic, PSDs are the first
programmable VLSI products to integrate
high-speed EPROM, SRAM and logic on a
single chip thereby providing complete
system solutions to the design engineer.
PSDs are off-the-shelf system building
elements that can be quickly configured
and programmed for a variety of system
applications thus enabling system designers
to shorten system development time.

The PSD is a new solution for system
designers who build high-end systems
around embedded controllers and
advanced microprocessors. These new
systems require faster, more highly
integrated and lower cost VLSI solutions
as well as rapid design cycles. WSI's new
PSD family meets this demanding set of
needs.

The initial members of WSI's PSD family
includes:

@ The PAC1000 User-Configurable
Microcontroller

[The MAP168 User-Configurable
Peripheral with Memory

3 The PSD301 User-Configurable
Peripheral with Memory

a

The SAM448 User-Configurable
Microsequencer

1-6 WAFERSCALE INTEGRATION, INC.

Company Profile

Products Design Tools and Support Custom Circuits

(c‘mt-) WSI’s development tools minimize the time To serve the needs of its customers with
required for designers to program PSDs unique requirements, WSI offers its custom
for use in a variety of system applications. circuit capability using its cell based library
PSDs are supported with complete easy- of EPROM, static RAM and logic functions.
to-use program development, simulation Standard products described in this catalog
and programming software, the PC hosted can usually be modified on a custom basis
MagicPro™ Memory and PSD Programmer, to serve particular requirements. New
a dial-in applications bulletin board and customer defined custom products that
WSI’s team of factory and field incorporate high-performance non-volatile
applications engineers. As a result, WSI memory, SRAM and logic can be
customers achieve their goal of shorter produced that deliver significant speed or
system development time and reach new system integration advantages. Contact
markets sooner. your local WSI sales office for additional

information.

Manufacturiny A key ingredient for success in leading- ensures high quality, high-volume
edge semiconductors is a world-class production, competitive costs and fast
fabrication facility that ensures high delivery. The Sharp facility in Fukuyama,
volume capacity and prompt delivery of Japan employs the most advanced sub-
highly reliable and high yielding VLSI micron VLSI integrated circuit manufacturing
circuits. To this end, WSI has licensed its equipment available including ion
proprietary CMOS EPROM and logic implantation, reactive ion etch, and wafer
process technology to Sharp Corporation stepper lithographic systems.
of Osaka, Japan. This long term alliance

auality and WSI is deeply committed to product are inspected before use, and statistical

ﬂe[iabi[ity excellence. This begins with proper controls are used to keep the process on

management attitude and direction and
with this focus, the Quality and Reliability
Program is able to operate efficiently. As a
result, product quality becomes part of
each employee’s responsibility.

Quality and Reliability begin with the
proper product and process designs and is
supported by material and process controls.
Examples are products manufactured on
an epitaxial silicon layer to reduce latch-up
sensitivity, all pins are designed to
withstand >2,000 volts ESDS, numerous
ground taps are used which increases
product noise immunity, metal traces are
designed to carry a current density of
>2.0 x 10% amps/cm?, top passivation
extends over into the scribe lane to seal
the die edges, data retention is performed
100% on re-programmable products (Tp =
+225°C, T = 72 hours), automated die
attach and bonding is used extensively,
wafers are fabricated in a Class 10 clean
room, raw materials, chemicals and gases

course.

Product and process introductions or
changes are routinely evaluated for
worthiness. Life tests are conducted at
higher than typical stress levels (Tp =
+150°C, Vo = +65V) and even at these
stress levels, WSI products have
demonstrated low failure rates (see the
Quality and Reliability section in the

WSI 1990 databook).

WSI is active in Military programs and its
Quality and Reliability System supports
Compliant Non-Jan products. WSI also
supports DESC’s (Defense Electronics
Supply Center) Standardized Military
Drawings (SMD) program. As of October,
1989, WSI has eighteen products on SMDs
with additional products pending. Several
additional products not on SMDs are
available per MIL-STD-883C. See Section
7 (Military Products) in the WSI 1990
databook.

WAFERSCALE INTEGRATION, INC. 17

Company Profile

Sales Network

WSI’s international sales network includes
regional sales managers, field applications
engineers, manufacturers representatives

and many of the leading component
distributors in the United States, Europe
and Asia. See Section 7.

United States

Direct sales and field applications
engineering offices in Boston, Chicago,
Huntsville, Philadelphia, Los Angeles areas
and Fremont, CA; more than 25
manufacturers’ representatives for major
national accounts; national distributors
including Schweber Electronics, Time
Electronics and Wyle Laboratories; and
regional distributors.

International

Distributors in West Germany, England,
France, Italy, Sweden, Finland, Denmark,
Norway, Spain, Belgium, Luxembourg, the
Netherlands, and Israel. Distributors for
the Asia/Pacific Rim region in Japan,
Korea, Taiwan, Hong Kong and Australia.

1-8 WAFERSCALE INTEGRATION, INC.

FEEEF= Ordering Information

High-Performance CMOS Products

WS57C————~ -35 D | B
' L
Basic Part Number Manufacturing Process:
(Blank) = WSI Standard Manufacturing Flow
B = MIL-STD-883C Manufacturing Flow
—— Operating Temperature Range:
(Blank) = Commercial: 0° to +70°C
Vee: +5V + 5%
| = Industrial: —40° to +85°C
Vee: +5V + 10%
M = Military: —55° to +125°C
Vee: +5V + 10%
—— Package: Window
A = PPGA Plastic Pin Grid Array No
B = 0900” Size Brazed Ceramic DIP No
C = CLLCC Ceramic Leadless Chip Carrier Yes*
D = 0.600”" CERDIP Yes
F = Ceramic Flatpack Yes*
G = CPGA Ceramic Pin Grid Array No
H = Ceramic Flatpack No*
J = Plastic Leaded Chip Carrier No*
K = 0.300” Thin CERDIP No
L = CLDCC Ceramic Leaded Chip Carrier Yes*
N = CLDCC Ceramic Leaded Chip Carrier No*
P = 0.600” Plastic DIP No
Q = Plastic Quad Flatpack No*
R = Ceramic Side Brazed Yes
S = 0.300” Thin Plastic DIP No
T = 0.300"” Thin CERDIP Yes
W = Waffle Packed Dice —
X = Ceramic Pin Grid Array Yes
Y = 0.600" CERDIP No
Z = CLLCC No
—— Speed:
-35 = 35 ns
-55 = 55 ns
-70 = 70 ns
Etc.

*Surface Mount

WAFERSCALE INTEGRATION, INC. 1-9

110 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

e}
=
=)
-~
N
)
=
" —
)
=
)

PSD Product

P Bikzin

£

2

%

s

Section Index

PSD Product
Specifications

MAP168/PSD301
Introduction

MAP168

PSD301

PAC1000 Introduction
PAC1000

SAM448 Introduction
SAM448

User-Configurable Peripheral with Memory 241
User-Configurable Peripheral with Memory 2-5
User-Configurable Peripheral with Memory 2-23
User-Configurable Microcontroller 2-63
User-Configurable Microcontroller 2-65
User-Configurable Microsequencer.............. 2-113
User-Configurable Microsequencer. 2-115

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, call 800-562-6363.

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

MAP168/PSD301 Introduction——

User-Configurable
Peripheral with Memory

Overview In 1988 WSI introduced a new concept in The MAP168 contains three elements
programmable VLSI: the Programmable normally associated with discrete solutions
System™ Device (PSD). The PSD is to system memory requirements. It
defined as a family of User-configurable incorporates EPROM and SRAM plus a
system level building blocks on-a-chip Programmable Address Decoder (PAD), all
enabling quick implementation of application ~ on the same die. The MAP168 is ideal for
specific controllers and peripherals. The the systems designer who wishes to
first generation PSD series includes the reduce the board space of his final design.
MAP168, a User-Configurable Peripheral By using the MAP168 in a system, five or
with Memory; the SAM448, a User- six EPROM, SRAM and decode logic
Configurable Microsequencer; and the chips may be reduced into a single 44 pin
PAC1000, a User-Configurable PLDCC, CLDCC or PGA package.
Microcontroller. The second generation PSD301 is a user-
The MAP168 is a high-performance, user- configurable peripheral for microcontroller
configurable peripheral with memory. It is applications including disk drives, low cost
used in DSP applications including modems, and mobile phones. The PSD301
modems, motor control and medical is ideal for microcontroller based
instrumentation. The MAP168 is ideal for applications where fast time-to-market,
DSP based applications where fast time-to- small form factor and low power
market, small form factor and low power consumption are essential. When
consumption are essential. When combined combined together in an 8- or 16-bit
together in an 8- or 16-bit system, virtually system, virtually any microcontroller (8051,
any DSP chip (TMS320 series, etc.) and 8096, 16000, etc.) and the PSD301 work
the MAP168 work together to create a together to create a very powerful 2-piece
very powerful 2-piece chip-set. This chip-set. Together, this implementation
implementation provides the core of the provides all the required control and
required control and peripheral elements peripheral elements of a microcontroller
of a DSP system. based system peripheral with no external

“glue” logic required.
Architecture The MAP168 and PSD301 products and 2K words of SRAM. The flexibility of

incorporate the flexibility of using discrete
memory addressing and decoding. With
the support of WSI’s user friendly PSD
software called MAPLE, designers may
configure their MAP168/PSD301 subsystems
for 8 or 16 bit data paths. If the host
system uses an 8051 microcontroller, the
MAP168/PSD301 can be programmed with
an eight bit data path. A sixteen bit data
path can be programmed for
microcontrollers like Intel’s 80196. The
depth of the memory organization will be
modified accordingly to accept the different
data path widths. The low cost MAPLE
software package will handle the data path
width adjustment automatically. The user
can select either 16K bytes of EPROM and
4K bytes of SRAM or 8K words of EPROM

the MAP168/PSD301 products enables two
devices to be cascaded in width. It is
possible to double the memory size of a
sixteen bit system by using two MAP168
products in parallel but programmed in a
byte-wide configuration. For example, with
two MAP168 devices, 16K words of EPROM
and 4K words of SRAM may be organized
as upper and lower data bytes of a 16 bit
word. Alternately, two MAP168 chips may
expand the system memory vertically as
two word organized memory devices. A
block diagram of the MAP168 is shown in
Figure 1.

An important feature of the MAP168/PSD301
products is their ability to incorporate the
memory address decoding on-chip. One

WAFERSCALE INTEGRATION, INC. 21

MAP168/PSD301 Introduction

Architecture MAP168 memory peripheral can reside memory devices. The chip select lines
ICML) with other MAP168 devices in the same may be subdivided into ES0-ES?, active
memory addressing scheme, with the on- low internal EPROM chip selects, and two
chip decoder allocating the memory blocks internal RAM chip selects RSO and RS1.
to different non-conflicting segments of the In byte-wide applications, eight chip select
entire memory area. The decoding function outputs drive external pins CS0-CS7.
is achieved by an on-chip feature called a These can be used as external chip
Programmable Address Decoder (PAD), selects for other MAP168 devices or
which is similar to a single fuse array system memory. These outputs are
programmable logic device supporting one not available for word-wide MAP168
product term (AND gate) per output in the configurations because the CS0-CS7 output
MAP168 and four product terms per output pins carry the higher order data byte. Only
in the PSD301. FCSO is available for external chip selection.
In the MAP168, eighteen standard chip Figure 1 shows the organization of the
select outputs from the PAD are available EPROM and SRAM in relation to the PAD,
with one fast chip select output generally for the MAP168 device.
used to select other external high speed
Figure 1.
MAP168 Memaly i E%%O:VII(® L-‘
Architecture > -
EPROM DATA BUS [8:15]
2K x 8 OR 1K x 16 _.. DATA BUS [0:7]
EPROM
(Ag-Aro BFE) 2K x 8 OR 1K X 16 fmuaent
sooress us [o
2K x 8 OR 1K X 16 jumnn
PAD EPROM
55 — > 2Kx8OR1Kx16,_‘
=
=5 EPI
ES2 - 2K x 8 OR 1K x 16 -
> ES3
s xS oR et
ES5 X x1
ES6 —"—'l
EPROM <
WENep ES7 2K x 8 OR 1K X 16 jumuuee 2 HIGH
— | oSl E | o
OF C€S0{0:7] E ¢ >
—— o - O g_sn_
— RS0 z 0
S| ST EPROM g [o7
= 2K x 8 OR 1K X 16 juuue
2K x 85'2,“::""(<16 LOW DATA BYTE
Important Features:

40 ns EPROM/SRAM Access Time.

Byte or Word Operation, Mappable into 1M Word or 2M Byte Address Space
22 ns Chip-Select 8 Outputs, 17 ns Fast Chip Select Output.
128K EPROM Bits, 32K SRAM Bits, On-Chip Programmable Decoder, Security Bit.

22 WAFERSCALE INTEGRATION, INC.

MAP168/PSD301 Introduction

Figure 2.
PSD301 Family
Architecture
128K/256K/512K EPROM'
CONFIGURATION
v REGISTERS
cc —————> 8 BLOCKS OF
GND ———————> EPROM
RD
WR/Vpp
BHE/PSEN CONTROL PORT B
RESET) {
Aqg/CSI
o D PB,
ADg-AD B | Ag-A SEP| q SEE 0-7
() 15 LATCH g=A15 C ROM TABLE | ————
a3 CSy-CS;
ALE PAD —
Al PORT A
G Do-D,/ADy-AD,
AD,-AD; Ag-A; CSRAM
LATCH P
A see | PP
TABLE | >
Dg-Dys 2K x 8 OR 1K x 16
D Dy-D7/ADy-AD; 16K BIT SRAM
PORT C
SEE PCo-2
MUX OR NON-MUX TABLE
CONTROL?

By 8 Configuration By 16 Configuration

Port A Port B Port A Port B Port €
Non-MUX Address Data’ | Dg-D, C§g‘f§g o' py-Ds* | Dg-Dss
— o7 e CSg-CS1o®
0—A7 _CS.4 ~A7 _ Ae-A
MUX Address Data PA—PA; CPSB° _?,%7 PAg-PA, g§°_g§7 e
ADg-AD; 07"F7 | ADg-AD; =7

NOTES:

1. Three MAP300 EPROM densities.

2. Internal signal can be set during programming.

3. Latch B can be set to be transparent (not dependent on ALE).

4. Each /O pin can be individually set to perform one of the two functions.

5. The non-MUX configuration is compatible to MAP168 pinout.

6. Port C is independent of any configuration and can be chip select out or address in.

Software Support The object code generated for the support ~EPROM and SRAM memory blocks. This
microprocessor/microcontroller is generated = mapping is achieved by the designer in

by an assembler. This code, when the MAPLE environment. The software
generated as an Intel MCS file, may be provides a safeguard that prevents the
easily programmed into the EPROM designer from inadvertently overlapping
section of the MAP168/PSD301 device the address selection. After selecting the
because the MAPLE software has been memory block assignments, the
designed to accept this standard format. MAP168/PSD301 device may be

The programmable address decoder is programmed by the WS| MagicPro™

used to define the mapping of the various ~ Memory and PSD programmer.

WAFERSCALE INTEGRATION, INC. 23

24 WAFERSCALE INTEGRATION, INC.

Programmable System™Device
MAP168

WAFERSCALE INTEGRATION, INC.

User-Configurable
Peripheral with Memory
Features 1 First-generation Programmable System 1 Programmable Security
Device (PSD) Protects memory map
User-Configurable Peripheral with Protects program code
Memory Q Programming Support Tools
16Kx8 EPROM PSD integrated software environment
4Kx8 SRAM PC-XT/AT/PS2 platform support
Programmable address decoder MAPLE location entry Software
O Byte or Word Memory Configurations MAPPRO device programming Software
16Kx8 or 8Kx16 EPROM MagicPro device programmer (PC-XT,
4Kx8 or 2Kx16 SRAM AT)
2Mbyte or 1 Mword address range Q@ Military and Commercial Specifications
1 High-Speed Operation 44-pin Ceramic Leaded Chip Carrier
40-nsec memory access package
17-nsec fast chip select output 44-pin Plastic Leaded Chip Carrier
1 External Chip Select Outputs ZiCkagi; ic Leadless Chio Carri
8 external chip selects pa;:Flide eramic Leadless Lhip Larrier
1 fast chip-select output 44-pin Ceramic Pin Grid Array package
General In 1988 WS introduced a new concept in cantly reduces the board space and power
Description programmable VLSI, Programmable System necessary to implement memory subsys-

Devices (PSD). The PSD family consists of
user-configurable system-level building

blocks on-a-chip, enabling quick implementa- -

tion of application-specific controllers and
peripherals. The first generation PSD series
includes the MAP168 User-Configurable
Peripheral with Memory; the SAM448, a
User-Configurable Microsequencer; and the
PAC1000, a User-Configurable Microcon-
troller.

The MAP168 is the first of WSI's Program-
mable System Devices (PSD) product line.
The device integrates high performance,
user-configurable blocks of EPROM, SRAM,
and logic in a single circuit. The major
functional blocks include a Programmable
Address Decoder (PAD), 16K bytes of high
speed EPROM, and 4K bytes of high speed
SRAM. A block diagram is given in Figure 1.

The MAP168 device is a complete memory
subsystem that can be mapped anywhere in
a 2M-byte address space of a microproces-
sor or microcontroller system. The EPROM
and SRAM memory blocks can be user-
configured in either byte-wide or word-wide
organizations. The MAP168 device signifi-

tems, increases system performance, and
provides for secure data or program storage.

The device’s high level of integration and
flexibility make it ideal for high-speed micro-
processors, microcontrollers, and Digital
Signal Processors like the TMS320XX family.
The EPROM can be configured either as
16Kx8 or 8Kx16. The SRAM can be config-
ured either as 4Kx8 or 2Kx16. Individual
memory blocks of 2Kx8 or 1Kx16 can be
selectively mapped anywhere in the address
space. Since the Chip Select Input (CSI) can
be programmed as A20, the highest-order
address bit, the device’s address range can
extend from 1M byte with CSI to 2M byte
without CSI.

For 16-bit microprocessors capable of byte
operations, the MAP168 device provides a
Byte High Enable input for accessing bytes
on any address boundary.

Pinout is compatible with the JEDEC
WS27C257 256K high-speed EPROM. This
pinout provides for memory expansion with
future WSI EPROM and PSD products.

The device’s PAD and EPROM memory are

WAFERSCALE INTEGRATION, INC.

25

MAP168

Figure 1.
Block Diagram MAP168
DECODED EPROM
ADDRESS
Ag-Ar2 Ag=A12
EPROM —V EPROM
PGMH 8Kx 8 8Kx 8
N PGM PGM
— EOEH
Ag-Ag OE ouTy,; INg; OE ouTe,; INg;
PGML ZAS
EOEL
DECODED SRAM
ADDRESS
Ag—Ar2 ‘ Y Ao-Ar2
PAD SRAM —V/ SRAM
WEH 2Kx 8 2Kx8
WE | WE
ROEH
OE ouTy,; INgy OE OUTy; INy;
BFE WEL ZAN {\
WE Nep ROEL
. L
& cs ;
CSl/Ay, CON 07 <
FCSO < Oft - 2:1 2:1
oen |] MUX MUX
AN
N/ /\ I N\
M AR \
I/0g 45 OR CSO, ; g7 1737 o1
26 WAFERSCALE INTEGRATION, INC.

MAP168

General
Description
(Con’t)

programmed using the same WSI MagicPro
programmer used to program other WSI
devices. Two software packages, MAPLE
Location Entry and MAPPRO Device Pro-
gramming Software are available in the
menu-driven WISPER software environment
on an IBM® PC XT/AT or 100% compatible
platform.

For additional information on the MAP168
device, refer to Application Note No. 002,
Introduction to the MAP168 User-Configur-
able Peripheral with Memory. For additional
information on development and program-
ming software for the MAP168 device, refer
to the MAP168 User-Configurable Peripheral
with Memory Software User’s Manual.

Functional
Description

The user-configurable architecture of the
MAP168 consists of an EPROM memory
block, an SRAM memory block, and a fast
Programmable Address Decoder (PAD) that
can be configured to select 2K-byte memory
blocks anywhere in a 2M-byte address

range. The device can be programmed to
operate with memory configured either in a
byte or word organization (bytes can be
addressed in word mode). A programmable
security bit prevents access to the PAD
address-decode configuration table.

Table 1.
Pin Description

Signal o

Description
| Address Lines. For access to EPROM or SRAM.

Fast Chip-Select Output (active low). Used by the Pro-
grammable Address Decoder (PAD).

Byte High Enable (active low). Selects the high-order
byte when writing to SRAM.

Write Enable (active low) or Programming Voltage. In
normal mode, this pin causes data on the 1/O pins to be
written into SRAM. In programming mode, the pin
supplies the programming voltage, V..

Output Enable (active low). Enable the /O pins to drive
the external bus.

20 | Chip Select Input (active low) or High-Order Address.
This pin can be programmed as the bus-access chip
select or as an additional high-order address bit (A,

/0 Low-Order Byte of EPROM or SRAM.

o7 110 High-Order Byte or Chip-Select Outputs. In word mode,
these pins serve as the high-order byte (I/O,) of
EPROM or SRAM. In byte mode, the bits serve as Chip-
Select Out signals (CSO,_,) for the Programmable
Address Decoder (PAD).

20) :

WAFERSCALE INTEGRATION, INC. 27

MAP168

Programmable
Address Decoder

The MAP168 device has a minimum of 20
address inputs A A, allowing the EPROM
and SRAM memory blocks to reside any-
where in a 1M-byte address space. If the
CSI/A,, input is user-configured as an ad-
dress line, the maximum addressable space
increases to 2M bytes, as shown in the
Configurations table.

The 16K bytes of EPROM and 4K bytes of
SRAM, can be configured into eight inde-
pendent 2K-byte blocks and two 2K-byte
blocks respectively, as shown in the Memory
Architecture figure. The PAD is a user-
configurable address decoder that compares
input addresses to the 2K-byte address
range selected for each of the eight EPROM
blocks and two SRAM blocks. When the
input address A-A,, is detected to be within
one of the EPROM or SRAM address
ranges, the PAD enables an internal chip
select (ES~ES, or RS~RS,) to the selected
block. If no block is selected, both the
EPROM and SRAM memories remain in a
power-down mode and the outputs are
disabled allowing other devices to drive the

data bus. The SRAM retains its data in the
power-down mode. The 2K-byte address
ranges for any of the eight EPROM or two
SRAM blocks may not overlap.

The PAD can also be user-configured to
generate up to eight external chip selects,
CS,-CS,. These outputs can be used to
decode the input address lines A~A,; and to
select other devices in the system. The
outputs CS-CS, are available on the eight
higher-order I/Q,~1/O,; lines but only when
the MAP168 device is configured in the byte
mode; the lines are not available as chip-
select outputs when the device is configured
in the word mode.

The CSV/A,, input is user-configurable as the
most-significant address line or as an active-
low chip enable. Its function is programmed
as part of the PAD programming cycle.

The PAD also provides FSCO, a single, fast
chip-select output configurable by the user for
any address. It can overlap with any of the
internal EPROM, SRAM or external CSO
addresses.

Memory
Subsystem
EPROM Memory

The memory configuration of the MAP168
device includes 128K bits of WSI's patented
high-speed, split-gate, UV-erasable EPROM.
The EPROM is configured in byte mode as
16Kx8 and in word mode as 8Kx16. The
memory is organized as eight 2Kx8 or 1Kx16
blocks, as shown in the Block Diagram
figure. Each block has a separate and
independent address range that cannot
overlap. Each block is individually selected
by one of the ES ~ES, internal chip selects
generated by the PAD when an input ad-
dress is detected within its designated
address range, as shown in the Memory
Architecture figure. If not selected, each
block of EPROM remains in a power-down
mode.

For programming, the EPROM memory
requires the WE/V,,, input to maintain the
programming voltage V..

SRAM Memory

The device also includes 32K bits of high-
speed SRAM. The SRAM is configured in
byte mode as 4Kx8 and in word mode as
2Kx16. The memory is organized as two
2Kx8 or one 2Kx16 block(s), each with a
separate and independent address range that
cannot overlap. Each SRAM block is individu-
ally selected by one of the RS~RS,, shown
in the Memory Architecture figure, when an
input address is detected by the PAD within
its designated address range. When not
selected, each of the SRAM memory blocks
remains in a power down mode but does
retain all data stored.

Data can be written into the SRAM only when
the WE/V,,, input is active low.

28 WAFERSCALE INTEGRATION, INC.

MAP168

Memory Byte/Word Mode PAD available on the eight high-order input/
Subsystem The PAD can be programmed to configure output lines 1/O,~I/O,; and enabled onto the
EPROM Memory the MAP168 device for either a byte or word ~ Output bus when the OE input is low.

(Con’t) memory architecture. This allows the device In word mode, the EPROM is organized as
to be used conveniently with either 8-bit or 8Kx16 and the SRAM as 2Kx16. The outputs
16-bit microcontrollers, microprocessors or of both are tied to the 16 input/output lines
digital signal processor (DSP) systems. See 1/0-1/0,, and enabled onto the bus when OE
the Configurations table. is low.

In byte mode, the EPROM is organized as In word mode, the BHE input along with
16Kx8 and the SRAM as 4Kx8. The outputs address input A0 allows the eight bits of any
of both are tied to the eight low-order input/ 16-bit word on an even or odd boundary to
output lines 1/0,~1/O, and enabled onto the be selected as shown in the High-Low Byte
output bus when the OE input is low. Selection table. This is a useful feature for
Only when configured in byte mode are the 16-bit processors that are not restricted to
eight external chip selects provided by the reading or writing memory only on even-word
address boundaries.

Mode Selection The device's operational mode is controlled are ten separate modes of operation, all of
by three inputs, CSI, OE, and WE/V,,.. There which are shown the Mode Selection table.

Table 2.

Configurations X8 Configuration x16 Configuration

AZB m AZﬂ
Address Space 1M bytes 2M bytes 512K words 1M
words
Block Size 2K bytes 2K bytes 1K words 1K
words
Addressable Blocks 512 1024 512 1024
EPROM Blocks 8 8 8 8
SRAM Blocks 2 2 2 2
Chip-Select Outputs 9 9 1 1
EPROM Configuration 16Kx8 16Kx8 8Kx16 8Kx16
SRAM Configuration 4Kx8 4Kx8 2Kx16 2Kx16
I/O Pins 8 8 16 16
Low-power Standby yes no yes no
Protected Mode yes yes yes yes
Byte Operations yes yes yes yes

WAFERSCALE INTEGRATION, INC.

2.9

MAP168

Table 3.
Mode Selection Mode/Pin CS1 OF WEN, Address x16(1/0,) x16 (FCSO)
x8(1/0,,) x8FCSO,CSO,,
Read EPROM/SRAM V, V, V, EPROM/SRAM Doyr CSuur
Selected
Read External Vo ViV EPROM/SRAM High Z CSoyr
Not Selected
Output Disable X Vv, X X High Z CSoyr
Stand-By vV, X X X High Z CSour
Write SRAM V., X V, SRAMSelected D, CSour
Write External vV, XV, No SRAM X CSour
Selected
Program EPROM Vi Vi Ve EPROM Dy Dy
Program Address
Program Verify Vo Vi Vi EPROM Doyr CSour
EPROM Program Address
Program PAD V., V. Ve PAD Program Dy Dy
Address
Program Verify PAD V, V, V, PAD Program Dour CSour
Address
Table 4.
High/Low Byte x16 Configuration Only
Selection BHE (Pin 1) A, Write Operation Read Operation
0 0 Whole word Whole word
0 1 Upper byte from/to Upper byte = Data Out
odd address Lower byte = ‘FF’
1 0 Lower byte from/to Whole word
even address
1 1 None Upper byte = Data Out
Lower byte = ‘FF’
WR and BHE are used for SRAM functions
Table 5. Product
Selection Guide Parameter MAP168-40 MAP168-45 MAP168-55 Units
Address Access Time (max) 40 45 55 ns
Chip-Select Access Time (max) 40 45 55 ns
Output Enable Time (max) 18 21 23 ns
Chip-Select Output Time 22 25 27 ns
Fast Chip-Select Output Time (max) 17 20 22 ns

2-10 WAFERSCALE INTEGRATION, INC.

MAP168

Table 6. DC

Characteristics Parameter Symbol Test Conditions ~ Min Max Units
Output Low Voltage Vo lo, =8 MA 0.5 v
Output High Voltage Vou loy=—2 MA 24 \Y
CMOS Standby
Current lg, notes 1, 3
—Commercial 20 mA
—Military 30 mA
TTL Standby
Current lsgo notes 2, 3
—Commercial 30 mA
—Military 40 mA
CMOS Active Current
No Blocks Selected lc 1A notes 1, 4
—Commercial 20 mA
—Military 30 mA
CMOS Active Current
EPROM Block Selected lec 1B notes 1, 4
—Commercial 35 mA
—Military 45 mA
CMOS Active Current
SRAM Block Selected Iec 1C notes 1, 4
—Commercial 55 mA
—Military 65 mA
TTL Active Current
No Blocks Selected loc 2A notes 2, 4
—Commercial 30 mA
—Military 40 mA
TTL Active Current
EPROM Block Selected I 2B notes 2, 4
—Commercial 40 mA
—Military 50 mA
TTL Active Current
SRAM Block Selected I, 2C notes 2, 4
—Commercial 65 mA
—Military 75 mA
Input Load Current I, V\=5.5V -10 10 MA

or GND
Output Leakage Current lo Vour=5.5V -10 10 MA
or GND

Notes:
1. CMOS inputs: GND + 0.3V or VCC + 0.3V.
2. TTLinputs:V <0.8V,V A >2.0V.
3. Add 1.5 mA/MHz for AC power component.
4. Add 3.5 mA/MHz for AC power component.

WAFERSCALE INTEGRATION, INC. 21

MAP168

Table 7. AC
Characteristics Parameter Symbol MAP168-40 MAP168-45 MAP168-55 Units
Min Max Min Max Min Max

Read Cycle Time tac 40 45 55 ns
Address to Output Delay tace 40 45 55 ns
CSl to Output Delay tee 40 45 55 ns
OE to Output Delay toe 18 21 23 ns
Output Disable to Output Float toer 15 18 20 ns
Chip Disable to Output Float tesr 15 18 20 ns
Address to Output Hold ton 10 10 10 ns
Address to CSO,_, True toso 22 25 27 ns
Address to FCSO True tecso 17 20 2 ns
SRAM Write Cycle Time twe 40 45 55 ns
Chip Enable to Write End tesw 40 45 55 ns
Address Setup Time tas 0 0 0 ns
Address Hold Time tay 0 0 0 ns
Address Valid to Write End taw 40 45 55 ns
SRAM Write Enable Pulse Width t,,. 25 30 35 ns
Data Setup Time tos 20 20 30 ns
Data Hold Time ton 0 0 0 ns
Write Enable to Data Float twer 18 21 23 ns
Write Disable to Data Low Z twez S 3 3 ns
BHE Setup Time toes O 0 0 ns
BHE Hold Time tyew 10 10 10 ns

Table 8. Data

Retention Parameter Symbol Test Conditions Min Max Units

Characteristics Minimum V, for Data Retention Vo Vy=2.0V, 2.0 Vv
Current in Data Retention Mode lecor CSiz V0.2V, 1 mA
Chip Deselect to Data Retention tesor Va2V 02V 0 ns
Recovery Time from Data Retention tror orV,<0.2v tee ns

212 WAFERSCALE INTEGRATION, INC.

MAP168

Absolut
bsolute Storage Temperature............ —65°C to +150°C stress rating only and functional operation of
Maximum Ratings ; ”

Voltage to any pin with the device at'thefse or any other cor;dmons

respectto GNDcccccuvuruenee. —0.6V to +7v above those indicated in the operational

- sections of this specification is not implied.

Ve with respect to GND—0.6 V to +14.0V Exposure to absolute maximum rating

ESD Protectionccccceveeeceereceenenns >2000V conditions for extended periods of time may

Stresses above those listed here may cause affect device reliability.

permanent damage to the device. This is a
;able 9. Operating Range Temperature v,

ange Commercial 0°to +70°C +5V + 5%
Military -55"to +125°C +5V £ 10%
Figure 3.
Read Cycle tre
Timing Diagram
4 X
ADDRESSES X)K
tacc le— toH —
e tce —» le—tosF

Dour

o8]
toe j le—
A

ot
~

DATA VALID
!

toerF —J

CSO,FCsSO

[&——— trcso ——»

|&——— tcsO ———»

1737 03

WAFERSCALE INTEGRATION, INC.

213

. MAP168

Figure 4.
Test Load 980
2.01V
(INCLUDING
SCOPE AND JIG
= CAPACITANCE)
High-impedance test systems 1797 04
Table 10.
Timing Levels Level Voltage
Input 0and 3V
Reference 1.5V
Figure 5.
Write Cycle twe
Timing Diagram

>
NG
7 N

ADDRESSES ’

¥
tosw
taw
WE \ /
tas tPwe tan —»
—» twer le—— tps —s1e— toH —y
Dout AAAVAANN
LLLLLY 1)
—— tweLz ——

BHE BHE VALID

tBHES |+ taHEH —
1737 05

2-14 WAFERSCALE INTEGRATION, INC.

MAP168

Figure 6.
Memory
Architecture

ADDRESS
_EPROM 1O
Cs

ADDRESS
_EPROM 110
s

DIRECT ADDRESSES ADDRESS
_EPROM /O

cs

ADDRESS
_EPROM 10
s

ADDRESS BUS

BLOCK -
DECODE

ADDRESSEg

) PAD 8

ESo7

ADDRESS
_EPROM 10
cs

ADDRESS
_EPROM 10 o >
cs

ADDRESS
_EPROM 110
cs

| WEVep RSgy

———»| CSilA,, CSOy; [| ¢

——» OE FCSO [~

ADDRESS
_EPROM 10
Cs

ADDRESS
__SRAM 10
s

T T TR TR T T T T R
|

ADDRESS
__SRAM IO
cs

1737 06

WAFERSCALE INTEGRATION, INC. 215

MAP168

Table 11. MAP168
Pin Assignments

44-pin CLDCC Package
44-pin PLDCC Package
44-pad CLLCC Package
Pin No. x8
1 GND
2 WEN,,
3 CSI/A,,
4 CSG,
5 CsSO,
6 CSO,
7 CSO,
8 CSO,
9 CSo,
10 CS0,
11 CsO,
12 GND
13 FCSO
14 /0,
15 /0,
16 /0,
17 /o,
18 10,
19 10,
20 1o,
21 /0,
22 OE
23 A,
24 A,
25 A,
26 A,
27 A,
.28 A,
29 A,
30 A,
31 A,
32 A,
33 A,
34 GND
35 A,
36 A,
37 A,
38 A,
39 A,
40 A,
41 A,
42 Ag
43 A,
44 \Y

cc

x16
BHE
WENV,,

>P>PP>P>P>>>>> O S
S&ddFLd R = z;omqoubumgomLo
S

<>P>>PP>>22>2>0

Q
(]

WE and BHE are for SRAM functions.

2-16 WAFERSCALE INTEGRATION, INC.

MAP168

: R
6~EWWHMHQHWQ’SW—m7G54321O m
T - N p % ow oo oo 2 r 8 e e e~ 22
ﬂB_w_CmmmmmmmmemmmmmmmmnIVOAoAAAA4AAAAAAGAAAAAAAAAV
& R o
o B R BB REE B soososoon P8 LI LI ELES
m.me_W_CCCCCCCCCGFVmmvmmllOAoA1AaAaA4AAAAAAGA1A1A1A1A1A1A1A1A1Vc
s
Q,
$
s
£
3
~ ™ ™ o © N~ © N © © 0
SE <o << a0 oo tds o rorr oo oo o a <o <o
S »
55
=5
N
R
S
= a

217

WAFERSCALE INTEGRATION, INC.

MAP168

Figure 7.

Pin Assig”ments 44 PIN PLDCC PACKAGE

Programming PP B

8o
10 F=3
Moo
12
1310
140
15 -0
16 [0
w7z oo
1‘8.19'2‘(;21222.3'24é5.26'2'72'8‘ 1819202122232425262728
TOP (THROUGH PACKAGE) VIEW TOP (THROUGH PACKAGE) VIEW
44 PIN CPGA PACKAGE
1 2 3 4 5 6 7 8
Al OOOOOO
BlOOOOOOOO
clOO® (OJO)
0|OO (OJO)
ElO® ©6
FIOO (0JO;
GlOOOOOOOO
H QOOOOOO
TOP (THROUGH PACKAGE) VIEW
1737 07
Upon delivery from WSI or after each Information for programming the device is
erasure (see Erasure section), the MAP168 available directly from WSI. Please contact
device has all bits in the PAD and EPROM in your local sales representative.
the “one” or high state. Zeros are loaded
through the procedure of programming.

Erasure To clear all locations of their programmed The MAP168 device and similar devices will
contents, expose the device to an ultra-violet erase with light sources having wavelengths
light source. A dosage of 15W-second/cmzis shorter than 4000A. Although erasure times
required. This dosage can be obtained with will be much longer than with UV sources at
exposure to a wavelength of 2537A and 2537A, the exposure to fluorescent light and
intensity of 1200uW/cme for 15 to 20 minutes. sunlight will eventually erase the device; for
The device should be about one inch from maximum system reliability, these sources
the source and all filters should be removed should be avoided. If used in such an envi-
from the UV light source prior to erasure. ronment, the package windows should be

covered by an opaque label or substance.

System MAP168 System Development Tools are a ment. The tools run on an IBM-XT, AT, or

Development complete set of PC-based development compatible computer running MS-DOS

Tools tools. Installed on an IBM PC or compatible version 3.1 or later. The system must be

computer, these tools provide an integrated,
easy-to-use software and hardware environ-
ment to support MAP168 device develop-

equipped with 640K bytes of RAM and a hard
disk.

218 WAFERSCALE INTEGRATION, INC.

MAP168

System Hardware Software
Development The MAP168 System Programming Hard- The MAP168 System Development Software
Tools (Con’t) ware consists of: consists of the following:
Q WSB000 MagicPro Memory and PSD 0 WISPER Software—PSD Software
Programmer Environment
QO WSB6003 44-pin LCC Package Adaptor Q MAPLE Software—MAP168 Location
(for 44-pin CLLCC, CLDCC, and PLDCC Editor
packages) 1 MAPPRO Software—Device Program-
0O WS6011 44-pin CPGA Package Adaptor ming Software
The MagicPro Programmer is the common The configuration of the MAP168 device is
hardware platform for programming all WSI entered using MAPLE software. MAPRO
programmable products. It consists of the software configures MAP168 devices by
IBM-PC plug-in Programmer Board and the using the MagicPro programmer and the
Remote Socket Adaptor Unit. socket adaptor. The programmed MAP168 is
then ready to be used. The development
cycle is depicted in Figure 8.
Figure 8. MAP168
neve’””’"e”t IBM PC PLATFORM
Cycle (BM PC PLATFORM .
| |
| |
| |
1 !
[T i
| |
Menu Selection : WISPER :
| I
| |
| I |
! |
Configuration Data MAPLE !
| |
1 1
| I]
! I DISK
Programming Data ! MAPRO !
| |
L _k ___
Hex File
Format
O

MagicPro Hardware

1737 08

WAFERSCALE INTEGRATION, INC. 219

MAP168

System Support Training
Development WSI provides a complete set of quality WSI provides in-depth, hands-on workshops
Tools (Con’t) support services to registered System for the MAP168 device and System Develop-
Development Tools owners. These support ment Tools. Workshop participants learn how
services include the following: to program their own high-performance, user-
Q@ 12-month Software Updates. configurable mappable memory subsystems.
. o Workshops are held at the WSI facility in
1 Hotline to WSI Application Experts— Fremont, California.
For direct design assistance. ’
1 24-Hour Electronic Bulletin Board—
For design assistance via dial-up
modem.
Ordering
Information MAP168 Speed Package Package Operating Manutacturing
Part Number (ns) Type Drawing Temperature Procedure
MAP168-40C* 40 44-pad CLLCC C3 Commercial ~ Standard
MAP168-40J* 40 44-pin PLDCC J2 Commercial Standard
MAP168-40L* 40 44-pin CLDCC L4 Commercial ~ Standard
MAP168-45C 45 44-pad CLLCC C3 Commercial ~ Standard
MAP168-45CM* 45 44-pad CLLCC C3 Military Standard
MAP168-45CMB* 45 44-pad CLLCC C3 Military MIL-STD-883C
MAP168-45J 45 44-pin PLDCC J2 Commercial Standard
MAP168-45L 45 44-pin CLDCC L4 Commercial Standard
MAP168-45LM* 45 44-pad CLDCC L4 Military Standard
MAP168-45LMB* 45 44-pad CLDCC L4 Military MIL-STD-883C
MAP168-45X 45 44-pin CPGA X2 Commercial Standard
MAP168-45XM* 45 44-pin CPGA X2 Military Standard ,
MAP168-45XMB* 45 44-pin CPGA X2 Military MIL-STD-883C
MAP168-55C 55 44-pad CLLCC C3 Commercial ~ Standard
MAP168-55CM 55 44-pad CLLCC C3 Military Standard
MAP168-55CMB 55 44-pad CLLCC C3 Military MIL-STD-883C
MAP168-55J 55 44-pin PLDCC J2 Commercial Standard
MAP168-55L 55 44-pin CLDCC L4 Commercial ~ Standard
MAP168-55LM 55 44-pin CLDCC L4 Military Standard
MAP168-55LMB 55 44-pin CLDCC L4 Military MIL-STD-883C
MAP168-55X 55 44-pin CPGA X2 Commercial Standard
MAP168-55XM 55 44-pin CPGA X2 Military Standard
MAP168-55XMB 55 44-pin CPGA X2 Military MIL-STD-883C

*These products are advanced information.

220 WAFERSCALE INTEGRATION, INC.

MAP168

Ordering
Information

System Development Tools

Part Number
MAP168-GOLD

MAP168-SILVER

WS6000

WS6003

WS6011

WSI-SUPPORT

WSI-TRAINING

Contents

WISPER Software

MAPLE Software

User’'s Manual

WSI-SUPPORT

WS6000 MagicPro Programmer

WISPER Software
MAPLE Software
User's Manual
WSI-SUPPORT

MagicPro Programmer
IBM PC plug-in Adaptor Card
Remote Socket Adaptor

44-pin LCC Package Adaptor for

44-pin CLLCC, CLDCC, and PLDCC Packages.

Used with the WS6000 MagicPro Programmer.

44-pin CPGA Package Adaptor.
Used with the WS6000 MagicPro Programmer.

Support Services including:
@ 12-month Software Update Service
O Hotline to WSI Application Experts

3 24-hour access to WSI Electronic Bulletin Board

Workshops at WSI, Fremont, CA.

For details and scheduling, call PSD Marketing, (415) 656-5400.

WAFERSCALE INTEGRATION, INC.

2:21

222 WAFERSCALE INTEGRATION, INC.

4 f 3 ™ »
FES 5= Programmable System™ Device
P s =
WAFERSCALE INTEGRATION, INC. P SD 301
User-Configurable
Preliminary Peripheral with Memory
I{E}’ Features [Second Generation Programmable — Multiplexed or Non-Multiplexed
System Device Address/Data Buses
— Selectable 8- or 16-Bit Bus Width
J User-Configurable Peripheral for electable & or t Bus T
Microcontroller Based Applications — — Power-Down
Enables rapid design implementation and — Address Inputs Can Be Latched or
fast time to market Transparent
— Latched Low-Order Address B
[Available in space saving surface mount Asaﬁlaile :;N Ol:t;.:t ress Byte

and through-hole packages
2 High-Density UV EPROM

I Windowed package option for prototypin:
P geop profotyping — 256K Bits Configurable as 32K x 8 or

QJ Low cost OTP (one-time programmable) as 16K x 16
package for high volume applications — Divided Into Eight Equal Mappable
Blocks
' CMOS for low power consumption — EPROM Block Resolution of 4K Bytes
or 2K Words

[User-Configurable to Interface with Any
8- or 16-Bit Microcontroller

— Programmable Address Decoder (PAD)

— EPROM: Up to 120 ns Access Time
(Including PAD Decoding Time)

— Programmable Control Signals A Static RAM
— Programmable Polarity — 16K Bits Configurable as 2K x 8 or
— BuiltIn Address Latches as 1K x 16
— SRAM: Up to 120 ns Access Time
[Port Expansion/Reconstruction of Up to (Including PAD Decoding Time)
16 1/0 Lines
— Individually Configurable as Output U Addressable Range
or Input — 1 MByte or 05 MWords
[Highly Configurable, Many Operational [Low Power TTL-Compatible CMOS Device
Modes
Applications [Computers (Workstations and PCs) — [Medical Instrumentation — Hearing Aids,
Fixed Disk Control, Modem, Imaging, Monitoring Equipment, Diagnostic Tools

Laser Printer Control
[Military — Missile Guidance, Radar, Sonar,
[Telecommunications — Modem, Secure Communications, RF Modems
Cellular Phone, Digital PBX, Digital
Speech, FAX, Digital Signal Processing

I Industrial — Robotics, Power Line
Access, Power Line Monitor

WAFERSCALE INTEGRATION, INC. 223

PSD301

Product
Description

In 1988 WSI introduced a new concept in
programmable VLS|, Programmable System
Devices. The PSD family consists of user-
configurable system-level building blocks
on-a-chip, enabling quick implementation
of application-specific controllers and
peripherals. The first generation PSD
series includes the MAP168, a User-
Configurable Peripheral, which is ideal for
DSP applications; the SAM448, a User-
Configurable Microsequencer for control
and interface applications, and the PAC1000,
a User-Configurable Microcontroller.

The PSD301 is a second generation PSD.
The PSD301 is ideal for microcontroller
based applications where fast time-to-
market, small form factor and low power
consumption are essential. When combined
together in an 8- or 16-bit system, virtually
any microcontroller (8051, 8096, 16000,
etc.) and the PSD301 work together to
create a very powerful 2-piece chip-set.
This implementation provides all the
required control and peripheral elements
of a microcontroller based system peripheral
with no external “glue” logic required.

The PSD301 integrates high performance
user-configurable blocks of EPROM,
SRAM, and logic in a single circuit. The
major functional blocks include a
Programmable Address Decoder (PAD),
256K bits of high speed EPROM, 16K bits
of high speed SRAM, input latches, and
output ports. The PSD301 is ideal for
applications requiring high performance,
low power, and very small form factors.
These include fixed disk control, modem,
cellular telephone, instrumentation,
computer peripherals, military and similar
applications.

The PSD301 is an optimal solution for
microcontrollers that need:

[1/0 reconstruction (microcontrollers lose
at least two I/O ports when accessing
external resources).

[More EPROM and SRAM than the
microcontroller’s internal memory.

A Chip-select, control, or latched address
lines that are otherwise implemented
discretely.

[An interface to shared external resources.

The PSD301 (shown in Figure 1) can
efficiently interface with, and enhance, any
8- or 16-bit microcontroller system. No
other solution provides microcontrollers
with port expansion, latched addresses, a
programmable address decoder (PAD), an
interface to shared resources, 256 kbit
EPROM, and 16 kbit SRAM on a single
chip. The PSD301 does not require glue
logic for interfacing to any 8- or 16-bit
microcontrollers.

The 8051 microcontroller family can take
full advantage of the PSD301’s separate
program and address spaces. Users of the
68HCXX family of microcontrollers can
change the functionality of the control
signals and directly connect the R/W and
E signals. Users of 16-bit microcontrollers
(including the 80186, 8096, 80196, 16XXX)
can use the PSD301 in a 16-bit
configuration. Address and data buses
can be configured to be separated or
multiplexed, whichever is required by the
host processor.

The flexibility of the PSD301 1/O ports
permit interfacing to shared resources. The
user can assign the following functions to
these ports: standard /O pins, chip select
outputs from the PAD, latched address or
multiplexed low-order address/data byte.
This enables users to design add-on
systems such as disk drives, modems,
etc., that easily interface to the host bus
(e.g., IBM PC, SCSI).

The PSD301’s on-chip programmable
address decoder (PAD) enables the user
to map the I/O ports, eight segments of
EPROM (as 4K x 8, or as 2K x 16), SRAM
(as 2K x 8 or as 1K x 16), and chip select
outputs anywhere in the address space of
the microcontroller. The PAD can implement
up to 4 sum-of-product expressions based
on address inputs and control signals. This
further facilitates the interface to
microcontrollers with different boot-up
locations and I/O address mappings, e.g.,
the 8051 and 8096 microcontrollers have
the boot-up addresses in the lower half of
their memory maps; the 80186 and
68HCXX use high memory boot-up
addresses.

2-24 WAFERSCALE INTEGRATION, INC.

PSD301

Figure 1.
P ALE/AS
Architecture
OCTAL. D15-D8 D7-DO
LATCH UPPER | LOWER
ADO no | Al-A11 BYTE | BYTE
A AT EPROM
A A3
A A4 PORT A
A A5 L PA0
A6 [pA1
AL ADO- AD7 _ ——> [PA
[PA3
[pAa
- — PAS5
OCTAL UPPER | LOWER — PA6
— PA7
LATCH BYTE | BYTE
A A8 2K 2K
Al [A9— EPROM
FLI0N M | (AT
AD11 A
Ab |LI: i
2D 233 PAD
st A5 UPPER | LOWER
BYTE BYTE
ADDRESS/DATA 2 2K
TRANSCEIVERS EPROM
[l I PORT B
r— R —— —
§ ¢ CS0 TO CS7 I — PBY
— UPPER | LOWER — PB2
— BYTE | BYTE | —_— — PB3
— 1K 1K] PB4
DATA SRAM 08-015 | [PB3
A1-A10) — PB7
TRANSCEIVERS
[1
q — Csi
‘ D I RESET
— BYTE WIDE 4
n BUS D
ISOLATION =
BUFFER CSB PORT
ts9 ORTC
ADO - AD7 / DO - D7 cs10
= L pco
[pé1
[pC2
D8 - D15 -
p— A16
A17
A18
A16, A17, A18

OUPUTS DECODED
_ FROM BHE AO.
RD/E
WRRW | NTROL
e CONTROL AND CONFIGURATION SECTION CONTROL BUS TO PORTS
RESET_
A19/CSI

NOTES: 1. RESET and CSI are not available as programmable options in the PAD. An active RESET ensures
that the PAD deselects all of its outputs, and a high level on CSI ensures that the PAD is in
power-down mode.

2. Details of the PAD as a programmable array decoder are given in Figure 3.

WAFERSCALE INTEGRATION, INC. 2-25

PSD301

Figure 2.
PSD301 Port
Configurations

ADg-AD;5
ADy-AD,

ALE

BHE/PSEN

R/W OR WR/Vpp
RD/E

A,o/CST

RESET

PA

PB |

PC

Ag-Ass

Ag-A;

ALE

BHE/PSEN

R/W OR WR/Vp,
RD/E

A/CSI

RESET

PA

PB

PC

110 OR Ag-A
AD,-AD,

1/0 or CS,-CS;
|[————————

Ag-Ass OR CS8,4-CSyy
| -——————

PSD301 configured for multiplexed
16-bit address/data bus

Dy-D;

Dg-Dy5

Aq5-Aqg OR C8;3-CSyo
|

PSD301 configured for non-
multiplexed 16-bit address/data bus.

Figure 2 shows the PSD301’s I/O port configurations.

AB'A15
AD,-AD,

ALE

BHE/PSEN

PA

R/W OR WR/Vpp
—eee |

RD/E
—_—]

Ao/CSI
RESET

PB

—_—

1/0 OR Ag-A;
ADy-AD;

1/0 OR CS,-CS;
| -————————

Ag-Asg OR C5,4-CSyq
D EE——

PSD301 configured for multiplexed
8-bit address/data bus.

Ag-As5
Ag-A;
ALE
BHE/PSEN

R/W OR WR/Vpp
RD/E

A4/CST
RESET

PA

PB

Do-D;

1/0 or CS,-CS;
l————————>

Ag-As5 OR CS,5-CSyy
f————»

PSD301 configured for non-
multiplexed 8-bit address/data bus.

Legend:

ADo-AD; = addresses Ag-A; multiplexed with data lines Dy-D7.
ADg-AD4s = addresses Ag—Ais multiplexed with data lines Dg-Ds.

226 WAFERSCALE INTEGRATION, INC.

PSD301

Table 1. PSD301

Pin Descriptions _”a"'e UG Description
BHE/PSEN | When the data bus width is 8 bits (CDATA = 0), this pin is
PSEN. In this mode, PSEN is the active low EPROM read
pulse. The SRAM and /O ports read signal is generated
when RD is low (CRRWR = 0), or when E and R/W are
high (CRRWR = 1). If the host processor is a member of
the 8031 family, PSEN must be connected to the
corresponding host pin. In other 8-bit host processors that
do not have a special EPROM-only read strobe, PSEN
should be tied to V. In this case, RD or E and RIW
provide the read strobe for the SRAM, /O ports, and
EPROM. When the data bus width is configured as 16
(CDATA = 1), this pin is BHE. When BHE is low, a high-
order byte is read from, or written into the PSD301,
depending on 'the operation being read or write,
respectively. In programming mode, this pin is pulsed
between Vpp and 0.

WR/Vpp or | In the operating mode, this pin’s function is WR

R/W/Vpp (CRRWR = 0) or R/IW (CRRWR = 1). When configured as
WR, a write operation is executed during an active low
pulse. When configured as R/W, with R’IW = 1 and E = 1,
a read operation is executed; if R’W = 0 andE = 1, a
write operation is executed. In programming mode, this pin
must be tied to Vpp voltage.

RD/E | When configured as RD (CRRWR = 0), this pin provides
an active low RD strobe. When configured as E (CRRWR
= 1), this pin becomes an active high pulse, which,
together with R/W defines the cycle type. Then, if RIW = 1
and E = 1, a read operation is executed. If RAW = 0 and
E = 1, a write operation is executed.

CSiia19 I This pin has two configurations. When it is CSI
(CA19/CSI = 0) and the pin is asserted high, the device
is deselected and powered down. (See Tables 12 and 13
for the chip state during power-down mode.) If the pin is
asserted low, the chip is in normal operational mode.
When it is A19, (CA19/CSI = 1), this pin can be used as
an additional input to the PAD. In this mode, there is no
power-down capability.

RESET | This user-programmable pin can be configured to reset on
high level (CRESET = 1) or on low level (CRESET = 0).
It should remain active for at least 100 ns. See Tables 10
and 11 for the chip state after reset.

ALE or | In the multiplexed modes, the ALE pin functions as an

AS Address Latch Enable or as an Address strobe and can be
configured as an active high or active low signal. The ALE
or AS trailing edge latches lines AD15/A15-ADO0/AO, A16-A19,
and BHE, depending on the PSD301 configuration. See
Table 8. In the non-multiplexed modes, it can be used as a
general-purpose PAD input signal.

Legend: The 1/O column abbreviations are: | = input; /O = inputfoutput; P = power.

NOTE: 3. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the
Configuration Register section.

WAFERSCALE INTEGRATION, INC. 2:27

PSD301

Table 1. PSD301
Pin Descriptions
(Cont.)

Name Type Description
PA7 110 PA7-PAOQ is an 8-bit port that can be configured to track
PA6 AD7/A7-ADO/AO from the input (CPAF2 = 1). Otherwise
PA5 (CPAF2 = 0), each bit can be configured separately as an
PA4 1/0 or lower-order latched address line. When configured
PA3 as an /O (CPAF1 = 0), the direction of the pin is defined
PA2 by its direction bit, which resides in the direction register. If
PA1 a pin is an 1/O output, its data bit (which resides in the
PAO data register) comes out. When it is configured as a low-
order address line (CPAF1 =1), A7-A0 can be made the
corresponding output through this port (e.g., PA6 can be
configured to be the A6 address line). Each port bit can be
a CMOS output (CPACOD = 0) or an open drain output
(CPACOD = 1). When the chip is in non-multiplexed mode
(CADDRDAT = 0), the port becomes the data bus lines
(D0-D7). See Figure 4.
PB7 110 PB7-PBO is an 8-bit port for which each bit can be
PB6 configured as an I/O (CPBF = 1) or chip-select output
PB5 (CPBF = 0). Each port bit can be a CMOS output
PB4 (CPBCOD = 0) or an open drain output (CPBCOD = 1).
PB3 When configured as an /O, the direction of the pin is
PB2 defined by its direction bit, which resides in the direction
PB1 register. If a pin is an 1/O output, its data (which resides in
PBO the data register) comes out. When configured as a chip-
select output, CS0-CS3 are a function of up to four
product terms of the inputs to the PAD; CS4-CS7 then are
each a function of up to two product terms. When the chip
is in non-multiplexed mode (CADDRAT = 0) and the data
bus width is 16 (CDATA = 1), the port becomes the most
significant byte of the data bus (D8-D15). See Figure 6.
PCO 110 This is a 3-bit port for which each bit is configurable as a
PC1 PAD input or output. When configured as an input (CPCF
PC2 = 0), the bits can be latched with ALE (CADDHLT = 1) or
be transparent inputs to the PAD (CADDHLT = 0). When'a
pin is configured as an output (CPCF = 1), it is a function
of one product term of all PAD inputs. See Figure 7.
ADO/AO e} In multiplexed mode, these pins are the multiplexed low-
AD1/A1 order address/data byte. After ALE latches the addresses,
AD2/A2 these pins input or output data, depending on the settings
AD3/A3 of the RD/E, WR/Vpp or R/W, and BHE/PSEN pins. In
AD4/A4 non-multiplexed mode, these pins are the low-order
AD5/A5 address input byte.
ADG6/A6
AD7/A7
ADB8/A8 110 In 16-bit multiplexed mode, these pins are the mulitiplexed
AD9/A9 high-order address/data byte. After ALE latches the
AD10/A10 addresses, these pins input or output data, depending on
AD11/A11 the settings of the RD/E, WR/Vpp or R/W, and BHE/PSEN
AD12/A12 pins. In all other modes, these pins are the high-order
AD13/A13 address input byte.
AD14/A14
AD15/A15
GND P Vss (ground) pin.
Vee P Supply voltage input.

228 WAFERSCALE INTEGRATION, INC.

PSD301

Operating Modes

The PSD301’s four operating modes allow
it to interface directly to 8- and 16-bit
microcontrollers and microprocessors with
multiplexed and non-multiplexed
address/data buses. These operating
modes are:

3 Multiplexed 8-bit address/data bus
O Multiplexed 16-bit address/data bus

[Non-multiplexed address/data, 8-bit
data bus

1 Non-multiplexed 16-bit address/data bus

Multiplexed 8-Bit Address/Data Bus
This mode is used to interface to
microcontrollers with an 8-bit data bus and
a 16-bit or larger address bus. The low-
order address/data bus (ADO/A0O-AD7/A7) is
bi-directional and permits the latching of
the address when the ALE signal is active.
On the same pins, the data is read from or
written to the device; this depends on the
state of the RD/E, BHE/PSEN, and
WR/Vpp or R/W pins. The high-order
address/data bus (AD8/A8-AD15/A15)
contains the high-order address bus byte.
Ports A and B can be configured as in
Table 2.

Multiplexed 16-Bit Address/Data Bus
This mode is used to interface to
microcontrollers with a 16-bit data bus and
a 16-bit or larger address bus. The low-
order address/data bus (ADO/AO-AD7/A7) is
bi-directional and permits the latching of
the address when the ALE signal is active.
On the same pins, the data is read from or
written to the device; this depends on the
state of the RD/E, BHE/PSEN, and
WR/Vpp or R/IW pins. The high-order

address/data bus (AD8/A8-AD15/A15) is bi-
directional and permits latching of the
high-order address when the ALE signal is
active on the same pins. The high-order
data bus is read from or written to the
device, depending on the state of the
RD/E, BHE/PSEN, and WR/Vpp or RIW
pins. Ports A and B can be configured as
in Table 2.

Non-Multiplexed Address/Data,

8-Bit Data Bus

This mode is used to interface to non-
multiplexed 8-bit microcontrollers with an
8-bit data bus and a 16-bit or larger address
bus. The low-order address/data bus
(ADO/A0-AD7/A7) is the low-order address
input bus. The high-order address/data bus
(AD8/A8-AD15/A15) is the high-order
address bus byte. Port A is the low-order
data bus. Port B can be configured as
shown in Table 2.

Non-Muitiplexed 16-Bit Address/Data Bus
This mode is used to interface to non-
multiplexed 16-bit microcontrollers with a
16-bit data bus and a 16-bit or larger
address bus. The low-order address/data
bus (ADO/A0O-AD7/A7) is the low-order
address input bus. The high-order address/
data bus (AD8/A8-AD15/A15) is the high-
order address bus byte. Port A is the low-
order data bus. Port B is the high-order
data bus.

Table 2 summarizes the effect of the
different operating modes on ports A, B,
and the address/data pins. The
configuration of Port C is independent of
the four operating modes.

WAFERSCALE INTEGRATION, INC.

229

PSD301

Table 2. PSD301
Bus and Port
Configuration
Options

Muitiplexed Address/Data

Non-Multiplexed Address/ﬂaia

8-Bit Data Bus

Port A 1/0 and/or low-order address D0-D7 data bus lines
lines or
Low-order multiplexed
address/data byte

Port B I/0 andfor CS0-CS7 1/0 and/or CS0-CS7

ADO/A0-AD7/A7

Low-order multiplexed
address/data byte

Low-order address bus byte

ADB8/A8-AD15/A15

High-order address bus byte

High-order address bus byte

16-Bit Data Bus

Port A 1/0 and/or low-order address Low-order data bus byte
lines or
Low-order multiplexed
address/data byte

Port B I/O and/or CS0-CS7 High-order data bus byte

ADO/A0-AD7/A7

Low-order multiplexed
address/data byte

Low-order address bus byte

ADB8/A8-AD15/A15

High-order multiplexed

High-order address bus byte

address/data byte

Programmable
Address Decoder
(PAD)

The PSD301’s programmable address
decoder (PAD) has 14 inputs and 24
outputs. All its I/O functions are listed in
Table 3 and shown in Figure 3.

The PAD is used to select all chip internal
parts and to generate external chip-selects
(see Figure 3). Pins A11-A15, RDIE,
WR/Vpp or RIW, Reset, and ALE are fixed
functions. A16-A19 can be address inputs
or general purpose inputs to the PAD for
implementing logic functions. Internal and

external PAD select signals can override
EPROM memory whose addresses
overlap. This lets the user make more
efficient use of the address space. For
example, if the EPROM is not used
completely for program storage, the
unused EPROM address space can be
allocated to 1/O ports, SRAM, or other PAD
select signals. Using WSI's MAPLE
software, any input function to the PAD
can be selected as active low, active high,
or don’t care.

2-30 WAFERSCALE INTEGRATION, INC.

PSD301

Table 3. PSD301

1/0 Functions

Function

PAD Inputs

CSl or A19

In TSI mode (when high), PAD deselects all of its outputs and enters
a power-down mode (see Tables 12 and 13). In A19 mode, it is
another input to the PAD.

A16-A18

These are general purpose inputs from Port C. See Figure 3, note 4.

A11-A15

These are address inputs.

RD or E

This is the read pulse or enable strobe input.

WR or RIW

This is the write pulse or R/W select signal.

ALE

This is the ALE input to the chip.

RESET

This deselects all outputs from the PAD; it can not be used in
product term equations. See Tables 10 and 11.

PAD Outputs

CS0-CS3

These chip-select outputs can be routed through Port B. Each of
them is a function of up to four product terms of the PAD inputs.

These chip-select outputs can be routed through Port B. Each of
them is a function of up to two product terms of the PAD inputs.

These chip-select outputs can be routed through Port C. See Figure 3,
note 4. Each of them is a function of one product term of the PAD inputs.

ES0-ES7

These are internal chip-selects to the 8 EPROM banks. Each bank
can be located on any boundary that is a function of one product
term of the PAD address inputs.

RSO

This is an internal chip-select to the SRAM. Its base address location
is a function of one term of the PAD address inputs.

CSIOPORT

This internal chip-select selects the 1/0 ports. It can be placed on
any boundary that is a function of one product term of the PAD
inputs. See Tables 6 and 7.

CSADIN

This internal chip-select, when Port A is configured as a low-order
address/data bus in the track mode (CPAF2 = 1), controls the input
direction of Port A. CSADIN is gated externally to the PAD by the
internal read signal. When CSADIN and a read operation are active,
data presented on Port A flows out of ADO/AO-AD7/A7. This chip-
select can be placed on any boundary that is a function of one
product term of the PAD inputs. See Figure 5.

CSADOUT1

This internal chip-select, when Port A is configured as a low-order
address/data bus in track mode (CPAF2 = 1), controls the output
direction of Port A. CSADOUT1 is gated externally to the PAD by the
ALE signal. When CSADOUT1 and the ALE signal are active, the
address presented on ADO/AO-AD7/A7 flows out of Port A. This chip-
select can be placed on any boundary that is a function of one
product term of the PAD inputs. See Figure 5.

CSADOUT2

This internal chip-select, when Port A is configured as a low-order
address/data bus in the track mode (CPAF2 = 1), controls the output
direction of Port A. CSADOUT2 must include the write-cycle control
signals as part of its product term. When CSADOUT2 is active, the
data presented on ADO/AO-AD7/A7 flows out of Port A. This chip-
select can be placed on any boundary that is a function of one
product term of the PAD inputs. See Figure 5.

WAFERSCALE INTEGRATION, INC. 2-31

PSD301

Figure 3.
PSD301 PAD
Description
ALE or AS p— ESO
—{:9_‘ ES1
Esa o
== 8 EPROM Block
RD or E L ES4 Select Lines
ES5
ES6
WR or RIW b— Eg{, —— SRAM Block Select
-———-ﬁ D gg!a;;lﬁn-r__llo Base Address
Track Mode
[} CSADOUT1 ;
19 —— CSADOUT2 Control Signals

>

CS0/PBO
. Z

CS1/PB1
A6 @ CS2/PB2
A15 @o— CS3/PB3
%Do_ CS4/PB4

4
g:Do— CS5/PB5

3
g:Do— CS6/PB6

2
gDo- cs7/PBY7

.

:

.

’

;

)

I

o———-Do— CS8/PCO
csi o
-_— - D—DO— CSso/PC1
RESET
' D Dc csio/Pc2

NOTES: 4. CSlis a power-down signal. When high, the PAD is in stand-by mode and all its outputs become
non-active. See Tables 12 and 13.
5. RESET deselects all PAD output signals. See Tables 10'and 11.
6. Maximum PAD latency is 35 ns.
7. A18, A17, and A16 are internally multiplexed with CS10, CS9, and CS8, respectively. Either A18 or
TS10, A17 or CS9, and A10 or CSB8 can be routed to the external pins of Port C.

2-32 WAFERSCALE INTEGRATION, INC.

PSD301

Canfiguratian The configuration bits shown in Table 4 programming phase. In operational mode,
Bits are non-volatile cells that let the user set they are not accessible. To simplify
the device, I/0, and control functions to implementing a specific mode, use the

the proper operational mode. Table 5 lists WSI’s PSD301 MAPLE software to set
all configuration bits. The configuration bits the bits.
are programmed and verified during the

Table 4. PSD301 Use This Bit | To

gzz;lyy‘zgltlfa” CDATA Set the data bus width to 8 or 16 bits.
Bits CADDRDAT Set the address/data buses to multiplexed or non-multiplexed mode.
CRRWR Set the RD/E and WR/Vpp or R/W pins to RD and WR pulse, or to
E strobe and R/W status.
CA19/CSI Set A19/CSI to CSI (power-down) or A19 input.
CALE Set the ALE polarity.
CPAF2 Set Port A either to track the low-order byte of the address/data

multiplexed bus or to select the I/O or address option.®
CSECURITY Set the security on or off.
CRESET Set the RESET polarity.

COMB/SEP Set PSEN and RD for combined or separate address spaces (see
Figures 8 and 9).

CPAF1 Configure each pin of Port A in muiltiplexed mode to be an 1/0O or
address out.

CPACOD Configure each pin of Port A as an open drain or active CMOS pull-

up output.
CPBF Configure each pin of Port B as an I/O or a chip-select output.
CPBCOD Configure each pin of Port B as an open drain or active CMOS pull-
up output.
CPCF Configure each pin of Port C as an address input or a chip-select
output.
CADDHLT Configure pins A16-A19 to go through a latch or to have their latch
transparent.

NOTE: 8 CPAF1 determines whether the output is I/O or address.

WAFERSCALE INTEGRATION, INC. 233

PSD301

Table 5. PSD301
Configuration
Bits

Configuration
Bits

No.
of Bits

Description

CDATA

8-bit or 16-bit data bus width
CDATA = 0, 8-bit data bus
CDATA = 1, 16-bit data bus

CADDRDAT

Address/data multiplexed or non-multiplexed (separate buses)
CADDRDAT = 0, non-multiplexed address/data bus
CADDRDAT = 1, multiplexed address/data bus

CRRWR

CRRWR = 0, RD and WR active low strobes
CRRWR 1, R/W status and E active high pulse

CA19/CSI

A19 or CSI
CA19/CSI = 0, enable power-down mode
CA19/CSI = 1, A19 input to PAD

CALE

Active high or active low
CALE = 0, active high
CALE = 1, active low

CRESET

Active high or active low
CRESET = 0, active low reset signal
CRESET = 1, active high reset signal

COMB/SEP

Combined or separate memory space for EPROM and SRAM
COMB/SEP = 0, combined
COMB/SEP = 1, separate

CPAF1

Port A 1/Os or AO-A7
CPAF1 = 0, Port A pin = I/O
CPAF1 = 1, Port Apin = Ai(0<i<7)

CPAF2

Port A AD0O-AD7 (address/data multiplexed bus)
CPAF2 = 0, address or I/O on Port A (according to CPAF1)
CPAF2 = 1, address/data multiplexed on Port A (track mode)

CPBF

Port B I/Os or CS0-CS7
CPBF = 0, Port B Pin CSi0<i<7?)
CPBF = 1, Port B Pin 110

CPCF

Port C A16-A18 or CS8-CS10
CPCF = 0, Port C Pin = Ai (16 < i < 18)
CPCF = 1, Port C Pin = CSi (8 < i < 10)

CPACOD

Port A CMOS or open-drain outputs
CPACOD = 0, CMOS output
CPACOD = 1, open-drain output

CPBCOD

Port B CMOS or open-drain outputs
CPBCOD = 0, CMOS output
CPBCOD = 1, open-drain output

CADDHLT

A16-A19 latched or latch transparent
CADDHLT = 0, address latch transparent
CADDHLT = 1, address latched (ALE dependent)

CSECURITY

Security on or off
CSECURITY = 0, no security
CSECURITY = 1, secured part (cannot be copied)

Total Number
of Bits

45

NOTES: 9. WSI's MAPLE software will guide the user to the proper configuration choice.
10 In an unprogrammed or erased part, all configuration bits are 0.

2-34 WAFERSCALE INTEGRATION, INC.

PSD301

Port Functions

The PSD301 has three 1/O ports (Ports A,
B, and C) that are configurable at the bit
level. This permits great flexibility and a

high degree of customization for specific

applications. The following is a description
of each port. Figure 4 shows the pin
structure of Port A.

Figure 4. Port A
Pin Structure

|
N READ PIN
T
E
R READ DATA N
N CMOS/OD
A (NOTE 11)
L ~
. WRITE DATA[ck ouT PORT A PIN
D DFF N
D D
‘j B ENABLE
D AE g [ADDR o | mux
A LATCH
T
A R
— 1
B ADI/DI g,
u
S READ DIR
A
D ~d
0 D
4 DIR CONTROL
A
5 WRITEDIR | . FF
7 R
RESET
NOTE: 11. CMOS/OD determines whether the output is open drain or CMOS.

Port A in Multiplexed Address/Data Mode
The default configuration of Port A is I/O.
In this mode, every pin can be set as an
input or output by writing into the
respective pin’s direction flip flop (DIR FF,
in Figure 4). As an output, the pin level
can be controlled by writing into the
respective pin’s data flip flop (DFF, in
Figure 4). When DIR FF = 1, the pin is
configured as an output. When DIR FF =
0, the pin is configured as an input. The
controller can read the DIR FF bits by
accessing the READ DIR register; it can
read the DFF bits by accessing the READ
DATA register. Port A pin levels can be
read by accessing the READ PIN register.

Individual pins can be configured as
CMOS or open drain outputs. Open drain
pins require external pull-up resistors. For
addressing information, refer to Tables 6
and 7.

Alternatively, each bit of Port A can be
configured as a low-order latched address
bus bit. The address is provided by the
port address latch, which latches the
address on the trailing edge of ALE.
PAO-PA7 can become AO0-A7, respectively.
This feature of the PSD301 lets the user
generate low-order address bits to access
external peripherals or memory that
require several low-order address lines.

WAFERSCALE INTEGRATION, INC.

2-35

PSD301

Port Functions
(Cont.)

Another mode of Port A (CPAF2 = 1) sets
the entire port to track the inputs
ADO/A0-AD7/A7, depending on specific
address ranges defined by the PAD’s
CSADIN, CSADOUT{, and CSADOUT2
signals. This feature lets the user interface
the microcontroller to shared external
resources without requiring external
buffers and decoders. In this mode, the
port is effectively a bi-directional buffer.
The direction is controlled by using the
input signals ALE, RD/E, WR/Vpp or R/W,
and the internal PAD outputs CSADOUT1,
CSADOUT2 and CSADIN (see Figure 5).
When CSADOUT1 and ALE are true, the
address on the input ADO/A7-AD7/A7 pins
flows out through Port A. (Carefully check
the generation of CSADOUT1, and ensure
that it is stable during the ALE pulse; see
Figures 22 and 23). When CSADOUT2 is

active, a write operation is performed (see
note to Figure 5). The data on the input
ADO/A7-AD7/A7 pins flows out through Port
A. When CSADIN and a read operation is
performed (depending on the mode of the
RD/E and WR/Vpp or R/W pins), the data
on Port A flows out through the ADO/A7-
AD7/A7 pins. In this operational mode, Port
A is tri-stated when none of the above-
mentioned three conditions exist.

Port A in Non-Multiplexed Address/
Data Mode

In this mode, Port A becomes the low
order data bus byte of the chip. When
reading an internal PSD301 location, data
is presented on Port A pins. When writing
to an internal PSD301 location, data
present on Port A pins is written to that
location.

Figure 5, Port A
Track Mode

» conTROL INTERNALi
READ
DECODER)
A
WA or RAW I -
ABE CSADIN
) ADO-AD7 o | PAO-PAT
< >
INTERNAL
ALE
ALE or AS
P L
-
< CSADOUT1
>
AD8-AD15 A11-A15
< P |LATCH $| PAD | csapouT2
(NOTE 12)
>
»>
A16-A19

NOTE: 12. The expression for CSADOUT2 must include the following write operation cycle signals:
For CRRWR = 0, CSADOUT2 must include WR = 0.

For CRRWR

Port B in Muitiplexed Address/Data
and in 8-Bit Non-Muitiplexed Modes
The default configuration of Port B is I/O.
In this mode, every pin can be set as an
input or output by writing into the
respective pin’s direction flip flop (DIR FF,
in Figure 6). As an output, the pin level
can be controlled by writing into the
respective pin’s data flip flop (DFF, in

1, CSADOUT2 must include E = 1 and R'W = 0.

Figure 6). When DIR FF = 1, the pin is
configured as an output. When DIR FF =
0, the pin is configured as an input. The
controller can read the DIR FF bits by
accessing the READ DIR register; it can
read the DFF bits by accessing the READ
DATA register. Port B pin levels can be
read by accessing the READ PIN register.

2-36 WAFERSCALE INTEGRATION, INC.

PSD301

Port Functions Individual pins can be configured as Port B in 16-Bit Non-Multiplexed
(CUM.} CMOS or open drain outputs. O.pen drain Address/Data Mode
pins require externa’l pull-up resistors. For In this mode, Port B becomes the high-
addressing information, refer to Tables 6 order data bus byte of the chip. When
and 7. reading an internal PSD301 high-order
Alternatively, each bit of Port B can be data bus byte location, the data is
configured to provide a chip-select output presented on Port B pins. When writing to
signal from the PAD. PBO-PB7 can provide an internal PSD301 high-order data bus
CS0-CS7, respectively. Each of the signals byte location, data present on Port B is
CS0-CS3 is comprised of four product written to that location. See Table 9.
terms. Thus, up to four ANDed expressions . .
can be ORed while deriving any of these Accessing the I/0 Port Registers
signals. Each of the signals CS4-CS7 is Tables 6 and 7 show the offset values with
comprised of two product terms. Thus, up the respect to the base address defined by
to two ANDed expressions can be ORed the CSIOPORT. They let the user access
while deriving any of these signals. the corresponding registers.
Figure 6. Port B
Pin Structure 8 READ P
NI N
TRT READ DATA N
1K ikt
o B <] _(NOTE 13)
A
p C WRITE DATA[G our | PORTB Pin
N S o OFF g ll:(
s A R 4
ol 7 T ENABLE
ufl A Do
T L MUX
B
sl U
ull s
S CSi >
D
N B READ DIR A A
s -
0 . \17
N 5
8 B WRITE DIR | o ?:','.3 CONTROL
meser]
NOTE: 13 CMOS/OD determines whether the output is open drain or CMOS.
Table 6. ”0, Port Register Name Byte Size Access of the I/0 Port Registers
Addresses in an Offset from the CSIOPORT
8-hit Data Pin Register of Port A +2 (accessible during read operation only)
Bus Mode —— .
Direction Register of Port A +4
Data Register of Port A +6

Pin Register of Port B

+3 (accessible during read operation only)

Direction Register of Port B +5

+7

Data Register of Port B

WAFERSCALE INTEGRATION, INC.

PsD301

Table 7. 1/0 Port Register Name Word Size Access of the 1/0 Port
Addresses in a g Registers Offset from the CSIOPORT
16-hit Data Bus Pin Register of Ports B and A +2 (accessible during read operation only)
Mode Direction Register of Ports B and A +4
Data Register of Ports B and A +6
NOTES: 14. When the data bus width is 16, Port B registers can only be accessed if the BHE signal is low.
15. When accessing words, the high-order byte is connected to Port B, and the low-order byte is
connected to Port A.
16. 1/0 Ports A and B are still byte-addressable, as shown in Table 6. For /O Port B register access,
BHE must be low.
Port C in All Modes boundaries of CS0-CS?7 resolution to
Each pin of Port C (shown in Figure 7) can 256 bytes. Port C address latches can be
be configured as an input or output from programmed to latch the inputs by the
the PAD. As inputs, the pins are named trailing edge ALE or to be transparent.
A16-A18. Although the pins are given Alternatively, PCO-PC2 can become
names of the high-order address bus, they CS8-CS10 outputs, respectively, providing
can be used for any other logic inputs to the user with more external chip-select
the PAD. For example, A8-A10 can also be PAD outputs. Each of the signals CS8-
connected to those pins, reducing the CS10 is comprised of one product term.
Figure 7.
Port € Structure

v v

(NOTE 17)
A16 INPUT LINE) o | ADDRESS | AT6-IN o 0 o CADDHLT
pCo / LATCH CONFIGURATION
— : — —| BIT: LATCH OR
; CS8 (QUTPUT LINE) FROM PAD TRANSPARENT
;| - CONTROL
LOCAL
CONF.
BITO

ALE,

vy

A17 (INPUT LINE > ADDRESS | A17-IN » TO PAD
-~ LATCH

i C59 (OUTPUT LINE)
. W

FROM PAD

LOCAL
CONF.
BIT 1

vy

ADDRESS -
A18 (INPUT LINE) > “LATen A18-IN » TO PAD

Pc2 /
«CS10(QUTPUT LINE)

FROM PAD

LOCAL
CONF.
BIT 2

NOTE: 17. The CADDHLT configuration bit determines if A18-A16 are transparent via the latch, or if they must
be latched by the trailing edge of the ALE strobe.

2-38 WAFERSCALE INTEGRATION, INC.

PSD301

EPROM

The PSD301 has 256K bits of EPROM.
Depending on the configuration of the data
bus, the EPROM can be organized as
32K x 8 (8-bit data bus) or as 16K x 16
(16-bit data bus). The EPROM has 8 banks
of memory. Each bank can be placed in

any address location by programming the
PAD. Bank0-Bank7 can be selected by
PAD outputs ESO-ES?7, respectively. The
EPROM banks are organized as 4K x 8
(8-bit data bus) or as 2K x 16 (16-bit data
bus).

SRAM

The PSD301 has 16K bits of SRAM.
Depending on the configuration of the data
bus, the SRAM organization can be 2K x 8

(8-bit data bus) or 1K x 16 (16-bit data
bus). The SRAM is selected by the RSO
output of the PAD.

Control Signals

The PSD301 control signals are WR/Vpp
or R/W, RD/E, ALE, BHE/PSEN, Reset,
and A19/CSI. Each of these signals can be
configured to meet the output control signal
requirements of various microcontrollers.

WR/Vpp or RIW

In operational mode, this signal can be
configured as WR or R/W. As WR, all write
operations to the PSD301 are activated by
an active low signal on this pin. As R/W, the
pin works with the E strobe of the RD/E
pin. When R/W is high, an active high
signal on the RD/E pin performs a read
operation. When R/W is low, an active
high signal on the RD/E pin performs a
write operation.

RD/E

In operational mode, this signal can be
configured as RD or E. As RD, all read
operations to the PSD301 are activated by
an active low signal on this pin. As E, the
pin works with the R/W strobe of the
WR/Vpp or R/W pin. When R/W is high,
an active high signal on the RD/E pin
performs a read operation. When R/W is
low, an active high signal on the RD/E pin
performs a write operation.

ALE or AS

ALE polarity is programmable. When
programmed to be active high, a high on
the pin causes the input address latches,
Port A address latches, and Port C
address latches to be transparent. The

falling edge of ALE latches the information
into the latches. When ALE is programmed
to be active low, a low on the pin causes
the input address latches, Port A address
latches, Port C, and A19 address latches to
be transparent. The rising edge of ALE
latches the appropriate information into the
latches. ALE is active only in the
multiplexed modes.

BHE/PSEN

This pin’s function depends on the
PSD301 data bus width. If it is 8, the pin
is PSEN; if it is 16, the pin is BHE. In 8-bit
mode, the PSEN function lets the user
work with two address spaces: program
memory and data memory (if COMB/SEP
= 1). In this mode, an active low signal on
the PSEN pin causes the EPROM to be
read. The SRAM and I/O ports read operation
are done by RD low (CRRWR = 0), or by
E and R/W high (CRRWR = 1).

Whenever a member of the 8031 family (or
any other similar microcontroller) is used,
the PSD301’s PSEN pin must be connected
to the PSEN pin of the microcontroller.

If COMB/SEP = 0, the address spaces of
the program and the data are combined.
In this configuration (except for the
8031-type case mentioned above), the
PSEN pin must be tied high to V¢, and
the EPROM, SRAM, and I/O ports are
read by RD low (CRRWR = 0), or by E
and R/W high (CRRWR = 1). See Figures
8 and 9.

WAFERSCALE INTEGRATION, INC. 2-39

PSD301

Table 8. Signal i
Latch Statgs in Signal Name | Configuration Bits Configuration Mode Slggg tf;tch
':,”dap e’at”'g ADB8/A8- CDATA = 0,
oaes AD15/A15 CADDRDAT = 0 | 8-bit data, non-multiplexed Transparent
CDATA = 0, . .
CADDRDAT = 1 | 8bit data, multiplexed Transparent
CDATA = 1, 16-bit data, non-multiplexed Transparent
CADDRDAT = 0
CDATA = 1, 16-bit data, multiplexed ALE dependent
CADDRDAT =
ADO/AO- CADDRDAT = 0 | Non-multiplexed modes Transparent
AD7IA7 CADDRDAT = 1 | Multiplexed modes ALE dependent
BHE/PSEN CDATA = 0 8-bit data, PSEN is active Transparent
CDATA = 1, 16-bit data, non-multiplexed Transparent
CADDRDAT = 0 | mode, BHE is active
CDATA = 1, 16-bit data, multiplexed ALE dependent
CADDRDAT = 1 | mode, BHE is active
A19 and CADDHLT = 0 A16-A19 can become logic inputs | Transparent
PC2-PCO CADDHLT = 1 A16-A19 can become multiplexed | ALE dependent
address lines
Figure 8.
Combined
Address Space ——{Cs
ADDRESS
q PAD
SRAM
OE
INTERNAL
RD
PSEN ;‘ oF
EPROM
+ — CS
cs O
1/0 PORTS
240 WAFERSCALE INTEGRATION, INC.

PSD301

Figure 9.
8031-1}'[180 I/O PORTS
Separate Code OE CS
INTERNAL
and Data RD A
Address Spaces ; +
OE
ADDRESS —>CS
sl PAD
SRAM
¥ CS
EPROM
PSEN »| 58
In BHE mode, this pin enables accessing operation to be performed on the upper
of the upper-half byte of the data bus. A half of the data bus (see Table 9).
low on this pin enables a write or read
Table 9. e -
HighlLow Byte BHE Ay Operation
Selection Truth 0 0 Whole Word
Table (in 16-Bit 0 1 Upper Byte From/To Odd Address
c‘mﬂy”’atm” 1 0 Lower Byte From/To Even Address
0”’” 1 1 None

RESET

This is an asynchronous input pin that
clears and initializes the PSD301. Reset
polarity is programmable (active low or
active high). Whenever the PSD301 reset
input is driven active for at least 100 ns,

the chip is reset. The PSD301 must be
reset before it can be used. Tables 10 and
11 indicate the state of the part during and
after reset.

Table 10. Signal
States During
and After Reset

Signal Configuration Mode Condition
ADO/A0-AD15/A15 All Input
PA0-PA7 110 Input
(Port A) Tracking ADO/AO-AD7/A7 Input

Address outputs A0-A7 Low
PBO-PB7 e} Input
(Port B) CS7-CS0 CMOS outputs High

CS7-CSO0 open drain outputs Tri-stated
PCO-PC2 Address inputs A16-A18 Input
(Port C) CS8-CS10 CMOS outputs High

WAFERSCALE INTEGRATION, INC. 241

PSD301

Table 11 C :
y omponent Signals Contents
Internal States P — Cl
After Reset CSADIN, CSADOUTH,
CSADOUT2, CSIOPORT, All.= 08
RS0, ES0-ES7
Data register A n/a 0
Direction register A n/a 0
Data register B n/a 0
Direction register B n/a 0
NOTE: 18. All PAD outputs are in a non-active state.
A19/CSI L
When configured as CSI, a high on this operational mode. For PSD301 states
pin deselects, and powers down, the chip. during the power-down mode, see Tables
A low on this pin puts the chip in normal 12 and 13.
Table 12. Signal Signal Configuration Mode Condition
States During
Power-Down ADO/AO-AD15/A15 All Input
Mode PAO-PA7 110 Unchanged
Tracking ADO/AO-AD7/A7 Input
Address outputs A0-A7 All 1’s
PBO-PB7 mw Unchanged
CS§7-CS0 CMOS outputs All 1’s
CS7-CS0 open drain outputs Tri-stated
PC0-PC2 Address inputs A16-A18 Input
CS8-CS10 CMOS outputs All 1's
Table 13. z
y Component Signals Contents
Internal States L — J
p””'”y PAD CS0-CS10 All 1’s (deselected)
Power-Down CSADIN, CSADOUT1,
CSADOUT2, CSIOPORT, All 0’s (deselected)
RS0, ES0-ES7
Data register A n/a
Direction register A n/a All
Data register B n/a unchanged
Direction register B n/a

In A19 mode, the pin is an additional input dependent or as transparent input (see
to the PAD. It can be used as a high-order Table 8). In this mode, the chip is always
address line or as a general-purpose logic enabled.

input. A19 can be configured as ALE

2-42 WAFERSCALE INTEGRATION, INC.

PSD301

System In Figure 10, the PSD301 is configured to The configuration bits for Figure 10 are:
Applications interface with Intel’s 80C31, which is a CRESET 1
16-bit address/8-bit data bus microcontroller. CALE 0
Its data bus is multiplexed with the low- CDATA 0
order address byte. The 80C31 uses CADDRDAT 1
signals RD to read from data memory and COMBJ/SEP 0 or 1 (both valid)
PSEN to read from code memory. It uses CRRWR 0

WR to write into the data memory. It also
uses active high reset and ALE signals.
The rest of the configuration bits as well
as the unconnected signals (not shown)
are application specific and, thus, user

All other configuration bits may vary
according to the application requirements.

dependent.
Figure 10. PSD301
Interface with
Intel’s 80C31 VccT I
. 01uF —
Microcontroller 44 i
s | — Poo |32 o Pao |21
| EAwe PO1 = ~={ AD1/A1 PAT =
= PO.2 [5= AD2/A2 PA2
"_L—-—— X1 PO.3 [—= ~{ AD3/A3 PA3 (=
-] PO.4 = S5 AD4/A4 PA4 |
T e | POS5 [=] AD5/AS PAS |2
| x2 PO6 == =1 AD6/AG PAG =
P0.7 AD7/A7 PA7
S 1 RESET P20 g; g; AD8/A8 PBO :;
P21 — 551 ADY/A9 PBY
12 P22 35| AD10/A10 PB2 [—
—5g 1o P23 — o] AD11/A11 PB3 [—
—q INTI P24 =2 55| AD12/A12 PB4
= 10 P25 f—2 53] AD13/A13 PB5 g
T P26 (— =] AD14/A14 PBE [—
P27 AD15/A15 PB7
1lpio
2k ol — roa |0
y P12 WR 29 . WR/Vpp PC1
—5] P13 PSEN P53 BHE/PSEN "
= P14 ALE — ={ ALE PC2 Lo
=— P15 XD f— RESET A19/CSI =2
e o2
. PSD301 |34 |12
80C31

WAFERSCALE INTEGRATION, INC. 243

PsD301

System
Applications
(Cont.)

In Figure 11, the PSD301 is configured
to interface with Motorola’s 68HC11,
which is a 16-bit address/8-bit data bus
microcontroller. Its data bus is muiltiplexed
with the low-order address byte. The
68HC11 uses E and R/W signals to derive
the read and write strobes. It uses the
term AS (address strobe) for the address
latch pulse. RESET is an active low signal.
The rest of the configuration bits as well
as the unconnected signals (not shown)
are application specific and, thus, user

The configuration bits for Figure 11 are:

CRESET
CALE
CDATA
CADDRDAT
COMB/SEP
CRRWR

- O—-00O0

All other configuration bits may vary
according to the application requirements.

dependent.
Figure 11.
PSD301 Interface Vee
with Motorola’s LA
68HC11 Microcontroller aa M =
PCO f—2 231 ADO/AO PAO 21—
201 ppo PC ji2 241 AD1/AY PAT %
211 pp1 PC2 |l 251 Apo/a2 PA2 |
221 ppo pca |12 261 AD3/A3 PA3 |12
231 pp3 PC4 |2 271 AD4/A4 PA4 il
241 pp4 PCs5 |4 28] ADS/AS PA5 1S
251 pps PC6 12 gg ADG6/A6 PA6 ﬁ
PC7 AD7/A7 PA7
431 peo ;
:g PE1 PBO :;" g; ADS/A8 PBO | } -
PE2 PB1 AD9/A9 PB1 |
491 pE3 pB2 |20 331 AD10/A10 PB2 |2
441 pEy PB3 22 351 AD11/A11 PB3 b
261 pes PB4 |28 361 AD12/A12 PB4 |t
281 pee PBS |37 371 AD13/A13 PB5 i
501 pE7 PB6 |28 381 AD14/A14 PB6 [
pB7 |35 391 AD15/A15 PB7 |2
3] PAo 2 40
22 PA1 = 21 POO [
PA2 _ - PC1
£ Pag RAW |2 21 Rivep ‘ =
25] PA4 —AS 7 3] A PC2 23
231 pas RESET 3 RESET A19/CSI
PAG BHE/PSEN
271 pa7 XIRQ e 5
Ra 18—
52 2 Vce
VRH MODB |—2—
—3'1 VAL MODA —3—
GND
XTAL EXTAL PSD301 34 [12
68HC11 I—ﬂ—‘

In Figure 12, the PSD301 is configured to
work directly with Intel’s 80C196KB
microcontroller, which is a 16-bit address/

16-bit data bus processor. Address and
data lines multiplexed. In the example
shown, all configuration bits are set. The

PSD301 is configured to use PCO, PC1,
PC2, and CSI/A19 as A16, A17, A18, and
A19 inputs, respectively. These signals are
independent of the ALE pulse (latch-
transparent). They are used as four
general-purpose logic inputs that take part

2-44 WAFERSCALE INTEGRATION, INC.

PSD301

|
|
|
|

System in the PAD equations implementation. The configuration bits for Figure 12 are:
Applications Port A is configured to work in the special CRESET 0
(Cont.) track mode, in which (for certain conditions) CALE 0
PAQO-PA7 tracks lines ADO/A0-AD7/A7. Port CDATA 1
B is configured to generate CS0-CS7. In CADDRDAT 1
this example, PB2 serves as a WAIT signal CPAF1 Don't care
that slows down the 80C196KB during the CPAF2 1
access of external peripherals. These 8-bit CA19/CSI 1
wide peripherals are connected to the CRRWR 0
shared bus of Port A. The WAIT signal COMB/SEP 0
also drives the buswidth input of the CADDHLT 0
microcontroller, so that every external CSECURITY Don't care
peripheral cycle becomes an 8-bit data CPCF2, CPCF1, CPCFO 0,0, 0
bus cycle. PB3 and PB4 are open-drain CPACOD7-CPACODO 00H
output signals; thus, they are pulled up CPBF7-CPBFO0 00H
externally. CPBCOD7-CPBCODO 18H

Figure 12. PSD301

Interface with

Intel’s

80C196KB

9
1 o1 4 ADD 18]
— RG]
80C196KB =| / ADDRESS/DATA MULTIPLEXED BUS <ZoF_E >
67 19
XTAL1 Vee P10
- o BB
P12
1T 66 25
XTAL2 P13
s pra 2 PORT 1
NMI - N P15 §° 1/0 PINS
&2} Reapy P16 3‘2
L] BuswioTH P17
— 6, 60 ADO/AQ o*
RST ——(C] RESET P3 0/ADO ’_/ p
p31/AD1 |__59_ADIAI /] —_
> [58 AD2/A2 0 1uF
e O ros | T
— BUS
> Z{ro2 P3 4/AD4 M_/ N__Acomo 22 Vo pro | 2
P03 P3 5/AD5 AD5/AS ADO/AOD E—
S 11 poa P36/ADG |54 ADGAG ADA_24 | apyai pa1 [0
—S 10 pos P371AD7 [0 ADTAT __ AN—hoei2— = AD2/A2 Paz [19
_(8 P0G AD3/A3 AD3/A3 PA3 18
< P07 p40/AD8 |52 _ADBIAS /\%“—-L AD4/A4 :::2 ’;
— pa1/aD9 |51 _ADOAS /\\————Zﬁ-—Agw:z ADS5/AS . i
&< RxD s 18 P2 0/TXD P4 2/AD10 50 AD10/A10 / AD6/AB
P 7], P4 JAD 35 ADIAT ZR—AL_30 | Ap7/A7 PAT 1 14
2 1/RXD 4 3/ADI L "ADB/AS
S 15 _1 P2 2EXINT Pa4AD12 | 8_ADIZAZ _N—nEid—il— ADB/AS o |
S 4 | oymacik P45ADI |27 ADIATS _AN—2t—2] AD9/A9 PBo
3% | ramonst Pacapia |0 ADUIAR _N—DR B aptoato pet [70
> 39 75_ADIGATS N_ADIATL 35 1 Apt1ati PB2 |6 Wai
>] P2 5/PWM P4 7/AD15 N AD12AIZ Ao PR3
— P2 6/T2 UP/DN 65 __ADI13A13_37 AD:ngg PB4
> 38 P27T2CAPTR CLKOUT f—ee NI AN es = +—
BREMVAR [ADTSATS Pes [5
P - 24 lusio WRWRL 40 AD15/A15 o L
— 52 :‘:: ; RD = 40 PCO 47KQ 47kQ
28 1 Hsi 2/Hs0 4 ADV
— 27 ALE/ADV g3 4 PC1
> HSI 3/HSO 5 INST 4: PC2
+5V
18 28 = Csiate
+svOr VREF HSO 0 AT
31 vep HSO 1 TE sl
p—2 ANGND Hsoz [~—{ srERSER
EA Ves Ves HSO3 | WRIVpp
L RD
1
o1 uF 68 |36 ’g ALE
RESET GND GND
- 12 |34
FOUR el
GENERAL e
PURPOSE el =
INPUTS Lo
———

WAFERSCALE INTEGRATION, INC. 2-45

PSD301

Absolute - :
. Symhbol Parameter Conditions Min | Max | Unit
Maximum y
Batings Tst Storage temperature -65 | +150 °C
Voltage on Any Pin With Respect to GND [-0.6 +7 \"
Vpp Programming Supply Voltage | With Respect to GND | —-0.6 14 \
Vee Supply Voltage With Respect to GND | -0.6 +7 \
ESD Protection >2000 \
NOTE: 19. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification 1s not implied. Exposure to
absolute maximum rating conditions for extended periods of time may affect device reliability.
Operating Range Range Temperature Vee Tolerance
Commercial 0°C to +70°C +5V +5% or +10%
Industrial —-40°C to +85°C +5V +10%
Military -55°C to +125°C +5V +10%
Recommended
: Symbol Parameter ndition Min i
Operating i el Co S Typ | Max | Unit
Conditions Vee Supply Voltage 45 5 55 \
ViH High Level Input Voltage | Voo = 4.5V to 55V \
ViL Low Level Input Voltage | Voo = 4.5V to 55V 08 \"
bc . Symbol Parameter Conditions Min | Typ | Max | Units
Characteristics | o
\?CLC; 5_5‘{, ' 001 | 0.1
VoL Output Low Voltage I 5 A \
oL = mA,
Veo = 55V 015 | 045
{;’” - ;25(2/”"\' 44 |4.49
Von | Output High Voltage e« . v
lon = -2 mA, 24 | 39
Voo = 45V . -
| Ve Standby Current Notes 20 | Comm’l 80 | 150 WA
81 | cMos and 22 Military 120 | 250
Ve Standby Current Notes 21 | Comm'l 08 | 15
Is2 - mA
TTL and 22 Military 10 2
| Active Current (CMOS) | Notes 20 |Comm'l 35 | 55 mA
CC1 | No Blocks Selected and 23 Military 40 | 65
| Active Current (CMOS) | Notes 20 | Comm'l 35 | 55 mA
CC2 | EPROM Block Selected | and 23 Military 40 | 65
2-46 WAFERSCALE INTEGRATION, INC.

PSD301

be L Symbol Parameter Conditions Min | Typ | Max | Units
Characteristics) prpm— o5 | 108
(Cﬂllt , I Active Current (CMOS) | Notes 20 omm mA
" ces SRAM Block Selected | and 23 Military 75 | 120
| Active Current (TTL) Notes 21 [Comml 50 | 80 mA
cc4 No Blocks Selected and 23 Military 60 | 95
| Active Current (TTL) Notes 21 |Comm'l 50 80 mA
CCs EPROM Block Selected | and 23 Military 60 | 95
| Active Current (TTL) Notes 21 |Comm’l 80 | 130 mA
cce SRAM Block Selected | and 23 Military 90 | 150
I Input Load Current Vin = 55V or GND -1 | £01 1 nA
Lo Output Leakage Current| Voyr = 55V or GND | -10 5 10 pA

NOTES: 20 CMOS inputs. GND + 03V or Ve + 03V
21. TTL inputs’ V| < 08V, V| = 2.0V
22. AC power component is 15 mA/MHz (power = AC + DC)
23 AC power component i1s 35 mA/MHz (power = AC + DC).

A . 12 15 -20 .

Characteristics Symbol Parameter yT78 TR T e T e Units
T ALE or AS pulse width 30 40 50 ns
T2 Address set-up time 15 20 25 ns
T3 Address hold time 10 15 20 ns

ALE or AS trailing edge to leading

T4 edge of Read 12 15 20 ns
T5 ALE or AS leading edge to data valid 140 170 220 [ns
T6 Address valid to data valid 120 150 200 | ns
T7 | CSl active to data valid 130 160 210 | ns
T8 Leading edge of Read to data valid 40 55 60 ns
T9 Read data hold time 0 0 0 ns
T10 | Trailing edge of Read to data high-Z 35 40 45 ns
™ Trailing edge of ALE or AS to leading 12 15 20 ns

edge of Write
T12 | RD, E, PSEN, or WR pulse width 45 60 75 ns
Trailing edge of Write or Read to

3 leading edge of ALE or AS 20 80 40 ns
T14 | Address valid to trailing edge of Write| 120 150 210 ns
Ti5 | CSI active to trailing edge of Write 130 160 200 ns
T16 | Write data set-up time 20 30 40 ns
T17 | Write data hold time 10 15 20 ns
T18 | Port input set-up time 10 15 20 ns
T19 | Port input hold time 10 20 30 ns

WAFERSCALE INTEGRATION, INC. 247

PSD301

AC 12 15 20
Characteristics Symbol Parameter - - - Units
(Cont,) Min | Max | Min | Max | Min | Max
T20 Tra.iling edge of Write to port output 40 50 60 ns
valid
T21 | ADi24 or control?” to CSQi%® valid 20| 35 | 25| 45 |30]| 55 | ns

T22 | ADi?* or control?” to CSOi?5 invalid 20| 35 | 25|45 | 30| 55 | ns

T23 | Track mode address propagation delay:

e CSADOUT1 already true or: 20 30 40 ns
e CSADOUT1 becomes true 40 50 60 ns
during ALE or AS
T24 | Track mode address hold time 10 15 20 ns
T25 | Track mode Read propagation delay 20 30 40 ns
T26 | Track mode Read hold time 10| 20 | 15] 30 | 20 | 40 ns
To7 Track que Write cycle data 20 30 40 ns
propagation delay
To8 Track que Write cycle write to data 20 | 40 | 25 | 50 | 30 | 60 ns
propagation delay
Hold time of Port A valid during
29 write to CSQi trailing edge 2 4 6 ns
T30 | CSI active to CSOi?5 active 25| 45 (30|55 |35 65| ns
T31 | CSl inactive to CSOi?® inactive 251 45 | 25| 55 | 35| 65 | ns
27 i ; ;
T32 Qontrol signal inactive to data 5 10 15 ns
invalid
T33 | R/W active to E high 20 30 40 ns
T34 | E low to R/W inactive 20 30 40 ns
T35 | AS inactive to E high 15 20 25 ns
. . 26 .
T36 Direct PAD input® stable to leading 15 20 25 ns

edge of RD, WR, or E

NOTES: 24. ADi = any address line.
25. CSOI = any of the chip-select output signals coming through Port B (CS0-CS?7) or through
Port C (CS8-CS10).
26. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E,
WR or R/W, transparent PCO-PC2, ALE (or AS).
27. Control signals RD/E or WR or RIW

248 WAFERSCALE INTEGRATION, INC.

PSD301

Figure 13.

Timing of 8-Bit
Multiplexed
Address/Data Bus,
CRRWR = 0
READ CYCLE WRITE CYCLE
- | =
= -] |- - =
Csiia19 N\ /XX
asCSI | 7 N - 15 >
' P 36 _ D 36 _
28 I —»| (=32 b -] 32
Direct
PAD Input E STABLE INPUT STABLE INPUT m
< 6 o 14 >
1
Multiplexed @)
Inputs E(L (.___
< 8 |5 e 14 >
AO0/ADO- DATA DATA
Pepvas ADDRESS A DATA _S.I}—-‘L ADDRESS B 'Lm<
2 3 > {8 | 43,4 P 3 _ 16 Jll
Active High |/ < 4 > 4\ /|
ALE/ |+ 1\ / __
i bl 1
Active Low \ \ s — \L
ALE ___/P s N _/_
12 >
RD/E as RD \ _/
< 5 s
BHE/PSEN \ |/
as PSEN \-J hlfu
12
WR/VPP or \ Y/
R/W as WR . o N—
Any of PAO- VAVAV,V.VAV,V,V,V, _ VWWYWYYVYYWWY Y WYWYYWYWY WY
PA7 as I/O Pin A‘A’A’A‘A‘A’A‘A A INPUT A’A’A‘A‘A’A’A‘A‘A’A‘A A A’A’A’A‘A’A’A‘ ouTPUT
Any of PBO- VAV V.V, VaV,AV,V,V, VAVAV Y,V VaVaVaVaV VWAV VW,V V1,V
PB7 as I/O Pin A’A‘A‘A’A’A‘A’A‘A‘ A‘A‘A’A’A’A’A A’A’A’A‘A’A‘A‘A‘A‘A’A’A’ ouTPUT

23 23
Any of PAO—
PA7 Pins ADDRESS A ADDRESS B X

as Address
Outputs

See referenced notes on page 2-58.

WAFERSCALE INTEGRATION, INC. 249

PSD301

Figure 14.

Timing of 8-Bit
Multiplexed
Address/Data Bus,
CRRWR = 1

READ CYCLE

WRITE CYCLE

32

CSI/A19
asCSl |/

7

15

I
Direct ‘ZB’E
PAD Input

Multiplexed (ZQ)E
Inputs

36

<G

36

STABLE INPUT

)

STABLE INPUT

6

A

4

=

< 6 5

AO/ADO- — N
A7/AD7 —/

¢ >

(ADDRESS A {

‘Q:D__

ADDRESS B ,

2 3

Active High

s
AS /

<

Y

3

Active Low \
AS K_

RD/E as E

35

Y

33

14

A

33

A
Y

34

=~ (111 &8

WR/VPP or |
R/W as R'W

Any of PAO-
PA7 as I/O Pin

Any of PBO-
PB7 as I/0 Pin

Any of PAO-

0

/

20

INPUT

INPUT

23

OUTPUT

OUTPUT

PA7 Pins
as Address

ADDRESS A

ADDRESS B

X

Outputs

y

See referenced notes on page 2-58.

2-50

WAFERSCALE INTEGRATION, INC.

PSD301

Figure 15.

Timing of 16-Bit
Multiplexed
Address/Data Bus,
CRRWR = 0
READ CYCLE WRITE CYCLE
< DC e _
T A I
asCSI | 7 - ~ = —
I - 36 N D % R
@ _ 1] g R I DY
Direct B’E Y
PAD Input @‘L STABLE INPUT STABLE INPUT KXXX
< 6 _ _ 14 R
Multiplexed ‘29)2((
Inputs - V K _
BHE/PSEN k
as BHE >0\
AO/ADO-] ADATA |9 AR
Arors 1) ADDRESS A {2 e f ApDRESS B A YXX
3 > —{8 |e— ‘2_. - 3 . . -1-7-|
Active High J/ < 4 _ N ,__\—-
ALE /] R Al \ ﬂ
i - 1
Active Low \ Y \ h \
ALE N4 o N __/_
12 <
RD/E as RD \U 4
/E as RD | / }
5
N > 412 o -
WR/VPP or N\
R/W as WR e o \
20
Any of PAO-
PA7 as I/0 Pin INPUT OUTPUT
Any of PBO-
PB7 as /O Pin INPUT OUTPUT
Any of PAO- e 23
PAZ Pins ADDRESS A ADDRESS B)C
as Address
Outputs

See referenced notes on page 2-58.

WAFERSCALE INTEGRATION, INC. 2-51

PSD301

Figure 16.

Timing of 16-Bit
Multiplexed
Address/Data Bus,
CRRWR = 1

CSI/A19

as CSlI

Direct “"”E
PAD Input

X

Multiplexed @)
Inputs

BHE/PSEN
as BHE

AO0/ADO-
A15/AD15

Active High

Ash

READ CYCLE

WRITE CYCLE

[~
N

N

7

| W

15

36

Y

e

36

—P>

32

)

STABLE INPUT

STABLE INPUT

6

< —

14

'y

7 N

A

10

ADDRESS A

DATA
OuT

ADDRESS B

2 3

1

3

J

Active Low

As N\

RD/EasE

g

(
2]
iy

>
>

35

AN

35

33

Y

L/

N

Y

S

33

A
Y

Jy

A

WR/VPP or

R/W as R/W 4

Any of PAO-
PA7 as I/0 Pin

Any of PBO-
PB7 as I/O Pin

Any of PAO-

X

18

X)

VVAVWVVWVWV
RXXAXRXX

XXXXX000X)

KRR XRRXXXRRNKRRRY v

PA7 Pins
as Address

23
ADDRESS A

ADDRESS B

Outputs

See referenced notes on page 2-58

2-52

WAFERSCALE INTEGRATION, INC.

PSD301

Figure 17.

Timing of 8-Bit
Data, Non-
Multiplexed
Address/Data Bus,
CRRWR = 0
READ CYCLE WRITE CYCLE
l R] »
—] |- —] |-
csiate N \
as CSI 7 o _ 15 -
o 36 o L 36 ‘
Direct®®
PAD Input Em STABLE INPUT STABLE INPUT MM
6 . - 14
AO0/ADO-
A15/AD15 STABLE INPUT STABLE INPUT
as A0-A15 E - — Z@Z m
32 32
Muttiplexed '
Inputs E(= o o (_
< > la—o < >
PA0-PA7 {207 L2, DATA <
2 3 2
< > -8 r' e S > 16 .1.7-|
Active High r < 4 > y; t
, ALE/A ,~\ A 1;&)y___
b g 1"
Active Low \ v \ ; — \
ALE N s N __/—
B ning
RD/E as RD S _ W, ,
< - ’ &]
WR/VPP or \ V
R/W as WR 18 ' N—
| 20
Any of PBO- VYWYWYWYWYWY YWY YWY YWYIVY
PB7 as /O Pin Xz INPUT $0000000000000.00.00.00¢ EE0

See referenced notes on page 2-58.

WAFERSCALE INTEGRATION, INC. 2-53

PSD301

Figure 18.

Timing of 8-Bit
Data, Non-
Multiplexed
Address/Data Bus,
CRRWR = 1

CSI/A19

as CSI

Direct®® E
PAD Input

AO/ADO-

A15/AD15 E

Multiplexed (ZQ)E

Inputs

PAO-PA7

Active High
ALE

READ CYCLE

WRITE CYCLE

32

3 v

7

36

N
AV

STABLE INPUT

STABLE INPUT

6 >

14

\ 4

STABLE INPUT

STABLE INPUT

i

7 N

DATA

ouT

{].

\
V%J;

[}
i

Active Low \
ALE

RD/E asE

[y

35

y

T~

35

4

33

Y

Y)

33

N [T E B

34

WR/VPP or

R/W as R/W 4

O

Any of PBO-
PB7 as I/O Pin

INPUT

See referenced notes on page 2-58.

2-54

WAFERSCALE INTEGRATION, INC.

PSD301

Figure 19.

Timing of 16-Bit
Non-Multiplexed
Address/Data Bus,
CRRWR = 0

READ CYCLE WRITE CYCLE
< R B =

3 y

csiatg N\ /
as CSI 7 15
36 36

i (28)
pADD,:st: E@t STABLE INPUT STABLE INPUT

[Y =

Y

Yy

14

< 6 > <

as A0-A15 — e]
32 3

AO0/ADO-
A15/AD15 E STABLE INPUT STABLE INPUT m
2

Multiplexed (ZQ’E(
Inputs
e T
as BHE _ IK}

PAO-PA7 A DATA
(Low Byte) \ ouT IN

>

PBO-PB7 A oAl DATA
(High Byte) yout IN

'
A
.

2
Active High }/] 4 o —\ le-er —
ALEA |4 1

Active Low \ s \ Yy \
ALE N1 a5 _

Ne [T T B B

RD/E as RD \ | /

TN

WR/VPP or \
R/W as WR N/

See referenced notes on page 2-58.

WAFERSCALE INTEGRATION, INC. 2-55

PSD301

Figure 20.

Timing of 16-Bit
Non-Multiplexed
Address/Data Bus,
CRRWR = 1

CSIA19

as CSlI

Direct ®®

PAD Input

AO/ADO-
A15/AD15
as AO-A15

Multiplexed(zg)E

Inputs

BHE/PSEN
as BHE

PAO-PA7
(Low Byte)

PBAO-PB7
(High Byte)

Active High

As/

READ CYCLE

WRITE CYCLE

L~

7

36

STABLE INPUT

STABLE INPUT

6

14

STABLE INPUT

STABLE INPUT

Y

>

A

A
\ 4

35

NA

Active Low \ Yy 35 \
AS < > 13
e ’i 34 —2 34
RD/E as E / \

A 4

<T

2

=N [T [T E K

WRIVPP or

R/W as R'W

See referenced notes on page 2-58.

2-56 WAFERSCALE INTEGRATION, INC.

R

PSD301

Figure 21. g N
Chip-Select — “ >
i csiatg ~ \ T
Output Timing e OS1 \ A
(28)
D"“’.'ﬁ;‘ﬁ :)(INPUT STABLE X
Multiplexed
PAD Inputs E(mux
2 3 -~
ALE — g
(Multiplexed
Mode Only) !
or ALE
(Multiplexed
Mode Only)
21 22
C—S—O—I(ao,am—i—i "’1
N/
Figure 22. Y 32
Port A as - _
. READ CYCLE WRITE CYCLE
ADO-AD7 Timing < >
(Track Mode), Direct®* +
INPUT STABLE INPUT STABLE
CRRWR = 0 T X . - XSXRX
> < »l
»| 2o
Multiplexed 2
PAD Inputs M(INPUT STABLE XXX INPUT STABLE K00——
<2 -« :i E’—| l‘ ‘2 ole? .
AO/ADO- T\
A7/AD? A\ ADDRESS >_—‘(' DAtk ?—(ADDRESS ')__ WHDQ_;}I;ENl-)__
™\
ALE ‘* \ ‘/- \\ /—\—
! 1
\
or ALE ‘*_/ \. 4 _/'—
| 12
RD/E as RD - 4 R “ a4
32 = |- _ 11 Ry 12 R
WEPe o T —
R/W as WR 24 l'._ 24 N
28
zja'E\l -1 23
PAQ-PA7 ﬂ ADR { DA IN (&R DATA%‘}—
I
— (30,33)
Oi

See referenced notes on page 2-58.

WAFERSCALE INTEGRATION, INC.

2-57

PsD301

Figure 23.

Port A as
ADO-AD7 Timing
(Track Mode),
CRRWR = 1

Direct @83

PAD
Input

Multiplexed
PAD Inputs

AO0/ADO-
A7/AD7

AS

or AS

RD/EasE

WR/VPP or
R/W as R'W

PAO-PA7

— (3033)
CSOi

NOTES: 28
29.
30.
31.
32
33.

34.

35.

b

(32,34)

READ CYCLE WRITE CYCLE

<t

]
INPUT STABLE

N
|

(—ADDRESS >—

INPUT STABLE INPUT STABLE

XXX INPUT STABLE

2 2

READ
DATA

ADDRESS E

| B

7 N

32

[\
;

Y

[

\

12 35

L/

[O
A
\ 4
A

S

33

32 —=

XXX

27

23] —

24
£:]
ADR

ADR
OuT,

[

ouT /l

28

Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19,

RDIE, WR or R/W, transparent PCO-PC2, ALE in non-multiplexed modes.

Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): AO/ADO-A15/AD15,
CSI/A19 as ALE dependent A19, ALE dependent PCO-PC2.

CSOi = any of the chip-select output signals coming through Port B (CS0-CS7) or through Port C
(CS8-CS10).

CSADOUTH1, which internally enables the address transfer to Port A, should be derived only from
direct PAD input signals, otherwise the address propagation delay is slowed down.

CSADIN and CSADOUT?2, which internally enable the data-in or data-out transfers, respectively,
can be derived from any combination of direct PAD inputs and multiplexed PAD inputs.

The write operation signals are included in the CSOi expression.

Multiplexed PAD inputs: any of the following PAD inputs that are latched by the ALE (or AS) in
the multiplexed modes: A11/AD11-A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent
PCO-PC2.

CSOi product terms can include any of the PAD input signals shown in Figure 3, except for reset
and CSI.

258

WAFERSCALE INTEGRATION, INC.

PSD301

Table 14. Pin

Tp = 25°C, f = 1 MHz

Capacitance3® Symbol Parameter Conditions |Typical®” | Max | Units
Cin Capacitance (for input pins only) ViNn = OV 4 6 pF
Cout | Capacitance (for input/output pins) Vour = 0V 8 12 pF
Cypp | Capacitance (for WR/Vpp or RIW/Vpp) | Vpp = OV 18 25 | pF
NOTES: 36. This parameter is only sampled and is not 100% tested.
37. Typical values are for Ty = 25°C and nominal supply voltages
Figure 24.
AC Testing
Input/Output
Waveform
3.0V
X TEST POINT —DX15 \%
ov
Figure 25.
AC Testing 201V
Load Circuit
195 Q
DEVICE
UNDER
TEST C, =30pF
(including
—— Scope and jig
= capacitance)
Erasure and To clear all locations of their programmed device. For maximum system reliability,
Pmyramming contents, expose the device to ultra-violet these sources should be avoided. If used

light source. A dosage of 15 W-second/cm?
is required. This dosage can be obtained
with exposure to a wavelength of 25374
and intensity of 1200 uW/cm? for 15 to 20
minutes. The device should be about 1
inch from the source, and all filters should
be removed from the UV light source prior
to erasure.

The PSD301 and similar devices will erase
with light sources having wavelengths
shorter than 4000A. Although the erasure
times will be much longer than with UV
sources at 25374, exposure to fluorescent
light and sunlight eventually erases the

in such an environment, the package
windows should be covered by an opaque
substance.

Upon delivery from WSI, or after each
erasure, the PSD301 device has all bits in
the PAD and EPROM in the “1” or high
state. The configuration bits are in the “0”
or low state. The code, configuration, and
PAD MAP data are loaded through the
procedure of programming

Information for programming the device is
available directly from WSI. Please contact
your local sales representative.

WAFERSCALE INTEGRATION, INC. 2.59

PsD301

PSD301 e

; 44-Pin :
Pin PLDCC/ " 44-Pin PLDCC/ 44-Pin
; lame CPGA Name CPGA
Assignments cLbce Package CLDCC Package
Package g Package 9
1 BHE/PSEN As 23 ADO/AO Hy
2 WR/Vpp or RIW Ay 24 AD1/A1 Hg
3 RESET By 25 AD2/A2 Gs
4 PB7 As 26 AD3/A3 He
5 PB6 Bs 27 AD4/A4 Gg
6 PB5 Ao 28 AD5/A5 H,
7 PB4 B, 29 AD6/A6 G
8 PB3 B4 30 AD7/A7 Gg
9 PB2 Cy 31 ADS8/A8 F,
10 PB1 C4 32 AD9/A9 Fg
11 PBO D, 33 AD10/A10 E,
12 GND D4 34 GND Eg
13 ALE or AS E4 35 AD11/A11 Dg
14 PA7 Es 36 AD12/A12 D,
15 PA6 Fi 37 AD13/A13 Cs
16 PA5 Fa 38 AD14/A14 Cy
17 PA4 Gy 39 AD15/A15 Bs
18 PA3 Gy 40 PCo B,
19 PA2 Hy 4 PC1 A;
20 PA1 Gs 42 PC2 Bg
21 PAO Ha 43 A19/CSI As
22 RD/E Gy 44 Vee Bs
Ordering Operatin wsl
Information Part Number s?lne;d P a;_:kzge Z?:ﬁ;‘,le Tegperaﬂ?re Manufacturing
vp 9 Range Procedure
PSD301-12J 120 | 44-pin PLDCC J2 Comm’l Standard
PSD301-12L 120 | 44-pin CLDCC L4 Comm’l Standard
PSD301-12X 120 | 44-pin CPGA X2 Comm’| Standard
PSD301-15J 150 | 44-pin PLDCC J2 Comm’l Standard
PSD301-15L 150 | 44-pin CLDCC L4 Comm’l Standard
PSD301-15LM 150 | 44-pin CLDCC L4 Military Standard
PSD301-15LM 150 | 44-pin CLDCC L4 Military MIL-STD-883C
PSD301-15X 150 | 44-pin CPGA X2 Comm’l Standard
PSD301-15XM 150 | 44-pin CPGA X2 Military Standard
PSD301-15XMB 150 44-pin CPGA X2 Military MIL-STD-883C
PSD301-20J 200 | 44-pin PLDCC J2 Comm’l Standard
PSD301-20L 200 | 44-pin CLDCC L4 Comm’l Standard
PSD301-20LM 200 | 44-pin CLDCC L4 Military Standard
PSD301-20LMB [200 | 44-pin CLDCC L4 Military MIL-STD-883C
PSD301-20X 200 | 44-pin CPGA X2 Comm’l Standard
PSD301-20XM 200 | 44-pin CPGA X2 Military Standard
PSD301-20XMB | 200 | 44-pin CPGA X2 Military MIL-STD-883C

2-60 WAFERSCALE INTEGRATION, INC.

— A ——
N A—
Y ———F

WAFERSCALE INTEGRATION, INC.

PSD30——

System
Development Tools

System The PSD301 features a complete set of
Development System Development Tools. These tools
Tools provide an integrated, easy-to-use software

and hardware environment to support

PSD301 device development. To run these
tools requires an IBM-XT, -AT, or
compatible computer, MS-DOS 3.1 or
higher, 640K byte RAM, and a hard disk.

Hardware The PSD301 System Programming
Hardware consists of:

Q WS6000 MagicPro Memory and PSD
Programmer

O WS6013 44-pin LCC Package Adaptor
(for CLDCC and PLDCC packages)

[WS6014 44-pin CPGA Package Adaptor

The MagicPro Programmer is the common
hardware platform for programming all WSI
programmable products. It consists of an
IBM-PC plug-in programmer board and a
remote socket adaptor.

Software The PSD301 System Development Software
consists of:

I WISPER, WSI's Software Environment
J MAPLE, the PSD301 Location Editor

The configuration of the PSD301 device is
entered using MAPLE software. MAPPRO
software uses the MagicPro programmer
and the socket adaptor to configure the
PSD301 device, which then can be used.

Software The development cycle is depicted in
[MAPPRO, the Device Programming Figure 26.
Software
Suppart WSI provides a complete set of quality 1 Design assistance from WS field

support services to registered System
Development Tools owners, including:

3 12-month software updates

application engineers and application
group experts

I 24-hour electronic bulletin board for
design assistance via dial-up modem.

Training WSI provides in-depth, hands-on workshops
for the PSD301 device and System
Development Tools. Workshop participants
learn how to program high-performance,

user-configurable mappable memory
subsystems. Workshops are held at the WSI
facility in Fremont, California.

WAFERSCALE INTEGRATION, INC. 2-61

PSD301

Ordering PSD301-GOLD ws6013
Information — Q@ WISPER Software @ 44-pin LCC Package Adaptor for CLDCC
S}’Stem 3 MAPLE Software and PLDCC Packages
Development O User's Manual Q Used with the WS6000 MagicPro
Tools Programmer
3 WSI Support
O WS6000 MagicPro™ Programmer ws6014
[WS6013 44-pin LCC Package Adaptor (1 44-Pin CPGA Package Adaptor, Used
O Two PSD301-15L Samples with WS6000 MagicPro Programmer
PSD301-SILVER ;vs: s'r:"”"’f _
O WISPER Software D“p';° Seh"";ez '“C“lf'd Soni
O MAPLE Software 2 |1-| -r:ont VSS\IN:re) p .ate Eervnce
A Users M 2 26hour 20008 t0 W51 Elconi Bule
-hour access to ectronic Bulletin
QI WSI Support Board
WS6000 WS! Training
O MagicPro Programmer [Workshops at WSI, Fremont, CA
Q IBM-PC® plug-in Adaptor Card Q For details and scheduling, call PSD
O Remote Socket Adaptor Marketing (415) 656-5400
Figure 26.
PSD301
Development IBM PLATFORM
Cycle
User
Menu Selection WISPER
Configuration Data MAPLE
Programming Data MAPRO
Hex File
Format
|
Y

[]

MagicPro Hardware

2-62 WAFERSCALE INTEGRATION, INC.

F—
A—
A —

A —

y — & 3 &Y
A —

— 2 — ¥
[V ——

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

PAC1000 Introduction

User-Configurable
Microcontroller

Overview

In 1988 WSI introduced a new concept in
programmable VLSI: the Programmable
System™ Devices (PSD). The PSD is
defined as a family of User-configurable
system level building blocks on-a-chip
enabling quick implementation of application
specific controllers and peripherals. The
first generation PSD series includes the
MAP168, a User-Configurable Peripheral
with Memory; the SAM448, a User-
Configurable Microsequencer; and the
PAC1000, a User-Configurable
Microcontroller.

The PAC1000 user-configurable high-
performance microcontroller is the first of
a generation of products intended for
applications in high-end embedded control
where high-speed data processing, interface
or control is needed. The PAC1000 replaces
a board full of discrete components such
as standard logic, FIFO, EPROM for
microcode store, ALU, SEQUENCER,
register files and PAL/PLD/PGA. To shorten
the time-to-market for the system designer,
a high-level software development language
is used. This contrasts with the myriad
state-machine entry, schematic entry, and
place and route tools that would be
needed for a discrete design using PAL,
PLD, PGA or gate arrays.

The PAC1000 architecture is flexible and
enables the system designer to customize
the PAC1000 to optimize application
performance. The PAC1000 is composed
of three basic sections: a CPU for data
processing, a programmable instruction
control unit that determines the next
address to the microcode store through
polling condition codes or responding to
interrupts, and a host interface to
asynchronously load data from the host.
Registered input/outputs are used to
synchronize with the system.

As a result of integrating logic and EPROM
memory into the PAC1000 and defining a
high-level language for programming both,
time-to-market and board space is reduced
and reliability increased. The PAC1000 is
currently used in applications such as
Intelligent DMA controller, FDDI buffer
controller, Frame buffer controller, LAN
communications controller, disk controller,
and /0O controller. For further details on
the PAC1000 see Application Note 10.

WAFERSCALE INTEGRATION, INC.

2-63

Contents

(=T LU= OSSR SRPPRRRY 2-65
General Description
Architectural Overview
Operational Modes...

Host Interface............ 27
FIFO oo -l
Data I/O REGISLEISc.ovviieeirireeetiiti ettt sttt ev st ss et sb e b e e se s seesnenaen 273
Program COUNTEc..oouieuirieeeiecie ettt se ettt eb e nee s ae e e seenaenaes 273
Status Register..... 273

Control Section 275
Parallel Operations... .. 275
Program Memory 276
Security ... 276
15-Level Stack 276
Program Counter 276
Loop Counter 277
Debug Capabilities 277

Breakpoint REGISIErccco.iiiiiiiiiectec ettt e e 277
SINGIE SEEP ... e 277
Condition Codes.......... . 277
User-Specified Conditions.. .. 278
CPU FIAGS ..ottt e sttt be s s n e e 278
FIFO FIAQS .oiioeietiiieietee et ettt sttt st s s e se e e r b e nnes 278
SEACK-FUIl FIAQG vttt ettt e e s esneens 278
INEEITUPE FIAQ -ttt e ettt e eaesae e sen e seeeae e e neeeas 278
Data Register Read Flag .. 278
COUNET FIAG ...ttt ettt sttt st et e e 278
€ASE LOGIC ...vveeiiieriiietete ettt ettt e s s se e a et e e st et ese s e e e b e s s r s e e ane s eneneetrnans 279
Case INSIUCHIONSueuiiiiiciit e e 279
Priority Case INSIIUCHIONScceeiririiiicect et e 279
INEEITUPE LOGIC ..ttt sn e sbe s resre s b e st r e e s e e e s eses e et e sresreeane e 279
Interrupt Mask REGISIENcoviiiiiiiiieiceie e 2-80
OULPUL CONIOL ...ttt ettt nen e 2-81

[TUT 41 (=T £SO OO P RN 2-81
Address Counter .. 2-81
Block Counter....... .. 2-82

Central Processing Unit2-82
Arithmetic Operations . .2-85
Logic Operations2-85
Shift OPEIAtIONSc.ecuiieiiiciirter ettt 2-85

Shift RIGNEcveeeee e s 2-85
Shift Left2-85
Rotate Operations2-86
Multiple Precision Operations ..ot 2-86

1/0 and Special FUNCHIONSoiiiiiiiiiic s 2-86

Configuration Registers2-88
Control Register2-88
1/O Configuration Register . 2-90
Mode Register 2:91

State Following Resetcc..ccce.. .2:92

Electrical and Timing SPecCifiCationsccccvvriirieiriieieecrren e e 2-94

Pin ASSIGNMENESooiiiiiiiice et b 2-100

Instruction Set Overview 21104

System Development Tools ..
Hardwareccccoeeineninnne
Softwarecccceveuenne
Support...
Training ...coccoeevenencennenennns

Ordering Information—PAC1000...........cccccovvmiiiiinnnns

Ordering Information—System Development TOOIScocviiiiiiiiiniiiccec e 2-111

2-64 WAFERSCALE INTEGRATION, INC.

FES 5= Programmable System™ Device

fonfiond PAC1000
User-Configurable

WAFERSCALE INTEGRATION, INC.

Pre]imi”a’y Microcontroller

Features First Generation Programmable System 1 Address Generation—Up To 4 Mbytes
Device (PSD) Address Space
High-Performance User-Configurable Q High-Level Development Tools—System
Microcontroller—20 MHz Instruction Exe- Entry Language, Functional Simulator,
cution, Output Port, and Address Bus and Device Programmer
Single-Cycle Control Architecture—One 1 Re-Programmable Program Store—
Cycle Per Instruction On-Board 1Kx64-Bit EPROM
16-bit CPU—Arithmetic Operations, 1 Two Operating Modes—Host Processor
Logic Operations, 33 General-Purpose Peripheral or Stand-alone Controller
Registers O Security—For EPROM Program Memory

Figure 1.

P401000 Block CK RESET CSRDWR HD[150] HAD[50] Veo

Diagram l \ .

Cg\égg{:ﬁ: n | | Host Interface I

i
v '

Control Section
SecurtyBit | 1KxG64EPROM |
CcPU
Loop Counter
Stack Breakpoint Register
Program Counter
Case Logic le-»f Block Counter l
User Condition-Code Interrupt
Output Logic Logic SR Address Counter I
1/O & Special Address/Data
Function Port Port
4 2 v —
OUTCNTL[15.0] CC[7-0] INT[3-0} 1/0[7 0} ADD[15.0]

1738 01

WAFERSCALE INTEGRATION, INC. 2-65

PAC1000

General
Description

In 1988 WS introduced a new concept in
programmable VLSI, Programmable System
Devices (PSD). The PSD family consists of
user-configurable system-level building
blocks on-a-chip, enabling quick implementa-
tion of application-specific controllers and
peripherals. The first generation PSD series
includes the MAP168, a User-Configurable
Peripheral with Memory; the SAM448, a
User-Configurable Microsequencer; and the
PAC1000, a User-Configurable Microcon-
troller.

The PAC1000 User-Configurable Mierocon-
troller is based upon an architecture that
enables it to execute complex instructions in
a single clock cycle. Each PAC1000 instruc-
tion can perform three simultaneous opera-
tions: Program Control, CPU functions, and
Output Control, as shown in Figure 2. The
PAC1000 can also perform address genera-
tion or event counting simultaneously with in-
struction execution. The PAC1000 is also
capable of performing a conditional test on

up to four separate conditions and multi-way
branching in a single cycle.

The PAC1000, with its System Development
Tools, matches the development cycle and
ease of use of any standard microcontroller.
The high performance and flexibility of the
PAC1000 were previously available only to
designers who could afford the long develop-
ment cycle, high cost, high power, and large
board space requirements of a building-block
solution (i.e., Sequencer, Microcode Memory,
ALU, Register File, PALs, etc.)

The unique capabilities of PAC1000 are
easily utilized with System development
tools, which include a PACSEL C-like System
Entry Language, a PACSIM Functional
Simulator, and a MagicPro™ Device Pro-
grammer. All System Development Tools are
PC-based and will operate on an IBM-XT,
AT, PS2 or compatible machine. For more in-
formation, contact your nearest WSI sales
office or representative.

Figure 2. Single-

Cycle Control
Architecture

L]

WR HDI[15:0] HAD[15 0]

Host Interface

4

8 A

Condition
Codes <~

4

4 Control Unit T 28
Interrupts ———>c—» with CPU
1K x 64 EPROM
Next Instructlo? 4 4
Definition
A A A
Instruction Register
CLK—#— — == = —|— — —
(:c:ntrolI Outputl CPU
CPU Operation
20 Definition
v v
OC[15°0] 1/0[7.0] ADD[15:0]

Important Features:

» One cycle per instruction
* 20 MHz instruction execution rate

« Every instruction executes 3 parallel operations (Control, Output, CPU)

1738 02

2-66 WAFERSCALE INTEGRATION, INC.

PAC1000

Table 1. Pin
Description

Signal
HD[15:0]

HADJ[5:0]

CK
CC[7:0]

INT[3:0]

RESET

OUTCNTL[15:0]

ADD[15:0]

1/0[7:0]

o
110

1’0

o

110

110

Description

Host Data. PAC1000 Data I/O Port via the Host Inter-
face. Can also be configured to generate 16-bit ad-
dress or status. Can serve as a general-purpose Data
1/0 Port.

Host Address. Can be configured to output the lower
six bits of the 22-bit Address Counter; can be used as a
Host Interface function address, or as a general-
purpose 16-bit port.

Chip Select (active low). Used with RD and WR to
access the device via the Host Interface.

Read Enable (active low). Used with CS to output Pro-
gram Counter, Status Register, or Data Output Regis-
ter to HD[15:0] bus lines.

Write Enable (active low). Used with CS to write HD
Bus data via the Host Interface into the PAC1000
FIFO.

Clock.

Condition Codes. Condition-code inputs for use with
Call, Jumg, and Case instructions.

Interrupts. General-purpose, positive-edge-triggered
interrupt inputs.

Asynchronous Reset (active low). Resets Input/Output
registers and counters, tri-states all I/0, and sets the
Program Counter to 0.

Output Control. User-defined Output Port. May be pro-
grammed to change value every cycle.

Address Port. Outputs data from Address Counter or
Address Output Register when configured as an
output. When configured as an input, reads data to
Address Input Register.

Input or Output Port. Individually configurable bidirec-
tional bus. As simple I/O, outputs come from the I/O
Output Register, and inputs appear in the 1/O Input
Register. As special I/O functions, provides status,
handshaking, and serial I/O. Alternatively, these signals
can be used to extend the OUTCNTL or ADD lines.

WAFERSCALE INTEGRATION, INC. 2-67

PAC1000

Architectural
Overview

The PAC1000 is a user-configurable micro-
controller optimized for high-performance
control systems. The primary architectural
elements, shown in Figure 3, are the Control
Section, 16-bit CPU, Host Interface, 16-bit
Address Port, 16-bit Output Control, 8-bit /O
Port, and Configuration Registers.

The PAC1000 can be used as a stand-alone
microcontroller or as a peripheral to a host. In
the latter case, the Host Data (HD) and Host
Address (HAD) buses, together with the CS,
RD, and WR pins allow for direct connection
to a host bus. User-defined commands to the
Control Section or data to the CPU can be
loaded through the Host Interface.

In the stand-alone mode, the Host Interface
ports can be used as additional address, data
or I/O ports using the Data Output Register
(DOR) and Data Input Register (DIR). The
ADD port can be used to generate addresses
through the Address Output Register (AOR)
or the Address Counter. A DMA channel can
be formed on the Host Interface using these
and the Block Counter (BC) register. In
addition, the ADD port can be used as a data
bus or an I/0 port, depending on how the
chip is configured. Each pin in the I/O port
can be configured individually as input,
output, or special function. The special
functions allow the control of internal
PAC1000 elements (counters, I/O buffers) by
other board elements.

The 16-bit CPU is highly parallel and can
operate on operands from the 32x16-bit

register file, miscellaneous register (AOR,
AIR, DOR, DIR, Q, etc.), or constants loaded
from the internal program-store EPROM.

The internal and external operations of the
PAC1000 are controlled by the Control
Section. The 16 Output Control (OC) lines
are general-purpose outputs. Each of them
can be changed independently every clock
cycle. They provide a very fast means to
control various processes outside the chip.

In every clock cycle, one instruction is
executed. Each instruction consists of up to
three operations in parallel:

1 Instruction Fetch—the next instruction is
fetched from the 1Kx64 EPROM by the
Program Control.

O Execution—the CPU executes an instruc-
tion.

1 Output—placed on the Output Control
(OC) lines.

Program flow can be changed through the
condition-code inputs in one clock cycle or
through the interrupt inputs after two clock
cycles. Single-cycle 16-way branches can be
done using the Case instruction, which
samples four condition codes per cycle.
Nested loops and subroutines can be carried
out with the 15-level stack and the loop
counter. The chip configuration can be
changed in any cycle by loading the Configu-
ration Register using the Program Control
instruction portion.

2-68 WAFERSCALE INTEGRATION, INC.

PAC1000

Figure 3.
Detailed cs RD WR HD HAD
Block Diagram l l i %‘6 {6
Host _
Interface THDOE IHADOE
Decoder — -
Decoded 16
Signals 16 6
16 16
DIR DOR SR FIFO (8 x 22)
Data Data
Status 8x 16 Commandand | 8 x 5 Register
Input N Output 8x1
Register ‘D'RE Register Register Data FIFO Pointer
T lFIIH lFICD
16 bor 1" Internal 16
Flags 5
Register
Select
Internal
Control Register
Case Program Counter Signals File +
Q Register
8 15-Level 16
cc Stack ALU
cc Loop cPU
Internal Test Counter
cc Block
B Counter 1/O Configuration
Internal B
INTR Mode
: O[] s |
R
INTR EPROM Control
CLK Control Unit . Configuration Registers
Reset
Vee
16 16 16 16 6
GND Output Control
= 16
oC ACH ACL
Si
| Address Address 6
Register ﬂ. Count Count
High Low
1
8 8 6 AOR
R IR AR Address TAcszz
L] Output
1o 1710 Address Register
Input Output Input
Register Register Register TADOE
AIREN
t o
16
8 ADD
[1738 03
WAFERSCALE INTEGRATION, INC. 2-69

PAC1000

Operational The two basic modes of operation for the In the peripheral mode, the host processor
Modes PAC1000 are either as a memory-mapped can asynchronously interface with the
peripheral (Figure 4) or as a stand-alone PAC1000.
controller (Figure 5).
* Figure 4.
Peripheral Mode
Address >
Host P ? .
ost Processor
| Data Memory
A
v ottt T I S - -l
s : y y PAC1000 : v
— - 1
' CPU : Data Path
, Host . Element,
RD Interface +_Control High Speed
E——] v Process,
' Control : Fast Bus, Etc.
P |]
R 1]
— '
' 1 Status/Interrupts
becececcesccccesesscnas :
1738 04
Figure 5.
Stand-alone Mode
v Address . Memory
CcC
: PAC1000 !
cs ! '
— cPU '
— Host and ' Data
D o+ Data [*—, >
: Interface '
WR Control ! 12
LWR '
L} “ 1
' ®
[I) Data Path
Element,
Control _ High Speed
> Process,
Fast Bus, Etc.
Status/Interrupts
1738 05

2-70 WAFERSCALE INTEGRATION, INC.

PAC1000

Host Interface

The Host Interface section of the PAC1000,
shown in Figure 6, includes the Input Com-
mand/Data FIFO, Input/Output Data Regis-
ters, and the Status Register.

FIFO

When the PAC1000 serves as a peripheral to
a host, the FIFO is used to asynchronously
load commands or data into the PAC1000. In
order to write into the FIFO, CS and WR
must have low-to-high transitions. The
information written into the FIFO is specified
by the 16-bit Interface Data bus (HD) and the
6-bit Host Address bus (HAD). Since the
FIFO is used only to buffer data and com-
mands from a host, it is inoperative when the
PAC1000 is in stand-alone mode.

Bit five of the HAD bus specifies whether the
input to the FIFO is command (HAD5=1) or
data (HAD5=0). HADS is connected to the
FICD internal Condition Code that can be
sampled by the Control Section. If a com-
mand is written, then the lower 10 bits of the
HD bus are used as the branch address for
one of the 1024 locations in the Program
Memory EPROM. At that location a user
defined command or subroutine should exist
which executes the needed operation. If the
information is data, then the lower 5 bits of
the HAD bus specify which CPU register is to
be loaded from the HD bus.

This method of operation allows the host to
access the PAC1000 as a memory-mapped
peripheral.

Figure 6.
Host Interface
Architecture

cs RD WR HD[0"15]

| 1 e

HAD[0 5]
6

ACL

Host
2 | m[VA] ={VA
Devodor IHDOE v IHADO!
3 "
Decoded Signals
16
6
16 16 16
DIR DOR SR FIFO
I[rjﬁjat O?:;?n Status 8 x 16 Command 8x5Register | gy
Register Register Register and Data Pointer
T TT T . T FIORl FllRl lFICD
16 16 16 5
Internal Flags
v
Internal Bus To Register File

1738 06

WAFERSCALE INTEGRATION, INC. 271

PAC1000

Host Interface
(Con’t)

An example of FIFO usage is shown in
Figure 7. When command or data information
is available in the FIFO, the FIFO Output
Ready (FIOR) interrupt (interrupt 5) triggers.
If the FIOR interrupt is masked, then the
FIOR status may be polied under program
control. If HAD5 equals 1, the branch ad-
dress location specified by MOVE is the
Program Memory Address which contains the
user specified instruction or sub-routine
which executes the command. A JUMP or
CALL FIFO control instruction performs a
jump or call to the location specified by
MOVE. If HAD5 equals 0, an RDFIFO
instruction can transfer the FIFO contents
into the register specified by HAD[4:0].

For further explanation, refer to the diagram
below. Beginning at the location specified by
MOVE, a user defined program exists which
is going to load data into CPU registers 0,1,2,

and 3 in four consecutive cycles from the
next four FIFO locations. If one of the four
FIFO locations contains a command
(FICD=1), interrupt level 7 occurs (highest
level). Loading a command into a CPU or
other data register is not allowed. If this
occurs, FIXP (FIFO exception) will be gener-
ated.

Following the execution of this routine, the
Control Section is ready for its next instruc-
tion.

The FIFO drives three internal flags which
can also be programmed to interrupt the
PAC1000. They are:

O FNR (FIFO full) and FIXP (FIFO excep-
tion), which drive INT7.

3 FIOR (FIFO output ready), which drives
INTS.

Table 2.
Host Interface
Functions

CS RD WR HAD5 HAD[4:0]
0 1 0 0 Register
Address
X

00100
00011
00010
00001
00000

O O O O o o
O O O O o =
_. - A e A O
O O O O O —=

HD[15:0] Function

Data Write data to FIFO
Command Write command to FIFO
X Reset FIFO

X Reset status register
Data Read program counter
Data Read status register
Data Read data output register

2-72 WAFERSCALE INTEGRATION, INC.

PAC1000

Host Interface Data I/0 Registers the Program Memory address bus. It can also
(Con’t) Input and Output Data Registers are used to be used to drive external memory devices for
communicate with the Host Data (HD) bus. expansion of the Control Port.
CPU Registers may be loaded directly from Status Register
the Data Input Register (DIR) without passing The Status Register (SR), shown in Figure 8
through the FII_=O. Similarly, the PAC1_000 monitors all internal status. Status bits can be
may be read via the Data Output Register set only by program execution. The SR can
(DOR). be read or cleared as specified in the Host
Program Counter Interface Functions table.
The Program Counter may be read via the All SR flags are active high (1) and are
Host Data bus. This allows a host to monitor latched at the rising edge of the clock.
Figure 7.
Example of
FIFO Block Host Interface
Diagram and
Usage {}

HAD5 HAD[4:0] HD[1510] HD[9-0]

X X X

X X X
Write Pointer :> X X X

0 R3 Address| Datato CPU

0 R2 Address| Datato CPU

0 R1 Address| Datato CPU

0 RO Address| Datato CPU

MOVE f Read Pointer

FICD to 1 X
Condition Code
Multiplexer
Command to IHD[9:0] IHD[15:0] Data to CPU "
Control Section I when FICD = "0'
when FICD = "1"

IHAD[4:0] Register Address

FICD = 1 Command (actually a branch) to the Control Section
FICD = 0 Data to CPU Register

to CPU Register

1738 07

WAFERSCALE INTEGRATION, INC. 2:73

PAC1000

Host Interface STAT11—(DBB) Security Bit, set when STAT4—(S) Sign Bit, set when the most
(Con’t) security is active: significant bit of the result of the previous
1= Security active. CPU operation is negative:
0= No security. 1= Result is negative.
STAT10—WSI Reserved. 0= Resultis positive.
STATO9—(FIXP) FIFO Exception, setwhen ~ STAT3—(STKF) Stack Flag, set when the
the CPU receives a command or Control stack is full:
Section receives data: 1= Stackis full.
1= Command or data received. 0= Stack is not full.
0= No exception occurred. STAT2—(BRKPNT) Breakpoint Flag, set
i kpoint
STAT8—(FIIR) FIFO-Input Ready, set when when the address in the breakp ‘
there is at least one vacant location in the register is equal to the EPROM address:
FIFO: 1= Breakpoint occurred.
1= FIFO ready for input. 0= No breakpoint occurred.
0= FIFO not ready for input. STAT1—(BCZ) Block Counter Zero, set
STAT7—(CY) Carry Flag, set when a carry when the counter decrements to all 0s:
(addition) or borrow (subtraction) occurs 1= Block Counter reached zero.
in CPU operations: 0= Block Counter is not zero.
1= Carry occurred. STATO0—(ACO) Address Counter Ones, set
0= No carry occurred. when the counter increments to all 1s:
STAT6—(Z) Zero Flag, set when the result of 1= Address Counter reached all ones.
a CPU operation is zero: 0= Address Counter is not all ones.
1= Zero occurred.
0= No zero occurred.
STAT5—(O) Overflow Flag, set when an
overflow occurs during a two’s comple-
" ment operation:
1= Overflow occurred.
0= No overflow occurred.
Figure 8.
Status Register MSB LSB
1 1 1 [l i 1 1 1 | 1 1 | | L —l
0o—J Stato
0 Stat1
Reserved Stat2
Reserved Stat3
Stat11 Stat4
Reserved Stat5
Stat9 Stat6
Stat8 Stat7

1738 08

274 WAFERSCALE INTEGRATION, INC.

PAC1000

Control Section The control section, shown in Figure 9, Q Case Logic
consists of a.number of bIoc!<s which are Q Interrupt Logic
concerned with the sequencing of the control
programs in the PAC1000. These are: Q Output Control
Q Program Memory Each block is described in detail below.
Q Security Parallel Operations
QO 15-Level Stack The PAC1000 can perform three simultane-
ous operations within a single instruction
O Program Counter cycle, as shown in Figure 10. The ability to
Q Loop Counter fetch an instruction from the Program Mem-
O Breakpoint Register ory, execute it, and output a result within 50
nsec is due to a highly parallel structure.
Q Condition Codes
Figure 9.
Control Internal Bus
Architecture

(=]

{1

. 8 Case
CC[0:7] l Logic
r Condition
Code
Internal CC 13
(from ALU) Loge
External 4
Interrupts Interrypt
Internal 4 Logic
Interrupts

Program
Counter

Breakpoint
Register

15-Level
Stack
——»
Loop —>
Counter —»> g\temall
ontrol
'—T’ Signals

Program

Memory
1K x 64 EPROM

Output
Control

1

y OC10:15] 1738 09

WAFERSCALE INTEGRATION, INC. 275

PAC1000

Control Section Program Memory Thereafter, the EPROM contents cannot be
(Con’t) The Program Memory is a 1Kx64 high-speed read exte.rnaH.y.' When the EPROM is erased,
EPROM. This on-board-memory allows the the security bit is cleared.
PAC1000 to operate in embedded control 15-Level Stack
applications and eliminates the need for The 15-level Stack stores the return address
external memory components. Using an following subroutine calls, interrupt service
erasable memory allows program code tobe o tines and the contents of the Loop
modified for debug and/or field upgrades. Counter inside nested loops. When the stack
The Program Memory is easily programmed g fy, the STKF condition becomes true, and
usm%}he WSI MagicPro™ (Memory and an interrupt (INT7) will occur. The interrupt
PSD™ Programmer). service routine will overwrite the top of the
Only sixteen Program Memory locations are stack.
resgwed. The re§t of. the 1024 locations are Popping from an empty stack produces the
available for applications. previous top of stack value; pushing on a full
Program memory is segmented as follows: stack overwrites the top of the stack.
Address Function Program Counter
000H Reset pointer program The 10-bit Program Counter (PC) generates
to here sequential addressing to the 1K word Pro-
007 . gram Memory. Upon .reset. the PC is loaded
000H-007H Uggr D ef.' ned : with a 000H. From this point the value of the
Initialization Routine .)
Program Counter is determined by program
008H-00FH Interrupt Vector execution or interrupts.
Locations . . .
i Any JUMP or Case instruction that is exe-
010H-3FFH User-Defined cuted loads the Program Counter with the
Application Programs destination address. CALL instructions or
Upon receiving a reset, the Program Counter interrupts cause PC + 1 to be pushed onto
is forced to address 000H. This location may the stack. The RETURN instruction loads the
contain a jump or call which branches to an Program Counter from the stack with the
initialization routine. Alternatively, the first value of the return address. This value may
eight locations of memory may be used as an have previously been placed on the stack by
initialization/configuration routine. a CALL or interrupt.
Security The PC can also be loaded from the Com-
User programs may be protected by setting a mand/Data FIFO causing program execution
security bit during EPROM programming. Loogammence at an address provided by the
Figure 10.
Parallel ' '
Operations ' '
: Part of Control Section :
Program
Program Memory
Counter 1K x 64K
EPROM
20 64
Instruction { Output CPU
Fetch Control | Instruction
16
28
To th
00[5 15] ——>cpU" 1738 10
2-76 WAFERSCALE INTEGRATION, INC.

PAC1000

Control Section
(Con’t)

Loop Counter
The Loop Counter (LC) has two functions:

1 10-bit down counter that supports the
LOOP instruction.

3 Branch Register that can be loaded from
the CPU Register File or Program
Memory and used as an additional
source of branching to Program Memory.

The LC can be loaded with values up to
1023. Loop initialization code places a value
in LC. Loop termination code tests the
counter for a zero value and then decrements
LC. The loop count can be a constant, or it
can be computed at execution time and
loaded into LC from the CPU. The LC
register can also be used as a CALL or
JUMP execution vector. The content of the
LC is automatically saved on (or retrieved
from) the Stack when the program enters (or
leaves) a nested loop.

A loop count will be loaded into the LC when
a FOR instruction is encountered. This count
can be a fixed value or it can be calculated
and loaded from the CPU. The ENDFOR
instruction will test the Loop Counter for a
zero value. If this condition is not met, then
the LC will be decremented by one. The
program loop will continue until the count
value equals zero. In a nested loop, the FOR
instruction will load a new value to the LC
and push the previous value to the stack.

Debug Capabilities

The PAC1000 provides breakpoint and single
step capabilities for debugging application
programs.

Breakpoint Register

The Breakpoint Register (BR) is a 10-bit
register used for real time debug of the
PAC1000 application program.

The Breakpoint Register can be loaded from
one of two sources, either a constant value
specified in the Program Memory or a calcu-
lated value loaded from the CPU. When the
Program Memory address matches the con-
tents of the Breakpoint Register an interrupt
(INT 6) occurs. A service routine should exist
in Program Memory which then performs the
required procedure.

Single Step

Single step is a debugging mode in which the
currently-executing program is interrupted by
interrupt 6 after the execution of every
instruction. The interrupt 6 service routine
should reside in Program Memory.

Bit 8 in the Mask Register determines
whether the PAC1000 is in a breakpoint
mode (mask-bit 8 equals 0) or in a single step
mode (mask-bit 8 equals 1).

Both breakpoint and single step use interrupt
6. The interrupt 6 service routine will typically
dump the contents of the PAC1000 internal
registers into external SRAM devices for ex-
amination by the user.

Condition Codes

The Condition Code (CC) logic operates on
21 individual program test conditions. Each
condition can be tested for true or not true.
The PAC1000 can also test up to four
conditions simultaneously. For this feature
refer to the section titled Case Logic.

WAFERSCALE INTEGRATION, INC. 277

PAC1000

Control Section
(Con’t)

User-Specified Conditions

User-Specified Conditions are treated in the
same manner as internally generated test
conditions. CC0—CC7 should be connected
directly to the corresponding PAC1000 input
pins. These signals must satisfy the required
setup time to be serviced in the next cycle.

CPU Flags

CPU flags are internally generated. They
reflect the status of the previous CPU arith-
metic operation. These signals are internally
latched and are valid only for one instruction
(the instruction following their generation).
The flags for arithmetic operations are
defined as follows:

Zero (Z)—The result of the previous CPU
operation is zero (Z=1).

Carry (CY)—The result of the previous CPU
operation generated a carry (addition) or
borrow (subtraction) (CY=1).

Overflow (O)—The previous two’s comple-
ment CPU operation generated an
overflow (O=1).

Sign (S)—The most significant bit of the
result of the previous CPU operation is
negative (S=1).

FIFO Flags

FIFO flags allow the user to synchronize and
monitor the operations that are performed on
the FIFO by the host or by user’s program.

Upon reset the FIFO flags are cleared,
signifying an empty state. The meaning of the
flags are as follows:

FIFO Output Ready (FIOR)—There is at least
one word in the FIFO (FIOR=1).

FIFO Input Ready (FIIR)—FIFO is not full
(FIIR=1). This flag can also be connected
to the host through 1/07.

FIFO Command/Data (FICD)—This flag
indicates if the contents of the FIFO is a
command or a data. This flag is gener-
ated directly from HAD5 (FICD=1 com-
mand, FICD=0 data).

FIFO Exception (FIXP)—This flag indicates
that one of two events occurred: (a) FIFO
data has been read as a command, or
(b) a command has been read as data.

Stack-Full Flag

STACK FULL flag (STKF=1) indicates that
the stack is 15 levels full. This condition will
also generate an interrupt (INT7) if not
masked.

Interrupt Flag

INTERRUPT flag (INTR =1) indicates that
there is a masked interrupt pending. This flag
is cleared when the interrupt is cleared.

Data Register Read Flag

DATA REGISTER READ flag (DOR) is a
handshake flag between the host and the
PAC1000, accessible only to the PAC1000.
The flag is reset (DOR=0) when the
PAC1000 writes into the Data Output Regis-
ter. The flag is set (DOR=1) after the host
has performed a read on the Data Output
Register.

Counter Flag

Counter flags reflect the status of their
respective counters. The PAC1000 utilizes
two counters; the Address (A) counter is a
16/22-bit auto-incrementing up counter; the

Table 3.
Condition-Code
Logic

Test Group Source
User-Specified External

CPU Internal

FIFO Internal
Counters Internal

Stack Internal
Interrupt External/Internal
Data register read Internal

Conditions and Flags
CcCco-CC7

Carry (CY), Zero (Z), Overflow (0),
Sign (S)

FIFO Command/Data (FICD), FIFO Output
Ready (FIOR), FIFO Input Ready (FIIR),
FIFO Exception (FIXP)

Address Counter Ones (ACO), Block
Counter Zero (BCZ)

Stack Full (STKF)
Interrupt (INTR) is pending
Data Output Register(DOR) has been read

2-78 WAFERSCALE INTEGRATION, INC.

PAC1000

Control Section Block (B) counter is an auto-decrementing Case Group 3 (CG3):
(Con’t) 16-bit down counter. The counters’ clock INTR—Interrupt
ook Sgnal. Each counter can be ndvidualy G2 B Counter Zeo
. I V|
enabled or disabled. When disabled, the FIOR—FIFO output Ready
output retains the last count. The counter FICD—FIFO Command/Data
flags are defined as follows: (The FIXP, ACO, STKF, FlIR, and DOR
ACO—A Counter Ones. set when the A condition codes do not fall into any of the four
counter has reached the value FFFFH, in ~ C@se groups.)
the 16-bit mode, or the value 3FFFFFH Priority Case Instructions
in the 22-bit mode. Priority Case instructions operate on the four
BCZ—B Counter Zero, set when the B internal and the four external interrupt inputs.
counter has reached the value 0000H. In this mode of operation, interrupts are
Case Logic treated as prioritized test conditions and the
. priority encoder is used to generate a branch
THE PAC1000 hardware |m.p|en.1ents two to the highest priority condition. The branch
basic types of Case instructions: Case and address is located in one of the nine memory
Priority Case. locations following the Priority Case instruc-
Case Instructions tion. Priorities in this mode of operation are
Case instructions operate on any one of four ~ the same as in the Interrupt mode of opera-
different Case groups. Each Case group tion. Once a Priority Case instruction is
consists of a combination of four test condi- ~ executed, the occurrence of a higher priority
tions which can be tested in a single cycle. In condition will not affect program execution
that same cycle the PAC1000 will branch to until another Priority Case instruction is
one of the addresses contained in the sixteen ~ €xecuted. For a Priority Case instruction to
memory locations following the instruction, be executed, MODEO of the Mask Register
depending on the status of the four inputs to ~ Must be equal to zero (MODEOQ=0).
the Case group being tested. Interrupt Logic
There are four Case Groups (sets of Case The Interrupt Logic accepts eight inputs, four
Conditions): of them are generated externally and four are
Case Group 0 (CGO): CCO-CC3. dedicated for internal conditions. The four
) external, user defined, inputs (INTO-INT3)
Case Group 1 (CG1): CC4-CC7. are connected to pins INTO, INT1, INT2, and
Case Group 2 (CG2): INT3. These are positive, rising-edge-
Z—Zero triggered signals that have a maximum
O—Overflow latency of two cycles. Each interrupt has a
S—Sian reserved area in memory that should contain
9 a branch to an interrupt service routine.
CY—Carry
Table 4.
Interrupt Interrupt Priority Effect Trigger Condition Reserved Address
Assignments INT7 Highest Internal FIXP+ACO+STKF+FIIR 00FH
INT6 Internal BRKPT 00EH
INT5 Internal FIOR 00DH
INT4 Internal Software Interrupt (SWI) 00CH
INT3 External INT3 00BH
INT2 External INT2 00AH
INTH External INT1 009H
INTO Lowest External INTO 008H

WAFERSCALE INTEGRATION, INC. 279

PAC1000

Control Section Clearing a serviced interrupt is performed When the PAC1000 is reset,the Mask Regis-
(Con’t) automatically. When the interrupt is serviced, ter will mask all interrupts and the Mode
the internally generated vector is decoded to Register will select the non-interrupt mode.
clear the serviced interrupt. In addition, the To select the interrupt mode the MODEQ bit
user can clear any pending interrupt by using (see Configuration Register section in this
the Clear Interrupt Instruction (CLI). document) should be set to 1 (MODEO=1).
Interrupt Mask Register Maska is used to select INT6 to be either a
The Interrupt Mask Register, shown in Figure ~ Single-step interrupt (when Mask8=1) or a
11, allows individual interrupts to be masked. ~ breakpoint interrupt (when Mask8=0) .See
Setting a Mask Register bitto a 1 masks the the section on Debug Capabilities for further
associated interrupt. To unmask an interrupt, ~ details.
the appropriate Mask Register bit must be
reset to 0.
Table 5.
Interrupt Interrupt Triggered By
Definitions INT7' FIFO Exception (FIXP)
Address Counter contains all Ones (ACO)
Stack Full (STKF)
FIFO Full (Not FIFO Input Ready, FIIR)
INT62 Breakpoint or Single Step occurrence
INT5 FIFO Output Ready (FIOR)
INT4 Always pending; triggers when unmasked by program execution
INT3 User-defined
INT2 User-defined
INTH1 User-defined
INTO User-defined
Notes:
1. The INT7 interrupt handler checks the source of the interrupt by testing the condition code.
2. See Interrupt Mask Register, Mask8.
Figure 11.
Interrupt Mask MSB LSB
Register
A L 1 L Il Il Il L
Mask8 — L Mask0
Mask7 Mask1
Mask6é Mask2
Mask5 Mask3
Mask4
Status After Reset
[i Il L L L L L Il
0o— L1
{ — 1
1 1
1 1
1 1738 11
2-80 WAFERSCALE INTEGRATION, INC.

PAC1000

Control Section Output Control OUTCNTL Operation places this value on the
(Con’t) The Output Control bus (OUTCNTL) consists ~ Output Control bus. The OUTCNTL Opera-
of 16 latched Output Control signals. These ~tion can be performed in parallel with any
signals can be changed on a clock to clock other PAC1000 instructions.
basis. For every Program Memory location The OUTCNTL bus can be used to control
there is a dedicated field which specifies the external events on a clock to clock basis.
value of the Output Control bus. The
Counters The PAC1000 contains a 16 or 22-bit Ad- until the counter is loaded with a new value.
dress Counter and a 16-bit Block Counter. The counter will continue to count until
Each of these counters can change counton disabled. ACO is a condition code and a
a clock to clock basis or can be internally or member of a Case Group; see the Control
externally enabled or disabled on a clock to Section description for more details. ACO can
clock basis. These counters are in additionto also generate an internal interrupt 7, if
the Loop and Program Counters of the enabled.
Control Section. In the 16-bit mode, the counter outputs (ACH)
Address Counter are available through the ADD bus. The
The Address Counter (AC), shown in Figure ~ count is gated to the ADD bus by setting the
12, is a 16- or 22-bit ascending counter that ASEL bit (CTRL9) of the Control Register.
can be loaded or read by the CPU and In the 22-bit mode, the higher 16 bits (ACH)
enabled/disabled with the ACEN bit of the are available through the ADD bus and the
Control Register. (This control is also avail- six low order bits (ACL) are available through
able externally through the 1/01 pin; see I/0 the Host Address (HAD) bus. These low
and Special Functions). While enabled, the order bits are multiplexed with the host
counter will increment by one every rising address lines. The address lines from the
edge of the clock. host which drives the HAD bus must be
The ACO flag indicates that the value of the Placed in the high impedance state before the
counter is all ones. This flag stays latched lower 6-bits (ACL) of the Address Counter
can be read.
Figl"'e 12. Internal Bus
Address and .
Block Counter
16 16 16 16 16 6
BC ACH ACL
i Counter Swap IACEN | Address | Address | acgop
———={ Count Count |&——
High Low
16 AOR
AIR
L “Somt °
A‘,’:gﬁfs Fle;lgter v
Register to HAD in
< Host Interface
AIREN
MUX -——
ASEL

ADD[0.15]

1738 12

WAFERSCALE INTEGRATION, INC. 281

PAC1000

Counters
(Con’t)

Selecting the 16- or 22-bit count mode is
performed by setting or resetting the ACS22
bit in the 1/0 Configuration Register.

The address Output Register is an alternate
source of address outputs; it is selected by
resetting the ASEL bit of the Control Regis-
ter. In this mode the CPU can be used to
provide address generation and the Address
Counter can be used as an event counter.

Block Counter

The Block Counter (BC) is a 16-bit down

counter. It is enabled by the BCEN bit of the
Control Register. It is useful as a counter for
DMA transfers. The BCEN signal is (option-

ally) available externally through the /00 bit
(see I/0 and Special Functions). While
enabled, the counter will decrement by one
every rising edge of the clock. The BCZ flag
indicates that the counter reached the zero
value. After the occurrence of an all Os
condition the Block Counter will continue
down counting until disabled. The flag is
latched and can be cleared by loading a new
value into the Block Counter. BCZ is a
condition code and a member of a Case
Group; see the Control Section description
for more details.

Both counters may be read without disabling
the count operation and loaded via the CPU.

Central
Processing Unit

The CPU, shown in Figure 13, performs
16-bit operations in a single clock cycle. It
contains 33 general purpose registers
(RO...R31, and Q). The Q register can be
used in conjunction with any of the RO...R31
registers to perform double precision shift

operations. The main building blocks are the
register bank (RO0...R31), Q register, ALU,
Y-bus devices, and D-bus devices. The
register bank supplies up to two 16-bit
registers, one of which is always the destina-
tion register.

2-82 WAFERSCALE INTEGRATION, INC.

PAC1000

Figure 13.
CPU Block Mo ST T TS ST TS T TS ST T T T TS T T TS TS ST T TS T ST ST ST T y
z | I
Diagram | I
| I
: ZFlag [}] | Elo | § gle 'l
I ag ZFlag s@l8L | |s ; = |
| _CYFlag CY Flag @ 10 TlT P10 o IN |
[r— | P—— |
| Sign Flag Sign Flag | MUX] |
! ‘U M| pMSB RLSB |M[¢ 0" L !
| e u R Shifter MIED 7 !
— X QmsB !
: RLSB RMSB e :
| QLSB, QMsB |
| _SDATM SDATL |
AT PRl .
I - L 3 |
[s | |
5 »
| b o |
| A Qe [
[
: IN (B) p= :
| " F _ QLsB |
| CLK eglflter L |
| (R31/R0) |
| 7 |
| A B |
| | | MUX] |
1 o |
| ‘ . . 1 2o o z 2o |
! [MUX SEI12LLlek e !
| Gl lglrlela I3 IN |
1 |
| e
I M 0 |
| “1” |
| Status v |
X Register, X | Cout CPU \
Condition
! Codes !
i !
| i
I 1
______________________________ a
1 r 3
| | [Te) | Host
| A A | Bus | | Interface
I | MUX | !
Lofo = —— E I0R 1 | IZ Lc J—-:-bcmml DOR
r—— L R 4
>
E AOR | Y Bus L ‘ !
ACL | ACH 4 b BC |
b
Bus
HAD ADD
—>
1 D Bus Bus ™ y o= Y
4 T f 4 # Constants
M "
r FIFO 1 |; DIR I b AIR —I k IR | ! Program !
! Memory |
| |
r T T ? | Part of |
Host Host ADD /10 | Control Section |
Interface Interface Bus Bus L _
—————— 1738 13
WAFERSCALE INTEGRATION, INC. 2-83

PAC1000

Central . . The ALU operates on up to two external latched carry-out (adequate for multiple
Processing Unit operands that are selected by its input MUX. precision operations).
(Con’t) In every instruction, 1 of the 10 D-bus de- The ALU's output or a selected register can
vices (AOR, SWAP, ACL, ACH, BC, FIFO, be loaded into one of the seven Y-bus
DIR, AIR, lIR, and _Program Store) or a . devices (IOR, AOR, LC, DOR, ACL, ACH, or
member of the register bank or the Q register () gery instruction cycle. This can happen
outputs, can be selected as an operand in parallel with the feedback path from the
source to the ALU. The possibilities are ALU’s output that is directed either to the Q
shown in Figure 14. During ALU operations, egiter or to the destination register of the
three options can be selected to provide the register bank.
carry-in (Cin) input: 0, 1, or the previous
Figure 14.
CPU Sources and Source Only Source or Destination Destination Only
Destinations FIFO DOR
RO thru R31
DIR LC
Q
AR
BC
SWPV
AOR IOR
<constant>
ACH
IR
ACL
1738 14
Table 6.
CPU Operand Mnemonic Description
Mnemonics ACH or ACH/ACL 16- or 22-bit Auto-incrementing Counter, or General Purpose
Registers
AIR Address Input Register
AOR Address Output Register
BC Block Counter (16-bit auto-decrementing), or General Purpose
Register
<constant> Constant values in Program Storage
DIR Data Input Register
DOR Data Output Register
FIFO Input Data from FIFO
IR 1/O Input Register
IOR 1/0 Output Register
LC Program Loop Counter
Q 16-bit CPU Register
RO-R31 16-bit CPU Registers
SWPV Byte Swap version of AOR

284 WAFERSCALE INTEGRATION, INC.

PAC1000

Central) CPU operations can be performed on one, either left or right.
Processing Unit two or three operands. Each operation is per- Thg CPU can perform the following shift
(Con’t) formed in a single clock cycle. In two- or operations:
three-operand instructions, one of the oper- . . . "
ands must be a CPU internal register Q Single-precision, left or right, within a
(RO...R31, or Q). grerga;ral-purpose register (R0...R31,
CPU operations are performed independently : L .
of operations in the counters, Host Interface, = Double-precision, left or right, between
Output Control, and Program Control. an RO...R31 register and the Q register.
Arithmetic Operations The LSB and MSB of the general-purpose
The CPU can perform the following arithme- ﬁg;ﬁﬁ;g @ each fed by an eight-to-one
tic operations: ’
a Z dditi The sources and destinations for shift opera-
ftion tion are given below:
Subtraction Shift Right
3 Increment Zero Flag (2)
O Decrement Carry Flag (CY)
2 Compare Sign Flag (S)
Logic Operations Binary 0 (0)
The CPU can perform the following logic Binary 1 (1)
operations:
‘ Dp AND Least-significant bit of this register (RLSB)
O OR Least-significant bit of the Q register (QLSB)
QO Invert Serial I/O port (SDATM)
O Exclusive OR ;Z’rfé L;Z 2
1 Exclusive NOR Carr FI:)
Shift Operations Si nyFIa g(s)
Single shift operations, shown in Figure 15, .g 9
can occur either to the left or to the right, with ~ Binary 0 (0)
or without the Q register. Shift instructions Binary 1 (1)
igi‘:gpgﬁﬁ]‘;”:ggfsgfs‘ are shifted into the vyt significant bit of this register (RMSB)
Al shift operations can be executed in the Mos.t-5|gn|f|cant bit of the Q register (QMSB)
same clock cycle as an arithmetic or logic op- ~ Serial I/O port (SDATL)
eration. The arithmetic or logic operation is
executed first; the result is shifted and then
stored in the register file. The shift can be
Figure 15.
Shift Operations

8 Ix| 1 8
ol
|

1
1 1

MUX

@
| MUX |
[MUX |

]

Shift Single Precision Left/Right

Shift Double Precision Left/Right

Shift Double Precision Left/Right
1738 15

WAFERSCALE INTEGRATION, INC. 2.85

PAC1000

Central Rotate Operations Multiple Precision Operations
Processing Unit The CPU can perform the following rotate op- The carry-out in each instruction can be used
(Con’t) erations, as shown in Figure 16: in the next instruction for multiple precision
O Single-precision, left or right, within a operations (e.g., ADDC). This feature en-
general-purpose register (RO...R31, ables the user to implement complex arith-
or Q). metic operations such as division or multipli-
ion i | clock cycles.
3 Double-precision, left or right, between cation in several clock cy
an RO0...R31 register and the Q register.
Figure 16.
Rotate Operations | I
Single Precision Rotate Right/Left Double Precision Rotate Right/Left 1738 16
I/0 and Special The I/O bus, shown in Figure 17, consists of function control is shown in the accompany-
Functions eight lines which can be individually pro- ing table.
grammed as inputs or outputs. These lines Once a Special Function has been enabled,
can also be programmed to perform Special e corresponding internal control function is
Functions. The functions of these pins are automatically disabled. Conversely, when a
defined by the Mode Register and /O Con- - gpecia) Function is disabled, control of the
figuration Register (see Configuration Regis- orresponding internal control function is
ter Section). The /O and Special Functions rgtyrned to the Control Register (see Con-
map according to the table. The /O lines figuration Register). Because the Inputs in
must first be configured as inputs or outpuls - the /O Register are clocked on each cycle,
via the /O Configuration Register; the the status of the special function can also be
Special Function option can then be enabled 044 10 the CPU.
via the Mode Register. Individual special
2-86 WAFERSCALE INTEGRATION, INC.

PAC1000

Figure 17. P
1/0 and Special
Function Bus 107
S
A
Q B FIIR
MUX
I0CG7
MUX
| —
/06 8 Q IADOE
{ CNTL4 A
(ADOE) s
MODE 7
10CG6 [——1)
MUX|
V05 B ol FADGE
" CNTL3 A
2 (HADOE) S
L
-]
9 MODE 6
a
I0CG5 1—‘) ®
MUX|
1104 B ol THDOE
CNTL2 N
(HDOE) s
g
2 IR é\
2 =D o« MODE 5
10CG4 &
@©
)
SDATM _
QMsB
CLK
10CG3
o2 MODE 4
y T SDATL
-]
ol <
Q QLSB
Ala
MUX
10CG2
o1 B MUX IACEN
QF——»
CNTLO A
(ACEN) S
MODE 3
I0CG1
MUX]
/00 B
al IBCEN
p ok CNTL1 _,| A
(BCEN) S
Q
IOR ‘£
MODE 2
I0CGO
LOWER 8-BIT CPU
Y BUS
1738 17

WAFERSCALE INTEGRATION, INC. 2-87

PAC1000

Configuration The Configuration Registers allow the userto Control Register
Registers control and configure different operating The Control Register, shown in Figure 18,
modes of the PAC1000. The three 10-bit provides for internal control of key functions
Configuration Registers are the Control within the PAC1000 . Several of these
Register, 1/0 Configuration Register, and functions can alternatively be controlled
Mode Register. Each register has an associ- externally through the 1/0 bus (see I/O and
ated instruction which allows individual Special Functions). The Control Register is
register bits to be modified. modified on the falling edge of the clock.
Table 7.
/0 Pins and Pin Special Function Direction Description
Special Functions 1107 FIR output FIFO Input Ready. FIFO not full.
/06 ADOE input Address Output Enable
1/05 HADOE input Host Address Output Enable
1/04 HDOE input Host Data Output Enable
/03 QMSB bidirectional Q Register MSB
1102 QLSB bidirectional Q Register LSB
1/01 ACEN input Address Counter Enable
/00 BCEN input Block Counter Enable
Table 8.
Special-Function Special Function ~ Pin Name 1/0 Configuration Mode
Control FIIR 1107 IOCG7=1 (output) MODE8=1
ADOE 1106 I0CG6=0 (input) MODE7=1
HADOE /05 I0CG5=0 (input) MODE6=1
HDOE 1/04 10CG4=0 (input) MODE5=1
QMSB /03 I0CG3=1 (output)
10CG3=0 (input) MODE4=1
QLsB 1102 I0CG2=1 (output)
I0CG2=0 (input) MODE4=1
ACEN 1101 10CG1=0 (input) MODES3 =1
BCEN 1100 I0CGO=0 (input) MODE2 =1

2-88 WAFERSCALE INTEGRATION, INC.

PAC1000

Configuration ASEL (CTRL9)—Address Select. Selects the ~ ADOE (CTRL4)—Address Output Enable.
Registers source that will write to the Address bus: Selects direction of Address bus (ADD)
(Con’t) 1= Address Counter. for next clock cycle:
0= Address Output Register (AOR). 1= Output (see ASEL).
AIREN (CTRL8)—Address Input Register 0= Input (see AIREN).
Enable. Enables and disables writing to HADOE (CTRL3)—Host Address Output
the Address Input Register from the ADD Enable. Selects direction of Host Address
Port: (HAD) bus for next clock cycle:
1= Enable writing to Address Input 1= Output (driven from ACL Register).
Register (AIR). 0= Input (into the FIFO).
0= Disable writing to Address Input HDOE (CTRL2)—Host Data Output Enable.
Register (AIR). Selects Direction of Host Data (HD) bus
DIREN (CTRL7)—Data Input Register for next clock cycle:
Enable. Enables and disables writing to 1= Output (See HDSELO and HDSELA1).
the Data Input Register (DIR) from the
HD Port: 0= Input (See DIREN).
1= Enable writing to Data Input Register ~ BCEN (CTRL1)—Block Counter Enable.
(DIR). 9 P e Enables and disables Block Counter:
0= Disable writing to Data Input Register 1= Enable Counting on next rising clock
(DIR). edge.
HDSEL1 (CTRL6) and HDSELO (CTRL5)— 0= Disable Counting on next rising edge.
Host Data Select. Select the source tobe ACEN (CTRLO)—Address Counter Enable.
connected to Host Data (HD) bus: Enables and disables Address Counter:
HDSEL1 HDSELO Selection 1= Enable Counting on next rising clock
(CTRL6) (CTRL5) edge.
0 0 FIFO— 0= Disable Counting on next rising clock
Peripheral edge.
Mode
0 1 Data Output
Register
1 0 Status
Register
1 1 Program
Counter
Figure 18.
Control Register MSB LSB

1 1 Il

1
CTRL9 (ASEL) —
CTRL8 (AIREN)
CTRL7 (DIREN)
CTRL6 (HDSEL1)

1

L CTRLO (ACEN)
CTRL1 (BCEN)
CTRL2 (HDOE)
CTRL3 (HADOE)

CTRL5 (HDSELO)

Note: After Reset, All Bits Are Cleared to Zero.

CTRL4 (ADOE)

1738 18

WAFERSCALE INTEGRATION, INC.

289

PAC1000

Configuration 1/0 Configuration Register I/05 (I0CG5)—Selects direction of I/05 pin:
Registers The /0 Configuration Register, shown in 1= Output.
(Con’t) Figure 19, controls the direction of the 0= Inout
individual lines of the I/O bus as well as con- = Input. o)
figuring the Address Counter. Each I/O pin 1/04 (I0CG4)—Selects direction of 1/04 pin:
can be configured independently to be a 1= Output.
general purpose input or output, or each can 0= Inout
serve a special function (see 1/O and Special = nput. o ‘
Function). The I/O Configuration Registeris /03 (IOCG3)—Selects direction of 1/03 pin:
also used to configure the Address Counter 1= Output.
as a 16-bit counter with a maximum count of 0= Inout
FFFFH or as a 22-bit counter with a maxi- = ‘nput. o]
mum count of 3FFFFFH. The I/O Configura- 1/02 (I0CG2)—Selects direction of 1/02 pin:
tion Register is modified on the falling edge 1= Output.
of the clock.
ACS22 (I0CG9)—Configures Add 0= Input.
onfigures Address - N -
Counter as a 22- or 16-bit counter: 1/01 (I0CG1)—Selects direction of /01 pin:
1= 22-bit counter. 1= Output.
0= 16-bit counter. 0= Input. o _
/07 (I0CG7)—Selects direction of /07 pin: /00 (I0CG0)—Selects direction of /00 pin:
1= Output. 1= Output.
0= Input. 0= Input.
1/06 (I0CG6)—Selects direction of 1/06 pin:
1= Output.
0= Input.
Figure 19.
/0 Configuration MSB LsB
Register 1
L L 1 1 1 1]
I0cCGo (ACS22) — L— 1ocGo (100)
IOCG8 (Reserved) IOCG1 (1/O1)
IOCG7 (/07) 10CG2 (1/02)
10CG6 (1/08) I0CG3 (1/03)
I0CG5 (//05) I10CG4 (1/04)

Note: After Reset, All Bits Are Cleared to Zero.

1738 19

2-90 WAFERSCALE INTEGRATION, INC.

PAC1000

Configuration Mode Register 1= 1/06 becomes input for the Address
Registers The Mode Register, shown in Figure 20, Output Enable (AOE).
(Con’t) allows the user to externally control and 0= /06 becomes general purpose 1/O
monitor key elements within the PAC1000 (1086).
which would (alternatively) be controlled -
internally through the Control Register. HAD;E;Z,ODEG) Host Address Output
Enabling a Special Function in the Mode ’)
Register disables the corresponding function 1= 1/O5 becomes input for Host Address
in the Control Register. The Special Function Output Enable (HADOE).
input pins are shared with the general 0= 1/0O5 becomes general purpose /O
purpose /O pins. The direction of the appro- (108).
priate pin must be set in the I/0O Configuration - .
Register prior to programming the Mode HDOE (MODE5)—Host Data Output Enable:
Register. 1= 1/0O4 becomes input for Host Data
The Mode Register can also be used to reset bus Output Enable HDOE).
the FIFO as well as program the interrupt 0= 1/04 becomes general purpose I/O
controller to generate either interrupts or (104).
Priority Test Conditions. See the discussion SIOEN (MODE4)—Serial I/O Enable:
on “Priority Case” in the Condtion Code 1= /O3 and /02 become MSB and LSB
’ ’ (respectively) of the CPU’s Q register
After Reset, all Mode Register bits equal (S10).
fzae"ri% T:(? 'rg??hzi?;tfr is modified on the 0= /03 and I/02 become general
. 9 gf e Mode R : 1o purpose /O ACEN(MODES3).
e use of the Mode Register an .
Configuration register for Special Functions ACEN (MODES)—-—Add'ress Counter Enable:
is shown in the Special Function Settings 1= 1/O1 becomes input for Address
table. Counter Enable (ACEN).
FIRST (MODES)—FIFO Reset. (If held high, 0= 1/O1 becomes general purpose I/O.
FIFO cannot receive information): BCEN (MODE2)—Block Counter Enable:
1= Initiate FIFO Reset (FIRST). 1= 1/00 becomes input for Block Counter
0= Complete FIFO Reset (FINRST). Enable (BCEN).
FIIR (MODE8)—FIFO Input Ready: 0= 1/0O0 becomes general purpose I/O.
1= 1/07 becomes output for the FIFO Reserved (MODE1)
Input Ready (FIIR) flag. INTR (MODEO)—Interrupt/Priority-Case
0= 1/07 becomes general purpose 1/O Mode:
(107). 1= Select Interrupt mode (INTR).
ADOE (MODE7)—Address Output Enable: 0= Selects Priority Case mode (PCC).
Figure 20.
Mode Register MSB LSB

il

MODE9 (FIRST) —
MODE8 (FIIR)
MODE7 (ADOE)
MODES (HADOE)

MODE5 (HDOE)

L MODEO (INTR)
MODE1 (Reserved)
MODE2 (BCEN)
MODE3 (ACEN)

Note: After Reset, All Bits Are Cleared to Zero.

MODE4 (SIOEN)

1738 20

WAFERSCALE INTEGRATION, INC.

291

PAC1000

State Following Whenever the PAC1000 RESET input is tables describe the PAC1000 signal and
Reset driven low for at least two processor clocks, internal register states following reset.
the chip goes through reset. The next two
Table 9.
Special Function Mode Bit 1/0 Configuration Bit Function
Settings MODES8=1 IOCG7=1 FIIR flag output on 1/07
MODE7=1 10CG6=0 ADOE provided by 1/06
MODE®6=1 10CG5=0 HADOE provided by /05
MODE5=1 10CG4=0 HDOE provided by 1/04
MODE4=1 10CG3=1 MSB of Q register output on 1/03
MODE4=1 10CG3=0 1/03 can be shifted into MSB of Q register
or destination register
MODE4=1 10CG2=1 LSB of Q register output on /02
MODE4=1 10CG2=0 1/02 can be shifted into LSB of Q register
or destination register
MODE3=1 I0CG1=0 ACEN provided by /01
MODE2=1 I0CGO0=0 BCEN provided by 1/00
Table 10.
Signal States Signal Condition
Following Reset HAD[5:0] Input
HDI[15:0] Input
10[7:0] Input
ADD[15:0] Input
0OC[15:0] 0000H

2-92 WAFERSCALE INTEGRATION, INC.

PAC1000

Table 11.
Internal States Component Contents
Following Reset ACH Register

ACL Register

AOR Register

AIR Register

DOR Register

DIR Register

IOR Register

IIR Register

STATUS Register

1/0 Configuration Register
CONTROL Register

Breakpoint Register

Mode Register

PC Register (Program Counter)
MASK Register 011111111B
BC Register FFFFH
R31-R0 Registers Unknown

Q Register Unknown
LC Register Unknown
FIFO Locations Unknown
FIFO Flags Empty

O O O O O OO0 O o O o o o o

WAFERSCALE INTEGRATION, INC. 293

PAC1000

Electrical and Timing

Specifications

Table 12.

Absolute Storage Temperature -65°C to +150°C

Maximum Ratings Voltage to any pin with respect to GND -0.6V to +7V
V., with respect to GND —-0.6 Vio +14.0V
ESD Protection >2000V

Stresses above those listed here may cause
permanent damage to the device. This is a
stress rating only and functional operation of
the device at these or any other conditions
above those indicated in the operational

sections of this specification is not implied.
Exposure to absolute maximum rating
conditions for extended periods of time may
affect device reliability.

Table 13.
Operating Range Range Temperature Ve
Commercial 0°Cto +70°C +5V £ 5%
Industrial —40°C to +85°C +5V £ 10%
Military -55°C to +125°C +5V £ 10%
Table 14.
1[4 Parameter Symbol Test Conditions Min Max Units
Characteristics Output Low Voltage v, l,,=8 mA 04 V
Over operating range .
with V=V Output High Voltage Vou loy=—4 MA 24 \
we V.. Standby
Current CMOS lsss note 1 65 mA
V¢ Standby
Current TTL lsgo note 2 65 mA
Active Current (CMOS) lees notes 1, 3
—Commercial 130 mA
—Military 150 mA
Active Current (TTL) loca notes 2, 3
—Commercial 160 mA
—Military 180 mA
Ve Supply Current lop Vep=Vee 100 pA
V. Read Voltage Vie notes 1, 2 V04 Ve V
Input Load Current I V,=5.5V
or GND -10 10 A
Output Leakage Current o Vour=5.5V
or GND -10 10 uA
Notes:
1. CMOS inputs: GND £ 0.3V or V., + 0.3V.
2. TTLinputs: V, <0.8V, V> 2.0V.
3. Active current is an AC test and uses AC timing levels.
2-94 WAFERSCALE INTEGRATION, INC.

PAC1000

Table 15.
AC Timing Levels

Inputs: 0 to 3V Reference 1.5V

Outputs: 0.4t0 2.4V

Table 16.
AC
Characteristics

Parameter

CLOCK CYCLE

Cycle Time

Clock Pulse Width High
Clock Pulse Width Low

HOST READ CYCLE
Read Cycle Time
Address to Data Valid
CS to Data Valid

CS to tristate

HOST WRITE CYCLE

Pulse width of CS and
WR LOW

Pulse width of CS and
WR High

Data setup to WR
Data hold to WR

RESET CYCLE
RESET setup

RESET to tristate of
ADD, HAD, HD, I/0

RESET clocked to
OUTCNTL low

ADDRESS TIMING
Address/Data setup
Address/Data hold

Clocked Counter to
Address output

Clocked Address Register
to Address

ADOE enable to data valid

HADOE enable to
data valid

Address output disable

Symbol

1:ROL

tSADD

HADD
tCADD

RADD

tADOE

HADOE

CKZ

12MHz 1

Min

84
26
26

50

20

15
10
10

10

25

30

10

Max

45
45
45

43

43
50

50
25

16MHz"

Min

62.5
24
24

40

15

10
10
10

10

25

30

20

Max

35
35
35

35

35
40

40

20MHz?

Min

50
21
21

30

15

10

20

25

10

Max

30
30
30

30

30
30

30
16

WAFERSCALE INTEGRATION, INC.

2-95

PAC1000

Table 16.
AC Parameter Symbol 12MHz 16MHz ' 20MHz?
Characteristics Min Max Min Max Min Max
(Con’t) DATA AND I/0 TIMING
Clock to I/O Output Valid ~ t,, 35 30 30
Clock to HD Output tekip 35 30 30
10 data setup tsio 10 10 10
10 data hold tho 8 8 5
HD data setup oo 10 10 10
HD data hold tno 8 8 5
HDOE enable to data valid t, . 50 40 30
Bus Output Disable toxz 0 25 0 20 0 16
TEST AND INTERRUPT TIMING ,
Condition Code setup teoe 60 50 40
Condition Code hold tice 0 0 0
Clock to OUTCNTL Valid t, 33 33 25
Minimum interrupt pulse
for acceptance tewa 15 10 10
SPECIAL FUNCTION TIMING (1/0 Bus)
SQ15 setup tssais 15 10 10
SQ15 hold HSQ15 0 0 0
SQO setup tssao 15 10 10
SQO hold tusao 0 0 0
Clock to QO output tekao 35 30 30
Clock to Q15 output tekats 35 30 30
Address Counter
enable setup tsacen 20 15 10
Address Counter
enable hold thacen 10 5 5
Block Counter enable setup tg;.¢y, 20 15 10
Block Counter enable hold t,5.¢, 10 5 5
External output enable to
data valid tsry 30 25 20
External output enable to
high impedance terz 30 25 20
Notes:

1. Operating temperature range: Commercial, Industrial, Military
2. Operating temperature range: Commercial

2-96 WAFERSCALE INTEGRATION, INC.

PAC1000

Figure 21.
Clock Cycle e tock —
Timing oK | | | | | [
te-tokH Sle-tok, »
1738 21
Figure 22.
Host Read Cycle - the »
Timing HAD Address Valid *
tacc
cs
le—tcs —» e tosz —»
RD
HD (Data Valid
Note tgg Is referenced from RD=0 and CS=0
1738 22
Figure 23.
Host Write FIFO tsp — tHp
Cycle Timing HAD *7 SE
o NV L/
le-tpywH
tpwL
WA / /
1738 23
Figure 24.
Reset Cycle cLOCK | | | I | I l | | |
Timing
tsr [+ ty
RESET
Aon o etz
HAD
B X X [—
—» |e— 'HL
OUTCNTL X X /
1738 24

WAFERSCALE INTEGRATION, INC. 2.97

PAC1000

Figure 25.
Data and I/0 Switch bus from New Data or Next Data Output to High
- Input to Output Counter Output or Count Value Impedance
Timing (Note 1) (Note)
CLOCK —l | | | l |
[thHio
tsio l— —> tekio tokz
110 Input 1/0 Output Xﬁ 1/0 Output X 1/O Output
tsHD e —» tekHp le—toxz
HD Inout Host Data Host Data Host Data
npu Output Output Output
& thrp
thooe
Notes 1 A bus directional change (input-to-output or output-to-input)
takes place on the falling edge of the clock
2 New data or count value Is latched on the rising edge of the clock
1738 25
Figure 26.

Address Timing

Switch bus from New Data or Next Data
Input to Output Counter Output or Count Value
(Note 2 & 3) (Note 4)

Output to High
Impedance

owox | [B

L[

le—tekz

tADOE ¥}
tsapD fe— —vl tcaDD tRADD
Register or Register or
ADD Input Counter Output >< Counter Output

Register or

Counter Output

—» tHapD L—

Counter Counter
HAD Output X Output X

Counter
Output

(Note 1)
tHADOE —¥|

Notes 1 The Host Address (HAD) bus Is used to output the lower six bits of the 22-bit counter

2.A bus directional change takes place on the falling edge of the clock (input-to-output or output-to-input)

3 Selection of the source to be output on a bus occurs on the falling edge
of the clock (1 e, counter or address register)
4.New data or count value is latched on the nsing edge of the clock

1738 26

2-98 WAFERSCALE INTEGRATION,

PAC1000

Figure 27.
Test and Interrupt cLock l_l I—] l_l l_l |—|
Timing
'scc! la—
cerrol * >(
—» le—thce
OUTCNTL X X X x
l<—'cov
INT j t
tipwa
Note 1 Since condition codes are not latched,
they should be stable tscc
prior to being tested 1738 27
Figure 28.
Special Function cLock I_'I | | rl I_] |
T’m"'g . thacen
ACEN tgggzz = T el
CKQO
BCEN —ltckars
thsqo
tusats
Qo
ats Valid Q0,Q15
tssao le—
t
ADOE s5Q15
HADOE
HDOE
ADD
HAD
:
1738 28

WAFERSCALE INTEGRATION, INC. 2-99

PAC1000

Pin Assignments

Figure 29.
88-Pin Ceramic
PGA Pin
Assignments

1 2 3 4 5 6 7 8 9 10 1 12 13
AO O O O O O O O O o O O a
V05 0C8 GND OC5 OC3 OC2 OCt INT3 INTI CC7 Vec CC4 CC3
B O 0O O O O O O O O O O O O &8
Y07 cC2 OC7 0OC6 OC4 /RESET OCO INT2 INTO CC6 CC5 CC1 CCO
c O O O O ¢
HD3 106 ADD15 ADD14
p O O O O p
103 104 ADD13 ADD12
E O O O O E
vo1 o2 ADD11 ADD10

o o O
F oo 13 N> ADDS |
G O O O
MR CK ADD7 ADD8
o O [¢]

Hom oo AGD5 ADDG
4 O O PAC1000 o 0Oy
oCt5 0OC14 ADD3 ADD4
K O [e] o) O kK
oC12 0C13 ADDO ADD2
L O O o L
GND OC10 HADS Ve
MmO O O O O O O O O O O O Om
0C9 OC11 HD2 HD4 HD6 HDB HD10 Voc HD14 HADO HAD1 HAD3 HAD4
N O O O O O O O O O O O O O N
HDO HD1 GND HD5 HD7 HD9 HD11 HD12 HD13 HD15 GND HAD2 ADD1
1 2 3 4 5 6 7 8 9 10 1 12 13
TOP (THROUGH PACKAGE) VIEW
13 12 1" 10 9 8 7 6 5 4 3 2 1
A O O O O O O O O O O O O O a
CC3 CC4 Vec CC7 INTT INT8 OC1 OC2 OC3 OC5 GND OC8 1O5
B O O O O o O O O O B
CCO CCi CC5 CC6 INTO INT2 OCO /RESET OC4 OCé OC7 CC2 1O7

[<e] O O ¢

C adb14 avDIS 106 HD3

p O O O O p
ADD12 ADD13 104 1103

E O O O O E
ADD10 ADD11 o2 o1

F O O O O F
ADD9 GND s 1100
o O o O

G Loos AvD7 o« mr @
o O o O

H 506 ADDS oo mp M

J O O o O 4
ADD4 ADD3 0C14 OC15

kK O O O O k
ADD2 ADDO oC13 0C12

L O O O O
Vec HADS 0C10 GND

MmO O O O O O O O O O O O Onm
HAD4 HAD3 HAD1 HADO HD14 Voc HD10 HD8 HD6 HD4 HD2 OC11 OC9

N O O O O O O O O O O O O O N
ADD1 HAD2 GND HD15 HD13 HD12 HD11 HD3 HD7 HD5 GND HD1 HDO
13 12 1" 10 9 8 7 6 5 4 3 2 1

BOTTOM VIEW

1738 29

2100 WAFERSCALE INTEGRATION, L

PAC1000 !
|
|
\

Table 17.

PGA Pin Name Pin Name Pin Name Pin

Assignments Cs F2 GND H2 1/00 Fi1
RD H1 GND L1 1101 E1
RESET B6 GND A3 1102 E2
WR G1 GND F12 1/103 D1
ADDO K12 GND N3 1104 D2
ADD1 N13 GND N11 /05 A1
ADD10 E13 HADO M10 1106 Cc2
ADD11 E12 HAD1 M11 1107 B1
ADD12 D13 HAD2 N12 INTO B9
ADD13 D12 HAD3 M12 INT1 A9
ADD14 C13 HAD4 M13 INT2 B8
ADD15 Cc12 HAD5 L12 INT3 A8
ADD2 K13 HDO N1 OCo B7
ADD3 J12 HD1 N2 OCH1 A7
ADD4 J13 HD10 M7 OC10 L2
ADD5 H12 HD11 N7 oC11 M2
ADD6 H13 HD12 N8 0oC12 K1
ADD7 G12 HD13 N9 0OC13 K2
ADD8 G13 HD14 M9 OC14 J2
ADD9 F13 HD15 N10 OC15 Ji
CCo B13 HD2 M3 0OC2 A6
CC1 B12 HD3 C1 OC3 A5
CC2 B2 HD4 M4 OC4 B5
CC3 A13 HD5 N4 OC5 A4
CC4 A12 HD6 M5 OCé6 B4
CC5 B11 HD7 N5 0oC7 B3
CCé B10 HD8 M6 0oCs8 A2
CcC7 A10 HD9 N6 0OC9 M1
CK G2 VCC A1

VCC L13
VCC M8

WAFERSCALE INTEGRATION, INC. 2101

PAC1000

=BT
T

2102 WAFERSCALE INTEGRATION, INC.

PAC1000

Table 18.

Plastic or Pin Name Pin Name Pin Name Pin Name

Ceramic Quad 1 PRD 26 HD11 51 ADD7 76 OC1

Flatpack = 2 GND 27 HDI12 52 ADDS 77 OC2

(Gullwing) Pin

Assignments 3 GND 28 VCC 53 ADDS9 78 RESET
4 0OCi5 29 VCC 54 GND 79 NIC
5 OCl4 30 HD13 55 GND 80 0OC3
6 0OCi2 31 HD14 56 ADD10 81 OC4
7 0OCi3 32 HD15 57 ADD11 82 0OC5
8 GND 33 HADO 58 ADD12 83 0OC6
9 GND 34 GND 59 ADD13 84 GND
10 0OC10 35 GND 60 ADD14 85 GND
11 0C9 36 HAD1 61 ADD15 86 OC7
12 0OC11 37 HAD2 62 CCO 87 0C8
13 NC 38 N/IC 63 CCt 88 CC2
14 HDO 39 HAD3 64 CC3 89 105
15 HD1 40 ADD1 65 CC4 90 107
16 HD2 41 HAD4 86 CC5 91 106
17 GND 42 HAD5 67 VCC 92 HD3
18 GND 43 VCC ‘ 68 VCC 93 104
19 HD4 44 VCC 69 CC6 94 103
20 HD5 45 ADDO 70 cC7 95 02
21 HD6 46 ADD2 71 INTO 96 101
22 HD7 47 ADD3 72 INT{ 97 TS
23 HD8 48 ADD4 73 INT2 98 100
24 HD9 49 ADD5 74 INT3 99 CK
25 HD10 50 ADD6 75 0CO 100 WR

WAFERSCALE INTEGRATION, INC. 2103

PAC1000

Instruction Set
Overview

The PAC1000 architecture can perform three
operations simultaneously in each instruction
cycle. The operations are specified in the
System Entry Language (PACSEL) using a
single statement. PACSEL instructions can
perform three operations:

1 Program Control (PROGCNTL)
o CPU
3 Output Control (OUTCNTL)

Each instruction is executed in a single cycle;
the three operations are executed in parallel.

The syntax of a PACSEL statement has a
label and three components:

[label:] PROGCNTL, CPU,
OUTCNTL;

The PROGCNTL component determines
program flow and determines the next
statement to be executed; the CPU compo-
nent determines which operation is to be
performed by the CPU; the OUTCNTL
component determines the state of the
control outputs.

A comma (,) is used to separate the instruc-
tions and a semi-colon marks the end of a
statement. In general, each statement is
executed in a single cycle.

In PACSEL statements, the PROGCNTL,
CPU, OUTCNTL components can come in
any order or any combination of Macro or
Assembler operators. That is, you may mix
Assembler operators among Macro opera-
tors. Tables at the end of this section sum-
marize the Macro and Assembler operators.

In some cases, the same mnemonic is used
to specify identical operations in both Macro
and Assembiler level.

You may:

0 Specify all the components in the same
statement in order to perform the opera-
tions in parallel:

PROGCNTL, CPU, OUTCNTL;

O Specify components one at a time:
CPU;

PROGCNTL;
OUTCNTL;

1 Use components in any combination:
PROGCNTL, CPU;

PROGCNTL, OUTCNTL;
CPU, OUTCNTL;

WSI recommends that, in general, you

maintain a consistent ordering of these

components and consistent groupings of

Assembler-level and Macro operators, e.g. in

separate files. This manual uses the

PROGCNTL, CPU, OUTCNTL ordering.

When PROGCNTL is omitted, the implied

instruction is CONTinue, that is, proceed to

the next control instruction. When CPU is
omitted, the implied instruction is NOP. When

OUTCNTL is omitted, the implied instruction

is MAINTain, that is, maintain the most

recent OUTCTL, in Assembler order.

A summary of PACSEL Assembler and
Macro statements follows.

2-104 WAFERSCALE INTEGRATION, INC.

PAC1000

Table 19.
PACSEL
Assembler
Language
Summary

Mnemonic Arguments

The PROGCNTL Operators

ACSIZE <16/22>

CALL <LABEL | LCPTR | FIFO>
CALLC <COND> <LABEL | FIFO>
CALLNC <COND> <LABEL | FIFO>
CCASE <CG> <VALUE>

CLI <MASK>

CONT(D)

CPI <VALUE>

DI <MASK>

DSS

El <MASK>

ESS

JCase <CG> <VALUE>

JMP <LABEL | LCPTR | FIFO>
JMPC <COND> <LABEL | FIFO>
JMPNC <COND> <LABEL | FIFO>
JPI <VALUE>

LDBP <VALUE>

LDBPD

LDLC <VALUE>

LDLCD

LOOPNZ <LABEL>

PLDLC <VALUE>

PLDLCD

POP

POPLC

PUSHLC

RESTART

RET

RC <COND>

RNC <COND>

RSTCON <MASK>

RSTIO <MASK>

RSTMODE <MASK>

SETCON <MASK>

SETIO <MASK>

SETMODE <MASK>

Meaning

SET A COUNTER SIZE
UNCOND BRANCH SUBRTN
COND BRANCH SUBRTN
INV COND BRANCH SUBRTN
BRANCH SUBRTN CASEBLK
CLEAR INTERRUPT
CONTINUE

PRIORITIZED SUB RTN
DISABLE INTERRUPT
DISABLE SINGLE STEP MODE
ENABLE INTERRUPT
ENABLE SINGLE STEP MODE
UNCOND BRANCH CaseBLK
UNCONDITIONAL BRANCH
CONDITIONAL BRANCH
INVERT COND BRANCH
PRIORITIZED BRANCH
LOAD BP REG

LOAD BP COMP VALUE
LOAD COUNTER

LOAD CTR COMPUTED VAL
REPEAT BRANCH,CNTRNZ
PUSH VALUE & LDCTR
PUSH VAL&LDCTR CM VL
POP STACK

POP STACK TO CNTR

PUSH CNTR

BRANCH TO 0

RETURN

CONDITIONAL RETURN

INV COND RETURN

RESET CONTROL REG
RESET I/0 CONFIG REG
RESET MODE REG

SET CONTROL REG

SET I/0 CONFIG REG

SET MODE REG

WAFERSCALE INTEGRATION, INC. 2105

PAC1000

Table 19.
PACSEL
Assembler
Language
Summary (Con’t)

Mnemonic Arguments

The CPU Operators

ADC <ARG1> <ARG2> [<ARG3>]
ADD <ARG1> <ARG2> [<ARG3>]
AND <ARG1> <ARG2> [<ARG3>]
CMP <ARG1> <ARG2>

DEC <ARG1> [<ARG2>]

INC <ARG1> [<ARG2>]

INV <ARG1> [<ARG2>]

MOV <DEST> <SRC>

NOP(D)

OR <ARG1> <ARG2> [<ARG3>]
RDFIFO

SBC <ARG1> <ARG2> [<ARG3>]
SHLRQ <REG> <RARG> <QARG>
SHLR <REG> <RARG>

SHRRQ <REG> <RARG> <QARG>
SHRR <REG> <RARG>

SuB <ARG1> <ARG2> [<ARG3>]
XOR <ARG1> <ARG2> [<ARG3>]
XNOR <ARG1> <ARG2> [<ARG3>]
The MACRO Operators

DIV <ARG1> <ARG2> <ARG3>
MUL <ARG1> <ARG2> <ARG3>
The OUTCNTL Operators

MAINT(D)

ouT <VALUE>

Meaning

ADD WITH CARRY
ADD

BITWISE AND
COMPARE
DECREMENT
INCREMENT

INVERT

MOVE SRC TODEST
NO OPERATION
BITWISE OR

READ FIFO DATA TO REG
SUB WITH CARRY
SHIFT LEFT REG & Q
SHIFT LEFT REG
SHIFT RIGHT REG & Q
SHIFT RIGHT REG
SUBTRACT
EXCLUSIVE OR
EXCLUSIVE NOR

DIVISION
2'S COMP MULTIPLY

MAINTAIN PREV VALUE
OUTPUT

2106 WAFERSCALE INTEGRATION, INC.

PAC1000

Table 20.
PACSEL Macro
Language
Summary

The PROGCNTL Operators

ACSIZE <16/22>

CALL <label | LCPTR | FIFO> [ON] [NOT] [<cond>]
CASE n, PROGCNTL, CPU, OUTCNTL;

CLEAR <int level> [...<int level>]

CONFIGURE <pml> [<pm2>...<pml0>]

CONT

DISABLE <int level> [<int level>...<int level>]
ELSE

ENABLE <int level> [<int level>...<int level>]
ENDFOR

ENDIF

ENDPSWITCH

ENDSWITCH

ENDWHILE

FOR <value>

GOTO <label | LCPTR | FIFO> [ON] [NOT] [<cond>]
IF [NOT] <cond>

INPUT <i/o pin> [<i/o pin>...<i/o pin>]

LOADBP <value>

OUTPUT <i/o pin> [<i/0 pin>...<i/o pin>]
PRIORITY m, PROGCNTL, CPU, OUTCNTL;

PSWITCH

RESET <pl> [<p2>...<pl0>]

RETURN [ON] [NOT] [<cond>]

SET <pl> [<p2>...<pl0>]

SWITCH <case group>

WHILE [NOT] <cond>

WAFERSCALE INTEGRATION, INC.

2107

PAC1000

Table 20.

PACSEL Macro The CPU-Operator Assignment
Language move

s"mmary (cmﬂ) <dest> := <src>

arithmetic expression
<dest> := <argl> <+/-> <arg2> <+/-> <arg3>
logical expression
<dest> := <argl> <logical operator> <arg3>
increment, decrement, invert, unary minus
<dest> := <opr> <src>
macro expression
<dest> := <argl> [* | /] <arg2>
shift RAM
<Rx> = Rx <shft opr> <shft arg>
shift RAM and g
<QRx> = Q <shft opr> <shft arg> Rx <shft opr> <shft arg>

The OUTCNTL Operator
OUT <argl> [<arg2>...<arglé6>]

2108 WAFERSCALE INTEGRATION, INC.

System
Development
Tools

PAC1000 System Development Tools are a
complete set of PC-based development
tools. They provide an integrated easy-to-use
software and hardware environment to
support PAC1000 development and pro-
gramming.

The tools run on an IBM-XT, AT, PS2 or
compatible computer running MS-DOS
version 3.1 or later. The system must be
equipped with 640 Kbytes of RAM and a hard
disk.

Hardware

The PAC1000 System Programming Hard-

ware consists of:

3 WS6000 MagicPro Memory and PSD
Programmer (XT, AT only)

1 Package Adaptors (88-Pin Ceramic Pin-
Grid Array and 100-Pin Ceramic Quad
Flatpack—Gullwing) for the MagicPro
Remote Socket Adaptor Unit

The MagicPro Programmer is the common

hardware platform for programming all WSI

programmable products. It consists of the

IBM-PC plug-in Programmer Board and the

Remote Socket Adaptor Unit.

Software

The PAC1000 System Development Soft-

ware consists of the following:

1 WISPER Software—PSD Software Inter-
face

3 IMPACT Software—Interface Manager
for PAC1000

1 PACSEL Software—System Entry
Language

1 PACSIM Software—Functional Simulator

3 PACPRO Software—Device Program-
ming Software

WISPER and IMPACT software provide a

menu-driven user interface enabling other

PAC1000 “

tools to be easily invoked by the user.

The system design is entered into PACSEL
source program files using an editor chosen
by the user. PACSEL supports assembly-
level and high-level Macro programming.

The PACSEL Assembler produces object
code format in single or multiple modules,
which are then linked by the PACSEL Linker
into a single load file with a format suitable for
PACSIM and PACPRO.

The PACSIM functional simulator enables the
user to test and debug programs by examin-
ing the state of PAC1000 internal registers
before and during a complete functional
simulation of the device.

PACPRO software programs PAC1000
devices by using the MagicPro hardware and
the socket adapter.

The programmed PAC1000 is then ready to
be used.

Support

WS provides a complete set of quality
support services to registered owners. These
support services include the following:

d 12-month Software Updates.

1 Hotline to WSI Application Experts—For
direct design assistance.

O 24-Hour Electronic Bulletin Board—For
design assistance via dial-up modem.

Training

WSI provides in-depth, hands-on workshops
for the PAC1000 and the System Develop-
ment Tools. Workshop participants will learn
how to develop and program their own high-
performance microcontrollers. Workshops are
held at the WS facility in Fremont, California.

WAFERSCALE INTEGRATION, INC. 2109

PAC1000

Ordering
Information— Part Number Speed Package Package Operating Manufacturing
PAC1000 (MHz) Type Drawing Temperature Procedure
PAC1000-12F* 12 100-Pin Ceramic F3 Commercial Standard
Quad Flatpack,
Gullwing
PAC1000-12FI* 12 100-Pin Ceramic F3 Industrial Standard
Quad Flatpack,
Gullwing
PAC1000-12FM* 12 100-Pin Ceramic F3 Military Standard
Quad Flatpack,
Gullwing
PAC1000-12FMB* 12 100-Pin Ceramic F3 Military MIL-STD-883C
Quad Flatpack,
Gullwing
PAC1000-12Q* 12 100-Pin Plastic Qt Commercial Standard
Quad Flatpack,
Guliwing
PAC1000-12X 12 88-Pin Ceramic X1 Commercial Standard
Pin-Grid Array
PAC1000-12XI 12 88-Pin Ceramic X1 Industrial Standard
Pin-Grid Array
PAC1000-12XM 12 88-Pin Ceramic X1 Military Standard
Pin-Grid Array
PAC1000-12XMB 12 88-Pin Ceramic X1 Military MIL-STD-883C
Pin-Grid Array
PAC1000-16F* 16 100-Pin Ceramic F3 Commercial Standard
Quad Flatpack,
Gullwing
PAC1000-16FI* 16 100-Pin Ceramic F3 Industrial Standard
Quad Flatpack,
Gullwing
PAC1000-16FM* 16 100-Pin Ceramic F3 Military Standard
Quad Flatpack,
Gullwing
PAC1000-16FMB* 16 100-Pin Ceramic F3 Military MIL-STD-883C
Quad Flatpack,
Gullwing
PAC1000-16Q* 16 100-Pin Plastic Q1 Commercial Standard
Quad Flatpack,
Gullwing
PAC1000-16X 16 88-Pin Ceramic X1 Commercial Standard
Pin-Grid Array
PAC1000-16XI* 16 88-Pin Ceramic X1 Industrial Standard
Pin-Grid Array
PAC1000-16XM* 16 88-Pin Ceramic X1 Military Standard
Pin-Grid Array
PAC1000-16XMB* 16 88-Pin Ceramic X1 Military MIL-STD-883C
Pin-Grid Array
PAC1000-20F* 20 100-Pin Ceramic F3 Commercial Standard
Quad Flatpack,
Gullwing
PAC1000-20X* 20 88-Pin Ceramic X1 Commercial Standard
Pin-Grid Array
PAC1000-20Q* 20 100-Pin Plastic Qt Commercial Standard
: Quad Flatpack,
Gullwing
*: These products are advanced information.
2110 WAFERSCALE INTEGRATION, INC.

PAC1000

Ordering
Information—
System
Development
Tools

Part Number
PAC1000-GOLD

PAC1000-SILVER

WS6000

WS6010

WS6012

WSI-Support

WSI-Training

Contents

WISPER Software

IMPACT Software

PACSEL Software

PACSIM Software

PACPRO Software

User’s Manual

WSI-Support

WS6000 MagicPro Programmer

WISPER Software
IMPACT Software
PACSEL Software
PACSIM Software
PACPRO Software
User’'s Manual
WSI-Support

MagicPro Programmer
IBM PC plug-in Adaptor Card
Remote Socket Adaptor

88-Pin CPGA Adaptor
Used with the WS6000 MagicPro Programmer

100-Pin Ceramic Quad Flatpack (Gullwing) Adaptor
Used with the WS6000 MagicPro Programmer

Support Services, including:

3 12-month Software Update Service

1 Hotline to WSI Application Experts

1 24-hour access to WSI Electronic Bulletin Board

Workshops at WSI, Fremont, CA
For details and scheduling, call PSD Marketing, (415) 656-5400

WAFERSCALE INTEGRATION, INC. 211

i
i

2112 WAFERSCALE INTEGRATION, INC.

Programmable System™Device
SAM448 Introduction

WAFERSCALE INTEGRATION, INC.

User-Configurable Microsequencer

Overview In 1988 WSI introduced a new concept in blanking output controls for both line and
programmable VLSI: the Programmable frame flyback. The device could also
System™ Device (PSD). The PSD is control the load and shift activity in the
defined as a family of User-configurable video output registers and supervise the
system level building blocks on-a-chip video memory address counters. All these
enabling quick implementation of application activities are sequential in nature so
specific controllers and peripherals. The microcode could be developed for the
first generation PSD series includes the SAM device and programmed into the
MAP168, a User-Configurable Peripheral device’s on-chip EPROM.
with Memory; the SAM448, a User- Prior to the development of the SAM448
Configurable Mlcrosequencer; and the Microsequencer, a designer would most
PAC1000, a User-Configurable likely develop a system from discrete
Microcontroller. EPROM or ROM plus 74LS TTL logic with
The SAM448 is a microsequencer dedicated LIFO and registers. The actual
intended for use in digital systems that development of such a design would
require events to be controlied at high escalate in chip count to eventually cover
speed. A microsequencer is basically an an entire printed circuit card. With the
instruction oriented device executing one advent of Programmable Logic
internal instruction on each system cycle. Devices (PLDs), the development of a
This can be done in a linear flow or the microsequencing circuit became simpler.
sequencer can test the state of logic However, a typical system still required five
inputs or internal events and respond to to six PLDs. In addition, and EPROM was
program branching on a result. In addition, needed to hold the microcode. Because
it has the capability of driving output microcode is usually rather wide, a
signals on a cycle by cycle basis. number of EPROMs were needed.
The SAM448 can operate at a high clock The SAM448 provides the optimum solution
speed (30 MHz) so sequential operations when implementing a microsequencer of
can be performed much faster than with medium complexity. It has been designed
lower end microcontrollers. A classic to be cascadable in width and depth so
application of the SAM448 would be in the more complex microsequencer designs
generation of pulse waveforms for video may be achieved.
line and frame synchronization with

Microcode The core of the SAM448 is a microcode into one 8-bit Q field which generally

EPROM EPROM organized as a 448 locations directs processing to the next address of

Architecture deep and 36 bits wide. On each clock the EPROM. The 8-bit D field can be used

cycle, the current 32 bit wide instruction is
clocked into the pipeline register. The 32
bit word is split into a number of fields.
The F field consists of 16 bits and drives
the output lines as user defined output
pins. The remaining 20 bits are subdivided

to hold a constant or direct value but it
can also be used for next address
generation. The OP field is three bits in
width and contains the current instruction
to be executed. The remaining field is the

WAFERSCALE INTEGRATION, INC. 2113

SAM448 Introduction

Microcode
EPROM
Architecture
(Cont.)

E field and performs a 3-State control
function on the pipeline register. When
HIGH, the output pins are enabled and
when LOW the outputs are in a high
impedance state. This feature enables one
SAM448 device to share the same outputs
with a second for vertical cascading.

The EPROM locations are connected such
that the first 192 locations (0 to 191) are in

a linear sequence. The remaining locations
are organized in four rows of 192 to 255.
This permits a one of four branch control.
The internal branch control logic will make
the decision as to which branch to take
depending on the state of the user defined
inputs and the value of the next state
address.

Branch
Control Logic

The branch control logic determines the
location from where the next instruction
will be fetched. The next address can
come from the Q or D field of the instruction
currently in the pipeline register, the top of

the stack or LIFO or the Branch Select
EPLD. The Branch Select EPLD can be
programmed to view inputs or the logical
combination of inputs to invoke a branch
when a logic state becomes true.

Stack

The stack or Last In First Out (LIFO)
memory is 15 locations deep and 8 bits
wide and can be used to hold the value of
a return address so successful CALL to
and RETURN from subroutines may be
invoked. A loop counter is included in the

SAM448 architecture and the stack can be
used to hold the contents of this loop
counter when nested loops are invoked.
The eight input lines may also be pushed
onto the stack to externally load the counter.

Loop Counter

To make provision for a number of
operations to be repeated a defined
number of times, a loop counter called
CREG has been included in the design.
This eight bit counter is loaded from the D

field by a dedicated instruction LOADC or
from the stack in the case of nested loops.
The counter decrements to zero and then
holds at zero. So repetitive routines may
be achieved by a LOOPNZ instruction.

Instruction Set

The instruction set for the SAM448 consists
of 12 instructions to handle multiway
branching, subroutines, nested for-next
loops and dispatch functions. With only 12
instructions a designer can become familiar

with creating SAM448 designs very quickly.
The WSI State Machine Input Language
(ASMILE) support software enables designs
to be generated quickly and efficiently.

2114

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

SAM448

WAFERSCALE INTEGRATION, INC.

User-Configurable Microsequencer

Features O First Generation Programmable System
Device

O User-Programmable Microsequencer for
Implementing High-Performance State
Machines

On-Chip Reprogrammable EPROM
Microcode Memory Up to 448
Words Deep

15 x 8 Stack

Loop Counter

Prioritized, Multi-Way Control Branching
8 General-Purpose Branch Control Inputs
16 General-Purpose Control Outputs

o

M) Sy miy miy mi

[Cascadable to Expand Outputs or States
3 Low-Power CMOS Technology

 Footprint Efficient 28 Pin 300 Mil Dip or
28 Lead CLDCC/PLDCC Package

3 30 MHz Minimum Clock Frequency
1 High Level PC-XT/AT, PS2 or Compatible
Design Support Software (SAM+PLUS):

— WSI PSD Integrated Software
Environment

— State Machine Input Language
— Microcode Assembler
— Functional Simulator

Descﬂptian In 1988 WSI introduced a new concept in words) is integrated with Branch Control
programmable VLSI, Programmable Logic, Pipeline Register, Stack, and Loop
System™ Devices (PSD). The PSD is Counter. This generic microcoded architecture
defined as a family of User-configurable provides an efficient vehicle for implementing
system level building blocks on-a-chip a broad range of high performance controllers
enabling quick implementation of application spanning the spectrum from basic state
specific controllers and peripherals. The first machines to traditional bit-slice controller
generation PSD series includes the applications.
MAP168, a User-Configurable Peripheral
with Memory; the SAM448, a User- The SAM448 has eight general purpose
Configurable Microsequencer; and the input pins, a clock pin and a reset pin.
PAC1000, a User-Configurable It has 16 user-definable outputs packaged in
Microcontroller. a 28-pin 300 mil Dip or 28 Lead CLDCC/

. . . PLDCC package. OneTime-Programmable

The SAM448 is a first generation PSD plastic versions are available to minimize
ar?d is WSI’s first user programmable volume production costs.
microsequencer. On-chip EPROM (up to 448

Pin Configuration

Dual-In-Line

(Top View)

Leaded Chip Carrier

1%
n
[]Fss
% F14
Fis
[Fi

19
Fos (1 12 13 14 15 16 17 18 A"
|_||_||_||_]U|_IT_=1
= =
2 o

'\QQ
B8

[hagifigiNs

WAFERSCALE INTEGRATION, INC.

2115

SAM448

Description
(Cont.)

Programming the SAM448 device is
accomplished on a standard WSI PSD
WISPER development system installed
with the optional SAM+PLUS software
package and device adapters. New users
can purchase a separate WISPER-SAM
development system with programming
hardware included. SAM+PLUS allows
designs to be entered in either state
machine or microcoded formats.
SAM+PLUS automatically performs logic
minimization and design fitting for the
device. The design may then be simulated
or programmed directly to achieve
customized working silicon within minutes.

Using WSI’s proprietary high performance
CMOS EPROM technology allows SAM448
to operate at a 25-MHz typical clock
frequency while still enjoying the benefits
of low CMOS power consumption. This
technology also facilitates 100% generic
testability which eliminates the need for
post-programming testing.

Ideal application areas for SAM448 include
programmable sequence generators (state
machines), bus and memory control
functions, graphics and DSP algorithm
controllers, and other complex, high
performance machines. The devices may
be cascaded easily to obtain greater
output requirements (horizontal cascade)
or greater microcode memory depth
(vertical cascade) or both.

SAM as a State Machine

The SAM448 architecture allows easy
implementation of synchronous state

machines. SAM’s internal EPROM memory
together with its Pipeline Register allows
storage of up to 448 unique states. SAM’s
Branch Control Logic allows single clock,
multi-way branching in response to the
eight inputs, current device state, and
user-defined transition conditions. Design
entry is simplified with WSI's State Machine
Input Language (ASMILE) supported by
the SAM+PLUS development system. This
high level language uses IFTHEN-ELSE
statements to define state transitions and a
truth table to define or tri-state the outputs
on a state-by-state basis.

SAM as a Microcoded Sequencer

SAM’s architecture has several advanced
features that enable it to be used as a
sophisticated microcoded sequencer.
SAM'’s on-chip EPROM (448 words) is
integrated with a microcoded sequencer
consisting of Branch Control Logic, Stack,
and Loop Counter. The eight general-
purpose inputs, the Counter, the Stack,
and the Pipeline Register feed the Branch
Control Logic. The Branch Control Logic
gives flexible multi-way microcode branch
capability in a single clock, enhancing
throughput beyond that of conventional
controllers or sequencers.

SAM+PLUS development software offers
high level microcode entry featuring a
compact assortment of powerful instructions
(OP-codes) allowing easy implementation
of conditional branches, subroutine calls,
multiple level for-next loops, and dispatch
functions (branching to an externally
specified address).

Functional
Description

The SAM architecture is shown in Figure 1.

The primary elements are the Microcode
EPROM, 36-bit Pipeline Register, Branch
Control Logic, 15 x 8-bit Stack, and 8-bit
Loop Counter.

The Branch Control Logic generates the
address of the next state and applies this
address to the Microcode Memory. The
outputs of the Microcode Memory
represent the user-defined outputs and
internal control values associated with the
next state. On the leading edge of
clock these new values are clocked into
the Pipeline Register and bec
current state. The new values in the
Pipeline Register—along with the Counter,
Stack and Inputs—are used by the Branch

Control Logic to generate the new next-
state address.

Microcode EPROM and Pipeline Register

The Microcode EPROM is organized into
448, 36-bit words or locations, each of
which can be viewed as a single state. 16
of these bits (the F-field) are available at
device pins as user-defined outputs.

The other 20 bits are internal control
signals that are divided into 4 fields: the
8-bit Q-field normally provides the next-
state address; the 8-bit D-field is a general
purpose field used either as a constant or
as an alternative next-state address; the
OP-field contains the instruction; and, the

2-116 WAFERSCALE INTEGRATION, INC.

SAM448

Functional E-field contains a single bit which enables Addresses 192-255, on the other hand,
ﬂescriptign or tri-states the device outputs. access four unique 36-bit words which
{c‘mt. , As shown in Figure 2, the Microcode correspond }o four possible next states.
Memory is organized as 256 rows or (The extension .0, .1, .2, and .3 are used to
addresses. Addresses 0 through 191 distinguish those four states.) These 64
contain a single 36-bit word which is addresses are known as Multi-Way Branch
associated with the desired next-state. This locations and are used to perform single
state information will be clocked into the clock 4-way branches. Whenever the next-
Pipeline Register on the next rising edge state addres§ falls within the Multi-Way .
of the clock and the outputs will become Branch locations, the Branch Control Logic
valid one Tgo (clock to output delay) later. will make the necessary 1-of-4 selection
based on the next-state address and user-
defined input conditions.
Figure 1.
SAMA48 Block nmeser | ——
”’agmm INPUTS CBORI?'I"‘RCOHL EPROM
(8) LOGIC
Ju—— 448 x 36
BITS
EPLD ____{}__
768 PRODUCT
TERMS PIPELINE
5 x8 REGISTER CLK
11
/] OUTPUTS (16)
Figure 2.
SAM Microcode ADDRESS
Memory
%’[()LES;'QTEROM MULTI-WAY BRANCH LOCATIONS
BRANCH 182, 192.31
CONTROL __8 193, 185.3]
194,
[197.0] —JzEe.
= T é”“‘ s
1 OF 4 BRANCH @l %" 258,
SELECT FROM < RS L0 <0
ggﬁ:‘_ggl_ —4 I 4 TO 1 MULTIPLEXER]
PIPELINE REGISTER 136L
cLock Plor] o | @ [E] FoFgoUTPUTS |
WAFERSCALE INTEGRATION, INC. 2117

SAM448

Figure 3.
SAM Branch -
Control Logic 1
Q-FIELD_8) BRANCH SELECT
EPLD
ADDRESS | NEXT-STATE 4, 1-OF4
D'F'E‘-E> MULTIPLEXER _‘ |::>ADDRESS 'NZ':E) EGs ggfggr"
ook Z:> 8 > PRODUCT TERMS
Branch Control Logic Block The conditions are prioritized so that if the
; first condition is not met (cond3), then
At the heart of the high-performance . .
sequencing ability of the SAM family is the ~ Microword 201.3 will be selected and
Branch Control Logic. This block determines clocked into the Pipeline Register regardless
the next-state to be clocked into the Pipeline 0: the rﬁsults of cond2 and cond1. If none
Register based on the current status of the ©f the three conditions are met, then the
Pipeline Register, the Counter, the Stack, r;lcr?worg 201.0 will be clocked into the
and the eight input pins. ipeline Register.
The Branch Control Logic is divided into The three conditional expressions are user
two segments: the Address Multiplexer and ~ defined and may contain any logical
the Branch Select EPLD. equation based on the inputs that can be
. . reduced to four product-terms. For
The Address Mumplexgr provides the next- example, the expression
state address to the Microcoded Memory. H* 2 *)
The next-state address can come from the 3% 14+ “4 16+ 1
Q-field, the D-field, or the Top-of-Stack. a 4% N5 " N6 N7
The selection between these three +|(2) Y
resources is based on the instruction in + / 5
the Pipeline Register and the condition of contains four product-terms and is a valid
the Zero Flag from the Counter. condition. There is a unique set of 12
The Branch Select EPLD is used to product-terms for each of the 64 multi-way
perform up to a 4-way branch based on branch Isocat:gns for a total of 768 product-
user-defined input conditions. This block is tems- (See Figure 4.)
a 768 product-term programmable logic The SAM448 has been designed so that
device with 16 inputs and four outputs. the number of available product-terms
When the next-state address falls within should never be the limiting factor on a
the multi-way branch block of memory (any design. Prioritization provides an effective
address greater than 191) the Branch product-term count of more than 12 per
Select EPLD performs the necessary 1-of-4 location. A trade-off between number of
selection. When the next-state address is product-terms and number of possible
less than 192, the Branch Select EPLD is branches can be made by simply placing
turned off since no selection is required. identical state information in two locations
The conditions controlling the multi-way as shown in Figure 5.
branch are defined by the user with a
simple IF, THEN, ELSE format like the
following:
IF (cond3) THEN select 201.3
ELSEIF (cond2) THEN select 201.2
ELSEIF (cond1) THEN select 201.1
ELSE select 201.0
2118 WAFERSCALE INTEGRATION, INC.

SAM448

Figure 4.
SAM Branch PROGRAMMABLE PRIORITY
Logic for LOGIC ENCODER
Address 192
Tlll'ﬂllgll 255 SELECT 3
SELECT 2
SELECT 1
ANANAANAAN SELECT 0
ppal A A | vl
INPUTS
Figure 5.
Multi-Way
Branching

3-WAY BRANCH

WAFERSCALE INTEGRATION, INC. 2119

SAM448

Functional Stack Loop Counter

Description The Stack of the SAM448 is a Last In First ~ The SAM448 contains an 8-bit Loop

(Cont.) Out (LIFO) arrangement consisting of 15 Counter, referred to as the Count Register
8-bit words. The Top-of-Stack may be used (CREG), which is useful for controlling
as the next-state address or popped into timing loops and affecting a variety of
the Counter. Values may be pushed onto branch operations. The CREG is a down
the stack either from the D-field in the counter and may be loaded directly from
Pipeline Register or from the Counter the D-field of the Pipeline Register or from
enabling efficient implementation of the Top-of-Stack. The value of the CREG
subroutines, nested loops, and other may be saved and restored by pushing
iterative structures. The eight input lines and popping it to and from the Stack.
may also be pushed onto the stack to The CREG is loaded or decremented on
a!low external 'address specification in a the leading edge of the clock. It is
dispatch function or to externally load the designed so that it will not decrement
counter. once it reaches zero to prevent roll-over. A
The PUSHing or POPing of the stack Zero Flag indicates when the counter has
occurs on the leading edge of the clock. reached zero and is used with the
The stack is “zero filled” so that a POP LOOPNZ command to control program
from an empty stack will return all eight flow (see Instruction Set Description).
bits set to zero. On the other hand, a push Single instruction delay loops are easily
to an already full stack will write over the constructed and, in combination with the
Top-of-Stack leaving the other 14 values Stack, nested loops or delays of arbitrary
unchanged. length may be generated.

Instruction Set The instruction set of the SAM448 consists instruction set is described at the end of
of a compact assortment of powerful this data sheet. These instructions are
commands. Assembly language constructs only used with assembly language design
allow efficient implementation of multi-way entry and are automatically supplied when
branching, subroutines, nested for-next using the WSI State Machine Input
loops, and dispatch functions. The complete ~ Language (ASMILE). '

0lltﬂllt Enable Each microcode word contains an OE bit through high-level constructs in the WSI

Control (the E-field) which enables the outputs Development Software. This capability
when E = 1 and causes a high-impedance allows the vertical cascading of SAM448
when E = 0. These bits are accessible devices to increase the number of states.

NRESET Pin The nRESET pin acts as a master reset a valid clear. A nRESET of one clock
for the SAM448 causing it to empty the rising edge causes the SAM448 to enter
Stack, clear the Counter, and load the into a supervisor mode and a nRESET of
microword found at address 0 into the two clock edges results in an undefined
Pipeline Register. The nRESET signal is state.
useful for system reset or for synchronizing The outputs of the boot address (00 Hex)
several SAMs that are cascaded vertically will appear at the pins from the fourth
or horizontally. clock edge after nRESET goes low, until
The nRESET signal must be held low for the third clock edge after nRESET returns
at least three clock rising edges to perform to high.

Horizontal and Just as with memory and bit slice devices, states, two or more SAMs can be cascaded

Vertical the SAM devices can be cascaded to vertically. In either case, no speed penalty

cascadiny provide greater functionality. If an application is incurred. Designs utilizing horizontal
requires more output lines, two or more cascading are fully supported by the
SAMs can be cascaded horizontally. SAM+PLUS development software. Vertical
Likewise, if an application requires more cascading requires the designer to make

certain tradeoffs to split the design.

2120 WAFERSCALE INTEGRATION, INC.

SAM448

Figure 6.
SAM‘MJL INPUTS INPUTS
Cascading cLock
SAM448 SAM448
wl Iy
CONTROL OUTPUTS (2N)
HORIZONTAL CASCADE
INPUTS)
SAM4as [N |
:> CONTROL
N_ > OUTPUTS
(N)
cLOCK ‘
SAM44s N
INPUTS) L
VERTICAL CASCADE
Funqtmnal The SAM448 is fully functionally testeq facility to use application-independent,
Testing and guaranteed through complete testing general purpose tests is called generic
of each programmable EPROM bit and all testing and is unique among user-defined
internal logic elements thus ensuring LSI logic devices. The devices also
100% programming yield. contain on board test circuitry to allow
The erasable nature of the SAM448 allows verification of function and AC specification
test programs to be used and then erased once encapsulated in non-windowed
during early stages of production flow. This packages.
Recommended — - -
: Symbol Parameter Conditions Min Max Unit
Operating
Conditions Vee Supply Voltage Note 6 4.75 (4.5) | 5.25 (55) \'
V, Input Voltage 0 Vee \
Vo Output Voltage 0 Vee Vv
Tr Input Rise Time (Note 6) 500 (100) ns
TE Input Fall Time (Note 6) 500 (100) ns
WAFERSCALE INTEGRATION, INC. 2121

SAM448

DC Operating Ve = 5V £ 5%, 0°C to +70°C for Commercial
Characteristics Vec = 5V + 10%, —40°C to +85°C for Industrial
cc = 5V + 10%, -55°C to +125°C for Military
Symhbol Parameter Conditions Min | Typ | Max | Unit
ViH High Level Input Voltage 20 Vec+03| V
Vi Low Level Input Voltage -03 08 Vv
Vo '\','c'j’t';g'f"e' TTLOutput |\ @ _gmADC | 24 v
Voun | High Level CMOS _
Output Voltage lon = ~4 mADC | 384 \;
VoL | Low Level TTL Output _
Voltage lo. = 8 mA (4 mA) DC 045 Vv
I Input Leakage Current V| = Vg or GND +10 pA
loz 3-State Output Off-State _
Current Vo = Vgg or GND +10 pA
Ve Supply Curent V;y = Vg or GND
loct | (standby) (Note 6) lp = 0 CLK = Veg 80 | 65(90) | mA
Ve Supply Current No Load 50% CLK
loc2 | (Active) (Note 6) f = 20 MHz 55 1120 (170) [mA
‘bsa!”te Symbol Parameter Conditions Min | Max | Unit
Maximum
Ratings Vee Supply Voltage) -20 70 \
9! - With Respect to GND
(See Design Vep Programming Supply Voltage (Note 2) -20 | 140 v
Recommendations) v, DC Input Voltage -20 | 70 v
ICCMAX DC VCC or GND Current -250 250 mA
lout DC Output Current, per Pin -25 25 mA
Pp Power Dissipation 1200 | mW
Tsta Storage Temperature No Bias -65 150 °C
Tave Ambient Temperature Under Bias -10 85 °C
%gg’gfa”“ Symbol Parameter Conditions Tip Unit
. VIN = OV
Cin Input Capacitance f = 1.0 MHz 10 pF
. VOUT = OV
Cout Output Capacitance f = 1.0 MHz 15 pF
. . VIN = OV
Ccrk Clock Pin Capacitance f = 1.0 MHz 10 pF
Crst nRESET Pin Capacitance 75 pF
2122 WAFERSCALE INTEGRATION, INC.

SAM448

AC Ve = 5V + 5%, 0°C to +70°C for Commercial
Characteristics Vee = 5V + 10%, —40°C to +85°C for Industrial
Voo = 5V + 10%, -55°C to +125°C for Military (Note 7)
SAM448-30 | SAM448-25 | SAM448-20
Symhol Parameter Conditions - - - Unit
4 Min | Max | Min | Max | Min | Max
foye | Maximum Frequency 30 25 20 MHz
. C1 = 35 pF

tcyc | Minimum Clock Cycle 333 40 50 | ns

tsu Input Setup Time 165 20 22 ns

th Input Hold Time 0 0 0 ns

tco Clock to Output Delay| C; = 35 pF 16.5 20 22 | ns
Clock to Output

tez Disable or Enable 165 20 22 | ns
Minimum Clock

toL Low Time 1 12 15 ns
Minimum Clock

tcH High Time 1 12 15 ns

tsur | NRESET Setup Time 16.5 18 18 ns

thr nRESET Hold Time 5 5 5 ns

NOTES: 1. Typical values are for Ty = 25°C, Voc = 5V.

2. Minimum DC input is —0.3V. During transitions, the inputs may undershoot to —2.0V for periods
less than 20 ns.

3. Capacitance measured at 25°C. Sample tested only.

4. If the nRESET is held low for more than 3 clock edges, then the outputs associated with the boot
address (00 Hex) will remain at the pins until the third clock edge after nRESET goes high.

5. For 1.0 < V4 < 38, the nRESET pin will source up to 200 pA.

6. Figures in () pertain to military and industrial temperature versions.

7. The specifications noted above apply to military operating range devices. MIL-STD-883 compliant
product specifications are provided in military product drawings available on request from WSI
marketing at Tel. 415-656-5400. These military product drawings should be used for the preparation
of source control drawings.

Figure 7.
Timing
Waveforms ore

INPUT
[

OUTPUT
Fo-F1s

OUTPUT
Fo—F15

= I e

-

X

VALID INPUT x

WAFERSCALE INTEGRATION, INC. 2123

SAM448

Figure 8.
Reset Timing
Waveforms

CLOCK

1]

L

tsun—>1 [thr —> |<——- |
NRESET \ ¢—> NOTE 4
I tco-’l I‘—— tco —> l‘*
gl X INVALID OUTPUT >< F (00) X—» NOTE 4
T__ COUNTER AND
STACK CLEARED
Design Security The SAM448 contains a programmable This enables a high level of design control
design security feature that controls the to be obtained since programmed data
access to the data programmed into the within EPROM cells in invisible. The bit
device. If this programmable feature is that controls this function, along with all
used, a proprietary design implemented in other program data, may be reset simply
the device cannot be copied nor retrieved. by erasing the device.
Design Operation of the SAM448 with conditions be constrained to the range GND < (V/y or
Recommendations above those listed under “Absolute Vout) € Vge. Unused inputs must always
Maximum Ratings” may cause permanent be tied to an appropriate logic level (e.g.,
damage to the device. This is a stress either Vg or GND). A power supply
rating only, and functional operation of the decoupling capacitor of at least 0.1 uF
device at these or any other conditions must be connected directly between the
above those indicated in the operational Ve pin and GND.
sections of this data sheet is not implied. When operating in noisy environments it is
Exposure to absolute maximum rating possible that a glitch on the nRESET pin
conditions for extended periods may affect one T before the clock edge could
device reliability. These devices contain initiate a supervisor mode. To prevent this
circuitry to protect the input against possibility, it is recommended to connect a
damage to high static voltages or electric capacitor of at least 0.1 uF from the
fields; however, it is advised that normal nRESET input to ground.
precautions be taken to avoid application .
of any voltage higher than maximum rated All general purpose inputs to the SAM448
voltages to this high-impedance circuit. should be synchronized to be guaranteed
. to meet the setup time. Input transitions
For proper operation, it is recommended which occur less than one Tgy before the
that opaque labels be placed over the leading clock edge can cause the SAM448
device window. Input and output pins must 4 gnter an undefined state.
2124 WAFERSCALE INTEGRATION, INC.

SAM448

Figure 9. Output

Drive

OUTPUT CURRENT (mA) TYPICAL

Current

100

80
60

1 IRRAL

40

20

I

llol 10

0 1 2

3 4 5
Vo OUTPUT VOLTAGE (V)

Instruction Set
Description

Following is a description of the instruction
set available with the SAM448. These
instructions can be used in conjunction
with the Assembly Language entry to

access the various features of the SAM448.

They are automatically supplied when
using the WSI State Machine Input
Language (ASMILE).

In the following description label1 and
label2 indicate arbitrary labels located in
the assembly (.ASM) file. These labels will
be converted by the software into the 8-bit
address of that label. The parameter
constant is any 8-bit number (0-255
Decimal, 0-FF Hex) representing an
address, a mask, or a constant.

The instructions influence the control of
the Stack, the Counter, and the Address

Multiplexer. These effects are summarized
in the Instruction Table. Throughout the
examples it is assumed for simplicity that
the destination labels do not lie within the
Multi-Way Branch Block of memory so that
branching based on inputs is not
performed. It is valid, however, for any of
these labels to lie within the Multi-Way
Branch Block so that 4-way branching
based on the inputs can be performed.
See the MULTI-WAY BRANCH section at
the end of this data sheet for more details.

The SAM+PLUS development system
allows the designer to use the high level
Assembly Language without worrying
about the actual values that are placed in
the various fields.

CONTINUE simply causes execution
to continue with the next sequential
instruction found in the Assembly
Language file ((ASM).

CONTINUE

WAFERSCALE INTEGRATION, INC.

2125

SAM448

Instruction Set
Description
(Cont.)

The JUMP instruction causes execution to
branch to the indicated location. If address
44 contains the instruction JUMP labell,
then the next state will come from labell
which in this case is located at address 73.

JUMP label1
[42]
[43]
[44] [73]

The CALL/RETURNTO instruction is
typically used to call a subroutine. In
general it will push the address of label2
onto the Stack and cause labell to be the
next-state address. Leaving the RETURNTO
designation off will cause label2 to default
to the next instruction in the .ASM file. In
the example, address 44 contains the
command ‘CALL label1’ where labell is
located at address 73. This causes the
address of the following instruction, in this
case 45, to be pushed onto the Stack, and
the next state to come from address 73.
The RETURN command at address 75
returns the execution to address 45.

CALL labelt RETURNTO label2

45 —>O STACK (PUSH)

The RETURN command is used to return
from a subroutine call or in general to
cause the nexi-state address to come from
the top of the Stack. In the example, the
command at address 44 CALLed the
subroutine at address 73 and PUSHed the
value 45 onto the Stack. The RETURN
command at address 75 will transfer
execution to address 45 and POP that
value off the Stack.

RETURN

4—‘ STACK (POP)

2126 WAFERSCALE INTEGRATION, INC.

SAM448

Instruction Set
Description
(Cont.)

The LOAD Counter command loads the
Counter with the value specified and
transfers execution to labell. The LOADC
command is typically used to initialize the
Counter for a repetitive loop. In the
example, address 44 has the command
‘LOADC 73D GOTO labelt’ which causes
the decimal value 73 to be loaded into the
Counter and the next state to come from
labell. In this case labell is located at
address 73. If the GOTO designation is left
off label1 will default to the next instruction
in the .ASM file.

LOADC constant GOTO label1

CONST —P‘ ’ CREG (LOAD)

The LOOP on Non-Zero/ON ZERO goto
command jumps to one of two addresses
based on the value of the Zero Flag and
decrements the Counter if not zero. This
instruction is typically used to implement
for-next loops. In the example, address 44
has the command ‘LOOPNZ labell
ONZERO label2’ where labell is located
at address 42 and label2 is located at
address 73. If the Counter is not at zero
then the next state will come from address
42 and the Counter will be decremented. If
the Counter is already at zero then the
instruction at address 73 will be executed
and the Counter will stay at zero. If the
ONZERO designation is left off, the default
for label2 will be the next instruction in the
.ASM file.

LOOPNZ labeli ONZERO label2

2

[42] N-1 —»@ CREG (DEC)
m1
4] 73]

The DEcrement Counter on Non-Zero
GOTO command will decrement the
Counter if it is non-zero and jump to
labell. In the example, address 44 has the
command ‘DECNZ GOTO label1’ where
labell is located at address 73. The
Counter is decremented and the next
instruction comes from address 73. The
default for labell is the next instruction in
the .ASM file.

DECNZ GOTO label

42] N-1 —»@ CREG (DEC)
43]
[44] [73]

WAFERSCALE INTEGRATION, INC.

2127

SAM448

Instruction Set
Description
(Cont.)

The PUSH Counter LOAD Counter
command will push the current value of
the Counter onto the Stack, load a
constant into the Counter, and jump to
labell. This instruction is useful for
implementing nested for-next loops. In the
example, the instruction at address 44 is
‘PUSHLOADC 153D GOTO labell’ where
labell is located at address 73. The value
in the Counter will be pushed onto the
Stack, the decimal value 153 will be
loaded into the Counter, and the next
instruction will come from address 73. The
default for labell is the next instruction in
the .ASM file.

PUSHLOADC constant GOTO label1

CONST CREG (LOAD)
STACK (PUSH)

The POP Stack to Counter GOTO
command will pop the top of Stack into
the Counter and jump to labell. This
command is typically used in conjunction
with the PUSHLOADC to implement
nested for-next loops. In the example,
address 44 has the command ‘POPC
GOTO label1’ where labell is located at
address 73. The default for labell is the
next instruction in the .ASM file.

POPC GOTO label1

[42 | STACK (POP)
43|

CREG (LOAD)
4]

The PUSH constant to Stack GOTO
command will push the value constant
onto the Stack and jump to labell. In the
example, address 44 has the command
‘PUSH 34D GOTO label1’ where labell is
located at address 73. The decimal value
34 is pushed onto the Stack and the next
state comes from address 73. The default
for labell is the next instruction in the
.ASM file.

PUSH constant GOTO labell

42] CONST —»O STACK (PUSH)

[44] [73]

2128 WAFERSCALE INTEGRATION, INC.

SAM448

Instruction Set
Description
(Cont.)

The PUSH Input GOTO command will push
the eight inputs (I7-10) onto the Stack. In
the example address 44 has the instruction
‘PUSHI GOTO labelt’ where labell is located
at address 73. At the leading edge of the
clock the eight inputs are pushed onto the
Stack. In a typical example, address 73
would have a RETURN instruction which
would cause execution to jump to the
address represented by the recently
PUSHed input pins. This implements a
dispatch function. The default for labelt
will be the next instruction in the .ASM file.
This instruction can also be used to load
the Counter with an externally specified
variable. In this case address 73 would
have a POPC instruction.

PUSHI GOTO label1

INPUT
E) STACK (PUSH)

[73]

The AND PUSH Input GOTO command is
identical to the PUSHI command except
the inputs are first bit-wise ANDed with a
constant. This allows the masking of
irrelevant inputs before PUSHing an
address for a dispatch routine.

ANDPUSHI constant GOTO labeld

INPUT Dg
STACK (PUSH)

The POP and XOR Stack to Counter
GOTO command will pop the top of Stack,
bitwise XOR it with a constant, load the
result into the Counter, and jump to label1.
In the example, address 44 has the
command ‘POPXORC 25D GOTO labelt’
where labell is located at address 73. The
top of Stack is POPed off the Stack,
XORed with the decimal number 25, and
loaded into the Counter. The next state
comes from address 73. Since a XOR
function does a comparison, this
command can be used to compare the
input to a constant and then branch based
on the result with a LOOPNZ command. If
the GOTO designation is left off the default
for label1 will be the next instruction in the
.ASM file.

POPXORC constant GOTO labelt

STACK (POP)

42 |
[43] CONST
4] 7] CREG (LOAD)

WAFERSCALE INTEGRATION, INC. 2129

SAM448

Figure 10.

Instruction Set Instruction Definition ”mfefg" Stack Counter
s”mmaly CONTINUE Continue with Next Instruction label None HOLD
JUMP Jump to a Label labelt None HOLD
CALL Call Subroutine labell label2 HOLD
RETURN Return From Subroutine STACK POP HOLD
LOADC Load CREG label None Constant
LOOPNZ Loop/Dec. on Non-Zero label 1 or 2 None DECREMENT
DECNZ Decrement CREG on Non-Zero labelt None DECREMENT
Push CREG to Stack and
PUSHLOADC Load CREG labelt CREG Constant
POPC Pop Stack to CREG label1 POP STACK
PUSH Push Constant to Stack labelt Constant HOLD
PUSHI Push Inputs to Stack labell INPUTS HOLD
ANDPUSHI Push Masked Inputs to Stack labelt INP * const HOLD
XOR Stack with Constant STACK @®
POPXORC and Send Result to CREG labelt POP Constant
NOTE: The value label1 is placed in the Q-field. The values label2 and constant are placed in the D-field.
Multi-Way The multi-way branching capability can be multi-way branch capability can enhance
Branching super imposed upon the instruction set each instruction. If location 44 was a CALL

providing another dimension of capability.
Figure 11 shows how this translates into
the flow diagrams. If location 44 had the
instruction JUMP label1’ where labell is

located at address 201, then the next-state
would come from address 201. But address
201 is within the Multi-Way Branch Block
so the Branch Select EPLD must decide
which of the four words to send to the
pipeline register. This selection is based
on user-defined functions of the inputs.

Similarly, location 44 could contain any of
the 13 available commands so that the

to a subroutine, then address 201 could
contain the starting instruction for 4 unique
subroutines. The actual routine executed
would depend on the condition of the
inputs as defined by the user.

The actual Assembly Language code
required to implement this example is as
follows:

44D: [Output Spec] CALL labelt;

201D: IF cond1 THEN [out 1] JUMP 102D;
ELSEIF cond2 THEN [out 2] JUMP 73D;
ELSEIF cond3 THEN [out 3] JUMP 53D;
ELSE [out 4] JUMP 34D;

Figure 11.

Jump to a]
Mll”l"Wﬂy 2013 102
Branch Address 2] 2012 7
201.1 53 103 |
2 201.0 34 |
104
35 |
2130 WAFERSCALE INTEGRATION, INC.

SAM448

Figure 12.
AC Test
Conditions

+5V

AAA

E 4270

DEVICE

TO TEST
OUTPUT SYSTEM

fi 1700 == C, (INCLUDES JIG
’ CAPACITANCE)

DEVICE INPUT l
RISE AND FALL L
TIMES <6 ns =

Power supply transients can affect AC measurements; simultaneous transitions of multiple
outputs should be avoided for accurate measurement. Do not attempt to perform
threshold tests under AC conditions. Large amplitude, fast ground current transients
normally occur as the device outputs discharge the load capacitances. These transients
flowing through the parasitic inductance between the device ground pin and the test
system ground can create significant reductions in observable input noise immunity.

Figure 13.
Ic(; Vs. FMA X

90

Vee = 5.0V
Ta = 25°C

70

50 —

lcc ACTIVE (mA) TYP.

10M
30 ! I ! L L

100 1k 10k 100k 1M 30M

MAXIMUM FREQUENCY (Hz)

Product Grades

Application Temperature Range Marking Designator

Commercial 0°C to +70°C

Industrial —40°C to +85°C |

Military -55°C to +125°C M

MIL-STD-883C, Class B -55°C to +125°C MB

WAFERSCALE INTEGRATION, INC. 2131

2132

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

SAM448——

System
Development Tools

SAM system development tools are a
complete set of PC-based development
tools for the SAM448. Installed on an IBM-
XT, AT or compatible computer, these tools
provide an integrated easy-to-use software
and hardware environment to support
SAM448 development. These tools may be

purchased as a complete development
system or as individual software and
hardware products. SAM system
development tools contain all necessary
programming hardware and software
required to build high-performance state
machines.

Host The host system requirements for installing ~ computer running MS-DOS version 3.1 or
Requirements and using the SAM448 system development later. The system must be equipped with
tools are an IBM-XT, AT, or compatible 640 Kbytes of RAM and a hard disk.
Hardware The SAM448 system programming The MagicPro Programmer is the common
hardware consists of the following: hardware platform for programming all WSI
e MagicPro — Memory and System programmable products. It consists of the
Programmer IBM-PC® plug-in Programmer Board and
the R Socket Ad it.
« WS6008 — 28 Pin Dip Socket Adaptor for ¢ emote Socket Adaptor Unit
MagicPro Remote Socket Adaptor Unit
e WS6009 — 28 Pin LCC Socket Adaptor
for MagicPro Remote Socket Adaptor
Unit
Software The SAM448 System Development The system design is entered into ASMILE

Software consists of the following:

* WISPER Software — WSI Integrated
Software and Programming Environment

* SAMPLUS Software — Interface
Manager for SAM Tools

* ASMILE Software — System Entry
Language

* SAMSIM Software — Functional Simulator

¢ SAMPRO Software — Device
Programming Software

The complete SAM448 development cycle

is illustrated in Figure 1.

WISPER and SAMPLUS software provide
a menu-driven user interface enabling other
tools to be easily invoked by the user.

(WSI State Machine Input Language)
source program files using an editor
chosen by the user. ASMILE supports
Microcode entry and State Machine entry.

The ASMILE produces object code format
which can be loaded to SAMSIM and
SAMPRO

The SAMSIM functional simulator enables
the user to test and debug programs by
examining the state of SAM448 internal
states before and during a complete
functional simulation of the device.

SAMPRO software programs SAM448
devices by using the MagicPro hardware
and the socket adaptor.

The programmed SAM448 is then ready to
be used.

WAFERSCALE INTEGRATION, INC.

2133

SAM448

Figure 1. SAM

Development | H

Cycle MICROCODE | ,l Asm I

SMF2ASM
Y
_——
Y ‘—_ |
| MACRO BOOLEAN ——
ki gk g iy
| |
1 _____SAM DESIGN PROCESSOR i
\ Y
UTILIZATION
\
SAMPRO |—>»
SAM448
FUNCTIONAL
SIMULATION

Documentation SAM448 Software User’s Manual.

WSI-Support WSI provides a complete set of quality ¢ 12-Month Software update service — Up-
support services (WSI-Support) to to-date software maintenance, access to
registered system development tools latest software and product information.
owners. These services include the * Hotline to WSI Application Experts — Direct
following: system development assistance

e 24-Hour Electronic Bulletin Board Service
— Design assistance via our auto-answer
dial-up modem service.

Traininy WSI provides “Do-It-Yourself Systems” Workshop participants will learn how to

Warkshgps Technical Training Workshops that provide build their own high-performance state

an in-depth tutorial on SAM448 and SAM
system development tools.

machine using the SAM448. SAM
Development Training Workshops are
held at the WSI Fremont facility.

2134 WAFERSCALE INTEGRATION, INC.

SAM448

Ordering SAM448-Gold package consists of the Adaptors
Information — following: « WS6008 28 Pin Dip Socket Adaptor
System e Software e WS6009 28 Pin CLLCC/CLDCC/PLDCC
ﬂgyg[apmgn[— WISPER Software Socket Adaptor
Tools — SAMPLUS Software
— ASMILE Software WSl-Support
— SAMSIM Software ¢ Includes 12-month Software Update
— SAMPRO Software Service to registered system owners
— User’s Manual - L
— WSI-Support ¢ Includes Hotline to WSI Application
experts
* Hardware ,
— WS6000 MagicPro Programmer . Includes. 24-hour. access to W$I S
Electronic Bulletin Board Service
fﬁﬁﬁg ;:llver package consists of the SAM Training Workshops
o Software ¢ Includes SAM448 Training Workshops at
— WISPER Software the WSI Fremont facility. For details and
— SAMPLUS Software scheduling, contact PSD Marketing at
— ASMILE Software (415) 656-5400.
— SAMSIM Software
— SAMPRO Software
— User’s Manual
— WSI-Support
WS6000 MagicPro™ Memory and PSD
Programmer
® Includes IBM PC plug-in adaptor card
and Remote Socket Adaptor
Ordering po—
, perating wsi
Information Part Number fl"'ﬁ,‘:‘)’ Pa'cykzge Zg%’e Temperature | Manufacturing
P g Range Procedure
SAM448-20J 20 |28 Pin PLDCC J3 Comm’l Standard
SAM448-20L 20 |28 Pin CLDCC L2 Comm’l Standard
SAM448-20LI 20 |28 Pin CLDCC L2 Industrial Standard
SAM448-20LM 20 |28 Pin CLDCC L2 Military Standard
SAM448-20LMB 20 |28 Pin CLDCC L2 Military MIL-STD-883C
SAM448-20S 20 |28 Pin Plastic Dip, 0.3" S2 Comm’l Standard
SAM448-20T 20 |28 Pin CERDIP, 0.3" T2 Comm’l Standard
SAM448-20TI 20 |28 Pin CERDIP, 0.3” T2 Industrial Standard
SAM448-20TM 20 |28 Pin CERDIP, 0.3” T2 Military Standard
SAM448-20TMB 20 |28 Pin CERDIP, 0.3" T2 Military MIL-STD-883C
SAM448-25J 25 |28 Pin PLDCC J3 Comm’l Standard
SAM448 25L 25 |28 Pin CLDCC L2 Comm’l Standard
SAM448-258 25 | 28 Pin Plastic Dip, 0.3"” S2 Comm’l Standard
SAM448-25T 25 |28 Pin CERDIP, 03" T2 Comm’l Standard
SAM448-30J 30 |28 Pin PLDCC J3 Comm’l Standard
SAM448-30L 30 |28 Pin CLDCC L2 Comm’l Standard
SAM448-30S 30 |28 Pin Plastic Dip, 0.3"” S2 Comm’l Standard
SAM448-30T 30 |28 Pin CERDIP, 0.3"” T2 Comm’l Standard

WAFERSCALE INTEGRATION, INC.

2135

2136 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

¥

PR SEOTRE S N 2N s
S e 3%
SR
G

AR
S

A LR z,"&itf

N

Section Index

PSD Development MAP168 — PSD Development Systemsoiiiiinieiiiiiinan. 3-1
sy stems SAM448 — PSD Development Systems 35
PAC1000 — PSD Development Systems., 3-9
WS6000 MagicPro™ Programmer and Package Adaptors 3-13

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, call 800-562-6363.

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

= MAP168

WAFERSCALE INTEGRATION, INC.

PSD Development System
Description MAP168-GOLD/MAP168-SILVER is a The tools run on an IBM-PC XT, AT or
complete set of IBM-PC-based development compatible computer running MS-DOS
tools. They provide the integrated easy-to- version 3.1 or later.
use environment to support the MAP168
program development and device
programming.
MAPLE MAPLE is the MAP168 Locator Editor. It Q Generating the PAD programming data
has the following features: that maps the 8 segments of EPROM,
Q Simple Menu Driven Commands for two segments of SRAM and eight Chip
selecting different configurations of the Selects Outputs to the user’s address
MAP168: space.
— Byte wide or word wide operation. 1 Combining all the different files to be
— Address or Chip Select Input (CSI) programmed into the EPROM
Mode. segments.
— PAD security option.
MAPPRO MAPPRO is the interface software that O Write RAM to FILE
enables the user to program a MAP168 Display MAP dat
device on the WS6000 MagicPro™ 2 Display aa
programmer. The MAPPRO enables the Q Blank test MAP
user to load the program into the 3 Verify MAP
programmer and to execute the following QO Program MAP
operations: Q Confi i
Q Help : Qo: iguration
Q Upload RAM from MAP u
I Load RAM from disk
Ws6000 The WS6000 MagicPro Programmer is an board and a Remote Socket Adaptor
Magich"" engineering development tool designed to (RSA). It occupies a short expansion slot
Proyrammer program all WSI programmable products in the PC. The RSA has two ZIF-DIP
(EPROMs, RPROMSs, PAC1000, MAP168, sockets that will support WSI’s 24, 28, 32
PSD301 and SAM448). It is used within and 40 pin standard 600 mil or slim 300
the IBM-PC and compatible environment. mil DIP packages without adaptors. Other
The MagicPro consists of a short plug-in packages are supported using adaptors.
Ws6003 The WS6003 is a socket adaptor that the MAP168 in 44-pin CLDCC, PLDCC or
Socket Adaptor mounts on the MagicPro RSA and adapts CLLCC packages to the programmer.

WAFERSCALE INTEGRATION, INC. 31

MAP168

ws6o011 The WS6011 is a socket adaptor that the MAP168 in a 44-pin PGA package to

Socket Adaptaf mounts on the MagicPro RSA and adapts the programmer.

WSI-SIIMIO” WSI provides on-going support for users of user may purchase the WSI-Support
MAP168-GOLD/MAP168-SILVER. For the agreement to continue to receive the latest
first year, software and programmer updates software releases.
are included at no charge. After that, the

Ordering Product Description

Information

MAP168-SILVER

Contains MAP168 Software (MAPLE-MAP and MAPPRO),
Software User’s Manual, WSI-Support.

MAP168-GOLD Contains MAP168-SILVER, WS6000 MagicPro
Programmer, WSI-Support.
WSI-Support 12-Month Software Update Service, Access to WSI’s

24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

32 WAFERSCALE INTEGRATION, INC.

MAP168

MAP168-
GOLD
Contents O MAPLE-MAP Locator editor. Q Software user’s manual.
3 MAPPRO 1 WSI-SUPPORT agreement.
Interface software to MAP168 device O WS6000 MagicPro Programmer.
programmer (MagicPro™).

WAFERSCALE INTEGRATION, INC. 3-3

1

MAP168

MAP168-
SILVER
2
Contents [MAPLE-MAP Locator editor. [Software user’s manual.
[MAPPRO 1 WSI-SUPPORT agreement.

Interface software to MAP168 device

programmer (MagicPro™).
34 WAFERSCALE INTEGRATION, INC.

Programmable System™Device

SAM448

WAFERSCALE INTEGRATION, INC.

PSD Development System
Description SAM448-GOLD/SAM448-SILVER is a The tools run on an IBM-PC XT, AT or
complete set of IBM-PC-based development compatible computer running MS-DOS
tools. They provide the integrated easy-to- version 3.1 or later.

use environment to support the SAM448

program development and device

programming.

ASMILE ASMILE is the SAM448 system entry 3 Assembly Design Entry Language.
language. It has the following features: O User Definable Macros

[State Machine Design Entry.

SAMSIM SAMSIM is an interactive functional 3 Displays input and output waveforms
simulator with Virtual Logic Analyzer interactively providing such features as

Interface: multiple zoom levels, split screens and

1 Clock driven functional simulator. differential time display.

O Provides trace capabilities on internal Q Line disassembler converts the actual
states (Registers, Flags, Pins and code back into the original Assembly
more). source code.

I On-line HELP available at any level.
SbpP The SAM Design Processor (SDP) takes listing any syntax or correction errors in an
an assembly file and creates an optimized Error Log file. Next it minimizes the Boolean

JEDEC file for the SAM448. The SDP first expressions that define the transition

expands macros that have been defined conditions. Finally, it fits the design into

by the user. It then parses the design, the SAM448, generating a JEDEC file.
SAMPRO SAMPRO is the interface software that [Load RAM from disk

enables the user to program a SAM448 O Write RAM to FILE

device on the WS6000 MagicPro™)

programmer. The SAMPRO enables the U Display SAM data

user to load the program into the [Blank test SAM

programmer and to execute the following Q Verify SAM

operations:

Q Help Program SAM

[Configuration
O Upload RAM from SAM o
3 Quit
SAMPLUS SAMPLUS is the interface manager to the done without extension enabling the user

SAM448 software tools. SAMPLUS enables
the user to access ASMILE, SAMSIM, SDP,
SAMPRO, DOS and an editor with a menu
driven interface. File specification can be

to use the same name throughout the
design. A HELP window is available on-
line giving information on all the needed
steps at each level.

WAFERSCALE INTEGRATION, INC. 3-5

SAM448

Ws6000 MagicPro is an engineering development Remote Socket Adaptor (RSA). It occupies

MagicPro™ tool designed to program all WSI a short expansion slot in the PC. The RSA

Proyrammer programmable products (EPROMs, has two ZIF-DIP sockets that will support
RPROMSs, PAC1000, MAP168, PSD301 and WSI’s 24, 28, 32 and 40 pin standard 600
SAM448). It is used within the IBM-PC and mil or slim 300 mil DIP packages without
compatible environment. The MagicPro adaptors. Other packages are supported
consists of a short plug-in board and a using adaptors.

Ws6008 The WS6008 is a socket adaptor that the SAM448 in a 28 pin DIP package to

Socket Adaptor mounts on the MagicPro RSA and adapts the programmer.

Ws6009 The WS6009 is a socket adaptor that the SAM448 in a 28-pin PLDCC/CLDCC/

Socket Adaptor mounts on the MagicPro RSA and adapts CLLCC package to the programmer.

WSI-SIIMMIT WSI provides on-going support for users of user may purchase the WSI-Support
SAM448-GOLD/SAM448-SILVER. For the agreement to continue to receive the latest
first year, software and programmer updates software releases.
are included at no charge. After that, the

ardermy_ Product Description

Information

SAMA448-SILVER

Contains SAM448 Software (ASMILE, SAMSIM, SDP,
SAMPRO and SAMPLUS), Software User’s Manual,

WSI-Support.

SAM448-GOLD Contains SAM448-SILVER, WS6000 MagicPro
Programmer, WSI-Support.

WSI-Support 12-Month Software Update Service, Access to WSI’s

24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

3-6 WAFERSCALE INTEGRATION, INC.

SAM448

SAM448- |
GOLD
Contents Q ASMILE O SAMPRO
SAM design entry language. Interface software to SAM448 device
O SAMSIM programmer (MagicPro™).
Interactive Functional simulator with O SAMPLUS
Virtual Logic Analyzer user interface. Interface manager to SAM448
O SDP development tools.

SAM Design Processor Compiles the
User’s program to fit into the SAM448
Device.

Software user’s manual.
WSI-SUPPORT agreement.
WS6000 MagicPro Programmer.

ooo

WAFERSCALE INTEGRATION, INC. 37

SAM448

SAM448-
SILVER
Contents QO ASMILE SAMPRO
SAM design entry language. Interface software to SAM448 device
O SAMSIM programmer (MagicPro).
Interactive Functional simulator with SAMPLUS
Virtual Logic Analyzer user interface. Interface manager to SAM448
O SDP development tools
SAM Design Processor Compiles the Software user’s manual.
USG!’S program to fit into the SAM448 WSI-SUPPORT agreement.
Device.
3-8 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTE

Programmable System™Device

PAC1000

GRATION, INC.

PSD Development System

DGSCI’i[IﬁﬂII PAC1000-GOLD/PAC1000-SILVER is a The tools run on an IBM-PC XT, AT or
complete set of IBM-PC-based development compatible computer running MS-DOS
tools. They provide the integrated easy-to- version 3.1 or later.
use environment to support the PAC1000
program development and device
programming.

PACSEL PACSEL is the PAC1000 system entry 1 Enables mixing of three source
language. It has the following features: language types in one instruction:
@ Enables specification of up to three — High Level Language

parallel operations: — Assembler

— Program control operation — Microcode

— CPU operation IJ Specific instructions support unique

— Out Control operation PAC1000 architecture features available
General Syntax: in all three source language types.
Label: Program Control, CPU, Out Control; I Links unlimited amounts of modules.

PACSIM PACSIM is a functional simulator and [Provides breakpoint capabilities on any
software debugger. It has the following internal state of the PAC1000.
features: [Supports batch mode simulation.

A Clock driven functional simulator. Q Provides waveform analysis.

[Provides trace capabllmes_ on internal O On-line HELP available at any level.
states (Registers, Flags, Pins and
more).

PACPRO PACPRO is the interface software that O Write RAM to FILE
enables the user to program a PAC1000 O Display PAC data
microcontroller on the WS6000 MagicPro™
programmer. The PACPRO enables the O Blank test PAC
user to load the program into the I Verify PAC
programmer and to execute the following Q Program PAC
operations: . .

[Configuration
J Help O Quit
i
[Upload RAM from PAC
(d Load RAM from disk
IMPACT IMPACT is the interface manager to the without extension enabling the user to use

PAC1000 tools. IMPACT enables the user
to access PACSEL, PACSIM, PACPRO,
DOS and an editor with a menu driven
interface. File specification can be done

the same name throughout the design. A
HELP window is available on-line giving
information on all the needed steps at
each level.

WAFERSCALE INTEGRATION, INC.

3-9

PAC1000

Ws6000 MagicPro is an engineering development Remote Socket Adaptor (RSA). It occupies

Mayicpr ™ tool designed to program all WSI a short expansion slot in the PC. The RSA

Proyrammer programmable products (EPROMs, has two ZIF-DIP sockets that will support
RPROMSs, PAC1000, MAP168, PSD301 and WSI’s 24, 28, 32 and 40 pin standard
SAM448). It is used within the IBM-PC and 600 mil or slim 300 mil DIP packages
compatible environment. The MagicPro without adaptors. Other packages are
consists of a short plug-in board and a supported using adaptors.

Ws6010 The WS6010 is a socket adaptor that the PAC1000 in an 88-pin CPGA package

Socket Adaptor mounts on the MagicPro RSA and adapts to the programmer.

Ws6013 The WS6013 is a socket adaptor that the PAC1000 in a 100-pin QFP package to

Socket Adaptor mounts on the MagicPro RSA and adapts the programmer.

WSI-SIIIIIMIT WSI provides on-going support for users of user may purchase the WSI-Support
PAC1000-GOLD/PAC1000-SILVER. For the agreement to continue to receive the latest
first year, software and programmer updates software releases.
are included at no charge. After that, the

;”;’3’”’.‘{ . Product Description

niormation

PAC1000-SILVER Contains PAC1000 Software (PACSEL, PACSIM,
PACPRO, and IMPACT), Software User’s Manual,
WSI-Support.

PAC1000-GOLD Contains PAC1000-SILVER, WS6000 MagicPro
Programmer, WSI-Support.

WSI-Support 12-Month Software Update Service, Access to WSI’s
24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

3-10 WAFERSCALE INTEGRATION, INC.

PAC1000

PAC1000-

GoLp

Contents O PACSEL O IMPACT
System design entry language and Interface manager for PAC1000
program linker. microcontroller development tools.

d PACSIM [Software user’s manual.

Functional simulator and software QO WSI-SUPPORT agreement.
debugger.

O PACPRO 1 WS6000 MagicPro Programmer.

Interface software to PAC1000 device
programmer (MagicPro™).

WAFERSCALE INTEGRATION, INC. 31

PAC1000

PAC1000-
SILVER
Contents O PACSEL Q IMPACT
System design entry language and Interface manager for PAC1000
program linker. microcontroller development tools.
d PACSIM [Software user’s manual.
Functional simulator and software QO WSI-SUPPORT agreement.
debugger.
[PACPRO

Interface software to PAC1000 device
programmer (MagicPro™).

312 WAFERSCALE INTEGRATION, INC.

=55 = WS6000

WAFERSCALE INTEGRATION, INC.

PROGRAMMER
KEY FEATURES

¢ Programs All WSI CMOS Memory ¢ Programs LCC, PGA and QFP Packaged
and PSD Products and All Future Product by Using Adaptors
Programmable Products

MAGICPRO™ MEMORY AND PSD

¢ Easy-to-Use Menu-Driven Software

¢ Programs 24, 28, 32 and 40 Pin e Compatible with IBM PC/XT/AT |
Standard 600 Mil or Slim 300 Mil Dip Family of Computers (and True
Packages Without Adaptors Plug-Compatible)

GENERAL DESCRIPTION

MAGICPRO™ is an engineering development tool designed to program existing WSI EPROMs, RPROMs,
Programmable System Devices, and future WSI programmable products. It is used within the IBM-PC®and compatible
computers. The MAGICPRO™ is meant to bridge the gap between the introduction of a new WSI programmable
product and the availability of programming support from programmer manufacturers (e.g., Data I/O, etc.). The
MAGICPRO™ programmer and accompanying software enable quick programming of newly released WSI
programmable products, thus accelerating the system design process.

The MAGICPRO™ plug-in board is integrated easily into the IBM-PC®. It occupies a short expansion slot and its
software requires only 256K bytes of computer memory. The two external ZIF-Dip sockets in the Remote Socket Adaptor
(RSA) support 24, 28, 32 and 40 pin standard 600 mil or slim 300 mil Dip packages without adaptors. LCC, PGA
and QFP packages are supported using adaptors.

WAFERSCALE INTEGRATION, INC. 313

WS6000

Many features of the MAGICPRO™ Programmer show its capabilities in supporting WSI’s future products. Some of
these are:

— 24 to 40 pin JEDEC Dip pinouts
— 1 Meg. address space (20 address lines)
— 16 data 1/O lines

The MAGICPRO™ menu driven software makes using different features of the MAGICPRO™ an easy task. Software
updates are done via floppy disk which eliminates the need for adding a new memory device for system upgrading.
Please call 800-TEAM-WSI for information regarding programming WSI products not listed herein. The MAGICPRO™
reads Intel Hex format for use with assemblers and compilers.

MagicPro™ COMMANDS WSI PRODUCTS
— Help WS57C191/191B/291/291B 2K x 8 RPROM
— Upload RAM from device WS57C43/43B 4K x 8 RPROM
— Load RAM from disk WS57C49/49B 8K x 8 RPROM
— Write RAM to disk WS57C51/51B 16K x 8 RPROM
— Display RAM data WS27C64F/L 8K x 8 EPROM
— Edit RAM WS57C64F 8K x 8 EPROM
— Move/copy RAM WS57C65 4K x 16 EPROM
— Fill RAM WS57C66 4K x 16 EPROM
— Blank test device (Mux 1/O, 28 Pin DIP)
— Verify device WS27C128F/L 16K x 8 EPROM
— Program device WS57C128F 16K x 8 EPROM
— Select device WS27C256F/L 32K x 8 EPROM
— Configuration WS57C256F 32K x 8 EPROM
— Quit MagicPro™ WS57C257F 16K x 16 EPROM

WS27C512F/L 64K x 8 EPROM

WS27C010L 128K x 8 EPROM

MAP168

PAC1000

SAM448

PSD301

TECHNICAL INFORMATION

® Size: IBM-PC®short length card

¢ Port Address Location: 100H to 1FFH—default 140H (If a conflict exists with this address space, the address location
can be changed in software and with the switches on the plug-in board.)

* System Memory Requirements: 256K bytes of RAM

* Power: +5 Volts, 0.03 Amp.; +12 Volts, 0.04 Amp.

* Remote Socket Adaptor (RSA): The RSA contains two ZIF-Dip sockets that are used to program and read WSI
programmable products. The 32 pin ZIF-Dip socket supports 24, 28 and 32 pin standard 600 mil or slim 300 mil
Dip packaged product. The 40 pin ZIF-Dip socket supports all 40 pin Dip packages. Adaptor sockets are available
for LCC, PGA and QFP packages.

314 WAFERSCALE INTEGRATION, INC.

WS6000

ORDERING INFORMATION

The WS6000 MAGICPRO™ System contains:

* MAGICPRO™ IBM-PC® plug-in
programmer board

* MAGICPRO™ Remote Socket Adaptor
and cable

¢ MAGICPRO™ Operating System Floppy Disk
and Operating Manual

IBM-PC®is a registered trademark of IBM Corporation.

MAGICPRO™ Adaptors include:

WS6001 28 Pin CLLCC Package adaptor for memory.

WS6003 44 Pin PLDCC/CLDCC/CLLCC package adaptor
for MAP168.

WS6008 28 Pin 0.3” wide DIP adaptor for SAM448.

WS6009 28 Pin PLDCC/CLDCC/CLLCC package adaptor
for SAM448.

WS6010 88 Pin PGA package adaptor for PAC1000.
WS6011 44 Pin PGA package adaptor for MAP168.

WS6012 32 Pin CLDCC package adaptor for memory.
WS6013 100 Pin QFP package adaptor for PAC1000.
WS6014 44 Pin CLDCC/PLDCC package adaptor for
MAP168 and PSD301.

WS6015 44 Pin PGA package adaptor for MAP168 and
PSD301.

MacicPro™ is a trademark of WaferScale Integration, Inc.

WAFERSCALE INTEGRATION, INC. 3-15

3-16 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION,

e

<

£3

Section Index

PSD Applications Application Note 002

Application Note 010
Application Note 005

Application Brief 006
Application Note 008
Application Note 009
Application Brief 007
Application Note 003

Application Note 004

Introduction to the MAP168 User-Configurable

Mappable Memory Subsystem
PAC1000 Introduction

PAC1000 as a High-Speed Four-Channel

DMA Controller

PAC1000 as a 16 Bi-Directional Serial

Channel Controller

PAC1000 User-Configurable Microcontroller with a

Built-In-Self-Test Capability

In-Circuit Debugging for the PAC1000

User-Configurable Microcontroller

Hardware Interfacing the PAC1000 as a

Micro Channel Bus Controller

High-End SAM Applications Using

Microassembler Design Entry

SAM Applications Using State Machine Design Entry

call

In California, call 800-562-6363.

For additional information,
800-TEAM-WSI (800-832-6974).

WAFERSCALE INTEGRATION,

INC.

am—
A S
S a—

WAFERSCALE INTEGRATION, INC.

Programmabhle System™Device

Application Note 002

Introduction to the MAP168

User-Configurable Mappable
Memory Subsystem

Memory Structure

Memory configurations in microprocessor and
microcontroller systems have similar struc-
ture, irrespective of the application. (see
Figure 1.) They share basic components,
such as an EPROM (for program storage),
and an SRAM (for data storage). In addition,
a decoder circuit is required to select blocks
of memory from the address inputs applied by
the processor. A common implementation of
address decoding originally used MSI building

blocks, such as 74xx138 devices. Memory-
configuration changes and expansions in a
fixed-logic solution required jumpers on the
printed circuit board. More recently, decoders
based on PAL® devices have provided a more
compact and flexible solution. PAL devices
allow configuration changes to be imple-
mented by insertion of a programmed device
and avoid jumper changes.

Figure 1. Memory
Subsystem Using
Standard Devices

—NJ
) EPROM
cs OE
‘_T T Data Bus >
RD
> SRAM
CS WE OE
Address Bus — T T
Micro- RD — N Decode WR RD
processor —— Logic and
WR |——* Jumpers }|—— CSO
To Other Devices
paabis o5
1739 01

Both solutions involve compromises that
affect system performance, board space,
power and cost. Since the decoder is in the
memory access path, the total memory
access time is the sum of the decoder delay
and the access time of the memory itself. For
example, a 40ns total access time can be
achieved with a 12ns decoder and a 25ns
memory. This allows 3ns for on-board inter-
connect delay. Memory products in the 25ns

range are expensive and therefore such a
performance entails additional cost. To be
able to integrate the programmable address
decoder with system memory, EPROM and
static RAM would offer a more flexible
approach. The resulting device would provide
board-space economy, higher performance
and less overall power consumption without
the cost of a multichip solution.

WAFERSCALE INTEGRATION, INC.

MAP168 — Application Note 002

Memory
Structure
(Con’t)

The WSI-MAP family of user-configurable
mappable memory subsystem products has
been developed to significantly enhance
system performance by integrating high
density EPROM for program store, high
density SRAM for data store and high per-
formance logic in the form of a Programmable
Address Decoder (PAD) on one chip. (See
Figure 2.) The first of these devices, with
128K bits of EPROM and 32K bits of SRAM,
is the MAP168 device. These devices are

ideally suited for a number of common design
applications:

1 High-speed Digital Signal Processor
applications (modems, analog data
filtering or analysis)

3 Expanding memory systems for
microprocessors and microcontrollers

3 Space- and power-sensitive applications

(plug-in cards, avionics, portable
systems)

Figure 2. Memory

Subsystem Using
Add B ADDRESS
the MAP168 e
j AD 3 S0
newce T To Other Devices
WR WE > 50
ey [l
Microprocessor MAP168 1739 02
Features of the The MAP168 device offers significant design 3 Integrated external device mapping
MAP168 Device advantages through integration, performance through Chip Select Outputs
and user-configurability. It integrates both Memory Architecture And Technology
volatile and non-volatile memory on the same The memorv in the MAP168 devi nsist
chip, along with a flexible decoding system. € memory In the evice consists
The memory is structured as a series of of "on'.VOIat'le EPROM and V.()'at"e S.BAM'
blocks to achieve a highly configurable circuit .(Steeng?“rlf 3) The Egsm".:ft:;bg""ied
for general purpose applications. The device into 0CkS anc the S INto < DIOCKS.
operates in one of several modes, one of The blocks may be conf:gured'ln e'th?r a
which is for normal operation and the rest are ?It(xs ot(a 1K¥;if?r:'gat’ acljlavé"t‘)gt optn;nal
for device configuration. At the heart of all llr_lheracra:nmw b:) K) ar:] b - In S.)és Srgs.
MAP168 device is a Programmable Address ese memory DIOCKS can be considered as
Decoder (PAD), which is programmed during separate memories with dedicated mterna[
the PAD programming mode through the chip selects. The PAD se]ects t.he appropriate
circuit's address and I/O pins. The PAD offers blocl.g decoded "°fT‘ thg incoming addrgss
the following features: provided at the device inputs. This grchltec-
.) " ture enables the product to be configured and
0 Flexible EPROM/SRAM location within compatible with virtually any system address
the address space map. Complicated address maps of micro-
O Memory array power-down when not controller systems can be fully realized by
being accessed programming bloclfs of EPROM and SRAM in
O Security protection of memory the memory-mapping scheme of the system.
configuration data to inhibit copying
4-2 WAFERSCALE INTEGRATION, INC.

MAP168 — Application Note 002

Features of the In addition to having fine control of memory fast decode and reconfiguration of the same
MAP168 Device allocation, software updates which require device. The MAP168 device contains a 128K-
(Con’t) changes in the address map boundaries can bit UV erasable EPROM which can be
be easily accomplished by simply reprogram- organized as 16Kx8 (byte-wide) or as 8Kx16
ming the PAD at the same time as the (word-wide).
EPROM code. This means only one part The SRAM is based on the industry standard
need be sent to the end-product customerto ¢, CMOS 6-transistor cell. The advantages
accommodate field software changes. This of this cell are high speed, very low stand-by
becqmes a user-transparent method that power, high noise immunity and good data
requires no change of PC board jumpers. retention when disturbed by alpha particles.
The EPROM is based on WSI’s patented In the MAP168 device, the SRAM contains
split-gate EPROM technology for high density 32K bits which can be configured as 4Kx8 in
and very high speed. It is also used in the the byte mode or 2Kx16 in the word-wide
reconfigurable PAD section, permitting both mode.
Figure 3.
Internal MAP168
Architecture DECODED EPROM
Ag-A N A-A
——] " eprom —] ° " eprom
PGMH 8K x 8 8Kx 8
| PGM PGM
. EOEH
Ag-Aqq OE ouT,; INys OE ouT.; INg;
PGML ZAS
EOEL
DECODED SRAM
ADDRESS
Ag-Asp Ag-Ar2
PAD SRAM SRAM
WEH 2Kx 8 2Kx 8
WE WE
ROEH
OE ouTy; INg, OE ouTy; INg;
BRE WEL
WE /\bp ROEL
(E —
CSi/Ay, con CSe7 { }
A OEL
FCSO
oen | T MUX MUX
\V4 A N7
N VAR \/?/_}k
L]
0g 15 OR C8O0, 1047 1739 03

WAFERSCALE INTEGRATION, INC. 4-3

MAP168 — Application Note 002

Features of the
MAP168 Device
(Con’t)

PAD Logic Implementation

The PAD uses the same non-volatile EPROM
cells as the EPROM array. (See Figure 4.) It
can be erased and configured at the same
time as the EPROM. After UV erase or with
new parts, the EPROM cells in the MAP168
device normally connect between the address
inputs and the select outputs. The EPROM
cells are disconnected by selective program-
ming.

The PAD performs as an address
comparator. When the address configuration
previously programmed into the PAD is
detected, the internal chip-select signal to the
memory block selected by that address is
enabled. If no block is selected by the
address, neither the EPROM nor the SRAM
arrays are enabled and other devices may
drive the data bus. Independent of internal
block selection, external chip-select decoding
(known as CSOs) are programmable in the
same block resolution as the internal
memory.

Actual implementation of the PAD is similar to
that of a PAL device. (See Figure 5.) In the
erased state, all the block decode addresses
are connected to the AND plane. There is
only one output per AND gate and there is no
OR plane. Each AND gate output either
selects a block of internal memory or a
number of blocks of external memory for the
external CSOs. Only addresses A,,-A,, are

used as block decode address. Lower-order
address lines are used only for addressing
within the internal memory arrays.

EPROM select outputs ES ~ES, (ES outputs)
select 1 of the 8 available EPROM blocks.
SRAM select outputs RS -RS, (RS outputs)
select one of the 2 available SRAM blocks.
Because only one EPROM or SRAM block
can be active at a particular time, only one
line from either ES ~ES, or RS~-RS,is
allowed to be active at one time. The CSOs
are independent of the ES and RS outputs
and therefore any one address can be
programmed to select one or more of the
CSOs, even simultaneous to the selection of
one of the ES or RS outputs. This is particu-
larly useful for I/O control or address decode
for wait state generation.

Programming the decoder is similar to
programming a PAL device that has only one
product term (AND gate) per output. To
enable an output S, as shown in Figure 4,
fuse locations A, and A, are left intact while
A,, and A, are programmed. Conversely, if
A,, and A, are programmed while their com-
plements are left intact, then the select S
function is active when A, =A,,=0. If all
fuse locations are programmed on a product
term, the inputs are pulled HIGH and no
select output can take place. If all fuse
locations are left intact, the S output is
permanently LOW, always selected.

Figure 4.
PAD Programming
Examples

Ko

S1= Aty A

Sp= Ay A

S3= HARD DESELECTED = NEVER SELECTED

S4= Ar2

S5 = DON'T CARE = ALWAYS SELECTED

PIK—¥

OUU0UUU

® = CONNECTED
X = DISCONNECTED
1739 04

44

WAFERSCALE INTEGRATION, INC.

MAP168 — Application Note 002

Features of the Device Array Power-Down provided for a very low-power quiescent

MA’,’ 168 Device Power dissipation on the chip is minimized mode. With CSI=1, the EPROM and SRAM

(Con’t) through logic in the PAD. It selectively are powered down but @he PAD is powered
powers up the EPROM or SRAM arrays only ~ UP, independent of the incoming address
when they are being accessed. If the signals. The CSI input pin can be connected
EPROM is selected through the decoder, it to a system power-down signal. If sucha
will draw power while the SRAM stays signal is unavailable, addressupg a location in
powered down and vice versa. When neither ~ Mmemory that does not select either the
the EPROM or the SRAM is selected, both EPROM or the SRAM also reduces power
are powered down. Note that data integrity in ~ drain. In this case, only the PAD is powered
a “powered down” SRAM is maintained. A up and draws a small fraction of the active
Chip Select Input (CSI) to the device is power.

Figure 5.

PAD Array D=,

Architecture

1739 05

WAFERSCALE INTEGRATION, INC. 4-5

MAP168 — Application Note 002

Features Of The The CSI/A,, input is actually a dual function

MAP168 Device pin. It can be an address (MSB) input, or it

(Con’t) can be programmed to be a chip select input
as well. As a chip select input, it will enable
the EPROM and SRAM memory when active
(LOW). If the address option A, is chosen the
chip is always enabled.

Address Map Security

Upon entering the PAD programming mode,
the contents of the PAD are fully accessible
through the I/0 pins. After programming is
completed, it is possible to render the PADs
programmed configuration invisible by pro-
gramming the security (SEC) bit. This dis-
ables external access to the PAD and en-
sures that the PAD configuration can not be
copied. To further aid in securing data in the
MAP product, it is suggested that memory
blocks that are addressed in a linear block
placement be programmed in the PAD as
chip selects from product terms that are
randomly placed.

Chip Select Outputs

The MAP168 device can be user-configured
for 8-bit or 16-bit systems. In the former case,
eight unused data lines (CSO,_,) are available
as chip select outputs, driven by the address
decoder section of the PAD. This provides the

ability to integrate external devices into the
address map with no hardware overhead.
Unlike the internal memory blocks, a CSO
can be active for more than one address
combination or block. Also, groups of blocks
may overlap both each other and the internal
memory. By deselecting both the true and the
complement it is possible to make an address
line “don’t care”.

An external memory can therefore be se-
lected with only one CSO. It is possible to
enable another external 128K byte memory
by programming a single CSO to be active for
that entire address range.

A CSO can be programmed to function as a
configuration bit which is always deselected
(e.g., CSO,=1) or always selected (e.g.,
CS0,=0) by programming the addresses with
“hard deselect” or with the “don’t care”
patterns, respectively. This is similar in
function to a PC-board wire jumper. If unused
CSOs are programmed with all addresses
“don’t care”, then switching is eliminated and
power consumption reduced for those lines.

Since the PAD is always powered up when
the device is selected (CSI=0), CSOs are
always active and their state is a direct
function of the PAD configuration and current
address line inputs.

System The MAP168 device is designed to reduce
Applications memory access time and board area utiliza-
tion in high performance digital signal proces-
sor, microcontroller and microprocessor
systems. These systems typically have the
following requirements:
3 16-bit data path
1 64K to 1 Meg address space

@ Fast memory access time (100ns to
40ns)

3 Decoding for I/O and memory
1 Printed circuit board area limitations

3 Multiple types of memory, including
EPROMs and SRAMs for program and
data store.

The DSP System Architecture shown in
Figure 6 illustrates a typical system based

upon a 40MHz TMS320C25 digital signal
processor. Such a system allows only 40ns
for memory access time. The access time
must be broken down into decoding time and
memory-access time. The fastest decoders
available today require approximately 10ns to
complete their decode function. Due to this
decoding time, memory access time for both
the EPROM and SRAM must be 30ns or less.
The WSI-MAP family of products performs
decoding on-chip with no speed penalty. As a
result, the performance of a 40ns MAP168
device in the above example is equivalent to
a 10ns decoder and a 30ns EPROM and
SRAM memory. In addition, the package
equivalent of two fast EPROMs, two fast
SRAMs and at least one decoder are com-
bined into one MAP168 chip resulting in at
least a 5-to-1 component count reduction.

4-6 WAFERSCALE INTEGRATION, INC.

MAP168 — Application Note 002

System High-Speed, Word-0riented Application Memory (DS). These functions are con-
App!lcatmns The MAP168 device is especially suited for nected to the higher order address of the
(Con’t) high-speed word-only microprocessors. The ~ MAP168 device. PS is connected to A,
TMS320C20/25 DSP family is an example of ~ and DS is connected to A, ;. Usually PS will
such a microprocessor. Interfacing the select the EPROM and DS will select the
MAP168 device to a TMS320C25 operating ~ SRAM. The PAD permits partitioning of the
at 40MHz with no wait states is illustrated in ~~ MAP168 memory to accommodate virtually
Figure 7. The TMS320C25 has two pins for any system address map. Figure 8 shows
selecting Program Memory (PS) and Data two possibilities.
Figure 6.
DSP System - G5 To Ponts
Architecture plest 110 Port
(PLD) Interface
1618 EPROM EPROM
ADDRESS o AD AD
—CS —+(CS
RD OE —* OE
D’ngrlégle i%nral DATA (07) DATA (07)
M|croprocessc;r, or
Microcontroller 16
DATA
I : __ DATA + __ DATA *
: Ao | —OE (07) —OE (07)
E] - : Vf SRAM [Vf SRAM
BHE ::q% s cs
|
: Only Where Byte : AD AD
A Operations Are Needed |
* Replacedby 7777
MAP168 Device
1739 06
Figure 7.
TMS320C25 N T
Interfacing Ps = s Ay Mermory Configuration
x16 Configuration 40 MHz —#] CK _ 2K x 16 SRAM
DS A7
Ag~A1s > Aite
TMS320C25 A MAP168
0
Do-D1s < > Do=D+s
Voc +— READY SRE .
s:r/g D WR
OE
—{CSiiay
= 1739 07

WAFERSCALE INTEGRATION, INC. 4-7

MAP168 — Application Note 002

System When in a word-wide (x16) configuration, the For expanded memory requirements in a
Applications total memory available on the MAP168 device word-wide (x16) configuration, two MAP168
(Con’t) is 8Kx16 of EPROM and 2Kx16 of SRAM. devices can be interfaced directly with a
The implementation shown in Figure 7 TMS320C25, as shown in Figure 9. The two
replaces at least five circuits: MAP168 devices provide the total system
O One high-speed decoder (10ns) memory. Key features of this system are:
O Two 8Kx8 EPROMs (30ns) 0 40ns access time
O Two 2Kx8 SRAMs (30ns) 0 16Kx16 EPROM
If the system was previously implemented 0 4Kx16 EPROM
using a boot EPROM, the MAP168 device 1 16 general purpose programmable chip
replaces ten circuits: selects
& One high-speed decoder (10ns) The general-purpose programmable chip
@ Two 8Kx8 EPROMs (30ns) select outputs can be mapped to any location
in the address space via the PAD. These chip
2 Two 2Kx8 SRAMs (30ns) selects can be used to access /O ports,
U Two 8Kx8 slow EPROMSs select additional memory or control other
Q Three ICs for Wait-State generation system functions.
Figure 8. Memory
Mapping With 64K Words
MAP Z 70
1K x 16 SRAM
EPROM %
S 4K x 16 EPROM
PS / // D5 —4 / X /
N 4K x 16 EPROM
SRAM, e .7
DS //// 1K x 16 SRAM
a. Contiguous Mapping b. Split Mapping 1739 08
4-8 WAFERSCALE INTEGRATION, INC.

MAP168 — Application Note 002

Microcontroller The MAP168 device has two basic configura- simple interconnection of the MAP168 device
Application tions. They are a word-wide (x16) configura- to a microcontroller. The HPC16040 operat-
tion with byte operation capability and a byte- ing without wait states requires a memory
wide (x8) configuration with 8 chip select access time of 65ns or better. This makes the
outputs. MAP168 device a good fit, since it offers an
The 128K address space (during byte opera- access time of 40ns, leaving a 25ns margin.
tions in the word-wide mode) makes the The MAP168 device can be configured in a
MAP168 device especially suited for micro- byte-wide (x8) mode and can also be
controller applications. Figure 10 illustrates a doubled-up with a second device.
Figure 9. DSP
with Expanded _ R
Memory Fs 18
40 MHz —»] DS I As; MAP168
Ao-Aqs ™ Ai-te
g 'Y Ay, CSI
TMS320C25)
Do=Dy5 <:__ Dg-Dys S
STRB |— |+ — N
Vcc<——< READY RW [— D We
OE
Atg
A7 MAP168
N Arie
T Ag Asg, CSI
> DoDys
BRE[—
WE
L—» OF
1739 09

WAFERSCALE INTEGRATION, INC. 4-9

MAP168 — Application Note 002

Microcontroller
Application
(Con’t)

Embedded Controller Application

An embedded controller is an intelligent
section of logic, usually based around a
processor, dedicated to a particular task and
is not accessible for software alteration by the
user. Such applications are generally com-
plex and are becoming more common in
system design. Typically, embedded control-
lers are high performance systems designed
under severe space/power constraints. On
the other hand, they have a limited ability to
be upgraded and limited program memory.
This makes them ideal candidates for the
WSI-MAP device implementation. The
MAP168 device has the following key fea-
tures which are useful in such an application:

3 1M address space decoding
1 40ns access time

1 Byte operations in word-wide mode
(BHE)

d One output chip select when in the word-
wide mode (FCSO)

1 Nine output chip selects when in the byte- *
wide mode

3 Programmable Address Decoder (PAD)

A popular processor for embedded applica-
tions, due largely to its extensive software
library and development support, wide
availability of compatible peripherals and low
cost from volume production is the 80186
from Intel. Figure 11 shows how a MAP168
device can be interfaced to an 80186.

The UCS (Upper Chip Select) is connected to
CSI/A,, on the MAP168 device. The PAD is
programmed to locate a 1Kx16 EPROM slot
in the upper memory address space for a
reset subroutine. The rest of the memory can
be located as required by the user. Figure 12
shows one possibility.

WSI-MAP Family
Development
Support

WSI provides the development environment
needed to program the WSI-MAP family
products. A menu-driven software package
known as MAPLE is available under the
WISPER top-level software. It operates on
the popular IBM-PC® as a platform and in-
cludes extensive documentation on installa-
tion and operation. It generates configuration

files for use by the programming tools. These
programming tools include the MagicPro™
programmer hardware and the MAPPRO
software. They enable the user to program
the PAD and the EPROM. For additional in-
formation, consult your nearest WSI sales
representative.

Figure 10.
Microcontroller
Interfacing

x16 Configuration

Memory
Configuration

8K x 16 EPROM

2K x 16 SRAM
T Me» A17e Ags Arg
Ay 45 K D, Latch) ILTET
G
MAP168
ALE _[—_'1 mAzo
Microcontroller G ’
(HPC16000, N e N a
8096, etc) —/]] %7
BHE WE OE Dg_q5
Vo4 READY T
BHE
:> Do15
WR !
RD 1739 10

410 WAFERSCALE INTEGRATION, INC.

MAP168 — Application Note 002

Figure 11.
Interfacing To Ao N At
An 80186
Xx16 Configuration N
ADg_15 <i> La(t;h] APs1s
ALE
G N
N Latch Aoz
v 80186 vV MAP168
cc (x16)
SRDY BHE BHE
. _ FCSO 7o
ARDY ucs CSl /Ay, —— User
Port
WR WE
RD OE Dgs
ADg_15 i; >
L »iCsS
——_J> MCS, 5 1739 11
Figure 12.
Optional Memory 1Kx 16
Mappilly Fa’, A” EPROM Reset
80186 ucs
P 7K x 16
“Sore — EPROM
SDSZ ——» 1Kx 16 SRAM
1K
Vector
Interrupt ——f 1K x 16 SRAM
Store
1739 12

WAFERSCALE INTEGRATION, INC. 4-11

412 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

Application Note 010

PAC1000 Introduction

By Chris Jay and David Fong

Abstract The PAC1000 user configurable high a full system design is attempted. This
performance microcontroller, from application note is intended to introduce
WaferScale Integration, is the first of a the device and its architecture along with
generation of devices intended for the support software tools to the systems
applications in high end embedded designer. Finally to develop some simple
control. Understanding the device applications leveled at common problems
architecture and using its support tools found in system design.
require some practical experience before

Introduction The PAC1000 has many applications in require some additional chips. An alternative

digital systems where high speed processing,
interface or control is required. The two
roles of the device are in a standalone
mode where the PAC1000 is programmed
to control data flow to or from other systems,
or as a high speed peripheral working with
a host microprocessor. Frequently, many
systems designers cannot find the ideal
solution to their requirements in a standard
chip. The designer may look at creating
the required function from discrete logic, a
combination of a number of PAL/EPLD
devices, Programmable Gate Array (PGA)
products or standard gate array. In each
alternative, the designer is trying to reduce
the chip count of the system solution and
hence increase its reliability and reduce
assembly costs.

The discrete TTL or CMOS logic solution
to a systems design is considered by some
to be an old fashioned approach but still
popular with many digital design engineers.
However, designs using this technology
can quickly escalate in chip count as the
development progresses and once a
system is designed it is very difficult to
modify because the finished printed circuit
board contains devices that cannot be
re-programmed or altered in any way. Also,
a revision or system upgrade will require a
new printed circuit board design.

The PAL/EPLD solution reduces the chip
count over a solution that uses discrete
logic but still many devices are used
because the PAL/EPLD products are not
very register intensive. Small subsystems
such as FIFO or a STACK require a number
of PAL/EPLD devices and additionally

solution would be to use additional
dedicated chips like FIFO, ALU and SRAM,
leaving the PLD/EPLD devices to handle
the glue, interface and small state machine
functions. The Programmable Gate Array
brings the system down to a possible
acceptable level but system logic still has
to be defined and routed in the logic cells
and a number of PGA devices have to be
designed such that they all work together.
Nevertheless, in the case of the
programmable solution, subsystems such
as STACK, ALU, REGISTER FILES etc.,
might still need to be configured in the
gates and registers of these devices. This
can cause an escalation in the quantity of
these chips used in the final system,
because PLDs and PGAs are not good
vehicles for integration at the subsystem to
system level. In a gate array design the
turn-around time is longer than the
programmable solution, and because the
device is not re-programmable there is a
high level of risk in going to a gate array
solution. Also, the high ‘up front’ Non
Recurring Engineering charges NRE can
rule out the use of gate array.

The Programmable Standalone Controller
offers the most likely solution to the
problem facing the systems designer. Very
often both the PAC1000 is used with:
programmable logic devices to effect an
overall solution. For example in some
modes of operation PLDs are used for
address decoders to select and gate the
host interface control lines such as CSB,
RDB, and WRB. By bringing the package
count of the system down to its lowest

WAFERSCALE INTEGRATION, INC.

413

PAC1000 — Application Note 010

Introduction level the design cycle time reduces, so microprogrammable designs. Designing

(Cont.) minimizing the overall time to market of with the PAC’s software support tools is very
the final product. The reason for this is similar to writing code for microprocessors.
that the PAC1000 already contains the The end result is an assembled listing which
subsystems necessary for a fully functional can be simulated prior to programming
system design, and being programmable, it into the PAC1000 device’s on chip EPROM.
can be adapted to perform most functions The difference between microprocessors,
required from systems devices. conventional microcontrollers and the
The PAC1000 comprises elements such PAC1000 device is found its ability to
as FIFO, ALU, register files, STACK, execute instructions in parallel, and to
microcode store, loop and breakpoint offer the designer a flexible architecture.
counters, special registers and interface Microcontrollers and microprocessors
logic all interconnected by a general function on single operations of execution,
purpose internal bus structure. The but the PAC1000 executes three instructions
instructions that control data flow are in parallel during the current clock cycle.
contained in the EPROM section of the In this way the PAC1000 device needs
microcontrol store. These instructions are ~ fewer EPROM locations to store the code
entered into the system by the designer as w.hlch perfprms a given function. In gddmon
assembly or high level language code. high functional speeds can be obtained
There also exists a microcode entry level because the device can execute those
for those designers who are used to instructions at the clock rate of the system.

PAC1000 Device The PAC1000 device architecture can be Figure 1a, clearly identifying the sub

Architecture divided into three subsystems, see Figure structures of the three subsystems. The
1a; a CPU section that is similar to those different sections of the PAC1000 are
found in microprocessors, a host interface, interconnected to each other by internal
and a programmable instruction control buses and convey data and instructions to
unit. The instruction register can be clearly and from each other. Communication to
identified with its three output sections of and from the outside world is achieved
control, output and CPU Operation through various input and output registers,
Definition. Figure 1b illustrates a more and a Command/Data FIFO.
detailed diagram of the system than

The Control Unit The control unit is constructed around a 00AH and 00BH respectively. These are
1K deep 64-bit wide EPROM, see Figure the vectored addresses at which processing
1b. The 64-bit wide instructions are will continue in the presence of one of
programmed in the EPROM section and these active interrupts. At the interrupt
are accessed and executed on each clock location a jump to an interrupt service
cycle. The input RESET causes the routine should be inserted. For example,
PAC1000 to access and execute the first the occurrence of INTO will divert
instruction at location 000H of EPROM. processing to location 008H, that location
On each execution cycle, the Instruction may contain a JMP 100H, where 100H is
Register shown in Figure 1a will contain the address where the service routine for
three control operatives, a next address INTO should reside. The internally
instruction to the control section, an output generated. interrupts are INT4, INT5, INT6
instruction and CPU instruction. The other and INT7 which divert processing to
inputs to the control unit include interrupts locations OCH, ODH, OEH and OFH
and condition codes. There are four external respectively. Details of their allocated
and four internal interrupts that can be function is given in the PAC1000 data
enabled under programmed control. These sheet. In addition there are eight condition
can generate a branch to an interrupt code inputs CC[7:0], shown alongside the
service routine that results from a rising INT[3:0] inputs in Figure 1b. These inputs
edge applied to the external interrupt can be tested individually under program
input. For interrupts INTO, INT1, INT2, and control. The combination of Next Instruction
INT3 there are four locations 008H, 009H Definition, Interrupt and Condition Code

414 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

The Control Unit
(Cont,)

input direct the flow of the program and
hence the execution of instructions
contained in the EPROM section. The
CASE logic is used in the controller
section to enable CASE statements to be
executed on condition code groups. The
eight condition code inputs may be divided
into two four bit groups. Case group zero
CGO comprises CCO, CC1, CC2 and CC3.
Case group 1 CG1 comprises CC4, CC5,
CC6 and CC7. A further two case groups
CG2 and CG3 test flag registers (see

Table 1). These condition code inputs may
be tested individually or tested in a group.
When tested in a four bit group, a one-of-
sixteen branch will occur, as specified by

the CASE instruction.

The current status of the PAC1000 is kept
in the sixteen bit status register. STATO-
STAT11 give twelve status bits with four
extra bit locations for future development.
Table 2 shows the assignment of each
register.

Figure 1a. TS RD WR HD[15:0] HADI5:0]
PAC1000 (R
Microcontroller | wost wrerrace |
Single Cycle
Control i 1
Architecture CONDITION CODES ——<—»{ CONTROL
INTERRUPTS —— UNIT cPU
NEXT INSTRUCTION — s
DEFINITION
2 Pid
oK INSTRUCTION REGISTER 28
cou*rnon.l outPuTi CPU
‘ | 1 | 1/0[7:0] ADD[15:0]
CPU OPERATION
OC[15:0] DEFINITION
Figure 1b. CLK RESET CS RD WR HD[15:0] HAD5:0]
PAC1000 i i i : ‘L
Mlcmco!ltroller CONFIGURATION REGISTERS L HOST INTERFACE
Block Diagram
CONTROL | 1/0 CONFIGURATION I MODE
| para wput | | oata outeut| | commanpipara FiFo |
CONTROL SECTION POINT REG crPU 32 x 16
BREAKPOI REGISTER FILE
SEQUENCER 3 REGISTER
LOOP CNTR K x6a
PROGRAM CNTR PROGRAM
MEMORY AL
S
s] [outpur
1 [(AooRESS counTen |
TEST LOGIC|INTERRUPT ¢ t
I 1/0 SPECIAL I ADDRESS/DATA I
FUNCTION PORT PORT
cc:o] INT[3:0] OUTCNTLI15:0] 1/0[7:0] ADD45:0]

WAFERSCALE INTEGRATION, INC.

4-15

PAC1000 — Application Note 010

Table 1.
CASE Group
Assignments

Condition Code

CASE

CCo, CCt, CC2, CC3

CASE Group 0

CC4, CC5, CCs, CC7

CASE Group 1

S, 0, Z CY.

CASE Group 2

INTR, BCZ, FIOR, FICD.

CASE Group 3

FIXP, ACO, STKF, FIIR, DOR, INTR N/A
Table 2. Status wsl
ﬂeyister 0 0 Reserved | S11|S10| S9 [S8 | S7 [S6 | S5 | S4 [S3 | S2 | S1 | SO
S11 — Security Bit, High is Active Security On, Low is No Security.
S10 — Scan Mode, High is Active On, Low is No Scan Mode.
S9 — FIXP FIFO Exception Occurs When a Command is Written, a Low Means No
Exception.
S8 — FIIR FIFO Input Ready When There is at Least One Location Vacant.
S7 — CY Set High When the Result of a CPU Operation Generated a Carry.
S6 — Z Set High When the Result of a CPU Operation is Zero.
S5 — O Set When an Overflow Has Occurred During a Two’s Complement Operation.
S4 — S Sign Bit Set to One When the Result is a Negative Number.
S3 — Stack Full Flag. Set When the Stack is Full.
S2 — Breakpoint Flag is Set When the Address in the Breakpoint Register is Equal
to the Address in the Program Counter.
S1 — BCZ is Set When the Block Counter Reaches Zero.
SO0 — ACO Address Counter All Ones Flag is Set When the Address Counter Reaches
the Maximum Count.
The Control Unit A single internal counter is provided for are possible because the current contents
([,‘ant,) loop control, this is part of the control of the loop counter is saved in the stack
section, and is shown in Figure 1b. If a when the next subsequent loop in the next
FORLOOP is executed the loop counter is is entered. When leaving the loop the
loaded and the instructions within that stack is popped to return the old count
loop are executed until the counter has back into the loop counter thus preserving
decremented to zero. The loading of this its original contents. When the stack
counter is transparent to the designer in becomes full a status flag STKF is set in
the respect that the FORLOOP instruction the sixteen bit status register and an
automatically performs loading and counting. interrupt level 7 is generated.
A fifteen level stack is incorporated to hold To enable a debugging facility a register
the return address of the main program called the breakpoint register is included
when a subroutine call or interrupt service in the microcode section. When the
routine is being executed. The address of contents of the program counter is equal
the next sequential instruction to be to that of the breakpoint register an
executed is pushed onto the stack. The interrupt level six is generated. For
stack is also used for LOOP NESTING. debugging purposes a level six interrupt
There is only one loop counter in the service routine should be written to
PAC1000 but nested FORLOORP instructions perform diagnostic tests within the system.
Host Interface The host interface section has been commands to its internal registers may be
designed to easily integrate into a CPU achieved through an internal FIFO. Standard
based system. When the PAC1000 is used microprocessor signals of chip select CSB,
in the peripheral mode, the flow of data or read RDB and write WRB (active LOW CS,
4-16 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Host Interface
(Cont.)

RD and WR) are accompanied by a
sixteen bit Host Data and a six bit Host
Address bus. Table 3 gives the conditions
governing the mode setting for both
standalone and peripheral mode. The logic
condition of HDSELO and HDSEL1 in the
control register will determine the mode of
the PAC1000 operation. Bit positions in
this register can be set or reset under
program control.

A detailed block diagram of the PAC1000
is given in Figure 2 which illustrates the
internal structure of the control section,
processor section and interface. Data flow
from the host processor data inputs
HDO-HD15 to the internal 16-bit bus can
be achieved through the FIFO section. The
FIFO is eight locations deep and twenty-
two bits wide. To transfer data words to the
registers in the CPU section the host
processor uses the chip select, write and
HAD inputs. The address of the register is
set up on the five HAD lines (this selects
one of 32 registers) then the write and
chip select lines are driven LOW. The data
on the HD lines plus the register address
is loaded into the FIFO. An additional bit
called the FICD bit is loaded through
HADS5 at the same time as address
HAD[0-4] and the host data lines HD[0-15].
This is the FIFO Command/Data bit and
must be LOW to signify that the sixteen bit
word on HD[0-15] is data. If it is set HIGH,
the least significant ten bits of that data
will be used as an address pointer to the
microcoded EPROM. In this way the host
system can direct PAC1000 processing to
a defined microcoded address. This is a

powerful feature that enables dynamic
context switching of PAC1000 under
supervision of the host processor. The
FIFO exception flag FIXP will be set if the
information residing in the FIFO was
misdirected (if it were treated as a control
word when the FICD flag labeled it as
data or if the opposite condition prevailed).

Using the FIFO is the only method in
which the host can communicate with the
PAC1000 using the active LOW chip select
CSB and the write input WRB. The DOR
and DIR are Data Output and Data Input
registers and are available to convey data
to and from the internal sixteen bit bus but
do not respond to CSB and WRB. The
DIR would be used in a synchronous
system because, when it is enabled by
setting the DIREN flag (see Table 4), data
is latched on the rising edge of each clock
signal. The data contents of the DOR
register may be directed to the host data
outputs if all inputs CSB, WRB and RDB
are inactive and HDSELO and HDSEL1 are
1 and 0 respectively, see Table 3. The use
of the DIR and DOR register is intended
more for synchronous communication
whereas the FIFO is intended primarily for
asynchronous systems or synchronous
peripheral interface. The flags FIIR and
FIOR are the FIFO Input Ready and FIFO
Output Ready respectively, these flags can
be tested so no overwriting of data will
occur. Figure 3 shows the 1/0O Port and
Special Functions. The FIIR register can
be directed to the output 1/07 through a
multiplexer so it can be tested externally
by the host system.

Table 3. Host
Interface
Function Table

HDSELO |HDSEL1 | CS |RD |WR | HAD5 | HAD[0-4] | HD[15-0] OPERATION
Register .

0 0 0|1 0 0 Address Data Write Data to FIFO
Write Command

0 0 ofj1|o0 1 X Command to FIFO

0 0 0|0 |1 0 00100 X Reset FIFO

0 0 0|0 1 0 00011 X Reset Status Register

0 o |olo|1| o | ooot0 X Read Program
Counter

0 0 0]0 | 1 0 00001 X Read Status Register
Read Data Output

0 0 00 |1 0 00000 X Register

1 0 111 1 X X X Data Output Register

0 1 101 1 X X X Status Register

1 1 101 1 X X X Program Counter

WAFERSCALE INTEGRATION, INC. 417

4

PAC1000 — Application Note 010

Figure 2.
Detailed s m wA HD HAD
Block Diagram l % 16 T
HOST
INTERFACE
DECODER IHDOE —> IHADOE —>]
DECODED 1
SIGNALS 16 6
7
16 20
DIR DOR SR FIFO (8 x 22)
DATA DATA 8 x 16 COMMAND 8x5
INPUT DIREN | OUTPUT STATUS AND REGISTER | 8x1
REGISTER [«—— | REGISTER REGISTER DATA FIFO POINTER
—l 1} lrun l FICD
16 16 INTERNAL 16
DOR FLAGS L5
REGISTER
SELECT
INTERNAL
PROGRAM CONTROL REGISTER
CASE COUNTER SIGNALS FILE AND
. Q REGISTER
15-LEVEL 16
cc STACK ALY
cc | LOOP ' CPU
N
INTERNAL Tesr oo ,
cc BLOCK S T
BREAKPOINT COUNTER
INTERNAL REGISTER CONFIGURATION
INTR BC ? MODE
| [lEs| | e
INTR EPROM CONTROL
CLK CONTROL UNIT L CONFIGURATION REGISTERS
RESET
—_—
Vee
I r 16 16 16 16 6
GND OUTPUT CONTROL
= 16
oc y ACH ACL
SWAP
ACEN | ADDRESs | ADDRESS | &
REGISTER COUNT COUNT |—~—
HIGH Low
s 8 16y AOR
IR 10R AIR t
| | Aporess Acs22
1o 110 ADDRESS RTHE LR
INPUT OQUTPUT INPUT
REGISTER REGISTER REGISTER |ADOE
:
’ AIREN “
16 ®
8 ADD
0
4-18 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Figure 3. 1/0
Port and Special

2 MODE 8
Functions o,
S A
a FIIR
mux B
10CG7
/04 —- 8 M| apoE
LJ. CNTL4 QF——
NT A g
(ADOE) l
10CG6 MODE 7
.[MUX
1105 B THADOE
Q
CNTL3(HADOE) —>{A g
10CG5 MODE 6
110, [s Mux
Q
CNTL2(HDOE) —>{A §
IR L
1D
cK
MODE 5
QMsB

o MODE 4_
2 T SDATL
Se
aLsB
mux A
10CG2
. MUX
0 B o |_tAcEN
—
LJ. ‘e
10CG1 MODE 3

|

I
[={
O
m

SDATM

CNTLO(ACEN) 1

o MUX
9 [B IBCEN
[cK A s
o= Q T
I0R l
8-BIT 8-BIT MODE 2
locao INPUT OUTPUT CNTL1
BUS BUS (BCEN)

WAFERSCALE INTEGRATION, INC. 419

PAC1000 — Application Note 010

Table 4.
Control Register CTRL9 | CTRL8 | CTRL7 | CTRL6 | CTRL5 | CTRL4 | CTRL3 | CTRL2| CTRL1 | CTRLO
ASEL | AIREN | DIREN | HDSEL1| HDSELO| ADOE [HADOE| HDOE | BCEN | ACEN
ASEL — Selects Which Source Will Write to the Address Bus
1 = Address Counter. 0 = Address Output Register.
AIREN — Enables/Disables Writing to the Address Input Register by the Address Bus.
1 = Enabled. 0 = Disabled.
DIREN — Enables/Disables Writing to the Data Input Register.
1 = Enabled. 0 = Disabled.
HDSEL1
HDSELO — Decoded to Select Which Source Will be Connected to the Host Data Bus
(See Table 3.).
ADOE — Selects Direction of the Address Bus
1 = Output. 0 = Input.
HADOE — Selects Direction of Host Address Bus (HAD).
1 = Output. 0 = Input.
HDOE — Selects Direction of Host Data Bus for Next Clock Cycle.
1 = Output. 0 = Input.
BCEN — Enables/Disables Block Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.
ACEN — Enables/Disables Address Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.
Central The section that deals with data processing give a fixed number of loops or from a
Processing Unit is the central processing unit. This register at program ‘run time.’ In this
comprises a sixteen bit wide ALU with a event, the number of times a loop is
32 x 16 bit register file. One other special executed can be made programmable.
purpose register Q and an R shifter circuit Other registers on this bus are AOR,
make up this section. The Q register is Address Output Register, the IOR, Input
sixteen bits wide and can be used for data Output Register, the ACL and ACH low
shifting. Figure 4 shows the ALU and and high address counters and the BC
register structure of the CPU section. The Block Counter. The ACL counter has a six
ALU is in the path of the register outputs bit resolution and the ACH counter has
such that arithmetic and logic functions sixteen. When enabled by ACEN, the ACH
may be executed on the contents of any counter will increment on the rising edge
one of the 32 general registers. The output of each clock cycle. The defaulit value is
of the ALU passes data back to the for a sixteen bit count. To enable a twenty-
selected register through the R shifter. In two bit count where the ACL takes on the
this logic circuit, data may be shifted six least significant of the twenty-two bits.
either left or right, one position, before The ACS22 flag must be set, to enable the
being written back into the register file. clocking of these counters. This is
The output of the ALU can also drive data transparent to the software because once
to registers such as the DOR register. A enabled the counters will clock at the
multiplexer can select either the ALU or system clock rate. However, they can be
the RO-R31 register output. The loop turned on and off from the microcoded
counter LC can be loaded from this instruction of enable SET ACEN, or
multiplexer enabling the contents of a disable RESET ACEN, also counting can
register to determine how many program be influenced by register loading.
loops are to be executed. This loop
counter can be loaded from the EPROM to
4-20 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010
Figure 4.
and Registers
Structure
T T T T T T T e e e ———————— 1
| |
| |
| (] |
<
| = P g g |
'zFac [] ZFLAG glalal |, |z]2|3 |
| = —— alalal=la]8>]™ I
| CY FLAG CY FLAG »|oC ez |= WIO|N |
—] —————
'siaN FLAG SIGN FLAG [MUX | !
| — [1
12 x| RMsB RLSB |5 [«—2” [
g 3 R SHIFTER 3 o |
| —] = = |e——— M |
| RLSB RMSB <msB g |
laLss QmsB !
| ———— e mm—— l
| SDATM SDATL « I
| L L g |
o
! & S I
| I @ |
| G Q c |
| IN (B) & !
! F® aLss |
| REGISTER -—y |
| CLK—> BANK |
| (R31/R0) ,
| |
1 B |
| | ~ MUX] |
| 1 ’ ‘] ' I d r 1 '
| < |
S
| o|<|C |
MUX
t L 2 glglgl 1 121213 |
: l l g 83T 2 abdN :
0"
| ™ \/ B / G - |
| STATUS MUX = |
| REGISTER, ALU out cPu |
CONDITION
! CODES F [
: Cour :
| |
| FT T T T T T EIZIIZIZIgT T T T T T T oo 4
! | 1 PART OF | HOST
| : BUS | CONTROL SECTION, INTERFACE
| MUX
L_____IT________J 10R J :[} H» DOR
CONTROL
r__“ L J
AOR Y BUS
o~ o] p x| wn 4 p o |
HAD ADD
BUS 1 T sBuUs
D BUS
T 1 CONSTANTS
r——-l=—-—-1
l FIFO J b DIR I [} AR l l) IR 'l proGgrAM | !
| MEMORY |
|
T T P
|

T

HOST
INTERFACE

HOST
INTERFACE

BUS

|
|
RT OF |

A
L?ONTROL SECTION

—_——

WAFERSCALE INTEGRATION, INC.

4-21

PAC1000 — Application Note 010

Support
Software

The PAC1000 device is supported with
development software that can run in an
IBM PC/XT or AT computer. The main
tools that the designer will use are the
assembler, the linker and the simulator.
These support programs are run from a
WSI menu called WISPER that has been
designed to make software development a
simple process. The designer can select
the assembler from the menu and assemble
his source program. After assembly the
program must be linked. The linker program
is designed for those system designers
who build their software up from a number
of modules. Figure 5 illustrates the flow
from original source code entry through
the linker to a simulated output. The linker
will take these modules and combine them

into one object program. On completion of
assembly and linking the program may be
checked by the simulator. The use of the
simulator removes the need for EPROM
programming and in-circuit testing during
the design cycle and gives the designer a
fairly high level of confidence that the
program will function as intended. The
simulator will take the bit pattern format
that was generated during assembly and
apply a command and stimulus file to the
program. The result will be a series of
waveforms that appear on the screen of
the PC and is similar to that of a logic
analyzer display. A table of vectors is also
generated for those signals that are traced
from the command file. These vectors can
be printed out for analysis and verification.

Figure 5.
Program Flow
From Assembly
Input to
Simulated
Output

<filename>.MAL

ASSEMBLER
<filename>.ML
<fil LIS
<fil 0B
LINKER
<filename>.STL L_—__> <filename>.LIS
<filename>.ABS
<filename>.CMD <filename>.0BJ
PACPRO
SIMULATOR PROGRAMMER
INTERFACE
MAGICPRO
TRACE FILE PROGRAMMER
<filename>.0UT PROGRAMMED
DEVICE

4-22 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Microcoded
EPROM Section

A further aid to the design entry is the
ability to mix high level, assembler and
microcode mneumonics so designers can
use the entry level that they feel the most
comfortable with. Most of the applications
example given below are written in a high
level ‘C’ like language but some assembler
instructions are also incorporated.

In systems applications such as Direct
Memory Access (DMA), it is required to
output the contents of a counter to
address memory and then increment it.
This is implemented in the PAC1000 high
level language syntax as:
AOR := RO ; /*CONTENTS OF RO
GOES INTO THE AOR*/

RO := ++R0 ; /*REGISTER RO IS
INCREMENTED BY ONE*/

For efficiency these two instructions may
be combined into one line of code, which
is executed in one clock cycle:

AOR := RO := ++ RO;
/*COMBINING THE TWO OPERATIONS*/

The contents of RO will be passed to the
Address Output Register and will be
incremented by the ALU.

Where AOR is the address output register
and RO is one of the thirty-two, 16-bit
general purpose registers. The 7’ symbol
delimits the comment field boundary.

With a PAL/EPLD/PGA approach the
designer would be required to spend much

‘valuable time configuring a loadable binary

counter, with a 3-State output capability.

In applications such as digitizer/plotter
systems, x,y coordinates have to be quickly
summed or subtracted many times to
register cursor movements and position.
This requires repetitive arithmetic
operations. In this application vector
addition on two or more sixteen bit words
can be defined as two instructions:

RO := RO + R1;
AOR := RO ;

Combining these instructions together:
AOR := RO := RO + R1;

With conventional programmable logic an
ALU function would have to be designed
or a dedicated custom chip used with the
programmable logic part used as the data.
1/0 controller. The key point of this issue is
that complex logic functions are simply
written as a few single lines of statements.
Moreover, a combination of functions may
be grouped in a single line. These include
a microcontrol directive such as a branch,
call to subroutine or JUMP on condition,
an ALU function such as increment or
add, and an output control command.
There are sixteen output control lines
which can be driven active on each clock
cycle. The composite of the three
commands are:

LABEL: JMPNC CC7 LABEL ,

RO := RO + 1, OUT ‘HOLD’ ;

The function of this line of code would be
to wait until the condition code input of
CC7 went active before the next instruction
is executed. At the same time the contents
of RO would be incremented and the
output control lines would be driven with a
sixteen bit code called HOLD. An equates
option ‘equ’ is used to define uniquely a
sixteen bit pattern called HOLD. The
assembler encodes an equate statement to
allow meaningful words to be used in
output control statements. Some examples
of this are:

HOLD equ H'FFFF’ ;
/* HOLD IS SET AS HEX FFFF */

ENBL equ HEFFF’ ;
/* ENBL IS SET AS HEX EFFF */

The equates directive should be declared
at the start of the program before any
actual code is written.

WAFERSCALE INTEGRATION, INC. 4-23

PAC1000 — Application Note 010

Applications
Programs

The depth of the microcontrol store is 1K
of 64-bit wide words. One 64-bit instruction
is executed on each clock cycle. The
instruction word is subdivided into three
commands: an output control command, a
command to the processor section and a
next address command to the microcoded
memory. Figure 1a shows the Instruction
Register with its contents of control, output
and CPU commands. The control unit will
also respond to condition code inputs and
interrupts. An example of output control
and response to condition codes is in a
handshake loop. The output stimulus can
be to set one of the control outputs

s=egment pacdesfl =

/% PROGRAM TO
/% CONTENTS OF R1.RO:
/% WORD
F% THE SECOND HALF OF

Ve
l-l*
i®
IE 3
i®
V.3
%
%
i
FE

HOLD:

LOGFL:

LO0OFZ:

FIks

end 3

ADDITION

PERFORM DOUBLE PRECISION ADDITION ON
RZ.RE THE CARRY OF THE LEAET SIGNIFICANT #/

OC|[15:0] and wait for a response to a
condition code input CCJ[7:0]. Under
program control a conditional JUMP to a
location could result if the bit tested were
set. Otherwise linear programming could
continue.

The first applications program below
demonstrates the use of condition code
zero CCO to test for a start condition.
When the input is LOW, the program loops
continually testing CC0O. When the host
raises CCO, the program performs a
double precision addition. The sum is
available at the data output register DOR.

THE REGISTER®/

JPFNC

RO
s1
RZ

W

LR TEE TN}

JMPNE DO

SMENC DO

JMF HOLD

IS CONTAINED IN THE CF REGISTER AND IS USED INs/
THE 3z BIT ADDITION. 7/
*/
FIN FUNCTIONAL DESIGNATIONS. */
INPUTS, */
*/
CCO — ACTIVE HIGH — START ZZ2-BIT ADDITION /7
FCS — ACTIVE LOW - PACICOG CHIF SELECT */
FRD — ACTIVE LOW - READ & REGISTER FROM HOST =%/
HADIS: 01 — INPUTS TO SELECT DOR REGISTER FROM =/
HOST INTERFACE #*/
*7
CCO HOLD = FHWAIT FUR START CONDITION =/
HFE32" 3 F#L0AD REBISTERE WITH DATA #/
H 9BZF " = FxB0 AND RZ CONTAIN THE */
H'aZ07 " 3 F#LEAST SIGNIFICANT WORD OF =/
H 45007 3 FETHE Z2 BIT LONE WORD ANMD #/
AR OAND RET CONTAIN THE MOBTR/
FEZIGNITICANT WORD w7
BS 1= R1 3
R4 := R3 :
DOR = RO = RO + RZE : /7#L0AD DOR REGISTER#®/
Rl == "1 + RE + CF :
R LOCFL = f% WAIT FOR HOST TO REALD DOR =/
DOR := R1 F# LOAD MOST SIG WORD INTO DOR =/
R LOOFZ ¢ F% WAIT FOR HOST To READ DATS %/
H /#END OF THE CYCLE®/S

4-24

WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Applicatians The program adds the contents of RO and into the registers by the series of
Programs R2, then R1 and R3 and the CARRY bit. instructions:
(cam.) In the next design example, double FOR3 :/*EXECUTE THE LOOP

precision subtraction is performed and this
time the CY flag will hold the borrow bit.
This design example is more practical than
the example above because instead of
performing arithmetic on fixed values the
register file may be loaded from a source.

FOUR TIMES*/

RDFIFO ; /*UNPACK DATA FROM
THE FIFO*/

ENDFOR ; /*END THE FORLOOP */

The configuration of the PAC1000 is in the
peripheral mode and data is loaded into
the FIFO. CCO is monitored and, when

This section of the program performs a
read operation on the FIFO four times. In
any FORLOOP N, where N is an integer

active, is a signal to the PAC1000 that data
has been loaded. The FIFO is unloaded

value, the number of times the loop is
executed is N + 1 times.

segment pacdes(Z 3

SEPROGRAM TO PERFORM DOURLE PRECISION SUBTRACTION OM RESISTER %/
/#CONTENTS R1, RO 3 RZI. REZ THE EBORROW FLAG 15 CONTAINED IN THE %/
F#CF REGISTER DURING THE SECOMD HALF OF A& Z2-BIT SUBTRACTION #/

/® */
/* FIN FUNCTIONAL DESIGMATIONS *7
S INPUTS %/
Ve CC0e — ACTIVE HIBH — START PROGRAM */
FE fCE — ACTIVE LOW - PACL1O000 CHIF SELECT */
/ AWR — ACTIVE LOW - FIFO WRITE =/
/¥ FRD — ACTIVE LOW — READ A REGCISTER FROM HOST INTERFACEs/S
/*® HADLS: G — IMPUTS TO SELECT A REGISTER FROM THE HOST *7
Ve INTERFACE */
% HDC15:01 — DATA INPUTS TO FIFO THROUGH HOST INTERFACE =/
I *®/
HOLD: JMPNC CCO HOLD @ /7#WAIT FOR START CONDITION EMPTY +/
FOR s F#THE FCOUR LOCATIODNS OF THE FIFO */
ROFIFD 3 ALOADED THROUGH THE KOST INTERFACE %/
ENDFOR FRGECTION OF THE PACLOO0O */
RS z= Rl : FHSAVE R1 CONTENTE IN RG®/
R4 == RO 3 FEGAVE RO CONTENTS IN R4x/
DOR = RO = RO — RZ 3 /#SUBTRACT LSW PROPAGBATER/
Ri 1= Ri - REZ — CF g /#THE BORRDW INTO THE CFR2/
DOR := RO & F#LOAD DOR WITH MW */
L 00OFP1: JIMFPND DOR LOOFD =
DOR == Ri : /#L0AD DOR WITH MSH */
LOOPZ: JMPNC BOR LOOFPZE ;
JFP HOLD = A#END OF PRDGERAM %/
ends:

WAFERSCALE INTEGRATION, INC. 4-25

PAC1000 — Application Note 010

Applications The next program shows a multiply routine.
Programs Although there is no dedicated multiplier
(L'ant.) in the PAC1000, multiplication can be

achieved by shifting and adding. The MUL
instruction is a MACRO command that is
expanded when assembled into a loop of
shift and add instructions. The RDFIFO

KA

sagment pacdesd]

instruction is used to pass the data from
the host to the PAC, which is configured
as a peripheral. In the example the contents
of RO and R1 are multiplied and the product
is available in registers R1 and R2, where
R2 contains the most significant word and
R1 the least significant.

HOL s JMENC CCOo HOLD = FEAAIT FOR START COMDITION EMPTY®/
FOR 1 : FETHE TWO LOCATIONS OF THE FIFO =/
ROFIFO 2 £#L OADED THROUGH THE HOST INTER—%/
EMDFOR 3 /FE—-FACE SECTION OF THE PACLI000 =/
MUL R2 R1 RO g
DOR 1= R2 3 /EREGISTER. THE FRODUCT IN THE =/
LOorl: JMPFNC DOR LDOPL /¥DATA OBUTFUT REBISTER */
DOR == R1 : Vi *7
SELF: JMFP HOLD 3 /#END OF FROGRAM */

end:z

In the following example, the contents of
registers R2 and R1 is divided by the
contents of register RO. The most significant
word of the 32-bit long word is held in

segment pacdesigd

register R2 and the least significant 16 bits
are stored in R1. The result of the divide
operation leaves the quotient in the Q
register and any remainder in register R2.

HOL Dz JMPNG CCC HOLD = J#WAIT FOR START CONDITION EMPTY®/
FOR 1 = F#THE TWO LOCATIONS OF THE FIFD =/
RDFIFO g /#LOADED THROUGH THE HACGST INTER-#/
ENDFOR 3 F#—FACE SECTION GF THE PACICOG %/
DIV RZ Rl RO 3
DOR == @ 3 FEOUTRUT THE REMAINDER#/
LOOF1: JMPRC DOR LOOPL 3
DOR 1= R2 3 FRQUTRUT THE QUOTIENT. =/
SELF: JMP GELF 3 J¥END OF FPROGRAM ®/

ends:

The files generated so far can be entered
into the assembler and two files
<filename>.LIS and <filename>.0B may
be generated as shown in Figure 5. The
latter object file must be linked before the
final object file is available for programming
into the PAC1000’s EPROM. The link
program <filename>.ML performs this
function and is shown below.

load pacdes04 ;
place pacdes04 ;
end ;

This design example only used one
program but many sub-modules may be
linked together to form a single executable
program. It is possible to simulate the
design after linking. The necessary inputs

to the simulator are the <filename>.0BJ,
<filename>.STL and <filename>.CMD. The
latter two files are the input stimulus file
and the input command file (see Figure 5).
The stimulus file is used to drive inputs
such as address, data and condition codes.
The command file lists which signals
should be traced for observation. Examples
of the stimulus file and command file are
given below.

The command file shown below will instruct
the simulator to set an output trace on the
Current value of the Program Counter,
CPC. The Condition Code zero input, the
write, and the chip select lines are also
traced. The simulator also enables a trace
to be invoked on registers as well as input

4-26 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Applications or output pins. The Q register is traced informs the simulator to run the driving
ngrams along with host data, loop counter, and signals for 140 cycles. The final instruction
{Cant.) registers RO, R1, and R2. The final trace is invokes a View Trace Waveform instruction,

set on the host data output register. At the
end of the stimulus file, the run instruction

so the waveforms may be observed on the
PC screen.

OFEN STIMULUS PACDESO4
SET TRACE CPC

SET TRACE CCO

SET TRACE WRE

SET TRACE CER

SET TRACE RDE

SET TRACE @
SET TRACE HD

SET TRACE LC

SET TRACE RO
SET TRACE Ri

SET TRACE RZ

SET TRACE HDOR

OFEN TRACE FACDESO4

AUN 14C
VT W
The stimulus file is used to apply active
signals to inputs of the design. At specific

time points conditions are established. For
example the statement:

.S CCo0 0@1 1 @40
means that the input condition code zero

CCO should become a logic state LOW at
time point one and a logic HIGH condition
40 cycles later. A three-state condition can
be applied by typing the letter Z in place
of logic ‘I’ or ‘0. The stimulus file is
completed to drive all inputs and applied
to the simulator during run time.

1@iZ9% o@l13i 18139 3

E RESETB 0O @ 1 1 € 2

.5 CCO o&1 1840 3

.5 WRB 1@1 C@2 1eB Q@12 1 @19 ;

.5 CEE 1@1 0e2 i1e7 o ll 1818 O0el1ZC
.5 ROB 121 Q@121 1@129 08131 1@13% ;
.5 HADG 0@1 1610 0@Z4

.5 HAD1 081

-5 HADZ c@i

.5 HADZ 0@l 3

.5 HAD4 Ge1

g =

.5 HADS 0@l
WRITE A 7
-8 HDC 0@l
.5 HDI 181
.5 HDZ 0@l
.S HDZE @i
-8 HD4 Oa&t
HDS CEl
HD& O@l
HD7 O@1
HDRE 0@l
HDY 0@1
HO1Q o8l
HD11 D@l
HD12 081
HD1ZE cal
HEi14 0@l
HB1G 2@l

1@10 Z2@70
2370 3
18i0 Z@7C
i@ic Ze70
1810 Z&70
@70
@7
FACELY]
@70
870
@70
870
@70
2870
I&70
ZI@70

R R L
mwwm @ minmn
AN AW AN gw AN

s na

FLFTIFTI 1Y

INTO RO ANE Z1 INTO R1

The comment field is denoted by a ‘#’ sign.

WAFERSCALE INTEGRATION, INC.

4-27

4

PAC1000 — Application Note 010

Case Statement The ability of the PAC1000 to perform case =~ CGO comprises CC0, CC1, CC2 and CC3.
[ayic statement logic has already been discussed Sixteen registers are initialized and the
but the following program excerpt illustrates output code is driven with zero. When CC7
how to encode the case statement. The goes HIGH the CGO input is tested and
program will execute when condition code the register contents that are equal to the
7 is active high, then case group CGO is state of the CGO input is transferred to the
tested for one of sixteen possible states. AOR outputs.
segment pacdes0S
S¥% iillustrate the use of multiwavy branching */
R == O 3
R &= 1 3
R2 1= 2 3
REZ == X 3
R4 == 4 3
RS = 5 3
R& 1= & 3
R7 2= 7 1
RB = 8 3
R7 1= 9 3
RIO z= 10 3
Rii === 11 3
RIZ := 12 3
RiZ = 13 :
Fi4 = 14 3
R1S e= 15 3
WHILE CC7 3
SWITCH CGBO 3
CASE ¢ , GOTO NEXT . ADR := RO 3
CASE 1 ., BOTO NEXT . ADOR := R1 3
CASE 2 . BOTO NEXT , AOR 2= RZ =
CABE 3 ., BOTO NEXT ., ADR = R3E
CABE 4 ., GOTO NEXT . AOR := R4 3
CASE 5 . BOTO NEXT . AOR := R3S ;
CASE & , BOTC NEXT , ADOR 1= R& 3
CASE 7 . GOTO NEXT . AOR = R7 3
CASE B8 ., GOTO NEXT ., AOR := RB 3
CASE 9 , GOTO NEXT . ADR = R%?
CASE 10 ., BOTO NEXT , AOR = R1O g
CASBE 11 , GOTO MEXT . AOR = Ril g
CASBE 12 . GOTO NEXT ., AOR 1= RIZ :
CASE 13 , BOTO NEXT , AOR = Ri3 ;
CASE 14 . 8070 MNEXT . ACR = R1i4 3
CASE 15 ., GOTO NEXT , AOR = RIS
ENDEHWITOH 3
NELT ¢ OUT O 3
ENDUMHILE 3
OUT h'FFFF - 3
LOOFY ¢
E0TO LOOPY s
end 3
4-28 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Simple DMA
Controller for
Memory to
Memory Transfer

The software designs discussed so far
have been based on arithmetic functions
but an important feature of how to use the
FIFO in the host interface section of the
PAC1000 for the communication of data
will enable the reader to develop ideas
into more complex programs. The FIFO
Output Ready flag is used in a loop to
read the data into the registers. The output
codes are used to create signals to control
read, write, latch, output enable and bus
acknowledge signals. A summary of these
signals is given in Table 5 each time an
instruction is executed. These signals are
generated to accompany the memory
addresses which control the DMA cycle.

Figure 6a shows a generic system solution
where the PAC1000 sits on the address
and data bus of a microprocessor and
memory interface. The PAC1000 is mapped
into the system with a PLD decoder and
an external latch is used to catch data on
read and write cycles. It is possible to use
the internal DIR and DOR for this purpose
but a faster solution would use an external

segment pacdesOd;

/%THE PROGRAM ILLUSTRATES A

/#READS THE DATA FROM SUCCESSIVE MEMORY LOCATIONS
BY THE CURRENT CONTENTS OF RO THEN WRITES®/

F#ADDRESSED

/#THAT DATA 7O LOCATIONS ADDRESSED BY THE CONTENTS

BOTH REGISTERS ARE
RZ IS A

/*0F Ri.
/¥READ/WRITE CYCLE.

component. Also, if the bus were greater
than sixteen bits, an external latch would
be required. This mode where data does
not enter the PAC1000 device is called the
‘fly by’ mode.

Figure 6b shows the timing waveform
derived from the program simulation.
Active LOW WRB and CSB inputs to ADD1,
ADD2 and ADD3 will write to the registers.
The Source Address Register RO, the
Destination Address Register R1 and the
transfer counter R2 are all loaded through
the FIFO. At time point 1, the registers
become loaded. At time 2, CC7 is set
HIGH to indicate transfer can commence.
The response from the PAC1000 is an
active LOW output from output control
OC14 to inform the microprocessor that
DMA activity is taking place. This occurs
at time point 3. OC14 stays LOW during
DMA activity but goes HIGH after the
transfer is complete (at time point 4).
Three transfers have taken place and the
microprocessor is free to regain control of
the bus.

*/
*/

SIMPLE DMA DESIGN WHICH

*7
INCREMENTED AFTER THE */
TRANSFER COUNTER THAT IS =/

/*DECREMENTED AFTER EACH TRANSFER. WHEN RZ IS5 ZERO */
/®ALL TRANSFER ACTIVITY CEASES AND A4 WEW DEVICE WAITE*/
FAFOR & NEW DMA CYCLE. */
e FIN FUNCTIONAL DESIGNATIONS. *#/
/# OUTFRUTS. *7
FE OC15 - LATCH ENABLE. s s cnsinnns ACTIVE LOW. */
/% CGCi4 - BUS TAKEN. cinecncncnnns ACTIVE LOW. */
i OC1Z3 — WRITE ENABLE. s e nanan ACTIVE LOW. */
/% 0GC12 — READ ENABLE. s i v e cnas ACTIVE LOW. *®/
/% 0OC11 - LATCH OUTPUT ENABLE....ACTIVE LOW. */
/E AOR - 1& BIT ADDRESS OUTFUT..ACTIVE TRUE. */
i INFUTS. ®/
/% CC7 — ACTIVE HIGH - INITIATE DMA ACTIVITY. */
F*x HD - ACTIVE TRUE - 16 DATA INFUTE. */
/% HAD — ACTIVE TRUE - REGISTER ADDRESS INFUTS =/
/#* /CS5 — ACTIVE LOW - PACICOC SELECT */
% FUWR — ACTIVE LOW - WRITE TO PACIOOC FIFO */
/*® FRD — ACTIVE LOW — READ NOT USED */
/% LIST OF ERUATES. */
READ equ H AFFF '3 /*ACTIVE LOW READ.TRANSFER =/
/F#*ENABLE .AND EUS BUSY */
WAFERSCALE INTEGRATION, INC. 4-29

PAC1000 — Application Note 010

Figure 6a.
PAC1000 as a
Simple DMA
cantm”e, MICROPROCESSOR SYSTEM MEMORY
WR [o- D WE
RD jo— -
ADDRESS BUS D_
ADDRESS ADDRESS
DATA BUS
DATA I DATA
DECODER
6 & LE OE
CS WR CC6 AOR HAD HD OC15 OC11 OC13 OC12 |'"]|'|
BUSACK o<« OC14
BUSGRANT }—] cc7 PAC1000 P
cLock
Figure 6b.
System
Waveforms
WR | I | I | I
ccr r
oc14 |
oci2

0cC15

oc11

oc13
ADDRESS

4-30 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010
Table 5. Output 0c15 | 0c14 | 0Ci3 | o0ciz | 0cii | 0C10-0c0
Condition INIT 1 1 1 1 1 All High
Assignment 9
Codes for the READ 1 0 1 0 1 All High
DMA 00”traller OENBL 1 0 1 1 0 All High
Application WRITE 1 0 1 0 0 All High
ENBLE 1 0 1 1 1 All High
LATCH 0 0 1 0 1 All High
\
OC15 = Active Low Latch Command 0OC12 = Active Low Read Signal ‘
OC14 = Active Low DMA in Progress OC11 = Active Low Output Enable
OC13 = Active Low Write Signal ‘
\
|
LATCH aqgu H 2FFF "3 /#ACTIVE LOW READ, TRANMSFER /7
F#ENABLE .LATCH EMABLE .AND */
/% BUS BUSY */
OENEL equ H B7FF "= FHACTIVE LOW TRANSFER ENABLE L4
S#0UTPUT ENABLE,AND BUS */
/% BUSY */
WRITE equ H ?7FF "3 /#ACTIVE LOW WRITE, TRAMSFER *7
JROUTPUT ENAEBLE.AND BUS */
/¥ BUSY */
INIT 2qu HFFFF "2 FIMITALIZE ALL OUTPUTS HIGH * 7
EMELE aqu H BFFF "3 /#ACTIVE LOW EMABLE TRAMSFER *®/
F#SIGNAL ,AND BUS EBUSY %/
/* FROGRAM START */
START: QUT INIT: /#*IMITALIZE QUTFUT CODES TO CCO-15%/
LOOF1: RESET ADOE : /#5ET THE ADDRESS BUFFERS INFPUTS %/
FOR 2 3 /#SET READ FIFD LOOP TO = */7
HOLDG: JMPNC FIOR HOLDO 3 F#WAIT FOR ACTIVE FIOR FLAG #/
RDFIFO 3 F#REAL FIFD INTO THE REGISTER FILE#®/
ENDFOR /#ALL THREE WORDS READ END LOOP *4
HOLD1: JMPNC CC7 HOLDL ¢ /#ACTIVE CC7 BUSACK SIGNAL INPUT =/
SET ADDE s /#SET ADDRESS BUFFER A5 OUTRUT %/
F#F0OR DMA CYCLES */
FOR . RZ2 := RZ , 0OUT ENBLE ;/7#57TART DATA TRANSFERS * 7
ADR = RO : F#0QUTFUT SOURCE ADDRESS */
RC = ++ RO . OUT READ /#0OUTFUT ACTIVE READ 7
OUT LATCH 3 /S#AND LATCH DATA OM READ *7
OuT READ : /#HOLD READ LINE ACTIVE ®/
ADR 1= Rijs JEQUTPUT DESTINATION ADDRESS */
Rl = ++ Ri , OUT OENBL 3 /#ENABLE LATCH OUTPUT */
OUT WRITE 3 FHPERFORM WRITE CYCLE */
OUT OENBL 5 FEDISARBLE WRITE BEFORE 0OE */
OuT ENELE 3 /#END OF SINGLE TRANSFER /7
ENDFOR 3 /2END OF TRAMSFER CYCLE */
HALT: sS0TO LOooPl , DUT INIT 2 FERETURN TO FROGRAM START *4

ends

WAFERSCALE INTEGRATION, INC. 4-31

PAC1000 — Application Note 010

FIFO DRAM
Controller

The next PAC1000 design example
illustrates how to use the device as a FIFO
DRAM Controller. See Figure 7a for device
implementation.

If the DRAMs are 64K devices, only the
least significant byte of the AOR register
need be used (that is ADDO-ADD7). The
system could easily be upgraded to handle
256K or 1M bit DRAMSs by wiring in address
bits A8 and A9 but additional PAC1000
software would need to be written to
accommodate the FIFO status counter.
About 45 lines of code are used to enable
the PAC1000 to handle REFRESH, READ
and WRITE activity. The design uses the
output control lines to provide RAS, CAS
and WRITE signals to the DRAM and
additional signals to give busy status
during read, write and refresh activity. The
whole system responds to input condition
codes CCO and CC1 as RQWRITE request
to write and RQREAD request to read
respectively. During active read, write and
refresh cycles, three signals BUSYWR,
BUSYRD and BUSYRFSH which go active
LOW an additional composite signal which

segment pacdesCH s

/%L IST OF EQUATES. =/
/CONDITTION CODE OUTPUTS®/

goes LOW when the FIFO is in any of
these conditions. The system design also
incorporates an UP/DOWN status counter
which increments on write activity and
decrements on read activity. This counter
is tested to provide information to the
outside world that the FIFO is full, empty
or neither full or empty. The FULL,
EMPTY and ACTIVE flags can be read
from the 100 and 101 and give information
to the outside world about the status of
the FIFO.

The waveforms associated with read, write
and refresh activity are shown in Figures
7b, 7c and 7d respectively. These waveforms
were created from the PACDES08.0UT
vector tables generated from the simulator.
Table 6 illustrates the assignment of the
output conditions which drive the various
functions RAS, CAS, RFSH WR etc.,

It is recommended that high current buffer
circuits be used to interface the outputs of
the PAC1000 to the inputs of the memory
chips used in both the DMA and FIFO
applications.

F#WARITE RAS DUTPUT %/
/#READ RAS QUTFUT */
F#REFRESH OUTPUT */
FRWRITE CAS OQUTPUT =/
FEREAD CAS QUTRUT */
/#END OF WRITE OUFUT®/

/#ZERO COUNT=/
F#FULL FLAG =/
FREMPTY FLAG*/
FE#ACTIVE */
/#MAX COUNT =/

FEREQUEST TO WRITE#/
/#*REGUEST TO READ =/

/#FROGRAM START*/

RASH equ H'S5FF " 3
RASK 2qu H 79FF " s
RFSH equ H'7CFF " 3
CASH 2gqu HY15FF " 3
CASR 2qu HZ9FF " 3
ENDWR 2qu H Z5FF " 3
INIT equ H'FFFF~ 3
ZERD eau Hoooo"
Full ecu H'FD’ H
EMPTY equ H'FE~ H
ACTVE 2qu H'FF - H
MAX 2qgu HFFFF~ 3
REWRITE =qu CCo 3
REREAD equ CCl 3
START: DUT INIT ;

RO 1= H GO00 H
Rl = H 020G H
RZ = H 0000 3
R3E 1= H'GOOO" H

FEINITALIZE OUTPUT CODEGSH*/
F#INITALIZE REGISTERS */

/#ROW ADRDREESE WRITE */
/#C0LUMMN ADDREES WRITE #/
/#ROW ADDRESS READ */

/#COLUMN ADDRESS READ */

4-32 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

FIFO DRAM R4 := H'FFFF’ : /#REFRESH COUNTER %/
Controller RS := H'0OGO” : /#STATUS COUNTER *®/
(Cont.) QUTPUT 100 IOL /*SER ID0 AND 101 TO %/
SET ADDE , OUT INIT : /#0UTPUT. ADOE INFUT #/
IOR := EMFTY /*FIF0 IS EMPTY oy
GOTO TEST /#TEST RERUEST TO */
/*READ/WRITE S
LOOF: AOR := R4 F*0OUTFUT REFRESH CTR %/
OUT RFSH s /*PERFORM REFRESH #/
R4 := ++ R4 , OUT IMIT : /*INCREMENT RFSH CTR %/
/*CLEAR CUTFUT ®/
TEST: IF REWRITE: /#IF REQUEST TO WRITE */
fOR z= RO , OUT INIT : /%0UTEUT WRITE ADDR %/
RS 1= ++ RS 3 /#INCREMENT STATUS */
OUT RASW 3 /#*0UTPUT RAS WRITE y
A0R := R1 : /*0UTPUT CAS ADDR x/
Rl := ++ R1 13 /#INCREMENT CAS ADDR #/
OUT CASW : /7*DUTFUT CAS ADDR y
OUT ENDWR 3 /%END WRITE CYCLE */
OUT INIT : /#FINISH WRITE CYCLE %/

EMDIF 3
IF Rl == 254 : /%#TEST FOR 256 COLUMNS#*/
RO := ++ RO 3 /% INCREMENT ROW */
ENDIF 3 /%IF 25& #/
IF ROREAD: /#IF REQUEST TO READ %/
A0R := RZ . OUT INIT : /%0UT ROW READ ADDRESS#/
RS 1= -—— RS /*DECREMENT STATUS */
OUT RASR : /%#0UTFUT RAS READ ®/
ADR := R3 : /*0UTPUT CAS ADDRESS %/
BRI := ++ R3I . OUT CASR :/*INCREMENT CAS ADD */
OUT CASR : /*STRETCH CAS .
OUT INIT s /%FINISH READ CYCLE %/

ENDIF 3
IF RY == 25& : /%TEST FOR 256& COLLUMNS#/
R? 1= ++ R2 /*INCREMENT ROW Py
ENDIF /*IF EQUAL TO 256 *7
R& 1= RS : /%SAVE STATUS COUNTER */
R& 1= MAX — RS 3 /#TEST FOR MAX COUNT %/
IF Z /%IF MAXIMUM */
IOR := FULL : /#SET OUTPUT FULL FLAGX/
GOTO LOOP /#BOTO REFRESH LOOF */
ENDIF 3 /*END TEST */
RG 1= RS 3 /*SAVE STATUS COUNTER */
R& := ZERO — Ré& 3 /%TEST FOR ZERD COUNT */
IF Z /#IF ZEROD */
I0R := EMPTY : /#5ET EMFRY FLAG Py
GOTO START: /*RESTART PROGRAM */
ENDIF ; /#ELSE oy
IOR := ACTVE : /#THE SYSTEM IS NOT %/
G0TO LOOP = /#FULL OR EMPTY %/

end;

WAFERSCALE INTEGRATION, INC. 4-33

PAC1000 — Application Note 010

Table 6. Output 0C15 | 0C14 | 0C13 | OC11 | OC10 | OC9 | 0C8 | 0C12, 0C7-0C0
Condition '
Assiynment INIT 1 1 1 1 1 1 1 All High
PAC FIFO DRAM CASW 0 0 0 0 1 0 1 All High
Controller Design | ENDW | © 0 1 0 1 0 1 All High
RASR 0 1 1 1 0 0 1 All High
CASR 0 0 1 1 0 0 1 All High
RFSR 0 1 1 1 1 0 0 All High
0OC15 = Active Low RAS
OC14 = Active Low CAS
OC13 = Active Low Write
OC11 = Active Low BUSYWR
OC10 = Active Low BUSYRD
OC9 = Active Low Busy
0OC8 = Active Low BUSYRFSH
Figure 7a. Using
a PAC as a FIFO
DRAM Controller
DRAM ARRAY
ADDRESS
RAS |cAs [wRr
RQWRITE AOR 0OCi5 0C14 O0cCi3
cco
RQREAD et EMPTY
BUSYWR 10,
BUSYRD ocnt PAC1000
«~————9ocw FULL
BUSY oce 10,
BUSYRF ocs
4-34 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Figure 7.

w T\
« T\

ADDRESS ROW X coL

BUSY \ ’

In response to a request to read one early write cycle will take place. RAS will latch in
the row address and the WE line goes low. The column address is set up followed by
the falling edge of CAS. The WE input is taken inactive followed by RAS and CAS.
During the whole cycle the busy signal is active.

Figure 7c.

ADDRESS ROW X coL

ss _\—_/._—

In response to a request to read one read cycle will take place. The RAS and CAS
signals latch in the row and column addresses respectively but the WE input is inactive
throughout the cycle. The BUSY signal is active throughout the whole cycle.

Figure 7d.

- ——\—f

ADDRESS M RFSH
BUSY U

To refresh the memory the PAC will output a refresh count to be strobed into the DRAMs
by an active low RAS transition.

WAFERSCALE INTEGRATION, INC. 4-35

PAC1000 — Application Note 010

Programmable .
UART

The PAC1000 contains no UART for serial
data but parallel to serial conversion is
possible through the Q register and 1/0
Port 2 and 3. The following program
illustrates the designer how to create a
UART function in the PAC1000 with about
40 lines of instructions. The PAC1000
device will receive data in parallel from the
host system. The FIFO is used to interface
to the host and transfer data into the

segment pacdes0? 3

registers. The program will take the seven
bits of ASCII code and calculate the parity,
then add a parity bit. The result is serialized
and framing bits are applied. The data,
one parity bit, one start bit and two stop
bits are serially clocked out of the Q
register into Port 3. The handshake signals
of Data Terminal Ready and Data Set
Ready are built into the program.

F%#THIE PROGRAM ILLUSTRATES THE PARALLEL 70 SERIAL */
/#CHANNEL CONVERSION OF THE FACI1000 TO THE PERIFHERAL *#/

/¥BUS OF THE SYSTEM */
/® */7
/% FPIN FUNCTIONAL DESIGNATIONS. */
/¥ DUTPUTS. ®/
/% */
/* OCiZ — DTR - DATA TERMINAL READY....ACTIVE LOW. %/
£ OClE — RHD — RECEIVED HOST DATA.....ACTIVE LOW. =/
S# OCZ14 — DOME. csceconcnnnennsencnnns .- ACTIVE LOW. */
/% OC1S —~ ABDORT .- s cnassansansnnx e ACTIVE LOW. =/
e I0% — TxD — TRANSMITTED DATA.-acss=» ACTIVE LOW. =/
/*® */
/® INFUTS. */
/% */
/* CCCe — DSR — DATA S5ET READY...w.....ACTIVE HIGH. */
/#® CC1 — START TRANSMITTIMG...........ACTIVE HIGH. %/
/* HD - ACTIVE TRUE - 146 DATA INPUTS. */
/% HAD - ACTIVE TRUE — REGISTER ADDRESS INFUTS */
/% /C8 — ACTIVE LOW - PACI1000 SELECT */
/% FWR — ACTIVE LOW — WRITE TO PACICOO FIFO */
Ve */
INIT egu HFFFF; /7#INITALIZE ALL OUTPUTS HIGH */
RHD equ H'DFFF '3 /*ACKNOWLEDGE RECEIVING HOST DATA #/
DTR equ HEFFF ; /*DATA TERMINAL READY */
DONE equ H'BFFF 'z

ABORT equ H'BFFF "3 /#TELL HOST THAT DATA WAS CORRUFPTED®/
/¥ RZ1 — H'00&40° - MASK REGISTER FOR EVEN PARITY */
FH REO - H'OOEG® — MASE REGISTER FOR ODD PARITY */
F¥ R1% — H 0002 ~ CONSTANT 7O DIVIDE THE 32-BIT VALUE =/
/#* IN RY RI1& #/
F+ R18 — H 0000 — COUNTER OF THE NUMBER OF ONES IN THE =/
S® DATA */
/# R17 — H'FFFF° -— A CONSTANT TO HASK WITH DATA */
/% R1& — HODCO™ — & CONSTANT TO MASKE WITH DATA */
/¥ R - WORKING REGISTER FROM RO ®/
/* RO - ORIGINAL DATA FROM HOST SYSTEM /7
¥ 2 - RESISTER TO SHIFT OuUT DATA TO THE E Y4
/E SERIAL PORT /7

4-36

WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 010

Programmable
UART (Cont.)

bean: R21 1= H 00&C° , OUT INIT ;3 /%#SET OCL15:01 HIGH=/
R20 1= H'OOEOQO" 3
R17 := H'0002"
R1iB = H'QOGO" 3
Ri7 1= H'FFFF" 3
Ri& := R1I8 3
@ := R18 ; /% INITIALIZE @ TO ZERO'S */

s WAIT FOR HOST TELLS PACIOGCO */
i TO START TRANSMITTING DATA */

stndbv: JMFMC CC1 stndbv ;
JHMFC FICD abort g
RDFIFO , OUT RHD ; /% READ FIFO DATA INTO RO */

JRTELL HDST THAT DATA WAS */
/#READ CORRECTLY */
FREAREAEARARAREH AN AR ERFEAR AR AR E R AL L AR FE R R R RN XA FHEREERS
S FORMAT OF DATA RECEIVED */
/% FIFODAL1S: 01 */
/o 1% 14 13 12 11 1% 8 7 & S5 4 = 2 1 0O =%/
i * o ¢ o ¢ ¢ O O © o Di D2 DI D4 DS D& D7 %/
FERRAR RS LI A A AR S EF R AR A B LR AN R E R A A A E R R AR AR A AR AR A AR R EER SRR/
e SWAF THE HIGHER AND LUOWER BYTES */
f# SET OC TO NON- */
AOR = RO , OUT INIT ; /7% FUNCTIONING MODE */
RE := SWFVY 3 7+ MODE SWAF TO SHIFT */
RO 1= SWFYV 3 /% LATER SWAPFP NOW */
% SHIFT DRATAH *4
FOR 7 3
RB:= REB << O 3
IF §
Ri8 = ++ RIB 3 F#INCREMENT COUNTER=2/
ENDIF 3
EMDFOR 3
¥ CHECKE FOR EVEN/ODD PARITY */
IV R1& R1B R19 3 7+ DIVIDE RIB Ri& BY 2 */
Or @ ¢ & F% CHECK IF REMAIMDER IS ZERO #/
IF Z 3 /¥ IF Z=1 THEN JUMF TO PARITY #/
f¥ (EVEN PARITY) */

F# IF Z = O THEM {(ODD PARITY) */
OR RO R21 ¢ /7% MERGE MASK BITS FOR EVEN FARITY */

LSE 3
OR RC R20 3 7% MERBE MASK BITS FOR ODD PARITY »/
ENDIF ;3 /% RO IS NOW FORMATTED CORRECTLY FOR%/
/% SERIAL SHIFTING */
2 1= RO 3 A% LOAD RO TO @ TO SHIFT DUT TO I03 #/

¥ CHECKE THAT RECEIVING END IS5 READY */

WAFERSCALE INTEGRATION, INC. 4-37

PAC1000 — Application Note 010

Programmable
UART (Cont) ..;+: 1r cco s /*IF RECEIVER READY SET 103 TO OUTPUT #*/
CONFIGURE SIO ; /#AND SET MODE TO SHIFT @ TO I03 =/
QUTPUT I03 . OUT DTR 3 /*DRIVE DTR TO ZERDO THIS =/
F#TELLS THE RECEIVER THAT =/
/2THE TRANSMITTER IS READY*/
/% SHIFT OUT THE 1 BTART BIT.7-RITS OF DATA.1 FARITY AND #/
/% 2 BETOFP BITS . THEREFORE SHIFT il TIMES =/
LDLE 10 3 A=L0AD 10 INTO LODOF COUNTER FOR %/
/#8 SHIFT OF 11 THEN FILL WITH =/
/#®ZERDOS */
lp: LOOPNZ Ip . 8ORB := 2 << O RB << O 3
EiSE:
JGFP wait 3 /#IF RECEIVER IS NOT READY THEN WAIT#/
ENDIF 3
CQUT DONE 3 /*TELL HOST THAT PACICCC IS DONE */
JMFP begn 3 /% ETART AGAIN FOR NEXT DATA */
e ABORT DATA READ AND TELL HOST ABOUT IT *®/
abort: JMF begn . OUT ABORT
ends;

Summary The PAC1000 user programmable high This is because they understand the
performance microcontroller incorporates writing of assembly or high level code.
many features that enable a high speed With the support of WSI’s user friendly
design to be quickly realized. Its re- software tools, an engineer can be
programmability has enabled many designing with the PAC1000 in less than a
designers to go to printed circuit board week. This contrasts with the many and
layout early in the design cycle. Moreover, diverse schematic capture, net translation,
because the system logic is programmable placing and routing, annotation and back-
into the on-chip EPROM, modifications annotation packages that support EPLD
can be made at a later time without having and PGA devices. These products subject
to change printed circuit board artwork. In the designer to a multiplicity of software
fact over discrete and PAL/EPLD type tools that he must become familiar with.
solutions the printed circuit board artwork This results in generating a long learning
is considerably less complex because a curve that can easily be avoided with the
greater degree of circuit complexity PAC1000 and WSI's software support.
containing much interconnect has migrated The result of using the PAC1000 device
into the instructions encoded in the and software tools virtually guarantees the
EPROM section of the chip. fastest route possible from initial
To learn how to use the PAC1000 is a conception to the final design of a
relatively quick process for most systems complex high performance system.
designers have designed with
microprocessors and microcontrollers.

4-38 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

—
—
—
—

Programmable System™ Device

Application Note 005

PAC1000 as a High-Speed

Four-Channel DMA Controller

By Arye Ziklik and Kiran Buch

Abstract

The objective of this Application Note is to
demonstrate the use of the PAC1000 User-
configurable Microcontroller in a typical high
performance application. The text describes
an implementation of a generic four-channel
DMA controller that supports transfer rates
of up to 20 Mbyte/sec (10 Mword/sec) in
16-bit data-bus environments.

This Application Note covers the
terminology of DMA operations as well as
an implementation description. The readers
will be able to use this article as a get-
started tutorial that shows how to configure
the PAC1000 for any specific task.

Introduction

A DMA (Direct Memory Access) controller
coordinates fast data transfers between
peripheral devices and the system memory.
All possible transfer combinations might
occur: device to device, device to memory
or memory to memory. By taking care of
these high-speed transfers, the host
computer (typically a Microprocessor) is
off-loaded from these time-consuming
tasks and can execute other operations
concurrently, on its local bus.

We refer to peripherals such as FIFOs,
video, communication, graphics or serial
channel controllers, latches, ports, etc., as
devices in this text. The distinction between
memory and device is that a memory needs
an explicit address in order to specify a
byte or a word, whereas a device requires
only strobes (such as: RD, WR, CS)
combined sometimes with additional hand-
shaking signals for data accessing.

The PAC1000 is a perfect match for most
DMA applications. Its unique structure,
shown in Figure 1 and Figure 2, allows the
user to execute three independent
instructions in one cycle. The ability of the
PAC1000 to perform three different tasks
concurrently (Control, Output and CPU) is
fully exploited here, thereby speeding-up
DMA transfers.

For example, during DMA operations, the
control section checks for the block-count
termination, the output control section
generates RD and WR strobes, and the
CPU calculates and produces the next
address. All these activities occur
simultaneously during the same clock
cycle(!).

Unlike most other available DMA controllers,
the PAC1000 is a user-programmable
Microcontroller. It may be easily modified by
reprogramming to support various DMA
schemes.

Figure 3 illustrates a typical system
configuration using the PAC1000 as a DMA
controller. The host controls the system bus
as well as its local bus (not shown here). It
can also access the memories, the devices
as well as the PAC1000 via the system bus.
It does so by driving the Address, Control
and Data buses.

Initially the PAC1000 is in the slave mode,
waiting for host messages. Once the host
begins a channel initialization phase by
writing into the PAC1000’s FIFO, a DMA
operation will start. In that phase, the host
instructs the PAC1000 of the required DMA
transfer. The PAC1000 then decodes the
transfer type and optimizes it internally to
perform at the fastest rate the surrounding
hardware allows. At this point the PAC1000
requests the system bus from the bus
arbiter. When the bus is granted to the
PAC1000, it becomes the Bus Master,
driving the address, data and control buses.

If the DMA operation is fully completed, or
a higher priority transfer is pending, or the
host or active devices abort the transfer, a
DMA transfer can be successfully
terminated or suspended, respectively.

In all of these cases, system control is
returned to the host and the PAC1000
re-enters to Slave Mode.

WAFERSCALE INTEGRATION, INC. 4-39

PAC1000 — Application Note 005

Figure 1. PAC1000
Microcontroller
Block Diagram

CLK RESET

CS RDWR HD HAD
(15:0) (5:0)

Y

CONFIGURATION REGISTERS

CONTROL [1/0 CONFIGURATION | MODE

I HOST I;‘;TEHFACE I

| oaameur | | pamaouteur | ICOMMAND/DATA FiFo|
BREAKPOINT REG 3216
REGISTER

FILE

SEQUENCER Q REGISTER

1K x 64
LOOP CNTR ¢ PROERAM cPU
PROGRAM CNTR MEMORY
16 LEVEL - > AW
STACK
s [outpuT
L ADDRESS COUNTER
CASE LOGIC
TEST LOGIC | INTERRUPT BLOCK COUNTER
] { {
/O SPECIAL ADDRESS/DATA
FUNCTION e
PORT
\
cC(7:0) INT(3:0) OUTCNTL(15:0) 1/0(7:0) ADD(15:0)

4-40 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Siale cyce
g 1/ CS RD WR HAD(5:0)
Control l l l |
Architecture
HOST INTERFACE
CONDITION
CODES 1t
(8 LINES) -
INTERRUPTS ; ’
(4 LINES) CONTROL UNIT
—I—> WITH 1K x 64 28 LINES > CPU
NEXT EPROM (28)
INSTRUCTION A
DEFINITION rl L'; 1 I
i
INSTRUCTION REGISTER 110(7:0) ADD(15:0)
CLK ———— 7=
CONTROL| ouTPUT | cru
(20 LINES . CPU OPERATION
) 0c(15:0) DEFINITION
Important Features:
® One cycle per instruction.
® 20 MHz instruction execution rate.
e Every instruction executes 3 parallel operations (Control, Output, CPU).
Transfer Modes There are two transfer modes: Fly-by and I Memory to/from device that is not

Dual cycle.

Fly-by is the fastest transfer mode (refer to
Figure 4). Transfers can be carried out at a
rate of up to 10 Mword/sec provided that the
PAC1000 uses a 20-MHz clock. In this
application note, Fly-by can only be used
between memory and device if they share
the same data-bus path (either 8 or 16 bits).
The fly-by operation is initiated by a
DMARQ from the device. The PAC1000
explicitly addresses the memory, while
sending the RD strobe to the source side
and the WR strobe to the destination side.
It also acknowledges the device with the
DMACK signal that serves as the device’s
CS signal. Data is then directly transferred
from the source to the destination in one
bus cycle.

Double-cycle is a transfer mode comprised
of two bus cycles. It takes place whenever
one of the following DMA combinations is
specified (refer to Figure 5):

connected to the same part of the
data-bus.

1 Memory to Memory transfers (require the
generation of two different explicit
addresses).

[Device to Device transfers (with simple
additional hardware it might be easily
upgraded to support the Fly-by mode,
too).

Once the transfer has started, the PAC1000
reads an operand from the source on the
first bus-cycle, processes it, and then writes
that operand on the second bus cycle into
the destination.

The READY signal enables the PAC1000 to
synchronize its operations with slow
memories or devices (Whenever they are
explicitly addressed). READY is an active-
high signal, derived from the address
decoder. It is driven low as long as the
addressed memory or device is not ready to
finish the current bus-cycle.

WAFERSCALE INTEGRATION, INC. 4-41

PAC1000 — Application Note 005

Figure 3. _
System Block ApDRESS ADDRESS BUS
Diagram Q ‘ ‘
BUS ARBITER PAC1000 i
AND DMA DECODE MEMORIES
HANDSHAKE CONTROLLER I
X
g‘ DMACS |CSMEM
csD
CONTROL EV 1
BUFFERS CONTROL BUS
Z
o
z DEVICES
>
] DMARQ
AND
DMACK
DATA 1t
TRANSCEIVER DATA BUS
Figure 4. —
Fly-by DMA |
Transfer ADDRESS
DMARQ READY
PACI000 |*—
DEVICE DMACK DMA MEMORY
DMACK | CONTROLLER
RD WR
WR RD
Figure 5. DATA
Double Cycle
DMA Transfer — ADDRESS
Memory to Device
READY
PAC1000 o
Fl DEVICE DMA MEMORY
RST TRANSFER CYCLE con A en
RD
DMARQ
PAC1000 MEMORY
DEVICE DMA
DMACK | cONTROLLER
SECOND TRANSFER CYCLE
WR
DATA

4-42 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Figure 5. (Cont.)
Double Cycle DATA
DMA Transfer —
Memory to ADDRESS
Memory j L
READY
MEMORY PAC1000
OR DMA MEMORY
DEVICE CONTROLLER
RD
FIRST TRANSFER CYCLE
MEMORY READY PAC1000
OR DMA MEMORY
DEVICE CONTROLLER
WR
ADDRESS
DATA
SECOND TRANSFER CYCLE
Figure 5. (Cont.)
Double Cycle DATA
DMA Transfer —
Device to Device
DMARQ
PAC1000
DEVICE DMA DMACK DEVICE
CONTROLLER
RD
FIRST TRANSFER CYCLE
DMARQ
PAC1000
DEVICE DMACK CON?AA(SALLER DEVICE
WR
DATA
SECOND TRANSFER CYCLE

WAFERSCALE INTEGRATION, INC. 443

PAC1000 — Application Note 005

Request Modes Requests may be externally generated by a transfers are used by slow devices. They
device or internally created by the auto- toggle on and off the DMARQ. Each
request mechanism of the PAC1000, individual transfer is indicated by an active
whenever a memory to memory transfer is high DMARQ level. When the transfer is
performed. Auto-requests are always completed, DMARQ is held low until the
pending so that the PAC1000 can work at device is ready for the next transfer cycle,
its maximum speed, provided that the and so on.
memories are always ready. Otherwise, the . .

PAC1000 adapts itself to the READY signal. Some important observations:

External requests may be of either the O Memory to device (or device to memory)
block-type or of the single-operand transfer transfers will begin only after an external
mode. Block-type transfers are provided for DMARQ is asserted by the device.
high-speed devices that are capable of as _— : ;

. ynchronization with the memory is
meeting the speed rate of the PAC1000. : ; f
DMARQ is asserted at the beginning of the always achieved via the Ready signal.
block transfer and remains so as long as Table 1 briefly summarizes the transfer and
the transfer is in process. Single-operand request options:

Table 1.

-;;’m's"f:’}' 0; Transfer Type DMA Mode Transfer Mode

anster an

Memory to Memor Two Bus-cycles Block
Request Modes Y y Y

Memory to Device or Fly-by or Block or

Device to Memory Two Bus-Cycles Single Operand

. . Block or

Device to Device Two Bus-Cycles Single Operand
Functional General: Host-PAC1000 Communication:
Descriptian Figure 6 contains the circuit diagram. Refer DMA specifications are programmed into

also to Appendix 1 for the Pin Description
Table. The PAC1000 is configured in this
application as a four-channel DMA controller.
This means that it can handle up to four
DMA transfers concurrently, on a prioritized
basis. Each of the channels can be any one
of the above-mentioned DMA transfer types.
The maximum transfer rate is accomplished
during Fly-by transfers with rates approaching
10 Mword/sec for word transfers or

10 Mbyte/sec for byte transfers. Double-cycle
transfer modes achieve a rate of up to

5 Mword/sec (in word transfers) or 5 Mbyte/sec
(in byte transfers). The only exception to
this is the Memory to Memory transfer
mode which is a little bit slower due to the
internal creation of two different 24-bit
addresses.

The PAC1000 drives 24 address lines and
handles a 16-bit data bus, so it is well tuned
for most common high-performance buses
or Microprocessors. The maximum operand
block-size is 64K (in accordance with
VMEDbus specs, for example).

the PAC1000 by the host, according to the
message format of Appendix 2. The host
writes eight words into the PAC1000’s FIFO.
The command message fully specifies one
of the four possible channels that can be
active at the same time. Word 1 defines the
transfer characteristics of the DMA
operation: transfer type, data bus width,
device numbers (redundant in Memory to
Memory operations), channel-priority and
transfer mode. Bit 12 in that word serves as
a software abort-command bit. When set, it
instructs the DMA controller to cease the
transfers of the channel specified in that
command buffer.

The low-order byte of word 7 is a DMA-
transfer identification number. It assigns a
serial number to a DMA process. Whenever
the PAC1000 sends a status message to the
host, that number is also included in order
to unambiguously identify the process that
has either normally terminated or abnormally
aborted (by an external device or due to a
PAC1000 exception).

4-44 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Functional
Description
(Cont.)

Figure 6.

PAC,'a 00 DMARQ3

Cagﬂgu(ed as puRaz

a Generic ouARat

High-Speed

DMA Controller INTERFACE = - DATA BUS D(15:0)
Ccs#3
csh AD_—.D 2 MEMORY
csH o
P CE WR CS
CS#0 Y

o)

ADD BUS
“_
A(23:0), BHE

WR) >———

CSMEM |
. b SPARE ADDRESS
DATA BUS D(15:0) 91222 3 § § & CONTROL LINES
I R E4ES
aRIAEE By | PP
556562 O3 =500 5 Q
BUSMSTR oc2®® =28 Q G- 28 3 2 Hos0)
o o
_ k) A(23:22))
CSPAC =—{Cs 10(5:4) [>
A(21:6)
PAC1000 ADD(15:0) (S
BR A(5:0) ®
BR <—— OC1 HAD(5:0) | | &
2
m >
HOSTINTR <«——] 0C0 @ Q Q990909909 Q N
pu 5 888828 g L
Y b
v KX 00tF | __|@
e H BHE | £
RSPAC ﬁj—— = »-—E_ HC374 (LATCH) OE B

]
CcLK 4 |2 2
¥ |Z
- R-E-N-N-] 7]
L Ba EmEE s 9 3
>2>2>> > > o
33233
4<poDoDO
Ww N - O

WAFERSCALE INTEGRATION, INC. 4-45

PAC1000 — Application Note 005

Functional
Description
(Cont.)

Several fields in the command buffer are
optional. For instance, in transfers where
devices are involved, one can still specify
the explicit addresses of the source and the
destination even though it has already been
defined by the command word’s device-
number field (Appendix 2 — command word
format). This feature allows the programmer
to define the device interface with either
explicit or implicit address.

Whenever the PAC1000 has to inform the
host of an important event, it prepares a
status word in its DOR (Data Output
Register), enters the slave mode and
interrupts the host by raising the HOSTINTR
line. The possible messages are:

[Reject the Command buffer with the
specified identification number because
of internal discrepancies or illegal
combinations.

[Propagate a Hardware DMA abort,
generated by the source or the
destination of the current transfer.

3 Signal a PAC1000 exception. The host is
capable of reading the PAC1000’s SR
register in order to find out the cause.

A An end-of-count message. This transfer
has been normally terminated.

Initial State and Slave Mode:

After a reset (either a power-on reset or a
reset through the RSPAC line driven from
the host side), the PAC1000 enters its initial
state, which is the Slave Mode. Table 2
describes the signal states during the Slave
Mode. The PAC1000 monitors its internal
FIIR flag (FIFO Input Ready) and when it is
not set, the FIFO is full with a new command
buffer written by the host. The PAC1000
decodes the message and acts accordingly.
If it is a memory to memory transfer, then it
immediately requests the bus. When one or
two devices participate in a transfer
operation, the PAC1000 monitors the
corresponding DMARQ lines to determine
when to issue a bus request to the arbiter.
The PAC1000 requests the bus by lowering
BR. Then it waits for BG to go low in order
to switch to the Master Mode.

Master Mode:

Upon gaining mastership, the PAC1000
drives the HOSTINTR signal low and
BUSMSTR high. BUSMSTR remains high
(active) as long as the PAC1000 remains

master of the system bus, thereby enabling
RDM and WRM to RD and WR, respectively.
BR is set high (= not active). According to
the required DMA operation, the PAC1000
drives the appropriate address and data
lines, and the RDM, WRM and DMACK
signals.

DMA transfers may be successfully ended
(when the terminal-count expires) or aborted.
Abortion can emanate either from an
external DMABT signal that is driven by one
of the DMA participants, or from an internal
exception recognized by the PAC1000.
Whenever one of the above events occur,
the PAC1000 changes its mode to the Slave
mode, writes a status word into the DOR
register (discussed previously) and raises
the HOSTINTR line to cause the host to
read that information through its own
Interrupt routine.

Releasing and resuming bus control:

The host is allocated a higher priority than
the PAC1000 by the bus arbiter. This is
done in order to enable the host to suspend
DMA transfers whenever it needs the bus.
Each time the host accesses an address
that resides within the system bus domain
(including the CSPAC address), the bus will
be granted. If the PAC1000 is the current
master (as reflected by BUSMSTR), the bus
arbiter will negate BG (high level). The
PAC1000 monitors this line while it is a bus
Master and consequently will relinguish the
bus and return to the slave mode. The host
might use the bus for programming the
PAC1000 with a new DMA channel. Upon
completion of the host activities over the
system bus (BG becomes high), the PAC1000
checks whether DMA transfers are still
pending. If this is the case, it will request
the bus. When the bus is granted, it will
determine whether to continue the
suspended transfer or to start a higher
priority pending-DMA request. If it starts a
higher priority transfer, then the suspended
operation will be resumed after the
completion of the higher priority transfer.

DMAWORD is set low during word transfers
and high during byte transfers. It is used to
derive the BHE strobe, as displayed in
Figure 6. The most efficient transfer method
is the word transfer mode. In order to use it,
the specified addresses must be even,
otherwise the PAC1000 will perform only in
the byte transfer mode regardless of the
command word content.

4-46 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Functional
Description
(Cont.)
Table 2.
Signal States PAC1000 Signal Names Function Signal States
During the ADD(15:0) A(21:6) Float
Slave Mode HAD(5:0) A(5:0) Input
10(5:4) A(23:22) Float
0Cs6, OC5 FBRW2, FBRW1 0, 0 — Normal Operation
0OC4, OC3 RDM, WRM Don’t Care
10(3:0) DMACK (3:0) 1,1,1,1 — Normal Operation
ocC2 BUSMSTR 0 — Non-active
(o]0} BR 1 — Non-active
0Co HOSTINTR 0 — Non-active
oc7 DMAWORD Don’t Care
HD(15:0) D(15:0) Input
Hardware Figure 6 is the detailed schematic diagram. The four OR-Gates comprise together one
Considerations The host side is beyond the scope of this HC32 chip. They are used during Fly-by

paper since it is application dependent. In
addition to the PAC1000, there are a few
standard glue-logic chips used to interface
with the memory and the four devices.

Throughout the following description it is
assumed that the glue-logic components
belong to the HC family. However, since the
PAC1000 is a fully TTL compatible device
implemented in CMOS technology, the
reader can use other glue-logic families like:
LSTTL, HCT, etc.

The HC374 latch is gated into the condition
code inputs by the PAC1000’s clock, thus
ensuring that the CC7-CCO lines will meet
the set-up time requirements.

The three-state buffers controlled by
BUSMSTR, are part of a HC126 chip. They
are used to float the PAC1000’s BHE, RDM,
WRM control lines during slave operations,
because at that time these signals are
driven by the host.

The four AND-Gates amount to one HC08
chip. They enable either the host side
(during Slave operations) or the PAC1000 (in
the Master Mode) to drive the appropriate
device CS signals.

operations to avoid CE, RD, WR from
reaching the selected devices and memories
concurrently (for functional explanation,
refer to the Pin Description Table, Appendix 1).

Prior to the setting of BG in the active
position (low), the arbiter floats the data bus
D(15:0), address bus A(23:0) and BHE, RD
and WR from the host side. As long as
BUSMSTR remains high, these lines are
driven by the PAC1000.

The six chip select lines from the host side
(CS#3 — CS#0, CSMEM and CSPAC) are
derived from the system address decode
block, as illustrated in Figure 6. During the
time that the PAC1000 is the bus master,
the address decode block (shown in Figure 3)
is driven by the PAC1000’s address lines.
Therefore, the PAC1000 can access
memories and devices in the same manner
the host does.

The DMACK3-DMACKO signals provide the
PAC1000 with an alternative chip select
generation method to the devices. It is
considerably faster than the host’s method,
since there is no need to generate explicit
device addresses inside the PAC1000.

WAFERSCALE INTEGRATION, INC. 4-47

PAC1000 — Application Note 005

Hardware
Considerations
(Cont.)

In this application note, it is assumed that
the READY signal is produced by the
address decoder. However, if a device or
memory can generate the READY signal
independent of the decoder, the system
designer can connect it with a Three-state
buffer so that it will drive the READY input
whenever it is chip-selected.

The host programmer is free to choose
whether to synchronize the PAC1000 with
slow devices via single operand transfers or
through the READY mechanism. READY is

always considered when the PAC1000
generates an explicit address. The selection
between single operand transfer and
READY is done in the command word

(see Appendix 2).

As seen in Figure 6 there are several spare
pins, such as output controls, 1/Os, interrupts
and condition codes. These pins can be
used to perform other operations in parallel
(unrelated to the DMA controller function),
without any performance degradation of the
DMA task.

PAC1000 Internal
Resources Usage

Using PAC1000 as a 4-channel DMA
controller utilizes most of the resources
available on the chip, shown in Figure 1.

The Host microprocessor uses the FIFO to
program the DMA request in to PAC1000.
Internal condition codes are used to monitor
FIFO status, CPU operation flags and external
condition code inputs are used to monitor
situations like bus-grant, DMA requests by
the devices, etc. The CPU registers are
used to store source and destination
addresses, device numbers and other
relevant information about the DMA
transfers in progress.

To achieve the fastest transfer rate possible
with PAC1000, address generation and
block size counting are achieved by
different methods depending on the type of

transfer. For example, for the Device-Memory
fly-by transfers, a nested loop is set up
using the loop counter and the stack for
maintaining block count and ACH and ACL
are used as independent registers for
address generation. On the other hand, for
the memory to memory transfers, Block
counter is used for counting and address
generation is done by using ACH and ACL
as 22-bit counter.

The IOR is used to output chip selects to
the devices. The OUTCTL lines are used to
generate Read and Write signals and also
used for generating hand-shake signals to
the host.

The data bus and associated CPU registers
are used to read data in and out of PAC1000
for non-fly-by transfers.

Software
Considerations

All the algorithms described so far are
internally realized by Software. Flowcharts
and partial code implementation (of all the
important transfer procedures referred to in
the flowcharts) can be found in Appendix 3
and Appendix 4, respectively. Both flowcharts

and code listings contain sufficient
explanations that let the reader understand
the subjects they describe. The attached
code listings cover all the important DMA
transfer procedures (see Appendix 4).

Conclusion

PAC1000 is perfectly suitable for any DMA
transfers which require an intelligent processor
that can adapt its data handling according
to the changing requirements of its interface.
The PAC1000 does so by properly exploiting
its unique structure of a very high speed
sequencer combined with a programmable

ALU and user configurable ports. The
PAC1000’s programmability enables it to
handle complex tasks concurrently in a very
efficient manner, unlike all other existing
DMA controllers that are restricted to perform
in a predefined environment.

4-48

WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 1:

The PAC1000 is configured in this application
note as a generic DMA controller. It has a
separate 24-bit address (that can be easily
expanded) and a 16-bit data bus. It also has
a set of control signals to enable operation
as a bus master or a bus slave. The

following table defines the individual
PAC1000 pins. These brief descriptions are
provided for reference only. Each signal is
further detailed within the sections that
describe the associated DMA function. For
pin identifications refer to Figure 6.

Pin Descriptions

Name and Function

Address Lines A(23:22): Output the two most significant address
lines during Master operations. Tied to 10(5:4) on the PAC1000.
Float in Slave Mode.

Address Lines A(21:6): Output the mentioned address lines only
in Master Mode. Connected to ADD(15:0) on the PAC1000. Float in |
Slave operations. |
Address Lines A(5:0): Bidirectional address lines. Input during
Slave operations, output in Master mode. Tied to HAD(5:0) on the
PAC1000.

Fly-by Read/Write (2:1): Enable fly-by DMA operations. In fly-by
mode, operands are transferred directly from the source to the
destination bypassing the DMA controller. FBRW2 and FBRW1 are
tied to OC6 and OCS5, respectively.

FBRW2 | FBRW1
0 0

Symbol Type
A(23:22) 0

A(21:6) o

A(5:0) 110

FBRW2
FBRW1

(oNe)

— Normal operation.

0 1 — Enable fly-by from memory to device.
1 0 — Enable fly-by from device to memory.
1 1 — lllegal.

3

Write: Active as an input, only in Slave Mode. When low,
HD(15:0) is written into the PAC1000.

Read: Active as an input, only in Slave Mode. When low,
HD(15:0) is driven by the PAC1000.

Write-Out: Active as an output, only in Master Mode. Enabled
by BUSMSTR signal. Tied to OC4 on the PAC1000.

Read-Out: Active as an output, only in Master Mode. Enabled
by BUSMSTR signal. Tied to OC3 on the PAC1000.

DMA Acknowledge (3:0): 4 active low signals. High in Slave
Mode. Correspond to the 4 devices shown in Figure 6
respectively. Chip select the active devices during DMA
operations. In the PAC1000 they are tied to 10(3:0) lines.

Bus-Master: An active high signal. Asserted whenever the
PAC1000 is the current Bus Master. Informs arbiters or hosts not
to access the bus before the PAC1000 relinquishes it. Enables
0OC4 and OC3 into WR and RD, respectively. Connected to OC2
on the PAC1000.

PAC1000 Chip Select: This pin is driven low whenever the
PAC1000 is addressed in a slave bus read or write cycle.

Bus Request: The PAC1000 drives this pin low whenever it
requests the bus due to pending DMA requests.

|€|

=
By
ES
o

|

)
=]
<
(@]

DMACK@:0) [O

BUSMSTR (0]

WAFERSCALE INTEGRATION, INC. 4-49

PAC1000 — Application Note 005

Appendix 1 (Cont.)

Pin Descriptions

(Cont.) Symhol Type

Name and Function

HOSTINTR o

Host Interrupt: The PAC1000 interrupts the host in order to
inform him of one of the following events: PAC1000 exception,
Terminal-Count or DMA aborted by a device. The OCO line is
assigned to this signal.

CLK l

Clock: 20 MHz clock input to the PAC1000. It also latches the
condition codes to ensure the proper Set-up time.

CcC7 |

DMA Abort: An active-high input driven by the memories and/or
devices currently participating in the DMA process. Whenever it is
sensed high, the PAC1000 will generate a HOSTINTR signal towards
the host after writing into the DOR register the appropriate status
word.

CCé I

Bus Grant: An active-low signal monitored by the PAC1000 to
determine when it is in the Master mode or when to relinquish the
buses and enter the Slave Mode.

CC4 |

Ready: An active-high signal (RDY) that enables the PAC1000 to
synchronize its DMA cycles with slow memories or devices in the
Master Mode.

CC(3:0) |

DMA Requests (3:0): External DMA requests monitored by the
PAC1000. Active-high signals, driven by the four devices.

DMAWORD ¢}

DMA Word or Byte Transfers: Determines whether the next
DMA cycle will be of word (low) or byte (high) length. Used to
derive the BHE (Bus High Enable) signal that enables data lines
D15:D8 in the Master Mode. BLE is directly driven by the A0
address line.

RSPAC | Reset PAC1000: This asynchronous input initializes the state of.
PAC1000. RESET must be held low for at least two clock cycles.
D(15:0) 110 Data-Bus (15:0): This is the 16-bit data bus. During Master

cycles, it is controlled and sometimes also driven by the PAC1000.
In Slave mode the host drives it. Tied to HD(15:0) on the PAC1000.

4-50 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 2:
Host-DMA
Message Formats
1) Host to HAD(5:0) CONTENT
Zﬂ%ggg ds HD(15:0) CONTENT HAD5 | HAD4 | HAD3 | HAD2 | HAD1 | HADO
{via the FIF”) Word 1: Command word (see paragraph 3). 0 0 0 0 0 0
Word 2: 16 low-order source address lines. 0 0 0 0 0 1
Word 3: 8 high-order source address lines. 0 0 0 0 1 0
Word 4: 16 low-order destination address lines. 0 0 0 0 1 1
Word 5: 8 high-order destination address lines. 0 0 0 1 0 0
Word 6: 16 bit block-count. 0 0 0 1 0 1
Word 7: 8 bit DMA-transfer identification byte. 0 0 0 1 1 0
Word 8: Spare. 0 0 0 1 1 1
2) PAC1000 to
Host Status [b15 | b14 | 13 | b12 | b11 | b10 [609 | b08 | b07 | b06 | bO5 | bO4 | 603 | bO2 | bOT | bOO |
Word (via DOR
register)
b15,b14,b13,b12,b11,b10,b9,b8: DMA-transfer identification byte.
b7,b6,b5,b4: spare.
b3: Reject or accept the DMA transfer identified by b15 + b8.
1 — reject.
0 — accept.
b2: 1 — PAC1000 aborted.
0 — Normal operation
b1: 1 — DMA terminal-count completed
0 — Normal operation
b0: 1 — PAC1000 exception occurred
0 — Normal operation
WAFERSCALE INTEGRATION, INC. 4-51

PAC1000 — Application Note 005
Appendix 2 (Cont.)

3) Command
Word Format | b15 | b14 [b13 | b12 | b1 | b10 | b09 | b08 | 007 | b06 | bO5 | 604 | b03 | bO2 | bOT | 0O |

b15,b14: spare.

b13: block transfer or single transfer mode.
1 — DMA block operation.
0 — DMA single operand transfer mode.
b12: DMA abort bit. Quits DMA-transfer specified in word 7.
1 — abort.
0 — nop.
b10,b9: Priority level of this DMA-transfer.
00 — level O (lowest priority level).
01 — level 1 .
02 — level 2 .
03 — level 3 (highest priority level).

b9,b8: Source Device number for DMA transfer or Abort.

00 — Device #0
01 — Device #1
02 — Device #2
03 — Device #3
b7,b6: Dest. Device number for DMA transfer or Abort.
00 — Device #0
01 — Device #1
02 — Device #2
03 — Device #3

b5,b4: Destination data bus definition.
00 — Data bus is D7-DO (bit bits).
01 — Data bus is D15-D8 (8 bits).
02 — Data bus is D15-DO0 (16 bits).
03 — lllegal.

b3,b2: Source data bus definition.
00 — Data bus is D7-DO (8 bits).
01 — Data bus is D15-D8 (8 bits).
02 — Data bus is D15-D0 (16 bits).
03 — lllegal.

b1,b0: DMA transfer mode.
00 — Memory to memory.
01 — Memory to device.
02 — Device to device.
03 — Device to memory.

4-52 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 3 General Note:
Code implementation of labels marked with an asterisk (*) can be found in Appendix 4.
Initialization INITIALIZE :
SET SLAVE S
MODE OUTPUTS | OC = '001AH
AND CONFIGURE | IOR = ‘OF’H
PAC1000 PORTS
SET ADDRESS
COUNTER TO 22
BIT MODE
GO TO MAIN
Main Loop
MAIN :
NO l
GO TO
SLOT REJECT_R
AVAILABLE?
YES
TRANSFER
COM. WORD
ToLc. TRANSFER
TO EMPTY
SLOT
CHECK__PEND:
DECODE
BY LCPTR
BRANCHING GO TO
PREV. SETUP_DMA
DMA
ACTIVE?
CHECK
ABORT
BIT
GO T0
IS NEW SETUP_DMA
PRIORITY
HIGHER YES
GO TO 2
ABORT_DMA
GO TO
RESUME__PREV
l.egend: 1. Slot: The PAC1000 can handle up to 4 DMA channels concurrently. Slot means empty

register space inside the PAC1000 that is allocated for a pending channel.

2. LCPTR branching: A goto instruction of the command section, enabling multi-way
branching of the program according to a value loaded into the LC register by the ALU
(executed in two cycles).

WAFERSCALE INTEGRATION, INC. 4-53

PAC1000 — Application Note 005

Appendix 3 (Cont.)

Setting Up
the Transfer

RESUME__PREV :

TRANS. TO
WORKING
REGISTERS

SETUP_DMA :

y

SET BITS
IN STATUS
REGISTER

1

BLOCK TRANSFER

BLOCK OR
SINGLE?

SINGLE
OPERAND
TRANSFER

SETUP SETUP
MULTIWAY MULTIWAY
BRANCH BRANCH

GO TO GO TO

l Ny

SDD SDM SMD BDD BDM BMD BMM

l.egend: 1. SDD — single operand transfer, device to device.

2. SDM — single operand transfer, device to memory.

3. SMD — single operand transfer, memory to device.

4. BDD — block transfer, device to device.

5. BDM — block transfer, device to memory.

6. BMD — block transfer, memory to device.

7. BMM — block transfer, memory to memory.
General In a single operand transfer, at least one of the involved devices requests a DMA transfer for
Remarks: each operand. This method is used with slow devices.

Block transfers are used to move data blocks between fast memories and/or devices. A DMA
request is set for every block transfer.

4-54 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Device to
Memory BMD : BDM :
Block Transfer (MEMORY-DEVICE) (DEVICE-MEMORY)
EXTRACT EXTRACT
SOURCE DEST.
DEVICE NO. DEVICE NO.
LOAD SET BUSMSTR
BC, ACH RESET
ACL HOSTINTR
PUT
DEVICE NO.
IN I0R
SETUP
MULTIWAY
BRANCH
REQUEST
BUS
GRANTED? B__DM__SBYTE(%)
B_DM_WORD(+)
B_DM_BYTE(x)
leyend: 1. B_dm__byte: block device to/from memory transfer of bytes.

2. B_dm__word: block device to/from memory transfer of words.
3. B_dm__sbyte: block device to/from memory transfer of swapped bytes. Occurs whenever
the transfer is between even and odd addresses.

WAFERSCALE INTEGRATION, INC.

4-55

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Device to Device
Block Transfer
BDD :
EXTRACT
SOURCE
DEVICE NO.
BUS
GRANTED?
EXTRACT
DEST.
DEVICE NO.
SET BUSMSTR
RESET
HOSTINTR
DMA
REQUEST
FROM SRC &
DEST?
SETUP
MULTIWAY
BRANCH
SEND
BUS
REQUEST
B__DD__SBYTE(x)
B_DD_WORD(x)
B_DD_BYTE(x)
Legend: 1. B__dd__byte: block device to device transfer of bytes.

2. B_dd__word: block device to device transfer of words.
3. B__dd__sbyte: block device to device transfer of swapped bytes. Happens whenever the
transfer is between even and odd addresses.

4-56 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 3 (Cont.)

Memory to
Memory
Block Transfer BMM :

LOAD

BC
ACH, ACL

SEND

BUS
REQUEST

BYTE

NO

BUS
GRANTED?

NO & DEST
EVEN ADDR?

YES SET BUSMSTR
RESET
HOSTINTR

BC = SETUP
MULTIWAY

BRANCH

GO TO B_MM_SBYTE(¥)

¥
B_MM_BYTE(+) | B_MM_SBYTE(x)

B_MM_WORD(»)

Legend: 1. B_mm__byte: block memory to memory transfer of bytes.
2. B_mm__word: block memory to memory transfer of words.
3. B__mm__sbyte: block memory to memory transfer of swapped bytes. Occurs whenever the

transfer is between even and odd addresses.

WAFERSCALE INTEGRATION, INC. 4-57

PAC1000 — Application Note 005

Appendix 3 (Cont.)
Abort DMA
Transfer
ABORT_DMA :
MATCH ID
WITH
OCCUPIED
SLOT

CHECK
NEW
sLoT
MARK THE
MATCHED
SLOT AS
AVAILABLE e
INTERRUPT
UPDATE
INTERNAL 60 To
STATUS CHECK__PEND
REJECT_R : LOAD DMA
STATUS
WORD IN
DOR

4-58 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 3 (Cont.)

Bus Release

SAVE
WORKING
REGISTERS
IN THEIR SLOT

RESET
BUSMSTR

SET
BUS
REQUEST

RELEASE__BUS :

BUS
GRANTED ?

GO TO MAIN

GO TO
RESUME__PREV

End of Transfer

DONE :

MARK THE
SLOT AS
AVAILABLE

LOAD
TRANSFER ID
IN THE DOR

SET HOST
INTERRUPT

MORE
TRANSFERS
PENDING

?

NO

RESET
BUSMSTR

!

GO TO MAIN

YES

GO TO
RESUME_PREV

WAFERSCALE INTEGRATION, INC.

4-59

PAC1000 — Application Note 005

Appendix 4

/**/

/* device to memory byte transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/

/* in Q . Assume that the initial protocol has been gone through and *x/
/* PAC has control of the bus. For simplicity it is assumed that the*/
/* block size is a multiple of 64 and R5*64 = block size. */

/***************************************k********************************/

segment b_dm byte ;
/* define equates */

bgn equ CC7 ; /* bus grant (active low) *x/

ready equ CC4 ; /* ready input */

b dm byte norm equ h’00de’ ; /* dma active w/o read/write */

b_dm byte read equ h’00d6’ ; /* read (active low) */

b_dm byte write equ h’00c6’; /* write (active low) */
init_b dm byte :
“ACH := R3 ; /* upper 16 bits address */

SET ASEL ADOE HADOE ,

ACL := R4 ; /* select counter to output ,
enable ADD and HAD output, and
load lower address in ACL */

IOR := ~ Q ,

OUT b_dm_byte norm ; /* select device # */

Q :=1 ; /* address increment for byte *x/

LDLCD , MOV R5 RS ; /* R5 * 64 -> block count

/**/

/* start of outer transfer loop */
/**/
x1l: PLDLC H’3F’ ; /* push cnt to stack and load 64
in cnt *x/

/**/
/* start inner transfer loop */
/*****************k**/
yl : JMPNC ready yl ,

OUT b_dm byte read ; /* wait till ready signal high */

LOOPNZ y1 i

ACL := ACL + Q ,

OUT b_dm byte write

~e

/* strobe the write signal and

set up the next address */
/**/
/* end inner loop */
/**/
POPLC ,
ACH := ++ ACH ,
OUT b_dm byte read ; /* pop stack to cnt , increment
upper address bits */
JMPC bgn release_bus ; /* check if bus grant has been
taken away
LOOPNZ x1 ; /* loop back if counter not zero*/
/*********k**/
/* end outer loop */

/**/
done :

Cee s eerseceesaanan

C et c ettt

release bus :

D D I I ST

/**/

4-60 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/‘k*‘k*************************‘k**********'k********************************/

/* device to memory word transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q . For simplicity it is assumed that the block size is a multiple*/
/* of 64 and R5*64 = block size. */
/************************************‘k‘k**********************************/
segment b _dm word ;

/* define equates */

bgn equ CC7 ; /* bus grant (active low) */

ready equ CC4 ; /* ready input *x/

b _dm word norm equ h’00de’ ; /* dma active w/o read/write */

b dm word read equ h’00d6’ ; /* read (active low) */

b dm word write equ h’00c6’; /* write (active low) */
init b dm word :

“ACH := R3 ; /* upper 16 bits address */

SET ASEL ADOE HADOE ,

ACL := R4 ; /* select counter to output ,

enable ADD and HAD output, and
load lower address in ACL */
IOR := ~ Q ,
OUT b_dm word norm
Q :=
LDLCD , MOV R5 RS

/***********************‘k*******

/* start of outer transfer loop */
/**/
x1l: PLDLC H'1F’ ; /* push cnt to stack and load 32
in cnt */

/**************’k***/
/* start inner transfer loop */
/**/
yl : JMPNC ready vyl ,

OUT b_dm word read ; /* wait till ready signal high */

LOOPNZ y1 s

ACL := ACL + Q ,

OUT b _dm word write

/* select device # */
/* address increment for word */
/* R5 * 64 -> block size (words)*/

**************‘k********************‘k****/

¥ Ne e Ne

~e

/* strobe the write signal and

set up the next address */
/**/
/* end inner loop */
/******'k***/
POPLC ’
ACH := ++ ACH ,
OUT b_dm word read ; /* pop stack to cnt , increment
upper address bits */
JMPC bgn release bus ; /* check if bus grant has been
taken away
LOOPNZ x1 ; /* loop back if counter not zero*/
/**/
/* end outer loop */

/**/
done :

D I A N A AR
e e s s 000000000000

release bus :

e s e e e s s s e e e e

/**/

WAFERSCALE INTEGRATION, INC. 4-61

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/***i**********************/

/* device to memory byte transfer in the fly-by mode. The start address */
/* of the memory is loaded in R3 and R4 and the device number is loaded*/
/* in Q . For simplicity it is assumed that the block size is a multiple*/
/* of 64. This code illustrates individual transfer mode (non-block mode) */
/*******‘k**/
segment s_dm byte ;

/* define equates */

bgn equ CC7 ; /* bus grant (active low) */

ready equ CC4 ; /* ready input */

s_dm_byte norm equ h’00de’ ; /* dma active w/o read/write */

s dm byte "read equ h’00d6’ ; /* read (active low) *x/

s dm | byte write equ h’00c6’; /* write (active low) */

init_s_dm byte :

ACH := R3 ; /* upper 16 bits address */

SET ASEL ADOE HADOE ,

ACL := R4 ; /* select counter to output ,
enable ADD and HAD output, and
load lower address in ACL */

BC := R5 ; /* load block size in to BC */

IOR := ~ Q ,

OUT s_dm_byte norm ; /* select device # */

CMP Q H’0001’ ; /* find out if device #0 *x/

JMPC Z dev0 ;

CMP Q H’ 0002’ ; /* if device # 1 */

JMPC Z devl ;

CMP Q H’0004° ; /* if device # 2 x/

JMPC Z dev2

/* else it is device # 3
/**/

/* start transfer loop for dev#3 */
/*‘k*****k*****‘k***/

dev3 :

JMPC bgn release_bus ; /* monitor bus grant */

JMPNC CC3 dev3 ,

OUT s_dm byte read ; /* branch to check for dma request
from device3 */

SET ACEN BCEN ,

OUT s_dm byte write ; /* start counter x/

RESET ACEN BCEN ,

OUT s_dm byte norm /* stop counter */
JMPNC BCZ dev3 ; /* loop back if not done *x/
JMP done ;

~e

/************************************,************************************/

/* start transfer loop for dev#2 *x/
/********************************k**************‘k************************/

dev2 :

JMPC bgn release_bus ; /* monitor bus grant x/

JMPNC CC2 dev2 ,

OUT s_dm byte_read ; /* branch to check for dma request
from device2 */

SET ACEN BCEN ,

OUT s_dm_byte_write ; /* start counter *x/

4-62 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 4 (Cont.)
RESET ACEN BCEN ,
OUT s_dm byte norm ; /* stop counter */
JMPNC BCZ dev2 ; /* loop back if not done */

JMP done ;
/**/

/* start transfer loop for dev#l */
/**/

devl :

JMPC bgn release_bus ; /* monitor bus grant x/

JMPNC CCl devl ’

OUT s_dm byte_ read ; /* branch to check for dma request
- from devicel * /

SET ACEN BCEN ,
OUT s_dm byte write ; /* start counter *x/
RESET ACEN BCEN ,

OUT s_dm byte norm ; /* stop counter *x/

JMPNC BCZ devl ; /* loop back if not done */

JMP done ;
/**/
/* start transfer loop for dev#0 */

/**/

dev0 :
JMPC bgn release bus ; /* monitor bus grant *x/
JMPNC CC3 dev0 ’
OUT s_dm byte_read /* branch to check for dma request

from device3

~e

SET ACEN BCEN ,
OUT s_dm byte write ; /* start counter */
RESET ACEN BCEN P
OUT s_dm byte norm
JMPNC BCZ dev0

/* stop counter */
/* loop back if not done */

Ne o

/**/

done :

release_bus :

O I I R N I A A Y

/**/

WAFERSCALE INTEGRATION, INC. 4-63

PAC1000 — Application Note 005

Appendix 4 (Cont.)
/**/
/* code to illustrate device to memory transfer in non fly by mode . *x/
/* This is used when data bus is connected d7-d0 to d15-d8 or the */

/* other way around. Use counter to output addresses.Q contains device */
/* number and R3 R4 contain destination address.R5 contains block size. */
/*************************************k**********************************/
segment b_dm_sbyte ;
/* define equates */
b dm_sbyte norm equ h’009%e’
b _dm sbyte read equ h’0096’
b_dm_sbyte write equ h’008e’
rdy equ CC4

Ne Ne Ne

l
bgn equ CC7 ;
init b dm_sbyte :
BC := R5 ,
OUT b_dm_ sbyte norm ; /* load block size in bcnt */
SET DIREN ASEL HADOE ADOE ;/* select counter to output ,
enable had output */
ACH := R3 ;
ACL := R4 H
/ K % Kk K Kk Kk Kk K Kk ok ok Kk ok ok sk sk ok Kk Kk ok sk sk ok ok Sk ok ke k k k ok Kk Kk ok %k sk sk ok ok Kk ok ok ok ok ke sk sk ok Sk ok sk ok %k ok ok sk ok ok ke ok ok ok ok ok ok ok ok ok kK /
/* start of transfer loop x/

/ Kk kK K Kk Kok k ok Kk k& k Kk ok ok k ok Kk Kk sk k ok k ks k sk ok gk ok ok ok sk ok sk k ok ok ok ok ok ok ok ok k ke ok ok ke ok ok ok ok ke ok ok sk ok ok ke ok ke ok ok ok ok ok ok ok /

b_dm sbyte :

JMPC bgn release_bus ;

SET DIREN ; /* enable DIR */
srdy :

JMPNC rdy srdy ,

OUT b_dm_ sbyte_ read ; /* wait till source ready */

SET HDOE HDSELO ,

AOR := DIR ; /* when src is ready read the data
in , enable HD output , select
DOR to output x/
DOR := SWPV ,
OUT b_dm sbyte write ; /* put swapped data in DOR */
SET ACEN BCEN ,
OUT b_dm sbyte norm ; /* start counter , output swapped
data x/
RESET ACEN BCEN HDOE ;
JMPNC BCZ b dm sbyte ;
/ K ok Kk ok Kk sk Kk ok Kk ok K gk Kk Kk k ok K %k ok ok Kk dk ke k sk ok Kk sk ok Kk sk ok Kk sk ok Kk sk ok ok ok sk Kk ok %k ok %k ke ok ok ok ok ok ok ok sk ok sk ok ok ok ok Kk ok ok Kk ok ok /
/* end of transfer loop */
/ KAk Ak AR Ak A kA AR Ak hkhkhkhhkhkkhkkhkhkhkkhkkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhhkhkhkkhkhkhkhkkhkhkhkhkkkkkkkk /
done :

release_bus :

P I I N T AR S AP P AP PP

/ K % Kk Kk ke dodk Kk Kk Kk sk sk ok ok ok sk ke ok ok sk sk kK ok ok ok sk sk ok ok ok ok sk sk ok ok ke ok sk ke Kk ok ok ok k ok ok ok ok ke sk ok ok ok ke ok ke ok ok k ok ke ok /

4-64 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/***‘k******‘k*********/

/* code to illustrate memory to memory transfer.Use counter to output */
/* both addresses.R1,R2 contain source address and R3 R4 contain dest */
/* address . R5 contains block size. */
/‘k****‘k****************************‘k*************************************/
segment b mm byte ;

/* define equates */

b mm byte norm equ h’00%’ ;

b _mm byte read equ h’0096’ ;

b mm byte write equ h’008e"

rdy equ CC4

bgn equ CC7 ;
init_b mm byte :
BC := R5 ,
OUT b_mm byte norm ; /* load block size in bcnt */
SET ASEL HADOE ADOE ; /* select counter to output ,
enable had output x/

/**/

/* start of transfer loop */
/**k***************/
b mm byte :

JMPC bgn release bus ,

ACH := R1 ; /* monitor bus grant , source
address in R1 *x/
SET DIREN , ACL := R2 ; /* enable dir, r2 <- low 6 bits */
srdy :
JMPNC rdy srdy ,
OUT b mm byte read ; /* wait till source ready */
SET ACEN HDOE HDSELO ,
DOR := DIR ; /* when src is ready read the data
in , enable HD output , select
DOR to output */
RESET ACEN DIREN ,R1 := ACH,
OUT b_mm byte norm ; /* stop counter , store it back in
to registers *x/
ADD R2 ACL Q ARDREG ACH R3 ; /* mov ACL back to rl and at the
same time load r3 to ach */
ACL := R4 ; /* ach,acl have dest address */
drdy :
JMPNC rdy drdy ; /* wait for destination ready */

SET ACEN BCEN ,
OUT b _mm byte write /* when dest is ready , write the
data, increment counter , also

enable block counter */

~e

RESET ACEN BCEN HDOE ,

R3 := ACH ,

OUT b_mm byte norm ; /* stop counters , set HD to input
save dest address (upper 16) */

JMPNC BCZ b_mm byte ,

R4 := ACL ; /* loop back if block counter not
zero , also save lower 6 bits
of dest address */
/*******************************‘k**/
/* end of transfer loop */

/**/
done :

release bus :

B I R T S A I I R

/**/

WAFERSCALE INTEGRATION, INC. 4-65

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* code to illustrate memory to memory transfer (word mode) .Use counter */
/* to output both addresses.R1,R2 contain source address and R3 R4 *x/
/* contain destination address . R5 contains block size in words. */
/**/
segment b _mm word ;
/* define equates */
b mm word norm equ h’009%e’
b mm word read equ h’0096/
b mm_ | word write equ h’008e’
rdy equ CC4
bgn equ CC7
init_ b mm word :
BC := R5 ,
OUT b_mm word norm ; /* load block size in bcnt */
SET ASEL HADOE ADOE ; /* select counter to output ,
enable had output

/***‘k*******************‘k****/

/* start of transfer loop */
/**/

b mm word :
JMPC bgn release bus ,

e Ne N

Ne ~o

ACH := R1 ; /* monitor bus grant , source
address in R1 *x/
SET DIREN , ACL := R2 ; /* enable dir,ACL <- low 6 bits */
srdy : JMPNC rdy srdy ,
OUT b mm word read ; /* wait till source ready x/

SET ACEN HDOE HDSELO ,

DOR := DIR ; /* when src is ready read the data
in , enable HD output , select
DOR to output *

OUT b mm word norm ;

RESET ACEN DIREN ’
ADD R1 ACH Q ARDREG ACH R3 /* stop counter , store ACH in to
Rl and also load ACH with R3 */
/* store ACL in R2 and at the same
time put R4 in to ACL *x/
drdy : JMPNC rdy drdy ; /* wait for destination ready */
SET ACEN BCEN ,
OUT b_mm word write

~.

ADD R2 ACL Q ARDREG ACL R4

~

/* when dest is ready , write the
data, increment counter , also
enable block counter *x/

e

RESET BCEN HDOE ,
OUT b _mm word norm /* stop block counter, set HD to

input *x/

~e

RESET ACEN , R3 := ACH /* stop add counter ,

save dest address (upper 16) */

~,

JMPNC BCZ b _mm_word ,

R4 := ACL ; /* loop back if block counter not
zero , also save lower 6 bits
of dest address */
/**/
/* end of transfer loop x/

/**/
done :

D I N I R I I

release bus :

¢ e e e 00 s e e e s e e s e s

/***‘k******************************/

4-66 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* code to illustrate memory to memory transfer from D7-DO to D15-D8 */
/* or vice-versa. Use counter to output both addresses .R1 , R2 contain */

/* source address and R3 R4 contain destination address.R5 contains */
/* block size. Data is read in to AOR and byte-swpped before outputting */
/* through DOR. *x/

/**k*******************************/

segment b_mm_sbyte ;
/* define equates */
b mm sbyte norm equ h’009%’ ;
b mm sbyte read equ h’0096’ ;
b mm sbyte write equ h’008e’;
rdy equ CC4 ;

bgn equ CC7 ;

init b mm_ sbyte :
"BC := R5,0UT b mm _sbyte_norm; /* load block size in bcnt */
SET ASEL HADOE ADOE ; /* select counter to output ,
enable had output */

/**/
/* start of transfer loop */
/**/
b _mm sbyte :

JMPC bgn release_bus ,

ACH := R1 ; /* monitor bus grant , source

address in R1 *x/

SET DIREN , ACL := R2 ; /* enable dir, r2 <- low 6 bits */
srdy : JMPNC rdy &rdy ,

OUT b mm sbyte read ; /* wait till source ready */

SET ACEN HDOE HDSELO ,
AOR := DIR /* when src 1s ready read the data
in , enable HD output , select

DOR to output x/

~e

RESET ACEN DIREN,R1 := ACH ,
OUT b_mm_sbyte norm

~.

/* stop counter , store it back in

to registers */
ADD R2 ACL Q ARDREG ACH R3 ; /* mov ACL back to rl and at the
same time load r3 to ach */
ACL := R4 ; /* ach,acl have dest address */
drdy : JMPNC rdy drdy,DOR := SWPV ; /* wait for destination ready
and write swapped value */
SET ACEN BCEN ,
OUT b_mm_sbyte write ; /* when dest is ready , write the
data, increment counter , also
enable block counter */

RESET ACEN BCEN HDOE ,

R3 := ACH ,

OUT b_mm_sbyte norm ; /* stop counters , set HD to input
save dest address (upper 16) */

JMPNC BCZ b mm_sbyte ,

R4 := ACL ; /* loop back if block counter not
zero , also save lower 6 bits
of dest address *x/
/**/
/* end of transfer loop */

/**/
done :

L I R R R P)

release bus :

e e e e o s e s e s e e e s e e

/**/

WAFERSCALE INTEGRATION, INC. 4-67

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/ hhkkkhkhkhkhkhkkhkhkkhkhhkkkhkhkhkkkhkhkhkhkhkhkhkkkkhkkhkkhkkkkhhkkkkhkhkkkkkhkhhkkkkkhkhkhkhkhhkkkkkkx /

/* code to illustrate device to device transfers in the byte as well as */
/* word mode. source device is in rl and dest device is in r3. block */
/* size is in r5. */
/ Ak Ak A Ak A A AR A A A A A A A A AR A A A A A AR KA A I A A A KKK I AR KK AKR AR A hk A A Ak khkkkhkkkhkkkkkkkx *’/
segment b_dd_bw ;

/* define equates */

b _dd bw _norm equ h'00%e’

b_dd_bw_read equ h'0096'

b _dd bw _write equ h'008e'

rdy equ CC4 ;

bgn equ CC7 ;
init b _dd _bw :

SET DIREN , IOR := ~ R1 ,

e Ne Ne

OUT b_dd_bw_norm ; /* enable DIR and output source
device chip select *x/
/ dhkkhkkhkkkkhkkkhkkhkkhkhkkkhkkkhkhkhkhkhkhkhkhhkhkkhkhhkhkhkkhkhkkhkhhkhkhhkhkhkhkdhAhkkhkxhhkkkhkx kA hkkkkxx /
/* start of transfer loop */
/ KA hkA Ak kA hkAhkhkAhhkhhhhhkhkhkhkhkhhkhkkhkhkhkkhkhkhkhkkhkhkhkkkhkhkhkhkkhkhkhkkhkhkkkhkhkkhkhkhkkhkhkkkhkkkkkk /
b _dd byte
b_dd_word
b_dd_bw
JMPC bgn release bus ,
IOR := ~ R3 ,
OUT b_dd _bw_read ; /* read source device and output
dest device chip select , also
monitor bus grant */
SET HDOE HDSELO ,
DOR := DIR ,
OUT b_dd_bw_norm ; /* enable HD output , select DOR
to output */
RESET HDOE ,
DEC R5 ,
OUT b_dd_bw_write ; /* HD to input , decrement count ,
output write strobe */
JMPNC Z b_dd bw ,
IOR := ~ R1 ,
OUT b_dd bw_norm ; /* loop back if R5 not zero , also
output src device cs *x/
/ Kk k ok k ok ok Kk Kk k Kk k ok k %k Kk ok %k Kk ok Kk k ok k% kR k ok ke ke ke k% ok ok kR ok ok ok ok %k ok ok ok ok ok ke ok ok ok ke ke ok ke ko ok sk ok ke ko ke ok kk ok ok ok ok /
/* end of transfer loop */

/ KA A A A A A A R A AR A KR A A A A A A AR A A A R A AR AR A A KA AR A A A A AR A ARAAKA AR A AR A A AR A A Ak kA khkkkkkhk k% /
done

/ KA KKK A KRIA AR AAA ARk Ak Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkkhkhkkkhkkhhkhkhkhhkhkkkhkkhkkhkhkhkkkkhkkkkkrkkxkhkkkkkx /

4-68 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 005

Appendix 4 (Cont.)

/**/

/* code to illustrate device to device transfer in non fly by mode . */
/* This is used when data bus is connected d7-d0 to d15-d8 or the */
/* other way around. Source device # is in Rl and dest device # in R3 */
/***k/
segment b_dd_sbyte :

/* define equates */

b _dd sbyte norm equ h’009%e’

b dd sbyte read equ h’0096’

b dd_ | sbyte write equ h’008e’;

rdy equ CC4 ;

bgn equ CC7 ;
init_b dd_sbyte :

SET DIREN , IOR := ~ R1 ,

~e

~

OUT b_dd sbyte_norm ; /* enable DIR and output source
device chip select x/
/**/
/* start of transfer loop */

/**/
b_dd_sbyte :

JMPC bgn release_bus ,

IOR := ~ R3 ,

OUT b_dd_sbyte_read ;7 /* read source device and output
dest device chip select , also
monitor bus grant */

AOR := DIR ; /* read in the data x/

SET HDOE HDSELO ,
DOR := SWPV ,

OUT b_dd sbyte write /* enable HD output , select DOR
to output , put swapped data in

DOR */

e

RESET HDOE ,
DEC RS ,

OUT b_dd sbyte norm /* HD to input , decrement count ,

~.

output write strobe */
JMPNC Z b_dd sbyte ,
IOR := ~ R1 ; /* loop back if R5 not zero , also
output src device cs */
/**/
/* end of transfer loop */

/**/
done :

release bus :

D R I e I I I I

/**/

WAFERSCALE INTEGRATION, INC. 4-69

4-70 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

Application Brief 006

PAC1000 as a 16 Bi-Directional

Serial Channel Controller

By Arye Ziklik

Introduction

This Application Brief describes a
Communications Controller that utilizes the
PAC1000 as the board level control element
in a 16 bi-directional serial channel board.
The aggregate board throughput is around
1 Mbyte/sec.

Serialization and de-serialization of the
data is handled by eight Serial
CommunicationVControllers (SCC). Every

SCC has two bi-directional serial channels
with individual baud rate generator and
digital phase loop mechanism. The SCC
can handle all the customary synchronous
and asynchronous protocols as well as the
popular serial data encoding/decoding
schemes. With a 16-MHz clock, the
maximum bit rate in every individual
channel can be up to 2 Mbps.

PAC1000 —
Host Interface

The PAC1000 performs the low level
function of moving the data to and from
the serial devices and buffer RAM memory.
The host interface is a generic 32-bit

. system. The host processor communicates

with the PAC1000 through two interrupt
lines, two status signals and a mail-box
area that resides in the buffer memory.
Prior to accessing the board, the host
drives the “system board access” signal.
The PAC1000 is interrupted (INT3) and
relinquishes control of the board’s data
and address buses as long as that signal
is active (as reflected by CCO0). The host

reads and/or writes into the buffer memory.
After completion of this activity, it updates
the mail-box region and then lowers the
“system board access” signal. The PAC1000
continuously monitors that signal. After
CCO is negated, the PAC1000 can raise its
“PAC1000-board master” signal and start
controlling the data/address buses and
control signals. Whenever it needs a fast
response from the host, the PAC1000
updates the mail-box portion of the shared
buffer memory, lowers the “PAC1000-board
master” signal and activates the system
interrupt.

Buffer Memory
Structure

The high speed buffer memory is composed
of 64K bytes of static RAM that can be
accessed in three ways: by bytes (during
SCC transfer operations), by words (when
accessed by the PAC1000), or by double
words (from the host side). Memory access
configuration is determined by the PAC1000
output control signals (OC port).

The buffer memory is divided into three
regions:

1) SCC control image register space that
includes copies of the SCC registers.

2) Buffer message space where the 32
buffers of the corresponding serial
channels are stored.

3) Mail-box area in which the PAC1000
exchanges command and status
information with the host. This region
also contains the pointers to the 32
channel buffers.

Whenever instructed to do so, the PAC1000
writes the image register content of a
channel into the corresponding SCC,
thereby initializing that channel for a
particular transfer mode. Buffer message
sizes are allocated by the host according
to the speed of each individual channel.
The pointers of the buffers are stored in
the mail-box area.

Every transfer takes place between the
buffer memory and the selected SCC. The
PAC1000 is acting in this design as a
32-channel DMA controller, capable also of
communicating with the host processor
through their mail-box region. Once the
board is properly configured, the only
interface of the host system is the reading
of data from the receive and mail-box
buffers and the placing of new data into
the transmit and mail-box buffers. The
PAC1000 off-loads the host processor from
maintaining the low level control of each
channel.

WAFERSCALE INTEGRATION, INC. 4-71

PAC1000 — Application Brief 006

PAC1000 —
SCC Devices
Interface

The high speed data transfers are achieved
due to the very fast response of the
PAC1000 to the channel service requests.
The SCCs are programmed to request
DMA transfers whenever they are either
ready to transmit or containing new
received characters.

The 16 received character DMA requests
are priority encoded and latched. The
encoder output is connected to the
PAC1000’s CC3 pin. The 16 transmit DMA
requests are priority encoded and latched,
too. Their encoder drives the CC2 input
pin. The condition code multiplexer presents
to the CC7-CC4 the highest priority
encoded-channel-number of the pending
receiver request, or the transmitter request,
or the highest priority SCC number that is
currently requesting an interrupt service
via the CC1 pin. The receiver requests
have higher priority over the transmitter
requests. The lowest service priority is
assigned to the SCC interrupts. This
configuration ensures a very fast response

time of the PAC1000 to DMA requests and
SCC interrupts. Condition code latency is
125 ns and multi-way branching according
to the CC7-CC4 lines requires additional
125 ns. Therefore, 250 ns after a high
priority DMA request, the service routine
will be initiated. The condition code lines
CC3, CC2 and CC1 are continuously
monitored by the PAC1000 during the time
that it is the board master. Therefore it
responds immediately when either a DMA
request or an SCC interrupt is pending.

The regular SCC interrupt lines are also
prioritized and latched by an 8 interrupt
encoder. These interrupts are requested by
erroneous SCC channels or whenever block
transfers are completed. The interrupt
priority encoder is also connected to the
condition code multiplexer. The three
encoded lines that denote the number of
the serviced SCC route the INTA signal
issued by the PAC1000 (via the 1/06 pin)
to the corresponding SCC.

Miscellaneous

In addition to functioning as an SCC
controller, the PAC1000 can also generate
all the necessary signals for modem control
and modem interface through the SCC
control signal latch.

The PAC1000 output control (OC) port
generates various control strobes such as
data path width definition, read/write,
multiplexer and decoder select, etc.

4-72 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Brief 006

PAC1000 as a

16 Bi-Directional
Serial Channel
Controll SYSTEM SYSTEM LOW ORDER SYSTEM SYSTEM
ontroiier 32-BIT DATA BUS 16 ADDRESS LINES INTERRUPT
WR RD HIGH-ORDER
ADD. LINES
SYSTEM DATA surrer |S5] mEmory SYSTEM ADDR.
TRANSCEIVER MEMORY DECODER [™] LATCH _
64K x 8 BRD <«—|
(CONFIG. T BWR <——| SYSTEM BOARD
HIGH ORDER | ALSO BY 16-BIT DECODER
DATABUS | 16 ORBY | ADDRESS BUS BRD
32 BITS)
LOW ORDER 2’3}%"
DATA BUS ACCESS SYSTEM SCC
BWR DECODE/CONTROL
- LINES
16-BIT DATA BUS
PAC1000
BOARD
MASTER ADD(15-0) OC1 0OCo 1/07 INT3 CCo g:,GEl.éD
A /o6 CONTROL
o cer STROBES
PAC1000 0C(15-0) (DATA
cc2 PATH
WIDTH,
cc7-cca SCC READ,
SCC WRITE,
—={ CC3 1/0(5-0) HAD1 HAD(5-2) HADO HD(15-0) ETC...)
|
‘A/E
CONDITION CODE SCC CONTROL.
MULTIPLEXER SIGNALS DECODER sce
DECODER
I c/b
SCC CONTROL Y DATA
SIGNALS LATCH TRANSCEIVER
’ e
8-BIT DATA BUS
FORCED DTRS INTR
SYNCS ENABLE r
AND I
CLR [
[
[
4 ENCODED il
LINES
RECEIVER 16 DMA REQ. —»1 Cs#l c/b
PRIORITY ENCODER -
AND LATCH DB(7-0) AB
4 ENCODED e f—— RDY1A
LINES .
RDViB
. oviB SCC #1
TRANSMIT 16 DMA REQ. |<— DTRIA
PRIORITY ENCODER .
AND LATCH - DTRIB
INTR#1 H
3 ENCODED SCCs N R I
v & INTR : INTAF i
ENCODER | TDIA RDIA TDIB RDIB | .
* L] . T T
.
INTA INTR. | © l
ACK
MUX | °

16 TRANSMIT / 16 RECEIVE SERIAL CHANNELS

WAFERSCALE INTEGRATION, INC.

4-73

4-74 WAFERSCALE INTEGRATION, INC.

— S— a————
— —
A —
o —

—

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

Application Note 008

PAC1000 User-Configurable Microcontroller

with a Built-In-Self-Test Capability

By David Fong

Abstract The objective of this Application Note is to User-Configurable Microcontroller. This
demonstrate the Built-In-Self-Test (BIST) article describes the basic instructions
capability of the PAC1000 High-Performance needed to implement BIST.

Introduction With increasing device densities on one only test the ALU and its status flags, the
chip, more devices are needed for BIST to address and block counter, and the
check the functionality of the internal logic. sequencer. Future versions in the WS-PAC
Current serial scan techniques for board Family will have even larger sizes of
level verification would take too much time EPROM and may test the control EPROM.
and resources. The current PAC1000 will

l{sage ?Ild The program is accessible by calling the This BIST is not a panacea for system

Limitations BIST program. The program occupies designers. A ‘PASS’ condition is indicated

forty-five lines of EPROM code. The
program can be reduced in size by
specifying extra CPU registers to hold the
constants h'FFFF’, h‘0000°, h'AAAA), h‘5555’
and h'FFF4.

Certain conditions must be met prior to
programming the code to ensure that this
program will work correctly. The stack
should be empty because the program
exercises the stack. In addition, location
h'3FF’ must be reserved because the BIST
uses this location to verify the contents of
the stack as a ‘1. The outputs should be
placed in a mode where the existing
system is not affected. The ‘MAINT’
instruction will ensure that the OC is the
same throughout the program. However,
this example was not implemented in that
manner. Instead, it uses set values to
assist in debugging the program. Users
can do a global substitution of “OUT
h'xxxx’ " with “MAINT” in their word
processor to fully implement this BIST
program.

by a return to the main calling program.
The output control will be h‘0000’. A ‘FAIL
condition will result in some endless loop
or jump to some portion of the program. In
the event that it does fail after about 170
clock cycles, the system must disable the
PAC1000 from the rest of the system in
some manner. Future versions of the
PAC1000 may include a watchdog timer to
interrupt and timeout the BIST.

The variables that can be altered by the
user are listed at the beginning of the
BIST.mal file. The current values used will
only exercise the counters in a simple
manner. The user can modify these
variables to increase the confidence level
of the program at the expense of a longer
test cycle.

4

WAFERSCALE INTEGRATION, INC.

4-75

PAC1000 — Application Note 008

Usage and A summary of the instructions used and
Limitations the functional blocks follow below:
(Cont.)
/***/
/* registers destroyed : RO,R1,R2,R3 and R4 */
/* AOR,ACH,ACL,BC,LC and stack */
/* */
/: stack should be empty before calling this program :/
;* the block counter, address counter, ALU with register file and *j
/: flags,and the sequencer with stack and counter are tested :/
;* flags checked: BCZ,ACO,CY,Z,0,S,and STKF *5
/* ALU instructions used: ADC,AND,ADD,MOV,NOP, SHRR, SHRL, SUB */
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC,LDLCD, */
/: LOOPNZ , PLDLC, POP,RET,RNC,RSTCON and SETCON :;
;* DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010, */
/* 03FF, 0019 */
/***/
Confidence The program executes some of the possible with a carryout is considered a critical
Level internal critical paths of the PAC1000. path. The counters have a critical path in
From tester and simulation measurements, propagating the carry. Overall, the
the test of condition codes and branching confidence level of this test is considered
were consistently the longest. Similarly for to be high.
the ALU, flag generation such as adding
Analysis of the The currently executing program calls the are set and reset by instructions. The ALU
Pmyram BIST program by using the ‘CALL result of each cycle updates each flag on
instruction. The instruction following ‘CALL the next rising edge of the clock. For
which is the return address is pushed to example, to check the zero flag (Z), some
the stack and is not destroyed by the BIST ALU instruction forces the Z flag to zero.
program. See Figure 1 for the BIST See the instructions below:
ﬂowqhart. The BIST tests the 'PAC1000 MOV R2 R2 , OUT h'0138’ ;
functional blocks in the following order: I* force zero flag Z=0 */
1. Block Counter and flag BCZ. zero: JMPNC Z zero, AND AOR R1 ,
2. Address Counter and flag ACO. OUT h'0139" ;
3. ALU with shifter and flags CY, Z, O Next, loading the loop counter from the
and S. ALU needs special treatment. The data
. must be present at the ALU output before
4. Sequencer with stack and loop counter, he instruction to load the loop counter
and flag STKF. executes. See the instructions below:
Some subtleties of programming the) MOV R4 short, OUT h'014B’
PAC1QOO are presented. In the ALU section, /* force ALU output to the
certain flags must be forced to zero before value of short = h'0010’ */
being tested upon, unlike the normal LDLCD , MOV R4 R4, OUT h'014C’ ;
microprocessors where the individual flags /* load 0010 to LC */
Analysis of the Looking at the block counter outputs Because of the latched flag BCZ, there is
Simulation BC(15:0) from cycle 7 through 18, the a minimum of two cycles before the next
0utput counter counts continuously until disabled. instruction is executed after the loop.
The block counter contents wraps around Figure 2 shows the loop with the minimum
from h‘0000’ to h'ffff’ and down. Note that number of latency cycles before executing
the BCZ flag remains latched until new the next line of program code.
data is loaded to the block counter.
4-76 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 008

Figure 1.
Built-In-Self-Test
Flowchart

CALL BIST °

L TEST CY PUSH TO
OAD BCNT FLAG STACK
DECREMENT
BCNT NO NO

YES YES

1S
BCNT ZERO
?

TEST Z FLAG POP STACK

)}

LOAD ACNT NO s
l BCNTZERO=1
?
INCREMENT YES YES
ACNT
TEST O FLAG LOAD LC
1S YES ‘
ACNT ALL 1's
?
? NO DECRLECMENT
YES
SET ACNT YES
TO 22-BIT NO
{ TEST S FLAG |-
LOAD ACNT YES
l NO POP STACK
AND RETURN
TO MAIN
INCREMENT - PROGRAM
ACNT
YES

IS
ACNT ALL 1's
?

WAFERSCALE INTEGRATION, INC. 4-77

PAC1000 — Application Note 008

Figure 2.
BCZ Fiag:
Example
Cycle-hy-Cycle
Simulation e L L L L] LT 1
BC —X 0001 0000 FFFF FFFE | X FFFE FFFE
BCZ
i N A N
1. loop1: MOV R2 h‘5555’, OUT h‘0128’ ;
2. JMPNC BCZ loop1, OUT h‘0129’ ;
3. RESET BCEN, OUT h‘012a’ ;
4. ACSIZE 22, OUT h‘012b’ ;
5. MOV ACL long, OUT h'012¢’ ;

/**/

/* Main calling program 02/03/89 */
/* David Fong Rev. 1.0 */
/* main.mal *

/**/
segment main ;

external bist ;

mainl:

/* initialize */
/* not needed */

/* call bist program */

CALL bist , OUT h’0123’ ; /* call the BIST program */
/* return to main program */
FORE: JMP FORE , OUT h’0000’ ; /* loop forever */

end ;

/***/
/* Program to jump back to main bist program */
/* David A. Fong 02/03/89 Rev. 1.0 %/
/* jmpf.mal *
/***/

segment jmp ;
external jmpf ;

JMP jmpf , OUT h’/’FFFF’ ; /* jmpf is an external address */
/* this tests branching with all 1’s */
end ;

4-78 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 008

/***/

/* Built-In-Self-Test Program 02/03/89 */°

/* David A. Fong Rev. 1.0 */
*

/* bist.mal
/***/

/* registers destroyed : RO,R1,R2,R3 and R4 */
/* AOR,ACH,ACL,BC,LC and stack */
/* */
/* stack should be empty before calling this program */
/* */
/* the block counter, address counter, ALU with register file and*/
/* flags,and the sequencer with stack and counter are tested */
/* */
/* flags checked: BCZ,ACO,CY,2,0,S,and STKF */
/* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR, SHRL, SUB */
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC,LDLCD, */
/* LOOPNZ , PLDLC, POP,RET,RNC,RSTCON and SETCON */
/* *
/*DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010%/
/* 03FF, 0019 */

/***/
segment c_bist ;
entry bist,jmpf ; /* entry points into this program */

/* define equates for user to substitute #*/
shorter equ h’0008’ ;

short equ h’0010’ ;
medium equ h’03ff’ ;
long equ h’fff4’ ;

popper equ h’0019’

/****************************/

/* test the counters and */
/* initialize the registers */
/****************************/

bist: MOV R1 h’0000’, OUT h’0124’; /*the outputs should be placed*/
/* in a non-functional mode */
MOV RO h’FFFF’ , OUT h’0125’ ; /* in this program it is not*/
MOV BC shorter , OUT h’0126’ ;/*because it was needed to*/
SETCON h’002’ , OUT h’0127’ ; /*debug enable block counter */
loopl: MOV R2 h’5555’ , OUT h’0128’ ;
JMPNC BCZ loopl , OUT h’0129’ ;
RSTCON h’002’ , OUT h’012A’ ; /* disable block counter */

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 %/
/* test the 22-bit address counter */
ACSIZE 22 , MOV ACH RO , OUT h’012B’ ;

MOV ACL long , OUT h’0l12C’ ;
SETCON h’001’ , OUT h’012D’ ; /* enable address counter */

WAFERSCALE INTEGRATION, INC. 4-79

|
|
|
|
|

PAC1000 — Application Note 008

loop2: MOV R3 h’AAAA’ , OUT h’012E’ ;
JMPNC ACO loop2 , OUT h’012F’ ;
RSTCON h’001’ , OUT h’0130’ ; /* disable address counter */

/* RO = FFFF ; Rl = 0000 ; R2 = 5555 ; R3 = AAAA */
/* test the 16-bit address counter */

ACSIZE 16 , OUT h’0131’ ;
MOV ACH long , OUT h’0132’ ;
SETCON h’001’ , OUT h’0133’ ; /* enable address counter */
loop3: MOV R4 h’0000/ , OUT h’0134’ ;
JMPNC ACO loop3 , OUT h’0135’ ;
RSTCON h’001’ , MOV R3 R3 , OUT h’0136’ ;
/* disable address counter */
/* and do a dummy ALU instruction so that Z=0 and CY=0 */
/* note: a NOP instruction will force Z=1 and CY=1 on the */
/* following cycle*/

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 ; R3 = AAAA ; R4 = 0000 */
/* R4 is the working register */

/****************/

/* test the ALU */
/****************/

carry: JMPNC CY carry , ADC AOR RO , OUT h’0137’ ;/*test carryout */

MOV R2 R2 , OUT h’0138’ ; /* force zero flag = 0 */
zero: JMPNC Z zero , AND AOR R1 , OUT h’0139’ ;/*test all the alu*/

/* outputs are zero */

over: SUB AOR R3 R2 , OUT h’013A’ ; /* test for overflow */
JMPNC O over , OUT h’013B’ ; /* test for overflow */

f15: JMPNC S f15 , ADD AOR R1 RO , OUT h’013C’ ;/*test sign bit*/
/* test the alu shifting */

shftl: SHLR R2 Z , OUT h’013D’ ;
AND AOR R3 R2 , OUT h’013E’ ; /*should not loop*/
/*but fall-thru */
JMPC Z shftl , OUT h’013F’ ;

shftr: SHRR R2 Z , OUT h’0140’ ;
AND AOR R3 R2 , OUT h’0141’ ;
/* should not loop,but fall-thru */
JMPNC Z shftr , OUT h’0142’ ;

/**********************/

/* test the sequencer */
JREkkRkhkkkhhhkhhkdkkkdkk/

MOV BC short , OUT h’0143’ ;

4-80 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 008

SETCON h’002’ , OUT h’0144’ ; /* enable block counter */
stack: PLDLC medium , OUT h’0145’ ;
JMPNC STKF stack , OUT h’0146’;
/*exit loop when stack is full */
/* the return address will not be */
/* overwritten , only the top of stack*/
MOV BC popper , OUT h’0147’ ;
jmpf: RNC BCZ , OUT h’0148’ ;
/*should come out of loop when empty+l%*/
/* which is the return address */
POP , NOP , OUT h’0149’ ;
/* pop one more time but don’t pop */
/* the last return address */
RSTCON h’002’ , OUT h’014A’ ; /* disable block counter */

/* test the loop counter */
MOV R4 short , OUT h’014B’ ;
LDLCD , MOV R4 R4 , OUT h’014C’ ;/* load 16 into the LC*/
1p: ADC AOR R4 , OUT h’014D’ ; /* aor = aor + r4 */
LOOPNZ 1lp , OUT h’014E’;/*check that loop count is not zero*/
RET , OUT h’014F’ ; /* return to calling program */

end ;

/**********************************/

/* bist linker file 02/03/89 */
/* David Fong Rev. 1.0 */
/* exbist.ml *

/**********************************/

place main , c_bist , jmp ; /* place the segments */

load main , bist , jmpf ; /* load the .mal files */

locate main , h’000’ ; /* locate main and init file */

locate c_bist , h’011’ ; /* locate bist file after interrupt */

locate jmp , h’3ff’ ; /* locate jmp at 3ff to test ’1’ from stack */
end ;

.T

RCCCCCCCCIIIIIIIIIITITICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA
ECCCCCCCCOOOO000ONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD

E 3210 543210 5432101111119876543210
T 543210
B
TIME
1 00000000000000000000011100000000000000000000000000000000000000
2 10000000000000000000011100000000000000000000000000000000000000

WAFERSCALE INTEGRATION, INC. 4-81

PAC1000 — Application Note 008

khkhkhkhhkhhhhhhhhkhkhkkkkkhkkkhhkhhhkhhhkhkkkhkhkkkhkhkhkkhkhkhkhkkkkkkkkkk

OUTPUT TABLE

PACSIM Ver. 1.09 Mon Feb 13 15:12:09 198
khkkkkkkkkkhkhhkkhkhkhkhkhkhhkhkhhkhhhhkhkhkhkhkkhhhkkhkhk khkkkkkkhkhkkkkkkkhkkhhkkhkkkkkkxk

PPP 0O0O0O0 LLL AAAA BBBB AAAA AA BASCOSZ RRRR RRRR RRRR RRRR
CCC CCCC CcCcC 0000 CcCcC ccce cCc cCcTyY 3333 2222 1111 0000
173 1173 173 RRRR 1173 HHHH LL ZOK
1:: 51:: $: 1173 51:: 1173 53 F 1173 1173 1173 1173
240 ::40 :40 51:: ::40 51l:: :: 51:: 51:: 51l:: 5l::
8 18 8 ::40 18 :$:40 40 2240 ::40 ::40 ::40
2 18 2 18 18 18 18 18
2 2 2 2 2 2

H
H
=
=

000 0000 000 0000 0000 0000 00 0010000 0000 0000 0000 0000
000 0000 000 0000 0000 0000 0O 1010000 0000 0000 0000 0OOO
011 0123 000 0000 0000 0000 00 1000001 0000 0000 0000 0000
012 0124 000 0000 0000 0000 00O 1001001 0000 0000 0000 0000
013 0125 000 0000 0000 0000 00 1000001 0000 0000 0000 0000
014 0126 000 0000 0000 0000 00 1000010 0000 0000 0000 ffff
015 0127 000 0000 0008 0000 00 0000000 0000 0000 0000 ffff
016 0128 000 0000 0007 0000 00 0001001 0000 0000 0000 ffff
015 0129 000 0000 0006 0000 00 0000000 0000 5555 0000 ffff
10 016 0128 000 0000 0005 0000 00 0001001 0000 5555 0000 ffff
11 015 0129 000 0000 0004 0000 OO0 0000000 0000 5555 0000 ffff
12 016 0128 000 0000 0003 0000 00 0001001 0000 5555 0000 ffff
13 015 0129 000 0000 0002 0000 OO0 0000000 0000 5555 0000 ffff
14 016 0128 000 0000 0001 0000 OO 0001001 0000 5555 0000 ffff
15 015 0129 000 0000 0000 0000 00 0000000 0000 5555 0000 ffff
16 016 0128 000 0000 ffff 0000 00 1001001 0000 5555 0000 ffff
17 017 0129 000 0000 fffe 0000 00 1000000 0000 5555 0000 ffff
18 018 0l12a 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff
19 019 012b 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff
20 0Ola 0l12c 000 0000 fffd ffff 00 1000010 0000 5555 0000 ffff
21 01b 012d 000 0000 fffd ffff 34 1000010 0000 5555 0000 ffff
22 0lc 0l12e 000 0000 fffd ffff 35 1001001 0000 5555 0000 ffff
23 01b 012f 000 0000 fffd ffff 36 1000010 aaaa 5555 0000 ffff
24 0Olc 0l1l2e 000 0000 fffd ffff 37 1001001 aaaa 5555 0000 ffff
25 01b 012f 000 0000 fffd ffff 38 1000010 aaaa 5555 0000 ffff
26 0lc 0l12e 000 0000 fffd ffff 39 1001001 aaaa 5555 0000 ffff
27 01b 012f 000 0000 fffd ffff 3a 1000010 aaaa 5555 0000 ffff
28 O0lc 0l12e 000 0000 fffd ffff 3b 1001001 aaaa 5555 0000 ffff
29 01b 012f 000 0000 fffd ffff 3c 1000010 aaaa 5555 0000 ffff
30 0lc 0l2e 000 0000 fffd ffff 3d 1001001 aaaa 5555 0000 ffff
31 01b 012f 000 0000 fffd ffff 3e 1000010 aaaa 5555 0000 ffff
32 0Olc 0l12e 000 0000 fffd ffff 3f 1001001 aaaa 5555 0000 ffff
33 01d 012f 000 0000 fffd 0000 00 1100010 aaaa 5555 0000 ffff
34 0Ole 0130 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
35 01f 0131 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
36 020 0132 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff
37 021 0133 000 0000 fffd fff4 01 1000010 aaaa 5555 0000 ffff

WOONOOUIEWN R

4-82 WAFERSCALE INTEGRATION, INC.

o a——
A e —
— 3y Y —
I — & B
I Y A]

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

Application Note 009

In-Circuit Debugging for the PAC1000

User-Configurable Microcontroller

By David Fong |
Abstract This Application Note is used to illustrate PAC1000 user-configurable microcontroller.
the in-circuit debugging capabilities of the
Introduction With the increasing densities and the user to use in his monitor program. SS ‘
complexities of integrated circuits, the is useful for checking that every cycle is |
usage of tools such as in-circuit debuggers executing correctly. |
and gmulators is gre'atly desired by the On the other hand, BP is the method of ‘
heroic hardware desngqer. Thg PAC1000 interrupting the program at a specific |
supports the usage of in-circuit debuggers. 55ram jocation. This allows the program
A review of BP (breakpoint) and SS (single in the PAC1000 to run in real-time system
step) is discussed. SS is the method of conditions. This breakpoint is passed to
stepping through the program code one the PAC1000 through the FIFO instead of
instruction at a time through manual means. having a fixed address through the program.
In the case of the PAC1000, there is no BP is useful for intermittently checking the
manual means with a single-step switch. execution of the program.
Instead, an interrupt Yvhich is s.et .internally There is no preference on which method is
through the program is set. This interrupt the best. Generally, it is determined by the
can .then ca.ll upon an. ISR (interrupt service situation. If the system designer doesn't
routine). This subroutine then dumps out trust their own system in the beginning of
the contents of all the possible r'eglsters debug, then they will use SS. After the
that can be read out. These registers must system becomes more debugged,
then be written into the system memory by breakpoint is needed occasionally.
Usage and Either SS or BP interrupts can occur. HD bus. Whereas, SS reads out the CPU
Limitations Because both use the same initial ISR, the registers as well as the input and output

ISR will differentiate between the two by
testing for a specific data pattern that
accompanies the breakpoint/single-step
data through the FIFO. One way was to
test for a specific external condition code
but that was determined to be inflexible
since a specific condition code needed to
be dedicated for this task. Instead, two
words are written into the CPU registers.
These two registers must be reserved for
breakpoint/single-step operation. In this
example, RO and R1 are reserved.
Register R1 is the mask that is ‘AND’d
with RO which is written from the FIFO to
produce the Z (zero) flag that is tested.
See Figure 1 for the data format that is
written into the FIFO and CPU register RO.

The BP state continues with its program
by reading out the contents of some
registers to the host interface bus. Note
the usage of the FIFO to read out the
contents of the register to the ADD bus.
BP reads out only the input and output
registers that can be read as source to the

registers to ADD.

Not all the registers can be read out or if
at all with difficulty. CPU registers as was
illustrated by this program was read out
using the FIFO. However, the user could
have individually read out each register.
Unfortunately, there would have been a lot
of overhead program space taken. The
stack cannot be read out because the
contents of the stack would affect the
program flow. The interrupt mask register
and interrupt pending register cannot be
read out or to the CPU. Future PAC1000
versions may support extra functions to
allow the user to more easily access the
internal registers.

In summary, the single-step program dumps
out the following registers to the ADD bus:
CPU registers R31-R0, DIR, AIR, ACH,
ACL, IIR, and BC. Whereas, the breakpoint
program dumps out the tollowing registers
to the HD bus: DIR, AIR, AOR, ACH, ACL,
IIR, and BC.

WAFERSCALE INTEGRATION, INC.

4-83

PAC1000 — Application Note 009

Analysis of
Program

This single program incorporates essentially
two programs. One for breakpoint and one
for single-step. To differentiate between the
two programs since they use the same
interrupt INTS6, the data in register RO is
tested upon and the corresponding action
is taken. If Z is true, then breakpoint will
occur, else single-step will occur. See
BREAKPOINT/SINGLE-STEP algorithm
Figure 2.

Note that the Interrupt Jump Table is
located at h‘008’ through h‘00f’. The
PAC1000 interrupt vector from the internal
interrupt jumps to these individual
locations. In addition, note that neither
conditional nor unconditional jumps were

allowed to be executed when either the
breakpoint or the single-step interrupts
occurred. This also applies to other
interrupts. The delay interval from the time
of interrupt to executing the interrupt is
two cycles. See Figure 3 for the timing
relationship of interrupt to the beginning
of execution of the interrupt service
routine (ISR).

The single-step subroutine utilizes the
FIFO to externally address the CPU dual-
port registers. The usage of the FIFO in
conjunction with loops reduces the size of
the control store. However, the contents of
the FIFO must be empty before using it.

Figure 1. Host
to PAC1000
Commands
(Via the FIF0)

HADS5 —>

<—HAD[4:0] —>|-= HD[15:0] >
AIAIA[A[AIAJAJATA A
ojlo|ojojofofulululx|ulul|Z |7 (1711717
vjujulujujulujululu

LEGEND:
U: User-Defined
X: Test Bit

A/U: Breakpoint Address or User-Defined

HD[15:13] = User-defined.

HD[11:10] = User-defined.

HAD5 = FICD: The flag to indicate that the contents are
data FICD=0 or a command FICD=1.

HAD[4:0] =The B address to the CPU register file which in this case is register RO.

HD[12] =Test bit to differentiate between breakpoint and single-step.
HD12=0 for breakpoint and HD12=1 for single-step.

HD[9:0] = Breakpoint Address or for single-step user-defined.

4-84 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009

Figure 2.
Breakpoint/
Single-Step
Flowchart

START MAIN
PROGRAM

ENABLE INT6
BP/SS INTERRUPT

'

INITIALIZE
REGISTERS
NO
SELECT SINGLE-
STEP
YES v
ADD REGISTERS.
LOAD BP WITH Ro. INT6 WILL COME

!

ADD REGISTERS.
INT6 WILL COME

- CALL/RETURN
ISR

CALL/RE ENABLE INT6 AND
{SRTURN PERFORM OPERATION

{

ADD REGISTERS.

INT6 WILL COME
Loop
FOREVER
CALL/RETURN
ISR
Loop
FOREVER

WAFERSCALE INTEGRATION, INC. 4-85

PAC1000 — Application Note 009

Figure 2.

Breakpoint/
Single-Step
Flowchart
(Cont.)

CALL SINGLE
ISR

SET ADD
NO TO OUTPUT
YES SET LC=3
= SET HD
2 TO OUTPUT
=
4 ‘ POP STACK AND
% s RETURN TO B
o READ OUT
« REGISTERS TO HD
POP STACK AND
RETURN TO
MAIN PROGRAM

SINGLE-STEP ISR

SET LC=7

READ ALU
REG. TO ADD

: I

4-86 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009

Figure 3.
Sequence of

Events for °"_J||||||L|_

Interrupt Timing

BREAKPOINT INTERRUPT

CPC X h'079’ X h‘'07a’ h‘o7b’ r h‘00e’ ”

Perform INT6 occurs. | INT6 is INT6 vector
addition Perform latched and occurs to
R2:= R2 + R1. | addition pending. change CPC.

R3:= R3 + R1. | Perform Push return
BP register addition address of
was previously R4:= R4 + R1. | h‘'07¢’ to stack.
loaded with

h‘07a’

SINGLE-STEP INTERRUPT

CcPC h'078’ H'079’ h‘'07e’ h‘00e’ x
Select single- | INT6 occurs INT6 is INT6 vector
step interrupt | and CPC will | latched and occurs to
for INT6. jump to h‘07e’ | pending. change CPC.
Perform Push return

addition of address of
R5:= R5 + R1. | h‘07f' to stack.

Note: CPC is the name from the simulator PACSIM for currently executing
program counter.

/***/

/* BP and SS linker file 04/03/89 */
/* David Fong Rev. 1.0 */
/* bpss.ml */

/***/

place main, int, intserv, init, single ; /* place the segments */

load main, int, intserv, init, single ; /* load the .mal files */ ‘1
locate init , h’000’ ; /* locate the init file */

locate intserv , h’008’ ; /* locate the interrupt vectors */

locate main , h’050’ ; /* locate the main file */

locate int , h’100’ ; /* locate the ISR */

locate single , h’200’ ; /* locate the single files */
end ;

/*********************************/

/* INITIALIZATION 04/03/89 */
/* David Fong Rev. 1.0 */
/* init.mal *

/*********************************/

segment init ;

external mainl ;

SETMODE h’001’ , OUT h’0002’ ; /* switch to interrupt mode */
ENABLE INT6 , OUT h’0001’ ;

JMP mainl , OUT h’0000’ ; /* jump to main program */

end ;

WAFERSCALE INTEGRATION, INC. 4-87

PAC1000 — Application Note 009

JEEk Rk kR k ke kk Rk kR kR kkkkkk ko kK kdkkk /
/* Main program 04/03/89 */
/* David Fong Rev. 1.0 */

/* main.mal
YA T T T T T T LY

segment main ;

entry mainl ;

mainl :

Y T T L T T LY

/* BEGIN MAIN PROGRAM */
JrREkhkhkdkhkkkhhhhkhhkkdhdkhdkhhkkhhkhkkkkkhkkkkkkk/

/* initialize registers */
Rl := h’1000’ , OUT h’0050’ ;/* the twelveth bit R1.12 tests for BP/SS*/

/* IF Z=1 (which means R1.12 = 0) THEN run breakpoint program */
/* ELSE run single-step program */

R2 := h’0002’ , OUT h’0051’ ;
R3 := h’0003’ , OUT h’0052’ ;
R4 := h’0004’ , OUT h’0053’ ;
R5 := h’0005’ , OUT h’0054’ ;
R6 := h’0006’ , OUT h’0055’ ;
R7 := h’0007’ , OUT h’0056’ ;
R8 := h’0008’ , OUT h’0057’ ;
R9 := h’0009’ , OUT h’0058’ ;
R10 := h’000a’ , OUT h’0059’ ;
R11 := h’000b’ , OUT h’005a’ ;
R12 := h’000c’ , OUT h’005b’ ;
R13 := h’000d4’ , OUT h’005c’ ;
R14 := h’000e’ , OUT h’0054’ ;
R15 := h’000f’ , OUT h’005e’ ;
R16 := h’0010’ , OUT h’005f’ ;
R17 := h’0011’ , OUT h’0060’ ;
R18 := h’0012’ , OUT h’0061’ ;
R19 := h’0013’ , OUT h’0062’ ;
R20 := h’0014’ , OUT h’0063’ ;
R21 := h’0015’ , OUT h’0064’ ;
R22 := h’0016’ , OUT h’0065’ ;
R23 := h’0017’ , OUT h’0066’ ;
R24 := h’0018’ , OUT h’0067’ ;
R25 := h’0019’ , OUT h’0068’ ;
R26 := h’00la’ , OUT h’0069’ ;
R27 := h’001b’ , OUT h’0O06a’ ;
R28 := h’001c’ , OUT h’006b’ ;
R29 := h’001d’ , OUT h’006c’ ;
R30 := h’00le’ , OUT h’0064d’ ;
R31 := h’001f’ , OUT h’006e’ ;
ACH := R31 , OUT h’006f’ ;
ACL := RO , OUT h’0070’ ;

AOR := R1 , OUT h’0071’ ;

DOR := R15 , OUT h’0072’ ;

BC := R7 , OUT h’0073’ ;

4-88 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009 |

/* all input registers are initialized to zero from RESET */

/* to integrate two different programs 1. BREAKPOINT 2. SINGLE-STEP*/
/* The result of masking RO with R1 is used to differentiate */

/* between BP and SS. */

/* IF Z = 1 Breakpoint; ELSE Z = 0 Single-Step */

/***************** READ IN FIFO AND TEST FOR BP/SS ********************/
g0: JMPC FICD g0 , OUT h’0074’ ; /*check that the fifo contents is data
LDBPD , RDFIFO , OUT h’0075’; /* FIFO was loaded with h’0 00 007a’ */

/* first 0 is FICD ; 00 is B address ; 0 is the test bit ; */

/* 07a is the EPROM breakpoint address. */

/* Load loop counter with same data read from FIFO : LDLCD; */

/* the data written into the CPU is the same as the CPU output bus */

AND R1 RO , OUT h’0076’ ; /* the Z flag is tested in the next cycle */
JMPC Z bO , OUT h’0077’ ;

/* select single-step interrupt */

ESS , OUT h’0078’ ;

JMP cO , OUT h’0079’ ; /* skip breakpoint routine */

/**************** BREAKPOINT ***************************************/
/* perform alu operations till interrupt comes */

b0: R2 := R2 + R1 , OUT h’007a’ ; /* breakpoint on this address h’07a’
R3 := R3 + R1 , OUT h’007b’ ;

R4 := R4 + R1 , OUT h’007c’ ; /* breakpoint interrupt comes here */

/* return from ISR to here */ .

e0 : JMP e0 , OUT h’007d4’ ; /* loop forever ; end of breakpoint */

Jrkkkkkkkxkkkkk% SINGLE-STEP *kkkkhkkkkhhkhhhhkhhhhhhhhhhhhhhhhrhhhhk/

c0: R5 := R5 + Rl , OUT h’007e’ ; /* execute till interrupt comes */
R6 := R6 + Rl , OUT h’007f’ ; /* interrupt should after here */ A’

/* return from single-step ISR to here */

/* enable single-step interrupt and perform an operation #*/

ENABLE INT6 , R7 := R7 + Rl , OUT h’0080’ ; /* the output for R2 */
/* should be h’1002’ */

R8 := R8 + R1 , OUT h’0081’ ; /* interrupt should come here */

/* return from single-step ISR to here */

f0 : JMP f0 , OUT h’0082’ ; /* loop forever */
end ;

/*********************************/
/*SINGLE-STEP SUBROUTINE 04/03/89%/
/* David Fong Rev. 1.0 */

*

/* single.mal
/*********************************/

segment single ;
entry singlel ;

singlel :
/* read out the registers from the ALU */
/* use the addressing scheme from the FIFO */

WAFERSCALE INTEGRATION, INC. 4-89

PAC1000 — Application Note 009

SETCON h’010’ , OUT h’2000’ ; /* set ADD bus to output */
/* to read out AOR to ADD */

/* loop four times to address the 32 registers */
FOR 3 , OUT h’2001’ ;
/* FIFO should already be full */
£f0 : JMPC FIIR f0 , OUT h’2002’ ; /* loop till FIFO is full*/

/* check that the first value in the FIFO is a data */
f1 : JMPC FICD f1 , OUT h’2003’ ;

/* loop eight times to empty the FIFO */
FOR 7 , OUT h’2004’ ;

/* use the FIFO as an address pointer */

/* the data is not needed; write the data back to CPU */

/* and output the CPU output to AOR */

/* the default CPU instruction is add which adds zero and */
/* the address pointed by the FIFO which is the B address */

RDFIFO , alu_src = zb , ybus_sel = y aoreqg ,
OUT h’2005’ ;
ENDFOR , OUT h’2006’ ;

ENDFOR , OUT h’2007’ ;

/* read out the source registers to ADD */
MOV AOR DIR OUT h’2008’ /* 0000 should come out next cyle */

I I
MOV AOR AIR , OUT h’2009’ ; /* 0000 */
MOV AOR ACH , OUT h’200a’ ; /* O001lf */
MOV AOR ACL , OUT h’200b’ ; /* 0000 */
MOV AOR IIR , OUT h’200c’ ; /* 0000 */
MOV AOR BC , OUT h’200d4’ ; /* 0007 */

RET , OUT h’200e’ ; /* return to ISR 6 */

end ;

P T Y T Y
/* INTERRUPT JUMP TABLE 04/03/89%/
/* David Fong Rev. 1.0 */
/* intserv.mal */
YL T Y T T T Y

segment intserv ;
entry int_serv ;
external intoO,intl,int2,int3,int4,int5,int6,int7 ;

int_serv :

JMP int0 , OUT h’0008’ ;
JMP intl , OUT h’0009’ ;
JMP int2 , OUT h’000a’ ;
JMP int3 , OUT h’000b’ ;

4-90 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009

JMP int4 , OUT h’000c’ ;
JMP int5 , OUT h’o000d’ ;
JMP inté , OUT h’000e’ ;
JMP int7 , OUT h’000f’ ;

end ;

/**/

/* Interrupt Service Routines 04/03/89 */
/* David Fong Rev. 1.0 */
/* int.mal */

/**/

segment int ;
entry int0O , intl , int2 , int3 , int4 , int5 , inté , int7 ;
external singlel ;

into :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0100’ ;
RET , OUT h’0101’ ;

int1 :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0102’ ;
RET , OUT h’0103’ ;

int2 :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0104’ ;
RET , OUT h’0105’ ;

int3 :
/* clear all the external interrupts */
CLI h’00f’ , OUT h’0106’ ;
RET , OUT h’0107’ ;

int4 :
/* mask that interrupt */
DISABLE INT4 , OUT h’0108’ ;
RET , OUT h’0109’ ;

ints :
/* mask that interrupt */
DISABLE INT5 , OUT h’0Ol0a’ ;
RET , OUT h’010b’ ;

int6 : /* Breakpoint and Single-step ISR */
/* mask that interrupt */
DISABLE INT6 , OUT h’010c’ ; /* mask interrupt 6 INT6 */
CLI h’0ff’ , OUT h’010d4’ ; /* clear all interrupts */

/*kxkkxkkkkkk*% TEST for Breakpoint/Single-Step *#kk#kkkkkkk%k%/
AND R1 RO , OUT h’010e’ ;
JMPC Z a0 , OUT h’010f’ ; /* if Z=1 then breakpoint,Z=0 SS */

WAFERSCALE INTEGRATION, INC. 4-91

PAC1000 — Application Note 009

CALL singlel , OUT h’0110’ ;/* call single step program */
JMP b0 , OUT h’0111’ ; /*finish SS ISR , return to main progr */

a0: SET HDOE HDSELO , OUT h’0112’ ; /* set HD to output #*/

/* select DOR to HD output bus*/

/* move out the source registers to HD */

DOR DIR , OUT h’0113’ ; /% 0000 should come out next cyclex*/
DOR AIR , OUT h’0114’ ; /% 0000 */

DOR AOR , OUT h’0115’ ; /* 0001 */

DOR ACH , OUT h’0116’ ; /* 001f */

DOR ACL , OUT h’0117’ ; /* 0000 */

DOR IIR , OUT h’0118’ ; /* 0000 */

DOR BC , OUT h’0119’ ; /* 0007 */

, OUT h’0l1lla’ ;

/* mask that interrupt */
DISABLE INT7 , OUT h’0Olla’ ;

MoV
MoV
MOV
MOV
MOV
MOV
MOV
bo:
RET
int7
RET
end ;
.T
TIME
1
2

, OUT h’011b’ ;

RCCCCCCCCITIIIITIIIITCWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA
ECCCCCCCCOOO0000ONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S§7654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD

E 3210 543210 5432101111119876543210
T 543210
B

00000000000000000000011100000000000000000000000000000000000000
10000000000000000000011100000000000000000000000000000000000000

bps0.stl file for single-stepping
write the single-step mode bit hdl2=1

20
21

10000000000000000000000100010000000000000000000000000000000000
10000000000000000000011100010000000000000000000000000000000000

write into FIFO for single-step

1000000000000000000001110000000000000000000000Z222Z2Z2Z22Z2Z22222277
1000000000000000000000010000000000000000000000Z2Z22Z2Z222Z222Z22227Z
10000000000000000000011100000000000000000000002222Z2Z2Z2Z222222227
10000000000000000000000100000000000000000000012Z2Z2Z2Z222222Z2Z22277Z
1000000000000000000001110000000000000000000001Z2Z2Z2Z2Z2Z22222222Z227
1000000000000000000000010000000000000000000010Z2Z2ZZZ2Z2Z222222222
1000000000000000000001110000000000000000000010Z22Z2ZZ22222222222
100000000000000000000001000000000000000000001122222222222Z22222
100000000000000000000111000000000000000000001122Z22Z2Z2222Z2222Z222
100000000000000000000001000000000000000000010022222Z22222222222
1000000000000000000001110000000000000000000100Z2Z2ZZ2Z222222ZZ22277Z
1000000000000000000000010000000000000000000101Z2Z22Z22222222272227
100000000000000000000111000000000000000000010122ZZZ22Z2222ZZ2222
100000000000000000000001000000000000000000011022Z22222Z222222222
10000000000000000000011100000000000000000001102222222222222222
1000000000000000000000010000000000000000000111Z22Z2ZZ2Z2Z2222222277
100000000000000000000111000000000000000000011122Z2ZZ2Z22Z222222Z27

4-92 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

1000000000000000000000010000000000000000001000Z2Z2Z2Z22ZZ2Z222222222
10000000000000000000011100000000000000000010002222222222Z222Z2Z22
100000000000000000000001000000000000000000100122Z22Z22Z2Z22222ZZ2
1000000000000000000001110000000000000000001001Z22Z22Z22Z22Z22Z222ZZ2722
10000000000000000000000100000000000000000010102222222222Z222Z22
1000000000000000000001110000000000000000001010Z22Z22ZZZ222ZZ22Z22ZZ
1000000000000000000000010000000000000000001011Z22Z222Z2ZZ2Z2Z2Z2Z22222
1000000000000000000001110000000000000000001011Z22Z2Z2Z2Z2Z2Z22ZZ2Z2222
10000000000000000000000100000000000000000011002Z22ZZ2222Z222222Z22
1000000000000000000001110000000000000000001100Z2Z2Z2ZZ2Z22Z22222222Z
100000000000000G6000000010000000000000000001101Z222222Z2Z2Z2ZZZ2Z22Z2
1000000000000000000001110000000000000000001101Z2Z22ZZZZ222222222
1000000000000000000000010000000000000000001110Z22Z2Z2Z2222Z2ZZ2Z2ZZ2Z7Z
1000000000000000000001110000000000000000001110Z2Z2ZZ2Z2ZZZZZ2Z2Z22222
10000000000000000000000100000000000000000011112Z2Z2Z22Z22Z22Z2222Z2
1000000000000000000001110000000000000000001111Z22ZZZZZZ2Z2222227
1000000000000000000000010000000000000000010000Z22Z2Z222ZZ222222222
1000000000000000000001110000000000000000010000222Z2Z2Z2Z2Z2222222%
100000000000000000000001000000000000000001000122Z22ZZ2Z2Z2Z2Z22222Z
1000000000000000000001110000000000000000010001Z22Z2Z2ZZ2ZZ22222227%
1000000000000000000000010000000000000000010010222Z222Z222Z2222222
1000000000000000000001110000000000000000010010Z2Z2Z2Z2Z2ZZ2ZZZ2Z22222
1000000000000000000000010000000000000000010011Z2ZZ2ZZZZ22222222Z
100000000000000000000111000000000000000001001122Z2Z22Z2ZZZ2Z2Z2222Z
10000000000000000000000100000000000000000101002Z2Z22Z22Z2Z2Z2Z22Z22227
1000000000000000000001110000000000000000010100Z22Z2Z2ZZZZ2ZZZ2Z222ZZ
1000000000000000000000010000000000000000010101Z2Z2Z2Z2ZZZ2Z2Z222Z227
10000000000000000000011100000000000000000101012Z2Z22Z2ZZ2Z2Z222Z22Z
1000000000000000000000010000000000000000010110Z2222Z2ZZ2Z2Z2ZZ2Z2Z222Z
1000000000000000000001110000000000000000010110Z2Z2ZZZ2ZZ2ZZ222Z227
1000000000000000000000010000000000000000010111Z22ZZ2ZZ2ZZ2Z22Z222222
1000000000000000000001110000000000000000010111Z2Z2ZZZZ2ZZZZ2ZZ22222
1000000000000000000000010000000000000000011000Z22Z2ZZ2Z2ZZ222222222
1000000000000000000001110000000000000000011000Z2ZZ22Z22Z2Z2ZZ222Z227Z
100000000000000000000001000000000000000001100122ZZZ2Z2Z2Z2Z2Z222222
1000000000000000000001110000000000000000011001Z222ZZ2Z2ZZ22Z222222%
10000000000000000000000100000000000000000110102Z2Z2Z2ZZ2ZZZ2Z22Z22227
10000000000000000000011100000000000000000110102Z22Z2Z2ZZZ2Z2ZZZ22222
100000000000000000000001000000000000000001101122ZZZZ2Z2Z2Z2Z2Z2Z222Z22
100000000000000000000111000000000000000001101122Z2Z2Z2Z2Z2ZZZZ222227Z
1000000000000000000000010000000000000000011100222Z2Z2ZZ2Z2Z2Z2222Z2
1000000000000000000001110000000000000000011100Z2Z2Z2Z2ZZZZ22222222
1000000000000000000000010000000000000000011101Z22ZZZ2ZZZZ2Z222222
1000000000000000000001110000000000000000011101Z22Z2ZZZZ22ZZZ2Z22222
1000000000000000000000010000000000000000011110Z22Z22Z2ZZ2222222222
1000000000000000000001110000000000000000011110Z22ZZ22Z222222Z2222
1000000000000000000000010000000000000000011111Z22Z2ZZ2ZZ2Z2Z2ZZ2ZZ222
100000000000000000000111000000000000000001111122Z22Z2ZZZ222222222

write into FIFO second time around for single-step

240
241
242
243
244
245
246
247

1000000000000000000001110000000000000000000000Z22ZZ22ZZ2Z2Z2222222
1000000000000000000000010000000000000000000000Z22Z2Z2Z2ZZZ22Z222222
1000000000000000000001110000000000000000000000222ZZZ2ZZZZZZ22222
1000000000000000000000010000000000000000000001ZZ2ZZ22ZZ2222222222
100000000000000000000111000000000000000000000122ZZZZZZ2Z2Z2Z22222
1000000000000000000000010000000000000000000010Z22ZZZZ2Z22Z222222
1000000000000000000001110000000000000000000010Z2ZZ2ZZZZZ22222222
100000000000000000000001000000000000000000001122Z2Z22ZZZZ22Z222222

WAFERSCALE INTEGRATION, INC. 4-93

4

PAC1000 — Application Note 009

248
249
250
255
256
257
258
259
260
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
365
366
367
368
369
370
371
372
373
374

375
376
377
378
379
380

1000000000000000000001110000000000000000000011222Z22222222222Z2Z
1000000000000000000000010000000000000000000100Z2ZZ22ZZZ2Z2ZZZ222222
1000000000000000000001110000000000000000000100Z2ZZZZ2ZZZZ2ZZZ22Z222
100000000000000000000001000000000000000000010122ZZ2Z2ZZZ2ZZZ2Z222Z2
1000000000000000000001110000000000000000000101Z2ZZZ2ZZ2Z2Z2ZZ2222222
100000000000000000000001000000000000000000011022Z2ZZ2Z2ZZZ2ZZ2ZZZZZ
1000000000000000000001110000000000000000000110Z22Z22Z2222227222222Z
100000000000000000000001000000000000000000011122Z222Z2222Z222ZZ
10000000000000000000011100000000000000000001112Z2Z2Z2Z2ZZ2Z2ZZ2Z22222
1000000000000000000000010000000000000000001000Z2Z2Z22Z22Z22227222222%
1000000000000000000001110000000000000000001000Z222Z222Z2222222Z22Z
1000000000000000000000010000000000000000001001222Z2Z2Z2ZZZZZ2Z22Z22Z
1000000000000000000001110000000000000000001001Z222Z2Z22Z2222Z2ZZ2Z22Z
10000000000000000000000100000000000000000010102Z22222ZZ2ZZ2Z222222
100000000000000000000111000000000000000000101022Z2222ZZ222222222
10000000000000000000000100000000000000000010112Z2Z22Z2Z2ZZ2Z222Z2%7222Z
10000000000000000000011100000000000000000010112Z2ZZ2Z2ZZ2Z2ZZ2Z22222
1000000000000000000000010000000000000000001100Z2Z222Z22Z22Z2Z2Z2Z2Z222Z
10000000000000000000011100000000000000000011002222Z2ZZZ2ZZZZ22Z2Z
1000000000000000000000010000000000000000001101222222Z22Z2Z2222222
1000000000000000000001110000000000000000001101222222Z22Z22222222
100000000000000000000001000000000000000000111022Z222Z2ZZ2Z22Z2222722
1000000000000000000001110000000000000000001110Z2Z22Z2Z2ZZZ2ZZZ2Z222Z7Z
100000000000000000000001000000000000000000111122Z2Z2Z2ZZ222Z22Z22222
1000000000000000000001110000000000000000001111222Z22Z2Z2222222227Z
1000000000000000000000010000000000000000010000222ZZ2ZZ222Z2Z22272
1000000000000000000001110000000000000000010000Z2Z2Z2ZZ2Z2ZZ222222222
100000000000000000000001000000000000000001000122222222Z22222222
1000000000000000000001110000000000000000010001Z2Z2Z2ZZ22ZZ222Z2722Z2Z
1000000000000000000000010000000000000000010010222222Z22Z22222222
100000000000000000000111000000000000000001001022Z22222222222222
1000000000000000000000010000000000000000010011222Z22ZZZ2Z22Z22Z2Z2722
100000000000000000000111000000000000000001001122Z2Z22Z2Z2222222222
1000000000000000000000010000000000000000010100Z22Z2Z22Z2Z2Z2222222
1000000000000000000001110000000000000000010100Z222ZZ22ZZ222222277
10000000000000000000000100000000000000000101012Z2Z22Z2Z2Z2Z2Z222222722
1000000000000000000001110000000000000000010101Z2Z2Z2Z2Z2Z2Z22222Z22227
10000000000000000000000100000000000000000101102Z22222Z2222222227Z
100000000000000000000111000000000000000001011022ZZ2Z2ZZ2Z2222Z22277Z
10000000000000000000000100000000000000000101112Z2ZZ2Z2Z2Z2Z2Z2Z2222222Z
100000000000000000000111000000000000000001011122Z22Z22Z222222222
1000000000000000000000010000000000000000011000Z22Z2Z22Z2Z2222222Z222
100000000000000000000111000000000000000001100022Z2222Z22Z2222222
100000000000000000000001000000000000000001100122ZZ2ZZ2ZZ222222Z222
1000000000000000000001110000000000000000011001Z2Z2Z2Z222Z2222Z222222
100000000000000000000001000000000000000001101022Z2Z2222222Z2222272
100000000000000000000111000000000000000001101022222222Z2Z2Z22222
10000000000000000000000100000000000000000110112Z2Z2Z2Z2Z2Z2Z2Z222Z22227
1000000000000000000001110000000000000000011011222222Z222ZZ2Z222222
100000000000000000000001000000000000000001110022Z2Z222Z2ZZ22Z222227
100000000000000000000111000000000000000001110022ZZ2ZZ222222Z22227Z
1000000000000000000000010000000000000000011101Z22Z2Z2Z2Z22222222227Z
100000000000000000000111000000000000000001110122Z222Z2Z2Z222222222
1000000000000000000000010000000000000000011110Z2Z222Z222Z22Z222222
1000000000000000000001110000000000000000011110Z2ZZZZ2ZZ2Z22222222Z
100000000000000000000001000000000000000001111122Z2Z2Z2Z222Z22222227
1000000000000000000001110000000000000000011111Z22Z22222222222222

4-94

WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009

RCCCCCCCCIIIIIIITIIITICWRHHHHHHHHHHHHHHHHHHHHHHAAAAAAAAAAAAAAAA
ECCCCCCCCOOOO0OOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD
S7654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD

E
T
B

3210

543210

5432101111119876543210
543210

00000000000000000000011100000000000000000000000000000000000000
10000000000000000000011100000000000000000000000000000000000000
10000000000000000000000100000000011110100000000000000000000000
10000000000000000000011100000000011110100000000000000000000000
100000000000000000000111Z2Z2Z2Z2ZZ2Z2Z22ZZ2Z2Z2ZZ0000000000000000000000
bpsl.stl uses Z=1 for breakpoint ISR; HD12=0;

*kkkkxkx*The bpsO.out file *kkkkkksix

dkkkdkhhkkhhkkdhhhkkdhhkkhkhhkkhkhkhhkhkhkhhkkhhkkkhhhkkhkhkhkkhkhhkkhhkhkhhkhkkkhkkkhkhkkkkkk

PACSIM
hhkkkkhhhhkhkhkkkhhhhhhhhhhhhhhkkhhhkkkkhhhhhkhhhhhkhhhdhhhhhhkhhkhkrddhhkdk

H
=]
=
=}

WONONOLPd WN

CcccC
PPP
CcccC
173
240
8

000
000
000
001
002
050
051
052
053
054
055
056
057
058
059
05a
05b
05c
054
05e
05f
060
061

0000
[e{e{el6]
1173
51::
$:40
18

2

0000
0000
0002
0001
0000
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005a
005b
005c
005d
005e
005f
0060
0061

A
D
o
E

[eNeoleNeNeNoNeoNoNeNoNoNoNoNeoNoNoNoNoNoNoNoNoNo]

Ver.

AAAA
DDDD
DDDD
1173
51::
$:40
18

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

OUTPUT

1.09

AAAA
0000
RRRR
1173
51::

240
18

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

FFFIB
IIINR
CIOTP
DRRRT
E
Q
U
L

00001
00001
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01000
01100
01100

PPP
CCccC
173
1::

:40
8

000
000
001
002
050
051
052
053
054
055
056
057
058
059
05a
05b
05c
05d
05e
05f
060
061l
062

TABLE

LLL
CcccC
173

40
8

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

Tue Apr 04 15:43:42 1989

BBBB
ccce
1173
51::
$:40
18

2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

WAFERSCALE INTEGRATION, INC. 4-95

PAC1000 — Application Note 009

24 062 0062
25 063 0063
26 064 0064
27 065 0065
28 066 0066
29 067 0067
30 068 0068
31 069 0069

0000 0000 01100 063 000 0000
0000 0000 01100 064 000 0000
0000 0000 01100 065 000 0O0OO
0000 0000 01100 066 000 0OOOO
0000 0000 01100 067 000 00OOO
0000 0000 01100 068 000 0000
0000 0000 01100 069 000 0000
0000 0000 01100 O6a 000 0000
32 06a 006a 0000 0000 01100 06b 000 0000
33 06b 006b 0000 0000 01100 O6cCc 000 0000
Due to the length of the file,the rest of the output is not shown #

[eNeoNoNoNeoNoNoNoNo o]

kkkkkkkkk**The bpsl.out file #kkkkkkkkkikk
Thkkhkkhhrkhhhkhhhkhhhkhhhkhhhkhdkhhkhhkkhkhhkhkhhkkhhkrhdkhhkrh kb khkhhdh
OUTPUT TABLE

PACSIM Ver. 1.09 Mon Apr 03 13:08:15 1989
hkkkkkkkhhhkkhhkkkhhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhdhhkhhkhhhhrhkhkhk

CCC 0000 M CC DI BBB B HHHH LLL BBBB
PPP CCCC D CC ON RRR R DDDD CCC cCcCCC
CCC 1173 O 73 RT EEE P 1173 173 1173
173 51:: E :: R AAA T 51:: t: 51::
2 340 40 KKK E ::40 :40 ::40
40 18 RRR Q 18 8 18
8 2 EEE U 2 2
GGG L
973
840
TIME
1 000 0000 00 00 000 0000 000 0000
2 000 o000 00 00 00O 0000 000 0000
3 000 0002 00 00 000 0000 000 0000
4 001 oo0O01 00 00 000 0000 000 0000
5 002 0000 00 00 00O 0000 000 0000
6 050 0050 00 00 000 0000 000 0000
7 051 0051 00 00 00O 0000 000 0000
8 052 0052 00 00 000 0000 000 0000
9 053 0053 00 00 000 0000 000 0000

10 054 0054
11 055 0055
12 056 0056
13 057 0057
14 058 0058
15 059 0059
16 05a 005a
17 05b 005b
18 05c 005c
19 05d o005d
20 05e 005e
21 05f 005f
22 060 0060
23 061 0061

00 00 000
00 00 000
000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000
00 00 000

0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
0000 000 0000
007a 000 0000
007a 000 0000
007a 000 0000
007a 000 0000

[eNeoNeNoNeoNeoNoNoNeNeNoNoNeoNoNeoNoNo oo NoNoNo el
o
o
(=]
o
[eNeNeNeNeoNoNoNoNeNoNo oo NoNoNoNoNoNeoNo ol U

4-96 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Note 009

062
063
064
065
066
067
068
069
O06a
06b
06¢c
06d
O6e
06f
070
071
072
073
074
075
076
077
07a
07b
00e
10c
104
10e
10f
112
113
114
115
116
117
118
119
lla
07c¢
074
074
07d
074
074
074
074
074

0062
0063
0064
0065
0066
0067
0068
0069
006a
006b
006¢c
006d
006e
006f
0070
0071
0072
0073
0074
0075
0076
0077
007a
007b
000e
010c
oio0d
010e
010f
0112
0113
0114
0115
0116
0117
0118
0119
O0lla
007c
0074
007d
0074
0074
007d
007d
007d
007d

PRPEPRPFRPPPPPRPPPPPRPPPPOO0OO0OO0O00000000000000000000000O0O0

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a
07a

[eNeleNeoNeNeoNoloNeoNeoloNojoNoNoNoNoNoNooNoNoNoNoNol NolNoNoNoNeNoNoNoNoNoloNolNe NoNoNoNoNoNoNe o)

007a
007a
007a
007a
007a
007a
007a
007a
007a

007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
007a
000f
000f
0000
0000
1000
001f
0000
0000
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007

000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007
0007

WAFERSCALE INTEGRATION, INC.

4-97

4-98 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Programmable System™ Device

Application Brief 007

Hardware Interfacing the PAC1000 as a

Micro Channel Bus Controller

By Arye Ziklik

Abstract This application brief describes how to use board, or from the PS/2 mother-board (the
the PAC1000 High-Performance User- system) to a slave. This application brief
Configurable Microcontroller as a Micro describes the use of the PAC1000 on a
Channel (MCA) bus controller. master board and on a slave board.
The MCA bus uses asynchronous and In both applications the PAC1000 is
synchronous procedures to control and handling the synchronous functions, the
transfer data on the bus. The data is asynchronous functions are implemented
transferred from a master board to a slave by external PALs.

MCA Signal The bus signals described in this chapter M0

Descriptions are the most important and essential Memory/iO, driven by the bus master and

signals to understand the application brief.
The buffers needed per each signal are
summarized in Table 2. The timing relations
between the signals is drawn in Figure 1.

A0-A23

Address bits generated by the bus master
to address memory and 10 slaves attached
to the bus. The address bits are unlatched
and must be latched by the slaves using
either the trailing edge of ADL or the
leading edge of CMD signals.

Do-D15

Data bits, valid during the period CMD
signal is low. The data is driven by
bidirectional three-state drivers.

ADL

Address Decode Latch, driven by the bus

master. The signal is used by the slaves
to latch valid address and status bits.

CD__DS16

Card Data Size 16, driven by 16 bit slaves
to provide an indication to the master
about their data bus width. Eight-bit slaves
do not drive this line.

DS__16_RTN

Data Size 16 Return. A signal generated
by the PS/2 system by AND-ing all the
CD__DS16 signals received from all the
slave connected to the bus. The signal is
provided by the PS/2 system to the bus
masters.

indicates a memory or 10 cycle. M/1O is
latched by the slave at the leading edge
of CMD signal.

80, §1

Status bits, driven by the bus master and
indicate the start of read or write cycle.

The status bits are latched by the slaves
using the leading edge of CMD.

CMD

Command signal is driven by the bus
master and defines the period data is valid
on the data bus. The leading edge of
CMD is used to latch the unlatched
signals: A0-23, M/IO, SO, and S1. The
trailing edge of CMD indicates the end of
the bus cycle.

CD__SFDBK

Card Select Feedback. When a bus master
addresses a memory or an IO slave, the
addressed slave drives CD__SFDBK active
as a positive acknowledgement of its
presence at the specified address.

CD__CHRDY

Channel Ready. This line is pulled inactive
(not ready) by a slave to allow additional
time to complete a bus cycle.

CHRDYRTN

Channel Ready Return. Generated on the
PS/2 system board by AND-ing the
CD__CHRDY signals driven by all the
slaves. The signal is provided by the
system to the mastr driving the bus.

WAFERSCALE INTEGRATION, INC.

4-99

PAC1000 — Application Brief 007

MCA Signal
Descriptions
(Cont.)

ARBO-ARB3

Arbitration Bus priority signals. These four
signals represent the priority levels for
masters seeking control on the bus. The
four signals represent 16 priority levels,
level 15 represents the lowest priority,
level 0 represents the highest priority and
belongs to the PS/2 system.

ARB/GNT

Arbitrate/Grant. When high, this signal
indicates an arbitration cycle is in process.
When low, indicates that a master has
been granted. ARB/GNT is driven by the
system.

PREEMPT
Used by the arbitration bus masters to
request the bus.

BURST

Indicates that the master requests the bus
for transferring a block of data.

IRQ

Interrupt Request is used to signal the
system that a device requires attention.

CHRESET

Channel Reset, active high reset signal
generated by the system and sent to all
the boards on the bus.

Figure 1. Micro
‘Channel Basic o “0 * 20 i R
Transfer Cycle g [111111106
! |
STATUS :I |2 I 8 i
ADL | l 3 I 7 i
CD CHRDY ;——l 5 F‘—i
€D Ds16 -;—_———L‘ W—:
D SFDBK ;——L [-1—0——5
e]]]]]]]]]]]]IG |
CMD 1
I 7 14 r,
m]]]]]]]]]]]]]]]J]]]]]]Eﬂ
Table 1. The m <0 57
States Generated Mo 50 S ,
ZX L ? ; o
1 0 1 Memory.write‘
1 1 0 Memory read.

MCA Timing

The PAC1000 as a bus master transfers

Q1 ADL is valid 45 nsec minimum after (1).

Parameters data on the MCA bus with a control 3 In response to the unlatched address
sequence based on the following events: decode, the selected slave responses
O The addres bus and M/1O signal with CD_SFDBK (and CD__DS16 if it
become valid. is a 16 bit slave). The maximum
Q The status signals S0 and S1 are valid allowable response time of the slave is
10 nsec minimum after (1). 55 nsec maximum from (1).
4-100 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Brief 007

MCA Timing

2 In response to (1), the slave responds

[The address bus becomes inactive

Parameters with CD__CHRDY. The maximum after the address was latched.
(Cont.) allowable response time is 60 nsec Q In response to the address change, the
maximum from (1). slave’s unlatched responses
O Write data appears on the bus for the (CD_CFDBK AND CD__DS16) are
write cycle. The data has to be valid invalid.
before the leading edge of CMD. Q System stays in this state until
[CMD becomes active and ADL inactive CD__CHRDY is ready.
typically 85 nsec minimum after (1). Q@ The slave places data on the bus in
The unlatched signals on the bus are response to a read.
latched. . o O The address and M/IO are valid for the
I The status sngnallls ?\ec;ome inactive next cycle.
after they were latched. [CMD goes inactive, ending the cycle.
0peratian Modes The PAC1000 working as a MCA size depends on the number of address

controller can handle the following
functions:

[Bus signal generator.
O Card setup.

The bus arbitration logic and signal
decoding are pure asynchronous functions
and implemented by two PALs.

Bus Slave Board
On a bus slave board the PAC1000 may
be used to implement the POS registers.

The Programmable Option Select (POS)
registers main objectives are:

O Eliminate switches from the board.

[Positively identify any card connected
to the system.

The POS registers on a PS/2 board replace
the switches by using software writeable
registers. There are eight POS registers,
each one is 8-bit wide. The POS registers
are addressed by CD__SETUP signal and
by address bits A0-2. The POS registers
are located at I/O addresses 100H to
107H. The eight POS registers are located
in the PAC1000 and control the board’s
functions.

The POS registers’ interface to the MCA

is a decoder which decodes the sytem’s

access to the registers and generates the
RD and WR signals to the PAC1000.

The address decoder and slave logic are
most of the circuitry needed for the slave
functions. The decoder has to decode the
address on the bus and to respond with
CD__SFDBK, CD__CHRDY and CD__DS16
signals. The address decoder might be for
memory, /O or for both. The decoder’s

bits it is decoding. The decoder’s CS
outputs are latched by the leading edge of
CMD and are stable until the end of the
bus cycle. The decoder generates the
feedbacks to the bus, CD__SFDBK,
CD__DS16 and CD_CHRDY. These
signals are not latched and are very time
critical. The decoder responds with these
outputs at 55 nsec maximum after the
address is stable.

Bus Master Board

A master board is a board with a CPU
which requests the MCA bus. When
granted by the PS/2 system, the master
board is driving the bus signals.

On a master board the PAC1000 can
handle the following functions:

[POS registers (similar to the bus slave
board).

[Generation of the bus signals

The other functions of a bus controller are
implemented by PALs because the
functions are pure asynchronous.

The bus signals are generated by the
PAC1000 after the CPU is granted to be a
bus master. The process of getting the
bus is done in the following sequence:

[The CPU is requesting the bus through
one of the interface lines with the
PAC1000.

 The PAC1000 is setting the bus
request line which is buffered by
drivers and sent to the MCA system.

[The system gets the request, and sets
a bus arbitration cycle which is handled
by the bus arbiter circuit (a PAL).

WAFERSCALE INTEGRATION, INC.

4-101

PAC1000 — Application Brief 007

Operation Modes Q The bus arbiter sends the PAC1000 the

[After the CPU is done, it releases the

(cm,t_} signal MASTER which tells the board bus request. The PAC1000 translates it
that the bus was granted and the board to the right signal sequence on the
may drive the bus. MCA bus and releases the bus buffers.
The PAC1000 signals the CPU that itis On the bus master board the PAC1000
the bus master. may implement a lot of control functions
The PAC1000 is enabling the address ~ 2nd save glue logic.
and data drivers, and the CPU drives For example:
the address and data to the bus. The PAC1000 can handle several DMA
The PAC1000 generates all the bus operations on the board, or be used as a
signals in the right sequence and the high speed controller for various
right timing requirements as defined by ~ aPplications.
the MCA bus standard.

PAC1000 in a

Micro Channel \ PAC1000

Slave Board MICRO : PAC1000 nseﬁgfens

CHANNEL : SLAVE BOARD (REGISTER BANK)
I - e
DATAO-7 107-0 el %l)emlés
DATAQ-7 -] AODRO3 D7-0 BOARD
ADDROQ-3 sl m— HAD5-0
REE%ER E‘Pos RD
CD_SETUP ——>] INTERFACE WR;_:OS WR 0C15-0 —->
S0, 81— S ADD15-0 |-
HAD15-0 | <
INT3-0 |
CC7-0 |~

’able. 2. Driver Signal Name Driver Type

Requirement for

PS/2 Sig”a[s A(0-23) TS 24 mA (TS = Three-State)

D(0-15) TS 24 mA
ADL TS 24 mA
CD__DS16 TP 6 mA (TP = Totem Pole)
DS__16RTN BD 24 mA (BD = Bus Driver)
M0 TS 24 mA
S0, S1 TS 24 mA
CMD TS 24 mA
CD__SFDBK TP 6 mA
CD__CHRDY TP 6 mA
CHRDYRTN BD 24 mA
ARB(0-3) OC 24 mA (OC = Open Collector)
PREEMPT OC 24 mA
BURST OC 24 mA
ARB/GNT BD 24 mA
4-102 WAFERSCALE INTEGRATION, INC.

PAC1000 — Application Brief 007

PAC1000 as a

Micro Channel

Master

MICRO

! pAC1000

CHANNEL : BOARD

__ D0-D15
D0-D15 DATA DIR_BUF
BUFFERS
EN_BUFF
A0-A23 A0-A23
ADDRESS DIR_BUF
LATCHES
EN_BUFF
v y
- __ PAC1000
CMD CcMD cPU
 E— ocs
ADL ADL
-— ocs
S0 S0
-— - oc?
s 51
] ocs
M/io M/io
Dsgggsn ocs
SBHE SIGNAL SBHE
P — oc4
DRIVERS _
CHRESET (PAL AND CHRESET INT3-0
DRIVERS) cc3
ADD15-0 |- >
CHRDYRTN CHRDYRTN
—_— cc2
DS16 RTN DS16 RTN cer BUS
. - MASTER
-— oct
0C15-10 |re————— -]
ARB0-3 BUS REQUEST
oco LATCHED
PREEMPT BUS CONTROL
BURST ARBITER 107-0 i (Sp'ggﬁ.';\fe
—>| (ONEPAL) _ REGISTER
ARB/GNT MASTER/SLAVE cco OUTPUTS)
DATA0-7
— | p——)- HD7-0
ADDRO-3 ADDRO-3
——] > HAD5-0
POS RD_POS __
REGISTER RD
CD_SETUP | INTERFACE WR_POS __
WR
S0, §1 Cs _
—_— CcS

WAFERSCALE INTEGRATION, INC.

4104 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

Application Note 003

High-End SAM Applications Using
Microassembler Design Entry

Scope of This
Application Note

This Application Note describes the SAM
microsequencer design entry process utilizing
ASM microassembler input syntax and
provides illustrations of all basic concepts
needed to execute a SAM microassembler
design. Basic microassembler functionality
is reviewed, its utilization of SAM internal
resources, as well as user convenience
features. Cascading of multiple SAM devices
to address large design problems is also

covered. To illustrate a practical application
of SAM, a graphics controller application is
presented in detail along with annotated
ASM source code.

The reader is referred to WSI’'s SAM448
Data Sheet for details concerning device
architecture and performance. A general
knowledge of SAM device architecture is
assumed as background for this
Application Note.

The SAM
Solution

The SAM (Stand-Alone Microsequencer)
User-Configurable device provides a unique
solution for high-performance control
functions. The combination of a microcoded
engine with a branch EPLD front-end gives
SAM the ability to handle high-complexity
tasks while still achieving high clock rates.
The basic SAM architecture is shown in
Figure 1.

Programming the SAM device for a
particular application involves specifying
multi-way branch transition specifications
for the branch EPLD, and instruction and
output strings for the required number of
microcode words in SAM’s EPROM control
memory. (See the SAM448 Data Sheet for
further information). This task is eased by
the use of the SAM+PLUS development
system.

SAM+PLUS
System Overview

The SAM+PLUS PC-based design
development system provides an efficient
mechanism for entry and automatic
compilation of SAM designs. Interactive
functional simulation is provided in
SAM+PLUS to enable rapid verification of
design flows and operation. PC-compatible
programming hardware is also available to
allow device programming right at the

designer’s desk. Given the fact that control
logic is frequently difficult to design, and
particularly prone to design alterations, the
ability to enter, compile, simulate and test
a design in rapid fashion results in an
effective design system.

SAM+PLUS actually supports two design
entry methods, one using ASMILE state
machine input language, the other ASM

Figure 1.
SAM448 Block
Diagram

PLD MICROCODED ENGINE
NRESET MICROCODE
BRANCH EPRAOM
INPUTS CONTROL
8) LOGIC
fe— 448 x 36
BITS
EPLD TT
768 PRODUCT
TERMS
PIPELINE oLk
REGISTER ¢
OUTPUTS (16)

WAFERSCALE INTEGRATION, INC.

4-105

SAM448 — Application Note 003

SAM+PLUS microassembler format, as shown in For larger designs, multiple SAM devices
System Overview Figure 2. SAM ASMILE input is described may be horizontally cascaded to increase
G in WSI Application Note #4, referenced the number of available control outputs.
(0”’-’ below. This Application Note will focus on The microassembler supports the
microassembler input. specification of a single source file for a
Microassembler design entry begins with multiple-SAM application, and au}omatically
the creation of a design file on the PC generates the separate JEDEC files for the
using any standard text editor. Next, the programming of each of the devices at
SAM Design Processor (SDP) takes the compile time. The JEDEC file, which
ASM input file, automatically minimizes represents the actual template of the
transition equations and generates the specific application implemented, may be
device programming code. A Utilization used as input to the SAMSIM (SAM
Report is generated which reports total SIMulator) program which provides
resources consumed, absolute memory functional s.nmula.tlon capability. Hard-copy
assignments of microassembler instructions ~ ©utput of simulation results may be
and compiler-assigned pinouts. A standard obtalned:, as well as on-line “logic
JEDEC file is generated to allow analyzer” viewing capability. Multi-chip)
programming of the device right on applications using horizontal cascading is
the PC. also supported by the functional simulator.
Figure 2.
SAM+PLUS MICROCODE
Block Diagram
SMF2ASM
Y
_——
Y |—_ |
| OOLEAN FITTER/ l
T Sl [iy || 2ol [
| i
L _____ _SAMDESIGN PROCESSOR _]
Y Y
UTILIZATION
REPORT
Y
SAMPRO —>
SAM448
FUNCTIONAL
SIMULATION |
L'hoasing The SAM architecture supports high- clock, and as such SAM implements a
Appmprlate performance synchronous control classic Moore machine architecture.
Applicatians applications. It is important to realize that Similarly, as can be seen in the SAM Data
for SAM all outputs from SAM are asserted Sheet, all inputs must obey a required set-

synchronously with respect to the device

up time (Tsu) relative to the Clock input.

4-106 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

L'Imasillg In order to obtain greater than 16 outputs following “rules-of-thumb” derived from the
Appropriate in a SAM design, the concept of horizontal device architecture and specifications are
Applicatians for cascading may be used. Similarly, if greater useful. These guidelines are for single
SIM (c ¢ control store (microcode) depth is required, SAM implementations. Cascaded SAM
on, } multiple SAM devices may be vertically configurations may expand output count
cascaded, sharing a common control output and memory depth substantially. For
bus. Both cascading approaches may be example, SAM+PLUS supports horizontal
simultaneously used for problems requiring cascading of up to 8 SAM448 devices, for
increased capacity in both dimensions. a total output count of 128 lines!
In order to determine whether a given
application will be suitable for SAM, the
SAM Application « Operating frequency up to specified * Up to 256 primary microcode locations
Guidelines SAM’s Fmax ¢ Up to 64 of 256 primary microcode
e Synchronous operation locations may be multi-way (external
* Up to eight control inputs (exclusive of conditional) branches (single device)
Clock and nRESET) ¢ Transition expressions reducible to four
« Up to sixteen control outputs (single product terms per IF . . . THEN expression
device) Applications which satisfy this list will in all
likelihood fit into a single SAM device.
Microassembler ~ shown in Figure 3 is an example of the Those sections noted within brackets are
I”put Overview structure of a SAM ASM input file. This file optional and may be omitted if not required.

may be created using any standard text
editor. It is important that the text editor is
used in non-document mode in order to
prevent the insertion of any spurious
format control characters which may be
detected by the ASM microassembler
parser at compile time as input errors.
Other than this constraint, input is
essentially free-form and may be structured
for readability and overall clarity.

The case of characters inserted into the
ASM file is significant, so be sure that
case significance is maintained. For
example, the names “RWB” and “rwb”
are not the same.

Comments may be inserted freely into the
source code, delimited by leading and
trailing percent signs (%).

The basic format of a SAM ASM file
consists of the following sections:

[HEADER]
PART
INPUTS
OUTPUTS
[PINS]
[DEFAULT]
[MACROS]
[EQUATIONS]
PROGRAM
END$

Header

The HEADER contains user-specified
design identifier information. It may
include design title, designer’s name, date,
revision information, etc.

Part

The PART section of the ASM file specifies
the target SAM device or devices the
application is intended for. By specifying
AUTO, the user permits the SAM+PLUS
software to pick the optimal device or set
of devices for the application based upon
minimal pin count. Multiple devices may
be invoked for designs requiring a larger
number of total outputs than a single SAM
device can supply, i.e., the SAM+PLUS
software supports horizontal cascading
(see SAM Data Sheet) of devices at a
source code level. This cascading
capability may be invoked by utilizing
AUTO with a design requiring high output
count as noted, or may be explicitly
defined by supplying a list of devices after
PART which the design is to be fitted into.
As shown in the example below, two
SAM448 devices are going to be used in
this application, and have been explicitly
entered. Devices may be cascaded
horizontally up to a width of 128 outputs in
a single source code listing and simulated

WAFERSCALE INTEGRATION, INC.

4-107

SAM448 — Application Note 003

Microassembler
Input Overview
(Cont.)

as one large virtual SAM. Separate JEDEC
files are generated for each device to
support programming devices when design
is complete.

Inputs

The single INPUTS section of the ASM file
defines all external inputs into the design,
as well as any required user pin
assignments. Pin assignments are specified
by the format input_name @ pin__number.
Note that since in a horizontally cascaded
design all design inputs must be common,
there will never be more inputs specified
in a source file than are available in a
single SAM device.

Only user-defined inputs should appear in
the INPUTS section: the CLOCK and
nRESET inputs to SAM, being fixed-
function pins, should not be included.

Outputs

The OUTPUTS section(s) of the ASM file
contains a list of all outputs from the
design as well as any pin assignments.
Pin assignment syntax is similar to input
pin assignments. If muitiple SAMs are
specified in the PART: section of the
design file (horizontal cascading), there
will be multiple OUTPUTS sections in the
ASM file, one for each SAM component. If
AUTO parts selection is used for a
cascaded design, a single OUTPUTS
declaration may be used to specify all
required outputs. At compile time, outputs
will be assigned to the various devices
automatically.

Output names must be unique across all
OUTPUTS section declarations.

AUTO parts selection may not be used in
conjunction with user-defined pin
assignments.

Pins

The PINS section allows mapping of
external variable names onto internal
variable names for convenience. For
example, a user may have an active-low
signal in his system he has called /WR
which enters into his transition
specifications in his SAM design. To keep
the logical sense of such specifications
clear, it is wise to transform all active-low
external signals into equivalent active-high
names internally, e.g., /WR = WRint.

Default

The DEFAULT section allows the
specification of a default output combination
to be used whenever the output string is
not explicitly defined in an instruction. In a
single SAM device specification the syntax
is simply DEFAULT: [OO0 . . . On], where O0
through On represents a binary string
corresponding to the n outputs specified
for the SAM design. Default output values
are matched to output pins in the order
they appear in the OUTPUTS declaration.
If multiple OUTPUTS sections appear in a
cascaded SAM application, the DEFAULT
specifier is increased in width to
accommodate this change as shown in the
example. Only one DEFAULT section may
appear per ASM file.

Macros

The MACROS section allows the user to
define string equivalences to be substituted
universally throughout his ASM source
code listing. For example, the user may
wish to redefine instruction mnemonics for
efficiency or clarity, or may wish to redefine
binary output strings with alphanumeric
labels. For example,

REG1TOALU = ‘“0101111001100000”
The left hand side of this expression is

undoubtedly easier to remember and type
repeatedly into a listing than the right.

Imbedded strings are not macro substituted.
Macro instances must be delimited by
white space to be recognized. For example,
if a macro substitution is defined as
REG = “0110”
the string 0110 would be substituted into
[REG ALU OP] CONTINUE;
but not into

[BREG4 ALU OP] CONTINUE;

Equations

The EQUATIONS section of the ASM file is
available for the definition of intermediate
equations to be used later in the design.
Entry of transition specifications may be
eased by defining intermediate variables
initially, and then invoking them during the
design. For example,

EventClk = N *I4 + 13*16*17
might be defined in the EQUATIONS

4-108 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Microassembler section, and then utilized later in an [output-spec] represents an actual numeric
Illllllt Overview IF ... THEN. .. ELSE statement or string of.the correct length (in either binary,
(Cﬂllf) statements, such as hexaqecu_mal or decimal notation), a Macro
g IF EventClk THEN [] JUMP START: substitution with numeric equivalence (as
. defined above), or the special character Z
Program which signifies tri-state output pins.
The PROGRAM section of the ASM file Hexadecimal and decimal strings are
actually specifies the sequence of defined by a string of valid digits of correct
instructions to be executed and associated length, followed by H or D respectively. In
outputs required from the SAM device. horizontally cascaded applications, all
The format of a basic instruction outputs are specified in the single output-
specification in the PROGRAM section is ~ SPec within brackets. The output-spec
label: [output-spec] opcod; defined in the DEFAULT statement will be
: ’ utilized whenever the output-spec has
label is an optional alphanumeric string length zero, i.e., [] implies default
which may be used to identify the output-spec.
instruction in branching expressions, etc.
ENDS Every SAM ASM source file must
terminate with the END$ terminator.
Multi-Way The syntax for multi-way branching within another, it is possible to trade-off product
Branch Syntax the SAM ASM source file is by way of a term counts for number of multi-way

complex expression of the form

IF (expression1) THEN (instruction1)
ELSEIF (expression2)
THEN (instruction2)
ELSEIF (expression3)
THEN (instruction3)
ELSE (instruction4)

For example, a complex instruction of this
type might look like

IF 10*1*I5*/17 + 13*14 + 16*/10 + /13*/1 THEN
[1111001110010000] CALL
labelt RETURNTO label2;

ELSEIF 13*/12 + 15*16 + /10*14*11 THEN
[1011000011100011] LOADC
255 GOTO label3;

ELSEIF 14*16*10 THEN [] PUSH 15
GOTO label4;

ELSE [1111111100000001] PUSHI
GOTO labels;

Each expression may be a function of any
of the eight SAM external inputs containing
up to four product terms.

If more than four product terms are needed
to define a transition from one state to

branch destinations. For example, it is
perfectly valid to enter

IF (expression1) THEN [] JUMP START;
ELSEIF (expression2) THEN [] JUMP START;
ELSEIF (expression3) THEN [] JUMP NEXT1;
ELSE [] JUMP NEXT2;

Here, expression1 and expression2 could
each be four product term expressions,
resulting in eight product terms which can
be used to specify the transition to START.

Note the inherent priority scheme in the
above statements. The SAM architecture
physically implements such a priority
scheme in the Branch Control Block: the
first occurrence of a valid expression
results in the execution of the corresponding
instruction. If the first three expressions
are all false, then instruction4 will be
subsequently executed.

Up to 64 such IF...THEN ... ELSE
constructs may be implemented in a single
SAM program, along with 192 conventional
instructions without IF . . . THEN . . . ELSE.
The result is a total microcode memory
capacity of (64 x 4) + 192 = 448 words.

WAFERSCALE INTEGRATION, INC.

4-109

SAM448 — Application Note 003

Figure 3.
Circle Drawing
Routine

This Iis the Circle Drawing Design
% Circle Drawing Routine for SAM %
PART: SAM448 SAM448

SAM Control Output Lines
A & B Flelds (2901) -
10-18 (2901) -
OE (2901) -

8 Co-2
9
1
Done -1
1
1
1
1
1

CmdAtt
Sign

Cn (2901) -
Wr -
ALE -
Rd) -
RegRd -

RRRRRRRRRR

INPUTS: CO,C1,C2,CmdAtt,Sign

Inputs

-)

OUTPUTS: AO,A1,A2,A3,B0,B1,B2,B3,12,11,10,15,14,13,18,17

OUTPUTS: 16,Rd,Wr ,ALE,RegRd,OE,Cn,Done
DEFAULT: [0000 0000 0000 0000 1110 0100]
MACROS :

CONT = “CONTINUE"

% A & B Fields %

RadiusReg = "0001*
Reg1 = *0001"

Reg2 = "0010"
Reg3 = "0011"
Reg4 = "0100"
Reg5 = "0101"
Regé = *0110"
Reg7 = *O111"
Reg8 = "1000"
Reg9 = "1001"

Reg10 = "1010"
Reg11 = *"1011*
Reg12 = "1100"

% Source Control %

AQ = "000"
AB = "001°*
ZQ = "o10"
ZB = "O11"
ZA = "100"
DA = "101"
DQ = "110"
DZ = "111"

% Function %

ADD = "0O0O"
SUBR = "001*
SUBS = "010"
OR = "O11"
AND = "100"
NOTRS = *101*
EXOR = *110"
EXNOR = *"111"

RRRRRRRRRR

4110 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Figure 3.
c’m’q n’aW”'y % Destination Control %
Routine (Cont.) QREG = *000"
NOP = "001*

RAMA = *010"
RAMF = *O11*
RAMQD = " 100"
RAMD = *101"
RAMQU = *"110*
RAMU = *111*"

% Bus Cycle %

MemWr = *®10001*
RegWr = "10011"
ALEcyc = "11100*"
NoCyc = "11000*"

% Misc %
Cn = "1*
nCn = *0*
Done = *1°*
nDone = *"0O"
EQUAT IONS :
PROGRAM:

% Processor Initiallizes: %

OD:[] JUMP WAIT;
% o Load Coloreg, Radlus, X0, YO %
% o Issues DrawClirc Command %

WAIT: IF CmdAtt*CO‘*C1'*C2' THEN [] JUMP DOIT ;
ELSE [] JUMP WAIT ;

% Move parameters from buffer to 2901 Internal registers %
% Radius -> Regl (Y) %

DOIT: [Regl Regl AQ ADD NOP RegWr nCn nDone] CONT ;
[Regl Regl AQ ADD NOP RegWr nCn nDone] CONT ;

% XO -> Reg2 %

[Reg2 Reg2 AQ ADD NOP NoCyc nCn nDone] CONT
[Reg2 Reg2 AQ ADD NOP RegWr nCn nDone] CONT
[Reg2 Reg2 AQ ADD NOP RegWr nCn nDone] CONT

. we e

% YO -> Reg3 %

[Reg2 Reg2 AQ ADD NOP NoCyc nCn nDone 1 CONT
[Reg3 Reg3 AQ ADD NOP RegWr nCn nDone 1 CONT
[Reg3 Reg3 AQ ADD NOP RegWr nCn nDone 1 CONT

% Load constants to 2901 registers %
% 0 -> Reg4 (X) (AND O & anything gives 0) %

[Reg4 Reg4 ZB AND RAMF NoCyc nCn nDone] CONT ;

WAFERSCALE INTEGRATION, INC. 4111

SAM448 — Application Note 003

Figure 3. Circle
Drawing Routine
(Cont.)

% 3 -> Reg5s (d) %
% Put "1" In Reg5s %

[Reg4 Reg5 ZA ADD RAMF NoCyc Cn nDone] CONT ;

% Shift Regs Up one to give 2 %

[Reg5 Reg5 ZB ADD RAMU NoCyc nCn nDone] CONT ;
% While we have It, preioad 2 into Reg9 %

[Reg5 Reg9 ZA ADD RAMF NoCyc nCn nDone] CONT ;
% Increment Reg5 to get 3 (whew!!) %

[Regs Reg5 ZA ADD RAMF NoCyc Cn nDone] CONT ;

% 6 -> Reg8 (const) - Just shift 3 up one! %
% Load 1 in CREG to set-up for next Instruction %

[Reg5 Reg8 ZA ADD RAMU NoCyc nCn nDone] LOADC 1D ;
10 -> Reg9 (const) %

%
% Start by shifting Reg9 (now contains 2) up twice to get 8 %
% Reg6 (Temp register) %

CircPix: [Reg4 Regé ZA ADD RAMF NoCyc nCn nDone] CONT ;
[Regl Reg11 ZA ADD RAMF NoCyc nCn nDone] CALL TRANS ;

% Reflect X to -X %

[Reg4 Reg6 ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Regl Regi11 ZA ADD RAMF NoCyc nCn nDone] CALL TRANS ;

% Swap X & Y %

[Regl Reg6é ZA ADD RAMF NoCyc nCn nDone] CONT ;

[Regd Reg11 ZA ADD RAMF NoCyc nCn nDone] CALL TRANS ;
% Swap -X & Y %

[Reg4 Reg11 ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Regl Reg6é ZA ADD RAMF NoCyc nCn nDone] CALL TRANS ;

% Reflect Y %

[Regl Regl11l ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Reg4 Reg6 ZA ADD RAMF NoCyc nCn nDone] CALL TRANS ;

% Swap -Y & X %

[Regl Reg6 ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Reg4 Reg11 ZA ADD RAMF NoCyc nCn nDone] CALL TRANS ;

% Reflect -X, -Y %

[Reg4 Reg6 ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Regl Reg11 ZA SUBS RAMF NoCyc Cn nDone] CALL TRANS ;

4112 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Figure 3. Circle
Drawing Routine % Swap -X & -Y %
(Cont.)

[Regl Regb6 ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Reg4 Reg11 ZA SUBS RAMF NoCyc Cn nDone] CALL TRANS
[1 RETURN

H

% This routine Translates relative to x0,y0 and runs the memory
update cycle %

TRANS: [Reg3 Reg11 AB ADD RAMF NoCyc nCn nDone] CONT ;
[Reg2 Reg6é AB ADD RAMF NoCyc nCn nDone] LOADC 10D
[Regl1l Reg12 ZA ADD RAMF NoCyc nCn nDone] CONT

% Multiply y by 1024 %

MULT1024: [Reg11 Regl1 ZA ADD RAMU NoCyc nCn nDone]
LOOPNZ MULT1024 ;

% Subtract y to get effective multiply by 1023 %
DONE1024: [Regl12 Reg11 AB SUBR RAMF NoCyc Cn nDone] CONT ;
% Calculate address %

[Regé Regtl1l AB ADD RAMF NoCyc nCn nDone] CONT ;

% Write pixel In buffer RAM %

RUNBUS : [Regi1 Regi1 ZA ADD RAMF ALEcyc nCn nDone] CONT ;
[Reg11 Reg11 ZA ADD RAMF MemWr nCn nDone] RETURN ;

END$

SHIFTR9: [Reg® Reg® ZA ADD RAMU NoCyc nCn nDone]

LOOPNZ SHIFTR® ;

% Increment Reg® twice to get 10 %

[Reg® Reg® ZA ADD RAMF NoCyc Cn nDone] CONT ;
[Reg9 Reg9 ZA ADD RAMF NoCyc Cn nDone] CONT ;

% Initializing done | - Beglin algorithm %
% d = 3 - 2*radius Initially %

[Regl Reg6 ZA ADD RAMU NoCyc nCn nDone] CONT ;
[Reg5s Regé AB SUBS RAMF NoCyc Cn nDone] CONT

% If X >= y branch to finish up %

OUTERLOOP: [Reg4 Reg1 AB SUBS RAMF NoCyc Cn nDone] CONT
IF Sign THEN [] JUMP DrawEnd ;

H

% Write pixels, translate origin & reflect to all octants %
ELSE [] CALL CircPix ;
% Test d sign, If >= O, use POS %

[Reg5 Reg5 ZA ADD RAMF NoCyc nCn nDone] CONT ;
IF Sign THEN [] JUMP POS ;

WAFERSCALE INTEGRATION, INC. 4113

SAM448 — Application Note 003

‘I;igure 3. Circle
rawing Routine ompute d = d + 43X +
(Cont.) : gn-gttv: % 4 &%

ELSE [Reg4 Reg6é ZA ADD RAMU NoCyc nCn nDone] CONT ;
[Regé Reg8 ZA ADD RAMU NoCyc nCn nDone] CONT ;

% Add 6 %

[Reg8 Reg6 AB ADD RAMF NoCyc nCn nDone] CONT ;
[Regé Reg5s AB ADD RAMF NoCyc nCn nDone] JUMP IncX ;

% Compute d = d + 4*(x-y) + 10 %
% Flrst x-y %

POS: [Reg1 Regé ZA ADD RAMF NoCyc nCn nDone] CONT ;
[Reg4 Regé AB SUBS RAMF NoCyc Cn nDone] LOADC 1D ;

% Then 4*(x-y) %

SHIFTRB: [Regé Regé ZA ADD RAMU NoCyc nCn nDone]
LOOPNZ SHIFTRS8 ;

% Add 10 %

[Reg® Regé AB ADD RAMF NoCyc nCn nDone] CONT
[Regé Reg5 AB ADD RAMF NoCyc nCn nDone] CONT

% Decrement y %
[Regl Reg1l ZA SUBR RAMF NoCyc nCn nDone] CONT ;
% Increment x and repeat til X = y %
IncX: [Reg4 Reg4 ZA ADD RAMF NoCyc Cn nDone] JUMP OUTERLOOP ;
% Last pixel write / ends octant with x = y (45 degrees) %

DrawkEnd: [] Call CircPix ;
[]1 LOADC 16D ;

% |ssue Done to processor for 16 clocks %

DoDone: [Regl Reg1l ZA ADD RAMF NoCyc nCn Done]
LOOPNZ DoDone ONZERO WAIT ;

% End Main Routine %

% This routine reflects the pixel Into all octants and calls a
routine which translates the pixel relative to x0,y0,

calculates the pixel address as addr = X + y*1023 and runs the
memory cycle. %

4114 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

SAM The basic SAM device instruction set PUSHLOADC (constant1) GOTO (label1)
Microassembler accessible by the user through the CREG value is pushed onto the Stack
apcgdes microassembler consists of: and CREG is reloaded with constanti.
CONTINUE PUSHI GOTO (label1)
Execute next sequential instruction The eight input lines are pushed onto
JUMP (labelt) the Top-of-Stack and the instruction at
Jump to instruction specified @ label1 label1 is subsequently executed. May
be used to implement a “dispatch”
LOOPNZ (label1) ONZERO (label2) function in conjunction with a
If Count Register (CREG) is zero, subsequent RETURN instruction:
execute instruction @ label2, else external inputs provide address of
decrement CREG and execute next SAM instruction.
instruction @ labell. Useful for one-
instruction ti@ming and delay loops. ANDPUSHI (constant1) GOTO (label1)
The eight input lines are bitwise
DECNZ GOTO (label1)) ANDed with constantt, the result is
Decrement the CREG if non-zero; pushed onto the Stack and the
execute instruction @ labell. instruction @ labell is subsequently
POPC GOTO (labell) executed. May be used to mask inputs
Top-of-Stack is popped into CREG and before loading to CREG or next
the instruction @ labell is executed. address.
POPXORC (constantt) GOTO (labelt) CALL (labell) RETURNTO (label2)
Top-of-Stack is popped, bitewise XORed Label2 is pushed onto the Stack, and
with (constantl) and loaded to CREG. the instruction @ labell is executed
Instruction @ labell is next executed. next. Used for subroutines.
Useful for comparing Top-of-Stack to a
value by subsequently testing CREG PUSH (constan} 1) GOTO (labelf)
zero-flag using a LOOPNZ instruction Constant1 is pushed onto the Stack
' and the instruction @ labell is next
LOADC (constantl) GOTO (label1) executed.
CREG is loaded with the value The Branch Control Block of SAM is
constant1, and instruction @ labell is invoked automatically by use of
next executed. IF ... THEN . .. ELSE constructs in
RETURN conjunction with the above
Address of the next instruction is instructions. This allows program flow
popped from Top-of-Stack and control based upon external inputs as
subsequently executed. Used to in conventional state machines and
terminate subroutines. multi-way branching in a single clock.
An Actual Now that the basic syntax and elements of a 1 Megabyte high-speed static RAM video
ﬂesign Examp[e a SAM ASM file have been covered, a frame buffer (giving individual pixel

detailed example of a SAM application will
be presented: a high-performance Graphics
Controller. In this particular application,
two SAM devices will be horizontally
cascaded to generate the control outputs
for a graphics subsystem. This subsystem
provides graphics primitive drawing
capability for a larger microprocessor-
based system.

Figure 4 shows a typical 8086
microprocessor-based system. Beneath the
Address/Data Buses is the graphics
subsystem to be controlied by the SAM
devices, the primary elements of which are

addressing capability), five WS5901 bit-
slice elements used to construct a 20 bit
ALU/data path engine, and two SAM
devices as previously mentioned to provide
overall control within the subsystem.

This basic graphics engine represents a
user-microcodeable arrangement which
can potentially support many primitive
graphic drawing operations such as line
drawing, polygon filling, drawing of conic
sections and others. For the purposes of
this example, a single primitive drawing
operation which draws circles of arbitrary
radius and origin into the frame buffer will

WAFERSCALE INTEGRATION, INC.

4115

SAM448 — Application Note 003

An Actual be discussed. The basic concept behind ¢ Reflect circle pixel coordinates into
Design this algorithm will be discussed below. remaining seven octants
Example In order to execute its role of controller for ® Translate pixel coordinates relative to
{Cont.) this subsystem, the pair of SAM devices actual origin
must be able to execute the following e Perform Video Buffer write to all pixel
subfunctions addresses specified
e Issue DONE interrupt to main processor
¢ Read Commands issued by main This activity is done independently of the
microprocessor main microprocessor and frees it up to do

o Transfer Parameters associated with other tasks while the operation is performed.
commands to Register File in WS5901’s These operations fall into two general
« Initialize Constant Registers in WS5901’s ~categories of controlling bus transfers
to specified values for algorithm between various elements (Registers, ALU,
. . RAM, etc.) and sequencing computations
¢ Compute values for pixels on circle as qrformed by the WS5901 ALU in generating

function of specified Radius for first the pixel addresses to be set to draw the
octant [Assume circle origin = (0,0)] required circle. The structure of the SAM
¢ Translate x,y coordinates into RAM microassembler code shown above
addresses generally follews this flow.
Figure 4.
SAM448 L
Graphics Engine o SYSTEM CoNTROL sreren
Do-D15 A0-A19 5208
I
DECODE
0 SYSTEM ADDR BUS
I \V4 SYSTEM DATA BUS \}
[U U 18]
3 oE/] @
r VIDEO BUFFER DATA BUS
C 7]
VIDEO BUFFER BUS l [ﬂ
[20 |
U &
e e |- aas o oE oS gupren
LoGic 5 x 5901 T 8
B0-B3 10-18) | ME MR/
F19 co
DONE REGRD b}
1
SIGN L |
READY L |
Co-c2 SAM #1] SAM #2
CMDATT | oK n-l oK n—l

4-116 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Circle Drawiny The sample algorithm to be implemented circle, by calculating the circle points in

Algorithm in the SAM code to draw the circle is one the first octant (see Figure 5), and then

Overview based upon a methodology developed by reflecting those coordinates into the other
Bresenham. In order to speed computation, seven octants. For a given pixel location
it exploits the fundamental symmetry of a (x,y), reflection involves drawing points

Figure 5. Circle
Symmetry
Exploited by
Bresenham

(=xy) 1 (xy)
45°
(%) (V24
(-%-x) R o
x,-y) (=%,-y)
Figure 6. Circle
nrawiny Procedure Circle (radius, value: Iinteger) ;
Alyﬂriﬂ'm var x,y,d : Integer ;
begin
X := O ;
y := raduis ;
d := 3 -2 * radius ;
while x < y do begin
CircleDraw (x,y,value);
ifd<O
then d :=d + 4 * + 6
else begin
d :=d + 4 * (X-y) + 10 ;
y :=y -1
end
X := X + 1
end
iIf x = y then CircleDraw (x,y, value) ;
end

WAFERSCALE INTEGRATION, INC. 4-117

SAM448 — Application Note 003

Circle Drawing
Algorithm
Overview
(Cont.)

(xy), (X-y), (xy), as well as those points
with x and y swapped. In drawing the
points for a circle in the first octant, one
can easily see that, having just calculated
one of the pixel locations, there are only
two possible choices for the next pixel
location: increment x (horizontal move) and
increment x and y (diagonal move). The
trick is how to decide, based upon current
location, which of the two to pick next.

The entire derivation of the algorithm will
not be presented here. However, a

complete discussion of the algorithm may
be found in Foley and Van Dam (1981),
referenced below. Suffice it to say, it is
obvious that the best match between
actual pixel coordinates and the ideal
circle points can be obtained by checking
an error term equal to the difference in
distance from the circle’s center to each of
the two potential next pixel choices: the
sign of the term will indicate which point to
pick to obtain the best fit.

The basic algorithm implemented is shown
in Figure 6.

Timing
Considerations

SAM timing analysis is straightforward, as
all times are relative to the synchronous
clock input. Tsu specifies minimum set-up
time for inputs to gain recognition at the
next clock edge, while Tco specifies clock-
to-output delays for the user-configured
output pins. Output tri-state and enable
times are speced as Tcz, but are not
relevent in this particular application as
outputs are always enabled.

For this particular design example, the
SAM448-25-controlled graphics subsystem
is being driven by a 15 MegaHertz clock.
This implies a clock period of 66
nanoseconds. SAM control outputs will
reflect a Tco of approximately 18
nanoseconds, while inputs must obey a

18 nanosecond set-up time (Tsu) relative to
the clock edge.

High-speed Static RAM will be used for
the video frame buffer for two reasons:
one is raw speed. The memory must be
fast enough to keep up with SAM’s high-
speed bus cycles. The second is that
SRAM requires no refresh cycles, unlike
DRAM. Thus more time is available to
perform buffer drawing functions: no time
is lost for refresh cycles.

Memory consists of CMOS SRAM
components organized 8K x 8 with an
access time of 45 nanoseconds, and a
minimum Write Pulse width of 30
nanoseconds. The CMOS WS5901 bit-

Figure 7.

Primary SAM —
Ws5901 Graphics
Controlled Timing

CLOCK \

SAM OUTPUTS

PREG OE /

A, B OUTPUTS

PREG DATA X

WR

WS5901 OUTPUTS

4-118 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

T”m”.y slices require a 30 nanosecond single clock cycle. Note that Carry
Considerations propagation delay from A and B Register Lookahead circuitry is employed with the
(Cnm,) Address inputs to valid Y output, and a 10 WS5901 slices to improve arithmetic
nanosecond set-up time prior to the Clock computation times, but is not explicitly
high-to-low transition on A and B inputs. A shown in the block diagram.
timing diagram is shown in Figure 7. The algorithm below uses many of the
The bus cycle uses a two clock approach, ~ WS5901's operations, as well as many of
During the first cycle, the WS5901 will the internal addressing modes. In the
generate a pixel address to be set, and following listings, standard mnemonics
during the second cycle, the actual write have been used for the various Source,
pulse will be generated by SAM to write Destination, anfi Operation specifiers.
the frame buffer. These control lines for the WS5901’s are
all generated by the SAM devices. These
Operations performed entirely within the mnemonics, and resulting WS5901
WS5901 slices (register transfers, ALU functions, may be found in the WSI
operations, etc.) are all executed in a WS5901 Data Sheet.
E{(alpple Program Figure 3 is a source listing of the basic functions utilize the Stack and
Llstmg circle drawing process. The followmg_ subroutining resources on SAM.
comments are worth noting before going . i)
further: * Since the display is assumed to be
. . 1024 x 1024 pixels, x and y pixel
* Two SAM devices are used in a coordinates must be converted to SRAM
horizontal cascade configuration. address locations by multiplying the
¢ Extensive MACRO definitions to ease y coordinate by 1023 and adding the
design entry and allow the use of user- x coordinate.
and WS5901-specified mnemonics. * The signal CmdAtt is an input to the
¢ Two subroutines, CircPix and Trans, are SAMs from the main processor, signaling
invoked multiple times to draw the circle that all parameters are loaded to the
pixels. CircPix reflects the pixels into all Parameter Registers, and that a circle
octants of the circle as mentioned drawing operation should be executed.
above, while Trans translates the pixels Donelnt is a signal from SAM to the
relative to the actual circle origin and processor, asserted when the drawing
runs the memory update cycle. These operation is complete.
Compiliny the By convention, microassembler source the design. These two files are given the
Design files are given the extension .ASM. This extensions .JD1 and .JD2 to distinguish

file is called CIRC.ASM. Compilation of
this design involves invoking the
SAM+PLUS software and specifying ASM
microassembler input format. A variety of
runtime options for SAM+PLUS are
available, which provide special reporting
modes and logging simulation input and
output to a special file. For detailed
descriptions of the SAM+PLUS user
interface and options, see the SAM+PLUS
User’s Manual. Compilation is an automatic
process resulting in the generation of
programming ‘“object code” for the EPLD
and EPROM blocks on SAM. In this case,
two programming files wil be generated,
since two devices are required to implement

them. These - JEDEC files are not intended
to be user readable (as with any object
code). Functional simulation uses these
programming files for its modeling of SAM
operation. An additional product of the
compilation is a single Report file
(extension -.RPT) which describes the
resources which have been used in the
SAM devices, pin assignments which have
been selected and absolute locations
within SAM’s microcode assigned to the
instructions entered. Figure 8 shows key
portions of the CIRC.RPT report file.
Notice the assigned pinouts for the two
devices, as well as the substitution of
absolute addresses for logical labels.

WAFERSCALE INTEGRATION, INC.

4-119

SAM448 — Application Note 003

Figure 8. Report
File for Circle
Drawing Routine

SAM Design Processor Utilization Report

Version 1.01 7/28/87 01:57:09 38.1

*ss2+ Design Implemented successfully
X:7

This Is the Circle Drawing Design

% Circle Drawing Routine for SAM %

SAM448 SAM448
RESERVED : 1 28 : RESERVED AO : 1 28 :
Gnd : 2 27 : RESERVED Gnd : 2 27 :
Gnd : 3 26 : RESERVED Gnd : 3 26 :
Gnd : 4 25 : 16 Gnd : 4 25
Co : 5 24 : Rd CcCo : 5 24 :
CLOCK : 6 23 : Wr CLOCK : 6 23 :
Vece : 7 22 : ALE Vce : 7 22 :
NRESET : 8 21 : GND NRESET : 8 21 :
Cc1 : 9 20 : RegRd ct : 9 20 :
c2 : 10 19 : OE c2 : 10 19 :
CmdAtt : 11 18 : Cn CmdAtt : 11 18 :
Sign : 12 17 : Done Sign : 12 17
RESERVED : 13 16 : RESERVED 17 : 13 16 :
RESERVED : 14 15 : RESERVED 18 : 14 15 :

*s*** DESIGN LISTING

PART:
SAM448, SAM448

INPUTS:
co, C1, C2, CmdAtt, Sign

OUTPUTS:
AO, A1, A2, A3, BO, Bt1, B2, B3, 12, 11, 10, 15, 14, 13,

OUTPUTS:
16, Rd, Wr, ALE, RegRd, OE, Cn, Done

PINS:

DEFAULT:
[000000000000000011100100]

PROGRAM:
OD:
[000000000000000011100100] JUMP WAIT;
192D:
WAIT:
IF CmdAtt ®* CO’ * C1' * C2' THEN
[000000000000000011100100] JUMP DOIT;
ELSE
[000000000000000011100100]1 JUMP WAIT;

1D:
DOIT:

[000100010000000011001100] JUMP 2D;
2D:

[000100010000000011001100] JUMP 3D;
3D:

[001000100000000011100000] JUMP 4D;

[001000100000000011001100] JUMP 5D;
[001000100000000011001100]1 JUMP 6D;

[001000100000000011100000] JUMP 7D;

8,

17

4120 ' WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Figure 8. Report
File for Circle
Drawing Routine
(Cont.)

[000000000000000011100100] JUMP DrawEnd;

[000000000000000011100100]1 CALL CircPix RETURNTO 21D;

[000000000000000011100100] JUMP POS;

[010001101000001111100000] JUMP 22D;

7D:

[001100110000000011001100]
8D:

[001100110000000011001100]
oD:

[0100010001110001111000001]
10D:

[010001011000000111100010]
11D:

[0101010101100011111000001]
12D:

[010110011000000111100000]
13D:

[010101011000000111100010]
14D:

[0101100010000011111000001]
15D:
SHIFTRS:

[1001100110000011111000001]
16D:

[1001100110000001111000101]
17D:

[100110011000000111100010]
18D:

[0001011010000011111000001]
19D:

[010101100010100111100010]
20D:
OUTERLOOP :

[0100000100101001111000101]
193D:

IF Sign THEN

ELSE
21D:

[0101010110000001111000001]
194D:

IF sSign THEN

ELSE
22D:

[0110011010000011111000001]
23D:

[1000011000100001111000001]
24D:

[011001010010000111100000]
25D:
POS:

[000101101000000111100000]
26D:

[010001100010100111100010]
27D:
SHIFTR6 :

[011001101000001111100000]
28D:

[1001011000100001111000001]
29D:

[0110010100100001111000001]
30D:

[000100011000010111100000]
31D:
IncX:

[010001001000000111100010]
32D:
DrawEnd:

[0000000000000000111001001]

JUMP 8D;

JUMP 9D;

JUMP 10D;
JUMP 11D;
JUMP 12D;
JUMP 13D;
JUMP 14D;

LOADC 1D GOTO SHIFTR9;

LOOPNZ SHIFTR9 ONZERO 16D;
JUMP 17D;
JUMP 18D;
JUMP 19D;

JUMP OUTERLOOP;

JUMP 193D;

JUMP 194D;

JUMP 23D;
JUMP 24D;

JUMP IncX;

JUMP 26D;

LOADC 1D GOTO SHIFTR6;

LOOPNZ SHIFTR6 ONZERO 28D;
JUMP 29D;
JUMP 30D;

JUMP IncX;

JUMP OUTERLOOP;

CALL CircPix RETURNTO 33D;

WAFERSCALE INTEGRATION, INC. 4121

SAM448 — Application Note 003

Figure 8. Report
File for Circle
Drawing Routine
(Cont.)

33D:

[000000000000000011100100]
34D:
DoDone:

[000100011000000111100001]
35D:
CircPix:

[010001101000000111100000]
36D:

[000110111000000111100000]
37D:

[010001101000100111100010]
38D:

[000110111000000111100000]
39D:

[0001011010000600111100000]
40D:

[010010111000000111100000]
41D:

[0100101110001001111000101]
42D:

[000101101000000111100000]
43D:

[000110111000100111100010]
44D:

[0100011010000001111000001
45D:

[000101101000100111100010]
46D:

[010010111000000111100000]
47D:

[010001101000100111100010]
48D:

[000110111000100111100010]
49D:

[000101101000100111100010]
50D:

[010010111000100111100010]
51D:

[000000000000000011100100]
52D:
TRANS :

[001110110010000111100000]
53D:

[001001100010000111100000]
54D:

[101111001000000111100000]
55D:
MULT1024:

[101110111000001111100000]
56D:
DONE 1024 :

[110010110010010111100010]
57D:

[011010110010000111100000]
58D:
RUNBUS :

[101110111000000111110000]
59D:

[101110111000000111000100]
END$

s22+x PART UTILIZATION

60/192
3/ 64

O Warnings
O Fatal errors

LOADC 16D GOTO DoDone;

LOOPNZ DoDone ONZERO WAIT;

JUMP 36D;
CALL TRANS RETURNTO 37D;
JUMP 38D;
CALL TRANS RETURNTO 38D;
JUMP 40D;
CALL TRANS RETURNTO 41D;
JUMP 42D;
CALL TRANS RETURNTO 43D;
JUMP 44D;
CALL TRANS RETURNTO 45D;
JUMP 46D;
CALL TRANS RETURNTO 47D;
JUMP 48D;
CALL TRANS RETURNTO 49D;
JUMP 50D;
CALL TRANS RETURNTO 51D;

RETURN;

JUMP 53D;
LOADC 10D GOTO 54D;

JUMP MULT1024;

LOOPNZ MULT1024 ONZERO DONE1024;

JUMP 57D;

JUMP RUNBUS;

JUMP 589D;

RETURN;

Unconditional Branches (31.25%)
Conditional Branches

(4.69%)

4122 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Design Simulation The SAMSIM functional simulator allows

simulation of single-, as well as multiple-
SAM designs. Once a design has been
successfully compiled, the user can
specify input stimulus in a variety of
formats and observe the device response.
SAMSIM supports both hard-copy waveform
and tabular output, as well as interactive
“virtual logic analyzer” viewing on the PC
monitor. Split-window, multiple zoom levels,
and delta time display are a few of the
capabilities available for analyzing the
simulation results in this fashion.

SAMSIM supports both interactive and
command file input. Shown in Figure 9 is
a sample input stimulus command file for
this design. Command files are typically
given the design name with extension
.CMD. In this example, CIRC.CMD is the
name of the command file. The first line
specifies the source JEDEC files. Note
only the primary file name is given and
not the extensions. GROUP CREATE
creates a group called CF containing 3
signals (C0-C2). By creating this group,
the input pattern for the group can be

Figure 9.
Command File

JEDEC CIRC
GROUP CREATE CF = CO C1 C2
PATTERN CREATE CF = (OH)*200

PATTERN CREATE Sign =
TRACE CREATE CIRC.TRC
TRACE ON

SIMULATE 200

VIEW

PATTERN CREATE CmdAtt = (0)*5 (1)*2 (0)*193
(0)*200

specified in the PATTERN CREATE CF
statement immediately following, rather
than having to enter each signal’s stimulus
separately. The PATTERN CREATE
statement shows the sequential values the
given input (or group of inputs) is to take
beginning at the start of the simulation
and continuing onward. Hex format (as
shown) can be used to streamline group
pattern entry further. The notation ()*n
indicates repeat the enclosed stimulus
pattern n times. TRACE CREATE creates a
trace buffer file CIRCTRC into which the
state of SAM wil be dumped after each
simulation step. This information includes
internal information such as value on Top-
of-Stack, counter value, etc., as shown in
Figure 10. TRACE ON turns the trace
process on and may be discontinued with
a TRACE OFF command later in the
command file. SIMULATE 200 specifies a
200 clock simulation is to be run, and
finally VIEW enables interactive viewing of
the results of the simulation when complete.

Other useful commands supported by
SAMSIM, but not used in our example
include (among others):

SET — Modifies values of internal stack,
counter, etc.

RADIX — Defines default radix for all
SAMSIM input. Options are decimal,
binary and hex.

LINK — Logically links device pins for
simulation purposes.

Running SAMSIM with the above
command file gives the output shown in
Figure 11.

In reviewing the simulation output figure, a
few words of explanation are required. It is
immediately apparent that there are two
types of output displayed, two examples of
which are CmdAtt and AF. CmdAtt is an
example of a single signal waveform, in
this case corresponding to a device input.
AF corresponds to a group of four signals
(note the (4) after the name AF) which
includes AO-A3. For AF, the values in the
group are displayed in a vertical hex
notation each time any signal in the group
changes. (If an explicit value is not
displayed, it is the same as the previous
time step’s value). By grouping common
signals, much more information can be
displayed in a single screen than might
otherwise be visible. In our example A (AF
= A3-A0), B (BF = B3-B0), and | outputs
(IL = 12-10, IM = I5-I3, IH = 18-16) are
viewing groups which have been formed.

WAFERSCALE INTEGRATION, INC.

4-123

SAM448 — Application Note 003

Figure 10. Trace
File Output

MULT1024: 55D:

MULT1024: 55D:

MULT1024: 55D:

DONE1024: 56D:

55D:

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
[12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
MULT1024: 55D: [12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
[12288992D] LOOPNZ MULT 1024

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
[12288992D] LOOPNZ MULT1024 ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
[13313506D] CONTINUE ;

Sign=0 CmdAtt=0 c2=0 c1=0 cO=0
[7021024D] CONTINUE ;

The virtual logic analyzer supports
commands which allow the order of
waveforms to be changed interactively,
arbitrary signal groups to be constructed,
among others. An on-line HELP command

gives instant explanations for all commands.

An extremely flexible interactive analysis
tool is the result.

The simulation results shown in Figure 11
correspond to the first 40 or so clocks
after the graphics controller receives a

CmdAtt signaling the beginning of a circle
drawing operation. The three RegRd
pulses correspond to reading the circles’
radius and x-y origin from the parameter
register. The single OE pulse two-thirds of
the way across the display is the point
where the CircPix routine is first entered. It
is left as an exercise to the reader to verify
the intermediate output values by following
the CIRC.ASM source file.

Conclusion

The SAM device provides an efficient
solution for sophisticated control problems
such as the graphics controller just
described. SAM’s capability is applicable
to a wide range of problems, including
industrial control, graphics and disk

controllers, programmable sequence
generators and the like. The SAM+PLUS
tool set makes the design, verification and
debug of such designs straightforward.
The combination represents a winning
approach to control design.

4124

WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 003

Figure 11.

SAMSIM
Interactive
Output P = 5 .
CmdAtt i :
AF (&) P 11717
BF (4) ————0—0—0-00—0000—0-0000—000———
o 1—Z—3-45-9589—6-106B-6CB:
L@3 Y———+H——0000———0—00~0—0———
@ o S——3434 1-04—1-4
™ (3) z Fm—t 9
H 3) ———-——0~00-0—0~00-00——0
H—————3-73~7—3~73—13—7
Rd H =
w e
ALE :
RegRd : l_lu—m
OE [I
L J
R k-3
Range: 1 to 200 Name: CIRC Cycle: 1 Signals: 29
References WSI 1990 Data Book

SAM448 Data Sheet
WSI Application Note #4: SAM
Applications Using State Design Entry

J. Foley & A. Van Dam, Fundamentals of
Interactive Computer Graphics, Addison
Wesley, 1981

WAFERSCALE INTEGRATION, INC. 4125

4-126 WAFERSCALE INTEGRATION, INC.

—
r — F —
Y —
I — & W 4

I Y
r— % 3
—

WAFERSCALE INTEGRATION, INC.

Programmable System™Device

Application Note 004

SAM Applications Using
State Machine Design Entry

Scope of This
Application Note

This Application Note is intended to
acquaint the user with ASMILE (WSI State
Machine Input Language) state machine
language syntax as used for entering
designs into the SAM448. Basic functionality
and syntax is reviewed as well as its use
of SAM internal resources. An application
utilizing ASMILE input in the form of a
68020 Microprocessor Bus Arbiter is
presented. This Application Note provides
illustrations of all basic concepts needed

to execute a SAM design with ASMILE.
For information on microassembler-based
entry of SAM designs, please refer to
WSI’s Application Note #3.

The reader is referred to WSI’'s SAM448
Data Sheet for details concerning device
architecture and performance. A general
knowledge of SAM device architecture is
assumed as background for this
Application Note.

The SAM
Solution

WSI’s SAM (Stand-Alone Microsequencer)
User-Configurable Sequencer Architecture
provides a solution for high-performance
control functions found in typical digital
systems designed today. There have been,
previously, two main approaches used in
the design of high performance state
machine/control functions in digital systems:
Logic Array-based sequencers, and
microcoded designs. Each approach has
presented the designer with a set of
benefits and drawbacks to be considered
when deciding how to implement a
specific application.

Logic Array-based sequencers have been

used for very fast state machines of low-to-
medium complexity which required few
outputs and relatively simple state flows or
machine “algorithms.” Ability to perform
multi-way control branching in a single
clock cycle is a plus for this approach.
Devices such as conventional registered
PLDs are representative of this class.
Product term count limitations, resulting in
the inability to generate complex output
waveforms or state transitions, limits the
utility of this approach when addressing
larger control problems.

Microcoded approaches have been used
for the implementation of complex control

Figure 1.
SAM448 Block
Diagram

PLD

NRESET
™ BRANCH
INPUTS CONTROL
(8) LOGIC

MICROCODED ENGINE

MICROCODE
EPROM

448 x 36
BITS

11

EPLD
768 PRODUCT
TERMS

PIPELINE
REGISTER

CLK

¥

OUTPUTS (16)

WAFERSCALE INTEGRATION, INC.

4-127

SAMA448 — Application Note 004

The SAM
Solution (Cont.)

functions, requiring high control output
counts. Until recently, however, the only
mechanism for implementing this approach
has been to glue together an assortment
of bit-slice component building-blocks. In
addition, the approach also did not lend
itself to rapid multi-way branching (a
strength of Logic Arrays), instead being
relegated to a serial test-and-binary-branch
mechanism.

An enhanced vehicle for state machine
implementation really requires a marriage
of these two architectures, to obtain the
high performance, multi-way branching
based on real-time inputs characteristics of
Logic Array-based sequencers, while having
the ability to manage complex algorithms
and generate high output counts
characteristic of microcoded approaches.
WSI’s SAM448 does exactly this.

SAM+PLUS
System Overview

The versatility of the SAM architecture,
and its applicability to both State Machine
and complex Controller functions, has
necessitated the need for multiple design
input formats. WSI's SAM+PLUS PC-based
Design Software allows the designer to
enter his design in either a high-level state
machine description using WSI’'s ASMILE
language, or in an efficient microcode
assembler format known as ASM. A block
diagram of this system is shown in Figure 2.
Given these options, the user can employ
the design description most appropriate for
his particular problem, or which he is
personally most comfortable with.

The SAM Design Processor (SDP) takes
the input file and automatically minimizes
the transition specification logic and fits
the resultant resource requests to the SAM

architecture. A Utilization Report is
generated which reports total resources
consumed, any unfittable requests, and
assigned pinouts. Upon successful fitting,
a standard JEDEC file is generated to allow
programming of the device using a hardware
programming card installed in the PC.

In addition, this JEDEC file, which represents
the actual template of the specific application
implemented, may be used as input to the
SAMSIM (SAM SIMulator) program which
provides functional simulation capability
integrated into the total design environment.
Hard-copy output of simulation results may
be obtained, as well as on-line “logic
analyzer” viewing capability. The result is
a design entry, compilation and verification
system which can be iterated rapidly until
the desired functionality is obtained.

Sizing-Up a
Potential
SAM Design

There are two broad categories of state
machines. Mealy and Moore machines
(see Figure 3). Given the SAM architecture,
one can see that Moore machines may

be directly implemented into a SAM
component: SAM’s outputs are a function
of the currently addressed microcode
location (state). Mealy machines specify
outputs as functions of state and inputs.
However, Mealy machines can frequently
be converted to equivalent Moore machines.
The general rule for this conversion is that
for each transition into a state in the Mealy
machine with a unique set of outputs,
insert a state into the Moore machine with
that output combination. Figure 4 illustrates
this concept.

ASMILE supports the resources available
on SAM for state machine design. Additional
feaures, such as the stack and counter,
are supported in the microassembler format
which lends itself to their efficient use.

In order to determine whether a given
application is suitable for SAM, a few brief

“rules-of-thumb” derived from the device

architecture and specifications can prove

helpful:

¢ Operating frequency less than or equal
to specified SAM device’s Fmax

¢ Synchronous, Moore machine operation

¢ Up to eight state machine inputs (not
including CLOCK or RESET)

¢ Up to sixteen state machine Outputs
¢ Up to 64 Multi-Way (conditional) state
branches

Transition expressions reducible to four
product terms per IF ... THEN
expression

e 192 or fewer unconditional state
transitions

An application which meets the above list
of requirements will probably fit into a
SAM device.

4-128 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 004

Figure 2.
SAM+PLUS

System Diagram ‘ 9
ys y MICROCODE \ - ASM
ENTRY / J

SMF2ASM

|

| MACRO BOOLEAN Y
EXPANDER/ EXPANDER/

PARSER — MINMIZER | | ASSEMBLER |

| |

1 _ SAM DESIGN PROCESSOR 1

UTILIZATION
REPORT

A

SAMPRO >

SAM448

FUNCTIONAL
SIMULATION

Figure 3. Types
of Synchronous
State Machines

Ll—_

COMBINATORIAL STATE comB. OUTPUTS
LOGIC ___> RecisTERs [——— | loaic :>f(STATE, INPUTS)
INPUTS :" N
>

CLOCK

MEALY STATE MACHINE

WAFERSCALE INTEGRATION, INC. 4-129

SAM448 — Application Note 004

Figure 3. Types

of Synchronous
State Machines
(Cont.) -J
°°”‘L'3‘é.’é’“'“b> Resierers [——— | toaic RSTATE)
INPUTS :>
’/P
CLOCK
MOORE STATE MACHINE
Figure 4.
Mealy/Moore
Transformation x*vlo
X*Y |0 IX*IY |1 IX*Y + X*/Y |0
IX*Y + X*/Y |1 X*Y |1

MEALY MACHINE

IX*IY

IX*Y + X*/Y

Xy

IX*Y 4+ X*/Y

) @
IX*Y + X*/Y XY

MOORE MACHINE

IX*Y + X* /Y

IX* Y

4130 WAFERSCALE INTEGRATION, INC.

SAMA448 — Application Note 004

ASMILE Entry

The basic format of a SAM ASMILE file
consists of the following sections:

[Header]
PART
INPUTS
OUTPUTS
[EQUATIONS]
MACHINE
CLOCK
STATES
Transition Specifications
END$

Those sections surrounded by [] are
optional and may be deleted if their use is
not required in a given application.

ASMILE files may be constructed utilizing
any standard text editor in non-document
mode. Using an editor in document mode
may inject spurious format control
characters which will be detected as
syntax error by the ASMILE parser at
compile time. Other than this constraint,
input is essentially free-form and may be
structured for readability and overall clarity.

The case of characters inserted into the
ASMILE file is significant, so it is important
to insure that character case is maintained
as text is entered. For example, the names
“RWB” and “rwb” are not the same.

Comments may be inserted freely into the
source code, delimited by leading and
trailing percent signs, for example,

% This is a comment %

Header

The header contains user-specified design
identifier information. Typical information
includes:

Designer’s Name
Company

Date

Design Number
Revision

SAM Part Number
Other Comments

Part
The PART section of the ASMILE file

specifies the target SAM device the
application is intended for.

Inputs
The single INPUTS section of the
ASMILE file defines all external inputs
into the design, as well as any
required user pin assignments. Pin

assignments are optional and will be
assigned by SAM+PLUS if not
specified. Pin assignments are
specified by the format

input_name @ pin_number

Outputs

The OUTPUTS section of the ASMILE
file contains a list of all outputs from
the design as well as any pin
assignments. Pin assignment syntax is
similar to input pin assignments.

Equations

The EQUATIONS section of the ASMILE
file is available for the definition of
intermediate equations to be used later in
the design. Entry of transition specifications
may be eased by defining intermediate
variables initially, and then invoking them
during the design. For example,

EventClk = 1*l4 + 13*16¥/17
might be defined in the EQUATIONS

section, and then utilized later in an
IF ... THEN statement.

Machine
The format for the MACHINE declaration is

MACHINE: machine__name

The MACHINE section of the ASMILE file
actually specifies the state machine’s state,
output, and transition definitions required
from the SAM device. There are three
subsections which are to be included:
CLOCK, STATES, and Transition
Specifications.

Clock

The CLOCK subsection specifies the clock
signal which will act as the synchronous
clock source for the state machine and the
resulting SAM device.

States

The STATES section specifies all states in
the target machine, as well as outputs
corresponding to these states. The general
form of this statement, when used in a
SAM design, is

STATES: [output__name__1...
output__name__n]

state__name [output__value__list]

In the above, the output__names are a list
of all SAM output names used in the
design, separated by whitespace. Following
this initial declaration, a list of all

WAFERSCALE INTEGRATION, INC. 4131

SAM448 — Application Note 004

ASMILE Entry state__names appears, each followed by a Control logic block. This block allows, by
Overview binary string in brackets which specifies all its structure, the specification of up to 64
(c,mt_ ’ output values to be provided when the complex branching expressions in a single
machine is in that state. machine. [As noted above, up to 192
For example, unconditional state transitions may be
specified for a single SAM device]. Each
STATES: [AB C D] IF ... THEN expression may specify a
S0 (0000 direct branch from the current state to as
S1[0110] many as four other successor states,
S2 [1000] based upon inputs to the SAM device.
S3[000 1] This is illustrated in Figure 5. Examples
Specifies a machine with four outputs A are shown below.
through D, State S, has all outputs low, S, In specifying IF . . . THEN expressions, it
takes B and C to logic one, S, has only is valuable to note that the order of the
output A high, etc. expression is important and can determine
Transition Specification the machine flow. Transition specifications
The form of the Transition Specifications in need not be mutually exclusive in such
a SAM ASMILE design is expressions. For example, the expression
state__name: transition__specification S0: IF 11*I2 + 15 THEN S1
Every state in the machine must have a IF 15*16 + 14*/13 THEN S2
transition__specification which will specify IF 14 THEN S3
successor states, either unconditionally S4
So: s2 might appear ambiguous under the
or conditionally using IF . .. THEN condition that inputs 15 and 16 to the SAM
statements. device become true during SO. Is S1 or S2
The first state__name encountered in the the next state? At this point SAM's priority
Transition Specification section will be logic comes into play. Since the S1
defined as the initial state of the machine transition is specified before the S2 in the
coming out of Reset. As such, it has special ~ design definition, it will be the next state
significance. Typically, this might be defined entered. Similarly, if 14*/13 become valid,
as an “inactive” or passive machine state. S2 will be the next state entered in
Other Transition Specifications have no preference over S3. This precedence-
positional significance. re§oIV|ng ca}pablllty is Provnded in the SAM
silicon architecture which employs a
If... Then Statements hardware priority encoder in selecting the
The SAM architecture implements in next state transition. This capability
silicon the state transition specifications resolves conflicts, and may be exploited in
defined by a user in the chip’s Branch the design to prioritize transitions.
Figure 5. SAM
Muiti-Way Branch
SAM MULTI-WAY BRANCH
4132 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 004

ASMILE Entry Default Transitions Each expression (IF . .. THEN) may be a
Overview One other benefit of this approach is the function of any of the eight SAM external
(Cont.) implicit “default” transition to be made. In inputs, and may contain up to four product
the example above, S4 will be the next terms after_loglc minimization. For most
state entered if S1, S2, and S3 are not designs, this should prove ample.
selected by the appropriate conditions A trade-off between number of branch
being true. This feature can reduce design destinations and product terms per
effort and resource requirements destination can be made, as multiple
substantially, since default transitions are IF ... THEN expressions can point to the
frequently defined as the negation of non- same destination. For example, the
default transitions and such inverted expression
expressions have a tendency to consume S0: IF (condt) THEN S1
logic product terms or resources quickly. IF (cond2) THEN St
For example, IF (cond3) THEN S2
SO0: IF I1*I2 + 15*17 + 10 THEN S1 S3
IF '3*"'*/ I?"M THEN S2 provides a three-way branch, with up to
IF 12713"14*15/17 THEN S3 eight product terms available for the
S4 specification of transitions to state S1.
is a valid ASMILE SAM transition End$
specification. If the notion of a default
transition (S4) was not in the ASMILE Every SAM ASMILE source file must
syntax, and had to be explicitly defined, terminate with the END$ terminator.
we might have to specify the last transition
as (unminimized)
IF /[(1*12 + 15*17 + 10) * /(13 + /16*I4)
* /(12*13*14*15*/17) THEN S4
SAM ASMILE To illustrate SAM ASMILE input syntax in a exchanges between multiple bus masters:
nesign Example real example, a 68020 Microprocessor Bus Request, Grant, and Acknowledge. Given
Arbiter state machine will be examined. a bus master which desires access to the
This machine, while not overly complex, bus, the procedure is as follows (illustrated
illustrates most of the concepts of in Figure 6):
ASMILE entry. In the above flow description, the state
Shown in Figure 7 is a state machine labels S0-S6 designate correspondence
diagram for the Bus Arbiter. The 68020- between the operations shown and the
based system runs at 25 MegaHertz, and state machine diagram above.
therefore the Bus Arbiter machine must Relating this sequence to the state diagram,
also run with a 40 nanosecond clock SO represents the “normal,” active state of
period. To understand its operation, a the processor, S1 and S2 correspond to
review of the bus gxchange protocol used the Grant phase, S5 and S6 the
on the 68020 bus is useful. Acknowledge phase, and S3 and S4 the
Three signal lines on a 68020 bus define rearbitration phase if requests are pending
the handshake required to arbitrate bus at the end of the current bus exchange.
The Design The file shown below in Figure 8 is the been defined which are each valid only

actual ASMILE file generated for the
machine from the state diagram. It
conforms to the general file outline as
described above. ASMILE source files are
given the extension .SMF (for state
machine file) when generated. In this case,
the file would be 68020ARB.SMF. Note
that in the OUTPUTS and STATES
sections, output variables OS0-0S6 have

during a unique state. As the design is
simulated, these will give an indication of
which state the machine is at any given
point in time.

To compile this design, the SAM+PLUS
software is invoked, specifying that ASMILE
(and not microassembler) input format is
being used. For a detailed description of

WAFERSCALE INTEGRATION, INC.

4-133

SAM448 — Application Note 004

Figure 6. 68020

B”s Arh’ter ZEEEEXEEXXLEELELEXELESELELELELEEEEEELESEEEELEEESEEELESEREEET LS
Operation
PROCESSOR REQUEST ING BUS MASTER
SO * ASSERT REQUEST
S1 & S2
* ASSERT GRANT
EXTERNAL ARBITRATION (IF REQUIRED)
AMONG MULTIPLE REQUESTS
* WAIT FOR COMPLETION OF CURRENT CYCLE
S6 & S5
* NEXT BUS MASTER ASSERTS ACKNOWLEDGE
(ACK)
* NEXT BUS MASTER DEASSERTS
* DEASSERTS GRANT REQUEST
[WAIT FOR ACK TO BE
DEASSERTED]
* PERFORM BUS OPERATIONS
* DEASSERT ACK
SO
* RESUME OPERATION OR
S4 & S3
RE-ARBITRATE
Figure 7. Arbiter
State Flow

R — BUS REQUEST INPUT

A — BUS GRANT ACKNOWLEDGE INPUT

G — BUS GRANT OUTPUT

T — THREE-STATE CONTROL TO BUS CONTROL LOGIC
X — DON'T CARE

4-134 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 004

The Design the SAM+PLUS user interface and options, as described below. The .JED file is not

(Cont.) the SAM+PLUS User’s Manual should be intended to be user-readable. The .RPT
consulted. Compilation then proceeds file contains valuable information such as
automatically. Transition equations are design pin assignments and resource
automatically minimized, and ‘“‘object code” utilization. Figure 9 shows key portions of
generated for the EPLD and EPROM this file. All ASMILE input is transformed
blocks. As a result, JEDEC programming into microassembler format before
file (.JED) is generated, as well as a subsequent processing, and the equivalent
Utilization Report file (.RPT) reporting the microassembler code for the design is given
results of the compilation process. Functional in the .RPT file as well. More information
simulation of the design can be performed on the interpretation of this code can be
using the .JED file as a design template obtained from the references shown below.

F igure 8 68020 STEVE MCGRAY

Bus Arbiter WSI, INC.

State Mac’"ﬂe ggégésgus Arbiter for SAM

Input File

{6802“”3.5”"7 % This descriptlion uses IF...THEN Transition Specifications%

PART: SAM448

INPUTS: REQUEST ACKe2

NETWORK :
OUT3 = CONF (OUuUT3,CK,VCC,VCcC,VCC)
MACHINE: BUSARBITER

CLOCK: CLK

IF REQUEST*/ACK THEN St
IF ACK THEN S5

SO
S1:

S2

/REQUEST*/ACK
/REQUEST THEN S6

REQUEST*/ACK THEN S2

REQUEST THEN S4
/REQUEST*/ACK THEN SO

% Pin Assignments (an option) are made by the designer %

OUTPUTS: GRANT@23 TRISTATE@22 OSO OS1 OS2 0S3 0S4 0S5 0Sé6

% STATES gives the output value mapping %

STATES: [GRANT TRISTATE OSO OS1 OS2 0OS3 0S4 0S5 0S6]
SO [0O0O 100O0OO O]

S1 [1 1010000 O0]

S22 [1 1001000 0]

S3 [1 1000 100 0]

S4 [1 1000010 0]

S5 [0 1000O0O0 1 0]

S6 [0 1 000O0O0O 1]

% Transition Specifications follow%

SO:

+ ACK THEN Ss6

WAFERSCALE INTEGRATION, INC.

4-135

SAM448 — Application Note 004

Figure 9. 68020
Bus Arbiter
”es’yﬂ SAM Design Processor Utilization Report
H Version 1.01 7/28/87 01:57:09 38.1
{”;gna;a:gls'nm **33% Design implemented successfully
STEVE MCGRAY
WS1, INC.
3/18/88

68020 Bus Arbiter for SAM

SAM448
RESERVED : 1 28 : RESERVED
ACK : 2 27 : RESERVED
Gnd : 3 26 : RESERVED
Gnd : 4 25 : RESERVED
Gnd : 5 24 : RESERVED
CLOCK : 6 23 : GRANT
Vee : 7 22 : TRISTATE
NRESET : 8 21 : GND
Gnd : 9 20 : RESERVED
Gnd : 10 19 : OsO
Gnd : 11 18 : Osi1
REQUEST : 12 17 : OS2
0os6é : 13 16 : OS3
0os5 : 14 15 : Os4

***+* DESIGN LISTING

PART:
SAM448

INPUTS:
REQUESTe12, ACKe2

OUTPUTS:
GRANTe23, TRISTATEe22, OsOe19, Os1e18, Os2e17, 0s3ei6,
Os4e15, Os5e14, 0Os6ei13

PINS:

DEFAULT:
[000000000]

PROGRAM:
OD:
[001000000] JUMP SO;
192D:
SO:

68020arb.rpt

IF REQUEST * ACK’ THEN
[110100000]1 JUMP S1;
ELSEIF ACK THEN
[010000010] JUMP S5;
ELSE
[001000000] JUMP SO;

4-136 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 004

Figure 9.
68020 Bus
Arbiter Design
Report File o
(68020ARB.RPT) 1100100001 JUMP S2;
193D:
(Cont.) 33
IF REQUEST' +
ACK THEN
[010000001] JUMP S6;
ELSE
[110010000]1 JUMP S2;
194D:
S3:
IF REQUEST' THEN
[010000001] JUMP S6;
ELSEIF REQUEST * ACK' THEN
[110010000] JUMP S2;
ELSE
[110001000] JUMP S3;
2D:
S4:
[110001000] JUMP S3;
195D:
S5:
IF REQUEST THEN
[1100001001 JUMP S4;
ELSEIF REQUEST’ * ACK' THEN
[0010000001 JUMP SO;
ELSE
[010000010]1 JUMP S5;
3D:
S6:
[010000010] JUMP S5;
END$
*xs2x PART UTILIZATION
4/192 Unconditional Branches (2.08%)
4/ 64 Conditional Branches (6.25%)
o warnings
(o) Fatal errors
Des:yn Integral to the SAM+PLUS design system given the design name with the extension
Simulation is the SAMSIM functional simulator. Once .CMD (for example, 68020ARB.CMD). The

a design has been successfully processed,
the user can specify input stimulus in a
variety of formats and observe the device

. response quickly and effectively using this

unit-delay simulator. As mentioned above,
SAMSIM supports both hard-copy and
virtual logic analyzer output formats. Split-
window, multiple zoom-levels, and delta
time display are a few of the capabilities of
this interactive display mode.

SAMSIM supports both interactive and
command file input. Shown in Figure 11 is
a simple input stimulus command file for
our design. Typically command files are

first line specifies the source design
JEDEC (or .JED) file. The next two lines
illustrate logic sequences for the two
machine inputs. The PATTERN CREATE
command allows the user to specify a
sequence of input logic levels to be
applied to the indicated node or nodes.
The notation ()*n, where n is an integer,
signifies hold the indicated logic value on
the associated input for n clocks.
SIMULATE 41 instructs SAMSIM to run the
simulation for 41 clocks, and finally
interactive display is invoked with the
VIEW command.

WAFERSCALE INTEGRATION, INC. 4-137

SAM448 — Application Note 004

ggs:,t;n . Some other representative SAMSIM The initial input stimulus applied to the
imulation commands, while not used in the example, SAM design shows a straightforward bus
(Cont.) include: exchange between the 68020 and another
TRACE — Dumps entire state of machine bus master. This corresponds to the first
. . . REQUEST/GRANT/ACK sequence. Upon
(inputs, outputs, internal registers, etc.) for ;
each clock executed detecting a REQUEST, the 68020 asserts
’ . its TRI-STATE line, and issues a GRANT
GROUP — Specifies logical grouping of pulse, allowing the new bus master to
signals for easy observation or input vector assume control. The alternate bus master
specification. asserts ACK when it detects the fact that
SET — Modifies values of internal counter, the bus has been granted. When ACK
stack. etc. finally drops, the 68020 knows it can
') . . resume control. The second such sequence
LINK — Logically links device pins for involves not just a single initial REQUEST
simulation purposes. (bus master #1), but a second REQUEST
RADIX — Defines default radix for all from another bus master (#2) during the
SAMSIM commands. time bus master #1 has control. As a
. . . result, the 68020 must generate a new
Options are binary, hex, and decimal. GRANT pulse (during S4-S2), and hand-
Running the SAMSIM simulator with this over bus control to bus master #2 when
command file produces the results shown bus master #1 is finished (ACK is
in Figure 10. Here, on the PC screen, is dropped). When bus master #2 is finished,
displayed the input stimulus to the SAM and no requests are pending, the 68020
arbiter design, and the resulting state finally retakes control of the bus (TRI-
machine operation. STATE goes low).
Figure 10.
SAMSIM .
Interactive [
0”tp”t REQUEST | I I I I I l XX
ACK 1 L x
GRANT 1 I LI 1 XX
TRISTATE [] [1 XX
0s0 | | 1] XX
0s1 N N XX
0s2 n [1 1 XX
0s3 1 XX
0s4 N XX
0s5 [1 1 1 XX
0s6 M N M XX
L J
RANGE: 1 TO 41 NAME: 68020ARB CYCLE: 1 SIGNALS: 11

4-138 WAFERSCALE INTEGRATION, INC.

SAM448 — Application Note 004

Figure 11.
SAMSIM
Command File
(68020ARB.CMD)

JEDEC 68020AARB

SIMULATE 41
VIEW

PATTERN CREATE REQUEST = (0)*3 1 1 1 (0)*12 1 1 1 1 1 0 0 (1)*7 (0)*5
PATTERN CREATE ACK = (0)*5 (1)*8 (0)*10 (1)*6 (0)*2 (1)*6 (0)*4

Conclusion

State machine design is a straightforward
process using the ASMILE input language
in conjunction with the SAM device. Design
entry and debug, using functional simulation,
can be readily accomplished at the user’s
PC. When the design is debugged and
complete, the SAM component may be
programmed using PC-based hardware
and software in seconds. Should design
errors be detected after in-system test, a
windowed SAM device may be erased, a
design change compiled, and the device
reprogrammed in minutes.

References

WSI 1990 Data Book
SAM448 Data Sheet

WSI Application Note #3: High-End SAM
Applications Using Microassembler Design
Entry

WAFERSCALE INTEGRATION, INC.

4-139

4-140 WAFERSCALE INTEGRATION, INC.

[Y B By y .-

Y Y F -
Ay
——

v
4 ¥y 4
- W S

WAFERSCALE INTEGRATION, INC.

501 55
RS
Pa SR

Section Index

Article Beprint Microprogram an Embedded Controller — PAC1000

For additional information,

In California, call 800-562-6363.

call 800-TEAM-WS] (800-832-6974).

WAFERSCALE INTEGRATION, INC.

IP1-2 DISK CONTRO

'COMPUTER KE

LECIRO

A VNU BUSINESS PUBLICATIOM

TWO STEPPERS FROM ONE BOARD

WAFERSCALE INTEGRATION, INC. 51

Article Reprint

DAVE BURSKY

nyone who has ever de-
signed a high-perfor-
mance controller sub-
syst>m using high-
speed micropro-
grammed building
blocks, programmable
logic devices, gate ar-
rays, or discrete logic
realizes the difficulties in integrating
the complete solution. In such a system,
the chip count escalates, the operating
power rises, and the development
schedule lengthens.

By integrating all these functions
and resources onto one high-speed
CMOS chip—the PAC1000 microcon-
troller—WaferScale Integration Inc.
has drastically reduced the chip count
from the typically required 50 or so ICs
to just one. At the same time, the
PAC1000 slashes the power consump-
tion from tens of watts to less than 1.5
W and cuts development time.

The PAC1000 can solve many high-
end embedded control applications and
is the only available circuit that can
tackle system, data, and event control
tasks. A C-like language and PC-hosted
system-development tools simplify the
creation of the control software. Users
can configure the circuit as a micropro-
cessor peripheral or as a standalone
controller to meet the unique require-
ments of high-performance system,
data, or event controllers. Each of the
chip’s two bidirectional 16-bit buses, its
individual I/0 lines, and interrupt in-
puts can, if necessary, be redefined dur-
ing each 50-ns instruction cycle.

Reprinted with permission from ELECTRONIC DESIGN - October 27, 1988

COVER FEATURE

PACKING ALL THE MAJOR BLOCKS OF A
MICROPROGRAMMABLE SYSTEM, A CMOS IC EASES
EMBEDDED CONTROLLER DESIGNS

CONFIGURABLE CHIP EASES
CONTROL-SYSTEM DESIGN

At the heart of the PAC1000’s flexi-
bility lies an internal microprogramma-
ble architecture, including a 16-bit CPU,
a fast 10-bit microsequencer, a 32-word-
by-16-bit register file, and a 1kword-by-
64-bit high-speed EPROM. As product
planning manager Yoram Cedar ex-
plains, since the circuit executes any of
its instructions in one clock cycle, the
controller delivers a raw throughput of

Copynght 1988 VNU Business Publications, Inc

5-2 WAFERSCALE INTEGRATION, INC.

Article Reprint

—
COVER: USER-CONFIGURABLE

CONTROLLER

20 MIPS.

Every instruction of the PAC1000
can perform as many as three simul-
taneous operations: program con-
trol, CPU functions, and output con-
trol, with all possible combinations
allowed. Cedar claims the more pow-
erful instruction format, combined
with the higher clock speed, yields a
five- to tenfold performance im-

provement, compared with other

one-chip microcontrollers. The high
throughput suits many tasks well. It
has already found homes in radar,
communications, video-graphics,
170 subsystems, bus and DMA con-
trollers, and disk-drive-controllers.
Besides the CPU, register file, and
sequencer, the chip includes an auxil-
iary Q-register for double-word op-
erations, an 8-input interrupt con-
troller, 16 output control lines, 8 bi-

Host address
Clock Reset ChipSelect Read Write Hostdatabus and databus v
l——O (]
416 6 1
I Configuration registersJ I Host interface
T Register stack
Sequencer 16-bit CPU
v IV
[l 1-kword- X -64-bit EPROM l R Extended-precision
. register for 64-bit
operations
R]
ol
stack | Program counter |
CASE logic te—-1 Block counter l
User .| Interrupt Fe—>{ Address counter
output Test logic logic I
0
| A 1/0 and special Address/data
164 8 1 4 L function port l I port I
(B3 w4 L
User-definable Condition- Interrupt 1/0 lines Address
output code inputs
lines sense
inputs
1. PACKING A 16-bit micropro-

grammable central processor with a 32-
word register file, a I'kword-by-64-bit
microcode UV EPROM, sequencer, and
other configurable resources, the
PAC1000 user-configurable
microcontroller from WaferScale
Integration delivers a raw instruction
throughput of 20 MIPS at 20 MHz (top).

Designers can add or alter various blocks
to customize versions for high-volume
users (left).

directional I/0 lines, scan-test and
CASE program test logic, and a 22-
bit external address bus (Fig. 1, top).

Also, Cedar emphasizes, the cir-
cuit deals much more rapidly with in-
terrupts than most controllers do,
and that serves embedded control
applications well. The chip changes
program flow in either of two ways.
First, it has four user-definable in-
terrupt input lines plus four dedicat-
ed internal interrupts that require
just 100 ns, at most, to alter the pro-
gram flow. Second, another set of in-
put lines—22 condition-code inputs
(8 external and 14 internal)—let the
processor alter the program flow
with condition calls and program
jumps in just one 50-ns instruction
cycle.

And if on-chip resources don’t
quite match an application’s require-
ments, chip modifications can be
done for large-volume users. The cir-
cuit was designed with the compa-
ny’s standard-cell library, and many
of the chip’s sections are actually
cells in WaferScale’s library (Fig. 1,
left). Noticeable on the chip’s left
side are the large cells that include
the 64-kbit EPROM block on the bot-
tom and the 16-bit CPU on the upper
left. On the chip’s right side, random
logic performs the control and inter-
face functions; small standard cells
are used to create those circuits.

For every instruction, a dedicated
field specifies the bit pattern on the
output lines. Also, designers can in-
dividually program eight I/0 lines as
inputs or outputs or to perform spe-
cial functions under the control of
the chip’s mode and 1/0 registers.
The special functions turn the I/0
lines into control signals that allow
various features and flags to indi-
cate several status conditions. In ad-
dition to the eight I/0 lines, the cir-
cuit has two 16-bit bidirectional bus-
es that go on and off the chip: One
links with the host; the other is the
upper 16 bits of the address/data
bus. Another 16 lines are dedicated,
user-programmable latched output
lines. These can be changed on a cy-
cle-by-cycle basis.

Thanks to all its buses and control
signals, the PAC1000 microcon-
troller operates as either a memory-

WAFERSCALE INTEGRATION, INC.

53

Article Reprint

T
COVER: USER-CONFIGURABLE

CONTROLLER

mapped peripheral to a microproces-
sor to offload the CPU (Fig. 2a) or as
a standalone controller running
from its own internally or externally
stored program (Fig. 2b). As a pe-
ripheral, the chip ties into the host
with a straightforward bus inter-
face—a 16-bit data bus and a 6-bit ad-
dress bus to access the internal re-
sources of the PAC1000—and the
standard Chip Select, Read, and
Write control lines. In the standalone
mode, the chip typically runs the ap-
plication program from its internal
memory and uses its 16-bit output
bus and 8-bit I/0 port to control the
application and communicate to a
host system.

To handle multiple operations in
parallel, the chip internally takes ad-
vantage of a long—64-bit—micro-
code word so that each word can con-
trol multiple sections of the circuit-
ry. The on-chip microcode storage
area consists of a fast, reprogram-
mable UV EPROM, organized as 1
kword by 64 bits. Since the EPROM
is read only by the on-chip logic, it
doesn’t need high-current output
buffers, which slow down the memo-
ry access. Thus, the EPROM con-
tents can be read very quickly—the
chip’s 20-MHz version accesses
memory in just 30 ns, well within the
CPU’s 50-ns instruction cycle time.
The memory is also secure. Users
can program a security bit to prevent
an external system from extracting
the code from the memory array.

Besides its own program memory,
the chip also has a separate address/
data bus that can be programmed for
either 16 or 22 address lines (with 64-
kword or 4-Mword off-chip address-
ing ranges, respectively). The ad-
dress generator for the bus is sepa-
rate from the sequencer that ad-
dresses the program memory. The
PAC1000 can therefore execute a
program while it’s using the address
bus to move data from memory into
the on-chip register file or to an ex-
ternally controlled device.

The address bus, in fact, can serve
as a simple direct-memory-access
controller when used with the on-
chip 22-bit address counter and 16-bit
block counter. This DMA controller
can transfer data from external
memory to the on-chip register file or
to an external device.

An eight-word FIFO register lets
a host microprocessor asynchro-
nously load commands or data into
the controller. The 22-bit word
length in the FIFO register is em-
ployed, so that if data values are to
be loaded into the register file, the
lower 16 bits of the 22-bit word sent
over the host data bus represent the
data, and the next five bits—the low-
er five bits of the host-interface ad-
dress bus—represent the register lo-
cation into which the data will be
loaded (RO to R31). The sixth bit of
the host-interface address bus signi-
fies whether the word loaded into the
FIFO register is a command or data

word. If it’s a command, the lower 10
bits of the host-data bus are used as a
branch address to one of the 1024
memory locations in the EPROM.

The 10-bit sequencer addresses
the 1,024 words of program memory
and has a 15-level stack that permits
multiple subroutine calls to occur
without forcing the program to go
back to a higher level before calling
the next subroutine. Besides having
more levels in the stack than Wa-
ferScale’s 5910 microsequencer, the
enhanced sequencer block has a 10-
bit loop counter that cuts overhead in
programs for loops and nested loops.
The application program can load the
counter with a constant or a value
calculated in the CPU.

Because programming fast, em-
bedded controllers can get compli-
cated, the company includes on-chip
programming and test features to
ease system development, For start-
ers, a 10-bit breakpoint register sim-
plifies real-time debugging. It can be
loaded from either of two sources—a
value stored in a CPU register or a
constant value specified in the pro-
gram memory. When the program
memory address matches the regis-
ter contents, the register issues an
interrupt, which a service routine in
memory could then react to.

Test and CASE logic on the chip
also aids program and hardware
testing. The condition-code logic re-
sponds to 22 different program test
conditions that can be tested for true

PERIPHERAL OR STANDALONE

Address

Microprocessor r— R e —
|
r— [:
I I Control
| Host ey | Data-path I' " | Data-path
interf elemenf element,
[el [P | Conral high.gpe:;d | Contral high-speed
: { processar, | Status/interrupts | processor,
| | Status/ | fastbus,ete. + 000 L | fast bus, etc.
(@) Pperipheral mode interrupts] Standalone mode)

2. MULTIPLE BUSES, AN ON-CHIP ADDRESS GENERATOR, and sequencer blocks let the microcontroller operate as
a memory-mapped peripheral to offload the host microprocessor (a). Or it can be operated as a standalone controller (b).

5-4

WAFERSCALE INTEGRATION, INC.

Article Reprint

e
COVER: USER-CONFIGURABLE
CONTROLLER

SAMPLE PROGRAM FOR PAG1000 MICROCONTROLLER

/* control memory read/write based on CCO */
segment memcon ,
enmem equ h'0002',
dismem equ h'0040°,
wr equ h'0000",
rd equ h'1000°,
start
IF CCO, OUT enmem ,
FOR6,AOR = RO + R1,0UTwr,
AOR = AOR + 4,0UTrd,
ENDFOR, OUT wr,
ELSE, OUT dismem,
ENDIF,
end,

/* output control constants *
/* enable memory */
/* store begin addr in AOR and loop *
/* inc addr by 4 and do rd/wr */
/* end loop body *
/* disable mem if CCO 1s not true */

3. THE HIGH-LEVEL LANGUAGE developed by WaferScale employs C-

language-like structures to let designers easily develop complex configuration microcode.

or not-true results. Up to four condi-
tions can be tested simultaneously.
Tests can check for the state of vari-
ous flags or register contents.

The processor handles two types
of CASE operations: standard and
priority. A CASE group consists of a
combination of four test conditions
that can be tested in a single cycle. In
that same cycle, the PAC1000
branches to any one of 16 locations,
depending on the status of the four
inputs to the CASE group being test-
ed. The priority CASE instruction op-
erates on internal and external inter-
rupt conditions and treats interrupts
as prioritized test conditions. The pri-
ority encoder generates a branch to
the highest-priority condition.

Thanks to all its on-chip resources,
the PAC1000 is a powerful one-chip
controller, housed in a windowed, 88-
lead pin-grid-array package or an 84-
lead ceramic leaded chip carrier. An
84-lead plastic leaded chip carrier
package (the one-time-programma-
ble version) is also available. Be-
cause the chip employs an EPROM
to hold the program, revisions to the
code are no more difficult than repro-

gramming a standard EPROM. Pro-
totype systems and production prod-
ucts can benefit from the ability to
revise the code at the last minute.

To alleviate the complexity of mi-
crocode program development, Wa-
ferScale has assembled a series of
PC-hosted system-development
tools (PAC-SDT). These make the
PAC1000 as easy to program as any
one-chip microcontroller. A simple
example of a multiple-command ex-
pression in the C-like language lets
designers combine operations such
as FOR6,AOR=R0+R1,0UT WR
(loop for six cycles, add the contents
of registers R0 and R1 and store the
result in the AOR register, output
the value WR) in one word (Fiig. 3).

The toolset has a system-entry lan-
guage, a functional simulator, and a
device programmer (MagicPro). The
system-entry, language software is
the most critical part. The high-level
language uses a structure similar to
C’s and practically eliminates writ-
ing routines in machine or assembly
code. But designers who are more
comfortable working on that level
can write machine-code routines.(J

WAFERSCALE INTEGRATION, INC. 5-5

Article Reprint

WSI Launches
The Programmable System Device”

A new class of user-configurable products;
a higher standard in functionality,
integration, and performance.

PSD:™ n Programmable System Device.™

1) A user-configurable system-on-a-chip,
integrating high-performance EPROM, SRAM, and
Logic; 2) User configurable with a menu-driven,
familiar "C"-like language and IBM-PC®-hosted
system development tools; 3) A standard product
first launched in 1988 by WSI.

WSI's PSD™Products: A Major Advance in user-configurability

System Integration -E

Level of
Functionality

"Glue" Logic Integration

1978 1984 1987 1988

Not just programmable logic, but programmable logic and memory —programmable systems.

- 7 —3

i o= 47280 Kato Road

e iy a— Fremont, California 94538

4 F v 800/331-1030, extension 234
In California call:

WAFERSCALE INTEGRATION, INC. 800/323-3939, extension 234

Programmable System Device, PSD, and MAP168 are trademarks of WalerScale Inicgration, Inc

PAL 1s a registered trademark of Advanced Micro Der Inc BMPCisa of Business Machunes Corporaton

©Copynght 1988 by WaferScale Iniegraton, Inc All nghts reserved

5-6 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

> ce ‘ «
~ ¥ .
RIS TR NERSNN

AP 4 20N R

Section Index

Package
Information

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, call 800-562-6363.

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

My

Package Information

Drawing €3

44 Pad Ceramic Leadless Chip Carrier (CLLCC)
(Package Type C)

0.064 020 x 45°
0.644 5q .
0.542 o, 9662 Pin :
~— 0558 SQ 7 1
E— 0.350 DIA 40
o \

K—O.OOB R(44PL) 0.043 —» L—, 0.025 44 PL——l LI— 0.040 x 45°

0.120 MAX 3PL

Drawing F3

100 Pin Ceramic Quad Flatpack (with Window), Gullwing, Fine Pitch
(Package Type F)

1 0.025R 3'3?8
A e :
— -
, =] :
A A = ;
— -

L_ ‘J — : 0.700
= : MAX
=" B2, |

-
y =L 0.660
% SQ | /E=E 0.700
E— :
p— .
1 s
~ = :
= .
| =} <
Y Ll I;
[N [T - cees®
4 | 0154
S 04005Q " 0.194
0.025 TYP 0.025 MIN . .
0059 __
0.071 4 "NANAANNNNNN SECTION A-A
0.0045 } |
0.0060
—1 1 J—’oo_so
}oozomn—s] | / Lg.g%
0.104 REF -

WAFERSCALE INTEGRATION, INC. 6-1

Package Information

Package
Information
(Cont.)
Drawing J2 44 Pin Plastic Leaded Chip Carrier (PLDCC)
(Package Type J)
9685 sq.
0695 —= |=—0.050 MIN
0.650 gq, 0.026 0.013
oo I R | B
s}
g f - 1 I
h = 0.050
1 -+ = c 1+ TP | 038
g p = 0.500
P C NOM
g C !
oot | I~)
. L_g_%%g_ X 45° 0.011 - g_}_?_g
0170
0.180
Drawing J3 28 Pin Plastic Leaded Chip Carrier (PLDCC)
(Package Type J)
f 0.015MIN
8% R
=
50
E L 355 —LI 0300 03%
0.050 —t
L_’ lead thickness
| 0.100 “— 0,010 TYP
0.110
0.170
0.180
62 WAFERSCALE INTEGRATION, INC.

Package Information

Package
Information
(Cont.)
Drawing L2 28 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window
(Package Type L)
0.015 TYP See Detail "A"
1 y
—r
0.480
MAX
. 0015 | 0-105TYP 0.040 x 45°
e NAX P J l:o.om TP)
g% xMo‘Z%‘g quPo— sealing glass 0.040 T;ZZO
TYP
0.019
TYP
DETAIL A = 1
0.028 TYP
Drawing L4 44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window
(Package Type L)
g:_gg_f sQ. g_:%_.
— 0644 5 0.026 X
e T‘ 605 J%
7df — = S
g +—E- 00 SR
g \\/ h == | o050
d b TYP
174 aj -
|.|uu|.n.rv1 uuu’uze j—#_@———_‘
0.0045 ——] L——%%g—g
0.0075 :
l._ 0050

REF.

WAFERSCALE INTEGRATION, INC. 6-3

Package Information

Package
Information
{Cont.)

Drawing Q1 100 Pin Plastic Quad Flatpack (PQFP), Gullwing, Fine Pitch

0.165
ObﬁggsREF. " e
5 B'SC/ Pin 1 —»{ |« 0.025 TYP.
@ LI TERmimhhin
14 = L. £=88
= AD |E o0
—] = [0012
= = f 0.900
= -1 = P.
s ©® CHI=N
‘_/ RO RIS
39 63
0.750 SQ. TYP. 0-140TYP.
0.880 SQ. TYP. —
0.900 SQ. TYP.
SECTION A-A
0.140 TYP. 0.025 TYP.
0.067 TYP.
CHAMFER
o o 0.025
0.048 x 45 TYP TP,

0.006 J\‘/_——T

6-4 WAFERSCALE INTEGRATION, INC.

Package Information

Package
Information
(Cont.)
Drawing $2 28 Pin Plastic .300 DIP
(Package Type S)
28 15 l
0.270
P 0.290
1 14 t
! Lw.
1.355 0.085
0045 0.065
0.055
0.130 — 0.170 MAX
1 N | l_
! ! — ————— A
%—-”-— 0.1OOTYPJ | o Lg:]_gg
0.030
Drawing T2 28 Pin CERDIP

(Package Type T)

! 0.0 \/r
0.085 15° MAX
. 1.430 g
1485
0040 _ .,
0.065 0.140
0475
| 0.015
D { 0.060 v
0.015 _,H__ 0.090 o125
0.020 0.110 0200

WAFERSCALE INTEGRATION, INC. 6-5

Package Information

Package
Information
(Cont.)
Drawing X1 88 Pin Ceramic PGA
(Package Type X)
1.188
1212
1.2855q 0.100 TYP
0642313 ™ r— -
~— 08ee SQ STANDOFF, 4 PLCS
a .
4¢©®©© © ©@© 0 0 ¢]13
P00 ®e0e e e o0l|l2
® @ e o |11
@ © @ @ |10
@ © @ej}9
@ @ ©@ @8
—+ —too—— + —oe|7
®@ © @ @6
© © @ @})5
@ e [ONCN
@ 0 ®© ®}3
©@ © @@ @O ©@ ©© @ © @2
&\ 0 © 0 00 0 @@@@@011
\-0.040 SQ. (INDEX MARK) 0041 NMLKJHGFEDCBA
0.030 , 45° 4 0.035 Note: All Exposed Metal
0.955" % 61 { 0045 | and Pins are Gold Plated
| | | | | | |
Hiln Logs
0035 — 0.090
0.181
‘J —28 DIA 04504 — 0797
Drawing X2 44 Pin Ceramic PGA
(Package Type X)
0.180 —= r 0.050 DIA STANDOFF
— 0.850 SQ —*| 0.050 —>fe— 4PLCS
4 [‘ l
0.100 TYP @ A
eols
T @e|C
©@ e|D
0.550 SQ l eele
t_ eolF
7 0018 ;T ﬁ
Z ol (e 0156 } —.]
0.350 DIA 0.1 0.700 SQ
—» <— 0.080
6-6 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Section Index

Sales
Representatives
and Distributors

For additional information,
call 800-TEAM-WSI (800-832-6974).
In California, call 800-562-6363.

WAFERSCALE INTEGRATION, INC.

Sales Representatives and Distributors

WAFERSCALE INTEGRATION, INC.

Domestic
Representatives

ALABAMA

Southern Tech. Sales
Huntsville

Tel: (205) 539-4789
Fax: (205) 539-7449

ARIZONA

Summit Sales
Scottsdale

Tel: (602) 998-4850
Fax: (602) 998-5274

CALIFORNIA

Bager Electronics Inc.
Fountain Valley

Tel: (714) 957-3367
Fax: (714) 546-2654

Bager Elecronics Inc.
Woodland Hills

Tel: (818) 712-0011
Fax: (818) 712-0160

Earle Assoc. Inc.
San Diego

Tel: (619) 278-5441
Fax: (619) 278-5443

Criterion

Santa Clara

Tel: (408) 988-6300
Fax: (408) 986-9039

Technology Sales
Kentfield

Tel: (415) 459-2661
Fax: (415) 459-3341

CANADA

Har-Tech Electronics, Ltd.
Toronto

Tel: (416) 6657773

Fax: (416) 665-7290

HarTech Electronics, Ltd.
Montreal

Tel: (514) 694-6110

Telex: 05-822679

Fax: (514) 694-8501

HarTech Electronics, Ltd.
Ottawa

Tel: (613) 726-9410

Fax: (613) 726-8834

COLORADO

Waugaman Associates, Inc.
Wheat Ridge

Tel: (303) 423-1020

Fax: (303) 467-3095

CONNECTICUT
Advanced Tech Sales
Wallingford

Tel: (203) 284-0838
Fax: (203) 284-8232

FLORIDA

Sales Engineering
Concepts, Inc.

Fort Lauderdale

Tel: (305) 426-4601

Fax: (305) 427-7338

Sales Engineering
Concepts, Inc.
Altamonte Springs
Tel: (407) 682-4800
Fax: (407) 682-6491

Sales Engineering
Concepts, Inc.

Tampa

Tel: (407) 682-4800

Fax: (407) 854-3127

ILLINOIS

Sieger Associates
Schaumburg

Tel: (708) 310-8844
Telex: 206248

Fax. (708) 310-9530

INDIANA

Giesting & Associates
Carmel

Tel: (317) 844-5222
Fax: (317) 844-5861

10WA

Gassner & Clark Co.
Cedar Rapids

Tel: (319) 393-5763
Twx: 62950087

Fax: (319) 393-5799

KANSAS

C. Logsdon & Assoc.
Prairie Village

Tel: (913) 381-3833
Fax: (913) 381-9774

MARYLAND

Logical Technology, Inc.
Glen Burnie

Tel: (301) 766-7444

Fax: (301) 760-2054

MASSACHUSETTS

Advanced Tech Sales, Inc.

North Reading
Tel. (508) 664-0888
Fax: (508) 664-5503

MICHIGAN

Giesting & Associates
Livonia

Tel: (313) 478-8106
Fax: (313) 477-6908

Giesting & Associates
Coloma

Tel: (616) 468-4200
Fax: (616) 468-6511

MINNESOTA

HMR

Minneapolis

Tel: (612) 988-2122
Fax: (612) 884-4768

MISSOURI

John G. Macke Company
St. Louis

Tel: (314) 432-2830

Fax: (314) 432-1456

NEW JERSEY
Strategic Sales, Inc.
Teaneck

Tel: (201) 833-0099
Fax: (201) 833-0061

S.J. Associates, Inc.
Mt. Laurel, NJ 08084
Tel: (609) 866-1234
Fax: (609) 866-8627

NEW MEXICO

S & S Technologies
Albuquerque

Tel: (505) 255-5599
Fax: (505) 255-5944

NEW YORK

Tri-Tech Electronics, Inc
East Rochester

Tel: (716) 385-6500
Twx: 62934993

Fax: (716) 385-7655

Tri-Tech Electronics Inc.
Endwell

Tel: (607) 754-1094
Twx: 5102520891

Fax: (607) 785-4557

Tri-Tech Electronics Inc.
Fayetteville

Tel: (315) 446-2881
Twx: 7105410604

Fax: (315) 446-3047

Tri-Tech Electronics Inc.
Fishkill

Tel: (914) 897-5611

Twx: 62906505

Fax: (914) 897-5611

NORTH CAROLINA
Rep, Inc.
Morrisville

Tel: (919) 469-9997
Twx: 821765

Fax: (919) 481-3879

Rep, Inc.

Charlotte

Tel: (704) 563-5554
Twx: 821765

Fax: (704) 535-7507

OHIO

Giesting & Associates
Cincinnati

Tel: (513) 385-1105
Fax: (513) 385-5069

Giesting & Associates
Cleveland

Tel: (216) 261-9705
Fax: (216) 261-5624

OREGON

Thorson Company
Northwest

Beaverton

Tel: (503) 644-5900

Telex: 294835

Fax: (503) 644-5919

PENNSYLVANIA
Giesting & Associates
Pittsburgh

Tel: (412) 828-3553
Fax: (412) 828-5861

PUERTO RICO

G & A Associates
Milaville, Rio Piedras
Tel: (809) 758-7001
Fax: 809-754-0421

TEXAS

Southwestern
Technical Sales

Dallas

Tel: (214) 369-0977

Fax: (214) 369-2903

Southwestern
Technical Sales

Austin

Tel: (512) 440-0499

Southwestern
Technical Sales

Houston

Tel: (713) 440-9200

UTAH

Butterworth Marketing
West Valley

Tel: (801) 972-5566
Fax: (801) 972-5573

WASHINGTON

Thorson Company
Northwest

Bellevue

Tel: (206) 455-9180

Twx: 9104432300

Fax: (206) 455-9185

WAFERSCALE INTEGRATION, INC. 71

Sales Representatives and Distributors

Domestic
Distributors

ALABAMA

Schweber Electronics
Huntsville

Tel: (205) 895-0480

ARIZONA

Schweber Electronics
Tempe

Tel: (602) 431-0030

Time Electronics
Tempe
Tel: (602) 967-2000

Wyle Laboratories
Phoenix
Tel: (602) 431-0030

CALIFORNIA
Schweber Electronics

Calabasas
Tel: (818) 880-9686

Schweber Electronics
Irvine
Tel: (714) 863-0200

Schweber Electronics
Sacramento
Tel: (916) 364-0222

Schweber Electronics
San Diego
Tel: (619) 495-0015

Schweber Electronics
San Jose
Tel: (408) 432-7171

Time Electronics
Torrance
Tel: (213) 320-0880

Time Electronics
Sunnyvale
Tel: (408) 734-9888

Time Electronics
Chatsworth
Tel: (818) 998-7200

Time Electronics
San Diego
Tel: (619) 586-1331

Time Electronics
Anaheim
Tel: (714) 937-0911

Wyle Laboratories
Santa Clara
Tel: (408) 727-2500

Wyle Laboratories
Rancho Cordova
Tel: (916) 638-5282

Wyle Laboratories
Irvine
Tel: (714) 863-9953

Wyle Laboratories
Irvine
Tel: (714) 851-9953

Wyle Laboratories
Calabasas
Tel: (818) 880-9001

Wyle Laboratories
San Diego
Tel: (619) 565-9171

CANADA

Time Electronics

2798 Thamesgate Drive, #5
Mississauga,

Ontario L4T 4E8

Tel: (416) 672-5300

COLORADO
Schweber Electronics
Englewood

Tel: (303) 799-0258

Time Electronics
Englewood
Tel: (303) 799-8851

Wyle Laboratories
Thornton
Tel: (303) 457-9953

CONNECTICUT
Schweber Electronics
Oxford

Tel: (203) 264-4700

FLORIDA

Schweber Electronics
Altamonte Springs
Tel: (305) 331-7555

Schweber Electronics
Largo
Tel: (813) 541-5100

Schweber Electronics
North Pompano Beach
Tel: (305) 997-7511

Time Electronics
Ft. Lauderdale
Tel: (305) 974-4800

Time Electronics
Orlando
Tel: (305) 841-6565

GEORGIA

Schweber Electronics
Norcross

Tel: (404) 449-9170

Time Electronics
Norcross
Tel: (404) 448-4448

KANSAS

Schweber Electronics
Overland Park

Tel: (913) 492-2922

ILLINOIS

Schweber Electronics
Elk Grove Village
Tel: (708) 364-3750

Time Electronics
Wooddale
Tel: (708) 350-0610

INDIANA

Schweber Electronics
Indianapolis

Tel: (317) 843-1050

I0WA

Schweber Electronics
Cedar Rapids

Tel: (319) 373-1417

MARYLAND
Schweber Electronics
Columbia

Tel: (301) 596-7800

Time Laboratories
Columbia
Tel: (301) 964-3090

Vantage Components
Columbia

Tel: (301) 720-5100
Tel: (301) 621-8555

MASSACHUSSETTS
Schweber Electronics
Bedford

Tel: (617) 275-5100

Time Electronics
Peabody
Tel: (508) 532-9900

Wyle Laboratories
Burlington
Tel: (617) 272-7300

MICHIGAN
Schweber Electronics
Livonia

Tel: (313) 525-8100

MINNESOTA
Schweber Electronics
Edina

Tel: (612) 941-5280

Time Electronics
Edina
Tel: (612) 835-1250

MISSOURI
Schweber Electronics
Earth City

Tel: (314) 739-0526

Time Electronics
St. Louis
Tel: (314) 391-6444

NEW HAMPSHIRE
Schweber Electronics
Manchester

Tel: (603) 625-2250

NEW JERSEY
Schweber Electronics
Pinebrook

Tel: (201) 227-7880

Time Electronics
Pinebrook
Tel: (201) 882-4611

Vantage Components
Clifton
Tel: (201) 777-4100

NEW YORK
Schweber Electronics
Rochester

Tel: (716) 424-2222

Schweber Electronics
Hauppauge
Tel: (516) 231-2500

Schweber Electronics
Westbury
Tel: (516) 334-7555

Time Electronics
Hauppauge
Tel: (516) 273-0100

Time Electronics
Fairport

Tel: (716) 383-8853
Fax: (716) 383-8863

Time Electronics
East Syracuse
Tel: (315) 432-0355

Vantage Components
Smithtown
Tel: (516) 543-2000

NORTH CAROLINA
Schweber Electronics
Raleigh

Tel: (919) 876-0000

Time Electronics
Charlotte
Tel: (704) 522-7600

OHIO

Schweber Electronics
Beachwood

Tel: (216) 464-2970

Schweber Electronics
Dayton
Tel: (513) 439-1800

Time Electronics
Dublin
Tel: (614) 761-1100

OKLAHOMA
Schweber Electronics
Tulsa

Tel: (918) 622-8000

OREGON

Time Electronics
Portland

Tel: (503) 684-3780

PENNSYLVANIA
Schweber Electronics
Horsham

Tel: (215) 441-0600

Schweber Electronics
Pittsburgh
Tel: (412) 963-6804

Time Electronics
King of Prussia
Tel: (215) 337-0900

TEXAS

Schweber Electronics
Austin

Tel: (512) 339-0088

Schweber Electronics
Dallas
Tel: (214) 247-6300

72 WAFERSCALE INTEGRATION, INC.

Sales Representatives and Distributors

Domestic TEXAS Wyle Laboratories Wyle Laboratories Wyle Laboratories
ictril Schweber Electronics Houston West Valley Redmond
%ﬂ”lzb)mﬁ Houston Tel: (713) 879-9953 Tel: (801) 974-9953 Tel: (206) 881-1150
ont. Tel: (713) 784-3600 .
_ 13) . ;V\‘{lys'gn'-ab°’a‘°”es WASHINGTON WISCONSIN
E::;"ﬁf:tm"'cs Tol: (512) 834-9957 Time Electronics Schweber Electronics
Tol: (214) 2417441 Redmond New Berlin
el: (214) 241- UTAH Tel: (206) 882-1600 Tel: (414) 784-9020
\é‘{ylﬁ Lgboratories Time Electronics
ichardson
West Valle
Tel: (214) 235-9953 Tel- (801) 38181
International AUSTRALIA GERMANY ISRAEL NORWAY
ictril Energy Control Topas Electronic GmbH Vectronics OTE A/S
Dlstl’lbllfal's Brisbane 3000 Hannover 1 60 Medinat Hayehudim St. N-0617 Oslo 6
Tel: 61-7-376-2955 Tel: (0511) 13 12 17 PO. Box 2024 Tel: 47 2 306600
Fax: 61-7-376-3286 Tix: 9218176 Herzlia B 46120, Israel Tlix: 85678955
Tix: 43778 Fax: (0511) 13 12 16 Tel: 972 52 556070 Fax: 47 2 321360
Scantec GmbH Tix: 922342579
BELGIUM D3 ;fane’gg Fax: 972 52 556508 SPAIN
Inelco Tel: (089 9-8021 Un“l’OniCS, SA.
Brussels Loudrvr Ay ITALY 28008 Madrid
Tel: 32 2 216 0160 Fax: (089) 857-6574 Silverstar Tel: 34 1 542 5204
Tix: 84-22090 20146 Milano Tix: 83122596
Fax: 32 2 2164606 HOLLAND Tel: 39 2 661251 Fax: 34 1 248 4228
Maxtronix Tix: 843332189
DENMARK S:vannahweg 60 Fax: 39-2-66101359 SWEDEN
Distributoren Intereiko, A/S 3545 AW UTRECHT Traco AB
DK-2690 Karlslunde Tel: (31) 30-420340 JAPAN $-123 22 Farsta
Tel: 45-53-140700 Fax: (31) 30-422440 Nippon Imex Corporation Tel: 468 930011
Tix: 85543507 Setagaya-ku, Tokyo Tix: 85410689
Fax: 45-53-146805 HONG KONG Tel: 321 4415 Fax: 468 947732
Components Agent Ltd Tix: 781 23444
ENGLAND Now F’Termoriesg : Fax: 81 3 325 0021 SWITZERLAND
Micro Call Ltd. Tel: 0-499-2688 Kyocera Corporation Laser & Electronic
Thame, Oxon 0X9 3XD Tix: 78030398 Setagaya-ku, Tokyo Equipment
Tel: 44 84 426 1939 Fax: 852 0-4136080 Tel: 3-708-3111 8053 Ziirich
Fax: 44 84 426 1678 Tix: 7812466091 Tel: 41 (1) 55 3330
INDIA Fax: 81-3-708-3864 Tix: 816801
FINLAND Pamir Electronics Corp. Fax: 41 (1) 55 3458
OY Comdax AB 400 West Lancaster KOREA TAIWAN
SF-00210 Helsingfors Suite 202 Eastern Electronics, Inc.)
Tel: 358 067 02 77 Devon, PA 19333 USA Sungdong-Ku, Seoul Seftek International, Inc.
Tix: 857125676 Tel: 215-688-5299 Tel: 82 2 463-2266 Taipei, 10479, Taiwan
Fax: 358 06922326 Fax: 215-688-5382 Tix: 78727381 Tel: 2-501-0019
. f . ¥ Tlx: 78523756
FRANCE Tix: 210656 Pamir UR Fax: 82 2 465-2607
MICROEL
Imeuble MICRO
Cedex
Tel: 33 (1) 69.07.08.24
Tix: 692493F
Fax: 33 (1) 69.07.17.23
WSl Direct REGIONAL SALES EUROPE SALES

Sales Offices

Northeast

North Andover, MA
Tel: (508) 685-6101
Fax: 508/685-6105

Midwest

Hoffman Estates, IL
Tel: (708) 490-5318
Fax: 708/882-1881

Southwest
Huntington Beach, CA
Tel: (714) 848-6968
Fax: 714/848-5648

Mid-Atlantic
Trevose, PA
Tel: (215) 638-9617
Fax: 215/638-7326

Southeast
Huntsville, AL

Tel: (205) 539-7406
Fax: 205/539-7449

Northwest
Fremont, CA

Tel: (415) 656-5400
Telex: 289255
Fax: 415/657-5916

For additional information or assistance, call 800 TEAM-WSI (800-832-6974). In California, call 800-562-6363.

11/15/89 Rev. 1.23

Excelsiorlaan 53
1930 Zaventem
Belgium

Tel: 32-2-725-0546
Fax: 32-2-725-1146

WAFERSCALE INTEGRATION, INC. 73

LIFE SUPPORT POLICY:
WaferScale Integration, Inc. (WSI) products are not authorized for use as critical components in life support systems or devices without the express
written approval of the President of WSI. As used herein:

A) Life support devices or systems are devices or systems which 1) are intended for surgical implant into the body, or 2) support or sustain life
and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected
to result in a significant injury or death to the user,

B) A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or system or to affect its safety or effectiveness.

Information furnished herein by WaferScale Integration, Inc. (WSI) is believed to be accurate and reliable. However, no responsibility is assumed
for its use. WSI makes no representation that the use of its products or the interconnection of its circuits, as described herein, will not infringe
on existing patent rights. No patent liability shall be incurred by WSI for use of the circuits or devices described herein. WSI does not assume
any responsibility for use of any circuitry described, no circuit patent rights or licenses are granted or implied, and WSI reserves the right without
commitment, at any time without notice, to change said circuitry or specifications. The performance characteristics listed in this book result from
specific tests, correlated testing, guard banding, design and other practices common to the industry. Information contained herein supersedes
previously published specifications. Contact your WSI sales representative for specific testing details or latest information.

Products in this book may be covered by one or more of the following patents. Additional patents are pending.

USA: 4,328565; 4,361,847; 4,409,723; 4,639,893; 4,649,520; 4,795,719; 4,763,184; 4,758,869
West Germany: 3,103,160

Japan: 1,279,100

England: 2,073484; 2,073,487

PAL is a registered trademark of Monolithic Memories, Inc.

SAM and SAM+PLUS are trademarks of Altera Corporation.

MagicPro™ and Programmable System™ Devices are trademarks of WaferScale Integration, Inc.

ASMILE, SAMSIM and SAMPLUS are trademarks of WaferScale Integration, Inc. and Altera Corporation.
MS-DOS is a trademark of Microsoft Corporation.

IBM and IBM Personal Computer is a registered trademark of International Business Machines Corporation.

Copyright © 1989 WaferScale Integration, Inc. All Rights Reserved.
Patents Pending Rev. 1.3

A -
A—
—
—

— ==
Yl —
SR RS | A

Y SN S

- S

WAFERSCALE INTEGRATION, INC.

47280 Kato Road, Fremont, CA 94538-7333
415-656-5400 FAX: 415-657-5916 TELEX: 289255
S8OO-TEAM-WSI (800-832-6974)

IN CALIFORNIA 800-562-63063

Printed in U.S.A.

