
WAFERSCALE INTEGRATION, INC.

Programmable System™ Devices
PSO
Design and Applications Handbook

1990

~riterio~
manufacturers representative

(408) 988-6300

3350 Scott Blvd. Bldg. #44 • Santa Clara. CA 95054-3120

WAFERSCALE INTEGRATION, INC.

Programmable System™ Devices
(PSD)

Design and Applications Handbook

1990

Copyright © 1990 WajerScale Integration, Inc.
(All rights reserved.)

47280 Kato Road, Fremont, California 94538
415-656-5400 Facsimile: 415-657-5916 Telex: 289255

Printed in U.S.A.

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

General Information 1

General
Information

Section Index

Table of Contents ... 1-1

Introduction to PSDs ... 1-3

Company Profile .. 1-5

Ordering Information ... 1-9

For additional information,
call800·TEAM·WSI (800-832-6974).

In California, call 800-562-6363.

WAFERSCALE INTEGRATION, INC.

- -:.:: rtl-~~ r .,.,

• •• Table of Contents
WAFERSCALE INTEGRATION, INC.

General
Information

PSO Product
Specifications

PSO Development
Systems

Table of Contents ... 1-1

Introduction to PSDs ... 1-3

Company Profile .. 1-5

Ordering Information ... 1-9

MAP168/PSD301
Introduction

User-Configurable Peripheral with Memory 2-1

MAP168 User-Configurable Peripheral with Memory 2-5

PSD301 User-Configurable Peripheral with Memory 2-23

PAC1000 Introduction User-Configurable Microcontroller 2-63

PAC 1 000 User-Configurable Microcontroller 2-65

SAM448 Introduction User-Configurable Microsequencer 2-113

SAM448 User-Configurable Microsequencer 2-115

MAP168 - PSD Development Systems 3-1

SAM448 - PSD Development Systems 3-5

PAC1000 - PSD Development Systems 3-9

WS6000 MagicPro™ Programmer and Package Adaptors 3-13

PSO Applications Application Note 002 Introduction to the MAP168 User-Configurable

Application Note 010

Application Note 005

Mappable Memory Subsystem 4-1

PAC1000 Introduction 4-13

PAC1000 as a High-Speed Four-Channel
DMA Controller 4-39

WAFERSCALE INTEGRATION, INC. 1-1

Table Df CDntents

PSD Applications Application Brief 006 PAC1000 as a 16 Bi-Directional Serial

(Cont.)

Article Reprint

Package
Information

Sales
Representatives
and Distributors

Channel Controller 4-71

Application Note 008 PAC1000 User-Configurable Microcontroller with a
Built-In-Self;rest Capability 4-75

Application Note 009 In-Circuit Debugging for the PAC1000
User-Configurable Microcontroller 4-83

Application Brief 007 Hardware Interfacing'the PAC1000 as a
Micro Channel Bus Controller 4-99

Application Note 003 High-End SAM Applications Using
Microassembler Design Entry 4-105

Application Note 004 SAM Applications Using State Machine Design Entry 4-127

Microprogram an Embedded Controller - PAC1000 5-1

.. 6-1

.. 7-1

'-2 WAFERSCALE INTEGRATION, INC.

iF===~~ Introduction to Programmable
System™ Devices (PSD)

-- -..., .. _---
r=-ii=i-i-= == ---- ~ --'" -
WAFERSCALE INTEGRATION, INC.

Programmable System Devices, or PSDs,
are user-configurable system level building
blocks on-a-chip enabling quick
implementation of application specific
controllers and peripherals.

WSI PSDs are ideal for designers who
require fast time-to-market, low risk,
greater system integration and lower power
consumption. PSDs enable designers to
configure their microcontrollerlperipheral to
meet exact design requirements. WSI's
PSDs are unique in that they are the only
VLSI devices available today that provides
a user-configurable off-the-shelf solution at
the system level.

The user-configurability of PSDs enables
them to be used in many different
applications, including:

Q Computers (Workstations and PCs) -
Fixed Disk Control, Modem, Imaging,
Laser Printer Control

Q Telecommunications - Modem,
Cellular Phone, Digital PBX, Digital
Speech, FAX, Digital Signal Processing

Q Industrial - Robotics, Power Line
Access, Power Line Monitor

Q Medical Instrumentation - Hearing
Aids, Monitoring Equipment, Diagnostic
Tools

Q Military - Missile Guidance, Radar,
Sonar, Secure Communications, RF
Modems

PSDs are available in a variety of space
saving surface mount and through-hole
package configurations for commercial,
industrial, and military applications. WSI
offers windowed package options for
prototyping and low cost OTP (one-time
programmable) packages for high volume
applications. PSDs utilize WSI's proprietary
split-gate CMOS EPROM technology for
low power consumption.

There are currently four PSD family
devices in production. These include the
PAC1000, MAP168, PSD301, and SAM448.

Q The PAC1000 is a user-configurable
microcontroller. It may be used as a
stand-alone microcontroller or as a
peripheral to microprocessors. It is ideal EI
for embedded control applications,
including graphics, local area network,
and disk drive control in both military
and commercial applications.

Q The MAP168 is a user-configurable
peripheral. It is used in DSP applications
including modems, motor control and
medical instrumentation. The MAP168
is ideal for DSP based applications
where fast time-to-market, small form
factor and low power consumption are
essential. When combined together in
an 8- or 16-bit system, virtually any
DSP chip (TMS320 series, etc.) and
the MAP168 work together to create a
very powerful 2-piece chip-set. This
combination provides essentially all of
the required control and peripheral
element of a DSP system.

Q The PSD301 is a user-configurable
peripheral for microcontroller applications
including disk drives, low cost modems,
and mobile phones. The PSD301 is ideal
for microcontroller based applications
where fast time-to-market, small form
factor and low power consumption are
essential. When combined together in
an 8- or 16-bit system, virtually any
microcontroller (8051, 8096, 16000, etc.)
and the PSD301 work together to create
a very powerful 2-piece chip-set. This
implementation provides the required
control and peripheral element of a
microcontroller based system peripheral
with no external "glue" logic required.

Q The SAM448 is a user-configurable
sequencer for state machine and bus
interface applications. Its flexible 1/0
and architecture make it ideal for use
in interfacing to both existing bus
architectures (AT, VME, MCA-bus), and
evolving bus standards (EISA, NuBUS).

WAFERSCALE INTEGRATION, INC. 1·3

Introduction to
Programmable SystemT., Devices (PSD)

Application specific features can be easily
programmed into the PSD EPROM array
for quick design implementation. Unlike
the current generation of programmable
gate arrays, which require the use of
unpredictable, and often time unavailable
routing resources, all PSD logic is fully
connected internally. This means that all
timing is predictable ahead of design
implementation, and routing is assured.
This greatly simplifies and reduces the
design implementation and simulation
process, and provides designers with a
significantly more reliable, lower risk path
to market. WSI PSDs also eliminate the
NRE, turn-around-time, and risks associated
with gate arrays and other ASIC solutions.

1-4 WAFERSCALE INTEGRATION, INC.

As product life cycles continue to shrink,
designers can win the race from idea to
marketable product with WSI PSDs. PSDs
are quickly configured and programmed by
the designer by using low cost, easy-to
use WSI PC-based development tools. The
user-friendly menu-driven software includes
high level design entry, simulation and
programming packages for rapid system
development.

WSI supports its PSD product family with
an applications holline and bulletin board,
as well as highly trained, technical Field
Applications Engineers. As standard
products, WSI PSDs are available from
'WSI's franchised world-wide distribution
network.

Company Profile
WAFERSCALE INTEGRATION, INC.

Intmduction

Markets and
Applications

WaferScale Integration, Inc. (WSI) designs
and produces the world's broadest and
fastest families of CMOS PROMs, RPROMs,
EPROMs, and Programmable System™
Devices (PSD). These product families
target the needs of system designers who
must reduce system development time and
deliver market competitive products in
continuously shorter periods of time. WSl's
programmable VLSI products additionally
enable higher system performance from
smaller, more compact end products due
to higher levels of system integration at
the chip level.

WSl's mission is clear - to build a great
company by serving its customers with a
portfolio of high-performance programmable
VLSI products that enable designers to
achieve faster time to market with new,
advanced electronic systems.

The company's patented self-aligned, split
gate EPROM technology forms the core of
WSI's programmable products and delivers
higher performance and greater density
than competing "stacked gate" EPROM
technologies. This core technology has
enabled WSI to be first in the Industry with
numerous breakthroughs in speed, density,
process and packaging. WSI has leveraged
this technology into the broadest family of
CMOS PROMs, RPROMs, and EPROMs
available.

WSl's high-performance non-volatile
memory and PSO products are used by
the world's leading suppliers of high
performance electronic systems in
communications, data processing, military
and industrial markets. Customer end
products cover a broad spectrum and
typically include cellular telephones,
workstations, DSP computers, navigation
controllers, T1 multiplexers, modems,
image processors, missiles, LAN controllers,
high density disk drives and the like.

WSI's new "off the shelf" user-configurable
PSDs provide system level building blocks
on a single chip that enable quick
implementation of application specific
controllers and peripherals. They are the
first to integrate high-performance EPROM,
SRAM and logic and deliver a performance
and integration breakthrough to the
programmable products market. PSDs are
user-configurable on a PC or compatible
and can be tailored for use in a variety of
system applications. As a result, WSI has
established itself as a leading supplier of
high-performance programmable VLSI
solutions to a broad customer base that
includes some of the world's largest and
most technologically advanced electronics
companies.

Founded in 1983, WSI is headquartered in
a 66,000 square foot facility in Fremont,
California and has more than 125
employees. Through a long-term equity,
manufacturing and technology license
agreement with Sharp Corporation of
Japan, WSI produces its products in a
world-class production facility that
guarantees the highest quality at
competitive costs.

Customer applications include image
processing, digital signal processing, bus
control, LAN data and file control, real
time process control, graphics processing,
hard disk control, flight simulators, DMA
control, and others. WSI products are
ideally suited for these applications where
designers are faced with increasingly
shorter product life cycles and must
develop new, competitive high-performance
products in short periods of time.

WAFERSCALE INTEGRATION, INC. 1·5

EI

Company PronIe

Products Memory Products
EPROMs
WSI offers the broadest line of CMOS
EPROM products available featuring
architectures ranging from 8K x 8 to
128K x 8, plus several x16 products, with
speeds ranging from 40 to 200 ns.
Commercial, industrial and MIL-STD-883CI
SMD products are available. A wide variety
of package selections are available
including plastic and hermetic, through
hole and surface mount types.

"L" Family
WSI's "t.:' family memory products are the
industry's fastest, low power JEDEC pinout
EPROMs and meet the requirements of
many mainstream system applications.
With speeds ranging from 90 to 200 ns
and architectures from 8K x 8 to 128K x 8
including several x16 products, "t.:' family
EPROMs are ideal for high-performance
personal computers and workstations.
Taking advantage of its split-gate EPROM
technology, WSI uses a conservative 1.2
micron lithography to achieve world-class
memory densities that traditionally require
lower yielding sub-micron technologies.

"F" Family
The "F" family is WSI's fastest line of
EPROMs, featuring speeds ranging from
40 to 110 ns and architectures from 8K x 8
to 32K x 8, plus several x16 products. The
high speed and word width options of the
"F" family EPROMs make them attractive
for use in high-end engineering and
scientific workstations, data communications
and other high-performance applications.

RPROMs
RPROMs provide bipolar PROM pin-out
with matching speed and CMOS low
power operation. The RPROM (Re
Programmable Read Only Memory)
product series includes architectures

1-6 WAFERSCALE INTEGRATION, INC.

ranging from 2K x 8 to 32K x 8 with
speeds ranging from 25 to 70 ns.

Commercial, industrial and MIL-STD-883CI
SMD configurations are available in a variety
of hermetic and plastic package styles.

Programmable System"" Devices (PSDs)
WSI's family of Programmable System
Devices (PSDs) represent a new class of
programmable VLSI products, achieving
unpara"eled levels of performance,
configurability and integration. Offering a
significantly higher level of integration over
programmable logic, PSDs are the first
programmable VLSI products to integrate
high-speed EPROM, SRAM and logic on a
single chip thereby providing complete
system solutions to the design engineer.
PSDs are off-the-shelf system building
elements that can be quickly configured
and programmed for a variety of system
applications thus enabling system designers
to shorten system development time.

The PSD is a new solution for system
designers who build high-end systems
around embedded controllers and
advanced microprocessors. The,se new
systems require faster, more highly
integrated and lower cost VLSI solutions
as we" as rapid design cycles. WSI's new
PSD family meets this demanding set of
needs.

The initial members of WSI's PSD family
includes:

I;J The PAC1000 User-Configurable
M icrocontro"er

I;J The MAP168 User-Configurable
Peripheral with Memory

I;J The PSD301 User-Configurable
Peripheral with Memory

I;J The SAM448 User-Configurable
Microsequencer

Products
(Cont.)

Manufacturing

Quality and
Reliability

--- ---- --- -- -----

Design Tools and Support
WSl's development tools minimize the time
required for designers to program PSDs
for use in a variety of system applications.
PSDs are supported with complete easy
to-use program development, simulation
and programming software, the PC hosted
MagicPro™ Memory and PSD Programmer,
a dial-in applications bulletin board and
WSl's team of factory and field
applications engineers. As a result, WSI
customers achieve their goal of shorter
system development time and reach new
markets sooner.

A key ingredient for success in leading
edge semiconductors is a world-class
fabrication facility that ensures high
volume capacity and prompt delivery of
highly reliable and high yielding VLSI
circuits. To this end, WSI has licensed its
proprietary CMOS EPROM and logic
process technology to Sharp Corporation
of Osaka, Japan. This long term alliance

WSI is deeply committed to product
excellence. This begins with proper
management attitude and direction and
with this focus, the Quality and Reliability
Program is able to operate efficiently. As a
result, product quality becomes part of
each employee's responsibility.

Quality and Reliability begin with the
proper product and process designs and is
supported by material and process controls.
Examples are products manufactured on
an epitaxial silicon layer to reduce latch-up
sensitivity, all pins are designed to
withstand >2,000 volts ESDS, numerous
ground taps are used which increases
product noise immunity, metal traces are
designed to carry a current density of
>2.0 x 105 ampslcm2, top passivation
extends over into the scribe lane to seal
the die edges, data retention is performed
100% on re-programmable products (T A =
+225°C, T = 72 hours), automated die
attach and bonding is used extensively,
wafers are fabricated in a Class 10 clean
room, raw materials, chemicals and gases

Company PlOfile

Custom Circuits
To serve the needs of its customers with
unique requirements, WSI offers its custom
circuit capability using its cell based library
of EPROM, static RAM and logic functions.
Standard products described in this catalog
can usually be modified on a custom basis
to serve particular requirements. New
customer defined custom products that
incorporate high-performance non-volatile
memory, SRAM and logic can be
produced that deliver significant speed or
system integration advantages. Contact
your local WSI sales office for additional
information.

ensures high quality, high-volume
production, competitive costs and fast
delivery. The Sharp facility in Fukuyama,
Japan employs the most advanced sub
micron VLSI integrated circuit manufacturing
equipment available including ion
implantation, reactive ion etch, and wafer
stepper lithographic systems.

are inspected before use, and statistical
controls are used to keep the process on
course.

Product and process introductions or
changes are routinely evaluated for
worthiness. Life tests are conducted at
higher than typical stress levels (T A =
+150°C, Vcc = +6.5V) and even at these
stress levels, WSI products have
demonstrated low failure rates (see the
Quality and Reliability section in the
WSI 1990 databook).

WSI is active in Military programs and its
Quality and Reliability System supports
Compliant Non-Jan products. WSI also
supports DESC's (Defense Electronics
Supply Center) Standardized Military
Drawings (SMD) program. As of October,
1989, WSI has eighteen products on SMDs
with additional products pending. Several
additional products not on SMDs are
available per MIL-STD-883C. See Section
7 (Military Products) in the WSI 1990
databook.

WAFERSCALE INTEGRATION, INC. 1·7

II

Company Profile

Sales Network WSI's international sales network includes
regional sales managers, field applications
engineers, manufacturers representatives

United States
Direct sales and field applications
engineering offices in Boston, Chicago,
Huntsville, Philadelphia, Los Angeles areas
and Fremont, CA; more than 25
manufacturers' representatives for major
national accounts; national distributors
including Schweber Electronics, Time
Electronics and Wyle Laboratories; and
regional distributors.

1-8 WAFERSCALE INTEGRATION, INC.

and many of the leading component
distributors in the United States, Europe
and Asia. See Section 7.

International
Distributors in West Germany, England,
France, Italy, Sweden, Finland, Denmark,
Norway, Spain, Belgium, Luxembourg, the
Netherlands, and Israel. Distributors for
the Asia/Pacific Rim region in Japan,
Korea, Taiwan, Hong Kong and Australia.

WAFERSCALE INTEGRATION, INC.

WS57C-------.--
Basic Part Number

-35 D

Ordering Information

High-Performance CMOS Products

B

L Manufacturing Process:

(Blank) = WSI Standard Manufacturing Flow

B = MIL-STD-883C Manufacturing Flow

Operating Temperature Range:

(Blank) = Commercial: 0° to +70°C
Vee: +5V ± 5%

M

Package:

= Industrial: -40° to +85°C
Vee: +5V ± 10%

= Military: -55° to + 125°C
Vee: +5V ± 10%

A = PPGA Plastic Pin Grid Array
B = 0.900" Size Brazed Ceramic DIP
C = CLLCC Ceramic Leadless Chip Carrier
D = 0.600" CERDIP
F = Ceramic Flatpack
G = CPGA Ceramic Pin Grid Array
H = Ceramic Flatpack
J = Plastic Leaded Chip Carrier
K = 0.300" Thin CERDIP
L = CLDCC Ceramic Leaded Chip Carrier
N = CLDCC Ceramic Leaded Chip Carrier
P = 0.600" Plastic DIP
Q = Plastic Quad Flatpack
R = Ceramic Side Brazed
S = 0.300" Thin Plastic DIP
T = 0.300" Thin CERDIP
W = Waffle Packed Dice
X = Ceramic Pin Grid Array
Y = 0.600" CERDIP
Z = CLLCC

Window

No
No

Yes'
Yes
Yes'
No
No'
No'
No
Yes'
No'
No
No'
Yes
No
Yes

Yes
No
No

Speed:

-35 '" 35 ns
-55 = 55 ns
-70 = 70 ns

Etc.
• Surface Mount

WAFERSCALE INTEGRATION, INC. 1·9

II

1·10 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

PSIJ Product Specificatio.1 2

·····6

PSO Product
Specifications

MAP168/PSD301
Introduction

Section Index

User-Configurable Peripheral with Memory 2-1

MAP168 User-Configurable Peripheral with Memory 2-5

PSD301 User-Configurable Peripheral with Memory 2-23

PAC1000 Introduction User-Configurable Microcontrolier 2-63

PAC 1 000 User-Configurable Microcontrolier 2-65

SAM448 Introduction User-Configurable Microsequencer _ 2-113

SAM448 User-Configurable Microsequencer 2-115

For additIDna/lnformatiDn,
call BOO·TEAM·WS/ (BOO·B32·6974).

/n callfDmla, call BOO·562·6363.

WAFERSCALE INTEGRATION, INC.

Programmable System"" Device

WAFERSCALE INTEGRATION, INC.
MAPI681PSD301Introductlon

User-ConHgurable
Peripheral with Memory

Overview

Architecture

In 1988 WSI introduced a new concept in
programmable VLSI: the Programmable
System™ Device (PSD). The PSD is
defined as a family of User-configurable
system level building blocks on-a-chip
enabling quick implementation of application
specific controllers and peripherals. The
first generation PSD series includes the
MAP168, a User-Configurable Peripheral
with Memory; the SAM448, a User
Configurable Microsequencer; and the
PAC1000, a User-Configurable
Microcontroller.

The MAP168 is a high-performance, user
configurable peripheral with memory. It is
used in DSP applications including
modems, motor control and medical
instrumentation. The MAP168 is ideal for
DSP based applications where fast time-to
market, small form factor and low power
consumption are essential. When combined
together in an 8- or 16-bit system, virtually
any DSP chip (TMS320 series, etc.) and
the MAP168 work together to create a
very powerful 2-piece chip-set. This
implementation provides the core of the
required control and peripheral elements
of a DSP system.

The MAP168 and PSD301 products
incorporate the flexibility of using discrete
memory addressing and decoding. With
the support of WSI's user friendly PSD
software called MAPLE, designers may
configure their MAP1681PSD301 subsystems
for 8 or 16 bit data paths. If the host
system uses an 8051 microcontroller, the
MAP168/PSD301 can be programmed with
an eight bit data path. A sixteen bit data
path can be programmed for
microcontrollers like Intel's 80196. The
depth of the memory organization will be
modified accordingly to accept the different
data path widths. The low cost MAPLE
software package will handle the data path
width adjustment automatically. The user
can select either 16K bytes of EPROM and
4K bytes of SRAM or 8K words of EPROM

The MAP168 contains three elements
normally associated with discrete solutions
to system memory requirements. It
incorporates EPROM and SRAM plus a
Programmable Address Decoder (PAD), all
on the same die. The MAP168 is ideal for
the systems deSigner who wishes to
reduce the board space of his final design.
By using the MAP168 in a system, five or
six EPROM, SRAM and decode logic
chips may be reduced into a Single 44 pin
PLDCC, CLDCC or PGA package.

The second generation PSD301 is a user
configurable peripheral for microcontroller
applications including disk drives, low cost
modems, and mobile phones. The PSD301
is ideal for microcontroller based
applications where fast time-to-market,
small form factor and low power
consumption are essential. When
combined together in an 8- or 16-bit
system, virtually any microcontroller (8051,
8096, 16000, etc.) and the PSD301 work
together to create a very powerful 2-piece
chip-set. Together, this implementation
provides all the required control and
peripheral elements of a microcontroller
based system peripheral with no external
"glue" logic required.

and 2K words of SRAM. The flexibility of
the MAP168/PSD301 products enables two
devices to be cascaded in width. It is
possible to double the memory size of a
sixteen bit system by using two MAP168
products in parallel but programmed in a
byte-wide configuration. For example, with
two MAP168 devices, 16K words of EPROM
and 4K words of SRAM may be organized
as upper and lower data bytes of a 16 bit
word. Alternately, two MAP168 chips may
expand the system memory vertically as
two word organized memory devices. A
block diagram of the MAP168 is shown in
Figure 1.

An important feature of the MAP168/PSD301
products is their ability to incorporate the
memory address decoding on-chip. One

WAFERSCALE INTEGRATION, INC. 2·1

MAl't6B/l'SD30t Intmluctlon

Architecture
(Cont.) .

Rgure ,.
MAPI68 Memory
Architecture

MAP168 memory peripheral can reside
with other MAP16S devices in the same
memory addressing scheme, with the on
chip decoder allocating the memory blocks
to different non-conflicting segments of the
entire memory area. The decoding function
is achieved by an on-chip feature called a
Programmable Address Decoder (PAD),
which is similar to a Single fuse array
programmable logic device supporting one
product term (AND gate) per output in the
MAP16S and four product terms per output
in the PSD30l.

In the MAP16S, eighteen standard chip
select outputs from the PAD are available
with one fast chip select output generally
used to select other external high speed

ADDRESS BUS

PAD

ESO

ES1

ES2

ES3t----'

memory devices. The chip select lines
may be subdivided into ESO-ES7, active
low internal EPROM chip selects, and two
internal RAM chip selects RSO and RS1.
In byte-wide applications, eight chip select
outputs drive external pins CSO-CS7.
These can be used as external chip
selects for other MAP168 devices or
system memory. These outputs are
not available for word-wide MAP168
configurations because the CSO-CS7 output
pins carry the higher order data byte. Only
FCSO is available for external chip selection.

Figure 1 shows the organization of the
EPROM and SRAM in relation to the PAD,
for the MAP168 device.

EPROM
2Kx80R1Kx16

EPROM
2K x 8 OR 1K x 16

EPROM
2Kx80R1Kx16

EPROM
2K x 8 OR 1K x 16

EPROM
2K x 8 OR 1K x 16

EPROM
2K x 8 OR 1K x 16

ES4 t---.... EPROM

WEN ••

ESS I------J rt--t...:2:K~X~8~0:R~1~K~X~16~
ES61----....I

EPROM
ES7 r-----T-~~2K~X~8~O~R~lK~X~1~6

CSO[O:7]
CSO[O:7] 1------+---------+-+-1

RSOI------.
RS11-----,

FCSO

EPROM
2K x 8 OR 1K x 16

EPROM
2K x 8 OR 1K x 16

Important Features:
• 40 ns EPROM/SRAM Access Time.
• Byte or Word Operation, Mappable into 1M Word or 2M Byte Address Space
• 22 ns Chip-Select S Outputs, 17 ns Fast Chip Select Output.

HIGH
DATA
BYTE

OR eso
[0:7]

• 128K EPROM Bits, 32K SRAM Bits, On-Chip Programmable Decoder, Security Bit.

2·2 WAFERSCALE INTEGRATION, INC.

Figure 2.
PSD301 family
Architecture

Software Support

MA"6BlPSD3D1 IntroductlDn

128K1256K1512K EPROM' I CONFIGURATION I
Vee .. REGISTERS

r-+ 8 BLOCKS OF
GND .. EPROM
RD
WRNpp

CONTROL PORTB BHEIPSEN

4 RESET

11
A,g1CSI

r--

AD.-AD,. B A.-A,. CSEPROM SEE PB0-7

LATCH r-:----+ TABLE

G3 CSO-CS7

"-r PAD
ALE

+ D.-D,.
PORTA

Do-D7/ADo-AD7
o-APr I Ao-A7 .. CSRAM

LATCH

~
P~7 A I- SEE

TABLE -
.: 2K x 8 OR lK x 16 ~ D.-D,.

~ Do-D7/ADo-AD7 16K BIT SRAM
PORTC

AD

SEE Pc....

MUX OR NON·MUX TABLE

CONTROL"

By 8 ConfiguratiDn By 16 ConfiguratlDn
I'DrtA I'DrtB I'DrtA I'DrtB I'DrtC

Non·MUX Address Oata5 00-07
CSO-CS7 or

00-074 Oa-0 15 PBo-PB7
CSa-CSlOS

Ao-A74 Ao-A74

MUX Address Data PAo-PA7
CSO-CS74

PAo-PA7
CSO-CS7 Als-Ala

AOo-A07
PBo-PB7 AOo-A07

PBo-PB7

NOTES:
1. Three MAP300 EPROM densities.
2. Internal signal can be set during programming.
3. Latch B can be set to be transparent (not dependent on ALE).
4. Each 110 pin can be indiVidually set to perform one of the two functions.
5. The non·MUX configuration is compatible to MAP168 pinout.
6. Port C is independent of any configuration and can be chip select out or address in.

The object code generated for the support
microprocessor/microcontroller is generated
by an assembler. This code, when
generated as an Intel MCS file, may be
easily programmed into the EPROM
section of the MAP168/PS0301 device
because the MAPLE software has been
designed to accept this standard format.

The programmable address decoder is
used to define the mapping of the various

EPROM and SRAM memory blocks. This
mapping is achieved by the designer in
the MAPLE environment. The software
provides a safeguard that prevents the
designer from inadvertently overlapping
the address selection. After selecting the
memory block assignments, the
MAP1681PS0301 device may be
programmed by the WSI MagicPro™
memory and PSO programmer.

WAFERSCALE INTEGRATION, INC. 2-3

fJ

2-4 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Programmable System™ Device
MAP168
User-Configurable
Peripheral with Memory

Features

General
Description

0 First-generation Programmable System
Device (PSD)

User-Configurable Peripheral with
Memory
16Kx8 EPROM
4Kx8SRAM
Programmable address decoder

0 Byte or Word Memory Configurations
16Kx8 or 8Kx16 EPROM
4Kx8 or 2Kx16 SRAM
2Mbyte or 1 Mword address range

0 High-Speed Operation
40-nsec memory access
17-nsec fast chip select output

0 External Chip Select Outputs
8 external chip selects
1 fast chip-select output

In 1988 WSI introduced a new concept in
programmable VLSI, Programmable System
Devices (PSD). The PSD family consists of
user-configurable system-level building
blocks on-a-chip, enabling quick implementa
tion of application-specific controllers and
peripherals. The first generation PSD series
includes the MAP168 User-Configurable
Peripheral with Memory; the SAM448, a
User-Configurable Microsequencer; and the
PAC1000, a User-Configurable Microcon
troller.

The MAP168 is the first of WSl's Program
mable System Devices (PSD) product line.
The device integrates high performance,
user-configurable blocks of EPROM, SRAM,
and logic in a single circuit. The major
functional blocks include a Programmable
Address Decoder (PAD), 16K bytes of high
speed EPROM, and 4K bytes of high speed
SRAM. A block diagram is given in Figure 1.

The MAP168 device is a complete memory
subsystem that can be mapped anywhere in
a 2M-byte address space of a microproces
sor or microcontroller system. The EPROM
and SRAM memory blocks can be user
configured in either byte-wide or word-wide
organizations. The MAP168 device signifi-

0 Programmable Security
Protects memory map
Protects program code

0 Programming Support Tools
PSD integrated software environment
PC-XT/AT/PS2 platform support
MAPLE location entry Software
MAPPRO device programming Software
MagicPro device programmer (PC-XT,
AT)

0 Military and Commercial Specifications
44-pin Ceramic Leaded Chip Carrier
package
44-pin Plastic Leaded Chip Carrier
package
44-pad Ceramic Leadless Chip Carrier
package
44-pin Ceramic Pin Grid Array package

cantly reduces the board space and power
necessary to implement memory subsys
tems, increases system performance, and
provides for secure data or program storage.

The device's high level of integration and
flexibility make it ideal for high-speed micro
processors, microcontrollers, and Digital
Signal Processors like the TMS320XX family.
The EPROM can be configured either as
16Kx8 or 8Kx16. The SRAM can be config
ured either as 4Kx8 or 2Kx16. Individual
memory blocks of 2Kx8 or 1Kx16 can be
selectively mapped anywhere in the address
space. Since the Chip Select Input (CSI) can
be programmed as A20, the highest-order
address bit, the device's address range can
extend from 1 M byte with CSI to 2M byte
withoutCSI.

For 16-bit microprocessors capable of byte
operations, the MAP168 device provides a
Byte High Enable input for accessing bytes
on any address boundary.

Pinout is compatible with the JEDEC
WS27C257 256K high-speed EPROM. This
pinout provides for memory expansion with
future WSI EPROM and PSD products.

The device's PAD and EPROM memory are

WAFERSCALE INTEGRATION, INC. 2·5

fJ

MAP168

Figure 1.
Block Diagram

AO-A19

BHE

Ei\.!>p-

OE -

SI/A20 -

FCSO -

MAP168

DECODED EPROM
- ADDRESS"

~ AO-A12
EPROM -----,/

PGMH 8Kx 8

"- PGM ----.
EOEH

OE OUTo-7 IN0-7 r
PGMl

L

i--- -
EOEl

r----- -
DECODED SRAM

ADDRES~
~ AO-A12

PAD v SRAM -----,/
WEH 2Kx 8

WE ~
ROEH

OE OUTo-7 IN 0-7 r

WEl - I-

r---- ROEl - I--

r----
CS0-7~~

-

r---- CON ~S-
- OEl

I-- f--- 2:1
~

2:1

OEH MUX MUX
-

---- III - -

'Ii 1\
IV lr-,

1/08-15 OR CS00-7

2·6 WAFERSCALE INTEGRATION, INC.

AO-A12
EPROM
8Kx8

PGM

OE OUT0-7 IN0-7

AO-A12
SRAM
2Kx 8

WE

OE OUT0-7 IN0-7

t---
t---y-,

~ 4-

L-

1737 01

General
Description
(Con't)

Functional
Description

Table 1.
Pin Description

MAP168

programmed using the same WSI MagicPro
programmer used to program other WSI
devices. Two software packages, MAPLE
Location Entry and MAP PRO Device Pro
gramming Software are available in the
menu-driven WISPER software environment
on an IBM® PC XT/AT or 100% compatible
platform.

For additional information on the MAP168
device, refer to Application Note No. 002,
Introduction to the MAP168 User-Configur
able Peripheral with Memory. For additional
information on development and program
ming software for the MAP168 device, refer
to the MAP168 User-Configurable Peripheral
with Memory Software User's Manual.

The user-configurable architecture of the
MAP168 consists of an EPROM memory
block, an SRAM memory block, and a fast
Programmable Address Decoder (PAD) that
can be configured to select 2K-by1e memory
blocks anywhere in a 2M-byte address

range. The device can be programmed to
operate with memory configured either in a
by1e or word organization (by1es can be
addressed in word mode). A programmable
security bit prevents access to the PAD
address-decode configuration table.

Signal I/O

A0-19
FCSO °

BHE

WElVpp

OE

CSI/A20

1/°0-7 11O

I/Os_1s. CS°0-7 11O

Description

Address Lines. For access to EPROM or SRAM.

Fast Chip-Select Output (active low). Used by the Pro
grammable Address Decoder (PAD).

Byte High Enable (active low). Selects the high-order
byte when writing to SRAM.

Write Enable (active low) or Programming Voltage. In
normal mode, this pin causes data on the 110 pins to be
written into SRAM. In programming mode, the pin
supplies the programming voltage, Vpp.

Output Enable (active low). Enable the 110 pins to drive
the external bus.

Chip Select Input (active low) or High-Order Address.
This pin can be programmed as the bus-access chip
select or as an additional high-order address bit (A20)·

Low-Order Byte of EPROM or SRAM.

High-Order Byte or Chip-Select Outputs. In word mode,
these pins serve as the high-order byte (1108-15) of
EPROM or SRAM. In byte mode, the bits serve as Chip
Select Out signals (CS00-7) for the Programmable
Address Decoder (PAD).

WAFERSCALE INTEGRATION, INC. 2·7

MAP168

Programmable
Address Decoder

Memory
Subsystem
EPROM Memory

The MAP168 device has a minimum of 20
address inputs Ao-A'9 allowing the EPROM
and SRAM memory blocks to reside any
where in a 1 M-byte address space. If the
CSI/A20 input is user-configured as an ad
dress line, the maximum addressable space
increases to 2M bytes, as shown in the
Configurations table.

The 16K bytes of EPROM and 4K bytes of
SRAM, can be configured into eight inde
pendent 2K-byte blocks and two 2K-byte
blocks respectively, as shown in the Memory
Architecture figure. The PAD is a user
configurable address decoder that compares
input addresses to the 2K-byte address
range selected for each of the eight EPROM
blocks and two SRAM blocks. When the
input address Ao-A20 is detected to be within
one of the EPROM or SRAM address
ranges, the PAD enables an internal chip
select (ESo-ES7 or RSo-RS,) to the selected
block. If no block is selected, both the
EPROM and SRAM memories remain in a
power-down mode and the outputs are
disabled allowing other devices to drive the

The memory configuration of the MAP168
device includes 128K bits of WSI's patented
high-speed, split-gate, UV-erasable EPROM.
The EPROM is configured in byte mode as
16Kx8 and in word mode as 8Kx16. The
memory is organized as eight 2Kx8 or 1 Kx16
blocks, as shown in the Block Diagram
figure. Each block has a separate and
independent address range that cannot
overlap. Each block is individually selected
by one of the ESo-ES7 internal chip selects
generated by the PAD when an input ad
dress is detected within its designated
address range, as shown in the Memory
Architecture figure. If not selected, each
block of EPROM remains in a power-down
mode.

For programming, the EPROM memory
requires the WENpp input to maintain the
programming voltage V pp'

2-8 WAFERSCALE INTEGRATION, INC.

data bus. The SRAM retains its data in the
power-down mode. The 2K-byte address
ranges for any of the eight EPROM or two
SRAM blocks may not overlap.

The PAD can also be user-configured to
generate up to eight external chip selects,
CSo-CSr These outputs can be used to
decode the input address lines Ao-A20 and to
select other devices in the system. The
outputs CSO-CS7 are available on the eight
higher-order 110.-1/0'5 lines but only when
the MAP168 device is configured in the byte
mode; the lines are not available as chip
select outputs when the device is configured
in the word mode.

The CSIIA20 input is user-configurable as the
most-significant address line or as an active
low chip enable. Its function is programmed
as part of the PAD programming cycle.

The PAD also provides FSCO, a single, fast
chip-select output configurable by the user for
any address. It can overlap with any of the
internal EPROM, SRAM or external CSO
addresses.

SRAMMemory
The device also includes 32K bits of high
speed SRAM. The SRAM is configured in
byte mode as 4Kx8 and in word mode as
2Kx16. The memory is organized as two
2Kx8 or one 2Kx16 block(s), each with a
separate and independent address range that
cannot overlap. Each SRAM block is individu
ally selected by one of the RSo-RS" shown
in the Memory Architecture figure, when an
input address is detected by the PAD within
its designated address range. When not
selected, each of the SRAM memory blocks
remains in a power down mode but does
retain all data stored.

Data can be written into the SRAM only when
the WENpp input is active low.

Memory
Subsystem
EPROM Memo,y
(Con")

Mode Selection

Table 2.
Configurations

'ytll/Wotd Mode
The PAD can be programmed to configure
the MAP168 device for either a byte or word
memory architecture. This allows the device
to be used conveniently with either 8-bit or
16-bit microcontrollers, microprocessors or
digital signal processor (DSP) systems. See
the Configurations table.

In byte mode, the EPROM is organized as
16Kx8 and the SRAM as 4Kx8. The outputs
of both are tied to the eight low-order input/
output lines 1/00-1/07 and enabled onto the
output bus when the DE input is low.

Only when configured in byte mode are the
eight external chip selects provided by the

The device's operational mode is controlled
by three inputs, CST, DE, and WENpp. There

MAI'168

PAD available on the eight high-order input/
output lines 1/08-I/O,~d enabled onto the
output bus when the DE input is low.

In word mode, the EPROM is organized as
8Kx16 and the SRAM as 2Kx16. The outputs
of both are tied to the 16 input/output lines
1/00-1/0'5 and enabled onto the bus when DE
is low.

In word mode, the BHE input along with
address input AO allows the eight bits of any
16-bit word on an even or odd boundary to
be selected as shown in the High-Low Byte
Selection table. This is a useful feature for
16-bit processors that are not restricted to
reading or writing memory only on even-word
address boundaries.

are ten separate modes of operation, all of
which are shown the Mode Selection table.

xl Configuration x16 Configuration
"CfI A2I/ "CfI A2I/

Address Space 1M bytes 2M bytes 512K words 1M
words

Block Size 2K bytes 2K bytes 1K words 1K
words

Addressable Blocks 512 1024 512 1024

EPROM Blocks 8 8 8 8

SRAM Blocks 2 2 2 2

Chip-Select Outputs 9 9

EPROM Configuration 16Kx8 16Kx8 8Kx16 8Kx16

SRAM Configuration 4Kx8 4Kx8 2Kx16 2Kx16

liD Pins 8 8 16 16

Low-power Standby yes no yes no

Protected Mode yes yes yes yes

Byte Operations yes yes yes yes

WAFERSCALE INTEGRATION, INC. 2-9

MAP16B

Table 3.
Mode Selection

Table 4.
High/Low Byte
Selection

Table 5. Product

Mode/Pin CSl7fE

Read EPROM/SRAM VIL VIL

Read External VIL VIL

Output Disable X VIH
Stand-By VIH X

Write SRAM VIL X

Write External VIL X

Program EPROM VIL VIH

Program Verify VIL VIL
EPROM

Program PAD VIL VIH

Program Verify PAD VIL VIL

x16 Configuration Only

BIlE (Pin 1) Ao
o 0

o

o

WE/Vpp Address

VIH EPROM/SRAM
Selected

VIH EPROM/SRAM
Not Selected

X X

X X

VIL SRAM Selected

VIL No SRAM
Selected

Vpp EPROM
Program Address

VIH EPROM
Program Address

Vpp PAD Program
Address

VIH PAD Program
Address

Write Operation

Whole word

Upper byte from/to
odd address

Lower byte from/to
even address

None

WR and BHE are used for SRAM functions

x16 (I!0o-1J x16 (FCSlJ)
xB (1100-7) xBFCf/J, CSlJo-7

DOUT CSOUT

High Z CSOUT

High Z CSOUT
HighZ CSOUT

DIN CSOUT
X CSOUT

DIN DIN

DOUT CSOUT

DIN DIN

DOUT CSOUT

Read Operation

Whole word

Upper byte = Data Out
Lower byte = 'FF'

Whole word

Upper byte = Data Out
Lower byte = 'FF'

Selection Guide Parameter MAP16B-40 MAP168-45 MAP168-55 Units

Address Access Time (max) 40 45 55 ns

Chip-Select Access Time (max) 40 45 55 ns

Output Enable Time (max) 18 21 23 ns

Chip-Select Output Time 22 25 27 ns

Fast Chip-Select Output Time (max) 17 20 22 ns

2-10 WAFERSCALE INTEGRATION, INC.

MAP168

Table 6. DC
Characteristics Parameter Symbol Test Conditions Min Max Units

Output Low Voltage VOL IOL=8 mA 0.5 V

Output High Voltage VOH IOH~2mA 2.4 V

CMOS Standby
Current 1581 notes 1,3
-Commercial 20 mA
-Military 30 mA

TIL Standby
Current 1582 notes 2, 3
-Commercial 30 mA
-Military 40 mA

CMOS Active Current
No Blocks Selected Icc 1A notes 1,4
-Commercial 20 mA
-Military 30 mA

CMOS Active Current
EPROM Block Selected Icc 1B notes 1,4
-Commercial 35 mA
-Military 45 mA

CMOS Active Current
SRAM Block Selected Icc 1C notes 1,4
-Commercial 55 mA
-Military 65 mA

TTL Active Current
No Blocks Selected Icc 2A notes 2, 4
-Commercial 30 mA
-Military 40 mA

TTL Active Current
EPROM Block Selected Icc 2B notes 2, 4
-Commercial 40 mA
-Military 50 mA

TIL Active Current
SRAM Block Selected Icc 2C notes 2, 4
-Commercial 65 mA
-Military 75 mA

Input Load Current III V1N=5.5V -10 10 ~A

orGND

Output Leakage Current ILO VouT=5.5V -10 10 ~
orGND

Notes:
1. CMOS inputs: GND ± 0.3V or VCC ± 0.3V.
2. TIL inputs: V1L ~ 0.8V, V1H ~ 2.0V.
3. Add 1.5 mA/MHz for AC power component.
4. Add 3.5 mA/MHz for AC power component.

WAFERSCALE INTEGRATION, INC. 2·11

MAP168

Table 7. AC
Characteristics I'III'IImBfBIt Symbol MAP168-40 MAP168-45 MAP168-55 Units

Min Max Min Max Min Max

Read Cycle Time tRC 40 45 55 ns

Address to Output Delay tACC 40 45 55 ns

CSI to Output Delay tCE 40 45 55 ns

OE to Output Delay tOE 18 21 23 ns

Output Disable to Output Float tOEF 15 18 20 ns

Chip Disable to Output Float tCSF 15 18 20 ns

Address to Output Hold tOH 10 10 10 ns

Address to CS0o-7 True tcso 22 25 27 ns

Address to FCSO True tFCSO 17 20 22 ns

SRAM Write Cycle Time !wc 40 45 55 ns

Chip Enable to Write End tcsw 40 45 55 ns

Address Setup Time tAS 0 0 0 ns

Address Hold Time tAH 0 0 0 ns

Address Valid to Write End tAW 40 45 55 ns

SRAM Write Enable Pulse Width tpWE 25 30 35 ns

Data Setup Time tos 20 20 30 ns

Data Hold Time tOH 0 0 0 ns

Write Enable to Data Float !wEF 18 21 23 ns

Write Disable to Data Low Z tWELZ 3 3 3 ns

SHE Setup Time tBHES 0 0 0 ns

SHE Hold Time tBHEH 10 10 10 ns

Table B. Data
Retention PlIPlII1IIIfBIt Symbol Test Conditions Min Max Units

Characteristics Minimum Vee for Data Retention VOR Vcc=2.0V, 2.0 V

Current in Data Retention Mode ICCOR CSI ~ Vcc-o.2V, mA

Chip Deselect to Data Retention tCSOR V1N ~ Vcc-0.2V 0 ns

Recovery Time from Data Retention tROR or V1N ~ 0.2V tRC ns

2-12 WAFERSCALE INTEGRATION, INC.

Absolute
Maximum Ratings

Table 9. Operating
Range

Figure 3.
Read Cycle
Timing Diagram

Storage Temperature -65°C to + 150°C

Voltage to any pin with
respect to GND -o.6V to +7V

V pp with respect to GND -0.6 V to + 14.0V

ESD Protection >2000V

Stresses above those listed here may cause
permanent damage to the device. This is a

Temperature

MAP168

stress rating only and functional operation of
the device at these or any other conditions
above those indicated in the operational
sections of this specification is not implied.
Exposure to absolute maximum rating
conditions for extended periods of time may
affect device reliability.

Range
Commercial

Military

O· to +70·C

-55· to + 125·C

Vee
+5V±5%

+5V± 10%

1+-----tRc ----+I

ADDRESSES

tOE

Dour ------I-------+H

1737 03

WAFERSCALE INTEGRATION, INC. 2·13

MAP168

Flgutll4.
TIISfLlJad

Tabla 10.
Timing Levels

Flgutll5.
Writaeyele
Timing Dlagnim

Level
Input

Reference

ADDRESSES

WE

DOUT

BHE

~
---1

\\\

,\

98n

2.01V~
D.U.T. 30 pF

(INCLUDING T SCOPE AND JIG
.,. CAPACITANCE)

High-impedance test systems

Voltage
o and 3V

1.5V

1\\\\\\\\

I+----IAS

lAW

\

we

Icsw

II

IPWE IAH-4

.... lWEF[I---loS--t j4- IOH -.

1// Ji
I--IWELZ_

I

173704

~ ...',.

DATA-IN VALID \l',.~~ ...',....',.
II I

,\\\\ ...',. BHE VALID I
·1 ,\ ,\ \ ,\ ,\ \ ,\ ,\

IBHES -I I- IBHEH - I-
173705

2·14 WAFERSCALE INTEGRATION, INC.

Figure 6.
Memory
Architecture

ADDRESS BUS

DIRECT ADDRESSES

BLOCK
DECODE

ADDRESSES

PAD

MAP168

ESo-7 1--+-+-1

WAFERSCALE INTEGRATION, INC. 2-15

MAPf68

Table 11. MAP168
Pin Assignments 44-pin elOee Package

44-pin PlOee Package
44-pad ellee Package

Pin No. x8 x16
1 GND BHE
2 WENpp WENpp
3 CSI/A20 CSI/A20
4 CS07 1/01s
5 CS06 1/°1•

6 esos 1/°13

7 eso. 1/°12

8 es03 1/°11

9 es02 1/°10
10 es01 1/°9

11 CSOo I/Os
12 GND GND
13 FCSO FCSO
14 1/°7 1/°7

15 IIOs I/Os
16 I/Os I/Os
17 110. 110.
18 1/°3 1/°3

19 1/°2 1/°2

20 1/°1 1/°1

21 1/°0 1/°0

22 OE OE
23 AD AD
24 A1 A1
25 A2 A2
26 A3 A3
27 A. A.

·28 As As
29 A6 As
30 A7 A7
31 As As
32 Ag A9
33 A10 A10
34 GND GND
35 A11 A11
36 A12 A12
37 A13 A13
38 A1• A14
39 A1S A1S
40 A16 A16
41 A17 A17
42 A18 A1S
43 A19 A19
44 Vee Vee
WE and BHE are for SRAM functions.

2-16 WAFERSCALE INTEGRATION, INC.

-- ----~ -

MAP168

Table 12. MAP168
Pin Assignments 44-pin CPGA Package

Pin No. x8 x16
As GNO BHE

A4 WElVpp WElVpp

B4 CSI/A20 CSI/A20
A3 CS07 1/01s
B3 CS06 1/°14
A2 CSOs 1/°13
B2 CS04 1/°12
Bl CS03 1/°11
C2 CS02 1/°10
C1 CS01 1/09
O2 CSOo I/Os
01 GND GND

El FCSO FCSO
E2 1/°7 1/°7
Fl 1/06 1/06
F2 I/Os I/Os
G1 1/°4 1/°4
G2 1/03 1/03
H2 1/°2 1/°2
G3 1/°1 1/°1
H3 1/00 1/00
G4 OE OE

H4 Ao Ao
Hs Al Al
Gs ~ ~
H6 A3 A3
G6 A4 A4
H7 As As
G7 A6 A6
Gs A7 A7
F7 As As
Fs A9 Ag
E7 Ala Ala
Es GNO GNO

Os All All
07 A12 A12
Ce A13 A13
C7 A14 A14
Bs A1S A1S
B7 A16 A16

~ A17 A17
B6 A1S A1S
A6 A19 A19
Bs Vee Vee

WAFERSCALE INTEGRATION, INC. 2-11

MAP168

Figure 7.
Pin Assignments
Programming

Erasure

System
Development
Tools

44 PIN PLOCC PACKAGE
65 4 3 2 14443424140

1111111111111111111111
lJ U '_I I_I I_I 1 I '_I 1_' 1_' IJ '_I

7 :J I_I C:
8
9

10
11
12
13
14
15
16

::1
::'
::'
:J
::.
::'
::1
:J
- :. -

c:
c:
c:
c:
c:
c:
c:
c:
c:

17 ::. c:
I-I I-I I-I '-I I-I .-, I-I I-I I-I I-I I-I
1111tll111111111111111

1819202122232425262728

TOP (THROUGH PACKAGE) VIEW

39 7
38 8
37 9
36 10
35 11
34 12
33 13
32 14
31 15
30 16
29 17

44 PAD CLLCC OR CLOCC PACKAGE
6 5 4 3 2 1 4443424140

1111111111111111111111
I_I '_I 1_' 1_' '_I I I '_I '_I '_I '_I I_I

::1 '-' c: 39
::. c: 38
::1 c: 37
:J

0
c: 36

:] c: 35

::' c: 34

:J c: 33
:) c: 32

::' c: 31

::- c: 30

::' c: 29 " :-: :-: :-: :-: :-: :-: :-: :-: :-: :-: :-: /
1819202122232425262728

TOP (THROUGH PACKAGE) VIEW

44 PIN CPGA PACKAGE
1 2 3 4 5 678

A 808808
B08080800
C 80 00
080 08
E 80 08
F 80 08
G 88088808
H 808800

TOP (THROUGH PACKAGE) VIEW

Upon delivery from WSI or after each
erasure (see Erasure section), the MAP168
device has all bits in the PAD and EPROM in
the "one" or high state. Zeros are loaded
through the procedure of programming.

To clear all locations of their programmed
contents, expose the device to an ultra-violet
light source. A dosage of 15W-second/cm' is
required. This dosage can be obtained with
exposure to a wavelength of 2537 A and
intensity of 1200J.1W/cm' for 15 to 20 minutes.
The device should be about one inch from
the source and all filters should be removed
from the UV light source prior to erasure.

MAP168 System Development Tools are a
complete set of PC-based development
tools. Installed on an IBM PC or compatible
computer, these tools provide an integrated,
easy-to-use software and hardware environ
ment to support MAP168 device develop-

1737 07

Information for programming the device is
available directly from WSI. Please contact
your local sales representative.

The MAP168 device and similar devices will
erase with light sources having wavelengths
shorter than 4000A. Although erasure times
will be much longer than with UV sources at
2537 A, the exposure to fluorescent light and
sunlight will eventually erase the device; for
maximum system reliability, these sources
should be avoided. If used in such an envi
ronment, the package windows should be
covered by an opaque label or substance.

ment. The tools run on an IBM-XT, AT, or
compatible computer running MS-DOS
version 3.1 or later. The system must be
equipped with 640K bytes of RAM and a hard
disk.

2·18 WAFERSCALE INTEGRATION, INC.

System
Dellelopment
Tools (Con't)

Figure 8. MAP168
Dellelopment
Cycle

Hardware
The MAP168 System Programming Hard
ware consists of:

o WS6000 MagicPro Memory and PSD
Programmer

o WS6003 44-pin LCC Package Adaptor
(for 44-pin CLLCC, CLDCC, and PLDCC
packages)

o WS6011 44-pin CPGA Package Adaptor

The MagicPro Programmer is the common
hardware platform for programming all WSI
programmable products. It consists of the
IBM-PC plug-in Programmer Board and the
Remote Socket Adaptor Unit.

MAP168

Software
The MAP168 System Development Software
consists of the following:

o WISPER Software-PSD Software
Environment

o MAPLE Software-MAP168 Location
Editor

o MAPPRO Software-Device Program-
ming Software

The configuration of the MAP168 device is
entered using MAPLE software. MAPRO
software configures MAP168 devices by
using the MagicPro programmer and the
socket adaptor. The programmed MAP168 is
then ready to be used. The development
cycle is depicted in Figure 8.

IBM PC PLATFORM ,-------,
I

I[User J I
Terminal I DOS

I
I ! I
I

Menu Selection I
WISPER

I
I ! I
I

Confl uratlon Data I
MAPLE r----.

I I
I ! I~ I I 0
I I DISK

Proarammmo Data I I
MAPRO r----->

I I

I -1- I ---- ----

Hex File
Format

i

[§]
MaglcPro Hardware

1737 08

WAFERSCALE INTEGRATION, INC. 2-19

fJ

MAP16B

System
Development
Tools (Con't)

Ordering
Information

Support
WSI provides a complete set of quality
support services to registered System
Development Tools owners. These support
services include the following:

Q 12-month Software Updates.

Q Hotline to WSI Application Experts
For direct design assistance.

Q 24-Hour Electronic Bulletin Board
For design assistance via dial-up
modem.

MAP16B Speed Package
Part Number (ns) Type
MAP168-40C* 40 44-pad CLLCC

MAP168-40J* 40 44-pin PLDCC

MAP168-40L * 40 44-pin CLDCC

MAP168-45C 45 44-pad CLLCC

MAP168-45CM* 45 44-pad CLLCC

MAP168-45CMB* 45 44-pad CLLCC

MAP168-45J 45 44-pin PLDCC

MAP168-45L 45 44-pin CLDCC

MAP168-45LM* 45 44-pad CLDCC

MAP168-45LMB* 45 44-pad CLDCC

MAP168-45X 45 44-pin CPGA

MAP168-45XM* 45 44-pin CPGA

MAP168-45XMB* 45 44-pin CPGA

MAP168-55C 55 44-pad CLLCC

MAP168-55CM 55 44-pad CLLCC

MAP168-55CMB 55 44-pad CLLCC

MAP168-55J 55 44-pin PLDCC

MAP168-55L 55 44-pin CLDCC

MAP168-55LM 55 44-pin CLDCC

MAP168-55LMB 55 44-pin CLDCC

MAP168-55X 55 44-pin CPGA

MAP168-55XM 55 44-pin CPGA

MAP168-55XMB 55 44-pin CPGA

*These products are advanced information.

2-20 WAFERSCALE INTEGRATION, INC.

Training
WSI provides in-depth, hands-on workshops
for the MAP168 device and System Develop
ment Tools. Workshop participants learn how
to program their own high-performance, user
configurable mappable memory subsystems.
Workshops are held at the WSI facility in
Fremont, California.

Package Operating Manufacturing
Drawing Temperature Procedure
C3 Commercial Standard

J2 Commercial Standard

L4 Commercial Standard

C3 Commercial Standard

C3 Military Standard

C3 Military MIL-STD-883C

J2 Commercial Standard

L4 Commercial Standard

L4 Military Standard

L4 Military MIL-STO-883C

X2 Commercial Standard

X2 Military Standard

X2 Military MIL-STD-883C

C3 Commercial Standard

C3 Military Standard

C3 Military MIL-STO-883C

J2 Commercial Standard

L4 Commercial Standard

L4 Military Standard

L4 Military MIL-STD-883C

X2 Commercial Standard

X2 Military Standard

X2 Military MIL-STO-883C

Ordering
Information

MAP168

System Development Tools

Part Number
MAP168-GOLO

MAP168-SILVER

WS6000

WS6003

WS6011

WSI-SUPPORT

WSI-TRAINING

Contents
WISPER Software
MAPLE Software
User's Manual
WSI-SUPPORT
WS6000 MagicPro Programmer

WISPER Software
MAPLE Software
User's Manual
WSI-SUPPORT

MagicPro Programmer
IBM PC plug-in Adaptor Card
Remote Socket Adaptor

44-pin LCC Package Adaptor for
44-pin CLLCC, CLOCC, and PLOCC Packages.
Used with the WS6000 MagicPro Programmer.

44-pin CPGA Package Adaptor.
Used with the WS6000 MagicPro Programmer.

Support Services including:

o 12-month Software Update Service

o Hotline to WSI Application Experts

o 24-hour access to WSI Electronic Bulletin Board

Workshops at WSI, Fremont, CA.
For details and scheduling, call PSO Marketing, (415) 656-5400.

WAFERSCALE INTEGRATION, INC. 2·21

2-22 WAFERSCALE INTEGRATION, INC.

iF==:=~ Programmable System™ Device
PSD301

......... ~ _-
i=:'-=i-iii.-.-= =
---~~ -
WAFERSCALE INTEGRATION, INC.

Preliminary
User·Configurable
Peripheral with Memory

Key Features

Applications

r:J Second Generation Programmable
System Device

r:J User-Configurable Peripheral for
Microcontroller Based Applications -
Enables rapid design implementation and
fast time to market

r:J Available in space saving surface mount
and through-hole packages

r:J Windowed package option for prototyping

r:J Low cost OTP (one-time programmable)
package for high volume applications

r:J CMOS for low power consumption

r:J User-Configurable to Interface with Any
8- or 16-Bit Microcontroller

- Programmable Address Decoder (PAD)

- Programmable Control Signals

- Programmable Polarity

- Built-In Address Latches

r:J Port Expansion/Reconstruction of Up to
16 I/O Lines

- Individually Configurable as Output
or Input

r:J Highly Configurable, Many Operational
Modes

r:J Computers (Workstations and PCs) -
Fixed Disk Control, Modem, Imaging,
Laser Printer Control

r:J Telecommunications - Modem,
Cellular Phone, Digital PBX, Digital
Speech, FAX, Digital Signal Processing

r:J Industrial - Robotics, Power Line
Access, Power Line Monitor

- Multiplexed or Non-Multiplexed
Address/Data Buses

- Selectable 8- or 16-Bit Bus Width

- Power-Down

- Address Inputs Can Be Latched or
Transparent

- Latched Low-Order Address Byte
Available as Output

r:J High-Density UV EPROM

- 256K Bits Configurable as 32K x 8 or
as 16K x 16

Divided Into Eight Equal Mappable
Blocks

EPROM Block Resolution of 4K Bytes
or 2K Words

- EPROM: Up to 120 ns Access Time
(Including PAD Decoding Time)

r:J Static RAM

- 16K Bits Configurable as 2K x 8 or
as 1K x 16

- SRAM: Up to 120 ns Access Time
(Including PAD Decoding Time)

r:J Addressable Range

- 1 MByte or 0.5 MWords

r:J Low Power TTL-Compatible CMOS Device

r:J Medical Instrumentation - Hearing Aids,
Monitoring Equipment, Diagnostic Tools

r:J Military - Missile Guidance, Radar, Sonar,
Secure Communications, RF Modems

WAFERSCALE INTEGRATION, INC. 2-23

PS0301

Product
Description

In 1986 WSI introduced a new concept in
programmable VLSI, Programmable System
Devices. The PSD family consists of user
configurable system-level building blocks
on-a-chip, enabling quick implementation
of application-specific controllers and
peripherals. The first generation PSD
series includes the MAP168, a User
Configurable Peripheral, which is ideal for
DSP applications; the SAM448, a User
Configurable Microsequencer for control
and interface applications, and the PAC1000,
a User-Configurable Microcontroller.

The PSD301 is a second generation PSD.
The PSD301 is ideal for microcontroller
based applications where fast time-to
market, small form factor and low power
consumption are essential. When combined
together in an 8- or 16-bit system, virtually
any microcontroller (8051, 8096, 16000,
etc.) and the PSD301 work together to
create a very powerful 2-piece chip-set.
This implementation provides all the
required control and peripheral elements
of a microcontrolier based system peripheral
with no external "glue" logic required.

The PSD301 integrates high performance
user-configurable blocks of EPROM,
SRAM, and logic in a single circuit. The
major functional blocks include a
Programmable Address Decoder (PAD),
256K bits of high speed EPROM, 16K bits
of high speed SRAM, input latches, and
output ports. The PSD301 is ideal for
applications requiring high performance,
low power, and very small form factors.
These include fixed disk control, modem,
cellular telephone, instrumentation,
computer peripherals, military and similar
applications.

The PSD301 is an optimal solution for
microcontrollers that need:

CJ 110 reconstruction (microcontrollers lose
at least two 110 ports when accessing
external resources).

CJ More EPROM and SRAM than the
microcontroller's internal memory.

CJ Chip-select, control, or latched address
lines that are otherwise implemented
discretely.

CJ An interface to shared external resources.

2·24 WAFERSCALE INTEGRATION, INC.

The PSD301 (shown in Figure 1) can
efficiently interface with, and enhance, any
8- or 16-bit microcontroller system. No
other solution provides microcontrollers
with port expansion, latched addresses, a
programmable address decoder (PAD), an
interface to shared resources, 256 kbit
EPROM, and 16 kbit SRAM on a single
chip. The PSD301 does not require glue
logic for interfacing to any 8- or 16-bit
microcontrollers.

The 8051 microcontroller family can take
full advantage of the PSD301's separate
program and address spaces. Users of the
68HCXX family of microcontrollers can
change the functionality of the control
signals and directly connect the R/Vii and
E signals. Users of 16-bit microcontrollers
(including the 80186, 8096, 80196, 16XXX)
can use the PSD301 in a 16-bit
configuration. Address and data buses
can be configured to be separated or
multiplexed, whichever is required by the
host processor.

The flexibility of the PSD301 110 ports
permit interfacing to shared resources. The
user can assign the following functions to
these ports: standard 110 pins, chip select
outputs from the PAD, latched address or
multiplexed low-order addressldata byte.
This enables users to design add-on
systems such as disk drives, modems,
etc., that easily interface to the host bus
(e.g., IBM PC, SCSI).

The PSD301's on-Chip programmable
address decoder (PAD) enables the user
to map the 110 ports, eight segments of
EPROM (as 4K x 8, or as 2K x 16), SRAM
(as 2K x 8 or as 1K x 16), and chip select
outputs anywhere in the address space of
the microcontroller. The PAD can implement
up to 4 sum-ol-product expressions based
on address inputs and control signals. This
further facilitates the interface to
microcontrollers with different boot-up
locations and 110 address mappings, e.g.,
the 8051 and 8096 microcontrollers have
the boot-up addresses in the lower half of
their memory maps; the 80186 and
68HCXX use high memory boot-up
addresses.

Figure 1.
PS0301
Architecture

OCTAL,
LATCH

ADO

-~} ADI # AD2 ~ AD3 #-AD4 ~ ADS ~ AD6 ~ AD7 g,
-ro-

ALE/AS
OCTAL
LATCH

ADS

-~~} AD9 ~ AD10
ADll Att
AD12 itt
AD13 "ill
AD14 -m
ADIS M§,

ADDRESS/DATA

';~F
"DATA

TRANSCEIVERS

~-~} P--- f-

§e§'-
P--- -
~--,

RD/E
WR/R/W
BHE/PSEN
RESET
A19/CSI

DIS-OS 07-00
ES7

uppER.l LOWER
Al-Al1 BYTE BYTE

2K 2K
EPROM

f , · . · . · · · ~
A15 UPPER 1 LOWER
A14

r---- BYTE BYTE

~
2K 2K

A13 EPROM
A12

Il II All @.
PAD @.

~ g ESO

M.L- & UPPER 1 LOWER
BYTE BYTE

~ g 2K 2K
WR & EPROM

R/W ~

I I
-=--- ~ R!L:£

ALE less
A~

RSO
UPPER.I. LOWER ~ BYTE BYTE

~ -+ lK lK
A~ SRAM

A1-Al0

KJ
r--

~
BYTE WIDE e BUS
ISOLATION

BUFFER -
ADO-AD7/ 00- 07

I 08 - 015 I l
A16, A17, A18

OUPUTS DECODED
FROM BHEAO.

CONTROL AND CONFIGURATION SECTION

PS0301

ALE/AS

P
r--_

-ADO- AD7 -
ORTA

PAO
PAl
PA2
PA3
PA4
PAS
PA6
PA7

I

-

~
-
-
-
-

.... r--

POR

- - ~"'-I--
CSOTO CS7 I--

I--

----- I--
I--
I--

08.0151- I--
__ -r-I--

TB

PBO
PBl
PB2
PB3
PB4
PBS
PB6
PB7

CS8
CS9
CS10 -... ---A16
A17
A18

r---

.... -

PO RTC

--
-

PCO
PCl
PC2

CONTROL BUS TO PORTS

NOTES: 1. RESET and CSI are not available as programmable options In the PAD. An active RESET ensures
that the PAD deselects all of its outputs, and a high level on CSI ensures that the PAD is In
power·down mode.

2. Details of the PAD as a programmable array decoder are given in Figure 3.

WAFERSCALE INTEGRATION, INC. 2·25

PSD301

Figure 2.
PS0301 Port
Configurations

Figure 2 shows the PS0301's I/O port configurations.

.-AD,.

o-AD7

AD

AD

E

EJPSEN
•
•

AL

iIii

AI WOR WRN."
•

/E

./CSI
•

RE SET

I/O OR :&-A7
ADo-A 7

PA • •
r-

I/O or CSO-CS7
PB • •

r--
A'B-A,. OR CS. -CS,o

PC • •

PS0301 configured for multiplexed
16-bit address/data bus

A a-A15 •
-A7

LE

E/PSEN

A

iIii

RIW

R

ORWRN."

D/E
•

A ,glCSI
•

R ESET

PA
0 0-07

f--

0.-0,.
PB • •

r--
-CS,o A,.-A,. OR CS.

PC • •

PS0301 configured for non
multiplexed 16-bit address/data bus.

Legend:

-A15
•

AD O-AD7

E ---AL

iIii

RIW

EJPSEN
•

ORWRN."
•

RD /E

glCSI

RE SET

I/O OR Ao-A7
ADo-AD7

PA

r--
I/O OR CSO-cs7

PB

r--
-CS,. A,.-A,. OR CS.

PC

PS0301 configured for multiplexed
a-bit address/data bus.

A • -A,.

-A7

E

EJPSEN

AL

iIii

RIW OR WRN ••

IE
•

glCSI

RES ET

PA
0,,-07

r--
I/O or CSO-CS7

PB

r--
A,.-A,. OR CS. -CS,.

PC

PS0301 configured for non
multiplexed a-bit address/data bus.

AOo-A07 = addresses Ao-A7 multiplexed with data lines 0 0-07,
AOa-A015 = addresses Aa-A15 multiplexed with data lines 0a-015'

2·26 WAFERSCALE INTEGRATION, INC.

Table 1. PS0301
Pin oescriptiDns

PSD301

Name 'tYpe Description

BHE/PSEN I When the data bus width is 8 bits (CDATA = 0), this pin is
PSEN. In this mode, PSEN is the active low EPROM read
pulse. The SRAM and 1/0 ports read signal is generated
when RD is low (CRRWR = 0), or when E and R/W are
high (CRRWR = 1). If the host processor is a member of
the 8031 family, PSEN must be connected to the
corresponding host pin. In other 8-bit host processors that
do not have a special EPROM-only read strobe, PSEN
should be tied to Vce. In this case, RD or E and R/W
provide the read strobe for the SRAM, 1/0 ports, and
EPROM. When the data bus width is configured as 16
(CDATA = 1), this pin is BHE. When BHE is low, a high-
order byte is read from, or written into the PSD301,
depending on 'the operation being read or write,
respectively. In program'ming mode, this pin is pulsed
between Vpp and O.

WRlVpp or I In the operating mode, this pin's function is WR
R/WlVpp (CRRWR = 0) or R/W (CRRWR = 1). When configured as

WR, a write operation is executed during an active low
pulse. When configured as R/W, with R/W = 1 and E = 1,
a read operation is executed; if R/W = 0 and E = 1, a
write operation is executed. In programming mode, this pin
must be tied to Vpp voltage.

RD/E I When configured as RD (CRRWR = 0), this pin provides
an active low RD strobe. When configured as E (CRRWR
= 1), this pin becomes an active high pulse, which,
together with R/W defines the cycle type. Then, if R/W = 1
and E = 1, a read operation is executed. If RtW = 0 and
E = 1, a write operation is executed.

CSIIA19 I This pin has two configurations. When it is CSI
(CA19/CSI = 0) and the pin is asserted high, the device
is deselected and powered down. (See Tables 12 and 13
for the chip state during power-down mode.) If the pin is
asserted low, the chip is in normal operational mode.
When it is A19, (CA19/CSI = 1), this pin can be used as
an additional input to the PAD. In this mode, there is no
power-down capability.

RESET I This user-programmable pin can be configured to reset on
high level (CRESET = 1) or on low level (CRESET = 0).
It should remain active for at least 100 ns. See Tables 10
and 11 for the chip state after reset.

ALE or I In the multiplexed modes, the ALE pin functions as an
AS Address Latch Enable or as an Address strobe and can be

configured as an active high or active low signal. The ALE
or AS trailing edge latches lines AD15/A15-ADO/AO, A16-A19,
and BHE, depending on the PSD301 configuration. See
Table 8. In the non-multiplexed modes, it can be used as a
general-purpose PAD input signal.

Legend: The 1/0 column abbreviations are: I = input; 1/0 = input/output; P = power.

NOTE: 3. All the configuration bits mentioned in Table 1 appear in parentheses and are explained in the
Configuration Register section.

WAFERSCALE INTEGRATION, INC. 2·Z7

PS0301

Table 1. PSD301
Pin Descriptions
(Cont.)

Name

PA7
PAB
PA5
PA4
PA3
PA2
PA1
PAO

PB7
PBB
PB5
PB4
PB3
PB2
PB1
PBO

PCO
PC1
PC2

ADO/AO
AD1/A1
AD2/A2
AD3/A3
AD4/A4
AD5/A5
ADB/AB
AD7/A7

AD8/A8
AD9/A9

AD10/A10
AD11/A11
AD12/A12
AD13/A13
AD14/A14
AD15/A15

GND

Vee

Type

I/O

I/O

I/O

I/O

I/O

P

P

2-28 WAFERSCALE INTEGRATION, INC.

Description

PA7-PAD is an 8-bit port that can be configured to track
AD7/A7-ADO/AO from the input (CPAF2 = 1). Otherwise
(CPAF2 = 0), each bit can be configured separately as an
I/O or lower-order latched address line. When configured
as an I/O (CPAF1 = 0), the direction of the pin is defined
by its direction bit, which resides in the direction register. If
a pin is an I/O output, its data bit (which resides in the
data register) comes out. When it is configured as a low-
order address line (CPAF1 =1), A7-AO can be made the
corresponding output through this port (e.g., PAB can be
configured to be the AB address line). Each port bit can be
a CMOS output (CPACOD = 0) or an open drain output
(CPACOD = 1). When the chip is in non-multiplexed mode
(CADDRDAT = 0), the port becomes the data bus lines
(DO-D7). See Figure 4.

PB7-PBO is an 8-bit port for which each bit can be
configured as an I/O (CPBF = 1) or chip-select output
(CPBF = 0). Each port bit can be a CMOS output
(CPBCOD = 0) or an open drain output (CPBCOD = 1).
When configured as an I/O, the direction of the pin is
defined by its direction bit, which resides in the direction
register. If a pin is an I/O output, its data (which resides in
the data register) comes out. When configured as a chip-
select output, CSO-CS3 are a function of up to four
product terms of the inputs to the PAD; CS4-CS7 then are
each a function of up to two product terms. When the chip
is in non-multiplexed mode (CADDRAT = 0) and the data
bus width is 1B (CDATA = 1), the port becomes the most
significant byte of the data bus (D8-D15). See Figure B.

This is a 3-bit port for which each bit is configurable as a
PAD input or output. When configured as an input (CPCF
= 0), the bits can be latched with ALE (CADDHLT = 1) or
be transparent inputs to the PAD (CADDHLT = 0). When' a
pin is configured as an output (CPCF = 1), it is a function
of one product term of all PAD inputs. See Figure 7.

In multiplexed mode, these pins are the multiplexed low-
order address/data byte, After ALE latches the addresses,
these pins input or output data, depending on the settings
of the RD/E, WR/vpp or R/W, and BHE/PSEN pins. In
non-multiplexed mode, these pins are the low-order
address input byte.

In 1B-bit multiplexed mode, these pins are the multiplexed
high-order address/data byte. After ALE latches the
addresses, these pins input or output data, depending on
the settings of the RD/E, WR/vpp or R/W, and BHE/PSEN
pins. In all other modes, these pins are the high-order
address input byte.

Vss (ground) pin.

Supply voltage input.

Operating Modes The PSD301's four operating modes allow
it to interface directly to 8- and 16-bit
microcontrollers and microprocessors with
multiplexed and non-multiplexed
address/data buses. These operating
modes are:

Cl Multiplexed 8-bit address/data bus

Cl Multiplexed 16-bit address/data bus

Cl Non-multiplexed address/data, 8-bit
data bus

Cl Non-multiplexed 16-bit address/data bus

Multiplexed 8·Bit Address/Data Bus
This mode is used to interface to
microcontrollers with an 8-bit data bus and
a 16-bit or larger address bus. The low
order address/data bus (ADO/AO-AD7/A7) is
bi-directional and permits the latching of
the address when the ALE signal is active.
On the same pins, the data is read from or
written to the device; this depends on the
state of the RD/E, BHE/PSEN, and
WRlVpp or R/W pins. The high-order
address/data bus (AD8/A8-AD15/A15)
contains the high-order address bus byte.
Ports A and B can be configured as in
Table 2.

Multiplexed 16·Bit Address/Data Bus
This mode is used to interface to
microcontrollers with a 16-bit data bus and
a 16-bit or larger address bus. The low
order address/data bus (ADO/AO-AD7/A7) is
bi-directional and permits the latching of
the address when the ALE signal is active.
On the same pins, the data is read from or
written to the device; this depends on the
state of the RD/E, BHE/PSEN, and
WRlVpp or R/W pins. The high-order

P50301

address/data bus (AD8/A8-AD15/A15) is bi
directional and permits latching of the
high-order address when the ALE signal is
active on the same pins. The high-order
data bus is read from or written to the
device, depending on the state of the
RD/E, BHE/PSEN, and WRlVpp or R/W
pins. Ports A and B can be configured as
in Table 2.

Non·Multiplexed Address/Data,
8·Bit Data Bus
This mode is used to interface to non
multiplexed 8-bit microcontrollers with an
8-bit data bus and a 16-bit or larger address
bus. The low-order address/data bus
(ADO/AO-AD7/A7) is the low-order address
input bus. The high-order address/data bus
(AD8/A8-AD15/A15) is the high-order
address bus byte. Port A is the low-order
data bus. Port B can be configured as
shown in Table 2.

Non·Multiplexed 16·Bit Address/Data Bus
This mode is used to interface to non
multiplexed 16-bit microcontrollers with a
16-bit data bus and a 16-bit or larger
address bus. The low-order address/data
bus (ADO/AO-AD7/A7) is the low-order
address input bus. The high-order address/
data bus (AD8/A8-AD15/A15) is the high
order address bus byte. Port A is the low
order data bus. Port B is the high-order
data bus.

Table 2 summarizes the effect of the
different operating modes on ports A, B,
and the address/data pins. The
configuration of Port C is independent of
the four operating modes.

WAFERSCALE INTEGRATION, INC. 2·29

fJ

PS0301

Table 2. PSD301
Bus and Port
Configuration
Options

Programmable
Address Decoder
(PAD)

Multiplexed Address/Data Non-Multiplexed Address/Data
8-Bft Data Bus

Port A I/O and/or low-order address 00-07 data bus lines
lines or
Low-order multiplexed
address/data byte

Port B I/O and/or CSO-CS7 I/O and/or CSO-CS7

ADO/AO-AD7/A7 Low-order multiplexed Low-order address bus byte
address/data byte

AD8/A8-AD15/A 15 High-order address bus byte High-order address bus byte

16-Bft Data Bus

Port A I/O and/or low-order address Low-order data bus byte
lines or
Low-order multiplexed
address/data byte

Port B I/O and/or CSO-CS7

ADO/AO-AD7/A7 Low-order multiplexed
address/data byte

AD8/A8-AD15/A15 High-order multiplexed
address/data byte

The PSD301's programmable address
decoder (PAD) has 14 inputs and 24
outputs. All its I/O functions are listed in
Table 3 and shown in Figure 3.

The PAD is used to select all chip internal
parts and to generate external chip-selects
(see Figure 3). Pins A11-A15, RD/E,
WRlVpp or R/VIi, Reset, and ALE are fixed
functions. A16-A19 can be address inputs
or general purpose inputs to the PAD for
implementing logic functions. Internal and

High-order data bus byte

Low-order address bus byte

High-order address bus byte

external PAD select signals can override
EPROM memory whose addresses
overlap. This lets the user make more
efficient use of the address space. For
example, if the EPROM is not used
completely for program storage, the
unused EPROM address space can be
allocated to I/O ports, SRAM, or other PAD
select signals. USing WSI's MAPLE
software, any input function to the PAD
can be selected as active low, active high,
or don't care.

2-30 WAFERSCALE INTEGRATION, INC.

Table 3. PS0301
I/O Functions

PAD Inputs

CSI or A19

A16-A18

A11-A15

RD or E

WR or R/W

ALE

RESET

PAD Outputs

CSO-CS3

CS4-CS7

CS8-CS10

ESO-ES7

RSO

CSIOPORT

CSADIN

CSADOUT1

CSADOUT2

PSD301

Function

In CSI mode (when high), PAD deselects all of its outputs and enters
a power-down mode (see Tables 12 and 13). In A19 mode, it is
another input to the PAD.

These are general purpose inputs from Port C. See Figure 3, note 4.

These are address inputs.

This is the read pulse or enable strobe input.

This is the write pulse or R/W select signal.

This is the ALE input to the chip.

This deselects all outputs from the PAD; it can not be used in
product term equations. See Tables 10 and 11.

These chip-select outputs can be routed through Port B. Each of
them is a function of up to four product terms of the PAD inputs.

These chip-select outputs can be routed through Port B. Each of
them is a function of up to two product terms of the PAD inputs.

These chip-select outputs can be routed through Port C. See Figure 3,
note 4. Each of them is a function of one product term of the PAD inputs.

These are internal chip-selects to the 8 EPROM banks. Each bank
can be located on any boundary that is a function of one product
term of the PAD address inputs.

This is an internal chip-select to the SRAM. Its base address location
is a function of one term of the PAD address inputs.

This internal chip-select selects the I/O ports. It can be placed on
any boundary that is a function of one product term of the PAD
inputs. See Tables 6 and 7.

This internal chip-select, when Port A is configured as a low-order
address/data bus in the track mode (CPAF2 = 1), controls the input
direction of Port A. CSADIN is gated externally to the PAD by the
internal read signal. When CSADIN and a read operation are active,
data presented on Port A flows out of ADO/AO-AD7/A7. This chip-
select can be placed on any boundary that is a function of one
product term of the PAD inputs. See Figure 5.

This internal chip-select, when Port A is configured as a low-order
address/data bus in track mode (CPAF2 = 1), controls the output
direction of Port A. CSADOUT1 is gated externally to the PAD by the
ALE signal. When CSADOUT1 and the ALE signal are active, the
address presented on ADO/AO-AD7/A7 flows out of Port A. This chip-
select can be placed on any boundary that is a function of one
product term of the PAD inputs. See Figure 5.

This internal chip-select, when Port A is configured as a low-order
address/data bus in the track mode (CPAF2 = 1), controls the output
direction of Port A. CSADOUT2 must include the write-cycle control
signals as part of its product term. When CSADOUT2 is active, the
data presented on ADO/AO-AD7/A7 flows out of Port A. This chip-
select can be placed on any boundary that is a function of one
product term of the PAD inputs. See Figure 5.

WAFERSCALE INTEGRATION, INC. 2·31

'50301

Figure 3.
PSD301 PAD
Description

orAS~
~ ...
~

ALE

D or E i'O--=
"S

R

WR or R/W ..,
"'S

~

A19 ..g ...
~

A18
"'S

~

A17 " ..,
"S

~

A16 ..,
"'S

A15
" "S

~

~

A14 "
..,

""S

~

A13 " ""S

K

A12 "
..,

"S

K
A11 "

..,
""S

...
eSI ... ~ ..,
RESET ...

~ ...

ESO

ES1
ES2
ES3
ES4
ES5
ES6

8 EPROM Block
Select Lines

ES7
RSO
eSIOPOR

__ SRAM Block Select

T-"0 Base Address

}
Track Mode eSADIN

eSADOU
eSADOU

:g Control Signals

eSO/PBO ---
eSl/PB1

eS2/PB2

CS3/PB3

'--

CS4/PB4

CS5/PB5

eS6/PB6

eS7/PB7

C>o- esa/pco

C>o- eS9/PC1

CS10/pe2

NOTES: 4. CSi is a power-down signal. When high, the PAD is in stand-by mode and all its outputs become
non-active. See Tables 12 and 13.

5. RESET deselects all PAD output signals. See Tables 10 and 11.
S. Maximum PAD latency is 35 ns.
7. AlB, A17, and AIS are internally multiplexed with eSl0, eS9, and esa, respectively. Either Ala or

eSl0, A17 or eS9, and Al0 or esa can be routed to the external pins of Port e.

2·32 WAFERSCALE INTEGRATION, INC.

Configuration
Bits

Table 4. PSD301
Non-Volatile
Configuration
Bits

PS0301

The configuration bits shown in Table 4 programming phase. In operational mode,
they are not accessible. To simplify
implementing a specific mode, use the
WSl's PSD301 MAPLE software to set
the bits.

are non-volatile cells that let the user set
the device, I/O, and control functions to
the proper operational mode. Table 5 lists
all configuration bits. The configuration bits
are programmed and verified during the

Use This Sit To
CDATA Set the data bus width to 8 or 16 bits.

CADDRDAT Set the address/data buses to multiplexed or non-multiplexed mode.

CRRWR Set the RD/E and WR/vpp or RIW pins to RD and WR pulse, or to
E strobe and RIW status.

CA19/CSI Set A19/CSI to CSI (power-down) or A19 input.

CALE Set the ALE polarity.

CPAF2 Set Port A either to track the low-order by1e of the address/data
multiplexed bus or to select the I/O or address option.8

CSECURITY Set the security on or off.

CRESET Set the RESET polarity.

COMB/SEP Set PSEN and RD for combined or separate address spaces (see
Figures 8 and 9).

CPAF1 Configure each pin of Port A in multiplexed mode to be an I/O or
address out.

CPACOD Configure each pin of Port A as an open drain or active CMOS pull-
up output.

CPBF Configure each pin of Port B as an I/O or a chip-select output.

CPBCOD Configure each pin of Port B as an open drain or active CMOS pull-
up output.

CPCF Configure each pin of Port C as an address input or a chip-select
output.

CADDHLT Configure pins A16-A19 to go through a latch or to have their latch
transparent.

NOTE: 8. CPAFt determines whether the output IS 1/0 or address.

WAFERSCALE INTEGRATION, INC. 2-33

fI

PS0301

Table 5. PSD301
Configuration
Bits

Configuration No. Description Bits of Bits
CDATA 1 8-bit or 16-bit data bus width

CDATA = 0, '8-bit data bus
CDATA = 1, 16-bit data bus

CADDRDAT 1 Address/data multiplexed or non-multiplexed (separate buses)
CADDRDAT = 0, non-multiplexed address/data bus
CADDRDAT = 1, multiplexed address/data bus

CRRWR 1 CRRWR = 0, RD and WR active low strobes
CRRWR = 1, R/W status and E active high pulse

CA19/CSI 1 A19 or CSI
CA19/CSI = 0, enable power-down mode
CA19/CSI = 1, A19 input to PAD

CALE 1 Active high or active low
CALE = 0, active high
CALE = 1, active low

CRESET 1 Active high or active low
CRESET = 0, active low reset signal
CRESET = 1, active high reset signal

COMB/SEP 1 Combined or separate memory space for EPROM and SRAM
COMB/SEP = 0, combined
COMB/SEP = 1, separate

CPAF1 8 Port A I/Os or AO-A?
CPAF1 = 0, Port A pin = I/O
CPAF1 = 1, Port A pin = Ai (0 .;; i .;; ?)

CPAF2 1 Port A ADO-AD? (address/data multiplexed bus)
CPAF2 = 0, address or I/O on Port A (according to CPAF1)
CPAF2 = 1, address/data multiplexed on Port A (track mode)

CPBF 8 Port B I/Os or CSO-CS?
CPBF = 0, Port B Pin = CSi (0 .;; i .;; ?)
CPBF = 1, Port B Pin = I/O

CPCF 3 Port C A16-A18 or CS8-CS10
CPCF = 0, Port C Pin = Ai (16';; i .;; 18)
CPCF = 1, Port C Pin = CSi (8';; i.;; 10)

CPACOD 8 Port A CMOS or open-drain outputs
CPACOD = 0, CMOS output
CPACOD = 1, open-drain output

CPBCOD 8 Port B CMOS or open-drain outputs
CPBCOD = 0, CMOS output
CPBCOD = 1, open-drain output

CADDHLT 1 A16-A19 latched or latch transparent
CADDHLT = 0, address latch transparent
CADDHLT = 1, address latched (ALE dependent)

CSECURITY 1 Security on or off
CSECURITY = 0, no security
CSECURITY = 1, secured part (cannot be copied)

Total Number
45

of Bits

NOTES: g. WSl's MAPLE software will gUide the user to the proper configuration choice.
10 In an unprogrammed or erased part, all configuration bits are O.

2·34 WAFERSCALE INTEGRATION, INC.

Port Functions

Figure 4. Port A
Pin Structure

The PSD3D1 has three 1/0 ports (Ports A,
B, and C) that are configurable at the bit
level. This permits great flexibility and a
high degree of customization for specific

I
N
T
E
R READ DATA
N
A
L

WRITE DATA CK OUl. A · D OFF
D D

R R
/ ADDR __
D ALE G · A LATCH
T D
A R

B ADI/D!..-· U
S READ DIR

A
D '-J
0 D
/

OIR A WRITE DIR FF D CK

7 R

RESET I

I

PSD301

applications. The following is a description
of each port. Figure 4 shows the pin
structure of Port A.

READ PIN

CMOS/OD
(NOTE 11)

PORTA PIN

KNABLE

MUX

j~

CONTROL

NOTE: 11. CMOS/DO determines whether the output is open drain or CMOS.

Port A in Multiplexed Address/Data Mode
The default configuration of Port A is 110.
In this mode, every pin can be set as an
input or output by writing into the
respective pin's direction flip flop (DIR FF,
in Figure 4). As an output, the pin level
can be controlled by writing into the
respective pin's data flip flop (DFF, in
Figure 4). When DIR FF = 1, the pin is
configured as an output. When DIR FF =
D, the pin is configured as an input. The
controller can read the DIR FF bits by
accessing the READ DIR register; it can
read the DFF bits by accessing the READ
DATA register. Port A pin levels can be
read by accessing the READ PIN register.

Individual pins can be configured as
CMOS or open drain outputs. Open drain
pins require external pull-up resistors. For
addressing information, refer to Tables 6
and 7.

Alternatively, each bit of Port A can be
configured as a low-order latched address
bus bit. The address is provided by the
port address latch, which latches the
address on the trailing edge of ALE.
PAD-PA7 can become AD-A7, respectively.
This feature of the PSD3D1 lets the user
generate low-order address bits to access
external peripherals or memory that
require several low-order address lines.

WAFERSCALE INTEGRATION, INC. 2-35

PS0301

Port Functions
(Cont.)

Figure 5. Port A
Track Mode

Another mode of Port A (CPAF2 = 1) sets
the entire port to track the inputs
ADO/AO-AD7/A7, depending on specific
address ranges defined by the PAD's
CSADIN, CSADOUT1, and CSADOUT2
signals. This feature lets the user interface
the microcontroller to shared external
resources without requiring external
buffers and decoders. In this mode, the
port is effectively a bi-directional buffer.
The direction is controlled by using the
input signals ALE, RD/E, WR/vpp or R/W,
and the internal PAD outputs CSADOUT1,
CSADOUT2 and CSADIN (see Figure 5).
When CSADOUT1 and ALE are true, the
address on the input ADO/A7-AD7/A7 pins
flows out through Port A. (Carefully check
the generation of CSADOUT1, and ensure
that it is stable during the ALE pulse; see
Figures 22 and 23). When CSADOUT2 is

WR rRfW

ADO·AD?

ALE or AS

AD8·AD15 A11·A15

active, a write operation is performed (see
note to Figure 5). The data on the input
ADO/A7-AD7/A7 pins flows out through Port
A. When CSADIN and a read operation is
performed (depending on the mode of the
RD/E and WR/vpp or RIW pins), the data
on Port A flows out through the ADO/A7-
AD7/A7 pins. In this operational mode, Port
A is tri-stated when none of the above
mentioned three conditions exist.

Port A in Non-Multiplexed Address/
Oat a Mode
In this mode, Port A becomes the low
order data bus byte of the chip. When
reading an internal PSD301 location, data
is presented on Port A pins. When writing
to an internal PSD301 location, data
present on Port A pins is written to that
location.

• • LATCHI--~~ PAD CSADOUT2
(NOTE 12)

A16·A19

NOTE: 12. The expression for CSADOUT2 must Include the following write operation cycle signals:
For CRRWR = 0, CSAPOUT2 must include WR = 0.
For CRRWR = 1, CSADOUT2 must include E = 1 and R/W = 0.

Port B in Multiplexed Address/Oata
and in 8-Bit Non-Multiplexed Modes
The default configuration of Port B is I/O.
In this mode, every pin can be set as an
input or output by writing into the
respective pin's direction flip flop (DIR FF,
in Figure 6). As an output, the pin level
can be controlled by writing into the
respective pin's data flip flop (DFF, in

Figure 6). When DIR FF = 1, the pin is
configured as an output. When DIR FF =
0, the pin is configured as an input. The
controller can read the DIR FF bits by
accessing the READ DIR register; it can
read the DFF bits by accessing the READ
DATA register. Port B pin levels can be
read by accessing the READ PIN register.

2·36 WAFERSCALE INTEGRATION, INC.

Port Functions
(Cont.)

Figure 6. Port B
Pin Structure

Table 6. I/O Port
Addresses in an
B·bit Data
Bus Mode

Individual pins can be configured as
CMOS or open drain outputs. Open drain
pins require external pull-up resistors. For
addressing information, refer to Tables 6
and 7.

Alternatively, each bit of Port B can be
configured to provide a chip-select output
signal from the PAD. PBO-PB7 can provide
CSO-CS7, respectively. Each of the signals
CSO-CS3 is comprised of four product
terms. Thus, up to four ANDed expressions
can be ORed while deriving any of these
signals. Each of the signals CS4-CS7 is
comprised of two product terms. Thus, up
to two ANDed expressions can be ORed
while deriving any of these signals.

I
N
T
E
R
N
A
L

c
s
o
U
T

B
U
S

C
S
o

I
N
T
E
R
N
A
L

D
A
T
A

B
U
S

D
8

D
1
5

RESET

READ DATA

WRITE DATA CK OUT

OFF
D

R

DI

CSI

READ DIR

D
DIR

WRITE DIR CK FF
R

Port 8 in 16·8it Non·Multiplexed
Address/Oata Mode

PS0301

In this mode, Port B becomes the high
order data bus byte of the chip. When
reading an internal PSD301 high-order
data bus byte location, the data is
presented on Port B pins. When writing to
an internal PSD301 high-order data bus
byte location, data present on Port B is
written to that location. See Table 9.

Accessing the I/O Port Registers
Tables 6 and 7 show the offset values with
the respect to the base address defined by
the CSIOPORT. They let the user access
the corresponding registers.

READ PIN

CMOS/aD
(NOTE 13)

~>m"> PORTB

MUX

CONTROL I

NOTE: 13 CMOS/aD determines whether the output IS open dram or CMOS.

Register Name 8yte Size Access of the I/O Port Registers
Offset from the CSloPoRT

Pin Register of Port A +2 (accessible during read operation only)

Direction Register of Port A +4

Data Register of Port A +6

Pin Register of Port B +3 (accessible during read operation only)

Direction Register of Port B +5

Data Register of Port B +7

f0l.FERSCALE INTEGRATION, INC. 2·37

PSD301

Table 7. lID Port
Addresses in a
16·bit Data Bus
Mode

Figure 7.
Port C Structure

Word Size Access of the I/O Port Register Name Registers Offset from the CSIOPOR1
Pin Register of Ports B and A +2 (accessible during read operation only)

Direction Register of Ports B and A +4

Data Register of Ports B and A +6
-

NOTES: 14. When the data bus width is 16, Port B registers can only be accessed if the BHE signal is low.
15. When accessing words, the high-order byte is connected to Port B, and the low-order byte is

connected to Port A.
16. 1/0 Ports A and B are still byte-addressable, as shown in Table 6. For 1/0 Port B register access,

BHE must be low.

Port C in All Modes
Each pin of Port C (shown in Figure 7) can
be configured as an input or output from
the PAD. As inputs, the pins are named
A16-A18. Although the pins are given
names of the high-order address bus, they
can be used for any other logic inputs to
the PAD. For example, A8-A10 can also be
connected to those pins, reducing the

+ +
A16j1NPUT LINE) ADDRESS

pca ! LATCH

~ CSS (OUTPUT LINE!

I LOCAL I CONF.
BIT 0

ALE

t +
Al7 (INPUT LINE) ADDRESS

PCl ! LATCH

~ CS9 (OUTPUT LINE!

~ CONF.
BIT 1

1 t_
AIS (INPUT LINE! ADDRESS

PC21
LATCH

-

boundaries of CSO-CS7 resolution to
256 bytes. Port C address latches can be
programmed to latch the inputs by the
trailing edge ALE or to be transparent.

Alternatively, PCO-PC2 can become
CS8-CS10 outputs, respectively, providing
the user with more external chip-select
PAD outputs. Each of the signals CS8-
CS10 is comprised of one product term.

(NOTE 17)

AI6-IN TO PAD CADDHLT
CONFIGURATION

0- BIT: LATCH OR
FROM PAD TRANSPARENT

CONTROL

All-IN
TO PAD

FROM PAD

AlB-IN
TO PAD

~~~~~~~------------FROMPAD 

NOTE: 17. The CADDHLT configuration bit determines if A1B-AI6 are transparent via the latch, or if they must 
be latched by the trailing edge of the ALE strobe. 

2-38 WAFERSCALE INTEGRATION, INC. 



EPROM 

SRAM 

Control Signals 

The PSD301 has 256K bits of EPROM. 
Depending on the configuration of the data 
bus, the EPROM can be organized as 
32K x 8 (8-bit data bus) or as 16K x 16 
(16-bit data bus). The EPROM has 8 banks 
of memory. Each bank can be placed in 

The PSD301 has 16K bits of SRAM. 
Depending on the configuration of the data 
bus, the SRAM organization can be 2K x 8 

The PSD301 control signals are WRlVpp 
or R/VIi, ROlE, ALE, BHE/PSEN, Reset, 
and A19/CSI. Each of these signals can be 
configured to meet the output control signal 
requirements of various microcontrollers. 

WRIV pp or RIW 
In operational mode, this signal can be 
configured as WR or R/VIi. As WR, all write 
operations to the PSD301 are activated by 
an active low signal on this pin. As R/VIi, the 
pin works with the E strobe of the ROlE 
pin. When R/VIi is high, an active high 
signal on the ROlE pin performs a read 
operation. When R/VIi is low, an active 
high signal on the ROlE pin performs a 
write operation. 

ROlE 
In operational mode, this signal can be 
configured as RD or E. As RD, all read 
operations to the PSD301 are activated by 
an active low signal on this pin. As E, the 
pin works with the R/VIi strobe of the 
WRlVpp or RIW pin. When R/VIi is high, 
an active high signal on the ROlE pin 
performs a read operation. When R/VIi is 
low, an active high signal on the ROlE pin 
performs a write operation. 

ALE or AS 
ALE polarity is programmable. When 
programmed to be active high, a high on 
the pin causes the input address latches, 
Port A address latches, and Port C 
address latches to be transparent. The 

PSD301 

any address location by programming the 
PAD. BankO-Bank? can be selected by 
PAD outputs ESO-ES?, respectively. The 
EPROM banks are organized as 4K x 8 
(8-bit data bus) or as 2K x 16 (16-bit data 
bus). 

(8-bit data bus) or 1K x 16 (16-bit data 
bus). The SRAM is selected by the RSO 
output of the PAD. 

falling edge of ALE latches the information 
into the latches. When ALE is programmed 
to be active low, a low on the pin causes 
the input address latches, Port A address 
latches, Port C, and A19 address latches to 
be transparent. The rising edge of ALE 
latches the appropriate information into the 
latches. ALE is active only in the 
multiplexed modes. 

BHEIPSEN 
This pin's function depends on the 
PSD301 data bus width. If it is 8, the pin 
is PSEN; if it is 16, the pin is BHE. In 8-bit 
mode, the PSEN function lets the user 
work with two address spaces: program 
memory and data memory (if COMB/SEP 
= 1). In this mode, an active low signal on 
the PSEN pin causes the EPROM to be 
read. The SRAM and I/O ports read operation 
are done by RD low (CRRWR = 0), or by 
E and R/VIi high (CRRWR = 1). 

Whenever a member of the 8031 family (or 
any other similar microcontroller) is used, 
the PSD301's PSEN pin must be connected 
to the PSEN pin of the microcontroller. 

If COMB/SEP = 0, the address spaces of 
the program and the data are combined. 
In this configuration (except for the 
8031-type case mentioned above), the 
PSEN pin must be tied high to Vee, and 
the EPROM, SRAM, and I/O ports are 
read by RD low (CRRWR = 0), or by E 
and R/VIi high (CRRWR = 1). See Figures 
8 and 9. 

WAFERSCALE INTEGRATION, INC. 2-39 



P50301 

Table 8. Signal 
Latch Status in 
All Operating 
Modes 

Figure 8. 
Combined 
Address Space 

Signal Name 

AD8/A8-
AD15/A15 

ADO/AO-
AD7/A7 

BHE/PSEN 

A19 and 
PC2-PCO 

Configuration Bits Configuration Mode 

CDATA = 0, 
CADDRDAT = 0 8-bit data, non-multiplexed 

CDATA = 0, 
8-bit data, multiplexed CADDRDAT = 1 

CDATA = 1, 16-bit data, non-multiplexed 
CADDRDAT = 0 

CDATA = 1, 16-bit data, multiplexed 
CADDRDAT = 1 

CADDRDAT = 0 Non-multiplexed modes 

CADDRDAT = 1 Multiplexed modes 

CDATA = 0 8-bit data, PSEN is active 

CDATA = 1,' 16-bit data, non-multiplexed 
CADDRDAT = 0 mode, BHE is active 

CDATA = 1, 16-bit data, multiplexed 
CADDRDAT = 1 mode, BHE is active 

CADDHLT = 0 A16-A19 can become logic inputs 

CADDHLT = 1 A16-A19 can become multiplexed 
address lines 

CS 
DRESS. 

PAD 
AD 

SRAM 

OE 

INTERNAL 
jll 

RD 

PSE!i) r. 
OE -----
EPROM 
CS , 

I 
CS OE 

I 1/0 PORTS 

2-40 WAFERSCALE INTEGRATION, INC. 

Signal Latch 
Status 

Transparent 

Transparent 

Transparent 

ALE dependent 

Transparent 

ALE dependent 

Transparent 

Transparent 

ALE dependent 

Transparent 

ALE dependent 



Figure 9. 
B031·Type 
Separate Code 
and Data 
Address Spaces 

Table 9. 
High/Low Byte 
Selection Truth 
Table (in 16·Bit 
Configuration 
Only) 

Table 10. Signal 
States During 
and After Reset 

RNAL I 
I/O PORTS 

INTE 
R D 

A 

OE 

• 
cs 
~ 

t 
DDRESS~ 

PAD 

PSEN 

In BHE mode, this pin enables accessing 
of the upper-half byte of the data bus. A 
low on this pin enables a write or read 

SHE Ao 
0 0 

0 1 

1 0 

1 1 

RESET 
This is an asynchronous input pin that 
clears and initializes the PSD301. Reset 
polarity is programmable (active low or 
active high). Whenever the PSD301 reset 
input is driven active for at least 100 ns, 

PS0301 

I 

• OE 

cs 

SRAM 

cs 
EPROM 
-
OE 

operation to be performed on the upper 
half of the data bus (see Table 9). 

Operation 

Whole Word 

Upper Byte FromlTo Odd Address 

Lower Byte From/To Even Address 

None 

the chip is reset. The PSD301 must be 
reset before it can be used. Tables 10 and 
11 indicate the state of the part during and 
after reset. 

Signal Configuration Mode Condition 
ADO/AO-AD15/A15 All Input 

PAD-PA7 I/O Input 
(Port A) Tracking ADO/AO-AD7/A7 Input 

Address outputs AO-A7 Low 

PBO-PB7 I/O Input 
(Port B) CS7-CSO CMOS outputs High 

CS7-CSO open drain outputs Tri-stated 

PCO-PC2 Address inputs A16-A18 Input 
(Port C) CS8-CS10 CMOS outputs High 

WAFERSCALE INTEGRATION, INC. 2-41 



PS0301 

Table 11. 
Internal States 
During and 
After Reset 

Table 12. Signal 
States During 
Power-Down 
Mode 

Table 13. 
Internal States 
During 
Power-Down 

Component Signals Contents 
PAD CSO-CS10 All = 118 

CSADIN, CSADOUT1, } CSADOUT2, CSIOPORT, AII.= 018 
RSO, ESO-ES7 

Data register A n/a 0 
Direction register A n/a 0 
Data register B n/a 0 
Direction register B n/a 0 

NOTE: 18. All PAD outputs are in a non·active state. 

A191CSI 
When configured as CSI, a high on this 
pin deselects, and powers down, the chip. 
A low on this pin puts the chip in normal 

operational mode. For PSD301 states 
during the power-down mode, see Tables 
12 and 13. 

Signal Configuration Mode Condition 
ADO/AO-AD15/A15 All Input 

PAO-PA7 1/0 Unchanged 
Tracking ADO/AO-AD7/A7 Input 
Address outputs AO-A7 A1I1's 

PBO-PB7 1/0 Unchanged 
CS7-CSO CMOS outputs A1I1's 
CS7-CSO open drain outputs Tri-stated 

PCO-PC2 Address inputs A16-A18 Input 
CS8-CS10 CMOS outputs A1I1's 

Component Signals Contents 
PAD CSO-CS10 All 1's (deselected) 

CSADIN, CSADOUT1, } 
CSADOUT2, CSIOPORT, All O's (deselected) 
RSO, ESO-ES7 

Data register A n/a 
Direction register A n/a All 
Data register B n/a unchanged 
Direction register B n/a 

In A19 mode, the pin is an additional input 
to the PAD. It can be used as a high-order 
address line or as a general-purpose logic 
input. A19 can be configured as ALE 

dependent or as transparent input (see 
Table 8). In this mode, the chip is always 
enabled. 

2-42 WAFERSCALE INTEGRATION, INC. 



System 
Applications 

Figure 10. PSD301 
Interlace with 
Intel's BOC31 

In Figure 10, the PSD301 is configured to 
interface with Intel's 80C31, which is a 
16-bit address/8-bit data bus microcontroller. 
Its data bus is multiplexed with the low
order address byte. The 80C31 uses 
signals RD to read from data memory and 
PSEN to read from code memory. It uses 
WR to write into the data memory. It also 
uses active high reset and ALE signals. 
The rest of the configuration bits as well 
as the unconnected signals (not shown) 
are application specific and, thus, user 
dependent. 

Microcontroller 

POO 39 
31 ENVP PO.l 38 

PO.2 37 

- 19 
Xl PO.3 36 

PO.4 35 

P05 34 

X2 P06 33 

PO.7 32 

9 RESET P20 21 

P21 22 
23 P22 
24 INTO P2.3 

INTl P2.4 25 

TO P25 26 

Tl P26 27 

P27 28 
1 

Pl0 
2 Pll AD 17 
3 P12 WR 16 
4 P13 PSEN 29 
5 P14 ALE 30 
6 P1.5 TXD 11 
7 

P16 RXD 10 
8 Pl.7 

80C31 

I'S0301 

The configuration bits for Figure 10 are: 

CRESET 
CALE 
CDATA 
CADDRDAT 
COMB/SEP 
CRRWR 

1 
o 
o 
1 
o or 1 (both valid) 
o 

All other configuration bits may vary 
according to the application requirements. 

Vee 

f-:L 
01J.1F -= 

23 
ADO/AO PAO 21 

24 AD1/Al PAl 20 
25 

AD2/A2 PA2 19 
26 AD3/A3 PA3 18 
27 AD4/A4 PA4 17 
28 

AD5/A5 PA5 16 
29 AD6/A6 PA6 15 
30 

AD7/A7 PA7 14 

31 AD8/A8 PBO 11 
32 AD9/A9 PBl 
33 
35 

AD10/Al0 PB2 

36 
ADll/All PB3 
AD12/A12 PB4 

37 AD13/A13 PB5 
38 AD14/A14 PB6 
39 AD15/A15 PB7 

22 
RD PCO 40 

2 WRNpp PCl 41 
1 BHE;PSEN 

13 ALE PC2 42 
3 RESET A19/CSI 43 

GND 

PSD301 34 12 

-

WAFERSCALE INTEGRATION, INC. 2-43 



PSD301 

System 
Applications 
(Cont.) 

Figure ". 
PS03D1 Interface 
with Motorola's 
68HC11 

In Figure 11, the PSD301 is configured 
to interface with Motorola's 6SHC11, 
which is a 16-bit address/S-bit data bus 
microcontroiler. Its data bus is multiplexed 
with the low-order address byte. The 
6SHC11 uses E and R/IN signals to derive 
the read and write strobes. It uses the 
term AS (address strobe) for the address 
latch pulse. RESET is an active low signal. 
The rest of the configuration bits as well 
as the unconnected signals (not shown) 
are application specific and, thus, user 
dependent. 

Microcontroller 

PCO 
9 

20 
PDO PC1 

10 
21 

PD1 PC2 
11 

22 
PD2 PC3 

12 
23 

PD3 PC4 
13 

24 
PD4 PC5 

14 
25 

PD5 PC6 
15 

PC7 
16 

43 
PEO 

45 
PE1 PBO 

42 
47 

PE2 PB1 
41 

49 
PE3 PB2 

40 
44 

PE4 PB3 39 
46 

PE5 PB4 38 
48 

PE6 PB5 
37 

50 
PE7 PB6 

36 

PB7 
35 

34 
PAO 

33 
PA1 E 

5 
32 

PA2 
31 

PA3 R!W 
6 

30 
PA4 AS 

4 
29 

PA5 RESET 
17 

28 
PA6 

27 
PA7 "Xi"Ra 18 

IRQ 
19 

52 2 
VRH MODB 

51 
VRL MODA 3 

XTAL EXTAL 

68HC11 

In Figure 12, the PSD301 IS configured to 
work directly with Intel's SOC196KB 
microcontroller, which is a 16-bit address/ 
16-bit data bus processor. Address and 
data lines multiplexed. In the example 
shown, all configuration bits are set. The 

2-44 WAFERSCALE INTEGRATION, INC. 

The configuration bits for Figure 11 are: 

CRESET 0 
CALE 0 
CDATA 0 
CADDRDAT 1 
COMB/SEP 0 
CRRWR 1 

All other configuration bits may vary 
according to the application requirements. 

Vee 

t--:L 
0.11lF -::-

23 ADO/AO PAO 
21 

24 AD1/A1 PA1 
20 

25 AD2/A2 PA2 
19 

26 
AD3/A3 PA3 

18 
27 

AD4/A4 PA4 17 
28 AD5/A5 PA5 

16 
29 AD6/A6 PA6 

15 
30 AD7/A7 PA7 

14 

31 AD8/A8 PBO 
11 

32 
AD9/A9 PB1 

10 
33 AD10/A10 PB2 

9 
35 AD11/A11 PB3 

8 
36 

AD12/A12 PB4 7 
37 AD13/A13 PB5 

6 
38 AD14/A14 PB6 

5 
39 AD15/A15 PB7 4 

22 E PCO 
40 

PC1 
41 

2 
R!WlVpp 

13 AS PC2 42 
3 i'iES"Ei' A19/CSi 

43 

BHE/PSEN 

Vee 

GND 

PSD301 34 12 

-

PSD301 is configured to use PCO, PC1, 
PC2, and CSIIA19 as A16, A17, A1S, and 
A19 inputs, respectively. These signals are 
independent of the ALE pulse (Iatch
transparent). They are used as four 
general-purpose logic inputs that take part 



System 
Applications 
(Cont., 

in the PAD equations implementation. 

Port A is configured to work in the special 
track mode, in which (for certain conditions) 
PAO-PA7 tracks lines ADO/AO-AD7/A7. Port 
B is configured to generate CSO-CS7. In 
this example, PB2 serves as a WAIT signal 
that slows down the 80C196KB during the 
access of external peripherals. These 8-bit 
wide peripherals are connected to the 
shared bus of Port A. The WAIT signal 
also drives the buswidth input of the 
microcontroller, so that every external 
peripheral cycle becomes an 8-bit data 
bus cycle. PB3 and PB4 are open-drain 
output signals; thus, they are pulled up 
externally. 

PS0301 

The configuration bits for Figure 12 are: 

CRESET 
CALE 
CDATA 
CADDRDAT 
CPAF1 
CPAF2 
CA19/CSI 
CRRWR 
COMB/SEP 
CADDHLT 
CSECURITY 
CPCF2, CPCF1, CPCFO 
CPACOD7-CPACODO 
CPBF7-CPBFO 
CPBCOD7-CPBCODO 

o 
o 
1 
1 
Don't care 
1 
1 
o 
o 
o 
Don't care 
0, 0, 0 
OOH 
OOH 
18H 

Figure 12. PS0301 
Interface with 
Inters 
BOCI/J 6KB 

FOUR 

GENERAL 
PURPOSE 

INPUTS 

6"" =c.... 
~ 

~ 

~ 

r---:: 

I ~ >----< 
L--...-' 

~ 
T,D 

L-....,;) 
~ 

t::::S 
~ 

8 
+5V 

01 'F:;:~ 

~ 

--..< 
--..< 
--..< 
'-----"" 

~ 

~ 
3 

..-£-
~ 
~ 16 

6 
5 
7 
4 

11 
10 

• 
9 ,. 

17 
15 
44 

~ 39 

33 
38 

24 
25 
26 
27 

13 

:rr 
t--!L 
~ 

+5V 

80C196KB 

'}01'F 

XTALl V,, P10 19 

P11 20 

P12 21 

XTAL2 P13 22 

P14 23 

NMI P15 30 

READY P16 31 

BUSWIDTH P17 32 

CDE 
60 

RESET P30/ADO ADO/AD 

P31/ADl 59 ADl/Al 

POO P32/A02 5. AD2/A2 

P33JAD3 57 AD3/A3 PO 1 
P02 P34/AD4 56 AD4/A4 

55 ADS/AS P03 P3 S/AD5 
P3 B/AD6 54 AD6/A6 

P04 
53 A07/A7 

P05 P37/AD7 

P06 
PO 7 P401AD8 52 ADBJAB 

P41/AD9 51 AD9/A9 

P42/A010 50 AD10/Al0 P20ITXD 
P43/AD11 49 AD11/Al1 

P21/AXD 
P22/EXINT P44/A012 48 AD12fA12 

P4S/AD13 47 AD131A13 
P23!T2CLK 

46 AD14/A14 
P24!T2RST P46/AD14 

P47/A015 45 AD15/A15 
P25/PWM 

P2 6172 UP/ON 

~ P2 7172 CAPTR CLKOUT 
41 

SHE/WAH 40 
HSIO WR/WAL 
HSll - 61 

RD 

t±::-HSI2/HSO 4 ALE/ADV 

~ HSI3/HSO 5 INST 

VAEF HSOO ti= VPP HSO 1 

ANGNO HS02 

EA v" V" HS03 ~ 

168 
36 

* 

ADIO 151 

ADDRESS/DATA MULTIPLEXED BUS 
ADjO 151 

} PORT 1 

110 PINS 

P T 01 ,F 
PSD301 44 ":' SHARED 

BUS 

ADO/AO " ADO/AQ v" PAO 21 

~ A01/Al 24 A01/Al 
PA1 20 

"/ AD2/A2 25 
AD2/A2 

PA2 19 

~ AD3IA3 % PA3 , . 
AD3/A3 

AD4/A4 PA4 17 

-/1\: 
AD4/A4 "/ ADS/AS 2. ADS/AS 

PAS 16 

A06lA6 2. AD6/A6 
PA6 1S 

A07/A7 ,n 
AD7/A7 

PA7 14 
1'\.- AD8JA8 

~ 
ADS/AS 

AD9/A9 32 AD9/A9 
PBO 11 ~ 

AD10/A10 33 PB1 10 -t=::5 AD10/Al0 
AD111Al1 ~!i PB2 9 WAtT A011/All 

"- AD12/A12 PB3 • 
~ 

AD13/A13 37 
AD12/A12 ;;> 
AD13/A13 

PB4 7 
AD141A14 38 PBS 6 i:::::5 ~ 

AD14/A14 
ADl51A15 ~q 

AD15/A15 
PB6 ~ PB7 ~< i--!-40 PCO 47KQ~~47KQ 

41 
PC1 

~ PC2 ~+5V 
,.£- CSl/A19 

1 
2 

SHE/PSEN 

22 
WRNpp 

AD 
13 ALE 
,.L RESET GND GND 

44 

AL 

WAFERSCALE INTEGRATION, INC. 2-45 

> 



I'SD301 

Absolute 
Maximum 
Ratings 

Operating Range 

Recommended 
Operating 
Conditions 

DC 
Characteristics 

Symbol Parameter Conditions Min Max Unit 

TSTG Storage temperature -65 +150 °C 

Voltage on Any Pin With Respect to GND -0.6 +7 V 

Vpp Programming Supply Voltage With Respect to GND -0.6 14 V 

Vee Supply Voltage With Respect to GND -0.6 +7 V 

ESD Protection >2000 V 

NOTE: 19. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the 
device. This is a stress ratmg only and functional operation of the device at these or any other conditions 
above those indicated m the operational sections of this specification IS not Implied. Exposure to 
absolute maximum rating condillOns for extended periods of time may affect device reliability. 

Range D1mperature Vee Tolerance 
Commercial O°C to +70°C +5V ±5% or ±10% 

Industrial -40°C to +S5°C +5V ±10% 

Military -55°C to + 125°C +5V ±10% 

Symbol Parameter Conditions Min 1YP Max Unit 

vee Supply Voltage 4.5 5 5.5 V 

VIH High Level Input Voltage Vee = 4.5V to 5.5V 2 V 

VIL Low Level Input Voltage Vee = 4.5V to 5.5V 0 O.S V 

Symbol Parameter Conditions Min Typ Max Units 
IOL = 20 !lA, 0.01 0.1 

VOL Output Low Voltage 
Vee = 5.5V 

V 
IOL = SmA, 0.15 0.45 
Vee = 5.5V 

IOH = -20 !lA, 4.4 4.49 

VOH Output High Voltage 
Vee = 4.5V 

V 
IOH = -2 mA, 2.4 3.9 
Vee = 4.5V 

Vee Standby Current Notes 20 Comm'l SO 150 
ISBl CMOS and 22 Military 120 250 

!lA 

Vee Standby Current Notes 21 Comm'l O.S 1.5 
ISB2 mA TTL and 22 Military 1.0 2 

Active Current (CMOS) Notes 20 Comm'l 35 55 
leel mA No Blocks Selected and 23 Military 40 65 

Active Current (CMOS) Notes 20 Comm'l 35 55 
lee2 mA EPROM Block Selected and 23 Military 40 65 

2-46 WAFERSCALE INTEGRATION, INC. 



DC 
Characteristics 
(Cont.) 

AC 
Characteristics 

Symbol Parameter Conditions 
Comm'l 

Icc3 
Active Current (CMOS) Notes 20 
SRAM Block Selected and 23 Military 

Active Current (TTL) Notes 21 Comm'l 
Icc4 No Blocks Selected and 23 Military 

Active Current (TTL) Notes 21 Comm'l 
Icc5 EPROM Block Selected and 23 Military 

Active Current (TTL) Notes 21 Comm'l 
Icce SRAM Block Selected and 23 Military 

III Input Load Current V1N = 5.5V or GND 

ILO Output Leakage Current VOUT = 5.5V or GND 

NOTES: 20 CMOS Inputs. GND ± 03V or Vee ± 0.3V 

Symbol 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

TB 

T9 

T10 

T11 

T12 

T13 

T14 

T15 

T16 

T17 

T18 

T19 

21. TTL Inputs· V,l .; O.BV, V,H ?:- 2.0V 
22. AC power component IS 1 5 rnA/MHz (power = AC + DC) 
23 AC power component IS 35 rnA/MHz (power = AC + DC). 

Parameter 
-12 

Min Max 
ALE or AS pulse width 30 

Address set-up time 15 

Address hold time 10 

ALE or AS trailing edge to leading 
12 

edge of Read 

ALE or AS leading edge to data valid 140 

Address valid to data valid 120 

CSI active to data valid 130 

Leading edge of Read to data valid 40 

Read data hold time 0 

Trailing edge of Read to data high-Z 35 

Trailing edge of ALE or AS to leading 
12 

edge of Write 

RD, E, PSEN, or WR pulse width 45 

Trailing edge of Write or Read to 
20 

leading edge of ALE or AS 

Address valid to trailing edge of Write 120 

CSI active to trailing edge of Write 130 

Write data set-up time 20 

Write data hold time 10 

Port input set-up time 10 

Port input hold time 10 

PSD301 

Min ryp Max Units 
65 105 

rnA 
75 120 

50 80 
mA 

60 95 

50 80 
mA 

60 95 

80 130 
mA 

90 150 

-1 ±0.1 1 ~ 

-10 5 10 /.lA 

-15 ·20 
Units 

Min Max Min Max 
40 50 ns 

20 25 ns 

15 20 ns 

15 20 ns 

170 220 ns 

150 200 ns 

160 210 ns 

55 60 ns 

0 0 ns 

40 45 ns 

15 20 ns 

60 75 ns 

30 40 ns 

150 210 ns 

160 200 ns 

30 40 ns 

15 20 ns 

15 20 ns 

20 30 ns 

WAFERSCALE INTEGRATION, INC. 2-47 



PSD301 

AC 
Characteristics 
(Cont.) 

Symbol Parameter 
·12 -15 ·20 

Min Max Min Max Min Max 
Units 

T20 
Trailing edge of Write to port output 

40 50 60 ns 
valid 

T21 ADi24 or control27 to CSOi25 valid 20 35 25 45 30 55 ns 

T22 ADi24 or control 27 to CSOi25 invalid 20 35 25 45 30 55 ns 

T23 Track mode address propagation delay: 
• CSADOUT1 already true or: 20 30 40 ns 

• CSADOUT1 becomes true 40 50 60 ns 
during ALE or AS 

T24 Track mode address hold time 10 15 20 ns 

T25 Track mode Read propagation delay 20 30 40 ns 

T26 Track mode Read hold time 10 20 15 30 20 40 ns 

T27 
Track mode Write cycle data 

20 30 40 ns 
propagation delay 

T28 
Track mode Write cycle write to data 

20 40 25 50 30 60 ns 
propagation delay 

T29 
Hold time of Port A valid during 

2 4 6 ns 
write to CSOi trailing edge 

T30 CSI active to CSOi25 active 25 45 30 55 35 65 ns 

T31 CSI inactive to CSOi25 'inactive 25 45 25 55 35 65 ns 

T32 Control27 signal inactive to data 
5 10 15 

invalid 
ns 

T33 R/W active to E high 20 30 40 ns 

T34 E low to R/W inactive 20 30 40 ns 

T35 AS inactive to E high 15 20 25 ns 

T36 
Direct PAD input26 stable to leading 

15 20 25 ns 
edge of RD, WR, or E 

NOTES: 24. ADI = any address line. 
25. CSOI = any of the chip-select output signals coming through Port B (CSO-CS7) or through 

Port C (CSB-CS10). 
26. Direct PAD mput = any of the following direct PAD input lines: CSI/A19 as transparent A19, ROlE, 

WR or R/W, transparent PCO-PC2, ALE (or AS). 
27. Control signals ROlE or WR or R/W 

2-48 WAFERSCALE INTEGRATION, INC. 



Figure 13. 
Timing of 8·Bit 
Multiplexed 
Address/Data Bus, 
CRRWR = 0 

~ 

SIIA19 
asCSI 

D 
PAD I 

irect (28).:z: 

nput 

Multipl 
In 
exed (29) "X; 
puts 

.. READ CYCLE -
7 

36 

00 STABLE INPUT 

6 

IXXXXJ( 
6 

O/ADO- , A 
A 7/AD7 ~ 

ADDRESS A 

Activ e High 
ALE' 

Acti ve Low' 

RDIE 

BHE 
as 

ALE 

as RD 

IPSEN 
PSEN 

WRI 
RiW 

VPP or 
as WR 

2 3 .... 
rh 4 

.f2+ 

\...~ 

\ 
5 

\ 

~ 

.... 

.... 

IXXll 

DATA 
OUT 

sl-

.~ 

f-I 

~ 

Anyo 
PA7 as 

f PAO- \ 
1/0 Pin ,. X X X X x.xxxx, INPUT 

Anyo 
PB7 as 

f PBO- \ 
110 Pin ,. XXXXXXXXX 

Any 0 

PA 
~ fPAO- _--,. 

7 Pins I 
ddress '1 asA 

Outputs 

ADDRESS A 

See referenced notes on page 2-58. 

INPUT 

PSD301 

WRITE CYCLE --32 ... - 32 ... 

~ -- -'XX XXXX 
15 

36 

1-3 2 ..... 1-32 

~ ~ STABLE INPUT 1m KXXX 
14 

1,---
XXX :XXX XXX X 

~ 14 

1,---

~- ADDRESS B f- DATA XX; 
IN 

~v-~ 3 

t'""""""'\ ~ 
~ 

~ 11 

~ 
~ I\-~ 

~ 
~ 

~ 
19 

~ ~ 

IX X X X X X XJ\MX X XX X XX.)\)\; OUTPUT 

X X X X X X X X X X X X X X X X.X.)\)\; OUTPUT 

~ 
ADDRESS B 

WAFERSCALE INTEGRATION, INC. 2-49 

--- ---~----- -----~ ,~--,--------------------- ----~-- --- ----------------



'S0301 

Figure 14. 
Timing of 8·Bit 
Multiplexed 
Address/Data Bus, 
CRRWR = 1 

... READ CYCLE 

-~ 

SI/A19 
asCSI 7 

36 -D 
PAD I 

Irect(28):Z: 
nput 00 STABLE INPUT 

Multiple 
In 

xed (29) )C 
puts 

O/ADO- ~ A 
A 7/AD7 

6 

6 

ADDRESS A 

2 3 

Activ e High rh 4 

ASI .f2.,. 
Acti ve Low' 

AS 

RDI E as E 

PP or WRN 
RNV asRiW 

Any 0 

PA7as 
I PAO- \ 
1/0 Pin'" 

Any 0 

PB7 as 
I PBO- \ 
1/0 Pin'" 

Any 0 IPAO-

35 

5 

[XXXXXXX 

XXXXXXXXX 

XXXXXXXXX 

23 -

XXXXX XX) 

OATA 
OUT 

.... al-

33 12 

f--.. 

~ 

INPUT 

INPUT 

PA 7 Pins ADDRESS A 
ddress asA 

Outputs 

See referenced notes on page 2-58. 

2·50 WAFERSCALE INTEGRATION., INC. 

WRITE CYCLE 
32 32 

i - i--

XX XXX X 
15 

36 
-32 - ~32 

XX ~ STABLE INPUT IXXX XXX 

14 

,---

IXXX .XXX IXXXX 

~ 14 

~r- ADDRESSB r- OATA xx: IN 

~ ~ 3 

~ h II L 
~ 35 

J 
~ 

f-.I f\-
33 

34 34 

13 

~ 
i---

.XXXXX 
ir 

~ 20 
I--

XXXXXXXXXXXXXXXX :XX OUTPUT 

IXXXXXXXXXXXXXXXXXXX OUTPUT 

~ 
ADDRESS B 



Figure 15. 
Timing of 16·8it 
Multiplexed 
Address/Data 8us, 
CRRWR = 0 

=-----' 
C SI/A19 

asCSI 

D 
PAD I 

Irect(28)X 
nput 

Multiple 
In 
xed(29)~ 

puts _ 

BHE 
a 
IPSE~~ 
sBHE ~ 

h 

... READ CYCLE 

7 

36 

00 STABLE INPUT 

6 

XXXXX 
6 

lxxxx 

O/ADO-A 
A15 IAD15 

ADDRESS A 

Actlv e High 
ALEI 

Actl ve Low' 
ALE 

-
RDIE as RD 

W~ 
R/W 

VPP or 
asWR 

2 3 --Irh 4 

~4 

I'-~ 

\ 
5 

~ 

--

--

xX) 

IX X) 

DATA 
OUT 

8 __ 

foII~ 
f--' 

Any 0 

PA7 as 
f PAO- \ 
1/0 Pm ,. :XXXXXXXXX INPUT 

Any 0 

PB7 as 
f PBO- X") 
1/0 Pm I .XXXXXXXXX 

Any 0 
PA 

~. f PAO- -----. 
7 Pms I 

ddress ., as A 
Outputs 

ADDRESS A 

See referenced notes on page 2-58. 

INPUT 

PSD301 

WRITE CYCLE 
32 32 

~ 
-- I-

'XJJ lXXXX 
I 15 

36 
_32 -- 1-32 

)eX ~ STABLE INPUT 1m KXXX 
14 

xxx :XXX XXXX 
v----

~ 14 
I~ 

)()(~ :XXX xxxx 
I~ 

~r- ADDRESS B ~ DATA DC IN 
I~ 

2 3 ~ -, ~ Ir-IL .2. 11 

...; --.J ~ .F 

13 

~ 
I--

~ 19 20 
~ I--

OIXXXXXXXXXXXXXXXX)( ~XX OUTPUT 

:~IXX XX XXXXX XXXXXX XX.XX OUTPUT 

~ 
ADDRESS B 

WAFERSCALE INTEGRATION, INC. 2-51 



'S03ot 

Figure 16. 
Timing of 16·Bit 
Multiplexed 
Address/Data Bus, 
CRRWR = 1 

~ 

SIIA19 
asCSI 

D 
PAD I 

irect(28l:X 
nput 

Multiple 
In 

xed(29l x: 
puts 

BHE 
a 
/PSE~X: 
sBHE 

O/ADO- -A 
A15 /AD15 

READ CYCLE -
7 

36 

~ STABLE INPUT 

6 

XXXX 
6 

-<XXx)( 

ADDRESS A 

2 3 -
Activ e High ~~ 4 

AS 
~~ 

Acti ve Low 
AS 

35 

33 

E as E 
5 

PPor :XXXXXXX 
sR/Vii 

~ 

-
I-

XI{ 

DATA 
OUT 

8i-

12 

Any 0 

PA7as 
fPAO- " 
I/O Pin'" :xxxxxxxxX INPUT 

Any 0 
PB7 as 

f PBO-" 
I/O Pin" :XXXXXXXXX 

Any 0 

PA 
~ fP~O-_~ 

7 Pins X 
ddress-I asA 

Outputs 

ADDRESS A 

See referenced notes on page 2-58 

2·52 WAFERSCALE INTEGRATION, INC. 

INPUT 

WRITE CYCLE 
32 32 

~ - -
'XX I xx XX 

15 

36 
~32 

~ 
- _32 

~ STABLE INPUT XXX IlXXX 
14 

1.---
IXXX XX XXX 

~ 14 

IXXX. XX XXX 
1-

1.---

~ - ADDRESS B r- DATA xx: 
IN 

1-

12... ~ 3 

~ lr h rL ~ 35 

V-
~ 

f-1 ~ 
33 

34 34 

13 

~ -
XXXXX It 

19 20 I-- -
:lUXXXXXXXXXXXXXXXXlI XX OUTPUT 

:lIIXXX X X X X X X,XXXXXXXXXX OUTPUT 

~ 
ADDRESS B 



Figure 17. 
Timing of 8·Bit 
Data, Non· 
Multiplexed 
Address/Data Bus, 
CRRWR = 0 

READ CYCLE 

PSD301 

WRITE CYCLE 
32 32 -- ~ -- I-

~ 

SI/A19 
asCSI 

o 
PAD I 

i reet (28) .:z: 
nput 

A 
A15 
as A 

O/ADO~ .:z: 
IAD15 
O-A15 

Multiple 
In 
xed(29)~ 

puts ~ 

, 
PA O-PAl -' 

~ 

~ 

2 

Aetlv e High v-h 
ALEI 

Aetiv e Low' 
ALE 

ROlE as RD 

WRI 
Riiii 

VPP or 
asWR 

~~ 

I'-~ 

7 

36 

STABLE INPUT 

6 

STABLE INPUT --
IXXXXX IX XJI 

6 

DATA 
OUT 

3 -- 81-
4 

f4~ 

5 f-I 

~ 
Any 0 

PBl as 
f PBO- \ 

1/0 Pin ,.. XxxxxxxXX INPUT 

See relerenced notes on page 2-58, 

XX IXXXX 
15 

36 

~ ~ STABLE INPUT IXXX KXXX 
14 

~ ~ STABLE INPUT XXX XXX -- 32-32 

1,---
XXX XXX IXXXX 

~ 14 
;~ 

1,---

!.C DATA xx: 
IN -

2_ 3 ~ h ~ r L .2. 11 

.22. --' '-~ 

13 

~ I---

'---' 
19 20 l-- I----

xxxxxXXXXXXXXXXX ooc. OUTPUT 

WAFERSCALE INTEGRATION, INC. 2·53 



PS0301 

Figure 18. 
Timing of 8-Bit 
Data, Non
Multiplexed 
Address/Data Bus, 
CRRWR = 1 

=-------'I 
SI/A19 
asCSI 

D 
PAD I 

irect (28).x 
nput 

A 
A15 
asA 

O/ADO- .x 
IAD15 
O-A15 

00 

00 
Multiple 

In 

xed (29) 

puts X 
, 

PA O-PA7....J 
2 

Activ e High r-; 
ALE, .. .2. 

Acti ve Low' 
ALE 

RDI E as E 

READ CYCLE 

7 

36 

STABLE INPUT 

6 

STABLE INPUT 

XXXXX 
6 

3 --
4 

35 

33 

5 

PPor WRN 
RiWa s R;W XXXx:.XXXIl 

~ 
f PBO-

32 - ~ 
~ 

-- ~ 32 

XU IXXX 

~ 
DATA 9 
OUT t-1J 

8_ 

12 ~ 
34 

19 
I--

Any 0 

PB7 as 1/0 Pin" .XXXXXXXXX INPUT 

See referenced notes on page 2·58. 

2·54 WAFERSCALE INTEGRATION, INC. 

WRITE CYCLE 
32 -- -

XX XXXX 
15 

36 

~ STABLE INPUT xxx :XXX 

14 

~ STABLE INPUT xxx :XXX -- -32 

1...--
XXX XXXX 

14 

DATA xx: IN 
I~ 

~ 3 17 

h ~ H It-~ ~ 35 

f--J ~ V 
33 

34 
,....----,. 

13 

~ -
.XXXXX r 

20 
..--. 

IXXXXXXXXXXXXXX.X X XX OUTPUT 



Figure 19. 
Timing of 16-Bit 
Non-Multiplexed 
Address/Data Bus, 
CRRWR = 0 

~ 
SI/A19 
asCSI 

D 
PAD I 

irect(28)~ 
nput 

A 
At5 
asA 

O/ADO-, ~ 
IAD15 
O-A15 

Multiple 
In 

xed (29)X: 
puts 

SHE 
a 
IPSE~X; 
s BHE 

O-PA? -, PA 
(Low Byte) --J 

O-PB? -, PB 
(Hig h Byte)--J 

.. -

~ 

~ 

2 

Activ e High v-h 
ALE' 
~~ 

Acti ve Low' 
ALE I\..-.J 

-
RD/E as RD 

VPPor 
asWR 

READ CYCLE 

7 

36 

STABLE INPUT 

6 

STABLE INPUT 

IXXXXX 
6 

~XXX}( 

3 --
4 

\ 
5 

See referenced notes on page 2-58. 

PSD301 

WRITE CYCLE 
32 - 32 

-~ - I-

'XXJ lXXXX 
I. 15 

36 

xz: ~ STABLE INPUT IXxx KXXX 
14 

~ ~ STABLE INPUT IXXX KXXX 
1- - 14-

32 32 

1,.--
IX )I XXX :XX)I XXXX 

14 
I~ 

OCDO XXx. :XXX XXXX 

~ 
DATA iJ.u DATA xx: 
OUT IN 

1-

DATA 9 DATA ~ OUT ~ IN 

~ 17 sl- 3 

~ -h r "-~ 11 

.J 
~ 
~ '-

.. f2j 

I-' 13 

~ I--

'----J 

WAFERSCALE INTEGRATION, INC. 2·55 



PSD301 

Figure 20. 
Timing of 16·8it 
Non·Multiplexed 
Address/Data 8us, 
CRRWR = 1 

=.-----'\ 
SI/A19 
asCSI 

D 
PAD I 

irect(2B)~ 
nput 

A 
A15 
asA 

O/ADO~ ~ 
IAD15 
O-A15 

Multipl 
In 
exed(29)~ 
puts ~ 

BHE 
a 
IPSEi:Z: 
sBHE 

O-PAl, PA 
(Low Byte) ---1 

O-PBl -, PBA 
(Hig h Byte)~ 

Activ e High Ir 

READ CYCLE -
7 

36 

~ STABLE INPUT 

6 

~ STABLE INPUT 

IXXXX) 
6 

IAXXU 

2 3 -h 4 

ASI 
r-~ 

Acti ve Low' 
AS 

IE as E 

W.BI 
RIW 

VPP.Q!' X 
as RIW 

35 

5 

IXXXX:XXX 

See referenced notes on page 2-58. 

2·56 WAFERSCALE INTEGRATION, INC. 

33 

J 

--

1--

IX DO 

IXIU 

DATA 
OUT 

DATA 
OUT 

81-

12 

.--.,. 

WRITE CYCLE 
32 32 

~ -- I-
'XX lXXXX 

15 

36 

~ ~ STABLE INPUT IXXX ~XXX 

14 

~ ~ STABLE INPUT IXXX .XXX -- 3r-32 

1,----

!XXX ~XX} ~XXX 
14 

1-

IXXX 'XU IXXXX 

~ 
1,...----

~ DATA~ 
IN 

iJ.L DATA DO< IN 

~ 3 17 

h ~ l- V-- rL ~ 35 

V-
~ 

f---J 1"-
33 

34 34 

13 

~ 
I---

""""'" 
II 



Figure 21. 
Chip-Select 
Output Timing 

Figure 22. 
Port A as 
ADo-AD7 Timing I 

CSI/A19 
as CSI 

Direct PAD (28) 

Input 

Multiplexed (34) 

PAD Inputs 

ALE 
(Multiplexed 
Mode Only) 

or ALE 
(Multiplexed 
Mode Only) 

-(30,3 
CSOI 

5) 

I 

I 

x: 
2 

~---, 

' . .2... 

'---./ 

READ CYCLE 

PS0301 

30 

F 
INPUT STABLE 

I 
XXXXXXX ,X :X~ 

3 

/ 

L 

21 22 

I- ,---

32 

WRITE CYCLE "ir-
(Track Model, Direct(28'31) ..... ""\lt--l--:::-=-:-:::-:::-:--=-=::----~,__L--_::_=_::::_::::_:_:_:_=_----l~1 ~"""r7IJ" 

'I PAD INPUT STABLE INPUT STABLE XXXX 
CRRWR = 0 Input 2 I 2 

Multiplexed(32, 34)-m;~7t~I~N=P:-::UT:-::ST.::A-:B::-L=-E ~~X:~XX~, X7I:X~Xv,obXX~:X7t::;IN~P::-:U::T-:S=TA::B:-:-L-:E'X7IX7IX~,XV,~X~ X,X~:Xkh:O\X 
PAD Inputs 

3 J 2 31 
...... ~-+t'l ~- ~ I 

AO/ADO- ----, ADDRESS >--I-<~AD ~ ADDRESS )--
A7/AD7 ~ I ~TA 1'--,-------rI 

I 

W~~1:N r--
--I-

V-h 
ALE -' 

f4~ 
I'-------t---t'~ 

v-r---. 

~r2+ 
"""""'\ 

orALE I'-~ ~+--./ 

.I 12 

RD/E as RD 4 _\. 

I 32 __ - 11 12 

-~ \ DATA IN )- ADR 
OUT 

I 

1_271-~ 

lI-----+--<{ DATA OUT 

~ 
~ 

_130,33) ----------------------.,,~ 
CSOi 

See referenced notes on page 2-58, 

WAFERSCALE INTEGRATION, INC. 2·57 



PSD301 

Figure 23. 
Port A as 
ADO-AD7 Timing 
(Track Mode), 
CRRWR = 1 

32 

READ CYCLE - - WRITE CYCLE 

32 - -
Direct(28,31)~~'T--=::-::::-::::-::-:----t\IrT-----::=:-:::-:::::::::-::----t\lI\J~7\T 
PAD INPUT STABLE INPUT STABLE ,XXXX 

Input 21 

Multiplexed (32,34)~")~oocvv\lr-::IN-:P~U::T:-:S::T:-:A-:B-:-LE::-UI: X, Xii, X';}Xv,~ X~~ X, XJtlXiit,'O\J X~I~N::P-;-:U=T-:::S::T-:-A::BL:-:E:--1X';},VX~'O'\X,XiI,X';}~XV,~X,'UtXi'D~X\7\ 
PAD Inputs 2 3 ,I 

'I ~I- 26_ 

AO/ADO
A7/AD7 

-~r-~~~~--~~~ ADDRESS ~TA r- ADDRESS 1'-- 1}'f·flTEN I 

- 1- 32 

vt----l 1/\ 
I'------------+--~~ 1~------------+_--fV ~ 

I"'~ 

Irn 
AS 

--' 

~r--:. 
-, 

or AS 35 12 

33 33 

RD/E as E v \ II , 

32- I-

WRNPPor XXX :X :XXX JIXX [XXXX 
RiWas R/W 

~ ~ 24 

-e 23 ~ 
I---

-e 23 t- -- 271-~ 

PAD-PA7 -k IADR' 
IOUTI 

J 
\ 

DATA r-< IN 
I ADR' 
I OUT I 

DATA 
OUT 

__ (30,33 ) 
CSOi 

NOTES: 2B. Direct PAD input = any of the following direct PAD Input lines: CSI/A19 as transparent A19, 
RD/E, WR or R/W, transparent PCO-PC2, ALE In non-multiplexed modes. 

29, Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): AO/ADO-A15/AD15, 
CSi/A19 as ALE dependent A19, ALE dependent PCO-PC2. 

30. CSOi = any of the chip-select output signals coming through Port B (CSO-CS7) or through Port C 
(CSB-CS10). 

31. CSADOUT1, which Internally enables the address transfer to Port A, should be derived only from 
direct PAD input signals, otherwise the address propagatIOn delay is slowed down. 

32 CSADIN and CSADOUT2, which internally enable the data-in or data-out transfers, respectively, 
can be derived from any combination of direct PAD inputs and multiplexed PAD inputs. 

33. The write operation signals are Included in the CSOi expression. 
34. Multiplexed PAD Inputs: any of the following PAD inputs that are latched by the ALE (or AS) in 

the multiplexed modes: A11!AD11-A15/AD15, CSIIA19 as ALE dependent A19, ALE dependent 
PCO-PC2. 

35. CSOI product terms can include any of the PAD input signals shown in Figure 3, except for reset 
and CSI. 

2·58 WAFERSCALE INTEGRATION, INC. 



Table 14. Pin 
Capacitance36 

Figure 24. 
AC Testing 
Input/Output 
Waveform 

Figure 25. 
AC Testing 
Load Circuit 

Erasure and 
Programming 

PS0301 

Symbol Parameter Conditions Typical37 Max Units 

CIN Capacitance (for input pins only) VIN = OV 4 6 pF 

COUT Capacitance (for input/output pins) VOUT = OV 8 12 pF 

CvPp Capacitance (for WR/vpp or R/W/Vpp) Vpp = OV 18 25 pF 

NOTES: 36. This parameter is only sampled and is not 100% tested. 
37. Typical values are for T A = 25°C and nominal supply voltages 

'::=x 

DEVICE 
UNDER 

TEST 

To clear all locations of their programmed 
contents, expose the device to ultra-violet 
light source. A dosage of 15 W-second/cm2 

is required. This dosage can be obtained 
with exposure to a wavelength of 2537 A 
and intensity of 1200 I!W/cm2 for 15 to 20 
minutes. The device should be about 1 
inch from the source, and all filters should 
be removed from the UV light source prior 
to erasure. 

The PSD301 and similar devices will erase 
with light sources having wavelengths 
shorter than 4000A.. Although the erasure 
times will be much longer than with UV 
sources at 2537 A, exposure to fluorescent 
light and sunlight eventually erases the 

2.01 V --
~ 1950 
i> 

....... CL =30pF I (Including 
scope and Jig -=- capacitance) 

device. For maximum system reliability, 
these sources should be avoided. If used 
in such an environment, the package 
windows should be covered by an opaque 
substance. 

Upon delivery from WSI, or after each 
erasure, the PSD301 device has all bits in 
the PAD and EPROM in the "1" or high 
state. The configuration bits are in the "0" 
or low state. The code, configuration, and 
PAD MAP data are loaded through the 
procedure of programming 

Information for programming the device is 
available directly from WSI. Please contact 
your local sales representative. 

WAFERSCALE INTEGRATION, INC. 2·59 

fJ 



PSD301 

PSD301 
Pin 
Assignments 

44-Pin 
PLOCCI 
CLOCC 

Package 

1 

44-Pin 
Name CPGA 

Package 

BHE/PSEN A5 
2 WRlVpp or RiW ~ 

Ordering 
Information 

3 RESET 

4 PB7 

5 PB6 

6 PB5 

7 PB4 

8 PB3 

9 PB2 

10 PB1 
11 PBO 

12 GND 

13 ALE or AS 

14 PA7 

15 PA6 

16 PA5 

17 PA4 

18 PA3 

19 PA2 

20 PA1 

21 PAO 

22 RD/E 

Speed Part Number (ns) 

PSD301-12J 120 
PSD301-12L 120 
PSD301-12X 120 
PSD301-15J 150 
PSD301-15L 150 
PSD301-15LM 150 
PSD301-15LM 150 
PSD301-15X 150 
PSD301-15XM 150 
PSD301-15XMB 150 
PSD301-20J 200 
PSD301-20L 200 
PSD301-20LM 200 
PSD301-20LMB 200 
PSD301-20X 200 
PSD301-20XM 200 
PSD301-20XMB 200 

2-fjIJ WAFERSCALE INTEGRATION, INC. 

B4 

A3 

B3 

A2 

B2 

B1 
C2 
C1 
D2 

D1 

E1 

E2 

F1 

F2 
G1 
G2 
H2 
G3 
H3 
G4 

Package 
Type 

44-pin PLDCC 
44-pin CLDCC 
44-pin CPGA 
44-pin PLDCC 
44-pin CLDCC 
44-pin CLDCC 
44-pin CLDCC 
44-pin CPGA 
44-pin CPGA 
44-pin CPGA 
44-pin PLDCC 
44-pin CLDCC 
44-pin CLDCC 
44-pin CLDCC 
44-pin CPGA 
44-pin CPGA 
44-pin CPGA 

44-Pin 44-Pin PLDCCI Name CPGA CLDCC Package Package 
23 ADO/AO H4 
24 AD1IA1 H5 
25 AD2/A2 G5 
26 AD3/A3 Hs 
27 AD4/A4 Gs 
28 AD5/A5 H7 
29 AD6/A6 G7 
30 AD7/A7 Ga 
31 AD8/A8 F7 
32 AD9/A9 Fa 
33 AD10/A10 E7 
34 GND Ea 
35 AD11/A11 Da 
36 AD12/A12 D7 
37 AD13/A13 Ca 
38 AD14/A14 C7 
39 AD15/A15 Ba 
40 PCO B7 
41 PC1 A7 
42 PC2 Bs 
43 A19/CSI As 
44 Vee B5 

Package Operating WSI 
Drawing Temperature Manufacturing 

Range Procedure 

J2 Comm'l Standard 
L4 Comm'l Standard 
X2 Comm'l Standard 
J2 Comm'l Standard 
L4 Comm'l Standard 
L4 Military Standard 
L4 Military MIL-STD-883C 
X2 Comm'l Standard 
X2 Military Standard 
X2 Military MIL-STD-883C 
J2 Comm'l Standard 
L4 Comm'l Standard 
L4 Military Standard 
L4 Military MIL-STD-883C 
X2 Comm'l Standard 
X2 Military Standard 
X2 Military MIL-STD-883C 



WAFERSCALE INTEGRATION, INC. 

System 
Development 
Tools 

Hardware 

Software 

Support 

Training 

The PSD301 features a complete set of 
System Development Tools. These tools 
provide an integrated, easy-to-use software 
and hardware environment to support 

The PSD301 System Programming 
Hardware consists of: 

r:I WS6000 MagicPro Memory and PSD 
Programmer 

r:I WS6013 44-pin LCC Package Adaptor 
(for CLDCC and PLDCC packages) 

The PSD301 System Development Software 
consists of: 

r:I WISPER, WSI's Software Environment 

r:I MAPLE, the PSD301 Location Editor 
Software 

r:I MAPPRO, the Device Programming 
Software 

WSI provides a complete set of quality 
support services to registered System 
Development Tools owners, including: 

r:I 12-month software updates 

WSI provides in-depth, hands-on workshops 
for the PSD301 device and System 
Development Tools. Workshop participants 
learn how to program high-performance, 

PSD301 
System 
Development Tools 

PSD301 device development. To run these 
tools requires an IBM-XT, -AT, or 
compatible computer, MS-DOS 3.1 or 
higher, 640K byte RAM, and a hard disk. 

r:I WS6014 44-pin CPGA Package Adaptor 

The MagicPro Programmer is the common 
hardware platform for programming all WSI 
programmable products. It consists of an 
IBM-PC plug-in programmer board and a 
remote socket adaptor. 

The configuration of the PSD301 device is 
entered using MAPLE software. MAPPRO 
software uses the MagicPro programmer 
and the socket adaptor to configure the 
PSD301 device, which then can be used. 
The development cycle is depicted in 
Figure 26. 

r:I Design assistance from WSI field 
application engineers and application 
group experts 

r:I 24-hour electronic bulletin board for 
design assistance via dial-up modem. 

user-configurable mappable memory 
subsystems. Workshops are held at the WSI 
facility in Fremont, California. 

WAFERSCALE INTEGRATION, INC. 2-61 



PS0301 

Ordering 
Information -
System 
Development 
Tools 

Figure 26. 
PSD301 
Development 
Cycle 

PS0301·GOLO 
U WISPER Software 

U MAPLE Software 

U User's Manual 

U WSI Support 

U WS6000 MagicPro™ Programmer 

U WS6013 44-pin LCC Package Adaptor 

U Two PS0301-15L Samples 

PS0301·SILVER 
U WISPER Software 

U MAPLE Software 

U User's Manual 

U WSI Support 

WS6000 
U MagicPro Programmer 

U IBM-PC© plug-in Adaptor Card 

U Remote Socket Adaptor 

Menu Selection 

Configuration Data 

Programming Data 

2·62 WAFERSCALE INTEGRATION, INC. 

WS6013 
U 44-pin LCC Package Adaptor for CLOCC 

and PLOCC Packages 

U Used with the WS6000 MagicPro 
Programmer 

WS6014 
U 44-Pin CPGA Package Adaptor, Used 

with WS6000 MagicPro Programmer 

WSI Support 
Support services include: 

U 12-month Software Update Service 

U Hotline to WSI Application Experts 

U 24-hour access to WSI Electronic Bulletin 
Board 

WSI Training 
U Workshops at WSI, Fremont, CA 

U For details and scheduling, call PSO 
Marketing (415) 656-5400 

IBM PLATFORM 

MagicPro Hardware 



Programmable System™ Device 
WAFERSCALE INTEGRATION, INC. 

PAC1000 Introduction 

Overview 

User·Configurable 
Microcontroller 

In 1988 WSI introduced a new concept in 
programmable VLSI: the Programmable 
System™ Devices (PSD). The PSD is 
defined as a family of User-configurable 
system level building blocks on-a-chip 
enabling quick implementation of application 
specific controllers and peripherals. The 
first generation PSD series includes the 
MAP168, a User-Configurable Peripheral 
with Memory; the SAM448, a User
Configurable Microsequencer; and the 
PAC1000, a User-Configurable 
Microcontroller. 

The PAC1000 user-configurable high
performance microcontroller is the first of 
a generation of products intended for 
applications in high-end embedded control 
where high-speed data processing, interface 
or control is needed. The PAC1000 replaces 
a board full of discrete components such 
as standard logic, FIFO, EPROM for 
microcode store, ALU, SEQUENCER, 
register files and PALlPLD/PGA. To shorten 
the time-to-market for the system designer, 
a high-level software development language 
is used. This contrasts with the myriad 
state-machine entry, schematic entry, and 
place and route tools that would be 
needed for a discrete design using PAL, 
PLD, PGA or gate arrays. 

The PAC1000 architecture is flexible and 
enables the system designer to customize 
the PAC1000 to optimize application 
performance. The PAC1000 is composed 
of three basic sections: a CPU for data 
processing, a programmable instruction 
control unit that determines the next 
address to the microcode store through 
polling condition codes or responding to 
interrupts, and a host interface to 
asynchronously load data from the host. 
Registered inputloutputs are used to 
synchronize with the system. 

As a result of integrating logic and EPROM 
memory into the PAC1000 and defining a 
high-level language for programming both, 
time-to-market and board space is reduced 
and reliability increased. The PAC1000 is 
currently used in applications such as 
Intelligent DMA controller, FDDI buffer 
controller, Frame buffer controller, LAN 
communications controller, disk controller, 
and 1/0 controller. For further details on 
the PAC1000 see Application Note 10. 

WAFERSCALE INTEGRATION, INC. 2·63 



Contents Features ...................................................................................................................................... 2-65 
General Description .................................................................................................................... 2-66 
Architectural Overview ................................................................................................................ 2-68 
Operational Modes ...................................................................................................................... 2-70 
Host Interface .............................................................................................................................. 2-71 

FIFO ..................................................................................................................................... 2-71 
Data I/O Registers ................................................................................................................ 2-73 
Program Counter .................................................................................................................. 2-73 
Status Register ..................................................................................................................... 2-73 

Control Section ........................................................................................................................... 2-75 
Parallel Operations ............................................................................................................... 2-75 
Program Memory ................................................................................................................. 2-76 
Security ................................................................................................................................ 2-76 
15-Level Stack ..................................................................................................................... 2-76 
Program Counter .................................................................................................................. 2-76 
Loop Counter ....................................................................................................................... 2-77 
Debug Capabilities ............................................................................................................... 2-77 

Breakpoint Register ....................................................................................................... 2-77 
Single Step .................................................................................................................... 2-77 

Condition Codes ................................................................................................................... 2-77 
User-Specified Conditions ............................................................................................. 2-78 
CPU Flags ..................................................................................................................... 2-78 
FIFO Flags .................................................................................................................... 2-78 
Stack-Full Flag .............................................................................................................. 2-78 

Interrupt Flag ............................................................................................................................... 2-78 
Data Register Read Flag ............................................................................................... 2-78 
Counter Flag .................................................................................................................. 2-78 

Case Logic ........................................................................................................................... 2-79 
Case Instructions ........................................................................................................... 2-79 
Priority Case Instructions .............................................................................................. 2-79 

Interrupt Logic ...................................................................................................................... 2-79 
Interrupt Mask Register ................................................................................................. 2-80 

Output Control ...................................................................................................................... 2-81 
Counters ..................................................................................................................................... 2-81 

Address Counter .................................................................................................................. 2-81 
Block Counter ....................................................................................................................... 2-82 

Central Processing Unit .............................................................................................................. 2-82 
Arithmetic Operations .......................................................................................................... 2-85 
Logic Operations .................................................................................................................. 2-85 
Shift Operations ................................................................................................ '" ................ 2-85 

Shift Right ...................................................................................................................... 2-85 
Shift Left ........................................................................................................................ 2-85 

Rotate Operations ............................................................................. '" ................................ 2-86 
Multiple Precision Operations .............................................................................................. 2-86 

I/O and Special Functions ........................................................................................................... 2-86 
Configuration Registers .............................................................................................................. 2-88 

Control Register ................................................................................................................... 2-88 
I/O Configuration Register ................................................................................................... 2-90 
Mode Register ...................................................................................................................... 2-91 

State Following Reset ................................................................................................................. 2-92 
Electrical and Timing Specifications ............................................................................................ 2-94 
Pin Assignments ....................................................................................................................... 2-100 
Instruction Set Overview ........................................................................................................... 2-104 
System Development Tools ...................................................................................................... 2-109 

Hardware ............................................................................................................................ 2-109 
Software ............................................................................................................................. 2-109 
Support ............................................................................................................................... 2-109 
Training .............................................................................................................................. 2-109 

Ordering Information-PAC1000 .............................................................................................. 2-110 
Ordering Information-System Development Tools ................................................................. 2-111 

2·64 WAFERSCALE INTEGRATION, INC. 



='==== ~iE ... ------ ~ --- --
!!r !i-.=-ii~ == 
---~~ -
WAFERSCALE INTEGRATION, INC. 

Programmable System™ Device 
PAC1000 

Preliminary 

Features 

Figure 1. 
PAC1000 Block 
Diagram 

Cl 

Cl 

Cl 

Cl 

Use,-Configurable 
MiclOcontroller 

First Generation Programmable System Cl Address Generation-Up To 4 Mbytes 
Device (PSD) Address Space 

High-Performance User-Configurable Cl High-Level Development Toois-System 
Microcontroller-20 MHz Instruction Exe- Entry Language, Functional Simulator, 
cution, Output Port, and Address Bus and Device Programmer 

Single-Cycle Control Architecture-One Cl Re-Programmable Program Store-
Cycle Per Instruction On-Board 1 Kx64-Bit EPROM 

16-bit CPU-Arithmetic Operations, Cl Two Operating Modes-Host Processor 
Logic Operations, 33 General-Purpose Peripheral or Stand-alone Controller 
Registers Cl Security-For EPROM Program Memory 

CK RESET Cs RD WR HD[150] HADI50] 

~ ~ I 

I Configurabon 
Registers Host Interface I 
r i 

• • Control Section 

I SecUrity Bit I lKx64 EPROM I CPU 

I Loop Counter I 
15-Level I Breakpoint Register I 

Stack 

I Program Counter I 
Case LogiC ~ Block Counter J 

User Condition-Code I Interrupt 
~ Address Counter J Output LogiC LogiC 

~ ~ 1 
I 1/0 & Special II Address/Data I Function Port Port 

f f 

~ ~ -:!:-
OUTCNTL[15.0] CC[7·0] INT[3·0] 1/0[70] ADD[15.0] 

1738 01 

WAFERSCALE INTEGRATION, INC. 2-65 

____ 0 _____ • _ 

fJ 



PAC1000 

General 
Description 

Figure 2. Single
Cycle Control 
Architecture 

In 1988 WSI introduced a new concept in 
programmable VLSI, Programmable System 
Devices (PSD). The PSD family consists of 
user-configurable system-level building 
blocks on-a-chip, enabling quick implementa
tion of application-specific controllers and 
peripherals. The first generation PSD series 
includes the MAP168, a User-Configurable 
Peripheral with Memory; the SAM448, a 
User-Configurable Microsequencer; and the 
PAC1000, a User-Configurable Microcon
troller. 

The PAC1000 User-Configurable Microcon
troller is based upon an architecture that 
enables it to execute complex instructions in 
a single clock cycle. Each PAC1000 instruc
tion can perform three simultaneous opera
tions: Program Control, CPU functions, and 
Output Control, as shown in Figure 2. The 
PAC1000 can also perform address genera
tion or event counting simultaneously with in
struction execution. The PAC1000 is also 
capable of performing a conditional test on 

co~:~~ -~:---r--co-n-'tro""l-un-,t--' 
Interrupts -~~ 1 K x e':'~PROM 

Next Instruction 
Definition 

ClK 
Instruction Register 

~o~~: ;u~p';;: ~;U -

up to four separate conditions and multi-way 
branching in a single cycle. 

The PAC1 000, with its System Development 
Tools, matches the development cycle and 
ease of use of any standard microcontroller. 
The high performance and flexibility of the 
PAC1 000 were previously available only to 
designers who could afford the long develop
ment cycle, high cost, high power, and large 
board space requirements of a building-block 
solution (i.e., Sequencer, Microcode Memory, 
ALU, Register File, PALs, etc.) 

The unique capabilities of PAC1000 are 
easily utilized with System development 
tools, which include a PACSEL C-like System 
Entry Language, a PACSIM Functional 
Simulator, and a MagicPro™ Device Pro
grammer. All System Development Tools are 
PC-based and will operate on an IBM-XT, 
AT, PS2 or compatible machine. For more in
formation, contact your nearest WSI sales 
office or representative. 

WR HD[1S:0] HAD[1S0] 

28 
CPU 

20 
CPU Operation 

Definition 

OC[1S'0] 1/0[7.0] ADD[1S:0] 

Important Features: 

• One cycle per instruction 
• 20 MHz Instruction execution rate 
• Every instruction executes 3 parallel operations (Control, Output, CPU) 1738 02 

2·68 WAFERSCALE INTEGRATION, INC. 



PAC1000 

Table 1. Pin 
Description Signal I/O Oescription 

HD[15:0] I/O Host Data. PAC1000 Data I/O Port via the Host Inter-
face. Can also be configured to generate 16-bit ad-
dress or status. Can serve as a general-purpose Data 
110 Port. 

HAD[5:0] I/O Host Address. Can be configured to output the lower 
six bits of the 22-bit Address Counter; can be used as a 
Host Interface function address, or as a general-
purpose 16-bit port. 

CS Chip Select (active low). Used with RD and WR to 
access the device via the Host Interface. 

RD Read Enable (active low). Used with CS to output Pro-
gram Counter, Status Register, or Data Output Regis-
ter to HD[15:0] bus lines. 

WR Write Enable (active low). Used with CS to write HD 
Bus data via the Host Interface into the PAC1 000 
FIFO. 9 CK Clock. 

CC[7:0] Condition Codes. Condition-code inputs for use with 
Call, Jump, and Case instructions. 

INT[3:0] Interrupts. General-purpose, positive-edge-triggered 
interrupt inputs. 

RESET Asynchronous Reset (active low). Resets Input/Output 
registers and counters, tri-states all 110, and sets the 
Program Counter to O. 

OUTCNTL[15:0] 0 Output Control. User-defined Output Port. May be pro-
grammed to change value every cycle. 

ADD[15:0] I/O Address Port. Outputs data from Address Counter or 
Address Output Register when configured as an 
output. When configured as an input, reads data to 
Address Input Register. 

1/0[7:0] I/O Input or Output Port. Individually configurable bidirec-
tional bus. As simple I/O, outputs come from the I/O 
Output Register, and inputs appear in the I/O Input 
Register. As special I/O functions, provides status, 
handshaking, and serial I/O. Alternatively, these signals 
can be used to extend the OUTCNTL or ADD lines. 

WAFERSCALE INTEGRATION, INC. 2·67 



PAC1000 

Architectural 
Overview 

The PAC1000 is a user-configurable micro
controller optimized for high-performance 
control systems. The primary architectural 
elements, shown in Figure 3, are the Control 
Section, 16-bit CPU, Host Interface, 16-bit 
Address Port, 16-bit Output Control, 8-bit I/O 
Port, and Configuration Registers. 

The PAC1000 can be used as a stand-alone 
microcontrolier or as a peripheral to a host. In 
the lalter case, the Host Data (HD) and Host 
Address (HAD) buses, together with the CS, 
RD, and WR pins allow for direct connection 
to a host bus. User-defined commands to the 
Control Section or data to the CPU can be 
loaded through the Host Interface. 

In the stand-alone mode, the Host Interface 
ports can be used as additional address, data 
or I/O ports using the Data Output Register 
(DOR) and Data Input Register (DIR). The 
ADD port can be used to generate addresses 
through the Address Output Register (AOR) 
or the Address Counter. A DMA channel can 
be formed on the Host Interface using these 
and the Block Counter (BC) register. In 
addition, the ADD port can be used as a data 
bus or an I/O port, depending on how the 
chip is configured. Each pin in the I/O port 
can be configured individually as input, 
output, or special function. The special 
functions allow the control of internal 
PAC1 000 elements (counters, 110 buffers) by 
other board elements. 

The 16-bit CPU is highly parallel and can 
operate on operands from the 32x16-bit 

2·68 WAFERSCALE INTEGRATION, INC. 

register file, miscellaneous register (AOR, 
AIR, DOR, DIR, Q, etc.), or constants loaded 
from the internal program-store EPROM. 

The internal and external operations of the 
PAC 1 000 are controlled by the Control 
Section. The 16 Output Control (OC) lines 
are general-purpose outputs. Each of them 
can be changed independently every clock 
cycle. They provide a very fast means to 
control various processes outside the chip. 

In every clock cycle, one instruction is 
executed. Each instruction consists of up to 
three operations in parallel: 

D Instruction Fetch-the next instruction is 
fetched from the 1 Kx64 EPROM by the 
Program Control. 

D Execution-the CPU executes an instruc
tion. 

D Output-placed on the Output Control 
(OC) lines. 

Program flow can be changed through the 
condition-code inputs in one clock cycle or 
through the interrupt inputs after two clock 
cycles. Single-cycle 16-way branches can be 
done using the Case instruction, which 
samples four condition codes per cycle. 
Nested loops and subroutines can be carried 
out with the 15-level stack and the loop 
counter. The chip configuration can be 
changed in any cycle by loading the Configu
ration Register using the Program Control 
instruction portion. 



Figule3. 
Detailed 
Block Diagram 

Internal 
INTR 
4 

INTR 

~ 

oc 

HD 

16 16 

Register 
File + 

a Register 

ALU 

CPU 

VO Configuration 

Mode 

Control 

HAD 

Configuration RegISters 

16 16 

PACtOOO 

WAFERSCALE INTEGRATION, INC. 2-69 

I 

9 



PAC1000 

OperatiDnal 
Modes 

Figure 4. 
Peripheral Mode 

Figure 5. 
Stand-alone Mode 

The two basic modes of operation for the 
PAC1000 are either as a memory-mapped 
peripheral (Figure 4) or as a stand-alone 
controller (Figure 5). 

In the peripheral mode, the host processor 
can asynchronously interface with the 
PAC1000. 

Address 

Host Processor Memory 
Data 

-------- -- --------- --, , , PAC1000 , 
~: 

, 
~ 

, , CPU , Data Path , 
Host 

, 
Element, , , 

~: 
Interface , Control High Speed , Process, 

Control , 
Fast Bus, Etc. , , , , 

~: 
, 

I , 
Status/Interrupts , , , 

I. ____________ .. _ .............. .. 

1738 04 

Vcc 
Address 

Memory 

.. -.... ------------- .. , 
PAC1000 

, , 
CS , 

RD 

CPU 
, 

Host and 
, 

Data , 
Data , 

Interface , 
WR 

Control , , , , , , --
, 

Data Path ----- ------------.1 Element, 
Control High Speed 

Process, 
Fast Bus, Etc. 

Status/Interrupts 

1738 05 

2·70 WAFERSCALE INTEGRATION, INC. 



Host Interface 

Figure 6. 
Host Interface 
Architecture 

The Host Interface section of the PAC1000, 
shown in Figure 6, includes the Input Com
mand/Data FIFO, Input/Output Data Regis
ters, and the Status Register. 

FIFO 
When the PAC 1 000 serves as a peripheral to 
a host, the FIFO is used to asynchronously 
load commands or data into the PAC1000. In 
order to write into the FIFO, CS and WR 
must have low-to-high transitions. The 
information written into the FIFO is specified 
by the 16-bit Interface Data bus (HD) and the 
6-bit Host Address bus (HAD). Since the 
FIFO is used only to buffer data and com
mands from a host, it is inoperative when the 
PAC1000 is in stand-alone mode. 

Host 
Interface 
Decoder 

,-.,-----------' 

Decoded Signals 

16 

DIR 

Data 
Input 

Register 

16 

DOR 

Data 
Output 
Register 

16 

HD[O"151 

16 

Status 
Register 

Internal Flags 

Internal Bus 

PACtOOO 

Bit five of the HAD bus specifies whether the 
input to the FIFO is command (HADS=1) or 
data (HADS=O). HADS is connected to the 
FICD internal Condition Code that can be 
sampled by the Control Section. If a com
mand is written, then the lower 10 bits of the 
HD bus are used as the branch address for 
one of the 1024 locations in the Program 
Memory EPROM. At that location a user 
defined command or subroutine should exist 
which executes the needed operation. If the 
information is data, then the lower S bits of 
the HAD bus specify which CPU register is to 
be loaded from the HD bus. 

This method of operation allows the host to 
access the PAC1000 as a memory-mapped 
peripheral. 

HAD[O 51 

ACL 

8 x 16 Command 
and Data 

8 x 5 Register 8 x 1 
POinter 

FICD 

To Register File 
1738 06 

WAFERSCALE INTEGRATION, INC. 2·71 



PAC1000 

Host Interface 
(CDn't) 

Table 2. 
Host Interface 
Functions 

An example of FIFO usage is shown in 
Figure? When command or data information 
is available in the FIFO, the FIFO Output 
Ready (FIOR) interrupt (interrupt 5) triggers. 
If the FIOR interrupt is masked, then the 
FIOR status may be polled under program 
control. If HAD5 equals 1, the branch ad
dress location specified by MOVE is the 
Program Memory Address which contains the 
user specified instruction or sub-routine 
which executes the command. A JUMP or 
CALL FIFO control instruction performs a 
jump or call to the location specified by 
MOVE. If HAD5 equals 0, an RDFIFO 
instruction can transfer the FIFO contents 
into the register specified by HAD[4:0]. 

For further explanation, refer to the diagram 
below. Beginning at the location specified by 
MOVE, a user defined program exists which 
is going to load data into CPU registers 0,1,2, 

-cs 1f1) WR HA05 HAO[4:0] 

0 0 0 Register 

Address 

0 0 X 

0 0 0 00100 

0 0 0 00011 

0 0 0 00010 

0 0 0 00001 

0 0 0 00000 

2·72 WAFERSCALE INTEGRATION, INC. 

and 3 in four consecutive cycles from the 
next four FIFO locations. If one of the four 
FIFO locations contains a command 
(FICD=1), interrupt level? occurs (highest 
level). Loading a command into a CPU or 
other data register is not allowed. If this 
occurs, FIXP (FIFO exception) will be gener
ated. 

Following the execution of this routine, the 
Control Section is ready for its next instruc
tion. 

The FIFO drives three internal flags which 
can also be programmed to interrupt the 
PAC1000. They are: 

r:l FiTR (FIFO full) and FIXP (FIFO excep
tion), which drive INT? 

r:l FIOR (FIFO output ready), which drives 
INT5. 

HO[15:0] FunctiDn 

Data Write data to FIFO 

Command Write command to FIFO 

X Reset FIFO 

X Reset status register 

Data Read program counter 

Data Read status register 

Data Read data output register 



Host Interface 
(Con't) 

Figure 7. 
ExampleD' 
FIFO Block 
Diagram and 
Usage 

Data I/O Registers 
Input and Output Data Registers are used to 
communicate with the Host Data (HD) bus. 
CPU Registers may be loaded directly from 
the Data Input Register (DIR) without passing 
through the FIFO. Similarly, the PAC1 000 
may be read via the Data Output Register 
(DOR). 

Program Counter 
The Program Counter may be read via the 
Host Data bus. This allows a host to monitor 

PAC1000 

the Program Memory address bus. It can also 
be used to drive external memory devices for 
expansion of the Control Port. 

Status Register 
The Status Register (SR), shown in Figure 8, 
monitors all internal status. Status bits can be 
set only by program execution. The SR can 
be read or cleared as specified in the Host 
Interface Functions table. 

All SR flags are active high (1) and are 
latched at the rising edge of the clock. 

HAD5 HAD[4'0] HD[15'10] HD[9'0] 

x x x x 

x x x x 

l Write pOinter]=; X X X X 

0 R3 Address Data to CPU 

0 R2 Address Data to CPU 

0 R1 Address Data to CPU 

0 RO Address Data to CPU 

FICDto 1 
Condition Code 
Multiplexer +----:l 
Command to 
Control Section 
when FICD = "1" 

X X MOVE ~ Read pOinte~ 
I I I I 

IHD[9:0] IHD[15:0] Data to CPU 

I 
I 

when FICD = 

IHAD[4:0] Register Address 
to CPU Register 

FICD = 1 Command (actually a branch) to the Control Section 

FICD = 0 Data to CPU Register 

WAFERSCALE INTEGRATION, INC. 

"0" 

1738 07 

2-73 



PAC1000 

Host Interface 
(Con't) 

FigureS. 
Status Register 

STAT11-(DBB) Security Bit, set when 
security is active: 

1 = Security active. 

0= No security. 

STAT10-WSI Reserved. 

STAT9-(FIXP) FIFO Exception, set when 
the CPU receives a command or Control 
Section receives data: 

1 = Command or data received. 

0= No exception occurred. 

STATS-(FIIR) FIFO-Input Ready, set when 
there is at least one vacant location in the 
FIFO: 

1= FIFO ready for input. 

0= FIFO not ready for input. 

STAT7-(CY) Carry Flag, set when a carry 
(addition) or borrow (subtraction) occurs 
in CPU operations: 

1= Carry occurred. 

0= No carry occurred. 

STAT6-(Z) Zero Flag, set when the result of 
a CPU operation is zero: 

1 = Zero occurred. 

0= No zero occurred. 

STAT5-(O) Overflow Flag, set when an 
overflow occurs during a two's comple

. ment operation: 

1 = Overflow occurred. 

0= No overflow occurred. 

o 
o 

Reserved 
Reserved 

Statll 

Reserved 

Stat9 

Stat8 

MSB 

I 
~ 

2·74 WAFERSCALE INTEGRATION, INC. 

STAT4-(S) Sign Bit, set when the most 
significant bit of the result of the previous 
CPU operation is negative: 

1 = Result is negative. 

0= Result is positive. 

STAT3-(STKF) Stack Flag, set when the 
stack is full: 

1 = Stack is full. 

0= Stack is not full. 

STAT2-(BRKPNT) Breakpoint Flag, set 
when the address in the breakpoint 
register is equal to the EPROM address: 

1 = Breakpoint occurred. 

0= No breakpoint occurred. 

STAT1-(BCZ) Block Counter Zero, set 
when the counter decrements to all Os: 

1 = Block Counter reached zero. 

0= Block Counter is not zero. 

STATO-(ACO) Address Counter Ones, set 
when the counter increments to all 1 s: 

1 = Address Counter reached all ones. 

0= Address Counter is not all ones. 

LSB 

I 
IL-
~ 

StatO 

Stat 1 

Sta12 

Stat3 
Sta14 

Slat5 

Slat6 

Sla17 
1738 08 



Contro/Sect/on 

Figure'. 
ContlD/ 
Architecture 

-~~------

The control section, shown in Figure 9, 
consists of a number of blocks which are 
concerned with the sequencing of the control 
programs in the PAC1 000. These are: 

a Program Memory 

a Security 

a 15-Level Stack 

a Program Counter 

a Loop Counter 

a Breakpoint Register 

a Condition Codes 

CC[O:7] 

IntemalCC 
(from AWl 

External 
Interrupts 

Internal 
Interrupts 

8 

13 

4 

4 

a Case Logic 

a Interrupt Logic 

a Output Control 

PAC100D 

Each block is described in detail below. 

I'tnllellJptlftltlDIIB 
The PAC1000 can perform three simultane
ous operations within a single instruction 
cycle, as shown in Figure 10. The ability to 
fetch an instruction from the Program Mem
ory, execute it, and output a result within 50 
nsec is due to a highly parallel structure. 

Internal Bus 

16 

IS·level 
Stack 

loop 
Counter 

Program 
Memory 

IK x64EPROM 

16 

OC[O:I5] 

},-Control 
Signals 

WAFERSCALE INTEGRATION, INC. 

1738 09 

2·75 



PAC1000 

Control Section 
(Con't) 

Figure 10. 
Parallel 
Operations 

Program Memory 
The Program Memory is a 1 Kx64 high-speed 
EPROM. This on-board-memory allows the 
PAC1 000 to operate in embedded control 
applications and eliminates the need for 
external memory components. Using an 
erasable memory allows program code to be 
modified for debug and/or field upgrades. 
The Program Memory is easily programmed 
using the WSI MagicPro™ (Memory and 
PSDTM Programmer). 

Only sixteen Program Memory locations are 
reserved. The rest of the 1024 locations are 
available for applications. 

Program memory is segmented as follows: 

Address Function 

OOOH Reset pointer program 
to here 

000H-007H 

008H-OOFH 

010H-3FFH 

User Defined 
Initialization Routine 

Interrupt Vector 
Locations 

User-Defined 
Application Programs 

Upon receiving a reset, the Program Counter 
is forced to address OOOH. This location may 
contain a jump or call which branches to an 
initialization routine. Alternatively, the first 
eight locations of memory may be used as an 
initialization/configuration routine. 

Security 
User programs may be protected by setting a 
security bit during EPROM programming. 

Thereafter, the EPROM contents cannot be 
read externally. When the EPROM is erased, 
the security bit is cleared. 

15·Level Stack 
The 15-level Stack stores the return address 
following subroutine calls, interrupt service 
routines and the contents of the Loop 
Counter inside nested loops. When the stack 
is full, the STKF condition becomes true, and 
an interrupt (INT7) will occur. The interrupt 
service routine will overwrite the top of the 
stack. 

Popping from an empty stack produces the 
previous top of stack value; pushing on a full 
stack overwrites the top of the stack. 

Program Counter 
The 10-bit Program Counter (PC) generates 
sequential addressing to the 1 K word Pro
gram Memory. Upon reset the PC is loaded 
with a OOOH. From this point the value of the 
Program Counter is determined by program 
execution or interrupts. 

Any JUMP or Case instruction that is exe
cuted loads the Program Counter with the 
destination address. CALL instructions or 
interrupts cause PC + 1 to be pushed onto 
the stack. The RETURN instruction loads the 
Program Counter from the stack with the 
value of the return address. This value may 
have previously been placed on the stack by 
a CALL or interrupt. 

The PC can also be loaded from the Com
mand/Data FIFO causing program execution 
to commence at an address provided by the 
host. 

Part of Control SectIon 

OCiO 15J 1738 10 

2·76 WAFERSCALE INTEGRATION, INC. 



Control Section 
(Con't) 

Loop Counter 
The Loop Counter (LC) has two functions: 

o 1 O-bit down counter that supports the 
LOOP instruction. 

o Branch Register that can be loaded from 
the CPU Register File or Program 
Memory and used as an additional 
source of branching to Program Memory. 

The LC can be loaded with values up to 
1023. Loop initialization code places a value 
in LC. Loop termination code tests the 
counter for a zero value and then decrements 
LC. The loop count can be a constant, or it 
can be computed at execution time and 
loaded into LC from the CPU. The LC 
register can also be used as a CALL or 
JUMP execution vector. The content of the 
LC is automatically saved on (or retrieved 
from) the Stack when the program enters (or 
leaves) a nested loop. 

A loop count will be loaded into the LC when 
a FOR instruction is encountered. This count 
can be a fixed value or it can be calculated 
and loaded from the CPU. The ENDFOR 
instruction will test the Loop Counter for a 
zero value. If this condition is not met, then 
the LC will be decremented by one. The 
program loop will continue until the count 
value equals zero. In a nested loop, the FOR 
instruction will load a new value to the LC 
and push the previous value to the stack. 

Debug capabilities 
The PAC1000 provides breakpoint and single 
step capabilities for debugging application 
programs. 

PAC1000 

Breakpoint Register 
The Breakpoint Register (BR) is a 10-bit 
register used for real time debug of the 
PAC1000 application program. 

The Breakpoint Register can be loaded from 
one of two sources, either a constant value 
specified in the Program Memory or a calcu
lated value loaded from the CPU. When the 
Program Memory address matches the con
tents of the Breakpoint Register an interrupt 
(INT 6) occurs. A service routine should exist 
in Program Memory which then performs the 
required procedure. 

Single Step 
Single step is a debugging mode in which the 
currently-executing program is interrupted by 
interrupt 6 after the execution of every 
instruction. The interrupt 6 service routine 
should reside in Program Memory. 

Bit 8 in the Mask Register determines 
whether the PAC1000 is in a breakpoint 
mode (mask-bit 8 equals 0) or in a single step 
mode (mask-bit 8 equals 1). 

Both breakpoint and single step use interrupt 
6. The interrupt 6 service routine will typically 
dump the contents of the PAC1 000 internal 
registers into external SRAM devices for ex
amination by the user. 

Condition Codes 
The Condition Code (CC) logic operates on 
21 individual program test conditions. Each 
condition can be tested for true or not true. 
The PAC 1 000 can also test up to four 
conditions simultaneously. For this feature 
refer to the section titled Case Logic. 

WAFERSCALE INTEGRATION, INC. 2·77 

.. - -.- ._------ ------ .~----- . ---- .-~----- _. __ . . ... 



PAC1000 

Control Section 
(Con't) 

Table 3. 
Condition-Code 
Logic 

User-Specified Conditions 
User-Specified Conditions are treated in the 
same manner as internally generated test 
conditions. CCO-CC7 should be connected 
directly to the corresponding PAC1000 input 
pins. These signals must satisfy the required 
setup time to be serviced in the next cycle. 

CPU Flags 
CPU flags are internally generated. They 
reflect the status of the previous CPU arith
metic operation. These signals are internally 
latched and are valid only for one instruction 
(the instruction following their generation). 
The flags for arithmetic operations are 
defined as follows: 

Zero (Z)-The result of the previous CPU 
operation is zero (Z= 1 ). 

Carry (CY)-The result of the previous CPU 
operation generated a carry (addition) or 
borrow (subtraction) (CY=1). 

Overflow (0)-The previous two's comple
ment CPU operation generated an 
overflow (0=1). 

Sign (S)-The most significant bit of the 
result of the previous CPU operation is 
negative (S=1). 

FIFO Flags 
FIFO flags allow the user to synchronize and 
monitor the operations that are performed on 
the FIFO by the host or by user's program. 

Upon reset the FIFO flags are cleared, 
signifying an empty state. The meaning of the 
flags are as follows: 

FIFO Output Ready (FIOR)-There is at least 
one word in the FIFO (FIOR=1). 

Test Group Source 

User-Specified External 

CPU Internal 

FIFO Internal 

Counters Internal 

Stack Internal 

Interrupt External/Internal 

Data register read Internal 

2-78 WAFERSCALE INTEGRATION, INC. 

FIFO Input Ready (FIIR)-FIFO is not full 
(FIIR=1). This flag can also be connected 
to the host throug h 1/07. 

FIFO Command/Data (FICD)-This flag 
indicates if the contents of the FIFO is a 
command or a data. This flag is gener
ated directly from HAD5 (FICD=1 com
mand, FICD=O data). 

FIFO Exception (FIXP)-This flag indicates 
that one of two events occurred: (a) FIFO 
data has been read as a command, or 
(b) a command has been read as data. 

Stack-Full Flag 
STACK FULL flag (STKF=1) indicates that 
the stack is 15 levels full. This condition will 
also generate an interrupt (INT7) if not 
masked. 

Interrupt Flag 
INTERRUPT flag (INTR =1) indicates that 
there is a masked interrupt pending. This flag 
is cleared when the interrupt is cleared. 

Data Register Read Flag 
DATA REGISTER READ flag (DOR) is a 
handshake flag between the host and the 
PAC1000, accessible only to the PAC1000. 
The flag is reset (DOR=O) when the 
PAC1 000 writes into the Data Output Regis
ter. The flag is set (DOR=1) after the host 
has performed a read on the Data Output 
Register. 

Counter Flag 
Counter flags reflect the status of their 
respective counters. The PAC1000 utilizes 
two counters; the Address (A) counter is a 
16/22-bit auto-incrementing up counter; the 

Conditions and Flags 

CCO-CC7 

Carry (CY), Zero (Z), Overflow (0), 
Sign (S) 

FIFO Command/Data (FICD), FIFO Output 
Ready (FIOR), FIFO Input Ready (FIIR), 
FIFO Exception (FIXP) 

Address Counter Ones (ACO), Block 
Counter Zero (BCZ) 

Stack Full (STKF) 

Interrupt (INTR) is pending 

Data Output Register(DOR) has been read 



Control Section 
(Con't) 

Table 4. 
Interrupt 
Assignments 

Block (B) counter is an auto-decrementing 
16-bit down counter. The counters' clock 
input signal is the same as the PAC1000's 
clock signal. Each counter can be individually 
enabled or disabled. When disabled, the 
output retains the last count. The counter 
flags are defined as follows: 

ACO-A Counter Ones, set when the A 
counter has reached the value FFFFH, in 
the 16-bit mode, or the value 3FFFFFH 
in the 22-bit mode. 

BCZ-8 Counter Zero, set when the B 
counter has reached the value OOOOH. 

Case Logic 
THE PAC1000 hardware implements two 
basic types of Case instructions: Case and 
Priority Case. 

Case Instructions 

Case instructions operate on anyone of four 
different Case groups. Each Case group 
consists of a combination of four test condi
tions which can be tested in a single cycle. In 
that same cycle the PAC1 000 will branch to 
one of the addresses contained in the sixteen 
memory locations following the instruction, 
depending on the status of the four inputs to 
the Case group being tested. 

There are four Case Groups (sets of Case 
Conditions): 

Case Group 0 (CGO): CCO-CC3. 

Case Group 1 (CG1): CC4-CC? 

Case Group 2 (CG2): 
Z-Zero 

O-Overflow 
S-Sign 

CY-Carry 

Case Group 3 (CG3): 
INTR-Interrupt 

BCZ-B Counter Zero 

FIOR-FIFO output Ready 
FICO-FIFO Command/Data 

PAC1000 

(The FIXP, ACO, STKF, FIIR, and DOR 
condition codes do not fall into any of the four 
Case groups.) 

Priority Case Instructions 

Priority Case instructions operate on the four 
internal and the four external interrupt inputs. 
In this mode of operation, interrupts are 
treated as prioritized test conditions and the 
priority encoder is used to generate a branch 
to the highest priority condition. The branch 
address is located in one of the nine memory 
locations following the Priority Case instruc
tion. Priorities in this mode of operation are 
the same as in the Interrupt mode of opera
tion. Once a Priority Case instruction is 
executed, the occurrence of a higher priority 
condition will not affect program execution 
until another Priority Case instruction is 
executed. For a Priority Case instruction to 
be executed, MOD EO of the Mask Register 
must be equal to zero (MODEO=O). 

Interrupt Logic 
The Interrupt Logic accepts eight inputs, four 
of them are generated externally and four are 
dedicated for internal conditions. The four 
external, user defined, inputs (INTO-INT3) 
are connected to pins INTO, INT1 , INT2, and 
INT3. These are positive, rising-edge
triggered signals that have a maximum 
latency of two cycles. Each interrupt has a 
reserved area in memory that should contain 
a branch to an interrupt service routine. 

Interrupt Priority Effect Trigger Condition Reserved Address 

INT? Highest Internal FIXP+ACO+STKF+FIIR OOFH 

INT6 Internal BRKPT OOEH 

INT5 Internal FIOR OODH 

INT4 Internal Software Interrupt (SWI) OOCH 

INT3 External INT3 OOBH 

INT2 External INT2 OOAH 

INT1 External INT1 009H 

INTO Lowest External INTO 008H 

WAFERSCALE INTEGRATION, INC. 2-79 



PACtOOO 

Control Section 
(Con't) 

Table 5. 
Interrupt 
Definitions 

Figure 11. 
Interrupt Mask 
Register 

Clearing a serviced interrupt is performed 
automatically. When the interrupt is serviced, 
the internally generated vector is decoded to 
clear the serviced interrupt. In addition, the 
user can clear any pending interrupt by using 
the Clear Interrupt Instruction (CLI). 

Interrupt Mask Register 
The Interrupt Mask Register, shown in Figure 
11 , allows individual interrupts to be masked. 
Setting a Mask Register bit to a 1 masks the 
associated interrupt. To unmask an interrupt. 
the appropriate Mask Register bit must be 
reset to O. 

Interrupt Triggered By 

INT?1 FIFO Exception (FIXP) 

When the PAC1000 is reset, the Mask Regis
ter will mask all interrupts and the Mode 
Register will select the non-interrupt mode. 
To select the interrupt mode the MOOED bit 
(see Configuration Register section in this 
document) should be set to 1 (MODEO=1). 

Mask8 is used to select INT6 to be either a 
single-step interrupt (when Mask8=1) or a 
breakpoint interrupt (when Mask8=0) .See 
the section on Debug Capabilities for further 
details. 

Address Counter contains all Ones (ACO) 

Stack Full (STKF) 

FIFO Full (Not FIFO Input Ready, FIIR) 

INT62 Breakpoint or Single Step occurrence 

INT5 FIFO Output Ready (FIOR) 

INT4 Always pending; triggers when unmasked by program execution 

INT3 User-defined 

INT2 User-defined 

INT1 User-defined 

INTO User-defined 

Notes: 
1. The INT? interrupt handler checks the source of the interrupt by testing the condition code. 
2. See Interrupt Mask Register, Mask8. 

MaskS 

Mask? 

Mask6 

Mask5 

Mask4 

o 

MSB 

I 
--.J 

J 

Status After Reset 

LSB 

I 
l L-- MaskO 

Mask1 

Mask2 

Mask3 

1738 11 

2-80 WAFERSCALE INTEGRATION, INC. 



Control Section 
(Con't) 

Counters 

Figure 12. 
Address and 
Block Counter 

Output Control 
The Output Control bus (OUTCNTL) consists 
of 16 latched Output Control signals. These 
signals can be changed on a clock to clock 
basis. For every Program Memory location 
there is a dedicated field which specifies the 
value of the Output Control bus. The 

The PAC1000 contains a 16 or 22-bit Ad
dress Counter and a 16-bit Block Counter. 
Each of these counters can change count on 
a clock to clock basis or can be internally or 
externally enabled or disabled on a clock to 
clock basis. These counters are in addition to 
the Loop and Program Counters of the 
Control Section. 

Address Counter 
The Address Counter (AC), shown in Figure 
12, is a 16- or 22-bit ascending counter that 
can be loaded or read by the CPU and 
enabled/disabled with the ACEN bit of the 
Control Register. (This control is also avail
able externally through the 1/01 pin; see I/O 
and Special Functions). While enabled, the 
counter will increment by one every rising 
edge of the clock. 

The ACO flag indicates that the value of the 
counter is all ones. This flag stays latched 

PACtOOO 

OUTCNTL Operation places this value on the 
Output Control bus. The OUTCNTL Opera
tion can be performed in parallel with any 
other PAC1000 instructions. 

The OUTCNTL bus can be used to control 
external events on a clock to clock basis. 

until the counter is loaded with a new value. 
The counter will continue to count until 
disabled. ACO is a condition code and a 
member of a Case Group; see the Control 
Section description for more details. ACO can 
also generate an internal interrupt 7, if 
enabled. 

In the 16-bit mode, the counter outputs (ACH) 
are available through the ADD bus. The 
count is gated to the ADD bus by setting the 
ASEL bit (CTRL9) of the Control Register. 

In the 22-bit mode, the higher 16 bits (ACH) 
are available through the ADD bus and the 
six low order bits (ACL) are available through 
the Host Address (HAD) bus. These low 
order bits are multiplexed with the host 
address lines. The address lines from the 
host which drives the HAD bus must be 
placed in the high impedance state before the 
lower 6-bits (ACL) of the Address Counter 
can be read. 

Internal Bus 

16 16 16 16 16 

ACH ACL 

IACEN Address Address ACS22 
Count Count --High Low 

AOR 

AIR 
Address 
Output 

Register 
to HAD in 

Host Interface 

ADD[O.1S) 173812 

WAFERSCALE INTEGRATION, INC. 2-8t 



PAC1000 

Counters 
(Con't) 

Central 
Processing Unit 

Selecting the 16- or 22-bit count mode is 
performed by setting or resetting the ACS22 
bit in the 1/0 Configuration Register. 

The address Output Register is an alternate 
source of address outputs; it is selected by 
resetting the ASEL bit of the Control Regis
ter. In this mode the CPU can be used to 
provide address generation and the Address 
Counter can be used as an event counter. 

B/ock Counter 
The Block Counter (BC) is a 16-bit down 
counter. It is enabled by the BCEN bit of the 
Control Register. It is useful as a counter for 
DMA transfers. The BCEN signal is (option-

The CPU, shown in Figure 13, performs 
16-bit operations in a single clock cycle. It 
contains 33 general purpose registers 
(RO ... R31, and 0). The 0 register can be 
used in conjunction with any of the RO ... R31 
registers to perform double precision shift 

2·82 WAFERSCALE INTEGRATION, INC. 

ally) available externally through the 1/00 bit 
(see 1/0 and Special Functions). While 
enabled, the counter will decrement by one 
every rising edge of the clock. The BCZ flag 
indicates that the counter reached the zero 
value. After the occurrence of an all Os 
condition the Block Counter will continue 
down counting until disabled. The flag is 
latched and can be cleared by loading a new 
value into the Block Counter. BCZ is a 
condition code and a member of a Case 
Group; see the Control Section description 
for more details. 

Both counters may be read without disabling 
the count operation and loaded via the CPU. 

operations. The main building blocks are the 
register bank (RO ... R31), 0 register, ALU, 
V-bus devices, and D-bus devices. The 
register bank supplies up to two 16-bit 
registers, one of which is always the destina
tion register. 



Figure 13. 
CPU Block 
Diagram 

PAC1000 

r---------------------------------------------, 
I I 

elK 

IN (B) 

Register 
Bank 

(R31/RO) 

CPU 

r-------~===~==~----------------· 
I 1/0 I Part of I Host 

,---''-,=:-.L-, Bus Control Section Interface 

Host 
Interface 

Host 
Interface 

ADD 
Bus 

1/0 
Bus 

Constants 
r------, 
I I 
I 
I 

I Part 01 
I Control Section I 
L ______ --l 

1738 13 

WAFERSCALE INTEGRATION, INC. 2·83 



PAC1000 

Central 
Processing Unit 
(Con't) 

TableS. 
CPU Operand 
Mnemonics 

The ALU operates on up to two external 
operands that are selected by its input MUX. 
In every instruction, 1 of the 10 D-bus de
vices (AOR, SWAP, ACL, ACH, BC, FIFO, 
DIR, AIR, IIR, and Program Store) or a 
member of the register bank or the Q register 
outputs, can be selected as an operand 
source to the ALU. The possibilities are 
shown in Figure 14. During ALU operations, 
three options can be selected to provide the 
carry-in (Cin) input: 0, 1, or the previous 

latched carry-out (adequate for multiple 
precision operations). 

The ALU's output or a selected register can 
be loaded into one of the seven V-bus 
devices (lOR, AOR, LC, DOR, ACL, ACH, or 
BC) every instruction cycle. This can happen 
in parallel with the feedback path from the 
ALU's output that is directed either to the Q 
register or to the destination register of the 
register bank. 

Mnemonic 

ACH or ACH/ACL 

AIR 

AOR 

BC 

<constant> 

DIR 

DOR 

FIFO 

IIR 

lOR 

LC 

Q 

RQ-R31 

SWPV 

Destination Only 

DOR 

LC 

lOR 

1738 14 

Description 

16- or 22-bit Auto-incrementing Counter, or General Purpose 
Registers 

Address Input Register 

Address Output Register 

Block Counter (16-bit auto-decrementing), or General Purpose 
Register 

Constant values in Program Storage 

Data Input Register 

Data Output Register 

Input Data from FIFO 

1/0 Input Register 

1/0 Output Register 

Program Loop Counter 

16-bit CPU Register 

16-bit CPU Registers 

Byte Swap version of AOR 

2-84 WAFERSCALE INTEGRATION, INC. 



Central 
Processing Unit 
(COR't) 

Figure 15. 
Shift Operations 

CPU operations can be performed on one, 
two or three operands. Each operation is per
formed in a single clock cycle. In two- or 
three-operand instructions, one of the oper
ands must be a CPU internal register 
(RO ... R31, or 0). 

CPU operations are performed independently 
of operations in the counters, Host Interface, 
Output Control, and Program Control. 

Arithmetic Operations 
The CPU can perform the following arithme
tic operations: 

Q Addition 

Q Subtraction 

Q Increment 

Q Decrement 

Q Compare 

Logic Operations 
The CPU can perform the following logic 
operations: 

Q AND 

Q OR 

Q Invert 

Q Exclusive OR 

Q Exclusive NOR 

Shift Operations 
Single shift operations, shown in Figure 15, 
can occur either to the left or to the right, with 
or without the 0 register. Shift instructions 
specify the sources that are shifted into the 
corresponding registers. 

All shift operations can be executed in the 
same clock cycle as an arithmetic or logic op
eration. The arithmetic or logic operation is 
executed first; the result is shifted and then 
stored in the register file. The shift can be 

~ Rn ~ 
~ Q ~ 

PAC100D 

either left or right. 

The CPU can perform the following shift 
operations: 

Q Single-precision, left or right, within a 
general-purpose register (RO ... R31, 
orO). 

Q Double-precision, left or right, between 
an RO ... R31 register and the 0 register. 

The LSB and MSB of the general-purpose 
registers are each fed by an eight-to-one 
multiplexer. 

The sources and destinations for shift opera
tion are given below: 

Shift Right 
Zero Flag (Z) 

Carry Flag (CY) 

Sign Flag (S) 

Binary 0 (0) 

Binary 1 (1) 

Least-significant bit of this register (RLSB) 

Least-significant bit of the 0 register (OLSB) 

Serial I/O port (SDATM) 

Shift Left 
Zero Flag (Z) 

Carry Flag (CY) 

Sign Flag (S) 

Binary 0 (0) 

Binary 1 (1) 

Most-significant bit of this register (RMSB) 

Most-significant bit of the 0 register (OMSB) 

Serial 1/0 port (SDATL) 

Shift Single Precision left/Righi ShIft Double Precision Left/RIghi Shift Double PrecIsIon LeftlRighl 

1738 15 

WAFERSCALE INTEGRATION, INC. z.tJ5 

--- --- --------



PACtOOO 

Central 
Processing Unit 
{Con't} 

Figure 16. 
Rotate Operations 

I/O and Special 
Functions 

Rotate Operations 
The CPU can perform the following rotate op
erations, as shown in Figure 16: 

o Single-precision, left or right, within a 
general-purpose register (RO ... R31, 
ora). 

o Double-precision, left or right, between 
an RO ... R31 register and the a register. 

Y"----Rn ~ 
dab 

Single PrecISion Rotate Right/Left 

The 1/0 bus, shown in Figure 17, consists of 
eight lines which can be individually pro
grammed as inputs or outputs. These lines 
can also be programmed to perform Special 
Functions. The functions of these pins are 
defined by the Mode Register and 1/0 Con
figuration Register (see Configuration Regis
ter Section). The 1/0 and Special Functions 
map according to the table. The 110 lines 
must first be configured as inputs or outputs 
via the 1/0 Configuration Register; the 
Special Function option can then be enabled 
via the Mode Register. Individual special 

2·86 WAFERSCALE INTEGRATION, INC. 

Multiple Precision Operations 
The carry-out in each instruction can be used 
in the next instruction for multiple precision 
operations (e.g., ADDC). This feature en
ables the user to implement complex arith
metic operations such as division or multipli
cation in several clock cycles. 

Double Precision Rotate Right/Left 
1738 16 

function control is shown in the accompany
ing table. 

Once a Special Function has been enabled, 
the corresponding internal control function is 
automatically disabled. Conversely, when a 
Special Function is disabled, control of the 
corresponding internal control function is 
returned to the Control Register (see Con
figuration Register). Because the Inputs in 
the 1/0 Register are clocked on each cycle, 
the status of the special function can also be 
read to the CPU. 



Figure 17. 
I/O and Special 
Function Bus 

1/05 ~. 

10CGO 

MODE 8 

w 
~ 

'" 
" ~ 

PAC1000 

FIIR 

IADOE 

CNTl4 
(ADOE) 

MODE? 

B MUX 
IHADOE 

CNTl3 
0 

w 
~ (HADOE) 

'" 

fJ " % 
0 MODE6 
iii 
d:J 

IHDOE 
CNTl2 

(HDOE) 

IIR 
D MODES 

CK 

SDATM 

OMSB 

ClK 

SDATl 

OlSB 

lAC EN 
CNTlO 
(ACEN) 

MODE3 

B MUX 

0 IBeEN 
CNTl1 CK (BCEN) 

0 D 

lOR 
MODE2 

lOWER 8-BIT CPU 
Y BUS 

1738 17 

WAFERSCALE INTEGRATION, INC. 2-87 



PAC1000 

Configuration 
Registers 

Table 7. 
I/O Pins and 
Special Functions 

TableS. 
Special-Function 
Control 

The Configuration Registers allow the user to 
control and configure different operating 
modes of the PAC1000. The three 10-bit 
Configuration Registers are the Control 
Register, 1/0 Configuration Register, and 
Mode Register. Each register has an associ
ated instruction which allows individual 
register bits to be modified. 

Control Register 
The Control Register, shown in Figure 18, 
provides for internal control of key functions 
within the PAC1 000 . Several of these 
functions can alternatively be controlled 
externally through the 110 bus (see 1/0 and 
SpeCial Functions). The Control Register is 
modified on the falling edge of the clock. 

Pin Special Function Direction Description 

1/07 FIIR output FIFO Input Ready. FIFO not full. 

1/06 ADOE input Address Output Enable 

1/05 HADOE input Host Address Output Enable 

1/04 HDOE input Host Data Output Enable 

1/03 QMSB bidirectional Q Register MSB 

1/02 QLSB bidirectional Q Register LSB 

1/01 ACEN input Address Counter Enable 

1/00 BCEN input Block Counter Enable 

Special Function Pin Name I/O Configuration Mode 

FIIR 1/07 IOCG7=1 (output) MODE8=1 

ADOE 1/06 IOCG6=0 (input) MODE7=1 

HADOE 1/05 IOCG5=0 (input) MODE6=1 

HDOE 1104 IOCG4=0 (input) MODE5=1 

QMSB 1/03 IOCG3=1 (output) 

IOCG3=0 (input) MODE4=1 

QLSB 1102 IOCG2=1 (output) 

IOCG2=0 (input) MODE4=1 

ACEN 1/01 IOCG1 =0 (input) MODE3 =1 

BCEN 1/00 10CGO=0 (input) MODE2 =1 

2-88 WAFERSCALE INTEGRATION, INC. 



Configuration 
Registers 
(Con't) 

Figure 18. 
Control Register 

ASEL (CTRL9)-Address Select. Selects the 
source that will write to the Address bus: 

1 = Address Counter. 

0= Address Output Register (AOR). 

AIREN (CTRL8)-Address Input Register 
Enable. Enables and disables writing to 
the Address Input Register from the ADD 
Port: 

1 = Enable writing to Address Input 
Register (AIR). 

0= Disable writing to Address Input 
Register (AIR). 

DIREN (CTRL7)-Data Input Register 
Enable. Enables and disables writing to 
the Data Input Register (DIR) from the 
HD Port: 

1 = Enable writing to Data Input Register 
(DIR). 

0= Disable writing to Data Input Register 
(DIR). 

HDSEL 1 (CTRL6) and HDSELO (CTRLS)
Host Data Select. Select the source to be 
connected to Host Data (HD) bus: 

HDSEL 1 HDSELO Selection 
(CTRL6) (CTRL5) 

0 0 FIFO-
Peripheral 
Mode 

0 Data Output 
Register 

0 Status 
Register 

Program 
Counter 

MSB 

I 
GTRL9 (ASEL)~ 
GTRLS (AIREN) 

GTRL? (OIREN) 

GTRL6 (HOSEL1) 

GTRL5 (HOSELO) 

PAC1000 

ADOE (CTRL4)-Address Output Enable. 
Selects direction of Address bus (ADD) 
for next clock cycle: 

1 = Output (see ASEL). 

0= Input (see AIREN). 

HADOE (CTRL3)-Host Address Output 
Enable. Selects direction of Host Address 
(HAD) bus for next clock cycle: 

1 = Output (driven from ACL Register). 

0= Input (into the FIFO). 

HDOE (CTRL2)-Host Data Output Enable. 
Selects Direction of Host Data (HD) bus 
for next clock cycle: 

1 = Output (See HDSELO and HDSEL 1). 

0= Input (See DIREN). 

BCEN (CTRL 1 )-Block Counter Enable. 
Enables and disables Block Counter: 

1 = Enable Counting on next rising clock 
edge. 

0= Disable Counting on next rising edge. 

ACEN (CTRLO)-Address Counter Enable. 
Enables and disables Address Counter: 

1 = Enable Counting on next rising clock 
edge. 

0= Disable Counting on next rising clock 
edge. 

LSB 

I 
~ GTRLO (AGEN) 

CTRL 1 (BGEN) 

CTRL2 (HOOE) 

CTRL3 (HAOOE) 

CTRL4 (AOOE) 

Note: After Reset, All Bits Are Cleared to Zero. 1738 18 

WAFERSCALE INTEGRATION, INC. 2·89 



PAC1000 

Configuration 
Registers 
(Con't) 

Figure 19. 
I/O Configuration 
Register 

I/O Configuration Register 
The I/O Configuration Register, shown in 
Figure 19, controls the direction of the 
individual lines of the 110 bus as well as con
figuring the Address Counter. Each I/O pin 
can be configured independently to be a 
general purpose input or output, or each can 
serve a special function (see I/O and Special 
Function). The I/O Configuration Register is 
also used to configure the Address Counter 
as a 16-bit counter with a maximum count of 
FFFFH or as a 22-bit counter with a maxi
mum count of 3FFFFFH. The I/O Configura
tion Register is modified on the falling edge 
of the clock. 

ACS22 (IOCG9)-Configures Address 
Counter as a 22- or 16-bit counter: 

1 = 22-bit counter. 

0= 16-bit counter. 

1/07 (IOCG7)-Selects direction of 1107 pin: 

1 = Output. 

0= Input. 

1/06 (IOCG6)-Selects direction of 1/06 pin: 

1 = Output. 

0= Input. 

IOCG9 (ACS22) 
IOCG8 (Reserved) 

MSB 

IOCG7 (1/07) -------' 
IOCG6 (1/06) --------' 
IOCG5 (1/05) ---------' 

1/05 (IOCG5)-Selects direction of 1/05 pin: 

1 = Output. 

0= Input. 

1/04 (IOCG4)-Selects direction of 1/04 pin: 

1= Output. 

0= Input. 

1/03 (IOCG3)-Selects direction of 1103 pin: 

1= Output. 

0= Input. 

1/02 (IOCG2)-Selects direction of 1/02 pin: 

1 = Output. 

0= Input. 

1/01 (IOCG1 )-Selects direction of 1/01 pin: 

1 = Output. 

0= Input. 

1/00 (IOCGO)-Selects direction of 1/00 pin: 

1 = Output. 

0= Input. 

LSB 

10CGO (1/00) 
'----- IOCG1 (1/01) 

'------ IOCG2 (1102) 

'------- IOCG3 (1/03) 
'-------IOCG4 (1/04) 

Note: After Reset, All Bits Are Cleared to Zero. 
1738 19 

2·90 WAFERSCALE INTEGRATION, INC. 



Configuration 
Registers 
(CoII't) 

Figure2D. 
Mode Register 

Mode Rflllister 
The Mode Register, shown in Figure 20, 
allows the user to externally control and 
monitor key elements within the PAC1000 
which would (alternatively) be controlled 
internally through the Control Register. 
Enabling a Special Function in the Mode 
Register disables the corresponding function 
in the Control Register. The Special Function 
input pins are shared with the general 
purpose 1/0 pins. The direction of the appro
priate pin must be set in the 1/0 Configuration 
Register prior to programming the Mode 
Register. 

The Mode Register can also be used to reset 
the FIFO as well as program the interrupt 
controller to generate either interrupts or 
Priority Test Conditions. See the discussion 
on "Priority Case" in the Condition Code 
section, above. 

After Reset, all Mode Register bits equal 
zero. The Mode Register is modified on the 
falling edge of the clock. 

The use of the Mode Register and 1/0 
Configuration register for Special Functions 
is shown in the Special Function Settings 
table. 

FIRST (MODE9)-FIFO Reset. (If held high, 
FIFO cannot receive information): 

1= Initiate FIFO Reset (FIRST). 

0= Complete FIFO Reset (FINRST). 

FIIR (MODE8)-FIFO Input Ready: 

1 = 1/07 becomes output for the FIFO 
Input Ready (FIIR) flag. 

0= 1/07 becomes general purpose 1/0 
(107). 

ADOE (MODE7)-Address Output Enable: 

MODE9 (FIRST) 

MODES (FIIR) 

MODE7 (ADOE) 

MODE6 (HADOE) 

MODE5 (HDOE) 

MSB 

I 
~ 

I 

I'AC10D0 

1 = 1/06 becomes input for the Address 
Output Enable (AOE). 

0= 1/06 becomes general purpose 1/0 
(106). 

HADOE (MODE6)-Host Address Output 
Enable: 

1 = 1/05 becomes input for Host Address 
Output Enable (HADOE). 

0= 1/05 becomes general purpose 1/0 
(106). 

HDOE (MODE5)-Host Data Output Enable: 

1 = 1/04 becomes input for Host Data 
bus Output Enable HDOE). 

0= 1/04 becomes general purpose 1/0 
(104). 

SIOEN (MODE4)-SeriaIIIO Enable: 

1 = 1/03 and 1/02 become MSB and LSB 
(respectively) of the CPU's Q register 
(SIO). 

0= 1/03 and 1/02 become general 
purpose 1/0 ACEN(MODE3). 

ACEN (MODE3)-Address Counter Enable: 

1 = 1/01 becomes input for Address 
Counter Enable (ACEN). 

0= 1/01 becomes general purpose 1/0. 

BCEN (MODE2)-Block Counter Enable: 

1 = 1/00 becomes input for Block Counter 
Enable (BCEN). 

0= 1/00 becomes general purpose 1/0. 

Reserved (MODE1) 

INTR (MODEO)-lnterruptiPriority-Case 
Mode: 

1 = Select Interrupt mode (INTR). 

0= Selects Priority Case mode (PCC). 

LSB 

I 
~ MODEO (INTR) 

MODE1 (Reserved) 

MODE2 (BCEN) 

MODE3 (ACEN) 

MODE4 (SIOEN) 

Note: After Reset, All Bits Are Cleared to Zero. 
1738 20 

WAFERSCALE INTEGRATION, INC. 2·91 

----~------. -------~ 



PAC1000 

State Following 
Reset 

Tableg. 
Special Function 
Settings 

Table 10. 
Signal States 
Following Reset 

Whenever the PAC1000 RESET input is 
driven low for at least two processor clocks, 
the chip goes through reset. The next two 

Mode Bit 

MODE8=1 

MODE7=1 

MODE6=1 

MODE5=1 

MODE4=1 

MODE4=1 

MODE4=1 

MODE4=1 

MODE3=1 

MODE2=1 

Signal 

HAD[5:O] 

HD[15:0] 

10[7:0] 

ADD[15:0] 

0C[15:0] 

I/O Configuration Bit 

IOCG7=1 

IOCG6=0 

IOCG5=O 

IOCG4=0 

IOCG3=1 

IOCG3=0 

IOCG2=1 

IOCG2=0 

IOCG1=0 

10CGO=0 

Condition 

Input 

Input 

Input 

Input 

OOOOH 

2·92 WAFERSCALE INTEGRATION, INC. 

tables describe the PAC1000 signal and 
internal register states following reset. 

Function 

FIIR flag output on 1/07 

ADOE provided by 1/06 

HADOE provided by 1/05 

HDOE provided by 1/04 

MSB of Q register output on 1/03 

1/03 can be shifted into MSB of Q register 
or destination register 

LSB of Q register output on 1/02 

1/02 can be shifted into LSB of Q register 
or destination register 

ACEN provided by 1/01 

BCEN provided by 1/00 



PAC1000 

Table 11. 
Intemal States Component Contents 
FoJlowing Reset ACH Register 0 

ACL Register 0 

AOR Register 0 

AIR Register 0 

DOR Register 0 

DIR Register 0 

lOR Register 0 

IIR Register 0 

STATUS Register 0 

1/0 Configuration Register 0 

CONTROL Register 0 

Breakpoint Register 0 

.Mode Register 0 

PC Register (Program Counter) 0 

MASK Register 011111111 B 

BC Register FFFFH 

R31-RO Registers Unknown 

Q Register Unknown 

LC Register Unknown 

FIFO Locations Unknown 

FIFO Flags Empty 

WAFERSCALE INTEGRATION, INC. 2·93 



PAC1000 

Electrical and Tinring 
Specifications 

Table 12. 
Absolute 
Maxinrunr Ratings 

Table 13. 
Operating Range 

Table 14. 
DC 
Characteristics 
ivtil' OIItII'lIting 1'lilii/ii 
with V",,=Vcc 

Storage Temperature 

Voltage to any pin with respect to GND 

V pp with respect to GND 

ESD Protection 

Stresses above those listed here may cause 
permanent damage to the device. This is a 
stress rating only and functional operation of 
the device at these or any other conditions 
above those indicated in the operational 

Range 
Commercial 

Industrial 

Military 

Parameter 
Output Low Voltage 

Output High Voltage 

Vee Standby 
Current CMOS 

Vee Standby 
Current TTL 

Temperature 
O'C to +70'C 

-40°C to +85°C 

-55'C to +125'C 

Symbol 

VOL 

VOH 

ISBl 

ISB2 
Active Current (CMOS) leel 
-Commercial 
-Military 

Active Current (TTL) lee2 
-Commercial 
-Military 

V pp Supply Current Ipp 

V pp Read Voltage Vpp 

Input Load Current III 

Output Leakage Current ILO 

Notes: 
1. CMOS inputs: GND ± 0.3V or Vee ± 0.3V. 
2. TTL inputs: V1L S 0.8V, VIH~ 2.0V. 

-65°C to + 150°C 

-0.6V to +7V 

-0.6 V to + 14.0V 

>2000V 

sections of this specification is not implied. 
Exposure to absolute maximum rating 
conditions for extended periods of time may 
affect device reliability. 

Vee 
+5V±5% 

+5V± 10% 

+5V± 10% 

Test Conditions 

IOL=8 mA 

IOH=-4 mA 

note 1 

note 2 

notes 1,3 

notes 2,3 

Vpp=Vee 

notes 1,2 

V1N=5.5V 
orGND 

VouT=5.5V 
orGND 

Min 

2.4 

Vee-0.4 

-10 

-10 

Max Units 
0.4 V 

V 

65 mA 

65 mA 

130 mA 
150 mA 

160 mA 
180 mA 

100 I1A 

Vee V 

10 I1A 

10 I1A 

3. Active current is an AC test and uses AC timing levels. 

2·94 WAFERSCALE INTEGRATION, INC. 



~~-------

PAC1000 

Table 15. 
AC Timing Levels Inputs: o to 3V Reference 1 .5V 

Outputs: 0.4 to 2.4V 

Table 16. 
AC Parameter Symbol 12MHzl 16MHzl 20MHz2 
Characteristics Min Max Min Max Min Max 

CLOCK CYCLE 

Cycle Time tCK 84 62.5 50 

Clock Pulse Width High tCKH 26 24 21 

Clock Pulse Width Low tCKL 26 24 21 

HOST READ CYCLE 

Read Cycle Time tRC 50 40 30 

Address to Data Valid tACC 45 35 30 

CS to Data Valid tcs 45 35 30 

CS to tristate tcsz 0 45 0 35 0 30 

HOST WRITE CYCLE 

Pulse width of CS and 
WRLOW tpWL 20 15 15 

Pulse width of CS and 
WR High tpwH 15 10 10 

Data setup to WR tSD 10 10 5 

Data hold to WR tHD 10 10 5 

RESET CYCLE 

RESET setup tSR 10 10 5 

RESET to tristate of 
ADD, HAD, HD, I/O tRZ 25 25 20 

RESET clocked to 
OUTCNTL low tROL 30 30 25 

ADDRESS TIMING 

Address/Data setup tSADD 10 10 10 

Address/Data hold tHADD 8 8 5 

Clocked Counter to 
Address output tCADD 43 35 30 

Clocked Address Register 
to Address tRADD 43 35 30 

ADOE enable to data valid tADOE 50 40 30 

HADOE enable to 
data valid tHADOE 50 40 30 

Address output disable tCKZ 0 25 20 0 16 

WAFERSCALE INTEGRATION, INC. 2·95 



PAC1000 

Table 16. 
AC Parameter Symbol 12MHz' 16MHz' 20MHz2 
Characteristics Min Max Min Max Min Max 
(Con't) DATA AND I/O TIMING 

Clock to I/O Output Valid tCKIO 35 30 30 

Clock to HD Output tCKHD 35 30 30 

10 data setup tSIO 10 10 10 

10 data hold tHIO 8 8 5 

HD data setup tSHD 10 10 10 
HD data hold tHHD 8 8 5 

HDOE enable to data valid tHOOE 50 40 30 

Bus Output Disable tCKZ 0 25 0 20 0 16 

TEST AND INTERRUPT TIMING 

Condition Code setup tscc 60 50 40 

Condition Code hold tHCC 0 0 0 

Clock to OUTCNTL Valid tcov 33 33 25 

Minimum interrupt pulse 
for acceptance tlPWA 15 10 10 

SPECIAL FUNCTION TIMING (I/O Bus) 

S015 setup tSS015 15 10 10 

S015 hold tHS015 0 0 0 

SOO setup tssoo 15 10 10 

SOO hold tHSOO 0 0 0 

Clock to 00 output tCKOO 35 30 30 

Clock to 015 output tCK015 35 30 30 

Address Counter 
enable setup tSACEN 20 15 10 

Address Counter 
enable hold tHACEN 10 5 5 

Block Counter enable setup tSBCEN 20 15 10 

Block Counter enable hold tHBCEN 10 5 5 
External output enable to 
data valid tSFV 30 25 20 

External output enable to 
high impedance tSFZ 30 25 20 

Notes: 
1. Operating temperature range: Commercial, Industrial, Military 
2. Operating temperature range: Commercial 

2·96 WAFERSCALE INTEGRATION, INC. 



Figure 21. 
Clock Cycle 
Timing 

Figure 22. 
Host Read Cycle 
Timing 

Figure 23. 
Host Write FIFO 
Cycle Timing 

Figure 24. 
Reset Cycle 
Timing 

_tCK_ 

CK 

~ =t= __ Ad_d:_::_sv_a_lid ___ ~~ __ _ 

tACC--

\ / 

f4-tcs .... 
_tcsz ...... 

\ / 

HD 
\' 

Data Valid 

Note tcs IS referenced from RD=O and CS=O 

HAD 
HD 

CLOCK 

ADD 
HAD 

HD 
1/0 

OUTCNTL 

tPWL 

I'AC1000 

1738 21 

1738 22 

1738 23 

1738 24 

WAFERSCALE INTEGRATION, INC. Ull 



PAC1000 

Figure 25. 
Data and I/O 
Timing 

Figure 26. 
Address Timing 

SWitch bus from 
Input to Output 
(Note 1) 

New Data or 
Counter Oulput 
(Note 2) 

Notes 1 A bus directional change (Input-Io-oulput or outpul-lo-Input) 
takes place on the falling edge of the clock 

Next Dala 
or Count Value 

New data or count value IS latched on the rising edge of the clock 

CLOCK 

ADD 

HAD 
(Note 1) 

SWitch bus from 
Input to Output 
(Note 2 & 3) 

New Data or 
Counter Output 
(Note 4) 

Next Data 
or Count Value 

Oulpul to High 
Impedance 

Output to High 
Impedance 

Notes 1 The Host Address (HAD) bus IS used to output the lower SIX bits of the 22·blt counter 
2.A bus directional change takes place on the falling edge of the clock (Input-to-output or output·to"nput) 
3 Selection of the source to be output on a bus occurs on the failing edge 

of the clock (I e , counter or address register) 
4. New data or counl value is latched on the rising edge of the clock 

2·98 WAFERSCALE INTEGRATION, INC. 

1738 25 

1738 26 



Figure 27. 
Test and Interrupt 
Timing 

Figure 28. 
Special Function 
Timing 

CLOCK 

CC[701 

OUTCNTL 

INT h 
----------------~ ~-,IP-W-A------

Note 1 Since condition codes are not latched, 
they should be stable tscc 

CLOCK 

ACEN 
BCEN 

00 
015 

ADOE 
HADOE 
HDOE 

ADO 
HAD 
HD 

prior to being tested 

PAC1000 

1738 27 

1738 28 

WAFERSCALE INTEGRATION, INC. 2·99 



PAC1000 

Pin Assignments 

Figure 29. 
88-Pin Ceramic 
PGAPin 
Assignments 

1 2 

A 0 0 
1/05 DC' 

B 0 0 
1107 CC2 

C 0 0 
HD' 1/06 

D 0 0 
1103 1104 

E 0 0 
1/01 1/02 

F 0 0 
1/00 ICS 

G 0 0 
fNR CK 

H 0 0 
IRD GND 

J 0 0 
OGlS OC14 

K 0 0 
cei2 DGi3 

L 0 0 
GND aCiD 

M 0 0 
OC9 OCii 

N 0 0 
HOD HOl 

1 2 

13 12 

A 0 0 
CC, co. 

B 0 0 
CCO CCl 

C 0 0 
ADD14 ADDiS 

D 0 0 
ADD12 ADDi3 

E 0 0 
ADDiO ADDll 

F 0 0 
AD09 GND 

G 0 0 
ADDS ADD7 

H 0 0 
ADDS ADDS 

J 0 0 
ADD4 ADD3 

K 0 0 
ADD2 ADOO 

L 0 0 
Vco HADS 

M 0 0 
HAD4 HAD3 

N 0 0 
ADD1 HAD2 

13 12 

2-100 WAFERSCALE INTEGRATION, INC. 

3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0 0 0 0 0 0 0 0 A 
GND DCS DC' OC2 OCl INT3 INTl CC? V~ CC4 CC, 

0 0 0 0 0 0 0 0 0 0 0 B 
DC? DC. OC4 IRESET oee INT2 INTO CC. CCS CCl CCO 

0 0 C 
ADDiS ADD14 

0 0 D 
ADDi3 ADD12 

0 0 E 
ADD11 ADDiO 

0 
0 0 F 

GND ADD9 

0 0 G 
ADD7 A008 

0 0 H 
ADDS ADDS 

PAC1000 0 0 J 
ADD3 ADD4 

0 0 K 
ADOD ADD2 

0 0 L 
HADS V~ 

0 0 0 0 0 0 0 0 0 0 0 M 
HD2 HD4 HD, HD. H010 v~ H014 HADO HAD1 HAD3 HA04 

0 0 0 0 0 0 0 0 0 0 0 N 
GND HDS HD? HD9 H01l HDi2 HD13 HD15 GND HAD2 ADDl 

3 4 5 6 7 8 9 10 11 12 13 

TOP (THROUGH PACKAGE) VIEW 

11 10 9 8 7 6 5 4 3 2 1 

0 0 0 0 0 0 0 0 0 0 0 A 
V~ CC? INT1 INT3 OCl OC2 DC' OCS GND Dca 1/05 

0 0 0 0 0 0 0 0 0 0 0 B 
CCS CC. INTO INT2 oeo IRESET OC4 DC' DC? CC2 1/07 

0 0 C 
lID, HD' 

0 0 D 
1/04 1/03 

0 0 E 
IID2 1/01 

0 0 F 
ICS 1100 

0 0 G 
CK tWR 

0 0 H 
GND IRD 

0 0 J 
OC14 GGiS 

0 0 K 
DGi3 Dei2 

0 0 L 
OCiO GND 

0 0 0 0 0 0 0 0 0 0 0 M 
HAD; HADO HD14 Vco H010 HD. HD' HD4 HD2 DC1i OC9 

0 0 0 0 0 0 0 0 0 0 0 N 
GNO HD1S HOB HD12 H011 HD9 HD? HDS GND HOl HOO 

11 10 9 8 7 6 5 4 3 2 1 

BOTTOM VIEW 1738 29 



Table 17. 
PSAPin 
Assignments 

Name 
CS 
RD 
RESET 
WR 
AD DO 
ADD1 
ADD10 
ADD11 
ADD12 
ADD13 
ADD14 
ADD15 
ADD2 
ADD3 
ADD4 
ADD5 
ADD6 
ADD7 
ADD8 
ADD9 
CCO 
CC1 
CC2 
CC3 
CC4 
CC5 
CC6 
CC7 
CK 

Pin Name 
F2 GND 
H1 GND 
B6 GND 
G1 GND 
K12 GND 
N13 GND 
E13 HADO 
E12 HAD1 
D13 HAD2 
D12 HAD3 
C13 HAD4 
C12 HAD5 
K13 HDO 
J12 HD1 
J13 HD10 
H12 HD11 
H13 HD12 
G12 HD13 
G13 HD14 
F13 HD15 
B13 HD2 
B12 HD3 
B2 HD4 
A13 HD5 
A12 HD6 
B11 HD7 
B10 HD8 
A10 HD9 
G2 

PAC1000 

Pin Name Pin 

H2 1100 F1 
L1 1/01 E1 
A3 1/02 E2 
F12 1/03 D1 
N3 1/04 D2 
N11 1/05 A1 
M10 1/06 C2 
M11 1/07 B1 
N12 INTO B9 
M12 INT1 A9 
M13 INT2 B8 
L12 INT3 A8 
N1 OCO B7 
N2 OC1 A7 
M7 OC10 L2 
N7 OC11 M2 
N8 OC12 K1 
N9 OC13 K2 
M9 OC14 J2 
N10 OC15 J1 
M3 OC2 A6 
C1 OC3 A5 
M4 OC4 B5 
N4 OC5 A4 

M5 OC6 B4 
N5 OC7 B3 
M6 OC8 A2 
N6 OC9 M1 

VCC A11 
VCC L13 
VCC M8 

WAFERSCALE INTEGRATION, INC. 2·101 



PAC1000 

Figure 3D. 
1oo-Pin Plastic Dr 
Ceramic Quad 
Flatpack 
(QuI/wing) Pin 
Assignments 

26 

38 

13 

39 

2·102 WAFERSCALE INTEGRATION, INC. 

( 

89 

-

I 76 

-

64 

51 63 

1738 30 



Table 18. 
PlasticDr 
Ceramic Quad 
Flatpack 
(SuI/wing) Pin 
Assignments 

Pin 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Name 
RD 
GND 
GND 
OC15 
OC14 
OC12 
OC13 
GND 
GND 
OC10 
OC9 
OC11 
N/C 
HDO 
HD1 
HD2 
GND 
GND 
HD4 
HD5 
HD6 
HD7 
HD8 
HD9 
HD10 

Pin Name 
26 HD11 
27 HD12 
28 VCC 
29 VCC 
30 HD13 
31 HD14 
32 HD15 
33 HADO 
34 GND 
35 GND 
36 HAD1 
37 HAD2 
38 N/C 
39 HAD3 
40 ADD1 
41 HAD4 
42 HAD5 
43 VCC 
44 VCC 
45 ADDO 
46 ADD2 
47 ADD3 
48 ADD4 
49 ADD5 
50 ADD6 

PACfOOO 

Pin Name Pin Name 
51 ADD7 76 OC1 
52 ADD8 77 OC2 
53 ADD9 78 RESET 
54 GND 79 N/C 
55 GND 80 OC3 
56 ADD10 81 OC4 
57 ADD11 82 OC5 
58 ADD12 83 OC6 
59 ADD13 84 GND 
60 ADD14 85 GND 
61 ADD15 86 OC7 
62 CCO 87 OC8 
63 CC1 88 CC2 
64 CC3 89 105 
65 CC4 90 107 
66 CC5 91 106 
67 VCC 92 HD3 
68 VCC 93 104 
69 CC6 94 103 
70 CC7 95 102 
71 INTO 96 101 
72 INT1 97 CS 
73 INT2 98 100 
74 INT3 99 CK 
75 OCO 100 WR 

WAFERSCALE INTEGRATION, INC. 2-103 



I'AC1DOO 

InstructlDn Set 
Overview 

The PAC 1000 architecture can perform three 
operations simultaneously in each instruction 
cycle. The operations are specified in the 
System Entry Language (PACSEL) using a 
single statement. PACSEL instructions can 
perform three operations: 

CJ Program Control (PROGCNTL) 

CJ CPU 

CJ Output Control (OUTCNTL) 

Each instruction is executed in a single cycle; 
the three operations are executed in parallel. 

The syntax of a PACSEL statement has a 
label and three components: 

[label:J PROGCNTL, CPU, 
OUTCNTL; 

The PROGCNTL component determines 
program flow and determines the next 
statement to be executed; the CPU compo
nent determines which operation is to be 
performed by the CPU; the OUTCNTL 
component determines the state of the 
control outputs. 

A comma ( , ) is used to separate the instruc
tions and a semi-colon marks the end of a 
statement. In general, each statement is 
executed in a single cycle. 

In PACSEL statements, the PROGCNTL, 
CPU, OUTCNTL components can come in 
any order or any combination of Macro or 
Assembler operators. That is, you may mix 
Assembler operators among Macro opera
tors. Tables at the end of this section sum
marize the Macro and Assembler operators. 

2-104 WAFERSCALE INTEGRATION, INC. 

In some cases, the same mnemonic is used 
to specify identical operations in both Macro 
and Assembler level. 

You may: 

CJ Specify all the components in the same 
statement in order to perform the opera
tions in parallel: 

PROGCNTL, CPU, OUTCNTL; 

CJ Specify components one at a time: 

CPU; 

PROGCNTL; 

OUTCNTL; 

CJ Use components in any combination: 

PROGCNTL, CPU; 

PROGCNTL, OUTCNTL; 

CPU, OUTCNTL; 

WSI recommends that, in general, you 
maintain a consistent ordering of these 
components and consistent groupings of 
Assembler-level and Macro operators, e.g. in 
separate files. This manual uses the 
PROGCNTL, CPU, OUTCNTL ordering. 

When PROGCNTL is omitted, the implied 
instruction is CONTinue, that is, proceed to 
the next control instruction. When CPU is 
omitted, the implied instruction is NOP. When 
OUTCNTL is omitted, the implied instruction 
is MAINTain, that is, maintain the most 
recent OUTCTL, in Assembler order. 

A summary of PACSEL Assembler and 
Macro statements follows. 



PAC1000 

Table 19. 
PACSEL Mnemonic Arguments Meaning 
Assembler The PROGCNTL Operators 
Language ACSIZE <16/22> SET A COUNTER SIZE 
Summary CALL <LABEL I LCPTR I FIFO> UNCOND BRANCH SUBRTN 

CALLC <COND> <LABEL I FIFO> COND BRANCH SUBRTN 

CALLNC <COND> <LABEL I FIFO> INV COND BRANCH SUBRTN 

CCASE <CG> <VALUE> BRANCH SUBRTN CASEBLK 

CLI <MASK> CLEAR INTERRUPT 

CONT(D) CONTINUE 

CPI <VALUE> PRIORITIZED SUB RTN 

DI <MASK> DISABLE INTERRUPT 

DSS DISABLE SINGLE STEP MODE 

EI <MASK> ENABLE INTERRUPT 

ESS ENABLE SINGLE STEP MODE 

fJ JCase <CG> <VALUE> UNCOND BRANCH CaseBLK 

JMP <LABEL I LCPTR I FIFO> UNCONDITIONAL BRANCH 

JMPC <COND> <LABEL I FIFO> CONDITIONAL BRANCH 

JMPNC <COND> <LABEL I FIFO> INVERT COND BRANCH 

JPI <VALUE> PRIORITIZED BRANCH 

LDBP <VALUE> LOAD BP REG 

LDBPD LOAD BP COMP VALUE 

LDLC <VALUE> LOAD COUNTER 

LDLCD LOAD CTR COMPUTED VAL 

LOOPNZ <LABEl> REPEAT BRANCH,CNTRNZ 

PLDLC <VALUE> PUSH VALUE & LDCTR 

PLDLCD PUSH VAL&LDCTR CM VL 

POP POP STACK 

POPLC POP STACK TO CNTR 

PUSHLC PUSH CNTR 

RESTART BRANCH TO 0 

RET RETURN 

RC <COND> CONDITIONAL RETURN 

RNC <COND> INV COND RETURN 

RSTCON <MASK> RESET CONTROL REG 

RSTIO <MASK> RESET I/O CON FIG REG 

RSTMODE <MASK> RESET MODE REG 

SETCON <MASK> SET CONTROL REG 

SETIO <MASK> SET I/O CON FIG REG 

SETMODE <MASK> SET MODE REG 

WAFERSCALE INTEGRATION, INC. 2-105 



PAC100D 

Table 19. 
PACSEL Mnemonic Arguments Meaning 
Assembler The CPU Operators 
Language ADC <ARG1> <ARG2> [<ARG3>J ADD WITH CARRY 
Summary (Clln'tJ ADD <ARG1> <ARG2> [<ARG3>J ADD 

AND <ARG1> <ARG2> [<ARG3>J BITWISE AND 

CMP <ARG1> <ARG2> COMPARE 

DEC <ARG1> [<ARG2>J DECREMENT 

INC <ARG1> [<ARG2>J INCREMENT 

INV <ARG1> [<ARG2>J INVERT 

MOV <DEST> <SRC> MOVE SRC TODEST 

NOP(D) NO OPERATION 

OR <ARG1> <ARG2> [<ARG3>J BITWISE OR 

RDFIFO READ FIFO DATA TO REG 

SBC <ARG1> <ARG2> [<ARG3>J SUB WITH CARRY 

SHLRQ <REG> <RARG> <QARG> SHIFT LEFT REG & Q 

SHLR <REG> <RARG> SHIFT LEFT REG 

SHRRQ <REG> <RARG> <QARG> SHIFT RIGHT REG & Q 

SHRR <REG> <RARG> SHIFT RIGHT REG 

SUB <ARG1> <ARG2> [<ARG3>J SUBTRACT 

XOR <ARG1> <ARG2> [<ARG3>J EXCLUSIVE OR 

XNOR <ARG1> <ARG2> [<ARG3>J EXCLUSIVE NOR 

The MACRO Operators 

DIV <ARG1> <ARG2> <ARG3> DIVISION 

MUL <ARG1> <ARG2> <ARG3> 2'S COMP MUL TIPL Y 

The OUTCNTL Operators 

MAINT(D) MAINTAIN PREV VALUE 

OUT <VALUE> OUTPUT 

2-106 WAFERSCALE INTEGRATION, INC. 



Tab/e20. 
PACSEL Macro 
Language 
Summar, 

The PROGCNTL Operators 
ACSIZE <16/22> 

CALL <label I LCPTR I FIFO> [ON] [NOT] [<cond>] 

CASE n, PROGCNTL, CPU, OUTCNTL; 

CLEAR <int level> [ ... <int level>] 

CONFIGURE <pml> [<pm2> ... <pmlO>] 

CONT 

DISABLE <int level> [<int level> ... <int level>] 

ELSE 

ENABLE <int level> [<int level> ... <int level>] 

END FOR 

ENDIF 

ENDPSWITCH 

ENDSWITCH 

ENDWHILE 

FOR <value> 

GOTO <label I LCPTR I FIFO> [ON] [NOT] [<cond>] 

IF [NOT] <cond> 

INPUT <i/o pin> [<i/o pin> ... <i/o pin>] 

LOADBP <value> 

OUTPUT <i/o pin> [<i/O pin> ... <i/o pin>] 

PRIORITY m, PROGCNTL, CPU, OUTCNTL; 

PSWITCH 

RESET <pl> [<p2> ... <plO>] 

RETURN [ON] [NOT] [<cond>] 

SET <pl> [<p2> ... <plO>] 

SWITCH <case group> 

WHILE [NOT] <cond> 

---- ----- ----

WAFERSCALE INTEGRATION, INC. 

PAC10tJ0 

Z·1111 



PAC1000 

Tab/e20. 
PACSEL MaclD 
Language 
Summary (CDn't) 

The CPU-Operator Assignment 
move 

<dest> := <src> 

arithmetic expression 

<dest> := <argl> <+/-> <arg2> <+/-> <arg3> 

logical expression 

<dest> := <argl> <logical operator> <arg3> 

increment, decrement, invert, unary minus 

<dest> := <opr> <src> 

macro expression 

<dest> := <argl> [* I /] <arg2> 

shift RAM 

<Rx> = Rx <shft opr> <shft arg> 

shift RAM and q 

<QRx> = Q <shft opr> <shft arg> Rx <shft opr> <shft arg> 

The OUTCNTL Operator 

OUT <argl> [<arg2> ... <arg16>] 

2-108 WAFERSCALE INTEGRATION, INC. 



System 
Development 
Tools 

PAC1000 System Development Tools are a 
complete set of PC-based development 
tools. They provide an integrated easy-to-use 
software and hardware environment to 
support PAC1 000 development and pro
gramming. 

The tools run on an IBM-XT, AT, PS2 or 
compatible computer running MS-DOS 
version 3.1 or later. The system must be 
equipped with 640 Kbytes of RAM and a hard 
disk. 

Hardware 

The PAC1000 System Programming Hard
ware consists of: 

o WS6000 MagicPro Memory and PSD 
Programmer (XT, AT only) 

o Package Adaptors (88-Pin Ceramic Pin
Grid Array and 100-Pin Ceramic Quad 
Flatpack-Gullwing) for the MagicPro 
Remote Socket Adaptor Unit 

The MagicPro Programmer is the common 
hardware platform for programming all WSI 
programmable products. It consists of the 
IBM-PC plug-in Programmer Board and the 
Remote Socket Adaptor Unit. 

Software 
The PAC1000 System Development Soft
ware consists of the following: 

o WISPER Software-PSD Software Inter
face 

o IMPACT Software-Interface Manager 
for PAC1000 

o PACSEL Software-System Entry 
Language 

o PACSIM Software-Functional Simulator 

o PAC PRO Software-Device Program
ming Software 

WISPER and IMPACT software provide a 
menu-driven user interface enabling other 

PAC1000 

tools to be easily invoked by the user. 

The system design is entered into PACSEL 
source program files using an editor chosen 
by the user. PACSEL supports assembly
level and high-level Macro programming. 

The PACSEL Assembler produces object 
code format in single or multiple modules, 
which are then linked by the PACSEL Linker 
into a single load file with a format suitable for 
PACSIM and PACPRO. 

The PACSIM functional simulator enables the 
user to test and debug programs by examin
ing the state of PAC1000 internal registers 
before and during a complete functional 
simulation of the device. 

PACPRO software programs PAC1000 
devices by using the MagicPro hardware and 
the socket adapter. 

The programmed PAC1000 is then ready to 
be used. 

Support 

WSI provides a complete set of quality 
support services to registered owners. These 
support services include the following: 

o 12-month Software Updates. 

o Hotline to WSI Application Experts-For 
direct design assistance. 

o 24-Hour Electronic Bulletin Board-For 
design assistance via dial-up modem. 

Training 

WSI provides in-depth, hands-on workshops 
for the PAC1 000 and the System Develop
ment Tools. Workshop participants will learn 
how to develop and program their own high
performance microcontrollers. Workshops are 
held at the WSI facility in Fremont, California. 

WAFERSCALE INTEGRATION, INC. 2-109 



PAC1DOO 

Ordering 
InfDrmatiDn- Part Number Spsed Package Package Operating Manufacturing 
PAC100D (MHz) Type Drawing Temperature Procedure 

PAC1000-12F* 12 100-Pin Ceramic F3 Commercial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-12FI* 12 100-Pin Ceramic F3 Industrial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-12FM* 12 100-Pin Ceramic F3 Military Standard 
Quad Flatpack, 
Gullwing 

PAC1000-12FMB* 12 100-Pin Ceramic F3 Military MIL-STO-883C 
Quad Flatpack, 
Gullwing 

PAC1000-12Q* 12 100-Pin Plastic Q1 Commercial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-12X 12 88-Pin Ceramic X1 Commercial Standard 
Pin-Grid Array 

PAC1000-12XI 12 88-Pin Ceramic X1 Industrial Standard 
Pin-Grid Array 

PAC1000-12XM 12 88-Pin Ceramic X1 Military Standard 
Pin-Grid Array 

PAC1000-12XMB 12 88-Pin Ceramic X1 Military MIL-STO-883C 
Pin-Grid Array 

PAC1000-16F* 16 100-Pin Ceramic F3 Commercial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-16FI* 16 100-Pin Ceramic F3 Industrial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-16FM* 16 1 OO-Pin Ceramic F3 Military Standard 
Quad Flatpack, 
Gullwing 

PAC1000-16FMB* 16 100-Pin Ceramic F3 Military MIL-STO-883C 
Quad Flatpack, 
Gullwing 

PAC1000-16Q* 16 100-Pin Plastic Q1 Commercial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-16X 16 88-Pin Ceramic X1 Commercial Standard 
Pin-Grid Array 

PAC1000-16XI* 16 88-Pin Ceramic X1 Industrial Standard 
Pin-Grid Array 

PAC1000-16XM* 16 88-Pin Ceramic X1 Military Standard 
Pin-Grid Array 

PAC1000-16XMB* 16 88-Pin Ceramic X1 Military MIL-STO-883C 
Pin-Grid Array 

PAC1000-20F* 20 100-Pin Ceramic F3 Commercial Standard 
Quad Flatpack, 
Gullwing 

PAC1000-20X* 20 88-Pin Ceramic X1 Commercial Standard 
Pin-Grid Array 

PAC1000-20Q* 20 100-Pin Plastic Q1 Commercial Standard 
Quad Flatpack, 
Gullwing 

*. These products are advanced information. 

2-110 WAFERSCALE INTEGRATION, INC. 



Ordering 
Information
System 
Development 
Tools 

Part Number 

PAC1000-GOLD 

PAC1000-SILVER 

WS6000 

WS6010 

WS6012 

WSI-Support 

WSI-Training 

Contents 
WISPER Software 

IMPACT Software 

PACSEL Software 

PACSIM Software 

PAC PRO Software 

User's Manual 

WSI-Support 

WS6000 MagicPro Programmer 

WISPER Software 

IMPACT Software 

PACSEL Software 

PACSIM Software 

PACPRO Software 

User's Manual 

WSI-Support 

MagicPro Programmer 

IBM PC plug-in Adaptor Card 

Remote Socket Adaptor 

SS-Pin CPGA Adaptor 

Used with the WS6000 MagicPro Programmer 

100-Pin Ceramic Quad Flatpack (Gullwing) Adaptor 

Used with the WS6000 MagicPro Programmer 

Support Services, including: 

U 12-month Software Update Service 

u Hotline to WSI Application Experts 

u 24-hour access to WSI Electronic Bulletin Board 

Workshops at WSI, Fremont, CA 

PAC1000 

For details and scheduling, call PSD Marketing, (415) 656-5400 

WAFERSCALE INTEGRATION, INC. 2-111 



2-112 WAFERSCALE INTEGRATION, INC. 



Programmable System™ Device 
WAFERSCALE INTEGRATION, INC. SAM448 Introduction 

Overview 

Microcode 
EPROM 
Architecture 

User·Configurable Microsequencer 

In 1988 WSI introduced a new concept in 
programmable VLSI: the Programmable 
System™ Device (PSD). The PSD is 
defined as a family of User-configurable 
system level building blocks on-a-chip 
enabling quick implementation of application 
specific controllers and peripherals. The 
first generation PSD series includes the 
MAP168, a User-Configurable Peripheral 
with Memory; the SAM448, a User
Configurable Microsequencer; and the 
PAC 1 000, a User-Configurable 
Microcontroller. 

The SAM448 is a microsequencer 
intended for use in digital systems that 
require events to be controlled at high 
speed. A microsequencer is basically an 
instruction oriented device executing one 
internal instruction on each system cycle. 
This can be done in a linear flow or the 
sequencer can test the state of logic 
inputs or internal events and respond to 
program branching on a result. In addition, 
it has the capability of driving output 
signals on a cycle by cycle basis. 

The SAM448 can operate at a high clock 
speed (30 MHz) so sequential operations 
can be performed much faster than with 
lower end microcontrollers. A classic 
application of the SAM448 would be in the 
generation of pulse waveforms for video 
line and frame synchronization with 

The core of the SAM448 is a microcode 
EPROM organized as a 448 locations 
deep and 36 bits wide. On each clock 
cycle, the current 32 bit wide instruction is 
clocked into the pipeline register. The 32 
bit word is split into a number of fields. 
The F field consists of 16 bits and drives 
the output lines as user defined output 
pins. The remaining 20 bits are subdivided 

blanking output controls for both line and 
frame flyback. The device could also 
control the load and shift activity in the 
video output registers and supervise the 
video memory address counters. All these 
activities are sequential in nature so 
microcode could be developed for the 
SAM device and programmed into the 
device's on-chip EPROM. 

Prior to the development of the SAM448 
Microsequencer, a designer would most 
likely develop a system from discrete 
EPROM or ROM plus 74LS TTL logic with 
dedicated LIFO and registers. The actual 
development of such a design would 
escalate in chip count to eventually cover 
an entire printed circuit card. With the 
advent of Programmable Logic 
Devices (PLDs), the development of a 
microsequencing circuit became simpler. 
However, a typical system still required five 
to six PLDs. In addition, and EPROM was 
needed to hold the microcode. Because 
microcode is usually rather wide, a 
number of EPROMs were needed. 

The SAM448 provides the optimum solution 
when implementing a microsequencer of 
medium complexity. It has been designed 
to be cascadable in width and depth so 
more complex microsequencer designs 
may be achieved. 

into one 8-bit Q field which generally 
directs processing to the next address of 
the EPROM. The 8-bit D field can be used 
to hold a constant or direct value but it 
can also be used for next address 
generation. The OP field is three bits in 
width and contains the current instruction 
to be executed. The remaining field is the 

WAFERSCALE INTEGRATION, INC. 2·113 

fI 



SAM448 Introduction 

Microcode 
EPROM 
Architecture 
(Cont.) 

Branch 
Control Logic 

Stack 

Loop Counter 

Instruction Set 

E field and performs a 3-State control 
function on the pipeline register. When 
HIGH, the output pins are enabled and 
when LOW the outputs are in a high 
impedance state. This feature enables one 
SAM448 device to share the same outputs 
with a second for vertical cascading. 

The EPROM locations are connected such 
that the first 192 locations (0 to 191) are in 

The branch control logic determines the 
location from where the next instruction 
will be fetched. The next address can 
come from the Q or D field of the instruction 
currently in the pipeline register, the top of 

The stack or Last In First Out (LIFO) 
memory is 15 locations deep and 8 bits 
wide and can be used to hold the value of 
a return address so successful CALL to 
and RETURN from subroutines may be 
invoked. A loop counter is included in the 

To make provision for a number of 
operations to be repeated a defined 
number of times, a loop counter called 
CREG has been included in the design. 
This eight bit counter is loaded from the D 

The instruction set for the SAM448 consists 
of 12 instructions to handle multiway 
branching, subroutines, nested for-next 
loops and dispatch functions. With only 12 
instructions a designer can become familiar 

2·114 WAFERSCALE INTEGRATION, INC. 

a linear sequence. The remaining locations 
are organized in four rows of 192 to 255. 
This permits a one of four branch control. 
The internal branch control logic will make 
the decision as to which branch to take 
depending on the state of the user defined 
inputs and the value of the next state 
address. 

the stack or LIFO or the Branch Select 
EPLD. The Branch Select EPLD can be 
programmed to view inputs or the logical 
combination of inputs to invoke a branch 
when a logic state becomes true. 

SAM448 architecture and the stack can be 
used to hold the contents of this loop 
counter when nested loops are invoked. 
The eight input lines may also be pushed 
onto the stack to externally load the counter. 

field by a dedicated instruction LOADC or 
from the stack in the case of nested loops. 
The counter decrements to zero and then 
holds at zero. So repetitive routines may 
be achieved by a LOOPNZ instruction. 

with creating SAM448 designs very quickly. 
The WSI State Machine Input Language 
(ASMILE) support software enables designs 
to be generated quickly and efficiently. 



WAFERSCALE INTEGRATION, INC. 

Programmable System™ Device 
SAM448 

Features 

Description 

Pin Configuration 

User-Configurable MiclOsequencer 

I;J First Generation Programmable System 
Device 

I;J User-Programmable Microsequencer for 
Implementing High-Performance State 
Machines 

I;J On-Chip Reprogrammable EPROM 
Microcode Memory Up to 448 
Words Deep 

I;J 15 x 8 Stack 

I;J Loop Counter 

I;J Prioritized, Multi-Way Control Branching 

I;J 8 General-Purpose Branch Control Inputs 

I;J 16 General-Purpose Control Outputs 

In 1988 WSI introduced a new concept in 
programmable VLSI, Programmable 
System 1M Devices (PSD). The PSD is 
defined as a family of User-configurable 
system level building blocks on-a-chip 
enabling quick implementation of application 
specific controllers and peripherals. The first 
generation PSD series includes the 
MAP168, a User-Configurable Peripheral 
with Memory; the SAM448, a User
Configurable Microsequencer; and the 
PAC1000, a User-Configurable 
Microcontroller. 

The SAM448 is a first generation PSD 
and is WSI's first user programmable 
microsequencer. On-Chip EPROM (up to 448 

I;J Cascadable to Expand Outputs or States 

I;J Low-Power CMOS Technology 

I;J Footprint Efficient 28 Pin 300 Mil Dip or 
28 Lead CLDCC/PLDCC Package 

I;J 30 MHz Minimum Clock Frequency 

I;J High Level PC-XT/AT, PS2 or Compatible 
Design Support Software (SAM + PLUS): 

- WSI PSD Integrated Software 
Environment 

- State Machine Input Language 

- Microcode Assembler 

- Functional Simulator 

words) is integrated with Branch Control 
Logic, Pipeline Register, Stack, and Loop 
Counter. This generic microcoded architecture 
provides an efficient vehicle for implementing 
a broad range of high performance controllers 
spanning the spectrum from basic state 
machines to traditional bit-slice controller 
applications. 

The SAM448 has eight general purpose 
input pins, a clock pin and a reset pin. 
It has 16 user-definable outputs packaged in 
a 28-pin 300 mil Dip or 28 Lead CLDCCI 
PLDCC package. One:rime-Programmable 
plastic versions are available to minimize 
volume production costs. 

(Top View) Dual·ln·Line Leaded Chip Caflier 

F,. 
F,. 
F'2 
Fll 
F,o 
Fo. 

Vee Fo. 
"RESET GND 

F07 
F •• 
F •• 
F04 
F •• 

""L.:.;;......_;.;;..t'F.2 

.... 
w 
ffi 0 ~ 
II: c.> ... . ~ _N ..:' c> 0 

4 3 2 1282726 

I, I. 

I. 

0 
17 

F •• F,. 

F., F,. 

F.2 F,. 

F .. F'2 

F •• Fll 

II) :g s: C • Cb 0 

LElLlLt5ae~u:-

WAFERSCALE INTEGRATION, INC. 2·115 



SAM44B 

Description 
(Cont.) 

Functional 
DescrIption 

Programming the SAM448 device is 
accomplished on a standard WSI PSD 
WISPER development system installed 
with the optional SAM+PLUS software 
package and device adapters. New users 
can purchase a separate WISPER-SAM 
development system with programming 
hardware included. SAM+PLUS allows 
designs to be entered in either state 
machine or microcoded formats. 
SAM+PLUS automatically performs logic 
minimization and design fitting for the 
device. The design may then be simulated 
or programmed directly to achieve 
customized working silicon within minutes. 

Using WSI's proprietary high performance 
CMOS EPROM technology allows SAM448 
to operate at a 25-MHz typical clock 
frequency while still enjoying the benefits 
of low CMOS power consumption. This 
technology also facilitates 100% generic 
testability which eliminates the need for 
post-programming testing. 

Ideal application areas for SAM448 include 
programmable sequence generators (state 
machines), bus and memory control 
functions, graphics and DSP algorithm 
controllers, and other complex, high 
performance machines. The devices may 
be cascaded easily to obtain greater 
output requirements (horizontal cascade) 
or greater microcooe memory depth 
(vertical cascade) or both. 

SAM as a State Machine 
The SAM448 architecture allows easy 
implementation of synchronous state 

The SAM architecture is shown in Figure 1. 
The primary elements are the Microcode 
EPROM, 36-bit Pipeline Register, Branch 
Control Logic, 15 x 8-bit Stack, and 8-bit 
Loop Counter. 

The Branch Control Logic generates the 
address of the next state and applies this 
address to the Microcode Memory. The 
outputs of the Microcode Memory 
represent the user-defined outputs ~nd 
internal control values associated w th the 
next state. On the leading edge of e 
clock these new values are clock t:I into 
the Pipeline Register and bec e the 
current state. The new values in the 
Pipeline Register-along with the Counter, 
Stack and Inputs-are used by the Branch 

2·116 WAFERSCALE INTEGRATION, INC. 

machines. SAM's internal EPROM memory 
together with its Pipeline Register allows 
storage of up to 448 unique states. SAM's 
Branch Control Logic allows single clock, 
multi-way branching in response to the 
eight inputs, current device state, and 
user-defined transition conditions. Design 
entry is simplified with WSI's State Machine 
Input Language (ASMILE) supported by 
the SAM+PLUS development system. This 
high level language uses IFTHEN-ELSE 
statements to define state transitions and a 
truth table to define or tri-state the outputs 
on a state-by-state basis. 

SAM as a Microcoded Sequencer 
SAM's architecture has several advanced 
features that enable it to be used as a 
sophisticated microcoded sequencer. 
SAM's on-chip EPROM (448 words) is 
integrated with a microcoded sequencer 
conSisting of Branch Control Logic, Stack, 
and Loop Counter. The eight general
purpose inputs, the Counter, the Stack, 
and the Pipeline Register feed the Branch 
Control Logic. The Branch Control Logic 
gives flexible multi-way microcode branch 
capability in a single clock, enhancing 
throughput beyond that of conventional 
controllers or sequencers. 

SAM+PLUS development software offers 
high level microcode entry featuring a 
compact assortment of powerful instructions 
(OP-codes) allowing easy implementation 
of conditional branches, subroutine calls, 
multiple level for-next loops, and dispatch 
functions (branching to an externally 
specified address). 

Control Logic to generate the new next
state address. 

Microcode EPROM and Pipeline Register 
The Microcode EPROM is organized into 
448, 36-bit words or locations, each of 
which can be viewed as a single state. 16 
of these bits (the F-field) are available at 
device pins as user-defined outputs. 

The other 20 bits are internal control 
signals that are divided into 4 fields: the 
8-bit Q-field normally provides the next
state address; the 8-bit D-field is a general 
purpose field used either as a constant or 
as an alternative next-state address; the 
OP-field contains the instruction; and, the 



Functional 
Description 
(Cont.) 

Figure 1. 
SAM448 Block 
Diagram 

Figure 2. 
SAM Microcode 
Memory 

E-field contains a single bit which enables 
or tri-states the device outputs. 

As shown in Figure 2, the Microcode 
Memory is organized as 256 rows or 
addresses. Addresses 0 through 191 
contain a single 36-bit word which is 
associated with the desired next-state. This 
state information will be clocked into the 
Pipeline Register on the next rising edge 
of the clock and the outputs will become 
valid one T co (clock to output delay) later. 

NRESET 

INPUTS 
(8) 

NEXT STATE 

BRANCH 
CONTROL 

lOGIC 

EPlD 
768 PRODUCT 

TERMS 

ADDRESS 

ZERO 

~ :-- : . ~ 

ADDRESS FR=Y0M 
BRANCH 
CONTROL 8 

SAM448 

Addresses 192-255, on the other hand, 
access four unique 36-bit words which 
correspond to four possible next states. 
(The extension .0, .1, .2, and .3 are used to 
distinguish those four states.) These 64 
addresses are known as Multi-Way Branch 
locations and are used to perform single 
clock 4-way branches. Whenever the next
state address falls within the Multi-Way 
Branch locations, the Branch Control Logic 
will make the necessary 1-of-4 selection 
based on the next-state address and user
defined input conditions. 

MICROCODE 
EPROM 

MULTI-WAY BRANCH lOCATIONS 

1 
1 .2 193. 
194. 

ClK 

1 OF 4 BRANCH 
SELECT FROM 

BRANCH _--~4L--+r==:==========~~~~~~~~~========~~~ CONTROL 

SYSTEM 
CLOCK F,-F1S OUTPUTS 

WAFERSCALE INTEGRATION, INC. 2-117 



SAM448 

Figure 3. 
SAM Branch 
Control Logic 

ZERO 
FLAG OPCODE 

ADDRESS 
MULTIPLEXER 

NEXT-STATE 
ADDRESS 

Branch Control Logic Block 
At the heart of the high-performance 
sequencing ability of the SAM family is the 
Branch Control Logic. This block determines 
the next-state to be clocked into the Pipeline 
Register based on the current status of the 
Pipeline Register, the Counter, the Stack, 
and the eight input pins. 

The Branch Control Logic is divided into 
two segments: the Address Multiplexer and 
the Branch Select EPLD. 

The Address Multiplexer provides the next
state address to the Microcoded Memory. 
The next-state address can come from the 
Q-field, the D-field, or the Top-of-Stack. 
The selection between these three 
resources is based on the instruction in 
the Pipeline Register and the condition of 
the Zero Flag from the Counter. 

The Branch Select EPLD is used to 
perform up to a 4-way branch based on 
user-defined input conditions. This block is 
a 768 product-term programmable logic 
device with 16 inputs and four outputs. 
When the next-state address falls within 
the multi-way branch block of memory (any 
address greater than 191) the Branch 
Select EPLD performs the necessary 1-of-4 
selection. When the next-state address is 
less than 192, the Branch Select EPLD is 
turned off since no selection is required. 

The conditions controlling the multi-way 
branch are defined by the user with a 
simple IF, THEN, ELSE format like the 
following: 

IF (cond3) THEN select 201.3 
ELSEIF (cond2) THEN select 201.2 
ELSEIF (cond1) THEN select 201.1 
ELSE select 201.0 

8 

2-118 WAFERSCALE INTEGRATION, INC. 

INPUTS 
(10-17) 8 

BRANCH SELECT 
EPLD 

768 
PRODUCT TERMS 

4 1-01'-4 
BRANCH 
SELECT 

The conditions are prioritized so that if the 
first condition is not met (cond3), then 
microword 201.3 will be selected and 
clocked into the Pipeline Register regardless 
of the results of cond2 and cond1. If none 
of the three conditions are met, then the 
microword 201.0 will be clocked into the 
Pipeline Register. 

The three conditional expressions are user 
defined and may contain any logical 
equation based on the inputs that can be 
reduced to four product-terms. For 
example, the expression 

11 * 112 * 114 
+13 * 114 * 115 * 116 * 117 
+10 
+12 * 114 * 115 

contains four product-terms and is a valid 
condition. There is a unique set of 12 
product-terms for each of the 64 multi-way 
branch locations for a total of 768 product
terms. (See Figure 4.) 

The SAM448 has been designed so that 
the number of available product-terms 
should never be the limiting factor on a 
design. Prioritization provides an effective 
product-term count of more than 12 per 
location. A trade-off between number of 
product-terms and number of possible 
branches can be made by simply placing 
identical state information in two locations 
as shown in Figure 5. 



Figure 4. 
SAM Branch 
Logic for 
Address 192 
Through 255 

Figure 5. 
Multi·way 
Branching 

PROGRAMMABLE 
LOGIC 

ro-
~P 
g 

PRIORITY 
ENCODER 

SELECT 3 

gD-~ 
D 
:g SELECT 1 

-DD~ 
-D 

SELECT 0 

10 11 12 13 14 15 16 17 J:3::)-
INPUTS 

4-WAY BRANCH 

3-WAY BRANCH 

SAM448 

WAFERSCALE INTEGRATION, INC. Z-ff9 



SAM448 

Functional 
Description 
(Cont.) 

Instruction Set 

Output Enable 
Control 

nRESET Pin 

Horizontal and 
Vertical 
Cascading 

Stack 
The Stack of the SAM448 is a Last In First 
Out (LIFO) arrangement consisting of 15 
8-bit words. The Top-of-Stack may be used 
as the next-state address or popped into 
the Counter. Values may be pushed onto 
the stack either from the D-field in the 
Pipeline Register or from the Counter 
enabling efficient implementation of 
subroutines, nested loops, and other 
iterative structures. The eight input lines 
may also be pushed onto the stack to 
allow external address specification in a 
dispatch function or to externally load the 
counter. 

The PUSHing or POPing of the stack 
occurs on the leading edge of the clock. 
The stack is "zero filled" so that a POP 
from an empty stack will return all eight 
bits set to zero. On the other hand, a push 
to an already full stack will write over the 
Top-ot-Stack leaving the other 14 values 
unchanged. 

The instruction set of the SAM448 consists 
of a compact assortment of powerful 
commands. Assembly language constructs 
allow efficient implementation of multi-way 
branching, subroutines, nested for-next 
loops, and dispatch functions. The complete 

Each microcode word contains an OE bit 
(the E-field) which enables the outputs 
when E = 1 and causes a high-impedance 
when E = O. These bits are accessible 

The nRESET pin acts as a master reset 
for the SAM448 causing it to empty the 
Stack, clear the Counter, and load the 
microword found at address 0 into the 
Pipeline Register. The nRESET signal is 
useful for system reset or for synchronizing 
several SAMs that are cascaded vertically 
or horizontally. 

The nRESET signal must be held low for 
at least three clock rising edges to perform 

Just as with memory and bit slice devices, 
the SAM devices can be cascaded to 
provide greater functionality. If an application 
requires more output lines, two or more 
SAMs can be cascaded horizontally. 
Likewise, if an application requires more 

2·120 WAFERSCALE INTEGRATION, INC. 

Loop Counter 
The SAM448 contains an 8-bit Loop 
Counter, referred to as the Count Register 
(CREG), which is useful for controlling 
timing loops and affecting a variety of 
branch operations. The CREG is a down 
counter and may be loaded directly from 
the D-field of the Pipeline Register or from 
the Top-of-Stack. The value of the CREG 
may be saved and restored by pushing 
and popping it to and from the Stack. 

The CREG is loaded or decremented on 
the leading edge of the clock. It is 
designed so that it will not decrement 
once it reaches zero to prevent roll-over. A 
Zero Flag indicates when the counter has 
reached zero and is used with the 
LOOPNZ command to control program 
flow (see Instruction Set Description). 
Single instruction delay loops are easily 
constructed and, in combination with the 
Stack, nested loops or delays of arbitrary 
length may be generated. 

instruction set is described at the end of 
this d/l.ta sheet. These instructions are 
only used with assembly language design 
entry and are automatically supplied when 
using the WSI State Machine Input 
Language (ASMILE). 

through high-level constructs in the WSI 
Development Software. This capability 
allows the vertical cascading of SAM448 
devices to increase the number of states. 

a valid clear. A nRESET of one clock 
rising edge causes the SAM448 to enter 
into a supervisor mode and a nRESET of 
two clock edges results in an undefined 
state. 

The outputs of the boot address (00 Hex) 
will appear at the pins from the fourth 
clock edge after nRESET goes low, until 
the third clock edge after nRESET returns 
to high. 

states, two or more SAMs can be cascaded 
vertically. In either case, no speed penalty 
is incurred. Designs utilizing horizontal 
cascading are fully supported by the 
SAM+PLUS development software. Vertical 
cascading requires the designer to make 
certain tradeoffs to split the design. 



Figure 6. 
SAM448 
Cascading 

Functional 
Testing 

Recommended 
Operating 
Conditions 

SAM448 

INPUTS INPUTS 

~----.-- CLOCK 

SAM448 

CONTROL OUTPUTS (2N) 

HORIZONTAL CASCADE 

INPUTS 
SAM448 N 

CONTROL 
N OUTPUTS 

(N) 

CLOCK 
SAM448 N 

INPUTS 

VERTICAL CASCADE 

The SAM448 is fully functionally tested 
and guaranteed through complete testing 
of each programmable EPROM bit and all 
internal logic elements thus ensuring 
100% programming yield. 

The erasable nature of the SAM448 allows 
test programs to be used and then erased 
during early stages of production flow. This 

Symbol Parameter 

vee Supply Voltage 

VI Input Voltage 

Va Output Voltage 

TR Input Rise Time (Note 6) 

TF Input Fall Time (Note 6) 

facility to use application-independent, 
general purpose tests is called generic 
testing and is unique among user-defined 
LSI logic devices. The devices also 
contain on board test circuitry to allow 
verification of function and AC specification 
once encapsulated in non-windowed 
packages. 

Conditions Min Max Unit 
Note 6 4.75 (4.5) 5.25 (5.5) V 

0 Vee V 

0 Vee V 

500 (100) ns 

500 (100) ns 

WAFERSCALE INTEGRATION, INC. 2·121 

----------- ---~---------- -----



SAM448 

DC Operating 
Characteristics 

Absolute 
Maximum 
Ratings 
(See Design 
Recommendations) 

Capacitance 
(Note 3) 

Vee = 5V ± 5%, O°C to +70°C for Commercial 
Vee = 5V ± 10%, -40°C to +85°C for Industrial 
Vee = 5V ± 10%, -55°C to +125°C for Military 

Symbol Parameter Conditions Min 
VIH High Level Input Voltage 2.0 

VIL Low Level Input Voltage -0.3 

VOH High Level TTL Output 
10H = -8 mA DC 2.4 Voltage 

VOH High Level CMOS 
10H = -4 mA DC 3.84 Output Voltage 

VOL Low Level TTL Output 
10L = 8 mA (4 mA) DC Voltage 

II Input Leakage Current VI = Vee or GND 

loz 3-State Output Off-State 
Vo = Vee or GND Current 

lee1 
Vee Supply Curent V1 = Vee or GND 
(Standby) (Note 6) 10 = 0 CLK = Vee 

lee2 
Vee Supply Current No Load 50% CLK 
(Active) (Note 6) f = 20 MHz 

Symbol Parameter Conditions 
vee Supply Voltage 

Vpp Programming Supply Voltage 
With Respect to GND 

(Note 2) 
VI DC Input Voltage 

leeMAx DC Vee or GND Current 

lOUT DC Output Current, per Pin 

PD Power Dissipation 

TSTG Storage Temperature No Bias 

TAMB Ambient Temperature Under Bias 

Symbol Parameter Conditions 

CIN Input Capacitance 
VIN = OV 

f = 1.0 MHz 

COUT Output Capacitance 
VOUT = OV 

f = 1.0 MHz 

CeLK Clock Pin Capacitance 
VIN = OV 

f = 1.0 MHz 

CRST nRESET Pin Capacitance 

2·122 WAFERSCALE INTEGRATION, INC. 

Typ Max Unit 
Vee +0.3 V 

0.8 V 

V 

V 

0.45 V 

±10 IlA 

±10 IlA 

30 65 (90) mA 

55 120 (170) mA 

Min Max Unit 
-2.0 7.0 V 

-2.0 14.0 V 

-2.0 7.0 V 

-250 250 mA 

-25 25 mA 

1200 mW 

-65 150 °C 

-10 85 °C 

Typ Unit 

10 pF 

15 pF 

10 pF 

75 pF 



SAM448 

AC 
Characteristics 

Vcc 
Vee 
Vce 

5V ± 5%, O°C to +70°C for Commercial 
5V ± 10%, -40°C to +85°C for Industrial 

Figure 7. 
Timing 
Waveforms 

5V ± 10%, -55°C to +125°C for Military (Note 7) 

Symbol Parameter Conditions 
SAM448-30 SAM448-25 SAM448-20 

Unit 
Min Max Min Max Min Max 

fCYC Maximum Frequency 30 25 20 MHz 
C, = 35 pF 

tCYC Minimum Clock Cycle 33.3 40 50 ns 

tsu Input Setup Time 16.5 20 22 ns 

tH Input Hold Time 0 0 0 ns 

tco Clock to Output Delay C, = 35 pF 16.5 20 22 ns 

tcz 
Clock to Output 

16.5 20 22 ns 
Disable or Enable 

tCl 
Minimum Clock 

11 12 15 
Low Time 

ns 

tCH 
Minimum Clock 

11 12 15 
High Time ns 

tSUR nRESET Setup Time 16.5 18 18 ns 

tHR nRESET Hold Time 5 5 5 ns 

NOTES: 1. TYPical values are for T A = 25°C, Vee = 5V. 
2. Minimum DC input is -0.3V. During transitions, the inputs may undershoot to -2.0V for periods 

less than 20 ns. 
3. Capacitance measured at 25°C. Sample tested only. 
4. If the nRESET is held low for more than 3 clock edges, then the outputs associated with the boot 

address (00 Hex) will remain at the pins until the third clock edge after nRESET goes high. 
5. For 1.0 < V, < 3.8, the nRESET pin will source up to 200 ~A. 
6. Figures In ( ) pertain to military and Industrial temperature versions. 
7. The specifications noted above apply to military operating range devices. MIL-STD-883 compliant 

product specifications are provided in military product drawings available on request from WSI 
marketing at Tel. 415-656-5400. These military product drawings should be used for the preparation 
of source control drawings. 

tFj" r--tCL~= ~tCH-=j tR1 ~ 
CLOCK ~ 31 \'------JV1r------..,,-

~tSU-+tH-1 

INr.~~ ==x VALID INPUT X ..... __________ ..:.I _______ _ 

OUTPUT 
F.-F'5 

r-tc0----1 I I X,.-------:-I--
~tcz=:i ~tcz-----j 

OUTPUT ________________ -J)~--~H~IG~H~-~IM~P~E~DA~N~C~E~3~-S~T.~~~~E~ __ ~C 
Fo-F15 . 

WAFERSCALE INTEGRATION, INC. 2-123 



SAM448 

Figure B. 
Reset Timing 
Waveforms 

CLOCK 

~URj r 
"RESET \ 1 

'--1------- 1c°4 r-
OU~~~------~)(~ ___________ I_N_VA_L_ID_O_U_T_PU_T __________ _J)(r--------F--(O-~--------'~NOTE4 

Design Security 

Design 
Recommendations 

The SAM448 contains a programmable 
design security feature that controls the 
access to the data programmed into the 
device. If this programmable feature is 
used, a proprietary design implemented in 
the device cannot be copied nor retrieved. 

Operation of the SAM448 with conditions 
above those listed under "Absolute 
Maximum Ratings" may cause permanent 
damage to the device. This is a stress 
rating only, and functional operation of the 
device at these or any other conditions 
above those indicated in the operational 
sections of this data sheet is not implied. 
Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability. These devices contain 
circuitry to protect the input against 
damage to high static voltages or electric 
fields; however, it is advised that normal 
precautions be taken to avoid application 
of any voltage higher than maximum rated 
voltages to this high-impedance circuit. 

For proper operation, it is recommended 
that opaque labels be placed over the 
device window. Input and output pins must 

2·124 WAFERSCALE INTEGRATION, INC. 

L COUNTER AND 
STACK CLEARED 

This enables a high level of design control 
to be obtained since programmed data 
within EPROM cells in invisible. The bit 
that controls this function, along with all 
other program data, may be reset simply 
by erasing the device. 

be constrained to the range GND ,;;; (VIN or 
VOUT) ,;;; Vee· Unused inputs must always 
be tied to an appropriate logic level (e.g., 
either Vee or GND). A power supply 
decoupling capacitor of at least 0.1 IlF 
must be connected directly between the 
Vee pin and GND. 

When operating in noisy environments it is 
possible that a glitch on the nRESET pin 
one T SUR before the clock edge could 
initiate a supervisor mode. To prevent this 
possibility, it is recommended to connect a 
capacitor of at least 0.1 IlF from the 
nRESET input to ground. 

All general purpose inputs to the SAM448 
should be synchronized to be guaranteed 
to meet the setup time. Input tr.ansitions 
which occur less than one T su before the 
leading clock edge can cause the SAM448 
to enter an undefined state. 



Figure 9. Output 
Drive Current 

100 
80 

60 

... 40 

~ 
~ 20 
C 
S. 
!z 110110 
II! 8 
!!i 6 
CJ 

~ 4 

:::> o 
2 

o 

InstructiDn Set 
DescriptiDn 

Vee = S.OV 
TA = 2S"C 

2 4 

SAM448 

5 
Vo OUTPUT VOLTAGE (V) 

Following is a description of the instruction 
set available with the SAM448. These 
instructions can be used in conjunction 
with the Assembly Language entry to 
access the various features of the SAM448. 
They are automatically supplied when 
using the WSI State Machine Input 
Language (ASMILE). 

In the following description label1 and 
label2 indicate arbitrary labels located in 
the assembly (.ASM) file. These labels will 
be converted by the software into the 8-bit 
address of that label. The parameter 
constant is any 8-bit number (0-255 
Decimal, O-FF Hex) representing an 
address, a mask, or a constant. 

The instructions influence the control of 
the Stack, the Counter, and the Address 

CONTINUE simply causes execution 
to continue with the next sequential 
instruction found in the Assembly 
Language file (.ASM). 

Multiplexer. These effects are summarized 
in the Instruction Table. Throughout the 
examples it is assumed for simplicity that 
the destination labels do not lie within the 
Multi-Way Branch Block of memory so that 
branching based on inputs is not 
performed. It is valid, however, for any of 
these labels to lie within the Multi-Way 
Branch Block so that 4-way branching 
based on the inputs can be performed. 
See the MULTI-WAY BRANCH section at 
the end of this data sheet for more details. 

The SAM+PLUS development system 
allows the designer to use the high level 
Assembly Language without worrying 
about the actual values that are placed in 
the various fields. 

CONTINUE 

WAFERSCALE INTEGRATION, INC. 2-125 

---------- ---



SAM44B 

Instruction Set 
Description 
(Cont.) 

The JUMP instruction causes execution to 
branch to the indicated location. If address 
44 contains the instruction ~UMP label1,' 
then the next state will come from label1 
which in this case is located at address 73. 

The CALL/RETURNTO instruction is 
typically used to call a subroutine. In 
general it will push the address of label2 
onto the Stack and cause label1 to be the 
next-state address. Leaving the RETURNTO 
designation off will cause label2 to default 
to the next instruction in the .ASM file. In 
the example, address 44 contains the 
command 'CALL label1' where label1 is 
located at address 73. This causes the 
address of the following instruction, in this 
case 45, to be pushed onto the Stack, and 
the next state to come from address 73. 
The RETURN command at address 75 
returns the execution to address 45. 

The RETURN command is used to return 
from a subroutine call or in general to 
cause the next-state address to come from 
the top of the Stack. In the example, the 
command at address 44 CALLed the 
subroutine at address 73 and PUSHed the 
value 45 onto the Stack. The RETURN 
command at address 75 will transfer 
execution to address 45 and POP that 
value off the Stack. 

2-126 WAFERSCALE INTEGRATION, INC. 

JUMP label1 

CALL label1 RETURNTO label2 

45 -0 STACK (PUSH) 

RETURN 

-e STACK (POP) 



Instruction Set 
Description 
(Cont.) 

The LOAD Counter command loads the 
Counter with the value specified and 
transfers execution to label1. The LOADC 
command is typically used to initialize the 
Counter for a repetitive loop. In the 
example, address 44 has the command 
'LOADC 73D GOTO label1' which causes 
the decimal value 73 to be loaded into the 
Counter and the next state to come from 
label1. In this case label1 is located at 
address 73. If the GOTO designation is left 
off label1 will default to the next instruction 
in the .ASM file. 

The LOOP on Non-Zero/ON ZERO goto 
command jumps to one of two addresses 
based on the value of the Zero Flag and 
decrements the Counter if not zero. This 
instruction is typically used to implement 
for-next loops. In the example, address 44 
has the command 'LOOPNZ label1 
ONZERO label2' where label1 is located 
at address 42 and label2 is located at 
address 73. If the Counter is not at zero 
then the next state will come from address 
42 and the Counter will be decremented. If 
the Counter is already at zero then the 
instruction at address 73 will be executed 
and the Counter will stay at zero. If the 
ONZERO designation is left off, the default 
for label2 will be the next instruction in the 
.ASM file. 

The DEcrement Counter on Non-Zero 
GOTO command will decrement the 
Counter if it is non-zero and jump to 
label1. In the example, address 44 has the 
command 'DECNZ GOTO label1' where 
label1 is located at address 73. The 
Counter is decremented and the next 
instruction comes from address 73. The 
default for label1 is the next instruction in 
the .ASM file. 

SAM448 

LOADC constant GOm label1 

CONST -0 CREG (LOAD) 

LOOPNZ label1 ONZERO label2 

N-l -0 CREG (DEC) 

DECNZ GOTO label1 

N-l -0 CREG (DEC) 

WAFERSCALE INTEGRATION, INC. 2-127 



SAM448 

Instruction Set 
Description 
(CDnt.) 

The PUSH Counter LOAD Counter 
command will push the current value of 
the Counter onto the Stack, load a 
constant into the Counter, and jump to 
label1. This instruction is useful for 
implementing nested for-next loops. In the 
example, the instruction at address 44 is 
'PUSHLOADC 153D GOTO label1' where 
label1 is located at address 73. The value 
in the Counter will be pushed onto the 
Stack, the decimal value 153 will be 
loaded into the Counter, and the next 
instruction will come from address 73. The 
default for label1 is the next instruction in 
the .ASM file. 

The POP Stack to Counter GOTO 
command will pop the top of Stack into 
the Counter and jump to label1. This 
command is typically used in conjunction 
with the PUSHLOADC to implement 
nested for-next loops. In the example, 
address 44 has the command 'POPC 
GOTO label1' where label1 is located at 
address 73. The default for label1 is the 
next instruction in the .ASM file. 

The PUSH constant to Stack GOTO 
command will push the value constant 
onto the Stack and jump to label1. In the 
example, address 44 has the command 
'PUSH 34D GOTO label1' where label1 is 
located at address 73. The decimal value 
34 is pushed onto the Stack and the next 
state comes from address 73. The default 
for label1 is the next instruction in the 
.ASM file. 

2-128 WAFERSCALE INTEGRATION, INC. 

PUSHLOADC constant GOTO label1 

I---~ 

CONST ~ CREG (LOAD) 

6 STACK (PUSH) 

PO PC GOTO label1 

~ STACK (POP) 

6 CREG (LOAD) 

PUSH constant GOTO label1 

CONST -0 STACK (PUSH) 



Instruction Set 
Description 
(Cont.) 

The PUSH Input GOTO command will push 
the eight inputs (17-10) onto the Stack. In 
the example address 44 has the instruction 
'PUSH I GOTO label1' where label1 is located 
at address 73. At the leading edge of the 
clock the eight inputs are pushed onto the 
Stack. In a typical example, address 73 
would have a RETURN instruction which 
would cause execution to jump to the 
address represented by the recently 
PUSHed input pins. This implements a 
dispatch function. The default for label1 
will be the next instruction in the .ASM file. 
This instruction can also be used to load 
the Counter with an externally specified 
variable. In this case address 73 would 
have a POPC instruction. 

The AND PUSH Input GOTO command is 
identical to the PUSH I command except 
the inputs are first bit-wise ANDed with a 
constant. This allows the masking of 
irrelevant inputs before PUSHing an 
address for a dispatch routine. 

The POP and XOR Stack to Counter 
GOTO command will pop the top of Stack, 
bitwise XOR it with a constant, load the 
result into the Counter, and jump to label1. 
In the example, address 44 has the 
command 'POPXORC 250 GOTO label1' 
where label1 is located at address 73. The 
top of Stack is POPed off the Stack, 
XORed with the decimal number 25, and 
loaded into the Counter. The next state 
comes from address 73. Since a XOR 
function does a comparison, this 
command can be used to compare the 
input to a constant and then branch based 
on the result with a LOOPNZ command. If 
the GOTO designation is left off the default 
for label1 will be the next instruction in the 
.ASM file. 

SAM448 

PUSHI GOTO label1 

INPUT l 
U STACK (PUSH) 

ANDPUSHI constant GOTO label1 

CONST~ 

""" 6 
STACK (PUSH) 

POPXORC constant GOTO label1 

1~-
1----1 CONST ~ 

73 0 CREG (LOAD) 

WAFERSCALE INTEGRATION, INC. 2·129 



SAM448 

Figure 10. 
Instruction Set 
Summary 

Instruction 

CONTINUE 

JUMP 

CALL 

RETURN 

LOADC 

LOOPNZ 

DECNZ 

PUSHLOADC 

POPC 

PUSH 

PUSHI 

ANDPUSHI 

POPXORC 

Definition 

Continue with Next Instruction 

Jump to a Label 

Call Subroutine 

Return From Subroutine 

Load CREG 

Loop/Dec. on Non-Zero 

Decrement CREG on Non-Zero 

Push CREG to Stack and 
Load CREG 

Pop Stack to CREG 

Push Constant to Stack 

Push Inputs to Stack 

Push Masked Inputs to Stack 

XOR Stack with Constant 
and Send Result to CREG 

Next·State Stack Counter Address 
label1 None HOLD 

label1 None HOLD 

label1 label2 HOLD 

STACK POP HOLD 

label1 None Constant 

label 1 or 2 None DECREMENT 

label1 None DECREMENT 

label1 CREG Constant 

label1 POP STACK 

label1 Constant HOLD 

label1 INPUTS HOLD 

label1 INP * const HOLD 

label1 POP 
STACK<±) 
Constant 

NOTE: The value label 1 is placed In the Q-field. The values label2 and constant are placed in the D-fleld. 

Multi-Way 
Branching 

Figure ". 
Jump to a 
Multi-Way 
Branch Address 

The multi-way branching capability can be 
super imposed upon the instruction set 
providing another dimension of capability. 
Figure 11 shows how this translates into 
the flow diagrams. If location 44 had the 
instruction 'JUMP label1' where label1 is 
located at address 201, then the next-state 
would come from address 201. But address 
201 is within the Multi-Way Branch Block 
so the Branch Select EPLO must decide 
which of the four words to send to the 
pipeline register. This selection is based 
on user-defined functions of the inputs. 

Similarly, location 44 could contain any of 
the 13 available commands so that the 

201.3 

201.2 

201.1 

201.0 

2-130 WAFERSCALE INTEGRATION, INC. 

mUlti-way branch capability can enhance 
each instruction. If location 44 was a CALL 
to a subroutine, then address 201 could 
contain the starting instruction for 4 unique 
subroutines. The actual routine executed 
would depend on the condition of the 
inputs as defined by the user. 

The actual Assembly Language code 
required to implement this example is as 
follows: 

440: [Output Spec] CALL label1; 

2010: IF cond1 THEN [out 1] JUMP 1020; 
ELSEIF cond2 THEN [out 2] JUMP 730; 
ELSEIF cond3 THEN [out 3] JUMP 530; 
ELSE [out 4] JUMP 340; 



Figure 12. 
AC Test 
Conditions 

Figure 13. 
Icc vs. FMAX 

Product Grades 

SAM448 

+5V 

427Q 

DEVICE TO TEST 
OUTPUT 

1 C, (INCWDES JIG 

SYSTEM 

1700 
CAPACITANCE) 

DEVICE INPUT ~ RISE AND FALL 
TIMES <6 no 

Power supply transients can affect AC measurements; simultaneous transitions of multiple 
outputs should be avoided for accurate measurement. Do not attempt to perform 
threshold tests under AC conditions. Large amplitude, fast ground current transients 
normally occur as the device outputs discharge the load capacitances. These transients 
flowing through the parasitic inductance between the device ground pin and the test 
system ground can create significant reductions in observable input noise immunity. 

90r---------------------~ 

Application 

Commercial 

Industrial 

Military 

0: 
> ... 70 

1 
w 
> 

~ 
II 

50 

MIL-STD-883C, Class B 

Vee = 5.0V 
TA = 25°C 

10 M 

1 k 10 k 100 k 1 M 30 M 

MAXIMUM FREQUENCY (Hz) 

Temperature Range 

O°C to +70°C 

-40°C to +85°C 

-55°C to + 125°C 

-55°C to +125°C 

Marking Designator 

I 

M 

MB 

WAFERSCALE INTEGRATION, INC. 2-131 



2·132 WAFERSCALE INTEGRATION, INC. 



-- - - ....----=~~ ==~ --- ...., --- --,. ..... ~~ ..... ------- -----~.-.. -
WAFERSCALE INTEGRATION, INC. 

Host 
Requirements 

Hardware 

Software 

SAM system development tools are a 
complete set of PC-based development 
tools for the SAM448. Installed on an IBM
XT, AT or compatible computer, these tools 
provide an integrated easy-to-use software 
and hardware environment to support 
SAM448 development. These tools may be 

The host system requirements for installing 
and using the SAM448 system development 
tools are an IBM-XT, AT, or compatible 

The SAM448 system programming 
hardware consists of the following: 

• MagicPro - Memory and System 
Programmer 

• WS6008 - 28 Pin Dip Socket Adaptor for 
MagicPro Remote Socket Adaptor Unit 

• WS6009 - 28 Pin LCC Socket Adaptor 
for MagicPro Remote Socket Adaptor 
Unit 

The SAM448 System Development 
Software consists of the following: 

• WISPER Software - WSI Integrated 
Software and Programming Environment 

• SAMPLUS Software - Interface 
Manager for SAM Tools 

• ASMILE Software - System Entry 
Language 

• SAMSIM Software - Functional Simulator 

• SAMPRO Software - Device 
Programming Software 

The complete SAM448 development cycle 
is illustrated in Figure 1. 

WISPER and SAM PLUS software provide 
a menu-driven user interface enabling other 
tools to be easily invoked by the user. 

SAM448 
System 
Development Tools 

purchased as a complete development 
system or as individual software and 
hardware products. SAM system 
development tools contain all necessary 
programming hardware and software 
required to build high-performance state 
machines. 

computer running MS-DOS version 3.1 or 
later. The system must be equipped with 
640 Kbytes of RAM and a hard disk. 

The MagicPro Programmer is the common 
hardware platform for programming all WSI 
programmable products. It consists of the 
IBM-PC® plug-in Programmer Board and 
the Remote Socket Adaptor Unit. 

The system design is entered into ASMILE 
(WSI State Machine Input Language) 
source program files using an editor 
chosen by the user. ASMILE supports 
Microcode entry and State Machine entry. 

The ASMILE produces object code format 
which can be loaded to SAMSIM and 
SAMPRO 

The SAMSIM functional simulator enables 
the user to test and debug programs by 
examining the state of SAM448 internal 
states before and during a complete 
functional simulation of the device. 

SAMPRO software programs SAM448 
devices by using the MagicPro hardware 
and the socket adaptor. 

The programmed SAM448 is then ready to 
be used. 

I 

fJ 

WAFERSCALE INTEGRATION, INC. 2·133 

---- ---------- -----



SAM448 

Figure 1. SAM 
DevelDpment 
Cycle 

Documentation 

WSI·Support 

Training 
WDrkshops 

SAM448 Software User's Manual. 

WSI provides a complete set of quality 
support services (WSI-Support) to 
registered system development tools 
owners. These services include the 
following: 

WSI provides "Do-It-Yourself Systems" 
Technical Training Workshops that provide 
an in-depth tutorial on SAM448 and SAM 
system development tools. 

2·134 WAFERSCALE INTEGRATION, INC. 

• 12-Month Software update service - Up
to-date software maintenance, access to 
latest software and product information. 

• Hotline to WSI Application Experts - Direct 
system development assistance 

• 24-Hour Electronic Bulletin Board Service 
- Design assistance via our auto-answer 
dial-up modem service. 

Workshop participants will learn how to 
build their own high-performance state 
machine using the SAM448. SAM 
Development Training Workshops are 
held at the WSI Fremont facility. 



Ordering 
Information -
System 
Development 
Tools 

Ordering 
Information 

SAM448·Gold package consists of the 
following: 

• Software 
- WISPER Software 
- SAMPLUS Software 
- ASMILE Software 
- SAMSIM Software 
- SAM PRO Software 
- User's Manual 
- WSI-Support 

• Hardware 
- WS6000 MagicPro Programmer 

SAM448·Silver package consists of the 
following: 

• Software 
- WISPER Software 
- SAMPLUS Software 
- ASMILE Software 
- SAMSIM Software 
- SAMPRO Software 
- User's Manual 
- WSI-Support 

WS6000 MagicPro'" Memory and PSD 
Programmer 

• Includes IBM PC plug-in adaptor card 
and Remote Socket Adaptor 

Speed Package Part Number (MHz) Type 

SAM448-20J 20 28 Pin PLDCC 
SAM448-20L 20 28 Pin CLDCC 
SAM448-20Ll 20 28 Pin CLDCC 
SAM448-20LM 20 28 Pin CLDCC 
SAM448-20LMB 20 28 Pin CLDCC 

SAM448 

Adaptors 
• WS6008 28 Pin Dip Socket Adaptor 
• WS6009 28 Pin CLLCC/CLDCC/PLDCC 

Socket Adaptor 

WSI·Support 
• Includes 12-month Software Update 

Service to registered system owners 

• Includes Hotline to WSI Application 
experts 

• Includes 24-hour access to WSl's 
Electronic Bulletin Board Service 

SAM Training Workshops 
• Includes SAM448 Training Workshops at 

the WSI Fremont facility. For details and 
scheduling, contact PSD Marketing at 
(415) 656-5400. 

Package Operating WSI 
Temperature Manufacturing Drawing Range Procedure 

J3 Comm'l Standard 
L2 Comm'l Standard 
L2 Industrial Standard 
L2 Military Standard 
L2 Military MIL-STD-883C 

SAM448-20S 20 28 Pin Plastic Dip, 0.3" S2 Comm'l Standard 
SAM448-20T 20 28 Pin CERDIp, 0.3" T2 Comm'l Standard 
SAM448-2OTI 20 28 Pin CERDIP, 0.3" T2 Industrial Standard 
SAM448-20TM 20 28 Pin CERDIP, 0.3" T2 Military Standard 
SAM448-20TMB 20 28 Pin CERDIP, 0.3" T2 Military MIL-STD-883C 
SAM448-25J 25 28 Pin PLDCC J3 Comm'l Standard 
SAM44825L 25 28 Pin CLDCC L2 Comm'l Standard 
SAM448-25S 25 28 Pin Plastic Dip, 0.3" S2 Comm'l Standard 
SAM448-25T 25 28 Pin CERDIp, 0.3" T2 Comm'l Standard 
SAM448-30J 30 28 Pin PLDCC J3 Comm'l Standard 
SAM448-30L 30 28 Pin CLDCC L2 Comm'l Standard 
SAM448-30S 30 28 Pin Plastic Dip, 0.3" S2 Comm'l Standard 
SAM448-30T 30 28 Pin CERDIp, 0.3" T2 Comm'l Standard 

WAFERSCALE INTEGRATION, INC. 2·135 



2·136 WAFERSCALE INTEGRATION, INC. 



WAFERSCALE INTEGRATION, INC. 

PSD Development Systems 3 



PSD Development 
Systems 

Section Index 

MAP168 - PSD Development Systems ....................................... 3-1 

SAM448 - PSD Development Systems ....................................... 3-5 

PAC1000 - PSD Development Systems ....................................... 3-9 

WS6000 MagicPro™ Programmer and Package Adaptors ........................ 3-13 

For additional information, 
call 800·TEAM·WSI (800·832·6974). 

In California, call 800·562·6363. 

WAFERSCALE INTEGRATION, INC. 



Programmable System™Device 
MAP168 

WAFERSCALE INTEGRATION, INC. 

Description 

MAPLE 

MAPPRO 

WS6000 
MagicPIO™ 
Programmer 

WS6003 
Socket Adaptor 

PSD Development System 

MAP168-GOLD/MAP168-SILVER is a 
complete set of IBM-PC-based development 
tools. They provide the integrated easy-to
use environment to support the MAP168 
program development and device 
programming. 

MAPLE is the MAP168 Locator Editor. It 
has the following features: 

Q Simple Menu Driven Commands for 
selecting different configurations of the 
MAP168: 
- Byte wide or word wide operation. 
- Address or Chip Select Input (CSI) 

Mode. 
- PAD security option. 

MAPPRO is the interface software that 
enables the user to program a MAP168 
device on the WS6000 MagicPro™ 
programmer. The MAPPRO enables the 
user to load the program into the 
programmer and to execute the following 
operations: 

Q Help 

Q Upload RAM from MAP 

Q Load RAM from disk 

The WS6000 MagicPro Programmer is an 
engineering development tool designed to 
program all WSI programmable products 
(EPROMs, RPROMs, PAC 1 000, MAP168, 
PSD301 and SAM448). It is used within 
the IBM-PC and compatible environment. 
The MagicPro consists of a short plug-in 

The WS6003 is a socket adaptor that 
mounts on the MagicPro RSA and adapts 

The tools run on an IBM-PC XT, AT or 
compatible computer running MS-DOS 
version 3.1 or later. 

Q Generating the PAD programming data 
that maps the 8 segments of EPROM, 
two segments of SRAM and eight Chip 
Selects Outputs to the user's address 
space. 

Q Combining all the different files to be 
programmed into the EPROM 
segments. 

Q Write RAM to FILE 

Q Display MAP data 

Q Blank test MAP 

Q Verify MAP 

Q Program MAP 

Q Configuration 

Q Quit 

board and a Remote Socket Adaptor 
(RSA). It occupies a short expansion slot 
in the PC. The RSA has two ZIF-DIP 
sockets that will support WSI's 24, 28, 32 
and 40 pin standard 600 mil or slim 300 
mil DIP packages without adaptors. Other 
packages are supported using adaptors. 

the MAP168 in 44-pin CLDCC, PLDCC or 
CLLCC packages to the programmer. 

WAFERSCALE INTEGRATION, INC. 3·1 

1.1 



MAP168 

WS6011 
Socket Adaptor 

WSI·Support 

Ordering 
Information 

The WS6011 is a socket adaptor that 
mounts on the MagicPro RSA and adapts 

the MAP168 in a 44-pin PGA package to 
the programmer. 

WSI provides on-going support for users of 
MAP168-GOLD/MAP168-SILVER. For the 
first year, software and programmer updates 
are included at no charge. After that, the 

user may purchase the WSI-Support 
agreement to continue to receive the latest 
software releases. 

Product Description 

MAP168-SILVER Contains MAP168 Software (MAPLE-MAP and MAPPRO), 
Software User's Manual, WSI-Support. 

MAP168-GOLD Contains MAP168-SILVER, WS6000 MagicPro 
Programmer, WSI-Support. 

WSI-Support 12-Month Software Update Service, Access to WSI's 
24-Hour Electronic Bulletin Board, and Hotline to WSI 
System Application Experts. 

3-2 WAFERSCALE INTEGRATION, INC. 



MAP168· 
GOLD 

Contents Q MAPLE-MAP Locator editor. 

Q MAPPRO 
Interface software to MAP168 device 
programmer (MagicPro™). 

MAP'68 

II 

Q Software user's manual. 

Q WSI-SUPPORT agreement. 

Q WS6000 MagicPro Programmer. 

WAFERSCALE INTEGRATION, INC. 3-3 

-------------------- --~~- ----------------



MAP168 

MAP16a· 
SILVER 

Contents r:J MAPLE-MAP Locator editor. 

r:J MAP PRO 
Interface software to MAP168 device 
programmer (MagicPro™). 

3-4 WAFERSCALE INTEGRATION, INC. 

r:J Software user's manual. 

r:J WSI-SUPPORT agreement. 



~~~- --- --~~~- -~~~~-

Programmable System™ Device
SAM448

WAFERSCALE INTEGRATION, INC.

Description

ASM/LE

SAMS/M

SDP

SAMPRO

SAMPLUS

PSD Development System

SAM448-GOLD/SAM448-SILVER is a
complete set of IBM-PC-based development
tools. They provide the integrated easy-to
use environment to support the SAM448
program development and device
programming.

ASMILE is the SAM448 system entry
language. It has the following features:

a State Machine Design Entry.

SAMSIM is an interactive functional
simulator with Virtual Logic Analyzer
Interface:

a Clock driven functional simulator.

a Provides trace capabilities on internal
states (Registers, Flags, Pins and
more).

The SAM Design Processor (SOP) takes
an assembly file and creates an optimized
JEDEC file for the SAM448. The SOP first
expands macros that have been defined
by the user. It then parses the design,

SAMPRO is the interface software that
enables the user to program a SAM448
device on the WS6000 MagicPro™
programmer. The SAM PRO enables the
user to load the program into the
programmer and to execute the following
operations:

a Help

a Upload RAM from SAM

SAM PLUS is the interface manager to the
SAM448 software tools. SAMPLUS enables
the user to access ASMILE, SAMSIM, SOp,
SAM PRO, DOS and an editor with a menu
driven interface. File specification can be

The tools run on an IBM-PC XT, AT or
compatible computer running MS-DOS
version 3.1 or later.

a Assembly Design Entry Language.

a User Definable Macros

a Displays input and output waveforms
interactively providing such features as
multiple zoom levels, split screens and
differential time display.

a Line disassembler converts the actual
code back into the original Assembly
source code.

a On-line HELP available at any level.

listing any syntax or correction errors in an
Error Log file. Next it minimizes the Boolean
expressions that define the transition
conditions. Finally, it fits the design into
the SAM448, generating a JEDEC file.

a Load RAM from disk

a Write RAM to FILE

a Display SAM data

a Blank test SAM

a Verify SAM

a Program SAM

a Configuration

a Quit

done without extension enabling the user
to use the same name throughout the
design. A HELP window is available on
line giving information on all the needed
steps at each level.

WAFERSCALE INTEGRATION, INC. 3-5

EI

SAM448

WS6000
MagicPro™
Programmer

WS600B
Socket Adaptor

WS6009
Socket Adaptor

WSI·Support

Ordering
Information

MagicPro is an engineering development
tool designed to program all WSI
programmable products (EPROMs,
RPROMs, PAC 1 000, MAP168, PSD301 and
SAM448). It is used within the IBM-PC and
compatible environment. The MagicPro
consists of a short plug-in board and a

The WS6008 is a socket adaptor that
mounts on the MagicPro RSA and adapts

The WS6009 is a socket adaptor that
mounts on the MagicPro RSA and adapts

WSI provides on-going support for users of
SAM448-GOLD/SAM448-SILVER. For the
first year, software and programmer updates
are included at no charge. After that, the

Product

Remote Socket Adaptor (RSA). It occupies
a short expansion slot in the PC. The RSA
has two ZIF-DIP sockets that will support
WSI's 24, 28, 32 and 40 pin standard 600
mil or slim 300 mil DIP packages without
adaptors. Other packages are supported
using adaptors.

the SAM448 in a 28 pin DIP package to
the programmer.

the SAM448 in a 28-pin PLDCC/CLDCCI
CLLCC package to the programmer.

user may purchase the WSI-Support
agreement to continue to receive the latest
software releases.

Description
SAM448-SILVER Contains SAM448 Software (ASMILE, SAMSIM, SDp,

SAM PRO and SAM PLUS), Software User's Manual,
WSI-Support.

SAM448-GOLD Contains SAM448-SILVER, WS6000 MagicPro
Programmer, WSI-Support.

WSI-Support 12-Month Software Update Service, Access to WSI's
24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

3·6 WAFERSCALE INTEGRATION, INC.

SAM448·
GOLD

Contents Q ASMILE
SAM design entry language.

Q SAMSIM
Interactive Functional simulator with
Virtual Logic Analyzer user interface.

Q SDP
SAM Design Processor Compiles the
User's program to fit into the SAM448
Device.

SAM448

=

Q SAMPRO
Interface software to SAM448 device
programmer (MagicPro™).

Q SAMPLUS
Interface manager to SAM448
development tools.

Q Software user's manual.

Q WSI-SUPPORT agreement.

Q WS6000 MagicPro Programmer.

WAFERSCALE INTEGRATION, INC. 3·7

II

SAM448

SAM448·
SILVER

Contents r:J ASMILE
SAM design entry language.

r:J SAMSIM
Interactive Functional simulator with
Virtual Logic Analyzer user interface.

r:J SOP
SAM Design Processor Compiles the
User's program to fit into the SAM448
Device.

3·8 WAFERSCALE INTEGRATION, INC.

r:J SAMPRO
Interface software to SAM448 device
programmer (MagicPro).

r:J SAMPLUS
Interface manager to SAM448
development tools

r:J Software user's manual.

r:J WSI-SUPPORT agreement.

='==== ~~ -_ --................
r~~~_ ------.-.- ... ~ -.-.~ ...

Programmable System1M Device
PACtOOO

WAFERSCALE INTEGRATION, INC.

Description

PACSEL

PACSIM

PACPRO

IMPACT

PSD Development System

PAC1000-GOLD/PAC1000-SILVER is a
complete set of IBM-PC-based development
tools. They provide the integrated easy-to
use environment to support the PAC1000
program development and device
programming.

PACSEL is the PAC1000 system entry
language. It has the following features:

r:J Enables specification of up to three
parallel operations:
- Program control operation
- CPU operation
- Out Control operation

General Syntax:
Label: Program Control, CPU, Out Control;

PACSIM is a functional simulator and
software debugger. It has the following
features:

r:J Clock driven functional simulator.

r:J Provides trace capabilities on internal
states (Registers, Flags, Pins and
more).

PAC PRO is the interface software that
enables the user to program a PAC1000
microcontroller on the WS6000 MagicPro™
programmer. The PACPRO enables the
user to load the program into the
programmer and to execute the following
operations:

CJ Help

CJ Upload RAM from PAC

CJ Load RAM from disk

IMPACT is the interface manager to the
PAC1000 tools. IMPACT enables the user
to access PACSEL, PACSIM, PACPRO,
DOS and an editor with a menu driven
interface. File specification can be done

The tools run on an IBM-PC XT, AT or
compatible computer running MS-DOS
version 3.1 or later.

r:J Enables mixing of three source
language types in one instruction:
- High Level Language
- Assembler
- Microcode

r:J Specific instructions support unique
PAC1000 architecture features available
in all three source language types.

r:J Links unlimited amounts of modules.

CJ Provides breakpoint capabilities on any
internal state of the PAC1000.

CJ Supports batch mode simulation.

CJ Provides waveform analysis.

CJ On-line HELP available at any level.

CJ Write RAM to FILE

CJ Display PAC data

CJ Blank test PAC

CJ Verify PAC

CJ Program PAC

CJ Configuration

CJ Quit

without extension enabling the user to use
the same name throughout the design. A
HELP window is available on-line giving
information on all the needed steps at
each level.

WAFERSCALE INTEGRATION, INC. 3-9

II

PACtOOO

WS6000
MagicPro™
Programmer

WS6010
Socket Adaptor

WS6013
Socket Adaptor

WSI·Support

Ordering
Information

MagicPro is an engineering development
tool designed to program all WSI
programmable products (EPROMs,
RPROMs, PAC1000, MAP168, PSD301 and
SAM448). It is used within the IBM-PC and
compatible environment. The MagicPro
consists of a short plug-in board and a

The WS6010 is a socket adaptor that
mounts on the MagicPro RSA and adapts

The WS6013 is a socket adaptor that
mounts on the MagicPro RSA and adapts

WSI provides on-going support for users of
PAC1000-GOLD/PAC1000-SILVER. For the
first year, software and programmer updates
are included at no charge. After that, the

Product

Remote Socket Adaptor (RSA). It occupies
a short expansion slot in the PC. The RSA
has two ZIF-DIP sockets that will support
WSI's 24, 28, 32 and 40 pin standard
600 mil or slim 300 mil DIP packages
without adaptors. Other packages are
supported using adaptors.

the PAC1000 in an 88-pin CPGA package
to the programmer.

the PAC1000 in a 100-pin QFP package to
the programmer.

user may purchase the WSI-Support
agreement to continue to receive the latest
software releases.

Description

PAC1000-SILVER Contains PAC1000 Software (PACSEL, PACSIM,
PACPRO, and IMPACT), Software User's Manual,
WSI-Support.

PAC1000-GOLD Contains PAC1000-SILVER, WS6000 MagicPro
Programmer, WSI-Support.

WSI-Support 12-Month Software Update Service, Access to WSI's
24-Hour Electronic Bulletin Board, and Hotline to WSI
System Application Experts.

3·10 WAFERSCALE INTEGRATION, INC.

PAC1ooo·
GOLD

Contents CJ PACSEL
System design entry language and
program linker.

CJ PACSIM
Functional simulator and software
debugger.

CJ PACPRO
Interface software to PAC1000 device
programmer (MagicPro™).

PAC1000

"

CJ IMPACT
Interface manager for PAC1000
microcontrolier development tools.

CJ Software user's manual.

CJ WSI-SUPPORT agreement.

CJ WS6000 MagicPro Programmer.

WAFERSCALE INTEGRATION, INC. 3-11

II

PAC1000

PAC1DDD·
SILVER

Contents r:J PACSEL
System design entry language and
program linker.

r:J PACSIM
Functional simulator and software
debugger.

r:J PACPRO
Interface software to PAC1000 device
programmer (MagicPro™).

3·12 WAFERSCALE INTEGRATION, INC.

r:J IMPACT
Interface manager for PAC1000
microcontrolier development tools.

r:J Software user's manual.

r:J WSI-SUPPORT agreement.

-------- -------

WEE =:~
-~- ... --- --r ~~ ------ ... WS6000 ---- ~ ~ - ------------------------------
WAFERSCALE INTEGRATION, INC.

MAGICPRO™ MEMORY AND PSD
PROGRAMMER

KEY FEATURES

• Programs All WSI CMOS Memory
and PSD Products and All Future
Programmable Products

• Programs 24, 28, 32 and 40 Pin
Standard 600 Mil or Slim 300 Mil Dip
Packages Without Adaptors

• Programs LCC, PGA and QFP Packaged
Product by Using Adaptors

• Easy-to-Use Menu-Driven Software

• Compatible with IBM PC/XT/AT
Family of Computers (and True
Plug-Compatible)

GENERAL DESCRIPTION

MAGICPRO™ is an engineering development tool designed to program existing WSI EPROMs, RPROMs,
Programmable System Devices, and future WSI programmable products. It is used within the IBM-PC® and compatible 3
computers. The MAGICPRO™ is meant to bridge the gap between the introduction of a new WSI programmable
product and the availability of programming support from programmer manufacturers (e.g., Data I/O, etc.). The
MAGICPRO™ programmer and accompanying software enable quick programming of newly released WSI
programmable products, thus accelerating the system design process.

The MAGICPRO™ plug-in board is integrated easily into the IBM-PC®. It occupies a short expansion slot and its
software requires only 256K bytes of computer memory. The two external ZIF-Dip sockets in the Remote Socket Adaptor
(RSA) support 24, 28, 32 and 40 pin standard 600 mil or slim 300 mil Dip packages without adaptors. LCC, PGA
and QFP packages are supported using adaptors.

WAFERSCALE INTEGRATION, INC. 3-13

WS6000

Many features of the MAGICPRO™ Programmer show its capabilities in supporting WSI's future products. Some of
these are:

- 24 to 40 pin JEDEC Dip pinouts
- 1 Meg. address space (20 address lines)
- 16 data I/O lines

The MAGICPRO™ menu driven software makes using different features of the MAGICPRO™ an easy task. Software
updates are done via floppy disk which eliminates the need for adding a new memory device for system upgrading.
Please call 800:rEAM-WSI for information regarding programming WSI products not listed herein. The MAGICPRO™
reads Intel Hex format for use with assemblers and compilers.

MAGICPRO™ COMMANDS

- Help
- Upload RAM from device
- Load RAM from disk
- Write RAM to disk
- Display RAM data
- Edit RAM
- Move/copy RAM
- Fill RAM
- Blank test device
- Verify device
- Program device
- Select device
- Configuration
- Quit MagicPro™

TECHNICAL INFORMATION

• Size: IBM-PC®short length card

WSI PRODUCTS

WS57C191/191B/291/291B
WS57C43/43B
WS57C49/49B
WS57C51/51B
WS27C64F/L
WS57C64F
WS57C65
WS57C66

WS27C128F/L
WS57C128F
WS27C256F/L
WS57C256F
WS57C257F
WS27C512F/L
WS27C010L
MAP168
PAC1000
SAM448
PSD301

2K x 8 RPROM
4K x 8 RPROM
8K x 8 RPROM
16K x 8 RPROM
8K x 8 EPROM
8K x 8 EPROM
4K x 16 EPROM
4K x 16 EPROM

(Mux 110, 28 Pin DIP)
16K x 8 EPROM
16K x 8 EPROM
32K x 8 EPROM
32K x 8 EPROM
16K x 16 EPROM
64K x 8 EPROM
128K x 8 EPROM

• Port Address Location: 100H to 1FFH-default 140H (If a conflict exists with this address space, the address location
can be changed in software and with the switches on the plug-in board.)

• System Memory Requirements: 256K bytes of RAM

• Power: +5 Volts, 0.03 Amp.; +12 Volts, 0.04 Amp.

• Remote Socket Adaptor (RSA): The RSA contains two ZIF-Dip sockets that are used to program and read WSI
programmable products. The 32 pin ZIF-Dip socket supports 24, 28 and 32 pin standard 600 mil or slim 300 mil
Dip packaged product. The 40 pin ZIF-Dip socket supports all 40 pin Dip packages. Adaptor sockets are available
for LeC, PGA and QFP packages.

3-14 WAFERSCALE INTEGRATION, INC.

ORDERING INFORMATION

The WS6000 MAGICPRO™ System contains:

• MAGICPRO™ IBM-PC®plug-in
programmer board

• MAGICPRo™ Remote Socket Adaptor
and cable

• MAGICPRO™ Operating System Floppy Disk
and Operating Manual

IBM-PC'" is a registered trademark of IBM Corporation.

WS6000

MAGICPRO™ Adaptors Include:

• WS6001 28 Pin CLLCC Package adaptor for memory.

• WS6003 44 Pin PLDCC/CLDCC/CLLCC package adaptor
for MAP168.

• WS6008 28 Pin 0.3" wide DIP adaptor for SAM448.

• WS6009 28 Pin PLDCC/CLDCC/CLLCC package adaptor
for SAM448.

• WS6010 88 Pin PGA package adaptor for PAC1000.

• WS6011 44 Pin PGA package adaptor for MAP168.

• WS6012 32 Pin CLDCC package adaptor for memory.
• WS6013 100 Pin QFP package adaptor for PAC1000.

• WS6014 44 Pin CLDCC/PLDCC package adaptor for
MAP168 and PSD301.

• WS601544 Pin PGA package adaptor for MAP168 and
PSD301.

MAGICPRO'" is a trademark of WaferScale Integration, Inc.

WAFERSCALE INTEGRATION, INC. 3-15

---~--~---~-- ~ -- - ._----

II

3·16 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

'.11 Applications 4

PSD Applications Application Note 002

Application Note 010

Application Note 005

Application Brief 006

Application Note 008

Application Note 009

Application Brief 007

Application Note 003

Application Note 004

Section Index

Introduction to the MAP168 User-Configurable
Mappable Memory Subsystem 4-1

PAC1000 Introduction 4-13

PAC1000 as a High-Speed Four-Channel
DMA Controller 4-39

PAC1000 as a 16 Bi-Directional Serial
Channel Controller 4-71

PAC1000 User-Conflgurable Microcontroller with a
BUilt-ln-Self-Test Capability4-75

In-Circuit Debugging for the PAC1000
User-Configurable Microcontroller 4-83

Hardware Interfacing the PAC1000 as a
Micro Channel Bus Controller 4-99

High-End SAM Applications Using
Microassembler Design Entry4-105

SAM Applications Using State Machine Design Entry 4-127

For additional information,
call800·TEAM·WSI (800·832·6974).

In California, call 800·562·6363.

WAFERSCALE INTEGRATION, INC.

Programmable System™ Device
WAFERSCALE INTEGRATION, INC.

Application Note 002

Introduction to the MAP168
User-Configurable Mappable
Memory Subsystem

Memory Structure

Figure 1. Memory
Subsystem Using
Standard Devices

Memory configurations in microprocessor and
microcontroller systems have similar struc
ture, irrespective of the application. (see
Figure 1.) They share basic components,
such as an EPROM (for program storage),
and an SRAM (for data storage). In addition,
a decoder circuit is required to select blocks
of memory from the address inputs applied by
the processor. A common implementation of
address decoding originally used MSI building

Address Bus

M,cro. RD 1----..-
processor WR 1--__ ..-

Data Bus

Decode
Logic and
Jumpers

Both solutions involve compromises that
affect system performance, board space,
power and cost. Since the decoder is in the
memory access path, the total memory
access time is the sum of the decoder delay
and the access time of the memory itself. For
example, a 40ns total access time can be
achieved with a 12ns decoder and a 25ns
memory. This allows 3ns for on-board inter
connect delay. Memory products in the 25ns

blocks, such as 74xx138 devices. Memory
configuration changes and expansions In a
fixed-logic solution required jumpers on the
printed circuit board. More recently, decoders
based on PAL ® devices have provided a more
compact and flexible solution. PAL devices
allow configuration changes to be imple
mented by insertion of a programmed device
and avoid jumper changes.

eso
To Other Devices

eso
1739 01

range are expensive and therefore such a
performance entails additional cost. To be
able to integrate the programmable address
decoder with system memory, EPROM and
static RAM would offer a more flexible
approach. The resulting device would provide
board-space economy, higher performance
and less overall power consumption without
the cost of a multichip solution.

WAFERSCALE INTEGRATION, INC. 4·1

MAP168 - Application Note 002

Memory
Structure
(Con't)

Figure 2. Memory
Subsystem Using
theMAI'168
Device

Features of the
MAI'168 Device

The WSI-MAP family of user-configurable
mappable memory subsystem products has
been developed to significantly enhance
system performance by integrating high
density EPROM for program store, high
density SRAM for data store and high per
formance logic in the form of a Programmable
Address Decoder (PAD) on one chip. (See
Figure 2.) The first of these devices, with
128K bits of EPROM and 32K bits of SRAM,
is the MAP168 device. These devices are

Address Bus

AD

WR
A

Data Bus

Microprocessor

The MAP168 device offers significant design
advantages through integration, performance
and user-configurability. It integrates both
volatile and non-volatile memory on the same
chip, along with a flexible decoding system.
The memory is structured as a series of
blocks to achieve a highly configurable circuit
for general purp.ose applications. The device
operates in one of several modes, one of
which is for normal operation and the rest are
for device configuration. At the heart of all
MAP168 device is a Programmable Address
Decoder (PAD), which is programmed during
the PAD programming mode through the
circuit's address and 1/0 pins. The PAD offers
the following features:

D Flexible EPROM/SRAM location within
the address space

D Memory array power-down when not
being accessed

D Security protection of memory
configuration data to inhibit copying

4·2 WAFERSCALE INTEGRATION, INC.

"

"

ideally suited for a number of common design
applications:

D High-speed Digital Signal Processor
applications (modems, analog data
filtering or analysis)

D Expanding memory systems for
microprocessors and microcontrollers

D Space- and power-sensitive applications
(plug-in cards, avionics, portable
systems)

ADDRESS

OE

WE

1/0

MAPI68

-- CSO
To Other Devices

CSO

1739 02

D Integrated external device mapping
through Chip Select Outputs

Memory Architecture And Technology
The memory in the MAP168 device consists
of non-volatile EPROM and volatile SRAM.
(See Figure 3.) The EPROM is subdivided
into 8 blocks and the SRAM into 2 blocks.
The blocks may be configured in either a
2Kx8 or a 1 Kx16 format, allowing optimal
interaction with both 8- and 16-bit systems.
These memory blocks can be considered as
separate memories with dedicated internal
chip selects. The PAD selects the appropriate
block, decoded from the incoming address
provided at the device inputs. This architec
ture enables the product to be configured and
compatible with virtually any system address
map. Complicated address maps of micro
controller systems can be fully realized by
programming blocks of EPROM and SRAM in
the memory-mapping scheme of the system.

Features of the
MAP16B Device
(Con't)

Figure 3.
Internal
Architecture

In addition to having fine control of memory
allocation, software updates which require
changes in the address map boundaries can
be easily accomplished by simply reprogram
ming the PAD at the same time as the
EPROM code. This means only one part
need be sent to the end-product customer to
accommodate field software changes. This
becomes a user-transparent method that
requires no change of PC board jumpers.

The EPROM is based on WSI's patented
split-gate EPROM technology for high density
and very high speed. It is also used in the
reconfigurable PAD section, permitting both

MAP168

DECODED EPROM
r-- ADDRESS~

Ao-A'2

MAP168 - Application Note 002

fast decode and reconfiguration of the same
device. The MAP168 device contains a 128K
bit UV erasable EPROM which can be
organized as 16Kx8 (byte-wide) or as 8Kx16
(word-wide) .

The SRAM is based on the industry standard
full CMOS 6-transistor cell. The advantages
of this cell are high speed, very low stand-by
power, high noise immunity and good data
retention when disturbed by alpha particles.
In the MAP168 device, the SRAM contains
32K bits which can be configured as 4Kx8 in
the byte mode or 2Kx16 in the word-wide
mode.

~ Ao-A'2
EPROM ~ EPROM

PGMH 8Kx 8 8Kx8
PGM ,---. PGM

EOEH

Ao-A'9 OE OUT0-7 IN0-7
,. OE OUT0-7 IN0-7

PGML •
t-- !-

EOEL
t-- t--

DECODED SRAM
ADDRES~

~ Ao-A'2 Ao-A'2
PAD v SRAM ~ SRAM

WEH 2Kx8 2Kx8
WE ,----. WE

ROEH
OE OUTO_7 IN 0-7

,. OE OUT0-7 IN0-7

BHE - f---e WEL • '"
.

I--- r-
E/Vpp _ 1---0

ROEL
I--- r--

OE - f---e
CS0-7 ~ ~

~

SI/A20 - 1---0 CON >
FCSO - I-- OEL

I--- p..... 21
r'

21

OEH MUX MUX

I--

•

An 1
'---

~ -
r---

~'- ~ ;-1'
V1 n V1 -'r-

~

1/08-15 OR CS00-7 1739 03

WAFERSCALE INTEGRATION, INC.

MAP16B - Application Note 002

Features of the
MAP16B Device
(Con't)

Figure 4.
PAD Programming
Examples

PAD Logic Implementation
The PAD uses the same non-volatile EPROM
cells as the EPROM array. (See Figure 4.) It
can be erased and configured at the same
time as the EPROM. After UV erase or with
new parts, the EPROM cells in the MAP168
device normally connect between the address
inputs and the select outputs. The EPROM
cells are disconnected by selective program
ming.

The PAD performs as an address
comparator. When the address configuration
previously programmed into the PAD is
detected, the internal chip-select signal to the
memory block selected by that address is
enabled. If no block is selected by the
address, neither the EPROM nor the SRAM
arrays are enabled and other devices may
drive the data bus. Independent of internal
block selection, external chip-select decoding
(known as CSOs) are programmable in the
same block resolution as the internal
memory.

Actual implementation of the PAD is similar to
that of a PAL device. (See Figure 5.) In the
erased state, all the block decode addresses
are connected to the AND plane. There is
only one output per AND gate and there is no
OR plane. Each AND gate output either
selects a block of internal memory or a
number of blocks of external memory for the
external CSOs. Only addresses A11-A2o are

WAFERSCALE INTEGRATION, INC.

used as block decode address. Lower-order
address lines are used only for addressing
within the internal memory arrays.

EPROM select outputs ESo-ES7 (ES outputs)
select 1 of the 8 available EPROM blocks.
SRAM select outputs RSo-RS1 (RS outputs)
select one of the 2 available SRAM blocks.
Because only one EPROM or SRAM block
can be active at a particular time, only one
line from either ESo-ES7 or RSo-RS1 is
allowed to be active at one time. The CSOs
are independent of the ES and RS outputs
and therefore anyone address can be
programmed to select one or more of the
CSOs, even simultaneous to the selection of
one of the ES or RS outputs. This is particu
larly useful for 1/0 control or address decode
for wait state generation.

Programming the decoder is similar to
programming a PAL device that has only one
product term (AND gate) per output. To
enable an output S1 as shown in Figure 4,
fuse locations A11 and A12 are left intact while
A11 and A12 are programmed. Conversely, if
A11 and A12 are programmed while their com
plements are left intact, then the select S
function is active when A11 = A12 = O. If all
fuse locations are programmed on a product
term, the inputs are pulled HIGH and no
select output can take place. If all fuse
locations are left intact, the S output is
permanently LOW, always selected.

S1= A11~2

S2= An:O:;2

S3 = HARD DESELECTED = NEVER SELECTED

S5 = DON"T CARE = ALWAYS SELECTED

• = CONNECTED

X = DISCONNECTED

1739 04

Features of the
MAP168 Device
(Con't)

Figure 5_
PAD Array
Architecture

Device Array Power-Down
Power dissipation on the chip is minimized
through logic in the PAD. It selectively
powers up the EPROM or SRAM arrays only
when they are being accessed. If the
EPROM is selected through the decoder, it
will draw power while the SRAM stays
powered down and vice versa. When neither
the EPROM or the SRAM is selected, both
are powered down. Note that data integrity in
a "powered down" SRAM is maintained. A
Chip Select Input (CSI) to the device is

CSI At9 At9 AtB AtB At? At? AtS At6 At5
fA 20

CSI fA20

MAP168 - Application Note 002

provided for a very low-power quiescent
mode. With CSI=1, the EPROM and SRAM
are powered down but the PAD is powered
up, independent of the incoming address
signals. The CSI input pin can be connected
to a system power-down signal. If such a
signal is unavailable, addressing a location in
memory that does not select either the
EPROM or the SRAM also reduces power
drain. In this case, only the PAD is powered
up and draws a small fraction of the active
power.

ESO

ESt

ES2

ES3

ES,

ES5

ES6

ES7

RSo

RS t

CSOo

CSOt

cso2

cso3

cso,

cso5

csos

cso7

FCSO

At5 At, At, At3 At3 At2 At2 Att Att

1739 05

WAFERSCALE INTEGRATION, INC. 4-5

II

MAP168 - Application Note 002

Features Of The
MAP168 Device
(Con't)

System
Applications

The CSIIA20 input is actually a dual function
pin. It can be an address (MSB) input, or it
can be programmed to be a chip select input
as well. As a chip select input, it will enable
the EPROM and SRAM memory when active
(LOW). If the address option A20 is chosen the
chip is always enabled.

Address Map Security
Upon entering the PAD programming mode,
the contents of the PAD are fully accessible
through the 1/0 pins. After programming is
completed, it is possible to render the PADs
programmed configuration invisible by pro
gramming the security (SEC) bit. This dis
ables external access to the PAD and en
sures that the PAD configuration can not be
copied. To further aid in securing data in the
MAP product, it is suggested that memory
blocks that are addressed in a linear block
placement be programmed in the PAD as
chip selects from product terms that are
randomly placed.

Chip Select Outputs
The MAP168 device can be user-configured
for 8-bit or 16-bit systems. In the former case,
eight unused data lines (CS00-7) are available
as chip select outputs, driven by the address
decoder section of the PAD. This provides the

The MAP168 device is designed to reduce
memory access time and board area utiliza
tion in high performance digital signal proces
sor, microcontroller and microprocessor
systems. These systems typically have the
following requirements:

o 16-bit data path

o 64K to 1 Meg address space

o Fast memory access time (1 OOns to
40ns)

o Decoding for 1/0 and memory

o Printed circuit board area limitations

o Multiple types of memory, including
EPROMs and SRAMs for program and
data store.

The DSP System Architecture shown in
Figure 6 illustrates a typical system based

4·6 WAFERSCALE INTEGRATION, INC.

ability to integrate external devices into the
address map with no hardware overhead.
Unlike the internal memory blocks, a CSO
can be active for more than one address
combination or block. Also, groups of blocks
may overlap both each other and the internal
memory. By deselecting both the true and the
complement it is possible to make an address
line "don't care".

An external memory can therefore be se
lected with only one CSO. It is possible to
enable another external 128K byte memory
by programming a single CSO to be active for
that entire address range.

A CSO can be programmed to function as a
configuration bit which is always deselected
(e.g., CSOo=1) or always selected (e.g.,
CSOo=O) by programming the addresses with
"hard deselect" or with the "don't care"
patterns, respectively. This is similar in
function to a PC-board wire jumper. If unused
CSOs are programmed with all addresses
"don't care", then switching is eliminated and
power consumption reduced for those lines.

Since the PAD is always powered up when
the device is selected (CSI=O), CSOs are
always active and their state is a direct
function of the PAD configuration and current
address line inputs.

upon a 40MHz TMS320C25 digital Signal
processor. Such a system allows only 40ns
for memory access time. The access time
must be broken down into decoding time and
memory-access time. The fastest decoders
available today require approximately 1 Ons to
complete their decode function. Due to this
decoding time, memory access time for both
the EPROM and SRAM must be 30ns or less.
The WSI-MAP family of products performs
decoding on-chip with no speed penalty. As a
result, the performance of a 40ns MAP168
device in the above example is equivalent to
a 1 Ons decoder and a 30ns EPROM and
SRAM memory. In addition, the package
equivalent of two fast EPROMs, two fast
SRAMs and at least one decoder are com
bined into one MAP168 chip resulting in at
least a 5-to-1 component count reduction.

System
Applications
(Con't)

Figure 6.
DSI'System
Architecture

Figure 7.
TMS320C25
Interfacing
x16 Configuration

High-SpeetJ, Word-Oriented Application
The MAP168 device is especially suited for
high-speed word-only microprocessors. The
TMS320C20/25 OSP family is an example of
such a microprocessor. Interfacing the
MAP168 device to a TMS320C25 operating
at 40MHz with no wait states is illustrated in
Figure 7. The TMS320C25 has two pins for
selecting Program Memory (PS) and Oata

.
,.... Fast

Decoder
(PLD)

16-18
ADDRESS

RD

Digital Signal
Processor,

MIcroprocessor, or
Mlcrocontroller 16

DATA

--- - -------1
I
I I

~ I
I

WR
I 1 I

BHE . I

I
I

I Only Where Byte I
: Operallons Are Needed I ------------• Replaced by

MAP168 Device

PS
40 MHz --- CK

i5S

Ao-AI5

TMS320C25

00-015

" - READY STRB

RiW
I

ftfAP168 - Application Note 002

Memory (OS). These functions are con
nected to the higher order address of the
MAP168 device. PS is connected to AlB
and OS is connected to AI7" Usually PS will
select the EPROM and OS will select the
SRAM. The PAO permits partitioning of the
MAP168 memory to accommodate virtually
any system address map. Figure 8 shows
two possibilities.

CSTo Ports

.
EPROM

AD

L..t CS

OE

DATA (0 7)

. _ DATA
L- OE (07)

-
WR
_ SRAM
CS

'-----., AD

~
A19

AlB

A17

AI - 16 -v
MAP168

~ Ao

--v
0 0-015

>---- WR

OE

~
CSI/A20

~ f--t
L..t ,..

'--

,....
t-- f--t
'--I-<

1/0 Port
Interface

.
EPROM

AD

CS

OE

DATA (0·7)

_ DATA .
OE (0"7)

WR
CS SRAM

AD

1739 06

Memory Configuration
8Kx 16 EPROM
2Kx 16 SRAM

1739 07

WAFERSCALE INTEGRATION, INC. 4-7

MAP168 - Application Note 002

System
Applications
(Con't)

Figure 8. Memory
Mapping With
MAP

When in a word-wide (x16) configuration, the
total memory available on the MAP168 device
is 8Kx16 of EPROM and 2Kx16 of SRAM.
The implementation shown in Figure 7
replaces at least five circuits:

o One high-speed decoder (10ns)

o Two 8Kx8 EPROMs (30ns)

o Two 2Kx8 SRAMs (30ns)

If the system was previously implemented
using a boot EPROM, the MAP168 device
replaces ten circuits:

o One high-speed decoder (10ns)

o Two 8Kx8 EPROMs (30ns)

o Two 2Kx8 SRAMs (30ns)

o Two 8Kx8 slow EPROMs

o Three ICs for Wait-State generation

a. Contiguous Mapping

4-8 WAFERSCALE INTEGRATION, INC.

For expanded memory requirements in a
word-wide (x16) configuration, two MAP168
devices can be interfaced directly with a
TMS320C25, as shown in Figure 9. The two
MAP168 devices provide the total system
memory. Key features of this system are:

o 40ns access time

o 16Kx16 EPROM

o 4Kx16 EPROM

o 16 general purpose programmable chip
selects

The general-purpose programmable chip
select outputs can be mapped to any location
in the address space via the PAD. These chip
selects can be used to access I/O ports,
select additional memory or control other
system functions.

b. Split Mapping 1739 DB

Microcontrol/er
Application

Figure 9. DSP
with Expanded
Memory

The MAP168 device has two basic configura
tions. They are a word-wide (x16) configura
tion with byte operation capability and a byte
wide (x8) configuration with 8 chip select
outputs.

The 128K address space (during byte opera
tions in the word-wide mode) makes the
MAP168 device especially suited for micro
controller applications. Figure 10 illustrates a

PS
-

40 MHz --t
DS

Ao-A'5

[l TMS320C25

0 0-0,5 !v-
STRS r---- READY RiVi r--

MAP168 - Application Note 002

simple interconnection of the MAP168 device
to a microcontroller. The HPC16040 operat
ing without wait states requires a memory
access time of 65ns or beUer. This makes the
MAP168 device a good fit, since it offers an
access time of 40ns, leaving a 25ns margin.

The MAP168 device can be configured in a
byte-wide (x8) mode and can also be
doubled-up with a second device.

A18

A17 MAP168

...J".
A1- 16

r Ao' A,9' CSI

0 0-0 '5 -
SHE h

;rr---e -
WE

l OE

A,B

Au MAP168

A1-16

~
Ao. A,9 . CSI

~
0 0-0 ,5 -

L
v SHE n

f---t
-
WE

L...o OE

1739 09

WAFERSCALE INTEGRATION, INC. 4·9

MAP168 - Application Note 002

Microcontrol/er
Application
(Con't)

WSI·MAP Family
Development
Support

Figure 10.
MicrocDntrDl/er
Interfacing
x16 Configuration

Embedded Controller Application
An embedded controller is an intelligent
section of logic, usually based around a
processor, dedicated to a particular task and
is not accessible for software alteration by the
user. Such applications are generally com
plex and are becoming more common in
system design. Typically, embedded control
lers are high performance systems designed
under severe space/power constraints. On
the other hand, they have a limited ability to
be upgraded and limited program memory.
This makes them ideal candidates for the
WSI-MAP device implementation. The
MAP168 device has the following key fea
tures which are useful in such an application:

o 1 M address space decoding

o 40ns access time

o Byte operations in word-wide mode
(BHE)

WSI provides the development environment
needed to program the WSI-MAP family
products. A menu-driven software package
known as MAPLE is available under the
WISPER top-level software. It operates on
the popular IBM-PC® as a platform and in
cludes extensive documentation on installa
tion and operation. It generates configuration

Mlcrocontroller
(HPC16000,
8096, e1e)

Vee READY

Ao-15

ALE

SHE

o One output chip select when in the word
wide mode (FCSO)

o Nine output chip selects when in the byte-
wide mode

o Programmable Address Decoder (PAD)

A popular processor for embedded applica
tions, due largely to its extensive software
library and development support, wide
availability of compatible peripherals and low
cost from volume production is the 80186
from Intel. Figure 11 shows how a MAP168
device can be interfaced to an 80186.

The UCS (Upper Chip Select) is connected to
CSI/A20 on the MAP168 device. The PAD is
programmed to locate a 1 Kx16 EPROM slot
in the upper memory address space for a
reset subroutine. The rest of the memory can
be located as required by the user. Figure 12
shows one possibility.

files for use by the programming tools. These
programming tools include the MagicPro™
programmer hardware and the MAPPRO
software. They enable the user to program
the PAD and the EPROM. For additional in
formation, consult your nearest WSI sales
representative.

Memory
Configuration

8K x 16 EPROM
2K x 16 SRAM

MAP168

WR r---------------------------~

RD r-----------------------------~ 1739 10

4-10 WAFERSCALE INTEGRATION, INC.

Figure 11.
Interfacing To
An 80186
x16 Configuration

Figure 12.
Optional Memory
Mapping For An
80186

Vee

t
80186

SRDY

ARDY

A,6-A '9

AD0-15

ALE

BHE

UCS

WR

RD

/1

~

l-

I-

I-

I-

I--

Program
Store

Data
Store

Vector
Interrupt

Store

-
LCS

"- I
Latch l

G J
I
+
G

Latch

AD O_15

MCSQ-3

1K x 16
EPROM Reset

I

I

MAP168 - Application Note 002

~
A,6-A '9

v

ADS_15

A0-7
v MAP168

(x16)

BHE

- FCSO To
CSI/A20 -User

Port -
WE

BE DO_15

~~
)

1739 11

1739 12

WAFERSCALE INTEGRATION, INC. 4-11

4·12 WAFERSCALE INTEGRATION, INC.

Programmable SystemTM Device
W AFERS(,ALE INTEGRA T/oN. INC. Application Note 010

Abstract

Introduction

PAe1000 Introduction
By Chris Jay and David Fong

The PAC1000 user configurable high
performance microcontroller, from
WaferScale Integration, is the first of a
generation of devices intended for
applications in high end embedded
control. Understanding the device
architecture and using its support tools
require some practical experience before

The PAC1000 has many applications in
digital systems where high speed processing,
interface or control is required. The two
roles of the device are in a standalone
mode where the PAC1000 is programmed
to control data flow to or from other systems,
or as a high speed peripheral working with
a host microprocessor. Frequently, many
systems designers cannot find the ideal
solution to their requirements in a standard
chip. The designer may look at creating
the required function from discrete logic, a
combination of a number of PAUEPLD
devices, Programmable Gate Array (PGA)
products or standard gate array. In each
alternative, the designer is trying to reduce
the chip count of the system solution and
hence increase its reliability and reduce
assembly costs.

The discrete TTL or CMOS logic solution
to a systems design is considered by some
to be an old fashioned approach but still
popular with many digital design engineers.
However, designs using this technology
can quickly escalate in chip count as the
development progresses and once a
system is designed it is very difficult to
modify because the finished printed circuit
board contains devices that cannot be
re-programmed or altered in any way. Also,
a revision or system upgrade will require a
new printed circuit board design.

The PAUEPLD solution reduces the chip
count over a solution that uses discrete
logiC but still many devices are used
because the PAUEPLD products are not
very register intensive. Small subsystems
such as FIFO or a STACK require a number
of PAUEPLD devices and additionally

a full system design is attempted. This
application note is intended to introduce
the device and its architecture along with
the support software tools to the systems
designer. Finally to develop some simple
applications leveled at common problems
found in system design.

require some' additional chips. An alternative
solution would be to use additional
dedicated chips like FIFO, ALU and SRAM,
leaving the PLD/EPLD devices to handle
the glue, interface and small state machine
functions. The Programmable Gate Array
brings the system down to a possible
acceptable level but system logic still has
to be defined and routed in the logic cells
and a number of PGA devices have to be
designed such that they all work together.
Nevertheless, in the case of the
programmable solution, subsystems such
as STACK, ALU, REGISTER FILES etc.,
might still need to be configured in the
gates and registers of these devices. This
can cause an escalation in the quantity of
these chips used in the final system,
because PLDs and PGAs are not good
vehicles for integration at the subsystem to
system level. In a gate array design the
turn-around time is longer than the
programmable solution, and because the
device is not re-programmable there is a
high level of risk in going to a gate array
solution. Also, the high 'up front' Non
Recurring Engineering charges NRE can
rule out the use of gate array.

The Programmable Standalone Controller
offers the most likely solution to the
problem facing the systems designer. Very
often both the PAC1000 is used with
programmable logic devices to effect an
overall solution. For example in some
modes of operation PLDs are used for
address decoders to select and gate the
host interface control lines such as CSB,
ROB, and WRB. By bringing the package
count of the system down to its lowest

WAFERSCALE INTEGRATION, INC. 4-13

PAC1000 - Application Note 010

Introduction
(Cont.)

PACtOOO Device
Architecture

The Control Unit

level the design cycle time reduces, so
minimizing the overall time to market of
the final product. The reason for this is
that the PAC1000 already contains the
subsystems necessary for a fully functional
system design, and being programmable, it
can be adapted to perform most functions
required from systems devices.

The PAC1000 comprises elements such
as FIFO, ALU, register files, STACK,
microcode store, loop and breakpoint
counters, special registers and interface
logic all interconnected by a general
purpose internal bus structure. The
instructions that control data flow are
contained in the EPROM section of the
microcontrol store. These instructions are
entered into the system by the designer as
assembly or high level language code.
There also exists a microcode entry level
for those designers who are used to

The PAC1000 device architecture can be
divided into three subsystems, see Figure
1a; a CPU section that is similar to those
found in microprocessors, a host interface,
and a programmable instruction control
unit. The instruction register can be clearly
identified with its three output sections of
control, output and CPU Operation
Definition. Figure 1b illustrates a more
detailed diagram of the system than

The control unit is constructed around a
1K deep 64-bit wide EPROM, see Figure
1b. The 64-bit wide instructions are
programmed in the EPROM section and
are accessed and executed on each clock
cycle. The input RESET causes the
PAC1000 to access and execute the first
instruction at location OOOH of EPROM.
On each execution cycle, the Instruction
Register shown in Figure 1a will contain
three control operatives, a next address
instruction to the control section, an output
instruction and CPU instruction. The other
inputs to the control unit include interrupts
and condition codes. There are four external
and four internal interrupts that can be
enabled under programmed control. These
can generate a branch to an interrupt
service routine that results from a rising
edge applied to the external interrupt
input. For interrupts INTO, INT1, INT2, and
INT3 there are four locations OOSH, 009H

4·14 WAFERSCALE INTEGRATION, INC.

microprogrammable designs. Designing
with the PAC's software support tools is very
similar to writing code for microprocessors.
The end result is an assembled listing which
can be simulated prior to programming
into the PAC1000 device's on chip EPROM.
The difference between microprocessors,
conventional microcontrollers and the
PAC1000 device is found its ability to
execute instructions in parallel, and to
offer the designer a flexible architecture.
Microcontrollers and microprocessors
function on single operations of execution,
but the PAC1000 executes three instructions
in parallel during the current clock cycle.
In this way the PAC1000 device needs
fewer EPROM locations to store the code
which performs a given function. In addition
high functional speeds can be obtained
because the device can execute those
instructions at the clock rate of the system.

Figure 1a, clearly identifying the sub
structures of the three subsystems. The
different sections of the PAC1000 are
interconnected to each other by internal
buses and convey data and instructions to
and from each other. Communication to
and from the outside world is achieved
through various input and output registers,
and a Command/Data FIFO.

OOAH and OOSH respectively. These are
the vectored addresses at which processing
will continue in the presence of one of
these active interrupts. At the interrupt
location a jump to an interrupt service
routine should be inserted. For example,
the occurrence of INTO will divert
processing to location OOSH, that location
may contain a JMP 100H, where 100H is
the address where the service routine for
INTO should reside. The internally
generated interrupts are INT4, INTS, INT6
and INT? which divert processing to
locations OCH, ODH, OEH and OFH
respectively. Details of their allocated
function is given in the PAC1000 data
sheet. In addition there are eight condition
code inputs CC[?:O], shown alongside the
INT[3:0] inputs in Figure 1b. These inputs
can be tested individually under program
control. The combination of Next Instruction
Definition, Interrupt and Condition Code

The Control Unit
(Cont.)

Figure ta.
PACtOOO
Microcontroller
Single Cycle
Control
Architecture

Figure tb.
PACtOOO
Microcontroller
Block Diagram

---------- ---------

input direct the flow of the program and
hence the execution of instructions
contained in the EPROM section. The
CASE logic is used in the controller
section to enable CASE statements to be
executed on condition code groups. The
eight condition code inputs may be divided
into two four bit groups. Case group zero
CGO comprises CCO, CC1, CC2 and CC3.
Case group 1 CG1 comprises CC4, CC5,
cca and CC7. A further two case groups
CG2 and CG3 test flag registers (see

CONDITION CODES -"""'=8----O~_;;C:;;0~NT;;R~0;:_L l
INTERRUPTS UNIT

NEXT INSTRUCTION .----_4_~ 1~~~~:
DEFINITION '--,.--,r-r---'

CLK

OC[15:0]

CLK RESET , ,
CONFIGURATION REGISTERS I

CONTROL 1/0 CONFIGURATION I MODE I
~

PAC1000 - ApplicatIon Note 010

Table 1). These condition code inputs may
be tested individually or tested in a group.
When tested in a four bit group, a one-of
sixteen branch will occur, as specified by
the CASE instruction.

The current status of the PAC1000 is kept
in the sixteen bit status register. STATO
STAT11 give twelve status bits with four
extra bit locations for future development.
Table 2 shows the assignment of each
register.

cs RD WR HD[15:0] HAD[5:0]

CPU

28

1/0[7:0] ADD[15:0]

cs RD WR HD[15:0] HAD[5:0]

I I I • • ii i + +
I HOST INTERFACE

1
1 ~

I DATA INPUT J L DATA OUTPUT J I COMMAND/DATA FIFO J
~ .1 J

~
CONTROL SECTION ~ BREAKPOINT REG I CPU II 32 x 16 0 I

REGISTER FILE
SEQUENCER I Q REGISTER I

I l LOOP CNTR J
1Kx 64 t [PROGRAM CNTI!.I PROGRAM

J I ,l
MEMORY

AW 15 LEVEL I STACK Is1 I OUTPUT

t
ADDRESS COUNTER

BLOCK COUNTER I CASE LOGIC I
TEST LOGIC I INTERRUPT I l t

1/0 SPECIAL I
FUNCTION PORT

I ADDRESSJDATA I
PORT

~ t
t t

CC[7:0] INT[3:0] OUTCNTL[15:0] 1/0[7:0] ADD[15:0]

WAFERSCALE INTEGRATION, INC. 4-15

PAC1000 - Application Note 010

Table 1.
CASE Group
Assignments

Table 2. Status
Register

The Control Unit
(Cont.)

Host Interface

Condition Code CASE
cco, CC1, CC2, CC3 CASE Group 0

CC4, CC5, CC6, CC7 CASE Group 1

S, 0, Z, CY. CASE Group 2

INTR, BCZ, FIOR, FICO. CASE Group 3

FIXp, ACO, STKF, FIIR, DOR, INTR N/A

0 0
WSI

S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 so
Reserved

S11 - Security Bit, High is Active Security On, Low is No Security.
S10 - Scan Mode, High is Active On, Low is No Scan Mode.
S9 - FIXP FIFO Exception Occurs When a Command is Written, a Low Means No

Exception.
S8 - FIIR FIFO Input Ready When There is at Least One Location Vacant.
S7 - CY Set High When the Result of a CPU Operation Generated a Carry.
S6 - Z Set High When the Result of a CPU Operation is Zero.
S5 - a Set When an Overflow Has Occurred During a Two's Complement Operation.
S4 - S Sign Bit Set to One When the Result is a Negative Number.
S3 - Stack Full Flag. Set When the Stack is Full.
S2 - Breakpoint Flag is Set When the Address in the Breakpoint Register is Equal

to the Address in the Program Counter.
S1 - BCZ is Set When the Block Counter Reaches Zero.
SO - ACO Address Counter All Ones Flag is Set When the Address Counter Reaches

the Maximum Count.

A single internal counter is provided for
loop control, this is part of the control
section, and is shown in Figure 1b. If a
FORLOOP is executed the loop counter is
loaded and the instructions within that
loop are executed until the counter has
decremented to zero. The loading of this
counter is transparent to the designer in
the respect that the FORLOOP instruction
automatically performs loading and counting.

A fifteen level stack is incorporated to hold
the return address of the main program
when a subroutine call or interrupt service
routine is being executed. The address of
the next sequential instruction to be
executed is pushed onto the stack. The
stack is also used for LOOP NESTING.
There is only one loop counter in the
PAC1000 but nested FOR LOOP instructions

The host interface section has been
designed to easily integrate into a CPU
based system. When the PAC1000 is used
in the peripheral mode, the flow of data or

are possible because the current contents
of the loop counter is saved in the stack
when the next subsequent loop in the next
is entered. When leaving the loop the
stack is popped to return the old count
back into the loop counter thus preserving
its original contents. When the stack
becomes full a status flag STKF is set in
the sixteen bit status register and an
interrupt level 7 is generated.

To enable a debugging facility a register
called the breakpoint register is included
in the microcode section. When the
contents of the program counter is equal
to that of the breakpoint register an
interrupt level six is generated. For
debugging purposes a level six interrupt
service routine should be written to
perform diagnostic tests within the system.

commands to its internal registers may be
achieved through an internal FIFO. Standard
microprocessor signals of chip select CSB,
read ROB and write WRB (active LOW CS,

4·16 WAFERSCALE INTEGRATION, INC.

Host Interface
(Cont.)

Table 3. Host
Interface
Function Table

RD and WR) are accompanied by a
sixteen bit Host Data and a six bit Host
Address bus. Table 3 gives the conditions
governing the mode setting for both
standalone and peripheral mode. The logic
condition of HDSELO and HDSEL1 in the
control register will determine the mode of
the PAC1000 operation. Bit positions in
this register can be set or reset under
program control.

A detailed block diagram of the PAC1000
is given in Figure 2 which illustrates the
internal structure of the control section,
processor section and interface. Data flow
from the host processor data inputs
HDO-HD15 to the internal 16-bit bus can
be achieved through the FIFO section. The
FIFO is eight locations deep and twenty
two bits wide. To transfer data words to the
registers in the CPU section the host
processor uses the chip select, write and
HAD inputs. The address of the register is
set up on the five HAD lines (this selects
one of 32 registers) then the write and
chip select lines are driven LOW. The data
on the HD lines plus the register address
is loaded into the FIFO. An additional bit
called the FICD bit is loaded through
HAD5 at the same time as address
HAD[O-4] and the host data lines HD[O-15].
This is the FIFO Command/Data bit and
must be LOW to signify that the sixteen bit
word on HD[O-15] is data. If it is set HIGH,
the least significant ten bits of that data
will be used as an address pointer to the
microcoded EPROM. In this way the host
system can direct PAC1000 processing to
a defined microcoded address. This is a

PAC1000 - Application Note 010

powerful feature that enables dynamic
context switching of PAC1000 under
supervision of the host processor. The
FIFO exception flag FIXP will be set if the
information residing in the FIFO was
misdirected (if it were treated as a control
word when the FICD flag labeled it as
data or if the opposite condition prevailed).

Using the FIFO is the only method in
which the host can communicate with the
PAC1000 using the active LOW chip select
CSB and the write input WRB. The DOR
and DIR are Data Output and Data Input
registers and are available to convey data
to and from the internal sixteen bit bus but
do not respond to CSB and WRB. The
DIR would be used in a synchronous
system because, when it is enabled by
setting the DIREN flag (see Table 4), data
is latched on the rising edge of each clock
signal. The data contents of the DOR
register may be directed to the host data
outputs if all inputs CSB, WRB and RDB
are inactive and HDSELO and HDSEL1 are
1 and 0 respectively, see Table 3. The use
of the DIR and DOR register is intended
more for synchronous communication
whereas the FIFO is intended primarily for
asynchronous systems or synchronous
peripheral interface. The flags FIIR and
FIOR are the FIFO Input Ready and FIFO
Output Ready respectively, these flags can
be tested so no overwriting of data will
occur. Figure 3 shows the 1/0 Port and
Special Functions. The FIIR register can
be directed to the output 1/07 through a
multiplexer so it can be tested externally
by the host system.

HOSELO HOSELt CS RO WR HA05 HAO[0-4} HO[15-0} OPERATION

0 0 0 1 0 0
Register

Data Write Data to FIFO
Address

0 0 1 0 1 X Command
Write Command

0 to FIFO

0 0 0 0 1 0 00100 X Reset FIFO

0 0 0 0 1 0 00011 X Reset Status Register

0 0 0 0 1 0 00010 X
Read Program
Counter

0 0 0 0 1 0 00001 X Read Status Register

0 0 0 0 1 0 00000 X
Read Data Output
Register

1 0 1 1 1 X X X Data Output Register

0 1 1 1 1 X X X Status Register

1 1 1 1 1 X X X Program Counter

WAFERSCALE INTEGRATION, INC. 4·17

PAC100D - ApplicatlDn NDte 010

Figure 2.
PACtDOO
Detailed
Block Diagram

8

CC

1"

DIR 1
DATA
INPUT ~ REGISTER

f16

r-~
INTERNAL i.....+ ~ TEST
cc

l l
HOST

INTERFACE
DECODER

~
DECODED
SIGNALS

h6
DOR

DATA
OUTPUT

REGISTER

~ 16
DOR

I PROGRAM
COUNTER

I 15-LEVEL
STACK

I LOOP
COUNTER

HD HAD

f16 f6

IHDOE- V~ IHADOE- V~
16

16 6

16
SR FIFO (8 x 22)

8 x 16 COMMAND 8x5
STATUS AND REGISTER 6x1

REGISTER DATA FIFO POINTER

INTEtNAL
~FIIR

16
~ FICD

FLAGS 5

REGISTER
SELECT

INTERNAL
CONTROL REGISTER
SIGNALS FILE AND

Q REGISTER

~ AW

I CPU

II BLOCK1j+

I BREAKPOINT COUNTER 1/0
INTERNAL CONFIGURATION ----. REGISTER

~
BC t INTR

I S I I
MODE

4 1Kx 64 BCEN
EPROM CONTROL INTR

CLK CONTROL UNIT CONFIGURATION REGISTERS - 16
RESET -Vee V L- 16 16 16 16 6

GND OUTPUT CONTROL

r 16

OC ACH ACL

I SWAP I
~ ADDRESS ADDRESS

~ REGISTER
COUNT COUNT

HIGH LOW a a 16 AOR

IIR lOR AIR
ADDRESS

, t ACS22

1/0 1/0 ADDRESS
OUTPUT

INPUT OUTPUT INPUT
REGISTER

REGISTER REGISTER REGISTER

V~ ~ ,
iAiReN

{. Y 16 t16

fa ADD

1/0

4·18 WAFERSCALE INTEGRATION, INC.

Figure 3. I/O
Port and Special
Functions

PAC1000 - ApplicatlDn NDte 010

FIIR

B MUX
IADOE

CNTL4
Q

A S (ADOE)

MODE 7

B MUX
IHADOE

Q
CNTL3(HADOE) A S

MODE 6

B MUX
IHDOE

Q
CNTl2(HDOE) A S

IIR

D CK
MODE 5

SDATM

QMSB II ClK

SDATl

QlSB

>------1-+--.... ----+---1 B MUX IACEN
Q

a·BIT a·BIT
INPUT OUTPUT
BUS BUS

WAFERSCALE INTEGRATION, INC. 4-19

PAC1000 - Application Note 010

Table 4.
Control Register

Central
Processing Unit

CTRL9 CTRL8 CTRL7 CTRL6 CTRL5 CTRL4 CTRL3 CTRL2 CTRL1 CTRLO

ASEL AIREN DIREN HDSEL1 HDSELO ADOE HADOE HDOE BCEN ACEN

ASEL - Selects Which Source Will Write to the Address Bus
1 = Address Counter. 0 = Address Output Register.

AIREN Enables/Disables Writing to the Address Input Register by the Address Bus.
1 = Enabled. 0 = Disabled.

DIREN Enables/Disables Writing to the Data Input Register.
1 = Enabled. 0 = Disabled.

HDSEL1
HDSELO - Decoded to Select Which Source Will be Connected to the Host Data Bus

(See Table 3.).

ADOE - Selects Direction of the Address Bus
1 = Output. 0 = Input.

HADOE - Selects Direction of Host Address Bus (HAD).
1 = Output. 0 = Input.

HDOE - Selects Direction of Host Data Bus for Next Clock Cycle.
1 = Output. 0 = Input.

BCEN - EnableslDisables Block Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.

ACEN Enables/Disables Address Counter Before Next Clock Edge.
1 = Enabled. 0 = Disabled.

The section that deals with data processing
is the central processing unit. This
comprises a sixteen bit wide ALU with a
32 x 16 bit register file. One other special
purpose register Q and an R shifter circuit
make up this section. The Q register is
sixteen bits wide and can be used for data
shifting. Figure 4 shows the ALU and
register structure of the CPU section. The
ALU is in the path of the register outputs
such that arithmetic and logic functions
may be executed on the contents of any
one of the 32 general registers. The output
of the ALU passes data back to the
selected register through the R shifter. In
this logic circuit, data may be shifted
either left or right, one position, before
being written back into the register file.
The output of the ALU can also drive data
to registers such as the DOR register. A
multiplexer can select either the ALU or
the RO-R31 register output. The loop
counter LC can be loaded from this
multiplexer enabling the contents of a
register to determine how many program
loops are to be executed. This loop
counter can be loaded from the EPROM to

give a fixed number of loops or from a
register at program 'run time: In this
event, the number of times a loop is
executed can be made programmable.
Other registers on this bus are AOR,
Address Output Register, the lOR, Input
Output Register, the ACL and ACH low
and high address counters and the BC
Block Counter. The ACL counter has a six
bit resolution and the ACH counter has
sixteen. When enabled by ACEN, the ACH
counter will increment on the rising edge
of each clock cycle. The default value is
for a sixteen bit count. To enable a twenty
two bit count where the ACL takes on the
six least significant of the twenty-two bits.
The ACS22 flag must be set, to enable the
clocking of these counters. This is
transparent to the software because once
enabled the counters will clock at the
system clock rate. However, they can be
turned on and off from the microcoded
instruction of enable SET ACEN, or
disable RESET ACEN, also counting can
be influenced by register loading.

4·20 WAFERSCALE INTEGRATION, INC.

Figure 4.
PAC1000 ALU
and Registers
Structure

PAC1000 - Application Note 010

,---,
I
I
I
I

ClK

HOST
INTERFACE

IN (B)

REGISTER
BANK

(R31IRO)

HOST
INTERFACE

Z FLAG

CY FLAG

SIGN FLAG

"0"

"1"

RMSB

QMSB

SDATL

ADD
BUS

a:
w

QMSB

a:
w
l
Ll..
:;:

~ QI----j
'" o

w
a:

F O

110
BUS

QlSB

CONSTANTS ,------,
I I
I I
I I
I I
I PART OF I
~~~~L ~E.:r.!?~ 

WAFERSCALE INTEGRATION, INC. 4·21 



PACtOOO - Application Note OtO 

Support 
Software 

Figure 5. 
Program Flow 
From Assembly 
Input to 
Simulated 
Output 

The PAC1000 device is supported with 
development software that can run in an 
IBM PC/XT or AT computer. The main 
tools that the designer will use are the 
assembler, the linker and the simulator. 
These support programs are run from a 
WSI menu called WISPER that has been 
designed to make software development a 
simple process. The designer can select 
the assembler from the menu and assemble 
his source program. After assembly the 
program must be linked. The linker program 
is designed for those system designers 
who build their software up from a number 
of modules. Figure 5 illustrates the flow 
from original source code entry through 
the linker to a simulated output. The linker 
will take these modules and combine them 

into one object program. On completion of 
assembly and linking the program may be 
checked by the simulator. The use of the 
simulator removes the need for EPROM 
programming and in-circuit testing during 
the design cycle and gives the designer a 
fairly high level of confidence that the 
program will function as intended. The 
simulator will take the bit pattern format 
that was generated during assembly and 
apply a command and stimulus file to the 
program. The result will be a series of 
waveforms that appear on the screen of 
the PC and is similar to that of a logic 
analyzer display. A table of vectors is also 
generated for those signals that are traced 
from the command file. These vectors can 
be printed out for analysis and verification. 

<filename>.MAL 

<filename>.ML 

<filename>.STL 

<filename>.OUT 

<filename>.LIS 

<filename>.OB 

<filename>.LIS 

<filename>.ABS 
'---------. <filename>.OBJ 

PROGRAMMED 
DEVICE 

4-22 WAFERSCALE INTEGRATION, INC. 



Microcoded 
EPROM Section 

A further aid to the design entry is the 
ability to mix high level, assembler and 
microcode mneumonics so designers can 
use the entry level that they feel the most 
comfortable with. Most of the applications 
example given below are written in a high 
level 'C' like language but some assembler 
instructions are also incorporated. 

In systems applications such as Direct 
Memory Access (DMA), it is required to 
output the contents of a counter to 
address memory and then increment it. 
This is implemented in the PAC1DDD high 
level language syntax as: 

AOR : = RD ; I*CONTENTS OF RD 
GOES INTO THE AOR*! 

RD:= ++RD ; I*REGISTER RD IS 
INCREMENTED BY ONE*/ 

For efficiency these two instructions may 
be combined into one line of code, which 
is executed in one clock cycle: 

AOR:= RD:= ++ RD; 
/*COMBINING THE TWO OPERATIONS*/ 

The contents of RD will be passed to the 
Address Output Register and will be 
incremented by the ALU. 

Where AOR is the address output register 
and RD is one of the thirty-two, 16-bit 
general purpose registers. The '/*' symbol 
delimits the comment field boundary. 

With a PAUEPLD/PGA approach the 
designer would be required to spend much 
'valuable time configuring a loadable binary 
counter, with a 3-State output capability. 

In applications such as digitizer/plotter 
systems, x,y coordinates have to be quickly 
summed or subtracted many times to 
register cursor movements and position. 
This requires repetitive arithmetic 
operations. I n this application vector 
addition on two or more sixteen bit words 
can be defined as two instructions: 

RD := RD + R1 ; 
AOR:= RD; 

Combining these instructions together: 

AOR := RD := RD + R1 ; 

PAC1000 - Application Note 010 

With conventional programmable logic an 
ALU function would have to be designed 
or a dedicated custom chip used with the 
programmable logic part used as the data. 
I/O controller. The key point of this issue is 
that complex logic functions are simply 
written as a few single lines of statements. 
Moreover, a combination of functions may 
be grouped in a single line. These include 
a microcontrol directive such as a branch, 
call to subroutine or JUMP on condition, 
an ALU function such as increment or 
add, and an output control command. 
There are sixteen output control lines 
which can be driven active on each clock 
cycle. The composite of the three 
commands are: 

LABEL: JMPNC CC7 LABEL, 
RD := RD + 1 , OUT 'HOLD' ; 

The function of this line of code would be 
to wait until the condition code input of 
CC7 went active before the next instruction 
is executed. At the same time the contents 
of RD would be incremented and the 
output control lines would be driven with a 
sixteen bit code called HOLD. An equates 
option 'equ' is used to define uniquely a 
sixteen bit pattern called HOLD. The 
assembler encodes an equate statement to 
allow meaningful words to be used in 
output control statements. Some examples 
of this are: 

HOLD equ H'FFFF' ; 
1* HOLD IS SET AS HEX FFFF */ 

ENBL equ H'EFFF' ; 
1* ENBL IS SET AS HEX EFFF *! 

The equates directive should be declared 
at the start of the program before any 
actual code is written. 

WAFERSCALE INTEGRATION, INC. 4-23 



PAC1000 - Application Note 010 

Applications 
Programs 

The depth of the microcontrol store is 1K 
of 64-bit wide words. One 64-bit instruction 
is executed on each clock cycle. The 
instruction word is subdivided into three 
commands: an output control command, a 
command to the processor section and a 
next address command to the microcoded 
memory. Figure 1a shows the Instruction 
Register with its contents of control, output 
and epu commands. The control unit will 
also respond to condition code inputs and 
interrupts. An example of output control 
and response to condition codes is in a 
handshake loop. The output stimulus can 
be to set one of the control outputs 

OC[15:0j and wait for a response to a 
condition code input eC[7:0j. Under 
program control a conditional JUMP to a 
location could result if the bit tested were 
set. Otherwise linear programming could 
continue. 

The first applications program below 
demonstrates the use of condition code 
zero eeo to test for a start condition. 
When the input is LOW, the program loops 
continually testing eeo. When the host 
raises eeo, the program performs a 
double precision addition. The sum is 
available at the data output register DOR. 

segment pacdesOl : 

1* PROGRAi1 TO PERFOR!'l DOUBLE PF~=:CISION ADDITliJN ON THE REGISTER*/ 
1* CONTENTS OF FU .RO: R3.R:: THE CARRY OF THE LEAST SIGNIFICANT *1 
1* "JORD ADDI nON IS CONTAINED IN THE CP REGISTEr, AND IS USED IN*I 
1* THE SECOND HALF OF THE 32 BIT ADDITION. *1 

PIN FUI-lCTIONAL DESIGNATIONS. 
INPUTS. *1 

*1 
CCO (lCTIVE HIGH - START 32-BIT ADDITION *1 
/CS - ACTIVE LOW - PAC10)O CHIP SELECT *1 
IRD - ACTIVE LOW READ A REGISTER FROM HOST *1 
HAD[5:0] - INPUTS TO SELECT DOR REGISTER FRat1 *1 
HOST INTERFACE */ 

HOLD: Jt1PNC CCO HOLD : I*WAIT FUR STf:lRT CONDITION *J 

RO := 
Rl := 
R2 :::::: 
R"" .j := 

H'F83,) 
H'982F' 
H 'A309' 
H'4500' 

H5 : = Rl ~ 

R4 : = Re) : 

I*LOAD REGISTERS WITH DATA *1 
/*F:(} AND R2 CONTAIN THE *1 
/*LEAST SIGNIFICANT WORD OF *1 
/*THE 32 BIT LONG WORD AND '*1 
I*Rl AND R3 CONTAIN THE MOST*I 
!*SIGNI~ICANT WORD *1 

DOR := RO := RO + R2 
Rl := Rl ~ R3 + CP 

I*LOAD DOR REGISTER*I 

LOOP 1 : J MF'NC DOF~ LOOP 1 : 1* WAIT FOR HOST TO HEAD DOR *1 

DOH := Rl 1* LOAD MOST SIG WOFm INTO DOR *1 

LOOP2: JrlPNC DOR LOOF'2 l* IJHHT FOR HOST TO READ DATA *1 

FIN: JMP HOLD I*END OF THE CYCLE*/ 

end = 

4·24 WAFERSCALE INTEGRATION, INC. 



Applications 
Programs 
(Cont.) 

The program adds the contents of RO and 
R2, then R1 and R3 and the CARRY bit. 
In the next design example, double 
precision subtraction is performed and this 
time the CY flag will hold the borrow bit. 
This design example is more practical than 
the example above because instead of 
performing arithmetic on fixed values the 
register file may be loaded from a source. 
The configuration of the PAC1000 is in the 
peripheral mode and data is loaded into 
the FIFO. CCO is monitored and, when 
active, is a signal to the PAC1000 that data 
has been loaded. The FIFO is unloaded 

PAC1000 - Application Note 010 

into the registers by the series of 
instructions: 

FOR 3 ; !*EXECUTE THE LOOP 
FOUR TIMES*! 

RDFIFO ; /*UNPACK DATA FROM 
THE FIFO*! 

ENDFOR ; !*END THE FORLOOP *! 

This section of the program performs a 
read operation on the FIFO four times. In 
any FORLOOP N, where N is an integer 
value, the number of times the loop is 
executed is N + 1 times. 

seament pacdes02 ; 

/ *PROCF;,:ii'1 TO PEF::FOF~i'1 DOUBLE PREC I S ION SUBTRACTI ON Qt.] REG I STEF~ * I 
I *CONTEI>lTS R 1. R(I ; R3. R2 THE BORROW FLAG 1 S CONT i'l I NED I N THE * / 
I*CP F;EGISTER DURING THE SECOND HALF OF A 32-BIT SUBTRACTION *1 
1* *1 
1* PIN FUNCTIONAL DESIGNATIONS *1 
1* INPUTS *1 
1* CCO i-ICTIVE HIGH - START PROGRAt"1 *1 
/lO- ICS ACTIVE LOW - PAC100!) CHIP SELECT *1 
1* IWR ACTIVE LOW - FIFO WRITE *1 
1* IfW - ACTIVE LOW - F;EAD (~ REGISTER FROM HOST INTEF:FACE*I 
1 * HAD [5: I) J - I NPUTS TO SELECT A REG I STER FF;OM THE HOST * 1 
1* INTERFACE *1 
l-lI' HD[15:0J ['ATA INPUTS TO FIFO THROUGH HOST INTERFACE *1 
1* *1 

HOLD: JMPNC CCO HOLD 
FOR 3 
RDFIFO 
ENDFOR 

R5 : = R1 : 
R4 : == [;:0 ; 

I*WAIT FOR START CONDITION EMFTY ""1 
I*THE FOUF; LOCATIONS OF THE FIFO *-1 
I*LOADED THROUGH THE HOST INTERFACE *1 
I*SECTION OF THE PA(11)OO *1 

/*SAVE Ri CONTENTS IN R5*1 
I*SAVE RO CONTENTS IN R4*1 

DOR : = RO :: = RO - F~2 

Rl := Rl - R3 - CP ; 
I*SUBTRACT LSW PROPAGATE*I 
l*THE BORf{OW INTO THE CF-*l 

DOH := HO I*LOAD DOR WITH MSW 

LOOP1: JMF'NC DOR LOOP1 : 

DOF~ : = Hi I*LOAD DOR WITH MSW 

LOOP2: JMPNC DOR LOOP2 

Jf1P HOLD : I*END OF PROGRAM 
end: 

WAFERSCALE INTEGRATION, INC. 4·25 



PACI00D - Application Note 010 

Applications 
Programs 
(Cont., 

The next program shows a multiply routine. 
Although there is no dedicated multiplier 
in the PAC1000, multiplication can be 
achieved by shifting and adding. The MUL 
instruction is a MACRO command that is 
expanded when assembled into a loop of 
shift and add instructions. The RDFIFO 

seqmp.nt oacdes03 : 

instruction is used to pass the data from 
the host to the PAC, which is configured 
as a peripheral. In the example the contents 
of RO and R1 are multiplied and the product 
is available in registers R1 and R2, where 
R2 contains the most significant word and 
R1 the least significant. 

HOLD: JMPNC CCO HOLD 
FOR 1 
RDFIFO 
ENDFOR 

I*WAIT FOR START CONDITION EMPTY*I 
I*THE TWO LOCATIONS OF THE FIFO *1 
I*LOADED THROUGH THE HOST INTER-*I 
I*-FACE SECTION OF THE PAC1000 *1 

MUL R2 Rl RO : 
DOR := R2 

LOOP1: JMPNC DOR LOOPl : 
I*REGISTER. THE PRODUCT IN THE *1 
I*DATA OUTPUT REGISTER *1 

DOR := Rl 
SELF: JMP HOLD : 
end: 

In the following example, the contents of 
registers R2 and R1 is divided by the 
contents of register RO. The most significant 
word of the 32-bit long word is held in 

segment oacdes04 : 

1* *1 
I*END OF PROGRAM *1 

register R2 and the least significant 16 bits 
are stored in R1. The result of the divide 
operation leaves the quotient in the Q 
register and any remainder in register R2. 

HOLD: JMPNC CCO HOLD 
FOR 1 
RDFIFO 
ENDFoR 

I*WAIT FOR START CONDITION EMPTY*I 
I*THE TWO LOCATIONS OF THE FIFO *1 
I*LOADED THROUGH THE nCST INTER-*I 
I*-FACE SECTION OF THE PAC1000 *1 

DIV R2 Rl RO : 
DOR := Q 

LoOP1: JMPNC DOR LOOPl ; 
DoR := R2 

SELF: JMP SELF ; 
end: 

The files generated so far can be entered 
into the assembler and two files 
<filename>.LlS and <filename>.OB may 
be generated as shown in Figure 5. The 
latter object file must be linked before the 
final object file is available for programming 
into the PAC1000's EPROM. The link 
program <filename>.ML performs this 
function and is shown below. 

load pacdes04 ; 
place pacdes04 ; 
end; 

This design example only used one 
program but many sub-modules may be 
linked together to form a single executable 
program. It is possible to simulate the 
design after linking. The necessary inputs 

4-26 WAFERSCALE INTEGRATION, INC. 

I*OUTPUT THE REMAINDER*I 

I*OUTPUT THE QUOTIENT. *i 
I*END OF PROGRAM *1 

to the simulator are the <filename>.OBJ, 
<filename>.STL and <filename>.CMD. The 
latter two files are the input stimulus file 
and the input command file (see Figure 5). 
The stimulus file is used to drive inputs 
such as address, data and condition codes. 
The command file lists which signals 
should be traced for observation. Examples 
of the stimulus file and command file are 
given below. 

The command file shown below will instruct 
the simulator to set an output trace on the 
Current value of the Program Counter, 
CPC. The Condition Code zero input, the 
write, and the chip select lines are also 
traced. The simulator also enables a trace 
to be invoked on registers as well as input 



Applications 
Programs 
(Cont.) 

PAC1000 - Application Note 010 

or output pins. The Q register is traced 
along with host data, loop counter, and 
registers RO, R1, and R2. The final trace is 
set on the host data output register. At the 
end of the stimulus file, the run instruction 

informs the simulator to run the driving 
signals for 140 cycles. The final instruction 
invokes a View Trace Waveform instruction, 
so the waveforms may be observed on the 
PC screen. 

OPEN STIMULUS PACDES04 
SET TRACE CPC 
SET TRACE CCO 
SET TRACE WRB 
SEf TRACE CBB 
SET TRI::;CE FmB 
SET TRACE Q 

SET TRACE HD 
SET TRACE LC 
SET TRACE F:O 
SET TF:AC;::: Rl 
SET TRACE R2 
SET TRACE HDOR 
OPEN TRACE PACDES04 
FWN 14(' 
V T W 

The stimulus file is used to apply active 
signals to inputs of the design. At specific 
time points conditions are established. For 
example the statement: 

.S ceo 0@1 1 @40 

means that the input condition code zero 

. S RESETB 0 @ 1 1 @ 2 ; 
• S CCO 0@1 1@40 ~ 

ceo should become a logic state LOW at 
time point one and a logic HIGH condition 
40 cycles later. A three-state condition can 
be applied by typing the letter Z in place 
of logic '1' or '0.' The stimulus file is 
completed to drive all inputs and applied 
to the simulator during run time . 

.S WRB 1@1 0@2 1@8 0@12 1 @19 ~ 

.S CBB 1@1 0@2 1@9 0@11 1@18 0@120 1@129 0@131 1@139 

.S RDB 1@1 0@121 1@129 0@131 1@139 

.S HAD!) 0@1 1@10 0@24 ~ 

.S HADI 0@1 

.S HAD2 0@1 

.S HAD3 0@1 
• S Hf~D4 0@1 
.S HAD5 0@1 
# WRITE A 7 INTO RO AND 31 INTO Rl 
.S HDO 0@1 1@10 Z@70 
.S HDl 1@1 Z@"70 
.S H02 0@1 1@10 I@70 
.S HD3 0@1 1@10 Z@70 
.S HDll- 0@1 1@10 Z@70 
.s HD5 O@l Z@70 
.S H06 0@1 Z@70 
.S HD7 0@1 Z@70 
=S HD8 0@1 Z@70 
.S HD9 0@1 Z@70 
.S HDIO 0@1 Z@70 
• S HDll 0@1 Z@70 
• S Z@70 HDl2 0@1 
.8 HD13 
.. 8 HD14 
.S H015 

0@1 
0@1 
0@1 

Z@70 
Z@70 
Z@70 The comment field is denoted by a '#' sign. 

WAFERSCALE INTEGRATION, INC. 4·27 



PAC1000 - Application Note 010 

Case Statement 
Logic 

The ability of the PAC1000 to perform case 
statement logic has already been discussed 
but the following program excerpt illustrates 
how to encode the case statement. The 
program will execute when condition code 
7 is active high, then case group CGO is 
tested for one of sixteen possible states. 

segment pacdes05 : 

CGO comprises CCO, CC1, CC2 and CC3. 
Sixteen registers are initialized and the 
output code is driven with zero. When CC7 
goes HIGH the CGO input is tested and 
the register contents that are equal to the 
state of the CGO input is transferred to the 
AOR outputs. 

/* illustrate the use of multiwav branching *1 

RI) := I) 

Ri := 1 
R2 := 2 
R< ~. := 3 
R4 := 4 
R5 := 5 
R6 := 6 
R'1 := 7 
R8 := 8 
R9 := 9 
RIO := 10 
Rl1 := 11 
RI2 := 12 
R13 := 13 
F.:14 := 14 
R15 := 15 
WHILE CC'1 
SWITCH CGO ; 

CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
CASE 
C{\SE 

ENDSWnCH ; 
NEXT : OUT I) 
ENDIIJHILE ; 

[lUT h'FFFF' 
LOOPX 

0 GO TO NEXT 
1 GO TO NEXT 
2 · GOTO NEXT 
3 · GOTO NEXT 
4 GOTo NEXT 
5 GOTO NEXT 
6 GOTG NEXT 
7 GOTO NEXT 
8 GoTo NEXT 
9 • GoTO NEXT 
10 GOlD NEXT 
11 GOTO NEXT 
12 . GO TO NEXT 
13 GO TO NEXT 
14 GOTO NEXT 
15 GOTO NEXT 

GOTO LOOPX 
end ; 

AOR := RI) 
AOR :;= Ri 
AOR := R2 
AOR := R3 
AOR := R4 
AOR := R5 
AOR := f~6 

AOR := R7 
AOR := RB 
AOR := R9 

AOR := RiO 
AOR := Rll 

• AOR := R12 
AOR := R13 
AOR := R14 
AOR := R15 

4·28 WAFERSCALE INTEGRATION, INC. 



Simple OMA 
Controller for 
Memory to 
Memory Transfer 

The software designs discussed so far 
have been based on arithmetic functions 
but an important feature of how to use the 
FIFO in the host interface section of the 
PAC1000 for the communication of data 
will enable the reader to develop ideas 
into more complex programs. The FIFO 
Output Ready flag is used in a loop to 
read the data into the registers. The output 
codes are used to create signals to control 
read, write, latch, output enable and bus 
acknowledge signals. A summary of these 
signals is given in Table 5 each time an 
instruction is executed. These signals are 
generated to accompany the memory 
addresses which control the DMA cycle. 

Figure 6a shows a generic system solution 
where the PAC1000 sits on the address 
and data bus of a microprocessor and 
memory interface. The PAC1000 is mapped 
into the system with a PLD decoder and 
an external latch is used to catch data on 
read and write cycles. It is possible to use 
the internal DIR and DOR for this purpose 
but a faster solution would use an external 

segment pacdes06; 

PAC1000 - Application Note 010 

component. Also, if the bus were greater 
than sixteen bits, an external latch would 
be required. This mode where data does 
not enter the PAC1000 device is called the 
'fly by' mode. 

Figure 6b shows the timing waveform 
derived from the program simulation. 
Active LOW WRB and CSB inputs to ADD1, 
ADD2 and ADD3 will write to the registers. 
The Source Address Register RO, the 
Destination Address Register R1 and the 
transfer counter R2 are all loaded through 
the FIFO. At time point 1, the registers 
become loaded. At time 2, CC7 is set 
HIGH to indicate transfer can commence. 
The response from the PAC1000 is an 
active LOW output from output control 
OC14 to inform the microprocessor that 
DMA activity is taking place. This occurs 
at time point 3. OC14 stays LOW during 
DMA activity but goes HIGH after the 
transfer is complete (at time point 4). 
Three transfers have taken place and the 
microprocessor is free to regain control of 
the bus. 

I*THE PROGRAM ILLUSTRATES A SIMPLE DMA DESIGN WHICH *1 
I*READS THE DATA FROM SUCCESSIVE MEMORy LOCATIONS *1 
I*ADDRESSED BY THE CURRENT CONTENTS OF RO THEN L<JRITES*I 
I*THAT DATA TO LOCATIONS ADDRESSED BY THE CONTENTS *1 
I*OF Ri. BOTH REGISTERS ARE INCREMENTED AFTER THE *1 
I*REAiJ/WRITE CYCLE. R2 IS A TRANSFER COUNTER THAT IS *1 
I*DECREMEN,ED AFTER EACH TRANSFER. WHEN R2 IS ZERO *1 
I*ALL TRANSFER ACTIVITY CEASES AND A NEW DEVICE WAITS*I 
l*FOR A NEW m"iA CYCLE. *1 

OC15 
OC14 
OC13 
OC12 
OC11 
AOR 

PIN FUNCTIONAL DESIGNATIONS. 
OUTPUTS. 

LATCH ENABLE •..•••.•.•• ACTIVE 
- BUS TAKEN .••.•••••••.•. ACTIVE 

WRITE ENABLE •••••...•.• ACTIVE 
READ ENABLE .••••.•.•••• ACTIVE 
LATCH OUTPUT ENABLE. ••• ACTIVE 

- 16 BIT ADDRESS OUTPUT •• ACTIVE 

LOW. 
LOW. 
LOW. 
LOW. 
LOW. 
TRUE. 

1* INPUTS. */ 

1* CC7 - ACTIVE HIGH - INITIATE DMA ACTIVITY. *1 
1* HD - ACTIVE TRUE 16 DATA INPUTS. *1 
1* HAD ACTIVE TRUE REGISTER ADDRESS INPUTS *1 
1* ICS ACTIVE LOW PAC100!) SELECT *1 
1* /WR ACTIVE LOW - ifJRITE TO PAC1000 FIFO *1 
1* IRD - ACTIVE LOW READ NOT USED *1 

1* LIST OF EQUATES. *1 

READ eou H'AFFF'; I*ACTIVE LOW READ. TRANSFER *1 
I*ENABL.E.AND BUS BUSY *1 

WAFERSCALE INTEGRATION, INC. 4·29 



I'ACtOOO - Application /lote OtO 

Figure 6a. 
PACtOOO as a 
Simp/eDMA 
Controller MICROPROCESSOR 

WR 

RD 

ADDRESS 

DATA 

I DECODER t-
A)" I 

SYSTEM MEMORY 

J)- WE 

-V RD 

ADDRESS BUS 
ADDRESS 

DATA BUS 

It 
DATA 

I LATCH I 
tLE OE t 

cs WR CC6 AOR HAD HD OC15 0C11 OC13 OC12 rD~ 

Figure 6b. 
System 
Waveforms 

BUSACK 

BUSGRANT 
CLOCK 

I 

P- OC14 

f--
PAC1000 

CC7 

CC7 ______________ -4 ________ ~ 

2 

4-30 WAFERSCALE INTEGRATION, INC. 

1 SYSTEM 1 
CLOCK 

4 



Table 5. Output 
Condition 
Assignment 
Codes for the 
DMA Controller 
Application 

LATCH equ 

PAC1000 - Application Note 010 

OC15 OC14 OC13 OC12 OC11 OC10-0CD 
INIT 1 1 1 1 1 All High 

READ 1 0 1 0 1 All High 

OENBL 1 0 1 1 0 All High 

WRITE 1 0 1 0 0 All High 

ENBLE 1 0 1 1 1 All High 

LATCH 0 0 1 0 1 All High 

OC15 = Active Low Latch Command OC12 = Active Low Read Signal 
OC14 = Active Low DMA in Progress OC11 = Active Low Output Enable 
OC13 = Active Low Write Signal 

H'2FFF' ; I*ACTIVE LOW READ. TRANSFER 
I*ENABLE.LATCH ENABLE.AND 
1* BUS BUSY 

OENBL equ H 'B7FF': I*ACTIVE LOW TRANSFER ENABLE 
I*OUTPUT ENABLE.AND BUS 

WRITE 

INIT 
ENBLE 

START: 
LOOP1: 

HOLDO: 

eQu 

equ 
eQu 

H'97FF' ; 

H'FFFF' ~ 
H'BFFF' ; 

1* BUSY 
I*ACTIVE LOW WRITE. TRANSFER 
I*OUTPUT ENABLE.AND BUS 
1* BUSY 
I*INITALIZE ALL OUTPUTS HIGH 
I*ACTIVE LOW ENABLE TRANSFER 
I*SIGNAL,AND BUS BUSY 

PROGRAM START 

OUT INIT~ 
RESET ADOE 
FOR 2 ~ 
JMPNC FIOR 
RDFIFO 
ENDFOR ; 

HOLDO 

I*INITALIZE OUTPUT CODES TO CCO-15*1 
I*SET THE ADDRESS BUFFERS INPUTS *1 
I*SET READ FIFO LOOP TO 3 *1 
I*WAIT FOR ACTIVE FIOR FLAG *1 
I*READ FIFO INTO THE REGISTER FILE*I 
I*ALL THREE WORDS READ END LOOP *1 

HOLD1: JMPNC CC7 HOLDl 
SET ADOE : 

I*ACTIVE CC7 BUSACK SIGNAL INPUT *1 
I*SET ADDRESS BUFFER AS OUTPUT *1 
I*FOR DMA CYCLES *1 

HALT: 
end; 

FOR. R2 := 
AOR := RO ; 
RO := ++ RO 
OUT LATCH ; 
OUT READ : 
AOR : = R1; 
Rl : = ++ Rl 
OUT WRITE 
OUT OENBL 
OUT ENBLE 
ENDFOR ; 

R2 , OUT ENBLE ;I*START DATA TRANSFERS *1 
I*OUTPUT SOURCE ADDRESS *1 

• OUT READ : I*OUTPUT ACTIVE READ *1 
I*AND LATCH DATA ON READ *1 
I*HOLD READ LINE ACTIVE *1 
I*OUTPUT DESTINATION ADDRESS *1 

• OUT OENBL I*ENABLE LATCH OUTPUT *1 
I*PERFORM WRITE CYCLE *1 
I*DISABLE WRITE BEFORE OE *1 
I*END OF SINGLE TRANSFER *1 
I*END OF TRANSFER CYCLE *1 

GOTO LOOP1 • OUT IN IT I*RETURN TO PROGRAM START 

WAFERSCALE INTEGRATION, INC. 4-31 



I'AC1000 - Application Note 010 

FIFO DRAM 
Controller 

The next PAC1000 design example 
illustrates how to use the device as a FIFO 
DRAM Controller. See Figure 7a for device 
implementation. 

If the DRAMs are 64K devices, only the 
least significant byte of the AOR register 
need be used (that is ADDO-ADD7). The 
system could easily be upgraded to handle 
256K or 1M bit DRAMs by wiring in address 
bits A8 and A9 but additional PAC1000 
software would need to be written to 
accommodate the FIFO status counter. 
About 45 lines of code are used to enable 
the PAC1000 to handle REFRESH, READ 
and WRITE activity. The design uses the 
output control lines to provide RAS, CAS 
and WRITE signals to the DRAM and 
additional signals to give busy status 
during read, write and refresh activity. The 
whole system responds to input condition 
codes CCO and CC1 as RQWRITE request 
to write and RQREAD request to read 
respectively. During active read, write and 
refresh cycles, three signals BUSYWR, 
BUSYRD and BUSYRFSH which go active 
LOW an additional composite signal which 

segment pacdes08 : 

I*LIST OF EQUATES.*I 
I*CONDITTION CODE OUTPUTS*I 

RASW equ H'55FF' 
RASR eQu H'79FF' 
RFSH eQu H'7CFF' 
CASW equ H'l5FF' 
CASR equ H'39FF' 
ENDWR equ H'35FF' 
INIT equ H'FFFF' 

ZERO equ H'OOOO' 
FULL eou H'FD' 
EMPTY eQU H'FE' 
ACTVE eQu H'FF' 
MAX equ H'FFFF' 

RQWRITE equ CCO 
RQREAD equ CCl 

goes LOW when the FIFO is in any of 
these conditions. The system design also 
incorporates an UP/DOWN status counter 
which increments on write activity and 
decrements on read activity. This counter 
is tested to provide information to the 
outside world that the FIFO is full, empty 
or neither full or empty. The FULL, 
EMPTY and ACTIVE flags can be read 
from the 100 and 101 and give information 
to the outside world about the status of 
the FIFO. 

The waveforms associated with read, write 
and refresh activity are shown in Figures 
7b, 7c and 7d respectively. These waveforms 
were created from the PACDES08.0UT 
vector tables generated from the simulator. 
Table 6 illustrates the assignment of the 
output conditions which drive the various 
functions RAS, CAS, RFSH WR etc., 
It is recommended that high current buffer 
circuits be used to interface the outputs of 
the PAC1000 to the inputs of the memory 
chips used in both the DMA and FIFO 
applications. 

I*WRITE RAS OUTPUT *1 
I*READ RAS OUTPUT *1 
I*REFRESH OUTPUT *1 
I*WRITE CAS OUTPUT *1 
I*READ CAS OUTPUT *1 
I*END OF WRITE OUPUT*I 

I*ZERO COUNT*I 
I*FULL FLAG *1 
I*EMPTY FLAG*I 
I*ACTIVE *1 
I*MAX COUNT *1 

I*REQUEST TO WRITE*I 
I*REQUEST TO READ *1 

I*PROGRAM START*I 

START: OUT INIT 

RO := H'OOOO' 
Rl := H'OOOu' 
R2 := H'OOOO' 
R3 := H'OOOO' 

4-32 WAFERSCALE INTEGRATION, INC. 

I*INITALIZE OUTPUT CODES*I 
I*INITALIZE REGISTERS *1 
I*ROW ADDRESS WRITE *1 
I*COLUMN ADDRESS WRITE *1 
I*ROW ADDRESS READ *1 
I*COLUMN ADDRESS READ *1 



FIFO DRAM 
Controller 
(Cont.) 

LOOP: 

TEST: 

end; 

R4 := H'FFFF' 
R5 ~= 1-1'0000' 

OUTPUT 100 101 
SET ADOE , OUT INIT 
lOR := EMPTY 
GO TO TEST 

AOR := R4 = 
OUT RFSH 
R4 := ++ R4 • OUT INIT 

IF RQWRITE: 
AOR := RO , OUT INIT 
R5 := ++ R5 
OUT RASW ; 
AOR : = Ri ; 
Rl : == ;-+ Rl 
OUT UiSW : 
OUT ENDWR ; 
OUT INIT 

ENDIF • 

IF Rl === 256 
RO := ++ RO 

ENDIF ; 

IF RQREAD; 
AOR := R2 • OUT INrT 
R5 := -- R5 
OUT RASR : 
AOR := R3 : 
R3 := ++ R3 • OUT CASR 
OUT CASR 
OUT INIT 

ENDIF 

IF R3 256 
R2 := ++ R? 

ENDIF 

R6 := R5 
R6 := MAX - R5 
IF Z : 
!OR : = FULL 
GOTO LOOP 
ENDIF 

R6 := R5 
R6 := ZERO - R6 
IF Z ; 
lOR := EMPTY 
GOTo START; 
ENDIF ; 

lOR := ACTVE 
Gora LOOP: 

PAC1000 - Application Note 010 

I*REFRESH COUNTER *1 
I*STATUS COUNTER *1 

I*SER 100 AND 101 TO *1 
I*OUTPUT. ADOE INPUT *1 
I*FIFO IS EMPTY *1 
I*TEST REQUEST TO 
I*READ/WRITE 

IIfOUTPdT REFRESH CTR *1 
I*PERFoRM REFRESH *1 
I*INCREMENT RFSH CTR *1 
I*CLEAR OUTPUT *1 

I*IF REQUEST TO WRITE *1 
l*oUTPUT WRITE ADDR *1 
I*INCREMENT STATUS *1 
I*OUTPUT RAS WRITE *1 
I*OUTPUT CAS ADDR *1 
I*INCREMENT CAS ADDR *1 
i*OUTPUT CAS ADDR *1 
I*END WRITE CYCLE *1 
I*FINISH WRITE CYCLE *1 

I*TEST FOR 256 COLUMNS*I 
I*INCREMENT ROW *1 
I*IF 256 *! 

I*IF REQUEST TO READ *1 
I*OUT ROW READ ADDRESS*I 
I*DECREMENT STATUS *1 
I*OUTPUT RAS READ *1 
I*OUTPUT CAS ADDRESS *1 

:/*INCREMENT CAS ADD *1 
I*STRETCH CAS *1 
I*FINISH READ CYCLE *1 

I*TEST FOR 256 CoLUMNS*1 
I*INCREMENT ROW *1 
I*IF EQUAL TO 256 *1 

I*SAVE STATUS COUNTER *1 
I*TEST FOR MAX COUNT */ 
I*IF MAXIMUM *1 
I*SET OUTPUT FULL FLAG*I 
I*GOTO REFRESH LOOP *1 
I*END TEST 

I*SAVE STATUS COUNTER *1 
I*TEST FOR ZERO COUNT *1 
I*IF ZERO 
I*SET EMPRY FLAG 
I*RESTART PROGRAM 
I*ELSE 

I*THE SYSTEM IS NOT 
I*FULL OR Er1PTv 

WAFERSCALE INTEGRATION, INC. 4-33 



PAC1000 - Application Note 010 

Table 6. Output 
Condition 
Assignment 
Codes for the 
PAC FIFO DRAM 
Controller Design 

Figure 7a. Using 
a PAC as a FIFO 
DRAM Controller 

OC15 OC14 OC13 
INIT 1 1 1 

RASW 0 1 0 

CASW 0 0 0 

ENDW 0 0 1 

RASR 0 1 1 

CASR 0 0 1 

RFSR 0 1 1 

OC15 = Active Low RAS 
OC14 = Active Low CAS 
OC13 = Active Low Write 
OC11 = Active Low BUSYWR 
OC10 = Active Low BUSYRD 
OC9 = Active Low Busy 
OCB = Active Low BUSYRFSH 

DATA r--BUFFER 

ADDRESS 

OC11 
1 

1 

0 

0 

1 

1 

1 

RQWRITE 
AOR 

CCO 
RQREAD 

CCl 
BUSYWR 

BUSYRD 
OC1l 

OClO 
BUSY 

OC9 
BUSYRF 

OC8 

WAFERSCALE INTEGRATiON, INC. 

OC10 OC9 OCB OC12, 0C7-0CO 
1 1 1 All High 

0 1 0 All High 

1 0 1 All High 

1 0 1 All High 

0 0 1 All High 

0 0 1 All High 

1 0 0 All High 

DRAM ARRAY 

RAS CAS WR 

0C15 OC14 0C13 

EMPTY 
10. 

PAC1000 
FULL 

10, 



Figure 7b. 

Figure 7c. 

Figure 7d. 

PAC1000 - Application Note 010 

RAS \ / 
CAS 

, / 
WE \ / 

ADDRESS ROW X COL 

BUSY \ / 

In response to a request to read one early write cycle will take place. RAS will latch in 
the row address and the WE line goes low. The column address is set up followed by 
the falling edge of CAS. The WE input is taken inactive followed by RAS and CAS. 
During the whole cycle the busy signal is active. 

RAS ~ / 
CAS \ / 
WE 

ADDRESS ROW X COL 

BUSY ~ / 
In response to a request to read one read cycle will take place. The RAS and CAS 
signals latch in the row and column addresses respectively but the WE input is inactive 
throughout the cycle. The BUSY signal is active throughout the whole cycle. 

RAS ~ / 

ADDRESS ~ __ R_FS_H ______ _ 

,'--__ --1/ 

To refresh the memory the PAC will output a refresh count to be strobed into the DRAMs 
by an active low RAS transition. 

WAFERSCALE INTEGRATION, INC. 4-35 

------------- ---

II 



PAC1000 - AppllcatiDn NDte 010 

Programmable • 
UART 

The PAC1000 contains no UART for serial 
data but parallel to serial conversion is 
possible through the Q register and 1/0 
Port 2 and 3. The following program 
illustrates the designer how to create a 
UART function in the PAC1000 with about 
40 lines of instructions. The PAC1000 
device will receive data in parallel from the 
host system. The FIFO is used to interface 
to the host and transfer data into the 

registers. The program will take the seven 
bits of ASCII code and calculate the parity, 
then add a parity bit. The result is serialized 
and framing bits are applied. The data, 
one parity bit, one start bit and two stop 
bits are serially clocked out of the Q 
register into Port 3. The handshake signals 
of Data Terminal Ready and Data Set 
Ready are built into the program. 

segment pacdes09 ; 

I*THIS PROGRAM ILLUSTRATES THE PARALLEL TO SERIAL *1 
I*CHANNEL CONVERSION OF THE PAC1000 TO THE PERIPHERAL *1 
I*BUS OF THE SYSTEM *1 
1* *1 
I~ PIN FUNCTIONAL DESIGNATIONS. *1 
1* OUTPUTS. *1 
1* *1 
1* OC12 - DTR - DATA TERMINAL READY •••• ACTIVE LOW. *1 
1* OC13 - RHO - RECEIVED HOST DATA ••••• ACTIVE LOW. *1 
1* OC14 - DONE ••••••••••••••••••••••••• ACTIVE LOW. *1 
1-1,- OC15 - ABORT •••••••••••••••••••••••• ACTIVE LOW. *1 
1* 103 - TxD - TRANSMITTED DATA •••••••• ACTIVE LOW. *1 
1* *1 
I~ INPUTS. *1 
1* *1 
1* CCO - DSR - DATA SET READY ••••••••• ACTIVE HIGH. */ 
1* CCl - START TRANSMITTING ••••••••••• ACTIVE HIGH. *1 
1* HD - ACTIVE TRUE - 16 DATA INPUTS. *1 
1* HAD - ACTIVE TRUE - REGISTER ADDRESS INPUTS *1 
1* ICS - ACTIVE LOW - PAC1000 SELECT *1 
1* /WR - ACTIVE LOW - WRITE TO PAC1000 FIFO *1 
1* *1 

INIT equ H'FFFF' ; I*INITALIZE ALL OUTPUTS HIGH *1 
RHO equ H'DFFF' ; I*ACKNOWLEDGE RECEIVING HOST DATA *1 
DTR equ H'EFFF' ; I*DATA TERMINAL READY *1 
DONE equ H'BFFF' ; 
ABORT equ H'BFFF' ; I*TELL HOST THAT DATA WAS CORRUPTED*I 

1* R21 - H'OO60' - MASK REGISTER FOR EVEN PARITY *1 
1* R20 - H'OOEO' - MASK REGISTER FOR ODD PARITY *1 
1* R19 - H'OOO2" - CONSTANT TO DIVIDE THE 32-BIT VALUE *1 
1* IN RX R16 *1 
1* RiB - H'OOOO' - COUNTER OF THE NUMBER OF ONES IN THE *1 
1* DATA *1 
1* R17 - H'FFFF" - A CONSTANT TO MASK WITH DATA *1 
1* R16 - H'OOOO" - A CONSTANT TO MASK WITH DATA *1 
1* R8 WORKING REGISTER FROM RO *1 
1* r~o ORIGINAL DATA FROM HOST SYSTEM *1 
1* Q REGISTER TO SHIFT OUT DATA TO THE *1 
1-. SERIAL PORT *1 

4-36 WAFERSCALE INTEGRATION, INC. 



Programmable 
UART (Cont.) begn: R21 := H"0060' • OUT INIT 

R20 := H'OOEO' 
R 19 : = H' 0002 . 
R18 := H'OOOO' 
R17 : = H' FFFF ' 
R16 := R18 

PAC1000 - Application Note 010 

I*SET OC[15:0] HIGH*I 

Q := R18 :; 1* INITIALIZE Q TO ZERO'S *1 

WAIT FOR HOST TELLS PAClOOO 
TO START TRANSMITTING DATA 

*1 
*1 

stndby: JMPNC CCI stndbv 
JMPC FICO abort :; 
RDFIFO • OUT RHD ; 1* READ FIFO DATA INTO RO ill 

I*TELL HOST THAT DATA WAS *1 
I*READ CORRECTLY *l 

l********************************************************1 
1* FORMAT OF DATA RECEIVED *1 
1* FIFODA[15:0] *1 
Iii 15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 *1 
1* 0 (l 0 0 0 0 0 <) (; Dl D2 D3 D4 D5 D6 D7 *1 
liI**********************************_********************1 

1* SWAP THE HIGHER AND LOWER BYTES *1 

1* SET OC TO NON- -"*1 
AOR := RO • OUT INIT 1* FUNCTIONING t10DE *1 
RB := SWPV 1* MODE SWAP TO SHIFT '"'kl 
RO := SWPV 1* LATER SWAP NOW *1 

1* SHIFT DATA *1 

1* 

Iii 

FOR 7 :; 
R8:= R8 « 0 :; 
IF S ; 

R18 := ++ R18 
ENDIF :; 

I*INCREMENT COUNTER*I 

ENDFOR :; 

CHECK FOR EVEN/ODD PARITY 

DIV R16 RIB R19 :; 
OR Q 0 

1* DIVIDE R18 R16 BY 2 *1 
1* CHECK IF REMAINDER IS ZERO *1 
1* IF Z=1 THEN JUMP TO PARITY *1 
1* (EVEN PARITY) *1 
1* IF Z = 0 THEN (ODD PARITY) *1 

IF Z :; 

OR RO R21 
ELSE :; 
OR RO R20 
ENDIF : 

Q := RO 

1* I1ERGE MASt< BITS FOR EVEN PARITY *1 

1* 1'1ERGE MASt< BITS FOR ODD PARI TV *1 
1* RO IS NOW FORMATTED CORRECTLY FOR*I 
1* SERIAL SHIFTING *1 
1* LOAD RO TO Q TO SHIFT OUT TO 103 *1 

CHECK THAT RECEIVING END IS READV *1 

WAFERSCALE INTEGRATION, INC. 4·37 

II 



PAC1000 - Application Note 010 

Programmable 
UART (Cont.) 

Summary 

wait: IF cco; h~IF RECEIVER READY SET 103 TO OUTPUT *1 
CONFIGURE SIO ; I*AND SET MODE TO SHIFT Q TO 103 *1 
OUTPUT 103 " OUT DTR ; /-ltDRIVE DTR TO ZERO THIS *1 

I*TELLS THE RECEIVER THAT *1 
I~THE TRANSMITTER IS READY*I 

1* SHIFT OUT THE 1 START BIT.7-BITS OF DATA.l PARITY AND *1 
1* 2 STOP BITS. THEREFORE SHIFT 11 TIMES *1 

LDLC 10 ; I*LOAD 10 INTO LOOP COUNTER FOR *1 
I*A SHIFT OF i1 THEN FILL WITH *1 
l*ZEROS *1 

Ip: LOOPNZ Ip • QR8 := Q « (I R8 « I) ; 
ELSE: 
Ji'1P ~Iai t 
ENDIF ; 
OUT DONE 
JMP begn 

I*IF RECEIVER IS NOT READY THEN WAIT*I 

l*TELL HOST THAT PAC101)1) IS DONE 
1* STPIRT AGAIN FOR NEXT DATA 

ABORT DATA READ AND TELL HOST ABOUT IT 

abort: JMP begn • OUT ABORT ; 

end; 

The PAC1000 user programmable high 
performance microcontroller incorporates 
many features that enable a high speed 
design to be quickly realized. Its re
programmability has enabled many 
designers to go to printed circuit board 
layout early in the design cycle. Moreover, 
because the system logic is programmable 
into the on-chip EPROM, modifications 
can be made at a later time without having 
to change printed circuit board artwork. In 
fact over discrete and PALlEPLD type 
solutions the printed circuit board artwork 
is considerably less complex because a 
greater degree of circuit complexity 
containing much interconnect has migrated 
into the instructions encoded in the 
EPROM section of the chip. 

To learn how to use the PAC1000 is a 
relatively quick process for most systems 
designers have designed with 
microprocessors and microcontrollers. 

This is because they understand the 
writing of assembly or high level code. 
With the support of WSI's user friendly 
software tools, an engineer can be 
designing with the PAC1000 in less than a 
week. This contrasts with the many and 
diverse schematic capture, net translation, 
placing and routing, annotation and back
annotation packages that support EPLD 
and PGA devices. These products subject 
the designer to a multiplicity of software 
tools that he must become familiar with. 
This results in generating a long learning 
curve that can easily be avoided with the 
PAC1000 and WSI's software support. 

The result of using the PAC1000 device 
and software tools virtually guarantees the 
fastest route possible from initial 
conception to the final design of a 
complex high performance system. 

4·38 WAFERSCALE INTEGRATION, INC. 



Programmable System™ Device 
WAFERSCALE INTEGRATION, INC. 

Application Note 005 

PAC1000 as a High-Speed 
Four-Channel DMA Controller 

Abstract 

Introduction 

By Arye Ziklik and Kiran Buch 

The objective of this Application Note is to 
demonstrate the use of the PAC1000 User
configurable Microcontroller in a typical high 
performance application. The text describes 
an implementation of a generic four-channel 
DMA controller that supports transfer rates 
of up to 20 Mbyte/sec (10 Mword/sec) in 
16-bit data-bus environments. 

A DMA (Direct Memory Access) controller 
coordinates fast data transfers between 
peripheral devices and the system memory. 
All possible transfer combinations might 
occur: device to device, device to memory 
or memory to memory. By taking care of 
these high-speed transfers, the host 
computer (typically a Microprocessor) is 
off-loaded from these time-consuming 
tasks and can execute other operations 
concurrently, on its local bus. 

We refer to peripherals such as FIFOs, 
video, communication, graphics or serial 
channel controllers, latches, ports, etc., as 
devices in this text. The distinction between 
memory and device is that a memory needs 
an explicit address in order to specify a 
byte or a word, whereas a device requires 
only strobes (such as: RD, WR, CS) 
combined sometimes with additional hand
shaking signals for data accessing. 

The PAC1000 is a perfect match for most 
DMA applications. Its unique structure, 
shown in Figure 1 and Figure 2, allows the 
user to execute three independent 
instructions in one cycle. The ability of the 
PAC1000 to perform three different tasks 
concurrently (Control, Output and CPU) is 
fully exploited here, thereby speeding-up 
DMA transfers. 

For example, during DMA operations, the 
control section checks for the block-count 
termination, the output control section 
generates RD and WR strobes, and the 
CPU calculates and produces the next 
address. All these activities occur 
simultaneously during the same clock 
cycle(!). 

This Application Note covers the 
terminology of DMA operations as well as 
an implementation description. The readers 
will be able to use this article as a get
started tutorial that shows how to configure 
the PAC1000 for any specific task. 

Unlike most other available DMA controllers, 
the PAC1000 is a user-programmable 
Microcontroller. It may be easily modified by 
reprogramming to support various DMA 
schemes. 

Figure 3 illustrates a typical system 
configuration using the PAC1000 as a DMA 
controller. The host controls the system bus 
as well as its local bus (not shown here). It 
can also access the memories, the devices 
as well as the PAC1000 via the system bus. 
It does so by driving the Address, Control 
and Data buses. 

Initially the PAC1000 is in the slave mode, 
waiting for host messages. Once the host 
begins a channel initialization phase by 
writing into the PAC1000's FIFO, a DMA 
operation will start. In that phase, the host 
instructs the PAC1000 of the required DMA 
transfer. The PAC1000 then decodes the 
transfer type and optimizes it internally to 
perform at the fastest rate the surrounding 
hardware allows. At this point the PAC1000 
requests the system bus from the bus 
arbiter. When the bus is granted to the 
PAC1000, it becomes the Bus Master, 
driving the address, data and control buses. 

If the DMA operation is fully completed, or 
a higher priority transfer is pending, or the 
host or active devices abort the transfer, a 
DMA transfer can be successfully 
terminated or suspended, respectively. 
In all of these cases, system control is 
returned to the host and the PAC1000 
re-enters to Slave Mode. 

WAFERSCALE INTEGRATION, INC. 4·39 



PAC1000 - Application Note 005 

Figure 1. PAC1000 
Microcontroller 
Block Diagram 

I 

ClK 

~ ~ 

CONFIGURATION REGISTERS J 
l CONTROL ]1/0 CONFIGURATION I MODE I 

~ 
DATA INPUT I 

~ 
~ 

BREAKPOINT REG I-

SEQUENCER 

I I lOOP CNTR I 1K x 64 
'--<'-+ PROGRAM 

II PROGRAM CNTR I MEMORY 

I 16 lEVEL I 
STACK 

SIOUTPUT 

t 
CASE lOGIC 

TEST lOGIC [ INTERRUPT 

I 

CC(7:0) INT(3:0) OUTCNTL(15:0) 

4·40 WAFERSCALE INTEGRATION, INC. 

cs RD WR HD HAD 
(15:0}(5:0) 

HOST INTERFACE I 

t 
* DATA OUTPUT I COMMANDIDATA FIFO I 

t 

32 x 16 
REGISTER 

FilE 

Q REGISTER 

CPU t 
I 

ALU I I 

ADDRESS COUNTER 

-I BLOCK COUNTER J 

• 
, 

1/0 SPECIAL II ADDRESSIDATA FUNCTION PORT 
PORT 

t t 
+ + 

1/0(7:0) ADD(15:0) 



Figure 2. 
Single Cycle 
Control 
Architecture 

Transfer Modes 

PAC100D - Application Note 005 

CONDITION 
CODES 

(8 LINES) 

INTERRUPTS 
(4 LINES) 

NEXT.----~ 
INSTRUCTION '---1r---r--......... 

DEFINITION 

HD(15:0) 

cs r WR 1 HArO) 

HOST INTERFACE 

(28 LINES) 

INSTRUCTION REGISTER 
CLK ----'---T----

CONTROL I OUTPUT I CPU 
) I 

(20 LINES) 
OC(15:0) 

Important Features: 
• One cycle per instruction. 

CPU OPERATION 
DEFINITION 

cPU 

110(7:0) ADD(15:0) 

• 20 MHz instruction execution rate. 
• Every instruction executes 3 parallel operations (Control, Output, CPU). 

There are two transfer modes: Fly-by and 
Dual cycle. 

Fly-by is the fastest transfer mode (refer to 
Figure 4). Transfers can be carried out at a 
rate of up to 10 Mword/sec provided that the 
PAC1000 uses a 20-MHz clock. In this 
application note, Fly-by can only be used 
between memory and device if they share 
the same data-bus path (either 8 or 16 bits). 

The fly-by operation is initiated by a 
DMARQ from the device. The PAC1000 
explicitly addresses the memory, while 
sending the RD strobe to the source side 
and the WR strobe to the destination side. 
It also acknowledges the device with the 
DMACK signal that serves as the device's 
CS signal. Data is then directly transferred 
from the source to the destination in one 
bus cycle. 

Double-cycle is a transfer mode comprised 
of two bus cycles. It takes place whenever 
one of the following DMA combinations is 
specified (refer to Figure 5): 

Q Memory to/from device that is not 
connected to the same part of the 
data-bus. 

Q Memory to Memory transfers (require the 
generation of two different explicit 
addresses). 

Q Device to Device transfers (with simple 
additional hardware it might be easily 
upgraded to support the Fly-by mode, 
too). 

Once the transfer has started, the PAC1000 
reads an operand from the source on the 
first bus-cycle, processes it, and then writes 
that operand on the second bus cycle into 
the destination. 

The READY signal enables the PAC1000 to 
synchronize its operations with slow 
memories or devices (whenever they are 
explicitly addressed). READY is an active
high signal, derived from the address 
decoder. It is driven low as long as the 
addressed memory or device is not ready to 
finish the current bus-cycle. 

WAFERSCALE INTEGRATION, INC. 4-41 



PAC1000 - Application Note 005 

Figure 3. 
System Block 
Diagram 

Figure 4. 
Fly-by DMA 
Transfer 

Figure 5. 
Double Cycle 
DMA Transfer
Memory to Device 

1 
DEVICE 

FIRST TRANSFER CYCLE 

SECOND TRANSFER CYCLE 

4·42 WAFERSCALE INTEGRATION, INC. 

i 

z .... 
m 

'" jl! 
o 
m 

IDMAR~ 

I~MACK 

RD 

WR 

DEVICE 

I i 

DMARQ 
AND 

DMACK 

DATA BUS 

DATA 

DEVICES 

II 
ADDRESS 

~J L 
PAC1000 ~ 

DMA MEMORY 
CONTROLLER 

1 WR i 
RD 

DATA 

II 
ADDRESS ~} 

PAC1000 ~ 
DMA MEMORY 

CONTROLLER 

RD T 
IDMAR~ 

PAC1000 

I ~MACK 
DMA 

CONTROLLER 

WR I 
I DATA 



Figure 5. (Cont.) 
Double Cycle 
DMA Transfer
Memory to 
Memory 

Figure 5. (Cont.) 
Double Cycle 
DMA Transfer
Device to Device 

MEMORY 
OR 

DEVICE 

MEMORY 
OR 

DEVICE 

~I t 

DEVICE 

i 

PAC100D - Application Note 005 

DATA 

Ii 
ADDRESS 

D ' 7' 

PAC1000 ~ 
DMA MEMORY 

CONTROLLER 

I RD t 
FIRST TRANSFER CYCLE 

READY PAC1000 r---- DMA 
CONTROLLER 

WR I I 
ADDRESS 

DATA 

SECOND TRANSFER CYCLE 

DATA 

DMARQ 

PAC1000 ~ 
DMA DMACK DEVICE 

CONTROLLER -
RD i 

FIRST TRANSFER CYCLE 

~ PAC1000 

~ 
DMA 

CONTROLLER 

WR I 

DATA 

SECOND TRANSFER CYCLE 

WAFERSCALE INTEGRATION, INC. 4-43 



PAC1000 - Application Note 005 

Request Modes Requests may be externally generated by a 
device or internally created by the auto
request mechanism of the PAC1000, 
whenever a memory to memory transfer is 
performed. Auto-requests are always 
pending so that the PAC1000 can work at 
its maximum speed, provided that the 
memories are always ready. Otherwise, the 
PAC1000 adapts itself to the READY signal. 

External requests may be of either the 
block-type or of the single-operand transfer 
mode. Block-type transfers are provided for 
high-speed devices that are capable of 
meeting the speed rate of the PAC 1 000. 
DMARQ is asserted at the beginning of the 
block transfer and remains so as long as 
the transfer is in process. Single-operand 

Transfer Type 

transfers are used by slow devices. They 
toggle on and off the DMARQ. Each 
individual transfer is indicated by an active 
high DMARQ level. When the transfer is 
completed, DMARQ is held low until the 
device is ready for the next transfer cycle, 
and so on. 

Some important observations: 

r:J Memory to device (or device to memory) 
transfers will begin only after an external 
DMARQ is asserted by the device. 

r:J Synchronization with the memory is 
always achieved via the Ready signal. 

Table 1 briefly summarizes the transfer and 
request options: 

DMA Mode Transfer Mode 
Table 1. 
Summary of 
Transfer and 
Request Modes Memory to Memory Two Bus-cycles Block 

Functional 
Description 

Memory to Device or Fly-by or Block or 
Device to Memory Two Bus-Cycles Single Operand 

Device to Device Two Bus-Cycles Block or 
Single Operand 

General: 
Figure 6 contains the circuit diagram. Refer 
also to Appendix 1 for the Pin Description 
Table. The PAC1000 is configured in this 
application as a four-channel DMA controller. 
This means that it can handle up to four 
DMA transfers concurrently, on a prioritized 
basis. Each of the channels can be anyone 
of the above-mentioned DMA transfer types. 
The maximum transfer rate is accomplished 
during Fly-by transfers with rates approaching 
10 Mword/sec for word transfers or 
10 Mbyte/sec for byte transfers. Double-cycle 
transfer modes achieve a rate of up to 
5 Mword/sec (in word transfers) or 5 Mbyte/sec 
(in byte transfers). The only exception to 
this is the Memory to Memory transfer 
mode which is a little bit slower due to the 
internal creation of two different 24-bit 
addresses. 

The PAC1000 drives 24 address lines and 
handles a 16-bit data bus, so it is well tuned 
for most common high-performance buses 
or Microprocessors. The maximum operand 
block-size is 64K (in accordance with 
VMEbus specs, for example). 

Host-PAC1000 Communication: 
DMA specifications are programmed into 
the PAC1000 by the host, according to the 
message format of Appendix 2. The host 
writes eight words into the PAC1000's FIFO. 
The command message fully specifies one 
of the four possible channels that can be 
active at the same time. Word 1 defines the 
transfer characteristics of the DMA 
operation: transfer type, data bus width, 
device numbers (redundant in Memory to 
Memory operations), channel-priority and 
transfer mode. Bit 12 in that word serves as 
a software abort-command bit. When set, it 
instructs the DMA controller to cease the 
transfers of the channel specified in that 
command buffer. 

The low-order byte of word 7 is a DMA
transfer identification number. It assigns a 
serial number to a DMA process. Whenever 
the PAC1000 sends a status message to the 
host, that number is also included in order 
to unambiguously identify the process that 
has either normally terminated or abnormally 
aborted (by an external device or due to a 
PAC1000 exception). 

4-44 WAFERSCALE INTEGRATION, INC. 



Functional 
Description 
(Cont.) 

Figure 6. 
PAC1000 
Configured as 
a Generic 
Higb·Speed 
DMA Controller 

PACtOOO - Application Note 005 

rfr~~~~~#3~ij~~~~ DMARQ3 
DMARQ2 
DMARQl 
DMARQO 

HOST 
INTERFACE 

DATA BUS 0(15:0) 

CS#3 ------' 

CS#2 ----_t_' 

CS#l -----++' 

cs#o-----+-++' 

ADD BUS 

RD-------1-tt-r---~~--I1~==~ 
ADD BUS -A(23:0), BHE 

MEMORY 

WR----~=t4=~==~~~~+=~=L)_--~ 
CSMEM-----4~_+_+_+_,d_-+_~~_+---------" 

DATA BUS 0(15:0) 

BUSMSTR 

CSPAC 

BR 

HOSTINTR 

Vee 

RSPAC 

CLK 

BG 

lK 

0000 0 
OC2 WN "oD 

OCl 

PAC1000 

~I ~ ~ 0 0 

~ f! HD(15:0) 
$ '" .§ A(23:22) 

10(5:4) 
A(21:6) 

ADD(15:0) 
A(5:0) 

HAD(5:0) 

» 
c c 

'" c: en 

~ 
'" :9 
~I 

WAFERSCALE INTEGRATION, INC. 4-45 

II 



PACtOOO - Application Note 005 

Functional 
Description 
(Cont.) 

Several fields in the command buffer are 
optional. For instance, in transfers where 
devices are involved, one can still specify 
the explicit addresses of the source and the 
destination even though it has already been 
defined by the command word's device
number field (Appendix 2 - command word 
format). This feature allows the programmer 
to define the device interface with either 
explicit or implicit address. 

Whenever the PAC1000 has to inform the 
host of an important event, it prepares a 
status word in its DOR (Data Output 
Register), enters the slave mode and 
interrupts the host by raising the HOSTINTR 
line. The possible messages are: 

Q Reject the Command buffer with the 
specified identification number because 
of internal discrepancies or illegal 
combinations. 

Q Propagate a Hardware DMA abort, 
generated by the source or the 
destination of the current transfer. 

Q Signal a PAC1000 exception. The host is 
capable of reading the PAC1000's SR 
register in order to find out the cause. 

Q An end-of-count message. This transfer 
has been normally terminated. 

Initial State and Slave Mode: 
After a reset (either a power-on reset or a 
reset through the RSPAC line driven from 
the host side), the PAC1000 enters its initial 
state, which is the Slave Mode. Table 2 
describes the signal states during the Slave 
Mode. The PAC1000 monitors its internal 
FIIR flag (FIFO Input Ready) and when it is 
not set, the FIFO is full with a new command 
buffer written by the host. The PAC1000 
decodes the message and acts accordingly. 
If it is a memory to memory transfer, then it 
immediately requests the bus. When one or 
two devices participate in a transfer 
operation, the PAC1000 monitors the 
corresponding DMARQ lines to determine 
when to issue a bus request to the arbiter. 
The PAC1000 requests the bus by lowering 
BA. Then it waits for BG to go low in order 
to switch to the Master Mode. 

Master Mode: 
Upon gaining mastership, the PAC1000 
drives the HOSTINTR signal low and 
BUSMSTR high. BUSMSTR remains high 
(active) as long as the PAC1000 remains 

4-46 WAFERSCALE INTEGRATION, INC. 

master of the system bus, thereby enabling 
RDM and WRM to RD and WR, respectively. 
BR is set high (= not active). According to 
the required DMA operation, the PAC1000 
drives the appropriate address and data 
lines, and the RDM, WRM and DMACK 
signals. 

DMA transfers may be successfully ended 
(when the terminal-count expires) or aborted. 
Abortion can emanate either from an 
external DMABT signal that is driven by one 
of the DMA participants, or from an internal 
exception recognized by the PAC 1 000. 
Whenever one of the above events occur, 
the PAC1000 changes its mode to the Slave 
mode, writes a status word into the DOR 
register (discussed previously) and raises 
the HOSTINTR line to cause the host to 
read that information through its own 
Interrupt routine. 

Releasing and resuming bus control: 
The host is allocated a higher priority than 
the PAC1000 by the bus arbiter. This is 
done in order to enable the host to suspend 
DMA transfers whenever it needs the bus. 
Each time the host accesses an address 
that resides within the system bus domain 
(including the CSPAC address), the bus will 
be granted. If the PAC1000 is the current 
master (as reflected by BUSMSTR), the bus 
arbiter will negate BG (high level). The 
PAC1000 monitors this line while it is a bus 
Master and consequently will relinquish the 
bus and return to the slave mode. The host 
might use the bus for programming the 
PAC1000 with a new DMA channel. Upon 
completion of the host activities over the 
system bus (BG becomes high), the PAC1000 
checks whether DMA transfers are still 
pending. If this is the case, it will request 
the bus. When the bus is granted, it will 
determine whether to continue the 
suspended transfer or to start a higher 
priority pending-DMA request. If it starts a 
higher priority transfer, then the suspended 
operation will be resumed after the 
completion of the higher priority transfer. 

DMAWORD is set low during word transfers 
and high during byte transfers. It is used to 
derive the BHE strobe, as displayed in 
Figure 6. The most efficient transfer method 
is the word transfer mode. In order to use it, 
the specified addresses must be even, 
otherwise the PAC1000 will perform only in 
the byte transfer mode regardless of the 
command word content. 



Functional 
Description 
(Cont.) 

Table 2. 
Signal States 
During the 
Slave Mode 

Hardware 
Considerations 

PACfOOO - Application Note 005 

PACtOOO Signal Names Function Signal States 
ADD(15:0) A(21:6) Float 

HAD(5:0) A(5:0) Input 

10(5:4) A(23:22) Float 

OC6,OC5 FBRW2, FBRW1 0, 0 - Normal Operation 

OC4,OC3 ROM, WRM Don't Care 

10(3:0) DMACK (3:0) 1,1,1,1 - Normal Operation 

OC2 BUSMSTR o - Non-active 

OC1 BR 1 - Non-active 

OCO HOSTINTR o - Non-active 

OC7 DMAWORD Don't Care 

HD(15:0) 0(15:0) 

Figure 6 is the detailed schematic diagram. 
The host side is beyond the scope of this 
paper since it is application dependent. In 
addition to the PAC 1 000, there are a few 
standard glue-logic chips used to interface 
with the memory and the four devices. 

Throughout the following description it is 
assumed that the glue-logic components 
belong to the HC family. However, since the 
PAC1000 is a fully TTL compatible device 
implemented in CMOS technology, the 
reader can use other glue-logic families like: 
LSTTL, HCT, etc. 

The HC374 latch is gated into the condition 
code inputs by the PAC1000's clock, thus 
ensuring that the CC7-CCO lines will meet 
the set-up time requirements. 

The three-state buffers controlled by 
BUSMSTR, are part of a HC126 chip. They 
are used to float the PAC1000's BHE, ROM, 
WRM control lines during slave operations, 
because at that time these signals are 
driven by the host. 

The four AND-Gates amount to one HC08 
chip. They enable either the host side 
(during Slave operations) or the PAC1000 (in 
the Master Mode) to drive the appropriate 
device CS signals. 

Input 

The four OR-Gates comprise together one 
HC32 chip. They are used during Fly-by 
operations to avoid CE, RD, WR from 
reaching the selected devices and memories 
concurrently (for functional explanation, 
refer to the Pin Description Table, Appendix 1). 

Prior to the setting of BG in the active 
position (low), the arbiter floats the data bus 
0(15:0), address bus A(23:0) and BHE, RD 
and WR from the host side. As long as 
BUSMSTR remains high, these lines are 
driven by the PAC1000. 

The six chip select lines from the host side 
(CS#3 - CS#O, CSMEM and CSPAC) are 
derived from the system address decode 
block, as illustrated in Figure 6. During the 
time that the PAC1000 is the bus master, 
the address decode block (shown in Figure 3) 
is driven by the PAC1000's address lines. 
Therefore, the PAC1000 can access 
memories and devices in the same manner 
the host does. 

The DMACK3-DMACKO signals provide the 
PAC1000 with an alternative chip select 
generation method to the devices. It is 
considerably faster than the host's method, 
since there is no need to generate explicit 
device addresses inside the PAC1000. 

WAFERSCALE INTEGRATION, INC. 4-47 



PAC1000 - ApplicatlDn NDte 005 

Hardware 
Considerations 
(Cont.) 

PAC1000 Internal 
Resources Usage 

Software 
Considerations 

ConclUSion 

In this application note, it is assumed that 
the READY signal is produced by the 
address decoder. However, if a device or 
memory can generate the READY signal 
independent of the decoder, the system 
designer can connect it with a Three-state 
buffer so that it will drive the READY input 
whenever it is chip-selected. 

The host programmer is free to choose 
whether to synchronize the PAC1000 with 
slow devices via single operand transfers or 
through the READY mechanism. READY is 

Using PAC1000 as a 4-channel DMA 
controller utilizes most of the resources 
available on the chip, shown in Figure 1. 

The Host microprocessor uses the FIFO to 
program the DMA request in to PAC1000. 
Internal condition codes are used to monitor 
FIFO status, CPU operation flags and external 
condition code inputs are used to monitor 
situations like bus-grant, DMA requests by 
the devices, etc. The CPU registers are 
used to store source and destination 
addresses, device numbers and other 
relevant information about the DMA 
transfers in progress. 

To achieve the fastest transfer rate possible 
with PAC1000, address generation and 
block size counting are achieved by 
different methods depending on the type of 

All the algorithms described so far are 
internally.realized by Software. Flowcharts 
and partial code implementation (of all the 
important transfer procedures referred to in 
the flowcharts) can be found in Appendix 3 
and Appendix 4, respectively. Both flowcharts 

PAC1000 is perfectly suitable for any DMA 
transfers which require an intelligent processor 
that can adapt its data handling according 
to the changing requirements of its interface. 
The PAC1000 does so by properly exploiting 
its unique structure of a very high speed 
sequencer combined with a programmable 

4-48 WAFERSCALE INTEGRATION, INC. 

always considered when the PAC1000 
generates an explicit address. The selection 
between single operand transfer and 
READY is done in the command word 
(see Appendix 2). 

As seen in Figure 6 there are several spare 
pins, such as output controls, I10s, interrupts 
and condition codes. These pins can be 
used to perform other operations in parallel 
(unrelated to the DMA controller function), 
without any performance degradation of the 
DMA task. 

transfer. For example, for the Device-Memory 
fly-by transfers, a nested loop is set up 
using the loop counter and the stack for 
maintaining block count and ACH and ACL 
are used as independent registers for 
address generation. On the other hand, for 
the memory to memory transfers, Block 
counter is used for counting and address 
generation is done by using ACH and ACL 
as 22-bit counter. 

The lOR is used to output chip sefects to 
the devices. The OUTCTL lines are used to 
generate Read and Write signals and also 
used for generating hand-shake signals to 
the host. 

The data bus and associated CPU registers 
are used to read data in and out of PAC1000 
for non-fly-by transfers. 

and code listings contain sufficient 
explanations that let the reader understand 
the subjects they describe. The attached 
code listings cover all the important DMA 
transfer procedures (see Appendix 4). 

ALU and user configurable ports. The 
PAC1000's programmability enables it to 
handle complex tasks concurrently in a very 
efficient manner, unlike all other existing 
DMA controllers that are restricted to perform 
in a predefined environment. 



Appendix 1: 

Pin Descriptions 

PAC1000 - Application Note 005 

The PAC1000 is configured in this application 
note as a generic DMA controller. It has a 
separate 24-bit address (that can be easily 
expanded) and a 16-bit data bus. It also has 
a set of control signals to enable operation 
as a bus master or a bus slave. The 

following table defines the individual 
PAC1000 pins. These brief descriptions are 
provided for reference only. Each signal is 
further detailed within the sections that 
describe the associated DMA function. For 
pin identifications refer to Figure 6. 

Symbol Type Name and Function 
A(23:22) 0 Address Lines A(23:22): Output the two most significant address 

lines during Master operations. Tied to 10(S:4) on the PAC 1 000. 
Float in Slave Mode. 

A(21:6) 0 Address Lines A(21:6): Output the mentioned address lines only 
in Master Mode. Connected to ADD(1S:0) on the PAC 1 000. Float in 
Slave operations. 

A(S:O) 1/0 Address Lines A(S:O): Bidirectional address lines. Input during 
Slave operations, output in Master mode. Tied to HAD(S:O) on the 
PAC1000. 

FBRW2 0 Fly-by ReadlWrite (2:1): Enable fly-by DMA operations. In fly-by 
FBRW1 0 mode, operands are transferred directly from the source to the 

destination bypassing the DMA controller. FBRW2 and FBRW1 are 
tied to OC6 and OCS, respectively. 

FBRW2 FBRW1 

0 0 - Normal operation. 

0 1 - Enable fly-by from memory to device. 

1 0 - Enable fly-by from device to memory. 

1 1 -Illegal. 

WR I Write: Active as an input, only in Slave Mode. When low, 
HD(1S:0) is written into the PAC1000. 

RD I Read: Active as an input, only in Slave Mode. When low, 
HD(1S:0) is driven by the PAC1000. 

WRM 0 Write-Out: Active as an output, only in Master Mode. Enabled 
by BUSMSTR signal. Tied to OC4 on the PAC 1 000. 

RDM 0 Read-Out: Active as an output, only in Master Mode. Enabled 
by BUSMSTR signal. Tied to OC3 on the PAC 1 000. 

DMACK(3:0) 0 DMA Acknowledge (3:0): 4 active low signals. High in Slave 
Mode. Correspond to the 4 devices shown in Figure 6 
respectively. Chip select the active devices during DMA 
operations. In the PAC1000 they are tied to 10(3:0) lines. 

BUSMSTR 0 Bus-Master: An active high signal. Asserted whenever the 
PAC1000 is the current Bus Master. Informs arbiters or hosts not 
to access the bus before the PAC1000 relinquishes it. Enables 
OC4 and OC3 into WR and RD, respectively. Connected to OC2 
on the PAC 1 000. 

CSPAC I PAC1000 Chip Select: This pin is driven low whenever the 
PAC1000 is addressed in a slave bus read or write cycle. 

BR 0 Bus Request: The PAC1000 drives this pin low whenever it 
requests the bus due to pending DMA requests. 

WAFERSCALE INTEGRATION, INC. 4-49 



PAC1000 - Application Note 005 

Appendix 1 (Cont.) 

Pin Descriptions 
(Cont.) Symbol 

HOSTINTR 

ClK 

CC7 

CC6 

CC4 

CC(3:0) 

OMAWORD 

RSPAC 

0(15:0) 

Type 

0 

I 

I 

I 

I 

I 

0 

I 

1/0 

Name and Function 
Host Interrupt: The PAC1000 interrupts the host in order to 
inform him of one of the following events: PAC1000 exception, 
Terminal-Count or OMA aborted by a device. The OCO line is 
assigned to this signal. 

Clock: 20 MHz clock input to the PAC 1 000. It also latches the 
condition codes to ensure the proper Set-up time. 

DMA Abort: An active-high input driven by the memories andlor 
devices currently participating in the OMA process. Whenever it is 
sensed high, the PAC1000 will generate a HOSTINTR signal towards 
the host after writing into the OOR register the appropriate status 
word. 

Bus Grant: An active-low signal monitored by the PAC1000 to 
determine when it is in the Master mode or when to relinquish the 
buses and enter the Slave Mode. 

Ready: An active-high signal (ROY) that enables the PAC1000 to 
synchronize its OMA cycles with slow memories or devices in the 
Master Mode. 

DMA Requests (3:0): External OMA requests monitored by the 
PAC1000. Active-high signals, driven by the four devices. 

DMA Word or Byte Transfers: Determines whether the next 
OMA cycle will be of word (low) or byte (high) length. Used to 
derive the SHE (Bus High Enable) signal that enables data lines 
015:08 in the Master Mode. BlE is directly driven by the AO 
address line. 

Reset PAC1000: This asynchronous input initializes the state of. 
PAC 1 000. RESET must be held low for at least two clock cycles. 

Data-Bus (15:0): This is the 16-bit data bus. During Master 
cycles, it is controlled and sometimes also driven by the PAC1000. 
In Slave mode the host drives it. Tied to HD(15:0) on the PAC 1 000. 

4-50 WAFERSCALE INTEGRATION, INC. 



Appendix 2: 
Host·DMA 
Message Formats 

1) Host to 
PAC1000 
Commands 
(via the FIFO) 

2) PAC1000 to 
Host Status 
Word (via DoR 
register) 

PAC1000 - Application Note 005 

HAD(S:O) CONTENT 

HD(1S:0) CONTENT HAD5 HAD4 HAD3 HAD2 HAD1 HADO 

Word 1: Command word (see paragraph 3). 0 0 0 0 0 0 

Word 2: 16 low-order source address lines. 0 0 0 0 0 1 

Word 3: 8 high-order source address lines. 0 0 0 0 1 0 

Word 4: 16 low-order destination address lines. 0 0 0 0 1 1 

Word 5: 8 high-order destination address lines. 0 0 0 1 0 0 

Word 6: 16 bit block-count. 0 0 0 1 0 1 

Word 7: 8 bit DMA-transfer identification byte. 0 0 0 1 1 0 

Word 8: Spare. 0 0 0 1 1 1 

b15,b14,b13,b12,b11,b10,b9,b8: DMA-transfer identification byte. 

b7,b6,b5,b4: spare. 

b3: Reject or accept the DMA transfer identified by b15 -;- b8. 
1 - reject. 
0- accept. 

b2: 1 - PAC1000 aborted. 
o - Normal operation 

b1: 1 - DMA terminal-count completed 
o - Normal operation 

bO: 1 - PAC1000 exception occurred 
o - Normal operation 

WAFERSCALE INTEGRATION, INC. 4-51 



PAC1000 - Application Note 005 

Appendix 2 (Cont.) 

3) Command 
Word Format 

b15,b14: spare. 

b13: block transfer or single transfer mode. 
1 - DMA block operation. 
o - DMA single operand transfer mode. 

b12: DMA abort bit. Quits DMA-transfer specified in word 7. 
1 - abort. 
0- nop. 

b10,b9: Priority level of this DMA-transfer. 
00 - level 0 (lowest priority level). 
01 - level 1 . 
02 - level 2 . 
03 - level 3 (highest priority level). 

b9,b8: Source Device number for DMA transfer or Abort. 
00 - Device #0 
01 - Device #1 
02 - Device #2 
03 - Device #3 

b7,b6: Dest. Device number for DMA transfer or Abort. 
00 - Device #0 
01 - Device #1 
02 - Device #2 
03 - Device #3 

b5,b4: Destination data bus definition. 
00 - Data bus is D7-DO (bit bits). 
01 - Data bus is D15-D8 (8 bits). 
02 - Data bus is D15-DO (16 bits). 
03 - Illegal. 

b3,b2: Source data bus definition. 
00 - Data bus is D7-DO (8 bits). 
01 - Data bus is D15-D8 (8 bits). 
02 - Data bus is D15-DO (16 bits). 
03 - Illegal. 

b1,bO: DMA transfer mode. 
00 - Memory to memory. 
01 - Memory to device. 
02 - Device to device. 
03 - Device to memory. 

4-52 WAFERSCALE INTEGRATION, INC. 



Appendix 3 

Initialization 

Main Loop 

Legend: 

PAC1000 - Application Note 005 

General Note: 
Code implementation of labels marked with an asterisk (*) can be found in Appendix 4. 

INITIALIZE: 

TRANSFER 
COM. WORD 

TO LC. 

DECODE 
BY LCPTR 

BRANCHING 

CHECK 
ABORT 

BIT 

SET SLAVE 
MODE OUTPUTS 
AND CONFIGURE 
PAC1000 PORTS 

1 
SET ADDRESS 

COUNTER TO 22 
BIT MODE 

! 
GO TO MAIN 

GO TO 
ABORT_DMA 

YES 

oc = 'OOlA'H 
lOR = 'OF·H 

TRANSFER 
TO EMPTY 

SLOT 

GO TO 
REJECT_R 

NO 

GO TO 
SETUP_DMA 

NO 

GO TO 
SETUP_DMA 

YES 

1. Slot: The PAC1000 can handle up to 4 DMA channels concurrently. Slot means empty 
register space inside the PAC1000 that is allocated for a pending channel. 

2. LePTR branching: A goto instruction of the command section, enabling mUlti-way 
branching of the program according to a value loaded into the LC register by the ALU 
(executed in two cycles). 

WAFERSCALE INTEGRATION, INC. 4·53 



PAC1000 - Application Note 005 

Appendix 3 (Cont.) 

Sening Up 
the Transfer 

Legend: 

General 
Remarks: 

RESUME_PREV : 

TRANS. TO 
WORKING 

REGISTERS 

BLOCK TRANSFER 

GO TO 

SOD SOM SMO 

1. SDD - single operand transfer, device to device. 
2. SDM - single operand transfer, device to memory. 
3. SMD - single operand transfer, memory to device. 
4. BDD - block transfer, device to device. 
5. BDM - block transfer, device to memory. 
6. BMD - block transfer, memory to device. 
7. BMM - block transfer, memory to memory. 

SETUP 
MULTIWAY 
BRANCH 

BOD BOM BMO BMM 

In a single operand transfer, at least one of the involved devices requests a DMA transfer for 
each operand. This method is used with slow devices. 

Block transfers are used to move data blocks between fast memories and/or devices. A DMA 
request is set for every block transfer. 

4·54 WAFERSCALE INTEGRATION, INC. 



Appendix 3 (Cont.) 

Device to 
Memoty 
Block Transfet 

Legend: 

BMD: 

(MEMORY-DEVICE) 

EXTRACT 
SOURCE 

DEVICE NO. 

LOAD 
BC,ACH 

ACL 

SEND 
BUS 

REQUEST 

BDM: 

(DEVICE-MEMORY) 

EXTRACT 
DEST. 

DEVICE NO. 

PAC1000 - Application Note 005 

SET BUSMSTR 
RESET 

HOSTINTR 

PUT 
DEVICE NO. 

IN lOR 

SETUP 
MULTIWAY 
BRANCH 

LD~WORD(.) 

1. B_dm_byte: block device to/from memory transfer of bytes. 
2. B_dm_word: block device to/from memory transfer of words. 
3. B_dm_sbyte: block device to/from memory transfer of swapped bytes. Occurs whenever 

the transfer is between even and odd addresses. 

WAFERSCALE INTEGRATION, INC. 4·55 

II 



I'AC1000 - ApplIcation Note 005 

Appendix 3 (Cont.) 

Device to Device 
Block Transfer 

BDD: 

EXTRACT 
SOURCE 

DEVICE NO. 

EXTRACT 
DEST. 

DEVICE NO. 

SEND 
BUS 

REQUEST 

SET BUSMSTR 
RESET 

HOSTINTR 

SETUP 
MULTIWAY 
BRANCH 

Legend: 1. B_dd_byte: block device to device transfer of bytes. 
2. B_dd_word: block device to device transfer of words. 
3. B_dd_sbyte: block device to device transfer of swapped bytes. Happens whenever the 

transfer is between even and odd addresses. 

4·56 WAFERSCALE INTEGRATION, INC. 



Appendix 3 (Cont., 

Memory to 
Memory 
Block 7J'ansfer 

Legend: 

BMM: 

BC = BC*2 

LOAD 
BC 

ACH,ACL 

1. B_mm_byte: block memory to memory transfer of bytes. 
2. B_mm_word: block memory to memory transfer of words. 

PAC1000 - Application Note 005 

SEND 
BUS 

REQUEST 

SET BUSMSTR 
RESET 

HOSTINTR 

SETUP 
MULTIWAY 
BRANCH 

NO 

3. B_mm_sbyte: block memory to memory transfer of swapped bytes. Occurs whenever the 
transfer is between even and odd addresses. 

WAFERSCALE INTEGRATION, INC. 4-57 



PAC1011D - Application Note 005 

Appendix 3 (Cont.) 

Abort DMA 
Transfer 

4·58 WAFERSCALE INTEGRATION, INC. 

MATCH ID 
WITH 

OCCUPIED 
SLOT 

UPDATE 
INTERNAL 

STATUS 

LOAD DMA 
STATUS 

WORD IN 
DOR 

NO CHECK 
NEW 
SLOT 

SET 
HOST 

INTERRUPT 

GO TO 
CHECK-PEND 



Appendix 3 (CDnt.) 

Bus Re/ease 

SAVE 
WORKING 

REGISTERS 
IN THEIR SLOT 

RESET 
BUSMSTR 

SET 
BUS 

REQUEST 

GO TO MAIN 

PACfOOO - Application Nate 005 

End Df Transfer 

DONE: 

MARK THE 
SLOT AS 

AVAILABLE 

LOAD 
TRANSFER 10 
IN THE DOR 

SET HOST 
INTERRUPT 

RESET 
BUSMSTR 

GO TO MAIN 

>-Y_E_S_ ~~S~LPREV 

WAFERSCALE INTEGRATION, INC. 4·59 

II 



PAC1000 - Application Note 005 

Appendix 4 
/************************************************************************/ 
/* device to memory byte transfer in the fly-by mode. The start address */ 
/* of the memory is loaded in R3 and R4 and the device number is loaded*/ 
/* in Q • Assume that the initial protocol has been gone through and */ 
/* PAC has control of the bus. For simplicity it is assumed that the*/ 
/* block size is a multiple of 64 and R5*64 = block size. */ 
/*****************************************************************-*******/ 
segment b dm byte ; 

/* define equates */ 
bgn equ CC7 
ready equ CC4 
b dm byte norm equ h'OOde' 
b-dm-byte-read equ h'OOd6' 
b-dm-byte-write equ h'OOc6'; 

init b-dm-byte-: 
-ACH := R3 

SET ASEL ADOE HADOE 
ACL := R4 

lOR := - Q , 

/* 
/* 
/* 
/* 
/* 

bus grant (active low) 
ready input 
dma active w/o read/write 
read (active low ) 
write (active low ) 

/* upper 16 bits address 

/* select counter to output , 
enable ADD and HAD output, and 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

load lower address in ACL */ 

OUT b dm byte norm /* select device # */ 
Q := T - - /* address increment for byte */ 
LDLCD , MOV R5 R5 ; /* R5 * 64 -> block count */ 

/************************************************************************/ 
/* start of outer transfer loop */ 
/************************************************************************/ 
xl: PLDLC H'3F' ; /* push cnt to stack and load 64 

in cnt */ 
/************************************************************************/ 
/* start inner transfer loop */ 
/************************************************************************/ 
y1 : JMPNC ready y1 , 

OUT b dm byte read 
LOOPNZ yT -; 
ACL := ACL + Q , 
OUT b_dm_byte_write 

/* wait till ready signal high */ 

/* strobe the write signal and 
set up the next address */ 

/************************************************************************/ 
/* end inner loop */ 
/************************************************************************/ 

POPLC 
ACH := ++ ACH , 
OUT b_dm_byte_read 

JMPC bgn release_bus 

/* pop stack to cnt , increment 
upper address bits */ 
/* check if bus grant has been 
taken away */ 

LOOPNZ xl ; /* loop back if counter not zero*/ 
/************************************************************************/ 
/* end outer loop */ 
/************************************************************************/ 
done 

release bus : 

/************************************************************************/ 

4-60 WAFERSCALE INTEGRATION, INC. 



PAC1000 - Application Note 005 

Appendix 4 (CDnt.) 

/************************************************************************/ 
/* device to memory word transfer in the fly-by mode. The start address */ 
/* of the memory is loaded in R3 and R4 and the device number is loaded*/ 
/* in Q . For simplicity it is assumed that the block size is a multiple*/ 
/* of 64 and R5*64 = block size. */ 
/************************************************************************/ 
segment b dm word ; 

/* define equates */ 
bgn equ CC7 ; /* bus grant (active low) */ 
ready equ CC4 ; /* ready input */ 
b dm word norm equ h'OOde' /* dma active w/o read/write 
b-dm-word-read equ h'OOd6' /* read (active low) 
b-dm-word-write equ h'OOc6'; /* write (active low) 

init b-dm-word-: 
-ACH := R3 

SET ASEL ADOE HADOE 
ACL := R4 

/* upper 16 bits address 

/* select counter to output , 
enable ADD and HAD output, and 

*/ 
*/ 
*/ 

*/ 

load lower address in ACL */ 
IOR := - Q , 
OUT b dm word norm /* select device # */ 
Q := 2 - /* address increment for word */ 
LDLCD , MOV R5 R5 ; /* R5 * 64 -> block size (words)*/ 

/************************************************************************/ 
/* start of outer transfer loop */ 
/************************************************************************/ 
xl: PLDLC H'lF' /* push cnt to stack and load 32 

in cnt */ 
/************************************************************************/ 
/* start inner transfer loop */ 
/************************************************************************/ 
yl : JMPNC ready yl , 

OUT b dm word read 
LOOPNZ yl , 
ACL := ACL + Q , 
OUT b dm word write 

/* wait till ready signal high */ 

/* strobe the write signal and 
set up the next address */ 

/************************************************************************/ 
/* end inner loop */ 
/************************************************************************/ 

POPLC , 
ACH := ++ ACH , 
OUT b dm word read 

JMPC bgn release_bus 

/* pop stack to cnt , increment 
upper address bits */ 
/* check if bus grant has been 
taken away */ 

LOOPNZ xl ; /* loop back if counter not zero*/ 
/************************************************************************/ 
/* end outer loop */ 
/************************************************************************/ 
done 

release bus : 

/************************************************************************/ 

WAFERSCALE INTEGRATION, INC. 4-61 

II 



PAC100D - Application Note 005 

Appendix 4 (Cont.) 
/************************************************************************/ 
/* device to memory byte transfer in the fly-by mode. The start address */ 
/* of the memory is loaded in R3 and R4 and the device number is loaded*/ 
/* in Q . For simplicity it is assumed that the block size is a multiple*/ 
/* of 64. This code illustrates individual transfer mode (non-block mode)*/ 
/************************************************************************/ 
segment s dm byte ; 

/* define equates */ 
bgn equ CC7 ; /* bus grant (active low) */ 
ready equ CC4 ; /* ready input */ 
s dm byte norm equ h'OOde'; /* dma active w/o read/write 
s-dm-byte-read equ h'00d6'; /* read (active low) 
s-dm-byte-write equ h'00c6'; /* write (active low) 

*/ 
*/ 
*/ 

in it s-dm-byte-: 
-ACH := R3 

SET ASEL ADOE HADOE 
ACL := R4 

BC := RS 
IOR .= - Q , 
OUT s dm byte 
CMP Q-H'0001' 
JMPC Z devO 
CMP Q H' 0002' 
JMPC Z dev1 
CMP Q H' 0004' 
JMPC Z dev2 

norm 

/* upper 16 bits address 

/* select counter to output , 
enable ADD and HAD output, and 
load lower address in ACL */ 
/* load block size in to BC */ 

/* select device # */ 
/* find out if device #0 

/* if device # 1 */ 

/* if device # 2 */ 

/* else it is device # 3 

*/ 

*/ 

/************************************************************************/ 
/* start transfer loop for dev#3 */ 
/************************************************************************/ 
dev3 

JMPC bgn release bus 
JMPNC CC3 dev3 -
OUT s_dm_byte_read 

SET ACEN BCEN , 
OUT s dm byte write 
RESET-ACEN BCEN , 
OUT s dm byte norm 
JMPNC-BCZ dev3 
JMP done ; 

; /* monitor bus grant */ 

/* branch to check for dma request 
from device3 */ 

/* start counter */ 

/* stop counter */ 
/* loop back if not done */ 

/************************************~***********************************/ 
/* start transfer loop for dev#2 */ 
/************************************************************************/ 
dev2 

JMPC bgn release bus 
JMPNC CC2 dev2 -
OUT s_dm_byte_read 

SET ACEN BCEN , 
OUT s_dm_byte_write 

4·62 WAFERSCALE INTEGRATION, INC. 

/* monitor bus grant */ 

/* branch to check for dma request 
from device2 */ 

/* start counter */ 



Appendlx4 (CDn'.) 

RESET ACEN BCEN , 
OUT s dm byte norm 
JMPNC-BCZ dev2 

PAC1000 - ApplIcation Note 005 

1* stop counter *1 
1* loop back if not done *1 

JMP done , 
1************************************************************************1 
1* start transfer loop for dev#l *1 
1************************************************************************1 
devl 

JMPC bgn release bus 
JMPNC CCl devl -
OUT s_dm_byte_read 

SET ACEN BCEN , 
OUT s dm byte write 
RESET-ACEN BCEN , 
OUT s dm byte norm 
JMPNC-BCZ devl 
JMP done ; 

1* monitor bus grant 

1* branch to check for dma 
from devicel 

1* start counter *1 

1* stop counter 
1* loop back if not done 

*1 

request 
*1 

*1 
*1 

1************************************************************************1 
1* start transfer loop for dev#O *1 
1************************************************************************1 
devO 

JMPC bgn release bus 
JMPNC CC3 devO -
OUT s_dm_byte_read 

SET ACEN BCEN , 
OUT s dm'byte write 
RESET-ACEN BCEN , 
OUT s dm byte norm 
JMPNC-BCZ devO 

1* 

1* 
1* 

1* monitor bus grant 

1* branch to check for 
from device3 

start counter *1 

stop counter 
loop back if not done 

*1 

dma request 
*1 

*1 
*1 

1************************************************************************1 
done 

release bus : 

1************************************************************************1 

WAFERSCALE INTEGRATION, INC. 4·63 

II 



PACtODO - Application Note 005 

Appendix 4 (Cont.) 
/************************************************************************/ 
/* code to illustrate device to memory transfer in non fly by mode. */ 
/* This is used when data bus is connected d7-dO to dlS-d8 or the */ 
/* other way around. Use counter to output addresses.Q contains device */ 
/* number and R3 R4 contain destination address.RS contains block size. */ 
/************************************************************************/ 
segment b dm sbyte i 

/* define equates */ 
b dm sbyte norm equ h'00ge' 
b-dm-sbyte-read equ h'0096' i 
b-dm-sbyte-write equ h'008e' i 
rdy equ CC4 
bgn equ CC7 

init b dm sbyte : 
-BC :;;- RS , 

OUT b dm sbyte norm /* load block size in bcnt */ 
SET DlREN ASEL-RADOE ADOE i/* select counter to output, 

enable had output */ 
ACH := R3 
ACL := R4 , 

/************************************************************************/ 
/* start of transfer loop */ 
/************************************************************************/ 
b dm sbyte : 

- -JMPC bgn release bus 

srdy 
SET DIREN -

JMPNC rdy srdy, 
OUT b dm sbyte read 
SET HDOE-HDSELO , 
AOR := DIR 

DOR := SWPV , 
OUT b dm sbyte write 
SET ACEN-BCEN -; 
OUT b_dm_sbyte_norm 

RESET ACEN BCEN HDOE 
JMPNC BCZ b dm sbyte i 

/* enable DIR */ 

/* wait till source ready */ 

/* when src is ready read the data 
in , enable HD output , select 
DOR to output */ 

/* put swapped data in DOR */ 

/* start counter , output swapped 
data */ 

/************************************************************************/ 
/* end of transfer loop */ 
/************************************************************************/ 
done : 

release bus : 

/************************************************************************/ 

4·64 WAFERSCALE INTEGRATION, INC. 



I'AC1000 - Application Note 005 

Appendix 4 (Cont.) 
/************************************************************************/ 
/* code to illustrate memory to memory transfer.Use counter to output */ 
/* both addresses.Rl,R2 contain source address and R3 R4 contain dest */ 
/* address . R5 contains block size. */ 
/************************************************************************/ 
segment b mm byte ; 

/* define equates */ 
b rom byte norm equ h'00ge' 
b-rom-byte-read equ h'0096' ; 
b-mm-byte-write equ h'008e'; 
rdy equ CC4 
bgn equ CC7 

in it b rom byte : 
-BC :-;;- R5 , 

OUT b mm byte norm 
SET ASEL-HADOE ADOE 

/* load block size in bcnt */ 
/* select counter to output , 

enable had output */ 
/************************************************************************/ 
/* start of transfer loop */ 
/************************************************************************/ 
b rom byte : 

- -JMPC bgn release bus , 

srdy 

drdy 

ACH := Rl -

SET DIREN , ACL := R2 

JMPNC rdy srdy, 
OUT b rom byte read 
SET ACEN-HDOE-HDSELO , 
DOR := DIR 

RESET ACEN DIREN ,R1 := ACH, 
OUT b_rom_byte_norm 

ADD R2 ACL Q ARDREG ACH R3 

ACL := R4 

JMPNC rdy drdy 
SET ACEN BCEN , 
OUT b_rom_byte_write 

RESET ACEN BCEN HDOE , 
R3 := ACH , 
OUT b_rom_byte_norm 

JMPNC BCZ b_rom_byte , 
R4 := ACL 

/* monitor bus grant , source 
address in R1 */ 
/* enable dir, r2 <- low 6 bits */ 

/* wait till source ready */ 

/* when src is ready read the data 
in , enable HD output , select 
DOR to output */ 

/* stop counter , store it back in 
to registers */ 
/* mov ACL back to r1 and at the 
same time load r3 to ach */ 
/* ach,acl have dest address */ 

/* wait for destination ready */ 

/* when dest is ready , write the 
data, increment counter , also 
enable block counter */ 

/* stop counters , set HD to input 
save dest address (upper 16) */ 

/* loop back if block counter not 
zero , also save lower 6 bits 
of dest address */ 

/************************************************************************/ 
/* end of transfer loop */ 
/************************************************************************/ 
done : 

release bus : 

/************************************************************************/ 

WAFERSCALE INTEGRATION, INC. 4·65 



PAC1000 - Application Note 005 

Appendix 4 (Cont.) 

/************************************************************************/ 
1* code to illustrate memory to memory transfer (word mode) .Use counter *1 
1* to output both addresses.Rl,R2 contain source address and R3 R4 *1 
1* contain destination address. R5 contains block size in words. *1 
/************************************************************************/ 
segment b mm word ; 

1* define equates *1 
b mm word norm equ h'00ge' 
b-mm-word-read equ h'0096' 
b-mm-word-write equ h'008e'; 
rdy equ CC4 
bgn equ CC7 

in it b rom word : 
-BC :-;; R5 , 

OUT b mm word norm 
SET ASEL-HAOOE ADOE 

1* load block size in bcnt *1 
1* select counter to output , 

enable had output *1 
1************************************************************************1 
1* start of transfer loop *1 
/************************************************************************/ 
b mm word : 

-JMPC bgn release bus , 

srdy 

drdy 

ACH := R1 -

SET OIREN , ACL := R2 
JMPNC rdy srdy 

OUT b mm word read 
SET ACEN-HOOE-HOSELO , 
OOR := OIR 

OUT b rom word norm 
RESET-ACEN OIREN , 
ADD R1 ACH Q ARDREG ACH 

ADD R2 ACL Q AROREG 

JMPNC rdy drdy 
SET ACEN BCEN , 
OUT b mm word write 

RESET BCEN HOOE , 
OUT b rom word norm 

ACL 

RESET ACEN R3 := ACH 

JMPNC BCZ b mm word , 
R4 := ACL 

R3 

R4 

1* monitor bus grant , source 
address in R1 *1 
1* enable dir,ACL <- low 6 bits *1 

1* wait till source ready *1 

1* when src is ready read the data 
in , enable HO output , select 
OOR to output *1 

1* stop counter , store ACH in to 
R1 and also load ACH with R3 *1 
1* store ACL in R2 and at the same 
time put R4 in to ACL *1 
1* wait for destination ready *1 

1* when dest is ready , write the 
data, increment counter , also 
enable block counter *1 

1* stop block counter, set HO to 
input *1 

1* stop add counter , 
save dest address (upper 16) *1 

1* loop back if block counter not 
zero , also save lower 6 bits 
of dest address *1 

1************************************************************************1 
1* end of transfer loop *1 
/************************************************************************/ 
done : 

release bus : 

/************************************************************************/ 

4·66 WAFERSCALE INTEGRATION, INC. 



PAC1000 - Application Note 005 

Appendix 4 (Cont.) 
/************************************************************************/ 
1* code to illustrate memory to memory transfer from D7-DO to D15-D8 *1 
1* or vice-versa. Use counter to output both addresses .Rl , R2 contain *1 
1* source address and R3 R4 contain destination address.R5 contains *1 
1* block size. Data is read in to AOR and byte-swpped before outputting *1 
1* through DOR. *1 
/************************************************************************/ 
segment b mm sbyte ; 

1* define equates *1 
b mm sbyte norm equ h'00ge' 
b-mm-sbyte-read equ h'0096' 
b-mm-sbyte-write equ h'008e'; 
rdy equ CC4 
bgn equ CC7 

in it b mm sbyte : 
-BC :~ R5,OUT b mm sbyte_norm; 

SET ASEL HADOE-ADOE 
1* load block size in bcnt *1 
1* select counter to output , 

enable had output *1 
/***************************************************** *******************1 
1* start of transfer loop *1 
/************************************************************************/ 
b mm sbyte : 

- -JMPC bgn release bus , 

srdy 

ACH := R1 -

SET DIREN , ACL := R2 
JMPNC rdy srdy 

OUT b mm sbyte read 
SET ACEN-HDOE HDSELO , 
AOR := DIR 

RESET ACEN DIREN,R1 := ACH 

1* monitor bus grant , source 
address in R1 *1 
1* enable dir, r2 <- low 6 bits *1 

1* wait till source ready *1 

1* when src is ready read the data 
in , enable HD output , select 

DOR to output *1 

OUT b_mm_sbyte_norm 1* stop counter , store it back in 
to registers *1 

ADD R2 ACL Q ARDREG ACH R3 1* mov ACL back to r1 and at the 
same time load r3 to ach *1 

ACL := R4 1* ach,acl have dest address *1 
drdy JMPNC rdy drdy,DOR := SWPV ; 1* wait for destination ready 

SET ACEN BCEN , 
OUT b_mm_sbyte_write 

RESET ACEN BCEN HDOE , 
R3 := ACH , 
OUT b_mm_sbyte_norm 

JMPNC BCZ b_mm_sbyte , 
R4 := ACL 

and write swapped value *1 

1* when dest is ready , write the 
data, increment counter , also 
enable block counter *1 

1* stop counters , set HD to input 
save dest address (upper 16) *1 

1* loop back if block counter not 
zero , also save lower 6 bits 
of dest address *1 

/************************************************************************/ 
1* end of transfer loop *1 
1************************************************************************1 
done : 

release bus : 

1************************************************************************1 

WAFERSCALE INTEGRATION, INC. 4·67 



PACtOOO - Application Note 005 

Appendix 4 (Cont.) 

/************************************************************************/ 
/* code to illustrate device to device transfers in the byte as well as */ 
/* word mode. source device is in rl and dest device is in r3. block */ 
/* size is in rS. */ 
/************************************************************************/ 
segment b dd bw ; 

/* define equates */ 
b dd bw norm equ h'00ge' 
b-dd-bw-read equ h'0096' 
b-dd-bw-write equ h'008e' 
rdy equ-CC4 
bgn equ CC7 

init b dd bw : 
-SET DlREN , lOR := - Rl 

OUT b dd bw norm /* enable DlR and output source 
device chip select */ 

/************************************************************************/ 
/* start of transfer loop */ 
/************************************************************************/ 
b dd byte 
b-dd-word 
b-dd-bw : 

JMPC bgn release bus , 
lOR .= - R3, -
OUT b dd bw read 

SET HDOE HDSELO , 
DaR := DlR , 
OUT b dd bw norm 

RESET HDOE , 
DEC RS , 
OUT b dd bw write 

JMPNC Z b_dd_bw , 
lOR := - Rl , 

/* read source device and 
dest device chip select , 
monitor bus grant 

output 
also 
*/ 

/* enable HD output , 
to output 

select DaR 
*/ 

/* HD to input , decrement count 
output write strobe */ 

OUT b_dd_bw_norm /* loop back if RS not zero , also 
output src device cs */ 

/************************************************************************/ 
/* end of transfer loop */ 
/************************************************************************/ 
done 

release bus : 

/************************************************************************/ 

4·68 WAFERSCALE INTEGRATION, INC. 



PAC1000 - Application Note 005 

Appendix 4 (Cont.) 

/************************************************************************/ 
/* code to illustrate device to device transfer in non fly by mode */ 
/* This is used when data bus is connected d7-dO to d15-d8 or the */ 
/* other way around. Source device # is in Rl and dest device # in R3 */ 
/************************************************************************/ 
segment b dd sbyte : 

/* define equates */ 
b dd sbyte norm equ h'00ge' 
b-dd-sbyte-read equ h'0096' 
b-dd-sbyte-write equ h'008e'; 
rdY equ CC4 
bgn equ CC7 

init b dd sbyte : 
-SET DlREN , lOR .= - Rl , 

OUT b_dd_sbyte_norm ; /* enable DlR and output source 
device chip select */ 

/************************************************************************/ 
/* start of transfer loop */ 
/************************************************************************/ 
b dd sbyte : 

- -JMPC bgn release bus , 
lOR .= - R3 , 
OUT b dd_sbyte_read 

AOR 
SET 
DaR 
OUT 

:= DlR 
HDOE HDSELO , 

:= SWPV , 
b_dd_sbyte_write 

RESET HDOE , 
DEC R5 , 
OUT b_dd_sbyte_norm 

JMPNC Z b dd sbyte , 

/* read source device and output 
dest device chip select , also 
monitor bus grant */ 

/* read in the data */ 

/* enable HD output , select DaR 
to output , put swapped data in 
DaR */ 

/* HD to input , decrement count 
output write strobe */ 

lOR := - Rl - /* loop back if R5 not zero , also 
output src device cs */ 

/************************************************************************/ 
/* end of transfer loop */ 
/************************************************************************/ 
done 

release bus : 

/************************************************************************/ 

WAFERSCALE INTEGRATION, INC. 4·69 



4·70 WAFERSCALE INTEGRATION, INC. 



Programmable System™ Device 
Application Brief 006 

WAFERSCALE INTEGRATION, INC. PAC1000 as a 16 Bi·Directional 
Serial Channel Controller 

Introduction 

PAC1000 -
Host Interface 

Buffer Memory 
Structure 

By Alye Zik/ik 

This Application Brief describes a 
Communications Controller that utilizes the 
PAC1000 as the board level control element 
in a 16 bi-directional serial channel board. 
The aggregate board throughput is around 
1 Mbyte/sec. 

Serialization and de-serialization of the 
data is handled by eight Serial 
Communication Controllers (SCC). Every 

The PAC1000 performs the low level 
function of moving the data to and from 
the serial devices and buffer RAM memory. 
The host interface is a generic 32-bit 
system. The host processor communicates 
with the PAC1000 through two interrupt 
lines, two status signals and a mail-box 
area that resides in the buffer memory. 
Prior to accessing the board, the host 
drives the "system board access" signal. 
The PAC1000 is interrupted (INT3) and 
relinquishes control of the board's data 
and address buses as long as that signal 
is active (as reflected by CCO). The host 

The high speed buffer memory is composed 
of 64K bytes of static RAM that can be 
accessed in three ways: by bytes (during 
SCC transfer operations), by words (when 
accessed by the PAC1000), or by double 
words (from the host side). Memory access 
configuration is determined by the PAC1000 
output control signals (OC port). 

The buffer memory is divided into three 
regions: 

1) SCC control image register space that 
includes copies of the SCC registers. 

2) Buffer message space where the 32 
buffers of the corresponding serial 
channels are stored. 

3) Mail-box area in which the PAC1000 
exchanges command and status 
information with the host. This region 
also contains the pointers to the 32 
channel buffers. 

SCC has two bi-directional serial channels 
with individual baud rate generator and 
digital phase loop mechanism. The SCC 
can handle all the customary synchronous 
and asynchronous protocols as well as the 
popular serial data encoding/decoding 
schemes. With a 16-MHz clock, the 
maximum bit rate in every individual 
channel can be up to 2 Mbps. 

reads and/or writes into the buffer memory. 
After completion of this activity, it updates 
the mail-box region and then lowers the 
"system board access" signal. The PAC1000 
continuously monitors that signal. After 
CCO is negated, the PAC1000 can raise its 
"PAC1000-board master" signal and start 
controlling the data/address buses and 
control signals. Whenever it needs a fast 
response from the host, the PAC1000 
updates the mail-box portion of the shared 
buffer memory, lowers the "PAC1000-board 
master" signal and activates the system 
interrupt. 

Whenever instructed to do so, the PAC1000 
writes the image register content of a 
channel into the corresponding SCC, 
thereby initializing that channel for a 
particular transfer mode. Buffer message 
sizes are allocated by the host according 
to the speed of each individual channel. 
The pointers of the buffers are stored in 
the mail-box area. 

Every transfer takes place between the 
buffer memory and the selected SCC. The 
PAC1000 is acting in this design as a 
32-channel DMA controller, capable also of 
communicating with the host processor 
through their mail-box region. Once the 
board is properly configured, the only 
interface of the host system is the reading 
of data from the receive and mail-box 
buffers and the placing of new data into 
the transmit and mail-box buffers. The 
PAC1000 off-loads the host processor from 
maintaining the low level control of each 
channel. 

WAFERSCALE INTEGRATION, INC. 4-71 



PAC1000 - ApplicatiDn Brief 006 

PACtOOO
SCC Devices 
Interface 

Miscellaneous 

The high speed data transfers are achieved 
due to the very fast response of the 
PAC1000 to the channel service requests. 
The SCCs are programmed to request 
DMA transfers whenever they are either 
ready to transmit or containing new 
received characters. 

The 16 received character DMA requests 
are priority encoded and latched. The 
encoder output is connected to the 
PAC1000's CC3 pin. The 16 transmit DMA 
requests are priority encoded and latched, 
too. Their encoder drives the CC2 input 
pin. The condition code multiplexer presents 
to the CC7-CC4 the highest priority 
encoded-channel-number of the pending 
receiver request, or the transmitter request, 
or the highest priority SCC number that is 
currently requesting an interrupt service 
via the CC1 pin. The receiver requests 
have higher priority over the transmitter 
requests. The lowest service priority is 
assigned to the SCC interrupts. This 
configuration ensures a very fast response 

In addition to functioning as an SCC 
controller, the PAC1000 can also generate 
all the necessary signals for modem control 
and modem interface through the SCC 
control signal latch. 

The PAC1000 output control (OC) port 
generates various control strobes such as 
data path width definition, readlwrite, 
multiplexer and decoder select, etc. 

4·72 WAFERSCALE INTEGRATION, INC. 

time of the PAC1000 to DMA requests and 
SCC interrupts. Condition code latency is 
125 ns and mUlti-way branching according 
to the CC7-CC4 lines requires additional 
125 ns. Therefore, 250 ns after a high 
priority DMA request, the service routine 
will be initiated. The condition code lines 
CC3, CC2 and CC1 are continuously 
monitored by the PAC1000 during the time 
that it is the board master. Therefore it 
responds immediately when either a DMA 
request or an SCC interrupt is pending. 

The regular SCC interrupt lines are also 
prioritized and latched by an 8 interrupt 
encoder. These interrupts are requested by 
erroneous SCC channels or whenever block 
transfers are completed. The interrupt 
priority encoder is also connected to the 
condition code multiplexer. The three 
encoded lines that denote the number of 
the serviced SCC route the INTA signal 
issued by the PAC1000 (via the 1/06 pin) 
to the corresponding SCC. 



PAC1000 as a 
16 Hi·Directional 
Serial Channel 
Controller SYSTEM 

32-BIT DATA BUS , 
PAC1000 - Application Brief 006 

SYSTEM LOW ORDER SYSTEM SYSTEM 
16 ADDRESS LINES INTERRUPT , HIGH-OR DE R 

TT \ SYSTEM DATA \ BUFFER ~ MEMORY ~ \ SYSTEM ADDR. 

ADD'l'NES 

TRANSCEIVER MEMORY DECODER LATCH 
BRD-64K x 8 

\ 

Cl000 PA 
BO 
MA 

ARD 
STER 

(CONFIG. -.I BWI'i_ 
HIGH ORDER ALSO BY 16-BIT 

~ 
DATA BUS 16 OR BY ADDRESS BUS 

32 BITS) 
LOW ORDER SYSTEM 

DATA BUS BOARD 
ACCESS 

BWR 

~ ~ 16-BIT DATA BUS 

I t 
ADD(lS-0) OCl OCO 1/07 INT3 CCO 

1/06 

CCl 
PAC1000 OC(lS-0) 

CC2 

CC7-CC4 

,.. CC3 1/0(5-0) HADl HAD(S-2) HADO HD(lS-0) 

! 'AlB 

\ CONDITION CODE \ SCC CONTROL 1\ 
MULTIPLEXER SIGNALS DECODER 

SCC \ 

! 
DECODER 

~C/O 
SCC CONTROL \ 

SIGNALS LATCH 

~ J"~ ~ !' , '!' , '! CS#l CS#2 CS#7 CS#8 

8-BIT DATA BUS 
FORCED DTRS INTR 
SYNCS ENABLE 

AND 
CLR 

-

I 
4 ENCODED 

LINES 

Y RECEIVER 16 DMA REO. 1 - CS#l 
PRIO:~~Y L~~g~DER _ 

DB(7-0) 

4 ENCODED , .. t t RDY1A 
LINES , 

, RDY1B 
SCC #1 

\ TRANSMIT 16 DMA REO. I , 
DTR1A , 

PRIORITY ENCODER , 
AND LATCH , DTR1B 

INTR#l 

3 ENCODED SCCs 
, 
, ,.... INTA#l LINES 81NTR , 

ENCODER , T01A RD1A T01B 

SYSTEM BOARD 
DECODER 

SYSTEM SCC 
DECODEICONTR OL 
LINES 

DATA 

HIGH 
SPEED 
CONTR OL 

ES STROB 
(DATA 
PATH 
WIDTH, 
SCC RE AD, 

RITE, 
.) 

SCCW 
ETC ... 

TRANSCEIVER 

C/O r-
AlB r-

RD1B , 

s:1- , it: ' II:' jl·: )111:' , 
INTA 

, 
INTR. , t 
ACK 
MUX , 
'--

, 
16 TRANSMIT I 16 RECEIVE SERIAL CHANNELS 

WAFERSCALE INTEGRATION, INC. 4-73 



4·74 WAFERSCALE INTEGRATION, INC. 



Programmable System™ Device 
WAFERSCALE INTEGRATION, INC. Application Note 008 

Abstract 

Introduction 

Usage and 
Limitations 

PAC1000 User·Configurable Microcontroller 
with a Built·ln·Self·Test Capability 
By David Fong 

The objective of this Application Note is to 
demonstrate the Built-In-Self-Test (BIST) 
capability of the PAC1000 High-Performance 

With increasing device densities on one 
chip, more devices are needed for BIST to 
check the functionality of the internal logic. 
Current serial scan techniques for board 
level verification would take too much time 
and resources. The current PAC1000 will 

The program is accessible by calling the 
BIST program. The program occupies 
forty-five lines of EPROM code. The 
program can be reduced in size by 
specifying extra CPU registers to hold the 
constants h'FFFF', h'OOOO', h'AAAA', h'5555' 
and h'FFF4'. 

Certain conditions must be met prior to 
programming the code to ensure that this 
program will work correctly. The stack 
should be empty because the program 
exercises the stack. In addition, location 
h'3FF' must be reserved because the BIST 
uses this location to verify the contents of 
the stack as a '1.' The outputs should be 
placed in a mode where the existing 
system is not affected. The 'MAINT' 
instruction will ensure that the OC is the 
same throughout the program. However, 
this example was not implemented in that 
manner. Instead, it uses set values to 
assist in debugging the program. Users 
can do a global substitution of "OUT 
h'xxxx' " with "MAl NT" in their word 
processor to fully implement this SIST 
program. 

User-Configurable Microcontroller. This 
article describes the basic instructions 
needed to implement BIST. 

only test the ALU and its status flags, the 
address and block counter, and the 
sequencer. Future versions in the WS-PAC 
Family will have even larger sizes of 
EPROM and may test the control EPROM. 

This BIST is not a panacea for system 
designers. A 'PASS' condition is indicated 
by a return to the main calling program. 
The output control will be h'OOOO'. A 'FAIL: 
condition will result in some endless loop 
or jump to some portion of the program. In 
the event that it does fail after about 170 
clock cycles, the system must disable the 
PAC1000 from the rest of the system in 
some manner. Future versions of the 
PAC1000 may include a watchdog timer to 
interrupt and timeout the SIST. 

The variables that can be altered by the 
user are listed at the beginning of the 
BIST.mal file. The current values used will 
only exercise the counters in a simple 
manner. The user can modify these 
variables to increase the confidence level 
of the program at the expense of a longer 
test cycle. 

WAFERSCALE INTEGRATION, INC. 4·75 



1'AC1000 - Application Note 008 

Usage and 
Limitations 
(Cont.) 

Confidence 
Level 

AnalysIs of the 
Program 

Analysis of the 
Simulation 
Output 

A summary of the instructions used and 
the functional blocks follow below: 

1*********************************************************************/ 
/* registers destroyed : RO,Rl,R2,R3 and R4 */ 
/* AOR,ACH,ACL,BC,LC and stack */ 
/* */ 
/* stack should be empty before calling this program */ 
/* */ 
/* the block counter, address counter, ALU with register file and */ 
/* flags, and the sequencer with stack and counter are tested */ 
/**/ 
/* flags checked: BCZ,ACO,CY,Z,O,S,and STKF */ 
/* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR,SHRL,SUB */ 
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC,LDLCD, */ 
/* LOOPNZ,PLDLC,POP,RET,RNC,RSTCON and SETCON */ 
/* */ 
/* DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010, */ 
/* 03FF, 0019 */ 
/*********************************************************************/ 

The program executes some of the possible 
internal critical paths of the PAC1000. 
From tester and simulation measurements, 
the test of condition codes and branching 
were consistently the longest. Similarly for 
the ALU, flag generation such as adding 

The currently executing program calls the 
BIST program by using the 'CALL: 
instruction. The instruction following 'CALL: 
which is the return address is pushed to 
the stack and is not destroyed by the BIST 
program. See Figure 1 for the BIST 
flowchart. The BIST tests the PAC1000 
functional blocks in the following order: 

1. Block Counter and flag BCZ. 

2. Address Counter and flag ACO. 

3. ALU with shifter and flags CY, Z, 0 
and S. 

4. Sequencer with stack and loop counter, 
and flag STKF. 

Some subtleties of programming the 
PAC1000 are presented. In the ALU section, 
certain flags must be forced to zero before 
being tested upon, unlike the normal 
microprocessors where the individual flags 

Looking at the block counter outputs 
BC(15:0) from cycle 7 through 18, the 
counter counts continuously until disabled. 
The block counter contents wraps around 
from h'OOOO' to h'ffff' and down. Note that 
the BCZ flag remains latched until new 
data is loaded to the block counter. 

with a carryout is considered a critical 
path. The counters have a critical path in 
propagating the carry. Overall, the 
confidence level of this test is considered 
to be high. 

are set and reset by instructions. The ALU 
result of each cycle updates each flag on 
the next rising edge of the clock. For 
example, to check the zero flag (Z), some 
ALU instruction forces the Z flag to zero. 
See the instructions below: 

MOV R2 R2 , OUT h'0138' ; 
1* force zero flag Z=O *1 

zero: JMPNC Z zero, AND AOR R1 , 
OUT h'0139' ; 

Next, loading the loop counter from the 
ALU needs special treatment. The data 
must be present at the ALU output before 
the instruction to load the loop counter 
executes. See the instructions below: 

MOV R4 short, OUT h'014B' ; 
1* force ALU output to the 
value of short = h'0010' * 1 

LDLCD , MOV R4 R4, OUT h'014C' ; 
1* load 0010 to LC *1 

Because of the latched flag BCZ, there is 
a minimum of two cycles before the next 
instruction is executed after the loop. 
Figure 2 shows the loop with the minimum 
number of latency cycles before executing 
the next line of program code. 

4·76 WAFERSCALE INTEGRATION, INC. 



Figure 1. 
Builf·ln·Self·Test 
Flowchart 

NO 

NO 

NO 

NO 

NO 

NO 

PAC1000 - Application Note 008 

POP STACK 
AND RETURN 

TO MAIN 
PROGRAM 

WAFERSCALE INTEGRATION, INC. 4·77 



PAC1000 - Application Note 008 

Figure 2. 
BCI Flag: 
Example 
Cycle·by·Cycle 
Simulation CYCLE 

BC 

BCZ 

CONTROL 
INSTRUCTION 

2 3 

1. 100p1: MOV R2 h'SSSS', OUT h'012S' ; 
2. JMPNC BCZ 100p1, OUT h'0129' ; 
3. RESET BCEN, OUT h'012a' ; 
4. ACSIZE 22, OUT h'012b' ; 
5. MOV ACL long, OUT h'012c' ; 

/********************************************/ 
/* Main calling program 02/03/89 */ 
/* David Fong Rev. 1.0 */ 
/* main.mal */ 
/********************************************/ 

segment main ; 

external bist ; 

main1: 

/* initialize */ 
/* not needed */ 

/* call bist program */ 

4 5 

CALL bist , OUT h'0123'; /* call the BrST program */ 
/* return to main program */ 

FORE: JMP FORE , OUT h'OOOO' ; /* loop forever */ 

end ; 

/*********************************************/ 
/* Program to jump back to main bist program */ 
/* David A. Fong 02/03/89 Rev. 1.0 */ 
/* jmpf.mal */ 
/*********************************************/ 

segment jmp ; 
external jmpf ; 

JMP jmpf , OUT h'FFFF' ; /* jmpf is an external address */ 
/* this tests branching with all l's */ 
end ; 

4-78 WAFERSCALE INTEGRATION, INC. 



PACtOOO - Application Note 008 

/*****************************************************************/ 
/* Built-In-Self-Test Program 02/03/89 */' 
/* David A. Fang Rev. 1.0 */ 
/* bist.mal */ 
/*****************************************************************/ 
/* registers destroyed : RO,R1,R2,R3 and R4 */ 
/* AOR,ACH,ACL,BC,LC and stack */ 
/* */ 
/* stack should be empty before calling this program */ 
/* */ 
/* the block counter, address counter, ALU with register file and*/ 
/* flags, and the sequencer with stack and counter are tested */ 
/* */ 
/* flags checked: BCZ,ACO,CY,Z,O,S,and STKF */ 
/* ALU instructions used: ADC,AND,ADD,MOV,NOP,SHRR,SHRL,SUB */ 
/* CONTROL instructions used: ACSIZE,CONT,JMPNC,JMPC,LDLCD, */ 
/* LOOPNZ,PLDLC,POP,RET,RNC,RSTCON and SETCON */ 
/* */ 
/*DATA from EPROM used: 0000, FFFF, FFF4, AAAA, 5555 ,0008 , 0010*/ 
/* 03FF, 0019 */ 
/*****************************************************************/ 

segment c bist ; 
entry bist,jmpf ; /* entry points into this program */ 

/* define equates for user to substitute */ 
shorter equ h'0008' ; 
short equ h'0010' 
medium equ h'03ff' 
long equ h'fff4' 
popper equ h'0019' 

/****************************/ 
/* test the counters and */ 
/* initialize the registers */ 
/****************************/ 

bist: MOV R1 h'OOOO', OUT h'0124'; /*the outputs should be placed*/ 
/* in a non-functional mode */ 

MOV RO h'FFFF' , OUT h'0125' ; /* in this program it is not*/ 
MOV BC shorter , OUT h'0126' ;/*because it was needed to*/ 
SETCON h'002' , OUT h'0127' ; /*debug enable block counter */ 

loop1: MOV R2 h'5555' , OUT h'0128' ; 
JMPNC BCZ loop1 , OUT h'0129' ; 

RSTCON h'002' , OUT h'012A' ; /* disable block counter */ 

/* RO = FFFF ; R1 = 0000 ; R2 = 5555 */ 

/* test the 22-bit address counter */ 

ACSIZE 22 , MOV ACH RO , OUT h'012B' ; 
MOV ACL long , OUT h'012C' ; 
SETCON h'OOl' , OUT h'012D' ; /* enable address counter */ 

WAFERSCALE INTEGRATION, INC, 4-79 



PAC1000 - Application Note 008 

100p2: MOV R3 h'AAAA' , OUT h'012E' ; 
JMPNC ACO 100p2 , OUT h'012F' 
RSTCON h'OOl' , OUT h'0130' ; /* disable address counter */ 

/* RO = FFFF ; Rl = 0000 ; R2 = 5555 ; R3 = AAAA */ 

/* test the 16-bit address counter */ 

ACSIZE 16 , OUT h'0131' ; 
MOV ACH long, OUT h'0132' ; 
SETCON h'OOl' , OUT h'0133' ; /* enable address counter */ 

100p3: MOV R4 h'OOOO' , OUT h'0134' ; 
JMPNC ACO 100p3 , OUT h'0135' ; 
RSTCON h'OOl' , MOV R3 R3 , OUT h'0136' 
/* disable address counter */ 

/* and do a dummy ALU instruction so that z=o and CY=O */ 
/* note: a Nap instruction will force Z=l and CY=l on the */ 
/* following cycle*/ 

/* RO = FFFF ; Rl = 0000 ; R2 = 5555 
/* R4 is the working register */ 

/****************/ 
/* test the ALU */ 
/****************/ 

R3 AAAA R4 0000 */ 

carry: JMPNC CY carry, ADC AOR RO , OUT h'0137' ;/*test carryout */ 

zero: 

over: 

f15: 

MOV R2 R2 , OUT h'0138'; /* force zero flag = 0 */ 
JMPNC Z zero, AND AOR Rl , OUT h'0139' ;/*test all the alu*/ 

/* outputs are zero */ 

SUB AOR R3 R2 , OUT h'013A' ; /* test for overflow */ 
JMPNC a over, OUT h'013B' ; /* test for overflow */ 

JMPNC S f15 , ADD AOR Rl RO , OUT h'013C' ;/*test sign bit*/ 

/* test the alu shifting */ 

shftl: 

shftr: 

SHLR R2 Z , OUT h'013D' 
AND AOR R3 R2 , OUT h'013E' 

JMPC Z shftl , OUT h'013F' ; 

SHRR R2 Z , OUT h'0140' ; 
AND AOR R3 R2 , OUT h'0141' 

/*should not loop*/ 
/*but fall-thru */ 

/* should not loop,but fall-thru */ 
JMPNC Z shftr , OUT h'0142' 

/**********************/ 
/* test the sequencer */ 
/**********************/ 

MOV BC short, OUT h'0143' 

4·80 WAFERSCALE INTEGRATION, INC. 



PAC1000 - Application Note 008 

stack: 
SETCON h'002' , OUT h'0144' ~ /* enable block counter */ 
PLDLC medium , OUT h'0145' ~ 

jmpf: 

JMPNC STKF stack, OUT h'0146'~ 
/*exit loop when stack is full */ 

/* the return address will not be */ 
/* overwritten , only the top of stack*/ 

MOV BC popper , OUT h'0147' ~ 
RNC BCZ , OUT h'0148' ~ 

/*should come out of loop when empty+1*/ 
/* which is the return address */ 

POP , NOP , OUT h'0149' ~ 

/* pop one more time but don't pop */ 
/* the last return address */ 
RSTCON h'002' , OUT h'014A' ~ /* disable block counter */ 

/* test the loop counter */ 
MOV R4 short , OUT h'014B' 
LDLCD , MOV R4 R4 , OUT h'014C' ~/* load 16 into the LC*/ 

lp: ADC AOR R4 , OUT h'014D' ~ /* aor = aor + r4 */ 
LOOPNZ lp , OUT h'014E'~/*check that loop count is not zero*/ 

RET , OUT h'014F' ~ /* return to calling program */ 

end 

/**********************************/ 
/* bist linker file 02/03/89 */ 
/* David Fong Rev. 1.0 */ 
/* exbist.ml */ 
/**********************************/ 

place main , c_bist , jmp ~ 
load main , bist , jmpf 

/* place the segments */ 
/* load the .mal files */ 

locate main , h'OOO' ~ 
locate c bist , h'Oll' 
locate jmp , h'3ff' ~ 

/* locate main and in it file */ 
/* locate bist file after interrupt */ 
/* locate jmp at 3ff to test '1' from stack */ 

end ~ 

.T 

TIME 
1 
2 

RCCCCCCCCIIIIIIIIIIIICWRHHHHHHHHHHHHHHHHHHHHH~ 

ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDOD 
S7654321076543210T~TTBBB1111119876543210DDDDDDDDDDDDDD00000000 

E 3210 543210 5432101111119876543210 
T 543210 
B 

00000000000000000000011100000000000000000000000000000000000000 
10000000000000000000011100000000000000000000000000000000000000 

WAFERSCALE INTEGRATION, INC. 4-81 



I'ACtOOO - Application Note 0118 

******************************************************************* 

OUTPUT TAB L E 

PAC S I M Ver. 1. 09 Mon Feb 13 15:12:09 198 
****************************************************************** 

PPP 0000 LLL AAAA BBBB AAAA AA BASCOSZ RRRR RRRR RRRR RRRR 
CCC CCCC CCC 0000 CCCC CCCC CC CCTY 3333 2222 1111 0000 
173 1173 173 RRRR 1173 HHHH LL ZOK 
1· • 51: : 1· • . . 1173 51:: 1173 53 F 1173 1173 1173 1173 
:40 : : 40 :40 51: : ::40 51:: .. 51:: 51: : 51: : 51: : . . 
8 18 8 : : 40 18 : : 40 40 : : 40 : : 40 : : 40 : : 40 

2 18 2 18 18 18 18 18 
2 2 2 2 2 2 

TIME 
1 000 0000 000 0000 0000 0000 00 0010000 0000 0000 0000 0000 
2 000 0000 000 0000 0000 0000 00 1010000 0000 0000 0000 0000 
3 011 0123 000 0000 0000 0000 00 1000001 0000 0000 0000 0000 
4 012 0124 000 0000 0000 0000 00 1001001 0000 0000 0000 0000 
5 013 0125 000 0000 0000 0000 00 1000001 0000 0000 0000 0000 
6 014 0126 000 0000 0000 0000 00 1000010 0000 0000 0000 ffff 
7 015 0127 000 0000 0008 0000 00 0000000 0000 0000 0000 ffff 
8 016 0128 000 0000 0007 0000 00 0001001 0000 0000 0000 ffff 
9 015 0129 000 0000 0006 0000 00 0000000 0000 5555 0000 ffff 

10 016 0128 000 0000 0005 0000 00 0001001 0000 5555 0000 ffff 
11 015 0129 000 0000 0004 0000 00 0000000 0000 5555 0000 ffff 
12 016 0128 000 0000 0003 0000 00 0001001 0000 5555 0000 ffff 
13 015 0129 000 0000 0002 0000 00 0000000 0000 5555 0000 ffff 
14 016 0128 000 0000 0001 0000 00 0001001 0000 5555 0000 ffff 
15 015 0129 000 0000 0000 0000 00 0000000 0000 5555 0000 ffff 
16 016 0128 000 0000 ffff 0000 00 1001001 0000 5555 0000 ffff 
17 017 0129 000 0000 fffe 0000 00 1000000 0000 5555 0000 ffff 
18 018 012a 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff 
19 019 012b 000 0000 fffd 0000 00 1001001 0000 5555 0000 ffff 
20 01a 012e 000 0000 fffd ffff 00 1000010 0000 5555 0000 ffff 
21 01b 012d 000 0000 fffd ffff 34 1000010 0000 5555 0000 ffff 
22 Ole 012e 000 0000 fffd ffff 35 1001001 0000 5555 0000 ffff 
23 01b 012f 000 0000 fffd ffff 36 1000010 aaaa 5555 0000 ffff 
24 Ole 012e 000 0000 fffd ffff 37 1001001 aaaa 5555 0000 ffff 
25 01b 012f 000 0000 fffd ffff 38 1000010 aaaa 5555 0000 ffff 
26 Ole 012e 000 0000 fffd ffff 39 1001001 aaaa 5555 0000 ffff 
27 01b 012f 000 0000 fffd ffff 3a 1000010 aaaa 5555 0000 ffff 
28 Ole 012e 000 0000 fffd ffff 3b 1001001 aaaa 5555 0000 ffff 
29 01b 012f 000 0000 fffd ffff 3e 1000010 aaaa 5555 0000 ffff 
30 Ole 012e 000 0000 fffd ffff 3d 1001001 aaaa 5555 0000 ffff 
31 01b 012f 000 0000 fffd ffff 3e 1000010 aaaa 5555 0000 ffff 
32 Ole 012e 000 0000 fffd ffff 3f 1001001 aaaa 5555 0000 ffff 
33 Old 012f 000 0000 fffd 0000 00 1100010 aaaa 5555 0000 ffff 
34 Ole 0130 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff 
35 Olf 0131 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff 
36 020 0132 000 0000 fffd 0000 01 1101001 aaaa 5555 0000 ffff 
37 021 0133 000 0000 fffd fff4 01 1000010 aaaa 5555 0000 ffff 

U2 WAFERSCALE INTEGRATION, INC. 



Programmable System™ Device 
Application Note 009 

WAFERSCALE INTEGRATION, INC. In-Circuit Debugging for the PAC1000 
User-Configurable Microcontrol/er 

Abstract 

Introduction 

Usage and 
Limitations 

By David Fong 

This Application Note is used to illustrate 
the in-circuit debugging capabilities of the 

With the increasing densities and 
complexities of integrated circuits, the 
usage of tools such as in-circuit debuggers 
and emulators is greatly desired by the 
heroic hardware designer. The PAC1000 
supports the usage of in-circuit debuggers. 

A review of BP (breakpoint) and SS (single 
step) is discussed. SS is the method of 
stepping through the program code one 
instruction at a time through manual means. 
In the case of the PAC 1 000, there is no 
manual means with a single-step switch. 
Instead, an interrupt which is set internally 
through the program is set. This interrupt 
can then call upon an ISR (interrupt service 
routine). This subroutine then dumps out 
the contents of all the possible registers 
that can be read out. These registers must 
then be written into the system memory by 

Either SS or BP interrupts can occur. 
Because both use the same initial ISR, the 
ISR will differentiate between the two by 
testing for a specific data pattern that 
accompanies the breakpoint/single-step 
data through the FIFO. One way was to 
test for a specific external condition code 
but that was determined to be inflexible 
since a specific condition code needed to 
be dedicated for this task. Instead, two 
words are written into the CPU registers. 
These two registers must be reserved for 
breakpoint/single-step operation. In this 
example, RO and R1 are reserved. 
Register R1 is the mask that is 'AND'd 
with RO which is written from the FIFO to 
produce the Z (zero) flag that is tested. 
See Figure 1 for the data format that is 
written into the FIFO and CPU register RO. 

The BP state continues with its program 
by reading out the contents of some 
registers to the host interface bus. Note 
the usage of the FIFO to read out the 
contents of the register to the ADD bus. 
BP reads out only the input and output 
registers that can be read as source to the 

PAC1000 user-configurable microcontroller. 

the user to use in his monitor program. SS 
is useful for checking that every cycle is 
executing correctly. 

On the other hand, BP is the method of 
interrupting the program at a specific 
program location. This allows the program 
in the PAC1000 to run in real-time system 
conditions. This breakpoint is passed to 
the PAC1000 through the FIFO instead of 
having a fixed address through the program. 
BP is useful for intermittently checking the 
execution of the program. 

There is no preference on which method is 
the best. Generally, it is determined by the 
situation. If the system designer doesn't 
trust their own system in the beginning of 
debug, then they will use SS. After the 
system becomes more debugged, 
breakpoint is needed occasionally. 

HD bus. Whereas, SS reads out the CPU 
registers as well as the input and output 
registers to ADD. 

Not all the registers can be read out or if 
at all with difficulty. CPU registers as was 
illustrated by this program was read out 
using the FIFO. However, the user could 
have individually read out each register. 
Unfortunately, there would have been a lot 
of overhead program space taken. The 
stack cannot be read out because the 
contents of the stack would affect the 
program flow. The interrupt mask register 
and interrupt pending register cannot be 
read out or to the CPU. Future PAC1000 
versions may support extra functions to 
allow the user to more easily access the 
internal registers. 

In summary, the single-step program dumps 
out the following registers to the ADD bus: 
CPU registers R31-RO, DIR, AIR, ACH, 
ACL, IIR, and BC. Whereas, the breakpoint 
program dumps out the tollowing registers 
to the HD bus: DIR, AIR, AOR, ACH, ACL, 
IIR, and BC. 

WAFERSCALE INTEGRATION, INC. 4·83 



PAC1000 - Application Note 009 

Analysis of 
Program 

Figure t. Host 
to PACtOOO 
Commands 
(Via the FIFO) 

This single program incorporates essentially 
two programs. One for breakpoint and one 
for single-step. To differentiate between the 
two programs since they use the same 
interrupt INT6, the data in register RO is 
tested upon and the corresponding action 
is taken. If Z is true, then breakpoint will 
occur, else single-step will occur. See 
BREAKPOINT/SINGLE-STEP algorithm 
Figure 2. 

Note that the Interrupt Jump Table is 
located at h'OOS' through h'OQf'. The 
PAC1000 interrupt vector from the internal 
interrupt jumps to these individual 
locations. In addition, note that neither 
conditional nor unconditional jumps were 

allowed to be executed when either the 
breakpoint or the single-step interrupts 
occurred. This also applies to other 
interrupts. The delay interval from the time 
of interrupt to executing the interrupt is 
two cycles. See Figure 3 for the timing 
relationship of interrupt to the beginning 
of execution of the interrupt service 
routine (ISR). 

The single-step subroutine utilizes the 
FIFO to externally address the CPU dual
port registers. The usage of the FIFO in 
conjunction with loops reduces the size of 
the control store. However, the contents of 
the FIFO must be empty before using it. 

-t+------ HD[15:0) -------~ 

LEGEND: 

U: User-Defined 
X: Test Bit 
AlU: Breakpoint Address or User-Defined 

HADS = FICD: The flag to indicate that the contents are 
data FICD=O or a command FICD=1. 

HAD[4:0] = The B address to the CPU register file which in this case is register RO. 

HD[1S:13] = User-defined. 

HD[12] = Test bit to differentiate between breakpoint and single-step. 
HD12=O for breakpoint and HD12=1 for single-step. 

HD[11:10] = User-defined. 

HD[9:0] = Breakpoint Address or for single-step user-defined. 

4-84 WAFERSCALE INTEGRATION, INC. 



Figure 2. 
BreakpDint! 
Single-step 
RDwchart 

I'AC1000 - Application Note 009 

WAFERSCALE INTEGRATIO~ INC. 4-IJ5 

__________ u_ ••• _. ___ • __ ~ ____ ~ ____ ~~ _____ -



PAC1000 - Application Note 009 

Figure 2. 
Breakpoint! 
Single-Step 
Flowchart 
(Cont.) 

4-B6 WAFERSCALE INTEGRATION, INC. 



Figure 3. 
Sequence of 
Events for 
Interrupt Timing 

CK 

CPC 

CPC 

Perform INT6 occurs. 
addition Perform 
R2:= R2 + Rl. addition 

BP register 
was previously 
loaded with 
h'07a' 

Select single
step Interrupt 
for INT6. 

R3:= R3 + Rl. 

INT6 occurs 
and CPC will 
jump to h'07e' 

INT61s 
latched and 
pending. 
Perform 
addition 
R4:= R4 + Rl. 

INT61s 
latched and 
pending. 
Perform 
addition of 
RS:= RS + Rl. 

PAC1000 - Application Note 009 

INT6 vector 
occurs to 
change CPC. 
Push return 
address of 
h'07c' to stack. 

INT6 vector 
occurs to 
change CPC. 
Push return 
address of 
h'07f' to stack. 

Note: CPC Is the name from the simulator PACSIM for currently executing 
program counter. 

/*****************************************/ 
/* BP and S8 linker file 04/03/89 */ 
/* David Fong Rev. 1.0 */ 
/* bpss.ml */ 
/*****************************************/ 

place main, int, intserv, init, single; /* place the segments */ 
load main, int, intserv, init, single; /* load the .mal files */ 

locate in it , h'OOO' ; 
locate intserv , h'008' 
locate main , h'050' 
locate int , h'lOO' ; 
locate single, h'200' 

end ; 

/* locate the init file */ 
/* locate the interrupt vectors */ 
/* locate the main file */ 
/* locate the ISR */ 

/* locate the single files */ 

/*********************************/ 
/* INITIALIZATION 04/03/89 */ 
/* David Fong Rev. 1.0 */ 
/* init.mal */ 
/*********************************/ 

segment init ; 

external mainl 

SETMODE h'OOl' , OUT h'0002' /* switch to interrupt mode */ 
ENABLE INT6 , OUT h'OOOl' 
JMP mainl , OUT h'OOOO' ; /* jump to main program */ 

end 

WAFERSCALE INTEGRATION, INC. 4-87 



PACtOOO - Application Note 009 

/**********************************/ 
/* Main program 04/03/89 */ 
/* David Fong Rev. 1.0 */ 
/* main. mal */ 
/**********************************/ 

segment main ; 

entry mainl 

mainl 

/************************************************/ 
/* BEGIN MAIN PROGRAM */ 
/************************************************/ 

/* initialize registers */ 

Rl := h'lOOO' , OUT h'0050' ;/* the twelveth bit Rl.12 
/* IF Z=l (which means Rl.l2 = 0 ) THEN run breakpoint 
/* ELSE run single-step program */ 
R2 := h'OO02' OUT h'005l' 
R3 := h'OO03' OUT h'0052' 
R4 := h'OO04' OUT h'0053' 
R5 := h'0005' OUT h'0054' 
R6 := h'OO06' OUT h'0055' 
R7 := h'0007' OUT h'0056' 
R8 .- h'0008' OUT h'0057' 
R9 := h'OO09' OUT h'0058' 
RIO .- h'OOOa' OUT h'0059' 
Rll := h'OOOb' OUT h'005a' 
R12 := h'OOOc' OUT h'005b' 
Rl3 := h'OOOd' OUT h'005c' 
R14 := h'OOOe' OUT h'005d' 
R15 := h'OOOf' OUT h'005e' 
Rl6 := h'OOlO' OUT h'005f' 
Rl7 := h'OOll' OUT h'0060' 
Rl8 := h'0012' OUT h'006l' 
Rl9 := h'OOl3' OUT h'0062' 
R20 := h'00l4' OUT h'0063' 
R2l := h'0015' OUT h'0064' 
R22 := h'OOl6' OUT h'0065' 
R23 := h'0017' OUT h'0066' 
R24 .- h'00l8' OUT h'0067' 
R25 := h'OOl9' OUT h'0068' 
R26 := h'OOla' OUT h'0069' 
R27 := h'OOlb' OUT h'006a' 
R28 .- h'OOlc' OUT h'006b' 
R29 := h'OOld' OUT h'006c' 
R30 := h'OOle' OUT h'006d' 
R3l .- h'OOlf' OUT h'006e' 

ACH := R3l , OUT h'006f' ; 
ACL := RO , OUT h'0070' ; 
AOR .- Rl I OUT h'007l' ; 
DOR .- Rl5 , OUT h'0072' ; 
BC := R7 , OUT h'0073' ; 

4·88 WAFERSCALE INTEGRATION, INC. 

tests for BP/SS*/ 
program */ 



PAC1000 - ApplicatiDn NDte 009 

/* all input registers are initialized to zero from RESET */ 

/* to integrate two different programs 1. BREAKPOINT 2. SINGLE-STEP*/ 
/* The result of masking RO with R1 is used to differentiate */ 
/* between BP and SS. */ 
/* IF Z = 1 Breakpoint; ELSE Z = 0 Single-Step */ 

/***************** READ IN FIFO AND TEST FOR BP/SS ********************/ 
gO: JMPC FICD gO , OUT h'0074' ; /*check that the fifo contents is data 
LDBPD , RDFIFO , OUT h'007S'; /* FIFO was loaded with h'O 00 007a' */ 
/* first 0 is FICD ; 00 is B address ; 0 is the test bit ; */ 
/* 07a is the EPROM breakpoint address. */ 
/* Load loop counter with same data read from FIFO : LDLCD; */ 
/* the data written into the CPU is the same as the CPU output bus */ 

AND R1 RO , OUT h'0076' ; /* the Z flag is tested in the next cycle */ 
JMPC Z bO , OUT h'0077' ; 
/* select single-step interrupt */ 
ESS , OUT h'0078' ; 
JMP cO , OUT h'0079' ; /* skip breakpoint routine */ 

/**************** BREAKPOINT ***************************************/ 
/* perform alu operations till interrupt comes */ 
bO: R2:= R2 + R1 , OUT h'007a' ; /* breakpoint on this address h'07a' 
R3 := R3 + R1 , OUT h'007b' ; 
R4 := R4 + R1 , OUT h'007c' ; /* breakpoint interrupt comes here */ 
/* return from ISR to here */ 
eO : JMP eO , OUT h'007d'; /* loop forever ; end of breakpoint */ 

/*************** SINGLE-STEP **************************************/ 
cO: RS:= RS + R1 , OUT h'007e' ; /* execute till interrupt comes *i 
R6 := R6 + R1 , OUT h'007f' ; /* interrupt should after here */ 

/* return from single-step ISR to here */ 
/* enable single-step interrupt and perform an operation */ 
ENABLE INT6 , R7 := R7 + Rl , OUT h'0080' ; /* the output for R2 */ 

/* should be h'1002' */ 
R8 := R8 + R1 , OUT h'0081' ; /* interrupt should come here */ 
/* return from single-step ISR to here */ 

fO : JMP fO , OUT h'0082' ; 
end ; 

/* loop forever */ 

/*********************************/ 
/*SINGLE-STEP SUBROUTINE 04/03/89*/ 
/* David Fong Rev. 1.0 */ 
/* single.mal */ 
/*********************************/ 

segment single ; 
entry single1 ; 

single1 
/* read out the registers from the ALU */ 
/* use the addressing scheme from the FIFO */ 

WAFERSCALE INTEGRATION, INC. 4-89 



PAC10DO - Application Note 009 

SETCON h'OlO' , OUT h'2000' ; /* set ADD bus to output */ 
/* to read out AOR to ADD */ 

/* loop four times to address the 32 registers */ 

FOR 3 , OUT h'200l' ; 

/* FIFO should already be full */ 

fO JMPC FIIR fO , OUT h'2002' ; /* loop till FIFO is full*/ 

/* check that the first value in the FIFO is a data */ 
fl JMPC FICD fl , OUT h'2003' ; 

/* loop eight times to empty the FIFO */ 
FOR 7 , OUT h'2004' ; 

/* use the FIFO as an address pointer */ 
/* the data is not needed; write the data back to CPU */ 
/* and output the CPU output to AOR */ 
/* the default CPU instruction is add which adds zero and */ 
/* the address pointed by the FIFO which is the B address */ 

RDFIFO , alu src = zb , ybus_sel = y_aoreg , 
OUT h'2005' ;-
ENDFOR , OUT h'2006' 

ENDFOR , OUT h'2007' ; 

/* read out 
MOV AOR DIR 
MOV AOR AIR 
MOV AOR ACH 
MOV AOR ACL 
MOV AOR IIR 
MOV AOR BC 

the source registers to 
OUT h'2008' /* 0000 
OUT h'2009' /* 0000 
OUT h'200a' /* OOlf 
OUT h'200b' /* 0000 
OUT h'200c' /* 0000 
OUT h'200d' /* 0007 

ADD */ 
should 
*/ 
*/ 
*/ 
*/ 
*/ 

RET , OUT h'200e' ; /* return to ISR 6 */ 

end 

/*********************************/ 
/* INTERRUPT JUMP TABLE 04/03/89*/ 
/* David Fong Rev. 1.0 */ 
/* intserv.mal */ 
/*********************************/ 

segment intserv ; 
entry int_serv ; 

come out next cyle */ 

external into,intl,int2,int3,int4,int5,int6,int7 

int_serv 
JMP into OUT h'OO08' 
JMP intl OUT h'OO09' 
JMP int2 OUT h'OOOa' 
JMP int3 OUT h'OOOb' 

4-IIJ WAFERSCALE INTEGRATION, INC. 



PACfOOO - ApplicatiDn NDte 009 

JMP int4 OUT h'OOOc' 
JMP int5 OUT h'OOOd' 
JMP int6 OUT h'OOOe' 
JMP int7 OUT h'OOOf' 

end 

/********************************************************/ 
/* Interrupt Service Routines 04/03/89 */ 
/* David Fong Rev. 1.0 */ 
/* int.mal */ 
/********************************************************/ 

segment int ; 
entry into ,int1 int2, int3 , int4 , int5 , int6 , int7 
external single1 ; 

into 
/* clear all the external interrupts */ 
CLI h'OOf' , OUT h'0100' 
RET , OUT h'0101' ; 

int1 
/* clear all the external interrupts */ 
CLI h'OOf' , OUT h'0102' 
RET , OUT h'0103' ; 

int2 
/* clear all the external interrupts */ 
CLI h'OOf' , OUT h'0104' 
RET , OUT h'0105' ; 

int3 
/* clear all the external interrupts */ 
CLI h'OOf' , OUT h'0106' 
RET , OUT h'0107' ; 

int4 
/* mask that interrupt */ 
DISABLE INT4 , OUT h'0108' 
RET , OUT h'0109' ; 

int5 
/* mask that interrupt */ 
DISABLE INT5 , OUT h'010a' 
RET , OUT h'010b' ; 

int6 /* Breakpoint and Single-step ISR */ 
/* mask that interrupt */ 
DISABLE INT6 , OUT h'010c' /* mask interrupt 6 INT6 */ 
CLI h'Off' , OUT h'010d'; /* clear all interrupts */ 

/************** TEST for Breakpoint/Single-Step **************/ 
AND R1 RO , OUT h'010e' ; 
JMPC Z aO , OUT h'OlOf' ; /* if Z=l then breakpoint,Z=O SS */ 

WAFERSCALE INTEGRATION, INC. 4-91 

----------



PAC1000 - Application Note 009 

CALL singlel , OUT h'0110' i/* call single step program */ 
JMP bO , OUT h'OIII' i /*finish SS ISR , return to main progr */ 

aO: SET HDOE HDSELO , OUT h'0112' ; /* set HD to output */ 
/* select DOR to HD output bus*/ 

bO: 

/* move out the source registers to HD */ 

MOV DOR DIR 
MOV DOR AIR 
MOV DOR AOR 
MOV DOR ACH 
MOV DOR ACL 
MOV DOR IIR 
MOV DOR BC 

OUT h'0113' 
OUT h'0114' 
OUT h~0115' 
OUT h'0116' 
OUT h'0117' 
OUT h'0118' 
OUT h'0119' 

RET, OUT h'Olla' 

/* 
/* 
/* 
/* 
/* 
/* 
/* 

0000 should 
0000 */ 
0001 */ 
001f */ 
0000 */ 
0000 */ 
0007 */ 

come out next cycle*/ 

int7 
/* mask that interrupt */ 
DISABLE INT7 , OUT h'Olla' 
RET , OUT h'Ollb' ; 

end 

.T 
RCCCCCCCCIIIIIIIIIIIICWRHHHHHHHHHHHHHHHHHHHHH~ 
ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDDD 
S7654321076543210TTTTBBB1111119876543210DDDDDDDDDDDDDDDDDDDDDD 
E 3210 543210 5432101111119876543210 
T 543210 
B 

TIME 
1 00000000000000000000011100000000000000000000000000000000000000 
2 10000000000000000000011100000000000000000000000000000000000000 

# bpsO.stl file for single-stepping 
# write the single-step mode bit hdl2=1 

20 10000000000000000000000100010000000000000000000000000000000000 
21 10000000000000000000011100010000000000000000000000000000000000 

# write into FIFO for single-step 
55 1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ 
56 1000000000000000000000010000000000000000000000ZZZZZZZZZZZZZZZZ 
57 1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ 
58 1000000000000000000000010000000000000000000001ZZZZZZZZZZZZZZZZ 
59 1000000000000000000001110000000000000000000001ZZZZZZZZZZZZZZZZ 
60 1000000000000000000000010000000000000000000010ZZZZZZZZZZZZZZZZ 
61 1000000000000000000001110000000000000000000010ZZZZZZZZZZZZZZZZ 
62 1000000000000000000000010000000000000000000011ZZZZZZZZZZZZZZZZ 
63 1000000000000000000001110000000000000000000011ZZZZZZZZZZZZZZZZ 
64 1000000000000000000000010000000000000000000100ZZZZZZZZZZZZZZZZ 
65 1000000000000000000001110000000000000000000100ZZZZZZZZZZZZZZZZ 
66 1000000000000000000000010000000000000000000101ZZZZZZZZZZZZZZZZ 
67 1000000000000000000001110000000000000000000101ZZZZZZZZZZZZZZZZ 
68 1000000000000000000000010000000000000000000110ZZZZZZZZZZZZZZZZ 
69 1000000000000000000001110000000000000000000110ZZZZZZZZZZZZZZZZ 
70 1000000000000000000000010000000000000000000111ZZZZZZZZZZZZZZZZ 
71 1000000000000000000001110000000000000000000111ZZZZZZZZZZZZZZZZ 

4-92 WAFERSCALE INTEGRATION, INC. 



95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 

# write 
240 
241 
242 
243 
244 
245 
246 
247 

PAC1000 - Application Note 009 

1000000000000000000000010000000000000000001000ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001000ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001001ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001001ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001010ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001010ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001011ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001011ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001100ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001100ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001101ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001101ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001110ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001110ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000001111ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000001111ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010000ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010000ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010001ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010001ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010010ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010010ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010011ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010011ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010100ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010100ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010101ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010101ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010110ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010110ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000010111ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000010111ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011000ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011000ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011001ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011001ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011010ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011010ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011011ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011011ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011100ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011100ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011101ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011101ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011110ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011110ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000011111ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000011111ZZZZZZZZZZZZZZZZ 

into FIFO second time around for single-step 
1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000000000ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000000000ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000000001ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000000001ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000000010ZZZZZZZZZZZZZZZZ 
1000000000000000000001110000000000000000000010ZZZZZZZZZZZZZZZZ 
1000000000000000000000010000000000000000000011ZZZZZZZZZZZZZZZZ 

WAFERSCALE INTEGRATION, INC. 4-93 

-----------,--'-~-, 

II 



PAC1000 - Application Note 009 

248 1000000000000000000001110000000000000000000011ZZZZZZZZZZZZZZZZ 
249 1000000000000000000000010000000000000000000100ZZZZZZZZZZZZZZZZ 
250 1000000000000000000001110000000000000000000100ZZZZZZZZZZZZZZZZ 
255 1000000000000000000000010000000000000000000101ZZZZZZZZZZZZZZZZ 
256 1000000000000000000001110000000000000000000101ZZZZZZZZZZZZZZZZ 
257 1000000000000000000000010000000000000000000110ZZZZZZZZZZZZZZZZ 
258 1000000000000000000001110000000000000000000110ZZZZZZZZZZZZZZZZ 
259 1000000000000000000000010000000000000000000111ZZZZZZZZZZZZZZZZ 
260 1000000000000000000001110000000000000000000111ZZZZZZZZZZZZZZZZ 
285 1000000000000000000000010000000000000000001000ZZZZZZZZZZZZZZZZ 
286 1000000000000000000001110000000000000000001000ZZZZZZZZZZZZZZZZ 
287 1000000000000000000000010000000000000000001001ZZZZZZZZZZZZZZZZ 
288 1000000000000000000001110000000000000000001001ZZZZZZZZZZZZZZZZ 
289 1000000000000000000000010000000000000000001010ZZZZZZZZZZZZZZZZ 
290 1000000000000000000001110000000000000000001010ZZZZZZZZZZZZZZZZ 
291 1000000000000000000000010000000000000000001011ZZZZZZZZZZZZZZZZ 
292 1000000000000000000001110000000000000000001011ZZZZZZZZZZZZZZZZ 
293 1000000000000000000000010000000000000000001100ZZZZZZZZZZZZZZZZ 
294 1000000000000000000001110000000000000000001100ZZZZZZZZZZZZZZZZ 
295 1000000000000000000000010000000000000000001101ZZZZZZZZZZZZZZZZ 
296 1000000000000000000001110000000000000000001101ZZZZZZZZZZZZZZZZ 
297 1000000000000000000000010000000000000000001110ZZZZZZZZZZZZZZZZ 
298 1000000000000000000001110000000000000000001110ZZZZZZZZZZZZZZZZ 
299 1000000000000000000000010000000000000000001111ZZZZZZZZZZZZZZZZ 
300 1000000000000000000001110000000000000000001111ZZZZZZZZZZZZZZZZ 
325 1000000000000000000000010000000000000000010000ZZZZZZZZZZZZZZZZ 
326 1000000000000000000001110000000000000000010000ZZZZZZZZZZZZZZZZ 
327 10000000000000000000000100000000000000000lOOOlZZZZZZZZZZZZZZZZ 
328 100000000000000000000lllOOOOOOOOOOOOOOOOOlOOOlZZZZZZZZZZZZZZZZ 
329 lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOlOOlOZZZZZZZZZZZZZZZZ 
330 lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOOlOZZZZZZZZZZZZZZZZ 
331 lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOlOOllZZZZZZZZZZZZZZZZ 
332 lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOOllZZZZZZZZZZZZZZZZ 
333 10000000000000000000000lOOOOOOOOOOOOOOOOOlOlOOZZZZZZZZZZZZZZZZ 
334 lOOOOOOOOOOOOOOOOOOOOlllOOOOOOOOOOOOOOOOOlOlOOZZZZZZZZZZZZZZZZ 
335 10000000000000000000000lOOOOOOOOOOOOOOOOOlOlOlZZZZZZZZZZZZZZZZ 
336 100000000000000000000lllOOOOOOOOOOOOOOOOOlOlOlZZZZZZZZZZZZZZZZ 
337 10000000000000000000000lOOOOOOOOOOOOOOOOOlOllOZZZZZZZZZZZZZZZZ 
338 100000000000000000000lllOOOOOOOOOOOOOOOOOlOllOZZZZZZZZZZZZZZZZ 
339 10000000000000000000000lOOOOOOOOOOOOOOOOOlOlllZZZZZZZZZZZZZZZZ 
340 100000000000000000000lllOOOOOOOOOOOOOOOOOlOlllZZZZZZZZZZZZZZZZ 
365 10000000000000000000000lOOOOOOOOOOOOOOOOOllOOOZZZZZZZZZZZZZZZZ 
366 100000000000000000000lllOOOOOOOOOOOOOOOOOllOOOZZZZZZZZZZZZZZZZ 
367 10000000000000000000000lOOOOOOOOOOOOOOOOOllOOlZZZZZZZZZZZZZZZZ 
368 100000000000000000000lllOOOOOOOOOOOOOOOOOllOOlZZZZZZZZZZZZZZZZ 
369 10000000000000000000000lOOOOOOOOOOOOOOOOOllOlOZZZZZZZZZZZZZZZZ 
370 100000000000000000000lllOOOOOOOOOOOOOOOOOllOlOZZZZZZZZZZZZZZZZ 
371 lOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOllOllZZZZZZZZZZZZZZZZ 
372 100000000000000000000lllOOOOOOOOOOOOOOOOOllOllZZZZZZZZZZZZZZZZ 
373 10000000000000000000000lOOOOOOOOOOOOOOOOOlllOOZZZZZZZZZZZZZZZZ 
374 100000000000000000000lllOOOOOOOOOOOOOOOOOlllOOZZZZZZZZZZZZZZZZ 
375 10000000000000000000000lOOOOOOOOOOOOOOOOOlllOlZZZZZZZZZZZZZZZZ 
376 100000000000000000000lllOOOOOOOOOOOOOOOOOlllOlZZZZZZZZZZZZZZZZ 
377 10000000000000000000000lOOOOOOOOOOOOOOOOOllllOZZZZZZZZZZZZZZZZ 
378 100000000000000000000lllOOOOOOOOOOOOOOOOOllllOZZZZZZZZZZZZZZZZ 
379 10000000000000000000000lOOOOOOOOOOOOOOOOOlllllZZZZZZZZZZZZZZZZ 
380 100000000000000000000lllOOOOOOOOOOOOOOOOOlllllZZZZZZZZZZZZZZZZ 

4·94 WAFERSCALE INTEGRATIO~ INC. 



.T 

TIME 

PAC1000 - Application Note 009 

RCCCCCCCCIIIIIIIIIIIICWRHHHHHHHHHHHHHHHHHHHHH~ 
ECCCCCCCCOOOOOOOONNNNSRDDDDDDDDDDDDDDDDDAAAAAADDDDDDDDDDDDDDOD 
S7654321076543210TTTTBBBlllll19876543210DDDDDDDDDDDDDD00000000 
E 3210 543210 5432101111119876543210 
T 543210 
B 

1 00000000000000000000011100000000000000000000000000000000000000 
2 10000000000000000000011100000000000000000000000000000000000000 

20 10000000000000000000000100000000011110100000000000000000000000 
21 10000000000000000000011100000000011110100000000000000000000000 
53 100000000000000000000111ZZZZZZZZZZZZZZZZ0000000000000000000000 
# bps1.stl uses Z=l for breakpoint ISR; HD12=0; 

*********The bpsO.out file ********** 

*********************************************************************** 

o U T PUT TAB L E 

PACSIM Ver. 1. 09 Tue Apr 04 15:43:42 1989 
*********************************************************************** 

CCC 0000 A AAAA AAAA FFFIB PPP LLL BBBB 
PPP CCCC 0 DODD 0000 IIINR CCC CCC CCCC 
CCC 1173 0 DODD RRRR CIOTP 173 173 1173 
173 51: : E 1173 1173 DRRRT 1· • 1· • 51: : 
1· • : : 40 51: : 51: : E :40 :40 : : 40 
:40 18 : : 40 : :40 Q 8 8 18 
8 2 18 18 U 2 

2 2 L 
TIME 

1 000 0000 0 0000 0000 00001 000 000 0000 
2 000 0000 0 0000 0000 00001 000 000 0000 
3 000 0002 0 0000 0000 01000 001 000 0000 
4 001 0001 0 0000 0000 01000 002 000 0000 
5 002 0000 0 0000 0000 01000 050 000 0000 
6 050 0050 0 0000 0000 01000 051 000 0000 
7 051 0051 0 0000 0000 01000 052 000 0000 
8 052 0052 0 0000 0000 01000 053 000 0000 
9 053 0053 0 0000 0000 01000 054 000 0000 

10 054 0054 0 0000 0000 01000 055 000 0000 
11 055 0055 0 0000 0000 01000 056 000 0000 
12 056 0056 0 0000 0000 01000 057 000 0000 
13 057 0057 0 0000 0000 01000 058 000 0000 
14 058 0058 0 0000 0000 01000 059 000 0000 
15 059 0059 0 0000 0000 01000 05a 000 0000 
16 05a 005a 0 0000 0000 01000 05b 000 0000 
17 05b 005b 0 0000 0000 01000 05c 000 0000 
18 05c 005c 0 0000 0000 01000 05d 000 0000 
19 05d 005d 0 0000 0000 01000 05e 000 0000 
20 05e 005e 0 0000 0000 01000 05f 000 0000 
21 05f 005f 0 0000 0000 01000 060 000 0000 
22 060 0060 0 0000 0000 01100 061 000 0000 
23 061 0061 0 0000 0000 01100 062 000 0000 

WAFERSCALE INTEGRATION, INC. 4·95 

II 



PAC1DDD - Application Note DDS 

24 062 0062 0 0000 0000 01100 063 000 0000 
25 063 0063 0 0000 0000 01100 064 000 0000 
26 064 0064 0 0000 0000 01100 065 000 0000 
27 065 0065 0 0000 0000 01100 066 000 0000 
28 066 0066 0 0000 0000 01100 067 000 0000 
29 067 0067 0 0000 0000 01100 068 000 0000 
30 068 0068 0 0000 0000 01100 069 000 0000 
31 069 0069 0 0000 0000 01100 06a 000 0000 
32 06a 006a 0 0000 0000 01100 06b 000 0000 
33 06b 006b 0 0000 0000 01100 06e 000 0000 

***Due to the length of the file, the rest of the output is not shown *** 

***********The bps1.out file ************* 

*********************************************************************** 

a U T PUT TAB L E 

PAC S I M Ver. 1.09 Man Apr 03 13:08:15 1989 
*********************************************************************** 

CCC 0000 M CC DI BBB B HHHH LLL BBBB 
PPP ecce D CC ON RRR R DDDD CCC ecce 
ccc 1173 a 73 RT EEE P 1173 173 1173 
173 51: : E .. RAAAT51:: 1· • 51:: 
1· • : : 40 40 KKKE : : 40 :40 :: 40 
:40 18 RRR Q 18 8 18 
8 2 EEE U 2 2 

GGG L 
973 ... . . . 
840 

TIME 
1 000 0000 0 00 00 000 1 0000 000 0000 
2 000 0000 0 00 00 000 1 0000 000 0000 
3 000 0002 0 00 00 000 0 0000 000 0000 
4 001 0001 0 00 00 000 0 0000 000 0000 
5 002 0000 0 00 00 000 0 0000 000 0000 
6 050 0050 0 00 00 000 0 0000 000 0000 
7 051 0051 0 00 00 000 0 0000 000 0000 
8 052 0052 0 00 00 000 0 0000 000 0000 
9 053 0053 0 00 00 000 0 0000 000 0000 

10 054 0054 0 00 00 000 0 0000 000 0000 
11 055 0055 0 00 00 000 0 0000 000 0000 
12 056 0056 0 00 00 000 0 0000 000 0000 
13 057 0057 0 00 00 000 0 0000 000 0000 
14 058 0058 0 00 00 000 0 0000 000 0000 
15 059 0059 0 00 00 000 0 0000 000 0000 
16 05a 005a 0 00 00 000 0 0000 000 0000 
17 05b 005b 0 00 00 000 0 0000 000 0000 
18 05e 005e 0 00 00 OQO 0 0000 000 0000 
19 05d 005d 0 00 00 000 0 0000 000 0000 
20 05e 005e 0 00 00 000 0 007a 000 0000 
21 05f 005f 0 00 00 000 0 007a 000 0000 
22 060 0060 0 00 00 000 0 007a 000 0000 
23 061 0061 0 00 00 000 0 007a 000 0000 

4-96 WAFERSCALE INTEGRATION, INC. 



PAC1000 - Application Note 009 

24 062 0062 0 00 00 000 0 007a 000 0000 
25 063 0063 0 00 00 000 0 007a 000 0000 
26 064 0064 0 00 00 000 0 007a 000 0000 
27 065 0065 0 00 00 000 0 007a 000 0000 
28 066 0066 0 00 00 000 0 007a 000 0000 
29 067 0067 0 00 00 000 0 007a 000 0000 
30 068 0068 0 00 00 000 0 007a 000 0000 
31 069 0069 0 00 00 000 0 007a 000 0000 
32 06a 006a 0 00 00 000 0 007a 000 0000 
33 06b 006b 0 00 00 000 0 007a 000 0000 
34 06e 006e 0 00 00 000 0 007a 000 0000 
35 06d 006d 0 00 00 000 0 007a 000 0000 
36 06e 006e 0 00 00 000 0 007a 000 0000 
37 06f 006f 0 00 00 000 0 007a 000 0000 
38 070 0070 0 00 00 000 0 007a 000 0000 
39 071 0071 0 00 00 000 0 007a 000 0000 
40 072 0072 0 00 00 000 0 007a 000 0000 
41 073 0073 0 00 00 000 0 007a 000 0000 
42 074 0074 0 00 00 000 0 007a 000 0007 
43 075 0075 0 00 00 07a 0 007a 000 0007 
44 076 0076 0 00 00 07a 0 007a 000 0007 
45 077 0077 0 00 00 07a 1 007a 000 0007 
46 07a 007a 0 00 00 07a 0 007a 000 0007 
47 07b 007b 0 00 01 07a 0 007a 000 0007 
48 ODe OOOe 0 00 01 07a 0 007a 000 0007 
49 10e 010e 0 00 00 07a 0 007a 000 0007 
50 10d 010d 0 00 00 07a 0 007a 000 0007 
51 10e 010e 0 00 00 07a 0 007a 000 0007 
52 10f 010f 0 00 00 07a 0 007a 000 0007 
53 112 0112 1 00 00 07a 0 OOOf 000 0007 
54 113 0113 1 00 00 07a 0 OOOf 000 0007 
55 114 0114 1 00 00 07a 0 0000 000 0007 II 56 115 0115 1 00 00 07a 0 0000 000 0007 
57 116 0116 1 00 00 07a 0 1000 000 0007 
58 117 0117 1 00 00 07a 0 OOlf 000 0007 
59 118 0118 1 00 00 07a 0 0000 000 0007 
60 119 0119 1 00 00 07a 0 0000 000 0007 
61 11a 011a 1 00 00 07a 0 0007 000 0007 
62 07e 007e 1 00 00 07a 0 0007 000 0007 
63 07d 007d 1 00 00 07a 0 0007 000 0007 
64 07d 007d 1 00 00 07a 0 0007 000 0007 
65 07d 007d 1 00 00 07a 0 0007 000 0007 
66 07d 007d 1 00 00 07a 0 0007 000 0007 
67 07d 007d 1 00 00 07a 0 0007 000 0007 
68 07d 007d 1 00 00 07a 0 0007 000 0007 
69 07d 007d 1 00 00 07a 0 0007 000 0007 
70 07d 007d 1 00 00 07a 0 0007 000 0007 

WAFERSCALE INTEGRATION, INC. 4-111 



4-98 WAFERSCALE INTEGRATION, INC. 



~~~~-------

Programmable System™ Device
Application Brief 007

WAFERSCALE INTEGRATION, INC. Hardware Interlacing the PACtOOO as a
Micro Channel Bus Controller

Abstract

MeA Signal
Descriptions

By Arye Zik/lk

This application brief describes how to use
the PAC1000 High-Performance User
Configurable Microcontroller as a Micro
Channel (MCA) bus controller.

The MCA bus uses asynchronous and
synchronous procedures to control and
transfer data on the bus. The data is
transferred from a master board to a slave

The bus signals described in this chapter
are the most important and essential
signals to understand the application brief.
The buffers needed per each signal are
summarized in Table 2. The timing relations
between the signals is drawn in Figure 1.

AO-A23
Address bits generated by the bus master
to address memory and 10 slaves attached
to the bus. The address bits are unlatched
and must be latched by the slaves using
either the trailing edge of ADL or the
leading edge of CMD signals.

00-015
Data bits, valid during the period CMD
signal is low. The data is driven by
bidirectional three-state drivers.

ADL
Address Decode Latch, driven by the bus
master. The signal is used by the slaves
to latch valid address and status bits.

CD_DS16
Card Data Size 16, driven by 16 bit slaves
to provide an Indication to the master
about their data bus width. Eight-bit slaves
do not drive this line.

DS_16_RTN
Data Size 16 Return. A Signal generated
by the PS/2 system by AND-ing all the
CD_DS16 signals received from all the
slave connected to the bus. The signal is
provided by the PS/2 system to the bus
masters.

board, or from the PS/2 mother-board (the
system) to a slave. This application brief
describes the use of the PAC1000 on a
master board and on a slave board.

In both applications the PAC1000 is
handling the synchronous functions, the
asynchronous functions are implemented
by external PALs.

MiiO
MemoryllO, driven by the bus master and
indicates a memory or 10 cycle. MilO is
latched by the slave at the leading edge
of CMD Signal.

so, S1
Status bits, driven by the bus master and
indicate the start of read or write cycle.
The status bits are latched by the slaves
using the leading edge of CMD.

CMD
Command Signal is driven by the bus
master and defines the period data is valid
on the data bus. The leading edge of
CMD is used to latch the unlatched
signals: AO-23, MilO, SO, and S1. The
trailing edge of CMD indicates the end of
the bus cycle.

CD_SIDB'
Card Select Feedback. When a bus master
addresses a memory or an 10 slave, the
addressed slave drives CD_SFDBK active
as a positive acknowledgement of its
presence at the specified address.

CD_CHRDY
Channel Ready. This line is pulled inactive
(not ready) by a slave to allow additional
time to complete a bus cycle.

CHRDYRTN
Channel Ready Return. Generated on the
PS/2 system board by AND-ing the
CD_CHRDY signals driven by all the
slaves. The signal is provided by the
system to the mastr driving the bus.

WAFERSCALE INTEGRATION, INC. 4·99

PAC1000 - Application Brief 001

MCA Signal
Descriptions
(Cont.)

Figure 1. Micro
'Channel Basic
Transfer Cycle

Table 1. The
States Generated
MRD, fDandft

MCA Timing
Parameters

ARBO-ARB3
Arbitration Bus priority signals. These four
signals represent the priority levels for
masters seeking control on the bus. The
four signals represent 16 priority levels,
level 15 represents the lowest priority,
level 0 represents the highest priority and
belongs to the PS/2 system.

ARB/INT
Arbitrate/Grant. When high, this signal
indicates an arbitration cycle is in process.
When low, indicates that a master has
been granted. ARB/GNT is driven by the
system.

PREEMPT
Used by the arbitration bus masters to
request the bus.

BURST
Indicates that the master requests the bus
for transferring a block of data.

IRO
Interrupt Request is used to signal the
system that a device requires attention.

CHRESET
Channel Reset, active high reset signal
generated by the system and sent to all
the boards on the bus.

1 0 40 80 120 160 I 200 nsec
I I

~~-gRESS !-I 1 ______ ----,9 IJJJJJJJJ E
I
I

STATUS n 2 18

I ~--------------~
1~3 ____ ~1~7-------------

CD CHRDY 15 111
CD DS16 +--------.1 4 __________ ---'1 10

CD SFDBK
I
I
I

r"'ll-0 -----

WRDATA JJJJJJJJJJJJL--16 ____________ ~
: 17 14 r

RD DATA JJJJJJJJJJJJJJJJJJJJJJI12 I

MilO
0
0
1
1

I
1

SO
0
1
0
1

The PAC1000 as a bus master transfers
data on the MCA bus with a control
sequence based on the following events:

I;J The add res bus and M/IO signal
become valid.

I;J The status signals SO and S1 are valid
10 nsec minimum after (1).

S1
1 I/O write.
0 I/O read.
1 Memory write.
0 Memory read.

I;J ADL is valid 45 nsec minimum after (1).

I;J In response to the unlatched address
decode, the selected slave responses
with CD_SFDBK (and CD_DS16 if it
is a 16 bit slave). The maximum
allowable response time of the slave is
55 nsec maximum from (1).

4·100 WAFERSCALE INTEGRATION, INC.

MCA Timing
Parameters
(Cont.)

Operation Modes

I;J In response to (1), the slave responds
with CD_CHRDY. The maximum
allowable response time is 60 nsec
maximum from (1).

I;J Write data appears on the bus for the
write cycle. The data has to be valid
before the leading edge of CMD.

I;J CMD becomes active and ADL inactive
typically 85 nsec minimum after (1).
The unlatched signals on the bus are
latched.

I;J The status signals become inactive
after they were latched.

The PAC1000 working as a MeA
controller can handle the following
functions:

I;J Bus signal generator.

I;J Card setup.

The bus arbitration logic and signal
decoding are pure asynchronous functions
and implemented by two PALs.

Bus Slave Board
On a bus slave board the PAC1000 may
be used to implement the POS registers.

The Programmable Option Select (POS)
registers main objectives are:

I;J Eliminate switches from the board.

I;J Positively identify any card connected
to the system.

The POS registers on a PS/2 board replace
the switches by using software writeable
registers. There are eight POS registers,
each one is 8-bit wide. The POS registers
are addressed by CD_SETUP signal and
by address bits AO-2. The POS registers
are located at I/O addresses 100H to
107H. The'eight POS registers are located
in the PAC1000 and control the board's
functions.

The POS registers' interface to the MCA
is a decoder which decodes the sytem's
access to the registers and generates the
RD and WR signals to the PAC1000.

The address decoder and slave logic are
most of the circuitry needed for the slave
functions. The decoder has to decode the
address on the bus and to respond with
CD_SFDBK, CD_CHRDY and CD_DS16
signals. The address decoder might be for
memory, 110 or for both. The decoder's

PAC1000 - AppllcatiDn Brief 007

I;J The address bus becomes inactive
after the address was latched.

I;J In response to the address change, the
slave's unlatched responses
(CD_CFDBK AND CD_DS16) are
invalid.

I;J System stays in this state until
CD_CHRDY is ready.

I;J The slave places data on the bus in
response to a read.

I;J The address and M/IO are valid for the
next cycle.

I;J CMD goes inactive, ending the cycle.

size depends on the number of address
bits it is decoding. The decoder's CS
outputs are latched by the leading edge of
CMD and are stable until the end of the
bus cycle. The decoder generates the
feedbacks to the bus, CD_SFDBK,
CD_DS16 and CD_CHRDY. These
Signals are not latched and are very time
critical. The decoder responds with these
outputs at 55 nsec maximum after the
address is stable.

Bus Master Board
A master board is a board with a CPU
which requests the MCA bus. When
granted by the PS/2 system, the master
board is driving the bus signals.

On a master board the PAC1000 can
handle the following functions:

I;J POS registers (similar to the bus slave
board).

I;J Generation of the bus signals

The other functions of a bus controller are
implemented by PALs because the
functions are pure asynchronous.

The bus signals are generated by the
PAC1000 after the CPU is granted to be a
bus master. The process of getting the
bus is done in the following sequence:

I;J The CPU is requesting the bus through
one of the interface lines with the
PAC1000.

I;J The PAC1000 is setting the bus
request line which is buffered by
drivers and sent to the MCA system.

I;J The system gets the request, and sets
a bus arbitration cycle which is handled
by the bus arbiter circuit (a PAL).

WAFERSCALE INTEGRATION, INC. 4-101

PAC1000 - Application Brief 007

Operation Modes
(Cont.)

PAC1000 in a
Micro Channel
Slave Board

Table 2. Driver
Requirement for
PSI2 Signals

r:J The bus arbiter sends the PAC1000 the
signal MASTER which tells the board
that the bus was granted and the board
may drive the bus.

r:J The PAC1000 signals the CPU that it is
the bus master.

r:J The PAC1000 is enabling the address
and data drivers, and the CPU drives
the address and data to the bus.

r:J The PAC1000 generates all the bus
signals in the right sequence and the
right timing requirements as defined by
the MCA bus standard.

ICRO M
C HANNEL

DATAO-7

ADDRO-3

CD_SETUP

Sii,S1

Signal Name

A(0-23)
D(0-15)
ADL
CD_DS16
DS_16RTN
MIlO
SO, S1
CMD
CD_SFDBK
CD_CHRDY
CHRDYRTN
ARB(0-3)
PREEMPT
BURST
ARB/GNT

I
I
I PAC1000
I SLAVE BOARD
I
I

DATAO-7

ADDRO-3

pas RD_POS
REGISTER

INTERFACE WFLPOS

CS

4·102 WAFERSCALE INTEGRATION, INC.

r:J After the CPU is done, it releases the
bus request. The PAC1000 translates it
to the right signal sequence on the
MCA bus and releases the bus buffers.

On the bus master board the PAC1000
may implement a lot of control functions
and save glue logic.

For example:
The PAC1000 can handle several DMA
operations on the board, or be used as a
high speed controller for various
applications.

PAC1000

pas
REGISTERS

(REGISTER BANK)

107-0

07-0

HADS-O

RD

WR OC1S-0

cs
ADD1S-0

HAD1S-0

INT3-0

CC7-0

Driver Type

TS 24 mA (TS = Three-State)
TS 24 mA
TS 24 mA
TP 6 mA (TP = Totem Pole)
BD 24 mA (BD = Bus Driver)
TS 24 mA
TS 24 mA
TS 24 mA
TP 6 mA
TP 6 mA
BD 24 mA

LATCHED
CONTROL
SIGNALS
TO THE
BOARD

OC 24 mA (OC = Open Collector)
OC 24 mA
OC 24 mA
BD 24 mA

PACtOOO as a
Micro Channel
Master

I
I

MICRO II PAC1000
CHANNEL BOARD

I
I

DO-D15
DATA .. • BUFFERS

AO-A23

ADDRESS
LATCHES

CMD

ADL

So

S1

MIlO DECODER
AND

SBHE SIGNAL
DRIVERS

CHRESET (PAL AND
DRIVERS)

CHRDYRTN

DS16 RTN

IRQ

ARBO-3

PREEMPT
BUS

BURST ARBITER
(ONE PAL)

ARBIGNT

DATAO-7

ADDRO-3

POS
REGISTER

CD_SETUP INTERFACE

So,S1

PAC1000 - Application Brief 007

DO-D15

DIR_BUF

EN_BUFF

AO-A23

DILBUF

EN_BUFF

PAC1000
CMD CPU

OC9
ADL

OCB

So
OC7

S1
OC6

MIlO
OC5

SBHE
OC4

CHRESET INT3-0
CC3

ADD15-0
CHRDYRTN

CC2
DS16 RTN

BUS CCl
IRQ

MASTER

OCl

OC15-10

BUS REQUEST
OCO

LATCHED
CONTROL

107-0 ~ rJg~~~~E
MASTERISLAVE

REGISTER

CCO
OUTPUTS)

HD7-0
ADDRO-3

HAD5-0
RD_POS

RD
WLPOS

WR

Cs
Cs

WAFERSCALE INTEGRATION, INC. 4·103

4-104 WAFERSCALE INTEGRATION, INC.

Programmable System™ Oevice
WAFERSCALE INTEGRATION, INC. Application Note 003

Scope of This
Application Note

The SAM
Solution

SAM+PLUS
System Overview

Figure 1.
SAM448 Block
Diagram

High-End SAM Applications Using
Microassembler Design Entry

This Application Note describes the SAM
microsequencer design entry process utilizing
ASM microassembler input syntax and
provides illustrations of all basic concepts
needed to execute a SAM microassembler
design. Basic microassembler functionality
is reviewed, its utilization of SAM internal
resources, as well as user convenience
features. Cascading of multiple SAM devices
to address large design problems is also

The SAM (Stand-Alone Microsequencer)
User-Configurable device provides a unique
solution for high-performance control
functions. The combination of a microcoded
engine with a branch EPLD front-end gives
SAM the ability to handle high-complexity
tasks while still achieving high clock rates.
The basic SAM architecture is shown in
Figure 1.

The SAM+PLUS PC-based design
development system provides an efficient
mechanism for entry and automatic
compilation of SAM designs. Interactive
functional simulation is provided in
SAM+PLUS to enable rapid verification of
design flows and operation. PC-compatible
programming hardware is also available to
allow device programming right at the

NRESET

INPUTS
(8)

PlD

BRANCH
CONTROL

lOGIC

EPLD
768 PRODUCT

TERMS

ZERO

covered. To illustrate a practical application
of SAM, a graphics controller application is
presented in detail along with annotated
ASM source code.

The reader is referred to WSI's SAM448
Data Sheet for details concerning device
architecture and performance. A general
knowledge of SAM device architecture is
assumed as background for this
Application Note.

Programming the SAM device for a
particular application involves specifying
multi-way branch transition specifications
for the branch EPLD, and instruction and
output strings for the required number of
microcode words in SAM's EPROM control
memory. (See the SAM448 Data Sheet for
further information). This task is eased by
the use of the SAM+PLUS development
system.

designer's desk. Given the fact that control
logic is frequently difficult to design, and
particularly prone to design alterations, the
ability to enter, compile, simulate and test
a design in rapid fashion results in an
effective design system.

SAM+PLUS actually supports two design
entry methods, one using ASMILE state
machine input language, the other ASM

MICROCODED ENGINE

MICROCODE
EPROM

448 x 36
BITS

OUTPUTS (16)

ClK

WAFERSCALE INTEGRATION, INC. 4-105

SAM448 - Application Note 003

SAM+PLUS
System Overview
(Cont.)

Figure 2.
SAM+PLUS
Block Diagram

Choosing
Appropriate
Applications
for SAM

microassembler format, as shown in
Figure 2. SAM ASMILE input is described
in WSI Application Note #4, referenced
below. This Application Note will focus on
microassembler input.

Microassembler design entry begins with
the creation of a design file on the PC
using any standard text editor. Next, the
SAM Design Processor (SDP) takes the
ASM input file, automatically minimizes
transition equations and generates the
device programming code. A Utilization
Report is generated which reports total
resources consumed, absolute memory
assignments of microassembler instructions
and compiler-assigned pinouts. A standard
JEDEC file is generated to allow
programming of the device right on
the PC.

The SAM architecture supports high
performance synchronous control
applications. It is important to realize that
all outputs from SAM are asserted
synchronously with respect to the device

4·106 WAFERSCALE INTEGRATION, INC.

For larger designs, multiple SAM devices
may be horizontally cascaded to increase
the number of available control outputs.
The microassembler supports the
specification of a single source file for a
multiple-SAM application, and automatically
generates the separate JEDEC files for the
programming of each of the devices at
compile time. The JEDEC file, which
represents the actual template of the
specific application implemented, may be
used as input to the SAMSIM (SAM
SIMulator) program which provides
functional simulation capability. Hard-copy
output of simulation results may be
obtained, as well as on-line "logic
analyzer" viewing capability. Multi-chip
applications using horizontal cascading is
also supported by the functional simulator.

clock, and as such SAM implements a
classic Moore machine architecture.
Similarly, as can be seen in the SAM Data
Sheet, all inputs must obey a required set
up time (Tsu) relative to the Clock input.

Choosing
Appropriate
Applications for
SAM (Cont.)

In order to obtain greater than 16 outputs
in a SAM design, the concept of horizontal
cascading may be used. Similarly, if greater
control store (microcode) depth is required,
multiple SAM devices may be vertically
cascaded, sharing a common control output
bus. Both cascading approaches may be
simultaneously used for problems requiring
increased capacity in both dimensions.

In order to determine whether a given
application will be suitable for SAM, the

SAM Application • Operating frequency up to specified
Guidelines SAM's Fmax

Microassembler
Input Overview

• Synchronous operation

• Up to eight control inputs (exclusive of
Clock and nRESET)

• Up to sixteen control outputs (single
device)

Shown in Figure 3 is an example of the
structure of a SAM ASM input file. This file
may be created using any standard text
editor. It is important that the text editor is
used in non-document mode in order to
prevent the insertion of any spurious
format control characters which may be
detected by the ASM microassembler
parser at compile time as input errors.
Other than this constraint, input is
essentially free-form and may be structured
for readability and overall clarity.

The case of characters inserted into the
ASM file is significant, so be sure that
case significance is maintained. For
example, the names "RWB" and "rwb"
are not the same.

Comments may be inserted freely into the
source code, delimited by leading and
trailing percent signs (%).

The basic format of a SAM ASM file
consists of the following sections:

[HEADER]
PART
INPUTS
OUTPUTS
[PINS]
[DEFAULT]
[MACROS]
[EQUATIONS]
PROGRAM
END$

SAM448 - Application Note 003

following "rules-of-thumb" derived from the
device architecture and specifications are
useful. These guidelines are for single
SAM implementations. Cascaded SAM
configurations may expand output count
and memory depth substantially. For
example, SAM + PLUS supports horizontal
cascading of up to 8 SAM448 devices, for
a total output count of 128 lines!

• Up to 256 primary microcode locations

• Up to 64 of 256 primary microcode
locations may be multi-way (external
conditional) branches (single device)

• Transition expressions reducible to four
product terms per IF ... THEN expression

Applications which satisfy this list will in all
likelihood fit into a single SAM device.

Those sections noted within brackets are
optional and may be omitted if not required.

Header
The HEADER contains user-specified
design identifier information. It may
include design title, designer's name, date,
revision information, etc.

Part
The PART section of the ASM file specifies
the target SAM device or devices the
application is intended for. By specifying
AUTO, the user permits the SAM+PLUS
software to pick the optimal device or set
of devices for the application based upon
minimal pin count. Multiple devices may
be invoked for designs requiring a larger
number of total outputs than a single SAM
device can supply, i.e., the SAM+PLUS
software supports horizontal cascading
(see SAM Data Sheet) of devices at a
source code level. This cascading
capability may be invoked by utilizing
AUTO with a design requiring high output
count as noted, or may be explicitly
defined by supplying a list of devices after
PART which the design is to be fitted into.
As shown in the example below, two
SAM448 devices are going to be used in
this application, and have been explicitly
entered. Devices may be cascaded
horizontally up to a width of 128 outputs in
a single source code listing and simulated

WAFERSCALE INTEGRATION, INC. 4·107

SAM448 - Application Note 003

Microassembler
Input Overview
(Cont.)

as one large virtual SAM. Separate JEDEC
files are generated for each device to
support programming devices when design
is complete.

Inputs
The single INPUTS section of the ASM file
defines all external inputs into the design,
as well as any required user pin
assignments. Pin assignments are specified
by the format input_name @ pin_number.
Note that since in a horizontally cascaded
design all design inputs must be common,
there will never be more inputs specified
in a source file than are available in a
single SAM device.

Only user-defined inputs should appear in
the INPUTS section: the CLOCK and
nRESET inputs to SAM, being fixed
function pins, should not be included.

Outputs
The OUTPUTS section(s) of the ASM file
contains a list of all outputs from the
design as well as any pin assignments.
Pin assignment syntax is similar to input
pin assignments. If multiple SAMs are
specified in the PART: section of the
design file (horizontal cascading), there
will be multiple OUTPUTS sections in the
ASM file, one for each SAM component. If
AUTO parts selection is used for a
cascaded design, a single OUTPUTS
declaration may be used to specify all
required outputs. At compile time, outputs
will be assigned to the various devices
automatically.

Output names must be unique across all
OUTPUTS section declarations.

AUTO parts selection may not be used in
conjunction with user-defined pin
assignments.

Pins
The PINS section allows mapping of
external variable names onto internal
variable names for convenience. For
example, a user may have an active-low
signal in his system he has called IWR
which enters into his transition
specifications in his SAM design. To keep
the logical sense of such specifications
clear, it is wise to transform all active-low
external signals into equivalent active-high
names internally, e.g., IWR = WRint.

4-108 WAFERSCALE INTEGRATION, INC.

Default
The DEFAULT section allows the
specification of a default output combination
to be used whenever the output string is
not explicitly defined in an instruction. In a
single SAM device specification the syntax
is simply DEFAULT: [00 ... On], where 00
through On represents a binary string
corresponding to the n outputs specified
for the SAM design. Default output values
are matched to output pins in the order
they appear in the OUTPUTS declaration.
If multiple OUTPUTS sections appear in a
cascaded SAM application, the DEFAULT
specifier is increased in width to
accommodate this change as shown in the
example. Only one DEFAULT section may
appear per ASM file.

Macros
The MACROS section allows the user to
define string equivalences to be substituted
universally throughout his ASM source
code listing. For example, the user may
wish to redefine instruction mnemonics for
efficiency or clarity, or may wish to redefine
binary output strings with alphanumeric
labels. For example,

REG1TOALU = "0101111001100000"

The left hand side of this expression is
undoubtedly easier to remember and type
repeatedly into a listing than the right.

Imbedded strings are not macro substituted.
Macro instances must be delimited by
white space to be recognized. For example,
if a macro substitution is defined as

REG = "0110"

the string 0110 would be substituted into

[REG ALU OP) CONTINUE;

but not into

[BREG4 ALU OP) CONTINUE;

Equations
The EQUATIONS section of the ASM file is
available for the definition of intermediate
equations to be used later in the design.
Entry of transition specifications may be
eased by defining intermediate variables
initially, and then invoking them during the
design. For example,

EventClk = 11 */14 + 13*16*/17

might be defined in the EQUATIONS

Microassembler
Input Overview
(Cont.)

END$

Multi·Way
Branch Syntax

section, and then utilized later in an
IF ... THEN ... ELSE statement or
statements, such as

IF EventClk THEN [] JUMP START;

Program
The PROGRAM section of the ASM file
actually specifies the sequence of
instructions to be executed and associated
outputs required from the SAM device.
The format of a basic instruction
specification in the PROGRAM section is

label: [output-spec] opcode;

label is an optional alphanumeric string
which may be used to identify the
instruction in branching expressions, etc.

Every SAM ASM source file must
terminate with the END$ terminator.

The syntax for multi-way branching within
the SAM ASM source file is by way of a
complex expression of the form

IF (expression1) THEN (instruction1)
ELSEIF (expression2)

THEN (instruction2)
ELSEIF (expression3)

THEN (instruction3)
ELSE (instruction4)

For example, a complex instruction of this
type might look like

IF 10*11*15*/17 + 13*14 + 16*/10 + 113*/11 THEN
[1111001110010000] CALL
label1 RETURNTO label2;

ELSEIF 13*/12 + 15*16 + 110*14*11 THEN
(1011000011100011) LOADC
255 GOTO label3;

ELSEIF 14*16*10 THEN [) PUSH 15
GOTO label4;

ELSE (1111111100000001) PUSHI
GOTO label5;

Each expression may be a function of any
of the eight SAM external inputs containing
up to four product terms.

If more than four product terms are needed
to define a transition from one state to

SAM448 - Application Note 003

[output-spec] represents an actual numeric
string of the correct length (in either binary,
hexadecimal or decimal notation), a Macro
substitution with numeric equivalence (as
defined above), or the special character Z
which signifies tri-state output pins.
Hexadecimal and decimal strings are
defined by a string of valid digits of correct
length, followed by H or D respectively. In
horizontally cascaded applications, all
outputs are specified in the single output
spec within brackets. The output-spec
defined in the DEFAULT statement will be
utilized whenever the output-spec has
length zero, i.e., [] implies default
output-spec.

another, it is possible to trade-off product
term counts for number of multi-way
branch destinations. For example, it is
perfectly valid to enter

IF (expression1) THEN [] JUMP START;
ELSEIF (expression2) THEN [) JUMP START;
ELSEIF(expression3)THEN []JUMP NEXT1;
ELSE [] JUMP NEXT2;

Here, expression1 and expression2 could
each be four product term expressions,
resulting in eight product terms which can
be used to specify the transition to START.

Note the inherent priority scheme in the
above statements. The SAM architecture
physically implements such a priority
scheme in the Branch Control Block: the
first occurrence of a valid expression
results in the execution of the corresponding
instruction. If the first three expressions
are all false, then instruction4 will be
subsequently executed.

Up to 64 such IF ... THEN ... ELSE
constructs may be implemented in a single
SAM program, along with 192 conventional
instructions without IF ... THEN ... ELSE.
The result is a total microcode memory
capacity of (64 x 4) + 192 = 448 words.

WAFERSCALE INTEGRATION, INC. 4-109

SAM44B - Application Note 003

Figure 3.
Circle Drawing
Routine

This Is the Circle Drawing Design

% Circle Drawing Routine for SAM %

PART: SAM448 SAM448

% SAM Control Output Lines
% A & B Fields (2901) - 8
% 10- I 8 (2901) - 9
% OE (2901) - 1
% Done - 1
% Cn (2901) - 1
% Wr - 1
% ALE - 1
% Rd - 1
% RegRd - 1

INPUTS: CO,Cl,C2,CmdAtt,SIgn

Inputs
CO-2 - 3
CmdAtt - 1
Sign - 1

OUTPUTS: AO ,Al ,A2 ,A3 ,BO,Bl ,B2 ,B3, 12,11,10,15,14,13,18,17
OUTPUTS: IS,Rd,Wr,ALE,RegRd,OE,Cn,Done

DEFAULT: [0000 0000 0000 0000 1110 0100]

MACROS:

CONT - "CONTINUE"

% A & B Fields"

RadlusReg _ '0001"
Regl - "0001"
Reg2 - "0010"
Reg3 - "0011"
Reg4 - "0100"
Reg5 - "0101"
RegS - "0110"
Reg7 - "0111"
Reg8 - "1000"
Reg9 - "1001"
Regl0 - "1010"
Regll - "lOll"
Reg12 - "1100"

% Source Control

AQ - "000"
AB - "001"
ZQ - ·010·
ZB - "011"
ZA = "100"
DA - '101"
DQ = '110"
DZ - "111"

% Function %

ADD = '000"
SUBR - "001'
SUBS - '010'
OR = '011'
AND - '100"
NOTRS _ "101"
EXOR - '110"
EXNOR - '1 1 1 '

%

4-110 WAFERSCALE INTEGRATION, INC.

" %

" " " " %
%

" "

Figure 3.
Circle Drawing
Routine (CDnt.)

----------- - ---- ----- ----

SAM448 - Application Note 003

% Destination Control %

QREG _ "000"
NOP - "001"
RAMA _ "010"
RAMF _ "011"
RAMQD - "100"
RAMD _ "101"
RAMQU - "110"
RAMU _ "111"

% Bus Cycle %

MemWr - "10001"
RegWr _ "10011"
ALEcyc - "11100"
NoCyc _ "11000"

% Mlsc %

en - .,.
nen - ·0·
Done - .,.
nDone - ·0·

EQUATIONS:

PROGRAM:

% Processor Initializes: %

OD:[] JUMP WAIT;
% 0 Load Coloreg, Radius, XO, YO %
% 0 Issues DraWClrc Command %

WAIT: IF CmdAtt·CO'·Cl'·C2' THEN [] JUMP DOlT ;
ELSE [] JUMP WAIT

% Move parameters from buffer to 2901 Internal registers
% Radius -> Regl (Y) %

DOlT: [Regl Regl AQ ADD NOP RegWr nCn nDone] CONT
[Regl Regl AQ ADD NOP RegWr nCn nDone] CONT ;

% XO -> Reg2 %

[Reg2 Reg2 AQ ADD NOP NoCyc nCn nDone CONT
[Reg2 Reg2 AQ ADD NOP RegWr nCn nDone CONT
[Reg2 Reg2 AQ ADD NOP RegWr nCn nDone CONT

% YO -> Reg3 %

[Reg2 Reg2 AQ ADD NOP NoCyc nCn nDone CONT
[Reg3 Reg3 AQ ADD NOP RegWr nCn nDone CONT
[Reg3 Reg3 AQ ADD NOP RegWr nCn nDone CONT

% Load constants to 2901 registers %
% o -> Reg" (X) (AND 0 & anything gives 0) %

[Reg" Reg" ZB AND RAMF NoCyc nCn nDone] CONT

%

WAFERSCALE INTEGRATION, INC. 4-711

SAM448 - Application Note 003

Figure 3. Circle
Drawing Routine
(Cont.)

% 3 -> Reg5 (d) %
% Put • l' In Reg5 %

[Reg4 Reg5 ZA ADD RAMF NoCyc Cn nDone] CONT

% Shift Reg5 Up one to give 2 %

Reg5 Reg5 ZB ADD RAMU NoCyc nCn nDone] CONT

% Whl Ie we have It, preload 2 Into Reg9 %

Reg5 Reg9 ZA ADD RAMF NoCyc nCn nDone] CONT

% Increment Reg5 to get 3 (whewl I) %

[Reg5 Reg5 ZA ADD RAMF NoCyc Cn nDone CONT

% 6 -> Rega (const) - Just shift 3 up one! %
% Load 1 In CREG to set-up for next Instruction %

[Reg5 Rega ZA ADD RAMU NoCyc nCn nDone] LOADC 10

% 10 -> Reg9 (const) %
% Start by shifting Reg9 (now contains 2) up twice to get a %
% Reg6 (Temp register) %

ClrcPlx: [Reg4 Reg6 ZA ADO RAMF NoCyc nCn nOone] CONT ;
Reg1 Reg11 ZA ADO RAMF NoCyc nCn nOone] CALL TRANS

% Reflect X to -X %

Reg4 Reg6 ZA SUBS RAMF NoCyc Cn nOone] CONT ;
Reg1 Reg11 ZA ADO RAMF NoCyc nCn nOone] CALL TRANS

% Swap X & y %

[Reg1 Reg6 ZA ADO RAMF NoCyc nCn nOone] CONT ;
[Reg4 Reg11 ZA ADO RAMF NoCyc nCn nOone] CALL TRANS

% Swap -X & y %

[Reg4 Reg11 ZA SUBS RAMF NoCyc Cn nOone] CONT ;
[Reg1 Reg6 ZA ADO RAMF NoCyc nCn nOone] CALL TRANS

% Reflect Y %

[Reg1 Reg11 ZA SUBS RAMF NoCyc Cn nOone] CONT ;
[Reg4 Reg6 ZA ADO RAMF NoCyc nCn nOone] CALL TRANS

% Swap -Y & X %

[Reg1 Reg6 ZA SUBS RAMF NoCyc Cn nOone] CONT ;
[Reg4 Reg11 ZA ADD RAMF NoCyc nCn nOone] CALL TRANS

% Reflect -X, -y %

Reg4 Reg6 ZA SUBS RAMF NoCyc Cn nOone] CONT ;
Reg1 Reg11 ZA SUBS RAMF NoCyc Cn nOone] CALL TRANS

4-112 WAFERSCALE INTEGRATION, INC.

Figure 3. Circle
Drawing Routine
(Cont.)

SAMUS - Application Note 003

" Swap -x & -y "
[Regl Regs .ZA SUBS RAMF NoCyc Cn nDone] CONT ;
[Reg4 Regll ZA SUBS RAMF NoCyc Cn nDone] CALL TRANS
[] RETURN;

" This routine Translates relative to xO,yO and runs the memory
update cycle"

TRANS: [Reg3 Regll AB ADD RAMF NoCyc nCn nDone] CONT ;
Reg2 RegS AB ADD RAMF NoCyc nCn nDone] LOADC 100
Regll Reg12 ZA ADD RAMF NoCyc nCn nDone] CONT ;

" Multiply y by 1024 "

MULT1024: Regll Regll ZA ADD RAMU NoCyc nCn nDone
LOOPNZ MULT1024

" Subtract y to get effective multiply by 1023 "

DONE1024: Reg12 Regll AB SUBR RAMF NoCyc Cn nDone] CONT

" Calculate address"

[RegS Regll AB ADD RAMF NoCyc nCn nDone] CONT

" Write pixel In buffer RAM"

RUNBUS: [Regll Regll ZA ADD RAMF ALEcyc nCn nDone] CONT ;

ENDS

SHIFTRS:

[Regll Regll ZA ADD RAMF Memwr nCn nDone] RETURN;

[RegS RegS ZA ADD RAMU NoCyc nCn nDone]
LOOPNZ SHIFTRS ;

" Increment RegS twice to get 10 "

[Regs RegS ZA ADD RAMF NoCyc Cn nDone CONT
[RegS RegS ZA ADD RAMF NoCyc Cn nDone CONT

" Initializing done I - Begin algorithm"
"d - 3 - 2*radlus Initially"

[Regl Rege ZA ADD RAMU NoCyc nCn nDone CONT
[Reg5 Rege AB SUBS RAMF NoCyc Cn nDone CONT

" If x >- y branch to finish up "

OUTERLOOP: [Reg4 Regl AB SUBS RAMF NoCyc Cn nDone] CONT
IF Sign THEN [] JUMP DrawEnd ;

"Write plxela, translate origin & reflect to al I octants"

ELSE [] CALL ClrcPlx

" Test d sign, If >_ 0, use POS "

[Reg5 Reg5 ZA ADD RAMF NoCyc nCn nDone] CONT
IF Sign THEN [] JUMP POS ;

WAFERSCALE INTEGRATION, INC. 4-113

~-------- ---~~-~~-~-~-~ ---- -~---~--~~--------

SAM44B - Application Note 003

Figure 3. Circle
Drawing Routine
(Cont.)

% compute d - d + 4°x + S %
% First 4 0 x %

ELSE [Reg4 RegS ZA ADO RAMU NoCyc nCn nDone 1 CONT
RegS RegS ZA ADO RAMU NoCyc nqn nDone 1 CONT ;

% Add S %

RegS RegS AB ADO RAMF NoCyc nCn nDone
RegS Reg6 AB ADO RAMF NoCyc nCn nDone

% Compute d - d + 4°(x-y) + 10 %
% First x-y %

CONT ,
JUMP IncX

POS: [Reg1 RegS ZA ADO RAMF NoCyc nCn nDone 1 CONT ;
Reg4 RegS AB SUBS RAMF NoCYc Cn nDone 1 LOADC 10

% Then 4°(x-y) "

SHIFTRS: RegS RegS ZA ADO RAMU NoCyc nCn nDone 1
LOOPNZ SHIFTRS ;

% Add 10 %

Reg9 RegS AB ADO RAMF NoCyc nCn nDone
RegS Reg6 AB ADO RAMF NoCyc nCn nDone

% Decrement y %

CONT
CONT

[Regl Regl ZA SUBR RAMF NoCyc nCn nDone 1 CONT

% Increment X and repeat til X - Y %

IncX: [Reg4 Reg4 ZA ADD RAMF NoCyc Cn nDone 1 JUMP OUTERLOOP

% Last pixel write / ends octant with x - Y (45 degrees) %

DrawEnd: [] Call ClrcPlx ;
[1 LOADC lSD ;

% Issue Done to processor for lS clocks %

DoDone: Regl Regl ZA ADO RAMF NoCyc nCn Done]
LOOPNZ DoDone ONZERO WAIT;

%'End Main Routine %

% This routine reflects the pixel Into all octants and cal Is a
routine which translates the pixel relative to xO,yO,
calculates the pixel address as addr - x + yOl023 and runs the
memory cycle. %

4-114 WAFERSCALE INTEGRATION, INC.

SAM
Microassembler
Opcodes

An Actual
Design Example

The basic SAM device instruction set
accessible by the user through the
microassembler consists of:

CONTINUE
Execute next sequential instruction

JUMP (labeI1)
Jump to instruction specified @ label1

LOOPNZ (labeI1) ONZERO (labeI2)
If Count Register (CREG) is zero,
execute instruction @ label2, else
decrement CREG and execute
instruction @ label1. Useful for one
instruction timing and delay loops.

DECNZ GOTO (labeI1)
Decrement the CREG if non-zero;
execute instruction @ label1.

POPC GOTO (labeI1)
Top-of-Stack is popped into CREG and
the instruction @ label1 is executed.

POPXORC (constant1) GOTO (labeI1)
Top-of-Stack is popped, bitewise XORed
with (constant1) and loaded to CREG.
Instruction @ label1 is next executed.
Useful for comparing Top-of-Stack to a
value by subsequently testing CREG
zero-flag using a LOOPNZ instruction.

LOADC (constant1) GOTO (labeI1)
CREG is loaded with the value
constant1, and instruction @ label1 is
next executed.

RETURN
Address of the next instruction is
popped from Top-of-Stack and
subsequently executed. Used to
terminate subroutines.

Now that the basic syntax and elements of
a SAM ASM file have been covered, a
detailed example of a SAM application will
be presented: a high-performance Graphics
Controller. In this particular application,
two SAM devices will be horizontally
cascaded to generate the control outputs
for a graphics subsystem. This subsystem
provides graphics primitive drawing
capability for a larger microprocessor
based system.

Figure 4 shows a typical 8086
microprocessor-based system. Beneath the
Address/Data Buses is the graphics
subsystem to be controlled by the SAM
devices, the primary elements of which are

SAM448 - Application Note 003

PUSHLOADC (constant1) GOTO (labeI1)
CREG value is pushed onto the Stack
and CREG is reloaded with constant1.

PUSHI GOTO (labeI1)
The eight input lines are pushed onto
the Top-of-Stack and the instruction at
label1 is subsequently executed. May
be used to implement a "dispatch"
function in conjunction with a
subsequent RETURN instruction:
external inputs provide address of
next SAM instruction.

ANDPUSHI (constant1) GOTO (labeI1)
The eight input lines are bitwise
ANDed with constant1, the result is
pushed onto the Stack and the
instruction @ label1 is subsequently
executed. May be used to mask inputs
before loading to CREG or next
address.

CALL (labeI1) RETURNTO (labeI2)
Label2 is pushed onto the Stack, and
the instruction @ label1 is executed
next. Used for subroutines.

PUSH (constant1) GOTO (labeI1)
Constant1 is pushed onto the Stack
and the instruction @ label1 is next
executed.

The Branch Control Block of SAM is
invoked automatically by use of
IF ... THEN ... ELSE constructs in
conjunction with the above
instructions. This allows program flow
control based upon external inputs as
in conventional state machines and
multi-way branching in a single clock.

a 1 Megabyte high-speed static RAM video
frame buffer (giving individual pixel
addressing capability), five WS5901 bit
slice elements used to construct a 20 bit
ALU/data path engine, and two SAM
devices as previously mentioned to provide
overall control within the subsystem.

This basic graphics engine represents a
user-microcodeable arrangement which
can potentially support many primitive
graphic drawing operations such as line
drawing, polygon filling, drawing of conic
sections and others. For the purposes of
this example, a single primitive drawing
operation which draws circles of arbitrary
radius and origin into the frame buffer will

WAFERSCALE INTEGRATION, INC. 4·115

SAM448 - Application Note 003

An Actual
Design
Example
(Cont.,

Figure 4.
SAM448
Graphics Engine

be discussed. The basic concept behind
this algorithm will be discussed below.

In order to execute its role of controller for
this subsystem, the pair of SAM devices
must be able to execute the following
subfunctions

• Read Commands issued by main
microprocessor

• Transfer Parameters associated with
commands to Register File in WS5901's

• Initialize Constant Registers in WS5901's
to specified values for algorithm

• Compute values for pixels on circle as
function of specified Radius for first
octant [Assume circle origin = (0,0)]

• Translate x,y coordinates into RAM
addresses

DONE REGRD

SAM #1

4·116 WAFERSCALE INTEGRATION, INC.

• Reflect circle pixel coordinates into
remaining seven octants

• Translate pixel coordinates relative to
actual origin

• Perform Video Buffer write to all pixel
addresses specified

• Issue DONE interrupt to main processor

This activity is done independently of the
main microprocessor and frees it up to do
other tasks while the operation is performed.

These operations fall into two general
categories of controlling bus transfers
between various elements (Registers, ALU,
RAM, etc.) and sequencing computations
performed by the WS5901 ALU in generating
the pixel addresses to be set to draw the
required circle. The structure of the SAM
microassembler code shown above
generally follows this flow.

SYSTEM ADDR BUS
20

SYSTEM DATA BUS
18

SAM #2

CK

Circle Drawing
Algorithm
Overview

Figure 5. Circle
Symmetry
Exploited by
Bresenham

Figure 6. Circle
Drawing
Algorithm

SAM448 - Application Note 003

The sample algorithm to be implemented
in the SAM code to draw the circle is one
based upon a methodology developed by
Bresenham. In order to speed computation,
it exploits the fundamental symmetry of a

circle, by calculating the circle points in
the first octant (see Figure 5), and then
reflecting those coordinates into the other
seven octants. For a given pixel location
(x,y) , reflection involves drawing points

(-y,x) (y,x)

(-y,-x) (y,-x)

(x,-y) (-x,-y)

Procedure Circle (radius, value: Integer)

var x.Y,d : Integer ;

begin

X :- 0 ;
Y raduls;
d :- 3 -2 • radius

while x < Y do begin

ClrcleDraw (x,y.value);

If d < 0

then d :- d + 4 • + 6

else begin

d :- d + 4 • (x-y) + 10

y :- y -

end

X :- X + 1

end

If x - y then ClrcleDraw (x,Y. value)

end

WAFERSCALE INTEGRATION, INC. 4·117

SAM448 - Application Note 003

Circle Drawing
Algorithm
Overview
(Cont.)

Timing
Considerations

Figure 7.

(-x ,y) , (x.-y) , (-x.-y), as well as those points
with x and y swapped. In drawing the
points for a circle in the first octant, one
can easily see that, having just calculated
one of the pixel locations, there are only
two possible choices for the next pixel
location: increment x (horizontal move) and
increment x and y (diagonal move). The
trick is how to decide, based upon current
location, which of the two to pick next.

The entire derivation of the algorithm will
not be presented here. However, a

SAM timing analysis is straightforward, as
all times are relative to the synchronous
clock input. Tsu specifies minimum set-up
time for inputs to gain recognition at the
next clock edge, while Tco specifies clock
to-output delays for the user-configured
output pins. Output tri-state and enable
times are speced as Tcz, but are not
relevent in this particular application as
outputs are always enabled.

For this particular design example, the
SAM448-25-controlled graphics subsystem
is being driven by a 15 MegaHertz clock.
This implies a clock period of 66
nanoseconds. SAM control outputs will
reflect a Tco of approximately 18
nanoseconds, while inputs must obey a

complete discussion of the algorithm may
be found in Foley and Van Dam (1981),
referenced below. Suffice it to say, it is
obvious that the best match between
actual pixel coordinates and the ideal
circle points can be obtained by checking
an error term equal to the difference in
distance from the circle's center to each of
the two potential next pixel choices: the
sign of the term will indicate which point to
pick to obtain the best fit.

The basic algorithm implemented is shown
in Figure 6.

18 nanosecond set-up time (Tsu) relative to
the clock edge.

High-speed Static RAM will be used for
the video frame buffer for two reasons:
one is raw speed. The memory must be
fast enough to keep up with SAM's high
speed bus cycles. The second is that
SRAM requires no refresh cycles, unlike
DRAM. Thus more time is available to
perform buffer drawing functions: no time
is lost for refresh cycles.

Memory consists of CMOS SRAM
components organized 8K x 8 with an
access time of 45 nanoseconds, and a
minimum Write Pulse width of 30
nanoseconds. The CMOS WS5901 bit-

Primary SAM -
WSS901 Graphics
Controlled Timing

ow'" ~) :}

SAM OUTPUTS 3 ~~: i X
PREG OE ___ ---'f

A, B OUTPUTS 1

PREG DATA X X
WR \

WS5901 OUTPUTS ~

4-118 WAFERSCALE INTEGRATION, INC.

Timing
Considerations
(Cont.)

Example Program
Listing

Compiling the
Design

slices require a 30 nanosecond
propagation delay from A and B Register
Address inputs to valid Y output, and a 10
nanosecond set-up time prior to the Clock
high-to-Iow transition on A and B inputs. A
timing diagram is shown in Figure 7.

The bus cycle uses a two clock approach.
During the first cycle, the WS5901 will
generate a pixel address to be set, and
during the second cycle, the actual write
pulse will be generated by SAM to write
the frame buffer.

Operations performed entirely within the
WS5901 slices (register transfers, ALU
operations, etc.) are all executed in a

Figure 3 is a source listing of the basic
circle drawing process. The following
comments are worth noting before going
further:

• Two SAM devices are used in a
horizontal cascade configuration.

• Extensive MACRO definitions to ease
design entry and allow the use of user
and WS5901-specified mnemonics.

• Two subroutines, CircPix and Trans, are
invoked multiple times to draw the circle
pixels. CircPix reflects the pixels into all
octants of the circle as mentioned
above, while Trans translates the pixels
relative to the actual circle origin and
runs the memory update cycle. These

By convention, microassembler source
files are given the extension .ASM. This
file is called CIRC.ASM. Compilation of
this design involves invoking the
SAM+PLUS software and specifying ASM
microassembler input format. A variety of
runtime options for SAM+PLUS are
available, which provide special reporting
modes and logging simulation input and
output to a special file. For detailed
descriptions of the SAM+PLUS user
interface and options, see the SAM+PLUS
User's Manual. Compilation is an automatic
process resulting in the generation of
programming "object code" for the EPLD
and EPROM blocks on SAM. In this case,
two programming files wil be generated,
since two devices are required to implement

SAM448 - Application Note 003

single clock cycle. Note that Carry
Lookahead circuitry is employed with the
WS5901 slices to improve arithmetic
computation times, but is not explicitly
shown in the block diagram.

The algorithm below uses many of the
WS5901's operations, as well as many of
the internal addressing modes. In the
following listings, standard mnemonics
have been used for the various Source,
Destination, and Operation specifiers.
These control lines for the WS5901's are
all generated by the SAM devices. These
mnemonics, and resulting WS5901
functions, may be found in the WSI
WS5901 Data Sheet.

functions utilize the Stack and
subroutining resources on SAM.

• Since the display is assumed to be
1024 x 1024 pixels, x and y pixel
coordinates must be converted to SRAM
address locations by multiplying the
y coordinate by 1023 and adding the
x coordinate.

• The signal CmdAtt is an input to the
SAMs from the main processor, signaling
that all parameters are loaded to the
Parameter Registers, and that a circle
drawing operation should be executed.
Donelnt is a signal from SAM to the
processor, asserted when the drawing
operation is complete.

the design. These two files are given the
extensions .JD1 and .JD2 to distinguish
them. TheseJEDEC files are not intended
to be user readable (as with any object
code). Functional simulation uses these
programming files for its modeling of SAM
operation. An additional product of the
compilation is a single Report file
(extension -.RPT) which describes the
resources which have been used in the
SAM devices, pin assignments which have
been selected and absolute locations
within SAM's microcode assigned to the
instructions entered. Figure 8 shows key
portions of the CIRC.RPT report file.
Notice the assigned pinouts for the two
devices, as well as the substitution of
absolute addresses for logical labels.

WAFERSCALE INTEGRATION, INC. 4-119

SAM448 - Application Note 003

Figure 8. Report
File for Circle
Drawing Routine

SAM Design Processor Uti I Izatlon Report
Version 1.01 7/28/87 01:57:09 38.1
***** Design Implemented successfully

.X:7
This Is the Circle Drawing Design

% Circle Drawing Routine for SAM %

SAM448
.---------------.

RESERVED 28 RESERVED AO
Gnd 2 27 RESERVED Gnd
Gnd 3 26 RESERVED Gnd
Gnd 4 25 16 Gnd

CO 5 24 Rd CO
CLOCK 6 23 Wr CLOCK

Vcc 7 22 ALE Vcc
nRESET 8 21 GND nRESET

Cl 9 20 RegRd Cl
C2 10 19 OE C2

CmdAtt 11 18 Cn CmdAtt
Sign 12 17 Done Sign

RESERVED 13 16 RESERVED 17
RESERVED 14 15 RESERVED 18

***** DESIGN LISTING

PART:
SAM448 , SAM448

INPUTS:
CO, Cl, C2, CmdAtt, Sign

OUTPUTS:

SAM448
.---------------.

1 28 Al
2 27 A2
3 26 A3
4 25 BO
5 24 Bl
6 23 B2
7 22 B3
8 21 GND
9 20 12

10 19 11
11 18 10
12 17 15
13 16 14
14 15 13

AO, A 1, A2, A3, BO, B 1, B2, 83, I 2, I 1, I 0 , I 5 , I 'I , I 3, I 8 , I 7

4·120

OUTPUTS:
16, Rd, Wr, ALE, RegRd, OE, Cn, Done

PINS:

DEFAULT:
[000000000000000011100100J

PROGRAM:
00:

[000000000000000011100100J JUMP WAIT;
1920:
WAIT:

10:
DOlT:

20:

3D:

40:

50:

60:

IF CmdAtt • CO' • C1' • C2' THEN
[000000000000000011100100J JUMP DOlT;

ELSE
[000000000000000011100100J JUMP WAIT;

[000100010000000011001100J JUMP 20;

[000100010000000011001100J JUMP 3D;

[001000100000000011100000J JUMP 40;

[001000100000000011001100J JUMP 50;

[001000100000000011001100J JUMP 60;

[001000100000000011100000J JUMP 70;

WAFERSCALE INTEGRATION, INC.

Figure 8. Report
File for Circle
Drawing Routine
(Cont.)

SAM448 - Application Note 003

70:
[001100110000000011001100] JUMP 80;

80:
[001100110000000011001100] JUMP 90;

90:
[010001000111000111100000] JUMP 100;

100:
[010001011000000111100010] JUMP 110;

110:
[010101010110001111100000] JUMP 120;

120:
[010110011000000111100000] JUMP 130;

130:
[010101011000000111100010] JUMP 140;

140:
[010110001000001111100000] LOAOC 10 GOTO SHIFTR9;

150:
SHIFTR9:

[100110011000001111100000] LOOPNZ SHIFTR9 ONZERO
160:

[100110011000000111100010] JUMP
170:

[100110011000000111100010] JUMP
180:

[000101101000001111100000] JUMP
190:

[010101100010100111100010] JUMP
200:
OUTERLOOP:

[010000010010100111100010] JUMP
1930:

IF Sign THEN
[000000000000000011100100]

ELSE

170;

180;

190;

OUTERLOOP;

1930;

JUMP OrawEnd;

160;

[000000000000000011100100] CALL ClrePlx RETURN TO
210:

[010101011000000111100000] JUMP
1940:

220:

230:

240:

250:
POS:

260:

IF Sign THEN
[000000000000000011100100]

ELSE
[010001101000001111100000]

[011001101000001111100000] JUMP

[100001100010000111100000] JUMP

[011001010010000111100000] JUMP

[000101101000000111100000] JUMP

1940;

JUMP POS;

JUMP 220;

230;

240;

IneX;

260;

[010001100010100111100010] LOAOC 10 GOTO
270:
SHIFTR6:

SHIFTR6;

[011001101000001111100000] LOOPNZ SHIFTR6 ONZERO 280;
280:

[100101100010000111100000] JUMP 290;
290:

[011001010010000111100000] JUMP 300;
300:

[000100011000010111100000] JUMP IneX;
310:
IneX:

[010001001000000111100010] JUMP OUTERLOOP;
320:
OrawEnd:

[000000000000000011100100] CALL ClrePlx RETURNTO 330;

210;

WAFERSCALE INTEGRATION, INC. 4·121

SAM448 - Application Note 003

Figure 8. Report
File for Circle
Drawing Routine
(Cont.)

330:
[000000000000000011100100] LOAOC 160 GOTO OoOone;

340:
OoOone:

[000100011000000111100001] LOOPNZ OOOone ONZERO WAIT;
350:
CI rcP Ix:

[010001101000000111100000]
360:

[000110111000000111100000]
370:

[010001101000100111100010]
380:

[000110111000000111100000]
390:

[000101101000000111100000]
400:

[010010111000000111100000]
410:

[010010111000100111100010]
420:

[000101101000000111100000]
430:

[000110111000100111100010]
440:

[010001101000000111100000]
450:

[000101101000100111100010]
460:

[010010111000000111100000]
470:

[010001101000100111100010]
480:

[000110111000100111100010]
490:

[000101101000100111100010]
500:

[010010111000100111100010]
510:

[000000000000000011100100]
520:

TRANS:

JUMP 360;

CALL TRANS

JUMP 380;

CALL TRANS

JUMP 400;

CALL TRANS

JUMP 420;

CALL TRANS

JUMP 440;

CALL TRANS

JUMP 460;

CALL TRANS

JUMP 480;

CALL TRANS

JUMP 500;

CALL TRANS

RETURN;

[001110110010000111100000] JUMP 530;
530:

RETURNTO 370;

RETURNTO 390;

RETURNTO 410;

RETURNTO 430;

RETURNTO 450;

RETURNTO 470;

RETURNTO 490;

RETURNTO 510;

[001001100010000111100000] LOAOC 100 GOTO 540;
540:

[101111001000000111100000] JUMP MULT1024;
550:
MULT1024:

[101110111000001111100000] LOOPNZ MULT1024 ONZERO OONE1024;
560:
OONE1024:

[110010110010010111100010] JUMP 570;
570:

[011010110010000111100000] JUMP RUNBUS;
580:
RUNBUS,

[101110111000000111110000] JUMP 590;
590:

[101110111000000111000100] RETURN;

ENO$

***** PART UTILIZATION

601192
31 64

o Warnings

Unconditional Branches
Conditional Branches

o Fatal errors

31 .25">
4.69">

4·122 WAFERSCALE INTEGRATION, INC.

Design Simulation The SAMSIM functional simulator allows
simulation of single-, as well as multiple
SAM designs. Once a design has been
successfully compiled, the user can
specify input stimulus in a variety of
formats and observe the device response.
SAMSIM supports both hard-copy waveform
and tabular output, as well as interactive
"virtual logic analyzer" viewing on the PC
monitor. Split-window, multiple zoom levels,
and delta time display are a few of the
capabilities available for analyzing the
simulation results in this fashion.

Figure 9.
Command File JEDEC CIRC

GROUP CREATE CF - co C1 C2
PATTERN CREATE CF _ (OH)*200

SAM448 - Application Note 003

SAMSIM supports both interactive and
command file input. Shown in Figure 9 is
a sample input stimulus command file for
this design. Command files are typically
given the design name with extension
.CMD. In this example, CIRC.CMD is the
name of the command file. The first line
specifies the source JEDEC files. Note
only the primary file name is given and
not the extensions. GROUP CREATE
creates a group called CF containing 3
signals (CO-C2). By creating this group,
the input pattern for the group can be

PATTERN CREATE CmdAtt - (0)*5 (1)*2 (0)*193
PATTERN CREATE Sign - (0)*200
TRACE CREATE CIRC.TRC
TRACE ON
SIMULATE 200
VIEW

specified in the PATTERN CREATE CF
statement immediately following, rather
than having to enter each signal's stimulus
separately. The PATTERN CREATE
statement shows the sequential values the
given input (or group of inputs) is to take
beginning at the start of the simulation
and continuing onward. Hex format (as
shown) can be used to streamline group
pattern entry further. The notation ()*n
indicates repeat the enclosed stimulus
pattern n times. TRACE CREATE creates a
trace buffer file CIRC.TRC into which the
state of SAM wil be dumped after each
simulation step. This information includes
internal information such as value on Top
of-Stack, counter value, etc., as shown in
Figure 10. TRACE ON turns the trace
process on and may be discontinued with
a TRACE OFF command later in the
command file. SIMULATE 200 specifies a
200 clock simulation is to be run, and
finally VIEW enables interactive viewing of
the results of the simulation when complete.

Other useful commands supported by
SAMSIM, but not used in our example
include (among others):

SET - Modifies values of internal stack,
counter, etc.

RADIX - Defines default radix for all
SAMSIM input. Options are decimal,
binary and hex.

LINK - Logically links device pins for
simulation purposes.

Running SAMSIM with the above
command file gives the output shown in
Figure 11.

In reviewing the simulation output figure, a
few words of explanation are required. It is
immediately apparent that there are two
types of output displayed, two examples of
which are CmdAtt and AF. CmdAtt is an
example of a single signal waveform, in
this case corresponding to a device input.
AF corresponds to a group of four signals
(note the (4) after the name AF) which
includes AO-A3. For AF, the values in the
group are displayed in a vertical hex
notation each time any signal in the group
changes. (If an explicit value is not
displayed, it is the same as the previous
time step's value). By grouping common
signals, much more information can be
displayed in a single screen than might
otherwise be visible. In our example A (AF
= A3-AO), B (BF = B3-BO), and I outputs
(IL = 12-10, 1M = 15-13, IH = 18-16) are
viewing groups which have been formed.

WAFERSCALE INTEGRATION, INC. 4-123

SAM44B - Application Note 003

Figure 10. Trace
File Output

Conclusion

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO_O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
MULT1024: 550: [122889920] LOOPNZ MULT1024

Sign-O OmdAtt-O c2-0 c1-0 cO-O
OONE1024: 560: [133135060] CONTINUE

Sign-O OmdAtt-O c2-0 c1-0 cO-O
550: [70210240] CONTINUE ;

The virtual logic analyzer supports
commands which allow the order of
waveforms to be changed interactively,
arbitrary signal groups to be constructed,
among others. An on-line HELP command
gives instant explanations for all commands.
An extremely flexible interactive analysis
tool is the result.

The simulation results shown in Figure 11
correspond to the first 40 or so clocks
after the graphics controller receives a

The SAM device provides an efficient
solution for sophisticated control problems
such as the graphics controller just
described. SAM's capability is applicable
to a wide range of problems, including
industrial control, graphics and disk

CmdAtt signaling the beginning of a circle
drawing operation. The three RegRd
pulses correspond to reading the circles'
radius and x-y origin from the parameter
register. The single OE pulse two-thirds of
the way across the display is the point
where the CircPix routine is first entered. It
is left as an exercise to the reader to verify
the intermediate output values by following
the CIRC.ASM source file.

controllers, programmable sequence
generators and the like. The SAM+PLUS
tool set makes the design, verification and
debug of such designs straightforward.
The combination represents a winning
approach to control design.

4-124 WAFERSCALE INTEGRATION, INC.

Figure 11.
SAMSIM
Interactive
Output

References

SAM448 - Application Note 003

WSI 1990 Data Book

SAM448 Data Sheet

1:1--_.. ..
CmdAll ~L;.!;"'! _________ _
AF (4)

BF (4)

IL (3)

1M (3)

IH (3)

Rd

Wr

ALE

RegRd

OE

~o-o__ooooooooo_
:Il!--l~3-4-5--9__15404132_

~-O-OO-OOOo__o_OOOO_oOO-
~1-)1;-3-45-9589-6-106B~C-

:0 i i 0000-0-00-0_0-
~ .. 3434--1_04-1-4-

~ .' 00 0-0===== ;D! !; 40---2-0
10: 0-00-0--0_00-00-0--
Po 3-73-7-3-73-13-7--

..

.................. ~ .. 1 ~ .. .J
Range: 1 to 200 Name: CIRC Cycle: 1 Signals: 29

WSI Application Note #4: SAM
Applications Using State Design Entry

J. Foley & A. Van Dam, Fundamentals of
Interactive Computer Graphics, Addison
Wesley, 1981

WAFERSCALE INTEGRATION, INC. 4-125

4·126 WAFERSCALE INTEGRATION, INC.

Programmable System™ Device
WAFERSCALE INTEGRATION, INC. Application Note 004

Scope of This
Application Note

The SAM
Solution

Figure 1.
SAM448 Block
Diagram

SAM Applications Using
State Machine Design Entry

This Application Note is intended to
acquaint the user with ASMILE (WSI State
Machine Input Language) state machine
language syntax as used for entering
designs into the SAM448. Basic functionality
and syntax is reviewed as well as its use
of SAM internal resources. An application
utilizing ASMILE input in the form of a
68020 Microprocessor Bus Arbiter is
presented. This Application Note provides
illustrations of all basic concepts needed

WSI's SAM (Stand-Alone Microsequencer)
User-Configurable Sequencer Architecture
provides a solution for high-performance
control functions found in typical digital
systems designed today. There have been,
previously, two main approaches used in
the design of high performance state
machine/control functions in digital systems:
Logic Array-based sequencers, and
microcoded designs. Each approach has
presented the designer with a set of
benefits and drawbacks to be considered
when deciding how to implement a
specific application.

Logic Array-based sequencers have been

PlD

NRESET ZERO
BRANCH

INPUTS CONTROL
(8) lOGIC

EPlD
768 PRODUCT

TERMS

to execute a SAM design with ASMILE.
For information on microassembler-based
entry of SAM designs, please refer to
WSI's Application Note #3.

The reader is referred to WSI's SAM448
Data Sheet for details concerning device
architecture and performance. A general
knowledge of SAM device architecture is
assumed as background for this
Application Note.

used for very fast state machines of low-to
medium complexity which required few
outputs and relatively simple state flows or
machine "algorithms." Ability to perform
multi-way control branching in a single
clock cycle is a plus for this approach.
Devices such as conventional registered
PLDs are representative of this class.
Product term count limitations, resulting in
the inability to generate complex output
waveforms or state transitions, limits the
utility of this approach when addressing
larger control problems.

Microcoded approaches have been used
for the implementation of complex control

MICROCODED ENGINE

MICROCODE
EPROM

448 x 36
BITS

OUTPUTS (16)

ClK

WAFERSCALE INTEGRATION, INC. 4-127

SAM448 - AppllcatlDR NDte 004

The SAM
Solution (Cont.)

SAM+PLUS
System Overview

Sizing·Up a
Potential
SAM Design

functions, requiring high control output
counts. Until recently, however, the only
mechanism for implementing this approach
has been to glue together an assortment
of bit-slice component building-blocks. In
addition, the approach also did not lend
itself to rapid multi-way branching (a
strength of Logic Arrays), instead being
relegated to a serial test-and-binary-branch
mechanism.

The versatility of the SAM architecture,
and its applicability to both State Machine
and complex Controller functions, has
necessitated the need for multiple design
input formats. WSl's SAM+PLUS PC-based
Design Software allows the designer to
enter his design in either a high-level state
machine description using WSl's ASMILE
language, or in an efficient microcode
assembler format known as ASM. A block
diagram of this system is shown in Figure 2.
Given these options, the user can employ
the design description most appropriate for
his particular problem, or which he is
personally most comfortable with.

The SAM Design Processor (SOP) takes
the input file and automatically minimizes
the transition specification logic and fits
the resultant resource requests to the SAM

There are two broad categories of state
machines. Mealy and Moore machines
(see Figure 3). Given the SAM architecture,
one can see that Moore machines may
be directly implemented into a SAM
component: SAM's outputs are a function
of the currently addressed microcode
location (state). Mealy machines specify
outputs as functions of state and inputs.
However, Mealy machines can frequently
be converted to equivalent Moore machines.
The general rule for this conversion is that
for each transition into a state in the Mealy
machine with a unique set of outputs,
insert a state into the Moore machine with
that output combination. Figure 4 illustrates
this concept.

ASMILE supports the resources available
on SAM for state machine design. Additional
feaures, such as the stack and counter,
are supported in the microassembler format
which lends itself to their efficient use.

In order to determine whether a given
application is suitable for SAM, a few brief

4-128 WAFERSCALE INTEGRATION, INC.

An enhanced vehicle for state machine
implementation really requires a marriage
of these two architectures, to obtain the
high performance, mUlti-way branching
based on real-time inputs characteristics of
Logic Array-based sequencers, while having
the ability to manage complex algorithms
and generate high output counts
characteristic of microcoded approaches.
WSl's SAM448 does exactly this.

architecture. A Utilization Report is
generated which reports total resources
consumed, any unfittable requests, and
assigned pinouts. Upon successful fitting,
a standard JEDEC file is generated to allow
programming of the device using a hardware
programming card installed in the PC.

In addition, this JEDEC file, which represents
the actual template of the specific application
implemented, may be used as input to the
SAMSIM (SAM SIMulator) program which
provides functional simulation capability
integrated into the total design environment.
Hard-copy output of simulation results may
be obtained, as well as on-line "logic
analyzer" viewing capability. The result is
a design entry, compilation and verification
system which can be iterated rapidly until
the desired functionality is obtained.

"rules-of-thumb" derived from the device
architecture and specifications can prove
helpful:

• Operating frequency less than or equal
to specified SAM device's Fmax

• Synchronous, Moore machine operation

• Up to eight state machine inputs (not
including CLOCK or RESET)

• Up to sixteen state machine Outputs

• Up to 64 Multi-Way (conditional) state
branches

• Transition expressions reducible to four
product terms per IF ... THEN
expression

• 192 or fewer unconditional state
transitions

An application which meets the above list
of requirements will probably fit into a
SAM device.

Figure 2.
SAM+PWS
System Diagram

Figure 3. Types
of Synchronous
State Machines

INPUTS __ --,/1

COMBINATORIAL
LOGIC

CLOCK -----------'

STATE
REGISTERS---,."

MEALY STATE MACHINE

SAM448 - ApplicatiDn NDte 004

COMB.
LOGIC

OUTPUTS
!(STATE, INPUTS)

WAFERSCALE INTEGRATION, INC. 4-129

II

SAM448 - Application Note 004

Figure 3. Types
of Synchronous
State Machines
(Cont.)

INPUTS

COMBINATORIAL
LOGIC

STATE
REGISTERS r-----,.,

CLOCK ---------'

Figure 4.
Mealy/Moore
Transformation

IX*/V 1 0
IX*V + X*IY 11

4·130 WAFERSCALE INTEGRATION, INC.

MOORE STATE MACHINE

X* v 10

MEALV MACHINE

MOORE MACHINE

COMB.
LOGIC

IX*V + X*/V I 0
x*v 11

OUTPUTS
f(STATE)

ASMILE Entry
Overview

The basic format of a SAM ASMILE file
consists of the following sections:

[Header]
PART
INPUTS
OUTPUTS
[EQUATIONS]
MACHINE

CLOCK
STATES
Transition Specifications

END$

Those sections surrounded by [] are
optional and may be deleted if their use is
not required in a given application.

ASMILE files may be constructed utilizing
any standard text editor in non-document
mode. Using an editor in document mode
may inject spurious format control
characters which will be detected as
syntax error by the ASMILE parser at
compile time. Other than this constraint,
input is essentially free-form and may be
structured for readability and overall clarity.

The case of characters inserted into the
ASMILE file is significant, so it is important
to insure that character case is maintained
as text is entered. For example, the names
"RWB" and "rwb" are not the same.

Comments may be inserted freely into the
source code, delimited by leading and
trailing percent signs, for example,

% This is a comment %

Header
The header contains user-specified design
identifier information. Typical information
includes:

Part

Designer's Name
Company
Date
Design Number
Revision
SAM Part Number
Other Comments

The PART section of the ASMILE file
specifies the target SAM device the
application is intended for.

Inputs
The single INPUTS section of the
ASMILE file defines all external inputs
into the design, as well as any
required user pin assignments. Pin

SAM448 - Application Note 004

assignments are optional and will be
assigned by SAM+PLUS if not
specified. Pin assignments are
specified by the format

input_name @ pin_number

Outputs
The OUTPUTS section of the ASMILE
file contains a list of all outputs from
the design as well as any pin
assignments. Pin assignment syntax is
similar to input pin assignments.

Equations
The EQUATIONS section of the ASMILE
file is available for the definition of
intermediate equations to be used later in
the design. Entry of transition specifications
may be eased by defining intermediate
variables initially, and then invoking them
during the design. For example,

EventClk = 11*/14 + 13*16*/17

might be defined in the EQUATIONS
section, and then utilized later in an
IF ... THEN statement.

Machine
The format for the MACHINE declaration is

MACHINE: machine_name

The MACHINE section of the ASMILE file
actually specifies the state machine's state,
output, and transition definitions required
from the SAM device. There are three
subsections which are to be included:
CLOCK, STATES, and Transition
Specifications.

Clock
The CLOCK subsection specifies the clock
signal which will act as the synchronous
clock source for the state machine and the
resulting SAM device.

States
The STATES section specifies all states in
the target machine, as well as outputs
corresponding to these states. The general
form of this statement, when used in a
SAM design, is

STATES: [outpuLname_1 ...
output_name_n]

state_name [outpuLvalue_list]

In the above, the output_names are a list
of all SAM output names used in the
design, separated by whitespace. Following
this initial declaration, a list of all

WAFERSCALE INTEGRATION, INC. 4-131

SAM448 - Application Note 004

ASMILE Entry
Overview
(Cont.,

Figure 5. SAM
Multi·Way Branch

state_names appears, each followed by a
binary string in brackets which specifies all
output values to be provided when the
machine is in that state.

For example,

STATES: [A B C 0]
SO [0000]
S1 [0 1 1 0]
S2 [1 000]
S3 [0001]

Specifies a machine with four outputs A
through 0, State So has all outputs low, S1
takes Band C to logic one, S2 has only
output A high, etc.

Transition Specification
The form of the Transition Specifications in
a SAM ASMILE design is

state_name: transition_specification

Every state in the machine must have a
transition_specification which will specify
successor states, either unconditionally

SO: S2

or conditionally using IF ... THEN
statements.

The first state_name encountered in the
Transition Specification section will be
defined as the initial state of the machine
coming out of Reset. As such, it has special
significance. Typically, this might be defined
as an "inactive" or passive machine state.
Other Transition Specifications have no
positional significance.

If • •• Then Statements
The SAM architecture implements in
silicon the state transition specifications
defined by a user in the chip's Branch

• • •

Control logic block. This block allows, by
its structure, the specification of up to 64
complex branching expressions in a single
machine. [As noted above, up to 192
unconditional state transitions may be
specified for a single SAM device]. Each
IF ... THEN expression may specify a
direct branch from the current state to as
many as four other successor states,
based upon inputs to the SAM device.
This is illustrated in Figure 5. Examples
are shown below.

In specifying IF ... THEN expressions, it
is valuable to note that the order of the
expression is important and can determine
the machine flow. Transition specifications
need not be mutually exclusive in such
expressions. For example, the expression

SO: IF 11*12 + 15 THEN S1
IF 15*16 + 14*/13 THEN S2
IF 14 THEN S3
S4

might appear ambiguous under the
condition that inputs 15 and 16 to the SAM
device become true during SO. Is S1 or S2
the next state? At this point SAM's priority
logic comes into play. Since the S1
transition is specified before the S2 in the
design definition, it will be the next state
entered. Similarly, if 14*/13 become valid,
S2 will be the next state entered in
preference over S3. This precedence
resolving capability is provided in the SAM
silicon architecture which employs a
hardware priority encoder in selecting the
next state transition. This capability
resolves conflicts, and may be exploited in
the design to prioritize transitions.

SAM MULTI-WAY BRANCH

4-132 WAFERSCALE INTEGRATION, INC.

ASMILE Entry
Overview
(Cont.)

SAM ASMILE
Design Example

The Design

Default bnsitions
One other benefit of this approach is the
implicit "default" transition to be made. In
the example above, S4 will be the next
state entered if S1, S2, and S3 are not
selected by the appropriate conditions
being true. This feature can reduce design
effort and resource requirements
substantially, since default transitions are
frequently defined as the negation of non
default transitions and such inverted
expressions have a tendency to consume
logic product terms or resources quickly.
For example,

SO: IF 11*12 + IS*1I7 + 10 THEN S1
IF 13 + 116*14 THEN S2
IF 12*13*14*ISII7 THEN S3
S4

is a valid ASMILE SAM transition
specification. If the notion of a default
transition (S4) was not in the ASMILE
syntax, and had to be explicitly defined,
we might have to specify the last transition
as (unminimized)

IF 1(11*12 + IS*1I7 + 10) * 1(13 + 116*14)
* 1(12*13*14*IS*II7) THEN S4

To illustrate SAM ASMILE input syntax in a
real example, a 68020 Microprocessor Bus
Arbiter state machine will be examined.
This machine, while not overly complex,
illustrates most of the concepts of
ASMILE entry.

Shown in Figure 7 is a state machine
diagram for the Bus Arbiter. The 68020-
based system runs at 2S MegaHertz, and
therefore the Bus Arbiter machine must
also run with a 40 nanosecond clock
period. To understand its operation, a
review of the bus exchange protocol used
on the 68020 bus is useful.

Three signal lines on a 68020 bus define
the handshake required to arbitrate bus

The file shown below in Figure 8 is the
actual ASMILE file generated for the
machine from the state diagram. It
conforms to the general file outline as
described above. ASMILE source files are
given the extension .SMF (for state
machine file) when generated. In this case,
the file would be 68020ARB.SMF. Note
that in the OUTPUTS and STATES
sections, output variables OSO-OS6 have

SAM448 - ApplicatlDn NDte 004

Each expression (IF ... THEN) may be a
function of any of the eight SAM external
inputs, and may contain up to four product
terms after logic minimization. For most
designs, this should prove ample.

A trade-off between number of branch
destinations and product terms per
destination can be made, as multiple
IF ... THEN expressions can point to the
same destination. For example, the
expression

SO: IF (cond1) THEN S1
IF (cond2) THEN S1
IF (cond3) THEN S2
S3

provides a three-way branch, with up to
eight product terms available for the
specification of transitions to state S1.

End$
Every SAM ASMILE source file must
terminate with the END$ terminator.

exchanges between multiple bus masters:
Request, Grant, and Acknowledge. Given
a bus master which desires access to the
bus, the procedure is as follows (illustrated
in Figure 6):

In the above flow description, the state
labels SO-S6 designate correspondence
between the operations shown and the
state machine diagram above.

Relating this sequence to the state diagram,
SO represents the "normal," active state of
the processor, S1 and S2 correspond to
the Grant phase, S5 and S6 the
Acknowledge phase, and S3 and S4 the
rearbitration phase if requests are pending
at the end of the current bus exchange.

been defined which are each valid only
during a unique state. As the design is
simulated, these will give an indication of
which state the machine is at any given
point in time.

To compile this design, the SAM+PLUS
software is invoked, specifying that ASMILE
(and not microassembler) input format is
being used. For a detailed description of

WAFERSCALE INTEGRATION, INC. 4-133

SAM448 - AppllcatiDn NDte 004

Figure 6. 68020
Bus Arbiter
Operation

Figure 7. Arbiter
State Flow

•••

PROCESSOR

SO

S1 & S2

• ASSERT GRANT

S6 & S5

REQUESTING BUS MASTER

• ASSERT REQUEST

EXTERNAL ARBITRATION (IF REQUIRED)
AMONG MULTIPLE REQUESTS

• WAIT FOR COMPLETION OF CURRENT CYCLE

• NEXT BUS MASTER ASSERTS ACKNOWLEDGE
(ACK)

• DEASSERTS GRANT
[WAIT FOR ACK TO BE
DEASSERTED]

• NEXT BUS MASTER DEASSERTS
REQUEST

• PERFORM BUS OPERATIONS
• DEASSERT ACK

SO

• RESUME OPERATION OR

S4 & S3

RE-ARBITRATE

R - BUS REQUEST INPUT
A - BUS GRANT ACKNOWLEDGE INPUT
G - BUS GRANT OUTPUT
T - THREE-STATE CONTROL TO BUS CONTROL LOGIC
X - DON'T CARE

4-134 WAFERSCALE INTEGRATION, INC.

The Design
(Cont.)

Figure 8. 68020
Bus Arbiter
State Machine
Input File
(68020ARB.sMF)

the SAM+PLUS user interface and options,
the SAM+PLUS User's Manual should be
consulted. Compilation then proceeds
automatically. Transition equations are
automatically minimized, and "object code"
generated for the EPLD and EPROM
blocks. As a result, JEDEC programming
file (.JED) is generated, as well as a
Utilization Report file (.RPT) reporting the
results of the compilation process. Functional
simulation of the design can be performed
using the .JED file as a design template

STEVE MCGRAY
WSI, INC.
6118/88
68020 Bus Arbiter for SAM

SAM448 - Application Note 004

as described below. The .JED file is not
intended to be user-readable. The .RPT
file contains valuable information such as
design pin assignments and resource
utilization. Figure 9 shows key portions of
this file. All ASMILE input is transformed
into microassembler format before
subsequent processing, and the equivalent
microassembler code for the design is given
in the .RPT file as well. More information
on the interpretation of this code can be
obtained from the references shown below.

% This description uses IF ... THEN Transition Speclflcatlons%

PART: SAM448

% Pin Assignments (an option) are made by the designer %
INPUTS: REQUEST ACK82

OUTPUTS: GRANT823 TRISTATE822 OSO OS1 OS2 OS3 OS4 OS5 OS6

NETWORK:

OUT3 - CONF (OUT3,CK,VCC,VCC,VCC)

MACHINE: BUSARBITER

CLOCK: CLK

% STATES gives the output value mapping %

STATES: [GRANT TRISTATE OSO OS1 OS2 OS3
so [0 0 100 0 0 0 0]
S1 [1 1 o 1 0 0 0 0 0]
S2 [1 1 0 0 1 0 0 0 0]
S3 [1 0 0 0 1 0 0 0]
S4 [1 0 0 0 0 1 0 0]
S5 [0 0 0 0 0 0 1 0]
S6 [0 0 o 0 0 0 0 1]
% Transition Specifications
SO:
IF REQUEST-lACK
IF ACK THEN S5

so
Sl:

S2
S2:

THEN S1

follow')(;

IF IREQUEST-/ACK + ACK THEN S6
S2

S3:
IF IREQUEST THEN S6
IF REQUEST-lACK THEN S2
S3

S4:
S3

S5:
IF REQUEST THEN S4
IF IREQUEST-/ACK THEN so
S5

S6:
S5

ENDS

OS4 OS5 OS6]

WAFERSCALE INTEGRATION, INC. 4·135

SAM448 - Application Note 004

Figure 9. 68020
Bus Arbiter
Design
Report File
(68020ARB.RPT)

SAM Design Processor Uti Ilzatlon Report
Version 1.01 7/28/87 01:57:09 38.1 .* ... Design Implemented successfully

STEVE MCGRAY
WSI, INC.
3/18/88
68020 Bus Arbiter for SAM

RESERVED 1
ACK 2
Gnd 3
Gnd 4
Gnd 5

CLOCK 6
Vee 7

nRESET 8
Gnd 9
Gnd 10
Gnd 11

REQUEST 12
OS6 13
OS5 14

••••• DESIGN LISTING

PART:
SAM448

INPUTS:
REQUEST012, ACK02

OUTPUTS:

SAM448

28
27
26
25
24
23
22
21
20
19
18
17
16
15

RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
GRANT
TRISTATE
GND
RESERVED
OSO
OS1
OS2
OS3
OS4

GRANT023, TRISTATE022, OS0019, OS1018, OS2017, OS3016,
OS4015, OS5014, OS6013

PINS:

DEFAULT:
[000000000]

PROGRAM:
00:

[001000000] JUMP SO;
1920:
SO:

68020arb.rpt

IF REQUEST * ACK' THEN
[110100000] JUMP S1;

ELSEIF ACK THEN
[010000010] JUMP S5;

ELSE
[001000000] JUMP SO;

4·136 WAFERSCALE INTEGRATION, INC.

Figure 9.
68020 Bus
Arbiter Design
Report File
(6802oARB.RPT)
(Cont.)

Design
Simulation

10:
Sl :

[110010000] JUMP S2;
1930:
S2:

IF REQUEST' +
ACK THEN

[010000001] JUMP
ELSE

[110010000] JUMP
1940:
S3:

IF REQUEST' THEN
[010000001] JUMP

ELSEIF REQUEST • ACK'
[110010000] JUMP

ELSE
[110001000] JUMP

20:
S4:

[110001000] JUMP S3;
1950:
S5:

IF REQUEST THEN

SAM448 - Application Note 004

S6;

S2;

S6;
THEN
S2;

S3 ;

[110000100] JUMP S4;
ELSEIF REQUEST' • ACK' THEN

[001000000] JUMP SO;
ELSE

[010000010] JUMP S5;
30:
S6:

[010000010] JUMP S5;

ENO$

••••• PART UTILIZATION

4/192
41 64

Unconditional Branches
Conditional Branches

2,08%)
6,25%)

o Warnings
o Fatal errors

Integral to the SAM+PLUS design system
is the SAMSIM functional simulator, Once
a design has been successfully processed,
the user can specify input stimulus in a
variety of formats and observe the device

, response quickly and effectively using this
unit-delay simulator, As mentioned above,
SAMSIM supports both hard-copy and
virtual logic analyzer output formats. Split
window, multiple zoom-levels, and delta
time display are a few of the capabilities of
this interactive display mode.

SAMSIM supports both interactive and
command file input. Shown in Figure 11 is
a simple input stimulus command file for
our design. Typically command files are

given the design name with the extension
.CMD (for example, 68020ARB.CMD). The
first line specifies the source design
JEDEC (or .JED) file. The next two lines
illustrate logic sequences for the two
machine inputs. The PATTERN CREATE
command allows the user to specify a
sequence of input logic levels to be
applied to the indicated node or nodes.
The notation ()*n, where n is an integer,
signifies hold the indicated logic value on
the associated input for n clocks.
SIMULATE 41 instructs SAMSIM to run the
simulation for 41 clocks, and finally
interactive display is invoked with the
VIEW command.

WAFERSCALE INTEGRATION, INC. 4-137

SAM448 - Application Note 004

Design
Simulation
(Cont.)

Figure 10.
SAMSIM
Interactive
Output

Some other representative SAMSIM
commands, while not used in the example,
include:

TRACE - Dumps entire state of machine
(inputs, outputs, internal registers, etc.) for
each clock executed.

GROUP - Specifies logical grouping of
signals for easy observation or input vector
specification.

SET - Modifies values of internal counter,
stack, etc.

LINK - Logically links device pins for
simulation purposes.

RADIX - Defines default radix for all
SAMSIM commands.

Options are binary, hex, and decimal.

Running the SAMSIM simulator with this
command file produces the results shown
in Figure 10. Here, on the PC screen, is
displayed the input stimulus to the SAM
arbiter design, and the resulting state
machine operation.

1:1

REQUEST

ACK

GRANT

TRISTATE L.U
OSO IT'

The initial input stimulus applied to the
SAM design shows a straightforward bus
exchange between the 68020 and another
bus master. This corresponds to the first
REQUEST/GRANT/ACK sequence. Upon
detecting a REQUEST, the 68020 asserts
its TRI-STATE line, and issues a GRANT
pulse, allowing the new bus master to
assume control. The alternate bus master
asserts ACK when it detects the fact that
the bus has been granted. When ACK
finally drops, the 68020 knows it can
resume control. The second such sequence
involves not just a single initial REQUEST
(bus master #1), but a second REQUEST
from another bus master (#2) during the
time bus master #1 has control. As a
result, the 68020 must generate a new
GRANT pulse (during S4-S2), and hand
over bus control to bus master #2 when
bus master #1 is finished (ACK is
dropped). When bus master #2 is finished,
and no requests are pending, the 68020
finally retakes control of the bus (TRI
STATE goes low).

'-___ xx

n

~ ______ xx

L-xx

~ ____________ ~r--n
OS1 ~ ___ ~.~.-~n~-----__ --_____ xx rr OS2 .. '--_______ n

OS3 ~------------~.~. ________ ~rl n

OS4 ~------------~.~.--------~n xx

OS5 ~.+.------~rl ~xx

OS6 n ~ ____ ~.~.----~n~ ____ ~n~------xx
J ···························· .. 1 ... 1············ ······ ···············t~l·········· .. ·························

RANGE: 1 TO 41 NAME: 68020ARB CYCLE: 1 SIGNALS: 11

4-138 WAFERSCALE INTEGRATION, INC.

Figure 11.
SAMSIM
Command File
(68020ARB.CMD)

Conclusion

References

SAM448 - Application Note 004

JEDEC 68020AARB
PATTERN CREATE REQUEST - (0)*3 1 1 1 (0)*12 1 1 1 1 1 0 0 (1)*7 (0)*5
PATTERN CREATE ACK - (0)*5 (1)*8 (0)*10 (1)*6 (0)*2 (1)*6 (0)*4
SIMULATE 41
VIEW

State machine design is a straightforward
process using the ASMILE input language
in conjunction with the SAM device. Design
entry and debug, using functional simulation,
can be readily accomplished at the user's
PC. When the design is debugged and
complete, the SAM component may be
programmed using PC-based hardware
and software in seconds. Should design
errors be detected after in-system test, a
windowed SAM device may be erased, a
design change compiled, and the device
reprogrammed in minutes.

WSI 1990 Data Book

SAM448 Data Sheet

WSI Application Note #3: High-End SAM
Applications Using Microassembler Design
Entry

WAFERSCALE INTEGRATION, INC. 4-139

4·140 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Section Index

Article Reprint Microprogram an Embedded Controller - PAC1000 5-1

For additional information,
call 800·TEAM·WSI (800·832·6974).

In California, call 800·562·6363.

WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC. 5·1

Article Reprint

PACKING ALL THE MAJOR BLOCKS OF A
MICROPROGRAMMABLE SYSTEM, A CMOS IC EASES

EMBEDDED CONTROLLER DESIGNS

CONFIGURABLE CHIP EASES
CONTROL-SYSTEM DESIGN

DAVE BURSKY

nyone who has ever de
signed a high-perfor
mance controller sub
syst'm using high-
speed micropro-
grammed building
blocks, programmable
logic devices, gate ar
rays, or discrete logic

realizes the difficulties in integrating
the complete solution. In such a system,
the chip count escalates, the operating
power rises, and the development
schedule lengthens.

By integrating all these functions
and resources onto one high-speed
CMOS chip-the PACIOOO microcon
trolier-WaferScale Integration Inc.
has drastically reduced the chip count
from the typically required 50 or so ICs
to just one. At the same time, the
PAClOOO slashes the power consump
tion from tens of watts to less than 1.5
Wand cuts development time.

The PAClOOO can solve many high
end embedded control applications and
is the only available circuit that can
tackle system, data, and event control
tasks. A C-Iike language and PC-hosted
system-development tools simplify the
creation of the control software. Users
can configure the circuit as a micropro
cessor peripheral or as a standalone
controller to meet the unique require
ments of high-performance system,
data, or event controllers. Each of the
chip's two bidirectional16-bit buses, its
individual II 0 lines, and interrupt in
puts can, if necessary, be redefined dur
ing each 5O-ns instruction cycle.

Repnnted w~h pennossoon from ELECTRONIC DESIGN· October 27. 1988

5·2 WAFERSCALE INTEGRATION, INC.

At the heart of the PAClOOO's flexi
bility lies an internal microprogramma
ble architecture, including a 16-bit CPU,
a fast 10-bit microsequencer, a 32-word
by-l6-bit register file, and a lkword-by-
64-bit high-speed EPROM. As product
planning manager Yoram Cedar ex
plains, since the circuit executes any of
its instructions in one clock cycle, the
controller delivers a raw throughput of

Copynght 1988 VNU BUSiness PublicationS, Inc

Article Reprint

COVER: USER·CONFIGURABLE
CONTROLLER

20 MIPS.
Every instruction of the PACI000

can perform as many as three simul
taneous operations: program con
trol, CPU functions, and output con
trol, with all possible combinations
allowed. Cedar claims the more pow
erful instruction format, combined
with the higher clock speed, yields a
five- to tenfold performance im
provement, compared with other

THE PAC1DDD

Clock Reset

User
output

16

Program counter

CASE logic

Testlogic

User-definable Condition· Intenupt
output code inputs
lines sense

inputs

one-chip microcontrollers. The high
throughput suits many tasks well. It
has already found homes in radar,
communications, video-graphics,
I/O subsystems, bus and DMA con
trollers, and disk-drive-controllers.

Besides the CPU, register file, and
sequencer, the chip includes an auxil
iary Q-register for double-word op
erations, an 8-input interrupt con
troller, 16 output control lines, 8 bi-

Host address
Host data bus and data bus

I/O lines Address

Register stack

Extended·precision
register for 54·bit

operations

1. PACKING A 16-bit micropl'O'
grammable central processor with a 32·
word register file, a l-kword-b~'bit
microcode UV EPROM, sequencer, and
other configurable resources, the
P AC1000 user-configurable
microcontroller from WaferScaie
Integration delivers a raw instruction
throughput of 20 MIPS at 20 MHz (top).
Designers can add or alter various blocks

customize versions for high·volume
(left).

directional I/O lines, scan-test and
CASE program test logic, and a 22-
bit external address bus (Fig. 1, top).

Also, Cedar emphasizes, the cir
cuitdeals much more rapidly with in
terrupts than most controllers do,
and that serves embedded control
applications well. The chip changes
program flow in either of two ways.
First, it has four user-definable in
terrupt illput lines plus four dedicat
ed internal interrupts that require
just 100 ns, at most, to alter the pro
gram flow. Second, another set of in
put lines-22 condition-code inputs
(8 external and 14 internal)-let the
processor alter the program flow
with condition calls and program
jumps in just one 50-ns instruction
cycle.

And if on-chip resources don't
quite match an application's require
ments, chip modifications can be
done for large-volume users. The cir
cuit was designed with the compa
ny's standard-celllibrary, and many
of the chip's sections are actually
cells in WaferScale's library (Fig. 1,
left). Noticeable on the chip's left
side are the large cells that include
the 64-kbit EPROM block on the bot
tom and the 16-bit CPU on the upper
left. On the chip's right side, random
logic performs the control and inter
face functions; small standard cells
are used to create those circuits.

For every instruction, a dedicated
field specifies the bit pattern on the
output lines. Also, designers can in
dividually program eight 1/ 0 lines as
inputs or outputs or to perform spe
cial functions under the control of
the chip's mode and I/O registers.
The special functions turn the I/O
lines into control signals that allow
various features and flags to indi
cate several status conditions. In ad
dition to the eight I/O lines, the cir
cuit has two 16-bit bidirectional bus
es that go on and off the chip: One
links with the host; the other is the
upper 16 bits of the address/data
bus. Another 16 lines are dedicated,
user-programmable latched output
lines. These can be changed on a cy
cle-by-cycle basis.

Thanks to all its buses and control
signals, the PACI000 microcon
troller operates as either a memory-

WAFERSCALE INTEGRATION, INC. 5·3

Article Reprint

COVER: USER·CONFIGURABLE
CONTROLLER

mapped peripheral to a microproces
sor to offload the CPU (Fig. 2a) or as
a standalone controller running
from its own internally or externally
stored program (Fig. 2b). As a pe
ripheral, the chip ties into the host
with a straightforward bus inter
face-a 16-bit data bus and a 6-bit ad
dress bus to access the internal re
sources of the PAC WOO-and the
standard Chip Select, Read, and
Write control lines. In the standalone
mode, the chip typically runs the ap
plication program from its internal
memory and uses its 16-bit output
bus and 8-bit II 0 port to control the
application and communicate to a
host system.

To handle multiple operations in
parallel, the chip internally takes ad
vantage of a long-64-bit-micro
code word so that each word can con
trol mUltiple sections of the circuit
ry. The on-chip microcode storage
area consists of a fast, reprogram
mabIe UV EPROM, organized as 1
kword by 64 bits. Since the EPROM
is read only by the on-chip logic, it
doesn't need high-current output
buffers, which slow down the memo
ry access. Thus, the EPROM con
tents can be read very quickly-the
chip's 20-MHz version accesses
memory in just 30 ns, well within the
CPU's 50-ns instruction cycle time.
The memory is also secure. Users
can program a security bit to prevent
an external system from extracting
the code from the memory array.

Besides its own program memory,
the chip also has a separate address/
data bus that can be programmed for
either 16 or 22 address lines (with 64-
kword or 4-Mword off-chip address
ing ranges, respectively). The ad
dress generator for the bus is sepa
rate from the sequencer that ad
dresses the program memory. The
PACI000 can therefore execute a
program while it's using the address
bus to move data from memory into
the on-chip register file or to an ex
ternally controlled device.

The address bus, in fact, can serve
as a simple direct-memory-access
controller when used with the on
chip 22-bit address counter and 16-bit
block counter. This DMA controller
can transfer data from external
memory to the on-chip register file or
to an external device.

An eight-word FIFO register lets
a host microprocessor asynchro
nously load commands or data into
the controller. The 22-bit word
length in the FIFO register is em
ployed, so that if data values are to
be loaded into the register file, the
lower 16 bits of the 22-bit word sent
over the host data bus represent the
data, and the next five bits-the low
er five bits of the host-interface ad
dress bus-represent the register lo
cation into which the data will be
loaded (RO to R31). The sixth bit of
the host-interface address bus signi
fies whether the word loaded into the
FIFO register is a command or data

PERIPHERAL OR STANDALONE
Address

word. If it's a command, the lower 10
bits of the host-data bus are used as a
branch address to one of the 1024
memory locations in the EPROM.

The 10-bit sequencer addresses
the 1,024 words of program memory
and has a 15-level stack that permits
multiple subroutine calls to occur
without forcing the program to go
back to a higher level before calling
the next subroutine. Besides having
more levels in the stack than Wa
ferScale's 5910 microsequencer, the
enhanced sequencer block has a 10-
bit loop counter that cuts overhead in
programs for loops and nested loops.
The application program can load the
counter with a constant or a value
calculated in the CPU.

Because programming fast, em
bedded controllers can get compli
cated, the company includes on-chip
programming and test features to
ease system development. For start
ers, a 10-bit breakpoint register sim·
plifies real-time debugging. It can be
loaded from either of two sources-a
value stored in a CPU register or a
constant value specified in the pro
gram memory. When the program
memory address matches the regis
ter contents, the register issues an
interrupt, which a service routine in
memory could then react to.

Test and CASE logic on the chip
also aids program and hardware
testing. The condition-code logic re
sponds to 22 different program test
conditions that can be tested for true

Address

I Mlcloprocessol Data 'I MemOlY

L~r~_'" -lJr.rt--jiiiiCl00-_-t-I-' I L--!-:r--l
I -1- PACiiioo - -, . 1 Memory
I I 1

I I"'"
I Host CPU f-- I Data·path
I interlace - I C t I element,
I Contml I on 10 high.speed
I I processor,
I t...J Status/ fast bus, etc.
P;ph;.1 mode - -1- - interrupts (8)

I CPU Host and ..L Data
I data
I Contml interlace :
: t 1 Conkol
I I Status/interrupts J

I

L ______ -'
Standalone mode (b)

Data·path
elemen~

high·speed
processor,

fast bus, etc.

1 2. MULTIPLE BUSES, AN ON-CHIP ADDRESS GENERATOR, and sequencer blocks let the microcootroller operate as
a memory-mapped peripheral to offload the host microprocessor (a). Or it can be' operated as a standalone controller (b).

54 WAFERSCALE INTEGRATION, INC.

COVER: USER·CONFIGURABLE
CONTROLLER

SAMPLE PROGRAM FOR PAC1000 MICROCONTROLLER
/* control memory read/wnte based on ceo "I
segment memeDn .

enmem equ h'0002' I

dlsmem equ h'OO4O' I

Wf equ h'OOoo' •
rd equ h'1000' •

s1art
IF ceo • OUT enmem •

FOR6.AOR -RO+Rl.OUTwr.
AOR _AOR+4.0UTrd.

ENDFOR • OUT wr •
ELSE. OUT dlSmem •
ENDIF.

end,

/* output control constants

/* enable memory
/* store begin addr In ADR and loop
fit mc addr by 4 and do rd/wr
/' end loop body
r disable mem If ceo IS not true

'/

'/
'/
'/
'/
'/

1 3, THE HIGH-LEVEL LANGUAGE developed by WaferScale employs (}
lquage-Iike structures to let designers easily develop complex configuration microcode.

or not-true results. Up to four condi
tions can be tested simultaneously.
Tests can check for the state of vari
ous flags or register contents.

The processor handles two types
of CASE operations: standard and
priority. A CASE group consists of a
combination of four test conditions
that can be tested in a single cycle. In
that same cycle, the PACI000
branches to anyone of 16 locations,
depending on the status of the four
inputs to the CASE group being test
ed. The priority CASE instruction op
erates on internal and external inter
rupt conditions and treats interrupts
as prioritized test conditions. The pri
ority encoder generates a branch to
the highest-priority condition.

Thanks to all its on-chip resources,
the PACl000 is a powerful one-chip
controller, housed in a windowed, 88-
lead pin-grid-array package or an 84-
lead ceramic leaded chip carrier. An
84-lead plastic leaded chip carrier
package (the one-time-programma
ble version) is also available. Be
cause the chip employs an EPROM
to hold the program, revisions to the
code are no more difficult than repro-

gramming a standard EPROM. Pro
totype systems and production prod
ucts can benefit from the ability to
revise the code at the last minute.

To alleviate the complexity of mi
crocode program development, Wa
ferScale has assembled a series of
PC-hosted system-development
tools (PAC-SDT). These make the
PACI000 as easy to program as any
one-chip microcontroller. A simple
example of a multiple-command ex
pression in the C-like language lets
designers combine operations such
as FOR6,AOR=RO+Rl,OUT WR
(loop for six cycles, add the contents
of registers RO and Rl and store the
result in the AOR register, output
the value WR) in one word (Fig. 3).

The toolset has a system-entry lan
guage, a functional simulator, and a
device programmer (MagicPro). The
system-entry. language software is
the most critical part. The high-level
langnage uses a structure similar to
C's and practically eliminates writ
ing routines in machine or assembly
code. But designers who are more
comfortable working on that level
can write machine-code routines. 0

Article Reprint

WAFERSCALE INTEGRATION, INC. 5-5

Article Reprint

WSI Launches
The Programmable System Device:

,

A new class of user-configurable products;
a higher standard in functionality,

integration, and performance.

PSD:™ n Programmable System Device.™
1) A user-configurable system-on-a-chip,
integrating high-performance EPROM, SRAM, and
Logic; 2) User configurable with a menu-driven,
familiar "C"-like language and ffiM-PC®-hosted
system development tools; 3) A standard product
first launched in 1988 by WSI.

WSI's PSIYMProducts: A Major Advance in user-contigurability

Level of
Functionality

System Integration

1988

Not just programmable logic. but programmable logic and memory-programmable systems.

WAFERSCALE INTEGRA170N, INC
Programmable S)'$1Cm DeVIce, PSD, and MAPl68 are 1rademaIb of WlI'erSeaJc "tqJaUoIl, Inc
PALlSaregasreredlZ8ClemarkflAdvaK:edMJeroDlMc:es,Inc IBMPCuirepstmedlrlldl=mlrtoCintemallonaI8U11ra5Macbu1C1Ccxponaaon
OCopynghtl988byrafetScalclftlegrabOD,IDcAUqtnarcscncd

WAFERSCALE INTEGRATION, INC.

47280 Kato Road
Fremont, California 94538

800/331-1030, extension 234
In California call:

800/323-3939, extension 234

II' ~ == ..:=:£ .,------ ..., r JIll I11III == == __ iii==== ==
~~~-

WAFERSCALE INTEGRATION, INC. 



Package 
Information 

Section Index 

........................................................................ ~ 

For additional information. 
call 800·TEAM·WSI (800·832·6974). 

In California. call 800·562·6363. 

WAFERSCALE INTEGRATION, INC. 



Package Information 
WAFERSCALE INTEGRATION, INC. 

Drawing C3 

Drawing F3 

44 Pad Ceramic Lead/ess Chip Carrier (CLLCC) 
(Package 1Ype C) 

0.644 so] l r- g:~~ so ~ -I 
I O.350DIA 

0.008 R (44 PL) 

0.076 
·Pin 
No.1 
Index 

r
~ 

~~~ww~~ww~~· 

___)!!I--- + -----fiiOiiI-....L

~
0.095

0.050

100 Pin Ceramic Quad F/atpack (with WindDw), SuI/wing, Fine Pitch
(Package Type F)

0.875
0.885 26
sa

0.600
sa

_1
~~~~mmmmmm~= 

0.059 
0.071 

0.0045 

0.0060 1 
*==== f 0.020MIN 

1----1-- 0.104 REF 

SECTION A-A 

0.020 
O.O~ 

WAFERSCALE INTEGRATION, INC. 6-1 



Package Information 

Package 
Information 
(Cont.) 

Drawing J2 

Drawing J3 

44 Pin Plastic Leaded Chip Carrier (PLoCC) 
(Package Type J) 

28 Pin Plastic Leaded Chip Carrier (PLoCC) 
(Package Type J) 

0.495 . bO'485SQ~ 
0.454 . 0.015 MIN ~0.450SQl 

g:g:~ I 1 g:g~ 1 r;.;; - ------,.. 
5 J. 1 l 0.026 --.l t 

----lIE- 0.032 ~ 0.300 0.390 
L 0.013 I 0.430 

0.021 t 1 11 

0.050 

6·2 WAFERSCALE INTEGRATION, INC. 



Package 
Information 
(Cont.) 

Drawing L2 

Drawing L4 

28 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window 
(Package Type L) 

0015TVPJ, 

0.480 
MAX 

DETAIL A 

44 Pin Ceramic Leaded Chip Carrier (CLDCC) with Window 
(Package Type L) 

0.044-

Package Information 

0.017 

0.296 
0.304 

E 0.685SQ~ C~SQ;]I 
7 

0.034 I r 
~~~0021 1 

28

0.610
0.630

WAFERSCALE INTEGRATION, INC. 6·3

Package InformatiDn

Package
Information
(Cont.)

Drawing QI 100 Pin Plastic Quad Flatpack (PQFP), Gul/wing, Fine Pitch

-+~

1---- 0.750 sa. TYP. ---I

11----- 0.880 sa. TYP. ----II

\----- 0.900 SQ. TYP. ----I

SECTION A-A

0.140 TYP.--j4-----I-__I__

0.067 TYP. ~m,I~~

CHAMFER
0.048 x 45°

6-4 WAFERSCALE INTEGRATION, INC.

0.008
0.012

0.165
TYP.

0.025TYP.

0.900
TYP.

1----+--0.1·WTYP.

Package
Information
(Cont.,

Drawing S2

Drawing 12

28 Pin Plastic .300 DIP
(Package Type S)

28 15 ~

(:::::::::::::1 g~
1 14 ----r

1.355 0.055

Package Information

fin
7° lYP --,

15° MAX

r; 1MQ.~ 0.045 0.065
0.055

, , i~O"70MAX
0.Q16 --H .. - 0.100lYPj I LO.125
0.020 0.020 0.135

-0.030

28 Pin CERDIP
(Package Type T)

28 15 .--l [::::2:::;1 g~
1 0.065 \.. f

0.085

fll:! BEND I g:::\,: --,,·=l.r O[i 0.330 --.l 0.390

-.'. ~
150 :/

[0.125
0.200

WAFERSCALE INTEGRATION, INC. 6·5

Package Information

Package
Information
(Cont.)

Drawing X1

Orawing X2

88 Pin Ceramic PGA
(Package Type X)

0.6421.313 I
" 1.285 SOl

0.658 SO

1188
1.212

-. r-0.1001YP Ii STANDOFF, 4 PLCS

.-@@@@ @@@)@@

@ @ @) @ @ @) @@@@@@

@ @ @ @

@ @) @@

@ @ @ @

@ @ @ @

+ @ @ .. i·· @ @ @ @

@ @ @ @

@ @ @ @

@@@@@@ @@@@@@

O@@@@@ @@@@@o

1
1
1
1

3
2
1
o
9
8
7
6
5
4
3
2
1

0.040 SQ. (INDEX MARK) 0.041

~X45° M4s1
NMLKJHGFEDCBA

Note: All Exposed Metal
and Pins are Gold Plated

"I!l!l1LI i'l1k:L
0.020 .

44 Pin Ceramic PGA
(Package Type X)

r 0.B50S0 I 0.180 :J
0.050 I 1!

0.100

r
!

I II t

1YP

0.018

j I t 0.156 -I 0.186

0.080

IT

0.050 DIASTANDOFF
4PLCS

A
@@@@o@ B

@) @)

@ @ @ @

@ @ + @ @

@ @ @ @

o@@@@o

0.700 SO

C
D
E
F
G
H

6·6 WAFERSCALE INTEGRATION, INC.

WAFERSCALE INTEGRATION, INC.

Sales Representatives and Distributors 7

Sales
Representatives

Section Index

and Distributors .. 7-1

Fo, additional Information,
call BIJIJ.TEAM·WSI (BIJIJ.B32·6974).
In California, call BIJIJ.562·6363.

WAFERSCALE INTEGRATIO~ INC.

rIll; Sales Representatives and Distributors
~~~ ~------------------------------------------------------------------------------

WAFERSCALE INTEGRATION, INC. 

Domestic ALABAMA FLORIDA MINNESOTA OHIO 

Representatives Southern Tech. Sales Sales Engineering HMR Giesting & Associates 
Huntsville Concepts, Inc. Minneapolis Cincinnati 
Tel: (205) 539-4789 Fort Lauderdale Tel: (612) 988-2122 Tel: (513) 385-1105 
Fax: (205) 539-7449 Tel: (305) 426-4601 Fax: (612) 884-4768 Fax: (513) 385-5069 

Fax: (305) 427-7338 
Giesting & Associates ARIZONA MISSOURI 

Summit Sales 
Sales Engineering 

John G. Macke Company 
Cleveland 

Concepts, Inc. Tel: (216) 261-9705 
Scottsdale Altamonte Springs St. Louis Fax: (216) 261-5624 
Tel: (602) 998-4850 Tel: (407) 682-4800 Tel: (314) 432-2830 
Fax: (602) 998-5274 Fax: (407) 682-6491 Fax: (314) 432-1456 OREGON 

CALIFORNIA Sales Engineering NEW JERSEY Thorson Company 

Bager ElectrOnics Inc. Concepts, Inc. Strategic Sales, Inc. 
Northwest 

Beaverton 
Fountain Valley Tampa Teaneck Tel: (503) 644-5900 
Tel: (714) 957-3367 Tel: (407) 682-4800 Tel: (201) 833-0099 Telex: 294835 
Fax: (714) 546-2654 Fax: (407) 854-3127 Fax: (201) 833-0061 Fax: (503) 644-5919 

Bager Elecronlcs Inc. ILLINOIS S.J. Associates, Inc. 
Woodland Hills Sieger Associates Mt. Laurel, NJ 08084 PENNSYLVANIA 
Tel: (818) 712-0011 Schaumburg Tel: (609) 866-1234 Giestlng & Associates 
Fax: (818) 712-0160 Tel: (708) 310-8844 Fax: (609) 866-8627 Pittsburgh 

Earle Assoc. Inc. Telex: 206248 Tel: (412) 828-3553 

San Diego Fax. (708) 310-9530 NEW MEXICO Fax: (412) 828-5861 

Tel: (619) 278-5441 S & S Technologies 
PUERTO RICO 

Fax: (619) 278-5443 INDIANA Albuquerque 

Giesting & Associates Tel: (505) 255-5599 G & A Associates 
Criterion Carmel Fax: (505) 255-5944 Mllaville, Rio Piedras 
Santa Clara Tel: (317) 844-5222 Tel: (809) 758-7001 
Tel: (408) 988-6300 Fax: (317) 844-5861 NEW YORK Fax: 809-754-0421 
Fax: (408) 986-9039 Tri-Tech Electronics, Inc 

Technology Sales IOWA East Rochester TEXAS 

Kentfield Gassner & Clark Co. Tel: (716) 385-6500 Southwestern 

Tel: (415) 459-2661 Cedar Rapids Twx: 62934993 Technical Sales 

Fax: (415) 459-3341 Tel: (319) 393-5763 Fax: (716) 385-7655 Dallas 

Twx: 62950087 Tri'l"ech Electronics Inc. 
Tel: (214) 369-0977 

CANADA Fax: (319) 393-5799 Endwell 
Fax: (214) 369-2903 

Har-Tech Electronics, Ltd. Tel: (607) 754-1094 Southwestern 
Toronto KANSAS Twx: 5102520891 Technical Sales 
Tel: (416) 665-7773 C. Logsdon & Assoc. Fax: (607) 785-4557 Austin 
Fax: (416) 665-7290 Prairie Village 

TrI-Tech Electronics Inc. 
Tel: (512) 440-0499 

Har-Tech Electronics, Ltd. Tel: (913) 381-3833 
Fayetteville Southwestern 

Montreal Fax: (913) 381-9774 
Tel: (315) 446-2881 Technical Sales 

Tel: (514) 694-6110 MARYLAND Twx: 7105410604 Houston 
Telex: 05-822679 Fax: (315) 446-3047 Tel: (713) 440-9200 
Fax: (514) 694-8501 Logical Technology, Inc. 

Tri-Tech ElectrOnics Inc. Glen Burnie UTAH 
Har-Tech Electronics, Ltd. Tel: (301) 766-7444 Fishkill 
Ottawa Fax: (301) 760-2054 Tel: (914) 897-5611 Butterworth Marketing 

Tel: (613) 726-9410 Twx: 62906505 West Valley 

Fax: (613) 726-8834 MASSACHUSETTS Fax: (914) 897-5611 Tel: (801) 972-5566 

Advanced Tech Sales, Inc. 
Fax: (801) 972-5573 

COLORADO North Reading NORTH CAROLINA 
Waugaman Associates, Inc. Tel. (508) 664-0888 Rep, Inc. 

WASHINGTON 

Wheat Ridge Fax: (508) 664-5503 MorriSVille Thorson Company 

Tel: (303) 423-1020 Tel: (919) 469-9997 Northwest 

Fax: (303) 467-3095 MICHIGAN Twx: 821765 Bellevue 

Giesting & Associates Fax: (919) 481-3879 Tel: (206) 455-9180 

CONNECTICUT Twx: 9104432300 
Livonia Rep, Inc. Fax: (206) 455-9185 

Advanced Tech Sales Tel: (313) 478-8106 Charlotte 
Wallingford Fax: (313) 477-6908 Tel: (704) 563-5554 
Tel: (203) 284-0838 

Giesting & Associates Twx: 821765 
Fax: (203) 284-8232 

Coloma Fax: (704) 535-7507 

Tel: (616) 468-4200 
Fax: (616) 468-6511 

WAFERSCALE INTEGRATION, INC. 7·1 



Sales Representatives and DistributDrs 

Domestic ALABAMA CANADA IOWA Schweber Electronics 

Distributors Schweber Electronics Time Electronics Schweber Electronics Hauppauge 
Huntsville 2798 Thamesgate Drive, #5 Cedar Rapids Tel: (516) 231-2500 
Tel: (205) 895-0480 Mississauga, Tel: (319) 373-1417 Schweber Electronics 

Ontario L4T 4E8 Westbury 
ARIZONA Tel: (416) 672-5300 MARYLAND Tel: (516) 334-7555 
Schweber Electronics Schweber Electronics 
Tempe COLORADO Columbia Time Electronics 

Tel: (602) 431-0030 Schweber Electronics Tel: (301) 596-7800 Hauppauge 

Time Electronics 
Englewood Time Laboratories 

Tel: (516) 273-0100 

Tempe 
Tel: (303) 799-0258 

Columbia Time Electronics 

Tel: (602) 967-2000 Time Electronics Tel: (301) 964-3090 Fairport 

Wyle Laboratories 
Englewood Vantage Components 

Tel: (716) 383-8853 

PhoeniX 
Tel: (303) 799-8851 

Columbia 
Fax: (716) 383-8863 

Tel: (602) 431-0030 Wyle Laboratories Tel: (301) 720-5100 Time Electronics 

Thornton Tel: (301) 621-8555 East Syracuse 

CALIFORNIA Tel: (303) 457-9953 Tel: (315) 432-0355 

Schweber Electronics MASSACHUSSETTS Vantage Components 
Calabasas CONNECTICUT Schweber Electronics Smithtown 
Tel: (818) 880-9686 Schweber Electronics Bedford Tel: (516) 543-2000 

Schweber Electronics 
Oxford Tel: (617) 275-5100 

Irvine 
Tel: (203) 264-4700 

Time Electronics 
NORTH CAROLINA 

Tel: (714) 863-0200 Peabody Schweber Electronics 
FLORIDA 

Tel: (508) 532-9900 Raleigh 
Schweber Electronics Schweber Electronics Tel: (919) 876-0000 
Sacramento Altamonte Springs Wyle Laboratories 
Tel: (916) 364-0222 Tel: (305) 331-7555 Burlington Time Electronics 

Tel: (617) 272-7300 Charlotte 
Schweber Electronics Schweber Electronics Tel: (704) 522-7600 
San Diego Largo MICHIGAN 
Tel: (619) 495-0015 Tel: (813) 541-5100 

Schweber Electronics 
OHIO 

Schweber Electronics Schweber Electronics Livonia Schweber Electronics 
San Jose North Pompano Beach Tel: (313) 525-8100 Beachwood 
Tel: (408) 432-7171 Tel: (305) 997-7511 Tel: (216) 464-2970 

Time Electronics Time Electronics 
MINNESOTA Schweber Electronics 

Torrance FI. Lauderdale Schweber Electronics Dayton 
Tel: (213) 320-0880 Tel: (305) 974-4800 Edina Tel: (513) 439-1800 

Time Electronics 
Tel: (612) 941-5280 

Time Electronics Time Electronics 
Sunnyvale Orlando Time Electronics Dublin 
Tel: (408) 734-9888 Tel: (305) 841-6565 Edina Tel: (614) 761-1100 

Tel: (612) 835-1250 
Time Electronics GEORGIA OKLAHOMA 
Chatsworth MISSOURI Schweber Electronics 
Tel: (818) 998-7200 Schweber Electronics 

Norcross Schweber ElectrOniCs Tulsa 
Time ElectrOniCs Tel: (404) 449-9170 Earth City Tel: (918) 622-8000 
San Diego Tel: (314) 739-0526 
Tel: (619) 586-1331 Time Electronics 

Time Electronics 
OREGON 

Norcross 
Time Electronics Tel: (404) 448-4448 SI. Louis Time Electronics 

Anaheim Tel: (314) 391-6444 Portland 

Tel: (714) 937-0911 KANSAS 
Tel: (503) 684-3780 

Wyle Laboratories Schweber Electronics 
NEW HAMPSHIRE 
Schweber Electronics 

PENNSYLVANIA 
Santa Clara Overland Park Schweber Electronics 
Tel: (408) 727-2500 Tel: (913) 492-2922 Manchester 

Tel: (603) 625-2250 Horsham 

Wyle Laboratories ILLINOIS 
Tel: (215) 441-0600 

Rancho Cordova 
Schweber Electronics 

NEW JERSEY Schweber Electronics 
Tel: (916) 638-5282 

Elk Grove Village Schweber Electronics Pittsburgh 

Wyle Laboratories Tel: (708) 364-3750 Pinebrook Tel: (412) 963-6804 

Irvine Tel: (201) 227-7880 
Time Electronics Time Electronics Tel: (714) 863-9953 

Wooddale Time Electronics King of Prussia 

Wyle Laboratories Tel: (708) 350-0610 Pinebrook Tel: (215) 337-0900 

Irvine Tel: (201) 882-4611 

Tel: (714) 851-9953 INDIANA Vantage Components 
TEXAS 

Wyle Laboratories Schweber Electronics Clifton Schweber Electronics 
Indianapolis Tel: (201) 777-4100 Austin 

Calabasas Tel: (512) 339-0088 
Tel: (818) 880-9001 Tel: (317) 843-1050 

NEW YORK Schweber Electronics 
Wyle Laboratories Schweber Electronics Dallas 
San Diego Rochester Tel: (214) 247-6300 
Tel: (619) 565-9171 Tel: (716) 424-2222 

7-2 WAFERSCALE INTEGRATION, INC. 



----------------

Sales Representatives and Distributors 

Domestic TEXAS Wyle Laboratories Wyle Laboratories Wyle Laboratories 

Distributors Schweber Electronics Houston West Valley Redmond 

(Cont., Houston Tel: (713) 879-9953 Tel: (801) 974-9953 Tel: (206) 881-1150 
Tel: (713) 784-3600 Wyle Laboratories WASHINGTON WISCONSIN 
Time Electronics Austin 

Time Electronics Schweber Electronics 
Carrollton Tel: (512) 834-9957 

Redmond New Berlin 
Tel: (214) 241-7441 

UTAH Tel: (206) 882-1600 Tel: (414) 784-9020 
Wyle Laboratories Time Electronics 
Richardson West Valley 
Tel: (214) 235-9953 Tel: (801) 973-8181 

International AUSTRALIA GERMANY ISRAEL NORWAY 

Distributors Energy Control Topas Electronic GmbH Vectronics OTE AlS 
Brisbane 3000 Hannover 1 60 Medinat Hayehudim St. N-0617 Oslo 6 
Tel: 61-7-376-2955 Tel: (0511) 13 12 17 P.O. Box 2024 Tel: 47 2 306600 
Fax: 61-7-376-3286 Tlx: 9218176 Herzlia B 46120, Israel Tlx: 85678955 
Tlx: 43778 Fax: (0511) 13 12 16 Tel: 972 52 556070 Fax: 47 2 321360 

Scantec GmbH 
Tlx: 922342579 

BELGIUM 
D-33 Planegg 

Fax: 972 52 556508 SPAIN 
Inelco Tel: (089) 859-8021 Unitronics, S.A. 
Brussels Tlx: 5213219 

ITALY 28008 Madrid 
Tel: 32 2 216 0160 Fax: (089) 857-6574 Silverstar Tel: 34 1 542 5204 
Tlx: 84-22090 20146 Milano Tlx: 83122596 
Fax: 32 2 2164606 HOLLAND Tel: 39 2 661251 Fax: 34 1 248 4228 

Maxtronix 
Tlx: 843332189 

DENMARK Fax: 39-2-66101359 SWEDEN 
Distributoren Intereiko, AlS 

Savannahweg 60 
Traco AB 3542 AW UTRECHT 

DK-2690 Karlslunde Tel: (31) 30-420340 
JAPAN S-123 22 Farsta 

Tel: 45-53-140700 Fax: (31) 30-422440 Nippon Imex Corporation Tel: 468 930011 
Tlx: 85543507 Setagaya-ku, Tokyo Tlx: 85410689 
Fax: 45-53-146805 HONG KONG Tel: 321 4415 Fax: 468 947732 

Components Agent Ltd. 
Tlx: 781 23444 

ENGLAND Fax: 81 3 325 0021 SWITZERLAND 
Micro Call Ltd. 

New Territories 
Laser & Electronic Tel: 0-499-2688 Kyocera Corporation 

Thame, Oxon OX9 3XD Tlx: 78030398 Setagaya-ku, Tokyo Equipment 
Tel: 44 84 426 1939 Fax: 852 0-4136080 Tel: 3-708-3111 8053 Zurich 
Fax: 44 84 426 1678 Tlx: 7812466091 Tel: 41 (1) 55 3330 

INDIA Fax: 81-3-708-3864 Tlx: 816801 
FINLAND 

Pamir Electronics Corp. 
Fax: 41 (1) 55 3458 

OY Comdax AB 400 West Lancaster KOREA 
SF-00210 Helsingfors Suite 202 Eastern ElectroniCS, Inc. 

TAIWAN 
Tel: 358 067 02 77 Devon, PA 19333 USA Sungdong-Ku, Seoul Sertek International, Inc. 
Tlx: 857125876 Tel: 215-688-5299 Tel: 82 2 463-2266 Taipei, 10479, Taiwan 
Fax: 358 06922326 Fax: 215-688-5382 Tlx: 78727381 Tel: 2-501-0019 

Tlx: 210656 Pamir UR Fax: 82 2 465-2607 Tlx: 78523756 
FRANCE 
MICROEL 
Imeuble MICRO 
Cedex 
Tel: 33 (1) 69.07.08.24 
Tlx: 692493F 
Fax: 33 (1) 69.07.17.23 

WSI Direct REGIONAL SALES EUROPE SALES 

Sales Offices Northeast Southwest Southeast Excelsiorlaan 53 
North Andover, MA Huntington Beach, CA Huntsville, AL 1930 Zaventem 
Tel: (508) 685-6101 Tel: (714) 848-6968 Tel: (205) 539-7406 Belgium 
Fax: 508/685-6105 Fax: 714/848-5648 Fax: 205/539-7449 Tel: 32-2-725-0546 

Midwest Mid-Atlantic Northwest 
Fax: 32-2-725-1146 

Hoffman Estates, IL Trevose, PA Fremont, CA 
Tel: (708) 490-5318 Tel: (215) 638-9617 Tel: (415) 656-5400 
Fax: 708/882-1881 Fax: 215/638-7326 Telex: 289255 

Fax: 415/657-5916 

For additional information or assistance, call 800:rEAM-WSI (800-832-6974). In California, call 800-562-6363. 

11/15/89 Rev. 1.23 

WAFERSCALE INTEGRATION, INC. 7-3 

---------------_ .. -~---



LIFE SUPPORT POLICY: 
WaferScale Integration, Inc. (WSI) products are not authorized for use as critical components in life support systems or devices without the express 
written approval of the President of WSI. As used herein: 

A) Life support devices or systems are devices or systems which 1) are intended for surgical implant into the body, or 2) support or sustain life 
and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected 
to result in a significant injury or death to the user, 

B) A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the 
failure of the life support device or system or to affect its safety or effectiveness. 

Information furnished herein by WaferScale Integration, Inc. (WSI) is believed to be accurate and reliable. However, no responsibility is assumed 
for its use. WSI makes no representation that the use of its products or the interconnection of its circuits, as described herein, will not infringe 
on existing patent rights. No patent liability shall be incurred by WSI for use of the circuits or devices described herein. WSI does not assume 
any responsibility for use of any circUitry described, no CircUit patent rights or licenses are granted or implied, and WSI reserves the right without 
commitment, at any time without notice, to change said circuitry or specifications. The performance characteristics listed in this book result from 
specific tests, correlated testing, guard banding, design and other practices common to the industry. Information contained herein supersedes 
previously published specifications. Contact your WSI sales representative for specific testing details or latest information. 

Products in this book may be covered by one or more of the following patents. Additional patents are pending. 

USA: 4,328,565; 4,361,847; 4,409,723; 4,639,893; 4,649,520; 4,795,719; 4,763,184; 4,758,869 
West Germany: 3,103,160 
Japan: 1,279,100 
England: 2,073,484; 2,073,487 

PAL is a registered trademark of Monolithic Memories, Inc. 
SAM and SAM+PLUS are trademarks of Aitera Corporation. 
MagicPro'· and Programmable System'· Devices are trademarks of WaferScale Integration, Inc. 
ASMILE, SAMSIM and SAMPLUS are trademarks of WaferScale Integration, Inc. and Altera Corporation. 
MS-DOS is a trademark of Microsoft Corporation. 
IBM and IBM Personal Computer is a registered trademark of International Business Machines Corporation. 

Copyright © 1989 WaferScale Integration, Inc. All Rights Reserved. 

Patents Pending Rev. 1.3 



WAFERSCALE INTEGRATION, INC. 

47280 Kato Road, Fremont , CA 94 538- 7333 
4 15-656-5400 FAX: 415-65 7-5916 TELEX- 289255 
800-Tl::A M-WSI (800-832-69 74) 
IN CALIFORNIA 800-562-6363 

Printed in U. S.A. 


