

LSI Products Division
TRW Electronic Components Group
P.O. Box 2472
IntroductionProduct IndexesAdvance InformationA/D Converters
Evaluation Boards
D/A Converters
Multipliers
Multiplier-AccumulatorsSpecial Function ProductsMemory/Storage ProductsReliabilityPackage InformationGlossaryOrdering InformationApplication Notes And Reprints (Listings)
Special Function Products
Memory/Storage Products
Reliability
Package Information
Glossary
Ordering Information
Application Notes And Reprints (Listings)

Introduction

Product hnderas
Aduanca Mffermation
AlD Conventras
Evaluation Boards
Dif Comurters
muntimilers
Mimhtiliar Aceumulators
Sortal Fundien Products
Mantury/sionage Products
Raliahility
Pachana Mromation
Whanman
Ordering information
Application Hintes And Reprints (Listings)

As the world leader of high-speed data acquisition and digital signal processing components, TRW LSI Products has made a commitment to the future. In the early 1960 s, TRW developed TTL and pioneered the evolution of Integrated Circuit and VLSI technologies. Today TRW LSI is conducting research to create new products and set high-performance standards in the design, development and manufacture of components. 1 -micron technology is now the standard used at TRW in both bipolar and CMOS processes. This represents a major breakthrough in IC manufacturing, producing faster and more cost-effective products.

As system technologies change and grow, the group of dedicated employees at TRW LSI Products has committed the future to setting even higher standards in order to provide the customer with better, more reliable, and more useful products. TRW LSI Products currently offers a diverse line of DSP components, including: multipliers, multiplier-accumulators, A/D and D/A converters, shift registers, floating point processors, and others.

The use of innovative designs and state-of-the-art manufacturing processes has resulted in product quality that is unsurpassed in the industry. Each device receives thorough testing, and passes stringent quality control requirements. TRW LSI's components have been proven in many applications, ranging from telecommunications and broadcasting to oil and space exploration, medical electronics and underwater surveillance.

TRW LSI Products prides itself in its responsiveness to customers' requirements and needs. As world technological advances intensify, the most modern research techniques are applied to real-life situations in order to produce devices designed to improve system reliability while reducing circuit cost, size and power requirements.

Our superior products meet all of your specific needs. Follow us as we develop components that will require less space, less energy consumption and less design effort for your system. Follow us as we challenge the future.

Product Indexes

AID Converters		Catalog Page Number
TDC1001	8-Bit, 2.5MSPS	D 5
TDC1002	8-Bit, 1.0MSPS	D 5
TDC1007	8-Bit, 20MSPS	D 15
TDC1014	6-Bit, 25MSPS	D 27
TDC1019	9-Bit, 15MSPS	D 37
TDC1019-1	9-Bit, 18MSPS	D 37
TDC1021	4-Bit, 25MSPS	D 49
TDC1025	8-Bit, 50MSPS	D 59
TDC1027	7-Bit, 18MSPS	D 75
TDC1029	6-Bit, 100MSPS	D 85
TDC1044	4-Bit, 25MSPS	D 97
TDC1046	6-Bit, 25MSPS	D 107
TDC1047	7-Bit, 20MSPS	D 117
TDC1048	8-Bit, 20MSPS	D 127
TDC1147	7-Bit, 15MSPS	D 139

Evaluation Boards

TDC1007E1CIPIC	8 -Bit, 20MSPS	E 5
TDC1014E1CIP1C	6 -Bit, 25MSPS	E 21
TDC1019E1C	9 -Bit, 15MSPS	E 35
TDC1025E1C	8 -Bit, 50MSPS	E 49
TDC1029E1C	6 -Bit, 100MSPS	E 61
TDC1047E1C	7 -Bit, 20MSPS	E 73
TDC1048E1C	8 -Bit, 20MSPS	E 83

D/A Converters		
TDC1016-8	8 -Bit, 20MSPS	F 5
TDC1016-9	9-Bit, 20MSPS	F 5
TDC1016-10	10-Bit, 20MSPS	F 5
TDC1018	8 -Bit, 125MSPS	F 17
TDC1034	4 -Bit, 125MSPS	F 31

Multipliers

MPY008H	8×8 Bit, 90 ns Cycle Time	G 5
MPY008H-1	8×8 Bit, 65ns Cycle Time	G 5
MPY08HU	8×8 Bit, 90ns Cycle Time	G 15
MPY08HU-1	8×8 Bit, 65ns Cycle Time	G 15
MPY012H	12×12 Bit, 115 ns Cycle Time	G 25
MPY112K	12×12 Bit, 50ns Cycle Time	G 39
MPY016H	16×16 Bit, 145ns Cycle Time	G 49
MPY016K	16×16 Bit, 45ns Cycle Time	G 63
MPY016K -1	16×16 Bit, 40ns Cycle Time	G 63
TMC216K	$16 \times 16,145 n s$ Cycle Time, CMOS	G 77

Mutiplier-Accumulators

TDC1008	8×8 Bit, 100 ns Cycle Time, 19-Bit Output	H 5
TOC1009	12×12 Bit, 135ns Cycle Time, 27-Bit Output	H 17
TDC1010	16×16 Bit, 165ns Cycle Time, 35-Bit Output	H 28
TOC1043	16×16 Bit, 100ns Cycle Time, 19-Bit Output	H 41
TMC2009	12×12 Bit, 135ns Cycle Time, 27-Bit Output, CMOS	H 58
TMC2010	16×16 Bit, 160ns Cycle Time, CMOS	H 65
TMC2110	16×16 Bit, 100ns Cycle Time, CMOS	H 77

Special Functions

| TDC1004 | 64×1 Bit, 10MHz, Digital Correlator, Analog Output | I 5 |
| :--- | :--- | :--- | :--- |
| $T D C 1022$ | $22-$ Bit, 10MHz, Floating Point Arithmetic Unit | I 13 |
| $T D C 1023$ | 64×1 Bit, 15MHz, Digital Correlator, Digital Output | I 29 |
| TDC1028 | $4 \times 4 \times 8$ Bit, 10MHz, Digital Filter (FIRI) | I 43 |

Memory/Storage Products

TDC1005	64×2 Bit, 25MHz, Shift Register	J 5
TDC1006	256×1 Bit, 25MHz, Shift Register	J 11
TDC1011	$8-8$ Bit, 18MHz, Variable Length Shift Register	J 17
TDC1030	$64 \times 9,15 M H z$, First-In First - Out Memory	J 25

See pages C 3-C 25 for information on our future products.

MPYOOBH	8×8 Bit Multiplier, 90ns Cycle Time	G 5
MPYOOBH-1	8×8 Bit Multiplier, 65 ns Cycle Time	G 5
MPYOBHU	8×8 Bit Multiplier, 90ns Cycle Time	G 15
MPYOBHU-1	8×8 Bit Mutiplier, 65ns Cycle Time	G 15
MPY012H	12×12 Bit Multipliar, 115ns Cycle Time	G 25
MPY016H	16×16 Bit Multiplier, 145ns Cycle Time	G 49
MPY016K	16×16 Bit Mutiplier, 45ns Cycle Time	G 63
MPY016K-1	16×16 Bit Mutipilier, 40ns Cycle Time	G 63
MPY112K	12×12 Bit Multiplier, 50ns Cycle Time	G 39

TDC1001	8-Bit AID Converter, 2.5MSPS, Successive Approximation	D 5
TCC1002	8-Bit AID Converter, 1.0MSPS, Successive Approximation	D 5
TCC1004	64×1 Bit Digital Correlator, 10MHz, Analog Output	I5
TDC1005	64×2 Bit Shift Register, 25 MHz	J5
TDC1006	256×1 Bit Shift Register, 25 MHz	J 11
TDC1007	8 -Bit AID Converter, 20MSPS	D 15
TCC1007E1C	8-Bit Evaluation Board, 20MSPS	E 5
TDC1008	8×8 Bit Multiplier-Accumulator, 100ns Cycle Time	H 5
TCC1009	12×12 Bit Multiplier-Accumulator, 135ns Cycle Time	H 17
TDC1010	16×16 Bit Mutiplier-Accumulator, 165ns Cycle Time	H 29
TDC1011	8 -Bit Varible Length Shift Register, 18MHz	J 17
TDC1014	6-Bit AID Converter, 25MSPS	D 27
TCC1014E1C	6 -Bit Evaluation Board, 25MSPS	E 21
TDC1016-8	8 -Bit DIA Converter, 20MSPS	F 5
TOC1016-9	$9-\mathrm{Bit}$ D/A Converter, 20MSPS	F 5
TCC1016-10	10-Bit D/A Converter, 20MSPS	F 5
TDC1018	8-Bit D/A Converter, 125MSPS	F 17
TDC1019	$9-\mathrm{Bit}$ AID Converter, 15MSPS	D 37
TCC1019-1	9-Bit AID Converter, 18MSPS	D 37

TDC1019E1C	9-Bit Evaluation Board, 15MSPS	E 35
TDC1021	4-Bit, AID Converter, 25MSPS	D 49
TDC1022	22-Bit Floating Point Arithmetic Unit, 10MHz	I 13
TDC1023	64×1 Bit Digital Correlator, 15MHz, Digital Output	I 29
TDC1025	8-Bit AID Converter, 50MSPS	D 59
TDC1025E1C	8-Bit Evaluation Board, 50MSPS	E 49
TDC1027	7 -Bit AID Converter, 18MSPS	D 75
TOC1028	$4 \times 4 \times 8$ Bit Digital Filter (FIR), 10MHz	I 43
TDC1029	6-Bit A/D Converter, 100MSPS	D 85
TDC1029E1C	6 -Bit Evaluation Board, 100MSPS	E 61
TDC1030	64×9 Bit First-In First-Out Memory, 15MHz	J 25
TOC1034	4-Bit D/A Converter, 125MSPS	F 31
TOC1043	16×16 Bit Multiplier-Accumulator, 100ns Cycle Time	H 41
TDC1044	4-Bit AID Converter, 25MSPS	D 97
TDC1046	6 -Bit AID Converter, 25MSPS	D 107
TDC1047	7-Bit AID Converter, 20MSPS	D 117
TDC1047E1C	7-Bit Evaluation Board, 20MSPS	E 73
TDC1048	8-Bit A/D Converter, 20MSPS, Low Power	D 127
TDC1048E1C	8-Bit Evaluation Board, 20MSPS	E 83
TDC1147	7-Bit AID Converter, 15MSPS	D 139

| TMC2009 | 12×12 Bit CMOS Multiplier-Accumulator, 135ns Cycle Time | H 53 |
| :--- | :--- | :--- | :--- |
| TMC2010 | 16×16 Bit CMOS Multiplier-Accumulator, 160ns Cycle Time | H 65 |
| TMC2110 | 16×16 Bit CMOS Multiplier-Accumulator, 100ns Cycle Time | H 77 |
| TMC216H | 16×16 Bit CMOS Multiplier, 145ns Cycle Time | G 77 |

See pages C 3-C 25 for information on our future products.
$V \quad L \quad S \quad 1$

D	A	T	A
B	0	0	K

Floating Point

Registered Arithmetic/Logic Unit 22 -bit (with 16-bit compatibility mode)

The TRW TDC1033 is a monolithic integrated circuit arithmeticllogic unit with an on-chip register file. It operates on numbers represented in two formats: 16-bit fixed point two's complement and 22 -bit floating point. The 22 -bit floating point format has a 16 -bit two's complement significand and a 6 -bit two's complement exponent giving full 16-bit precision over a 384 dB dynamic range.

In the 16 -bit fixed point mode, the TDC1033 is function and microcode compatible with an array of four industry standard 2901-bit slice processors including the 2902 carry-look-ahead chip. The 22-bit floating point arithmetic functions are parallel to the fixed-point arithmetic functions providing an easy way for the designer to upgrade system performance without reprogramming microcode.

Either saturation or wrap-around treatment of overflow and underflow conditions may be selected for floating point operation.

To retain compatibility with the 2901-bit slice processors, there is a single data input port and a single data output port; these ports are fully TTL compatible. All data inputs and outputs are registered. The data outputs are three-state to allow use on a bus.The 2901's internal dual-port RAM has been retained and widened to 22 bits. Likewise, the internal bus paths are 22 bits wide. Twenty-seven pins are used to supply instructions, controls and addresses to the TDC1033. It operates at up to 6 million operations/second (6MHz clock).

Features

- Microprogrammable |Replaces Four 2901-Bit Slice Units) In Fixed Point Mode
- Eases Upgrade Of Systems To Floating Point
- Full 16-Bit Precision Over Wide Dynamic Range
- Two's Complement Fixed And Floating Point Operation
- User-Selectable Saturation Limiting Or Wrap-Around Overflow Handling
- Three-State TTL Outputs
- Available In 84 Lead Pin Grid Array Or Leadless Chip Carrier

Applications

- Fast Fourier Transformers
- Digital Filters
- Geometric Transformations For Image Processing And Computer Graphics
- Array Processors
- High-Speed Controllers
- Arithmetic Element Module (With TDC1042 Multiplier)

Simplified Block Diagram

Instructions

Floating Point	Fixed Point	Flags
$R+S$	R + S	SIGN
$S-$ R	S $-R$	Significand Overflow
R $-S$	R $-S$	ZERO
Normalize R $+S$	R OR A	Exponent Overflow
Denormalize R	R AND S	Significand Carry Out
	\bar{A} AND S	
	R XOR S	
	R XNOR S	

Functional Block Diagram

LSI Products Division

Functional Description

The TDC1033 consists of five functional sections:

1. The Source Multiplexers For The ALU
2. The Arithmetic/Logic Unit (ALU) Itself
3. The Two-Port RAM (Register File) And RAM Shifter
4. The 0 Register And Shifter
5. The Output Multiplexer

Source Multiplexers

The source multiplexers select which inputs will be applied to the ALU Section. The operation of these multiplexers is controlled by three microcode instruction bits, $\mathrm{I}_{2}-\mathrm{I}_{\mathrm{O}}$.

The R multiplexer is a one-of-three data selector which applies to either:

1. The present data input to the chip
2. The RAM " A " output li.e., the word in register file " A " selected by the A Address, $A D A B_{3}-A D A O_{0}$ or
3. A floating point zero
to the "A" input port of the ALU Section.
The S multiplexer is a one-of-four data selector which applies either:
4. The RAM " A " output las defined above)
5. The RAM "B" output li.e., the word in register file " B " selected by the B Address, $\mathrm{ADB}_{3}-\mathrm{ADB}_{0}$ l
6. The Q register output or
7. A floating point zero
to the " B " input port of the $A L U$ Section.

Arithmetic/Logic Unit

The ALU receives two numbers, denoted R and S, from the source multiplexers. It then performs one of eight fixed point operations, or one of five floating point operations on those quantities. The output of the ALU is bused to the RAM shifter, the Q register shifter and the output multiplexer. The ALU is controlled by eight registered inputs (A_{3}-A0), Carry In (CIN), Round (RNDI, Scale (SCA) and Limit (LMT).

The ALU consists of four blocks:

1. The Denormalize Section
2. The Adder/Logic Section
3. The Renormalize Section
4. The Round/Scale/limit Section

The Denormalize and Renormalize sections are enabled in the floating point mode and disabled in the fixed point mode. The Denormalize Section compares the two operands' exponents and shifts the significand of the smaller by the difference between the exponents. In floating point mode, the Adder/Logic Section operates on the significand of the result. In fixed-point mode, the Adder/Logic Section operates on the selected 16-bit operands as directed by the control inputs to the device with no denormalization. The Renormalize Section performs the necessary shifts to remove redundant sign bits adjusting the exponent as required. The flags SGN (Significand SiGN), SOV ISignificand OVerflowl, EOV IExponent OVerflowl, ZERO (zero significand) and COUT (significand Carry OUT) are generated in the Renormalize Section. Note that while the significand flags are active in the fixed point mode, the EOV flag will not be active in the fixed point mode. In floating point mode only, the Round/Scale/Limit Section adjusts the result according to its controls. These controls and their effects are: RND ladd a ONE to the bit position just below the LSBI, SCA Isubtract one from (force the output to the maximum representable magnitude on overflow and force the output to floating point zero on underflow).

RAM

The RAM is a two-port 16 -deep by 22 -bit wide register file. The RAM preprocessor allows one of the following to be loaded into RAM:

1. The input data register contents
2. The full 22 bits of the current ALU output
3. Half the value of the significand of the current ALU output (sign-extended, but retaining the same exponent)
4. Twice the value of the significand of the current ALU output (with the same exponent)

Controls $D C_{4}-D C_{0}$ select which preprocessor function is to be performed. Two data words l" A " and " B ", selected by the appropriate address bits) can be accessed from the RAM during one machine cycle. The RAM Write Enable (WE) is
strobed by the rising adge of the chip master clock except in the NOP and Q register write cases.

There are four instructions which control the loading of the RAM:

1. NOP (No OPeration)
2. Load F
3. Load Fl2
4. Load $2 F$
(What is loaded into the RAM is the value selected by the RAM preprocessor.)

In the Load F/2 case, a one-bit right shift of the significand is performed and the Most Significant Bit (MSB) is loaded from one of four sources:

1. One
2. Zero
3. MSB of F (two's complement sign extension)
4. LSB of F (for rotation)

In the Load $2 F$ case, a one-bit left shift of the significand is performed and the Least Significant Bit (LSB) is loaded from one of four sources:

1. One
2. Zero
3. MSB of F for 16 -bit word rotation
4. Q shifter significand MSB (used for 32 -bit word shift or rotation)

Q Register/Shifter

The Q register/shifter is a 22 -bit register which is reloaded each clock cycle with either the previous ALU output value Ithis is used for performing accumulation, division, atc.) or variously shifted versions of its own present contents. The control signals to this section are $D C_{4}-D C_{0}$ and the DIVide control (DIV). There are nine 0 register functions:

1. Load current ALU output. Load significand and hold exponent if DIV $=0$
2. Shift significand right one place and shift a zero into the MSB
3. Shift significand right one place and shift the significand LSB of the ALU output into the MSB
4. Shift significand right one place and sign extend
5. Shift significand left one place and shift a zero into the LSB of the significand
6. Shift significand left one place and force ALU significand MSB into the LSB of the significand
7. Rotate 0 register contents left (MSB into LSB)
8. Rotate 0 register contents right (LSB into MSB)
9. NOP (no operation-i.e., hold current \mathbb{Q} register contents)

Use of the 0 register is especially advantageous in double-precision fixed point calculations. Note that the exponent field is UNAFFECTED by any 0 register shift.

Output Multiplexer

The output multiplexer is a one-of-two data selector which applies either the ALU output or the RAM " A " output to the output register. The selection is internally decoded from control signals $D C_{4}-D C_{0}$.

Floating Point Multiplier

22-bit lwith 16-bit fixed point compatibility mode)

The TRW TDC1042 is a monolithic integrated circuit multiplier which operates on numbers represented in a 22 -bit floating point format or in a 16 -bit fixed point format. The floating point format has a 16-bit two's complement significand and a 6 -bit two's complement exponent giving full 16 -bit precision over a 384 dB dynamic range. Either saturation or wrap-around treatment of overflow conditions may be selected.

Each of the two inputs and the output has its own fully TTL compatible port providing high-speed Inon-multiplexed) IIO. All data inputs and outputs are registered as well as the three instruction inputs and one of the control inputs. The data outputs are three-state to allow use on a bus.

Two internal registers and a source-selection multiplexer on the multiplicand ("B") input allow efficient implementation of complex multiplication. An internal pipeline register can be enabled to reach a data throughput rate of 10 MHz Iguaranteed over temperature and supply voltage variationsl. The device can provide a new product every 100 nanoseconds. The non-pipelined "feedthrough" mode permits 6 MHz operation without the extra stage of pipeline latency.

Features

- Microprogrammable
- Full 16-Bit Precision Over Wide Dynamic Range
- Two's Complement Fixed Or Floating Point Multiplication
- Selectable Pipelining
- User-Selectable Saturation Limiting Or Wrap-Around Overflow Handling
- Fully Parallel IIO Structure
- Fixed Point Operation Available
- Three-State TTL Outputs
- Available In 84 Lead Pin Grid Array Or Leadless Chip Carrier

Applications

- Fast Fourier Transformers
- Digital Filters
- Companion Multiplier For ALU In Microprogrammed Signal Processors
- Coprocessor To TDC1033 Registered Arithmetic Logic Unit
- Geometric Transformations For Image Processing And Computer Graphics

Functional Block Diagram

TWX: 910-335-1571
$40 G 01201$ Rev. B-5/85
Printed in the U.S.A.

Floating Point Data Format

Input, Output with MSP Selected

Exponent

The exponent is represented by bits D_{16} through D_{21}. It is a two's complement integer with D_{21} the two's complement sign bit. The exponent ranges from -32 to 31 .

Exponent $=D_{21} \times\left(-2^{5}\right)+\sum_{n=16}^{20} D_{n} \times 2^{(n-16)}$

Zero
Zero is represented as follows:
Significand $=0.000000000000000$
Exponent $=100000$

Significand

The significand Isometimes referred to as the MANTISSAI is represented by bits D_{15} through D_{0}. It is a fractional two's complement number with 16 -bit precision: D_{15} is the two's complement sign bit. The significand ranges from $\left(1-2^{-15}\right)$ to -1 .
Significand $=D_{15} \times(-1)+\sum_{n=0}^{14} D_{n} \times 2^{(n-15)}$

Output with LSP Selected

The exponent field is duplicated. The significand field D_{15} Dol carries binary weighting from 2^{-16} through 2^{-31}
respectively. Thus, the significand is $\sum_{n=0}^{15} D_{n} \times 2^{(n-31)}$ when the LSP is output. The two LSBs $\left(2^{-30}\right.$ and $\left.2^{-31}\right)$ are zero-filled as required by internal significand shifting.

Representable Floating Point (FLP) Number Range

Normalized Floating Point Range: A normalized floating point number is one for which the first two bits of the significand $\left(D_{15}\right.$ and $\left.D_{14}\right)$ are different, that is $D_{15} \oplus D_{14}=1$.

Digital-To-Analog Converter
Triple 4-bit, 100MSPS

The TRW TDC1334 consists of three separate 4-bit D/A converters on a single monolithic integrated circuit. The TDC1334 has been designed for high-speed operation and is compatible with ECL logic families. All data and control inputs to the device are registered on the rising edge of the clock (CONV) input.

A single on-chip band-gap voltage source is used as the reference for all three D/A converters and a single external resistor determines gain of the TDC1334. Video controls, Sync and Blank, are included on the TDC1334 for accurately setting DIA output levels during synchronization and CRT blanking intervals. A brightness enhancement control, Bright, is used for emphasizing portions of a CRT display and cursor identification.

Each of the three D/A converters has two complementary current output terminals that can drive 750 hm lines. The device has been designed to minimize digital feedthrough and for optimum printed circuit board layout. Analog and digital
grounds have been kept separate for maximum flexibility in system grounding.

Features

- Complete, Monolithic, "Graphics Ready"
- Three Identical 4-Bit D/A Converters
- Registered Data Inputs
- Registered Sync, Blank, And Bright Controls
- On-Board Reference
- Linearity Error Less Than 1/8 LSB
- 100MSPS Operation
- ECL Compatible Inputs
- Complementary Current Outputs
- Single -5.2 Volt Power Supply Required
- Can Be Operated In TTL Systems
- Available In A 28 Lead Ceramic DIP

Pin Assignments

Functional Block Diagram

TMC2220/TMC2221
 Advance Information

CMOS Programmable Digital Output Correlators

4×32 Bit, 20 MHz
1×128 Bit, 20 MHz

The TMC2220 is a high-speed digital CMOS correlator divided into four separate 1×32 bit correlator modules. The four module correlation scores are weighted and combined according to user programming. Possible configurations include a single 4×32 bit, 2×64 bit, or 1×128 and a pair of separate 1×64, or 2×32 correlators. In addition, a bit-by-bit masking capability within each module provides total word length flexibility. Each 32 -bit module consists of a serial reference shift register, a parallel reference holding latch, a serial data shift register, a masking latch and a parallel counter.

A decoder controls the four two-input reference multiplexers and reference register enables to choose one of eight reference loading schemes. For each of the correlator modules, the reference word is serially shifted into the B register through one of the two multiplexed ports. By clocking the R latch, the reference residing in B is parallel-loaded into R. This allows the user to preload a new reference word into the B register while correlation is being performed between the data and present reference. The four A data registers can be loaded individually or simultaneously with the use of the independent data clock enables. The masking function is defined with the LM control; loading a zero into a cell of the latch will mask the corresponding correlation bit. When the mask latch is in the transparent mode (LM held HIGH), all 32 correlation bits are active.

During the correlation process, the latched reference and data words are continually compared bit-for-bit by exclusive-NOR circuits and ANDed with the latched mask function. Each exclusive-NOR bit contributes one bit to the parallel counter all bits with a zero in the mask latch have no effect. The output represents the number of positions which match at any one time between the A data register and R reference latch. The module correlation score can be selected by the user as unipolar (0 to 32) or bipolar $(-16$ to +16$)$ with the TC control.

A 3-bit instruction determines the weighting factor for each of the correlator modules. The weighted outputs are combined
into pairs and are available as two independent correlations, 0 and I , through the 10 -bit main output port and the 8 -bit auxiliary port. A programmable matrix combines the \mathbb{Q} and I outputs to obtain three additional functions through the main port: $\mathrm{Q}+\mathrm{I}, \mathrm{Q}+| | 2$, and a $\operatorname{Max}||\mathrm{Q}|,||||+1 / 2 \mathrm{MIN} \||0|,||| |$ approximation for the magnitude quantity SQRT $\|^{2}+0^{2} \mid$. To simplify interface timing, the programming controls are synchronous, and are appropriately delayed to accommodate the pipelining through the weighting and recombining circuitry.

The TMC2221 combines four 1×32 correlator modules in series for a fixed single channel configuration. The reduced complexity and package size of the TMC2221 are ideal for those applications requiring less versatility than the TMC2220. By making use of the masking function, any size single channel length of up to 128 is possible.

With the TMC2221, the reference word is serially loaded through the single two-input multiplexed reference port of the first correlator module. Although the configuration is fixed, the reference loading process and basic operation for each module are similar to those of the TMC2220. The outputs are summed with equal weighting, and the result is output through the single 8 -bit port.

Features

- 20 MHz Correlation Rate
- Single +5 V Power Supply
- Low Power CMOS Process Technology
- Three-State TTL Compatible Outputs
- Data Bit Masking Capability
- Two's Complement Or Unsigned Magnitude Correlation Score
- TMC2220 Provides User Programmable Reference Multiplexing, Module Weighting Factors And Recombining Circuitry for 256 Different Correlation Modes.
- Multibit Correlation With TMC2220 Allows for Improved Detection Accuracy In Noisy Environments
- TMC2220 Available In A 64 Lead Ceramic DIP, 68 Contact Chip Carrier, Or 68 Leaded Chip Carrier
- TMC2221 Package Size Reduced With Fixed Single Channel Configuration 11×1 Through 1×1281
- TMC2221 Available In A 28 Lead Ceramic DIP, 28 Lead CERDIP, Or 28 Contact Chip Carrier

Applications

- Signal Detection
- Radar Signature Recognition
- Secure Communications
- Automatic Testing Equipment
- Electro-Optical Navigation
- Pattern And Character Recognition
- Robotics

Module Weighting Factor Programming

Decoder Inputs	Internal Channel Configuration TMC2220	
$W_{2} W_{1} W_{0}$	0	1
000	$\mathrm{a}_{\mathrm{a}}+\mathrm{O}_{\mathrm{b}}$	$I_{c}+I_{d}$
001	$3 a_{a}+a_{b}$	$3_{c}+l_{d}$
$\begin{array}{lll}0 & 1 & 0\end{array}$	$4 a_{a}+a_{b}$	${ }^{4} \mathrm{c}+\mathrm{I}_{\mathrm{d}}$
011	a_{b}	I_{d}
100	$\mathrm{a}_{\text {a }}$	
101	$3 a_{a}+2 a_{b}$	$3 l_{c}+2 l_{d}$
110	$40_{a}+2 a_{b}$	$4 I_{c}+2 i_{d}$
111	$50_{a}+2 a_{b}$	$5 l_{c}+2 l_{d}$

Reference Multiplex and Enable Programming

Decoder Inputs	Module Reference Port Selected	
	TMC2220	TMC2221
$\mathrm{RE}_{2} R E_{1} R E_{0}{ }^{1}$	a bc d	a
000	0000	0
001	000 X	
010	$00 Y \mathrm{Y}$	invalid
011	$00 Y Y$	
100	$X \times X X$	X
101	$Y X X X$	
110	$Y X Y X$	Y
111	Y Y Y Y	

Note: The LSB of the decoder, $R E_{0}$, is not used on the TMC2221.

TMC2221 Functional Block Diagram

TMC2220 Functional Block Diagram

Systolic FIR Filter Module

10 -bit, 20MHz

The TRW TMC2243 is a three-stage, 10 -bit systolic FIR filter module. This device is fully expandable and is specifically configured to support video signal processing requirements. The TMC2243 comprises three 10 -bit multiply and add IMADI cells, each with special "feedthrough registers" which support zero coefficient taps. These registers are ordinarily in transparent mode; enabling them will insert a zero coefficient tap into the filter. On each clock cycle, a 2-bit coefficient write enable control allows any one of the three coefficients to be modified using the data at the coefficient input bus. Adaptive filtering is facilitated by this programmability.

The function SUMOUT(n) $=$ SUMIN($n-3)+D(n-4) K 1+$ $D(n-3) K 2+D(n-2) K 3$ is performed by the device, the basic computation of a FIR filter. The data, Dli), and the coefficients, Klil, are 10 -bit two's complement numbers. The SUMIN and SUMOUT buses are 16 bits wide to allow for word growth. The 16 -bit incoming sum (SUMIN 21 - ${ }^{6}$) is sign-extended by one bit, yielding a 17 -bit two's complement number. Additionally, $1 / 2$ LSB rounding is implemented by appending 100000, thereby expanding the data to 23 bits. In order to minimize rounding and overflow errors, the internal summation paths are 23 bits. An overflow flag indicates when two's complement overflow beyond the representable number range has occurred.

The TMC2243 is built with TRW's OMICRON $-C^{\text {TM }} 1$-micron CMOS process. The device operates at a clock rate of 20 MHz (50ns) in order to support video speed applications.

Features

- 20 MHz Guaranteed Clock Rate Over Standard Temperature Range $\left(0^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
- Systolic Architecture Allows For Expansion
- Efficient Implementation Of Zero Coefficient Taps
- Wide Internal Summation Paths For Overflow Protection
- Programmable Coefficients
- All Inputs And Outputs Registered
- Three-State Outputs
- Available In 64 Lead DIP

Applications

- FIR Filters
- Adaptive Filters
- One And Two Dimensional Convolution

TMC2243 Functional Block Diagram

Note:

1. *The MSB is duplicated, thereby sign-extending.

Floating Point Arithmetic Unit

$32 / 34$ bits, 125ns

The TRW TMC3200 is a $32 / 34$-bit floating point arithmetic unit. It performs operations on floating point numbers in either IEEE standard 32-bit or an extended 34-bit format, and also accommodates a 24 -bit two's complement integer (fixed point) format. Full conversion flexibility between the three data formats is available. The TMC3200 is built with TRW's OMICRON $-C^{\text {TM }} 1$-micron CMOS process. With a cycle time of $125 n \mathrm{n}$, the throughput rate of the TMC3200 is 8 Mflops (Million floating point operations per second).

All data and instructions are registered. The input operands are selected from the input bus, floating point zero, and the accumulate path. The input operands each enter on 17-bit buses at alternate rising edges of the double-speed chip master clock 116 MHz . The 8 -bit instruction register latches inputs which control the operand selection, the ALU instruction, the data format and the rounding method. Renormalizing, rounding, and limiting logic are provided to ensure proper handling of special cases and correct output data formatting. The result is output as two words on successive chip master clock cycles, and it emerges through a 17-bit three-state output port.

Features

- 8Mflop Throughput Rate (125ns Pipelined Cycle Time)
- IEEE Standard 754 Draft 10.032 -Bit Or Extended 34 -Bit Floating Point Data Format
- Integer Two's Complement 24-Bit (Fixed Point) Data Format
- Full Conversion Between All Data Formats
- Flexible Data Source Selection
- Internal Accumulator Feedback Path
- Selection Of Unbiased Round-To-Nearest And Round-Toward-Zero
- Automatic Limiting For Overflow/Underflow Cases
- All Inputs And Outputs TTL Compatible
- Available In 84 Contact Chip Carrier or 88 Pin Grid Array

Applications

- Matrix Operations And Geometric Transforms
- ALU In Microprogrammed Array Processors
- Graphics And Image Processing
- Floating Point Digital Filters And FFTs
- Radar And Sonar Signal Processors
- Use With 16-Bit Machines (Arithmetic Processors)

TMC3200 Functional Block Diagram

Functional Block Diagram

Functional Description

The TMC3200 is functionally divided into five sections: the input section, the denormalizer, the ALU, the round/renormalizellimit section, and the output section.

Input Section

The input section accepts the A and B operands, along with the 8 -bit instruction word. The instruction is decoded in this section, determining the action of the A and B source multiplexers, the ALU operation, the rounding mode, and data format of the operands. The chip master clock (CLK) is divided by two, generating the Most Significant Word (MSW) signal, which is used internally for l/O multiplexing and is also available as an output flag.

The A and B operands each enter on their respective 17-bit input buses. Input preload registers clocked by the 16 MHz chip master clock latch in the data on the input buses at the rising edge of CLK. Provided the enable controls for the operand registers ($\overline{\mathrm{ENA}}$ and $\overline{\mathrm{ENB}}$) are LOW, the data present at the preload registers and the data present at the input bus are simultaneously loaded into the operand registers at the rising edge of internal signal MSW. This means that the preload registers need to have the MSW loaded with the rising edge of CLK one cycle before the MSW signal goes HIGH, and the LSW must be present at the input bus when signal MSW goes HIGH. The SYNChronization control ($\overline{\text { SYNC }}$) aligns the MSW signal with the chip master clock. The MSW and LSW of the incoming operands must be present at the input bus on alternate cycles of CLK.

The operand registers are loaded with every other cycle of the master clock. Note that the preload register is strobed every cycle of CLK, though its contents are loaded into the operand registers only on alternate cycles of CLK.

The 8-bit instruction word is loaded into the instruction register at the rising edge of CLK, so it must be input at the same time as the MSW of the operands with which it is associated. The instruction word must be held through both load cycles (MSW and LSW input) of the data to which it applies. The instruction word is divided into four fields: one to control the operand source multiplexers $\left(S_{2-0}\right)$, one to select the data format $\left(M_{1-0}\right)$, one to control the arithmetic operation performed ($\mathrm{OP}_{1}-0$), and one to control the rounding method ($\overline{\mathrm{RND}})$. The A operand can be selected from two possible sources: the A input bus or a hardwired floating point
zero. The B operand can be selected from three possible sources: the B input bus, the accumulator feedback path, or a floating point zero. The input and output data formats may be selected from 32-bit floating point, 34-bit floating point, or 24 -bit integer (fixed point). The input and output formats may differ. The arithmetic operation performed is selected from $\mathrm{A}+\mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{A},-\mathrm{A}-\mathrm{B}$, and CONVB Iconvert B to different data format). The rounding method is either IEEE (unbiased) round-to-nearest, or IEEE round-toward-zero (truncation).

Denormalizer Section

This section prepares the operands for the ALU by denormalizing the operand with the smaller exponent. This section also expands the exponent field to 11 bits and the significand field to 28 bits. This is done to accommodate the calculation of intermediate results to the precision required by the IEEE 32 -bit and the extended 34 -bit data formats. Since integers require no denormalization, this section is bypassed when integers are input.

The denormalizer section consists of an exponent comparator, a sign processor, zero-detectors, a denormalizing barrel shifter, and the subtraction inverter. The denormalizer generates floating point numbers with identical exponents lif possiblel which can be directly added by the ALU. Input traps identify special cases which require separate treatment.

The exponent comparator detects the special IEEE trap conditions of zero (-512 in the 34 -bit format) and 255 (511 in the 34 -bit formatl, identifies the larger exponent, and calculates the absolute difference between the two exponents. The magnitude of the difference between the two exponents determines the amount of shift performed by the denormalizing barrel shifter.

The denormalizing barrel shifter can right-shift the significand of the operand having the smaller exponent as required, up to 25 places lafter which the significand field becomes zero, with the "sticky bit" setl. The amount of right-shift is equal to the difference between the exponents, as computed by the exponent comparator. Guard, round, and sticky bits are generated as specified in the IEEE standard. The MSBs of the shifted significand are zero-filled as they are downshifted. A no-shift capability handles the cases of equal operand exponents and integer operands.

The sign processor and the subtraction inverter handle the signs of the operands and support subtraction, respectively. The operands entering the ALU are modified as needed to ensure that a positive fraction field results; the appropriate sign is computed and appended.

ALU Section

The outputs of the denormalizer section are the larger incoming exponent, various status flags, sign information, and the two 28-bit significands. The ALU handles the 28 -bit significands and the sign information. Input to this section is "preconditioned" so that it can perform either " $A+B$ " or "A - B." The arithmetic follows the standard IEEE 32-bit, extended 34 -bit, or integer rules, as appropriate. The ALU output is a 28 -bit significand field.

The ALU output, the exponent, the sign information, the Invalid OPeration (IOP) flag, and five instruction bits are the inputs to the 46-bit pipeline register. This register may be enabled by bringing the FeedThrough $\mid \mathrm{FT})$ control LOW . When $\mathrm{FT}=1$, the pipeline register is transparent.

Round/Renormalize/Limit Section

The TMC3200 supports IEEE standards for "unbiased rounding toward nearest" when rounding is enabled ($\overline{\mathrm{RND}}$ is L.OW). When $\overline{\text { RND }}$ is HIGH, the TMC3200 truncates the result. The rounding adder is directly after the pipeline register and operates on the result generated by the ALU. The rounded result is the input to the renormalizer.

The renormalizer is able to shift right one bit, shift left up to 25 bits, or not shift at all, based on the state of the overflow bit and the other bits of the significand. If the overflow bit is set, the data is right-shifted to renormalize the number. If the overflow bit is not set, the number may be normalized already, in which case, no shift is required. In the event the number is not already normalized, the significand is left-shifted enough places to place a " 1 " in the (hidden) bit position immediately below the overflow bit. The direction and number of places shifted is noted and this information is used to adjust the exponent. The renormalizing shifter also provides the status flag "inexact result." The renormalize section also contains an exponent adder which modifies the exponent passed to it by the denormalizer lthe larger of the two operand exponents). The exponent is decremented by one for each left shift which was required for the renormalization of the significand. In the event of a right shift, the exponent is incremented by one, and the exponent remains the same in the case of no shift. This exponent is examined for overflow or underflow of the output data format. There are two cases in which the renormalizer is
disabled: when converting floating point to integer and when converting from 34 -bit to 32 -bit IEEE denormalized format.

The limiter uses the flags and the value of the exponent in order to replace overflowing numbers with a signed infinity or full-scale positive or negative integers as appropriate, underflowing numbers are replaced with zero. Invalid operations linfinity minus infinity or NaN plus any numberl trigger NaN output. In cases other than described above, the limiter will output the result of the renormalizer unchanged.

Output Section

The output section contains the feedback accumulate path (U path), the 42-bit output register (34-bit output data, 8 flags), the output multiplexer, and the output buffers.

The U path is a 34 -bit feedback path to the input section of the TMC3200 which feeds into the B operand multiplexed register. This bus carries the output of the limiter section back so that a 34 -bit representation of the result being clocked into the output register is available simultaneously at the input of the B operand register, meeting the setup requirements of this register.

The output register is clocked by the MSW signal, which runs at half the rate of the system clock. The contents of this register will be the 34 -bit output from the limit section, along with the flags (ZERO, DENormalized result, OVerFlow, UNderFlow, INEXact result, NAN in A, NAN in B, Invalid OPeration).

The flags are valid for the duration for which a result is held in the output register, except for the NANA and NANB flags. These flags are set when their particular input operand is a NAN and will remain set until a new legal operand is loaded. These flags are based on the operands only; ALU results flushed to NANs do not set the NAN flags. The remaining flags become valid with their corresponding results and remain as long as the associated result is in the output register. Since the flags are not three-stated, they are independent of the $\overline{\mathrm{OE}}$ control.

The output multiplexer selects either the most or least significant word of the result and presents it at the inputs of the output buffers. The output multiplexer is controlled by the signal MSW, selecting the most significant word when MSW is HIGH, the least significant word when MSW is LOW. The output buffers are three-stated. When Output Enable ($\overline{\mathrm{OE}})$ is LOW, the buffers drive the output bus, when $\overline{\mathrm{DE}}$ is HIGH, the drivers are in the high-impedance state.

LSI Products Division

TRW Electronic Components Group

Floating Point Multiplier

32/34 bits, 125ns

The TRW TMC3201 is a 32134 -bit floating point multiplier. It multiplies numbers in either IEEE standard 32 -bit or extended 34 -bit floating point formats. The TMC3201 is built with TRW's OMICRON-CTM 1 -micron CMOS process. With a cycle time of 125 ns, the throughput rate of the TMC3201 is 8MFlops (Million floating point operations per second).

The data, controls, and status flags are registered. The input operands each enter on 17-bit buses at alternate rising edges of the double-speed chip master clock (16MHz). The instruction register latches in controls for rounding mode and data format. Renormalizing, rounding, and limiting logic are provided to ensure proper handling of special cases and proper formatting of the output data. The result is output as two words on successive chip master clock cycles, and it emerges through a 17-bit three-state output port.

Features

- 8Mflop Throughput Rate (125ns Pipelined Cycle Time)
- IEEE Standard 754 Draft 10.032 -Bit Or Extended 34-Bit Floating Point Data Format
- Selection Of Unbiased Round-To-Nearest And Round-Toward-Zero
- Automatic Limiting For Overflow/Underflow Cases
- All Inputs And Outputs TTL Compatible
- Available In 84 Contact Chip Carrier Or 88 Pin Grid Array

Applications

- Matrix Operations And Geometric Transforms
- ALU In Microprogrammed Array Processors
- Graphics And Image Processing
- Floating Point Digital Filters And FFTs
- Radar And Sonar Signal Processors
- Use With 16-Bit Machines (Arithmetic Processor)

TMC3201 Functional Block Diagram

Functional Block Diagram

Functional Description

The TMC3201 is functionally divided into four sections：the input section，the significand multiplierlexponent adder，the renormalize／roundllimit section，and the output section．

Input Section

The input section accepts the A and B operands，along with the 2 －bit instruction word．The instruction is decoded in this section，determining the rounding mode and data format of the operands．The chip master clock（CLK）is divided by two， generating the Most Significant Word IMSW）signal，which is used internally for 110 multiplexing and is also available as an output flag．

The A and B operands each enter on their respective 17 －bit input buses．Input preload registers clocked by the 16 MHz chip master clock latch in the data on the input buses at the rising edge of CLK．Provided the enable controls for the operand registers（ ENA and ENB ）are LOW，the data present at the preload registers and the data present at the input bus are simultaneously loaded into the operand registers at the rising edge of internal signal MSW．This means that the preload registers need to have the MSW loaded with the rising edge of CLK one cycle before the MSW signal goes HIGH，and the LSW must be present at the input bus when signal MSW goes HIGH．The SYNChronization control（ $\overline{\text { SYNC }}$ ）aligns the MSW signal with the chip master clock．The MSW and LSW of the incoming operands must be present at the input bus on alternate cycles of CLK．The operand registers are loaded with every other cycle of the master clock．Note that the preload register is strobed every cycle of CLK，though its contents are loaded into the operand registers only on alternate cycles of CLK．

During the input operation，the inputs A and B are tested for the special cases of infinity，zero，NaNs，and denormalized numbers．Internal flags which identify these cases are generated．If NaNs are found，NANA or NANB flag is set immediately；these internal flags are also available as output signals．In this event，the product output will be the product NaN and the Invalid OPeration（IOP）flag will be set． Multiplication of zero x infinity also triggers a NaN output and sets the IOP flag．The TMC3201 is not able to process denormalized operands，and in the event of denormalized incoming operands，the appropriate $A D E N$ or $B D E N$ flags are set．The product output in this case will be zero．

Significand Multiplier／Exponent Adder

Floating point multiplication involves multiplication of the significand fields and addition of the exponent fields．The
24×24 bit multiplier generates the most significant 26 bits of the product，along with a＂sticky bit＂which is the logical OR of the low order 22 bits of the binary product．The 23 bits of the input fractional fields are input along with the implicit ＂hidden bit＂lassumed to be a＂ 1 ＂）．The 24 －bit numbers are multiplied，though only the high order 26 bits are output．The output of the significand multiplier is a 27 －bit number consisting of the overflow bit，the＂hidden bit，＂the 23 bits of the fractional output，a guard bit，and a＂sticky bit．＂This output is latched by the pipeline register which follows the multiplier array．

The exponents in floating point multiplication are added．The A and B exponent fields are added，generating an 11－bit nonbiased two＇s complement product exponent．This result is passed to the pipeline registers，and the exponent adjust section performs further processing before final output．

The 27－bit significand and the 11－bit exponent are the inputs to the pipeline register，along with the instructions，the Invalid OPeration flag（IOP），and the sign information．This 42－bit word is latched into the pipeline register on the rising edge of the signal MSW，provided that the FeedThrough control（FT）is LOW．

Renormalize／Round／Limit Section

The significand emerging from the pipeline register is tested for overflow．The significand field overflow bit is the MSB of the 27 －bit significand，and if it is a＂ 1, ＂an overflow has occurred．This is compensated for by a right shift of one bit with an associated increment of the exponent by one．After the shift lif one was required），the overflow and hidden bits are no longer needed，hence they are dropped from the significand field．The renormalized significand is passed to the rounding adder．

If the RND control is LOW，the TMC3201 will round－to－nearest，according to IEEE standard rules．If $\overline{\operatorname{RND}}$ is HIGH，the TMC3201 will truncate（IEEE round－toward－zerol． Note that there is exactly one case where rounding can generate an overflowed result．In this case，the product is right－shifted and the exponent is incremented by one．The rounded product is output as a 23 －bit number，with the ＂hidden bit＂now guaranteed to be a＂1．＂

The exponent emerging from the pipeline register is an 11-bit doubly biased exponent. The extra IEEE bias of decimal 127 is subtracted from the "raw exponent" and any increments necessary due to right-shifting of the significand field are made. This 12 -bit exponent is checked for values of greater than or equal to 255 decimal (for IEEE 32-bit format) or 511 Ifor extended 34 -bit format). These conditions signify an overflow. Underflow has occurred if the exponent is less than or equal to zero (IEEE 32-bit) or -512 lextended 34-bitl. The ten LSBs of the exponent and the rounded significand enter the limit section.

The limiter forces the significand and exponent fields to clean signed infinities, clean zero, or the TMC3201 NaN if appropriate. Overflow cases are forced to the signed infinities, underflow and zero cases are forced to a clean zero, and invalid operation cases are forced to the NaN. Additionally, the two status flags, OVerFlow (OVF) and UNderFlow (UNF), are generated for output in this section. The output of this section is a 34 -bit field, interpreted as either IEEE 32 -bit or extended 34 -bit data. The output of the limit section goes directly to the product register.

Dutput Section

The output section contains the 38 -bit output register (34-bit output data, 4 flags), the output multiplexer, and the output buffers. The output register is clocked by the MSW signal, which runs at half the rate of the system clock. The contents of this register will be the 34 -bit output from the limit section, along with the flags. The flags are valid for the duration for which a result is held in the output register, except for the NANA, NANB, ADEN, and BDEN flags. These flags are set when their particular input operand is a NAN or denormalized, respectively, and will remain set until a new legal operand is loaded. These flags are based on the operands only; results flushed to NANs (for example, zero x infinityl do not set the NAN flags. The remaining flags become valid with their corresponding results and remain as long as the associated result is in the output register. Since the flags are not three-stated, they are independent of the $\overline{\mathrm{OE}}$ control.

The output multiplexer selects either the most or least significant word of the result and presents it at the inputs of the output buffers. The output multiplexer is controlled by the signal MSW, selecting the most significant word when MSW is HIGH, the least significant word when MSW is LOW. The output buffers are three-stated. When Output Enable ($\overline{O E})$ is LOW, the buffers drive the output bus, when $\overline{\mathrm{OE}}$ is HIGH, the drivers are in the high-impedance state.

Three Port Register File

16 words x 9 bits, 20MHz

The TRW TMC3220 is a 16 -word $\times 9$-bit three port register file with two independent read ports and one write port. Internally, the device comprises two separate cores of 16 -word $\times 9$-bit dual port RAMs. Separate write enables, along with a single 4 -bit write address allow either or both core RAMs to receive a given input data word. On each clock cycle, the two 4-bit read addresses can each access any of the 16 words of memory. Ordinarily, the two write enables are tied together, and the TMC3220 functions as a 16 -word x 9 -bit three port RAM. Separating the write enables causes the device to function as two independent two port RAMs.

The TMC3220 is specifically designed to operate with the TMC3200i3201 families of floating point devices, providing scratch memory and programmable interconnection supporting a variety of applications. The TMC3220 is built with TRW's OMICRON-CTM 1 -micron CMOS process and will operate at a guaranteed clock rate of 20 MHz . The clock rate of the TMC3220 also makes it suitable for video speed applications.

Features

- Guaranteed 20 MHz Clock Rate Over Standard Temperature Range 10° to $70^{\circ} \mathrm{C}$)
- Configured For Use With $32 / 34$ Bit Floating Point Family
- Two Fully Independent Read Ports
- Separate Write Enables
- Easily Cascadable In Word Size And Number of Words
- Low Power Consumption CMOS Process
- Three-State Outputs
- Available In 48 Lead DIP or 44 Contact Chip Carrier

Applications

- Cache Memory For High-Speed Processors
- Graphics And Image Processors
- High-Speed Program Memory And Controllers
- Storage For Video Processors

TMC3220 Functional Block Diagram

- A/D Converters
mwalumativn Boards
Wha Crmvantors

LSI Products Division
TRW Electronic Components Group

TRW LSI's line of monolithic highspeed analog-to-digital (A/D) converters consists primarily of devices that employ parallel "flash" architecture. The exceptions are the TDC1001 and TDC1002 successive approximation A / D converters. The entire line of A / D converters covers resolutions from four to nine bits and conversion rates from 1 to 100MSPS. All of these devices are built with TRW's proven 3D (triple-diffused) bipolar technology which provides significant advantages in performance, size, power, and reliability. Many products are now available manufactured with TRW's new OMICRON-B ${ }^{\text {TM }}$ 1-micron process.

TRW LSI Products pioneered the development of monolithic high-speed A/D converters by introducing the TDC1007 in 1977. This device is an 8-bit 20MSPS A/D converter which has become an industry standard in video, radar, and imaging applications. The development of fine lithography techniques has yielded faster, more accurate, and less expensive A/D converters. Most of TRW LSI's A/D converters are available with an evaluation board which contains all peripheral circuitry necessary for quick and convenient operation of the device.

Figure 1. Resolution vs. Conversion Rate For TRW.LSI ADD Converters.
"Flash" A/D Converters
"Flash" A/D converters have three major functional sections: the comparator array, encoding logic, and output data latches. The input voltage to the A / D is compared with $\left(2 \mathrm{~N}^{2}\right)-1$ separate reference voltage points which differ from adjacent points by a voltage equivalent to one Least Significant Bit (LSB). N is the number of data outputs, or the resolution of the A / D converter in bits. The comparator reference voltage points are tapped from a reference resistor chain which is
driven by an external reference voltage source.

The outputs from the $\left(2^{N}\right)-1$ comparators form a code sometimes referred to as a "thermometer"' code (all comparators referred to voltages more positive than the input signal will be off, and those referred to voltages more negative then the input signal will be on). The "thermometer'" code from the comparator array is then encoded into an N -bit binary word.

The conversion operation is controlled by a single CONVert (clock) signal which latches the N -bit results from the encoding logic. The output latches of the converter hold data valid while the conversion is taking place and are updated by the CONVert signal. Some converters have additional data controls which allow data formatting of straight binary, inverse binary, two's complement, or inverse two's complement notation.

Successive Approximation A/D Converters

Successive approximation A/D converters have three major functional sections: the comparator, D/A converter, and successive approximation register (SAR). The
comparator compares the unknown input voltage to the output of the internal D/A. Successive approximation is an iterative process during which the SAR stores data from the comparator and presents new data to the D/A converter. At the end of the process, the data in the SAR drives the D/A converter to a level which is within $1 / 2$ LSB of the unknown input voltage. At this time, the SAR data is the binary equivalent of the unknown input voltage.

Once the iterative process has terminated, the SAR data is latched in an output register and a "BUSY" signal will change state indicating that new output data is available.

Product	Resolution Bits	Conversion Rate ${ }^{1}$ (MSPS)	Power Dissipation (Watts)	Package	Notes
TDC1001	8	2.5	0.7	J8	Successive approximation
TDC1002	8	1.0	0.7	J8	Successive approximation
TDC1007	8	20	2.7	$\begin{aligned} & \mathrm{J1}, \mathrm{C}, \mathrm{L1} \\ & \mathrm{E1}, \mathrm{PI} \end{aligned}$	Evaluation boards
TDC1014	6	25	1.1	$\begin{aligned} & \hline \mathrm{J7}, \mathrm{B7} \\ & \mathrm{E} 1, \mathrm{P} 1 \end{aligned}$	Evaluation boards
TDC1019	9	15	4.7	$\begin{aligned} & \mathrm{J1}, \mathrm{C}, \mathrm{~L} 1 \\ & \mathrm{E} 1 \end{aligned}$	ECL compatible Evaluation board
TDC1019-1	9	18	4.7	J1, C1, L1	Speed selected version
TDC1021	4	25	0.6	J9	
TDC1025	8	50	3.9	$\begin{aligned} & \mathrm{C1}, \mathrm{LI} \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	ECL compatible Evaluation board
TDC1027	7	18	1.8	J7, B7	
TDC1029	6	100	2.1	$\begin{aligned} & \mathrm{J7}, \mathrm{~J} 6 \\ & \mathrm{E} 1 \end{aligned}$	ECL compatible Evaluation board
TDC1044	4	25	0.4	J9, N9	
TDC1046	6	25	0.8	J8, B8	
TDC1047	7	20	1.1	$\begin{aligned} & \mathrm{J7}, \mathrm{B7}, \mathrm{C} 3 \\ & \mathrm{E1} \\ & \hline \end{aligned}$	Evaluation Board
TDC1048	8	20	1.6	$\begin{aligned} & \mathrm{J6}, \mathrm{C} 3, \mathrm{B6} \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	Evaluation board
TDC1147	7	15	1.1	J7, B7, C3	

Note: 1. Guaranteed, Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TDC1001 (400ns) TDC1002 $11 \mu \mathrm{sec})$

Successive Approximation

A/D Converters

8-bit, 2.5MSPS, 1MSPS

The TRW TDC1001 and TDC1002 analog-to-digital converters are high-speed, 8 -bit successive approximation devices. These bipolar, monolithic converters offer significant advantages in size, cost, and performance, as well as high reliability and low-power consumption.

All digital interfaces are TTL compatible. A single +5 VDC supply is required by the digital circuitry while -5VDC is required by the analog portion of the device. The analog and digital ground planes are internally isolated.

The TDC1001 and TDC1002 consist of a comparator, reference buffer, 8-bit D/A converter, successive approximation register, output register, and control circuitry.

Features

- 8-Bit Resolution
- Binary Output Coding
- TTL Compatible
- $\pm 1 / 2$ LSB Linearity
- Parallel Output Register
- 600 mW Power Dissipation
- Available In 18 Lead DIP

Applications

- Microprocessor Systems
- Numerical Control Interface
- Data Acquisition Systems

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1001 and TDC1002 consist of six functional sections: comparator for the analog input, reference buffer, 8-bit D/A converter (DAC), successive approximation register (SAR), output
register, and control circuitry. The SAR and comparator will sequentially compare the analog input to the DAC output. The conversion process requires nine clock cycles.

Power

The TDC1001 and TDC1002 operate from separate analog and digital power supplies. Analog power $\left(V_{E E}\right)$ is $-5.0 V D C$ and digital power $\left(V_{C C}\right)$ is $+5.0 V D C$. All power and ground pins must be connected.

Separate decoupling for each supply is recommended. The return for I_{EE}, the current drawn from the V_{EE} supply, is $A_{G N D}$. The return for ICC, the current drawn from the VCC supply, is $\mathrm{D}_{\mathrm{GND}}$.

Name	Function	Value	J8 Package
V_{EE}	Analog Supply Voltage	-5.0 VDC	Pin 17
$\mathrm{~V}_{\mathrm{CC}}$	Digital Supply Voltage	+5.0 VDC	Pin 1
$\mathrm{~A}_{\mathrm{GND}}$	Analog Ground	0.0 OVCC	Pin 15
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 VDC	Pin 10

Reference

The TDC1001 and 1002 accept a nominal input reference voltage of -0.5 VDC . The voltage should be supplied by a precision voltage reference, as the accuracy of this voltage will
have a significant effect on the overall accuracy of the system. The reference voltage input pin should be bypassed to AGND as close as possible to the device terminal.

Name	Function	Value	J8 Package
$V_{\text {REF }}$	Reference Voltage Input	-0.5 VDC	Pin 13

Analog Input

The analog input range of the device is set by the reference voltage. This is nominally -0.5 VDC with an absolute tolerance of $\pm 0.1 \mathrm{VDC}$. Since the device is a successive approximation
type AID converter, a sample-and-hold circuit may be required in some applications.

Name	Function	Value	J8 Package
$V_{\text {IN }}$	Analog Input	0 to -0.5 V	Pin 16

Conversion Timing Description

The timing sequence of the TDC1001 and 1002 is typical of successive approximation converters. Nine clock cycles are required for each conversion. Start Convert must transition from LOW to HIGH a minimum of ts prior to the leading edge of the first convert pulse, and must remain HIGH a minimum of $\mathrm{t} H$ after the edge.

This first cycle clears the BUSY flag and prepares the device for a new conversion. The following eight clock cycles convert each data bit IMSB first, LSB last). During these eight clock cycles, the analog input must be held stable Ito within $1 / 2$ LSBI. At tD nanoseconds after the rising edge of the eighth clock pulse, the seven most significant bits are valid land the BUSY signal goes LOWI. At to nanoseconds after the ninth clock pulse the LSB is valid, and the conversion is completed.

Name	Function	Value	J8 Package
SC	Start Convert Input	TTL	Pin 2
BUSY	Busy Flag Output	TTL	Pin 12
CLOCK	Convert Clock Input	TTL	Pin 18

Data Dutputs

The outputs of the TDC1001 and 1002 are TTL compatible and capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. The outputs hold the previous

Name	Function	Value	J8 Package
D_{7}	MSB Output	TTL	Pin 3
D_{6}		$T T L$	Pin 4
D_{5}		$T \mathrm{LL}$	Pin 5
D_{4}		$T T L$	Pin 6
D_{3}		$T T L$	Pin
D_{2}		$T T L$	Pin 8
D_{1}		$T T L$	Pin 9
D_{0}	LSB Output	$T \mathrm{LL}$	Pin 11

Compensation Pin

The COMPensation pin (COMP), is provided for external compensation of the internal reference amplifier.
data a minimum time \mid tol after the rising edge of Start Convert (SC).

Name	Description	Value	J8 Package
COMP	Compensation Pin	$>10 \mu \mathrm{~F}$	Pin 14

Output Coding

An analog input voltage of 0.0 V will produce a digital output code of all zeros; an analog input voltage of -0.50 V will produce a digital output code of all ones.

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

TEST LOAD FOR DELAY measurements

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltage
$V_{C C}$ (measured to $\mathrm{D}_{\mathrm{GND}}$) 0 to +6.0 V
$V_{E E}$ (measured to $A_{G N D}$. 0 to -6.0 V
$A_{G N D}$ (measured to $D_{G N D}$) -0.5 to +0.5 V
Input Voltages
CLK, SC (measured to $\mathrm{D}_{\mathrm{GND}}$). -0.5 to +5.5 V
$V_{I N}, V_{\text {REF }}$ (measured to $A_{G N D}$) +0.5 V to $\mathrm{V}_{\mathrm{EE}} \mathrm{V}$
Output
Applied voltage (measured to $\mathrm{D}_{\mathrm{GND}}$) -0.5 to $+5.5 \mathrm{~V}^{2}$
Applied current, externally forced. -1.0 to $+6.0 \mathrm{ma}{ }^{3,4}$
Short circuit duration (single output in high state to $\mathrm{D}_{\mathrm{GND}}$). 1 sec
Temperature
Operating, case. -60 to $+140^{\circ} \mathrm{C}$
junction. $+175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds). $+300^{\circ} \mathrm{C}$
Storage. -65 to $+150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$V_{\text {EE }}$	Negative Supply Voltage	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	V
AGND	Analog Ground Voitage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
tpwL	Clock Pulse Width, LOW	20			20			ns
tPWH	Clock Pulse Width, HIGH	20			20			ns
ts	Start Convert, Set-Up Time	7			7			ns
${ }_{\text {H }}$	Start Convert, Hold Time	16			16			ns
$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
10	Output Current, Logic LOW			4.0			4.0	mA
${ }^{\text {OH }}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$V_{\text {REF }}$	Reference Voltage	-0.4	-0.5	-0.6	-0.4	-0.5	-0.6	V
$V_{\text {IN }}$	Analog Input Voltage	0.0		-0.6	0.0		-0.6	V
T_{A}	Ambient Temperature, Still Air	0		+70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				-20		+85	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Positive Supply Current	$V_{C C}=$ MAX, Static ${ }^{1}$		40		40	mA
IEE Negative Supply Current	$V_{E E}=$ MAX, $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-80		-80	mA
IBIAS Analog Input Bias Current			10		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {REF }}$ Reference Current	$V_{\text {REF }}=$ NOM		2.5		2.5	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ReF }}$ Total Reference Resistance		200		200		kOhms
FIN Analog Input Equivalent Resistance	$V_{\text {REF }}=$ NOM	50		50		kOhms
$\mathrm{C}_{\text {IN }}$ Analog Input Capacitance			10		10	pF
ILL Input Current, Logic LOW	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$		-1.0		-1.0	mA
IIH Input Curient, Logic HIGH	$V_{C C}=M A X, V_{1}=2.4 V$		75		75	$\mu \mathrm{A}$
$V_{\text {OL }} \quad$ Output Voltage, Logic LOW	$V_{C C}=M I N, I_{\text {OL }}-M A X$		0.5		0.5	V
$V_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{C C}=$ MIN, $\mathrm{IOH}=$ MAX	2.4		2.4		V
Ios Output Short Circuit Current			-25		-25	mA

Note:

1. Worst case, all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
$\mathrm{F}_{\text {S }} \quad$ Maximum Clock Rate	$V_{C C}, V_{E E}=$ MIN TDC1001	22.5		22.5		MHz
	TDC1002	9.0		9.0		MHz
${ }^{\text {t }} \mathrm{C}$ Conversion Time	$V_{C C}, V_{\text {EE }}-$ MIN TDC1001		400		400	ns
	TDC1002		1000		1000	ns
to Digital Output Delay	$V_{C C}, V_{E E}=M I N$		50		50	ns

System performance characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ELI Linearity Error Integral, Independent	$V_{C C}, V_{E E}=N O M$		0.2		0.2	\%
ELD Linearity Error Differential			0.2		0.2	\%
${ }^{\text {TCG }}$ G Gain Temperature Coefficient	$V_{C C}, V_{E E}=N O M$		+10		+10	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{0} \quad$ Offset Voltage			± 7		± 7	mV
${ }^{\text {T }}$ CO Offset Temperature Coefficient	$V_{C C}, V_{\text {EE }}=\mathrm{NOM}$		-10		-10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{\mathrm{G}} \quad$ Gain Error			1.5		2.0	\%
${ }^{T}$ CIB $\mathrm{I}_{\text {BIAS }}$ Temperature Coefficient	$V_{C C} . V_{\text {EE }}=N O M$		-1.0		-1.0	$\% 1^{\circ} \mathrm{C}$

Application

The TDC1001 and TDC1002 are high-speed, TTL compatible, SAR type A/D converters. The combination of very small analog signals and high-speed digital circuitry requires careful design of supporting analog/digital circuitry. Proper physical component layout, trace routing, and provision for sizeable analog and digital grounds are as important as the electrical design.

Two key design areas for fast, accurate A/D conversion are timing and grounding. The timing requirements for this device are detailed in Figure 1. Proper grounding is highly dependent on the board's mechanical layout and design constraints. In general, the noise associated with improper digital and analog ground isolation is synchronous with the clock and appears on the analog input.

Proper Design Practices Include:

- Sensitive signals such as clock, start convert, analog input, and reference should be properly routed and terminated to minimize ground noise pick-up and crosstalk. Wirewrap is not recommended for these signals).
- Analog and digital ground planes should be substantial and common at one point only. Analog and digital power supplies should be referenced to their respective ground planes.
- Reference voltage should be stable and free of noise. Accuracy of the conversion is highly dependent on the integrity of this signal.
- The analog input should be driven from a low-impedance source K 25 Ohmsl. This will minimize the possibility of picking up extraneous noise.
- Ceramic high frequency bypass capacitors (0.001 to $0.01 \mu \mathrm{~F}$) should be used at the input pins of $V_{C C}, V_{E E}$, and REF. All pins should be bypassed to $A_{G N D}$ except $V_{C C}$.
- A tantalum capacitor of greater than $10 \mu \mathrm{~F}$ should be connected from COMP (pin 14) to V_{EE}.

Figure 5. Typical Interface Circuit

Parts List

Resistors

R1	909 Ohms	1\%	1/8W
R2	100 Ohms		Mutti-Turn Cermet Pot
R3	1.33 kOhms	1\%	$1 / 8 \mathrm{~W}$
R4	2.49 kOhms	1\%	1/8W
Capacitors			
C1, C3, C5	10.0 \%	25V	
C2, C4	$0.001 \mu \mathrm{~F}$	50 V	
C6	$0.005 \mu \mathrm{~F}$	50 V	

Integrated Circuits

U1	TDC1001J8	TRW 8-bit A/D Converter
U2	74LS161	TTL 4-bit Counter
U3	74LSO4	TTL Hex Inverter
D1	LM113-1.22	1.22V Bandgap Votage Reference

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1001.18C	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1001J8C
TDC1001.18G	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1001J8G
TDCt001J8R	EXT-T $\mathrm{C}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1001J8R
TDC1001 ${ }^{\text {et }}$	EXT-T $\mathrm{C}=-20^{\circ} \mathrm{C}$ to $855^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	18 Lead DIP	1001J8T
TDCIOO1.94	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $855^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1001J8H
TDC1002.J8C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1002J8C
TDC1002.J8G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1002J8G
TDC1002.J8R	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $855^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1002.J8R
TDC1002.8T	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $855^{\circ} \mathrm{C}$	High Reliability ${ }^{\dagger}$	18 Lead DIP	$1002 \mathrm{JB7}$
TDC1002.J8H	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1002.88

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Note:

1. Per TRW document 70201757.

Monolithic Video A/D Converter

8-bit, 20MSPS

The TDC1007 is an 8-bit fully parallel (flash) analog-to-digital converter, capable of digitizing an input signal at rates up to 20MSPS (MegaSamples Per Secondl. It will operate accurately without the use of an external sample-and-hold amplifier, with analog input signals having frequency components up to 7 MHz .

A single CONVert (CONV) signal controls the conversion operation of the device which consists of 255 sampling comparators, encoding logic, and a latched output buffer register. The device will recover from a full-scale input step in 2Ons. Control inputs are provided to format the output in binary, two's complement, or inverse data coding formats.

The TDC1007 is patented under U.S. Patent No. 3283170 with other patents pending.

Features

- 8-Bit Resolution
- Conversion Rates Up to 20MSPS
- Sample-And-Hold Amplifier Not Required
- Bipolar Monolithic Construction
- TTL Compatible Inputs and Outputs
- Binary or Two's Complement Mode
- Differential Phase = 1.0 Degrees
- Differential Gain = 1.7\%
- Evaluation Boards Available: TDC1007E1C or TDC1007P1C

Applications

- Video Systems 3x or 4x Subcarrier, NTSC or PAL
- Radar Systems
- High-Speed Multiplexed Data Acquisition
- Digital Signal Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1007 has three major functional sections: a comparator array, encoding logic, and output data latches. The input voltage is compared with 255 separate reference voltage points tapped from the reference resistor chain. The 255 comparator outputs form a code lsometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and
those referred to voltages more negative than the input signal will be onl. The "thermometer" code from the comparator array is encoded into an eight-bit binary word by the encoding logic section. Each of these eight results is sent through an exclusive-OR gate where they are inverted by use of the NMINV or NLINV inputs. This allows operation in binary, two's complement, or inverted data formats.

Power

The TDC1007 operates from two supply voltages, +5.0 V and -6.0 V . The return for ICC, the current drawn from the +5.0 V supply, is $\mathrm{D}_{\mathrm{GND}}$. The return path for I_{EE}, the current drawn
from the -6.0V supply, is AGND. All power and ground pins must be connected.

Name	Function	Value	C1, L1 Package	J1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pins 23, 41	Pins 28, 43
$V_{\text {EE }}$	Negative Supply Voltage	-6.0 V	Pins 14, 18, 19,21	Pins 47, 48, 49,50
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 25,40	Pins 29, 42
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pins 48,55	Pins 14, 19

Reference

The TDC1007 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chainl, and $V_{R B}$ the voltage applied to the pin at the bottom of the reference resistor chainl should be between +0.1 V and -2.1 V , with the difference between them less than 2.1V. VRT should be more positive than V_{RB} within that range. In order to insure optimum operation of the TDC1007, these points should be driven by low-impedance sources capable of providing the
necessary reference resistor chain current. The voltages on RT and R_{B} may be varied dynamically up to 7 MHz . Due to variations in reference current with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are varied dynamically las in an AGC application) a low-impedance reference source is required.

Name	Function	Value	C1, L1 Package	J1 Package
R_{T}	Reference Resistor (Top)	0.0 V	Pin 60	Pin 11
R_{M}	Reference Resistor (Middle)	-1.0 V	Pin 51	Pin 17
R_{B}	Reference Resistor (Bottom)	-2.0 V	Pin 44	Pin 22

Control

Two control inputs are provided on the TDC1007 for changing the format of the output data. When NMINV is tied to a logic " 0 ", the most significant bit of the output data is inverted; when NLINV is tied to a logic " 0 ", the seven least significant bits of the output are inverted. By using these controls, the
output data format can be binary, inverted binary, two's complement, or inverted two's complement. Output data versus input voltage and control input state is illustrated in the Output Coding table.

Name	Function	Value	C1, L1 Package	J1 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 29	Pin 41
NLINV	Not Least Significant Bit INVert	TTL	Pin 34	Pin 36

Convert

The analog input to the TDC1007 is sampled Icomparators are latchedl approximately 10 ns after the rising edge of the CONV Signal. This time delay is the sampling time offset Itstol and varies only by a few nanoseconds from device to device and as a function of temperature. The short-term uncertainty ljitter) in sampling time offset is approximately 30 picoseconds.

Name	Function	Value	C1, L1 Package	J1 Package
CONV	Convert	TTL	Pin 39	Pin 30

Analog Input

The input impedance of the TDC1007 varies with input signal level. As the signal varies, the comparator input transistors change from active to cut-off, causing the net input resistance and capacitance to change. To prevent this action from degrading the integrity or accuracy of the output data, it is desirable to drive the TDC1007 inputs from a low-impedance source lless than 25 Ohms). The input signal level should remain within the range of $V_{E E}$ to +0.5 V in order to prevent damage to the device. When the input is at a level between $V_{R T}$ and $V_{R B}$ reference voltages, the output data value will be directly proportional to the amplitude of the analog input
signal. When the analog input is beyond the range of the reference voltage, the output data will be the appropriate full-scale value. Note that there are two components to the input bias current flowing into the $\mathrm{V}_{\mathbb{N}}$ pins. One component is constant for constant input voltage and is the sum of the bias currents of the subset of comparators that are active $\left.\|^{(I C B}\right)$. The other component is related to the action of the CONV signal on the comparator chain IISBl. All analog input pins of the TDC1007 must be used in order to insure operation over the full input range.

Name	Function	Value	C1, L1 Package	J1 Package
$V_{\mathbb{N}}$	Analog Input Signal	OV to $-2 V$	Pins 46, 50, 52,54,58	Pins 13, 15, 16, 18, 20

Outputs

The outputs of the TDC1007 are TTL compatible and capable of driving four low-power Schottky unit loads (54/74 LS). The outputs hold the previous data a minimum time (thol after the
rising edge of the CONV signal, and the new data becomes valid after a maximum time of t . For optimum performance, 2.2 kOhm pull-up resistors are recommended.

Name	Function	Value	C1, L1 Package	J1 Package
D_{1}	MSB Output	TIL	Pin 30	Pin 40
D_{2}		TTL	Pin 31	Pin 39
D_{3}		TIL	Pin 32	Pin 38
D_{4}		TL	Pin 33	Pin 37
D_{5}		TTL	Pin 35	Pin 35
D_{6}		TTL	Pin 36	Pin 34
D_{7}		TTL	Pin 37	Pin 33
D_{8}	LSB Output	TTL	Pin 38	Pin 32

No Connects

There are several pins labeled No Connect (NC), which have no connections to the chip. These pins may be left open.

Name	Function	Value	C1, L1 Package	J1 Package
NC	No Connect	Open	Pins 1-13, 15-17, 20, 22, 24,	Pins 1-10, 12, 24-27,
			$26-28,42,43,45,47,49,53$,	$31,44-46,51-64$
			$56,57,59,61,62-68$	

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

	$V_{E E}(m)$
Input Voltages	
Output	
	Applied current, externally forced .. -1.0 to $+6.0 \mathrm{~mA}{ }^{3,4}$
	Short circuit duration (single output in high state to ground) .. 1 sec
Temperature	
	Operating, ambient \qquad -60 to $+140^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$
	Lead, soldering (10 seconds) .. $+3.700^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other paramaters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as positive whan flowing into the device.

Operating conditions

$\begin{aligned} \therefore & \\ & \text { Parameter }\end{aligned}$			Temperature Range						Units
			Standard			Extended			
			Min	Nom	Max	Min	Nom	Max	
	$V_{\text {CC }}$	Positive Supply Voltaga (Measured to $\mathrm{D}_{\text {GND }}$)	4.75	5.0	5.25	4.5	5.0	5.5	V
	$V_{\text {EE }}$	Negative Supply Voltage (Measured to $\mathrm{A}_{\mathrm{GND}}$)	-5.75	-6.0	-6.25	-5.75	-6.0	-6.25	V
	$V_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	0.1	-0.1	0.0	0.1	V
	${ }^{\text {tPWL }}$	CONV Pulse Width, LOW	25			25			ns
	tPWH	CONV Pulse Width, HIGH	15			15			ns
	$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
	V_{IH}	Input Voltage, Logic HIGH	2.0			2.0			V
	10	Output Current, Logic LOW			4.0			4.0	mA
	$\mathrm{OH}^{\text {OH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
	$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-1.1	0.0	0.1	-1.1	0.0	0.1	V
	$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-0.9	-2.0	-2.1	-0.9	-2.0	-2.1	V
	$\bar{V}_{R T}-V_{R B}$	Voltage Reference Differential	1.0	2.0	2.2	1.0	2.0	2.2	V
	$V_{\text {IN }}$	Input Voltage	$V_{R T}$		$\mathrm{V}_{\text {RB }}$	$V_{\text {RT }}$		$V_{\text {RB }}$	V
	T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
	${ }^{\text {T }} \mathrm{C}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.

LSI Products Division

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{5}	Maximum Conversion Rate		$V_{C C}=$ MIN, $V_{\text {EE }}=\mathrm{MIN}$	20		20		MSPS
${ }^{\text {t }}$ STO	Sampling Time Offset		$V_{C C}=$ MIN, $V_{E E}=\mathrm{MIN}$	0	10	0	10	ns
	Output Delay Time	$V_{C C}=$ MIN, $V_{\text {EE }}=$ MIN, Load 1		40		45	ns	
	Output Hold Time	$V_{C C}=$ MIN, $\mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$, Load 1	10		10		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integral, Independent		$V_{R T}, V_{\text {RB }}=N O M$		0.3		0.3	\%
$E_{L D}$	Linearity Error Differential		$V_{\text {RT }}, V_{\text {RB }}$		0.3		0.3	\%
0	Code Size	$V_{R T}, V_{R B}=N O M$	15	185	15	185	\% Nominal	
$\mathrm{E}_{0 T}$	Offset Error Top	$V_{\text {IN }}=V_{R T}$		35		45	mV	
$\mathrm{E}_{0 B}$	Offset Error Bottom	$V_{\text {IN }}-V_{\text {RB }}$		-22		-24	mV	
${ }^{\text {TOO }}$	Offset Error Temperature Coefficient			± 50		± 50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	Bandwidth, Full Power Input		7		5		MHz	
	Transient Response, Full Scale			20		20	ns	
SNR	Signal-to-Noise Ratio	10MHz Bandwidth 20MSPS Conversion Rate						
	Peak Signal/RMS Noise	1.248 MHz Input	53		52		dB	
		2.438 MHz Input	50		49		dB	
	RMS SignaliRMS Noise	1.248 MHz Input	44		43		dB	
		2.438 MHz Input	41		40		dB	
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwitth 4 Sigma Loading 1.248MHz Slot 20MSPS Conversion Rate	36.5		36.5		dB	
$E_{\text {AP }}$	Aperture Error			60		60	ps	
DP	Differential Phase	NTSC @ 4x Color Subcarrier		1.0		1.0	Degree	
DG	Differential Gain	NTSC @ 4x Color Subcarrier		1.7		1.7	\%	

Output Coding (Input range from 0.000 to $-2.000 \mathrm{~V})$

Input Voltage (-7.84 mVIStep)	Binary		Offset Two's Complement	
	True	Inverted	True	Inverted
	NMINV - 1	0	0	1
	NLINV - 1	0	1	0
0.000	00000000	11111111	10000000	01111111
-	-	-	-	,
-	-	-	-	-
-0.0078	00000001	11111110	10000001	01111110
-	-	-	-	-
-	-	-	-	-
\bullet	-	\bullet	-	-
-	\bullet	-	-	-
-0.9960	01111111	10000000	11111111	00000000
-1.0039	10000000	01111111	00000000	11111111
-	-	-	-	-
-	-		-	-
-	-	-	-	-
-	-	-	-	-
-1.9921	11111110	00000001	01111110	10000001
-			-	-
-	-	-	-	-
-2.000	11111111	00000000	01111111	10000000

Calibration

To calibrate the TDC1007, the top of the reference resistor chain, R , is connected to analog ground. The reference voltage is then set up by adjusting the bottom of the resistor chain to -2.0 V . When this technique is used, offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the A / D. These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block Diagram. The offset voltage error is the result of the resistor chain current flowing through the parasitic resistance. These errors can be compensated for by applying an equal offset to the analog input signal or by adjusting the voltages on R_{T} and R_{B}.

The effect of the offset error at the bottom of the resistor chain manifests itself in the form of a slight gain error which can be compensated for by varying the voltage applied to R_{B}. This voltage will necessarily be more negative than the desired reference level of -2.0 V . The actual operating range of the A/D converter will be:

$$
\mathbb{N}_{\text {AGND }}-\| \text { REF } \times R 1 \| \text { to }\left(V_{\text {RB }}+\| \|_{\text {REF }} \times R 2\right) .
$$

However, if both ends of the resistor chain are driven by transistor-buffered operational amplifiers, the voltages on R_{T} and R_{B} could then be adjusted to remove the effect of the parasitic resistances and therefore eliminate the need to apply a compensating offset voltage to the analog input signal. Here the operating range of the A / D will be:

$$
V_{\mathrm{RT}}-\left\|_{\mathrm{REF}} \times R 1\right\| \text { to } V_{\mathrm{RB}}+\| \text { REF } \times R 2 \| .
$$

Since both $V_{R T}$ and $V_{R B}$ are adjustable, the offset voltage error effect can be cancelled and the A / D operated with gain and offset errors removed.

The TDC1007 provides access to the mid-point of the reference resistor chain, R_{M}. This point can be sensed by external circuitry for temperature compensation or gain tracking functions in the system. It can also be driven in the manner shown in Figure 6 for fine linearity correction.

Typical Application

Figure 5 shows a typical interface circuit for a TDC1007, an input buffer amplifier, and the reference voltage source. The reference voltage is supplied by an inverting amplifier that has been buffered with a PNP transistor. The transistor sinks the current flowing through the reference resistor chain and keeps the driving impedance at the bottom end of the resistor chain low. The gain of the overall circuit is adjusted by varying the input voltage to the operational amplifier.

The input amplifier is a bipolar wideband operational ampiifier followed by an NPN transistor buffer. The transistor drives the input capacitance of the A/D converter and keeps the overall circuit frequency stable. The offset error is compensated by varying the current into the summing junction of the op-amp. Note that all five $V_{I N}$ points are connected together and the buffer amplifier feedback loop is closed at that point. The buffer amplifier has a gain of two, raising the $1 \mathrm{~V} p-\mathrm{p}$ video input signal to $2 \mathrm{Vp}-\mathrm{p}$ at the input to the A / D converter. The AID converter operates with a 2 V full-scale.

Figure 5. Typical Interface Circuit

Figure 6. Method For Driving Mid-Point Of Resistor Chain

Parts List

Resistors				Capacitors			Integrated Circuits	
R1	\dagger	1/4W		C1	0.14 F	50 V	U1	TDC1007J1
R2	\dagger	1/4W		C2	*	50 V	U2	Plessey SL541C
R3	1K	1/4W	5\%	C3	0.14 F	50 V	U3	$\mu \mathrm{A741}$
R4	4.3K	$1 / 4 \mathrm{~W}$	5\%	C4	$0.1 \mu \mathrm{~F}$	50 V	U4	MC1403
R5	10	1/4W	5\%	C5	0.14 F	50 V		
R6	56	1/2W	5\%	C6	$1.4 \mu \mathrm{~F}$	15 V		
R7	240	2W	5\%	C7	0.14 F	50 V	Diodes	
R8	6.8	1/2W	5\%	C8	$0.1 \mu \mathrm{~F}$	50 V		
R9	2 K	1/2W	5\%	C9	$0.1 \mu \mathrm{~F}$	50 V	CR1	1N4001
R10	*	1/4W	5\%	ClO	$0.1 \mu \mathrm{~F}$	50 V		
R11	2K	1/4W	10-turn					
R12	2K	1/4W	10-turn					
R13	1.3K	1/4W	5\%				Transistors	
R14	2.2 K	1/4W	5\%					
R15	680	1/4W	5\%				01	2N5836
R16	2.2K	SIP	5\%				02	2N2907

\dagger Indicates input terminatoridivider

- Indicates amplifier compensation

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1007C1F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1007C1F3
TDC1007C1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	68 Contact Chip Carrier	1007C1A3
TDC1007JIC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1007JIC3
TDC1007JIG	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1007J1G3
TDC1007LIF	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1007L1F3
TDC1007L1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	68 Leaded Chip Carrier	1007L1A3

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Note:

1. Per TRW document $70 Z 01757$.

TDC1014

Monolithic Video A/D Converter

6 -Bit, 25MSPS
The TRW TDC1014 is a 25 MegaSample Per Second (MSPS) full-parallel (flashl analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12 MHz into 6 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1014 consists of 63 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Note: TRW recommends the use of the TDC1046 for new designs.

Features

-6-Bit Resolution

- $1 / 4$ LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP Or CERDIP
- Evaluation Boards - TDC1014E1C, TDC1014P1C

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1014 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signai with 63 reference voltages to produce an N -of-63 code Isometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The
encoding logic converts the N -of-63 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1014 operates from two supply voltages, +5.0 O and -6.0 V . The return for I_{C}, the current drawn from the +5.0 V supply, is $D_{G N D}$. The return for $I_{E E}$, the current drawn from
the -6.OV supply, is $A_{G N D}$. All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package
$V_{C C}$	Positive Supply Voltage	$+5.0 V$	Pin 7
$V_{E E}$	Negative Supply Voltage	$-6.0 V$	Pins 1,6
$D_{G N D}$	Digital Ground	$0.0 V$	Pin 8
$A_{G N D}$	Analog Ground	$0.0 V$	Pins 18,20

Reference

The TDC1014 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{\text {RB }}$ the voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . VRT should be more positive than $V_{\text {RB }}$ within that range. The voltage applied across the reference resistor chain $\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}$) must be between 0.8 V and 1.2 V . The current in the reference resistor chain can be supplied directly by a 741
type operational amplifier. The nominal voltages are, $V_{R T}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.0 \mathrm{~V}$. These voltages may be varied dynamically up to 12 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically (as in an AGC circuit), a bypass capacitor is inappropriate and a low-impedance reference source is required.

Name	Function	Value	J7, B7 Package
R_{T}	Reference Resistor (Top)	0.0 V	Pin 22
R_{B}	Reference Resistor (Bottom)	-1.0 V	Pin 16

Control

Two function control pins, NMINV and NLINV, are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table. These pins are active LOW, as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1, " and $D_{G N D}$ for a logic " 0. ."

Name	Function	Value	J7, B7 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 4
NLINV	Not Least Significant Bit INVert	TTL	Pin 5

Convert

The TDC1014 requires a convert (CONV) signal. A sample is taken lthe comparators are latched) approximately $10 n s$ after a rising edge on the CONV pin. This time is $\mathrm{t} T \mathrm{O}$, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature. The 63 to 6 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to the output latches on the
next rising edge. The outputs require a minimum value of to loutput delayl after a rising edge of the CONV signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1014 is taking input sample $\mathrm{N}+2$.

Name	Function	Value	J7, B7 Package
CONV	Convert	TTL	Pin 15

Analog Input

The TDC1014 uses strobed latching comparators which cause the input bias current to vary by approximately 5% with the convert (CONV) signal. This variation is "ISB, clock synchronous bias current." The comparators also cause the input impedance, resistive and capacitive, to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the device must have less than 25 Ohms impedance. The input
signal will not damage the TDC1014 if it remains within the range of V_{EE} to +0.5 V . If the input signal is between the V_{R} and $V_{\text {RB }}$ references, the output will be a binary number between 0 and 63 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All three analog input pins must be connected together.

Name	Function	Value	J7, B7 Package
V_{IN}	Analog Signal Input	OV to -1V	Pins 17, 19, 21

Outputs

The outputs of the TDC1014 are TTL compatible, capable of driving four low-power Schottky TTL 154774 LS) unit loads or the equivalent. To improve rise time of outputs, it is recommended that the 2.2 kOhm pull-up resistors to V_{CC} be
connected to data outputs. The outputs hold the previous data a minimum time lthol after the rising edge of the CONV signal.

Name	Function	Value	J7, B7 Package
D_{1}	MSB Output	TLL	Pin 9
D_{2}		TTL	Pin 10
D_{3}		TTL	Pin 11
D_{4}		TTL	Pin 12
D_{5}		TLL	Pin 13
D_{6}	LSB Output	TTL	Pin 14

No Connects

There are several pins labeled No Connect (NC), which have no connections to the chip. Connect these pins to AGND for noise reduction.

Name	Function	Value	J7, B7 Package
NC	No Connection	A $_{\text {GND }}$	Pins 2, 3, 23, 24

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$C_{\text {IN }}$ is a nonlinear junction capacitance
$V_{\text {RB }}$ is a voltage equal to the voltage on pin B_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

LSI Products Division
TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltagas	
	$V_{E E}$ (measured to $A_{G N D}$) ... 0.0 to -7.0 C
	$A_{G N D}\left(m e a s u r e d ~ t o ~ D_{G N D}\right)$... -1.0 to ${ }^{\text {a }}$ +1.0V
Input Voltages	
Output	
	Applied voltage (measured to $\mathrm{D}_{\mathrm{GND}}$) \qquad -0.5 to $5.5 \mathrm{~V}^{2}$
	Applied current, externally forced ... -1.0 to $6.0 .10 m^{3,4}$
	Short circuit duration (single output in high state to ground) ... 1 sec
Temperature	
	Operating, ambient \qquad -60 to $+140^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$
	Lead, soldering 110 seconds) ... $+30.1 .0^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the device.

Operating conditions

Paramater		Temperature Ranga						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	4.75	5.0	5.25	4.5	5.0	5.5	V
$V_{\text {EE }}$	Negative Supply Voltage (Measured to $\mathrm{A}_{\mathrm{GND}}$)	-5.75	-6.0	-6.25	-5.75	-6.0	-6.25	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{DGND}^{\text {l }}$	-0.1	0.0	0.1	-0.1	0.0	0.1	V
tpWL	CONV Pulse Width, LOW	19			18			ns
tPWH	CONV Pulse Width, HIGH	15			15			ns
$V_{\text {IL }}$	Input Voitage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
lol	Output Current, Logic LOW			4.0			4.0	mA
$\mathrm{OH}^{\text {OH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$V_{\text {RT }}$	Most Positive Refarence Input ${ }^{1}$	-1.1	0.0	0.1	-1.1	0.0	0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-0.9	-1.0	-2.1	-0.9	-1.0	-2.1	V
$V_{R T}{ }^{-V_{R B}}$	Voltage Reference Differential	0.8	1.0	1.2	0.8	1.0	1.2	V
$V_{\text {IN }}$	Input Voltage	$V_{R B}$		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	V
$\mathrm{T}_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{i}$
T_{C}	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ Must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.

Note:

1. Worst case, all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{S}	Maximum Conversion Rate		$V_{C C}-M I N, V_{E E}-M I N$	25		25		MSPS
tsto	Sampling Time Offset		$V_{C C}-M I N, V_{E E}-M 1 N$	-2	10	-3	12	ns
tD	Digital Output Delay	$V_{C C}=$ MIN, $V_{E E}=$ MIN Load 1		35		35	ns	
${ }^{\text {tho }}$	Output Hold Time	$V_{C C}=$ MIN, $V_{E E}=$ MIN Load 1	15		15		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integra, Independent		$V_{R T}, V_{R B}=N O M$		0.4		0.4	\%
ELD	Linearity Error Differential				0.4		0.4	\%
0	Code Size	$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}=\mathrm{NOM}$	50	150	50	150	\% Nominal	
$\mathrm{E}_{0 \mathrm{~T}}$	Offset Error Top	$V_{\text {IN }}=V_{\text {RT }}$		30		30	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-24		-24	mV	
${ }^{\text {T }}$ O	Offset Error Temperature Coefficient			± 100		± 100	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Full Power Input		12		12		MHz	
$\frac{{ }^{T} \mathrm{TR}}{\mathrm{SNR}}$	Transient Response, Full Scale			20		20	ns	
	Signal-to-Noise Ratio	10MHz Bandwidth, 25MSPS Conversion Rate						
	Peak Signal/RMS Noise	1.248 MHz Input	44		44		dB	
		2.438MHz Input	43		43		dB	
	RMS Signal/RMS Noise	1.248 MHz Input	35		35		dB	
		2.438MHz Input	34		34		dB	
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwidth 4 Sigma Loading 1.248MHz Slot 25MSPS Conversion Rate	26		26		dB	
$E_{\text {AP }}$	Aperture Error			60		60	ps	

Output Coding

Step	Range		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	-1.0000V FS 15.8730 mV STEP	$\begin{aligned} & \hline-1.0080 \mathrm{~V} \text { FS } \\ & 16.0000 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \text { NMINV }=1 \\ & \text { NLINV }=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1	1
00	0.0000 V	0.0000 V	000000	111111	100000	011111
01	-0.0159V	-0.0160V	000001	111110	100001	011110
-	-	-	\bullet	\bullet	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	\bullet
31	-0.4921V	-0.4960V	011111	100000	111111	000000
32	-0.5079V	-0.5120V	100000	011111	000000	111111
33	-0.5238V	-0.5280V	100001	011110	000001	111110
-		-	-	-	-	-
-		-	-	-	-	-
-	-	-	\bullet	\bullet	\bullet	\bullet
62	-0.9841v	-0.9920V	111110	000001	011110	100001
63	-1.000V	-1.0080V	111111	000000	011111	100000

Note:
Voltages are code midpoints when calibrated by the procedure given in the Calibration section.

Calibration

To calibrate the TDC1014, adjust $V_{\text {RT }}$ and $V_{\text {RB }}$ to set the 1st and 63 rd thresholds to the desired voltages. Note on the block diagram that R_{1} is greater than R, ensuring calibration with a positive voltage on RT . Assuming a OV to - 1 V desired range, continuously strobe the converter with -0.0079 V on the analog input, and adjust $V_{\text {RT }}$ for output toggling between codes 00
and 01. Then apply -0.9921 V and adjust V_{RB} for toggling between codes 62 and 63 . Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Typical Interface Circuit

The Typical Interface Circuit in Figure 5 shows a simple buffer amplifier and voltage reference circuit that may be used with the TDC1014. U2 is a wide-band operational amplifier with a gain factor of -2 . A small value resistor, R12, serves to help isolate the input capacitance of the A/D converter from the amplifier output and insure frequency stability. The pulse and frequency response of the buffer amplifier are optimized by variable capacitor C12.

The reference voltage for the TDC1014 is generated by amplifier U3 and PNP transistor 01 which supplies the reference current. System gain is adjusted by varying R9 which controls the reference voltage level to the A / D converter.

Input voltage range and input impedance for the circuit are determined by resistors R1 and R2. Formulas for calculating values for these input resistors are:

R1 $=\frac{1}{\left(\frac{2 V R}{Z_{I N}}\right)-\frac{1}{1000}}$
and
$R 2=Z_{I N}-\left(\frac{1000 R 1}{1000+R 1}\right)$
where $V R$ is the input voltage range of the circuit, $Z_{I N}$ is the input impedance of the circuit, and the constant 1000 comes from the value of R3. As shown, the circuit is set up for 1 Volt p-p 75 Ohm video input.

Figure 5. Typical Interface Circuit

LSI Products Divisian
TRW Electronic Components Group
D 35

Ordering Information ${ }^{1}$

Product Number	Temperature Range	Screaning	Package	Package Marking
TDC1014J7C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1014J7C
TDC1014J7G	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1014J76
TDC1014J7F	EXT- $T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1014/7F
TDC1014J7A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	24 Lead DIP	1014/7A
TDC1014B7C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead CERDIP	101487C
TDC1014B7G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead CERDIP	1014876

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.

Notes:

1. TRW recommends the use of the TDC1046 for new designs.
2. Per TRW document $70 Z 01757$.

TDC1019
 Preliminary Information

Monolithic Video A/D Converter

9-bit, 18MSPS

The TRW TDC1019 is an 18 MegaSample Per Second IMSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5 MHz into 9 -bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are differential ECL.

The TDC1019 consists of 512 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The outputs can be connected to give either true or inverted qutputs in binary or offset two's complement coding.

Features

- 9-Bit Resolution
- 18MSPS Conversion Rate, TDC1019-1
- 15MSPS Conversion Rate, TDC1019
- Overflow Flag
- Sample-And-Hold Circuit Not Required
- Differential Phase 1.0 Degree
- Differential Gain 2.0\%
- Differential ECL Interface
- Selectable Output Format
- Single -5.2V Power Supply
- Available in 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier
- Evaluation Board - TDC1019E1C

Applications

- Video Data Conversion
- Radar Data Conversion
- Data Acquisition
- IR Processors

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$\overline{0_{8}} 15$	7 $64 \mathrm{D}_{8}$
(LSB) $\mathrm{Dg}_{2} 2 \mathrm{O}$	7635
(LSB) $\overline{D_{g}} 3 \mathrm{~m}$	$\square 62 \mathrm{D}_{7}$
$\mathrm{D}_{\text {GND }} 4 \mathrm{~m}$	$761{ }^{-1}$
CONV 5 5	${ }^{-1} 60 \mathrm{D}_{6}$
CONV 67	$759 \overline{D_{5}}$
DGND 75	$758 \mathrm{D}_{5}$
$\mathrm{R}_{\text {TS }} \mathrm{B}_{5}$	7 57 AGND
OFS 9 F	$\rightarrow 56 \mathrm{NC}$
$\mathrm{R}_{\mathrm{T}} 10 \mathrm{H}$	755 NC
NC 115	- $54 \mathrm{~V}_{\text {EED }}$
$V_{\text {IN }} 12 \%$	753 NC
AGND 13 H	- 52 NC
$A_{\text {GND }} 14{ }^{\text {a }}$	- 51 veea
$V_{\text {IN }} 15$ E-	750 NC
$V_{\text {IN }} 16$ H	749 NC
$\mathrm{R}_{\mathrm{M}} 17 \mathrm{H}$	- $48 \mathrm{~V}_{\mathrm{EEA}}$
$\mathrm{V}_{\text {IN }} 18$ -	47 NC
$A_{\text {GND }} 19 \mathrm{~F}$	$746 \mathrm{~V}_{\text {EEA }}$
$A_{\text {GND }} 205$	- 45 NC
NC 21 H	744 NC
$\mathbf{V}_{\text {IN }} 22 \mathrm{~F}$	- 43 VEED
NC 23 F	742 NC
$\mathrm{B}_{\mathrm{B}} 24$ -	- 41 NC
$\mathrm{H}_{\text {BS }} 25 \mathrm{~F}$	$740 \mathrm{~A}_{\mathrm{GND}}$
DGND 26 -	- 39 NC
DGND 27 -	- 38 NC
OVF 285	$\checkmark 37{ }^{5}$
OVF 29 -	$\cdots 36 \mathrm{D}_{4}$
(MSB) $\mathrm{D}_{1} 30{ }^{\text {a }}$	$\mathrm{Cr}^{-25} 5$
(MSB) $\mathrm{D}_{1} 31 \mathrm{H}$	$\begin{array}{cc} 44 & D_{3} \\ \hline y 33 \\ D_{3} \end{array}$

68 Contact Or Leaded Chip Carrier - C1, L1 Package

$$
64 \text { Lead DIP - J1 Package }
$$

Functional Description

General Information

The TDC1019 has three functional sections：a comparator array， encoding logic and output latches．The comparator array compares the input signal with 512 reference voltages to produce an N －of－ 512 code isometimes referred to as a
＂thermometer＂code，as all the comparators below the signal will be on，and all those above the signal will be off）．The encoding logic converts the N －of－512 code into binary data． The output latch holds the output constant between updates．

Power

The TDC1019 operates from separate analog and digital power supplies，$V_{E E A}$ and $V_{E E D}$ ，respectively．Since the required voltage for both $\mathrm{V}_{\text {EEA }}$ and $\mathrm{V}_{\text {EED }}$ is -5.2 V ，they may ultimately be connected to the same power source，but separate
decoupling for each supply is recommended．The return for the current drawn from $V_{E E D}$ and $V_{E E A}$ is $D_{G N D}$ and $A_{G N D}$ ． respectively．All power and ground pins must be connected．

Name	Function	Value	J1 Package	C1，L1 Package
$V_{\text {EEA }}$	Analog Supply Voltage	$-5.2 \mathrm{~V}$	Pins 46，48， 51	Pins 14，16，18， 20,21
$V_{\text {EED }}$	Digital Supply Voltage	－5．2V	Pins 43， 54	Pins 13， 22
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	Pins 4，7，26， 27	Pins 41， 65
$A_{\text {GND }}$	Analog Ground	0.0 V	Pins 13，14，19，20，40， 57	Pins 9，27，48，49，55， 57

Reference

The TDC1019 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form．$V_{R B}$ the voltage applied to the pin at the bottom of the reference resistor chain）and V_{RT} lthe voltage applied to the pin at the top of the reference resistor chainl should be between +0.1 V and -2.1 V ．VRT should be more positive than $V_{R B}$ within that range．The voltage applied across the reference resistor chain $\left.\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}\right)$ must be between 1.8 V and 2.2 V ．The nominal voltages are $V_{\mathrm{RT}}=0.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=-2.0 \mathrm{~V}$ ．Parasitic resistances， R_{1} and R_{2} ，introduce offsets at the top and bottom of the reference resistor chain．Sense points RTS，RBS and OFS may be used to null out these offsets．Note that R_{1} is greater than $R_{\text {，}}$ ensuring that a positive voltage is required at $R_{T} . R_{3}, R_{4}$ and
R_{5} are not designed to carry the reference current．OverFlow Sense（OFSI may be used to null out offsets at the overflow （most positive）comparator whenever the OVerFlow（OVF）flag is used．If the sense points are not used，they should be left open．The reference voltages may be varied dynamically up to 5 MHz ．If these inputs are exercised dynamically，a low－impedance reference source is required．If the reference is not varied，a bypass capacitor is recommended．A midpoint tap， B_{M} ，allows the converter to be adjusted for optimum linearity．It can also be used to achieve a non－linear transfer function．This node should be driven from a low－impedance source．Noise introduced at this point，as well as the reference inputs（RT，RTS，R R_{B} ，RBS，OFS），may result in encoding errors．

Name	Function	Value	J1 Package	C1，L1 Package
R_{T}	Reference Resistor（Top）	0．OV	Pin 10	Pin 59
$\mathrm{R}_{\text {TS }}$	Reference Resistor（Top）Sense	0.0 V	Pin	Pin 62
${ }^{\text {B }}$	Reference Resistor（Bottom）	－2．0V	Pin 24	Pin 44
R_{BS}	Reference Resistor（Bottom）Sense	－2．0V	Pin 25	Pin 43
R_{M}	Reference Resistor（Midpoint）	－1．0V	Pin 17	Pin 52
OFS	Overflow Sense	0.0 V	Pin 9	Pin 61

Convert

The TDC1019 requires a differential CONVert (CONV and CONV) signal. A sample is taken (the comparators are latched) approximately 10 ns after the rising edge of the CONV signal. This time is ISTO, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short term uncertainty (jitterl) in sampling offset time is less than 100 picoseconds. The 512 to 9 encoding is performed on the falling edge of the CONV signal.

The coded result is transferred to the output latches on the next rising edge. Data is held valid at the output register for at least thO, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, tD, time. In a synchronous system data for sample N is acquired by the external circuitry while the TDC1019 is taking input sample $N+2$.

Name	Function	Value	J1 Package	C1, L1 Package
CONV	Convert	ECL	Pin 5	Pin 64
$\overline{\text { CONV }}$	Convert, Complement	ECL	Pin 6	Pin 63

Analog Input

The TDC1019 uses strobed latching comparators which cause the input impedance, resistive and capacitive, to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance must be less than 250 Ohms . The input
signal will not damage the TDC1019 if it remains within the range of $V_{E E A}$ to +0.5 V . If the input signal is between the $V_{R T}$ and $V_{R B}$ references, the output will be a binary number between 0 and 511 inclusive. All five analog input pins must be connected.

Name	Function	Value	J1 Package	C1, L1 Package
$V_{\mathbb{N}}$	Analog Signal Input	OV to -2 V	Pins 12, 15, 16, 18, 22	Pins 46,50,53,54,58

Outputs

The outputs of the TDC1019 are differential ECL levels. The recommended load is 5000 hms to -2 V . For optimum operation over the full temperature range, differential line receivers should be used. An OVerFlow (OVF) signal indicates
that the analog input has exceeded the threshold of the most positive comparator. The outputs hold the previous data a minimum time 'thol after the rising edge of the CONVert signal.

Name	Function	Value	J1 Package	C1, L1 Package
D_{1}	MSB Output	ECL	Pin 30	Pin 38
$\overline{D_{1}}$	MSB Output Complement	ECL	Pin 31	Pin 37
D_{2}		ECL	Pin 32	Pin 36
$\overline{\mathrm{D}}$		ECL	Pin 33	Pin 35
D_{3}		ECL	Pin 34	Pin 34
$\overline{D_{3}}$		ECL	Pin 35	Pin 33
D_{4}		ECL	Pin 36	Pin 32
\bar{D}_{4}		ECL	Pin 37	Pin 31
D_{5}		ECL	Pin 58	Pin 7
$\overline{0_{5}}$		ECL	Pin 59	Pin 6
D_{6}		ECL	Pin 60	Pin 5
$\overline{\bar{D}_{6}}$		ECL	Pin 61	Pin 4
D_{7}		ECL	Pin 62	Pin 3
5		ECL	Pin 63	Pin 2
D_{8}		ECL	Pin 64	Pin 1
$\overline{5}_{8}$		ECL	Pin 1	Pin 68
Dg_{g}	LSB Output	ECL	Pin 2	Pin 67
$\overline{\mathrm{D}}$	LSB Output Complement	ECL	Pin 3	Pin 66
OVF	Overflow Output	ECL	Pin 28	Pin 40
$\overline{\text { OVF }}$	Overflow Output Complement	ECL	Pin 29	Pin 39

No Connects

There are several pins labeled No Connect INC). These pins
should be left open.

Name	Function	Value	J1 Package	C1, L1 Packaga
NC	No Connect	Open	Pins 11,21,23, 38, 39, 41, 42, 44,	Pins 8, 10, 11, 12, 15, 17, 19, 23, 24,
			$45,47,49,50,52,53,55,56$	$26,28,29,30,42,45,47,51,56,60$

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{c}_{\text {IN }}$ IS a nonlinear junction capacitance
$\mathrm{V}_{\text {RB }}$ is a voltage equal to the voltage on pin R_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages						
	$V_{E E D}$ (measured to $D_{G N D}$). $V_{E E A}$ (measured to $A_{G N D}$). $\mathrm{A}_{\mathrm{GND}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$). $V_{E E A}$ (measured to $V_{E E D}$).			$\ldots . . .$		$\begin{aligned} & \text { to }-7.0 \mathrm{~V} \\ & \text { to }-7.0 \mathrm{~V} \\ & \text { to }-1.0 \mathrm{~V} \\ & \text { to }-0.5 \mathrm{~V} \end{aligned}$
 $V_{R T}$ (measured to $V_{R B}$). \qquad +2.5 to -2.5 V						
Outputs	Short circuit duration (single output to GN	I..................	\ldots	\ldots	\cdots	Indefinite
Temperature	Operating, case \qquad junction. \qquad Lead, soldering (10 seconds). \qquad Storage. \qquad			\cdots		$\begin{aligned} & +140^{\circ} \mathrm{C} \\ & +175^{\circ} \mathrm{C} \\ & +300^{\circ} \mathrm{C} \\ & +150^{\circ} \mathrm{C} \end{aligned}$
Note: 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.						
Operating conditions						
Parameter			Temperature Range			Units
			Standard			
			Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage (measured to $\mathrm{O}_{\text {GND }}$)		-4.9	-5.2	-5.5	V
VEEA	Analog Supply Voltage (measured to AGND		-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (measured to DGND)		-0.1	0.0	+0.1	V
$\overline{V E E A}^{-V_{\text {EEE }}}$	Supply Voltage Differential		-0.1	0.0	+0.1	V
$t_{\text {PWL }}$	CONV Pulse Width, LOW	Standard	25			ns
		-1 Version	22			ns
${ }^{\text {tPWH }}$	CONV Pulse Width, HIGH	Standard	32			ns
		-1 Version	28			ns
$V_{\text {II }}$	Input Voltage, Logic LOW				-1.4	V
V_{H}	Input Voltage, Logic HIGH		-1.0			\checkmark
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$		-0.1	0.0	+0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$		-1.9	-2.0	-2.1	V
$\bar{V}_{\text {RT }}-V_{R B}$	Voltage Reference Differential		1.8	2.0	2.2	V
$V_{\text {IN }}$	Input Voltage		V_{RB}		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature, Still Air ${ }^{2}$		0		+70	${ }^{\circ} \mathrm{C}$
Notes: 1. $V_{R T}$ must be more positive than $V_{R B}$, and voltage reference differential must be within specified range. 2. 500 L.F.P.M. moving air required above $50^{\circ} \mathrm{C}$.						

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Tempera	re Range	Units	
		Min	Max			
$l_{\text {EE }}$	Supply Current		$V_{\text {EED }}, V_{\text {EEA }}-\mathrm{MAX}$			
		$\mathrm{T}_{\mathrm{A}}-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-850	mA	
		$\mathrm{T}_{\mathrm{A}}-50^{\circ} \mathrm{C}$		-725	mA	
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ (500 LFPM)		-700	mA	
$\mathrm{I}_{\text {REF }}$	Reference Current	$V_{R T}, V_{R B}=N O M$	10	36	mA	
$\overline{\mathrm{R}_{\text {REF }}}$	Total Reference Resistance		56	200	Ohms	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{R T}, V_{\text {RB }}-N O M, V_{I N}-V_{R B}$	2.0		kOhms	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {RT }}, \mathrm{V}_{\mathrm{RB}}=$ NOM, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {RB }}$		280	pF	
${ }^{\text {CB }}$	Input Constant Bias Current	$V_{\text {EEA }}=$ MAX, $\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$		750	$\mu \mathrm{A}$	
1	Digital Input Current	$V_{\text {EED }}=$ MAX, $V_{1}=-0.7 \mathrm{~V}$		150	$\mu \mathrm{A}$	
$V_{0 L}$	Output Voltage, Logic LOW	$V_{\text {EED }}-$ NOM, IOL^{-1} - Test Load ${ }^{1}$		-1.6	V	
V_{OH}	Output Voltage, Logic HIGH	$V_{\text {EED }}=$ NOM, $\mathrm{I}_{\text {OH }}=$ Test Load ${ }^{1}$	-0.95		V	
c_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		35	pF	

1. Test Load $=500$ Ohms to -2.0 V .

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temper	Range	Units	
		Standard				
		Min	Max			
F_{S}	Maximum Conversion Rate		$V_{\text {EED }}, V_{\text {EEA }}=$ MIN Standard	15		MSPS
			$V_{\text {EED }}, V_{\text {EEA }}=$ MIN -1 Version	18		MSPS
${ }_{\text {ISTO }}$	Sampling Time Offset	$\mathrm{V}_{\text {EED }}, \mathrm{V}_{\text {EEA }}=$ MIN	0	15	ns	
t	Output Delay	$V_{\text {EED }}, V_{\text {EEA }}=\mathrm{MIN}$, Load 1		35	ns	
${ }^{\text {H0 }}$	Output Hold Time	$V_{\text {EED }} \cdot V_{\text {EEA }}=$ MIN, Load ${ }^{1}$	3		ns	

System performance characteristics within specified operating conditions

Paramater		Test Conditions		Range	Units	
		Standard				
		Min	Max			
$\mathrm{ELI}^{\text {l }}$	Linearity Error Integral, Independent		$V_{R T}, V_{R B}=N O M$		0.3	\%
			$V_{\text {RT }}, V_{\text {RB }}=$ NOM ${ }^{1}$, t $_{\text {PWH }}=28 \mathrm{~ns}$		0.15	\%
ELD	Linearity Error Differential	$V_{R T}, V_{\text {RB }}=N O M$		0.15	\%	
0	Code Size	$V_{\text {RT }}, V_{\text {RB }}=$ NOM	15	185	\% Nominal	
EOTS	Offset Error Top	$V_{\mathbb{N}}=V_{\text {RT }}$, $\mathrm{R}_{\text {TS }}$ Connected		± 4	mV	
ETO	Offset Error Top	$V_{\text {IN }}-V_{R T}$		+40	mV	
EDBS	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$, R $_{\text {BS }}$ Connected		± 4	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-40	mV	
${ }^{\text {T }} \mathrm{CO}$	Offset Error Temperature Coefficient			20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
${ }^{\text {thr }}$	Transient Response, Full Scale			20	ns	
BW	Bandwidth, Full Power Input		5		MHz	
SNR	Signal-to-Noise Ratio	5 MHz Bandwidth, 18MSPS Conversion Rate				
	Peak Signal/RMS Noise	1.25MHz Input	52		dB	
		2.438MHz Input	49		dB	
	RMS Signal/RMS Noise	1.25 MHz Input	43		dB	
		2.438 MHz Input	40		dB	
$E_{\text {AP }}$	Aperture Error			100	ps	
DP	Differential Phase 1,2	$4 \times$ NTSC Subcarrier		1.0	Degrees	
DG	Differential Gain 1,2	$4 \times$ NTSC Subcarrier		2.0	\%	

Notes:

1. Voltage at midpoint $\left(R_{M}\right)$ adjusted.
2. In excess of quantization.

Output Coding

Step	Ranga		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	$\begin{gathered} -2000 \mathrm{~V} \text { FS } \\ 3.9139 \mathrm{mV} \text { Step } \end{gathered}$	$\begin{gathered} -2.0440 \mathrm{VS} \\ 4.000 \mathrm{mV} \text { Step } \end{gathered}$		All Outputs Inverted	0_{1} Inverted	$\mathrm{D}_{2}-\mathrm{Dg}_{\mathrm{g}}$ Inverted
000	0.0000 V	0.0000 V	000000000	111111111	100000000	011111111
001	0.0039v	0.0040V	000000001	111111110	100000001	011111110
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	\bullet	\bullet	\bullet	-
255	0.9980 V	1.0200 V	011111111	10000000	11111111	000000000
256	1.0020 V	1.0240V	100000000	01111111	00000000	111111111
257	1.0059 V	1.0280V	100000001	01111110	00000001	111111110
-	-	-	-	-	-	-
-	-			-	-	\bullet
-	-	\bullet	-	-	-	-
510	1.9961 V	1.9980 V	111111110	000000001	011111110	100000001
511	2.0000 V	2.0200 V	111111111	000000000	011111111	100000000

Notes:

1. Any output may be inverted by interchanging connections to the true $\left(D_{N}\right)$ and complement $\left(\bar{D}_{N}\right)$ output pins.
2. Voltages are code midpoints when calibrated by the procedure given below.

Calibration

To calibrate the TDC1019, adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 511th thresholds to the desired voltages. Note that R_{1} is greater than R, ensuring calibration with a positive voltage on RT. Assuming a $0 V$ to -2 V desired range, continuously strobe the converter with -0.00196 V on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply -1.9980 V and adjust V_{RB} for toggling between codes 510 and
511. The Overflow flag is calibrated similarly to $V_{R T}$ except that the converter input is set 1 LSB more positive than the top of the encoding range $(-0.00196 \mathrm{~V}$ in this example). Instead of adjusting $V_{R T}$, R_{T} can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

Parts List

Resistors			
R1	. 0 , 1		
R2	$80.6 \Omega{ }^{1}$	1/4W	2\%
R3	1.0K Ω	1/4W	2\%
R4	4.2K Ω	1/4W	2\%
R5	$2.0 \mathrm{~K} \Omega$	IW	Multiturn Cermet Pot
R6	100.0Ω	3 W	5\%
R7	120.0Ω	3 W	5\%
R8	10.0 ת	1/4W	5\%
R9	$2.0 \mathrm{~K} \Omega$	1/4W	2\%
R10	(See Note 2)		
R11	2.0K Ω	IW	Multiturn Cermet Pot
R12	2.0K Ω	IW	Multiturn Cermet Pot
R13	20.0k Ω	$114 W$	2\%
R14	20.0k Ω	1/4W	2\%
R15	2.0k Ω	1/4W	2\%
R16	2.0K Ω	1/4W	2\%
R17	$75.0 \mathrm{~K} \Omega$	1/4W	2\%

Notes:

1. Selected for desired input impedance and voltage range.
2. Selected for amplifier compensation.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1019JIC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1019JIC
TDCioiglicl	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1019JIC1
TDC1019J1G	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1019J1G
TDC1019J1G1	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-in	64 Lead DIP	1019J1G1
TDC1019C1C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1019C1C
TDC1019CIC1	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commerical	68 Contact Chip Carrier	1019C1C1
TDC1019C1G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1019C1G
TDC1019C1G1	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1019CIG1
TDC1019LIC	$\mathrm{STD}-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1019LIC
TDC1019LIC1	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1019LICl
TDC1019L1G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1019LIG
TDC1019LIG1	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	101921G1

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Monolithic A/D Converter

4-bit, 25MSPS

The TRW TDC1021 is a 25 MegaSample Per Second (MSPS) full-parallel (flashl analog-to-digital converter, capable of converting signals with full-power frequency components up to 10MHz into 4-bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are TTL compatible.

The TDC1021 consists of 15 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs, in binary or offset two's complement coding.

Note: TRW recommends the use of the TDC1044 for new designs.

Features

-4-Bit Resolution

- $\pm 1 / 4$ LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In 16 Lead DIP
- Standard/Extended Temperature Range

Applications

- Video Special Effects
- Radar Data Conversion
- High-Speed Multiplexed Data Acquisition
- Medical Imaging
- Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1021 has three functional sections: a comparator array, encoding logic and output latches. The comparator array compares the input signal with 15 reference voltages to produce an N -of-15 code isometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off).

The encoding logic converts the N -of-15 code into binary or offset two's complement coding and can invert either output code. This coding function is selected by DC controls on pins NMINV and NLINV. The output latch holds the data on the output constant between updates.

Power

The TDC1021 operates from two supply voltages: +5.0 V which is referenced to $D_{G N D}$, and -6.0 V which is referenced to AgND. All power and ground pins must be connected.

Name	Function	Value	J9 Package
$V_{C C}$	Positive Supply Voltage	+5.0 V	Pin 10
$V_{\text {EE }}$	Negative Supply Voltage	-6.0 V	Pin 6
$D_{G N D}$	Digital Ground	0.0 V	Pin 11
$A_{G N D}$	Analog Ground	0.0 V	Pin 1

Reference

The $T D C 1021$ converts signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{\text {RB }}$ lthe voltage applied at the bottom of the reference resistor chain) and $V_{R T}$ lthe voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . $V_{R T}$ should be more positive than $V_{\text {RB }}$ within that range. The voltage applied across the reference resistor chain $\left(V_{R T}-V_{R B}\right)$ must be between 0.4 V and 1.3 V . The current in the reference resistor chain can be supplied directly by an operational amplifier. These voltages may be varied dynamically up to 10 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in
which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically las in an AGC circuit), a bypass capacitor is inappropriate and a low-impedance reference source is required. A reference middle is also provided; this may be used as an input to adjust the mid-scale point in order to improve integral linearity. This point may also be used as a tap to supply a mid-scale voltage to offset the analog input. If $V_{\text {RM }}$ is used as an output, it must be connected to a high input impedance device which has negligible offset current. Noise generated at this point will adversely affect the performance of the device.

Name	Function	Value	J9 Package
$V_{R T}$	Reference Resistor (Top)	$0.04 V$	Pin 4
$V_{R M}$	Reference Resistor (Middle)	$-0.5 V$	Pin 8
$V_{\text {RB }}$	Reference Resistor (Bottom)	$-1.04 V$	Pin 5

Control

Two function control pins, NMINV and NLINV are provided. These controls are for DC li.e., steady state) use. They permit the output coding to be either binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table. These pins are active LOW, as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $D_{G N D}$ for a logic " 0. .

Name	Function	Value	J9 Package
NMINV	Not Most Significant Bit INVert	TL	Pin 9
NLINV	Not Least Significant Bit INVert	TL	Pin 7

Convert

The TDC1021 requires a convert (CONV) signal. A sample is taken lthe comparators are latchedl approximately $10 n s$ after a rising edge on the CONV pin. This time is t STO, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature. The 15 to 4 encoding is performed on the falling edge of the CONV signal. The coded result is then transferred to the output latches on
the next rising edge. Data is held valid at the output register for at least tho, Output Hold Time, after the rising edge of CONV. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e., data for sample N is acquired by the external circuitry while the TDC1021 is taking input sample $N+2$.

Name	Function	Value	J9 Package
CONV	Convert	ΠL	Pin 16

Analog Input

The TDC1021 uses strobed latching comparators which cause the input bias current to vary by approximately 5% with the convert (CONV) signal. This variation is "ISB, clock synchronous bias current." The comparators also cause the input impedance, resistive and capacitive, to vary with the signal level as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance must
be less than 25 Ohms. The input signal will not damage the TDC1021 if it remains within the range of V_{EE} to +0.5 V . If the input signal is between the the $V_{R T}$ and $V_{R B}$ references, the output will be a valid representation of the input. A signal outside this range will indicate either full-scale positive or full-scale negative, depending upon whether the signal is off-scale in the positive or negative direction.

Name	Function	Value	J9 Package
$V_{\mathbb{N}}$	Analog Signal Input	OV to -IV	Pin 2

Outputs

The outputs of the TDC1021 are TTL compatible, capable of driving four low-power Schottky TTL (54174LS) unit loads or the equivalent. To improve rise time of outputs, it is recommended that 2.2 kOhm pull-up resistors to VCC be
connected to data outputs. The outputs hold the previous data a minimum time thol after the risirig edge of the CONV signal.

Name	Function	Value	J9 Package
D_{1}	MSB Output	$\Pi \mathrm{L}$	Pin 12
D_{2}		$\Pi \mathrm{~L}$	Pin 13
D_{3}	LSB Output	$\Pi \mathrm{L}$	Pin 14
D_{4}	TL	Pin 15	

No Connects
Pin 3 of the TDC1021 is labeled No Connect (NC), and has no connection to the chip. Connect this pin to AgND for noise reduction.

Name	Function	Value	J9 Package
NC	No Connect	$A_{G N D}$	Pin 3

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{C}_{\text {IN }}$ IS A NONLINEAR JUNCTION CAPACITANCE $V_{\text {rb }}$ is a voltage equal to the voltage on pin rb

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

LSI Products Division

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages	
	$V_{\text {CC }}$ (measured to $\mathrm{D}_{\text {GND }}$)
Input Voltages	
	$V_{I N}, V_{R T}, V_{\text {RB }}$ (measured to $A_{G N D}$) $\ldots . . \chi_{*}$
Output	
Temperature	
	Storagex.
Notes:	
	Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	4.75	5.0	5.25	4.5	5.0	5.5	V
$\mathrm{V}_{\text {EE }}$	Negative Supply Voltage (Measured to $\mathrm{A}_{\mathrm{GND}}$)	-5.75	-6.0	-6.25	-5.75	-6.0	-6.25	V
VAGND	Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	0.1	-0.1	0.0	0.1	V
tpwl	CONV Pulse Width, LOW	19			19			ns
tPWH	CONV Pulse Width, HIGH	15			15			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
V_{IH}	Input Voltage, Logic HIGH	2.0			2.0			V
10 L	Output Current, Logic Low			4.0			4.0	mA
IOH	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-1.9	0.0	0.1	-1.9	0.0	0.1	V
$V_{R B}$	Most Negative Reference Input ${ }^{1}$	-2.1	-1.0	-0.1	-2.1	-0.1	-0.1	V
$V_{\text {RT }}-V_{\text {RB }}$	Voltage Reference Differential	0.2	1.0	2.0	0.2	1.0	2.0	V
$V_{\text {IN }}$	Input Voltage	V_{RB}		$V_{\text {RT }}$	$\mathrm{V}_{\text {RB }}$		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$ C	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ must be more positive than $V_{R B}$ and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I CC }}$ Positive Supply Current	$V_{C C}=$ MAX, static ${ }^{1}$		35		35	mA
$\mathrm{IEE}^{\text {E }}$ Negative Supply Current	$V_{E E}=$ MAX, static ${ }^{1}$		-60		-60	mA
$I_{\text {REF }}$ Reference Current	$V_{R T}, V_{R B}=N O M$		4.0		4.0	mA
RREF Total Reference Resistance		250		250		Ohms
RIN Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{I N}=V_{R B}$	60		60		kOhms
$\mathrm{C}_{\text {IN }}$ Input Capacitance			25		25	pF
${ }^{\text {I }}$ CB Input Constant Bias Current	$V_{E E}=\mathrm{MAX}$		20		30	$\mu \mathrm{A}$
SB Input Clock Synchronous Bias			5		5	$\mu \mathrm{A}$
ILL Input Current, Logic LOW	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$		-2.0		-2.0	mA
IIH Input Current, Logic HIGH	$V_{C C}=$ MAXX, $V_{1}=2.4 \mathrm{~V}$		75		75	$\mu \mathrm{A}$
II Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$\mathrm{V}_{\text {OL }}$ Output Voltage, Logic LOW	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LL}}-\mathrm{MAX}$		0.4		0.4	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{C C}=$ MIN, $I_{\text {OH }}=$ MAX	2.4		2.4		V
${ }_{\text {IOS }}$ Short Circuit Output Current	$V_{C C}=$ MAX, Output HIGH, one pin to ground, one second duration		-25		-25	mA
C_{1} Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
$\mathrm{F}_{\text {S }} \quad$ Maximum Conversion Rate	$V_{C C}=M I N, V_{E E}=M I N$	25		25		MSPS
${ }^{\text {tsT0 }}$ Sampling Time Offset	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$		10		15	ns
to Output Delay	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {EE }}=$ MIN Load 1		35		35	ns
${ }^{\text {tho }}$ Output Hold Time	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{V}_{\text {EE }}=$ MIN Load 1	5		5		ns

System performance characteristics within specified operating conditions

Paramater	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
$E_{\text {LI }}$ Linearity Error Integral, Independent	$V_{R T}, V_{R B}=N O M$		1.6		1.6	\%
ELD Linearity Error Differential			1.6		1.6	\%
0 Code Size	$V_{R T}, V_{\text {RB }}=N O M$	50	150	50	150	\% Nominal
EOT Offset Error Top	$V_{I N}-V_{R T}$		50		50	mV
EOB Offset Error Bottom	$V_{\mathbb{N}}=V_{\text {RB }}$		50		50	mV
${ }^{\text {T }}$ CO 0 Offset Error ${ }^{\text {a }}$ Temperature Coefficient			± 100		± 100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
BW Bandwidth, Full Power Input		10		10		MH2
${ }^{\text {TTR }}$ Transient Response, Full Scale			20		20	ns
$\mathrm{EAP}_{\text {AP }}$ Aperture Error			50		50	ps

Output Coding

Stap	Range		Binary		Offset Two's Complament	
			True	Inverted	True	Inverted
	-1.0000V FS 66.667 mV STEP	-0.960V FS 64.000 mV STEP	$\begin{aligned} & \text { NMINV }=1 \\ & \text { NLINV }=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
00	0.000 V	0.000 V	0000	1111	1000	0111
01	-0.067V	-0.064V	0001	1110	1001	0110
02	-0.133V	-0.128V	0010	1101	1010	0101
03	-0.200V	-0.192V	0011	1100	1011	0100
04	-0.267V	-0.256V	0100	1011	1100	0011
05	-0.333v	-0.320V	0101	1010	1101	0010
06	-0.400V	-0.384V	0110	1001	1110	0001
07	-0.467V	-0.448V	0111	1000	1111	0000
08	-0.533V	-0.512V	1000	0111	0000	1111
09	-0.600V	-0.576V	1001	0110	0001	1110
10	-0.667V	-0.640V	1010	0101	0010	1101
11	-0.733v	-0.704V	1011	0100	0011	1100
12	-0.800V	-0.768V	1100	0011	0100	1011
13	-0.867V	-0.832V	1101	0010	0101	1010
14	-0.933V	-0.896V	1110	0001	0110	1001
15	-1.000V	-0.960V	1111	0000	0111	1000

[^0]
Callbration

To celibrate the TDC1021, adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 15 th thresholds to the desired voltages. Assuming a OV to $-1.0 V$ desired range, continuously strobe the converter with -0.0335 V on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply -0.9665 V and adjust $V_{\text {RB }}$ for toggling batween codes 14 and 15 . Instead of adjusting VRT, RT can be connected to analog ground and the OV and of the range calibrated with an analog input buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path.

Typical Interface Circuit

Figure 5 shows a typical interface circuit. In this circuit the input has the range of 0.067 V to -0.933 V . The range is the difference batween the voltages at which the transition from code 0 to code 1 occurs and the transition from code 14 to 15 occurs, +1 LSB. This axtra LSB is produced when the analog to digital converter is calibrated with the transition from the 0 code to the 1st code occurring $1 / 2$ LSB away from ground, and the transition from the 14th to 15th codes occurring $1 / 2$ LSB away from full-scale. If a range from 0.000 V to 1.000 V is requirad, then V_{RT} must be adjusted Isee calibration) and another buffer circuit added.

The TDC1021 does not require a buffer to drive the analog input, however, a buffer circuit may be used to provide signal conditioning such as filtering or gainloffset.

Flgure 5. Typical Interface Clrcult

Parts List

Resistors

R1	$2.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	Multiturn Cermet Pot
R2	$21.5 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R3	$21.5 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R4	$2.2 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%

Capacitors		
C 1	$10 \mu \mathrm{~F}$	10 V
C2	$1 \mu \mathrm{~F}$	10 V
C3	$0.1 \mu \mathrm{~F}$	50 V
C4	$0.1 \mu \mathrm{~F}$	50 V

Integrated Circuits

U1	TRW TOC1021
U2	741 Op-Amp
U3	Motorola MC1403U

Ordering Information ${ }^{1}$

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1021J9C	$\mathrm{STD}-\mathrm{T}_{\mathrm{A}}=\mathrm{O}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1021J9C
TDC1021J9G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1021J9G
TDC1021.jgF	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1021.J9F
TDC1021.9A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	16 Lead DIP	1021J9A

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Notes:

1. TRW recommends the use of the TDC1044 for new designs.
2. Per TRW document $70 Z 01757$.

TDC1025

Monolithic A/D Converter

8-bit, 50MSPS

The TRW TDC1025 is a 50 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12 MHz into 8 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are ECL compatible.

The TDC1025 consists of 255 latching comparators, combining logic, and an output register. A differential ECL convert signal controls the conversion operation. The digital outputs will interface with differential or single-ended ECL. The device requires a single -5.2 V power supply.

Features

-8-Bit Resolution

- 50MSPS Conversion Rate
- Sample-And-Hold Circuit Not Required
- Differential Or Single-Ended ECL Compatible
- Single -5.2V Power Supply
- Available In 68 Contact Or Leaded Chip Carrier
- Evaluation Board - TDC1025E1C

Applications

- Medical Electronics
- Fluid Flow Analysis
- Seismic Analysis
- Radar/Sonar
- Transient Analysis
- High-Speed Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1025 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 255 reference voltages to produce an N -of -255 code sometimes referred to as a
"thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The encoding logic converts the N -of-255 code into binary format. The output latch holds the output constant between updates.

Power

The TDC1025 operates from a single -5.2V power supply. The separate analog and digital power pins, $V_{E E A}$ and $V_{E E D}$, both require $-5.2 V$, and may be connected to the same power supply. However, separate decoupling of the analog and digital power pins is recommended Irefer to Figure 5 for a typical decoupling circuit). The return for $I_{\text {EED }}$, the current drawn from
the $V_{E E D}$ supply, is $D_{G N D}$. The return for $I_{E E A}$, the current drawn from the $V_{E E A}$ supply, is $A_{G N D}$. The analog and digital ground planes should be separated to minimize ground noise and prevent ground loops, and connected back at the power supply. All power and ground pins must be connected.

Name	Function	Value	C1, L1 Package
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pins 7,29
$V_{\text {EEA }}$	Analog Supply Vottage	-5.2 V	Pins 13, 14, 16, 18, 20, 22, 23
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	Pins 8, 28, 39, 64
$A_{G N D}$	Analog Ground	0.0 V	Pins 46,50,55,58

Reference

The TDC1025 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{R B}$ lthe voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . V_{RT} should be more positive than $V_{R B}$ within that range. The voltage applied across the reference resistor chain $\left(V_{R T}-V_{R B}\right)$ must be between 1.8 V and 2.2 V . The nominal voltages are $V_{R T}=0.0 \mathrm{~V}, V_{\mathrm{RB}}=-2.0 \mathrm{~V}$.

Two sense points, $\mathrm{A}_{T S}$ and RBS, may be used to minimize the offset errors and temperature sensitivity. With sensing, resistors R_{1} and R_{2} las shown in the Functional Block Diagram) are contained within the feedback loop, and no longer contribute to the offset error. The remaining offset errors, EOTS and EOBS, can be eliminated by the calibration method discussed under Calibration. The temperature sensitivity of this remaining offset error is specified by tCOS, Temperature Coefficient, Sensed. The sense resistors, R_{3} and R_{4} las shown in the Functional Block Diagram) are approximately 1 kOhm . These resistors are not designed to carry the total reference current, and should not be used as reference inputs. If the sensed points are not used, these pins should be left open. The circuit in Figure 5 shows a typical sensing configuration.

A midpoint tap, R_{M}, allows the converter to be adjusted for optimum linearity, although adjustment is not necessary to meet the linearity specification. It can also be used to achieve a non-linear transfer function. The circuit shown in Figure 7 will provide approximately $1 / 2$ LSB adjustment of the linearity midpoint. The characteristic impedance at this node is approximately 75 Ohms, and should be driven from a low-impedance source. Note that any load applied to this node will affect linearity. Noise introduced at this point, as well as the reference inputs and sense points may degrade the quantization process, resulting in encoding errors.

Due to the variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically, las in an Automatic Gain Control circuit), a low-impedance reference source is required. The reference voltages may be varied dynamically at rates up to 10 MHz .

Reference (Cont.)

Name	Function	Value	C1, L1 Package
R_{T}	Reference Resistor (Top)	0.0V	Pin 62
${ }^{\text {PTS }}$	Reference Resistor Sense (Top)		Pin 63
R_{M}	Reference Resistor (Middle)	-1.0V	Pin 49
R_{B}	Reference Resistor (Bottom)	-2.0V	Pin 41
${ }^{R_{B S}}$	Reference Resistor Sense (Bottom)		Pin 40

Convert

The TDC1025 requires a differential ECL Convert (CONV) signal. Both convert inputs must be connected, with CONV being the complement of CONV. A sample is taken the comparators are latchedl within 10 ns after the rising edge on the CONV pin. This time is $\mathrm{T} T \mathrm{TO}$, Sampling Time Offset. This delay may vary from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling time offset is less than 50 picoseconds. The 255 to 8 encoding is performed on the falling edge of the CONV signal. The coded output is transferred to the output latches on the next rising edge. Data
is held valid at the output register for at least tho, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, to. This permits the previous conversion result to be acquired by external circuitry on that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1025 is taking input sample $N+2$. Note that there are minimum pulse width (tpWL and tpWH' requirements on the waveshape of the CONV signal. Reefer to Figure 1)

Name	Function	Value	C1, L1 Package
$\overline{\text { CONV }}$	Convert	ECL	Pin 54
$\overline{\text { CONV }}$	Convert Complement	ECL	Pin 53

Analog Input

The TDC1025 comparator array causes the input impedance to vary slightly with the signal level, as comparator input transistors are cut-off or become active. For optimal performance, the source impedance driving the device must be less than 25 Ohms. The input signal will not damage the TDC1025 if it remains within the range of +0.5 V to $\mathrm{V}_{\text {EEA }}$. If the input signal is between the $V_{R T}$ and $V_{R B}$ references, the output will be a binary number between 0 and 255 , proportional to the magnitude of the analog input. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All eight analog input pins should be connected through resistors near the chip
to provide a balanced analog input to all portions of the comparator array. The optimized values are shown in Figure 6.

The analog input bandwidth, specified for a full-power input, is limited by the slew rate capabilities of the internal comparators. Decreasing the analog input amplitude will reduce the slew rate, and thus increase the effective bandwidth. Note that other system performance characteristics are specified for the recommended $2 \mathrm{~V} p-\mathrm{p}$ amplitude, and may degrade with the decreased analog input signal. A sample-and-hold circuit at the analog input will also extend performance beyond the specified bandwidth.

Name	Function	Value	C1, L1 Package
$V_{I N}$	Analog Signal Input	OV to -2 V	Pins 44, 47, 48, 51, 52, 56, 57, 60

Outputs

The outputs of the TDC1025 are both differential and single-ended ECL compatible. The outputs should be terminated with a 1.5 kOhm impedance into a -5.2 V source to
meet the specified logic levels. Using the outputs in a differential mode will provide increased noise immunity.

Name	Function	Value	C1, L1 Package
$\overline{\overline{D_{1}}}$	MSB Output, Complement	ECL	Pin 66
D_{1}	MSB Output	ECL	Pin 67
$\overline{0_{2}}$		ECL	Pin 68
O_{2}		ECL	Pin 1
$\overline{0}$		ECL	Pin 2
O_{3}		ECL	Pin 3
$\overline{D_{4}}$		ECL	Pin 4
O_{4}		ECL	Pin 5
$\overline{0_{5}}$		ECl	Pin 30
D_{5}		ECL	Pin 31
$\overline{0_{6}}$		ECL	Pin 32
${ }^{0} 6$		ECL	Pin 33
$\overline{0_{7}}$		ECL	Pin 34
D_{7}		ECL	Pin 35
$\overline{\mathrm{D}_{8}}$	LSB Output, Complement	ECL	Pin 36
D_{8}	LSB Output	ECL	Pin 37

No Connects

There are several pins labeled No Connect (NC), which have no connections to the chip. These pins should be left open.

Name	Function	Value	C1, L1 Package
NC	No Connect	Open	Pins 6, 9, 10, 11, 12, 15, 17, 19, 21, 24, 25, 26, 27, 38, 42, 43, 45, 59, 61, 65

Thermal Design

The case temperature must be limited to a maximum of $80^{\circ} \mathrm{C}$ for the standard temperature range and $125^{\circ} \mathrm{C}$ for the extended temperature range. For ambient temperatures above
45° C, 500 L.F.P.M. moving air is required for specified performance. In addition to moving air, heat sinking is an efficient method to optimize thermal management.

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circult

$C_{\text {in }}$ is a nonlinear junction capacitance
$V_{\text {RB }}$ IS a voltage equal to the voltage on pin R_{B}

Figure 3. Convert Input Equivalent Circuit

Figure 4. Output Circuits

LSI Products Division
TRW Electronic Components Group

Figure 5. CONVert, $\overline{\text { CONV }}$ ert Switching Levels

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Volteges

$V_{E E D}$ (measured to $\mathrm{D}_{\mathrm{GND}}$)
+0.5 to -7.0 V
$V_{\text {EEA }}$ (measured to $\mathrm{A}_{\mathrm{GND}}$)
+0.5 to -7.0 V
$A_{G N D}$ (measured to $\mathrm{D}_{\mathrm{GND}}$)
+0.5 to -0.5 V
$V_{\text {EEA }}$ (measured to $V_{\text {EED }}$).. 0.5 to -0.5V

Input Vottages
CONV, CONV (measured to $\mathrm{D}_{\mathrm{GNO}}$)
+0.5 to $\mathrm{V}_{\text {EED }} \mathrm{V}$
$V_{I N}, V_{R T}, V_{R B}$ (measured to $A_{G N D}$) +0.5 to $\mathrm{V}_{\text {EEA }} \mathrm{V}$
$V_{R T}\left(\right.$ measured to $V_{R B}$)... 0 to $+2.5 \mathrm{~V}$
Ourput
Shor-circuit duration (single output in high state to ground) Indefinite

Temperature

Operating, ambient

\qquad -55 to $+125^{\circ} \mathrm{C}$
junction $+115^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $+300^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$
Note:

1. Absolute maximum ratings are limting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
VEEA	Analog Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
$\bar{V}_{\text {EEA }}-V_{\text {EED }}$	Supply Voltage Differential	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
$V_{\text {AGND }}$	Analog Ground Voltage (measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
tPWL	CONV Pulse Width, LOW	8			8			ns
tpWH	CONV Pulse Width, HIGH	10			10			ns
VICM	CONV Input Voltage, Common Mode	-0.5		-2.5	-0.5		-2.5	V
VIDF	CONV Input Voltage, Differential	0.3		1.2	0.3		1.2	V
$V_{R T}$	Most Positive Reference Input ${ }^{1}$	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
V_{RB}	Most Negative Reference Input ${ }^{1}$	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	V
$\mathrm{V}_{\mathrm{RT} T^{-V_{R B}}}$	Voltage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature ${ }^{2}$	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature ${ }^{2}$	0		100	-55		+125	${ }^{\circ} \mathrm{C}$

Notes:

1. $V_{R T}$ Must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.
2. 500 L.F.P.M. moving air required above $45^{\circ} \mathrm{C}$ ambient.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
EEE Supply Current	$\mathrm{V}_{\text {EEA }} \mathrm{V}_{\text {EED }}=\mathrm{MAX}$					
	${ }^{T} A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		725			mA
	$\mathrm{T}_{A}=70^{\circ} \mathrm{C}$		575			mA
	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				850	mA
	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=125^{\circ} \mathrm{C}$				500	mA
$\mathrm{I}_{\text {REF }}$ Reference Current	$V_{R T}, V_{R B}=N O M$	10	35	10	40	mA
AREF Total Reference Resistance		57	200	50	200	Ohms
RIN Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{I N}=V_{R B}$	10		10		kOhms
$\mathrm{C}_{\text {IN }}$ Input Capacitance			160		160	pF
${ }^{\text {CB }}$ Input Constant Bias Current	$V_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ MAX, $\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$		750		1200	$\mu \mathrm{A}$
II Digital Input Current	$V_{\text {EEA }}, V_{\text {EED }}=$ MAX, $V_{1}=-0.7 v$		160		240	$\mu \mathrm{A}$
V_{OL} Output Voltage, Logic LOW	$V_{\text {EEA }}, V_{\text {EED }}=$ NOM, ${ }_{\text {OL }}=$ Test Load ${ }^{1}$		-1.6		-1.5	V
$V_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{\text {EEA }}, V_{\text {EED }}=$ NOM, $\mathrm{I}_{\text {OH }}=$ Test Load ${ }^{1}$	-0.95		-1.1		V
$\mathrm{C}_{1} \quad$ Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		20		20	pF

1. Test load $=1.5 \mathrm{kOhms}$ to $-5.2 \mathrm{~V}, \mathrm{C}=40 \mathrm{pF}$.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{5}	Maximum Conversion Rate		$V_{\text {EEA }}, V_{\text {EED }}-\mathrm{MIN}$	50		50		MSPS
${ }_{\text {S STO }}$	Sampling Time Offset		$V_{\text {EEA }}, V_{\text {EED }}=$ MIN		10		10	ns
	Digital Output Delay	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}-$ MIN, Load ${ }^{\text {f }}$		17		18	ns	
${ }^{\text {tho }}$	Digital Output Hold Time	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ MIN, Load ${ }^{1}$	2		2		ns	

Note:

1. Test load $=1.5$ kOhms to $-5.2 \mathrm{~V}, \mathrm{C}=40 \mathrm{pF}$.

System performance characteristics within specified operating conditions

Parameter			Test Conditions	Temperature Range				Units	
			Standard	Extended					
			Min	Max	Min	Max			
ELI	Linearity	Integral, Independent		$V_{R T}, V_{R B}=N O M$		0.3		0.3	\%
ELD	Linearity	Differential				0.3		0.3	\%
0	Code Size		$V_{R T}, V_{R B}=N O M$	15	185	15	185	\% Nominal	
E_{OT}	Offset Error	Top	$V_{I N}=V_{R T}$		+40		+45	mV	
ETS	Offset Error	Top, Sensed			+10		± 10	mV	
$\mathrm{E}_{\text {OB }}$	Offset Error	Bottom	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{RB}}$		-40		-45	mV	
EOBS	Offset Error	Bottom, Sensed			-10		± 15	mV	
$\mathrm{T}^{\text {cos }}$	Offset Error	Temperature Coefficient, Sensed			80		80	$\mu V /{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Full Power Input			12.5		12.5		MHz	
${ }^{\text {TR }}$	Transient Response, Full Scale Input Change				10		10	ns	
SNR	Signal-to-Noise Ratio		20MHz Bandwidth, 50MSPS Conversion Rate						
	Peak Signal/RMS Noise		1.25MHz Input	53		53		dB	
			5.34MHz Input	51		51		dB	
			10.0MHz Input			47		dB	
			12.0MHz Input	47				dB	
		RMS Signal/RMS Noise	1.25 MHz Input	44		44		dB	
			5.34MHz Input	42		42		dB	
			10.0MHz Input			38		dB	
			12.0MHz Input	38				dB	
EAP	Aperture Error				40		40	ps	

Figure 6. TDC1025E1C Evaluation Board Schematic

1. All resistor values are in Ohms.
2. All resistors are $1 / 8 \mathrm{~W}$ unless otherwise noted.
3. All capacitor values are in microFarads unless otherwise noted.
4. All capacitors are 50WVDC unless otherwise noted.
5. All diodes are 1 N4148 unless otherwise noted.
6. R58 is a quad $220 / 330$ Ohm terminator SIP.
7. $\mathrm{Z1}$ is a digital delay line, 2ns per tap, 2Ons total Rhombus TZB12-5.
8. L1 is a ferrite bead inductor, Fair-rite part number 2743001112.
9. AGND pins on the TDC1025L1 are: 46, 50, 55,58.
10. DGND pins on the TDC1025L1 are: $8,28,39,64$.
11. VEEA pins on the TDC1025L1 are: $13,14,16,18,20,22,23$.
12. $V_{E E D}$ pins on the TDC1025L1 are: 7, 29.
13. Values for components $C 5, R 15, R 62, R 65$, R66 are determined during the manufacturing process.
14. Component designators C32, R49, R57, R63, R64, J1 are not used on the TDC1025E1C board.
15. Components R30, R31, R45, R47, R4B, R54, R55, R59, R60, R61, J4, are user options and are not included with the board.

Typical Interface

Figure 6 shows an example of a typical interface circuit for the TDC1025. The analog input amplifier is a discrete differential amplifier followed by an NPN transistor. The transistor satisfies the input drive requirement of the A / D converter. The analog input resistors, attached close to the $\mathrm{V}_{\mathbb{N}}$ pins, provide frequency stability and a balanced analog input to all portions of the comparator array. All eight $V_{I N}$ pins are connected together close to the device package, and the feedback loop should be closed at that point. Bipolar inputs may be used by adjusting the offset control. The amplifier has a gain of two, increasing a 1 Volt $p-p$ input signal to the recommended 2 Volt $p-p$ input for the A / D.

The top reference, R_{T}, is grounded, with the sense point, RTS, left open. The offset error introduced at the top of the reference chain is cancelled by the offset adjustment. The bottom reference voltage, V_{RB} is supplied by an amplifier, and a PNP transistor. The feedback loop through the sense, RBS, minimizes the offset error and related temperature variations at
the bottom of the resistor chain. Additional gain adjustment can be made by varying the input voltage to the sensing op-amp.

The differential clock is provided by an ECL gate, with termination close to the TDC1025 to minimize ringing or overshoot. The convert clock is delayed by approximately $5-10 n s$ to latch the data at the output. The data outputs are terminated with 1.5 kOhms to -5.2 V . The standard Thevenin equivalent $(2200 \mathrm{hms}-3300 \mathrm{hms}$ to -5.2 V) is used where additional termination is required.

The analog and digital ground planes are separated to minimize ground noise and prevent ground loops, and are connected back at the power supply. The independent ECL digital ground aids in maintaining the chip digital ground, especially in a system with high-speed ECL logic. Protective diodes between all three ground planes avoid damage due to excessive differences in ground potential.

Figure 7. Power Decoupling and Input Network

L = FERRITE BEAD INDUCTOR

$R_{1}=10 \Omega, 1 \%$ CARBON COMPOSITION OR CERAMIC CHIP RESISTOR $R_{2}=10 \Omega, 1 \%$ CARBON COMPOSITION OR CERAMIC CHIP RESISTOR $\mathrm{C}=0.1 \mu \mathrm{~F}$ CERAMIC DISC CAPACITOR
$\stackrel{\rightharpoonup}{\prime}=$ ANALOG GROUND
$\frac{1}{=}=$ DIGITAL GROUND

Figure 8. Typical Reference Midpoint Adjust Circuit

Output Coding

Step	Range		Binary		Offset Two's Complement	
			True	Tnverted	True	Inverted
	$\begin{aligned} & \hline-2.0000 \mathrm{~V} \text { FS } \\ & 7.8431 \mathrm{mV} \text { Step } \end{aligned}$	$\begin{aligned} & \hline-2.0480 \mathrm{~V} \text { FS } \\ & 8.000 \mathrm{mV} \text { Step } \end{aligned}$		All Outputs Inverted	D_{1} Inverted	$\begin{aligned} & \mathrm{D}_{2}-\mathrm{D}_{9} \\ & \text { Inverted } \end{aligned}$
000	0.0000 V	0.0000 V	000000000	111111111	100000000	011111111
001	-0.0078V	-0.0080V	000000001	111111110	100000001	011111110
\bullet	-	-	-	-	-	-
-		-	-	-	-	-
-	-	-	-	-	\bullet	-
127	-0.9961V	-1.0160V	011111111	100000000	11111111	000000000
128	-1.0039V	$-1.0240 \mathrm{~V}$	100000000	011111111	000000000	111111111
129	-1.0118V	-1.0320V	100000001	011111110	000000001	111111110
-				-	-	-
-			-	-	-	-
-	-	-	\bullet	-	-	-
254	-1.9921V	-2.0392V	111111110	000000001	011111110	100000001
255	-2.0000	-2.0400V	111111111	000000000	011111111	100000000

Note:

1. Voltages are code midpoints atter calibration.
2. Any output may be inverted by interchanging connections to the true $\left|\mathrm{D}_{N}\right|$ and complement $\left|\overline{D_{N}}\right|$ output pins.

Calibration

To calibrate the TDC1025, adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 255 th thresholds to the desired voltages. Note that R_{1} is greater than R , ensuring calibration with a positive voltage on RT. Assuming a OV to -2 V desired range, continuously strobe the converter with $-0.0039 \mathrm{~V}(1 / 2$ LSB from OV) on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01. Then apply -1.996 V (112 LSB from -2 V) and adjust $V_{\text {RB }}$ for toggling between codes 254 and 255 .

The degree of required adjustment is indicated by the offset errors, E_{OT} and E_{OB}. Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit. These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block

Diagram. Calibration will cancel all offset voltages, eliminating offset and gain errors.

The above method of calibration requires that both ends of the resistor chain, R_{T} and R_{B}, are driven by buffered operational amplifiers. Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. The offset error at the bottom of the resistor chain results in a slight gain error, which can be compensated for by varying the voltage applied to RB. The bottom reference is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1025CIC	$\mathrm{STO}-\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1025CIC
TDC1025CIG	STD- $T_{C}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1025CIG
TDC1025CIF	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1025C1F
TDC1025CIA	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	68 Contact Chip Carrier	1025C1A
TOC1025L1C	STO-T $\mathrm{C}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1025L1C
TOC1025L1G	STD-T $\mathrm{C}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1025L1G
TDC1025L1F	EXT- $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1025L1F
TDC1025L1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	68 Leaded Chip Carrier	1025L1A

Note:

1. Per TRW document $70 Z 01757$

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Monolithic Video A/D Converter

7-bit, 18MSPS

The TRW TDC1027 is an 18 MegaSample Per Second IMSPSI full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5 MHz into 7 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1027 consists of 127 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Note: TRW recommends the use of the TDC1047 for new designs.

Features

- 1/2 LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 18MSPS Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP or CERDIP
- Low Cost

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion
-7-Bit Resolution

Functional Block Diagram

Functional Block Diagram

Pin Assignments

24 Lead DIP - J7 Package
24 Lead CERDIP - B7 Package

Functional Description

General Information

The TDC1027 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 127 reference voltages to produce an N -of-127 code lsometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be offl. The
encoding logic converts the N -of-127 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1027 operates from two supply voltages, +5.0 V and -5.2 V . The return for ICC, the current drawn from the +5.0 V supply, is $D_{G N D}$. The return for ${ }^{\mathrm{EE}}$, the current drawn from
the -5.2 V supply, is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pins 10, 16
$V_{\text {EE }}$	Negative Supply Voltage	-5.2 V	Pins 11,14
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 4, 21
$A_{\text {GND }}$	Analog Ground	0.0 V	Pins 3,12,13,22

Reference

The TDC1027 converts analog signals in the range $V_{R B} \leqslant V_{\mathbb{N}} \leqslant V_{R T}$ into digital form. $V_{R B}$ the voltage applied to the pin at the bottom of the reference resistor chainl and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . VRT should be more positive than $V_{R B}$ within that range. The voltage applied across the reference resistor chain $\left(V_{R T}-V_{R B}\right)$ must be between 0.8 V and 1.2 V . The nominal voltages are V_{R}
$=0.05 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=-1.04 \mathrm{~V}$. These voltages may be varied dynamically up to 5 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically las in an AGC circuitt, a low-impedance reference source is required.

Name	Function	Value	J7, B7 Package
$\mathrm{R}_{\boldsymbol{T}}$	Reference Resistor (Top)	0.0 V	Pin 2
R_{B}	Reference Resistor (Bottom)	-1.0 V	Pin 23

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC li.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table given on page 8. These pins are active LOW as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $\mathrm{D}_{\mathrm{GND}}$ for a logic "0."

Name	Function	Value	J7, B7 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 5
NLINV	Not Least Significant Bit INVert	TTL	Pin 15

Convert

The TDC1027 requires a CONVert (CONV) signal. A sample is taken the comparators are latched) approximately 10 ns after a rising edge on the CONV pin. This time is t STo, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jijter) in sampling offset time is less than 100 picoseconds. The 127 to 7 encoding is performed on the falling
edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time ${ }^{\text {thol }}$ l after the rising edge of the CONVert signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1027 is taking input sample $N+2$.

Name	Function	Value	J7, B7 Package
CONV	Convert	TTL	Pin 20

Analog Input

The TDC1027 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the driving device must be less than 25 Ohms. The input signal will not damage the TDC1027 if it remains within the range of $V_{E E}$ to +0.5 V . If the input signal is between the $V_{R T}$ and $V_{R B}$
references, the output will be a binary number between 0 and 127 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. Both analog input pins must be connected through individual 10 Ohm resistors to the input driver.

Name	Function	Value	J7, B7 Package
V_{IN}	Analog Signal Input	OV to -IV	Pins 1,24

Outputs

The outputs of the TDC1027 are TTL compatible, and capable of driving four low-power Schottky TTL 154774 LS) unit loads or the equivalent. The outputs hold the previous data a
minimum time (thol after the rising edge of the CONV signal. For optimum performance, 2.2 kOhm pull-up resistors are recommended.

Name	Function	Value	J7, B7 Package
D_{1}	MSB Output	TL	Pin 6
D_{2}		TLL	Pin 7
D_{3}		TLL	Pin 8
D_{4}		TLL	Pin 9
D_{5}	TLL	Pin 17	
D_{6}		TTL	Pin 18
D_{7}	LSB Output	TTL	Pin 19

Figure 1．Timing Diagram

Figure 2．Simplified Analog Input Equivalent Circuit

$C_{\text {IN }}$ is A Nonlinear junction capacitance
$\mathbf{V}_{\text {RB }}$ is a voltage equal to the voltage on pin B_{B}

Figure 3．Digital Input Equivalent Circuit

Figure 4．Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages	
Input Voltages	
Output	
	Applied current, externally forced ... -1.0 to 6.0 mA ${ }^{3,4}$
	Short circuit duration (single output in high state to ground) ... ${ }^{\text {sec }}$
Temperature	
	Operating, ambient \qquad -60 to $+140^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as positive when flowing into the device.

Operating conditions

Electrical characteristics within specified operating conditions

Paramoter		Test Conditions	Temper	Range	Units	
		Min	Max			
lec	Positiva Supply Currant		$V_{C C}=$ MAX，static ${ }^{\text {l }}$		40	mA
IEE	Negative Supply Current	$V_{E E}=$ MAX，static ${ }^{1}$				
		$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		－275	mA	
		$T_{A}=70^{\circ} \mathrm{C}$		－180	mA	
IREF	Referance Currant	$V_{\text {RT }}, V_{R B}=N O M$	5.0	30	mA	
AREF	Total Reference Resistance		30	200	Ohms	
AIN	Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{I N}=V_{R B}$	6.0		kOhms	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$V_{E E}=\operatorname{MAX}$		100	PF	
CB	Input Constant Bias Current			200	$\mu \mathrm{A}$	
$1 / 1$	Input Current，Logic LOW	$V_{C C}=$ MAX，$V_{1}=0.5 V$				
		NLINV		－2．4	mA	
		CLK，NMINV		－2．0	mA	
IH	Input Current，Logic HIGH	$V_{C C}=M A X, V_{1}-2.4 V$		100	$\mu \mathrm{A}$	
1	Input Current，Max Input Voltage	$V_{C C}=$ MAXX $V_{1}=6.5 V$		1.0	mA	
VOL	Output Voltage，Logic LOW	$V_{C C}=M 1 N, I_{\text {LL }}=M A X$		0.5	V	
V_{OH}	Output Voltage，Logic HIGH	$V_{C C}=$ MIN，$I_{\text {OH }}=$ MAX	2.4		V	
los	Short Circuit Output Current	$V_{C C}=$ MAX，Output HIGH，one pin to ground， one second duration．		－25	mA	
9	Digital Input Cepacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15	pF	

Nors：
1．Worst case，all digital inpuits and outputs LOW．
Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range Standard		Units	
		Min	Max			
	Maximum Conversion Rate		$V_{C C}=M I N, V_{E E}=M I N$	18		MSPS
${ }_{\text {t }}$ STO	Sampling Time Offset	$V_{C C}-M I N, V_{E E}=M I N$	0	15	ns	
	Output Delay	$V_{C C}-$ MIN，$V_{\text {EE }}=$ MIN，Load 1		35	ns	
${ }_{\text {thO }}$	Output Hold Time	$V_{C C}=M I N, V_{E E}=$ MIN，Load 1	10		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Tempe	Range	Units	
		Min	Max			
	Linearity Error Integral, Independent		$V_{R T}, V_{R B}=N O M$		0.4	\%
ELD	Linearity Error Differentia!			0.4	\%	
0	Code Size	$V_{\text {RT }}, V_{\text {RB }}=N O M$	30	170	\% Nominal	
E_{0}	Offset Error Top	$V_{\text {IN }}-V_{\text {RT }}$		45	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-35	mV	
${ }^{\text {T }} \mathrm{CO}$	Offset Error Temperature Coefficient			± 40	$\mu \mathrm{V}{ }^{1} \mathrm{C}$	
BW	Bandwidth, Full Power Input		5		MHz	
${ }_{\text {t }}{ }_{\text {PR }}$	Transient Response, Full Scale			30	ns	
SNR	Signal-to-Noise Ratio	5MHz Bandwidth, 18MSPS Conversion Rate				
	Peak Signali/RMS Noise	1.248MHz Input	48		dB	
		2.438MHz Input	47		dB	
	RMS Signal/RMS Noise	1.248MHz Input	39		dB	
		2.438MHz Input	38		dB	
NPR	Noise Power Ratio	DC to 8 MHz White Noise Bandwidth 4 Sigma Loading 1.248MHz Slot 18MSPS Conversion Rate	30		dB	
$E_{\text {AP }}$	Aperture Error			50	ps	

Output Coding

Step	Range		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	$\begin{aligned} & \hline-1.0000 \mathrm{VFS} \\ & 7.874 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \hline-1.0160 \mathrm{~V} \text { FS } \\ & 8.000 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \hline \text { NMINV = } 1 \\ & \text { NLINV }=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1 0
000	0.0000 V	0.0000 V	0000000	1111111	1000000	0111111
001	-0.0078V	-0.0080V	0000001	1111110	1000001	0111110
\bullet	-			-	-	-
-					-	-
-	-	-	-	-	\bullet	-
127	-1.0000V	-1.0160V	1111111	0000000	0111111	1000000

Note:

1. Voltages are code midpoints when calibrated using the procedure given on page 9 .

Calibration

To calibrate the TDC1027, adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 127th thresholds to the desired voltages. Note that R_{1} is greater than R, ensuring calibration with a positive voltage on RT. Assuming a OV to - 1 V desired range, continuously strobe the converter with -0.0039 V on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply
-0.9961V and adjust $V_{\text {RB }}$ for toggling between codes 126 and 127. Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
FDC1027J7C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1027J7C
TDC1027J7	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1027J76
TDC1027B7C	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead CERDIP	1027B7C
TDC1027B7G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead CERDIP	1027B7G

Notes:

1. Per TRW document $70 Z 01757$.
2. TRW recommends the use of the TDC1047 for new designs.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TDC1029

Preliminary Information

Monolithic A/D Converter

 6 -bit, 100MSPSThe TRW TDC1029 is a 100 MegaSample Per Second IMSPS) fully-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full power frequency components up to 50 MHz into 6 -bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are ECL compatible.

The TDC1029 consists of 63 latching comparators, combining logic, and an output register. A differential convert (CONV) signal controls the conversion operation. The digital outputs are single-ended ECL with the exception of the MSB which is differential enabling binary or offset two's complement output format.

The device is offered in two packages, a 24 lead DIP and a 28 lead DIP. The only difference between these packages is that the midpoint taps are available when using the 28 lead DIP.

Features

- 6-Bit Resolution
- 100MSPS Conversion Rate
- 50MHz Input Bandwidth
- Low Cost
- $1 / 2$ LSB Linearity
- Sample-And-Hold Circuit Not Required
- 1V Input Range
- Binary Or Two's Complement Output Format
- 1/4, $1 / 2$ And $3 / 4$ Scale Reference Resistor Taps On J6 Package
- Available in 24 Or 28 Lead DIP
- Evaluation Board - TDC1029E1C

Applications

- Transient Digitizers
- Direct Digital Receivers
- Radar Data Conversion
- Data Acquisition
- Telecommunications
- Medical Imaging
- High-Energy Physics Experimentation

Functional Block Diagram

Functional Block Diagram

Pin Assignments

28 Lead DIP－J6 Package

24 Lead DIP－J7 Package

Functional Description

General Information

The TDC1029 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 63 reference voltages to produce an N -of-63 code Isometimes referred to as a "thermometer" code, as all the comparators biased more
positive than the input signal will be on, and all the rest will be off.) The encoding logic converts the N -of-63 code into binary data, with the complement of the MSB available for offset two's complement output format. The output latch holds the output data constant between updates.

Power

The TDC1029 operates from separate analog and digital power supplies, $\mathrm{V}_{\text {EEA }}$ and $\mathrm{V}_{\mathrm{EED}}$. Since the required voltage for both $V_{E E A}$ and $V_{E E D}$ is $-5.2 V$, these should ultimately be connected to the same power source, but separate decoupling for each is recommended. A typical decoupling network is shown in the
typical interface circuit. The return path for $I_{E E D}$, the current drawn from the $V_{E E D}$ supply is $D_{G N D}$. The return path for $I_{E E A}$, the current drawn from the $V_{E E A}$ supply, is $A_{G N D}$. All power and ground pins must be connected.

Name	Function	Value	J7 Package	J6 Package
$V_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	$18,19,24$	$1,20,24$
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	1,12	2,14
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	$3,10,17,20$	$4,12,19,25$
$A_{G N D}$	Analog Ground	0.0 V	5,8	6,10

Thermal Design

The TDC1029 has thermal characteristics similar to other high-performance ECL devices and is rated for a maximum ambient temperature of $70^{\circ} \mathrm{C}$. For ambient temperatures above
40° C, 500 L.F.P.M. moving air is required for specified performance. The maximum case temperature should be no greater than $110^{\circ} \mathrm{C}$.

Reference

The TDC1029 comes in two different packages. In the 24 lead DIP the reference voltage is applied between R_{T} and R_{B}.
TDC1029 converts analog signals in the range
$V_{R B} \geqslant V_{\text {IN }} \geqslant V_{R T}$ into digital form. In the 28 lead DIP package three additional reference points are provided. These reference points can either be used to help improve the integral linearity to a level beyond that listed for non-corrected integral linearity, Ell, or the user may find other uses for the added taps as shown in the Applications section. The voltage applied across the reference resistor chain $\left(V_{R T}-V_{R B}\right)$ must be between 0.9 V and 1.1V. V_{RB} the voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ lthe
voltage applied to the pin at the top of the reference resistor chainl should be between -0.2 V and -1.4 V . V_{R} should be more positive than $V_{R B}$ within that range. The nominal voltages are: $V_{R T}=-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.3 \mathrm{~V}$. These voltages may be varied dynamically up to 25 MHz . Due to slight variations in the reference current with changes in clock and input signals, R_{T} and R_{B} should be low-impedance points. For circuits in which the reference is not varied, a bypass capacitor to AGND is recommended. If the reference inputs are varied dynamically las in an AGC circuit), a low-impedance reference source is required.

Name	Function	Value	J7 Package	J6 Package
R_{T}	Reference Top	-0.30 V	11	13
$R_{\text {M1 }}$	$1 / 4$ Scale Tap	-0.55 V	N/A	21
$R_{\text {M2 }}$	$1 / 2$ Scale Tap	-0.80 V	N/A	8
$R_{\text {M3 }}$	$3 / 4$ Scale Tap	$-1.05 V$	NA	23
R_{B}	Reference Bottom	$-1.30 V$	2	3

LSI Products Division
TRW Electronic Components Group
D 87

Convert

Tha TOC1029 requires a differential ECL CONVert ICONV) signal. A sample is taken the comparators are latchedl tSTO after a rising edge on the CONV pin. The result from the encoding logic is transferred to the output latches on the next rising edge. The outputs hold the pravious data a minimum time
(thol after the rising edge of the CONVert signal. New data becomes valid after a maximum delay time to. Both convert inputs must be connected, with CONV being the complement of CONV.

Name	Function	Valua	J7 Package	JQ Packaga
CONV	Convert	ECL	7	8
CONV	Convert Complement	ECL	8	7

Analog Input

The TDC1029 uses latching comparators which cause the input impedance to vary slightly with the signal level. For optimal performance, the source impedance driving the device must be less than 25 Ohms. The input signal will not damage the TDC1029 if it remains within the range of +0.5 V to $\mathrm{V}_{\mathrm{EEA}}$. If the input signal is between the $V_{R T}$ and $V_{R B}$ references, the
output will be a binary number batween 0 and 63 inclusive. A signal outside this range will indicate aither full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. Both analog input pins MUST be connected through 15 Ohm resistors as shown in the Typical Interface Circuit.

Namo	Function	Value	J7 Packaga	J6 Package
$V_{\mathbb{I N}}$	Analog Signal Input	See Text	4,8	5, 11

Outputs

The outputs of the TDC1029 are ECL compatible. Outputs D_{2-6} are single-ended, while the MSB (D_{1}) is differential. Offset two's complement format is available by cross-wiring the

MSB, i.e. interchanging D_{1} and $\overline{\nabla_{1}}$. The outputs should be terminated with a 100 Ohm (or greater) impedance into a -2.0V source.

Name	Function	Valus	J7 Package	J6 Package
$\overline{D_{1}}$	MSB Output Complement	ECL	13	15
D_{1}	MSB Output	ECL	14	16
D_{2}		ECL	15	17
D_{3}		ECL	16	18
D_{4}		ECL	21	26
D_{5}		ECL	22	27
D_{6}	ECL	23	28	

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{c}_{1}=$ non-linear junction capacitance
$\mathrm{C}_{2}=\mathrm{V}_{\text {IN }}$ LINEAR CAPACITANCE
$\mathrm{v}_{\text {RB }}$ is a voltage equal to the voltage on pin R_{B}

Figure 3. Convert Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages	
Input Voltages	
Output	
	Short circuit duration (single output to ground) .. Indefinite
Temperature	
	Operating, ambient \qquad -60 to $+115^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$

Note:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage	-4.9	-5.2	-5.5	V
$V_{\text {EEA }}$	Analog Supply Voltage	-4.9	-5.2	-5.5	V
$V_{\text {EEA }}-V_{\text {EED }}$	Supply Voltage Differential	-0.1	0.0	0.1	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GNO}}$)	-0.1	0.0	0.1	V
${ }_{\text {tPWL }}$	CONV Pulse Width, LOW	3	4		ns
tPWH	CONV Pulse Width, HIGH	5	6		ns
VICM	CONV Input Voltage, Common Mode Range (Figure 6)	-0.5		-2.5	V
VIDF	CONV Input Voltage, Differential (Figure 6)	0.4		1.2	V
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-0.2	-0.3	-0.4	V
V_{RB}	Most Negative Reference Input ${ }^{1}$	-1.2	-1.3	-1.4	V
$V_{\text {RT }}-V_{\text {RB }}$	Voltage Reference Differential	0.9	1.0	1.1	V
$V_{\text {IN }}$	Input Voltage	V_{RB}		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature ${ }^{2}$	0		70	${ }^{\circ} \mathrm{C}$

Notes:

1. $V_{R T}$ must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.
2. 500 L.F.P.M. moving air required above $40^{\circ} \mathrm{C}$.

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temper	Range	Units	
		Standard				
		Min	Max			
$l_{\text {EEA }}+1$ EED	Supply Current		$V_{\text {EEA }}, V_{\text {EED }}-$ MAX			
			${ }^{T} A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-375	mA
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		-300	mA	
$\frac{\text { Pref }}{}$	Reference Current	$V_{\text {RT }}, V_{\text {RB }}=N O M$	10	35	mA	
$\mathrm{H}_{\text {REF }}$	Total Reference Resistance		29	100	Ohm	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{\text {RT }}, V_{\text {RB }}=$ NOM, $V_{\text {IN }}-V_{\text {RB }}, V_{\text {EE }}-$ MAX	6		kOhm	
$\mathrm{C}_{\text {IN }}$	Input Equivalent Capacitance	$V_{\text {RT }}, V_{\text {RB }}=$ NOM, $V_{\text {IN }}-V_{\text {RB }}$		20	PF	
${ }^{\text {CBB }}$	Input Constant Bias Current	$V_{\text {EEA }}, V_{\text {EED }}=$ MAX, $V_{\text {IN }}=-0.3 \mathrm{~V}$		500	$\mu \mathrm{A}$	
1	Input Current	$V_{\text {EEA }}, V_{\text {EED }}=$ MAX, $V_{1}=-0.5 \mathrm{~V}$		250	$\mu \mathrm{A}$	
$V_{0 L}$	Output Voltage, Logic LoW	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}-$ NOM, Test Load 1		-1.650	V	
V_{OH}	Output Voltage, Logic HIGH	$V_{\text {EEA }} V_{\text {EED }}=$ NOM, Test Load 1	-0.950		V	
c	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	pF	

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range Standard		Units	
		Min	Max			
	Maximum Conversion Rate		$V_{\text {EEA }}, V_{\text {EED }}=$ MIN	100		MSPS
${ }_{\text {STO }}$	Sampling Time Offset	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ MIN	0	6	ns	
	Output Delay	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}-\mathrm{MIN}$, Load 1		7	ns	
	Output Hold Time	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ MIN, Load 1	1.5		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temp	Range	Units	
		Standard				
		Min	Max			
	Linearity Error Integral, Terminal Based		$V_{R T}, V_{R B}=N O M$		± 0.8	\%
ELD	Linearity Error Differential				± 0.8	\%
0	Code Size	$V_{R T}, V_{R B}=N O M$	50	150	\% Nominal	
E_{OT}	Offset Error Top	$V_{\mathbb{N}}-V_{R T}$		20	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Error Bottom	$V_{\text {IN }}-V_{\text {RB }}$		-8	mV	
${ }^{\text {T }} \mathrm{CO}$	Offset Error Temperature Coefficient			± 35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Full Power Input ${ }^{1}$	$\mathrm{F}_{S}=100 \mathrm{MSPS}$	50		MHz	
TR	Transient Response, Full-Scale Input Change			6	ns	
SNR	Signal-To-Noise-Ratio ${ }^{\text {a }}$	100MSPS Conversion Rate				
	Peak Signal/RMS Noise	25MHz Input	42		dB	
		50MHz Input	39		dB	
	RMS Signal/RMS Noise	25MHz Input	33		dB	
		50MHz Input	30		dB	
	Aperture Error			30	ps	
Notes:	Beat frequency sinusoidal reconstruction prod Single frequency sinusoidal input attenuated	rs greater then 3 LSBs, tpW mpling frequency lanti-alias				

Output Coding ${ }^{1}$

Step	Range		Binary	Offset Two's Complement
	$\begin{gathered} -1.3000 \mathrm{~V} \text { FS } \\ 15.8730 \mathrm{mV} \text { STEP } \end{gathered}$	$\begin{gathered} -1.3080 \mathrm{~V} \text { FS } \\ 16.0000 \mathrm{mV} \text { STEP } \end{gathered}$	MSB LSB	MSB LSB
00	-0.3000V	-0.3000	000000	100000
01	-0.3159V	-0.3160V	000001	100001
-	-	-	-	-
-	-	-	-	-
-	-	-	\bullet	\bullet
31	-0.7921V	-0.7960v	011111	111111
32	-0.8079V	-0.8120V	100000	000000
33	-0.8238V	-0.8280V	100001	000001
\bullet	-	-	-	\bullet
-	-	-	-	-
-	-	-	-	-
62	-1.2841V	-1.2920V	111110	011110
63	-1.3000V	-1.3080V	111111	011111

Note:

1. Voltages are code midpoints after calibration.

Figure 5. CONVert, $\overline{\text { CONVert }}$ Switching Levels

Calibration

To calibrate the TDC1029, adjust $V_{R T}$ and $V_{R B}$ to set 1st and 63rd thresholds to the desired voltages. Assuming a -0.3 V to -1.3 V desired range, continuously strobe the converter with -0.3079 V (1/2 LSB from -0.300V) on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply -1.2921 V (112 LSB from -1.300 V) and adjust $V_{\text {RB }}$ for
toggling between codes 62 and 63. Instead of adjusting $V_{R T}$, RT can be connected to a fixed voltage and the most positive end of the range calibrated with an offset control. RB_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 6.

Figure 6. Typical Interface Circuit

Typical Interface Circuit

Figure 6 shows an example of a typical interface circuit for the TDC1029. The analog input is AC coupled with a $1 \mu \mathrm{~F}$ non polar capacitor, then offset by -0.8 V with a 741 type operational amplifier and an emitter follower. System offset is adjusted via a variable resistor which alters the gain of the amplifier that provides the offset to the analog input signal. The reference voltages for the TDC1029 are both supplied by 741 type operational amplifiers configured as inverting amplifiers with emitter followers. The reference bottom is
adjustable via a variable resistor to allow the system gain to be adjusted. The power supply to the TDC1029 has been regulated with an LM337 three-terminal regulator, then VEEA has a ferrite bead inductor in series with the supply and a parallel bypass capacitor to ground. The purpose of the inductor is to isolate the analog supply from the noise and voltage spikes that might be present on the digital supply. The digital data that is generated by the TDC1029 is latched with a 100151 ECL latch.

Applications

The TDC1029J6 128 lead DIP) has three additional reference resistor taps available. These may be used in a variety of ways. Below are depicted two possible applications of these taps (Figures 7 and 8). In Figure 7 the potential at the reference middle point is sensed and fed back as an offset to the input amplifier so that the input voltage is automatically
offset the proper amount for accurate conversion. In Figure 8 the reference taps are driven at different potentials so that the dynamic range of the converter is similar to that of an 8 -bit converter. The dynamic range is expanded because the quantization steps are not of equal size. Figure 9 is an illustration of the transfer function of the circuit in Figure 8.

Figure 7. Midpoint Feedback

Figure 8. External Voltage Divider

Figure 9. Piecewise Linear Transfer Function

LSI Products Division
TRW Electronic Components Group

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1029J7C	STD－$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1029J7C
TDC1029J7G	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	24 Lead Dip	1029J76
TDC1029．66	STD－ $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	1029．J6C
TDC1029．j6G	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	28 Lead DIP	1029．j6G

TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW Inc．or others．
Preliminary Information describes products that are not in full production at the time of printing．Specifications are based on design goals and limited characterization．They may change without notice．Contact TRW for current information．

Monolithic Video A/D Converter

4-bit, 25MSPS

The TRW TDC1044 is a 25 MegaSample Per Second IMSPS) fully parallel analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12.5 MHz into 4 -bit digital words. Use of a sample-and-hold circuit is not necessary for operation of the TDC1044. All digital inputs and outputs are TTL compatible.

The TDC1044 consists of 15 latching comparators, encoding logic, and an output register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

-4-Bit Resolution

- 1/4 LSB Non-Linearity
- Sample-And-Hold Circuit Not Required
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In A 16 Lead DIP

Applications

- Video Special Effects
- Radar Data Conversion
- Medical Imaging
- Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package
16 Lead Plastic DIP - N9 Package

Functional Description

General Information

The TDC1044 has three functional sections: a comparator array, encoding logic, and an output register. The comparator array compares the input signal with 15 reference voltages to produce an N -of-15 code isometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and
those referred to voltages more negative than the input signal will be onl. The encoding logic converts the N -of-15 code into binary or two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output register holds the output constant between updates.

Power

The TDC1044 operates from two power supply voltages, +5.0 V and -5.2 V . The return for ICC the current drawn from the +5.0 V supplyl is $\mathrm{D}_{\mathrm{GND}}$. The return for I_{EE} the current drawn
from the -5.2 V supply) is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J9, N9 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pin 10
$V_{\text {EE }}$	Negative Supply Voltage	-5.2 V	Pin 6
$\mathrm{O}_{\text {GND }}$	Digital Ground	0.0 V	Pin 11
$\mathrm{~A}_{\text {GND }}$	Analog Ground	0.0 V	Pin 1

Reference

The TDC1044 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R B}$ into digital form. $V_{R B}$ lthe voltage applied to R_{B} at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to R_{T} at the top of the reference resistor chainl should be between +0.1 V and -1.1 V . V $V_{R T}$ should be more positive than $V_{\text {RB }}$ within that range. The voltage applied across the reference resistor chain IVRT V_{RB} must be between 0.4 V and 1.3 V . The nominal voltages are $\mathrm{V}_{\mathrm{RT}}=0.00 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=-1.00 \mathrm{~V}$. These voltages may be varied dynamically up to 10 MHz . Due to slight variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance points. For circuits in which the
reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are varied dynamically las in an Automatic Gain Control circuitl, a low-impedance reference source is required. A reference middle, R_{M}, is also provided; this may be used as an input to adjust the mid-scale point in order to improve integral linearity. This point may also be used as a tap to supply a mid-scale voltage to offset the analog input. If $V_{\text {RM }}$ is used as an output, it must be connected to a high input impedance device which has small input current. Noise at this point may adversely affect the performance of the device.

Name	Function	Value	J9, N9 Package
R_{T}	Reference Resistor Top	0.00 V	Pin 4
R_{M}	Reference Resistor Middle	-0.5 V	Pin 8
R_{B}	Reference Resistor Bottom	-1.00 V	Pin 5

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC li.e. steady statel use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding Table. These pins are active LOW as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $D_{G N D}$ for a logic "0."

Name	Function	Value	J9, N9 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 9
NLINV	Not Least Significant Bit INVert	TTL	Pin 7

Convert

The TDC1044 requires a CONVert (CONV) signal. A sample is taken (the comparators are latched) within ISTO after a rising edge of CONV. The coded result is translated to the output latches on the next rising edge. The outputs hold the previous
data a minimum time Ithol after the rising edge of the CONV signal. New data becomes valid after a maximum delay time, to.

Name	Function	Value	J9, N9 Package
CONV	Convert	TTL	Pin 16

Analog Input

The TDC1044 uses latching comparators which cause the input impedance to vary slightly with the signal level. For optimal performance, the source impedance of the driving circuit must be less than 25 Ohms. The input signal will not damage the device if it remains within the range of V_{EE} to +0.5 V . If the
input signal is at a voltage between $V_{R T}$ and $V_{R B}$, the output will be a binary code between 0 and 15 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction.

Name	Function	Value	J9, N9 Package
$V_{\mathbb{N}}$	Analog Signal Input	OV to -IV	Pin 2

Outputs

The outputs of the TDC1044 are TTL compatible, and capable of driving four low-power Schottky TTL (54/74 LS) unit loads. The outputs hold the previous data a minimum time ithol after the rising edge of the CONV signal. Data becomes valid after a
maximum delay time ItDl after the rising edge of CONV. For optimum performance, 2.2 kOhm pull-up resistors are recommended.

Name	Function	Value	J9, N9 Package
D_{1}	Most Significant Bit Output	TTL	Pin 12
D_{2}		TTL	Pin 13
D_{3}		TTL	Pin 14
D_{4}	Least Significant Bit Output	TLL	Pin 15

No Connects

Pin 3 of the TDC1044 is labeled No Connect (NCl , and has no connection to the chip. Connect this pin to AgND $^{\text {for best }}$ noise performance.

Name	Function	Value	J9, N9 Package
NC	No Connect	A $_{G N D}$	Pin 3

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device may be damaged) ${ }^{1}$

Supply Voltages

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{C C}$	Positive Supply Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	4.75	5.0	5.25	V
VEE	Negative Supply Voltage (Measured to $\mathrm{A}_{\mathrm{GNO}}$ l	-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	-0.1	0.0	0.1	V
tpWL	CONV Pulse Width, LOW	17			ns
tpWH	CONV Pulse Width, HIGH	17			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			V
$\mathrm{IOL}^{\text {che }}$	Output Current, Logic LOW			4.0	mA
$\mathrm{IOH}^{\text {cher }}$	Output Current, Logic HIGH			-400	$\mu \mathrm{A}$
$V_{R T}$	Most Positive Reference	-1.9	0.0	0.1	V
$V_{\text {RB }}$	Most Negative Reference	-2.1	-1.0	-0.1	V
$V_{R T}-V_{\text {RB }}$	Reference Differential	0.2	1.0	2.0	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{R T}$	V
${ }_{\text {T }}$	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temper	e Range	Units	
		Standard				
		Min	Max			
${ }^{\text {ICC }}$	Positive Supply Current		$V_{C C}=$ MAX, static ${ }^{1}$		25	mA
	Negative Supply Current		$\begin{aligned} V_{\mathrm{EE}}= & \mathrm{MAX}, \text { static }{ }^{1} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		-50	mA
				-35	mA	
${ }_{\text {IREF }}$	Reference Current	$V_{R T}, V_{R B}=N O M$		2	mA	
$\mathrm{R}_{\text {REF }}$	Total Reference Resistance		500		Ohms	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{I N}=V_{R B}$	300		kOhms	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			25	pF	
${ }^{\text {I CB }}$	Input Constant Bias Current	$\mathrm{V}_{\text {EE }}=\mathrm{MAX}$		25	$\mu \mathrm{A}$	
I/L	Input Current, Logic LOW	$V_{C C}=\text { MAX, } V_{1}=0.5 \mathrm{~V} \frac{\text { CONV }}{\text { NMINV, NLINV }}$		-0.4	mA	
				-0.6	mA	
IIH	Input Current, Logic HIGH	$V_{C C}=$ MAX, $V_{1}=2.4 \mathrm{~V}$		50	$\mu \mathrm{A}$	
1	Input Current, Max Input Voltage	$V_{C C}=$ MAXX, $V_{1}=5.5 \mathrm{~V}$		1.0	mA	
V_{OL}	Output Voltage, Logic Low	$V_{C C}=M I N, I_{0 L}=$ MAX		0.5	V	
V_{OH}	Output Voltage, Logic HIGH	$V_{C C}=$ MIN, $I_{\text {OH }}=$ MAX	2.4		V	
${ }_{\text {l }}^{\text {OS }}$	Short Circuit Output Current	$V_{C C}=M A X$, One pin to ground, one second duration, Output HIGH.		-30	mA	
C_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15	pF	
Note:						
	1. Worst case: all digital inputs and	LOW.				

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temper	Range	Units
		Standard		
		Min	Max	
$\mathrm{F}_{\text {S }} \quad$ Maximum Conversion Rate	$V_{C C}=M I N, V_{E E}=M I N$	25		MSPS
${ }_{\text {tsT0 S }}$ Sampling Time Offset	$V_{C C}=M I N, V_{E E}=M I N$		10	ns
t_{D} Digital Output Delay	$V_{C C}=$ MIN, $V_{E E}=$ MIN, Load 1		30	ns
${ }^{\text {thO }}$ Digital Output Hold Time	$V_{\text {CC }}=$ MAX, $V_{\text {EE }}=$ MAX, Load 1	5		ns

System performance characteristics within specified operating conditions

Parameter	Test Conditions	Temper	Range	Units
		Min	Max	
$E_{L I}$ Linearity Error Integral, Independent	$V_{\text {RB }}=\mathrm{NOM}$		1.6	\%
$\mathrm{E}_{\text {LD }}$ Linearity Error Differential			1.6	\%
CS Code Size	$V_{R T}, V_{\text {RB }}=N O M$	75	125	\% Nominal
$\mathrm{E}_{0 \mathrm{~T}}$ Offiset Error Top	$V_{\text {IN }}-V_{R T}$		+30	mV
E_{OB} Offset Error Bottom	$V_{\text {IN }}-V_{\text {RB }}$		+40	mV
${ }^{\top}$ CO \quad Offset Error Temperature Coefficient			± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
BW Bandwidth, Full Power Input		12.5		MHz
${ }^{\text {TR }}$ Transient Response, Fuil Scale			10	ns
$\mathrm{EAP}^{\text {AP }}$ Aperture Error			30	ps

Output Coding Table ${ }^{1}$

Range	Binary		Offset Two's Complement	
	Inverted	True	Inverted	
-1.00 V FS	NMINV -1	0	0	1
	NLINV -1	0	1	0
0.000 V	0000	1111	1000	0111
-0.067 V	0001	1110	1001	0110
-0.133 V	1101	1010	0101	
-0.200 V	0010	1100	1011	0100
-0.267 V	0011	1011	1100	0011
-0.333 V	0100	1010	1101	0010
-0.400 V	0101	1001	1110	0001
-0.467 V	0110	1000	1111	0000
-0.533 V	0111	0111	0000	1111
-0.600 V	1000	0110	0001	1110
-0.667 V	1001	0101	0010	1101
-0.733 V	1010	0100	0011	1100
-0.800 V	1011	0011	0100	1011
-0.867 V	1100	0010	0101	1010
-0.933 V	1101	0001	0110	1001
-1.000 V	1110	0000	0111	1000

Note:

1. Input voltages are at code centers.

Calibration

To calibrate the TDC1044, adjust $V_{R T}$ and $V_{\text {RB }}$ to set the 1st and 15th thresholds to the desired voltages. Assuming a OV to -1V desired range, continuously strobe the converter with $-0.0033 \mathrm{~V} 11 / 2 \mathrm{LSB}$ from 0.000 V) on the analog input, and adjust $V_{R T}$ for output toggling between codes 0000 and 0001. Then apply $-0.967 \mathrm{~V} 11 / 2$ LSB from -1.000 V and adjust $V_{\text {RB }}$
for toggling between codes 1110 and 1111. Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with an amplifier offset control. RB_{B} is a convenient point for gain adjustment that is not in the analog signal path.

Typical Interface Circuit

The TDC1044 does not require a special input buffer amplifier to drive the analog input because of its low input capacitance. A terminated low-impedance transmission line (< 1000 hms) connected to the $\mathrm{V}_{\text {IN }}$ terminal of the device is sufficient if the input voltage levels match those of the A / D converter.

However, many driver circuits lack sufficient offset control, drive current, or gain stability. The Typical Interface Circuit in Figure 6 shows a simple amplifier and voltage reference circuit that may be used with the device. U2 is a wide-band operational amplifier with a gain factor of -1 . A small value resistor, R12, serves to isolate the small input capacitance of the A / D converter from the amplifier output and insure frequency stability. The pulse and frequency response of the amplifier are optimized by variable capacitor C12. The reference voltage for the TDC1044 is generated by amplifier U3. System
gain is adjusted by varying R9 which controls the reference voltage level to the A / D converter.

Input voltage range and input impedance for the circuit are determined by resistors R1 and R2. Formulas for calculating values for these input resistors are:

$$
R 1=\frac{1}{\left(\frac{2 V R}{Z_{I N}}\right)-\frac{1}{1000}}
$$

and

$$
R 2=Z_{I N}-\left(\frac{1000 R 1}{1000+R 1}\right)
$$

where $V R$ is the input voltage range of the circuit, $Z_{I N}$ is the input impedance of the circuit, and the constant 1000 comes from the value of R3. As shown, the circuit is set up for 1 Volt p-p 75 Ohm video input.

Figure 5. Typical Interface Circuit

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1044, JSC	STD $-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1044J9C
TDC1044.,9G	STD- $\mathrm{T}_{\mathrm{A}}-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1044/96
TDC1044NSC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead Plastic DIP	1044N9C

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TDC1046
 Preliminary Information

Monolithic Video A/D Converter
6 -bit, 25MSPS

The TRW TDC1046 is a 25 MegaSample Per Second IMSPS) full-parallel Iflashl analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12.5 MHz into 6 -bit digital words. Use of a sample-and-hold circuit is not necessary for operation of the TDC1046. All digital inputs and outputs are TTL compatible.

The TDC1046 consists of 63 clocked latching comparators, encoding logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

-6-Bit Resolution

- 1/4 LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In An 18 Lead DIP
- Low Cost
- Low Analog Input Capacitance

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$V_{\text {IN }} 1$	18	R_{8}
$\mathrm{R}_{\mathrm{T}} 2$	- 17	$A_{G N D}$
$\mathrm{D}_{\text {GND }} 3$	116	DGND
NMINV 4	115	CONV
(MSB) $\mathrm{D}_{1} 5$	14	D_{6} (LSB)
$\mathrm{D}_{2} 6$	13	D_{5}
$\mathrm{D}_{3} 7$	12	D_{4}
$V_{\text {CC }} 8$	111	NLINV
$\mathbf{V E E ~}^{\text {9 }}$ [10	$V_{C C}$

18 Lead DIP - J8 Package
18 Lead CERDIP - B8 Package

Functional Description

General Information

The TDC1046 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 63 reference voltages to produce an N -of-63 code (sometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and
those referred to voltages more negative than the input signal will be onl. The encoding logic converts the N -of-63 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1046 operates from two supply voltages, +5.0 V and -5.2 V . The return for I_{C}, the current drawn from the +5.0 V supply, is $\mathrm{D}_{\mathrm{GND}}$. The return for I_{EE}, the current drawn from
the -5.2 V supply, is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J8, B8 Package
$V_{C C}$	Positive Supply Voltage	+5.0 V	Pins 8, 10
$V_{E E}$	Negative Supply Voltage	-5.2 V	Pin 9
$\mathrm{D}_{G N D}$	Digital Ground	0.0 V	Pins 3, 16
$A_{G N D}$	Analog Ground	0.0 V	Pin 17

Reference

The TDC1046 converts analog signals in the range
$V_{R B} \leqslant V_{\mathbb{N}} \leqslant V_{R T}$ into digital form. $V_{R B}$ the voltage applied to R_{B} at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to R_{T} at the top of the reference resistor chain) should be between +0.1 V and -1.1 V . VRT should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain $\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}} l$ must be between 0.8 V and 1.2 V . The nominal
voltages are $V_{R T}=0.00 \mathrm{~V}$ and $V_{R B}=-1.00 \mathrm{~V}$. These voltages may be varied dynamically up to 12.5 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically las in an Automatic Gain Control circuit), a low-impedance reference source is required.

Name	Function	Value	J8, B8 Package
$V_{R T}$	Reference Resistor (Top)	0.00 V	Pin 2
$V_{\text {RB }}$	Reference Resistor (Bottom)	-1.00 V	Pin 18

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC li.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding Table. These pins are active LOW as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $D_{G N D}$ for a logic " 0 ."

Name	Function	Value	J8, B8 Package
NMINV	Not Most Significant Bit INVert	$\Pi \mathrm{L}$	Pin 4
NLINV	Not Least Significant Bit INVert	TL	Pin 11

Convert

The TDC1046 requires a CONVert (CONV) signal. A sample is taken lthe comparators are latchedl within 5ns ItsTol after a rising edge on the CONV pin. This time is tsto, Sampling Time Offset. The 63 to 6 encoding is performed on the falling
edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time (thol after the rising edge of the CONV signal.

Name	Function	Value	J8, B8 Package
CONV	Convert	TL	Pin 15

Analog Input

The TDC1046 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. For optimal performance, the source impedance of the driving circuit must be less than 50 Ohms. The input signal will not damage the TDC1046 if it remains within the range of $V_{E E}$ to
+0.5 V . If the input signal is at a voltage between V_{RT} and V_{RB}, the output will be a binary number between 0 and 63 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction.

Name	Function	Value	J8, B8 Package
$V_{\text {IN }}$	Analog Signal Input	OV to -1V	Pin 1

Outputs

The outputs of the TDC1046 are TTL compatible, and capable of driving four low-power Schottky TTL (54174 LS) unit loads or the equivalent. The outputs hold the previous data a minimum time IthOl after the rising edge of the CONV signal.

Data is guaranteed to be valid after a maximum delay time (tD) after the rising edge of CONV. For optimum performance, 2.2 kOhm pull-up resistors are recommended.

Nama	Function	Value	J8, B8 Package
D_{1}	MSB Output	$\Pi \mathrm{L}$	Pin 5
D_{2}		$\Pi \mathrm{~L}$	Pin 6
D_{3}		$\Pi \mathrm{~L}$	Pin 7
D_{4}		TL	Pin 12
D_{5}		$\Pi \mathrm{~L}$	Pin 13
D_{6}	LSB Output	mL	Pin 14

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$C_{\text {IN }}$ is A nonlinear junction capacitance $\mathrm{V}_{\text {RB }}$ is A voltage equal to the voltage on pin B_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits


```Absolute maximum ratings（beyond which the device will be damaged）\({ }^{1}\)
```

Supply voltages
$V_{C C}$（measured to $D_{G N D}$ ） -0.5 to +7.0 V
$V_{E E}$（measured to $A_{G N D}$ ） +0.5 to -7.0 V
$A_{G N D}$（measured to $\mathrm{D}_{\mathrm{GND}}$ ） -0.5 to +0.5 V
Input voltages

```CONV，NMINV，NLINV（measured to \(\mathrm{D}_{\mathrm{GND}}\) ）-0.5 to +5.5 V
```

$V_{I N}, V_{R T}, V_{R B}$（measured to $A_{G N D}$ ） +0.5 to $V_{E E}$
$V_{R T}$（measured to $V_{R B}$ ） +1.2 to -1.2 V
Output
Applied voltage（measured to $\mathrm{D}_{\mathrm{GND}}$ ） -0.5 to $5.5 \mathrm{~V}^{2}$
Applied current，externally forced -1.0 to $6.0 \mathrm{~mA}^{3,4}$
Short circuit duration（single output in high state to ground） 1 sec
Temperature
Operating，case

\qquad -55 to $+125^{\circ} \mathrm{C}$

```junction\(+175^{\circ} \mathrm{C}\)
```

Lead，soldering（10 seconds） $+300^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$
Notes：

```1．Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions．Functional operation under any of these conditions is NOT implied．2．Applied voltage must be current limited to specified range．3．Forcing voltage must be limited to specified range．4．Current is specified as positive when flowing into the device．
```


Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage（measured to $\mathrm{D}_{\mathrm{GND}}$ ）	4.75	5.0	5.25	V
$V_{\text {EE }}$	Negative Supply Voltage（measured to $\mathrm{A}_{\mathrm{GND}}$ ）	－4．9	－5．2	－5．5	V
$V_{\text {AGND }}$	Analog Ground Voltage（measured to $\mathrm{D}_{\mathrm{GND}}$ ）	－0．1	0.0	0.1	V
${ }_{\text {tPWL }}$	CONV Pulse Width（LOW）	15			ns
TPWH	CONV Pulse Widh（HIGH）	17			ns
$V_{\text {IL }}$	Input Voltage，Logic LOW			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage，Logic HIGH	2.0			V
0 OL	Output Current，Logic LOW			4.0	mA
$\mathrm{IOH}^{\text {O}}$	Output Current，Logic HIGH			－0．4	mA
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	－0．1	0.0	0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	－0．9	－1．0	－1．1	V
$V_{R T} V_{\text {RB }}$	Voltage Reference Differential	0.8		1.2	V
$V_{\mathbb{N}}$	Input Voltage	$V_{\text {RB }}$		$V_{\text {RT }}$	V
$\mathrm{T}_{\text {A }}$	Ambient Temperature，Still Air	0		70	${ }^{\circ} \mathrm{C}$

Note：
1．$V_{R T}$ must be more positive than $V_{R B}$ ，and voltage reference differential must be within specified range．

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temp	ge	Units	
		Standard				
		Min	Max			
	Maximum Conversion Rate		$V_{C C}=$ MIN, $V_{\text {EE }}=$ MIN	25		MSPS
${ }_{\text {I STO }}$	Sampling Time Offset		$V_{C C}=M I N, V_{E E}=M I N$		5	ns
tD	Output Delay	$V_{C C}=$ MIN, $V_{E E}=$ MIN, Load 1		25	ns	
${ }_{\text {tho }}$	Output Hold Time	$V_{C C}=$ MAX, $\mathrm{V}_{\mathrm{EE}}=$ MAX, Load 1	5		ns	

System performance characteristics within specified operating conditions

Parameter	Test Conditions	Temp	Range	Units
		Standard		
		Min	Max	
ELI Linearity Error Integral, Independent	$V_{R T}, V_{R B}=N O M$		0.4	\%
$\mathrm{E}_{\text {LD }}$ Linearity Error Differential			0.4	\%
CS Code Size	$V_{R T}, V_{\text {RB }}=$ NOM	50	150	\% Nominal
E_{OT} Offset Error Top	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{RT}}$		+50	mV
E_{OB} Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-30	mV
Temperature Coefficient (Offset Voltage)			± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bandwidth, Full Power Input		12.5		MHz
Transient Response, Full Scale			10	ns
Signal-to-Noise Ratio	12.5MHz Bandwidth, 25MSPS Conversion Rate			
Peak Signal/RMS Noise	1 MHz Input	42		dB
	12.5MHz Input	40		dB
RMS SignaliRMS Noise	1 MHz Input	33		dB
	12.5MHz Input	31		dB
$\mathrm{EAP}_{\text {AP }}$ Aperture Error			30	ps

Output Coding Table ${ }^{1}$

Range	Binary		Two's Complement	
	True	Inverted	True	Inverted
	NMINV = 1	0	0	1
15.8730 mV STEP	NLINV = 1	0	1	0
0.0000 V	000000	111111	100000	011111
-0.0159V	000001	111110	100001	011110
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-0.4921V	011111	100000	111111	000000
-0.5079V	100000	011111	000000	111111
-0.5238V	100001	011110	000001	111110
-	-	-	-	-
-	-	-	-	-
\bullet	\bullet	\bullet	-	-
-0.9841V	111110	000001	011110	100001
-1.000V	111111	000000	011111	100000

Note:

1. Voltages are code midpoints when calibrated (see Calibration section).

Calibration

To calibrate the TDC1046, adjust $V_{R T}$ and $V_{\text {RB }}$ to set the 1st and 63rd thresholds to the desired voltages. In the Block Diagram, note that R_{1} is greater than R, ensuring calibration with a positive voltage on RT. Assuming a OV to -1V desired range, continuously strobe the converter with -0.0079 V on the analog input, and adjust $V_{R T}$ for output toggling between
codes 00 and 01 . Then apply -0.9921 V and adjust $V_{\text {RB }}$ for toggling between codes 62 and 63 . Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Typical Interface Circuit

The TDC1046 does not require a special input buffer amplifier to drive the analog input because of its low analog input capacitance. A terminated low-impedance transmission line I< 100 Ohms) connected to the $V_{\mathbb{N}}$ terminals of the TDC1046 is sufficient if the input voltage levels match those of the A / D converter.

However, many driver circuits lack sufficient offset control, drive current, or gain control. The Typical Interface Circuit in Figure 6 shows a simple buffer amplifier and voltage reference circuit that may be used with the TDC1046. U2 is a wide-band operational amplifier with a gain factor of -2 . A small value resistor, R12, serves to help isolate the input capacitance of the A/D converter from the amplifier output and insure frequency stability. The pulse and frequency response of the buffer amplifier are optimized by variable capacitor C12.

The reference voltage for the TDC1046 is generated by amplifier U3 and PNP transistor 01 which supplies the reference current. System gain is adjusted by varying R9 which controls the reference voltage level to the A / D converter.

Input voltage range and input impedance for the circuit are determined by resistors R1 and R2. Formulas for calculating values for these input resistors are:

R1 $=\frac{1}{\left(\frac{2 V R}{Z_{I N}}\right)-\frac{1}{1000}}$
and
$R 2=Z_{I N}-\left(\frac{1000 R 1}{1000+R 1}\right)$
where $V R$ is the input voltage range of the circuit, $Z_{I N}$ is the input impedance of the circuit, and the constant 1000 comes from the value of R3. As shown, the circuit is set up for 1 Volt p-p 750 hm video input.

Figure 5. Typical Interface Circuit

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1046.18C	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1046J8C
TDC1046.18G	STD - $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1046, 18 G
TDC10468BC	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead CERDIP	1046B8C
TDC1046B8G	STO - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead CERDIP	104688G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TDC1047
 Preliminary Information

Monolithic Video A/D Converter

7-bit, 20MSPS

The TRW TDC1047 is a 20 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 7 MHz into 7 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1047 consists of 127 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

The TDC1047 is pin and function compatible with TRW's TDC1027, and offers increased performance with lower power dissipation.

Features

- 7-Bit Resolution
- 1/2 LSB Linearity
- Sample-And-Hold Circuit Not Required
- 20MSPS Conversion Rate
- Selectable Output Format
- Available in 24 Lead DIP Or CERDIP
- Evaluation Board - TDC1047E1C

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- TV Special Effects
- Video Simulators
- Radar Data Conversion

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1047 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 127 reference voltages to produce an N -of-127 code (sometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and
those referred to voltages more negative than the input signal will be onl. The encoding logic converts the N -of-127 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1047 operates from two supply voltages, +5.0 V and -5.2 V . The return for ${ }^{\mathrm{I} C C}$, the current drawn from the +5.0 V supply, is $D_{G N D}$. The return for I_{EE}, the current drawn from
the -5.2 V supply, is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package	C3 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pins 10,16	Pin 12
$V_{\text {EE }}$	Negative Supply Voltage	-5.2 V	Pins 11,14	Pins 13,17
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 4,21	Pins 5,25
$\mathrm{~A}_{\text {GND }}$	Analog Ground	0.0 V	Pins $3,12,13,22$	Pins $4,14,16,26$

Reference

The TDC1047 converts analog signals in the range $V_{R B} \leqslant$ $V_{I N} \leqslant V_{R T}$ into digital form. $V_{R B}$ the voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ lthe voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -1.1 V . V_{RT} should be more positive than $V_{R B}$ within that range. The voltage applied across the reference resistor chain $\left(V_{R T}-V_{R B}\right)$ must be between 0.8 V and 1.2 V . The nominal voltages are $\mathrm{V}_{\mathrm{RT}}=0.00 \mathrm{~V}$
and $V_{R B}=-1.00 \mathrm{~V}$. These voltages may be varied dynamically up to 7 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically as in an Automatic Gain Control (AGC) circuit, a low-impedance reference source is recommended.

Name	Function	Value	J7, B7 Package	C3 Package
R_{T}	Reference Resistor (Top)	0.00 V	Pin 2	Pin 3
R_{B}	Reference Resistor (Bottom)	-1.00 V	Pin 23	Pin 27

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the
output coding table. These pins are active LOW as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $\mathrm{D}_{\mathrm{GND}}$ for a logic "0."

Name	Function	Value	J7, B7 Package	C3 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 5	Pin 6
NLINV	Not Least Significant Bit INVert	TTL	Pin 15	Pin 18

Convert

The TDC1047 requires a CONVert (CONV) signal. A sample is taken (the comparators are latched) within the Sampling Time Offset Itstol of a rising edge on the CONV pin. The 127 to 7 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a

Name	Function	Value	J7, B7 Package	C3 Package
CONV	Convert	TTL	Pin 20	Pin 24

Analog Input

The TDC1047 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. For optimal performance, both VIN pins must be used and the source impedance of the driving circuit must be less than 30 Ohms. The input signal will not damage the TDC1047 if it
minimum time ${ }^{(t h o l}$ after the rising edge of the CONV signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1047 is taking input sample $N+2$.

Name	Function	Value	J7, B7 Package	C3 Package
$V_{I N}$	Analog Signal Input	OV to -1V	Pins 1, 24	Pins 2, 28

Outputs

The outputs of the TDC1047 are TTL compatible, and capable of driving four low-power Schottky TTL (54774 LSI unit loads or the equivalent. The outputs hold the previous data a
minimum time ${ }^{(t h o l}$ after the rising edge of the CONV signal. For optimum performance, 2.2 kOhm pull-up resistors are recommended.

Name	Function	Value	J7, B7 Package	C3 Package
D_{1}	MSB Dutput	TTL	Pin 6	Pin 7
D_{2}		TTL	Pin	Pin 9
D_{3}		TTL	Pin	Pin 10
D_{4}	TTL	Pin 9	Pin 11	
D_{5}		TTL	Pin	Pin 20
D_{6}	TTL	Pin 18	Pin 21	
D_{7}		TTL	Pin 19	Pin 23

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{c}_{\text {IN }}$ IS A Nonlinear junction capacitance $v_{\text {RB }}$ is a voltage equal to the voltage on pin R_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage (measured to $\mathrm{D}_{\mathrm{GNO}}$)	4.75	5.0	5.25	V
$\mathrm{V}_{\text {EE }}$	Negative Supply Voltage (measured to $\mathrm{A}_{\mathrm{GND}}$)	-4.9	-5.2	-5.5	V
$\bar{V}_{\text {AGND }}$	Analog Ground Votage (measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	0.1	V
${ }^{\text {tpW }}$	CONV Pulse Width, LOW	14			ns
tpWH	CONV Pulse Width, HIGH	14			ns
$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			V
${ }^{1} \mathrm{OL}$	Output Current, Logic LOW			4.0	mA
${ }_{\mathrm{OH}}$	Output Current, Logic HIGH			-0.4	mA
$\mathrm{V}_{\text {RT }}$	Most Positive Reference Input1	-0.1	0.00	0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-0.9	-1.00	-1.1	V
$\mathrm{V}_{\mathrm{RT}} \mathrm{V}_{\mathrm{RB}}$	Voltage Reference Differential	0.8	1.0	1.2	V
$\bar{V}_{\text {IN }}$	Input Voltage	$V_{R B}$		V_{RT}	V
T_{A}	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temper	e Range	Units
		Standard		
		Min	Max	
ICC Positive Supply Current	$V_{\text {CC }}=$ MAX, static ${ }^{1}$		25	mA
IEE Negative Supply Current	$\mathrm{V}_{\mathrm{EE}}=\mathrm{MAX}$, static ${ }^{1}$			
	${ }^{T} A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-170	mA
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		-135	mA
${ }_{\text {REEF }}$ Reference Current	$V_{R T}, V_{R B}=N O M$		35	mA
RREF Total Reference Resistance		28		Ohms
RIN Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{\mathbb{N}}=V_{R B}$	100		kOhms
CIN Input Capacitance			60	pF
${ }^{\text {CBB }}$ Input Constant Bias Current	$V_{E E}=$ MAX		150	$\mu \mathrm{A}$
IIL Input Current, Logic Low	$V_{\text {CC }}=$ MAX, $V_{1}=0.5 \mathrm{~V} \frac{\text { CONV }}{\text { NMINV }}$		-0.4	mA
			-0.6	mA
IIH Input Current, Logic HIGH	$V_{\text {CC }}=$ MAXX,$V_{1}=2.4 \mathrm{~V}$		50	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$V_{\text {CC }}=$ MAXX, $V_{1}=5.5 \mathrm{~V}$		1.0	mA
$V_{\text {OL }}$ Output Voltage, Logic LOW	$V_{C C}=$ MIN, $\mathrm{IOL}=$ MAX		0.5	V
$V_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	2.4		V
IOS Short Circuit Output Current	$V_{C C}=$ MAX, Output HIGH, one pin to ground, one second duration.		-30	mA
C_{1} Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15	pF
Note:				

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Tempe	Range	Units
		Standard		
		Min	Max	
FS Maximum Conversion Rate	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {EE }}=\mathrm{MIN}$	20		MSPS
${ }^{\text {I STO }}$ Sampling Time Offset	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {EE }}-\mathrm{MIN}$		7	ns
$\dagger_{\text {D }}$ Output Delay	$V_{C C}=$ MIN, $V_{E E}=$ MIN, Load 1		30	ns
${ }^{\text {H0 }}$ O Output Hold Time	$V_{C C}=M A X, V_{E E}=$ MAX, Load 1	5		ns

System performance characteristics within specified operating conditions

Parameter	Test Conditions	Tempe	Range	Units
		Standard		
		Min	Max	
Ell Linearity Error Integral, Independent	$V_{R T}, V_{R B}=N O M$		0.4	\%
ELD Linearity Error Differential			0.4	\%
CS Code Size	$V_{R T}, V_{R B}=N O M$	30	170	\% Nominal
$V_{\text {OT }}$ Offset Voltage Top	$V_{\text {IN }}=V_{R T}$		+50	mV
$V_{\text {OB }} \quad$ Offset Voltage Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-30	mV
${ }^{\text {T }}$ O Temperatura Coefficient			± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
BW Bandwidth, Full Power Input		7		MHz
${ }^{\text {TTR }}$ Transient Response, Full Scale			10	ns
SNR Signal-to-Noise Ratio	7MHz Bandwith, 20MSPS Conversion Rate			
Peak Signal/RMS Noise	1 MHz Input	48		dB
	7 MHz Input	48		dB
RMS Signal/RMS Noise	1MHz Input	39		dB
	7MHz Input	37		dB
$\mathrm{EAP}_{\text {AP }}$ Aperture Error			50	ps
DP Differential Phase Error ${ }^{1}$	$\mathrm{F}_{\mathrm{S}}=4 \times \mathrm{NTSC}$		1.5	Degree
DG Differential Gain Error ${ }^{1}$	$\mathrm{F}_{S}=4 \times$ NTSC		2.5	\%
Note: 1. In excess of quantization.				

Output Coding

Step		Binary		Offset Two's Complement	
	Range	True	Inverted	True	Inverted
	$\begin{gathered} \hline-1.0000 \mathrm{~V} \text { FS } \\ 7.874 \mathrm{mV} \text { STEP } \end{gathered}$	$\begin{aligned} & \text { NMINV }=1 \\ & \text { NLINV }=1 \end{aligned}$	0	0 1	1 0
000	0.0000 V	0000000	1111111	1000000	0111111
001	$-0.0078 \mathrm{~V}$	0000001	1111110	1000001	0111110
-	-		-	-	-
-	-			-	-
-	-	-	-	-	-
063	-0.4960V	0011111	1100000	1011111	0100000
064	-0.5039V	0100000	1011111	1100000	0011111
-			-	-	-
-				-	-
-	-	-	-	-	-
126	-1.9921V	1111110	0000001	0111110	1000001
127	-1.0000V	1111111	0000000	0111111	1000000

[^1]
Calibration

To calibrate the TDC1047, adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 127th thresholds to the desired voltages in the block diagram. Note that R_{\uparrow} is greater than R, ensuring calibration with a positive voltage on RT . Assuming a OV to -1 V desired range, continuously strobe the converter with -0.0039 V on the analog input, and adjust VRT for output toggling between
codes 00 and 01 . Then apply -0.9961 V and adjust $V_{\text {RB }}$ for toggling between codes 126 and 127. Instead of adjusting $V_{R T}$, R_{T} can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

1. Unless otherwise specified, all resistors are $1 / 4 \mathrm{~W}, 2 \%$.
2. $R 1=Z_{I N}-\left(\frac{1000 R 2}{1000+R 2}\right)$
3. $R 2=\frac{1}{\left(\frac{2 V_{\text {Range }}}{V_{\text {REF }} Z_{I N}}\right)-0.001}$

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TOC1047J7C TOC1047J7G	$\begin{aligned} & S T D-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & S T D-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In	24 Lead DIP 24 Lead DIP	$\begin{aligned} & 1047 J C \\ & 1047 J 7 G \end{aligned}$
TOC1047B7C TOC1047B7G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial Commercial With Burn-In	24 Lead CERDIP 24 Lead CERDIP	1047B7C 104787G
TOC1047C3C TDC1047C3G	$\begin{aligned} & S T D-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & S T D-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In	28 Contact Chip Carrier 28 Contact Chip Carrier	1047C3C 1047C3G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goais and limited characterization. They may change without notice. Contact TRW for current information.

Monolithic Video A/D Converter

8-bit, 20MSPS

The TRW TDC1048 is a 20 MegaSample Per Second IMSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 7 MHz into 8 -bit digital words. A sample-and-hold circuit is not necessary. Low power consumption eases thermal considerations, and board space is minimized with a 28 lead package. All digital inputs and outputs are TTL compatible.

The TDC1048 consists of 255 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 8-Bit Resolution
- 20MSPS Conversion Rate
- Low Power Consumption, 1.6W IWorst Casel
- Sample-And-Hold Circuit Not Required
- Differential Phase 1 Degree
- Differential Gain 2%
- 1/2 LSB Linearity
- TTL Compatible
- Selectable Output Format
- Available In 28 Lead DIP, CERDIP, Or Contact Chip Carrier
- Evaluation Board - TDC1048E1C

Applications

- Low-Cost Video Digitizing
- Radar Data Conversion
- Data Acquisition
- Medical Imaging

Functional Block Diagram

Functional Block Diagram

Pin Assignments

28 Lead DIP - J6 Package
28 Lead CERDIP - B6 Package

28 Contact Chip Carrier - C3 Package

Functional Description

General Information

The TDC1048 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 255 reference voltages to produce an N -of-255 code lsometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be offl. The
encoding logic converts the N -of-255 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1048 operates from two supply voltages, +5.0 V and -5.2 V . The return for I_{C}, the current drawn from the $+5 . \mathrm{OV}$ supply, is $\mathrm{D}_{\mathrm{GND}}$. The return for I_{EE}, the current drawn from
the -5.2 V supply, is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J6, B6, C3 Package
$V_{\text {cC }}$	Positive Supply Voltage	+5.0V	Pins 6, 10
$V_{\text {EE }}$	Negative Supply Voltage	-5.2V	Pins 7, 8, 9
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	Pins 5, 11
$A_{\text {GND }}$	Analog Ground	0.0 V	Pins 19, 25

Reference

The TDC1048 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{R B}$ lthe voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain/ should be between +0.1 V and -2.1 V . VRT should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain $\left.N_{R T}-V_{R B}\right)$ must be between 1.8 V and 2.2 V . The nominal voltages are $V_{R T}$ $=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-2.0 \mathrm{~V}$.

A midpoint tap, R_{M}, allows the converter to be adjusted for optimum linearity, although adjustment is not necessary to meet the linearity specification. It can also be used to achieve a nonlinear transfer function. The circuit shown in Figure 5 will provide approximately $1 / 2$ LSB adjustment of the linearity
midpoint. The characteristic impedance seen at this node is approximately 220 Ohms, and should be driven from a low-impedance source. Note that any load applied to this node will affect linearity, and noise introduced at this point will degrade the quantization process.

Due to the variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically, las in an automatic gain control circuitt, a low-impedance reference source is required. The reference voltages may be varied dynamically up to 5 MHz .

Name	Function	Value	J6, B6, C3 Package
$\mathrm{R}_{\mathbf{T}}$	Reference Resistor (Top)	0.0 V	Pin 18
R_{M}	Reference Resistor (Middle)	-1.0 V	Pin 27
R_{B}	Reference Resistor (Bottom)	-2.0 V	Pin 26

Control

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table on page 121. These pins are active LOW, as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic "1" and $D_{G N D}$ for a logic "0."

Name	Function	Value	J6, B6, C3 Package
NMINV	Not Most Significant Bit INVert	TLL	Pin 28
NLINV	Not Least Significant Bit INVert	$\Pi \mathrm{L}$	Pin 12

Convert

The TDC1048 requires a convert (CONV) signal. A sample is taken (the comparators are latched) within $15 n \mathrm{~ns}$ after a rising edge on the CONV pin. This time is tSTO, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 255 to 8 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to
the output latches on the next rising edge. Data is held valid at the output register for at least thO, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, tD, time. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1048 is taking input sample $N+2$.

Name	Function	Value	J6, B6, C3 Package
CONV	Convert	TL	Pin 17

Analog Input

The TDC1048 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the driving device must be less than 25 Ohms. The input signal will not damage the TDC1048 if it remains within the range of V_{EE} to +0.5 V . If the input signal is between the V_{RT} and V_{RB}
references, the output will be a binary number between 0 and 255 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All five analog input pins must be connected together.

Name	Function	Value	J6, B6, C3 Package
$V_{I N}$	Analog Signal Input	OV to $-2 V$	Pins $20,21,22,23,24$

Outputs

The outputs of the TDC1048 are TTL compatible, capable of driving four low-power Schottky TIL $154 / 74$ LSI unit loads or the equivalent. The outputs hold the previous data a minimum
time ${ }^{\text {thol }} \mathrm{l}$ after the rising edge of the CONVert signal. For optimum performance, 2.2 kOhm pull-up resistors are recommended.

Name	Function	Value	J6, B6, C3 Package
D_{1}	MSB Output	TTL	Pin 1
D_{2}		TTL	Pin 2
D_{3}		TL	Pin 3
D_{4}		TTL	Pin 4
D_{5}		TL	Pin 13
D_{6}		TTL	Pin 14
D_{7}		TTL	Pin 15
D_{8}	LSB Output	TTL	Pin 16

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{C}_{\text {IN }}$ IS A NONLINEAR JUNCTION CAPACITANCE
$V_{\text {bB }}$ IS A VOLTAGE EQUAL TO THE VOLTAGE ON PIN B_{B}

Figure 3. Convert Input Equivalent Circuit

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Positiva Supply Voltage	4.75	5.0	5.25	4.50	5.0	5.50	V
$V_{\text {EE }}$	Negative Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
VAGND	Analog Ground Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	-0.1	0	+0.1	-0.1	0	+0.1	V
tpwL	CONV Pulse Width, LOW	18			18			ns
tewh	CONV Pulse Width, HIGH	22			22			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
$\mathrm{IOL}^{\text {L }}$	Output Current, Logic LOW			4.0			4.0	mA
IOH	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$V_{R T}$	Most Positive Reference Input ${ }^{1}$	-0.1	0.0	0.1	-0.1	0.0	+0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	V
$V_{R T}-V_{\text {RB }}$	Voltage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	V
$V_{\text {IN }}$	Input Voltage	$\mathrm{V}_{\text {RB }}$		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }_{T}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{A T}$ Must be more positive than $V_{R B}$, and voitage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Positiva Supply Current	$V_{C C}=$ MAX，static ${ }^{1}$		35		40．．．	mA
IEE Negative Supply Current	$V_{E E}=$ MAX，static ！					
	${ }^{T} A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		－260			mA
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		－185			mA
	$\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				－320．	mA
	${ }^{\mathrm{T}} \mathrm{C}=125^{\circ} \mathrm{C}$				－180	mA
$\mathrm{IREF}^{\text {Reference Current }}$	$V_{R T}, V_{R B}=N O M$		35		$45 ?$	mA
R REF Total Reference Resistance		67		50		Ohms
RIN Input Equivalent Resistance	$V_{\text {RT }}, V_{\text {RB }}=N O M, V_{I N}-V_{\text {RB }}$	10		10		kOhms
$\mathrm{C}_{\text {IN }}$ Input Capacitance	$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}=\mathrm{NOM}, \mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{RB}}$		100		100	pF
ICB Input Constant Bias Current	$V_{E E}=$ MAX		200		550	$\mu \mathrm{A}$
IIL Input Current，Logic Low	$V_{\text {CC }}-\mathrm{MAXX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					
	CONV		－0．4		－0．4	mA
	NMINV，NLINV		－0．6		－0．6	mA
IIH Input Current，Logic HIGH	$V_{C C}=M A X, V_{1}-2.4 V$		50		50	$\mu \mathrm{A}$
II Input Current，Max Input Voltage	$V_{C C}=$ MAX $V_{l}=5.5 \mathrm{~V}$		1.0		1.0	mA
$\mathrm{V}_{\text {OL }} \quad$ Output Voltage，Logic LOW	$V_{C C}=$ MIN，$I_{O L}=$ MAX		0.5		0.5	V
$V_{\text {OH }}$ Output Voltage，Logic HISH	$V_{\text {CC }}=$ MIN， $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V
IOS Short Circuit Output Current	$V_{C C}=$ MAX，Output HIGH，one pin to ground， one second duration．		－30		－30	mA
C_{1} Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF

Note：
1．Worst case，all digital inputs and outputs LOW．
Switching characteristics within specified operating conditions

Parametar		Test Conditions	Temparature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
Fs	Maximum Conversion Rate		$V_{C C}=M I N, V_{E E}=M / N$	20		20		MSPS
${ }^{\text {t }}$ STO	Sampling Time Dfisat		$V_{C C}=M I N, V_{E E}=M I N$	0	10	0	15	ns
t	Digital Output Delay	$V_{C C}-M I N, V_{E E}=$ MIN，Load 1		30		35	ns	
tho	Digital Output Hold Time	$V_{C C}=$ MAX，$V_{\text {EE }}=$ MAX，Load 1	5		5		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integral, Independent		$V_{R T}, V_{R B}=N O M$		0.2		0.2	\%
ELD	Linearity Error Differential				0.2		0.2	\%
CS	Code Size		25	175	25	175	\% Nominal	
EOT_{0}	Offset Error Top	$V_{I N}=V_{R T}$		+45		+45	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Errar Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-30		-30	mV	
$\mathrm{T}_{\text {CO }}$	Offset Error Temperature Coefficient			± 20		± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Full Power Input		7		5		MHz	
${ }^{\text {t }}$ TR	Transient Response, Full Scale			20		20	ns	
SNR	Signal-to-Noise Ratio	20MSPS Conversion Rate, 10MHz Bandwidth						
	Peak Signal/RMS Noise	1.248MHz Input	54		53		dB	
		2.438MHz Input	53		52		dB	
	RMS Signal/RMS Noise	1.248 MHz Input	45		44		dB	
		2.438 MHz Input	44		43		dB	
$E_{A P}$	Aperture Error			60		60	ps	
DP	Differential Phase Error	$\mathrm{F}_{S}=4 \times$ NTSC		1.0		1.0	Degree	
OG	Differential Gain Error	$\mathrm{F}_{\mathrm{S}}=4 \times$ NTSC		2.0		2.0	\%	
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwidth 4 Sigma Loading 1.248MHz Slot 20MSPS Conversion Rate	36.5		36.5		dB	

Output Coding

Step	Range		Binary		Offset Two＇s Complement	
			True	Inverted	True	Inverted
	－2．0000V FS	－2．0480V FS	NMINV $=1$	0	0	1
	7.8431 mV STEP	8.000 mV STEP	NLINV－ 1	0	1	0
000	0.0000 V	0.0000 V	0000000	1111111	1000000	0111111
001	－0．0078V	－0．0080V	0000001	1111110	1000001	0111110
－	－	－	－	－	－	－
－	－	－	－	－	－	－
－	－	－	－	－	\bullet	－
127	－0．9961V	－1．0160V	01111111	10000000	11111111	00000000
128	－1．0039V	－1．0240V	10000000	01111111	00000000	11111111
129	－1．0118V	－1．0320V	10000001	01111110	00000001	11111110
－	－	－	－	－	－	－
－	－	－	－	－	－	－
－	－	－	－	－	－	－
254	－1．9921V	－2．0320V	11111110	00000001	01111110	10000001
255	－2．0000	－2．0400V	11111111	00000000	01111111	10000000

Notes：
1．NMINV and NLINV are to be considered DC controls．They may be tied to +5 V for a logical＂ 1 ＂and tied to ground for a logical＂ 0 ．＂
2．Voltages are code midpoints when calibrated by the procedure given below．

Calibration

To calibrate the TDC1048，adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 255 th thresholds to the desired voltages．Note that R_{1} is greater than R ，ensuring calibration with a positive voltage on RT．Assuming a OV to -2 V desired range，continuously strobe the converter with $f 0.0039 \mathrm{~V}$（1／2 LSB from OV）on the analog input，and adjust VRT Fór output toggling between codes 00 and 01 ．Then apply $-1.996 \mathrm{~V}(1 / 2 \mathrm{LSB}$ from -2 V ）and adjust $V_{\text {RB }}$ for toggling between codes 254 and 255.

The degree of required adjustment is indicated by the offset error， E_{0} and E_{OB} ．Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit．These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block

Diagram．Calibration will cancel all offset voltages，eliminating offset and gain errors．

The above method of calibration requires that both ends of the resistor chain，R_{T} and R_{B} ，are driven by buffered operational amplifiers．Instead of adjusting $V_{R T}$ ，R_{T} can be connected to analog ground and the OV end of the range calibrated with a buffer offset control．The offset error at the bottom of the resistor chain results in a slight gain error，which can be compensated for by varying the voltage applied to R_{B} ．The bottom reference is a convenient point for gain adjust that is not in the analog signal path．These techniques are employed in Figure 6.

Typical Interface

Figure 6 shows an example of a typical interface circuit for the TDC1048. The analog input amplifier is a bipolar wideband operational amplifier, which is used to directly drive the AID converter. Bipolar inputs may be accommodated by adjusting the offset control. A zener diode provides a stable reference for both the offset and gain control. All five $V_{I N}$ pins are connected close to the device package, and the buffer amplifier feedback loop should be closed at that point. The buffer has a gain of minus two, increasing a 1 Volt $p-p$ video input signal to the recommended 2 Volt $p-p$ input for the A / D converter. Proper decoupling is recommended for all systems, although the degree of decoupling shown may not be needed. A
variable capacitor permits buffer optimization, by either step response or frequency response. This may be replaced with a fixed value capacitor, as determined by the layout and desired optimization.

The bottom reference voltage, $V_{\text {RB }}$, is supplied by an inverting amplifier, buffered with a PNP transistor. The transistor provides a low-impedance source and is necessary to sink the current flowing through the reference resistor chain. The bottom reference voltage can be adjusted to cancel the gain error introduced by the offset voltage, E_{OB}, as discussed in the calibration section.

Figure 5. Typical Reference Midpoint Adjust Circuit

Figure 6. TDC1048 Typical Interface Circuit

Parts List

Resistors

R1	0.0Ω	$1 / 4 W$	5%
R2	80.7Ω	$1 / 4 W$	5%
R3	$1 \mathrm{~K} \Omega$	$1 / 4 W$	5%
R4	$2 \mathrm{~K} \Omega$	$1 / 4 W$	5%
R5	220Ω	$1 / 4 W$	5%
R6	$2 \mathrm{~K} \Omega$	$1 / 4 W$	5%
R7	$1 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%
R8	$2 \mathrm{~K} \Omega$	$1 / 4 W$	Multiturn Pot
R9	$2 \mathrm{~K} \Omega$	114 W	Multiturn Pot
R10	$10 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%
R11	$20 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%
R12	27Ω	$1 / 4 \mathrm{~W}$	5%
R13	$2.2 \mathrm{~K} \Omega$	SIP	5%

Capacitors

$\mathrm{C1-C4}$	$10 \mu \mathrm{~F}$	25 V
$\mathrm{C}-\mathrm{C} 11$	$0.1 \mu \mathrm{~F}$	50 V
C 12	$1-6 \mathrm{pF}$	variable

Integrated Circuits

U1	TRW TDC1048
U2	HA－2539－5 op－amp
U3	UA741C op－amp
U4	LM313 reference

Transistors
$01 \quad$ 2N2907
Inductors
L1，L2 Ferrite beads

$$
R 2=\frac{1}{\frac{2 V_{\text {Range }}}{V_{\text {REF }} Z_{I N}}-0.001}
$$

$$
R 1=Z_{\mathbb{I}}-\frac{1000 R_{2}}{1000+R_{2}}
$$

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1048J6C	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	1048J6C
TDC1048．J6G	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	28 Lead DIP	1048J6G
TDC1048JfF	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	1048J6F
TDC1048J6A	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	28 Lead DIP	1048J6A
TDC1048C3C	STD $-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1048C3C
TDC1048C3G	STD－TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	28 Contact Chip Carrier	1048C3G
TDC1048C3F	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1048C3F
TDC1048C3A	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	28 Contact Chip Carrier	1048C3A
T0C1048B6C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead CERDIP	104886C
TDC104886G	STD－$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	28 Lead CERDIP	104886G

TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW Inc．or others．
Preliminary Information describes products that are not in full production at the time of printing．Specifications are based on design goals and limited characterization．They may change without notice．Contact TRW for current information．
Note：
1．Per TRW document 70201757.

Monolithic Video A/D Converter

7-bit, 15MSPS

The TDC1147 is a 7 -bit "flash" analog-to-digital converter which has no pipeline delay between sampling and valid data. The output data register normally found on flash AID converters has been bypassed, allowing data to transfer directly to output drivers from the encoding logic section of the circuit. The converter requires only one clock pulse to perform the complete conversion operation. The conversion time is guaranteed to be less than 60 nanoseconds.

The TDC1147 is function and pin-compatible with TRW's TDC1047 7-bit flash A/D converter which has an output data register. The TDC1147 will operate accurately at sampling rates up to 15MSPS and has an analog bandwidth of 7 MHz .
Linearity errors are guaranteed to be less than 0.4% over the operating temperature range.

Features

- No Digital Pipeline Delay
- 7-Bit Resolution
- 1/2 LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- Selectable Output Format
- Available In 24 Lead DIP Or CERDIP

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- High Resolution AID Converters
- Telecommunications Systems
- Radar Data Conversion

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1147 has two functional sections: a comparator array and encoding logic. The comparator array compares the input signal with 127 reference voltages to produce an N-of-127 code isometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and those referred to voltages more
negative than the input signal will be onl. The encoding logic converts the N -of-127 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV.

Power

The TDC1147 operates from two supply voltages, +5.0 V and -5.2 V . The return path for ICC the current drawn from the +5.0 V supply) is $\mathrm{D}_{\mathrm{GND}}$. The return path for leE the current
drawn from the -5.2 V supply) is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package	C3 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pins 10, 16	Pin 12
$V_{\text {EE }}$	Negative Supply Voltage	-5.2 V	Pins 11,14	Pins 13, 17
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 4, 21	Pins 5, 25
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pins 3,12,13,22	Pins 4,14, 16,26

Reference

The TDC1147 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{R B}$ lthe voltage applied to the pin at the bottom of the reference resistor chainl and $V_{\text {RT }}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -1.1 V . VRT should be more positive than $V_{R B}$ within that range. The voltage applied across the reference resistor chain $V_{\text {RT }}$ $V_{\text {RB }}$ must be between 0.8 V and 1.2 V . The nominal voltages
are $\mathrm{V}_{\mathrm{RT}}=0.00 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=-1.00 \mathrm{~V}$. These voltages may be varied dynamically up to 7 MHz . Due to slight variations in the reference current with clock and input signals, R_{T} and R_{B} should be low-impedance points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are varied dynamically as in an Automatic Gain Control (AGC) circuit, a low-impedance reference source is recommended.

Name	Function	Value	J7, B7 Package	C3 Package
R_{T}	Reference Resistor (Top)	0.00 V	Pin 2	Pin 3
R_{B}	Reference Resistor (Bottom)	-1.00 V	Pin 23	Pin 27

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC li.e. steady statel use. They permit the output coding to be either straight binary or offset two's
complement, in either true or inverted sense, according to the Output Coding Table.

Name	Function	Value	J7, B7 Package	C3 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 5	Pin 6
NLINV	Not Least Significant Bit INVart	TTL	Pin 15	Pin 18

Convert

The TDC1147 uses a CONVert (CONV) input signal to initiate the A / D conversion process. Unlike other flash A / D converters which have a one-clock-cycle pipeline delay between sampling and output data, the TDC1147 requires only a single pulse to perform the entire conversion operation. The analog input is sampled (comparators are latched) within the maximum Sampling Time Offset Itsto, see Figure 1). Data from that sample becomes valid after a maximum Output Delay Time (tol

Name	Function	Value	J7, B7 Package	C3 Package
CONV	Convert	TTL	Pin 20	Pin 24

Analog Input

The TDC1147 uses latching comparators which cause the input impedance to vary slightly with the signal level. For optimal performance, both $V_{I N}$ pins must be used and the source impedance of the driving circuit must be less than 30 Ohms. The input signal will not damage the TDC1147 if it remains within the range of $\mathrm{V}_{E E}$ to +0.5 V . If the input signal is
between the $V_{R T}$ and $V_{\text {RB }}$ references, the output will be a binary number between 0 and 127 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction.

Name	Function	Value	J7, B7 Package	C3 Package
$V_{\mathbb{N}}$	Analog Signal Input	OV to $-1 V$	Pins 1,24	Pins 2,28

Outputs

The outputs of the TDC1147 are TTL compatible, and capable of driving four low-power Schottky TTL (54/74 LSI unit loads. The outputs hold the previous data a minimum time (thol after
the rising edge of the CONV signal. New data becomes valid after a maximum time ttpl after the rising edge of the CONV signal. The use of 2.2 kOhm pull-up resistors is recommended.

Name	Function	Value	J7, B7 Package	C3 Package
D_{1}	Most Significant Bit Output	$\Pi \mathrm{L}$	Pin 6	Pin 7
D_{2}		$\Pi \mathrm{~L}$	Pin	
D_{3}		$\Pi \mathrm{~L}$	Pin	Pin 9
D_{4}		$\Pi \mathrm{~L}$	Pin	
D_{5}		$\Pi \mathrm{~L}$	Pin 10	
D_{6}		$\Pi \mathrm{~L}$	Pin 17	Pin 11
D_{7}		TL	Pin 18	Pin 20

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Cin IS A nonlinear junction capacitance $V_{\text {RB }}$ IS A voltage equal to the voltage on pin rib

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device may be damaged) ${ }^{1}$

Supply Voltages	
Input Voltages	
Output	
	Applied current, externally forced ... -1.0 to $6.0 \mathrm{ma}^{3,4}$
	Short circuit duration (single output in high state to ground) ... 1 sec
Temperature	
	Operating, case \qquad -55 to $+125^{\circ} \mathrm{C}$
	Lead, soldering (10 seconds) .. $30.100^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voitage must be limited to specified range.
	4. Current is specified as positive when flowing into the device.

Operating conditions

Paramater		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{C C}$	Positive Supply Voltage (measured to $\mathrm{D}_{\text {GND }}$)	4.75	5.0	5.25	V
$V_{\text {EE }}$	Negative Supply Voltage (measured to $\mathrm{A}_{\mathrm{GNO}}$)	-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	0.1	V
${ }_{\text {tpWL }}$	CONV Pulse Width, LOW	22			ns
tPWH	CONV Pulse Width, HIGH	18			ns
$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			V
${ }^{1} \mathrm{OL}$	Output Current, Logic LOW			4.0	mA
O_{OH}	Output Current, Logic HIGH			-0.4	mA
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-0.1	0.00	0.1	v
V_{RB}	Most Negative Reference Input ${ }^{1}$	-0.9	-1.00	-1.1	V
$V_{\text {RT }}-V_{\text {RB }}$	Voltage Reference Differential	0.8	1.0	1.2	V
$\mathrm{V}_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{R T}$	V
T_{A}	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$
Note:	1. $V_{\text {RT }}$ must be more positive than $V_{\text {RB }}$, and	range.			

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Tempera	Range	Units	
		Min	Max			
${ }^{\text {I CC }}$	Positive Supply Current		$V_{C C}=$ MAX, static ${ }^{1}$		25	mA
$\mathrm{IEE}^{\text {en }}$	Negative Supply Current	$V_{E E}=$ MAX, static ${ }^{1}$				
		${ }^{\text {A }}$ - $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		170	mA	
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		135	mA	
$\mathrm{I}_{\text {REF }}$	Reference Current	$V_{R T}, V_{\text {RB }}=N O M$		35	mA	
$\mathrm{R}_{\text {REF }}$	Total Reference Resistance		34		Ohms	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{\mathbb{N}}=V_{R B}$	100		kOhms	
$\overline{\mathrm{C}} \mathrm{N}$	Input Capacitance			60	pF	
${ }^{\text {I CB }}$	Input Constant Bias Current	$V_{E E}=\operatorname{MAX}$		160	$\mu \mathrm{A}$	
IIL	Input Current, Logic LOW	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V} \frac{\text { CONV }}{\text { NMINV, NLINV }}$		-0.4	mA	
				-0.6	mA	
IH	Input Current, Logic HIGH	$V_{C C}=M A X, V_{1}=2.4 V$		50	$\mu \mathrm{A}$	
1	Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0	mA	
$\mathrm{V}_{\text {OL }}$	Output Voltage, Logic LOW	$V_{\text {CC }}=$ MIN, $\mathrm{I}_{\text {OL }}=$ MAX		0.5	V	
V_{OH}	Output Voltage, Logic HIGH	$V_{C C}=M I N, I_{O H}=$ MAX	2.4		V	
${ }^{\text {OSS }}$	Short Circuit Output Current	$V_{C C}=M A X$, Output HIGH, one pin to ground, one second duration.		-30	mA	
C_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		15	pF	
Note:	1. Worst case: All digital inputs and					

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Min	Max			
	Maximum Conversion Rate		$V_{C C}=M I N, V_{E E}=$ MIN	15		MSPS
${ }^{\text {t }}$ STO	Sampling Time Offset		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {EE }}-\mathrm{MIN}$		7	ns
	Output Delay	$V_{C C}=M I N, V_{E E}=$ MIN, Load 1		60	ns	
	Output Hold Time	$V_{C C}=M A X, V_{E E}=M A X$, Load 1	15		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temp	Range	Units	
		Standard				
		Min	Max			
	Linearity Error Integral, Independent		$V_{R T}, V_{R B}=N O M$		0.4	\%
ELD	Linearity Error Differential				0.4	\%
CS	Code Size	$V_{R T}, V_{R B}=$ NOM	30	170	\% Nominal	
$V_{0 T}$	Offset Voltage Top	$V_{\text {IN }}-V_{\text {RT }}$		+50	mV	
$\underline{V_{\text {OB }}}$	Offset Voitage Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-30	mV	
${ }^{\text {T }}$ CO	Offset Voltage Temperature Coetficient			± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	Bandwidth, Full Power Input		7		MHz	
	Transient Response, Full Scale			10	ns	
SNR	Signal-to-Noise Ratio	7MHz Bandwith, 20MSPS Conversion Rate				
Peak SignallRMS Noise		1 MHz Input	45		dB	
		7 MHz Input	43		dB	
RMS SignaliRMS Noise		1MHz Input	36		dB	
		7MHz Input	34		dB	
$E_{\text {AP }}$	Aperture Error			50	ps	
	Differential Phase Error ${ }^{1}$	$\mathrm{F}_{\mathrm{S}}=4 \times$ NTSC		1.5	Degree	
DG	Differential Gain Error ${ }^{\text {1 }}$	$\mathrm{F}_{\mathrm{S}}=4 \times$ NTSC		2.5	\%	
Note: 1. In excess of quantization.						

Output Coding

	Binary		Offset Two's Complement	
Range	True	Inverted	True	Inverted
-1.00V FS	NMINV $=1$	0	0	1
	NLINV $=1$	0	1	0
0.0000 V	0000000	1111111	1000000	0111111
-0.0078V	0000001	1111110	1000001	0111110
-	-	-	-	-
-			-	-
\bullet	-	-	-	-
-0.4960V	0111111	1000000	1111111	0000000
-0.5039V	1000000	0111111	0000000	1111111
-			-	-
-			-	-
-	-	-	-	-
-0.9921V	1111110	0000001	0111110	1000001
-1.0000V	1111111	0000000	0111111	1000000

Note:

1. Voltages are code midpoints.

Calibration

To calibrate the TDC1147, adjust $V_{R T}$ and $V_{\text {RB }}$ to set the 1st and 127th thresholds to the desired voltages. Assuming a OV to - 1 V input range, continuously strobe the converter with $-0.0039 \mathrm{~V}(1 / 2$ LSB from OV) on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply -0.996V (112 LSB from -1V) and adjust VRB for toggling between codes 126 and 127.

The degree of required adjustment is indicated by the offset voltages, $\mathrm{V}_{\text {OT }}$ and $\mathrm{V}_{\text {OB }}$. Offset voltages are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit. These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block

Diagram. Calibration will cancel all offset voltages, eliminating offset and gain errors.

The above method for calibration requires that both ends of the resistor chain, R_{T} and R_{B}, are driven by variable voltage sources. Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with an input amplifier offset control. The offset error at the bottom of the resistor chain causes a slight gain error, which can be compensated for by varying the voltage applied to R_{B}. The bottom reference is a convenient point for gain adjust that is not in the analog signal path.

Typical Interface Circuit

Figure 6 shows an example of a typical interface circuit for the TDC1147. The analog input amplifier is a bipolar wideband operational amplifier, which is used to directly drive the A / D converter. Bipolar inputs may be accommodated by adjusting the offset control. A zener diode provides a stable reference for both the offset and gain control. The amplifier has a gain of -1 providing the recommended 1 Volt $p-p$ input for the A / D converter. Proper decoupling is recommended for all supplies, although the degree of decoupling shown may not be needed. A variable capacitor permits either step response or frequency response optimization. This may be replaced with a
fixed capacitor, whose value depends upon the circuit board layout and desired optimization.

The bottom reference voltage, V_{RB}, is supplied by an invening amplifier, followed with a PNP transistor. The transistor provides a low-impedance source and is necessary to sink the current flowing through the reference resistor chain. The bottom reference voltage can be adjusted to cancel the gain error introduced by the offset voltage, V_{OB}, as discussed in the Calibration section.

Figure 5. Typical Interface Circuit

Notes:

1. Unless otherwise specified, all resistors are $114 \mathrm{~W}, 2 \%$.
2. $R 1=Z_{I N}-\left(\frac{1000 R 2}{1000+\mathrm{R} 2}\right)$
3. $\mathrm{R} 2=\frac{1}{1}$
$\left(\frac{2 V_{\text {Range }}}{V_{\text {REF }} Z_{I N}}\right)-0.001$

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1147J7C	$S T D-T_{A}=D^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1147J7C
TOC1147J7G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1147J7
TDC1147B7C	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead CERDIP	1147B7C
TDC114787G	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead CERDIP	1147876
TDC1147C3C	STD $-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1147C3C
TDC1147C3G	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Contact Chip Carrier	1147C3G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Evaluation Boards

TRW LSI Products provides individual evaluation boards which are intended to be used as prototyping aids in the evaluation of particular TRW devices, or as incoming inspection test fixtures. Each board is fully assembled and tested and contains all the necessary
peripheral circuitry which allows for quick and convenient operation of the device. Built on double-sided printed circuit boards, all of TRW's evaluation boards meet Eurocard (DIN 41612B) format requirements.

Board	Resolution (Bits)	Conversion Rata (MSPS)	ECL/TTL
TDC1007E1C/P1C	8	20	TTL
TDC1014E1C/P1C	6	25	TTL
TDC1019E1C	9	15	ECL
TDC1025E1C	8	50	ECL
TDC1029E1C	6	100	ECL
TDC1047E1C	7	20	TLL
TDC1048E1C	8	20	TTL

TDC1007P1C TDC1007E1C

A/D Converter Evaluation Board

8-bit, 20MSPS

The TDC1007 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of TRW's TDC1007J1 8-bit video analog-to-digital (A/D) converter. The board contains circuitry for buffering input signals, generating reference voltages, and regulating on-board power supply voltages. All digital inputs and outputs are TTL compatible, and provisions are made for gain and offset adjustments. The board requires +5 and ± 15 Volt power supplies.

There are two versions of the TDC1007 evaluation board. The P1C board has a standard 22144 format edge connector interface, and the E1C uses the Eurocard connector format.

Features

- Includes TDC1007J1C 8-bit AID Converter
- User-Selectable Input Impedance
- User-Selectable Input Voltage Range
- Unipolar Or Bipolar Operation
- Gain And Offset Calibration Controls
- Operates From +5 And ± 15 Volt Power Supplies
- Provision For Optional Digital Output Buffers
- Eurocard (E1C) Or 22144 Edge Connector (P1C) Format

Applications

- Evaluation Of TDC1007 AID Converter
- System Prototyping Aid
- Incoming Inspection Test Fixture
\qquad
TDC1007E1C

Functional Block Diagram

Pin Assignments

LSI Products Division
TRW Electronic Components Group

Functional Description

General Information

The TDC1007 evaluation board consists of four functional sections: buffer amplifier, reference voltage generator, voltage regulators, and A/D converter. The board is configured for
optional output data buffers. Analog and digital grounds are separated on the board in order to provide flexibility in system grounding.

Buffer Amplifier

The input buffer amplifier has been designed specifically for standard baseband video. This amplifier is optimized for 75 Ohm, 1 Volt p-p levels. It provides a gain of -2 and offsets the output so that the A / D converter receives a full-scale input signal from 0 to -2 Volts.

The buffer amplifier is designed to drive the input capacitance of the TDC1007 A/D converter. An NPN transistor buffer
follows the wideband operational amplifier to provide improved current drive and insure frequency stability.

Components C2 and R10 optimize the performance of the amplifier and are selected as part of the manufacturing process. The buffer amplifier is operated from +12 and -6 Volt regulators which are included on the evaluation board.

Voltage Reference

The reference voltage for the TDC1007 is generated by operational amplifier U3B. This amplifier is buffered by a PNP transistor (04) in order to supply the reference current for the

A/D converter. The system gain is adjusted by varying the reference voltage (R12).

Voltage Regulators

Two voltage regulator circuits are provided on the evaluation board for supplying power to the buffer amplifier. U3D and Q3 provide +12 Volts for the buffer amplifier. U3A and Darlington
transistor 02 provide -6 Volts for the buffer amplifier and the AID converter. U4 is a 2.5 Volt bandgap voltage reference for both regulators and the voltage reference source.

A/D Converter

The TDC1007 integrated circuit is an 8-bit fully parallel (flash) analog-to-digital (AID) converter capable of digitizing an input signal at rates up to 20MSPS (MegaSamples Per Second). A single convert (CONV) signal controls the conversion operation of the device. The TDC1007 consists of 255 sampling
comparators, encoding logic, and a latched output register. On the rising edge of the CONV signal, the comparators are latched and their outputs are encoded. On the next rising edge of the CONV signal, data is transferred to the TTL data outputs of the TDC1007.

Output Interface

The TDC1007E1C and P1C boards have provisions for 74S04 Schottky TTL hex inverters for buffering data and improving output drive and fan-out capability. Provision is also made for pull-up resistors on the data outputs. The use of pull-up
resistors or data buffers is recommended when the board is to drive long data lines. The data outputs of the TDC1007 are routed directly to the edge connector.

Mechanical Design

The two versions of the evaluation board (P1C, E1C) differ in mechanical configuration. The P1C board is designed to interface with a standard $22 / 44$ contact edge connector. The E1C board is designed to meet the "Eurocard" format and interface with a standard 64 conductor Eurocard connector. Mating edge connectors are included with each evaluation board.

The evaluation board can also accommodate a TDC1014 6-bit AID converter by using the 24 lead DIP footprint found inside
the perimeter of the TDC1007's 64 lead DIP footprint and by appropriate electrical changes.

The board has a standard 64 lead DIP socket for the TDC1007 integrated circuit. These may be substituted with a "Zero Insertion Force" (ZIF) socket when the board is used as a test fixture. A recommended ZIF socket is made by Textool, Inc., part number 264-4493-00-0602.

Power Supplies

The TDC1007 evaluation board operates from three power supply voltages: $+5.0,+15$, and -15 Volts. The return path for ${ }^{\text {ICC }}$ (current from the +5.0 Volt power supply) is $\mathrm{D}_{\mathrm{GND}}$. The return path for $\mathrm{I}+$ and I - (current from the +15 and -15 Volt supplies) is $A_{G N D}$. A user-installed jumper option routes the
-6.0 Volt regulator output to the edge connector. The use of all ground pins is recommended. Diodes D_{2} through D_{6} function as voltage clamps which will prevent damage to the board if improper power supply voltages are applied.

Name	Function	Value	E1C	P1C
$V_{\text {CC }}$	Positive Logic Power Supply	+5V	B18	M
V+	Positive Analog Power Supply	+15V	B24	H
V-	Negative Analog Power Supply	-15V	B27	E
$\mathrm{A}_{\text {GND }}$	Analog Ground	OV	A20-A32	1-9
			B22	
			B25	
			B28	
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	OV	A1-A18	11-21
			B10	
			B16	
-6V	Jumper Optional -6 Volt Output	-6V	B1	22

Analog Input

The TDC1007 evaluation board is supplied with a nominal input impedance of 75 Ohms and an input voltage range of 1 Volt p-p. Both input impedance and input voltage range may be changed. The values of input resistors R1 and R2
determine the input impedance and voltage range of the evaluation board. Suggested values are shown in the Input Resistor Selection Table for various input impedances and voltage ranges.

Name	Function	Value	E1C	P1C
A IN	Analog Input Voltage	See Text	B21	K

Reference

The TDC1007 evaluation board includes circuitry for generating the voltage reference for the A/D converter. In addition, there
is an auxilliary -1.0 Volt reference voltage provided. These voltages are available at the edge connectors.

Name	Function	Value	E1C	P1C
REF 1	Auxiliary -1.0 Volt Dutput	$-1 V$	B23	J
REF 2	-2.0 Volt Reference Output	$-2 V$	B26	F

Control Inputs

Two control inputs are provided on the TDC1007 evaluation board for modifying the format of the output data. When NMINV is tied to a logic " 0 ," the most significant bit of the output data is inverted. When NLINV is tied to a logic " 0 ," the seven least significant bits of the output data are inverted. By
using these DC controls, the output data can be represented in binary, inverse binary, two's complement, or inverse two's complement formats. Output data versus input voltage and control input state is illustrated in the Output Coding Table.

Name	Function	Value	E1C	P1C
NMINV	Not Most Significant Bit INVert	TTL	B13	R
NLINV	Not Least Significant Bit INVert	TTL	B6	W

Convert

The TDC1007 A/D converter is sampled within 10ns Itstol after the rising edge of the CONV signal. Delays through buffer amplifier U2 are not included in ISTO. Output data is latched
on the next rising edge of the CONV signal. Note that there are minimum pulse width ItpWH, tPWL requirements on the waveshape of the CONV signal.

Name	Function	Value	E1C	P1C
CONV	AID Clock Input	TTL	B15	N

Data Outputs

The outputs of the TDC1007 evaluation board are TTL compatible and capable of driving four low-power Schottky unit loads (54774LSI. Data remains valid after the rising edge of the CONV signal for a minimum time, tho, and the next data becomes valid after a maximum time of t . The evaluation
board has provisions for optional 74 SO4 data buffers (U5, U6). When installing these circuits, it is necessary to open traces on the board which connect the inverter inputs to their corresponding outputs.

Name	Function	Value	E1C	P1C
D_{1} MSB	Most Significant Data Bit	TTL	B12	S
D_{2}		TTL	B11	T
D_{3}		TTL	B8	U
D_{4}		TTL	B7	V
D_{5}		TIL	B5	X
D_{6}		TTL	B4	Y
D_{7}		ITL	B3	Z
D_{8} LSB	Least Significant Data Bit	TTL	B14	P

No Connects
There are several pins or contacts to the TDC1007 evaluation board that have no connection to the circuit. These pins may be left open.

Name	Function	Value	E1C	P1C
NC	No Connect	Open	A19	10
			B19	A, B
			B20	C, D
			B29-B32	L

Figure 1. Timing Diagram

Absolute maximum ratings (beyond which the board may be damaged) ${ }^{1}$

Power Supply Voltages

$V_{C C}$ (measured to $D_{G N D}$) -0.5 to +7.0 V
$V+$ (measured to $A_{G N D}$) -0.5 to +18.0 V
V - (measured to $A_{G N D}$) +0.5 to -18.0 V
$A_{G N D}$ (measured to $D_{G N D}$) +0.5 to -0.5 V
Input Voltages
CONV, NMINV, NLINV (measured to $\mathrm{D}_{\mathrm{GND}}$) -0.5 to +5.5 V
$\mathrm{A}_{\text {IN }}$ (measured to $\mathrm{A}_{\mathrm{GND}}$) +4.5 to $-4.5 \mathrm{~V}^{6}$
Output
Applied voltage-0.5 to $+5.5 \vee^{2.5}$
Applied current, externally forced -1.0 to $+6.0 \mathrm{~mA}^{3,4,5}$
Short circuit duration (single output in HIGH state to $\mathrm{D}_{\mathrm{GND}}$) $1 \mathrm{sec}^{5}$
Temperature
Operating, ambient -40 to $+90^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as positive when flowing into the device.
5. Applies to TDC1007 IC only, excluding optional data buffers.

Operating conditions

Parameter		Min	Nom	Max	Units
$V_{\text {CC }}$	Positive Supply Voltage (measured to $\mathrm{D}_{\mathrm{GND}}$)	4.75	5.0	5.25	V
V+	Positive Supply Voltage (measured to $\mathrm{A}_{\mathrm{GND}}$)	14.25	15.0	15.75	V
V-	Negative Supply Voltage (measured to $\mathrm{A}_{\text {GND }}$)	-14.25	-15.0	-15.75	V
$V_{\text {AGND }}$	Analog Ground Voltage (measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	0.1	V
tpWL	CONV Pulse Width, LOW ${ }^{1}$	25			ns
towh $^{\text {P }}$	CONV Pulse Width, HIGH^{+}	15			ns
$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			V
$\underline{\mathrm{OL}}$	Output Current, Logic LOW ${ }^{2}$			4.0	mA
${ }_{\text {IOH }}$	Output Current, Logic HIGH ${ }^{2}$			-400	$\mu \mathrm{A}$
AIN	Input Voltage Range ${ }^{3}$	0.0		1.0	V
T_{A}	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$
Notes:	1. Applies to the TDC1007 IC only. 2. TDC1007 IC only, excludes optional output data buffers. 3. 75Ω input impedance as supplied, U2 offset zeroed.				

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Min	Max	Units
ICC Positive Supply Current	$V_{C C}-\operatorname{MAX}$		100	mA
$1+\quad$ Positive Supply Current	$\mathrm{V}+$ - MAX		40	mA
1- Negative Supply Current	$V-=$ MAX		-540	mA
$\mathrm{Z}_{\text {IN }}$ Input Impedance ${ }^{1}$		70	80	Ohms
IIL Input Current, Logic LOW ${ }^{2}$	$V_{C C}=$ MAX, $V_{1}=0.5$		-2.0	mA
${ }^{1 / 1 H} \quad$ Input Current, Logic HIGH^{2}	$V_{C C}=M A X, V_{1}=2.4 \mathrm{~V}$		75	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }} \quad$ Output Voltage, Logic Low ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{0 L}=4 \mathrm{~mA}$		0.5	V
$\mathrm{V}_{\mathrm{OH}} \quad$ Output Voltage, Logic HIGH^{2}	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V

Notes:

1. As supplied, user selectable.
2. Applies to the TDC1007 IC only, excludes optional output data buffers.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Min	Max	Units
F_{S}	Maximum Conversion Rate	$V_{C C}=M I N, V_{E E}=M I N$	20		MHz
${ }_{\text {t }}$ STO	Sampling Time Offset ${ }^{2}$	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {EE }}=\mathrm{MIN}$	0	10	ns
${ }_{\text {t }}$	Output Delay Time ${ }^{3}$	$V_{C C}=M I N, V_{E E}=M I N$		40	ns
	Output Data Hold Time ${ }^{3}$	$V_{C C}=$ MIN, $V_{E E}=\mathrm{MIN}$	10		ns
Notes:	1. All parameters apply to 2. Excludes delay from buf 3. Excludes optional output				

TDC1007JIC performance characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Min	Max	Units
$E_{\text {LI }} \quad$ Linearity Error Integral, Independent			0.3	$\%$
$E_{\text {LD }}$ Linearity Error Differential			0.3	$\%$
BW Bandwidth, Full Power Input		7		$M H 2$
DP Differential Phase Error	NTSC @ 4x Color Subcarrier		1.0	Degrees
DG Differential Gain Error	NTSC @ 4x Color Subcarier		1.7	$\%$

Note:

1. Items listed in this table are for the A / D converter only. Contributions to these parameters from the buffer amplifier are not significant.

Output Coding

Input Voltage ${ }^{\text {P }}$	Binary		Two's Complement	
	True	Inverted	True	Inverted
	NMINV - 1	0	0	1
	NLINV = 1	0	1	0
0.0000	00000000	11111111	10000000	01111111
$+0.0039$	00000001	11111110	10000001	01111110
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
+0.4978	01111111	10000000	11111111	00000000
+0.5017	10000000	01111111	00000000	11111111
-			-	-
-			-	-
-	-	-	\bullet	-
+0.9956	11111110	00000001	01111110	10000001
$+1.0000$	11111111	00000000	01111111	10000000

Note:

1. Input voltage range is from 0.00 to +1.00 Volt. Innput voltages are at code centers and the voltage offset of the buffer amplifier is nulled.l

Calibration

The evaluation board is calibrated by adjusting the offset and gain trim resistors, R11 and R12. Offset can be calibrated when a voltage corresponding to $1 / 2$ LSB above "zero-scale" is applied to the board input. The "OFFSET" potentiometer is then turned to a point where the output data toggles between
" 00000000 " and "00000001." Gain is calibrated by applying voltage $1 / 2$ LSB below full-scale and turning the "GAIN" pot until the output data toggles between " 11111110 " and "11111111."

Input Resistor Selection Table (Values in Ohms)
Input Voltage Range

$\mathrm{Z}_{\mathbf{I N}}$	1V		2 V		4V		5 V		10V	
	R1	R2								
50	0	52.3	24.9	24.3	37.4	12.7	40.2	10	45.3	4.99
75	0	80.6	37.4	39.2	56.2	19.1	60.4	15.4	68.1	7.5
93	0	102	46.4	48.7	69.8	23.7	75	19.1	84.5	9.31
1k	0	Open	499	1k	750	332	806	249	909	110

For input voltage ranges and input impedances not covered by the Input Resistor Selection Table, the following formulas may be used to calculate R1 and R2:

$$
\begin{aligned}
& R 2=\frac{1}{\left(\frac{V R}{Z_{I N}}\right)-\frac{1}{1000}} \\
& R 1=Z_{I N}-\left(\frac{1000 R 2}{R 2+1000}\right)
\end{aligned}
$$

where $V R$ is the desired input voltage range of the board, $Z_{I N}$ is the desired input impedance of the board, and the constant value 1000 is given by the value of R3.

Miscellaneous parts for evaluation boards
Edge connector for mating TRW Cinch 271-22-30-1690
with TDC1007P1C
Eurocard connector mounted Winchester 64P-6033-0430,
on TDC1007E1C DIN 41612 B
Eurocard connector for Winchester 64S-6033-0422-1,
mating with TDC1007E1C DIN 41612 B
64 lead IC socket for U1 Robinson-Nugent
ICN-649-S5-G1 or
ICN-649-S5-U1
Heat sink for Q2 Thermalloy 6D738
Mica washer for 02 Delbert Blinn 500-125-2
Stitch-weld pins for Moore Systems 700508
R1 and R2

Notes for Figure 2. Schematic of Evaluation Board

1. All capacitor values are in microFarads $(\mu \mathrm{F})$ unless otherwise noted.
2. All capacitor voltage ratings are 50WVDC unless otherwise noted.
3. All resistors are 118 W unless otherwise noted.
4. All resistor values are in Ohms.
5. All Diodes are 1 N 4001 .
6. Values for C 2 and R 10 are selected during manufacturing.
7. R23 is an eight-resistor SIP, 2.2 kOhms, $1 / 4 \mathrm{~W}$ (not supplied).
8. Edge connector numbers in parentheses (B18, etc.) are for TDC1007E1C.
9. AGND pins for TDC1007E1C are B22, B25, B28, A20 to A32.
10. DGND pins for TDC1007E1C are B2, B9, B10, B16, B17, A1 to A18.
11. Pins 27, 31,44 , and 45 of $U 1$ are connected to DGND.
12. Pins 1-10, 23-25, and 51-64 of U 1 are connected to AGND.

TDC1007E1C / TDC1007P1C

Figure 2. Schematic Of Evaluation Board

TDC1007P1C Assembly

Notes:

1. R23, U5 and U6 not supplied.
2. All dimensions in inches.

TDC1007E1C Assembly

Notes:

1. R23, U5 and U6 not supplied.
2. All dimensions in inches.

Ordering Information
\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Product } \\
\text { Number }\end{array} & \text { Description }\end{array}
$$ \begin{array}{l}Order

Number\end{array}\right]\)| TDC1007E1C | | |
| :--- | :--- | :--- |
| TDC1007E1C | Eurocard Format Board With AID Converter | TDC1007P1C |

A/D Converter Evaluation Board 6-bit, 25MSPS

The TDC1014 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of TRW's TDC1014 6-bit video analog-to-digital (A/D) converter. The board contains circuitry for buffering input signals, generating reference voltages, and regulating on-board power supply voltages. All digital inputs and outputs are TTL compatible, and provisions are made for gain and offset adjustments. The board requires +5 and ± 15 Volt power supplies.

There are two versions of the TDC1014 evaluation board. The P1C board has a standard 22144 format edge connector interface, and the E1C uses the Eurocard (DIN 41612B) connector format.

Features

- Includes TDC1014 6-Bit A'D Converter
- User-Selectable Input Impedance
- User-Selectable Input Voltage Range
- Unipolar Or Bipolar Operation
- Gain And Offset Calibration Controls
- Operates From +5 and ± 15 Volt Power Supplies
- Optional Digital Output Buffers
- Eurocard (E1C) Or 22144 Edge Connector (P1C) Format

Applications

- Evaluation Of TDC1014 AID Converter
- System Prototyping Aid
- Incoming Inspection Test Fixture

TDC1014E1C

Functional Block Diagram

Pin Assignments

$\mathrm{D}_{\text {GND }}$	A1	B1	-6V
DGND	A2	B2	$\mathrm{D}_{\text {GND }}$
DGND	A3	B3	NC
$\mathrm{D}_{\text {GND }}$	A4	B4	D_{6} (LSB)
$\mathrm{D}_{\text {GND }}$	A5	B5	D_{5}
$\mathrm{D}_{\text {GND }}$	A6	B6	NLINV
$\mathrm{D}_{\text {GND }}$	A7	B7	D_{4}
$\mathrm{D}_{\text {GND }}$	AB	B8	D_{3}
$\mathrm{D}_{\text {GND }}$	A9	B9	${ }^{\text {G }}$ GND
$\mathrm{D}_{\text {GND }}$	A10	B10	$\mathrm{D}_{\text {GND }}$
$\mathrm{D}_{\text {GND }}$	A11	811	D_{2}
$\mathrm{D}_{\text {GND }}$	A12	B12	D_{1} (MSB)
$\mathrm{D}_{\text {GND }}$	A13	B13	NMMINV
$\mathrm{D}_{\text {GND }}$	A14	B14	NC
$\mathrm{D}_{\text {GND }}$	A15	B15	CONV
$\mathrm{D}_{\text {GND }}$	A16	B16	$\mathrm{DGND}^{\text {g }}$
$\mathrm{D}_{\text {GND }}$	A17	817	Dgnd
DGND	A18	818	$V_{C C}$
NC	A19	819	NC
AGND	A20	820	NC
AgND	A21	821	$A_{\text {IN }}$
AGND	A22	B22	AgND
AgND	A23	823	REF 1
AGND	A24	824	V+
AgND	A25	B25	$A_{\text {GND }}$
AGND	A26	B26	REF 2
AgND	A27	B27	V -
AgND	A28	B28	AGND
$A_{\text {AND }}$	A29	B29	NC
$A_{\text {AND }}$	A30	B30	NC
$A_{\text {GND }}$	A31	B31	NC
$A_{G N D}$	A32	B32	NC

NC A	1	$A_{G N D}$
$N C$	B	2

Functional Description

General Information

The TDC1014 evaluation board consists of four functional sections: Buffer amplifier, reference voltage generator, voltage regulators, and A/D converter. The board is configured for
optional input and output data buffers. Analog and digital grounds are separated on the board in order to provide flexibility in system grounding.

Buffer Amplifier

The input buffer amplifier has been designed specifically for standard baseband video. This amplifier is optimized for 75 Ohm 1 Volt p-p input levels. It provides a gain of -1 and offsets the output so that the AID converter receives a full-scale input signal from 0 to -1 Volt.

The buffer amplifer is capable of driving the input capacitance of the TDC1014 A/D converter. An NPN transistor buffer
follows the wideband operational amplifier to provide improved current drive and insure frequency stability.

Components C2 and R10 optimize the performance of the amplifier and are selected as part of the manufacturing process. The buffer amplifier is operated from +12 and -6 Volt regulators which are included on the evaluation board.

Voltage Reference

The reference voltage for the TDC1014 is generated by operational amplifiers U3B and U3C. The system gain is adjusted by varying the reference voltage (R12).

Voltage Regulators

Two voltage regulator circuits are provided on the evaluation board for supplying power to the buffer amplifier. U3D and Q3 provide +12 Volts for the buffer amplifier. U3A and Darlington
transistor 02 provide - 6 Volts for the buffer amplifier and the A/D converter. U4 is a 2.5 Volt bandgap voltage reference for both regulators and the voltage reference source.

A/D Converter

The TDC1014 integrated circuit is a 6-bit fully parallel (flash) analog-to-digital $|A / D|$ converter capable of digitizing an input signal at rates up to 25MSPS (MegaSamples Per Second). A single convert (CONV) signal controls the conversion operation of the device. The TDC1014 consists of 63 sampling
comparators, encoding logic, and a latched output register. On the rising edge of the CONV signal, the comparators are latched and their outputs are encoded. On the next rising edge of the CONV signal, that data is transferred to the TTL data outputs of the TDC1014.

Output Interface

The TDC1014E1C and P1C boards have provisions for 74 S04 Schotky TTL hex inverters for buffering data and improving output drive and fan-out capability. Provision is also made for pull-up resistors on the data outputs. The use of pull-up
resistors or data buffers is recommended for optimum results. The data outputs of the TDC1014 are routed directly to the edge connector.

Mechanical Design

The two versions of the evaluation board (P1C, E1C) differ in mechanical configuration. The P1C board is designed to interface with a standard 22144 contact edge connector. The E1C board is designed to meet the "Eurocard" format and interface with a standard 64 conductor Eurocard (DIN 41612B) connector. Mating edge connectors are included with each evaluation board.

The evaluation board can also accommodate a TDC1007 8-bit A/D converter by using the 64 lead DIP footprint lfound outside the perimeter of the TDC1014's 24 lead DIP footprint) with appropriate circuit changes.

The board has a standard 28 pin socket for the TDC1014 integrated circuit. It may be substituted with a "Zero Insertion Force" (ZIF) socket if the board is used as a test fixture.

Power Supplies

The TDC1014 evaluation board operates from three power supply voltages: $+5.0,+15$, and -15 Volts. The return path for ${ }^{\text {ICC }}$ Icurrent from the +5.0 Volt power supply) is $\mathrm{D}_{\mathrm{GND}}$. The return paths for I+ and I- (current from the +15 and -15 Volt supplies) is AGND. $_{\text {G }}$ A user-installed jumper option routes
the -6.0 Volt regulator output to the edge connector. The use of all ground pins is recommended. Diodes D_{2} through D_{6} function as voltage clamps which will prevent damage to the board if improper power supply voltages are applied.

Name	Function	Value	E1C	P1C
$V_{\text {CC }}$	Positive Power Supply	+5V	B18	M
V+	Positive Power Supply	+ 15 V	B24	H
V-	Negative Power Supply	-15V	B37	E
$\mathrm{A}_{\text {GND }}$	Analog Ground	OV	A20-A32	1-9
			B25	
			B28	
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	OV	A1-A18	11-21
			B2	
			B9	
			B10	
			B16	
			B17	
-6V	Jumper Optional -6 Volt Output	-6V	B1	22

Analog Input

The TDC1014 evaluation board is configured with a nominal input impedance of 750 hms and an input voltage range of 1 Volt p-p. The input impedance and input voltage range may be modified by the user. The values of input resistors R1 and

R2 determine the input impedance and voltage range of the evaluation board. Suggested values are shown in the Input Resistor Selection Table for various input impedances and voltage ranges.

Name	Function	Value	E1C	P1C
AIN	Analog Input Voltage	See Text	B21	K

Reference

The TDC1014 evaluation board includes circuitry for generating the voltage reference for the A / D converter. In addition, there
is an auxilliary -2.0 Volt reference voltage provided. These voltages are available at the edge connectors.

Name	Function	Value	E1C	P1C
REF 1	-1.0 Volt Reference Output	-1 V	B23	J
REF 2	Auxillary -2.0 Volt Output	-2 V	B26	F

Control Inputs

Two control inputs are provided on the TDC1014 evaluation board for modifying the format of the output data. When NMINV is tied to a logic " 0 ," the most significant bit of the output data is inverted. When NLINV is tied to a logic " 0 ," the five least significant bits of the output data are inverted. By
using these DC controls, the output data can be represented in binary, inverse binary, two's complement, or inverse two's complement formats. Output data versus input voltage and control input state is illustrated in the Output Coding Table.

Name	Function	Value	E1C	P1C
NMINV	Not Most Significant Bit INVert	TTL	B13	R
NLINV	Not Least Significant Bit INVert	TTL	B6	W

Convert

The comparators in the TDC1014 A/D converter are latched within $10 n s$ (tstol after the rising edge of the CONV signal. Delays through the buffer amplifier are not included in tSTO.

Output data is latched on the next rising edge of the CONV signal. Note that there are minimum pulse width (tpwh, tpwL requirements on the waveshape of the CONV signal.

Name	Function	Value	E1C	P1C
CONV	A/D Clock lnput	TTL	B15	N

Data Outputs

The outputs of the TDC1014 evaluation board are TTL compatible and capable of driving four low-power Schottky unit loads (54/74LS). Data remains valid after the rising edge of the CONV signal for a minimum time, thO, and the next data becomes valid after a maximum time of t . The evaluation
board has provisions for optional data buffers (74S04). When installing these circuits, it is necessary to open traces on the board which connect the inverter inputs to their corresponding outputs.

Name	Function	Value	E1C	P1C
$\mathrm{D}_{1}($ MSB $)$	Most Significant Data Bit	TL	B 12	S
D_{2}		TL	B 11	T
D_{3}		TL	BB	U
D_{4}		TLL	B 7	V
D_{5}		TL	B	
D_{6} (LSB)	TL	B	X	

No Connects

There are several pins or contacts to the TDC1014 evaluation board that have no connection to the circuit. These pins may be left open.

Name	Function	Value	E1C	P1C
NC	No Connect	Open	A19	10
			B19	A, B
			B20	C, D
			B29-B32	L
			B3	Z
			B14	P

Figure 1. Timing Diagram

Absolute maximum ratings (beyond which the board may be damaged) ${ }^{1}$

Power Supply Voltages

	 $A_{G N D}$ (measured to $D_{G N D}$) \qquad +0.5 to -0.5 V
Input Voltages	
	CONV, NMINV, NLINV (measured to $\mathrm{D}_{\mathrm{GND}}$) \qquad -0.5 to +5.5 V $\mathrm{A}_{\text {IN }}$ (measured to $\mathrm{A}_{\mathrm{GND}}$ ' \qquad +4.5 to $-4.5 \mathrm{~V}^{6}$
Output	
	Applied voltage \qquad -0.5 to $+5.5 \mathbf{V}^{2,5}$ Applied current, externally forced \qquad -1.0 to $+6.0 \mathrm{~mA}^{3,4,5}$ Short circuit duration (single output in HIGH state to $\mathrm{D}_{\mathrm{GND}}$) \qquad $1 \mathrm{sec}^{5}$
Temperature	
Note:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voltage must be limited 10 specified rang3.
	4. Current is specified as positive when flowing into the device.
	5. Applies to TDC1014 IC only; excludes optional output data buffers.
	6. With input impedance of 750 hms , as supplied.

Operating conditions

Parameter		Min	Nom	Max	Units
$V_{\text {CC }}$	Supply Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	4.75	5.0	5.25	V
V+	Positive Supply Voltage (Measured to $\mathrm{A}_{\mathrm{GND}}$)	14.25	15.0	15.75	V
V-	Negative Supply Voltage (Measured to $\mathrm{A}_{\mathrm{GND}}$)	-14.25	-15.0	-15.75	V
$V_{\text {AGND }}$	Analog Ground Voitage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	+0.1	V
tpWL	CONV Pulse Width, LOW ${ }^{1}$	19			ns
tpWH	CONV Pulse Width, High ${ }^{1}$	15			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
$\bar{V}_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			V
10 L	Output Current, Logic LOW ${ }^{2}$			4.0	mA
OH	Output Current, Logic HIGH ${ }^{2}$			-400	$\mu \mathrm{A}$
AIN	Input Voltage Range ${ }^{3}$	0.0		1.0	V
T_{A}	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$
Notes:	1. Applies to the TDC1014 IC only. 2. TDC1014 IC only; excludes optional output data buffers. 3. 75Ω input impedance, as supplied, U2 offset zeroed.				

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Min	Max	Units
F_{S}	Maximum Conversion Rate	$V_{C C}=M I N, V_{E E}=M I N$	25		MSPS
${ }_{\text {STO }}$	Sampling Time Offset ${ }^{2}$	$V_{C C}=M 1 N, V_{E E}-M I N$	-2	10	ns
${ }_{\text {t }}$	Output Delay ${ }^{3}$	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$		35	ns
${ }^{\text {H0 }}$	Output Hold Time ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$	10		ns
Note:					
	1. All parameters apply to 2. Excludes delay from buffer 3. Excludes optional output				

TDC1014J7C performance characteristics within specified operating conditions ${ }^{1}$

Parameter	Min	Max
$E_{L I}$ Linearity Error Integral, Independent		0.4
$E_{L D}$ Linearity Error Differential		$\%$
$B W$ Bandwidth, Full power Input	12	

Note:

1. Items listed in this table are for the AID converter only. Contributions to these parameters for the buffer amplifier are not significant.

Output Coding ${ }^{1}$

Input Voltage	Binary		Two's Complament	
	True	Inverted	True	Invertad
	NMINV - 1	0	0	1
	NLINV - 1	0	1	0
0.0000	000000	111111	100000	011111
+0.0159	000001	111110	100001	011110
\bullet	-	-	-	-
\bullet		-	\bullet	-
+0.4920	011111	100000	111111	000000
+0.5079	100000	011111	000000	111111
-			-	-
-	-	-	-	-
+0.9841	111110	000001	011110	100001
$+1.0000$	111111	000000	011111	100000

Note:

1. Input voltage range is from 0.00 to +1.00 Volt, ne offset added. IInput voitages are at code centers and the voitage offset of the buffer amplifier is nulled.!

Calibration

The evaluation board is calibrated by adjusting the offset and gain trim resistors, R11 and R12. Offset can be calibrated when a voltage corresponding to $1 / 2$ LSB greater than "zero-scale" is applied to the board input. The "OFFSET" potentiometer is then adjusted to a point where the output
data toggles between "000000" and "000001." Gain is calibrated by applying a voltage $1 / 2$ LSB less than full-scale and adjusting the "GAIN" pot until the output data toggles between " 111110 " and "111111."

Input Resistor Selection Table (values in Ohms)

Input Voltage Range										
ZIN	IV		2 V		4 V		5 V		10 V	
	R1	R2	R1	R2	$R 1$	R2	R1	R2	R1	R2
50	24.9	25.5	37.4	12.7	43.2	6.19	45.3	4.99	47.5	2.49
75	37.4	39.2	56.2	19.1	64.9	9.53	68.1	7.50	71.5	3.74
93	46.4	48.7	69.8	23.7	80.6	11.8	84.5	9.31	88.7	4.64
1 K	499	1000	750	332	866	143	909	110	953	52.3

For input voltage ranges and input impedances not covered by the Input Resistor Selection Table, the following formulas may be used to calculate R1 and R2:
$R 2=\frac{1}{\left(\frac{2 V R}{Z_{I N}}\right)-\frac{1}{1000}}$
$R 1=Z_{I N}-\left(\frac{1000 \mathrm{R} 2}{\mathrm{R} 2+1000}\right)$
where $V R$ is the desired input voltage range of the board, $Z_{I N}$ is the desired input impedance of the board, and the constant value 1000 is given by the value of R 3 .

TDC1014E1C / TDC1014P1C

Schematic of Evaluation Board

Notes for Schematic of Evaluation Board

1. All capacitor values are in microFarads $(\mu \mathrm{F})$.
2. All capacitor voltage ratings are 50WVDC unless otherwise noted.
3. All resistors are $1 / 8 \mathrm{~W}$ unless otherwise noted.
4. All resistor values are in Ohms.
5. All diodes are 1 N 4001 .
6. Values for C 2 and R 10 are selected during manufacturing.
7. R23 is an eight-resistor SIP, $2.2 \mathrm{kOhms} 1 / 4 \mathrm{~W}$ (not supplied).
8. Edge connector numbers in parenthes (B18, etc.) are for TDC1014E1C.
9. AGND pins for TDC1014E1C are B22, B25, B28, A20 to A32.
10. $\mathrm{D}_{\mathrm{GND}}$ pins for TDC1014E1C are $\mathrm{B} 2, \mathrm{~B} 9, \mathrm{~B} 10, \mathrm{~B} 16, \mathrm{~B} 17, \mathrm{~A} 1$ to A 18 .

Miscellaneous

Edge connector for mating with TDC1014P1C
Eurocard connector mounted on TDC1014E1C
Eurocard connector for mating with TDC1014E1C
Heatsink for 02
Mica washer for Q2
Stitch-weld pins for R1 and R2

TRW Cinch 271-22-30-1690
Winchester 64P-6033-0430, DIN 41612B
Winchester 64S-6033-0422-1, DIN 41612B
Thermalloy 6D738
Delbert Blinn 500-125-2
Moore Systems 700508

Notes:

1. R23, U5 and U6 not supplied.
2. All dimensions in inches.

TDC1014P1C Assembly

Notes:

1. R23, U5 and U6 not supplied.
2. All dimensions in inches.

Ordering Information

Product Number	Description	Order Number
TDC1014E1C	Eurocard Format Board With A/D Converter	TDC1014E1C
TDC1014P1C	22/44 Edge Format Board With A/D Converter	TDC1014P1C

TDC1019E1C

A/D Converter Evaluation Board

 9-Bit, 15MSPSThe TDC1019 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of TRW's TDC1019 9-bit video analog-to-digital (A/D) converter. The board contains circuitry for buffering the input signal, generating reference voltages, regulating supply voltages, and buffering output data. All digital inputs and outputs are ECL compatible. Provisions are made for gain, offset, and linearity adjustments. The board requires -5.2 and ± 15 Volt power supplies.

Features

- Includes TDC1019 9-Bit A/D Converter
- User-Selectable Input Impedance
- User-Selectable Input Voltage Range
- Unipolar Or Bipolar Operation
- Gain And Offset Calibration Controls
- Mid-Scale Linearity Adjustment Control
- Operates From ± 15 and -5.2 Volt Power Supplies
- Differential ECL Output Buffers
- Low Profile Eurocard Format

Applications

- System Prototyping Aid
- Incoming Inspection Test Fixture
- Evaluation Of TDC1019 AID Converter

Functional Block Diagram

Pin Assignments

$\mathrm{D}_{\text {GND2 }}$	A1	81	$\mathrm{D}_{\text {GND2 }}$
CONV	A2	B2	CONV
(LSB) $\overline{D_{g}}$	A3	B3	Dg (LSB)
$\overline{5}$	A4	B4	D_{8}
\square_{7}	A5	B5	D_{7}
${ }^{5}$	A6	B6	D_{6}
\square_{5}	A7	B7	D_{5}
5_{4}	AB	B8	D_{4}
$\overline{0}$	A9	B9	D_{3}
D_{2}	A10	B10	D_{2}
(MSB) ${ }_{1}$	A11	B11	D_{1} (MSB)
$\mathrm{D}_{\text {GND2 }}$	A12	B12	NC
$\mathrm{D}_{\text {GND2 }}$	A13	B13	NC
$\mathrm{D}_{\text {GND2 }}$	A14	B14	$\mathrm{V}_{\text {EE2 }}$
DGND2 $^{\text {d }}$	A15	B15	NC
$0_{\text {GND2 }}$	A16	B16	NC
$\mathrm{D}_{\text {GND2 }}$	A17	B17	$\mathrm{DGND2}$
$\mathrm{D}_{\text {GND1 }}$	A18	B18	NC
DGND1	A19	B19	$V_{\text {EEI }}$
$0_{\text {GND1 }}$	A20	B20	NC
DGND1	A21	B21	DGND1
$A_{\text {GND }}$	A22	B22	
$A_{\text {GND }}$	A23	B23	$V_{\text {RBS }}$
AGND	A24	B24	$V_{\text {REF }}$
AGND	A25	B25	NC
AGND	A26	B26	$A_{\text {IN }}$
AGND	A27	B27	-6V
$A_{\text {GND }}$	A28	B28	V+
AGND	A29	B29	NC
AGND	A30	B30	V-
AGND	A31	B31	01 SUPPLY
$A_{\text {GND }}$	A32	B32	NC

Functional Description

General Information

The TDC1019 evaluation board consists of four circuit blocks: the buffer amplifier, reference voltage generator, voltage regulators, and A / D converter. The board also contains
differential ECL output data buffers. Analog and digital grounds are separated on the board in order to provide flexibility in system grounding.

Buffer Amplifier

The input buffer amplifier has been designed specifically for standard baseband video. This amplifier is optimized for a 75 Ohm, 1 Volt p-p input level. It has a gain factor of -2 and can offset the output so that the A / D converter receives a full-scale input signal of 0 to -2 Volts.

The buffer amplifier is designed to drive the input capacitance of the A/D converter. An NPN transistor buffer follows the
wideband operational amplifier to provide improved current drive capability and insure frequency stability.

Components C2, C8, C18, and R10 optimize the performance of the amplifier and are selected during the manufacturing process. The buffer amplifier is operated from +12 and -6 Volt regulators which are included on the evaluation board.

Voltage Reference

The reference Voltage for the TDC1019 is generated by operational amplifier U3A. This amplifier is buffered by PNP transistor, $\mathrm{Q4}$, in order to supply the reference current for the A / D converter. Gain is adjusted by varying R12 which changes
the reference voltage. The sense tap at the bottom of the reference resistor chain is used inside the loop of U3A to minimize the offset Voltage caused by parasitic resistances associated with the RB pin of the TDC1019.

Voltage Regulators

Two voltage regulator circuits are provided on the evaluation board to supply power to the buffer amplifier. U3C and Q3 provide +12 Volts while U3D and transistor Q2 provide -6

Volts. Both regulators and the voltage reference circuit are referred to the output of U4, a 2.5 Volt bandgap voltage reference device.

A/D Converter

The TDC1019 integrated circuit is a 9 -bit fully parallel (flash) analog-to-digital (A/D) converter capable of digitizing an input signal at rates up to 18MSPS (MegaSamples Per Second). TDC1019 evaluation boards come with the standard 15MSPS AID converter installed. A speed selected $|-1|$ version of the TDC1019 is capable of 18MSPS operation. A differential ECL CONVert (CONV) signal controls the conversion operation of the
device. The TDC1019 consists of 512 sampling comparators, encoding logic, and a latched output register. On each rising edge of the CONV signal, the comparators are latched and their outputs encoded into binary data. On the next rising edge of the CONV signal, the encoded result is transferred to the differential ECL data outputs of the AID converter.

Output Interface

The evaluation board includes differential ECL line receivers (MC10116) for buffering the output data. Provisions are also
made for terminating all data outputs. Termination resistors are not included with the board.

Mechanical Design

The board is designed to meet standard "Eurocard" format and interface with a standard 64 conductor Eurocard connector. A DIN $41612 B$ mating connector is included with each evaluation board for the user's convenience.

A standard 64 pin socket for the TDC1019 integrated circuit is used on the board. The board is arranged so that this socket may be replaced by a "Zero Insertion Force" (ZIF) socket if the evaluation board is used as a test fixture. A recommended ZIF socket is made by Textool Inc, part number 264-4493-00-0602.

Power Supplies

The TDC1019 evaluation board operates from three power supplies, $-5.2,+15$, and -15 Volts $V_{E E 1}$ and $V_{E E 2}, V_{+}$, and $V-I$. Power to the A / D is supplied by $V_{E E 1}$ while the ECL output buffers are powered from $V_{\text {EE2. These are kept }}$ separate on the board but may be connected to the same power source. The return path for ${ }^{E} E 1$ Icurrent from $V_{E E 1}$) is $\mathrm{D}_{\mathrm{GND}}$. The return path for IEE2 Icurrent from $\mathrm{V}_{\mathrm{EE} 2}$ is $\mathrm{D}_{\mathrm{GND}}$. The return path for $\mathrm{I}+$ and I - Icurrent from $\mathrm{V}+$ and
$V-1$ is $A_{G N D}$. It is recommended that all ground pins be used. The output of the -6 Volt regulator is routed to the edge connector for the user's convenience. Power for the collector of 01 may be supplied to the board separately by breaking jumper $\mathrm{A}-\mathrm{B}$ and using egde connector pin B31. Diodes D_{2} through Dg function as voltage clamps which prevent damage to the board should improper power supplies be applied.

Name	Function	Value	E1C
V+	Positive Analog Power Supply	15 V	B28, 831
v -	Negative Analog Power Supply	-15V	B30
$V_{E E 1}$	Negative Supply For A/D Converter	-5.2V	B19
$V_{\text {EE2 }}$	Negative Supply For Data Buffers	-5.2V	B14
$A_{\text {GND }}$	Analog Ground	0.0 V	A22-A32
$\mathrm{D}_{\mathrm{GND1}}$	Digital Ground	0.0 V	A18-A21
			B21
$\mathrm{D}_{\mathrm{GND2}}$	Digital Ground For Data Buffers	0.0 V	A1, B1
			A12-A17
			B17
-6.0	-6 Volt Regulator Output	-6.0V	B27
01 Supply	Optional Positive Power Supply	15 V	B31

Analog Input

The TDC1019 evaluation board is configured with a nominal input impedance of 750 hms and an input voltage range of 1 Volt p-p. Both input impedance and input voltage range may be changed. The values of input resistors R1 and R2
determine the input impedance and voltage range of the evaluation board. Suggested values for various input impedances and voltage ranges are shown in the Input Resistor Selection Table.

Name	Function	Value	E1C
A IN	Signal Input To Board	See Text	B26

Reference

The evaluation board contains all of the circuitry needed for generation of a stable reference voltage for the A / D converter.

The reference voltage and reference sense points are accessible through the edge connector.

Name	Function	Value	E1C
$V_{\text {REF }}$	Reference Output Voltage	-2.0 V	B24
$V_{\text {RBS }}$	Reference Sense Dutput	-2.0 V	B23

Convert

The TDC1019 A/D converter is sampled within 1Ons ItsTol of the rising edge of the CONV signal. Delays through buffer amplifier U2 are not included in tSTO. Output data is latched
on the next rising edge of the CONV signal. Note that there are minimum pulse width ItpWH, tpWL requirements on the waveshape of the CONV signal.

Name	Function	Value	E1C
CONV	CONVert Command Input	ECL	B2
$\overline{\text { CONV }}$	CONVert Command Input (Complement)	ECL	A2

Digital Outputs

The outputs of the TDC1019 evaluation board are differential ECL compatible. Provisions are made for terminating resistors for each data output. Data remains valid after the rising edge
of the CONV signal for a minimum time, tHO , and the next data becomes valid after a maximum time of t .

Name	Function	Value	E1C
D1 (MSB)	Most Significant Data Output	ECL	B11
$\bar{\square}_{1}$ (MSB)	Most Significant Data Output (Inv)	ECL	All
D_{2}		ECL	B10
$\overline{D_{2}}$		ECL	A10
D_{3}		ECL	B9
$\overline{D_{3}}$		ECL	A9
D_{4}		ECL	B8
$\overline{D_{4}}$		ECL	A8
D_{5}		ECL	B7
$\overline{D_{5}}$		ECL	A7
D_{6}		ECL	B6
$\overline{D_{6}}$		ECL	A6
B_{7}		ECL	B5
$\overline{D_{7}}$		ECL	A5
D_{8}		ECL	B4
$\overline{D_{8}}$		ECL	A4
Dg_{g} (LSB)	Least Significant Data Output	ECL	B3
$\overline{\overline{D g}_{g}(\text { LSB })}$	Least Significant Data Output (Inv)	ECL	A3

No Connects

There are several pins on the TDC1019 evaluation board that have no connections to the circuit. These pins may be left open.

Name	Function	Value	E1C
NC	No Connection	Open	B12, B13
			B15, B16
			B18, B20
			B22, B25
			B29, B32

Figure 1. Timing Diagram

Absolute maximum ratings (beyond which the board may be damaged) ${ }^{1}$

Power Supply Voltages

$V_{E E 1}$ (measured to $D_{G N D 1}$) ...

V- (measured to $A_{G N D}$) ... +0.5 to -18.0V
$V_{\text {AGND }}$ (measured to $\mathrm{D}_{\mathrm{GNDI}}$) ... to -0.5V
$V_{\text {DGND2 }}$ (measured to $D_{G N D 1}$) ... +0.5 to -0.5 V
Input Voltages

Temperature
\qquad
Storage ... $150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. With input impedance of 750 hms , as supplied.

Operating conditions

Parameter	Min	Nom	Max	Units
$\mathrm{V}_{\text {EE1 }} \quad$ Negative Power Supply (measured to $\mathrm{D}_{\mathrm{GND1}}$)	-4.9	-5.2	-5.5	V
$V_{\text {EE2 }} \quad$ Negative Power Supply (measured to $\mathrm{D}_{\mathrm{END2}}$)	-4.9	-5.2	-5.5	V
$V_{+} \quad$ Positive Power Supply (measured to $\mathrm{A}_{\mathrm{GND}}$)	+14.25	+15.0	+15.75	V
V - Negative Power Supply (measured to $\mathrm{A}_{\mathrm{GND}}$)	-14.25	-15.0	-15.75	V
$V_{\text {AGND }} \quad$ Analog Ground (measured to $\mathrm{D}_{\text {GND1 }}$)	-0.1	0.0	+0.1	V
$\mathrm{V}_{\text {OGND2 }}$ Digital Ground (measured to $\mathrm{D}_{\text {GNDI }}$)	-0.1	0.0	+0.1	V
tPWL CONV Pulse Width LOW ${ }^{1}$	25			ns
${ }^{\text {tpWH }}$ CONV Pulse Width HIGH 1	32			ns
$V_{\text {IL }} \quad$ Input Voltage Logic LOW ${ }^{1}$			-1.4	V
$\mathrm{V}_{\mathrm{IH}} \quad$ Input Voltage Logic HIGH ${ }^{1}$	-1.0			V
$\mathrm{A}_{\text {IN }} \quad$ Input Voltage Range ${ }^{2}$	0.0		1.0	V
$\mathrm{T}_{\mathrm{A}} \quad$ Ambient Temperature Range, Still Air	0		+50	${ }^{\circ} \mathrm{C}$

Notes:

1. Applies to the TDC1019JIC integrated circuit only.
2. 75 Ohm input impedance, as supplied, U2 offset zeroed.

Electrical characteristics within specified operating conditions

Paramatar	Test Conditions	Min	Max	Units
IEE1 Negative Supply Current	$V_{E E 1}=$ MAX 1		-850	mA
1EE2 Negative Supply Current	$\mathrm{V}_{\text {EE2 }}=\mathrm{MAX}^{2}$		-70	mA
I+ Positive Supply Current	$V+=$ MAX		125	mA
1- Negative Supply Current	V - $=$ MAX		-150	mA
$\mathrm{Z}_{\text {IN }} \quad$ Input Impedance		70	80	Ohms
$V_{0 L}$ Output Voltage, Logic LOW	$V_{\text {EE1 }}$-NOM ${ }^{2}$		-1.85	V
$\mathrm{V}_{\text {OH }} \quad$ Output Voltage, Logic HIGH	$\mathrm{V}_{\mathrm{EE} 1}$ - NOM^{2}	-0.81		V

Notes:

1. Applies to the TDC1019 integrated circuit only.
2. Applies to the MC10116s only, without termination.

Switching characteristics within specified operating conditions ${ }^{1}$

Parametar		Test Conditions	Min	Max	Units
Fs	Maximum Conversion Rate	$\mathrm{V}_{\text {EE1 }}-\mathrm{MIN}$	15		MSPS
${ }_{\text {t }}$ to	Sampling Time Offset ${ }^{1 / 2}$	$\mathrm{V}_{\text {EEI }}-\mathrm{MIN}$	0	10	ns
to	Output Delay Tims ${ }^{3}$	$\mathrm{V}_{\text {EE1 }}=$ MIN		39	ns
${ }_{\text {tho }}$	Output Data Hold Time ${ }^{3}$	$\mathrm{V}_{\text {EE1 }}-\mathrm{MiN}$	7		ns
Note:					

TDC1019J1C performance characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Min	Max	Units
	Linearity Error Integral, Independent	$V_{R T}, V_{\text {RB }}=$ NOM, VRM unadjusted		0.3	\%
Ell	Linearity Error Integra, Independent	$V_{\text {RT }}, V_{\text {RB }}=$ NOM, VRM adjusted		0.15	\%
$E_{L D}$	Linearity Error Differential	$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}=\mathrm{NOM}$		0.15	\%
BW	Bandwidth Full Power Input		5		MHz
DP	Differential Phase	NTSC © 4x Color Subcarrier, VRM adjusted		1.0	degrees
DG	Differential Gain	NTSC @ 4x Color Subcarrier, VRM adjusted		2.0	\%

Note:

1. Items listed in this table are for the A/D Converter only. Contributions to these parameters from the buffer amplifier are not significant.

Calibration

The evaluation board is calibrated by adjusting the "OFFSET" and "GAIN" trim resistors, R11 and R12. Offset is calibrated when a voltage corresponding to $1 / 2$ LSB greater than "zero-scale" is applied to the board input. The "OFFSET" potentiometer is then adjusted until the output data toggles between "000000000" and "000000001." Gain is calibrated by
applying a voltage $1 / 2$ LSB less than full-scale and adjusting the "GAIN" potentiometer until the output data toggles between "111111110" and "111111111." A linearity adjustment potentiometer ("MID", R5) is included on the board to provide the user with a fine adjustment of the integral linearity of the AID converter.

1019E1C Output Coding Table ${ }^{1}$

	OVF ${ }^{2}$	$\overline{\mathrm{OVF}}{ }^{2}$	D-9	$\overline{\mathrm{D}_{1-9}}$
-0.00195	1	0	000000000	111111111
0.000	0	1	000000000	111111111
$+0.00195$	0	1	000000001	111111110
-	\bullet	-	-	-
-	-	-	-	-
\bullet	-	-	-	-
+0.4990	0	1	0111111111	100000000
+0.50097	0	1	1000000000	011111111
-	-	-	-	-
\bullet	-	-	-	-
-	-	-	-	-
+. 99804	0	1	111111110	000000001
+1.000	0	1	111111111	000000000
+1.00192	0	1	111111111	000000000

Note:

1. Input voltage range is from 0.00 to +1.00 Volt, no offset added. Input voltages are at code centers and the voltage offset of the buffer amplifier is nulled.
2. Applies to TDC1019J1C integrated circuit only (Pins 28 and 29).

Schematic of Evaluation Board

LSI Products Division
TRW Electronic Components Group

Notes for Schematic of Evaluation Board

1. All capacitor values are in microFarads $\langle\mu \mathrm{F}$).
2. All capacitor voltage rating are 50WVDC unless other wise noted.
3. All resistors are $1 / 8 \mathrm{~W}$ unless otherwise noted.
4. All resistor values are in Ohms.
5. All diodes are 1 N 4001 unles otherwise specified.
6. Values for $\mathrm{C} 2, \mathrm{C}, \mathrm{C} 18$ and R10 are selected during manufacturing.
7. R27 through R30 are eight-resistor SIPs, 2.2kOhms 1/4W (not supplied).

Miscellaneous

Eurocard Connector mounted Winchester 64P-6033-0430,
on TDC1019E1C
Eurocard Connector for mating TDC1019E1C
64-pin IC socket for U1

DIN 41612B
Winchester 64S-6033-0422-1,
DIN 41612B
Robinson-Nugent
ICN-649-S5-G1 or
ICN-649-S5-U1

Stitch-Weld pins for R1 and R2 Moore Systems 700508
Input Resistor Selection Table (Values in Ohms)
Input Vothage Range

Z	IV		2V		4V		5V		10V	
	R1	R2								
50	0	52.3	24.9	24.3	37.4	12.7	40.2	10	45.3	4.99
75	0	80.6	37.4	39.2	56.2	19.1	60.4	15.4	68.1	7.5
93	0	102	46.4	48.7	69.8	23.7	75	19.1	84.5	9.31
1 k	0	open	499	1 k	750	332	806	249	909	110

For input voltage ranges and input impedances not covered by the Input Resistor Selection Table, the following formulas may be used to calculate R1, and R2:
R2 $=\frac{1}{\left(\frac{V R}{Z_{I N}}\right)-\frac{1}{1000}}$
$R 1=Z_{I N}-\left(\frac{1000 R_{2}}{R 2+1000}\right)$
Where VR is the desired input voltage range of the board, Z_{I} is the desired input impedance of the board, and the constant value 1000 is given by the value of $R 3$.

TDC1019E1C Assembly

Note: 1. *These two pins wired together to make W6.

Ordering Information

Product Number	Description	Order Number
TDC1019E1C	Eurocard Format Board With A/D Converter	TDC1019EIC

TDC1025E1C

High-Speed A/D Converter Evaluation Board 8-Bit, 50MSPS

The TDC1025 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of TRW's TDC1025 8-bit, high-speed analog-to-digital (A/D) converter. The board contains circuitry for buffering the input signal, generating reference voltages, regulating supply voltages, and latching output data. All digital inputs and outputs are ECL compatible. Provisions are made for gain and offset adjustments. The board requires -5.2 and $\pm \uparrow 5$ Volt power supplies.

Features:

- Includes TDC1025 8-Bit AID Converter
- User Selectable Input Impedance
- User Selectable Input Voltage Range
- Adjustable Offset For Unipolar Or Bipolar Operation
- Gain And Offset Calibration Controls
- Differential ECL Output Data
- Eurocard Format

Applications

- Evaluation Of TDC1025 A/D Converter
- System Prototyping Aid
- Incoming Inspection Test Fixture

Functional Block Diagram

TDC1025E1C Eurocard Edgeconnector Pinout

A1	NC	B1	$\mathrm{D}_{\text {GND2 }}$
A2	NC	B2	$\mathrm{D}_{\text {GND2 }}$
A3	NC	B3	$\mathrm{DGND}^{\text {G }}$
A4	D_{1} (MSB)	B4	$\overline{D_{1}}$ (MSB)
A5	D_{2}	B5	D_{2}
A6	D_{3}	B6	D_{3}
A7	D_{4}	B7	D_{4}
A8	D_{5}	B8	${ }^{\text {D }}$
A9	D_{6}	B9	D
A10	D_{7}	B10	D_{7}
A11	D_{8} (LSB)	$B 11$	D8(LSB)
A12	NC	B12	DGND2
A13	NC	B13	$\mathrm{D}_{\text {GND2 }}$
A14	NC	B14	$\mathrm{D}_{\text {GND2 }}$
A15	NC	B15	$\mathrm{D}_{\text {GND2 }}$
A16	NC	B16	NC
A17	NC	B17	$\mathrm{D}_{\text {GND2 }}$
A18	$V_{\text {EE2 }}$	B18	$V_{\text {EE2 }}$
A19	NC	B19	DGND2
A20	NC	820	$\mathrm{D}_{\text {GND2 }}$
A21	CONV	B21	$\mathrm{D}_{\text {GND2 }}$
A22	CLK OUT	B22	NC
A23	NC	B23	$\mathrm{D}_{\text {GND1 }}$
A24	$V_{\text {EE1 }}$	B24	$\mathrm{D}_{\text {GND1 }}$
A25	NC	B25	NC
A26	NC	B26	$A_{\text {GND }}$
A27	NC	827	$A_{G N D}$
A28	$A_{I N}$	B28	AGND
A29	NC	B29	AGND
A30	V_{+}		$A_{\text {GNO }}$
A31	NC		AGND
A32	V -	B32	$A_{G N D}$

Functional Description

General Information

The TDC1025 evaluation board consists of five functional sections: the input buffer amplifier, reference voltage generator, voltage regulators, AID converter, and output data latches.

Analog and digital grounds are separated on the board for flexibility in system grounding.

Buffer Amplifier

The analog input amplifier provided on the evaluation board is a differential amplifier comprised of transistor array U2, $\mathrm{Q5}$, and 01 . The input signal is routed to the non-inverting input of the buffer through R1 and R2. These two resistors may be selected to provide scaling of the input voltage and input impedance. Values of R1 and R2 for various input ranges and impedances are shown in the Input Resistor Selection Table. The amplifier has a non-inverting gain of 2 and a 3dB bandwidth of approximately 90 MHz . The TDC1025E1C is supplied with a $1 \mathrm{~V} p-\mathrm{p}$ input voltage range and a 50 Ohm input impedance referenced to $A_{G N D} \backslash \mathrm{R} 1=0, R 2=49.9$ Ohms).

An offset adjustment potentiometer (R28) is provided to level shift input signals. The offset adjustment is also useful in
calibration of the A/D converter. This voltage is fed from U3A through R10 and decoupled by C3. 01 provides current buffering to drive the analog input of the A / D converter and to insure frequency stability. Resistors R15, 39, 40, 42, 44, 46, 67 , 68 and 69 provide isolation between the amplifier output and the analog input pins of the A/D converter. R11 closes the feedback loop around the buffer amplifier.

Resistor locations for a -20 dB test port are provided on the board. This allows the user to observe the signal at the buffer output. This test port is created by inserting an SMA connector (Omni-Spectra 2062-0000-00 or equivalent) at J4, and R60 and R61 onto the board. The suggested values are 470 Ohms for R60 and 49.9 Ohms for R61.

Voltage Reference

On the TDC1025E1C, R_{T} of the AID converter is connected to $A_{G N D}$, and R_{B} is connected to the -2 V reference voltage. This sets the full-scale conversion range of 0 to -2 Volts at the A/D converter's analog input. The evaluation board provides a footprint for installing a potentiometer (R3O) for the adjustment of R_{M}. This adjustment allows optimization of integral linearity, although this is not required to meet the converter specifications. A preferred low-impedance midpoint driving circuit is shown in the TDC1025 data sheet.

The master voltage reference is provided by $\mathrm{U4} 1+2.5 \mathrm{~V}$ band-gap voltage sourcel. This voltage is applied to

Voltage Regulators

Two voltage regulators are provided on the evaluation board to supply power to the buffer amplifier and the A / D converter. U3D and $\mathrm{Q3}$ supply +12 Volts and U3B and 02 supply -5.2
potentiometer R29 which functions as a GAIN scaling adjustment. The voltage on R29 is inverted by op-amp U3. The output of this op-amp is then followed by a transistor, 04, in order to provide current drive. The GAIN potentiometer is adjusted to set the full-scale conversion range of the A / D converter.

The sense points, RBS and RTS, are not used on the evaluation board, but are recommended for higher performance system design to minimize the offset error voltage. Use of the sense points is discussed in the TDC1025 A/D converter data sheet.

Volts. Both regulators and the voltage reference circuit, U3C and 04 , are referred to the output of U 4 , a 2.5 Volt band-gap reference device.

A/D Converter

The TDC1025 integrated circuit is an 8-bit, fully parallel (flash) A / D converter, capable of digitizing an input signal at rates up to 50MSPS (MegaSamples Per Second). The TDC1025E1C evaluation board has the A / D converter in a leaded chip carrier package (L1) installed. A differential ECL CONVert (CONV) signal controls 255 sampling comparators, encoding logic, and a latched output register. On each rising edge of the CONV signal, the comparators are latched and their outputs encoded into binary data. On the next rising edge of the CONV signal,
the encoded result is transferred to the differential ECL data outputs of the A / D converter. Note that there are minimum pulse width $\mathrm{ItpWL}^{\mathrm{t}} \mathrm{t}$ PWHI requirements on the CONV signal. Refer to the Timing Diagram (Figure 1) for timing requirements.

The evaluation board includes differential output data latches (U6 thru U9) for driving the board outputs. Provision has been made for ECL terminating resistors near the board edge connector.

Mechanical Design

The TDC1025E1C board is designed to meet "Eurocard" format and is compatible with the standard DIN 41612B connector. A mating connector is included with each evaluation board.

Mounting holes and pads are provided in the board for installing a contact chip carrier socket (for TDC1025C1) when
the evaluation board is used as a test fixture. The user must remove the A / D converter before installing the chip carrier socket. Application Note TP-34 "Design Tips For The TDC1025 High-Speed AID Converter" discusses sockets appropriate for use with the evaluation board.

Thermal Considerations

The TDC1025L1 supplied with the board has thermal characteristics similar to other high-performance ECL devices. With ambient temperatures above $45^{\circ} \mathrm{C}, 500$ L.F.P.M. moving air is required to cool both the A/D and the ECL interface devices. Uniform cooling also ensures that temperature induced
logic-level shifts between devices are minimized, resulting in good noise immunity. The ambient temperature of the TDC1025L1 should not be allowed to exceed $70^{\circ} \mathrm{C}$ during operation. A heatsink should be added if dictated by the system environment.

Analog Input

The SMA connector (J2) is one of two analog inputs available on the evaluation board. The other analog input is located at the Eurocard edge connector, pin A28. Analog ground (AGND) returns are located on pins A_{26-32} of the edge connector. The use of J 2 will provide superior performance at higher
frequencies. A jumper must be installed on the board in order to use the analog input connection at the edge connector. The trace to the edge connector is left open to prevent noise pickup when the SMA connector is in use.

Name	Function	Value	E1C
AIN	Analog Input Signal	$\mathrm{V} \mathrm{p}-\mathrm{p}$	A28, $\sqrt{2}$

Convert

A single-ended CONV signal may be applied via an on-board SMA connector (J3), or Pin A21 of the edge connector. A differential ECL CONV signal is generated from the single-ended input CONV signal by U5. This differential CONV
signal is applied to the A/D converter as well as the delay line (Z1). The delay line provides the user with programmable delay taps 12 ns increments) for strobing the output registers as well as providing a delayed clock output for external devices.

Name	Function	Value	E1C
CONV	ECL	A21	
CLK OUT	Delayed Clock Dutput	ECL	A22

Power

The TDC1025E1C evaluation board operates from three external power sources: -5.2VDC (VEE2), +15VDC (V+), and -15VDC (V-I. Other voltages are generated on the board by voltage regulator circuits: $-5.2 \mathrm{VDC}\left(\mathrm{V}_{\text {EE }}\right)$, and +12 VDC . The AID converter chip and amplifier are powered from V_{EE}, while the ECL output latches and terminators are powered from V_{EE}. $V_{E E 1}$ and $V_{E E 2}$ are separated in order to keep the AID converter supply as noise-free as possible. The return path for $\mathrm{I}_{E E 1}$ (current from $\mathrm{V}_{E E 1}$) is $A_{G N D}$ and $D_{G N D 1}$. The return path for ${ }^{\text {EE2 }}$ (current from $V_{E E 2}$) is $D_{G N D 2}$. The return path for $1+$ and 1 - (current from V_{+}and $V-$) is $A_{G N D}$. All power and ground pins must be used. Diodes connected between grounds
(D_{6} through D_{11}) are provided for protection in case of excessive differential ground potentials or reversed supply polarity.

Ground isolation on the board is provided for flexibility in system grounding. Optimizing the A/D performance can be accomplished by connecting all grounds at the power source or directly at the chip. Since no two systems are alike, experiments with various ground connections should be made to achieve the best AID performance. Analog ground noise should be minimized (i.e. from digital switching, clocks, etc.) whenever possible.

Name	Function	Value	E1C
$\mathrm{V}+$	Positive Analog Power Supply	+15 V	A30
$\mathrm{V}-$	Negative Analog Power Supply	-15 V	A32
$\mathrm{V}_{\text {EE1 }}$	Negative Supply Output	-5.2 V	A24
$\mathrm{V}_{\text {EE2 }}$	Negative Supply For Data Latch	-5.2 V	A18, B18
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	B26-B32
$\mathrm{D}_{\mathrm{GND1}}$	TDC1025 Digital Ground	0.0 V	B23, B24
$\mathrm{D}_{\mathrm{GND2}}$	Digital Ground For Data Latch	0.0 V	B1-3, B12-15, B17, B19-21

Digital Outputs

The Q and $\overline{\mathrm{Q}}$ outputs of the data latches (U6 thru Ug) are routed to the edge connector. Provisions have been made on the board for installing terminator resistor SIPS on each data line. Standard ECL practices require source or load terminating resistors in order to minimize ringing and overshoot. If the data
lines are routed to another circuit board or system, termination at the signal destination is recommended. If the data lines are only observed at the edge connector, then termination on the evaluation board is recommended.

Name	Function	Value	E1C
D_{1} (MSB)	Most Significant Data Output	ECL	A4
$\overline{D_{1}}$ (MSB)	Most Significant Data Output Complement	ECL	B4
D_{2}		ECL	A5
D_{2}		ECL	B5
D_{3}		ECL	A6
D_{3}		ECL	B6
D_{4}		ECL	A7
D_{4}		ECL	B7
D_{5}		ECL	$A 8$
D_{5}		ECL	B8
D_{6}		ECL	A9
D_{6}		ECL	B9
D_{7}		ECL	A10
0		ECL	B10
Dg_{g} (LSB)	Least Significant Data Output	ECL	Al1
D_{8} (LSB)	Least Significant Data Output Complement	ECL	B11

Figure 1. Timing Diagram

Absolute maximum ratings (beyond which the board may be damaged) ${ }^{1}$

Power Supply Voltages	
	+0.5 to -7.0v
	V- (measured to AGND + 0.5 to -18.0V
Input Voltages	
	$A_{\text {IN }}$ (measured to $A_{G N D}$) .. +2.5 to to $-2.5{ }^{\text {a }}$ 2
Output	
	Short circuit duration (single output to $\mathrm{D}_{\text {GND2 }}$) .. indefinite
Temperature	
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. With input impedance of 50 Ohms, as supplied.
	3. With 500 L.F.P.M. moving air.

Operating conditions

Parameter		Min	Nom	Max	Units
$V_{\text {EEI }}$	Negative Power Supply (measured to $\left.\mathrm{D}_{\mathrm{GND1}}\right)^{3}$	-4.9	-5.2	-5.5	V
$\mathrm{V}_{\text {EE2 }}$	Negative Power Supply (measured to $\mathrm{D}_{\mathrm{GND2}}$)	-4.9	-5.2	-5.5	v
$\mathrm{V}+$	Positive Power Supply (measured to $\mathrm{A}_{\mathrm{GND}}$)	+14.25	+15.0	+15.75	V
V -	Negative Power Supply (measured to $\mathrm{A}_{\mathrm{GND}}$)	-14.25	-15.0	-15.75	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground (measured to $\mathrm{D}_{\mathrm{GNOD}}$)	-0.1	0.0	+0.1	V
$V_{\text {DGNDI }}$	Digital Ground (measured to $\mathrm{D}_{\mathrm{GND2}}$)	-0.1	0.0	+0.1	V
${ }_{\text {tPWL }}$	CONV Pulse Width, LOW	8			ns
${ }^{\text {tPWH }}$	CONV Pulse Width, HIGH	10			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW ${ }^{1}$			-1.63	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH ${ }^{1}$	-0.98			V
$A_{\text {IN }}$	Input Voltage Range ${ }^{4}$	0.0		-1.0	V
${ }^{T}$	Ambient Temperature Range ${ }^{2}$	0		70	${ }^{\circ} \mathrm{C}$

Notes:

1. Applies to U5 only.
2. 500 L.F.P.M. required above $45^{\circ} \mathrm{C}$.
3. $\mathrm{V}_{\mathrm{EE} 1}$ is generated on the TDC1025E1C.
4. 50 Ohm input impedance, as supplied, buffer amplifier offset zeroed.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Min	Max	Units
${ }_{\text {IEE2 }}$ Negative Supply Current	$V_{\text {EE2 }}=$ MAX		-500	mA
1+ Positive Supply Current	$V+$ - MAX, $V-$ - MAX		150	mA
1- Negative Supply Current	$V+$ - MAX, V- - MAX		-900	mA
V_{OL} Output Voltage, Logic LOW	$V_{\text {EE } 1}=$ NOM 1		-1.85	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$\mathrm{V}_{\text {EE } 1}=\mathrm{NOM}^{1}$	-0.81		V

Note:

1. Applies to data latches $\mid U_{5}$ through $U_{g} \mid$ only.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Min	Max	Units
	Maximum Conversion Rate		50		MSPS
tD	Data Output Delay	$V_{E E 2}=M 1 N$	note 2	note 2	ns
${ }_{\text {tsto }}$	Sampling Time Offset ${ }^{1}$			10	ns
${ }^{\text {c }} \mathrm{CO}$	CLK OUT Delay		note 3	note 3	ns

Notes:

1. Applies to TDC1025 integrated circuit only (excludes buffer amplifier).
2. Delay time determined in manufacturing process.
3. User selectable with delay line, $Z 1$.

LSI Products Division
THW Electronic Components Group
E 55

Schematic of Evaluation Board

E 56

Device performance characteristics within operating conditions

Parameter	Test Conditions	Min	Max	Units
$E_{L I}$ Linearity Error, Integral, Independent	$V_{R T}, V_{R B}=$ NOM ${ }^{1,2}$		0.3	$\%$
$E_{L D}$ Linearity Error, Differential	$V_{R T}, V_{R B}=N O M^{1,2}$		0.3	$\%$
Bandwidth, Full Power Input ${ }^{1}$		12.5		$M H z$

Notes:

1. Applies to TDC1025 integrated circuit only. Contributions from buffer amplifier are negligible.
2. $R M$ is not adjusted.

Calibraton

The evaluation board is calibrated by adjusting the "OFFSET" and "GAIN" trim resistors, R28 and R29. Offset is calibrated when a voltage corresponding to $1 / 2$ LSB greater than "zero-scale" is applied to the board input. The "OFFSET" potentiometer is then adjusted until the output data toggles between " 00000000 " and" 00000001 ." Gain is calibrated by
applying a voltage $1 / 2$ LSB less than full-scale and adjusting the "GAIN" potentiometer until the output data toggles between " 11111110 " and " 11111111. ." A linearity adjustment potentiometer (R30) can be installed by the user on the board to provide a fine adjustment of the integral linearity of the A / D converter.

Input Resistor Selection Table (Values in Ohms)

Input Voltage Range										
$Z_{\text {IN }}$ Input Impedance	1 V		2 V		4V		5 V		10 V	
	R1	R2								
50Ω	0.00	49.9	24.9	24.9	37.4 \% W	12.4	40.2 \%W	10.0	45.3 3W	4.99 kW
75Ω	0.00	75.0	37.4	37.4	$56.2 \mathrm{y} / \mathrm{W}$	18.7	60.4 \%/W	15.0	68.1 2W	$7.50 \mathrm{\% W}$
93Ω	0.00	93.1	46.4	46.4	69.8 \% W	23.2	$75.0 \% \mathrm{~W}$	18.7	84.5 2W	9.31
1000Ω	0.00	1.0 K	499	499	750	249	806	200	909	100

Notes:

1. 50Ω, IV option supplied.
2. Resistors are $1 \%, 118$ Watt unless otherwise specified.

For input voltage ranges or input impedances not shown in the table, the following formulas may be used to calculate R1 and R2:
$Z_{I N}=R 1+R 2 \quad V_{\text {RANGE }}=\frac{R 1+R 2}{R 2}$

Notes for Schematic of Evaluation Board

1. All resistor values are in Ohms.
2. All resistors are $1 / 8 \mathrm{~W}$ unless otherwise noted.
3. All capacitor values are in microFarads unless otherwise noted.
4. All capacitors are 50 WVDC unless otherwise noted.
5. All diodes are 1 N 4148 unless otherwise noted.
6. R58 is a quad $220 / 330$ Ohm terminator SIP.
7. $\mathrm{Z1}$ is a digital delay line, 2ns per tap, 20ns total Rhombus TZB12-5.
8. L 1 is a ferrite bead inductor, Fair-rite part number 2743001112.
9. AgND pins on the TDC1025L1 are: 46, 50,55,58.
10. $D_{G N D}$ pins on the TDC1025L1 are: $8,28,39,64$.
11. VEEA pins on the TDC1025L1 are: $13,14,16,18,20,22,23$.
12. VEED pins on the TDC1025L1 are: 7, 29.
13. Values for components $\mathrm{C} 5, \mathrm{R} 15, \mathrm{R} 62, \mathrm{R} 65, \mathrm{R} 66$ are determined during the manufacturing process.
14. Component designators C32, R49, R57, R63, R64, J1 are not used on the TDC1025E1C board.
15. Components R30, R31, R45, R47, R48, R54, R55, R59, R60, R61, J4, are user options and are not included with the board.

Miscellaneous Evaluation Board Parts

J2 - J4 SMA PCB Jack (3)	Winchester Plug 64P-6033-0430
(J4 not included)	
Omni-Spectra PIN 2062-0000-00	Winchester Socket 64S-6033-0422-1

Output Coding Table

Input Voltage	Binary Output
0.000 V	00000000
-0.0039 V	00000001
\bullet	\bullet
\bullet	\bullet
-0.4980 V	\bullet
-0.5020 V	01111110
-0.5059 V	01111111
\bullet	10000000
\bullet	\bullet
\bullet	\bullet
-0.9961 V	\bullet
-1.0000 V	11111110

TDC1025E1C Assembly

Notes:

1. Dimensions are in inches.
2. * not supplied.

Ordering Information

Product No.	Description	Order No.
TDC1025E1C	Eurocard Format Board With A/D Converter	TDC1025E1C

High-Speed A/D Converter Evaluation Board
6-bit, 100MSPS
The TRW TDC1029E1C is a fully assembled and tested circuit board designed to aid in evaluating the high-speed TDC1029 flash A / D converter. The board comes complete with the AID converter installed in a socket, ready to accept and digitize a 1V p-p 50 Ohm signal. Other ranges and impedances may be selected by plug-in resistor substitutions on the board. An offset adjustment is provided which can establish a unipolar or bipolar input range.

The board enables the converter to operate to its full specifications over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ambient temperature range 1 , is compatible with the $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ Eurocard format, and offers a number of user options for application flexibility.

Features

- 100 MegaSamples Per Second (MSPS)
- 50MHz Input Bandwidth
- Includes TDC1029J7C AID LSI Converter
- Selectable Input Impedance
- 1V Input Range
- Adjustable Offset For Unipolar Or Bipolar Inputs
- Configured For On-Board DAC Reconstruction
- Balanced ECL Output Buffering
- Comparator Circuit For Clock Generation
- Low Profile Eurocard Format DIN 416128

Applications

- TDC1029 Evaluation
- System Prototyping
- Test Fixture

Note: 1. 500 L.F.P.M. moving air required above $40^{\circ} \mathrm{C}$.

©TRW Inc. 1985 40601248 Rev. C-1/85
Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

NC	A1	B1	$\mathrm{D}_{\text {GND }}$
NC	A2	B2	$\mathrm{D}_{\text {GND }}$
NC	A3	B3	NC
D_{1} (MSB)	A4	B4	$\overline{D_{1}}$ (MSB)
D_{2}	A5	B5	D2
D_{3}	A6	B6	${ }^{\text {D }}$
D_{4}	A7	B7	${ }_{5}$
D_{5}	AB	B8	
D_{6} (LSB)	A9	B9	\square_{6} (LSB)
$\mathrm{D}_{7} \mathrm{IN}$	A10	B10	$\mathrm{DF}_{7} \mathrm{IN}$
$\mathrm{D}_{8} \mathrm{IN}$	Al1	B11	D_{8} [N
RCLK	A12	B12	RCLR
DIA OUT-	A13	B13	NC
D/A OUT+	A14	814	$\mathrm{D}_{\text {GND }}$
NC	A15	815	$\mathrm{D}_{\text {GND }}$
NC	A16	B16	$\mathrm{D}_{\text {GND }}$
NC	A17	817	$\mathrm{D}_{\text {GND }}$
$V_{\text {EE2 }}$	A18	818	$\mathrm{V}_{\mathrm{EE} 2}$
NC	A19	819	$\mathrm{D}_{\text {GND }}$
NC	A2O	820	${ }^{\text {O }}$ GND
CONV	A21	821	CONV
DCLK	A22	822	$\mathrm{O}_{\text {GND }}$
DCLK	A23	823	$\mathrm{D}_{\text {GND }}$
$V_{\text {EE1 }}$	A24	824	${ }_{\text {O }}$ GD
$\mathrm{V}_{\text {EE1 }}$	A25	825	NC
NC	A26	B26	$A_{\text {and }}$
NC	A27	B27	${ }_{\text {AGND }}$
$\mathrm{AlN}_{\text {ac }}$	A28	828	$A_{\text {a }}$ d
NC	A29	829	Agnd
V+	A30	830	${ }_{\text {AgND }}$
v -	A31	B31	AgND
v-	A32	B32	$A_{\text {And }}$

Functional Description

General Information

The TDC1029E1C has been designed to simplify the interface and evaluation of TRW＇s 6－bit parallel A／D converter．The board provides all conditions necessary for the operation of the A／D converter，including impedance matching，timing and logic interface，power supply regulation，and generation of references．

The A／D converter is mounted into the board with low－inductance pin sockets．These sockets will withstand up to ten removal cycles．

The board is frequently used in prototyping a system，and is later converted to an incoming inspection test fixture．A variety of zero insertion force（ZIF）sockets are accommodated by the board to support this application．If clearance for a ZIF socket is not sufficient，bypass capacitors C 1 and C 2 can be removed and reverse－mounted on the foil side of the board．

Power and Grounding

The TDC1029E1C operates from three supply voltages，+15.0 V ， -15.0 V and -5.2 V ，which must be supplied through the edge connector．For optimum performance，power supply noise should be less than $10 \mathrm{mV} \mathrm{p}-\mathrm{p}$ at specified current．All power and ground pins must be connected．

The $\mathrm{V}_{\mathrm{EE}} 1$ supply is derived from the -15.0 V supply by regulator U8，and furnishes power for the A／D．This supply is connected to pins A24 and A25 of the edge connector for monitoring，and may supply up to 200 mA for peripheral circuitry．However，the current available from $\mathrm{V}_{\mathrm{EE} 1}$ is not
sufficient to supply $\mathrm{V}_{\mathrm{EE} 2}$ and should not be used for that purpose．

From a system standpoint，it is usually better to maintain separate analog and digital grounds to avoid ground loops．In this case the analog and digital grounds are connected at one common point；usually at the power supplies．For optimum performance of the TDC1029E1C where inducing ground loops elsewhere is not a concern，analog ground and digital ground can be connected together at the edge connector of the evaluation board．

Name	Function	Value	Connector
V＋	Positive Supply Voltage	＋15．0V	A30
v－	Negative Supply Voltage	－15．0V	A31，A32
$\mathrm{V}_{\text {EE2 }}$	Digital ECL Supply	－ 5.2 V	A18， 818
$A_{\text {GND }}$	Analog Ground	0．0V	826－832
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	B1，B2，B14－817，819，820，822－824

Voltage References

The full－scale range of conversion in a flash A／D converter is given by the voltage across the reference resistor chain． Highest performance from the TDC1029 AID converter is achieved when the analog signal lies between -0.3 V and $-1.3 V$ ．Therefore，the two reference potentials $V_{R T}$ and $V_{R B}$ must be offset 0.3 V below analog ground．$V_{R T}$ is fixed at -0.3 V Inominall，while V_{RB} may be adjusted between－ 0.5 V and -1.5 V ．

Voltage reference U4 provides a master reference of 2.5 V ，from which both $V_{R B}$ and $V_{R T}$ are derived．The 2.5 V is inverted and scaled by U5，which drives current－follower Q2．Capacitors C9 and C 10 bypass V_{RT} to give a stable reference of -0.3 V ．

Gain－control dividers R30 and R49 provide between 0.8 V and 2.5 V from the 2.5 V reference，which is amplified by U 5 ． Current gain is given by 01 ，which is capable of sinking 40 mA ， and providing from -0.5 V to -1.5 V to V_{RB} ．Capacitors C 6 and C 7 bypass any spurious noise to analog ground．

Convert

The TDC1029E1C is configured to accommodate a $400 \mathrm{mV} \mathrm{p-p}$ Inomimall input from a generator with a 50 Ohm source impedance. There are two methods of inputting the clock (CONV) to the board. The SMA connector labeled $\sqrt{ } 3$ is used for single-ended inputs only. This is also connected to pin A21 of the Eurocard edge connector. Pin A21 can be used to input a single-ended CONV, or used in conjunction with B 21 (CONV) for balanced inputs. Clocking the board from the edge connector will limit high-frequency performance; however, this feature is useful for low-frequency testing. The input termination for CONV consists of R56 and R62. These resistors may be changed as required to match the impedance of the board to that of the driving source.

A single-ended ECL clock is generated from CONV by U6. This clock is converted to differential ECL by U2. The sampling process is initiated by the rising edge of CONV, as shown in Figure 1. After a delay of tSTO (ns), the input comparators of the A / D are latched, thus sampling the analog input. There is a one clock cycle pipeline delay in the A / D converter. The digital data is valid on the A / D outputs too Ins) after the next rising edge of CONV. The output data is registered by U3 on the rising edge of the Register CLocK (RCLK). After an output delay of trDO (ns), the data sample is available at the edge connector. Register U3 provides differential ECL digital outputs from the board. All digital outputs must be terminated by the
user. Pads for SIP resistor networks are provided. For 130 Ohm source termination, R10 $=$ R12 $=220$ Ohms, and $\mathrm{R} 11=\mathrm{R} 13=330$ Ohms. Alternatively, the digital outputs may be driven into any Thevenin equivalent of -2 Volts and 50 Ohms minimum terminating impedance.

Delay line $\mathrm{Z1}$ provides delays from 1 to 10 ns in 1 ns increments. One of these taps has been chosen to optimize the timing of register U3. At the user's option, jumper W6 can be adjusted to provide timing for other peripheral circuitry, including an on-board DAC (U7) if one is used. This Delayed CLock (DCLK) is available on pin A22 of the edge connector. A complementary clock output ($\overline{\mathrm{CLLK}}$) is provided on pin A23 for driving differential ECL lines.

Gate U9 is programmed to divide by one, two or four, depending on the configuration of W1 and W2, which allows U3 to register all, every other, or every fourth digital output from the A / D. As configured, the board will output a new word for each conversion cycle. For special testing lsuch as beat frequencyl, W1 and W2 can be configured as shown in Table 1 to decimate the output data by two or four. The decimated U3 register clock (RCLK) is available on pin A12 of the edge connector. A complementary output ($(\overline{\mathrm{RCLK}})$ is provided on pin B 12 for driving differential ECL lines.

Name	Function	Value	Connector
CONV	CONVert Clock Input	Text	A21
$\overline{\text { CONV }}$	CONVert Input Complement	Text	B21
RCLK	Register Clock Input	ECL	A12
$\overline{\text { RCLK }}$	Register Clock Complement	ECL	B12
DCLK	Delayed Clock Output	ECL	A22
$\overline{\text { DCLK }}$	Delayed Clock Complement	ECL	A23

Analog Input

The SMA connector labeled J 2 is one of two analog inputs to the board. By installing a jumper (W3), this point is also connected to pin A28 of the Eurocard edge connector. Ground return for the edge connector analog input is provided by pin B28. The edge connector should be used for analog inputs below 25 MHz only. When J 2 is used as the analog input, W3 should be left open to avoid reflections from the unterminated line presented by the edge connector input trace. Similarly, when using the edge connector to input analog signals,

J2 should be left open. The input source to the board must be able to drive a 25 pF capacitive load up to the highest frequency of interest.

The input signal is capacitively coupled to the input termination consisting of R21, R50, and R52. The board presents a 50 Ohm impedance to the analog input, with a full-scale range of 1.4 V $\mathrm{p}-\mathrm{p}$. The values of R21 and R50 can be adjusted by the user for other input impedances.

Analog Input (Cont.)

The input termination (R21, R50, R52) results in a 3dB attenuation, giving a $1.0 \mathrm{~V} p-\mathrm{p}$ full-scale input at the A / D. The input range of the A / D is fixed by the reference endpoints V_{RB} and V_{RT}, which are factory adjusted to -1.3 V and -0.3 V , respectively. Thus, it is necessary to offset the analog input to lie within the range of $V_{R B}$ and $V_{R T}$. The OFFSET adjustment performs this function by drawing an offset bias current through the input termination.

Potentiometer R28 is the OFFSET adjustment. The 2.5V (U4) reference is divided by R28, then inverted by U5.
Emitter-follower 03 gives current gain and a low-impedance output which sinks up to 35 mA through the termination network. The resulting offset voltage is 0.0 V to -2.4 V , depending on the setting of R28.

The response at the A / D input is attenuated less than 1 dB at 60 MHz when driven from J2. Low-frequency rolloff begins at approximately 1.5 KHz , with an attenuation of 20 dB per decade rate below this point. C16 can be replaced with a jumper if low-frequency signals are to be digitized, in which case the input signal can be externally offset.

Connector J1 and jumper W5 may be installed in the pads provided to monitor the analog input. A capacitor may be used in place of W5 to provide AC coupling. The insertion loss from J 2 to J 1 is approximately 25 dB for frequencies up to 60 MHz when terminated with 50 Ohms .
R_{1} and R_{14} help match the A / D analog input impedance to the coaxial source impedance, minimizing reflections and equalizing delay to each of the analog inputs.

Name	Function	Value	Connector
AIN $_{A C}$	AC-Coupled Analog Input	Text	J 2, A28
AIN $D C$	DC-Coupled Analog Input	Text	JI

Data Outputs

The digital outputs $D_{1}-D_{6}$ are available on pins $A 4-A 9$ of the edge connector. Complementary outputs are provided on pins
output is attained by cross-wiring the MSB $\left(\mathrm{D}_{1}\right)$, as shown in Table 2. B4-B9 for driving differential ECL lines. A two's complement

Name	Function	Value	Connector
D_{1} (MSB)	Most Significant Data Output	ECL	A4
$\mathrm{D}_{1}(\mathrm{MSB})$	MSB Output Complement	ECL	B4
D_{2}		ECL	A5
$\overline{D_{2}}$		ECL	B5
D_{3}		ECL	A6
$\overline{D_{3}}$		ECL	B6
D_{4}		ECL	A7
$\overline{D_{4}}$		ECL	B7
D_{5}		ECL	AB
$\overline{D_{5}}$		ECL	B8
D_{6} (LSB)	Least Significant Data Output	ECL	A9
$\overline{0_{6}(\text { (LSB) }}$	LSB Output Complement	ECL	B9

Digital-to-Analog Converter

Pads are provided to mount a high-speed 8-bit registered digital-to-analog (D/A) converter (U7) on the board for signal reconstruction. The pinout is configured for the TDC1018J7, an

8-bit, 125MSPS D/A, available from TRW. Other D/As may be used by installing jumpers between the circuit board traces and pads as required.

Name	Function	Value	Connector
D/A OUT+	D/A Converter Output	Text	A14
DIA OUT-	D/A Converter Output	Text	A13
$\mathrm{D}_{7} \mathrm{~N}$	D/A Converter Data Input	ECL	A10
$\mathrm{D}_{7} \mathrm{~N}$	D/A Converter Data Input	ECL	B10
$\mathrm{D}_{8} \mathrm{~N}$	D/A Converter Data Input	ECL	Al1
\square_{8}	D/A Converter Data Input	ECL	811

Thermal and Mechanical Considerations

The TDC1029J7C supplied with the board has thermal characteristics similar to other high-performance ECL devices. With ambient temperatures up to $40^{\circ} \mathrm{C}$, the TDC1029E1C assembly will operate in still air. For ambient temperatures above 40° C, 500 L.F.P.M. moving air is required to cool both the AID and the ECL interface devices. Uniform cooling also ensures that temperature induced logic-level shifts between devices are minimized, giving the best noise margin.

The TDC1029E1C is assembled to meet the "Eurocard" format standards (DIN 41612B).

Installation of a ZIF socket requires careful penetration of the RTV pin socket sealer. The high profile of a zero insertion force socket may restrict board clearance and add parasitic inductance to the signal input leads, which may reduce the high-frequency performance of the system.

Figure 1. TDC1029E1C Timing Diagram

Parts List

Resistors			
R1	15.0Ω	1/8W	1\%
R6	$2201330 \times 4 \mathrm{SIP}$		2\%
Rg	$220 / 330 \times 4$ SIP		2\%
R14	15.0Ω	$1 / 8 \mathrm{~W}$	1\%
R15	$51.1 \mathrm{~K} \Omega$	1/4W	1\%
R16	2201330×4 SIP		2\%
R19	$220 / 330 \times 4$ SIP		2\%
R20	470Ω	$1 / 4 \mathrm{~W}$	1\%
R21	68Ω	$1 / 4 \mathrm{~W}$	5\%
R24	220/330 $\times 4$ SIP		2\%
R28	$2 \mathrm{~K} \Omega \mathrm{POT}$		5\%
R29	$11.3 \mathrm{~K} \Omega$	1/4W	1\%
R30	$2 \mathrm{~K} \Omega \mathrm{POT}$		5\%
R31	270Ω	1/2W	5\%
R35	$10.0 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	1\%
R36	$4.22 \mathrm{~K} \Omega$	$1 / 4 W$	1\%
R37	$20.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	1\%
R38	$20.0 \mathrm{~K} \Omega$	1/4W	1\%
R39	10Ω	1/8W	5\%
R40	$10.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	1\%
R41	$1.21 \mathrm{~K} \Omega$	1/4W	1\%
R43	$1.5 \mathrm{~K} \Omega$	1/4W	5\%
844	$10.0 \mathrm{~K} \Omega$	$1 / 4 W$	1\%
R46	82Ω	1/4W	5\%
R49	$1.00 \mathrm{~K} \Omega$	1/4W	1\%
R50	18Ω	1/4W	5\%
R51	10Ω	1/8W	5\%
R52	68Ω	1/4W	5\%
R53	324Ω	1/8W	1\%
R54	100Ω	1/8W	1\%
R55	220/330 $\times 4$ SIP		2\%
R56	49.9Ω	$118 W$	1\%
R57	130Ω	1/4W	5\%
R60	49.9Ω	118W	1\%
R61	2201330 $\times 4 \mathrm{SIP}$		2\%
R62	49.9Ω	118W	1\%
R63	220/330 $\times 4 \mathrm{SIP}$		2\%
R64	$2201330 \times 4 \mathrm{SIP}$		2\%
R66	12Ω	3 W	5\%
R67	12Ω	3W	5\%
Transistors			
01, 03	2N2907		
02	2N2222		

Capacitors			
C1-C4	$0.1 \mu \mathrm{~F}$	50 V	
C5	$1.0 \mu \mathrm{~F}$	35 V	Polarized
C6	$10.0 \mu \mathrm{~F}$	25 V	Polarized
C7-C9	$0.1 \mu \mathrm{~F}$	50 V	
C10	$1.0 \mu \mathrm{~F}$	35 V	Polarized
C11	$0.1 \mu \mathrm{~F}$	50 V	
C14	$1.0 \mu \mathrm{~F}$	50 V	Non-polar
C15	$10.0 \mu \mathrm{~F}$	25V	Polarized
C16, C17	$1.0 \mu \mathrm{~F}$	50 V	Non-polar
C18, C19	$1.0 \mu \mathrm{~F}$	35 V	Polarized
C20-C22	$0.1 \mu \mathrm{~F}$	50 V	
C23, C24	$1.0 \mu \mathrm{~F}$	35 V	Polarized
C25, C26	$10.0 \mu \mathrm{~F}$	25V	Polarized
C27	$0.1 \mu \mathrm{~F}$	50 V	
C28, C29	$1.0 \mu \mathrm{~F}$	35 V	Polarized

Integrated Circuits

U1	TOC1029J7
U2	100102D
U3	100151D
U4	3503 Y
U5	4741 CL
U6	MC1650L
U8	337 T
U9	10 H 131 L
U10	10H102L
U11	7805 C

Diodes

D1, D3, D4, D9	1 N 4148
D2, D7, D8	1 N 4001
D5, D6	1 N5711
Inductors	
11	Bead Inductor
Delay Lines	
21	TCR507

Table 1. Register Options

W1	W2	Function
0	0	$\div 4 ;$ Every Fourth Sample Registered
0	1	$\div 2 ;$ Every Other Sample Registered
1	1	All Data Registered, As Shipped

$0=$ Open
$I=$ Installed

Table 2. Output Format

Analog Input ${ }^{1}$	Binary	Two's Complement
0.7 V	111111	011111
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
-0.7 V	000000	100000

Note: 1. AC Coupled

TDC1029E1C

Figure 2. Schematic of Evaluation Board

E 68

Absolute maximum ratings (beyond which the device may be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range			Units
		Min	Nom	Max	
V_{+}	Positive Supply Voltage (Measured to $\mathrm{A}_{\text {GND }}$)	+14.25	+15.0	+15.75	V
V_{-}	Negative Supply Voltage (Measured to $\mathrm{A}_{\text {GND }}$)	-14.25	-15.0	-15.75	V
$\mathrm{V}_{\mathrm{EE} 2}$	ECL Supply Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-4.9	-5.2	-5.5	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{DGND}^{\text {) }}$	-0.1	0.0	+0.1	V
$V_{\text {RT }}$	Reference Input, $\mathrm{Top}\left(\mathrm{R}_{\mathrm{T}}\right)^{1,2}$	-0.2	-0.3	-0.4	V
$\mathrm{V}_{\text {PB }}$	Reference Input, Bottom ($\left.\mathrm{R}_{\mathrm{B}}\right)^{1,2}$	-1.2	-1.3	-1.4	V
$\mathrm{V}_{\mathrm{RT}} \mathrm{V}^{-V_{\mathrm{RB}}}$	Voltage Reference Differential	0.9	1.0	1.1	V
tPWH	CONVert Pulse Width, HIGH ${ }^{2}$	5	6		ns
tPWL $^{\text {che }}$	CONVert Fulse Width, LOW ${ }^{2}$	3	4		ns
$V_{\text {C }}$	CONVERT Input Voltage Amplitude	200	400	2000	mV p-p
$\mathrm{V}_{\text {A }}$	Analog Input Voltage Amplitude		1.4	2.1	$\checkmark \mathrm{p}-\mathrm{p}$
T_{A}	Temperature, Ambient ${ }^{3}$	0		70	${ }^{\circ} \mathrm{C}$

Notes:

1. $V_{R T}$ must be more positive than $V_{R B}$ and the reference voltage differential must be within specified range.
2. Specification applies to TDC1029J7.
3. 500 L.F.P.M. moving air required above $40^{\circ} \mathrm{C}$.

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Min	Max			
$\underline{+}$	Supply Current ${ }^{1}$		$V_{+}=$MAX		60	mA
I-	Supply Current ${ }^{1}$	$V_{-}=$MAX		400	mA	
leE2	Supply Current	$\mathrm{V}_{\text {EE2 }}=\mathrm{MAX}$		1000	mA	

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Min	Max			
F_{S}	Maximum Conversion Rate		$V_{+}, V_{-}, V_{E E 2}=\mathrm{MIN}$	100		MSPS
	Comparator + Gate Delay	$V_{+}, V_{-}, V_{E E 2}=$ MIN		8	ns	
${ }^{\text {t STO }}$	Sampling Time Offset ${ }^{1}$	$V_{+}, V_{-}, V_{E E 2}=\mathrm{MIN}$		5	ns	
${ }_{\text {tre }}$	Register Clock Delay	$\mathrm{V}_{+}, \mathrm{V}_{-}, \mathrm{V}_{\text {EE2 }}=\mathrm{MIN}$		8	ns	
trco	Register Clock Output Delay	$V_{+}, V_{-}, V_{\text {EE2 }}=\mathrm{MIN}$		5	ns	
trDO	Register Output Delay	$\mathrm{V}_{+}, \mathrm{V}_{-}, \mathrm{V}_{\text {EE2 }}=\mathrm{MIN}$		3	ns	
Note:						

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Min	Max			
	Bandwidth, Full Power Input ${ }^{1}$		$\mathrm{F}_{S}=100 \mathrm{MSPS}$	50		MHz
	Signal-to-Noise Ratio ${ }^{2}$	100MSPS Conversion Rate				
	Peak SignaliRMS Noise	25MHz Input	41		dB	
		50MHz Input	38		dB	
	RMS Signal/RMS Noise	25MHz Input	32		dB	
		50MHz Input	29		dB	

Notes:

1. Beat frequency sinusoidal reconstruction producing no errors greater than 3 LSB's, $\mathrm{IPWH}=6 \mathrm{~ns}$.
2. Single frequency sinusoidal input attenuated 3 dB at $1 / 2$ sampling frequency (anti-alias prefilter).

Ordering Information

Product Number	Description	Order Number
TDC1029E1C	Eurocard Format Board With A/D Converter	TDC1029E1C

A/D Converter Evaluation Board
 7-bit, 20MSPS

The TDC1047 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of TRW's TDC1047 7-bit video analog-to-digital converter. The board contains circuitry for buffering the input signal, generating reference voltages, and latching output data. All digital inputs and outputs are TTL compatible. Provisions are made for gain and offset adjustments. The board requires +5 and -5.2 Volt power supplies, and is configured to interface with the Eurocard (DIN 41612B) connector format.

Features

- Includes TDC1047 7-Bit A/D Converter
- User-Selectable Input Impedance
- User-Selectable Input Voltage Range
- Unipolar Or Bipolar Operation
- Gain And Offset Calibration Controls
- Operates From +5.0 And -5.2 Volt Power Supplies
- Digital Output Buffers Included
- Eurocard Connector Format
- Uncommitted Prototyping Area

Applications

- Evaluation Of TDC1047 AID Converter
- System Prototyping Aid
- Incoming Inspection Test Fixture

Functional Block Diagram

Pin Assignment

$\mathrm{D}_{\text {GND }}$	A1	B1	$V_{\text {EE }}$
$\mathrm{D}_{\text {GND }}$	A2	B2	$\mathrm{D}_{\text {GND }}$
$\mathrm{D}_{\text {GND }}$	A3	B3	D_{7} (LSB)
$\mathrm{D}_{\text {GND }}$	A4	B4	D_{6}
$\mathrm{D}_{\text {GND }}$	A5	B5	D_{5}
$\mathrm{D}_{\text {GND }}$	A6	B6	NLINV
$\mathrm{D}_{\text {GND }}$	A7	B7	D_{4}
$\mathrm{D}_{\text {GND }}$	A8	B8	D_{3}
$\mathrm{D}_{\text {GND }}$	A9	B9	$\mathrm{D}_{\text {GND }}$
$\square_{\text {GND }}$	A10	B10	DGND
$\mathrm{D}_{\text {GND }}$	A11	$B 11$	D_{2}
$\mathrm{D}_{\text {GND }}$	A12	B12	D_{1} (MSB)
$\mathrm{D}_{\text {GND }}$	A13	B13	NMINV
$\mathrm{D}_{\text {GND }}$	A14	B14	NC
$\mathrm{D}_{\text {GND }}$	A15	B15	CONV
$\mathrm{D}_{\text {GND }}$	A16	B16	$\mathrm{D}_{\text {GND }}$
$\mathrm{D}_{\text {GND }}$	A17	B17	$\mathrm{D}_{\text {GND }}$
$\mathrm{D}_{\text {GND }}$	A18	B18	$V_{\text {CC }}$
NC	A19	B19	NC
$A_{\text {AND }}$	A20	B20	NC
$A_{\text {GND }}$	A21	B21	$A_{\text {IN }}$
$A_{\text {GND }}$	A22	B22	${ }_{\text {AGND }}$
$A_{\text {GND }}$	A23	B23	NC
AgND	A24	B24	NC
AGND	A25	B25	$\mathrm{A}_{\mathrm{GND}}$
AGND	A26	B26	NC
$A_{\text {GND }}$	A27	B27	NC
$A_{\text {GND }}$	A28	B28	NC
$\mathrm{A}_{\text {GND }}$	A29	B29	NC
$A_{\text {GND }}$	A30	B30	NC
AGND	A31	B31	NC
$A_{\text {GND }}$	A32	B32	NC

Functional Description

General Information

The TDC1047 evaluation board consists of four circuit blocks: the buffer amplifier, reference voltage generator, A/D converter,
and output data latch. Analog and digital grounds are separated on the board to provide flexibility in system grounding.

Buffer Amplifier

The input buffer amplifier has been designed specifically for standard baseband video. This amplifier is optimized for 75 Ohm 1 Volt $p-p$ levels. The input resistor network (R1 and R2), the amplifier gain factor of -2 , and the amplifier's adjustable offset are arranged so that the A/D converter receives a full-scale input signal from 0 to -1 Volt.

The amplifier drives the A/D converter directly without an emitter follower stage. Frequency response and pulse response are adjusted by the variable capacitor, C13. The board has provision for a resistive voltage divider and SMA output connector for convenient monitoring of amplifier response.

Voltage Reference

The reference voltage for the TDC1047 is generated by operational amplifier U3 and PNP transistor, Q1, which supplies the reference current. System "GAIN" is adjusted by varying
potentiometer R9 which controls the reference voltage to the A / D converter. The adjustable reference voltage range is 0 to -1.2 Volts.

A/D Converter

The TDC1047 integrated circuit is a 7-bit fully parallel (flash) analog-to-digital converter capable of digitizing an input signal at rates up to 20MSPS (MegaSamples Per Second). A single convert (CONV) signal controls the conversion operation of the device. The TDC1047 consists of 127 sampling comparators,
encoding logic, and a latched output register. On the rising edge of the CONV signal, the comparators are latched and their outputs encoded. On the next rising edge of the CONV signal, that data is transferred to the outputs of the TDC1047.

Output Interface

Data from the TDC1047 is latched by U5 on the rising edge of the CONV signal. This 74LS374 octal edge-triggered latch improves output drive and fan-out capability for the board while adding one clock cycle of pipeline delay. Substituting a
$74 L S 373$ for U5 and connecting its clock input to a logic " 1 " will eliminate the extra pipeline delay while improving the data output drive capability of the board.

Mechanical Design

The TDC1047E1C is designed to be compatible with the "Eurocard" format and mate with a standard 64 conductor DIN Eurocard connector. Mating edge connectors are included with each evaluation board.

The TDC1047E1C evaluation board may also be used with the TDC1048 8-bit AD converter by removing the TDC1047 socket and installing a 28 lead DIP socket in the footprint oriented at
right angles to that of the TDC1047. In addition, electrical changes must be made to the board in order to use the TDC1048. (Refer to TDC1048E1C Data Sheet.)

Standard 24 pin sockets for the TDC1047 integrated circuit are used on the boards. The boards are arranged so that this socket may be replaced by a "Zero Insertion Force" (Z|F) socket when the evaluation board is used as a test fixture.

Power Supplies

The TDC1047E1C evaluation board operates from two power supply voltages: +5.0 and -5.2 Volts. The return path for ICC (current from the +5.0 Volt power supply) is $\mathrm{D}_{\mathrm{GND}}$. The return paths for ${ }^{\mathrm{IEE}}$ (current from the -5.2 Volt supply) is $\mathrm{A}_{\mathrm{GND}}$. It
is recommended that all ground pins be used. Diodes D1 through D4 function as voltage clamps which will prevent damage to the board if improper power supply voltages are applied.

Name	Function	Value	Pin
$V_{C C}$	Positive Power Supply	+5.0V	B18
$V_{\text {EE }}$	Negative Power Supply	-5.2V	B1
$A_{G N D}$	Analog Ground	0.0 V	A20-A32
			B22
			B25
			B28
$\mathrm{O}_{\mathrm{GND}}$	Digital Ground	0.0 V	A1-A18
			B2
			B9
			810
			B16
			B17

Analog Input

The TDC1047 evaluation board is supplied with a nominal input impedance of 75 Ohms and an input voltage range of 1 Volt $\mathrm{p}-\mathrm{p}$. Both input impedance and input voltage range may be changed for operation in other modes. The values of input resistors R1 and R2 determine the input impedance and voltage range of the evaluation board. Suggested values are shown in
the Input Resistor Selection Table for various input impedances and voltage ranges. Note that the video input to the board is through an SMA connector (JI, Video In). Video input to the board can be routed through the edge connector by installing jumper " A " and using edge connector pin B21.

Name	Function	Value	Pin
AIN	Analog Input Voltage	See text	B21

Control Inputs

Two control inputs are provided for changing the format of the output data. When NMINV is tied to a logic " 0 ," the most significant bit of the output data is inverted. When NLINV is tied to a logic " 0 ," the six least significant bits of the output data are inverted. By using these DC controls, the output data
can be read in binary, inverse binary, two's complement, or inverse two's complement formats. Output data versus input voltage and control input state is illustrated in the Output Coding Table. Pull-up resistors are provided on the board for disabling these control functions when their pins are left open.

Name	Function	Value	Pin
NMINV	Not Most Significant Bit INVert	TTL	B 13
NLINV	Not Least Significant Bit INVert	TTL	$\mathrm{B6}$

Reference

The TDC1047 evaluation board includes circuitry for generating the voltage reference for the AID converter. This voltage is
brought out to a test point located on the side of the board opposite that of the edge connector.

Convert

The TDC1047 A/D converter is sampled within 8ns after the rising edge of the CONV signal. Output data is latched on the next rising edge of the CONV signal. Data from U5 is also latched on the rising edge of the CONV signal. U5 adds one clock cycle of pipeline delay to data sent off the board. Note
that there are minimum pulse width ItpWH, tpWL) requirements on the waveshape of the CONV signal. A footprint for an SMA connector is located on the board near the A / D converter ($J 3, C O N V$) for a convenient monitoring or input point.

Name	Function	Value	Pin
CONV	AID Clock Input	$\pi \mathrm{LL}$	B15

Data Outputs

The outputs of the TDC1047 evaluation board are TTL compatible and capable of driving several TTL loads.

Name	Function	Value	Pin
D_{1} (MSB)	Most Significant Data Bit	TTL	B 12
D_{2}		TIL	B 11
D_{3}		TTL	BB
D_{4}		TTL	B 7
D_{5}		THL	$\mathrm{B5}$
D_{6}		TIL	$\mathrm{B4}$
D_{7} (LSB)	Least Significant Data Bit	TIL	$\mathrm{B3}$

No Connects

There are several pins on the TDC1047 evaluation board that have no connection to the circuit. These pins may be left
open. Note that pin B14 is connected to an output of U5 and must be left open.

Name	Function	Value	Pin
NC	No Connection	Open	A19
			B14
			B19
			B20
			B29-B32

Figure 1. Timing Diagram

Operating conditions

Parameter		Min	Nom	Max	Units
$V_{C C}$	Positive Power Supply (measured to $\mathrm{D}_{\mathrm{GND}}$)	4.75	5.0	5.25	V
$V_{\text {EE }}$	Negative Power Supply (measured to $\mathrm{A}_{\mathrm{GND}}$)	-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground (measured to $\mathrm{D}_{\text {GND }}$)	-0.1	0.0	+0.1	V
tPWH	CONV Pulse Width, HIGH ${ }^{1}$	14			ns
tpwL	CONV Pulse Width, LOW ${ }^{1}$	14			ns
VII	Input Voltage, Logic Low ${ }^{1}$			0.8	V
$V_{I H}$	Input Voltage, Logic HIGH ${ }^{1}$	2.0			V
OL	Output Current, Logic LOW ${ }^{2}$			4.0	mA
${ }_{\text {IOH }}$	Output Current, Logic HIGH ${ }^{2}$			-400	$\mu \mathrm{A}$
AIN	Input Voltage Range ${ }^{3}$	0.0		1.0	V
T_{A}	Ambient Temperature Range	0		70	${ }^{\circ} \mathrm{C}$
Notes:	1. Applies to logic input pins of the TDC1047 only. 2. Applies to outputs of U5 only. 3. 75 Ohm input impedance, as supplied, U2 offset zeroed.				

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Min	Max	Units
	Positive Supply Current	$V_{C C}=$ MAX		100	mA
IEE	Negative Supply Current	$V_{E E}=M A X$		245	mA
ZIN_{1}	Input Impedance		70	80	Ohms
	Input Current, Logic LOW ${ }^{1}$	$V_{C C}=$ MAX, VI $=0.5 \mathrm{~V}$		-0.4	mA
${ }_{1}$	Input Current, Logic HIGH ${ }^{1}$	$V_{C C}=$ MAX, VI $=2.4 \mathrm{~V}$		50	$\mu \mathrm{A}$
V_{OL}	Output Voltage, Logic LOW ${ }^{2}$	$V_{C C}=M 1 N, I_{0 L}=4 \mathrm{~mA}$		0.5	V
V_{OH}	Output Voltage, Logic HIGH ${ }^{2}$	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V
Notes:	1. Applies to the TDC1047 log 2. Applies to U5 outputs only.				

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Min	Max	Units
F_{S}	Maximum Conversion Rate	$V_{C C}=M I N, V_{E E}=M I N$	20		MHz
tsTo	Sampling Time Offset ${ }^{1}$			7	ns
${ }^{\text {t }}$	Output Delay Time ${ }^{2}$	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$		30	ns
${ }^{\text {tho }}$	Output Data Hold Time ${ }^{1}$	$V_{C C}=M I N, V_{E E}-M A X$	15		ns

Notes:

1. Applies to TDC1047 only.
2. Applies to U5 only.

TDC1047J7C performance characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Min	Max	Units
Ell Integral Linearity Error			0.4	\%
$\mathrm{E}_{\text {LD }}$ Differential Linearity Error			0.4	\%
BW Bandwidth Full-Power Input		7		MH2
DP Differential Phase	NTSC © 4x Color Subcarrier (14.32MH2)		1.5	degree
DG Differential Gain	NTSC @ 4x Color Subcarrier (14.32MHz)		2.5	\%

Note:

1. Items listed in this table apply to the AID converter only. Contributions to these parameters from the buffer amplifier are not significant.

Calibration

The evaluation board is calibrated by adjusting the offset and gain trim resistors, R8 and R9. Offset can be calibrated when a voltage $1 / 2$ LSB greater than "zero-scale" is applied to the board input. The "DFFSET" pot is then turned to a point where
the output data toggles between " 0000000 " and "0000001." Gain is calibrated by applying a voltage $1 / 2$ LSB less than full-scale and turning the "GAIN" pot until the output data toggles between "1111110" and "1111111."

Output Coding Table ${ }^{1}$

Input Voltage	Binary		Two＇s Complement	
	True	Inverted	True	Inverted
	NMINV $=1$	0	0	1
	NLINV－ 1	0	1	0
0.0000	0000000	1111111	1000000	0111111
$+0.0079$	0000001	1111110	1000001	0111110
－	－	－	－	－
\bullet	－	－	－	－
＋0．4960	0111111	1000000	1111111	0000000
＋0．5079	1000000	0111111	0000000	1111111
－	－	－	－	－
－	－	－	－	－
$+0.9921$	1111110	0000001	0111110	1000001
＋1．0000	1111111	0000000	0111111	1000000

Note：
1．Input voltages are at code centers and buffer amplifier offset voltage is nulled．

Figure 2．Schematic of Evaluation Board

Notes for Figure 2. Schematic of Evaluation Board

1. All capacitor values are in microfarads $(\mu \mathrm{F})$.
2. All capacitor voltage ratings are 50WVDC unless otherwise noted.
3. All resistors are $1 / 4 \mathrm{~W}$ unless otherwise noted.
4. All resistor values are in Ohms.
5. All diodes are 1 N 4001 .

Miscellaneous Evaluation Board Parts

$$
\text { Eurocard connector } \quad \text { Winchester 64P-6033-0430 }
$$

DIN 41612B 2-row 64 -contact
board mount male
Eurocard connector Winchester 64S-6033-0422-1
DIN 41612B 2-row 64-contact
wire-wrap female
J1-J3 SMA coax connector Sealectro 50-651-0000-31 or
(J2, J3 not included) Omni-spectra 2062-0000-00
L1, L2 ferrite bead inductors Fair-Rite Corp. 2743001112
Input Resistor Selection Table (values in Ohms)

Input Voltage Range										
Z_{IN}	1 V		2 V		4V		5 V		10 V	
	R1	R2								
50	24.9	25.5	37.4	12.7	43.2	6.19	45.3	4.99	47.5	2.49
75	37.4	39.2	56.2	19.1	64.9	9.53	68.1	7.50	71.5	3.74
93	46.4	48.7	69.8	23.7	80.6	11.8	84.5	9.31	88.7	4.64
1K	499	1000	750	332	866	143	909	110	953	52.3

For input voltage ranges and input impedances not covered by the Input Resistor Selection Table, the following formulas may be used to calculate R1 and R2:
$\mathrm{R} 2=\frac{1}{\left(\frac{2 V R}{Z_{i N}}\right)+\frac{1}{1000}}$
$\mathrm{R} 1=Z_{\mathrm{IN}}-\left(\frac{1000 \mathrm{R} 2}{\mathrm{R} 2+1000}\right)$
where VR is the desired input voltage range of the board, $Z_{I N}$ is the desired input impedance of the board, and the constant value 1000 is given by the value of R3.

Assembly For TDC1047E1C

Notes:

1. * not supplied.
2. Dimensions in inches.

Ordering Information

Product Number	Description	Order Number
TDC1047E1C	Eurocard Format Board With A/D Converter	TDC1047E1C

A/D Converter Evaluation Board 8-bit, 20MSPS

The TDC1048 evaluation board is a fully assembled and tested circuit board designed to aid in the evaluation of TRW's TDC1048 8-bit video analog-to-digital converter. The board contains circuitry for buffering the input signal, generating reference voltages, and latching output data. All digital inputs and outputs are TL compatible. Provisions are made for gain and offset adjustments. The board requires +5 and -5.2 Volt power supplies. The board is configured to interface with the Eurocard (DIN 41612B) connector format.

Features

- Includes TDC1048 8-Bit A/D Converter
- User-Selectable Input Impedance
- User-Selectable Input Voltage Range
- Unipolar Or Bipolar Operation
- Gain And Offset Calibration Controls
- Operates From +5.0 And -5.2 Volt Power Supplies
- Digital Output Buffers Included
- Eurocard Connector Format
- Uncommitted Prototyping Area

Applications

- Evaluation Of TDC1048 AID Converter
- System Prototyping Aid
- Incoming Inspection Test Fixture

Functional Block Diagram TDC1048

Pin Assignments

$\mathrm{D}_{\text {GND }}$	A1	B1	$V_{\text {EE }}$
DGND	A2	B2	DGND
DGND	A3	B3	D_{7}
$\mathrm{D}_{\text {GND }}$	A4	B4	D_{6}
$\mathrm{D}_{\text {GND }}$	A5	B5	D_{5}
$\mathrm{D}_{\text {GND }}$	A6	B6	NLINY
$\mathrm{D}_{\text {GND }}$	A7	B7	D_{4}
$\mathrm{D}_{\text {GND }}$	A8	B8	D_{3}
${ }^{\text {O }}$ GND	A9	B9	${ }^{\mathrm{O}_{\mathrm{GND}}}$
$\mathrm{D}_{\mathrm{GND}}$	A10	$B 10$	$\mathrm{D}_{\text {GND }}$
$\mathrm{D}_{\text {GND }}$	A11	B11	D_{2}
$\mathrm{D}_{\text {GND }}$	A12	B12	D_{1} (MSB)
$\mathrm{D}_{\text {GND }}$	A13	B13	NMINV
$\mathrm{D}_{\text {GND }}$	A14	B14	$\mathrm{D}_{8}($ LSB $)$
$\mathrm{D}_{\text {GND }}$	A15	815	CONV
DGND	A16	816	$\mathrm{D}_{\text {GND }}$
$\mathrm{D}_{\mathrm{GND}}$	A17	817	$\mathrm{D}_{\text {GND }}$
DGND	A18	818	$V_{C C}$
NC	A19	B19	NC
$\mathrm{A}_{\text {GND }}$	A20	B20	NC
$A_{\text {GND }}$	A21	821	AIN
$A_{\text {GND }}$	A22.	B22	AGND
$A_{\text {GND }}$	A23	B23	NC
AgND	A24	824	NC
${ }^{\text {AGND }}$	A25	B25	${ }_{\text {AGND }}$
${ }^{\text {Agho }}$	A26	B26	NC
${ }^{\text {AGND }}$	A27	B27	NC
$A_{\text {GND }}$	A28	B28	NC
${ }^{\text {AgND }}$	A29	B29	NC
${ }^{\text {A GND }}$	A30	B30	NC
$A_{\text {GND }}$	A31	B31	NC
${ }^{\text {AGND }}$	A32	B32	NC

TDC1048E1C

Functional Description

General Information

The TDC1048 evaluation board consists of four circuit blocks: the buffer amplifier, reference voltage generator, AD converter,
and output data latch. Analog and digital grounds are separated on the board to provide flexibility in system grounding.

Buffer Amplifier

The input buffer amplifier has been designed specifically for standard baseband video. This amplifier is optimized for 75 Ohm 1 Volt $\mathrm{p}-\mathrm{p}$ levels. Its gain factor is -2 and its offset is adjustable so that the A / D converter receives a full-scale input signal from 0 to -2 Volts.

The amplifier drives the A / D converter directly, without an emitter follower stage. Frequency response and pulse response are adjusted by the variable capacitor, C 13 . The board has provision for a resistive voltage divider and SMA output connector for convenient monitoring of amplifier response.

Voltage Reference

The reference voltage for the TDC1048 is generated by operational amplifier U3 and PNP transistor Q1, which supplies the reference current. System "GAIN" is adjusted by varying
potentiometer R9 which controls the reference voltage to the AID converter. The adjustable reference voltage range to the TDC1048 is 0 to -2.4 Volts.

A/D Converter

The TDC1048 integrated circuit is an 8 -bit fully parallel (flash) analog-to-digital converter capable of digitizing an input signal at rates up to 20MSPS IMegaSamples Per Second). A single CONVert (CONV) signal controls the conversion operation of the device. The TDC1048 consists of 255 sampling comparators,
encoding logic, and a latched output register. On the rising edge of the CONV signal, the comparators are latched and their outputs encoded. On the next rising edge of the CONV signal that data is transferred to the outputs of the TDC1048.

Output Interface

Data from the TDC1048 is latched by U5 on the rising edge of the CONV signal. This $74 L S 374$ octal edge-triggered latch improves output drive and fan-out capability for the board while adding one clock cycle of pipeline delay. Substituting a

74LS373 for U5 and connecting its clock input to a logic " 1 " will eliminate the extra pipeline delay while improving the data output drive capability of the board.

Mechanical Design

The TDC1048E1C is designed to be compatible with the
"Eurocard" format and mate with a standard 64 conductor Eurocard DIN connector. Mating edge connectors are included with each evaluation board.

The TDC1048E1C evaluation board may also be used with the TDC1047 7-bit A/D converter by removing the TDC1048 socket and installing a 24 lead DIP socket in the footprint oriented at
right angles to that of the TDC1048. In addition, electrical changes must be made to the board in order to use the TDC1047. (Refer to TDC1047E1C Data Sheet.)

Standard 28 pin sockets for the TDC1048 integrated circuit are used on the boards. The boards are arranged so that this socket may be replaced by a "Zero Insertion Force" (ZIF) socket when the evaluation board is used as a test fixture.

Power Supplies

The TDC1048E1C evaluation board operates from two power supply voltages: +5.0 and -5.2 Volts. The return path for ICC lcurrent from the +5.0 Volt power supply) is $\mathrm{D}_{\mathrm{GND}}$. The return paths for $I_{E E}$ Icurrent from the -5.2 Volt supply) is $A_{G N D}$. It
is recommended that all ground pins be used. Diodes 01 through D4 function as voltage clamps, which will prevent damage to the board should improper power supply voltages be applied.

Name	Function	Value	Pin
$V_{\text {CC }}$	Positive Power Supply	+5.0 V	B 18
V_{EE}	Negative Power Supply	-5.2 V	B 1
$\mathrm{~A}_{\mathrm{GND}}$	Analog Ground	0.0 V	$\mathrm{~A} 20-\mathrm{A} 32$
			B 22
			B 25
		0.0 V	B 28
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground		$\mathrm{A1-A18}$
			B 2
			$\mathrm{B9}$
			B 16
			B 17

Analog Input

The TDC1048 evaluation board is supplied with a nominal input impedance of 75 Ohms and an input voltage range of 1 Volt p-p. Both input impedance and input voltage range may be changed for operation in other modes. The values of input resistors R1 and R2 determine the input impedance and voltage range of the evaluation board. Suggested values are
shown in the Input Resistor Selection Table for various input impedances and voltage ranges. Note that the video input to the board is through an SMA connector (J1, "Video In^{\prime}). Video input to the board can be routed through the edge connector by installing jumper " A " and using edge connector pin B 21 .

Name	Function	Value	Pin
AIN	Analog Input Voltage	See Text	B21

Control Inputs

Two control inputs are provided for changing the format of the output data. When NMINV is tied to a logic " 0 ," the most significant bit of the output data is inverted. When NLINV is tied to a logic " 0 ," the seven least significant bits of the output data are inverted. By using these DC controls, the output data can be read in binary, inverse binary, two's
complement, or inverse two's complement formats. Output data versus input voltage and control input state is illustrated in the Output Coding Table. Pull-up resistors are provided on the board for disabling these control functions when their pins are left open.

Name	Function	Value	Pin
NMINV	Not Most Significant Bit INVert	TTL	B 13
NLINV	Not Least Significant Bit INVert	TTL	$\mathrm{B6}$

Reference

The TDC1048 evaluation board includes circuitry for generating the voltage reference for the A/D converter. This voltage is
brought out to a test point (VREF) located on the side of the board opposite that of the edge connector.

Convert

The TDC1048 AID converter is sampled within 10 ns after the rising edge of the CONV signal. Output data is latched on the next rising edge of the CONV signal. Data from U5 is also latched on the rising edge of the CONV signal. U5 adds one clock cycle of pipeline delay to data sent off the board. Note
that there are minimum pulse width $\operatorname{ItpWH}, \mathrm{tpWL}$) requirements on the waveshape of the CONV signal. A footprint for an SMA connector is located on the board near the A/D converter (JJ, CONV) for a convenient monitoring or input point.

Name	Function	Value	Pin
CONV	A/D Clock Input	TTL	B15

Data Outputs

The outputs of the TDC1048 evaluation board are TTL
compatible and capable of driving several TTL loads.

Name	Function	Value	Pin
D_{1} (MSB)	Most Significant Data Bit	TTL	B 12
D_{2}		TTL	B 11
D_{3}		TTL	BB
D_{4}		TTL	$\mathrm{B7}$
D_{5}		TTL	$\mathrm{B5}$
D_{6}		TTL	$\mathrm{B4}$
D_{7}		TTL	$\mathrm{B3}$
D_{8} (LSB)		TTL	B 14

No Connects

There are several pins on the TDC1048 evaluation board that have no connection to the circuit. These pins may be left open.

Name	Function	Value	Pin
NC	No Connection	Open	A19
			B19
			B20
			B29-832

Figure 1. Timing Diagram

LSI Products Division
TRW Electronic Components Group

Absolute maximum ratings (beyond which the board may be damaged) ${ }^{1}$

Power Supply Voltages	
Input Voltages	
Output	
Temperature	
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the board.

Operating conditions

Parameter		Min	Nom	Max	Units
$V_{\text {CC }}$	Positive Power Supply (measured to $\mathrm{D}_{\mathrm{GND}}$)	4.75	5.0	5.25	V
$\mathrm{V}_{\text {EE }}$	Negative Power Supply (measured to $\mathrm{A}_{\text {GND }}$)	-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground (measured to $\mathrm{D}_{\text {GND }}$)	-0.1	0.0	+0.1	V
tPWH	CONV Pulse Width, HIGH ${ }^{1}$	22			ns
${ }_{\text {tPWL }}$	CONV Pulse Width, LOW ${ }^{1}$	18			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW ${ }^{1}$			0.8	V
V_{IH}	Input Voltage, Logic HIGH ${ }^{1}$	2.0			V
10	Output Current, Logic LOW ${ }^{2}$			4.0	mA
${ }_{\text {IOH }}$	Output Current, Logic HIGH ${ }^{2}$			-400	$\mu \mathrm{A}$
AIN	Input Voltage Range ${ }^{3}$	0.0		1.0	V
T_{A}	Ambient Temperature Range	0		70	${ }^{\circ} \mathrm{C}$
Notes:	1. Applies to logic input pins of the TDC1048 only. 2. Applies to outputs of U5 only. 3. 75 Ohm input impedance, as supplied, U2 offset zeroed.				

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Min	Max	Units
F_{S}	Maximum Conversion Rate	$V_{C C}=M I N, V_{E E}=\mathrm{MIN}$	20		MHz
${ }^{\text {t S TO }}$	Sampling Time Offset ${ }^{1}$		0	10	ns
${ }^{\text {t }}$	Output Delay Time ${ }^{2}$	$V_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$		28	ns
${ }_{\text {tho }}$	Output Data Hold Time ${ }^{1}$	$V_{C C}=$ MIN, $V_{E E}=$ MIN	15		ns
Notes:	1. Applies to TDC1048 only. 2. Applies to U5 only.				

TDC1048J6C performance characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Min	Max	Units
$\mathrm{ELI}^{\text {LI }}$ Integral Linearity Error			0.2	\%
$\mathrm{E}_{\text {LD }}$ Differential Linearity Error			0.2	\%
BW Bandwidth Full-Power Input		7		MHz
DP Differential Phase	NTSC @ 4x Color Subcarrier (14.32MHz)		1.0	degree
DG Differential Gain	NTSC @ 4x Color Subcarrier (14.32MHz)		2.0	\%

Note:

1. Items listed in this table apply to the AiD converter only. Contributions to these parameters from the buffer amplifier are not significant.

Calibration

The evaluation board is calibrated by adjusting the offset and gain trim resistors, R8 and R9. Offset can be calibrated when a voltage $1 / 2$ LSB greater than "zero-scale" is applied to the board input. The "Offset" pot is then turned to a point where
the output data toggles between " 00000000 " and "00000001." Gain is calibrated by applying a voltage $1 / 2$ LSB less than full-scale and turning the "GAIN" pot until the output data toggles between "11111110" and "11111111."

Output Coding Table ${ }^{1}$

Input Voltage	Binary		Two's Complement	
	True	Inverted	True	Inverted
	NMINV-1	0	0	1
	NLINV-1	0	1	0
0.0000	00000000	11111111	10000000	01111111
$+0.0039$	00000001	11111110	10000001	01111110
-	-	-	-	-
-	-	-	-	-
\bullet	-	\bullet	\bullet	-
+0.4990	01111111	10000000	11111111	00000000
+0.5019	10000000	01111111	00000000	11111111
-			-	-
-			-	-
-	\bullet	-	-	-
+0.9960	11111110	00000001	01111110	10000001
$+1.0000$	11111111	00000000	01111111	10000000

Note:

1. Input voltages are at code centers and buffer amplifier offset voltage is nulled.

Figure 2. Schematic of Evalution Board

Notes for Figure 2. Schematic of Evaluation Board

1. All capacitor values are in microfarads $(\mu \mathrm{F})$.
2. All capacitor voltage ratings are 50WVDC unless otherwise noted.
3. All resistors are 118 W unless otherwise noted.
4. All resistor values are in Ohms.
5. All diodes are 1 N 4001 .

Miscellaneous Evaluation Board Parts

Eurocard connector
DIN 41612B 2-row 64-contact board mount male
Eurocard connector Winchester 64S-6033-0422-1
DIN 41612B 2-row 64-contact
wire-wrap female
J1-J3 SMA coax connector Sealectro 50-651-0000-31 or
L1, L2 ferrite bead inductors Fair-Rite Products Corp.
2743001112

Input Resistor Selection Table (values in Ohms)

Input Voltage Range										
ZIN	1 V		2 V		4V		5 V		10 V	
	R1	R2								
50	0	52.3	24.9	24.3	37.4	12.7	40.2	10	45.3	4.99
75	0	80.6	37.4	39.2	56.2	19.1	60.4	15.4	68.1	7.5
93	0	102	46.4	48.7	69.8	23.7	75	19.1	84.5	9.31
1k	0	open	499	1k	750	332	806	249	909	110

For input voltage ranges and input impedances not covered by the Input Resistor Selection Table, the following formulas may be used to calculate R1 and R2:

R2 $=\frac{1}{\left(\frac{V R}{Z_{I N}}\right)+\frac{1}{1000}}$
$R 1=Z_{I N}-\left(\frac{1000 R 2}{R 2+1000}\right)$
where $V R$ is the desired input voltage range of the board, $Z_{I N}$ is the desired input impedance of the board, and the constant value 1000 is given by the value of R3.

Assembly For TDC1048E1C

Note：
1．＊not supplied．
2．Dimensions in inches．

Ordering Information

Product Number	Description	Order Number
TDC104BE1C	Eurocard Format Board With AID Converter	TDC1048E1C

sıəдәлu0う \forall / G^{+}

```MhutipliorsMunipheremerumulatorsSpecial Function PronturtsWhemorylStarage ProdurtsRolithilityPachage InfomationBlossaryOntering IntumationApplication Nates And Poprints (Listunge)
```

TRW LSI's line of monolithic, high-speed D/A converters employ segmented current switching techniques. These D/A converters have resolutions of 4,8 and 10 bits, and are exceptionally well suited for video, vector, and raster graphics applications. These devices are built with TRW LSI's proven 3D (triple-diffused) bipolar technology which provides significant advantages in performance, size, power, and reliability. The development of fine lithography techniques has yielded faster, more accurate, and more economical D/A converters. The TDC1018 and TDC1034 are manufactured with OMICRON-B ${ }^{\text {TM }}$, TRW's new 1-micron process.

Operation

D/A converters have four major functional sections: data input registers, decoding logic, output current switches and reference amplifier. The primary function of the data registers is to hold data values constant during conversion. The registers assure precise matching of propagation delays to reduce glitching to a minimum. The decoding
logic selects the current switches and special video functions, such as SYNC, BLANK, BRIGHT, and FORCE HIGH. The two analog outputs of the TDC1018 and the TDC1034 are complementary currents, which vary in proportion to the input data, controls, and reference current. The TDC1016 has an internal resistor to provide a voltage output which varies in proportion to the magnitude of input data and reference voltage. The reference amplifier drives the current switches. The full-scale output value may be adjusted over a limited range by varying the reference voltage or current.

Most applications of these devices require no extra registering, buffering, or deglitching. Four special level controls make the TDC1018 and the TDC1034 ideal for RGB raster graphics applications. The TDC1016 can be operated in either TTL or ECL compatible modes, with controls for selecting input data format. Binary, inverse binary, two's complement, and inverse two's complement formats are supported.

Product	Bits	Integral Linearity Error (\%)	Conversion Rate ${ }^{1}$ (MSPS)	Power Dissipation (Watts)	Package	Notes
TDC1016 ${ }^{2}$	8	0.20	20	0.7	J5, J7, C2, B7	TTUECL Compatible
	9	0.10	20	0.7	J5, J7, C2, B7	TTUECL Compatible
	10	0.05	20	0.7	J5, J7, C2, B7	TTUECL Compatible
TDC1018	8	0.20	125	0.8	J7, B7, C3	ECL Compatible
TDC1034	4	0.80	125	0.7	J8, B8	ECL Compatible

Notes: 1. Guaranteed, Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
2. The TDC1016 has 10 -bit resolution, and is available in three linearity grades to meet 8,9 and 10 -bit system requirements.

Video Speed D/A Converter

10-bit, 20MSPS

The TDC1016 is a bipolar monolithic digital-to-analog converter which can convert digital data into an analog voltage at rates up to 20 MegaSamples Per Second (MSPS). The device includes an input data register and operates without an external deglitcher or amplifier.

Operating the TDC1016 from a single -5.2 Volt power supply will bias the digital inputs for ECL levels, while operating from a dual ± 5 Volts power supply will bias the digital inputs for TTL levels.

All versions of the TDC1016 are 10-bit digital-to-analog converters, but are available with linearity specifications of either 8 , 9 , or 10 bits. The TDC1016 is patented under U.S. patent number 3283120 with other patents pending.

Features

- 20MSPS Conversion Rate
- 8,9 , or 10 -Bit Linearity
- Voltage Output, No Amplifier Required
- Single Supply Operation (-5.2V, ECL Compatible)
- Dual Supply Operation ($\pm 5.0 \mathrm{~V}$, TTL Compatible)
- Internal 10-Bit Latched Data Register
- Low Glitch Energy
- Disabling Controls, Forcing Full-Scale, Zero, And Inverting Input Data
- Binary Or Two's Complement Input Data Formats
- Differential Gain $=1.5 \%$, Differential Phase $=1.0$ Degree

Applications

- Construction of Video Signals From Digital Data. 3x Or 4x NTSC Or PAL Color Subcarrier Frequency
- CRT Graphics Displays, RBG, Raster, Vector
- Waveform Synthesis

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Pin Assignments

Functional Description

General Information

TTLECL buffers are used for all digital inputs to the TDC1016． Logic family compatibility depends upon the connection of power supplies．When single power supply（ -5.2 V ）operation is employed，all data，clock，and disable inputs are compatible with differential ECL logic levels．All digital inputs become compatible with TTL levels when dual power supply $(\pm 5.0 \mathrm{~V})$ operation is used．

The internal 10－bit register latches data on the rising edge of the clock（CLK）pulse．Currents from the current sources are
switched accordingly and combined in the resistor network to give an analog output voltage．The magnitude of the output voltage is directly proportional to the magnitude of the digital input word．

The NFL and NFH inputs can be used to simplify system calibration by forcing the analog output voltage to either its zero－scale or full－scale value．The TDC1016 can be operated in binary，inverse binary，two＇s complement，or inverse two＇s complement input data formats．

Power

The TDC1016 can be operated from a single -5.2 Volts power supply or from a dual ± 5.0 Volts power supply．For single power supply operation，$V_{C C}$ is connected to $\mathrm{D}_{\mathrm{GND}}$ and all inputs to the device become ECL compatible．When VCC is tied to +5.0 Volts，the inputs are TTL compatible．

The return path for the output from the 10 current sources is AGND．The current return path for the digital section is $D_{G N D}$ ． $\mathrm{D}_{\mathrm{GND}}$ and AGND $^{\text {should be returned to system power supply }}$ ground by way of separate conductive paths to prevent digital ground noise from disturbing the analog circuitry of the TDC1016．All $A_{G N D}$ pins must be connected to system analog ground．

Name	Function	Value	J5 Package	C2 Package	J7，87 Package
$V_{\text {CC }}$	Positive Supply Voltage	＋5．0V	Pin 9	Pin 44	Pin 6
$V_{E E}$	Negative Supply Voltage	－5．0V	Pin 2	Pin 34	Pin 23
$A_{\text {GND }}$	Analog Ground	0．OV	Pins 5，6， 8	Pins 39，40，41， 43	Pins 2，3， 5
$\mathrm{D}_{\text {GND }}$	Digital Ground	0．OV	Pin 10	Pin 1	Pin 7

Refarence

The reference input is normally set to -1.0 V with respect to AGND. Adjusting this voltage is equivalent to adjusting system gain. The temperature stability of the TDC1016 analog output (AouT) depends primarily upon the temperature stability of the applied reference voltage.

The internal operational amplifier of the TDC1016 is frequency stabilized by an external 1 microfarad tantalum capacitor connected between the COMP pin and V_{EE}. A minimum of 1 microfarad is adequate for most applications, but 10 microfarads or more is recommended for optimum performance. The negative side of this capacitor should be connected to V_{EE}.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Packaga
VREF	Reference Voltage In	$-1.0 V$	Pin 4	Pin 36	Pin i
COMP	Compensation	$1 \mu \mathrm{~F}$	Pin 3	Pin 35	Pin 24

Control

The NDIS inputs are used to disable the TDC1016 by forcing its output to the zero-scale value (current sources off). The NDIS inputs are asynchronous, active without regard to the CLK inputs. The other digital control inputs are synchronous, latched on the rising edge of the CLK pulse.

The rising edge of the CLK pulse transfers data from the input lines to the internal 10 -bit register. In TTL mode, the inverted
inputs for CLK, DATA, and NDIS are inactive and should be left open.

The Input Coding table illustrates the function of the digital control inputs. A two's complement mode is created by activating N2C with a logic " 0 ." When NFH and NFL are both activated with a logic "0," the input data to the 10 -bit register is inverted.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
NDIS	Not Disable	TTUECL	Pin 11	Pin 2	Pin 8
$\overline{\text { NDIS }}$	Not Disable (lnv)	ECL	Pin 14	Pin 5	
CLK	Clock	TTUECL	Pin 12	Pin 3	Pin 9
$\overline{\overline{L L K}}$	Clock (Inv)	ECL	Pin 13	Pin 4	
N2C	Not Two's Complement	TTUECL	Pin 17	Pin 9	Pin 11
NFH	Not Force HIGH	TTUECL	Pin 20	Pin 12	Pin 13
NFL	Not Force LOW	TTUECL	Pin 21	Pin 13	Pin 14

Data Input

Data inputs are ECL compatible when single power supply operation is employed. The J 5 and C 2 packages allow for differential ECL inputs while the J 7 and $\mathrm{B7}$ packages have only single-ended inputs. When differential ECL data is used, any data input can be inverted simply by reversing the connections
to the true and inverted data input pins. All inverted input pins should be left open if single-ended ECL or TTL modes are used. All data inputs have an internal 40 kOhm pull-up resistor to $V_{C C}$.

Data Input (Cont.)

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
D_{1}	Data Bit 1 (MSB)	TTUECL	Pin 16	Pin 8	Pin 10
$\bar{\sigma}_{1}$	Data Bit 1 (MSB Inv)	ECL	Pin 15	Pin 7	
D_{2}		TTUECL	Pin 19	Pin 11	Pin 12
$\overline{D_{2}}$		ECL	Pin 18	Pin 10	
D_{3}		TTUECL	Pin 23	Pin 15	Pin 15
\square_{3}		ECL	Pin 22	Pin 14	
O_{4}		TTUECL	Pin 25	Pin 17	Pin 16
\bar{D}_{4}		ECL	Pin 24	Pin 16	
D_{5}		TTUECL	Pin 27	Pin 19	Pin 17
σ_{5}		ECL	Pin 26	Pin 18	
D_{6}		TTUECL	Pin 29	Pin 21	Pin 18
$\overline{5}_{6}$		ECL	Pin 28	Pin 20	
D_{7}		TTUECL	Pin 31	Pin 23	Pin 19
$\overline{D_{7}}$		ECL	Pin 30	Pin 22	
D_{8}		TTUECL	Pin 33	Pin 25	Pin 20
Σ_{8}		ECL	Pin 32	Pin 24	
D_{9}		TTUECL	Pin 35	Pin 27	Pin 21
\square_{g}		ECL	Pin 34	Pin 26	
D_{10}	Data Bit 10 (LSB)	TTUECL	Pin 37	Pin 29	Pin 22
$\underline{0}$	Data Bit 10 (LSB Inv)	ECL	Pin 36	Pin 28	

Analog Output

The analog output voltage is negative with respect to $A_{G N D}$
and varies proportionally with the magnitude of the input data
word. The output resistance at this point is 80 Ohms,
nominally.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
AOUT	Analog Output Voltage	OV to -IV	Pin 7	Pin 42	Pin 4

No Connect

There are several pins labeled no connect $(\mathbb{N C})$ on the TDC1016
J 5 and C 2 packages, which have no connections to the chip.
These pins should be left open.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
NC	No Connect	Open	Pins 1, 38, 39, 40	Pins 6, 30, 31,32,33,37,38	None

Figure 1. Timing Diagram

Figure 2. Analog Output Equivalent Circuit, TTL \& ECL Mode

Note: 1. 75Ω requires outside trim

Figure 3. Digital Input Equivalent Circuit, TTL Mode

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages	
Input Voltages	
Output	
Temperature	
	Operating ambient \qquad $+125^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$
	Lead, soldering (10 seconds) ... ${ }^{\left(100^{\circ} \mathrm{C}\right.}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.

Operating conditions

Parameter			Temperature Range						Units
			Standard			Extended			
			Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage	TTL Mode	4.75	5.0	5.25	4.50	5.0	5.50	V
		ECL Mode	-0.25	0.0	0.25	-0.25	0.0	0.25	V
$V_{\text {EE }}$	Negative Supply Voltage		-4.5	-5.0	-5.5	-4.5	-5.0	-5.5	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage (Meas		-0.1	0.0	0.1	-0.1	0.0	0.1	V
${ }^{\text {tPWL }}$	CLK Pulse Width, LOW		15			20			ns
tpWH	CLK Pulse Width, HIGH		15			20			ns
${ }^{\text {t }}$ S	Input Register Set-up Time	TTL Mode	20			20			ns
		ECL Mode	25			25			ns
${ }^{\text {t }}$	Input Register Hold Time		2			2			ns
$\mathrm{V}_{\text {IL }}$	Logic "0"	TTL Mode	$\mathrm{D}_{\text {GND }}$		0.8	$\mathrm{D}_{\text {GND }}$		0.8	V
		ECL Mode			-1.475			-1.475	V
$\overline{V_{I H}}$	Logic "1"	TTL Mode	2.0		$\mathrm{V}_{\text {CC }}$	2.0		$V_{\text {CC }}$	V
		ECL Mode	-1.105			-1.105			V
$V_{\text {REF }}$	Reference Voltage		-0.8	-1.0	-1.2	-0.8	-1.0	-1.2	V
${ }^{\text {COMP }}$	Compensation Capacitor		1.0			1.0			$\mu \mathrm{F}$
T_{A}	Ambient Temperature		0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature					-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I C }}$ P Power Supply Current	TTL Mode, $\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\mathrm{EE}}-\mathrm{MAX}$		20		20	mA
$\mathrm{I}_{\mathrm{EE}} \quad$ Power Supply Current	TTL Mode, $\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{EE}}=$ MAX ${ }^{1}$		-120		-150	mA
IREF Reference Input Current	$\mathrm{V}_{\mathrm{EE}}=$ MAX, $\mathrm{V}_{\text {REF }}=-1.0 \mathrm{~V}$		10		10	$\mu \mathrm{A}$
ILL Logic "0" Input Current	TTL Mode, $\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MAX}$		-1.0		-1.0	mA
	ECL Mode, $\mathrm{V}_{\text {CC }}=0.0, \mathrm{~V}_{\text {EE }}=$ MAX		-300		-300	$\mu \mathrm{A}$
IH Logic "1" Input Current	TTL Mode, $\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MAX}$		75		75	$\mu \mathrm{A}$
	ECL Mode, $\mathrm{V}_{\text {CC }}=0.0, \mathrm{~V}_{\text {EE }}=\mathrm{MAX}$		350		350	$\mu \mathrm{A}$
$\mathrm{C}_{\text {OUT }}$ Output Capacitance	$A_{\text {OUT }}$ to $A_{\text {GND }}$ (Figure 2)		10		10	pF
$\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	Any Digital Input to $\mathrm{D}_{\mathrm{GND}}$		35		35	pF
${ }_{\text {OUU }}$ Output Resistance	$A_{\text {OUT }}$ to $\mathrm{A}_{\text {GND }}$ (Figure 2)	70	95	70	95	Ohms
Note:						

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{C}	Maximum Data Rate		TTL Mode Full-Scale Output Step	20		20		MSPS
			ECL Mode Full-Scale Output Step	18		18		MSPS
${ }^{\text {t }} \mathrm{S}$	Data Turn-on Delay	RL = 750 hms		20		20	ns	
${ }^{\text {t SET }}$	Settling Time	TDC1016-8 to 0.2\%		30		30	ns	
		TDC1016-9 to 0.1\%		35		35	ns	
		TDC1016-10 to .05\%		40		40	ns	
trv	Output 10\% to 90\% Risetime	$\mathrm{V}_{\mathrm{EE}}=$ NOM, RL $=75$ Ohms full - Scale Step		5.5		5.5	ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
RES	Resolution		All TDC1016 Devices		10		10	bits
ELI, ELD	Linearity Error Integral and Differential Terminal Based		TDC1016-8		0.2		0.2	\% FS
		TDC1016-9		0.1		0.1	\% FS	
		TDC1016-10		0.05		0.05	\% FS	
$V_{\text {OFS }}$	Full-Scale Output Voltage	$\begin{aligned} & V_{\mathrm{EE}}=\mathrm{NOM} \\ & V_{\text {REF }}=-1.000 \mathrm{~V} \end{aligned}$	-0.95	-1.05	-0.95	-1.05	Volts	
$\overline{V_{0 Z S}}$	Zero-Scale Output Voltage	$\begin{aligned} & V_{E E}=\text { NOM, RL }=750 \mathrm{hms} \\ & V_{\text {REF }}=-1.000 \mathrm{~V} \end{aligned}$		± 15		± 15	mV	
DP	Differential Phase	NTSC 4x subcarrier ${ }^{1}$		1.0		1.0	Degree	
$\overline{\text { DG }}$	Differential Gain	NTSC 4x subcarrier ${ }^{1}$		1.5		1.5	\%	
GE	Glitch "Energy" (Area)	RL - 75 Ohms, Midscale		100		100	pV-sec	
GV	Glitch Voltage	RL - 75 Ohms, Midscale		35		35	mV	

Note:

1. In excess of theoretical $D P$ and $D G$ due to quantizing error.

Input Coding Table

NDIS	N2C	NFH	NFL	Data	Output	Description
0	x	x	x	xxxxxxxxxx	0.0	Output Disabled
1	1	1	1	1111111111	0.0	Binary (Default State for
1	1	1	1	0000000000	-1.0	TTL Mode Controll Inputs Open
1	1	0	0	1111111111	-1.0	Inverse Binary
1	1	0	0	0000000000	0.0	
1	0	1	1	0111111111	0.0	Two's Complement
1	0	1	1	1000000000	-1.0	
1	0	0	0	0111111111	-1.0	Inverse Two's Complement
1	0	0	0	1000000000	0.0	
1	x	0	1	xxxxxxxxxx	0.0	Force HIGH
1	x	1	0	xxxxxxxxxx	-1.0	Force LOW
Notes:						
1. For TTL, $0.0<V_{\mid L}<+0.8$ Volts is logic " 0 "						
2. For $T T L,+2.0<V_{\mid H}<+5.0$ Volts is logic "1"						
3. For ECL, -1.85<V/IL <-1.47 Volts is logic " 0 "						
4. For ECL, $-1.10<V_{\mid H}<-0.8$ Volts is logic "1"						
5. "x" = "don't care"						

Calibration

The TDC1016 is calibrated by adjusting the voltage reference to give the desired full-scale output voltage. The current switches can be turned on either by loading the data register with full-scale data or by bringing the NFH input to a logic zero.

Typical Application

The Typical Interface Circuit (Figure 5) shows the TDC1016 in a typical application, reconstructing video signals from digital data. Television timing signals, SYNC and BLANKING, are added by injecting current from the Wilson current source into a resistor divider circuit at the output of the TDC1016.

The TDC1016 output and currents from the SYNC and BLANKING inputs are summed and amplified by the HA2539 wide-band operational amplifier. Note the careful power supply decoupling at the power input pins of the amplifier. The output

Note that all 10 current switches are activated by the NFH input and the resulting full-scale output voltage will be greater than if the system used only eight or nine bits for full-scale data.
of the circuit is a composite video signal with SYNC and BLANKING levels coming from external sources. This technique allows the TDC1016 to use its entire dynamic range for the video information while pulses are added by other means.

The reference for the TDC1016 is generated by dividing the output voltage from a two-terminal band-gap voltage reference. System gain is calibrated by adjusting variable resistor R1. Analog and digital grounds should be routed back to system power supply ground by separate paths.

Figure 5. Typical Interface Circuit

Parts List

Resistors				Capacitors			Diodes	
81	5K	1/4W	10-turn	C1	$0.01 \mu \mathrm{~F}$	50 V	CR1	1N4001
R2	1K	1/4W	10-turn	C2	$1.0 \mu \mathrm{~F}$	10 V		
R3	1 K	1/4W	5\%	C3	$1.0 \mu \mathrm{~F}$	10 V	Tran	
R4	43	1/4W	5\%	C4	$2.2 \mu \mathrm{~F}$	25 V		
R5	33	114 W	5\%	C5	$0.1 \mu \mathrm{~F}$	50 V	01	2N2907
R6	330	$14 . \mathrm{W}$	5\%	C6	2-5pF	50 V	Q2	2N2907
R7	750	1/4W	5\%	C7	$0.1 \mu \mathrm{~F}$	50 V	03	2N2907
R8,R9	10	1/4W	5\%	C8	$0.1 \mu \mathrm{~F}$	50 V	04	2N6660
R10	75	$1 / 4 \mathrm{~W}$	2\%	C9	$0.1 \mu \mathrm{~F}$	50 V	05	2N6660
R11,812	10K	$1 / 4 \mathrm{~W}$	5\%	ClO	$0.1 \mu \mathrm{~F}$	50 V		
R13	220	1/4W	5\%				Integ	cuits
R14,815	100	$1 / 4 \mathrm{~W}$	5\%	RF Chokes				
R16,R22	390	$1 / 4 \mathrm{~W}$	5\%	L1,L2	Ferrite beads		U1	TRW TDC1016
R17,R18	2 K	$1 / 4 \mathrm{~W}$	10-turn				U2	LM113
$R 19$	1K	114 W	5\%				U3	HA2539
R20,R21	1K	1/4W	5\%				U4	SN7404

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1016.5CX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DiP	1016.55CX
TDC1016.J5GX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead Dip	1016.356x
TDC1016.J5FX ${ }^{3}$	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	40 Lead Dip	1016.55X
TDC1016.5AX ${ }^{3}$	$\mathrm{T}^{\mathrm{C}}={ }^{-5} 55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	40 Lead Dip	1016,5AX
TDC1016J7CX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1016.J7CX
TDC1016J7GX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1016J7GX
TDC1016J77X ${ }^{3}$	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1016J7FX
TDC1016J7AX ${ }^{3}$	$\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	24 Lead DIP	1016, 7 AX
TDC101687CX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead CERDIP	101687CX
TDC101687GX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead CERDIP	1016876X
TDC1016C2CX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	44 Contact Chip Carrier	1016C2CX
TDC1016C2GX	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	44 Contact Chip Carrier	1016C2GX
TDC1016C2FX ${ }^{3}$	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	44 Contact Chip Carrier	1016C2FX
TDC1016C2AX ${ }^{3}$	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	44 Contact Chip Carrier	1016C2AX

Note:

1. Per TRW document $70 Z 01757$.
2. " X " in part and mark number indicates grade. The TDC1016 devices are available in three grades. Grade " 8 " is for 8 -bit linearity, grade " 9 " for 9-bit linearity, and grade "10" for 10 -bit linearity. The 8 -bit version of the $\mathrm{B7}$ (CERDIP) package does not have "-8" marking.
3. The TDC1016 with F or A screening is available in 8 or 9 -bit linearity only.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

D/A Converter

8-bit, 125MSPS

The TRW TDC1018 is a 125 MegaSample Per Second (MSPS), 8-bit digital-to-analog converter, capable of directly driving a 75 Ohm load to standard video levels. Most applications require no extra registering, buffering, or deglitching. Four special level controls make the device ideal for video applications. All data and control inputs are ECL compatible.

The TDC1018 is built with TRW's OMICRON-B TM 1-micron bipolar process. On-chip data registers and precise matching of propagation delays make the TDC1018 inherently low-glitching. The TDC1018 offers high performance, low power consumption, and video compatibility in a 24 lead DIP or a 28 Contact Chip Carrier.

Features

- "Graphics-Ready"
- 125MSPS Conversion Rate
- 8-Bit
- 1/2 LSB Linearity
- Power Supply Noise Rejection > 50dB
- Registered Data And Video Controls
- Differential Current Outputs
- Video Controls: SYNC, BLANK, BRighT, Force High
- Inherently Low Glitch Energy
- ECL Compatible
- Multiplying Mode Capability
- Power Dissipation < 940 mW
- Available in 24 Lead DIP And 28 Contact Chip Carrier
- Single -5.2V Power Supply

Applications

- RGB Graphics
- High Resolution Video
- Raster Graphic Displays
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

24 Lead DIP - J7 Package

Functional Description

General Information

The TDC1018 develops complementary analog output currents proportional to the product of the digital input data and analog reference current. All data and control inputs are compatible with standard ECL logic levels. FeedThrough control (FT) determines whether data and control inputs are synchronous or asynchronous. If FT is LOW, each rising edge of the CONVert clock (CONV) latches decoded data and control values into an internal D-type register. The registered values are then converted into the appropriate analog output by switched current sinks. When FT is HIGH, data and control inputs are not registered, and the analog output asynchronously tracks the input values. FT is the only asynchronous input, and is normally used as a DC control.

The TDC1018 uses a segmented approach in which the four MSBs of the input data are decoded into a parallel "Thermometer" code, which drives fifteen identical current sinks to produce sixteen coarse output levels. The LSBs of the input drive four binary-weighted current switches, with a total contribution of one-sixteenth of full scale. The LSB and MSB currents are summed to provide 256 analog output levels.

Special control inputs, SYNC, BLANK, Force High (FH) and BRighT (BRT), drive appropriately weighted current sinks which add to the output current to produce specific output levels especially useful in video applications.

Power

To provide highest noise immunity, the TDC1018 operates from separate analog and digital power supplies, $V_{E E A}$ and $V_{\text {EED }}$, respectively. Since the required voltage for both $\mathrm{V}_{\text {EEA }}$ and $V_{\text {EED }}$ is -5.2 V , these may ultimately be connected to the same power source, but individual high-frequency decoupling for each supply is recommended. A typical decoupling network is shown in Figure 7. The return for IEED, the current drawn

Name	Function	Value	J7 Package	C3 Package
$V_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	Pin 20	Pin 23
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pin 5	Pin 6
$\mathrm{~A}_{\text {GND }}$	Analog Ground	0.0 V	Pin 17	Pin 20
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pin 9	Pin 10

from the $\mathrm{V}_{\mathrm{EED}}$ supply, is $\mathrm{D}_{\mathrm{GND}}$. The return for $\mathrm{I}_{\mathrm{EEA}}$ is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins MUST be connected.

Although the TDC1018 is specified for a nominal supply of -5.2 V , operation from a +5.0 V supply is possible provided that the relative polarities of all voltages are maintained.

Reference

The TDC1018 has two reference inputs: REF+ and REF-, which are noninverting and inverting inputs of an internal reference buffer amplifier. The output of this operational amplifier serves as a reference for the current sinks. The feedback loop is internally connected around one of the current sinks to achieve high accuracy (see Figure 4).

The analog output currents are proportional to the digital data and reference current, liREF. The full-scale output value may be adjusted over a limited range by varying the reference current. Accordingly, the stability of the analog output depends primarily upon the stability of the reference. A method of achieving a stable reference is shown in Figure 7.

The reference current is fed into the REF+ input, while REFis typically connected to a negative reference voltage through a resistor chosen to minimize input offset bias current effects.

A COMPensation input (COMP), is provided for external compensation of the TDC1018's reference amplifier. A capacitor $C_{C} \mid$ should be connected between COMP and the VEEA supply, keeping lead lengths as short as possible. The value of the compensation capacitor determines the effective bandwidth of the amplifier. In general, decreasing C_{C} increases bandwidth and decreases amplifier stability. For applications in which the reference is constant, C_{\complement} should be large, while smaller values of C_{\complement} may be chosen if dynamic modulation of the reference is required.

Name	Function	Value	J7 Package	C3 Package
REF-	Reference Current - Input	Op-Amp Virtual Ground	Pin 14	Pin 16
REF +	Reference Current + Input	Op-Amp Virtual Ground	Pin 15	Pin 17
COMP	COMPensation Input	C $_{C}$	Pin 16	Pin 19

Controls

The TDC1018 has four special video control inputs: SYNC, BLANK, Force High (FH), and BRighT (BRT), in addition to a clock FeedThrough control (FT). All controls are standard ECL level compatible, and include internal pulldown resistors to force unused controls to a logic LOW (inactivel state.

Typically the TDC1018 is operated in the synchronous mode, which assures the highest conversion rate and lowest spurious output noise. By asserting FT, the input registers are disabled, allowing data and control changes to asynchronously feed through to the analog output. Propagation delay from input change lcontrol or data) to analog output is minimized in the asynchronous mode of operation.

In the synchronous mode, the video control inputs are registered by the rising edge of the CONV clock in a manner similar to the data inputs. The controls, like data, must be present at the inputs for a setup time of ts Insl before, and a hold time of $t \mathrm{H}$ (ns) after the rising edge of CONV in order to
be registered. In the asynchronous mode, the setup and hold times are irrelevant and minimum pulse widths HIGH and LOW become the limiting factor.

Asserting the video controls produces various output levels which are used for frame synchronization, horizontal blanking, etc., as described in video system standards such as RS-170 and RS-343A. The effect of the video controls on the analog outputs is shown in Table 1. Special internal logic governs the interaction of these controls to simplify their use in video applications. BLANK, SYNC, and Force High override the data inputs. SYNC overrides all other inputs, and produces full negative video output. Force High drives the internal digital data to full scale, giving a reference white video level output. The BRT control creates a "whiter than white" level by adding 10% of the full scale value to the present output level, and is especially useful in graphics displays for highlighting cursors, warning messages, or menus. For non-video applications, the special controls can be left unconnected.

Name	Function	Value	J7 Package	C3 Package
FT	Register FeedThrough Control	ECL	Pin 8	Pin 9
FH	Data Force High Control	ECL	Pin 10	Pin 12
BLANK	Video BLANK Input	ECL	Pin 11	Pin 13
BRT	Video BRighT Input	ECL	Pin 12	Pin 14
SYNC	Video SYNC Input	ECL	Pin 13	Pin 15

Data Inputs

Data inputs to the TDC1018 are standard single-ended ECL level compatible. Internal pulldown resistors force unconnected data inputs to logic LOW. Input registers are provided for synchronous data entry and lowest differential data propagation delay (skew), which minimizes glitching.

In the registered mode, valid data must be present at the input a setup time ts (ns) before, and a hold time t_{H} (ns) after the rising edge of CONV. When FT is HIGH, data input is asynchronous and the input registers are disabled. In this case the analog output changes asynchronously in direct response to the input data.

Name	Function	Value	J7 Package	C3 Package
D_{1}	Data Bit 1 (MSB)	ECL	Pin 21	Pin 25
D_{2}		ECL	Pin 22	Pin 26
D_{3}		ECL	Pin 23	Pin 27
D_{4}		ECL	Pin 24	Pin 1
D_{5}		ECL	Pin	Pin 2
D_{6}		ECL	Pin 2	Pin 3
D_{7}		ECL	Pin 3	Pin 4

Convert

CONVert (CONV) is a differential ECL compatible clock input whose rising edge synchronizes data and control entry into the TDC1018. Within the constraints shown in Figure 2, the actual switching threshold of CONV is determined by CONV. CONV may be driven single-ended by connecting CONV to a suitable bias voltage V $_{\text {BB }}$). The bias voltage chosen will determine the
switching threshold of CONV. However, for best performance, CONV must be driven differentially. This will minimize clock noise and power supplyloutput intermodulation. Both clock inputs must normally be connected, with CONV being the complement of CONV.

Name	Function	Value	J7 Package	C3 Package
$\overline{C O N V}$	CONVert Clock Input	ECL	Pir 6	Pin 7
$\overline{C O N V}$	CONVert Clock Input, Complement	ECL	Pin 7	Pin 8

Analog Outputs

The two analog outputs of the TDC1018 are high-impedance complementary current sinks which vary in proportion to the input data, controls, and reference current values. The outputs are capable of directly driving a dual 750 hm load to standard video levels. The output voltage will be the product of the
output current and effective load impedance, and will usually be between OV and -1.07 V in the standard configuration isee Figure 5). In this case, the OUT- output gives a DC shifted video output with "sync down." The corresponding output from OUT + is also DC shifted and inverted, or "sync up."

Name	Function	Value	J7 Package	C3 Package
OUT-	Output Current -	Current Sink	Pin 18	Pin 21
OUT +	Output Current +	Current Sink	Pin 19	Pin 22

Figure 1．Timing Diagram

Figure 2．CONVert，$\overline{\mathrm{CONV}}$ ert Switching Levels

Figure 3．Equivalent Input Circuits

DATA． CONTROLS

Figure 4. Equivalent Dutput Circuit

Figure 5. Standard Load Configuration

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages
$V_{E E D}$ (measured to $D_{G N D}$) -7.0 to 0.5 V
$V_{E E A}$ (measured to $A_{G N D}$) -7.0 to 0.5 V
$A_{G N D}$ (measured to $D_{G N D}$) -0.5 to 0.5 V
Input Vokages
CONV, Data, and Controls (measured to $\mathrm{D}_{\mathrm{GND}}$) $V_{\text {EED }}$ to $0.5 V$
Reference input, applied voltage (measured to $\mathrm{A}_{\mathrm{GNO}}{ }^{2}$REF+$V_{E E A}$ to 0.5 V
REF- $V_{\text {EEA }}$ to 0.5 V
Reference input, applied current, externally forced 3,4
REF+ 6.0mA
REF- 0.5mA
Output
Analog output, applied voltage (measured to $\mathrm{A}_{\mathrm{GND}}$)
OUT+ -2.0 to +2.0 V
OUT- -2.0 to +2.0 V
Analog output, applied current, externally forced 3,4
OUT+ 50mA
OUT- 50 mA
Short circuit duration Unlimited sec
Temperature
Operating, ambient

\qquad -60 to $+140^{\circ} \mathrm{C}$
junction $+175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $+300^{\circ} \mathrm{C}$
Storage -60 to $+150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current when flowing into the device.

Operating conditions

Parameter			Temperature Range			Units
			Standard			
			Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage (measured to $\mathrm{D}_{\text {GND }}$)		-4.9	-5.2	-5.5	V
VEEA	Analog Supply Voltage (measured to $\mathrm{A}_{\text {GND }}$)		-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (measured to $\mathrm{D}_{\mathrm{GND}}$)		-0.1	0.0	+0.1	V
$V_{\text {EEA }}-V_{\text {EED }}$	Supply Voltage Differential		-0.1	0.0	+0.1	V
VICM	CONV Input Voltage, Common Mode Range (Figure 2)		-0.5		-2.5	V
VIDF	CONV Input Voltage, Differential (Figure 2)		0.4		1.2	V
${ }_{\text {tPWL }}$	CONV Pulse Width, LOW		4			ns
${ }^{\text {PPWH }}$	CONV Pulse Width, HIGH		4			ns
${ }^{\text {t }}$ S	Setup Time, Data and Controls		5			ns
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time, Data and Controls		0			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW		-1.49			V
$\bar{V}_{\text {IH }}$	Input Voltage, Logic HIGH				-1.045	V
$\mathrm{I}_{\text {REF }}$	Reference Current	Video standard output levels ${ }^{1}$	1.059	1.115	1.171	mA
		8 -bit linearity	1.0		1.3	mA
${ }^{\text {c }}$	Compensation Capacitor		2000	3900		pF
${ }^{\text {T }}$ A	Ambient Temperature, Still Air		0		70	${ }^{\circ} \mathrm{C}$

Note:

1. Minimum and Maximum values allowed by $\pm 5 \%$ variation given in RS343A and RS170 after initial gain correction of device.

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temper	Range	Units	
		Min	Max			
$I_{E E A}+l_{\text {EED }}$	Supply Current		$V_{E E A}-V_{E E D}=M A X, \text { static } 1$			
		$T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}$		170	mA	
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$,	130	mA	
$\mathrm{C}_{\text {REF }}$	Equivalent Input Capacitance, REF+, REF-			5	pF	
\bar{C}	Input Capacitance, Data and Controls			5	pF	
$\mathrm{V}_{\text {OCP }}$	Compliance Voltage, + Output		-1.2	+1.5	V	
$\mathrm{V}_{\text {OCN }}$	Compliance Voltage, - Output		-1.2	+1.5	V	
R_{0}	Equivalent Dutput Resistance		20		kOhms	
C_{0}	Equivalent Output Capacitance			20	pF	
Iop	Max Current, + Output	$V_{E E A}-$ NOM, SYNC $=$ BLANK - 0, FH - BRT - 1	30		mA	
$\mathrm{ION}_{\text {O }}$	Max Current, - Output	$V_{\text {EEA }}=$ NOM, SYNC - 1	30		mA	
IL	Input Current, Logic LOW, Data and Controls	$V_{\text {EED }}=$ MAX, $V_{1}=-1.40 \mathrm{~V}$		200	$\mu \mathrm{A}$	
IH	Input Current, Logic HIGH, Data and Controls	$\mathrm{V}_{\text {EED }}=$ MAX, $\mathrm{V}_{1}=-1.00 \mathrm{~V}$		200	$\mu \mathrm{A}$	
IC	Input Current, Convert	$V_{\text {EED }}=$ MAX,$-2.5 \mathrm{~V}<\mathrm{V}_{1}<-0.5 \mathrm{~V}$		50	$\mu \mathrm{A}$	
Note:	1. Worst case over all data and control states.					

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Tempe	Range	Units	
		Standard				
		Min	Max			
F_{S}	Maximum Conversion Rate		$V_{\text {EEA }} V_{\text {EED }}=$ MIN	125		MSPS
tosc	Clock to Output Delay, Clocked Mode		$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}-\mathrm{MIN}, \mathrm{FT}=0$		8	ns
${ }^{\text {t }}$ SST	Data to Output Delay, Transparent Mode	$\mathrm{V}_{\text {EEA }}, V_{\text {EED }}=\mathrm{MIN}, \mathrm{F}=1$		13	ns	
${ }_{\text {t }}$ I	Current Settling Time, Clocked Mode	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=\mathrm{MIN}, \mathrm{FT}=0$				
		0.2\%		10	ns	
		0.8\%		8	ns	
		3.2\%		5	ns	
$\mathrm{t}_{\text {fl }}$	Risetime, Current	10\% to 90% of Gray Scale		1.7	ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temper	Re Range	Units	
		Standard				
		Min	Max			
$E_{[1}$	Linearity Error Integra, Terminal Based		$V_{\text {EEA }}, V_{\text {EED }}, I_{\text {REF }}=$ NOM		0.2	\% of Gray Scale
ELD	Linearity Error Differential		$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}, \mathrm{I}_{\text {REF }}=$ NOM		0.2	\% of Gray Scale
I_{OF}	Output Offset Current			10	$\mu \mathrm{A}$	
E_{G}	Absolute Gain Error	$V_{\text {EEA }}, V_{\text {EED }}=M I N, I_{\text {REF }}=$ NOM		± 5	\% of Gray Scale	
T_{G}	Gain Error Tempco			± 0.024	\% of Gray Scale ${ }^{\circ} \mathrm{C}$	
BWR	Reference Bandwidth, -3dB	$\mathrm{C}_{\mathrm{C}}=$ MiN, $\Delta \mathrm{V}_{\text {REF }}=1 \mathrm{mV} \mathrm{p}-\mathrm{p}$	1		MHz	
DP	Differential Phase	$4 \times$ NTSC		1.0	Degrees	
DG	Differential Gain	$4 \times$ NTSC		2.0	\%	
PSRR	Power Supply Rejection Ratio	$V_{\text {EEA }}, V_{\text {EED }}, I_{\text {REF }}=$ NOM 1		45	dB	
		$V_{\text {EEA }}, V_{\text {EED }}, \mathrm{I}_{\text {REF }}=\mathrm{NOM}^{2}$		55	dB	
PSS	Power Supply Sensitivity	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}, \mathrm{I}_{\text {REF }}=$ NOM		120	$\mu \mathrm{AN}$	
G_{C}	Peak Glitch Charge	Registered Mode ${ }^{3,4}$		800	fCoulomb	
G	Peak Glitch Current	Registered Mode		1.2	mA	
G_{E}	Peak Glitch "Energy" (Area)	Registered Mode ${ }^{4}$		30	pV-Sec	
${ }_{\text {F }}$	Feedthrough Clock	Data $=$ Constant ${ }^{5}$		-50	dB	
$\underline{\mathrm{FT}_{\mathrm{D}}}$	Feedthrough Data	Clock = Constant ${ }^{5}$		-50	dB	
Notes:	1. $20 \mathrm{KHz}, \pm 0.3 \mathrm{~V}$ ripple superimposed on 2. $60 \mathrm{~Hz}, \pm 0.3 \mathrm{~V}$ ripple superimposed on V 3. fCoulombs $=$ microamps \times nanoseconds 4. 37.5Ω load. Because glitches tend to 5. dB relative to full gray scale, 250 MHz	$V_{E E A}, V_{E E D} ; d B$ relative to full gray scale. $V_{E E A} ; V_{E E D} ; d B$ relative to full gray scale. ds be symmetric, average glitch area approaches zero. bandwidth limit.				

Table 1 Video Control Truth Table

Sync	Blank	Force High	Bright	Data Input	Out- (mA) ${ }^{1}$	Out- (V) ${ }^{2}$	Out- (IRE) ${ }^{3}$	Description ${ }^{4}$
1	X	X	X	X	28.57	-1.071	-40	Sync Level
0	1	X	X	X	20.83	-0.781	0	Blank Level
0	0	1	1	X	0.00	0.00	110	Enhanced High Level
0	0	1	0	X	1.95	-0.073	100	Normal High Level
0	0	0	0	000...	19.40	-0.728	7.5	Normal Low Level
0	0	0	0	111...	1.95	-0.073	100	Normal High Level
0	0	0	1	000...	17.44	-0.654	17.5	Enhanced Low Level
0	0	0	1	111...	0.00	0.00	110	Enhanced High Level

Notes:

1. Out + is complementary to Out - Current is specified as conventional current when flowing into the device.
2. Voltage produced when driving the standard load configuration 137.5 Ohms). See figure 5 .
3. 140 IRE units $=1.00 \mathrm{~V}$.
4. RS $-343-$ A tolerance on all control values is assumed.

Figure 6. Video Output Waveform for Out - and Standard Load Configuration

Figure 7. Typical Interface Circuit

Parts List

Resistors			
R1	$1 K \Omega$	Pot	10 Turn
R2	$1.00 \mathrm{~K} \Omega$	1/8W	1\% Metal Film
R3	$2.00 \mathrm{~K} \Omega$	1/8W	1\% Metal Film
R4	$1.00 \mathrm{~K} \Omega$	186W	1\% Metal Film
Capacitors			
C1-C3	$0.1 \mu \mathrm{~F}$	50 V	Ceramic disc
C_{C}	$0.01 \mu \mathrm{~F}$	50 V	Ceramic disc

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1018JC	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	Commercial With Burn-In

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TDC103A

Preliminary Information

D/A Converter

4-bit, 125MSPS

The TRW TDC1034 is a 125 MegaSample Per Second IMSPS), 4-bit digital-to-analog converter, capable of directly driving a 750 hm load to standard video levels. Most applications require no extra registering, buffering, or deglitching. Three special level controls make the device ideal for video applications. All data and control inputs are ECL compatible.

The TDC1034 is built with TRW's OMICRON-B ${ }^{\text {TM }} 1$-micron bipolar process. On-chip data registers and precise matching of propagation delays insure low glitch energy. The TDC1034 offers high performance, low power consumption, and video compatibility in an 18 lead DIP package.

Features

- "Graphics-Ready"
- 125MSPS Conversion Rate
- $1 / 8$ LSB Linearity
- Power Supply Noise Rejection > 50dB
- Registered Data And Video Controls
- Differential Current Outputs
- Video Controls: SYNC, BLANK, BRighT
- Low Glitch Energy
- ECL Compatible
- Low Power Dissipation
- Available In 18 Lead DIP And CERDIP Packages
- Single -5.2V Power Supply

Applications

- CAD
- RGB Graphics
- Raster Graphic Displays
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

18 Lead DIP - J8 Package
18 Lead CERDIP - B8 Package

Functional Description

General Information

The TDC1034 develops complementary analog output currents proportional to the product of the digital input data and analog reference current. All data and control inputs are compatible with standard ECL logic levels. Each rising edge of the CONVert clock (CONV) latches data and control values into an internal D-type register. The registered values are then converted into an analog output by switched current sinks.

The TDC1034 uses a segmented circuit design scheme in which the input data is decoded into a parallel "Thermometer" code, which drives fifteen identical current sinks to produce sixteen output levels.

Special control inputs, SYNC, BLANK and BRighT (BRT), drive appropriately weighted current sinks which add to the output current to produce specific output levels especially useful in video applications.

Power

To provide highest noise immunity, the TDC1034 operates from separate analog and digital power supplies, $V_{E E A}$ and $V_{E E D}$ respectively. Since the required voltage for both $V_{E E A}$ and $V_{\text {EED }}$ is -5.2 V , these may ultimately be connected to the same power source, but high-frequency decoupling for each supply is recommended. A typical decoupling network is shown in Figure 7. The return for leED, the current drawn from the
$V_{E E D}$ supply, is $V_{C C D}$. The return for leEA is $V_{C C A}$. All $V_{\text {EE }}$ and $V_{\text {CC }}$ pins MUST be connected.

Although the TDC1034 is specified for a nominal supply of -5.2 V , operation from a +5.0 V supply is possible provided that the relative polarities of all voltages are correctly maintained.

Name	Function	Value	J8, B8 Package
$V_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	Pin 16
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pin 3
$V_{\text {CCA }}$	Analog Supply Voltage	0.0 V	Pin 13
$V_{\text {CCD }}$	Digital Supply Voltage	0.0 V	Pin 6

Reference

The TDC1034 has two reference inputs: REF+ and REF-, which are noninverting and inverting inputs to an internal reference buffer amplifier. The output of this operational amplifier serves as a reference for the current sinks. The feedback loop is internally connected around one of the current sinks to achieve high accuracy (see Figure 4).

The analog output currents are proportional to the digital data and reference current, IREF. The full scale output value may be adjusted over a limited range by varying the reference current. Accordingly, the stability of the analog output depends primarily upon the stability of the reference. A method of achieving a stable reference is shown in Figure 7.

The reference current flows into the REF+ input, while REFis typically connected to a negative reference voltage through a resistor chosen to minimize input offset current effects.

A COMPensation input (COMP), is provided for external compensation of the TDC1034's reference amplifier. A capacitor ${ }^{C} \mathrm{C}$ should be connected between COMP and the VEEA supply, keeping lead lengths as short as possible. The value of the compensation capacitor determines the effective bandwidth of the amplifier. In general, decreasing C_{C} increases bandwidth and decreases amplifier stability. For applications in which the reference is constant, C_{C} should be large, while smaller values of C_{C} may be chosen when dynamic modulation of the reference is required.

Name	Function	Value	J8, B8 Package
REF-	Reference Current - Input	Op-Amp Virtual Ground	Pin 10
REF+	Reference Current + Input	Op-Amp Virtual Ground	Pin 11
COMP	COMPensation Input	C_{C}	Pin 12

Controls

The TDC1034 has three special video control inputs: SYNC, BLANK and BRighT (BRT). All controls are standard ECL level compatible, and include internal pulldown resistors to force unused controls to a logic LOW (inactivel state.

The video control inputs are registered by the rising edge of the CONV clock in a manner similar to the data inputs. These inputs, like data, must be valid for a setup time of ts before, and a hold time of t_{H} after the rising edge of CONV in order to be registered.

Asserting the video controls produces various output levels which are used for frame synchronization, horizontal blanking, etc., as described in video system standards such as RS -170 and RS-343A. The effect of the video controls on the analog outputs is shown in Table 1. Internal logic governs the interaction of these controls to simplify their use in video applications. BLANK and SYNC override the data inputs. SYNC overrides all other inputs, and produces full-scale output. The BRT control creates a "whiter than white" level by adding 10\% of the full-scale value to the present output level, and is especially useful in graphics display for highlighting cursors, warning messages, or menus. For non-video applications, these controls may be left unconnected.

Name	Function	Value	J8, B8 Package
BLANK	Video BLANK Input	ECL	Pin 7
BRT	Video BRighT Input	ECL	Pin 8
SYNC	Video SYNC Input	ECL	Pin 9

Data Inputs

Data inputs to the TDC1034 are standard single-ended ECL compatible. Internal pulldown resistors force unconnected data inputs to logic LOW. Input registers are provided for synchronous data entry and lowest differential data propagation delay (skew), which minimizes glitching.

Name	Function	Value	J8, B8 Package
D_{1}	Data Bit 1 (MSB)	ECL	Pin 17
D_{2}		ECL	Pin 18
D_{3}		ECL	Pin 1
D_{4}	Data Bit 4 (LSB)	ECL	Pin 2

Convert

CONVert (CONV) is a differential ECL compatible clock input whose rising edge synchronizes data and control entry into the TDC1034. Within the constraints shown in Figure 2, the actual switching threshold of CONV is determined by CONV. CONV may be driven single-ended by connecting $\overline{\mathrm{CONV}}$ to a suitable
bias voltage $\mathrm{V}_{\mathrm{BB}} \mid$. The bias voltage chosen will determine the switching threshold of CONV. However, for best performance, CONV must be driven differentially. This will minimize clock noise and power supplyloutput intermodulation. Both clock inputs must normally be connected.

Name	Function	Value	J8, B8 Package
CONV	CONVert Clock Input	ECL	Pin 4
$\overline{\text { CONV }}$	CONVert Clock Input, Complement	ECL	Pin 5

Analog Outputs

The two analog outputs of the TDC1034 are high impedance complementary current sinks which vary in proportion to the input data, controls, and reference current values. The outputs are capable of directly driving dual 750 hm loads to standard video levels. The output voltage is the product of the output
current and effective load impedance, and is usually between 0 V and -1.07 V in the standard configuration (see Figure 5). In this case, the OUT- output gives a DC shifted video output with "sync down." The corresponding output from OUT + is also DC shifted and inverted, or "sync up."

Name	Function	Value	J8, B8 Package
OUT-	Output Current -	See Text	Pin 14
OUT +	Output Current +	See Text	Pin 15

Figure 1. Timing Diagram

Figure 2. CONV, CONV Switching Levels

Figure 3．Equivalent Input Circuits

Figure 4．Equivalent Output Circuit

Figure 5．Standard Load Configuration

Absolute maximum ratings (beyond which the device will be damaged ${ }^{1}$

Supply Voltages

$V_{E E D}$ (measured to $V_{C C D}$)
7.0 to 0.5 V

Input Voltages

Reference input, applied voltage (measured to $V_{C C A}{ }^{2}$
REF+
$V_{\text {EEA }}$ to 0.5 V

Reference input, applied current, externally forced ${ }^{3,4}$

Output
Analog output, applied voltage (measured to V_{CA})

OUT+

OUT-

$$
-2.0 \text { to }+2.0 \mathrm{~V}
$$

nalog output, applied current, externally forced 3,4

OUT+ 50mA
OUT- 50mA
Short circuit duration Unlimited sec
Temperature
Operating, ambient -60 to $+140^{\circ} \mathrm{C}$
junction $+175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $+300^{\circ} \mathrm{C}$
Storage -60 to $+150^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current when flowing into the device.

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage (measured to $\mathrm{V}_{\text {CCD }}$)	-4.75	-5.2	-5.5	V
$\overline{\text { VEEA }}$	Analog Supply Vottage (measured to $\mathrm{V}_{\text {CCA }}$)	-4.75	-5.2	-5.5	V
$V_{\text {CCA }}-V_{\text {CCD }}$	Supply Voltage Differential	-0.1	0.0	+0.1	V
$\overline{V E E A}^{-V_{\text {EED }}}$	Supply Voltage Differential	-0.1	0.0	+0.1	V
VICM	CONV Input Voltage, Common Mode Range (Figure 2)	-0.5		-2.5	V
VIDF	CONV Input Voltage, Differential (Figure 2)	0.3		1.2	V
${ }^{\text {tPWL }}$	CONV Pulse Width, LOW	4			ns
tpWH	CONV Pulse Width, HIGH	4			ns
${ }_{\text {t }}$	Setup Time, Data and Controls	5			ns
th	Hold Time, Data and Controls	0			ns
$V_{\text {Il }}$	Input Voltage, Logic LOW	-1.49			V
$V_{\text {IH }}$	Input Voltage, Logic HIGH			-1.045	V
ReE	Reference Current Video standard output levels ${ }^{1}$.	1.10	1.17	1.24	mA
	6-bit linearity	1.0		1.3	mA
${ }^{\text {c }}$	Compensation Capacitor	1000	2700		pF
$\mathrm{T}_{\text {A }}$	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$

Note: 1. Minimum and Maximum values allowed by $\pm 5 \%$ variation given in RS343A and RS170 after intitial gain correction of device.

Electrical characteristics within specified operating conditions

Notes: 1. Worst case over all data and control states.
2. $\mathrm{EG} \leq 6 \%$ of gray scale.

Switching characteristics within specified operating conditions

Paramater		Test Conditions	Temperature Range		Units	
		Standard				
		Min	Max			
Fs	Maximum Conversion Rate		$V_{\text {EEA }}, V_{\text {EED }}-M I N$	125		MSPS
${ }_{\text {t }}^{\text {dSC }}$	Clock to Dutput Delay		$V_{E E A} V_{\text {EED }}=$ MIN		8	n3
${ }_{\underline{\text { t }} \text { I }}$	Current Settling Time, Clocked Mode	$V_{\text {EEA }} V_{\text {EED }}=$ MIN, 3.2%		5	ก	
t_{RJ}	Rise Time, Current	10\% to 90\% of Gray Scale		2.0	ns	

System performance characteristics within specified operating conditions

Paramater		Test Conditions	Temp	Range	Units	
		Standard				
		Min	Max			
ELI	Linearity Error Integral, Terminal Based		$V_{\text {EEA }} V_{\text {EED }} \mathrm{l}_{\text {REF }}=$ NOM		0.8	\% of Gray Scale
ELD	Linearity Error Differential		$V_{\text {EEA }} V_{\text {EED }}$ l $\mathrm{l}_{\text {REF }}=\mathrm{NOM}$		0.8	\% of Gray Scale
$\underline{\mathrm{IOF}}$	Output Offset Current	$V_{\text {EEA }} V_{\text {EED }}=$ MAX, SYNC - BLANK -0, BRT $=1$		10	$\mu \mathrm{A}$	
EG	Absolute Gain Error	$V_{\text {EEA }}, V_{\text {EED }}-M I N$		6	\% of Gray Scale	
TC_{G}	Gain Error Tempco	$I_{\text {REF }}$ - NOM		0.01	\% of Gray Scale ${ }^{\circ} \mathrm{C}$	
BWR	Reference Bandwidth, -3dB	$C_{C}=M I N, \Delta V_{\text {REF }}=1 m V \mathrm{p}-\mathrm{p}$	1		MHz	
PSRR	Power Supply Rejection Ratio	$V_{\text {EEA }}, V_{\text {EED }}, l_{\text {REF }}=$ NOM ${ }^{1}$		45	dB	
		$V_{\text {EEA }}, V_{\text {EED }}{ }^{\text {IREF }}$ - NOM^{2}		46	dB	
PSS	Power Supply Sensitivity	$V_{\text {EEA }}, V_{\text {EED }}, l_{\text {REF }}=$ NOM		120	$\mu \mathrm{A} / \mathrm{V}$	
${ }^{G_{C}}$	Peak Glitch Charge ${ }^{3,4}$			800	f Coulomb	
$\mathrm{G}_{\boldsymbol{I}}$	Peak Glitch Current			1.2	mA	
G_{E}	Peak Glitch "Energy" (Area) ${ }^{4}$			30	pV-Sec	
${ }^{\mathrm{F}} \mathrm{C}$	Feetthrough Clock ${ }^{5}$	$\begin{aligned} \text { Data }=\text { Constant } & \mathrm{BW}=250 \mathrm{MHz} \\ \mathrm{BW} & =50 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -36 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
F_{D}	Feetthrough Data ${ }^{5}$	$\begin{aligned} & \text { CONV }=\text { Constant } \mathrm{BW}=250 \mathrm{MHz} \\ &-\quad 50 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -42 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	

Notes:

1. $20 \mathrm{KHz}, 0.75 \mathrm{~V} p-p$ ripple superimposed on $\mathrm{V}_{\mathrm{EEA}}, \mathrm{V}_{\mathrm{EED}}$; dB relative to full gray scale.
2. $60 \mathrm{KHz}, 0.75 \mathrm{~V} p-p$ ripple superimposed on $\mathrm{V}_{\mathrm{EEA}}, \mathrm{V}_{\mathrm{EED}}$; dB relative to full gray scale.
3. fCoulombs $=$ microamps \times nanoseconds.
4. 37.5Ω load. Because glitches tend to be symmetric, average glitch energy approaches zero.
5. dB relative to full gray scale.

Table 1 Video Control Truth Table

Sync	Blank	Bright	Data Input	Out- $(\mathbf{m A})^{1}$	Out- $(\mathbf{V})^{2}$	Out- (IRE) 3	Description ${ }^{4}$
1	X	X	X	28.57	-1.071	-40	Sync Level
0	1	X	X	20.83	-0.781	0	Blank Level
0	0	0	0000	19.40	-0.728	7.5	Normal Low Level
0	0	0	1111	1.95	-0.073	100	Normal High Level
0	0	1	0000	17.44	-0.554	7.5	Enhanced Low Level
0	0	1	1111	0.00	0.00	110	Enhanced High Level

Notes:

1. Out + is complementary to Out-. Current is specified as conventional current when flowing into the device.
2. Voltage produced when driving the standard load configuration (37.5 Ohms to $V_{C C A}$. See figure 5.
3. 140 IRE units $=1.00 \mathrm{~V}$.
4. RS-343-A tolerance on all control values is assumed.

Figure 6. Video Output Wavgform for Out- and Standard Load Configuration

Note: 1. Output voltage is measured with standard load connected between Out - and $V_{C C A}$.
Figure 7. Typical Interface Circuit

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1034/8C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1034J8C
TDC1034/8G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1034.J8G
TDC1034B8C	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead CERDIP	1034B8C
TDC1034B8G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead CERDIP	1034B8G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

| V | L | S |
| :--- | :--- | :--- | :--- |

D $A \quad$ T \quad A

B	\mathbf{O}	\mathbf{O}	\mathbf{K}

Introduction
Product Indexes
Advance Information
AD Converters
Evaluation Boards
DIA Convarters
Multipliers

Multiplier-Accumulators
Spectall Function Products
Memory/Storage Praducts
Roliability
Packaye Information
Glossary
Ordering Information
Application Notes And Reprints (Listings)

Digital signal processing (DSP) relies heavily on multiplication. TRW LSI offers a family of parallel multipliers in a variety of word sizes ($8,12,16$ bits) and speeds (40 ns to 145 ns multiply times). Parallel multipliers accept two n-bit input operands and output the 2 n -bit product. Independently clocked registers are provided for the inputs and outputs. Three-state outputs are provided to ease interfacing. All TRW multipliers are TTL compatible.

Multipliers have three functional sections: an input section, the asynchronous multipler array, and the output section. The input section has two n-bit registers, comprised of positive-edge-triggered D-type flip-flops. Except as noted, the operands may be either two's complement or unsigned magnitude numbers.

The asynchronous multiplier array generates the n partial products. The properly weighted partial products are summed by an asynchronous group of adders. The product is rounded and the format is adjusted as appropriate, before entering the product register.

The output section includes the product registers and the three-state output
ports. The Most Significant Product (MSP) and the Least Significant Product (LSP) each have their own individually clocked n-bit register. The MSP and LSP have separate three-state output ports.

" H " Series Bipolar Multipliers

The MPY008H/MPY08HU (8-bit), MPY012H (12-bit), and MPY016H (16-bit) devices are fabricated using a two-micron triple-diffused bipolar technology.

"H" Series CMOS Multipliers

The TMC216H (16-bit) is a TRW CMOS multiplier which is pin and function compatible with the bipolar MPY016H. It operates at the same speed with about one-fifth the power dissipation.

"K" Series Bipolar Multipliers

 The MPY112K (12-bit) and MPY016K (16-bit) devices have been developed for high-speed applications using TRW's OMICRON-B ${ }^{\text {TM }}$ one-micron triple-diffused bipolar technology. The MPY112K has been optimized for minimum package size and operation at video processing speeds $(20 \mathrm{MHz})$. The MPY016K is a faster yet pincompatible version of the MPY016H.| Product | Size | Multiplication Time ${ }^{1}$ (ns) | Power Dissipation ${ }^{2}$ (Watts) | Package | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MPYOO8H | 8×8 | 90 | 2.0 | J5, C2 | Two's complement |
| MPYOO8H-1 | 8×8 | 65 | 2.0 | J5, C2 | Two's complement |
| MPYOBHU | 8×8 | 90 | 2.0 | J5 | Unsigned magnitude |
| MPY08HU-1 | 8×8 | 65 | 2.0 | J5 | Unsigned magnitude |
| MPY012H | 12×12 | 115 | 3.7 | J1, C1, L1, F1 | |
| MPY112K | 12×12 | 50 | 2.4 | J4 | 16-Bit product |
| MPYO16H | 16×16 | 145 | 4.6 | J1, C1, L1, F1 | |
| MPY016K | 16×16 | 45 | 4.6 | $\mathrm{Jl}, \mathrm{Cl}, \mathrm{L1}$ | |
| MPY016K.1 | 16×16 | 40 | 4.6 | J1, C1, L1 | |
| TMC216H | 16×16 | 145 | . 37 | J3, C1, L1 | CMOS |

Notes:

1. Guaranteed, Worst Case, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
2. Bipolar: Worst Case $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

CMOS: All inputs toggling at MAX clock rate, unloaded. $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Multiplier
8×8 Bit, 65ns

The MPYOO8H is a high-speed 8×8 bit parallel multiplier which operates at a 65 nanosecond cycle time. The multiplicand and the multiplier are both two's complement numbers, yielding a full-precision 16-bit two's complement product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The MPYOOBH is built with TRW's 2-micron bipolar process.

Features

-65ns Multiply Time: MPYO08H-1

- 90ns Multiply Time: MPY008H
- 8×8 Bit Parallel Multiplication With 16 -Bit Product Output
- Three-State Outputs
- Fully TTL Compatible
- Two's Complement Multiplication
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 40 Lead Ceramic DIP Or 44 Contact Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

40 Lead DIP - J5 Package

44 Contact Chip Carrier - C2 Package

Functional Description

General Information

The MPYOOBH has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 8 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous
multiplier array is a network of AND gates and adders, designed to handle two's complement numbers only. The output registers hold the product as two 8 -bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPYOOBH to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 8-bit output lines.

Power

The MPY008H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J5 Package	C2 Package
VCC	Positive Supply Voltage	$+5.0 V$	Pin 30	Pin 34
GND	Ground	$0.0 V$	Pin 32	Pin 36

Data Inputs

The MPY008H has two 8-bit two's complement data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted $X_{S G N}$ and $Y_{\text {SGN }}$, carry the sign information for the two's complement notation. The remaining bits are denoted X_{1}
through X_{7} and Y_{1} through Y_{7} lwith X_{7} and Y_{7} the Least Significant Bitsl. The input and output formats for fractional two's complement notation and integer two's complement notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package	C2 Package
$\mathrm{X}_{\text {SGN }}$	X Data Sign Bit (MSB)	TIL	Pin 22	Pin 25
χ_{1}		TTL	Pin 21	Pin 24
x_{2}		TL	Pin 20	Pin 23
x_{3}		TL	Pin 19	Pin 22
x_{4}		TL	Pin 18	Pin 21
x_{5}		TL	Pin 17	Pin 20
x_{6}		TIL	Pin 16	Pin 19
${ }_{7}$	X Data LSB	TL	Pin 15	Pin 18
$Y_{\text {SGN }}$	Y Data Sign Bit (MSB)	TTL	Pin 35	Pin 39
Y_{1}		TL	Pin 34	Pin 38
γ_{2}		TTL	Pin 33	Pin 37
Y_{3}		TL	Pin 31	Pin 35
Y_{4}		TL	Pin 29	Pin 33
Y_{5}		TL	Pin 28	Pin 32
Y_{6}		TTL	Pin 27	Pin 31
Y_{7}	Y Data (LSB)	TL	Pin 26	Pin 30

Data Outputs

The MPYoorH has a 16 -bit two's complement output which is the product of the two input data values. This output is divided into two 8-bit output words, the Most Significant Product (MSP) and Least Significant Product ILSP). The Most Significant Bit IMSBI of both the MSP and the LSP is always the sign bit, PSGN. The input and output formats for fractional two's complement notation and integer two's complement
notation are shown in Figures 1 and 2, respectively. Note that since +1 cannot be denoted in fractional two's complement notation while -1 can be, some provision for handling the case $(-1) \times(-1)$ must be made. The MPYOOBH provides a -1 output in this case. As a result, external error handling provisions may be required.

Name	Function	Value	J5 Package	C2 Package
$P_{\text {SGN }}$	Product Sign Bit (MSP)	TL	Pin 36	Pin 41
P_{1}		TTL	Pin 37	Pin 42
P_{2}		TTL	Pin 38	Pin 43
P_{3}		TL	Pin 39	Pin 44
P_{4}		TL	Pin 40	Pin 1
P_{5}		TL	Pin 1	Pin 2
P_{6}		TL	Pin 2	Pin 3
P_{7}		TTL	Pin 3	Pin 4
$\mathrm{P}_{\text {SGN }}$	Product Sign Bit (LSP)	TL	Pin 7	Pin 9
P_{8}		TL	Pin 8	Pin 10
Pg		TL	Pin 9	Pin 11
P_{10}		TL	Pin 10	Pin 12
P_{11}		TL	Pin 11	Pin 13
P_{12}		TL	Pin 12	Pin 14
P_{13}		TL	Pin 13	Pin 15
P_{14}	Product LSB	TLL	Pin 14	Pin 16

Clocks

The MPYOOBH has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in at the rising edge of the logical OR

Name	Function	Value	J5 Package	C2 Package
CLK X	Clock Input Data X	TL	Pin 23	Pin 26
CLK Y	Clock Input Data Y	TL	Pin 24	Pin 27
CLK P	Clock Product Register	TL	Pin 4	Pin 5

No Connects

The contact chip carrier version of the MPYOOBH has four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J5 Package	C2 Package
NC	No Connection	Open	None	Pins $6,17,28,40$

Control

The MPYOO8H has three control lines:

TRIM,TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RND
The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J5 Package	C2 Package
RND	Round Control Bit	TTL	Pin 25	Pin 29
TRIM	MSP Three-State Control	TTL	Pin 5	Pin 7
TRIL	LSP Three-State Control	Pin 6	Pin 8	

Figure 1. Fractional Two's Complement Notation

Figure 2. Integer Two's Complement Notation

Figure 3. Timing Diagram

Figure 4. Equivalent Input Circuit

Figure 6. Test Load

T0 OUTPUT

Figure 5. Equivalent Output Circuit

Figure 7. Transition Levels For Three-State Measurements

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPYOOBH does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(2 / 8)=12 / 64 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design.

Because common design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 and 2.
Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input								
Applied voltage \qquad -0.5 to $+5.5 \mathrm{v}^{2}$ Forced current \qquad $-1.010+6.0 \mathrm{~mA}^{3.4}$ Short-circuit duration (single output in high state to ground) \qquad 1 sec .								
Notes: 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range, and measured with respect to GND. 3. Forcing voltage must be limited to specified range. 4. Current is specified as positive when flowing into the device.								
Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
	VCC Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
	tPW Clock Pulse Width	25			30			ns
	ts Input Register Setup Time	25			30			ns
	IH Input Register Hold Time	0			3			ns
	$V_{\text {IL }} \quad$ Input Voltage, Logic LOW			0.8			0.8	V
	$\mathrm{V}_{\text {IH }} \quad$ Input Voltage, Logic HIGH	2.0			2.0			V
	OL Output Current, Logic LOW			4.0			4.0	mA
	OH Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}} \quad$ Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\mathrm{C}} \quad$ Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

LSI Products Division

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Renge				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Supply Current	$V_{\text {CC }}=$ MAX, Static ${ }^{1}$		375		450	mA
IIL Input Current, Logic Low	$\begin{gathered} V_{C C}-M A X, V_{1}-0.4 V \\ X_{I N}, Y_{I N}, R N D \end{gathered}$		-0.4		-0.4	mA
	CLK X, CLK Y, TRIM, TRIL		-1.0		-1.0	mA
	CLK P		-2.0		-2.0	mA
IIH Input Current, Logic HIGH	$\begin{gathered} V_{C C}-M A X, V_{1}=2.4 V \\ X_{I N}, Y_{I N}, R N D \end{gathered}$		75		100	$\mu \mathrm{A}$
	CLK X, CLK Y, TRIM, TRIL		75		100	$\mu \mathrm{A}$
	CLK P		150		200	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$\mathrm{V}_{\text {CC }}=$ MAXX $\mathrm{V}_{1}-5.5 \mathrm{~V}$		1.0		1.0	mA
$V_{\text {OL }} \quad$ Output Voltage, Logic LOW	$V_{C C}=M I N, I_{0 L}=$ MAX		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\text {OH }}=$ MAX	2.4		2.4		V
IOZL Hi-Z Output Leakage Current, Output LOW	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$		-40		-40	$\mu \mathrm{A}$
OZZH Hi-Z Output Leakage Current, Output HIGH	$V_{C C}=$ MAX, $V_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
${ }_{\text {OS }}$ Short-Circuit Output Current	$V_{C C}=$ MAX, one pin to ground, one second duration max, output HIGH		-50		-50	mA
$C_{1} \quad$ Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF

Note:

1. All inputs and outputs LOW.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {mPY }}$ Multiply Time	$V_{C C}-$ MIN MPYOOBH-1		65			ns
	$\mathrm{V}_{\text {CC }}-\mathrm{MIN} \mathrm{MPY000H}$		90		115	ns
tD Output Delay	$V_{C C}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns
teNA Three-State Output Enable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	ns
${ }^{\text {tolS }}$ Three-State Output Disable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for toISO, 0.0 V for $\mathrm{tDIS}^{2}{ }^{2}$		40		45	ns

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {OIS }}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in figure 7 .
2. toIS1 denotes the transition from logical 1 to three-state.
toISO denotes the transition from logical 0 to three-state.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY008HJ5C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	OOBHJ5C
MPY008HJ5G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	008HJ5G
MPYO08H $45 F$	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	008HJ5F
MPYO08HJ5A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	40 Lead DIP	D08H $35 A$
MPY008HJ5CI	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	008H J5C1
MPYO08HJ561	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	008HJ561
MPY008HC2C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	44 Contact Chip Carriser	008HC2C
MPYOOQHC2G ${ }^{1}$	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	44 Contact Chip Carrier	008HC2G
MPYOOBHC2F	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	44 Contact Chip Carrier	008HC2F
MPYOOBHC2A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	44 Contact Chip Carrier	DOBHC2A

Notes:

1. Contact factory for availability.
2. Per TAW document 70201757.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.

High－Speed Parallel Multiplier

8 bit，65ns

The TRW MPYO8HU is a high－speed 8－bit parallel multiplier which operates at a 65 nanosecond cycle time 195 MHz multiplication ratel．The multiplicand and the multiplier are both unsigned magnitude numbers，yielding a full－precision 16－bit product．

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing．These registers are positive－edge－triggered D－type flip－flops．
Three－state outputs with separate output enable lines for the MSP and the LSP are employed．

The MPYO8HU is built with TRW＇s radiation hard 2－micron process，and is the unsigned magnitude version of the industry standard MPYOO8H．

Features

－65ns Multiply Time：MPYO8HU－1
－9Ons Multiply Time：MPYO8HU
－ 8×8 Bit Parallel Multiplication With 16－Bit Product Output
－Independent Most Significant Product and Least Significant Product Dutputs
－Three－State Outputs
－Fully TTL Compatible
－Unsigned Magnitude Multiplication
－Proven High－Reliability Radiation Hard Bipolar Process
－Single＋5V Power Supply
－Available In 40 Lead DIP

Applications

－Array Processors
－Video Processors
－Radar Signal Processors
－FFT Processors
－General Digital Signal Processors
－Microcomputer／Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

40 Lead DIP - J5 Package

Functional Description

General Information

The MPY08HU has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 8 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each number is stored independently, simplifying multiplication by a constant. The asynchronous
multiplier array is a network of AND gates and adders, designed to handle unsigned magnitude numbers. The output registers hold the product as two 8-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY08HU to be used on a bus, or allow the outputs to be multiplexed over the same 8 -bit output lines.

Power

The MPY08HU operates from a single +5 Volt supply.

Name	Function	Value	J5 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 30
GND	Ground	0.0 V	Pin 32

Data Inputs

The MPYOPHU has two data 8-bit unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs) are denoted X_{7} and Y_{7}; the remaining bits are denoted X_{0} through X_{6} and Y_{0} through Y_{6} (with X_{0} and Y_{0} the Least Significant

Bitsl. The input and output formats for fractional unsigned magnitude notation and integer unsigned magnitude notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package
X_{7}	X Data MSB	mL	Pin 22
x_{6}		m	Pin 21
x_{5}		mL	Pin 20
x_{4}		mL	Pin 19
x_{3}		mi	Pin 18
x_{2}		m	Pin 17
x_{1}		m	Pin 16
x_{0}	X Data LSB	mL	Pin 15
r_{7}	Y Data MSB	m	Pin 35
Y_{6}		m	Pin 34
Y_{5}		mL	Pin 33
r_{4}		m	Pin 31
r_{3}		m	Pin 29
r_{2}		TL	Pin 28
r_{1}		TL	Pin 27
r_{0}	Y Data LSB	π	Pin 26

Data Outputs

The MPYOBHU has a 16 -bit unsigned magnitude output which is the product of the two input data values. This output is divided into two 8 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of the MSP is Product bit P_{15}. Product
bit P_{0} is the Least Significant Bit (LSB). The input and output formats for fractional unsigned magnitude notation and integer unsigned magnitude notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package
P_{15}	Product MSB	TTL	Pin 36
P_{14}		$T T L$	Pin 37
P_{13}		$T T L$	Pin 38
P_{12}		$T T L$	Pin 39
P_{11}	$T T L$	Pin 40	
P_{10}		$T T L$	Pin 1
P_{9}	$T T L$	Pin 2	
P_{8}		$T L$	Pin 3
P_{7}		$T T L$	Pin 7
P_{6}		$T L$	Pin
P_{5}		$T L L$	Pin 9
P_{4}		$T T L$	Pin 10
P_{3}		$T T L$	Pin 11
P_{2}		$T T L$	Pin 12
P_{1}		Pin 13	
P_{0}		Product LSB	

Clocks

The MPYO8HU has three clock lines, one for each of the input registers and one for the product register. Data present at the
inputs of these registers are loaded into the registers at the rising edge of the appropriate clock.

Name	Function	Value	J5 Package
CLK X	Clock Input Data X	TL	Pin 23
CLK Y	Clock Input Data Y	TL	Pin 24
CLK P	Clock Product Register	TLL	Pin 4

Controls

The MPYOBHU has three control lines:

TRIM, TRIL Three-state enable lines for the MSP and the RND LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

The RND input is registered, and clocked in at the rising edge of CLK X. A one is added to the MSB of the LSP when RND is HIGH. The RND control is used when a rounded 8 -bit product is desired.

Name	Function	Value	J5 Package
RND	Round Control Bit	TTL	Pin 25
TRIM	MSP Three-State Control	TL	Pin 5
TRIL	LSP Three-State Control	TTL	Pin 6

Figure 1. Fractional Unsigned Magnitude Notation

Figure 2. Integer Unsigned Magnitude Notation

$$
\begin{aligned}
& \\
& \times \begin{array}{|l|l|l|l|l|l|l|l|}
\hline Y_{7} & Y_{6} & Y_{5} & Y_{4} & Y_{3} & Y_{2} & Y_{1} & Y_{0} \\
\hline 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\hline
\end{array}
\end{aligned}
$$

Figure 3. Timing Diagram

Figure 4. Equivalent Input Circuit

$\mathrm{R1}=25 \mathrm{~K}$
$\mathrm{R} 2=10 \mathrm{~K}$

Figure 6. Test Load

Figure 5. Equivalent Output Circuit

Figure 7. Transition Levels For Three-State Measurements

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input	
	Forced current ... -6.0
Output	
	Short-circuit duration \single output in high state to ground) ... 1 sec.
Temperature	
	Operating, case \qquad -55 to $+125^{\circ} \mathrm{C}$ junction \qquad $175^{\circ} \mathrm{C}$
	Lead, solddering (10 seconds) ... $30{ }^{(1)}$ 300 ${ }^{\circ}$
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range, and measured with respect to GND.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.50	5.0	5.5	V
tpw	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
${ }_{\text {th}}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			\checkmark
$\underline{\mathrm{loL}}$	Output Current, Logic Low			4.0			4.0	mA
${ }^{1} \mathrm{OH}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$T_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Paramater	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {ICC }}$ Supply Current	$V_{\text {CC }}=$ MAX, Static ${ }^{1}$		375		450	mA
IIL Inpuf Current, Logic LOW	$\begin{gathered} V_{C C}=M A X, V_{1}=0.4 V \\ X_{I N}, Y_{I N}, \text { RND } \end{gathered}$		-0.4		-0.4	mA
	CLK X, CLK Y, TRIM, TRIL		-1.0		-1.0	mA
	CLK P		-2.0		-2.0	mA
IIH Input Current, Logic HIGH	$V_{C C}=M A X, V_{1}=2.4 V$ CLK P		150		200	$\mu \mathrm{A}$
	(All others)		75		100	$\mu \mathrm{A}$
11 Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$V_{\text {OL }}$ Output Voltage, Logic LOW	$V_{C C}=M I N, I_{O L}=$ MAX		0.5		0.5	V
$V_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{\text {CC }}=$ MIN, $\mathrm{I}_{\text {OH }}=$ MAX	2.4		2.4		V
IOZL Hi-Z Output Leakage Current, Output LOW	$V_{C C}-M A X, V_{1}-0.4 V$		-40		-40	$\mu \mathrm{A}$
IozH Hi-2 Output Leakage Current, Output HIGH	$V_{C C}=$ MAXX $V_{1}=2.4 V$		40		40	$\mu \mathrm{A}$
Ios Short-Circuit Output Current	$V_{C C}=$ MAX, one pin to ground, one second duration max, output HIGH		-50		-50	mA
$C_{1} \quad$ Input Cepacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		10		10	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF

Nott:

1. Static: All inputs and outputs LOW.

Switching characteristics within specifiad operating conditions ${ }^{1}$

Paramater	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
tMPY Mutiply Time	$V_{\text {CC }}=$ MIN MPYOOHU-1		65			ns
	$V_{\text {CC }}=$ MIN MPYOBHJ		80		115	ns
to Output Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns
teNA Three-State Output Enable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	ns
${ }^{\text {told }}$ Thres-State Output Disable Delay	$V_{C C}=$ MIN, Test Load: V $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for tolsp 0.0 V for tolsi ${ }^{2}$		40		45	ns

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t} \mid \mathrm{S}$ and t ENA, which are shown in figure 7 .
2. tolsi denotes the ransition from logical 1 to three-state. tolso denotes the rransition from logical 0 to three-state.

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPYOBHU does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any muttiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 and 2.

Ordering Information

Product Number	Temperature Range	Screaning	Package	Package Marking
MPY08HUJ5C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	08HUJ5C
MPYовНUJ5CI	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	08HUJ5C1
MPY08HUJ5G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	08HUJ5G
MPYo8HUJ5G1	STD-T ${ }^{\text {a }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	D8HUJ561
MPY08HUJ5F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	08HUJ5F
MPY08HUJ5A ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	40 Lead DIP	08HUJ5A

Notes:

1. Contact factory for availability.
2. Per TRW document $70 Z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.

Multiplier

12×12 bit, 115 ns

The MPY012H is a high-speed 12×12 bit parallel multiplier which operates at a 115 nanosecond cycle time 18.7 MHz multiplication ratel. The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full-precision 24 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The MPY012H is built with TRW's 2 -micron bipolar process.

Features

- 115 ns Multiply Time (Worst Case)
- 12×12 Bit Parallel Multiplication With 24 -Bit Product Output
- Three-State Outputs
- Fully TIL Compatible
- Two's Complement, Unsigned Magnitude, And Mixed Mode Multiplication
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5 V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier, 68 Leaded Chip Carrier, Or 64 Leaded Flatpack

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Digram

Pin Assignments

64 Lead DIP - J1 Package

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package
Pin Assignments

Functional Description

General Information

The MPY012H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 12 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,
designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12 -bit words, the Most Significant Product (MSP) and the Least Significant Product ILSP). Three-state output drivers allow the MPY012H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 12-bit output lines.

Power

The MPY012H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
VCC	Positive Supply Voltage	$+5.0 V$	Pins 48, 49,50	Pins 50,51,52	Pins 55, 56,57
GND	Ground	0.0 V	Pins 23,24	Pins 10, 11	Pins 17, 18

Control

The MPY012H has seven control lines:

FT A control line which makes the output register transparent if it is HIGH.

TRIM, TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RS RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.

RND When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2-12 bit P_{10}). If RS is HIGH when RND is HIGH, a one will be added to the 2^{-11} bit $\left(P_{11}\right)$. In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

TCX, TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY forces the MPY012H to consider the appropriate input as a two's complement number, while a LOW forces the MPY012H to consider the appropriate input as a magnitude only number.

FT, RS, TRIM and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading the RND control signal can be avoided by the use of normally LOW clocks.

Control (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
RND	Round Control Bit	TL	Pin 58	Pin 42	Pin 47
TCX	X Input, Two's Complement	TL	Pin 57	Pin 43	Pin 48
TCY	Y Input, Two's Complement	TTL	Pin 41	Pin 59	Pin 64
FT	Output Register Feedthrough	$\Pi \mathrm{L}$	Pin 25	Pin 9	Pin 16
RS	Output Right Shift	$\Pi \mathrm{L}$	Pin 26	Pin 8	Pin 15
TRIM	MSP Three-State Control	$\Pi \mathrm{L}$	Pin 22	Pin 12	Pin 19
TRIL	LSP Three-State Control	$\Pi \mathrm{L}$	Pin 21	Pin 13	Pin 20

Data Inputs

The MPY012H has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits IMSBs, denoted X_{11} and Y_{11}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} with X_{0} and Y_{0}
the Least Significant Bits). The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6 .

Name	Function	Valua	J1 Packaga	C1, L1 Package	F1 Packago
X_{11}	X Data MSB	TL	Pin 61	Pin 39	Pin 44
x_{10}		TL	Pin 62	Pin 38	Pin 43
x_{9}		m	Pin 63	Pin 37	Pin 42
x_{8}		π	Pin 64	Pin 36	Pin 41
x_{7}		π	Pin 1	Pin 35	Pin 40
x_{6}		π	Pin 2	Pin 34	Pin 39
X_{5}		π	Pin 3	Pin 33	Pin 38
x_{4}		π	Pin 4	Pin 32	Pin 37
${ }_{3}$		π	Pin 5	Pin 31	Pin 36
x_{2}		$\pi \mathrm{L}$	Pin 6	Pin 30	Pin 35
x_{1}		TTL	Pin 7	Pin 29	Pin 34
x_{0}	X Data LSB	TLL	Pin 8	Pin 28	Pin 33
Y_{11}	Y Data MSB	TTL	Pin 42	Pin 58	Pin 63
Y_{10}		$\pi \mathrm{L}$	Pin 43	Pin 57	Pin 62
Y_{g}		$\pi /$	Pin 44	Pin 56	Pin 61
r_{8}		$\pi \mathrm{L}$	Pin 45	Pin 55	Pin 60
Y_{7}		TL	Pin 46	Pin 54	Pin 59
Y_{6}		TTL	Pin 47	Pin 53	Pin 58
Y_{5}		TLL	Pin 51	Pin 49	Pin 54
Y_{4}		π	Pin 52	Pin 48	Pin 53
γ_{3}		TLL	Pin 53	Pin 47	Pin 52
Y_{2}		TTL	Pin 54	Pin 46	Pin 51
Y_{1}		TLL	Pin 55	Pin 45	Pin 50
Y_{0}	Y Data LSB	TTL	Pin 56	Pin 44	Pin 49

Data Outputs

The MPY012H has a 24 -bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 12 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used ITCX $=T C Y=1, R S=0$). The input and output formats for fractional two's complement, fractional unsigned
magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6. For the MSP and LSP to be read, the respective TRIM and TRIL controls must be LOW. RS is an output format control. A logical " 1 " on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
P_{23}	Product MSB	TTL	Pin 40	Pin 61	Pin 1
P_{22}		TTL	Pin 39	Pin 62	Pin 2
P_{21}		TTL	Pin 38	Pin 63	Pin 3
P_{20}		TTL	Pin 37	Pin 64	Pin 4
P_{19}		TTL	Pin 36	Pin 65	Pin 5
P_{18}		TL	Pin 35	Pin 66	Pin 6
P_{17}		TL	Pin 34	Pin 67	Pin 7
P_{16}		TTL	Pin 33	Pin 68	Pin 8
P_{15}		TTL	Pin 32	Pin 1	Pin 9
P_{14}		TTL	Pin 31	Pin 2	Pin 10
P_{13}		TTL	Pin 30	Pin 3	Pin 11
P_{12}		TTL	Pin 29	Pin 4	Pin 12
P_{11}		TTL	Pin 20	Pin 15	Pin 21
P_{10}		TTL	Pin 19	Pin 16	Pin 22
Pg_{9}		TTL	Pin 18	Pin 17	Pin 23
P_{8}		TTL	Pin 17	Pin 18	Pin 24
P_{7}		TTL	Pin 16	Pin 19	Pin 25
P_{6}		TTL	Pin 15	Pin 20	Pin 26
P_{5}		TTL	Pin 14	Pin 21	Pin 27
P_{4}		TTL	Pin 13	Pin 22	Pin 28
P_{3}		TTL	Pin 12	Pin 23	Pin 29
P_{2}		TTL	Pin 11	Pin 24	Pin 30
P_{1}		TTL	Pin 10	Pin 25	Pin 31
P_{0}	Product LSB	TTL	Pin 9	Pin 26	Pin 32

Clocks

The MPY012H has four clock lines, one for each of the input registers and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
CLK X	Clock Input Data X	TTL	Pin 60	Pin 40	Pin 45
CLK Y	Clock Input Data Y	TTL	Pin 59	Pin 41	Pin 46
CLK L	Clock LSP Register	TTL	Pin 27	Pin 1	Pin 14
CLK M	Clock MSP Register	TTL	Pin 28	Pin 6	Pin 13

No Connects

The contact and leaded chip carrier versions of the MPY012H
have four pins which are not connected internally. These
should be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
NC	No Connection	Open	None	Pins 5, 14, 27,60	None

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Fractional Mixed Mode Notation

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram

Figure 8. Timing Diagram, Unclocked Mode

Figure 9. Equivalent Input Circuit

Figure 10. Equivalent Output Circuit

Figure 11. Test Load

Figure 12. Three-State Delay Test Load

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to
two's complement notation (which requires an additional bitl), or the multiplier must be capable of mixed mode operation. The MPY012H provides this capability by independently speciifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY012H does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(618) \times(218)=12 / 64 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design.

Because common design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shitt (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit.

The MPY012H has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled li.e., shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
tPW	Clock Pulse Width	25			30			ns
${ }_{\text {ts }}$	Input Register Setup Time	25			30			ns
${ }_{\text {t }}^{\text {H }}$	Input Register Hold Time	0			3			ns
$V_{\text {II }}$	Input Voltage，Logic LOW			0.8			0.8	V
V_{IH}	Input Voltage，Logic HIGH	2.0			2.0			V
${ }^{\mathrm{OLL}}$	Output Current，Logic LOW			4.0			4.0	mA
${ }^{1} \mathrm{OH}$	Output Current，Logic HIGH			－400			－400	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature，Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				－55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Supply Current		$V_{C C}=$ MAX，Static ${ }^{1}$		700		750	mA
	Input Current，Logic Low		$V_{C C}-M A X, V_{1}=0.4 V$					
		$X_{\text {IN }}, Y_{\text {IN }}$, RND，FT		－0．4		－0．4	mA	
		TCX，TCY，RS		－0．8		－0．8	mA	
		CLK L，M，X，and Y；TRIM，TRIL		－1．0		－1．0	mA	
I_{H}	Input Current，Logic HIGH	$V_{C C}=$ MAXX，$V_{1}=2.4 \mathrm{~V}$						
		$\mathrm{X}_{\text {IN }}, \mathrm{Y}_{\text {IN }}, \mathrm{RND}, \mathrm{FT}$		75		100	$\mu \mathrm{A}$	
		TCX，TCY，RS		75		100	$\mu \mathrm{A}$	
		CLK L，M，X，and Y；TRIM，TRIL		75		100	$\mu \mathrm{A}$	
1	Input Current，Max Input Voltage	$V_{C C}=$ MAX，$V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage，Logic Low	$V_{C C}=M I N, I_{\text {OL }}=$ MAX		0.5		0.5	V	
V_{OH}	Output Voltage，Logic HIGH	$V_{C C}=$ MIN，$I_{\text {OH }}=$ MAX	2.4		2.4		V	
	Hi－Z Output Leakage Current，Dutput LOW	$V_{C C}=M A X, V_{1}=0.4 \mathrm{~V}$		－40		－40	$\mu \mathrm{A}$	
OZZH	Hi－Z Output Leakage Current，Output HIGH	$V_{C C}=$ MAX，$V_{1}=2.4 V$		40		40	$\mu \mathrm{A}$	
Ios	Short－Circuit Output Current	$V_{C C}=M A X$, one pin to ground， one second duration max，output HIGH		－50		－50	mA	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
C_{0}	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	

Note：
1．All inputs and outputs LOW．

Switching characteristics within specified operating conditions ${ }^{1}$

Paramater		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {tMC }}$	Multiply Time, Clocked		$V_{C C}=M 1 N$		115		140	ns
tmuc	Multiply Time, Unclocked		$V_{\text {CC }}=$ MIN		155		185	ns
to	Output Delay	$V_{C C}=$ MIN, Test Load: V ${ }_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns	
tena	Three-State Output Enable Delay	$V_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	s	
tols	Three-State Output Disable Delay	$V_{C C}=M I N$, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{OLSO}}, 0.0 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		40		45	ns	

Notes:

1. All transitions are measured at a 1.5 V level except for toIS and ENA, which are shown in Figure 12.
2. toIS1 denotes the transition from logical 1 to three-state. ${ }^{\text {tDISO }}$ denotes the transition from logical 0 to three-state.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY012HJIC	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	O12HJIC
MPYO12HJIG	STD-T ${ }^{\text {a }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	012HJIG
MPY012HJIF	EXT- $\mathrm{C}^{\text {C }}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	012HJ1F
MPY012HJIA	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	O12HJIA
MPY012HC1F ${ }^{1}$	EXT- ${ }^{\text {C }} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	012HCIF
MPY012HC1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	O12HC1A
MPY012HL1F ${ }^{1}$	EXT- $\mathrm{T}^{\text {C }}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	012HL1F
MPY012HL1A ${ }^{1}$	EXT- $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	Oi2hlia
MPY012HF1F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead Flatpack	012HF1F
MPY012HF1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead Flatpack	012HF1A

Notes:

1. Contact factory for availability.
2. Per TRW document $70 Z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Multiplier

12×12 bit, 50 ns

The MPY112K is a video-speed 12×12 bit parallel multiplier which operates at a 50 nanosecond cycle time 120 MHz multiplication ratel. The multiplicand and the multiplier may be specified together as two's complement or unsigned magnitude, yielding a 16 -bit result. Mixed mode operation is not available on this device.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The most significant 16 bits of the product are available at the output register. The output is a single three-state port.

Built with TRW's OMICRON - ${ }^{\text {TMM }} 1$-micron bipolar process, the MPY112K is similar to the industry standard MPY012H but operates with more than twice the speed at about three-quarters of the power dissipation. The MPY112K is the industry's first true video-speed 12-bit multiplier.

Features

- 50ns Multiply Time IWorst Case)
- 12×12 Bit Parallel Multiplication With 16-Bit Product Output
- Fully TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Multiplication
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 48 Lead Ceramic DIP

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

48 Lead DIP - J4 Package

Functional Description

General Information

The MPY112K has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 12 -bit numbers which are to be multiplied and the instruction which controls whether the inputs are to be considered as two's complement or unsigned magnitude numbers. Each input operand is stored independently, simplifying multiplication by a constant; however,
since the product and the Y input share a common clock, any constant should be stored in the X register. The asynchronous multiplier array is a network of AND gates and adders which have been designed to handle two's complement or unsigned magnitude numbers. The output register holds the most significant 16 bits of the product. Three-state output drivers allow the MPY112K to be used on a bus.

Power

The MPY112K operates from a single +5 Volt supply. Note that the maximum voltage for proper operation over the
extended temperature range is 5.25 Volts. All power and ground lines must be connected.

Name	Function	Value	J4 Package
$V_{C C}$	Positive Supply Voltage	$+5.0 V$	Pins 12, 13
GND	Ground	0.0 V	Pins 36, 37

Data Inputs

The MPY112K has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{11} and Y_{11}, carry the sign information for the two's complement notation. The rest of the bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} (with X_{0} and Y_{0}
the Least Significant Bits). The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package
X_{11}	X Data MSB	TIL	Pin 2
X_{10}		TL	Pin 1
X_{9}		TTL	Pin 48
X_{8}		TIL	Pin 47
X_{7}		TTL	Pin 46
x_{6}		TIL	Pin 45
X_{5}		TTL	Pin 44
X_{4}		TIL	Pin 43
x_{3}		TIL	Pin 42
x_{2}		TTL	Pin 41
x_{1}		TL	Pin 40
x_{0}	X Data LSB	TTL	Pin 39

Data Inputs（Cont．）

Name	Function	Value	J4 Package
Y_{11}	Y Data MSB	TTL	Pin 16
Y_{10}		$T T L$	Pin 15
Y_{9}		$T T L$	Pin 14
Y_{8}		$T T L$	Pin 11
Y_{7}		TTL	Pin 10
Y_{6}		$T \mathrm{LL}$	Pin 9
Y_{5}		$T T L$	Pin 8
Y_{4}		$T T L$	Pin 7
Y_{3}		$T T L$	Pin
Y_{2}		$T T L$	Pin
Y_{1}		$T T L$	Pin 4
Y_{0}			Pin 3

Data Dutputs

The MPY112K has a 16 －bit two＇s complement or unsigned magnitude output which is the product of the two input data values．This output is the most significant 16 bits of the complete product．The output is truncated to this length，not rounded．The Most Significant Bit（MSB）of the product is the sign bit if two＇s complement notation is used（TC＝1）．The
input and output formats for fractional two＇s complement notation，fractional unsigned magnitude notation，integer two＇s complement notation，and integer unsigned magnitude notation are shown in Figures 1 through 4，respectively．The output driver is in the high－impedance state when $\overline{\mathrm{OE}}$ is HIGH ，and enabled when $\overline{O E}$ is LOW．

Name	Function	Value	J4 Package
P_{23}	Product MSB	TTL	Pin 20
P_{22}		TTL	Pin 21
P_{21}		TTL	Pin 22
P_{20}		TIL	Pin 23
P_{19}		TTL	Pin 24
P_{18}		TTL	Pin 25
P_{17}		TTL	Pin 26
P_{16}		TTL	Pin 27
P_{15}		TTL	Pin 28
P_{14}		TTL	Pin 29
P_{13}		TTL	Pin 30
P_{12}		TTL	Pin 31
P_{11}		TTL	Pin 32
P_{10}		TTL	Pin 33
Pg_{9}		TTL	Pin 34
P_{8}		TTL	Pin 35

Clocks

The MPY112K has two clock lines, one for the X input register and one for both the Y input register and the product register. Data present at the X input are loaded into the registers at the rising edge of CLK X. Data present at the Y input, the
two's complement instruction, and the product present at the output of the asynchronous multiplier array are loaded into the appropriate registers at the rising edge of CLK M.

Name	Function	Value	J4 Package
CLK X	Clock Input Data X	TL	Pin 38
CLK M	Master Clock	TL	Pin 18

Controls

The MPY112K has two control lines. $\overline{\mathrm{OE}}$ is a three-state enable line for the output. The output drivers are in the high-impedance state when $\overline{\mathrm{OE}}$ is HIGH , and enabled when $\overline{\mathrm{OE}}$ is LOW.

The device will interpret data as two's complement when TC is HIGH, and as unsigned magnitude when TC is LOW. $\overline{\mathrm{OE}}$ is not registered. TC is registered and clocked in at the rising edge of CLK M.

Name	Function	Value	J4 Package
$\overline{T C}$	Two's Complement	TTL	Pin 17
$\overline{\overline{O E}}$	Three-State Control	TTL	Pin 19

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 8. Test Load

Figure 7. Equivalent Output Circuit

Figure 9. Transition Levels For Three-State Measurements

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

	Input							
	Applied voltage \qquad -0.5 to $+5.5 \mathrm{~V}^{2}$ Forced current \qquad -6.0 to +6.0 mA							
Output								
	Applied voltage \qquad -0.5 to $+5.5 \mathrm{~V}^{2}$ Forced current \qquad -1.0 to $+6.0 \mathrm{~mA}^{3,4}$ Short-circuit duration (single output in high state to ground) \qquad 1 sec							
Temperature								
	Operating, case \qquad junction \qquad Lead, soldering (10 seconds) Storage \qquad							$\begin{array}{r} +125^{\circ} \mathrm{C} \\ \ldots . . \\ \ldots \\ \ldots . . \\ \ldots 300^{\circ} \mathrm{C} \\ \text { to } 150^{\circ} \mathrm{C} \end{array}$
Notes: 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating con Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range, and measured with respect to GND. 3. Forcing voltage must be limited to specified range. 4. Current is specified as conventional current flowing into the device.								
Operating conditions								
Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.25	V
tPWL	Clock Pulse Width, LOW	20			25			ns
tPWH	Clock Pulse Width, HIGH	20			25			ns
${ }_{\text {t }}$	Input Setup Time	25			30			ns
${ }^{\text {th }}$	Input Hold Time	5			10			ns
$V_{\text {II }}$	Input Voltage, Logic LOW			0.8			0.8	V
$\overline{V_{I H}}$	Input Voltage, Logic High	2.0			2.0			V
IOL	Output Current, Logic LOW			4.0			2.5	mA
${ }_{\mathrm{OH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {ICC }}$ Supply Current ${ }^{1}$	$V_{C C}=$ MAX, Static		450		550	mA
IIL Input Current, Logic LOW	$V_{C C}=$ MAX, $V_{1}-0.4 V$					
	Data Inputs, TC		-0.2		-0.3	mA
	CLK X, $\overline{O E}$		-0.6		-0.75	mA
	CLK M		-1.2		-1.5	mA
${ }^{\text {IIH }}$ Input Current, Logic HIGH	$V_{C C}=$ MAX, $V_{1}=2.4 V$					
	Data Inputs, TC		50		50	$\mu \mathrm{A}$
	CLK X, $\overline{O E}$		50		50	$\mu \mathrm{A}$
	CLK M		100		100	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5$		1.0		1.0	mA
$V_{\text {OL }}$ Output Voltage, Logic LOW	$V_{C C}=M A X, I_{O L}=M A X$		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}-\mathrm{MAX}$	2.4		2.4		V
IOZL Hi-2 Output Leakage Current, Output LOW	$V_{C C}=$ MAXX $V_{1}=0.4 V$	-40	40	-40	40	$\mu \mathrm{A}$
IOZH Hi-Z Output Leakage Current, Output HIGH	$V_{C C}=$ MAX, $V_{1}=2.4 V$	-40	40	-40	40	$\mu \mathrm{A}$
IOS Short-Circuit Output Current	$V_{C C}=$ MAX, Output HIGH, one pin to ground, one second duration max		-50		-50	mA
$C_{1} \quad$ Input Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF
Note:						

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {tMPY Multiply Time }}$	$V_{C C}=\mathrm{MiN}$		50		55	ns
ID Output Delay	$V_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		35		45	ns
teNA Three-State Output Enable Delay	$\mathrm{V}_{\text {CC }}-\mathrm{MIN}$, Test Load: $\mathrm{V}_{\text {LOAD }}=1.8 \mathrm{~V}$		30		45	ns
tols Three-State Output Enable Delay	$V_{C C}=$ MIN, Test Load: V ${ }_{\text {LOAD }}=2.6 \mathrm{~V}$ ${ }^{t}$ DISO $0.0 V$ for ${ }^{\text {tDIS }}{ }^{2}$		30		45	ns

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {DIS }}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in Figure 9 .
2. $\mathrm{t}_{\mathrm{O} \mid S 1}$ denotes the transition from logical 1 to three-state.
${ }^{\text {tolSO}}$ denotes the transition from logical 0 to three-state.

Application Notes

Mixed-Mode Multiplication

There are several applications in which it may be advantageous to perform mixed-mode multiplication. Video data are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter.) These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the video data must be converted to two's complement notation (which requires an additional bitt, or the multiplier must be capable of mixed-mode operation. The MPY112K can only provide this capability by making the MSB of the unsigned magnitude number a zero, thus reducing its precision to eleven bits. No additional circuitry is required.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register. Due to the sharing of the CLK M pin by the Y input register and the output register, all constants should be kept in the X register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY112K does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:
$(6 / 8) \times(218)=12164$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Exceptional Case

The most negative number that can be represented in two's complement notation is greater in magnitude than the largest representable positive number by one LSB. This is only a problem when the full-scale negative number is squared. If fractional notation is used, this means that $\mid-1) \times(-1)$ with the MPY112K will yield the lincorrect) result (-1). In the full-precision series of multipliers the correct result can be obtained by the use of the RS control, which was not included on the MPY112K due to pin count limitations.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY112KJ4C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	112KJ4C
MPY112KJ4G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	48 Lead DIP	112KJ4G
MPY112K.4F 1	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	112KJ4F
MPY112KJ4A ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	48 Lead DIP	112KJ4A

Notes:

1. Contact Factory for availability.
2. Per TRW document $70 Z 1757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Multiplier

16×16 bit, 145ns

The MPY016H is a high-speed 16×16 bit parallel multiplier which operates at a 145 nanosecond cycle time 16.9 MHz multiplication ratel. The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full precision 32 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Most Significant Product (MSP) has a dedicated output port. The Least Significant Product (LSP) shares a bidirectional port with the Y input. Three-state outputs are employed throughout. The MPY016H is built with TRW's state-of-the-art 2-micron bipolar process.

Features

- 145ns Multiply Time (Worst Case)
- 16×16 Bit Parallel Multiplication With 32 -Bit Product Output
- Three - State Outputs
- Fully TTL Compatible
- Two's Complement, Unsigned Magnitude, and Mixed Mode Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 64 Lead Ceramic DIP, 68 Contact Chip Carrier, 68 Leaded Chip Carrier, or 64 Leaded Flatpack

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - ل1 Package

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Pin Assignments

64 Leaded Flatpack - F1 Package

Functional Description

General Information

The MPY016H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 16 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,
designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY016H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 16 -bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The MPY016H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pins 48, 49	Pins 1,68	Pins 56, 57
GND	Ground	0.0 V	Pins 45, 46, 47	Pins 2, 3,4	Pins 58,59,60

Control

The MPY016H has seven control lines:

FI A control line which makes the output register transparent if it is HIGH.

TRIM, TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the respective control is LOW.

RS
RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.

RND When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2-16 bit $\left(P_{14}\right)$. If RS is HIGH when RND is HIGH, a one will be added to the 2-15 bit $\left(\mathbb{P}_{15}\right)$. In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

TCX, TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY forces the MPY016H to consider the appropriate input as a two's complement number, while a LOW forces the MPY016H to consider the appropriate input as a magnitude only number.

FT, RS, TRIM and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y . The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Control (Cont)

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
RND	Round Control Bit	TTL	Pin 52	Pin 65	Pin 53
TCX	X Input Two's Complement	TTL	Pin 51	Pin 66	Pin 54
TCY	Y Input Two's Complement	TTL	Pin 50	Pin 67	Pin 55
FT	Output Register Feedthrough	TTL	Pin 44	Pin 5	Pin 61
RS	Output Right Shift	TTL	Pin 43	Pin 6	Pin 62
TRIM	MSP Three-State Control	TTL	Pin 42	Pin 7	Pin 63
TRIL	LSP Three-State Control	TTL	Pin 6	Pin 46	Pin 35

Data Inputs

The MPY016H has two 16 -bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{14} and Y_{0} through Y_{14} with X_{0} and Y_{0} the Least Significant Bits). The input and output formats for
fractional two's complement, fractional unsigned magnitude, integer two's complement and integer unsigned magnitude notation are shown in Figures 1 through 6. The Y inputs are multiplexed with the LSP outputs, and hence can only be used when the TRIL control is in a HIGH state.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
X_{15}	X Data MSB	TTL	Pin 54	Pin 63	Pin 51
X_{14}		TTL	Pin 55	Pin 62	Pin 50
X_{13}		TTL	Pin 56	Pin 61	Pin 49
x_{12}		TTL	Pin 57	Pin 59	Pin 48
x_{11}		TTL	Pin 58	Pin 58	Pin 47
X_{10}		TTL	Pin 59	Pin 57	Pin 46
Xg_{9}		TTL	Pin 60	Pin 56	Pin 45
χ_{8}		TTL	Pin 61	Pin 55	Pin 44
X_{7}		TTL	Pin 62	Pin 54	Pin 43
x_{6}		TIL	Pin 63	Pin 53	Pin 42
X_{5}		TTL	Pin 64	Pin 52	Pin 41
x_{4}		TTL	Pin 1	Pin 51	Pin 40
x_{3}		TTL	Pin 2	Pin 50	Pin 39
x_{2}		TTL	Pin 3	Pin 49	Pin 38
x_{1}		TTL	Pin 4	Pin 48	Pin 37
x_{0}	X Data LSB	TTL	Pin 5	Pin 47	Pin 36
Y_{15}	Y Data MSB	TTL	Pin 24	Pin 27	Pin 17
Y_{14}		TTL	Pin 23	Pin 28	Pin 18
Y_{13}		TTL	Pin 22	Pin 29	Pin 19
Y_{12}		TIL	Pin 21	Pin 30	Pin 20
Y_{11}		TLI	Pin 20	Pin 31	Pin 21
Y_{10}		TTL	Pin 19	Pin 32	Pin 22
Y_{g}		TTL	Pin 18	Pin 33	Pin 23
Y_{8}		TTL	Pin 17	Pin 34	Pin 24
Y_{7}		TTL	Pin 16	Pin 35	Pin 25
γ_{6}		THL	Pin 15	Pin 36	Pin 26
Y_{5}		TIL	Pin 14	Pin 37	Pin 27
Y_{4}		TTL	Pin 13	Pin 38	Pin 28
Y_{3}		TTL	Pin 12	Pin 39	Pin 29

Data Inputs (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
Y_{2}		$T T L$	Pin 11	Pin 40	Pin 30
Y_{1}		TTL	Pin 10	Pin 41	Pin 31
Y_{0}	Y Data LSB	TLL	Pin 9	Pin 42	Pin 32

Data Outputs

The MPYO16H has a 32-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used (TCX $=T C Y=1$, RS $=0$). The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation
are shown in Figures 1 through 6. The LSP Output can be taken from the Y inputs only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. For an output from the MSP lines to be read, the TRIM control must be LOW. RS is an output format control. A logical " 1 " on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
P_{31}	Product MSB	TTL	Pin 40	Pin 10	Pin 1
P_{30}		TTL	Pin 39	Pin 11	Pin 2
P_{29}		TTL	Pin 38	Pin 12	Pin 3
P_{28}		TTL	Pin 37	Pin 13	Pin 4
P_{27}		TTL	Pin 36	Pin 14	Pin 5
P_{26}		TTL	Pin 35	Pin 15	Pin 6
P_{25}		TTL	Pin 34	Pin 16	Pin 7
P_{24}		TTL	Pin 33	Pin 17	Pin 8
P_{23}		TTL.	Pin 32	Pin 18	Pin 9
P_{22}		TTL	Pin 31	Pin 19	Pin 10
P_{21}		TTL	Pin 30	Pin 20	Pin 11
P_{20}		TTL	Pin 29	Pin 21	Pin 12
P_{19}		TTL	Pin 28	Pin 22	Pin 13
P_{18}		TTL	Pin 27	Pin 23	Pin 14
P_{17}		TTL	Pin 26	Pin 24	Pin 15
P_{16}		TTL	Pin 25	Pin 25	Pin 16
P_{15}		TTL	Pin 24	Pin 27	Pin 17
P_{14}		TTL	Pin 23	Pin 28	Pin 18
P_{13}		TTL	Pin 22	Pin 29	Pin 19
P_{12}		TTL	Pin 21	Pin 30	Pin 20
P_{11}		TTL	Pin 20	Pin 31	Pin 21
P_{10}		TTL	Pin 19	Pin 32	Pin 22
Pg		TTL	Pin 18	Pin 33	Pin 23
P_{8}		TTL	Pin 17	Pin 34	Pin 24
P_{7}		TTL	Pin 16	Pin 35	Pin 25
P_{6}		TTL	Pin 15	Pin 36	Pin 26
P_{5}		TTL	Pin 14	Pin 37	Pin 27
P_{4}		TTL	Pin 13	Pin 38	Pin 28
P_{3}		TTL	Pin 12	Pin 39	Pin 29
P_{2}		TTL	Pin 11	Fin 40	Pin 30
P_{1}		TTL	Pin 10	Pin 41	Pin 31
P_{0}	Product LSB	TIL	Pin 9	Pin 42	Pin 32

Clocks

The MPY016H has four clock lines, one for each of the input registers and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
CLK X	Clock Input Data X	TTL	Pin 53	Pin 64	Pin 52
CLK Y	Clock Input Data Y	TTL	Pin 8	Pin 44	Pin 33
CLK L	Clock LSP Register	TTL	Pin 7	Pin 45	Pin 34
CLK M	Clock MSP Register	TTL	Pin 4	Pin 8	Pin 64

No Connects

The chip carrier version of the MPY016H has four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package	F1 Package
NC	No Connection	Open	None	Pins $9,26,43,60$	None

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Fractional Mixed Mode Notation

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram

Figure 8. Timing Diagram, Unclocked Mode

Figure 9. Equivalent Input Circuit

Figure 11. Test Load

Figure 12. Transition Levels For Three-State Measurements

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to
two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY016H provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and
fractional notation in system design is only conceptual. For example, the MPY016H does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(618) \times(2 / 8)=12164 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have
implications for hardware design. Because common design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit.

The MPY016H has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled fi.e., shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
tpw	Clock Pulse Width	25			30			ns
${ }^{\text {ts }}$	Input Register Setup Time	25			30			ns
${ }^{\text {t }} \mathrm{H}$	Input Register Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
${ }_{\text {OL }}$	Output Current, Logic LOW			4.0			4.0	mA
${ }_{\mathrm{OH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$T_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I CC }}$ Supply Current	$V_{C C}=$ MAX, Static ${ }^{1}$		875		1050	mA
IIL. Input Current, Logic LOW	$V_{C C}-M A X, V_{1}=0.4 V$					
	$\mathrm{X}_{\text {IN }}, Y_{\text {IN }}, \mathrm{RND}, \mathrm{FT}$		-0.4		-0.4	mA
	TCX, TCY, RS		-0.8		-0.8	mA
	CLK L, M, and X; TRIM, TRIL		-1.0		-1.0	mA
	CLK Y		-2.0		-2.0	mA
IH Input Current, Logic HIGH	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}-2.4 \mathrm{~V}$					
	$\mathrm{X}_{\text {IN, }}, Y_{\text {IN }}$, RND, FT		75		100	$\mu \mathrm{A}$
	TCX, TCY, RS		75		100	$\mu \mathrm{A}$
	CLK L, M, and X; TRIM, TRIL		75		100	$\mu \mathrm{A}$
	CLK Y		100		200	$\mu \mathrm{A}$
II Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$\mathrm{V}_{\mathrm{OL}} \quad$ Output Voltage, Logic LOW	$V_{C C}-M I N, I_{O L}=$ MAX		0.5		0.5	V
V_{OH} Output Voltage, Logic HIGH	$V_{\text {CC }}=$ MIN, $\mathrm{I}_{\text {OH }}=$ MAX	2.4		2.4		V
IOZL Hi-2 Output Leakage Current, Output LOW	$V_{\text {CC }}=$ MAX, $V_{1}=0.4 \mathrm{~V}$		-40		-40	$\mu \mathrm{A}$
IOZH Hi-2 Output Leakage Current, Output HIGH	$V_{C C}=M A X, V_{1}=2.4 V$		40		40	$\mu \mathrm{A}$
IoS Short-Circuit Output Current	$V_{C C}=M A X$, One pin to ground one second duration max, output HIGH		-50		-50	mA
$\mathrm{C}_{1} \quad$ Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF

Note:

1. Worst case, all inputs and outputs LOW.

Switching characteristics within specified operating conditions ${ }^{1}$

Paramater		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Mutiply Time, Clocked		$V_{\text {CC }}-M I N$		145		185	ns
TMUC	Multiply Time, Unclocked		$V_{C C}-\mathrm{MiN}$		185		230	ns
${ }^{1}$	Output Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns	
ENA	Three-State Output Enable Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	ns	
${ }_{\text {tis }}$	Three-State Output Disable Delay	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, Test Load: $\mathrm{V}_{\text {LOAD }}-2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		40		45	ns	

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\mathrm{D} \mid \mathrm{S}}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in Figure 12.
2. $\mathrm{t} \mid \mathrm{IS} 1$ denotes the transition from logical 1 to three-state. tDISO denotes the transition from logical 0 to three-state.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY016HJIC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	016HJIC
MPY016HJIG	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	016HJ1G
MPY016HJIF	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	016HJ1F
MPYO16HJIA	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	016HJIA
MPY016HC1F ${ }^{1}$	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	016HC1F
MPY016HC1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	016HC1A
MPY016HL1F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	016HLIF
MPYO16HLIA ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	O16HLIA
MPY016HFIF ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Leaded Flatpack	016HF1F
MPY016HF1A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Leaded Flatpack	016HF1A

Notes:

1. Contact Factory for availability.
2. Per TRW document $70 Z 1757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

MPY016K
 Preliminary Information

VLSI Multiplier
 16×16 bit, 40ns

The TRW MPY016K is a video-speed 16×16 bit parallel multiplier which operates at a 40 nanosecond cycle time (25MHz multiplication rate). The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full precision 32 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Most Significant Product (MSP) and Least Significant Product (LSP) can be multiplexed through a dedicated output port, or the LSP can share a bidirectional port with the Y input. All outputs are three-state.

Built with TRW's OMICRON - ${ }^{\text {TM }} 1$-micron bipolar process, the MPY016K is pin compatible with the industry standard MPY016H, and operates with three times the speed at comparable power dissipation. The MPY016K is the industry's first true video-speed 16-bit multiplier.

Features

- 40ns Multiply Time: MPY016K-1 IWorst Case)
- 45ns Multiply Time: MPY016K IWorst Case)
- Pin Compatible With TRW MPYO1GH
- 16×16 Bit Parallel Multiplication With 32-Bit Output
- Two Least Significant Product Output Modes: Multiplexed With Most Significant Product Or Multiplexed With Y Input
- Output Registers Can Be Made Transparent
- Three-State TTL Output
- Two's Complement, Unsigned Magnitude, Or Mixed Mode Multiplication
- Fully TTL Compatible
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$\mathrm{X}_{4} 15$	$764 x_{5}$
$x_{3} 2$	${ }^{7} 63 \mathrm{X}_{6}$
$x_{2} 3{ }^{5}$	${ }^{7} 62 \mathrm{X}_{7}$
$x_{1} 45$	${ }^{-1}{ }^{1} X_{8}$
$x_{0} 5$	-960 Xg_{9}
TRIL 6 ¢	- 59×10
CLK L 7 F	$\square{ }^{-78} 81$
CLKY 85	- $57 \mathrm{X}_{12}$
$\mathrm{P}_{\mathrm{P}, \mathrm{Y}_{0} \mathrm{~g}} \mathrm{~F}$	- $56{ }^{13}$
$P_{1}, Y_{1} 10-5$	${ }_{7}^{75} \mathrm{X}_{14}$
$\mathrm{P}_{2}, \mathrm{Y}_{2} 11 \%$	${ }^{-754} \times 15$
$\mathrm{P}_{3}, \mathrm{Y}_{3} 12$ ¢	-73 CLK X
$\mathrm{P}_{4}, \mathrm{Y}_{4} 13$ م	- 52 RND
$\mathrm{P}_{5}, \mathrm{Y}_{5} 14$ م	- 51 TCX
$P_{6}, Y_{6} 15$ م	-9 50 TCY
$\mathrm{P}_{7}, \mathrm{Y}_{7} 16$ ¢	$\rightarrow 49$ VCC
$\mathrm{P}_{8}, \mathrm{Y}_{8} 17$ ¢	- 48 VCC
$\mathrm{Pg}_{\mathrm{r}} \mathrm{Y}_{\mathrm{g}} 18 \mathrm{H}$	- 47 GND
$\mathrm{P}_{10}, \mathrm{Y}_{10} 19 \mathrm{~F}$	$\rightarrow 46 \mathrm{GND}$
$P_{11}, Y_{11} 20$ -	- 45 MSEL
$P_{12}, Y_{12} 21$ ¢	- 44 FT
$P_{13}, Y_{13} 22$ -	- 43 RS
$\mathrm{P}_{14} \mathrm{Y}_{14} 23 \mathrm{~F}$	- 42 TRIM
$\mathrm{P}_{15}, \mathrm{Y}_{15} 24$ E	- 41 CLK M
$\mathrm{P}_{0}, \mathrm{P}_{16} 25$ E	$\cdots 40 \mathrm{P}_{31}, \mathrm{P}_{15}$
$\mathrm{P}_{1}, \mathrm{P}_{17} 26$ 5	- $39 \mathrm{P}_{30}, \mathrm{P}_{14}$
$\mathrm{P}_{2}, \mathrm{P}_{18}{ }^{27}$ \%	-7 $38 \mathrm{P}_{29} \mathrm{P} \mathrm{P}_{13}$
$\mathrm{P}_{3}, \mathrm{P}_{19} 28 \mathrm{~m}$	$7^{7} \mathrm{P}_{28} \mathrm{P}_{12}$
$\mathrm{P}_{4}, \mathrm{P}_{20} 29$ -	- $36 \mathrm{P}_{27}, \mathrm{P}_{11}$
$\mathrm{P}_{5}, \mathrm{P}_{21} 30 \mathrm{~F}$	- $35 \mathrm{P}_{26}, \mathrm{P}_{10}$
$\mathrm{P}_{6}, \mathrm{P}_{22}{ }^{31} \mathrm{~F}$	- $34 \mathrm{P}_{25, \mathrm{Pg}}$
$\mathrm{P}_{7} \mathrm{P}_{23} 32$ ¢	$\checkmark 33 \mathrm{P}_{24}, \mathrm{P}_{8}$

68 Contact or Leaded Chip Carrier - C1, L1 Package

$$
64 \text { Lead DIP - J1 Package }
$$

Functional Description

General Information

The MPY016K has three functional sections：Input registers，an asynchronous multiplier array，and output registers．The input registers store the two 16 －bit numbers which are to be multiplied and the instruction which controls the output rounding．The rounding control is used when a single－word output is desired．Each input operand is stored independently， simplifying multiplication by a constant．The asynchronous multiplier array is a network of AND gates and adders，
designed to handle two＇s complement or unsigned magnitude numbers．The output registers hold the product as two 16 －bit words，the Most Significant Product（MSP）and the Least Significant Product ILSP）．Three－state output drivers allow the MPY016K to be used on a bus，or allow the least and most significant outputs to be multiplexed over the same 16－bit output lines．The Least Significant Product（LSP）is multiplexed with the Y input．

Power

The MPY016K operates from a single +5.0 V supply．All power and ground lines must be connected．Note that the device is pin－compatible with the MPY016H，which has an additional
ground pin；this is a control lead in the MPY016K．A ground on this pin（which must exist in all MPYO16H applications）will cause the MPY016K to function like an MPY016H．

Name	Function	Value	J1 Package	C1，L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pins 48，49	Pins 1，68
GND	Ground	0.0 V	Pins 46，47	Pins 2，3

Data Inputs

The MPY016K has two 16－bit two＇s complement or unsigned magnitude data inputs，labeled X and Y ．The Most Significant Bits IMSBs），denoted X_{15} and Y_{15} ，carry the sign information for the two＇s complement notation．The remaining bits are denoted X_{0} through X_{14} and Y_{0} through Y_{14}（with X_{0} and Y_{0} the Least Significant Bitsl．The input and output formats for fractional two＇s complement，fractional unsigned magnitude，
fractional mixed mode，integer two＇s complement，integer unsigned magnitude，and integer mixed mode notation are shown in Figures 1 through 6，respectively．The Y inputs are multiplexed with the LSP outputs，and hence can only be used when the TRIL control is in a HIGH state．This is true whether or not the LSP is also multiplexed out through the MSP output port．

Name	Function	Value	J1 Package	C1，L1 Package
$\overline{X_{15}}$	X Data MSB	TTL	Pin 54	Pin 63
X_{14}		TTL	Pin 55	Pin 62
X_{13}		TTL	Pin 56	Pin 61
x_{12}		TTL	Pin 57	Pin 59
x_{11}		TTL	Pin 58	Pin 58
x_{10}		mi	Pin 59	Pin 57
X_{9}		TLL	Pin 60	Pin 56
X_{8}		TTL	Pin 61	Pin 55
X_{7}		TIL	Pin 62	Pin 54
x_{6}		TTL	Pin 63	Pin 53
X_{5}		TTL	Pin 64	Pin 52
x_{4}		TTL	Pin 1	Pin 51
x_{3}		TTL	Pin 2	Pin 50
x_{2}		TTL	Pin 3	Pin 49
X_{1}		TIL	Pin 4	Pin 48
x_{0}	X Data LSB	TIL	Pin 5	Pin 47

Data Inputs (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package
Y_{15}	Y Data MSB	TTL	Pin 24	Pin 27
Y_{14}		TIL	Pin 23	Pin 28
Y_{13}		ITL	Pin 22	Pin 29
Y_{12}		TTL	Pin 21	Pin 30
Y_{11}		TTL	Pin 20	Pin 31
Y_{10}		TTL	Pin 19	Pin 32
Y_{g}		TTL	Pin 18	Pin 33
γ_{8}		TTL	Pin 17	Pin 34
Y_{7}		ITL	Pin 16	Pin 35
Y_{6}		TTL	Pin 15	Pin 36
Y_{5}		TTL	Pin 14	Pin 37
Y_{4}		TTL	Pin 13	Pin 38
γ_{3}		TTL	Pin 12	Pin 39
r_{2}		TTL	Pin 11	Pin 40
Y_{1}		TTL	Pin 10	Pin 41
Y_{0}	Y Data LSB	TTL	Pin 9	Pin 42

Data Outputs

The MPY016K has a 32 -bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used $\operatorname{TCX}=T C Y=1$, RS $=0$). The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6, respectively.

If $\overline{M S E L}$ is LOW, the LSP output can be taken from the Y input pins only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. If $\overline{\text { MSEL }}$ is HIGH, the LSP output is made available at the MSP lines, as well as at the Y input pins. For an output from the MSP lines to be read, the TRIM control must be active.

RS is an output format control. A HIGH on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package
P_{31}	Product MSB	TTL	Pin 40	Pin 10
P_{30}		TTL	Pin 39	Pin 11
P_{29}		TTL	Pin 38	Pin 12
P_{28}		TTL	Pin 37	Pin 13
P_{27}		TTL	Pin 36	Pin 14
P_{26}		TTL	Pin 35	Pin 15
P_{25}		TTL	Pin 34	Pin 16
P_{24}		TTL	Pin 33	Pin 17
P_{23}		TTL	Pin 32	Pin 18
P_{22}		TTL	Pin 31	Pin 19
P_{21}		TTL	Pin 30	Pin 20
P_{20}		TL	Pin 29	Pin 21
P_{19}		TIL	Pin 28	Pin 22
P_{18}		TTL	Pin 27	Pin 23
P_{17}		TTL	Pin 26	Pin 24
P_{16}		TL	Pin 25	Pin 25

Data Outputs (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package
			MUXED	
			Input'Output	InputOutput
P_{15}		TTL	Pin 24/Pin 40	Pin $27 /$ Pin 10
P_{14}		TTL	Pin 231 Pin 39	Pin $28 /$ Pin 11
P_{13}		TTL	Pin 221 Pin 38	Pin $29 /$ Pin 12
P_{12}		TTL	Pin 211 Pin 37	Pin 30/Pin 13
P_{11}		TTL	Pin 20/Pin 36	Pin 31/Pin 14
P_{10}		TTL	Pin 19/Pin 35	Pin 32/Pin 15
Pg_{9}		TTL	Pin 18/Pin 34	Pin 33/Pin 16
P_{8}		TTL	Pin $17 /$ Pin 33	Pin 34/Pin 17
P_{7}		TTL	Pin 16/Pin 32	Pin 35/Pin 18
P_{6}		TTL	Pin 15/Pin 31	Pin 36/Pin 19
P_{5}		TTL	Pin 14/Pin 30	Pin $37 /$ Pin 20
P_{4}		TTL	Pin 13/Pin 29	Pin 38/Pin 21
P_{3}		TTL	Pin 12/Pin 28	Pin 39/Pin 22
P_{2}		TTL	Pin 11/Pin 27	Pin 40/Pin 23
P_{1}		TTL	Pin 10/Pin 26	Pin 41/Pin 24
P_{0}	Product LSB	TTL	Pin 9/Pin 25	Pin 42/Pin 25

Clocks

The MPY016K has four clock lines, one for each input register and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, clocked in at the rising edge of

Name	Function	Value	J1 Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 53	Pin 64
CLK Y	Clock Input Data Y	TTL	Pin 8	Pin 44
CLK L	Clock LSP Register	TTL	Pin 7	Pin 45
CLK M	Clock MSP Register	TTL	Pin 41	Pin B

the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Controls

The MPY016K has eight control lines.

FT A control line which makes the output register RND transparent if it is HIGH.

TRIM, TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RS \quad RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.
$\overline{M S E L} \quad \overline{M S E L}$ is an output multiplex control. When $\overline{M S E L}$ is LOW, the MSP is available to the output three-state drivers at the MSP port, and the LSP is available to the output three-state drivers at the LSP/Y input port. When MSEL is HIGH, the LSP is available to both three-state drivers and the MSP is not available.

RND

When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2-16 bit (P_{14}). If RS is HIGH when RND is HIGH, a one will be added to the 2-15 bit $(\mathbb{P} 15)$. In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

TCX, TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY makes the appropriate input a two's complement input, while a LOW makes the appropriate input a magnitude only input.

FT, RS, $\overline{M S E L}$, TRIM, and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention is required if normally HIGH clock signals are used. Problems with loading of these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package
RND	Round Control Bit	TTL	Pin 52	Pin 65
TCX	X Input Two's Complement	TTL	Pin 51	Pin 66
TCY	Y Input Two's Complement	TTL	Pin 50	Pin 67
FT	Output Register Feedthrough	TTL	Pin 44	Pin 5
RS	Output Register Shift	TTL	Pin 43	Pin 6
MSEE	Output Select	TL	Pin 45	Pin 4
TRIM	MSP Three-State Control	TTL	Pin 42	Pin 7
TRIL	LSP Three-State Control	TTL	Pin 6	Pin 46

No Connects

The contact and leaded chip carrier versions of the MPY016K have four pins which are not connected internally. These may be left unconnected.

Name	Function	Value	J1 Package	C1, 11 Package
NC	No Connection	Open	None	Pins 9, 26, 43, 60

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

	X_{15}	X_{14}	X_{13}	X_{12}	x_{11}	X_{10}	X_{g}	X_{8}	X_{7}	x_{6}	X_{5}	X_{4}	x_{3}	x_{2}	X_{1}	x_{0}	SIGN	Nal																
	2^{-1}	2^{2}	2^{3}	2^{4}	2.5	$2 \cdot 6$	2^{7}	2^{8}	2^{9}	2.10	$2 \cdot 11$	2.12	2.13	2.14	$2 \cdot 15$	2^{-16}		It VAL																
x	Y_{15}	Y_{14}	Y_{13}	Y_{12}	Y_{11}	γ_{10}	Y_{9}	Y_{B}	Y_{7}	Y_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	V_{0}	SIGN	AL																
	2.	$2{ }^{2}$	2^{3}	$2{ }^{4}$	2^{-5}	2^{6}	27	2^{-8}	$2{ }^{9}$	$2 \cdot 10$	2^{-11}	2^{-12}	2.13	2^{14}	$2 \cdot 15$	2.16		T VAL																
$=$	P_{31}	P_{30}	P_{29}	P_{28}	P_{27}	P_{26}	P_{25}	P_{24}	P_{23}	P_{22}	P_{21}	P_{20}	$\mathrm{P}_{19} \mid$	P_{18}	P_{17}	P_{16}	P_{15}	P_{14}	P_{13}	P_{12}	P_{11}	P_{10}	Pg_{9}	P_{8}	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}	SIGNAL	
	2.1	2^{-2}	$2 \cdot 3$	24	2.5	2^{6}	27	2^{8}	2^{9}	2.10	2^{11}	2^{-12}	$2 \cdot 13$	2^{-14}	215	2^{16}	2.17	2^{-18}	2^{-19}	2.20	221	2.22	223	2^{24}	$2{ }^{25}$	2^{26}	2-27	228	2-29	230	2.31	2^{32}	digit value	$S=1$
								MSP																	LSP									IDATORY

Figure 3. Fractional Mixed Mode Notation

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram, Non-Multiplexed Output

Figure 8. Timing Diagram, Unclocked Mode, Non-Multiplexed Output

Figure 9. Timing Diagram, Multiplexed Output

Figure 10. Equivalent Input Circuit

Note: 1. CLK Y and CLK L each drive two equivalent inputs.

Figure 12. Test Load

Figure 11. Equivalent Output Circuit

Figure 13. Transition Levels For Three-State Measurements

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the data must be converted to two's complement
notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY016K provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the desired register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY016K does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(218)=12164 .
$$

The difference lies in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl. However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit.

The MPY016K has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled li.e. shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4 . Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input	
Output	
	Short-circuit duration (single output in high state to ground) ... 1 sec
Temperature	
	Operating, case \qquad -60 to $+140^{\circ} \mathrm{C}$ junction \qquad $175^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range, and measured with respect to GND.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter	Temperature Range						Units
	Standard			Extended			
	Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$ Supply Voitage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tPWL }}$ Clock Pulse Width, LOW	15			22			ns
tPWH Clock Pulse Width, HIGH	15			22			ns
ts Input Setup Time (MPY016K)	20			25			ns
(MPY016K-1)	20			20			ns
${ }^{\text {H }} \mathrm{H}$ Input Hold Time	0			2			ns
V ${ }_{\text {ll }} \quad$ Input Voltage, Logic LOW			0.8			0.8	V
V_{IH} Input Voltage, Logic HIGH	2.0			2.0			V
$\mathrm{IOL}_{\text {OL }}$ Output Current, Logic LOW			4.0			4.0	mA
I_{OH} Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
T_{A} Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T} \mathrm{C}$ Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

"mone
A 月4

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standazd		Extended		
		Min	Max	Min	Max	
ICC Supply Current	$V_{C C}=$ MAX, Static ${ }^{1}$					
	${ }^{T} A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		875			mA
	$\mathrm{T}_{A}>25^{\circ} \mathrm{C}{ }^{2}$		860			mA
	${ }^{\mathrm{T}} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				1050	mA
	$\mathrm{T}_{\mathrm{C}}>35^{\circ} \mathrm{C}$				960	mA
	$\mathrm{V}_{\text {CC }}-5.0 \mathrm{~V}$					
	$\mathrm{T}_{A}>25^{\circ} \mathrm{C}$		840			mA
	$\mathrm{T}_{\mathrm{C}}>35^{\circ} \mathrm{C}$				920	mA
IIL Input Current, Logic LOW	$V_{C C}-$ MAX $^{2} V_{1}-0.4 V$					
	$X_{\text {IN }}, Y_{\text {IN }}$, TCY, TCX, F, RND		-0.2		-0.2	mA
	CLK Y, CLK L		-1.2		-1.2	mA
	CLK X, CLK M, MSEL, TRIM, TRIL, RS		-0.6		-0.6	mA
IH Input Current, Logic HIGH	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$					
	$\mathrm{X}_{\text {IN }}, Y_{\text {IN }}, \mathrm{TCY}, \mathrm{TCX}, \mathrm{FT}$,		50		50	$\mu \mathrm{A}$
	CLX Y, CLK L		100		100	$\mu \mathrm{A}$
	CLK X, CLK M, प्MSEL, TRIM, TRIL, RS		50		50	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$\mathrm{V}_{\text {OL }} \quad$ Output Voltage, Logic LOW	$V_{C C}=M A X, I_{O L}=M A X$		0.5		0.5	V
V_{OH} Output Voltage, Logic HIGH	$V_{C C}=M I N, I_{O H}=$ MAX	2.4		2.4		V
IOZL Hi-Z Output Leakage Current, Output LOW	$V_{C C}=$ MAX, $V_{1}-0.4 V$					
	Non-Shared Pins		-40		-50	$\mu \mathrm{A}$
	Shared Pins		-200		-200	$\mu \mathrm{A}$
IOZH Hi-2 Output Leakage Current, Output HIGH	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$					
	Non-Shared Pins		40		50	$\mu \mathrm{A}$
	Shared Pins		50		50	$\mu \mathrm{A}$
IOS Short Circuit Output Current	$V_{C C}=M A X$, One pin to ground, one second duration, output HIGH.	-4	-50	-4	-50	mA
C_{1} Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF

Notes:

1. Worst case, all inputs and outputs LOW.
2. Part has a negative temperature coefficient, i.e., power consumption falls as temperature increases.

Switching characteristics within specified operating conditions ${ }^{1}$

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {DIS }}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in Figure 13 .
2. tDIS1 denotes the transition from logical 1 to three-state. toISO denotes the transition from logical 0 to three-state.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY016KJIC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	016KJIC
MPY016KJIC1	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	016KJIC1
MPY016KJIG	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	016KJIG
MPY016KJIG1	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	016KJIG1
MPY016KJIF	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	016KJIF
MPY016KJIF1	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	016KJIF1
MPY016KJIA	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	016KJ1A
MPY016KJIAI	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	016KJIA1
MPY016KC1F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	$016 \mathrm{KC1F}$
MPYO16KC1A ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	016KC1A
MPY016KL1F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	016KLIF
MPY016KL1A ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	016KL1A

Notes:

1. Contact factory for availability.
2. Per TRW document 7021757.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TMC216H

CMOS Multiplier

16×16 bit, 145ns

The TRW TMC216H is a high-speed 16×16 bit parallel multiplier which operates at a 145 nanosecond cycle time (66.9MHz multiplication ratel. The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, vielding a full precision 32 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Least Significant Product ILSP) shares a bidirectional port with the Y input. All outputs are three-state.

Built with TRW's state of the art 2-micron CMOS process, the TMC216 H is pin and function compatible with the industry standard MPY016H and operates with the same speed at approximately one-fifth the power dissipation.

Features

- Fully TTL Compatible
- 145ns Multiply Time (Worst Case)
- Low Power CMOS Technology
- Single +5V Power Supply
- Pin And Function Compatible With TRW MPY016H
- Output Registers Can Be Made Transparent
- Three-State Outputs
- Two's Complement, Unsigned Magnitude, Or Mixed Mode Multiplication
- Available In 64 Lead DIP, 68 Contact Chip Carrier, Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purposa Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$\mathrm{X}_{4} 15$	$7864{ }_{5}$
$\mathrm{X}_{3} 2$ -	-763 X_{6}
$\mathrm{x}_{2} 3 \mathrm{~F}$	- $62 \mathrm{X}_{7}$
$\mathrm{X}_{1} 4$ ¢	-7 $61 \mathrm{X}_{8}$
$\mathrm{X}_{0} 5$ 岳	${ }^{-7} 60 \mathrm{Xg}_{9}$
TRIL 6 ¢	$\square 559{ }^{-7}$
CLK L 7 ¢	-758 X_{11}
CLK Y 8 E	-557 X_{12}
$P_{0}, Y_{0} 9$ ¢	${ }_{7}^{7} 56 \mathrm{X}_{13}$
$\mathrm{P}_{1}, Y_{1} 10$ ¢	$755{ }^{-7}$
$\mathrm{P}_{2}, Y_{2} 11 \mathrm{E}$	- $54 \mathrm{X}_{15}$
$\mathrm{P}_{3}, \mathrm{r}_{3} 12 \mathrm{~m}$	${ }_{7} 53$ CLK X
$\mathrm{P}_{4}, \mathrm{Y}_{4} 13$ ¢-	- 52 RND
$\mathrm{P}_{5}, Y_{5} 14$ ¢	- 51 TCX
$\mathrm{P}_{6}, \mathrm{Y}_{6} 15$ 5	- 50 TCY
$\mathrm{P}_{7}, \mathrm{Y}_{7} 16$ ¢	$\bigcirc 49 \mathrm{VDD}$
$\mathrm{P}_{8}, Y_{8} 17{ }^{17}$	$748 \mathrm{~V}_{\text {D }}$
$\mathrm{Pg}_{\mathrm{g}} \mathrm{Yg} 18$ 18-	$\rightarrow 47$ GND
$\mathrm{P}_{10}, \mathrm{Y}_{10} 19{ }^{19}$	- 46 GND
$\mathrm{P}_{11}, Y_{11} 20$ E	745 GND
$\mathrm{P}_{12}, \mathrm{Y}_{12} 21$ ¢	C- 44 FT
$\mathrm{P}_{13} \mathrm{P}_{1} \mathrm{Y}_{13} 22$ E-	- 43 RS
$\mathrm{P}_{14}, \mathrm{Y}_{14} 23 \mathrm{~m}$	-7 42 TRIM
$\mathrm{P}_{15}, \mathrm{Y}_{15} 24{ }_{\text {c }}$	-7 41 CLK M
$\mathrm{P}_{16} 25$ ¢	-740 P_{31}
$\mathrm{P}_{17} 26$ 㖿	- $39 \mathrm{P}_{30}$
$\mathrm{P}_{18} 27$ ¢	$\square 38 \mathrm{P}_{29}$
$\mathrm{P}_{19} 28$ م	- $37 \mathrm{P}_{28}$
$\mathrm{P}_{20} 29 \mathrm{E}$	$\square 36 \mathrm{P}_{27}$
$\mathrm{P}_{21} 30 \mathrm{c}$	${ }_{7} 35 \mathrm{P}_{26}$
$\mathrm{P}_{22} 31 \mathrm{~F}$	-34 P_{25}
$\mathrm{P}_{23} 32$ ¢ -	${ }_{7} 33 \mathrm{P}_{24}$

68 Contact Or Leaded Chip Carrier - C1, L1 Package

64 Lead DIP - J3 Package

Functional Description

General Information

The TMC216H has three functional sections：Input registers，an asynchronous multiplier array，and output registers．The input registers store the two 16 －bit numbers which are to be multiplied and the instruction which controls the output rounding．The rounding control is used when a single－word output is desired．Each input operand is stored independently， simplifying multiplication by a constant．The asynchronous multiplier array is a network of AND gates and adders，
designed to handle two＇s complement or unsigned magnitude numbers．The output registers hold the product as two 16 －bit words，the Most Significant Product（MSP）and the Least Significant Product（LSP）．Three－state output drivers allow the TMC216H to be used on a bus，or allow the Y input，least and most significant outputs to be multiplexed over the same 16－bit input／output lines．The Least Significant Product（LSP）is multiplexed with the Y input．

Power

The TMC216H operates from a single +5 Volt supply．All power and ground lines must be connected．Note that the

Name	Function	Value	J3 Package	C1，L1 Package
$V_{D D}$	Positive Supply Voltage	$+5.0 V$	Pins 48，49	Pins 1，68
GND	Ground	0.0 V	Pins 45，46，47	Pins 2，3，4

Data Inputs

The TMC216H has two 16－bit two＇s complement or unsigned magnitude data inputs，labeled X and Y ．The Most Significant Bits（MSBs），denoted X_{15} and Y_{15} ，carry the sign information for the two＇s complement notation．The remaining bits are denoted X_{0} through X_{14} and Y_{0} through Y_{14} with X_{0} and Y_{0} the Least Significant Bits）．The input and output formats for
fractional two＇s complement，fractional unsigned magnitude， fractional mixed mode，integer two＇s complement，integer unsigned magnitude，and integer mixed mode notation are shown in Figures 1 through 6，respectively．The Y inputs are multiplexed with the LSP outputs，and hence can only be used when the TRIL control is in a HIGH state．

Name	Function	Value	J3 Package	C1，L1 Package
X_{15}	X Data MSB	TTL	Pin 54	Pin 63
X_{14}		TTL	Pin 55	Pin 62
X_{13}		TL	Pin 56	Pin 61
x_{12}		TL	Pin 57	Pin 59
x_{11}		TL	Pin 58	Pin 58
x_{10}		TL	Pin 59	Pin 57
Xg_{9}		TLL	Pin 60	Pin 56
x_{8}		TL	Pin 61	Pin 55
X_{7}		TL	Pin 62	Pin 54
x_{6}		mL	Pin 63	Pin 53
x_{5}		TL	Pin 64	Pin 52
X_{4}		TLL	Pin 1	Pin 51
x_{3}		mL	Pin 2	Pin 50
x_{2}		mL	Pin 3	Pin 49
X_{1}		mL	Pin 4	Pin 48
x_{0}	X Data LSB	TL		Pin 47

Name	Function	Value	J3 Package	C1, L1 Package
Y_{15}	Y Data MSB	TL	Pin 24	Pin 27
Y_{14}		TTL	Pin 23	Pin 28
Y_{13}		TL	Pin 22	Pin 29
γ_{12}		TTL	Pin 21	Pin 30
Y_{11}		TTL	Pin 20	Pin 31
Y_{10}		TTL	Pin 19	Pin 32
Y_{g}		TL	Pin 18	Pin 33
Y_{8}		TL	Pin 17	Pin 34
Y_{7}		TL	Pin 16	Pin 35
Y_{6}		HL	Pin 15	Pin 36
Y_{5}		TL	Pin 14	Pin 37
γ_{4}		TL	Pin 13	Pin 38
γ_{3}		TTL	Pin 12	Pin 39
r_{2}		TTL	Pin 11	Pin 40
Y_{1}		TL	Pin 10	Pin 41
Y_{0}	Y Data LSB	TL	Pin 9	Pin 42

Data Outputs

The TMC216H has a 32-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used $\operatorname{TCX}=T C Y=1$, RS $=0$). The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6, respectively.

The LSP output can be taken from the Y input pins only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. For an output from the MSP lines to be read, the TRIM control must be LOW.

RS is an output format control. A HIGH on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J3 Package	C1, L1 Package
P_{31}	Product MSB	TL	Pin 40	Pin 10
P_{30}		TTL	Pin 39	Pin 11
P_{29}		TLL	Pin 38	Pin 12
P_{28}		TTL	Pin 37	Pin 13
P_{27}		TL	Pin 36	Pin 14
P_{26}		TTL	Pin 35	Pin 15
P_{25}		TTL	Pin 34	Pin 16
P_{24}		TL	Pin 33	Pin 17
P_{23}		TLL	Pin 32	Pin 18
P_{22}		TL	Pin 31	Pin 19
P_{21}		TTL	Pin 30	Pin 20
P_{20}		TTL	Pin 29	Pin 21
P_{19}		TTL	Pin 28	Pin 22
P_{18}		TIL	Pin 27	Pin 23
P_{17}		TLL	Pin 26	Pin 24
P_{16}		TTL	Pin 25	Pin 25

Data Outputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
P_{15}		TTL	Pin 24	Pin 27
P_{14}		TTL	Pin 23	Pin 28
P_{13}		TIL	Pin 22	Pin 29
P_{12}		TTL	Pin 21	Pin 30
P_{11}		TIL	Pin 20	Pin 31
P_{10}		TTL	Pin 19	Pin 32
Pg_{9}		TIL	Pin 18	Pin 33
P_{8}		TTL	Pin 17	Pin 34
P_{7}		TTL	Pin 16	Pin 35
P_{6}		TTL	Pin 15	Pin 36
P_{5}		TTL	Pin 14	Pin 37
P_{4}		TIL	Pin 13	Pin 38
P_{3}		TTL	Pin 12	Pin 39
P_{2}		TTL	Pin 11	Pin 40
P_{1}		TTL	Pin 10	Pin 41
P_{0}	Product LSB	TTL	Pin 9	Pin 42

Clocks

The TMC216H has four clock lines, one for each input register and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered and clocked in at the rising edge
of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 53	Pin 64
CLK Y	Clock Input Data Y	TTL	Pin 8	Pin 44
CLK L	Clock LSP Register	TTL	Pin 7	Pin 45
CLK M	Clock MSP Register	TTL	Pin 41	Pin 8

Controls

The TMC216H has seven control lines:
FT Feedthrough. A control line which makes the output register transparent if it is HIGH.

TRIM, TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance TCX, TCY state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RS \quad Register Shift. RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.

RND Round. When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2^{-16} bit (P_{14}). If RS is HIGH when RND is HIGH, a one will be added to the $2-15$ bit
(P15). In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY forces the TMC216H to consider the appropriate input as a two's complement number, while a LOW forces the TMC216H to consider the appropriate input as a magnitude only number.

FT, RS, TRIM, and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y . The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
RND	Round Control Bit	TL	Pin 52	Pin 65
TCX	X Input Two's Complement	TTL	Pin 51	Pin 66
TCY	Y Input Two's Complement	TL	Pin 50	Pin 67
FT	Output Register Feedthrough	TL	Pin 44	Pin 5
RS	Output Register Shift	TTL	Pin 43	
TRIM	MSP Three-State Control	TL	Pin 42	Pin 7
TRIL	LSP Three-State Control	TLL		Pin 46

No Connects

The contact and leaded versions of the TMC216H have four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J3 Package	C1, L1 Packape
NC	No Connection	Open	None	Pins $9,26,43,60$

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

BINAR	Pol																																	
	X_{15}	X_{14}	x_{13}	X_{12}	X_{11}	X_{10}	X_{9}	x_{B}	x_{7}	X_{6}	X_{5}	X_{4}	X_{3}	x_{2}	X_{1}	x_{0}	SIGN	NAL																
	$2 \cdot 1$	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{-7}	2^{8}	$2{ }^{-9}$	2.10	2.11	2.12	2^{13}	2.14	2.15	2.16		IT VALU																
	Y_{15}	Y_{14}	Y_{13}	Y_{12}	Y_{11}	Y_{10}	Y_{g}	Y_{8}	Y_{7}	Y_{6}	Y_{5}	Y_{4}	Y_{3}	r_{2}	Y_{1}	Y_{0}	SIGN																	
	$2 \cdot 1$	2^{2}	2^{3}	2^{4}	2^{5}	$2{ }^{6}$	2^{7}	2^{-8}	2^{9}	2.10	2.11	2^{-12}	2^{13}	2.14	2.15	2^{16}		It VAL																
$=$	P_{31}	P_{30}	P_{29}	P_{28}	P_{27}	P_{26}	P_{25}	P_{24}	P_{23}	P_{22}	P_{21}	P_{20}	P_{19}	P_{18}	P_{17}	P_{16}	P_{15}	P_{14}	P_{13}	P_{12}	P_{11}	P_{10}	Pg_{9}	P_{8}	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}	SIGNAL	
	2.	2^{2}	2^{3}	24	2^{5}	$2{ }^{6}$	2^{7}	2^{8}	2^{9}	2^{-10}	2.11	2^{12}	2.13	2.14	2.15	2^{-16}	2^{117}	2^{-18}	2^{-19}	2.20	2^{21}	$2 \cdot 22$	$2_{23} 2$	$2{ }^{24}$	2^{25}	226	2^{-27}	2^{28}	2.29	230	2^{31}	2.32	digit value	$S=1$
								MSP																	LSP									doatory

Figure 3. Fractional Mixed Notation

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram, Clocked Mode

Figure 8. Timing Diagram, Unclocked Mode

three-state CONTROL

Figure 9. Equivalent Input Circuit

Figure 10. Equivalent Output Circuit

Figure 11. Test Load

Figure 12. Transition Levels For Three-State Measurements

Absolute maximum ratings（beyond which the device will be damaged）${ }^{1}$

Temperature
\qquad
\qquad
\qquad
\qquad
Notes：
1．Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions． Functional operation under any of these conditions is NOT implied．
2．Applied voltage must be current limited to specified range，and measured with respect to GND．
3．Forcing voltage must be limited to specified range．
4．Current is specified as conventional current flowing into the device．

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{D D}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
tpWL	Clock Pulse Width，LOW	25			30			ns
tPWH	Clock Pulse Width，HIGH	25			30			ns
t_{s}	Input Setup Time	25			30			ns
${ }_{\text {th }}$	Input Hold Time	3			3			ns
$V_{\text {IL }}$	Input Voltage，Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage，Logic HIGH	2.0			2.0			V
$\mathrm{OL}_{\mathrm{OL}}$	Output Current，Logic LOW			4.0			4.0	mA
$\mathrm{IOH}^{\text {O}}$	Output Current，Logic HIGH			－2．0			－2．0	mA
${ }^{\text {T }}$ A	Ambient Temperature，Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\top} \mathrm{C}$	Case Temperature				－55		＋125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
Iodo Supply Current, Quiescent	$\begin{aligned} & V_{\text {DD }}-M A X, V_{I N}=O V \\ & \text { TRIM, TRIL }=5.0 V \end{aligned}$		5		10	mA
IDOU Supply Current, Unloaded ${ }^{1}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=\text { MAX, } \mathrm{F}=6.8 \mathrm{MHz} \\ & \text { TRIM, TRIL }=5.0 \mathrm{~V} \\ & \hline \end{aligned}$		70		70	mA
IDDL Supply Current, Loaded ${ }^{1,2}$	$\begin{aligned} & \hline V_{D D}=M A X, F=6.8 M H z \\ & \text { TRIM, TRIL }-O V \\ & \text { Test Load: } V_{\text {LOAD }}=V_{D D} M A X \end{aligned}$		180		180	mA
IIL Input Current, Logic Low	$V_{D D}=M A X, V_{I}=0.4 V$ $\mathrm{X}_{\text {IN }}$, Controls, Clocks	-10	$+10$	-10	$+10$	$\mu \mathrm{A}$
	$\gamma_{\text {IN }}$	-75	+75	-75	+75	$\mu \mathrm{A}$
IIH Input Current, Logic HIGH	$\begin{gathered} V_{D D}-M A X, V_{1}=2.4 V \\ X_{I N}, \text { Controls, Clocks } \end{gathered}$	-10	+ 10	-10	+10	$\mu \mathrm{A}$
	$Y_{\text {IN }}$	-75	+75	-75	+75	$\mu \mathrm{A}$
1 Input Current, Max Input Voltage	$V_{D D}=M A X, V_{1}=V_{D D}$		+75		+75	$\mu \mathrm{A}$
V_{OL} Output Voltage, Logic LOW	$V_{D D}=M I N, I_{O L}=M A X$		0.4		0.4	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{D D}=M I N, I_{O H}=$ MAX	2.4		2.4		V
Iozl Hi -Z Output Leakage Current, Output LOW	$V_{D D}=$ MAX,$V_{J}=0.4 V$	-75	+75	-75	+75	$\mu \mathrm{A}$
IOZH Hi-Z Output Leakage Current, Output HIGH	$V_{D D}=$ MAX,$V_{1}-2.4 V$	-75	+75	-75	+75	$\mu \mathrm{A}$
IOS Short-Circuit Output Current	$V_{D D}-$ MAX, Output HIGH, one pin to ground, one second duration max		-80		-80	mA
C_{1} Input Capacitance	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF
C_{0} Dutput Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF

Notes:

1. Guaranteed to maximum clock rate, tested at 2 MHz .
2. Worst case, all inputs and outputs toggling at maximum rate.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {t M }}$ M Multiply Time, Clocked	$V_{D D}-M I N$		145		185	ns
${ }^{\text {¹m }}$ MUC Mutiply Time, Unclocked	$V_{\text {DD }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		185		230	ns
${ }^{\text {to }}$ O Output Delay	$V_{\text {OD }}=\mathrm{MIN}$, Test Load: $\mathrm{V}_{\text {LOAD }}-2.2 \mathrm{~V}$		40		45	ns
${ }^{\text {t }}$ ENA Three-State Output Enable Delay	$V_{D D}=M 1 N$, Test Load: $V_{\text {LOAD }}=1.5 \mathrm{~V}$		40		45	กS
${ }^{\text {toIS }}$ Three-State Output Disable Delay	$V_{D D}-$ MIN, Test Load: $V_{\text {LOAD }}-2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		40		45	ns

Notes:

[^2]
Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to
two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The TMC216H provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication by a Constant

Multiplication by a constant only requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists simply of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC216H does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 ; 8) \times(2 / 8)=12 / 64
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have
implications for hardware design. Because common design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is mutiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit.

The TMC216H has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled fi.e. shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Output Register Transparent Mode

If the FT input is HIGH, the output register is made transparent: i.e., the product will appear at the output drivers as it is generated internally. The clock for the product register (CLK PI is not required in this mode of operation. The
transparent mode is rarely used as it is much slower than the registered mode. It is essentially a special-purpose mode of operation.

Ordering Information ${ }^{1}$

Product Number	Temperature Range	Screening	Package	Package Marking
TMC216HJ3C TMC216HJ3G TMC216HJ3F TMC216HJ3A	$\begin{aligned} & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial High Reliability ${ }^{2}$	64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP	216HJ3C 216HJ3G 216H.J3F 216HJ3A
TMC216HC1C TMC216HCIG TMC216HCIF TMC216HC1A	$\begin{aligned} & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial High Reliability ${ }^{2}$	68 Contact Chip Carrier 68 Contact Chip Carrier 68 Contact Chip Carrier 68 Contact Chip Carrier	216HCIC 216HCIG 216HClF 216HCIA
TMC216HLIC TMC216HLIG TMC216HL1F TMC216HL1A	$\begin{aligned} & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial High Reliability ${ }^{2}$	68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier	216HLIC 216HL1G 216HLIF 216HLIA

Notes:

1. Contact factory for availability.
2. Per TRW document $70 Z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

IntroductionProduet IndoxesAdvance InformationAD ConvertarsEvaluation BoardsD/A Converters
Multipliars
Multiplier-Accumulators

Multiplier-accumulators perform the sum of products operation found in most digital signal processing algorithms. TRW LSI offers a family of multiplier-accumulators in a variety of word sizes ($8,12,16$ bits) and speeds (100 ns to 165 ns multiplyaccumulate time).

The multiplier-accumulator is an extension of the multiplier. The operation of addition/subtraction has been included, along with a feedback path for accumulation and a preload path for initializing the accumulator. With the accumulator adder embedded in the multiplier array, the product and sum are generated in only slightly more time than is required to derive the product alone. Clearing the accumulator is accomplished simultaneously with computation of the first product, and the accumulator may be disabled for operation as a multiplier. All TRW multiplier-accumulators are TTL compatible, and have full precision outputs (except as noted), plus three extended bits.

Multiplier-accumulators consist of three functional sections: an input section, the multiply-accumulate array, and the output section. The input section has two independently clocked n-bit input registers for the operands, comprised of positive-edge-triggered D-type flip-flops. Four mode controls (ACCumulate, SUBtract, RouND, and Two's Complement) are also registered.

The multiply-accumulate array is an asynchronous group of AND gates and adders which generates the product of the two input operands and, if desired, adds or subtracts the current contents of the product register (the result of the previous calculation). The ACCumulate control (ACC) determines whether the feedback path from the product register to the multiply-accumulate array is enabled. The SUBtract control (SUB) determines whether to add or subtract the product register contents from the new product. The input operands may be interpreted as two's complement or unsigned magnitude. User selectable rounding is available.

The output section includes the product registers and the three-state output ports. The product register receives the accumulated result from the multiplyaccumulate array. Accumulation can generate word growth; in addition to the n-bit Most Significant Product (MSP) and the Least Significant Product (LSP), there is an additional three bits of eXTended Product (XTP) in the product register. The output pins are bidirectional ports through which the product register may be preloaded by coordinating the PRELoad control (PREL) with the three-state controls.

Bipolar Multiplier-Accumulators

The TDC1008, TDC1009, TDC1010 (8,12 and 16 bits, respectively) and the TDC1043 (16 bits) are triplediffused bipolar devices. The TDC1043 is similar to the TDC1010; however, there is no preload function, and the LSP, though internally used, is not output.

CMOS Muttiplier-Accumulators
The TMC2009 (12-bit) and the TMC2010 (16-bit) devices are pin and function compatible with the TDC1009 and the TDC1010, respectively. They are fabricated using a two-micron CMOS process and operate at comparable speeds with reduced power consumption as compared to the bipolar
devices. The TMC2110 (16-bit) multiplier-accumulator is fabricated using OMICRON-C ${ }^{\text {TM }}$, TRW's state-of-the-art one-micron CMOS process. It is pin and function compatible with the industry standard TDC1010, yet operates at more than 50% greater speed.

Product	Size	Multiplication Time ${ }^{1}$ (ns)	Power Dissipation ${ }^{2}$ (Watts)	Package	Notes
TDC1008	8×8	100	2.4	J4, C1, L1	
TDC1009	12×12	135	3.9	J1, C1, L1	
TDC1010	16×16	165	5.8	J1, C1, L1	
TDC1043	16×16	100	1.2	J3, C1, L1	19-Bit Output
TMC2009	12x12	135	. 32	J3, C1, L1	CMOS
TMC2010	16×16	160	. 32	J3, C1, L1	CMOS
TMC2110	16x16	100	. 53	J3, C1, L1	CMOS

Notes:

1. Guaranteed, Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
2. Bipolar: Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

CMOS: All inputs toggling at MAX clock rate, unloaded. $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

VLSI Multiplier-Accumulator

8 X 8 bit, 100ns

The TDC1008 is a high-speed 8×8 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time 110 MHz multiply-accumulate ratel. The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 16-bit product. Products may be accumulated to a 19 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), an 8-bit Most Significant Product (MSP), and an 8-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, LSP and MSP. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1008 is a uniquely powerful LSI signal processing device.

Features

- 100ns Multiply-Accumulate Time (Worst Case)
- 8×8 Bit Parallel Multiplication With Accumulation To 19-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 48 Lead Ceramic DIP, 68 Contact Chip Carrier, Or Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFt Processors
- General Purpose Digital Signal Processors
- MicrocomputerIMinicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

48 Lead DIP - J4 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1008 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 8 -bit numbers which are to be multiplied, and the control lines which control the input numerical format Itwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each input is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 8 -bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1008 to be used on a bus, or allow the outputs to be multiplexed over the same 8-bit output lines.

Power

The TDC1008 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J4 Package	C1, L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0V	Pin 37	Pin 51
GND	Ground	0.0 V	Pin 12	Pin 18

Data Inputs

The TDC1008 has two 8-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{7} and Y_{7}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{6} and Y_{0} through Y_{6} lwith X_{0} and Y_{0} the Least Significant Bitsl. Data present at the X and Y inputs are
clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Nams	Function	Value	J4 Package	C1, LI Package
${ }_{7}$	X Data MSB	TL	Pin 29	Pin 39
x_{6}		TL	Pin 28	Pin 38
x_{5}		TL	Pin 27	Pin 37
x_{4}		TTL	Pin 26	Pin 36
x_{3}		TIL	Pin 25	Pin 35
x_{2}		TL	Pin 24	Pin 34
x_{1}		TIL	Pin 23	Pin 33
x_{0}	X Data LSB	TIL	Pin 22	Pin 32
Y_{7}	Y Data MSB	$\pi \mathrm{L}$	Pin 40	Pin 54
Y_{6}		TTL	Pin 39	Pin 53
Y_{5}		TIL	Pin 38	Pin 52
Y_{4}		TL	Pin 36	Pin 50
Y_{3}		TLL	Pin 35	Pin 49
Y_{2}		TIL	Pin 34	Pin 48
Y_{1}		TL	Pin 33	Pin 47
Y_{0}	Y Data LSB	TL	Pin 32	Pin 46

Data Outputs

The TDC1008 has a 19 -bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 8 -bit output words, the Most Significant Product IMSP) and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package	C1, L1 Package
P_{18}	Product MSB	TTL	Pin 43	Pin 63
P_{17}		TL	Pin 44	Pin 64
P_{16}		TIL	Pin 45	Pin 65
P_{15}		TIL	Pin 46	Pin 66
P_{14}		TL	Pin 47	Pin 67
P_{13}		TL	Pin 48	Pin 68
P_{12}		TL	Pin 1	Pin 1
P_{11}		TTL	Pin 2	Pin 2
P_{10}		TL	Pin 3	Pin 3
P_{9}		TL	Pin 4	Pin 4
P_{8}		TL	Pin 5	Pin 5
P_{7}		TL	Pin 9	Pin 15
P_{6}		TL	Pin 10	Pin 16
P_{5}		TIL	Pin 11	Pin 17
P_{4}		TL	Pin 13	Pin 19
P_{3}		TTL	Pin 14	Pin 20
P_{2}		TL	Pin 15	Pin 21
P_{1}		TL	Pin 16	Pin 22
P_{0}	Product LSB	TL	Pin 17	Pin 23

Clocks

The TDC1008 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising
edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J4 Package	C1, LI Package
CLK X	Clock Input Data X	ΠL	Pin 30	Pin 40
CLK Y	Clock Input Data Y	$\Pi \mathrm{~L}$	Pin 31	Pin 41
CLK P	Clock Product Register	$\Pi \mathrm{L}$	Pin 7	Pin 12

Controls

The TDC1008 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW, and PRELoad is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP lif appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CL.K P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J4 Package	C1, LI Package
TSX	XTP Three-State Control	TL	Pin 42	Pin 56
TSM	MSP Three-State Control	TL	Pin 6	Pin 6
TSL	LSP Three-State Control	TLL	Pin 18	Pin 24
PREL	Preload Control	TL	Pin 8	Pin 13
RND	Round Control Bit	TL	Pin 21	Pin 31
TC	Two's Complement Control	TL	Pin 41	Pin 55
ACC	Accumulate Control	TL	Pin 20	Pin 30
SUB	Subtract Control	$\pi \mathrm{L}$	Pin 19	Pin 29

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output pin	Register \rightarrow Output pin	Register \rightarrow Output pin
L	L	L	H	Register \rightarrow Output pin	Register \rightarrow Output pin	Hi-Z
L	L	H	L	Register \rightarrow Output pin	Hi-2	Register \rightarrow Output pin
L	L	H	H	Register \rightarrow Output pin	Hi-2	Hi-Z
L	H	L	L	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Register \rightarrow Output pin
L	H	L	H	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Hi-2
L	H	H	L	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	H	H	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-2	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	Hi-Z	Hi-2	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	Hi-2	$\mathrm{Hi}-2$	Hi-Z Preload
H^{2}	L	H	L	Hi-2	Hi-Z Preload	$\mathrm{Hi}-2$
H^{2}	L	H	H	Hi-2	Hi-2 Preload	Hi-Z Preload
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	H	Hi-2 Preload	$\mathrm{Hi}-2$	Hi-Z Preload
H^{2}	H	H	L	Hi-2 Preload	Hi-2 Pretoad	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi-2 Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Figure 1．Fractional Two＇s Complement Notation

Figure 2．Fractional Unsigned Magnitude Notation

Figure 3．Integer Two＇s Complement Notation

Figure 4．Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$
Supply Voltage -0.5 to +7.0 V
Input
Applied voltage -0.5 to $+5.5 \mathrm{v}^{2}$
Forced current -6.0 to +6.0 mA
Output
Applied voltage -0.5 to $+5.5 \mathrm{~V}^{2}$
Forced current -1.0 to $+6.0 \mathrm{~mA}^{3,4}$
$\mathrm{~B}_{1} ~$
1 sec
Temperature
Operating, case -55 to $+125^{\circ} \mathrm{C}$
junction $175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $300^{\circ} \mathrm{C}$
Storage-65 to $+150^{\circ} \mathrm{C}$
Notes:1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range, and measured with respect to GND.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
tpw	Clock Pulse Width	25			30			ns
ts	Input Setup Time (Except PREL)	25			30			ns
ts	Input Setup Time (PREL)	40			45			ns
${ }_{\text {H }}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltags, Logic HIGH	2.0			2.0			V
OL	Output Current, Logic LOW			4.0			4.0	mA
$\mathrm{IOH}^{\text {che }}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {ma }}$ Multiply-Accumulate Time	$V_{C C}=$ MIN		100		125	ns
${ }_{\square}{ }^{\text {d }}$ Output Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns
tena Three-State Output Enable Delay	$V_{\text {CC }}=$ MIN, Test Load: $V_{\text {LOAD }}-1.8 \mathrm{~V}$		40		45	ns
${ }^{\text {t DIS }}$ Three-State Output Disable Delay	$V_{\text {CC }}=$ MIN, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 \mathrm{OV}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		40		45	ns

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {DIS }}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in Figure 9 .
2. $\mathrm{t}_{\mathrm{DIS}}$ denotes the transition from logical 1 to three-state.
${ }^{t_{0}} \mathrm{ISO}$ denotes the transition from logical 0 to three-state.

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Test Load

Figure 9. Transition Levels For Three-State Measurements

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register，and the desired register not be loaded again until a new constant is desired．The
multiply cycle then consists of loading new data and strobing the output register．

Selection of Numeric Format

Essentially，the difference between integer，mixed，and fractional notation in system design is only conceptual．For example，the TDC1008 does not differentiate between this operation：

$$
6 \times 2=12
$$

and this operation：

$$
(6 / 8) \times(218)=12164
$$

The difference lies only in constant scale factors lin this case， a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl．However，these scale factors do have
implications for hardware design．Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel，the scale factors determine the connection of the output pins of any multiplier in a system．As a result，only two choices are normally made：integer and fractional notation．If integer notation is used，the Least Significant Bits of the multiplier， multiplicand，and product all have the same value．If fractional notation is used，the Most Significant Bits of the multiplier， multiplicand，and product all have the same value．These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1008．J4C	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	1008J4C
TDC1008．4G	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	48 Lead DIP	1008J4G
TDC1008．44F	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	1008J4F
TDC1008．4A	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	48 Lead DIP	1008J4A
TDC1008C1F	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1008C1F
TOC1008C1A	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	1008C1A
TOC1008L1F ${ }^{1}$	EXT－$T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1008Lif
TDC1008L1A ${ }^{1}$	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	1008LIA

Notes：
1．Contact factory for availability．
2．Per TRW document 7021757.
TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW inc．or others．

VLSI Multiplier-Accumulator
12×12 bit, 135 ns

The TDC1009 is a high-speed 12×12 bit parallel multiplier-accumulator which operates at a 135 nanosecond cycle time 17.4 MHz multiply-accumulate ratel. The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 24 -bit product. Products may be accumulated to a 27 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), a 12-bit Most Significant Product (MSP), and a 12 -bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1009 is a uniquely powerful LSI signal processing device.

Features

- 135ns Multiply-Accumulate Time (Worst Case)
- 12×12 Bit Parallel Multiplication With Accumulation To 27-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier, Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$\mathrm{X}_{4} 1$	－ $64{ }^{1}$
$\mathrm{X}_{3} 2 \mathrm{E}$	$)^{-63} \mathrm{X}_{6}$
$x_{2} 3$	${ }_{-62} \mathrm{X}_{7}$
$x_{1} 45$	－61 61
$x_{0} 5 \mathrm{~m}$	$\cdots 60 \mathrm{Xg}$
ACC 6 b	$\Rightarrow 59 \times 10$
SUB 7 H	$\cdots 58{ }^{-11}$
RND 8 ¢	－ 57 CLK X
TSL 9 5	－ 56 CLK Y
$\mathrm{P}_{0} 10 \mathrm{~m}$	$\rightarrow 55 \mathrm{Y}_{0}$
$\mathrm{P}_{1} 11 \mathrm{~F}$	$\rightarrow 54 Y_{1}$
$\mathrm{P}_{2} 12 \mathrm{~F}$	$-53{ }^{-1}$
$\mathrm{P}_{3} 13$	$-52{ }_{-7}$
$\mathrm{P}_{4} 14$	$\rightarrow 51 Y_{4}$
$\mathrm{P}_{5} 15$	$\cdots 50 \quad Y_{5}$
GND 165	－ 49 VCC
$\mathrm{P}_{6} 17 \mathrm{~F}$	$\cdots 48$
$P_{7} 18$－	－97 47
$\mathrm{P}_{8} 19 \mathrm{~F}$	$-46{ }^{-1}$
P9 20 －	$-45 \mathrm{Yg}$
P10 21	－ $44 \mathrm{Y}_{10}$
$\mathrm{P}_{11} 22$ 动	－43 431
CLK P 23 －	－ 42 TC
PREL 24 动	－ 41 TSX
TSM 25 \％	$\square 40 \quad \mathrm{P}_{26}$
$\mathrm{P}_{12} 26$ 或	${ }_{-7} 39{ }^{-15}$
$\mathrm{P}_{13} 27{ }^{\text {ch }}$	$\begin{array}{lll}-38 & \mathrm{P}_{24}\end{array}$
$\mathrm{P}_{14} 28$	${ }^{-1} 37{ }^{-1}$
$\mathrm{P}_{15} 29 \mathrm{~F}$	${ }^{-1} 36$
$\mathrm{P}_{16} 30 \mathrm{H}$	${ }^{-1} 35 \mathrm{P}_{21}$
$\mathrm{P}_{17} 31 \mathrm{c}$	-0 34 P_{20}
P18 32 E	$1933 \mathrm{P}_{19}$

[^3]
Pin Assignments

Functional Description

General Information

The TDC1009 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 12 -bit numbers which are to be multiplied, and the control lines which control the input numerical format Itwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each input is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12 -bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1009 to be used on a bus, or allow the outputs to be multiplexed over the same 12-bit output lines.

Power

The TDC1009 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, LI Package
VCC	Positive Supply Voltage	+5.0 V	Pin 49	Pins 68, 2
GND	Ground	0.0 V	Pin 16	Pins $34,36,37$

Data Inputs

The TDC1009 has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{11} and Y_{11}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} with X_{0} and Y_{0} the Least Significant Bits). Data present at the X and Y inputs
are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	C1, LI Package
x_{11}	X Data MSB	TL	Pin 58	Pin 59
x_{10}		TIL	Pin 59	Pin 58
X_{9}		TL	Pin 60	Pin 57
${ }_{8}$		TTL	Pin 61	Pin 56
x_{7}		THL	Pin 62	Pin 55
x_{6}		TL	Pin 63	Pin 54
x_{5}		TTL	Pin 64	Pin 53
x_{4}		TL	Pin 1	Pin 52
x_{3}		TLL	Pin 2	Pin 51
x_{2}		TTL	Pin 3	Pin 50
x_{1}		mi	Pin 4	Pin 49
x_{0}	X Data LSB	THL	Pin 5	Pin 48
γ_{11}	Y Data MSB	TTL	Pin 43	Pin 8
Y_{10}		TL	Pin 44	Pin 7
Y_{g}		TTL	Pin 45	Pin 6
Y_{8}		TLL	Pin 46	Pin 5
r_{7}		TTL	Pin 47	Pin 4
Y_{6}		TL	Pin 48	Pin 3
r_{5}		TL	Pin 50	Pin 67
r_{4}		TL	Pin 51	Pin 66
r_{3}		THL	Pin 52	Pin 65
r_{2}		TTL	Pin 53	Pin 64
r_{1}		TTL	Pin 54	Pin 63
r_{0}	Y Data LSB	TTL	Pin 55	Pin 62

Data Outputs

The TDC1009 has a 27 -bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 12-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit IMSB) of the MSP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	C1, LI Package
P_{26}	Product MSB	TTL	Pin 40	Pin 11
P_{25}		TTL	Pin 39	Pin 12
P_{24}		TTL	Pin 38	Pin 13
P_{23}		TTL	Pin 37	Pin 14
P_{22}		TL	Pin 36	Pin 15
P_{21}		TTL	Pin 35	Pin 16

Data Outputs (Cont.)

Name	Function	Value	J1 Package	C1, LI Package
P_{20}		TTL	Pin 34	Pin 17
P_{19}		TTL	Pin 33	Pin 18
P_{18}		IL	Pin 32	Pin 19
P_{17}		TTL	Pin 31	Pin 20
P_{16}		TTL	Pin 30	Pin 21
P_{15}		TTL	Pin 29	Pin 22
P_{14}		TIL	Pin 28	Pin 23
P_{13}		TTL	Pin 27	Pin 24
P_{12}		TL	Pin 26	Pin 25
P_{11}		TTL	Pin 22	Pin 29
P_{10}		TTL	Pin 21	Pin 30
P_{9}		TIL	Pin 20	Pin 31
P_{8}		TTL	Pin 19	Pin 32
P_{7}		TTL	Pin 18	Pin 33
P_{6}		TTL	Pin 17	Pin 35
P_{5}		TTL	Pin 15	Pin 38
P_{4}		TTL	Pin 14	Pin 39
P_{3}		TTL	Pin 13	Pin 40
P_{2}		TL	Pin 12	Pin 41
P_{1}		TTL	Pin 11	Pin 42
P_{0}	Product LSB	TTL	Pin 10	Pin 43

Clocks

The TDC1009 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB)
inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, LI Package
CLK X	Clock Input Data X	TTL	Pin 57	Pin 60
CLK Y	Clock Input Data Y	TLL	Pin 56	Pin 61
CLK P	Clock Product Register	TTL	Pin 23	Pin 28

Controls

The TDC1009 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active Isee Table 11. First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at
the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

Controls (Cont.)

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP lif appropriatel rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs.

When ACCumulate ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly.

This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, LI Package
TSX	XTP Three-State Control	TTL	Pin 41	Pin 10
TSM	MSP Three-State Control	TL	Pin 25	Pin 26
TSL	LSP Three-State Control	TIL	Pin 9	Pin 44
PREL	Preload Control	TL	Pin 2	Pin 27
RND	Round Control Bit	TTL	Pin 8	Pin 45
TC	Two's Complement Control	TIL	Pin 42	Pin 9
ACC	Accumulate Control	THL	Pin 6	Pin 47
SUB	Subtract Control	TTL		Pin 46

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output pin	Register \rightarrow Output pin	Register \rightarrow Output pin
L	L	L	H	Register \rightarrow Output pin	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	L	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	L	H	H	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
L	H	L	L	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Register \rightarrow Output pin
L	H	L	H	$\mathrm{Hi}-2$	Register \rightarrow Output pin	Hi-Z
L	H	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Register \rightarrow Output pin
L	H	H	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-2$	Hi-Z Preload
H^{2}	L	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	H	H	Hi-Z	Hi-Z Preload	Hi-Z Preload
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	H	Hi-2 Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	H	H	L	Hi-Z Preload	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input	
Output - -	
	Short-circuit duration (single output in high state to ground) .. 1 sec
Temperature	
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range, and measured with respect to GND.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }_{\text {tPW }}$	Clock Pulse Width	25			30			ns
ts	Input Setup Time (Except PREL)	25			30			ns
${ }_{\text {t }}$	Input Setup Time (PREL)	40			45			ns
${ }_{\text {H }}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
V_{IH}	Input Voltage, Logic HIGH	2.0			2.0			V
${ }_{0}^{0}$	Output Current, Logic LOW			4.0			4.0	mA
O_{OH}	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
${ }^{T}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$ C	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I MA }}$ Multiply-Accumulate Time	$V_{C C}=M 1 N$		135		170	ns
t_{D} Output Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns
${ }^{\text {teNA }}$ Thee-State Output Enable Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	ns
${ }^{\text {T DIS }}$ Three-State Output Disable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}} 0.0 \mathrm{O}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		40		45	ns

Notes:

2. tDIS1 denotes the transition from logical 1 to three-state.
${ }^{\text {tolSO }}$ denotes the transition from logical 0 to three-state.

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Transition Levels For Three-State Measurements

TSM, TSX,
TSL

THREE-STATE OUTPUTS

Figure 8. Test Load

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and the desired register not be loaded again until a new constant is desired. The
multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and
fractional notation in system design is only conceptual. For example, the TDC1009 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(218)=12 / 64
$$

The difference lies only in constant scale factors fin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl. However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1009Jic	STD $-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1009J1C
TDC1009J1G	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1009J1G
TDC1009J1F	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1009J1F
TDC1009Jta	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	1009.J1A
TDC1009C1F	EXT- $T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1009C1F
TDC1009C1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	1009C1A
TDC1009L1F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1009L1F
TDC1009L1A ${ }^{1}$	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability2	68 Leaded Chip Carrier	1009L1A

Notes:

1. Contact factory for availability.
2. Per TRW document 7021757.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

VLSI Multiplier-Accumulator

16×16 bit, 165ns

The TDC1010 is a high-speed 16×16 bit parallel multiplier-accumulator which operates at a 165 nanosecond cycle time 16 MHz multiply-accumulate ratel. The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32 -bit product. Products may be accumulated to a 35 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), a 16-bit Most Significant Product (MSP), and a 16 -bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1010 is a uniquely powerful LSI signal processing device.

Features

- 165ns Multiply-Accumulate Time (Worst Case)
- 16×16 Bit Parallel Multiplication With Accumulation to 35-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

LSI Products Division

Pin Assignments

Functional Description

General Information

The TDC1010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format Itwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16 -bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1010 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product ILSPI is multiplexed with the Y input.

Power

The TDC1010 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, LI Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 49	Pins 17, 18, 19, 20
GND	Ground	0.0 V	Pin 16	Pins 53,54

Data Inputs

The TDC1010 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} with X_{0} and Y_{0} the Least Significant Bitsl. Data present at the X and Y inputs
are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	C1, 11 Package
X_{15}	' X Data MSB	TTL	Pin 56	Pin 10
X_{14}		TTL	Pin 57	Pin 9
X_{13}		TTL	Pin 58	Pin 8
X_{12}		TTL	Pin 59	Pin 7
x_{11}		TTL	Pin 60	Pin 6
X_{10}		TTL	Pin 61	Pin 5
x_{9}		TTL	Pin 62	Pin 4
x_{8}		TTL	Pin 63	Pin 3
${ }_{7}$		TTL	Pin 64	Pin 2
x_{6}		TTL	Pin 1	Pin 1
x_{5}		TTL	Pin 2	Pin 68
x_{4}		TTL	Pin 3	Pin 67
x_{3}		TTL	Pin 4	Pin 66
x_{2}		TTL	Pin 5	Pin 65
x_{1}		TTL	Pin 6	Pin 64
x_{0}	X Data LSB	TTL	Pin 7	Pin 63
Y_{15}	Y Data MSB	TTL	Pin 24	Pin 45
γ_{14}		TTL	Pin 23	Pin 46
Y_{13}		TTL	Pin 22	Pin 47
Y_{12}		TTL	Pin 21	Pin 48
Y_{11}		TTL	Pin 20	Pin 49
Y_{10}		TTL	Pin 19	Pin 50
Y_{g}		TTL	Pin 18	Pin 51
Y_{8}		TTL	Pin 17	Pin 52
Y_{7}		TTL	Pin 15	Pin 55
Y_{6}		TTL	Pin 14	Pin 56
Y_{5}		TTL	Pin 13	Pin 57
Y_{4}		TTL	Pin 12	Pin 58
Y_{3}		TTL	Pin 11	Pin 59
Y_{2}		TTL	Pin 10	Pin 60
Y_{1}		TTL	Pin 9	Pin 61
Y_{0}	Y Data LSB	TTL	Pin 8	Pin 62

Data Outputs

The TDC1010 has a 35 -bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	C1, LI Package
P_{34}	Product MSB	TTL	Pin 43	Pin 26
P_{33}		TTL	Pin 42	Pin 27
P_{32}		TTL	Pin 41	Pin 28
P_{31}		TL	Pin 40	Pin 29
P_{30}		TL	Pin 39	Pin 30
P_{29}		TL	Pin 38	Pin 31
P_{28}		TL	Pin 37	Pin 32
P_{27}		TIL	Pin 36	Pin 33
P_{26}		TTL	Pin 35	Pin 34
P_{25}		TL	Pin 34	Pin 35.
P_{24}		TTL	Pin 33	Pin 36
P_{23}		TIL	Pin 32	Pin 37
P_{22}		TTL	Pin 31	Pin 38
P_{21}		TL	Pin 30	Pin 39
P_{20}		TL	Pin 29	Pin 40
P_{19}		TL	Pin 28	Pin 41
P_{18}		TIL	Pin 27	Pin 42
P_{17}		TL	Pin 26	Pin 43
P_{16}		TLL	Pin 25	Pin 44
P_{15}		TTL	Pin 24	Pin 45
P_{14}		TL	Pin 23	Pin 46
P_{13}		TiL	Pin 22	Pin 47
P_{12}		TTL	Pin 21	Pin 48
P_{11}		TIL	Pin 20	Pin 49
P_{10}		TIL	Pin 19	Pin 50
Pg_{9}		TIL	Pin 18	Pin 51
P_{8}		TL	Pin 17	Pin 52
P_{7}		TTL	Pin 15	Pin 55
P_{6}		TTL	Pin 14	Pin 56
P_{5}		TL	Pin 13	Pin 57
P_{4}		TL	Pin 12	Pin 58
P_{3}		TL	Pin 11	Pin 59
P_{2}		TTL	Pin 10	Pin 60
P_{1}		TL	Pin 9	Pin 61
P_{0}	Product LSB	TL	Pin 8	Pin 62

Clocks

The TDC1010 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising
edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, LI Package
CLK X	Clock Input Data X	TL	Pin 51	Pin 15
CLK Y	Clock Input Data Y	TL	Pin 50	Pin 16
CLK P	Clock Product Register	TLL	Pin 44	Pin 25

Controls

The TDC1010 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 11. First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs.

Name	Function	Value	J1 Package	C1, LI Package
TSX	XTP Three-State Control	TTL	Pin 47	Pin 22
TSM	MSP Three-State Control	TL	Pin 45	Pin 24
TSL	LSP Three-State Control	TTL	Pin 55	Pin 11
PREL	Preload Control	TL	Pin 46	Pin 23
RND	Round Control Bit	TTL	Pin 54	Pin 12
TC	Two's Complement Control	$\Pi \mathrm{L}$	Pin 48	Pin 21
ACC	Accumulate Control	TL	Pin 52	Pin 14
SUB	Subtract Control	TLL	Pin 53	Pin 13

Figure 1．Fractional Two＇s Complement Notation

Figure 3．Integer Two＇s Complement Notation

Figure 4．Integer Unsigned Magnitude Notation．

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply	,
Input	
Output	
	Short-circuit duration (single output in high state to ground) .. 1 sec

Temperature
Operating, case ...

Storage -65 to $+150^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range, and measured with respect to GND.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }_{\text {tpw }}$	Clock Pulse Width	25			30			ns
ts	Input Setup Time (Except PREL)	25			30			ns
ts	Input Setup Time (PREL)	40			45			ns
${ }_{\text {th }}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
V_{IH}	Input Voltage, Logic HIGH	2.0			2.0			V
$\underline{\mathrm{OL}}$	Output Current, Logic LOW			4.0			4.0	mA
${ }^{\text {IOH }}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$T_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{1}$ CC Supply Current	$V_{C C}=$ MAX，Static ${ }^{1}$		1100		1250	mA
IIL Input Current，Logic LOW	$\mathrm{V}_{\text {CC }}-\mathrm{MAX}, \mathrm{V}_{1}-0.4 V$					
	$X_{\text {IN }}$ ，RND，ACC，SUB，TC		－0．4		－0．4	mA
	YIN		－0．8		－0．8	mA
	CLK X，TSX，TSM，and TSL		－1．0		－1．0	mA
	CLK P，CLK Y，PREL		－2．0		－2．0	mA
IIH Input Current，Logic HIGH	$V_{C C}=$ MAX，$V_{1}=2.4 V$					
	$X_{\text {IN }}$ ．RND，ACC，SUB，TC		75		100	$\mu \mathrm{A}$
	$Y_{\text {IN }}$		75		100	$\mu \mathrm{A}$
	CLK X，TSX，TSM，and TSL		75		100	$\mu \mathrm{A}$
	CLK P，CLK Y，PREL		150		200	$\mu \mathrm{A}$
I Input Current，Max Input Voltage	$V_{C C}=$ MAX，$V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
V_{OL} Output Voltage，Logic LOW	$V_{\text {CC }}=$ MIN， $\mathrm{IOL}=$ MAX		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage，Logic HIGH	$\mathrm{V}_{\text {CC }}=$ MIN， $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V
IOZL $\mathrm{Hi}-\mathrm{Z}$ Output Leakage Current，Output LOW	$V_{C C}=$ MAX，$V_{1}=0.4 V$		－800		－800	$\mu \mathrm{A}$
IOZH Hi－Z Output Leakage Current，Output HIGH	$V_{C C}=$ MAX，$V_{1}=2.4 \mathrm{~V}$		75		100	$\mu \mathrm{A}$
IOS Short－Circuit Output Current	$V_{\text {CC }}=$ MAX，Output HIGH，one pin to ground， one second duration		－50		－50	mA
C_{1} Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		15		15	pF
Note：						

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Multiply－Accumulate Time		$V_{\text {CC }}=$ MIN		165		200	ns
${ }_{\text {t }}$	Output Delay		$V_{C C}=$ MIN，Test Load：$V_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns
tena	Three－State Output Enable Delay	$V_{C C}=$ MIN，Test Load：$V_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	ns	
${ }_{\text {t }}$ IS	Three－State Output Disable Delay	$V_{\text {CC }}=$ MIN，Test Load：$V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 \mathrm{O}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		40		45	ns	

Notes：
1．All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {DIS }}$ and $\mathrm{I}_{\text {ENA }}$ ，which are shown in Figure 9 ．
2．${ }^{\text {DISI }}$ denotes the transition from logical 1 to three－state． toISO denotes the transition from logical 0 to three－state．

Figure 5. Timing Diagram

Note: On multiplexed leads, input data and preload in data are applied to the TDC1010, and data out is produced and driven by the TDC1010.

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Test Load

Figure 9. Transition Levels For Three-State Measurements

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output pin	Register \rightarrow Output pin	Register \rightarrow Output pin
L	L	L	H	Register \rightarrow Output pin	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	L	Register \rightarrow Output pin	$\mathrm{Hi}-2$	Register \rightarrow Output pin
L	L	H	H	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
L	H	L		$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Register \rightarrow Output pin
L	H	L	H	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$.
L	H	H	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-2$	Register \rightarrow Output pin
L	H	H	H	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	L	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	H	H	$\mathrm{Hi}-\mathrm{Z}$	H1-2 Preload	Hi-Z Preload
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-2$
H^{2}	H	1	H	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-2 Preload
H^{2}	H	H	L	Hi-Z Preload	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi-2 Preload	Hi-2 Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply
cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1010 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(2 / 8)=12164
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1010J1C	STD $-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1010J1C
TDCTO1OJIG	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1010JG
TDC1010JIF	EXT- $\mathrm{T}^{\text {C }}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1010.3F
TDC1010.1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	1010J1A
TDC1010C1F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1010CtF
TDC1010C1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	1010C1A
TDC1010L1F ${ }^{1}$	EXT- $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1010L1F
TDCIOTOLIA ${ }^{1}$	EXT- $T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	101021A

Notes:

1. Contact factory for availability.
2. Per TRW document 7021757.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

VLSI Multiplier-Accumulator
 16×16 bit, 100ns

The TRW TDC1043 is a high-speed 16×16 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time 110 MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge triggered D-type flip-flops. All outputs are three-state.

Built with TRW's OMICRON - ${ }^{\text {TM }}$ 1-micron bipolar process, the TDC1043 is pin-compatible with the industry standard TDC1010, but does not provide the preload and Least Significant Product (LSP) output capabilities of the TDC1010. However, the LSP bits are used internally for accurate accumulation. The TDC1043 operates with almost twice the speed of the TDC1010 at less than one-third the power dissipation.

Features

- 100ns Multiply-Accumulate Time (Worst Case)
- 16×16 Bit Parallel Multiplication With Selectable Accumulation And Subtraction, And 19-Bit Limited Precision Output
- Pin Compatible With TRW TDC1010
- All Inputs And Outputs Are Registered TIL Compatible
- Three-State TTL Outputs
- Two's Complement Or Unsigned Magnitude Multiplication
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - J3 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1043 has four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16 -bit numbers which are to be multiplied and the control lines which control the input numerical format ltwo's complement or unsigned magnitudel, output roundings, accumulation and subtraction. Each number is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output
registers hold the complete result. Three-state output drivers are provided for one 16-bit word, the Most Significant Product (MSP), and one 3-bit word, the eXTended Product (XTP). The Least Significant Product (LSP) is not available with the TDC1043. It is held internally for use in accumulation. Three-state output drivers permit the TDC1043 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The unit is pin-compatible with the TDC1010 with the exception that there is no preload capability or least significant product output.

Power

The TDC1043 operates from a single +5 Volt supply. The voltage tolerance is different for the standard and extended temperature range parts. All power and ground lines must be connected. A good ground must be provided due to the large number of data outputs capable of changing simultaneously. A $0.1 \mu \mathrm{~F}$ (minimum) bypass capacitor between $\mathrm{V}_{C C}$ and ground is recommended.

Name	Function	Value	J3 Package	C1, L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pin 49	Pins 17, 18, 19, 20
GND	Ground	$0.0 V$	Pins 16,46	Pins 23, 53, 54

TDC1010 Compatibility Note: Permanently connect pin 46 (J3 package) or pin 23 (C1, L1 package) on the TDC1043 to ground. Do not leave this pin open or connected to a TTL output. (On the TDC1010, this pin is the preload pin.)

Data Inputs

The TDC1043 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} (with X_{0} and Y_{0} the Least Significant Bits). Data present at the X and Y inputs
are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X_{15}	X Data MSB	TTL	Pin 56	Pin 10
X_{14}		TL	Pin 57	Pin 9
x_{13}		TTL	Pin 58	Pin 8
X_{12}		TTL	Pin 59	Pin 7
x_{11}		TLL	Pin 60	Pin 6
X_{10}		TTL	Pin 61	Pin 5
x_{g}		TTL	Pin 62	Pin 4
x_{8}		TTL	Pin 63	Pin 3
X_{7}		TTL	Pin 64	Pin 2
x_{6}		TL	Pin 1	Pin 1
x_{5}		TIL	Pin 2	Pin 68
x_{4}		TIL	Pin 3	Pin 67
x_{3}		TTL	Pin 4	Pin 66
x_{2}		TTL	Pin 5	Pin 65
x_{1}		TTL	Pin 6	Pin 64
x_{0}	X Data LSB	TIL	Pin 7	Pin 63
Y_{15}	Y Data MSB	TLL	Pin 24	Pin 45
Y_{14}		TTL	Pin 23	Pin 46
Y_{13}		TTL	Pin 22	Pin 47
Y_{12}		TL	Pin 21	Pin 48
γ_{11}		TIL	Pin 20	Pin 49
Y_{10}		TTL	Pin 19	Pin 50
Y_{g}		TIL	Pin 18	Pin 51
γ_{B}		TL	Pin 17	Pin 52
Y_{7}		TL	Pin 15	Pin 55
Y_{6}		TL	Pin 14	Pin 56
Y_{5}		TTL	Pin 13	Pin 57
Y_{4}		TIL	Pin 12	Pin 58
γ_{3}		TTL	Pin 11	Pin 59
Y_{2}		TL	Pin 10	Pin 60
Y_{1}		TIL	Pin 9	Pin 61
Y_{0}	Y Data LSB	TTL	Pin 8	Pin 62

Data Outputs

The TDC1043 has a 35 -bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. Only the most significant 19 bits are available off-chip. The output is divided into one 16-bit output word, the Most Significant Product (MSP), and one 3-bit output
word, the eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 and 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
P_{34}	Product MSB	TIL	Pin 43	Pin 26
P_{33}		π	Pin 42	Pin 27
P_{32}		TLL	Pin 41	Pin 28
P_{31}		mL	Pin 40	Pin 29
P_{30}		TIL	Pin 39	Pin 30
P_{29}		TTL	Pin 38	Pin 31
P_{28}		TIL	Pin 37	Pin 32
P_{27}		TTL	Pin 36	Pin 33
P_{26}		TL	Pin 35	Pin 34
P_{25}		TL	Pin 34	Pin 35
P_{24}		mL	Pin 33	Pin 36
P_{23}		TTL	Pin 32	Pin 37
P_{22}		TiL	Pin 31	Pin 38
P_{21}		TTL	Pin 30	Pin 39
P_{20}		TTL	Pin 29	Pin 40
P_{19}		TLL	Pin 28	Pin 41
P_{18}		TLI	Pin 27	Pin 42
P_{17}		TTL	Pin 26	Pin 43
P_{16}		TTL	Pin 25	Pin 44

Clocks

The TDC1043 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. Note that the input to the output register comes only from the internal adder and multiplier array. The RouND (RND), Two's Complement (TC),

ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	TL	Pin 51	Pin 15
CLK Y	Clock Input Data Y	ΠL	Pin 50	Pin 16
CLK P	Clock Product Register	ΠL	Pin 44	Pin 25

Controls

The TDC1043 has six control lines. TSX and TSM are three-state enable lines for the XTP and the MSP. The output driver is in the high-impedance state when TSX or TSM is HIGH, and enabled when the appropriate control is LOW. TSX and TSM are not registered.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the. MSP and XTP lif appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs and TC LOW makes both inputs magnitude only inputs.

When ACCumulate IACC) is HIGH, the contents of the output register are added to or subtracted from the next product generated, and their sum is stored back into the output
registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the contents of the output register are subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	ΠL	Pin 47	Pin 22
TSM	MSP Three-State Control	ΠL	Pin 45	Pin 24
RND	Round Control Bit	ΠL	Pin 54	Pin 12
TC	Two's Complement Control	ΠL	Pin	Pin 21
ACC	Accumulate Control	ΠL	Pin 52	Pin 14
SUB	Subtract Control	ΠL	Pin 53	Pin 13

No Connects

The TDC1043 has one pin labeled "No Connect" (NC). No connection is made between the chip and this pin.

Name	Function	Value	J3 Package	C1, L1 Package
NC	No Connection	Open	Pin 55	Pin 11

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voitage	
Input	
Output	
	Short-circuit duration (single output in high state to ground) ... 1 sec
Temperature	
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range, and measured with respect to GND.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	V
${ }_{\text {tpwL }}$	Clock Pulse Width, LOW	25			ns
tPWH $^{\text {ct }}$	Clock Pulse Width, HIGH	25			ns
ts	Input Setup Time	25			ns
${ }_{\text {th }}$	Input Hold Time	0			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
V_{IH}	Input Voltage, Logic HIGH	2.0			V
101	Output Current, Logic LOW			4.0	mA
${ }_{\text {IOH }}$	Output Current, Logic HIGH			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions ${ }^{1}$

Paramater	Test Conditions	Temp	Range	Units
		Min	Max	
${ }^{\text {ma }}$ Mutiply-Accumulate Time	$V_{C C}=$ MIN		100	ns
t_{D} Output Delay	$V_{C C}=$ MIN, Test Loed: $V_{\text {LOAD }}=2.2 \mathrm{~V}$		35	ns
teNA Threo-Stata Dutput Enable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=1.8 \mathrm{~V}$		35	ns
${ }^{\text {tolS }}$ Three-Stata Dutput Disable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $t_{\text {DISD }} 0.0 V$ for $t_{D I S 1}{ }^{2}$		35	ns

Notes:

1. All transitions are measured at a 1.5 V level except for t IS and tend which are shown in Figure 9.
2. tIS1 denotes the transition from logical 1 to three-state.
tDISO denotes the rransition from logical 0 to three-state.

Figure 5．Timing Diagram

Figure 6．Equivalent Input Circuit

Figure 8．Test Load

Figure 7．Equivalent Output Circuit

Figure 9．Transition Levels For Three－State Measurements

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register，and that the register not be loaded again until a new constant is desired．The multiply cycle then consists of loading new data and strobing the output register．

Selection of Numeric Format

Essentially，the difference between integer，mixed，and fractional notation in system design is only conceptual．For example，the TDC1043 does not differentiate between this operation：

$$
6 \times 2=12
$$

and this operation：
$(618) \times(2 / 8)=12164$.

The difference lies only in constant scale factors lin this case， a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product）．However，these scale factors do have implications for hardware design．Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel，the scale factors determine the connection of the output pins of any multiplier in a system．As a result，only two choices are normally made：integer and fractional notation．If integer notation is used，the Least Significant Bits of the multiplier， multiplicand，and product all have the same value．If fractional notation is used，the Most Significant Bits of the multiplier， multiplicand，and product all have the same value．These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC10433C	STD－ $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1043J3C
TDC1043J3G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－in	64 Lead DIP	1043J3G
TDC1043C1C ${ }^{1}$	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1043 CIC
tociou3cig ${ }^{1}$	STD－$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	68 Contact Chip Carrier	1043CIG
TDC1043LIC ${ }^{1}$	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1043C1C
TDC1043LIG ${ }^{1}$	STD－TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	68 Leaded Chip Carrier	1043CIG

Notes：
1．Contact factory for availability．
2．Per TRW document 7021757.
TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW inc．or others．
Preliminary Information describes products that are not in full production at the time of printing．Specifications are based on design goals and limited characterization．They may change without notice．Contact TRW for current information．

CMOS Multiplier-Accumulator

12×12 bit, 135ns

The TMC2009 is a high-speed 12×12 bit parallel multiplier-accumulator which operates at a 135 nanosecond cycle time 17.4 MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 24 -bit product. Products may be accumulated to a 27 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), a 12-bit Most Significant Product (MSP), and a 12-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2009 is pin and function compatible with the industry standard TDC1009 and operates with the same speed at one-fitth or less power dissipation.

Features

- Low Power Consumption CMOS Process
- Pin And Function Compatible With TRW TDC1009
- 135 ns Multiply-Accumulate Time IWorst Case)
- 12×12 Bit Parallel Multiplication With Accumulation To 27-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier, Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Pracessors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - J3 Package

68 Contact or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TMC2009 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 12 -bit operands which are to be multiplied, and the control lines which control the input numerical format ltwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12 -bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TMC2009 to be used on a bus, or allow the outputs to be multiplexed over the same 12 -bit output lines.

Power

The TMC2009 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J3 Package	C1, L1 Package
V_{DD}	Positive Supply Voltage	+5.0 V	Pin 49	Pins 68,2
GND	Ground	0.0 V	Pin 16	Pins $34,36,37$

Data Inputs

The TMC2009 has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), X_{11} and Y_{11}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{10} through X_{0} and Y_{10} through Y_{0} with X_{0} and Y_{0} the Least Significant Bits). Data present at the X and Y inputs are
clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X_{11}	X Data MSB	TTL	Pin 58	Pin 59
X_{10}		TTL	Pin 59	Pin 58
x_{g}		TTL	Pin 60	Pin 57
χ_{8}		TTL	Pin 61	Pin 56
x_{7}		TTL	Pin 62	Pin 55
x_{6}		TIL	Pin 63	Pin 54
x_{5}		TTL	Pin 64	Pin 53
x_{4}		TTL	Pin 1	Pin 52
x_{3}		TTL	Pin 2	Pin 51
x_{2}		TTL	Pin 3	Pin 50
x_{1}		TTL	Pin 4	Pin 49
x_{0}	X Data LSB	TTL	Pin 5	Pin 48

Data Inputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
Y_{11}	Y Data MSB	TTL	Pin 43	Pin 8
Y_{10}		TTL	Pin 44	Pin 7
Y_{9}		TTL	Pin 45	Pin 6
Y_{8}		TTL	Pin 46	Pin 5
Y_{7}		TTL	Pin 47	Pin 4
Y_{6}		TTL	Pin 48	Pin 3
Y_{5}		TTL	Pin 50	Pin 67
Y_{4}		TTL	Pin 51	Pin 66
Y_{3}		TTL	Pin 52	Pin 65
γ_{2}		TTL	Pin 53	Pin 64
Y_{1}		TTL	Pin 54	Pin 63
Y_{0}	Y Data LSB	TTL	Pin 55	Pin 62

Data Outputs

The TMC2009 has a 27-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. This output is divided into two 12 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
P_{26}	Product MSB	TL	Pin 40	Pin 11
P_{25}		TIL	Pin 39	Pin 12
P_{24}		TL	Pin 38	Pin 13
P_{23}		TL	Pin 37	Pin 14
P_{22}		TL	Pin 36	Pin 15
P_{21}		TTL	Pin 35	Pin 16
P_{20}		TIL	Pin 34	Pin 17
P_{19}		TTL	Pin 33	Pin 18
P_{18}		TL	Pin 32	Pin 19
P_{17}		TIL	Pin 31	Pin 20
P_{16}		TTL	Pin 30	Pin 21
P_{15}		TL	Pin 29	Pin 22
P_{14}		TTL	Pin 28	Pin 23
P_{13}		TL	Pin 27	Pin 24
P_{12}		TTL	Pin 26	Pin 25

Data Outputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
P_{11}		TTL	Pin 22	Pin 29
P_{10}		TTL	Pin 21	Pin 30
P_{9}		TTL	Pin 20	Pin 31
P_{8}		TTL	Pin 19	Pin 32
P_{7}		TTL	Pin 18	Pin 33
P_{6}		TTL	Pin 17	Pin 35
P_{5}		TTL	Pin 15	Pin 38
P_{4}		TTL	Pin 14	Pin 39
P_{3}		TTL	Pin 13	Pin 40
P_{2}		TIL	Pin 12	Pin 41
P_{1}		TTL	Pin 11	Pin 42
P_{0}	Product LSB	TTL	Pin 10	Pin 43

Clocks

The TMC2009 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TCI, ACCumulate (ACC) and SUBtract (SUB) inputs
are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 57	Pin 60
CLK Y	Clock Input Data Y	TTL	Pin 56	Pin 61
CLK P	Clock Product Register	$\Pi T L$	Pin 23	Pin 28

Controls

The TMC2009 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP, respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active isee Table 11. First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is high, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating them.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and the result is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to eliminate the need for a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

Controls (Cont.)

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals
is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	TTL	Pin 41	Pin 10
TSM	MSP Three-State Control	TTL	Pin 25	Pin 26
TSL	LSP Three-State Control	TTL	Pin 9	Pin 44
PREL	Preload Control	TTL	Pin 2	Pin
RND	Round Control Bit	TTL	Pin 8	Pin 45
TC	Two's Complement Control	TTL	Pin 42	Pin 9
ACC	Accumulate Control	TTL	Pin 6	Pin 47
SUB	Subtract Control	TLL	Pin 7	Pin 46

No Connects

The contact and leaded chip carrier versions of the TMC2009 have two pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J3 Package	C1, L1 Package
NC	No Connection	Open	None	Pins 1,34

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output pin	Register \rightarrow Output pin	Register \rightarrow Output pin
L	L	L	H	Register \rightarrow Output pin	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	L	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	L	H	H	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
L	H	L	L	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Register \rightarrow Output pin
L	H	L	H	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$
L	H	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Register \rightarrow Output pin
L	H	H	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
H^{2}	L	1	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
H^{2}	L	L	H	$\mathrm{Hi}-2$	$\mathrm{Hi}-\mathrm{Z}$	Hi-2 Preload
H^{2}	L	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	Hi-Z
H^{2}	1	H	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	Hi-Z Preload
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	H	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	H	H	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H^{2}	H	H	H	Hi-2 Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

LSI Products Division

TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter	Temperature Range						Units
	Standard			Extended			
	Min	Nom	Max	Min	Nom	Max	
$V_{\text {DD }}$ Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
tPWL Clock Pulse Width, LOW	25			35			ns
${ }^{\text {tPWH }}$ Clock Pulse Width, HIGH	25			35			ns
ts Input Setup Time	25			30			ns
t_{H} Input Hold Time	3			3			ns
$V_{\text {IL }}$ Input Voltage, Logic Low			0.8			0.8	V
$\mathrm{V}_{\mathrm{IH}} \quad$ Input Voltage, Logic HIGH	2.0			2.0			V
$\mathrm{I}_{0 \mathrm{~L}} \quad$ Output Current, Logic LOW			4.0			4.0	mA
$\mathrm{IOH}^{\text {OH }}$ Output Current, Logic HIGH			-2.0			-2.0	mA
T_{A} Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T_{C}} \quad$ Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
＇too	Supply Current，Quiescent		$\begin{aligned} & V_{D D}=M A X, V_{I N}=O V \\ & \text { TSL, TSM, } T S X=5.0 \mathrm{~V} \end{aligned}$		5		10	mA
IDOU	Supply Current，Unloaded ${ }^{1}$		$\begin{aligned} & V_{D D}=M A X, F=7.4 M H z \\ & T S L, T S M, T S X=5.0 V \\ & \hline \end{aligned}$		60		60	mA
IdDL	Supply Current，Loaded ${ }^{1,2}$	$\begin{aligned} & V_{D D}=M A X, F=7.4 M H z \\ & \text { TSL, TSM, TSX }=O V \\ & \text { Test Load: } V_{\text {LOAD }}=V_{D D} M A X \end{aligned}$		150		170	mA	
IIL	Input Current，Logic LOW	$V_{D D}=M A X, V_{1}=0.4 V$	-10	＋10	－10	＋10	$\mu \mathrm{A}$	
IIH	Input Current，Logic HIGH	$V_{D D}=M A X, V_{1}=2.4 V$	－10	＋10	－10	＋10	$\mu \mathrm{A}$	
1	Input Current，Max Input Voltage	$V_{D D}=M A X, V_{1}=V_{D D}$		＋75		＋75	$\mu \mathrm{A}$	
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage，Logic Low	$V_{D D}=M I N, I_{0 L}=M A X$		0.4		0.4	V	
V_{OH}	Output Voltage，Logic HIGH	$V_{D D}=M I N, I_{O H}=$ MAX	2.4		2.4		V	
$\mathrm{I}_{02 \mathrm{~L}}$	Hi－Z Output Leakage Current，Output LOW	$V_{D D}=M A X, V_{1}=0.4 V$	－75	＋75	－75	＋75	$\mu \mathrm{A}$	
${ }^{\text {I O2H }}$	Hi－Z Output Leakage Current，Output HIGH	$V_{D D}=M A X, V_{1}=2.4 V$	－75	＋75	－75	＋75	$\mu \mathrm{A}$	
Ios	Short－Circuit Output Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{MAX}$, Output HIGH，one pin to ground， one second duration max		－100		－100	mA	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
C_{0}	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	

Notes：
1．Guaranteed to maximum clock rate，tested at 2 MHz ．
2．Worst case，all inputs and outputs toggling at maximum rate．
Switching characteristics within specified operating conditions ${ }^{1}$

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I M }}$ M Mutiply－Accumulate Time	$V_{D D}-M I N$		135		170	ns
${ }^{\mathrm{t}}$ D Output Delay	$V_{D D}=M 1 N$ ，Test Load：$V_{\text {LOAD }}=2.2 \mathrm{~V}$		40		45	ns
${ }^{\text {ten }}$ Three－State Output Enable Delay	$V_{\text {DD }}=$ MIN，Test Load：$V_{\text {LOAD }}-1.5 \mathrm{~V}$		40		45	ns
${ }^{\text {DIS }}$ Three－State Output Disable Delay	$V_{D D}=$ MIN，Test Load：$V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 V$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		35		40	ns

Notes：
1．All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {DIS }}$ and ${ }^{\mathrm{I}}$ ENA，which are shown in figure 9 ．
2． $\mathrm{I}_{\mathrm{IS} 1}$ denotes the transition from logical 1 to three－state． toISO denotes the transition from logical 0 to three－state．

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Test Load

Figure 9. Transition Levels For Three-State Measurements

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply
cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC2009 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(218)=12 / 64
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl. However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2009J3C	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	2009.33C
TMC2009J3G	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	2009.J3G
TMC2009 $33{ }^{1}$	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	2009J3F
TMC2009J3A ${ }^{1}$	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	200933A
тMC2009CIC ${ }^{1}$	STD - $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2009C1C
TMC2009C1G ${ }^{\dagger}$	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	2009 CIG
TMC2009C1F1	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2009 ClF
TMC2009C1A ${ }^{1}$	EXT - ${ }^{\text {C }} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	2009C1A
TMC200gLic ${ }^{1}$	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	2009L1C
TMC2009L1G ${ }^{1}$	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	2009L1G
TMC2009L1F ${ }^{1}$	EXT $-T^{\prime} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	2009Lif
TMC2009L1A ${ }^{1}$	EXT - $T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	2009LIA

Notes:

> 1. Contact factory for availability.
> 2. Per TRW document $70 Z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TMC2010
 Preliminary Information

CMOS Multiplier-Accumulator

16×16 bit, 160ns
The TMC2010 is a high-speed 16×16 bit parallel multiplier-accumulator which operates at a 160 nanosecond cycle time (more than 6 MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32 -bit product. Products may be accumulated to a 35 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 16-bit Most Significant Product (MSP), and a 16-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2010 is pin and function compatible with the industry standard TDC1010 and operates with the same speed at one-sixth or less power dissipation, depending on the multiply-accumulate rate.

Features

- Low Power Consumption CMOS Process
- Pin And Function Compatible With TDC1010
- 160ns Multiply-Accumulate Time (Worst Case)
- 16×16 Bit Parallel Multiplication With Accumulation To 35 -Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$x_{6} 1$	$7{ }_{7} 64 \times 7$
$\mathrm{X}_{5} 2$	${ }_{-7} 63{ }_{8}$
$\mathrm{X}_{4} 3 \mathrm{H}$	${ }_{-72} \mathrm{X}_{9}$
$x_{3} 45$	-961 $61{ }_{10}$
$\mathrm{x}_{2} 50$	$760{ }^{711}$
$x_{1} 65$	$\square_{759} \mathrm{X}_{12}$
$x_{0} 75$	$\mathrm{F}_{7} 58 \mathrm{X}_{13}$
$\mathrm{P}_{0}, Y_{0} 8$ 明	${ }^{-7} 57{ }^{\text {x }}$
$P_{1}, Y_{1} 9$	$\square 7^{7} \quad \mathrm{X}_{15}$
$P_{2}, Y_{2} 10$ H	${ }^{-75} 55 \mathrm{TSL}$
$\mathrm{P}_{3}, Y_{3} 11$ 上	754 RND
$\mathrm{P}_{4}, Y_{4} 12 \mathrm{~F}$	753 SUB
$\mathrm{P}_{5}, Y_{5} 13{ }_{5}$	752 ACC
$\mathrm{P}_{6}, \mathrm{Y}_{6} 14 \mathrm{~F}$	751 CLK X
$\mathrm{P}_{7}, \mathrm{Y}_{7} 155$	750 CLK Y
GND 16 E	749 VDD
$\mathrm{P}_{8}, \mathrm{Y}_{8} 17 \mathrm{H}$	\% 48 TC
$\mathrm{Pg}_{\mathrm{g}}, \mathrm{Y}_{\mathrm{g}} 18 \mathrm{~F}$	- 47 TSX
$\mathrm{P}_{10}, \mathrm{Y}_{10} 19 \mathrm{E}$	$\underset{76}{ } 8$ PREL
$P_{11}, Y_{11} 20 \mathrm{E}$	- 45 TSM
$\mathrm{P}_{12}, \mathrm{Y}_{12} 21 \mathrm{~F}$	- 44 CLK P
$P_{13}, Y_{13} 22$ F	$\mathrm{A}_{4} 43 \mathrm{P} 34$
$\mathrm{P}_{14} \mathrm{Y}_{14}{ }_{23} \mathrm{~F}$	-742 P_{33}
$\mathrm{P}_{15}, \mathrm{Y}_{15} 24 \mathrm{E}$	$\mathrm{C}^{4} 1 \mathrm{P}_{32}$
$\mathrm{P}_{16} 25$ 5-5	$\cdots 40 \mathrm{P}_{31}$
$\mathrm{P}_{17} 26$ م	- $39 \mathrm{P}_{30}$
$\mathrm{P}_{18} 27$ \%	- $38 \mathrm{P}_{29}$
$\mathrm{P}_{19} 28$ \%	$\bigcirc 37{ }^{-18}$
$\mathrm{P}_{20} 29$	$\mathrm{Cl}^{36} \mathrm{P}_{27}$
$\mathrm{P}_{21} 30$ E	-35 P_{26}
$\mathrm{P}_{22} 31 \%$	- $34 \mathrm{P}_{25}$
$\mathrm{P}_{23} 32 \mathrm{~F}$	- $33 \mathrm{P}_{24}$

68 Contact Or Leaded Chip Carrier - C1, L1 Package

64 Lead DIP - J3 Package

Functional Description

General Information

The TMC2010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format Itwo's complement or unsigned magnitude), output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16 -bit words and one 3-bit word: the Most Significant Product IMSPI, the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TMC2010 to be used on a bus, or allow the outputs to be multiplexed over the same 16 -bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TMC2010 operates from a single +5 Volt supply. All
power and ground lines must be connected.

Name	Function	Value	J3 Package	C1, L1 Package
$V_{D D}$	Positive Supply Voltage	$+5.0 V$	Pin 49	Pins 17, 18, 19, 20
GND	$0.0 V$	Pin 16	Pins 53,54	

Data Inputs

The TMC2010 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} with X_{0} and Y_{0} the Least Significant Bits). Data present at the X and Y inputs are
clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Packaga	C1, L1 Package
$\overline{X_{15}}$	X Data MSB	TL	Pin 56	Pin 10
X_{14}		TL	Pin 57	Pin 9
x_{13}		mL	Pin 58	Pin 8
x_{12}		m	Pin 59	Pin 7
x_{11}		TLL	Pin 60	Pin 6
x_{10}		mL	Pin 61	Pin 5
x_{9}		TL	Pin 62	Pin 4
x_{8}		π	Pin 63	Pin 3
x_{7}		mL	Pin 64	Pin 2
x_{6}		TL	Pin 1	Pin 1
x_{5}		TL	Pin 2	Pin 68
x_{4}		mL	Pin 3	Pin 67
x_{3}		TL	Pin 4	Pin 66
x_{2}		TL	Pir 5	Pin 65
x_{1}		mL	Pin 6	Pin 64
x_{0}	X Data LSB	π	Pin 7	Pin 63

Data Inputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
Y_{15}	Y Data MSB	TL	Pin 24	Pin 45
Y_{14}		TIL	Pin 23	Pin 46
Y_{13}		TL	Pin 22	Pin 47
Y_{12}		TIL	Pin 21	Pin 48
Y_{11}		$\pi \mathrm{L}$	Pin 20	Pin 49
γ_{10}		TL	Pin 19	Pin 50
Y_{g}		TTL	Pin 18	Pin 51
γ_{B}		TIL	Pin 17	Pin 52
Y_{7}		TL	Pin 15	Pin 55
Y_{6}		TTL	Pin 14	Pin 56
Y_{5}		TL	Pin 13	Pin 57
Y_{4}		TL	Pin 12	Pin 58
γ_{3}		TL	Pin 11	Pin 59
Y_{2}		π	Pin 10	Pin 60
Y_{1}		TTL	Pin 9	Pin 61
Y_{0}	Y Data LSB	TL	Pin 8	Pin 62

Data Outputs

The TMC2010 has a 35-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1. L1 Package
P_{34}	Product MSB	TL	Pin 43	Pin 26
P_{33}		TL	Pin 42	Pin 27
P_{32}		TL	Pin 41	Pin 28
P_{31}		TL	Pin 40	Pin 29
P_{30}		TL	Pin 39	Pin 30
P_{29}		TIL	Pin 38	Pin 31
P_{28}		TL	Pin 37	Pin 32
P_{27}		TL	Pin 36	Pin 33
P_{26}		TL	Pin 35	Pin 34
P_{25}		TL	Pin 34	Pin 35
P_{24}		TL	Pin 33	Pin 36
P_{23}		TL	Pin 32	Pin 37
P_{22}		TL	Pin 31	Pin 38
P_{21}		TL	Pin 30	Pin 39
P_{20}		TIL	Pin 29	Pin 40
P_{19}		TL	Pin 28	Pin 41
P_{18}		TL	Pin 27	Pin 42
P_{17}		TL	Pin 26	Pin 43
P_{16}		TL	Pin 25	Pin 44

Data Outputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
P_{15}		TL	Pin 24	Pin 45
P_{14}		$\pi \mathrm{L}$	Pin 23	Pin 46
P_{13}		mL	Pin 22	Pin 47
P_{12}		π	Pin 21	Pin 48
P_{11}		mL	Pin 20	Pin 49
P_{10}		TL	Pin 19	Pin 50
P_{9}		TL	Pin 18	Pin 51
P_{8}		mL	Pin 17	Pin 52
P_{7}		m	Pin 15	Pin 55
P_{6}		TL	Pin 14	Pin 56
P_{5}		TL	Pin 13	Pin 57
P_{4}		mL	Pin 12	Pin 58
P_{3}		mL	Pin 11	Pin 59
P_{2}		$\pi \mathrm{L}$	Pin 10	Pin 60
P_{1}		$\pi \mathrm{L}$	Pin 9	Pin 61
P_{0}	Product LSB	π	Pin 8	Pin 62

Clocks

The TMC2010 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC) and SUBtract (SUB) inputs
are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 51	Pin 15
CLK Y	Clock Input Data Y	ΠL	Pin 50	Pin 16
CLK P	Clock Product Register	ΠL	Pin 44	Pin 25

Controls

The TMC2010 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP, respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TXL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND \mid RND \mid controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP lif appropriatel rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of clock P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to eliminate the need for a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical $O R$ of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	TTL	Pin 47	Pin 22
TSM	MSP Three-State Control	TL	Pin 45	Pin 24
TSL	LSP Three-State Control	TL	Pin 55	Pin 11
PREL	Preload Control	TLL	Pin 46	Pin 23
AND	Round Control Bit	TL	Pin 54	Pin 12
TC	Two's Complement Control	TL	Pin 48	Pin 21
ACC	Accumulate Control	TL	Pin 52	Pin 14
SUB	Subtract Control	TL	Pin 53	Pin 13

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Electrical characteristics within specified operating conditions

Notes:

1. Guaranteed to maximum clock rate, tested at 2 MHz .
2. Worst case, all inputs and outputs toggling at maximum rate.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {tMA }}$	Mutiply-Accumulate Time		$V_{D O}=M 1 N$		160		200	ns
t	Output Delay		$\mathrm{V}_{\mathrm{DD}}=\mathrm{MIN}$, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		45		45	ns
tena	Three-State Output Enable Delay	$V_{D D}=$ MIN, Test Load: $V_{\text {LOAD }}=1.5 \mathrm{~V}$		40		45	ns	
tis	Three-State Output Disable Delay	$V_{D D}=$ MIN, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for toISo, 0.0 V for talst^{2}		35		45	ns	

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\mathrm{IIS}}$ and $\mathrm{t}_{\mathrm{ENA}}$. which are shown in figure 9 .
2. toISt denotes the transition from logical 1 to three-state.
${ }^{\text {toISO}}$ denotes the transition from logical 0 to three-state.

Figure 5. Timing Diagram

Note: On multiplexed leads, input data and preload in data are applied to the TMC2010, and data out is produced and driven by the TMC2010.

Figure 6. Equivalent Input Circuit

Figure 8. Test Load

Figure 7. Equivalent Output Circuit

Figure 9. Transition Levels For Three-State Measurements

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output Pin	Register \rightarrow Output Pin	Register \rightarrow Output Pin
L	L	L	H	Register \rightarrow Output Pin	Register \rightarrow Output Pin	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	L	Register \rightarrow Output Pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output Pin
L	L	H	H	Register \rightarrow Output Pin	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
L	H	L	L	$\mathrm{Hi}-2$	Register \rightarrow Output Pin	Register \rightarrow Output Pin
L	H	L	H	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output Pin	$\mathrm{Hi}-2$
L	H	H	L	$\mathrm{Hi}-2$	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output Pin
L	H	H	H	$\mathrm{Hi}-2$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	Hi－Z	$\mathrm{Hi}-2$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-2$	Hi－Z Preload
H^{2}	L．	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi－Z Preload	$\mathrm{Hi}-2$
H^{2}	L	H	H	$\mathrm{Hi}-\mathrm{Z}$	Hi－Z Preload	Hi－Z Preload
H^{2}	H	L	L	Hi－Z Preload	$\mathrm{Hi}-2$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	H	Hi－Z Preload	$\mathrm{Hi}-2$	Hi－Z Preload
H^{2}	H	H	L	Hi－Z Preload	$\mathrm{Hi}-\mathrm{Z}$ Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi－2 Preload	Hi－Z Preload	Hi－Z Preload

Notes：
1．PREL，TSX，TSM，and TSL are not registered．
2．PREL Hi inhibits any change of output register for those outputs in which the three－state control is LOW．

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register，and that the desired register not be loaded again until a new constant is desired．

The multiply cycle then consists of loading new data and strobing the output register．

Selection Of Numeric Format

Essentially，the difference between integer，mixed，and fractional notation in system design is only conceptual．For example，the TMC2010 does not differentiate between this operation：

$$
6 \times 2=12
$$

and this operation：

$$
(6 / 8) \times(218)=12164
$$

The difference lies only in constant scale factors lin this case， a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl．However，these scale factors do have
implications for hardware design．Because common good design practice assigns a fixed value to any given line land input and output signals often share the same line），the scale factors determine the connection of the output pins of any multiplier in a system．As a result，only two choices are normally made：integer and fractional notation．If integer notation is used，the Least Significant Bits of the multiplier， multiplicand，and product all have the same value．If fractional notation is used，the Most Significant Bits of the multiplier， multiplicand，and product all have the same value．These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2010,3C	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	2010.J3C
TMC2010J3G	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	2010J3G
TMC20103F 1	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	2010J3F
TMC201033 ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	2010.J3A
TMC2010C1C ${ }^{1}$	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2010 ClC
TMC2010C1G ${ }^{1}$	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	$2010 C 16$
TMC2010C1F ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2010C1F
TMC2010C1A ${ }^{1}$	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	2010C1A
TMC20TOLIC ${ }^{1}$	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	2010L1C
TMC2010LIG ${ }^{1}$	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	2010L1G
TMC2010LIF ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	2010L1F
TMC2010L1A ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	2010.1A

Notes:

1. Contact factory for availability.
2. Per TRW document $70 Z 01757$.

TRW seserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

CMOS Multiplier－Accumulator 16×16 bit，100ns

The TMC2110 is a high－speed 16×16 bit parallel multiplier－accumulator which operates at a 100 nanosecond cycle time $(10 \mathrm{MHz}$ multiply－accumulate rate）．The input data may be specified as two＇s－complement or unsigned magnitude， yielding a full－precision 32 －bit product．Products may be accumulated to a 35 －bit result．

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing．These registers are positive－edge－triggered D－type flip－flops．The result is divided into a 3 －bit eXTended Product（XTP），a 16 －bit Most Significant Product（MSP），and a 16 －bit Least Significant Product（LSP）．Individual three－state output ports are provided for the XTP and the MSP；the LSP is multiplexed with the Y input．The output register can be preloaded directly via the output ports．

Built with TRW＇s state－of－the－art 1－micron OMICRON－C TM CMOS process，the TMC2110 is pin and function compatible with the industry standard TDC1010，yet operates at more than 50% greater speed．

Features

－100ns Multiply－Accumulate Time
－Pin And Function Compatible With TRW TDC1010 And TMC2010
－ 16×16 Bit Parallel Multiplication With Accumulation To 35－Bit Result
－Selectable Accumulation，Subtraction，Rounding，And Preloading
－All Inputs And Outputs Are Registered TTL Compatible
－Three－State TTL Compatible CMOS Outputs
－Two＇s Complement Or Unsigned Magnitude Operation
－Low Power Consumption CMOS Process
－Single＋5V Power Supply
－Available In A 64 Lead Ceramic DIP， 68 Contact Chip Carrier， Or 68 Leaded Chip Carrier

Applications

－Array Processors
－Video Processors
－Radar Signal Processors
－FFT Processors
－General Purpose Digital Signal Processors
－Microcomputer／Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

$$
64 \text { Lead DIP - J3 Package }
$$

Functional Description

General Information

The TMC2110 consists of four functional sections: input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format ltwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array uses a modified Booth's algorithm, and has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16 -bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TMC2110 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TMC2110 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J3 Package	C1, L1 Package
$V_{D D}$	Positive Supply Voltage	+5.0 V	Pin 49	Pins 17, 18, 19, 20
GND	Ground	0.0 V	Pin 16	Pins 53,54

Data Inputs

The TMC2110 has two 16 -bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information when two's complement notation is used. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} (with X_{0} and Y_{0} the Least Significant Bits). Data present at the X and Y
inputs are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X_{15}	X Data MSB	$\pi \mathrm{L}$	Pin 56	Pin 10
X_{14}		π	Pin 57	Pin 9
x_{13}		$\pi \mathrm{L}$	Pin 58	Pin 8
x_{12}		TL	Pin 59	Pin 7
x_{11}		$\pi \mathrm{L}$	Pin 60	Pin 6
x_{10}		TL	Pin 61	Pin 5
x_{9}		$\pi \mathrm{L}$	Pin 62	Pin 4
X_{8}		TL	Pin 63	Pin 3
${ }_{7}$		$\pi \mathrm{L}$	Pin 64	Pin 2
x_{6}		$\pi \mathrm{L}$	Pin 1	Pin 1
X_{5}		TL	Pin 2	Pin 68
${ }_{4}$		TL	Pin 3	Pin 67
x_{3}		mL	Pin 4	Pin 66
x_{2}		π	Pin 5	Pin 65
${ }_{1}$		TL	Pin 6	Pin 64
x_{0}	X Data LSB	$\pi \mathrm{L}$	Pin 7	Pin 63

Data Inputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
Y_{15}	Y Data MSB	TL	Pin 24	Pin 45
Y_{14}		TTL	Pin 23.	Pin 46
Y_{13}		TTL	Pin 22	Pin 47
Y_{12}		TL	Pin 21	Pin 48
Y_{11}		TTL	Pin 20	Pin 49
Y_{10}		TL	Pin 19	Pin 50
Y_{g}		TL	Pin 18	Pin 51
Y_{8}		TTL	Pin 17	Pin 52
Y_{7}		TL	Pin 15	Pin 55
Y_{6}		TTL	Pin 14	Pin 56
Y_{5}		TL	Pin 13	Pin 57
Y_{4}		TL	Pin 12	Pin 58
Y_{3}		TLL	Pin 11	Pin 59
Y_{2}		TL	Pin 10	Pin 60
r_{1}		TTL	Pin 9	Pin 61
Y_{0}	Y Data LSB	HL	Pin 8	Pin 62

Data Outputs

The TMC2110 has a 35-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16 -bit output words, the Most Significant Product (MSPI and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional twos complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, 11 Package
P_{34}	Product MSB	TL	Pin 43	Pin 26
P_{33}		TIL	Pin 42	Pin 27
${ }^{+3}$		TTL	Pin 41	Pin 28
P_{31}		TL	Pin 40	Pin 29
P_{30}		TL	Pin 39	Pin 30
P_{29}		TL	Pin 38	Pin 31
P_{28}		TTL	Pin 37	Pin 32
P_{27}		TTL	Pin 36	Pin 33
P_{26}		TIL	Pin 35	Pin 34
P_{25}		TIL	Pin 34	Pin 35
P_{24}		ITL	Pin 33	Pin 36
P_{23}		TL	Pin 32	Pin 37
P_{22}		TL	Pin 31	Pin 38
P_{21}		TTL	Pin 30	Pin 39
P_{20}		TL	Pin 29	Pin 40
P_{19}		TIL	Pin 28	Pin 41
P_{18}		TIL	Pin 27	Pin 42
P_{17}		TTL	Pin 26	Pin 43
P_{16}		TTL	Pin 25	Pin 44

Data Outputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
P_{15}		TL	Pin 24	Pin 45
P_{14}		TL	Pin 23	Pin 46
P_{13}		TL	Pin 22	Pin 47
P_{12}		TL	Pin 21	Pin 48
P_{11}		TL	Pin 20	Pin 49
P_{10}		TL	Pin 19	Pin 50
Pg_{9}		TL	Pin 18	Pin 51
P_{8}		TL	Pin 17	Pin 52
P_{7}		TTL	Pin 15	Pin 55
P_{6}		TTL	Pin 14	Pin 56
P_{5}		TTL	Pin 13	Pin 57
P_{4}		TL	Pin 12	Pin 58
P_{3}		TIL	Pin 11	Pin 59
P_{2}		TL	Pin 10	Pin 60
P_{1}		TL	Pin 9	Pin 61
P_{0}	Product LSB	TL		Pin 62

Clocks

The TMC2110 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising
edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	$\Pi \mathrm{L}$	Pin 51	Pin 15
CLK Y	Clock Input Data Y	$\Pi \mathrm{L}$	Pin 50	Pin 16
CLK P	Clock Product Register	$\Pi \mathrm{L}$	Pin 44	Pin 25

Controls

The TMC2110 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP and the LSP, respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSL), and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls is the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement $\ T C$ controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs. The necessary sign extension for negative two's complement numbers is provided internally.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and the result is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated will be stored into the output registers directly. This operation is used for the first term in a summation to eliminate the need for a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are high, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical $O R$ of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	TL	Pin 47	Pin 22
TSM	MSP Three-State Control	TL	Pin 45	Pin 24
TSL	LSP Three-State Control	TL	Pin 55	Pin 11
PREL	Preload Control	TL	Pin 46	Pin 23
RND	Hound Control Bit	TL	Pin 54	Pin 12
TC	Two's Complement Control	TL	Pin 48	Pin 21
ACC	Accumulate Control	TL	Pin 52	Pin 14
SUB	Subtract Control	TL	Pin 53	Pin 13

Figure 1. Fractional Two's Complement Notation

				inary	POIN																														
				X_{15}	X_{14}	X_{13}	X_{12}	X_{11}	X_{10}	X_{9}	X_{8}	X_{7}	x_{6}	X_{5}	X_{4}	X_{3}	x_{2}	X_{1}	x_{0}	SIGNAI															
				2^{0}	$2 \cdot 1$	2^{2}	2^{3}	2^{4}	2.5	$2{ }^{-6}$	2^{7}	2^{8}	2^{9}	2^{10}	2^{-11}	2^{12}	$2{ }^{13}$	2.14	2.15	digit value															
			X	Y_{15}	Y_{14}	Y_{13}	Y_{12}	Y_{11}	Y_{10}	Y_{g}	Y_{8}	Y_{7}	r_{6}	r_{5}	r_{4}	V_{3}	r_{2}	r_{1}	r_{0}	SIGNAL digit value															
				.0	$2 \cdot 1$	$2{ }^{2}$	2.3	2^{4}	2.5	$2{ }^{6}$	2.7	28	29	2.10	$2 \cdot 11$	2.12	2.13	2.14	2.15																
P_{34}	P_{33}	P_{32}	P_{31}	P_{30}	P_{29}	P_{28}	P_{27}	P_{26}	P_{25}	P_{24}	P_{23}	P_{22}	P_{21}	\mathbf{P}_{20}	P_{19}	P_{18}	P_{17}	P_{18}	P_{15}	P_{14}	P_{13}	P_{12}	P_{11}	P_{10}	Pg_{9}	P_{8}	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}	SIGNAL
.4	2^{3}	2^{2}	$2{ }^{1}$	20	2.1	$2{ }^{2}$	2^{3}	24	2.5	2.6	27	2^{8}	2.9	$2 \cdot 10$	$2 \cdot 11$	2^{-12}	$2 \cdot 13$	$2 \cdot 14$	2.15	216	2.17	2^{18}	$2 \cdot 19$	2^{20}	2.21	$2 \cdot 22$	2.23	2^{24}	2.25	2.26	227	22^{28}	$2 \cdot 29$	2.30	digit value
	XTP										MS									LSP															

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$
Supply Voltage
\qquad -0.5 to +7.0 VInput Voltage
\qquad -0.5 to $V_{D D}$
OutputApplied voltage
\qquad -0.5 to $V_{D D}+0.5 V^{2}$Forced current-1.0 to $6 \mathrm{~mA}^{3,4}$
Short-circuit duration (single output in high state to ground) 1 sec
Temperature
Operating, case -60 to $+130^{\circ} \mathrm{C}$
junction $175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $300^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.$+0.5 n$

Operating conditions

Parameter	Temperature Range						Units
	Standard			Extended			
	Min	Nom	Max	Min	Nom	Max	
$V_{D D}$ Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {t PWW }}$ Clock Pulse Width, LOW	25			30			ns
tewh $^{\text {Clock Pulse Width, }}$ HIGH	25			30			ns
IS Input Setup Time	25			30			ns
t_{H} Input Hoid Time	0			3			ns
VIL Input Voltage, Logic LOW			0.8			0.8	V
V_{IH} Input Voltage, Logic HIGH	2.0			2.0			V
IOL Output Current, Logic LOW			4.0			4.0	mA
$\mathrm{IOH}_{\text {OH }}$ Output Current, Logic HIGH			-2.0			-2.0	mA
T_{A} Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\mathrm{T}_{\mathrm{C}} \quad \text { Case Temperature }}$				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
I DDa	Supply Current, Quiescent		$\begin{aligned} & V_{D D}=M A X, V_{I N}=0 V \\ & \text { TSL, TSM, TSX }=5.0 \mathrm{~V} \end{aligned}$		10		10	mA
IDDU	Supply Current, Unloaded ${ }^{1}$		$\begin{aligned} & V_{D D}=M A X, F=10 M H z \\ & T S L, T S M, T S X=5.0 V \end{aligned}$		100		100	mA
IodL	Supply Current, Loaded ${ }^{1,2}$	$\begin{aligned} & V_{D D}=M A X, F=10 M H z \\ & \text { TSL, } T S M, T S X=O V \\ & \text { Test Load: } V_{L O A D}=V_{D D} M A X \end{aligned}$		250		250	mA	
IIL	Input Current, Logic LOW	$\begin{array}{r} V_{D D}=M A X, V_{1}=0.4 V \\ X_{\text {IN }} \text { Controls, Clocks } \end{array}$	-10	+10	-10	+10	$\mu \mathrm{A}$	
		$\bar{Y}_{\text {IN }}$	-75	+75	-75	+75	$\mu \mathrm{A}$	
$\stackrel{\text { IH }}{ }$	Input Current, Logic HIGH	$\begin{array}{r} V_{D D}=M A X, V_{1}=2.4 \mathrm{~V} \\ X_{\text {IN }} \text {. Controls, Clocks } \end{array}$	-10	+ 10	-10	+10	$\mu \mathrm{A}$	
		\bar{Y}	-75	+75	-75	+75	$\mu \mathrm{A}$	
I	Input Current, Max Input Voltage	$V_{D D}=M A X, V_{1}=V_{D D}$		+75		+75	$\mu \mathrm{A}$	
V_{OL}	Output Voltage, Logic LOW	$\mathrm{V}_{\mathrm{DD}}=\mathrm{MIN}, \mathrm{I}_{0 L}=\mathrm{MAX}$		0.4		0.4	V	
V_{OH}	Output Votage, Logic HIGH	$V_{D D}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	2.4		2.4		V	
IOZL	Hi-Z Output Leakage Current, Output LOW	$V_{D D}=$ MAXX, $V_{1}=0.4 \mathrm{~V}$	-75	+75	-75	+75	$\mu \mathrm{A}$	
Iozh	Hi-Z Output Leakage Current, Output HIGH	$V_{\text {DD }}=$ MAX, $V_{1}=2.4 \mathrm{~V}$	-75	+75	-75	+75	$\mu \mathrm{A}$	
IOS	Short-Circuit Output Current	$V_{D D}=$ MAX, Output HIGH, one pin to ground, one second duration max		-100		-100	mA	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		10		10	pF	
C_{0}	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF	

Notes:

1. Guaranteed to maximum clock rate, tested at 2 MHz .
2. Worst case, all inputs and outputs toggling at maximum rate.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {IMA }}$	Multiply-Accumulate Time		$V_{D D}=M 1 N$		100		120	ns
t	Output Delay		$\mathrm{V}_{\mathrm{DD}}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		35		40	ns
tena	Three-State Output Enable Delay	$V_{D D}=$ MIN, Test Load: $V_{\text {LOAD }}=1.5 \mathrm{~V}$		30		35	ns	
${ }_{\text {tis }}$	Three-State Output Disable Delay	$V_{D D}=M I N$, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 \mathrm{O}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		30		35	ns	

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\mathrm{OIS}}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in figure 9 .
2. tDIS1 denotes the transition from logical 1 to three-state.
${ }^{\text {t DISO }}$ denotes the transition from logical 0 to three-state.

Figure 5. Timing Diagram

Note: On multiplexed leads, input data and preload in data are applied to the TMC2110, and data out is produced and driven by the TMC2110.

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Test Load

Figure 9. Transition Levels For Three-State Measurements

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register-> Output Pin	Register - > Output Pin	Register-> Output Pin
L	L	L	H	Register-> Output Pin	Register - > Output Pin	$\mathrm{Hi}-2$
L	L	H	L	Register-> Output Pin	$\mathrm{Hi}-\mathrm{Z}$	Register-> Output Pin
L	L	H	H	Register $->$ Output Pin	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-2$
L	H	L	L	$\mathrm{Hi}-\mathrm{Z}$	Register $->$ Output Pin	Register-> Output Pin
1	H	L	H	$\mathrm{Hi}-\mathrm{Z}$	Register-> Output Pin	$\mathrm{Hi}-\mathrm{Z}$
L	H	H	L	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Register-> Output Pin
L	H	H	H	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	L	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	H	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	Hi-Z Preload
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-2$	$\mathrm{Hi}-2$
H^{2}	H	L	H	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	H	H	L	Hi-Z Preload	Hi-Z Preload	$\mathrm{Hi}-2$
H^{2}	H	H	H	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply
cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC2110 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(2 / 8)=12 / 64
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in
integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC211033C	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	211033C
TMC2110J3G	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	211033G
TMC211033F 1	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	2110.3F
TMC2110,3 ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	64 Lead DIP	211033A
TMC2110CIC ${ }^{1}$	STD - $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2110C1C
TMC2110C1G ${ }^{1}$	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	2110C1G
TMC2110C1F ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2110C1F
TMC2110C1A ${ }^{1}$	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Contact Chip Carrier	2110C1A
TMC2110LIC ${ }^{1}$	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	2110L1C
TMC2110L1G ${ }^{1}$	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	2110 LIG
TMC2110L1F ${ }^{1}$	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	2110L1F
TMC2110LIA ${ }^{1}$	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	68 Leaded Chip Carrier	2110L1A

Notes:

> 1. Contact factory for availability.
> 2. Per TRW document $70 z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

SI Products Division

\boldsymbol{V}	\mathbf{L}	\mathbf{S}	\mathbf{I}
D	A	T	A

B $0 \quad 0 \quad$ K

IntroductionProduct IndexesAdvance InformationAII ConvertersEvaluation BoardsDI/A ConvertersMuhipliersMultiplier Accumulators
Special Function Products

TRW LSI has several special function devices to address particular requirements found in digital signal processing. Floating point arithmetic has significant processing advantages over fixed point, specifically, a vastly improved dynamic range without excessive word size. Prior to the introduction of the TRW LSI floating point devices, performing floating point arithmetic required massive investments in hardware.

Correlation is a function frequently found in digital signal processing systems. Digital correlators provide a measure of the similarity between two signals.

Digital filtering often involves complex hardware; for even simple filtering functions, the sequencing of instructions can become difficult. The TDC1028 is an 8-tap finite impulse response (FIR) filter element which handles 4 -bit data and coefficients and can be easily expanded in coefficient size, data size, and filter length.

The special function devices are all TTL compatible and are built using the triple-diffused bipolar technology.

Floating Point Devices

TRW LSI floating point hardware uses a 22 -bit data format specifically suited to many digital signal processing applications. The 16 -bit significand and 6 -bit exponent are both two's complement numbers. This data format allows the full precision of the significand to be maintained over the dynamic range of the exponent (equivalent to 64 bits fixed point).

The TDC1022 floating point arithmetic unit performs the following floating point operations: addition, subtraction, normalization, and denormalization. The device has a feedback path for accumulation. Two 22 -bit operands are accepted through an input port, the desired arithmetic operations are performed, and the output emerges through a three-state output port. Internal pipeline registers may be enabled to allow a 10 MHz data throughput rate.

Correlators

A digital correlator is a device which measures, bit-by-bit, the congruence
between two strings of bits, "reference" and "data." The output is a binary number tallying the number of matches between the two bit strings. A correlation score of zero indicates perfect anticorrelation, such that each
" 1 " in the reference aligns with a " 0 " in the data stream, and vice-versa. Conversely, a maximum score indicates that each bit in the reference stream matches the corresponding bit in the data stream.

A digital correlator consists of two tapped shift registers, one for the data and one for the reference code. In the TDC1004 and TDC1023, each shift register is 64 taps long. At each tap, the contents of the reference register are exclusive-NORed with those of the data register; the 64 results are then tallied by a parallel counter. The output of the counter is the 6 -bit binary-encoded correlation score, which runs between 0 and 64, inclusive.

Both correlators also include a masking function, which permits the user to eliminate any of the taps from consideration in the correlation score. For example, a 32 -tap correlator can be built by masking off the last half of a TDC 1004 or TDC1023, leaving only the first 32 taps active.

The TDC1023 offers the additional benefit of a reference preload/holding latch structure, in which the contents of the reference register can be stored. With the latch in this hold mode, the reference register can be preloaded with the next sequence. Returning the latch to its "track" mode reprograms the chip to correlate with the new (preloaded) reference sequence.

Digital Filter

The TDC1028 consists of eight 4-bit Multiply-ADd (MAD) cells, organized into a one-dimensional systolic array. The chip accommodates 4-bit data through its data input port, and outputs 13-bit sums at the same rate, through its SUM ${ }_{\text {OUT }}$ port. The TDC1028 performs the standard vector inner product or convolutional sum:

$$
\begin{aligned}
& \text { SUM }_{\text {OUT }}=\text { SUMM }_{I N}+a D(n)+b D(n-1)+\ldots \\
& +h D(n-7),
\end{aligned}
$$

where a through h are the (preprogrammed) coefficients and the $D(i)$ are the eight data values most recently clocked into the data input port.

The SUM IN port permits the user to cascade the chips serially, to build either longer (more taps) or wider (greater resolution) filters from these "building block" chips. To facilitate parallel expansion, the data and coefficients have independent two's complement/unsigned magnitude controls.

Product	Description	Size	Power Clock Rate ${ }^{1}$ (ns)	Dissipation (Watts)	Package	Notes
TDC1004	Correlator	64×1	100	0.7	J9	Analog current output
TDC1022	Floating Point Arithmetic Unit	22.Bit	100	4.7	J1	Two's complement
TDC1023	Correlator	64×1	60	1.8	J7	Binary digital output
TDC1028	FIR Filter	$4 \times 4 \times 8$	100	3.7	J4	8 Taps

Note: 1. Guaranteed, Worst Case, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Analog Output，Digital Correlator

64－bit

The TRW TDC1004 is a 64 －bit digital correlator with a current source analog output．The device consists of three 64－bit， independently－clocked shift registers capable of a shift speed of 15 MHz and a parallel correlation rate of 10 MHz ．

Correlation takes place when two binary words are serially shifted into the A and B registers．The two words are continually compared，bit for bit by exclusive－NOR（XNOR） circuits．Each XNOR circuit controls a current source．The current output of each current source is then summed to produce the correlation current that is proportional to the degree of correlation．

The third 64－bit shift register（ M register）is provided to allow the user to mask or selectively choose＂no compare＂bit positions．

Features

－10MHz Correlator Speed
－15MHz Shift Speed IStatic Shift Registers）
－Current Output
－Mask Register
－TTL Compatible
－Available In 16 Lead Ceramic DIP
－Radiation Hard
－ 700 mW Power Consumption

Applications

－Image Comparison／Recognition
－Bit／Word Synchronization
－Key Word Detection
－Error Correction Coding
－Radar And Sonar

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP－ 39 Package

Functional Description

General Information

The TDC1004 has three 64 －bit long shift registers：A, B and M ． Shift registers A and B are bit－by－bit XNORed Igate provides a true output if the two inputs are the samel．The 64 results are then bit－by－bit ANDed with the M register．Each of the
outputs of the AND gates are used to turn on one of the 64 equally weighted current sources whose outputs are summed to provide the analog correlation output．

Reference

The TDC1004 provides an output current of:
IOUT $=N \times$ I BIT $^{\text {I }}+$ ICOZ $_{\text {CO }}$
where $\left.\right|_{\text {BIT }}$ is the individual bit output current, N is the number of correlating bits and $\mathrm{I}_{\mathrm{COZ}}$ is the offset current.

By adjustment of $I_{\text {REF }}$ as described in the calibration procedure, the mean bit current variation can be zeroed. IREF is a current input. The voltage at this pin may vary from device to device due to input impedance variations.

Name	Function	Value	J9 Package
MeF	Reference Current	$350 \mu \mathrm{~A}$	Pin 1

Correlation Output

The output of the TDC1004 is a current source at pin 2 . The output stage consists of the collector of an NPN transistor whose base is connected to $V_{B B}$; it is therefore critical that
the voltage at the output pin be kept 1.5 V to 2.5 V above V_{BB} to avoid saturation of this output transistor. $V_{B B}$ should be set to a voltage level of $V_{C C}+1 \mathrm{~V} \pm 0.3 \mathrm{VDC}$.

Name	Function	Value	J9 Package
$C_{\text {OUT }}$	Analog Dutput	300 to $3028 \mu \mathrm{~A}$	Pin 2
$V_{B B}$	Base Bias Voltage	6 V	Pin 3

Power

The TDC1004 operates from a +5.0 V supply. A bias voltage of +6.0 V is also required. Since less than $100 \mu \mathrm{~A}$ are drawn from
this supply, a separate supply is not necessary and the $V_{B B}$ can be provided by the circuit shown in Figure 6.

Name	Function	Value	J9 Package
$V_{C C}$	Supply Voltage	+5 V	Pin 16
$V_{B B}$	Secondary Supply Voltage	+6 V	Pin 3
GND	Electrical Ground	OV	Pin 8

Clocks

CLK A, Clock input pins for the A, M, and B registers, CLK M, respectively. Each register may be independently CLK B clocked.

Name	Function	Value	J9 Package
CLK A	A Register Clock	TTL	Pin 14
CLK M	M Register Clock	TTL	Pin 13
CLK B	B Register Clock	TTL	Pin 15

Data Inputs

MIN Input to the M register. Allows the user to $\quad A_{I N}, B_{i N} \quad$ Input to the A and $B 64$-bit serial shift choose "no compare" bit positions. A "0" in any bit location will result in a no-compare state for that location.

Name	Function	Value	J9 Package
$M_{I N}$	Mask Register Input	TTL	Pin 10
$A_{I N}$	Shift Register Input	TL	Pin 12
$\mathrm{~B}_{\mathrm{IN}}$	Shift Register Input	TTL	Pin 11

Data Outputs

Bout. Outputs of the three 64-bit serial shift registers:
AOUT, $\quad B, A$, and M, respectively.
MOUT

Name	Function	Value	J9 Package
BOUT	Shift Register B Output	TL	Pin 5
AOUT	Shift Register A Output	TL	Pin 6
MOUT	Shift Register M Output	$\pi \mathrm{L}$	Pin 4

No Connects

There are two leads labeled no connect (NC), which have no connections to the chip. These leads may be connected to ground for increased noise reduction.

Name	Function	Value	J9 Package
NC	No Connect	GND	Pins 7, 9

Figure 1. Timing Diagram

Figure 2. Analog Output Test Load

Figure 3. Analog Output Equivalent Circuit

Absolute maximum ratings（beyond which the device will be damaged）${ }^{1}$

Supply Voltage	
Current Source	
Input Voltage	
Output Voltage	
	Analog output，COUT
	Short－circuit duration（single output in HIGH state to ground）．．． 1 sec
Temperature	
	Operating，ambient \qquad -55 to $+150^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$

Notes：
1．Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions． Functional operation under any of these conditions is NOT implied．
2．Applied voltage must be current limited to specified range．
3．Forcing voltage must be limited to specified range．
4．Current is specified as conventional current flowing into the device．

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
$V_{B B}$	Secondary Supply Voltage	5.7	6.0	6.3	5.7	6.0	6.3	V
$\mathrm{I}_{\text {REF }}$	Reference Current		320	350		320	350	$\mu \mathrm{A}$
V_{CO}	Analog Output Voltage	6.5	$V_{B B}+2 V$	8.5	6.5	$V_{B B}+2 V$	8.5	V
$\mathrm{I}_{\text {COFS }}$	Full－Scale Analog Output Current	2.73		3.03	2.73		3.03	mA
${ }^{\text {tpW }}$	Clock Pulse Width	20			20			ns
ts	Input Register Set－Up Time	20			20			ns
${ }^{\text {H }} \mathrm{H}$	Input Register Hold Time	10			10			ns
$V_{\text {IL }}$	Input Voltage，Logic LOW			0.8			0.8	V
V_{IH}	Input Voltage，Logic HIGH	2.0			2.0			V
102	Output Current，Logic LOW			4.0			4.0	mA
TOH	Output Current，Logic HIGH			－400			－400	$\mu \mathrm{A}$
$V\left(I_{\text {REF }}\right)$	Current Reference Voltage		2.2			2.2		V
${ }^{T}$	Ambient Temperature，Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }_{\text {T }}$	Case Temperature				－55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {c }}$	Supply Current		$V_{C C}=$ MAX		130		130	mA
$\left.1 V_{B B}\right)$	Secondary Supply Current				100		100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Voltage, Logic LOW	$V_{C C}-M I N, I_{O L}=4.0 \mathrm{~mA}$		0.5		0.5	V	
V_{OH}	Output Voltage, Logic HIGH	$V_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4		2.4		V	
I/L	Input Current, Logic LOW	$V_{\text {CC }}-\mathrm{MAX}, \mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$ Clock		-4.0		-4.0	mA	
		Data		-0.8		-0.8	mA	
${ }^{1} \mathrm{H}$	Input Current, Logic HIGH	$V_{\text {CC }}-$ MAX, $\mathrm{V}_{\text {IH }}-2.4 V$ Clock		200		200	$\mu \mathrm{A}$	
		Data		50		50	$\mu \mathrm{A}$	
BIT	Single-Bit Analog Output (Delta)	See Note 2	37	43	37	43	$\mu \mathrm{A}$	
${ }_{\text {coz }}$	Zero Correlation Analog Output (Offset)	See Note 2	300	340	300	340	$\mu \mathrm{A}$	
Notes:								
	1. Test conditions: $V_{C C}, V_{B B}$, $I_{\text {REF }}=$ 2. After calibration to ${ }^{I}$ COFS ${ }^{\prime}$ IFull-Scal	easured under DC conditions. Output Current).						

Switching characteristics within specified operating conditions

Paramater		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{1} \mathrm{CO}$	Analog Output Delay		See Figure 2		100		100	ns
	Digital Propagation Delay		See Figure 1		65		65	ns
$\mathrm{F}_{\text {SI }}$	Maximum Clock Frequency	Analog output	10		10		MHz	
		Digital outputs	15		15		MHz	

Application Notes

The TDC1004 is a 64 -bit digital correlator with current source analog output. The device performs a bit-for-bit exclusive-OR correlation. In a mathematical sense the TDC1004 performs a convolution on 1 -bit words which can be expressed in the general form:
$y(k)=\sum_{n=1}^{N} k(n) \bullet x(n-k) \quad\left[\begin{array}{l}\text { Logical } 1=+1 \\ \text { Logical } 0=-1\end{array}\right]$
In some applications it may be useful to utilize the output current to generate a voltage source for threshold triggering. When converting the output to a voltage, insure that the voltage at the output pin remains above $V_{B B}$ in order to avoid saturation of the output transistor. It is recommended that the valtage at COUT be in the range of 7.5 V to 8.5 V for a 6.0 V $V_{B B}$. Two methods for achieving this are shown below:

Figure 4.

Figure 5.
$V_{B B}$ may be provided by the circuit shown below:

Figure 6.

Calibration

The TDC1004 requires two supplies $\mathrm{V}_{\text {BB }}$ and $V_{C C}$ and a reference current source $\|_{\text {REF }}$ for proper operation. The voltage at the IREF pin will vary from part to part due to differences in input impedance; hence, the source will be specified as a current source. The analog output current will be directly proportional to I REF; therefore it is necessary to scale I Ref to minimize output error due to variations.

The total output current ${ }^{(1}$ CON $)$ is equal to the number of correlation bits (\mathbb{N}) times the individual bit currents
$\|_{\mathrm{BIT}}=40 \mu \mathrm{~A} \pm 3 \mu \mathrm{~A}$) plus the offset current $\left.{ }^{\|} C O Z=320 \mu A \pm 20 \mu \mathrm{~A}\right)$.

Therefore, the total output current can be expressed as:
$I_{C O N}=N \times I_{\text {BIT }}+I_{C O Z}$
As noted in the electrical characteristics, IBIT and ICOZ vary
separately over the temperature range; thus, by using the following procedure, I REF can be adjusted to yield a statistically zero mean input current variation.
Calibrate l lREF as follows:

1) Set $V_{B B}$ at $V_{C C}+1 \pm 0.3 \mathrm{~V}$
2) Set IREF to $320 \mu \mathrm{~A}$
3) Measure ICOZ (zero correlation analog output current)
4) Measure ICOFS Ifull scale correlation analog output)
5) Reset IREF to:
*New $I_{\text {REF }}=\frac{2.56 \mathrm{~mA}}{\| \text { COFS }^{-}{ }^{\text {ICOZ }} \mid} \times$ Old $I_{\text {REF }}$
*This procedure may be done iteratively by taking the new IREF and repeating steps 3 through 5 .

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1004.JgC	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1004J9C
TOC1004.jg	STO- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial with Burn-In	16 Lead DIP	1004, 9 G
TDC1004J9F	EXT- $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1004.49F
TDC1004J9A	EXT- $\mathrm{T}^{\text {C }}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	16 Lead DIP	1004.J9A

Note:

1. Per TRW document 70201757.

TRW reserves the right to change products and specifications without notice. This informaion does not convey any license under patent rights of TRW Inc. or others.

Floating Point Arithmetic Unit

22-bit

The TDC1022 is a monolithic, 22 -bit floating point arithmatic unit. Its operands are two 22 -bit floating point numbers, each with a 16-bit two's complement significand and a two's complement 6-bit exponent. All data inputs and outputs, instruction bits, and controls are registered.

The TDC1022 allows parallel loading and outputting of data. Internal pipeline registers may be enabled to permit a throughput rate of 10 MHz (100ns). Three-state output buffers are provided. All signals are TTL compatible.

Features

- Two's Complement Floating Point Operation
- 100ns Pipelined Cycle Time
- Dynamic Range Equivalent To 64-Bit Fixed Point
- Parallel Data IID Structure
- Selectable Pipelining
- Selectable Add/Accumulate Function
- Selectable OverflowiUnderflow Characteristics
- Three-State TTL Outputs
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- AlU In Array Processors
- Microprogrammed Signal Processors
- Conversion Between Fixed/Floating Point Numbers
- Floating Point Digital Filters And FFT's
- Geometric Transforms
- Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$\mathrm{DO}_{15} 15$	
GND 25	${ }_{4}^{4} 63 \mathrm{DO}_{13}$
EUN 35	${ }_{\text {co }} 62 \quad \mathrm{DO}_{12}$
zero 45	$761 \mathrm{DO}_{11}$
EOV 5 F	$\bigcirc 600^{-10}$
SOV 6 F	- 59 DOg
00167 H	$\mathrm{Ca}_{58} \quad \mathrm{DO} \mathrm{B}_{8}$
0017 85	-957 DO_{7}
$\mathrm{DO}_{18} \quad 95$	-56 DO_{6}
$\mathrm{DO}_{19} 10 \mathrm{c}$	$\square 55 \mathrm{DO}_{5}$
$\mathrm{DO}_{20} 11 \mathrm{H}$	${ }_{-754} \mathrm{DO}_{4}$
$\mathrm{DO}_{21} 12 \mathrm{Fl}$	${ }_{C}{ }^{53} \mathrm{DO}_{3}$
SCA 135	- 52 DO
IMT 145.	C- 51
RND 15	C50 0^{0}
GND 15 Fi	$\mathrm{T}^{4} 49 \mathrm{VCC}$
[01 175	- 48 पE
1218	${ }^{7} 47 \mathrm{FT}$
19 ¢	- 46 CLK
1020	- 45 LDB
ACC 21	- 44 IDA
$\mathrm{Dl}_{21} 22 \mathrm{~F}$	$\mathrm{C}^{4} 43 \mathrm{DO}$
$\mathrm{DIO}_{20} 23$ E	${ }_{\sim}^{4} 42 \mathrm{Dl}$
$\mathrm{Dl}_{19} 24 \mathrm{H}$	$\mathrm{A}_{41} \mathrm{Dl}_{2}$
$\mathrm{Dl}_{18} 25 \mathrm{5}$	$\mathrm{C}^{40} \mathrm{Dl}_{3}$
$\mathrm{Dl}_{17} 26 \mathrm{~F}$	$\cdots{ }^{-7} 39 \mathrm{Dl}_{4}$
$\mathrm{Dl}_{16} 275$	$\mathrm{C}^{38} \mathrm{Bl} \mathrm{Dl}_{5}$
015285	$\square^{37} \mathrm{Dl}_{6}$
$00_{14} 295$	36 Dl_{7}
$\mathrm{Dl}_{13} 30 \mathrm{~F}$	L^{-35}
$\mathrm{Dl}_{12} 315$	- 3480
$\mathrm{DI}_{11} 32 \mathrm{Ci}$	- 33000

$$
64 \text { Lead DIP - J1 Package }
$$

Functional Description

General Information

The TDC1022 has six functional sections：input section， denormalizer，ALU，renormalizer，round／scalellimit section，and output section．

Two 22－bit floating point operands，along with the instructions and controls，are brought into the TDC1022 at the input section．When accumulate mode is selected，the operands are the result of the previous calculation．

The denormalizer selects the operand with the smaller exponent and downshifts its significand to compensate for the difference in exponents．The operands are then passed to the ALU．

The ALU performs the selected arithmetic function and passes its result to the renormalizer．Data pipeline registers located
between the ALU and the renormalizer may be enabled to permit a throughput rate of 10 MHz （100ns）．

The renormalizer removes redundant leading bits lzeroes in the case of positive numbers，ones in the case of negative numbersl by upshifting the significand and decrementing the exponent accordingly．The number is normalized when the MSB and the next bit differ $\operatorname{IS} 15 \oplus \mathrm{~S} 14=11$ ．Flags are generated in this section which are used by the limiter．

User selectable rounding，scaling Idecrementing the exponent by one，thus performing division by twol，and limiting functions are available．The adjusted result，along with the flags，then enters the output registers．

Input Section

The inputs to the TDC1022 are：data inputs $\mathrm{D}_{21-0, \text { Latch } \mathrm{A}}$ control（ $\overline{\mathrm{DAA}})$ ，enable signals for Registers B and $\mathrm{I}(\overline{\mathrm{LD}}, \overline{\mathrm{LDI}})$ ， mode controls ACCumulate（ACC）and Pipeline Register FeedThrough（FT），three ALU instruction bits $\left.\|_{2-0}\right)^{\prime}$ ，and three signals which control adjustment of the ALU result：RouND （RND），SCAle（SCA），and LiMiT（LMT）．All inputs are registered except $\mathrm{FT}, \mathrm{ACC}$ ，and the register controls．

Operand Input

Input operands A and B are timeshared on one 22 －bit input port．Latch A is provided before the input to Register A to allow for proper demultiplexing to Registers A and B ．Latch A is transparent when DDA is low．Data A is clocked into Latch A at the rising edge of $[\overline{D A}$ ．MUXIA）selects between the
contents of Latch A $\operatorname{ACC}=0)$ and the result of the previous calculation $\backslash \mathrm{ACC}=1$ ）based on the state of the accumulate control，ACC．Register A is always loaded at the rising edge of CLK．

Register B inputs are also connected to the input port （ D_{21}－ 0 ）．Register B is in hold mode when $\overline{\mathrm{CDB}}$ is high，and is loaded at the rising edge of CLK when $\overline{\mathrm{DB}}$ is low．

Instruction and Control Input

The instruction register（Register II accepts inputs $\mathrm{I}_{2} \mathbf{- 0}$ ，RND， SCA，and LMT when［DI is low．When LDI is high，Register I is in hold mode．The rising edge of CLK loads Register I when ［DI is low．

Denormalizer Section

Floating point addition is performed by forcing the two exponents to equal values and then adding the significands. The greatest accuracy is maintained by denormalizing the operand with the smaller exponent. This is done by right-shifting the significand n-places with sign-extension (downshifting), where n is the difference between the two exponents. The exponent of the denormalized operand is incremented by n, thereby equating the exponents. These internal operations are performed automatically by the TDC1022.

With 16 -bit significands, the maximum allowable shift is 15 bits. If the exponents differ by 16 or more, the TDC1022 will yield a significand of zero 10.000000000000000) when denormalizing a positive number and a significand of -1 LSB [1.111 111111111111 when denormalizing a negative number. All bits shifted beyond the LSB position are truncated.

After denormalization, the two significands are passed to the ALU where the selected arithmetic function is performed.

ALU Section

Operation of the ALU section is controlled exclusively by the ALU instruction microcode, I_{2-0}. The 17 bit significand emerging from the ALU (which includes one overflow bit) enters the significand pipeline register (Register S), and the exponent enters the exponent pipeline register (Register E). These registers may be made transparent by asserting the feedthrough control $|\mathrm{FT}=1|$; they are functional when $\mathrm{FT}=0$. Note that there is no pipeline register for the instructions. Detailed discussion of the pipelined mode is provided at the end of the ALU functional description. The eight ALU instructions are described below.

ALU Instructions

Instruction	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	Name
$\mathbf{0}$	0	0	0	ZERO
1	0	0	1	A + B
2	0	1	0	A - B
3	0	1	1	B - A
4	1	0	0	Normalize B
5	1	0	1	Normalize (-B)
6	1	1	0	Denormalize A
7	1	1	1	Denormalize (-A)

Zero

Both the A and B data fields are forced to ZERO lexponent = 100000 , significand $=0.0000000000000001$. The contents of the input registers are unchanged. The ZERO flag is set high, and the final output is 0.0×2^{-32}.
$A+B$
The ALU adds the significands after the operand with the smaller exponent has been denormalized. Round should be enabled $\operatorname{IRND}=1$) in this mode.

A-B

The operand with the smaller exponent is denormalized. Negative B is generated in two's complement form by one's complementing the B significand, then adding 1 LSB. This addition of 1 LSB is necessary due to the asymmetric nature of the two's complement number line and is called adding a "hot-one". The significands $\mid A$ and $-B \mid$ are then added. The rounding function must be disabled during subtraction (RND $=0$).

B-A

This operation is the same as $A-B$, except the operands are reversed. As before, the rounding function must be disabled during subtraction.

Normalize B

This function is used to normalize a number entering the B data field. The A operand is forced to ZERO $\left(0.0 \times 2^{-32}\right)$ to ensure that B passes through the denormalizer unchanged. The ALU does not affect the B operand, which is passed through to the renormalizer. Redundant leading ones (negative numbers) or leading zeroes (positive numbers) are removed by left-shifting lupshifting) the significand while decrementing the exponent, thereby normalizing the number. The number is normalized when the MSB of the significand does not match the next lower bit (see Data Format, page 315). If B is already a normalized floating point number, this instruction is effectively a "pass-through." If B is an unnormalized floating point number, the TDC1022 will attempt to normalize it, generating an Exponent UNderflow flag IEUN) if the exponent exceeds its maximum negative value. This instruction would be most frequently used to convert a fixed point number into a floating point number.

Normalize (-B)

The B significand is one's complemented and a "hot-one" is added to the LSB, generating -B in two's complement form. This result is normalized as in the preceding instruction.

Denormalize A

This is used to convert a floating point number, A , to a fixed point number scaled by B . The B significand is zeroed, but not the B exponent. If the A exponent is less than the B exponent, the denormalizer downshifts the A significand up to 15 places. Beyond shifts of 15 places, positive significands become zero and negative significands become -1 LSB. If the A exponent exceeds the B exponent, the Significand OVerflow flag (SOV) is set. In this case, the significand output remains unchanged. This instruction disables the renormalizer section.

Execution of the Denormalize instructions in pipelined mode must be handled carefully. Since the instructions are not pipelined, it is necessary to execute a "fill" instruction
(e.g., same instruction repeated), prior to start of Denormalization to avoid interfering with other data going through the pipeline. The first result will be undefined; the true denormalized results start to emerge after the second result. It is also necessary to execute an extra denormalize instruction after the final desired denormalization to prevent the renormalize shifter from being enabled. The result of the calculation after the final denormalize will again be undefined. Basically, when doing the denormalize instruction n-times, $n+1$ denormalize instructions must be executed. Note that the SOV flag is generated before the pipeline register, and since there is no pipeline register for the flag, it will emerge one clock cycle ahead of the data it represents. This will cause improper functioning of the limit section; the result of the calculation previous to the one causing the overflow will be limited in this case (when $\mathrm{LMT}=1$). Additionally, the overflow case will be passed through without being limited, since the SOV flag has already taken its effect.

Denormalize (-A)

The A significand is one's complemented and the "hot-one" is added to the LSB, creating -A in two's complement. This result is denormalized as in instruction Denormalize A. Note that the case where this instruction is executed with the A significand $=1.000000000000000$, and the A exponent $=\mathrm{B}$ exponent is undefined.

This is due to the fact that $-(-1)=+1$ is not representable in two's complement. This case will generate the SOV flag. The ZERO flag is set when Denormalize $(-A)$ is executed with $A=-1$ any time the A exponent is greater than or equal to the B exponent. In these cases, a clean zero $\left(0.0 \times 2^{-32}\right)$ is the output. Attempting to Denormalize $(-A)$ for $A=-1$, where the A exponent is 16 or more than the B exponent, results in the output of the B exponent, a significand of +1 LSB, and no flags are set. Use of the Denormalize (-A) in pipelined mode causes the same situations which occur when Denormalize A is executed (see above).

Operation of the TDC1022 in Pipelined Mode

There is no pipeline register for I_{2-0}, RND, SCA, and LMT. As a result, when the TDC1022 is operated in pipelined mode, the RND, SCA, and LMT functions must be delayed one clock cycle from the data and instructions $\left.\|_{2-0}\right)$ with which they are associated for proper operation. This is true since these functions take effect after the pipeline registers, which delay the data resulting from execution of ALU instructions on the input operands. RND, SCA, and LMT affect the results of the ALU output on the current clock cycle, which is the result of the previous calculation when pipeline mode is used.

Use of the Denormalize instructions in pipelined mode is covered under the description of instruction "Denormalize A," in the ALU instructions.

Changing the instructions when in pipelined mode requires consideration of all the above mentioned facts. Changing states on the FeedThrough control (FT) is not permitted.

Renormalizer Section

The significand result emerging from the ALU is examined for possible positive or negative overflow into the 17th bit. If overflow is detected, the renormalization logic downshifts the significand one bit while incrementing the exponent by one. The resulting number is then assured to be a normalized number.

If no overflow is detected, the renormalize section removes redundant leading zeroes of positive numbers lleading ones of negative numbersl by upshifting the significand and decrementing the exponent. This process is continued until the number is normalized, which means that the MSB and the next bit are different (see also Data Format, page 315).

The TDC1022 will always produce a normalized number as the final output, except when either Denormalize A or Denormalize $(-A)$ is executed. This is true regardless of the states of RND, SCA, and LMT.

All flags except the Significand OVerflow (SOV) flag are generated in this section. Upon completion of rounding and scaling, the flags may need to be set. This is handled in the next section. The renormalized number and the flags are passed directly to the round/scalellimit section.

Flag Generation

EOV
The EOV flag is set high (EOV=1) when the exponent exceeds its maximum positive value of +31 .

Round/Scale/Limit Section

The round/scale/limit section operates on the normalized floating point number passed to it from the renormalizer. The operations of rounding and scaling occur before the limit function, since it is possible for rounding and scaling to generate exponent overflows or underflows. The flags ISOV, EOV, EUN, ZERO) are used by the limit section to produce the appropriate result of maximum positive, maximum negative, or zero. In pipelined mode, the controls RND, SCA, LMT must be delayed one clock cycle from the data which they are to influence. The output of the limit section, along with the flags, goes directly to the output registers.

Rounding

When the round control is high $\operatorname{RND}=1$), the TDC1022 adds a 1 to the $1 / 2$ LSB position. This results in a carry propagation into the LSB if there was a 1 in the $1 / 2$ LSB position.

Scaling

When the scale (divide by two) control is high $\operatorname{SCA}=1$), the exponent is decremented by one, resulting in a division by two. Note that if the exponent is -32 and $S C A=1$, the EUN flag would be set and if the limiter is turned off (LMT $=0$), the resulting exponent is +31 . This condition would produce the correct result of ZERO $(0.0 \times 2-32)$ if the limiter is enabled (LMT = 1).

Limiting

When the limit function is disabled (LMT $=0$), the significand and exponent retain their two's complement characteristics upon overflow; adding one to maximum positive numbers return maximum negatives, and subtracting one from maximum negative yields maximum positives.

When the limit function is enabled ($L M T=1$) and exponent overflow occurs, the data output is clipped. The resulting output is the maximum positive number possible (exponent $=011111$, significand $=0.11111111111$ 1111) if the significand is positive. If the significand is negative, the resulting output is the maximum negative number possible (exponent $=011111$, significand $=1.000000000000000$).

When the limit function is enabled and exponent underflow occurs, the data output is forced to ZERO, regardless of the sign of the significand. This also occurs when a zero significand Idenoted by the ZERO flag being set) with an exponent other than -32 exists. These cases will always be replaced with clean zeroes, regardless of the state of the LMT control.

When the limit function is enabled and significand overflow occurs, the limiter clips the emerging result to a full-scale maximum positive or negative value, as appropriate. The case of Denormalize $(-A)$ with $A=-1$ and the A exponent greater than or equal to the B exponent results in the output of a clean zero, since the ZERO flag is also set.

Output Section

The data and flag output registers are unconditionally loaded at the rising edge of CLK. The data output emerges through a three-state, 22-bit output port. The output format is identical
to the input format. The flags are not three-stated, and the flag buffers are always enabled.

Signal Definitions

	Signal Name	Function	Value	J1 Package
Power	$V_{C C}$ GND CLK	Supply Voltage Ground Clock	$\begin{gathered} +5.0 \mathrm{VV} \\ 0.0 \mathrm{OV} \\ \mathrm{THL} \\ \hline \end{gathered}$	Pin 49 Pins 2, 16 Pin 46
Data Input	$\begin{aligned} & \overline{\overline{D A}} \\ & \overline{\overline{D B}} \\ & \bar{D}_{21-0} \end{aligned}$	Latch A Control Register B Load Control Data Input	TTL TTL TTL	Pin 44 Pin 45 Pins 22-43
Control, Instructions	[0] F ACC $\mathrm{I}_{2}-\mathrm{D}$ RND SCA LMT	Register I Load Control Feedthrough Control Accumulate Control ALU Instructions Round Control Scale Control Limit Control	TTL TTL TTL TTL TTL TTL TTL	Pin 17 Pin 47 Pin 21 Pins 18-20 Pin 15 Pin 13 Pin 14
Flags	$\begin{aligned} & \text { ZERO } \\ & \text { SOV } \\ & \text { EOV } \\ & \text { EUN } \end{aligned}$	Zero Flag Significand Overfiow Flag Exponent Overflow Flag Exponent Underflow Flag	TTL TTL TTL THL	Pin 4 Pin 6 Pin 5 Pin 3
Data Output	$\overline{O E}$ DO_{21-0}	Three-State Output Enable Data Output	$\begin{aligned} & \mathrm{TTL} \\ & \mathrm{TTL} \end{aligned}$	Pin 48 Pins 1,7-12, 50-64

Floating Point Data Format

Exponent

The exponent is represented by bits D_{16} through D_{21}. It is a two's complement integer with D_{21} the two's complement sign bit. The exponent ranges from -32 to 31 .
Exponent $=D_{21} \times\left(-2^{5}\right)+\sum_{n=16}^{20} D_{n} \times 2^{(n-16)}$

Significand

The significand (sometimes referred to as the MANTISSA) is represented by bits D_{15} through D_{0}. It is a fractional two's complement number with 16 -bit precision: D_{15} is the two's complement sign bit. The significand ranges from -1 to (1-2-15).
Significand $=D_{15} \times(-1)+\sum_{n=0}^{14} D_{n} \times 2^{(n-15)}$

Zero
Zero is represented as follows:
Significand $=0.000000000000000$ Exponent $=100000$

Representable Floating Point (FLP) Number Range

Normalized Floating Point Range: A normalized floating point number is one for which the first two bits of the significand $\left(D_{15}\right.$ and $\left.D_{14}\right)$ are different, that is $D_{15} \oplus D_{14}=1$.

TDC1022 Timing Diagrams

General Information

TDC1022 can be operated in any one of the following four modes:

1. Non-Accumulate without Pipelining
2. Non-Accumulate with Pipelining
3. Accumulate without Pipelining
4. Accumulate with Pipelining
($A C C=0, \mathrm{FT}=1$) The input register setup and hold times, the output delay time, ($A C C=0, F T=0$) the three-state enable and three-state disable times are the (ACC $=1, \mathrm{~F}=1$) same in all four modes, thus they are only shown for the ($A C C=1, \mathrm{FT}=0$) non-accumulate without pipelining mode (see below).

Figure 1. Non-Accumulate Mode Without Pipelining
The output data is available one clock cycle after the input data is entered.

Figure 2. Non-Accumulate Mode With Pipelining ${ }^{1}$
The output data is available two clock cycles after the input data is entered.

Note: 1. Since RND, SCA, LMT are NOT pipelined, they must be entered one clock cycle after the data which they are to affect.

Figure 3. Accumulate Mode Without Pipelining

The first output data is available one clock cycle after the first input data is entered. The output is further described below:

1. The first output is the result of performing the first instruction on the first two operands.
$O U T_{0}=10\left(A_{0}, B_{0}\right)$
2. The second output is the result of performing the second instruction on the second two operands.
$O U T_{1}=l_{1}\left(A_{1}, B_{1}\right)$
3. Any subsequent output depends on the previous output and the current instruction and incoming operand.
$O U T_{n}=I_{n}\left(O U T_{n-1}, B_{n}\right)$

Figure 4. Accumulate Mode With Pipelining ${ }^{1}$
The first output data is available two clock cycles after the first input data is entered. The output is further described below:

1. The first output is the result of performing the first instruction on the first two operands.
$\mathrm{OUT}_{0}=I_{0}\left(\mathrm{~A}_{\mathrm{D}}, \mathrm{B}_{0}\right)$
2. The second output is the result of performing the second instruction on the first output and the incoming operand.
$O U T_{1}=I_{1}$ OUUT $\left._{0}, B_{1}\right)$

Note: 1. Since RND, SCA, LMT are NOT pipelined, they must be entered one clock cycle after the data which they are to affect.

LSI Products Division

TRW Electronic Components Group

Figure 5. Equivalent Input Circuits

Figure 7. Test Load

TO TO
OUTPUT PIN

Figure 6. Equivalent Output Circuits

Figure 8. Transition Levels For Three-State Measurements

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Temperature
\qquad
junction ..

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range, and measured with respect to GND.
3. Forcing valtage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	V
${ }^{\text {tPWL }}$	Clock Pulse Width (LOW)	25			ns
tpWH	Clock Pulse Width (HIGH)	25			ns
${ }^{\text {tPWA }}$	Clock Pulse Width (LDA)	35			ns
ts	Input Setup Time	30			ns
${ }^{\text {t }}$	Input Hold Time	3			ns
HA	Input Hold Time (Latch A)	4			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			V
102	Output Current, Logic LOW			4.0	mA
${ }_{\text {OH }}$	Output Current, Logic HIGH			-0.4	mA
${ }^{T}$	Case Temperature	20		100	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temp	Range	Units
		Standard		
		Min	Max	
${ }^{\text {ICC }}$ Power Supply Current	$V_{C C}=$ MAX, static		900	mA
Input Current, Logic LOW	$V_{C C}=M A X, V_{\text {IL }}=0.4 \mathrm{~V}$ (all inputs except CLK, $\overline{0}$)		-0.4	mA
	CLK, $\overline{O E}$		-0.8	mA
${ }^{\text {IH }}$ Input Current, Logic HIGH	$V_{C C}=$ MAX, $V_{\text {IH }}-2.4 \mathrm{~V}$		75	$\mu \mathrm{A}$
1 Input Current, MAX Input Voltage	$V_{C C}=$ MAXX $V_{1}=5.5 \mathrm{~V}$		1.0	mA
$V_{\text {OL }}$ Output Voltage, Logic Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{IOH}=-0.4 \mathrm{~mA}$	2.4		V
IoZL HIGH-Z Output Leakage Current, Output LOW	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$		-40	$\mu \mathrm{A}$
IOZH HIGH-Z Output Leakage Current, Output HIGH	$V_{C C}=$ MAX, $V_{1}=2.4 V$		40	$\mu \mathrm{A}$
IOS Short Circuit Output Current	$V_{\text {CC }}=M A X$, One pin to ground, one second duration, output HiGH		-40	mA
$C_{1} \quad$ Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$		15	pF
C_{0} Output Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$		15	pF

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range		Units	
		Standard				
		Min	Max			
${ }^{\text {t }}$ CYP	Cycle Time, Pipelined		$V_{\text {CC }}=$ MIN		100	ns
${ }^{\text {CHN }}$	Cycie Time, Non-pipelined		$V_{C C}-M I N$		200	ns
to	Output Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		40	ns	
tena	Three-State Output Enable Delay	$V_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=1.8 \mathrm{~V}$		35	ns	
${ }^{\text {D DIS }}$	Three-State Output Disable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}-2.6 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DISO}}, 0.0 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		35	ns	

Notes:

1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\mathrm{DIS}}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in Figure 8.
2. ${ }^{\text {DIS }}$ denotes the transition from logical 1 to three-state. toISO denotes the transition from logical 0 to three-state.

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1022JIC	STO $-\mathrm{T}_{\mathrm{C}}=20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1022.JIC
TDC1022J1G	STD- $\mathrm{T}_{\mathrm{C}}=20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1022J1G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Digital Output Correlator
64-bit

The TRW TDC1023 is a monolithic, all-digital 64 -bit correlator with a 7-bit three-state buffered digital output. This device consists of three 64-bit independently clocked shift registers, one 64 -bit reference holding latch, and a 64 -bit independently clocked digital summing network. The device is capable of a 17 MHz parallel correlation rate.

The 7-bit threshold register allows the user to preload a binary number from 0 to 64 . Whenever the correlation is equal to or greater than the number in the threshold register, the threshold flag goes HIGH.

The 64-bit mask shift register (M register) allows the user to mask or selectively choose "no compare" bit positions enabling total word length flexibility.

The reference word is serially shifted into the B register. By clocking the R latch, the data is parallel-loaded into the R reference latch. This allows the user to serially load a new reference word into the B register while correlation is taking place between the A register and R latch. The two words are continually compared bit-for-bit by exclusive-0R circuits.
Each exclusive-OR provides one bit to the digital summer. The output is a 7-bit word representing the sum of positions which agree at any one time between the A register and R latch.

A control provides either true or inverted binary output formats.

Features

- 17 MHz Correlation Rate
- TTL Compatible
- All Digital
- Single +5V Power Supply
- Serial Data Input, Parallel Correlation Output
- Programmable Word Length
- Independently Clocked Registers
- Available In 24 Lead DIP
- Output Format Flexibility
- Three-State Outputs

Applications

- Check Sorting Equipment
- High-Density Recording
- Bar Code Identification
- Radar Signature Recognition
- Video Frame Synchronization
- Electro-Optical Navigation
- Pattern And Character Recognition
- Cross-Correlation Control Systems
- Error Correction Coding
- Asynchronous Communication

Functional Block Diagram

Functional Block Diagram

Pin Assignments

24 Lead DIP - J7 Package

Functional Description

General Information

The TDC1023 consists of an input section and an output section. The input section contains A, B, and M registers, an R
latch, XORIAND logic and a pipelined summer. The output section consists of threshold, inversion and three-state logic.

Power

The TDC1023 operates from a single +5 Volt supply.

Name	Function	Value	J7 Package
GND	Ground	0.0 V	Pin 16
$V_{\text {CC }}$	Supply Voltage	+5.0 V	Pin 1

Control

INV Control that inverts the 7-bit digital output. When a HIGH level is applied to this pin, the outputs $1 \mathrm{O}_{0-6}$ are logically inverted.

Control that enables the three-state output buffers. A HIGH level applied to this pin forces outputs into the high-impedance state.

Name	Function	Value	J7 Package
INV	Invert Output	TL	Pin 7
TS	Three-State Enable	TL	Pin 8
LDR	Load Reference	ΠL	Pin 21

Clocks

CLK A, Input clocks. Clock input pins for the A, M, and
CLK M, B registers, respectively. Each register may be
CLK B independently clocked.
CLK $T \quad$ Threshold register clock. Clock input pin for T register.

Name	Function	Valua	J7 Package
CLK A	A Register Clock	$\Pi \mathrm{L}$	Pin 22
CLK M	M Register Clock	$\Pi \mathrm{L}$	Pin 23
CLK B	B Register Clock	$\Pi \mathrm{L}$	Pin 24
CLK T	Threshold Register Clock	$\Pi \mathrm{L}$	Pin 5
CLK S	Digital Summer Clock	$\Pi \mathrm{L}$	Pin 6

LSI Products Division

TRW Electronic Components Group

Data Inputs

MIN Allows the user to choose "no compare" bit positions. A " 0 " in any bit location will result in a no-compare state for that location.

Name	Function	Value	J7 Package
$M_{I N}$	Mask Register Input	TL	Pin 2
A_{IN}	Shift Register Input	TTL	Pin 3
B_{IN}	Shift Register Input	TTL	Pin 4

Data Outputs

${ }^{10} 0-6 \quad$ Bidirectional data pins. When outputs are \quad TFLG enabled ITS LOWI, data is a 7 -bit binary representation of the correlation between the unmasked positions of the R latch and the A register. 10_{6} is the MSB. These pins also serve as parallel inputs to load the threshold register. Data present one setup time before CLK T goes HIGH will be latched into the threshold register.

AIN, BIN Shift register inputs to the A and B 64-bit serial registers.

Name	Function	Value	J7 Package
10_{6}	MSB	TL	Pin 9
105		TTL	Pin 10
10_{4}		TTL	Pin 11
10_{3}		TTL	Pin 12
$1 \mathrm{O}_{2}$		TTL	Pin 13
101		TTL	Pin 14
100	LSB	TL	Pin 15
TFLG	Threshold Flag	TTL	Pin 17
BOUT	Shitt Register B	TTL	Pin 18
A OUT	Shitt Register A	$\pi \mathrm{L}$	Pin 19
MOUT	Shift Register M	$\pi \mathrm{T}$	Pin 20

TDC1023 Timing Diagrams

1. Continuous Correlation

The TDC1023 contains three 1 X 64 serial shift registers $(A, B$, and MI . The operation of these registers is identical and each has its own TTL-compatible input, output, and clock. As shown in the timing diagram (Figure 1), valid data is loaded into register $\mathrm{A}(\mathrm{B}, \mathrm{M})$ on the rising edge of CLK A ICLK B , CLK MI. Data is valid if present at the input for a setup time of a least ts (ns) before and a hold time th_{H} (ns) after the rising clock edge.

The summing process is initiated when the comparison result between the A register and R latch is clocked into the summing network by a rising edge of CLK S. Typically, CLK A and CLK S are tied together so that a new correlation score is computed for each new alignment of the A register and R latch. When LDR goes HIGH, the contents of register B are copied into the R latch. With LDR LOW, a new template may
be entered serially into register B, while parallel correlation takes place between register A and the R latch. In the case of continuous correlation, LDR is held HIGH so that the R latch contents continuously track those of the B register.

The summing network consists of three pipelined stages. Therefore, the total correlation score for a given set of A and B register contents appears at the summer output three CLK S cycles later. Data on the output pins 10_{0-6} is available after an additional propagation delay, denoted t_{D} on the timing diagram.

The correlation result is compared with the contents of the threshold register. TFLG goes HIGH if the correlation equals or exceeds the threshold value. TFLG is valid after a delay of to (ns) from the third CLK S rising edge.

Figure 1. Continuous Correlation

2. Cross-Correlation

When LDR goes HIGH, the B register contents are copied into the reference latch $(\mathbb{R}$ latch). This useful feature allows correlation to take place between data in the R latch and the A register while a new reference is being serially clocked into the B register. If the new reference is n bits long, it requires n rising edges of CLK B to load this data into the B register. For the timing diagram (see Figure 2), $n=64$. LDR is set HIGH during the final (nth) CLK B cycle, so that the new reference word is copied into the R latch. The minimum low and high level pulse widths for LDR are shown as tpWL Ins) and tPWH (ns), respectively.

After the new reference is loaded, the data to be correlated is clocked through the A register. Typically, CLK A and CLK S can be tied together. This allows a new correlation score to be computed for each shift of the A register data relative to the fixed reference word in the R latch. The digital summer is internally partitioned into three pipelined stages. Therefore, a correlation score for a particular alignment of the A register data and the R latch reference appears at the summer output three CLK S cycles later. After an additional output delay of to (ns), the correlation data is valid at the output pins $\left(10_{0}-6\right)$. If this correlation result is equal to or exceeds the value in the threshold register, then TFLG goes HIGH. TFLG is valid to ins) after the third rising edge of CLK S.

Figure 2. Cross-Correlation

TS = LOW
$A_{\text {IN }}=$ PRELOADED
t register preloaded

3. Threshold Register Load

The timing sequence for loading the threshold (T) register is shown in Figure 3. The T register holds the 7 -bit threshold value to be compared with each correlation result. The rising edge of CLK T loads the data present on the 10_{0-6} pins into the T register.

The output buffers must be in a high-impedance state (disabled) when the T register is programmed from an external source. After a delay of tDIS insl from the time TS goes HIGH, the output buffers are disabled. The data pins IO_{0-6}
may then be driven externally with the new threshold data. The data must be present for a setup time of ts (ns) before and t_{H} (ns) after the rising edge of CLK T to be correctly registered. The minimum low and high level pulse widths for CLK T are shown below as tpWL ins) and tpWH (ns), respectively.

After TS is set LOW, there is an enable delay of teNA Ins) before the internal correlation data is available at pins 10_{0-6}.

Figure 3. Threshold Register Load

$\mathrm{B}_{\text {IN }}=$ REFERENCE
LDR $=$ HIGH

4. Mask Register

In addition to the A and B shift registers, the TDC1023 has another independently clocked register - the M, or mask register. The M register functions identically to the A and B registers, except that its parallel outputs are ANDed with the exclusive-ORed outputs from the A register and R latch.

Many uses of the TDC1023 digital correlator require disabling the correlation between certain bit positions $\left\langle A_{i}\right.$ and $\left.R_{j}\right\rangle$ of input words A and R. While correlation data is being clocked into the A and/or B register, a mask word may be entered into the M register. Where no comparison is to be made, zeroes are entered in those M register positions. The exclusive-OR result between each bit position is ANDed with a bit from the M register. Thus, if a particular mask bit $\left(\mathrm{M}_{\mathrm{i}}\right)$ is zero, the output correlation between A and B for that bit position will be disabled. Consequently, a zero correlation is presented to the digital summer for each masked bit position.

The mask register is useful for changing correlation word length and location within the registers. Where a word is undefined or no correlation is to take place, the M register should contain zeroes.

The M register is useful for building logic functions. Note that for each bit A_{i} and R_{i}, the correlation logic is:

$$
A_{i} \oplus R_{i} \equiv A_{i} \bar{R}_{j}+\bar{A}_{i} R_{i} \mid A_{i} \text { exclusive-OR } R_{i} \mid
$$

This result is complemented at the input of the AND gates and ANDed with the mask bit $\left(M_{j}\right)$ resulting in:
$\left[\overline{\left.A_{i} \overline{B_{i}}+\overline{A_{i}} \bar{B}_{i}\right]} \cdot M_{i}\right.$
The last step, performed in the digital summer, is to sum the above result over all bit positions simultaneously for a correlation at time K :

$$
C(K)=\sum_{i=1}^{n} \overline{\left[A_{i} \overline{\bar{R}_{i}}+\overline{A_{i}} R_{i}\right]} \cdot M_{i}
$$

where,
$i=1,2,3 .$.
$n=$ correlation word length

Figure 4. Equivalent Input Schematic

PIN	VALUES R1 R2	NUMBER OF INTERNAL CIRCUITS LOADING PIN
AIN, BIN, MIN	50 K 35 K	1
CLK A, B, M	35 K 20 K	2
LDR	35 K 20 K	2
CLK S	35 K 20 K	3
CLK T, INV	35 K 20 K	1

Figure 5. Equivalent Circuit for IO_{0-6}, AOUT, BOUT, MOUT and TFLG.

Figure 7. Test Load
OUT A, B, M
${ }^{10} 0-6$, TFLG

Figure 6. Equivalent Circuit for Three-State (TS) Input.
The circuitry to the right of dashed line is repeated 7 times.

THREE-
STATE INPUT

Figure 8. Transition Levels For Three-State Measurements

Absolute maximum ratings (beyond which the device will be damaged) 1

Input	
Output	
	Short circuit duration (single output in high state to ground) ... 1 sec
Temperature	
	Operating, ambient \qquad -60 to $135^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range, and measured with respect to GND.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$ Supply Voltage		4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {t }}$ PWL Clock Pulse Width, LOW	CLK A, CLK B, CLK M, CLK S, LDR	20			20			ns
	CLK T	25			30			ns
${ }^{\text {t PWWH }}$ Clock Pulse Width, HIGH	Clocks	25			30			ns
	LDR	30			35			ns
ts Data Input Setup Time	$\mathrm{A}_{\text {IN }}, \mathrm{B}_{\text {IN }}, \mathrm{MIN}_{\text {IN }}$	20			22			ns
	100-6	45			50			ns
${ }^{\text {then }} \quad$ Data Input Hold Time	$\mathrm{A}_{\text {IN }}, \mathrm{B}_{\text {IN }}, \mathrm{M}_{\text {IN }}$	3			3			ns
	100-6	0			3			ns
VIL Input Voltage, Logic LOW				0.8			0.8	V
V_{IH} Input Voltage, Logic HIGH		2.0			2.0			V
$\mathrm{I}_{\mathrm{OL}} \quad$ Output Current, Logic Low				4.0			4.0	mA
$\mathrm{I}_{\text {OH }}$ Output Current, Logic HIGH				-400			-400	$\mu \mathrm{A}$
T_{A} Ambient Temperature, Still Air		0		70				${ }^{\circ} \mathrm{C}$
T_{C} Case Temperature					-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I CC }}$ Supply Current	$V_{C C}=$ MAX, static ${ }^{1}$					
	${ }^{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		335			mA
	$T_{A}=70^{\circ} \mathrm{C}$		295			mA
	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				395	mA
	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$				275	mA
IIL Input Current, Logic LOW	$V_{C C}=$ MAX, $V_{1}=0.4 V$					
	IO_{0-6}, TS, Data, INV		-350		-400	$\mu \mathrm{A}$
	Clocks, LDR		-1.0		-1.3	mA
$\mathrm{I}_{\text {IH }} \quad$ Input Current, Logic HIGH	$\underline{V_{\text {CC }}=\text { MAX, } V_{1}}=2.4 \mathrm{~V}$					
	${ }^{10} 0{ }_{0-6}$, TS, INV, Data		50		50	$\mu \mathrm{A}$
	Clocks, LDR		100		100	$\mu \mathrm{A}$
II Input Current, Max Input Voltage	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}-5.5 \mathrm{~V}$		500		500	$\mu \mathrm{A}$
$V_{\text {OL }}$ Output Voltage, Logic LOW	$V_{C C}=M I N, I_{O L}=M A X$		0.5		0.5	V
V_{OH} Output Voltage, Logic HIGH	$V_{\text {CC }}-$ MIN, $\mathrm{I}_{\mathrm{OH}}-\mathrm{MAX}$	2.4		2.4		V
IOZL High-Z Output, Leakage Current ${ }^{2}$	$V_{C C}=M A X, V_{1}-0.4 V$		-350		-400	$\mu \mathrm{A}$
OZZH High-Z Output, Leakage Current ${ }^{2}$	$V_{C C}=M A X, V_{j}=2.4 V$		50		50	$\mu \mathrm{A}$
$C_{\text {I }}$ Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$					
	Clocks		10		10	pF
	10_{0-6}, Controls		5		5	pF
C Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF

Notes:

1. Worst case, all digital inputs and outputs LOW.
2. Due to the IO_{0-6} and T registernnection, these values are the $\mathrm{I}_{\mathbb{H}}$ and $\mathrm{I}_{I L}$ of the T register.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Shift-In Clock Rate		$V_{C C}-\mathrm{MIN}$	20		17		MHz
	Correlation Rate		$V_{C C}=\mathrm{MIN}^{2}$	17		15		MHz
t_{0} Digital Output Delay		$V_{C C}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$						
		10_{0-6}		45		50	ns	
		A OUT, Bout, MOUT		35		40	ns	
		TFLG		40		45	ns	
tena	Three-State Dutput Enable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=1.8 \mathrm{~V}$		40		45	ns	
${ }_{\text {tols }}$	Three-State Output Disable Delay	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, Test Load: $\mathrm{V}_{\text {LOAD }}=2.6 \mathrm{~V}$ for ${ }^{\text {DISOO }}$, 0.0 V for $\mathrm{t}_{\mathrm{DIS}}{ }^{3}$		35		35	ns	

Notes:

1. All transitions are measured at a 1.5 V level except for t DIS and $\mathrm{t}_{\mathrm{ENA}}$, which are shown in Figure 8 .
2. Synchronous clocking: CLK $A=C L K B=C L K M=C L K S$.
3. toIS denotes the transition from logical ito three-state.
tDISO denotes the transition from logical 0 to three-state.

Application Notes

1. The TDC1023 can be cascaded to implement correlations of more than 64 bits. Typically, all clocks are tied together and the A, B, and M outputs of preceding stages are connected to the respective inputs of subsequent stages. An external
summer is required to generate the composite correlation score. Use of the T register and TFLG require additional hardware in this configuration.

Figure 9. Cascading For Extended-Length Correlation

2. When comparing a multi-bit word to a single-bit reference, importance of the different bit positions. Normally, simple shifts the outputs from the individual correlators must be $\quad 1+2,4,8, \ldots 1$ provide the required weighting.
appropriately weighted. This weighting reflects the relative

Figure 10. Multi-Bit x 1 Bit Correlation

3. The correlation of two multi-bit words requires evaluating the term:
$R(M)=\sum_{n=1}^{N} h(n) \times(M+n)$

An example of two 3-bit words is shown below.
For additional TDC1023 Digital Output Correlator applications, see Application Note TP-17, "Correlation - A Powerful Technique for Digital Signal Processing." This application note is available upon request from TRW LSI Products.

Figure 11. Multi-Bit Correlation

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1023J7C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1023J7C
TDC1023J7G	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1023J76
TDC1023J7F	EXI-T ${ }_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1023J7F
TDC1023J7A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	24 Lead DIP	1023J7A

Note:

1. Per TRW document 70201757 .

Digital Filter/Correlator

Building Block, 10MHz

The TDC1028 is a video-speed, TTL compatible bit-slice building block for Finite Impulse Response (FIR) digital filters and multi-bit digital correlators. It is used independently in the coefficient and signal data word dimensions as a bit-slice processor. Word lengths can be multiples of four bits. Two's complement or unsigned magnitude operation is independently selectable for both coefficients and signal data words.

The TDC1028 provides eight delay stages, eight multipliers, and eight adders in a single integrated circuit. Eight coefficient storage registers are also provided for ease in programming filter characteristics and to make correlation possible. One coefficient may be changed every clock cycle. The delay registers and the adder pipeline registers have been merged for efficiency.

Features

- 10 MHz Throughput Rate
- Eight Coefficients
- Cascadable (To > 36 Taps) Without External Components
- 4-Bit Coefficient And Signal Data Words
- Independently Expandable Coefficient And Signal Word Length
- Independently Selectable Format For Coefficients And Signal Data Words (Two's Complement or Unsigned Magnitude)
- Available In 48 Lead DIP
- Radiation Hard Bipolar Process
- Single +5V Power Supply
- TTL Compatible

Applications

- Digital Video Filters
- Matched Filters
- Pulse Compression
- Multi-Bit Correlation
- Waveform Synthesis
- Adaptive Filters

Functional Block Diagram

Functional Block Diagram

Pin Assignments

SIo 1 回	\checkmark	$48 \quad \mathrm{SO}_{0}$
SIf 2		47 SO 1
$\mathrm{Sl}_{2} 3$		$46 \quad \mathrm{SO}_{2}$
$\mathrm{Sl}_{3} 4$		$45 \quad \mathrm{SO}_{3}$
$\mathrm{Sl}_{4} 5$		$44 \quad \mathrm{SO}_{4}$
$\mathrm{Sl}_{5} 6$		$43 \mathrm{SO}_{5}$
$\mathrm{Sl}_{6} 7$		$42 \mathrm{SO}_{6}$
$\mathrm{Sl}_{7} 8$		$41 \quad \mathrm{SO}_{7}$
$\mathrm{Sl}_{8} 9$		$40 \quad \mathrm{SO}_{8}$
Slg 10		39 SOg
Sl 1011		$38 \quad \mathbf{S O}_{10}$
$\mathrm{Sl}_{11} 12$ ¢		37 GND
GND 13 [$36 V_{\text {CC }}$
$\mathrm{Sl}_{12} 14$		$35 \quad \mathbf{S 0}_{11}$
$\mathrm{CA}_{2} 15$		$34 \quad \mathrm{SO}_{12}$
$\mathrm{CA}_{1} 16$		$33 \mathrm{Cl}_{3}$
$\mathrm{CA}_{0} 17$		$32 \quad \mathrm{Cl}_{2}$
TCD 18 [$31 \mathrm{Cl}_{1}$
TCC 19		$30 \mathrm{Cl}_{0}$
CLK 20		29 CWE
DIo 21		$28 \mathrm{DO}_{0}$
D1 22 ¢		27 DO 1
DI2 23 ,		$26 \quad \mathrm{DO}_{2}$
$\mathrm{Dl}_{3} 24$ [$25 \quad \mathrm{DO}_{3}$

48 Lead DIP - J4 Package

Functional Description

General Information

The TDC1028 has four internal functions: delay, multiplication, addition, and coefficient storage. These functions are connected to form a building block for finite impulse response filters or correlators. Cascading inputs are provided to allow the construction of filters or correlators of arbitrary length. The
basic word size for coefficients and data is four bits. The order of the operations has been changed from the canonical form to permit the merging of delay and pipelining registers Isee Figure 1 .

Power

The TDC1028 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J4 Package
$V_{C C}$	Positive Supply Voltage	+5.0 V	Pin 36
GND	Ground	0.0 V	Pins 13,37

Inputs

The TDC1028 has three types of inputs: signal data, coefficients, and sum (cascading) inputs.

Name	Function	Value	J4 Packaga
DI_{3}	Signal Data Input MSB	TTL	Pin 24
D_{2}		TTL	Pin 23
Dl_{1}		TTL	Pin 22
Dl_{0}	Signal Data Input LSB	TL	Pin 21
Cl_{3}	Coefficient Input MSB	TTL	Pin 33
Cl_{2}		TTL	Pin 32
Cl_{1}		mL	Pin 31
Cl_{0}	Coefficient Input LSB	$\pi /$	Pin 30
S_{112}	Cascading Sum Input MSB	TL	Pin 14
Sl_{11}		TL	Pin 12
Sl_{10}		TTL	Pin 11
Sl		mL	Pin 10
Sl_{8}		$\pi \mathrm{L}$	Pin 9
Sl_{7}		TL	
Sl_{6}		TL	
Sl_{5}		mL	
Sl_{4}		TL	
Sl_{3}		TL	Pin
Sl_{2}		TL	
Sl ${ }_{1}$		TL	Pin 2
Sl_{0}	Cascading Sum Input LSB	mL	

Data Dutputs

The TDC1028 has two outputs: a sum output and a data output. The data output is used to connect one TDC1028 to
the next (cascading) for greater filter or correlation length. The sum output is used both for cascading and signal output.

Name	Function	Value	J4 Package
SO_{12}	Sum Output MSB	TIL	Pin 34
SO_{11}		TL	Pin 35
SO_{10}		TL	Pin 38
SO_{9}		$\pi \mathrm{L}$	Pin 39
SO_{8}		TL	Pin 40
SO_{7}		TL	Pin 41
SO_{6}		TTL	Pin 42
SO_{5}		TL	Pin 43
SO_{4}		TIL	Pin 44
SO_{3}		TTL	Pin 45
SO_{2}		TTL	Pin 46
SO_{1}		TIL	Pin 47
SO_{0}	Sum Output LSB	TL	Pin 48
DO_{3}	Data Output MSB	TL	Pin 25
OO_{2}		TIL	Pin 26
DO_{1}		TTL	Pin 27
DO_{0}	Data Output LSB	TTL	Pin 28

Clocks

The TDC1028 operates synchronously from a single master clock, which can be clocked at up to 10 MHz . All internal circuitry is static; there is no minimum clock frequency required. The rising edge of CLK latches the Coefficient Input
$\left(\mathrm{Cl}_{3}-0\right)$, the Coefficient Address $\left(\mathrm{CA}_{2}-0\right)$, and the Coefficient Write Enable control (CWE). If CWE is LOW, a new coefficient will be loaded into the selected coefficient register at the next rising edge of CLK, as shown in Figure 4.

Name	Function	Value	J4 Package
CLK	Clock	ΠL	Pin 20

Controls

The TDC1028 has six control inputs. TCC and TCD control the interpretation of the data and coefficients as two's complement or unsigned magnitude numbers. These inputs provide two's complement operation for the respective input when a logic

HIGH is applied, and unsigned magnitude operation when a logic LOW is applied. One active LOW input (CWE) controls the writing of a coefficient, and three inputs (CA_{2-0}) control the selection of which coefficient is to be written.

Name	Function	Value	J4 Package
TCC	Two's Complement Coefficients	TTL	Pin 19
TCD	Two's Complement Data	TTL	Pin 18
$\overline{\overline{C W E}}$	Coefficient Write Enable	$T T L$	Pin 29
$C A_{2}$	Coefficient Address MSB	$T T L$	Pin 15
$C A_{1}$		$T T L$	Pin 16
$C A_{0}$	Coefficient Address LSB	$T T L$	Pin 17

Figure 1.
CANONICAL FIR ARCHITECTURE

tDC1028 EQUIVALENT ARCHITECTURE

Figure 2.

ARITHMETIC SUMMATION OF "SUM" OUTPUTS FOR 8-BIT COEFFICIENT, 8-BIT SIGNAL DATA WORDS

SIGN EXTENSION BITS REQUIRED IF TWO'S COMPLEMENT IS USED																					TDC 1028 InPUTS DATA COEFFICIENTS LSBS LSBs	
								d_{12}	d_{11}	d_{10}	dg	d_{8}	d7	d_{6}	d_{5}	d_{4}	d_{3}	d_{2}	d_{1}	d_{0}		
$+$		77	7λ	d_{12}	d_{11}	d_{10}	dg	d_{8}	d_{7}	d_{6}	${ }_{5}$	${ }_{4}$	d_{3}	d_{2}	d_{1}	d_{0}					LSBs	MSBs
$+$		7	,	d_{12}	d_{11}	d_{10}	dg	d_{8}	d7	${ }^{\text {d }} 6$	d_{5}	${ }_{4}$	${ }^{1}$	d_{2}	d_{1}	d_{0}					MSBs	LSBs
+ d_{12}	d_{11}	d_{10}	dg	d_{8}	${ }^{4} 7$	d_{6}	d_{5}	d_{4}	d_{3}	d_{2}	${ }_{1}$	d_{0}									MSBs	MSBs
${ }^{2} 20$	s_{19}	s18	s17	s16	s15	s14	s13	s12	s11	s10	sg	s_{8}	s7	s_{6}	S_{5}	s_{4}	s3	s2	s_{1}	so		

Figure 3.

Figure 4.

$s 0_{0,1}=s I_{-2}+c_{0,1} D_{-2}+c_{1,1} D_{-1}+c_{2,1} D_{0}+c_{3,1} D_{1}+c_{4,1} D_{2}+c_{5,1} D_{3}+c_{6,1} D_{4}+c_{7,1} D_{5}$
data dut

Figure 5.

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Test Load

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input								
Output								
Applied voltage (measured to $\mathrm{D}_{\mathrm{GNO}}$) \qquad -0.5 to $+5.5 \mathrm{~V}^{2}$ Applied current, externally forced \qquad -1.0 to $+6.0 \mathrm{~mA}^{3,4}$ Short-circuit duration (single output in HIGH state to ground) \qquad 1 sec								
Temperature								
Notes: 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range, and measured with respect to GND. 3. Forcing voltage must be limited to specified range. 4. Current is specified as conventional current flowing into the device.								
Operating conditions								
Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$ Supply Voltage		4.75	5.0	5.25	4.5	5.0	5.5	v
${ }^{\text {t PWL }}$ Clock Pulse Width, LOW		48			65			ns
tPWH Clock Pulse Width, HIGH		48			65			ns
tcy Clock Cycle Time		100			135			ns
ts Input Setup Time								
Data in, Sum In		15			15			ns
Coefficient In, Coefficient Address in		25			25			ns
Coefficient Write Enable		30			30			ns
IH Input Hold Time (All inputs)		5			5			ns
VIL Input Voltage, Logic LOW				0.8			0.8	V
$V_{\text {IH }}$ Input Voitage, Logic HIGH		2.0			2.0			V
OL Output Current, Logic LOW				4.0			4.0	mA
$\mathrm{I}_{\text {OH }}$ Output Current, Logic HIGH				-400			-400	$\mu \mathrm{A}$
T_{A} Ambient Temperature, Still Air		0		70				${ }^{\circ} \mathrm{C}$
${ }^{T} \mathrm{C} \quad$ Case Temperature					-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{1} \mathrm{CC}$	Supply Current		$V_{\text {CC }}=$ MAX, Static ${ }^{1}$					
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		700			mA
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		550			mA	
		$\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				800	mA	
		$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$				500	mA	
	Input Current, Logic LOW	$V_{\text {CC }}=$ MAX, $V_{1}=0.4 \mathrm{~V}$						
		Data Inputs		-0.4		-0.4	mA	
		Clock Input		-1.0		-1.0	mA	
$\overline{I H}$	Input Current, Logic HIGH	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$						
		Data Inputs		75		75	$\mu \mathrm{A}$	
		Clock Input		75		75	$\mu \mathrm{A}$	
1	Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage, Logic Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{0 \mathrm{~L}}=$ MAX		0.5		0.5	V	
$\overline{\mathrm{V}}_{\text {OH }}$	Output Voltage, Logic HIGH	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V	
I_{OS}	Short-Circuit Output Current	$V_{\text {CC }}=$ MAX, Output HIGH, one pin to ground, one second duration		-50		-50	mA	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
C_{0}	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
Note: 1. Worst case, all inputs and out								

Switching characteristics within specified operating conditions ${ }^{1}$

Application Notes

More than one TDC1028 may be connected together to form filters of greater length，greater signal data resolution，and／or greater coefficient resolution．

The simplest form of expansion is length．Each TDC1028 has a data and a sum input，and a data and a sum output．To make a filter of greater length，connect the data and sum outputs to the data and sum inputs of the next device，as shown in Figures 2 and 3 ．This procedure is used for each section of a filter built with higher resolution for signal data and coefficients．Note that the sum inputs of the first device in a series the one to which signal data is directly applied）must be supplied with a＂zero＂input lthat is，all sum input pins must be groundedl．This form of expansion is also used in combination with increased resolution，and is directly applicable to those cases．

Two options are available for increased resolution．The first method uses external adders and pipeline registers，the second uses the internal adders and pipeline registers of the TDC1028． Block diagrams of these methods are shown in Figures 9 and 10．The second method significantly increases latency；the output experiences a significant delay with respect to that of an ideal but causal Finite Impulse Response filter．

This section discusses the increasing of signal data and coefficient resolution when both signal data and coefficients are given in two＇s complement notation．For additional information，refer to TRW LSI Products Application Note TP－22．

The basic approach is to divide the word that requires greater resolution into two or more parts of four bits each．A separate
section will be needed for every four bits or fraction thereof． Usually，both signal data words and coefficients will be divided． Next，a filter section is assigned to each possible combination of non－overlapping 4－bit groups of signal data with 4－bit groups of coefficients．IA filter section is assigned for each element in the cross－product of the signal data and coefficient data word spaces．）This process is shown in Figure 3，which illustrates division into 4－bit segments，used with both options for increasing resolution．

The choice is made between the adder option and the no－adder option．If the adder option is chosen，a pipelined adder must be designed using MSI components．A complete 16 －tap filter using 8 －bit signal data words and 8 －bit coefficients is shown in Figure 9．Care must be taken to assure that the outputs of each of the sections are properly weighted．Note that the Two＇s Complement Data（TCD）pin should be active only in the sections which have the MSD of the data word as the input．Likewise，the Two＇s Complement Coefficient ITCC）pin should be active only on the sections which have the MSD of the coefficient word as the input．

However，another approach is possible．The TDC1028 has internal adders which are not used in the above configuration． Those are the adders in the first device in each section．By introducing suitable delays，these adders can be used to increase resolution without using external adders．A sample circuit，a complete 16 －tap filter using 8 －bit signal data words and 8 －bit coefficients，is shown in Figure 10．Notice that this introduces an eighteen sample delay in the signal path．The necessary 8 －bit wide by 9 or 18 stage long shift registers are provided by TRW＇s TDC1011．

Figure 9.

Figure 10.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1028J4C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	1028.4C
TDC1028J4G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial with Burn-In	48 Lead DIP	1028.4G
TDC102844F ${ }^{1}$	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	1028,4F
TDC1028.44A ${ }^{1}$	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	48 Lead DIP	1028.44A

Notes:

1. Contact factory for availability.
2. Per TRW document 7021757.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Introduction
Product Indexes
Advance Information
AID Converters
Evaluation Boards
D/A Comerters
Mulipliers
Muhtiplier- Mecumulators
Special Fumetion Productis
Memory/Storage ProductsPlossanyOrdering lniovmationMpplication Motes And Remints (Listings)

Shift Registers

The TDC1005 and TDC1006 are very high-speed, synchronous shift registers. Both devices are TTL compatible and support 20 MHz clock rates. The TDC1006 stores a serial string of 256 bits, while the TDC1005 stores two parallel 64-bit strings.

Designed as a companion for the TDC1028 FIR filter chip, the TDC1011 byte wide programmable shift register can be used for delays from 3 to 18 stages. Both the registers and controls can be clocked at 18 MHz . A 4-bit synchronous instruction controls the length to provide variable-delay capabilities at video speeds. A special split-word mode (two 4-bit words) is also provided for use with the TDC1028. The device is expandable in
both the bit and word direction, and is fully TTL compatible.

FIFO

To help interface systems with differing instantaneous clock rates, TRW has introduced the TDC1030, a first-in first-out memory. The device accommodates up to 64 nine-bit words and is fully TTL compatible. Data may be written into and read out from the device asynchronously, using the TDC1030's input and output handshaking ports. Two or more TDC1030s can be cascaded serially to facilitate storage of longer data sequences. The maximum shift-in and shift-out rate is 15 MHz for individual devices, and 13 MHz for cascaded parts. The device may be used without the control flags up to 18 MHz .

Product	Description	Size	Shift Rate ${ }^{1}$ (MHz)	Power Dissipation ${ }^{1}$ (Watts)	Package	Notes
TDC1005	Shift Register	64×2	25	0.6	Jg	Expandablecisiscidaide
TDC1006	Shitt Register	256x1	25	0.7	J9	Expandablei/cascidable
TDC1011	Programmable Shift Register	18x8	18	0.8	J7, B7	Expandable/Cascadable
TDC1030	FIFO	64*9	15	1.8	J6, B6, C3	ExpandableiCascadable

Note: 1. Guaranteed, Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Serial Shift Register

Dual 64-bit

The TRW TDC1005 is a dual 64-bit positive-edge-triggered serial shift register which operates at 25 MHz . This device is cascadable in the number of words and the word size.

Complementary TTL outputs Q and Q are provided. The two data inputs in each shift register, DO and D1, are controlled by a data select input, DS. This provides on-chip recirculate gating when the true output is hard-wired to one of the inputs.

Features

- 25 MHz Guaranteed Clock Frequency
- Fully TTL Compatible
- True and Complementary Outputs
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 16 Lead Ceramic DIP
- Horizontal And Vertical Cascadability

Applications

- High-Speed Data Acquisition
- First-In First-Out Data Buffers
- Coefficient Storage For FIR Filters
- Digital Delay Lines
- Local Storage Registers

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1005 is a positive-edge-triggered dual 64-bit serial shift register. One of two data inputs (D0 and D1) is selected
by the Data Select control (DS). Complementary outputs 0 and $\overline{0}$ are available.

Power

The TOC1005 operates from a single +5 Volt power supply.

Name	Function	Value	J9 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 16
GND	Ground	0.0 V	Pin 8

Data Inputs

The TDC1005 has two data inputs per block, CO_{A} and DO_{B},
$D 1_{A}$ and $D 1_{B} 1$.

Name	Function	Value	J9 Package
DO_{A}	Data Input O, Block A	TTL	Pin 11
$\mathrm{D1}_{\mathrm{A}}$	Data Input 1, Block A	TTL	Pin 12
DO_{B}	Data Input 0, Block B	TTL	
${ }^{01}{ }_{B}$	Data Input 1, Block B	TTL	Pin 5

Data Select

Two data select controls, one for Block $A\left(D S_{A}\right)$ and one for Block B $\left(D S_{\mathrm{B}}\right)$, are provided to select between inputs 0 and 1 .

The 0 input is selected when DS is LOW; the 1 input is selected when DS is HIGH.

Name	Function	Value	J9 Package
$D S_{A}$	Block A Data Select	TLL	Pin 13
$D S_{\mathrm{B}}$	Block B Data Select	TL	Pin 4

Data Outputs

Complementary outputs Q and $\overline{\mathrm{Q}}$ are provided for the TDC1005.

Name	Function	Value	J9 Package
$\overline{Q A}$	Data Output Block A	TL	Pin 15
$\overline{Q A}$	Data Output (Inv.) Block A	TLL	Pin
$\overline{Q B}$	Data Output Block B	TL	Pin 2
$\overline{Q B}$	Data Output (Inv.) Block B	TLL	Pin 3

Clocks

The TDC1005 has three clock inputs ICLK A, CLK B, CLK Cl which are combined to provide the clock signals for the two blocks. Block A is clocked by the logical OR of CLK A and

CLK C. Block B is clocked by the logical OR of CLK B and CLK C. This allows the two blocks to be clocked either independently or simultaneously.

Name	Function	Value	J9 Package
CLK A	Clock A	TL	Pin 10
CLK B	Clock B	TTL	Pin 7
CLK C	Clock C	TLL	Pin 9

No Connects

Pin 1 on the TDC1005 is not connected internally. This pin may be left unconnected.

Name	Function	Value	JS Package
NC	No connection	Open	Pin 1

Figure 1. Timing Diagram

Figure 2. Input/Output Schematics

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tPW }}$	Clock Pulse Width	15			15			ns
ts	Input Register Setup Time	4			4			ns
${ }^{\text {H }} \mathrm{H}$	Input Register Hold Time	10			10			ns
V_{16}	Input Voltage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
${ }^{102}$	Output Current, Logic LOW			4.0			4.0	mA
$\underline{\mathrm{IOH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }_{T}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Supply Current		$V_{C C}=$ MAX		105		120	mA
V_{OL}	Output Voltage, Logic LOW		$V_{C C}=$ MIN, $\mathrm{I}_{\text {OL }}=$ MAX		0.5		0.5	V
V_{OH}	Output Voltage, Logic HIGH	$V_{C C}-M I N, I_{O H}=$ MAX	2.4		2.4		V	
	Input Current, Logic LOW ${ }^{1}$	$V_{\text {CC }}=$ MAX, $V_{\text {IL }}=0.4 \mathrm{~V}$		-0.5		-0.8	mAilload	
	Input Current, Logic HIGH ${ }^{\text {² }}$	$V_{C C}=M A X, V_{H H}=2.4 V$		20		50	μ Alload	
Note: 1. CLK C: Eight equivalent CLK A, CLK B: Four equia								

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{C}	Clock Frequency		(See Figure 3)	25		25		MHz
${ }^{\text {t }}$	Output Delay		(See Figure 3)		30		30	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1005.J9C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1005JgC
TDC1005.JgG	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial with Burn-In	16 Lead DIP	1005/96
TLC1005.JF	EXT- $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1005/9F
TOC1005.j9A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	16 Lead DIP	1005.59A

Note:

1. Per TRW document $70 Z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Serial Shift Register

256-bit

The TRW TDC1006 is a positive-edge-triggered serial shift register which operates at 25 MHz . The device is cascadable in the number of words and the word size.

Complementary TTL outputs Q and $\overline{\mathrm{Q}}$ are provided. Two data inputs, DO and D1, are controlled by a data select input, DS. This provides on-chip recirculate gating when the true output is hard-wired to one of the inputs.

Features

- 25 MHz Guaranteed Clock Frequency
- Fully TTL Compatible
- True and Complementary Outputs
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 16 Lead Ceramic DIP
- Horizontal and Vertical Cascadability

Applications

- High-Speed Data Acquisition
- First-In First-Out Data Buffers
- Coefficient Storage for FIR Filters
- Digital Delay Lines
- Local Storage Registers

Functional Block Diagram

Functional Block Diagram

Pin Assignments

NC	1
NC	2
NC	3
NC	4
DO	5
D1	6
DS	7
GND	8

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1006 is a 256 -bit positive-edge-triggered serial shift register. One of two data inputs (DO and D1) is selected by
the Data Select control DS. Complementary outputs \mathbb{Q} and $\overline{\mathrm{D}}$ are available.

Power

The TDC1006 operates from a single +5 Volt power supply.

Name	Function	Value	J9 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 16
GND	Ground	0.0 V	Pin 8

TDC1006

Data Inputs
The TDC1006 is a single 256-bit shift register with two data inputs $D 0$ and $D 1$.

Name	Function	Value	J9 Package
DO	Data Input 0	$\Pi \mathrm{L}$	Pin 5
$\mathrm{D1}$	Data Input 1	$\Pi \mathrm{~L}$	Pin 6

Data Solect

The TDC1006 has one data select control (DS) to select between inputs $D 0$ and $D 1$. Input $D 1$ is selected when DS is HIGH, DO is selected when DS is LOW.

Name	Function	Value	J9 Package
DS	Data Select	$\Pi \mathrm{L}$	Pin 7

Data Outputs

Complementary outputs Q and $\overline{\mathrm{Q}}$ are provided for the TDC1006.

Name	Function	Value	J9 Package
0	Data Output	TTL	Pin 11
$\bar{\alpha}$	Data Output Inverted	TTL	Pin 10

Clocks

The TDC1006 has one clock signal, CLK.

Name	Function	Value	J9 Package
CLK	Clock	TTL	Pin 9

No Connects

There are several pins on the TDC1006 which are not connected internally. These pins may be left unconnected.

Name	Function	Value	J9 Package
NC	No Connect	Open	Pins 1-4, 12-15

Figure 1. Timing Diagram

Figure 2. Equivalent Input/Output Schematics

Figure 3. Test Load

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltage .. -0.1	
Output	
	Applied current, externally forced ... -1.0 to $+\cdots .0 .1 m^{3,4}$
	Short circuit duration (single output in high state to ground) ... 1 sec
Temperature	
	Uperating, ambient \qquad -55 to $+150^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
$t_{\text {PW }}$	Clock Pulse Width	15			15			ns
ts	Input Register Setup Time	4			4			ns
${ }^{\text {H }}$	Input Register Hold Time	10			10			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
V_{IH}	Input Voltage, Logic HIGH	2.0			2.0			V
$\underline{\mathrm{OL}}$	Output Current, Logic LOW			4.0			4.0	mA
${ }_{\mathrm{OH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Supply Current	$V_{C C}=$ MAX		135		155	mA
VOL Output Voltage, Logic LOW	$V_{C C}=$ MIN, $I_{O L}=$ MAX		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{C C}=$ MIN, $\mathrm{I}_{\text {OH }}=$ MAX	2.4		2.4		V
IL_ Input Current, Logic Low ${ }^{1}$	$V_{\text {CC }}=$ MAX, $V_{\text {IL }}=0.4 \mathrm{~V}$		-0.5		-0.8	mAlload
IIH Input Current, Logic HIGH ${ }^{\text {¹ }}$	$V_{C C}=M A X, V_{\text {IH }}=2.4 V$		20		50	μ Alload

Note:

1. CLK: Sixteen equivalent loads.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{C}	Clock Frequency		(See Figure 1)	25		25		MHz
to	Output Delay		(See Figure 1)		30		30	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1006JSC	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1006.J9C
TDC1006.JgG	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1006.J9G
TDC1006.J9F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1006.19F
TDC1006J9A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{\text { }}$	16 Lead DIP	1006.J9A

Note:

1. Per TRW document $70 Z 01757$.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Variable-Length Shift Register

8 -bit, 18MHz
The TRW TDC1011 is a high-speed, byte-wide shift register which can be programmed to any length between 3 and 18 stages. It operates at a 56 nanosecond cycle time 118 MHz shift rate). A special split-word mode is provided for use with the TRW TDC1028.

The TDC1011 is fully synchronous, with all operations controlled by a single master clock. Input and output registers are positive-edge-triggered D-type flip-flops. The length control inputs are also registered.

Built with TRW's OMICRON- B $^{\text {™ }} 1$-micron bipolar process, the TDC1011 provides the system designer with a unique variable-delay capability at video speeds.

Features

- 56ns Cycle Time (Worst Case)

Functional Block Diagram

Functional Block Diagram

Pin Assignments

[^4]
Functional Description

General Information

The TDC1011 consists of two 4－bit wide，adjustable length shift registers．These registers share control signals and a common clock．

Power

The TDC1011 operates from a single +5 Volt supply．

Name	Function	Value	J7，B7 Package
$V_{\text {CC }}$	Positive Supply Voltage	5.0 V	Pin 7
GND	Ground	0.0 V	Pin 18

Inputs

The eight inputs to the TDC1011 are divided into two groups of four，and are intended to support the TDC1028，which has inputs in groups of four bits．The lengths of these two groups are different when the Mode Control（MC）is HIGH（refer to

Name	Function	Value	J7，B7 Package
DI_{0}	Data Input	TTL	Pin 1
Dl_{1}		TTL	Pin 2
Dl_{2}		TTL	Pin 3
Dl_{3}		TTL	Pin 4
Dl_{4}		TIL	Pin 9
Dl_{5}		TTL	Pin 10
Dl_{6}		TTL	Pin 11
Dl_{7}	Data Input	TTL	Pin 12

Outputs

The outputs of the TDC1011 are delayed relative to the input signals．The amount of the delay is programmable lrefer to Controls Section）．The outputs remain valid for a minimum of

Controls Section）．The incoming data is unchanged by the TDC1011．All inputs are fully TTL compatible and all internal circuitry is static．

Name	Function	Value	J7，B7 Package
$D 0_{0}$	Data Output	TTL	Pin 24
$D 0_{1}$		TTL	Pin 23
$D 0_{2}$		TTL	Pin 22
$D O_{3}$	TTL	Pin 21	
$D 0_{4}$		TTL	Pin 16
$D 0_{5}$		TTL	Pin 15
$D 0_{6}$	THL	Pin 14	
$D 0_{7}$	Data Output	THL	Pin 13

Clock

The TDC1011 operates synchronously from a single master clock line, which can be clocked up to 18 MHz . All operations
occur at the rising edge of the master clock. Since the internal circuitry is static, the clock can be gated if desired.

Name	Function	Value	J7, B7 Package
CLK	Clock	TTL	Pin B

Controls

The TDC1011 has four length selection controls and one mode selection control. The operation of these controls is shown in Table I.

Name	Function	Value	J7, B7 Package
L_{0}	Length Select LSB	TTL	Pin 5
L_{1}	Length Select	TTL	Pin 6
L_{2}	Length Select	TTL	Pin 20
L_{3}	Length Select MSB	TTL	Pin 19
MC (Mode)	Mods Control	TTL	Pin 17

Length Programming Table I

Input Code				Mode (MC) $=0$		Mode (MC) $=1$	
L_{3}	L_{2}	4	Lo	DO_{3-0} Length	D07-4 Length	$\mathrm{DO}_{3}-0$ Length	D07-4 Length
0	0	0	0	3	3	3	18
0	0	0	1	4	4	4	18
0	0	1	0	5	5	5	18
0	0	1	1	6	6	6	18
0	1	0	0	7	7	7	18
0	1	0	1	8	8	8	18
0	1	1	0	9	9	9	18
0	1	1	1	10	10	10	18
1	0	0	0	11	11	11	18
1	0	0	1	12	12	12	18
1	0	1	0	13	13	13	18
1	0	1	1	14	14	14	18
1	1	0	0	15	15	15	18
1	1	0	1	16	16	16	18
1	1	1	0	17	17	17	18
1	1	1	1	18	18	18	18

Figure 1．Timing Diagram（Preset Length Controls）

Figure 2．Length Control Operation

Figure 3．Equivalent Input Circuit

Figure 4．Equivalent Output Circuit

Figure 5．Test Load

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply VotageInput

Output	

Temperature

\qquadOperating, casejunction$175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $300^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$
Notes:1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range, and measured with respect to GND.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
${ }^{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tPWL }}$	Clock Pulse Width, LOW	15			15			ns
tPWH	Clock Pulse Width, HIGH	15			15			ns
${ }_{\text {t }}$	Input Setup Time	20			25			ns
${ }^{\text {th }}$	Input Hold Time	0			2			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
Iol	Output Current, Logic LOW			4.0			4.0	mA
${ }^{\text {OH }}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Note:

1. Worst case, all inputs and outputs LOW.

Switching characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {f CLI }}$	Clock Rate		$V_{C C}=M I N$					
			Static Length Controls	18		15		MHz
		Dynamic Length Controls	15		10		MHz	
to	Output Delay	$V_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}-2.2 \mathrm{~V}$		25		30	ns	
${ }^{\text {tHO}}$	Output Hold Time ${ }^{2}$	$V_{C C}=$ MAX, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$	5		5		ns	

Notes:

1. All transitions are measured at a 1.5 V level.
2. Guaranteed, not tested.

Application Notes

The TDC1011 has two types of applications：as a support device for the TDC1028，and as a general variable－length shift register．

To support the TDC1028，the lengths will be set to one of the following：

1．Both sections 9 stages long．
2．One section 9 stages long，the other section 18 stages long． 3．Both sections 18 stages long．

The sections are interchangeable only if the lengths are identical．

Further description of the use of the TDC1011 to support the TDC1028 is given in TRW LSI Products Application Note TP－22．

For general use，it is important to note that the length control inputs are registered．There are no constraints on the use of the control leads other than the operational requirements shown in the Operating Conditions table．Specifically，the length can be increased from one clock period to another and proper operation will occur；no data is lost，except the eighteenth stage．

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1011J7C	STD $-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1011J7C
TDC1011J7G	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	24 Lead DIP	1011J7G
T0C1011J7F	EXT－ $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	101137\％
TDC1011J7A	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{1}$	24 Lead DIP	101137
TOC101187C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead CERDIP	1011B7C
TOC101187G	$\mathrm{STD}-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	24 Lead CERDIP	1011876

Note：
1．Per TRW document $70 z 01757$.
TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW Inc．or others．
Preliminary information describes products that are not in full production at the time of printing．Specifications are based on design goals and limited characterization．They may change without notice．Contact TRW for current information．

First-In First-Out Memory

64 words by 9 bits cascadable

The TRW TDC1030 is an expandable, First-In First-Out (FIFO) memory organized as 64 words by 9 bits. A 15 MHz data rate makes it ideal in high-speed applications. Burst data rates of 18 MHz can be obtained in applications where the device status flags are not used.

With separate Shift-In (SI) and Shift-Out (SO) controls, reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a Master Reset (MW), and Output Enable ($\overline{\mathrm{DE}}$). Input Ready (IR) and Output Ready (OR) flags are provided to indicate device status.

Devices can be easily interconnected to expand word and bit dimensions. The device has all output pins directly opposite the corresponding input pins, facilitating board layouts in expanded format. All inputs and outputs are TTL compatible.

Features

- 64 Words By 9 Bits Organization
- 15MHz Shift-In, Shift-Out Rates With Flags
- 18 MHz Burst-In, Burst-Out Rates Without Flags
- Cascadable To 13MHz
- Readily Expandable In Word And Bit Dimension
- TTL Compatible
- Asynchronous Or Synchronous Operation
- Three-State Outputs
- Master Reset Input To Clear Control
- Output Pins Directly Opposite Corresponding Input Pins For Easy Board Layout
- Available in 28 Lead Ceramic DIP, CERDIP, or Contact Chip Carrier

Applications

- High-Speed Disk Or Tape Controller
- Video Time Base Correction
- AID Output Buffers
- Voice Synthesis
- Input/Output Formatter For Digital Filters and FFTs

Functional Block Diagram

Functional Block Diagram

Pin Assignments

28 Lead DIP - J6 Package
28 Lead CERDIP - B6 Package

28 Contact Chip Carrier - C3 Package

Functional Description

Data Input (Figure 1|

Following power up, the Master Reset (|MR) is pulsed LOW to clear the FIFO (Figure 2). The Input Ready (IR) flag HIGH indicates that the FIFO input stage is empty and available to receive data. When \mathbb{R} is valid $(H \mid G H)$, Shift-In $(S \|)$ may be asserted, thus loading the data present at D_{0} through D_{8} into the FIFO. Bringing the SI signal HIGH causes IR to drop LOW.

The data remains at the first location until SI is set LOW. With SI LOW, the data then propagates to the second location and continues to "fall through" to the output stage or last empty location. If the FIFO is not full after the SI pulse, IR will again be valid (HIGH), indicating that there is space available in the FIFO. If the memory is full, the \mathbb{R} flag remains invalid (LOW).

With the FIFO full, the SI can be held HIGH until a Shift-Out (SO) occurs (Figure 3). Following the SO pulse, the empty location "bubbles up" to the input stage. This results in an

Input Ready (IR) pulse HIGH and awaiting data is shifted in. The SI must be brought LOW before additional data can be shifted in.

Data Transfer

After data has been transferred into the second location by bringing SI LOW, the data continues to "fall through" the FIFO
in an asynchronous manner. The data stacks up at the end of the device, leaving the empty locations up front.

Data Output (Figure 4)

The Output Ready (ORI flag HIGH indicates that there is valid data at the output stage (pins $a_{0}-Q_{g}$). An initial Master Reset (MR) pulse LOW at power up sets the Output Ready LOW (Figure 2). Although the internal control circuitry is cleared, random data remains on the output pins. Data shifted into the FIFO lafter MRI) "falls through" to the output stage, causing OR to go HIGH, and replaces the random data with valid data.

When the OR flag is valid (HIGH), data can be transferred out via the Shift-Out $|S O|$ control. An SO HIGH results in a "busy" (LOW) signal at the OR flag. When SO is brought LOW, data is shifted to the output stage, and the empty location "bubbles
up" to the input stage. At the completion of the SO pulse, OR goes HIGH. If the last valid piece of data has been shifted out, leaving the memory empty, the OR flag remains invalid (LOW). With the FIFO empty, the last word shifted out remains on the output pins $Q_{0}-a_{8}$.

With the FIFO empty, the SO can be held HIGH until a SI occurs (Figure 5). Following the SI pulse, the data "falls through" to the output stage. This results in an OR pulse HIGH and data is shifted out. The SO must be brought LOW before additional data can be shifted out.

Data Inputs

The nine data inputs of the TDC1030 are TTL compatible.
There is no weighting to the inputs, and any one of them can be assigned as the MSB. The memory size of the FIFO can be reduced from the 9×64 configuration by leaving open unused
data input pins (i.e., $8 \times 64,7 \times 64 \ldots 1 \times 64$). In the reduced format, the unused data output pins must also be left open.

Name	Function	Value	J6, C3, B6 Package
D_{0}	Data Input	TTL	Pin 5
D_{1}		TTL	Pin 6
D_{2}		TTL	Pin 7
D_{3}	TTL	Pin 8	
D_{4}		TTL	Pin 9
D_{5}	TLL	Pin 10	
D_{6}		TL	Pin 11
D_{7}	TLL	Pin 12	
D_{8}		TTL	Pin 13

Data Outputs

The nine data outputs of the TDC1030 are TTL compatible, capable of driving four low-power Schottky TTL 154174 LS) unit loads or the equivalent. There is no weighting to the outputs, and any one of them can be assigned as the MSB.

The memory size of the FIFO can be reduced from the 9×64 configuration by leaving open unused data output pins
(i.e., $8 \times 64,7 \times 64 \ldots 1 \times 64$). In the reduced format, the unused data input pins must also be left open.

Name	Function	Value	J6, C3, B6 Package
a_{0}	Data Output	TTL	Pin 24
a_{1}		TTL	Pin 23
O_{2}		TTL	Pin 22
a_{3}		TTL	Pin 21
0_{4}		TTL	Pin 20
0_{5}		TTL	Pin 19
O_{6}		TTL	Pin 18
07		TL	Pin 17
O_{8}	Data Output	TTL	Pin 16

Controls

SI The rising edge loads data into the input stage. $\overline{\mathrm{MR}}$ The falling edge triggers the automatic data transfer process.

SO The rising edge causes OR to go LOW. The falling edge moves upstream data into the output stage and triggers the "bubble up" process of empty locations. $\overline{\mathrm{EE}}$
$\overline{M R}$ LOW clears all data and control within the FIFO: Input Ready flag is set HIGH, Output Ready flag is set LOW, and the FIFO is cleared. The output stage remains in the state of the last word shifted out, or in the random state of power up.

With the $\overline{O E}$ LOW, the outputs of the FIFO are TTL compatible. When disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), the outputs go into their high-impedance state.

Name	Function	Value	J6, C3, 86 Package
SI	Shift-In	TTL	Pin
SO	Shift-Out	TTL	Pin 26
$\overline{M R}$	Master Reset	TTL	Pin 27
$\overline{\text { OE }}$	Dutput Enable	TTL	Pin 15

Power

The TDC1030 operates from a single +5.0 V supply. All power and ground pins must be connected.

Name	Function	Value	J6, C3, B6 Package
$V_{\text {CC }}$	Supply Voltage	+5.0	Pin 28
GND	Digital Ground	0.0	Pins $1,2,14$

Status Flags

Input Ready (IR) and Output Ready (OR1 flags are provided to IR indicate the status of the FIFO. Operation with use of the flags is explained in the Functional Description. In this mode of operation, the Shift-In and Shift-Out rates are determined by the status flags. It is assumed that a Shift-In or Shift-Out pulse is not applied until the respective flag ($\mid \mathrm{R}, \mathrm{OR}$) is valid OR (Figures 1 and 4).

The $\mathbb{I R}$ and $O R$ flags are not required to operate the device. A high-speed burst mode is achievable when operating without the flags. Refer to the High-Speed Burst Mode section for a complete description.

IR An IR flag HIGH indicates that the input stage is empty and ready to accept valid data. An IR LOW indicates that the FIFO is full or that a previous SI operation is not complete.

An OR flag HIGH assures valid data at the output stage (pins $Q_{0}-Q_{8}$). However, the $O R$ flag does not indicate whether or not there is any new data awaiting transfer into the output stage. An OR LOW indicates that the output stage is "busy", or that there is no valid data.

Name	Function	Value	J6, C3, B6 Package
$\mathbb{I R}$	Input Ready Flag	TLL	Pin 3
OR	Output Ready Flag	TTL	Pin 25

Application Notes

Expanded Format

The TDC1030 is easily cascaded to increase word capacity without any external circuitry. Word capacity can be expanded beyond the 128 words $\times 9$ bits configuration shown in Figure 6. In the cascaded format, all necessary communications and timing are handled by the FIFOs themselves. The intercommunication speed is controlled by the minimum flag pulse widths and the flag delays. ISee Figures 7 and 8 .TThe maximum data rate when cascading devices is 13 MHz .

With the addition of a logic gate, the FIFO is easily expanded to increase word length (Figure 9). The basic operation and timing are identical to a single FIFO, with the exception of an additional gate delay on the flags. Word length can be
expanded beyond the 18 bits X 64 words configuration shown in Figure 9.

High-Speed Burst Mode

Burst rates of 18 MHz can be obtained for applications in which the device status flags are not used. In this mode of operation, the Burst-In and Burst-Out rates are determined by the minimum Shift-In Pulse Widths, and Shift-Out Pulse Widths (See Figures 10 and 11). With the Input Ready and Output Ready flags not monitored, a shift pulse can be applied without regard to the status flag. However, a Shift-In pulse which would overflow the storage capacity of the FIFO is not permitted.

TDC1030 Timing Diagrams

Figure 1. Shifting In Sequence, FIFO Empty To FIFO Full

1. Input Ready initially HIGH - FIFO is prepared for valid data.
2. Shift-In set HIGH - data loaded into input stage.
3. Input Ready drops LOW It|R delay after SI HIGHI - input stage "busy."
4. Shift-In set LOW - data from first location "falls through."
5. Input Ready goes HIGH It|R delay after SI LOW) - status flag indicates FIFO prepared for additional data.
6. Repeat process to load 2nd through 64th word into FIFO.
7. Input Ready remains LOW - with attempt to shift into full FIFO, no data transfer occurs.

Figure 2. Master Reset Applied With FIFO Full

1. Input Ready LOW, Output Ready HIGH - assume FIFO is full.
2. Master Reset pulse LOW - clears FIFO.
3. Input Ready goes HIGH (tMRIRH delay after $\overline{\mathrm{MR}}$ - flag indicates input prepared for valid data.
4. Output Ready drops LOW (tMRORL delay after MRI - flag indicates FIFO empty.
5. Shift-In HIGH (tMRSI delay after $\overline{M R})$ - clearing process complete, move new data into FIFO.

Figure 3. With FIFO Full, Shift-In Held High In Anticipation Of Empty Location

1. FIFO is initially full, Shift-In is held HIGH.
2. Shift-Out pulse - data in the output stage is unloaded, "bubble up" process of empty location begins.
3. Input Ready HIGH ItrT fallthrough delay after SO pulsel when empty location reaches input stage, flag indicates FIFO is prepared for data input.
4. Input Ready returns LOW - data Shift-In to empty location is complete, FIFO is again full.
5. SI brought LOW - necessary to complete Shift-In process, allows data "fall through" if additional empty location "bubbles up."

Figure 4. Shifting Out Sequence, FIFO Full to FIFO Empty

1. Output Ready HIGH - no data transferring in progress, valid data is present at output stage.
2. Shift-Out set HIGH - results in OR LOW.
3. Output Ready drops LOW ItOR delay after SO HIGH) output stage "busy."
4. Shift-Out set LOW - data in the input stage is unloaded, and new data replaces it as empty location "bubbles up" to input stage.
5. Output Ready goes HIGH - transfer process completed, valid data present at output.
6. Repeat process to unload the 3rd through 64th word from FIFO.
7. Output Ready remains LOW - FIFO is empty.
8. Shift-Out pulse asserted - with attempt to unload from empty FIFO, no data transfer occurs.

Figure 5. With FIFO Empty Shift Out Is Held High In Anticipation Of Data

1. FIFO is initially empty, Shift-Out is held HIGH.
2. Shift-In pulse - loads data into FIFO and initiates "fall through" process.
3. Data Output transition - ItDOF delay before OR HIGHI, valid data arrives at output stage.
4. Output Ready HIGH - It fT fallthrough delay after SI pulse), OR flag signals the arrival of valid data at the output stage.
5. Output Ready goes LOW - data Shift-Out is complete, FIFO is again empty.
6. Shift-Out set LOW - necessary to complete Shift-Out process, allows "bubble up" of empty location as data "falls through."

Figure 6. Cascading For Increased Word Capacity - 128 Words X 9 Bits

The TDC1030 is easily cascaded to increase word capacity without any external circuitry. In the cascaded format, all necessary communications are handled by the FFFOs
themselves. Figures 7 and 8 demonstrate the intercommunication timing between FIFO A and FIFO B .

Figure 7. FIFO - FIFO Communication: Input Timing Under Empty Condition

1. FIFO A and B initially empty, $S O(A)$ held HIGH in anticipation of data.
2. Load one word into FIFO A - SI pulse applied, IR pulse results.
3. Data Out AIData In B transition - It DOF delay before OR (A) HIGH), valid data arrives at FIFO A output stage prior to OR flag, meeting data input setup requirements of FIFO B.
4. $\dot{O R}(A)$ and $\mathrm{SI}(B)$ pulse HIGH - (ttr delay after SI (A) LOWI, data is unloaded from FIFO A as a result of the Output Ready Pulse (Topl, data is shifted into FIFO B.
5. $\operatorname{IR}(B)$ and $S O(A)$ go $L O W-|t| R$ delay after $S I(B) H I G H)$, flag indicates input stage of FIFO B is "busy," Shift-Out of FIFO A is complete.
6. $\operatorname{IR}(B)$ and $S O(A)$ go $H I G H-|t| R$ delay atter $S I(B) L O W)$, input stage of FIFO B is again available to receive data, SO is held HIGH in anticipation of additional data.
7. OR (B) goes HIGH - ItfT delay after SI (B) LOW), valid data is present at the FIFO B output stage.

Figure 8. FIFO - FIFO Communication: Output Timing Under Full Condition

1. FIFO A and B initially full, $S I(B)$ held HIGH in anticipation of shifting in new data as empty location "bubbles up."
2. Unload one word from FIFO B - SO pulse applied, OR pulse results.
3. $I R(B)$ and $S O(A)$ pulse $H I G H$ - It_{F} delay after $S O(B)$ LOWI, data is loaded into FIFO B as a result of the Input Ready Pulse It|PI, data is shifted out of FIFO A.
4. OR (A) and SI (B) go LOW - ItoR delay after SO (A) HIGH), flag indicates the output stage of FIFO A is "busy," Shift-In to FIFO B is complete.
5. OR (A) and $S I(B)$ go HIGH - ItOR delay after SO (A) LOW), flag indicates valid data is again available at the FIFO A output stage, $\mathrm{SI}(\mathrm{B})$ is held HIGH, awaiting "bubble up" of empty location.
6. IR (A) goes HIGH - (t FT delay after SO (A) LOWI, an empty location is present at input stage of FIFO A.

Figure 9. Expanded FIFO for Increased Word Length - 64 Words X 18 Bits

The TDC1030 is easily expanded to increase word length. Composite Input Ready and Output Ready flags are formed with the addition of an AND logic gate. The basic operation
and timing are identical to a single FIFO, with the exception of an added gate delay on the flags.

Figure 10. Shift-In Operation In High-Speed Burst Mode

In the high-speed mode, the Burst-In rate is determined by the minimum Shift-In HIGH and Shift-In LOW specifications. The IR status flag is a "don't care" condition, and a Shift-In
pulse can be applied without regard to the flag. A Shift-In pulse which would overflow the storage capacity of the FIFO is not permitted.

Figure 11. Shift-Out Operation In High-Speed Burst Mode

In the high-speed mode, the Burst-Out rate is determined by the minimum Shift-Out HIGH and Shift-Out LOW
specifications. The OR flag is a "don't care" condition, and a Shift-Out pulse can be applied without regard to the flag.

Figure 12. Equivalent Input Circuit

Figure 14. Test Load
TO
OUTPUT PIN

Figure 13. Equivalent Output Circuit

Figure 15. Transition Levels For Three-State Measurements

TR"シ

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input	
Output	
	Short circuit duration (single output in high state to ground) .. 1 sec
Temperature	
	Operating, case \qquad -60 to $+140^{\circ} \mathrm{C}$ junction \qquad $+175^{\circ} \mathrm{C}$
	Lead, soldering (10 seconds) ... $+300^{\circ} \mathrm{C}$
	Storage .. - $^{\text {a }}$ to $+150^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individualy while all other parameters are within specified operating condrions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range, and measured with respect to GND.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as positive when flowing into the device.

Operating conditions

Paramater		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }_{\text {till }}$	Shitt-In Pulse Width, LOW	20			20			ns
${ }_{\text {tSIH }}$	Shift-In Pulse Width, HIGH	15			18			ns
${ }_{\text {ts }}$	Input Setup Time	0			0			ns
${ }_{\text {th }}$	Input Hold Time	25			30			ns
${ }^{\text {t }}$ SOL	Shitt-Out Pulse Width, LOW	20			20			ns
${ }^{\text {t }}$ SOH	Shift-Out Pulse Width, HIGH	15			18			ns
$V_{\text {IL }}$	Input Voltage, Logic LOW			0.8			0.8	V
$\mathrm{V}_{1 H}$	Input Voltage, Logic HIGH	2.0			2.0			V
lol	Output Current, Logic LOW			4.0			4.0	mA
$\underline{\mathrm{OH}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
${ }^{T}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I CC }}$ Supply Current	$V_{C C}=$ MAX, static ${ }^{1}$					
	${ }^{T}{ }^{\prime}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		350			mA
	${ }^{T} A=70^{\circ} \mathrm{C}$		280			mA
	${ }^{\top} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				400	mA
	${ }^{T} \mathrm{C}=125^{\circ} \mathrm{C}$				260	mA
IIL Input Current, Logic Low	$V_{C C}=$ MAX, $V_{1}=0.4 V$					
	D_{8-0}, MR		-0.4		-0.4	mA
	SI, SO, סE		-1.0		-1.0	mA
IIH Input Current, Logic HIGH	$V_{C C}=$ MAXX $V_{1}=2.4 V$		75		75	$\mu \mathrm{A}$
1 Input Current, Max Input Voltage	$V_{C C}=M A X, V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$V_{\text {OL }}$ Output Voltage, Logic LOW	$V_{C C}=M I N, I_{O L}=M A X$		0.5		0.5	V
V_{OH} Output Voltage, Logic HIGH	$V_{\text {CC }}=$ MIN, $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V
IoZL HIGH-2 Output, Leakage Current, Logic LOW	$V_{C C}=$ MAX, $V_{1}=0.4 V$		-40		-40	$\mu \mathrm{A}$
Iozh HIGH-Z Output, Leakage Current, Logic HIGH	$V_{C C}=$ MAX, $V_{1}-2.4 V$		40		40	$\mu \mathrm{A}$
Ios Short Circuit Output Current	$V_{\text {CC }}=$ MAX, One pin to ground, one second duration, output HIGH.		-40		-40	mA
C_{1} Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$		15		15	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$		15		15	pF

Note:

1. Worst case, all digital inputs and outputs LOW, OE HIGH.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Switching characteristics within specified operating conditions ${ }^{1}$						
Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
$\mathrm{F}_{\mathrm{St}} \quad$ Shitt-ln Clock Rate	$V_{C C}=M I N$	18		16		MHz
$\mathrm{F}_{\mathrm{BI}} \quad$ Burst-In Clock Rate	$V_{C C}=\mathrm{MIN}$	20		18		MHz
IR Input Ready Delay	$V_{C C}=$ MIN		40		50	ns
${ }^{{ }_{F} \text { T F Fallthrough Time }}$	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		1.6		1.8	$\mu \mathrm{s}$
$\mathrm{F}_{\text {SO }}$ Shitt-Out Clock Rate	$V_{C C}=$ MIN	15		13		MHz
$\mathrm{F}_{\mathrm{BO}} \quad$ Burst-Out Clock Rate	$V_{C C}=\mathrm{MiN}$	18		16		MHz
${ }^{\text {toR }}$ Output Ready Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$		51		65	ns
t_{D} Data Output Delay	$V_{C C}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		50		65	ns
${ }^{\text {HO }}$ Data Output Hold Time	$V_{\text {CC }}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$	15		15		ns
${ }^{\text {tMRW }}$ Master Reset Pulse Width	$V_{\text {CC }}=$ MIN	20		25		ns
${ }^{\text {t MRORL }}$ Master Reset to OR LOW	$V_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		60		80	ns
tMRIRH Master Reset to IR HIGH	$\mathrm{V}_{\text {CC }}=$ MIN, Test Load: $\mathrm{V}_{\text {LOAD }}=2.2 \mathrm{~V}$		45		65	ns
TMRSI Master Reset to SI	$V_{C C}=$ MIN	55		65		ns
tip Input Ready Pulse	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$	40		45		ns
top Output Ready Pulse	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$	45		50		ns
${ }^{\text {tof }}$ D Data To Output Flag Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.2 \mathrm{~V}$	1		1		ns
teNA Three-State Output Enable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=1.8 \mathrm{~V}$		35		45	ns
${ }^{\text {tols }}$ Three-State Output Disable Delay	$V_{C C}=$ MIN, Test Load: $V_{\text {LOAD }}=2.6 \mathrm{~V}$ for $t_{D I S O}, 0.0 \mathrm{O}$ for $\mathrm{t}_{\mathrm{DIS}}{ }^{2}$		30		40	ns

Notes:

1. All transitions are measured at a 1.5 level except for $\mathrm{t}_{\text {DIS }}$ and $\mathrm{t}_{\text {ENA }}$, which are shown in Figure 15 .
2. IDIS1 denotes the transition from logical 1 to three-state.
toISO denotes the transition from logical 0 to three-state.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TEC1030J6C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	1030J6C
TDC1030J6G	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Lead DIP	1030.16G
TDC103016F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	1030.J6F
TDC1030.J6A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	28 Lead DIP	1030.06A
TDC1030C3C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1030C3C
TDC1030C3G ${ }^{1}$	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Contact Chip Carrier	1030C3G
TOC1030C3F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1030C3F
TDC1030C3A	EXT- $\mathrm{T}^{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	High Reliability ${ }^{2}$	28 Contact Chip Carrier	1030C3A
TDC103086C	STD $-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead CERDIP	1030B6C
T0C103086G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Lead CERDIP	103086G

Notes:

1. Contact factory for availabiity.
2. Per TAW document $70 z 01757$.

Intredurution
Produce nnderes
Advance Mnfomation
Ni Converters
Evaluation Boards
DIA Convorters
Multipliars
Mhultivilier Accumulators
Special Runction Products
Memory/Storage Producis
Reliability
Paclagage Infomnation
Cllossary
Ordering finformation
Application Motes And Reprints (Listings)

The ability to produce integrated circuits to high reliability specifications cannot be learned overnight. It takes years to develop such capability with special attention given to manufacturing processes and circuit design techniques.

TRW has been in the forefront of the development and production of high reliability integrated circuits. Following the small-scale integration afforded by the first TTL gates, TRW moved to medium and large-scale integration.

TRW LSI Products' movement from SSI to VLSI has been centered around the use of a triple diffusion (3D) bipolar process. This process was developed by TRW in the early 1960s and has been consistently improved to give superior producibility, performance and reliability. Recently a bulk 1μ CMOS process has been developed and has demonstrated excellent reliability.

The 3D process meets the stringent requirements of MIL-M-38510 and MIL-STD-883, as well as those requirements of other high performance commercial and industrial applications. Development of the process was only one of the steps required to produce high reliability VLSI. Circuit design must also be directed toward the same goal. Reliability cannot be added at a later stage in the development process. It must be included in the initial design of each device.

Another aspect of reliability is the control of the assembly process, which is necessary to obtain the desired results. Here again, there is no substitute for experience. Each step in the TRW LSI assembly process is controlled within narrow limits to produce high-yield devices of proven reliability. Testing verifies that high reliability VLSI has been achieved. TRW performs unique, productoriented accelerated life tests in addition to tests that are in accordance with MIL-M-38510 and MIL-STD-883.

Demonstrated VLSI Reliability

Reliability is expressed in terms of failure units, or FITs, which are defined as failures per 10^{9} devicehours. VLSI devices from TRW LSI Products exhibit a failure rate many
times better than that obtainable from SSI or MSI logic.

An example of the reliability possible from VLSI is evidenced by tests performed on the MPY016H multiplier. The MPY016H contains 14,000 components (transistors and resistors) configured into 888 Current Mode Logic (CML) gates. Eighteen of these devices were operated for 2,000 hours at $290^{\circ} \mathrm{C}$ junction temperature, and a median life of 8.0×10^{6} hours at $\mathrm{Tj}=125^{\circ} \mathrm{C}$ was demonstrated. This corresponds to a mean time to failure (MTTF) of 3.39×10^{7} hours or a failure rate of 29.5 FITs.

Accelerated life testing at elevated temperatures is used to reduce testing hours to a practical number. The theoretical basis for accelerated temperature testing is the Arrhenius equation that relates failure rate to temperature:
$\frac{1}{\tau_{f}}=A \exp \left(\frac{-E_{a}}{k T}\right)$
where: $\mathrm{tf}=$ time to failure
$\mathrm{A}=\mathrm{a}$ constant
$\mathrm{E}_{\mathrm{a}}=$ activation energy
(approx. 1.02 eV)
$\mathrm{k}=$ Boltzmann's constant
($8.61 \times 10^{-5} \mathrm{ev} /{ }^{\circ} \mathrm{K}$)
$\mathrm{T}=$ absolute temperature $\left({ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273^{\circ}\right.$)

A graphical solution of the Arrhenius equation can be performed. The first step in the evaluation of the test results is to plot the cumulative percent of failures vs. the hours to failure, as shown in Figure 1. Then, the best straight line fit for these points is drawn to represent the failure distribution. The intersection of this line with the 50% failure line is the median lifetime, t_{m}, which in this case is 1500 hours.

An activation energy of 1.02 eV was used for the example in Figure 2. From this data point (a junction temperature of $290^{\circ} \mathrm{C}$ and median lifetime of 1500 hours), a median lifetime of 8×10^{6} hours at $125^{\circ} \mathrm{C}$ is extrapolated. This corresponds to a mean time to failure (MTTF) of 3.39×10^{7} hours, or a failure rate of 29.5 FITs.

Figure 1. Median lifetime, t_{m}, is 1500 hours for 18 samples of the MPY016H multiplier operating at $290^{\circ} \mathrm{C}$ junction temperature.

Figure 2. Median Lifetime is 8.0×10^{6} hours for the MPYO16H at $125^{\circ} \mathrm{C}$, as determined by accelerated reliability testing at $290^{\circ} \mathrm{C}$.

Inherent Radiation Hardness

Radiation Source	Radiation Level (Device Fully Functionall
Gamma Rays	$10^{6} \mathrm{rads}(\mathrm{Si})$
Neutrons	$10^{14} \mathrm{n} / \mathrm{cm}^{2}$
X-Ray (Upset)	2.9×10^{8} rads $/ \mathrm{sec}$
X-Ray (Burnout)	$1.3 \times 10^{12} \mathrm{rads} / \mathrm{sec}$

Table 1. Radiation Resistance Levels
As shown in Table 1, TRW's 3D bipolar process is inherently radiation resistant. High energy radiation excites and ionizes the semiconductor materials and displaces atoms from normal crystal sites, thus, it has a profound effect on device parameters. These effects result from damage induced by neutrons, X-rays, and gamma rays. The damage can change AC and DC parameters, affect functional performance, and in some cases even destroy the device. Often, these effects are temporary, lasting only microseconds, but in some cases they cause permanent damage.

The small geometries and 3D bipolar fabrication process make TRW LSI Products' VLSI devices inherently radiation-hard. This hardness is obtained by structural perfection and cleanliness of the silicon-silicon dioxide interface. As a result, these devices outperform many of the MOS and bipolar devices exposed to similar radiation environments. TRW's multipliers have been found fully functional after an absorbed dose of 10^{6} rads (Si) from a gamma ray source.

Neutron damage also causes a change in device characteristics by reducing h_{fe}, the current gain of the transistor. The 3D transistors are inherently resistant to neutron damage because their narrow base region and low transmit time provide an f_{t} of about 300 MHz for 2 -micron geometries; thus, any small change in h_{fe} has little effect on performance. VLSI multipliers fabricated with the 3D process have survived a dose of $10^{14} \mathrm{n} / \mathrm{cm}^{2}$ without functional failures.

Another source of potential radiation problems comes from X-rays, which can cause circuit upsets or burnouts. An upset can produce permanent effects in regenerative circuits by causing latch-up conditions or changes in logic states.

VLSI multipliers fabricated with 3D technology have experienced no functional failures or latch-ups when subjected to $2.9 \times 10^{8} \mathrm{rads} / \mathrm{sec}$ of Xray upset. The high upset tolerance is again due to small geometries and fast recovery time constants inherent in the 3D process. The resistance to latch-up is also due to the low inverse betas of the NPN and PNP transistors.

The same VLSI multipliers that passed $2.9 \times 10^{8} \mathrm{rads} / \mathrm{sec}$ were tested for X ray burnout with a dose of 1.3×10^{12} $\mathrm{rads} / \mathrm{sec}$. There were no functional failures, latch-ups or burnouts in the samples.

Reliability by Design

Fabrication

Matching the fabrication process to both semiconductor and circuit design, TRW LSI Products achieves optimum performance from VLSI. As a result, both high reliability and good yields are available.

An example of the reliability designed into our bipolar and CMOS processes is the use of a composite metallization system consisting of titanium and
aluminum. This technique virtually eliminates electromigration, which causes voids or hillocks in metallization. Elimination of electromigration is achieved because titanium reduces residual silicon dioxide in the contact windows, providing improved ohmic contact and excellent mechanical adhesion.

Accurate Masks Lead to Reliable Devices The final physical layout of the chip is stored on magnetic tape and applied to a pattern generator which automatically draws the device on a glass reticle. Manual steps are eliminated, thus ensuring accurate masks for device production. The first output from the pattern generator is a glass reticle containing the layout of a single chip that is several times actual size.

The reticle is accurately aligned and the image is reproduced repeatedly to produce the master mask. This mask is less susceptible to plate defects (small pinholes in chrome) than an actual size mask. Projection printing and wafer stepper aligners are used in the wafer fabrication process. In contrast with contact printing, projection masks have a longer useful lifetime because they encounter essentially no physical wear. On the other hand, most contact masks must be discarded after one hundred (or less) operations. Projection masks also provide better results than contact masks because minor defects are less likely to occur.

Controlling Production to Assure Reliability
Once the design is completed, fabrication of the VLSI die can begin. This involves tightly-controlled steps with appropriate levels of inspection, testing and screening.

The fabrication process begins with a silicon wafer. Before any work is done on the wafer, it is inspected for visible surface defects.

Next, the wafer's thickness, flatness and resistivity are measured. A thin wafer can be excessively brittle,
whereas a thick wafer is more difficult to cut into individual dice. Flatness is important in obtaining an accurate projection of the artwork contained on the production masks. Resistivity affects the electrical parameters of the semiconductor devices on the wafer.

After a blank wafer passes inspection, it is processed through many steps. These include diffusion, ion implantation, etching, coating with photoresist, metallization, etc. The masks are aligned within very tight tolerances to ensure proper registration between elements on each die. To protect the finished surface of the wafer against contaminants, silicon dioxide or nitride (glass passivation) is deposited over the entire wafer. Gold is then evaporated onto the back of the wafer to provide a good electrical contact to the substrate. The gold-silicon back contact not only provides good electrical contact to the substrate ground, it also simplifies later attachment of the VLSI die to its package and enhances thermal conduction.

The next step involves computercontrolled testing of each die on the wafer. Known as "die probe," this is an electrical function check for correct operation. If a die is found to be nonfunctional, a drop of ink is automatically placed on it so it can be discarded after die separation.

Figure 3 traces the path of each wafer as it passes through the assembly process that ends with a completely packaged device. Note that each production step has an inspection, screening or test function associated with it.

Figure 3. Inspection, screening or testing lshown in grayl accompanies each assembly step to ensure the reliability of the finished device.

Controlled Assembly Steps

The first step in the assembly process is die separation. This is accomplished with an automated diamond saw that slices the wafer. The saw technique produces a smoother edge and results in higher yields than other die separation methods.

Now the dice are ready to be mounted within the device package. Each die is accurately positioned within the package and a gold-silicon solder preform is placed between the bottom of the die and the package. The combination is heated within very close temperature tolerances, attaching the die to the package.

One of the checks on the die-attach step is temperature calibration of the heating equipment, which is done every four hours. Another check is die shear testing of samples of attached die from each production lot, and is done to detect voids between the die and the package.

After the die is attached to the package, 1.25 mil wires are bonded from pads on the die to package pads that connect to the external pins of the device. To ensure reliable bonds, each bonding machine is monitored every four hours.

To check the wire bonds, device samples are removed from each production lot and subjected to a wirebond pull test. This is accomplished by specialized equipment that pulls bonding wires until they separate from the die. Control charts are maintained to provide trend analysis.

Inspection Enhances Product Quality

After wire bonding, the device goes through a pre-seal microscopic inspection to ensure that it is internally correct and that the workmanship meets all requirements. After passing this inspection, the package is sealed. In sealing, the package moves through a special furnace where a lid is attached to the package.

The sealed package is then gross-leak tested to verify a good hermetic seal. Commercial parts receive complete electrical testing at $25^{\circ} \mathrm{C}$ and then are marked and packaged.

For high reliability parts, military or customer-specified screens and other
tests are performed. These are followed by complete electrical testing over the recommended operating temperature range. Next, the devices are appropriately marked and packaged. Then data are reviewed for acceptability and if requested, a certificate of conformance is generated.

Electrical testing of devices is performed on automated VLSI testers that are programmed to provide unique signal patterns for each of the VLSI circuits. A full-time programming staff is responsible for the maintenance of all test programs.

Mil Spec Testing

TRW LSI Products' high reliability devices are all produced in accordance with customer or military specifications and standards, notably MIL-STD-883, "Test Methods and Procedures for Microelectronics,'" and MIL-M-38510, "General Specifications for Microcircuits.'

These military documents categorize microcircuits into two product assurance classes related to the reliability requirements of the application. Class S requirements are the most stringent because they cover critical applications and Class B requirements are intended for less critical applications and are the most widely used.

MIL-STD-883 contains test methods and procedures for various electrical, mechanical and environmental tests as well as requirements for screening, qualification and quality conformance inspection. Table 2, taken from Method 5004 of MIL-STD-883, lists the 100% screening tests required for these three devices. TRW LSI Products typically screens high reliability devices to the Class B requirements.

Following device screening, samples are removed from the $\operatorname{lot}(\mathrm{s})$ as part of our ongoing Quality Conformance Inspection (QCI) program. This testing is divided into four inspection groups: $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D.

Group A electrical inspection involves dynamic, static, functional and switching tests at maximum, minimum and ambient operating temperatures. Sample sizes and specified tests depend on the product assurance class.

Assurance of the absence of lot-to-lot fabrication related errors is covered by Group B inspection, which includes tests for marking permanency, internal visual and mechanical correctness, bond strength, and solderability.

For the remaining two inspection groups, Group C is oriented toward die integrity and Group D covers package integrity. Among the Group C tests are steady state life, temperature cycling and constant acceleration. Group D includes lead integrity, hermeticity, and thermal and mechanical shock.

The combination of these 100% and sample tests assures that all TRW LSI Products are capable of meeting their specified requirements, and that reliability will meet or exceed customer requirements.

TRW LSI Products has received facilities certification from the Defense Electronics Supply Center of the Department of Defense. This certification is the first step in obtaining MIL-M-38510 QPL (JAN) approval for LSI Products devices (which is expected during 1985) and demonstrates TRW's commitment and capability to perform accurate testing.

Table 2. 100\% Screening Tests (Method 5004)

IntroductionProduct IndexesAdvance Infomation
AD Comverters
Evaluation Boards
D/A ConvertersMultipliersMuthilior-AccumulatorsSpocial Punction ProductisMemoryIStoraye ProductsRollablility
Package Information

At TRW LSI Products, packaging is designed to meet the thermal, mechanical, and electrical needs of the circuit and the customer. TRW LSI Products offers a wide range of package designs to accommodate these requirements. The High Rel user has the option of 16-64 lead fully gold plated DIPs, flat packs and chip carriers.

Two types of chip carriers are included within this wide variety of packages: contact (also known as terminal or leadless) chip carriers, and leaded chip carriers. TRW chip carriers and their equivalent DIP configurations are indicated below:

Chip Carrier IIO	Equivalent DIP Package I/O
68 Contact or Leaded Chip Carrier	48 Lead, 64 Lead Top Brazed DIP (also 64 Leaded Flatpack)
44 Contact Chip Carrier	40 Lead DIP
28 Contact Chip Carrier	24 or 28 Lead DIP
20 Contact Chip Carrier	16 or 18 Lead DIP

Contact chip carriers conform to the JEDEC type C outline with 0.050 inch contact spacing located on plane 1 (heat dissipating side only). The body construction consists of multilayer ceramic with a metallized seal ring for gold solder lid seal. Contact chip carriers are used for mother board leaded conversions of ceramic/compliant PCB attachments by means of surface solder mounting techniques.

Leaded chip carriers are available in the 68 I/O configuration. The body is constructed identically to the 68 Contact Chip Carrier, however the contacts are located on plane 2 (side opposite the heat dissipating side). Gold plated 'Kovar"' leads, (0.018 inch wide $\times 0.006-0.010$ inch thick $\times 0.400$ inch long nominal) brazed to the
contacts complete the package. This type of chip carrier is used for surface and through hole PCB attachments, and when external heat sinks are required.

There are three major advantages to using chip carriers over standard DIP packages. First and foremost is the economy of chip carrier size (see the chart below for approximate area differences in square inches).

	Chip Carrier	DIP Area	Ratio: CC to DIP
VO Count	Area 1	A.	
68	0.903	2.560	0.353
44	0.432	1.200	0.353
28	0.203	0.840	0.242
20	0.123	0.270	0.456

1. Square Inches

Secondly, chip carriers offer a reasonable size package for present and future high pin count circuits. For example, a 68 Contact Chip Carrier is only .965 inches per side and occupies a 0.93 square inch area, which is approximately the equivalent of a 48 Lead DIP (1.440 square inches). When considering the difficulties of handling and inserting a 48 Lead DIP into a PCB, the impracticality of a 68 Lead DIP (3.4 inches $x 1.2$ inches, if available) is evident. The third advantage is that chip carriers optimize electrical and thermal characteristics. Shorter leads of approximately equal length reduce lead resistance, inductance and capacitance. The longest trace on a 64 Lead DIP is almost eight times that of the longest trace on a 68 Contact Chip Carrier. In addition, the thermal impedance characteristics of the chip carrier are approximately equal to those of a DIP. The leaded chip carrier also provides the external heat sink option, allowing the heat generated by the device to be dissipated through the PCB or to the surrounding environment.

Chip carriers can typically reduce board space requirements as much as three to one over dual-in-line packages.

Cerdip packages provide similar mechanical, and identical electrical configurations as the dual-in-line packages without the full gold solder seal and lead finish, making them more economical. The body construction consists of two single layer ceramic pieces that "sandwich" an aluminized Kovar lead frame. The leads are matte tin finished for easy solderability.

Thermal considerations are important aspects of package design. Much computer modeling of die/package relationships is required to ensure the integrity of the products over all temperature ranges. A list of thermal resistivity $(\Theta j \mathrm{c})$, which is material and geometry dependent, is listed for all products in Table 1. This list reflects the relationship of the die and the package only. Өja, a relationship between die, package and outside environment, is dependent on the particular application.

Product/l Package	Maximum Calculated Ojc
MPY008HJ5	$9.557^{\circ} \mathrm{CIW}$
MPY008HC2	7.183

Table 1 Continues on following page.

Product Package	Maximum Calculated Θ jc	Product/ Package	Maximum Calculated Θj jc
TDC1014J7	9.804	TDC1023J7	5.906
TDC1014C3	6.335	TDC1025C1, L1	7.814
TDC1014B7	13.130	T0C1025C, L1	
TDC1016J7	13.985	$\begin{aligned} & \text { TDC1027J7 } \\ & \text { TחC1027R7 } \end{aligned}$	$\begin{array}{r} 8.411 \\ 11.411 \end{array}$
TDC1016J5	13.985		
TDC1016C2	10.781	TDC1028J4	5.142
TDC1016B7	18.139	TDC1029J7	18.548
TDC1018J7	20.140	TDC1030J6	10.740
TDC1018B7	25.240	TDC1030C3	6.952
TDC1018C3	11.897	TDC1030B6	14.289
TDC1019C1, L1, J1	3.404	TDC1043/3	11.364
TDC1021.j9	23.884	TDC1048J6	7.752
TDC1022J1	5.178	TDC1048C3	5.008
		TDC104886	10.566

Table 1

The following codes, one of which is stamped on the back of each TRW LSI device, identify the "country of origin" in which the device was manufactured.

Code	Country of Origin
K	Korea
HK	Hong Kong, BCC
P	Philippines
CP	San Diego, CA, U.S.A.
U.S.A.	U.S.A. Iused for JAN products onlyl
SJ	San Jose, CA, U.S.A.

J1 Package

64 Lead Hermetic Ceramic DIP

Dimensions

J3 Package
64 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.153(3.89)$	$.186(4.72)$	
\mathbf{b}	$.015(0.38)$	$.019(0.48)$	
b_{1}	$.045(1.14)$	$.055(1.40)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$3.200 \pm .030(81.28 \pm 0.76)$
\mathbf{E}			$.800 \pm .010(20.32 \pm 0.25)$
$\mathbf{E}_{\mathbf{1}}$			$.900 \pm .010(22.86 \pm 0.25)$
\mathbf{e}			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.160(4.06)$	
\mathbf{Q}	$.070(1.78)$	$.085(2.16)$	
\mathbf{S}	$.030(0.76)$	$.070(1.78)$	
α	0°	15°	

Ref. 90×00181

J4 Package
48 Lead Hermetic Ceramic DIP

Dimensions

Inches (Milimetirs)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.126(3.20)$	$.166(4.22)$	
\mathbf{b}	$.016(0.41)$	$.020(0.51)$	
b_{1}	$.045(1.14)$	$.055(1.40)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$2.400 \pm .024(60.96 \pm 0.61)$
\mathbf{E}			$.595 \pm .010(15.11 \pm 0.25)$
$\mathrm{E}_{\mathbf{1}}$		$.600 \pm .010(15.24 \pm 0.25)$	
$\mathbf{\theta}$			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.175(4.45)$	
$\mathbf{0}$	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1.09)$	$.057(1.45)$	

Ref. 90×00181

J5 Package

Dimensions

40 Lead Hermetic Ceramic DIP

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.126(3.20)$	$.166(4.22)$	
\mathbf{b}	$.016(0.41)$	$.020(0.51)$	
\mathbf{b}_{1}	$.035(0.89)$	$.045(1.14)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$2.000 \pm .020(50.80 \pm 0.51)$
\mathbf{E}			$.590 \pm .010(14.99 \pm 0.25)$
$\mathbf{E}_{\mathbf{1}}$			$.600 \pm .010(15.24 \pm 0.25)$
\mathbf{e}			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.175(4.45)$	
$\mathbf{0}$	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1.09)$	$.059(1.50)$	

Ref. 90X00181

Inches (Millameters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.126(3.20)$	$.166(4.22)$	
\mathbf{b}	$.016(0.41)$	$.020(0.51)$	
$\mathrm{b}_{\mathbf{1}}$	$.045(1.14)$	$.055(1.40)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$1.400 \pm .014(355.56 \pm 0.36)$
\mathbf{E}			$.590 \pm .010(14.99 \pm 0.25)$
$\mathbf{E}_{\mathbf{1}}$			$.600 \pm .010(15.24 \pm 0.25)$
\mathbf{a}			$.00 \pm .005(2.54 \pm 0.13) 0 . C$.
\mathbf{L}	$.125(3.18)$	$.175(4.45)$	
$\mathbf{0}$	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1.09)$	$.059(1.50)$	
Ref. 90×00181			

J7 Package
24 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.126(3.20)$	$.166(4.22)$	
\mathbf{b}	$.016(0.41)$	$.020(0.51)$	
b_{1}	$.035(0.89)$	$.045(1.14)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$1.200 \pm .012(30.49 \pm 0.30)$
\mathbf{E}			$.590 \pm .010(14.99 \pm 0.25)$
E_{1}		$.600 \pm .010(15.24 \pm 0.25)$	
$\mathbf{\theta}$			$.100 \pm .005(2.54 \pm 0.13) 0 . C$.
L	$.125(3.18)$	$.175(4.45)$	
$\mathbf{0}$	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1.09)$	$.057(1.45)$	

Ref. 90×00181

J8 Package
18 Lead Hermetic Ceramic DIP

Ref. 90×00181
Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
A	. 110 (2.79)	. 150 (3.81)	
b	. 016 (0.41)	. 020 (0.51)	
b_{1}	. 049 (1.24)	. 059 (1.50)	
c	. 009 (0.23)	. 012 (0.30)	
0			. $900 \pm .010(22.86 \pm 0.25)$
E			. $295 \pm .008(7.49 \pm 0.20)$
E_{1}			. $300 \pm .010(7.62 \pm 0.25)$
e			. $100 \pm .005(2.54 \pm 0.13)$
1	. 125 (3.18)	. 170 (4.32)	
0	. 025 (0.64)	. 045 (1.14)	
S	. 043 (1.09)	. 057 (1.45)	
Ref. 90X00181			
SEATING PLANE			

J9 Package
16 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.110(2.79)$	$.150(3.81)$	
b	$.016(0.41)$	$.020(0.51)$	
b_{1}	$.049(1.24)$	$.059(1.50)$	
c	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}	$.792(20.12)$	$.808(20.52)$	
\mathbf{E}			$.295 \pm .008(7.50 \pm .205)$
$\mathrm{E}_{\mathbf{1}}$			$.300 \pm .010(7.62 \pm 0.25)$
\mathbf{B}			$.100 \pm .005(2.54 \pm 0.13)$
L	$.125(3.18)$	$.170(4.32)$	
\mathbf{a}	$.025(0.64)$	$.045(1.14)$	
\mathbf{S}	$.043(1.09)$	$.057(1.45)$	

Ref. 90×00181

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}		$.255(5.72)$	
\mathbf{b}	$.014(0.36)$	$.023(0.58)$	
b_{1}	$.030(0.76)$	$.070(1.78)$	
\mathbf{c}	$.008(0.30)$	$.015(0.38)$	
\mathbf{D}			$1.465 \pm .025(37.21 \pm 0.64)$
\mathbf{E}	$.510(12.95)$	$.590(14.99)$	
\mathbf{E}_{1}			$.600 \pm .010(15.24 \pm 0.25)$
\mathbf{e}			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.200(5.08)$	
\mathbf{a}	$.015(0.38)$	$.075(1.91)$	
\mathbf{S}		$.098(2.49)$	
α	0°	15°	
Ref. 90×00181			

C1 Package
68 Contact Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)			
$\mathbf{S y m}$	Min	Max	Nom \pm Tol.
\mathbf{A}	$.082(2.08)$	$.100(2.54)$	
$\mathbf{B}_{\mathbf{1}}$	$.020(0.51)$	$.030(0.76)$	
$\mathbf{D}_{\mathbf{1}}$	$.070(1.78)$	$.080(2.03)$	
\mathbf{E}			$.9525 \pm .0125(24.19 \pm .3175)$ sq.
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13) 0 . C$.
\mathbf{h}			$.040 \pm .005(1.02 \pm 0.13) 3$ PLCS
\mathbf{i}			$.020 \pm .005(0.51 \pm 0.13) 3$ PLCS
\mathbf{L}	$.042(1.07)$	$.058(1.47)$	
$\mathbf{L}_{\mathbf{2}}$	$.080(2.03)$	$.090(2.29)$	

Ref. gox00181

C2 Package

44 Contact Hermetic Ceramic Chip Carrier

C3 Package

28 Contact Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)			
$\mathbf{S y m}$	Min	Max	Nom \pm Tol.
\mathbf{A}	$.064(1.63)$	$.078(1.98)$	
$\mathbf{B}_{\mathbf{1}}$	$.020(0.51)$	$.030(0.76)$	
$\mathbf{D}_{\mathbf{1}}$	$.070(1.78)$	$.080(2.03)$	
\mathbf{E}			$.450 \pm .008(11.43 \pm .020)$ sq.
$\mathbf{日}$			$.050 \pm .005(1.27 \pm 0.13) 0 . \mathrm{C}$.
\mathbf{h}			$.040 \pm .005(1.02 \pm 0.13) \times 45^{\circ}, 3$ PLCS
\mathbf{j}			$.020 \pm .005(0.51 \pm 0.13) \times 45^{\circ}, 3$ PLCS
\mathbf{L}	$.045(1.14)$	$.055(1.40)$	
$\mathbf{L}_{\mathbf{2}}$	$.080(2.03)$	$.090(2.29)$	

Ref: 90X00181

68 Leaded Hermetic Ceramic Chip Carrier

Dimensions

Inchas (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.082(2.08)$	$.100(2.54)$	
\mathbf{b}	$.016(0.41)$	$.020(0.51)$	
\mathbf{c}	$.008(0.20)$	$.012(0.30)$	
\mathbf{E}			$.9525 \pm .0125(24.19 \pm .3175)$ sq.
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13) 0 . C$.
L	$.350(8.89)$	$.400(10.16)$	

Ref. 90X00181

F1 Package
64 Leaded Hermetic Ceramic Flatpack

Dimensions

Inchas (Millimaters)			
Sym	Min	Max	Nom \pm Tol.
A	$.064(1.63)$	$.079(2.01)$	
b	$.016(0.41)$	$.020(0.51)$	
c	$.007(0.18)$	$.010(0.25)$	
E			$.900 \pm .009(22.86 \pm 0.23)$
$\mathbf{E}_{\mathbf{2}}$			$.800 \pm .008(20.32 \pm 0.20)$
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13)$
\mathbf{L}	$.350(8.89)$	$.400(10.16)$	

Ref. 90×00181

N9 Package

Dimensions

16 Lead Plastic DIP

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
A		. 149 (3.78)	
b	. 016 (0.47)	. 020 (0.51)	
b_{1}	. 058 (1.47)	. 062 (1.57)	
c	. 011 (0.28)	. 013 (0.33)	
0			. $757 \pm .003(19.23 \pm 0.76)$
E	. 244 (6.20)	. 252 (6.40)	
E_{1}			. $300 \pm .005(7.62 \pm 0.13)$
-			. $100 \pm .005(2.54 \pm 0.13)$
1	. 125 (3.18)	. 130 (3.30)	
0	. 011 (0.28)	. 013 (0.33)	
S		. 030 (0.76)	
α	0°	16°	

Ref. 90×00181

Introduretion
Produre indexes
Aduance lnformaxitum
Will Conventirs
Evaluadian Boards
Di/n Conveners
Multipliers
Whatipher-Acrumulators
Gmocial Function Produrts
Momurylstaraje Produras
Tolianility
Paclage lmanmation
Glossary
Orderning lmitumation
Aphlication Motes Ant Rowims (Listiags)

ACC Accumulate (Control)

An active-HIGH control signal which causes the contents of the product register to be added to (or subtracted from) the output of the multiplier in a multiplier-accumulator.

$A_{\text {GND }}$ Analog Ground

Ground reference point for analog power supply and analog circuitry.

BW Full Power Bandwidth

Bandwidth specified for a flash Analog-to-Digital (A/D) converter is different from the bandwidth specification given for a purely analog device. Before attenuation becomes a significant factor in the performance of the converter, other problems may arise, leading to degraded performance. Spurious and missing codes might be encountered when the analog input frequency exceeds the bandwidth specification. Bandwidth for an A/D converter is the maximum frequency full-scale input sinewave that can be accurately quantized by the A / D converter without spurious or missing codes. A spurious code is a code which is grossly inaccurate, such as when the input signal is near mid-scale and an output code which is a full-scale output is generated. When the signal is reconstructed with a D/A converter,
this spurious code looks like a glitch, and is therefore sometimes referred to as a glitch. Bandwidth is measured with worst case power supply conditions and sampling at the maximum sampling rate. (F_{S}).

The test used to determine the bandwidth of an A/D converter is the "Beat Frequency Test." The principle behind this test is to use "aliasing"' to convert a high-frequency input signal to a low-frequency output signal which is easier to analyze. This is done by providing the A / D converter with a high-frequency sine wave input, and then sampling the input at a rate offset by a small delta in frequency from an integral (N) multiple of the input frequency. A D / A converter is given every Nth A/D output; this produces an output signal of the A / D which is an aliased version of the input. This is shown in figure 1, where the upper high frequency input is sampled at a rate slightly faster than three times its frequency (A/D samples are taken at the locations of the upper bars), every third A/D sample (lower bars) is presented to a D/A converter, and the resultant output signal is the bottom low frequency signal. In a typical setup, the analog reconstruction (D/A output) is examined on an oscilloscope

Figure 1. Beat Frequency Test
for spurious and missing codes. Figure 2 shows a typical test set-up. A spurious code is defined as a noncontinuous change in the output of the A/D which is not reflected in the input signal. Figure 3 shows an example of a spurious code in the reconstructed output of an A/D converter. A missing
code is defined as a code which has a code size less than the minimum specified (see definition for Q , code size). Figure 4 shows an example of the output of an A/D which has missing codes. The photographs for figures 3 and 4 were both obtained with a beat frequency test.

Figure 2. Beat Frequency Test Set-Up

Figure 3. Spurious Code

BWR Bandwidth, Reference

BWR specifies the maximum frequency at which the reference ($\mathrm{V}_{\mathrm{REF}}$) may be exercised. It is a small signal parameter since in many cases the reference may only be varied by a small portion of its full-scale value. Exceeding the BWR specification may result in the same types of coding errors encountered when the BW specification is violated.

C ${ }_{\boldsymbol{I}}$ Digital Input Capacitance

The amount of capacitive loading

Figure 4. AID Converter With Missing Codes
present at a digital input. Digital input capacitance is measured with a capacitance bridge, applying a 1 MHz signal to the input.

$C_{\text {IN }}$ Input Equivalent Capacitance

$\mathrm{C}_{\text {IN }}$ is an approximation of the largely capacitive input impedance of a flash A/D converter. The input capacitance is slightly dependent upon the DC level of the analog input voltage and the input frequency. The input equivalent capacitance must be taken into account
when designing a buffer to drive a flash A/D.

The method used to test input capacitance involves sending a highfrequency signal through a transmission line to the analog input, and determining the input impedance by analysis of the reflected wave. This type of test is performed by an R.F. impedance analyzer.

Co Output Capacitance

Parasitic capacitance between the output terminal of a device and ground.

CONV Convert (Input)

An input signal whose rising edge initiates sampling in a flash analog-todigital converter. The input signal is quantized after a delay of $\mathrm{t}_{\mathrm{STO}}$.

CREF Input Capacitance, Referance

Parasitic capacitance between the reference input terminal and analog ground.

DG Differential Gain

Differential Gain is defined as "The difference between (1) the ratio of the output amplitudes of a small highfrequency sine wave signal at two stated levels of a low frequency signal on which it is superimposed and (2) unity" [1]. Distortion-free processing of a color television signal demands that
the amplitude of the chrominance signal not be affected by the luminance function. This is a relevant specification for the video industry since the saturation of the color being shown is represented by the amplitude of a small signal superimposed upon another signal which determines the brightness of the color. The standard method for measuring the differential gain of a device is by using a standardized test signal, known as a modulated ramp (refer to figure 5). The output of the A / D is then reconstructed by a reference D / A and low pass filter; the resultant signal is displayed on a vectorscope which is defined in reference [2]. During DG measurements the vectorscope display will be fuzzy due to quantizing errors in the A / D and D / A. The measurement requires interpretation of the peak-to-peak curvature of the center of the waveform. Figure 6 shows a vectorscope photo with DG testing in progress. The center line is indicated with a dashed line. There are theoretical bounds on differential gain performance described in [3]. The number specified on an A/D converter data sheet is the difference between the actual differential gain of the device and the theoretical performance. Figure 7 shows the typical test set-up that might be used in Differential Gain testing, which is described in more detail in reference [$\mathbf{2]}$].

Figure 5. Modulated Ramp Test Signal

Figure 6. Differential Gain, Example Results

Figure 7. Differential Gain And Phase, Test Set-Up

DGD Digital Ground

Ground reference point for digital power supply and digital circuitry.

DP Differential Phase

Differential Phase is defined as "the difference in output phase of a small, high-frequency, sine wave signal at the two stated levels of a low frequency signal on which it is superimposed" [1]. Distortion-free processing of a color television signal demands that the phase of the chrominance signal not be affected by the luminance function.

Differential phase errors appear on the T.V. screen as changes in the hue of the colors (tint) as the brightness changes. Differential phase testing is very similar to differential gain testing. The equipment shown in figure 7 is identical, and the display shown in figure 8 is similar to that of figure 6 . The results are analyzed in the same manner as Differential Gain, taking the center line of the fuzzy line and finding its maximum peak-to-peak deviation. Reference [2] also describes differential phase testing of A/D converters.

Figure 8. Differential Phase, Example Results

EAP Aperture Error

Since there is an aperture of non-zero duration during which the A/D looks at a signal before conversion, there are errors introduced in the conversion. These errors are the effect of: aperture time (the amount of time during which the input signal is considered before conversion), aperture time uncertainty (the variation in aperture time) and aperture jitter which is the uncertainty in the starting instant of the aperture time. All of these effects are combined in a single parameter, Aperture Error (E_{AP}). Aperture errors cause a degradation of the SNR of the A/D converter with higher analog input frequencies and are estimated based upon this SNR degradation.

E_{G} Absolute Gain Error

The variation in the slope (gain) of the transfer function of a converter with respect to an established ideal transfer function. This error may be eliminated by adjusting the reference voltage or current applied to the device.

ELD Linearity Error, Differential

Differential non-linearity is a measure of the uniformity of the code midpoint
spacing. Differential linearity is defined as the maximum of the difference between adjacent code midpoints and the width of one Least Significant Bit (LSB), divided by the width of an ideal LSB (all units are in LSBs). If there is a missing code, the center of that code is considered to be the transition which skips that code. A differential nonlinearity calculation is shown in figure 9. Another method that can be used to determine differential non-linearity is by a subtractive ramp test which examines the difference between adjacent quantization levels (see E_{LI}). This method is shown in figure 10. Differential non-linearity is sometimes measured with a statistical (histogram) test. In the histogram test the A/D converter is provided a full-scale sinusoidal analog input, and a large number of output samples are collected. The probability of obtaining each code is then calculated and the actual ratio of number of samples at that code to total number of samples is compared to this ideal probability. The differential linearity is then estimated, with the assumption that an increase in code width would result in a corresponding increase in the number of occurrences of that particular code.

Figure 9. Differential Linearity Error

Figure 10. Differential Non-Linearity Measurement

ELI Intagral Linearity Error

Integral linearity is a measure of how the ideal and actual transfer functions of the A/D compare. The integral linearity error is the maximum difference between the actual and ideal quantization levels (the midpoint between adjacent threshold levels). A typical A/D transfer function showing different types of linearity errors is shown in figure 11. There are several methods for measuring integral linearity. Zero-based linearity is used mainly in bipolar systems with adjustments that allow the user to null any errors at the origin (the center of the transfer function). To measure zero-based integral linearity, a "straight line of best fit" is drawn through the origin. Then the maximum deviation of the actual transfer function from this line is determined. Terminalbased linearity measurements are similar to the zero-based; however the line is drawn between the two end points of the transfer function. The same difference signal is generated, and the same method is used for
interpreting the results. The last common method for measuring independent-based integral linearity involves drawing the "straight line of best fit" through the transfer function, independent of the mid or end points, then calculating the error. When measuring integral linearity, a common test is the subtractive ramp test. A lowfrequency ramp is digitized by the A / D converter, then the signal is reconstructed with a D/A converter. The reconstructed signal is now subtracted from the original ramp with a differential amplifier and the difference (error signal) is displayed on an oscilloscope. The sawtooth wave displayed on the oscilloscope can now be examined for integral non-linearities. Figure 12 shows the test set-up for the subtractive ramp test, and figure 13 is a photo of the oscilloscope screen during such a test. Figures 14,15 and 16 show the measurement of zerobased, terminal-based and independentbased linearity error using the subtractive ramp test.

Figure 11. AID Converter Transfer Function

Figure 12. Subtractive Ramp Test Set-Up

Figure 13. Subtractive Ramp, Example Results

Figure 14. Zero-Basad Linearity Massurement

Figure 15. Terminal-Based Linearity Measurement

Figure 16. Independent-Based Linearity Measurement

ELI Integral Linearity Error (Terminal-Based) $^{\text {(I) }}$ The maximum difference between the actual transfer characteristics of a converter and the straight line that passes through the end-points (terminals) of that data.

E_{OB}, E_{OT} Offset Voltage Bottom, Offset Voltage Top

Figure 17 shows the block diagram for a typical 6-bit flash A/D converter. There is a parasitic (R_{p}) resistance between the R_{T} lead and the first resistor. The voltage drop across this resistor is an offset voltage between the first code quantization level and the voltage applied to R_{T}. This offset is referred to as E_{OT}. The similar offset voltage at the bottom of the resistor chain is $E_{O B}$. $E_{O T}$ and $E_{O B}$ are measured by applying a known voltage to R_{T} and R_{B} and measuring the difference between these voltages and the voltages of the first and last code transitions of the A / D converter. In an
ideal A / D, the first transition occurs at a point $1 / 2$ LSB more negative than the top of the range. Therefore, if the input voltage to the device is set $1 / 2$ LSB closer to R_{B} than zero, and $V_{R T}$ is adjusted to get toggling between codes 0 and 1, then the voltage on R_{T} will be E_{OT}.
$\mathrm{E}_{\text {OBS }}$, EOTS Offset Errors, Sense Connected To minimize the effect of offset errors, some A / D converters have sense outputs. These allow the use of a sense pin, which carries minimal current to close a feedback path around the reference input, resulting in lower offset errors. Figure 18 shows a block diagram for an A/D converter which has sense connections. Figure 19 shows how a feedback path is closed around an operational amplifier to make use of the offset sense point. E are the residual offset errors when the sense leads are used.

Figure 17. 6-Bit Flash AID Block Diagram

Figure 18. 9-Bit Flash AD Block Diagram

Figure 19. Driving A Reference With The Sense Connection

FS Maximum Sampling Rate

F_{S} is a sampling rate (samples per second) at which the converter is guaranteed to operate. Most flash A/D converters will operate reliably at any rate up to the maximum sampling rate, which is measured with worst case supply, worst case duty cycle conditions, and maximum full-power input frequency.

$\mathbf{F T}_{\mathbf{C}}, \mathrm{FT}_{\mathbf{D}}, \mathrm{FT}_{\mathbf{R}}$ Feedthrough \cdot clock, -data, -reference

A measure of unwanted leakage from an input port of a device to another port (e.g., the analog output of a D/A converter), which is expressed in decibels relative to the full-scale value of the output. Clock and data feedthrough refer to spurious output noise arising from logic transitions at the clock and data inputs. Reference feedthrough relates to output variation as a function of reference variation in a D/A converter when data inputs correspond to a zero output.

Gc Peak Glitch Charge

The maximum product of the glitch current and the duration of the glitch; usually given in units of picoCoulombs (pC). Since glitches tend to be symmetric, the average glitch charge is usually much less than the peak glitch charge.

G_{E} Peak Glitch "Energy" (Area)

The maximum product of the glitch voltage and the duration of the glitch; usually given in units of picoVoltseconds ($\mathrm{pV}-\mathrm{sec}$). Since glitches tend to be symmetric, the average glitch area is usually much less than the peak glitch area.

G_{j} Peak Glitch Current

The transient current deviation from the ideal output current during an input code transition.

Gy Paak Glitch Voltage

The transient voltage deviation from the ideal output voltage during an input code transition.

$I_{\text {CB }}$ Input Current, Constant Bias ${ }^{1}$

The current drawn by the input of the
A/D converter is dependent upon frequency and voltage level of the analog input. The current is sometimes also dependent upon the phase of the convert signal. This dependence is explained under ISB, synchronous bias current; however, neglecting all of these second order effects, the current drawn by the input of the A / D is I_{CB}. This can be thought of as the sum of the comparator input bias currents which is dependent upon the input voltage level.

Icc Supply Current ${ }^{1}$

${ }^{I_{C C}}$ is the current drawn by the device from the V_{CC} supply. I_{CC} is a positive valued parameter. I CC decreases with increasing temperatures in bipolar devices and is measured with V_{CC} at the maximum rated value.

IDDL Loaded Supply Current

Current flowing into the positive power supply terminals with all inputs and outputs toggling at the maximum clock rate, and an output test load of 500 Ohms and 40 pF for CMOS devices. ${ }^{\text {I DDL }}$ is the current measurement under worst case conditions. In addition to the internal or unloaded supply current, the output buffer now requires current to charge and discharge the load capacitance. This parameter is frequency-dependent. (See IDDQ and IDDU for CMOS supply current under different measurement conditions.)

IDDO Quiescent Supply Current

Current flowing into the positive power supply terminals under quiescent conditons for CMOS devices. If the inputs are tied LOW, and the outputs are in a high-impedance state, no gates

Note: 1. All currents are defined as positive when flowing into the device.
are switching. As a result, the pchannel and n-channel transistors that compose the basic CMOS gate are neither charging nor discharging stray capacitance, and only leakage current flows into the positive supply. (See IDDU and IDDL for CMOS supply current under different measurement conditions.)

IDDU Unloaded Supply Current

Current flowing into the positive power supply terminals of a CMOS device with all inputs toggling at the maximum clock rate, and the outputs in a highimpedance state. With the device unloaded, IDDU includes only the components that contribute to the internal current: the leakage current when the gate is in a " 0 '" or " 1 "' state, and the current drawn during a gate transition. An increase in average gate switching frequency will lead to an increase in current. (See IDDQ and IDDL for CMOS supply current under different measurement conditions.)

${ }^{\text {E }}$ E Supply Current ${ }^{1}$

I_{EE} is the current drawn by the device from the $V_{E E}$ supply. Since $I_{E E}$ is referenced to a negative supply, it is a negative valued parameter (current flows out of the device). In TRW bipolar devices, IEE decreases with increasing temperatures and is measured with the maximum (most negative) rated V_{EE}.

If Input Current, Maximum Input Voltage ${ }^{1}$ Current flowing into a digital input under worst-case power supply and input voltage conditions.

${ }^{1}$ IH Input current, Logic HIGH ${ }^{1}$

I_{IH} is the current drawn by a digital input to the device when the potential of the terminal is in the logic HIGH state.

IIL Input Current, Logic LOW ${ }^{1}$
$\mathrm{I}_{\text {IL }}$ is the current drawn by a digital input to the device when the potential of the terminal is in the logic LOW state.

$I_{\text {OF }}$ Output Offset Current ${ }^{1}$

The residual output current of a D / A converter that flows when all internal current sinks are switched off.
I_{OH} Output Curtent, Logic HIGH ${ }^{1}$
I_{OH} is the maximum current that can be forced into (this is a negative value, therefore current flow is out of the device) an output terminal in the HIGH state, while potential at the terminal remains within the V_{OH} specification.

$\mathbf{I O L}_{\text {OL }}$ Output Current, Logic LOW ${ }^{1}$

I_{OL} is the maximum current that can be forced into an output terminal on the LOW state, while the potential at the terminal remains within the V_{OL} specification.

ION Maximum Current, - Output ${ }^{1}$

The maximum current that flows into the "OUT-" output of a D/A converter.

Iop Maximum Current, + Output ${ }^{1}$

The maximum current that flows into the "OUT+"' output of a D/A converter.

IoS Output Short Circuit Current ${ }^{1}$

The current flowing from an output when the output is short circuited to ground while in the logic high state. This specification is usally indicated only on TTL compatible devices.

$I_{\text {REF }}$ Reference Current

Current Flowing into or out of the reference input terminals of an A/D or D/A converter.

ISB Input Current, Synchronous Bias

In some flash converters, the current flowing into the analog input varies slightly depending upon the state of the CONV signal. If the comparators are in the track mode (CONV LOW), then the input current is greater, and the amount of this current change is ISB, synchronous bias current.

MSPS Megasamples Per Second

The abbreviation for the conversion rate (clock or convert frequency) at which an A / D or D/A converter is operating.

NPR Noise Power Ratio

"NPR is the decibel ratio of the noise level in a measuring channel with the baseband fully noise loaded to the level in that channel with all of the baseband noise loaded except the measuring channel: [4]. To test NPR, the input of

Note: 1. All currents are defined as positive when flowing into the device.
the A / D converter is presented with white noise having a frequency spectrum from low frequencies up to $1 / 2$ the sampling rate. The power of the input noise is adjusted so that the converter is fully loaded, but not clipping excessively. The output of the A/D converter is then converted back into an analog signal with a D/A. The D/A output is passed through a very narrow band pass filter, and the output power of the signal is measured. The process is now repeated, but with a notch filter at the input of the A / D converter. The ratio of the two measured powers is the Noise Power Ratio, and is often expressed in dB:

$$
N P R=10 \log _{10} \text { (ratio) }
$$

NPR is often used to determine how much noise will "bleed'" into one channel from other channels in a broadband, frequency domain multiplexed system.

PREL Preload (Control)

A control signal which determines (in conjunction with the three-state control pins) which of three signals is to be loaded into the output register at the rising edge of the product clock: the result of the calculations which were just performed, the present contents of the output register, or a value applied to the output port by external circuitry.

PSS Power Supply Sensitivity

A measure of DC variation of an output under consideration (e.g., the analog output of a D/A converter) as the power supply voltage is varied around the nominal value. PSS is specified in milliAmps or milliVolts of output change per Volt of supply change.

PSRR Power Supply Rejection Ratio

A measure of high-frequency noise rejection from the power supply inputs of a device to the output under consideration (e.g., the analog output of a D/A converter). Expressed in decibels relative to full-scale output. Generally, PSRR decreases with increasing frequency and for this reason is often specified at more than one frequency.

Q, CS Code Size

Code size is the size of the individual codes, from code transition to code transition. It is often expressed as a
percentage of the ideal code size. The ideal code size is given by:

Where N is the number of bits of resolution of the A/D converter.

Q is also defined as the total number of quantizing levels or codes output by a converter (2 y) with N being the number of bits of resolution provided by the A/D.

RES Resolution

The smallest level separation (input level of A/Ds and output level for D/As) that is unambiguously distinguishable over the full-scale range of a converter. It is expressed as a percentage of full-scale or as an equivalent number of bits, usually the number of data inputs of a D/A or data outputs of an A/D converter.

RIN $_{\text {IN }}$ Analog Input Impedance

Although the input impedance of a flash A/D converter is largely capacitive, it does have a resistive component which is approximated with R_{IN} the input resistance. R_{IN} varies with the input voltage.

R_{0} Equivalent Output Resistance

The effective equivalent resistance between an analog output terminal of a D/A converter and analog ground.

R $_{\text {REF }}$ Reference Resistance

$\mathrm{R}_{\text {REF }}$ is the total resistance of the entire reference resistor chain, including parasitics. It can be measured directly between R_{T} and R_{B}. Another method of testing $R_{R E F}$ is to calculate it from $I_{R E F}$ and ($\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}$).

RS Register Shift (Control)

A control signal which changes the output format to permit a valid result for the product of two most negative numbers.

SNR Signal-To-Noise Ratio

The signal-to-noise ratio is the ratio of the value of the signal to that of the noise. The values of the signal and of the noise are usually RMS, but for some signals such as video, it is defined as peak-to-peak signal vs RMS noise, because it is difficult to
determine the RMS value of a video signal, and the meaning of peak-to-peak noise is not a useful parameter. The signal-to-noise ratio of an A/D converter provides a good figure of merit for the dynamic accuracy of the device. To test SNR, the A/D converter is given a high purity sine wave input. This is sampled at a nonharmonic sampling rate and the output of the A/D converter is stored in memory. The data from the A/D are then transformed into the frequency domain with a Fast Fourier Transform (FFT) and analyzed to determine the SNR. When analyzing the data most of the "'noise" will be located at the harmonic frequencies; therefore the SNR is a good estimate of total harmonic distortion. The analysis method takes the RMS or peak-to-peak voltage of the signal, and divides it by the RMS value of the noise. SNR is usually expressed in dB with the formula below:

$$
\text { SNR }=20 \log _{10} \frac{\text { Signal }}{\text { Noise }}
$$

SUB Subtract (Control)

A control signal which determines whether the present contents of the output register is added to (SUB = LOW) or subtracted from (SUB = HIGH) the product at the output

T_{A} Ambient Temperature

For standard temperature range devices, the temperature range is specified in terms of the ambient temperature (still air) surrounding the converter.

Tc Case Temperature

For extended temperature range devices, the temperature range is specified in terms of the case temperature.

TC Two's Complement (General Definition)

Two's complement is a binary numbering system in which the Most Significant Bit (MSB) carries the sign information by virtue of a negative place value. In two's complement, an MSB of ZERO signifies a positive number, a ONE denotes a negative number, and the negative number order is reversed from straight binary. That is, the number which consists of all ONEs is the least negative number, and the number which consists of a ONE
and all ZEROs is the most negative number.

TC Two's Complement (Control)

An active HIGH signal which designates one or both inputs as two's complement numbers. If TC is LOW, unsigned magnitude processing will be used. Note that some parts allow independent designation of each input as two's complement or unsigned magnitude, and other parts do not.

$\mathbf{T C}_{\mathbf{G}}$ Gain Error Tempco

The factor which linearly approximates the variation with temperature of Absolute Gain Error, E_{G}.

TCO Temperature Coofficient

T_{CO} is the factor which linearly approximates the variation with temperature of Offset Errors (E_{OT}, E_{OB}). This is a first order approximation and the actual temperature coefficient is a function of temperature which may exceed the maximum of T_{CO} in some temperature ranges.

${ }^{1}$ D Output Delay

${ }^{t} D$ is the time between the rising edge of the CONV signal and the time at which the output data from the A / D is guaranteed to be stable. On many TTL flash A/D converters, this delay can be reduced by the addition of pull-up resistors from the data outputs of the device to the V_{CC} supply. This output delay is measured with the test load specified in the corresponding data sheet.

th Hold Time

The time period after the operative edge of CLK signal during which input data must be constant in order to be correctly registered.

tho Output Hold Time

The time from the rising edge of the convert signal to the time when the output data lines begin to change.

tpW Pulse Width

The time period between consecutive edges of a logic pulse.

tpWH Pulse Width High

tpwH is the minimum width high CONV pulse with which the A/D will accurately operate if all other specifications are met. tpWH is measured from the 1.3 Volt level of the rising edge of the CONV signal to the 1.3 Volt level of the falling edge of the CONV signal on TTL compatible devices. If the CONV signal has a low portion of ${ }^{\text {PWWL}}$, and a high portion of ${ }^{\text {tPWH, }}$, the device may be exceeding F_{S} in which case it may not operate properly. The performance of many A/D converters performance can be improved by making tPWH as long as possible.

tpWL Pulse Width Low

tpWL is the minimum width low CONV pulse with which the A/D will accurately operate if all other specs are met. tPWL is measured from the 1.3 Volt level of the falling edge of the CONV signal to the 1.3 Volt level of the rising edge of the CONV signal on TTL compatible devices.

TRIL Three-State Least Significant Product (Control)

A control which enables the output state for the least significant product when in the LOW state, and places the output stage for the least significant product in the high-impedance state when HIGH.

TRIM Three-State Most Significant Product (Control)

A control which enables the output stage for the most significant product when in the LOW state, and places the output stage for the most significant product in the high-impedance state when HIGH.

ts Setup Time

The time period prior to the operative edge of the clock signal during which input data must be stable in order to be correctly registered.

TSL Three-State Least Significant Product (Control)

A control which enables the output stage for the least significant product when in the LOW state, and places the output stage for the least significant product in the high-impedance state when HIGH. A HIGH on this control also forces the most significant product
section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

TSM Threa-State Most Significant Product (Control)

A control which enables the output stage for the most significant product when in the LOW state, and places the output stage for the most significant product in the high-impedance state when HIGH. A HIGH on this control also forces the most significant product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

${ }^{\text {t }}$ STO Sampling Time Offset

Sampling time offset is the time interval between the rising edge of the CONV signal and the actual instant at which the A/D samples the input signal.

TSX Three-State Extended Product (Control)

A control which enables the output stage for the extended product when in the LOW state, and places the output stage for the extended product in the high-impedance state when HIGH. A HIGH on this control also forces the extended product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

${ }^{\text {tTR }}$ Transient Response

${ }^{\mathrm{t}} \mathrm{TR}$ is the amount of time required for the converter to recover from a fullscale input transition, before valid data can be produced. The comparators in a flash A/D converter have a finite slew rate and a finite settling time. If a device is presented with a full-scale input change (which exceeds that slew rate), it takes ${ }^{\mathrm{t}} \mathrm{TR}$ for the input circuit to recover and provide accurate data.

VAGND Analog Ground Voltage

Potential of the analog ground terminal with respect to the digital ground terminal.

VCC Positive Supply Voltage

The positive power supply voltage required for operation of a device.
$\mathbf{V}_{\text {EEA }}, \mathrm{V}_{\mathrm{EED}}, \mathrm{V}_{\mathrm{EE}}$ Supply Voltage
V_{EE} is the negative supply voltage. On converters with both digital and analog
negative supplies, the analog supply is denoted $\mathrm{V}_{E E} \mathrm{~A}$, and the digital supply is $\mathrm{V}_{\mathrm{EE}} \mathrm{D}$.

VICM Input Voltage, Common Mode Range The operational limit over which a differential logic input voltage may be varied.

VIDF Input Voltage, Differential

The voltage difference between a logic input and its complementary input.

$\mathbf{V}_{\mathbf{I H}}$ Input Voltage, Logic HIGH

The voltage required on a digital input in order for that input to be forced to a valid logic HIGH state.

VIL Input Voltage, Logic LOW

The voltage required on a digital input in order for that input to be forced to a valid logic LOW state.

VOCN Voltage Compliance, - Output

A measure of the range over which the output voltage of a current generator may be varied. $\mathrm{V}_{\mathrm{OCN}}$ is the voltage compliance of the - output of a D / A converter.
$V_{\text {OCP }}$ Voltage Compliance, + Output
$\mathrm{V}_{\mathrm{OCP}}$ is the voltage compliance of the

+ output of a D/A converter. See $\mathrm{V}_{\mathrm{OCN}}$.

\mathbf{V}_{OH} Output High Voltage

The potential at an output terminal in the high state with respect to digital ground, when loaded with the test load defined in the data sheet. V_{OH} is measured with V_{CC} at a minimum.

$V_{0 L}$ Output Low Voltage

The potential at an output terminal in the low state with respect to digital ground, when loaded with the test load defined in the data sheet. V_{OL} is measured with V_{CC} set to the maximum value.

VoZS Output Voltage, Zero Scale

The residual output voltage of a D / A converter that appears at its output when all internal current sinks are switched off.

$V_{\text {RB }}$ Reference Bottom Voltage

The potential of the R_{B} terminal with respect to analog ground.

$V_{\text {RM }}$ Reference Middle Voltage

The potential of the R_{M} terminal with respect to analog ground.

$V_{\text {RT }}$ Reference Top Voltage

The potential of the R_{T} terminal with respect to analog ground.

References

[1] IEEE Standard Dictionary of Electrical and Electronic terms, IEEE Std 100-1977, p. 177.
[2] IEEE Standard Definitions of Terms Relating to Television, IEEE Std 201-1979.
[3] F.A. Williams and R.K. Olsen, "Quantization Effects on Differential Phase and Gain Measurements," SMPTE Journal, November, 1982.
[4] The White Noise Book, M.J. Kant.

Bibliography

Gray, P.R., and R.G. Meyers. Analysis And Design Of Analog I.C.s. New York: Wiley, 1977.
Kester, Walter. "Characterizing and Testing A/D and D/A Converters for Color Video Applications.' ${ }^{\prime}$ IEEE
Transactions on Circuits and Systems: July 1978, p. 539.
Liao, Samuel Y. Microwave Devices and Circuits. New Jersey: Prentice-Hall 1980. Pratt, William J. "Don't Lean on A/D Converter Specs." Electronic Design: April 12, 1974, p. 80.
Sauerwald, Mark "Understanding Flash A/D Converter Terminology." TRW LSI Products Application Note TP-30: 1984.
Smith, Bryan F. "Understanding HighSpeed A/D Converter Specifications." Computer Labs Application Note: 1974.
Tewksbury, S.K. et al. "Terminology Related To The Performance of S / H, A/D and D/A Circuits." IEEE Transactions on Circuits and Systems: July 1978, p. 419. IEEE Broadcast Technology Society.
"Proposed Standard for Performance Measurements of A / D and D/A Converters for PCM Television Video Circuits, Project No. 746."

IntroductionProduct IndexesAdvance lmformationAD ComvertersEvaluation BoardsDIA ConvertersMuntipliersMultiplier AccomulatorsSpocial Function ProductsMifemory/Storaye ProductsReliablityPackayg InformationClossary
Ordering Information

For Special Assistance
 Call The TRW Sales
 Office Nearest You:
 North American Sales Offices

Alabama, TRW ECG
Huntsville
Arizona, TRW ECG
Scottsdale
S. California, TRW ECG

Los Angeles
Woodland Hills
Santa Ana
San Diego
N. California, Straube Assoc.

Mountain View
Colorado, Straube Assoc.
Westminster
Connecticut, TRW ECG
Rowayton
Flonida, TRW ECG
Ft. Lauderdale
Orlando
Georgia, TRW ECG
Norcross
Illinois, TRW ECG
Chicago
Indiana, R.O. Whitesell
Ft. Wayne
Indianapolis
Kokomo
lowa, C.H. Horn
Cedar Rapids
Kansas, Midtec Assoc.
Desoto
Kentucky, R.O. Whitesell
Louisville
Maryland, TRW ECG
Columbia
Massachusetts, TRW ECG
Westborough
Massachusetts, Byrne Assoc.
Maynard
Michigan, R.O. Whitesell
Southfield
St. Joseph
Grand Rapids
Minnesota, TRW ECG
Minneapolis \quad Missouri, J.G. Macke Co.
St. Louis
New Mexico, SW Sales
Albuquerque
New York, TRW ECG
Fairport
Metro
North Carolina, TRW ECG
Greensboro
Ohio, R.O. Whitesell
Cincinnati
Cleveland

	Columbus	(614) 8888.9396
	Dayton	(513) 298.9546
	Oragon, TRW ECG Tigard	(503) 620.5032
	E. Pennsylvania, TRW ECG Bala Cynwyd	12151 $667 \cdot 3400$
(205) 533.7600	W. Pennsylvania, R.O. Whitesell Pittsburgh	(412) 963.6161
(602) 994.0441	Puerto Rico, Electronic Sales Assoc. Rio Piedras	18091 769.2911
(213) $535 \cdot 6178$	Tennesse日, R.O. Whitesell	
18181 703 -1771	Knoxville	(615) 694.9476
(714) 550-1101	Texas Technology Sales Co. Austin	(512) 345 -2331
(619) 279-3990	Texas, TRW ECG	
14151969.6060	Dallas	(214) 248.8000
(415) 969-006	Houston	(713) 772.5541
\|3031 42	Texas, SW Sales	
(Jos) 42	El Paso	19151594.8259
853-4466	Utah, Straube Assoc.	
853-4460	Salt Lake City	$18011263-2640$
(305) 772.3000	Virginia, TRW ECG	
$\text { (305) } 857.3650$	Richmond	(804) 288-8334
	Washington, TRW ECG	
(404) 447.6154	Bellevue	[2061 641-9996
	Wisconsin, TRW ECG	
[312] 693.7730	Brookfield	14141784.7773
	Canada, Renmark Electronic Mkt.	
(219) 432.5591	Carleton Place	16131257.1490
(317) 359-9283	Toronto	1416) 494.5445
(317) 457.9127	All of our franchised distributors are stockir for TRW LSI Products.	ocking locations
(319) 393.8703		
(913) $441-6565$	International	S
(502) 426.7696	Australia, Total Electronics	
	Burwood, Victoria	1031679306
13011964.9110	Austria, Transistor Vertriebs GmbH	
	Wien	(222) 829401.0
(677) 870.074	Brazil, TRW Mialbras, S.A.	
	Sao Paulo	2409211
16171897.3131	Denmark, A/S Nordisk Elektronik	
	Herlev	(02) 842000
(13131 559-5454	Eire and Northern Ireland, Neltronic	Ltd.
(616) 983.7337	Dublin	(001) 501845
	Finland, OY Fintronic AB	
) 85	Helsinki	1901 692.6022
	France, Radio Equipements-Antares	
13141 432.2830	Paris	1011 751.08-06
1	France, RTF	
(505) 883.1388	Paris	(101) 6641101
(50) 80-130	Germany, TRW Elek Bauelemente Ver	artriebs GmbH
(716. 425.3775	Muenchen	108917103.0
(203) 853-4466	Germany, Jermyn GmbH	
	Bad Camberg	106434123.0
	Duesseldorf	(0211) 203094
1919) 852.4676	Hamburg	104015224087
	Herrenberg	10703220301
$\begin{aligned} & (513) \\ & \text { (216) } 521 \cdot 2290 \\ & 449020 \end{aligned}$	Heimstetten	108919032001

Hong Kong, Tektron Electronics		Arizona	
Kowloon	3.856199	Arrow Electronics	
India, Arrow Electronics International		2127 West 5th Place	(602) $968-4800$
Bangalore	812.566125	Tempe, AZ 85281	
Italy, Exhibo Italiana S.P.A.		Hall-Mark Electronics	
Monza	10391360021	4040 E. Raymond	(602) $437 \cdot 1200$
Japan, Nihon Teksel Co. Ltd.		Phoenix, AZ 85040	
Tokyo	(03) 461.5121	Hamilton/Avnat	
Korea, Tess-Ko		505 S. Madison Drive	(602) 231.5142
Seoul	1021754.2454	Tempe, AZ 85281	
Netherlands, Koning en Hartman Elek B.V.		California	
Delft	10151609906	Arrow Electronics	
New Zealand, AWA		19748 Dearborn Street	(818) 701.7500
Porirua	644375069	Chatsworth, CA 91311	
Norway, Nordisk Elektronik Norge A/S		30941 San Clemente Street Hayward, CA 94544	(415) 487-4300
Singapore, Seamax Engineering Private Ltd.		1808 Tribute Road \#C	(916) $925 \cdot 7456$
Singapore	65.747.6155	Sacramento, CA 95815	
Spain, Unitronics S.A.		9511 Ridgehaven Court	(619) $565 \cdot 4800$
Madrid	(1) 2425204	San Diego, CA 92123	
Sweden, Nordisk Elektronik AB		521 Weddel Drive	(408) 745-6600
Solna	10814687349770	Sunnyvale, CA 94086	
Switzerland, Baerlocher AG		2961 Dow Avenue	(714) $838-5422$
Zurich	101) 429900	Tustin, CA 92680	
Taiwan, Sea Union Eng.		Hall-Mark Electronics	
Taipei	751.2062	8130 Remmet Avenue	18181 716.7300
United Kingdom, Hi-Tek Distribution, Ltd.		Canoga Park, CA 91304	
Cambridge	102231213333	6341 Auburn Blvd.	(996) 722.8600
Other Foreign Sales Offices not listed		Suite D	
U.S.	1619) 224.3291	Citrus Heights, CA 95610	
Europe	108917103-0	2221 E. Rosecrans Avenue Suite 104	(213) 643-9101
		El Segundo, CA 90245	
TRW ECG European Marketing and Sales		3878 Ruffin Road, Unit 10B San Diego, CA 92123	(619) 268 -1201
Northern Region (U.K., Eire, Sweden, Norway, Denmark, Finland)		1110 Ringwood Court	(408) 946-0900
		San Jose, CA 95131	
Bedford, United Kingdom	102341217711	14831 Franklin Avenue	17141669.4700
Central Region (W. Germany, Austria, Netherlands, Switzerland)		Tustin, CA 92680	
		Avnet Inc.	
Lemgo, West Germany	(05261) 12992	20501 Plummer Street	$18181700-8666$
Maassluis, West Germany	(1899) 20921	Chatsworth, CA 91311	
Munich, West Germany	1089) 71030	350 McCormick	1714) 754.6111
Sindelfingen, West Germany	107031133011	Costa Mesa, CA 92626	
Southern Region (France, Italy, Belgium, Spain, Portugal)		Hamilton/Avnet	
		3002 E. "G" Street	17141 989.8801
Paris, France	101) 7510806	Ontario, CA 91764	
		4103 Northgate Blvd.	1916) 925-2216
TRW LSI Products are available off the shelf from the following distributors:		4545 Viewridge Avenue	\|619] 571.7523
		San Diego, CA 92123	
		1175 Bordeaux Drive	14081 743-3300
Alabama		Sunnvvale, CA 94889	
Arrow Elactronics		Hamilton Electro Sales	
3611 Memorial Pkwy South	(205) 882.2730	9650 De Soto Avenue	(818) $700-6501$
Huntsville, AL 35801		Chatsworth, CA 91311	
Hall-Mark Electronics		3170 Pullman Street	(714) 641-1410
4900 Bradford Drive	12051 837-8700	Costa Mesa, CA 92626	
Huntsville, AL 35807		10950 W. Washington Blvd.	(213) 558-2000
Hamilton/Avnet		Culver City, CA 90230	
$\begin{array}{ll}\text { 4940 Research Drive } \\ \text { Huntsville, AL } 35805 & \text { (2051 } 837.7210\end{array}$			

Colorado
Arrow Electronics
1390 S. Potomac Street
Aurora, CO 80012
Hall-Mark Electronics
6950 S. Tucson Way
Englewood CO 80112
Hamilton/Avnet
8765 E. Orchard Road
Suite 708
Englewood, CD 80111
Connecticut
Arrow Electronics
12 Beaumont Road
Wallingford, CT 06492
Hall-Mark Electronics
33 Village Lane
Wallingford, CT 06492

Hamilton/Avnet

Commerce Industrial Park
Commerce Drive
Danbury, CT 05810

Florida

Arrow Electronics
4902 Creekside Drive
Suite A
Clearwater, FL 33420
1001 N. W. 62 nd Street
Suite 108
Ft. Lauderdale, FL 33309
1530 Bottlebrush N.E.
Palm Bay, FL 32905

Hall-Mark Electronics

15301 Roosevelt Blvd. \#303
Clearwater, FL 33520
7648 Southland Blvd.
Suite 100
Orlando, FL 32809
3161 S.W. 15th Street
Pompano Beach, FL 33069-4806

Hamilton/Avnat

6801 N.W. 15th Way
Fort Lauderdale, FL 33309
3197 Tech Drive North
St. Petersburg, FL 33702
6947 University Blvd.
Winter Park, FL 32792

Georgia

Arrow Electronics
3155 Northwoods Pkwy
Suite A
Norcross, GA 30071
Hall-Mark Electronics
6410 Atlantic Blvd
Suite 115
Norcross, GA 30071
Hamitton/Avnet
5825D PeachTree Corners E.
Norcross, GA 30092

Illinois

Arrow Electronics
2000 Algonquin Road
Schaumburg, IL 60195

	Hall-Mark Electronics	
	1177 Industrial Drive	(312) $860-3800$
(303) 696-1111	Bensenville, IL 60106	
	Hamilton/Avnet	
	1130 Thorndale Avenue	(312) $860-7780$
13031790.1662	Bensenville, IL 60106	
	Indiana	
	Arrow Electronics	
(303) $740 \cdot 1018$	2718 Rand Road	(317) 243-9353
	Indianapolis, IN 46241	
	Hamilton/Avnet	
	485 North Grandle Drive	(317) 844-9333
	Camel, IN 46032	
(203) $265 \cdot 7741$	lowa	
	Arrow Electronics	
	375 Collins Road N.E.	(319) 395.7230
(203) 269-0100	Cedar Rapids, 1A 52402	
	Hamilton/Avnet	
	915 33rd Avenue S.W.	(319) 362-4757
(203) 797-2800	Cedar Rapids, IA 52404	
	Kansas	
	Hall-Mark Electronics	
	10815 Lakeview Drive	(913) 888-4747
	Lenexa, KS 66219	
(813) 576-8995	Hamilton/Avnet	
	9219 Quivira Road	19131541.7922
	Overland Park, KS 66215	
(305) 776.7790	Maryland	
	Arrow Electronics	
(305) 725-7480	6610 Rockledge Drive	13011 564-3000
	Suite 100	
	Bethesda, MD 20817	
(1813) $530-4543$	8300 Guildford Road	(301) 955-0003
	Suite H	
	Columbia, MD 21046	
$13011855-4020$13051971.9280	Hall-Mark Electronics	
	10240 Old Columbia Road	(301) 988-9800
	Columbia, MD 21046	
1305) 971.9280	Hamilton/Avnet	
	6822 Oak Hall Lane	(301) 995.3523
	Columbia, MD 21045	
(305) 944.2060	Massachusetts	
(813) 576-3930	Arrow Electronics	
	Arrow Drive	$16171933-8130$
(305) 628-3888	Woburn, MA 01801	
	Hall-Mark Electronics	
	6 Cook Street	1617) 667-0902
	Pinehurst Park	
	Billerica, MA 01821	
1404) 449.8252	Hamilton/Avnet	
	50 Tower Office Park	(617) 273.7500
	Woburn, MA 01801	
14041447.8000	Michigan	
	Arrow Electronics	
	3810 Varsity Drive	(313) 971.8220
	Ann Arbor, M1 48104	
(404) 447.7500	3510 Roger Chaffee Blvd. S.E.	(616) 243-0912
	Grand Rapids, MI 49508	
	Hamilton/Avnet	
	2215 29th Street S.E.	(616) 243-8805
(312) 397.3440	Space A-5	
	Grand Rapids, MI 49508	
	32487 Schoolcratt Road	(313) 522-4700
	Livonia, MI 48150	

Minnesota

Arrow Electronics

5230 73rd Street
Edina, MN 55435
Hall-Mark Electronics
7838 12th Avenue South
Bloomington, MN 55420
Hamilton/Avnat
10300 Bren Road East
Minnetonka, MN 55343

Missouri
 Arrow Electronics

2380 Schuetz Road
St. Louis, MO 63146
Hall-Mark Electronics
13750 Shoreline Drive
Earth City, M0 63045
Hamilton/Avnat
13743 Shoreline Court East
Earth City, MO 63045

New Hampshire

Arrow Electronics
1 Perimeter Road
Manchester, NH 03103

Hamilton/Avnet

444 E. Industrial Park Drive
Manchester, NH 03103

New Jersey

Arrow Electronics
2 Industrial Road
Fairfield, NJ 07006
6000 Lincoln Drive East Marton, NJ 08053
Hall-Mark Electronics
2091 Springdale Road
Cherry Hill, NJ 08003
107 Fairfield Road
Fairfield, NJ 07006
Hamilton/Avnat
1 Keystone Avenue
Building \#36
Cherry Hill, NJ 08003
10 Industrial Road
Fairfield, NJ 07006

New Mexico

Arrow Electronics
2460 Alamo Avenue S.E.
Albuquerque, NM 87106
Hamilton/Avnet
2524 Baylor S.E.
Albuquerque, NM 87106

New York

Arrow Electronics
155 Sherwood Avenue
Farmingdale, NY 11735
20 Oser Avenue
Hauppauge, NY 11788
7705 Maltlage Drive
Liverpool, NY 13088
25 Hub Drive
Melville, NY 11747
3375 Brigton-Henritta Town Line Road (716) 427.0300
Rochester, NY 14623
(612) 830-1800
(516) 6946800

Hall-Mark Electronics

Building \#4, Unit 1A2
(516) 737.0600

One Conac Loop
Ronkonkoma, NY 11779
Hamilton/Avnet
16 Corporate Circle
East Syracuse, NY 13057
933 Motor Parkway
Hauppauge, NY 11788
333 Metro Park
Rochester, NY 14623
North Carolina
Arrow Electronics
5240 Greens Dairy Road
Raleigh, NC 27601
(314) 291-5350 938 Burke Street

Winston-Salem, NC 27101
Hall-Mark Eloctronics
5237 North Boulevard
Raleigh, NC 27604
Hamilton/Avnet
3510 Spring Forest Road \quad 1919) 878-0810
(603) 668.6968 Raleigh, NC 27604

Ohio
Arrow Electronics
16031 624-9400 7620 McEwen Road
Centerville, OH 45459
6238 Cochran Road
(513) $435-5563$
1216) $248-3990$

Solon, OH 44139
(201) 575.5300 Hall-Mark Electronics

4460 Lake Forest Drive (513) $563-5980$
(609) 596.8000 Suite 202

Cincinnati, OH 45242
5821 Harper Road \quad |216| 349-4632
(609) 424.7300 Solon, OH 44139

6130 Sunbury Road, Suite B (614) $891-4555$
(201) 575-4415 Westerville, OH 43081

Hamilton/Avnet
4588 Emery Industrial Pkwy \quad 2161 831.3500
(609) 424.0100 Cleveland, OH 44128

954 Senate Drive
(513) 439.6700

Dayton, OH 45459
777 Brooksedge Blvd.
Westerville, OH 43081
Oklahoma
Arrow Electronics
(505) 243-4566 4719 South Memorial Drive \quad (918) $665-7700$

Tulsa, OK 74145
Hall-Mark Electronics
5460 S. 103 E. Avenue
Tulsa, OK 74145
Oregon
Arrow Electronics
10160 S.W. Nimbus Avenue
(503) 684-1690

Suite M3
(516) 231.1000 Tigard, OR 97223

Hamilton/Avnat
(315) 652-1000 6024 SW Jean Road

Building C, Suite 10
Lake Oswego, OR 97034
$\left.\begin{array}{llll}\begin{array}{lll}\text { Pennsylvania } \\ \text { Arrow Electronics }\end{array} & \begin{array}{l}\text { Hamilton/Avnat } \\ \text { 1585 West } \\ \text { 650 Seco Road }\end{array} & \\ \text { Monroeville, PA 15146 South } \\ \text { Salt Lake City, UT 84119 }\end{array}\right)$

TP. 1 "Multiplier-Accumulator Application

 Notes" by L. Schirm IV. Covers the use of multiplieraccumulators including an explanation of the clock, input and output controls. Other discussions include: larger word accumulations, multiplication plus a constant, operation with microprocessors, digital filters and complex multiplication.TP. 2 "Monolithic Bipolar Circuits for Video Speed Data Conversion" by W. Bucklen. Describes the "flash" A/D converter, TDC1007J, and the TDC1016J, D/A converter. Also included are approaches for extending the performance of the TDC1007J.

TP. 4 "Digital Signal Processing for Radar Systems" by W. Finn.

Describes how VLSI multipliers and multiplier-accumulators can be used in a radar signal processor to achieve data rate reduction, by means of predictive mechanization; pulse compression, utilizing an FIR matched filter; maximum computational capabilities, via pipelining; and high-speed convolution, using 2-point DFTs and a complete FFT processor.

TP. 5 "An LSI Approach to Digital Signal Processing Enhances Telemetry Systems" by W. Finn.

All aspects of Telemetry have one thing in common: an increasing need for high-speed digital signal processing. The impact of large scale integrated (LSI) circuitry on telemetry systems is a topic of increasing importance. Dependency of real-time digital signal processors on LSI circuitry is largely due to the advantages they afford: smaller size, faster speed, lower power consumption, more reliability and less cost. These advantages are over and above those which can be achieved by SSI, MIS, or even analog circuitry.

TP. 6 "Introduction to the \mathbf{Z}-Transform and its Derivation" by R. Karwoski.

A tutorial discussion of LaPlace and Z-transforms and their use in sampled data systems. Application of the Z-transform to filter synthesis is also treated.

TP.7A "Hardware Development for a General Purpose Digital Filter Computing Machine" by R. Karwoski.

This paper describes the hardware for a flexible, fast, digital filter computing machine that can be easily programmed. Emphasis is on real-time signal processing, particularly in the area of digital filtering.

TP-8 "Second Order Recursive Digital Filtar Design with the TRW Multiplier-Accumulators" by R. Karwoski.
Develops the fundamental concepts for second order recursive digital filters and describes some efficient hardware implementations using the TDC1010J multiplier-accumulator.

TP-9 "A Four-Cycle Butterfly Arithmetic Architecture" by R. Karwoski.

Explains the background of the FFT and the computational element called the butterfly. A block diagram of the FFT processor is presented and the DAU (Data Arithmetic Unit) architecture is described in detail. The text's description of the four FFT instructions is supplemented by computational diagram, block diagrams, a data flowchart and a timing diagram.

TP-10 "An Introduction to Digital Spectrum Analysis Including a High-Speed FT Processor

 Design" by R. Karwoski.Develops the DFT using well-known continuous Fourier Transform and series concepts. Common spectrum analysis terms are defined with respect to the DFT, and the decimation in time FFT is derived in detail. Describes the design of a high-speed FFT processor, particularly the architecture and address generation. Also included is an explanation of the use of bit-slice microprocessors as FFT sequencers.

TP-16 "An LSI Digital Signal Processor for Airborne Applications" by L. Schirm IV. Discusses the background of digital signal processing with emphasis on radar processors. Described is a digital signal processing board, employing a multiplier-accumulator IC, which includes the basic processor, address generators, controller and system interface.

TP. 17 "Correlation-A Powerful Technique for Digital Signal Processing" by J. Eldon. Correlation techniques find use in communications, instrumentation, computers, telemetry, sonar, radar, medical, and other signal processing systems. Electronic systems that perform correlation have been around for years, but they have been bulky and inefficient. The development of a new VLSI chip from TRW LSI Products has changed this; now correlation can be performed efficiently with a minimum number of components.

TP. 18 "LSI Multipliers Application Notes." Describes larger and smaller word multiplication, higher speed multiplication and division using multiplication.

TP. 19 "Non-Linear A/D Conversion" by B.

 Friend.Describes the quantization process necessary to produce a non-linear transfer function. TRW LSI Products offers A/D converters which can be used in place of more expensive or impractical methods to achieve this result with a minimum of cost and effort.

A discussion of a typical TRW A/D converter includes information on the internal circuitry of the device and provides diagrams of circuit modifications to use with the A / D converter to improve performance.

TP.22 "A Guide to the Use of the TDC1028; a Digital Filter Building Block" by F. Williams. Discusses word and length sizing of Finite Impulse Response (FIR) digital filters, and implementation of filters with different lengths and word sizes. A circuit to autoload coefficients in stand-alone applications is also provided.

TP. 23 "A 22-Bit Floating Point Registered Arithmetic Logic Unit" by J. Eldon.

 Introduces the TDC1022, a registered arithmetic logic unit (RALU), built with TRW's dual layer metal, one micron bipolar process (OMICRON-B FM). Emphasis is on RALU architecture, and the instruction microcode. Block diagrams and ALU function control chart are provided.TP. 24 "A Single Board Floating Point Signal Processor" by G. Winter and B. Yamashita. Floating point arithmetic offers many advantages to the field of digital signal processing (DSP). This article describes the realization of a Finite Impulse Response (FIR) filter using a family of floating point devices; the TDC1022 Floating Point Adder, the TDC1033 Floating Point Registered ALU, and the TDC1042 Floating Point Multiplier.

TP-25 "Floating Point Hardware for Digital Signal Processing" by J. Haight. Recent advances in VLSI circuitry make high-speed digital signal processing (DSP) with wide dynamic range possible without significant penalties in cost or hardware overhead. The architectures of the TDC1022, TDC1033 and TDC1042 are discussed, as well as their applications in some designs.

TP-26 "Floating Point, the Second Generation for Digital Signal Processing" by J. Haight. High-speed digital signal processing (DSP) has recently progressed to a widely used real or near real-time field. Today, a new generation of 22-bit floating point integrated circuits (TDC1022, TDC1033 and TDC1042) makes it possible to build circuitry to handle signals with wide dynamic range at high speeds and reasonable cost. This article discusses the architecture of these ICs and the motivations behind them.

TP-27 "Components For Instruments That Employ Digital Signal Processing Techniques" by D. Watson. Applications of fast analog-to-digital (A/D) converters are expanding into the measurement and analytical instrument marketplace. This article discusses A/D converters as they are used in digital instruments, reviews "flash" A/D technology, and presents future directions of A / D design.

TP-28 "A Floating Point ALU for Digital Signal Processing" by R. Sierra and G. Covert. Discusses applications of the TRW LSI TDC1022, Floating Point Arithmetic Unit. The architecture of the TDC1022 is discussed, together with several application examples in the areas of filtering and spectrum analysis.

TP-29 "The Use of Floating Point Arithmetic in Digital Filters and Equalizers" by

F. Williams.

Digital Audio, a high-performance technology, has undergone rapid growth during the last few years. This article describes TRW LSI floating point processors and how they are used in digital audio systems to provide noise control, accurate response control, and maintenance of effective SNR. Frequency response high and low filter graphs are provided.

TP. 30 "Understanding Flash A/D Converter Terminology" by M. Sauerwald.

A comprehensive list of parameter definitions that TRW LSI Products uses in flash A/D converter data sheets.

TP. 31 "An Introduction To Two Different Finite Impulse Response Structures by

F. Willams.

Digital filtering is a rapidly expanding field, and the design process is not dramatically different from design techniques for high-performance analog filters. However, due to the flexibility of the digital approach, additional design decisions are necessary. This application note presents two different forms for Finite Impulse Response (FIR) digital filters. Theoretical discussion is included.

TP. 32 "The TDC1048, A New Low Power 8-Bit A/D Converter" by Dr. D. Packard.

 For video speed flash converters, significant improvements in packaging, cost, and ease of use can be obtained by emphasizing low power in the converter design rather than ultimate speed. The TRW TDC1048 8-bit flash converter uses TRW's OMICRON-B ${ }^{\text {TM }}$ 1 -micron bipolar process to create a 20MSPS device with dynamic performance equal to or better than any comparable speed converter with low enough power to allow a compact easy-to-use package. Discussion includes design and process features as well as performance characteristics.TP. 33 "Using the TDC1018 and TDC1034 in a TTL Environment" by D. Watson.
The TDC1018 and TDC1034 digital-toanalog converters (D/A) were designed for operation in systems that employ ECL logic families. However, there are many TTL systems that require the use of high-speed D/A converters but have only +5 Volt power supplies available. The TDC1018 and TDC1034 can easily be used in a TTL environment; this application note discusses practical circuits and clarifies some of the issues.

TP.35 "High-Speed Color Palette Memory For The TDC1034 Graphics Ready DAC" by Dan

 Watson.Design of a Color-Palette Memory for 4 and 8-bit "Graphics-Ready" A/D converters is described herein. Included are a block diagram and detailed schematic for $3 \times 256 \times 4$ ColorPalette. Other related information is given for CRT graphics applications.

Article Reprints

R-1 "Packing a Signal Processor onto a Single Digital Board," by L. Schirm IV, Electronics, December 20, 1979.

Discusses general applications of multiplier-accumulators and the design of a single-board FFT processor.
R. 2 "Microprocessor Compatible Recursive Digital Filters," by Ford, Youseff-Digaleh and Current (UC Davis); Proceedings of the IEEE, April 1979.

Describes the implementation of recursive digital filters through timeshared use of a single multiplier-accumulator.

R-3 "A Radix-4 FFT Processor for Application in a 60 -Channel Transmultiplexer Using TTL Technology," by Roste, Haaberg and Ramstad; IEEE Transactions on Acoustics, Speech and Signal Processing; Vol. ASSP-27, No. 6, December 1979.

Presents a hardware solution for the two 128 -point DFT processors with a transform time of 125 sec needed in a 60-channel transmultiplexer for conversion between FDM and TDM signals.
"Design of a 24-Channel Transmultiplexer," by M. Narashima; IEEE Transactions on Acoustics, Speech and Signal Processing; Vol. ASSP-27, No. 6, December 1979.

Discusses the design of a transmultiplexer capable of performing the bilateral conversion between 1544 kbits/sec digital signal and two analog group signals.
Note: Both articles are included in the same reprint.

R-4 "Television Gathers Speed On its Way from A to D,', Broadcast Communications, September 1979.

Explains the ways in which the TV broadcast studio is evolving towards digital implementations. Discusses the advantages of the digital vs the analog approach.
R. 5 "Get to know the FFT and take advantage of speedy LSI building blocks," by L. Schirm IV; Electronic Design, April 26, 1979.

Explains the use of the FFT (Fast Fourier Transform) and how to implement an FFT processor board using a multiplier-accumulator.

R-6 "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," by F. Harris, Proceedings of the IEEE, January 1978.

A comprehensive discussion of data windows and their effect on the spectrum analysis problem. Key parameters are identified, and window options are compared. Applications are discussed in detail.
R. 7 'Floating-point chips carve out FFT systems," by J. Eldon and G. Winter; Electronic Dasign, August 4, 1983.

Describes the implementation of realtime signal processing using a set of three floating point ICs: the TDC1033, an arithmetic logic unit with registers; the TDC1042, a floating point multiplier; and the TDC1022, a floating point arithmetic unit.

R-8 "Quantization Effects on Differential Phase and Gain Measurements,' by F. Williams and R. Olsen; SMPTE Journal, November, 1982.

Discusses absolute performance standards as a means of characterizing television systems. Equations are provided which are used to obtain Differential Phase and Differential Gain limits for use in the evaluation and diagnosis of television equipment.
R.9 "High speed FIFO memory: theory and applications," by E. Chocheles and R. Sierra, Electronic Products, March 28, 1983.

A comprehensive study of the TDC1030, a First-In First-Out (FIFO) memory buffer (fixed or variable-length storage) used in data transfer elements. Extensive timing analysis is covered in the article.

R-10 "One-chip DAC delivers composite video signal," by R. Castleberry and C. Robertson; Electronic Design, September 1, 1983.

Describes the TDC1018, a low-cost, digital-to-analog converter that delivers a composite video signal, capable of driving high-resolution graphics displays. Device architecture and performance specifications are included.

R-11 "Single-chip Flash A/D Converters With Evaluation Boards," by J. Eldon and R. Olsen; Proceedings IEEE 1982 Region 6 Conferance.

Describes TRW LSI Products' A/D Converters and optional evaluation boards. The boards may be used to evaluate the ICs, or as models for individual circuit design effects.

R-12 "6-bit a-d chip steps up the pace of signal processing,' by J. Muramatsu and R. Olsen; Electronic Design, September 16, 1982.

Describes the TRW LSI TDC1029, a 6-bit analog-to-digital converter that samples broadband signals at 100 MegaSamples Per Second (MSPS). This device increases the real-time performance of military, medical and industrial systems.

R-13 "Video-speed filtering gets its own digital IC," by F. Williams; Electronics, October 20, 1983.

Describes the TRW LSI TDC1028, a single-chip filter that is paving the way to video-speed fixed and adaptive filter implementations in design processes.

R-14 "One-Micron VLSI Chips for Military Systems,'" by Dr. J. Eldon, M. Gagnon and F. Williams; Dafense Electronics, November 1983.

Describes TRW's one-micron VLSI chips and their applications for military systems. The article also discusses the bipolar 3-D process used in fabricating the devices, VLSI reliability, and other topics related to implementation of these chips.

R-15 "Using high speed multipliers for real time signal processing," by R. Sierra; Electronic Products, February 7, 1984.

Complex signal processing can now be implemented with the precision and accuracy of digital arithmetic logic components. This article describes TRW LSI Multipliers and their usefulness in filtering and spectrum analysis.

R-16 "CMOS comes to high speed digital signal processing," by J. Haight; Electronic Products, February 1984.

Discusses the possibilities for CMOS: as geometries continue to shrink, the improved performance and reduced
power of CMOS make possible a much greater number of devices on a chip. This opens up many exciting possibilities in the digital signal processing market.

R-17 "Digital correlator defends signal integrity with multibit precision" by Dr. J. Eldon; Electronic Design, May 1984.

Correlation serves as the most effective means of measuring time delays or detecting weak signals in the presence of interference. Single-bit digital correlator chips excel in applications such as continuous-wave radar, but often lack precision needed for matching optical patterns or measuring ultrasonic time delays. The demand for greater quantization precision is satisfied by TRW's multibit TMC2220, a general-purpose digital correlator. Theory and practical applications presented with applicable diagrams.

R-18 "High-speed video D/A converters simplify graphics-display designs" by R. Castleberry; Electronic Design News, May 1984.

This article discusses some of the main features of a graphics-display system and the resulting tradeoffs, design parameters and architectures, with special emphasis on the D/A conversion process, and the use of the TRW TDC1018.

R-19 "Digital Signal Processing in Radar" by J. Haight; Defense Electronics, May 1984.

VLSI adds new dimensions to radar and EW signal processing. Much of the current work in radar consists of implementing ideas formulated right after World War II. As technology grows, so does the potential performance of radar, especially as related to digital signal processing, which has made the biggest difference in radar performance in the last decade. This article discusses the benefits of using DSP components with respect to radar. Detailed diagrams accompany the text.

R-21 "Multiplier-accumulator derives high performance from 1-micron CMOS" by F. Williams; Electronic Design, October 1984.

This discussion of 1-micron CMOS technology includes background information on the TRW TMC2160, a CMOS multiplier-accumulator. Topics covered are: choosing a number format, flexible control structure, slowing down word growth, and rounding for precision. In-depth diagrams accompany the text.

R-22 "Digital correlators suit military applications"' by Dr. J. Eldon; Electronic Design News, August 1984.

This article presents the theory behind correlation and how it can serve applications ranging from spreadspectrum communications to optical alignment. With the advent of highspeed, low-power digital correlators such as the TRW CMOS TMC2220, which can overcome the calibration drift that analog correlators can exhibit when exposed to varying operating temperatures and voltages, digital correlators seem to be the direction of the future.

The Application Notes and Article Reprints listed above are available upon request from TRW LSI Products.

R-23 'DSP ICs - A Look Ahead" by Robert R. Yamashita; Integrated Circuits Magazine, October 1984.

The author examines how the evaluation of IC fabrication has brought about changes in the field of DSP. The advent of improved CMOS technology coupled with substantially more sophisticated CAE now affords revolutionary new product designs for DSP chips.

R-24 'Increased A/D Resolution Improves Image Processing" by Ellen Chocheles; Electronic Products Magazine October 15, 1984.

The article describes the benefits of utilizing a TDC1048 as a low-cost 8 -bit flash converter for improved systems performance without extensive design overhead.

R-25 "High-Speed D/A Converters Yield Precision Graphics" by Randel Castleberry; Computer Design November 1984.

Megasample-per-second chips improve resolution, precision and flexibility of computer system displays.

The Application Notes and Article Reprints listed above are available upon request from TRW LSI Products.

In the U.S.:
LSI Products Division
TRW Electronic Components Group P.O. Box 2472

La Jolla, CA 92038
Phone: (619) 457-1000
Telex: 697-957
TWX: 910-335-1571

In Europe:

LSI Products Division

TRW Electronic Components Group
Konrad - Celtis-Strasse-81
8000 Muenchen 70
West Germany
Phone: (089) 7103-0
Telex: 841-524360
© TRW Inc. 1985
TRW is the name and mark of TRW Inc. Printed in U.S.A.

[^0]: NMINV and NLINV are to be considered DC controls. They may be tied to $V_{C C}$ for a logical " 1 " and tied to digital ground for a logical " 0. ."

[^1]: Note:

 1. Voltages are code midpoints when calibrated (see Calibration Section).
[^2]: 1. All transitions are measured at a 1.5 V level except for $\mathrm{t}_{\text {IIS }}$ and tENA, which are shown in figure 12.
 2. $\mathrm{t}_{\mathrm{DI} 1}$ denotes the transition from logical 1 to three-state.
 ${ }^{\text {toISO}}$ denotes the transition from logical 0 to three-state.
[^3]: 64 Lead DIP－J1 Package

[^4]: 24 Lead DIP - J7 Package
 24 Lead CERDIP - B7 Package

