








































































































































































































































































































































































































































































































































































































































































































































































































































































48 TSS400 Standard User's Guide 

If for example the combination F G (character number 42) is to be output, 
the addressed FLAC digit has to contain 1 o (bit 3 and bit 1) and the OPLA 
block 2 has to be selected. 

If additional the segment E is to be output with segments F and G, 
(character number 58), the addressed FLAC digit has to contain 10 again 
and the OPLA block 3 needs to be used. See also an example where of the 
display instructions are described. 

2.13 initiaiizaiion and Powerup 

Initialization is initiated by two hardware reasons: 

- Power up: The voltage V00 is switched on (Cold start). The CPU starts to 
work at PC 000 after the internal cristal oscillator started operation. This 
may last 1 to 6 seconds. 

- INITN pin: If the INITN pin is held low for more than 10 µs (in case this 
occurs during program execution it is named Warm Start). The CPU 
starts operation at PC 000 when the INITN pin is released to V00 

potential. 

The TSS400 Standard registers show the following contents after a power 
up or a INITN pin. 

Register Power up INITN pin 
(Cold Start) (Warm Start) 

Program Counter PC 000 000 
Status Bits POS NEG ZERO undefined unchanged 
RAM Contents (see Note) reset to O unchanged 
Digit Latches DLn reset to O reset to 0 
K-Port Latch Contents undefined unchanged 
Timers 0 unchanged 
ADC Voltage SVoo switched off switched off 
LCD Segment Latches undefined unchanged 
Subroutine Stack level O level 0 

Figure 20: Initialization contents of the internal registers 

Revision 1 , November 1990 



TSS400 Standard User's Guide 49 

Note: Despite the RAM remains unchanged if Warm Start (see below) oc­
curs. The memory addressed when the INITN pin was activated may 
be destroyed by a write cycle. 

If the TSS400 system is battery powered and contains calibration factors or 
other important data in RAM it is advisable to distinguish between Cold 
Start and Warm Start. The reason is the possibility of initializations caused 
by EMI. If such an erroneous initialization is not tested for egality, EMI in­
fluence could destroy the RAM contents by clearing the RAM by the in­
itialization software routine. The TSS400 Standard compares two reserved 
RAM nibbles if they contain >A5 after each initialization: 

- If the RAM nibbles contain expected right information >A5, continues at 
PC 000. The RAM contents is not influenced. This means a spurious 
signal caused the initialization (Warm Start). 

- If the RAM nibbles differ from >AS, the RAM is cleared and the program 
continues at PC 000. This means the TSS400's supply voltage was 
switched on (Cold Start). 

Note: The Short Timer and the Long Timer are not stopped by a Warm 
Start. This means, they stay active and have to be stopped by a 
STPTIMx instruction if necessary. 

See Chapter 7 for an example how to distinguish the two start-ups by the 
user's software. 

2.14 Hardware Options 

The used hardware options are a compromise for getting best result for 
several applications. See the "TSS400 Software User's Guide" for a de­
tailed description of the options. 

Revision 1 , November 1990 



so TSS400 Standard User's Guide 

2.14.1 Pinning 

Pin Connection Pin Connection 

1 Vss 23 R4 
2 KC 24 RS 
3 INITN 2S R6 
4 Voo 26 R7 
s K1 27 COM2 
6 SVoo 28 COM1 
7 Ri 29 S14 
8 A4 30 S13 
9 K2 31 S12 

10 A3 32 S11 
11 A2 33 S10 
12 K4 34 S9 
13 A1 3S S8 
14 K8 36 S7 
1S AGND . 37 S6 
16 TOSCO UT 38 SS 
17 TOSCIN 39 S4 
18 RO 40 S3 
19 R1 41 S2 
20 110 42 S1 
21 R2 43 COM3 
22 R3 44 COM4 

Figure 21 : Pinning of the TSS400 Standard 

2.14.2 Input Options 

- K8 is connected directly to the ALU, the flip flop in the KS logic is not 
active 

- the K-Port has push pull outputs and no pulldown resistors 
- the used ADC range is 0.1013 · SV00 to 0.4946 · SVoo 
- the MOS oscillator speed is SOO kHz to 1 MHz 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

2.14.3 Timer Options 

- 6 Hz are used for the wake-up frequency with set DL 12 
- no clock frequency is output to a pin 
- the oscillator hardware is chosen for a 32768 Hz cristal 

2.14.4 Display Options 

- 4 common multiplex is used 
- The following Common/Select configuration is used: 
- The 64 possible characters are shown in Figure 15. 

COMMON 

1 2 3 4 

Odd Selects C F H E 

Even Selects A B D G 

(decimal point) 

Figure 22: Standard segment notation scheme 

51 

The complete hardware definition file of the TSS400 Standard is shown in 
Appendix A. 

2.15 Instruction Execution Times 

The complete instruction execution time consists of: 
- Instruction fetch time from the EE PROM 
- Instruction decoding time 
- Instruction execution time by the TSS400 

Revision 1, November 1990 



52 TSS400 Standard User's Guide 

The exact timing of each instruction is very difficult to compute, caused by 
its dependance on circumstances. Measurements showed, that a good 
estimation value is 150 TSS400 instructions for each byte (not instruction!) 
read from the EEPROM. This means, if the oscillator frequency is 500 kHz, 
each byte of the user's code needs approximatively 1.8 ms for execution. 
(150 · 6/500000 Hz = 1.8 ms). 

This estimation bases on normal instruction sequences. If computation in­
tensive instructions occur very often, the mean time of an instruction in­
creases. The instruction times for these time consuming instructions are: 

- Multiplication MPY: average register contents 15 ms 
- Division DIV: average register contents 18 ms 
- Conversion HEXDEC: average register contents 46 ms 
- Measurement MEASR: Four compensated measurements 13 ms 

With the above given average execution times, the time estimations should 
be corrected. 

The program flow control instructions have the following execution times: 

- CALL including RETN: 9.5 ms 
- unconditional Jump: 4.5 ms 
- conditional Jump executed: 4.5 ms 
- conditional Jump not executed: 2.2 ms 

The EEPROM instructions have the following execution times: 

- EEPROM Write instruction: MOVFLPRM 
- EEPROM Read instruction: MOVPRMRB 

2.16 Usage of RAMS 

40 ms 
15 ms 

The PHILIPS PCF8570, a 256 · 8 bit RAM can be used for TSS400 Stan­
dard applications due to the identical bus protocol. Often modified pointers 
for EEPROM addressing may be allocated inside of the RAM, which is not 
degraded by often occuring write operations. See also 7.9 ADDRESS 
MODIFICATION for more information. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 53 

The interpreter assumes blocks of 512 bytes as used with the X24C04 
EEPROMs and issues therefore no addressing information if the 256 byte 
boundary of a RAM is exceeded. This means, the user has to include a 
jump instruction to get into the 2nd RAM in case it is used. Instructions with 
more than one byte may not be placed on the boundary due to that reason. 

3 Interpreter Instruction Set Definitions 

3.1 Interpreter Language Instruction Map 

The instruction map is shown for convenience purposes. The numbers on 
the left margin show the MSD part of the opcode, the numbers above the 
map show the LSD part. The opcode for ROUND2 is E1 for example. 

Revision 1 , November 1990 



54 TSS400 Standard User's Guide 

0 1 2 3 4 5 6 7 

F FLKOUT KOUT KIN SEL SEL MOV MOV MOV 
GRP1 GRP2 CNT1 CNT2 DBL 

E ROUND ROUND ROUND ROUND SHIFT SHIFT SHIFT SHIFT 
1 2 3 4 R1 R" L1 L" 

D LDTIML LDTIMS DONE OFF RETN CLRFL CLRRB EXCH 
RBFL 

c MOVFLPRM 

B DISPL DISPL DISPL DISPL DISPL DISPL DISPL DISPL 
FL DG1 DG2 DG3 DG4 DGS DG6 DG? 

A MOVFLSTO MOVSTOFL 

9 MOVRBSTO MOVSTORB 

8 JP 

7 JZ/JEQ 

6 JMP 

5 LDFLPOS LDFLNEG 

4 TBIT 

3 RBIT 

2 SBIT 

1 ACTTIM RSTR SVDD 
OFF 

0 NOP SETA SVDD 
ON 

Figure 23: Instruction Map lower Part 

Revision 1, November 1990 



TSS400 Standard User's Guide 55 

8 9 A B c D E F 

F STP STP SLV (NOP) 
TIML TIMS 

E ADJ ADJ CHK CHK CMP TSTKE TSTRB KINTIM 
BATT COMP BATT COMP FLRB y 

D DEC DEC DEC DBL INC INC INC DBL LDC NT LDC NT 
CNT2 CNT1 CNT2 CNT1 2 1 

c MOVPRMRB 

B DISPL MOV MOV ADD SUB MPV DIV HEX 
CLR FLRB RBFL DEC 

A MOVSTOFL MEASR 

9 MOVSTORB 

8 JN 

7 JNE/JNZ 

6 CALL 

5 LDRBPOS LDRBNEG 

4 TBIT 

3 RBIT 

2 SBIT 

1 RSTR SUBH AND 

0 SETR ADDH OR 

Figure 24: Instruction Map upper Part 

Revision 1 , November 1990 



56 TSS400 Standard User's Guide 

3.2 Effect on Status Bits 

Each instruction description in this section contains a status description. 
The way in which an instruction depends on, or modifies the Status Bits is 
defined as follows: 

Not affected: 
POS = 1 
NEG =0 
ZERO= X 

the Status Bits remain unchanged 
the Status Bit (here POS) is set 
the Status Bit (here NEG) is reset 
the Status Bit (here ZERO) remains unchanged 

The information shown after STATUS is given for the completed instruc­
tion. 

3.3 Interpreter Instruction Formats 

The interpreter uses different instruction formats. Each instruction descrip­
tion shows the correct source format after the label MNEMONIC. The dif­
ferent source formats are explained in the following: 

3.3.1 Constant Operand 

INSTR n 

The operand n, whose range is defined in the description of the instruction, 
is placed into the opcode's operand field or into the following byte by the 
assembler. · 

3.3.2 EEPROM Address Operand 

INSTR LABEL 

The operand, which is an EEPROM address, is placed into the opcode's 
LSBs and into a byte following the instruction by the assembler. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

3.3.3 Implicit Operand 

INSTR 

The instruction does not have an operand. 

INSTRn 

57 

The instruction contains the operand in the mnemonic. The range of n is 
defined in the instruction's description. 

3.3.4 Hexadecimal Operand 

INSTR >NN 

The instruction uses hexadecimal or BCD numbers for operands. The as­
sembler locates the operand in the next byte. 

3.3.5 Decimal Operand 

INSTR NNN 

The instruction uses decimal numbers for operands. The assembler locates 
the operand in the next byte. 

Note: Numbers maybe formatted >NN or NNN normally. Only if BCD 
numbers are used, the >NN format is necessary for separating the 
two digits. 

3.3.6 Attached, Floating Number of Operands 

INSTR n 
BYTE >NN 

BYTE >NN 

The instruction uses n bytes following the instruction for additional 
information. The n bytes needs to be included into the source program by 
the user. 

Revision 1, November 1990 



58 TSS400 Standard User's Guide 

INSTR >NN 
BYTE >NN 

BYTE >NN 

The number of additional bytes is defined by: 

Operand LSD - MSD + 1. 

3.3.7 Attached, Fixed Number of Operands 

INSTR n 
BYTE >NN 

The instruction uses one byte following the instruction. The byte is to be 
included by the user. An operand n is used, too. 

3.3.8 Coding Format 

The following rules should be followed in writing a program: 

- Label fields are a maximum of eight alphanumeric characters starting 
with an alphabetic character. The label field begins in column one. 

- The operation code (opcode) is to the right of a label, the two separated 
by at least one blank space. If no label is used, the operation code begins 
after the first column (second column or further right). 

- The operand is to the right of the operation code, they are separated by 
at least one blank. 

- A comment is to the right of the operand, they are separated by at least 
one blank. If a comment occupies a separate line, it must begin with an 
asterisk(*) in column one. 

For legibility, it is recommended that fields begin in the following columns: 

- label fields must begin in column 1 
- operation codes should begin in columnn 11 
- operands should begin in column 21 
- comments to an instruction should begin in column 31 
- comment lines must begin in column one with an asterisk 

Revision 1 , November 1990 



TSS400 Standard User's Guide 59 

Example: The following lines show source lines conforming to the above 
rules. 

*THIS IS A PURE COMMENT LINE 
LABEL OPCODE OPERAND COMMENT 

I 
I 
column 31 

column 21 
column 11 

column 1 

Revision: 1 , November 1990 



60 TSS400 Standard User's Guide 

3.4 Register to Register Transfer Instructions 

3.4.1 Move FLAC to Storage Register 

MNEMONIC: MOVFLSTOn 

STATUS: If FLAG= o: 

ACTION: 

POS = 1 NEG = O ZERO = 1 
If FLAG> O 
POS = 1 NEG = 0 ZERO = 0 
!f FLAG< 0 
POS = O NEG = 1 ZERO = O 

FLAG~ STOn (0 ~ n < 6) 

PARAMETER: none 

OPCODE: AO -AS 

PURPOSE: Copying or saving the FLAG into a Storage Register. 

DESCRIPTION: The FLAG content is unconditionally transferred to the 
Storage Register n. The FLAG contents is unaltered. 

3.4.2 Move Storage Register to FLAC 

MNEMONIC: MOVSTOFLn 

STATUS: If FLAC = 0: 

ACTION: 

POS = 1 NEG = O ZERO = 1 
If FLAG> 0 
POS = 1 NEG = 0 ZERO = 0 
If FLAG< 0 
POS = 0 NEG = 1 ZERO = 0 

STOn ~FLAG 

PARAMETER: none 
PURPOSE: Reading a Storage Register. 

OPCODE: AS-AB 

DESCRIPTION: The content of the Storage Register n is unconditionally 
transferred to the FLAG. The content of the Storage 
Register n is unaltered. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

3.4.3 Move REGB to Storage Register 

MNEMONIC: MOVRBSTOn 

STATUS: 

ACTION: 

If REGB = 0: 
POS = 1 NEG = 0 ZERO = 1 
If REGB > 0 
POS = 1 NEG = 0 ZERO = 0 
If REGB < 0 
POS = 0 NEG = 1 ZERO = 0 

REGB ~sTOn 

PARAMETER: none 

61 

OPCODE: 90 - 95 

PURPOSE: Copying or saving the REGB into a Storage Register. 

DESCRIPTION: The REGB content is unconditionally transferred to the 
Storage Register n. The REGB contents is unaltered. 

3.4.4 Move Storage Register to REGB. 

MNEMONIC: MOVSTORBn 

STATUS: If REGB = 0: 

ACTION: 

POS = 1 NEG = O ZERO = 1 
If REGB > 0 
POS = 1 NEG = O ZERO = 0 
If REGB < 0 
POS = O NEG= 1 ZERO= O 

STOn ~ REGB (0 ~ n < 6) 

PARAMETER: none 

PURPOSE: Reading a Storage Register. 

OPCODE: 96 - 98 

DESCRIPTION: The content of the Storage Register n is unconditionally 
transferred to the REGB. The content of the Storage 
Register n is unaltered. 

Revision 1, November 1990 



62 TSS400 Standard User's Guide 

3.4.5 Move FLAC to REGB 

MNEMONIC: MOVFLRB 

STATUS: 

ACTiON: 

If FLAC = 0: 
POS = 1 NEG = 0 ZERO = 1 
If FLAC >a" 
POS = 1 NEG = 0 ZERO = 0 
If FLAG< 0 
POS = 0 NEG = 1 ZERO = O 

FLAC ~ REGB 

PURPOSE: Copying of the FLAG to REGB 

OPCODE: B9 

DESCRIPTION: The content of the FLAC is transferred to the REGB. The 
Status Bits are set according to the FLAC content. 

PARAMETER: none 

EXAMPLE: The FLAG is to be multiplied by three: 

MOVFLRB 
ADD 
ADD 

MULTIPLY FLAC BY 3 
x 2 
x 3 

Example 1: Multiplication by Three 

3.4.6 Move REGB to FLAC 

MNEMONIC: MOVRBFL 

STATUS: If FLAG= 0: 

ACTION: 

POS = 1 NEG = 0 ZERO = 1 
If FLAG> 0 
POS = 1 NEG = 0 ZERO = 0 
If FLAG< 0 
POS = 0 NEG = 1 ZERO = 0 

REGB ~ FLAC 

OPCODE: BA 

Revision 1 , November 1990 



TSS400 Standard User's Guide 63 

PURPOSE: Copying of the R EGB to the FLAG 

DESCRIPTION: The content of the REGB is transferred to the FLAG. The 
Status Bits are set according to the FLAG contents. 

PARAMETER: none 

3.4.7 Exchange REGB and FLAC Registers 

MNEMONIC: EXCHRBFL 

STATUS: After execution: 

ACTION: 

PURPOSE: 

If FLAG= 0: 
POS = 1 NEG= 0 ZERO= 1 
If FLAG> 0 
POS = 1 NEG = O ZERO = 0 
If FLAG< 0 
POS = O NEG = 1 ZERO = O 

REGB H FLAG 

Exchanging REGB and FLAG. 

OPCODE: D7 

DESCRIPTION: The contents of REGB and FLAG are exchanged. The 
Status Bits are set according to the FLAG contents after 
execution of the instruction. 

PARAMETER: none 

3.4.8 Move FLAC to EEPROM 

MNEMONIC: 

STATUS: 

ACTION: 

MOVFLPRM LABEL 

not affected 

PC+2 
FLAG 

~ Stack 
~ EEPROM 

Stack ~ PC 

PARAMETER: None. Two byte instruction. 

Revision 1 , November 1990 

OPCODE: CO - C7 



64 TSS400 Standard User's Guide 

PURPOSE: Storing of constants in the EEPROM. 

DESCRIPTION: The content of the FLAG is written to four EEPROM 
bytes starting at the address defined by the label. This 
allows the storage of computed constants in the 
EEPROM which for example gives the possibility of self­
calibration of the system. The sign of the FLAG is stored 
in the MSB of the number; this reduces the number's 
range to +!- 79999999. The MSD is stored at the first 
byte (High nibble of address LABEL). The inverse opera­
tion MOVPRMRB restores the sign correctiy. 

Note: One level of the stack is used for the storage of the PC. This means 
that this instruction cannot be used in the 3rd subroutine level. 

EXAMPLE: The result of a computation need to be stored in the 
EEPROM address CONST2 for later use. 

CONST2 

ADD CONST2 COMPUTED IN FLAC 
MOVFLPRM CONST2 WRITE CONST2 TO EEPROM 

ORG 
BYTE 
BYTE 
BYTE 
BYTE 

500 
0 
0 
0 
0 

CONSTANTS IN EEPROM ADDRESS 500 
10E7/10E6 SIGN IN MSB 
10E5/10E4 
10E3/10E2 
lOEl/lOEO LSD 

Example 2: Storage of a computed value in the EEPROM 

The allocation inside the EEPROM is shown in Figure 25: 

MSB 

s l 10E7 

10E5 

10E3 

10E1 

LSB 

10E6 

10E4 

10E2 

10EO 

500 ADDRESS 

501 

502 

503 

Figure 25: EEPROM map of the MOVFLPRM values 

Revision 1, November 1990 



TSS400 Standard User's Guide 65 

3.4.9 Move EEPROM to REGB 

MNEMONIC: MOVPRMRB LABEL OPCODE: CB - CF 

STATUS: not affected 

ACTION: PC+2 -7 Stack 
EEPROM -7 REGB 
Stack -7 PC 

PARAMETER: None. Two byte instruction. 

PURPOSE: Loading of constants stored in the EE PROM. 

DESCRIPTION: The contents of the EEPROM address defined by the 
label and the contents of the following 3 bytes are written 
to REGB. The sign is restored out of the MSB of the 
number into the sign nibble of REGB. The MSD is stored 
in the 1st byte (high nibble of address LABEL). 

Note: One level of the stack is used for the storage of the PC. This means 
that this instruction may not be used in the 3rd subroutine level. 

EXAMPLE: The computed constant of a multiplication need to be 
stored in the EE PROM at the label CONST1. For later 
computations the constant is read back from the 
EEPROM: 

A2 EQU 1 

MPY CONSTANT IN FLAC 
MOVFLPRM CONS Tl STORE CONSTANT IN EEPROM 

ME A SR A2 MEASURE A2 INPUT 
BYTE 1 WITH 2 COMPENSATED MEASUREMENTS 
HEXDEC CONVERT ADC RESULT TO DECIMAL 
MOVPRMRB CONS Tl CONSTl -> REGB 
ADD ADD CONSTl TO ADC-VALUE 

ORG 504 CONSTANTS AREA IN EEPROM 
CONS Tl BYTE 0 MSDs AND SIGN 

BYTE 0 
BYTE 0 
BYTE 0 LSDs 

Example 3: Storing and retrieving of an EEPROM value 

Revision 1 , November 1990 



66 TSS400 Standard User's Guide 

3.5 Arithmetic Instructions 

See Chapter 7 for useful hints and applications of these Instructions. 

3.5.1 Add REGB to FLAC Decimally, Result to FLAC 

MNEMONIC: ADD OPCODE: BB 

STATUS: If FLAC = 0: 

ACTION: 

POS = 1 NEG= 0 ZERO= 1 
If FLAC > 0 
POS = 1 t~EG = 0 ZERO = 0 
If FLAC < 0 
POS = 0 NEG = 1 ZERO = 0 

FLAC + REGB ~ FLAC 

PARAMETER: none 

PURPOSE: Adding of two signed, decimal values. 

DESCRIPTION: The content of REGB is added decimally to the content of 
the FLAC, the result is stored in the FLAC. REGB and 
STOO are not altered. 

3.5.2 Subtract REGB From FLAC Decimally, Result to FLAC 

MNEMONIC: SUB OPCODE: BC 

STATUS: If FLAC = 0: 
POS = 1 NEG= 0 ZERO= 1 
If FLAC > 0 
POS = 1 NEG= 0 ZERO= 0 
If FLAC < O 
POS = 0 NEG = 1 ZERO = 0 

ACTION: FLAC- REGB ~ FLAC 

PARAMETER: none 

PURPOSE: Subtracting of two signed, decimal values. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 67 

DESCRIPTION: The content of REGB is subtracted decimally from the 
content of the FLAG, leaving the result in the FLAC. 
REGB and STOO are not altered. 

3,5.3 Multiply FLAC and REGB Decimally, Result to FLAC 

MNEMONIC: MPV OPCODE: BD 

STATUS: If FLAG= 0: 

ACTION: 

PARAMETER: 

PURPOSE: 

DESCRIPTION: 

POS = 1 NEG= O ZERO= 1 
If FLAG> O 
POS = 1 NEG= 0 ZERO= O 
If FLAG< 0 
POS = 0 NEG= 1 ZERO= 0 

FLAG x REGB ~ FLAG 
O ~ STOO 

none 

Multiplying of two signed, decimal values. 

The content of the REGB is multiplied with the content of 
the FLAG, leaving the result in the FLAG. Storage 
Register STOO is cleared. REGB is not altered. The 
numbers are treated as decimal ones. 

3.5.4 Divide FLAC by REGB Decimally, Result to FLAC 

MNEMONIC: DIV OPCODE: BE 

STATUS: If FLAG= 0: 
POS = 1 NEG = O ZERO = 1 
If FLAG> 0 
POS = 1 NEG = 0 ZERO = 0 
If FLAG< O 
POS = 0 NEG = 1 ZERO = O 

ACTION: FLAG: REGB ~FLAG 

Revision 1 , November 1990 



68 

PARAMETER: 

PURPOSE: 

DESCRIPTION: 

TSS400 Standard User's Guide 

Remainder ~ STOO 

none 

Dividing of two signed, decimal values. 

The content of the FLAC is divided by the content of 
REGB. The result is left in the FLAC, the remainder in the 
Storage Register STOO. The numbers are treated as 
decimal ones. REGB is not altered. 

Note: The division routine will hang endlessly if REGB contain zem. Before 
each division the content of REGB have to be tested with the 
instruction TSTRB to assure that it is not zero. 

3.5.5 Add REGB to FLAC Hexadecimally, Result to FLAC 

MNEMONIC: ADDH OPCODE: OE 

STATUS: If FLAC = 0: 
POS = 1 NEG = 0 ZERO = 1 
If FLAC > 0 
POS = 1 NEG= O ZERO= O 
If FLAC < O 
POS = 0 NEG = 1 ZERO = 0 

ACTION: FLAC + REGB ~ FLAC 

PARAMETER: none 

PURPOSE: Adding of two hexadecimal values. 

DESCRIPTION: The content of REGB is added to the content of the 
FLAC, the result is stored in the FLAC. The contents of 
both. registers are treated as hexadecimal numbers in 
two's complement format. REGB and STOO are not al­
tered. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 69 

3.5.6 Substract REGB from FLAC Hexadecimally, Result to FLAC 

MNEMONIC: SUBH OPCODE: 1 E 

STATUS: If FLAG= 0: 
POS = 1 NEG = 0 ZERO = 1 
If FLAG> O 
POS = 1 NEG = 0 ZERO = 0 
If FLAG< 0 
POS = O NEG = 1 ZERO = O 

ACTION: FLAG - REGS ~ FLAG 

PARAMETER: none 

PURPOSE: Subtracting of two hexadecimal values. 

DESCRIPTION: The content of REGS is subtracted from the content of 
the FLAG, leaving the result in the FLAG. The contents of 
both registers are treated as hexadecimal numbers in 
two's complement format. REGS and STOO are not al­
tered. 

3.5.7 Hexadecimal to Decimal Conversion 

MNEMONIC: 

STATUS: 

ACTION: 

PARAMETER: 

PURPOSE: 

HEXDEC 

If FLAG> 0 
POS = 1 NEG = 0 ZERO = 0 
If FLAG= 0 
POS = 1 NEG = 0 ZERO= 1 

FLAG hexadecimally~ FLAG decimally 
NNN ~REGS 
0 ~ STOO 

none 

OPCODE: BF 

Converting of the hexadecimal FLAG value to decimal 
format for computations. 

Revision 1, November 1990 



70 TSS400 Standard User's Guide 

DESCRIPTION: The hexadecimal value, stored in digits 10E4 to 10EO of 
the FLAG, is converted to decimal format. The decimal 
result is stored in the FLAC. REGB is destroyed by the 
conversion. Storage Register STOO is cleared. 

3.5.8 Round FLAC n Times 

MNEMONIC: 

STATUS: 

ACTION: 

PARAMETER: 

PURPOSE: 

ROUNDn 

If FLAC = 0: 
POS = 1 NEG = O ZERO = 1 
If FLAC > 0 
POS = 1 NEG = 0 ZERO = 0 
If FLAG< 0 
POS = 0 NEG = 1 ZERO = O 

FLAG: 10E(n-1) ~ FLAG 

OPCODE: EO - E3 

FLAG: 10 ~ FLAG with rounding 

None. The implicit operand n ranges from 1 to 4. 

Adjusting the FLAG when too large e.g. after a multiplica­
tion. 

DESCRIPTION: The FLAG is shifted right n times. During the last shift the 
.FLAG is rounded up or down depending on the value of 
the out shifted digit: 

EXAMPLES: 

Digit < 5: no change of the new LSD 
Digit > 4: the new FLAG is rounded up by 1 

The FLAG is shown before and after rounding. Different 
contents and roundings are used: 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

FLAC before 

12345 
12345 

98765432 
98765432 

0 
-15 

FLAC after 

1235 
123 

98765 
9877 

0 
-2 

Instruction 

ROUNDl 
ROUND2 
ROUND3 
ROUND4 
ROUNDn 
ROUNDl 

Example 4: FLAC before and after Rounding 

3.5.9 Shift Right FLAC n Times 

71 

MNEMONIC: SHIFTRn OPCODE: E4 - ES 

STATUS: If FLAC = 0: 

ACTION: 

POS = 1 NEG = 0 ZERO = 1 
If FLAC > 0 
POS = 1 NEG = 0 ZERO = O 
If FLAC < 0 
POS = O NEG = 1 ZERO = 0 

FLAC : 10En ~ FLAC (0 < n < 3) 

PARAMETER: None. The implicit operand n ranges from 1 to 2. 

PURPOSE: Adjusting of the FLAC. 

DESCRIPTION: The FLAC is shiftet right n times. No rounding is made. 

EXAMPLE: The FLAC's two LSDs are to be cleared. 

SHIFTR2 
SHIFTL2 

FLAC: XXXX. YYYY 
TRUNCATE LSDs XXXX.YY 
LSDs <- 00 XXXX.YYOO 
NEXT INSTRUCTION HERE 

Example 5: Adjusting of the FLAC by shifting 

Revision 1 , November 1990 



72 TSS400 Standard User's Guide 

3.5.10 Shift Left FLAC n Times 

MNEMONIC: SHIFTLn OPCODE: E6 - E7 

STATUS: If FLAG= 0: 
POS = 1 NEG = 0 ZERO = 1 
If FLAG> 0 
POS = 1 NEG = 0 ZERO = O 
If FLAG< 0 
POS = O NEG = 1 ZERO = 0 

ACTION: FLAG · 10En ~ FLAG (0 < n < 3) 

PARAMETER: none 

PURPOSE: Shifting left the FLAG n-times. 

DESCRIPTION: The FLAG is shifted left one or two times. Zeroes are 
filled into the vacated nibbles of the FLAG. 

EXAMPLE: The FLAG is to be shifted left twice freeing the 2 LSDs. 
These 2 digits are to be replaced by the value in REGB. 

SHIFTL2 
ADD 

FLAC x 100 
REGB: YY 

xxxxxoo 
XXXXXYY 

Example 6: Inserting to the FLAG by shifting left 

3.6 Arithmetic Compare Instructions 

3.6.1 Compare FLAC and REGB 

MNEMONIC: CMPFLRB 

STATUS: If FLAG= REGB 
POS = 0 NEG = 0 ZERO = 1 
If FLAG> REGB 
POS = 1 NEG = 0 ZERO = O 
If FLAG< REGB 
POS = 0 NEG = 1 ZERO = 0 

OPCODE: EC 

Revision 1 , November 1990 



TSS400 Standard User's Guide 73 

ACTION: FLAG - REGB ~computed but not stored 

PARAMETER: none 

PURPOSE: 
DESCRIPTION: 

Comparing the two signed values of FLAG and REGB. 
The contents of REGB are compared to the contents of 
the FLAG. This is done similiarly to a subtraction FLAG -
REGB with the result stored nowhere. The Status Bits are 
set according to the following table: 

SIGN FLAG + + 
SIGN REGB + + 

IFLACI > IREGBI POS POS NEG NEG 
IFLACI = IREGBI ZERO POS NEG ZERO 
IFLACI < IREGBI NEG POS NEG POS 

Figure 26: Flag Bit setting by the CMPFLRB instruction 

3.6.2 Test Contents of REGB 

MNEMONIC: TSTRB 

STATUS: If REGB = 0 
POS = 1 NEG = 0 ZERO = 1 
If REGB > 0 
POS = 1 NEG= O ZERO= O 
If REGB < 0 
POS = 0 NEG = 1 ZERO = O 

ACTION: REGB compared to O 

PARAMETER: none 

PURPOSE: Getting information concerning REGB. 

OPCODE: EE 

DESCRIPTION: The content of REGB is compared to 0. The result is 
written to the Status Bits. 

Revision 1 , November 1990 



74 TSS400 Standard User's Guide 

EXAMPLE: The content of REGB is tested before a division. If it 
contains O. The division is not made due to the hangup 
caused by this REGB value. 

MOVSTORB 2 
TSTRB 
JZ DIVERR· 
DIV 

MOVE ST02 -> REGB 
IF REGB = 0: ERROR OCCURED 
JUMP TO ERROR HANDLING 
REGB # 0: FLAC : REGB -> FLAC 

Example 7: Zero test before division 

3.7 Bit Manipulation Instructions 

3.7.1 Set Flag Bit 

MNEMONIC: SBIT n OPCODE: 20 - 2F 

STATUS: not affected 

ACTION: 1 ~addressed Flag Bit (0 '.5: n < 16) 

PURPOSE: Setting a Flag Bit without affecting the other bits in the 
flag area. 

DESCRIPTION: One of the 32 Flag Bits, selected by the operand n and 
the used Flag Group, is set to one in the flag area. The 
last SELGRPn instruction selects the used group. 

PARAMETER: none 

3.7.2 Reset Flag Bit 

MNEMONIC: RBIT n OPCODE: 30 - 3F 

STATUS: 
ACTION: 

PURPOSE: 

not affected 
O ~addressed Flag Bit (0 '.5: n < 16) 

Resetting a Flag Bit without affecting the other bits in the 
flag area. 

Revision 1, November 1990 



TSS400 Standard User's Guide 75 

DESCRIPTION: One of the 32 Flag Bits, selected by the operand n of the 
instruction and the used Flag Group, is reset to zero in 
the flag area. The last SELGRPn instruction selects the 
used group. 

PARAMETER: none 

3.7.3 Test Flag Bit 

MNEMONIC: TBIT n 

STATUS: If Bit= O 
ZERO= 1 NEG= 1 POS = O 
If Bit = 1 
ZERO = O NEG = 0 POS = 1 

OPCODE: 40 - 4F 

ACTION: Addressed bit ~ZERO and NEG (0 :<:,; n < 16) 
Addressed bit ~ POS 

PURPOSE: To test a selected Flag Bit if set or not. 

DESCRIPTION: The addressed Flag Bit (by Group and bit number n) is 
transferred to the POS Bit. The inverted bit is transferred 
to the ZERO and NEG Bits. The last SELGRPn instruc­
tion selects the used group. 

PARAMETER: none 

3.7.4 Select Flag Bits Group n 

MNEMONIC: SELGRPn 

STATUS: 

ACTION: 

PURPOSE: 

not affected 

if n = 1 : Select Group 1 flags 
if n = 2: Select Group 2 flags 

Select the flags to be used. 

Revision 1 , November 1990 

OPCODE: F3 - F4 



76 TSS400 Standard User's Guide 

DESCRIPTION: The selected group of flags is addressed for all bit modi­
fying and testing instructions until an other SELGRPn in­
struction is encountered. 

PARAMETER: none 

3.7.5 OR FLAC and REGB 

MNEMONIC: OR 

STATUS: If FLAG= 0 
ZERO= 1 
If FLAG> 0 
ZERO =0 

NEG= 0 POS = 1 

NEG= 0 POS = 1 

ACTION: FLAG .OR. REGB -7 FLAG 

PURPOSE: Cring the two register values. 

OPCODE: OF 

DESCRIPTION: The logical OR function is applied to FLAG and REGB. 
Bits set in one or both registers are set in the FLAG. Bits 
not set in both registers are cleared in the FLAG. 

PARAMETER: none 

3.7.6 And FLAC and REGB 

MNEMONIC: AND 

STATUS: If FLAG= 0 

ACTION: 

PURPOSE: 

ZERO = 1 NEG = 0 POS = 1 
If FLAG> O 
ZERO = 0 NEG = 0 POS = 1 

FLAG .AND. REGB -7 FLAG 

Anding the two register values. 

OPCODE: 1F 

Revision 1, November 1990 



TSS400 Standard User's Guide 77 

DESCRIPTION: The logical AND function is applied to FLAG and REGB. 
Bits set in both registers are set in the FLAG, all others 
are cleared to zeroes in the FLAG. 

PARAMETER: none 

3.8 Constant Transfer Instructions 

3.8.1 Load FLAC with a Positive Constant 

MNEMONIC: 

STATUS: 

ACTION: 

PURPOSE: 

DESCRIPTION: 

PARAMETER: 

LDFLPOS n OPCODE: 50 - 53 
BYTE >NN 

BYTE >NN 

not affected 

+CONSTANT~ FLAG (0::::; n < 4) 

Loading the FLAC with a positive constant. 

The constant, which length is defined by the operand n, is 
loaded into the cleared FLAG with a positive sign. The 
constant follows the instruction in subsequent bytes. To 
assure the BCD format, the hex sign ">" has to be used 
for the constants. 

Defined by the operand n; n bytes follow. If n = O; 4 bytes 
follow. Each byte contains two BCD numbers. The MSD 
of the operand is contained in the 1st byte after the 
instruction. 

Note: It is the user's responsibility to append the correct number of bytes 
after the instruction. The assembler doesn't give a warning if the 
operand n and the number of appended bytes do not match. This is 
true for all four load instructions. 

EXAMPLE: The FLAC is to be loaded with the constant + 123456 

Revision 1 , November 1990 



78 

LDFLPOS 3 
BYTE >12 
BYTE >34 
BYTE >56 
ADD 

TSS400 Standard User's Guide 

3 BYTES WITH PARAMETERS FOLLOW 
+123456 -> FLAC 

123456 + REGB -> FLAC 
NEXT INSTRUCTION HERE 

Example 8: Loading the FLAG with a positive constant 

3.8.2 Load FLAC with a Negative Constant 

MNEMONIC: LDFLNEG n OPCODE: 54 - 57 
BYTE >NN 

BYTE >NN 

STATUS: not affected 

ACTION: -CONSTANT~ FLAG 

PURPOSE: Loading the FLAG with a negative constant. 

DESCRIPTION: The constant, which length is defined by the operand n, is 
loaded into the cleared FLAG with a negative sign. The 
constant follows the instruction in subsequent bytes. To 
assure the BCD format, the hex sign ">" has to be used 
for the constants. 

PARAMETER: Defined by the operand n; n bytes follow. If n = O; 4 bytes 
follow. Each byte contains two BCD numbers. The MSD 
of the operand is contained in the 1st byte after the 
instruction. 

3.8.3 Load REGB with a Positive Constant 

MNEMONIC: LDRBPOS n OPCODE: 58 - 5B 
BYTE >NN 

BYTE >NN 

Revision 1 , November 1990 



TSS400 Standard User's Guide 79 

STATUS: not affected 

ACTION: +CONSTANT~ REGB 

PURPOSE: Loading REGB with a positive constant. 

DESCRIPTION: The constant, which length is defined by the operand n, is 
loaded into the cleared REGB with a positive sign. The 
constant follows the instruction in subsequent bytes. To 
assure the BCD format, the hex sign ">" has to be used 
for the constants. 

PARAMETER: Defined by the operand n; n bytes follow. If n = O; 4 bytes 
follow. Each byte contains two BCD numbers. The MSD 
of the operand is contained in the 1st byte after the 
instruction. 

3.8.4 Load REGB with a Negative Constant 

MNEMONIC: LDRBNEG n OPCODE: SC - SF 
BYTE >NN 

BYTE >NN 

STATUS: not affected 

ACTION: - CONSTANT~ REGB 

PURPOSE: Loading REGB with a negative constant. 

DESCRIPTION: The constant, which length is defined by the operand n, is 
loaded into the cleared REGB with a negative sign. The 
constant follows the instruction in subsequent bytes. To 
assure the BCD format, the hex sign ">" has to be used 
for the constants. 

PARAMETER: Defined by the operand n; n bytes follow. If n = O; 4 bytes 
follow. Each byte contains two BCD numbers. The MSD 
of the operand is contained in the 1st byte after the 
instruction. 

Revision 1, November 1990 



80 TSS400 Standard User's Guide 

EXAMPLE: REGB is to be loaded with the constant - 76543210. 

LDRBNEG 0 4 BYTES WITH PARAMETERS FOLLOW 
BYTE >76 
BYTE >54 
BYTE >32 
BYTE >10 
ADD 

-76543210 ->REGB 

FLAC + (-76543210) -> FLAC 
NEXT INSTRUCTION HERE 

Example 9: Loading of REGB with a negative constant 

3.8.5 Clear FLAC Register 

MNEMONIC: CLRFL 

STATUS: 

ACTION: 

PURPOSE: 

not affected 

+O ~FLAG 

Clearing of the FLAG. 

DESCRIPTION: The constant +O is loaded into the FLAG. 

PARAMETER: none 

3.8.6 Clear REGB 

MNEMONIC: CLRRB 

STATUS: 

ACTION: 

PURPOSE: 

not affected 

+O ~ REGB 

Clearing of REGB. 

DESCRIPTION: The constant +O is loaded into the REGB. 

PARAMETER: none 

OPCODE: D5 

OPCODE: D6 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

3.9 Input/Output Instructions 

3.9.1 Set R Output 

MNEMONIC: SETA n 

STATUS: 

ACTION: 

not affected 

1 ~DLn 

81 

OPCODE: 01 - OS 
08- OD 

(0 < n < 14, n # 7) 

PURPOSE: To set a Digit Latch to a logical one. 

DESCRIPTION: The operand n selects the proper Digit Latch. If the 
operand n is from 1 to S inclusive, outputs R1 to RS are 
set. For values greater than 7 the Digit Latches DL8 to 
DL13 are set. 

PARAMETER: none 

Note: RO and R7 cannot be addressed due to their usage by the control 
software. 

3.9.2 Reset R Output 

MNEMONIC: RSTR n OPCODE: 11 - 1S 
18 - 1D 

STATUS: 

ACTION: 

PURPOSE: 

DESCRIPTION: 

PARAMETER: 

not affected 

o~DLn (0 < n < 14, n # 7) 

To reset a Digit Latch to a logical zero. 

The operand n selects the proper Digit Latch. If the 
operand n is from 1 to S inclusive, outputs R1 to RS are 
reset. For values greater than 7 the Digit Latches DL8 to 
DL 13 are reset. 

none 

Revision 1, November 1990 



82 TSS400 Standard User's Guide 

Note: RO and R7 cannot be addressed due to their usage by the control 
software. 

3.9.3 Test Keyboard 

MNEMONIC: TSTKEY >NN OPCODE: ED 

STATUS: See Figure 27. 

ACTION: Key status to Status Bits. 
'"'-• n "" 
ULO= U 

PURPOSE: Testing of a key connected to the K-Port or testing of a K­
Port level. 

DESCRIPTION: The addressed K-Port Kn is read in. This can be done 
with a set, reset or unchanged R-output. The input is 
compared with the information read in the last time and 
the Status Bits set according to the following list: 

Transition ZERO POS NEG 

LO-LO 1 0 0 
LO-HI 0 1 0 
HI-LO 1 0 1 
HI-HI 0 0 0 

Figure 27: Status Bit setting by the TSTKEY instruction 
The ZERO Bit shows the actual state of the key, the POS 
and NEG Bits show if transitions occured. The operand 
format is shown below: 

0 R STR Kn 

Figure 28: Operand byte of the TSTKEY instruction 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

R: Strobing R-output 00 R1 
01 R2 
10 R3 
11 R4 

STR: Strobe used xO R-output not changed 
01 Negative strobe 
11 Positive strobe 

Kn: K-input read in 00 K1 
01 K2 
10 K4 
11 K8 

83 

The read information without affecting the other K-inputs 
is stored and the addressed A-output set after the in­
struction according to the used strobe STR: 
STR = xO: the R-output is not changed at all 
STR = 01: the R-output is set to 1 
STR = 11 : the A-output is reset to O 

PARAMETER: 1 byte containing the operand. Appended by the 
assembler. See Figure 28 for details. 

EXAMPLE: If the key, connected to A3 and K2 is pressed (LO-HI) the 
program has to continue at label PRESSK2. If the same 
key is released, the program has to continue at label 
RELEASK2 

* TEST IF KEY R3/K2 CHANGED SINCE THE LAST READIN 
* 

TSTKEY 
JP 
JN 

>20+>0C+l R3, POS. STROBE, K2 
PRESSK2 KEY WAS PRESSED 
RELEASK2 KEY WAS RELEASED 

NO CHANGE AT THE KEY 

Example 10: Keyboard test example 

Revision 1, November 1990 



84 TSS400 Standard User's Guide 

3.9.4 Actualize K-lnput and Timers 

MNEMONIC: KINTIM OPCODE: EF 

STATUS: 

ACTION: 

If KS = K4 = K2 = K1 = O 
ZERO = 1 POS = X NEG = X 
Otherwise 
ZERO = 0 POS = X NEG = X 

KS ~ Group 1 Flag 15 
K4~ Flag 14 
K2~ Flag 13 
K1 ~ Flag 12 
Short Timer - Time difference ~ Short Timer 
Long Timer - Time difference ~ Long Timer 
If Short Timer ~ O 
Short Timer + Short Timer Buffer~ Short Timer 
ST= 1 (Group 1 Flag 11) 
If Long Timer ~ O 
Long Timer + Long Timer Buffer ~ Long Timer 
LT= 1 (Group 1 Flag 10) 

PURPOSE: Updating timers and K-inputs during Active Mode. 

DESCRIPTION: The Short Timer and Long Timer are actualized and the 
K-Port is read in. The actualization is only made for an 
activated timer, a stopped timer is not affected. The time 
difference since the last update is subtracted from the 
timers. If a timer reaches O or is counted below 0, the last 
loaded value, which is stored in the Timer Buffer, is 
added to the timer. This ensures stable timing as long as 
underflow doesn't occure twice in sequence. The appro­
priate flag is set, too. (The two flags ST and LT are reset 
only by the user's program, never by the interpreter). DLS 
is not changed, if it is set, the contents of the K-Port 
Latch are read into the Group 1 flags 12 to 15. 

PARAMETER: none 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

3.9.5 Read K-lnput 

MNEMONIC: KIN 

ST A TUS: If K8 = K4 = K2 = K 1 = 0 
ZERO = 1 POS = X NEG = X 
Otherwise 
ZERO = 0 POS = X NEG = X 

ACTION: 0 ~ DL8 
K8 ~ Group 1 Flag 15 
K4 ~ Flag 14 
K2 ~ Flag 13 
K1 ~ Flag 12 
K-Port ~ FLAG LSD 

85 

OPCODE: F2 

PURPOSE: Reading K-Port to flags and FLAG for testing. 

DESCRIPTION: DL8 is switched to Oto set the K-Port to input direction. 
The K-Port is read into the Group 1 flags 12 to 15 and the 
FLAC's LSD without disturbing the other digits. 

PARAMETER: none 

3.9.6 Output LSD of FLAC to K-Port 

MNEMONIC: FLKOUT 

STATUS: 

ACTION: 

PURPOSE: 

not affected 

1 ~DL8 
FLAG LSD~ K-Port 

Outputting FLAC's LSD to the K-Port. 

OPCODE: FO 

DESCRIPTION: The LSD of the FLAG is transferred to the K-Port Latch. 
DL8 is set, switching the K-Port to the output direction. 

PARAMETER: none 

Revision 1, November 1990 



86 TSS400 Standard User's Guide 

EXAMPLE: The FLAG is to be output at the K-Port starting with the 
LSD. After each nibble RS is to be set and reset for 
clocking. 

R5 

LOOP 

EQU 5 

LDCNTl 8 
FLKOUT 
SETR R5 
RSTR RS 
SHIFTRl 
DECCNTl 
JNZ LOOP 

USE COUNTER 1 FOR COUNTING 
LSD OF FLAC -> K-PORT 
OUTPUT CLOCK AT RS 

SHIFT NEXT NIBBLE TO LSD 
DECREMENT COUNTER 1 
IF COUNTER 1 # 0: NEXT NIBBLE 
IS 0: 8 NIBBLES ARE OUTPUT 

Example 11 : Outputting of the FLAG with clocks 

3.9.7 Output Constant to K-Port 

MNEMONIC: KOUT n OPCODE: F1 

STATUS: 

ACTION: 

PURPOSE: 

not affected 

1 ~DL8 
n ~ K-Port (0 ~ n < 16) 

Outputting of constants to the K-Port. 

DESCRIPTION: The operand n is transferred to the K-Port Latch. DL8 is 
set, switching the K-Port to the output direction. 

PARAMETER: 

EXAMPLE: 

OUT 

1 byte containing the operand n. Two byte instruction. 

K1 and K4 are to be set 

s SET Kl AND K4 

Example 12: Outputting of a constant to the K-Port 

Revision 1 , November 1990 



TSS400 Standard User's Guide 87 

3.10 Rrogram Flow Control Instructions 

See also chapter Subroutine Software. 

3.10.1 Jump Unconditional 

MNEMONIC: JMP LABEL OPCODE: 60 - 67 

STATUS: not affected 

ACTION: W ~ PC 

PURPOSE: Allows the program to alter the normal sequential pro­
gram execution. 

DESCRIPTION: The JMP instruction jumps unconditionally to the address 
W specified by the label. The three MSBs are defined 
with 3 bits in the 1st byte of the instruction, the eight 
LSBs are defined by the 2nd byte of the instruction. The 
assembler generates both bytes of this 2 byte instruction 
automatically. 

PARAMETER: None. Two byte instruction. 

3.10.2 Jump if Zero, Jump if Equal 

MNEMONICS: JZ LABEL OPCODE: 70 - 77 
JEQ LABEL 

STATUS: not affected 

ACTION: If ZERO = 0 PC+2 ~ PC 
If ZERO = 1 W ~ PC 

PURPOSE: Allows the program to alter the normal sequential 
program execution if the ZERO Bit is set. 

DESCRIPTION: The JZ or JEQ instruction jumps to the address W speci­
fied by the label if the ZERO Bit is set. If the ZERO Bit is 
reset, the instruction following will be executed. 

Revision 1, November 1990 



88 TSS400 Standard User's Guide 

PARAMETER: None. Two byte instruction. 

3.10.3 Jump if not Zero, Jump if not Equal 

MNEMONIC: JNZ LABEL 

STATUS: 
ACTION: 

JNE LABEL 

not affected 
If ZERO = 0 W ~ PC 
If ZERO = 1 PC+2 ~ PC 

OPCODE: 78- 7F 

PURPOSE: Allows the program to alter the normal sequential pro­
gram execution if the ZERO Bit is reset. 

DESCRIPTION: The JNZ or JNE instruction jumps to the address W 
specified by the label if the ZERO Bit is 0. If the ZERO Bit 
is set, the instruction following will be executed. 

PARAMETER: None. Two byte instruction. 

3.10.4 Jump if Positive 

MNEMONIC: JP LABEL 

STATUS: 

ACTION: 

not affected 

If POS = 0 PC+2 ~ PC 
If POS = 1 W ~ PC 

OPCODE: 80 - 87 

PURPOSE: Allows the program to alter the normal sequential pro­
gram execution if the POS Bit is set. 

DESCRIPTION: The JP instruction jumps to the address W specified by 
· the label if the POS Bit is 1 . If the POS Bit is O the in­

struction following will be executed. 

PARAMETER: None. Two byte instruction. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 89 

3.10.5 Jump if Negative 

MNEMONIC: JN LABEL OPCODE: 88 - 8F 

STATUS: 
ACTION: 

PURPOSE: 

not affected 
If NEG= O PC+2 ~PC 
If NEG = 1 W ~PC 

Allows the program to alter the normal sequential pro­
gram execution if the NEG Bit is set. 

DESCRIPTION: The JN instruction jumps to the address W specified by 
the label if the NEG Bit is 1. If the NEG Bit is O, the in­
struction following will be executed. 

PARAMETER: None. Two byte instruction. 

3.10.6 Call Subroutine 

MNEMONIC: 

STATUS: 

ACTION: 

CALL LABEL 

not affected 

SR2 ~SR3 
SR1 ~ SR2 
PC+2 ~ SR1 
W ~PC 

OPCODE: 68 - 6F 

PURPOSE: Allows the program the control transfer to a subroutine. 
Because the CALL instruction saves the return address, 
subroutines may be called from various locations in a 
program. The subroutine will return control back to the 
proper, saved address after the return instruction RETN. 

DESCRIPTION: The CALL instruction invokes a subroutine starting at the 
label's address W and pushes the return address onto the 
subroutine stack. 
The stack's depth is 3. This allows 3 levels of subroutine 
nesting. If a 4th level of subroutine nesting is entered, the 
return address stored in SR3 is lost. 

Revision 1 , November 1990 



90 TSS400 Standard User's Guide 

PARAMETER: None. Two byte instruction. 

3.10.7 Return from Subroutine 

MNEMONIC: RETN 

STATUS: not affected 

ACTION: SR1 ~ PC 
SR2 ~SR1 
SR3 ~SR2 

OPCODE: D4 

PURPOSE: Returning from a subroutine to the address following the 
CALL of the subroutine. 

DESCRIPTION: The Program Counter is loaded from the top of the sub­
routine stack. Then the stack is raised one level up, 
leaving the next return address on top of the subroutine 
stack. If the instruction RETN is used outside of a sub­
routine non predictable results will occur. 

PARAMETER: none. 

3.11 Analog-Digital-Converter Instructions 

3.11.1 Set Converter Supply Voltage 

MNEMONIC: SVDDON OPCODE: 07 

STATUS: not affected 

ACTION: SVoo is switched on. 

PURPOSE: Supplying the ADC part and sensors with voltage. 

DESCRIPTION: The supply converter voltage is switched to the SV00 pin 
and the internal resistor network of the ADC comparator. 

PARAMETER: none 

Revision 1, November 1990 



TSS400 Standard User's Guide 

3.11.2 Reset Converter Supply Voltage 

MNEMONIC: SVDDOFF 

STATUS: not affected 

ACTION: 

PURPOSE: 

SVoo is switched off. 

Switching off the ADC part. 

91 

OPCODE: 17 

DESCRIPTION: The supply converter voltage SV00 is switched off. 

PARAMETER: none 

Note: The supply converter voltage SV00 is also switched off too by 
initialization and the instructions DONE and OFF. Also the instruction 
MEASR switches the SV00 off after the completed measurement. 

3.11.3 Measure Addressed AID Input 

MNEMONIC: MEASR a 
BYTE NNN 

OPCODE: AC - AF 

STATUS: 

ACTION: 

PURPOSE: 

If 0 < ADC < > FFF 
POS = 1 ZERO = O NEG = O 

If ADC Value= 000 
POS = 0 ZERO = 1 NEG = 1 

If ADC Value ~ FFF 
POS = 0 ZERO= O NEG= 1 

DL9 f- 0 
SVoo on 

Adding up ADC results of analog input A(a+ 1) in the ADC 
buffer. Final result~ FLAG. 
SVoo off 

Single or double (compensated) measurements may be 
defined for the addressed analog input A(a+ 1 ). 

Revision 1 , November 1990 



92 TSS400 Standard User's Guide 

DESCRIPTION: The analog input addressed by the operand a is switched 
to the ADC and measured CNT + 1 times. CNT, which 
ranges from Oto 127, is defined in the byte following the 
instruction. See Figure 29. 

Compensated measurements: If the MSB M of the pa­
rameter byte is zero, CNT + 1 measurements with nonin­
verted comparator inputs and CNT + 1 measurements with 
inverted comparator inputs are accumulated. This com­
pensates the offset error of the internal comparator. 
Single measurements: If the MSB M of the parameter 
byte is 1, CNT + 1 measurements with noninverted com­
parator inputs are accumulated. 

The ADC value is tested after each measurement: If an 
error occured, the NEG Bit is set to one and the 
measurements are terminated. The ZERO Bit shows if 
overflow or underflow occured. SV00 is switched on be­
fore the measurements and is switched off after comple­
tion. 

The result of the measurements is placed into the FLAG. 

PARAMETER: The byte following the opcode contains the number of 
measurements CNT and the single/compensated infor­
mation M in the MSB. 

I M I : : :CN< : : I 
I 
0: Compensated Measurements (CNT + 1) · 2 
1: Single Measurements (CNT + 1) 

Figure 29: Parameter byte of the MEASR instruction 

Revision 1 , November 1990 



TSS400 Standard User's Guide 93 

EXAMPLE: Analog input A3 is to be measured 50 times in compen­
sated mode. The result in BCD is to be loaded into the 
FLAG. If an error occurs program has to continue at la­
bels OVFL resp. UNFL depending on the reason for the 
error. 

A3 EQU 2 

MEASR A3 MEASURE A3 
BYTE 
JN 

49 
ERROR 

ADD 49+1 COMPENSATED RESULTS 
NEG = 1 ? IF YES ERROR 

ERROR 
OVFL 

HEXDEC 

JZ UNFL 

NO, CONVERT RESULT TO BCD 
RESULT IN FLAC 
UNDERFLOW OCCURED 
OVERFLOW OCCURED 

Example 13: Measurement with error checking 

3.11.4 Adjust Battery Voltage 

MNEMONIC: ADJBATT 

STATUS: If 0 <ADC<> FFF 
POS = 1 NEG = O ZERO = 0 
If ADC= 000 
POS = 0 NEG = 1 ZERO = 1 
If ADC 2:'. FFF 
POS = 0 NEG = 1 ZERO= 0 

ACTION: 1 ~ DL9 
ADC ~FLAG 

OPCODE: E8 

PURPOSE: Battery measurement under Vddmin conditions for later 
battery checks. 

DESCRIPTION: The value of the internal reference voltage is measured 
with a single measurement and the ADC hex value is 
stored in the 3 LSDs of the cleared FLAG. See examples 
in chapter 7. 

PARAMETER: none 

Revision 1, November 1990 



94 TSS400 Standard User's Guide 

3.11.5 Check Battery Voltage 

MNEMONIC: CHKBATT 

STATUS: If Vdd > Vddmin: 
POS = 1 NEG = 0 ZERO = 0 
If Vdd < Vddmin 
POS = O NEG = 1 ZERO = 0 

ACTION: 1 ~ DL9 

OPCODE: EA 

Comparison of the FLAG with the internal reference 
voitage. 

PURPOSE: Battery voltage measurement for Vddmin check. 

DESCRIPTION: The ADC measurement value of the internal reference 
voltage is compared against the hex value contained in 
the FLAG. Only a single measurement is made. See ex­
amples in chapter 7. 

PARAMETER: none 

3.11.6 Adjust Comparator Voltage 

MNEMONIC: ADJCOMP 

STATUS: If 0 <ADC<> FFF 
POS = 1 NEG = 0 ZERO = 0 
If ADC= 000 
POS = 0 NEG = 1 ZERO = 1 
If ADC~ FFF 
POS = 0 NEG = 1 ZERO = 0 

ACTION: O ~ DL9 
ADC ~FLAG 

PURPOSE: ADC measurement for later comparisons. 

OPCODE: E9 

DESCRIPTION: The ADC measurement value of the addressed analog 
input is measured with a single measurement. The ADC 
hex value is stored in the cleared FLAC's LSDs. 

Revision 1, November 1990 



TSS400 Standard User's Guide 95 

PARAMETER: none 

Note: The analog input to be measured has to be addressed explicitly by 
DL 10 and DL 11. See Figure 6 for addressing. 

3.11.7 Check Comparator Voltage 

MNEMONIC: CHKCOMP OPCODE: EB 

STATUS: If Vadc >Vin: 

ACTION: 

PURPOSE: 

POS = 1 NEG= 0 ZERO= 0 
If Vadc < Vin: 
POS = 0 NEG = 1 ZERO = 0 

O~DL9 

Comparison of the FLAG with the addressed analog 
input. 

Comparison of input voltages with stored ADC values. 

DESCRIPTION: The addressed analog input is compared against the hex 
value contained in the FLAG. Only a single measurement 
is made. 

PARAMETER: none 

Note: The analog input to be measured has to be addressed explicitly by 
DL 10 and DL 11. See Figure 6 for addressing. 

EXAMPLE: The analog input A4 is to be measured for later com­
parisons. The ADC value is to be stored in ST04. The 
stored value is to be compared later against the analog 
input A3. If the voltage at A3 is higher than the stored 
value, then a subroutine LEVEL is to be invoked. 

Revision 1 , November 1990 



96 

NO SUB 

SETR DLlO 
SETR DLll 
ADJ COMP 
MOVFLSTO 4 

SETR 
RSTR 
MOVSTOFL 
CHKCOMP 
JP 
CALL 

DLll 
DLlO 
4 

NO SUB 
LEVEL 

TSS400 Standard User's Guide 

ADDRESS A4: DLlO = DLll = 1 

MEASURE A4 AND STORE RESULT IN FLAC 
STORE RESULT IN ST04 

ADDRESS A3 FOR COMPARISON 
DLll = 1, DLlO = 0, DL9 YET 0 
LOAD STORED ADC VALUE 
COMPARE A3 WITH STORED ADC VALUE 
POS = 1: ADC-VALUE > A3 
ADC-VALUE < A3: CALL SUBROUTINE 

Example 14: Comparing of two analog voltages 

3.12 Display Instructions 

The display used by the TSS400 Standard is configured like shown below: 

MSD LSD 

Digit n 1 2 3 4 5 6 7 

Select S1/2 S3/4 S5/6 S7/8 S9/10 S11/12 S13/14 

Magnitude 10E6 10E5 10E4 10E3 10E2 10E1 10EO 

Figure 30: Display configuration 

3.12.1 Display Digit 

MNEMONIC: DISPLDGn > NN OPCODE: 81 - 87 

STATUS: not affected 

ACTION: Byte info > NN ~ Digit n (0 < n < 8) 

PURPOSE: Change of a single display digit e.g. after displaying the 
FLAG. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 97 

DESCRIPTION: The operand is interpreted in two ways as shown below. 

H: 

Block: 

The resulting character is displayed in the addressed 
digit n. 

I 
0 

I 
H 

: : 
C+ract+ Numf er : I 

I I 
H 

I Blfck I 
M 

I 
z 

I ? I 
Figure 31: Operand byte of the DISPLDGn instruction 

Two different formats exist for the operand. They differ in 
the MSB of the operand: 

MSB = 0: The six least significant bits define the charac­
ter number which is output to the addressed display digit. 
The character numbers are defined in Figure 15. 

MSB = 1: The contents of the according FLAG digit (0-15) 
are output, depending on the bits H, M, Z and Block to 
the addressed display digit. 

The bits H, Block, M and Z have the following 
meaning: 
If set, the segment H of the digit is displayed indepen­
dently of the according H-segment bit in Flag Group 1 . If 
reset, the according H-segment bit in Flag Group 1 de­
cides if the segment His switched on or off. 

These two bits define the block of the character numbers 
to be used. If the contents of the current digit are to be 
output, the block O (numbers 0-9 and characters A-F) is 
to be used. Block 1 is to be used, if characters outside A -
F are to be output. If combinations of the segments A F B 

Revision 1 , November 1990 



98 

M: 

Z: 

TSS400 Standard User's Guide 

G E and H are to be output dependent on the contents of 
the current digit, the blocks 2 and 3 are to be used. 

If set, a minus sign (segment G) is output at the ad­
dressed digit if the FLAC's sign is negative. If the FLAC's 
sign is positive or if M is reset, the addressed digit is 
handled normally. 

If set, leading zero suppression is made for the ad­
dressed digit. This means, the digit is blanked if it con­
tains zero. If reset, a zero is treated like other numbers. 

Note: The bits M and Z are normally senseless if not used with OPLA 
block 0. They should be zero if blocks 1 to 3 are used. 

PARAMETER: 1 byte added by the asssembler containing the display 
information. Two byte instruction. 

EXAMPLE: The FLAG is to be displayed with leading zeroes sup­
pressed and no segment H. If Flag Bit 4 of Flag Group 2 
is set, the 20th character of the OPLA is to be displayed 
at digit 1 with the segment H set. If the bit is reset, the 
21st character without segment His to be displayed. 

H 
z 

BIT4SET 

EQU 
EQU 

DISPLFL 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
SELGRP2 
TBIT 
JNZ 
DISPLDGl 

>40 
>04 

>17 
20+H 
>80+Z 
>80+Z 
>80+Z 
>80+Z 
>80+Z 
>80 

4 
BIT4SET 
21 

DISPLAY FLAC DIGIT 1 - 7 
DIGIT 1 ASSUME BIT 4 = 1 
DIGIT 2 ZERO SUPPRESSED 

DIGIT 7 NO ZERO SUPPRESSION 
TEST FLAG BIT 4 GROUP 2 

BIT 4 = 1: DISPLAY IS YET CORRECT 
BIT 4 = 0: DISPLAY TERM 21 (c) 
U. 123 IF FLAC = 123 OR 
c -123 IF FLAC = 123 

Example 15: Display of the FLAG with additional terms 

Revision 1, November 1990 



TSS400 Standard User's Guide 

3.12.2 Clear Display 

MNEMONIC: DISPLCLR 

STATUS: not affected 

ACTION: Blanks ~ Display 

PURPOSE: Clearing of the whole display. 

DESCRIPTION: The display is filled with blank characters. 

PARAMETER: none 

99 

OPCODE: BS 

EXAMPLE: The 22nd term of the OPLA is to be displayed at digit 2 
with all other digits blanked: 

DISPLCLR 
DISPLDG2 22 

BLANK THE WHOLE DISPLAY 
DISPLAY TERM 22 AT DIGIT 2 

h -> DISPLAY 

Example 16: Display of one term 

3.12.3 Display FLAC 

MNEMONIC: DISPLFL >NN 

STATUS: 

ACTION: 

PURPOSE: 

BYTE >MM 

BYTE >MM 

not affected 

1st byte info ~ Starting digit 
2nd byte info ~ Starting digit + 1 

Last byte info ~ Ending digit 

Display of the FLAG in parts or complete. 

Revision 1 , November 1990 

OPCODE: BO 



100 TSS400 Standard User's Guide 

DESCRIPTION: The operand >NN defines the digits of the FLAG which 
are to be output to the display. The MSD defines the start 
digit, the LSD defines the end digit. E.g. >25 means, digit 
2 to 5 (4 digits) are to be output. The display digits not 
involved in the operand stay unchanged. For each digit to 
be output, a parameter byte is needed. The number of 
parameter bytes is: 

Operand's LSD - Operand's MSD + 1 

The first parameter byte contains the information of the 
start digit, the last parameter byte contains the informa­
tion of the end digit. 

Note: It is the user's responsibilty to add the correct number of parameter 
bytes to the DISPLFL instruction. No errors or warnings are given by 
the assembler if the number mismatches with the instruction's 
operand. 

The parameter bytes following the instruction are inter­
preted in two ways as shown below. The resulting 
character is displayed at the addressed digit: 

I 
0 

I 
H 

: : +·ct+ Numr•' : I 

I 
1 

I 
H 

I Birk I 
M 

I 
z 

I ? I 
Figure 32: Parameter byte of the DISPLFL instruction 

Two different formats exist for the parameters. They differ 
in the MSB of the parameters: 

MSB = 0: The six least significant bits define the charac­
ter number which is output to the according display digit. 
The character numbers are defined in Figure 15. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 101 

H: 

Block: 

M: 

Z: 

MSB = 1: The contents of the according FLAG digit (0-15) 
are output to the according display digit, depending on 
the bits H, M, Zand Block. 

The bits H, Block, M and Z have the following 
meaning: 

If set, the segment H of the digit is displayed indepen­
dently of the according H-segment bit in Flag Group 1. If 
reset, the according H-segment bit in Flag Group 1 de­
cides if the segment His switched on or off. 

These two bits define the block of the character numbers 
to be used. If the contents of the current digit are to be 
output, block 0 (numbers 0 - 9 and characters A - F) has 
to be used. If characters outside A - F are to be output, 
Block 1 has to be used. If combinations of the segments 
A F B G E and H are to be output dependent on the con­
tents of the current digit, block 2 and 3 have to be used. 

If set, a minus sign (segment G) is output at the accord­
ing digit if the FLAG's sign is negative. If the FLAG's sign 
is positive, a blank character is output. If reset, the ac­
cording digit is handled normally. 

If set, leading zero suppression is made for the according 
digit. This means, the digit is blanked if it contains zero 
and all digits left to it, beginning at the first displayed digit 
in the FLAG, are zero, too. If reset, a zero is treated like 
other numbers. 

Note: The bits M and Z are normally senseless if used with OPLA block 1 
to 3. They should be zero if these blocks are used. 

Figure 33 shows the displayed information depending on 
the variables H, M and Z (block 0). Display 1 shows a 
FLAG containing - 00001234, Display 2 shows it con­
taining + 00000000. The instruction used for the figure 
follows. The term INFO contains the H, Mand Z bit. 

Revision 1 , November 1990 



102 

INFO: 

DISPLFL 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 

TSS400 Standard User's Guide 

>17 DISPLAY FLAC DIGIT 1 TO 7 
14 DIGIT 1 MSD: E 
>80+Z 
>80+INFO DIGIT 3 CONTAINS THE VARIABLE 
>80 
>80 
>80 
>80 DIGIT 7 LSD 

H M z Display 1 Display 2 

0 0 0 E_ 01234 E_ 00000 
0 0 1 E_ 1~04 E_ 0000 
0 1 0 E_ - 1234 E_ 0000 
0 1 1 E_ - 1234 E_ 0000 
1 0 0 E_0.1234 E_0.0000 
1 0 1 E_ .1234 E_ .0000 
1 1 0 E_ -.1234 E_ .0000 
1 1 1 E_ -.1234 E_ .0000 

Figure 33: Display depending on the DISPLFL Para 
meter 

PARAMETER: 1 byte added by the assembler containing the operand 
information >NN which digits are to be displayed. For 
each digit involved by the operand an additional para­
meter byte is to be added by the user. 

EXAMPLE: The Storage Register 5 is to be displayed with the deci­
mal point (segment H) on at digit 5. Leading zero sup­
pression is needed. The sign is to be located at digit 1. 

H EQU >40 H SEGMENT ON 
M EQU >08 SIGN (-) ON IF NEGATIVE 
z EQU >04 LEAD. ZERO SUPPRESSION ON 

MOVSTOFL 5 STOS -> FLAC 
DISPLFL >17 DISPLAY FLAC: - X.XX 
BYTE >80+Z+M DIGIT 1 CONTAINS-SIGN 

Revision 1 , November 1990 



TSS400 Standard User's Guide 103 

BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 

>80+Z 
>80+Z 
>80+Z 
>80+H 
>80 
>80 

DIGIT 2 
DIGIT 3 
DIGIT 4 
LIGIT 5 WITH DEC. POINT 
DIGIT 6 
DIGIT 7 

Example 17: Display with variables Z, M and H 

EXAMPLE: The FLAC is to be output to the display digits 1 to 6. The 
digit 7 contains mode information in the especially de­
signed segments A F B G and E. The mode information A 
F B G is stored in the FLAC's LSD. The segment E in­
formation is contained in bit O of Flag Group 1 . The non­
structured combinations cannot occur. 

BL2 EQU >20 OPLA BLOCK 2 (AFB G) 
BL3 EQU >30 OPLA BLOCK 3 (A F B G E) 

DISPLFL >16 DISPLAY FLAC DIGIT 1 TO 6 
BYTE >80 DIGIT 1 
BYTE >80 DIGIT 2 
BYTE >80 DIGIT 3 
BYTE >80 DIGIT 4 
BYTE >80 DIGIT 5 
BYTE >80 DIGIT 6 
SELGRPl SEGMENT E ON ? 
TBIT 0 
JNZ SE GE ON YES 
DISPLDG7 >80+BL2 NO, ONLY AFB G 

SEGEON DISPLDG7 >80+BL3 YES, DISPLAY WITH E 

Example 18: Display of segment combinations 

Revision 1 , November 1990 



104 TSS400 Standard User's Guide 

3.13 Miscellaneous Instructions 

3.13.1 Enter Done Mode 

MNEMONIC: DONE OPCODE: D2 

STATUS: not affected 

ACTION: CPU part is switched off. SV00 is switched off. EE PROM 
is switched off. 

PURPOSE: Current saving by deactivation of unnecessary parts. 

DESCRIPTION: The CPU part is switched off, mainly only RAM, the LCD 
driver and the timers stay active. The ADC supply voltage 
SV00 and the EEPROM voltage are switched off, too. 
Wake-up occurs at the instruction following the DONE 
instruction. See Figure 8 and 9 for wake-up conditions. 

PARAMETER: none 

3.13.2 Enter Off Mode 

MNEMONIC: OFF OPCODE: D3 

STATUS: not affected 

ACTION: CPU, SV00, EEPROM, LCD and timers are switched off. 

PURPOSE: Current saving by deactivation of not necessary parts. 

DESCRIPTION: The CPU and the timers are switched off, only the RAM 
stays active. Events at the inputs which would wake up 
the CPU from Done Mode, will wake up the CPU from Off 
Mode, too. See Figure 8 and 9 for the wake-up 
conditions. The ADC supply voltage SVoo and the 
EEPROM voltage are switched off, too. Wake-up will 
occur at the address following the OFF instruction. 

PARAMETER: none 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

3.13.3 No Operation 

MNEMONIC: NOP 

STATUS: 

ACTION: 

not affected 

PC+1 ~PC 

105 

OPCODE: 00 or FF 

PURPOSE: Code for doing nothing definitively: Deleting of opcodes 
during debugging. Insertion of delays. 

DESCRIPTION: The next instruction is read. 

PARAMETER: none 

3.14 Counter Instructions 

Two decimal counters exist (Counter 1 and Counter 2) which are identical 
in its single use. The descriptions use n for 1 or 2 respectively. 

3.14.1 Decrement Counter n 

MNEMONIC: 

STATUS: 

ACTION: 

PURPOSE: 

DECCNTn 

If Result= O 
ZERO = 1 POS = X NEG = X 
If Result# O 
ZERO = O POS = X NEG = X 

OPCODE: DB - D9 

Counter n - 1 ~Counter n (0 < n < 3) 

Counting down of Counter n decimally until zero is 
reached. 

DESCRIPTION: The Counter n is decremented and the ZERO Bit set or 
reset according to the result. 

PARAMETER: none 

Revision 1 , November 1990 



106 TSS400 Standard User's Guide 

EXAMPLE: 50 compensated measurements are to be added for the 
ADC input A3. If an error occurs during these measure­
ments, this is to be tried 5 times. After 5 effortless trials 
an error message is to be output. 

A3 

LOOP 

CNTDWN 

EQU 

LDCNTl 
MEASR 
BYTE 
JN 

2 

5 
A3 
49 
CNTDWN 

DECCNTl 
JNZ LOOP 
CALL ERRMSG 

LOAD COUNTER 1 WITH 5 TRIALS 
ADD UP 50 COMP. MEASUREMENTS 

ERROR ? 
NO, MEASUREMENTS OK, PROCEED 

YES, DECR. TRIAL COUNT 
AND TRY ONCE MORE 
5 EFFORTLESS TRIALS: ERROR 

Example 19: Usage of a counter for repetitions 

3.14.2 Increment Counter n 

MNEMONIC: 

STATUS: 

ACTION: 

PURPOSE: 

INCCNTn OPCODE: DB - DC 

If Result= O (99 before} 
ZERO = 1 POS = X NEG = X 
If Result# O 
ZERO = 0 POS = X NEG = X 

Counter n + 1 ~ Counter n (0 < n < 3) 

Counting up of Counter n decimally until zero (100) is 
reached. 

DESCRIPTION: The Counter n is incremented and the ZERO Bit set if the 
counter overflows to 100. The ZERO Bit is reset other-
wise. 

PARAMETER: none 

Revision 1, November 1990 



TSS400 Standard User's Guide 

3.14.3 Decrement Double Counter 

MNEMONIC: 

STATUS: 

DEC DBL 

If Result= 0000 
ZERO= 1 POS = X NEG= X 
If Result # 0000 
ZERO = O POS = X NEG = X 

107 

OPCODE: DA 

ACTION: A decimal counter consisting of Counter 2 (MSD) and 
Counter 1 (LSD) is decremented by 1. 

PURPOSE: Counting down a decimal counter of doubled length. 

DESCRIPTION: The counter consisting of the connected Counters 1 and 
2 is decremented and the ZERO Bit set if the result is 
0000. The ZERO Bit is reset otherwise. 

PARAMETER: none 

3.14.4 Increment Double Counter 

MNEMONIC: INC DBL OPCODE: DD 

STATUS: If Result= 0000 (9999 before) 
ZERO= 1 POS = X NEG= X 
If Result# 0000 
ZERO = 0 POS = X NEG = X 

ACTION: A decimal counter consisting of Counter 2 (MSD) and 
Counter 1 (LSD) is incremented by 1. 

PURPOSE: Counting up a decimal counter of doubled length. 

DESCRIPTION: The counter consisting of the connected Counters 1 and 
2 is incremented and the ZERO Bit set if the counter 
overflows to 10000. The ZERO Bit is reset otherwise. 

PARAMETER: none 

Revision 1 , November 1990 



108 TSS400 Standard User's Guide 

3.14.5 Load Counter n Decimal 

MNEMONIC: LDCNTn >NN OPCODE: DE - OF 

STATUS: not affected 

ACTION: >NN ~ Counter n 
PC+2 ~PC 

(0 < n < 3) 

PURPOSE: Loading Counter n with a decimal value. 

DESCRIPTION: The value of the operand is loaded into Counter n.The 
PC is adjusted to point to the next following instruction. 

PARAMETER: 1 byte added by the assembler containing the decimal 
value in BCD format. ">" is used to assure BCD format. 
Two byte instruction. 

EXAMPLES: The Counter 2 is to be loaded with the value 89: 

LDCNT2 

LDCNT2 
LDCNTl 

>89 LOAD COUNTER 2 WITH 89 

The counters are to be loaded with the decimal value 
1234 for combined counting. 

>12 
>34 

LOAD COUNTER 2 WITH MSDs 
LOAD COUNTER 1 WITH LSDs 
READY FOR DOUBLE INCR/DECR 

Example 20: Loading of the counters 

3.14.6 Move Counter n to REGB 

MNEMONIC: 

STATUS: 

ACTION: 

MOVCNTn 

If Counter n = 00 
ZERO = 1 POS = 1 NEG = 0 
If Counter n # 00 
ZERO = 0 POS = 1 NEG = 0 

0 ~REGB 

Counter n ~ REGB (0 < n < 3) 

OPCODE: FS - F6 

Revision 1 , November 1990 



TSS400 Standard User's Guide 109 

PURPOSE: Loading Counter n to the REGB for comparing or comput­
ing. 

DESCRIPTION: Counter n is transferred into the LSDs of the cleared 
REGS. 

PARAMETER: none 

3.14.7 Move Combined Counters to REGB 

MNEMONIC: 

STATUS: 

ACTION: 

MOVDBL 

If Counters= 0000 
ZERO = 1 POS = 1 NEG = O 
If Counters # 0000 
ZERO= O POS = 1 NEG= 0 

0 ~REGB 

Counter 1 ~ REGB 1 OE1 - 10EO 
Counter 2 ~ REGB 10E3 - 10E2 

OPCODE: F7 

PURPOSE: Loading of the combined counters to the REGB for com­
paring or computing. 

DESCRIPTION: The combined counters are transferred into the LSDs of 
the cleared REGB. Counter 2 contains the MSDs. 

PARAMETER: none 

3.15 Timer Instructions 

3.15.1 Load Timer Long 

MNEMONIC: LDTIML NNN OPCODE: DO 

STATUS: not affected 

Revision 1 , November 1990 



110 TSS400 Standard User's Guide 

ACTION: NNN ~Long Timer (0::; NNN < 256) 
NNN ~ Long Timer Buffer 
O ~ LT Group 1 Flag 1 O 
start of Long Timer; 

PURPOSE: Loading and starting of the Long Timer. 

DESCRIPTION: The operand NNN is loaded into the timer counting 
seconds. A zero operand means 256 seconds. The value 
NNN is stored in the Long Timer Buffer too for restoring 
of the Leng Timer \AJhen its contents reach or pass zero. 
The Group 1 Flag 1 O (LT) is reset. 

Note: The first timer interval after starting has an uncertain duration due to 
the asynchronous start inside the hardware timer's sequence. The 
first time interval has an uncertainity of up to 1 second. 
The Long Timer remains active until the instruction STPTIML occurs. 

PARAMETER: One byte added by the assembler containing the timer 
value. Two byte instruction. 

EXAMPLE: The timer is to be loaded with 2 seconds. 

LDTIML 2 LOAD SECONDS COUNTER 
WITH 2 SECONDS 

Example 21 : Loading of the long timer 

3.15.2 Load Timer Short 

MNEMONIC: 

STATUS: 

LDTIMS NNN 

not affected 

OPCODE: D1 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

ACTION: NNN ~Short Timer (0::::; NNN < 256) 
NNN ~ Short Timer Buffer 
O ~ST Group 1 Flag 11 
start of Short Timer; 

PURPOSE: Loading and starting of the Short Timer. 

111 

DESCRIPTION: The operand NNN is loaded into the timer counting 1116 
s. A zero operand means 256/16 seconds. The value 
NNN is stored in the Short Timer Buffer too for restoring 
of the Short Timer when its contents reach or pass zero. 
The Group 1 Flag 11 (ST) is reset. 

Note: The first timer interval has an uncertain duration due to the asyn­
chronous start inside the hardware timer's sequence. The first time 
interval has an uncertainity of up to 1 /16 second. 

The Short Timer remains active until the STPTIMS instruction 
occurs. 

It is the user's responsibility to set the Digit Latch DL 12 to one, if the 
Short Timer is to be used. The Short Timer will not operate with a 
reset DL 12. 

PARAMETER: One byte added by the assembler containing the timer 
value. Two byte instruction. 

EXAMPLE: The Short Timer is to be loaded with 0.5 seconds. The 
Long Timer is to be loaded with 256 seconds. 

SETR 
LDT IMS 
LDTIML 

DL12 
8 
0 

SET DL12 FOR THE SHORT TIMER 
LOAD 1/16 S COUNTER: 0.5 S (8/16) 
LOAD TIMER FOR SECONDS 
WITH 256 SECONDS (0) 

Example 22: Loading of both timers 

Revision 1 , November 1990 



112 TSS400 Standard User's Guide 

3.15.3 Actualize Timers 

MNEMONIC: 

STATUS: 

ACTION: 

ACTTIM 

not affected 

OPCODE: 10 

Short Timer - Time difference ~ Short Timer 
Long Timer - Time difference~ Long Timer 

If Short Timer ::::: 0 
Short Timer+ Short Timer Buffer~ Short Timer 
ST= 1 (Group 1 F!ag 11) 

If Long Timer::::: 0 
Long Timer + Long Timer Buffer ~ Long Timer 
LT= 1 (Group 1 Flag 10) 

PURPOSE: Updating Long and Short Timer during Active Mode. 

DESCRIPTION: The Short Timer and Long Timer are actualized, if acti­
vated. A stopped timer is not affected by this instruction. 
The time difference since the last update is subtracted 
from the timers. If a timer reaches O or is counted below 
0, the last loaded value, which is stored in the according 
Timer Buffer, is added to the timer. This ensures stable 
timing as long as an underflow doesn't occure twice in 
sequence. The appropriate flag is set, too. (The two flags 
ST and LT are reset only by the user's program, never by 
the interpreter). To ensure stable timing without loosing of 
information the updating has to be done in time intervals 
ti. The conditions for ti are: 

PARAMETER: 

EXAMPLE: 

ti < loaded time by LDTIMS or LDTIML 
and ti ::::: 15/16 s for the Short Timer 

ti ::::: 15 s for the Long Timer 

none 

The timers are to be updated during a period of computa­
tion intensive tasks. The flag checking part is shown, too. 

Revision t, November 1990 



TSS400 Standard User's Guide 113 

LT EQU 10 LONG TIMER FLAG 
ST EQU 11 SHORT TIMER FLAG 

MOVSTORB 2 ST02 -> REGB 
MPY ST02 x FLAC 
ACT TIM UPDATE TIMERS AFTER MULTIPLY 
SHIFTL2 FLAC x 100 
MOVPRMRB CONSTANT CONSTANT -> REGB 
DIV FLAC x 100 : CONSTANT 
ACT TIM UPDATE TIMERS AFTER DIVISION 
SELGRPl ADDRESS TIMER FLAGS 
TBIT LT LONG TIMER COUNTED DOWN ? 
JNZ LTOV YES 

L$400 TBIT ST SHORT TIMER COUNTED DOWN ? 
JNZ STOV 

CONTINUE PROGRAM 
* 
LTOV RBIT LT RESET LT FLAG 

DO THINGS NECESSARY 
JMP L$400 CHECK THE ST FLAG 

STOV REIT ST RESET ST FLAG 

Example 23: Updating of the timers during active mode 

3.15.4 Stop Long Timer 

MNEMONIC: STPTIML OPCODE: F8 

STATUS: 

ACTION: 

PURPOSE: 
DESCRIPTION: 

PARAMETER: 

not affected 

The Long Timer is stopped. 
0 ~LT (Group 1 Flag 10) 

Deactivation of Long Timer. 
The Long Timer is stopped and the LT flag is reset. The 
LT flag stays reset until a LDTIML instruction restarts the 
Long Timer and underflow occurs afterwards. 

none 

3.15.5 Stop Short Timer 

MNEMONIC: STPTIMS OPCODE: F9 
STATUS: not affected 

Revision 1 , November 1990 



114 

ACTION: 

PURPOSE: 

TSS400 Standard User's Guide 

The Short Timer is stopped. 

0 ~ST (Group 1 Flag 11) 

Deactivation of Short Timer. 

DESCRIPTION: The Short Timer is stopped and the ST flag is reset. The 
ST flag stays reset until a LDTIMS instruction restarts the 
Short Timer and underflow occurs afterwards. 

PARAMETER: none 

EXAMPLE: The Short Timer is to be loaded with 10 seconds. After 
this time a subroutine SUBR is to be called and the Short 
Timer deactivated. 

LDT IMS 160 10 SECONDS -> SHORT TIMER 
DONE 
SELGRPl 
TBIT ST SHORT TIMER REACHED 0 ? 
JNE STRZ YES 

NO, KEYBOARD ? 

* 
STRZ STPTIMS STOP SHORT TIMER 

CALL SUBR DO, WHAT IS TO BE DONE 

Example 24: Loading and Stopping of a Timer 

3.16 Host Control Instructions 

These instructions are implemented mainly for the connection of the 
TSS400 Standard to a host (Slave Mode). They may be used in normal 
environments too, if this is valuable. 

MNEMONIC: 

STATUS:· 

PURPOSE: 

SLV OPCODE: FA 

not affected 

1/0 instructions when controlled by a host computer in the 
Slave Mode. 

DESCRIPTION: The operand byte defines the function to be executed in 
the Slave Mode: 

Revision 1 , November 1990 



TSS400 Standard User's Guide 115 

CodeO 

Code1 

Code2 

Code3 

Code4 

I 0 I :~: I : ~ : I 
Figure 34: Operand Byte of the SLV Instruction 

Ouput Status Bits during Rx is HI 
The Sign nibble of the FLAG and the Status Bits are out­
put to the 1/0 Pin in the following order: Sign, 3 dummy 
bits, POS, ZERO, NEG, 1 dummy bit. Rx is HI during the 
8 bit transfer. 

Output FLAC during Rx is HI 
The FLAG content is output to the 1/0 Pin starting with 
the MSB of the MSD and ending with the LSB of the Sign 
nibble. Then the Status Bits are output in the following 
order: POS, ZERO, NEG, 1 dummy bit. Rx is HI during 
the transfer of these 1 O x 4 bits. 
Read RAM in during Rx is HI 
The complete RAM is read in. The transfer starts with the 
MSB of the nibble Y = O located in X-bank 1 and ends 
with the LSB of the nibble Y = 15 in X-bank 15. See figure 
37 for the sequence. Rx is HI during the transfer of these 
9 x 16 x 4 bits. 

Output RAM during Rx is HI 
The complete RAM is written out. The transfer starts with 
the MSB of the nibble Y = O located in X-bank 1 and ends 
with the LSB of the nibble Y = 15 in X-bank 15. See figure 
37 for the sequence. Rx is HI during the transfer of these 
9 x 16 x 4 bits. 

Wait x seconds 
The program waits O to 15 seconds in Active Mode before 
the next instruction is read. The timing ambiguity is 
1 second due to the random start. 

Revision 1 , November 1990 



116 

Codes 

x: 

TSS400 Standard User's Guide 

Soft start 
The program starts at PC 000, the normal start point after 
initialization. 

Codes 0-3: A-output Rx used for transfer indication The 
chosen A-output is set to HI during the transfer of the 
information. This allows distinction of the transferred 
information from the EEPROM control signals which use 
the 1/0-Pin normally. 
Code 4: waiting time in seconds 
Code 5: noi used 

Note: The A-output used for transfer indication can range from R1 to RS. If 
no such signal is wished, DL 1 O or DL 11 may be used. No checks are 
made to avoid the usage of RO, R7 or other digit latches. 

More information concerning the above instructions is 
contained in chapter 9. See there for a description of the 
signals used for the transfers. 

PARAMETER: 1 byte containing the actual 1/0 function and the A-Output 
for the clock resp. the waiting time. 

Revision 1, November 1990 



TSS400 Standard User's Guide 117 

4 Subroutine Software 

4.1 General 

By using the subroutine capability of the TSS400 Standard, programs are 
substantially compacted, enabling the user to write very powerful algo­
rithms within the 512 (2048) word limit. 

A subroutine is used to avoid duplication of EEPROM code when a particu­
lar section of code is used several times within a program. A subroutine is 
a section of code terminated with a RETN instruction. A CALL instruction 
transfers program execution to the first instruction in the subroutine. At the 
completion of the subroutine, program control is transferred to the instruc­
tion address immediately following the CALL instruction. Examples of a 
subroutine and different calling techniques will follow. 

4.2 Nesting Subroutines 

The TSS400 Standard has a subroutine stack with a depth of 3. This 
means that 3 levels of subroutines are possible {a subroutine can call a 
subroutine and this one can call a subroutine, too). This procedure is called 
nesting subroutines. If a 4th subroutine level is used, the return information 
of the 1st level is lost and the software will not work properly. So the user is 
advised always to be informed which subroutine level he is using when 
coding programs. 

The same is true for the return instruction RETN. If this instruction is used 
when not inside a subroutine the Program Counter PC is filled with irrele­
vant data from the stack. Non predictable results will occur. 

Example: The following program shows subroutine nesting 3 levels deep. 

RS EQU 5 

MAINLOOP CALL TEST INVOKE TEST SUBROUTINE 
FROM MAINLOOP: 1st LEVEL 

*---------
TEST CALL PREPARE CALL 2nd LEVEL 

CALL DISPLAY CALL 2nd LEVEL AGAIN 
RETN 

* 

Revision 1 , November 1990 



118 TSS400 Standard User's Guide 

PREPARE CALL CLRDISPL CALL 3rd LEVEL 
SETR RS OUTPUT PULSE AT RS 
RSTR RS 

RETN RETURN TO 1st LEVEL 
* 
CLRDISPL DISPLCLR ROUTINE CLEARS DISPLAY BUFFER 

RETN RETURN TO 2nd LEVEL 
* 
TEST 

RETN 

Example 25: Subroutine nesting levels 

4.3 Multiple Entry Points 

Otten it is desired to use a subroutine several times, specifying different 
conditions each time for entering that subroutine. A call to the multiple entry 
points presets different conditions, and then a branch into the base subrou­
tine is executed. Thus, rewriting the subroutine for each entry condition is 
avoided. 

The following examples use the GREG routine as the basic subroutine. 

CREGl 

* 
CREG3 

* 
CREG 
Cl 

MOVSTORB 1 
JMP CREG 

MOVSTORB 3 

ADD 
MOVSTORB 2 
MPY 
ROUND3 
RETN 

STOl -> REGB 
USE CREG SUBROUTINE 

ST03 -> REGB. FALL INTO CREG 

FLAC + STOx -> FLAC 
ST02 -> REGB 
RESULT x ST02 -> FLAC 
RESULT : 1000 -> FLAC 

Example 26: Multiple Subroutine entry points 

Revision 1 , November 1990 



TSS400 Standard User's Guide 119 

Now calling sequences for computations can become: 

CALL CREGl COMPUTATION WITH STOl 

CALL CREG3 COMPUTATION WITH ST03 

MOVSTORB 4 COMPUTATION WITH ST04 
CALL CREG USE BASIC ROUTINE 

MOVSTORB 5 COMPUTATION WITH SUBTRACTED STOS 
SUB 
CALL Cl USE ENTRY POINT Cl 

CALL CREG USE SUBROUTINE AS IT IS 

Example 27: Subroutine calls 

Note that the CREG subroutine is not modified and can be called again 
(like explained above with computation of ST04). 

Revision 1 , November 1990 



120 TSS400 Standard User's Guide 

5 Correction of Tolerances by Software 
The ADC conversion equations mentioned in 2.11 show nominal values 
which in reality differ due to tolerances of Vmin and Vmax. The sensors 
connected to the ADC have tolerances too, so calibration of the complete 
system is necessary by hardware (potentiometer, resistors) or by software. 

Two possibilities exist for software calibration: 

- Storage of the calibration factors in the TSS400 RAM 
- Storage of the calibration factors in the EEPROM 

The following chapters explain the two possibilities with examples. 

5.1 Calibration Variables Stored in RAM 

This kind of calibration variables storing is only possible if the TSS400 is 
connected always to a battery. 

5.1.1 Computation with Nominal Values and Correction 

Correction variables once written into the RAM via the 1/0 Pin are used 
after the AID conversion and nominal value computation for correcting the 
result. This allows measurements with the noncalibrated device. 

Example: RAM locations contain correction values C and D for adjusting of 
the temperature value to the corrected temperature Trea1: 

* Tnom = N x 0.1363 - 6.696 nominal constants 
* Treal = Tnom x C + D Correction formula 
* C = Slope correction in ST02 
* D = Offset correction in ST03 
* 
Al EQU 0 

MEASR Al MEASURE Al 
BYTE 1 2 COMPENSATED MEASUREMENTS xxxx 
JN ERROR 
HEXDEC CONVERT RESULT TO BCD xxxx 
LDRBPOS 2 0.1363 -> REGB O.YYYY 
BYTE >13 
BYTE >63 

Revision 1, November 1990 



TSS400 Standard User's Guide 

* 

MPY 
ROUNDl 
LDRBPOS 2 
BYTE >66 
BYTE >96 
SUB 
ROUNDl 

MOVSTORB 2 
MPY 
ROUND2 
MOVSTORB 3 
ADD 
MOVFLSTO 1 

6. 696 -> REGB 

TNOM -> FLAC 

C -> REGB 
TNOM x C -> FLAC 
ROUND 2 DIGITS 
D -> REGB 
TNOM x C + D -> FLAC 
CORRECTED RESULT TO STOl 

XXX.YYYY 
XXX.YYY 

XXX.YY 

X.YYY 
XX.YYYYY 
XX.YYY 

-X.YYY 
XX.YYY 

Example 28: Computation with nominal values and correction 

5.1.2 Computation with Corrected Values only 

121 

Corrected variables once written into the RAM via the 1/0 Pin are used 
after the AID conversion. The nominal constants have to be loaded for the 
1st calibration measurements via the 1/0 or during the initialization by the 
user's program. 

Example: RAM locations contain the corrected values C and D (slope and 
offset) for adjusting of the temperature value to the corrected temperature 
Treal: 

* Treal = N x C + D 
* C Slope in ST02 
* D = Off set in ST03 
* 

Al EQU 0 

MEASR Al 
BYTE 1 
JN ERROR 
HEXDEC 
MOVSTORB 2 
MPY 
ROUNDl 
MOVSTORB 3 
ADD 
MOVFLSTO 1 

MEASURE Al 
2 COMPENSATED MEASUREMENTS xxxx 

CONVERT RESULT N TO BCD xx xx 
c -> REGB 0.YYYY 
N x C -> FLAC XX.YYYY 
ROUND 1 DIGIT XX.YYY 
D -> REGB -X.YYY 
N x C + D -> FLAC XX.YYY 
CORRECTED RESULT TO STOl 

Example 29: Computation with corrected values only 

Revision 1, November 1990 



122 TSS400 Standard User's Guide 

5.2 Calibration Variables stored in EEPROM 

If the correction variables are stored in the EEPROM the correction routine 
may look like the following example. This way is recommended if no battery 
is used. These EEPROM variables can be computed by a host computer or 
by the TSS400 Standard itself if a calibration software part is used. The 
nominal slope and offset values are part of the user's program. These 
values are overwritten with the corrected values after calibration. The ex­
ample is the same as described before. 

Example: EEPROM locations contain the corrected values C and D (slope 
and offset) for adjusting of the temperature value to the corrected tempera­
ture Trea1: 

* Tnom = N x 0.1363 - 6.696 
* Treal = N x C + D 
* C = Slope in SLOPE 
* D Offset in OFFSET 
* 
Al EQU 0 

ME A SR Al 
BYTE 1 
JN ERROR 
HEXDEC 
MOVPRMRB SLOPE 
MPY 
ROUNDl 
MOVPRMRB OFFSET 
ADD 
MOVFLSTO 1 

ORG 500 
SLOPE BYTE >00 

BYTE >00 
BYTE >13 
BYTE >63 

OFFSET BYTE >80 
BYTE >00 
BYTE >66 
BYTE >96 

nominal constants 
Corrected formula 

MEASURE Al 
2 COMPENSATED MEASUREMENTS 

CONVERT RESULT TO BCD 
C -> REGB 
N x C -> FLAC 
ROUND l DIGIT 
D -> REGB 
N x C + D -> FLAC 
CORRECTED RESULT TO STOl 

xx xx 

xx xx 
X.YYYY 

XX.YYYY 
XX.YYY 
-X.YYY 
XX.YYY 

START OF CONSTANTS IN EEPROM 
AT ADDRESS 500 
+0.1363 INITIALLY 

-6.696 INITIALLY 

Example 30: Calibration variables stored in the EEPROM 

Revision 1 , November 1990 



TSS400 Standard User's Guide 123 

6 System Calibration 

With a few simple instructions it is possible for the system to compute the 
calibration constants by itself. 

Example: A thermometer at A 1 is to be calibrated. Key 1 (R1/K1) is acti­
vated when the sensor is dived into a bath with 0 C. Key 2 (R1/K2) is acti­
vated when the sensor is dived into a bath with +80 C. When both 
measurements are made, the slope and offset are to be computed and 
stored in ST02 and ST01 respectively. The routine which computes the 
temperature T with these computed values is to be shown, too. 

* Tl = ADCl x SLOPE + OFFSET 
* T2 = ADC2 x SLOPE + OFFSET 
* --------------------------

0 c 
80 c 

T2 - Tl 
* T2 - Tl = SLOPE (ADC2 - ADCl) -> SLOPE -------------
* 

* * SLOPE = 
* 
* 

80 - 0 

ADC2 - ADCl 

* OFFSET = Tl - ADCl x SLOPE 
* 

ADC2 - ADCl 

-> OFFSET = 0 - ADCl x SLOPE 

* THE FOLLOWING SUBROUTINE COMPUTES SLOPE AND OFFSET FOR 
* THE TEMPERATURE SENSOR 
* 
Al EQU 0 DEFINE Al INPUT 

CALI BRAT TSTKEY >0+>30+0 Rl, POS. STROBE, Kl 
JZ CALIBRAT KEYl ACTIVE ? 
ME A SR Al YES, MEASURE AT 0 C xx xx 
BYTE 3 4 COMPENSATED MEAS. ADDED 
JN ERROR OUTSIDE RANGE 
HEXDEC HEX -> BCD FLAC xxxxx 
MOVFLSTO 1 SAVE ADCl IN STOl 

L$401 TSTKEY >0+>30+1 Rl, POS. STROBE, K2 
JZ L$401 KEY2 ACTIVE ? 
ME A SR Al YES, MEASURE AT 80 c xx xx 
BYTE 3 
JN ERROR OUTSIDE RANGE 
HEXDEC ADC2 -> FLAC xxxxx 
MOVSTORB 1 AD Cl -> REGB xxxxx 
SUB ADC2 - ADCl -> FLAC xx xx 
MOVFLRB ADC2 - ADCl -> REGB xx xx 
LDFLPOS 0 +80.000000 -> FLAC XX.YYYYYY 
BYTE >80 

Revision 1 , November 1990 



124 

* 
ERROR 
RETN 

BYTE >00 
BYTE >00 
BYTE >00 
DIV 
ROUNDl 
MOVFLSTO 2 
MOVSTORB 1 
MPY 
MOVFLSTO 1 
RETN 

TSS400 Standard User's Guide 

+80 : (ADC2 - ADCl) 
ROUND LAST DIGIT 
SLOPE -> ST02 
ADCl -> REGB 
ADCl x SLOPE = -OFFSET 
-OFFSET -> STOl 

ERROR HANDLING 

SLOPE 0.00YYYY 
O.OOYYY 
O.OOYYY 

xxxx 
0.YYYYY 
0.YYYYY 

Example 31: System calibration routine 

* THE SUBROUTINE COMPUTES THE TEMPERATURE T OUT OF THE ADC VALUE 
* AND THE STORED SLOPE (ST02) AND OFFSET (STOl). THE COMPUTED 
* TEMPERATURE IS DISPLAYED 
* 
H 
z 
M 

* 
COMPUTE 

* 

* 
ERRORl 

EQU 
EQU 
EQU 

MEASR 
BYTE 
JN 
HEXDEC 
MOVSTORB 
MPY 
MOVSTORB 
SUB 
ROUND3 

DISPLFL 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
RETN 

>40 
>04 
>08 

Al 
3 
ERRORl 

2 

1 

>17 
16 
>80+Z+M 
>80+Z 
>80+Z 
>80+H 
>80 
>80 

H SEGMENT ON 
LEAD. ZERO SUPPRESSION ON 
SIGN (-) ON IF NEGATIVE 

MEASURE Al 
4 COMPENSATED MEAS. ADDED XXXX 

ADC VALUE -> FLAC IN BCD 
SLOPE -> REGB 
ADC x SLOPE -> FLAC 
-OFFSET -> REGB 
ADC x SLOPE - (-OFFSET) 
ADJUST TO XX.YY 
DISPLAY FLAC: LEAD. 0 SUPPR. 
DISPLAY FLAC: - XX.YY 
DIGIT 1 ALWAYS-BLANK 
DIGIT 2 CONTAINS SIGN 
DIGIT 3 
DIGIT 4 
DIGIT 5 WITH DEC. POINT 
DIGIT 6 
DIGIT 7 

ERROR HANDLING 

0.YYYYY 
X.YYYYY 
0.YYYYY 

XX.YYYYY 
XX.YY 

Example 32: Computation using system calibration variables 

Revision 1, November11990 



TSS400 Standard User's Guide 125 

If the computed values for slope and offset are to be stored in the 
EEPROM, then the following exchanges have to be made: 

MOVFLSTO 1 ~ MOVFLPRM 
MOVFLSTO 2 ~ MOVFLPRM 
MOVSTORB 1 ~ MOVPRMRB 
MOVSTORB 2 ~ MOVPRMRB 

Revision 1 , November 1990 

OFFSET 
SLOPE 
OFFSET 
SLOPE 



126 TSS400 Standard User's Guide 

7 Hints, Recommendations and Examples 

7.1 Local Assembly Labels 

A good programming practice is the use of "Local Assembly Labels". This 
means that labels, which are referenced only inside the subroutine where 
they are defined, have names in the form L$xxx, where xxx is a unique, 
decimal number. Otherwise labels which are entry points should get labels 
which give a certain description e.g. DIV, ADD. This simplifies the distinc­
tion between outside referenced labels and local labels. 

The software examples use the above mentioned nomenclature whenever 
possible. 

7.2 Integer Math Package 

The package consists of four subroutines for signed addition, subtraction, 
multiplication and division. The sign is located in the MSB of the sign 
nibble. 

The Integer Math Package consists of the following subroutines: 

- ADD: adds REGB to the FLAC 
- SUB: subtracts REGB from the FLAC 
- MPV: multiplies REGB and FLAC 
- DIV: divides REGB into the FLAC 

The result always appears in the FLAC register. 

Three RAM registers are used by the package: 

FLAC: holds 1st operand and result after operation 
REGB: holds 2nd operand (not modified by operation) 
STOO: Used as a help register for multiplication and division. It can be 

used for intermediate storage as long as no division or multiplica­
tion is performed. 

Revision 1, November 1990 



TSS400 Standard User's Guide 127 

The following figure shows the registers like defined in the used Integer 
Math Package: 

SIGN FLAG 
REGB 
STOO 10E7 10E6 10E5 10E4 10E3 10E2 10E1 10EO 

MSD l_SD SIGN 

Figure 35: Register configuration of the ilnteger Math Package 

Before calling one of the tour subroutines, the registers FLAG and REGB 
have to be loaded with the numbers to be processed. The result of the 
operation is always left in the FLAG register. 

The package is an Integer Package which means that the position of the 
decimal point has to be controlled by the user. To show where the decimal 
point is assumed, one should note the format of the number at the right 
margin of the source as it is done in the following examples: 

XXX. VY two digits right of the thought decimal point 
XXXXXX integer number without fraction 

The digit count of "X" can be used to show the largest possible number of 
digits left to the decimal point. 

The rules for the position of the decimal point are: 

- Addition: Positions after the decimal point have to be equal. The position 
is the same for the result. 

- Subtraction: Same as addition. 
- Multiplication: Positions after the decimal point may be different. Add the 

positions for the result position. 
- Division: Positions after the decimal point may be different. Subtract the 

REGB position from the FLAG position to get the result position. 

Revision 1 , November 1990 



128 

FLAC 

XXX.YYY + 
XXX.Y -

XXX.YYY 
xx 

XXX.YYYY : 
XX.YY : 

REGB 

X.YYY 
XX.Y 
XX.Y 

xx 
XX.YYY 

xx 

TSS400 Standard User's Guide 

RESULT IN FLAC 

XXX.YYY 
XXX.Y 

XXXXX.YYYY 
xxxx 

X.Y 
X.YY 

Example 33: Decimal point location after computations 

If two numbers have to be divided and the result should have n digits after 
the decimal point. the FLAG has to be loaded with the number shifted to 
the left appropriately and zeroes filled into the lower digits. The same pro­
cedure can be used if a smaller number is to be divided by a larger one. 

FLAC REGB RESULT IN FLAC 

XXXX.000 xx XX.YYY 
XXXX.000 XX.Y XX.YY 
xxxx. 000 X.YY XXX.Y 
O.YYYOOO XX.Y 0.YYYYY 

Example 34: Decimal point location for the division 

It is the user's task to assure that no overflow conditions can occur. Before 
defining computations, a "worst case design" has to be made concerning 
the greatest numbers which have to be handled. If numbers grow too large, 
the previously described rounding routines (ROUNDn) may be used. If 
overflow occurs, no errors are reported! If the division is used it must be 
assured, that the divisor can't be zero: The software would stay endlessly 
in the division loop. This can be avoided by using the instruction TSTRB 
before any division. 

7.3 Keyboard Scan 

Up to 16 keys are possible with the four R-outputs and the four K-Ports. 
Static and dynamic states may be observed with the TSTKEY instruction. 
The following example shows an application with four keys and up to four 

Revision 1 , November 1990 



TSS400 Standard User's Guide 129 

diodes giving static information. The keys and diodes are connected to the 
TSS400 as follows (the pull-down resistors are shown too): 

TSS400 

Key3: 
Key2: 
Key1: 
KeyO: 

/Diodes: 

KS Key3 03 GND 

K4 Key2 02 GND 

K2 Keyl Dl GND 

Kl KeyO DO GND 

R3 
R4 

during activation no other key is to be recognized. 
when activated (LO-HI) Counter 1 is to be incremented 
when released (HI-LO) Counter 2 is to be displayed 
when not activated Counter 1 is to be displayed 
are to be stored in Group 1 Flags 12 to 15 

* KEYBOARD ROUTINE: 4 KEYS AND 4 DIODES ARE HANDLED 
* 
KEYBOARD 

L$444 

L$445 

* 
CHKDIODE 

TSTKEY 
JNZ 
TSTKEY 
JP 
TSTKEY 
JN 
TSTKEY 
JNZ 
MOVCNTl 
EXCHRBFL 
DISPLCLR 
DISPLFL 
BYTE 
BYTE 

SETR 
KIN 

>20+>C+3 
CHKDIODE 
>20+>C+2 
KEY2LOHI 
>20+>C+l 
KEYlHILO 
>20+>C+O 
CHKDIODE 

>67 
>80 
>80 

R4 

Revision 1 , November 1990 

R3, POS. STROBE, K8 
IF HI (ZERO = 0) SKIP OTHER KEYS 
R3, POS. STROBE, K4 
K2 LO-HI CHANGE ? 
R3, POS. STROBE, K2 
Kl HI-LO CHANGE ? 
R3, POS. STROBE, Kl 

NOT ACTIVATED, DISPLAY COUNTER 1 
COUNTER 2 -> REGB -> FLAC 
CLEAR DISPLAY 
DISPLAY FLAC WITHOUT SEGMENT H 
DIGIT 6: lOEl 
DIGIT 7: lOEO 

READ DIODES INTO FLAGS 12-15 



130 

RSTR 
RETN 

* 
KEY2LOHI INCCNTl 

JMP 
* 
KEYlHILO MOVCNT2 

EXCHRBFL 
DISPLCLR 
DISPLFL 
BYTE 
BYTE 
JMP 

R4 

L$444 

>67 
>80 
>80 
L$445 

TSS400 Standard User's Guide 

K2 LO-HI CHANGE: INCR. COUNTER 1 

Kl HI-LO CHANGE: DISPLAY COUNTER 2 
COUNTER 2 -> REGB -> FLAC 
CLEAR DISPLAY 
DISPLAY FLAC, NO SEGMENT H 
DIGIT 6: lOEl 
DIGIT 7: 10E2 

Example 35: Keyboard with 4 keys and 4 diodes 

If more than 16 keys have to be handled, RS and R6 can be used, too. 
They have to be set and reset by additional instructions placed before and 
after the TSTKEY-instruction. Additional the STA-bits of the TSTKEY­
instruction should be set to 00 to ensure, that no other A-output is 
modified. 

7.4 Clock Routine 

The actual time is stored in Storage Register 1 in minutes. If the time is to 
be displayed, the time is computed into the format XX.VY (00.00 to 23.59) 
by a subroutine called CLOCK24. The same procedure may be used for 
inclusion of the day of the week. 

LT EQU 10 DEFINE LONG TIMER FLAG 
H EQU >40 DECIMAL POINT SEGMENT H 

LDTIML 60 LOAD LONG TIMER WITH 60 SECONDS 
IDLE DONE SLEEP UNTIL NEXT MINUTE IS OVER 

CALL CLOCK24 CLOCK ROUTINE OUTPUTS TIME TO LCD 
OTHER ACTIVITIES, AFTER COMPLETION 

JMP IDLE JUMP BACK TO 1 MINUTE LOOP 
* 
* THE CLOCK ROUTINE COMPUTES HOUR AND MINUTES OUT OF THE 
*ACCUMULATED MINUTES IN STOl. 
* 
CLOCK24 SELGRPl 

TBIT LT 
JZ NOACT 

SELECT GROUP 1 FLAGS 
LONG TIMER COUNT DOWN TO 0 ? 
NO, WAKEUP NOT CAUSED BY TIMER 

Revision 1, November 1990 



TSS400 Standard User's Guide 

* 
* THE LONG TIMER REACHED ZERO: INCREMENT MINUTES 
* 

* 

RBIT LT 
MOVSTOFL 1 
LDRBPOS 1 
BYTE >01 
ADD 

RESET UNDERFLOW FLAG LT 
COUNTED MINUTES TO FLAC 
ADD 1 MINUTE 

*CHECK IF 24.00 IS REACHED: COUNTER CONTAINS 1440 OR MORE 
* 

LDRBPOS 2 
BYTE >14 
BYTE >40 
CMPFLRB 
JN GOON 

24.00 REACHED ? 
24 x 60 = 1440 MINUTES 

FLAC - REGB: STATUS BITS SET 
TIME < 24.00 (1440 MINUTES) 

131 

xxxx 

SUB 
GOON MOVFLSTO 1 

TIME>= 24.00: SUBTRACT 1440 MINUTES 
CORRECTED TIME BACK TO STOl 

* 
*THE MINUTES ARE DIVIDED BY 60. THE FLAC CONTAINS THE HOURS 
* AFTERWARDS, STOO THE MINUTES AS REMAINDER. 
* 

* 

LDRBPOS 1 
BYTE >60 
DIV 
SHIFTL2 
MOVSTORB 0 
ADD 

60 -> REGB 

MINUTES : 60 -> FLAC (HOURS) 
HOURS x 100 XXOO 
MINUTES (REMAINDER STOO) YY 
ADD HOURS AND MINUTES XXYY 

* DISPLAY TIME: ZERO SUPPRESSED, DECIMAL POINT AT DIGIT 5 
* 

NO ACT 

DISPLCLR 
DISPLFL 
BYTE 
BYTE 
BYTE 
BYTE 
RETN 

>47 
>80 
>80+H 
>80 
>80 

CLEAR DISPLAY 
OUTPUT FLAC XX.YY 
DIGIT 4: HOURS 10El 
DIGIT 5: HOURS lOEO + DEC. POINT 
DIGIT 6: MINUTES 10El 
DIGIT 7: MINUTES lOEO 

Example 36: 24 Hour clock routine 

7.5 Temperature Computation for Sensors 

Shown is a subroutine which computes the nominal temperature out of the 
ADC value in the FLAC. The used TSS400 values are corresponding to 
Spec. Rev. 1.0. One compensated measurement is made. 

Revision 1 , November 1990 



132 TSS400 Standard User's Guide 

* SUBROUTINE COMPUTES TEMPERATURE FROM A/DC VALUE OF ONE 
* COMPENSATED MEASUREMENT. 

* 
* INPUT: ADC VALUE (>2 - >lFFC) IN A/D BUFFER 
*AFTER RETURN: TEMPERATURE T (+-XXX.YY C) IN FLAC 

* * BASE OF COMPUTATIONS: 
* 
* RV = 5.11 KOHM 
* R25 = 2.00 KOHM 
* R85/R25 = 1.54 
*ADC VALUE 0002 EQUALS 0.101309 x SVDD 
*ADC VALUE lFFC EQUALS 0.494607 x SVDD 
* FROM THE ABOVE: 

SERIES RESISTOR 
SENSOR RESISTOR @25C 
SENSOR INCLINATION 
LOWER SPEC A/D VALUE 
UPPER SPEC A/D VALUE 

*ADC VALUE= Vin/SVDD x 20813.7699 - 2106.6282 A/DC EQUATION 
* T =ADC VALUE x 0.030416508 - 89.005919 EXACTLY 
* T =ADC VALUE x 0.03042 - 89.01 USED 
* 
* CALL: ADC VALUE (0 - >lFFC) 
* RESULT: TEMPERATURE (XXX.YY) 

IN FLAC 
IN FLAC 

* 
TEMP COMP HEXDEC BCD VALUE OF ADC VALUE 

LDRBPOS 2 0.03042 -> REGB 
BYTE >30 
BYTE >42 
MPY ADC-VALUE x 0.01363 
ROUND3 
LDRBNEG 2 
BYTE >89 -89.01 -> REGB 
BYTE >01 

xxxx 

O.OYYYY 

XXX.YYYYY 
XXX.YY 

XX.YY 

ADD ADC-VALUE x 0.03042 - 89.01 
RETN TEMPERATURE IN FLAC X.YY 

Example 37: Temperature computation routine 

7 .6 Battery Check 

If regular battery checks are necessary, the ADC value of the internal 
reference voltage is to be measured with the critical low Vdd value. This 
ADC value is stored in the EEPROM and transferred to the FLAG when a 
battery check is necessary. The measured ADC value is compared to this 
stored value and the Status Bits set according to the result: 

If Vdd > Vddmin: POS = 1 ZERO = 0 NEG = 0 
If Vdd < Vddmin: POS = 0 ZERO= 0 NEG = 1 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

* Vddmin IS APPLIED TO Vdd AND A MEASUREMENT MADE TO GET 
* THE WARNING VALUE FOR LATER BATTERY CHECKS 
* 
MEASVODM ADJBATT MEASURE REFERENCE VOLTAGE 

MOVFLPRM BATTMIN WITH VDDMIN APPLIED 
RESULT IN FLAC TO EEPROM (HEX) 

* TIME HAS COME FOR A BATTERY CHECK 
* 

MOVPRMRB BATTMIN ADC VALUE FOR VDDMIN 
MOVRBFL REGB -> FLAC 

-> REGB 

CHKBATT COMPARE WITH ACTUAL VDD 
JN BATT LO NEG= 1: VDD < VDDMIN WARNING 

POS = 1: VDD IS OKAY 
ORG 508 

BATTMIN BYTE 0 STORAGE FOR ADC VALUE 
BYTE 0 OF VDDMIN 
BYTE 0 FORMAT: oooooxxx 
BYTE 0 LSD 

Example 38: Vddmin setting and Battery Check 

7.7 Cold Start, Warm Start 

133 

The TSS400 Standard checks after each initializaton if Cold Start or Warm 
Start occured. If the RAM locations "identity", loaded by the interpreter, 
contain >A5, the interpreter assumes Warm Start occured. If these 
locations contain other numbers, Cold Start is assumed and the RAM is 
cleared. 

See 2.13 for description of Warm Start and Cold Start. 

If it is necessary to continue at a certain program part after a Warm Start 
condition and not at the Cold Start address, one of the flags in the Flag 
Registers may be used for this purpose. This flag is set by the user's pro­
gram to one after the Cold Start and may be tested when the program 
starts at PC 000: 

If the flag is O:Cold Start occured (RAM reset by interpreter) 
If the flag is 1 :Warm Start occured (RAM not modified) 

The following example shows this approach to distinguish between Cold 
Start and Warm Start when the program has to continue at different pro­
gram parts: 

Revision 1, November 1990 



134 TSS400 Standard User's Guide 

ORG 000 START AFTER HARDWARE !NIT 
POWERUP SELGRPl USE GROUP! FLAG 9 

TBIT 9 
JNZ WARMSTRT IF SET: WARMSTART OCCURED 

* * COLDSTART: BIT RESET BY INTERPRETER'S RAM CLEAR ROUTINE 
* 

* 

SEIT 
CALL 

9 
!NIT 

WARM START BIT <- 1 
INITIALIZE SYSTEM 

* WARMSTART: CONTINUATION AFTER EMI INDUCED !NITS 

* 
WARMSTRT RECOVER PART 

Example 39: Cold Start/Warm Start distinction 

7.8 Waiting Routines 

It is often necessary to wait a certain or minimum time before the pro­
cessing may continue. For this purpose the two timers may be used: 

- The timer is loaded with the appropriate value. 
- The Done Mode is activated with the instruction DONE. 
- When the chosen time has elapsed the program will continue at the ad-

dress following the DONE instruction. If changes at the K inputs can oc­
cur, a test has to be made if this was the reason for a wake-up. 

Example: The FLAG is to be displayed for 2 seconds. Then the display is to 
be cleared. Changes at the K-Port may not shorten the waiting time. The 
Short Timer is to be deactivated after the elapsed delay. 

DISPLFL 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
LDT IMS 

WAIT2S DONE 
SELGRPl 
TBIT 

>17 
>BO 
>BO 
>BO 
>BO 
>BO 
>BO 
>BO 
32 

ST 

DISPLAY FLAC 1 - 7 
DIGIT 1 

DIGIT 7 
LOAD 1/16 S TIMER WITH 32 x 1/16 S 
DONE MODE FOR 2 SECONDS 
SELECT GROUP 1 FLAGS 
WAKEUP CAUSED BY SHORT TIMER ? 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

* 
KEY 

JZ KEY 
STPTIMS 
DISPLCLR 

NO, IF ST = 0 
YES, CAUSED BY THE SHORT TIMER 
CLEAR THE DISPLAY, 2 S ELAPSED 
CONTINUE WITH PROGRAM 

CAUSED KEYBOARD THE WAKEUP ? 
JMP WAIT2S WAIT UNTIL 2 S ELAPSED 

Example 40: Timer usage for waiting purposes 

7.9 Address Modification 

135 

The EEPROM store and retrieve instructions MOVFLPRM and 
MOVPRMRB use fixed addresses inside the EEPROM. If tables are used, 
each item to be stored or retrieved needs an instruction which addresses it 
explicitly. 

A way to circumvent this EEPROM consuming approach is to modify the 
address part of the MOVFLPRM or MOVPRMRB instructions: 

110 Address HI 

Address LO 

The steps needed are: 

- initializing of the instruction with the address of the 1st address (highest 
address in our example) 

- storage or retrieving of an item 
- transfer of the complete instruction to the FLAG 
- subtraction of the item length from the instruction 
- transfer of the modified instruction back to the original place 
- check if the lowest address is reached and terminating resp. Looping 

back dependend on the result 

Revision 1, November 1990 



136 TSS400 Standard User's Guide 

Note: Starting with the lowest address and incrementing is possible too, 
but left shifts are needed if the EEPROM space is to be used effi­
ciently. Backward stepping allows the adaptation to the actual length 
of information by overwriting of the leading zeroes of the item before. 
Two NOPs are necessary before the MOVFLPRM or MOVPRMRB 
instructions due to the length of the FLAC, which is 4 bytes. 

Example: Data with four digits (XX.VY) is to be stored downwards from 
EEPROM address >6FF to >600: 

* INITIALIZATION OF THE DATA POINTER 
* 
"LENGTH EQU 2 

LDFLPOS 2 
BYTE >C0+>6 
BYTE >FF-3 
MOVFLPRM POINTER 

* * THE LOOP FOLLOWS: 

ITEM LENGTH IN BYTES (4 DIGITS) 

2 BYTES 
OPCODE MOVFLPRM: >CO 
1. BYTE OF 4 TO >6FC 
OOOOC6FC -> POINTER 

* THE CONTENTS OF THE FLAC ARE STORED DOWNWARDS 

* 
POINTER 

* 

NOP 
NOP 
MOVFLPRM POINTER 

THE FOLLOWING 4 BYTES ARE 
MODIFIED AFTER EACH TRANSFER. 
THE MODIFIED INSTRUCTION 

* DECREMENTING BY 2 FOR THE NEXT ITEM. THE LEADING NOPs 
* ARE OVERWRITTEN. 
* 

* 

MOVPRMRB POINTER 
MOVRBFL' 
LDRBPOS 1 
BYTE LENGTH 
SUBH 
MOVFLPRM POINTER 

CURRENT POINTER -> FLAC 

ITEM LENGTH IN BYTES 
TO REGB 
POINTER - LENGTH -> POINTER 
NEW POINTER BACK 

* CHECK IF THE LOWEST ADDRESS IS REACHED 
* 

LDRBPOS 
BYTE 
BYTE 
CMPFLRB 
JP 

ORG 
BYTE 
BYTE 

2 
>C0+>6 
>00 

POINTER 

>600 
0 
0 

LAST USEABLE ADDRESS 
>600 + OPCODE -> REGB 
>600 AND >601 ALWAYS 00 

NOT YET REACHED 
ALL ITEMS STORED 

START OF TABLES 
ALWAYS 0 
ALWAYS 0 

Revision 1, November 1990 



TSS400 Standard User's Guide 137 

BYTE 0 xx. ITEM 127 >602 
BYTE 0 yy ITEM 127 >603 
BYTE 0 xx. ITEM 126 >604 
BYTE 0 YY. ITEM 126 >605 

BYTE 0 xx. ITEM 2 >6FC 
BYTE 0 yy ITEM 2 >6FD 
BYTE 0 xx. ITEM 1 >6FE 
BYTE 0 yy ITEM 1 >6FF 

Example 41: Value storage in EEPROM 

If data is to be retrieved from the EEPROM, the same way may be used as 
shown in the example above. The only difference is the opcode of the 
instruction: 

MOVFLPRM Opcode >CO 
MOVPRMRB Opcode >C8 

Note: If more tables are used, it is adviseable to use more than one 
pointer. This reduces the necessary write cycles to the EEPROM 
bytes used as pointers. Another way would be the usage of 
PCF8570 RAMs for the pointer locations. See 2.16 for more infor­
mation. 

7.10 Square Root Routine 

The routine shown computes the square root of the FLAG. The FLAG must 
contain a value A with an even number of digits after the imaginal decimal 
point. The result has the half number count of digits after the imaginal deci­
mal point. The used approximation is: 

Xn + 1 = (A/Xn + Xn)/2 

The first part of the subroutine looks tor a good starting value X1 (eg. 10 for 
A = 1 to 99, 100 for A = 100 to 9999) the second part starts with this value 
10 approximations, leaving the result in the FLAG. 

Revision 1, November 1990 



138 TSS400 Standard User's Guide 

* SQUARE ROOT ROUTINE: THE SQUARE ROOT OF THE FLAC IS 
* COMPUTED WITH THE NEWTONIAN PROCEDURE 
* FLAC BEFORE: XXXXXX XXXX.YY XX.YYYY NUMBER 
* FLAC AFTER: XXX XX.Y X.YY ROOT 
* 
SQ ROOT 

PLOOP 

LOOP 

MOVFLSTO 2 
LDRBPOS 1 
BYTE 1 
EXCHRBFL 
SHIFTLl 
EXCHRBFL 
SHIFTR2 
JNZ 
MOVRBSTO 
LDCNTl 
MOVSTOFL 
MOVSTORB 
DIV 
ADD 
LDRBPOS 
BYTE 
DIV 
MOVFLSTO 
DECCNTl 
JNZ 
RETN 

PLOOP 
1 
10 
2 
1 

1 
2 

1 

LOOP 

STORE VALUE A IN FLAC 
FIND VALUE Xl FOR lST TRIAL 

STORE Xl 
10 TRIALS ARE MADE 
A -> FLAC 
Xn -> REGB 
A I Xn 
(A I Xn) + Xn 

((A I Xn) + Xn) I 2 
Xn+l -> Xn 
ALL TRIALS MADE ? 

YES, SQUARE ROOT IN FLAC 

Example 42: Square Root routine 

Revision 1 , November 1990 



TSS400 Standard User's Guide 139 

8 Development Tools 

The keys to be pressed at the host computer are shown in brackets. The 
meaning is as follows: 

<RETN> The key, here the return key, is to be pressed 
<SHIFT/F3> The keys, here the shift and the F3 key, are to be pressed 

simultaneously 

The cursor may be moved with the arrow keys, the acknowledge is made 
with the return key. 

8.1 The Development Board 

For the development of the users software including the debugging phase, 
a special hardware, the Development Board is necessary. This Develop­
ment Board contains all necessary hardware needed for debugging and the 
final application: 

- sockets for the TSS400 and the EEPROMs 
- connectors to the users hardware (1/0 and display) 
- connector to the host computer 
- interface to the host computer 

If the ADT 400 is used for development, the connector of the ADT 400 is in­
serted into the microcomputer socket. 

If no ADT400 is used, the TSS400 Standard is inserted into the microcom­
puter socket. 

The schematic of the Development Board is shown in the following figure. If 
an X24C16 is used, it must be placed in socket 0. 

Revision 1, November 1990 



140 TSS400 Standard User's Guide 

:! 
~ $ 5 

~ :::-
w 

~ 

""' i 
r _,_;_,.,! 

I 
' : j 

Figure 36: Schematic of the Development Board 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

8.2 Development with the ADT400 

Necessary components for the software development are: 

- IBM compatible Personal Computer 
- ADT 400 hardware connected to the Personal Computer 
- ADT 400 development software installed on the Personal Computer 
- Development Board with EEPROM(s) 

141 

For details concerning the connection of the ADT 400 to the host computer 
see the "TSS400 ADT USER'S GUIDE". 

The TSS400 Standard software running on the ADT 400 is delivered in a 
version which allows "worst case" real time tests. All necessary runtime 
definitions of the ADT 400 are chosen to allow this. The used main oscillator 
frequency is 500 kHz. This is the minimum frequency of the TSS400. 

When using the ADT 400 the TSS400 Standard software is loaded into the 
ADT400. Then the ADT400 is used like the TSS400 Standard. The inter­
preter code is developed with the host computer's editor and assembled 
with the ASM400 assembler. The assembler outputs on request up to four 
TSS400 objects which contain the user's object together with an EEPROM 
burning software for transferring the object to the EEPROMs. After burning 
of the EEPROMs the TSS400 Standard software is loaded into the 
ADT 400 system and the user's software may be debugged or run under 
control of the ADT 400 emulator. 

8.2.1 Assembling the User's Software 

The ASM400 assembler for the TSS400 family includes the instruction set 
of the TSS400 Standard interpreter. To load the right instruction set, the 
1st line of the user's code must look like the 1st line of the following 
example where xxxxxx is the title of the program. TSS444 or TSS0444 is 
the code which invokes the interpreter's instruction set. The 2nd line of 
code is necessary to have the arithmetic functions of the assembler avail­
able ( + - * : >). 

TITLE xxxxxx 
OPTION ARITHM 

END 

Revision 1 , November 1990 

TSS0444 



142 TSS400 Standard User's Guide 

The users code must end with the "END" directive as shown pbove. Addi­
tional information concerning the ASM400 assembler may be found in the 
"4-Bit Microcomputer Cross Assembler User's Guide". 

The ASM400 is called by the following sequence: 

C:/ASM400 <RETN> 
INSTRUCTION SET FILE [INSTRUCT.400]: INSTRUCT.400 

SOURCE FILE: xxxxxx.SRC 
OBJECT FILE: xxxxxx.OBJ 

OPLA FILE: xxxxxx.OPL 
LISTING FILE: xxxxxx.LST 

<RETN> 
<RETN> 
<RETN> 
<RETN> 
<RETN> 

After the input of all filenames the assembler starts and will output the fol­
lowing status messages: 

READ INSTRUCTION SET 
CONTINUE WITH PASS1 
CONTINUE WITH PASS2 

0 ERROR(S) 0 WARNING(S) IN MODULE xxxxxx 

After completion of the assembly run, the ASM400 asks if the EEPROM 
burning files are wished. If they are wished they are created and written to 
the disk: 

T ransferroutine: ~BURN.BR# 

Note: If a Burn-File is necessary and not created by the delivered ASM400 
version, please contact your sales chanel. 

Start this routine? [YIN] <Y> 

The ASM400 indicates the creation of the burning files and gives a com­
pletion message. Only the necessary files are created: 

xxxxxx.BR1 
xxxxxx.BR2 
xxxxxx.BR3 
xxxxxx.BR4 

Burnfile(s) created ! 

Revision 1 , November 1990 



TSS400 Standard User's Guide 143 

8.2.2 Loading the User's Software into the EEPROMs 

The ASM400 creates up to four burning files which are necessary for the 
burning of the EEPROM(s). Each of these files contains the 512 bytes of 
object code for one of the EEPROMs and the burning software in TSS400 
object code. Before debugging can start, the EEPROMs have to be loaded 
with the users software. 

The ADT400 emulator software is started by: C:!TSS400 <RETN> 

The ADT 400 asks if the last work is to be reloaded: 

Do you wish to reload the last work ? NO <RETN> 

Select "Load Version from File" out of the displayed menue. The ADT 400 
shows the existing versions, select "SSW.STA" which is the TSS400 Stan­
dard software version containing all necessary informations. 

The ADT 400 now asks for the wished task, select: 

Emulation I Debugging <RETN> <ESC> 
After this a selection of objects is shown, the "Wildcard" option is needed to 
get the "xxxxxx.BR1" object loaded: <F1 > *.BR1 <RETN> 
All objects with the extension"BR1" are shown now. The cursor movement 
keys may be used to select the "xxxxxx.BR1" object. After pressing of the 
return key, the "xxxxxx.BR1" object is loaded and reassembled. When this 
is finished the ADT400 aks: 

Do you want to load Emulator processor data ? [Y/N] <N> 

Pressing <SHIFT/F4> and then <SHIFT/F3> initializes the emulator. Pres­
sing <F5> afterwards runs the burning program for the 1st EEPROM which 
lasts 2 seconds approximatively. 

Pressing the <SPACE> bar halts the emulator and the display shows an 
endless BRANCH if the burning routine completed successfully. 

If another EEPROM is to be burned, pressing of <AL T/L> shows the object 
selection seen before again. The "Wildcard" option is now to be used to get 
the "xxxxxx.BR2" files displayed: <F1 > *.BR2 <RETN> 

Revision 1, November 1990 



144 TSS400 Standard User's Guide 

Proceeding is the same like shown for the burning of "xxxxxx.BR1" before. 
The same is to be done for the burning of "xxxxxx.BR3" and "xxxxxx.BR4" 
if existing. 

8.2.3 Debugging the User's Software with the ADT400 

Loading of the TSS400 Standard Software 

After burning of the EEPROMs with the users software, the interpreter is to 
be loaded: 

Pressing <ALT/L> shows an object selection. The file "SSW.OBJ" contains 
the interpreter. Pressing the <RETN> key after selecting this file with the 
cursor loads and reassembles the interpreter. 

Pressing <SHIFT/F4> and then <SHIFT/F3> initializes the emulator. 

Setting and Resetting Breakpoints 

Pressing <F9> shows the table for selecting of the breakpoint data. At first 
all existing breakpoints have to be deleted: 

TYPE: Reset ALL <RETN> 
PAGE: xxx 
PC: xxx 
LABEL: xxxxx 
CMD: xxxxx 

The ADT400 asks: Clear all Breakpoints? Y/N Y <RETN> 

The same procedure may be used for removing of one breakpoint. 

For setting a breakpoint <F9> is to be pressed again. The breakpoint data 
appear on the screen, and the following inputs (here for the label 
DECODE) are made: 

TYPE: Label 
PAGE: 
PC: 
LABEL: 

xxx 
xxx 
DECODE <RETN> 

CMD: xxxxx 

Revision 1, November 1990 



TSS400 Standard User's Guide 145 

Breakpoint Set 

Pressing of <F5> starts the execution of the users software for one instruc­
tion byte or one instruction depending on the used breakpoint label. These 
two labels are explained with the debugging modes. 

Debugging with the ADT 400 allows the following modes: 

- Single Byte Execution 
- Single Step Execution 
- Free Run 
- Free Run with Software Breakpoints 
The above mentioned debugging modes are described in the following: 

Single Byte Execution 
By setting an ADT400 breakpoint to the label BREAK inside the TSS400 
Standard software, the Single Byte Execution is possible. This means, 
each time the breakpoint is reached, one single byte of the user's program 
was read and executed. Setting a breakpoint to the label BREAK and 
pressing <F5> will read and execute one instruction byte. 

Single Step Execution 
By setting an ADT 400 breakpoint to the label MASTER inside the TSS400 
Standard software, the Single Step Execution is possible. This means, 
each time the breakpoint is reached, one complete instruction with all pa­
rameter bytes was read and executed. Setting a breakpoint to DECODE 
and pressing <F5> will execute one instruction. The RAM shows the next 
instruction and address which is not yet executed. 

Free Run 
The user's program may be checked during Free Run by watching the dis­
play and the outputs. This mode is only possible after removing of all soft­
ware and ADT400 breakpoints. Press <F5> after the initialization of the 
ADT400 to get Free Run. 

Revision 1 , November 1990 



146 TSS400 Standard User's Guide 

Free Run with Software Breakpoints 

The software breakpoints described later on are possible with the ADT 400 
too. See at "DEVELOPMENT WITH THE SOFTWARE SIMULATOR" how 
to use these software breakpoints. After resetting of all ADT400 break­
points, press <F5> to get this run mode. 

8.2.4 RAM Map of the TSS400 Standard 

When a breakpoint is reached, the ADT 400 shows the state of all registers 
of the TSS400. The RAM of the TSS400 is arrranged as follows. 

Note: The shown RAM is configured like the RAM shown on the ADT400 
screen. The numbers above the RAM are the Y-Register values, the 
numbers to the left of the RAM are the X-Register values shown by 
the ADT400. 

Revision 1, November 1990 



TSS400 Standard User's Guide 147 

-y -0 

X1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 
T T T T T T T T T 

Ins Ins true- x Subroutine Subroutine Subroutine 
old lion MS PC Level 1 Level2 Level3 

B 

LSD MSD 1 LSD 
_l _/SB J J _l l I I 

8 9 10 11 12 13 14 15 
T l l l T T 

Sign 3 7 11 15 
Register 5 2 14 

1 Group 1 13 

10EO I 
I I 

0 
I 

Flfgs 
l 

12 

8 9 10 11 12 13 14 15 
1 T l 1 1 

Sign H3 H? ST 15 
Register 4 Counter 1 H2 LT 14 

H1 Group 1 13 

10EO l 10E1 I 10EO 0 
I 

F~gs 
l 

12 

8 9 10 11 12 13 14 15 
1 .,. 1 .,. 1 

Sign Short Long 
Register 3 Timer Timer 

10EO J 
l l 

MSD _l MSD I 

8 9 10 11 12 13 14 15 
1 1 .,. 1 

Sign Short Long 
Register 2 Counter 2 Timer Timer 

Buffer Buffer 

10EO I 10E1 J 10EO MSD I MSD I 

Revision 1 , November 1990 



148 TSS400 Standard User's Guide 

y =0 7 8 9 10 11 12 13 14 15 

XA l:or~~e 
~ 

I I I 
R 1 /KS I R2/K8 I R3/K8 

T 
Sign R4/K8 

Register 1 R1/K4 R4/K4 
R1/K2 Keyboard R4/K2 

10EO J_ 
..L J_ 

R1/K1 l 
J_ 

J_ R4/K1 

:Bf-······· 
7 I Si:n 

I Storage Register o 

9 10 11 12 13 14 15 

~ ....... _1o_E_o-"1'----'----'----L--~--...__ _ _._ __ .____~ 
8 9 10 11 12 13 14 15 

T T T I I 
Sign POS 

FLAG ZERO ADC Buffer 
NEG (used as a HELP register too) 

10EO J MSD J_ 
..L J 

J. LSD 

y =0 7 8 9 10 11 12 13 14 15 

XF c: R 

T I T T T 
Sign 

EGB Identity ADC 

10EO .l A ..L 5 
l 

MSD l 
l 

Figure 37: RAM Map of the TSS400 Standard 

Revision 1, November 1990 



TSS400 Standard User's Guide 149 

8.3 Development with the Software Simulator 

The Software Simulator, which runs on all IBM-AT compatible Personal 
Computers (PC), allows fast development of the software for the TSS400 
Standard. All functions, with the exception of the hardware communication 
with the inputs and outputs, are possible. For the development of the pro­
gram's algorithms, no hardware at all is necessary. 

All internal registers, inputs, outputs, flags, are shown simultaneously on 
one screen and may be modified whenever wished, also during the run 
mode. 

The following part does not describe the handling of the Software simulator 
but gives some hints how to test the user's program with the Development 
Board. For a detailed description of the Software Simulator see "TSS400 
Standard Simulator User's Guide". 

Necessary components for the software development with the Software 
Simulator are: 

- IBM-AT compatible Personal Computer 
- ASM400 software installed on the Personal Computer 
- software Simulator installed on the Personal Computer 
- interface hardware for the connection of the Development Board 
- development Board with EEPROM(s) and TSS400 inserted 

The last two items are only needed if tests within the target hardware are 
necessary. For the test of the user's software, it is only necessary to as­
semble it with the ASM400 crossassembler. The produced object is loaded 
and executed bv the Software Simulator. 

8.3.1 Restrictions of the Software Simulator 

The Software Simulator is a software tool written in PASCAL, which simu­
lates only the TSS400 Standard. This prohibits some functions of the 
TSS400 Standard. The following list gives a short overview concerning the 
differences: 

Revision 1 , November 1990 



150 TSS400 Standard User's Guide 

- The A-Outputs, the 1/0 Pin and the K-Port are not available as outputs. 
- The K-Port used as an input may be modified by Simulator commands 

only. 
- The instructions do not work in exact realtime, only the limers do this. 
· The instruction SLV is interpreted as a NOP. 
- If overflow occurs during .a multiplication, the FLAG is loaded with 

99999999 due to the used PASCAL software. The TSS400 Standard 
looses the MSDs instead and holds only the 8 LSDs of the result. 

8.3.2 Assembling the User's Software 

The assembly of the users program is made exactly like described at 
"Development with the ADT400". See there how to proceed. 

After completion .of the assembly run, the ASM400 asks if the EEPROM 
burning files are wished. They are not needed, so the answer is NO. 
Transferroutine: ~ BURN.BR# 
Start this routine? [YIN] <N> 

The assembler ceases after the NO input. 

8.3.3 Debugging the User's Software with the Software Simulator 

The object file generated by the ASM400 crossassembler can be loaded 
into the Software Simulator's object buffer and tested until the complete al­
gorithms are checked. See "TSS400 Standard Simulator User's Guide" for 
a description of the possibilities the Software Simulator gives for software 
testing. 

8.3.4 Realtime Debugging of the User's Software 

After verification of all software parts which do not need connection to the 
target hardware, the realtime tests with the Development Board connected 
to the target hardware may be started. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 151 

The Development Board is connected to the CENTRONICS interface con­
nector with the delivered cable. The tested user's program is burned into 
the EEPROMs with the appropriate Simulator instruction and reread for 
verification. The user's program, stored in the EEPROMs now, may be 
started and stopped by instructions of the Software Simulator. 

Realtime debugging with the Development Board is made by inserting 
software breakpoints into the user's program at locations where program 
parts are completed. These may be computations, measurement parts, 
keyboard tests and so on. The software breakpoints are inserted by the 
editor and are deleted after use or replaced by NOP instructions. 

Several possibilities exist for halting and checking at those locations: 

- jumps to the same location 
- waiting for a definitive key to be pressed 
- displaying of the register which contains important information 
- displaying of the interesting registers with wait cycles 

The possibilities mentioned above are described in the following: 

Jumps to the same location: 
At the locations where the program should cease, a jump to the same loca­
tion is inserted: 

L$555 JMP L$555 
END OF PART TO BE CHECKED 
ENDLESS LOOP 

Example 43: Software breakpoint 1 

The endless loop stops the program at location L$555. The outputs may be 
observed for correctness, the displayed information, too. 

To proceed from this breakpoint, a change of the program with the editor, 
an assembly run and an EEPROM burning is necessary. 

Revision 1, November 1990 



152 TSS400 Standard User's Guide 

Waiting for a definitive key to be pressed: 

At the locations where the program should cease, a call to a subroutine is 
inserted. This subroutine waits until a certain (normally unused) key is 
pressed. After this activation, the program continues until the subroutine is 
invoked the next time. 

After completion of the debugging, the subroutine and all calls to it are re­
moved from the user's program. 

Example: It shows the use and the code of the subroutine: 

CALL SWBKPT 

CALL SWBKP'.J: 

CALL SWBKPT 

PROGRAM PART l TO BE CHECKED 
WAIT HERE UNTIL KEY IS PUSHED 
PROGRAM PART 2 
WAIT HERE UNTIL KEY IS PUSHED 
PROGRAM PART 3 
WAIT HERE UNTIL KEY IS PUSHED 
PROGRAM PART 4 

* THIS ROUTINE IS ADDED DURING DEBUGGING. THE KEY TO BE 
* ACTIVATED MAY BE CHOSEN FREE WITH THE TSTKEY-OPERAND 
* THE USED KEY OF THE EXAMPLE IS CONNECTED TO Rl AND Kl 
* 
SWBKPT 

SWRET 

TSTKEY 
JP 
JMP 
RETN 

>OO+>C+O Rl, POS. STROBE, Kl 
SWRET LO-HI TRANSITION ? 
SWBKPT NO, WAIT 

YES, PROCEED 

Example 44: Software breakpoint 2 

The used R-outpl.it/K-input combination may be defined with the operand of 
the TSTKEY instruction. The same is true for the strobe used with the R­
output. 

Displaying the Register which contains important information: 

This kind of information getting may be used with the above mentioned 
software breakpoints. Any register with important information may be dis­
played before the software breakpoint occurs. 

Example: The contents of the FLAG are important at the software break­
point. Its contents (1 OE3 - 1 OEO) should be displayed then: 

Revision 1, November 1990 



TSS400 Standard User's Guide 

L$556 

DISPLFL 
BYTE 
BYTE 
BYTE 
BYTE 
JMP 

>47 
>80 
>80 
>80 
>80 
L$556 

PROGRAM PART TO BE CHECKED 
DISPLAY RESULT IN FLAC 
DIGIT 4 10E3 

DIGIT 7 lOEO 
STOP HERE 

Example 45: Software breakpoint with display 

153 

With multiple key activations, the contents of some registers may be dis­
played in sequence after a software breakpoint. After each key activation 
the displaying of a Storage Register follows. 
Example: The FLAG is to be displayed when the software breakpoint is 
reached. The activation of the key, connected to R3/K4 has to display the 
contents of ST01, ST04 and ST03 in sequence. 

PROGRAM PART TO BE CHECKED 
CALL DISFLAC DISPLAY FLAC 
CALL SWBKPT WAIT HERE UNTIL KEY IS PUSHED 
MOVSTOFL 1 
CALL DISFLAC DISPLAY STORAGE REGISTER 1 
CALL SWBKPT WAIT HERE UNTIL KEY IS PUSHED 
MOVSTOFL 4 
CALL DISFLAC DISPLAY STORAGE REGISTER 4 
CALL SWBKPT WAIT HERE UNTIL KEY IS PUSHED 
MOVSTOFL 3 
CALL DI SF LAC DISPLAY STORAGE REGISTER 3 

PROCEED TO NEXT BREAKPOINT 

* THE USED KEY IS CONNECTED TO R3 AND K4 
* 
SWBKPT 

SWRET 

* 

TSTKEY 
JP 
JMP 
RETN 

>20+>C+2 R3, POS. STROBE, K4 
SWRET LO-HI TRANSITION ? 
SWBKPT NO, WAIT 

YES, PROCEED 

* SUBROUTINE DISPLAYS FLAC AS IT IS 
* 
DI SF LAC DISPLFL 

BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
ETN 

>17 
>80 
>80 
>80 
>80 
>80 
>80 
>80 

DISPLAY DIGIT l - 7 
DIGIT 1 

DIGIT 7 

Example 46: Software breakpoint with multiple display 

Revision 1 , November 1990 



154 TSS400 Standard User's Guide 

Displaying the interesting registers with wait cycles: 
Using one of the timers with the Done Mode gives the possibility to display 
one or more registers for a given time and to proceed then without any ac­
tivity. If the wait time is long enough, the results may be written down con­
veniently for later checks. 

Example: The FLAC is to be displayed first when the software breakpoint is 
reached. Then the contents of ST01, ST04 and ST03 have to be dis­
played in 'sequence. Each register display should last for six seconds. 

CALL 
CALL 
MOVSTOFL 
CALL 
CALL 
MOVSTOFL 
CALL 
CALL 
MOVSTOFL 
CALL 
CALL 

DI SF LAC 
WAIT6S 
1 
DISFLAC 
WAIT6S 
4 
DI SF LAC 
WAIT6S 
3 
DISFLAC 
WAIT6S 

* WAITING ROUTINE 6 SECONDS 
* 
WAIT6S 

* 
DISFLAC 

LDTIML 
DONE 
RETN 

6 

PROGRAM PART TO BE CHECKED 
DISPLAY FLAC FOR 6 SECONDS 

DISPLAY STORAGE REGISTER 1 
WAIT FOR 6 SECONDS 

DISPLAY STORAGE REGISTER 4 
WAIT FOR 6 SECONDS 

DISPLAY STORAGE REGISTER 3 

PROCEED TO NEXT BREAKPOINT 

LOAD LONG TIMER WITH 6 SECONDS 
SLEEP FOR THIS TIME 
RETURN TO CALLER 

SUBROUTINE: SEE EXAMPLE ABOVE 

Example 47: Software breakpoint with wait cycles 

8.3.5 Most often occuring difficulties 

User programs running errorfree with the Software Simulator sometimes 
show unexpected behaviour when running on the Development Board. This 
is due to the differences of the Software Simulator and the Development 
Board. A list with often occuring errors is given together with explanations 
and hints. 

Revision 1, November 1990 



TSS400 Standard User's Guide 

- no wake-up occurs 
- wake-up occurs with wrong timing 
- DONE mode is not executed 
- ADC result is always >000 
- ADC result is always >FFF 
- wrong results of computations 
- counters count wrong 
- no wake-up from Off or Done mode 
- wrong decimal points appear in LCD 

Reasons for the malfunctions: 

see chapter 1 , 4 
see chapter 1 , 3 
see chapter 4, 3 
see chapter 2, 5, 8 
see chapter 5, 8 
see chapter 6, 7, 8 
see chapter 6 
see chapter 9 
see chapter 10 

155 

1. DL 12 not set: DL 12 must be set, if the Short Timer is used. The timer 
handling of the interpreter bases on time differences, if DL 12 is reset, 
the wake-up occurs every second with avalue of 0 contained in the 16 
Hz hardware timer. The interpreter doesn't see a difference to the last 
value read and doesn't execute the instruction after the DONE instruc­
tion therefore. Setting of DL 12 avoids this malfunction. 

2. DL13 not set: DL13 must be set, if the current source of the ADC is 
used. If all measured values are >000, the not set DL 13 may be the 
cause. Only if DL 13 is set, a current is output to the addressed analog 
input An. 

3. Unused timers not stopped: If the former executed program used 
one of the timers, wrong timing will occur with the currently running 
program. The reason is, neither the INIT nor the LOAD command do 
stop the timers (see INIT conditions). Inclusion of STPTIMS or 
STPTIML into the initialization part will cease this behaviour. 

4. Timer flags not reset: The DONE cannot be entered as long as one of 
the timer flags (Group 1 Flags 10, 11) are set. The user's program 
must reset these flags after the verification that one of the timers woke­
up the TSS400 Standard. 

Revision 1 , November 1990 



156 TSS400 Standard User's Guide 

5. No sensors or sensors at wrong analog input: If an anolog input is 
measured which doesn't have a sensor connected, the result is as 
follows: 

>000: if DL 13 is reset 
>FFF: if DL 13 is set 

The wrong addressing may be caused by the operand of the M EASR 
instruction: The operand n addresses the analog input An+ 1. 

6. Erroneous use of the">" sign: The ASM400 assembler converts all 
operands into the hexadecimal format This means where hexadecimal 
numbers are used (timers, display instructions) the operands may be 
defined in decimal or hexadecimal format. If BCD format is necessary 
(counters, loading of registers) a ">" sign must precede the number 
which instructs the assembler to take the number as it is. A missing">" 
sign would yield the hexadecimal number for the operand (e.g. 2C 
for 44). 

7. Overflow occured: No indication is given, if the result of an instruction 
overflows the FLAG. A worst case computation concerning the largest 
possible results must be made preceding the software development to 
avoid this error. SHIFTRn or RO UN On may be used. 

8. Erroneous hardware design: The values of the external hardware 
(Rext, Rsensor aso.) are not correct. Checking of the values with worst 
case design methods will avoid this error. 

9. DL8 set: DL8 inust be reset, if a wake-up is needed from the K-Port. 

10. Group 1 Flag bits set: If the H-segment flag bits in Group 1 are set 
from a previous program, the according H-segments will be on in the 
LCD. Clearing of the flags will solve the problem. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 157 

9 Controlling of the TSS400 Standard in Slave Mode 

It is possible to use the TSS400 Standard as a pure slave processor. The 
complete control is made by a host processor which sends instructions to 
the TSS400 Standard via the 1/0 Pin. The TSS400 executes these instruc­
tions and sends the results, if wished by the host, back also via the 1/0 Pin. 
The line between the TSS400's 110 Pin and the host is referred to as data 
line. 

The host is connected to the TSS400 Standard with 3 lines: 

- Data line: From an 1/0 Port to the TSS400's 1/0 Pin. 
- lnit line: From an output to the TSS400's INITN Pin. 
- Common ground line. 

If the TSS400 Standard is used in Slave Mode, it is not possible to use a 
program EEPROM. If an EEPROM is necessary, it must be connected to 
the host directly. RO and R? cannot be used in the Slave Mode. 

The Slave mode can be used for: 

- transferring of ADC values to the host for computations 
- writing of computed variables to the RAM 
- transferring of internal flags to the host and back 
- initiation of measurements with defined parameters 
- reading and writing of counters and timers 

The reading and writing of the RAM enables the user to have complete in­
formations concerning the state of the TSS400 system. 

Due to the relative low speed of the TSS400 the transfers via the data line 
are determined as follows: 

- controlling is always made by the host computer 
- clocking is always made by the TSS400 
- the TSS400 is always slave, the host is always master 

All inputs or outputs start with the MSB of the MSD, followed by the MSB-1 
of the MSD and end with the LSB of the LSD. 

Revision 1, November 1990 



158 TSS400 Standard User's Guide 

Note: All signals in the following parts are described as they appear at the 
TSS400 pins. The Development Board and possibly the users final 
hardware have inverting stages in between the TSS400 and the 
host's interface. So the signals may be inverted in reality. 

9.1 Handshaking and Program Control 

The 1/0 Pin is not only used for the transfer of instructions and data, but for 
the necessary handshaking, too. The principle is simple: Host and TSS400 
Siandard hoid iow ihe daia iine as iong as ihey are busy. Oniy if boih of 
them are ready for a transfer, the line is pulled up by the pullup resistor. 
When this occurs, the TSS400 Standard asks for the next instruction or 
sends data if this was wished by the host instruction received before 
(SLV eg.). 

This allows: 
- the host to evaluate the last received results and to prepare the next in-

struction for the TSS400 Standard. 
- the TSS400 Standard to execute the received instruction. 

For program control, the opcodes of the instructions shown in Figure 23 
and 24 are transferred to the TSS400 Standard, with the MSB of the eight 
bit opcode first. If an instruction consists of more than one byte, the addi­
tional bytes have to be transferred when demanded by the TSS400 Stan­
dard. 

9.2 Starting of the Slave Mode 

The 1/0 Pin is used normally for the data transfers from and to the 
EEPROM. This makes a special interfacing necessary to start the Slave 
Mode. 

- The host pulls down the INITN Pin to Vss-
- The host releases the INITN Pin to V00, the TSS400 starts execution. 
- The TSS400 resets the 1/0 Pin to LO for at least 75 us. 
- The TSS400 switches the 1/0 Pin to input direction and waits until the 

host releases the line, too. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 159 

- When the host releases the 1/0 Pin to HI, the TSS400 Standard outputs 
4 x 4 pulses, MSB first, which have to be prolonged (1 s) or not (Os) by 
the host for the codes >FF and >AS in sequence to initiate the Slave 
Mode. All other received codes initiate the normal EE PROM Mode. 

Note: The first two nibbles, containing >FF should be used by the host for 
the measurement of the oscillator frequency of the TSS400. One bit 
is 24 internal instructions in length. The knowledge of the oscillator 
frequency is necessary for a good synchronization. 

1/0 HOST· 

L: 

Figure 38: Mode check after initialization 

The signals described before are shown below. The signals output by the 
host and the TSS400 are shown on separated lines although they appear 
both on the same line. The following figure shows the start of the TSS400 
Standard software after an initialization: 

Revision 1, November 1990 



160 TSS400 Standard User's Guide 

9.3 Data Transfer 

Data means instructions, operands, parameters, results and status infor­
mation transferred between the host and the TSS400 Standard. 

9.3.1 Data Transfer to the TSS400 Standard 

The TSS400 Standard switches the data line to the input direction and 
waits until the host releases the line too, which leads to a high level. Then 
the TSS400 Standard reads in the next instruction or data to be processed. 
The host extends the pulses coming from the TSS400 if ones are to be 
transferred and doesn't extend the pulses if zeroes are to be transferred to 
the TSS400 Standard. 

! ~ 1 bit :----.( 

l/0TsS400 

I: 

L 1/0 HOST 

Figure 39: Data transfer to the TSS400 Standard 

Figure 39 shows the first 3 bits of a data transfer after a busy host released 
the data line. The shown, transferred info is 01 Ox. 

Figure 40 shows the timing of a nibble transferred to the TSS400 Standard. 
The numbers show the length of the signals measured in TSS400 instruc­
tions. A TSS400 instruction needs 6/fosc seconds for the execution. The 
TSS400 scans the data line 12 instructions after the positive edge of the 
pulse. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 161 

l+-12:-+-l~12-+-l.___.: s.:8 :-+I~ 31<8 :----+I . 
!+-: llSB:-Jo>J~-B-1:-+! I+-: LSB :---..1 

Figure 40: 1/0 Timing of a data transfer to the TSS400 Standard 

Writing of the complete RAM 

The instruction SLV allows the writing of the complete RAM. The transfer 
starts with the MSB of the nibble Y = o located in the X1-bank and ends 
with the LSB of the nibble Y = 15 located in the XF-bank. See the RAM 
map shown in Figure 37 for the meaning of the bits. The RAM map also 
shows the sequence, the X-Banks are read in. 

576 bits are read by the TSS400 Standard (9 · 16 · 4 = 576) 

Warning: It is strongly advisable to read out and store the RAM before 
any RAM writing is made. Non predictable results will occur, if 
RAM parts are not restored exactly like they were read out. 
Only the nibbles to be changed should be modified. 

9.3.2 Data Transfer to the Host 

If an instruction assumes results from the TSS400 Standard, the TSS400 
sends the data after the host released the data line. 

The timing for one nibble (which contains 5) is shown in Figure 41. The 
numbers below the figure show the length measured in TSS400 
instructions. A TSS400 instruction needs 6/fosc seconds. 

Revision 1 , November 1990 



162 TSS400 Standard User's Guide 

. . . . . 
lol : ~· 

_J ~ :1 
l•••l+-1jl--.l+-1~--.1 .. 8·I+--' 31<8 :----...1.,.__: 3K8 :___.,j 
!+-: llSB '.-+j~llSB-1:-+-!~ llSB-2:---+!~ LSB :~ 

Figure 41: 1/0 Timing of a data transfer to the Host 

Reading of the complete RAM 

The instruction SL V allows the reading of the complete RAM. The transfer 
starts with the MSB of the nibble Y = O located in the X1-bank and ends 
with the LSB of the nibble Y = 15 located in the XF-bank. See the RAM 
map shown in Figure 37 for the meaning of the bits. The RAM map shows 
also the sequence, the X-Banks are read out. 

576 bits are written by the TSS400 Standard (9 · 16 · 4 = 576) 

9.4 Idle Modes for the Slave 

The host can deactivate the TSS400 Standard if activity is not needed. 
Two possibilities exist: 

- Holding low the 1/0 Pin line after the last instruction. 
- Loading of one of the timers with a constant and usage of the Done 

Mode afterwards. 

The first method uses the handshake feature of the TSS400 Standard. 
Normal operating current is drawn from the power supply. 

The second method has the advantage of the very low supply current 
drawn during the Done Mode. 

Revision 1 , November 1990 



TSS400 Standard User's Guide 163 

Example: The TSS400 is not needed for 6 seconds. The host sends the 
two instructions shown below to the TSS400 Standard which sleeps for 6 
seconds. When this time elapsed, the TSS400 Standard will call for the 
next instruction. 

LDTIML 
DONE 

6 6 SECONDS DEACTIVATION 
DONE MODE 
CALL FOR NEXT INSTRUCTION 

Example 48: Deactivation of the Slave by the Done Mode 

9.5 Not Executable Instructions 

The following instructions cannot be executed in the Slave Mode: 

MOVFLPRM no EEPROM connected to the TSS400 in Slave Mode 
MOVPRMRB same as above 

The program flow instructions like CALL, JMP and so on are senseless in 
the Slave Mode. 

Revision 1, November 1990 



164 TSS400 Standard User's Guide 

APPENDIX A 

Hardware Definition 

For references the actual hardware definition of the TSS400 Standard, 
used for production purposes, is listed below: 

.OPTION VERSION 
VERSION S220 

.OPTION PINNING 
NO TEST 
KC = 0 

PAD 1 IS-PIN 1 APPL VSS 

.OPTION ROM 

TEST K 
RMIN 

TEST VSS 

R S/C 
RMOUT HVT 
vss vss 

TSS0400 OBJECT:STDSW CREATED 11 NOV 19SS 11:11:11 VERS J.S LB 
0046000D002100400126014700E2000DOOOOOOSCOOSDOOS3000001270036019C 
009S00000100011E004501S0000001E2019C000000000045009S009SOOSS0044 

Note: Only four lines out of the 128 object lines are shown. 

01E3009D00SD017601150067000001FA001A00S40000003601S90149004S0100 
00BF005A006B009C01BC0006005600S0014C01FA004F01150094002301ES00BF 

.OPTION KlK2K4KSIO 
INPUT Kl PULL-DOWN NONE 
INPUT K2 PULL-DOWN NONE 
INPUT K4 PULL-DOWN NONE 
INPUT KS PULL-DOWN NONE 
INPUT I/0 PULL-DOWN NONE 
OUTPUT Kl OPEN-SOURCE NO 
OUTPUT K2 OPEN-SOURCE NO 
OUTPUT K4 OPEN-SOURCE NO 
OUTPUT KS OPEN-SOURCE NO 

.OPTION KSFF. 
FLIP-FLOP DISABLED 

.OPTION ADC-RANGE 
RANGE-IS LARGE 

.OPTION WAKE-UP-FREQUENCY 
FREQUENCY 16HZ 
! 
.OPTION CLOCK 

; NO PULL-DOWN ANYWHERE 

PUSH-PULL OUTPUTS 
PUSH-PULL OUTPUTS 
PUSH-PULL OUTPUTS 
PUSH-PULL OUTPUTS 

NO FLIP FLOP IN KS-INPUT 

0.1013 x SVDD - 0.4946 x SVDD 

16 Hz WAKEUP FREQUENCY FOR DL12 1 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

FREQUENCY NONE 

.OPTION TIMOSC 
USE TXOSC 

.OPTION COMMON 
USE MUX4 

.OPTION SELECT-LINES 
LOAD Sl+S2 BY Yl 
LOAD S3+S4 BY Y2 
LOAD S5+S6 BY Y3 
LOAD S7+S8 BY Y4 
LOAD S9+S10 BY Y5 
LOAD Sll+S12 BY Y6 
LOAD Sl3+S14 BY Y7 

COMMON 
FOR MUX4 AND S2N-1 LOAD 
FOR MUX4 AND S2N LOAD 

.OPTION SEGMENT-PLA 
DL14 = 0 

' 
ST = 0 

CHARACTER 0 HAS-SEGMENTS A 
CHARACTER 1 HAS-SEGMENTS B 
CHARACTER 2 HAS-SEGMENTS A 
CHARACTER 3 HAS-SEGMENTS A 
CHARACTER 4 HAS-SEGMENTS B 
CHARACTER 5 HAS-SEGMENTS A 
CHARACTER 6 HAS-SEGMENTS A 
CHARACTER 7 HAS-SEGMENTS A 
CHARACTER 8 HAS-SEGMENTS A 
CHAEACTER 9 HAS-SEGMENTS A 
CHARACTER 10 HAS-SEGMENTS A 
CHARACTER li HAS-SEGMENTS c 
CHARACTER 12 HAS-SEGMENTS A 
CHARACTER 13 HAS-SEGMENTS B 
CHARACTER 14 HAS-SEGMENTS A 
CHARACTER 15 HAS-SEGMENTS A 

DL14 = 0 ' ST = 1 

CLOCK NOT PINNED OUT 

QUARTZ IS USED FOR TIMER 

4 COMMON MULTIPLEX 

ADDRESSING OF THE SELECT LINES 

1 2 3 4 
C F H E 
A B D G 

FAIL SAFE 
CONFIGURATION 

B c D E F 0 
c 1 
B D E G 2 
B c D G 3 
c F G 4 
c D F G 5 
c D E F G 6 
B c 7 
B c D E F G 8 
B c D F G 9 
B c E F G A 
D E F G b 
D E F c 
c D E G d 
D E F G E 
E F G F 

CHARACTER 16 HAS-SEGMENTS NONE BLANK 
CHARACTER 17 HAS-SEGMENTS BCD J 
CHARACTER 18 HAS-SEGMENTS D E F L 
CHARACTER 19 HAS-SEGMENTS A B E F G p 

CHARACTER 20 HAS-SEGMENTS B C D E F u 
CHARACTER 21 HAS-SEGMENTS D E G c 
CHARACTER 22 HAS-SEGMENTS c E F G h 
CHARACTER 23 HAS-SEGMENTS D E l 
CHARACTER 24 HAS-SEGMENTS c E G n 
CHARACTER 25 HAS-SEGMENTS c D E G 0 

CHARACTER 26 HAS-SEGMENTS E G r 
CHARACTER 27 HAS-SEGMENTS D E F G t 
CHARACTER 28 HAS-SEGMENTS c D E v,u 
CHARACTER 29 HAS-SEGMENTS B c D F G y 

CHARACTER 30 HAS-SEGMENTS B c E F G H 

Revision 1, November 1990 

165 



166 TSS400 Standard User's Guide 

CHARACTER 31 HAS-SEGMENTS B C G -1 

DL14 = 1 , ST = 0 COMBINATIONS 
CHARACTER 32 HAS-SEGMENTS NONE BLANK 
CHARACTER 33 HAS-SEGMENTS A 
CHARACTER 34 HAS-SEGMENTS F 
CHARACTER 35 HAS-SEGMENTS A F 
CHARACTER 36 HAS-SEGMENTS B 
CHARACTER 37 HAS-SEGMENTS A B 
CHARACTER 38 HAS-SEGMENTS B F 
CHARACTER 39 HAS-SEGMENTS A B F 
CHARACTER 40 HAS-SEGMENTS G MINUS SIGN 
CHARACTER 41 HAS-SEGMENTS A G 
CHARACTER 42 HAS-SEGMENTS F G 
CHARACTER 43 HAS-SEGMENTS A F G 
CHARACTER 44 HAS-SEGMENTS B G 
CHARACTER 45 HAS-SEGMENTS A B G 
CHARACTER 46 HAS-SEGMENTS B F G 
CHARACTER 47 HAS-SEGMENTS A B F G DEGREE 

DL14 = 1 , ST = 1 
CHARACTER 48 HAS-SEGMENTS E 
CHARACTER 49 HAS-SEGMENTS A E 
CHARACTER 50 HAS-SEGMENTS E F 
CHARACTER 51 HAS-SEGMENTS A E F 
CHARACTER 52 HAS-SEGMENTS B E 
CHARACTER 53 HAS-SEGMENTS AB E 
CHARACTER 54 HAS-SEGMENTS B E F 
CHARACTER 55 HAS-SEGMENTS AB E F 
CHARACTER 56 HAS-SEGMENTS E G 
CHARACTER 57 HAS-SEGMENTS A E G 
CHARACTER 58 HAS-SEGMENTS E F G 
CHARACTER 59 HAS-SEGMENTS A E F G 
CHARACTER 60 HAS-SEGMENTS c SEGMENT c 
CHARACTER 61 HAS-SEGMENTS D ; SEGMENT D 
CHARACTER 62 HAS-SEGMENTS A B c D l 
CHARACTER 63 HAS-SEGMENTS A B c D E J 
.END END OF HARDWARE OPTIONS 

Revision 1 , November 1990 



TSS400 Standard User's Guide 

APPENDIXB 

Applicable Documents 

- TSS400 Application Report EB175 E 
- TSS400 User's Guide 
- TSS400 Software User's Guide 
- TSS400 ADT User's Guide 
- TSS400 Standard Simulator User's Guide 
- 4-Bit Microcomputer Cross Assembler User's Guide 

APPENDIXC 

TSS400 Standard Instructions 

Register to Register Transfer Instructions 

MOVFLSTO n 
MOVSTOFL n 
MOVRBSTO n 
MOVSTORB n 
EXCHRBFL 
MOVFLRB 
MOVRBFL 
MOVFLPRM Label 

MOVPRMRB Label 

Move FLAC to Storage Register n 
Move Storage Register n to FLAC 
Move REGB to Storage Register n 
Move Storage Register n to REGB 
Exchange REGB and FLAG Registers 
Move FLAG to REGB 
Move REGB to FLAG 
Move FLAG to EEPROM starting at Address 
Label 
Move EEPROM Contents starting at Address 
Label to REGB 

Arithmetic Instructions (Results always to FLAC) 

ADD Add REGB to FLAG decimally 
SUB Subtract REGB from FLAC decimally 
MPV Multiply FLAG and REGB decimally 

Revision 1 , November 1990 

167 



168 

DIV 
ADDH 
SUBH 
HEXDEC 
ROUNDn 
SHIFTRn 
SHIFTLn 

TSS400 Standard User's Guide 

Divide FLAG by REGB decimally 
Add REGB to FLAG hexadecimally 
Subtract REGB from PLAC hexadecimally 
Hexadecimal to decimal Conversion 
Round FLAG n times (0 < n < 5) 
Shift right FLAC n times (0 < n < 3) 
Shift left FLAG n times (0 < n < 3) 

Arithmetics Compare Instructions 

CMPFLRB Compare FLAC and REGB. Set Status Fiags. 
TSTRB Test Contents of REGS. Set Status Flags. 

Bit Manipulation Instructions 

SBIT n Set Flag Bit n (0::;; n < 16) 
RBIT n Reset Flag Bit n (0 ::;; n < 16) 
TBIT n Test Flag Bit n (0 ::;; n < 16) 
SELGRPn Select Flag Bits Group n (0 < n < 3) 
OR Or FLAG and REGB, Result to FLAG 
AND And FLAG and REGB, Result to FLAG 

Constant Transfer Instructions 

LDFLPOS 

LDFLNEG 

LDRBPOS 

LDRBNEG 

CLRFL 
CLRRB 

n 

n 

n 

n 

Load FLAG with a positive Constant contained 
in the n following Bytes in BCD Format 
(n = O : 4 Bytes). 
Load FLAG with a negative Constant (Same as 
above). 
Load REGB with a positive Constant.(Same as 
above). 
Load REGB with a negative Constant.(Same as 
above). 
Clear FLAG Register 
Clear REGB 

Revision 1, November 1990 



TSS400 Standard User's Guide 169 

Input/Output Instructions 

SETR n Set Output Rn (DLn) (n # 0,7,14,15) 
RSTR n Reset Output Rn (DLn) (n # 0,7,14,15) 
TSTKEY >NN Test Keyboard like described by operand 
KINTIM Actualize K-lnput and Timers 
KIN Read K-lnput to FLAG (LSD) and FLAGS 12-15 
FLKOUT Output LSD of FLAG to K-Port 
KOUT n Output Constant n to K-PORT 

Program Flow Control Instructions 

JMP Label Jump unconditional 
JZ Label Jump if zero 
JEQ Label Jump if equal 
JNZ Label Jump if not zero 
JNE Label Jump if not equal 
JP Label Jump if positive 
JN Label JumP. if negative 
CALL Label Call Subroutine 
RETN Return from Subroutine 

Analog-Digital-Converter Instructions 

(ZERO= 1) 
(ZERO= 1) 
(ZERO= 0) 
(ZERO= 0) 
(POS = 1) 
(NEG= 1) 

SVDDON 
SVDDOFF 

Set Converter Supply Voltage 
Reset Converter Supply Voltage 

MEASR a 

ADJBATT 
CHKBATT 
ADJCOMP 
CHKCOMP 

Measure addressed A/D Input a+ 1. Following Byte 
contains number of conversions and Mode. 
Measure Battery Voltage, Result to FLAG 
Check Battery Voltage 
Measure AID Input, Result to FLAG 
Compare AID Input with Value in FLAG 

Revision 1 , November 1990 



170 TSS400 Standard User's Guide 

Display Instructions 

DISPLDGn 
DISPLCLR 
DISPLFL 

NN Display Info of Operand >NN in Digit n. 
Clear Display 

>MN Display FLAG from Digit M to N. Appended 
(M-N+ 1) Bytes contain Info for each Digit. 

Miscellaneous Instructions 

DONE 
OFF 
NOP 
SLV 

Enter Done Mode 
Enter Off Mode 
No Operation 

>NN Host Control Instruction 

Counter Instructions 

DECCNTn Decrement Counter n decimally 
Increment Counter n decimally 
Decrement Double Counter decimally 
Increment Double Counter decimally 

INCCNTn 
DEC DBL 
INC DBL 
LDCNTn 
MOVCNTn 
MOVDBL 

>NN Load Counter n decimally with Constant >NN 
Move Counter n to REGB 
Move Combined Counters to REGB 

Timer Instructions 

LDTIML 
LDTIMS 
ACTTIM 
STPTIML 
STPTIMS 

NNN Load Long Timer with Constant NNN 
NNN Load Short Timer with Constant NNN 

Actualize Timers 
Stop Long Timer 
Stop Short Timer 

Revision 1 , November 1990 



TSS400 Family User's Guide 

Sensor Signal Processors 



TI Worldwide 
Sales Offices 
AL-:ABAMA: Huntsville: 4960 Corporate Drive, 
Suite N-150, Huntsville, AL 35805-6202, (205) 
837-7530. 
ARIZONA: Phoenix: 8825 N. 23rd Avenue, 
Suite 100, Phoenix, AZ 85021, {602) 995-1007; 
Tucson: 818 W. Miracle Mile, Suite 43, Tucson, 
AZ 85705, (602) 292-2640 
CALIFORNIA: Irvine: 17891 Cartwright Drive, 
Irvine, CA 92714, (714) 660-1200; Roseville: 1 
Sierra Gate Plaza, Suite 2558, Roseville, CA 
95678, (9.16) 786-9208; .San Diego: 5625 Ruffin 
Road, Suite 100, San Diego, CA92123, (619) 
278-9601; Santa Clara: 5353 Betsy Ross Drive, 
Santa Clara, CA 95054, (408) 980-9000; 
Woodland Hills: 21550 Oxnard Street, Suite 
700, Woodland Hif!s, CA 91367, (818) 704-8100 
COLORADO: Aurora: 1400 S. Potomac Street, 
Suite 101, Aurora, CO 80012, (303) 368-8000. 
CONNECTICUT: Wallingford: 9 Barnes 
Industrial Park Road, Wallingford, CT 06492, 
(203) 269-0074 
fLUAiOA: Aitamor:ne Springs: 370 S. hiotih 
Lake Boulevard, Suite 1008, Altamonte Springs, 
FL 32701, (407) 260-2116; Fort Lauderdale: 
2950 N.W. 62nd Street, Suite 100, Fort 
Lauderdale, Fl 33309, (305) 973-8502; Tampa: 
4803 George Road, Suite 390, Tampa, FL 
33634, (813) 885-7411 
GEORGIA: Norcross: 5515 Spalding Drive, 
Norcross, GA 30092, (404) 662-7900 
ILLINOIS: Arlington Heights: 515 W 
Algonquin, Arlington Heights, IL 60005, (708) 
640-3000. 
INDIANA: Carmel: 550 Congressional Drive, 
Swte 100, Carmel, IN 46032, (317) 573-6400; 
Fort Wayne: 118 E. Ludwig Road, Suite 102, 
Fort Wayne, IN 46825, (219) 482-3311 
IOWA: Cedar Rapids: 373 Collins Road N.E., 
Suite 201, Cedar Rapids, IA 52402, (319) 
395-9550 
KANSAS: Overland Park: 7300 College 
Boulevard, L1ghton Plaza, Suite 150, Overland 
Park, KS 66210, {913) 451-4511 
MARYLAND: Columbia: 8815 Centre Park 
Drive, Suite 100, Columbia, MD 21045, (301) 
964-2003. 
MASSACHUSETIS: Waltham: 950 Winter 
Street, Suite 2800, Waltham, MA 02154, (617) 
895-9100 
MICHIGAN: Farmington Hills: 33737 W. 12 
Mile Road, Farmington Hills, Ml 48018, (313) 
55.3-1500; Grand Rap!ds: 3075 Orchard Vista 
~;~~io~:· Grand Rapids, Ml 49506, (616) 

MINNESOTA: Eden Prairie: 11000 W. 78th 
gg:i~50.ite 100, Eden Prairie, MN 55344, (612) 

MISSOURI: St. Louis: 11816 Borman Drive, 
St. Louis, MO 63146, (3i4) 994-2100. 
NEW JERSEY: lselin: Parkway Towers, 485 E. 
Route 1 South, lselin, NJ 08830, (201) 750-1050 
NEW MEXICO: Albuquerque: 1224 Parsons 
Court, N.E., Albuquerque, NM 87112, (505) 
291-0495 
NEW YORK: East Syracuse: 6365 Collamer 
Dnve, East Syracuse, NY 13057, (315) 
463-9291; Fishkill: :300 _Westage Business 
Center, Swte 140, F1shk1ll, NY 12524, (914) 
897-2900; Melville: 1895 Walt Whitman Road. 
P.O. Box 2936, Melville, NY 11747, (516) 
454-6600; Pittsford: 2851 Clover Street, 
Pittsford, NY 14534, {716) 385-6770 
NORTH CAROLINA: Charlotte: 8 Woodlawn 
Green. Suite 100, Charlotte'. NC 28217, (704) 
527-0930; Raleigh: 2809 H1ghwoods Boulevard, 
Suite 100. Raleigh, NC 27625, (919) 876-2725. 
OHIO: Beachwood: 23775 Commerce Park 
Road, Beachwood, OH 44122, (216) 464-6100; 
Beavercreek: 4200 Colonel Glenn Highway. 
Suite 600, Beavercreek, OH 45431, (513) 
427-6200 

© 1991 Texas Instruments 

OREGON: Beaverton: 6700 S.W. 105th Street 
Suite 110, Beaverton, OR 97005, (503) 643-6758. 
PENNSYLVANIA: Blue Bell: 670 Sentry 
Parkway, Blue Bell, PA 19422, (215) 825-9500 
PUERTO RICO: Hato Rey: 615 Merchantile 
Plaza Budding, Suite 505, Halo Rey, PR 00918, 
(809) 753-8700 
TENNES~EE: Johnson City: P.O. Drawer 
1255, Erwin Hwy., Johnson City, TN 37605, 
(615) 461-2192. 
TEX~S: Austin: 12501 Research Boulevard, 
Austin, .TX 78759, (512) 250-7655: Dallas: 7839 
Churchill Way, Dallas, TX 75251, (214) 
917-1264; Houston:_ 9301 Southwest Freeway, 
Commerce Park, Swte 360, Houston, TX 77074. 
(713) 778-6592 
UTAH: Sa_lt Lake City: 1800 S. WestTemple 
Street, Suite 201, Salt Lake City, UT 84115, 
{801) 466-8973. 

WASHINGTON: Redmond: 5010 148th Avenue 
N.E., Building B, Suite 107, Redmond, WA 
98052, (206) 881-3080. 

WISCONSIN: Waukesha: 20825 Swenson 
~~~~,0~~ite 900. Waukesha Wl 53186, (414) 

CANADA: Nepean: 301 Moodie Drive, Mallorn 
Center, Suite 102, Nepean. Ontario, Canada 
K2H 8C4, (Ui3) 72G-187C: Richmu;;rl mu: 230 
Centre Street East. Richmond Hill, Ontario, 
Canada L4C 1 B1, ·(416) 884-9181; St. Laurent: 
9460 Trans Canada Highway, St. Laurent, 
Quebec, Canada H4S 1R7, (514) 335-8392. 

A.RGENTINA: Texas lnstr~ments Argentina 
V~amonte 1119, 1053 Capital Federal, Buenos 
Aires, Argentina, 1/748-3699 

AUSTRALIA (&NEW ZEALAND): Texas 
Instruments Australia Ltd., 6-10 Talavera Road, 
North Ryde (Sydney), New South Wales, 

~~~:~~a~:Uef~~~~;~e~t~~~:~~;1r!11: i6~t· 
3 267-~677; 171 Philip Highway, Elizabeth, South 
Australia 5112, 8 255-2066 

AUSTRIA: Texas Instruments GmbH .. Hietzinger 
Kai 101-105, A-1130 Wien, (02~2) 9100-0 
BELGIUM: S.A. Texas Instruments Belgium 
N.V., 11, Avenue Jules Bordetlaan 11, f140 
Brussels, Belgium, (02) 242 30 80. 

BRAZIL: Texas Instruments Electronicos do 
Brasil Lida., Rua Paes Leme, 524-7 Andar 
Pinheiros, 05424 Sao Paulo, Brazil, 0815-6166 
DENMARK: Texas Instruments AJS. 
Marlelundvej 46E, 2730 Herlev, Denmark, (42) 
91 7400. 

FINLAND: Texas Instrument~ OY. Ahertajantie 3, 
P.O. Box 81, 02101 Espoo, Finland. (90) 
461-422 
FRANCE: Texas Instruments France, 8-10 
A~enue Morane Saulnier-B.P. 67, 78141 Velizy 
V1llacoublay Cedex, France, (1) 30 70 1 O 03 
GERMANY: Texas Instruments Deutschland 
GmbH., Haggertystrasse 1, 8050 Freising-RFA, 
(08161) 80-0 od. Nbst; Kurfurstendamm 195-196, 
1000 Berlin 15, (030) 8 82 73 65; Dusseldorfer 
Strasse 40, ?236 Eschborn 1, (06196) 80 70; Ill, 
Hagen 43/Kibbelstrasse 19, 4300 Essen 1, 
(0201) 24 25-0; Kirchhorster Strasse 2, 3000 
Hannover_ 51. (0511} 6'.1- 68-0; Maybachstrasse 11, 
7302 Ostfildem 2 (Nelhngen), (0711) 34 03-0 
HOLLAND: Texas Instruments Holland B.V., 
Hogeh1lweg 19, Postbus 12995, 1100 AZ 
Amsterdam-Zuidoost, Holland, (020) 5602911 

.,, 
TEXAS 

INSTRUMENTS 

HONG KONG: Texas Instruments Hong Kong 
ltd_, 8th Floor, World Shippmg Center, 7 Canton 
Road, Kowloon, Hong Kong, 7351223 
IRELAND: Texas Instruments Ireland Ltd., 7/8 
Harcourt Street, Dublin 2, Ireland, (01) 75 52 33 
ITALY: Texas Instruments Italia S.p.A., Centro 
Oirezionale Coileoni, Palazzo Perseo-Via 
Parace!so 12, 20041, Agrate B_rianza (Mi), (039) 
63221; Via Castello della Maghana, 38, 00148 
Rome, (06) 5222651; Via Amendola, 17, 40100 
Bologna, (051) 554004. 
JA_PA~: Texas tnstrui:nents Japan ltd., Aoyama 
Fuji Building 3-6-12 K1ta-aoyama Minato-ku, 
Tokyo, Japan 107, 03-498-2111; MS Shibaura 
Building 9F, 4-13-23 Shibau_ra, Minato-ku~ Tokyo, 
Japan 108, 03-76~-8700; N1ssho-1wa1 Bu1ld1ng 
5F, 2-5-8 lmabash1, Chuou-ku, Osaka, Japan 
541,.06-204-1881; Dai-ni Toyota Building 
N1sh1-kan 7F, 4-10-27 Meiek1, Nakamura-ku, 
Nagoya, Japan 450, 052-583-8691, Kanazawa 
Oyama-cho Daiichi Seimei Building 6F, 3-10 
Oyama-cha, Kanazawa, Ishikawa, Japan 920 
0762-23-5471; Matsumoto Showa Building 6F, 
1-2-11 Fukashi, M~tsumoto, Nagano, Japan 390, 
0263-33-1060; Daiichi Olympic Tachikawa 
Building 6F, 1-25-12, Akebono-cho, Tachlkawa, 
Tokyo, Japan 190, 0425-27-6760; Yokohama 
Nishiguchi KN Building 6F. 2-8-4 Kita-Saiwai, 
Nishi Ku, Yakchama, K.:;r::::gaw:::, Japat: 220, 
045-322-6741; Nihon. Seimei Kyoto :<asaka 
Bu1ldmo;;i SF, 843-_2, H1gash1 Sh1oko~11cho, 

~~~~s~~~~k~.'.~h~~~~~~~~a~~g~~~1~-~11-7713; 
Sumi~omo Se1me1 Kumagaya Building SF, 2-44 
Yayo1. Kumagaya, Saitama. Japan 360, 
0485-22-2440; 2597-1, Az.a Harudai, Caza 
Yasaka, Kitsuki, Oita, Japan 873, 09786-3-3211 

KOREA: Texas Instruments Korea Ltd., 28th 
Floor, Trade Tower, 159, Samsung-Dong, 
Kangnam-ku Seoul, Korea, 2 551 2800. 
MEXICO: Texas Instruments de Mexico S.A., 
Alfor:iso Reyes 115, Col. Hipodromo Condesa, 
Mexico, O.F., Mexico 06120, 5/525-3860 

MIDDLE EAST: Te.xas Instruments, No. 13, 1st 
Floor Mannar Bu1ldmg, Diplomatic Area, P.O. Box 
26335, Manama Bahrain, Arabian Gulf, 973 
274681 

NORWAY: Tex°':S lnstru~ents Norge A/S, PB 
106, Refstad (Sinsenve1en 53), 0513 Oslo 5, 
Norway, (02) 155090. 
PEOPLE'S REPUBLIC OF CHINA: Texas 
lns~ruments China Inc., Beijing Representative 

~j~~·J~~i~~lt~~n~~~%!~%2\~~~~?~~~gnwai 
PHl_LIPPINES: Texas Instruments Asia Ltd., 
Ph1hpp1nes Branch, 14th Floor, B~-Lepanto 
Bu!l~mg, Paseo de Roxas, Makat1, Metro Manila, 
Ph1l1pp1nes, 2 817 6031 

PORTUGAL: Texas Instruments Equipamento 
Electronico (Portugal) LOA., 2650 Moreira Oa 
Maia, 4470 Maia, Portugal (2) 948 1003 
SINGAPORE (&!NOIA, INDONESIA, 
MALAYSIA, THAILAND): Texas Instruments 
Singapore (PTE) Ltd., Asia Pacific Division, 101 
Thomson Road, #23-01, United Square, 
Singapore 1130, 350 8100. 
SPAIN: Texas Instruments Espana S.A., 
c/Gobelas 43, Cira de la Coruna km 14, La 
Flo~ida, 28023, Madrid, Spain, (1) 372 8051, 
g~T1~a~~o~0.279-3-5, 08007 Barcelona, Spain, 

SWEDEN: Texas Instruments International Trade 
Corporation (Sveri!;lef1halen}. (visit address: 
lsafJordsgatan 7, K1sta), Box 30, S-164 93 Kista, 
Sweden, (08) 752 58 00 
SWITZERLAND: Texas Instruments Switzer1and 
AG .. Riedstrasse 6, CH-8953 Dietikon, 
Swllzerland. (01) 740 22 20 

TAIWAN: Texas Instruments Supply Company, 
Taiwan Branch, Room 903, 9th Floor, Bank 
Tower, 205 Tun Hwa N. Road, Taipei, Taiwan, 
Republic of China, 2 713 9311 
UNITED KINGDOM: Texas Instruments Ltd., 
Manton Lane, Bedford, England, MK41 ?PA, 
(0234) 270111 



PRINTED IN GERMANY 

.. TEXAS 
INSTRUMENTS 

• <J 

SLAU 002 




