High-speed CMOS Logic Data Book

1983

Silicon-gate Complementary MOS

GENERAL INFORMATION
RATINGS AND CHARACTERISTICS
DESCRIPTIVE INFORMATION
EXPLANATION OF LOGIC SYMBOLS

ORDERING INSTRUCTIONS AND MECHANICAL DATA

IC SOCKETS

TI Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514. Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas St., El Segundo, CA 90245, (213) 973-2571; Irvine, 17891 Cartwight Rd., trvine, CA 92714, (714) 660-1200; Sacramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929-1521; West Way, Suite 1/1, Sacramento, CA 95815, (910) 929-1521; San Diego, 4333 View Ridge Ave., Suite B., San Diego, CA 92123, (714) 278-9600; Santa Clara, 5353 Betsy Ross Dr., Santa Clara, CA 95054, (408) 980-9000; Woodland Hills, 21220 Erwin Sc., Woodland Hills, CA 91367, (213) 704-7759.

COLORADO: Denver, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19 N., Suite 232, Clearwater, FL 33515, (813) 796-1926; Ft. Lauderdale, 2765 N.W. 62nd St., Ft. Lauderdale, FL 33309, (305) 973-8502; Maitland, 2601 Maitland Center Parkway, Maitland, FL 32751, (305) 646-9600.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd., Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ

NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuquerque, NM 87110, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East Syracuse, NY 13057, (315) 463-9291; Endicott, 112 Nanticoke Ave., P.O. Box 6818, Endicort, NY 13760, (607) 754-3900; Melville, I Huntington Quadrangle, Suite 3ClO, P.O. Box 2936. Melville, NY 11747, (516) 454-6602, Poughkeepsie, 201 Suuth Ave., Poughkeepsie, NY 12601, (914) 473-2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623, (716) 424-3400. NEW YORK: East Syracuse, 6700 Old Collamer Rd., East

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 3000 Highwoods Blvd., Suite 118, Raleigh, NC 27625, (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachword, OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 3105 E. Skelly Dr., Suite 110, Tulsa, OK 74105, (918) 749-9547.

OREGON: Beaverton, 6700 SW 105th St., Suite 110, Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Ft Washington, PA 19034, (215) 643-6450; Coraopolis, PA 15108, 420 Rouser Rd., 3 Airport Office PK, (412) 771-8550.

TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy., Johnson City, TN 37601, (615) 461-2191.

TEXAS: Austin, 12501 Research Blvd.; P.O. Box 2909, Austin, TX 78723, (512) 250-7655; Dallas, P.O. Box 1087, Adstri, TX 76127, (312) 230-7633; Datass, F.O. Exx Vo.C., Richardson, TX 75080; Houston, 9100 Southwest Frwy., Suite 237, Houston, TX 77036, (713) 778-6592; San Antonio, 1000 Central Park South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City, UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle, Midlothian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bishops Way, Suite 214, Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg 6, Redmond, WA 98052, (206) 881-3080.

CANADA: Ottawa, 416 Mac Laren St., Ottawa, Canaua, K2POMS, (613) 233-1177. Richmond Hill, 280 Centre St. E., Richmond Hill L40C Haran, Canada, (416) 884-9181; St. Laurent, Ville St. Laurent Quebec, 9460 Trans Canada Hwy. St. Laurent, Quebec, Canada H4S1R7, (514) 334-3635.

TI Distributors

ALABAMA: Hall-Mark (205) 837-8700.

ARIZONA: Phoenix, Kierulff (602) 243-4101; Marshall (602) 968-6181; Wyle (602) 249-2232; Tucson, Kierulff (602)

CALIFORNIA: Los Angeles/Orange County, Arrow (213) 701-7500, (714) 851-8961; JACO (714) 540-5602, (213) 998-2200; Kerolff (213) 729-525, (714) 731-7311, Marshall (213) 999-5001, (213) 868-0141, (714) 556-6402, R.V. Watherfund (714) 613-6900, (213) 889-3541, (714) 623-1261; Wyle (213) 122-8100, (714) 641-611; San Diego, Arrow (619) 563-6800, Kerolff (619) 7278-7212, Marshall (109) 728-8400. R.V. Weatherford (619) 695-1700; Wyle (619) 565-9171; San Francisco Bay Area, Arrow (408) 745-6600; Kierulff (415) 968-6292; Marshall (408) 732-1100; Wyle (408) 727-2500; inta Barbara, R.V. Weatherford (805) 465-8551

COLORADO: Arrow (303) 758-2100: Kierulff (303) 790-4444; Wyle (303) 457-9953

CONNECTICUT: Arrow (203) 265-7741; Diplomat (203) 797-9674; Kierulif (203) 265-1115; Marshall (203) 265-3822; Milgray (203) 795-0714.

FLORIDA: Ft. Lauderdale, Arrow (305) 973-8502; Diplomat (305) 971-7160; Half-Mark (305) 971-9280; Kierulif (305) 952-6950; Orlando, Arrow (305) 725-1480; Diplomat (305) 725-4520; Half-Mark (305) 855-4020; Milgray (305) 647-5747; Tampa, Diplomat (812) 443-341; Kierulif (813) 376-1966.

GEORGIA: Arrow (404) 449-8252; Hall-Mark (404) 447-8000; Kierulff (404) 447-5252; Marshall (404) 923-5750.

ILLINOIS: Arrow (312) 397-3440; Diplomat (312) 595-1000; Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark (312) 638-4411.

INDIANA: Indianapolis, Arrow (317) 243-9353; Graham (317) 634-8202; Ft. Wayne, Graham (219) 423-3422.

KANSAS: Kansas City, Component Specialties (913) 492-3555; Hall-Mark (913) 888-4747; Wichita, LCOMP (316) 265,9507

MARYLAND: Arrow (301) 247-5200; Diplomat (301) 995-1226; Hall-Mark (301) 796-9300; Kierulff (301) 247-5020; Milgray (301) 468-6400.

MASSACHUSETTS: Arrow (617) 933-8130; Diplomat (617) 429-4120; Kierulff (617) 667-8331; Marshall (617) 272-8200; Time (617) 935-8080.

MICHIGAN: Detroit, Arrow (313) 971-8200; Newark (313) 967-0600; Grand Rapids, Newark (616) 243-0912.

MINNESOTA: Arrow (612) 830-1800; Hall-Mark (612) 854-3223; Kierulff (612) 941-7500.

MISSOURI: Kansas City, LCOMP (816) 221-2400; St. Louis, Arrow (314) 567-6888; Hall-Mark (314) 291-5350; Kierulff (314) 739-0855.

NEW HAMPSHIRE: Arrow (603) 668-6968.

NEW JERSEY: Arrow (201) 575-5300, (609) 235-1900; Diplomar (201) 785-1830; General Radio (609) 964-8560; Hall-Mark (201) 575-4415, (609) 424-0880; JACO (201) 778-4722; Kierulif (201) 575-6750; Marshall (201) 340-1900; Milgray (609) 983-5010.

NEW MEXICO: Arrow (505) 243-4566; International Electronics (505) 345-8127.

NEW YORK: Long Island, Arrow (516) 231-1000, Diplumar (516) 434-6400, Hall-Mark (516) 737-0600, JACO (516) 273-5500, Marchall (516) 273-244, Milgray (516) 456-500, (800) 645-3986; Hall-Mark (516) 737-2600; Rochester, Armw (716) 275-0300, Marshall (716) 257-5000, Marshall (716) 257-6760, Rochester Radio Supply (716) 456-7800, Syracuse, Armw (315) 652-1000. Diplumar (315) 652-5000, Marshall (707) 74-3100.

NORTH CAROLINA: Arrow (919) 876-3132, (919) 725-8711; Hall-Mark (919) 872-0712; Kierulff (919) 852-6261.

OHIO: Cincinnati, Graham (513) 772-1661; Hall-Mark (513) 563-5980; Cleveland, Arrow (216) 248-3990; Hall-Mark (216) 473-2907; Kierulff (216) 587-6558; Columbus, Hall-Mark (614) 473-2907; Nieruit (210) 367-6538; Columbus, Hall-Ma 846-1882; Dayton, Arrow (513) 435-5563; ESCO (513) 226-1133: Marshall (513) 236-8088.

OKLAHOMA: Component Specialties (918) 664-2820; Hall-Mark (918) 665-3200; Kierulff (918) 252-7537.

OREGON: Kierulff (503) 641-9150; Wyle (503) 640-6000.

PENNSYLVANIA: Arrow (412) 856-7000, (215) 928-1800; General Radio (215) 922-7037; Hall-Mark (215) 355-7300.

TEXAS: Austin, Arrow (512) 835-4180; Component Specialties (512) 837-8922; Hall-Mark (512) 258-8848; Kienliff (512) 835-2090; Dallas, Arrow (214) 386-7500; Component Specialties (214) 357-6511; Hall-Mark (214) 341-1147. al Electronics (214) 233-9323; Kierulff (214) International Electronics (219) 232-3925; Kierulff (214) 343-2400; El Paso, International Electronics (915) 778-9761; Houston, Arriw (713) 491-4100; Component Specialties (713) 771-7217; Hall-Mark (713) 781-6100; Harrison Equipment (713) 879-2600; Kierulff (713) 530-7030.

UTAH: Diplomat (801) 486-4134; Kierulff (801) 973-6913; Wyle (801) 974-9953.

WASHINGTON: Arrow (206) 643-4800; Kierulff (206) 575-4420; Wyle (206) 453-8300.

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414) 761-3000; Kierulff (414) 784-8160.

CANADA: Calgary, Future (403) 259-6408: Varah (403) 230-1235; Hamilton, Varah (416) 561-9311; Montreal, CESCO (511) 735-531; Future (514) 944-7710; Ottawa, CESCO (613) 216-6905; Future (613) 820-8313; Quebec City, CESCO (418) 674-7213; Toronto, CESCO (4616) 661-0202; Puture (416) 635-553; Vancouver, Future (604) 435-545; Varah (604) 631-7211; Winningey, Varah (204) 435-690; BA

High-Speed CMOS Logic Data Book

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents or rights of others based on Texas Instruments applications assistance or product specifications, since TI does not possess full access to data concerning the use or applications of customer's products. TI also assumes no responsibility for customer product designs.

ISBN 0-89512-114-X Library of Congress No. 82-074480

HIGH-SPEED CMOS LOGIC DATA BOOK

Texas Instruments is pleased to announce the SN74HC family of high-speed CMOS logic circuits. This versatile new family promises to be the product family of choice for many new logic systems, offering a unique combination of high-speed, low-power dissipation, high noise immunity, wide fanout capability, extended supply voltage range, and high reliability.

This data book describes the initial product line scheduled for introduction during 1983. Included are pinout and package information, logic symbols, maximum ratings and dc electrical characteristics. At the time of this edition, JEDEC recommendations for ac performance have not been finalized, consequently the timing requirements and switching characteristics for each device have been left blank. However, as each new family member is released, TI will publish the corresponding ac parameters, which may be obtained from your nearest TI field sales office or your local authorized TI distributor. Later editions of this data book will contain complete ac specifications.

TI Worldwide Sales Offices

ALABAMA: Huntsville, 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix, P.O. Box 35160, 8102 N. 23rd Ave., Suite A, Phoenix, AZ 85021, (602) 995-1007.

CALIFORNIA: El Segundo, 831 S. Douglas St., El Segundo, CA 90245, (213) 973-2571; Irvine, 17891 Cartwripht Rd., Plrine, CA 9714, (714) 660-1200; Sacramento, 1900 Point West Way, Suite 171, Sacramento, CA 95815, (916) 929-1521; San Diego, 433 View Ridge Ave., Suite B., San Diego, CA 91213, (714) 278-9600; Santa Clara, 5151 Betty Ross Dr., Santa Clara, CA 95054, (408) 980-9000, Woodland Hills, 21220 Ewin St., Woodland Hills, 247279.

COLORADO: Denver, 9725 E. Hampden St., Suite 301, Denver, CO 80231, (303) 695-2800.

CONNECTICUT: Wallingford, 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingford, CT 06492, (203) 269-0074.

FLORIDA: Clearwater, 2280 U.S. Hwy. 19 N., Suite 232, Clearwater, Fl. 33515, (813) 796-1926; Fr. Lauderdale, 2765 N.W. 62nd St., Fr. Lauderdale, Fl. 33309, 3059 973-8502; Maitland, 2601 Maitland Center Parkway, Maitland, Fl. 32751, 305) 646-9605.

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, Atlanta, GA 30341, (404) 452-4600.

ILLINOIS: Arlington Heights, 515 W. Algonquin, Arlington Heights, IL 60005, (312) 640-2934.

INDIANA: Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 46805, (219) 424-5174; Indianapolis, 2346 S. Lynhurst, Suite J-400, Indianapolis, IN 46241, (317) 248-8555.

IOWA: Cedar Rapids, 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550.

MARYLAND: Baltimore, 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Waltham, 504 Totten Pond Rd., Waltham, MA 02154, (617) 890-7400.

MICHIGAN: Farmington Hills, 33737 W. 12 Mile Rd., Farmington Hills, MI 48018, (313) 553-1500.

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, (612) 830-1600.

MISSOURI: Kansas City, 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500; St. Louis, 11861 Westline Industrial Drive, St. Louis, MO 63141, (314) 569-7600.

NEW JERSEY: Clark, 292 Terminal Ave. West, Clark, NJ 07066, (201) 574-9800.

NEW MEXICO: Albuquerque, 5907 Alice NSE, Suite E., Albuquerque, NM 8711C, (505) 265-8491.

NEW YORK: East Syracuse, 6700 Old Collamer Rd., East Syracuse, NY 19357, (315) 463-9291; Endicott, 112 Nanticoke Ave., P.O. Box 618, Endicott, NY 13760, (607) 754-3900; Melville, 1 Huntington Quadrangle, Suite 3ClO, P.O. Box 2936, Melville, NY 11747, (516) 454-6600; Poughkeepsie, 201 South Ave., Poughkeepsie, NY 12601, (914) 473-2900; Rochester, 1210 Jefferson Rd., Rochester, NY 14623, (716) 424-5400.

NORTH CAROLINA: Charlotte, 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh, 3000 Highwoods Blvd., Suite 118, Raleigh, NC 27625, (919) 876-2725.

OHIO: Beachwood, 23408 Commerce Park Rd., Beachwood, OH 44122, (216) 464-6100; Dayton, Kingsley Bldg., 4124 Linden Ave., Dayton, OH 45432, (513) 258-3877.

OKLAHOMA: Tulsa, 3105 E. Skelly Dr., Suite 110, Tulsa, OK 74105, (918) 749-9547.

OREGON: Beaverton, 6700 SW 105th St., Suite 110, Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington, 575 Virginia Dr., Ft. Washington, PA 19034, (215) 643-6450; Coraopolis, PA 15108, 420 Rouser Rd., 3 Airport Office PK, (412) 771-8550.

TENNESSEE: Johnson City, P.O. Drawer 1255, Erwin Hwy., Johnson City, TN 37601, (615) 461-2191.

TEXAS: Austin, 12501 Research Blvd., P.O. Box 2909, Austin, TX 78723, (512) 250-7655; Dallas, P.O. Box 1087, Richardson, TX 75000; Houston, 9100 Southwest Fruy, Suite 237, Houston, TX 77036, (713) 778-6592; San Antonio, 1000 Central Park South, San Antonio, TX 78232, (512) 496-1779.

UTAH: Salt Lake City, 3672 West 2100 South, Salt Lake City, UT 84120, (801) 973-6310.

VIRGINIA: Fairfax, 3001 Prosperity, Fairfax, VA 22031, (703) 849-1400; Midlothian, 13711 Sutter's Mill Circle, Midlothian, VA 23113, (804) 744-1007.

WISCONSIN: Brookfield, 205 Bishops Way, Suite 214, Brookfield, WI 53005, (414) 784-3040.

WASHINGTON: Redmond, 2723 152nd Ave., N.E. Bldg 6, Redmond, WA 98052, (206) 881-3080.

CANADA: Ottawa, 436 Mac Laren St., Ottawa, Canada, K2POM8, (613) 233-1177: Richmond Hill, 280 Centre St. E., Richmond Hill (4C1B), Ontario, Canada, (4)6) 884-9181; St. Laurent, Ville St. Laurent Quebec, 9460 Trans Canada Hwy., St. Laurent, Quebec, Canada H491,R7, (514) 334-3635.

ARGENTINA, Texas Instruments Argentina S.A.I.C.F: Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, 394-2963.

AUSTRALIA (& NEW ZEALAND), Texas Instruments Australia Ltd.: Unit 1A, 9 Byfield St., North Ryde (Svdney), New South Wale, Australia 131, Q + 887-1122; 5th Flaor, 418 St. Kilda Road, Mellyourne, Victoria, Australia 3004, 01+267-4677; 717 Philip Highway, Elizabeth, South Australia 5112, Q8+255-2066.

AUSTRIA, Texas Instruments Ges.m.b.H.: Industriestrabe B/16, A-2345 Brunn/Gebirge, 2236-846210.

BELGIUM, Texas Instruments N.V. Belgium S.A.: Mercure Centre, Rakerstraar 100, Rue de la Fusee, 1130 Brussels, Belgium, 02/720.80.00.

BRAZIL, Texas Instruments Electronicos do Brasil Ltda.: Av. Faria Lima, 2003, 20 0 Andar — Pinheiros, Cep-01451 Sao Paulo, Brazil, 815-6166.

DENMARK, Texas Instruments A/S, Marielundvej 46E, DK-2730 Herley, Denmark, 2 - 91 74 00.

FINLAND, Texas Instruments Finland OY: PL 56, 00510 Helsinki 51, Finland, (90) 7013133.

FRANCE, Texas Instruments France: Headquarters and Prod. Plant, BP 05, 06270 Villeneuve-Loubet, (93) 20-01-01; Parts Office, BP 67 8-10 Avenue Mortane-Saulnier, Fâll41 Veliny-Villacoublay, (1) 946-97-12; Lyon Sales Office, L'Oree D'Ecully, Battemen B, Chemin de Forestiere, 6910 Ecully, Edwinson B, Chemin de Forestiere, 6910 Ecully, Edwinson Color, (88) 12-12-12-06, Remos. 23-25 Rue du Putra Mauger. 51100 Rennes, (99) 79-54-81; Toulouse Sales Office, Le Petipole — 2, Chemin du Pigeonnier de la Cepter. 31100 Toulouse, (61) 44-18-19, Marseille Sales Office, Noilly Paradis — 140 Rue Paradis, 13006 Marseille, (91) 37-25-30.

GERMANY, Texas Instruments Deutschland GmbH: Haggerty-strase I, D-8050 Freising, 68161-801; Kurfuerstendams 195190, D-1000 Berlin 15, 030-8827305; III. Hagen 43/Kibbelstrase, D-4300 Essen, 0201-24250; Frankfurter Allee 6-8, D-6236 Eschbern 1, 68196-48174; Hamburger Strasse II, D-2000 Hamburg 76, 040-2201154, Kirchborstestrases 2, D-3000 Hamburg 15, 0511-048021; Arabellastrases 15, D-8000 Misenchen 81, 089-92341; Maybachstrasse II, D-7302 Oscribilern 2/Nellingen, 0711-1300.

HONG KONG (+ PEOPLES REPUBLIC OF CHINA), Texas Instruments Asia Ltd.: 8th Floor, World Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, Hong Kong, 3+722-1223.

IRELAND, Texas Instruments (Ireland) Limited: 25 St. Stephens Green, Dublin 2, Eire, 01 609222.

ITALY, Texas Instruments Semiconduttori Italia Spa: Viale Delle Scienze, I. (2015 Cittaducale (Reiet), Italy, 0746 694.1; Via Salara Kh. 24 (Talazo: Coman), Mortercondu Scalo Cologno Monesee (Milano), 02 (53)524; Corso Svitzera, 185, 1010 Torton, Linky, 01 (74548; Via.) J. Borzic, 6, 45100 Bologna, Italy, 051 53581; Via Nazareth, 7, 35100 Padowa, Italy, 024 50550; Via Nazareth, 7, 35100 Padowa,

JAPAN, Texas Instruments Asia Ltd.: 4F Aoyama Fuji Bldg., 6-12, Kita Aoyama 3-Chome, Minato-ku, Tokyo, Japan 107, 03-498-2111, Cokas Branch, 5F, Nissho lwai Bldg., 30 Imabsahi, 3-Chome, Higashi-ku, Osaka, Japan 541, 06-204-1881; Nagoya Branch, 7F Danii Toyota West Bldg., 10-27, Meieki 4-Chome, Nakamura-ku, Nagoya, Japan 450, 052-583-8691.

KOREA, Texas Instruments Supply Co.: Room 201, Kwangpxong Bldg., 24-1, Hwayand-Dong, Sung dong-ku, 133 Seoul, Korea, 02 + 464-6274/5.

MEXICO, Texas Instruments de Mexico S.A.: Poniente 116, No. 489, Colonia Vallejo, Mexico, D.F. 02300, 567-9200.

MIDDLE EAST, Texas Instruments: No. 13, 1st Floor Mannai Bldg., Diplomatic Area, Manama, P.O. Box 26335, Bahrain, Arabian Gulf, 973 - 27 46 81.

NETHERLANDS, Texas Instruments Holland B.V., P.O. Box 12995, (Bullewijk) 1100 AZ Amsterdam, Zuid-Oost, Holland (020) 5602911.

NORWAY, Texas Instruments Norway A/S: Kr. Augustsgt. 13, Oslo I, Norway, (2) 20 60 40.

PHILIPPINES, Texas Instruments Asia Ltd.: 14th Floor, Ba-Lepanto Bidg., 8747 Paseo de Roxas, Makati, Metro Manila, Philippines, 882465.

PORTUGAL, Texas Instruments Equipamento Electronico (Portugal), Lda.: Rua Eng. Frederico Ulrich, 2650 Moreira Da Maia, 4470 Maia, Portugal, 2-9481003.

SCOTLAND, Texas Instruments Limited: 126-128 George Street, Edinburgh, Scotland, EH1 2AN, 031 226 2691.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, THAILAND), Texas Instruments Asia Ltd.: P.O. Box 138, Unit #02-08, Block 6, Kolam Ayer Industrial Est., Lorong Bakar Batu, Singapore 1344, Republic of Singapore, 747-2255.

SPAIN, Texas Instruments Espana, S.A.: C/Jose Lazaro Galdiano No. 6, Madrid 16, 1/458.14.58.

SWEDEN, Texas Instruments International Trade Corporation (Sverigefilialen): Box 39103, 10054 Stockholm, Sweden, 08 - 735480

SWITZERLAND, Texas Instruments, Inc. Riedstrasse 6, CH-8953 Dietikon (Zuerich) Switzerland, 1-740 2220.

TAIWAN, Texas Instruments Supply Co.: 10th Floor, Fu-Shing Bldg., 71 Sung-Kiang Road, Taipei, Taiwan, Republic of China, 02 + 521-9321.

UNITED KINGDOM, Texas Instruments Limited: Manton Lane, Bedford, MK41 PA, England, 0234 67466; 186 High Street, Slugh, SLI 1LD, England, 0753 35545; St. James House, Wellington Road North, Stockport, SK4 2RT, England, 051 442 8448.

GENERAL INFORMATION

Alphanumeric Index	1 -:
Glossary	1 -
Functional Index/Selection Guide	1 -
Explanation of Function Tables1	-1:
Parameter Measurement Information	-14

TYPE		RATINGS AND DESCRIP CHARACTERISTICS* INFORMA		TYPE		SS AND ERISTICS*	DESCRIPTIVE INFORMATION	
NUMBERS	TABLE	PAGE	PAGE	NUMBERS	TABLE	PAGE	PAGE	
'HC00	1	2-3	3-2	'HC173	191	2-5	3-80	
'HC02	1	2-3	3-3	'HC174	IV	2-6	3-82	
'HCO4	1	2-3	3-4	'HC175	H	2-4	3-82	
'HC08	ł	2-3	3-5	'HC189	181	2-5	3-84	
'HC10	1	2-3	3-6	'HC190	IV	2-6	3-87	
'HC11	1	2-3	3-7	'HC191	IV ·	2-6	3-87	
'HC14	I	2-3	3-8	'HC192	· IV	2-6	3-91	
'HC20	ı	2-3	3-9	'HC193	١V	2-6	3-91	
'HC21	i	2-3	3-10	'HC194	IV	2-6	3-95	
'HC27	J	2-3	3-11	'HC195	IV	2-6	3-98	
'HC30	l	2-3	3-12	'HC221	IV	2-6	3-100	
'HC32	ı	2-3	3-13	'HC240	III	2-5	3-102	
'HC36	1	2-3	3-14	'HC241	111	2-5	3-102	
'HC42	í٧	2-6	3-15	'HC242	IR	2-5	3-104	
'HC51	ı	2-3	3-17	'HC243	Ш	2-5	3-104	
'HC73	II	2-4	3-18	'HC244	111	2-5	3-106	
'HC74	11	2-4	3-20	'HC245	111	2-5	3-108	
'HC75	11	2-4	3-22	'HC251	131	2-5	3-110	
'HC76	11	2-4	3-24	'HC253	- 111	2-5	3-112	
'HC77	II	2-4	3-26	'HC257	Ш	2-5	3-114	
'HC78	li .	2-4	3-28	'HC258	111	2-5	3-114	
'HC85	IV	2-6	3-30	'HC259	IV	2-6	3-116	
'HC86	ı	2-3	3-32	'HC266	I	2-3	3-118	
'HC107	II	2-4	3-34	'HC273	IV	2-6	3-119	
'HC109	H	2-4	3-36	'HC280	IV	2-6	3-121	
'HC112	II	2-4	3-38	'HC299	III .	2-5	3-123	
'HC113	II	2-4	3-40	'HC323	III	2-5	3-126	
'HC114	П	2-4	3-42	'HC352	111	2-5	3-129	
'HC123	IV	2-6	3-44	'HC353	111	2-5	3-131	
'HC132	1	2-3	3-46	'HC354	III	2-5	3-133	
'HC133	l	2-3	3-47	'HC356	111	2-5	3-136	
'HC137	IV	2-6	3-48	'HC365	III 	2-5	3-139	
'HC138	IV	2-6	3-50	'HC366	111	2-5	3-139	
'HC139	IV	2-6	3-52	'HC367	i II	2-5	3-139	
'HC147	IV	2-6	3-54	'HC368	111	2-5	3-139	
'HC151	111	2-5	3-56	'HC373	111	2-5	3-141	
'HC152	III 	2-5	3-58	'HC374	111	2-5 `	3-143	
'HC153	III	2-5	3-60	'HC377	IV 	2-6	3-145	
'HC154	IV	2-6	3-62	'HC378	IV 	2-6	3-145	
'HC157	III 	2-5	3-64	'HC379	ï	2-4	3-145	
'HC158	III	2-5	3-64	'HC386	 	2-3	3-148	
'HC160	IV	2-6	3-66	'HC390	IV nv	2-6	3-149	
'HC161	IV	2-6	3-66	'HC393	IV.	2-6	3-149	
'HC162	IV	2-6	3-66	'HC423	IV .	2-6	3-152	
'HC163	IV	2-6	3-66	'HC490	. IV	2-6	3-154	
'HC164	IV	2-6	3-72	'HC533	111	2-5	3-156	
'HC165	IV	2-6	3-74	'HC534)))	2-5	3-158	
'HC166	IV	2-6	3-77	'HC563	Ш	2-5	3-160	

^{*}See these pages for absolute maximum ratings, recommended operating conditions, and electrical characteristics.

TEXAS INSTRUMENTS

[†]See these pages for description, pin assignments, timing requirements, and switching characteristics.

ALPHANUMERIC INDEX

		GS AND ERISTICS*	DESCRIPTIVE INFORMATION†	TYPE		GS AND ERISTICS*	DESCRIPTIVE INFORMATION†
NUMBERS	BERS TABLE PAGE PAGE NUMBERS	NUMBERS	TABLE	PAGE	PAGE		
'HC564	III	2-5	3-162	'HC648	Ш	2-5	3-186
'HC573	111	2-5	3-164	'HC651	111	2-5	3-190
'HC574	111	2-5	3-166	'HC652	Ш	2-5	3-190
'HC590	Ш	2-5	3-168	'HC688	iV	2-6	3-194
'HC592	IV	2-6	3-170	'HC4002	1	2-3	3-196
'HC593	111	2-5	3-170	'HC4017	IV	2-6	3-197
'HC594	111	2-5	3-173	'HC4020	iV	2-6	3-199
'HC595	Ш	2-5	3-175	'HC4040	IV	2-6	3-201
'HC597	IV	2-6	3-177	'HC4060	IV	2-6	3-203
'HC598	111	2-5	3-177	'HC4075	1	2-3	3-205
'HC620	Ш	2-5	3-180	'HC4078	1	2-3	3-206
'HC623	Ш	2-5	3-180	'HC4511	IV	2-6	3-207
'HC640	181	2-5	3-183	'HC4514	IV	2-6	3-209
'HC643	ui	2-5	3-183	'HC4515	IV	2-6	3-209
'HC645	III	2-5	3-183	'HC4538	IV	2-6	3-212
'HC646	111	2-5	3-186	'HC4724	IV	2-6	3-214

^{*}See these pages for absolute maximum ratings, recommended operating conditions, and electrical characteristics.

[†]See these pages for description, pin assignments, timing requirements, and switching characteristics.

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY LETTER SYMBOLS)

Cpd Power dissipation capacitance

Used to determine the no-load dynamic power dissipation per logic function (See individual circuit pages): $P_D = C_{old} \ V_{CC^2} \ f + I_{CC} \ V_{CC}$.

f_{max} Maximum clock frequency

The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.

ICC Supply current

The current into* the VCC supply terminal of an integrated circuit.

IJH High-level input current

The current into* an input when a high-level voltage is applied to that input.

IIL Low-level input current

The current into* an input when a low-level voltage is applied to that input.

IOH High-level output current

The current into* an output with input conditions applied that, according to the product specification, will establish a high level at the output.

IOL Low-level output current

The current into* an output with input conditions applied that, according to the product specification, will establish a low level at the output.

Ins Short-circuit output current

The current into* an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

IOZ Off-state (high-impedance-state) output current (of a three-state output)

The current flowing into* an output having three-state capability with input conditions established that, according to the production specification, will establish the high-impedance state at the output.

VIH High-level input voltage

An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.

E: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

^{*} Current out of a terminal is given as a negative value.

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

VIL Low-level input voltage

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables.

NOTE: A minimum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.

VOH High-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, will establish a high level at the output.

VOL Low-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, will establish a low level at the output:

V_{T+} Positive-going threshold level

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_T...

/T... Negative-going threshold level

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, V_{T+}.

a Access time

The time interval between the application of a specified input pulse and the availability of valid signals at an output.

tdis Disable time (of a three-state output)

The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from either of the defined active levels (high or low) to a high-impedance (off) state. (tdis = tpHz or tpt z).

ten Enable time (of a three-state output)

The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low). ($t_{en} = tpzH$ or tpzL).

t_h Hold time

The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.

- NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
 - The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is guaranteed.

tpd Propagation delay time

The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level. (tod = tpHL or tpLH).

tphL Propagation delay time, high-to-low level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

tpHZ Disable time (of a three-state output) from high level

The time interval between the specified reference points on the input and the output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.

Disable time (of a three-state output) from low level tpi7

> The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.

Enable time (of a three-state output) to high level **tPZH**

> The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level.

tPZL Enable time (of a three-state output) to low level

> The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.

ter Sense recovery time

> The time interval needed to switch a memory from a write mode to a read mode and to obtain valid data signals at the output.

Setup time tsu

> The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal.

> NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.

The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is guaranteed.

Pulse duration (width) tw

The time interval between specified reference points on the leading and trailing edges of the pulse waveform.

Texas Instruments

INCORPORATED

1.

FUNCTIONAL INDEX/SELECTION GUIDE

FUNCTIONS	PAGE
AND/NAND Gates and Inverters	1-8
OR/NOR/EXCLUSIVE-OR and A-O-I Gates	1-8
Schmitt-trigger NAND Gates and Inverters	1-8
Bus Drivers and Transceivers with 3-State Outputs	1-8
Dual J-K Flip-flops	1-9
D-Type Flip-flops	1-9
Latches and Registers	1-9
Monostable Multivibrators	1-9
Shift Registers	1-10
Asynchronous Counters	1-10
Synchronous Counters	1-10
Comparators, Parity Generators/Checkers, and Priority Encoders	1-10
Data Selectors/Multiplexers	1-11
Decoders/Demultiplexers	1-11
Display Decoders/Drivers	1-11
Random-Access Memories (RAM's)	

AND, NAND GATES AND INVERTERS

(for Maximum Ratings and Electrical Characteristics See Table I, Page 2-3)

DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
Hex Inverters	'HC04	3-4
Quad 2-Input NAND Gates	'HC00	3-2
Quad 2-Input AND Gates	'HC08	3-5
Triple 3-Input NAND Gates	'HC10	3-6
Triple 3-Input AND Gates	'HC11	3-7
Dual 4-Input NAND Gates	'HC20	3-9
Dual 4-Input AND Gates	'HC21	3-10
8-Input NAND Gate	'HC30	3-12
13-Input NAND Gate	'HC133	3-47

SCHMITT-TRIGGER GATES AND INVERTERS

(for Maximum Ratings and Electrical Characteristics See Table I,

ray	10 2-31	
DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
Hex Inverters	'HC14	3-8
Quad 2-Input NAND Gates	'HC132	3-46

OR, NOR, EXCLUSIVE-OR, AND AND-OR-INVERT GATES

(for Maximum Ratings and Electrical Characteristics See Table I,

Page 2.3)

Page 2-3)							
DESCRIPTION	DEVICE	DESCRIPTIVE					
DESCRIPTION	TYPE	INFORMATION					
Quad 2-Input NOR Gates	'HC02	3-3					
Guad 2-Input NON Gates	'HC36	3-14					
Quad 2-Input OR Gates	'HC32	3-13					
Quad 2-Input EXCLUSIVE-	'HC266	3-118					
NOR Gates	HC200	3-110					
Quad 2-Input EXCLUSIVE-OR	'HC86	3-32					
Gates	'HC386	3-148					
Dual 2-Wide 2-Input A-O-I	'HC51	3-17					
Gates	псэт	3-17					
Triple 3-Input NOR Gates	'HC27	3-11					
Triple 3-Input OR Gates	'HC4075	3-205					
Dual 4-Input NOR Gates	'HC4002	3-196					
8-Input NOR Gate	'HC4078	3-206					

BUS DRIVERS AND TRANSCEIVERS WITH 3-STATE OUTPUTS

(for Maximum Ratings and Electrical Characteristics See Table III, Page 2-5)

DESCRIPTION	OUTPUT DATA	CONTROL INPUTS	DEVICE	DESCRIPTIVE
			TYPE	INFORMATION
Quad Bus Transceivers	Inverting	Independent Enables	'HC242	3-104
Quau bus Hanscelvers	True	for A and B Buses	'HC243	3-104
	True	Common Enables	'HC365	T
Hex Bus Drivers/Receivers	Inverting	Common Enables	'HC366	2 400
nex bus Drivers/ Receivers	True	Commented Franklin	'HC367	3-139
	Inverting	Symmetrical Enables	'HC368	
	Inverting	Symmetrical Enables	'HC240	3-102
Octal Bus Drivers/Receivers	True	Complementary Enables	'HC241	3-102
	True	Symmetrical Enables	'HC244	3-106
	Inverting	Independent Enables	'HC620	2 100
	True	for A and B Buses	'HC623	3-180
Octal Bus Transceivers	Inverting		'HC640	
Octal Bus Transceivers	True and Inverting	Enable and	'HC643	3-183
	T	Direction Control	'HC645	7
	True		'HC245	3-108
	True	Enable and	'HC646	2 106
Octal Bus Transceivers	Inverting	Direction Control	'HC648	3-186
with Registers	Inverting	Independent Enables	'HC651	2 400
	True	for A and B Buses	'HC652	3-190

D-TYPE FLIP-FLOPS

DESCRIPTION	ОИТРИТ	OTHER	DEVICE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE	
DESCRIPTION	CONFIGUATION	FEATURES	TYPE	TABLE	PAGE	INFORMATION	
Dual D-type Flip-flops with	C	Independent	'HC74			3-20	
Preset and Clear	Complementary	Clocks	HC/4	l		3-20	
Quad D-Type Flip-flops with	C	Common Clear	'HC175	"	" 2	2-4	3-82
Common Clocks	Complementary	Output Enable	'HC379			3-145	
Hex D-Type Flip-flops with	0	Common Clear	'HC174		2.0	3-82	
Common Clocks	Q only	Output Enable	'HC378			0.0	2-6
	Q only	Common Clear	'HC273	IV 2-6	3-119		
	Q only	Output Enable	'HC377	1		3-145	
Octal D-type Flip-flops	2 64-4- 0	0	'HC374			3-143	
with Common Clocks	3-State, Q only	Output Control	utput Control 'HC574] - -	2-5	3-166	
	3-State, Q only	ly Output Control —	'HC534			3-158	
	3-State, Clonly		'HC564			3-162	

DUAL J-K FLIP-FLOPS

(for Maximum Ratings and Electrical Characteristics See Table II, Page 2-4)

DESCRIPTION	DEVICE	DESCRIPTIVE	
DESCRIPTION	TYPE	INFORMATION	
Dual J-K Flip-flops with Clear	'HC73	3-18	
Dual 3-K Flip-liops With Clear	'HC107	3-34	
Dual J-K Flip-flops with Preset	'HC113	3-40	
Dual J-K Flip-flops with	'HC78	3-28	
Preset, Common Clock, and			
Common Clear	'HC114	3-42	
Dual J-K Flip-flops with Preset	'HC76	3-24	
and Clear	'HC112	3-38	
Dual J-K Flip-flops with Preset	'HC109	3-36	
and Clear	110109	3-30	

LATCHES AND REGISTERS

DESCRIPTION	OUTPUTS	DEVICE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE
		TYPE	TABLE	PAGE	INFORMATION
0 -10 1	Complementary	'HC75		3-22	
Quad D-type Latches	Q only	'HC77	u ,	2-4	3-26
Quad D-type Registers	Q only, 3-state	'HC173			3-80
	0 1 - 2	'HC373	'HC573 III 2		3-141
0	Q only, 3-state	'HC573		2.5	3-164
Octal D-Type Latches	Ōl 2	'HC533		2-5	3-156
	Q only, 3-state	'HC563			3-160
0.00		'HC4724	IV		3-214
8-Bit Addressable Latches	Q only	'HC259		2-6	3-116

MONOSTABLE MULTIVIBRATORS

(for Maximum Ratings and Electrical Characteristics See Table IV, Page 2-4)

DESCRIPTION	FE	DEVICE TYPE	DESCRIPTIVE INFORMATION	
Dual Monostable Multivibrators			'HC221	3-100
with Direct Clear, Postive			'HC123	3-44
and Negative Inputs, and	Retriggerable	14011	'HC423	3-152
complementary Outputs		Will not trigger from clear	'HC4538	3-212

TEXAS INSTRUMENTS

SH	IFT	RE	GI	STE	-RS

DESCRIPTION	INDUTE	INPUTS OUTPUTS		RATINGS AND CHARACTERISTIC		DESCRIPTIVE	
DESCRIPTION	INPUIS	OUIPUIS	TYPE	TABLE	PAGE	INFORMATION	
4-Bit Shift Register with Clear	J-K/Parallel	Parallel	'HC195			3-98	
4-Bit Bidirectional Shift Registers with Clear	Serial/Parallel	Parallel	'HC194			3-95	
	Serial/Parallel, Clock Inhibit, Shift/Load	2 Serial	'HC165	C165 IV 2-6		3-74	
8-Bit Shift Registers	2 Serial, Clear	Parallel	'HC164			3-72	
-	Serial/Parallel, Clear, Clock Inhibit, Shift/Load	Serial	'HC166			3-77	
8-Bit Shift Registers with	Serial/Parallel	Serial	'HC597			3-177	
Input Registers	Serial/Parallel	3-state Parallel (MultiplexedI/O)	'HC598			3-177	
8-Bit Bidirectional Shift Registers with Storage and	Serial/Parallel	3-state Parallel	'HC299	111	2-5	3-123	
Multiplexed 3-State I/O	Serial/ Farallel		'HC323	•••		3-126	
8-Bit Shift Registers with	Serial	Parallel	'HC594			3-173	
Output Registers	Serial	3-State Parallel	'HC595			3-175	

SYNCHRONOUS COUNTERS

DESCRIPTION	FEATURES		TYPE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE
				TABLE	PAGE	-
Daniel	Async Clear	0	'HC160	,		3-66
Decade	Sync Clear	Sync Load	'HC162			3-66
Decede He (Dece	Clock Inhibit	A 1 d	'HC190			3-87
Decade Up/Down	Async Clear	Async Load	'HC192			3-91
Divide-by-10 Johnson Counter	Async Clear		'HC4017		2-6	3-197
A Dia Dinama	Async Clear		'HC161	IV	2-6	3-66
4-Bit Binary	Sync Clear	Sync Load	'HC163			3-66
4 Bis Bissey Us (Davis	Clock Inhibit	Asses I and	'HC191			3-87
4-Bit Binary Up/Down	Async Clear	- Async Load	'HC193		ľ	3-91
0.03.03			'HC592	•		3-170
8-Bit Binary with Input Registers	Sync Clear	Multiplexed 3-state I/O	'HC593		2-5	3-170
8-Bit Binary with Output Registers	Sync Clear	3-state Outputs	'HC590	(1)	2-5	3-168

ASYNCHRONOUS (RIPPLE CLOCK) COUNTERS (for Maximum Ratings and Electrical Characteristics See Table IV, Page 2-6)

DESCRIPTION	FEATURES	DEVICE TYPE	DESCRIPTIVE INFORMATION
12-Bit Binary Counters		'HC4040	3-201
14-Bit Binary		'HC4020	3-199
Counters -	On-chip Oscillator	'HC4060	3-203
Dual Decade	Bi-quinary or BCD	'HC390	3-149
Counters	Set-to-9 Input	'HC490	3-154
Dual 4-Bit Bi- nary Counters		'HC393	3-149

COMPARATORS, PARITY GENERATORS/ CHECKERS, AND PRIORITY ENCODERS

(for Maximum Ratings and Electrical Characteristics See Table IV, Page 2-6)

DESCRIPTION	DEVICE TYPE	DESCRIPTIVE INFORMATION
4-Bit Magnitude Comparators	'HC85	3-30
8-Bit Magnitude Comparators	'HC688	3-194
9-Bit Odd/Even Parity Generator/Checker	'HC280	3-121
10-Line Decimal to 4-Line BCD Priority Encoder	'HC147	3-54

DATA SELECTORS/MULTIPLEXERS

(for Maximum Ratings and Electrical Characteristics See Table III, Page 2-5)

DESCRIPTION	INPUTS	OUTPUTS	DEVICE TYPE	DESCRIPTIVE INFORMATION
		Inverting	'HC152	3-58
	Enable	Complementary	'HC151	3-56
8-Line-to-1-Line	Enable	Complementary, 3-state	'HC251	3-110
8-Line-to-1-Line	Transparent Latches, Enable	Complementary 3-state	'HC354	3-133
	Registers, Enable	3-state	'HC356	3-136
		True, 3-state	'HC253	3-112
Dual 4-line-to-1-Line	Independent	Inverting, 3-state	'HC353	3-131
Duai 4-iine-to-1-Line	Enables	True	'HC153	3-60
		Inverting	'HC352	3-129
		True	'HC157	3-64
Quad 2-Line-to-1-Line	Common Enable	Inverting	'HC158	3-64
	Common Enable	True, 3-state	'HC257	3-114
	1	Inverting, 3-state	'HC258	3-114

DECODERS/DEMULTIPLEXERS

(for Maximum Ratings and Electrical Characteristics See Table IV, Page 2-6)

DEVICE DESCRIPTIVE DESCRIPTION **FEATURES** TYPE INFORMATION 2 Enables 'HC154 3-62 4-Line-to-16-Line Input latches, 'HC4514 3-209 Output Enable 'HC4515 3-209 4-Line-to-10-Line. HC42 3-15 BCD-to-Decimal 3 Enables 'HC138 3-50 3-Line-to-8-Line 3 Enables, Ad-'HC137 3-48 dress Latches

'HC139

3-52

Independent

Enables

Dual 2-Line-

to-4-Line

DISPLAY DECODERS/DRIVERS

DESCRIPTION	DEVICE TYPE	RATING CHARACT		DESCRIPTIVE INFORMATION	
		TABLE	PAGE	iidi Olimarioit	
BCD-to-7-Segment Decoders/Drivers	'HC4511	N/	2-6	3-207	
with Input Latches	HC4511	IV	2-0	3-207	

RANDOM ACCESS MEMORIES

DESCRIPTION	ORGANIZATION	FEATURES	DEVICE	RATINGS AND CHARACTERISTICS		DESCRIPTIVE
			ITFE	TABLE	PAGE	IN ON MATION
64-Bit	16 x 4	3-state Outputs	'HC189	HI	2-5	3-84

EXPLANATION OF FUNCTION TABLES

The following symbols are now being used in function tables on TI data sheets:

H = high level (steady state)

= low level (steady state)

† = transition from low to high level

= transition from high to low level

X = irrelevant (any input, including transitions)

Z = off (high-impedance) state of a 3-state output

a..h = the level of steady-state inputs at inputs A through H respectively

Qo = level of Q before the indicated steady-state input conditions were established

 \overline{Q}_{Q} = complement of Q_{Q} or level of \overline{Q} before the indicated steady-state input conditions were established

 Q_n = level of Q before the most recent active transition indicated by \dagger or \downarrow

= one high-level pulse = one low-level pulse

TOGGLE = each output changes to the complement of its previous level on each active transition indicated by † or ↓.

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

Ш

EXPLANATION OF FUNCTION TABLES

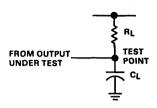
Among the most complex function tables in this book are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4-bit bidirectional universal shift register, e.g., type SN74HC194.

FUNCTION TARIF

INPUTS								OUT	PUTS				
01540	MODE		OI OOK	SE	SERIAL		PARALLEL		0.	0-	0-		
CLEAR	S1	\$0	CLOCK	LEFT	RIGHT	A	В	С	D	Q _A	αВ	αc	σD
L	X	Х	X	×	X	X	X	Х	X	L	L	L	L
н	×	Х	L	×	×	х	X	х	Х	QAO	Q_{BO}	a_{co}	Q_{DO}
н	н	Н	1	×	X	a	b	С	d	а	b	С	d
Н	L	Н	t	×	н	х	X	Х	х	Н	Q_{An}	Q_{Bn}	Q_{Cn}
н	L	Н	1	×	L	х	Х	Х	Х	L	Q_{An}	Q_{Bn}	Q_{Cn}
Н	н	L	1	н	X	х	Х	Х	Х	α_{Bn}	Q_{Cn}	α_{Dn}	н
Н	н	L	1	L	x	х	Х	Х	Х	QBn	Q_{Cn}	Q_{Dn}	L
н	L	L	x	x	х	х	х	х	Х	QAD	QBn	QCn	QDO

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs will occur while the clock remains high or on the high-to-low transition of the clock,

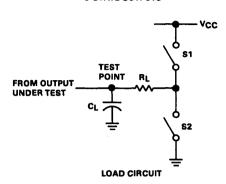

The third line of the table represents synchronous parallel loading of the register and says that if S1 and S0 are both high then, without regard to the serial input, the data entered at A will be at output Q_A , data entered at B will be at Q_B , and so forth, following a low-to-high clock transition.

The fourth and fifth lines represent the loading of high- and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_B is now at Q_B , the previous levels of Q_B and Q_C are now at Qc and Qp respectively, and the data previously at Qp is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is low and S0 is high and the levels at inputs A through D have no effect.

The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_B is now at Q_A , the previous levels of Q_C and Q_D are now at QB and QC, respectively, and the data previously at QA is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is high and S0 is low and the levels at inputs A through D have no effect.

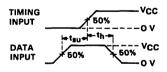
The last line shows that as long as both mode inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.

TOTEM POLE OUTPUTS

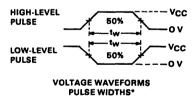

	PARAMETER	R _L ‡	CL†‡
tpLH or	Standard outputs	∞	50 pF
tPHL	High-current outputs §	•	150 pF

[†]C_L includes probe and test fixture capacitance.

‡These values apply only when alternative values (R_I = 2 k Ω , C_I = 15 pF) are not specified in the column heading in switching characteristics.

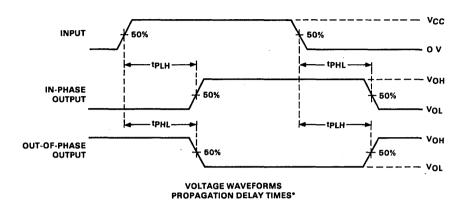

§High-current outputs are indicated by the ▷ in the logic symbol.

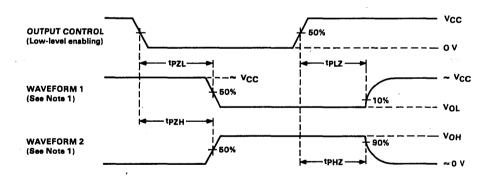
3-STATE OUTPUTS



PARAMETER	R _L ‡	CL†‡	S ₁	S ₂
tPZH	1 κΩ	F - F	OPEN	CLOSED
tPZL	- ' K.	5 pF	CLOSED	OPEN
tPHZ	1.10	50 -F	OPEN	CLOSED
tPLZ	1 kΩ 50 pF		CLOSED	OPEN
tPLH or tPHL		75 pF	CLOSED	OPEN

[†]C_L includes probe and test fixture capacitance. These values apply only when alternative values (R_L = 667Ω, C_L = 45 pF) are not specified in the column heading in switching characteristics.




VOLTAGE WAVEFORMS SETUP AND HOLD TIMES*

^{*} In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{out} \approx 50\Omega$, $t_f = 6$ ns. $t_f = 6$ ns.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS*

Note: 1. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
 All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_{out} ≈ 50 Ω, t_f = 6 ns, t_f = 6 ns.

THIS PAGE INTENTIONALLY LEFT BLANK

Ratings and Characteristics

ATTENTION

These devices contain circuits to protect the inputs and outputs against damage due to high static voltages or electrostatic fields; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

Unused inputs must always be connected to an appropriate logic voltage level, preferably either $V_{\hbox{\footnotesize{CC}}}$ or ground.

SPECIFICATIONS FOR SSI CIRCUITS

D2684, DECEMBER 1982

absolute maximum ratings over operating free-air temperature ranget

Supply voltage range, VCC	0.5 to 7 V
Input diode current, $I_{IK}(V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V})$	±20 mA
Output diode current, $I_{OK}(V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V})$	±20 mA
Continuous output current (-0.5 V < V _O < V _{CC} + 0.5 V)	±25 mA
Continuous current through VCC or GND pins	±50 mA
Lead temperature 1,6 mm (1/16 in) from case: J package for 60 seconds	300°C
N package for 10 seconds	260°C
Storage temperature range	65°C to 150°C
resses beyond those listed under "Absolute Maximum Ratings" may cause permanent dama	ge to the device. These

†Str are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54H	C'		SN74H	2'	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage		2	5	6	2	5	6	V
	V _{CC} = 4.5 V	3.15			3.15			
VIH High-level input voltage	V _{CC} = 5 V	3.50			3.50			V
	V _{CC} = 5.5 V	3.85			3.85			
	V _{CC} = 4.5 V	0		0.9	0		0.9	
V _{IL} Low-level input voltage	V _{CC} = 5 V	0		1.0	0		1.0	V
	V _{CC} = 5.5 V	0		1.1	0		1.1	
V _I Input voltage		-0.5		V _{CC} + 0.5	-0.5		V _{CC} + 0.5	٧
VO Output voltage		-0.5		V _{CC} + 0.5	-0.5		V _{CC} + 0.5	V
IOH High-level output current				-4			-4	mA
IOL Low-level output current				3.4			4	mA
Input transition (rise and fa	II) times	0		500	0		500	
tt (except Schmitt-trigger inp	uts)	0		500	٥		500	ns
TA Operating free-air tempera	ture	-55		125	-40		85	°C

electrical characteristics, VCC = 5 V ± 10%,

over recommended operating free-air temperature range (unless otherwise noted)

			T	= 25°C		SN541	HC'	SN741	HC'	
PARAMETER	TEST CONDITIONS		MIN	TYP‡	MAX	MIN	MAX	MIN	MAX	UNIT
	V _I = V _{IH} or V _{IL} , ' I _{OH} = -4mA	V _{CC} = 4.5 V,	3.86			3.56		3.70	-	
• ОН	V _I = V _{IH} or V _{IL} , l _{OH} = -200 μA		V _{CC} −0.2	Vcc		V _{CC} -0.2		V _{CC} -0.2		V
	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -20 \mu A$		V _{CC} -0.1	vcc		V _{CC} -0.1		V _{CC} -0.1		
	VI = VIH or VIL	IOL = 3.4 mA			0.27		0.4			
1.		IOL = 4 mA			0.32				0.4	V
V _{OL}	$V_I = V_{IH}$ or V_{IL} . $I_{OL} = 20 \mu A$			0	0.1		0.1		0.1	
$V_{T+} - V_{T-}\P$			0.4	1		0.4		0.4		V
l _l	VI = VCC or 0 V				±0.1		±1		±1	μΑ
Icc	VI = VCC or 0 V.	10 = 0			2		40		20	μΑ
Ci				3	10		10		10	pF

All typical values are at V_{CC} = 5 V.

This parameter applies only to Schmitt-trigger inputs.

switching characteristics

See individual circuit pages.

absolute maximum ratings over operating free-air temperature ranget

Supply voltage range, VCC	–0.5 to 7 V
Input diode current, $I_{IK}(V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V})$	±20 mA
Output diode current, $I_{OK}(V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V})$	±20 mA
Continuous output current (-0.5 V < V _O < V _{CC} + 0.5 V)	±25 mA
Continuous current through VCC or GND pins	±50 mA
Lead temperature 1,6 mm (1/16 in) from case: J package for 60 seconds	300°C
N package for 10 seconds	260°C
Storage temperature range	65°C to 150°C

†Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54H	C'		SN74HC	;	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage		2	5	6	2	5	6	٧
	V _{CC} = 4.5 V	3.15			3.15			
VIH High-level input voltage	V _{CC} = 5 V	3.50			3.50			٧
	V _{CC} = 5.5 V	3.85			3.85			
	V _{CC} = 4.5 V	0		0.9	0		0.9	v
VIL Low-level input voltage	V _{CC} = 5 V	0		1.0	0		1.0	
/IL Low-level input voltage	V _{CC} = 5.5 V	0		1.1	0		1.1	
V _I Input voltage		-0.5		V _{CC} + 0.5	-0.5		V _{CC} + 0.5	٧
Vo Output voltage		-0.5		V _{CC} + 0.5	-0.5		V _{CC} + 0.5	٧
IOH High-level output current				-4			-4	mA
IOL Low-level output current	OL Low-level output current			3.4			4	mA
tt Input transition (rise and fal	t Input transition (rise and fall) times			500	0		500	ns
TA Operating free-air temperat				125	-40		85	°C

electrical characteristics, V_{CC} = 5 V \pm 10%, over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS		T	= 25°C		SN541	1C'	SN74HC'		
PARAMETER			MIN	TYP‡	MAX	MIN	MAX	MIN	MAX	UNIT
∨он	V _i = V _{IH} or V _{IL} , V I _{OH} = -4mA	V _{CC} = 4.5 V,	3.86			3.56		3.70		
	V _I = V _{IH} or V _{IL} , I _{OH} = -200 μA		V _{CC} -0.2	Vcc		V _{CC} ~0.2		V _{CC} -0.2		v
	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -20 \mu A$		V _{CC} -0.1	Vcc		V _{CC} -0.1		V _{CC} -0.1		
	VI = VIH or VIL	IOL = 3.4 mA			0.27		0.4			
		IOL = 4 mA			0.32				0.4	١.,
VOL	I _{OL} = 4 mA		0.1	\						
l _l	VI = VCC or 0 V				±0.1		±1		±1	μΑ
¹cc	VI = VCC or 0 V,	I _O = 0			4		80		40	μА
Ci				3	10		10		10	pF

‡All typical values are at V_{CC} = 5 V.

switching characteristics

See individual circuit pages.

HIGH-SPEED CMOS LOGIC

TABLE III SPECIFICATIONS FOR CIRCUITS WITH HIGH-CURRENT OUTPUTS

D2684, DECEMBER 1982

absolute maximum ratings over operating free-air temperature range†

Supply voltage range, VCC	0.5 to 7 V
Input diode current, $I_{K}(V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V})$	±20 mA
Output diode current, $I_{OK}(V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V})$	
Continuous output current (-0.5 V < VO < VCC + 0.5 V)	±25 mA
Continuous current through VCC or GND pins	±50 mA
Lead temperature 1,6 mm (1/16 in) from case: J package for 60 seconds	
N package for 10 seconds	
Storage temperature range	65°C to 150°C

†Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		[SN54H	C,		SN74H	C'	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage		2	. 5	6	2	5	6	٧
	V _{CC} = 4.5 V	3.15			3.15			
VIH High-level input voltage	V _{CC} = 5 V	3.50			3.50			٧
	V _{CC} = 5.5 V	3.85			3.85			
	V _{CC} = 4.5 V	0		0.9	0		0.9	
VIL Low-level input voltage	V _{CC} = 5 V	0		1.0	0		1.0	٧
	V _{CC} = 5.5 V	0		1.1	0		1.1	
V _I Input voltage	•	-0.5		V _{CC} + 0.5	-0.5		V _{CC} + 0.5	٧
Vo Output voltage		-0.5		V _{CC} + 0.5	-0.5		V _{CC} + 0.5	٧
In Wish Involved a service	High-current outputs ¶			-6		-	-6	mA
IOH High-level output current	Standard outputs			-3.4			-4	mA
In the second se	High-current outputs ¶			5.1	-		6	mA
OL Low-level output current	Standard outputs			3.4		4		mA
tt Input transition (rise and fall) times	0		500	0		500	ns
TA Operating free-air temperatu	ire	-55		125	-40		85	°C

¶High-current outputs are indicated by the ▷ in the logic symbol. All 3-state outputs are high-current outputs.

electrical characteristics, V_{CC} = 5 V ± 10%,

over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS		T _A	= 25°C		SN541	HC'	SN741	IC'	
PARAMETER			MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
V _I = V _{IH} or V _{IL} , V _{CC} = 4.5 I _{OH} = -4mA		C = 4.5 V,	3.86			3.56		3.70		
VOH	V _I = V _{IH} or V _{IL} , I _{OH} = -200 μA		V _{CC} -0.2	vcc		V _{CC} -0.2		V _{CC} -0.2		_ v
	10H - 20 PA	V _{CC} -0.1								
	VI = VIH or VIL	54HC'			0.27		0.4	1		
	IOL = max rec.	74HC'			0.32				0.4	v
VOL	V _I = V _{IH} or V _{IL} , I _{OL} = 20 μA			0	0.1		0.1		0.1]
loz§	VO = VCC or 0 V, V	= VIH or VIL			±0.5		±5		±5	μΑ
- 4	V _I = V _{CC} or 0 V				±0.1		±1		±1	μΑ
lcc	VI = VCC or 0 V, IC	V _I = V _{CC} or 0 V, I _O = 0			8		160		80	μА
Cį	(except transceive	r I/O pins)		3	10		10	1	10	pF

 \ddagger All typical values are at $V_{CC} = 5 \text{ V}$.

§This parameter, IOZ, the high impedance-state output current, applies only for three-state outputs and transceiver I/O pins.

switching characteristics

See individual circuit pages.

absolute maximum ratings over operating free-air temperature range†

Supply voltage range, VCC	0.5 to 7 V
Input diode current, $I_{JK}(V_{J} < -0.5 \text{ V or } V_{J} > V_{CC} + 0.5 \text{ V})$	±20 mA
Output diode current, $I_{OK}(V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V})$	±20 mA
Continuous output current (-0.5 V < V _O < V _{CC} + 0.5 V)	±25 mA
Continuous current through VCC or GND pins	±50 mA
Lead temperature 1,6 mm (1/16 in) from case: J package for 60 seconds	300°C
N package for 10 seconds	260°C
Storage temperature range	65°C to 150°C
tresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to	the device. These
re stress ratings only and functional operation of the device at these or any other conditions beyo	nd those indicated

†Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54H	C'		SN74HC'		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage		2	5	6	2	5	6	V
	V _{CC} = 4.5 V	3.15			3.15			
VIH High-level input voltage	V _{CC} = 5 V	3.50			3.50			v
	V _{CC} = 5.5 V	3.85			3.85			
	V _{CC} = 4.5 V	0		0.9	0		0.9	٧
VIL Low-level input voltage	V _{CC} = 5 V	0		1.0	0		1.0	
	V _{CC} = 5.5 V	0		1,1	0		1.1	
V _I Input voltage		-0.5		V _{CC} + 0.5	-0.5	\	CC + 0.5	٧
VO Output voltage		-0.5		V _{CC} + 0.5	-0.5	\	CC + 0.5	٧
IOH High-level output current				-4			-4	mA
IOL Low-level output current				3.4			4	mA
Input transition (rise and fa (except Schmitt-trigger input	•	0		500	0		500	ns
TA Operating free-air temperat	ture	-55		125	-40		85	°C

electrical characteristics, V_{CC} = 5 V \pm 10%, over recommended operating free-air temperature range (unless otherwise noted)

			T,	= 25°C		SN541	IC'	SN74HC'		
PARAMETER	TEST CONDITIONS		MIN	TYP‡	MAX	MIN	MAX	MIN	MAX	UNIT
	V _I = V _{IH} or V _{IL} , V _{CC} = 4.5 V, I _{OH} = -4mA V _I = V _{IH} or V _{IL} , I _{OH} = -200 µA		3.86			3.56		3.70		
V _{ОН}			V _{CC} -0.2	Vcc		V _{CC} -0.2		V _{CC} -0.2		v
	$V_{I} = V_{IH} \text{ or } V_{IL},$ $I_{OH} = -20 \mu\text{A}$ $V_{CC} = 0.1$ V_{CC} $V_{CC} = 0.1$		V _{CC} -0.1							
	VI = VIH or VIL IOL =	IOL = 3.4 mA			0.27	Ī	0.4			
		IOL = 4 mA			0.32	T			0.4	v
VOL	V _I = V _{IH} or V _{IL} , I _{OL} = 20 μA			0	0.1		0.1		0.1	"
$V_{T+} - V_{T-}\P$			0.4	1		0.4		0.4		V
lj	$V_I = V_{CC}$ or 0 V,	I ₀ = 0			±0.1		±1		±1	μΑ
¹cc	V _I = V _{CC} or 0 V				8		160		80	μΑ
Ci			I	3	10		10		10	pF

‡All typical values are at V_{CC} = 5 V.

This parameter applies only to Schmitt-trigger inputs.

switching characteristics

See individual circuit pages.

3

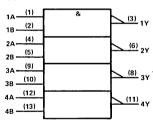
Descriptive Information

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

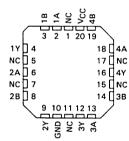
description

These devices contain four independent 2-input NAND gates. They perform the boolean functions $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The SN54HC00 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC00 is characterized for operation from -40°C to 85°C.


SN54HC00 . . . J PACKAGE SN74HC00 . . . J OR N PACKAGE (TOP VIEW)

1A 🗌	1	\cup_{14}	□ vcc
1B 🗌	2	13	☐ 4B
1Y 🗌	3	12	☐ 4A
2A 🗌	4	11	4Y
2B 🗌	5	10] 3В
2Y 🗌	6	9] 3A
GND 🗌	7	8] 3Y


FUNCTION TABLE (each gate)

	INP	UTS	ОИТРИТ
	Α	В	ΥΥ
	н	н	L
1	L	x	н
	Х	L I	н

logic symbol

SN54HC00 . . . FH OR FK PACKAGE SN74HC00 . . . FH OR FN PACKAGE (TOP VIEW)

NC — No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics.

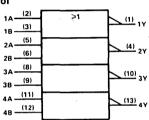
See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		= 4.5 V to 5.5 v 50 pF	v.	UNIT
'Anameren	(INPUT)	INPUT) (OUTPUT)	TA = 25°C	T _A = 25°C	SN54HC00	SN54HC00 SN74HC00	
			MIN TYP MAX	MIN TYP MA	X MIN MAX	MIN MAX	x
tPLH	A or B						ns
tPHL		,					
C _{pd}	Power di	Power dissipation capacitance per gate			A = 25°C	pF	typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

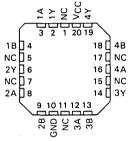

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input NOR gates. They perform the boolean functions $Y = \overline{A + B}$ or $Y = \overline{A \cdot B}$ in positive logic.

The SN54HC02 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC02 is characterized for operation from -40°C to 85°C.

logic symbol



Pin numbers shown are for J and N packages.

SN54HC02 . . . J PACKAGE SN74HC02 . . . J OR N PACKAGE (TOP VIEW)

1Y[1	J14∏V _{CC}	
1 A 🗀	2	13 4Y	
1B[3	12 🗌 4B	
2Y[4	11 🗌 4A	
2A[5	10 🛚 3Y	
2B [6	9 🗍 3B	
GND[7	8 ∏ 3A	

SN54HC02 . . . FH OR FK PACKAGE SN74HC02 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE (each gate)

	INP	UTS	ОИТРИТ
ı	Α	В	Y
1	Н	Х	L
	Х	Н	L
	L	L	н

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

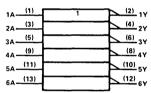
PARAMETER FROM (INPUT)	FROM	то	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC}	= 4.5 V to 5.5 50 pF	v,	UNIT					
	(OUTPUT)) T _A = 25°C	TA = 25°C	SN54HC02 SN74HC02								
		İ		MIN TYP MA				I N	MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX
[†] PLH .	4 . 5						ns					
tPHL	AUIB	A or B Y					1115					
C _{pd}	Power dis	Power dissipation capacitance per gate		No load, TA	= 25°C	pF ty	/P					

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

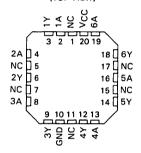

These devices contain six independent inverters. They perform the boolean function $Y = \overline{A}$.

The SN54HC04 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC04 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each inverter)

INPUT A	ОПТРПТ У
Н	L
L	н

logic symbol



Pin numbers shown are for J and N packages.

SN54HC04 . . . J PACKAGE SN74HC04 . . . J OR N PACKAGE (TOP VIEW)

> 1A 1 14 VCC 1Y 2 13 6A 2A 3 12 6Y 2Y 4 11 5A 3A 5 10 5Y 3Y 6 9 4A GND 7 8 4Y

SN54HC04 ... FH OR FK PACKAGE SN74HC04 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FROM (INPUT)		TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ			50 pF	/ to 5.5			UNIT							
	(OUTPUT)		(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	T _A = 25°C	TA = 2	5°C	SN54HC04		SN74HC04	
				MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX							
tPLH .	^	.,															
tPHL	Α									ns							
Cond	Power diss	Power dissipation capacitance per inverter		No i	nad TA	= 25°C		T	pF 1	VD							

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

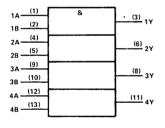
PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

3-4

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

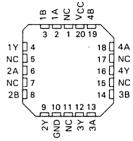
description


These devices contain four independent 2-input AND gates. They perform the boolean functions $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The SN54HC08 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC08 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Y
H	Н	Н
L	Х	L
Х	L	L


logic symbol

SN54HC08...J PACKAGE SN74HC08...J OR N PACKAGE (TOP VIEW)

_		
1A[]1	U 14	□vcc
1B 🗌 2	13]4B
1Y 🛮 3	12	□4A
2A 🛮 4	11	□4Y
2B 🗌 5	10] 3B
2Y 🛮 6	9]3A
GND∏7	8	73 Y

SN54HC08 ... FH OR FK PACKAGE SN74HC08 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	C _L = 15 pF, C _L = 50 pF			
, '	(1111 017)	TA = 25°C MIN TYP MAX	TA = 25°C MIN TYP MAX	4	SN74HC08 MIN MAX		
^t PLH	A or B	V					ns
tPHL					l	ļ	
C _{pd}	Power diss	Power dissipation capacitance per gate			= 25°C	pF ty	ďρ

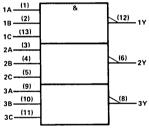
NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

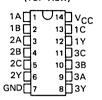
This document contains information on a product under development. Texas Instru-

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

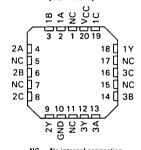
description


These devices contain three independent 3-input NAND gates. They perform the boolean functions $Y = \overline{A \cdot B \cdot C}$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic.

The SN54HC10 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC10 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE (each gate)

	NPUTS	OUTPUT	
Α	В	С	Y
Н	Н	Н	L
L	X	Х	н
x	L	Х	'nн
х	Х	L	н


logic symbol

SN54HC10 . . . J PACKAGE SN74HC10 . . . J OR N PACKAGE (TOP VIEW)

SN54HC10 . . . FH OR FK PACKAGE SN74HC10 . . . FH OR FN PACKAGE (TOP VIEW)

NC — No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

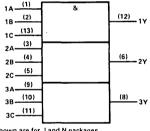
PARAMETER	FROM (INPUT)	ТО (ОИТРИТ)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C		UNIT						
				T _A = 25°C			SN54HC10 SN74			HC10	
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
[†] PLH	A, B, or C	Y	1								
tPHL	A, B, 01 C										ns
Cd	Power dissination canacitance per gate				No load TA = 25°C pF1					nE tv	'n

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

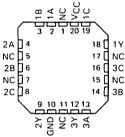
description


These devices contain three independent 3-input AND gates. They perform the boolean functions $Y = A \cdot B \cdot C$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic.

The SN54HC11 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC11 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each gate)

	NPUTS	OUTPUT	
Α	В	С	Y
Н	Н	Н	Н
L	Х	Х	L
х	L	Х	L
х	×	L	L


logic symbol

SN54HC11 ... J PACKAGE SN74HC11 ... J OR N PACKAGE (TOP VIEW)

		_	_	_
1A[]	1	U	14	□ Vcc
1B 🛚	2		13]] 1C
2A 🗀	3		12] 1Y
2B 🗍	4		11] зс
2C	5		10	□ зв
2 Y 🗍	6		9	ЗА
Бир	7		8	13Y

SN54HC11 ... FH OR FK PACKAGE SN74HC11 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	ТО (ОUТРUТ)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,			V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF						
			T _A =	T,	T _A = 25°C		SN54HC11		SN74HC11			
			MIN	TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A, B, or C	Y										ns
^t PHL												118
Cnd	Power dissipation capacitance per gate				T	No load, T _A = 25°C					pF	typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

This document contains information on a product under development. Texas Instru-

ments reserves the right to change or dis-

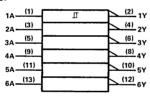
continue this product without notice.

TEXAS INSTRUMENTS

3

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

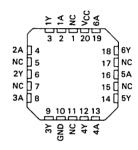
description


These Schmitt-trigger devices contain six independent inverters. They perform the boolean function Y = A.

The SN54HC14 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC14 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each inverter)

INPUT	OUTPUT
A	Y
H	L
L	н


logic symbol

SN54HC14 . . . J PACKAGE SN74HC14 . . . J OR N PACKAGE (TOP VIEW)

SN54HC14...FH OR FK PACKAGE SN74HC14...FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

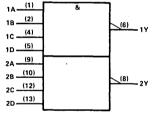
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF					
	,	,,	T _A = 25°C	T _A = 25°C	A = 25°C SN54HC14		 		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX			
†PLH	Α	Y					ns		
tPHL	Α	Y			1		ns		
C-4	Power diss	ination canacitano	e ner inverter	No load TA = 25°C pF					

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

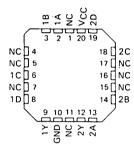
description


These devices contain two independent 4-input NAND gates. They perform the boolean functions $Y = \overline{A \cdot B \cdot C \cdot D}$ or $Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}$ in positive logic.

The SN54HC20 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC20 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each gate)

	INP		OUTPUT	
Α	В	С	D	Υ
Н	Н	Н	Н	Ĺ
L	Х	Х	Х	Н
X	L	Х	Х	Н
Х	Х	L	X	н
Х	Х	X	L	lн


logic symbol

SN54HC20 . . . J PACKAGE SN74HC20 . . . J OR N PACKAGE (TOP VIEW)

1A 1 1 14 VCC
1B 2 13 2D
NC 3 12 2C
1C 4 11 NC
1D 5 10 2B
1Y 6 9 2A
GND 7 8 2Y

SN54HC20 ... FH OR FK PACKAGE SN74HC20 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _C ,	UNIT		
	(INPUT)	(OUTPUT)	T _A = 25°C	T _A = 25°C	SN54HC20	SN74HC20	
			MIN TYP MA	MIN TYP MA	X MIN MAX	MIN MAX	
tPLH	A, B, C, or D						ns
tPHL	A, B, C, 6r D						115
C _{pd}	Power dissi	pation capacitano	No load, T	p			

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

TYPES SN54HC21, SN74HC21 DUAL 4-INPUT POSITIVE-AND GATES

D2684, DECEMBER 1982

 Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

 Dependable Texas Instruments Quality and Reliability

description

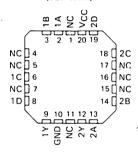
These devices contain two independent 4-input AND gates. They perform the boolean functions $Y = A \cdot B \cdot C \cdot D$ or $Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}$ in positive logic.

The SN54HC21 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC21 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each gate)

	INP	OUTPUT		
Α	В	С	Y	
Н	Н	Н	Н	н
L	Х	Х	X	L
x	L	Х	X	· L
X	X	L	X	L
х	Х	X	L	L

logic symbol



Pin numbers shown are for J and N packages.

SN54HC21 . . . J PACKAGE SN74HC21 . . . J OR N PACKAGE (TOP VIEW)

1A 🛮 1	U14 VCC
1B 🛮 2	13 🗍 2 D
ис∐з	12 2C
1C 🛮 ₄	11 🗌 NC
1D 🛮 5	10 🔲 2B
1 Y 🛮 6	9 🗌 2 A
GND∏7	8∏ 2Y

SN54HC21 ... FH OR FK PACKAGE SN74HC21 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		= 4.5 V to 5.5 50 pF	5 V,	UNIT
	•	,	T _A = 25°C	T _A = 25°C	SN54HC21 SN74HC2		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH .	A, B, C, or D	V					
tPHL	A, B, C, or D	1					ns
C _{pd}	Power dis	sipation capacitar	No load, TA	pF ty	p		

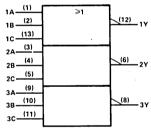
NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

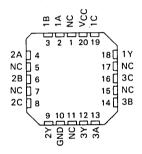
description


These devices contain three independent 3-input NOR gates. They perform the boolean functions $Y = \overline{A} + \overline{B} + \overline{C}$ or $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ in positive logic.

The SN54HC27 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC27 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each gate)

	NPUT	OUTPUT	
Α	В	Y	
Н	X	X	L
Х	н	Х	L
Х	Х	Н	L
L	L	L	н


logic symbol

SN54HC27 . . . J PACKAGE SN74HC27 . . . J OR N PACKAGE (TOP VIEW)

1A 🛮 1	U 14	□vcc
1B 🖸 2	13]1C
2A □3	12] 1Y
28 🛮 4	11	∃зc
2C 🗆 5	10	□ 3B
2Y	. 9	□за
GND∏7	8]3Y

SN54HC27 ... FH OR FK PACKAGE SN74HC27 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER:	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	5 pF, C _L = 50 pF			
	(1141 01)	(001.01)	T _A = 25°C	1A = 25°C	5N54HC27	5N/4HC2/	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH	A, B, or C	v			1		
tPHL	A, B, or C	1					ns
C _{pd}	Power dis	sipation capacitar	nce per gate	No load, TA	'p		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

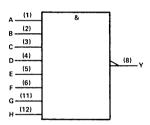
This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- **Dependable Texas Instruments Quality** and Reliability

description

These devices contain a single 8-input NAND gate and perform the following boolean functions in positive logic:

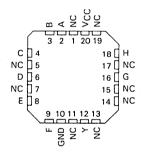

$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$$

or

$$Y = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$$

The SN54HC30 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC30 is characterized for operation from -40°C to 85°C.

logic symbol



Pin numbers shown are for J and N packages.

SN54HC30 . . . J PACKAGE SN74HC30 . . . J OR N PACKAGE (TOP VIEW)

SN54HC30 . . . FH OR FK PACKAGE SN74HC30 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

INPUTS A THRU H	OUTPUT Y
All inputs H	L
One or more inputs L	н

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF T _A = 25°C SN54HC30 SN74HC30						UNIT		
	(114701) (00	(OUTPUT)			T _A = 25°C			SN54HC30		SN/4HC30			
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	}
tPLH .	A thru H	V											ns
^t PHL		1											115
C _{pd}	Power dissipation capacitance per gate			No load, TA = 25°C pF ty				pF ty	p				

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

HIGH-SPEED CMOS LOGIC

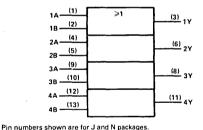
TYPES SN54HC32, SN74HC32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

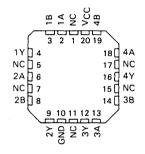
These devices contain four independent 2-input OR gates. They perform the boolean functions Y = A + B or $Y = \overline{A \cdot B}$ in positive logic.


The SN54HC32 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC32 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


(each gate)

Γ	INP	UTS	ОИТРИТ
Γ	Α	В	} Y
Γ	Н	X	н
l	Х	Н	jн
l	L	L	L


logic symbol

SN54HC32 ... J PACKAGE SN74HC32 ... J OR N PACKAGE (TOP VIEW)

SN54HC32 . . . FH OR FK PACKAGE SN74HC32 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

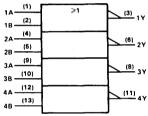
See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO		C _L R _L	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							UNIT
	(INPUT)	(OUTPUT)	T _A = 25°C		T _A = 25°C			SN54HC32		SN74HC32			
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	V											ns
tPHL	A 01 B	<u> </u>											115
C _{pd}	Power dis	Power dissipation capacitance per gate				No load, T _A = 25°C pF ty							

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

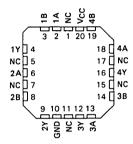

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain four independent 2-input NOR gates. They perform the boolean functions $Y = \overline{A + B}$ or $Y = \overline{A \cdot B}$ in positive logic.

The SN54HC36 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC36 is characterized for operation from -40°C to 85°C.

logic symbol



Pin numbers shown are for J and N packages.

SN54HC36...J PACKAGE SN74HC36...J OR N PACKAGE (TOP VIEW)

SN54HC36 ... FH OR FK PACKAGE SN74HC36 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Y
Н	X	L
X	Н	L
L	L	н

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO		V _{CC} = 5 V, C _L = 16 pF, R _L = 2 kΩ		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							UNIT
TANAMETER	(INPUT)	(OUTPUT)	TA = 25°C		· T _A = 25°C		SN54HC36		SN74HC36			
			MIN TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B											ns
tPHL	AUIB											113
C _{pd}	Power di	Power dissipation capacitance per gate			No load, TA = 25°C						pl	F typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3-14 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

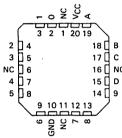
-3

- Full Decoding of Input Logic
- All Outputs Are Off for Invalid BCD Conditions
- Also for Application as 3-Line to 8-Line Decoders
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

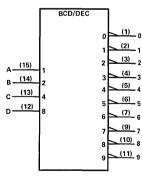
These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all inputs remain off for all invalid input conditions.

The SN54HC42 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC42 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE

NO.		INP	UTS	;				C	UTI	PUT	S			
NO.	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Η
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	н
2	L	L	Н	L	н	Н	L	Н	H.	Н	Н	Н	Н	Н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	н
4	L	Н	L	L	н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
7	L	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	L	Н	н
8	Н	L	L	L	н	Н	Н	Н	Н	Н	Н	Н	L	н
9	Н	L	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
۵	Н	L	н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	н
ALI	Н	Н	L	L	н	Н	Н	Н	Н	Н	Н	Н	Н	н
INVALID	н	Н.	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	н
_	н	Н	Н	L	н	Н	Н	Н	Н	Н	Н	Н	Н	н
	н	Н	н	Н	н	Н	н	н	Н	Н	Н	Н	Н	н

SN54HC42...J PACKAGE SN74HC42...J OR N PACKAGE (TOP VIEW)


٥Д	1	J16∏ v _{CC}	
1 🗍	2	15 🗖 A	
2 🛚	3	14 🗀 B	
з 🗍	4	13	
4 🛮	5	12 🔲 D	
5 🛚	6	11 🔲 9	
6 🗌	7	10 🛛 8	
ND 🗆	8	9∏ 7	

SN54HC42 . . . FH OR FK PACKAGE SN74HC42 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

continue this product without notice.

TYPES SN54HC42, SN74HC42 4-LINE TO 10-LINE DECODERS (1-of-10)

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	V _{CC} = 5 V. C _L = 15 pF, R _L = 2 kΩ, V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF		C _L = 15 pF,			UNIT				
		,551.6.,	TA = 25°C		T _A = 25°C		SN54HC42		SN74HC42		į		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPHL	A.B.C or D	0 thru 9											ns
tPLH	A,B,C 0/ D	Othus							<u> </u>				115
C _{pd}	Powe	er dissipation capacitance			No load, T _A = 25°C pF						ур		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

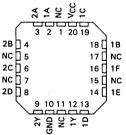
The 'HC51 provides 2-wide, 2-input, and 2-wide, 3-input AND-OR-INVERT gates. The device performs the following boolean functions:

$$1Y = \overline{(1A \cdot 1B \cdot 1C) + (1D \cdot 1E \cdot 1F)}$$

$$2Y = \overline{(2A \cdot 2B \cdot) + (2C \cdot 2D)}$$

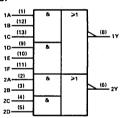
The SN54HC51 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC51 is characterized for operation from -40°C to 85°C.

FUNCTION TABLES


		INP	UTS			OUTPUT				
1A	1B	1C	1D	1 E	1F	1Y				
Н	Н	Н	Х	Х	X	L				
Х	Х	Х	н	Н	Н	L				
	X X X H H H Any other combination									

	INP	UTS	OUTPUT	
2A	2B	2C	2D	2Y
Н	Н	Х	х	L
x	х	н	н	L
Α	ny other o	ombinatio	on	Н

SN54HC51 ... J PACKAGE SN74HC51 ... J OR N PACKAGE (TOP VIEW)


1A 🛮 1	U14	□vcc
2A 🗌 2	13	1 C
2B 🗌 3	12	□1B
2C 🛚 4	11] 1F
2D 🗌 5	10] 1E
2Y □ 6	9] 1D
GND 7	8	□ 1Y

SN54HC51 ... FH OR FK PACKAGE SN74HC51 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		$C_L = 15 \text{ pF},$ $C_L = 50 \text{ p}$			V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF			UNIT	
			T _A = 25°C		C	1/	A = 25	°C	SN54HC51		SN74HC51		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH .	Any												ns
^t PHL	Ally	'											115
C _{pd}	Power diss	sipation capacitance per AOI gate			No load, T _A = 25°C pF						pF t	ур	

NOTE 1: For load circuit and voltage waveforms, see page 1-14,

PRODUCT PREVIEW

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments

Copyright @1982 by Texas Instruments Incorporated

Č

TYPES SN54HC73, SN74HC73 DUAL J-K FLIP-FLOPS WITH CLEAR

D2684, DECEMBER 1982

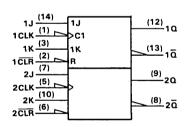
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the clear input resets the outputs regardless of the levels of the other inputs. When clear is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC73 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC73 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (EACH FLIP-FLOP)


	INP	JTS		OUTI	PUTS
CLR	CLK	a	ā		
L	X	Х	×	L	Н
н	1	L	L	00	$\overline{\mathbf{o}}_{0}$
н	1	Н	L	н	L
Н	1	L	Н	L	н
H	1	Н	Н	TOG	GLE
Н	Н	X	Х	00	\overline{a}_0

SN54HC73 . . . J PACKAGE SN74HC73 . . . J OR N PACKAGE (TOP VIEW)

•	-		٠,	
1 CLK	ī	U ₁₄	р	1J
1 CLR	2	13	þ	1 <u>0</u>
1K 🖺	3	12		1Q
vcc [4	11	0	GND
2CLK	5	10	Ц	2K
2CLR	6	9	Ц	2Q
2J L]7	8	IJ	20

For chip carrier information, contact the factory.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54HC73, SN74HC73 DUAL J-K FLIP-FLOPS WITH CLEAR

timing requirements (supplement to recommended operating conditions)

			SN54HC73		SN74HC73					
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
fclock	Clock frequency								MHz	
tu Pulse duration	CLK high or low .									
ι _M	Pulse duration	CLR low							ns	
		High-level data								
t _{su}	t _{SU} Setup time before CLKi	Low-level data							ns	
		CLR inactive							1	
th	Hold time, data after CLK	İ							ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	CL=1	= 4.5 V to 5.5 50 pF	V,	UNIT
	((000.,	T _A = 25°C	T _A = 25°C	SN54HC73	SN74HC73	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
f _{max}							MHz
tPLH .	CLK	Q or $\overline{\mathbf{Q}}$					ns
tPHL .	CER	CLK U or u					115
tPLH .	CLR	ā			1		ns
[†] PHL		Q					115
C _{pd}	Power diss	sipation capacitanc	e per flip-flop	No load, TA	= 25°C	pF t	ур

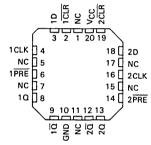
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent D-type positive-edgetriggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high) data at the D input meeting the setup time requirements are transferred to the outputs on the the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

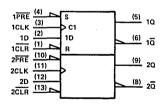
The SN54HC74 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC74 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


	INP	UTS		OUT	PUTS
PRESET	PRESET CLEAR		D	Q	ā
L	Н	X	X	Н	L
н	L	χ .	X	L	Н
L	L	Х	X	H†	Hţ
н	Н	1	H	Н	L
н	н	1	L	L	н
н	н	L'	X	ao	O _O

[†]This configuration is nonstable; that is, it will not persist when Preset or Clear returns to its inactive (high) level.

SN54HC74 . . . J PACKAGE SN74HC74 . . . J OR N PACKAGE (TOP VIEW)


1 CLR 1	U14] Vcc
1D 🗌 2	13 2 2 CLR
1 CLK 🔲 3	12 🔲 2D
1 PRE 🗌 4	11 🗍 2CLK
10 🔲 5	10 2 PRE
10 □6	9 🗍 20
GND ☐ 7	8 🗌 2 🖸

SN54HC74 ... FH OR FK PACKAGE SN74HC74 ... FH OR FN PACKAGE (TOP VIEW)

NC -- No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

Copyright @1982 by Texas Instruments Incorporated

3

TYPES SN54HC74, SN74HC74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

			SN54HC74		SN74HC74			LIBUT	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	PRE or CLR low								
tw	Pulse duration	CLK high							ns
		CLK low							1
	Setup time	Data							
^t su	before CLK1	PRE or CLR inactive							ns
th	Hold time, data after (CLK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	FROM TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF				
	(TA = 25°C	TA = 25°C	SN54HC74	SN74HC74		
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX		
f _{max}							MHz	
tPLH .	PRE or CLR	Ω or $\overline{\Omega}$					ns	
tPHL .	FRE OF CER	uoru					115	
^t PLH	CLK	Q or $\overline{\mathbf{Q}}$					ns	
tPHL .	CLK	2014			<u> </u>		113	
C _{pd}	Power diss	pation capacitanc	e per flip-flop	No load, TA	= 25°C	pF t	ур	

TYPES SN54HC75, SN74HC75 4-BIT BISTABLE LATCHES

D2684, DECEMBER 1982

- Complementary Q and Q Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

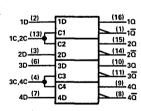
description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

The SN54HC75 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC75 is characterized for operation from -40°C to 85°C.

SN54HC75 . . . J PACKAGE SN74HC75 . . . J OR N PACKAGE (TOP VIEW)

10	ī	U16		10 .
1D [2	15	b	2Q
2D [3	14		2 <u>0</u>
3C, 4C	4	13		1C, 2C
Vcc [5	12		GND
3D 🗀	6	11		3 <u>0</u>
4D [7	10		30
4 <u>0</u> [8	9	口	40


For chip carrier information, contact the factory

FUNCTION TABLE

(Each Latch)

INP	UTS	OUTPUTS			
D	С	Q	ā		
L	Н	L	Н		
н	н	н	L		
×	L	ο_	$\bar{\mathbf{q}}_{0}$		

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics See Table II, page 2-4.

PRODUCT PREVIEW

TYPES SN54HC75, SN74HC75 **4-BIT BISTABLE LATCHES**

timing requirements (supplement to recommended operating conditions)

	· ·		SN54HC75		SN74HC75			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
tw	Pulse duration, C high							ns
t _{SU}	Setup time, data before Cl							ns
th	Hold time, data after Cl							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FROM (INPUT)	TO	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF					
	(INPOT)	(OUTPUT)	TA = 25°C	T _A = 25°C	SN54HC75	SN74HC75		
			MIN-TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX		
tPLH	D	a					ns	
tPHL tPLH	D	ā					ns	
^t PHL	U	a						
^t PLH	С	۵					ns	
^t PHL								
^t PLH	С	ā					ns	
tPHL		<u> </u>			<u> </u>		113	
Cnd	Power dis	sipation capacitan	ce per latch	No load, TA	= 25°C	pF t	VD	

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

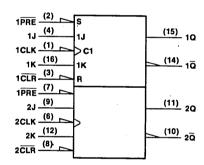
description

These devices contain two independent J-K negativeedge-triggered flip-flops. A low level at the Preset or Clear input sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can also perform as toggle flip-flops by tying J and K high.

The SN54HC76 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC76 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (EACH FLIP-FLOP)

		OUTPUTS				
PRE	CLR	CLK	J	К	a	ā
L	Н	Х	Х	X	н	L
н	L	X	X	×	L	н
L	L	x	x	X	Н*	H*
н	Н	1	L	L	ο ₀	\overline{a}_0
н	н	1	н	L	н	L
Н	н	1	L	Н	L	н
Н	Н	1	Н	н	TOG	GLE
Н	Н	Н	Х	х	ο ₀	$\overline{\mathbf{q}}_{0}$


^{*}This configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

SN54HC76 . . . J PACKAGE SN74HC76 . . . J OR N PACKAGE (TOP VIEW)

1CLK 🔲 1	U16∐ 1K
1PRE 2	15 1Q
1CLR []3	14 🗍 1 🗖
1J 🛮 4	13 GND
Vcc ∏5	12 🗍 2K
2CLK ☐6	11 🛮 20
2PRE 🗌 7	10 20
2CLR 8	9 🗖 2J

For chip carrier information, contact the factory.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

TYPES SN54HC76, SN74HC76 DUAL J-K FLIP-FLOPS WITH CLEAR AND PRESET

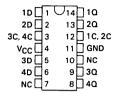
timing requirements (supplement to recommended operating conditions)

	•		SN54HC76			SN74HC7	6			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
fclock	Clock frequency								MHz	
		PRE or CLR low					-			
tw	Pulse duration	CLK high			-				ns	
		CLK low							1	
	Setup time	Data								
t _{su}	before CLKI	PRE or CLR inactive							ns	
th	Hold time, data after CLI	(i							ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	ТО (ОИТРИТ)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C			V, SN74HC76 MIN MAX	UNIT
f _{max}							MHz
tPLH tPHL	PRE or CLR	Q or $\overline{\mathbf{Q}}$					ns
tPLH tPHL	CLK	Q or $\overline{\mathbf{Q}}$					ns
C _{pd}	Power diss	pation capacitance	per flip-flop	No load, TA	= 25°C	pF t	typ

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

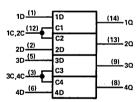

Chip Carriers in Addition to Plastic and Ceramic DIP

description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (C) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

The SN54HC77 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC77 is characterized for operation from -40°C to 85°C.

SN54HC77...J PACKAGE SN74HC77...J OR N PACKAGE (TOP VIEW)


NC - No internal connection

For chip carrier information, contact the factory.

FUNCTION TABLE (Each Latch)

Γ	INP	UTS	OUTPUT
Г	D	С	Q
Г	L	Н	L
	н	н	н
L	Х	L	αo

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

TYPES SN54HC77, SN74HC77 4-BIT BISTABLE LATCHES

timing requirements (supplement to recommended operating conditions)

		 SN54HC77		SN74HC77				
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
tw	Pulse duration, C high						•	ns
t _{su}	Setup time, data before CI							ns
th	Hold time, data after CI	 						ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF						
	, -,		T _A = 25°C	T _A = 25°C	SN54HC77	SN74HC77				
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX				
tPLH .	D	Q								
tPHL	U	u .					ns			
tPLH	C ·				Q					
tpHL		u u					ns			
C _{pd}	Power dis	sipation capacitan	ce per latch	No load, TA = 25°C p			ур			

TYPES SN54HC78, SN74HC78 DUAL J-K FLIP-FLOPS WITH PRESET, COMMON CLEAR. AND COMMON CLOCK

D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

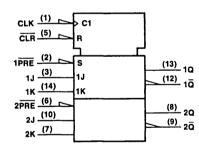
description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset or Clear input sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can also perform as toggle flip-flops by tying J and K high.

The SN54HC78 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC78 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (EACH FLIP-FLOP)

		OUT	PUTS			
PRE	CLR	CLK	J	К	a	ā
L	Н	X	X	X	Н	L
Н	L	X	X	Х	L	н
L	L	x	X	Х	H*	H*
н	Н	1	L	Ł	00	$\overline{\alpha}_0$
Н	Н	1	н	L	н	L,
Н	н	1	L	Н	L	н
н	н	1	н	н	TOGGLE	
Н	Н	Н	Х	x	00	\overline{a}_0


*This configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

SN54HC78 . . . J PACKAGE SN74HC78 . . . J OR N PACKAGE (TOP VIEW)

CLK [1	U14]]	20
1 PRE	2	13	2Q
1J 🗌	3	12	2J
∨cc □	4	11 📙	GND
CLR [5	10	10
2PRE	6	9 🗍	10
2K 🗌	7	8	1 K

For chip carrier information, contact the factory.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

timing requirements (supplement to recommended operating conditions)

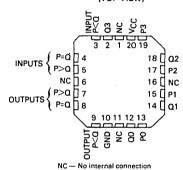
			1 :	SN54HC7	78		N74HC7	8	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
		PRE or CLR low							
tw	Pulse duration	CLK high							ns
		CLK low							1
	Setup time	Data							
t _{su}	before CLKI	PRE or CLR inactive							ns
th	Hold time, data after	CLKI							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FROM (INPUT)		TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							
	(001101)	TA = 25°C	TA = 25°C		SN54HC78		SN74HC78				
			MIN TYP MAX	MIN T	YP MAX	MIN	MAX	MIN	MAX	1	
f _{max}										MHz	
tPLH	PRE or CLR	Q or $\overline{\mathbf{Q}}$	0 0								ns
tPHL	FILL OF CEN									115	
^t PLH	CLK	Q or Q								ns	
t _{PHL}	CLK	u di u									
C-4	Power diss	nation canacitano	e ner flin-flon	N	o load Ta	= 25°C		1	nF t	vn.	

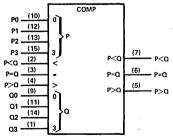
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (P, Q) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The P> Q, P < Q, and P = Q outputs of a stage handling lesssignificant bits are connected to the corresponding P > Q, P < Q, and P = Q inputs of the next state handling moresignificant bits. The stage handling the least-significant bits must have a high-level voltage applied to the P = Q input. The cascading path of the 'HC85 is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

The SN54HC85 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC85 is characterized for operation from -40°C to 85°C.

SN54HC85 ... J PACKAGE SN74HC85 . . . J OR N PACKAGE (TOP VIEW)


SN54HC85 . . . FH OR FK PACKAGE SN74HC85 . . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

COMPARING INPUTS				C	ASCADIN INPUTS	IG	OUTPUTS			
P3, Q3	P2, Q2	P1, Q1	P0, Q0	P>Q	P <q< th=""><th>P=Q</th><th>P>Q</th><th>P < Q</th><th>P = Q</th></q<>	P=Q	P>Q	P < Q	P = Q	
P3 = Q3	P2 = Q2	P1 = Q1	P0 = Q0	X	X	Н	L	L	Н	
P3 = Q3	P2 = Q2	P1 = Q1	P0 = Q0	н	н	L	L	L	L	
P3 = Q3	P2 = Q2	P1 ≈ Q1	P0 = Q0	L	L	L	н	Н	L	

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

This document contains information on a Texas Instruments 3-30 product under development. Texas Instru-INCORPORATED ments reserves the right to change or dis-

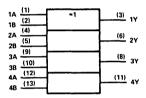
continue this product without notice.

TYPES SN54HC85, SN74HC85 4-BIT MAGNITUDE COMPARATORS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FRO	FROM	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		= 4.5 V to 5.5 50 pF	v,	UNIT	
	(MFOI)	(001701)	TA = 25°C	T _A = 25°C	SN54HC85	SN74HC85		
	İ		MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX		
•=	Any P or Q	P <q, p="">Q</q,>					ns	
^t PLH	data input	P=Q			1			
	Any P or Q data input	P <q, p="">Q</q,>					ns	
tPHL .		P=Q						
tPLH	P <q or="" p="Q</td"><td rowspan="2">D Ρ>Q</td><td></td><td></td><td>1</td><td></td><td></td></q>	D Ρ>Q			1			
tPHL	r\u oi r-u						ns	
tPLH	P=Q	P=Q			ľ			
tPHL .	r-u	r-u			T		ns	
^t PLH	P>Q or P=Q	P <q< td=""><td></td><td></td><td></td><td></td><td>ns</td></q<>					ns	
^t PHL	F/Q 0F F-Q						nş ———	
C _{pd}	Powe	r dissipation capa	citance	No load, TA = 25°C pF t				

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

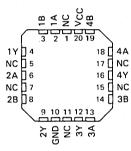

description

These devices contain four independent 2-input Exclusive-OR gates. They perform the boolean functions $Y = A \oplus B = \overline{A}B + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN54HC86 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC86 is characterized for operation from -40°C to 85°C.

logic symbol


FUNCTION TABLE (each gate)

JTS	OUTPUT
В	Y
L	ī
н	H
L	н
н	l
	B L H L

SN54HC86 . . . J PACKAGE SN74HC86 . . . J OR N PACKAGE (TOP VIEW)

1A 🗌	1	U 14	□vcc
`1B[2	13	4B
1Y[3	12	☐ 4A
2A 🗌	4	11] 4Y
2B 🗌	5	10	_] 3B
2Y 🗀	6	9	
GND [7	. 8]] 3Y

SN54HC86 . . . FH OR FK PACKAGE SN74HC86 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

These are five equivalent Exclusive-OR symbols valid for an 'HC86 gate in positive logic; negation may be shown at any two ports.

LOGIC IDENTITY ELEMENT

The output is active (low) if all inputs stand at the same logic level (i.e., A = B).

EVEN-PARITY

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

3

TYPES SN54HC86, SN74HC86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

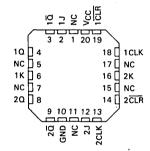
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							
	((001101)	TA = 25°C		TA = 25°C SN5		54HC86 SN74HC86			1	
1	1		MIN TYP MAX	MIN T	YP MA	K MIN	MAX	MIN	MAX		
tPLH .	. A or B										
tPHL	(other input low)	T								ns	
tPLH .	A or B									ns	
^t PLH	(other input high)	<u> </u>								115	
C _{pd}	Power dis	Power dissipation capacitance per			No load, TA = 25°C pF ty					p	

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

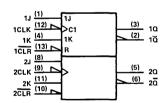
These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the $\overline{\text{CLR}}$ input resets the outputs regardless of the levels of the other inputs. When $\overline{\text{CLR}}$ is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC107 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC107 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE

	INPUTS			OUT	PUTS
CLEAR	CLEAR CLOCK		K	· a	ā
L	Х	X	X	L	H
Н	1	L	L	αo	₫o
н	1	Н	L	н	L
н	1	L	Н	L	Н
Н	4	Н	Н	TOG	GLE
Н	Н	Х	X	QΟ	\overline{a}_0

SN54HC107 . . . J PACKAGE SN74HC107 . . . J OR N PACKAGE (TOP VIEW)


	┥.		–
1J [ון	U14	□ vcc
1ā[12	13] 1 CLR
10[]3	12] 1CLK
1K [4	11	□ 2K
2Q [] 5	10	2CLR
20 []6	9	2CLK
GND []7	8] 2J

SN54HC107 . . . FH OR FK PACKAGE SN74HC107 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

TYPES SN54HC107, SN74HC107 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR

timing requirements (supplement to recommended operating conditions)

				SN54HC107		S	SN74HC107			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
fclock	Clock frequency		-						MHz	
		CLR low								
tw	Pulse duration	CLK high							ns	
		CLK low							1	
t _{su}	Setup time	Data							ns	
30	before CLKI	CLR inactive							1	
th	Hold time, data after C	LKI							ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) \cdot

PARAMETER	FROM	FROM TO CL=15 pl	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							
	((000.,	T _A = 25°C	T _A =	TA = 25°C		SN54HC107SN74HC107				
			MIN TYP MAX	MIN T	YP MAX	MIN	MAX	MIN	MAX		
f _{max}										MHz	
tPLH_	CLR	Qorã								ns	
tPHL	CLN	4014								13	
tPLH .	CLK	Q or Q								ns	
[†] PHL		4014								113	
C _{pd}	Power diss	Power dissipation capacitance per flip-flop			load, TA	= 25°C		Г	pF ty	p	

HIGH-SPEED CMOS LOGIC

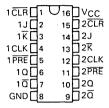
TYPES SN54HC109, SN74HC109 DUAL J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

D2684, DECEMBER 1982

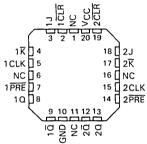
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent J- \bar{K} positive-edge-triggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and \bar{K} inputs meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and \bar{K} inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by grounding \bar{K} and tying J high. They also can perform as D-type flip-flops if J and \bar{K} are tied together.

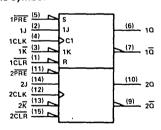

The SN54HC109 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC109 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (EACH FLIP-FLOP)


	IN	PUTS			OUT	PUTS
PRESET	CLEAR	CLOCK	J	ĸ	Q	ā
L	Н	X	X	х	Н	L
н	Ł	X	X	×	L	Н
L	L	X	X	x	н•	н*
н	Н	1	L	L	L	Н
Ĥ	н	1	н	L	TOG	GLE
н	н	t	L	н	o_0	$\overline{\alpha}_0$
н	н	†	Н	н	Н	L
н	н	L	x	х	α_0	$\overline{\Omega}_0$

^{*}This configuration is nonstable; that is, it will not persist when Preset or Clear return to their inactive (high) level.

SN54HC109 . . . J PACKAGE SN74HC109 . . . J OR N PACKAGE (TOP VIEW)



SN54HC109 ... FH OR FK PACKAGE SN74HC109 ... FH OR FN PACKAGE (TOP VIEW)

NC - No Internal connection

logic symbol

Pin numbers shown are for J and N packages

maximum ratings, recommended operating conditions, and electrical characteristics.

See Table II, page 2-4.

PRODUCT PREVIEW

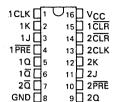
TYPES SN54HC109, SN74HC109 DUAL J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

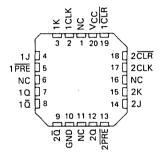
			s	N54HC1	09	S	09	UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX	0
fclock	Clock frequency								MHz
		PRE or CLR low							
tw	Pulse duration	CLK high						-	ns
		CLK low							1
t _{su}	Setup time	Data							ns
00	before CLK1	PRE or CLR inactive							1
th	Hold time, data after	CLK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,			= 4.5 V 50 pF	' to 5.5	v,		UNIT
	(INPUT)	(OUTPUT)	TA = 25°C		SN54HC109SN74HC109			HC109		
*			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}										MHz
[†] PLH	PRE or CLR	Q or Q								
^t PHL	FRE OF CER									ns
tPLH .	CLK	Q or Q								
^t PHL	CLK	u di d								ns
Cnd	Power dissi	Power dissipation capacitance per flip-flop			ad, T _A	= 25°C			pF ty	p


- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

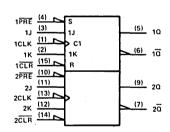
description


These devices contain two independent J-K negativeedge-triggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC112 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC112 is characterized for operation from -40°C to 85°C.

SN54HC112...J PACKAGE SN74HC112 . . . J OR N PACKAGE (TOP VIEW)

SN54HC112 . . . FH OR FK PACKAGE SN74HC112 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

		NPUTS			OUT	PUTS
PRE	CLR	CLK	J	К	a	ã
L	Н	Х	X	X	Н	٦
н	L	X	X	X	L	Н
ı L	L	X	X	X	Н*	н*
Н	Н	1	L	L	00	$\overline{\alpha}_0$
н	Н	1	Н	L	н	L
Н	Н	1	L	н	L	,H
н	Η.	ì	н	н	TOG	GLE
Н	н	Н	Х	X	α ₀	ᾱo

^{*}This configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

continue this product without notice.

TYPES SN54HC112, SN74HC112 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH CLEAR AND PRESET

timing requirements (supplement to recommended operating conditions)

			S	N54HC1	12	S	N74HC1	12	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	1
fclock	Clock frequency						***************************************		MHz
		PRE or CLR low							
tw	Pulse duration	CLK high							ns
		CLK low			-				1
t _{su}	Setup time	Data							ns
Ju	before CLKI	PRE or CLR inactive							1
th	Hold time, data after CLK	,	1						ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

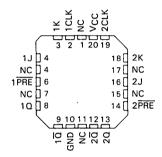
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							UNIT
	((001101)	TA = 25°C	TA = 25°C		SN54HC112		2 SN74HC112			
	1		MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}					_						MHz
tPLH .	PRE or CLR	Q or $\overline{\mathbf{Q}}$									ns
tPHL .	PHE OF CLH	PRE OF CLR GOT G									113
tPLH .	CLK	Q or Q									ns
tPHL	CLK										1.13
Cnd	Power dissipation capacitance per flip-flop			No load, TA = 25°C pF					pF ty)	

TYPES SN54HC113, SN74HC113 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET

D2684, DECEMBER 1982

Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs Dependable Texas Instruments Quality and Reliability

description

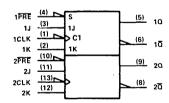

These devices contain two independent J-K negative-edgetriggered flip-flops. A low level at the Preset input sets the outputs regardless of the levels of the other inputs. When Preset (PRE) is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC113 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC113 is characterized for operation from -40°C to 85°C.

SN54HC113 . . . J PACKAGE SN74HC113 . . . J OR N PACKAGE (TOP VIEW)

1CLK ☐	1 (14	□vcc
1K 🗌	2	13] 2CLK
1J 🛚	3	12] 2K
1PRE	4	11] 2J
10 🗆	5	10] 2PRE
10 [6	9] 2Q
GND [7	8] 2 <u>Q</u>

SN54HC113 . . . FH OR FK PACKAGE SN74HC113 . . . FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

FUNCTION TABLE

	OUTPUTS				
PRE	CLK	a	ā		
L	x	X	X	н	L
н	4	L	L	α_0	\bar{a}_0
н	1	н	L	н	L
. н	1	L	н	L	Н
н	1	н	Н	TOG	GLE
lн	н	×	х	امما	ā٥

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

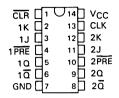
TYPES SN54HC113, SN74HC113 DUAL J-K NEGATIVE-EDGE TRIGGERED FLIP-FLOPS WITH PRESET

timing requirements (supplement to recommended operating conditions)

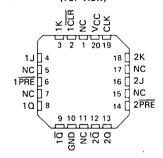
			SN54HC113			SN74HC113				
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
fclock	Clock frequency								MHz	
tw Pulse duration	PRE low				1					
	CLK high							ns		
		CLK low				1	_		1	
	Setup time	Data								
tsu	before CLK ↓	PRE inactive							ns	
th	Hold time, data after (CLK I							ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C	V _{CC} C _L =	UNIT	
			MIN TYP MAX	MIN TYP MAX	MIN MAX MIN N	AX
f _{max}						
tPLH	PRE	Q or Q				ns
t _{PHL}	- TINE					113
tPLH .	CLK	Q or Q				ns
tPHL	CER					
C _{pd}	Power dis	sipation capacitar	ce per flip-flop	No load, TA	= 25°C	F typ


- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

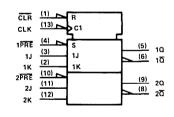
description


These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset or Clear inputs sets or resets the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

The SN54HC114 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC114 is characterized for operation from -40°C to 85°C.

SN54HC114 . . . J PACKAGE SN74HC114 . . . J OR N PACKAGE (TOP VIEW)

SN54HC114 . . . FH OR FK PACKAGE SN74HC114 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

	INPUTS					
PRE	CLR	CLK	J	K	α	ā
L	Н	×	X	X	Н	L
н	L	×	×	X	L	н
L	L	X	X	X	н*	н*
н	н	1	L	L	αo	āο
н	н	1	н	L	н	L
н	Н	1	L	н	L	н
н	н	↓	Н	Н	TOO	GLE
Н	н	н	X	X	₫0	āο

^{*}This configuration is nonstable; that is, it will not persist when either Preset or Clear returns to its inactive (high) level.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table II, page 2-4.

PRODUCT PREVIEW

TYPES SN54HC114, SN74HC114 DUAL J-K NEGATIVE-EDGE TRIGGERED FLIP-FLOPS WITH PRESET, COMMON CLEAR, AND COMMON CLOCK

timing requirements (supplement to recommended operating conditions)

			SN54HC114			s	LINUT		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
t _W Pulse duration		PRE or CLR							
	Pulse duration	CLK high							ns
		CLK low							1
	Setup time	Data							
tsu before CLK↓		PRE or CLR inactive							ns
th	Hold time, data after CLK I								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C		CL=			= 4.5 V to 5.5 V, = 50 pF = SN54HC114 SN74HC114				UNIT							
			MIN TY						MAX			4							
f _{max}												MHz							
tPLH .	PRE or GLR	Q or Q										ns'							
tPHL	FRE OF GER		2014	2014	4014	2014	2012	2014	2014	2012						1			
tPLH .	CLK	Q or $\overline{\mathbf{Q}}$										ns							
tPHL .	CLIN	2014			L														
C _{pd}	Power dissipation capacitance per flip-flop			No load, TA = 25°C pF					pF t	ур									

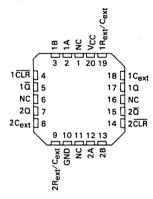
TYPES SN54HC123, SN74HC123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

D2684, DECEMBER 1982

 D-C Triggered by Active-High or Active-Low Inputs

- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

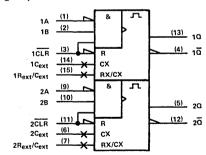

These d-c triggered multivibrators feature output pulse duration control by three methods. The basic pulse duration is programmed by selection of external resistance and capacitance values. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The SN54HC123 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC123 is characterized for operation from -40°C to 85°C.

SN54HC123 . . . J PACKAGE SN74HC123 . . . J OR N PACKAGE

1A 🔲 1	U 16	□ vcc
1B 🔀 2	15	TR _{ext} /C _{ext}
1 CLR ☐3	14	C _{ext}
10 ∐4	13] 10
20 ∏5	12	20
2C _{ext}	11	2CLR
2R _{ext} /C _{ext} □7	10	□ 2B
GND ☐B	9] 2A

SN54HC123 . . . FH or FK PACKAGE SN74HC123 . . . FH or FN PACKAGE



FUNCTION TABLE

IN	PUTS		OUTI	PUTS
CLEAR	Α	В	Q	ā
L	X	×	L	Н
X	Н	x	Lt	Hţ
Х	Х	L	Lt	H†
н	L	t	л	7.
н	1	н		J.
1	L	н	l n	lΓ

[†]The second and third lines each indicate the logic levels the outputs will take on after the completion of any pulse already started.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

Note: The minimum recommended supply voltage for this device is 3 V.

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

This document contains information on a 3-44 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments

TYPES SN54HC123, SN74HC123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

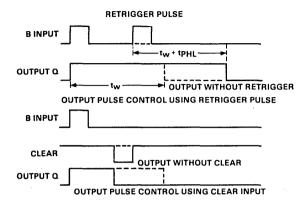


FIGURE 1 — TYPICAL INPUT/OUTPUT PULSES

timing requirements (supplement to recommended operating conditions)

		S	N54HC1	23	S	N74HC1	23	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	1
tw	Pulse duration, A low, B high, or CLR low						-	ns
Rext	External timing resistance							kΩ
Cext	External timing capacitance							μF
	Wiring capacitance at Rext/Cext terminal							pF

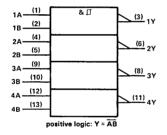
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	1	C = 4.5 V to 5. = 50 pF	5 V,	UNIT		
	(HAPOT)	(001701)	TA = 25°C	TA = 25°C					
			MIN TYP MAX	MIN TYP MA	X MIN MAX	MIN MAX			
	Α	- a							
tPLH†	В] u					ns		
	A	ā					ns		
tPHL†	В] u					115		
tPHL [†]	CLR	Q							
tPLH†	CLR	ā					ns		
twQ(min)†	A or B	Q					ns		
twa‡	A or B	Q		L			μs		
C _{pd}	Power dissip	ation capacitance	per monostable	No load,	A = 25°C	pF typ			

 $tC_{ext} = 0$, $R_{ext} = 5k\Omega$

‡t_{wQ} = duration of pulse at output Q. C_{ext} = 400 pF, R_{ext} = 10kΩ. NOTE 1: For load circuit and voltage waveforms, see page 1-14.

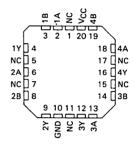
- Operation from Very Slow Transitions
- Temperature-Compensated Threshold Levels
- High Noise Immunity
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


description

Each circuit functions as a NAND gate, but because of the Schmitt action, it has different input threshold levels for positive-and negative-going signals.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean jitterfree output signals.

The SN54HC132 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC132 is characterized for operation from -40°C to 85°C.


logic symbol

SN54HC132 . . . J PACKAGE SN74HC132 . . . J OR N PACKAGE (TOP VIEW)

SN54HC132 . . . FH OR FK PACKAGE SN74HC132 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L R _L	C = 5 = 15 = 2 ks	pF, Ω,		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $C_L = 50 \text{ pF}$ $T_{\Delta} = 25^{\circ}\text{C}$ SN54HC132SN74HC133					UNIT	
			TA	= 25°	С	τ _≠	չ = 25	°C	SN54	HC132	SN74	HC132	
,			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B												ns
tPHL	A OF B	ı											115
C _{pd}	Power dis	sipation capacitan	ice per g	ate			No lo	ad, T _A	= 25°C			pF ty	p

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

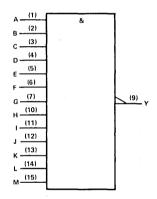
HIGH-SPEED CMOS LOGIC

TYPES SN54HC133, SN74HC133 13-INPUT POSITIVE-NAND GATES

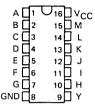
D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

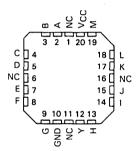
description


These devices contain a single 13-input NAND gate.
They perform the boolean functions in positive logic:

$$Y = \overrightarrow{A} \cdot \overrightarrow{B} \cdot \overrightarrow{C} \cdot \overrightarrow{D} \cdot \overrightarrow{E} \cdot \overrightarrow{F} \cdot \overrightarrow{G} \cdot \overrightarrow{H} \cdot \overrightarrow{I} \cdot \overrightarrow{K} \cdot \overrightarrow{L} \cdot \overrightarrow{M} \qquad \text{or}$$


$$Y = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D} + \overrightarrow{F} + \overrightarrow{F} + \overrightarrow{G} + \overrightarrow{H} + \overrightarrow{I} + \overrightarrow{I} + \overrightarrow{K} + \overrightarrow{I} + \overrightarrow{M}$$

The SN54HC133 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC133 is characterized for operation from -40°C to 85°C.


logic symbol

SN54HC133...J PACKAGE SN74HC133...J OR N PACKAGE (TOP VIEW)

SN54HC133 . . . FH OR FK PACKAGE SN74HC133 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

INPUTS A THRU M	OUTPUT Y
All inputs H	L
One or more inputs L	н

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		= 4.5 V to 5.5 50 pF	ν,	UNIT
	((00.1.01)	TA = 25°C MIN TYP MAX	TA = 25°C MIN TYP MAX	SN54HC133		
tPLH	Any						ns
tPHL							",5
Cnd	Power I	Dissipation capacit	ance per gate	No load, TA	= 25°C	pF ty	'p

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

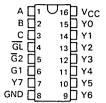
PRODUCT PREVIEW

This document contains information on a product under development. Texas Instru-

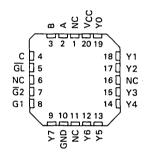
ments reserves the right to change or discontinue this product without notice. Texas Instruments

TYPES SN54HC137, SN74HC137 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

D2684, DECEMBER 1982

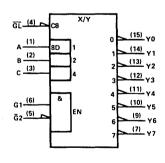

- Combines Decoder and 3-Bit Address Latch
- Incorporates 2 Output Enables to Simplify Cascading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

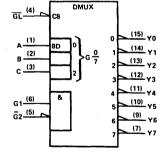
description


The 'HC137 is a three-line to eight-line decoder/demultiplexer with latches on the three address inputs. When the latch-enable input (\overline{GL}) is low, the 'HC137 acts as a decoder/demultiplexer. When \overline{GL} goes from low to high, the address present at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as \overline{GL} remains high. The output enable controls, G1 and $\overline{G2}$, control the outputs independently of the select or latch-enable inputs. All of the outputs are forced high if G1 is low or $\overline{G2}$ is high. The 'HC137 is ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems.

The SN54HC137 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC137 is characterized for operation from -40°C to 85°C.

SN54HC137 . . . J PACKAGE SN74HC137 . . . J OR N PACKAGE (TOP VIEW)




SN54HC137 ... FH OR FK PACKAGE SN74HC137 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols (alternatives)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

TEXAS INSTRUMENTS

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54HC137, SN74HC137 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

FUNCTION TABLE

	11	IPU	TS					_	MIT	PUT			
EN	IABI	E_	SE	LE	СТ				,011	-01:	· 		
GL	G1	Ğ2	С	В	Α	YO	Υ1	Y2	Y3	Y4	Y 5	Y6	Υ7
X	Х	Н	х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Η
x	L	х	х	Х	Х	н	Н	Н	Н	Н	Н	Н	н
L	Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	н	н	L	Н	Н	н	Н	н	н
L	Н	L	L	Н	L	н	н	L	Н	Н	Н	н	н
L.	н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	н
L	Н	L	Н	L	L	Н	Н	н	Н	L	Н	Н	Ι
L	Н	L	н	L	Н	н	н	Н	Н	н	L	Н	н
L	н	L	н	Н	L	н	Н	н	Н	Н	н	L	н
L	Н	L	н	н	н	н	Н	Н	Н	Н	Н	Н	L
н	н	L	J	×	_	Output corresponding to stored							
"	М	-	^	^	^	address, L; all others, H							

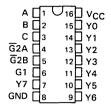
timing requirements (supplement to recommended operating conditions)

		S	N54HC1	37	S	N74HC1	37	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
fclock	Clock frequency							MHz
tw	Pulse duration, GL low				-			ns
t _{su}	Setup time, A, B, and C before GL1							ns
th	Hold time, A, B, and C after GL1							ns

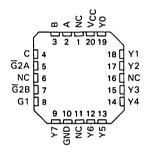
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $C_L = 50 \cdot pF$						
	(INPUT)	(OUTPUT)	TA = 25°C	TA = 25°C	SN74HC137	4					
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX					
f _{max}							MHz				
tPLH	A, B, C	Y			-		ns				
tPHL	А, В, С										
tPLH .		Y					ns				
tPHL	G2						113				
tPLH	G1	Y					ns				
^t PHL	G1	L'					113				
tPLH .	GL	Y					ns				
tPHL	GL	<u>'</u>					113				
C _{pd}	Pow	er dissipation capa	citance	No load, TA	= 25°C	pF t	ур				

- Designed Specifically for High-Speed Memory Decoders and Data Transmission Systems
- Incorporates 3 Enable Inputs to Simplify Cascading and/or Data Reception
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

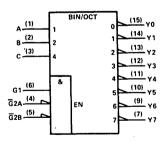

description

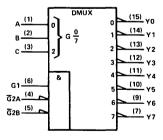
The 'HC138 circuit is designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.


The conditions at the binary select inputs and the three enable inputs select one of eight input lines. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

The SN54HC138 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC138 is characterized for operation from -40°C to 85°C.

SN54HC138 . . . J PACKAGE SN74HC138 . . . J OR N PACKAGE (TOP VIEW)




SN54HC138 . . . FH OR FK PACKAGE SN74HC138 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols (alternatives)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

This document contains information on a 3-50 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments

TYPES SN54HC138, SN74HC138 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

FUNCTION TABLE

	ABLE UTS	·	SELEC'					OUT	PUTS			
G1	G2*	С	В	Α	Y0	Y1	Y2	Υ3	Y4	Y5	Y6	Y7
Χ.	Н	X	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	X	×	X	X	Н	Н	Н	Н	Η,	Н	Н	н
Н	L	L	L	L	L	Н	н	н	Н	Н	Н	н
н	L	L	L	Н	н	L	Н	н	н	Н	Н	н
н	L	L	Н	L	н	Н	L	н	Н	Н	Н	Н
н	L	L	Н	н	н	Н	Н	L	Н	Н	Н	Н
н	L	Н	L	L	н	Н	Н	Н	L	н	н	н
Н	L	Н	L	Н	н	Н	Н	Н	Н	L	Н	н
Н	L	н	Н	L	н	Н	Н	н	Н	н	L	н
Н	L	н	Н	н	Н	Н	Н	Н	Н	Н	н	L

[•]G2 = G2A + G2B

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

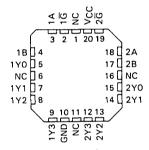
	4.5 V to 5.5 V 60 pF	V _{CC} = C _L = 50	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	TO	FROM	PARAMETER
I54HC138 SN74HC138			T _A = 25°C	(OUTPUT)	(INPUT)	
				Any Y	A, B, C	tPLH tPHL
				Any Y	Enable	tPLH tPHL
500	2500	No load Ta =		Any Y		

- Designed Specifically for High-Speed Memory Decoders and Data Transmission Systems
- Incorporates 2 Enable Inputs to Simplify Cascading and/or Data Reception
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

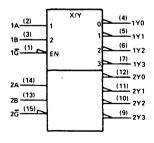

description

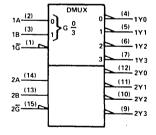
The 'HC139 circuit is designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast-enable circuit, the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.


The 'HC139 is comprised of two individual two-line to four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications. These decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit.

The SN54HC139 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC139 is characterized for operation from -40°C to 85°C.

SN54HC139 . . . J PACKAGE SN74HC139 . . . J OR N PACKAGE (TOP VIEW)




SN54HC139 . . . FH OR FK PACKAGE SN74HC139 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols (alternatives)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV. page 2-6.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC139, SN74HC139 DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

FUNCTION TABLE

INF	UTS			OUTPUTS								
ENABLE	SEL	ECT	L	,011		•						
Ğ	В	Α	YO	Y1	Y2	Υ3						
Н	Х	Х	Н	Н	Н	Н						
L	L	L	L	Н	Н	Н						
L	L	Н	Н	L	Н	Н						
L	Н	L	Н	Н	L	Н						
L.	н	н	Н	н	н	L						

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

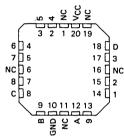
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	VCC CL =	UNIT				
	((001.7)	T _A = 25°C	T _A = 25°C	SN54HC139SN74				
					MIN TYP MAX	MIN TYP MAX	MIN MAX MIN	MAX	
tPLH	A or B						ns		
tPHL	7010	L							
tPLH .	G	V					ns		
tPHL	3	Y					115		

Cpd Power dissipation capacitance per decoder No load, TA = 25°C pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Encodes 10-Line Decimal to 4-Line BCD
- Applications Include: **Keyboard Encoding** Range Selection
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

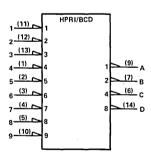

These encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 'HC147 encodes nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. The data inputs and outputs are active at the low logic level.

The SN54HC147 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC147 is characterized for operation from -40°C to 85°C.

SN54HC147 . . . J PACKAGE SN74HC147 . . . J OR N PACKAGE (TOP VIEW)

4 [1	U16∏ V _{CC}
5 [2	15 🗀 NC
6 [3	14 🗍 D
7 []4	13 🗍 3
8 [5	12 2
c[]6	11 🛮 1
в [7	10 🗍 9
GND [8	9 🗆 A

SN54HC147 . . . FH OR FK PACKAGE SN74HC147 . . . FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

FUNCTION TABLE

			11	NPU1	S					OUT	PUTS	3
1	2	3	4	5	6	7	8	9	D	С	В	A
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Х	Х	х	х	Х	х	Х	Х	L	L	Н	Н	L
Х	Х	х	Х	Х	х	Х	L	Н	L	Н	Н	Н
Х	Х	х	х	Х	х	L	Н	Н	н	L	L	L
Х	Х	х	Х	Х	L	Н	Н	Н	н	L	L	Н
Х	X	×	х	L	Н	Н	н	Н	н	L	Н	L
Х	Х	Х	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Х	Х	L	Н.	Н	Н	Н	Н	н	н	Н	L	L
Х	L	н	Н	н	H	н	н	Н	н	н	L	Н
L	н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	L

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW This document contains information on a Copyright @1982 by Texas Instruments Incorporated

TYPES SN54HC147, SN74HC147 10-LINE-TO-4-LINE PRIORITY ENCODERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	PARAMETER FROM	TO (OUTPUT)	VCC = 5 V, CL = 15 pF, RL = 2 kΩ,			= 4.5 \ 50 pF	/ to 5.5	ν,		UNIT
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T _A = 25°C	T _A = 25°C		SN54HC147SN74			HC147	
			MIN TYP MAX	MIN TY	P MAX	MIN	MAX	MIN	MAX	
†PLH	Any	Any				1				
tPHL] ^'''	(in phase with input)								ns
^t PLH	Anu	Any								
t _{PHL}	Any	(out of phase with input)								ns
C _{pd}	I	Power dissipation capaci	No load, T _A = 25°C pF ty						p	

TYPES SN54HC151, SN74HC151 DATA SELECTORS/MULTIPLEXERS

D2684, DECEMBER 1982

 3-Line to 1-Line Multiplexers Can Perform As: **Boolean Function Generators** Parallel-to-Serial Converters **Data Source Selectors**

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers provide full binary decoding to select one of eight data sources. The strobe input (G) must be at a low logic level to enable the inputs. A high level at the strobe terminal forces the W output high and the Y output

The SN54HC151 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC151 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

STROBE

G

Н

L

ı

ı

L

L

ı

INPUTS

x

L

Н

н

L

H = high level, L = low level, X = irrelevant

DO, D1 . . . D7 = the level of the D respective input

SELECT

L L

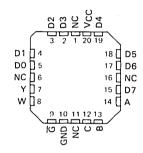
ī

ı L

1 н

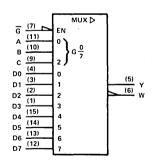
х х

1 н


L

н

SN54HC151 . . . J PACKAGE SN74HC151 . . . J OR N PACKAGE (TOP VIEW)


D3[1	\bigcup_{16}	₽vcc
D2[2	15	D 04 ¯
D1 [3	14	D5
DO [4	13	□ D6
. Y [5	12	D7
w	6	11	□ A
Ğ□	7	10	□в
3ND [8	9	Пс

SN54HC151 . . . FH OR FK PACKAGE SN74HC151 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Copyright ©1982 by Texas Instruments Incorporated

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

OUTPUTS

Н

D5 D5

v w

L DO DO

D1 D1

D2 D2

D3 D3

D4 **D4**

D6 D6 **D**7

D7

See Table III, page 2-5.

PRODUCT PREVIEW This document contains information on a

Texas Instruments

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

3-56 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TYPES SN54HC151, SN74HC151 DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	PARAMETER FROM (INPUT)	то	R = 2 kO		V _{CC} = 4.5 V to 5.5 V, See Note 1							
		(OUTPUT)	T _A = 25°C	TA = 25°C	SN54HC151 SN74HC1	51						
			MIN TYP MAX	MIN TYP MAX	MIN MAX MIN M	¥Χ						
tPLH .	A, B, or C	Y				ns						
tPHL	A, B, 01 C	'				113						
tPLH .	A, B, or C	w				- ns						
tPHL	A, B, O C					113						
tPLH .	Any D	Y		-		ns						
^t PHL	Ally D	1				115						
tPLH .	Any D	w				ns						
tPHL	Ally D					113						
tPLH .	Ğ	Y				ns						
tPHL.		'				115						
tPLH .	G .	w				ns						
tPHL	.											
C _{pd}	Pow	Power dissipation capacita		No load, TA	= 25°C	F typ						

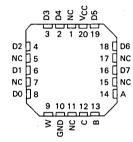
TYPES SN54HC152, SN74HC152 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

D2684, DECEMBER 1982

Selects One-of-Eight Data Sources

- Performs Parallel-to-Serial Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

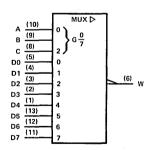
description


These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired one-of-eight data sources.

The SN54HC152 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC152 is characterized for operation from -40°C to 85°C.

SN54HC152...J PACKAGE SN74HC152...J OR N PACKAGE (TOP VIEW)

SN54HC152 ... FH OR FK PACKAGE SN74HC152 ... FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

FUNCTION TABLE

-	LE(OUTPUT
С	В	Α	VV
L	L	L	DO
L	L	Η :	D1
L	Н	L	D2
L	Н	н	<u>D3</u>
Н	L	L	D4
н	L	Н	D5
н	Н	L	<u></u>
Н	Н	Н	D7

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

U.

TYPES SN54HC152, SN74HC152 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	FROM TO (INPUT) (OUTPUT)		VCC See I	UNIT			
İ	((000.,	T _A = 25°C T _A = 25°C		SN54HC152	SN74HC152		
		MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX			
tPLH .	A, B, or C	W					ns	
tPHLtPHL	A, B, Of C	VV					115	
^t PLH	Any D	w					ns	
t _{PHL}	Ally D						113	
C _{pd}	Powe	r dissipation capa	citance ·	No load, T _A = 25°C pF t				

TYPES SN54HC153, SN74HC153 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

D2684, DECEMBER 1982

Permits Multiplexing from N Lines to 1 Line

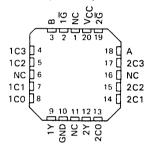
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N lines to n lines)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR gates. Separate strobe inputs (\overline{G}) are provided for each of the two four-line sections.

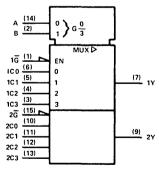
The SN54HC153 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC153 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


	SELECT !		DATA	NPUTS	3	STROBE	оитрит
В	Α	СО	C1	C2	C3	G	Y
×	×	X	X	X	X	Н	L
L	L	L	X	X	×	L	L
L	L	н	X	X	X	L	н
L	н	x	L	X	×	L	L
l L	н	×	Н	X	×	L	н
Н	L	×	X	L	×	L	L
н	L	×	X	н	×	L.	н
Н	н	×	X	X	L	L	L
н	н	х	X	X	н	L	н

Select inputs A and B are common to both sections.

SN54HC153 . . . J PACKAGE SN74HC153 . . . J OR N PACKAGE (TOP VIEW)


1G	Пı	\bigcup_{16}		Vcc
В	□ 2	15		2Ĝ
1C3	□ 3	14		Α
1C2	□4	13	_	2C3
1C1	∏ 5	12		2C2
1C0	□6	11		2C1
1Y	7	10		2C0
GND	<u>[8</u>	9		2Y

SN54HC153 ... FH OR FK PACKAGE SN74HC153 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3-60 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments

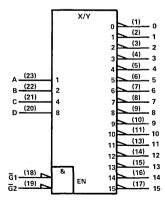
TYPES SN54HC153, SN74HC153 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT	
	(INPOT)	(001701)			T _A = 25°C		SN54HC153 SN74HC153			1C153			
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	Y											ns
tPHL	AUIB												ns
tPLH .	Data		T										ns
tPHL	(Any C)	1 '											ns
[‡] PLH	G	Y											ns
^t PHL	<u> </u>	1											115
Cpd	Power dissign	Power dissipation capacitance per multiplexer					No load, TA = 25°C pF						/p

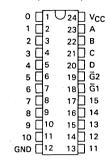
TYPES SN54HC154. SN74HC154 4-LINE-TO-16-LINE DECODERS/DEMULTIPLEXERS

D2684, DECEMBER 1982

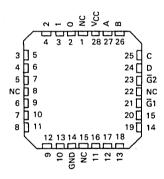

- Decodes 4 Binary-Coded Inputs into One of 16 Mutually Exclusive Outputs
- Performs the Demultiplexing Function by Distributing Data From One Input Line to Any One of 16 Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

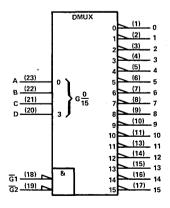
Each of these monolithic, 4-line-to-16-line decoders decodes four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders.


The SN54HC154 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC154 is characterized for operation from -40°C to 85°C.

logic symbols (alternatives)



Pin numbers shown are for JT and NT packages.


SN54HC154 . . . JT PACKAGE SN74HC154 . . . JT OR NT PACKAGE (TOP VIEW)

SN54HC154 . . . FH OR FK PACKAGE SN74HC154 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Copyright ©1982 by Texas Instruments Incorporated

PRODUCT PREVIEW

Texas Instruments INCORPORATED

1 5

TYPES SN54HC154, SN74HC154 4-LINE-TO-16-LINE DECODERS/DEMULTIPLEXERS

FUNCTION TABLE

		OUTI	PUTS										OUT	PUTS							
Ğ1	Ğ2	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	н	н	Н	н	н	н	н
L	L	L	L	L	н	Н :	L	Н	н	н	н	н	н	Н	н	н	н	н	Н	Н	н
L	L	L	L	н	L	н	Н	L	н	Н	Н	Н	Н	н	Н	н	Н	Н	Н	Н	н
L	L	L	L	Н	н	н	Н	н	L	н	Н	Н	Н	Н	н	н	н	Н	Н	Н	н
L	L	L	Н	L	L	н	Н	н	н	L.	н	Н	Н	Н	н	н	Н	Н	Н	Н	н
L	L	L	Н	L	н	н	н	Н	Н	н	L	н	н	Н	Н	н	Н	Н	н	Н	н
L	L	Ł	Н	Н	L	н	н	н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	н	н
L	L	L	н	н	Н	н	н	Н	н	Н	н	Н	L	Н	Н	н	Н	Н	н	н	н
L	L	н	L	L	L	н	н	н	н	н	Н	н	Н	L	Н	н	Н	Н	Н	н	Н
L	L	н	L	L	н	н	· H	н	Н	Н	н	н	Н	Н	L	Н	Н	н	Н	н	н
L	L	н	L	н	L	Н	н	н	Н	н	Н	Н	Н	Н	Н	L	Н	н	н	н	н
L	L	н	L	н	Н	н	Н	н	Н	Н	Н	н	н	Н	Н	Н	L	н	н	н	н
L	L	н	н	Ł	L	н	н	н	Н	н	Н	н	н	Н	Н	Н	Н	L	Н	Н	н
L	Ł	н	Н	L	Н	Н	Н	н	Н	Н	Н	н	н	н	н	Н	Н	Н	L	н	Н
L	L	Н	н	н	L	н	Н	н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	L	н
L	L	н	Н	н	н	н	Н	н	Н	н	н	н	н	Н	Н	н	н	Н	Н	Н	L
L	н	x	X	X	X	н	Н	н	н	н	Н	н	Н	н	Н	Н	Н	н	Н	Н	н
н`	L	х	Х	X	Х	н	н	н	Н	н	н	н	н	н	Н	н	Н	н	н	Н	н
н	н	X.	Х	х	х	н	Н	н	Н	н	н	н	Н	н	Н	н	Н	Н	Н	Н	н
		l				[

H = high level, L = low level, X = irrelevant

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO (INPUT) (OUTPUT)		V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							UNIT
	((000.,	TA = 25°C	T _A = 25°C		SN54HC154		SN74HC154		ĺ	
			MIN TYP MAX	MIN T	ГҮР	MAX	MIN	MAX	MIN	MAX	1
^t PLH	A, B, C, or D	Any									ns
tPHL	A, B, C, 01 D	Ally									115
tPLH	G1 or G2	Any									ns
tPHL	G1 01 G2	Ally									115
Cpd	Powe	r dissipation capa	citance	No load, TA = 25°C pF				pF t	ур		

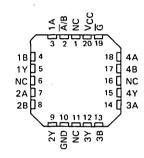
HIGH-SPEED CMOS LOGIC

TYPES SN54HC157, SN54HC158, SN74HC157, SN74HC158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

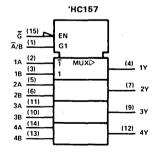

These monolithic data selectors/multiplexers contain inverters and drivers to supply full data selection to the four output gates. A separate strobe input $(\overline{\bf G})$ is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The 'HC157 presents true data whereas the 'HC158 presents inverted data.

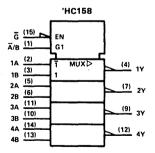
The SN54HC157 and SN54HC158 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC157 and SN74HC158 are characterized for operation from -40°C to 85°C.

SN54HC157, SN54HC158...J PACKAGE SN74HC157, SN74HC158...J OR N PACKAGE (TOP VIEW)

Ā/B □	1	U ₁₆	V _C C
1A 🗌	2	15	\bar{G}
1B [3	14	4A
1Y 🛚	4	13	4B
2A 🗌	5	12	4Y
2B 🗌	6	11	3A
2Y 🗀	7	10	3B
GND [8	9	3Y

SN54HC157, SN54HC158 . . . FH OR FK PACKAGE SN74HC157, SN74HC158 . . . FH OR FN PACKAGE (TOP VIEW)




NC - No internal connection

FUNCTION TABLE

	INPU	TS		OUTPUT Y						
STROBE	CELECT	DA	ATA							
Ğ	Ā/B	A B		'HC157	'HC158					
Н	X	×	X	L	н					
L	L	L	X	L	н					
L	L	н	X	н	L					
L	н	×	L	L	н					
L	н	×	н	' н	L					

logic symbols

Pin numbers shown are for J and N packages.

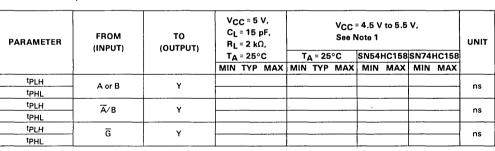
maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TEXAS INSTRUMENTS


TYPES SN54HC157, SN54HC158, SN74HC157, SN74HC158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

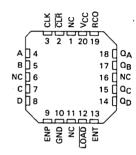
'HC157 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C		V _{CC} = 4.5 V to 5.5 V, See Note 1								
	(5.7)				T _A = 25°C			SN54HC157 SN74HC157					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH .	A or B	Y											ns
tPHL	AUIB	'											
tPLH	Ā/B	_											ns
tPHL	~ 8	'											115
tPLH	Ğ	V											ns
tPHL		F									L		113
C _{pd}	Power dissip	ation capacitance	per multiplexer			Ι	No loa	ad, T _A	= 25°C		<u> </u>	pF t	ур

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC158 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

Cpd Power dissipation capacitance per multiplexer No load, TA = 25°C pF typ


NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

SN54HC'...J PACKAGE SN74HC'...J or N PACKAGE (TOP VIEW)

CLR [ī	U 16	□ vcc
CLK [2	15	RCO
ΑC	3	14] Q _A
в	4	13	□ α _Β
c [5	12] a _c
ьC	6	11	□ a _D
ENP [7	10] ENT
GND	8	9	LOAD

SN54HC' . . . FH or FK PACKAGE SN74HC' . . . FH or FN PACKAGE (TOP VIEW)

NC - no internal connection

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'HC160 and 'HC162 are decade counters, and the 'HC161 and 'HC163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with synchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

The clear function for the 'HC160 and 'HC161 is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clock, load, or enable inputs.

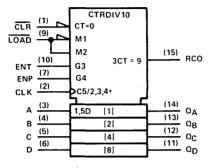
The clear function for the 'HC162 and 'HC163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (ENP and ENT) must be high to count, and ENT is fed forward to enable the ripple carry output. The ripple carry output (RCO) thus enabled will produce a high-level pulse while the count is maximum (9 or 15 with Q_A high). This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT are allowed regardless of the level of the clock input.

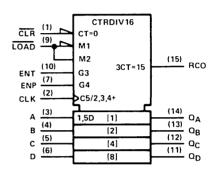
These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The SN54HC160 through SN54HC163 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC160 through SN74HC163 are characterized for operation from -40°C to 85°C.

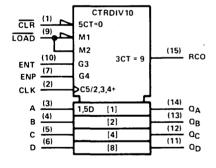
PRODUCT PREVIEW

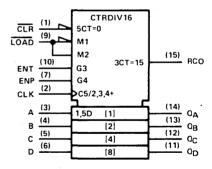

Copyright @1982 by Texas Instruments Incorporated

3


TYPES SN54HC160 THRU SN54HC163 SN74HC160 THRU SN74HC163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

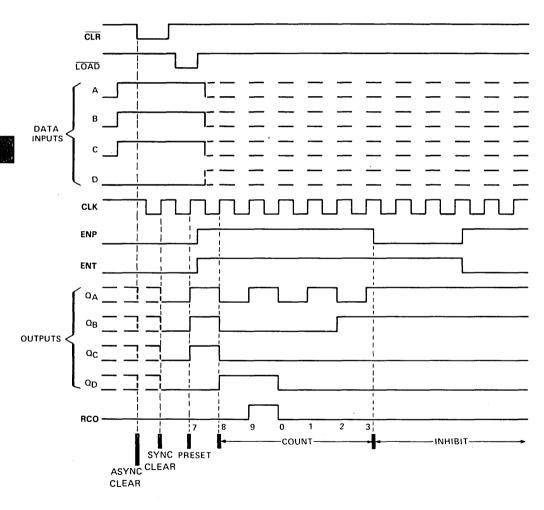
logic symbols


HC160 DECADE COUNTER WITH DIRECT CLEAR


'HC161 BINARY COUNTER WITH DIRECT CLEAR

'HC162 DECADE COUNTER WITH SYNCHRONOUS CLEAR

'HC163 BINARY COUNTER WITH SYNCHRONOUS CLEAR

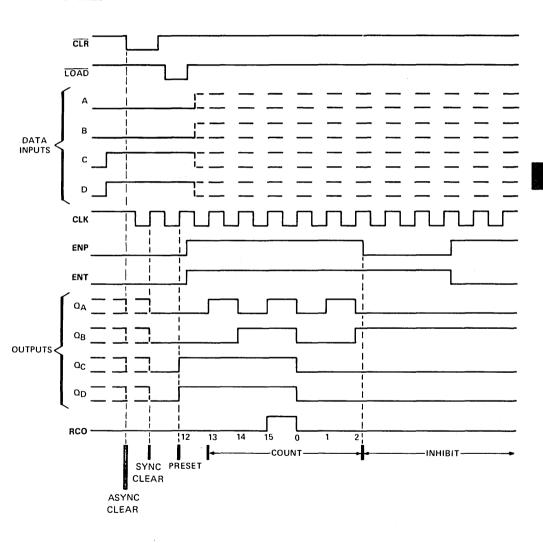

Pin numbers shown are for J and N packages

TYPES SN54HC160, SN54HC162, SN74HC160, SN74HC162 SYNCHRONOUS 4-BIT DECADE COUNTERS

'160 and '162 output sequence

Illustrated below is the following sequence:

- Clear outputs to zero (SN54HC160 and SN74HC160 are asynchronous; SN54HC162 and SN74HC162 are synchronous)
- 2. Preset to BCD seven
- 3. Count to eight, nine, zero, one, two, and three
- 4. Inhibit



TYPES SN54HC161, SN54HC163, SN74HC161, SN74HC163 SYNCHRONOUS 4-BIT BINARY COUNTERS

'161 and '163 output sequence

Illustrated below is the following sequence:

- Clear outputs to zero (SN54HC161 and SN74HC161 are asynchronous; SN54HC163 and SN74HC163 are synchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen, zero, one, and two
- 4. Inhibit

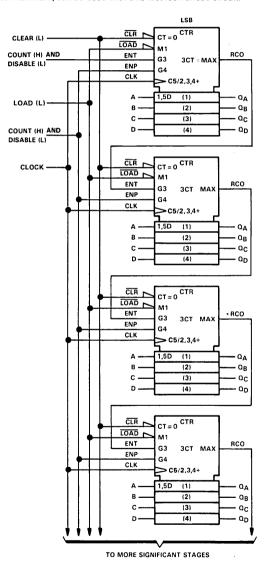
TYPES SN54HC160 THRU SN54HC163 SN74HC160 THRU SN74HC163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

maximum ratings, recommended operating conditions, and electricical characteristics See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

				SN54HC160 THRU SN54HC163		SN74HC160 THRU SN74HC163			UNIT	
				MIN	NOM	MAX	MIN	NOM	MAX	1
fclock	Clock frequency									MHz
			'HC160, 'HC162							
tw	Pulse duration	CLK high or low	'HC161, 'HC163			~				ns
		'HC160, 'HC161	CLR low							1
		A, B, C, D		-						
		CHO SAIT	'HC160, 'HC161							}
tsu	Setup time	ENP, ENT	'HC162, 'HC163							ns
ารน	before CLK1	'HC160, 'HC161	CLR inactive							1 '''
			CLR low							1
		'HC162, 'HC163	CLR high (inactive)							1
th	Hold time, all synchronous inputs after CLK1				1					ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM TO		V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} ≈ 4.5 V to 5.5 V, C _L = 50 pF						
	(INPUT)	(OUTPUT)	TA = 25°C	TA = 25°C	SN54HC'	SN74HC'				
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX				
f _{max}							MHz			
tPLH		200								
tpHL	CLK	RCO			1		ns			
^t PLH	CLK	Any Q					ns			
tPHL		7.11, 4					_			
tPLH .		200								
tPHL	ENT	RCO					ns			
^t PHL	CLR	Any Q					ns			
t _{PHL}	CLR	RCO					ns			
C _{pd}	Power	dissipation capac	itance	No load, TA = 25°C pF typ						

TYPES SN54HC160 THRU SN54HC163 SN74HC160 THRU SN74HC163 SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS

TYPICAL APPLICATION DATA

N-BIT SYNCHRONOUS COUNTERS

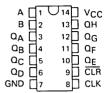
This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The 'HC160 and 'HC162 will count in BCD, and the 'HC161 and 'HC163 will count in binary. Virtually any count mode (modulo-N, N₁-to-N₂, N₁-to-maximum) can be used with this fast look-ahead circuit.

TEXAS INSTRUMENTS

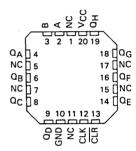
- AND-Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Direct Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit shift registers feature AND-gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either input inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, provided the minimum setup time requirements are met. Clocking occurs on the low-to-high-level transition of the clock input.

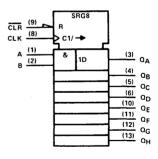

The SN54HC164 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC164 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


1	INPUTS			OUTPUTS				
CLEAR	CLEAR CLOCK			QA	QΒ.	Он		
L	X	×	Х	L	L	L		
Н	L	×	Х	QAO	α_{BO}	σHο		
Н	Ť	н	Н	н	Q_{An}	QGn		
Н	t	L	X	L	Q_{An}	q_{Gn}		
н	1 1	×	L	L	Q_{An}	Q_{Gn}		

- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- t = transition from low to high level.
- $Q_{AO},\ Q_{BO},\ Q_{HO}$ = the level of $Q_A,\ Q_B,\ or\ Q_H$, respectively, before the indicated steady-state input conditions were established.
- $Q_{An},\,Q_{Gn}$ = the level of Q_A or Q_G before the most-recent † transition of the clock; indicates a one-bit shift.

SN54HC164 . . . J PACKAGE SN74HC164 . . . J OR N PACKAGE (TOP VIEW)



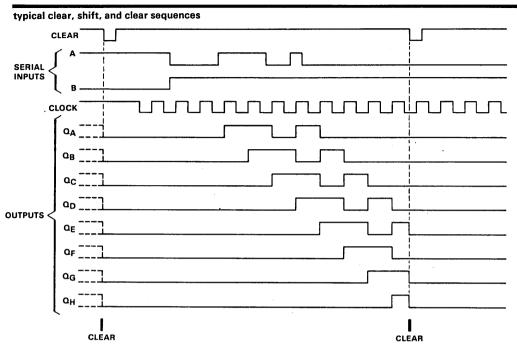
SN54HC164 ... FH OR FK PACKAGE SN74HC164 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics


See Table IV, page 2-6.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

3

TYPES SN54HC164, SN74HC164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

timing requirements (supplement to recommended operating conditions)

			s	SN54HC164		S	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	1
fclock	Clock frequency								MHz
		CLR low							
tw	t _w Pulse duration	CLK high							ns
		CLK low							1
	Setup time	Data				i i			
t _{su}	before CLK1	CLR inactive							ns
th	Hold time, data after	CLK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

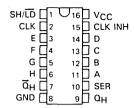
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = C _L = 5		50 pF	UNIT			
	, ,	,	T _A = 25°C	TA = 25°C SN54HC164SN74HC164						
			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}										MHz
tPHL	CLR	Any Q								ns
tPLH .	CLK	A O								ns
tPHL	CER	Any Q								113
C _{pd}	Powe	er dissipation capa	citance	No load, TA = 25°C pF ty					pF ty	p

- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

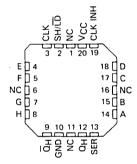
description

The 'HC165 is an 8-bit serial shift register that. when clocked, shifts the data toward serial output QH. Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the SH/LD input. The 'HC165 also features a clock inhibit function and a complementary serial output QH.

Clocking is accomplished by a low-to-high transition of the CLK input while SH/LD is held high and CLK INH is held low. The functions of the CLK and CLK INH (clock inhibit) inputs are interchangeable. Since a low CLK input and a low-to-high transition of CLK INH will also accomplish clocking, CLK INH should be changed to the high level only while the CLK input is high. Parallel loading is inhibited when SH/LD is held high. The parallel inputs to the register are enabled while SH/LD is low independently of the levels of CLK, CLK INH, or SER inputs.

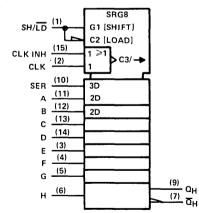

The SN54HC165 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC165 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


II	NPUTS	3	
SH/LD	CLK	CLK INH	FUNCTION
L	X	Х	PARALLEL LOAD
н	н	X	NO CHANGE
н	×	Н	NO CHANGE
H	L	1	SHIFT
Н	Ť	L	SHIFT

SHIFT-content of each internal register shifts toward serial output QH. Data at serial input is shifted into first register.

SN54HC165 . . . J PACKAGE SN74HC165 . . . J OR N PACKAGE (TOP VIEW)



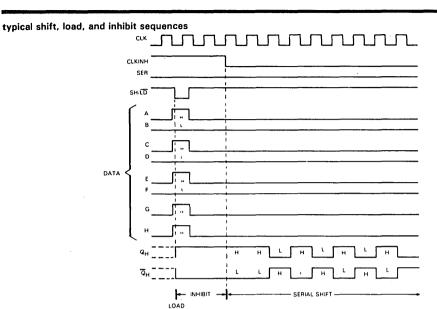
SN54HC165 . . . FH OR FK PACKAGE SN74HC165 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics


See Table IV, page 2-6.

PRODUCT PREVIEW

Texas Instruments

Copyright @1982 by Texas Instruments Incorporated

TYPES SN54HC165, SN74HC165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

timing requirements (supplement to recommended operating conditions)

			SN54HC165		SN74HC165						
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT		
fclock	Clock frequency								MHz		
	Pulse duration	SH/LD low									
tw		CLK high							ns		
		CLK low									
	Setup time	SH/LD high before CLK1									
		SER before CLK1							1		
^t su		CLK INH before CLK1							ns		
		Data before SH/LDt							1		
th	Hold time, SER after CLK1								ns		

TYPES SN54HC165, SN74HC165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

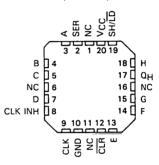
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ T _A = 25°C	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF				
]				T _A = 25°C	SN54HC16	SN54HC165 SN74HC165		
			MIN TYP MAX	MIN TYP MA	X MIN MAX	MIN MAX		
fmax							MHz	
^t PLH	SH∕Ū	QΗ						
tPHL .		SU/ID	ч					ns
tPLH .		·ᾱμ					115	
tPHL		u _H						
^t PLH		αH						
tPHL,	CLK						ns	
tPLH .	CER	Ōн					,,,,	
tPHL		OH.						
tPLH .		QH						
tPHL .	н -						ns	
tPLH .		$\overline{\mathbf{Q}}_{H}$					113	
tPHL,		Ч				<u></u>		
C _{pd}	Pow	er dissipation capa	citance	No load, T	A = 25°C	pF t	ур	

- Synchronous Load
- Direct Overriding Clear
- Parallel to Serial Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

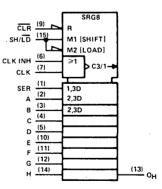
The 'HC166 parallel-in or serial-in, serial-out registers feature gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a twoinput positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This, of course, allows the system clock to be free-running and the register can be stopped on command with the clock input. The clock-inhibit input should be changed to the high level only when the clock input is high. A direct clear input overrides all other inputs, including the clock, and sets all flipflons to zero.

The SN54HC166 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC166 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE

		INTERNAL		ОИТРИТ					
CLEAR SHIFT		SHIFT/ CLOCK CLOCK SERIA		SERIAL	PARALLEL	OUTPUTS			
CLEAR	LOAD	INHIBIT	CLUCK	SERIAL	A H	QA	αв	αн	
L	x	Х	×	Х	×	L	L	L	
н	x	L	L	×	×	QAO	Q_{B0}	QHO	
н	L	L ·	1	×	ah	a	b	h	
н	н	L	1	н	×	н	Q_{An}	QGn	
н	н	L	1	L	×	L	Q_{An}	a_{Gn}	
н	x	Н	1	×	×	Q _{A0}	α_{B0}	Q _{HO}	

SN54HC166 . . . J PACKAGE SN74HC166 . . . J OR N PACKAGE (TOP VIEW)


SER 🗍	1	U ₁₆	□vcc
Α□	2	15] SH/L̄D
В	3	14	Дн
сП	4	13	□он
₽□	5	12	G
	6	11	∏ F
CLK 🗌	7	10	ΞĒ
GND ☐	8	9	CLR

SN54HC166 ... FH OR FK PACKAGE SN74HC166 ... FH OR FN PACKAGE (TOP VIEW)

NC — No internal connection

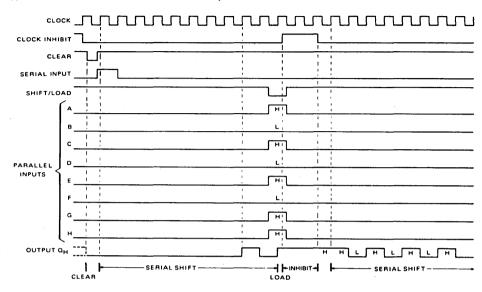
logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW


TEXAS INSTRUMENTS

Copyright ©1982 by Texas Instruments Incorporated

2.27

TYPES SN54HC166, SN74HC166 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

typical clear, shift, load, inhibit, and shift sequences

timing requirements (supplement to recommended operating conditions)

			SN54HC166		SN74HC166			UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
fclock	Clock frequency								MHz
		CLR low							
		SH/LD low							1
t _w	Pulse duration	CLK high							ns
		CLK low							
	Setup time before CLKI	SH/LD high before CLK1							
		SER before CLK1							
t _{su}		CLK INH before CLK1							ns
		Data before SH/LDt							7
		CLR inactive							
th	Hold time, SER after CLK1								กร

TYPES SN54HC166, SN74HC166 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (оитрит)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF						
			TA = 25°C	T _A = 25°C	SN54HC166	SN74HC166	4			
1			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX				
f _{max}							MHz			
[†] PHL	CLR	QH					ns			
tPLH .	CLK	ΩH					ns			
tPHL	CLK						115			
tPLH	SH/ID	SH/ID	SH/LD	SH/ID	QH					ns
[†] PHL	311/ LD	чн					113			
^t PLH	Н	QH					ns			
tPHL .		ЧН ЧН					115			
C _{pd}	Powe	er dissipation capac	itance	No load, TA = 25°C pF t			p			

TYPES SN54HC173. SN74HC173 4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

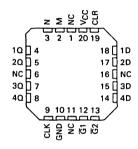
D2684, DECEMBER 1982

High-Current 3-State Outputs Interface Directly with System Bus or Can Drive up to 15 LSTTL Loads

- Gated Output-Control Lines for Enabling or Disabling the Outputs
- Fully Independent Clock Virtually Eliminates Restrictions for Operating in One of Two Modes
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC173 four-bit registers include D-type flip-flops featuring totem-pole three-state outputs capable of driving highly capacitive or relatively low-impendance loads. The high-impedance third state and increased drive provide these flip-flops with the capability of being connected directly to and driving the lines in a busorganized system without need for interface or pull-up components.

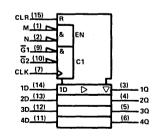

Gated enable inputs are provided on these devices for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flipflops on the next positive transition of the clock input. Gate output control inputs are also provided. When both are low, the normal logic states (high or low levels) of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.

The SN54HC173 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC173 is characterized for operation from -40°C to 85°C.

SN54HC173 . . . J PACKAGE SN74HC173 . . . J OR N PACKAGE (TOP VIEW)

М	1	D 16	Vcc
И	2	15	CLR
10 [3	14	1D
20 [4	13	2D
30 [5	12	3D
40 [6	11	4D
CLK [7	10	Ğ2
GND 🗀	8	9	Ğ1

SN54HC173 . . . FH OR FK PACKAGE SN74HC173 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

		INPUTS			ОПТРИТ		
CLEAR	СГОСК	DATA	ENABLE	DATA			
CLEAR	CLUCK	Ğ1	Ğ2	D	u		
Н	X	Х	X	х	L		
L	L	х	Х	x	σ_0		
L	1	н	Х	х	α_0		
L	1	X.	Н	x	<u>ი</u> ე იე		
L	l t	L	Ĺ	L	L		
L	1	L	L	н	н		

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however sequential operation of the flip-flops is not affected.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC173, SN74HC173 4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			S	N54HC1	73	S	N74HC1	73	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX]
fclock	Input clock frequency								MHz
A Bules duration	CLK high or low							T	
tw	w Pulse duration	CLR low							ns
		G1 and G2 low							ns
tsu	Setup time before CLK1	Data			\				
		CLR inactive							1
A Maid diama after CLVI	G1 and G2 low								
th .	h Hold time after CLKI	Data							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT		
	(001701)		TA = 25°C		TA = 25°C		SN54HC173SN74HC17			HC173			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	,	
f _{max}													MHz
^t PHL	CLR	Any											ns
tPLH	CLK	Any											ns
t _{PHL}	CLIK	Ally			_								113
tPZH	M or N	Any							Ĺ				ns
^t PZL	101 01 14	Ally											ns
t _{PHZ}	M or N	Any											ns
tPLZ	IVI OI IV	Ally										l	- 113
C _{pd}	Powe	er dissipation capa	citance				No lo	ad, TA	= 25°C			pF typ)

'HC174 Contains Six Flip-Flops with Single-Rail Outputs

- 'HC175 Contains Four Flip-Flops with Double-Rail Outputs
- Applications Include:

Buffer/Storage Registers Shift Registers Pattern Generators

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

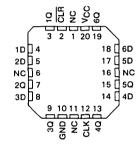
description

These monolithic, positive-edge-triggered D-type flip-flops have a direct clear input and the 'HC175 features complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going edge of the clock pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

The SN54HC174 and SN54HC175 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC174 and SN74HC175 are characterized for operation from -40°C to 85°C.

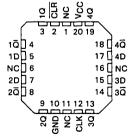
FUNCTION TABLE (EACH FLIP-FLOP)


Ī	NPUTS	;	OUTPUT				
CLR	CLK	D	Q	Qٔ†			
L	х	X	L L	Н			
н	1 .	Н	Н	L			
н	t	L	L	Н			
н	L	Х	Qn	Qπ			

†'HC175 only

SN54HC174 . . . J PACKAGE SN74HC174 . . . J OR N PACKAGE (TOP VIEW)

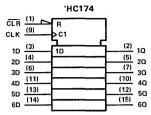
CLR	1	\bigcirc 16	□vcc
1Q	2	15] 6Q
10[3	14]6D
2D [4	13]5D
2Q [5	12]5Q
3D [6	11]4D
3Q 🗌	7	10]4Q
GND [8	9	CLK


SN54HC174 . . . FH OR FK PACKAGE SN74HC174 . . . FH OR FN PACKAGE (TOP VIEW)

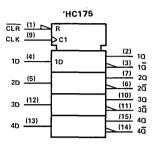
SN54HC175 . . . J PACKAGE SN74HC175 . . . J OR N PACKAGE (TOP VIEW)

CLA [1	U16] VCC
10 🛮 2	15 4Q
1Q∏3	14∐4Q
1D∐4	13 🛮 4D
2D 🛮 5	12 🛮 3D
20 🗖 6	าา 🛚 เฉิ
20 🛚 7	10 🗌 3Q
GND □8	9∏c∟k

SN54HC175 . . . FH OR FK PACKAGE SN74HC175 . . . FH OR FN PACKAGE (TOP VIEW)


NC — No internal connection

Copyright ©1982 by Texas Instruments Incorporated


PRODUCT PREVIEW

TYPES SN54HC174, SN54HC175, SN74HC174, SN74HC175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

logic symbols

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

'HC174 See Table IV, page 2-6.

'HC175 See Table II, page 2-4.

timing requirements (supplement to recommended operating conditions)

				N54HC1 N54HC1			SN74HC174 SN74HC175		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency							- 7	MHz
	CLR low	1			1				
t _W	Pulse duration	CLK high							ns
		CLK low							1
tsu	Setup time	Data							ns
-su	before CLK1	CLR inactive							1
th	· Hold time, data after C	LK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FROM (INPUT)		V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _Δ = 25°C		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF										
	TO (OUTPUT)			T _A = 25°C		SN54HC174 SN74HC174 SN54HC175 SN74HC17								
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX			
f _{max}													MHz	
tPLH .	ČĽŔ	Any Q ('HC175)											ns	
^t PHL	CLN	Any Q												
tPLH	CLK	Any Q											-	
tPHL		(or Q, 'HC175)									L		ns	
C _{pd}	Power dis	sipation capacitance	per flip	-flop			No Io	ad, TA	= 25°C			pF ty	p	

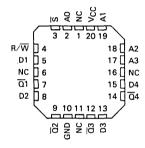
- Organized as 16 Words of Four Bits Each
- High-Current 3-State Inverting Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Information to be stored in the memory is written into the selected address location when the chipselect (\overline{S}) and the write-enable (R/\overline{W}) inputs are low. While the write-enable input is low, the memory outputs are off (Hi-Z). When a number of outputs are bus-connected, this off state neither loads nor drives the data bus; however, it permits the bus line to be driven by other active outputs or a passive pull-up.

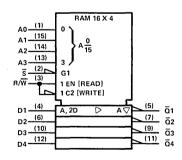
Information stored in the memory (see function table for input/output phase relationship) is available at the outputs when the write-enable input is high and the chip-select input is low. When the chip-select input is high, the outputs will be off.

The SN54HC189 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC189 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE

	INP	UTS	
FUNCTION	CHIP SELECT	WRITE ENABLE	OUTPUTS
Write	L	L	Z
Read	L	н	Complement of Data Entered
Inhibit	н	X	Z

SN54HC189 . . . J PACKAGE SN74HC189 . . . J OR N PACKAGE (TOP VIEW)


A0 [[1	J16]vcc
ริ	2	15	A1
R∕W∏	3	14	A2
D1 🗌	4	13	A3
₫1 🛚	5	12	D4
D2 🗌	6	11	Q 4
₫2 🗌	7	10	D3
GND 🗌	8	9	

SN54HC189 ... FH OR FK PACKAGE SN74HC189 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

timing requirements (supplement to recommended operating conditions)

			S	N54HC1	89	SN74HC189			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
t _w	Pulse duration,	R/W low							ns
Address before R/W	Address before R/WI								
tsu	t _{SU} Setup time	Data before R/W1							ns
		Chip-select before R/Wt							1
		Address after R/W1							
th	Hold time	Data after R/Wf							ns
		Chip-select after R/Wt							1

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, V _{CC} = 4.5 V to 5.5 V, See Note 1			
	((,	T _A = 25°C	T _A = 25°C	SN54HC189 SN74HC189	
			MIN TYP MAX	MIN TYP MAX	MIN MAX MIN MAX	
ta(ad)	Α	Any				ns
ta(S)	S	Any				ns
t _{sr}						ns
	S	Any				
^t dis	R/₩	Any				ns

Cpd Power dissipation capacitance No load, TA = 25°C pF typ

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

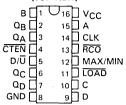
.3

THIS PAGE INTENTIONALLY LEFT BLANK

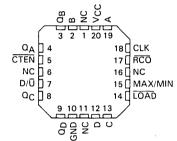
HIGH-SPEED CMOS LOGIC

TYPES SN54HC190, SN54HC191, SN74HC190, SN74HC191 SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS

D2684, DECEMBER 1982


- Single Down/Up Count Control Line
- Look-Ahead Circuitry Enhances Speed of Cascaded Counters
- Fully Synchronous in Count Modes
- Asynchronously Presettable with Load Control
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


The 'HC190 and 'HC191 are synchronous, reversible up/down counters. The 'HC190 is a 4-bit decade counter and the 'HC191 is a 4-bit binary counter. Synchronous counting operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input ($\overline{\text{CTEN}}$) is low. A high at $\overline{\text{CTEN}}$ inhibits counting. The direction of the count is determined by the level of the down/up (D/\overline{U}) input. When D/\overline{U} is low, the counter counts up and when D/\overline{U} is high, it counts down.

SN54HC190, SN54HC191 . . . J PACKAGE SN74HC190, SN74HC191 . . . J OR N PACKAGE (TOP VIEW)

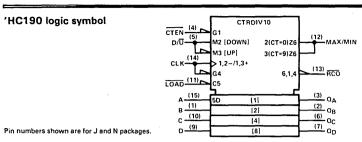
SN54HC190, SN54HC191 . . . FH OR FK PACKAGE SN74HC190, SN74HC191 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

These counters feature a fully independent clock circuit. Changes at the control inputs $(\overline{CTEN} \text{ and } D/\overline{U})$ that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter will be dictated solely by the condition meeting the stable setup and hold times.

These counters are fully programmable; that is, the outputs may each be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

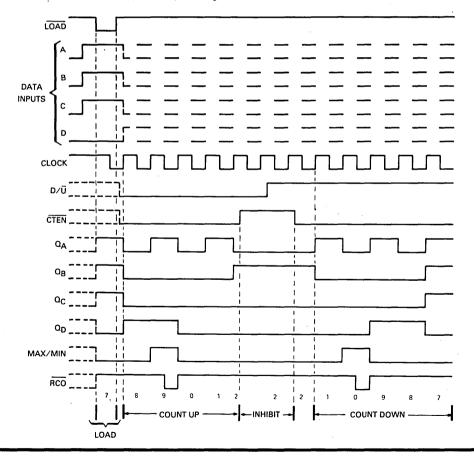
Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is zero (all outputs low) counting down or maximum (9 or 15) counting up. The ripple clock output produces a low-level output pulse under those same conditions but only while the clock input is low. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

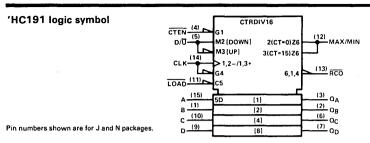

The SN54HC190 and SN54HC191 are characterized for operation over the full military temperature range of -55° C to 125°C. The SN74HC190 and SN74HC191 are characterized for operation from -40° C to 85°C.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

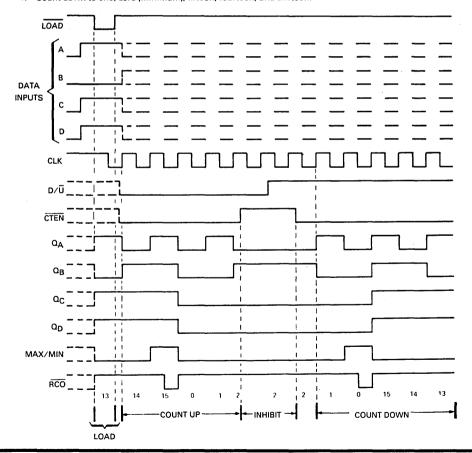
PRODUCT PREVIEW


TYPES SN54HC190, SN74HC190 SYNCHRONOUS 4-BIT UP/DOWN DECADE COUNTERS


typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to BCD seven.
- 2. Count up to eight, nine (maximum), zero, one, and two.
- 3. Inhibit.
- 4. Count down to one, zero (minimum), nine, eight, and seven.


TYPES SN54HC191, SN74HC191 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen.
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two.
- 3 Inhihit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

TYPES SN54HC191, SN74HC191 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS

timing requirements (supplement to recommended operating conditions)

			SN54HC190 SN54HC191			S			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
	Clask francis	'HC190					-		MHz
fclock	Clock frequency	'HC191							IVIHZ
		CLK high							
tw	Pulse duration	CLK low							ns
		LOAD low							1
		Data before LOAD1							
	Catalan timan	CTEN before CLK1							1
t _{su}	Setup time	D/Ū before CLKt							ns
		LOAD inactive before CLK1							1
		Data after LOAD1							
th	Hold time	CTEN after CLK1							ns
		D∕Ū after CLK1							1

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

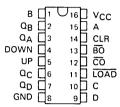
			V _{CC} = 5 C _L = 15					= 4.5 V 50 pF	to 5.5	٧,		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	11 = 2 K34,		T _A = 25°C			SN54HC196 SN54HC19				UNIT
			MIN TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	'HC190											MHz
f _{max}	'HC191											IVITIZ
tPLH .	LOAD	Any Q										ns
tPHL	LOAD	Ally C										113
tPLH	A, B, C, D	Any Q										ns
tPHL	А, В, С, В	Ally Q										113
tPLH	CLK	RCO										ns
tPHL	CLK	RCU										113
tPLH	CLK	Any Q										ns
tPHL		Ally Q										113
tPLH	CLK	MAX/MIN	Į.									ns
tPHL	CER	WIAX WIII										113
^t PLH	D/Ū	RCO										ns
^t PHL	5/0	1100										113
tPLH .	D/Ū	MAX/MIN										ns
tPHL	5/0	IVIOA/ IVIIIV										113
^t PLH	CTEN	RCO										ns
t _{PHL}	CILIT	, neo										113
C _{pd}	Pow	er dissipation capa	citance		No load, TA = 25°C pF t					pF typ)	

HIGH-SPEED CMOS LOGIC

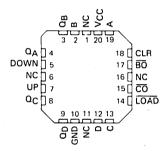
TYPES SN54HC192, SN54HC193, SN74HC192, SN74HC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

D2684, DECEMBER 1982

- Look-Ahead Circuitry Enhances Cascaded Counters
- Fully Synchronous in Count Modes
- Parallel Asynchronous Load for Modulo-N Count Lengths
- Asynchronous Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


description

The 'HC192 and 'HC193 are synchronous, reversible up/down counters. The 'HC192 is a 4-bit decade counter and the 'HC193 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.


The outputs of the four flip-flops are triggered by a low-to-highlevel transition of either count (clock) input (Up or Down). The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

SN54HC192, SN54HC193...J PACKAGE SN74HC192, SN74HC193...J OR N PACKAGE (TOP VIEW)

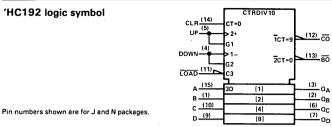
SN54HC192, SN54HC193 . . . FH OR FK PACKAGE SN74HC192, SN74HC193 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

A clear input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and the load inputs.

These counters were designed to be cascaded without the need for external circuitry. The borrow output (\overline{BO}) produces a low-level pulse while the count is zero (all outputs low) and the count-down is low. Similarly, the carry output (\overline{CO}) produces a low-level pulse while the count is maximum (9 or 15) and the count-up input is low. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs, respectively, of the succeeding counter.

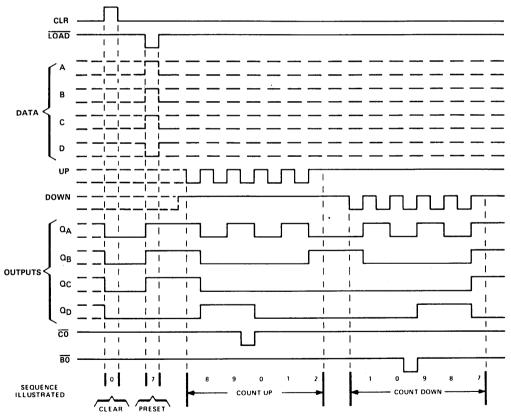
The SN54HC192 and SN54HC193 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC192 and SN74HC193 are characterized for operation from -40°C to 85°C.


maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW This document contains information on a product under development. Texas Instru-

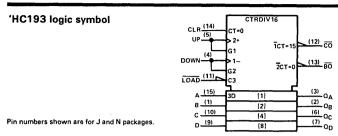
ments reserves the right to change or discontinue this product without notice.


TYPES SN54HC192, SN74HC192 SYNCHRONOUS 4-BIT UP/DOWN DECADE COUNTERS (DUAL CLOCK WITH CLEAR)

typical clear, load, and count sequences

Illustrated below is the following:

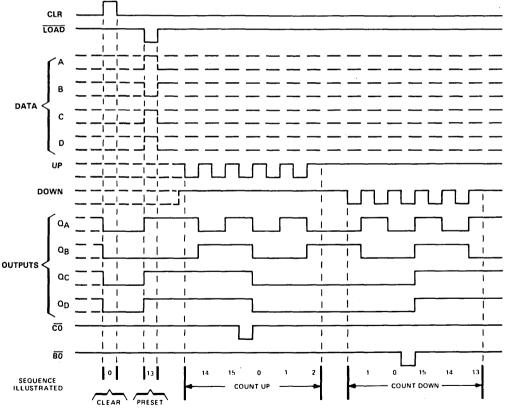
- 1. Clear outputs to zero.
- 2. Load (preset) BCD seven.
- 3. Count up to eight, nine, carry, zero, one, and two.
- 4. Count down to one, zero, borrow, nine, eight, and seven.



NOTES: A. Clear overrides load, data, and count inputs.

B. When counting up, count-down input must be high; when counting down, count-up input must be high.

3-92


TYPES SN54HC193, SN74HC193 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS (DUAL CLOCK WITH CLEAR)

typical clear, load, and count sequences

Illustrated below is the following:

- 1. Clear outputs to zero.
- 2. Load (preset) to binary thirteen.
- 3. Count up to fourteen, fifteen, carry, zero, one, and two.
- 4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES: A. Clear overrides load, data, and count inputs.

B. When counting up, count-down input must be high; when counting down, count-up input must be high.

TYPES SN54HC192, SN54HC193, SN74HC192, SN74HC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

timing requirements (supplement to recommended operating conditions)

			SN54HC192 SN54HC193		SN74HC192 SN74HC193			UNIT	
			MIN	NOM	MAX	MIN	NOM	MAX	1
	Clask for a sur	'HC 192					,		MHz
fclock	Clock frequency	'HC193							WITZ
		CLR high							
	Pulse duration	LOAD low							1
tw	ruise duration	UP or DOWN high							ns
		UP or DOWN low				[·			1
		Data before LOAD1							
tsu	Setup time	CLR inactive before UP1 or DOWN1							ns
		LOAD inactive before UP1 or DOWN1							1
	-	Data after LOADt							
th	Hold time	UP high after DOWN!							ns
		DOWN high after UPI							1

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

			V _{CC} = 5 V, C _L = 15 pF,		c = 4.5 V to 5.5 = 50 pF	ν,	
PARAMETER	FROM (INPUT)	TO (OUTPUT)	R _L = 2 kΩ, T _A = 25°C MIN TYP MAX	T _A = 25°C	SN54HC193	SN74HC192 SN74HC193 MIN MAX	UNIT
	'HC	192					
f _{max}	'HC	193					MHz
tPLH	UP	co					ns
tPHL_	01						113
tPLH	DOWN	BO					ns
t _{PHL}	201111						
tpLH	UP or DOWN	Any Q					ns
tpHL	01 01 000111	7,11,12					
tPLH	LOAD	Any Q					ns
^t PHL	LOAD	Ally C					115
[†] PHL	CLR	Any Q					ns
C _{pd}	Powe	er dissipation capa	citance	No load, TA = 25°C pF			

TYPES SN54HC194, SN74HC194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

D2684 DECEMBER 1982

Parallel Inputs and Outputs

Four Operating Modes:

Synchronous Parallel Load Right Shift Left Shift

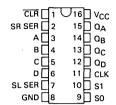
Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

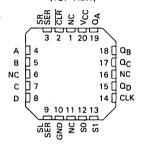
description

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit features parallel inputs, parallel outputs, rightshift and left-shift inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load Shift right (in the direction Q_A toward Q_D) Shift left (in the direction QD toward QA) Inhibit clocking (do nothing)

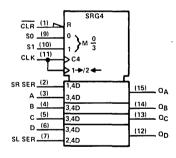

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When SO is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.


Clocking of the shift register is inhibited when both mode control inputs are low.

The SN54HC194 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC194 is characterized for operation from -40°C to 85°C.

SN54HC194 . . . J PACKAGE SN74HC194 . . . J OR N PACKAGE (TOP VIEW)



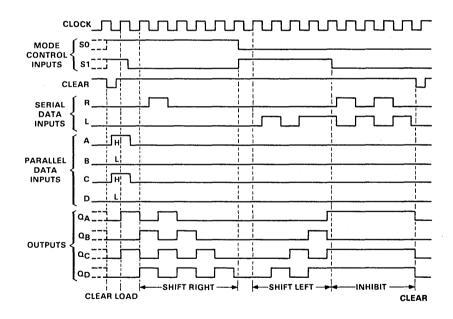
SN54HC194 . . . FH OR FK PACKAGE SN74HC194 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

PRODUCT PREVIEW


Copyright \$1982 by Texas Instruments Incorporated

TYPES SN54HC194, SN74HC194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

FUNCTION TABLE

				INPUT	5						OUT	PUTS	
CLEAD	MC	DE	CI COK	SE	RIAL		PARA	ALLEI		<u> </u>	0-	^-	^-
CLEAR	S1	SO	CLOCK	LEFT	RIGHT	Α	В	С	D	QA	σв	σC	αD
L	х	X	X	X	X	X	X	X	X	L	L	L	L
н	x	х	L	x	X ·	х	X	Х	х	QAO	σ_{BO}	αco	α_{DO}
Н	н	Н	l t	×	X	а	ь	С	d	a	b	С	d
Н	L	Н	1	×	н	×	х	х	Х	Н	Q_{An}	Q_{Bn}	Q_{Cn}
Н	L	Н	1 1	×	L	×	Х	Х	Х	L	Q_{An}		Q_{Cn}
н	н	L	t	н	X	×	Х	X	Х	QΒn	Q_{Cn}	Q_{Dn}	Н
н	Н	L] †	L	×	x	Х	Х	х	QBn	Q_{Cn}	Q_{Dn}	L
н	L	L	×	×	X	×	Х	X	х	QAn	Q_{Bn}	QCn	a_{D0}

typical clear, load, right-shift, left-shift, inhibit, and clear sequences

TYPES SN54HC194, SN74HC194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

			SN54HC194			SN74HC194			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX]
fclock	Clock frequency								MHz
	Dulas durasias	CLK high or low							
· t _w	Pulse duration	CLR low							ns
		Mode control							
tsu	Setup time before CLK1	Serial and parallel data							ns
		CLR inactive							1
th	Hold time at any input after	CLK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	то (оитрит)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		≈ 4.5 V to 5.5 50 pF	v.	UNIT
	((000.,	T _A = 25°C	T _A = 25°C	SN54HC194	SN74HC194	
		-	MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
f _{max}							MHz
tPHL	CLR	Any Q					ns
tPLH .	CLK	Any Q					ns
^t PHL		Anyu					115
C _{pd}	Pow	er dissipation capa	citance	No load, TA	= 25°C	pF t	ур

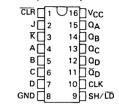
D2684, DECEMBER 1982

- Synchronous Parallel Load
- Positive-Edge-Triggered Clocking
- J and K Inputs to First Stage
- Complementary Outputs from Last Stage
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

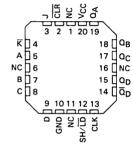
description

These 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear. The registers have two modes of operation: parallel (broadside) load, and shift (in the direction QA toward QD).

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

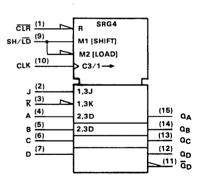

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs permit the first stage to perform as a J-K, D-, or T-type flip-flop as shown in the function table.

The SN54HC195 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC195 is characterized for operation from –40°C to 85°C.


FUNCTION TABLE

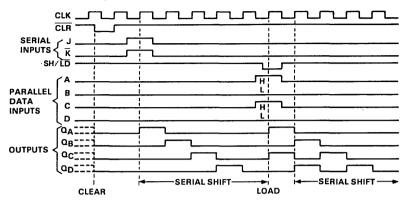
		INP	UTS							0	UTPU	rs	
CLEAR	SHIFT/	CLOCK	SEF	RIAL		PAR	ALLE	Ĺ		Α.	_	_	
CLEAN	LOAD	CLOCK	J	ĸ	Α	В	С	D	QA	ОΒ	σ^{C}	σD	αD
L	×	×	X	X	X	х	×	X	L	L	L	L	Н
н	L	1	x	X	а	b	С	d	а	b	С	d	ā
н	н	L	×	X	х	X	X	х	QAO	Q_{BO}	α_{CO}	Q_{DO}	ΩDO
н	н	t	L	н	x	x	x	X	QAO	QAO	Q_{Bn}	Q_{Cn}	\bar{a}_{Cn}
н	н	l †	L	L	x	×	X	х	L	Q_{An}	QBn	Q_{Cn}	ācn
н	н	l t	н	н	x	x	X	X	н	Q_{An}	Q_{Bn}	QCn	ācn
н	н	t	н	L	x	Х	X	Х	$\bar{\alpha}_{An}$	\mathbf{Q}_{An}	α_{Bn}	α_{Cn}	$\bar{\alpha}_{Cn}$

SN54HC195 . . . J PACKAGE SN74HC195 . . . J OR N PACKAGE (TOP VIEW)



SN54HC195 . . . FH OR FK PACKAGE SN74HC195 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection


logic symbol

Pin numbers shown are for J and N packages.

PRODUCT PREVIEW

TEXAS INSTRUMENTS

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

			S	N54HC1	95	S	95		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	Dules donesies	CLK high or low							
tw	Pulse duration	CLR low							ns
		SH/LD							
t _{su}	Setup time before CLK1	Serial and parallel data		~~~					ns
		CLR inactive (high)							1
	Haldelan a Gura CLKA	SH/LD		-					
^t h	Hold time after CLK1	Serial and parallel data							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,					= 4.5 V 50 pF	to 5.5	v,		UNIT
	(INFOT)	(001701)	TA = 2	25°C	T,	T _Δ = 25°C SN54HC195		SN741	HC195			
			MIN T	YP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}												MHz
tPLH .	CLK	Q _A thru Q _D			1							ns
tPHL	CLK	ug iiiu ub										115
tPLH .	CLK	\overline{a}_{D}										ns
tPHL	CLK	40										113
tPLH .	CLR	ᾱD										ns
tPHL	CLN	Q _A thru Q _D										115
Cod	Pow	er dissination cana	citance			No Io	ad TA	= 25°C		I	nF tv	vn

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

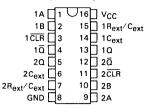
TEXAS INSTRUMENTS

D2684, DECEMBER 1982

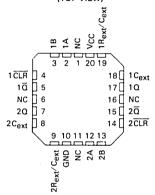
- **Overriding Clear Terminates Output Pulse**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices are monolithic dual multivibrators featuring a negative-transition-triggered input and a positive-transitiontriggered input either of which can be used as an inhibit input.


Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitttrigger input circuitry for the B input allows jitter-free triggering from inputs with slow transition rates.

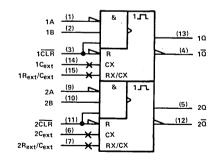
Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the overriding clear. Input pulses may be of any duration relative to the output pulse. Output rise and fall times are independent of pulse length.


Pulse duration stability is achieved through internal compensation and is virtually independent of VCC and temperature. In most applications, pulse stability will be limited only by the accuracy of external timing components.

The SN54HC221 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC221 is characterized for operation from -40°C to 85°C.

SN54HC221 . . . J PACKAGE SN74HC221 . . . J OR N PACKAGE (TOP VIEW)

SN54HC221 . . . FH OR FK PACKAGE SN74HC221 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE (EACH MONOSTABLE)

INI	PUTS		OUTPUTS				
CLEAR	Α	В	Q	ā			
L	x	х	L	Н			
×	н	Х	L†	Hţ			
×	x	L	Lt	H†			
н	L	t	1	\Box			
н	1	Н	77	Т			
1	L	Н	1	Ъ			

[†]The second and third lines each indicate the logic levels the outputs will take on after the completion of any pulse already started

logic symbol

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC221, SN74HC221 DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

Note: The minimum recommended supply voltage for this device is 3 V.

timing requirements (supplement to recommended operating conditions)

			SN54HC221			S	N74HC2	21	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
4.74	Date of size and the file and and a	A inputs							V/µS
dv/dt	Rate of rise or fall of input pulse	B inputs							V/S
	dana dana dana dana dana dana dana dana	A or B							
tw	Input pulse duration	CLR low							ns
t _{su}	Setup time, CLR inactive								ns
Rext	External timing resistance								kΩ
Cext	External timing capacitance								μF

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO (INPUT) (OUTPUT)		TIMING COMPONENTS		V _C C C _L = R _L =		V _{CC} ≈ 4.5 V to 5.5 V, C _L = 50 pF						UNIT	
	(0.7)	.,	COM CITERIO		TA = 25°C		T	TA = 25°C		SN54	HC221	1 SN74HC221		
			Cext	Rext	MIN T	YP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	Α	a	80 pF	2 kΩ										ns
TEN	В									<u> </u>				
t _{PHL}	Α	ā	80 pF	2 kΩ										ns
TIL	В	l				_								
^t PHL_	CLR	a	80 pF	2 kΩ										ns
tPLH .	CLIT	ā	00 p.	- 1.22										
			80 pF	2 kΩ										
tw(out)	A or B	Q or $\overline{\mathbf{Q}}$	0 pF	2 kΩ										ns
,M(onr)	AUID	4014	100 pF	10.kΩ										
			1 μF	10 kΩ										ms
C _{pd}	Power dissipation capacitance per mul			ltivibrato	r	No load, T _A = 25°C pF ty			oF typ					

TYPES SN54HC240, SN54HC241, SN74HC240, SN74HC241 OCTAL BUFFERS AND LINE DRIVERS

WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- High-Current Outputs Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

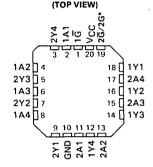
description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical G (active-low output control) inputs, and complementary G and G inputs. These devices feature high fan-out.

The SN54HC' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC' family is characterized for operation from -40°C to 85°C.

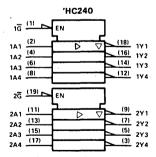
SN74HC'...J OR N PACKAGE (TOP VIEW) 1Ğ [[1 U20∐ V_{CC} 1A1 [19 ☐ 2G/2G* 2Y4 [18 7 1Y1 1A2 **□** 17 7 2A4 16 1Y2 2Y3 🗆 5 1 A 3 ∏6 15 2A3 2Y2 17 14 T 1Y3 1A4 | 8 13 2A2

12 T 1Y4


11 2A1

SN54HC'...J PACKAGE

SN54HC'...FH OR FK PACKAGE SN74HC'... FH OR FN PACKAGE


2Y1 🗖 9

GND []10

*2G for 'HC240, or 2G for 'HC241

logic symbols

Pin numbers shown are for J and N packages.

'HC241 16 FN (18) 1A1 D (4) (16) 1A2 172 (6) (14) 1Y3 1A3 (8) (12) 174 144 (19) 2G EN (11) (9) 2A1 7 (13) (7) 2A2 2Y2 (15) (5) 2A3 2Y3 2A4 (17) (3)

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC240, SN54HC241, SN74HC240, SN74HC241 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

'HC240 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TER FROM T		V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,	V _{CC} = 4.5 V to 5.5 V, See Note 1						
			T _A = 25°C	T _A = 25°C	SN54HC240	וכ				
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	MAX			
tPLH	A	Y					ns			
tPHL	^						113			
tpzH	G	ν					ns			
tPZL	G	' '					113			
tPLZ .	G						ns			
^t PLZ	<u> </u>	<u> </u>					115			
C _{pd}	Power dissipation capacitance per buffer			No load, TA	= 25°C	pF t	ур			

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC241 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	T _A = 25°C	V _{CC} = 4.5 V to 5.5 V, See Note 1						
[TA = 25°C		SN54	HC241	SN741	SN74HC241	
				MIN TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A	Y								ns
tPHL .	.,									115
^t PZH	1Ğ	i 1Y								ns
tPZL	10									113
tPHZ	1Ğ	1Y								ns
tPLZ										113
tPZH ·	2G	2Y								ns
tPZL	20	21								113
tPHZ	2G	2Y -								ns
tPLZ						<u> </u>				115
C _{pd}	Power dis	sipation capacitan	ce per buffer	No load, TA = 25°C pF t						yp

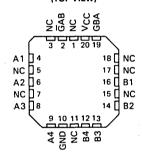
TYPES SN54HC242, SN54HC243, SN74HC242, SN74HC243 QUADRUPLE BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

 2-Way Asynchronous Communication Between Data Buses

- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

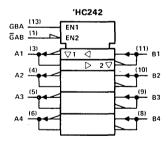

These four-data-line transceivers are designed for asynchronous two-way communications between data buses. The SN74HC' devices can be used to drive terminated lines down to 133 ohms.

The SN54' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74' family is characterized for operation from -40°C to 85°C.

SN54HC242, SN54HC243...J PACKAGE SN74HC242, SN74HC243...J OR N PACKAGE (TOP VIEW)

GAB CALL AS CA	1 C 2 3 4 5	13 12 11 10	VCC GBA NC B1 B2 B3
A4 []	6	9	B3
GND []	7		B4

SN54HC242, SN54HC243 . . . FH OR FK PACKAGE SN74HC242, SN74HC243 . . . FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

FUNCTION TABLE

INP	UTS		
ĞAB	GBA	'HC242	'HC243
L	L	Ā to B	A to B
Н	Н	B to A	B to A
Н	Ĺ	Isolation	Isolation
,	Н	Latch A and B	Latch A and B
-	п	$(A = \overline{B})$	(A = B)

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

3

3-104

TYPES SN54HC242, SN54HC243, SN74HC242, SN74HC243 QUADRUPLE BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'HC242 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO (OUTPO	i	TPUT) R _L = 667Ω, T _A = 25°C	V _{CC} = 4.5 V to 5.5 V, See Note 1						
				TA = 25					HC242 MAX	
tPLH tPHL	A or B	B or A								ns
^t PZH tPZL	ĞАВ	В								ns
[†] PHZ [†] PLZ	ĞАВ	В								ns
tPZH tPZL	GBA	Α							_	ns
tPHZ tPLZ	GBA	A								ns
C _{pd}	Power dissip	Power dissipation capacitance per transceiver			No load, T _A = 25°C pF t					

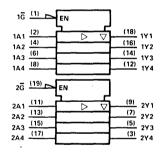
NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC243 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

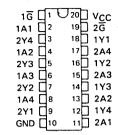
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C	V _{CC} = 4.5 V to 5.5 V, See Note 1						
J				T _A = 25°C		SN54HC243 SN74HC243			HC243	
			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A								ns
tPHL	7015									113
tPZH .	GAB	В								ns
tPZL.										110
tPHZ	GAB	В								ns
tPLZ	440	,								113
tPZH	GBA	A								ns
tPZL										113
t _{PHZ}	GBA	А								ns
tPLZ	GBA	1^								113
C _{pd}	Power dissip	Power dissipation capacitance per transceiver			No load, TA = 25°C pF to					

TYPES SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

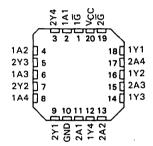
D2684, DECEMBER 1982


- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


These octal buffers and line drivers are designed specifically to improve both the performance and density of the three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'HC240 and 'HC241, these devices provide the choice of selected combinations of inverting outputs, symmetrical $\overline{\mathbf{G}}$ (active-low input control) inputs, and complementary \mathbf{G} and $\overline{\mathbf{G}}$ inputs.

The SN54HC244 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC244 is characterized for operation from -40°C to 85°C.


logic symbol

SN54HC244...J PACKAGE SN74HC244...J OR N PACKAGE (TOP VIEW)

SN54HC244 ... FH OR FK PACKAGE SN74HC244 ... FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

Copyright ©1982 by Texas Instruments Incorporated

3-106

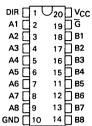
TYPES SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

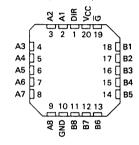
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V. C _L = 45 pF, R _L = 667Ω, T _A = 25°C		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT
	(TA = 25°C		SN54HC244		4 SN74HC244			
			MIN TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH .	A	v										
tPHL		'	<u>'</u>									
tPZH	<u> </u>											ns
tPZL												115
tPLZ	G											
^t PHZ	G											ns
C _{pd}	Power dissipation capacitance per buffer			No load, T _A = 25°C pF ty						p		

D2684, DECEMBER 1982

- **High-Current 3-State Outputs Drive Bus Lines** Directly or Up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

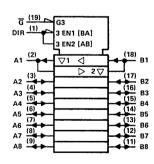

description

These octal bus transceivers are designed for synchronous twoway communication between data buses. The control function implementation minimizes external timing requirements.


The devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (G) can be used to disable the device so that the buses are effectively

The SN54HC245 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC245 is characterized for operation from -40°C to 85°C.

SN54HC245...J PACKAGE SN74HC245 . . . J OR N PACKAGE (TOP VIEW)


SN54HC245 . . . FH OR FK PACKAGE SN74HC245 . . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

	TROL	OPERATION
Ğ	DIR	
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Texas Instruments

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

This document contains information on a

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC245, SN74HC245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

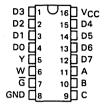
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO (OUTPUT)		CL	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT
	(517	(557751)	TA = 25°C		T _A = 25°C		SN54HC245		5 SN74HC245				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH .	A or B	or B B or A											ns
tPHL								-					113
tPZH		A or B											ns
tPZL	<u> </u>	AGIB											115
^t PHZ	G	A or B											ns
[†] PLZ		AUIB				Ĺ					L		115
C _{pd}	Power dissipation capacitance per trans			sceive	r	No load, TA = 25°C pF					pF t	yp	

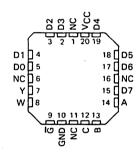
TYPES SN54HC251, SN74HC251 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- 3-State Version of 'HC151
- High-Current 3-State Outputs Interface Directly with System Bus or Can Drive up to 15 LSTTL Loads
- Performs Parallel-to-Serial Conversion
- Complementary Outputs Provide True and Inverted
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


description

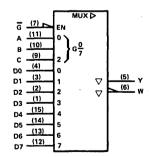
These data selectors/multiplexers contain full binary decoding to select one-of-eight data sources and feature strobe-controlled complementary three-state outputs.


The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low-impedance of the single enabled output will drive the bus line to a high or low logic level. Both outputs are controlled by the strobe (G). The outputs are disabled when G is high.

The SN54HC251 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC251 is characterized for operation from -40°C to 85°C.

SN54HC251 . . . J PACKAGE SN74HC251 . . . J OR N PACKAGE (TOP VIEW)

SN54HC251 . . . FH OR FK PACKAGE SN74HC251 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

	. 11	NPUT	'S	OUT	PUTS
S	ELEC	T	STROBE	·	w
С	В	Α	Ğ	,	**
Х	X	X	Н	Z	Z
L	L	L	L	D0	DO
L	L	Н	L	D1	Dī
L.	Н	L	L	D2	D2
L	н	н	L	D3	D3
Н	L	L	L	D4	D4
н	L	н	[L :	D5	D5
н	н	L	L '	D6	D6
н	н	н	L	D7	D7

D0, D1 . . . D7 = the level of the respective D input

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3.110 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments INCORPORATED

TYPES SN54HC251, SN74HC251 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,	VCC See N	UNIT	
	,] ' '	T _A = 25°C	T _A = 25°C	SN54HC251 SN74HC251]
			MIN TYP MAX	MIN TYP MAX	MIN MAX MIN MAX	
†PLH	A, B or C	Y				ns
tPHL	A, B or C	.				113
[‡] PLH	A, B or C	w		\		ns
tPHL.	A, B 01 C	•				115
tPLH .	Any D	Υ				ns
tPHL	Ally D	.				113
tPLH .	Any D	w				ns
tPHL .						113
tPZH	Ĝ	Y				ns
tPZL		'				115
tPZH	Ğ	w				ns
tPZL.		<u> </u>				113
tPHZ	Ğ	Υ				ns
tPLZ	<u> </u>	'				113
tpHZ	Ğ	w				ns
^t PLZ	<u> </u>					115
C _{pd}	Powe	er dissipation capac	tance	No load, TA	= 25°C	pF typ

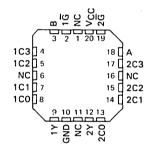
TYPES SN54HC253. SN74HC253 **DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS** WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- 3-State Versions of 'HC153
- High-Current Outputs Drive up to 15 LSTTL Loads
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.

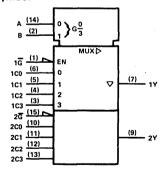

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level. Each output has its own strobe (\overline{G}). The output is disabled when its strobe is high.

The SN54HC253 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC253 is characterized for operation from -40°C to 85°C.

SN54HC253 . . . J PACKAGE SN74HC253 . . . J OR N PACKAGE (TOP VIEW)

1Ğ∐1	\cup_{16}	□vcc
B □ 2	15] 2G
1C3∐3	14] A
1C2 🛮 ₄	13	2C3
1C1∐5	12	2C2
1C0 □ 6	11	2C1
1Y∐7	10	2C0
GND □8	9	2Y

SN54HC253 . . . FH OR FK PACKAGE SN74HC253 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

	ECT		DATA	INPUTS		OUTPUT CONTROL	ОИТРИТ
В	A	CO	C1	C2	C3	Ğ .	Υ
×	X	X	×	×	Х	Н	z
L	L	L	X	×	X	L	Ļ
L	L	Н	×	×	X	L	н
L	н	×	L	×	Х	L	. L
L	н	×	н	×	Х	L	н
н	L	×	×	L	Х	L	L
н	L	l x	×	н	X	L	н
Н	н	×	×	×	L	L	L
H_	Н	×	X	×	Н	L	н

Address inputs A and B are common to both sections.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3-112 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments

TYPES SN54HC253, SN74HC253 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO (OUTPUT)		V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT	
		, , ,	TA	T _A = 25°C	TA = 25°C SN54HC253					SN74	HC253		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ĺ
^t PLH	A or B	Any Y											ns
tPHL .	7015												,,,,
^t PLH	Data (Any C)	Υ .											ns
^t PHL	Data (Ally C)												115
tPZH	G	Y								-			ns
tPZL		,											115
tPHZ	Ğ	Y											ns
tPLZ]												115
C _{pd}	Power dissipation capacitance per multiplexer				No load, T _A = 25°C pF to						pF ty	p	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

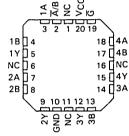
2

TYPES SN54HC257, SN54HC258, SN74HC257, SN74HC258 QUAD 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- **High-Current 3-State Outputs Interface Directly with** System Bus or Can Drive up to 15 LSTTL Loads
- Provides Bus Interface from Multiple Sources in High-Performance Systems
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

SN54HC257, SN54HC258...J PACKAGE SN74HC257, SN74HC258 . . . J OR N PACKAGE (TOP VIEW)

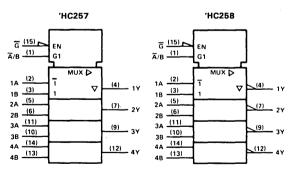

Ā/B [1	U ₁₆	□vcc
1A 🗌 2	15	_ G
1B□3	14] 4A
1Y∏4	13] 4B
2A∐5	12] 4Y
2B∏6	11] 3A
2Y 🗌 7	10] 3B
GND∏8	9	73 Y

description

These devices are designed to multiplex signals from four-bit data sources to four-output data lines in bus-organized systems. The 3-state outputs will not load the data lines when the output control pin (\overline{G}) is at a high-logic level..

The SN54HC257 and SN54HC258 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC257 and SN74HC258 are characterized for operation from -40°C to 85°C

SN54HC257, SN54HC258 . . . FH OR FK PACKAGE SN74HC257, SN74HC258 . . . FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

FUNCTION TABLE

	INPUTS		OUTPUT Y			
CONTROL	SELECT	DATA		"""	"10050	
G	Ā/B	Α	В	'HC257	'HC258	
Н	×	×	×	Z	Z	
L	L	L	X	· L	н	
L	L	н	X	н	L	
L	н	×	L	l L	н	
L	н	x	н	н	L	

logic symbols

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

This document contains information on a 3-114 product under development. Texas Instru-

Texas Instruments INCORPORATED

ments reserves the right to change or discontinue this product without notice.

TYPES SN54HC257, SN54HC258, SN74HC257, SN74HC258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXER WITH 3-STATE OUTPUTS

'HC257 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER FROM	FROM (INPUT)		V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,	V _{CC} = 4.5 V to 5.5 V, See Note 1						
	(INFOT)		TA = 25°C	TA = 25°C	SN54	SN54HC257SN74HC257				
	1		MIN TYP MAX	MIN TYP M	AX MIN	MAX	MIN	MAX		
tPLH .	A or B	Any Y							ns	
tPHL .	7015								113	
tPLH .	Ā/B	Any Y							ns	
tPHL	~ ,								115	
[†] PZH	G	Any Y							ns	
tPZL		- City							113	
tPHZ	G	Any Y							ns	
tpLZ		, Ally I							113	
C _{pd}	Power dissipation capacitance per multiplexer			No load,	T _A = 25°C			pF ty	,	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC258 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	ТО (ОИТРИТ)	D 667 O		V _{CC} = 4.5 V to 5.5 V, See Note 1						
	(1147-01)				TA = 25°C SN54H			HC258	HC258 SN74HC258		
			MIN TYP M	٩X	MIN T	YP MA	MIN	MAX	MIN	MAX	
[†] PLH	A or B	Any Y									ns
tPHL	AOID										
tPLH	Ā/B	Any Y									ns
tPHL .	A/ B										113
tPZH .	G	Any Y									
tPZL		Any									ns
tPHZ	G	,									
tPLZ		Any Y									ns
C _{pd}	Power dissipation capacitance per multiplexer			. No	load, TA	= 25°C			pF ty	p	

D2684, DECEMBER 1982

- 8-Bit Parallel-Out Storage Register Performs Serial-to-Parallel Conversion with Storage
- Asynchronous Parallel Clear
- Active-High Decoder
- Enable Input Simplifies Expansion
- Expandable for N-Bit Applications
- Four Distinct Functional Modes
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

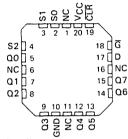
These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear ($\overline{\text{CLR}}$) and enable ($\overline{\text{G}}$) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, enable $\overline{\text{G}}$ should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

The SN54HC259 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC259 is characterized for operation from -40°C to 85°C.

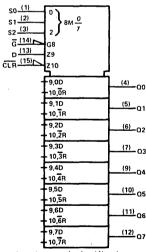
FUNCTION TABLE

INPL	JTS G	OUTPUT OF ADDRESSED LATCH		FUNCTION
Н	Ł	D	Q _{iO}	Addressable Latch
H	н	QiO	Q _{iO}	Memory
L	L	D	L	8-Line Demultiplexer
L	н	L	L	Clear


LATCH SELECTION TABLE

SELEC	TIN	PUTS	LATCH
S2	51	SO	ADDRESSED
L	L	- L	Ö
L	L	н	ì
L	н	L	2
L	н	н	3
н	L	L	4
н	L	н	5
н	н	L	6
н	Н	н :	7

SN54HC259 . . . J PACKAGE SN74HC259 . . . J OR N PACKAGE (TOP VIEW)


SO [[1	U ₁₆	□vcc
S1 []2	15	CLR
S2 🔲 3	14	□ē
00 []4	13	D
Q1 🛛 🛭	12	<u> </u> 07
Q2 🛛 E	11	□ α6
Ø3 🔲 2	10	Q5
GND [[e	9	□ Q4

SN54HC259 . . . FH OR FK PACKAGE SN74HC259 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for \boldsymbol{J} and \boldsymbol{N} packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

TEXAS INSTRUMENTS

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TYPES SN54HC259, SN74HC259 8-BIT ADDRESSABLE LATCHES

timing requirements (supplement to recommended operating conditions)

			S	SN54HC259		S			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
	0.1	CLR low							
w	Pulse duration G low					·····		ns	
t _{su}	Setup time before Gt								ns
th	Hold time after Gt		7						ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO		VCC = 5 V, CL = 15 pF, RL = 2 kΩ,		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF						UNIT		
PARAMETER	(INPUT)	(OUTPUT)	TA = 25°C		T _Δ = 25°C		SN54HC259 SN74HC259			HC259	ONIT		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPHL	CLR	Any Q											ns
tPLH	Data	Any Q											ns
tPHL	Data	Ally C											
tPLH	Address	Any Q											
tPHL	Address	Anyu											ns
^t PLH	G	Any Q										•	ns
tPHL		Ally C											115
Cod	Power di	ssination canacitar	ce ner la	itch		 	No lo	ad Ta	= 25°C			nF t	'n

D2684, DECEMBER 1982

- Can Be Used as a 4-Bit Digital Comparator
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- **Dependable Texas Instruments Quality** and Reliability

description

The 'HC266 is composed of four independent 2input exclusive-NOR gates. While pin-compatible with the 'LS266, the 'HC266 has totem-pole outputs rather than open-collector.

The SN54HC266 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC266 is characterized for operation from -40°C to 85°C.

logic symbol

(1) = 1 (3) (2) (5) (4) - 2Y (6) 2R (8) (10)ЗA (9) 3B (12)(1<u>1)</u> 4Y (13)**4B**

Pin numbers shown are for J and N packages.

SN54HC266 . . . J PACKAGE SN74HC266 . . . J OR N PACKAGE (TOP VIEW)

SN54HC266 . . . FH OR FK PACKAGE SN74HC266 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

INPL	INPUTS					
Α	В	Y				
L	L	Н				
L	н	L				
н	L	L				
Н	Н	• н				

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF T _A = 25°C SN54HC266 SN74HC266					UNIT			
				<u> </u>			<u> </u>					MAX	
[†] PLH	A or B												
[†] PHL	A OF B	1				Ĺ							ns
Cnd	Power dissipation capacitance		nce per o	ate		T -	No lo	ad, TA	= 25°C		· · · ·	pF t	VD

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3-118 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

Texas Instruments INCORPORATED

TYPES SN54HC273. SN74HC273 OCTAL D-TYPE FLIP-FLOPS WITH CLEAR

D2684, DECEMBER 1982

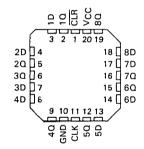
- Contains Eight Flip-Flops with Single-Rail Outputs
- Direct Clear Input
- Individual Data Input to Each Flip-Flop
- Applications Include: **Buffer/Storage Registers** Shift Registers **Pattern Generators**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

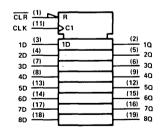
These circuits are positive-edge-triggered D-type flip-flops with a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positivegoing pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

The SN54HC273 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC273 is characterized for operation from -40°C to 85°C.


> **FUNCTION TABLE** /EAGUEL ID EL OD!

(=	(EACH FEIF FEOF									
IN	PUTS	OUTPUT								
CLEAR	CLOCK	D	Q							
L	×	Х	L							
н	ŧ	н	н							
н	†	L	L							
н	L	x	Ω_0							


SN54HC273 . . . J PACKAGE SN74HC273 . . . J OR N PACKAGE (TOP VIEW)

CLR [1	U20	h	۷cc
10 [2	19	f	80
1D [3	18	5	8D
2D [4	17		7D
20 []5	16		7Q
30 [6	15		60
3D [7	14		6D
4D [8	13	Д	5D
4Q []9	12	Д	5Q
GND []10	11	П	CLK

SN54HC273 . . . FH OR FK PACKAGE SN74HC273 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for all packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

ments reserves the right to change or discontinue this product without notice.

TYPES SN54HC273, SN74HC273 OCTAL D-TYPE FLIP-FLOPS WITH CLEAR

timing requirements (supplement to recommended operating conditions)

			SN54HC273		S	UNIT			
			MIN	NOM	MAX	MIN	NOM	MAX	1
fclock	Clock frequency								MHz
		CLR low							
tw	tw Pulse duration	CLK high							ns
		CLK low							1
	Setup time	Data							
t _{su}	before CLK1	CLR inactive state							ns
th	Hold time, data after	CLK1							ns

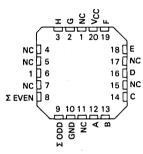
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V. C _L = 50 pF			UNIT			
	(1141-017	(001101)	T _A = 25°C	T _A = 25°C		SN54HC273 SN74HC2		HC273		
			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}										MHz
tPHL	CLR	Any Q								ns
tPLH .	CLK	Any Q								ns
tpHL		Any Q								113
Cnd	Power diss	pation capacitance	e per flip-flop	No loa	ad, TA	= 25°C			pF ty	D

D2684, DECEMBER 1982

- Generates Either Odd or Even Parity for Nine **Data Lines**
- Cascadable for n-Bits
- Can Be Used to Upgrade Existing Systems Using MSI Parity Circuits
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

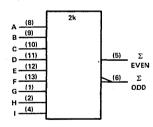

These universal, monolithic, nine-bit parity generators/checkers feature odd and even outputs to facilitate operation of either odd or even parity application. The word-length capability is easily expanded by cascading.

The SN54HC280 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC280 is characterized for operation from -40°C to 85°C.

SN54HC280 . . . J PACKAGE SN74HC280 . . . J OR N PACKAGE (TOP VIEW)

G [1	U_{14}	⊒ vcc
- н[2	13] F
NC 🗌	3	12] E
	4	11	_ D
Σ EVEN	5	10] c
Σ ODD [6	9] B
GND [7	8] A

SN54HC280 . . . FH OR FK PACKAGE SN74HC280 ... FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

FUNCTION TABLE

NUMBER OF INPUTS A	OUTI	PUTS
THRU I THAT ARE HIGH	Σ EVEN	ΣODD
0, 2, 4, 6, 8	н	L
1, 3, 5, 7, 9	L	lн

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW This document contains information on a product under development. Texas Instru-

ments reserves the right to change or discontinue this product without notice.

Texas Instruments INCORPORATED

Copyright @1982 by Texas Instruments Incorporated

TYPES SN54HC280, SN74HC280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		= 4.5 V to 5.5 50 pF	v ,	UNIT
	(1141 01)	(001101)	TA = 25°C	T _A = 25°C	SN54HC280		
-			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
tPLH .	Data	Σ Even					ns
t _{PHL}	Data	Z EVen					113
^t PLH	Data	Σ Odd					ns
tPHL	Data	2 000			I		113
Cpd	Pow	er dissipation capa	citance	No load, TA	= 25°C	pF t	YD.

HIGH-SPEED **CMOS LOGIC**

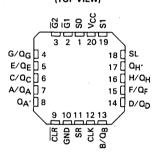
TYPES SN54HC299, SN74HC299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

- Multiplexed I/O Ports Provide Improved Bit Density
- Four Modes of Operation: Hold (Store), Shift Right, Shift Left, and Load Data
- **High-Current 3-State Outputs Drive Bus Lines** Directly or up to 15 LSTTL Loads
- Can Be Cascaded for N-Bit Word Lengths
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

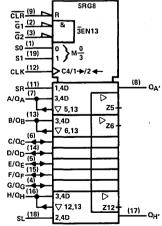
description

These eight-bit universal registers feature multiplexed I/O ports to achieve full eight-bit data handling in a single 20-pin package. 'HC299 applications are as stacked or push-down registers, buffer storage, and accumulator registers.

Two function-select inputs and two output control inputs can be used to choose the modes of operation listed in the function table.


Synchronous parallel loading is accomplished by taking both function-select lines, SO and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the I/O ports to be clocked into the register. Reading out of this register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off. Taking either of the output controls, $\overline{\mathsf{G}}\mathsf{1}$ or $\overline{\mathsf{G}}\mathsf{2}$, high disables the outputs but this has no effect on shifting or storage of data.

The SN54HC299 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC299 is characterized for operation from -40°C to 85°C.


SN54HC299 . . . J PACKAGE SN74HC299 . . . J OR N PACKAGE (TOP VIEW)

so 🗔 🕽	J20 v _{CC}
G1 2	19 S1
Ğ2	18 SL
G/Q _G	17∏ QH′
E/QE 5	16∏ H/QH
c/Q _C	15 F/Q _F
A∕Q _A []7	14 D/QD
0Α, ∐8	13 🕽 B∕Q _B
CLR 🗍 9	12 🗍 CLK
GND [10	11 SR

SN54HC299 . . . FH OR FK PACKAGE SN74HC299 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

3-124

TYPES SN54HC299, SN74HC299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

	T			INP	UTS						INF	PUTS/	OUTP	JTS			OUT	PUTS
MODE	CLEAR	FUNC SEL	CTION LECT	1 1	TPUT	CLOCK	SEI	RIAL	A/QA	B/QB	c/ac	D/QD	E/QE	F/QF	G/QG	н/он	QĄ,	ΩH,
	1	S1	SQ	Ğ1†	Ğ2†		SL	SR	1								ļ	
	L	х	L	L	L	X	X	х	L	L	L	L	L	L	L ·	L	L	L
Clear	L	L	х	L	L	x	X	X	L	L	L	L	L	L.	L	L	L	L
	L.	н	н	x	х	x	×	X	х	Х	X	Х	Х	х	Х	x	L	, L
Hold	Н	L	L	L	L	Х	X	х	Q _A 0	QBO	QCO	QDO	QEO	QFO	QGO	QHO	QAO	QHO
Hola	н	×	X	L	L	L	×	X	QAO	Q_{BO}	a_{co}	α_{D0}	Q_{EQ}	QFO	Q_{GO}	Q_{HO}	QAQ	QHO
Child Binha	Н	L	Н	L	L		X	Н	Н	QAn	QBn	QCn	QDn	QEn	OFn	QGn	Н	. QGn
Shift Right	н	L	н	L	L i	1	×	L	L	Q_{An}	Q_{Bn}	a_{Cn}	Q_{Dn}	QEn	Q_{Fn}	Q_{Gn}	L	Q_{Gn}
0) (6) 1 - 6	Н	Н	L	L	Ĺ	1	Н	X	QBn	QCn	QDn	QEn	QFn	QGn	QHn	Н	QBn	Н
Shift Left	н	н	L	L	L	1	L	X	QBn	QCn	Q_{Dn}	Q_{En}	QFn	QGn	QHn	L	QBn	L
Load	н	Н	н	×	Х	1	×	×	а	b	c	d	е	f	9	h	а	h

†When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

timing requirements (supplement to recommended operating conditions)

			S	N54HC2	99	S	N74HC2	99	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
		CLK high							
tw	Pulse duration	CLK low							ns
		CLR low							1
		Select							1
	Setup time before CLK1	High-level data							1
^t su	Setup time before CERT	Low-level data							ns
		CLR inactive-state							1
	Hold time after CLK1	Select							1
th	Hold time after CLK1	Data							ns

a...h = the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.

TYPES SN54HC299, SN74HC299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = Note 2, R _L = Note 2,			= 4.5 V Note 1	' to 5.5	٧,		UNIT
	(,,,,,,	TA = 25°C	TA = 2	5°C	SN54	HC299	SN74	HC299	
	*		MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}										MHz
tPLH_	CLK	QA' or QH'								ns
tPHL	CLK	QA O QH								115
tPHL	CLR	QA' or QH'								ns
tPLH .	CLK	QA thru QH								ns
tPHL .	CLK	CA thro CH								115
tPHL	CLR	Q _A thru Q _H								ns
tPZH	<u>G</u> 1, <u>G</u> 2	Q _A thru Q _H								ns
tPZL.	G1, G2	CA IIII CH								113
tPHZ	<u>G</u> 1, <u>G</u> 2	Q _A thru Q _H								ns
tPLZ	G1, G2	QA IIII QH								115
tPZH	SO, S1	Q _A thru Q _H								ns
tPZL	30, 31	CA IIII CH								113
tPHZ	SO, S1	Q _A thru Q _H								ns
tPLZ	30,31	GA IIII CH								113
C _{pd}	Pow	er dissipation capac	itance	No le	oad, TA	= 25°C			pF t	ур

^{2.} CL = 15 pF, RL = 2 kΩ for outputs QA' or QH';

CL = 45 pF, RL = 667 Ω for outputs QA thru QH.

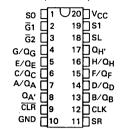
HIGH-SPEED CMOS LOGIC

TYPES SN54HC323, SN74HC323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

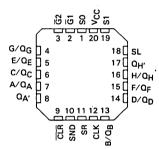
D2684, DECEMBER 1982

- Multiplexed I/O Ports Provide Improved Bit Density
- Four Modes of Operation: Hold (Store), Shift Right, Shift Left, and Load Data
- High-Current 3-State Outputs Drive Bus Lines Directly or up to 15 LSTTL Loads
- Can Be Cascaded for N-Bit Word Lengths
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

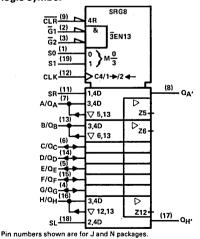
description


These eight-bit universal registers feature multiplexed I/O ports to achieve full eight bit data handling in a single 20-pin package. 'HC323 applications are as stacked or push-down registers, buffer storage, and accumulator registers.

Two function-select inputs and two output control inputs can be used to choose the modes of operation listed in the function table.


Synchronous parallel loading is accomplished by taking both function-select lines SO and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the I/O ports to be clocked into the register. Reading out of this register can be accomplished while the outputs are enabled in any mode. The clear function is synchronous, and a low level at the clear input clears the register on the next low-to-high transition of the clock.

The SN54HC323 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC323 is characterized for operation from -40°C to 85°C.


SN54HC323 . . . J PACKAGE SN74HC323 . . . J OR N PACKAGE (TOP VIEW)

SN54HC323 . . . FH OR FK PACKAGE SN74HC323 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

3-126

TYPES SN54HC323, SN74HC323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

	T			INP	UTS						INF	PUTS/	OUTP	JTS			OUT	PUTS
MODE	CLEAR	FUNC	-		TPUT TROL	CLOCK	SEF	RIAL	A/Q _A	B/QB	c/ac	D/Q _D	E/QE	F/QF	G/QG	н/Он	ΩĄ·	ΩH,
		S1	SO	Ğ1†	Ğ2†		SL	SR									1	
	L	х	L	L	L	1	×	Х	L	L	L	L	L	L	L	L	L	L
Clear	L	L	X	L	L	†	×	X	L	L	L	L	L	L	L	L	L	Ł
	L	н	н	x	×	1	×	×	x	х	X	X	X	X	х	×	L	L
Hold	Н	L	L	L	L	Х	Х	Х	QAO	QBO	aco	ΩDO	QEO	QFO	Q_{GO}	QHO	QAO	QHO
ною	Н	x	х	L	L	L .	×	Х	QAO	Q_{BO}	a_{co}	QDO	Q_{EO}	Q_{FO}	Q_{GO}	QHO	QAO	QHO
Chift Bills	н	L	Н	L	L	1	X	Н	Н	QAn	QBn	QCn	QDn	QEn	OFn	QGn	Н	QGn
Shift Right	Н	L	н	L	L	t	×	L	L	Q_{An}	Q_{Bn}				Q_{Fn}	Q_{Gn}	L	α_{Gn}
Shift Left	Н	Н	L	L	L	1	Н	х	QBn	QCn	QDn	QEn		QGn		Н	GBn	Н
Smit Left	н	н	L	L	L	t	L	х	QBn	QCn	Q_{Dn}	QEn		Q_{Gn}		L	QBn	L
Load	Н	н	Н	X	х	1	X	Х	а	b	С	d	е	f	g	h	а	h

tWhen one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

timing requirements (supplement to recommended operating conditions)

			SN54HC323			S	N74HC3	23	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	Pulse duration	CLK high							
tw	Pulse duration	CLK low							ns
	Setup time before CLK1	SO or S1							
t _{su}		Data							ns
		CLR							1
		SO or S1							
th	Hold time after CLK1	Data							ns
		CLR]

a...h = the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.

TYPES SN54HC323, SN74HC323 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = Note 2, R _L = Note 2,		UNIT					
	((001101)	TA = 25°C	TA	= 25°C	SN54	HC323	SN74	HC323	
			MIN TYP MAX	MIN '	TYP MAX	MIN	MAX	MIN	MAX	
f _{max}										MHz
tPLH	CLK	QA' or QH'								ns ns
tPHL	CLK	QA OF CH								113
tPLH	CLK	Q _A thru Q _H								ns
tPHL	CER	ад ши ан								115
tPZH	Ğ1, Ğ2	Q _A thru Q _H								ns
tPZL	G1, G2	ад ина ан								
tPHZ	Ğ1, Ğ2	Q _A thru Q _H							,	ns
tPLZ	01, 02	ад ши ан								113
tpzH	SO or S1	Q _A thru Q _H								ns
tPZL	30 01 31	CA IIII CH								113
tPHZ	S0 or S1	Q _A thru Q _H								ns
tPLZ	30 07 31	CA till CH						ļ		118
C _{pd}	Power diss	sipation capacitance	e per register	r	No load, TA	= 25°C		T	pF t	ур

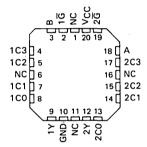
NOTES: 1. For load circuit and voltage waveforms, see page 1-14.
2. C_L = 45 pF and R_L = 667Ω for outputs Q_A thru Q_H; $C_L = 15 \text{ pF}$ and $R_L = 2k\Omega$ for outputs $Q_{A'}$ and $Q_{H'}$.

TYPES SN54HC352, SN74HC352 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

D2684, DECEMBER 1982

- Inverting Versions of 'HC153
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N Lines to n Lines)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

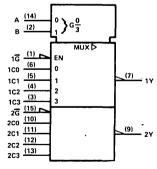

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs (\vec{G}) are provided for each of the two four-line sections.

The SN54HC352 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC352 is characterized for operation from -40°C to 85°C.

SN54HC352 . . . J PACKAGE SN74HC352 . . . J OR N PACKAGE (TOP VIEW)

1 d 🗌	1	.U ₁₆	□vcc
В [2	15] 2G
1C3[3	14] A
1C2[4	13] 2C3
1C1 [5	12] 2C2
1C0[6	11	2C1
1Y[7	10] 2C0
GND[8	9	2Y

SN54HC352 ... FH OR FK PACKAGE SN74HC352 ... FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

FUNCTION TABLE

SEL	ECT UTS	ı	DATA	NPUT:	3	STROBE	ООТРОТ
В	Α	CO	C1	C2	СЗ	Ğ	Υ
×	X	×	X	X	×	Н	Н
L	L	L	X	X	×	L	н
L	L	н	×	X	×	L	L
L	н	×	L	X	×	L	н
L	н	×	н	×	×	L	L
н	L	×	X	L	×	L	Н
н	Ł	×	X	н	×	L	L
н	н	×	Х	X	L	L	н
Н	Н	×	X	X	Ή	L	L

Select inputs A and B are common to both sections.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

TEXAS INSTRUMENTS

ments reserves the right to change or discontinue this product without notice. POST OFFICE BOX 225 3-129

3

This document contains information on a product under development. Texas Instruments reserves the right to change or dis-

TYPES SN54HC352, SN74HC352 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _L	C = 5 = 15 = 2 ks	pF, Ω,			See I	Note 1	to 5.5			UNIT
			TA = 25°C TA = 25°C SN54HC352 SN74HC3			HC352							
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
¹ PLH	A or B												
tPHL.	. 4016	Υ											ns
tPLH .	Data (Any C)	Υ											ns
[†] PHL	Data (Ally C)	<u>'</u>											115
t _{PLH}	G												ns
tPHL		T											115
C _{pd}	Power dissipa	tion capacitance p	er data	select	or		No Io	ad, TA	= 25°C			pF ty	p

HIGH-SPEED **CMOS LOGIC**

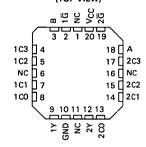
TYPES SN54HC353. SN74HC353 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- Inverting Versions of 'HC253
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- High-Current Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs (G) are provided for each of the two four-line sections.

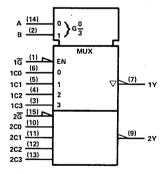

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enable output will drive the bus line to a high or low logic level. Each output has its own strobe (G), The output is disabled when its strobe is high.

The SN54HC353 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC353 is characterized for operation from -40°C to 85°C.

SN54HC353 . . . J PACKAGE SN74HC353 . . . J OR N PACKAGE (TOP VIEW)

1Ğ[1	U16	□vco
В	2	15] 2G
1C3 [3	14	□A
1 C2 [4	13]] 2C3
1C1.	5	12]] 2C2
1C0 [6	11]2C1
1Y [7	10]200
GND	R	9	72

SN54HC353 . . . FH OR FK PACKAGE SN74HC353 . . . FH OR FN PACKAGE (TOP VIEW)


NC -- No internal connection

FUNCTION TABLE

1	ECT UTS		DATA	INPUTS		OUTPUT CONTROL	ОИТРИТ
В	Α	C0	C1	C2	C3	ĪĠ	Υ
x	Х	х	x	×	Х	н	z
L	L	L	х	x	x	L	н
L	L	н	X	X	x	L	L
L	Н	х	L	X	X	L	н
L	н	х	н	X	X	L	L
Н	L	х	X	L	x	L	н
Н	L	х	X	н	X	L	L
Н	Н	х	X	X	L	L	н
Н	Н	Х	X	X	н	L	L

Select inputs A and B are common to both sections.

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW This document contains information on a product under development. Texas Instruments reserves the right to change or dis-

continue this product without notice.

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC353, SN74HC353 DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

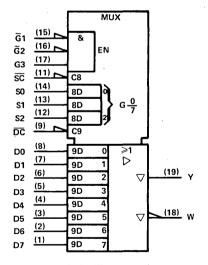
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,	V _{CC} = 4.5 V to 5.5 V, See Note 1		UNIT					
	((555.,	TA = 25°C	TA	= 25	°C	SN54HC353		SN741	HC353	
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH .	A or B	٧									ns
tPHL.	7015	٠.									115
tPLH ·	Data (Any C)	Y									
†PHL	Data (Arry C)	'									ns
tPZH	G	Y									
^t PZL] "	, ,									ns
t _{PHZ}	G	γ									
tPHL .	3	Ţ									ns
C _{pd}	Powe	er dissipation capac	itance	[No loa	ad, T _A	= 25°C			pF ty	p

HIGH-SPEED **CMOS LOGIC**

TYPES SN54HC354, SN74HC354 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ TRANSPARENT REGISTERS WITH 3-STATE OUTPUTS

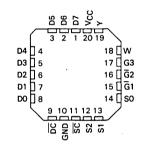
D2684, DECEMBER 1982


- Transparent Latches on Data Select Inputs
- **Transparent Data Registers**
- **High-Current 3-State Outputs Can Drive** up to 15 LSTTL Loads
- **Complementary Outputs**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one of eight data sources. The data-select is stored in transparent latches that are enabled by a low level on pin 11, SC. A similar enable for data is obtained by a low level on pin 9. DC.

The SN54HC354 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC354 is characterized for operation from -40°C to 85°C.


logic symbol

SN54HC354 . . . J PACKAGE SN74HC354 . . . J OR N PACKAGE (TOP VIEW)

D7 [1	U	20		Vcc
D6 [2		19		Υ
D5 [3	•	18		W
D4 [4		17		G3
D3 [5		16		G2
D2 🗌	6		15		Ğ1
D1 [7		14		S0
D0 [8		13		S1
DC [9		12		S2
GND [10)	11	П	SC

SN54HC354 . . . FH OR FK PACKAGE SN74HC354 . . . FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW This document contains information on a

continue this product without notice.

Texas Instruments INCORPORATED

Copyright ©1982 by Texas Instruments Incorporated

product under development. Texas Instruments reserves the right to change or dis-

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54HC354, SN74HC354 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ TRANSPARENT REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

			INPUTS					
s	ELEC1	Γţ	DATA CONTROL		OUTPU NABLE		OUT	PUTS
S2	S1	SO	DC	Ğ1	Ğ2	G3	W	Y
Х	X	Х	X	Н	X	х	Z	Z
X	Х	X	×	х	Н	x	Z	Z
x	х	X	×	×	х	ᅵᅵ	Z	Z
L	L	L	- L	L	L	н	ĎΟ	DO
L	L	L	н	L	L	н	DO _n	DO _n
L	L	Н	L	L	L	- н	D1	D1 ·
L	L	Н	н	L	L	н	D1 _n	D1 _n
L	н	L	L	L	L	н	D2	D2
L	н	L	н	L	L	н	D2 _n	D2 _n
L	H	н	L	L	L	н	БЗ	D3
L	н	Н	i H	L	L	- н	Бз _п	D3 _n
Н	L	L	L	L	L	н	D4	D4
Н	L	L	н	L	L	н	Ū4 _n	D4 _n
н	L	н	L	L	L	н	D̄5	D5
н	L	Н	н	L	L	н	D5 _n	D5 _n
н	Н	L	L	L	L	н	D6	D6
н	Н	L	н	L	L	- н	D6 _n	D6 _n
н	н	н	L	L	L	н	D 7	D7
Н	н	н	н	L	L	н	Ō7n	D7 _n

H = high level (steady state)

DO_n . . . D7_n = the level of steady state inputs at inputs DO through

D7, respectively, before the most recent low-to-high transition of data control

timing requirements (supplement to recommended operating conditions)

			SN54HC354			S			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
	Setup time (with respect	High-level or							
^t su	to 1 at pin 9)	low-level data							ns
	Hold time (with respect	High-level or							
th	to 1 at pin 9)	low-level data				1			ns

L = low level (steady state)

X = irrelevant (any input, including transitions)

Z = high-impedance state (off state)

^{1 =} transition from low to high level
D0 . . . D7 = the level of stead-state inputs at inputs D0 through

D7, respectively

[†]This column shows the input address setup with SC low.

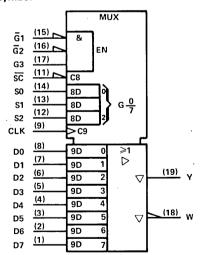
TYPES SN54HC354, SN74HC354 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ TRANSPARENT REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C	See N	= 4.5 V to 5.5 V, Note 1 SN54HC354 SN74HC35	_
tPLH						-
tPHL	50.57	Y				_
tPLH	DO-D7					ns
tPHL	1	l w				
tPLH		Y			****	
tPHL	DC) Y				
tPLH .	DC DC	w				ns
tPHL		, vv				7
t _{PLH}		Y				
tPHL	50 51 50	, T				7
t _{PLH}	S0, S1, S2	w				ns
t _{PHL}		**				7
†PLH		Y				
t _{PHL}	sc					٦
tPLH .	. 30	w				ns
tPHL		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7
tPZH ·						
^t PZL		Υ Υ				7
tPHZ		'				
tPLZ	Ğ1, Ğ2					٦
^t PZH	G1, G2					ns
tPZL		w				
tPHZ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
tPLZ						
tPZH						
tPZL		Y				
tPHZ		'				
^t PLZ	G3					ns
tPZH						
tPZL		l w				
t _{PHZ}						
t _{PLZ}		90				1
C _{pd}	Powe	r dissipation capac	itance	No load, TA	= 25°C pl	typ

TYPES SN54HC356, SN74HC356 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ **EDGE-TRIGGERED REGISTERS WITH 3-STATE OUTPUTS**

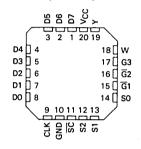
D2684, DECEMBER 1982


- Transparent Latches on Data Select Inputs
- **Edge-Triggered Data Registers**
- **High-Current 3-State Outputs Can Drive** up to 15 LSTTL Loads
- **Complementary Outputs**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one of eight data sources. The data-select address is stored in transparent latches that are enabled by a low level on pin 11, SC. The edgetriggered data registers are clocked by a low-to-high transition on pin 9, CLK. Both true and complementary outputs are available.

The SN54HC356 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC356 is characterized for operation from -40°C to 85°C


logic symbol

SN54HC356 . . . J PACKAGE SN74HC356 . . . J OR N PACKAGE (TOP VIEW)

1	U 20	□ vcc
2	19	ŢΥ
3	18] w
4	17] G3
5	- 16	G2
6	.15	G1
7	14] so
8	13] S1
9	12] S2
10	11	□sc
	3 4 5 6 7 8	2 19 3 18 4 17 5 16 6 15 7 14 8 13

SN54HC356 . . . FH OR FK PACKAGE SN74HC356 . . . FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Texas Instruments INCORPORATED

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC356, SN74HC356 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ EDGE-TRIGGERED REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

			INPUTS					
s	ELECT	Γţ	СГОСК		UTPU NABLI		оит	PUTS
S2	S1	SO		G1	Ğ2	G3	W	Υ
Х	Х	Х	X	Н	Х	X	Z	Z
X	Х	х	. X	X	Н	X	Z	Z
. X	Х	Х	×	X	Х	L	Z	Z
L	L	L	× 1	L	L	Н	DO.	DO
L	L	L	H or L	L	L	Н	™o _n	DO _n
L	L	Н	1	L	L	Н	⊡1	D1
L	L	н	H or L	L.	L	Н	⊡1 _n	D1 _n
L	Н	L	t	L	L	Н	D2	D2
L	н	L	H or L	L	L	Н	Ū2 _n	D2 _n
L	H	н	ţ	L	L	н	D3	D3
L	Н	н	H or L	L	L	Н	D3 _n	D3 _n
Н	L	L	t	Ł	L	Н	D̄4	D4
н	L	L	H or L	L	L	Н	Ū4 _n	D4 _n
н	L	н	t	L	L	. н	D̄5	D5
н	L	н	H or L	L	L	н	D5 _n	D5 _n
Н	Н	L	t	L	L	Н	D6	D6
Н	Н	L	H or L	L	L	Н	D ₆ n	D6 _n
Н	Н	н	t	L	L	н	D7	D7
Н	Н	Н	H or L	L	L	Н	D7 _n	D7 _n

†This column shows the input address setup with SC low.

timing requirements (supplement to recommended operating conditions)

			SN54HC356			S			
	•		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	High-level or								
^t su	Setup time before CLK1	low-level data							ns
	Hald diagrams of the CLKA	High-level or							
^t h	Hold time after CLK1	low-level data	1						ns

TYPES SN54HC356, SN74HC356 8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS/ EDGE-TRIGGERED REGISTERS WITH 3-STATE OUTPUTS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} See N	= 4.5 V t lote 1	to 5.5	v,		וואט
	(INPUT)	(001201)	TA = 25°C	T _A = 2	5°C	SN54H	C356	SN741	HC356	
			MIN TYP MAX	MIN TY	P MAX	MIN	MAX	MIN	MAX	
f _{max}						<u> </u>				MHz
tPLH		Y				l				
tPHL	DO-D7	<u> </u>								ns
tPLH	50-57	l w				<u> </u>				113
[†] PHL		**				<u> </u>		<u> </u>		
tPLH		Y								
tPHL	CLK									ns
^t PLH	CLK	w								113
tPHL		**								
tPLH		Y								
tPHL	S0, S1, S2	'								ns
^t PLH	30, 31, 32	w								115
tPHL		٧٧								
^t PLH		Y				1				
tPHL	SC	w								
tPLH	30									ns
tPHL		**		, ,						
tPZH										
^t PZL		Y								
tPHZ		ř								
tPLZ	Ğ1, Ğ2									
tPZH	G1, G2					1				ns
tPZL)								
tPHZ		w				1				
tPLZ						T				
^t PZH			1							
tPZL		١								
tPHZ		Y				T i				
tPLZ	CO					1	-			
tPZH	G3					T				ns
tPZL	•							 		
tPHZ		w								
tPLZ										
C _{pd}	Powe	er dissipation capa	citance	No	oad, T _A	= 25°C			pF t	ур

HIGH-SPEED CMOS LOGIC

TYPES SN54HC365 THRU SN54HC368. **SN74HC365 THRU SN54HC368** HEX BUS DRIVERS WITH 3-STATE OUTPUTS

High-Current 3-State Outputs Drive Bus Lines, Buffer Memory Address Registers, or up to 15 LSTTL Loads

- Choice of True or Inverting Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

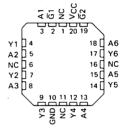
'HC365, 'HC367

True Outputs

'HC366, 'HC368

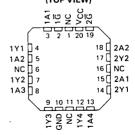
Inverting Outputs

description


These Hex buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical G (active-low control) inputs.

The SN54' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74' family is characterized for operation from -40°C to 85°C.

SN54HC365, SN54HC366 . . . J PACKAGE SN74HC365, SN74HC366 . . . J OR N PACKAGE (TOP VIEW)


SN54HC367, SN54HC368 . . . FH OR FK PACKAGE SN74HC367, SN74HC368 . . . FH OR FN PACKAGE (TOP VIEW)

SN54HC367, SN54HC368 . . . J PACKAGE SN74HC367, SN74HC368 . . . J OR N PACKAGE (TOP VIEW)

SN54HC365, SN54HC366 . . . FH OR FK PACKAGE SN74HC368, SN74HC366 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

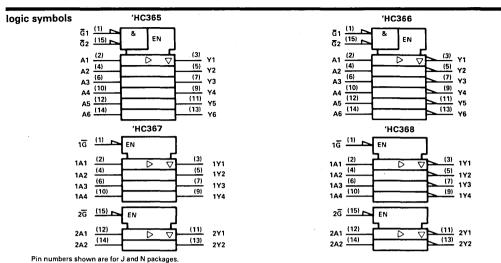
See Table III, page 2-5.

PRODUCT PREVIEW

TEXAS INSTRUMENTS

INCORPORATED

Convright ©1982 by Texas Instruments Incorporated


3-139

product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

This document contains information on a

TYPES SN54HC365 THRU SN54HC368, SN74HC365 THRU SN54HC368 **HEX BUS DRIVERS WITH 3-STATE OUTPUTS**

'HC365, 'HC367 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

	FROM	то	_	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C					= 4.5 V Note 1	to 5.5			
PARAMETER	(INPUT)	(OUTPUT)				T	T _A = 25°C				5 SN74HC365 7 SN74HC367		UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH .	A	V											ns
tPHL.	^	Y											
tPZH	G	Y											ns
†PZL	<u> </u>	'											113
tPHZ	G	V											ns
tPLZ		<u> </u>											
C _{pd}	Power dissipation capacita			per dri	iver	Ι	No loa	ad, TA	= 25°C			pF ty	p

'HC366, 'HC368 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER FROM TO (OUTPU	то	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C		V _{CC} = 4.5 V to 5.5 V, See Note 1								
PARAMETER		(OUTPUT)			T _A = 25°C				6 SN74HC366 8 SN74HC368		UNIT		
		MIN	TYP I	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
tPLH	Α	V											ns
tPHL	^												115
tPZH	G												ns
tPZL	ď	L '											115
t _{PHZ}	 												
tPLZ	9												ns
C _{pd}	Powe	er dissipation capa	citance pe	er drive	er		No lo	ad, TA	= 25°C		1	pF ty	

HIGH-SPEED CMOS LOGIC

TYPES SN54HC373, SN74HC373 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- 8 High-Current Latches in a Single Package
- High-Current 3-State True Outputs Can Drive up to 15 LSTTL Loads
- Full Parallel Access for Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

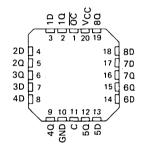
These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'HC373 are transparent D-type latches. While the enable (C) is high the Q outputs will follow the data (D) inputs. When the enable is taken low, the Q outputs will be latched at the levels that were set up at the D inputs.

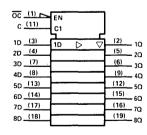
An output-control input (\overline{OC}) can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control \overline{OC} does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54HC373 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC373 is characterized for operation from –40°C to 85°C.


FUNCTION TABLE (EACH LATCH)

	INPUTS		OUTPUT
oc	ENABLE C	D	a
L	Н	Н	Н
L	н	L	L
L	L	×	ο ₀
н	×	X	Z


SN54HC373 . . . J PACKAGE SN74HC373 . . . J OR N PACKAGE (TOP VIEW)

55 □	1.	U 20	П	۷c	^
10	2	19	Ħ	80	u
_	•	13	片		
1 D 🗌	3	18	Ц	8D	
2D 🗌	4	17		7D	
2Q 🗀	5	16		70	
30 [6	15		60	
3D 🗀	7	14		6D	
4D 🗀	8	13		5D	
40 🗀	9	12		50	
GND [10	11		С	

SN54HC373...FH OR FK PACKAGE SN74HC373...FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

Copyright @1982 by Texas Instruments Incorporated

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

3-141

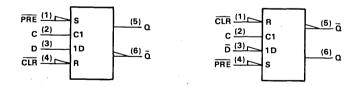
This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TYPES SN54HC373, SN74HC373 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

		SN54HC373		SN74HC373			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	1
tw	Pulse duration, enable C high							ns
t _{su}	Setup time, data before enable CI							ns
th	Hold time, data after enable CI							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, See Note 1		/ to 5.5	5.5 V,		UNIT			
1	((001.01,	T _A = 25°C	T _A =	25°C	SN54	HC373	SN741	HC373	73	
			MIN TYP MAX	MIN T	YP MAX	MIN	MAX	MIN	MAX		
tPLH .	D	a								ns	
^t PHL		u								113	
tPLH	С	Any Q								ns	
tPHL		Ally C								113	
tPZH	ос	Any Q								ns	
tPZL		Anya								115	
t _{PHZ}	ос	Any Q								ns	
[‡] PLZ		Ally C								113	
C _{pd}	Power dis	sipation capacitan	ce per latch	No	load, T _A	= 25°C		L	pF t	ур	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators () on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

HIGH-SPEED CMOS LOGIC

TYPES SN54HC374, SN74HC374 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- 8 D-Type Flip-Flops in a Single Package
- High-Current 3-State True Outputs Can Drive up to 15 LSTTL Loads
- Full Parallel Access for Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

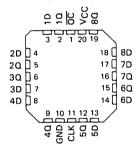
These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'HC374 are edge-triggered D-type flipflops. On the positive transition of the clock the Q outputs will be set to the logic levels that were set up at the D inputs.

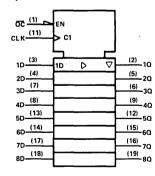
An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control (OC) does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC374 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC374 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE (EACH FLIP-FLOP)

	INPUTS	OUTPUT	
δĊ	CLK	D	Q
L	1	Н	Н
L	1	L	Ł
L	· L	Х	σ_0
н	Х	Х	Z


SN54HC374 . . . J PACKAGE SN74HC374 . . . J OR N PACKAGE (TOP VIEW)

		1 1	г	
ōc L	1	Ų 20	Ц	Vcc
10 🗆	2	19	р	80
1D 🗌	3	18	р	8D
2D 🗌	4	17	Д	7D
2Q [5	16		7Q
30 [6	15		6Q
3D 🗀	7	14	D	6D
4D 🗀	8	13	ם	5D
40 [9	12	ם	5Q
GND 🗀	10	11	Ō	CLK

SN54HC374 ... FH OR FK PACKAGE SN74HC374 ... FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

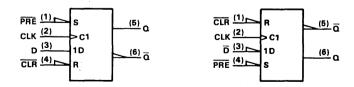
TEXAS INSTRUMENTS

TYPES SN54HC374, SN74HC374 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			SN54HC374		S	SN74HC374			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	Dulas duradas	CLK high							
tw	Pulse duration	CLK low							ns
t _{su}	Setup time, data befo	ore CLK1							ns
th	Hold time, data after	CLK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)			V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT	
	(INFOT)	(001701)	T _Δ = 25°C		T _Δ = 25°C		SN54HC374SN74HC374							
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
f _{max}													MHz	
tPLH .	CLK	a	1										ns	
tPHL	CLK	ď											115	
tPZH	ŌĊ	a												
[†] PZL	00	<u> </u>							Ι				ns	
t _{PHZ}	ÕC	a											ns	
tpLZ													115	
C _{nd}	Power diss	ipation capacitance	e per flip	-flop		T	No Io	ad, T _A	= 25°C			pF ty	p	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input $\overline{\mathbb{D}}$. In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\longrightarrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

HIGH-SPEED CMOS LOGIC

TYPES SN54HC377, SN54HC378, SN54HC379 SN74HC377, SN74HC378, SN74HC379 OCTAL. HEX. AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE

D2684, DECEMBER 1982

- 'HC377 and 'HC378 Contain Eight and Six Flip-Flops, Respectively, with Single-Rail Outputs
- 'HC379 Contains Four Flip-Flops with Double-Rail Outputs
- Individual Data Input to Each Flip-Flop
- Applications Include: Buffer/Storage Registers Shift Registers Pattern Generators
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

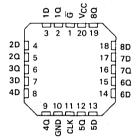
description

These circuits are positive-edge-triggered D-type flip-flops with an enable input. The 'HC377, 'HC378, and 'HC379 devices are similar to 'HC273, 'HC174, and 'HC175 respectively, but feature a common clock enable (\overline{G}) instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if \overline{G} is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the \overline{G} input.

The SN54HC377, SN54HC378, and SN54HC379 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC377, SN74HC378, and SN74HC379 are characterized for operation from -40°C to 85°C.

FUNCTION TABLE (EACH FLIP-FLOP)


	INPUTS		OUTPUTS				
Ğ	CLOCK	DATA	a	ũ†			
Н	X	Х	QO	ãο			
L	t	Н	Н	L			
L	1	L	L	Н			
х	L	×	Q0	$\overline{\alpha}_0$			

t'HC379 only

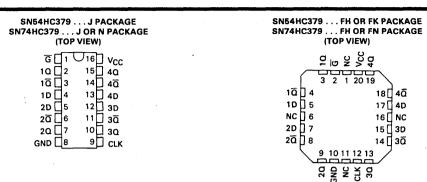
SN54HC377 . . . J PACKAGE SN74HC377 . . . J OR N PACKAGE (TOP VIEW)

Ğ□	1	U20	þ	vcc	
10 🗌	2	19	Ц	80	
1D 🗌	3	18	р	8D	
2D 🗌	4	17	Д	7D	
20 [5	16		7Q	
30 [6	15		6Q	
3D 🗌	7	14	ᄓ	6D	
4D 🗌	8	13		5D	
40 [9	12		5Q	
GND 🗌	10	11		CLK	


SN54HC377 ... FH OR FK PACKAGE SN74HC377 ... FH OR FN PACKAGE (TOP VIEW)

SN54HC378 . . . J PACKAGE SN74HC378 . . . J OR N PACKAGE (TOP VIEW)

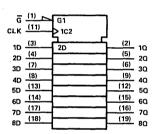
G	1	U 16	Vcc
10	2	15	6Q
10[3	14	6D
2D 🗀	4	13	5D
20 [5	12	50
3D [6	11	4D
30 □	7	10	40
GND [8	9	CLK

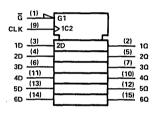

SN54HC378 ... FH OR FK PACKAGE SN74HC378 ... FH OR FN PACKAGE (TOP VIEW)

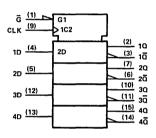
NC - No internal connection

PRODUCT PREVIEW

TYPES SN54HC377, SN54HC378, SN54HC379 SN74HC377, SN74HC378, SN74HC379 OCTAL. HEX. AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE


logic symbols


'HC377


'HC378

'HC379

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

'HC377, 'HC378: See Table IV, page 2-6.

'HC379: See Table II, Page 2-4.

timing requirements (supplement to recommended operating conditions)

				SN54HC' SN7		SN74HC	N74HC'		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency			•					MHz
t _W	Pulse duration, CLK high	or low							ns
		D							
t _{su}	Setup time before CLK1	G low							ns
		G high							1
th	Hold time after CLK1								ns

Texas Instruments

3

TYPES SN54HC377, SN54HC378, SN54HC379 SN74HC377, SN74HC378, SN74HC379 OCTAL, HEX, AND QUAD D-TYPE FLIP-FLOPS WITH ENABLE

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	CL=	v,	UNIT	
	(1141 01)	(001101)	TA = 25°C	T _A = 25°C SN54HC'		SN74HC'	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
f _{max}							MHz
tPLH .	CLK	Any					ns
tpHL		Ally	Any				113
Cnd	Power diss	ipation capacitano	e per flip-flop	No load, To	= 25°C	pF 1	VD.

TYPES SN54HC386, SN74HC386 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

D2684, DECEMBER 1982

 Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs

Dependable Texas Instruments Quality and Reliability

description

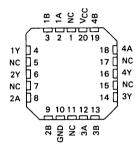
These devices contain four independent 2-input Exclusive-OR gates. They perform the boolean functions $Y = A \oplus B = \overline{A}B + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN54HC386 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC386 is characterized for operation from -40°C to 85°C.

logic symbol

(3) 1Y (2) (5) 2A (<u>4)</u> 2Y (6) 2B (8) (1<u>0)</u> 3Y 3A (9) 38 (12) (1<u>1)</u> 4Y (13)


FUNCTION TABLE (each gate)

INP	JTS	OUTPUT
Α	В	Y
L	L	L
L	Н	н
Н	L	н
Н	Н	L

SN54HC386 . . . J PACKAGE SN74HC386 . . . J OR N PACKAGE (TOP VIEW)

1A	רַם	ノ14□ Va	C
1B	□ 2	13 4E	l .
1Y	□3	12 44	
2Y	□4	11 🛮 4Y	
2A	□5	10 3Y	
2B	□6	9 🗍 3E	;
GND	٦٦ □	8 34	

SN54HC386 . . . FH OR FK PACKAGE SN74HC386 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,			= 4.5 V 50 pF	' to 5.5	٧,		UNIT	
	((001101)	T _A = 25°C	T _A = 25	°C	SN54	HC386	SN741	HC386		
	ļ. l.		MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX		
tPLH .	A or B									ns	
tPHL	(other input low)	r,								115	
tPLH	A or B	v									
^t PLH	(other input high)									ns	
Cnd	Power diss	ipation capacitan	ce per gate	No lo	ad, T _A	= 25°C			pF ty	p .	

NOTE 1: For load circuit and voltage waveforms, see pages 1-14.

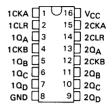
PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

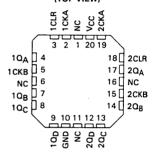
This document contains information on a 3-148 product under development. Texas Instru-ments reserves the right to change or discontinue this product without notice.

Texas Instruments INCORPORATED

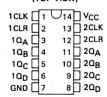
D2684, DECEMBER 1982

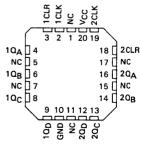

- 'HC390 . . . Individual Clocks for A and B Flip-Flops Provide Dual ÷2 and ÷5 Counters
- 'HC393 . . . Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


Each of these monolithic circuits contains eight flipfloos and additional gating to implement two individual four-bit counters in a single package. The 'HC390 incorporates dual divide-by-two and divideby-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The 'HC393 comprises two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The 'HC390 and 'HC393 have parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

The SN54HC390 and SN54HC393 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC390 and SN74HC393 are characterized for operation from -40°C to 85°C.


SN54HC390 . . . J PACKAGE SN74HC390 . . . J OR N PACKAGE (TOP VIEW)

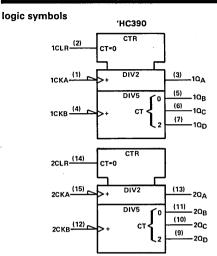

SN54HC390 . . . FH OR FK PACKAGE SN74HC390 . . . FH OR FN PACKAGE (TOP VIEW)

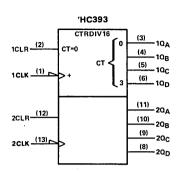
SN54HC393 . . . J PACKAGE SN74HC393 . . . J OR N PACKAGE (TOP VIEW)

SN54HC393 . . . FH OR FK PACKAGE SN74HC393 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

Copyright ©1982 by Texas Instruments Incorporated


PRODUCT PREVIEW This document contains information on a product under development. Texas Instru-


ments reserves the right to change or dis-

continue this product without notice.

Texas Instruments INCORPORATED

TYPES SN54HC390, SN54HC393, SN74HC390, SN74HC393 DUAL 4-BIT DECADE AND BINARY COUNTERS

Pin numbers shown are for J and N packages.

'HC390 BCD COUNT SEQUENCE (EACH COUNTER)

(See Note A)

7

8

н

	1200	INDIB	~,	
COUNT		OUT	PUT	
COUNT	αD	αc	αв	QA
. 0	L	L	Ĺ	L
1	L	L	L	н
2	L	L	Н	L
3	L	L	н	н
4.	L	н	L	L
5	L	Н	L	н
ایا				

FUNCTION TABLES

'HC390 BI-QUINARY (5-2) (EACH COUNTER)

	- 1	See	Note	В١
--	-----	-----	------	----

COUNT		OUT	PUT	
COUNT	QΑ	σ_{D}	σc	QΒ
0	L	L	L	L
1	L	L	L	Н
2	L	L	н	L
3	L	L	н	н
4	L	н	L	L
5 .	Н	L	L	L
6	Н	L	L	Н
7	Н	L	Н	L
8	Н	L	н	Н
9	Н	Н	L	L

NOTES: A. Output QA is connected to input CKB for BCD count.

Н

L

'HC393
COUNT SEQUENCE

	EACH	COUN	TER)	
COUNT		OUT	PUT	
COUNT	σ_{D}	σc	QΒ	QΑ
0	L	L	L	٦
1	L	L	L	н
2	L	L	Н	L
. 3	L	L,	Н	Н
4	L	Н	L	L
5	L	H-	L	H
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
. 9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	Н	н
12	н	Н	L	L
13	Н	Н	L	Н
14	Н	Н	Н	L
15	н	Н	Н	Н

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

B. Output QD is connected to input CKA for bi-quinary count.

TYPES SN54HC390, SN54HC393, SN74HC390, SN74HC393 DUAL 4-BIT DECADE AND BINARY COUNTERS

timing requirements (supplement to recommended operating conditions)

				N54HC3 N54HC3		_	N74HC3: N74HC3:		
		ľ	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
4	Clash faranca	CKA or CLK				İ			MHz
†clock	Clock frequency	СКВ							IVITZ
		CKA or CLK high or low							
tw	Pulse duration	CKB high or low							ns
		CLR high							1
t _{su}	Setup time, clear inac	tive	-						ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

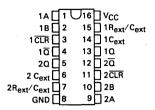
PARAMETER	FROM (INPUT)	ТО (ОИТРИТ)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		CC = 4.5 CL = 50 pf		V,		UNIT
	(1147-01)	(001701)	TA = 25°C	T _A = 25°C	: SN	54HC'	SN7	4HC'	
			MIN TYP MAX	MIN TYP N	1AX MII	MAX	MIN	MAX	
	CKA or CLK	QA							MHz
f _{max}	СКВ	QB							IVITZ
tPLH	CKA or CLK	0.							ns
tPHL	CKA OF CLK	QA				-			115
tPLH .	CKA or CLK	Q _C of 'HC390							ns
tPHL_	CRA UI CER	QD of 'HC393							113
^t PLH	скв	QB							ns
^t PHL	CKB	GB .							113
^t PLH	скв	α _C							ns
^t PHL	CKB	_ <u>u</u> c			1.		l		113
^t PLH	скв	α_{D}							ns
^t PHL	CKB	d _D							115
^t PHL	CLR	Any							ns
C _{pd}	Power dis	sipation capacitano	e per counter	No load,	T _A = 25°	C	1	pF t	

- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

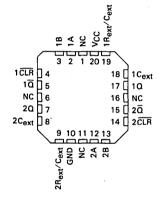
description

These dc-triggered multivibrators feature outputpulse-duration control by two methods. The basic pulse duration is programmed by selection of external resistance and capacitance values. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or highlevel-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The B input is a Schmitt trigger enabling jitter-free triggering from input signals with slow transition rates.

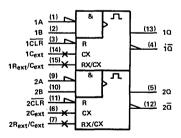

The SN54HC423 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC423 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


INP	JTS	OUTPUTS		
CLEAR	A	В	a	Q
L	X	X	L	Н
х	н	x	L*	H*
x	Х	L	L*	Н*
н	L	- 1	Л	r
н	1	н	Л	J

^{*}These are the logic levels the outputs will take on after the completion of any pulse already started.

SN54HC423 . . . J PACKAGE SN74HC423 . . . J OR N PACKAGE (TOP VIEW)



SN54HC423 . . . FH OR FK PACKAGE SN74HC423 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

TYPES SN54HC423, SN74HC423 DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

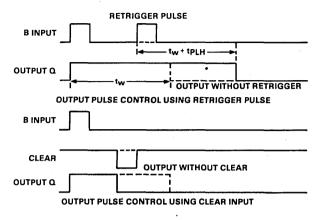


FIGURE 1—TYPICAL INPUT/OUTPUT PULSES maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

Note: The minimum recommended supply voltage for this device is 3 V.

timing requirements (supplement to recommended operating conditions)

		SN54HC423		SN74HC423			UNIT	
		MIN NOM MAX MI		MIN	MIN NOM MAX			
t _w	Pulse duration, A low, B high, or CLR low			_				ns
C _{ext}	External timing capacitance							μF
Rext	External timing resistance							kΩ

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO (INPUT)	TIMING COMPONENTS		V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _Δ = 25°C	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF T _Δ = 25°C SN54HC423 SN74HC423				UNIT			
			Cext	Rext	MIN TYP MAX		TYP MAX		MAX	 MAX		
^t PLH	A B	a	0	5 kΩ							ns	
^t PHL	A B	ā	0	5 kΩ							ns	
^t PHL	CLR	Q		5.0	0 510						 	
tPLH	CLH	ā	0	5 kΩ							ns	
twQ(min)	A D	Q	0	5 kΩ							ns	
twQ	A or B	L u	1 nF	10 kΩ							μs	
C _{pd}	Powe	r dissipation	capacitar	nce per m	ultivibrator	No	load, T _A = 2	25°C		pF typ		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

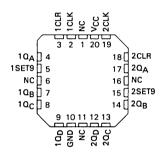
HIGH-SPEED CMOS LOGIC

TYPES SN54HC490, SN74HC490 DUAL 4-BIT DECADE COUNTERS

D2684, DECEMBER 1982

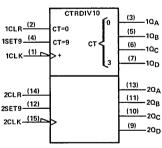
- Individual Clock, Direct Clear, and Set-to-9 Inputs for Each Decade Counter
- Dual Counters Can Significantly Improve System
 Densities as Package Count Can Be Reduced by 50%
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual 4-bit decade counters in a single package. Each decade counter has individual clock, clear, and set-to-9 inputs. BCD count sequences of any length up to divide-by-100 may be implemented with a single 'HC490. The counters have parallel outputs from each counter stage so that submultiples of the input count frequency are available for system timing signals.

The SN54HC490 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC490 is characterized for operation from -40°C to 85°C.

SN54HC490 . . . J PACKAGE SN74HC490 . . . J OR N PACKAGE (TOP VIEW)


1CLK	1	U 16	□ vcc
1CLR	2	15	2CLK
10A [3	14	2CLR
1SET9	4	13	20A
10 _B	5	. 12	2SET9
10c	6	11] 2QB
10 _D	7	10] 2Q _C
GND	8	9	_ 2Ω _D

SN54HC490 . . . FH OR FK PACKAGE SN74HC490 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

BCD COUNT SEQUENCE (EACH COUNTER)

α_{D}	αc	QΒ	QA				
L	L	L	L				
L	L	L	н				
L	L	Н	L				
L	L	Н	н				
L	н	L	L				
L	Н	L	Η.				
L	н	Н	L				
L	н	н	н				
н	L	L	L				
Н	L	L	Н				
	L	OD OC L L L L L L L L L L L L L L L L L L L	L L L L H L H L L H L L H H L H L L H H L H H L H H				

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

CLEAR/SET-TO-9

FUNCTION TABLE (EACH COUNTER)

QA QB QC QD

L

HLLH

OUTPUTS

COUNT

L L

INPUTS

CLEAR SET-TO-9

L

L

Н

L

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC490, SN74HC490 DUAL 4-BIT DECADE COUNTERS

timing requirements (supplement to recommended operating conditions)

		SN54HC490		SN74HC490				
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency						_	MHz
tw	Pulse duration (any input)							ns
tsu	Setup time, clear or set-to-9 inactive							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	1	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF					
Į	(INPOT)		TA = 25°C	TA = 25°C	SN54HC490 SN74HC490				
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX			
f _{max}							MHz		
tPLH .	CLK	0.					ns		
tPHL	CLK	QΑ					113		
^t PLH	CLK	Ω _B , Ω _D					ns		
^t PHL							113		
tPLH .	CLK	QC							
tPHL	CLN	uс					ns		
^t PHL	CLR	Any					ns		
^t PLH	Set-to-9	Q_A, Q_D	λ,						
^t PHL	Set-10-9	Ω _B , Q _C	, 5				ns		
C _{pd}	Power diss	ipation capacitanc	e per counter	No load, TA	= 25°C	pFt	ур		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D2684, DECEMBER 1982

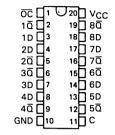
- 8 Latches In a Single Package
- **High-Current 3-State Inverting Outputs Can Drive** up to 15 LSTTL Loads
- Full Parallel Access for Loading
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

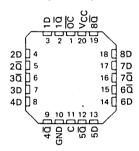
These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'HC533 are transparent D-type latches. While the enable (C) is high, the \overline{Q} outputs will follow the complements of the D inputs. When the enable is taken low, the Q outputs will be latched at the inverses of the levels that were set up at the D inputs. The 'HC533 is functionally equivalent to the 'HC373 except for having inverted outputs.

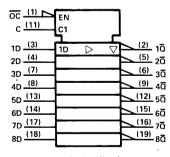
An output-control (\overline{OC}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.


The output control does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN54HC533 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC533 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE (EACH LATCH)

	INPUTS		OUTPUT
ŌĈ	ENABLE C	D	ā
L	н	Н	L
L	н	L	н
L	L	X	\bar{a}_0
н	×	Х	z


SN54HC533 . . . J PACKAGE SN74HC533 . . . J OR N PACKAGE (TOP VIEW)

SN54HC533 . . . FH OR FK PACKAGE SN74HC533 . . . FH OR FN PACKAGE (TOP VIEW)

logic,symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

continue this product without notice.

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or dis-

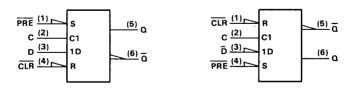
POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES SN54HC533, SN74HC533 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

		SN54HC533		SN74HC533			T	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency							MHz
tw	Pulse duration, enable C high							ns
t _{su}	Setup time, data before enable CI							ns
th	Hold time, data after enable CI							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C	V _{CC} = 4.5 V to 5.5 V, See Note 1 T _A = 25°C SN54HC533 SN74HC5:			UNIT	
			MIN TYP MAX		MIN MAX MIN MAX		-i I	
f _{max}							MHz	
tPLH .	D	ā					ns	
tPHL .							113	
^t PLH	С	Any					ns	
^t PHL		City						
^t PZH	ōċ	Any					ns	
tPZL	00	Ally					IIS	
tPHZ	oc	Any					ns	
^t PLZ		Ally						
C _{pd}	Power dis	sipation capacitan	ce per latch	No load, TA	= 25°C	pF t	ур	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators () on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

D2684, DECEMBER 1982

- High-Current 3-State Inverting Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

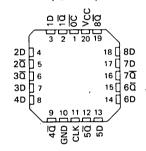
These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low impedance loads. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'HC534 are edge-triggered D-type flip-flops. On the positive transition of the clock, the $\overline{\mathbf{Q}}$ outputs will be set to the complement of the logic states that were set up at the D inputs. The 'HC534 is functionally equivalent to the 'HC374 except for having inverted outputs.

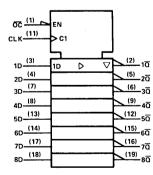
An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are off.

The SN54HC534 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC534 is characterized for operation from –40°C to 85°C.


FUNCTION TABLE (EACH FLIP-FLOP)

	NPUTS	OUTPUT	
OC	CLK	D	<u> </u>
L	†	Н	L
L	Ť	L	н
L	L	X	σo
Н	X	Х	Z


SN54HC534 . . . J PACKAGE SN74HC534 . . . J OR N PACKAGE (TOP VIEW)

<u>oc</u> [1	U20	Dvcc
1₫[2	19	_8 <u>0</u>
1D[3	18	□8D
2D[4	17]7D
2₫[5	16]7ā
зã⊑	6	15	<u></u>]6₫
3D 🗀	7	14	□6D
4D 🗀	8	13	<u></u> □5D
4₫[9	12	<u></u> 5 <u>0</u>
GND	10) 11	□сгк

SN54HC534 . . . FH OR FK PACKAGE SN74HC534 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

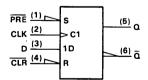
TEXAS INSTRUMENTS

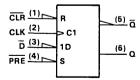
TYPES SN54HC534, SN74HC534 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			S	N54HC5	34	S			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	Pulse duration	CLK high							
¹w	Pulse duration	CLK low							ns
t _{su}	Setup time, data befo	ore CLK1			•				ns
th	Hold time, data after	CLKf							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	C = 5 = 45 = 667	pF,	:			= 4.5 V Note 1	′ to 5.5	V,		UNIT	
	(INFOT)	(001701)	Τ _Δ = 25°C		T _A = 25°C			SN54HC534SN74HC534						
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
f _{max}													MHz	
tPLH	CLK	Any											ns	
tPHL	CLK	- City											115	
^t PZH	ŌC	Any											200	
tPZL	00	Ally]	ns	
tPHZ :	ŌC	Any											ns	
tPLZ	00	,											113	
C-d	Power dissination canacitance ne			flon		<u> </u>	No to	ad Ta	= 25°C	-	l	nF tv	<u> </u>	


NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\longrightarrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

D2684, DECEMBER 1982

High-Current 3-State Outputs Drive Bus-Lines Directly or up to 15 LSTTL Loads

- **Bus-Structured Pinout**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

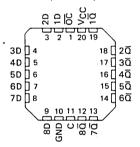
These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches are transparent D-type latches. While the enable (C) is high the Q outputs will follow the complements of data (D) inputs. When the enable is taken low the outputs will be latched at the inverses of the levels that were set up at the D inputs.

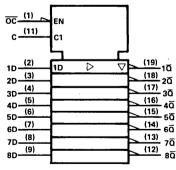
An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance state and increased high-logic level provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control (OC) does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC563 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC563 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE (Each Latch)

1	NPUT	ОИТРИТ	
Ε	NABL	α	
<u>oc</u>	С	D	u
L	Н	Н	L
L	H.	L	н
L	L	X	a _o
н	Х	Х	z


SN54HC563 . . . J PACKAGE SN74HC563 . . . J OR N PACKAGE (TOP VIEW)

ᅙᅙᄆ	1,(J 20[Vcc	
1D 🗌	2	19		1 <u>a</u>	
2D 🗌	3	18		2₫	
3D 🗌	4	17		З <u>а</u>	
4D 🗌	5	16		4₫	
5D 🗌	6	15		5₫	
6D 🗀	7	14	₽	6₫	
7D 🗀	8	13		7 <u>0</u>	
8D 🗌	9	12		8₫	
GND [10	11	þ	С	

SN54HC563 . . . FH OR FK PACKAGE SN74HC563 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3-160 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

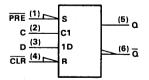
Texas Instruments INCORPORATED

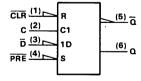
TYPES SN54HC563, SN74HC563 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			N54HC5	63	S	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	וואטן
tw	Pulse duration, enable C high							ns
t _{su} .	Setup time, data before enable C1							ns
th	Hold time, data after enable Cf							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C	1	See N	lote 1	to 5.5		HC563	UNIT
			MIN-TYP MAX				MAX			
^t PLH	D	ā								
tPHL	, U	u u								ns
tPLH	С	Any								
tPHL	C	Ally								ns
tPZH	ōc	Any								ns
tPZL	00	Any								115
tPHZ .	ōc	Any								ns
tPLZ		City								115
C _{pd}	Power dis	No load, T _A = 25°C					pF t	ур		


NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\longrightarrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

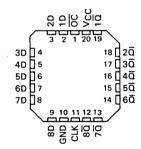
D2684, DECEMBER 1982

- High-Current 3-State Inverting Outputs Drive Bus-Lines Directly or up to 15 LSTTL Loads
- Bus-Structured Pinout
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit registers feature inverting three-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

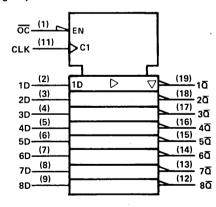
The eight-bit edge-triggered D-type flip-flops enter data on the low-to-high transition of the clock.


The output control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC564 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC564 is characterized for operation from –40°C to 85°C.

SN54HC564 . . . J PACKAGE SN74HC564 . . . J OR N PACKAGE (TOP VIEW)

oc [ī	U20 VCC
1 D 🖺	2	19∏ 1₫
2D 🗌	3	18 🗍 2 🗖
3D [4	17 🗍 3 🖸
4D [5	16∏ 4α
5D 🗀	6	15 🗍 5 🖸
6D [7	14 🗍 6 🖸
7D [8	13 70
8D [9	12 80
GND [110	11∏ CLK


SN54HC564 ... FH OR FK PACKAGE SN74HC564 ... FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH FLIP-FLOP)

į į	INPUTS	OUTPUT	
ОC	CLK	D	ā
L	t	Н	L
L	t	L	н
L	L	Х	\bar{a}_0
н	×	Х	Z

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

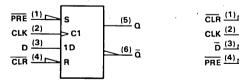
TEXAS INSTRUMENTS

TYPES SN54HC564, SN74HC564 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

			S	SN54HC564		S			
		•	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
_	Outra disenter	CLK high		•					
^t w	Pulse duration	CLK low							ns
t _{su}	Setup time, data befo	ore CLK1							ns
th	Hold time, data after	CLK1							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	VCC = 5 V. YCC = 5 V. CL = 45 pF. AMETER (INPUT) (OUTPUT) RL = 667Ω.			V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT		
	((001101)	ΤΔ = 25°C		T _Δ = 25°C			SN54HC564 SN74HC564					
 			MIN TY	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
f _{max}												MHz	
tPLH .	CLK	Any										ns	
tPHL.	CLK	Ally											
tPZH	ōc	Any										ns	
tPZL	00	Ally										ns	
tPHZ	ŌC	Any										ns	
tPLZ		Ally						l				,13	
Cpd	Power dissipation capacitance per flip-flop			No load, TA = 25°C					pF t	yp			

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D flip-flop signal conventions

It is TI practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\longrightarrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

(<u>5)</u> <u>a</u>

(6) Q

D2684, DECEMBER 1982

- **High-Current 3-State Outputs Drive Bus-Lines Directly** or up to 15 LSTTL Loads
- **Bus-Structured Pinout**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

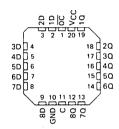
These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches are transparent D-type latches. While the enable (C) is high the outputs (Q) will respond to the data (D) inputs. When the enable is taken low the outputs will be latched to retain the data that was set up.

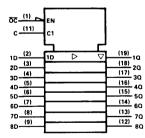
An output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The highimpedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control (OC) does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are at high impedance.

The SN54HC573 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC573 is characterized for operation from -40°C to 85°C.


FUNCTION TABLE (EACH LATCH)

II.	IPUT	s	OUTPUT
. El	VABI	α	
оc	С	D	
L	Н	Н	Н
L	н	L	L.
L	L	Х	a_0
н	Х	Х	z


SN54HC573 . . . J PACKAGE SN74HC573 . . . J OR N PACKAGE (TOP VIEW)

ᇟ디	1	U20∏ v _{CC}
10[2	19 🛮 10
2D 🗆	3	18 🛭 2 Q
3D 🗌	4	17 🛛 30
4D 🗌	5	16 🗌 4 Q
5D 🗌	6	15 🗌 5 Q
6D 🗀	7	14∏ 60.
7D 🗌	8	13 70
8D[9	12 BQ
GND [10) 11 C

SN54HC573 . . . FH OR FK PACKAGE SN74HC573 . . . FH OR FN PACKAGE (TOP VIEW)

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

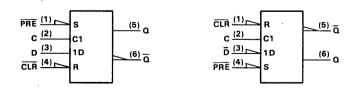
Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC573, SN74HC573 OCTAL D-TYPE TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

		S	N54HC5	73	S	N74HC5	73	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
tw	Pulse duration, C high				1			ns
t _{su}	Setup time, data before enable C1							ns
th	Hold time, data after enable Cf							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)	то (ОИТРИТ)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C	See I		V. SN74HC573 MIN MAX	UNIT
t _{PLH}	D	ā					
^t PHL	U	u				·	ns
tPLH .	С	Any					
tpHL		Any					ns
tPZH	ōc	Any					ns
tPZL	ОС.	Ally			}		115
tPHZ	ōc	A ===					
[†] PLZ	00	Any					ns
C _{pd}	Power dis	ssipation capacitano	e per latch	No load, TA	= 25°C	pF t	ур

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

D latch signal conventions

It is TI practice to name the outputs and other inputs of a D-type latch and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (PRE and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\longrightarrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

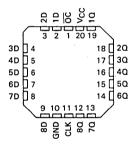
D2684, DECEMBER 1982

- **High-Current 3-State Noninverting Outputs** Drive Bus-Lines Directly or up to 15 LSTTL Loads
- **Bus-Structured Pinout**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- **Dependable Texas Instruments Quality** and Reliability

description

These 8-bit registers feature three-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

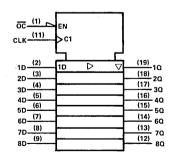
The eight edge-triggered D-type flip-flops enter data on the low-to-high transition of the clock.


The output-control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54HC574 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC574 is characterized for operation from -40°C to 85°C.

SN54HC574 . . . J PACKAGE SN74HC574 . . . J OR N PACKAGE (TOP VIEW)

	ŌĊ	₫	1	U20		vcc
	1D		2	19	Ð	10
	2D		3	18	┇╬	20
	3D		4	17	巾	30
	4D	□	5	16	i[40
	5D	П	6	15	5[]	5Q
	6D	□	7	14	₽	6Q
	7D	Ц	8	13	3	70
	8D	П	9	12	2□	80
(GND	П	10) 1	ı	CLK


SN54HC574 . . . FH OR FK PACKAGE SN74HC574 . . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH FLIP-FLOP)

ı	NPUTS	•	OUTPUT
ŌC	CLK	D	a
L	t	Н	Н
L	t	L	L
L	L	Х	∞
н	X	х	z

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW This document contains information on a

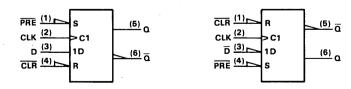
Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC574, SN74HC574 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

		•	s	N54HC5	74	S	N74HC5	74	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency					1			MHz
	Pulse duration	CLK high							
tw	ruise duration	CLK low							ns
t _{su}	Setup time, data before	CLK1			*	1			ns
th	Hold time, data after CL	KI							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	FROM (INPUT)	то		= 45	= 5 V, V _{CC} = 4.5 V to 5.5 V, 45 pF, See Note 1					UNIT			
	((000.,	TA = 25°C		T _Δ = 25°C			SN54					
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}													MHz
tPLH	CLK	A											
tPHL	CER	Any							T				ns
^t PZH	<u>oc</u>	Any											
tPZL	OC	Any											ns
tPHZ	ōc	A											
tPLZ	<u> </u>	Any											ns
Cnd	Power diss	ipation capacitano	e per flip	-flop			No Io	ad, Ta	= 25°C			pF t	qv

Note: 1. For load circuit and voltage waveforms, see page 1-14.

D flip-flop signal conventions

It is \overline{I} practice to name the outputs and other inputs of a D-type flip-flop and to draw its logic symbol based on the assumption of true data (D) inputs. Then outputs that produce data in phase with the data inputs are called \overline{Q} and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called Preset; an input that causes a \overline{Q} output to go high or a Q output to go low is called Clear. Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active-low.

In some applications it may be advantageous to redesignate the data input \overline{D} . In that case all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbol. Arbitrary pin numbers are shown in parentheses.

Notice that Q and \overline{Q} exchange names, which causes Preset and Clear to do likewise. Also notice that the polarity indicators (\longrightarrow) on \overline{PRE} and \overline{CLR} remain since these inputs are still active-low, but that the presence or absence of the polarity indicator changes at \overline{D} , Q, and \overline{Q} . Of course pin 5 (\overline{Q}) is still in phase with the data input \overline{D} , but now both are considered active-low.

TYPES SN54HC590. SN74HC590 CMOS LOGIC 8-BIT BINARY COUNTERS WITH 3-STATE OUTPUT REGISTERS

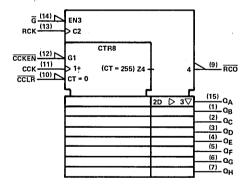
D2684, DECEMBER 1982

- 8-Bit Counter with Register
- **High-Current 3-State Parallel Register Outputs** Can Drive up to 15 LSTTL Loads
- Counter Has Direct Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- **Dependable Texas Instruments Quality** and Reliability

description

These devices each contain an 8-bit binary counter that feeds an 8-bit storage register. The storage register has parallel outputs. Separate clocks are provided for both the binary counter and storage register. The binary counter features a direct clear input CCLR and a count enable input CCKEN. For cascading a ripple carry output RCO is provided. Expansion is easily accomplished by tying RCO of the first stage to CCKEN of the second stage, etc.

Both the counter and register clocks are positiveedge triggered. If the user wishes to connect both clocks together, the counter state will always be one count ahead of the register. Internal circuitry prevents clocking from the clock enable.


The SN54HC590 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC590 is characterized for operation from -40°C to 85°C.

SN54HC590 . . . J PACKAGE SN74HC590 . . . J OR N PACKAGE (TOP VIEW)

QB 1 16 VC	
QC 2 15 QA	•
Q _D 3 14	
QE	(
Q _F	KEN
QG ☐6 11 ☐ CCH	(
он 🛮 7 — 10 🗎 сст	.R
GND 8 9 RC	5

For chip carrier information, contact the factory

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Texas Instruments INCORPORATED

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a 3-168 product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

TYPES SN54HC590, SN74HC590 8-BIT BINARY COUNTERS WITH 3-STATE OUTPUT REGISTERS

timing requirements (supplement to recommended operating conditions)

			S	N54HC5	90	S	N74HC5	90	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency	, CCK or RCK							MHz
	Pulse duration	CCK or RCK high or low							
t _W	Pulse duration	CCLR low							ns
		CCKEN low before CCK1							
tsu	Setup time	CCLR high (inactive) before CCK1							ns
		CCK1 before RCK1†							1

[†]This setup time ensures the register will see stable data from the counter outputs. The clocks may be tied together in which case the register state will be one clock pulse behind the counter.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = Note 2, R _L = Note 2,	CL=	= 4.5 V to 5.5 50 pF		UNIT
			T _A = 25°C	T _A = 25°C		SN74HC590	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	
fmax	CCK or RCK				<u> </u>		MHz
tPLH .	CCKt	RCO			<u> </u>]]	ns
^t PHL	CCK	nco					115
tPLH	CCLR↓	RCO	`				ns
tPLH .	RCK1	a					
tPHL .	ncki	ď			1		ns
^t PZH	Ğ١	· a					ns
tPZL	G•	ū			}		115
t _{PHZ}	- Gt	Q					ns
tPLZ	G,	u					115
C _{pd}	Powe	r dissipation capa	citance	No load, TA	= 25°C	pF t	/p

NOTES: 1. For load circuit and voltage waveforms, see page 1-14.

^{2.} C_L = 15 pF and R_L = 2 k Ω for RCO output; C_L = 45 pF and R_L = 667 Ω for Ω outputs.

D2684, DECEMBER 1982

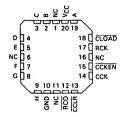
Parallel Register Inputs ('HC592)

Parallel 3-State I/O: Register Inputs/Counter Outputs ('HC593)

- Counter Has Direct Overriding Load and Clear
- High-Current Outputs Can Drive up to 15 LSTTL Loads ('HC593)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

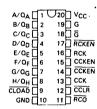
description

The 'HC592 consists of a parallel input, 8-bit storage register feeding an 8-bit binary counter. Both the register and the counter have individual positive edge-triggered clocks. In addition, the counter has direct load and clear functions. Expansion is easily accomplished by connecting RCO of the first stage to the count enable of the second stage, etc.

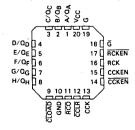

The 'HC593 has all the features of the 'HC592 plus 3-state I/O, which provides parallel counter outputs.

The SN54HC592 and SN54HC593 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC592 and SN74HC593 are characterized for operation from -40°C to 85°C.

SN54HC592...J PACKAGE SN74HC592 . . . J OR N PACKAGE (TOP VIEW)


> B [1 1 16] Vcc C 🛮 2 15 A 14 CLOAD D 🛮 3 13 RCK F \Box A 12 CCKEN F 🗌 5 G □ 6 11 CCK 10 CCLR н∏л GND TR 9 RCO

SN54HC592 . . . FH OR FK PACKAGE SN74HC592 . . . FH OR FN PACKAGE (TOP VIEW)



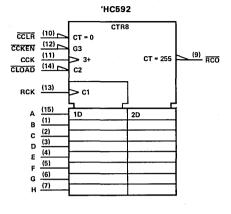
NC - No internal connection

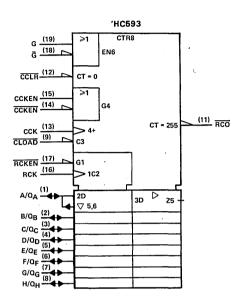
SN54HC593...J PACKAGE SN74HC593 . . . J OR N PACKAGE (TOP VIEW)

SN54HC593 . . . FH OR FK PACKAGE SN74HC593 . . . FH OR FN PACKAGE (TOP VIEW)

PRODUCT PREVIEW This document contains information on a

ments reserves the right to change or dis-


continue this product without notice.


Copyright @1982 by Texas Instruments Incorporated

3-170 product under development. Texas Instru-

TYPES SN54HC592, SN54HC593, SN74HC592, SN74HC593 8-BIT BINARY COUNTERS WITH INPUT REGISTERS

logic symbols

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

'HC592: See Table IV,page 2-6. 'HC593: See Table III, page 2-5.

timing requirements (supplement to recommended operating conditions)

				SN54HC	•		SN74HC	•	Ī
		•	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency,	CCK or RCK							MHz
		CCK or RCK high or low							
tw	Pulse duration	CCLR low							ns
		CLOAD low							1
		CCKEN low before CCK							
	C-1	CCLR high (inactive) before CCK1							1
tsu	Setup time (see Note)	RCKt before CCKt							ns
		Data A thru H before RCK1							1
th	Hold time						*****		ns

NOTE: The RCK1 to CCK1 setup time ensures the counter will see stable data from the register outputs.

TYPES SN54HC592, SN54HC593, SN74HC592, SN74HC593 8-BIT BINARY COUNTERS WITH INPUT REGISTERS

'HC592 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,				= 4.5 V 50 pF	to 5.5	٧,		UNIT
	(1141 01)	(MFOI) (OUIFOI) -		SN54	4HC592 SN74HC592						
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
fmax	CCK or RCK										MHz
tPLH .	CCKI	RCO									ns
tPHL_	CONI	nco									115
tPLH .	CLOAD	RCO									ns
tPHL	CLUADI	nco									
tPLH	CCLRI	RCO					İ				ns
tPLH .	RCKt	RCO					1				ns
t _{PHL}	non!	nco									115
C _{pd}	Powe	r dissipation capa	citance		No lo	ad, T _A	= 25°C		ľ	pF ty	р

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC593 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	D - 6670				UNIT		
	(1147-01)	(001701)	T _A = 25°C	T _A = 25°C	SN54HC593				
		<u> </u>	MIN TYP MAX	MIN TYP MA	K MIN MAX	MIN MAX			
f _{max}	CCK or RCK						MHz		
^t PLH	CCKI	a					ns		
tPHL	CCK	J .					115		
^t PLH	CLOAD	a					ns		
^t PHL		ď					113		
^t PHL	CCLR	a					ns		
tPZH	Gt	a					ns		
^t PZL	G1	ų .					115		
tPZH	Ğ١	α					ns		
tPZL	J.	<u> </u>							
^t PHZ	G١	a					ns		
^t PLZ	<u>.</u>						113		
^t PHZ	G۱	a					ns		
‡PLZ	G,	ď					113		
^t PLH	CCKt	RCO					ns		
^t PHL	CORI	1100							
^t PLH	CLOAD	RCO .					ns		
^t PHL		nco					115		
tPLH	CCLRI	RCO					ns		
tPLH .	RCK1	RCO					ns		
[‡] PHL	neki	NCO .					115		
C _{pd}	Powe	r dissipation capa	citance	No load, T _A = 25°C pF ty					

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

HIGH-SPEED CMOS LOGIC

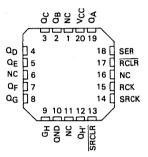
TYPES SN54HC594, SN74HC594 8-BIT SHIFT REGISTERS WITH OUTPUT REGISTERS

- 8-Bit Serial-In, Parallel-Out Shift Registers With Storage
- Independent Direct-Overriding Clears On Shift And Storage Registers
- Independent Clocks for Both Shift and Storage Registers
- High-Current Outputs Can Drive up to 15 **LSTTL Loads**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Caramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

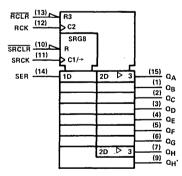
These devices each contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks and direct-overriding clears are provided on both the shift and storage registers. A serial output (QH') is provided for cascading purposes.

Both the shift register and storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift register will always be one clock pulse ahead of the storage register.


The parallel outputs (QA thru QH) have high-current capability; output QH'is a standard output.

The SN54HC594 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC594 is characterized for operation from -40°C to 85°C.

SN54HC594 . . . J PACKAGE SN74HC594 . . . J OR N PACKAGE (TOP VIEW)


Q_B	Πī	U 16] v _{cc}
a_{C}	□ 2	15] QA
σ_{D}	Дз	14	SER
ŒΕ	□4	13	RCLR
Q_{F}	□ 5	12	RCK
α_{G}	∏6	11	SRCK
Q_H	□7	10	SRCLR
GND	[]8	9	$\Box \alpha_{H'}$

SN54HC594 . . . FH OR FK PACKAGE SN74HC594 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

ments reserves the right to change or dis-

continue this product without notice.

TYPES SN54HC594, SN74HC594 8-BIT SHIFT REGISTERS WITH OUTPUT REGISTERS

timing requirements (supplement to recommended operating conditions)

			S	N54HC5	94	S	N74HC5	94	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
f clock	Clock frequency	, RCK or SRCK							MHz
	Pulse duration	RCK or SRCK high or low							
tw	i dise dalation	SRCLR low							ns
		SRCLR high (inactive) before SRCK1							
	Setup time	RCLR high (inactive) before RCK1	1						
t _{su}	Setup time	SER data before SRCK1							ns
		SRCK1 before RCK1 (see note)							}
th	Hold time	SER after SRCK1							ns

NOTE: This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

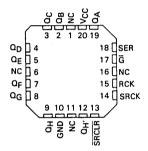
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 16 pF, R _L = 2 kΩ,		VCC =		C = 4.5 V to 5.5 V, Note 1				
	(114, 01,	(001101)	T _A = 25°C	T _A = 25°C		SN54	N54HC594 SN74HC5		HC594		
	ľ		MIN TYP MAX	MIN TY	P MAX	MIN	MAX	MIN	MAX		
f _{max}	RCK or SRCK									MHz	
^t PLH	SRCK	Q _H ,								ns	
tPHL	SHUK	<u>Фн</u>								115	
tPLH	RCK	Q _A thru Q _H								ns	
tPHL	, nck	од шта он								115	
	SRCLR	QH'									
tPHL	RCLR	Q _A thru Q _H								ns	
C _{pd}	Powe	er dissipation capac	citance	No	load, TA	= 25°C		Γ	pF t	yp	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 8-Bit Serial-In, Parallel-Out Shift Registers with Storage
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Shift Register Has Direct Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

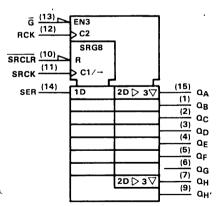
description

These devices each contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output pins for cascading.


Both the shift register and storage register clocks are positiveedge triggered. If the user wishes to connect both clocks together, the shift register state will always be one clock pulse ahead of the storage register.

The SN54HC595 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC595 is characterized for operation from -40°C to 85°C.

SN54HC595 . . . J PACKAGE SN74HC595 . . . J OR N PACKAGE (TOP VIEW)


QB [] 1	U 16	□vcc
Qc □ 2	15	
Q D [] 3	14	SER
QE ☐ 4	13	□ē
QF [5	12	RCK
QG ∏6	11	SRCK
QH ∏7	10	SRCLR
SND 🗌 8	9	□ α _H ,

SN54HC595 . . . FH OR FK PACKAGE SN74HC595 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

PRODUCT PREVIEW

Texas Instruments

INCORPORATED

Copyright ©1982 by Texas Instruments Incorporated

This document contains information on a product under development. Texas Instruments reserves the right to change or discontinue this product without notice.

3-175

TYPES SN54HC595, SN74HC595 8-BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS

timing requirements (supplement to recommended operating conditions)

			S	N54HC5	95	S	N74HC5	95	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency	y,RCK or SRCK							MHz
	Pulse duration	RCK or SRCK high or low							
tw	ruise duration	SRCLR low							ns
		SRCLR high (inactive) before SRCK1							
t _{su}	Setup time	' SER data before SRCK1							ns
		SRCK1 before RCK1†							
th	Hold time	SER data after SRCK1							ns

[†]This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = Note 2, R _L = Note 2,	Note 2, See Note 1		UNIT
	(1147-017	(001701)	TA = 25°C	T _A = 25°C	SN54HC595 SN74HC59	5
			MIN TYP MAX	MIN TYP MAX	MIN MAX MIN MAX	
f _{max}	RCK or SRCK					MHZ
†PLH	SRCK	ΩH,				ns
tPHL.	Shok	<u>чн</u>				115
^t PHL	SRCLR	QH'				ns
tPLH	- RCK	Q _A thru Q _H				
tPHL	nek	ад ини ан				ns
(PZH	- Ğ	Q _A thru Q _H				
tPZL		ад ппа ан				ns
t _{PHZ}	G	Q _A thru Q _H				ns
tPLZ		ад ша ан				115
C _{pd}	Powe	r dissipation capac	citance	No load, TA	= 25°C pF	typ

NOTES: 1. For load circuit and voltage waveforms, see page 1-14.

^{2.} C_L = 15 pF and R_L = 2 k Ω for $\Omega_{H'}$ output;

CL = 45 pF and RL = 667Ω for QA thru QH outputs.

HIGH-SPEED CMOS LOGIC

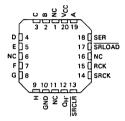
TYPES SN54HC597, SN54HC598, SN74HC597, SN74HC598 8-BIT SHIFT REGISTERS WITH INPUT LATCHES

D2684, DECEMBER 1982

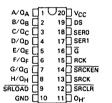
- 8-Bit Parallel Storage Register Inputs ('HC597)
- Parallel 3-State I/O, Storage Register Inputs, Shift Register Outputs ('HC598)
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads ('HC598)
- Shift Register Has Direct Overriding Load and Clear
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

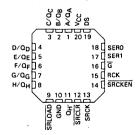
description

The 'HC597 consists of an 8-bit storage latch feeding a parallel-in, serial-out 8-bit shift register. Both the storage register and shift register have positive-edge triggered clocks. The shift register also has direct load (from storage) and clear inputs.


The 'HC598 has all the features of the 'HC597 plus 3-state I/O ports that provide parallel shift register outputs. The 'HC598 also has multiplexed serial data inputs.

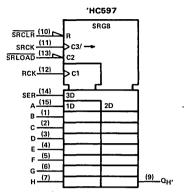
The SN54HC597 and SN54HC598 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC597 and SN74HC598 are characterized for operation from -40°C to 85°C.

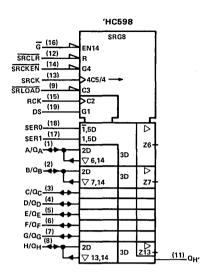

SN54HC597...J PACKAGE SN74HC597...J OR N PACKAGE (TOP VIEW)


SN54HC597 . . . FH OR FK PACKAGE SN74HC597 . . . FH OR FN PACKAGE (TOP VIEW)

SN54HC598 . . . J PACKAGE SN74HC598 . . . J OR N PACKAGE (TOP VIEW)

SN54HC598 . . . FH OR FK PACKAGE SN74HC598 . . . FH OR FN PACKAGE (TOP VIEW)




NC - No internal connection

PRODUCT PREVIEW

TYPES SN54HC597, SN54HC598, SN74HC597, SN74HC598 8-BIT SHIFT REGISTERS WITH INPUT LATCHES

logic symbols

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

'HC597: See Table IV, page 2-6.

'HC598: See Table III, page 2-5.

timing requirements (supplement to recommended operating conditions)

				SN54HC			SN74HC	,	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency	, RCK or SRCK							MHz
		RCK or SRCK high or low							
tw	Pulse duration	SRCLR low							ns
		SRLOAD low							1
		SRCKEN low before SRCK1							
	Catum time	SRCLR high (inactive) before SRCK1							
t _{su}	Setup time (see Note)	RCK1 before SRCK1							ns
	(see Note)	SER data before SRCK1			·				1
		Data A thru H before RCK!							1
th	Hold time								ns

NOTE: The RCK 1 before SRCK1 setup time ensures that the shift register will see stable data coming from the input register.

TYPES SN54HC597, SN54HC598, SN74HC597, SN74HC598 8-BIT SHIFT REGISTERS WITH INPUT LATCHES

'HC597 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF								UNIT
	(1147-017	(001/01)	T _A = 25°C	T _A = 25	°C	SN54	HC597	SN74I	HC597			
			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX			
f _{max}	RCK or SRCK									MHz		
tPLH .	SRCK1	Q _H ,								ns		
tPHL .	SACKI	QH,								115		
tPLH	SRLOAD	ΩH,								ns		
tPHL	SILLOADI	ΔH.								113		
tPHL .	SCLR	ΩH,								ns		
^t PLH	RCK1	QH,								ns		
tPHL	, neki	<u>ч</u> н.								115		
C _{pd}	Powe	r dissipation capac	itance	No lo	ad, T _A	= 25°C			pF ty)		

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC598 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)		V _{CC} = 5 V, C _L = Note 2, R _L = Note 2,		= 4.5 V to 5.5 V Note 1	•	UNIT
	(INTO I)	(001701)	TA = 25°C	T _A = 25°C	SN54HC598S	N74HC598	
			MIN TYP MAX	MIN TYP MAX	MIN MAX	XAM NIN	
f _{max}	RCK or SRCK						MHz
tPLH .	SRCKI	QH [,]			l		ns
^t PHL	Shoki	Ψ.					115
tPLH .	SRLOAD	0					ns
t _{PHL}	SHLOAD	QH'					115
^t PHL	SRCLR	QH' ·					ns
^t PLH	RCKt	Q _H ,					ns
tPHL	, NCKI	OH.		•			115
^t PLH	SRCKt	Q _A thru Q _H			1		ns
tPHL	Shoki	од ши он					113
tPLH .	SRLOAD	Q _A thru Q _H					ns
t _{PHL}	SILLOADI	ад ши ан					113
tPHL .	SRCLRI	Q _A thru Q _H					
^t PZH	Ğ١	Q _A thru Q _H					ns
†PZL	· •••	QA IIII QH					ns
tPHZ	Ğt	Q _A thru Q _H					ns
^t PLZ	J 31	QA IIII QH					ns
C _{pd}	Powe	er dissipation capac	itance	No load, TA	= 25°C	pF typ	2

NOTES: 1. For load circuit and voltage waveforms, see page 1-14.

2. $C_L = 15 \text{ pF}$ and $R_L = 2 \text{ k}\Omega$ for $\Omega_{H'}$ output;

 $C_L = 45 \text{ pF}$ and $R_L = 667\Omega$ for Q_A through Q_H outputs.

TYPES SN54HC620, SN54HC623, SN74HC620, SN74HC623 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

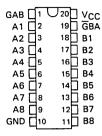
D2684, DECEMBER 1982

- Bus Transceivers in High-Density 20-Pin DIPs and also Plastic and Ceramic Chip Carriers
- Lock Bus-Latch Capability
- Choice of True or Inverting Logic
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Dependable Texas Instruments Quality and Reliability

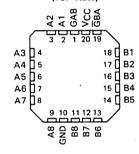
DEVICE LOGIC
'HC620 Inverting
'HC623 True

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.


These devices allow data transmission from A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs (GBA and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.

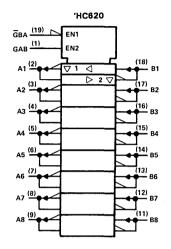

The dual-enable configuration gives these devices the capability to store data by simultaneous enabling of \$\overline{G}BA\$ and \$\overline{G}AB\$. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the 'HC623 or complementary for the 'HC620.

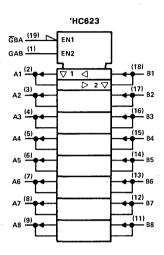
The SN54HC620 and SN54HC623 are characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC620 and SN74HC623 are characterized for operation from –40°C to 85°C.

SN54HC'...J PACKAGE SN74HC'...J OR N PACKAGE (TOP VIEW)

SN54HC'...FH OR FK PACKAGE SN74HC'...FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE


ENABLE	INPUTS	OPER	ATION
ĞВА	GAB	'HC620	'HC623
L	L	B data to A bus	B data to A bus
Н	Н	A data to B bus	A data to B bus
Н	L	Isolation	Isolation
		B data to A bus,	B data to A bus,
L	н	A data to B bus	A data to B bus


PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC620, SN54HC623, SN74HC620, SN74HC623 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

logic symbols

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

'HC620 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	FROM TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} = See N		to 5.5	V,		UNIT
	(1.11 01)	(001101)	T _A = 25°C	T _A = 25°	C	SN54I	HC620	SN741	HC620	
			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	XAM V	
[†] PLH	A	В								ns
tPHL .									•	113
tPLH .	В	А								กร
tPHL										
†PZH	ĞВА	А								ns
tPZL	GDA	_ ^								115
tPHZ	ĞВА	. А								ns
tPLZ	GDA									115
tPZH .	GAB	В								ns
tPZL	GAB									
^t PHZ	GAB	В								ns
tPLZ	UAB	L								115
C _{pd}	Power dissip	pation capacitance	per transceiver	No load	d, T _A =	25°C			pF ty	p

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

TYPES SN54HC620, SN54HC623, SN74HC620, SN74HC623 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'HC623 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	FROM TO $C_L = 45 \text{ pF}$, $R_L = 667\Omega$, $T_A = 25 ^{\circ}\text{C}$	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,			= 4.5 V Note 1	′ to 5.5	v.		UNIT
	(INFOT)		T _A = 25°C	TA = 25°C SN54HC623			SN74HC623			
				MIN T	YP MAX	MIN	MAX	MIN	MAX	
tPLH	Α	В								ns
tPHL ·										113
tPLH_	В	A				1				ns
tPHL										113
tPZH	GBA	А								ns
tPZL										115
tPHZ	ĞВА	А								ns
tPLZ	GDA									113
tPZH	GAB	В								ns
tPZL	GAB									115
tPHZ	GAB	В								ns
tPLZ	GAB									115
Cnd	Power dissir	pation capacitance	per transceiver	l N	lo load. Ta	= 25°C		1	pF tv	D

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

TYPES SN54HC640, SN54HC643, SN54HC645, SN74HC640, SN74HC643, SN74HC645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

D2684, DECEMBER 1982

- Bus Transceivers in High-Density 20-Pin DIPs and also Plastic and Ceramic Chip Carriers
- Choice of True or Inverting Logic
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Dependable Texas Instruments Quality and Reliability

DEVICE

LOGIC

'HC640 'HC643 Inverting True and Inverting

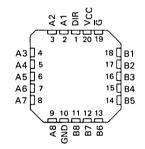
'HC645

19∐ Ğ А2 Г 3 18 B1 A3 ∏4 17 | B2 А4 ∏5 16 B3 A5 ∏6 15 B4 14 B5 A6 □ A7 ∏8 13 B6 A8 ∏9 12 B7 GND 110 11 B8

DIR TT

A1 [2

SN54HC'...J PACKAGE

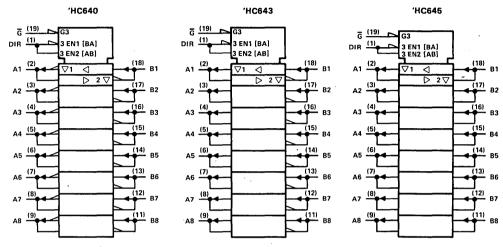

SN74HC'...J OR N PACKAGE (TOP VIEW)

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (G) can be used to disable the device so the buses are effectively isolated.

The SN54HC640, SN54HC643 and SN54HC645 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC640, SN74HC643, and SN74HC645 are characterized for operation from -40°C to 85°C.

SN54HC'... FH OR FK PACKAGE SN74HC' . . . FH OR FN PACKAGE (TOP VIEW)


FUNCTION TABLE

CON	TROL	OPERATION						
INP	UTS	///0040	ULOCAE	"""				
G	DIR	'HC640	'HC645	'HC643				
L	L	B data to A bus	B data to A bus	B data to A bus				
L	Н	Ā data to B bus	A data to B bus	A data to B bus				
Н	X	Isolation	Isolation	Isolation				

PRODUCT PREVIEW

TYPES SN54HC640, SN54HC643, SN54HC645 SN74HC640, SN74HC643, SN74HC645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

logic symbols

Pin numbers shown are for J and N packages

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

'HC640 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		V _{CC} = 4.5 V to 5.5 V, See Note 1							UNIT		
	((OUTPUT)	T _A = 25°C		T _A = 25°C		SN54HC640 SN74HC64			HC640			
1			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A											ns
tPHL.													
tPZH	G	A or B											ns
tPZL		7018											113
tPHZ	Ğ	A or B			• "								ns
tPLZ		A 01 B											113
Cpd	Power dissipation capacitance per transceiver				r	No load, T _A = 25°C pF to					pF ty	p	

NOTE 1: For load circuit and voltage waveforms, see page 1-14,

TYPES SN54HC640, SN54HC643, SN54HC645 SN74HC640, SN74HC643, SN74HC645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

'HC643 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C	See I			
tPLH			THE THE MAKE	Will III WAX	Will Wax Will Wax	·	
tPHL	A	В				ns	
tPLH	В	А				ns	
tPHL							
^t PZH	Ğ	A				ns	
tPZL							
t _{PHZ}	G	A				ns	
tPLZ	,						
tPZH	Ğ	В				ns	
tPZL							
tPHZ	Ḡ.	В				ns	
tPLZ	J.,						
C _{pd}	Power dissip	ation capacitance pe	er transceiver	No load, TA	= 25°C pF t	/p	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

'HC645 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω, T _A = 25°C			λ = 25 ΤΥΡ	See I	= 4.5 V to 5.5 V, Note 1 SN54HC645SN74H6			UNIT	
t _{PLH}	A or B	B or A										ns
tPHL												
tPZH .	G	A or B										ns
tPZL		3 4018						i				
tPHZ	G	G A or B										ns
tpLZ		7015										113
C _{pd}	Power dissipation capacitance per transceiver					No lo	ad, T _A	= 25°C		<u> </u>	pF ty	p

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

HIGH-SPEED CMOS LOGIC

TYPES SN54HC646, SN54HC648, SN74HC646, SN74HC648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

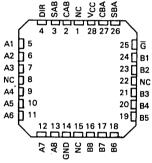
D2684, DECEMBER 1982

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- Choice of True or Inverting Data Paths
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

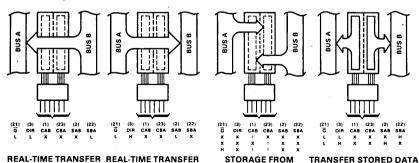
description

These devices consist of bus transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers on the low-to-high transition of the appropriate clock pin (CAB or CBA). The examples below demonstrate the four fundamental bus-management functions that can be performed with the 'HC646 or 'HC648.

Enable (\overline{G}) and direction (DIR) pins are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select controls (SAB and SBA) can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when enable \overline{G} is active (low). In the isolation mode (enable \overline{G} high), A data may be stored in one register and/or B data may be stored in the other register.


When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The SN54' family is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74' family is characterized for operation from –40°C to 85°C.


SN54HC' ... JT PACKAGE SN74HC' ... JT OR NT PACKAGE (TOP VIEW)

САВ [17	724 VCC
SAB [2	23 CBA
DIR [3	22 SBA
A1 [4	21 🗍 🛱
A2 [5	20 B1
A3 [6	19 🗍 B2
A4 [קֹב	18 🗌 B3
A5 []8	17 🗌 B4
A6 []9	16 🗌 B5
A7 []10	15 🗌 B6
A8 []11	14 🗌 B7
GND	12	13 🗆 вв

SN54HC'...FH OR FK PACKAGE SN74HC'...FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

BUS A TO BUS B

Pin numbers shown are for JT and NT packages.

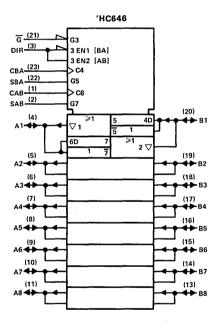
BUS B TO BUS A

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TO A OR B

A. B. OR A AND B


TYPES SN54HC646, SN54HC648, SN74HC646, SN74HC648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

	INPUTS					DATA	1/0†	OPERATION OR FUNCTION			
G	DIR	CAB	CBA	SAB	SBA	A1 THRU A8	B1 THRU B8	'HC646	'HC648		
X	Х	t	,X	Х	X	Input	Not specified	Store A, B unspecified	Store A, B unspecified		
×	X	X	t	Х	×	Not specified	Input	Store B, A unspecified	Store B, A unspecified		
Н	X	1	t	Х	х		1	Store A and B Data	Store A and B Data		
н	×	H or L	H or L	X	X	Input	Input	Isolation, hold storage	Isolation, hold storage		
L	L	х	X	Х	. L	0	la	Real-Time B Data to A Bus	Real-Time B Data to A Bus		
L	L	X	X	Х	н	Output	Input	Stored B Data to A Bus	Stored B Data to A Bus		
L	Н	Х	X	L	×	1	0	Real-Time A Data to B Bus	Real-Time A Data to B Bus		
L	н	X	X	Н	х	Input	Output	Stored A Data to B Bus	Stored A Data to Bus		

†The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic symbols

Pin numbers shown are for JT and NT packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

TYPES SN54HC646, SN54HC648, SN74HC646, SN74HC648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

timing requirements (supplement to recommended operating conditions)

				SN54HC	•		SN74HC	,	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequenc	у							MHz
t _w	Clock pulse du	ration							ns
t _{su}	Setup time	A before CAB1 or B before CBA1							ns
th	Hold time	A after CAB1 or B after CBA1							ns

'HC646 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,				= 4.5 V Note 1	' to 5.5	V,		UNIT
	(INPOT)	(001701)	TA = 25°C	TA	= 25	°C	SN54	HC646	SN74	HC646	
			MIN TYP MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}					•						MHz
^t PLH	CBA or CAB	A or B	,								ns
tPHL	CDA OI CAD	7015									
^t PLH	A or B	B or A									ns
tPHL		B 01 A									113
tPLH .	SBA or SAB										
tPHL	(with A or B high)†	A or B									ns
tPLH	SBA or SAB										
^t PHL	(with A or B low)†		•								
^t PZH	1										
^t PZL	G	A or B		<u> </u>							ns
tpHZ] '	7015		<u> </u>							113
tPLZ											
tpzh							1.				
tPZL	DIR	A or B									ns
^t PHZ	DIR	7010									113
^t PLZ											
C _{pd}	Power dissipation capacitance per transceiver			T .	No loa	id, TA	= 25°C			pF t	yp

[†]These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

TYPES SN54HC646, SN54HC648, SN74HC646, SN74HC648 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

'HC648 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

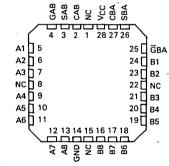
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 45 pF, R _L = 667Ω,		= 4.5 V to 5.5 V, Note 1	UNIT
	(INFOT)	(001701)	TA = 25°C	T _A = 25°C	SN54HC648 SN74HC648	
			MIN TYP MAX	MIN TYP MAX	MIN MAX MIN MAX	
f _{max}						MHz
tPLH	CBA or CAB	A or B				ns
tPHL	CBA OI CAB	AULP				ns
tPLH	A or B	B or A				ns
tPHL	AUIB	BUIA				115
tPLH	SBA or SAB	A or B				
tPHL	(with A or B high)†					ns
tPLH	SBA or SAB	AUID				115
tPHL	(with A or B low)†					
^t PZH						
tPZL] _G	A or B				ns
tPHZ] 6	A OI B				115
^t PLZ						
tPZH						
[†] PZL	l DID	A or B				ns
tPHZ	DIR	A OF B				ns
^t PLZ						
Cod	Power dissinat	tion capacitance	per transceiver	No load, TA	= 25°C pF t	VD

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

†These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

HIGH-SPEED CMOS LOGIC

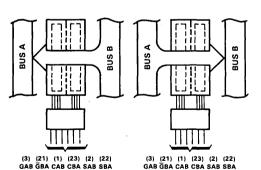
TYPES SN54HC651, SN54HC652, SN74HC651, SN74HC652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

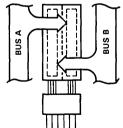

D2684, DECEMBER 1982

- Bus Transceivers/Registers
- Independent Registers and Enables for A and B Buses
- High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
- Multiplexed Real-Time and Stored Data
- Choice of True and Inverting Data Paths
- Included Among the Package Options Are Compact 24-Pin 300-mil-wide DIPs and Both 28-Pin Plastic and Ceramic Chip Carriers
- Dependable Texas Instruments Quality and Reliability

SN54HC651, SN54HC652...JT PACKAGE SN74HC651, SN54HC652...JT OR NT PACKAGE (TOP VIEW)

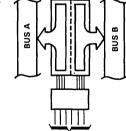
CAB ☐ 1	∪24∏ v _{cc}
SAB ☐ 2	23∏ СВА
GAB 🗌 3	22 🗌 SBA
A1 ☐ 4	21 🗌 🖥 🗒 🖪
A2 🔲 5	20∏ B1
A3 ∏ 6	19 🗌 B2
A4 🔲 7	18 🗌 B3
A5 ∏8	17 🗌 B4
A6 🔲 9	16 🗌 B5
A7 🗌 10	15 🗌 B6
A8 🗌 11	14 🗌 B7
GND [12	13 B8


SN54HC651, SN74HC652 . . . FH OR FK PACKAGE SN74HC651, SN74CH652 . . . FH OR FN PACKAGE (TOP VIEW)


NC - No internal connection

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Enable GAB and GBA are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether real-time or stored data transferred. A low input level selects real-time data, and a high selects stored data. The following examples demonstrate the four fundamental busmanagement functions that can be performed with



REAL-TIME TRANSFER BUS B TO BUS A REAL-TIME TRANSFER BUS A TO BUS B

(3) (21) (1) (23) (2) (22) GAB GBA CAB CBA SAB SBA X H I X X X L X X I X X L H I I X X

STORAGE FROM A AND/OR B

(3) (21) (1) (23) (2) (22)
GAB GBA CAB CBA SAB SBA
H L HOTL HOTL H H

TRANSFER STORED DATA TO A AND/OR B

Pin numbers shown are for JT and NT packages

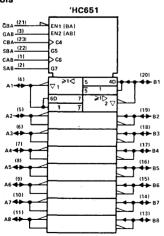
the 'HC651 and 'HC652.

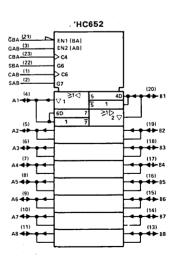
PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC651, SN54HC652, SN74HC651, SN74HC652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CAB or CBA) regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and GBA. In this configuration each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.


The SN54HC651 and SN54HC652 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC651 and SN74HC652 are characterized for operation from -40°C to 85°C.


FUNCTION TABLE

		INP	UTS			DATA	\ I/O*	OPERATION O	R FUNCTION
GAB	ĞBA	CAB	CBA	SAB	SBA	A1 THRU A8	B1 THRU B8	'HC651	'HC652
L	Н	H or L	H or L	Х	Х		1	Isolation	Isolation
L	н	t	t	x	х	Input	Input	Store A and B Data	Store A and B Data
Х	Н	1	H or L	Х	Х	Input	Not specified	Store A, Hold B	Store A, Hold B
н	н	t	t	x	Х	Input	Output	Store A in both registers	Store A in both registers
L	Х	H or L	t	х	Х	Not specified	Input	Hold A, Store B	Hold A, Store B
L	L	t	t	x	Х	Output	Input	Store B in both registers	Store B in both registers
L	L	×	х	Х	L	0		Real-Time B Data to A Bus	Real-Time B Data to A Bus
L	L	×	H or L	х	н	Output	Input	Stored B Data to A Bus	Stored B Data to A Bus
Н	Н	X	Х	L	Х		0	Real-Time A Data to B Bus	Real-Time A Data to B Bus
Н	Н	H or L	X	н	х	Input	Output	Stored A Data to B Bus	Stored A Data to B Bus
н		H or L	H or L	н	н	Outnut	0	Stored A Data to B Bus and	Stored A Data to B Bus and
п	L	In or L	n or L	_ ر	п	Output	Output	Stored B Data to A Bus	Stored B Data to A Bus

^{*}The data output functions may be enabled or disabled by various signals at the GAB and GBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic symbols

Pin numbers shown are for JT and NT packages.

TYPES SN54HC651, SN54HC652, SN74HC651, SN74HC652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

maximum ratings, recommended operating conditions, and electrical characteristics

See Table III, page 2-5.

timing requirements (supplement to recommended operating conditions)

			-	N54HC6 N54HC6		-	SN74HC65 SN74HC65		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX]
	B. daniel and and	CBA or CAB high							
t _W	Pulse duration	CBA or CAB low							ns
	Set up time	SBA or SAB						,	
t _{su}	before CAB or CBAt	A or B							ns
	Hold time	SBA or SAB							
tw	v after CAB or CBAt	A or B							ns

'HC651 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	C = 5 = 45 = 667	pF,		-		= 4.5 V Note 1	′ to 5.5	V,		UNIT
·	,	,		= 25°			Δ = 2 5				SN74HC651		
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ns ns ns ns ns ns
^t PLH	CBA or CAB	A or B											ne
^t PHL	OD/TO/O/TO					,							113
^t PLH_	AorB	B or A							1				ne
tPHL	7010												115
tPLH	SBA or SAB†	A or B											
tPHL	(with A or B high)	AUID											113
tPLH .	SBA or SAB†	A or B											
[†] PHL	(with A or B low)	7016											115
^t PZH	ĞВА	Α											
tPZL	GBA												115
· tPHZ	ĞВА	` A	ŀ										
tPLZ	GBA	^											ns
^t PZH	GAB	В	ĺ										
tPZL	- GAB	0											ns
tPHZ	GAB	В											
tPLZ	GAB					<u> </u>							ns
C _{pd}	Power	dissipation capa	citance			I	No lo	ad. TA	= 25°C			. nl	F typ

[†]These parameters are measured with the internal output state of the storage register opposite to the that of the bus input.

TYPES SN54HC651, SN54HC652, SN74HC651, SN74HC652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

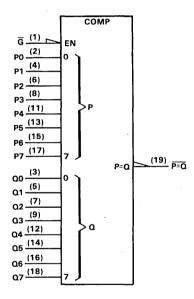
'HC652 switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL = 46	CC = 5 V, L = 45 pF, L = 667Ω, A = 25°C			UNIT					
·			MIN TY				MAX		MAX		MAX	
tPLH tPHL	CBA or CAB	A or B										ns
tPLH tPHL	A or B	B or A										ns
tPLH tPHL	SBA or SAB† (with A or B high)	A or B										ns
[†] PLH [†] PHL	SBA or SAB† (with A or B low)	A or B										ns
tPZH	- GBA	A					***		-		-	ns
t _{PHZ}	- GBA	Α							***			ns
tPZH tPZL	- GAB	В										ns
tPHZ tPLZ	GAB	В										ns
C _{pd}	Power	r dissipation capac	itance			No loa	id, T _A	= 25°C			pF ty	p

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

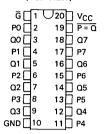
[†]These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

D2684, DECEMBER 1982

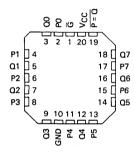

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These identity comparators perform comparisons of two eightbit binary or BCD words. An enable input (\overline{G}) may be used to force the output to the high level.


The SN54HC688 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74HC688 is characterized for operation from -40° C to 85° C.

logic symbol



Pin numbers shown are for J and N packages.

SN54HC688 . . . J PACKAGE SN74HC688 . . . J OR N PACKAGE (TOP VIEW)

SN54HC688 . . . FH OR FK PACKAGE SN74HC688 . . . FH OR FN PACKAGE (TOP VIEW)

FUNCTION TABLE

	INP	PUTS	
	DATA	ENABLE	OUTPUT
	P, Q	Ğ	P=Q
	P=Q	L	· L
	P>Q	L	Н
	P < Q	L	Н
ı	Х	Н	Н

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

3

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C	L = 15 pF, L = 2 kΩ, A = 25°C T _A =		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF T _A = 25°C SN54HC688 SN74HC688			C _L = 50 pF T _A = 25°C SN54HC688 SN74HC688		SN74HC688	
			MIN TYP MA	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
tPLH .	Р	P = Q									ns	
tPHL		r-u										
tPLH .	a	P = Q								ns		
tPHL	<u> </u>	F-U									115	
^t PLH	 G	P=Q									ns	
tPHL		P=Q							l		113	
C _{pd}	Power dissipation capac		itance	Τ	No lo	ad, TA	= 25°C		Γ.	pF typ	·····	

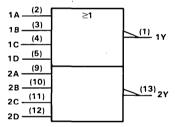
NOTE 1: For load circuit and voltage waveforms, see page 1-14.

3

D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

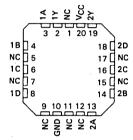

These devices contain two independent 4-input positive-NOR gates. They perform the boolean functions $Y = \overline{A + B + C + D}$ or $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ in positive logic.

The SN54HC4002 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC4002 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

	INP	UTS		OUTPUT
A	В	С	D	Y
L	L	L	L	н
н	Х	X	х	L
х	Н	X	х	L
х	Х	Н	Х	L
х	Х	Х	Н	L L

logic symbol



Pin numbers shown are for J and N packages.

SN54HC4002 . . . J PACKAGE SN74HC4002 . . . J OR N PACKAGE (TOP VIEW)

SN54HC4002 ... FH OR FK PACKAGE SN74HC4002 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF			
	((00.1.01)	T _A = 25°C	TA = 25°C SN54HC' SN74HC']		
		}	MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX	1	
^t PLH	A thru D	V						
^t PHL	A (III U D						ns	
Cpd	C _{pd} Power dissipation capacitar			No load, TA	= 25°C	pF ty	/p	

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

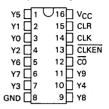
Copyright ©1982 by Texas Instruments Incorporated

3

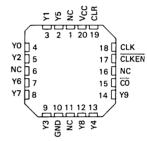
TYPES SN54HC4017, SN74HC4017 DECADE COUNTERS/DIVIDERS

D2684, DECEMBER 1982

- Carry-Out Output for Cascading
- Divide-by-N Counting
- DC Clock Input Circuit Allows Slow Rise Times
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

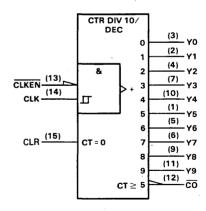

description

The 'HC4017 is a 5-stage divide-by-10 Johnson counter with ten decoded outputs and a carry-out bit. High-speed operation and spike-free outputs are obtained by use of the Johnson decade counter configuration.


The ten decoded outputs are normally low and go high only at their respective decimal time periods. A high signal on CLR asynchronously clears the decade counter and sets the carry output and YO high. With CLKEN low, the count is advanced on a low-to-high transition at CLK. Alternatively, if CLK is high, the count is advanced on a high-to-low transition at CLKEN. Each decoded output remains high for one full clock cycle. The carry output is high while YO, Y1, Y2, Y3, or Y4 is high, then is low while Y5, Y6, Y7, Y8, or Y9 is high.

The SN54HC4017 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74HC4017 is characterized for operation from -40° C to 85° C.

SN54HC4017 . . . J PACKAGE SN74HC4017 . . . J OR N PACKAGE (TOP VIEW)



SN54HC4017 ... FH OR FK PACKAGE SN74HC4017 ... FH OR FN PACKAGE (TOP VIEW)

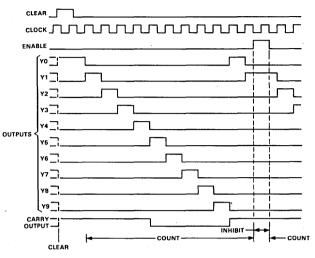
NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.


PRODUCT PREVIEW.

This document contains information on a

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC4017, SN74HC4017 DECADE COUNTERS/DIVIDERS

typical clear, count, and inhibit sequences

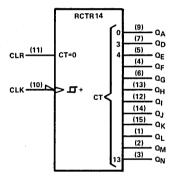
timing requirements (supplement to recommended operating conditions)

			SI	SN54HC4017			SN74HC4017			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
f _{clock}	Clock frequency								MHz	
	Pulse duration	CLK high or low								
t _W	Pulse duration	CLR high							ns	
	Catalan baran CIVI	CLKEN low								
t _{su}	Setup time, before CLK1	CLR inactive							ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	RAMETER FROM TO (OUTPUT)		V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							
	((001101)	TA = 25°C	TA = 25	T _A = 25°C		4HC'	SN7	4HC'		
			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX		
fmax										MHz	
tPLH	CLR	Any Y					_			ns .	
tPHL	CLN			į.						115	
tPLH	CLK	CO								ns	
tPHL	CER	CO								113	
tPLH .	CLK	Any Y								ns	
tPHL	CLK	Ally !								115	
tPLH	CLR	CO								ns	
C _{pd}	Pow	Power dissipation capacitance			No load, TA = 25°C pF t						

D2684, DECEMBER 1982

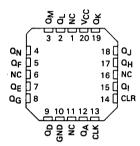

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices are 14-stage binary ripple-carry counters that advance on the negative-going edge of the clock pulse. The counters are reset to zero (all outputs low) independently of the clock when CLR goes high.

The SN54HC4020 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC4020 is characterized for operation from -40°C to 85°C.

logic symbol



Pin numbers shown are for J and N packages.

SN54HC4020 . . . J PACKAGE SN74HC4020 . . . J OR N PACKAGE (TOP VIEW)

գլ [1	U16∏Vcc
QM [2	15 <u>□</u> 0K
α _N [3	ر0 [[14
QF [4	, 13 ∐Он
α _E [5	12 🗍 Qı
α _G [6	11 CLR
α _D [7	10 ☐ CLK
GND [8	9 □ 0▲

SN54HC4020 . . . FH OR FK PACKAGE SN74HC4020 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

			SI	N54HC40	20	SI	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
fclock	Clock frequency			-					MHz
	Dulas dusadas	CLK high or low							
ıw.	Pulse duration	CLR high							ns
t _{su}	Setup time, CLR inac	tive before CLKI							ns

PRODUCT PREVIEW

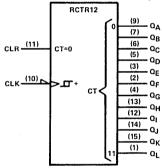
Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC4020, SN74HC4020 ASYNCHRONOUS 14-BIT BINARY COUNTERS

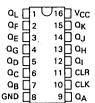
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM TO		V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	pF, C ₁ = 50 pF						
	((001101)	TA = 25°C	TA = 25°C	SN54HC'	SN74HC'				
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX				
f _{max}							MHz			
[†] PLH	CLK	0.					ns			
tPHL	CER	QA					115			
tPLH	Qn	Qn + 1								
tPHL	un	un+1					ns			
tpHL	CLR	Any					ns			
Cpd	Pow	Power dissipation capacitance			No load, TA = 25°C pF					

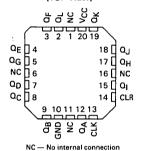
D2684, DECEMBER 1982


- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


This device is an asynchronous 12-stage binary counter with the outputs of all stages available externally. A high level at CLR asynchronously clears the counter and resets all outputs low. The count is advanced on a high-to-low transition at CLK. Applications include time delay circuits, counter controls, and frequency-dividing circuits.

The SN54HC4040 is characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN74HC4040 is characterized for operation from $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$.


logic symbol

SN54HC4040 ... J PACKAGE SN74HC4040 ... J OR N PACKAGE (TOP VIEW)

SN54HC4040 . . . FH OR FK PACKAGE SN74HC4040 . . . FH OR FN PACKAGE (TOP VIEW)

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

	7,5,40,0		SI	N54HC40	40	Si			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
fclock	Clock frequency								MHz
	Dutan dunatina	CLK high or low							
^t w	Pulse duration	CLR high							ns
t _{su}	Setup time, CLR inac	tive before CLKI							ns

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

TYPES SN54HC4040, SN74HC4040 ASYNCHRONOUS 12-BIT BINARY COUNTERS

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

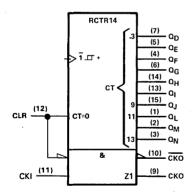
PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,				UNIT					
	(1147-01)	(001701)	TA	= 25 °	C	T,	_Δ = 25	°C	SN5	4HC'	SN7	4HC'	1
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}													MHz
tPLH .	CLK	QA											ns
tPHL	CLK	Ψ A											113
tPLH	Qn	Qn + 1											ns
tPHL .													'''
tPHL	CLR	Any											ns
C _{pd}	Powe	er dissipation capa	citance			Γ .	No Io	ad, T _A =	25°C			pF 1	ур

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

HIGH-SPEED **CMOS LOGIC**

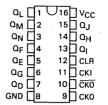
TYPES SN54HC4060, SN74HC4060 **ASYNCHRONOUS 14-STAGE BINARY COUNTERS** AND OSCILLATORS

D2684, DECEMBER 1982

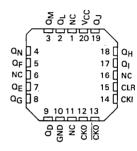

- Allows Design of Either RC or Crystal **Oscillator Circuits**
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC4060 consists of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A negative transition on the clock input increments the counter. A high level at CLR disables the oscillator (CKO goes high and CKO goes low) and resets the counter to zero (all Q outputs low).


The SN54HC4060 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC4060 is characterized for operation from -40°C to 85°C.

logic symbol



Pin numbers shown are for J and N packages.

SN54HC4060 . . . J PACKAGE SN74HC4060 . . . J OR N PACKAGE (TOP VIEW)

SN54HC4060 ... FH OR FK PACKAGE SN74HC4060 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

This document contains information on a product under development. Texas Instruments reserves the right to change or dis-INCORPORATED continue this product without notice.

Copyright ©1982 by Texas Instruments Incorporated

TYPES SN54HC4060, SN74HC4060 ASYNCHRONOUS 14-STAGE BINARY COUNTERS AND OSCILLATORS

timing requirements (supplement to recommended operating conditions)

			SI	SN54HC4060		SN74HC4060			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
	Dulanda d	CKI high or low					•		
w	Pulse duration	CLR high							ns
t _{su}	Setup time, CLR inac	tive before CKII							ns

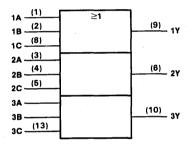
switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	C = 5 = 15 = 2 ks	pF,			V _{CC} = E		to 5 _. .5	V,		UNIT
	((000.,	T _A = 25°C		T _A = 25°C			SN54HC'		SN74HC'		ĺ	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}													MHz
tPLH	CKI	QD											ns
tPHL	CKI	Q)											115
^t PLH	Qn	021											ns
tPHL	QII	Qn+1											115
tPHL	CLR	Any Q											ns
Cnd	Pow	Power dissipation capacit			_	No load, T _A = 25°C			25°C	°C pF ty			ур

HIGH-SPEED CMOS LOGIC

TYPES SN54HC4075, SN74HC4075 TRIPLE 3-INPUT OR GATES

D2684, DECEMBER 1982

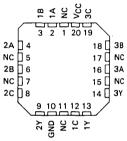

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input OR gates and perform the boolean functions Y = A + B + C or Y = $\overline{A} \cdot \overline{B} \cdot \overline{C}$ in positive logic.

The SN54HC4075 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74HC4075 is characterized for operation from -40°C to 85°C .

logic symbol



Pin numbers shown are for J and N packages.

SN54HC4075 . . . J PACKAGE SN74HC4075 . . . J OR N PACKAGE (TOP VIEW)

SN54HC4075 ... FH OR FK PACKAGE SN74HC4075 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

	1	NPUT	OUTPUT	
	Α	В	С	Y
	Н	Х	Х	Н
1	х	Н	Х	н
	Х	X	Н	н
	L	L	L	L

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		= 15 pF, C ₁ = 50 pF							UNIT
ĺ	((000.,	T _A = 25°C		T _A = 25°C		SN54HC'		SN74HC'				
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A, B, or C	_											ns
tPHL	A, B, O C												115
C _{pd}	Power dis	Power dissipation capacitance					No lo	ad, T _A =	25°C			pF t	VD.

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

continue this product without notice.

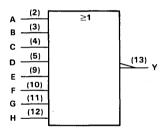
Copyright ©1982 by Texas Instruments Incorporated

D2684, DECEMBER 1982

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain a single 8-input NOR gate and perform the following boolean functions in positive logic:

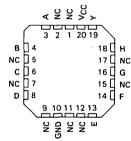

$$Y = \overline{A + B + C + D + E + F + G + H}$$
 or $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot \overline{F} \cdot \overline{F} \cdot \overline{G} \cdot \overline{H}$

The SN54HC4078 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74HC4078 is characterized for operation from -40°C to 85°C .

FUNCTION TABLE

INPUTS A	OUTPUT
THRU H	Y
All inputs L One or more inputs H	H L

logic symbol



Pin numbers shown are for J and N packages.

SN54HC4078 ... J PACKAGE SN74HC4078 ... J OR N PACKAGE (TOP VIEW)

SN54HC4078 . . . FH OR FK PACKAGE SN74HC4078 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

maximum ratings, recommended operating conditions, and electrical characteristics

See Table I, page 2-3.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	C _L = 15 pF, C _L = 50 pF					
1	((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TA = 25°C	TA = 25°C	SN54HC'	SN74HC'			
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX			
tPLH	A thru H	V							
^t PHL		T			ns				
C .	Power di	neination conneitor		No load Ta = 250C p5+					

NOTE 1: For load circuit and voltage waveforms, see page 1-14.

PRODUCT PREVIEW

Convright ©1982 by Texas Instruments Incorporated

TYPES SN54HC4511, SN74HC4511 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS WITH LATCHED INPUTS

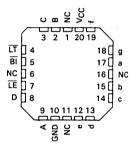
D2684, DECEMBER 1982

- Latch Storage of Code
- Blanking Input
- Lamp Test Provision
- Readout Blanking on All Illegal Input Combinations
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

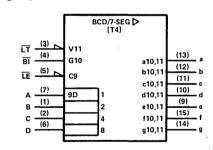
The 'HC4511 provides the functions of a 4-bit storage latch, a BCD-to-seven-segment decoder, and an output driver. Lamp test ($\overline{\text{LT}}$), blanking ($\overline{\text{Bl}}$), and latch enable ($\overline{\text{LE}}$) inputs are used to test the display, to turn off or pulse-modulate the brightness of the display, and to store a BCD code, respectively.

The SN54HC4511 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC4511 is characterized for operation from –40°C to 85°C.


FUNCTION TABLE

<u> </u>		11	IPUT	S						OL	JTPU	TS		DISPLAY
LE	BI	LT	D	С	В	Α	а	ь	С	d	в	f	g	DISPLAT
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	н	н	L	L	L	н	L	Н	Н	L	L	L	L	1
L	н	Н	L	L	Н	L	н	н	L	Н	Н	L	Н	2
L	н	Н	L	L.	Н	Н	н	Н	Н	Н	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	н	Н	L	Н	L	Н	н	L	Н	Н	L	Н	Н	. 5
L	н	н	L	Н	Н	L	L	L	Н	н	Н	Н	Н	6
L	н	н	L	н	Н	Н	н	н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	н	н	н	L	L	Н	н	Н	Н	L	L	Н	Н	9
L	н	н	н	L	Н	L	L	L	L	L	L	L	L	Blank
L	н	н	н	L	Н	Н	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	Blank
L	н	н	н	Н	L	Н	L	L	L	L	L	L	L	Blank
L	н	н	н	н	н	L	L	L	L	L	L	L	L	Blank
L	н	н	н	н	Н	Н	, L	L	L	L	L	L	L	Blank
Χ.	x	L	x	Х	Х	х	Н	H,	Н	Н	Н	Н	Н	8
X	L	н	х	X	Х	Х	L	L	L	L	L	L	L	Blank
Н	н	н	×	×	x	x	All outputs remain in state existing before LE1						е .	

SN54HC4511 ... J PACKAGE SN74HC4511 ... J OR N PACKAGE (TOP VIEW)


U16] VCC вПі сП₂ 15 T Πз 14 g īΤ BI **[**]4 13 a ĪĒ П5 12∏ ь р ∏6 11 ΑГ 17 10 GND ∏8 9

SN54HC4511 ... FH OR FK PACKAGE SN74HC4511 ... FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

PRODUCT PREVIEW

Copyright ©1982 by Texas Instruments Incorporated

3-208

TYPES SN54HC4511, SN74HC4511 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS WITH LATCHED INPUTS

FONT TABLE T4 — RESULTANT DISPLAYS USING 'HC4511

SEGMENT IDENTIFICATION

timing requirements (supplement to recommended operating conditions)

		SI	V54HC4E	11	SI	SN74HC4511			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
t _W	Pulse duration, LE low			<u> </u>				ns	
t _{su}	Setup time, data before LEt							ns	
th	Hold time, data after LEt							ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	AMETER (INPUT) $VCC = 5 V$, $CL = 15 pF$, $CL = 15 pF$, $RL = 2 k\Omega$,		C _L = 15 pF,	V _{CC} :	= 4.5 V to 5.5 50 pF	v ,	UNIT		
	(1147-01)	(0011-01)	TA = 25°C	TA = 25°C	SN74HC'				
			MIN TYP MAX	MIN TYP MAX	MIN MAX	MIN MAX			
tPLH .	A thru D	a thru g					ns		
tPHL	Allido	attitug					113		
tPLH .	Bi	a thru g					ns		
tPHL		aunug					IIIS		
t _{PLH}	LΤ	a thru g					ns		
· tPHL		a tillug					115		
tPLH	LE	a thru g					ns		
tPHL		a tillug			l	.L	115		
C _{pd}	Pow	er dissipation capa	citance	No load, T _A = 25°C pF					

Ĕ

TYPES SN54HC4514, SN54HC4515, SN74HC4514, SN74HC4515 HIGH-SPEED 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS CMOS LOGIC WITH ADDRESS LATCHES

D2684, DECEMBER 1982

- Two Output Options:
 - 'HC4514 Has Active-High Outputs 'HC4515 Has Active-Low Outputs
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices present two output options of a 4-to-16 line decoder with latched inputs. The 'HC4514 presents a high level at the selected output. The 'HC4515 presents a low level at the selected output.

These devices consist of four storage latches with common latch enable (LE) and inhibit $\{\overline{G}\}$ inputs. When a low signal is applied to the LE input, the input data is stored, decoded, and presented to the output. When LE is high, all sixteen 'HC4514 outputs are at a low logic level, or all 'HC4515 outputs are a high logic level.

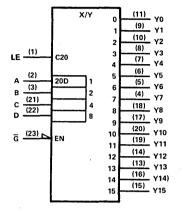
The SN54HC4514 and the SN54HC4515 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC4514 and SN54HC4515 are characterized for operation from -40°C to 85°C.

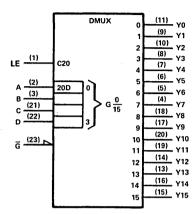
FUNCTION TABLE .

		INP	UTS			OUTPUT	OUT	PUTS	
LE	Ğ	D	С	В	Α	SELECTED	'HC4514	'HC4515	
Н	L	L	L	L	L	0	1		
н	L	L	L	L	Н	1			
Н	L	L	L	Н	L	2			
н	L	L	L	Н	Н	3			
н	L	L	Н	L	L	4			
н	L	L	н	L	Н	5	Selected	Selected	
н	L	L	Н	Н	L	6	Output = H	Output = L	
н	L	L	Н	Н	Н	7	All others = L	All others = H	
н	L	Н	L	L	L	8			
н	L	Н	L	L	н	9			
н	L	Н	L	Н	L	10		ĺ	
н	L	Н	L	н	Н	11	1	İ	
н	L	н	Н	L	L	12			
н	L	Н	Н	L	Н	13			
н	L	Н	H	Н	L	14			
н	L	Н	н	н	Н	15			
Х	Н	X	Х	X	x		All = L	All = H	
L	L	Х	Х	X	Х	All outputs remain in state existing before			

SN54HC' . . . JT PACKAGE SN74HC' . . . JT OR NT PACKAGE (TOP VIEW) U24∏ Vcc A ☐ 2 23 G вГ з 22 D Y7 ∏4 21 T C Y6 ∏5 20 Y10 Y5 ∏6 19 Y11 Y4 ∏7 18 T Y8 Y3 [8 17 Y9 Y1 ∏9 16 Y14 Ý2 ∏10 15 Y15 Y0 ☐11 14 TY12 GND ∏12 13 TY13

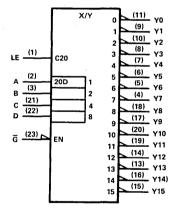
SN54HC'...FH OR FN PACKAGE SN74HC'...FH OR FN PACKAGE (TOP VIEW)

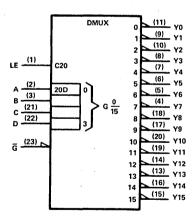

NC - No internal connection


Copyright ©1982 by Texas Instruments Incorporated

PRODUCT PREVIEW

TYPES SN54HC4514, SN54HC4515, SN74HC4514, SN74HC4515 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES


'HC4514 logic symbols (alternatives)



Pin numbers shown are for JT and NT packages.

'HC4515 logic symbols (alternatives)

Pin numbers shown are for JT and NT packages.

TYPES SN54HC4514, SN54HC4515, SN74HC4514, SN74HC4515 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

			SN54HC'			SN74HC'		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
tw	Pulse duration,LE high			-				ns
t _{su}	Setup time before LEI							ns
th	Hold time after LEI							ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,		V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF							UNIT	
	((0011 017	TA = 25°C TA = 25°C SN54HC' SN74						4HC'				
	•	•	MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	į
tPLH .	A thru D	Any											ns
tPHL .	Aundo	Ally											
^t PLH	LE	Any											ns
[†] PHL		~''Y											_ '''3
tPLH .	G	Any											ns
^t PHL		Ally											113
C _{pd} ·	Powe	r dissipation capacitance				No load, TA = 25°C				<u> </u>	pF typ		

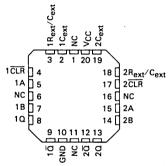
TYPES SN54HC4538, SN74HC4538 DUAL PRECISION RETRIGGERABLE/RESETTABLE MONOSTABLE MULTIVIBRATORS

D2684, DECEMBER 1982

- Positive- and Negative-Edge Triggered Inputs with Hysteresis
- Complementary Outputs Available
- Independent Clear Inputs
- Wide Range of Output Pulse Durations
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The 'HC4538 can be triggered by either the positiveor the negative edge of an input pulse. This device will produce an accurate output pulse over a wide range of pulse durations. The output pulse duration and accuracy are determined by the external timing components Cext and Rext. Trigger and clear propagation delays are independent of Rext and Cext.

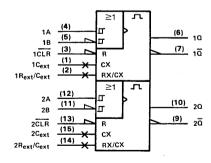

A clear input is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on.

The SN54HC4538 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74HC4538 is characterized for operation from -40°C to 85°C.

SN54HC4538 . . . J PACKAGE SN74HC4538 . . . J OR N PACKAGE (TOP VIEW)

1C _{ext} [1	U ₁₆ V _{CC}
1R _{ext} /C _{ext}	╡,	15 2C _{ext}
1 CLR	3	14 2R _{ext} /C _{ex}
1A [4	13 2CLR
1B [5	12 🗍 2A
10 []6	11 🗍 2B
10 []7	10 🗍 202
GND [8	9 🗍 2 🖸

SN54HC4538 . . . FH OR FK PACKAGE SN74HC4538 . . . FH OR FN PACKAGE (TOP VIEW)



NC - No internal connection

logic symbol

FUNCTION TABLE

INI	PUTS		OUT	PUTS
CLEAR	Α	В	a	D
L	Х	Х	L	π
X	н	Х	L	н
х	x	L	L	Н
Н	L	ţ	J.	Л
н	t	Н	л	U

Pin numbers shown are for J and N packages.

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

Note: The minimum recommended supply voltage for this device is 3 V.

PRODUCT PREVIEW

Copyright @1982 by Texas Instruments Incorporated

TYPES SN54HC4538, SN74HC4538 DUAL PRECISION RETRIGGERABLE/RESETTABLE **MONOSTABLE MULTIVIBRATORS**

timing requirements (supplement to recommended operating conditions)

		SI	V54HC4E	38	SI	SN74HC4538		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
tw	Pulse duration, A high or B low							MHz
R _{ext}	External timing resistance							kΩ
Cext	External timing capacitance							μf

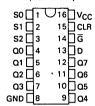
switching characteristics over recommended operating free-air temperature range (unless otherwise

PARAMETER	FROM	TO (OUTPUT)	· V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ,	C _L = 15 pF,			V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF					
	(INPUT)	(001701)	TA = 25°C	T _A = 25°C		SN54HC'		SN74HC'				
1			MIN TYP MAX	MIN TYP	MAX	MIN	MAX	MIN	MAX			
44	Α	a										
tPLHf	В	7 4								ns		
tm t	Α	<u> </u>										
tPHL†	В	7 "								ns		
tPHL†	CLR	a								ns		
tPLH†	CLN	Q								ns		
twQ(min)†	A or B	a								ns		
twQ‡	A or B	Q								μs		
C _{pd}	Power dissip	ation capacitance	per monostable	No Io	ad, TA	25°C	No load, T _A = 25°C p					

 $[\]uparrow C_{ext} = 0$, $R_{ext} = 5k\Omega$

[‡]t_{wQ} = duration of pulse at output Q. NOTE 1: For load circuit and voltage waveforms, see page 1-14.

- 8-Bit Parallel-Out Storage Register Performs Serial-to-Parallel Conversion with Storage
- Asynchronous Parallel Clear
- Active-High Decoder
- Enable Input Simplifies Expansion
- Expandable for N-Bit Applications
- Four Distinct Functional Modes
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

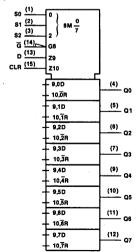

description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.


Four distinct modes of operation are selectable by controlling the clear (CLR) and enable (\overline{G}) inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, enable \overline{G} should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

The SN54HC4724 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC4724 is characterized for operation from –40°C to 85°C.

SN54HC4724 . . . J PACKAGE SN74HC4724 . . . J OR N PACKAGE (TOP VIEW)



SN54HC4724 . . . FH OR FK PACKAGE SN74HC4724 . . . FH OR FN PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol

Pin numbers shown are for J and N packages.

TYPES SN54HC4724, SN74HC4724 8-BIT ADDRESSABLE LATCHES

FUNCTION TABLE

•		OUTPUT OF	EACH	
INP	JTS	ADDRESSED	OTHER	FUNCTION
CLR	G	LATCH	OUTPUT	1011011011
L	L	D	Q _{iO}	Addressable Latch
L	Н	Q _{iO}	Q _{iO}	Memory
н	L	D	L	8-Line Demultiplexer
l H	н	l L	l L	Clear

D = the level at the data input.

LATCH SELECTION TABLE

SELE	CT IN	PUTS	LATCH
S2	S1	SO	ADDRESSED
L	Ĺ	L	0
L	L	н	1
L	Н	L	2
L	н	н	3
Н	L	L	4
Н	L	н	5
н	н	L	6
н	н	H:	7

maximum ratings, recommended operating conditions, and electrical characteristics

See Table IV, page 2-6.

timing requirements (supplement to recommended operating conditions)

			SN54HC4724		SN74HC4724			T	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
	21 1	G low							
Tw .	Pulse duration	CLR high							ns
t _{su}	Setup time before G								ns
th	Hold time after Gt								ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 15 pF, R _L = 2 kΩ, T _A = 25°C	V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF				
ł				T _A = 25°C	SN54HC08	SN74HC08		
		1	MIN TYP MAX		MIN MAX	MIN MAX		
tPHL.	CLR	Any					ns	
tPLH .	Data	Any					ns	
tPHL .								
^t PLH	Address	Any					ns	
tPHL		Ally						
tPLH	G	Δ=					ns	
tPHL .		Any					115	
C _{pd}	Power dissipation capacitance			No load, TA = 25°C p			уp	

 Q_{iQ} = the level of Q_i (i = Q, 1, 7, as appropriate) before the indicated steady-state input conditions were established.

THIS PAGE INTENTIONALLY LEFT BLANK

Explanation of Logic Symbols

4-2

TABLE OF CONTENTS

		Title	Page
1.		RODUCTION	· · 4-3
2.		BOL COMPOSITION	
3.	QUAL	LIFYING SYMBOLS	· · 4-5
	3.1	General Qualifying Symbols	
	3.2	Qualifying Symbols for Inputs and Outputs	
	3.3	Symbols Inside the Outline	. 4-9
4.	DEPE	ENDENCY NOTATION	4-10
	4.1	General Explanation	4-10
	4.2	G, AND	4-10
	4.3	Conventions for the Application of Dependency Notation in General	4-12
	4.4	V, OR	4-13
	4.5	N, Negate (Exclusive OR)	4-13
	4.6	Z, Interconnection	4-14
	4.7	C, Control	4-15
	4.8	S, Set and R, Reset	4-15
	4.9	EN, Enable	4-16
	4.10	M, Mode	4-17
	4.11	A, Address	4-19
5.	BISTA	ABLE ELEMENTS	4-22
6.	CODE	ERS	4-23
7.	USE (OF A CODER TO PRODUCE AFFECTING INPUTS	4-24
8.	USE (OF BINARY GROUPING TO PRODUCE AFFECTING INPUTS	4-25
9.		JENCE OF INPUT LABELS	
10.		JENCE OF OUTPUT LABELS	

LIST OF TABLES

Table	Title	Page
I.	General Qualifying Symbols	4-6
	Qualifying Symbols for Inputs and Outputs	
111.	Symbols Inside the Outline	4-8
IV.	Summary of Dependency Notation	4-21

If you have questions on this Explanation of Logic Symbols, please contact:

F.A. Mann MS 49
Texas Instruments Incorporated
P.O. Box 225012
Dallas, Texas 75265
Telephone (214) 995-2867

IEEE Standards may be purchased from:

Institute of Electrical and Electronics Engineers, 345 East 47th Street New York, N.Y. 10017

International Electrotechnical Commission (IEC) publications may be purchased from:

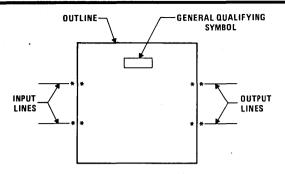
American National Standards Institute, Inc. 1430 Broadway New York, N.Y. 10018

by F. A. Mann

1 INTRODUCTION

The International Electrotechnical Commission (IEC) has been developing a very powerful symbolic language that can show the relationship of each input of a digital logic circuit to each output without showing explicitly the internal logic. At the heart of the system is dependency notation, which will be explained in Section 4.

The system was introduced in the USA in a rudimentary form in IEEE/ANSI Standard Y32.14-1973. Lacking at that time a complete development of dependency notation, it offered little more than a substitution of rectangular shapes for the familiar distinctive shapes for representing the basic functions of AND, OR, negation, etc. This is no longer the case.


Internationally, Working Group 2 of IEC Technical Committee TC-3 is preparing a new document (Publication 617-12) that will consolidate the original work started in the mid 1960's and published in 1972 (Publication 117-15) and the amendments and supplements that have followed. Similarly for the USA, IEEE Committee SCC 11.9 is revising the publication IEEE Std 91/ANSI Y32.14. Texas Instruments is participating in the work of both organizations and this Data Book introduces new logic symbols in anticipation of the new standards. When changes are made as the standards develop, future editions will take those changes into account.

The following explanation of the new symbolic language is necessarily brief and greatly condensed from what the standards publications will finally contain. This is not intended to be sufficient for those people who will be developing symbols for new devices. It is primarily intended to make possible the understanding of the symbols used in this book; comparing the symbols with functional block diagrams and/or function tables will further help that understanding.

2 SYMBOL COMPOSITION

A symbol comprises an outline or a combination of outlines together with one or more qualifying symbols. The shape of the symbols is not significant. As shown in Figure 1, general qualifying symbols are used to tell exactly what logical operation is performed by the elements. Table I shows the general qualifying symbols used in this data book. Input lines are placed on the left and output lines are placed on the right. When an exception is made to that convention, the direction of signal flow is indicated by an arrow as shown in Figure 11.

All outputs of a single, unsubdivided element always have identical internal logic states determined by the function of the element except when otherwise indicated by an associated qualifying symbol or label inside the element.

*Possible positions for qualifying symbols relating to inputs and outputs

FIGURE 1 - SYMBOL COMPOSITION

The outlines of elements may be abutted or embedded in which case the following conventions apply. There is no logic connection between the elements when the line common to their outlines is in the direction of signal flow. There is at least one logic connection between the elements when the line common to their outlines is perpendicular to the direction of signal flow. The number of logic connections between elements will be clarified by the use of qualifying symbols and this is discussed further under that topic. If no indications are shown on either side of the common line, it is assumed there is only one connection.

When a circuit has one or more inputs that are common to more than one element of the circuit, the common-control block may be used. This is the only distinctively shaped outline used in the IEC system. Figure 2 shows that unless otherwise qualified by dependency notation, an input to the common-control block is an input to each of the elements below the common-control block.

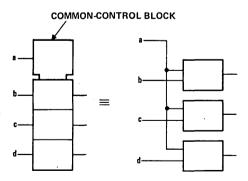


FIGURE 2 - ILLUSTRATION OF COMMON: CONTROL BLOCK

EXPLANATION OF LOGIC SYMBOLS

A common output depending on all elements of the array can be shown as the output of a commonoutput element. Its distinctive visual feature is the double line at its top. In addition the commonoutput element may have other inputs as shown in Figure 3. The function of the common-output element must be shown by use of a general qualifying symbol.

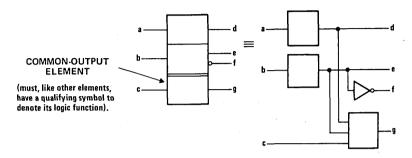


FIGURE 3 - ILLUSTRATION OF COMMON-OUTPUT ELEMENT

3 QUALIFYING SYMBOLS

3.1 General Qualifying Symbols

Table I shows the general qualifying symbols used in this data book. These characters are placed near the top center or the geometric center of a symbol or symbol element to define the basic function of the device represented by the symbol or of the element.

3.2 Qualifying Symbols for Inputs and Outputs

Qualifying symbols for inputs and outputs are shown in Table II and will be familiar to most users with the possible exception of the logic polarity and analog signal indicators. The older logic negation indicator means that the external 0 state produces the internal 1 state. The internal 1 state means the active state. Logic negation may be used in pure logic diagrams; in order to tie the external 1 and 0 logic states to the levels H (high) and L (low), a statement of whether positive logic (1 = H, 0 = L) or negative logic (1 = L, 0 = H) is being used is required or must be assumed. Logic polarity indicators eliminate the need for calling out the logic convention and are used in this data book in the symbology for actual devices. The presence of the triangular polarity indicator indicates that the L logic level will produce the internal 1 state (the active state) or that, in the case of an output, the internal 1 state will produce the external L level. Note how the active direction of transition for a dynamic input is indicated in positive logic, negative logic, and with polarity indication.

EXPLANATION OF LOGIC SYMBOLS

TABLE I - GENERAL QUALIFYING SYMBOLS

SYMBOL	DESCRIPTION	EXAMPLE
&	AND gate or function.	'HC00
>1	OR gate or function. The symbol was chosen to indicate that at least one active input is needed to activate the output.	'HC02
=1	Exclusive OR. One and only one input must be active to activate the output.	'HC86
= .	Logic identity. All inputs must stand at same state.	'HC86
2k	An even number of inputs must be active.	'HC280 .
2k+1	An odd number of inputs must be active.	'HC86
1	The one input must be active.	'HC04
⊳ or ⊲	A buffer or element with more than usual output capability (symbol is oriented in the direction of signal flow).	'HC240
п	Schmitt trigger; element with hysteresis.	'HC132
X/Y	Coder, code converter (DEC/BCD, BIN/OUT, BIN/7-SEG, etc.).	'HC42
MUX	Multiplexer/data selector.	'HC151
DMUX or DX	Demultiplexer.	'HC138
Σ	Adder.	*
P-Q	Subtracter.	*
CPG	Look-ahead carry generator.	*
π	Multiplier.	*
COMP	Magnitude comparator.	'HC85
ALU ·	Arithmetic logic unit.	. *
.	Retriggerable monostable.	'HC123
1	Non-retriggerable monostable (one-shot).	'HC221
<u>.</u>	Astable element. Showing waveform is optional.	*
7g~	Synchronously starting astable.	•
-çr Gi	Astable element that stops with a completed pulse.	*
SRGm	Shift register, m = number of bits.	'HC164
CTRm	Counter. m = number of bits; cycle length = 2m.	'HC590
CTR DIVm	Counter with cycle length = m.	'HC160
RCTRm	Asynchronous (ripple-carry) counter; cycle length = 2m.	'HC4020
ROM	Read-only memory.	*
RAM	Random-access read/write memory.	'HC189
FIFO	First-in, first-out memory.	*
1=0	Element powers up cleared to 0 state.	*
Φ	Highly complex function; "gray box" symbol with limited detail shown under special rules.	*

^{*}Not all of the general qualifying symbols have been used in this book, but they are included here for the sake of completeness.

EXPLANATION OF LOGIC SYMBOLS

Logic negation at input. External 0 produces internal 1. Logic negation at output. Internal 1 produces external 0. Active-low input. Equivalent to in positive logic. Active-low output. Equivalent to in positive logic. Active-low output in the case of right-to-left signal flow. Active-low output in the case of right-to-left signal flow. Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. Bidirectional signal flow. POSITIVE NEGATIVE POLARITY INDICATION Indicated transition indicated transition indicated transition on tused indicated transition. Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Negated internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is indicated by dependency notation.		TABLE II – QUALIFYING SYMBOLS FOR INPUTS AND OUTPUTS
Active-low input. Equivalent to in positive logic. Active-low output. Equivalent to in positive logic. Active-low output in the case of right-to-left signal flow. Active-low output in the case of right-to-left signal flow. Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. Bidirectional signal flow. POSITIVE NEGATIVE INDICATION Inputs active on indicated transition on to used in not used not used in not used	— d	Logic negation at input. External 0 produces internal 1.
Active-low output. Equivalent to in positive logic. Active-low input in the case of right-to-left signal flow. Active-low output in the case of right-to-left signal flow. Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. Bidirectional signal flow. POSITIVE NEGATIVE POLARITY INDICATION To used Inot used Inot used Inot used Inputs Inputs Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Negated internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	þ—	Logic negation at output, Internal 1 produces external 0.
Active-low input in the case of right-to-left signal flow. Active-low output in the case of right-to-left signal flow. Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. Bidirectional signal flow. POSITIVE NEGATIVE POLARITY INDICATION To used Indicated transition on to used Indicated transition on indicated transition. Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Dynamic internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	_	Active-low input. Equivalent to — in positive logic.
Active-low output in the case of right-to-left signal flow. Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. Bidirectional signal flow. POSITIVE NEGATIVE POLARITY INDICATION Dynamic inputs active on indicated transition Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	—	Active-low output. Equivalent to p—in positive logic.
Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. Bidirectional signal flow. POSITIVE NEGATIVE POLARITY INDICATION Dynamic inputs active on indicated transition Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	_	Active-low input in the case of right-to-left signal flow.
Bidirectional signal flow. POSITIVE LOGIC INDICATION Dynamic inputs active on indicated transition Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Negated internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	4	Active-low output in the case of right-to-left signal flow.
Dynamic inputs active on indicated transition Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Dynamic internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is		Signal flow from right to left. If not otherwise indicated, signal flow is from left to right.
Dynamic inputs active on indicated transition Nonlogic connection. A label inside the symbol will usually define the nature of this pin. Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Dynamic internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	→	POSITIVE NEGATIVE POLARITY
Input for analog signals. Internal connection. 1 state on left produces 1 state on right. Negated internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	\\ \\ \\ \\ \\ \\ \\ \\	Dynamic inputs active on indicated I I I I I I I I I I I I I I I I I I I
Internal connection. 1 state on left produces 1 state on right. Negated internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	\rightarrow	Nonlogic connection. A label inside the symbol will usually define the nature of this pin.
Negated internal connection. 1 state on left produces 0 state on right. Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is		Input for analog signals.
Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	<u> </u>	Internal connection. 1 state on left produces 1 state on right.
right. Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	<u> </u>	Negated internal connection, 1 state on left produces 0 state on right.
overriding dependency relationship. Internal output (virtual output). Its effect on an internal input to which it is connected is	Þ	
	[
	}	· · · · · · · · · · · · · · · · · · ·

TABLE II ... OLIALIEVING CVMPOLS FOR INDUITS AND OUTPUTS

The internal connections between logic elements abutted together in a symbol may be indicated by the symbols shown. Each logic connection may be shown by the presence of qualifying symbols at one or both sides of the common line and if confusion can arise about the numbers of connections, use can be made of one of the internal connection symbols.

The internal (virtual) input is an input originating somewhere else in the circuit and is not connected directly to a terminal. The internal (virtual) output is likewise not connected directly to a terminal.

TABLE III - SYMBOLS INSIDE THE OUTLINE

Postponed output (of a pulse-triggered flip-flop). The output changes when input initiating change (e.g., a C input) returns to its initial external state or level. See § 5. Bi-threshold input (input with hysteresis) NPN open-collector or similar output that can supply a relatively low-impedance L level when not turned off. Requires external pull-up. Capable of positive-logic wired-AND connection. Passive-pull-up output is similar to NPN open-collector output but is suplemented with a built-in passive pull-up. NPN open-emitter or similar output that can supply a relatively lowimpedance H level when not turned off, Requires external pull-down. Capable of positive-logic wired-OR connection. Passive-pull-down output is similar to NPN open-emitter output but is supplemented with a built-in passive pull-down. 3-state output Output with more than usual output capability (symbol is oriented in the direction of signal flow). Enable input When at its internal 1-state, all outputs are enabled. When at its internal 0-state, open-collector and open-emitter outputs are off, three-state outputs are at normally defined internal logic states and at external high-impedance state, and all other outputs (e.g., totem-poles) are at the internal O-state. Usual meanings associated with flip-flops (e.g., R = reset, T = toggle) J, K, R, S, T Data input to a storage element equivalent to: Shift right (left) inputs, m = 1, 2, 3 etc. If m = 1, it is usually not shown. Counting up (down) inputs, m = 1, 2, 3 etc. If m = 1, it is usually not shown. Binary grouping, m is highest power of 2. The contents-setting input, when active, causes the content of a register to take --- CT = 15 (on the indicated value. CT = 9 ---The content output is active if the content of the register is as indicated. Input line grouping indicates two or more terminals used to implement a single logic input. e.g., The paired expander inputs of SN7450. Fixed-state output always stands at its internal 1 state. For example, see SN74185.

TEXAS INSTRUMENTS

The application of internal inputs and outputs requires an understanding of dependency notation, which is explained in Section 4.

In an array of elements, if the same general qualifying symbol and the same qualifying symbols associated with inputs and outputs would appear inside each of the elements of the array, these qualifying symbols are usually shown only in the first element. This is done to reduce clutter and to save time in recognition. Similarly, large identical elements that are subdivided into smaller elements may each be represented by an unsubdivided outline. The SN54HC242 symbol illustrates this principle.

3.3 Symbols Inside the Outline

Table III shows some symbols used inside the outline. Note particularly that open-collector, open-emitter, and three-state outputs have distinctive symbols. Also note that an EN input affects all of the outputs of the circuit and has no effect on inputs. When an enable input affects only certain outputs and/or affects one or more inputs, a form of dependency notation will indicate this (see 4.9). The effects of the EN input on the various types of outputs are shown.

It is particularly important to note that a D input is always the data input of a storage element. At its internal 1 state, the D input sets the storage element to its 1 state, and at its internal 0 state it resets the storage element to its 0 state.

The binary grouping symbol will be explained more fully in Section 8. Binary-weighted inputs are arranged in order and the binary weights of the least-significant and the most-significant lines are indicated by numbers. In this data book weights of input and output lines will be represented by powers of two usually only when the binary grouping symbol is used, otherwise, decimal numbers will be used. The grouped inputs generate an internal number on which a mathematical function can be performed or that can be an identifying number for dependency notation. See Figure 28. A frequent use is in addresses for memories.

Reversed in direction, the binary grouping symbol can be used with outputs. The concept is analogous to that for the inputs and the weighted outputs will indicate the internal number assumed to be developed within the circuit.

Other symbols are used inside the outlines in this data book in accordance with the IEC/IEEE standards but are not shown here. Generally these are associated with arithmetic operations and are self-explanatory.

When nonstandardized information is shown inside an outline, it is usually enclosed in square brackets [like these].

4 DEPENDENCY NOTATION

4.1 General Explanation

Dependency notation is the powerful tool that sets the IEC symbols apart from previous systems and makes compact, meaningful, symbols possible. It provides the means of denoting the relationship between inputs, outputs, or inputs and outputs without actually showing all the elements and interconnections involved. The information provided by dependency notation supplements that provided by the qualifying symbols for an element's function.

In the convention for the dependency notation, use will be made of the terms "affecting" and "affected". In cases where it is not evident which inputs must be considered as being the affecting or the affected ones (e.g., if they stand in an AND relationship), the choice may be made in any convenient way.

So far, ten types of dependency have been defined and all of these are used in this data book. They are listed below in the order in which they are presented and are summarized in Table IV following 4.11.

Section	Dependency Type or Other Subject
4.2	G, AND
4.3	General rules for dependency notation
4.4	V, OR
4.5	N, Negate, (Exclusive OR)
4.6	Z, Interconnection
4.7	C, Control
4.8	S, Set and R, Reset
4.9	EN, Enable
4.10	M, Mode

4.2 G (AND) Dependency

4.11

A. Address

A common relationship between two signals is to have them ANDed together. This has traditionally been shown by explicitly drawing an AND gate with the signals connected to the inputs of the gate. The 1972 IEC publication and the 1973 IEEE/ANSI standard showed several ways to show this AND relationship using dependency notation. While nine other forms of dependency have since been defined, the ways to invoke AND dependency are now reduced to one.

In Figure 4 input b is ANDed with input a and the complement of b is ANDed with c. The letter G has been chosen to indicate AND relationships and is placed at input b, inside the symbol. A number considered appropriate by the symbol designer (1 has been used here) is placed after the letter G and also at each affected input. Note the bar over the 1 at input c.

FIGURE 4 - G DEPENDENCY BETWEEN INPUTS

In Figure 5, output **b** affects input **a** with an AND relationship. The lower example shows that it is the internal logic state of **b**, unaffected by the negation sign, that is ANDed. Figure 6 shows input **a** to be ANDed with a dynamic input **b**.

$$a = \begin{bmatrix} 1 & G1 \\ -1 & G1 \end{bmatrix} - b \equiv \begin{bmatrix} a & A \\ -$$

FIGURE 5 - G DEPENDENCY BETWEEN OUTPUTS AND INPUTS

FIGURE 6 - G DEPENDENCY WITH A DYNAMIC INPUT

The rules for G dependency can be summarized thus:

When a Gm input or output (m is a number) stands at its internal 1 state, all inputs and outputs affected by Gm stand at their normally defined internal logic states. When the Gm input or output stands at its 0 state, all inputs and outputs affected by Gm stand at their internal 0 states.

4.3 Conventions for the Application of Dependency Notation in General

The rules for applying dependency relationships in general follow the same pattern as was illustrated for G dependency.

Application of dependency notation is accomplished by:

- 1) labeling the input (or output) affecting other inputs or outputs with the letter symbol indicating the relationship involved (e.g., G for AND) followed by an identifying number, appropriately chosen; and
- labeling each input or output affected by that affecting input (or output) with that same number.

If it is the complement of the internal logic state of the affecting input or output that does the affecting, then a bar is placed over the identifying numbers at the affected inputs or outputs. See Figure 4.

If two affecting inputs or outputs have the same letter and same identifying number, they stand in an OR relationship to each other. See Figure 7.

FIGURE 7 - OR'ED AFFECTING INPUTS

If the affected input or output requires a label to denote its function (e.g., "D"), this label will be *prefixed* by the identifying number of the affecting input. See Figure 12.

If an input or output is affected by more than one affecting input, the identifying numbers of each of the affecting inputs will appear in the label of the affected one, separated by commas. The normal reading order of these numbers is the same as the sequence of the affecting relationships. See Figure 12.

If the labels denoting the functions of affected inputs or outputs must be numbers, (e.g., outputs of a coder), the identifying numbers to be associated with both affecting inputs and affected inputs or outputs will be replaced by another character selected to avoid ambiguity, e.g., Greek letters. See Figure 8.

FIGURE 8 - SUBSTITUTION FOR NUMBERS

4.4 V (OR) Dependency

The symbol denoting OR dependency is the letter V. See Figure 9.

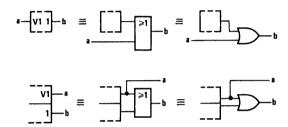


FIGURE 9 - V (OR) DEPENDENCY

When a Vm input or output stands at its internal 1 state, all inputs and outputs affected by Vm stand at their internal 1 states. When the Vm input or output stands at its internal 0 state, all inputs and outputs affected by Vm stand at their normally defined internal logic states.

4.5 N (Negate) (X-OR) Dependency

The symbol denoting negate dependency is the letter N. See Figure 10. Each input or output affected by an Nm input or output stands in an exclusive OR relationship with the Nm input or output.

$$a \longrightarrow N1 \xrightarrow{b} a = 1 \xrightarrow{e} b = 1$$
If $a = 0$, then $c = b$
If $a = 1$, then $c = b$

FIGURE 10 - N (NEGATE) (X-OR) DEPENDENCY

4

When an Nm input or output stands at its internal 1 state, the internal logic state of each input and each output affected by Nm is the complement of what it would otherwise be. When an Nm input or output stands at its internal 0 state, all inputs and outputs affected by Nm stand at their normally defined internal logic states.

4.6 Z (Interconnection) Dependency

The symbol denoting interconnection dependency is the letter Z.

Interconnection dependency is used to indicate the existence of internal logic connections between inputs, outputs, internal inputs, and/or internal outputs.

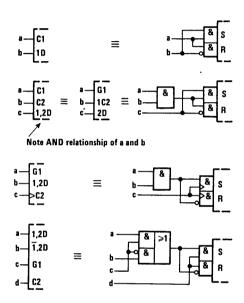

The internal logic state of an input or output affected by a Zm input or output will be the same as the internal logic state of the Zm input or output, unless modified by additional dependency notation. See Figure 11.

FIGURE 11 - Z (INTERCONNECTION) DEPENDENCY

4.7 C (Control) Dependency

The symbol denoting control dependency is the letter C.

Control inputs are usually used to enable or disable the data (D, J, K, R, or S) inputs of storage elements. They may take on their internal 1 states (be active) either statically or dynamically. In the latter case the dynamic input symbol is used as shown in the third example of Figure 12.

Input c selects which of a or b is stored when d goes low.

FIGURE 12 - C (CONTROL) DEPENDENCY

When a Cm input or output stands at its internal 1 state, the inputs affected by Cm have their normally defined effect on the function of the element, i.e., these inputs are enabled. When a Cm input or output stands at its internal 0 state, the inputs affected by Cm are disabled and have no effect on the function of the element.

4.8 S (Set) and R (Reset) Dependencies

The symbol denoting set dependency is the letter S. The symbol denoting reset dependency is the letter R.

Set and reset dependencies are used if it is necessary to specify the effect of the combination R=S=1 on a bistable element. Case 1 in Figure 13 does not use S or R dependency.

When an Sm input is at its internal 1 state, outputs affected by the Sm input will react, regardless of the state of an R input, as they normally would react to the combination S=1, R=0. See cases 2, 4, and 5 in Figure 13.

When an Rm input is at its internal 1 state, outputs affected by the Rm input will react, regardless of the state of an S input, as they normally would react to the combination S=0, R=1. See cases 3, 4, and 5 in Figure 13.

When an Sm or Rm input is at its internal 0 state, it has no effect.

Note that the noncomplementary output patterns in cases 4 and 5 are only pseudo stable. The simultaneous return of the inputs to S=R=0 produces an unforeseeable stable and complementary output pattern.

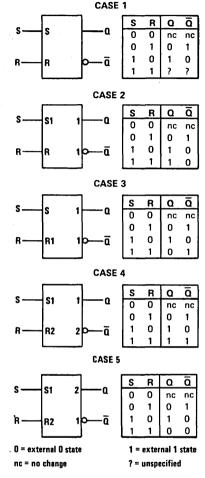


FIGURE 13 – S (SET) AND R (RESET) DEPENDENCIES

4.9 EN (Enable) Dependency

The symbol denoting enable dependency is the combination of letters EN.

An ENm input has the same effect on outputs as an EN input, see 3.1, but it effects only those outputs labeled with the identifying number m. It also affects those inputs labeled with the identifying number m. By contrast, an EN input affects all outputs and no inputs. The effect of an ENm input on an affected input is identical to that of a Cm input. See Figure 14.

When an ENm input stands at its internal 1 state, the inputs affected by ENm have their normally defined effect on the function of the element and the outputs affected by this input stand at their normally defined internal logic states, i.e., these inputs and outputs are enabled.

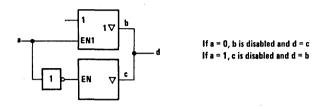


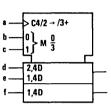
FIGURE 14 - EN (ENABLE) DEPENDENCY

When an ENm input stands at its internal 0 state, the inputs affected by ENm are disabled and have no effect on the function of the element, and the outputs affected by ENm are also disabled. Open-collector outputs are turned off, three-state outputs stand at their normally defined internal logic states but externally exhibit high impedance, and all other outputs (e.g., totem-pole outputs) stand at their internal 0 states.

4.10 M (Mode) Dependency

The symbol denoting mode dependency is the letter M.

Mode dependency is used to indicate that the effects of particular inputs and outputs of an element depend on the mode in which the element is operating.


If an input or output has the same effect in different modes of operation, the identifying numbers of the relevant affecting Mm inputs will appear in the label of that affected input or output between parentheses and separated by solidi. See Figure 19.

4.10.1 M Dependency Affecting Inputs

M dependency affects inputs the same as C dependency. When an Mm input or Mm output stands at its internal 1 state, the inputs affected by this Mm input or Mm output have their normally defined effect on the function of the element, i.e., the inputs are enabled.

When an Mm input or Mm output stands at its internal 0 state, the inputs affected by this Mm input or Mm output have no effect on the function of the element. When an affected input has several sets of labels separated by solidi (e.g., $C4/2\rightarrow/3+$), any set in which the identifying number of the Mm input or Mm output appears has no effect and is to be ignored. This represents disabling of some of the functions of a multifunction input.

The circuit in Figure 15 has two inputs, b and c, that control which one of four modes (0, 1, 2, or 3) will exist at any time. Inputs d, e, and f are D inputs subject to dynamic control (clocking) by the a input. The numbers 1 and 2 are in the series chosen to indicate the modes so inputs e and f are only enabled in mode 1 (for parallel loading) and input d is only enabled in mode 2 (for serial loading). Note that input a has three functions. It is the clock for entering data. In mode 2, it causes right shifting of data, which means a shift away from the control block. In mode 3, it causes the contents of the register to be incremented by one count.

Note that all operations are synchronous. In MODE 0 (b = 0, c = 0), the outputs remain at their existing states as none of the inputs has an effect. In MODE 1 (b = 1, c = 0), parallel loading takes place thru inputs e and f. In MODE 2 (b = 0, c = 1), shifting down and serial loading thru input d take place.

In MODE 3 (b = c = 1), counting up by increment of 1 per clock pulse takes place.

FIGURE 15 - M (MODE) DEPENDENCY AFFECTING INPUTS

4.10.2 M Dependency Affecting Outputs

When an Mm input or Mm output stands at its internal 1 state, the affected outputs stand at their normally defined internal logic states, i.e., the outputs are enabled.

When an Mm input or Mm output stands at its internal 0 state, at each affected output any set of labels containing the identifying number of that Mm input or Mm output has no effect and is to be ignored. When an output has several different sets of labels separated by solidi (e.g., 2,4/3,5), only those sets in which the identifying number of this Mm input or Mm output appears are to be ignored.

In Figure 16, mode 1 exists when the a input stands at its internal 1 state. The delayed output symbol is effective only in mode 1 (when input a=1) in which case the device functions as a pulse-triggered flip-flop. See Section 5. When input a=0, the device is not in mode 1 so the delayed output symbol has no effect and the device functions as a transparent latch.

FIGURE 16 – TYPE OF FLIP-FLOP DETERMINED BY MODE

4

4-18

In Figure 17, if input a stands at its internal 1 state establishing mode 1, output b will stand at its internal 1 state only when the content of the register equals 9. Since output b is located in the common-control block with no defined function outside of mode 1, the state of this output outside of mode 1 is not defined by the symbol.

In Figure 18, if input a stands at its internal 1 state establishing mode 1, output b will stand at its internal 1 state only when the content of the register equals 15. If input a stands at its internal 0 state, output b will stand at its internal 1 state only when the content of the register equals 0.

In Figure 19 inputs a and b are binary weighted to generate the numbers 0, 1, 2, or 3. This determines which one of the four modes exists.

At output ${\bf e}$ the label set causing negation (if ${\bf c}=1$) is effective only in modes 2 and 3. In modes 0 and 1 this output stands at its normally defined state as if it had no labels. At output ${\bf f}$ the label set has effect when the mode is not 0 so output ${\bf e}$ is negated (if

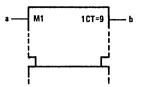


FIGURE 17 – DISABLING AN OUTPUT OF THE COMMON-CONTROL BLOCK

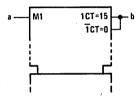


FIGURE 18 – DETERMINING AN OUTPUT'S FUNCTION

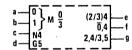


FIGURE 19 – DEPENDENT RELATIONSHIPS
AFFECTED BY MODE

c=1) in modes 1, 2, and 3. In mode 0 the label set has no effect so the output stands at its normally defined state. In this example 0,4 is equivalent to (1/2/3)4. At output g there are two label sets. The first set, causing negation (if c=1), is effective only in mode 2. The second set, subjecting g to AND dependency on d, has effect only in mode 3.

Note that in mode 0 none of the dependency relationships has any effect on the outputs, so e, f, and g will all stand at the same state.

4.11 A (Address) Dependency

The symbol denoting address dependency is the letter A.

Address dependency provides a clear representation of those elements, particularly memories, that use address control inputs to select specified sections of a multidimensional array. Such a section of a memory array is usually called a word. The purpose of address dependency is to allow a symbolic presentation of the entire array. An input of the array shown at a particular element of this general section is common to the corresponding elements of all selected sections of the array. An output of the array shown at a particular element of this general section is the result of the OR function of the outputs of the corresponding elements of selected sections. If the label of an output of the array shown at a particular element of this general section indicates that this output is an open-circuit output or a three-state output, then this indication refers to the output of the array and not to those of the sections of the array.

Inputs that are not affected by any affecting address input have their normally defined effect on all sections of the array, whereas inputs affected by an address input have their normally defined effect only on the section selected by that address input.

An affecting address input is labelled with the letter A followed by an identifying number that corresponds with the address of the particular section of the array selected by this input. Within the general section presented by the symbol, inputs and outputs affected by an Am input are labelled with the letter A, which stands for the identifying numbers, i.e., the addresses, of the particular sections.

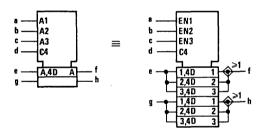


FIGURE 20 - A (ADDRESS) DEPENDENCY

Figure 20 shows a 3-word by 2-bit memory having a separate address line for each word and uses EN dependency to explain the operation. To select word 1, input a is taken to its 1 state, which establishes mode 1. Data can now be clocked into the inputs marked "1,4D". Unless words 2 and 3 are also selected, data cannot be clocked in at the inputs marked "2,4D" and "3,4D". The outputs will be the OR functions of the selected outputs, i.e., only those enabled by the active EN functions.

The identifying numbers of affecting address inputs correspond with the addresses of the sections selected by these inputs. They need not necessarily differ from those of other affecting dependency-inputs (e.g., G, V, N, . . .), because in the general section presented by the symbol they are replaced by the letter A.

If there are several sets of affecting Am inputs for the purpose of independent and possibly simultaneous access to sections of the array, then the letter A is modified to 1A, 2A, ... Because they have access to the same sections of the array, these sets of A inputs may have the same identifying numbers.

Figure 21 is another illustration of the concept.

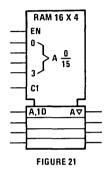


FIGURE 21 – ARRAY OF 16 SECTIONS OF FOUR TRANSPARENT LATCHES WITH 3-STATE OUTPUTS
COMPRISING A 16-WORD X 4-BIT RANDOM-ACCESS MEMORY

TABLE IV - SUMMARY OF DEPENDENCY NOTATION

TYPE OF LETTER SYMBOL*		AFFECTING INPUT AT ITS 1-STATE	AFFECTING INPUT AT ITS 0-STATE
Address	А	Permits action (address selected)	Prevents action (address not selected)
Control	С	Permits action .	Prevents action
Enable	EN	Permits action	Prevents action of inputs. Outputs off. Outputs at external high impedance, no change in internal logic state. Other outputs at internal O state.
AND	G	Permits action	Imposes 0 state
Mode	М	Permits action (mode selected)	Prevents action (mode not selected)
Negate (X-OR)	N	Complements state	No effect
RESET	R	Affected output reacts as it would to S = 0, R = 1	No effect
SET	S	Affected output reacts as it would to S = 1, R = 0	No effect
OR	V	Imposes 1 state	Permits action
Interconnection	Z	Imposes 1 state	Imposes O state

^{*}These letter symbols appear at the AFFECTING input (or output) and are followed by a number. Each input (or output) AFFECTED by that input is labeled with that same number. When the labels EN, R, and S appear at inputs without the following numbers, the descriptions above do not apply. The action of these inputs is described under "Symbols Inside The Outline", see 3.1.

BISTABLE ELEMENTS

The dynamic input symbol, the postponed output symbol, and dependency notation provide the tools to differentiate four main types of bistable elements and make synchronous and asynchronous inputs easily recognizable. See Figure 22. The first column shows the essential distinguishing features; the other columns show examples.

Transparent latches have a level-operated control input. The D input is active as long as the C input is at its internal 1 state. The outputs respond immediately. Edge-triggered elements accept data from D, J, K, R, or S inputs on the active transition of C. Pulse-triggered elements require the setup of data before the start of the control pulse; the C input is considered static since the data must be maintained as long as C is at its 1 state. The output is postponed until C returns to its 0 state. The data-lock-out element is similar to the pulse-triggered version except that the C input is considered dynamic in that shortly after C goes through its active transition, the data inputs are disabled and data does not have to be held. However, the output is still postponed until the C input returns to its initial external level.

Notice that synchronous inputs can be readily recognized by their dependency labels (1D, 1J, 1K, 1S, 1R) compared to the asynchronous inputs (S, R), which are not dependent on the C inputs.



FIGURE 22 - FOUR TYPES OF BISTABLE CIRCUITS

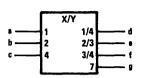
6 CODERS

The general symbol for a coder or code converter is shown in Figure 23. X and Y may be replaced by appropriate indications of the code used to represent the information at the inputs and at the outputs, respectively.

FIGURE 23 - CODER GENERAL SYMBOL

Indication of code conversion is based on the following rule:

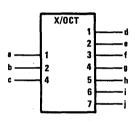
Depending on the input code, the internal logic states of the inputs determine an internal value. This value is reproduced by the internal logic states of the outputs, depending on the output code.


The indication of the relationships between the internal logic states of the inputs and the internal value is accomplished by:

- labelling the inputs with numbers. In this case the internal value equals the sum of the weights associated with those inputs that stand at their internal 1-state, or by
- 2) replacing X by an appropriate indication of the input code and labelling the inputs with characters that refer to this code.

The relationships between the internal value and the internal logic states of the outputs are indicated by:

- 1) labelling each output with a list of numbers representing those internal values that lead to the internal 1-state of that output. These numbers shall be separated by solidi as in Figure 24. This labelling may also be applied when Y is replaced by a letter denoting a type of dependency (see Section 7). If a continuous range of internal values produces the internal 1 state of an output, this can be indicated by two numbers that are inclusively the beginning and the end of the range, with these two numbers separated by three dots, e.g., 4 . . . 9 = 4/5/6/7/8/9, or by
- replacing Y by an appropriate indication of the output code and labelling the outputs with characters that refer to this code as in Figure 25.


Alternatively, the general symbol may be used together with an appropriate reference to a table in which the relationship between the inputs and outputs is indicated. This is a recommended way to symbolize a PROM after it has been programmed.

FUNCTION TABLE

	NPU	rs		OUT	PUT	s
С	b	a	g	f	8	d
0	0	0	0	0	0	.0
0	0	1	0	0	0	1
0	1	0	0	0 0 1		0
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	0	0	0
1	1	0	0 0 0		0	0
1	1	1,	1	0	0	0

FIGURE 24 - AN X/Y CODE CONVERTER

FUNCTION TABLE

	IPU1	rs	OUTPUTS						
C	b	a	j	i	h	9	f	e	d
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0	0
1	0	0	0	0	0	1	0	0	0
1	0	1	0	0	1	0	0	0	0
1	1	0	0	1	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0

FIGURE 25 - AN X/OCTAL CODE CONVERTER

7 USE OF A CODER TO PRODUCE AFFECTING INPUTS

It often occurs that a set of affecting inputs for dependency notation is produced by decoding the signals on certain inputs to an element. In such a case use can be made of the symbol for a coder as an embedded symbol. See Figure 26.

If all affecting inputs produced by a coder are of the same type and their identifying numbers correspond with the numbers shown at the outputs of the coder, Y (in the qualifying symbol X/Y) may be replaced by the letter denoting the type of dependency. The indications of the affecting inputs should then be omitted. See Figure 27.

FIGURE 26 – PRODUCING VARIOUS TYPES OF DEPENDENCIES

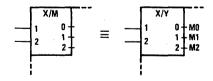


FIGURE 27 – PRODUCING ONE TYPE OF DEPENDENCY

Texas Instruments

8 USE OF BINARY GROUPING TO PRODUCE AFFECTING INPUTS

If all affecting inputs produced by a coder are of the same type and have consecutive identifying numbers not necessarily corresponding with the numbers that would have been shown at the outputs of the coder, use can be made of the binary grouping symbol (see 3.1). k external lines effectively generate 2^k internal inputs. The bracket is followed by the letter denoting the type of dependency followed by $\frac{m1}{m2}$. The m1 is to be replaced by the smallest identifying number and the m2 by the largest one, as shown in Figure 28.

FIGURE 28 - USE OF THE BINARY GROUPING SYMBOL

9 SEQUENCE OF INPUT LABELS

If an input having a single functional effect is affected by other inputs, the qualifying symbol (if there is any) for that functional effect is preceded by the labels corresponding to the affecting inputs. The left-to-right order of these preceding labels is the order in which the effects or modifications must be applied. The affected input has no functional effect on the element if the logic state of any one of the affecting inputs, considered separately, would cause the affected input to have no effect, regardless of the logic states of other affecting inputs.

If an input has several different functional effects or has several different sets of affecting inputs, depending on the mode of action, the input may be shown as often as required. However, there are cases in which this method of presentation is not advantageous. In those cases the input may be shown once with the different sets of labels separated by solidi. See Figure 29. No meaning is attached to the order of these sets of labels. If one of the functional effects of an input is that of an unlabelled input of the element, a solidus will precede the first set of labels shown.

If all inputs of a combinational element are disabled (caused to have no effect on the function of the element), the internal logic states of the outputs of the element are not specified by the symbol. If all inputs of a sequential element are disabled, the content of this element is not changed and the outputs remain at their existing internal logic states.

Labels may be factored using algebraic techniques.

FIGURE 29 - INPUT LABELS

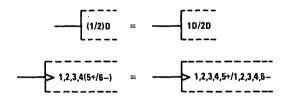


FIGURE 30 - FACTORING INPUT LABELS

10 SEQUENCE OF OUTPUT LABELS

If an output has a number of different labels, regardless of whether they are identifying numbers of affecting inputs or outputs or not, these labels are shown in the following order:

- if the postponed output symbol has to be shown, this comes first, if necessary preceded by the indications of the inputs to which it must be applied;
- followed by the labels indicating modifications of the internal logic state of the output, such that the left-to-right order of these labels corresponds with the order in which their effects must be applied;
- followed by the label indicating the effect of the output on inputs and other outputs of the element.

4-26

Symbols for open-circuit or three-state outputs, where applicable, are placed just inside the outside boundary of the symbol adjacent to the output line. See Figure 31.

G1 EN2 T,2

If an output needs several different sets of labels that represent alternative functions

FIGURE 31 - PLACEMENT OF 3-STATE SYMBOLS

(e.g., depending on the mode of action), these sets may be shown on different output lines that must be connected outside the outline. However, there are cases in which this method of presentation is not advantageous. In those cases the output may be shown once with the different sets of labels separated by solidi. See Figure 32.

Two adjacent identifying numbers of affecting inputs in a set of labels that are not already separated by a nonnumeric character should be separated by a comma.

If a set of labels of an output not containing a solidus contains the identifying number of an affecting Mm input standing at its internal 0 state, this set of labels has no effect on that output.

Labels may be factored using algebraic techniques.

FIGURE 32 - OUTPUT LABELS

FIGURE 33 - FACTORING OUTPUT LABELS

If you have questions on this Explanation of Logic Symbols, please contact:

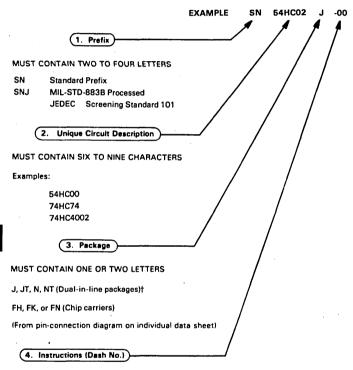
F.A. Mann MS 49
Texas Instruments Incorporated
P.O. Box 225012
Dallas, Texas 75265
Telephone (214) 995-2867

IEEE Standards may be purchased from:

Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street
New York, N.Y. 10017

International Electrotechnical Commission (IEC) publications may be purchased from:

American National Standards Institute, Inc. 1430 Broadway New York, N.Y. 10018


4-28

THIS PAGE INTENTIONALLY LEFT BLANK

Ordering Instructions and Mechanical Data

Electrical characteristics presented in this data book, unless otherwise noted, apply for circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this catalog should include a four-part type number as explained in the following example.

MUST CONTAIN TWO NUMBERS

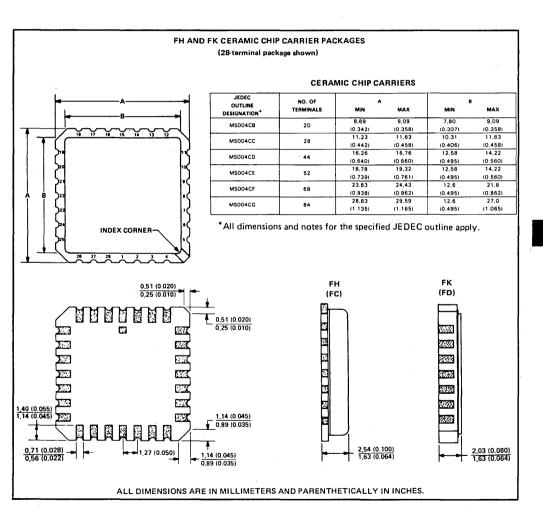
- 00 No special instructions
- 10 Solder-dipped leads (N and NT packages only)

Dual-in-line (J, JT, N, NT)

- Slide Magazines
- A-Channel Plastic Tubing
- Barnes Carrier (N only)
- Sectioned Cardboard Box
- Individual Plastic Box

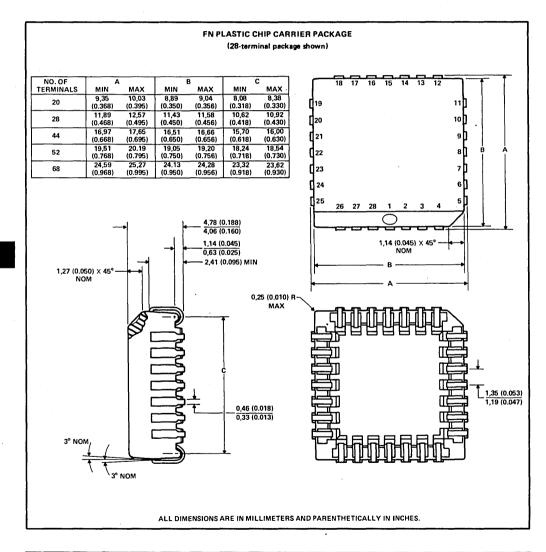
Texas Instruments

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265


[†] These circuits in dual-in-line packages are shipped in one of the carriers shown below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped in the most practical carrier. Please contact your TI sales representative for the method that will best suit your particular needs

FH and FK ceramic chip carrier packages

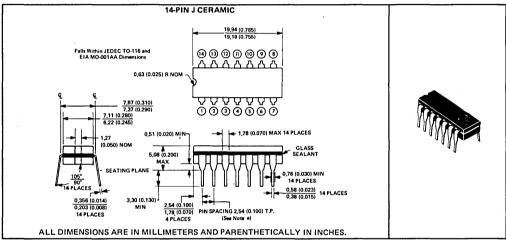
Both versions of these hermetically sealed chip carrier packages have ceramic bases. The FH package has a single-layer base with a ceramic lid and glass seal. The FK package has a three-layer base with a metal lid and braze seal.

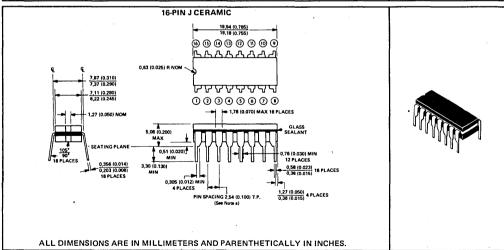

The packages are intended for surface mounting on solder lands on 1,27 (0.050-inch) centers. Terminals require no additional cleaning or processing when used in soldered assembly.

FH and FK packages are identical to the FC and FD packages, respectively. The new designations are used to indicate devices whose terminal assignments conform to a forthcoming JEDEC Standard.

FN plastic chip carrier package

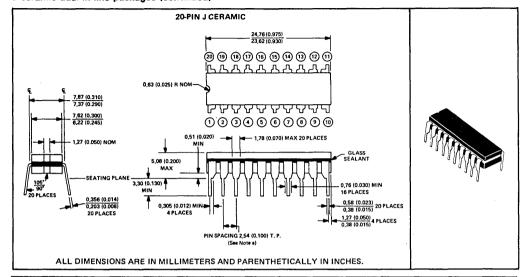
Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the devices are operated in high-humidity conditions. The packages are intended for surface mounting on solder lands on 1,27-mm (0.050-inch) centers. Leads require no additional cleaning or processing when used in soldered assembly.

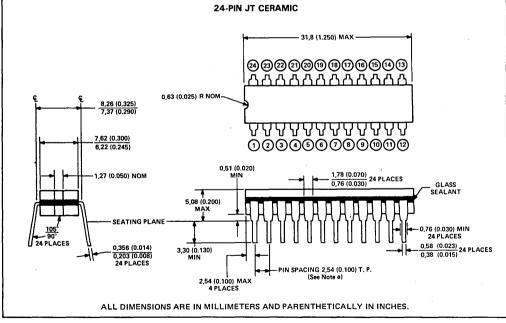



TEXAS INSTRUMENTS

J ceramic packages (including JT packages)

Each of these hermetically sealed dual-in-line packages consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. Once the leads are compressed and inserted sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.


NOTE: For the 14-, 16-, and 20-pin packages, the letter J is used by itself since these packages are available only in the 7.62 (0.300) row spacing.

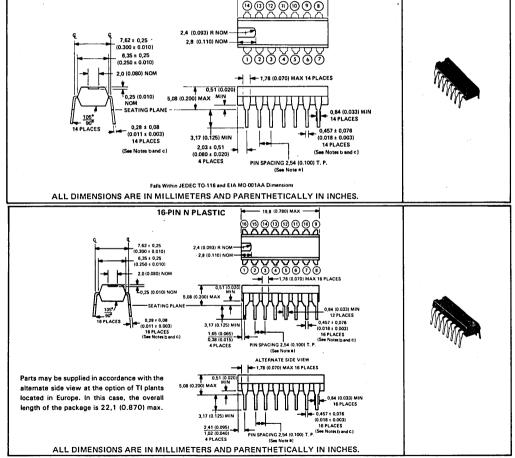


NOTE: a. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

J ceramic dual-in-line packages (continued)

NOTE: a. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

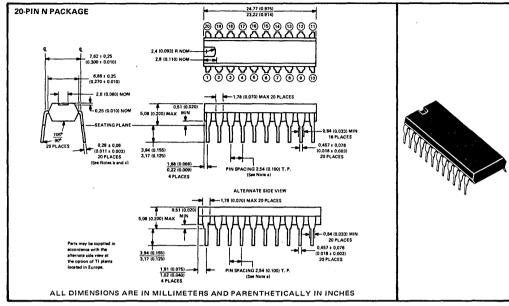
TEXAS INSTRUMENTS

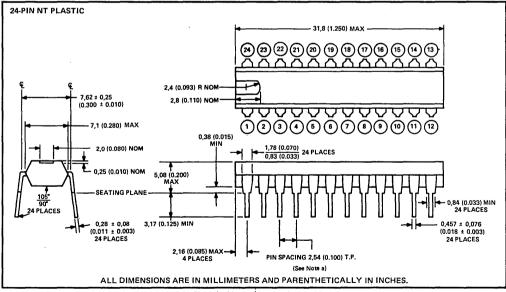

N plastic packages (including NT package)

Each of these dual-in-line packages consists of a circuit mounted on a lead frame and encapsulated within an electrically conductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

19,8 (0.780) 18,0 (0.710)

NOTE: For the 14-, 16-, 20-, and 28-pin packages, the letter N is used by itself since these packages are available in only one row-spacing width — 7,62 (0.300) for the 14-, 16-, 18-, and 20-pin packages and 15,24 (0.600) for the 28-pin package.


14-PIN N PLASTIC



NOTES: a, Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

- b. This dimension does not apply for solder-dipped leads.
- c. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0.51 (0.020) above seating plane.

N plastic dual-in-line packages (continued)

NOTES: a. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

- b. This dimension does not apply for solder-dipped leads.
- c. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.

Texas Instruments

IC Sockets

IC SOCKETS

Texas Instruments lines of off-the-shelf interconnection products are designed specifically to meet the performance needs of volume commercial applications. They provide both the economy of a standard product line and performance features developed after many year's experience with custom designs. Foremost among these is our ability to selectively bond a wrought gold stripe at the contact point. No waste, Reduced cost, Reliable contacts.

Wrought Gold Contact

Plate a contact with gold and you get a better contact. More reliable, longer lasting. Increase the gold, you improve the contact. But gold is precious, so improved performance has to be costly — right? Wrong. Because now you can get the gold only where it is needed — at the point of contact.

How? With selective metallurgical bonding; a gold stripe inlay. Not porous plating, but durable wrought gold bonded to the contact by the same technology used to produce clad coins and thermostat metals.

Texas Instruments, Attleboro, Massachusetts, is the world's largest producer of these multimetal systems. We also know our way around electronics. The result? A full line of reliable, low cost, interconnection systems featuring an extra measure of gold where it's needed. Premium performance at no premium in price.

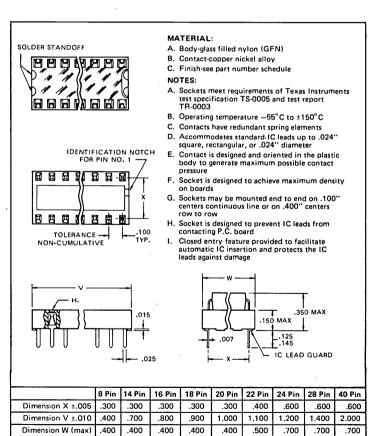
IC Sockets

Texas Instruments family of IC sockets includes every type and size in common use today, and as wide a choice of contact materials as you'll find anywhere. Choose from open or closed entry wire-wrapped[†] sockets, standard or low profile solder tail sockets, cable plugs, and component platforms. Sizes from 8 to 40 pins.

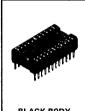
Additional information including pricing and delivery quotations may be obtained from your nearest TI Distributor, TI Representative, or:

Texas Instruments Incorporated Connector Systems Department MS 14-3 Attleboro, Massachusetts 02703

Telephone: (617) 699-3800 TELEX: ABORA927708


[†]Registered trademark of Gardner-Denver

LOW PROFILE SOCKETS


SOLDER TAIL

C-93 SERIES GOLD-CLAD CONTACTS

- Universal mounting and packaging
- Anti-wicking wafer
- Stand-off tabs on base for solder flush
- Redundant contact points for low contact resistance, high reliability and repetitive insertion
- Closed entry construction

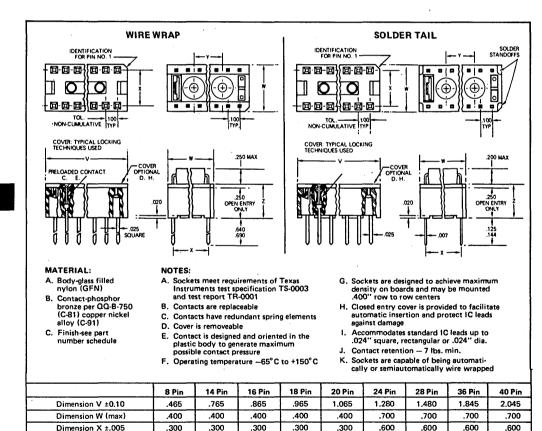
PART NUMBER SCHEDULE

BLACK BODY

C9308-02
C9314-02
C9316-02
C9318-02
C9320-02
C9322-02
C9324-02
C9328-02
C9340-02

CONTACT FINISH 50 microinch minimum gold strip inlay

STANDARD PROFILE SOCKET


SOLDER TAIL

C-82 SERIES PLATED CONTACTS • C-92 SERIES GOLD CLAD CONTACTS

WIRE WRAP

C-81 SERIES PLATED CONTACTS • C-91 SERIES GOLD CLAD CONTACTS

- Designed for low cost, reliable, high density production packaging
- Universal mounting and packaging capabilities
- 8 to 40 pin lead configurations
- Contacts accommodate .015" through .024" rectangular or round dual-in-line leads
- Wire wrap posts held to true position of .015" providing a true position of .020" on boards for efficient automatic wire wrapping

Dimension Y ±0.10

Dimension Z ±.005

NA

.280

.400

.280

.400

.280

400

.280

400

.280

500

.280

.500

.280

.800

.325

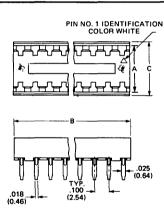
1.000

.325

		OPEN ENTRY	CLOSED ENTRY		
PART NUMBER SCHEDUL	-				
Contact Finish	Pins	Błack Body	Black Cover		
	8	C810854	C810804		
Series	14	C811454	C811404		
C-81 200-400 microinch	16	C811654	C811604		
	18	C811854	C811804 C812004		
	20	C812054			
min tin	24	C812454	C812404		
per MIL-T-10727	28	C812854	C812804		
WIIE-1-10727	36		C813604		
	40		C814004		
Series	8	C910850	C910800		
C-91	14	C911450	C911400		
50 microinch	16	C911650	C911600		
min	18	C911850	C911800		
gold stripe	20	C912050	C912000		
inlay	24	C912450	C912400		
	28	C912850	C912800		
	36		C913600		
	40		C914000		

SOLDER TAIL			
		OPEN ENTRY	CLOSED ENTRY
	NUMBER SCHEDULE		i i i i i i i i i i i i i i i i i i i
Contact	Pins	Black Body	Black Cover
	8	C820850	C820800
Series	14	C821450	C821400
C-82 30 microinch	16	C821650	C821600
min gold per	18	C821850	C821800
MIL-G-45204 over	24	C822450	C822400
50 microinch	28	C822850	C822800
min nickel per QQ-N-290	36		C823600
1	40		C824000
Sarias	8	C820852	C820802
C-82 50 microinch min gold per MIL-G-45204	14	C821452	C821402
	16	C821652	C821602
	18	C821852	C821802
MIL-G-45204 over	24	C822452	C822402
100 microinch	28	C822852	C822802
min nickel per QQ-N-290	36		C823602
	40		C824002
Series	8	C820854	C820804
C-82	14	C821454	C821404
	16	C821654	C821604
200-400 microinch	18	C821854	C821804
min tin per	24	.C822454	C822404
MIL-T-10727	28	C822854	C822804
	36		C823604
	40		C824004
Series	8	C920850	C920800
C-92	14	C921450	C921400
	16	C921650	C921600
100-microinch	18	C921850	C921800
gold stripe	24	C922450	C922400
inlay	28	C922850	C922800
	36		C923600
	40		C924000

SINGLE BEAM SOCKETS


LOW PROFILE/HIGH RETENTION

C87 SERIES BERYLLIUM COPPER CONTACTS

The C87 socket utilizes a beryllium copper contact spring with a 200 µ inch minimum tin alloy finish in the contact area. This contact system has been recognized as the standard high performance combination. The system maintains the highest withdrawal and normal forces, along with the ability to retain these properties after cycling.

C88 SERIES PHOSPHOR BRONZE CONTACTS

The C88 socket utilizes a specially processed high-strength copper alloy spring with a 200 µ inch minimum tin alloy finish in the contact area. This uniquely engineered contact system has been designed to achieve the performance characteristics that normally require a beryllium copper spring. The device, available at a significantly lower cost than the beryllium copper version, offers the advantage of a substantial cost reduction without sacrificing critical performance requirements.

MATERIAL:

- A. Body Glass reinforced polyester UL rating 94V-0.
- *B. Contacts C87 Series, beryllium copper - C88 Series, phosphor
- C. Contact finish tin plate: 200µ micro inch min, thick in contact area.

NOTES:

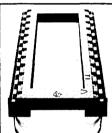
- A. Operating temperature: -40°C to +105°C
- B. Contact rating: 1 amp
- C. Contact capacitance: 2 picofarads max.
- D. Contact resistance: 20 milliohms max. E. Dielectric withstanding voltage: 1000 V.A.C. min.
- F. Insulation resistance: 100,000 megohms min.
- G. Insertion force 16 position "blunt IC" (.010
- lead): .5#/lead nominal
- H. Withdrawal force (.008 test blade) C87 Series

Initial: 155 gm nominal

After probing with a .014 blade: 98 gm nominal After probing with a .025 blade: 87 gm nominal C88 Series

Initial: 112 gm nominal

After probing 2 times with ,014 blade: 82 gm


After probing 2 times with .025 blade: 29 gm nominal

- Normal force (,010 deflection): 250 gm min.
- J. Polarization identification; a white circle at the #1
- K. Full test reports, #TR 801015 for C87 Series and #TR 810112 for C88 Series, are available from your local sales office.

	8 Pin	14 Pin	16 Pin	18 Pin	20 Pin	22 Pin	24 Pin	28 Pin	40 Pin
Dimension A	(7,62)	(7,62)	(7,62)	(7,62)	(7,62)	(10,16)	(15,24)	(15,24)	(15,24)
	.300	.300	.300	.300	.300	.400	.600	.600	.600
Dimension B	(10,16)	(17,78)	(20,32)	(22,86)	(25,40)	(27,90)	(30,48)	(35,36)	(50,80)
	.400	.700	.800	.900	1.000	1.100	1,200	1.400	2.000
Dimension C	(9,40)	(9,40)	(9,40)	(9,40)	(9,40)	(11,94)	(17,02)	(17,02)	(17,02)
	370	.370	.370	.370	.370	.470	.670	.670	.670

^{*}Also available: C98-Gold Inlay, C89-Copper Alloy

PART NUMBER SCHEDULE

ins	C87 SERIES	C88 SERIES
8	C8708-01	C8808-01
14	C8714-01	C8814-01
16	C8716-01	C8816-01
18	C8718-01	C8818-01
20	C8720-01	C8820-01
22	C8722-01	C8822-01
24	C8724-01	C8824-01
28	C8728-01	C8828-01
40	C8740-01	C8840-01

SCREW MACHINE SOCKETS

LOW PROFILE

C71 SERIES WIRE WRAP . C72 SERIES SOLDER TAIL

· Gold contacts with gold sleeve or tin sleeve

PART NUMBER SCHEDULE

C71 SERIES

C72 SERIES

MATERIAL:

- A. Body Thermoplastic, meeting UL specification 94-V-O
- B. Contact Beryllium copper QQ-C-530, finish gold over nickel per mil-G-45204
- C. Sleeve Brass QQ-B-626, finish gold over nickel per mil-G-45204 or tin over nickel per mil-T-10727

NOTES:

.090

- Open body construction and high standoffs provide improved cleaning and heat dissipation
- B. Accept standard I.C. leads .010± .003 x .018± .003 or .010 to .022 dia.
- C. Accept I.C. lead lengths from ,090 to .155
- D. Operating temperatures: Gold sleeve -65°C to 125°C Tin sleeve -40°C to 100°C
- E. Performance meets req. of T.I. test spec. T.S. 0008 as shown in test report T.R. 1021.

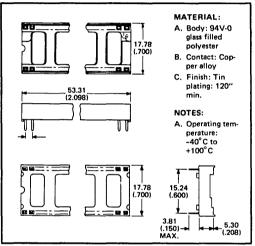
	GOLD SLE	
Pins	C71 Wire Wrap	C72 Solder Tail
6	C7106-03*	C7206-09*
8	C7108-03	C7208-09
14	C7114-03	C7214-09
16	C7116-03	C7216-09
18	C7118-03	C7218-09
20	C7120-03	C7220-09
22	C7122-03	C7222-09
24	C7124-03	C7224-09
28	C7128-03	C7228-09
40	C7140-03	C7240-09
64	C7164-03*	C7264-09*
64	C7164-03* TIN SLEEV	
64		
	TIN SLEEV	/ES
6	TIN SLEEV C7106-53*	/ES C7206-59*
6 8	TIN SLEEV C7106-53* C7108-53	C7206-59*
6 8 14	TIN SLEEV C7106-53* C7108-53 C7114-53	C7206-59* C7208-59 C7214-59
6 8 14 16	TIN SLEEV C7106-53* C7108-53 C7114-53 C7116-53	C7206-59* C7208-59 C7214-59 C7216-59
6 8 14 16 18	TIN SLEEN C7106-53* C7108-53 C7114-53 C7116-53 C7118-53	C7206-59* C7208-59 C7214-59 C7216-59 C7218-59
6 8 14 16 18 20	TIN SLEEV C7106-53* C7108-53 C7114-53 C7116-53 C7118-53 C7120-53	C7206-59* C7208-59 C7214-59 C7216-59 C7218-59 C7220-59
6 8 14 16 18 20 22	TIN SLEEV C7106-53* C7108-53 C7114-53 C7116-53 C7118-53 C7120-53 C7122-53	C7206-59* C7208-59 C7214-59 C7216-59 C7218-59 C7220-59 C7222-59
6 8 14 16 18 20 22 24	TIN SLEEV C7106-53* C7108-53 C7114-53 C7116-53 C7118-53 C7120-53 C7122-53 C7124-53	/ES C7206-59* C7208-59 C7214-59 C7216-59 C7218-59 C7220-59 C7222-59 C7224-59

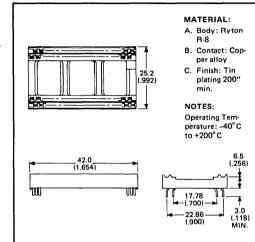
	6 Pin	8 Pin	14 Pin	16 Pin	18 Pin	20 Pin	22 Pin	24 Pin	28 Pin	36 Pin	40 Pin	64 Pin
Dimension A max.	.300	.400	.700	.800	.900	1.000	1.100	1.200	1.400	1.800	2.000	3.200
Dimension B ±.005	.200	.300	.600	.700	.800	.900	1.000	1.100	1.300	1.700	1.900	3.100
Dimension C max.	.400	.400	.400	.400	.400	.400	.500	.700	.700	.700	.700	1.000
Dimension D ±.005	.300	.300	.300	.300	.300	.300	.400	.600	.600	.600	.600	.900

Note: Contacts for one- and twolevel wire wrapping are also available. Contact the factory for details.

^{*}Minimum order requirements on these parts. Alternate insulator materials may be used.

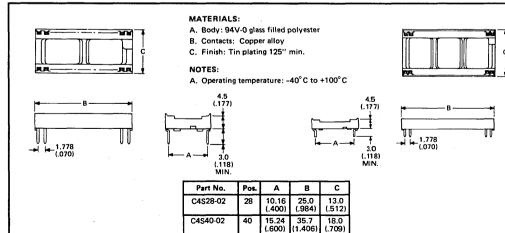
SLIM PACKAGE C8424-03 • C9324-03


.300 row to row spacing on the low profile edgegrip


42 POSITION

C4742-11

QUAD PACKAGE


C4W64-11 SERIES 64 STAGGERED PINS

SHRINK PACKAGE

C4S SERIES 28 AND 40 POSITIONS

