

The Engineering Staff of TEXAS INSTRUMENTS Semiconductor Group

The Linear Control Circuits Data Book

Design Engineers

.

The Linear Control Circuits Data Book for

Design Engineers

First Edition

TEXAS INSTRUMENTS

LCC4241/15K/1/77

Printed in U.K.

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein supersedes previously published data on Linear Control Circuits, including data book CC-415.

Copyright © 1976 Texas Instruments

ISBN 0-904047-20-2 First European Edition January 1977

Printed and bound in the United Kingdom by BEMROSE & SONS LTD., DERBY

GENERAL INFORMATION	7
THERMAL INFORMATION	25
ORDERING INSTRUCTIONS AND MECHANICAL DATA	33
OPERATIONAL AMPLIFIERS	55
VOLTAGE COMPARATORS	145
VOLTAGE REGULATORS	211
SPECIAL FUNCTIONS	291
MILITARY PRODUCTS	353
IC SOCKETS AND INTERCONNECTION PANELS	361

PAGE

이용화 이상 이 가지 않는 것은 것은 것이 있었다. 이 가지는 이상 전에 가지 않는 것이 있다. 이 가지

INTRODUCTION

In this 368-page data book, Texas Instruments is pleased to present important technical information on a broad line of Linear Control Integrated Circuits.

You will find complete specifications on TI's TL series and second source Linear Control circuits including operational amplifiers, comparators, voltage regulators, analogue switches and special functions.

The functional indexes, selection guides and cross-references are designed for ease of circuit selection, whilst the alphanumeric index will enable you to locate specific type numbers quickly.

A military products section covers process screening requirements for JAN, JAN-processed, 883 Class B, and standard products. Test conditions and environmental levels are detailed for the product categories.

Although this volume offers design and specification data only for Linear Control Integrated Circuits, complete technical data for any TI semiconductor/component product is available from your nearest TI field sales office or local authorized TI distributor.

General Information

8

.

TABLE OF CONTENTS

	PAGE
Section 1, General Information	· · · · · · · · · · · · · · · · 7 · · · ·
Functional Index and Package Availability	· · · · · · · · · · · · · · · · · · ·
Section 2, Thermal Information	
Section 3, Ordering Instructions and Mechanical Data	
Section 4, Operational Amplifiers	
Section 5, Differential Comparators	
Section 6, Voltage Regulators	211 213 213 213 213 213 214 214 214 214 214 213 214 213 213 214 213 213 213 213 213 213 213 213 213 213
Section 7, Special Functions	
Section 8, Military Products	· · · · · · · · · · · · · · · · 353

ALPHANUMERIC INDEX

				PAGE				PAGE				PAGE
LF155			 	63	LM305A .			. 221	TL820			201
LF155A .			 	63	LM306			. 151	uA78L02			255
LF156			 	63	LM307			. 77	uA78L02A			255
LF156A .			 	63	LM309			. 225	uA78L05			255
LF157			 	63	LM311			. 157	uA78L05A			255
LF157A .			 	63	LM317* .			. 229	uA78L06			255
LF255			 	63	LM318			. 80	uA78L06A			255
LF256			 	63	LM324			. 83	uA78L08			255
LF257			 	63	LM339			. 165	uA78L08A			255
LF355			 	63	LM358			. 85	uA78L12			255
LF355A .			 	63	LM376			. 221	uA78L12A			255
LF356			 	63	LM393			. 167	uA78L15			255
LF356A .	-		 	63	LM2901 .			. 169	uA78L15A			255
LF357			 	63	LM2902 .			. 87	uA78M05			261
LF357A .			 	63	LM2903 .			. 171	uA78M06			261
LF2155 .			 	69	LM2904 .			. 89	uA78M08			261
LF2155A .			 	69	MC1458 .			. 91	uA78M12			261
LF2156 .				69	MC1558 .			91	uA78M15			261
LF2156A .				69	NE555			295	uA78M20			261
LF2255 .			 	69	RC4136 .			95	uA78M24		÷	261
LF2256 .				69	RC4558			97	uA79M05			281
LF2355 .			 	69	BM4136			95	uA79M06			281
LF2355A .				69	BM4558			97	uA79M08		•	281
LF2356 .			 	69	SE555			295	uA79M12	• •		281
LF2356A				69	TL022			99	uA79M15	• •	·	281
LM101A				74	TI 044			102	uA79M20	• •	·	281
LM104				217	TI 081*			105	uA79M24	•••	•	281
LM105				221	TL081A*	• •	• • •	105	u/07024 · · · ·	• •	·	118
LM106			 ÷	151	TL084*	•••	• • •	107	μΔ709	• •	·	122
LM107				77	TL089			108	uA709A	• •	•	123
LM109			 ÷	225	TI 182			305	uA710	• •	·	203
LM111			 ÷	157	TL185			308	uA711	• •	•	200
LM117*			 ·	229	TI 188			311	uA723	• •	•	230
LM118			 Ċ	80	TI 191	• •	••••	314	μΔ733	• •	•	233
LM124	•		 •	83	TI 430	• •	• • •	233	μΔ741	• •	•	120
LM139				165	TI 440	•••	• • •	317	uA747	• •	·	123
LM158				85	TL441			323	uA748	• •	•	137
LM193				167	TL497			236	uA777	• •	÷	141
LM201A .				74	TL500*			330	uA7805			245
LM204				217	TL502*			331	uA7806		÷	245
LM205			 •	221	TL506			173	uA7808			245
LM206				151	TL510			179	uA7812			245
LM207				77	TL514			183	uA7815		·	245
LM209				225	TL560			333	uA7818	• •	·	245
LM217*		:		229	TL601			339	uA7824	• •	·	245
LM218				80	TL604			339	uA7885		÷	245
LM224				83	TL607			339	uA7905		·	271
LM239				165	TL610			339	uA7906	•••	•	271
LM258				85	TL702			113	uA7908		:	271
LM293				167	TL710			185	uA7912			271
LM301A .				74	TL720			189	uA7915			271
LM304				217	TL810			191	uA7918			271
LM305				221	TL811			195	uA7924			271

*Future product, to be announced

CROSS-REFERENCE Old TI Type Numbers to New TI Type Numbers

OLD NUMBER	NEW NUMBER	OLD NUMBER	NEW NUMBER
SN52L022	TL022M	SN72088*	TL089C [†]
SN52L044	TL044M	SN72301A	LM301A
SN52101A	LM101A	SN72304	LM304
SN52104	LM104	SN72305	LM305
SN52105	LM105	SN72305A	LM305A
SN52106	LM106	SN72306	LM306
SN52107	LM107	SN72307	LM307
SN52108*	TL081M [†]	SN72308*	TL081C [†]
SN52108A*	TL801M [†]	SN72308A*	TL081C [†]
SN52109	LM109	SN72309	LM309
SN52110*		SN72310*	
SN52111	LM111	SN72311	LM311
SN52118	LM118	SN72318	LM318
SN52506	TL506M	SN72376	LM376
SN52510	TL510M	SN72440	TL440C
SN52514	TL514M	SN72506	TL506C
SN52555	SE555	SN72510	TL510C
SN52558	MC1558	SN72514	TL514C
SN52660*	TL081 [†]	SN72555	NE555
SN52702	TL702M	SN72558	MC1458
SN52702A	uA702M	SN72560	TL560C
SN52709	uA709M	SN72660*	TL 081C [†]
SN52709A	uA709AM	SN72702	TL702C
SN52710	TL710M	SN72709	uA709C
SN52711	uA711M	SN72710	TL 710C
SN52723	uA723M	SN72711	uA711C
SN52733	uA733M	SN72720	TI 720C
SN52741	uA741M	SN72723	uA723C
SN52747	uA747M	SN72733	uA733C
SN52748	uA748M	SN72741	uA741C
SN52770*	TL081M [†]	SN72747	uA747C
SN52771*	TL081M [†]	SN72748	uA748C
SN52777	uA777M	SN72770*	TI 081CT
SN52810	TI 810M	SN72771*	TL 091CT
SN52811	TI 811M	SN72777	12081C
SN52820	TL820M	SN72810	TI 810C
SN5510*		SN72811	TL 811C
SN5511*		SN72820	TL 820C
SN5512*		SN7510*	120200
SN5514*		SN7511*	
SN56502	TI 441M	SN7512*	
SN56514*		SN7514*	
SN62088*	TL0891 [†]	SN76502	TI 441C
SN72L022	TL022C	SN76514*	.20
SN72L044	TL044C	0.00000	

*Not recommended for new design.

[†]Recommended as replacement

		OF	PERATIONAL	AMPLIFIERS			
		OPERA	TING FREE-AIR TE	MPERATURE RAI	NGE	PACKAGE	DAGE
FUNCTION		-55°C to 125°C	-40°C to 85°C	-25°C to 85°C	0°C to 70°C	TYPES	PAGE
		TL702M			TL702C	J, L, U J, L, N, U	113
		uA702M				J, L	118
		uA709AM				J, JG, L, U	
	Single	uA709M				J, JG, L, U	123
	ongio				uA709C	J, JG, L, N, P, U	
		uA741M			uA741C	J, JG, L, U J, JG, L, N, P, U	129
General-Purpose		uA748M			uA748C	J, JG, L, U J, JG, L, N, P, U	137
Operational		LM158				JG, L	
Amplifiers				LM258		JG, L, P	85
					LM358	JG, L, P	
	Dual		LM2904			JG, L, P	89
		MC1558			MC1459		91
					1101430	JU, L, V	
		000			uA747C	J. L. N. W	133
		LM124				J	
				LM224		J, N	0.2
	Quad				LM324	J, N	03
			LM2902			J, N	87
		LF155				JG, L	
		LF155A				JG, L	
				LF255		JG, L, P	63
					LF355	JG, L, P	
		1 5 1 5 6			LF355A	JG, L, P	
		LF156				JG, L	
		LIIJUA		LE256			63
	Sinale			2. 200	LF356	JG, L, P	
					LF356A	JG, L, P	
		LF157				JG, L	
		LF157A				JG, L	
IEET-Inout				LF257		JG, L, P	63
Operational					LF357	JG, L, P	
Amplifiers					LF357A	JG, L, P	
				•	TL081AC*	JG, L, P	105
		1 62155			ILUBIC"	JG, L, P	
		L F2155A				JG, L	
				LF2255		JG. L. P	69
					LF2355	JG, L, P	
	Dural				LF2355A	JG, L, P	
	Cuar	LF2156				JG, L	
		LF2156A				JG, L	
				LF2256		JG, L, P	69
					LF2356	JG, L, P	
	Quad				LF2356A	JG, L, P	107
					1 LU046	J, N	107

OPERATIONAL AMPLIFIERS

*Future product, to be announced.

		OPERATING FR	EE-AIR TEMPERAT	URE BANGE	PACKAGE	
FUNCTION		-55°C to 125°C	-25°C to 85°C	0°C to 70°C	TYPES	PAGE
Wide-Band Operational Amplifiers	Single	LM118	LM218	LM318	JG, L, U JG, L, P, U JG, L, P, U	80
High-Performance		LM101A	LM201A	LM301A	J, JG, L, U J, JG, L, N, P, U J, JG, L, N, P, U	74
	Single	LM107	LM207	LM307	J, JG, L, U J, JG, L, N, P, U J, JG, L, N, P, U	77
Operational Amplifiers		uA777M		uA777C	J, JG, L, U J, JG, L, N, P, U	141
	Dual	RM4558		RC4558	JG, L JG, L, P	97
	Quad	RM4136		RC4136	J J, N	95
Low-Power Operational Amplifiers	Dual	TL022M		TL022C	JG, L JG, L, P	99
	Quad	TL044M		TL044C	J J, N	102
Chopper-Stabilized Operational Amplifiers	Single		TL0891	TL089C	L	108

		DIF	FERENTIAL C	OMPARATOR	S		
		OPERA	NGE	PACKAGE	PAGE		
FUNCTIO	N	-55°C to 125°C	-40°C to 85°C	-25°C to 85°C	0°C to 70°C	TYPES	FAGE
		TL710M			TL710C	J, JG, L, U J, JG, L, N, P, U	185
	Single	uA710M				J, JG, L, U	203
		TL810M			TL810C	J, JG, L, U J, JG, L, N, P, U	191
Differential		LM193		LM293	LM393	JG, L JG, L, P JG, L, P	167
Comparators	Dual		LM2903			JG, L, P	171
Comparators	Duai				TL720C	J, N	189
		TL820M			TL820C	J J, N	201
	Quad	LM139		LM239	LM339	J J, N J, N	165
			LM2901			J, N	169
		LM106		LM206	LM306	J, JG, L, U J, JG, L, N, P, U J, JG, L, N, P, U	151
Differential	Single	LM111			LM311	J, JG, L, U J, JG, L, N, P, U	157
Comparators with Strobes		TL510M			TL510C	J, JG, L, U J, JG, L, N, P, U	179
		TL506M			TL506C	J, W J, N, W	173
	Dual	TL514M			TL514C	J, N	183
Dual-Channel Di	ifferential	uA711M			uA711C	J, L, U J, L, N, U	207
Comparators wit	th Strobes	TL811M			TL811C	J, L, U J, L, N, U	195

		VOLTAGE F	EGULATORS			
FUNCTION	I	OPERATI	NG VIRTUAL-JUNC	TION	PACKAGE	PAGE
		-55°C to 150°C -25°C to 125°C 0		0°C to 125°C	TYPES	
Adjustable Positive-Voltag Regulators	Adjustable Positive-Voltage Regulators		LM217*	LM317*	KA KA, KC	229
	2.6 Volts			uA78L02C uA78L02AC	JG, LP JG, LP	255
		LM109	LM209	LM309	LA LA LA	225
	5 Volts	uA7805M		uA7805C	КА КА, КС	245
		4784054		uA78L05C uA78L05AC	JG, LP JG, LP	255
		uA7806M		uA78M05C	LA KC, KD, LA	261
	6 Volts	uA78M06M		uA7806C	KA KA, KC	245
	62 Volte			uA78M06C uA78L06C	KC, KD, LA JG, LP	261
		uA7808M		uA78L06AC	JG, LP KA	255
	8 Volts			uA7808C uA78L08C	KA, KC JG, LP	255
Positive Fixed-Voltage		uA78M08M		uA78M08C		261
Regulators	8.5 Volts	uA7885M		uA7885C	KA KA, KC	245
		uA7812M		uA7812C	КА, КА КА, КС	245
	12 Volts			uA78L12C uA78L12AC	JG, LP JG, LP	255
	ļ	UA /8M12M		uA78M12C	LA KC, KD, LA	261
				uA7815C	KA KA, KC	245
	15 Volts	uA78M15M		uA78L15AC	JG, LP LA	255
	18 Volts	uA7818M		uA78M15C	KC, KD, LA KA	261
	20 Volts	uA78M20M		uA7818C	KA, KC LA	261
		uA7824M		UA /8M2UC	KC, KD, LA KA KA KC	245
	24 Volts	uA78M24M		uA78M24C	LA KC, KD, LA	261

		VOLTAGE F	REGULATORS			
FUNCTION		OPERAT	ING VIRTUAL-JUNC	TION	PACKAGE	PAGE
		-55°C to 150°C	-25°C to 125°C	0°C to 125°C	TTPES	
		uA 7905M		uA7905C	КА КА, КС	271
	5 Volts	uA79M05M		uA79M05C	LA KC, KD, LA	281
		uA7906M		uA7906C	КА КА, КС	271
	6 Volts	uA79M06M		uA79M06C	LA KC, KD, LA	281
		uA7908M		uA 7908C	КА КА, КС	271
	8 Volts	uA 79M08M		uA79M08C	LA KC, KD, LA	281
Negative Fixed-Voltage		uA7912M		uA7912C	КА КА, КС	271
Regulators	12 Volts	uA79M12M		uA79M12C	LA KC, KD, LA	281
	15 Volts	uA7915M		uA7915C	КА КА, КС	271
		uA79M15M		uA79M15C	LA KC, KD, LA	281
	18 Volts	uA7918M		uA7918C	КА КА, КС	271
	20 Volts	uA79M20M		uA79M20C	LA KC, KD, LA	281
		uA7924M		uA7924C	КА КА, КС	271
	24 Volts	uA79M24M		uA79M24C	LA KC, KD, LA	281
		OPERATING F	REE-AIR TEMPERAT	URE RANGE	PACKAGE	PAGE
FUNCTION		-55°C to 125°C	-25°C to 85°C	0°C to 70°C	TYPES	
Precision Voltage Regulato	ors	uA723M		uA723C	J, L, U J, L, N, U	239
			LM205		JG, L JG, L, P	
Positive-Voltage Regulators				LM305 LM305A	JG, L, P JG, L, P	221
				LM376	JG, L, P	ļ
		LM104			J, L	
Negative-Voltage Regulato	ors		LM204	LM304	J, L, N J, L, N	217
Shunt Regulator				TL430C	JG, LP	233
Switching Voltage Regular	tors	TL497M	TL4971		J J, N	236
			1	TL497C	J, N	1

		SPECIAL	FUNCTIONS			
CINOTI		OPERATING F	REE-AIR TEMPERAT	URE RANGE	PACKAGE	
FUNCTION	Л	-55°C to 125°C	-25°C to 85°C	0°C to 70°C	TYPES	PAGE
	SPST	TL610M	TL610I	TL610C	JG JG, P JG, P	339
	Dual SPST	TL182M	TL1821	TL182C	L L, N L, N	305
		TL604M	TL6041	TL604C	JG JG, P JG, P	339
Analog Switches		TL188M	TL1881	TL188C	L L, N L, N	311
	SPDT	TL601M	TL6011	TL601C	JG JG, P JG, P	339
		TL607M	TL6071	TL607C	JG JG, P JG, P	339
	Dual SPDT	TL191M	TL1911	TL191C	л, N Л, N	314
	Dual DPST	TL185M	TL1851	TL185C	и ,L I	308
Precision Timers	Precision Timers			NE555	JG, L JG, L, P	295
Precision Level Detector				TL560C	JG, L, P	333
Zero-Voltage Switch	Zero-Voltage Switch			TL440C	J, N	317
Logarithmic Amplifiers	Logarithmic Amplifiers			TL441C	J, N	323
Differential Video Amp with Gain Select	lifiers	uA733M		uA733C	J, L, U J, L, N, U	345
Analog Processor				TL500C*	N	330
Digital Panel Meter Log	ic Control Device			TL502C*	N	331

*Future product, to be announced.

INTERCHANGEABILITY GUIDE

(ALPHABETICALLY BY MANUFACTURERS)

Direct replacements were based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, the user should compare the specifications of the substitute device with the specifications of the original.

Several of the popular Linear Interface circuits, not included in this book, are included in the interchangeability guides for your reference.

Texas Instruments makes no warranty as to the information furnished and buyer assumes all risk in the use thereof. No liability is assumed for damages resulting from the use of the information contained in this list.

FAIRCHILD ORDER INFORMATION

EXAMPLE O	F ORDER CODE:			
	XXX	D	с	
	Device Type	Package Type	Temperature Range	
		D = C-DIP	C = Commercial/Inductrial Consumer	M = Military
		F = FLAT PACK	0°C to 70°C or 75°C	-55°C to 125°C
		P = PLASTIC DIP		
		T = MINI DIP		
		H = METAL CAN		

FAIRCHILD	TI DIRECT	TI CLOSEST	FAIRCHILD	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
#A101A	LM101A		μA747	uA747	
μA104	LM104		μA748	uA748	
µA105	LM105		μA776		uA777
μA107	LM107		μΑ777	uA777	
µA109	LM109		8T13	SN55121	
μA111	LM111		8T14	SN55122	
μA139	LM139		8723	SN75123	
#A201A	LM201A		8T24	SN75124	
μA204	LM204		1458	MC1458	
μA205	LM205		1558	MC1558	
μA207	LM207		7524	SN7524	
μA209	LM209		7525	SN7525	
µA301A	LM301A		μA7805	uA7805	
µA304	LM304		μA7806	uA7806	
μA305	LM305		μA7808	uA7808	
μA305A	LM305A		μA7812	uA7812	
μA307	LM307		μA7815	uA7815	
μA309	LM309		μA7818	uA7818	
µA311	LM311		μA7824	uA7824	
μA376	LM376		µA78L05	uA78L05	
µA555	SE555		μA78L06	uA78L06	
µA702	uA702		μA78L08	uA78L08	
µA709	uA709		μA78L12	uA78L12	
μA709A	uA709A		μA78L15	uA78L15	
µA710	uA710		µA78L26	uA78L26	
#A711	uA711		µA78L05A	uA78L05A	
µA715		LM118	#A78L06A	uA78L06A	
"A723	uA723		µA78L08A	uA78L08A	
uA733	uA733		#A78L12A	uA78L12A	
μA734		LM111	µA78L15A	uA78L15A	
µA741	uA741		#A78L26A	uA78L26A	
µA742		TL440	µA78M05	uA78M05	

FAIRCHILD	TI DIRECT	TI CLOSEST	FAIRCHILD	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
μΑ78M06	uA78M06				SN75189
μA78M08	uA78M08				SN751894
μA78M12	uA78M12		9617		SN75152
μA78M15	uA78M15				SN7E1EA
μA78M20	uA78M20		9627		SN75152
μA78M24	uA78M24		55107	SN551074	5147 51 52
μA7905	uA7905		55108	SN551084	
μA7906	uA7906		55109	SN55109	
μA7908	uA7908		55110	SN55110	
μA7912	uA7912		75325	SN75325	
μA7915	uA7915		75450	SN75450	
μA7924	uA7924		75451	SN75451	
µA79M05	uA79M05		75452	SN75452	
µA79M06	uA79M06		75453	SN75453	
µA79M08	uA79M08		75454	SN75454	
µA79M12	uA79M12		75460	SN75460	
μA79M15	uA79M15		75461	SN75461	
µA79M20	uA79M20		75462	SN75462	
μA79M24	uA79M24		75463	SN75463	
9614	SN75114		75491	SN75491	
9615	SN75115		75492	SN75492	
0616		SN75150		01170432	
5010		SN75188			

MOTOROLA ORDER INFORMATION

EXAMPLE OF ORDER CODE:

MC		xxx		P	
	Prefix	Type Numb	ber	Package	
		Different Numbe Are Used For Vari In Operating Temp	rs ations Deratur es	F = Flat Package G = Metal Can L = C-DIP P = Plastic	
MOTOROLA	TI DIRECT	TI CLOSEST	MOTOROLA	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
MLM101A	LM101A		MC1433		1 M301 A
MLM107	LM107		MC1439		LM301A
MLM109	LM109		MC1455	NE555	LINGUTA
MLM111	LM111		MC1458	MC1458	
MLM201A	LM201A		MC1460		uA723
MLM207	LM207		MC1461		uA723
MLM209	LM209		MC1463		uA723
MLM211	LM211		MC1466		uA723
MLM301A	LM301A		MC1469		uA723
MLM304	LM304		MC1510	SN5510	0,1720
MLM305	LM305		MC1514	SN52514	
MLM307	LM307		MC1520		SN5511
MLM309	LM309		MC1530		uA702
MLM311	LM311		MC1531		uA702
MC1414	TL514		MC1533		LM101A
MC1420		uA733	MC1539		LM101A
MC1430		uA702	MC1555	SE555	2
MC1431		uA702	MC1558	MC1558	

MOTOBOLA	TI DIRECT	TI CLOSEST	MOTOROLA	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
MC1560		uA723	MC3302	LM3302	
MC1561		uA723	MC7705	uA78M05	
MC1563		uA723	MC7706	uA78M06	
MC1566		uA723	MC7708	uA78M08	
MC1569		uA723	MC7712	uA78M12	
			MC7715	uA78M15	
MC1709	uA709		MC7720	uA78M20	
MC1710	uA710		MC7724	uA78M24	
MC1711	uA711		MC7805	uA7805	
MC1712	uA702		MC7806	uA7806	
MC1723	uA723		MC7808	uA7808	
MC1733	uA733		MC7812	uA7812	
MC1741	uA741		MC7815	uA7815	
MC1747	uA747		MC7818	uA7818	
MC1748	uA748		MC7824	uA7824	
MC3302P	LM339				

NATIONAL ORDER INFORMATION

EXAMPLE OF ORDER CODE:

	LM	1		xxxx	N	
	Prefix	Temperature Range		Type Number	Package	2
		1 or 7 = 55°C to 125°C			D = C-DIP	
		3 or 8 = 0°C to 70°C or 75	°C		N = Plastic	DIP
	•				F = Flat P	ack
	LM, LH ≃ Linear				H = Metal	Can
	DM = Line Ckts				N = Mini-E	DIP
NATIONAL	TI DIRECT	TI CLOSEST	NATIONAL	. TI DIR	ЕСТ	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACE	MENT	REPLACEMENT
LF155	LF155		LM120-5	uA790	5M	
LF155A	LF155A	1	LM120-6	uA790	6M	
LF255	LF255		LM120-8	uA790	8M	
LF355	LF355	1	LM120-12	uA791	2M	
LF355A	LF355A		LM120-15	uA791	5M	
LF2155	LF2155	1	LM120-24	uA792	4M	
LF2155A	LF2155A		LM122	LM122	2	
LF2156	LF2156	1	LM123	LM123	3	
LF2156A	LF2156A		LM124	LM124	1	
LF2255	LF2255		LM139	LM139	9	
LF2256	LF2256	1	LM158	LM158	3	
LF2355	LF2355		LM193	LM193	3	
LF2356	LF2356		LM201A	LM201	IA	
LM101A	LM101A		LM205	LM205	5	
LM102	LM102		LM206	LM206	3	
LM104	LM104		LM207	LM207	7	
LM105	LM105		LM209	LM209	9	
LM106	LM106		LM211	LM21	1	
LM107	LM107		LM217	LM21	1	
LM109	LM109		LM218	LM218	3	
LM110	LM110		LM224	LM224	1	
LM111	LM111		LM239	LM239	9	
LM112	LM112		LM258	LM258	3	
LM117	LM117		LM293	LM293	3	
LM118	LM118		LM301A	LM30 ⁻	IA	

REPLACEMENT	NATIONAL	TI DIRECT	TI CLOSEST	NATIONAL	TI DIRECT	TI CLOSEST
LM304 LM305 LM305 LM305 LM305 LM305 LM305 LM305 LM305 LM307 LM702 UA711 UA711 LM306 LM307 LM711 UA711 UA711 UA711 UA713 UA723 LM307 LM309 LM723 UA723 UA723 UA723 LM317 LM317 LM317 UA733 UA733 UA733 LM318 LM317 LM741 UA741 UA741 LM320T-5 UA7906C LM747 UA747 UA747 LM320T-8 UA7908C LM748 UA748 UA748 LM320T-12 UA7912C LM747 UA747 UA747 LM320T-24 UA7912C LM748 UA748 UA748 LM324 LM324 LM1448 SN72558 UM393 LM339 LM324 LM1448 SN72558 UM3407-8 UA7806C LM3407-8 UA7806C LM2901 LM2902 LM2902 LM2903 LM3407-12 U		REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
LM306 LM306 LM307 LM307 LM307 LM307 LM711 uA711 LM307 LM307 LM723 uA723 LM309 LM307 LM733 uA733 LM311 LM311 LM733 uA733 LM317 LM317 LM733 uA733 LM318 LM741 uA741 LM3201-5 uA7906C LM741C uA741 LM3201-6 uA7906C LM747 uA747 LM3201-12 uA7912C LM748 uA748 LM3201-12 uA7912C LM748 uA748 LM3201-12 uA7912C LM748 uA748 LM3201-12 uA7912C LM748 uA748 LM3201-12 uA7912C LM748C uA748 LM324 LM339 LM339 LM339 LM3301-12 uA7806C LM114N TL514C LM3401-5 uA7806C LM2901 LM2901 LM3401-18 uA7806C LM2901 LM2902 LM	LM304	LM304		LM710C	uA710C	TEL EAOLINEIT
LM306 LM307 LM307 LM307 LM307 LM307 LM723 uA723 LM309 LM309 LM723C uA723C LM311 LM317 LM317 uA333 uA733 LM318 LM317 LM733C uA733C LM318 LM318 LM741 uA741 LM320T-5 uA7906C LM747 uA747 LM320T-6 uA7906C LM747 uA747 LM320T-12 uA7912C LM747C uA747 LM320T-3 uA7912C LM747C uA747 LM320T-4 uA7912C LM748C uA748 LM320T-12 uA7912C LM748C uA748 LM320T-24 uA7926C LM748C uA748 LM320T-12 uA7806C LM1414N TL514C LM3301-15 uA7806C LM2901 LM2901 LM340T-6 uA7806C LM2901 LM2901 LM340T-12 uA7806C LM2903 LM2904 LM340T-14 uA7806C LM2901 LM2901 LM340T-15 uA7806C LM290	LM305	LM305		LM711	uA711	
LM307 LM307 LM723 uA723 LM309 LM309 LM309 LM723C uA723C LM311 LM318 LM733 uA733 LM317 LM317 LM733C uA733C LM318 LM318 LM741 uA741 LM320T-5 uA7908C LM741C uA741 LM320T-5 uA7908C LM747C uA747 LM320T-6 uA7908C LM747C uA747 LM320T-15 uA7915C LM748C uA748 LM320T-24 uA7914C LM748C uA748 LM320T-5 uA7924C LM1414N TL514C LM320T-5 uA7956C LM1458 SN2558 LM339 LM339 LM1514 TL514M LM340T-5 uA7806C LM2901 LM2901 LM340T-8 uA7806C LM2903 LM2903 LM340T-8 uA7806C LM2903 LM2901 LM340T-18 uA7818C LM2904 LM2903 LM340T-24 uA7806C LM3900 TL044 LM341-5 uA7806C LM3900 TL044 LM341-6 uA7806C LM390 NE551 LM341-18 uA7806C LM3905 NE551	LM306	LM306		LM711C	uA711C	
LM309 LM309 LM723C uA723C LM311 LM731 uA733 uA733 LM317 LM317 LM733C uA733C LM318 LM318 LM741 uA741 LM320T-5 uA7905C LM747 uA741 LM320T-6 uA7906C LM747 uA747 LM320T-8 uA7905C LM748 uA748 LM320T-12 uA7915C LM748 uA748 LM320T-15 uA7915C LM748 uA748 LM320T-24 uA7915C LM748 uA748 LM320T-24 uA7915C LM748 uA748 LM324 LM344 LM1458 SN72558 LM339 LM319 LM1514 TL514C LM340T-6 uA7806C LM2901 LM2901 LM340T-6 uA7806C LM2903 LM2903 LM340T-15 uA7816C LM2903 LM2903 LM340T-16 uA7806C LM3900 TL044 LM340T-15 uA7806C LM3900 NE555 LM341-1 uA78006C LM3900 NE555 <td>LM307</td> <td>LM307</td> <td></td> <td>LM723</td> <td>uA723</td> <td></td>	LM307	LM307		LM723	uA723	
LM311 LM317 LM317 LM317 LM733 uA733 LM317 LM317 LM732 uA733C uA733C LM318 LM731 LM733C uA733C uA733C LM318 LM711 uA741 uA741 uA741C LM320T-5 uA7906C LM741C uA747 uA747 LM320T-6 uA7908C LM747C uA747 uA748 LM320T-12 uA7915C LM748C uA748 LM320T-15 uA7915C LM748C uA748 LM320T-24 uA7924C LM1414N TL514C LM324 LM324 LM1458 SN22558 LM340T-5 uA7806C LM1558 MC1558 LM340T-6 uA7806C LM2901 LM2901 LM340T-15 uA7808C LM2903 LM2903 LM340T-16 uA7806C LM2904 LM2904 LM340T-24 uA7806C LM3900 TL044 LM341-5 uA7806C LM3905 NE555	LM309	LM309		LM723C	uA723C	
LM317 LM317 LM733C uA733C LM318 LM7318 LM733C uA733C LM318 LM741 uA741 LM320T-5 uA7905C LM741C uA741 LM320T-6 uA7908C LM747 uA747 LM320T-12 uA7912C LM747 uA747 LM320T-12 uA7912C LM748 uA748 LM320T-15 uA7914C uA748 LM748 LM320T-15 uA7924C LM748 uA748 LM320T-15 uA7924C LM1458 SN22558 LM339 LM324 LM1458 SN22558 LM340T-6 uA7806C LM1558 MC568 LM340T-6 uA7806C LM2901 LM2901 LM340T-12 uA7815C LM2903 LM2903 LM340T-15 uA7806C LM2903 LM2904 LM340T-18 uA7806C LM3900 TL044 LM340T-18 uA7806C LM3900 NE555 LM341-5 uA7806C LM3900 NE555 LM341-5 uA7806C LM3900 NE555	LM311	LM311		LM733	uA733	
LM318 LM318 LM741 uA741 LM320T-5 uA7905C LM741C uA741C LM320T-6 uA7906C LM747 uA747 LM320T-8 uA7908C LM747 uA747 LM320T-12 uA7912C LM747 uA747 LM320T-15 uA7915C LM748C uA748C LM324 LM324 LM748C uA748C LM324 LM324 LM1488 SN72558 LM339 LM39 LM1514 TL514C LM340T-6 uA7806C LM2901 LM2901 LM340T-6 uA7806C LM2902 LM2902 LM340T-75 uA7815C LM2903 LM2903 LM340T-8 uA7816C LM2903 LM2904 LM340T-15 uA7806C LM3900 TL044 LM341-5 uA7806C LM3900 NE555 LM341-5 uA7806C LM3900 NE555 LM341-5 uA7806C LM3900 NE555 LM341-5 uA7806C <t< td=""><td>LM317</td><td>LM317</td><td></td><td>LM733C</td><td>uA733C</td><td></td></t<>	LM317	LM317		LM733C	uA733C	
LM320T-5 uA7906C LM741C uA741C LM320T-6 uA7906C LM741C uA741C LM320T-8 uA7906C LM747C uA747 LM320T-12 uA7915C LM747C uA747 LM320T-12 uA7915C LM748C uA748 LM320T-15 uA7915C LM748C uA748C LM320T-24 uA7924C LM1414N TL514C LM339 LM339 LM1514 TL514C LM339 LM339 LM1514 TL514C LM340T-5 uA7806C LM2901 LM2901 LM340T-6 uA7806C LM2902 LM2902 LM340T-15 uA7816C LM2903 LM2903 LM340T-16 uA7818C LM2904 LM2903 LM340T-18 uA7806C LM3900 TL044 LM340T-24 uA78M6C LM3906 NE555 LM341-5 uA78M6C LM3906 NE555 LM341-6 uA78M6C LM5521 SN5520 LM341-12	LM318	LM318		LM741	uA741	
LM320T-6 uA7908C LM747 uA747 LM320T-8 uA7908C LM747 uA747 LM320T-12 uA7912C LM747C uA747C LM320T-12 uA7912C LM748 uA748 LM320T-15 uA7912C LM748 uA748 LM320T-15 uA7912C LM748 uA748 LM324 LM324 LM141N TL514C LM339 LM339 LM1514 TL514M LM340T-5 uA7806C LM2901 LM2901 LM340T-6 uA7806C LM2901 LM2901 LM340T-8 uA7806C LM2901 LM2901 LM340T-8 uA7806C LM2903 LM2903 LM340T-18 uA7815C LM2903 LM2904 LM340T-18 uA7806C LM3900 TL044 LM340T-18 uA7806C LM3900 NE555 LM341-5 uA7806C LM3900 NE555 LM341-6 uA7806C LM3900 NE555 LM341-8 uA7806C LM3900 NE555 LM341-5 uA7806C LM5520 <td>LM320T-5</td> <td>uA7905C</td> <td></td> <td>LM741C</td> <td>uA741C</td> <td></td>	LM320T-5	uA7905C		LM741C	uA741C	
LM320T-8 uA7908C LM747C uA747C LM320T-12 uA7912C LM747C uA747C LM320T-15 uA7915C LM748C uA748C LM320T-15 uA7915C LM748C uA748C LM324 LM324 LM324 LM324 LM324 LM324 LM1414N TL514C LM338 LM339 LM1514 TL514C LM340T-5 uA7806C LM2901 LM2901 LM340T-6 uA7806C LM2903 LM2902 LM340T-72 uA7815C LM2903 LM2904 LM340T-15 uA7816C LM2903 LM2904 LM340T-16 uA7816C LM2903 LM2904 LM340T-18 uA7816C LM3900 TL044 LM341-5 uA78M06C LM3900 NE555 LM341-6 uA78M08C LM5520 SN5520 LM341-12 uA78M08C LM5523 SN5523 LM341-12 uA78M08C LM5523 SN5523 LM341-12 uA78M12C LM5524 SN5524 LM341-12 uA78M12C	LM320T-6	uA7906C		LM747	uA747	
LM320T-12 UA7912C LM748 UA748 LM320T-15 UA7915C LM748C UA748C LM320T-24 UA7924C LM1414N TL514C LM339 LM339 LM339 LM1514 TL514M LM330T-5 UA7806C LM1558 MC1558 LM340T-5 UA7806C LM2901 LM2901 LM340T-8 UA7808C LM2903 LM2903 LM340T-8 UA7818C LM2903 LM2903 LM340T-15 UA7818C LM2904 LM2904 LM340T-18 UA7818C LM2904 LM2904 LM340T-2 UA7817C LM3302 LM3302 LM340T-18 UA7808C LM3302 LM3302 LM340T-18 UA7818C LM3304 LM2904 LM340T-2 UA7817C LM3305 TL044 LM341-6 UA78M06C LM3305 N5520 LM341-15 UA78M08C LM3905 N5520 LM341-15 UA78M08C LM3905 SN5520 LM341-15 UA78M15C LM551 SN5521 LM341-15 UA78M15C LM5521 SN5520 LM341-15 UA78M15C LM5523 SN5520 LM341-15 UA78M15C LM5523 SN5520 LM341-15 UA78M15C LM5523 SN5520 LM341-12 UA78M15C LM5523 SN5520 LM341-12 UA78M15C LM5523 SN5520 LM341-12 UA78M15C LM5524 SN5524 LM3458 LM5524 SN5524 LM358 LM358 LM5524 SN5524 LM358 LM3564 LM5524 SN5524 LM3565 NS558 LM5528 SN5528 LM3556 NS558 LM5528 SN5528 LM3556 NS558 LM5528 SN5528 LM3556 NS558 LM5528 SN5528 LM3550 NS558 LM5528 SN5528 LM3556 NS558 LM5528 SN5528 LM3550 NS558 LM5529 SN5529 LM5556 NS558 LM5529 SN5529 LM5556 NS558 LM5529 SN5529 LM5556 NS558 LM5529 SN5529 LM5556 NS558 LM78L06C UA78L06C LM709 UA709A LM78L06C UA78L06C LM78L06C UA78L06C LM791 UA701 LM70	LM320T-8	uA7908C		LM747C	uA747C	
LM3207-15 uA7915C LM748C uA748C LM3207-24 uA7924C LM1414N TL514C LM324 LM324 LM1414N TL514C LM339 LM39 LM1514 TL514M LM340-5 uA7805C LM1558 MC1558 LM3407-6 uA7806C LM2901 LM2901 LM3407-74 uA7806C LM2902 LM2902 LM3407-75 uA7815C LM2903 LM2903 LM3407-15 uA7815C LM2903 LM2904 LM3407-8 uA7815C LM2903 LM2904 LM3407-15 uA7815C LM3900 TL044 LM3407-15 uA7805C LM3900 NE555 LM3407-15 uA7805C LM3900 NE555 LM341-6 uA78006C LM3900 NE555 LM341-5 uA7806C LM5520 SN5520 LM341-5 uA78076C LM5521 SN5521 LM341-12 uA78042C LM5523 SN5523 LM341-12 uA78076C LM5524 SN5524 LM341-12 uA78076C	LM320T-12	uA7912C		LM748	uA748	
LM320T:24 UA7924C LM1414N TL514C LM324 LM324 LM324 LM144N TL514C LM339 LM339 LM158 SN72558 LM339 LM339 LM1514 TL514M LM340T:5 uA7806C LM1558 MC1558 LM340T:6 uA7806C LM2901 LM2901 LM340T:8 uA7808C LM2902 LM2902 LM340T:15 uA7815C LM2903 LM2903 LM340T:48 uA7816C LM2904 LM2904 LM340T:48 uA7806C LM3000 TL044 LM341-5 uA78M05C LM3905 NE555 LM341-6 uA78M08C LM5520 SN5520 LM341-12 uA78M08C LM5523 SN5521 LM341-12 uA78M12C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5524 LM341-12 uA78M2C LM5528 SN5524 LM341-12 uA78M2C LM5528 SN5524 LM341 LM3	LM320T-15	uA7915C		LM748C	uA748C	
LM324 LM324 LM324 LM1458 SN72558 LM339 LM339 LM1514 TL514M LM1514 LM340T-5 uA7805C LM1558 MC1558 LM340T-6 uA7808C LM2901 LM2901 LM340T-6 uA7808C LM2902 LM2902 LM340T-12 uA7812C LM2903 LM2903 LM340T-15 uA7818C LM2903 LM2904 LM340T-16 uA7817C LM3202 LM3202 LM340T-15 uA7817C LM3903 LM2903 LM340T-16 uA7817C LM3903 LM2904 LM341-5 uA78M05C LM3900 TL044 LM341-6 uA78M06C LM550 SN5520 LM341-8 uA78M08C LM5521 SN5521 LM341-12 uA78M15C LM5523 SN5523 LM341-12 uA78M15C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5524 LM341-12 uA78M2C LM5528 SN5528 <	LM320T-24	uA7924C		LM1414N	TL514C	
LM339 LM339 LM1514 TL514M LM340T-5 uA7805C LM1558 MC1558 LM340T-6 uA7806C LM2901 LM2901 LM340T-76 uA7806C LM2901 LM2901 LM340T-8 uA7806C LM2902 LM2902 LM340T-12 uA7812C LM2903 LM2903 LM340T-15 uA7815C LM2903 LM2904 LM340T-16 uA7806C LM3900 TL044 LM341-5 uA7806C LM3900 NE555 LM341-6 uA78M06C LM3900 NE555 LM341-6 uA78M06C LM5520 SN5520 LM341-12 uA78M12C LM5521 SN5521 LM341-12 uA78M12C LM5523 SN5523 LM341-12 uA78M2C LM5524 SN5524 LM341-15 uA78M2C LM5524 SN5524 LM341-14 uA78M2C LM5525 SN5526 LM341-12 uA78M2C LM5526 SN5526 LM341-12	LM324	LM324		LM1458	SN72558	
LM340T-5 uA7806C LM1558 MC1558 LM340T-6 uA7806C LM2901 LM2901 LM340T-8 uA7806C LM2902 LM2902 LM340T-12 uA7815C LM2903 LM2903 LM340T-15 uA7815C LM2904 LM2904 LM340T-18 uA7818C LM2904 LM2904 LM340T-18 uA7806C LM3900 TL044 LM341-5 uA78M06C LM3906 NE550 LM341-6 uA78M08C LM5520 SN5520 LM341-12 uA78M15C LM5521 SN5521 LM341-12 uA78M15C LM5522 SN5522 LM341-12 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341-13 uA78M2C LM5523 SN5524 LM341-14 uA78M2C LM5523 SN5524 LM341 UA78M2C LM5528 SN5524 LM358	LM339	LM339		LM1514	TL514M	
LM340T-6 uA7806C LM340T-8 uA7808C LM340T-12 uA7812C LM340T-12 uA7812C LM340T-15 uA7815C LM340T-16 uA7816C LM340T-18 uA7818C LM340T-18 uA7818C LM340T-24 uA7824C LM3302 LM341-5 uA78M05C LM341-5 uA78M05C LM341-6 uA78M06C LM3905 LM341-12 uA78M08C LM3520 LM341-12 uA78M12C LM3521 LM341-12 uA78M12C LM5521 LM341-12 uA78M12C LM5523 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM358 LM3524 LM376 LM376 LM376 LM5528 SN5528 LM393 LM5556 LM393 LM558 LM3624 SN5528 LM393 LM558 LM3524 LM3629 SN5528 LM393 LM558 LM3	LM340T-5	uA7805C		LM1558	MC1558	
LM340T-8 uA7808C LM2901 LM2901 LM340T-12 uA7815C LM2902 LM2902 LM340T-15 uA7815C LM2903 LM2903 LM340T-16 uA7815C LM2904 LM2904 LM340T-18 uA7816C LM2904 LM2904 LM340T-18 uA7816C LM3906 LM3902 LM341-5 uA78M05C LM3900 TL044 LM341-6 uA78M08C LM5520 SN5520 LM341-12 uA78M12C LM5521 SN5521 LM341-12 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341-14 uA78M2C LM5523 SN5524 LM341 uA78M2C LM5524 SN5524 LM358 LM358 LM5528 SN5528 LM393 LM393 LM5528 SN5529 LM358 LM5529 SN5529 LM5550 NE555 LM78L0	LM340T-6	uA7806C				
LM34071-12 uA7812C LM2902 LM2902 LM34071-15 uA7815C LM2903 LM2903 LM34071-18 uA7816C LM2904 LM2903 LM3407-24 uA7816C LM3204 LM2904 LM3407-24 uA78M05C LM300 TLO44 LM341-5 uA78M06C LM3905 NE555 LM341-6 uA78M08C LM520 SN5520 LM341-12 uA78M15C LM5521 SN5521 LM341-15 uA78M15C LM5522 SN5522 LM341-15 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5524 LM358 LM358 LM554 SN5524 LM358 LM3528 SN5528 LM358 LM393 LM393 LM559 SN5529 LM5550 NE555 LM5529 SN5529 LM5550 NE555 LM78L05C uA78L05C LM709 uA709A </td <td>LM340T-8</td> <td>uA7808C</td> <td></td> <td>LM2901</td> <td>LM2901</td> <td></td>	LM340T-8	uA7808C		LM2901	LM2901	
LM3407-15 uA7815C LM2903 LM2903 LM3407-16 uA7818C LM2904 LM2904 LM3407-174 uA7818C LM3204 LM2904 LM3407-24 uA7824C LM3302 LM3302 LM341-5 uA78M05C LM3900 TLO44 LM341-6 uA78M06C LM3905 NE555 LM341-8 uA78M08C LM5520 SN5520 LM341-12 uA78M12C LM5521 SN5521 LM341-12 uA78M2C LM5523 SN5523 LM341-15 uA78M2C LM5523 SN5523 LM341-12 uA78M2C LM5523 SN5523 LM341 uA78M2C LM5523 SN5524 LM341 uA78M2C LM5524 SN5524 LM358 LM356 LM558 SN5528 LM393 LM933 LM5528 SN5529 LM5556 NE555 LM5629 uA7805C LM709 uA709 LM7080C uA78108C LM709 uA709A	LM340T-12	uA7812C		LM2902	LM2902	
LM3407-18 uA7818C LM2904 LM2904 LM3407-24 uA7824C LM3302 LM3302 LM341-5 uA78M05C LM3900 TL044 LM341-6 uA78M06C LM3905 NE555 LM341-8 uA78M08C LM520 SN5520 LM341-12 uA78M12C LM5521 SN5521 LM341-15 uA78M14C LM5523 SN5523 LM341-15 uA78M2C LM5523 SN5523 LM341-14 uA78M2C LM5523 SN5523 LM341-8 LM358 LM554 SN5524 LM341-12 uA78M2C LM5524 SN5524 LM341-2 UA78M2C LM5524 SN5524 LM358 LM358 LM5528 SN5528 LM393 LM393 LM5529 SN5529 LM5556 NE555 LM78L08C uA78L08C LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L12C uA78L15C LM709C uA709C<	LM340T-15	uA7815C		LM2903	LM2903	
LM340T:24 uA7824C LM3302 LM3302 LM341:5 uA78M05C LM3900 TLO44 LM341:6 uA78M08C LM3906 NE555 LM341:8 uA78M08C LM3906 NE550 LM341:12 uA78M12C LM5520 SN5521 LM341:12 uA78M15C LM5521 SN5521 LM341:12 uA78M15C LM5523 SN5522 LM341:24 uA78M24C LM5523 SN5523 LM358 LM358 LM5525 SN5524 LM393 LM393 LM5526 SN5526 LM393 LM393 LM5528 SN5528 LM5556 SN5528 LM5528 SN5529 LM5555 LM78L05C uA780.05C LM780.05C LM709 uA709 LM78L08C uA78L08C LM781.12C LM709A uA709A LM78L15C uA78L15C LM78L15C	LM340T-18	uA7818C		LM2904	LM2904	
LM341-5 uA78M05C LM3900 TLO44 LM341-6 uA78M06C LM3905 NE555 LM341-8 uA78M08C LM520 SN5520 LM341-12 uA78M12C LM5521 SN5521 LM341-12 uA78M12C LM5523 SN5522 LM341-14 uA78M2C LM5523 SN5523 LM341-24 uA78M2C LM5523 SN5523 LM345 LM358 LM554 SN5524 LM376 LM376 LM5528 SN5528 LM393 LM933 LM5528 SN5529 LM5556 NE555 LM5629 SN5529 LM5556 NE555 LM78L08C uA78L08C LM709 uA709 LM704 LM78L12C uA78L12C LM709C uA709C LM78L15C uA78L15C UA78L15C	LM340T-24	uA7824C		LM3302	LM3302	
LM341-6 uA78M06C LM3905 NE555 LM341-8 uA78M08C LM520 SN5520 LM341-12 uA78M12C LM5511 SN5521 LM341-15 uA78M15C LM5522 SN5522 LM341-14 uA78M24C LM5523 SN5523 LM341 uA78M24C LM5524 SN5523 LM358 LM358 LM554 SN5524 LM393 LM393 LM5528 SN5528 LM393 LM555 LM5529 SN5529 LM5556 NE555 LM78L08C uA78L05C LM709 uA709 LM709A LM78L12C uA78L12C LM709C uA709A LM78L15C wA78L15C WA78L15C	LM341-5	uA78M05C		LM3900	2	TI 044
LM341-8 uA78M08C LM5520 SN5520 LM341-12 uA78M12C LM5521 SN5521 LM341-15 uA78M15C LM5521 SN5521 LM341-15 uA78M15C LM5522 SN5522 LM341-24 uA78M24C LM5523 SN5523 LM358 LM358 LM5524 SN5524 LM376 LM376 LM5525 SN5525 LM393 LM393 LM5526 SN5528 LM555M SE555 LM5628 SN5529 LM505C NE5555 LM78L08C uA78L05C LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L12C uA78L12C LM709C uA709C LM78L15C uA78L15C	LM341-6	uA78M06C		LM3905		NE 555
LM341-12 uA78M12C LM5521 SN5521 LM341-15 uA78M15C LM5521 SN5521 LM341-14 uA78M24C LM5523 SN5523 LM345 LM358 LM558 SN5524 LM393 LM376 LM5524 SN5524 LM393 LM933 LM558 SN5528 LM555M SE555 LM529 SN5529 LM556C NE555 LM78L08C uA78L08C LM709 uA709 LM709A LM78L12C uA78L12C LM709C uA709C LM78L15C uA78L15C LM78L15C	LM341-8	uA78M08C		LM5520	SN5520	NC 333
LM341-15 uA78M15C LM522 SN5522 LM341-24 uA78M24C LM5523 SN5523 LM358 LM358 LM5524 SN5524 LM376 LM376 LM5525 SN5525 LM393 LM393 LM5528 SN5528 LM555M SE555 LM5529 SN5529 LM556C NE555 LM78L05C uA7809C LM709 uA709 LM709A LM78L02C uA78L12C LM709C uA709C LM78L15C wA78L15C WA78L15C	LM341-12	uA78M12C		LM5521	SN5521	
LM341-24 uA78M24C LM5523 SN5523 LM358 LM358 LM5524 SN5524 LM376 LM376 LM5525 SN5525 LM393 LM393 LM558 SN5528 LM555M SE55 LM5526 uA78L05C LM555M SE55 LM78L05C uA78L05C LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L15C uA78L15C LM710 uA710 LM78L15C UA78L15C	LM341-15	uA78M15C		LM5522	SN5522	
LM358 LM358 LM524 SN5524 LM376 LM376 LM5524 SN5524 LM393 LM933 LM5528 SN5528 LM555M SE55 LM5529 SN5529 LM555C NE555 LM78L05C uA78L05C LM709 uA709 LM708 LM78L08C uA78L12C LM709A uA709A LM78L12C uA78L12C LM710 uA710 LM78L15C uA78L15C	LM341-24	uA78M24C		LM5523	SN5523	
LM376 LM376 LM5525 SN5525 LM393 LM393 LM5528 SN5528 LM555M SE555 LM5529 SN5529 LM555C NE555 LM78L05C uA78L05C LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L12C uA78L12C LM710 uA710 uA710 UA701	LM358	LM358		LM5524	SN5524	
LM393 LM393 LM5528 SN5528 LM555M SE55 LM5529 SN5529 LM555C NE555 LM78L05C uA78L05C LM709 uA709 LM78US08C uA78L08C LM709A uA709A LM78L12C uA78L12C LM709C uA709C LM78L15C uA78L15C	LM376	LM376		LM5525	SN5525	
LM555M SE555 LM5529 SN5529 LM555C NE555 LM78L05C uA78L05C LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L12C uA78L12C LM709C uA709C LM78L15C uA78L15C	LM393	LM393		LM5528	SN5528	
LM555C NE555 LM78L05C uA78L05C LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L12C uA78L12C LM709C uA709C LM78L08C uA78L12C LM710 uA710 UA710 UA710	LM555M	SE555		LM5529	SN5529	
LM709 uA709 LM78L08C uA78L08C LM709A uA709A LM78L12C uA78L12C LM709C uA709C LM78L15C uA78L15C	LM555C	NE555		LM78L05C	1A78L05C	
LM709A UA709A LM78L12C UA78L12C LM709C UA709C LM78L15C UA78L15C UA78L15C	LM709	uA709		LM78L08C	uA78L08C	
LM709C UA709C LM78L15C UA78L15C LM78L15C UA78L15C	LM709A	uA709A		LM78L12C	uA78112C	
LM710 uA710	LM709C	uA709C		LM78L15C	uA78L15C	
	LM710	uA710			UNIVE ISO	

RAYTHEON ORDER INFORMATION

EXAMPLE OF ORDER CODE:

RAYTHEON	TI DIRECT	TI CLOSEST	RAYTHEON	TI DIRECT	TI CLOSEST
	REPLACEMENT	REPLACEMENT		REPLACEMENT	REPLACEMENT
LM101A	LM101A		RC7815	uA7815C	
LM106	LM106		RC7818	uA7818C	
LM107	LM107		RC7824	uA7824C	
LM109	LM109		RC555	NE555	
LM111	LM111		RC702	uA702C	
LM118	LM118		RC709	uA709C	
LM124	LM124		RC710	uA710C	
LM139	LM139		RC711	uA711C	
LM158	LM158		RC723	uA723C	
LM201A	LM201A		RC733	uA733C	
LM206	LM206		RC741	uA741C	
LM207	LM207		RC747	uA747C	
LM209	LM209		RC748	uA748C	
LM211	LM211		RC1458	MC1458	
LM218	LM218		RC3302	LM3302	
LM224	LM224		RC4136	RC4136	
LM239	LM239		RC4558	RC4558	
LM258	LM258				
LM301 A	LM301A		RC78XX	uA78XXC	
LM304	LM304		RM555	SE555	
LM305	LM305		RM702	uA702M	
LM306	LM306		RM709	uA709M	
LM307	LM307		RM710	uA710M	
LM309	LM309		RM711	uA711M	
LM311	LM311		RM723	uA723M	
LM318	LM318		RM733	uA733M	
LM324	LM324		RM741	uA741M	
LM339	LM339		RM747	uA747M	
LM358	LM358		RM748	uA748M	
RC7805	uA7805C		RM1514	TL514M	
RC7806	uA7806C		RM1558	MC1558	
RC7808	uA7808C		RM4136	RM4136	
RC7812	uA7812C		RM4558	RM4558	

SIGNETICS ORDER INFORMATION

EXAMPLE OF ORDER CODE:

в

SIGNETICS	TI DIRECT REPLACEMENT	TI CLOSEST	SIGNETICS	TI DIRECT	TI CLOSEST
LM101A	LM101A		NE78L06	1A781.06C	ACTEACEMENT
LM107	LM107		NE78L08	uA78L08C	
LM109	LM109		NE78L12	uA78112C	
LM111	LM111		NE78L15	uA78L15C	
LM124	LM124		NE78M05	uA78M05C	
LM139	LM139		NE78M20	11A78M20C	
LM201A	LM201A		NE78M24	uA78M24C	
LM207	LM207		SE532	LM158	
LM209	LM209		SE555	SE555	
LM211	LM211		SE5733	11A733M	
LM224	LM224		SE7805	uA7805M	
LM239	LM239		SE7806	uA7806M	
LM301A	LM301A		SE7808	uA7808M	
LM307	LM307		SE7812	uA7812M	
LM309	LM309		SE7815	uA7815M	
LM311	LM311		SE7824	uA7824M	
LM324	LM324		SE78M05	UA78M05M	
LM339	LM339		uA709	uA709	
NE532	LM358		uA709A	uA709A	
NE555	NE555		uA710	uA710M	
NE5733	uA733C		uA710C	uA710C	
NE7805	uA7805C		uA711	uA711M	
NE7806	uA7806C		uA711C	uA711C	
NE7808	uA7808C		uA723	uA723M	
NE7812	uA7812C		uA741	uA741M	
NE7815	uA7815C		uA741C	uA741C	
NE7824	uA7824C		uA747C	uA747C	
NE78L05	uA78L05C		uA748	uA748M	
			uA748C	uA748C	

Thermal Information

PACKAGE	PINS	JUNCTION-TO-CASE THERMAL RESISTANCE R _{∂JC} (°C/W)	JUNCTION-TO-AMBIENT THERMAL RESISTANCE R _{0JA} (°C/W)
J ceramic dual-in-line	14	56	122
	16	60	116
J ceramic dual-in-line [†]	14	25†	91 †
	16	29†	85†
JG ceramic dual-in-line	8	45	135
JG ceramic dual-in-line [†]	8	20†	110 [†]
L plug-in	8, 10	51	195
LA plug-in, steel header	3	15	210
LP plastic plug-in	3	35	160
N plastic dual-in-line	14	45	108
	16	42	102
P plastic dual-in-line	8	45	125
U ceramic flat	10, 14	55	185
W ceramic flat	14	60	126
	16	59	124

THERMAL RESISTANCES FOR LINEAR INTEGRATED CIRCUITS

[†]These ratings apply only for devices having a type number prefix of "SNC" or "SNM", or a suffix of "/883." For thermal resistances of KA, KC, and KD power packages, see individual product data sheets.

CERAMIC DUAL-IN-LINE PACKAGES

These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

DISSIPATION DERATING CURVE

[†]The dashed lines apply only for devices having a type number prefix of "SNC" or "SNM", or a suffix of "/833."

AXIAL-LEAD PACKAGES

These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

 $^{^+}$ This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, R $_{ heta}$ CA, of not more than 105°C/W.

PLASTIC DUAL-IN-LINE PACKAGES

These curves are for use with the continuous dissipation ratings specified on the individual data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

DISSIPATION DERATING CURVE

FLAT PACKAGES

These curves are for use with the continuous dissipation ratings specified on the individuel data sheets. Those ratings apply up to the temperature at which the rated level intersects the appropriate derating curve or the maximum operating free-air temperature.

Ordering Instructions and Mechanical Data
ORDERING INSTRUCTIONS

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawing shown in this section.

Factory orders for cirucits described in this data book should include a five-part type number as explained in the following example.

TWO OR THREE TI Linear C TI Interface Mach IV, Lo Mach IV, Lo	E LETTERS ontrol Products Products Wel I	f		ſ	5. MUST		s (Dash No.)	
TWO OR THREE TI Linear C TI Interface Mach IV, Lu Mach IV, Lu	E LETTERS ontrol Product Products avel I	cts					s (Dash No.)	
TI Linear C TI Interface Mach IV, Lo Mach IV, Lo	ontrol Products Products svel I	cts	/	1	/ MUST	CONTAIN		
Ti Interface Mach IV, Lo Mach IV, Lo	Products evel I		1			CONTAIN	TWO NUMBER	S
Mach IV, L	111 10.00		/	/	(From Dash	No. Colum	n of Following	Table)
			1	/ /	/]	SOLDER-		ORDER
ND-SOURCE PR	REFIXES		1 1	'	PACKAGES	DIPPED	INSULATOR	DASH
1 National	MC	Motorola		/		LEADS		NO
Signetics Revelopment	uA	Fairchild		- 1				
- Hay theon		/	<u> </u>		DUAL-IN-L	INE PACKA	GES	
rit Designator mperature Rang	,)]			J, JG, N, ND, P	No	No	00
HREE TO SEVI	EN CHARAC	TERS			J, N, P, JG	Yes	No	10
ndividual Data S	Sheets)			/		LAT PACK	AGES	
A 1/	414				U, W	No	No	00
. 75	54508			1	U, W	Yes	No	10
76	LOSAC			/	PLUG-IN PA	CKAGES		
					L, LA, LP	No	No	00
NE OR TWO L	ETTERS		1		L, LA, LP	Yes	No	10
KD, L, LA, LP,	ND, P, U, or	w	1					
ection Diagram o	on Individual	Data Sheet)			POWER PAG	KAGES		
BorC			1		КА	No	No	N/A
lase Bor C					кс	No	No	N/A
ART NUMBERS		N SN PREEI	x		KD	No	No	N/A
	1 National Signetics C Raytheon it Designator mperature Range HREE TO SEVE Individual Data S A 14 A 76 A 76 NE OR TWO LI KD, L, LA, LP, Lettion Diagram (38 or C 1388 Bor C 1388 Bor C	1 National MC Signetics uA C Raytheon iit Designator mperature Range 'HREE TO SEVEN CHARAC Individual Data Sheets) A 1414 A 754508 78L05AC VINE OR TWO LETTERS KD, L, LA, LP, ND, P, U, or section Diagram on Individual 3B or C Jase Bor C ART NUMBERS HAVING A	1 National MC Motorola Signetics uA Fairchild C Raytheon Individual Comparature Range 'HREE TO SEVEN CHARACTERS Individual Data Sheets) A 1414 A 754508 78L05AC INE OR TWO LETTERS KD, L, LA, LP, ND, P, U, or W action Diagram on Individual Data Sheet) 3B or C Iase Bor C 'ART NUMBERS HAVING AN SN PREFI	Mational MC Motorole Signatics uA Fairchild C Raytheon it it Designator mperature Range 'HREE TO SEVEN CHARACTERS Individual Data Sheets) A 1414 A 764508 78L05AC viNE OR TWO LETTERS KD, L, LA, LP, ND, P, U, or W action Diagram on Individual Data Sheet) 3B or C Jase Bor C ART NUMBERS HAVING AN SN PREFIX	Mational MC Motorola Signatics uA Fairchild C Raytheon it itt Designator mperature Range 'HREE TO SEVEN CHARACTERS Individual Data Sheets) M 1414 A 764508 78L05AC	1 National MC Motorola Signatics UA Fairchild DUAL-IN-L C Raytheon J, JG, iti Designator J, JG, N, ND, P mparature Range J, N, P, JG 'HREE TO SEVEN CHARACTERS CERAMIC F Individual Data Sheets) CERAMIC F A 1414 A 754508 78L05AC PLUG-IN PA U, W U, W U, U, W U, W VBE OR TWO LETTERS L, LA, LP KD, L, LA, LP, ND, P, U, or W POWER PAG ase Bor C KA 'ART NUMBERS HAVING AN SN PREFIX KD	1 Netional MC Motorola Signetics UA Fairchild UAL-IN-LINE PACKA It Designator J, JG, No mparature Range J, JG, No 'HREE TO SEVEN CHARACTERS J, N, P, JG Yes Individual Data Sheets) CERAMIC FLAT PACK A 1414 U, W No A 764508 78L05AC PLUG-IN PACKAGES INE OR TWO LETTERS L, LA, LP No L, LA, LP KD, L, LA, LP, ND, P, U, or W section Diagram on Individual Data Sheet) POWER PACKAGES 3B or C KA No KC No YART NUMBERS HAVING AN SN PREFIX No KD No	1 National MC Motorols Signetics UA Fairchild C Raytheon itt Designator J, JG, No mperature Range J, JG, No 'HREE TO SEVEN CHARACTERS J, N, P, JG Yes Individual Data Sheets) CERAMIC FLAT PACKAGES M 1414 A 754508 78L05AC U, W No NNE OR TWO LETTERS L, LA, LP No KD, L, LA, LP, ND, P, U, or W POWER PACKAGES Stor C KA No Iase Bor C KA No 'ART NUMBERS HAVING AN SN PREFIX KD No

Circuits are shipped in one of the carriers shown below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped in the most practical carrier.

Flat (U, W)

- Dual-In-Line (J, JG, N, ND, P)
- -Milton Ross Carrier

-Barnes Carrier

- -Slide Magazines
- -A-Channel Plastic Tubing
- -Barnes Carrier
- -Sectioned Cardboard Box
- -Individual Plastic Box

Plug-In (L, LA, LP)

- -Barnes Carrier -Sectioned Cardboard Box
- -Individual Cardboard Box

J ceramic dual-in-line package (inch dimensions, see page 46 for metric dimensions)

These hermetically sealed dual-in-line packages consist of a ceramic, ceramic cap, and a 14-or 16-lead frame. The circuit bar is alloy-mounted to the base and hermetic sealing is accomplished with glass. The packages are intended for insertion in mounting-hole rows on 0.300-inch centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads (-00) require no additonal cleaning or processing when used in soldered assembly.

JG ceramic dual-in-line package (inch dimensions, see page 47 for metric dimensions)

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and 8-lead frame. The package is intended for insertion in mounting-hole rows on 0.300-inch centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.

KC (TO-220AB) package (inch dimensions, see page 48 for metric dimensions)

KD (TO-202AB) package (inch dimensions, see page 48 for metric dimensions)

L and LA plug-in packages (inch dimensions, see page 49 for metric dimensions

These hermetically sealed plug-in packages each consist of a welded metal base and cap with individual leads secured by an insulating glass sealant. The gold-plated leads (-00) require no additional cleaning or processing when used in soldered assembly.

LP silect plastic package (inch dimensions, see page 50 for metric dimensions)

The silect package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

P plastic dual-in-line package (inch dimensions, see page 50 for metric dimensions)

This dual-in-line package consists of a circuit mounted on an 8-lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 0.300-inch centers. Once the leads are compressed to 0.300-inch separation and inserted, sufficient tension is provided to secure the package in the board during soldering. Silver-plated leads require no additional cleaning or processing when used in soldered assembly.

N plastic dual-in-line package (inch dimensions, see page 51 for metric dimensions)

These dual-in-line packages consist of a circuit mounted on a 14-or 16-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on 0.300-inch centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Silver-plated leads (-00) require no additional cleaning or processing when used in soldered assembly.

ND plastic package (inch dimensions, see page 52 for metric dimensions)

This dual-in-line package consists of a circuit mounted on an 8-lead, 2-tab frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting rows on 0.300-inch centers. Once the leads are compressed to 0.300-inch separation and inserted, sufficient tension is provided to secure the package in the board during soldering. Pin positions 3, 4, 5, 10, 11, and 12 are occupied by two tabs which facilitate attachment of heat sinks. Silver-plated leads require no additional cleaning or processing when used in soldered assembly.

U ceramic flat packages (inch dimensions, see page 53 for metric dimensions)

These flat packages consist of a ceramic base, ceramic cap, and 10- or 14-lead frame. Circuit bars are alloy-mounted. Hermetic sealing is accomplished with glass. Tin-plated leads require no additional cleaning or processing when used in soldered assembly.

W ceramic flat packages (inch dimensions, see page 54 for metric dimensions)

These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap, and a 14- or 16-lead frame. Hermetic sealing is accomplished with glass. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

6

J ceramic dual-in-line packages (metric dimensions, see page 36 for inch dimensions)

These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-or 16-lead frame. The circuit bar is alloy-mounted to the base and hermetic sealing is accomplished with glass. The packages are intended for insertion in mounting-hole rows on 7.62-mm centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

JG ceramic dual-in-line package (metric dimensions, see page 37 for inch dimensions)

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and 8-lead frame. The package is intended for insertion in mounting-hole rows on 7.62-mm centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.

KA (TO-3) package (metric dimensions, see page 37 for inch dimensions)

KC (TO-220AB) package (metric dimensions, see page 38 for inch dimensions)

KD (TO-202AB) package (metric dimensions, see page 38 for inch dimensions)

L and LA plug-in packages (metric dimensions, see page 39 for inch dimensions)

These hermetically sealed plug-in packages each consist of a welded metal base and cap with individual leads secured by an insulating glass sealant. The gold-plated leads (-00) require no additional cleaning or processing when used in soldered assembly.

LP silect plastic package (metric dimensions, see page 40 for inch dimensions)

The silect package is an encapsulation in a plastic compound specifically designed for this purpose. The package will withstand soldering temperatures without deformation. The package exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B.

P plastic dual-in-line package (metric dimensions, see page 40 for inch dimensions)

This dual-in-line package consists of a circuit mounted on an 8-lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7.62-mm centers. Once the leads are compressed to 7.62-mm separation and inserted, sufficient tension is provided to secure the package in the board during soldering. Silver-plated leads require no additional cleaning or processing when used in soldered assembly.

N plastic dual-in-line packages (metric dimensions, see page 41 for inch dimensions)

These dual-in-line packages consist of a circuit mounted on a 14- or 16-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on 7.62-mm centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Silver-plated leads (-00) require no additional cleaning or processing when used in soldered assembly.

ND-package (metric dimensions, see page 42 for inch dimensions)

This dual-in-line package consists of a circuit mounted on an 8-lead, 2-tab frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7.62-mm centers. Once the leads are compressed to 7.62-mm separation and inserted, sufficient tension is provided to secure the package in the board during soldering. Pin positions 3, 4, 5, 10, 11, and 12 are occupied by two tabs which facilitate attachment of heat sinks. Silver-plated leads require no additional cleaning or processing when used in soldered assembly.

U ceramic flat packages (metric dimensions, see page 43 for inch dimensions)

These flat packages consist of a ceramic base, ceramic cap, and 10- or 14-lead frame. Circuit bars are alloy-mounted. Hermetic sealing is accomplished with glass. Tin-plated leads require no additional cleaning or processing when used in soldered assembly.

W ceramic flat packages (metric dimensions, see page 44 for inch dimensions)

These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap, and a 14- or 16-lead frame. Hermetic sealing is accomplished with glass. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

Operational Amplifiers

•

OPERATIONAL AMPLIFIER SELECTION GUIDE

		Input Offset Voltage MAX (mV)	Input Offset Current MAX (nA)	Input Bias Current MAX (nA)	Bandwidth TYP	Slew Rate at Unity Gain TYP
	LM101A, LM301A	7.5	50	250	(10/12/	(V/μs)
	LM107, LM307	7.5	50	250	11	0.5
	LM118, LM318	10	200	500	15	0.51
	LM2902	10	50	500	1	70
	TL089	0.15	0.6	1	2	0.5
Single	TL702	10	5 000	15 000	20	17
	uA702	2	500	5,000	30	1.7
	uA709	7.5	500	1 500	10	1.7
	uA741	6	200	500	10	0.3
	uA748	6	200	500	1	0.5
	uA777	5	20	100		0.5
	LM158, LM358	7	50	-250	1	0.5
	LM2904	10	50	500	1	0.5
_ .	MC1458	6	200	500		0.5
Dual	RC4558	6	200	500		0.5
	TL022	5	80	300	3	1
	uA747	6	200	250	0.8	0.5
	LM124 M324	7	50	500	1	0.5
Quad	BC4136	6	30	-250	1	0.5
	TI 044	6	200	500	3	1
		5	80	250	0.8	0.5

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS WITH JFET INPUTS

		Input Offset Voltage	Input Offset Current	Input Bias Current	Bandwidth	Slew Rate at Unity Gain
		MAX	MAX	MAX	TYP	TYP
		(mV)	(nA)	(nA)	(Hz)	(V/μs)
	LF155, LF355	10	0.05	0.2	2,5	5
	LF155A, LF355A	2	0.01	0.05	2.5	5
Sincle	LF156, LF356	10	0.05	0.2	4.5	12
- Trigic	LF156A, LF356A	2	0.01	0.05	4.5	12
	LF157, LF357	10	0.05	0.2	20	50
	LF157A, LF357A	2	0.01	0.05	20	50
	LF2155, LF2355	10	0.05	0.2	2.5	5
Dual	LF2155A, LF2355A	2	0.01	0.05	2.5	5
Buar	LF2156, LF2356	10	0.05	0.2	4.5	12
	LF2156A, LF2356A	2	0.01	0.05	4,5	12

Input Offset Voltage (VIO)

The d-c voltage that must be applied between the input terminals to force the quiescent d-c output voltage to zero. NOTE: The input offset voltage may also be defined for the case where two equal resistances (Rg) are inserted in series with the input leads.

Average Temperature Coefficient of Input Offset Voltage (avio)

The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha VIO = \left| \frac{\left(V_{IO} @ T_A(1) \right) - \left(V_{IO} @ T_A(2) \right)}{T_A(1) - T_A(2)} \right| \text{ where } T_A(1) \text{ and } T_A(2) \text{ are the specified temperature extremes.}$$

Input Offset Current (I10)

The difference between the currents into the two input terminals with the output at zero volts.

Average Temperature Coefficient of Input Offset Current (allo)

The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range.

 $\alpha_{||0} = \left| \frac{(I_{|0} \otimes T_{A(1)}) - (I_{|0} \otimes T_{A(2)})}{T_{A(1)} - T_{A(2)}} \right| \quad \text{where } T_{A(1)} \text{ and } T_{A(2)} \text{ are the specified temperature extremes.}$

Input Bias Current (IIB)

The average of the currents into the two input terminals with the output at zero volts.

Input voltage Range (V)

The range of voltage that if exceeded at either input terminal will cause the amplifier to cease functioning properly.

Common-Mode Input Voltage (VIC)

The average of the two input voltages.

Common-Mode Input Voltage Range (VICR)

The range of common-mode input voltage that if exceeded will cause the amplifier to cease functioning properly.

Differential Input Voltage (VID)

The voltage at the noninverting input with respect to the inverting input.

Maximum Peak Output Voltage Swing (VOM)

The maximum positive or negative peak output voltage that can be obtained without waveform clipping when the quiescent d-c output voltage is zero.

Maximum Peak-to-Peak Output Voltage Swing (VOPP)

The maximum peak-to-peak output voltage that can be obtained without waveform clipping when the quiescent d-c output voltage is zero.

Large-Signal Voltage Amplification (Av)

The ratio of the peak-to-peak output voltage swing to the change in input voltage required to drive the output.

Differential Voltage Amplification (AVD)

The ratio of the change in output voltage to the change in differential input voltage producing it.

Maximum-Output-Swing Bandwidth (BOM)

The range of frequencies within which the maximum output voltage swing is above a specified value.

Unity-Gain Bandwidth (B1)

The range of frequencies within which the open-loop voltage amplification is greater than unity.

Phase Margin (ϕ_m)

The absolute value of the open-loop phase shift between the output and the inverting input at the frequency at which the modulus of the open-loop amplification is unity.

Gain Margin (Am)

The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is such that the output is in phase with the inverting input.

Input Resistance (ri)

The resistance between the input terminals with either input grounded.

Differential Input Resistance (rid)

The small-signal resistance between the two ungrounded input terminals.

Output Resistance (ro)

The resistance between the output terminal and ground.

Input Capacitance (Ci)

The capacitance between the input terminals with either input grounded.

Common-Mode Input Impedance (zic)

The parallel sum of the small-signal impedance between each input terminal and ground.

Output Impedance (z_o)

The small-signal impedance between the output terminal and ground.

Common-Mode Rejection Ratio (kCMR, CMRR)

The ratio of differential voltage amplification to common-mode voltage amplification. NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

Supply Voltage Sensitivity (k_{SVS}, $\Delta V_{IO}/\Delta V_{CC}$)

The absolute value of the ratio of the change in input offset voltage to the change in supply voltages producing it.

- NOTES: 1. Unless otherwise noted, both supply voltages are varied symmetrically.
 - 2. This is the reciprocal of supply voltage sensitivity.

Supply Voltage Rejection Ratio (kSVR, $\Delta V_{CC}/\Delta V_{IO}$)

The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.

- NOTES: 1. Unless otherwise noted, both supply voltages are varied symmetrically.
 - 2. This is the reciprocal of supply voltage rejection ratio.

Equivalent Input Noise Voltage (Vn)

The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.

Equivalent Input Noise Current (In)

The current of an ideal current source (having an internal impedance equal to infinity) in parallel with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a current source.

Short-Circuit Output Current (IOS)

The maximum output current available from the amplifier with the output shorted to ground, to either supply, or to a specified point.

Supply Current (ICC)

The current into the VCC or VCC+ terminal of an integrated circuit.

Total Power Dissipation (PD)

The total d-c power supplied to the device less any power delivered from the device to a load. NOTE: At no load: $P_D = V_{CC+} + I_{CC+} + V_{CC-} + I_{CC-}$.

Channel Separation (Vo1/Vo2)

The ratio of the change in output voltage of a driven channel to the resulting change in output voltage of another channel.

GLOSSARY OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Rise Time (tr)

The time required for an output voltage step to change from 10% to 90% of its final value.

Total Response Time (Settling Time) (ttot)

The time between a step-function change of the input signal level and the instant at which the magnitude of the output signal reaches for the last time a specified level range ($\pm \epsilon$) containing the final output signal level.

Overshoot Factor

The ratio of (1) the largest deviation of the output signal value from its final steady-state value after a step-function change of the input signal, to (2) the absolute value of the difference between the steady-state output signal values before and after the step-function change of the input signal.

Slew Rate (SR)

The average time rate of change of the closed-loop amplifier output voltage for a step-signal input.

LINEAR INTEGRATED CIRCUITS

- Rugged JFET's Allow Blow-Out-Free Handling Compared with MOSFET-Input Devices
- Offset Adjustment Does Not Degrade α VIO or Common-Mode Rejection as in Most Bipolar Amplifiers
- Low Input Bias Current . . . 30 pA Typ
- Low Input Offset Current . . . 3 pA Typ

TYPES LF155, LF155A, LF156, LF156A, LF157, LF157A, LF255, LF256, LF257, LF355, LF355A, LF356, LF356A, LF357, LF357A JFET-INPUT OPERATIONAL AMPLIFIERS BULLETIN NO. DL.5 7612387, JUNE 1976

- Low Input Offset Voltage Temperature Coefficient ... 5 μV/°C Typ
- High Input Impedance ... 10¹² Ω Typ
- High Common-Mode Rejection Ratio
- High DC Voltage Gain . . . 200 V/mV Typ .
- No External Frequency Compensation Required
- Low Equivalent Input Noise Current

quick selection guides

TYPES	OPERATING FR	EE-AIR TEMPERA	TURE RANGE	:	MAX	FFSET V	OLTAGE	
TTFEO	-55°C to 125°C	-25°C to 85°C	0°C to 70°C	2.3 mV	2.5 mV	6.5 mV	7 mV	13 mV
LF1A	•				٠			
LF1	•						•	
LF2		•				•		
LF3A			•	•				
LF3			•					•

	TYP	BANDWI	отн	TYF	TYP V _n			TYP SLEW RATE			
TYPES	Av = 5	Av	= 1	f = 10	00 Hz	l lo	c	Av = 5	Av	= 1	
	20 MHz	4.5 MHz	2.5 MHz	15 nV/√Hz	25 nV/√Hz	2 mA	5 mA	50 V/µs	12 V/µs	5 V/µs	
'55, '55A			•		•	•				•	
'56, '56A		•		•			•		•		
'57, '57A	•			•			•	•			

description

These monolithic JFET-input operational amplifiers incorporate well-matched, high-voltage BI-FET technology (JFET's on the same chip with standard bipolar transistors). The devices feature low input bias and offset currents, low offset voltage and offset voltage temperature coefficient, coupled with offset adjustment that does not degrade temperature coefficient or common-mode rejection. The devices are also designed for wide bandwidths, high slew rate, extremely fast settling time,' low equivalent input noise voltage and current, and a low 1/f corner.

The LF155, LF155A, LF156, LF156A, LF157, and LF157A are characterized for operation over the full military temperature range of -55° C to 125° C; the LF255, LF256, and LF257 are characterized for operation from -25° C to 85° C; the LF355, LF356A, LF356A, LF357A are characterized for operation from 0^{\circ}C.

NC-No internal connection

TYPES LF155, LF155A, LF156, LF156A, LF157, LF157A, LF255, LF256, LF257, LF355, LF355A, LF356, LF356A, LF357, LF357A JFET-INPUT OPERATIONAL AMPLIFIERS

schematic -ovcc+ ₩ L. O OUTPUT C1 10 pF† INV INPUT 25 N -16 NONIN ¥, \$7 30 Ω T 30 s 10 -1 5 ks 1 k0 OVCC-⋪ Component values shown are nominal. [†]C1 = 2 pF on LF157, LF157A, LF257, LF357, and LF357A.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LF1	1.52	LF3	UNIT
		LF1A	LF2	LF3——A	U.I.I
Supply voltage V _{CC+} (see Note 1)		22	22	18	v
Supply voltage V _{CC} (see Note 1)		-22	-22	-18	V
Differential input voltage (see Note 2)		±40	±40	±30	V
Input voltage (see Notes 1 and 3)		±20	±20	±15	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	unlimited	L
Continuous total dissipation at (or below) 25°C free-air temp	erature (see Note 5)	670	670	670	mW
Operating free-air temperature range		55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	JG or L package	300	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	P package	260	260	260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC1} and V_{CC-}.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. For operation above 25°C, free-sir temperature, refer to Dissipation Dersting Curves, Section 2. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, Rg_{CA}, of not more than 105°C/W.

TYPES LF155, LF156, LF157, LF255, LF256, LF257, LF355, LF356, LF357 JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, TA = 25°C (unless otherwise noted)

		T		T			T						r
	PARAMETER	TEST CO	NDITIONS		LF1	-		LF2	-	ļ	LF3		UNIT
		D . FD D		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	$H_{S} = 50.12$	T		3	5	ļ	3	5		3	10	mV
	Tomporature coefficient	$H_{S} = 50 \Omega_{i}$	I A = full range			7			6.5			13	
∝vio	of input offers unline	R _S = 50 Ω,	T _A = full range		5			5			5		uv/°c
	of input offset voltage												<i>µ</i> •
Δανιο	Change in temperature												"V/°C
ΔVIO	- coefficient with offset	H _S = 50 Ω			0,5			0.5		[0,5		mV
	voltage adjustment												
10	Input offset current				3	20		3	20		3	50	pА
		T _A = full range				20			1			2	nA
1 _{IB}	Input bias current				30	100		30	100		30	200	pА
		T _A = full range				50			5			8	nA
	Common-mode input			+11	+15		+11	+15		+10	+15		
VICR	voltage range			to	to		to	to		to	to		v
				-11	-12		-11	-12		-10	-12		
VOPP	Maximum peak-to-peak	Vcc. = +15 V	$B_{\perp} = 10 k_{\odot}$	24	26		24	26			00		
	output voltage swing	·(C+ - 110 V,	11L - 10 Kaz	24	20		24	20		24	26		v
	Large-signal differential	V _{CC±} = ±15 V,	$T_A = 25^{\circ}C$	50	200		50	200		05			
AVD	voltage amplification	R _L = 2 kΩ,	TA = full range	25	200		25	200		25	200		V/mV
		V _O = ±10 V	TA - Tun range	20			25			15			
			'55		2.5			2.5			2,5		
^B 1	Unity-gain bandwidth		′ 56		4.5			4.5			4.5		MHz
		-	′ 57		20			20			20		
ri	Input resistance				1012			1012			1012		Ω
с _і	Input capacitance				3			3			3		pF
CMRR	Common-mode rejection	Bc = 50 0		95	100		OE	100		00	400		
-	ratio			00	100		00	100		80	100	1	gr I
kours *	Supply voltage rejection			0.5									-
-SVH	ratio			85	100		85	100		80	100		dB
		R _S = 100 Ω,	'55		25			25			25		
v	Equivalent input noise	f = 100 Hz	'56, '57		15			15			15		_
۷n	voltage	R _S = 100 Ω,	'55		20			20			20		nV/ \/Hz
		f = 1 kHz	'56, '57		12			12			12		
	Equivalent input noise	f = 100 Hz			0.01			0.01			0.01		
'n	current	f = 1 kHz			0.01			0.01			0.01		pA/√Hz
1	C	No load,	'55		2	4		2	4		2	4	
CC	Supply current	No signal	′56, ′57		5	7		5	7			10	mA

*ksvR = $\Delta V_{CC\pm} / \Delta V_{1O}$.

 $^{+}$ All characteristics are specified under open-loop operation, unless otherwise noted. Also unless otherwise noted, V_{CC±} = ±15 V to ±20 V for LF1__ and LF2__, V_{CC±} = ±15 V for LF3__. Full range for T_A is -55°C to 125°C for LF1__, -25°C to 85°C for LF2__, and 0°C to 70°C for LF3__.

operating characteristics, $V_{CC+} = 15 V$, $V_{CC-} = -15 V$, $T_A = 25^{\circ}C$

	PARAMETER TEST CONDITIONS				LF1			LF2			LF3			
					MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	Total response time	$\Delta V_0 = 10 V$,	$\Delta x = -1$	'55		4			4			4		
ttot	(settling time)	ε = ±0.01%,	AV1	′ 56		1.5			1.5			1.5		μs
	(occaring critic)	See Figure 1	Av = -5	′ 57		1,5			1.5			1.5		
			$A_{1} = -1$	'55		5			5			5		
SR	Slew rate	$\Delta V_0 = 10 V$,	~v !	′56	7.5	12		7.5	12			12		V/µs
		See Figure 2	A _V =5	' 57	30	50		30	50			50		

TYPES LF155A, LF156A, LF157A, LF355A, LF356A, LF357A JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

					F1	A	L	F3	A	UNIT
	PARAMETER	TEST CON	DITIONS	MIN	түр	MAX	MIN	TYP	MAX	5111
		R _S = 50 Ω			1	2		1	2	mV
VIO	Input offset voltage	R _S = 50 Ω,	T _A = full range			2.5			2.3	
	Temperature coefficient of	Bo = 50 0	T = full range		3	5		3	5	μV/°C
∝vio	input offset voltage	115 - 50 11,	TA Turi Turigo							
Δανιο	Change in temperature coefficient	$B_{c} = 50 \Omega$		ļ	0.5			0,5		<u>μν/°C</u>
ΔVIO	with offset voltage adjustment									mv
line.	I pout offset current				3	10		3	10	рА
10	mput onset current	T _A = full range				10			1	nA
tun	loout biss current				30	50		30	50	pA
18	input bias current	T _A = full range				25			ь	nA
	Common-mode input voltage			+11	+15		+11	+15		
VICR	range			to	to		to	to		v
1	Tango			-11	-12		-11	-12		
Ven	Maximum peak-to-peak	Vcc+ = ±15 V.	Rι = 10 kΩ	24	26		24	26		v
*UPP	output voltage swing									
	Large-signal differential	$V_{CC\pm} = \pm 15 V,$	TA = 25°C	50	200		50	200		N/
AVD	voltage amplification	R _L = 2 kΩ,	T _A = full range	25			25			v/mv
		$V_0 = \pm 10 V$						25		
			-55A		2.5			2.5		мна
^B 1	Unity-gain bandwidth		56A	4	4.5		4	4,5		11112
			'57A	15	20		15	20		
ri -	Input resistance				10 12			10		-5
с _і	Input capacitance				3			3		pr-
CMRR	Common-mode rejection ratio	R _S = 50 Ω		85	100		85	100		dB
ksvR*	Supply voltage rejection ratio			85	100		85	100		aB
		R _S = 100 Ω,	'55A		25			25		
V	Equivalent input poise voltage	f = 100 Hz	'56A, '57A		15			15		nV/√Hz
i 'n	=quitalent input noise tertage	R _S = 100 Ω,	'55A	ļ	20		ļ	20		{
		f = 1 kHz	'56A, '57A		12			12		
1.	Equivalent input noise current	f = 100 Hz			0.01		ļ	0.01		pA/√Hz
'n	=quivalent inpat noise current	f=1 kHz			0.01		L	0.01		ļ
lee	Supply current	No load,	'55A		2	4	ļ	2	4	mA
	- apply current	No signal	'56A, '57A		5	7		5	10	

KSVR = AVCC±/AVIO.

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Also unless otherwise noted, V_{CC±}= ±15 V to 20 V for LF1--A and LF3--A. Full range for T_A is -55°C to 125°C for LF1--A and 0°C to 70°C for LF3--A. operating characteristics, VCC+ = 15 V, VCC- = -15 V, T_A = 25°C

		TEST CONDITIONS			LF1A			L	A	UNIT	
	PARAMETER	IEST	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$\Delta V_0 = 10 V_s$		'55A		4			4		
ttot	Total response time (settling time)	$\epsilon = \pm 0.01\%$	AV = -1	'56A		1.5			1.5		μs
		See Figure 1	Av = -5	'57A		1.5			1.5		
			A	′55A	3	5		3	5		
SR	Slew rate	$\Delta v_0 = 10 v_1$	AV1	'56A	10	12		10	12		V/μs
		See Figure 2	A _V = -5	′57A	40	50		40	50		

TYPES LF155, LF155A, LF156, LF156A, LF157, LF157A, LF255, LF256, LF257, LF355, LF355A, LF356, LF356A, LF357, LF357A JFET-INPUT OPERATIONAL AMPLIFIERS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

FIGURE 1-TOTAL RESPONSE TIME

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME DER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

LINEAR INTEGRATED CIRCUIT

TYPES LF2155, LF2155A, LF2156, LF2156A, LF2157, LF2157A, LF2255, LF2256, LF2257, LF2355, LF2355A, LF2356A, LF2357A, LF2357A DUAL JFET-INPUT OPERATIONAL AMPLIFIERS BULLETIN NO. DLS 2012420 JUNE 1976

- Rugged JFET's Allow Blow-Out-Free Handling Compared with MOSFET-Input Devices
- Low Input Bias Current . . . 30 pA Typ
- Low Input Offset Current . . . 3 pA Typ
- High Input Impedance . . . 10¹² Ω Typ
- Low Input Offset Voltage Temperature Coefficient . . . 5 μV/°C Typ
- High Common-Mode Rejection Ratio
- High DC Voltage Gain . . . 200 V/mV Typ
- No External Frequency Compensation Required
- Low Equivalent Input Noise Current

quick selection guides

TYPES	OPERATING FR	EE-AIR TEMPERA	TURE RANGE		MAX	FFSET V	OLTAGE	
11163	-55°C to 125°C	-25°C to 85°C	0°C to 70°C	2.3 mV	2.5 mV	6.5 mV	7 mV	13 mV
LF21A	•				•			
LF21	•						•	
LF22		•				•		
LF23A			•	•				
LF23			•					•

	TYP	BANDWI	DTH	TYP	v v _n	T	YP	TYP SLEW RATE		
TYPES	Ay = 5	Av	= 1	f = 1	00 Hz	10	c	Av = 5	Av	= 1
	20 MHz	4.5 MHz	2.5 MHz	15 nV/√Hz	25 nV/√Hz	2 mA	5 mA	50 V/µs	12 V/µs	5 V/µs
'55, '55A			•		•	•				•
'56, '56A		•		•			•		•	
'57, '57A	•			•			•	•		

description

These monolithic JFET-input operational amplifiers incorporate well-matched, high-voltage BI-FET technology (JFET's on the same chip with standard bipolar transistors). The devices feature low input bias and offset currents, low offset voltage, and low offset voltage temperature coefficient. The devices are alse designed for wide bandwidths, high slew rate, extremely fast settling time, low equivalent input noise voltage and current, and a low 1/f corner.

The LF2155, LF2155A, LF2156A, LF2156A, LF2156A, LF2157, and LF2157A are characterized for operation over the full military temperature range of -55° C to 125°C; the LF2255, LF2256, and LF2257 are characterized for operation from -25° C to 85°C; the LF2355, LF2356A, LF2356A, LF2357, and LF2357A are characterized for operation from 0°C to 70°C.

TYPES LF2155, LF2155A, LF2156, LF2156A, LF2157, LF2157A, LF2255, LF2256, LF2257, LF2355, LF2355A, LF2356, LF2356A, LF2357, LF2357A DUAL JFET-INPUT OPERATIONAL AMPLIFIERS

schematic (each amplifier)

[†]C1 = 2 pF on LF2157, LF2157A, LF2257, LF2357, and LF2357A.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LF21		LF23	UNIT
		LF21A	LF22	LF23A	
Supply voltage V _{CC+} (see Note 1)		22	22	18	V
Supply voltage V _{CC} (see Note 1)		-22	-22	-18	v
Differential input voltage (see Note 2)		±40	±40	±30	v
Input voltage (see Notes 1 and 3)		±20	±20	±15	V
Duration of output short-circuit (one amplifier, see Note 4)		unlimited	unlimited	unlimited	
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)		670	670	670	mW
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	JG or L package	300	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	P package	260	260	260	°c

NOTES: 1. All voltage values, except differential voltages, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC1} and V_{CC-}.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. For operation above 25°C free-air temperature, refer to the Dissipation Derating Curves, Section 2. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, R_{∂CA}, of not more than 105°C/W.
TYPES LF2155, LF2155A, LF2156, LF2156A, LF2157, LF2157A, LF2255, LF2256, LF2257, LF2355, LF2355A, LF2356, LF2356A, LF2357, LF2357A DUAL JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

		TEST CONDITIONS [†]		1	LF21-	-	L	F22	-		LF23	-	1.16117
	PARAMETER	TEST CON		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
N	Innut offert unlines	R _S = 50 Ω			3	5		3	5		3	10	mV
¥10	input offset voltage	R _S = 50 Ω,	T _A = full range			7			6.5			13	
~~~~	Temperature coefficient	Bc = 50.0	TA = full range		5			5			5		uV/°C
4410	of input offset voltage							-					
1000	Change in temperature												μV/°C
AVIO	coefficient with offset	R _S = 50 Ω			0.5			0,5			0,5		mV
	voltage adjustment									ļ			
10	Input offset current				3	20	ļ	3	20	ļ	3	50	рА
10		T _A = full range				20	ļ		1			2	nA
1.0	Input bias current			L	30	100	ļ	30	100	L	30	200	рА
.10		T _A = full range				50			5	L		8	nA
	Common-mode input			+11	+15		+11	+15		+10	+15		
VICR	voltage range			to	to		to	to		to	to		
				-11	-12		-11	-12		-10	-12		
VOPP	Maximum peak-to-peak output voltage swing	V _{CC±} = ±15 V,	R _L = 10 kΩ	24	26		24	26		24	26		v
		V _{CC±} = ±15 V,					-	2000			2000		
AVD	Large-signal differential	$R_{L} = 2 k\Omega$ ,	TA = 25°C	50	200		50	200		25	200		V/mV
	voltage amplification	V0 = ±10 V	IA = full range	25			25			15			
			'55		2,5			2.5			2.5		
B1	Unity-gain bandwidth		'56		4.5			4.5			4.5		MHz
			'57		20			20			20		
ri	Input resistance				1012			1012			1012		Ω
Ci	Input capacitance				3			3			3		рF
CMPP	Common-mode rejection	Bo = 50 0		85	100		85	100		80	100		dB
CININA	ratio	ng - 50 11		00									
	Supply voltage rejection			85	100		85	100		80	100		dB
SVR	ratio				100					~			
		R _S = 100 Ω,	'55		25			25			25		
	Equivalent input noise	f = 100 Hz	'56, '57		15			15			15		
^v n	voltage	R _S = 100 Ω,	'55		20			20			20		]
		f = 1 kHz	<b>'56, '57</b>		12			12			12		
	Equivalent input noise	f = 100 Hz	-		0.01			0.01			0.01		DA / HT
'n	current	f = 1 kHz		1	0.01			0.01			0.01		J~~~~~~~~~
	Sumally suggest	No load,	'55		4	8		4	8		4	8	mA
1 CC	Supply current	No signal	'56, '57		10	14		10	14		10	20	יייי ך

 $k_{SVR} = \Delta V_{CC\pm} / \Delta V_{IO}$ 

¹All characteristics are specified under open-loop operation, unless otherwise noted. Also unless otherwise noted, V_{CC1} = 115 V to 120 V for LF21__ end LF22__, V_{CC1} = 115 V for LF23__. Full range for T_A is -55°C to 125°C for LF21__, -25°C to 85°C for LF22__, and 0°C to 70°C for LF23__.

### operating characteristics, VCC+ = 15 V, VCC- = -15 V, TA = 25°C

	PARAMETER TEST CONDIT				L	.F21-	-		_F22-			UNIT			
	PARAMETER	TEST	UNDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		4V0 = 10 V,		'55		4			4			4			
ttot	Total response time tot (settling time)	e = ±0.01%,	AV = -1	'56		1.5			1.5			1,5		μs	
		See Figure 1	Av = -5	<i>'</i> 57		1.5			1.5			1.5			
		1	A 1	'55		5			5			5			
SR	Slew rate	$\Delta V_0 = 10 V,$ See Figure 2	/, Av = -1	Av1  -	/, AV = -1 /56	7.5	12		7,5	12			12		V/µs
			Av = -5	'57	30	50		30	50			50			

### TYPES LF2155, LF2155A, LF2156, LF2156A, LF2157, LF2157A, LF2255, LF2256, LF2257, LF2355, LF2355A, LF2356, LF2356A, LF2357, LF2357A **DUAL JFET-INPUT OPERATIONAL AMPLIFIERS**

### electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]			.F1	A		_F3	A	
	PARAMETER	TEST COM	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
N. a	Input offect voltage	R _S = 50 Ω			1	2		1	2	- V
10	Input offset voltage	R _S = 50 Ω,	T _A = full range			2.5			2.3	mv.
ανιο	Temperature coefficient of input offset voltage	R _S = 50 Ω,	T _A = full range		3	5		3	5	µV/°C
Δανιο	Change in temperature coefficient			<u> </u>						µV/°C
	with offset voltage adjustment	R _S = 50 Ω			0.5			0,5		mV
4	1				3	10		3	10	pА
10	Input offset current	T _A = full range				10			1	nA
1	Annua him annua				30	50		30	50	pА
чв	Input blas current	T _A = full range				25			5	nA
	Common mode input voltano			+11	+15		+11	+15		
VICR	common-mode input voltage			to	to		to	to		v
	range			-11	-12		-11	-12		
VOPP	Maximum peak-to-peak	V _{CC±} = ±15 V,	RL = 10 kΩ	24	26		24	26		v
	output voitage swing	Mar AF M	[							
A	Large-signal differential	$v_{CC\pm} = \pm 15 v$ ,	T _A = 25°C	50	200		50	200		<u></u>
~~0	voltage amplification	$V_0 = \pm 10 V$	$T_A = full range$	25			25			v/mv
			′55A		2.5			2,5		
81	Unity-gain bandwidth		'56A	4	4.5		4	4.5		MHz
			'57A	15	20		15	20		
ri -	Input resistance				1012			1012		Ω
C _i	Input capacitance				3			3		pF
CMRR	Common-mode rejection ratio	R _S = 50 Ω		85	100		85	100		dB
ksvr*	Supply voltage rejection ratio			85	100		85	100		dB
		R _S = 100 Ω,	'55A		25			25		
V-	Equivalent input poise voltage	f = 100 Hz	'56A, '57A		15			15		
•n	-quivalent input noise voitage	R _S = 100 Ω,	'55A		20			20		10/012
		f = 1 kHz	'56A, '57A		12			12		
la.	Equivalent input noise current	f = 100 Hz			0.01			0,01		- A / /H-
'n	-quitaient input hoise cuitent	f = 1 kHz			0.01			0.01		
lee	Supply current	No load,	′55A		4	8		4	8	
		No signal	'56A, '57A		10	14		10	14	mA

*SVR = AVCC±/AVIO.

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Also unless otherwise noted, V_{CC±}= ±15 V to 20 V for LF21--A and LF23--A. Full range for T_A is -55°C to 125°C for LF21--A and 0° to 70°C for LF23--A. operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

	PARAMETER	TEST	Ĺ	F21	-A	L	A					
	TANAMETEN	TEST	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		$\Delta V_0 = 10 V,$	A	'55A		4			4			
ttot	Total response time (settling time)	) $\epsilon = \pm 0.01\%$ ,	AV1	'56A		1.5			1.5		μs	
		See Figure 1	Av = -5	'57A		1.5			1.5			
		AV 10 V	$\Delta x = -1$	'55A	3	5		3	5			
SR	Slew rate	$\Delta V_0 = 10 V$ ,	$\Delta V_0 = 10 V_1 / $	~v i	'56A	10	12		10	12		V/µs
		See Figure 2	A _V = -5	'57A	40	50		40	50			

### TYPES LF2155, LF2155A, LF2156, LF2156A, LF2157, LF2157A, LF2255, LF2256, LF2257, LF2355, LF2355A, LF2356, LF2356A, LF2357, LF2357A **DUAL JFET-INPUT OPERATIONAL AMPLIFIERS**

PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT

FIGURE 1-TOTAL RESPONSE TIME



FIGURE 2-SLEW RATE

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

AS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

### **TEXAS INSTRUMENTS**

### TYPES LM101A, LM201A, LM301A LINFAR INTEGRATED CIRCUITS HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7611432, JANUARY 1971-REVISED JUNE 1976

### FORMERLY SN52101A, SN72301A

- Low Input Currents
- Low Input Offset Parameters
- **Frequency and Transient Response** Characteristics Adjustable
- Short-Circuit Protection
- Offset-Voltage Null Capability
- Designed to be Interchangeable with • National Semiconductor LM101A and LM301A
- No Latch-Up
- Wide Common-Mode and **Differential Voltage Ranges**
- Same Pin Assignments as uA709

#### description

The LM101A, LM201A, and LM301A are high-performance operational amplifiers featuring very low input bias current and input offset voltage and current to improve the accuracy of high-impedance circuits using these devices. The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage follower applications. The devices are protected to withstand short-circuits at the output. The external compensation of these amplifiers allows the changing of the frequency response (when the closed-loop gain is greater than unity) for applications requiring wider bandwidth or higher slew rate. A potentiometer may be connected between the offset-null inputs (N1 and N2), as shown in Figure 7, to null out the offset voltage.

The LM101A is characterized for operation over the full military temperature range of -55°C to 125°C, the LM201A is characterized for operation from -25°C to 85°C, and the LM301A is characterized for operation from 0°C to 70°C.



NC-No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM101A	LM201A	LM301A	UNIT
Supply voltage V _{CC+} (see Note 1)		22	22	18	v
Supply voltage V _{CC} (see Note 1)		-22	22	-18	v
Differential input voltage (see Note 2)		±30	±30	±30	V
Input voltage (either input, see Notes 1 and 3)		±15	±15	±15	V
Voltage between either offset null terminal (N1/N2) an	d V _{CC} _	-0.5 to 2	-0.5 to 2	-0.5 to 2	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total power dissipation at (or below) 25°C	free-air temperature (see Note 5)	500	500	500	mW
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to150	65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L, or U package	300	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	N or P package	260	260	260	°c

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between  $V_{CC+}$  and  $V_{CC-}$ .

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

4. The output may be shorted to ground or either power supply. For the LM101A only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. For the LM201A only, the unlimited duration of the short-circuit applies at (or below) 85°C case temperature or 75°C free-air temperature.

5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPES LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

### voltages specified

Throughout this data sheet, supply voltages are specified either as a range or as a specific value. A positive voltage within the specified range (or of the specified value) is applied to  $V_{CC+}$ , and an equal negative voltage is applied to  $V_{CC-}$ .

				LM1	101A, LM	201A	1	LM301A		
	PARAMETER	TEST COND	HONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	1	$P_{0} = 50 k O$	25°C		0.6	2		2.0	7.5	
10	Input offset voltage	ng - 50 ksz	Full range			3			10	mv
	Average temperature coefficient		Eull room		2	15		6	20	WPC
ανιο	of input offset voltage		F un range		3	15		6	30	μν/ C
1.0	Input offrat auroant		25°C		1.5	10		3	50	
10	mput onset current		Full range			20			70	
		T _A = -55° (	C to 25°C		0.02	0.2				
	Average temperature coefficient	T _A = 25°C	to MAX		0.01	0.1				-APC
ano	of input offset current	$T_A = 0^\circ C to$	o 25°C					0.02	0.6	
		T _A = 25°C	to 70°C					0.01	0.3	
lun	Input bias current		25°C		30	75		70	250	nA.
.18			Full range			100			300	105
V _I	Input voltage range	See Note 7	Full range	±15			±12			v
		$V_{CC\pm} = \pm 15 V$ ,	25°C	24	28		24	28		
Von	Maximum peak-to-peak	$R_L = 10 k\Omega$	Full range	24			24			V
* UPP	output voltage swing	V _{CC±} = ±15 V,	25° C	20	26		20	26		
		RL = 2 kΩ	Full range	20			20			
Aug	Large-signal differential	$V_{CC\pm} = \pm 15 V,$	25° C	50	200		25	200		Mark
~~0	voltage amplification	$R_L \ge 2 k\Omega$	Full range	25			15			v/mv
ri -	Input resistance		25°C	1.5	4		0.5	2		MΩ
CMBB	Common mode rejection ratio	Ro - 50 kO	25°C	80	98		70	90		dD
Civinn	Common-mode rejection ratio	HS - 50 K32	Full range	80			70			05
	Supply valence minuting and	Ro - 50 kO	25°C	80	98		70	96		ar.
14 CC/4 10	Supply voltage rejection ratio	115 - 50 Kit	Full range	80			70			UD
	0	No load,	25°C		1.8	3		1.8	3	
'CC	Supply current	See Note 7	мах		1.2	2.5				

#### electrical characteristics at specified free-air temperature, CC = 30 pF (see note 6)

[†]All characteristics are specified under open-loop operation. Full range for LM101A is -55°C to 125°C, for LM201A is -25°C to 85°C, and for LM301A is 0°C to 70°C.

NOTES: 6. Unless otherwise noted, V_{CC±} = ±5 V to ±20 V for LM101A and LM201A, and V_{CC±} = ±5 V to ±15 V for LM301A. All typical values are at V_{CC±} = ±15 V.

7. For LM101A and LM201A,  $V_{CC\pm} = \pm 20$  V. For LM301A,  $V_{CC\pm} = \pm 15$  V.

# TYPES LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS





FIGURE 7-INVERTING CIRCUIT WITH ADJUSTABLE GAIN, SINGLE-POLE COMPENSATION, AND OFFSET ADJUSTMENT

Printed in U.K.

### **TEXAS INSTRUMENTS**

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIMI IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE

# LINEAR TYPES LM107, LM207, LM307 INTEGRATED CIRCUITS HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7611426, DECEMBER 1970-REVISED JUNE 1976

#### FORMERLY SN52107, SN72307

- Low Input Currents
- No Frequency Compensation Required
- Low Input Offset Parameters
- Short-Circuit Protection
- No Latch-Up
- Wide Common-Mode and Differential Voltage Ranges

### description

The LM107, LM207, and LM307 are high-performance operational amplifiers featuring very low input bias current and input offset voltage and current to improve the accuracy of high-impedance circuits using these devices.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltagefollower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The LM107 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C, the LM207 is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C, and the LM307 is characterized for operation from  $0^{\circ}$ C to  $70^{\circ}$ C.

#### terminal assignments



NC-No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM107	LM207	LM307	UNIT	
Supply voltage V _{CC+} (see Note 1)		22	22	18	v	
Supply voltage V _{CC} (see Note 1)		-22	-22	-18	v	
Differential input voltage (see Note 2)		± 30	±30	± 30	v	
Input voltage (either input, see Notes 1 and 3)	t voltage (either input, see Notes 1 and 3) ition of output short-circuit (see Note 4)					
Duration of output short-circuit (see Note 4)	ration of output short-circuit (see Note 4)					
Continuous total dissipation at (or below) 25°C free-air t	emperature (see Note 5)	500	500	500	mW	
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C	
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C	
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L or U package	300	300	300	°C	
Lead temperature 1/16 inch from case for 10 seconds	N or P package	260	260	260	°C	

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}.

Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

4. The output may be shorted to ground or either power supply. For the LM107 only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. For the LM207 only, the unlimited duration of the short-circuit applies at (or below) 5°C case temperature or 75°C free-air temperature.

5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### voltages specified

Throughout this data sheet, supply voltages are specified either as a range or as a specific value. A positive voltage within the specified range (or of the specified value) is applied to  $V_{CC+}$ , and an equal negative voltage is applied to  $V_{CC-}$ .

DADAMETER		[		L	VI107, LN	1207		LM307		
	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
			25°C		0.6	2		2	7.5	
VIO	Input offset voltage	$R_{S} = 50 k\Omega$	Full range			3			10	
«VIO	Average temperature coefficient of input offset voltage		Full range		3	15		6	30	μV/°C
			25°C		1.5	10		3	50	nA
10	Input offset current		Full range			20			70	
		$T_A = -55^{\circ}$	C to 25°C		0.02	0.2				
	Average temperature coefficient	T _A = 25°C	to MAX		0.01	0.1				nA/°C
αlio	of input offset current	$T_A = 0^\circ C to$	o 25°C					0.02	0.6	1
		T _A = 25°C	to 70°C					0.01	0.3	
			25° C		30	75		70	250	nA
18	Input bias current		Full range			100			300	
VI	Input voltage range	See Note 7	Full range	±15			±12			V
		V _{CC±} = ±15 V,	25°C	24	28		24	28		
	Maximum peak-to-peak	R _L = 10 kΩ	Full range	24			24			
VOPP	output voltage swing	$V_{CC\pm} = \pm 15 V$ ,	25°C	20	26		20	26		ľ
1		RL = 2 kΩ	Full range	20			20			
	Large-signal differential	$V_{CC\pm} = \pm 15 V,$	25° C	50	200		25	200		V/mV
AVD	voltage amplification	VO - ±10 V, RL≥2kΩ	Full range	25			15			•////•
ri	Input resistance		25°C	1.5	4		0.5	2		MΩ
01100		B 50 kO	25°C	80	98		70	90		dB
CMRR	Common-mode rejection ratio	ng - 50 ksz	Full range	80			70			
AN/ / AN/ -	Supply voltage rejection ratio	$B_0 = 50 k \Omega$	25° C	80	98		70	96		dB
2VCC/2V10	Suppry vortage rejection ratio	HS - 50 K32	Full range	80			70			
	Construction of the second	No load,	25° C		1.8	3		1.8	3	mA
CC	Supply current	See Note 7	MAX		1.2	2.5				

### electrical characteristics at specified free-air temperature (see note 6)

[†]All characteristics are specified under open-loop operation. Full range for LM107 is -55°C to 125°C, for LM207 is -25°C to 85°C, and for LM307 is 0°C to 70°C.

NOTES: 6. Unless otherwise noted V_{CC±} = ±5 V to ±20 V for LM107 and LM207, and V_{CC±} = ±5 V to ±15 V for LM307. All typical values are at V_{CC±} = ±15 V.

7. For LM107 and LM207, V_{CC±} = ±20 V. For LM307, V_{CC±} = ±15 V.

# TYPES LM107, LM207, LM307 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS



TI cannot assume any responsibility for any circuits shown

76

or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

# Texas Instruments

### LINEAR INTEGRATED CIRCUITS

# TYPES LM118, LM218, LM318 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612410, JUNE 1976

- Small-Signal Bandwidth . . . 15 MHz Typ
- Slew Rate . . . 50 V/µs Min
- Bias Current . . . 250 nA Max (LM118, LM218)
- Supply Voltage Range . . . ±5 V to ±20 V
- Internal Frequency Compensation
- Input and Output Overload Protection
- Same Pin Assignments as General Purpose Operational Amplifiers

#### description

The LM118, LM218, and LM318 are precision high-speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing dc performance.

These operational amplifiers have internal unity-gain frequency compensation. This considerably simplifies their application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feed-forward compensation will boost the slew rate to over 150 V/ $\mu$ s and almost double the bandwidth. Overcompensation may be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor may be added to reduce the settling time for e < 0.1% to under 1  $\mu_s$ .

The high speed and fast settling time of these operational amplifiers make them useful in A/D converters, oscillators, active filters, sample and hold circuits, and general purpose amplifiers.

The LM118 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C, the LM218 is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C, and the LM318 is characterized for operation from 0°C to 70°C.

#### terminal assignments



# TYPES LM118, LM218, LM318 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	LM118	LM218	LM318	UNIT
Supply voltage, V _{CC+} (see Note 1)	20	20	20	V
Supply voltage, V _{CC} (see Note 1)	-20	-20	-20	v
Input voltage (either input, see Notes 1 and 2)	±15	±15	±15	V
Differential input current (see Note 3)	±10	±10	±10	mA
Duration of output short-circuit (see Note 4)	unlimited	unlimited	unlimited	
Continuous total power dissipation at (or below)	500	500	500	<b>m</b> W
25°C free-air temperature (see Note 5)	500	500	500	
Operating free-air temperature range	-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds: J, JG, L, or U package	300	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds: N or P package	260	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}.

2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

3. The inputs are shunted with two opposite-facing base-emitter diodes for over voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of approximately 1 /V is applied between the inputs unless some limiting resistance is used.

4. The output may be shorted to ground or either power supply. For the LM118 only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. For the LM218 only, the unlimited duration of the short-circuit applies at (or below) 85°C case temperature or 75°C free-air temperature.

5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### electrical characteristics at specified free-air temperature (see note 6)

6

PARAMETER		TEST CONDITIONS [†]			LM118 LM218				UNIT	
				MIN	TYP	MAX	MIN	TYP	MAX	
N/ -	1		25°C		2	4		4	10	mv
V10	Input offset voltage		Full range			6			15	
			25°C		6	50		30	200	nA
'10	Input offset current		Full range			100			300	
	1		25° C		120	250		150	500	nA
18	Input bias current		Full range			500			750	
VI	Input voltage range	V _{CC±} = ±15 V	Full range	±11.5			±11.5			v
	Maximum peak-to-peak	V _{CC±} = ±15 V,	Eull renge	24	26		24	26		V
VOPP	Maximum peak-to-peak output voltage swing	$R_L = 2 k\Omega$	Full range	24	20		24	20		
	l arge-signal differential	V _{CC±} = ±15 V,	25° C	50	20		25	200		
AVD	voltage amplification	V _O = ±10 V,	Full range	25			20			V/mV
		$R_{L} \ge 2 k\Omega$								
B1	Unity-gain bandwidth	V _{CC±} = ±15 V	25°C		15			15		MHz
ri	Input resistance		25° C	1	3		0,5	3		MΩ
CMRR	Common-mode rejection ratio		Full range	80	100		70	100		dB
AVCC/AVIO	Supply voltage rejection ratio		Full range	70	80		65	80		dB
	<u></u>	2	25°C		5	8		5	10	mA
100	Supply current	No load	MAX		4.5	7				

[†]All characteristics are specified under open-loop operation. Full range for LM118 is -55°C to 125°C, for LM218 is -25°C to 85°C and for LM318 is 0°C to 70°C.

NOTE 6: Unless otherwise noted,  $V_{CC\pm} = \pm 5 V$  to  $\pm 20 V$ . All typical values are at  $V_{CC\pm} = \pm 15 V$ . Throughout this data sheet, supply voltages are specified either as a range or as a specific value. A positive voltage within the specified range (or of the specified value) is applied to  $V_{CC+}$ , and an equal negative voltage is applied to  $V_{CC-}$ .

# TYPES LM118, LM218, LM318 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS



operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A =  $25^{\circ}$ C

### Printed in U.K. 6

# Texas Instruments

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

### LINFAR INTEGRATED CIRCUITS

#### Wide Range of Supply Voltages . Single Supply . . . 3 V to 30 V or Dual Supplies

- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

#### schematic (each amplifier)



#### description

These devices consist of four independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 30 volts and Pin 4 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

### **TYPES LM124. LM224. LM324** OUADRUPLE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612248, SEPTEMBER 1975-REVISED JUNE 1976

- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 3 nA Typ (LM124) Input Bias Current . . . 45 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±32 V
- **Open-Loop Differential Voltage** Amplification . . . 100 V/mV Tvp
- Internal Frequency Compensation

LOB N



Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM124 can be operated directly off of the standard five volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ± 15-volt supplies.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .																							3	2 V
Differential input voltage (see Note 2)	).																						±3	2 V
Input voltage range (either input) .												÷								-	0.3	<b>v</b>	to 3	2 V
Duration of output short-circuit (one	ampl	ifier	to	arc	un	d at	t (o	r b	elo	w)	25	°C												
free-air temperature (VCC ≤ 15	V) (s	ee N	lote	3)					۰.	÷												ur	ılim	ited
Continuous total dissipation at (or be	low)	25°C	; fre	e-a	ir t	emp	pera	atu	re (	see	e N	ote	4							•	•	. 9	900	mW
Operating free-air temperature range:	LM1	24																		-f	55°۵	Çto	5 12	5°C
	LM2	24																			-25	°C	to 8	5°C
	LM3	24																			0	°C	to 7	0°C
Storage temperature range										÷										-6	35°	C to	5 15	0°C
Lead temperature 1/16 inch from cas	e for i	60 se	ecor	nds	J	pac	kag	e															30	0°C
Lead temperature 1/16 inch from cas	e for	10 se	ecor	nds	N	İ pa	icka	ige			•												26	0°C
ES: 1. All voltage values, except differentia	al voita	ages,	are v	vith	res	pec	t to	the	ne	two	ork	gro	un	d te	erm	nina	al.							

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

NO

# **TYPES LM124, LM224, LM324** QUADRUPLE OPERATIONAL AMPLIFIERS

### electrical characteristics at specified free-air temperature. VCC = 5 V (unless otherwise noted)

				L	M124		LM22	24	[	
	PARAMETER	TEST CONDIT	IONST	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
	1	V _O = 1.4 V,	25° C		2	5		2	7	
¥10	input onset voltage	V _{CC} = 5 V to 30 V	Full range			7			9	μ.v.
110	Input offert current	Va = 1.4 V	25° C		3	30		5	50	- 4
10		VO = 1.4 V	Full range			100			150	nA
1.0	Input biss ourrent	V _O = 1.4 V,	25°C		-45	-150		-45	-250	- 4
1.18	input bias current	See Note 5	Full range			-300			-500	nA
			25°C	0 to			0 to			
VICE	Common-mode input	$V_{CC} = 30 V$	200	V _{CC} -1.5			V _{CC} -1.5			V
	voltage range		Full range	0 to			0 to			ľ
			. an rungo	V _{CC} -2			V _{CC} -2			
		V _{CC} = 30 V,	Full range	26			26			
V _{OH} H	High-level output voltage	R _L = 2 kΩ								v
		V _{CC} = 30 V,	Full range	27	28		27	28		
		R _L ≥ 10 kΩ								
VOL	Low-level output voltage	$R_L \le 10 k\Omega$	Full range		5	20		5	20	mV
	Large-signal differential	V _{CC} = 15 V,	25° C	50	100		25	100		
AVD	voltage amplification	$V_0 = 1 V$ to 11 V,	Full range	25			15			V/mV
		R _L ≥ 2 kΩ	r un runge							
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ	25°C	70	85		65	85		dB
ΔVCC/ΔVIO	Supply voltage rejection ratio	$H_{S} \le 10 \text{ k}\Omega$	25°C	65	100		65	100		dB
	Amplifier-to-amplifier coupling	f = 1 kHz to 20 kHz	25°C		-120			-120		dB
		V _{CC} = 15 V,	25° C	-20	-40		-20	-40		
		V _{ID} = 1 V,	Full range	-10	-20		-10	-20		
		V _O = 0 V	- an range							mA
ю	Output current	$V_{CC} = 15 V$ ,	25°C	10	20		10	20		
		$v_{ID} = -1 v_{,}$	Full range	5	8		5	8		
		V0-2.5V	- 3.							
		$V_{1D} = -1 V$ , $V_{1D} = 200 mV$	25° C	12 50			12	50		μA
	Supply current	No load	25°C		0.8			0.0		
'cc	(four amplifiers)	No load,			0.8			0.8		mA
	(roar amprilia)	No alguar	i un range			2			2	

[†]All characteristics are specified under open-loop conditions. Full range is  $-55^{\circ}$ C to  $125^{\circ}$ C for LM124,  $-25^{\circ}$ C to  $85^{\circ}$ C for LM224, and  $0^{\circ}$ C to  $70^{\circ}$ C for LM324. NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of

the state of the output, so no loading change is presented to the input lines.





AUDIO DISTRIBUTION AMPLIFIER

### LINEAR INTEGRATED CIRCUITS

- Wide Range of Supply Voltages Single Supply . . . 3 V to 30 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

schematic (each amplifier)



#### description

6

These devices consist of two independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 30 volts and Pin 4 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

### TYPES LM158, LM258, LM358 DUAL OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612413, JUNE 1976

- Low Input Bias and Offset Parameters Input Offset Voltage ... 2 mV Typ Input Offset Current ... 3 nA Typ (LM158) Input Bias Current ... 45 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±32 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Typ
- Internal Frequency Compensation



Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM158 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ±15-volt supplies.

absolute maximum ratings over operating	ng free-	air t	emp	erat	ture	e rai	nge	(u	nle	ISS	otł	ner	wi	se	nc	te	d)				
Supply voltage, VCC (see Note 1)																	÷			. 3	2 V
Differential input voltage (see Note 2)																				±3	2 V
Input voltage range (either input)																÷		-0	).3 [`] \	, to 3	$2\dot{v}$
Duration of output short-circuit (one am	plifier)	to gro	ound	at (	or b	elov	v) 2	5°C	2						-	•		-			
free-air temperature (V _{CC} $\leq$ 15 V)	(see No	ote 3)																		unlim	ited
Continuous total dissipation at (or below	) 25°C	free-a	ir ter	npe	ratu	ire (s	see	Not	e 4	):				·					-		
JG or P package																				900	mW
Lpackage																				625	mW
Operating free-air temperature range: LN	W158																	-55	°C	to 12	5°C
L	M258																	-2	25°C	to 8	5°C
LN	M358									2									n° c	to 7	0°Č
Storage temperature range				÷									•	•	·	•	۰.	_65	°C	to 15	о°с.
Lead temperature 1/16 inch from case fo	r 60 sec	onds	: JG	or F	, Da	ckao	ie i				•••		•	•	•	•	•			30	o°č.
Lead temperature 1/16 inch from case for	r 10 sec	onds	: N p	back	age				:	:			:	:	:	:	:			. 26	о°č
NOTES: 1. All voltage values, except differential vol 2. Differential voltages are at the noninvert	Itages, ar ting input	e with t term	i respe	ect to vith r	o the respe	e netv ect to	worl	k gr e inv	oun rerti	d te ing	inpu	nal. It te	m	ina	۱.						

3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction,

4. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPES LM158, LM258, LM358 DUAL OPERATIONAL AMPLIFIERS

### electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

				LM	158		LM258,	LM358	;	
	PARAMETER	TEST CONDIT	IONST	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		V _O = 1.4 V,	25° C		2	5		2	7	
V10	Input offset voltage	V _{CC} = 5 V to 30 V	Full range			7			9	mv
αVIO	Average temperature coefficient of input offset voltage		Full range		7			7		µV/°C
40	Input offret current	Vo = 14 V	25°C		3	30		5	50	
10		VO - 1.4 V	Full range			100			150	
¤110	Average temperature coefficient of input offset current		Full range		10			10		pA/°C
1.0	Input bias current	V _O = 1.4 V,	25° C		-45	-150		-45	-250	
ЧВ		See Note 5	Full range			-300			-500	114
			25°C	0 to			0 to			
VICE	Common-mode input	Vcc = 30 V	20 0	V _{CC} -1.5			V _{CC} -1.5			v
TICK	voltage range		Full range	0 to			0 to			1
				V _{CC} -2			V _{CC} -2			
		V _{CC} = 30 V,	Full range	26			26			1
VOH	High-level output voltage	$R_L = 2 k\Omega$								l v
0.11		V _{CC} = 30 V, R _L ≥ 10 kΩ	Full range	27	28		27	28		
VOL	Low-level output voltage	R _L ≤ 10 kΩ	Full range		5	20		5	20	mV
VOPP	Maximum peak-to peak output voltage swing	R _L = 2 kΩ	25°C	V _{CC} -1.5			V _{CC} -1.5			v
	Large-signal differential	V _{CC} = 15 V,	25°C	50	100		25	100		
AVD	voltage amplification	$V_0 = 1 V \text{ to } 11 V,$ $R_L \ge 2 k\Omega$	Full range	25			15			V/mV
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ	25° C	70	85		70	85		dB
$\Delta V_{CC} / \Delta V_{IO}$	Supply voltage rejection ratio	$R_S \le 10 k\Omega$	25°C	65	100		65	100		dB
	Amplifier-to-amplifier coupling	f = 1 kHz to 20 kHz	25°C		-120			-120		dB
		$V_{CC} = 15 V,$	25°C	-20	-40		-20	-40		
		$V_0 = 0 V$	Full range	-10	-20		-10	-20		-
10	Output current	V _{CC} = 15 V,	25° C	10	20		10	20		ma
		$v_{1D} = -1 V,$ $V_{0} = 200 mV$	Full range	5	8		5	8		
		V _{ID} = -1 V, V _O = 200 mV	25° C	12	50		12	50		μA
1.0.0	Supply current	No load,	25°C		0.5			0.5		
'CC	(two amplifiers)	No signal	Full range			1.2			1.2	mA

[†]All characteristics are specified under open-loop conditions. Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, and 0°C to 70°C for LM358.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

.

# LINEAR INTEGRATED CIRCUITS

### **TYPE LM2902** QUADRUPLE OPERATIONAL AMPLIFIER

BULLETIN NO. DL-S 7612291, MARCH 1976-REVISED JUNE 1976

- Wide Range of Supply Voltages Single Supply . . . 3 V to 26 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Tvp
- Common-Mode Input Voltage **Range Includes Ground Allowing** Direct Sensing near Ground

schematic (each amplifier)



### description

This device consists of four independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply as in automotive systems. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 26 volts and Pin 4 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Tvp Input Offset Current . . . 5 nA Typ Input Bias Current . . . 45 nA Typ
- **Differential Input Voltage Range** Equal to Maximum-Rated Supply Voltage . . . ±26 V
- **Open-Loop Differential Voltage** Amplification . . . 100 V/mV Tvp
- Maximum Peak-to-Peak Output Voltage Swing . . . VCC-1.5 V Typ
- Internal Frequency Compensation



J OR N **DUAL-IN-LINE PACKAGE (TOP VIEW)** 

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM2902 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ± 15-volt supplies.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, Vcc (see Note 1)										 
Differential input voltage (see Note 2)										 ±26 V
Input voltage range (either input)										 -0.3 V to 26 V
Duration of output short-circuit (one a	mplifi	ier) to	ground	d at (or	below	) 25°C				
free-air temperature (V _{CC} $\leq$ 15	V) (se	e Not	e3).							 unlimited
Continuous total dissipation at (or belo	ow) 25	i°C fr	ee-air te	emperat	ure (se	e Note 4	<b>1)</b> .			 900 mW
Operating free-air temperature range										 -40°C to 85°C
Storage temperature range										 -65°C to 150°C
Lead temperature 1/16 inch from case	for 60	secor	nds: J p	ackage						 300°C
Lead temperature 1/16 inch from case	for 10	secor	nds: N į	oackage						 260°C
NOTES: 1. All voltage values, except differential	voltage	s, are v	with resp	ect to th	e netw	ork grour	id term	inal.	ninal	

Differential voltages are at the noninverting input terminal with resp

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 For operation above 25° C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPE LM2902 QUADRUPLE OPERATIONAL AMPLIFIER

### electrical characteristics at 25°C free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITION	IS [†]	MIN	түр	MAX	UNIT
VIO	Input offset voltage	V ₀ = 1.4 V				2	10	mV
10	Input offset current	V ₀ = 1.4 V				5	50	nA
ПВ	Input bias current	V _O = 1.4 V	See Note 5			-45	500	nA
VICR	Common-mode input voltage range	V _{CC} = 24 V			0 to V _{CC} -1.5			v
Vau	High level output voltage	V _{CC} = 24 V,	RL = 2 kΩ		20			V
чон	High-level output vortage	V _{CC} = 24 V,	R _L ≥ 10 kΩ		21			l v
VOL	Low-level output voltage	R _L < 10 kΩ				5	20	mV
AVD	Large-signal differential voltage amplification	V _{CC} = 15 V,	R _L ≥2kΩ,	V ₀ = 1 V to 11 V		100		V/mV
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ				85		dB
ΔV _{CC} /ΔV _{IO}	Supply voltage rejection ratio	R _S ≤ 10 kΩ				100		dB
	Amplifier-to-amplfiier coupling	f = 1 kHz to 20 kHz				-120		dB
		V _{CC} = 15 V,	V _{ID} = 1 V,	V ₀ = 0 V	-20	-40		
10	Output current	V _{CC} = 15 V,	$V_{1D} = -1 V$ ,	V ₀ ≈ 2.5 V	12	30		mA
		V _{ID} = -1 V,	V _O = 200 mV		8	20		
1cc	Supply current (four amplifiers)	No load,	No signal			0.8	2	mA

[†]All characteristics are specified under open-loop conditions.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

### TYPICAL APPLICATION DATA



#### AUDIO DISTRIBUTION AMPLIFIER

f

# **TEXAS INSTRUMENTS**

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIMI IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE

# LINEAR INTEGRATED CIRCUITS

- Wide Range of Supply Voltages Single Supply . . . 3 V to 26 V or Dual Supplies
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Typ
- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground

schematic (each amplifier)



#### description

This device consists of two independent, high-gain, frequency-compensated operational amplifiers that were designed specifically to operate from a single supply as in automotive systems. Operation from split supplies is also possible so long as the difference between the two supplies is 3 volts to 26 volts and Pin 8 is at least 1.5 volts more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM2904 can be operated directly off of the standard five-volt supply that is used in digital systems and will easily provide the required interface electronics without requiring additional ±15-volt supplies.

### TYPE LM2904 DUAL OPERATIONAL AMPLIFIER

BULLETIN NO. DL-S 7612402, JUNE 1976

- Low Input Bias and Offset Parameters Input Offset Voltage...2 mV Typ Input Offset Current...5 nA Typ Input Bias Current...45 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ± 26 V
- Open-Loop Differential Voltage Amplification . . . 100 V/mV Typ
- Maximum Peak-to-Peak Output Voltage Swing . . . VCC-1.5 V Typ
- Internal Frequency Compensation









### **TEXAS INSTRUMENTS**

### TYPE LM2904 OPERATIONAL AMPLIFIER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)       26 V         Differential input voltage (see Note 2)       ±26 V         Input voltage range (either input)       -0.3 V to 26 V	,
Duration of output short-circuit (one amplifier) to ground at (or below) 25° C free-air temperature (V _{CC} ≤ 15 V) (see Note 3)	1
Operating free-air temperature range       -40°C to 85°C         Lead temperature 1/16 inch from case for 60 seconds:       JG or L package       300°C         Lead temperature 1/16 inch from case for 10 seconds:       P package       260°C	

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

4. For operation above 25°C free air temperature, refer to Dissipation Derating Curves, Section 2.

### electrical characteristics at 25°C free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	TES	ST CONDITION	s†	MIN	түр	MAX	UNIT
VIO	Input offset voltage	V _O = 1.4 V				2	10	mV -
10	Input offset current	V _O = 1.4 V				5	50	nA
I _{IB}	Input bias current	V _O = 1.4 V	See Note 5			45	-500	nA
	Common-mode input	V 24 V			0 to			v
VICR	voltage range	VCC - 24 V			V _{CC} -1.5			-
		V _{CC} = 24 V,	RL = 2 kΩ		20			v
∣∨он	High-level output voltage	V _{CC} = 24 V,	$R_L \ge 10 \ k\Omega$		21			
VOL	Low-level output voltage	R _L ≤ 10 kΩ				5	20	mV
	Large-signal differential	V == = 15 V	B. > 2 KO	Vo = 1 V to 11 V		100		V/mV
AVD	voltage amplification	VCC - 15 V,	n[ ≥ 2 k32,	•0 ••••				
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ				85		dB
AVCC/AVIO	Supply voltage rejection ratio	R _S ≤ 10 kΩ				100		dB
	Amplifier-to-amplfiier coupling	f = 1 kHz to 20 kHz				-120		dB
		V _{CC} = 15 V,	V _{ID} = 1 V,	V ₀ = 0 V	-20	-40		1
10	Output current	V _{CC} = 15 V,	V _{ID} = -1 V,	V ₀ = 2.5 V	12	30		_ mA
-		V _{ID} = -1 V,	V _O = 200 mV		8	20		
1cc	Supply current (both amplifiers)	No load,	No signal			0.5	1.2	mA

[†]All characteristics are specified under open-loop conditions.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

### TYPICAL APPLICATION DATA



SELECT VALUES FOR:

Q C1 and C2 where C1 = C2  $\omega_0 = 2\pi f_0$ 

»о-2л К

K is selected to optimize sensitivity and is typically between 1 and 10. CALCULATE:

R

$$1 = R3 = R5 = \frac{Q}{\omega_0 C}$$

$$R2 = \frac{R1}{Q - 1 - \frac{2}{K} + \frac{1}{K \cdot Q}}$$

$$R4 = \frac{R1 \cdot K \cdot Q}{2Q - 1}$$

$$R6 = K \cdot R1$$

#### MULTIPLE-FEEDBACK ACTIVE BANDPASS FILTER

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringament. TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POS

### LINEAR INTEGRATED CIRCUITS

### **TYPES MC1558, MC1458 DUAL GENERAL-PURPOSE** OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7611457, FEBRUARY 1971-REVISED JUNE 1976

- Short-Circuit Protection
- Wide Common-Mode and **Differential Voltage Ranges**
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up
- Designed to be Interchangeable with Motorola MC1558/MC1458 and Signetics \$5558/N5558

#### description

The MC1558 and MC1458 are dual general-purpose operational amplifiers with each half electrically similar to uA741 except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are shortcircuit protected and the internal frequency compensation ensures stability without external components.

The MC1558 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C: the MC1458 is characterized for operation from  $0^{\circ}$ C to 75°C.



JG OB P

#### L PLUG-IN PACKAGE (TOP VIEW)



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		MC1558	MC1458	UNIT	
		22	18	v	
		22	-18	v	
		±30	±30	v	
		±15	±15	v	
Duration of output short-circuit (see Note 4)					
Each amplifier		500	500		
Total paskage	JG or P package	680	680	mW	
Total package	L package	625	625		
		-55 to 125	0 to 75	°c	
		-65 to 150	-65 to 150	°C	
	JG or L package	300	300	°c	
Lead temperature 1/16 inch from case for 10 seconds			260	°c	
	Each amplifier Total package	Each amplifier Total package L package JG or L package JG or L package P package	MC1558         22          22        22           ± 30         ± 15           unlimited         500           Total package         JG or P package         680           L package         625         -55 to 125           -55 to 150         -65 to 150         -65 to 150           JG or L package         200         260	MC1558         MC1458           22         18           -22         -18           -30         30           ±15         ±15           unlimited         unlimited           Each amplifier         500         500           Total package         625         625           L package         625         625           -55 to 125         0 to 75           -65 to 150         -65 to 150           JG or L package         300           P package         260         260	

FORMERLY SN52558, SN72558

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between  $V_{\mbox{CC+}}$  and  $V_{\mbox{CC-}}$ 
  - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
  - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
  - 4. The output may be shorted to ground or either power supply. For the MC1558 only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature,
  - 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPES MC1558, MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

					MC1558			MC145	8	UNIT
	PARAMETER	TEST CON	DITIONST	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	leave offert voltage	$B_0 \leq 10 k\Omega$	25° C		1	5		1	6	mV
×10	input offset voltage	15 4 10 10	Full range			6			7,5	
	loout offcat current		25°C		20	200		20	200	nA
10	Input offset current		Full range			500			300	
	lanut kins surrant		25°C		80	500		80	500	nA
'IB	Input bias current		Full range			1500			800	
N/-	lagut voltage range		25°C	± 12	±13		±12	±13		v
v1	The voltage range		Full range	±12			±12			
		$R_L = 10 k\Omega$	25° C	24	28		24	28		
	Maximum peak-to-peak	$R_L \ge 10 k\Omega$	Full range	24			24			v
VOPP	output voltage swing	RL = 2 kΩ	25° C	20	26		20	26		
		R _L ≥2kΩ	Full range	20			20			
	Large-signal differential	$R_L \ge 2 k\Omega$ ,	25°C	50	200		20	200		
AVD	voltage amplification	V _O = ±10 V	Full range	25			15			• /
		$R_L = 2 k\Omega$ ,								
	Maximum-output-swing	Vo≥±10V,	ar°o		14			14		kHz
BOM	bandwidth (closed-loop)	AVD = 1,	25 C		14					
		THD < 5%								
B1	Unity-gain bandwidth		25°C		1			1		MHz
φm	Phase margin	AVD = 1	25°C	1	65°			65°		
A	Gain margin		25°C		11			11		dB
r;	Input resistance		25°C	0.3	2		0.3	2		MΩ
<u></u>		$V_0 = 0,$	0.00		76			75		0
ro	Output resistance	See Note 6	25.0		/5			75		
C:	Input capacitance		25°C		1.4			1.4		pF
-1	Common-mode		area		200			200		MO
zic	input impedance	t ≈ 20 Hz	25 C		200			200		
			25°C	70	90		70	90		dB
CMRR	Common-mode rejection ratio	$R_{S} \le 10 k\Omega$	Full range	70			70			40
			25°C	1	30	150		30	150	
ΔV10/ΔVCC	Supply voltage sensitivity	$R_S \leq 10 k\Omega$	Full range			150			150	
		AVD=100,								
	Equivalent input	Rs = 0.						45		N/ /
vn	noise voltage	f = 1 kHz,	25°C		45			45		1
	(closed-loop)	BWI=1Hz								
105	Short-circuit output current		25°C	1	±25	±40		± 25	±40	mA
.03	Supply current	No load,	25°C		3.4	5		3.4	5.6	mA
'cc	(Both amplifiers)	No signal	Full range			6.6			6.6	
	Total power dissipation	No load,	25°C	1	100	150		100	170	mW
PD	(Both amplifiers)	No signal	Full range			200			200	
V AV a	Channel separation	1	25°C	1	120			120		dB
*01/*02	onamer acparation	1		1			A			_

# electrical characteristics at specified free-air temperature, $V_{CC+} = 15 V$ , $V_{CC-} = -15 V$

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for MC1558 is -55°C to 125°C and for MC1458 is 0°C to 75°C.

NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

## operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = $25^{\circ}$ C

<b></b>		MC1558			1		UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
te	Rise time	$V_{I} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$		0.3			0.3		μs
	Overshoot factor	CL = 100 pF, See Figure 1		5%			5%		
		$V_{I} = 10 V$ , $R_{L} = 2 k\Omega$ ,		0.5			0.5		V/us
SR	Slew rate at unity gain	C _L = 100 pF, See Figure 1		0.5			0.0		

TYPES MC1558, MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



PARAMETER MEASUREMENT INFORMATION



AND SLEW RATE

### TYPES MC1558,MC1458 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



### TYPICAL CHARACTERISTICS

Printed in U.K.

**TEXAS INSTRUMENTS** 

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT AI IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT F

#### LINEAR INTEGRATED **TYPES RM4136, RC4136** CIRCUITS QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612368, MARCH 1976

- **Continuous-Short-Circuit Protection**
- Wide Common-Mode and **Differential Voltage Ranges**
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up
- Unity Gain Bandwidth 3 MHz Typical
- Gain and Phase Match Between Amplifiers
- Designed to be Interchangeable with Raytheon RM4136 and RC4136

### description

The RM4136 and RC4136 are guad high-performance operational amplifiers with each amplifier electrically similar to uA741 except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are shortcircuit protected and the internal frequency compensation ensures stability without external components.

The RM4136 is characterized for operation over the full military temperature range of -55°C to 125°C; the RC4136 is characterized for operation from 0°C to 70°C

# J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		RM4136	RC4136	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	V
Supply voltage V _{CC-} (see Note 1)		22	18	V
Differential input voltage (see Note 2)		±30	±30	l v
Input voltage (any input, see Notes 1 and 3)		±15	±15	V
Duration of output short-circuit to ground, one amplifier at a t	ime (See Note 4)	unlimited	unlimited	
Continuous total dissipation at (or below) 25°C free-air temper	ature (see Note 5)	800	800	mW
Operating free-air temperature range		-55 to 125	0 to 70	°c
Storage temperature range		-65 to 150	-65 to 150	°c
Lead temperature 1/16 inch from case for 60 seconds	J package	300	300	°c
Lead temperature 1/16 inch from case for 10 seconds	N package	260	260	°c

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPES RM4136, RC4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

						RM4136	3		RC4136		UNIT
	PARAMETER	ļ	TEST CON	DIFIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				25° C		0.5	5		0.5	6	m\/
VIO	Input offset voltage		$H_{S} \leq 10 \text{ k}\Omega$	Full range			6			7.5	
				25° C		5	200		5	200	n A
10	Input offset current			Full range			500			300	
				25° C		40	500		40	500	
ПВ	Input bias current			Full range			1500			800	
VI	Input voltage range			25° C	±12	±14		±12	±14		V
			R _L = 10 kΩ	25°C	24	28		24	28		
VOPP	Maximum peak-to-p	eak	$R_L = 2 k\Omega$	25°C	20	26		20	26		V
011	output voltage swin	a	R _L ≥2kΩ	Full range	20			20			
	Large-signal differen	ntial	$R_L \ge 2 k\Omega$ ,	25°C	50	350		20	300		V/mV
AVD	voltage amplificatio	n	V _O = ±10 V	Full range	25			15			•////•
B1	Unity-gain bandwid	th		25°C	2	3.5			3		MHz
ri .	Input resistance			25°C	0.3	5		0.3	5		MΩ
CMRR	Common-mode reje	ction ratio	R _S ≤ 10 kΩ	25° C	70	90		70	90		dB
ΔVIO/ΔVCC	Supply voltage sensi	itivity	R _S ≤ 10 kΩ	25° C		30	150		30	150	μV/V
			A _{VD} = 100,								
	Equivalent input		Rs = 1 kΩ,	25°C		10			10		nV/s/H
۷n	noise voitage		f = 1 kHz,	25 0							
	(closed-loop)		BW = 1 Hz								
			Also local	25°C		5	11.3		5	11.3	1
lcc	Supply current		No load,	MINTA		6	13.3		6	13.7	mA
	(All four amplifiers)	,	NO signal	MAX TA		4.5	10		4.5	10	
				25°C		150	340		150	340	
Pn	Total power dissipa	tion	No load,	MINTA		180	400		180	400	mW
5	(All four amplifiers)	)	No signal	MAX TA		135	300		135	300	
		Open loop	Rs=1kΩ	25°C		105			105		dB
Vo1/Vo2	Channel separation	Avp = 100	f = 10 kHz	25°C		105			105		

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for RM4136 is -55°C to 125°C and for RC4136 is 0°C to 70°C.

### operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = $25^{\circ}$ C

				RM4130	3		RC4136			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	01411	
t _r	Rise time	$V_{I} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$ $C_{L} = 100 \text{ pF}$		0.13			0.13		μs	
SR	Slew rate at unity gain	$V_{I} = 10 V$ , $R_{L} = 2 k\Omega$ , $C_{L} = 100 pF$		1.5			1.0		V/µs	

### schematic (each amplifier)



Printed in U.K.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT PO

# LINEAR INTEGRATED TYPES RM4558, RC4558 CIRCUITS DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612365, MARCH 1976

- Continuous-Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up
- Unity Gain Bandwidth 3 MHz Typical
- Gain and Phase Match Between Amplifiers
- Designed to be Interchangeable with Raytheon RM4558 and RC4558

#### description

The RM4558 and RC4558 are dual general-purpose operational amplifiers with each half electrically similar to uA741 except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are shortcircuit protected and the internal frequency compensation ensures stability without external components.

The RM4558 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the RC4558 is characterized for operation from 0°C to 70°C.



I PLUG IN PACKAGE



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		RM4558	RC4558	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	V
Supply voltage V _{CC} (see Note 1)		-22	-18	v
Differential input voltage (see Note 2)	±30	±30	V	
Input voltage (any input, see Notes 1 and 3)	±15	±15	v	
Duration of output short-circuit to ground, one amplifier at a time (see	unlimited	unlimited		
Continuous total dissipation at (or below)	L Package	600	600	
25°C free-air temperature (see Note 5)	JG or P Package	680	680	mW
Operating free-air temperature range		-55 to 125	0 to 70	°c
Storage temperature range		65 to 150	-65 to 150	°c
Lead temperature 1/16 inch from case for 60 seconds	JG or Ł package	300	300	°c
Lead temperature 1/16 inch from case for 10 seconds	P package	260	260	°c

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPES RM4558, RC4558 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

						RM4558	3		RC4558		UNIT
	PARAMETER		TEST CON	DITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
Vio	Input offset voltage		Rs ≤ 10 kΩ	25° C		0.5	5		0.5	6	mV
*10			3	Full range	ļ		6			7.5	
he	Input offset current			25°C		5	200		5	200	nA
10	input on set content			Full range			500			300	
1	Input bist current			25°C		40	500		40	500	nA
чв	Input bias current			Full range			1500			800	
V _I	Input voltage range			25°C	±12	±14		±12	±14		V
	Mandaman analysis a		$R_L = 10 k\Omega$	25°C	24	28		24	28		
VOPP	Maximum peak-to-p	eak	$R_L = 2 k\Omega$	25° C	20	26		20	26		V
•	output voltage swing	9	R _L ≥2kΩ	Full range	20			20			
	Large-signal differen	tial	R _L ≥2kΩ,	25° C	50	350		20	300		11-11
AVD	voltage amplification	n	V _O = ±10 V	Full range	25			15			v/mv
B ₁	Unity-gain bandwidt	th		25°C	2	3.5			3		MHz
ri .	Input resistance			25° C	0.3	5		0.3	5		MΩ
CMRR	Common-mode reje	ction ratio	R _S < 10 kΩ	25°C	70	90		70	90		dB
	Supply voltage sensi	tivity	R _S < 10 kΩ	25° C		30	150		30	150	μV/V
v _n	Equivalent input noise voltage (closed-loop)		A _{VD} = 100, R _S = 1 kΩ, f = 1 kHz, BW = 1 Hz	25°C		10			10		nV/√Hz
				25°C		2.5	5.6		2.5	5.6	
lcc	Supply current		No load,	MIN TA		3.0	6.6		3.0	6.6	mA
	(Both amplifiers)		No signal	MAX TA		2.0	5		2.3	5	1
				25°C		75	170		75	170	
PD	Total power dissipat	tion	No load,	MINTA		90	200		90	200	mW
-	(Both amplifiers)		NO signal	MAXTA		60	150		70	150	]
		Open loop	$R_S = 1 k\Omega$ ,	25°C		105			105		dB
Vo1/Vo2	Channel separation	A _{VD} = 100	f = 10 kHz	25°C	1	105			105		ן שי

### electrical characteristics at specified free-air temperature, VCC+ = 15 V, VCC- = -15 V

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for RM4558 is -55°C to 125°C and for RC4558 is 0°C to 70°C.

### operating characteristics, VCC+ = 15 V, VCC- = -15 V, TA = 25°C

PARAMETER		TEST COMPLETIONS		RM4558	;		LINIT				
		TEST CONDITIONS	MIN	TYP MAX		MIN TYP MAX		UNIT			
tr	Rise time	$V_1 = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$		0.13			0.13		μs		
	Overshoot	C _L = 100 pF		5%			5%				
<b>C</b> D	Slaverate at unity min	$V_{I} = 10 V$ , $R_{L} = 2 k\Omega$ ,	1.5		15				1.0		V/us
an	Slew rate at unity gain	C _L = 100 pF				.,,					

#### schematic (each amplifier)



Printed in U.K.

# **LINFAR** INTEGRATED CIRCUITS

# TYPES TL022M, TL022C **DUAL LOW-POWER OPERATIONAL AMPLIFIERS**

BULLETIN NO. DL-S 7612038, SEPTEMBER 1973-REVISED JUNE 1976

### FORMERLY SN52L022 SN72L022

- Very Low Power Consumption
- Typical Power Dissipation with ±2-V Supplies . . . 170 µW
- Low Input Bias and Offset Currents
- **Output Short-Circuit Protection**
- Low Input Offset Voltage . Internal Frequency Compensation
- Latch-Up-Free Operation
- Popular Dual Op Amp Pin-Out

#### description

The TL022 is a dual low-power operational amplifier designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use.

.

The TL022M is characterized for operation over the full military temperature range of -55°C to 125°C; the TL022C is characterized for operation from 0°C to 70°C.

### terminal assignments



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

			TL022M	TL022C	UNIT
Supply voltage V _{CC+} (see Note 1)			22	18	V
Supply voltage V _{CC} (see Note 1)			22	-18	V
Differential input voltage (see Note 2)			±30	± 30	V
Input voltage (any input, see Notes 1 and 3)	±15	±15	v		
Duration of output short-circuit (see Note 4)	unlimited	unlimited			
Continuous total dissinction at (or below) 25°C	Each amplifier		500	500	
free air temperature range (see Note 5)	Total peakees	JG or P package	680	680	mW
(see Note 5)	Total package	L package	625	625	
Operating free-air temperature range			-55 to 125	0 to 70	°C
Storage temperature'range			-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	300	300	°C		
Lead temperature 1/16 inch from case for 10 seconds		P package	260	260	°c

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero-reference level (ground) of the supply voltage where the zero-reference level is the midpoint between V_{CC+} and V_{CC-}. If the zero-reference level of the system is not the midpoint of the supply voltages, all voltage values must be changed accordingly.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

4. The output may be shorted to ground or either power supply. For the TL022M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

# TYPES TL022M, TL022C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

					TL022	N	-	rL022C		UNIT
	PARAMETER	TEST CON	DITIONS	MIN	ТҮР	MAX	MIN	түр	MAX	UNIT
		5 11010	25°C		1	5		1	5	mV
VIO	Input offset voltage	R _S ≤ 10 kΩ	Full range			6			7.5	
			25° C		5	40		1`5	80	nΔ
10	Input offset current		Full range			100			200	
			25° C		50	100		100	250	nA
ів	Input bias current		Full range			250			400	
			25° C	±12	±13		±12	±13		l v
V ₁	Input voltage range		Full range	±12			±12			· ·
	Maximum peak-to-peak	$R_L = 10 k\Omega$	25°C	20	26		20	26		V
VOPP	output voltage swing	$R_L \ge 10 k\Omega$	Full range	20			20			
	Large-signal differential	$R_L \ge 10 k\Omega$ ,	25°C	72	86		60	80		dB
AVD	voltage amplification	V _O = ±10 V	Full range	72			60			00
B1	Unity-gain bandwidth		25°C		0.8			0.8		MHz
		D < 1010	25°C	60	72		60	72		dB
CMRR	Common-mode rejection ratio	HS = 10 KM	Full range	60			60			
		0 < 10 10	25° C		30	150		30	200	
ΔV _{IO} /ΔV _{CC}	Supply voltage sensitivity	HS ≈ 10 K32	Full range			150			200	".,,,
		A _{VD} = 20 dB,								
Vn	Equivalent input noise voltage	B = 1 Hz,	25° C		50			50		nV/√H
		f = 1 kHz								
los	Short-circuit output current		25° C		±6			±6	~~~	mA
	Supply current	No load,	25°C		130	200		130	250	A
ICC	(Both amplifiers)	No signal	Full range			200	<u> </u>		250	
-	Total dissipation	No load,	25° C		3.9	6		3.9	7.5	mW
PD	(Both amplifiers)	No signal	Full range	1		6			7.5	

### electrical characteristics at specified free-air temperature, VCC+ = 15 V, VCC- = -15 V

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for TL022M is  $-55^{\circ}$ C to  $125^{\circ}$ C and for TL022C is 0^oC to  $70^{\circ}$ C.

### operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = $25^{\circ}$ C

DADAMETER		TEST CONDITIONS			TL022	N		UNIT						
	PARAMETER	TEST CONDITIONS	1	MIN	TYP	MAX	MIN	TYP	MAX	0.411				
tr	Rise time	V ₁ = 20 mV, R _L = 10 k	2,		0.3			0.3		μs				
	Overshoot factor	CL = 100 pF, See Figure	1	5%		5%		6						
		V _I = 10 V, R _L = 10 k	$V_{I} = 10 V$ , $R_{L} = 10 k\Omega$ , $0.5$		0.5		0.5		0.5 0.5			0.5		Vlue
SR	Slew rate at unity gain	C _L = 100 pF, See Figure	1	0.5				• / #5						



# TYPES TL022M, TL022C DUAL LOW-POWER OPERATIONAL AMPLIFIERS

### schematic



Printed in U.K.

TI cannot assume any responsibility for any circuits shown

or represent that they are free from patent infringement.

EXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME 4 ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE. **TEXAS INSTRUMENTS** 

# LINEAR INTEGRATED CIRCUITS

# TYPES TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612039, SEPTEMBER 1973-REVISED JUNE 1976

### FORMERLY SN52L044, SN72L044

- Very Low Power Consumption
- Typical Power Dissipation with ±2-V Supplies . . . 340 μW
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection

### description

The TL044 is a quad low-power operational amplifier designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use. Power may be applied separately to Section A (amplifiers 1 and 4) or Section B (amplifiers 2 and 3) while the other pair remains unpowered.

The TL044M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the TL044C is characterized for operation from 0°C to 70°C.

- Low Input Offset Voltage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- Power Applied in Pairs

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)



Pins 4 and 12 are internally connected together in the N package only.

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL044M	TL044C	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	v
Supply voltage V _{CC} (see Note 1)		-22	-18	v
Differential input voltage (see Note 2)		±30	±30	v
Input voltage (any input, see Notes 1 and 3)	•	± 15	±15	v
Duration of output short-circuit (see Note 4)	unlimited	unlimited		
Continuous total dissipation at (or below) 25°C	Each amplifier	500	500	
free-air temperature range (see Note 5)	Total package	680	680	11100
Operating free-air temperature range	**************************************	-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	J Package	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	N Package	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero-reference level (ground) of the supply voltage where the zero-reference level is the midpoint between V_{CC+} and V_{CC+}. If the zero-reference level of the system is not the midpoint of the supply voltage values must be changed accordingly.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or either power supply. For the TL044M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### TYPES TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS

		TEST CON	DITIONS	1	L044M			TL0440	2	
	PARAMETER	TESTCON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
N		B- < 10 kg	25°C		1	5		1	5	
V10	input onset vortage	nS < 10 K32	Full range			6			7.5	mv
1	1		25°C		5	40		15	80	- 4
10	input onset current		Full range			100			200	nA
	I		25°C		50	100		100	250	
ЧВ	Input bias current		Full range			250			400	nA
			25°C	±12	±13		±12	±13		
VI I	Input voltage range		Full range	±12			±12			v
	Maximum peak-to-peak	$R_{L} = 10 k\Omega$	25°C	20	26		20	26		
VOPP	output voltage swing	R _L ≥ 10 kΩ	Full range	20			20			v
A	Large-signal differential	R _L ≥ 10 kΩ,	25°C	72	86		60	80		-10
AVD	voltage amplification	V _O = ±10 V	Full range	72			60			ав
^B 1	Unity-gain bandwidth		25°C		0.8			0.8	_	MHz
CMPP	Common mode rejection ratio	B- < 10 k0	25°C	60	72		60	72		-10
CIMINA	Common-mode rejection ratio	ng = 10 ksz	Full range	60			60			08
AV. = / AV. =	Supply voltage consistivity	P= < 10 k0	25°C		30	150		30	200	MA
4410/4400	Supply voltage sensitivity	ng = 10 ksz	Full range			150			200	μν/ν
		A _{VD} = 20 dB,								
V _n	Equivalent input noise voltage	B = 1 Hz,	25°C		50			50		nV/√Hz
		f = 1 kHz								
los	Short-circuit output current		25°C		±6			±6		mA
1	Supply current	No load,	25°C		250	400		250	500	
100	(Four amplifiers)	No signal	Full range	1		400			500	μΑ
0	Total dissipation	No load,	25°C		7.5	12	1	7.5	15	
	(Four amplifiers)	No signal	Full range	1		12	1		15	1 mW

### electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} = -15 V

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for TL044M is  $-55^{\circ}$ C to  $125^{\circ}$  and for TL044C is 0°C to 70°C.

### operating characteristics, $V_{CC+} = 15 V$ , $V_{CC-} = -15 V$ , $T_A = 25^{\circ}C$

PARAMETER		TEST CON	-	TLO44N	1						
	PARAMETER	TEST COM	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
tr	Rise time	V ₁ = 20 mV,	nV, $R_L = 10 k\Omega$ , 0.3 0.3							μs	
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%			5%			
CD.	Slow rate at unity gain	$V_{I} = 10 V$ , $R_{L} = 10 k\Omega$ , 0.5		0.5		0.5		0.5		Mine	
Sh	Siew rate at unity gain	C _L = 100 pF,	See Figure 1		0.5			0.5		vγμs	

# TYPES TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS



#### schematic (each section)



Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TII IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIB

### TEXAS INSTRUMENTS

### FUTURE PRODUCT TO BE ANNOUNCED

### TYPES TLO81AC AND TLO81C JFET-INPUT OPERATIONAL AMPLIFIERS

**JUNE 1976** 

- JFET Input Stage
- High Input Impedance. . . 10⁹ Ω Typ
- High Slew Rate Typically 9 V/µs
- Low Input Bias Current . . . 2 nA Typ
- Low Input Offset Current . . . 0.2 nA Typ
- No Frequency Compensation Required
- Continuous-Short-Circuit Protection
- Unity Gain Bandwidth . . . 3 MHz Typ
- No Latch-Up
- Low Power Consumption

#### description

This monolithic JFET-input operational amplifier incorporates well-matched, high-voltage BI-FET technology (JEET's on the same chip with standard bipolar transistors). The device features low input bias and offset currents, low offset voltage and offset voltage temperature coefficient, coupled with offset adjustment that does not degrade temperature coefficient or common-mode rejection.

The TL081C is characterized for operation from 0°C to 70°C.



NC-No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)		: .				18 V
Supply voltage V _{CC} (see Note 1)						. –18 V
Differential input voltage (see Note 2)						±30 V
Input voltage (see Notes 1 and 3)						±15 V
Duration of output short-circuit (see Note 4)						unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)						. 670 mW
Operating free-air temperature range				•	. (	D°C to 70°C
Storage temperature range					-65	°C to 150°C
Lead temperature 1/16 inch from case for 60 seconds: JG or L package						300°C
Lead temperature 1/16 inch from case for 10 seconds: P package	÷					260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, R_{#CA}, of not more than 105°C/W.

TENTATIVE DATA SHEET This document provides tentative information TEXAS INSTRUMENTS

on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

# TYPES TLO81AC AND TLO81C JFET-INPUT OPERATIONAL AMPLIFIERS

### electrical characteristics, $V_{CC\pm} = \pm 15 \text{ V}$ , $T_A = 25^{\circ} \text{C}$ (unless otherwise noted)

		7507.0	NOUTIONAT		TL0814	AC .		UNIT		
	PARAMETER	TEST CO	DNDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
N		R _S = 50 Ω				6		10	15	m)/
V10	input onset voltage	R _S = 50 Ω,	T _A = full range	1		7.5		13	20	
۹VIO	Temperature coefficient of input offset voltage	R _S = 50 Ω,	T _A = full range		10			10		µV/°C
1	Input offert surrent				0.2	0.5		0.2	0.5	
10	input onset correct	T _A = full range			0.4	1		0.4	1	
l	Input bies ourroot				2	4		2	4	
18	input bias current	T _A = full range			3	6		3	6	
	Common mode input			+12			+10			
VICR	common-mode input			to			to			v
	vortage range			-12			-10			
	Maximum peak-to-peak	T = full man	R _L ≥ 10 kΩ	24	26		24	26		V
VOPP	output voltage swing	IA - Iuli range	R _L ≥2kΩ	20			20			ľ
A	Large-signal differential	R _L = 10 kΩ,	T _A = 25°C	25	200		25	200		MmM
~~0	voltage amplification	V _O = ±10 V	T _A = full range	15			15			
rj	Input resistance				10°			10°		Ω
CMRR	Common-mode rejection ratio	R _S = 10 kΩ		70	90		70	90		dB
*SVR*	Supply voltage rejection ratio			70	80		70	80		dB
1.0.0	Europhy auroant	No load,	T _A = 25°C		2	4		2	4	
'CC	Supply current	No signal	T _A = full range		3	6		3	6	mA

 $k_{SVR} = \Delta V_{CC\pm} / \Delta V_{IO}$ 

[†]All characteristics are specified under open-loop operation, unless otherwise noted. Full range for T_A is 0°C to 70°C.

### operating characteristics, V_{CC} = $\pm$ 15 V, T_A = 25° C

	PADAMETED	TEOT	TEST CONDITIONS			AC				
	FARAMETER	. 1531	MIN	TYP	MAX	MIN	түр	MAX	UNIT	
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF	R _L = 2 kΩ,		9			9		V/µs
# FUTURE PRODUCT TO BE ANNOUNCED

## TYPE TLO84C QUAD JFET-INPUT OPERATIONAL AMPLIFIER

JUNE 1976

- High Input Impedance JFET Input Stage
- Continuous-Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Gain and Phase Match Between Amplifiers
- High Slew Rate . . . 9 V/µs Typ

#### description

The TL084 is a monolithic quadruple JFET-input operational amplifier. The high slew rate, high input impedance, and low input bias and offset currents make this device excellent for high-speed analog applications. The output circuitry has been carefully



balanced and symmetrically connected to minimize offset. This device is compatible with the LM324, MC3403, and HA4741 quadruple operational amplifier pinout.

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+}	18 V
Supply voltage, V _{CC}	–18 V
Input voltage	±15 V
Continuous total dissipation at (or below) 25°C free-air temperature	500 mW
Operating free-air temperature range	$0^{\circ}C$ to $70^{\circ}C$
Storage temperature range	-65°C to 150°C

#### electrical characteristics

		MIN	ТҮР	MAX	UNIT
Input offset voltage:	at 25°C		10	15	mV
	over temperature range			20	mV
Temperature coefficie	nt of input offset voltage		10		μV/°C
Input offset current:	at 25°C		0.2	0.5	nA
	over temperature range			1	nA
Input bias current:	at 25°C		2	4	nA
	over temperature range			6	nA
Maximum peak to pea	k output voltage swing at 25°C	. 24	26		v
Large signal differenti	al voltage amplification: at 25°C	. 25	200		V/mV
	over temperature range	. 15			V/mV
Common-mode reject	on ratio	. 70	90		dB
Supply voltage rejection	on ratio	. 70	80		dB
Supply current per an	plifier		2	4	mA

TENTATIVE DATA SHEET

This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice. Texas Instruments

### LINEAR INTEGRATED CIRCUITS

# TYPES TLO891, TLO89C CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

3 MHz Tvp

Voltage Ranges

175 dB Tvp

BULLETIN NO. DL-S 7612421, JUNE 1976

**Output Short-Circuit Protection** High Slew Rate . . . 10 V/µs Typ

High Gain-Bandwidth Product . . .

Wide Common-Mode and Differential

Very High Voltage Amplification . . .

- Very Low Input Offset Voltage . . . 25 to 50 µV Typ
- Very Low Input Offset Voltage Temperature Coefficient . . . 0.2 uV/°C
- Very Low Input Bias Current . . . 150 pA Typ
- Very Low Input Offset Current . . . 100 to 200 pA Typ .
- Very Low Input Offset Current Temperature Coefficient . . . 2 pA/°C

#### description

The TLO89 high-performance chopper-stabilized operational amplifier features superior input offset voltage, input offset voltage temperature coefficient, input bias and offset current characteristics, and excellent dynamic performance when compared with conventional amplifiers. The inputs of the TL089 are symmetrical and differential, meaning that the device may be operated in any conventional op-amp feedback configuration. Applications include high-gain dc instrumentation, precision integrators, and as a substitute for other operational amplifiers wherever much lower errors without external adjustments are reguired. The TL089 can replace the Harris HA2900 series of devices in most applications. It is available in an eight-pin hermetic plug-in package with standard pin-out and requires only three capacitors for operation.

The TL089I is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C and the TL089C from  $0^{\circ}$ C to  $70^{\circ}$ C.

# INVERTING INPUT - OUTPUT NONINVERTING INPUT - CF Сѕн FIGURE 1

#### functional block diagram

L PLUG-IN PACKAGE





# TYPES TL089I, TL089C CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL0891	TL089C	UNIT
Supply voltage, V _{CC+} (see Note 1)	20	20	V
Supply voltage, V _{CC-} (see Note 1)	-20	-20	V
Differential input voltage (see Note 2)	±15	±15	V
Input voltage (any input, see Notes 1 and 3)	±15	±15	V
Duration of output short-circuit (see Note 4)	unlimited	unlimited	
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)	625	625	mW
Operating free-air temperature range	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	300	300	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero-reference level (ground) of the supply voltages where the zero-reference level is the midpoint between V_{CC+} and V_{CC-}. If the zero-reference level of the system is not the midpoint of the supply voltages all voltages values must be changed accordingly.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

- 4. The output may be shorted to ground or either power supply.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### recommended operating conditions

	TL	0891	TLO	LINUT	
	MIN	MAX	MIN	MAX	
Supply voltage, V _{CC+}	10	20	10	20	V
Supply voltage, V _{CC-}	-10	-20	-10 °	-20	v
Operating free-air temperature, T _A	-25	85	0	70	°C



FIGURE 2-TYPICAL GAIN CONFIGURATION SHOWING EXTERNAL COMPONENTS

# TYPES TLO891, TLO89C CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

					TL089	Î		TL089	с	
	PARAMETER	TEST COM	DITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
			25° C		25	50		50	150	
VIO	Input offset voltage		Full range			80			200	μv
	Average temperature									
°VI0	coefficient of input		Full range		0.2			0.2		µV/°C
	offset voltage									
			25°C		100	300		200	600	-
10	Input offset current		Full range			600			1000	
	Average temperature									
°110	coefficient of input		Full range		2			2		pA/°C
	offset current									
			25° C		150	500		150	1000	pА
IВ	Input bias current		Full range			10			15	nA
	Common-mode input		25° C	. 10			110			v
VICR	voltage range		25 C	1 10			110			v
Vor	Maximum peak-to-peak	B. = 240	25° C	20	24		20	24		V
VOPP	output voltage swing	n[ - 2 ksz	25 0	20	24		20	24		
A	Large-signal differential $R_L = 2 k\Omega$ ,	25°C	100	175		100	175		dB	
AVD	voltage amplification	V _O = ±10 V	25 C	100	175		100	175		
fch	Chopper frequency		25°C		400			400		Hz
B ₁	Unity-gain bandwidth		25° C		3		L	3		MHz
r _i	Input resistance		25°C		100			100		MΩ
ro	Output resistance		25° C		200			200		Ω
01100	Common-mode	D < 10 10	25° C	80			80			db
CMRR	rejection ratio	IS € 10 K32	25 C				00			
	Supply voltage	B- < 10 k0	25°0							dB
KSVR [*]	rejection ratio	HS \$ 10 K32	25 C	80			80			ub
	Short-circuit output		25°C	10	20		10	20		mA
os	current		25 C		20			20		A
1	Supply ourrest	No load,	25° C		6	10		6	10	mA
'CC	Supply current	No signal	250		0	10		0	10	

#### electrical characteristics at specified free-air temperature, $V_{CC+} = 15 V$ , $V_{CC-} = -15 V$

* $k_{SVR} = \Delta V_{CC}/\Delta V_{10}$ . *Full range for the TL089I is -25°C to 85°C and for the TL089C 0°C to 70°C. All characteristics are measured with external components

### operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, C_T = 1500 pF, C_F = C_{SH} = 0.1 $\mu$ F, T_A = 25°C

				TL089	1		UNIT		
	PARAMETER	AMETER TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate	A _V = 1	10			10			V/µs
	Maximum-output-	N	160						
BOM	swing bandwidth	VOM ≥ ±10 V					KHZ		

### TYPES TLO89I, TLO89C CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

#### PRINCIPLES OF OPERATION

Traditional integrated operational amplifiers have inherent problems that cause inaccuracies in many of the dc and very-low-frequency applications of these devices. The maior problems are:

- 1. Input offset voltage
- 2. Thermally-induced change of input offset voltage
- 3. Input offset current
- 4. Thermally-induced change of input offset current
- 5. Gain deficiencies
- 6. Input resistance effects

Chopper stabilization is a technique that is effective in substantially reducing the initial and long-term input offset voltage, input-offset-voltage drift and gain deficiencies. Other circuit techniques can be utilized to reduce the effects of offset current, offset-current drift, and input resistance effects.

Most chopper-stabilized amplifiers feature singleended, inverting operation. These are available as bulky modular devices fabricated by discrete or hybrid approaches. For space-critical applications, or for applications requiring the noninverting or common-mode configuration, the traditional chopper-stabilized amplifiers are not suitable. The TL089 is an effective application of chopperstabilization techniques to an integrated circuit design. It is fabricated in a popular standard package and incorporates a unique differential-input configuration that permits common-mode input voltages and application in inverting or noninverting configurations. Circuit techniques and state-of-the-art technologies have been combined to provide low input bias current, low input offset current, low offsetvoltage temperature coefficient and drift, and very high input resistance.

The following discussion is provided to familarize the user with chopper-stabilization techniques. For simplicity, the technique will be described first by reference to a simplified single-ended chopper-stabilized amplifier. Principles will then be extended to the TL089 differential-input integrated-circuit operation amplifier.

The general approach to chopper stabilization is accomplished by processing low-frequency signal components separately from the higher-frequency components. This is illustrated in Figure 3. The upper signal path passes higher-frequency (>100 hertz, for example) signal components directly. These higher-frequency components are amplified directly by the



FIGURE 3-SIMPLIFIED BLOCK DIAGRAM OF TYPICAL DISCRETE CHOPPER STABILIZED OPERATIONAL AMPLIFIER

### Texas Instruments

### TYPES TLO89I, TLO89C CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

wide-band amplifier. A1. The low-frequency components (<100 hertz in this example) are processed through the lower signal path - the chopper channel. The low-frequency signal is periodically shunted to ground by the action of the input chopper. The resulting waveform at the output of this chopper is amplified by applying it to the ac amplifier, A2. After amplification, the signal is demodulated in synchronism with the input chopper switch to restore the proper dc level. A low-pass filter smooths the demodulated signal and attenuates any noise created by the demodulation switch. The resultant low-frequency signal is finally amplified by the high-frequency amplifier, A1. The chopper path, therefore, processes the low-frequency signal components by converting them to higher-frequency ac signals, amplifying them, and finally converting them back to low-frequency components by demodulation. This technique reduces the offset and drift of amplifier A1 by the gain of the chopper amplifier. Overall low-frequency gain is a combination of the gain of the higher frequency and lower frequency channels.

This chopper-stabilization technique results in extremely high low-frequency gains and extremely low voltage offset. Since reduction in offset-voltage change does not depend on cancellation of change due to matched components, the chopper-stabilized amplifier is relatively immune to change due to thermal effects. Long-term-drift stability is also excellent. High-frequency characteristics are primarily a function of the high-frequency amplifier, A1.

The above description is an example of a typical discrete chopper-stabilized operational amplifier with a single-ended input stage.

Operation of the TL089 may be explained by referring to Figure 1. Amplifier A1 is a high-frequency amplifier featuring a unity-gain bandwidth

of 3 MHz and a unity-gain slew rate of 10 volts per microsecond. Frequency compensation is internal.

The low-frequency input signals are "chopped" by the differential input chopper periodically shorting the differential inputs together. During this interval of time, the offsets of amplifiers A2, A3, and other system errors are cancelled out. The sample-hold capacitor, CSH, holds this condition during the next interval of time, while the input chopper couples the offset voltage of A1 to the input of A2. After amplification by A2 and A3, this signal is demodulated by the synchronous demodulator.

The output of amplifier A4 is used to null the initial offset of amplifier A1. This nulling is accomplished at a point in the input stage of A1 that is similar to the external null-offset terminals of a conventional integrated-circuit operational amplifier. The chopper-stabilization circuit samples and nulls the offset of A1 at a 750-Hz rate, thereby effecting an almost continuous correction of offset. While A2 and A3 are in a state of auto-zero, capacitor CF retains the previous correction voltage at the input of A4.

Using the basic differential-input chopper stabilization technique described above results in input voltage offset and drift much superior to conventional integrated-circuit operational amplifiers. A review and comparison will also reveal input current, input offset current, bandwidth, slew rate, and voltage amplification superior to these amplifiers.

The TL089 represents dramatic increases in performance and make possible application in critical designs where only discrete or modular designs could be utilized previously. A reduction in cost and increase in reliability make this device ideal for these applications in addition to applications where periodic or initial calibration can now be eliminated.

Printed in U.K.

# LINEAR INTEGRATED CIRCUITS

# TYPES TL702M, TL702C **GENERAL-PURPOSE OPERATIONAL AMPLIFIERS**

BULLETIN NO. DL-S 7612407, JUNE 1976

#### **FORMERLY SN52702, SN72702**

schematic

- Open-Loop Voltage Amplification . . . 2600 Typ
- CMRR . . . 80 dB Typ

#### description

The TL702 is a high-gain, wideband operational amplifier having differential inputs and single-ended emitter-follower outputs. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. Component matching, inherent in silicon monolithic circuit-fabrication techniques, produces an amplifier



with low-drift and low-offset characteristics. The TL702 is particularly useful for applications requiring transfer or generation of linear and non-linear functions up to a frequency of 30 MHz.

The TL702M is characterized for operation over the full military temperature range of -55°C to 125°C. The TL702C is characterized for operation over the temperature range of 0°C to 70°C.



#### NC-No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL702M	TL702C	UNIT
		14	14	v
		-7	-7	V
		±5	±5	V
put voltage (either input, see Notes 1 and 3)			-6 to 1.5	V
		50	50	mA
nperature (see Note 4)		300	300	mW
	-	55 to 125	0 to 70	°C
	-	65 to 150	-65 to 150	°C
J, L, or U package		300	300	°C
N package		260	260	°C
	nperature (see Note 4) J, L, or U package N package	nperature (see Note 4) 	TL702M 14 -7 ±5 -6 to 1.5 50 -6 to 1.5 50 -65 to 125 -65 to 150 J, L, or U package N package 260	TL702M     TL702C       14     14       -7     -7       ±5     ±5       -6 to 1.5     -6 to 1.5       50     50       50     50       -55 to 125     0 to 70       -65 to 150     -65 to 150       J, L, or U package     300       N package     260

NOTES: 1, All voltage values, unless otherwise noted, are with respect to the network ground terminal,

Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. 2. з.

The magnitude of the input voltage must never exceed the magnitude of the lesser of the two supply voltages For operation of TL702M above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2. 4

### TL702M

#### electrical characteristics at specified free-air temperature

								TL7	02M			
	BADAMETED	TEST		ONG	t	٧c	C+ = 1	2 V	٧c	C+ = 6	v	UNIT
	FARAMETER		1 0010111	0143		Vc	c_ = -	6 V	Vcc		3 V	0.0.0
						MIN	TYP	MAX	MIN	TYP	MAX	
N/ O	Input offert voltage	Ba < 2kg			25°C		2	5		2	5	my
*10	input offset vortage	115 4 2 8.11			Full range			6			6	
2010	Average temperature coefficient	Be = 50 Ω		-55	°C to 25°C		10			10		uv °c
~~10	of input offset voltage			25°	C to 125°C		5			5		
					25°C		0.5	2		0.3	2	
10	Input offset current				-55°C		1	3			3	μA
					125°C		0.2	3			3	
210	Average temperature coefficient			-55	5°C to 25°C		6			5		nA/°C
4110	of input offset current			25°	C to 125°C		3			2		1747 0
1.0	Input bies current				25°C		4	10		2.5	7	
18					–55°C		6.5	20			14	
V.	loout voltage range	Positive swing			25° C	0.5	1		0.5	1		- v
*1	input voltage range	Negative swing			200	-4	-5		-1.5	-2		v
Von	Maximum peak-to-peak	$R_L > 100 k\Omega$				10	10.6		5	5.4		v
VOPP	output voltage swing	$R_{L} = 10 k\Omega$					8			4		L.
	I area signal differential	I	Vo = +E	v	25° C	1400	2600					
AVD	Large-signal differential	R _L > 100 kΩ	> 100 kΩ VO = ±5		Full range	1000						
			$V_0 = \pm 2.$	5 V	25°C				380	700		
					25°C	8	25		12	40		10
ri	Input resistance			Full ran		3			4			K32
ro	Output resistance	V _O = 0, See Note 3		3	25°C		200	500		300	700	Ω
CMRR	Common-mode rejection ratio	R _S ≤2kΩ			25°C	70	80		70	80		dB
$\Delta V_{10} / \Delta V_{CC}$	VIO/AVCC Supply voltage sensitivity		$R_{S} \leq 2 k \Omega$		25°C		60	300		60	300	μV/V
1cc	Supply current	No load,	No signal		25°C	1	5	6.7		2.1	3.9	mA
PD	Total power dissipation	No load,	No signal		25°C		90	120		19	35	mW

[†]All characteristics are specified under open-loop operation. Full range for TL702M is -55°C to 125°C.

NOTE 3: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TL702C

### electrical characteristics at specified free-air temperature, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$

DADAMETER			CONDITIONS	+		L702	С	UNIT
	PARAMETER	TES	CONDITIONS		MIN	TYP	MAX	UNIT
		0 < 210		25°C		5	10	m1/
VIO	Input offset voltage	HS = 2 K32		Full Range			15	mv
	Average temperature coefficient	Ro - 50.0		Full Bange		5		uV/°C
avio	of input offset voltage	NS - 50 11		i un mange				<b>μ</b> ., ο
	Inc. A offert evenent			25°C		0.5	5	
01	Input offset current			Full Range			7.5	
	Average temperature coefficient			0°C to 25°C		5		DA/°C
°110	of input offset current					3		11-17
				25°C		4	15	
18	Input bias current	ascurrent		0°C		4.5	20	
	Input voltage range	Positive swing		25%	0.5	1		l v
VI		Negative swing		25 0	-4	-5		Ň
	Maximum peak-to-peak	B > 100 h 0		25° C	10	10.6		V
VOPP	output voltage swing	HT > 100 K32	HL > 100 K32			10.0		Ľ
	Large-signal differential	B. > 100 kO	Va = + 5 V	25°C	1000	2600		
AVD	voltage amplification	HL = 100 K32,	AO = 22 A	Full Range	800			1
				25°C	6	25		1.0
ri	Input resistance			Full Range	3.5			KS2
ro	Output resistance	V _O = 0,	See Note 3	25°C		200	600	Ω
CMRR	Common-mode rejection ratio	R _S ≤ 2 kΩ		25°C	65	80		dB
ΔV10/ΔV0	C Supply voltage sensitivity	R _S ≤ 2 kΩ		25°C		60	300	$\mu V/V$
1cc	Supply current	No load,	No signal	25°C		5	7	mA
PD	Total power dissipation	No load,	No signal	25°C		90	125	mW

[†]All characteristics are specified under open-loop operation. Full range for TL702C is 0°C to 70°C. NOTE 3: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

#### TL702M, TL702C

#### operating characteristics V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

[		TEST	TEAT CONDITIONS		BOTH TY	UNIT	
	PARAMETER	FIGURE	TEST CONDITIONS	M	ΙΝ ΤΥΡ	MAX	UNIT
	8	1	V ₁ = 10 mV, C _L = 0		25	120	ns
tr	Hise time	2	V _I = 1 mV		10	30	ns
		1	V _I = 10 mV, C _L = 100 pF		10%	50%	
	Overshoot factor	2	V ₁ = 1 mV		20%	40%	
	Slew rate	1	V _I = 6 V, C _L = 100 pF		1.7		Mus
SH		2	V _I = 100 mV		11		V/µs

PARAMETER MEASUREMENT INFORMATION



FIGURE 1-UNITY-GAIN AMPLIFIER

,



FIGURE 2-GAIN-OF-100 AMPLIFIER

RL

ns)

V_{CC+} = 12 V V_{CC-} = -6 V R_L = 100 kΩ T_A = 25°C

100 M

10 M

TYPICAL CHARACTERISTICS



Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

KAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

### LINEAR INTEGRATED CIRCUITS

# TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER

BULLETIN NO. DL-S 7612408, JUNE 1976

#### FORMERLY SN52702A

schematic

- Open-Loop Voltage Amplification . . . 3600 Typ
- Designed to be Interchangeable With Fairchild µA702
- CMRR . . . 100 dB Typ

#### description

The uA702 is a high-gain, wideband operational amplifier having differential inputs and single-ended emitter-follower outputs. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. Component matching, inherent in silicon monolithic circuit-fabrication techniques, produces an amplifier



with low-drift and low-offset characteristics. The uA702 is particularly useful for applications requiring transfer or generation of linear and non-linear functions up to a frequency of 30 MHz.

The uA702M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C.

#### terminal assignments



NC-No internal connection

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)	14 V
Supply voltage V _{CC-} (see Note 1)	-7 V
Differential input voltage (see Note 2)	±5 V
Input voltage (either input, see Notes 1 and 3) $\ldots \ldots	.5 V
Peak output current ( $t_W \leq 1$ s)	) m A
Continuous total dissipation at (or below) 70°C free-air temperature (see Note 4)	mW
Operating free-air temperature range	25°C
Storage temperature range $-65^{\circ}$ C to 15	50°C
Lead temperature 1/16 inch from case for 60 seconds: J, L, or U package	00°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the lesser of the two supply voltages.

4. For operation above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### electrical characteristics at specified free-air temperature

							2+ = 1	2 V	V _{CC+} = 6 V			
	PARAMETER	TEST	CONDITIO	NST		Vcc	- = -	6 V	Vcc		3 V	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
14.0		Bac 2k0		2	5°C		0.5	2		0.7	3	m\/
*10	input offset voltage	ng \$ 2 ku		F	uil range			3			4	in v
~~~~	Average temperature coefficient	Bc = 50 0		-55°	C to 25°C		2	10		3	15	"ver
avio	of input offset voltage	115 - 50 12		25° C	to 125°C		2.5	10		3.5	15	μ•/ C
				2	5°C		0.2	0.5		0.12	0.5	
10	Input offset current			-	55°C		0.4	1.5		0.3	1.5	μA
				1	25°C		0.08	0.5		0.05	0.5	
aug	Average temperature coefficient			-55°	C to 25°C		3	16		2	13	nA/°C
-110	of input offset current		25°0		to 125°C		1	5		0.7	4	
1.0	- Input him ourrant		2	5°C		2	5		1.2	3.5	uА	
					55°C		4.3	10		2.6	7.5	
V.	Inout voltage range	Positive swing		2	5°C	0.5	1		0.5	1		v
		Negative swing				-4	-5		1.5	-2		
		R ₁ ≥ 100 kΩ		2	5°C	10	10.6		5	5.4		
V _{OPP}	Maximum peak-to-peak				ull range	10			5			v
	output voltage swing	R _L = 10 kΩ			5°C	7	8		3	4		•
		$R_{L} \ge 10 k\Omega$		F	ull range	7			3			
			Vo = ±5 V	2	5°C	2500	3600	6000				
AVD	Large-signal differential	B ₁ ≥ 100 kΩ		F	ull range	2000		7000				
	voltage amplification		Vo = +25 V	$v \mid^2$	5°C				600	900	1500	
		v0 = -		F	ull range				500		1750	
r.	I pout resistance			2	5°C	16	40		22	67		kΩ
				F	ull range	6			8			
ro	Output resistance	V _O = 0,	See Note 3	2	5°C		200	500		300	700	Ω
CMBB	Common-mode rejection ratio	Be ≤ 2 kΩ		2	5°C	80	100		80	100		dB
L				F	ull range	70			70			
AVIOLAVO	Supply voltage sensitivity	Rc≤2kΩ		2	5°C	ļ	75		I	75		v/v_
	, output voicage sensitivity			F	ull range			200			200	
				2	5°C		5	6.7		2.1	3.3	1
1cc	Supply current	No load,	No signal	-	-55°C		5	7.5		2.1	3.9	mA
				1	25°C		4.4	6.7	-	1.7	3.3	
				2	5°C	ļ	90	120	ļ	19	30	1
PD	Total power dissipation	No load,	No signal		-55°C		90	135		19	35	mW
			•				80	120	1	15	30	1

[†]All characteristics are specified under open-loop operation. Full range is -55°C to 125°C.

NOTE 3: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25° C

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYP MAX	UNIT
		1	V _I = 10 mV, C _L = 0	25 120	ns
tr	Rise time	2	V _I = 1 mV	10 30	ns
		1	V _I = 10 mV, C _L = 100 pF	10% 50%	
1	Overshoot factor	2	V ₁ = 1 mV	20% 40%	
		1	VI = 6 V, CL = 100 pF	1.7	Mun
SR	Slew rate	2	V _I = 100 mV	11] v/µs

TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-UNITY-GAIN AMPLIFIER

FIGURE 2-GAIN-OF-100 AMPLIFIER

TYPE uA702M GENERAL-PURPOSE OPERATIONAL AMPLIFIER

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

S INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME RDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

LINEAR INTEGRATED CIRCUITS

TYPES uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7611447, FEBRUARY 1971-REVISED JUNE 1976

FORMERLY SN52709A, SN52709, SN72709

- Common-Mode Input Range . . . ± 10 V Typical
- Designed to be Interchangeable with Fairchild µA709A, µA709, and µA709C
- Maximum Peak-to-Peak Output Voltage Swing . . . 28 V Typical with 15 V Supplies

description

schematic

These circuits are general-purpose operational amplifiers, each having high-impedance differential inputs and a low-impedance output. Component matching, inherent with silicon monolithic circuit-fabrication techniques, produces an amplifier with low-drift and low-offset characteristics. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. These amplifiers are particularly useful for applications requiring transfer or generation of linear or nonlinear functions.

The uA709A circuit features improved offset characteristics, reduced input-current requirements,

and lower power dissipation when compared to the uA709 circuit. In addition, maximum values of the average temperature coefficients of offset voltage and current are guaranteed.

The uA709AM and uA709M are characterized for operation over the full military temperature range of -55° C to 125°C. The uA709C is characterized for operation from 0°C to 70°C.

NC-No internal connection

voltages specified

Throughout this data sheet, supply voltages are specified either as a range or as a specific value. A positive voltage within the specified range (or of the specified value) is applied to V_{CC+} , and an equal negative voltage is applied to V_{CC-} .

TYPES uA709AM, uA709M, uA709C General-purpose operational amplifiers

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA709AM uA709M	uA709C	UNIT
Supply voltage V _{CC+} (see Note 1)		18	18	V
Supply voltage V _{CC} (see Note 1)		- 18	-18	V
Differential input voltage (see Note 2)		±5	±5	V
Input voltage (either input, see Notes 1 and 3)		±10	±10	V
Duration of output short-circuit (see Note 4)		5	5	s
Continuous total dissipation at (or below) 70°C free-air tempe	rature (see Note 5)	300	300	mW
Operating free-air temperature range		-55 to 125	0 to 70	°c
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L, or U package	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	N or P package	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC+ and VCC-.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 10 volts, whichever is less.

4. The output may be shorted to ground or either power supply.

5. For operation of uA709AM and uA709M above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

electrical characteristics at specified free-air temperature, $V_{CC\pm} = \pm 9 V$ to $\pm 15 V$ (unless otherwise noted)

		TEO		unt.		JA709A	м	uA709M			UNIT
	PARAMETER	TES	CONDITION	15'	MIN	TΥΡ‡	MAX	MIN	TYP‡	MAX	
		0. < 1010		25°C		0.6	2		1	5	
V10	Input offset voltage	HS & TO KSZ		Full range			3			6	1
	A	Rs = 50 Ω		Full range		1.8	10		3		
ανιο	Average temperature coefficient	0		-55°C to 25°C		4.8	25		6		µV/°C
	of input offset voltage	HS = 10 K32		25°C to 125°C		2	15		6		1
				25°C		10	50		50	200	1
10	Input offset current			-55°C		40	250		100	500	nA
				125°C		3.5	50		20	200	
	Average temperature coefficient			-55°C to 25°C		0.45	2.8				anec.
α11O	of input offset current			25°C to 125°C		0.08	0.5				
				25°C		0.1	0.2		0.2	0.5	
IB	Input bias current			-55°C		0.3	0.6		0.5	1.5	μμ
		Non ALEN		25°C	±8	±10		±8	±10		
VI.	Input voltage range	ACC7 = 712 A		Full range	±8			±8			L.
		Vec. = +15.V	P. > 10 kG	25°C	24	28		24	28		
	Maximum peak-to-peak	VCC± = 115 V,	NE > 10 KS	Full range	24			24			
VOPP	output voltage swing	V _{CC±} = ±15 V,	$R_L = 2 k\Omega$	25°C	20	26		20	26		1.
		V _{CC1} = ±15 V,	R _L ≥2kΩ	Full range	20			20			L
	Large-signal differential	$V_{CC\pm} = \pm 15 V$,	R _L ≥ 2 kΩ	25°C		45			45		J v mv
AVD	voltage amplification	V _O = ±10 V		Full range	25		70	25		70	0,1110
				25°C	350	750		150	400		10
r)	Input resistance			-55°C	85	185		40	100		
ro	Output resistance	V _O = 0,	See Note 6	25°C		150			150		Ω
CHER	Common made minution ratio	Bac 10 k0		25°C	80	110		70	90		dB
CMINH	Common-mode rejection ratio	NS < 10 K32		Full range	80			70			
A	0	Ra < 10 KO		25°C		40	100		25	150	1.00/0
2010/20	CC Power supply sensitivity	NS ~ 10 K32		Full range			100			150	
		Vec. = +15.V	Neload	25°C		2.5	3.6		2.6	5.5	1
ICC .	Supply current	VCC1 = 115 V,	No load,	-55°C		2.7	4.5				mA
		INO Signal		125°C		2.1	3				
		V	No lood	25°C		75	108		78	165	1
PD	Total power dissipation	VCC± - ± 15 V.	NO IOdu,	-55°C		81	135				mW
		INO signal		125°C		63	90				

[†]All characteristics are specified under open-loop operation. Full range for uA709AM and uA709M is -55°C to 125°C.

[‡]All typical values are at $V_{CC\pm} = \pm 15 V$.

Note 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

TYPES uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

	PARAMETER		CT CONDITIONO	+		uA7090	;	
		16	•	MIN	TYP	MAX		
Vio	Inout offset voltage	$V_{CC\pm} = \pm 9 V to$	±15 V,	25°C		2	7.5	
10		R _S ≤ 10 kΩ		Full range			10	1 mv
Lio Input offset current Voc. = +0		No 10111-		25°C		100	500	
		vCC ⁺ = ±9 v to	± 15 V	Full range			750	nA
lin	Input bias current		1E V	25°C		0.3	1.5	
.10		VCC± - ±9 V 10	± 15 V	Full range			2	μΑ
VI	Input voltage range			25°C	±8	±10		V
		$B_{\rm b} > 10 k \Omega$		25°C	24	28		
Von	Maximum peak-to-peak	11 × 10 × 12		Full range	24			1
• 0 P P	output voltage swing	$R_L = 2 k\Omega$		25°C	20	26		ľ
		R _L ≥2kΩ		Full range	20			1
A	Large-signal differential	B < 210		25°C	15	45		
~~~	voltage amplification	n[ < 2 k32,	v0 = ± 10 v	Full range	12			V/mV
r.	Input resistance			25°C	50	250		
'1	input resistance			Full range	35			kΩ
r _o	Output resistance	V _O = 0,	See Note 6	25°C		150		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ		25°C	65	90		dB
$\Delta V_{10} / \Delta V_{0}$	CC Supply voltage sensitivity	R _S ≤ 10 kΩ		25°C		25	200	μV/V
PD	Total power dissipation	No load,	No signal	25°C	-	80	200	mW

[†]All characteristics are specified under open-loop operation. Full range for uA709C is 0°C to 70°C.

NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

#### operating characteristics V_{CC $\pm$} = $\pm$ 9 V to $\pm$ 15 V, T_A = 25°C

PARAMETER		TEST CONDITIONS					uA709AM uA709M uA709C			
						MIN	TYP	MAX		
tr	t _r Rise time		P. = 240	See Eigure 1	C _L = 0		0.3	1	μs	
	Overshoot factor	01-20110,		See rigure i	C _L = 100 pF		6%	30%		

#### PARAMETER MEASUREMENT INFORMATION



INPUT VOLTAGE WAVEFORM



FIGURE 1-RISE TIME AND SLEW RATE

### TYPES uA709AM, uA709M, uA709C General-Purpose operational amplifiers



### TYPES uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



### TYPES uA709AM, uA709M, uA709C General-Purpose operational Amplifiers





uA709C

VOLTAGE TRANSFER

FIGURE 20



NORMALIZED FREQUENCY CHARACTERISTICS



Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POS

### LINEAR INTEGRATED CIRCUITS

### TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7611363, NOVEMBER 1970-REVISED JUNE 1976

# FORMERLY SN52741, SN72741

- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-up

#### description

The uA741 is a general-purpose operational amplifier, featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The uA741M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the uA741C is characterized for operation from 0°C to 70°C.

#### schematic



COMPONENT VALUES SHOWN ARE NOMINAL

#### terminal assignments



NC-No internal connection

# TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA741M	uA741C	UNIT
Supply voltage Voc+ (see Note 1)		22	18	V
Supply voltage VCC (see Note 1)		-22	- 18	v
Differential input voltage (see Note 2)		+ 30	+ 30	V
Input voltage (either input, see Notes 1 and 3)		±15	±15	v
Voltage between either offset null terminal (N1/N2) and VCC.	an	±0.5	±0.5	v
Duration of output short-circuit (see Note 4)		unlimited	unlimited	
Continuous total power dissipation at (or below) 25°C free-air	temperature (see Note 5)	500	500	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	· °C
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L, or U package	300	300	°C
Land seconds 1/16 inch from case for 10 seconds	N or P package	260	260	°C

Lead temperature 1/16 inch from case for 10 seconds [Notifications] 200 200 200 200 NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}.

Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

4. The output may be shorted to ground or either power supply. For the uA741M only, the unlimited duration of the short-

circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### electrical characteristics at specified free-air temperature, VCC+ = 15 V, VCC- = -15 V

	DADAMETER		DITIONS		uA741M			uA741C		
	PARAMETER	TESTCON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	
		-	25°C		1	5		1	6	mV
VIO	Input offset voltage	$R_{S} \le 10 k\Omega$	Full range			6			7.5	
ΔV1Ω(adi)	Offset voltage adjust range		25°C		±15			±15		mV
Totadi			25°C		20	200		20	200	nΑ
10	Input offset current	1	Full range			500			300	
			25°C		80	500		80	500	ΠA
Iв	Input bias current		Full range			1500			800	
			25°C	±12	±13		±12	±13		v
V ₁	Input voltage range		Full range	±12			±12			
		R _L = 10 kΩ	25° C	24	28		24	28		
	Maximum peak-to-peak	$R_L \ge 10 k\Omega$	Full range	24			24			
VOPP	output voltage swing	$R_L = 2 k\Omega$	25°C	20	26		20	26		1.
		$R_L \ge 2 k\Omega$	Full range	20			20			
	Large-signal differential	$R_L \ge 2 k\Omega$ ,	25°C	50	200		20	200		V/mV
AVD	voltage amplification	V _O = ±10 V	Full range	25			15			
ri	Input resistance		25°C	0.3	2		0.3	2		MΩ
ro	Output resistance	V _O = 0 V, See Note 6	25°C		75			75		Ω
C:	Input capacitance		25°C		1.4			1.4		pF
			25°C	70	90		70	90		48
CMRR	Common-mode rejection ratio	$H_S \leq 10 \text{ k}\Omega$	Full range	70			70			00
			25°C		30	150		30	150	
∆VIO/∆VCC	Supply voltage sensitivity	HS < 10 KS2	Full range			150			150	μ.,.
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA
	-	No load,	25°C		1.7	2.8		1.7	2.8	mA
1cc	Supply current	No signal	Full range			3.3			3.3	1.00
		No load,	25°C		50	85		50	85	w
PD	Total power dissipation	No signal	Full range			100			100	1

[†]All characteristics are specified under open-loop operation. Full range for uA741M is -55°C to 125°C and for uA741C is 0°C to 70°C. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

### TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

### operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = $25^{\circ}$ C

PARAMETER		TEST CONDITIONS	uA741M			uA741C			
		TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
tr	Rise time	$V_{I} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$		0.3			0.3		μs
	Overshoot factor	CL = 100 pF, See Figure 1		5%			5%		
SR	Slew rate at unity gain	$V_{I} = 10 V$ , $R_{L} = 2 k\Omega$ , $C_{I} = 100 pF$ , See Figure 1		0.5			0.5		V/µs

#### PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE

#### TYPICAL APPLICATION DATA



FIGURE 2-INPUT OFFSET VOLTAGE NULL CIRCUIT

## TYPES uA741M, uA741C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



#### TYPICAL CHARACTERISTICS

Printed in U.K.

# **TEXAS INSTRUMENTS**

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSS

# LINEAR INTEGRATED CIRCUITS

### TYPES uA747M, uA747C **DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS**

BULLETIN NO. DL-S 7611446, FEBRUARY 1971-REVISED JUNE 1976

#### FORMERLY SN52747, SN72747

- No frequency Compensation Required
- Low Power Consumption
- **Short-Circuit Protection**
- Offset-Voltage Null Capability

#### description

The uA747 is a dual general-purpose operational amplifier featuring offset-voltage null capability. Each half is electrically similar to uA741.

The high common-mode input voltage range and the absence of latch-up make this amplifier ideal for voltage-follower applications. The device is shortcircuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The uA747M is characterized for operation over the full military temperature range of  $-55^{\circ}C$  to  $125^{\circ}C$ ; the uA747C is characterized for operation from 0°C to 70°C.

#### schematic (each amplifier)



- No Latch-up
- Designed to be Interchangeable with Fairchild µA747 and µA747C

J OR N DUAL-IN-LINE OR W FLAT PACKAGE (TOP VIEW)



EPEUG-IN

PACKAGE (TOP VIEW)



## TYPES uA747M, uA747C DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

			uA747M	uA747C	UNIT
Supply voltage V _{CC+} (see Note 1)			22	18	v
Supply voltage V _{CC} (see Note 1)			-22	-18	V
Differential input voltage (see Note 2)			± 30	±30	V
Input voltage any input (see Notes 1 and 3)			±15	±15	V
Voltage between any offset null terminal (N1/N2) a	nd V _{CC} -		±0.5	±0.5	V
Duration of output short-circuit (see Note 4)			unlimited	unlimited	
	Each amplifier		500	500	
Continuous total dissipation at (or below) 25°C	<b>T</b>	J, N, or W package	800	800	mW
free-air temperature (see Note 5)	Total package	L package	625	625	
Operating free-air temperature range			-55 to 125	0 to 70	°C
Storage temperature range			-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 second	ds	J, L, or W package	300	300	°c
Lead temperature 1/16 inch from case for 10 second	ds	N package	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where

the zero reference level is the midpoint between VCC+ and VCC-

Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

 The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
The output may be shorted to ground or either power supply. For the uA747M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

5. For operation above 25°C free-air temperature and for total package ratings, refer to Dissipation Derating Curves, Section 2,

#### electrical characteristics at specified free-air temperature, VCC+ = 15 V, VCC- = -15 V

		TEAT OO	DITIONS		uA747M			uA747C		LINUT
	PARAMETER	TEST CO	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	1	B- < 10 kg	25°C		1	5		1	6	mV
V10	Input offset voltage	HS € TO K32	Full range			6			7.5	1
∆VIO(adj)	Offset voltage adjust range		25°C		±15			±15		mV
			25°C	1	20	200		20	200	
10	Input offset current		Full range			500			300	
	La cut bias access		25°C		80	500		80	500	
18	Input blas current		Full range			1500			800	
			25°C	±12	±13		±12	±13		V
VI	Input voltage range		Full range	+12			±12			1 V
		RL = 10 kΩ	25°C	24	28		24	28		
	Maximum peak-to-peak	$R_L \ge 10 \ k\Omega$	Full range	24			24			
VOPP	output voltage swing	RL = 2 kΩ	25°C	20	26		20	26		, v
		$R_L \ge 2 k\Omega$	Full range	20			20			
A	Large-signal differential	$R_L \ge 2 k\Omega$ ,	25°C	50	200		25	200		V/mV
200	voltage amplification	V _O = ±10 V	Full range	25			15			••
ri -	Input resistance		25°C	0.3	2		0.3	2		MΩ
ro	Output resistance	V _O = 0 V, See Note 6	25° C		75			75		Ω
Ci	Input capacitance		25° C		1.4			1.4		pF
CMPP	Common mode rejection ratio	P- < 10 kg	25°C	70	90		70	90		dB
CIVILLE	Common-mode rejection ratio	nS ≈ 10 K32	Full range	70			70			UD .
AN - / AN	C	B- < 10 kO	25''C		30	150		30	150	
4V10/4VCC	Supply voltage sensitivity	HS & TO KSZ	Full range			150			150	μ0/0
los	Short-circuit output current		25° C		± 25	: 40		± 25	± 40	mA
1	Supply current	No load,	25°C		1.7	2.8		1.7	2.8	
'CC	(each amplifier)	No signal	Full range			3.3			3.3	
<b>D</b> _	Power dissipation	No load,	25° C		50	85		50	85	
۶D	(each amplifier)	No signal	Full range			100			100	
V ₀₁ /V ₀₂	Channel separation		25° C		120			120		dB

[†] All characteristics are specified under open loop operation. Full range for uA747M is  $-55^{\circ}$ C to  $125^{\circ}$ C and for uA747C is  $0^{\circ}$ C to  $70^{\circ}$ C. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

# TYPES uA747M, uA747C DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

operation		15  v,  vcc = -15  v,  12	4 - 23	C					
PARAMETER		TEST CONDITIONS	uA747M						
	FANAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
tr	Rise time	$V_1 = 20 \text{ mV}, R_L = 2 \text{ k}\Omega,$		0.3			0.3		μs
	Overshoot factor	CL = 100 pF, See Figure 1		5%			5%		
S B	Slow rate at unity gain	$V_{I} = 10 V$ , $R_{L} = 2 k\Omega$ ,		0.5			0.5		
511	Siew fate at unity gain	CL = 100 pF, See Figure 1		0.5			0.5		V/μs

### operating characteristics, $V_{CC+} = 15 \text{ V}$ , $V_{CC-} = -15 \text{ V}$ , $T_A = 25^{\circ}C$

PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT FIGURE 1-RISE TIME, OVERSHOOT, AND SLEW RATE





FIGURE 2-INPUT OFFSET VOLTAGE NULL CIRCUIT

# TYPES uA747M, uA747C DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



#### TYPICAL CHARACTERISTICS

Printed in U.K.

### **TEXAS INSTRUMENTS**

It cannot assume any responsibility for any circuits shown or represent that they are free from potent infringement. TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY T NO ROBER TO IMPROVE DESION AND TO SUPPLY THE BEST PRODUCT POSSI

# LINEAR INTEGRATED CIRCUITS

### TYPES uA748M, uA748C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7611418, DECEMBER 1970-REVISED JUNE 1976

#### FORMERLY SN52748, SN72748

•

- Frequency and Transient Response Characteristics Adjustable
- Short-Circuit Protection
- Offset-Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-up

schematic

Same Pin Assignments as uA709

#### description

The uA748 is a general-purpose operational amplifier. It offers the same advantages and desirable features as the uA741 with the exception of internal compensation. The external compensation of the uA748 allows the changing of the frequency response (when the closed-loop gain is greater than unity) for applications requiring wider bandwidth or higher slew rate. This circuit features high gain, large differential and common-mode input voltage range, output shortcircuit protection, and may be compensated under unity-gain conditions with a single 30-pF capacitor. A potentiometer may be connected between the offset null inputs, as shown in Figure 12, to null out the offset voltage.

The uA748M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the uA748C is characterized for operation from 0°C to 70°C.



Resistor values shown are nominal and in ohms.



#### terminal assignments

NC-No internal connection

# TYPES uA748M, uA748C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA748M	uA748C	UNIT
Supply voltage V _{CC+} (see Note 1)		22	18	V
Supply voltage V _{CC} (see Note 1)		-22	-18	V
Differential input voltage (see Note 2)		±30	±30	V
Input voltage (either input, see Notes 1 and 3)		±15	±15	V
Voltage between either offset null terminal (N1/N2) and $V_{CC-}$		-0.5 to 2	-0.5 to 2	V
Duration of output short-circuit (see Note 4)		unlimited	unlimited	
Continuous total power dissipation at (or below) 25°C free-air	temperature (see Note 5)	500	500	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L, or U package	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	N or P package	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the

zero reference level is the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

4. The output may be shorted to ground or either power supply. For the uA748M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### electrical characteristics at specified free-air temperature, V_{CC+} = 15 V, V_{CC-} =-15 V, C_C = 30 pF

PARAMETER		TEST CONDITIONS [†]		uA748M			uA748C			LINUT
				MIN	TYP	MAX	MIN	TYP	MAX	
v _{i0}	Input offset voltage	R _S ≤ 10 kΩ	25°C		1	5		1	6	
			Full range			6			7.5	mv
110	Input offset current		25°C		20	200		20	200	nA
			Full range			500			300	
IIB	Input bias current		25°C		80	500		80	500	nA
			Full range			1500			800	
N.	Input voltage range		25°C	±12	±13		±12	±13		- V
VI.			Full range	±12			±12			
		R _L = 10 kΩ	25°C	24	28		24	28		- v
VOPP	Maximum peak-to-peak output voltage swing	R _L ≥ 10 kΩ	Full range	24			24			
		$R_L = 2 k\Omega$	25°C	20	26		20	26		
		R _L ≥2kΩ	Full range	20			20			
AVO	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$ ,	25°C	50	200		20	200		V/mV
~~0		V _O = ±10 V	Full range	25			15			
ri	Input resistance		25°C	0.3	2		0.3	2		MΩ
ro	Output resistance	V _O = 0 V, See Note 6	25°C		75			75		Ω
Ci	Input capacitance		25°€		1.4			1.4		рF
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ	25°C	70	90		70	90		-10
			Full range	70			70			aB
11/10/11/00	Supply voltage sensitivity	$R_S \le 10 \text{ k}\Omega$	25°C		30	150		30	150	MM
7010/20CC			Full range			150			150	μν/ν
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA
Icc	Supply current	No load,	25°C		1.7	2.8		1.7	2.8	mA
		No signal	Full range			3.3			3.3	
PD	Total power dissipation	No load,	25°C		50	85		50	85	mW
		fotal power dissipation	No signal	Full range			100			100

[†]All characteristics are specified under open-loop operation. Full range for uA748M is -55°C to 125°C and for uA748C is 0°C to 70°C. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

# TYPES uA748M, uA748C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



**TEXAS INSTRUMENTS** 

139

# TYPES uA748M, uA748C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS



VI VI VCC- COMP OF (ON1 ON2 30 oF (OPEN)

 $\begin{array}{ll} r_{\rm j} = 400 \; {\rm M}\Omega, & r_{\rm o} < 1 \; \Omega\,, \\ C_{\rm j} = 1 \; {\rm pF}, & {\rm BW} = 1 \; {\rm MHz} \end{array}$ 

FIGURE 11-UNITY-GAIN VOLTAGE FOLLOWER



FIGURE 12-INVERTING CIRCUIT WITH ADJUSTABLE GAIN, COMPENSATION, AND OFFSET ADJUSTMENT

**TEXAS INSTRUMENTS** 

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TI IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIB

### LINEAR INTEGRATED CIRCUITS

### TYPES uA777M, uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

BULLETIN NO. DL-S 7612037, SEPTEMBER 1973-REVISED JUNE 1976

#### FORMERLY SN52777, SN72777

- Low Input Currents
- Low Input Offset Parameters
- **Frequency and Transient Response** Characteristics Adjustable
- Short-Circuit Protection
- Offset-Voltage Null Capability

- No Latch-Up
- Wide Common-Mode and Differential Voltage Ranges
- Same Pin Assignments as uA748, uA709, LM101A/LM301A

#### description

The uA777 is a precision operational amplifier. Low offset and bias currents improve system accuracy when used in applications such as long-term integrators, sample-and-hold circuits, and high-source-impedance summing amplifiers. This device is an excellent choice where a performance between that of super-beta and general purpose operational amplifiers is required.

External compensation of the uA777 may be implemented in either normal or feed-forward configuration to satisfy bandwidth and slew-rate requirements. This circuit features high gain, wide differential and common-mode input voltage range, output short-circuit protection, and null capability.

The uA777M is characterized for operation over the full military range of -55°C to 125°C; the uA777C is characterized for operation from 0°C to 70°C.

#### terminal assignments



NC-No internal connection

#### schematic



# TYPES uA777M, uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA777M	uA777C	UNIT
Supply voltage V _{CC+} (see Note 1)			22	V
Supply voltage V _{CC} (see Note 1)	22	-22	V	
Differential input voltage (see Note 2)	±30	±30	V	
Input voltage (either input, see Notes 1 and 3)	±15	±15	V	
Voltage between either offset null terminal (N1/N2) and V _{CC}			-0.5 to 2	V
Duration of output short-circuit (see Note 4)	unlimited	unlimited		
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5)			500	mW
Operating free-air temperature range	-55 to 125	0 to 70	°C	
Storage temperature range	-65 to 150	-65 to 150	°C	
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L, or U package	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	N or P package	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero-reference level (ground) of the supply voltages where the zero-reference level is the midpoint between V_{CC+} and V_{CC+}. If the zero-reference level of the system is not the midpoint of the supply voltage, all voltage values must be changed accordingly.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. The output may be shorted to ground or either power supply. For the uA777M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.
- 5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

electrical characteristics at specified free-air temperature,	V _{CC+} = 15 V,	Vcc- = -15 V,	$C_C = 30  pF$
(unless otherwise noted)			

PARAMETER		TEST CONDITIONS [†]		uA777M		uA777C			UNIT	
				MIN	ТҮР	MAX	MIN	TYP	MAX	
N/	1	D. CEOLO	25° C		0.5	2		0.7	5	
10	input offset voltage	HS ≤ 50 K12	Full range			3			5	7 mv
۵VIO	Average temperature coefficient of input offset voltage	$R_S \le 50 \text{ k}\Omega$	Full range		2.5	15		4	30	µV/°C
110	Input offset current	-	25° C		0.25	3		0.7	20	
			Full range			10			40	nA
°110	Average temperature coefficient		MIN to 25°C		6.5	150		20	600	pA/°C
	of input offset current		25°C to MAX		2.5	30		10	300	
ПВ	Input bias current		25° C		8	25		25	100	- 0
			Full range			75			200	
VI	Input voltage range		Full range	±12	±13		±12	±13		V
VOPP	Maximum peak-to-peak	$R_{L} = 10 k\Omega$	Full range	24	28		24	28		
	output voltage swing	R _L = 2 kΩ	Full range	20	26		20	26		, v
AVD	Large-signal differential	V _O = ±10 V,	25° C	50	250		25	250		V/mV
	voltage amplification	R _L ≥2kΩ	Full range	25			15			
ri -	Input resistance		25° C	2	10		1	2		MΩ
ro	Output resistance		25° C		100			100		Ω
Ci	Input capacitance		25° C		3			3		pF
CMRR	Common-mode rejection ratio	R _S = 50 kΩ	Full range	80	95		70	95		dB
ΔV _{CC} /ΔV _{IO}	Supply voltage rejection ratio	$R_S \le 50 \ k\Omega$	Full range		13	100		15	150	$\mu V/V$
IOS	Short-circuit output current		25° C		±25			±25		mA
lcc	Supply current	No load, No signal	25° C		1.9	2.8		1.9	3.3	
			MIN		2	3.3			3.3	mA
			MAX		1.5	2.5			3.3	1

[†]All characteristics are specified under open-loop operation. Full range (MIN to MAX) for uA777M is -55°C to 125°C and for uA777C is 0°C to 70°C.
# TYPES uA777M, uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

				Ľ	A777	4		uA777	С	
	PARAMETER	TES	CONDITIONS	MIN	түр	MAX	MIN	TYP	MAX	UNIT
		V ₁ = 20 mV,	A _V = 1, C _C = 30 pF		0.3			0.3		
tr	Rise time	RL = 2 kΩ, CL ≃ 100 pF	$A_V = 10, C_C = 3.5  pF$		0.2			0.2		μs
	0	$V_1 = 20 \text{ mV},$	$A_V = 1$ , $C_C = 30  pF$		5%	5		5	%	
	Overshoot factor	$C_{L} = 100  \text{pF}$	$A_V = 10, C_C = 3.5  pF$		5%	5		5	%	
	2	R _L = 2 kΩ,	A _V = 1, C _C = 30 pF		0.5		T	0.5		Mur
58	Siew rate	C _L = 100 pF	$A_V = 10, C_C = 3.5  pF$		5.5			5.5	i	] V/µs

# operating characteristics, $V_{CC+} = 15 \text{ V}$ , $V_{CC-} = -15 \text{ V}$ , $T_A = 25^{\circ}\text{ C}$

PARAMETER MEASUREMENT INFORMATION



# TYPES uA777M, uA777C HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS



**TYPICAL CHARACTERISTICS** 

### TYPICAL APPLICATION DATA



FIGURE 4-INVERTING CIRCUIT WITH ADJUSTABLE GAIN, SINGLE-POLE COMPENSATION, AND OFFSET ADJUSTMENT

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TI IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIE

# **Voltage Comparators**

# **VOLTAGE COMPARATOR SELECTION GUIDE**

### DIFFERENTIAL COMPARATORS

	DEVICE TYPE	Input Offset Voltage MAX	Input Offset Current MAX	Input Bias Current MAX	Voltage Amplification MIN	Low-Level Output Current MIN	Response Time MAX	Power Req V _{CC+} NOM	Supplies uired VCC- NOM	REMARKS
		(mV)	(μΑ)	(µA)		(mA)	(ns)	(V)	(V)	
	TL710M	6	20	150	500	1.6	40 (Typ)	12	-6	
	uA710M	2	3	20	1250	2	40 (Тур)	12	-6	
Single	TL810M	3	7	25	10,000	0.5	80	12	-6	Improved TL710M
	LM106	3	7	45	40,000 (Тур)	16	40	12	-3 to -12	Strobe
	LM111 [†]	4	0.02	0.15	200,000 (Түр)	8	140 (Тур)	15	-15	Strobe
	TL510M	3	7	25	10,000	0.5	80	12	-6	Strobe
	LM193	5	0.025	-0.1	200,000 (Тур)	6	1300 (Тур)	5	0	V _{CC} range 2 V to 36 V
Dual	TL820M	3	7	25	10,000	0.5	80	12	-6	Dual TL810M
5 dd.	TL506M	3	7	45	40,000 (Түр)	16	40	12	−3 to −12	Dual LM106
	TL514M	3	7	25	10,000	0.5	80	12	-6	Dual TL510M
Dual	uA711M	6	20	150	500	0.5	80	12	6	Strobes
Channel	TL811M	6	5	30	8,000	0.5	80	12	-6	Improved uA711M
Quad	LM139	5	0.025	-0.1	200,000 (Тур)	6	1300 (Тур)	5	0	V _{CC} range 2 V to 36 V

### $-55^\circ\text{C}$ to $125^\circ\text{C}$ operating temperature range

[†]Capable of operating with a single 5-volt supply.

### $-40^\circ C$ to $85^\circ C$ operating temperature range

	DEVICE	Input Offset	Input Offset	Input Bias	Voltage Amplification	Low-Level Output	Response	Power S Req	Supplies uired	
	TYPE	Voltage MAX (mV)	Current MAX (µA)	Current MAX (μA)	MIN	Current MIN (mA)	MAX (ns)	V _{CC+} NOM	VCC- NOM	REMARKS
Dual	LM2903	7	0.05	-0.25	200,000 (Тур)	6	1300 (Тур)	5	0	V _{CC} range 2 V to 36 V
Quad	LM2901	7	0.05	-0.25	200,000 (Тур)	6	1300 (Тур)	5	0	V _{CC} range 2 V to 36 V

### DIFFERENTIAL COMPARATORS

### -25°C to 85°C operating temperature range

	DEVICE	Input Offset	Input Offset	Input Bias	Voltage Amplification	Low-Level Output	Response Time	Power Req	Supplies uired	
	TYPE	Voltage MAX	Current MAX	Current MAX	MIN	Current MIN	мах	V _{CC+} NOM	V _{CC}	REMARKS
		(mV)	(μA)	(μA)		(mA)	(ns)	(V)	(V)	
Single	LM206	3	7	45	40,000	16	40	12	-3 to	Stepha
	Emedo	Ŭ		+0	(Typ)	10	40	12	-12	Strobe
Dual	1 M293	5	0.05	-0.25	200,000	e	1300	E	0	V _{CC} range
	LINZOG	5	0,00	0.25	(Typ)	0	(Тур)	5	U	2 V to 36 V
Quad	1 11220	6	0.05	0.25	200,000	c	1300	-		V _{CC} range
Quad	LIVI235	5	0,05	0,25	(Typ)	0	(Typ)	5	0	2 V to 36 V

# 0°C to 70°C operating temperature range

	DEVICE TYPE	Input Offset Voltage MAX (mV)	Input Offset Current MAX (μA)	Input Bias Current MAX (μA)	Voltage Amplification MIN	Low-Level Output Current MIN (mA)	Response Time MAX (ns)	Power Rec VCC+ NOM (V)	Supplies uired VCC- NOM (V)	REMARKS
	TL710C	10	25	150	500		40	12	-6	
	TL810C	4.5	7,5	30	8,000	0.5	80	12	-6	Improved TL710C
Single	LM306	6.5	7.5	40	40,000 (Typ)	16	28 (Typ)	12	-3 to -12	Strobe
	LM311 [†]	10	0.07	0.3	200,000 (Тур)	8	165 (Тур)	15	-15	Strobe
	TL510C	4.5	7.5	30	8,000	0.5	80	12	6	Strobe
	LM393	5	0.05	-0.25	200,000 (Тур)	6	1300 (Typ)	5	0	V _{CC} range 2 V to 36 V
	TL720C	10	25	150	500		40 (Тур)	12	-6	Dual TL710C
Dual	TL820C	4.5	7,5	30	8,000	0.5	80	12	-6	Dual TL810C
	TL506C	6.5	7.5	40	40,000 (Тур)	16	28 (Тур)	12	-3 to -12	Dual LM306
	TL514C	4.5	7.5	30	8,000	0.5	80	12	6	Dual TL510C
Dual	uA711C	10	25	150	500	0.5	40 (Түр)	12	-6	Strobe
Channel	TL811C	10	10	50	5,000	0.5	33 (Typ)	12	6	Improved uA711C
Quad	LM339	5	0.05	-0.25	200,000 (Тур)	6	1300 (Тур)	5	0	V _{CC} range 2 V to 36 V

 $^{\dagger}\text{Capable}$  of operating with a single 5-volt supply.

# GLOSSARY DIFFERENTIAL COMPARATOR TERMS, DEFINITIONS, AND SYMBOLS

### Input Offset Voltage (VIO)

The d-c voltage that must be applied between the input terminals to force the quiescent d-c output voltage to the specified level.

NOTE: The input offset voltage may also be defined for the case where two equal resistances ( $R_S$ ) are inserted in series with the input leads.

#### Average Temperature Coefficient of Input Offset Voltage (avio)

The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{VIO} = \left| \frac{(V_{IO} @ T_{A(1)}) - (V_{IO} @ T_{A(2)})}{T_{A(1)} - T_{A(2)}} \right| \quad \text{where}$$

where  $T_{A(1)}$  and  $T_{A(2)}$  are the specified temperature extremes.

#### Input Offset Current (I10)

The difference between the currents into the two input terminals with the output at the specified level.

#### Average Temperature Coefficient of Input Offset Current (allo)

The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified temperature range.

$$\alpha_{IIO} = \left| \frac{(I_{IO} @ T_A(1)) - (I_{IO} @ T_A(2))}{T_A(1) - T_A(2)} \right| \quad \text{where } T_A(1) \text{ and } T_A(2) \text{ are the specified temperature extremes}$$

#### Input Bias Current (IIB)

The average of the currents into the two input terminals with the output at the specified level.

### High-Level Strobe Current (IIH(S))

The current flowing into or out of* the strobe at a high-level voltage.

#### Low-Level Strobe Current (IIL(S))

The current flowing out of* the strobe at a low-level voltage.

#### High-Level Strobe Voltage (VIH(S))

For a device having an active-low strobe, a voltage within the range that is guaranteed not to interfere with the operation of the comparator.

#### Low-Level Strobe Voltage (VIL(S))

For a device having an active-low strobe, a voltage within the range that is guaranteed to force the output high or low, as specified, independently of the differential inputs.

#### Input Voltage Range (VI)

The range of voltage that if exceeded at either input terminal will cause the comparator to cease functioning properly.

*Current out of a terminal is given as a negative value.

### Common-Mode Input Voltage (VIC)

The average of the two input voltages.

### Common-Mode Input Voltage Range (VICR)

The range of common-mode input voltage that if exceeded will cause the comparator to cease functioning properly.

#### Differential Input Voltage (VID)

The voltage at the noninverting input with respect to the inverting input.

### Differential Input Voltage Range (VID)

The range of voltage between the two input terminals that if exceeded will cause the comparator to cease functioning properly.

#### Differential Voltage Amplification (AVD)

The ratio of the change in output voltage to the change in differential input voltage producing it with the common-mode input voltage held constant.

#### High-Level Output Voltage (VOH)

The voltage at an output with input conditions applied that according to the product specification will establish a high level at the output.

### Low-Level Output Voltage (VOL)

The voltage at an output with input conditions applied that according to the product specification will establish a low level at the output.

### High-Level Output Current, (IOH)

The current into* an output with input conditions applied that according to the product specification will establish a high level at the output.

### Low-Level Output Current, (IOL)

The current into* an output with input conditions applied that according to the product specification will establish a low level at the output.

### Output Resistance (ro)

The resistance between an output terminal and ground.

#### Common-Mode Rejection Ratio (kCMR, CMRR)

The ratio of differential voltage amplification to common-mode voltage amplification. NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

* Current out of a terminal is given as a negative value.

# GLOSSARY DIFFERENTIAL COMPARATOR TERMS, DEFINITIONS, AND SYMBOLS

### Supply Current (ICC+, ICC-)

The current into* the V_{CC+} or V_{CC-} terminal of an integrated circuit.

#### Total Power Dissipation (PD)

The total d-c power supplied to the device less any power delivered from the device to a load. NOTE: At no load:  $P_D = V_{CC+} \cdot I_{CC+} + V_{CC-} \cdot I_{CC-}$ .

### **Response Time**

The interval between the application of an input step function and the time when the output crosses the logic threshold voltage.

NOTE: The input step drives the comparator from some initial condition sufficient to saturate the output (or in the case of high-to-low-level response time, to turn the output off) to an input level just barely in excess of that required to bring the output back to the logic threshold voltage. This excess is referred to as the voltage overdrive.

#### Strobe Release Time

The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from its active logic level to its inactive logic level.

*Current out of a terminal is given as a negative value.

### LINEAR **TYPES LM106, LM206, LM306** INTEGRATED CIRCUITS DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO, DL-S 7611586, JANUARY 1972-REVISED JUNE 1976

### FORMERLY SN52106, SN72306

- Fast Response Times
- Improved Gain and Accuracy
- Fan-Out to 10 Series 54/74 TTL Loads
- Strobe Capability
- Short-Circuit and Surge Protection
- Designed to be interchangeable with National Semiconductor LM106, LM206, and LM306

#### description

The LM106, LM206, and LM306 are high-speed voltage comparators with differential inputs, a low-impedance output with high-sink-current capability (100 mA), and two strobe inputs. These devices detect low-level analog or digital signals and can drive digital logic or lamps and relays directly. Short-circuit protection and surge-current limiting is provided

The circuit is similar to a TL810 with gated output. A low-level input at either strobe causes the output to remain high regardless of the differential input. When both strobe inputs are either open or at a high logic level, the output voltage is controlled by the differential input voltage. The circuit will operate with any negative supply voltage between -3 V and -12 V with little difference in performance.

The LM106 is characterized for operation over the full military temperature range of -55°C to 125°C, the LM206 is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C, and the LM306 from  $0^{\circ}$ C to  $70^{\circ}$ C.



NC-No internal connection

NO.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

a Nata 1)																														
e Note I)																													15 V	ł
e Note 1)																												· _	-15 V	r
e (see Note 2	)																										•		±5 V	,
ut, see Notes	1 a	nd	3)											2	÷	÷										•	•	•	+7 V	r
Note 1)			÷				÷				÷		÷					÷.		•	•	•	•	•	•	'n	v.	to ۱	Vcci	
1)						÷	÷			÷	÷								<u>.</u>		:	:	•	•	•	0	•		24 V	,
/cc							÷				÷		÷	2	2	÷	÷							•	•	•		•	30 V	,
-circuit (see	Not	te 4	)					÷			÷								•	•	•	•	•	•	•	•		•	10 .	
dissipation a	t (oi	r be	lov	v) :	25°	Ċf	ree	-aiı	' te	m	Der	atı	ire	(si	ee.	Ň	hte	5)	•	•	•	•	•	•	•	•	•	601	0 mW	i
ature range:	LA	A10	06 (	Circ	uit	s								(0)				•,		•	•	•	•	•	_F	5°	ċŧ	∩ 1	25°C	•
J	LN	120	06 (	Circ	uit	s	÷				•	•	•	•	•	·	•	•	•	•	•	•	•	•	_	25	° c	to	25°C	ì
	LN	430	06 0	Circ	wit	ŝ	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		20	°č	to	70°C	ļ
ie.	-				-		·	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 6	ъ۲	'n,	رن م 1	50°C	ļ
high from cas	 e fo	r 6		200	nde	֓	in	۰.	Ċ,	I	in		kan		•	•	•	•	•	•	•	•	•	·	C	5	01	2	20°C	
high from cas	e fo	r 1	0	200	nde	- N		- P	- ·		2 0	aci	٦ay	e		•	•	•	•	•	•	•	•	•	•	·	•	. 3		ļ
ich noni cas	6 10		0.50	sco	nus	. 14	0	r	μα	UK	aye			•	•	•	٠	•	•	•	•	•	•	•	•	•	•	. 2	.60 C	ł
ept differenti	al vo	oltag	ges	and	the	vo	Itag	je f	ron	n tł	ne o	ut	put	to	V	cc	-, i	are	wit	h r	est	oec	t to	o th	ne r	etv	vor	k gr	ound	
	e Note 1) ⇒ (see Note 2) ut, see Note 2 Note 1) 1) · 1) · ···································	e Note 1, e Note 1,	e Note 1)       15 V         e Note 1)       -15 V         e Note 1)       -15 V         (see Note 2)       ±5 V         ut, see Notes 1 and 3)       ±7 V         VNote 1)       0 V to VCC+         (see Note 2)       ±7 V         (see Note 1)       0 V to VCC+         (see Note 1)       0 V to VCC+         (see Note 4)       00 W         (see Note 4)       10 s         dissipation at (or below) 25°C free-air temperature (see Note 5)       600 mW         rature range:       LM106 Circuits       -25°C to 125°C         LM206 Circuits       0°C to 70°C         LM306 Circuits       0°C to 70°C         ch from case for 60 seconds:       J. JG, L or U package       -65°C to 150°C         nch from case for 10 seconds: N or P package       260°C       260°C         rept differential voltages and the voltage from the output to VCC-, are with respect to the network ground       -25°C to the network ground																											

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

з The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 7 volts, whichever is less. 4

The output may be shorted to ground or either power supply.

5. For operation above 25°C free-air temperature, refer to Dissipation Curves, Section 2.

# electrical characteristics at specified free-air temperature, $V_{CC+} = 12 V$ , $V_{CC-} = -3 V$ to -12 V (unless otherwise noted)

[	BADAMETER	TECT	CONDITIONS		LM1	06, LM2	06	1	M306		LINIT
	PARAMETER	1531	CONDITIONS		MIN	TYP N	ЛАХ	MIN	TYP	MAX	
N -	Inc. A offert voltage	B- < 200 O	See Note 6	25° C		0.5 [§]	2		1.6 [§]	5	mV
1 10	Input offset voltage	ng < 200 sz,	See Note 0	Full range			3			6.5	
avio	Average temperature coefficient of input	R _S = 50 Ω,	See Note 6	Full range		3	10		5	20	µV/°C
	offset voltage	-									
				25°C		0.7§	3		1.8§	5	
10	Input offset current		See Note 6	MIN		2	7		1	7.5	μA
				MAX		0.4	3		0.5	5	
	Average temperature			MIN to 25°C		15	75		24	100	
α110	coefficient of input		See Note 6								nA/°C
	offset current			25°C to MAX		5	25		15	50	
				MIN to 25°C			45			40	
IB	Input bias current	$v_0 = 0.5 v$ to 5 v		25°C to MAX		7 §	20		16§	25	μΑ
111 (S)	Low-level strobe current	V(strope) = 0.4 V		Full range		-1.7 §	-3.2		-1.7 §	-3.2	mA
VIH(S)	High level strobe voltage	(00000)		Full range	2.2			2.2			V
VIL (S)	Low-level strobe voltage			Full range			0.9			0.9	V
VICR	Common-mode input voltage range	V _{CC-} = -7 V to -1	2 V	Full range	±5			±5			v
VID	Differential input			Eull range	+5			+5			v
	voltage range										
AVD	Large-signal differential voltage amplification	No load, V _O = 0.5 V to 5 V		25° C		40 §			<b>4</b> 0 §		V/mV
Maria	High-level	1	$V_{ID} = 5 \text{ mV}$	Full range	2.5		5.5				V
∣∙он	output voltage	10H = -400 MA	V _{ID} ≈ 8 mV	Full range				2.5		5.5	v
		le. = 100 m A	V _{ID} = -5 mV	25°C		0.8 §	1.5				
		10L - 100 IIIA	$V_{ID} = -7 \text{ mV}$	25°C					0.8 §	2	
V	Low-level	la 50 m A	V _{ID} =5 mV	Full range			1				V
VOL	output voltage	10L - 30 IIIX	V _{ID} = -8 mV	Full range						1	Ň
		la: - 16 m A	V _{ID} = ~5 mV	Full range			0.4				
		10L - 10 IIIX	V _{ID} = −8 mV	Full range						0.4	
			Vie - 5 mV	MIN to 25°C		0.02 §	1				
1011	High-level	$V_{OU} = 9 V to 24 V$	•1D 5111•	25°C to MAX			100				
юн	output current	VOH - 0 V 10 24 V	V _{ID} = 7 mV	MIN to 25°C					0.02 §	2	μ.
			V _{ID} = 8 mV	25°C to MAX						100	
ICC+	Supply current from VCC+	V _{ID} = -5 mV, No Io	ad	Full range		6.6 [§]	10		6.6	10	mA
CC-	Supply current from VCC-	No load		Full range		-1.9 [§]	- 3.6		-1.9§	-3.6	mA

[†]Unless otherwise noted, all characteristics are measured with the strobe open.

[§] These typical values are at V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = 25°C. Full range (MIN to MAX) for LM106 is -55°C to 125°C; for LM206 is -25°C to 85°C; and for LM306 is 0°C to 70°C.

NOTE 6: The offset voltages and offset currents given are the maximum values required to drive the output down to the low range ( $V_{OL}$ ) or up to the high range ( $V_{OH}$ ). Thus these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

### switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

1		and a superior of	LM	106, LI	M206		LM306		UNUT
	PARAMETER	TEST CONDITIONS'	MIN	түр	MAX	MIN	ТҮР	MAX	UNIT
	Response time, low-to-high-level output	R _L = 390 $\Omega$ to 5 V, C _L = 15 pF, See Note 7		28	40		28		ns

NOTE 7: The response time specified is for a 100 mV input step with 5 mV overdrive. The typical value is specified for a nominal threshold voltage of 1.4 V.



 $\ddagger Data$  for free-air temperatures below  $-25^\circ C$  and above  $85^\circ C$  is applicable for LM106 only.



Data for tree-air temperature outside the range specified in the absolute maximum ratings for LM206 or LM306 is not applicable for those types.







# TYPICAL CHARACTERISTICS [‡]

T_A−Free-Air Temperature−[°]C FIGURE 13

0 25 50 75

100 125

Data for free-air temperature outside the range specified in the absolute maximum ratings for LM206 or LM306 is not applicable for those types.

Printed in U.K.

# **TEXAS INSTRUMENTS**

0

-75 -50 -25

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POS

#### LINEAR TYPES LM111, LM311 INTEGRATED CIRCUITS DIFFERENTIAL COMPARATORS WITH STROBE

BULLETIN NO. DL-S 7611797, SEPTEMBER 1973-REVISED JULY 1976

- Fast Response Times
- FORMERLY SN52111, SN72311
- Strobe Capability

Maximum Input Bias Current .... 300 nA Maximum Input Offset Current . . . 70 nA

- Designed to be Interchangeable with National Semiconductor LM111 and LM311
- Can Operate From Single 5-V Supply

#### description

The LM111 and LM311 are single high-speed voltage comparators. These devices are designed to operate from a wide range of power supply voltage, including ±15 volt supplies for operational amplifiers and 5 volt supplies for logic systems. The output levels are compatible with most DTL, TTL, and MOS circuits. These comparators are capable of driving lamps or relays and switching voltages up to 50 volts at 50 milliamperes. All inputs and outputs can be isolated from system ground. The outputs can drive loads referenced to ground, VCC+, or VCC-. Offset balancing and strobe capability are available and the outputs can be wire OR connected. If the probe input is low, the output will be in the off state regardless of the differential input. Although slower than the TL506 and TL514, these devices are not as sensitive to spurious oscillations.

The LM111 is characterized for operation over the full military temperature range of -55°C to 125°C; the LM311 is characterized for operation from 0°C to 70°C.



# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM111	LM311	UNIT
Supply voltage Vcc+ (see Note 1)		18	18	V
Supply voltage, Vcc (see Note 1)		-18	-18	V
Differential input voltage (see Note 2)		±30	±30	V
Input voltage (either input, see Notes 1 and 3)		±15	±15	V
Voltage from emitter output to VCC-		30	30	V
Voltage from collector output to VCC_		50	40	V
Duration of output short-circuit (see Note 4)		10	10	s
Continuous total dissipation at (or below) 25°C free-air temperature (see No	ote 5)	500	500	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 10 seconds	J, JG, L, or U package	300	300	°C
Lead temperature 1/16 inch from case for 60 seconds	N or P package	260	260	°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero-reference level (ground) of the supply voltages where the zero-reference level is at the midpoint between V_{CC+} and V_{CC-}. If the zero-reference level of the system is not the midpoint of the supply voltages, all voltage values must be adjusted accordingly.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or ±15 V, whichever is less.

The output may be shorted to ground or either power supply.

5. For operation above 25°C free air temperature, refer to Dissipation Derating Curves, Section 2.

### electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted)

						LM111		ι	M311		
	PARAMETER	TEST	CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
			a	25°C		0.7	3		2	7.5	m\/
Vio	Input offset voltage	$R_{S} \leq 50 \ k\Omega$ ,	See Note 6	Full range			4			10	
		0N		25°C		4	10		6	50	nΑ
10	Input offset current	See Note 6		Full range			20			70	
				25° C		75	100		100	250	nA
¹ 1B	Input bias current	v0 = 1 v to 14 v		Full range			150			300	
IL(S)	Low-level strobe current	V (strobe) = 0.3 V,	$V_{ID} \le -10 \text{ mV}$	25°C		3			-3		mA
14	Common-mode input			Eull range		±14			±14		v
VICR	voltage range			· un runge							
A	Large-signal differential	$V_0 = 5 V to 35 V$	$B_1 = 1 k\Omega$	25°C		200			200		V/mV
AVD	voltage amplification	10 0 1 10 10 1						ļ			
	High-level (collector)	$V_{1D} = 5 \text{ mV}$	V _{OH} = 35 V	25°C	<b>_</b>	0.2	10				nA
юн	output current			Full range			0.5				μΑ
		V _{ID} = 10 mV	V _{OH} = 35 V	25°C				1	0.2	50	nA
		lou ÷ 50 mA	V _{ID} =5 mV	25 °C		0.75	1.5	1			1
1			V _{ID} = -10 mV	25 C					0.75	1.5	
VOL	Low-level (collector-to-emitter)	$V_{CC+} = 4.5 V_{,}$	V _{ID} 6 mV	Full range		0.23	0.4				V
	output formage	IOL = 8 mA	V _{ID} = -10 mV	Full range					0.23	0.4	
ICC+	Supply current from V _{CC+} , output low	V _{ID} = ~10 mV,	No load	25°C		5.1	6		5.1	7.5	mA
Icc-	Supply current from V _{CC-} ,	V _{ID} = 10 mV,	No load	25°C		-4.1	5		-4.1	-5	mA

¹ Unless otherwise noted, all characteristics are measured with the balance and balance/strobe terminals open and the emitter output grounded. Full range for LM111 is  $-55^{\circ}$ C to 125°C and for LM311 is 0°C to 70°C.

 $\ddagger$ All typical values are at T_A = 25°C.

NOTE 6: The offset outgages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to  $1.0 \text{ with a pull-up resistor of 7.5 K}\Omega$  to  $V_{CC+}$ . Thus these parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance.

### switching characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = $25^{\circ}$ C

PARAMETER	TEST CONDITIONS	MIN	TYP MA	x	UNIT
Response time, low-to-high-level output	Bo = 500 Q to 5 V Cr 5 p.E. See Note 7		115		ns
Response time, high-to-low-level output	10 300 st 10 3 V, CL - 3 PT, See Note /		165		ns

NOTE 7: The response time specified is for a 100 mV input step with 5 mV overdrive. The typical values are specified for a nominal threshold voltage of 1.4 V.







## TYPICAL CHARACTERISTICS

## TYPICAL APPLICATION DATA



FIGURE 11-100-kHz FREE-RUNNING MULTIVIBRATOR



FIGURE 12 OFFSET BALANCING



FIGURE 13-STROBING



#### FIGURE 14-ZERO-CROSSING DETECTOR



#### FIGURE 16-DETECTOR FOR MAGNETIC TRANSDUCER



 †  Resistor values shown are for a 0-to-30-V logic swing and a 15-V threshold.

[‡]May be added to control speed and reduce susceptibility to noise spikes.

FIGURE 15-TTL INTERFACE WITH HIGH-LEVEL LOGIC



FIGURE 17-100-kHz CRYSTAL OSCILLATOR



Typical input current is 50 pA with inputs strobed off. FIGURE 19-STROBING BOTH INPUT AND OUTPUT STAGES SIMULTANEOUSLY

1N4001



TEXAS INSTRUMENTS

### TYPICAL APPLICATION DATA



FIGURE 20-LOW-VOLTAGE ADJUSTABLE REFERENCE SUPPLY





FIGURE 22 - PRECISION SQUARER



FIGURE 21- ZERO-CROSSING DETECTOR DRIVING MOS LOGIC







FIGURE 24- POSITIVE-PEAK DETECTOR





### TYPICAL APPLICATION DATA



[†]R1 sets the comparision level. At comparision, the photodiode has less than 5 mV across it, decreasing dark current by an order of magnitude,

FIGURE 26-PRECISION PHOTODIODE COMPARATOR



[‡]Transient voltage and inductive kickback protection.

#### FIGURE 27-RELAY DRIVER WITH STROBE



FIGURE 28-SWITCHING POWER AMPLIFIER



FIGURE 29-SWITCHING POWER AMPLIFIERS

Printed in U.K.

TI cannot assume any responsibility for any circuits shown

or represent that they are free from patent infringement

AS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME DRDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

# LINEAR INTEGRATED CIRCUITS

# TYPES LM139, LM239, LM339 QUADRUPLE DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 7612236, MARCH 1975-REVISED JUNE 1976

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage ... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current ... 3 nA Typ (LM139)

schematic (each comparator)



### description

These devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 36 volts and pin 3 is at least 1.5 volts more positive

- Low Input Offset Voltage . . . 2 mV Typ
   Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, MOS, and CMOS

J OB N



than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				
Input voltage range (either input)				0.3 V to 36 V
Output voltage				
Duration of output short-circuit to ground (see Note 3	3)			unlimited
Operating free-air temperature range: 1M139	air temperature	(see Note 4)	••••	
LM239				–25°C to 85°C
LM339	• • • • •			0°C to 70°C
Lead temperature 1/16 inch from case for 60 seconds:	J package	•••••		
Lead temperature 1/16 inch from case for 10 seconds	N package .			260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 For operation above 25°C free-air temperature, refer to Dissipation Derating Curves. Section 2

For operation above 25 C free-air temperature, refer to Dissipation Derating Curves, Section 2

# TYPES LM139, LM239, LM339 QUADRUPLE DIFFERENTIAL COMPARATORS

				-t	LI	M139		LM23	LINUT		
	PARAMETER	TES	TCONDITION	S'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	$V_{CC} = 5 V to$			25° C		2	5		2	5	mV
VIO	Input offset voltage	VIC = VICR,	V _O = 1.4V	Full range			9			9	
				25° C		3	25		5	50	nA
10	Input offset current	V _O = 1.4 V		Full range			100			150	
				25° C		-25	-100		-25	-250	nA
Чв	Input bias current	See Note 5		Full range			-300			-400	
				05° 0	0 to			0 to			
	Common mode input		26.14	25 C	V _{CC} -1.5			V _{CC} -1.5			V
VICR	Common-mode input	V _{CC} = 2 V t	0 36 V	<b>5</b> 11	0 to			0 to		`	ľ
	vortage range			Full range	V _{CC} -2			V _{CC} -2			
A _{vd}	Small-signal differential	RL = 15 kΩ,	V _O = 1.4 V	25° C		200			200		V/mV
			V0H = 5V	25° C		0.1			0.1		nA
юн	High-level output current	VID = 1 V	V _{OH} = 30 V	Full range			1			1	μA
				25° C		250	500		250	500	
VOL	Low-level output voltage	$V_{1D} = -1 V$ ,	¹ OL = 4 mA	Full range			700			700	
1OL	Low-level output current	$V_{ID} = -1 V$ ,	V _{OL} = 1.5 V	25° C	6	16		6	16		mA
'cc	Supply current (four comparators)	No load		25° C		0.8	2		0.8	2	mA

# electrical characteristics at specified free-air temperature, VCC = 5 V

[†]Full range (MIN to MAX) for LM139 is  $-55^{\circ}$ C to 125 $^{\circ}$ C, for the LM239 is  $-85^{\circ}$ C to 125 $^{\circ}$ C, and for the LM339 is 0 $^{\circ}$ C to 70 $^{\circ}$ C.

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

### switching characteristics, VCC = 5 V, TA = $25^{\circ}$ C

PARAMETER	TEST CONDI	TIONS	MIN	түр	MAX	UNIT		
Besponse time	$R_L$ connected to 5 V through 5.1 k $\Omega$ ,	100-mV input step with 5-mV overdrive		1.3		μs		
	C _L = 15 pF, [‡] See Note 6	TTL-level input step		0.3				

 ${}^{\pm}C_{L}$  includes probe and jig capacitance.

NOTE 6: The typical value is for the interval between the input step function and the time when the output crosses 1.4 V.

# LINEAR INTEGRATED CIRCUITS

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage ... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current ... 3 nA Typ (LM193)

schematic (each comparator)



### description

These devices consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 volts to 36 volts and pin 3 is at least 1.5 volts more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

# TYPES LM193, LM293, LM393 DUAL DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 7612411, JUNE 1976

- Low Input Offset Voltage . . . 2 mV Typ
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ± 36 V
- Low Output Saturation Voltage
- Output Compatible with TTL, DTL, . MOS, and CMOS

JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)



#### L PLUG-IN PACKAGE (TOP VIEW)



# TYPES LM193, LM293, LM393 DUAL DIFFERENTIAL COMPARATORS

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage VCC (see Note 1)																													. 36 V
Differential input voltage (see Note 2)		÷					÷	÷	÷					÷	÷														. ±36 V
Input voltage range (either input) .																											-0.	3 \	/ to 36 V
Output voltage																													. 36 V
Output current																													20 mA
Duration of output short-circuit to greater	oun	d (	see	: N	ot	e 3	3)																					,	unlimited
Continuous total dissipation at (or be	low)	2	5~0	C f	ree	e-a	ir '	ten	np	era	tu	re	(se	eΝ	lot	e 4	1):												
JG or P package																													900 mW
Lpackage																											۰,	. •	625 mW
Operating free-air temperature range:	LN	119	93																							!	55	Č	to 125 °C
	LN	129	93																							-	-25	5°C	C to 85 C
	LN	139	93				·															·					. (	). (	C to 70 C
Storage temperature range		•						÷	•	÷		÷				·	·	·	·			·	·		·	-1	65	C	to 150°C
Lead temperature 1/16 inch from case	e for	6	0 s	eco	on	ds:		IG	or	L	ра	cka	age		·	·	·	·	·	·	·	·	·	·	·	•	•		. 300°C
Lead temperature 1/16 inch from case	e for	· 1	0 s	eco	on	ds:	- 1	٧p	ac	ka	ge																		. 260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

- 3. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
- 4. For operation above 25°C free air temperature, refer to Dissipation Derating Curves, Section 2.

#### electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

			-			LM193	3	LM29			
	PARAMETER	TES	CONDITION	15	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
		$V_{CC} = 5 V t$	o 30 V,	25°C		1	5		1	5	
V10	Input offset voltage	VIC = VICR	c = VICR, VO = 1.4 V Ful				9			9	1 mv
				25°C		3	25		5	50	
10	Input offset current	$V_0 = 1.4 V$		Full range			100			150	n A
				25°C		-25	-100		25	-250	
IВ	Input bias current	See Note 5		Full range			-300			-400	1 nA
				area	0 to			0 to			
	Common-mode input		00.14	25 C	V _{CC} -1.5			V _{CC} -1.5			
VICR	voltage range	$v_{CC} = 2 v to$	36 V	<b>E</b> 11	0 to			0 to			l V
				Full range	V _{CC} -2			V _{CC} -2			
A _{vd}	Small-signal differential voltage amplification	V _{CC} = 15 V, V _O = 1.4 V	R _L = 15 kΩ,	25° C	50	200		50	200		V/mV
	High lovel evenue evenee	V _{ID} = 1 V,	V _{OH} = 5 V	25°C		0.1			0.1		nA
юн	High-level output current	V _{ID} = 1 V,	V _{OH} = 30 V	Full range			1			1	μA
Vei	Low-level output voltage	$V_{1D} = -1 V$		25°C		250	400		250	400	mV
*OL	Low-rever output voitage	VID -1 V,	IOL 4 MA	Full range			700			700	
IOL	Low-level output current	V _{ID} = -1 V,	V _O = 1.5 V	25°C	6	16		6	16		mA
100	Supply ourrent	Nalaad	V _{CC} = 5 V	25°C		0.8	1		0.8		mA
'CC	Supply current		V _{CC} = 30 V	Full range			2.5			2.5	

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

### switching characteristics, $V_{CC} = 5 V$ , $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIO	vs	MIN	түр	МАХ	UNIT
Response time	R _L connected to 5 V through 5.1 k $\Omega$ ,	100-mV input step with 5-mV overdrive		1.3		μs
	CL = 15 pF,* See Note 6	TTL-level input step				

 ${}^{\ddagger}\mathbf{C}_{\textbf{L}}$  includes probe and jig capacitance.

NOTE 6: The typical value is for the interval between the input step function and the time when the output crosses 1.4 V.

Printed in U.K.

# LINEAR INTEGRATED CIRCUITS

# TYPE LM2901 QUADRUPLE DIFFERENTIAL COMPARATOR

BULLETIN NO. DL-S 7512247, MARCH 1975

- Eliminates Need for Dual Supplies
- Wide Range of Supply Voltages ... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA Typ
- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 5 nA Typ Input Bias Current . . . – 25 nA Typ

### schematic (each comparator)

- Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
   ... 1 mV Typ at 5 μA
   ... 70 mV Typ at 1 mA
- Output Compatible with TTL, DTL, MOS, and CMOS







#### description

The LM2901 consists of four independent voltage comparators designed specifically for automotive and industrial control systems. They operate from a single power supply over a wide range of voltages and the low supply current drain is independent of the magnitude of the supply voltage. A unique characteristic of these comparators is that the common-mode input voltage range includes ground, even though operated from a single supply voltage. Applications include limit comparators, simple analog:to-digital converters, wide-range VCO's, MOS clock timers, multivibrators, high-voltage digital logic gates, and pulse, square-wave, and time-delay generators. The LM2901 was designed to directly interface with CMOS-where the low power drain of the LM2901 is a large advantage over standard comparators.

.

The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) · · · · · · · · · · · · · · · · · ·
Differential input voltage (see Note 2)
Input voltage range (either input) $\ldots$
Output voltage
Output current
Duration of output short-circuit to ground (see Note 3)
Continuous total dissipation at (or below) 25 $^\circ$ C free air temperature (see Note 4) $\ldots$ $\ldots$ $\ldots$ $\ldots$ 900 mW
Operating free-air temperature range $\ldots$
Storage temperature range
Lead temperature 1/16 inch from case for 16 seconds

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.
 For operation above 25°C free air temperature, refer to Dissipation Derating Curves, Section 2.

# **TYPE LM2901** QUADRUPLE DIFFERENTIAL COMPARATOR

### electrical characteristics at 25°C free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	Т	ST CONDITIO	ONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V ₁ ≈ 1.4 V,	V _O = 1.4 V			2	7	mV
10	Input offset current	V _I ≈ 1.4 V,	V ₀ = 1.4 V			5	50	nA
IB	Input bias current	See Note 5				-25	-250	nA
		N	26.1/		0 to			V
VICR	Common-mode input voltage range	VCC - 2 V 10	30 V		V _{CC} -1.5			ľ
A _{vd}	Small-signal differential voltage amplification	$R_L = 15 k\Omega$ ,	V _O = 1.4 V			200		V/mV
ЮН	High-level output current	V _{ID} = 1 V,	V _{OH} = 5 V			0.1		nA
				^I OL = 5 µA		1		
VOL	Low-level output voltage	V _{ID} = −1 V		IOL = 1 mA		70		mV
				IOL = 3 mA		200	400	
10L	Low-level output current	$V_{1D} = -1 V$ ,	V _{OL} = 1.5 V		6	16		mA
1cc	Supply current	No load				0.8	2	mA

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stange. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

### switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 kΩ, C _L = 15 pF [†] , See Note 6		1.3		μs

 $^{+}C_{L}$  includes probe and jig capacitance. NOTE 6: The response time specified is for a 100 mV input step with 5 mV overdrive. The typical value is for the interval between the input step function and the time when the output crosses 1.4 V.

### TYPICAL APPLICATION DATA



BASIC SINGLE-SUPPLY LEVEL TRANSLATOR

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY 1 IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSI

# LINFAR INTEGRATED CIRCUITS

# TYPE LM2903 DUAL DIFFERENTIAL COMPARATOR

BULLETIN NO. DL-S 7612412, JUNE 1976

- Eliminates Need for Dual Supplies
- Wide Range of Supply Voltages .... 2 to 36 Volts
- Low Supply Current Drain Independent of Supply Voltage ... 0.5 mA Tvp
- Low Input Bias and Offset Parameters Input Offset Voltage . . . 2 mV Typ Input Offset Current . . . 5 nA Typ Input Bias Current ... -25 nA Typ



### schematic (each comparator)

### description

The LM2903 consists of two independent voltage comparators designed specifically for automotive and industrial control systems. They operate from a single power supply over a wide range of voltages and the low supply current drain is independent of the magnitude of the supply voltage. A unique characteristic of these comparators is that the common-mode input voltage range includes ground, even though operated from a single supply voltage. Applications include limit comparators, simple analog-to-digital converters, wide-range VCO's, MOS clock timers, multivibrators, high-voltage digital logic gates, and pulse, square-wave, and time-delay generators. The LM2903 was designed to directly interface with CMOS - where the low power drain of the LM2903 is a large advantage over standard comparators.

The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

- . Common-Mode Input Voltage Range Includes Ground Allowing Direct Sensing near Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage  $\dots$  1 mV Typ at 5  $\mu$ A .... 70 mV Typ at 1 mA
- Output Compatible with TTL. DTL, MOS, and CMOS



JG OB P DUAL-IN-LINE PACKAGE (TOP VIEW)



COMPARATOR NO. 1

IN۱ INPLIT

PUT



# TYPE LM2903 DUAL DIFFERENTIAL COMPARATOR

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	36 V
Differential input voltage (see Note 2)	±36 V
Input voltage range (either input)	0.3 V to 36 V
Output voltage	36 V
Output current	20 mA
Duration of output short-circuit to ground (see Note 3)	unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 4); JG or P package	900 mW
Lipackage	625 mW
Operating free-air temperature range	. –40°C to 85°C
Storage temperature range	65°C to 150°C
Lead temperature 1/16 inch from case for 60 seconds: JG or L package	300°C
Lead temperature 1/16 inch from case for 10 seconds: P package	260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal,

3. Short circuits from outputs to  $V_{\mbox{CC}}$  can cause excessive heating and eventual destruction.

4. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS		MIN	TYP	MAX	UNIT			
Vio	Input offset voltage	$V_{CC} = 5 V \text{ to } 30$	) V,	25°C		2	7	mV			
		VIC VICR	v ₀ = 1.4v	Full range			15				
10	Input offset current	$V_{0} = 1.4 V$		25°C		5	50				
	mparoniser carrent	v0= 1,4 v		Full range			200	] "^			
		See Note E		25°C		-25	-250				
שוי	input bias current	See Note 5		Full range			-500	1 nA			
				ar°o	0 to						
Vian	Input common-mode	V 2 V - 20		25 C	V _{CC} -1.5						
VICH	voltage range	VCC - 2 V 10 36	o v	E. 0	0 to			1 ^v			
				Full range	V _{CC} – 2	- 2					
Δ.	Small-signal differential	V _{CC} = 15 V,	R _L = 15 kΩ,		05						
~vd	voltage amplification	V _O = 1.4 V			25	100		V/mV			
lou	High lovel output auroant	V _{ID} = 1 V	V ₀ = 5 V	25°C		1		nA			
юн	Fightever output current	V _{ID} = 1 V	V _O = 30 V	Full range	•		1	μA			
Va		Vi 1V	1	25°C			400				
VOL	Eow-level output voltage	v1D i v,	OL ~ 4 mA	Full range			700	mv			
10L	Low-level output current	$V_{ID} = -1 V$ ,	V _{OL} = 1.5 V	25°C	6	16		mA			
laa	Supply gurrent	Notood	V _{CC} = 5 V	25°C		0.8	1				
100	Supply current	No ioau	V _{CC} = 30 V	Full range		1	2.5	1 mA			

NOTE 5: The direction of the bias current is out of the device due to the P-N-P input stage. This current is essentially constant, regardless of the state of the output, so no loading change is presented to the input lines.

### switching characteristics, VCC = 5 V, TA = $25^{\circ}$ C

PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
Response time	R _L connected to 5 V through 5.1 k $\Omega$ ,	100-mV input step with 5-mV overdrive		1.5		μs
	CL = 15 pF, * See Note 6	TTL-level input step				

[‡]C_L includes probe and jig capacitance.

NOTE 6: The typical value is for the interval between the input step function and the time when the output crosses 1.4 V.

For typical application data, see LM2901 data sheet on page 170.

# LINEAR INTEGRATED CIRCUITS

### TYPES TL506M, TL506C DUAL DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO. DL-S 7611671, MARCH 1972-REVISED JUNE 1976

Fan-Out to 10 Series 54/74 TTL Loads

# FORMERLY SN52506, SN72506

- Each Comparator Identical to LM106 or LM306 with Common VCC+, VCC-, and Ground Connections
- Improved Gain and Accuracy
- Strobe Capability
  Short-Circuit and Surge Protection
- Fast Response Times

### description

The TL506 is a dual high-speed voltage comparator, with each half having differential inputs, a lowimpedance output with high-sink-current capability (100 mA), and two strobe inputs. This device detects low-level analog or digital signals and can drive digital logic or lamps and relays directly. Short-circuit protection and surge-current limiting is provided.

The circuit is similar to a TL810 with gated output. A low-level input at either strobe causes the output to remain high regardless of the differential input. When both strobe inputs are either open or at a high logic level, the output voltage is controlled by the differential input voltage. The circuit will operate with any negative supply voltage between -3 V and -12 V with little difference in performance.

The TL506M is characterized for operation over the full military temperature range of  $-55^\circ\text{C}$  to  $125^\circ\text{C}$ ; the TL506C is characterized for operation from  $0^\circ\text{C}$  to  $70^\circ\text{C}$ .

J OR N DUAL-IN-LINE PACKAGE OR W FLAT PACKAGE (TOP VIEW)



NC-No internal connection

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)					. 15 V
Supply voltage VCC_ (see Note 1)					—15 V
Differential input voltage (see Note 2)					. ±5 V
Input voltage (any input, see Notes 1 and 3).					. ±7 V
Strobe voltage range (see Note 1)			C	) V	to VCC+
Output voltage (see Note 1)					. 24 V
Voltage from output to V _{CC}					. 30 V
Duration of output short-circuit (see Note 4)					. 10 s
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5): Each amplifier	٠.				600 mW
Total package			•		800 mW
Operating free-air temperature range: TL506M Circuits		-!	55°	C 1	to 125°C
TL506C Circuits			0	)°C	to 70°C
Storage temperature range			85°	'C 1	to 150°C
Lead temperature 1/16 inch from case for 60 seconds: J or W package					300°C
Lead temperature 1/16 inch from case for 10 seconds: N package			·		260°C

NOTES: 1. All voltage values, except differential voltages and the voltage from the output to V_{CC-}, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 7 volts, whichever is less.

4. One output at a time may be shorted to ground or either power supply.

5. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

electrical characteristics at specified free-air temperature,  $V_{CC+} = 12 V$ ,  $V_{CC-} = -3 V$  to -12 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		TL 506M			TL506C			
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
v _{IO}	Input offset voltage	See Note 6	25		0.5 \$	2		1.6 [§]	5	mν
			Full range			3			6.5	
°VIO	Average temperature coefficient	See Note 6	Full range		3	10		5	20	µV/′C
	of input offset voltage									
10	Input offset current	See Note 6	25 C		0.7 \$	3		1.8 5	5	μA
			MIN		2	7		1	7.5	
			MAX		0.4	3		0.5		
°110	Average temperature coefficient	See Note 6	MIN to 25 C		15	75		24	100	nA/ C
	of input offset current		25°C to MAX		5	25		15	50	
ів	Input bias current		25' C		7 \$	20		16 \$	25	Αц
		0-0.501050	Full range			45			40	
IL(S)	Low-level strobe current	V(strobe) = 0.4 V	Full range		- 1.7 \$	-3.3		-1.7\$	- 3.3	mA
VIH(S)	High-level strobe voltage		Full range	2.5			2.5			v
VIL(S)	Low-level strobe voltage		Full range			0.9			0.9	v
VICR	Common-mode input	No. 7 710 12V	Full range	15						
	voltage range	VCC / V 18 - 12 V					15			v
VID	Differential input		Full range	15						v
	voltage range						:5			
AVD	Large-signal differential	No load,	250		40.000 5			10.0005		
	voltage amplification	V _O = 0.5 V to 5 V	1.0 0		40 000			40 000 1		
VOH	High-level output voltage	VID = 5 mV, 10H = -400 µA	Full range	2.5		5.5	2.5		5.5	v
VOL	Low-level output voltage	V _{ID} = -5 mV, I _{OL} = 100 mA	25 °C		0.8 [§]	1.5		0.8 [§]	2	v
		V _{1D} = -5 mV, I _{OL} = 50 mA	Full range			1			1	
		V _{ID} = -5 mV, I _{OL} = 16 mA	Full range			0.4			0.4	
іон	High-level output current	V _{1D} = 5 mV, V _{OH} = 8 V to 24 V	25°C		0.02 [§]	1		0.02	2	
			Full range			100			100	<u> </u>
ICC+	Supply current from V _{CC+}	VID = -5 mV, See Note 7	Full range		13.9 §	20		13.9 §	20	mA
ICC-	Supply current from VCC-	See Note 7	Full range		3.2 \$	7.2		3.2 \$	7.2	mA

[†]Unless otherwise noted, all characteristics are measured with the strobe open.

 $\frac{1}{5}$  These typical values are at V_{CC+} = 12 V, V_{CC}. = -6 V, T_A = 25°C. Full range (MIN to MAX) for TL506M is  $-55^{\circ}$ C to 126°C and for the TL506C is 0°C to 70°C.

NOTES: 6. The offset voltages and offset currents given are the maximum values required to drive the output down to the low range ( $V_{OL}$ ) or up to the high range ( $V_{OH}$ ). Thus these parameters actually define an error band and take into account the worst case effects of voltage gain and input impedance.

7. Power supply currents are measured with the respective non-inverting inputs and inverting inputs of both comparators connected in parallel. The outputs are open.

# switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

PARAMETER	TEST CONDITIONS [†]		TL506M			TL506C		
FANAMETER			TYP	MAX	MIN	TYP	MAX	
Response time, low-to-high-level output	R _L = 390 Ω to 5 V, C _L = 15 pF, See Note 8		28	40		28		ns

NOTE 8: The response time specified is for a 100-mV input step with 5-mV overdrive. The typical value is specified for a nominal threshold voltage of 1.4 V.





**TYPICAL CHARACTERISTICS**[‡]

 $\ddagger$ Data for temperatures below 0°C and above 70°C is applicable to TL506M circuits only.



 $^{+}$ Data for temperatures below 0[°]C and above 70°C is applicable to TL506M circuits only. NOTE 9: This parameter was measured using a single 5 ms pulse.



TYPCIAL CHARACTERISTICS

Data for temperatures below 0°C and above 70°C is applicable to TL506M circuits only.

Printed in U.K.

# TEXAS INSTRUMENTS

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIM IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE
### LINEAR INTEGRATED CIRCUITS

### TYPES TL510M, TL510C DIFFERENTIAL COMPARATORS WITH STROBE

BULLETIN NO. DL-S 7611452, MARCH 1971 - REVISED JUNE 1976

- Low Offset Characteristics
- High Differential Voltage Amplification
- Fast Response Times
- Output Compatible with Most TTL and DTL Circuits

#### description

The TL510 monolithic high-speed voltage comparator is an improved version of the TL710 with an extra stage added to increase voltage amplification and accuracy, and a strobe input for greater flexibility. Typical voltage amplification is 33,000. Since the output cannot be more positive than the strobe, a low-level input at the strobe will cause the output to



go low regardless of the differential input. Component matching, inherent in integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are particularly useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector.

The TL510M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the TL510C is characterized for operation from 0°C to 70°C.

#### terminal assignments

J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)	JG OR P DUAL-IN-LINE PACKAGE (TOP VIEW)	L PLUG-IN PACKAGE (TOP VIEW)	U FLAT PACKAGE (TOP VIEW)
$\begin{array}{c c} & NC & NC & VC & SFROME & FULL \\ \hline \mathbf{M} & \mathbf{D} & 12 & 12 & 11 & 10 & 10 & 13 & 16 \\ \hline \mathbf{M} & \mathbf{D} & 12 & 11 & 10 & 10 & 13 & 16 \\ \hline \mathbf{M} & 12 & 12 & 13 & 16 & 13 & 16 \\ \hline \mathbf{M} & 13 & 14 & 15 & 16 & 17 \\ \mathbf{M} & 10 & 10 & 10 \\ NC & GRD & NOW & WULT & NC & VCC & MC \\ \hline \end{array}$		VIC OUTPUT VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI VIDURI V	

NC-No internal connection

NO

### absolute maximum ratings over operating free-air temperature range (untess otherwise noted)

Supply voltage VCC+ (see Note 1)						14 V
Supply voltage V _{CC} (see Note 1)			S			
Differential input voltage (see Note 2)						±5 V
Input voltage (either input, see Note 1)						±7 V
Strobe Voltage (see Note 1)						6 V
Peak output current ( $t_w \leq 1$ s)						10 mA
Continuous total power dissipation at (	or below) 70°C f	ree air ten	perature (see	Note 3)		300 mW
Operating free-air temperature range:	TL510M Circuits	s				55°C to 125°C
openeting	TL510C Circuits	5				$0^{\circ}$ C to $70^{\circ}$ C
Storage temperature range						$-65^{\circ}$ C to $150^{\circ}$ C
Lead temperature 1/16 inch from case	for 60 seconds:	J. JG. L. o	U package			<b>300°</b> C
Lead temperature 1/16 inch from case	for 10 seconds:	N or P pac	kage			260°C
ES: 1. All voltage values, except differential	voltages, are with r	espect to th	a network grou	ind terminal.		
2 Differential voltages are at the noninv	erting input termin	al with resp	ect to the inver	ting input terr	minal.	

3. For operation of the TL510M above 70° C free-air temperature, refer to Dissipating Derating Curves, Section 2.

**TEXAS INSTRUMENTS** 

### TYPES TL510M, TL510C DIFFERENTIAL COMPARATORS WITH STROBE

electrical characteristics at specified free-air temperature,  $V_{CC+} = 12 V$ ,  $V_{CC-} = -6 V$  (unless otherwise noted)

PARAMETER				<b></b>	TL510	A	1			
	FARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Input offret voltage	R _S ≤ 200 Ω,	25°C		0.6	2		1.6	3.5	
10	niput onset vonage	See Note 4	Full range			3			4.5	mv
	Average temperature coefficient	R _S = 50 Ω,	MIN to 25°C		3	10		3	20	1100
4010	of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	/ wv/ c
			25°C		0.75	3		1.8	5	
10	Input offset current	See Note 4	MIN		1.8	7			7.5	μ <b>Α</b>
			MAX		0.25	3			7.5	1
	Average temperature coefficient	Car Nava A	MIN to 25°C		15	75		24	100	
a110	of input offset current	See Note 4	25°C to MAX		5	25		15	50	nA/-C
	1	C. No. 4	25°C		7	15		7	20	
18	input bias current	See Note 4	MIN		12	25		9	30	1 <u>"</u> ^
¹ IH(S)	High-level strobe current	V _(strobe) = 5 V, V _{ID} = -5 mV	25°C			±100			100	μA
IL(S)	Low-level strobe current	V(strobe) = -100 mV VID = 5 mV	25°C		- 1	-2.5		-1	-2.5	mA
VICR	Common-mode input voltage range	V _{CC} - = -7 V	Full range	:5			+5			v
VID	Differential input voltage range		Full range	15			±5			V
AVO	Large-signal differential	No load,	25°C	12.5	33		10	33		NU-N
	voltage amplification	Vo = 0 to 2.5 V	Full range	10			8			1 0/mv
Veu		V _{ID} = 5 mV, IOH = 0	Full range		4 §	5		4 %	5	
∙он	riginiever output vortage	V _{ID} = 5 mV, I _{OH} =5 mA	Full range	2.5	3.6 §		2.5	3.6 §		ľ
		V _{ID} =5 mV, I _{OL} = 0	Full range	-1	-0.5 8	0‡	-1	0.5 §	¢‡	v
VOL	Low-level output voltage	V _(strobe) = 0.3 V, V _{ID} = 5 mV, I _{OL} = 0	Full range	-1		0‡	-1		o‡	v
		N E	25°C	2	2.4		1.6	2.4		
10L	Low-level output current	v1D 5 mv,	MIN	1	2.3		0.5	2.4		mA
		v0 ≡ 0	MAX	0.5	2.3		0.5	2.4		1
ro	Output resistance	V _O = 1.4 V	25°C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100 §		70	100 §		dB
ICC+	Supply current from VCC+		Full range		5.5 §	9		5.5§	9	mA
ICC -	Supply current from V _{CC} -	VID = -5 mV,	Full range		- 3.5 [§]	-7		3.5 §	- 7	mA
PD	Total power dissipation	No load	Full range		90 §	150	1	90§	150	mW

[†]Unless otherwise noted, all characteristics are measured with the strobe open. Full range (MIN to MAX) for TL510M is -55°C to 125°C and for the TL510C is 0°C to 70°C.

[‡]The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more negative voltage.

 $\S$  These typical values are at T  $_{\mbox{A}}$  = 25  $^{\circ}$  C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL510M,  $V_O = 1.8 \text{ V}$  at  $T_A = -55^\circ$ C,  $V_O = 1.4 \text{ V}$  at  $T_A = 25^\circ$ C, and  $V_O = 1.2 \text{ V}$  at  $T_A = 25^\circ$ C, for TL510C,  $V_O = 1.5 \text{ V}$  at  $T_A = 0^\circ$ C,  $V_O = 1.4 \text{ V}$  at  $25^\circ$ C, and  $V_O = 1.2 \text{ V}$  at  $T_A = 70^\circ$ C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

### switching characteristics, $V_{CC+}$ = 12 V, $V_{CC-}$ = -6 V, $T_A$ = 25°C

PARAMETER		TEST CONDITIC	INS	MIN	TYP	MAX	UNIT
Response time	R∟ = ∞,	CL = 5 pF,	See Note 5		30	80	ns
Strobe release time	R _L = ∞,	CL = 5 pF,	See Note 6		5	25	ns

NOTES: 5. The response time specified is for a 100-mV input step with 5-mV overdrive.

6. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5 mV overdrive is then added to the input bias voltage to produce an output voltage which rises above 1.4 V. The time interval is measured from the 50% point of the strobe voltage curve to the point where the overdriven output voltage corses the 1.4 V level.



### TYPES TL510M, TL510C DIFFERENTIAL COMPARATORS WITH STROBE

**TEXAS INSTRUMENTS** 

### TYPES TL510M, TL510C DIFFERENTIAL COMPARATORS WITH STROBE



NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL510M,  $V_O = 1.8 \vee$  at  $T_A = -55^\circ$ C,  $V_O = 1.4 \vee$  at  $T_A = 25^\circ$ C, and  $V_O = 1.2 \vee$  at  $T_A = 125^\circ$ C, for TL510C,  $V_O \approx 1.5 \vee$  at  $T_A = 0^\circ$ C,  $V_O \approx 1.4 \vee$  at  $25^\circ$ C, and  $V_O = 1.2 \vee$  at  $T_A = 70^\circ$ C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

TEXAS INSTRUMENTS

Printed in U.K. It cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POS

### LINEAR INTEGRATED TYPES TL514M, TL514C CIRCUITS DUAL DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO. DL-S 7611451, MARCH 1971-REVISED JUNE 1976

#### FORMERLY SN52514, SN72514

- Fast Response Times
- High Differential Voltage Amplification
- Low Offset Characteristics
- Outputs Compatible with Most TTL and DTL Circuits

schematic (each comparator)









#### description

The TL514 is an improved version of the TL720 dual high-speed voltage comparator. When compared with the TL720, these circuits feature higher amplification (typically 33,000) due to an extra amplification stage, increased accuracy because of lower offset characteristics, and greater flexibility with the addition of a strobe to each comparator. Since the output cannot be more positive than the strobe, a low-level input at the strobe will cause the output to go low regardless of the differential input.

These circuits are especially useful in applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector. The TL514M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the TL514C is characterized for operation from 0²C to  $70^{\circ}$ C.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)															14 V
Supply voltage V _{CC} (see Note 1)											ġ		Ċ	÷	-7 V
Differential input voltage (see Note 2)					Ì	ż							÷		±5 V
Input voltage (any input, see Note 1)													÷		±7 V
Strobe voltage (see Note 1)												÷.			6 V
Peak output current (t _w ≤1 s)		÷.													10 m A
Continuous total dissipation at (or below) 70°C free-air temperatu	re (S	See	Not	e 3	3):										
each comparator												,			300 mW
total package															600 mW
Operating free-air temperature range: TL514M Circuits													°5ذ	Сt	o 125°C
TL514C Circuits												-	0	°C	to 70°C
Storage temperature range												6	35°	Сt	o 150°C
Lead temperature 1/16 inch from assa for 60 seconds: Leaskage															300°C
Lead temperature 1/10 men nom case for ou seconds. 5 package			•	•	•		•	•	•	•					

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. For operation of the TL514M above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### TYPES TL514M, TL514C DUAL DIFFERENTIAL COMPARATORS WITH STROBES

# electrical characteristics at specified free-air temperature, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ (unless otherwise noted)

DADAMETER			TECT CONDUTIONS!			1				
	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	1	R _S ≤ 200 Ω,	25' C		0.6	2		1.6	3.5	
V10	Input offset voltage	See Note 4	Full range			3			4.5	1
	Average temperature coefficient	R _S = 50 Ω,	MIN to 25"C		3	10		3	20	1100
avio	of input offset voltage	See Note 4	25 C to MAX		3	10		3	20	#V/ C
			25 C		0.75	3		1.8	5	
10	Input offset current	See Note 4	MIN		1.8	7			7.5	μA
			MAX		0.25	3			7.5	1
	Average temperature coefficient		MIN to 25"C		15	75		24	100	
°110	of input offset current	See Note 4	25 C to MAX		5	25		15	50	nA/ C
			25 C		7	15		7	20	
łв	Input bias current	See Note 4	MIN		12	25	1	9	30	1 #A
IL(S)	High-level strobe current	V _(strobe) = 5 V, Vin = 5 mV	25°C			±100			± 100	μA
Чн(s)	Low-level strobe current	V(strobe) = - 100 mV, VID = 5 mV	25 C		~ 1	-25		- 1	- 2.5	mA
VICR	Common-mode input voltage range	V _{CC-} = -7 V	Full range	±5			+5			v
VID	Differential input voltage range		Full range	15			t 5			V
	Large-signal differential	No load,	25 C	12.5	33		10	33		VImV
~00	voltage amplification	VO = 0 to 2.5 V	Full range	10			8			1
		V _{ID} = 5 mV I _{OH} = 0	Full range		4 ⁸	5		4 [§]	5	
∙он	High-level output voltage	V _{ID} = 5 mV, I _{OH} =5 mA	Full range	2.5	3.6 [§]		2.5	3.6 \$		1
		V _{ID} = -5 mV, I _{OL} = 0	Full range	- 1	- 0.5 [§]	01	- 1	0.5 [§]	0‡	v
Vol	Low-level output voltage	V(strobe) = 0.3 V, V _{ID} = 5 mV, I _{OL} = 0	Full range	- 1		0†	- 1		0‡	v
		N - F - N	25 C	2	2.4		1.6	2.4		
IOL	Low-level output current	viD = - 5 mV,	MIN	1	2.3		0.5	2.4		mA
		v ₀ = 0	MAX	0.5	2.3		0.5	2.4		
10	Output resistance	V _O = 1.4 V	25"C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100 [§]		70	100 %		dB
ICC+	Supply current from VCC+ 1		Full range	1	5.5 §	9		5.5 [§]	9	mA
Icc -	Supply current from VCC - 1	$v_{1D} = -5 \text{ mV}$	Full range	1	-3.5 [§]	-7		-3.5 [§]	-7	mA
PD	Total power dissipation ¶	NO IORO	Full range		90 [§]	150		90 š	150	mW

[†]Unless otherwise noted, all characteristics are measured with the strobe open, Full range (MIN to MAX) for TL514M is -55°C to 125°C and for the TL514C is 0°C to 70°C.

[‡]The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

[§]These typical values are at T_A = 25^oC.

Suppy current and power dissipation limits apply for each comparator.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL514M,  $V_O = 1.8 V$ at  $T_A = -55^{\circ}$  C,  $V_O = 1.4 V$  at  $T_A = 25^{\circ}$  C, and  $V_O = 1 V$  at  $T_A = 125^{\circ}$  C; for TL514C,  $V_O = 1.5 V$  at  $T_A = 0^{\circ}$  C,  $V_O = 1.4 V$  at  $25^{\circ}$  C, and  $V_O = 1.2 V$  at  $T_A = 70^{\circ}$  C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

### switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

PARAMETER		TEST CONDITIO	MIN	TYP	MAX	UNIT	
Response time	R _L = ∞,	CL = 5 pF,	See Note 5		30	80	ns
Strobe release time	RL * *,	CL - 5 pF,	See Note 6		5	25	ns

NOTES: 5. The response time specified is for a 100-mV input step with 5-mV overdrive.

6. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage which rises above 1.4 V. The time interval is measured from the 50% point of the strobe voltage curve to the point where the overdriven output voltage crosses the 1.4 V level.

For typical characteristic curves, see the TL510 data sheet on page 181.

### LINEAR INTEGRATED CIRCUITS

### TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 7611441, FEBRUARY 1971-REVISED JUNE 1976

#### FORMERLY SN52710, SN72710

schematic

- Fast Response Times
- Low Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits

#### description

The TL710 is a monolithic high-speed comparator having differential inputs and a low-impedance output. Component matching, inherent in silicon integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are especially useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed voltage comparator. The TL710M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the TL710C is characterized for operation from 0°C to 70°C.



Component values shown are nominal.

#### terminal assignments



NC-No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL710M	TL710C	UNIT
Supply voltage V _{CC+} (see Note 1)		14	14	v
Supply voltage V _{CC} (see Note 1)		-7	-7	V
Differential input voltage (see Note 2)		±5	±5	V
Input voltage (either input, see Note 1)		±7	±7	V
Peak output current $(t_W \le 1 s)$		10	10	mA
Continuous total power dissipation at (or below) 70°C free-air temperature (see Note 3)		300	300	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	J, JG, L, or U package	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	N or P package	260	260	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. For operation of the TL710M above 70° C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS

# electrical characteristics at specified free-air temperature, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ (unless otherwise noted)

			+		1	L710N	1		UNIT		
	PARAMETER	TES	T CONDITIONS'		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			~	25°C		2	5		2	7.5	m)/
VIO	Input offset voltage	$H_{S} \leq 200 \Omega$	See Note 4	Full range			6			10	
	Average temperature coefficient	Ro < 200 0	See Note 4	Full range		5			7.5		μV/°C
avio	of input offset voltage	ng « 200 sz,	566 11010 4		ļ						
	land affect automt	See Note 4		25°C		1	10		1	15	щA
01	Input offset current	300 11010 4		Full range			20			25	
				25°C		25	75		25	100	
ів	Input bias current	See Note 4		Full range			150			150	μ <u>η</u>
VI	Input voltage range	$V_{CC-} = -7 V$		25° C	±5			±5			V
VID	Differential input voltage range			25°C	±5			±5			V
	Large-signal differential		Cos Note 4	25°C	750	1500		700	1500		
AVD	voltage amplification	No load,	See Note 4	Full range	500			500			
VOH	High-level output voltage	V _{ID} = 15 mV,	I _{OH} = -0.5 mA	25° C	2.5	3.2	4	2.5	3.2	4	V
VOL	Low-level output voltage	V _{ID} = -15 mV,	IOL = 0	25° C	-1	-0.5	0‡	-1	0.5	0‡	V
IOL	Low-level output current	V _{ID} = -15 mV,	V _O = 0	25° C	1.6	2.5					mA
ro	Output resistance	V _O = 1.4 V		25° C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω		, 25°C	70	90		65	90		dB
ICC+	Supply current from VCC+	V _{ID} = −5 V to !	5 V	25°C		5.4	10,1		5.4		mA
ICC-	Supply current from V _{CC} -	(-10 mV	for typ),	25° C		-3.8	8.9		3.8		mA
PD	Total power dissipation	No load		25°C	T	88	175		88		mW

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL710M,  $V_0 = 1.8 V$ at  $T_A = -55^{\circ}$ C,  $V_O = 1.4 V$  at  $T_A = 25^{\circ}$ C, and  $V_O = 1.V$  at  $T_A = 125^{\circ}$ C; for TL710C,  $V_O = 1.5 V$  at  $T_A = 0^{\circ}$ C,  $V_O = 1.4 V$  at  $T_A = 25^{\circ}$ C, and  $V_O = 1.2 V$  at  $T_A = 70^{\circ}$ C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

 †  Full range for TL710M is  $-55^{\circ}$  C to  $125^{\circ}$  C and for TL710C is 0  $^{\circ}$  C to 70  $^{\circ}$  C.

[‡]The algebraic convention where the most positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

### switching characteristics, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ , $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	TL710M	TL710C	UNIT
	PARAMETER		TEST CONDITIONS	TYP	ТҮР	
	Response time	No load,	See Note 5	40	40	ns

NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive.

### TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS





**TEXAS INSTRUMENTS** 

### TYPES TL710M, TL710C DIFFERENTIAL COMPARATORS



TOTAL POWER DISSIPATION vs FREE-AIR TEMPERATURE 100 V_{CC+} = 12 V V_{CC}_ = --6 V PD-Total Power Dissipation-mW V_{ID} = 0 95 No load 90 TL710C -85 80 -75 -50 75 -25 0 25 50 TA-Free-Air Temperature-°C

100 125



Printed in U.K.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POS

### LINEAR INTEGRATED CIRCUIT

### TYPE TL720C DUAL DIFFERENTIAL COMPARATOR

BULLETIN NO. DL-S 7611440, MARCH 1971-REVISED JUNE 1976

#### FORMERLY SN72720

- Fast Response Times 

  Low Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits

schematic (each comparator)

Component values shown are nominal



J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)



NC-No internal connection

#### description

The TL720 is two high-speed comparators in a single package, each electrically identical to the TL710 and having differential inputs and a low-impedance output. Component matching, inherent in silicon monolithic circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. This circuit is especially useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed voltage comparator. The TL720C is characterized for operation from 0°C to 70°C.

#### absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1) $\ldots$																14 V
Supply voltage V _{CC} (see Note 1)																-7 V
Differential input voltage (see Note 2)																±5 V
Input voltage (any input, see Note 1)																±7 V
Peak output current, each comparator ( $t_W \le 1$ s) .															1	0 mA
Continuous total power dissipation: each comparator															30	0 mW
total package															60	10 mW
Operating free-air temperature range													(	)°C	to:	70°C
Lead temperature 1/16 inch from case for 60 seconds:	: J	l pa	ack	age	;										. :	300°C
Lead temperature 1/16 inch from case for 10 seconds:	: N	٧p	acł	ag	е									۰.	. :	260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

### TYPE TL720C DUAL DIFFERENTIAL COMPARATOR

# electrical characteristics at specified free-air temperature, V_{CC+} = 12 V, V_{CC-} = -6 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS	MIN	TYP	MAX	UNIT	
		D < 200 O	See Note 2	25° C		2	7.5	mV
V10	Input offset voltage	HS ≤ 200 12, See Note 3 0°C		0°C to 70°C			10	
ανιο	Average temperature coefficient	R _S ≤ 200 Ω,	See Note 3	0°C to 70°C		7.5		μV/°C
	of input offset voltage			25°C		1	15	
10	Input offset current	See Note 3		0°C to 70°C		·····	25	μA
				25°C		25	100	
IB	Input bias current	See Note 3		0°C to 70°C			150	μΑ
VI	Input voltage range	V _{CC} _ = −7 V		25° C	±5			V
VID	Differential input voltage range			25°C	±5			V
	Large-signal differential	N	Car Nata 2	25°C	700	1500		
AVD	voltage amplification	NO IORO,	See Note 3	$0^{\circ}C$ to $70^{\circ}C$	500			
Voн	High-level output voltage	V _{ID} = 15 mV,	^I OH = -0.5 mA	25° C	2.5	3.2	4	v
VOL	Low-level output voltage	$V_{ID} = -15 \text{ mV},$	IOL = 0	25°C	-1	-0.5	0‡	v
ro	Output resistance	V _O = 1.4 V		25°C		200		Ω
CMRR	Common-mode rejection ratio	R _S < 200 Ω		25°C	65	90		dB
ICC+	Supply current from V _{CC+} (each comparator)	V _{ID} = -5 V to 5	i V	25°C		5.4		mA
Icc-	Supply current from V _{CC} (each comparator)	(-10 mV 1	for typ),	25°C		-3.8		mA
PD	Total power dissipation (each comparator)	No load		25°C		88		mW

NOTE 3:These characteristics are verified by measurements at the following temperatures and output voltage levels:  $V_0 = 1.5$  V at  $T_A = 0^\circ C$ ,  $V_0 = 1.4$  V at  $T_A = 25^\circ C$ , and  $V_0 = 1.2$  V at  $T_A = 70^\circ C$ . These voltput voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

### switching characteristics, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ , $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	ТҮР	UNIT
Response time	No load, See Note 4	40	ns

NOTE 4: The response time specified is for a 100-mV input step with 5-mV overdrive.

Typical characteristic curves on the TL710 data sheet, pages 187 and 188, are applicable for the TL720.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT PO

### LINEAR INTEGRATED CIRCUITS

### TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 7611449, MARCH 1971-REVISED JUNE 1976

#### FORMERLY SN52810, SN72810

schematic

- Low Offset Characteristics
- High Differential Voltage Amplification
- Fast Response Times
- Output Compatible with Most TTL and DTL Circuits

#### description

The TL810 is an improved version of the TL710 high-speed voltage comparator with an extra stage added to increase voltage amplification and accuracy. Typical amplification is 33,000. Component matching, inherent in monolithic integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. These circuits are particularly useful for applica-



tions requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector.

The TL810M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the TL810C is characterized for operation from 0°C to 70°C.



NC - No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)					 14 V
Supply voltage V _{CC} (see Note 1)					 <b>-7 V</b>
Differential input voltage (see Note 2)					 ±5 V
Input voltage (either input, see Note 1)					 ±7 V
Peak output current (t _w ≤1 s)					 10 mA
Continuous total power dissipation at (	(or below) 70°C f	ree-air ter	nperature (se	e Note 3)	 300 mW
Operating free air temperature range:	TL810M Circuits				 $-55^{\circ}C$ to $125^{\circ}C$
1 5 1 5	TI 810C Circuits				 $. 0^{\circ}C$ to $70^{\circ}C$
Storage temperature range					 -65°C to 150°C
Lead temperature 1/16 inch from case	for 60 seconds:	J JG L	or U package		 <b>300°</b> C
Lead temperature 1/16 inch from case	for 10 seconds: I	N or P p	ackage		 260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. For operation of the TL810M above 70^{°C} free-air temperature, refer to Dissipating Derating Curves, Section 2.

### TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS

electrical characteristics at specified free-air temperature,  $V_{CC+} = 12 \text{ V}$ ,  $V_{CC-} = -6 \text{ V}$  (unless otherwise noted)

			ut out		TL810M			TL810C		
	PARAMETER	TESTCONL	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Loout offeet voltage	R _S ≤ 200 Ω,	25°C		0.6	2		1.6	3.5	
10	input onset vortage	See Note 4	Full range	I I		3			4.5	
	Average temperature coefficient	R _S = 50 Ω,	MIN to 25°C		3	10		3	20	Nec
avio	of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	μv/ C
			25"C		0.75	3		1.8	5	
40	Input offset current	See Note 4	MIN		1.8	7			7.5	μA
			MAX		0.25	3			7.5	1
	Average temperature coefficient	Can Nata A	MIN to 25°C		15	75		24	100	
ano	of input offset current	See Note 4	25°C to MAX		5	25		15	50	nA/ C
	land black and a	C N	25° C		7	15		7	20	
118	Input bias current	See Note 4	MIN		12	25		9	30	μΑ
Vice	Common-mode input	Vcc = -7 V	Eull range	15			+5			v
·ich	voltage range	• • • • •	- un runge				13			
VID	Differential input voltage range		Full range	± 5			±5			v
AVO	Large-signal differential	No load,	25° C	12.5	33		10	33		VIII
AVD.	voltage amplification	Vo = 0 to 2.5 V	Full range	10			8			V/mA
		V _{ID} ≈ 5 mV	Eull canao		45	5		45	5	
Vou	High-level output voltage	¹ ОН = 0	runnange		-	5			5	v
•0H	riginitien output vortage	V _{ID} = 5 mV,	E	2.5	265		2.5	365		] *
		I _{OH} = ~5 mA	Full range	2.5	5.0 %		2.5	3.0."		
		V _{ID} ∘ −5 mV,	Full range	-1	-0.5 \$	ot	_1	-0.5 \$	ot	N
VOL	Low-level output voltage	IOL = 0	i un range		0.5	01		-0,5%	0+	ľ
			25°C	2	2.4		1.6	2.4		
IOL	Low-level output current	VID = ~ 5 mV,	MIN	1	2.3		0.5	2.4		mA
		v ₀ = 0	MAX	0.5	2.3		0.5	2.4		1
ro	Output resistance	V _O = 1.4 V	25"C		200			200		\$2
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω	Full range	80	100 \$		70	100 \$		dB
ICC+	Supply current from VCC+		Full range		5.5 [§]	9		5.5 [§]	9	mA
ICC-	Supply current from VCC-	VID = 5 mV,	Full range		-3.5 [§]	~ 7		-3.5 [§]	7	mA
PD	Total power dissipation	No load	Full range	1	90 [§]	150		90 [§]	150	mW

[†]Full range (MIN to MAX) for TL810M is  $-55^{\circ}$ C to  $125^{\circ}$ C and for the TL810C is  $0^{\circ}$ C to  $70^{\circ}$ C.

[‡]The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage,

 8 These typical values are at T_A = 25 °C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL810M,  $V_O = 1.8$  V at  $T_A = -55^{\circ}$  C,  $V_O = 1.4$  V at  $T_A = 25^{\circ}$  C, and  $V_O = 1$  V at  $T_A = 125^{\circ}$  C, for TL810C,  $V_O = 1.5$  V at  $T_A = 70^{\circ}$  C,  $V_O = 1.4$  V at  $25^{\circ}$  C, and  $V_O = 1.2$  V at  $T_A = 70^{\circ}$  C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

### switching characteristics, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ , $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIO	ONS	MIN	TYP	MAX	UNIT
Response time	R _L = ∞,	CL = 5 pF,	See Note 5		30	80	ns

NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive,

### TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS



### TYPES TL810M, TL810C DIFFERENTIAL COMPARATORS





**TEXAS INSTRUMENTS** 

Printed in U.K.

It cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY T IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSI

### LINEAR INTEGRATED CIRCUITS

### TYPES TL811M, TL811C DUAL-CHANNEL DIFFERENTIAL COMPARATORS WITH STROBES

BULLETIN NO. DL-S 7611464, MARCH 1971-REVISED JUNE 1976

#### FORMERLY SN52811, SN72811

- Fast Response Times
- Improved Voltage Amplification and Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits

#### description

The TL811 is an improved version of the TL711 highspeed dual-channel voltage comparator. Voltage amplification is higher (typically 17,500) due to an extra stage, increasing the comparator accuracy. The output pulse width may be "stretched" by varying the capacitive loading.

Each channel has differential inputs, a strobe input, and an output in common with the other channel. When either strobe is taken low, it inhibits the associated channel. If both strobes are simultaneously low, the output will be low regardless of the conditions applied to the differential inputs.



These dual-channel voltage comparators are partic- Component values shown are nominal. ularly attractive for applications requiring an amplitude-discriminating sense amplifier with an adjustable threshold voltage.

The TL811M is characterized for operation over the full military temperature range of -55°C to 125°C; the TL811C is characterized for operation from 0°C to 70°C.

#### terminal assignments



NC-No internal connection

NO

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)																												14	v
Supply voltage V _{CC} (see Note 1)																							•					-7	۷
Differential input voltage (see Note 2	)																											±5	۷
Input voltage (any input, see Note 1)																												±7	۷
Strobe Voltage (see Note 1)																												. 6	۷
Peak output current ( $t_w \leq 1$ s)																											5	50 m	'nΑ
Continuous total power dissipation a	t (o	r b	elc	w)	70	0°0	C f	ree	∙ai	r te	em	pe	rat	ure	e (s	see	N	ote	3	)							30	<b>0</b> m	W
Operating free-air temperature range:	т	L8	11!	мÓ	Cir	cui	ts					٠.												_!	55°	Ċ	to	125	°C
• • • • • • • • • • • • • • • • • • •	т	L8	110	сс	irc	cuit	ts																		- (	°C	c to	o 70	°C
Storage temperature range																								-1	65°	°C	to	150	°C
Lead temperature 1/16 inch from cas	e f	or	60	sec	or	nds	: .	J. L		or I	υr	bac	ka	qe													:	300	°C
Lead temperature 1/16 inch from cas	e f	or	10	sec	or	nds	: 1	N	oac	ka	ge																	260	°C
res: 1. All voltage values, except differenti	alv	olta	ge	s, a	re v	with	h re	spe	ect	to	the	e ne	ntw	ork	gr	our	nd	ter	mir	nal.									

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. For operation of the TL811M above 70°C free-air temperature, refer to Dissipating Derating Curves, Section 2.

electrical characteristics at specified free-air temperature,  $V_{CC+} = 12 V$ ,  $V_{CC-} = -6 V$  (unless otherwise noted)

			aunt.		TL811M	٨		TL8110	2	
	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$R_S \le 200 \Omega$ , $V_{10} = 0$	25° C		1	3.5		1	5	
VIO	Input offset voltage	See Note 4	Full range			4.5			6	mV
1		R _S ≤ 200 Ω,	25°°C		1	5		1	7.5	
		See Note 4	Full range			6			10	
	Average temperature coefficient	R _S < 200 Ω,								
°VI0	of input offset voltage	V _{IC} ≈ 0, See Note 4	Full range		5			5		µ∨/°C
			25° C		0.5	3		0.5	5	
10	Input offset current	See Note 4	Full range			5			10	μA
			25°C		7	20	1	7	30	
118	Input bias current	See Note 4	Full range			30			50	μA
IL(S)	Low-level strobe current	V(strobe) = -100 mV	25°C		-1.2	-2.5		-1.2	-2.5	mA
VICR	Common-mode input voltage range	V _{CC} - = -7 V	25° C	t 5			±5			v
v _{iD}	Differential input voltage range		25° C	±5			±5			v
	Large-signal differential	V _O = 0 to 2.5 V,	25″C	12,5	17.5		10	17.5		
AVD	voltage amplification	No load	Full range	8			5			V/mV
		V _{ID} = 10 mV,	25°C		4	5	1	4	5	
VOH	High-level output voltage	IOH = 0								v
		V _{ID} = 10 mV, IOH = -5 mA	25° C	2.5	3.6		2.5	3.6		
		V _{ID} = -10 mV, I _{OL} = 0	25° C	-1	-0.4	0‡	-1	0.4	0‡	
VOL	Low-level output voltage	V _{ID} = 10 mV, V(strobe) = 0.3 V, I _{OL} = 0	25°C	-1		0‡	-1		0‡	v
IOL	Low-level output current	V _{ID} =10 mV, V _O = 0	25° C	0.5	0.8		0.5	0.8		mA
ro	Output resistance	V _O = 1.4 V	25° C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S < 200 Ω	25° C	70	90		65	90		dB
Icc+	Supply current from V _{CC+}	V _{ID} = -5 to 5 V	25° C		6.5			6.5		mA
Icc-	Supply current from V _{CC} -	(-10 mV for typ)	25° C		2.7			-2.7		mA
PD	Total power dissipation	No load, See Note 5	25° C		94	150		94	200	mW

[†]Unless otherwise noted, all characteristics are measured with the strobe of the channel under test open, the strobe of the other channel is grounded, Full range for TL811M is -55°C to 125°C and for the TL811C is 0°C to 70°C.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

NOTES: 4. These characteristics are verified by measurements at the following temperatures and output voltage levels: for TL811M,  $V_0 = 1.8 V$  at  $T_A = -55^{\circ}C$ ,  $V_0 = 1.4 V$  at  $T_A = 25^{\circ}C$ , and  $V_0 = 1 V$  at  $T_A = 125^{\circ}C$ ; for TL811C,  $V_0 = 1.5 V$  at  $T_A = 0^{\circ}C$ ,  $V_0 = 1.4 V$  at  $T_A = 25^{\circ}C$ , and  $V_0 = 1.2 V$  at  $70^{\circ}C$ . These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

5. The strobes are alternately grounded.

### switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

BARAMETER		ST CONDITIONS		TL811M	1		TL8110	:	
FARAMETER		ST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Response time	RL = ∞,	CL = 5 pF, See Note 6		33	80		33		ns
Strobe release time	R _L = ∞,	CL = 5 pF, See Note 7		5	25		5		ns

NOTES: 6. The response time specified is for a 100-mV input step with 5-mV overdrive.

7. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage which rises above 1.4 V. The time interval is measured from the 50% point of the stroke voltage curve to the point where the overdriven output voltage crosses the 1.4 V level.

### TYPICAL CHARACTERISTICS



VID-Differential Input Voltage-mV

V_{ID}—Differential Input Voltage—mV FIGURE 4

**TEXAS INSTRUMENTS** 



### TYPICAL CHARACTERISTICS







TEST CIRCUIT FOR FIGURE 7



NOTE 4. These characteristics are varified by measurements at the following temperatures and output voltage levels: for TL811M,  $V_O = 1.8 V \text{ at } T_A = -55^\circ C$ ,  $V_O = 1.4 V \text{ at } T_A = 25^\circ C$ , and  $V_O = 1 V \text{ at } T_A = 125^\circ C$ ; for TL811C,  $V_O = 1.5 V \text{ at } T_A = 0^\circ C$ ,  $V_O = 1.4 V \text{ at } T_A = 25^\circ C$ , and  $V_O = 1.2 V \text{ at } 70^\circ C$ . These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

### TYPES TL820M, TL820C DUAL DIFFERENTIAL COMPARATORS

BULLETIN NO. DL-S 7611450, MARCH 1971-REVISED JUNE 1976

#### FORMERLY SN52820, SN72820

- Fast Response Times
- High Differential Voltage Amplification
- Low Offset Characteristics
- Outputs Compatible with Most TTL and DTL Circuits











#### description

The TL820 is an improved version of the TL720 dual high-speed voltage comparator. Each comparator has differential inputs and a low-impedance output. When compared with the TL720, these circuits feature high amplification (typically 33,000) due to an extra amplification stage and increased accuracy because of lower offset characteristics. They are particularly useful in applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed limit detector. The TL820C is characterized for operation form  $0^{\circ}$ C to  $70^{\circ}$ C.

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)																					. 14 V
Supply voltage V _{CC-} (see Note 1) .																					—7 V
Differential input voltage (see Note 2)																					. ±5 V
Input voltage (any input, see Note 1)																					. ±7 V
Peak output current ( $t_W \leq 1$ s)																					10 m A
Continuous total power dissipation at	(or belo	w) 70	)°C f	ree-aiı	' tem	pera	atur	e: e	each	n co	mp	bara	tor	۰.							300 mW
								1	tota	ıl pa	ack	age,	(s	ee	No	te	3)				600 mW
Operating free air temperature range:	TL820	M Circ	cuits					1	tota	ilpa	ack	age	. (s	ee	No	te	3)	5	5°(	Ct	600 mW o 125°C
Operating free-air temperature range:	TL820 TL820	M Circ C Circ	cuits cuits	•	•••	•		1	ota	il pa 	ack	age	. (s	ee	No	te	3)	5	5°( 0'	Ct °C	600 mW o 125°C to 70°C
Operating free-air temperature range: Storage temperature range	TL820 TL820	M Circ C Circ	cuits cuits		•••• •••	•	  	1	tota	ilpa • •	ack	age	. (s	ee	No	te	3)	5 6	5°( 0' 5°(	Ct Ct Ct	600 mW o 125°C to 70°C o 150°C
Operating free-air temperature range: Storage temperature range Lead temperature 1/16 inch from cas	TL820 TL820	M Circ C Circ secon	cuits cuits  ds: .	I pacl	  	•	 	1	tota	I pa	ack	age	(s)	ee	No	te	3)	5 6	5°( 0' 5°(	Ct °C Ct	600 mW o 125°C to 70°C o 150°C 300°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. For operation of the TL820M above 70° C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### TYPES TL820M, TL820C DUAL DIFFERENTIAL COMPARATORS

# electrical characteristics at specified free-air temperature, $V_{CC+}$ = 12 V, $V_{CC-}$ = -6 V (unless otherwise noted)

			DITIONS!	I	TL820M			TL820C		
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V. e		R _S < 200 Ω,	25° C		0.6	2		1.6	3.5	
*10		See Note 4	Full range			3			4.5	
~ ~ ~ ~	Average temperature coefficient	R _S = 50 Ω,	MIN to 25°C		3	10		3	20	wer
4010	of input offset voltage	See Note 4	25°C to MAX		3	10		3	20	44/0
			25°C		0.75	3		1.8	5	
10	Input offset current	See Note 4	MIN		1.8	7			7.5	μΑ
			MAX		0.25	3			7.5	
	Average temperature coefficient	C N	MIN to 25°C		15	75		24	100	
αΠΟ	of input offset current	See Note 4	25°C to MAX		5	25		15	50	A C
			25°C	1	7	15	1	7	20	
'18	Input bias current	See Note 4	MIN		12	25	1	9	30	1 "
VICR	Common-mode input voltage range	V _{CC-} = -7 V	Full range	±5			±5			v
VID	Differential input voltage range		Full range	±5			±5			V
	Large-signal differential	No load,	25°C	12.5	33		10	33		
AVD	voltage amplification	Vo = 0 to 2.5 V	Full range	10			8			1 0/mv
		V _{ID} = 5 mV	Full range		4§	5	1	4§	5	
Vон	High-level output voltage	юн = 0					ļ			l v
		V _{ID} = 5 mV, I _{OH} = -5 mA	Full range	2.5	3.6 §		2.5	3.6 §		
VOL	Low-level output voltage	V _{ID} ≖ −5 mV, I _{OL} ≭ 0	Full range	-1	-0.5 §	0‡	-1	0.5 §	0‡	v
		N E - V	25°C	2	2.4		1.6	2.4		
IOL	Low-level output current	VID = -5 mV,	MIN	1	2.3		0.5	2.4		mA
		V0 = 0	MAX	0.5	2.3		0.5	2.4		]
ro	Output resistance	V _O = 1.4 V	25° C		200			200		Ω
CMRR	Common-mode rejection ratio	R _S < 200 Ω	Full range	80	100§		70	100 \$		dB
ICC+	Supply current from V _{CC+} (each comparator)		Full range		5.5§	9		5.5§	9	mA
Icc-	Supply current from V _{CC} (each comparator)	V _{ID} = −5 mV, Noload	Full range		-3.5 §	-7		-3.5§	-7	mA
PD	Total power dissipation (each comparator)		Full range		90 §	150		90 §	150	mW

[†]Full range (MIN to MAX) for TL820M is -55°C to 125°C and for the TL820C is 0°C to 70°C.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

 $^{\circ}$  These typical values are at T_A = 25° C.

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for TLB20M,  $V_O = 1.8$  V at  $T_A = -55^{\circ}$ C,  $V_O = 1.4$  V at  $T_A = 25^{\circ}$ C, and  $V_O = 1.2$  V at  $T_A = 70^{\circ}$ C.  $V_O = 1.4$  V at  $25^{\circ}$ C, and  $V_O = 1.2$  V at  $T_A = 70^{\circ}$ C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

### switching characteristics, VCC+ = 12 V, VCC- = -6 V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Response time	R _L = ∞, C _L = 5 pF, See Note 5		30	80	ns

NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive.

For typical characteristic curves, see the TL810 data sheet on page 193.

### LINEAR INTEGRATED CIRCUITS

### TYPE uA710M DIFFERENTIAL COMPARATOR

BULLETIN NO. DL-S 7612415, JUNE 1976

- Fast Response Times
- Low Offset Characteristics
- Output Compatible with Most TTL and DTL Circuits
- Designed to be Interchangeable with Fairchild µA710

#### description

The uA710 is a monolithic high-speed comparator having differential inputs and a low-impedance output. Component matching, inherent in silicon integrated circuit fabrication techniques, produces a comparator with low-drift and low-offset characteristics. This circuit is especially useful for applications requiring an amplitude discriminator, memory sense amplifier, or a high-speed voltage comparator. The uA710M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C.



#### terminal assignments



NC-No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage V _{CC+} (see Note 1)	4 V
Supply voltage V _{CC} _ (see Note 1)	-7 V
Differential input voltage (see Note 2)	:5 V
Input voltage (either input, see Note 1)	:7 V
Peak output current (tw $\leq$ 1 s)	mΑ
Continuous total power dissipation at (or below) 25 $^\circ$ C free-air temperature $\ldots$ $\ldots$ $\ldots$ $\ldots$ 300	mW
Operating free-air temperature range	5°C
Storage temperature range $\ldots$	о°с
Lead temperature 1/16 inch from case for 60 seconds	0°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### TYPE uA710M DIFFERENTIAL COMPARATOR

# electrical characteristics at specified free-air temperature, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS [†]		MIN	түр	MAX	UNIT
		B < 000.0	0	25°C		0.6	2	m\/
VIO	Input offset voltage	$H_{S} \leq 200 \Omega$ ,	See Note 4	Full range			3	mv
۵VIO	Average temperature coefficient of input offset voltage	R _S ≤ 50 Ω,	See Note 4	Full range		3	10	μV/°C
				25° C		0.75	3	
10	Input offset current	See Note 4		Full range			7	μΑ
	Average temperature coefficient	0		-55°C to 25°C		5	25	anec
۵IIO	of input offset current	See Note 4		25°C to 125°C		15	75	IIA/ C
		0.0		25° C		13	20	
ЧВ	Input bias current	See Note 4		Full range			45	μΑ
VI.	Input voltage range	V _{CC} _ = -7 V		25° C	±5			v
VID	Differential input voltage range			25°C	±5			V
	Large-signal differential		0 N 4	25°C	1250	1700		
AVD	voltage amplification	No load,	See Note 4	Full range	1000			
VOH	High-level output voltage	$V_{ID} = 5 mV$ ,	I _{ОН} = —5 mA	25°C	2.5	3,2	4	V
VOL	Low-level output voltage	$V_{ID} = -5 \text{ mV},$	IOL = 0	25°C	-1	-0.5	6‡	v
				25°C	2	2.5		
IOL	Low-level output current	V _{ID} =5 mV,	V _O = 0	55°C	1	2.3		mA
				125°C	0.5	1.7		
ro	Output resistance	V _O = 1.4 V		25°C		200		Ω
CMRR	Common-mode rejection ratio	R _S ≤ 200 Ω		25°C	80	100		dB
ICC+	Supply current from V _{CC+}	V _{ID} = -5 V to 5 V	,	25°C		5.2	9	mA
ICC-	Supply current from V _{CC} _	(—10 mV for	typ),	25°C		-4.6	7	mA
PD	Total power dissipation	No load		25°C		90	150	mW

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels:  $V_0 = 1.48$  V at  $T_A = -55^{\circ}C$ ,  $V_0 = 1.4$  V at  $T_A = 25^{\circ}C$ , and  $V_0 = 1.24$  T,  $A = 125^{\circ}C$ . These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

[†]Full range for uA710M is -55°C to 125°C.

[‡]The algebraic convention where the more-positive (less-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

### switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

PARAMETER	TEST C	ONDITIONS	ТҮР	UNIT	
Response time	No load,	See Note 5	40	ns	

NOTE 5: The response time specified is for a 100-mV input step with 5-mV overdrive.

### TYPE uA710M DIFFERENTIAL COMPARATOR



#### **TYPICAL CHARACTERISTICS**

Printed in U.K.

AS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.



**TEXAS INSTRUMENTS** 

### LINEAR INTEGRATED CIRCUITS

### TYPES uA711M. uA711C **DUAL-CHANNEL DIFFERENTIAL COMPARATORS** WITH STROBES

BULLETIN NO, DL-S 7611442, FEBRUARY 1971-- REVISED JUNE 1976

#### FORMERLY SN52711, SN72711

- Fast Response Times
- Output Compatible with Most TTL and DTL Circuits
- Low Offset Characteristics
- Designed to be Interchangeable with Fairchild #A711 and #A711C

#### description

The uA711 is a high-speed dual-channel comparator with differential inputs and a low-impedance output. Component matching, inherent with silicon monolithic circuit fabrication techniques, produces a comparator circuit with low-drift and low-offset characteristics. An independent strobe input is provided for each of the two channels, which when taken low, inhibits the associated channel. If both strobes are simultaneously low, the output will be low regardless of the conditions applied to the differential inputs. The comparator output pulse width may be "stretched" by varying the capacitive loading. These dual comparators are particularly useful for applications requiring an amplitude-



discriminating sense amplifier with an adjustable threshold voltage. The uA711M is characterized for operation over the full military temperature range of -55°C to 125°C; the uA711C is characterized for operation from 0°C to 70°C.

### terminal assignments



NC-No Internal Connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA711M	uA711C	UNIT
Supply voltage V _{CC+} (see Note 1)		14	14	V
Supply voltage V _{CC} (see Note 1)		-7	-7	v
Differential input voltage (see Note 2)		±5	±5	v
Input voltage (any input, see Note 1)		±7	±7	V
Strobe voltage (see Note 1)		6	6	v
Peak output current ( $t_W \le 1$ s)		50	50	mA
Continuous total power dissipation at (or below) 70°C free-air temperature (see Note 3)		300	300	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	J, L, or U package	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds	l package	260	260	°C

NOTES: All voltage values, except differential voltages, are with respect to network ground terminal. 1.

Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. For operation of uA711M above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2. 2.

## electrical characteristics at specified free-air temperature, $V_{CC+} = 12 V$ , $V_{CC-} = -6 V$ (unless otherwise noted)

		TEAT CONDITIONAL				uA711	A				
	PARAMETER	I IE	ST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		R _S ≤ 200 Ω,	V _{IC} = 0,	25°C	[	1	3.5	1	1	5	
		See Note 4		Full range			4.5			6	
V10	Input offset voltage	R _S ≤ 200 Ω,		25°C		1	5		1	7.5	mv
		See Note 4		Full range			6			10	
	Average temperature coefficient	R _S ≤ 200 Ω,	V _{IC} = 0,	C. Harris		c .			c		NPC
avio	of input offset voltage	See Note 4		Full range		5			5		μv/c
	1 officer	See Note 4		25°C		0.5	10		0.5	15	
10	Input offset current	See Note 4		Full range			20			25	μΑ
	lanus bias sumant	Can Nata 4		25° C		25	75		25	100	
'IB	Input bias current	See Note 4		Full range			150			150	μ
IL(S)	Low-level strobe current	V(strobe) = 0,	V _{ID} = 10 mV	25°C		-1.2	-2.5		-1.2	-2.5	mA
VI	Input voltage range	$V_{CC-} = -7 V$		25°C	± 5			±5			V
Vie	Differential input			25°C	+5			+5			v
10	voltage range			23 0	1.5			10			
A.10	Large-signal differential	No load,		25°C	750	1500		700	1500		
~~0	voltage amplification	V _O = 0 to 2.5 V		Full range	500			500			
Vau	High level output voltage	V _{ID} = 10 mV,	1 _{OH} = 0	25°C		4.5	5		4.5	5	V
•OH		V _{ID} = 10 mV,	I _{OH} = -5 mA	25°C	2.5	3.5		2.5	3.5		· ·
		$V_{ID} = -10 \text{ mV},$	I _{OL} = 0	25°C	-1	- 0.5	0‡	-1	-0.5	0‡	
VOL	Low-level output voltage	$V_{1D} = 10  mV$ ,	V(strobe) = 0.3 V,	25°C	1		ot			o t	v
		toL = 0		25 0			0+			0+	
IOL	Low-level output current	$V_{1D} = -10 \text{ mV},$	V ₀ = 0	25°C	0.5	0.8		0.5	0.8		mA
ro	Output resistance	V _O = 1.4 V		25°C		200			200		Ω
CMRR	Common-mode rejection ratio	$R_S \le 200 \Omega$		25°C	70	90		65	90		dB
ICC+	Supply current from V _{CC+}	$V_{1D} = -5 V \text{ to } 5 V$	/ (-10 mV for typ),	25°C		9			9		mA
ICC-	Supply current from V _{CC} -	Strobes alternate	ly grounded,	25°C		-4			-4		mA
PD	Total power dissipation	No load		25°C		130	200		130	230	mW

NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for uA711M, V_Q = 1.8 V at T_A = -55^oC, V_Q = 1.4 V at T_A = 25^oC, and V_Q = 1 V at T_A = 125^oC; for uA711C, V_Q = 1.5 V at T_A = 0^oC, V_Q = 1.4 V at T_A = 25^oC, and V_Q = 1.2 V at 70^oC. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

¹Unless otherwise noted, all characteristics are measured with the strobe of the channel under test open. The strobe of the other channel is grounded, Full range for uA711M is -55°C to 125°C and for the uA711C is 0°C to 70°C.

[‡]The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when 0 V is the maximum, the minimum limit is a more-negative voltage.

### switching characteristics, V_{CC+} = 12 V, V_{CC-} = -6 V, T_A = $25^{\circ}$ C

BAD ANGTOD		1	uA711M	N	uA711C				
PARAMETER	TEST CONDITIONS			TYP	MAX	MIN	TYP	MAX	UNIT
Response time	No load,	See Note 5		40	80		40		ns
Strobe release time	No load,	See Note 6		7	25		7		ns

NOTES: 5. The response time specified is for a 100-mV input step with 5-mV overdrive.

6. For testing purposes, the input bias conditions are selected to produce an output voltage of 1.4 V. A 5-mV overdrive is then added to the input bias voltage to produce an output voltage which rises above 1.4 V. The time interval is measured from the 50% point of the strobe voltage curve to the point where the overdriven output voltage crosses the 1.4 V level.



NOTE 4: These characteristics are verified by measurements at the following temperatures and output voltage levels: for uA711M,  $V_O = 1.8 V$ at  $T_A = -55^{\circ}$ C,  $V_O = 1.4 V$  at  $T_A = 25^{\circ}$ C, and  $V_O = 1 V$  at  $T_A = 125^{\circ}$ C; for uA711C,  $V_O = 1.5 V$  at  $T_A = 0^{\circ}$ C,  $V_O = 1.4 V$  at  $T_A = 25^{\circ}$ C, and  $V_O = 1.2 V$  at  $70^{\circ}$ C. These output voltage levels were selected to approximate the logic threshold voltages of the types of digital logic circuits these comparators are intended to drive.

TEXAS INSTRUMENTS



### TYPICAL CHARACTERISTICS

Printed in U.K.

**TEXAS INSTRUMENTS** 

TI cannot assume any responsibility for any circuits shown or represent that they are free from potent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY T IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSI

# **Voltage Regulators**

### **VOLTAGE REGULATOR SELECTION GUIDE**

### VOLTAGE REGULATORS

### adjustable voltage regulators

			POS	ITIVE		NEGATIVE	SWITCHING			
		LM105	uA723	LM117	LM376	LM104	TL497	UNIT		
Outrout under an	MIN 4		MIN 4.5		2	1.2	5	-0.15	±1.2	
Output voltage	MAX	40	37	40	37 -40		+30, -25	v		
	MIN	8.5	9,5	3.7	9	-8	4.5			
Input voitage	MAX	50	40	40	40	-50	15	v		
Input-to-output vo difference, minimu	oltage um	3	3	2.5	3	-0.5	0	v		
Output current, m	aximum	12	150	1500	25	20	500	mA		
Standby current, r	naximum	2	3,5	5	2.5	5	11	mA		

### adjustable shunt regulator

	Reference Input Voltage TYP	Temperature Coefficient of V _{ref} TYP	Differential Regulator Resistance TYP	Reference Input Current MAX	Regulator Current Range
TL430	2.75 V	100 ppm/°C	1.5 Ω	10 µA	0.5 mA to 100 mA

### fixed voltage regulators

			PC	SITIVE		NEG					
		LM109	uA78XX SERIES	uA78MXX SERIES	uA78LXX SERIES	uA79XX SERIES	uA79MXX SERIES	UNIT			
Nominal output vo	tage	5	SEE LI	STING BELOW F	OR OUTPUT V	PUT VOLTAGES AVAILABLE					
Input voltage	MIN MAX	8 50		SEE INDIVIDUAL DATA SHEETS							
Input-to-output vol differential, minimu	tage um	2	2 2 1.7 1.1 1.1					v			
Output current, ma	ximum	500	1500 500 100 1500 500								
Standby current		10	8 6 6.5 3 t					mA			

[†]2 mA to 3,5 mA, depending on individual type

AVAILABLE OUTPUT VOLTAGES	2.6 V	5 V	6 V	6.2 V	8 V	8.5 V	12 V	15 V	18 V	20 V	24 V
uA78XX SERIES		٠	•		٠	•	•	•	•		•
uA78MXX SERIES		•	•		•		•	•		•	•
uA78LXX SERIES	•	•		•	•		•	•			
uA79XX SERIES ()		•	•		•	•	٠	•	•		•
uA79MXX SERIES ()		•	•		•		•	•		•	•

### GLOSSARY VOLTAGE-REGULATOR TERMS AND DEFINITIONS

### SERIES REGULATORS

#### Input Regulation

The change in output voltage, often expressed as a percentage of output voltage, for a change in input voltage from one level to another level.

NOTE: Sometimes this characteristic is normalized with respect to the input voltage change.

#### **Ripple Rejection**

The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage. NOTE: This is the reciprocal of ripple sensitivity.

#### **Ripple Sensitivity**

The ratio of the peak-to-peak output ripple voltage, sometimes expressed as a percentage of output voltage, to the peak-to-peak input ripple voltage.

NOTE: This is the reciprocal of ripple rejection.

#### **Output Regulation**

The change in output voltage, often expressed as a percentage of output voltage, for a change in load current from one level to another level.

#### **Output Resistance**

The output resistance under small-signal conditions.

#### Temperature Coefficient of Output Voltage (avo)

The ratio of the change in output voltage, usually expressed as a percentage of output voltage, to the change in temperature. This is the average value for the total temperature change.

$$\alpha_{VO} = \pm \left[ \frac{V_{O} \text{ at } T_{2} - V_{O} \text{ at } T_{1}}{V_{O} \text{ at } 25^{\circ} \text{C}} \right] \frac{100\%}{T_{2} - T_{1}}$$

#### Output Voltage Change with Temperature

The percentage change in the output voltage for a change in temperature. This is the net change over the total temperature range.

#### Output Voltage Long-Term Drift

The change in output voltage over a long period of time,

#### **Output Noise Voltage**

The rms output noise voltage, sometimes expressed as a percentage of the dc output voltage, with constant load and no input ripple.

#### Current-Limit Sense Voltage

The current-sense voltage at wich current limiting occurs.
#### Current-Sense Voltage

The voltage that is a function of the load current and is normally used for control of the current-limiting circuitry.

#### Dropout Voltage

The low input-to-output differential voltage at which the circuit ceases to regulate against further reductions in input voltage.

#### Feedback Sense Voltage

The voltage that is a function of the output voltage and is used for feedback control of the regulator.

#### Reference Voltage

The voltage that is compared with the feedback sense voltage to control the regulator,

#### **Bias Current**

The difference between input and output current. NOTE: This is sometimes referred to as quiescent current.

#### Standby Current

The input current drawn by the regulator with no output load and no reference voltage load.

#### Short-Circuit Output Current

The output current of the regulator with the output shorted to ground.

#### Peak Output Current

The maximum output current that can be obtained from the regulator due to limiting circuitry within the regulator.

#### SHUNT REGULATORS

NOTE: These terms and symbols are based on JEDEC and IEC standards for voltage regulator diodes.

#### Shunt Regulator

A device having a voltage-current characteristic similar to that of a voltage-regulator diode; normally biased to operate in a region of low differential resistance (corresponding to the breakdown region of a regulator diode) to develop across its terminals an essentially constant voltage throughout a specified current range.

#### Anode

The electrode to which the regulator current flows within the regulator when it is biased for regulation.

#### Cathode

The electrode from which the regulator current flows within the regulator when it is biased for regulation.

#### Reference Input Voltage (Vref) (of an adjustable shunt regulator)

The voltage at the reference input terminal with respect to the anode terminal.

#### Temperature Coefficient of Reference Voltage (avref)

The ratio of the change in reference voltage to the change in temperature. This is the average value for the total temperature change.

To obtain a value in ppm/°C:

$$\alpha \text{Vref} = \left[\frac{\text{V}_{\text{ref}} \text{ at } \text{T}_2 - \text{V}_{\text{ref}} \text{ at } \text{T}_1}{\text{V}_{\text{ref}} \text{ at } 25^\circ \text{C}}\right] \frac{10^6}{\text{T}_2 - \text{T}_1}$$

#### Regulator Voltage (VZ)

The dc voltage across the regulator.

#### Regulator Current (IZ)

The dc current through the regulator when it is biased for regulation.

#### Regulator Current near Lower Knee of Regulation Range (IZK)

The regulator current near the lower limit of the region within which regulation occurs; this corresponds to the breakdown knee of a regulator diode.

#### Regulator Current at Maximum Limit of Regulation Range (IZM)

The regulator current above which the differential resistance of the regulator significantly increases.

#### Differential Regulator Resistance (rz)

The quotient of a change in voltage across the regulator and the corresponding change in current through the regulator when it is biased for regulation.

#### Noise Volage (Vnz)

The rms noise voltage with the regulator biased for regulation and with no input ripple.

### LINEAR INTEGRATED CIRCUITS

### **TYPES LM104, LM204, LM304 NEGATIVE-VOLTAGE REGULATORS**

BULLETIN NO. DL-S 7612052, SEPTEMBER 1973-REVISED JUNE 1976

#### FORMERLY SN52104, SN72104

- Typical Load Regulation . . . 1 mV
- Typical Input Regulation ... 0.06%
- Designed to be Interchangeable with National Semiconductor LM104, LM204, and LM304 Respectively

#### description

The LM104, LM204, and LM304 are monolithic integrated circuit voltage regulators that can be programmed with a single external resistor to provide any voltage between -40 volts and approximately 0 volts while operating from a single unregulated negative supply. When used with a separate floating bias supply, these devices can provide regulation with the output voltage limited only by the breakdown characteristics of the external pass transistors.

Although designed primarily for application as linear series regulators at output currents up to 25 milliamperes, the LM104, LM204, and LM304 can be used as current regulators, switching regulators, or control elements with the output current limited by the capability of the external pass transistors. The improvement factor for load regulation is approximately equal to the composite current gain of the added transistors. The devices can be used in either constant-current or fold-back current-limiting applications

The LM104 is characterized for operation over the full military temperature range of -55°C to 125°C; the LM204 is characterized for operation from -25°C to 85°C; and the LM304 is characterized for operation from 0°C to 70°C.

#### schematic



751 REGULATED REFERENCE 221 -)| 15 pl REGULATED REFERENCE Component values shown are nominal Resistor values are in ohms,

### TYPES LM104, LM204, LM304 NEGATIVE-VOLTAGE REGULATORS

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		LM104	LM204	LM304	UNIT
Input voltage (see Note 1)		-50	-50	-40	V
Input-to-output voltage differential		-50	-50	40	v
Continuous total dissipation at (or below) 25°C	J or N package	1000	1000	1000	
free-air temperature (see Note 2)	L package	800	800	800	mvv
Operating free-air temperature range		-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds:	Jor L package	300	300	300	°C
Lead temperature 1/16 inch from case for 10 seconds: I	N package	260	260	260	°C

NOTES: 1. Voltage values, except input-to-output voltage differential, are with respect to network ground terminal.

2. For operation above  $25^{\circ}$ C free-air temperature, refer to Dissipation Derating Curves, Section 2. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air,  $R_{BCA}$ , of not more than  $105^{\circ}$ C/W.

#### recommended operating conditions

	<u></u>	LN	104	LM	204	LN	1304	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Input voltage, Vi		-8	-50	-8	-50	-8	40	V
Output voltage, VO		-0.015	-40	-0.015	-40	-0.035	-30	V
	10 = 20 mA	-2	-50	-2	-50	-2	-40	
Input-to-output voltage differential, $V_I - V_O$	1 ₀ ≤ 5 mA	-0.5	-50	-0.5	-50	-0.5	40	] <b>`</b>
Output current, IO			20		20		20	mA
Operating free-air temperature, TA		-55	125	-25	85	0	70	°c

### electrical characteristics over recommended ranges of input and output voltage and operating free-air temperature (unless otherwise noted)

					204	1	UNIT		
PARAMETER	TEST COM	IDITIONS'	MIN	түр	MAX	MIN	TYP	MAX	UNIT
Input regulation	$V_0 = -5 V$ to MAX, See Notes 3 and 4	$\Delta V_{1} = 0.1 V_{1}$		0.06	0.1		0.06	0.1	%
	C1 = 10 µF,	$V_1 = -15 V$ to MAX		0.2	0.5		0.2	0.5	mV/V
Ripple sensitivity	f = 120 Hz	V ₁ = -7 V to -15 V		0.5	1		0.5	1	
Output regulation	I _O = 0 to 20 mA, See Note 3	R _{SC} = 15 Ω,		1	5		1	5	mV
Output voltage scale factor	R1 = 2.4 kΩ,	See Figure 2	1.8	2	2.2	1.8	2	2.2	V/kΩ
Output voltage change	$T_A = MIN \text{ to } T_A = 25$	5°C			1			1	_ _≪
with temperature	$T_A = 25^\circ C$ to $T_A = N$	MAX			1			1	~
	$V_{\Omega} = -5 V$ to MAX,	C1 = 0		0.007			0.007		%
Output noise voltage	f = 10 Hz to 10 kHz	C1 = 10 µF		15			15		μV
		V _O = 0		1.7	2.5		1.7	2.5	
Bias current	1 ₀ = 5 mA	V _O = -30 V					3.6	5	] mA
	-	V _O = -40 V		3.6	5				

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. Input regulation and output regulation are measured using pulse techniques (tw < 10 µs, duty cycle < 5%) to limit changes in average internal dissipation. Output voltages due to large changes in internal dissipation must be taken into account separately.

4. At zero output voltage, the output variation can be determined using the ripple sensitivity. At low voltages (i.e., 0 to -5 V), the output variation determined from the ripple sensitivity must be added to the variation determined from the input regulation to determine the overall line regulation.

### TYPES LM104, LM204, LM304 NEGATIVE-VOLTAGE REGULATORS



#### TYPICAL APPLICATION DATA

FIGURE 1-BASIC REGULATOR CIRCUIT

FIGURE 2-HIGH-CURRENT REGULATOR







FIGURE 4-OPERATING WITH SEPARATE BAIS SUPPLY

[†]Trim R1 for exact scale factor.

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME DER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

### LINEAR TYPES LM105, LM205, LM305, LM305A, LM376 INTEGRATED CIRCUITS POSITIVE-VOLTAGE REGULATORS

BULLETIN NO. DL-S 7612057, SEPTEMBER 1973-REVISED JUNE 1976

FORMERLY SN52105, SN72305, SN72305A, SN72376

- Low Standby Current . . . 0.8 mA Typ
- Adjustable Output Voltage
- Load Regulation . . . 0.1% Max (LM105, LM205, LM305)
- Input Regulation . . . 0.06%/V Max
- Designed to be Interchangeable with National LM105, LM205, LM305, LM305A, and LM376 Respectively

#### description

The LM105, LM205, LM305, LM305A and LM376 are monolithic positive-voltage regulators designed for a wide range of applications from digital power supplies to precision regulators for analog systems. These devices will not oscillate under conditions of varying resistive and reactive loads and will start reliably with any load within the rating of the circuits.

The LM105 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the LM205 is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C, and the LM305, LM305A, and LM376 are characterized for operation from 0°C to 70°C.

#### schematic







Component values shown are nominal. Resistor values are in ohms.

### TYPES LM105, LM205, LM305, LM305A, LM376 **POSITIVE-VOLTAGE REGULATORS**

### absolute maximum ratings over operating free air temperature range (unless otherwise noted)

	LM105	LM205	LM305A	LM305 LM376	UNIT
Loout voltage (see Note 1)	50	50	50	40	V
Input-to-output voltage differential	40	40	40	40	V
Continuous total dissipation at (or below)	800	800	800	800	mW
25°C free-air temperature (see Note 2) Operating free-air temperature range	-55 to 125	-25 to 85	0 to 70	0 to 70	°c
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case	300	300	300	300	°c
Lead temperature 1/16 inch from case for 10 seconds: P package	260	260	260	260	°c

NOTES: 1. Voltage values, except input-to-output voltage differential, are with respect to network ground terminal.

#### recommended operating conditions

	LN	1105	LM	LM205		LM305A		1305	LM376		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	85	50	8.5	50	8.5	50	8.5	40	9	40	v
	4.5	40	4,5	40	4.5	40	4.5	30	5	37	v
Input-to-output voltage	3	30	3	30	3	30	3	30	3	30	v
differential, VI-VO	0	12	0	12	0	45	0	12	0	25	mA
Operating free-air	- 55	125	-25	85	0	70	0	70	0	70	°c
temperature, TA					i				L		

### LM105, LM205, LM305 electrical characteristics[†] at 25°C free-air temperature (unless otherwise noted)

	TEST CONDITIONS!			LM105, LM205			LM305			UNIT
PARAMETER	TEST CO	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
	$V_1 - V_0 \le 5 V$				0.025	0.06		0.025	0.06	%/V
Input regulation	$V_1 - V_0 > 5 V$		See Note 3		0.015	0.03		0.015	0.03	/0/ •
Ripple sensitivity	$C_{ref} = 10  \mu F$ ,	f = 120 Hz			0.003	0.01		0.003	0.01	%/V
		R _{SC} = 10 Ω	, Τ _Α = 25°C		0.02	0.05		0.02	0.05	
	$I_0 = 0$ to $I_0 = 12$ mA,	R _{SC} = 10 Ω	, T _A = MIN		0.03	0.1		0.03	0.1	%
Output regulation (see Note 4)	See Note 3	R _{SC} = 10 Ω	, T _A = MAX		0.03	0.1				
		R _{SC} = 15 Ω	, T _A = MAX					0.03	0.1	
Output voltage change	$T_A = MIN \text{ to } T_A = 25^\circ C$	2				1			1	%
with temperature	$T_A = 25^\circ C$ to $T_A = MA$	x				1			1	
			C _{ref} = 0		0.005			0.005		%
Output noise voltage	f = 10 Hz to 10 kHz		C _{ref} > 0.1 μF		0.002			0.002		~
Feedback sense voltage				1.63	1.7	1.81	1.63	1.7	1.81	V
Current-limit sense voltage	R _{SC} = 10 Ω,	V _O = 0,	See Note 5	225	300	375	225	300	375	mV
	VI = 50 V				0.8	2				mA
Standby current	VI = 40 V							0.8	2	

[†]These specifications apply for input and output voltages within the ranges specified under recommended operating conditions and for a divider impedance of 2 k  $\Omega$  presented to the feedback terminal, unless otherwise noted.

[‡]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. Input regulation and output regulation are measured using pulse techniques ( $t_w \le 10 \mu$ s, duty cycle  $\le 5\%$ ) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately

4. Load regulation and output current capacity can be improved by the addition of external transistors. The improvement factor will be approximately equal to the composite current gain of the added transistors.

5. Current-limit sense voltage is measured without an external pass transistor.

For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air,  $R_{\theta CA}$ , of not more than 105°C/W.

### TYPES LM105, LM205, LM305, LM305A, LM376 POSITIVE-VOLTAGE REGULATORS

#### LM305A. LM376 electrical characteristics[†] at 25°C free-air temperature (unless otherwise noted) LM305A LM376 PARAMETER TEST CONDITIONS[‡] UNIT MIN TYP MAX MIN TYP MAX $V_{I} - V_{O} \le 5 V$ 0.025 0.06 0.03 Input regulation $V_{1} - V_{0} > 5 V$ See Note 3 0.015 0.03 0.03 %/\/ $T_A = 0^\circ C$ to $70^\circ C$ 0.1 C_{ref} = 10 µF, $f = 120 H_2$ 0.003 Ripple sensitivity %/\/ f = 120 Hz 01 T_A = 25°C $R_{SC} = 0 \Omega$ , 0.02 0 2 02 $I_0 = 0$ to $I_0 = MAX$ , Output regulation (see Note 4) R_{SC} = 0 Ω, $T_A = 0^\circ C$ 0.03 0.4 0.5 % See Note 3 $R_{SC} = 0 \Omega$ , $T_A = 70^{\circ}C$ 0.03 0.4 0.5 $T_A = 0^\circ C$ to $T_A = 25^\circ C$ Output voltage change 1 1 % $T_A = 25^\circ C$ to $T_A = 70^\circ C$ with temperature 1 1 Cref = 0 0.005 Output noise voltage f = 10 Hz to 10 kHz % $C_{ref} > 0.1 \ \mu F$ 0.002 1 55 17 1.85 Feedback sense voltage v $T_A = 0^\circ C$ to $T_A = 70^\circ C$ 1.6 1.8 1.7 R_{SC} = 10 Ω, V_O = 0 V. Current limit sense voltage See Note 5 225 300 375 300 m٧ VI = 50 V 0.8 2 Standby current mA V1 = 30 V 25

[†]These specifications apply for input and output voltages within the ranges specified under recommended operating conditions, and for a divider impedance of 2 k $\Omega$  presented to the feedback terminal, unless otherwise noted.

[‡]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. Input regulation and output regulation are measured using pulse techniques (t_w < 10 µs, duty cycle < 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.

 Load regulation and output current capacity can be improved by the addition of external transistors. The improvement factor will be approximately equal to the composite current gain of the added transistors.

5. Current-limit sense voltage is measured without an external pass transistor.

#### TYPICAL APPLICATION DATA



### TYPES LM105, LM205, LM305, LM305A, LM376 POSITIVE-VOLTAGE REGULATORS

TYPICAL APPLICATION DATA



FIGURE 3-10-A REGULATOR WITH FOLDBACK CURRENT LIMITING





[†]Protects against input voltage reversal.

[‡]Protects against shorted input or inductive loads on unregulated supply. §Protects against output voltage reversal.

FIGURE 4-CURRENT REGULATOR

FIGURE 5-1-A REGULATOR WITH PROTECTIVE DIODES



FIGURE 7-SWITCHING REGULATOR

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT AN IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT PO

FIGURE 6-SHUNT REGULATOR

### LINEAR INTEGRATED CIRCUITS

### TYPES LM109, LM209, LM309 5-VOLT REGULATORS

LA PLUG-IN PACKAGE

PIN 3 IS IN ELECTRICAL

(TOP VIEW)

CND

BULLETIN NO. DL-S 7612056, SEPTEMBER 1973-REVISED JUNE 1976

INPU

OUTPUT

#### FORMERLY SN52109, SN72309

- No External Components Required for Most Applications
- Output Current . . . 500 mA Max
- Satisfies 5-V Supply Requirements of TTL and DTL
- Virtually Blow-Out Proof Due to Internal Current Limiting, Thermal Shutdown, and Safe-Operating-Area Compensation
- Designed to be Interchangeable with National LM109, LM209, and LM309 Respectively

#### description

These monolithic 5-volt regulators are designed for use as local regulators to eliminate noise and distribution problems inherent with single-point regulation. They are specified under worst-case conditions to match the power supply requirements of TTL and DTL logic families. In other applications, these devices can be used with external components to obtain adjustable output voltages and currents or as the series-pass element in precision regulators.

#### schematic



#### absolute maximum ratings over operating temperature range (unless otherwise noted)

	LM109, LM209	LM309	UNIT
Input voltage	35	35	v
Output current	500	500	mA
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	5	4	w
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	600	480	mW
Operating case or virtual junction temperature range	-55 to 150	0 to 125	°C
Storage temperature range	65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	300	300	°C

NOTES: 1. Above 25°C case temperature, derate lineary at the rate of 40 mW/°C, or refer to Dissipation Derating Curve, Figure 1. 2. Above 25°C free-air temperature, derate linearly at the rate of 4.8 mW/°C, refer to Dissipation Derating Curve, Figure 2.

### **TYPES LM109, LM209, LM309** 5-VOLT REGULATORS

#### recommended operating conditions

	L	M109	L	M209		LM309	UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	0.111
	7	25	7	25	7	25	V
	0	500	0	500	0	500	mA
Operating virtual junction temperature T	-55	150	-25	150	0	125	°c
Operating virtual-junction temperature, 1g							

electrical characteristics at specified virtual junction temperature

[]					LM109, LM209			LM309		
PARAMETER	TEST	CONDITIONS		MIN	түр	MAX	MIN	TYP	MAX	ONT
	V1 = 10 V,	1 ₀ = 100 mA	25°C	4.7	5.0	5.3	4.8	5.0	5.2	v
Output voltage	V ₁ = 7 V to 25 V,	10 = 5 mA to 200 mA	Full range	4.6		5.4	4.75		5.25	·
Input regulation	$V_1 = 7 V$ to $V_1 = 25 V$		25°C		4	50		4	50	mV
Ripple rejection	f = 120 Hz		25°C		85			85		dB
Output regulation	$I_{O} = 5 \text{ mA to } I_{O} = 500 \text{ mA},$	See Note 3	25° C		20	50		20	50	mV
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40			40		μV
Standby current	V ₁ = 7 V to 25 V		Full range		5	10		5	10	mA
	$V_1 = 7 V \text{ to } V_1 = 25 V$ ,	I _O = 100 mA	Eull range			0.5			0.5	mA
Bias current change	IO = 5 mA to IO = 200 mA		Fun range			0.8			0.8	

⁺Full range for LM109 is -55°C to 150°C, for LM209 is -25°C to 150°C, and for LM309 is 0°C to 125°C. All characteristics, except output noise voltage and ripple rejection, are measured using pulse techniques.  $t_W \le 10$  ms, duty cycle  $\le 5\%$ .

NOTE 3: Pulse techniques are used in testing to limit the average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.





### TEXAS INSTRUMENTS

125

150

### TYPES LM109, LM209, LM309 5-VOLT REGULATORS



[†]Data for virtual junction temperatures outside the ranges specified in the recommended operating conditions for LM209 or LM309 is not _applicable for those types.

### TYPES LM109, LM209, LM309 5-VOLT REGULATORS

#### TYPICAL APPLICATION DATA



NOTE A: C1 is required if regulator is not located in close proximity to power supply filter.





NOTES: A. All capacitors are solid tantalum. B. This resistor determines zener current. Adjust to minimize thermal drift.





FIGURE 13-HIGH-STABILITY REGULATOR WITH ADJUSTABLE OUTPUT

Printed in U.K.

Th cannot assume any responsibility for any circuits shown or represent that they are free from potent infringement.

**TEXAS INSTRUMENTS** 

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POS

### FUTURE PRODUCT TO BE ANNOUNCED

terminal assignments

### TYPES LM117, LM217, LM317 3-TERMINAL ADJUSTABLE REGULATORS

JUNE 1976

- Output Voltage Range Adjustable from 1.2 V to 37 V
- Guaranteed IO Capability of 1.5 A for TO-3 and TO-220AB Packages
- Input Regulation Typically 0.01% Per Input-Volt Change

- Output Regulation Typically 0.1%
- Peak Output Current Constant Over Temperature Range of Regulator
- Popular 3-Lead Packages
- Ripple Rejection Typically 80 dB

KA PACKAGE	KC PACKAGE	LA PACKAGE
(TOP VIEW)	(TOP VIEW)	(TOP VIEW)
то-з	TO-220AB	

#### description

The LM117, LM217, and LM317 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 amperes over a range of output voltage of 1.2 volts to 37 volts. They are exceptionally easy to use and require only two external resistors to set the output voltage. Both input and output regulation are better than standard fixed regulators. The devices are packaged in standard transistor packages that are easily mounted and handled.

In addition to higher performance than fixed regulators, these regulators offer full overload protection available only in integrated circuits. Included on the chip are current limit, thermal overload protection, and safe-area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, these regulators are useful in a wide variety of other applications. Since the regulator is floating and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded. It makes an especially simple adjustable switching regulator, a programmable output regulator, or, by connecting a fixed resistor between the adjustment terminal and the output, these devices can be used as precision current regulators. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground, which programs the output to 1.2 volts where most loads draw little current.

The LM117 is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C. The LM217 and LM317 are characterized for operation from  $-25^{\circ}$ C to  $150^{\circ}$ C and from  $0^{\circ}$ C to  $125^{\circ}$ C respectively.

#### TENTATIVE DATA SHEET

This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

### TYPES LM117, LM217, LM317 3-TERMINAL ADJUSTABLE REGULATORS

schematic



All resistors values shown are nominal and in ohms.

### absolute maximum ratings over operating temperature range (unless otherwise noted)

		LM117	LM217	LM317	UNIT
Input-to-output differential volu	age, V _I V _O	40	40	40	v
Continuous total dissipation	KA (TO-3) package	3.5	3.5	3.5	
at 25°C free-air temperature	KC (TO-220AB) package		2	2	w
(see Note 1)	LA package	0.6	0.6	0.6	
Continuous total dissipation	KA package	20	20	20	
at (or below) 25°C case	KC package		20	20	w
temperature (see Note 1)	LA package	2	2	2	
Operating free-air, case, or virtua	I junction temperature range	-55 to 150	-25 to 150	0 to 150	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 60 seconds	KA and LA packages	300	300	300	°C
Lead temperature 1/16 inch	KC package		260	260	°c

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figures 1 through 4.

#### recommended operating conditions

		LM	117	LM	217	LM	317	
		MIN	MAX	MIN	MAX	MIN	MAX	ONIT
	All packages	5		5		10		
	KA package		1500		1500		1500	
Output current, IO	KC package				1500		1500	ina
1	LA package		500		500		500	
Operating virtual junction	temperature, Tj	55	150	-25	150	0	125	°C

### TYPES LM117, LM217, LM317 3-TERMINAL ADJUSTABLE REGULATORS

## electrical characteristics over recommended ranges of operating virtual junction temperature (unless otherwise noted)

TA DAMETED	TEST CON	Dizionat	LM	117, LN	1217				
PARAMETER	TESTCON	DITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT
1	Тј = 25°С	C. No. 2		0.01	0.02		0.01	0.04	
input regulation+	IO = 10 mA to MAX	See Note 2		0.02	0.05		0.02	0.07	%/V
	V _O = 10 V, f = 120 Hz			65			65		1
Ripple rejection	V _O = 10 V, f = 120 Hz,								dB
	10 -μF capacitor betwee	en ADJ and ground	66	80		66	80		
	IO = 10 mA to MAX,	V _O ≤ 5 V		5	15		5	• 25	mV
Output regulation	$T_J = 25^{\circ}C$ , See Note 2	V _O ≥ 5 V		0.1	0.3		0.1	0,5	%
Output regulation	IO = 10 mA to MAX,	V _O ≤ 5 V		20	50		20	70	mV
	See Note 2	V _O ≥ 5 V		0.3	1		0.3	1.5	%
Output voltage change	T MIN - MAX	• · · · · · · · · · · · · · · · · · · ·							
with temperature	I J = WIN TO WAX			1			1		%
Output voltage	A.4. 4000 J T. M.								
long-term drift	After 1000 n at 1 j = 100	**		0.3	1		0.3	1	%
(see Note 3)	and $V_1 - V_0 = 40$ V								
Output noise voltage	f = 10 Hz to 10 kHz, Tj	= 25°C		0.003	·····		0.003		%
Minimum output current	V V 40.V				_				
to maintain regulation	$v_1 - v_0 = 40 v$			3.5	5		3,5	10	mA
		KA and KC packages	1.5	2.2		1.5	2.2		
Peak output current	vi = v0 < 15 v	LA package	0,5	0.8		0.5	0.8		
, cak output current		KA and KC packages		0.4			0.4		1 ^
	•  = •0 ≈ 40 •	LA package		0.07			0.07		1
Adjustment-terminal				50	100		50	400	
current				50	100		50	100	μΑ
Change in adjustment-	V _I - V _O = 2.5 V to 40	V,		0.0	~			-	
terminal current	IO = 10 mA to MAX			0.2	5		0.2	5	μΑ
Reference voltage	V _I - V _O = 3 V to 40 V,		1.2	1.05					
(output to ADJ)	I _O = 10 mA to MAX, P	≤ rated dissipation	1.2	1.25	1.3	1.2	1.25	1.3	

[†]Unless otherwise noted, these specifications apply for the following test conditions:  $V_1 - V_0 = 5$  V and  $I_0 = 0.5$  A for the KA (TO-3) and KC (TO-220AB) packages and  $I_0 = 0.1$  A for the LA package. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input.

NOTES: 2. Input regulation and output regulation are measured using pulse techniques (t_w < 10 µs, duty cycle < 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.

 Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

#### thermal characteristics

PARAMETER	КА	KC L		
PARAMETER	MAX	MAX	MAX	UNIT
Rejc Junction-to-case thermal resistance	3	4	15	°C/W

### TYPES LM117, LM217, LM317 3-TERMINAL ADJUSTABLE REGULATORS

#### THERMAL INFORMATION



# FIGURE 1

DISSIPATION DERATING CURVE

Derating factor = 4.8 mW/°C

75

 $R_{\theta JA} \approx 210^{\circ} C/W$ 

50



FIGURE 2

#### LA PACKAGE CASE TEMPERATURE DISSIPATION DERATING CURVE



FIGURE 4

#### Printed in U.K.

### **TEXAS INSTRUMENTS**

100

T_A-Free-Air Temperature-°C

FIGURE 3

125

150

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT AN IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT PO

800

700

600

500

400

300

200

100

0 L 25

Maximum Continuous Dissipation-mW

### LINEAR INTEGRATED CIRCUITS

### TYPE TL430C ADJUSTABLE SHUNT REGULATOR

BULLETIN NO. DL-S 7612414, JUNE 1976

- Temperature Compensated
- Programmable Output Voltage
- Low Output Resistance
- Low Output Noise
- Sink Capability to 100 mA

#### description

The TL430 is a three-terminal adjustable shunt regulator featuring excellent stability over temperature, wide operating current range, and low output noise. The output voltage may be set by two external resistors to any desired value between 3 volts and 30 volts. The TL430 can replace zener diodes in many applications providing improved performance.

The TL430 is characterized for operation from  $0^\circ C$  to  $70^\circ C.$ 

#### functional block diagram







#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Regulator voltage (see Note 1)											. 30 V
Continuous regulator current											100 mA
Continuous power dissipation at (or below) 25°C free-air temperature (see Note 2)	·			·		·	•	·	·	• •	775 mW
Operating free-air temperature range		·		•	•	•	•	•	•	 °°	2 to 70°C
Storage temperature range	•	·	•	•	•		·	•	۰.	E°C	to 150°C
Lead temperature 1/16 inch from case for 60 seconds: IG package	•	·	•	•	•	•	·	•	-0	50	10 150 C
Lead temperature 1/16 inch from ease for 10 seconds. JB package	•	•	·	•	·	·	•	•	•	• •	. 300 C
Lead temperature 1/10 men nom case for 10 seconds: LP package	•		•	•	•						. 260°C

#### recommended operating conditions

	MIN	MAX	UNIT
Regulator voltage, VZ	V _{ref}	30	v
Regulator current, IZ	2	100	mΑ
Operating free-air temperature, T _A	0	70	°c

NOTES: 1. All voltage values are with respect to the anode terminal.

2. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

[†]Trademark of Texas Instruments

### TYPE TL430C **ADJUSTABLE SHUNT REGULATOR**

#### electrical characteristics at 25°C free-air temperature (unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDIT	ONS	MIN	түр	МАХ	UNIT
V _{ref}	Reference input voltage	1	VZ = Vref,	Iz = 10 mA	2.5	2.75	3	V
∝Vref	Temperature coefficient of reference input voltage	1	$V_Z = V_{ref},$ $T_A = 0^{\circ}C \text{ to } 70^{\circ}C$	IZ = 10 mA,		±50		ppm/°C
Iref	Reference input current	2	lz = 10 mA, R2 ≈ ∞	R1 = 10 kΩ,		3	10	μA
^I ZK	Regulator current near lower knee of regulation range	1	VZ ≈ V _{ref}			0.6	2	mA
1	Regulator current at maximum	1	VZ = Vref		50			<b>m</b> A
ZM	limit of regulation range	2	Vz = 5 V to 30 V, See	Note 3	100			mA
rz	Differential regulator resistance (see Note 4)	1	V _Z = V _{ref} , ΔI _Z = (52-2) mA			1.5	3	Ω
				V _Z = 3 V		50		
Vnz	Noise voltage	2	f = 0.1 Hz to 10 Hz	Vz = 12 V		200		μV
				Vz = 30 V		650		

NOTES: 3. The average power dissipation, VZ • 1Z • duty cycle, must not exceed 775 mW in any 10 ms interval. 4. The

e regulator resistance for 
$$V_{Z} > V_{ref}$$
,  $r_{z}$ , is given by:

$$r_{z}' = r_{z} (1 + \frac{H1}{H2}).$$

#### PARAMETER MEASUREMENT INFORMATION



-**o** v_z INPUT O ١z R 1 I_{ref} L TL430 R2  $V_Z \approx V_{ref} \left(1 + \frac{R1}{R2}\right) + i_{ref} \bullet R1$ 

FIGURE 1-TEST CIRCUIT FOR VZ = Vref

FIGURE 2-TEST CIRCUIT FOR VZ > Vref

### TYPE TL430C ADJUSTABLE SHUNT REGULATOR



TYPICAL CHARACTERISTICS

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from potent infringement.

EXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME I ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

### LINEAR INTEGRATED CIRCUITS

### TYPES TL497M, TL497I, TL497C SWITCHING VOLTAGE REGULATORS

BULLETIN NO. DL-S 7612422, JUNE 1976

- All Monolithic.
- High Efficiency . . . 60% or Greater
- Output Current . . . 500 mA
- Input Current Limit Protection
- TTL Compatible Inhibit
- Adjustable Output Voltage
- Input Regulation . . . 0.2% Typ
- Output Regulation . . . 0.4% Typ
- Soft Start-up Capability

#### description

The TL497 incorporates on a single monolithic chip all the active functions required in the construction of a switching voltage regulator. It can also be used as the control element to drive external components for high-power-output applications. The TL497 was designed for ease of use in step-up, step-down, or voltage inversion applications requiring high efficiency.







A block diagram of the TL497 is shown in the pinout. A 1.2-volt precision reference is internally connected between the inverting input of the high-gain comparator and the substrate. The output voltage is established using a resistive voltage-divider network whose node voltage is sensed by the noninverting input of the comparator. When the voltage at the noninverting input is more negative than the 1.2 volt reference, the oscillator is gated on. When the voltage at the noninverting input is more positive than the 1.2-volt reference, the oscillator is gated off. The maximum frequency of the oscillator is setablished by the external timing capacitor connected between the frequency control pin and ground.

TIMING CAPACITOR (pF)	5	10	20	50	100	200	500	1000
MAX FREQUENCY (kHz)	385	313	238	135	80.6	47.6	19.6	10

The transistor switch is normally connected to external inductive components and a diode to generate the output voltage. The TL497 switching transistor and diode may be used directly for switching currents up to 500 milliamperes, or used to drive an external transistor and diode for higher output-power applications.

The TL497 also provides current limiting for protection of the switching transistor and the load. With proper current limiting, saturation of the power inductor may be prevented and soft start-up achieved. Current limiting is accomplished with the current-limit control provided. The voltage developed across the series current-limit resistor, R_{CL}, is sensed. When the voltage at the current-sense terminal is approximately 0.7 volt (one V_{BE} drop) less than the input voltage, the power switch transistor is turned off.

External gating is provided by the inhibit control. When the inhibit control is high, the output is turned off.

The TL497M is characterized for operation over the full military temperature range of -55°C to 125°C, the TL497I is characterized for operation from -25°C to 85°C, and the TL497C from 0°C to 70°C.

### TYPES TL497M, TL497I, TL497C SWITCHING VOLTAGE REGULATORS

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input voltage (see Note 1)			 15 V
Output voltage			 
Comparator input voltage			 5V
Inhibit input voltage			 5V
Diode reverse voltage			 35 V
Power switch current			 750 mA
Diode continuous forward current			 750 m A
Continuous total dissipation at (or below) 25°C free-air tempe	rature (see N	ote 2)	 1000 mW
Operating free-air temperature range: TL497M			 –55°C to 125°C
TL4971			 –25°C to 85°C
TL497C			 . 0°C to 70°C
Storage temperature range			 -65°C to 150°C
Lead temperature 1/16 inch from case for 60 seconds: J packa	ge		 300°C
Lead temperature 1/16 inch from case for 10 seconds: N pack	age		 260°C

NOTES: 1. All voltage values except diode voltages are with respect to network ground terminal. 2. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### recommended operating conditions

	MIN	MAX	UNIT
Input voltage. Vi	4.5	12	v
Output voltage: step-up configuration (see Figure 2)	V1 + 2	30	v
step-down configuration (see Figure 3)	Vref	Vj – 1	v
negative regulator (see Figure 4)	−V _{ref}	25	v
		500	mA

#### electrical characteristics at specified free-air temperature, VI = 6 V (unless otherwise noted)

			•	TL497M, TL497I TL497C						
PARAMETER	TEST	CONDITIONS		MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
High-level inhibit input voltage			Full range	2			2			v
Low-level inhibit input voltage			Full range			0.6			0.8	V
High-level inhibit input current	VI(I) = 5 V		Full range		0.8	1.5		0.8	1.5	mA
Low-level inhibit input current	V ₁₍₁₎ = 0 V		Full range		5	20		5	10	μA
Comparator reference voltage	V1 = 4.5 V to 6	V	Full range	1.14	1.20	1.26	1.08	1.20	1.32	V
Comparator input bias current	V _I = 6 V		Full range		40	100		40	100	μA
Regulator output voltage	See Figure 1 R1 = 11.3 kΩ,	R2 = 1 kΩ	25° C	14.25	15	15.75	13,5	15	16.5	v
	N. 45.V	I _O = 100 mA	25°C		0.13	0.2		0,13	0.2	v
Switch on-state voltage	V  - 4.5 V	Io = 500 mA	Full range			1			0.85	v
			25°C		10	50		10	50	
Switch off-state current	vi = 4.5 v		Full range			500			200	μ.
Current-limit sense voltage	Vcc = 6 V		25°C	0.45		1	0.45		1	V
	IO = 10 mA		Full range		0.75	0.95		0.75	0,85	
Diode forward voltage	I _O = 100 mA		Full range		0.9	1.1		0.9	1	l v
	I _O = 500 mA		Full range		1.33	1.7		1.33	1.55	
Diada reverse voltare	I _O = 500 μA		Full range	30						l v
Didde reverse vortage	I _O = 200 µA		Full range				30			
			25°C		11	14		11	14	mΔ
On-state supply current			Full range			16			15	
044			25°C		6	9		6	9	mA
Ott-state supply current			Full range			11			10	

[†]Full range for TL497M is  $-55^{\circ}$ C to  $125^{\circ}$ C, for TL497I is  $-25^{\circ}$ C to  $85^{\circ}$ C, and for TL497C is  $0^{\circ}$ C to  $70^{\circ}$ C. [‡]All typical values are at T_A =  $25^{\circ}$ C.

### TYPES TL497M, TL497I, TL497C Switching voltage regulators



#### PARAMETER MEASUREMENT INFORMATION

Printed in U.K.

### LINEAR INTEGRATED CIRCUITS

### TYPES uA723M, uA723C PRECISION VOLTAGE REGULATORS

BULLETIN NO. DL-S 7611533, AUGUST 1972-REVISED JUNE 1976

### FORMERLY SN52723, SN72723

- 150-mA Load Current without External Power Transistor
- Typically 0.02% Input Regulation and 0.03% Load Regulation (uA723M)
- Adjustable Current Limiting Capability
- Input Voltages to 40 Volts
- Output Adjustable from 2 to 37 Volts
- Designed to be Interchangeable with Fairchild 
  µA723 and µA723C Respectively

#### description

The uA723M and uA723C are monolithic integrated circuit voltage regulators featuring high ripple rejection, excellent input and load regulation, excellent temperature stability, and low standby current. The circuit consists of a temperature-compensated reference voltage amplifier, an error amplifier, a 150-milliampere output transistor, and an adjustable output current limiter.

The uA723M and uA723C are designed for use in positive or negative power supplies as a series, shunt, switching, or floating regulator. For output currents exceeding 150 mA, additional pass elements may be connected as shown in Figures 4 and 5.

The uA723M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the uA723C is characterized for operation from  $0^{\circ}$ C to  $70^{\circ}$ C.





#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Peak voltage from V _{CC+} to V _{CC-} ( $t_W \le 50$ ms)																			. 50	) V
Continuous voltage from VCC+ to VCC																			. 40	) V
Input-to-output voltage differential				· .															. 40	) V
Differential input voltage to error amplifier																			. ±8	i V
Voltage between noninverting input and V _{CC}																			8	۶V
Current from Vz																			25 r	nΑ
Current from V (ref)																			15 r	nΑ
Continuous total dissipation at (or below 25°C fr J or N package	ee-air te	empe	ratu	re ( 	see	No1	te 1	):		•	•	•	•	•	•				000 n 800 n	1W nW
U package				· ·	:				:		÷					÷		÷	675 n	ηW
Operating free-air temperature range: uA723M C	Circuits															-!	55°	°C	to 125	°C
uA723C C	ircuits																0	°C	to 150	°C
Storage temperature range																-1	65°	°C	to 150	°C
Lead temperature 1/16 inch from case for 60 seco	onds, J,	L, o	rU	pack	kage	э.													. 300	°C
Lead temperature 1/16 inch from case for 10 sec	onds. N	pack	age																. 260	°C

Derating Curves, Section 2.

2. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air,  $R_{\theta CA}$ , of not more than 105°C/W.

#### recommended operating conditions

	MIN	MAX	UNIT
Input voltage, V1	9.5	40	V
Output voltage, VO	2	37	V
Input-to-output voltage differential, VC – VO	3	38	v
Output current, IO		150	mΑ

#### electrical characteristics at specified free-air temperature (see note 3)

					uA723N	1		uA7230	•	
$\begin{tabular}{ c c c c c c } \hline $F$ PARAMETER$ & TEST CONDITIONS^{1} & MIN \\ \hline $V_{I}$ = 12 V to V_{I}$ = 15 V & 25^{\circ}C & $V_{I}$ = 12 V to V_{I}$ = 15 V & 25^{\circ}C & $V_{I}$ = 12 V to V_{I}$ = 15 V & $F$ ull range \\ \hline $V_{I}$ = 12 V to V_{I}$ = 15 V & $F$ ull range & $f$ = 50 Hz$ to 10 kHz$, $C$ (ref)$ = 0 & 25^{\circ}C & $f$ = 50 Hz$ to 10 kHz$, $C$ (ref)$ = 5 $\mu$F$ & 25^{\circ}C & $10$ to 10 kHz$, $C$ (ref)$ = 5 $\mu$F$ & 25^{\circ}C & $10$ to 10 kHz$, $C$ (ref)$ = 5 $\mu$F$ & 25^{\circ}C & $10$ to 10 kHz$, $C$ (ref)$ = 5 $\mu$F$ & 25^{\circ}C & $10$ to 10 cm & $10$ = 50 mA$ & $F$ ull range \\ \hline $Reference voltage$, $V$ (ref)$ & $25^{\circ}C$ & $6.95$ \\ \hline $Standby current$ V_{I}$ = 30 V$, $I_{O}$ = 0 & $25^{\circ}C$ & $10$ transfer to $f$ output voltage \\ \hline $Short-circuit$ $R_{SC}$ = 10 $\Omega$, $V_{O}$ = 0 & $25^{\circ}C$ & $0$ \\ \hline $Output noise voltage$ & $BW$ = 100 Hz$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $Output noise voltage$ & $BW$ = 100 Hz$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $BW$ = 100 Hz$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $BW$ = 100 Hz$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $BW$ = 100 Hz$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $BW$ = 100 Hz$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ to 10 kHz$, $C$ (ref)$ = 0 $0$ & $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ to 10 kHz$, $C$ (ref)$ = 0 $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ to 10 kHz$, $C$ (ref)$ = 0 $0$ & $25^{\circ}C$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ to 10 kHz$, $C$ (ref)$ = 0 $0$ & $0$ for $C$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ to 10 kHz$, $C$ (ref)$ = $0$ $0$ $10$ $c$ $C$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ to 10 kHz$, $C$ (ref)$ = $0$ $0$ $c$ $c$ $c$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ $c$ $c$ $c$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ $c$ $c$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ $c$ $c$ & $0$ \\ \hline $D$ utput noise voltage$ & $0$ $c$ $c$ & $0$ \\ \hline $D$$	TYP	MAX	MIN	түр	MAX					
	V ₁ = 12 V to V ₁ = 15 V		25°C		0.01%	0.1%		0.01%	0.1%	
Input regulation	V _I = 12 V to V _I = 40 V		25°C		0.02%	0.2%		0.1%	0.5%	
	V _I = 12 V to V _I = 15 V		Full range			0.3%			0.3%	
	f = 50 Hz to 10 kHz,	C(ref) = 0	25° C		74			74		dB
Ripple rejection	f = 50 Hz to 10 kHz,	C(ref) = 5 µF	25°C		86			86		
<u>.</u>	1 - 1 - 0 + - 1 E0 m 0		25°C		-0.03%	-0.15%		-0.03%	-0.2%	
Output regulation	10 = 1 mA to 10 - 50 mA		Full range			-0.6%			-0.6%	
Reference voltage, V(ref)			25° C	6.95	7.15	7.35	6.8	7.15	7.5	V
Standby current	V ₁ = 30 V,	I _O = 0	25°C		2.3	3.5		2.3	4	mA
Temperature coefficient of			E.III songo		0.002	0.015		0.002	0.015	« l° c
output voltage			Full range		0.002	0.015		0.003	0.015	/%/ C
Short-circuit	B	Ve = 0	25°C		65			65		mA
output current	nSC = 10 12,	v0 - 0	25 0		05			05		
	BW = 100 Hz to 10 kHz,	C(ref) = 0	25° C		20			20		
Output noise voltage	BW = 100 Hz to 10 kHz, $C(ref) = 5 \mu F$				2.5			2.5		

 $^{\dagger}Full$  range for uA723M is  $-55^{\circ}C$  to  $125^{\circ}C$  and for uA723C is  $0^{\circ}C$  to  $70^{\circ}C.$ 

NOTE 3: For all values in this table the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier  $\leq$  10 k $\Omega$ . Unless otherwise specified, V_I = V_{CC+} = V_C = 12 V, V_{CC-} = 0, V_O = 5 V, I_O = 1 mA, R_{SC} = 0, and C_{ref} = 0.



#### schematic

RESISTOR VALUES (kΩ) FOR STANDARD OUTPUT VOLTAGES													
		FIX	ED		OUTPUT	r			FIX	ED	(	OUTPU	г
OUTPUT	APPLICABLE	ουτ	PUT	AD	ADJUSTABLE		OUTPUT	APPLICABLE	OUTPUT ADJUST				BLE
VOLTAGE	FIGURES	± t	5%	± 10%	SEE N	OTE 5)	VOLTAGE	FIGURES	±	5%	± 10%	(SEE N	OTE 5)
(V)	(SEE NOTE 4)	R1	R2	R1	P1	R2	(V)	(SEE NOTE 4)	R1	R2	R1	P1	R2
		(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)			(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)
+3.0	1, 5, 6, 9, 11,	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	105	2.2	10	91
	12 (4)												
+3.6	1, 5, 6, 9, 11,	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
	12 (4)												
+5.0	1, 5, 6, 9, 11,	2.15	4.99	0.75	0.5	2.2	-6 (Note 6)	3, (10)	3.57	2.43	1.2	0.5	0.75
	12 (4)												
+6.0	1, 5, 6, 9, 11,	1,15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
	12 (4)		l										1
+9.0	2, 4, (5, 6,	1.87	7.15	0.75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
1	9, 12)												
+12	2.4. (5.6.	4,87	7.15	2.0	1.0	3.0	-15	3, 10	3,57	11.5	1.2	0.5	4.3
	9, 12)												
+15	2, 4, (5, 6,	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
	9, 12)												
+28	2, 4, (5, 6,	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
	9, 12)												
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	95.3	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II FORMULAS FOR INTERMEDIATE OUTPUT VOLTAGES

Outputs from +2 to +7 volts [Figures 1, 5, 6, 9, 11, 12, (4)] V _O = V _(ref) X R2 R1 + R2	Outputs from +4 to +250 volts (Figure 7) $V_O = \frac{V_{(ref)}}{2} \times \frac{R2 - R1}{R1};$ R3 = R4	Current Limiting I _(limit) ≈ <mark>0.65 V</mark> R _{sc}
Outputs from +7 to +37 volts	Outputs from -6 to -250 volts	Foldback Current Limiting
[Figures 2, 4, (5, 6, 9, 11, 12]]	[Figures 3, 8, 10]	[Figure 6]
V _O = V _(ref) X R1 + R2	$V_0 = -\frac{V_{(ref)}}{2} \times \frac{R1 + R2}{R1};$	$I_{(knee)} \approx \frac{V_0R3 + (R3 + R4) 0.65 V}{R_{sc}R4}$
R2	R3 = R4	$I_{OS} \approx \frac{0.65 V}{R_{sc}} \times \frac{R3 + R4}{R4}$

NOTES: 4. Figures 1 through 12 show the R1/R2 divider across either V_O or V_(ref). Figure numbers in parentheses may be used if the R1/R2 divider is placed across the other voltage (V_(ref) or V_O) that it was not placed across in the figures without parentheses.
5. To make the voltage adjustable, the R1/R2 divider shown in the figures must be replaced by the divider shown at the right.

6. For negative output voltages less than 9 V, V_{CC+} and V_C must be connected to a positive supply such that the voltage between V_{CC+} and V_{CC-} is greater than 9 V.

7. When 10-lead uA723 devices are used in applications requiring V_Z, an external 6.2-V regulator diode must be connected in series with the V_O terminal.



ADJUSTABLE OUTPUT CIRCUITS

6





 L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core, or equivalent, with 0.009-inch air gap.

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIN IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBL

### LINEAR INTEGRATED CIRCUITS

### SERIES uA7800 **POSITIVE-VOLTAGE REGULATORS**

BULLETIN NO. DL-S 7612386, MAY 1976

- **3-Terminal Regulators**
- Output Current up to 1.5 A
- No External Components
- Internal Thermal Overload Protection
- Direct Replacements for Fairchild µA7800 . Series and National LM340 Series
- **High Power Dissipation Capability**
- Internal Short-Circuit Current Limiting
- **Output Transistor Safe-Area Compensation**

#### description

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. One of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the powerpass element in precision regulators.

NOMINAL OUTPUT VOLTAGE	-55°C TO 150°C OPERATING TEMPERATURE RANGE	0°C TO 125°C OPERATING TEMPERATURE RANGE
5 V	uA7805M	uA7805C
6 V	uA7806M	uA7806C
8 V	uA7808M	uA7808C
8.5 V	uA7885M	uA7885C
12 V	uA7812M	uA7812C
15 V	uA7815M	uA7815C
18 V	uA7818M	uA7818C
24 V	uA7824M	uA7824C
packages	КА	KA and KC

#### KA PACKAGE





#### schematic



### SERIES uA7800 POSITIVE-VOLTAGE REGULATORS

#### absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA78M	uA78C	UNIT	
	uA7824M, uA7824C	40	40	V	
Input voltage	All others		35	Ň	
	KA (TO-3) package	3.5	3.5		
Continuous total dissipation at 25°C free-air temperature (see Note 1)	KC (TO-220AB) package		2	7 "	
Continuous total dissipation at (or below) 25°C case temperature (see N	ote 1)	15	15	w	
Operating free-air, case, or virtual junction temperature range		-55 to 150	0 to 150	°C	
Storage temperature range		-65 to 150	-65 to 150	°C	
Lead temperature 1/16 inch from case for 60 seconds	KA (TO-3) package	300	300	°C	
Lead temperature 1/16 inch from case for 10 seconds	KC (TO-220AB) package		260	°C	

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figure 1 and Figure 2.



FIGURE 1

#### TO-3 AND TO-220AB CASE TEMPERATURE DISSIPATION DERATING CURVE



FIGURE 2

#### recommended operating conditions

		MIN	MAX	UNIT
	uA7805M, uA7805C	7	25	
	uA7806M, uA7806C	8	25	
	uA7808M, uA7808C	10.5	25	
	uA 7885M, uA 7885C	10.5	25	
Input voltage, Vj	uA7812M, uA7812C	14.5	30	Ň
	uA7815M, uA7815C	17.5	30	
	uA7818M, uA7818C	21	33	
	uA7824M, uA7824C	27	38	
Output current, IO		1.5	A	
O the late the sector T	uA7805M thru uA7824M	-55	150	°C
Operating virtual junction temperature, 1 j	uA7805C thru uA7824C	0	125	L L

### TYPES uA7805M, uA7805C POSITIVE-VOLTAGE REGULATORS

#### uA7805M, uA7805C electrical characteristics at specified virtual junction temperature, VI = 10 V, IQ = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS				A7805	м	L L					
				MIN	түр	MAX	MIN	ТҮР	MAX			
			25° C	4.8	5	5.2	4.8	5	5.2			
Output voltage	I _O = 5 mA to 1 A,	V ₁ = 8 V to 20 V	$-55^{\circ}$ C to $150^{\circ}$ C	4.65		5.35				l v		
	P ≤ 15 W	V ₁ = 7 V to 20 V	0°C to 125°C				4.75		5.25	1		
Input regulation	V ₁ = 7 V to 25 V	•	• 25° C		3	50		3	100			
mput regulation	V ₁ = 8 V to 12 V		25 C		1	25		1	50	mv		
Ripple rejection	V 9 V to 19 V	f = 120 Hz	-55°C to 150°C	68	78							
rupple rejection	VI = 8 V to 18 V, T = 120 Hz		0°C to 125°C				62	78		d B		
Output regulation	1 _O = 5 mA to 1.5 A		250		15	50		15	100			
Output regulation	I _O = 250 mA to 750 mA		200		5	25		5	50	mV		
Output resistance	f = 1 kHz		$-55^{\circ}$ C to $150^{\circ}$ C		0.017					Ω		
output resistance			0°C to 125°C					0.017				
Temperature coefficient			0°C to 150°C		-1.1							
of output voltage	10 - 5 mA		0°C to 125°C					-1.1		mv/C		
Output noise voltage	f = 10 Hz to 100 kH	z	25°C		40			40		μV		
Dropout voltage	! ₀ = 1 A		25° C		2.0			2.0		V		
Bias current			25° C		4.2	6		4.2	8	mA		
	V ₁ = 8 V to 25 V		$-55^{\circ}C$ to $150^{\circ}C$			0.8				-		
Rist ourrent abones	V ₁ = 7 V to 25 V		0°C to 125°C						1.3			
bias current change	1 = = E m A to 1 A		-55°C to 150°C			0.5				1 mA		
	10 - 5 IIIA 10 1 A		0°C to 125°C						0.5	1		
Short-circuit					25° C		750			750		
output current			25 0	/50				/50		mA		
Peak output current			25°C		2.2			2.2		A		

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $\chi_{ij} \leq 10$  ms, duty cycles  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

.

### TYPES uA7806M, uA7806C POSITIVE-VOLTAGE REGULATORS

#### uA7806M, uA7806C electrical characteristics at specified virtual junction temperature, V₁ = 11 V, I_Q = 500 mA (unless otherwise noted)

	TEST CONDITIONS [†]				A7806	м	L			
PARAMETER					түр	MAX	MIN	ТҮР	MAX	UNIT
			25° C	5.75	6	6.25	5.75	6	6.25	
Output voltage	$I_0 = 5 \text{ mA to 1 A},$	V ₁ = 9 V to 21 V	-55° C to 150° C	5.65		6.35				v
	P ≤ 15 W	V ₁ = 8 V to 21 V	0°C to 125°C				5.7		6.3	
	V ₁ = 8 V to 25 V		25° C		5	60		5	120	m\/
Input regulation	V ₁ = 9 V to 13 V		250		1.5	30		1.5	60	
		4 100 11-	$-55^{\circ}$ C to $150^{\circ}$ C	65	75					dB
Ripple rejection	$v_1 = 9 v$ to $19 v$ ,	t = 120 Hz	0°C to 125°C				59	75		40
	I _O = 5 mA to 1.5 A	25° C		14	60		14	120	mV	
Output regulation	I _O = 250 mA to 750 mA		25 C		4	30		4	60	
	f = 1 kHz		$-55^{\circ}$ C to $150^{\circ}$ C		0.019					0
Output resistance			0°C to 125°C					0.019		
Temperature coefficient			0°C to 150°C		-0.8					my/°C
of output voltage	10 = 5 mA .		$0^{\circ}C$ to $125^{\circ}C$					0.8		
Output noise voltage	f = 10 Hz to 100 kH	z	25°C		45			45		μV
Dropout voltage	I _O = 1 A		25°C		2.0			2.0		V_
Bias current			25°C		4.3	6		4.3	8	mA
	V ₁ = 9 V to 25 V		-55° C to 150° C			0.8				
	V ₁ = 8 V to 25 V		0°C to 125°C						1.3	mA
Bias current change			$-55^{\circ}$ C to $150^{\circ}$ C			0.5				
	$I_0 = 5 \text{ mA to I A}$		0°C to 125°C						0.5	
Short-circuit			25°C		550			550		mA
output current			250		350			550		
Peak output current			25° C		2.2			2.2		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $w_{\rm N} \leq 10$  ms, duty cycles  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

### TYPES uA7808M, uA7808C POSITIVE-VOLTAGE REGULATORS

# uA7808M, uA7808C electrical characteristics at specified virtual junction temperature, $V_I$ = 14 V, $I_O$ = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS				A7808	N	L				
		EST CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT	
			25° C	7.7	8	8.3	7.7	8	8.3		
Output voltage	$I_0 = 5 \text{ mA to 1 A},$	V _I = 11.5 V to 23 V	$-55^{\circ}C$ to $150^{\circ}C$	7.6		8.4				v	
	P ≤ 15 W	V _I = 10.5 V to 23 V	0°C to 125°C				7.6		8.4	1	
Input regulation	V _I = 10.5 V to 25 V	·	25° C		6	80		6	160		
	V ₁ = 11 V to 17 V		25 C		2	40		2	80	mv	
Bipple rejection	V = 11 E V += 01 E	V	-55°C to 150°C	62	72						
	$V_1 = 11.5 V$ to 21.5 V, $f = 120 Hz$		0°C to 125°C				56	72		dB	
Output regulation	I _O = 5 mA to 1.5 A		or° c		12	80		12	160		
output regulation	I _O = 250 mA to 750 mA		250		4	40		4	80	1 mV	
Output resistores	f = 1 kHz		-55°C to 150°C		0.016					-Ω	
			0°C to 125°C					0.016			
Temperature coefficient			0°C to 150°C		-0.8						
of output voltage	10 - 5 mA		0°C to 125°C					-0.8		mV/°C	
Output noise voltage	f = 10 Hz to 100 kH	z	25° C		52			52		μV	
Dropout voltage	I _O = 1 A		25° C		2.0			2.0		v	
Bias current			25° C		4.3	6		4.3	8	mA	
	V1 = 11.5 V to 25 V		$-55^{\circ}$ C to $150^{\circ}$ C			0.8					
Riss surrant shan as	V ₁ = 10.5 to 25 V		0°C to 125°C						1		
bias current change			-55°C to 150°C			0.5				mA	
	10 - 5 mA to 1 A		0°C to 125°C						0.5		
Short-circuit output			ar° o		450						
current			25 C		450			450		mA	
Peak output current			25°C		2.2			2.2		А	

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $\psi_{N} \leq 10$  ms, duty cycles  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

### TYPES uA7885M, uA7885C POSITIVE-VOLTAGE REGULATORS

# uA7885M, uA7885C electrical characteristics at specified virtual junction temperature, $V_{l}$ = 15 V, $I_{O}$ = 500 mA (unless otherwise noted)

	TEST CONDITIONS [†]			u	A7885M	٨	u,	LINIT		
PARAMETER				MIN	TYP	MAX	MIN	түр	MAX	UNIT
			25°C	8.15	8.5	8.85	8.15	8.5	8.85	
Output voltage	1 _O = 5 mA to 1 A,	VI = 12 V to 23.5 V	-55°C to 150°C	8.1		8.9				v
	P ≤ 15 W	VI = 11 V to 23.5 V	0°C to 125°C				8.1		8.9	
	VI = 10.5 V to 25 V		25°C		6	85		6	170	mν
Input regulation	V ₁ = 11 V to 17 V		25 C		2	40		2	85	
			-55°C to 150°C	60	70					dB
Ripple rejection	$V_{1} = 11.5 V \text{ to } 21.5$	V, T=120Hz	0°C to 125°C				54	70		
	IO = 5 mA to 1.5 A	25°C		12	85		12	170	mV	
Output regulation	IO = 250 mA to 750 mA		25 C		4	40		4	85	
	f = 1 kHz		55°C to 150°C		0.016					Ω
Output resistance			0°C to 125°C					0.016		
Temperature coefficient			0°C to 150°C	[	0.8					mV/°C
of output voltage	10 = 5 mA		0°C to 125°C				1	0.8		
Output noise voltage	f = 10 Hz to 100 kH	Iz	25° C		55			55		μV
Dropout voltage	I _O = 1 A		25° C		2.0			2.0		V
Bias current	-		25°C		4.3	6		4.3	8	mA
	V ₁ = 11.5 V to 25 V	/	-55°C to 150°C			0.8				
	V ₁ = 10.5 to 25 V		0°C to 125°C						1	mA
Bias current change			-55°C to 150°C			0.5				
	I _O = 5 mA to 1 A		0°C to 125°C						0.5	
Short-circuit output			25°C		450			450		mA
Peak output current			25°C		2.2			2.2		A
· con output current				1						

[†]All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycles ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.
### TYPES uA7812M, uA7812C POSITIVE-VOLTAGE REGULATORS

# uA7812M, uA7812C electrical characteristics at specified virtual junction temperature, $V_I$ = 19 V, $I_O$ = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			A7812	v	u	2	LINIT		
		EST CONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT
			25° C	11.5	12	12.5	11.5	12	12.5	
Output voltage	I _O = 5 mA to 1 A,	V _I = 15.5 V to 27 V	-55° C to 150° C	11.4		12.6				v
	P ≤ 15 W	VI = 14.5 V to 27 V	0°C to 125°C				11.4		12.6	
Input regulation	V ₁ = 14.5 V to 30 V		• 25° C		10	120		10	240	
input regulation	V ₁ = 16 V to 22 V		25 C		3	60		3	120	mV
Ripple rejection	V 15 V 25 V.	( - 120 H-	-55° C to 150° C	61	71					
hipple rejection	v] - 15 v to 25 v,	1 = 120 Hz	0°C to 125°C				55	71		dB
Output regulation	1 _O = 5 mA to 1.5 A		or° o		12	120		12	240	
Output regulation	I _Q = 250 mA to 750	mA	250		4	60		4	120	mV
Output resistance	f = 1 kHz		-55° C to 150° C		0.018					
output resistance			0°C to 125°C					0.018		52
Temperature coefficient	1		0°C to 150°C		-1.0					
of output voltage	10 - 5 mA		0°C to 125°C					-1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	z	25° C		75			75		μV
Dropout voltage	I _O = 1 A		25°C		2.0			2.0		V
Bias current			25°C		4.3	6		4.3	8	mA
	V ₁ = 15 V to 30 V		55° C to 150° C			0.8				
Bias current chance	V _I = 14.5 V to 30 V		0°C to 125°C						1	
Dias current change	$l_{0} = 5 \text{ m} \Lambda + 0.1 \Lambda$		-55°C to 150°C			0.5				mΑ
	10 - 3 11A 10 T A		0°C to 125°C						0.5	
Short-circuit			25° C		250			25.0		
output current			200		350			350		mΑ
Peak output current			25°C		2.2			2.2		А

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $\psi_{\rm N} \leq 10$  ms, duty cycles  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

#### TYPES uA7815M, uA7815C POSITIVE-VOLTAGE REGULATORS

# uA7815M, uA7815C electrical characteristics at specified virtual junction temperature, $V_I = 23 V$ , $I_O = 500 mA$ (unless otherwise noted)

			u	A7815	A	u	:	UNIT		
PARAMETER	, т	EST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
			25° C	14.4	15	15.6	14.4	15	15.6	
Output voltage	$I_{O} = 5 \text{ mA to } 1 \text{ A},$	V ₁ = 18.5 V to 30 V	-55°C to 150°C	14.25		15,75				v
output folicity.	P ≤ 15 W	V ₁ = 17.5 V to 30 V	0°C to 125°C				14.25		15.75	
	V1 = 17.5 V to 30 V		25° C		11	150		11	300	mV
Input regulation	V1 = 20 V to 26 V		25 C		3	75		3	150	
			-55°C to 150°C	60	70					dB
Ripple rejection	$V_{\rm I} = 18.5  \rm V  to  28.5$	V,f = 120 Hz	0°C to 125°C				54	70		
	lo = 5 mA to 1.5 A		ar°o.		12	150		12	300	mV
Output regulation	lo = 250 mA to 750	mA	250		4	75		4	150	
	0		-55°C to 150°C		0.019					Ω
Output resistance	f = 1 kHz		0°C to 125°C					0.019		
Temperature coefficient			0°C to 150°C		-1.0					mv/°c
of output voltage	1 ₀ = 5 mA		0°C to 125°C					-1.0		
Output noise voltage	f = 10 Hz to 100 kH	z	25°C		90			90		μV
Dropout voltage	10=1A		25°C		2.0			2.0		V
Bias current	· · · · · · · · · · · · · · · · · · ·		25°C		4.4	6		4.4	8	mA
	V ₁ = 18.5 V to 30 V	/	-55°C to 150°C			0.8				
	VI = 17.5 V to 30 V	/	0°C to 125°C						1	mA
Bias current change			-55°C to 150°C			0,5				4
	$I_0 = 5 \text{ mA to 1 A}$		0°C to 125°C						0.5	
Short-circuit			25°C		230			230		mA
output current					21		+	21		
Peak output current	1		25°C		2.1			2.1		<u> </u>

[†]All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.1 µF and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycles < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

### TYPES uA7818M, uA7818C POSITIVE-VOLTAGE REGULATORS

#### uA7818M, uA7818C electrical characteristics at specified virtual junction temperature, VI = 27 V, IQ = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			u	A7818	N	u	:		
		EST CONDITIONS.	•	MIN	түр	MAX	MIN	ТҮР	MAX	UNIT
			25° C	17.3	18	18.7	17.3	18	18.7	
Output voltage	$I_0 = 5 \text{ mA to } 1 \text{ A},$	V _I = 22 V to 33 V	-55° C to 150° C	17.1		18.9				v
	P ≤ 15 W	V ₁ = 21 V to 33 V	0°C to 125°C				17.1		18.9	
Input regulation	V _I = 21 V to 33 V		25° C		15	180		15	360	
mput regulation	V ₁ = 24 V to 30 V		250		5	90		5	180	m∨
Bipple rejection	Vi = 22 V +0 22 V	f = 120 Hz	-55°C to 150°C	59	69					
	v] = 22 v to 32 v,	1 - 120 Hz	0°C to 125°C				53	69		dВ
Output regulation	1 ₀ = 5 mA to 1.5 A		250		12	180		12	360	
output regulation	1 ₀ = 250 mA to 750	) mA	250		4	90		4	180	mV
Output resistance	6 - 1 64-		-55°C to 150°C		0.022					
Output resistance	1 - 1 KH2		0°C to 125°C					0.022		Ω
Temperature coefficient	1		0°C to 150°C		-1.0					
of output voltage	10 - 5 mA		0°C to 125°C					-1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kH	z	25° C		110			110		μV
Dropout voltage	I _O = 1 A		25°C		2.0			2.0		V
Bias current			25°C		4.5	6		4.5	8	mA
	V _I = 22 V to 33 V		-55°C to 150°C			0.8				
Disc summation to a second	V ₁ = 21 V to 33 V		0°C to 125°C						1	
Bias current change			-55°C to 150°C			0.5				mA
	10 = 5 mA to 1 A		0°C to 125°C						0.5	
Short-circuit			25%0		200					
output current			25 C		200			200		mA
Peak output current			25°C		2.1			2.1		А

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w  $\leq$  10 ms, duty cycles  $\leq$  5%). Output voltage changes due to changes in internal température must be taken into account separately.

### TYPES uA7824M, uA7824C POSITIVE-VOLTAGE REGULATORS

#### uA7824M, uA7824C electrical characteristics at specified virtual junction temperature, VI = 33 V, I $_{O}$ = 500 mA (unless otherwise noted)

				u	A7824	N	u	;	UNIT	
PARAMETER	Т	EST CONDITIONS		MIN	түр	MAX	MIN	түр	MAX	Giall
			25° C	23	24	25	23	24	25	
Output voltage	10 = 5 mA to 1 A,	V ₁ = 28 V to 38 V	$-55^{\circ}$ C to $150^{\circ}$ C	22.8		25.2				v
	P ≤ 15 W	V ₁ = 27 V to 38 V	0°C to 125°C				22.8		25.2	
	V ₁ = 27 V to 38 V		25° C		18	240		18	480	mV
Input regulation	V1 = 30 V to 36 V		250		6	120		6	240	
			-55°C to 150°C	56	66					dB
Ripple rejection	$V_1 = 28 V$ to 38 V,	f = 120 Hz	0°C to 125°C				50	66		40
	10 = 5 mA to 1.5 A		ar°o		12	240		12	480	mV
Output regulation	10 = 250 mA to 750	) mA	200		4	120		4	240	
			-55°C to 150°C		0.028					a
Output resistance	f = 1 kHz		0°C to 125°C					0.028		
Temperature coefficient			0°C to 150°C		-1.5					myrc
of output voltage	1 ₀ = 5 mA		0°C to 125°C					-1.5		
Output noise voltage	f = 10 Hz to 100 kH	Iz	25° C		170			170		μV
Dropout voltage	1 ₀ = 1 A		25° C		2.0			2.0		V
Bias current	- ×		25° C		4.6	6		4.6	8	mA
	V ₁ = 28 V to 38 V		-55°C to 150°C			0.8				1
	VI = 27 V to 38 V		0°C to 125°C						1	mA
Bias current change			-55° C to 150° C			0.5				
	$I_0 = 5 \text{ mA to 1 A}$		0°C to 125°C						0.5	
Short-circuit			25° C		150			150		mA
output current			- area		2.1		+	2 1		
Peak output current			25 C		2.1		1	2.1		1 ^

[†]All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF and all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycles ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

### LINEAR INTEGRATED CIRCUITS

#### SERIES uA78L00 **POSITIVE-VOLTAGE REGULATORS**

10%

OUTPUT VOLTAGE

TOLERANCE

uA78L02C

uA78L05C

11A 781 06C

uA78L08C

uA78L12C

uA78L15C

INPUT

OUTPUT

ΙP

SILECT[†] PACKAGE

(TOP VIEW)

BULLETIN NO. DL-S 7612353, JANUARY 1976 - REVISED MAY 1976

5%

OUTPUT VOLTAGE

TOLEBANCE

uA78L02AC

uA78L05AC

uA78L06AC

uA78L08AC

uA78L12AC

uA78L15AC

NOMINAL

OUTPUT

VOLTAGE

2.6 V

62V

8 V

12 V

15 V

JG

DUAL-IN-LINE PACKAGE

(TOP VIEW)

COMMON NC

NC

OUTPUT

5 V

- **3-Terminal Regulators**
- Output Current up to 100 mA
- No External Components
- Internal Thermal Overload Protection
- Unusually High Power Dissipation Capability
- Direct Replacement for Fairchild µA78L00 Series
- Internal Short-Circuit Current Limiting

#### description

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power-pass elements to make high-current voltage regulators. One of these regulators can deliver up to 100 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. When used as a replacement for a Zener-diode-resistor combination. an effective improvement in output impedance of typically two orders of magnitude can be obtained together with lower bias current.





absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA78L02AC, uA78L02C uA78L05AC, uA78L05C	uA78L12AC, uA78L12C	
		uA78L06AC, uA78L06C	uA78L15AC, uA78L15C	
		uA78L08AC, uA78L08C		
Input voltage		30	35	V
	JG package	1125	1125	mW
Continuous total dissipation at 25°C free-air temperature (see Note 1)	LP package	775	775	1
Continuous total dissipation at (or below) 25°C case temperature (see	Note 1)	1600	1600	mW
Operating free-air, case, or virtual junction temperature range		0 to 150	0 to 150	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 10 seconds		260	260	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figure 1 and Figure 2.

#### THERMAL INFORMATION



NOTE 2: This curve for the LP package is based on thermal resistance, R_{θ JA}, measured in still air with the device mounted in an Augat socket. The bottom of the package was 3/8 inch above the socket.

recommended	operating	conditions
-------------	-----------	------------

	uA78L02AC uA78L02C		uA78L02AC uA78L05AC uA78L0 uA78L02C uA78L05C uA78L0		LOGAC BLOGC	uA78L08AC uA78L08C		08AC uA78L12AC L08C uA78L12C		uA78L15AC uA78L15C			
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Input voltage, Vi	4.75	20	7	20	8.5	20	10.5	23	14.5	27	17.5	30	v
Output current, IO		100		100		100		100		100		100	mA
Operating virtual junction temperature, Tj	0	125	0	125	0	125	0	125	0	125	0	125	°c

PARAMETER	TEST CONDITIONS [†]		u/	78L02	AC	u.	2C		
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25° C	2.5	2.6	2.7	2.4	2.6	2.8	
Output voltage	V ₁ = 4.75 V to 20 V, I _O = 1 mA to 40 mA	0°C to 125°C	2.45		2.75	2.35		2.85	v
	I _O = 1 mA to 70 mA	-0 C to 125 C	2.45		2.75	2.35		2,85	
Input regulation	V ₁ = 4.75 V to 20 V	25° 0		40	100		40	125	
mpar regulation	V ₁ = 5 V to 20 V	250		30	75		30	100	m∨
Ripple rejection	V _I = 6 V to 16 V, f = 120 Hz	25° C	43	51		42	51		dB
Output regulation	I _O = 1 mA to 100 mA	25%0		10	50		10	50	
Output regulation	I _O = 1 mA to 40 mA	250		4	25		4	25	mV
Output noise voltage	f = 10 Hz to 100 kHz	25° C		30			30		μV
Dropout voltage		25° C		1.7			1.7		v
Rise ourrent		25° C		3.6	6		3.6	6	
Dias current		125°C			5.5			5.5	mA
Pipe ourrent shange	V ₁ = 5 V to 20 V	000 40500			2.5			2.5	
bias current change	IO = 1 mA to 40 mA	-0 C to 125 C			0.1			0.2	mA

### uA78L02AC, uA78L02C electrical characteristics at specified virtual junction temperature, $V_I = 9 V$ , $I_O = 40 mA$ (unless otherwise noted)

# uA78L05AC, uA78L05C electrical characteristics at specified virtual junction temperature, $V_I$ = 10 V, $I_O$ = 40 mA (unless otherwise noted)

PARAMETER	AMETER TEST CONDITIONS [†]		u/	A78L05	AC	u,	A78L0	5C	
	1201 00101110113		MIN	ТҮР	MAX	MIN	түр	MAX	
		25° C	4.8	5	5.2	4.6	5	5.4	
Output voltage	$V_{I} = 7 V \text{ to } 20 V$ , $I_{O} = 1 \text{ mA to } 40 \text{ mA}$	0°0 - 125°0	4.75		5.25	4.5		5.5	v
	I _O = 1 mA to 70 mA	0 0 0 125 0	4.75		5.25	4.5		5.5	1
Input regulation	V ₁ = 7 V to 20 V	25° C		25	150		25	200	
mparregulation	V _I = 8 V to 20 V	25 C		20	100		20	150	m∨
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	25° C	41	49		40	49		dB
Output regulation	IO = 1 mA to 100 mA	25° C		17	60		17	60	
output regulation	I _O = 1 mA to 40 mA	25 C		7	30		7	30	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		40			40		μV
Dropout voltage		25°C		1.7			1.7		v
Rias current		25° C		3.8	6		3.8	6	
Bids current		125°C			5.5			5.5	mA
Bias current change	V ₁ = 8 V to 20 V	0°C to 125°C			1.5			1.5	
and carrent change	1 _O = 1 mA to 40 mA	100001280			0.1		_	0.2	mA

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $t_{w} \leq 10$  ms, duty cycle  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

#### uA78L06C uA78L06AC UNIT TEST CONDITIONS[†] PARAMETER MAX MIN TYP MAX MIN TYP 5.95 6.2 6.45 5.7 6.2 6.7 25° C 6.8 v 5.9 65 5 6 10 = 1 mA to 40 mA V1 = 8.5 V to 20 V Output voltage $0^{\circ}$ C to $125^{\circ}$ C 6.8 I_O = 1 mA to 70 mA 59 6 5 5.6 200 V1 = 8.5 V to 20 V 25 175 25 m٧ 25° C Input regulation 150 20 125 20 V1 = 9 V to 20 V 25° C 39 46 dB VI = 10 V to 20 V, f = 120 Hz 40 46 Ripple rejection IO = 1 mA to 100 mA 20 80 20 80 25° C m٧ Output regulation 40 a 40 10 = 1 mA to 40 mA a uV 25°C 50 50 f = 10 Hz to 100 kHz Output noise voltage v 25° C 1.7 1.7 Dropout voltage 3.9 6 3.9 6 25° C mΑ Bias current 5.5 5.5 125°C 1.5 1.5 VI = 9 V to 20 V mΑ 0°C to 125°C Bias current change 0.1 02 IO = 1 mA to 40 mA

#### uA78L06AC, uA78L06C electrical characteristics at specified virtual junction temperature, VI = 12 V, I $_{O}$ = 40 mA (unless otherwise noted)

# uA78L08AC, uA78L08C electrical characteristics at specified virtual junction temperature, $V_I = 14 V$ , $I_O = 40 mA$ (unless otherwise noted)

	the second secon	TEST CONDITIONST		78L08	AC	u/	C	UNIT	
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25° C	7.7	8	8.3	7.36	8	8.64	
Output voltage	$V_1 = 10.5 V$ to 23 V, $I_0 = 1 \text{ mA to } 40 \text{ mA}$	a°a, tar°C	7.6		8.4	7.2		8.8	v
	I _O = 1 mA to 70 mA	0 C to 125 C	7.6		8.4	7.2		8.8	
	V ₁ = 10.5 V to 23 V	25° C		25	175		25	200	mV
Input regulation	V ₁ = 11 V to 23 V	25 C		20	125		20	150	
Ripple rejection	V ₁ = 13 V to 23 V, f = 120 Hz	25° C	37	44		36	44		dB
	I _O = 1 mA to 100 mA	25° 0		25	80		25	80	mV
Output regulation	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	25 C		10	40		10	40	
Output noise voltage	f = 10 Hz to 100 kHz	25° C		60			60		μV
Dropout voltage		25° C		1.7			1.7		V
		25° C		4	6		4	6	mA
Bias current		125°C			5.5			5.5	
	V ₁ = 11 V to 23 V	0°0 += 125°0			1.5			1.5	mA
Bias current change	Io = 1 mA to 40 mA	0 C to 125 C			0.1			0.2	1

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $t_W \leq 10$  ms, duty cycle  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

PARAMETER	TEST CONDITIONS		u/	478L12	AC	u.	A78L12	2C	
(ANAMETER	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	
		25° C	11.5	12	12.5	11.1	12	12.9	
Output voltage	$V_1 = 14.5 V \text{ to } 27 V$ , $I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C += 125°C	11.4		12.6	10.8		13.2	
	I _O = 1 mA to 70 mA	0 C to 125 C	11.4		12.6	10.8		13.2	1
Input regulation	V _I = 14.5 V to 27 V	25° C		55	250		55	250	
mput regulation	V _I = 16 V to 27 V	25 C		45	200		45	200	
Ripple rejection ratio	V _I = 15 V to 25 V, f = 120 Hz	25° C	37	42		36	42		dB
Output regulation	I _O = 1 mA to 100 mA	25° C		30	100		30	100	
output regulation	I _O = 1 mA to 40 mA	25 C		12	50		12	50	^^
Output noise voltage	f = 10 Hz to 100 kHz	25° C		80			80		μV
Dropout voltage		25° C		1.7			1.7		V
Rice evenent		25° C		4.2	6.5		4.2	6.5	
bias current		125°C			6			6	MA
Bira anna at an an	V ₁ = 16 V to 27 V	0°0, 105°0			1.5			1.5	
bias current change	$I_{\Omega} = 1 \text{ mA to } 40 \text{ mA}$	0 C to 125 C			0.1			0.2	mA

# uA78L12AC, uA78L12C electrical characteristics at specified virtual junction temperature, $V_I$ = 19 V, $I_O$ = 40 mA (unless otherwise noted)

### uA78L15AC, uA78L15C electrical characteristics at specified virtual junction temperature , $V_I = 23 V$ , $I_O = 40 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS			78L15	AC	u/	iC	UNIT	
FANAMETEN	TEST CONDITIONS.		MIN	TYP	MAX	MIN	TYP	MAX	
		25° C	14.4	15	15.6	13.8	15	16.2	
Output voltage	V ₁ = 17.5 V to 30 V, I ₀ = 1 mA to 40 mA	0°0 - 125°0	14.25		15.75	13.5		16.5	v
	1 _O = 1 mA to 70 mA	0 0 10 125 0	14.25		15.75	13.5		16.5	1
Input regulation	V ₁ = 17.5 V to 30 V	250		70	300		70	300	
input regulation	V ₁ = 20 V to 30 V	250		55	250		55	250	1 mv
Ripple rejection ratio	V ₁ = 18.5 V to 28.5 V, f = 120 Hz	25° C	34	39		33	39		dB
Output regulation	1 ₀ = 1 mA to 100 mA	ar° o		30	150		30	150	
Output regulation	I _O = 1 mA to 40 mA	25 C		12	75		12	75	mv
Output noise voltage	f = 10 Hz to 100 kHz	25° C		90			90		μV
Dropout voltage		25° C		1.7			1.7		v
Biss current		25° C		4.4	6.5		4.4	6.5	
Dias current		125°C			6			6	MA
Bias current change	V ₁ = 20 V to 30 V	0°C += 125°C			1.5			1.5	
Charlent Charlige	I _O = 1 mA to 40 mA	0 0 10 125 0			0.1			0.2	1 mA

[†] All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $\mu_N \leqslant 10$  ms, duty cycle  $\leqslant 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

Printed in U.K.

### LINEAR INTEGRATED CIRCUITS

### SERIES µA78M00 **POSITIVE-VOLTAGE REGULATORS**

BULLETIN NO. DL-S 7612403, JUNE 1976

- 3-Terminal Regulators
- Output Current up to 500 mA
- . No external components
- Internal Thermal Overload Protection •
- Direct Placements for Fairchild µA78M00 Series and National LM341 Series
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

#### description

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. One of these regulators can deliver up to 500 milliamperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overlaod. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.





#### terminal assignments



#### absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA78M05M THRU uA78M24M	uA78M05C THRU uA78M24C	UNIT
	uA78M20, uA78M24	40	40	V
Input voltage	All others	35	35	] `
	KC (TO-220AB) package	2	2	
Continuous total dissipation at 25°C free-air temperature (see Note 1)	KD(TO-202AB) package	1.5	1.5	] w
	LA package	0.6	0.6	]
Continuous total dissipation at (or below)25°C case temperature	KC and KD packages	7.5	7.5	- w
(see Note 1)	LA package	5	5	1
Operating free-air, case, or virtual junction temperature range		-55 to 150	0 to 150	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 10 seconds	KC and KD packages		260	°C
Lead temperature 1/16 inch from case for 60 seconds	LA package	300	300	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figures 1 through 4.

#### recommended operating conditions

		MIN	MAX	UNIT
	uA78M05M, uA78M05C	7	25	
	uA78M06M, uA78M06C	8	25	
	uA78M08M, uA78M08C	10.5	25	
Input voltage, V ₁	uA78M12M, uA78M12C	14.5	30	v
	uA78M15M, uA78M15C	17.5	30	
	uA78M20M, uA78M20C	23	35	
	uA78M24M, uA78M24C	27	38	
Output current, IO			500	mA
	uA78M05M thru uA78M24M	-55	150	°c
Operating virtual junction temperature, 1j	uA78M05C thru uA78M24C	0	125	Č.

	_				A78M0	5M	U	A 78M0	5C	LINUT
PARAMETER	1	EST CONDITIONS'		MIN	түр	MAX	MIN	ТҮР	MAX	
			25°C	4.8	5	5.2	4.8	5	5.2	
Output voltage		V ₁ = 8 V to 20 V	-55° C to 150° C	4.7		5.3				) v
	10 = 5  mA to  350  mA	V ₁ = 7 V to 20 V	0°C to 125°C				4.75		5.25	
		V ₁ = 7 V to 25 V			3	50		3	100	
Input regulation	I _O = 200 mA	V _I = 8 V to 20 V	25°C		1	25				m∨
		V _I = 8 V to 25 V						1	50	
· · · · · · · · · · · · · · · · · · ·	V 0.V. 10.V	1 - 100 - 1	-55°C to 150°C	62						
Ripple rejection	$V_1 = 8 V to 18 V,$	10 = 100 mA	0°C to 125C				62			dB
	f = 120 Hz	I _O = 300 mA	25°C	62	80		62	80		
0	10 = 5 mA to 500 mA		25°C		20	50		20	100	mv
Output regulation	10 = 5 mA to 200 mA		25 0		10	25		10	50	1
Temperature coefficient	1 F A		-55°C to 150°C		-1					mv/°c
of output voltage	10 - 5 mA		0°C to 125°C					-1		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40			40		μV
Dropout voltage			25°C		2			2		V
Bias current			25° C		4.5	6		4.5	6	mA
		2E )/	55°C to 150°C			0.8	1			]
	$ 10 = 200 \text{ mA}, v_1 = 8 \text{ v}$	to 25 V	0°C to 125°C						0.8	
Bias current change			-55°C to 150°C			0.5				
	10 = 5  mA to  350  mA		0°C to 125°C						0.5	
Short-circuit output current	V _I = 35 V		25° C		300			300		mA
Peak output current			25° C		700			700		A

# uA78M05M, uA78M05C electrical characteristics at specified virtual junction temperature, $V_{I}$ = 10 V, $I_{O}$ = 350 mA (unless otherwise noted)

[†]All characteristics are measured with a capacitor across the input of 0.33 μF and a capacitor across the output of 0.1 μF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w ≤ 10 ms, duty cycle ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

DADAMETED		TOT CONDUTIONOT			A78M06	M	u	A78M060	2	
PARAMETER	1	EST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
			25° C	5.75	6	6.25	5.75	6	6,25	
Output voltage		V ₁ = 9 V to 21 V	-55°C to 150°C	5.7		6.3				1 v
	10 = 5  mA to  350  mA	VI = 8 V to 21 V	0°C to 125°C				5.7		6.3	1
		V ₁ = 8 V to 25 V		1	5	60		5	100	
Input regulation	I _O = 200 mA	V ₁ = 9 V to 20 V	25°C		1.5	30				mV
		V ₁ = 9 V to 25 V	1					1.5	50	1
	V = 0 V == 10 V	1 100 1	-55°C to 150°C	59						-
Ripple rejection	VI - 9 V to 19 V,	10 = 100 mA	0°C to 125°C				59			dB
	1 – 120 Hz	I _O = 300 mA	25° C	59	80		59	80		1
Output regulation	I _O = 5 mA to 500 mA		25° C		20	60		20	120	
Output regulation	I _O = 5 mA to 200 mA		250		10	30		10	60	- mv
Temperature coefficient	1		-55°C to 150°C		-0.5					
of output voltage	10 - 5 mA		0°C to 125°C					-0.5		- mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25° C		45			45		μV
Dropout voltage			25°C		2			2		V
Bias current			25°C		4.5	6		4.5	6	mA
	1 = = 200 m A V = 0 V	to 25 V	-55° C to 150° C			0.8				
Rice surrent shange	10 - 200 mA, VI - 3 V	10 25 V	0°C to 125°C						0.8	
bias current change			-55°C to 150°C			0.5				
	10 - 5 IIIA to 350 IIIA		0°C to 125°C						0.5	
Short-circuit	V/1 - 25 V/		25° C		270			270		
output current	v   - 35 v		25 C		270			270		mA
Peak output current			25° C		700			700		A

# uA78M06M, uA78M06C electrical characteristics at specified virtual junction temperature, $V_I = 11 V$ , $I_O = 350 mA$ (unless otherwise noted)

[†]All characteristics are measured with a capacitor across the input of 0,33  $\mu$ F and a capacitor across the output of 0,1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w<10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

264

# uA78M08M, uA78M08C electrical characteristics at specified virtual junction temperature, $V_{I}$ = 14 V, $I_{O}$ = 350 mA (unless otherwise noted)

		TOT CONDITIONS		ι	A78M08	M	L	A78M08	C	
PARAMETER	ļ	EST CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	
			25° C	7.7	8	8.3	7.7	8	8.3	
Output voltage	1 E - A +- 2E0 - A	V ₁ = 11.5 V to 23 V	55° C to 150° C	7.6		8.4				1 v
	10 = 5 mA to 350 mA	V ₁ = 10.5 V to 23 V	0°C to 125°C				7.6		8.4	
, ,		V ₁ = 10.5 V to 25 V			6	60		6	100	
Input regulation	1 ₀ = 200 mA	V _I = 11 V to 20 V	25° C		2	30				mV
		V ₁ = 11 V to 25 V						2	50	1
	V. = 11 E.V. += 21 E.V.	1 100 - 1	-55°C to 150°C	56						
Ripple rejection	(= 120 H=	10 - 100 mA	0°C to 125°C				56			dB
	1 - 120 Hz	I _O = 300 mA	25° C	56	80		56	80		1
Output regulation	I ₀ = 5 mA to 500 mA		25° C		25	80		25	160	
Output regulation	I ₀ = 5 mA to 200 mA		250		10	40		10	80	- mv
Temperature coefficient	Le = E m A		-55°C to 150°C		-0.5					
of output voltage	10 - 5 mA		0°C to 125°C					-0.5		- mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25° C		52			52		μV
Dropout voltage			25°C		2			2		V
Bias current			25° C		4.6	6		4.6	6	mA
	1	V _I = 11.5 V to 25 V	-55°C to 150°C			0,8				
Pice ourrest change	10 - 200 MA	V ₁ = 10.5 V to 25 V	0°C to 125°C					, in the second s	0.8	
bias current change			-55°C to 150°C			0.5				
	10 - 5 MA 10 350 MA	1	0°C to 125°C						0.5	1
Short-circuit	Vr = 25 V		25° C		250			250		
output current	v1-35 v		25 C		250			250		mA
Peak output current			25°C		700			700		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $t_{w} \leq 10$  ms, duty cycle  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately. TYPES uA78M08M, uA78M08C POSITIVE-VOLTAGE REGULATORS

					A78M12	2M		A78M12	2C	
PARAMETER	1	EST CONDITIONS		MIN	ТҮР	MAX	MIN	TYP	MAX	
			25°C	11.5	12	12.5	11.5	12	12.5	
Output voltage		V ₁ = 15.5 V to 27 V	-55° C to 150° C	11.4		12.6				v
	10 = 5  mA to  350  mA	V _I = 14.5 V to 27 V	0°C to 125°C	1			11.4		12.6	1
817	1	V ₁ = 14.5 V to 30 V		1	8	60		8	100	
Input regulation	1 _O = 200 mA	V ₁ = 16 V to 25 V	25°C		2	30				mV
	<b>°</b>	V ₁ = 16 V to 30 V						2	50	1
	N - 45 M - 95 M	1 - 100 - 1	-55°C to 150°C	55			1			
Ripple rejection	$v_1 = 15 v to 25 v$ ,	10 = 100 mA	0°C to 125° C	1			55			dB
	T = 120 Hz	I _O = 300 mA	25°C	55	80		55	80		1
<u>.</u>	10 = 5 mA to 500 mA		05%0		25	120	1	25	240	
Output regulation	10 = 5 mA to 200 mA		25 C		10	60		10	120	1 mv
Temperature coefficient			-55°C to 150°C		-1					
of output voltage	10 = 5 mA		0°C to 125°C					-1		] mv/ c
Output noise voltage	f = 10 Hz to 100 kHz		25°C		75			75		μV
Dropout voltage			25° C		2			2		V
Bias current			25° C	T	4.8	6		4.8	6	mA
		V _I = 15 V to 30 V	-55° C to 150° C			0.8				
D:	10 = 200 mA	V _I = 14.5 V to 30 V	0°C to 125°C						0.8	]
Blas current change			55°C to 150°C			0.5				] "A
	10 = 5 mA to 350 mA		0°C to 125°C						0.5	
Short-circuit	V. = 25 V		25° C		240			240		-
output current	v   - 35 v		250		240			240		mA
Peak output current			25°C	T	700			700		A

uA78M12M, uA78M12C electrical characteristics at specified virtual junction temperature,  $V_I = 19 V$ ,  $I_O = 350 mA$  (unless otherwise noted)

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

# uA78M15M, uA78M15C electrical characteristics at specified virtual junction temperature, $V_{I}$ = 23 V, $I_{O}$ = 350 mA (unless otherwise noted)

DADAMETED	-	FOT CONDITIONS!	,	u,	A78M15	м	u/	A78M15	с	
PARAMETER	1	ESTCONDITIONS		MIN	ТҮР	MAX	MIN	ТҮР	MAX	
			25°C	14.4	15	15.6	14.4	15	15.6	
Output voltage	L	V ₁ = 18.5 V to 30 V	-55° C to 150°C	14.25		15.75				] v
	10 = 5 mA to 350 mA	V _I = 17.5 V to 30 V	0°C to 125°C				14.75		15.75	1
1		V ₁ = 17.5 V to 30 V	250		10	60		10	100	
input regulation	10 = 200 mA	V ₁ = 20 V to 30 V	25 0		3	30		3	50	1 mv
	V - 10 5 V - 20 5 V	1	-55°C to 150°C	54						
Ripple rejection	$V_{\parallel} = 18.5 V to 28.5 V$ ,	10 = 100 mA	0°C to 125°C	1			54			dB
	T = 120 HZ	I _O = 300 mA	25°C	54	70		54	70		
Quantum annulation	I _O = 5 mA to 500 mA	•	25°C	1	25	150		25	300	
Output regulation	10 = 5 mA to 200 mA		25 C		10	75		10	150	1 mv
Temperature coefficient	1		-55°C to 150°C		-1					-VPC
of output voltage	10-5 mA		0°C to 125°C					-1		] /// 0
Output noise voltage	f = 10 Hz to 100 kHz		25°C		90			90		μV
Dropout voltage			25°C		2			2		v
Bias current			25° C		4.8	6		4.8	6	mA
	1 200 4	V _I = 18.5 V to 30 V	55°C to 150°C		· · · · · · · · · · · · · · · · · · ·	0.8				
Diag and the second	10 - 200 mA	V ₁ = 17.5 V to 30 V	0°C to 125°C						0.8	1
Bias current change	1	*****	-55°C to 150°C			0.5				] "
	10 = 5  mA to  350  mA		0°C to 125°C						0.5	
Short-circuit output current	V _I = 35 V		25° C		240			240		mA
Peak output current			25°C		700			700		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $t_{w} \leq 10$  ms, duty cycle  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

TEXAS INSTRUMENTS

	1				A78M20	M	u	A78M20	С	
PARAMETER	1	EST CONDITIONS		MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
			25°C	19.2	20	20.8	19.2	20	20,8	
Output voltage		V ₁ = 24 V to 35 V	-55° C to 150°C	19		21				v
	10 = 5  mA to  350  mA	V1 = 23 V to 35 V	0°C to 125°C				19		21	
		V1 = 23 V to 35 V	25° 0		10	60		10	100	
Input regulation	$1_0 = 200 \text{ mA}$	V ₁ = 24 V to 35 V	7 25 0		5	30		5	50	
			-55°C to 150°C	53						
Ripple rejection	$V_1 = 24 V \text{ to } 34 V$ ,	10 = 100 mA	0°C to 125°C				53			dB
	f = 120 Hz	I _O = 300 mA	25°C	53	70		53	70		
	I _O = 5 mA to 500 mA		ar°a		30	200		30	400	m\/
Output regulation	I _O = 5 mA to 200 mA		250		10	100		10	200	iii v
Temperature coefficient			-55°C to 150°C		-1.1				-	myrc
of output voltage	10 = 5 mA		0°C to 125°C					-1.1		111 <b>v</b> / C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		110			110		μV
Dropout voltage			25°C		2			2		V
Bias current			25° C		4.9	6		4.9	6	mA
		V ₁ = 24 V to 35 V	-55°C to 150°C			0.8				
	10 = 200 mA	V ₁ = 23 V to 35 V	0°C to 125°C						0.8	
Bias current change	F		-55°C to 150°C			0.5				] ""^
	10 = 5 mA to 350 mA		0°C to 125°C						0.5	
Short-circuit	V. = 25 V		25°C		240			240		mA
output current	v - 35 v		250		240			240		
Peak output current			25°C		700			700		A

TYPES uA78M20M, POSITIVE-VOLTAGE

uA78M24C20C REGULATORS

uA78M20M, uA78M20C electrical characteristics at specified virtual junction temperature,  $V_I$  = 29 V,  $I_O$  = 350 mA (unless otherwise noted)

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $\tau_{w} \leq 10$  ms, duty cycle  $\leq 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

# uA78M24M, uA78M24C electrical characteristics at specified virtual junction temperature, $V_{\rm I}$ = 33 V, $I_{\rm O}$ = 350 mA (unless otherwise noted)

	-	FOT CONDUTIONOT			A78M24	м	u	A78M2	4C	
PARAMETER		EST CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
			25°C	23	24	25	23	24	25	
Output voltage	1	V ₁ = 28 V to 38 V	-55° C to 150° C	22.8		25.2				l v
	10 = 5 mA to 350 mA	V ₁ = 27 V to 38 V	0°C to 125°C				22.8		25.2	
		V ₁ = 27 V to 38 V			10	60		10	100	
Input regulation	I _O = 200 mA	V ₁ = 30 V to 36 V	25°C		5	30				mV
		V ₁ = 28 V to 38 V						5	50	
	V. = 29 V += 29 V	1 100 - 0	-55°C to 150°C	50						
Ripple rejection	v = 20 v to 30 v,	10 - 100 mA	0°C to 125°C				50			dB
	1 = 120 HZ	I _O = 300 mA	25°C	50	70		50	70		]
0	1 ₀ = 5 mA to 500 mA	· · · · · · · · · · · · · · · · · · ·	25° C		30	240		30	480	
Output regulation	1 ₀ = 5 mA to 200 mA		25 0		10	120		10	240	
Temperature coefficient	1		-55°C to 150°C		-1.2					
of output voltage	10 - 5 MA		0°C to 125°C					-1.2		11107 C
Output noise voltage	f = 10 Hz to 100 kHz		25° C		170			170		μV
Dropout voltage			25°C		2			2		v
Bias current		-	25°C		5	6		5	6	mA
		V ₁ = 28 V to 38 V	-55°C to 150°C			0.8				
	10 = 200 mA	V _I = 27 V to 38 V	0°C to 125°C					-	0.8	]
Bias current change		•	-55°C to 150°C			0.5				mA
	10 = 5 mA to 350 mA		0°C to 125°C						0.5	
Short-circuit	V _I = 35 V		25°C		240			240		mA
Peak output current			25°C	<del> </del>	700		<u> </u>	700		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately. TYPES uA78M24M, uA78M24C POSITIVE-VOLTAGE REGULATORS



#### THERMAL INFORMATION

Printed in U.K.

#### **TEXAS INSTRUMENTS**

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIM IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE

#### LINEAR INTEGRATED CIRCUITS

### SERIES µA7900 **NEGATIVE-VOLTAGE REGULATORS**

BULLETIN NO. DL-S 7612404, JUNE 1976

- **3-Terminal Regulators** .
- Output Current up to 1.5 A •
- No External Components
- Internal Thermal Overload Protection
- Direct Replacements for Fairchild #A7900 Series
- Essentially Equivalent to National LM 320 Series
- **High Power Dissipation Capability**
- Internal Short-Circuit Current Limiting
- **Output Transistor Safe-Area Compensation**

#### description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement Series uA7800 in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. One of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

#### schematic

6



	NOMINAL	-55°C TO 150°C	0°C TO 125°C
1	OUTPUT	OPERATING	OPERATING
	VOLTAGE	TEMPERATURE RANGE	TEMPERATURE RANGE
	-5 V	uA7905M	uA7905C
	-6 V	uA7906M	uA7906C
	8 V	uA7908M	uA7908C
	–12 V	uA7912M	uA7912C
	–15 V	uA7915M	uA7915C
	18 V	uA7918M	uA7918C
ł	24 ∨	uA7924M	uA7924C
	PACKAGES	KA	KA and KC



### SERIES uA7900 NEGATIVE-VOLTAGE REGULATORS

#### absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA7905M	uA7905C	
		THRU	THRU	UNIT
		uA7924M	uA7924C	
lan a share	uA7924M, uA7924C	-40	-40	
Input voitage	All others	-35	-35	l ^v
	KA (TO-3) package	3.5	3.5	
Continuous total dissipation at 25 C free-air temperature (see Note 1)	KC (TO-220AB) package		2	Ŵ
Continuous total dissipation at (or below) 25°C case temperature (see Note	: 1)	15	15	w
Operating free-air, case, or virtual junction temperature range		-55 to 150	0 to 150	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1/8 inch from case for 60 seconds	KA (TO-3) package	300	300	°C
Lead temperature 1/8 inch from case for 10 seconds	KC (TO-220AB) package		260	°c

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figure 1 and Figure 2.



TO-3 AND TO-220AB CASE TEMPERATURE DISSIPATION DERATING CURVE



#### recommended operating conditions

		MIN	MAX	UNIT
	uA7905M, uA7905C	-7	-25	
	uA7906M, uA7906C	-8	-25	1
	uA7908M, uA7908C	-10.5	-25	1
Input voltage, V	uA7912M, uA7912C	-14.5	-30	1 v
	uA7915M, uA7915C	-17.5	-30	1
	uA7918M, uA7918C	-21	-33	1
	uA7924M, uA7924C	27	-38	1
Output current, IO	•		1.5	A
Operating virtual junction temporature T	uA7905M thru uA7924M	55	150	°C
operating virtual junction temperature, 1j	uA7905C thru uA7924C	0	125	C C

# uA7905M, uA7905C electrical characteristics at specified virtual junction temperature, $V_I = -10 V$ , $I_O = 500 mA$ (unless otherwise noted)

PARAMETER		ST CONDITIONS		u	A7905	vi 👘	ι	A79050	2	
		ST CONDITIONS		MIN	түр	MAX	MIN	TYP	MAX	
			25°C	-4.8	-5	-5.2	-4.8	-5	-5.2	
Output voltage	IO = 5 mA to 1 A,	V _I = -8 V to -20 V	-55°C to 150°C	-4.7		-5.3				1 v
output vonage	P ≤ 15 W	V _I = -7 V to -20 V	0°C to 125°C				-4.75		-5.25	1
Input regulation	V _I = -7 V to -25 V		ar° o		3	50		3	100	1
mput regulation	V _I = -8 V to12 V		25 C		1	25		1	50	- mv
Bipple rejection	V 9.V.to 19.V	f = 120 Us	-55°C to 150°C	54	60		-	-		
	v]8 v to -18 v,	1 - 120 H2	0°C to 125°C				54	60		
Output regulation	IO = 5 mA to 1.5 A		ar°o		15	50		15	100	
output regulation	1 ₀ = 250 mA to 750 mA		25 C		5	25		5	50	- mv
Temperature coefficient			0°C to 150°C		-0.4		<u> </u>			
of output voltage	10 - 5 mA		0°C to 125°C					-0.4		-mv/~(
Output noise voltage	f = 10 Hz to 100 kHz		25°C		125			125		μV
Dropout voltage	I ₀ = 1 A		25°C		1.1			1.1		V
Bias current			25°C		1	2		1	2	mA
	V ₁ = -8 V to -25 V		-55°C to 150°C			1.3				
Rise surrent shanse	V _I = -7 V to -25 V		0°C to 125°C						1.3	1.
las current change						0.5				1 mA
	10-5 mA (01A		0°C to 125°C						0.5	1
Peak output current			25°C		2.1			2,1		A

[†]All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.1 µF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw 🗧 10 ms, duty cycle 🗲 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TYPES uA7905M, uA7905C NEGATIVE-VOLTAGE REGULATORS

σ

#### uA7906M, uA7906C electrical characteristics at specified virtual junction temperature,

VI = -11 V, IO = 500 mA (unless otherwise noted)

BARAMETER		TONOLTIONS			A7906	A		A79060	2	UNIT
FANAMETEN	16	ST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	-5.75	6	-6.25	-5.75	-6	-6.25	
Output voltage	IO = 5 mA to 1 A,	V ₁ = -9 V to -21 V	-55°C to 150°C	-5.65		-6.35				] v
Output voltage	P ≤ 15 W	$V_{I} = -8 V \text{ to } -21 V$	0°C to 125°C				5.7		-6.3	1
Input regulation	V _I = -8 V to -25 V		ar°o		5	60	5		120	
mput regulation	V _I = -9 V to -13 V		25 0		1.5	30		1.5	60	1 mv
Ripple rejection		f = 120 H-	-55°C to 150°C	54	60					1
hipple rejection	vi9 v to19 v,	1-120 Hz	0°C to 125°C				54	60		1 aB
Output regulation	IO = 5 mA to 1.5 A		25°C		14	60		14	120	
output regulation	O = 250 mA to 750 mA		250		4	30		4	60	1 "
Temperature coefficient	la = E m A		0°C to 150°C		-0.4					- uec
of output voltage	10 - 5 mA		0°C to 125°C					-0.4		1 mv/ c
Output noise voltage	f = 10 Hz to 100 kHz		25°C	1	150			150		μV
Dropout voltage	1 ₀ = 1 A		25°C		1.1			1.1		V
Bias current			25°C		1	2		1	2	mA
	V _I = -9 V to25 V		-55°C to 150°C			1.3				
Pige autrent abanas	V _I = −8 V to −25 V		0°C to 125°C						1.3	1.
bias current change	prrent change		-55°C to 150°C			0.5				
	10 - 5 mA (0 1 A		0°C to 125°C				I		0.5	1
Peak output current			25°C		2.1			2.1		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

ക

#### uA7908M, uA7908C electrical characteristics at specified virtual junction temperature,

 $V_I = -14 V$ ,  $I_O = 500 mA$  (unless otherwise noted)

040446750		TEST CONDITIONS		u	A7908	٨	u			
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	MIN	түр	MAX	
			25°C	-7.7	-8	-8.3	-7.7	8	-8.3	1
0	1 ₀ = 5 mA to 1 A,	V ₁ = -11.5 V to -23 V	-55°C to 150°C	7.6		-8.4				] v
Output voltage	P ≤ 15 W	V _I = -10.5 V to -23 V	0°C to 125°C				-7.6		-8.4	1
tanut unsulation	V _I = -10.5 V to -25 V	= -10.5 V to -25 V			6	80		6	160	
input regulation	V _I =11 V to17 V	= -11 V to -17 V			2	40		2	80	
Disals scienting	V - 115 V - 215	/ / = 120 !!=	-55°C to 150°C	54	60					
Ripple rejection	$v_1 = -11.5 v \text{ to } -21.5 v$	1 = -11.5 V to -21.5 V, f = 120 Hz					54	60		aB
	IO = 5 mA to 1.5 A		ar°o		12	80		12	160	
Output regulation	IO = 250 mA to 750 mA	In = 250 mA to 750 mA			4	40		4	80	- ^{mv}
Temperature coefficient	1		0°C to 150°C		-0.6					-N/C
of output voltage	10 = 5 mA		0°C to 125°C					-0.6		] ^{'''v} / '
Output noise voltage	f = 10 Hz to 100 kHz		25°C		200			200		μV
Dropout voltage	I0 = 1 A		25°C		1.1			1.1		V
Bias current			25°C		1	2		1	2	mA
	$V_1 = -11.5 \text{ V to } -25 \text{ V}$		-55°C to 150°C			1				
0	$V_{\rm I} = -10.5 \text{ V to } -25 \text{ V}$		0°C to 125°C						1	]
ias current change			-55°C to 150°C			0.5				] ^{'nA}
	IO = 5 mA to 1 A		0°C to 125°C						0.5	1
Peak output current					2.1			2.1		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

# uA7912M, uA7912C electrical characteristics at specified virtual junction temperature, $V_I = -19 V$ , $I_O = 500 mA$ (unless otherwise noted)

PARAMETER		EST CONDITIONS		U	A7912	M	u	A7912	C	
TANAMETEN		EST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	-11.5	-12	-12.5	-11.5	-12	-12.5	
Output voltage	IO = 5 mA to 1 A,	V _I = -15.5 V to -27 V	-55°C to 150°C	-11.4		-12.6				l v
output tonage	₽ ≤ 15 W	V _I = -14.5 V to -27 V	0°C to 125°C				-11.4		-12.6	1
Input regulation	$V_{ } = -14.5 \text{ V to } -30 \text{ V}$		25°C		10	120		10	240	
	V _I = -16 V to -22 V		250		3	60		3	120	mv
Binnle rejection	$V_{\rm H} = -15$ V/to $-25$ V	f = 120 Hz	-55°C to 150°C	54	60					
	v] =15 v to =25 v,	1 - 120 112	0°C to 125°C				54	60		aB
Output regulation	IO = 5 mA to 1.5 A		25°C		12	120		12	240	
output regulation	I _O = 250 mA to 750 mA		25 C		4	60		4	120	l mv
Temperature coefficient	lo = 5 mA		0°C to 150°C		-0.8					
of output voltage	10 - 3 112		0°C to 125°C					-0.8		mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		300			300		μV
Dropout voltage	I _O = 1 A		25°C		1.1			1.1		v
Bias current			25°C		1.5	3		1.5	3	mA
	$V_{ } = -15 V \text{ to } -30 V$		-55°C to 150°C			1				
Riss current change	$V_1 = -14.5 \text{ V to} - 30 \text{ V}$		0°C to 125°C						1	1.
bibs current change		······································	-55°C to 150°C			0.5				mA
********	10 - 5 IIIA 10 T A		0°C to 125°C						0.5	1
Peak output current			25°C		2.1			2.1		А

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately. TYPES uA7912M, uA7912C

# uA7915M, uA7915C electrical characteristics at specified virtual junction temperature, $V_I$ = $-23~V,~I_O$ = 500 mA (unless otherwise noted)

				u	A7915	м	L L			
PARAMETER		IEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
			25°C	-14.4	-15	-15.6	-14.4	-15	-15.6	
	IO = 5 mA to 1 A,	V _I = -18.5 V to -30 V	-55°C to 150°C	-14.25		-15.75				V
	P ≤ 15 W	V ₁ = -17.5 V to -30 V	0°C to 125°C				-14.25		-15.75	1
ten a constraine	V ₁ = -17.5 V to -30 V	/ ₁ = −17.5 V to −30 V			11	150		11	300	
input regulation	$/_{1} = -20 \text{ V to } -26 \text{ V}$		25 C		3	75		3	150	1 mv
Piecelo rejection	N = 18 EV 48 - 28 EV			54	60					
	vi18.5 v to -28.5 v	= -18.5 V to -28.5 V, t = 120 Hz					54	60		aB
	IO = 5 mA to 1.5 A	O = 5 mA to 1.5 A O = 250 mA to 750 mA			12	150		12	300	
Output regulation	I _O = 250 mA to 750 mA				4	75		4	150	1 "
Temperature coefficient	1		0°C to 150°C		-1					
of output voltage	10 - 5 MA		0°C to 125°C					-1		]mv/ 0
Output noise voltage	f = 10 Hz to 100 kHz		25°C		375			375		μV
Dropout voltage	I _O = 1 A		25°C		1.1			1.1		V
Bias current			25°C		1.5	3		1,5	3	mA
	VI = -18,5 V to - 30 V		-55°C to 150°C			1				
Diss surgest shows	V _I = -17.5 V to -30 V	= −17.5 V to −30 V							1	1.
Dias current change	change		-55°C to 150°C		_	0.5				^{mA}
$I_0 = 5 \text{ mA to 1 A}$			0°C to 125°C						0.5	1
Peak output current					2,1			2.1		A

[†]All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.1 µF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

**TEXAS INSTRUMENTS** 

# uA7918M, uA7918C electrical characteristics at specified virtual junction temperature, $V_I$ = -27 V, $I_O$ = 500 mA (unless otherwise noted)

PARAMETER	т	ST CONDITIONS		u	A7918	٨	u	A7918	C	
		ST CONDITIONS		MIN	түр	MAX	MIN	TYP	MAX	UNIT
			25°C	-17.3	-18		-17.3	-18	-18.7	
Output voltage	1 ₀ = 5 mA to 1 A,	V _I = −22 V to −33 V	-55°C to 150°C	-17.1		-18.9				
o a por ronage	P ≤ 15 W	V ₁ = -21 V to -33 V	0°C to 125°C		Norman and Anna Anna Anna Anna Anna Anna Ann		-17.1		-18.9	1
Input regulation	$V_{I} = -21 V \text{ to } -33 V$		area		15	180		15	360	1
	$V_1 = -24 V \text{ to } -30 V$		250		5	90		5	180	- mV
Ripple rejection	$V_{1} = -22 V_{1} t_{0} - 32 V_{1}$	f = 120 Hz	-55°C to 150°C	54	60					
	•1 =22 • 10 =52 •,	1 - 120 Hz	0°C to 125°C				54	60		dB
Output regulation	IO = 5 mA to 1.5 A		25°0		12	180	· · · · · ·	12	360	1
output regulation	I _O = 250 mA to 750 mA		25 0		4	90		4	180	- mV
Temperature coefficient	lo = 5 m A		0°C to 150°C		-1					-
of output voltage	10 - 5 MA	÷	0°C to 125°C					-1		mv/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C	1	450			450		μV
Dropout voltage	I _O = 1 A		25°C		1.1			1.1		v
Bias current			25°C		1.5	3		1.5	3	mA
	V ₁ = -22 V to -33 V		-55°C to 150°C			1				
Bias current change	$V_1 = -21 \text{ V to } -33 \text{ V}$		0°C to 125°C						1	1
bias current change	1. = 5 = 0.44 1.0		-55°C to 150°C			0.5				mA
	10 - 5 IIA (0 T A		0°C to 125°C						0.5	1
Peak output current			25°C		2.1			2.1		A

[†]All characteristics are measured with a capacitor across the input of 0.33  $\mu$ F and a capacitor across the output of 0.1  $\mu$ F. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $t_w \le 10$  ms, duty cycle  $\le 5\%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

# uA7924M, uA7924C electrical characteristics at specified virtual junction temperature, $V_I = -33 V$ , $I_O = 500 mA$ (unless otherwise noted)

		on constraint		u	A7924	٨		A79240	2	LINUT
PARAMETER		ST CONDITIONS		MIN	ТҮР	MAX	MIN	түр	MAX	
			25°C	-23	-24	25	-23	-24	-25	
<b>0</b> · · · ·	IO = 5 mA to 1 A,	V ₁ =28 V to38 V	-55°C to 150°C	-22.8		-25.2				l v
Output voltage	P ≤ 15 W	V ₁ = -27 V to -38 V	0°C to 125°C				-22.8		-25.2	1
1	V ₁ = -27 V to38 V		25°C		18	240		18	480	mV
Input regulation	V _I = -30 V to -36 V		25 0		6	120		6	240	1
<b>S</b> I 1 1 1		6 - 400 11-	-55°C to 150°C	54	60					dB
Ripple rejection	$V_{  } = -28 V \text{ to } -38 V$ ,	f = 120 Hz	0°C to 125°C				54	60		UB
	$I_0 = 5 \text{ mA to } 1.5 \text{ A}$ $I_0 = 250 \text{ mA to } 750 \text{ mA}$		25°C		12	240		12	480	
Output regulation			250		4	120		4	240	1 '''`
Temperature coefficient			0°C to 150°C		-1					my
of output voltage	10 = 5 mA		0°C to 125°C					-1		]
Output noise voltage	f = 10 Hz to 100 kHz		25°C		600		1	600		μV
Dropout voltage	I _O = 1 A		25°C		1.1			1.1		V
Bias current			25°C		1.5	3		1.5	3	mA
	V ₁ = -28 V to -38 V		-55°C to 150°C			1				
Bias current change $V_1 = -$	V ₁ = -27 V to -38 V		0°C to 125°C						1	-
			-55°C to 150°C			0.5				] ""^
	$I_{O} = 5 \text{ mA to } 1 \text{ A}$		0°C to 125°C						0.5	]
Peak output current			25°C		2.1			2.1		A

[†]All characteristics are measured with a capacitor across the input of 0.33 µF and a capacitor across the output of 0.1 µF. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY THIS

Printed in U.K.

•

#### LINEAR INTEGRATED CIRCUITS

### SERIES uA79M00 NEGATIVE-VOLTAGE REGULATORS

BULLETIN NO. DL-S 7612405, JUNE 1976

- 3-Terminal Regulators
- Output Current up to 500 mA
- No External Components
- Internal Thermal Overload Protection
- Direct Placements for Fairchild µA79M00 Series
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

NOMINAL	–55°C TO 150°C	0°C TO 125°C
OUTPUT	OPERATING	OPERATING
VOLTAGE	TEMPERATURE RANGE	TEMPERATURE RANGE
-5 V	uA79M05M	uA79M05C
—6 V	uA79M06M	uA79M06C
8 V	uA79M08M	uA79M08C
-12 V	uA79M12M	uA79M12C
-15 V	uA79M15M	uA79M15C
-20 V	uA79M20M	uA 79M20C
-24 V	uA79M24M	uA79M24C
PACKAGES	LA	KC,KD, and LA

#### description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement Series uA78M00 in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. One of these regulators can deliver up to 500 milliamperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.



#### terminal assignments

KC PACKAGE	KD PACKAGE	LA PACKAGE
(TOP VIEW)	(TOP VIEW)	(TOP VIEW)
	О ОИТРИТ INPUT СОММОН	
TO-220AB	TO-202AB	

schematic

#### **TEXAS INSTRUMENTS**

### SERIES uA79M00 NEGATIVE-VOLTAGE REGULATORS

#### absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA79M05M THRU uA79M24M	uA79M05C THRU uA79M24C	UNIT
	uA79M20, uA79M24	-40	40	v
Input voltage	All others ,	-35	-35	. <b>v</b>
	KC (TO-220AB) package	2	2	
Continuous total dissipation at 25°C free-air temperature (see Note 1)	KD TO-202AB package	1.5	1.5	w
	LA package	0.6	0.6	
Continuous total dissipation at (or below) 25°C case temperature	KC and KD package	7.5	7.5	14/
(see Note 1)	LA package	5	5	~~~
Operating free-air, case or virtual junction temperature range		-55 to 150	0 to 150	°C
Storage temperature range		65 to 150	-65 to 150	°C
Lead temperature 1/16 inch from case for 10 seconds	KC and KD packages		260	°C
Lead temperature 1/16 inch from case for 60 seconds	LA package	300	300	°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Dissipation Derating Curves, Figures 1 through 4.

#### recommended operating conditions

		MIN	MAX	UNIT
	uA79M05	7	-25	
	uA79M06	8	25	
	uA79M08	-10.5	-25	
Input voltage, V	uA70M12	-14.5	-30	v
	uA79M15	-17.5	-30	
	uA79M18	-23	-35	
	uA79M24	-27	38	
Output current, IO			500	mA
	uA79M05M thru uA79M24M	55	150	°C
Operating virtual junction temperature, 1 j	uA79M05C thru uA79M24C	0	125	Ľ.

### TYPES uA79M05M, uA79M05C NEGATIVE-VOLTAGE REGULATORS

# uA79M05M, uA79M05C electrical characteristics at specified virtual junction temperature, $V_I = -10 V$ , $I_O = 350 mA$ (unless otherwise noted)

PARAMETER	т	ST CONDITIONS		uA	79M0	5M	uA	79M0	5C	[
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25° C	-4.8	-5	-5.2	-4.8	5	-5.2	
Output voltage	Io = 5 mA to 350 mA	$V_1 = -7 V$ to $-25 V$	$-55^{\circ}C$ to $150^{\circ}C$	-4.75		-5.25				l v
		, , , , , , , , , , , , , , , , , , , ,	0°C to 125°C				-4.75		-5.25	1
Input regulation	$V_1 = -7 V$ to $-25 V$		• <b>25°</b> 0		7	50		7	50	
	$V_{I} = -8 V \text{ to } -18 V$	$V_{1} = -8 V \text{ to } -18 V$			3	30		3	30	m∨
	$V_1 = -8 V to -18 V$	lo = 100 m A	-55°C to 150°C	50						
Ripple rejection	f = 120 Hz	10 - 100 IIIA	0°C to 125°C				50			dB
	120112	I _O = 300 mA	25° C	54	60		54	60		
Output regulation	I _O = 5 mA to 500 mA		25° C		75	100		75	100	
output regulation	I _O = 5 mA to 350 mA		25 C		50			50		mV
Temperature coefficient	lo = E m A		-55°C to 150°C		-0.4					
of output voltage	10 - 5 IIIA		0°C to 125°C					0.4		mV/°℃
Output noise voltage	f = 10 Hz to 100 kHz		25° C		125			125		μV
Dropout voltage			25° C		1.1			1.1		V
Bias current			25° C		1	2		1	2	mA
	V 9.V. to 25.V.		55°C to 150°C			0.4				
Biss current chance	v   = =8 v to =25 v		0°C to 125°C						0.4	
bius con chi change	la - E - A to 250 - A		-55°C to 150°C			0.4				mA
	10 - 5 mA to 350 mA		0°C to 125°C						0.4	
Short circuit	$V_{1} = -30 V_{1}$		25° C							
output current	vi30 v		25°C		140			140		mA [,]
Peak output current			25° C		650			650		A

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

### TYPES uA79M06M, uA79M06C NEGATIVE-VOLTAGE REGULATORS

# uA79M06M, uA79M06C electrical characteristics at specified virtual junction temperature, $V_I$ = -11 V, $I_O$ = 350 mA (unless otherwise noted)

				uA79M06M			uA			
PARAMETER	TEST CONDITIONS ^T			MIN	түр	MAX	MIN	түр	MAX	
			25° C	-5.75	-6	6.25	-5.75	6	6.25	
Output voltage	I _O = 5 mA to 350 mA, V _I = -8 V to -25 V		-55°C to 150°C	5.7		-6.3				l v
			0°C to 125°C				-5.7		-6.3	
	V _I =8 V to25 V V _I =9 V to19 V		- 25°C		7	60		7	60	m∨
Input regulation					3	40		3	40	
	V _I = −9 V to −19 V, f = 120 Hz		-55°C to 150°C 50							
Flipple rejection		10 = 100 mA	0°C to 125°C				50			dB
		I _O = 300 mA	25° C	54	60		54	60		
Output regulation	1 ₀ = 5 mA to 500 mA		25°C		80	120		80	120	mV
	IO = 5 mA to 350 mA		25 C		55	-		55		
Temperature coefficient	1 ₀ = 5 mA		-55°C to 150°C		-0.4					mype
of output voltage			0°C to 125°C					-0.4		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		150			150		μV
Dropout voltage			25° C		1.1			1.1		V
Bias current			25° C		1	2		1	2	mA
Bias current change	V ₁ = -9 V to -25 V		55°C to 150°C			0.4				1
			0°C to 125°C						0.4	ma
	I _O = 5 mA to 350 mA		-55°C to 150°C			0.4				
			0°C to 125°C						0.4	
Short circuit	V _I = -30 V		25° C		140			140		mA
Peak output current			25°C		650			650		A

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

### TYPES uA79M08M, uA79M08C NEGATIVE-VOLTAGE REGULATORS

# uA79M08M, uA79M08C electrical characteristics at specified virtual junction temperature, $V_{I}$ = -19 V, $I_{O}$ = 350 mA (unless noted)

PARAMETER	те	TEST CONDITIONS!			uA79M08M			uA79M08C			
TANAMETEN	TEST CONDITIONS ¹			MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Output voltage			25° C	-7.7	-8	-8,3	-7.7	8	-8.3		
	$I_0 = 5 \text{ mA to } 350 \text{ mA}, V_1 = -10.5 \text{ V to } -25 \text{ V}$		-55°C to 150°C	-7.6		-8.4				v	
			0°C to 125°C				-7.6		-8.4		
Input regulation	$V_{I} = -10.5 V \text{ to } -25 V$ $V_{I} = -11 V \text{ to } -21 V$		25% 0		8	80		8	80	m∨	
			250		4	50		4	50		
	V _I = -11.5 V to -21.5 V, f = 120 Hz	1	-55°C to 150°C	55°C to 150°C 50				dB			
Ripple rejection		10 - 100 MA	0°C to 125°C		50						
		I _O = 300 mA	25° C	54	59		54	59			
Output regulation	IO = 5 mA to 500 mA IO = 5 mA to 350 mA		25° C		90 160		90	160			
			250		60			60		mV	
Temperature coefficient	1 ₀ = 5 mA		-55°C to 150°C		-0.6						
of output voltage			0°C to 125°C					-0.6		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		25°C		200			200		μVi	
Dropout voltage			25° C		1.1			1.1		V	
Bias current			25°C		1	2		1	2	mA	
Bias current change	V _I = -10.5 V to -25 V		-55°C to 150°C			0.4			-		
			0°C to 125°C						0.4	1	
	I _O = 5 mA to 350 mA		-55°C to 150°C			0.4				mΑ	
			0°C to 125°C						0.4		
Short circuit	V _I = -30 V		25%2				1				
output current			25 0		140		140			mA	
Peak output current			25°C		650			650		A	

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

### TYPES uA79M12M, uA79M12C NEGATIVE-VOLTAGE REGULATORS

#### uA79M12M, uA79M12C electrical characteristics at specified virtual junction temperature, V_I = -19 V, I_O = 350 mA (unless otherwise noted)

				uA79M12M			uA79M12C			UNIT
PARAMETER	TEST CONDITIONS'			MIN	ТҮР	МАХ	MIN	түр	MAX	UNIT
			25° C	-11.5	-12	-12.5	11.5	-12	-12.5	
Output voltage	I _O ≈ 5 mA to 350 mA, V _I = −14.5 V to −30 V		-55°C to`150°C	-11.4		-12.6				v
			0°C to 125°C				-11.4		-12.6	
	$V_{I} = -14.5 V \text{ to } -30 V$ $V_{I} = -15 V \text{ to } -25 V$		25°C		9	80		9	80	mV
Input regulation			25 0		5	50		5	50	
	V _I = -15 V to -25 V, f = 120 Hz		-55°C to 150°C	50						
Ripple rejection		10 = 100 MA	0°C to 125°C	0°C to 125°C	50			dB		
		I _O = 300 mA	25° C	54	60		54	60		
Output regulation	I _O = 5 mA to 500 mA		25°C		65	240		65	240	mV
	IO = 5 mA to 350 mA		250		45			45		
Temperature coefficient			55°C to 150°C		-0.8					mv/° c
of output voltage	10 = 5 mA		0°C to 125°C					-0.8		
Output noise voltage	f = 10 Hz to 100 kHz		25° C		300			300		μV
Dropout voltage			25° C		1.1			1.1		V
Bias current		25° C		1.5	3		1.5	3	mA	
Bias current change	V _I = −14.5 V to −30 V		-55°C to 150°C			0.4				
			0°C to 125°C						0.4	mA
	I _O = 5 mA to 350 mA		-55°C to 150°C			0.4				] ""^
			0°C to 125°C						0.4	
Short circuit	V ₁ = -30 V		25° C		140			140		mA
output current										
Peak output current			25° C		650			650		A

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

-
# TYPES uA79M15M, uA79M15C NEGATIVE-VOLTAGE REGULATORS

# uA79M15M, uA79M15C electrical characteristics at specified virtual junction temperature, $V_{\rm I}$ = -23 V, $I_{\rm O}$ = 350 mA (unless otherwise noted)

PARAMETER	TE	TEST CONDITIONS			79M1	5M	u/	5C			
FANAMETEN	16	ST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
			25° C	-14.4	-15	15.6	-14.4	-15	-15.6		
Output voltage	lo = 5 mA to 350 mA V	I = -17.5  V to  -30  V	-55°C to 150°C	-14.25		-15.75				v	
		1	0°C to 125°C				-14.25		-15.75	i	
Input regulation	$V_{ } = -17.5 V \text{ to } -30 V$		25° O		9	80		9	80		
mparregulation	V _I = −18 V to −28 V		250		7	50		7	50	mV	
	Vi =18 5 V to28 5 V	1. = 100 = 1	-55°C to 150°C	50							
Ripple rejection	f = 120 Hz	10 - 100 mA	0°C to 125°C				50			dB	
	1 - 120 112	I _O = 300 mA	25° C	54	59		54	59		ĺ	
Output regulation	1 _O = 5 mA to 500 mA		25° 0		65	240		65	240		
Output regulation	I _O = 5 mA to 350 mA		250		45			45		mv.	
Temperature coefficient	lo = 5 m A				-1						
of output voltage	10 - 5 IIIA		0°C to 125°C					-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		25° C		375			375		μV	
Dropout voltage			25° C		1.1			1.1		V	
Bias current			25° C		1.5	3		1.5	3	mA	
	V = -17 5 V to -20 V		-55°C to 150°C			0.4					
Bias current change	v] = = 17.5 v to = 30 v		0°C to 125°C						0.4	1	
bibs current change	10 = 5 mA to 250 mA		-55°C to 150°C			0.4				mA	
	10 = 5 mA to 350 mA		0°C to 125°C						0.4	1	
Short circuit	$V_{1} = -30 V_{1}$		25° C								
output current	v]		25 C		140			140		mA	
Peak output current			25° C		650			650		А	

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_W  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

# TYPES uA79M20M, uA79M24C20C NEGATIVE-VOLTAGE REGULATORS

.

# uA79M20M, uA79M20C electrical characteristics at specified virtual junction temperature, $V_I = -29 V$ , $I_O = 350 mA$ (unless otherwise noted)

<u> </u>		TEST CONDITIONS [†]		uA	79M2	DM	uA	0C	UNIT	
PARAMETER	TI TI	EST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25° C	-19.2	-20	20.8	-19.2	-20	20.8	
Output voltage		N 00.14 05.14	-55°C to 150°C	-19		-21				v
	10 = 5 mA to 350 mA,	v  23 v 10 -35 v	0°C to 125°C				-19		21	
	$V_1 = -23 V$ to $-35 V$		05°0		12	80		12	80	m\/
Input regulation	$V_1 = -24 V$ to $-34 V$		25 C		10	70		10	70	mv
		1 100 0	-55° C to 150° C	50						
Ripple rejection	V _I = −24 V to −34 V, f = 120 Hz	$I_0 = 100 \text{ mA}$	0°C to 125°C				50			dB
		I _O = 300 mA	25° C	54	58		54	58		
Output regulation	IO = 5 mA to 500 mA		25°0		75	300		75	300	mν
	IO = 5 mA to 350 mA		250		50			50		
Temperature coefficient			-55°C to 150°C		-1					mV/°C
of output voltage	10 = 5 mA		0°C to 125°C					-1		
Output noise voltage	f = 10 Hz to 100 kHz		25° C		500			500		μV
Dropout voltage			25°C		1.1			1.1		V
Bias current			25° C		1.5	3.5		1.5	3.5	mA
			-55°C to 150°C			0.4				
	$V_1 = -23 V \text{ to } -35 V$		0°C to 125°C						0.4	- mA
Bias current change			-55° C to 150° C			0.4				
	$I_0 = 5 \text{ mA to } 350 \text{ mA}$		0°C to 125°C						0.4	
Short circuit output current	V ₁ = -30 V		25°C		140			140		mA
Peak output current			25° C		650			650		A

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_w  $\leq$  10 ms, duty cycle  $\leq$  5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

# Texas Instruments

# TYPES uA79M24M, uA79M24C NEGATIVE-VOLTAGE REGULATORS

### uA79M24M, uA79M24C electrical characteristics at specified virtual junction temperature, V₁ = -33 V, I_O = 350 mA (unless otherwise noted)

DADAMETED	т	TEST CONDITIONS [†]			79M	24M	u A			
FANAMETEN		EST CONDITIONS.		MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
			25° C	-23	-24	25	-23	-24	-25	
Output voltage	$L_{r} = 5 m \Lambda to 250 m \Lambda$	V/- = 27.V/ to 28.V/	-55°C to 150°C	-22.8		-25.2				v
	10 - 5 MA to 350 MA,	v  2/ v to -38 v	0°C to 125°C				-22.8		-25.2	
	V _I =27 V to38 V		ar° o	1	12	80		12	80	mV
input regulation	V _I = -28 V to -38 V		25 C		12	70		12	70	
	V 29 V to - 29 V	lo = 100 mA	55°C to 150°C	50						
Ripple rejection	f = 120 Hz	10 - 100 MA	0°C to 125°C	[			50			dB
	1 - 120 H2	lo = 300 mA	25°C	54	58		54	58		
Output regulation	I _O = 5 mA to 500 mA	I _O = 5 mA to 500 mA			75	300		75	300	mV
Output regulation	I _O = 5 mA to 350 mA		, 25 C		50			50		mv
Temperature coefficient	10 - 5 - 0		-55°C to 150°C		-1					myrc
of output voltage	10 - 5 mA		0°C to 125°C					1		mv/ C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		600			600		μV
Dropout voltage			25° C		1.1			1.1		V
Bias current			25°C		1.5	3.5		1.5	3.5	mA
	V 27.V to 29.V		55°C to 150°C			0.4				
Bias ourrant chance	v 27 v to -38 v		0°C to 125°C						0.4	mA
l bias current change	$l_{0} = 5 m \Lambda to 250 m \Lambda$		-55°C to 150°C			0.4				
	10 - 5 IIIA 10 350 IIIA		0°C to 125°C						0.4	
Short circuit	V1 = -30 V		25°C		140			140		mA
output current	L'									
Peak output current			25°C		650			650		A

[†]All characteristics are measured with a 2- $\mu$ F capacitor across the input and a 1- $\mu$ F capacitor across the output. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw < 10 ms, duty cycle < 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

# SERIES uA79M00 **NEGATIVE-VOLTAGE REGULATORS**

THERMAL INFORMATION



**FIGURE 4** 

Printed in U.K.

TEXAS INSTRUMENTS

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TH IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBI

# **Special Functions**

# SPECIAL FUNCTIONS SELECTION GUIDE

Device	Description	Page
SE555	Precision Timer	295
TL182	Twin SPST BI-MOS Analog Switches	305
TL185	Twin DPST BI-MOS Analog Switch	308
TL188	Dual Complementary SPST BI-MOS Analog Switch	311
TL191	Twin Dual Complementary SPST BI-MOS Analog Switch	314
TL440	Zero Voltage Switch	317
TL441	Logarithmic Amplifier	323
TL500	Analog Processor	330
TL502	Digital Panel Meter Logic Device	331
TL560	Precision Level Detector	333
TL601	SPDT BI-MOS Analog Switch with Dual AND Inputs	339
TL604	Dual Complementary SPST BI-MOS Analog Switch	339
TL607	SPDT BI-MOS Analog Switch with Enable	339
TL610	SPDT BI-MOS Analog Switch with Triple AND Inputs	339
uA733	Differential Video Amplifier	345

# LINEAR INTEGRATED CIRCUITS

# TYPES SE555, NE555 PRECISION TIMERS

CONTROL

BULLETIN NO. DL-S 7612053, SEPTEMBER 1973-REVISED JUNE 1976

JG OR P DUAL-IN-LINE PACKAGE

(TOP VIEW)

### FORMERLY SN52555, SN72555

- Timing from Microseconds to Hours
- Astable or Monostable Operation
- Adjustable Duty Cycle
- TTL Compatible Output Can Sink or Source up to 200 mA
- Designed to be Interchangeable with Signetics SE555/NE555

### description

The SE555 and NE555 are monolithic timing circuits capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle may be independently controlled with two external resistors and a single external capacitor.

The threshold and trigger levels are normally twothirds and one-third, respectively, of V_{CC}. These levels can be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. When the threshold input rises above the threshold level, the flip-flop is reset and the output goes low. The reset input can override all other inputs and can be used to initiate a new timing cycle. When the reset input goes low, the flip-flop is reset and the output goes low. When the output is low, a lowimpedance path is provided between the discharge terminal and ground.

The output circuit is capable of sinking or sourcing current up to 200 milliamperes. Operation is specified for supplies of 5 to 15 volts. With a 5-volt supply, output levels are compatible with TTL inputs.

### functional block diagram

6



L PLUG-IN PACKAGE (TOP VIEW)







Resistor values shown are nominal and in ohms.

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	٠v
Input voltage (control voltage, reset, threshold, trigger)	rr Cr
Output current	nΑ
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	۱W
Operating free-air temperature range: SE555	°c
NE555	°c
Storage temperature range $-65^{\circ}$ C to $150^{\circ}$	°c
Lead temperature 1/16 inch from case for 60 seconds: JG or L package	°c
Lead temperature 1/16 inch from case for 10 seconds: P package	°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

### recommended operating conditions

		SE555			NE555		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5		18	4.5		16	v
Input voltage, V ₁ (control voltage, reset, threshold, trigger)			Vcc			Vcc	v
Output Current, IO			±200			±200	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

6

	7507.0			SE555			NE555		Γ
PARAMETER	TESTC	UNDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	1
Threshold voltage level as a percentage of supply voltage				66.7			66.7		
Threshold current (see Note 3)				0.1	0.25		0.1	0.25	T
Trigger voltage level	V _{CC} = 15 V		4.8	5	5.2	1	5		t
Trigger vortage level	V _{CC} = 5 V		1.45	1.67	1.9		1.67		1
Trigger current				0.5			0.5		Γ
Reset voltage level			0.4	0.7	1	0.4	0.7	1	Γ
Reset current				0.1			0.1		Γ
Control voltage	V _{CC} = 15 V	V _{CC} = 15 V		10	10.4	9	10	11	Г
(open-circuit)	V _{CC} = 5 V		2.9	3.3	3.8	2.6	3.3	4	1
		1 _{OL} = 10 mA		0.1	0.15		0.1	0.25	
	V = = 15 V	1 _{OL} = 50 mA		0.4	0.5		0.4	0.75	1
Low level output volters	VCC - 15 V	1 _{OL} = 100 mA		2	2.2	1	2	2.5	х UN % % % 225 µµ 1 V 1 V 1 V 1 V 225 55 55 V 225 55 V 15 66 4 m M
Low-level output voltage		I _{OL} = 200 mA		2.5			2.5		
	V	IOL = 5 mA					0.25	0.35	1
	VCC - 5 V	1 _{OL} ≈ 8 mA		0.1	0.25	1			1
	N	¹ OH = -100 mA	13	13.3		12.75	13.3		
High-level output voltage	VCC = 15 V	IOH = -200 mA		12.5			12.5		1
	V _{CC} = 5 V	I _{OH} = -100 mA	3	3.3		2.75	3.3		1
	Output low,	V _{CC} = 15 V		10	12		10	15	
Supply surrent	No load	V _{CC} = 5 V		3	5		3	6	1
Supply current	Output high,	V _{CC} = 15 V		9	11		9	14	1
	No load	$V_{CC} = 5 V$		2	4		2	5	1

NOTE 3: This parameter influences the maximum value of the timing resistors  $R_A$  and  $R_B$ . For example when  $V_{CC}$  = 5 V the maximum value is  $R = R_A + R_B \approx 20 \text{ M}\Omega$ . operating characteristics,  $V_{CC}$  = 5 V and 15 V

	7507 0010	Tionat		SE555			NE555			
PARAMETER	TEST COND	HIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT	
Initial accuracy of timing interval	R _A = 1 kΩ to 100 kΩ,	T _A = 25°C		0.5	2		1		%	
Temperature coefficient of timing interval	R _B = 0 to 100 kΩ,	T _A = MIN to MAX		30	100		50		ppm/°C	
Supply voltage sensitivity of timing interval	C = 0.1 μF	T _A = 25°C		0.05	0.2		0.1		%/∨	
Output pulse rise time	0. = 15.=5	T - 25°C		100			100		ns	
Output pulse fall time		1A - 25 C		100			100		ns	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.



# TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only.



### TYPICAL APPLICATION DATA

### FIGURE 11-CIRCUIT FOR MONOSTABLE OPERATION

FIGURE 12-TYPICAL MONOSTABLE WAVEFORMS

The SE555 and NE555 may be connected as shown in Figure 11 for monostable operation producing an output pulse width independent of the input waveform and controlled by the  $R_A \cdot C$  time constant. Prior to the negative-going input pulse, capacitor C is held discharged by transistor Q1 (see schematic). Application of a negative-going input-trigger-pulse sets the flip-flop, turns off Q1, and drives the output high. Capacitor C is now charged through  $R_A$  with a time constant  $\tau = R_A C$ . When the voltage across capacitor C reaches the threshold voltage of the comparator, the flip-flop is reset, energizing Q1 and discharging C; therefore driving the output back to the low level. Figure 12 shows the actual resultant waveforms.

Monostable operation is initiated when the negative-going input pulse reaches the trigger level. Once initiated, the timing interval will complete even if retriggering occurs during the timing interval. Because of the threshold level and

saturation voltage of Q1, the output pulse width is approximately  $t_w = 1.1 \text{ RAC}$ . Figure 13 is a plot of the time constant for various values of RA and C. The threshold levels and charge rates are both directly proportional to the supply voltage, V_{CC}. The timing interval is therefore independent of the supply voltage, so long as the supply voltage is constant during the time interval.

Applying a negative-going trigger pulse simultaneously to the reset and trigger terminals during the timing interval will discharge C and re-initiate the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. When the reset input is not used, it should be connected to  $V_{CC}$  to prevent false triggering.







Addition of a second resistor, RB, to the circuit of Figure 11; as shown in Figure 14, and connection of the trigger input to the threshold input will cause the SE555/NE555 to self-trigger and run as a multivibrator. The capacitor C will charge through RA and RB then discharge through RB only. The duty cycle may be controlled, therefore, by the values of RA and RB.

This astable connection results in capacitor C charging and discharging between the threshold-voltage level ( $\approx 0.67 \cdot V_{CC}$ ) and the trigger-voltage level ( $\approx 0.33 \cdot V_{CC}$ ). As in the monostable circuit, charge and discharge times (and therefore the frequency and duty cycle) are independent of the supply voltage.

Figure 15 shows typical waveforms generated during astable operation. The output high-level duration, t_h, is calculated as:

 $t_{h} = 0.693 (R_{A} + R_{B})C$ ,

output low-level duration, tj, as:

tj = 0.693 (R_B)C.

The total period is  $T = t_h + t_l$  and frequency is

$$f = \frac{1}{T}$$
, or  $f = \frac{1.44}{(R_A + 2R_B)C}$ .

The frequency of oscillation may be determined by referring to the chart shown in Figure 16, which relates free-running frequency, f, to the external resistors R_A and R_B and the external capacitor C. Duty cycle, D, is determined by the values selected for R_A and R_B and may be calculated as:

$$D = \frac{R_B}{R_A + R_B}$$



FIGURE 16-FREE-RUNNING FREQUENCY







FIGURE 17-CIRCUIT FOR MISSING PULSE DETECTOR

FIGURE 18-MISSING-PULSE-DETECTOR WAVEFORMS

The circuit shown in Figure 17 may be utilized to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is continuously retriggered by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train will permit the timing interval to be completed, thereby generating an output pulse as illustrated in Figure 18.

### frequency divider

By adjusting the length of the timing cycle, the basic circuit of Figure 11 can be made to operate as a frequency divider. Figure 19 illustrates a divide-by-3 circuit that makes use of the fact that retriggering cannot occur during the timing cycle.



FIGURE 19-DIVIDE-BY-THREE CIRCUIT WAVEFORMS

pulse-width modulation

### TYPICAL APPLICATION DATA



NOTE A: The modulating signal may be direct or capacitively coupled to the control voltage terminal. For direct coupling, the effects of modulation source voltage and impedance on the bias of the SE55/NE555 should be considered.

pulse-position modulation

### FIGURE 20-CIRCUIT FOR PULSE-WIDTH MODULATION



### FIGURE 21-PULSE-WIDTH-MODULATION WAVEFORMS

The operation of the timer may be modified by modulating the internal threshold and trigger voltages. This is accomplished by applying an external voltage (or current) to the control voltage pin. Figure 20 is a circuit for pulse-width modulation. The monostable circuit is triggered by a continuous input pulse train and the threshold voltage is modulated by a control signal. The resultant effect is a modulation of the output pulse width, as shown in Figure 21. A sine-wave modulation signal is illustrated, but any wave-shape could be used.



### NOTE A: The modulating signal may be direct or capacitively coupled to the control voltage terminal. For direct coupling, the effects of modulation source voltage and impedance on the bias of the SE555/NE555 should be considered.



### FIGURE 22-CIRCUIT FOR PULSE-POSITION MODULATION

FIGURE 23-PULSE POSITION-MODULATION WAVEFORMS

The SE555/NE555 may be used as a pulse-position modulator as shown in Figure 22. In this application, the threshold voltage, and thereby the time delay, of a free-running oscillator is modulated. Figure 23 shows such a circuit, with a triangular-wave modulation signal, however, any modulating wave-shape could be used.



FIGURE 24-SEQUENTIAL TIMER CIRCUIT

Many applications, such as computers, require signals for initializing conditions during start-up. Other applications such as test equipment require activation of test signals in sequence. SE555/NE555 circuits may be connected to provide such sequential control. The timers may be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 24 illustrates a sequencer circuit with possible applications in many systems and Figure 25 shows the output waveforms.



FIGURE 25-SEQUENTIAL TIMER WAVEFORMS

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

XAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

# LINEAR INTEGRATED CIRCUITS

# TYPES TL182M, TL182I, TL182C TWIN SPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 7612416, JUNE 1976

- Functionally Interchangeable with Siliconix DG182 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage

### description

The TL182 is a twin, monolithic, high-speed SPST analog switch constructed using BI-MOS technology. Each half consists of a JFET-input buffer, level translator, and output JFET switch.

The threshold of the input buffer is determined by the voltage applied to the reference input (V_{ref}). The input threshold is related to the reference input by the equation V_{th} = V_{ref} + 1.4 V. Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with bipolar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by V_{th} = V_{ref} + 1.4 V.

The output switches are junction field-effect transistors featuring low on-state resistance and high offstate resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS has ion implanted JFETs, p-channel MOS-FETs, plus the usual bi-polar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

For the TL182, a low level at the input turns the switch on.

The TL182M is characterized for operation over the full military temperature range of  $-55^{\circ}C$  to  $125^{\circ}C$ , the TL182I is characterized for operation from  $-25^{\circ}C$  to  $85^{\circ}C$ , and the TL182C from 0[°]C to 70[°]C.

- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ±10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility



All leads are electrically insulated from case.



NC--No internal connection Switch positions shown are A inputs low.

TENTATIVE DATA SHEET

This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

# TYPES TL182M, TL1821, TL182C TWIN SPST BI-MOS ANALOG SWITCHES

functional diagram



FUNCTION TABLE (EACH HALF)								
INPUT	SWITCH							
Α	S							
L	ON (CLOSED)							
н	OFF (OPEN)							

schematic (each channel)



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Protein complete a complete solution of the set of the
	Positive supply to negative supply voltage, VCC-VEE
	Positive supply voltage to either drain, $V_{CC} - V_D$
	Drain to negative supply voltage, $V_D - V_{EE}$
	Drain to source voltage, $V_D - V_S$
	Logic supply to negative supply voltage, VLL – VEE
	Logic supply to logic input voltage, $V_{LL} - V_{I}$
	Logic supply to reference voltage, VLL - Vref
	Logic input to reference voltage, $V_I - V_{ref}$
	Reference to negative supply voltage, V _{ref} – VEE
	Reference to logic input voltage, $V_{ref} - V_1$
	Current (any terminal)
	Continuous dissipation at (or below) 25°C free-air temperature: N package
	L package (see Note 1)
	Operating free-air temperature range: TL182M
	TI 1821 –25°C to 85°C
	Lead temperature 1/16 inch from case for 60 seconds: L package 300°C
	Lead temperature 1/16 inch from case for 10 seconds: N package
NOTE	1: For operation above 25°C free-air temperature, see Dissipation Derating Curves, Section 2.

# TYPES TL182M, TL1821, TL182C TWIN SPST BI-MOS ANALOG SWITCHES

### electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

		1			T		·	<b></b>
	PARAMETER		TEST CONDIT	IONS	TL 182M	TL 1821	TL182C	UNIT
Vill	High-level control input voltage				MIN MAX	MIN MAX	MIN MAX	
Vu	Low-level control input voltage			T = MIN to MAX	V +0 P	V HOR	V HOR	+
	Low level control input tohage			TA - MIN LO MAA	Vret+0.8	Vret+0.6	Vret+0.0	⊢ <u> </u>
Чн	High-level control input current	V1 = 5 V		TA - 25 C	10	10	20	μA
				IA = MAX	20	20	20	
LIL	Low-level control input current	V1 = 0 V		$T_A = MIN \text{ to MAX}$	-250	-250	-250	μA
		VD = 10 V	V _{CC} ≈ 15 V,	T _A = 25°C	1	5	5	
10(-4)	Off-state drain current	$V_0 = -10 V$	V _{EE} ≈15 V	T _A = MAX	100	100	100	
·D(011)		VS = 10 V,	V _{CC} = 10 V,	T _A = 25°C	1	5	5	
		01-20	VEE =20 V	T _A = MAX	100	100	100	1
		V 10 V	V _{CC} = 15 V,	T _A = 25°C	1	5	5	
Inc. ex	044	$v_D = -10 v_1$	VEE =15 V	T _A = MAX	100	100	100	1.
'S(off)	On-state source current	VS = 10 V,	V _{CC} = 10 V,	T _A ≈ 25°C	1	5	5	nA
1		V1 - 2 V	VEE = -20 V	T _A = MAX	100	100	100	1
	On-state channel	V _D = -10 V	V _S ≈ -10 V,	T _A = 25°C	-2	-10	-10	
D(on) S(on)	leakage current	V ₁ = 0.8 V		T _A = MAX	-200	-200	-200	n A
1001	Drain-to-source on-state	V _D =10 V	Is = 1 mA,	$T_A = MIN \text{ to } 25^\circ C$	75	100	100	
US(on)	resistance	V _I = 0.8 V		T _A = MAX	100	150	150	52
ICC	Supply current from VCC				1.5	1.5	1.5	
IEE	Supply current from VEE			T - 25°C	-5	-5	5	
ILL	Supply current from VLL	Both control	inputs at 0 v,	1A - 25 C	4.5	4.5	4.5	mA
Iref	Reference current	1			-2	-2	-2	1
Icc	Supply current from V _{CC}				1.5	1.5	1.5	
IEE	Supply current from VEE	Both control	include of E M	T 25°C	-5	-5	-5	
LL	Supply current from VLL	Both control	inputs at 5 V,	A - 25 C	4.5	4.5	4.5	mA
I _{ref}	Reference current	1			2	-2	-2	

# switching characteristics, V_{CC} = 10 V, V_{EE} = -20 V, V_{LL} = 5 V, V_{ref} = 0 V, T_A = $25^{\circ}$ C

PARAMETER		TEST CONDITION	TL182M TL182I		TL 182C		
			TYP	TYP	TYP		
ton	Turn-on time	B = 300 0 0 = 30 = 5	See Figure 1	175	175	175	ns
toff	Turn-off time	Η 300 32, C[ - 30 βF, S		350	350	350	



 $V_0$  is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

FIGURE 1

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

AS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

# LINEAR INTEGRATED CIRCUITS

# **TYPES TL185M, TL185I, TL185C** TWIN DPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S7612417, JUNE 1976

- Functionally Interchangeable with Siliconix DG185 with Same Terminal Assignments
- **Monolithic Construction**
- Adjustable Reference Voltage

### description

The TL185 is a twin, monolithic, high-speed DPST analog switch constructed using BI-MOS technology. Each half consists of a JFET-input buffer, level translator, and two output JFET switches.

The threshold of the input buffer is determined by the voltage applied to the reference input (Vref). The input threshold is related to the reference input by the equation  $V_{th} = V_{ref} + 1.4 V$ . Thus, for TTL compatibility, the Vref input is connected to ground. The JFET input makes the device compatible with bipolar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by Vth = Vref + 1.4 V.

The output switches are junction field-effect transistors featuring low on-state resistance and high off-state resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing, BI-MOS has ion implanted JFETs, p-channel MOS-FETs, plus the usual bi-polar components all on the same chip, BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

For the TL185, a high level at /the input turns the switches on.

The TL185M is characterized for operation over the full military temperature range of -55°C to 125°C, the TL1851 is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C, and the TL185C from  $0^{\circ}$ C to  $70^{\circ}$ C.

- JEET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ±10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility



NC-No internal connection

Switch positions shown are for A inputs high.

### TENTATIVE DATA SHEET

308 This document provides tentative information TEXAS INSTRUMENTS on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

# TYPES TL185M, TL185I, TL185C TWIN DPST BI-MOS ANALOG SWITCHES





### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage, $V_{CC} - V_{FE} + \cdots + $	6 V
Positive supply voltage to either drain, $V_{CC} - V_{D}$	зv
Drain to negative supply voltage, VD - VEE	зv
Drain to source voltage, $V_D - V_S$	2 V
Logic supply to negative supply voltage, VLL – VEE $\ldots$ 3	6 V
Logic supply to logic input voltage, $V_{LL} - V_{I}$	3 V
Logic supply to reference voltage, V _{LL} – V _{ref}	3 V
Logic input to reference voltage, $V_I - V_{ref}$	3 V
Reference to negative supply voltage, V _{ref} – V _{EE}	7 V
Reference to logic input voltage, $V_{ref} - V_1$	2 V
Current (any terminal)	mΑ
Continuous dissipation at (or below) 25°C free air temperature: N package	mW
J package (see Note 1)	mW
Operating free-air temperature range: TL185M	5°C
TL185Ⅰ	5°C
TL185C	0°C
Lead temperature 1/16 inch from case for 60 seconds: J package	0°C
Lead temperature 1/16 inch from case for 10 seconds: N package	о°с

NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Curves, Section 2.

Texas Instruments

# TYPES TL185M, TL185I, TL185C TWIN DPST BI-MOS ANALOG SWITCHES

### electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

[	BABAMETED		EST CONDI		TL 185M	TL 1851	TL185C	LINUT
VIH High-level control input voltage		•	TEST CONDITIONS		MIN MAX	MIN MAX	MIN MAX	UNIT
VIH	High-level control input voltage			TA = MIN to MAX	V _{ref} +2	V _{ref} +2	V _{ref} +2	V
VIL	Low-level control input voltage			$T_A = MIN \text{ to } MAX$	V _{ref} +0.8	V _{ref} +0.8	V _{ref} +0.8	V
1	High-level control input current	$V_{1} = 5 V$		$T_A = 25^{\circ}C$	10	10	20	
ЧН	rightever control input current	VI - 5 V		T _A = MAX	20	20	20	<i>*</i> ^
1L	Low-level control input current	V1 = 0 V		T _A = MIN to MAX	-250	250	-250	μA
		$V_{D} = 10 V$	V _{CC} = 15 V,	T _A = 25°C	1	5	5	
10/-40	Off-state drain current	$V_0 = -10 V$	VEE = -15 V	T _A = MAX	100	100	100	nΔ
(D(off)	On-state drain current	V = 0 8 V	V _{CC} = 10 V,	T _A = 25°C	1	5	5	
			VEE = -20 V	T _A = MAX	100	100	100	
	Off-state source current	V 10 V	V _{CC} = 15 V,	Τ _Α = 25°C	1	5	5	
1		$V_{B} = -10$ V $V_{S} = 10$ V, $V_{EE} = -1$ $V_{CC} = 10$ $V_{EE} = -2$	VEE =15 V	T _A = MAX	100	100	100	1
'S(off)			V _{CC} = 10 V,	T _A = 25°C	1	5	5	
			VEE = −20 V	T _A = MAX	100	100	100	
1-1-1	On-state, channel	V _D = -10 V, V	V _S = -10 V,	T _A = 25°C	-2	-10	-10	- 4
'D(on)''S(on)	leakage current	V1 = 2 V		T _A = MAX	-200	-200	-200	nA
	Drain-to-source on-state	V _D = -10 V,I	s = 1 mA,	$T_A = MIN \text{ to } 25^\circ C$	125	150	150	0
'DS(on)	resistance	V1 = 2 V	VI = 2 V		250	300	300	32
^I CC	Supply current from V _{CC}				1.5	1,5	1.5	
IEE .	Supply current from VEE	Poth control i		T . = 25° C	5	-5	-5	
1LL	Supply current from VLL	Both control i	nputs at U.V,	1A - 25 C	4.5	4.5	4,5	mA
Iref	Reference current				-2	-2	-2	
ICC	Supply current from V _{CC}				1.5	1.5	1.5	
IEE	Supply current from VEE	Poth control	oputs at E M	T 25°C	5	-5	5	
ILL	Supply current from VLL	Both control I	nputs at 5 V,	1A - 25 C	4.5	4.5	4.5	mA
Iref	Reference current				-2	-2	-2	

switching characteristics, V_{CC} = 10 V, V_{EE} = -20 V, V_{LL} = 5 V, V_{ref} = 0 V, T_A =  $25^{\circ}$ C

PARAMETER		TEST CONDITIONS	TL185M	TL 1851	TL 185C	UNIT
			TYP	TYP	TYP	
ton	Turn-on time		175	175	175	
toff	Turn-off time	n 300 st, C 30 pr, See rigule 1	350	350	350	115





VOLTAGE WAVEFORMS

Vo is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

FIGURE 1

# LINEAR INTEGRATED CIRCUITS

### TYPES TL188M, TL188I, TL188C DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 7612418, JUNE 1976

- Monolithic Construction
- Adjustable Reference Voltage

### description

The TL188 is a monolithic, high-speed dual complimentary SPST switch constructed using BI-MOS technology. It consists of a JFET-input buffer, level translator, and two output JFET switches that can easily be connected in SPDT configuration.

The threshold of the input buffer is determined by the voltage applied to the reference input (V_{ref}). The input threshold is related to the reference input by the equation V_{th} = V_{ref} + 1.4 V. Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with biploar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by V_{th} = V_{ref} + 1.4 V.

The output switches are junction field-effect transistors featuring low on-state resistance and high offstate resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS has ion-implanted JFETs, p-channel MOS-FETs, plus the usual bi-polar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

For the TL188, a high level at the input turns switch S1 on and S2 off.

The TL188M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C, the TL188I is characterized for operation from  $-25^{\circ}$ C to  $85^{\circ}$ C, and the TL188C from 0[°]C to 70[°]C.

- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion

1

- ±10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility







NC-No internal connection

Switch positions shown are for input A high.

### TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

# TYPES TL188M, TL188I, TL188C DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

SWITCH POSITIONS

SHOWN ARE FOR INPUT A HIGH

functional diagram



FUNCTION TABLE

INPUT	SWITCHES				
Α	S1	S2			
L	OFF (OPEN)	ON (CLOSED)			
н	ON (CLOSED)	OFF (OPEN)			

schematic



### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage, V _{CC} V _{EE} · · · · · · · · · · · · · · · · · ·		36 V
Positive supply voltage to either drain, $V_{CC} - V_D$		33 V
Drain to negative supply voltage, VD - VEE		33 V
Drain to source voltage, $V_D - V_S$	:	±22 V
Logic supply to negative supply voltage, VLL – VEE		36 V
Logic supply to logic input voltage, $V_{LL} - V_{I}$		33 V
Logic supply to reference voltage, $V_{LL} - V_{ref}$		33 V
Logic input to reference voltage, VI - Vref		33 V
Reference to negative supply voltage, $V_{ref} - V_{FF}$		27 V
Reference to logic input voltage, Vref – VI		2 V
Current (any terminal)	· · ;	80 m A
Continuous dissination at (or below) 25°C free-air temperature: N package	115	0 mW
	62	5 mW
	02	5 11100
Operating free-air temperature range: TL188M	C to 1	125°C
TL188I	°C to	85°C
TL188C	°C to	70°C
Lead temperature 1/16 inch from case for 60 seconds: L package	:	300°C
Lead temperature 1/16 inch from case for 10 seconds; N package		
Lead temperature 1/10 men nom case for 10 seconds. N package	4	260 C

NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Curves, Section 2.

# TYPES TL188M, TL188I, TL188C DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

# electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

	PADAMETED		TEST CONDU	TIONS		TL 188M	TL 1881	TL188C	
			TEST CONDI	TIONS		MIN MAX	MIN MAX	MIN MAX	
VIH	High-level control input voltage			T _A =	MIN to MAX	V _{ref} +2	V _{ref} +2	V _{ref} +2	V
VIL	Low-level control input voltage			TA =	MIN to MAX	V _{ref} -0.8	V _{ref} -0.8	V _{ref} -0.8	V
tui.	High-level control input current	$V_{1} = 5 V$		TA =	25°C	10	10	10	<u> </u>
		V  3 V	V ₁ = 5 V		MAX	20	20	20	1 "
կլ	Low-level control input current	V1 = 0 V		TA =	MIN to MAX	-250	-250	-250	μA
		V _D = 10 V,	V _{CC} = 15 V,	TA = :	25°C	1	5	5	
101-40	Off-state drain current	V _S = -10 V,	VEE = -15 V	TA =	MAX	100	100	100	1.
10(011)		V _{IH} = 2 V,	V _{CC} = 10 V,	TA = :	25°C	1	5	5	1 nA
······································		V _{IL} = 0.8 V	VEE =20 V	TA =	MAX	100	100	100	1
		V _D = -10 V	V _{CC} = 15 V,	TA = :	25° C	1	5	5	
101-44)	Off-state source current	V _S = 10 V,	VEE = -15 V	TA = 1	MAX	100	100	100	
15(011)		V _{IH} = 2 V,	V _{CC} = 10 V,	TA = 2	25°C	1	5	5	nA
		V _{IL} = 0.8 V	VEE = -20 V	TA = 1	MAX	100	100	100	1
	On-state channel	V _D = -10 V	,V _S = -10 V,	TA = 2	25°C	-2	-10	-10	
¹ D(on) ⁺¹ S(on)	leakage current	V _{IH} = 2 V,	V _{IL} = 0.8 V	TA = 1	MAX	-200	-200	-200	n A
(DC/an)	Drain-to-source on-state	V _D ≈ −10 V	ls = 1 mA,	TA = 1	MIN to 25°C	75	100	5 100 5 100 5 100 5 100 -10 -200 100 150 1.5 -5 4.5 -2 1.5	
· DS(0h)	resistance	V _{IH} = 2 V,	V _{1L} = 0.8 V	TA = 1	MAX	150	150	150	52
1cc	Supply current from VCC					1.5	1.5	1,5	
IEE	Supply current from VEE	Both control	inputs at 0 V	τ. = '	25°C	-5	-5	-5	
ILL	Supply current from VLL		inputs at 0 V,	' A	25 0	4.5	4.5	4.5	MA
Iref	Reference current					-2	-2	-2	
lcc	Supply current from VCC					1,5	1.5	1.5	
IEE	Supply current from VEE	Both control	inputs at 5 V	Τ.= '	25°C	-5	-5	-5	
ILL	Supply current from VLL		mputs at 5 v,	'A ~ 4		4.5	4.5	4.5	mA
^I ref	Reference current					-2	-2	-2	

### switching characteristics, V_{CC} = 10 V, V_{EE} = -20 V, V_{LL} = 5 V, V_{ref} = 0 V, T_A = $25^{\circ}$ C

PARAMETER	TEST CONDITIONS	TL 188M	TL 1881	TL 188C	
		TYP	TYP	TYP	
t _{on} Turn-on time	B. = 200 D. C. = 20 pF	175	175	175	
^t off Turn-off time	The source of th	350	350	350	ns



Printed in U.K.

TI cannot assume any responsibility for any circuits shown

or represent that they are free from patent infringement.

AS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME DRDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

### LINEAR INTEGRATED CIRCUITS

# TYPES TL191M, TL191I, TL191C TWIN DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

JLLETIN NO. DL-S 7612412, JUNE 1976

- Functionally Interchangeable with Siliconix DG191 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage

### description

Each TL191 consists of two monolithic, high-speed dual complimentary SPST analog switches constructed using BI-MOS technology. Each half consists of a JFET-input buffer, level translator, and two output JFET switches that can easily be connected in SPDT configuration.

The threshold of the input buffer is determined by the voltage applied to the reference input (V_{ref}). The input threshold is related to the reference input by the equation V_{th} = V_{ref} + 1.4 V. Thus, for TTL compatibility, the V_{ref} input is connected to ground. The JFET input makes the device compatible with bipolar, MOS, and CMOS logic families. Threshold compatibility may, again, be determined by V_{th} = V_{ref} + 1.4 V.

The output switches are junction field-effect transistors featuring low on-state resistance and high offstate resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS has ion implanted JFETs, p-channel MOS-FETs, plus the usual bi-polar components all on the same chip. BI-MOS allows circuit designs that previously have been available only as expensive hybrids to be monolithic.

For the TL 191, a high level at the input turns switches S1 on and S2 off.

The TL191 is characterized for operation over the full military temperature range of  $-55^{\circ}C$  to  $125^{\circ}C$ , the TL1911 is characterized for operation from  $-25^{\circ}C$  to  $85^{\circ}C$ , and the TL191 from  $0^{\circ}C$  to  $70^{\circ}C$ .

- JFET Inputs
- Uniform On-State Resistance for Minimum Signal Distortion
- ± 10-V Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility

J or N DUAL-IN-LINE PACKAGE (TOP VIEW)



NC-No internal connection

Switch positions shown are for A inputs high.

# **TEXAS INSTRUMENTS**

TENTATIVE DATA SHEET This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

# TYPES TL191M, TL191I, TL191C TWIN DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES



# absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply to negative supply voltage, VCC – VEE	36 V
Positive supply voltage to either drain, $V_{CC} - V_{D}$	33 V
Drain to negative supply voltage, $V_D - V_{EE}$	33 V
Drain to source voltage, $V_D - V_S$	22 V
Logic supply to negative supply voltage, VLI – VFF	36 V
Logic supply to logic input voltage, $V_{LL} - V_{I}$	33 V
Logic supply to reference voltage, VLL – Vref	33 V
Logic input to reference voltage, $V_{I} - V_{ref}$	33 V
Reference to negative supply voltage, Vref – VEE	27 V
Reference to logic input voltage, $V_{ref} - V_1$	2 V
Current (any terminal)	mA
Continuous dissipation at (or below) 25°C free-air temperature: N package 1150	mW
J package (see Note 1) 1025	mW
Operating free-air temperature range: TL191M	25°C
TL1911	15°C
TL191C	n°c
Lead temperature 1/16 inch from case for 60 seconds: J package	n°c
Lead temperature 1/16 inch from case for 10 seconds: N package	50°C

NOTE 1: For operation above 25°C free-air temperature, see Dissipation Derating Curves, Section 2.

# TYPES TL191M, TL191I, TL191C TWIN DUAL COMPLEMENTARY SPST BI-MOS ANALOG SWITCHES

# electrical characteristics, VCC = 15 V, VEE = -15 V, VLL = 5 V, Vref = 0 V (unless otherwise noted)

PARAMETER		TEST CONDIT	TEST CONDITIONS		TL1911 MIN MAX	TL191C MIN MAX	UNIT
VIH	High-level control input voltage		T _A = MIN to MAX	V _{ref} +2	V _{ref} +2	V _{ref} +2	V
VII	Low-level control input voltage		$T_A = MIN \text{ to MAX}$	V _{ref} +0.8	V _{ref} +0.8	V _{ref} +0.8	V
Чн	High-level control input current	V _I = 5 V	$T_A = 25^{\circ}C$ $T_A = MAX$	10	10 20	20 20	μA
10	Low-level control input current	V ₁ = 0 V	T _A = MIN to MAX	-250	-250	-250	μA
		$V_{D} = 10 V$ , $V_{CC} = 15 V$ ,	T _A = 25°C	1	5	5	
		VS = -10 V, VEE = -15 V	T _A = MAX	100	100	100	
^I D(off)	Off-state drain current	VIH = 2 V, V _{CC} = 10 V,	T _A = 25°C	1	5	5	
		VIL = 0.8 V VEE = -20 V	T _A = MAX	100	100	100	
		$V_{D} = -10 V, V_{CC} = 15 V,$	T _A = 25°C	1	5	5	
	Off-state source current	V _S = 10 V, V _{EE} = -15 V	T _A = MAX	100	100	100	nΔ
IS(off)		VIH = 2 V, VCC = 10 V,	T _A = 25°C	1	5	5	
		VIL = 0.8 V VEE = -20 V	T _A = MAX	100	100	100	
	On-state channel	$V_{\rm D} = -10 \text{ V}, V_{\rm S} = -10 \text{ V},$	$T_A = 25^{\circ}C$	-2	-10	-10	ΠA
D(on)+IS(on)	leakage current	VIH = 2 V, VIL = 0.8 V	T _A = MAX	-200	-200	-200	
	Drain-to-source on-state	V _D = -10 V, I _S = 1 mA	$T_A = MIN \text{ to } 25^\circ C$	125	150	150	Ω
^r DS(on)	resistance	V _{IH} = 2 V, V _{IL} = 0.8 V	T _A = MAX	250	300	300	
ICC	Supply current from VCC			1.5	1.5	1.5	1
IEE	Supply current from VEE	Beth exertical inputs at 0.V	$T_{\bullet} = 25^{\circ}C$	-5	-5	-5	mA
ILL	Supply current from VLL	Both control inputs at 0 V,	14 25 0	4.5	4.5	4.5	
Iref	Reference current			-2	-2	-2	
ICC	Supply current from VCC			1.5	1.5	1.5	4
IEE	Supply current from VEE	Both control inputs at 5 V	$T = 25^{\circ}C$	-5	5	-5	mA
1.1	Supply current from VLL		-A	4.5	4.5	4.5	-
Iref	Reference current	]		-2	-2	-2	

switching characteristics, V_{CC} = 10 V, V_{EE} = -20 V, V_{LL} = 5 V, V_{ref} = 0 V, T_A =  $25^{\circ}$ C

PARAMETER		TEST CONDITIONS	TL 191M TYP	TL 1911 TYP	TL 191C TYP	UNIT
ton	Turn-on time		175	175	175	
toff	Turn-off time	RL = 300 32, CL - 30 pF, See Figure 1	350	350	350	



### PARAMETER MEASUREMENT INFORMATION

### Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT PO

# LINEAR INTEGRATED CIRCUITS

# TYPE TL440C ZERO-VOLTAGE SWITCH

BULLETIN NO. DL-S 7611595, MAY 1972-REVISED JUNE 1976

JOR N

# FORMERLY SN72440

- Differential Amplifier Inputs
- A-C Line Operation
- Capable of Triggering Several Types of Triacs
- Internal Active Elements of Saw-Tooth Generator for Proportional Control
- Wide Variety of Possible Connections of Input Section and of Output Section

### description

The TL440 is a combination threshold detector and zero-crossing trigger, intended primarily for a-c power-control circuits. It allows a triac or SCR to be fired when the a-c input signal crosses through zero volts, thereby minimizing undesirable electromagnetic interference. In this manner, the load utilizes full cycles of line voltage as opposed to partial cycles typical with SCR phase-control power circuits.

The circuit includes a zero-voltage detector, a differential amplifier that may be used in conjuction with a resistance bridge to sense the parameter being controlled, the active elements of a saw-tooth generator, and an output section. Also included are resistors which may be used as a voltage divider for the DUAL-IN-LINE PACKAGE (TOP VIEW)



reference side of the resistance bridge. An external sensor suitable for the application and an external potentiometer form the input side of the resistance bridge.

The TL440 can be used either as an on-off control with or without hysteresis, or as a proportional control with the use of the internal saw-tooth generator. Although the principal application of this device is in temperature control, it can be used for many power control applications such as a photosensistive control, voltage level sensor, a-c lamp flasher, small relay driver, or a miniature lamp driver.

The inhibit function prevents any output pulses from occurring when the applied voltage at the inhibit input is typically 1 volt or greater. Conversely, if the inhibit input is shorted to dc common, an output pulse will be obtained for each zero-crossing of the a-c power input waveform regardless of the sensor input conditions.

The TL440C is characterized for operation from 0°C to 70°C.

### schematic



Resistor values shown are nominal and in ohms. [†]Pin 11 is usually connected to the AC/DC input, pin 1, unless a control circuit requiring hysteresis is desired. See Figure 4.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

/oltage applied to AC/DC input (See Note 1)	15 V
voltage upplied to / observations and / obse	10 mA
Park current into zero-detector input	30 m A
Pak output sink current (See Note 2)	i0 mA
Continuous total power dissipation at (or below) 70°C free-air temperature range	10 mW
Deerating free-air temperature range $\dots \dots	• 70°C
Storage temperature range	150°C
ead temperature 1/16 inch from case for 60 seconds: J package	300°C
Lead temperature 1/16 inch from case for 10 seconds: N package	260°C

NOTES: 1. Voltage values are with respect to the dc common terminal unless otherwise specified.

2. This value applies for a maximum pulse width of 400 µs and for a maximum duty cycle of 2%.

### recommended operating conditions

	MIN	NOM	MAX	UNIT
D-c voltage applied to AC/DC input (See Note 3)		12		V
Differential input voltage, V13 - V12			±2	v
Voltage at sensor or V(ref) input, V13 or V12		6		V
Peak output current (See Note 4)			200	mA
Output pulse width	100		400	μs
Operating free-air temperature, TA	0		70	°c

NOTES: 3. This is the recommended d-c supply voltage when the voltage across pins 1 and 4 is not being maintained by charging an electrolytic capacitor from the line voltage. See typical application data.

4. This value applies for t_W  $\leqslant$  400  $\mu s,$  duty cycle  $\leqslant$  2%.

### electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Sensor input voltage hysterysis	Pin 11 connected to Pin 1		30		mV
Voltage required at inhibit input to inhibit output			1	3	V
Current into sensor input	V ₁₃ = 6 V, V ₁₂ = 4 V			5	μA
Current into V(ref) input	V ₁₂ = 6 V, V ₁₃ = 4 V			5	μA
Current into inhibit terminal required to inhibit output		_	20		μA
Peak output current (pulsing)	V ₅ = 0	75	100		mA
Output current (inhibited)	V ₁₀ = 13.5 V			1	μA
Output pulse width into resistive load	25 kΩ connected to zero- detector input, 60-Hz power source		150		μs
Average temperature coefficient of output pulse width (0°C to 70°C)			0.7		µs/°C
Peak output voltage of saw-tooth generator	V ₁ = 12 V		9		v
Voltage at AC/DC input(See Note 5)		9	11.5		v

NOTE 5: This is the voltage across an electrolytic capacitor connected between pins 1 and 4 whose charge is maintained by the a-c line voltage. See Figures 1 and 3.

# TYPE TL440C ZERO-VOLTAGE SWITCH

### TYPICAL APPLICATION DATA

The circuit shown in Figure 1 provides on-off temperature control. Electrolytic capacitor C1 maintains the d-c operating voltage. Since the series combination of D5 and D6 is in parallel with the series combination of C1 and D7, the voltage developed across C1 is limited to approximately 12 V. Because the energy to fire the triac comes from C1, the voltage across pins 1 and 4 will fluctuate as the triac fires. If a more stable operation of the circuit is desired, a 12-volt d-c supply should be connected between pins 1 and 4 in lieu of C1. The temperature sensor must have a negative coefficient in this circuit.

During most of the a-c cycle, Q1 is turned on by the current flow through either D1, Q1, D4 or D2, Q1, D3, depending on the polarity of the a-c voltage between pins 1 and 3. The collector current of Q1 turns on Q6. With Q6 on, base drive to Q7 and Q8 is inhibited, resulting in no output pulse to fire the triac. When the a-c voltage crosses zero, Q1 and Q6 are turned off. This enables Q7 and Q8 to turn on, thereby connecting d-c common to the triac trigger and firing the. triac. This one output pulse per zero crossing is either inhibited or permitted by the action of the differential amplifier and resistance bridge circuit.

As the controlled temperature begins to rise, the positive voltage applied to pin 13 increases. The differential control amplifier acts to lower the potential of the base of Q1 enough to allow Q1 to stay on for the complete cycle, thus inhibiting the output pulses as explained above. Similarly when the temperature being controlled falls, Q1 is allowed to turn off during the intervals where the line voltage passes through zero, thus generating output pulses.

The width of the output pulse at pin 10 can be varied to suit the triggering characteristics of the triac to be used. Table I shows the output pulse lengths obtained as R20 is changed. For small load currents (less than 4-5 amps) a triac with high gate sensitivity may be required due to the high value of "latch-up" current of medium to high power triacs.



FIGURE 1-ON-OFF HEATER CONTROL

[†] R_(trigger) is adjusted so that the peak output is less than 200 mA.

# TYPE TL440C ZERO-VOLTAGE SWITCH

### TYPICAL APPLICATION DATA

The circuit shown in Figure 3 provides proportional control of a heating system. With the exception of the saw-tooth generator, the circuit of Figure 3 functions the same as that of Figure 1. The sensor of Figure 3 has a negative temperature coefficient.

Transistors Q9 and Q10 are connected to function as an SCR in order to discharge external capacitor C2 very quickly. The time constant of the saw-tooth generator can be varied by changing either the external capacitor or the external resistor. However it is suggested that the capacitor be varied and not the resistor since too low a value of resistance would allow Q9 and Q10 to stay on continuously. The period of the saw-tooth generator is usually 10 to 100 times the period of the line voltage.

At the start of the saw-tooth waveform the base of Q1 is high and output pulses occur at pin 10. At the desired temperature a certain number of output pulses occur during each saw-tooth cycle as shown in Figure 2(a). At a slightly decreased temperature the resistance of the sensor increases, lowering the d-c potential of pin 13. This lowers the potential of the entire saw-tooth waveform as shown in Figure 2(b) which causes a few more output pulses to occur. At greatly decreased temperatures many more pulses occur each saw-tooth cycle as shown in Figure 2(c).



Similiarly, increases in temperature cause proportionately fewer output pulses than the normal number of Figure 2(a). Thus the proportional control feature allows a smoother control of temperature in this application by always providing output pulses during some portion of the saw-tooth generator cycle as opposed to the "full on/full off" circuit of Figure 1.



FIGURE 3-PROPORTIONAL HEATER CONTROL

[†]R(trigger) is adjusted so that the peak output is less than 200 mA.

# **TYPE TL440C ZERO-VOLTAGE SWITCH**

### TYPICAL APPLICATION DATA

Hysteresis may be added to the TL440 by externally making the differential amplifier appear in Schmitt-trigger configuration. This is done by applying positive feedback from pin 11 to pin 13 through hysteresis resistors R₄ and RH. When the output is enabled, the voltage drop developed across resistor  $R_A$  is fed through  $R_H$  to the sensor input of the differential amplifier. This lowers the voltage at this point from the voltage level present when the output is inhibited. The resistance of the sensor must now decrease enough to overcome this additional ("hysteresis") voltage in order to inhibit the output. RH should have a typical value close to the value of the sensor used. The value of RA, which determines the amount of hysteresis, should be approximately one tenth the value of R_H. In Figure 4 the 10 k $\Omega$ potentiometer is adjusted to set the voltage at pin 13 to the level at which the output is enabled. When precise control is not needed, such a circuit eliminates the small "uncertainity range" observed in time proportioning systems.



[†]R_(trigger) is adjusted so that the peak output is less than 200 mA.

### FIGURE 4-ON-OFF HEATER CONTROL WITH HYSTERSIS ADDED







A-Circuit without added hysteresis ( $\Delta V_{13} \approx 15$  to 20 mV residual hysteresis) B-Circuit with added hysteresis ( $\Delta V_{13} \approx 200$  to 300 mV added hysteresis)

NOTE 1: Dotted lines represent discontinuous changes where the differential amplifier changes from inhibit to enable or vice-versa. Solid lines represent stable states (inhibit or enable) of the differential amplifier.

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

XAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.
## LINEAR INTEGRATED CIRCUITS

## TYPES TL441M, TL441C LOGARITHMIC AMPLIFIERS

BULLETIN NO. DL-S 7611427, JANUARY 1971-REVISED JUNE 1976

FORMERLY SN56502, SN76502

- Excellent Dynamic Range
- Wide Bandwidth
- Built-In Temperature Compensation
- Log Linearity (30 dBV Sections) . . . 1 dBV
- Wide Input Voltage Range



Y∝ log A1 + log A2; Z∝ log B1 + B2

where: A1, A2, B1, and B2 are in dBV, 0 dBV = 1 V.

 $C_{A2},\,C_{A2'},\,C_{B2},\,\text{and}\,\,C_{B2'},\,\text{are detector compensation inputs.}$  NC–No internal connection

#### description

This monolithic logarithmic amplifier circuit contains four 30 dBV log stages. Gain in each stage is such that the output of each stage is proportional to the logarithm of the input voltage over the 30 dBV input voltage range. Each half of the circuit contains two of these 30 dBV stages summed together in one differential output which is proportional to the sum of the logs of the input voltages of the two stages. The four stages may be interconnected to obtain a theoretical input voltage range of 120 dBV. In practice, this permits the input voltage range to be typically greater than 80 dBV with log linearity of ±0.5 dBV (see application data). Bandwidth is from dc to 40 megahertz.

These circuits are useful in military weapons systems, broadband radar, and infrared reconnaissance systems. They serve for data compression and analog compensation. The logarithmic amplifiers are used in log IF circuitry as well as video and log amplifiers. The TL441M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the TL441C is characterized for operation from 0°C to  $70^{\circ}$ C.

#### schematic



#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltages (see Note 1):

V _{CC+}																				8V
V _{CC}																				-8V
Input voltage (see Note 1)																				6V
Output sink current (any one output)																			30	mΑ
Continuous total dissipation at (or be	low) 70°0	C free	e-air	temp	bera	ture	(see	e No	ote	2)									500	mW
Operating free-air temperature range:	TL441M	Circ	uits													_!	55°	'C 1	to 12	5°C
	TL441C	Circu	uits														C	°C	to 7	0°C
Storage temperature range																	35°	'C t	to 15	0°C
										÷.,	•	•	•	•	•			<u> </u>		•••

NOTES: 1. All voltages, except differential output voltages, are with respect to network ground terminal.

2. For operation of the TL441M above 70°C free-air temperature, refer to Dissipation Derating Curves, Section 2.

#### recommended operating conditions

	1	L441M		FL441C	
	MIN	NOM MAX	MIN	NOM MAX	UNIT
Input voltage for each 30-dBV stage	0.01	1	0.01	1	V _{p-p}
Operating free-air temperature, T _A	-55	125	0	70	°C

#### electrical characteristics, $V_{CC+} = 6 V$ , $V_{CC-} = -6 V$ , $T_A = 25^{\circ}C$

PARAMETER	TEST	Т	L441	Λ	1	L4410		
	FIGURE	MIN	TYP	MAX	MIN	TYP	MAX	
Differential output offset voltage	1		±25	±60		±40		mV
Quiescent output voltage	2	5.45	5.6	5.85	5.45	5.6	5.85	V
D-c scale factor (differential output), each 30-dBV stage, —35 dBV to —5 dBV	3	7	8	10	6	8	12	mV/dBV
A-c scale factor (differential output)			8			8		mV/dBV
D-c error at20 dBV (midpoint of35 dBV to5 dBV range)	3		1	2		1		dBV
Input impedance			500			500		Ω
Output impedance			200			200		Ω
Rise time, 10% to 90% points, CL = 24 pF	4		20	30		20	30	ns
Supply current from V _{CC+}	2	14.5	18.5	23	14.5	18.5	23	mA
Supply current from V _{CC} _	2	-6	-8.5	-10.5	6	-8.5	-10.5	mA
Power dissipation	2	123	162	201	123	162	201	mW

#### PARAMETER MEASUREMENT INFORMATION







#### TYPICAL APPLICATION DATA

Although designed for high-performance applications such as broadband radar infrared detection, and weapons systems, this device has a wide range of applications in data compression and analog computation.

#### basic log function

The basic log response is derived from the exponential current-voltage relationship of collector current and base-emitter voltage. This relationship is given in the equation:

 $m \cdot V_{BE} = In [(I_C + I_{CES})/I_{CES}]$ 

where:  $I_C$  = collector current at V_{BE} = 0 m = q/kT (in V⁻¹).

VBE = base-emitter voltage

The differential input amplifier allows dual-polarity inputs, is self-compensating for temperature variations, and is relatively insensitive to noise.

#### functional block diagram



**FIGURE 11** 

#### log sections

As can be seen from the schematic, there are eight differential pairs. Each pair is a 15-dBV log subsection, and each input feeds two pairs for a range of 30 dBV per stage.

Four compensation points are made available to allow slight variations in the gain (slope) of the two individual 15-dBV stages of input A2 and B2. By slightly changing the voltage on any of the compensation pins from its quiescent value, the gain of that particular 15-dBV stage can be adjusted to match the other 15-dBV stage in the pair. The compensation pins may also be used to match the transfer characteristics of input A2 to A1 or B2 to B1.

The log stages in each half of the circuit are summed by directly connecting their collectors together and summing through a common-base output stage. The two sets of output collectors are used to give two log outputs, Y and  $\overline{Y}$  (or Z and  $\overline{Z}$ ) which are equal in amplitude but opposite in polarity. This increases the versatility of the device.

By proper choice of external connections, linear amplification, linear attentuation, and many different applications requiring logarithmic signal processing are possible.

#### input levels

The recommended input voltage range of any one stage is given as 0.01 volt to one volt. Input levels in excess of one volt may result in a distorted output. When several log sections are summed together, the distorted area of one section overlaps with the next section and the resulting distortion is insignificant. However, there is a limit to the amount of overdrive that may be applied. As the input drive reaches  $\pm 3.5$  volts, saturation occurs, clamping the collector-summing line and severely distorting the output. Therefore, the signal to any input must be limited to approximately  $\pm 3$  volts to ensure a clean output.

#### output levels

Differential-output-voltage levels are low, generally less than 0.6 volt. As demonstrated in Figure 12, the output swing and the slope of the output response can be adjusted by varying the gain by means of the slope control. The coordinate origin may also be adjusted by positioning the offset of the output buffer.

#### TYPICAL APPLICATION DATA

#### circuits

Figures 12 through 19 show typical circuits using these logarithmic amplifiers. Operational amplifiers not otherwise designated are uA741. For operation at higher frequency, use of uA733 is recommended instead of uA741, with the differential outputs connected as in Figure 14.



FIGURE 14-UTILIZATION OF PARALLELED INPUTS

#### TYPICAL APPLICATION DATA



NOTES: A. Inputs are limited by reducing the supply voltages for the input amplifiers to ±4 V. B. The gains of the input amplifiers are adjusted to achieve smooth transitions.

#### FIGURE 15-LOGARITHMIC AMPLIFIER WITH INPUT VOLTAGE RANGE GREATER THAN 80 dBV



NOTES: A. Connections shown are for multiplication. For division, Z and  $\overline{Z}$  connections are reversed.

- B. Output W may need to be amplified to give actual product or quotient of A and B.
- C. R designates resistors of equal value, typically 2 k  $\Omega$  to 10 k  $\Omega.$

Multiplication:  $W = A \cdot B \Rightarrow \log W = \log A + \log B$ , or  $W = a(\log_B A + \log_B B)$ 

Division: W = A/B  $\Rightarrow \log W = \log A - \log B$ , or W =  $a(\log_a A - \log_a B)$ 

FIGURE 16-MULTIPLICATION OR DIVISION



NOTE: R designates resistors of equal value, typically 2 k $\Omega$  to 10 k $\Omega$ . The power to which the input variable is raised is fixed by setting nR. Output W may need to be amplified to give the correct value.

Exponential:  $W = A^n \Rightarrow \log W = n \log A$ , or  $W = a^{(n \log_a A)}$ 





NOTE: Adjust the slope to correspond to the base "a". Exponential to any base: W = a

#### FIGURE 18-RAISING A FIXED NUMBER TO A VARIABLE POWER



FIGURE 19-DUAL-CHANNEL RF LOGARITHMIC AMPLIFIER WITH 50-0B INPUT RANGE PER CHANNEL AT 10 MHz

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

EXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME N ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

## FUTURE PRODUCT TO BE ANNOUNCED

## **TYPE TL500** ANALOG PROCESSOR

**JUNE 1976** 



#### description

The TL500 contains all the active analog elements for an automatic zeroing, 13-bit dual-slope A/D converter that has true differential inputs and that will automatically indicate the polarity of the applied input signal. The TL500 requires a total of five external components: three capacitors and two resistors. These components need no special matching nor special tolerances.

The TL500 is designed to be used with the TL501 or TL502 logic devices to form a complete A/D converter; however, it can also be used with other logic devices for special purpose applications.

The TL500 is a product of TI's BI-MOS process, which incorporates standard bipolar and MOSFET transistors on the same monolithic integrated circuit.

#### functional diagram



TENTATIVE DATA SHEET

This document provides tentative information TEXAS INSTRUMENTS 330 on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

## FUTURE PRODUCT TO BE ANNOUNCED

## TYPE TL502 DIGITAL PANEL METER LOGIC CONTROL DEVICE

#### features

- Compatible with TIL330 and TIL321 Common-Anode Displays, and Other Popular Seven-Segment Common-Anode Displays
- Over-Range Indicator .
- Internal Segment Drivers
- Digit Base-Drive Outputs

#### description

The TL502 is a 41/2-digit Digital Panel Meter Logic Device. It is designed to interface with the TL500 analog processor, to provide base drive for the external p-n-p digit drivers, and to drive LED segments through external limiting resistors.



The TL502 oscillator input can be driven directly from any TTL output, or a 470-pF capacitor connected between that input and ground will develop an internal clock frequency.

Figure 1 shows a typical digital panel meter application.



FIGURE 1- TYPICAL DIGITAL PANEL METER USING TL500 AND TL502

TENTATIVE DATA SHEET

6

on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

This document provides tentative information TEXAS INSTRUMENTS

## LINEAR INTEGRATED CIRCUITS

## TYPE TL560C PRECISION LEVEL DETECTOR

BULLETIN NO. DL-S 7612400, MAY 1976

- Stable Threshold Level
- Low Input Current
- High Output Sink Current Capability

#### description

- Threshold Hysteresis
- Wide Supply Voltage Range
- Formerly SN72560

The TL560 is a precision level detector intended for applications that require a Schmitt-trigger function. The detector has excellent voltage and temperature stability and an internal voltage reference for the input threshold level. The reference-voltage pin is available for external adjustment of the positive-going threshold voltage level.

The TL560C is characterized for operation from 0°C to 70°C.



NC-No internal connection

#### schematic



Resistor values shown are nominal and in ohms.

Texas Instruments

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage (see Note 1)	VCC
Output voltage (see Note 1)	25 V
Output sink current	) mA
Continuous total dissipation at (or below) 25°C free air temperature (see Note 2)	) mW
Operating free air temperature range	70°C
Storage temperature range	50°C
Lead temperature 1/16 inch from case for 60 seconds: L package	00°C
Lead temperature 1/16 inch from case for 10 seconds: P package	60°C

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. For operation above 25°C free-air temperature refer to Dissipation Derating Curve, Figure 3. This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, R_{BCA}, of not more than 105°C/W.

recommended operating conditions				
	MIN	NOM	MAX	UNIT
Supply voltage, VCC	2.5	5	7	V
Low-level output current, IQI			48	mΑ
Operating free-air temperature, TA	0		70	°C

#### electrical characteristics over recommended operating free-air temperature range, VCC = 5V (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
V _{T+}	Positive-going threshold voltage [†]			2.8	3	3.2	V
V _{T+} /V _{CC}	Ratio of positive-going threshold voltage to supply voltage	V _{CC} = 2.5 V to 7 V			0.6		
V _{T-}	Negative-going threshold voltage ‡			0.4	0.6	0.8	V
IT+	Input current below positive-going threshold voltage	V _I = 2.75 V,	Output on		2	30	nA
IT-	Input current above negative-going threshold voltage	V _I = 1 V,	Output off		1.2		μΑ
IO(off)	Off-state output current	V ₁ = 4 V,	V _O = 25 V			10	μA
VO(on)	On-state output voltage	V _I = 0,	I _O = 48 mA		0.2	0.4	V
ICC(off)	Supply current, output off (each detector)	V  = 4 V			4.8	6.5	mA
ICC(on)	Supply current, output on (each detector)	VI = 0			10	15	mA

[†]Positive-going threshold voltage, V_{T+}, is the input voltage level at which the output changes state as the input voltage is increased. [‡]Negative going threshold voltage, V_{T-}, is the input voltage level at which the output changes state as the input voltage is decreased.

See data sheet DL-S 7412126, Linear and Interface Circuits Ordering Instructions and Mechanical Data, dated April 1974 and its Supplement, dated February 1976.



THERMAL INFORMATION



#### FIGURE 3

NOTE 3: This rating for the L package requires a heat sink that provides a thermal resistance from case to free-air, R_{0CA}, of not more than 105°C/W.

#### TYPICAL APPLICATION DATA

The TL560 performs the function of a Schmitt trigger circuit. The logic function is noninverting and has a wide hysteresis between the positive-going and negative-going threshold voltage levels (see Figure 4).

Operation of the TL560 is specified at a V_{CC} of 5 V, although 2.5-V to 7-V supply operation is possible. The device can be used with popular logic systems (such as Series 54/74 TTL) and standard battery voltages.

Figure 5 is used to illustrate operation of the TL560 circuit. The input stage is a differential amplifier composed of Q1, Q2, Q3, and Q4. The input signal is applied at the base of Q1 while the base of Q2 is connected to an internal reference voltage determined by resistors R4 and R5 and V_{CC};  $V_{ref} = V_{CC} \cdot R5/(R4+R5)$ .

#### TYPICAL APPLICATION DATA



FIGURE 4-INPUT-OUTPUT TRANSFER FUNCTION

4



FIGURE 5-FUNCTIONAL CIRCUIT DIAGRAM

If the base of Q1 is less positive than the base of Q2, Q2 conducts and causes Q4, Q5, Q7, Q8, and the output transistor, Q9, to conduct. Transistors Q2 and Q5 share the current in emitter resistor R1. Since Q1 does not conduct, Q3 and Q6 do not conduct. There is no base current in Q1, and therefore no current required from the input source. A very high input impedance therefore exists. Since Q2 is conducting, a small voltage drop exists across R3 due to Q2 base current.

If the input voltage is increased, Q1 does not conduct until the input voltage (base voltage of Q1) approaches the base voltage of Q2. Current is then switched from the emitters of Q2 and Q5 to the emitter of Q1. Conduction in Q1 causes current to flow in Q3 and Q6 which results in additional voltage drop in R3 and therefore a reduction in the base voltage of Q2. This positive feedback accelerates switching action and causes conduction to rapidly cease in Q2, Q4, Q5, Q7, Q8, and the output transistor, Q9. Conduction in Q6 causes the base of Q2 to assume a voltage (approximately 0.6 V) much lower than the original reference voltage (approximately 3 V). This results in hysteresis between the positive going and negative-going threshold levels.

#### TYPICAL APPLICATION DATA

After switching occurs, the base current of Q1 increases to a somewhat higher value than just below threshold because of higher Q1 operating currents. Once the positive-going threshold level ( $\approx 3$  V) has been reached, the input voltage must be reduced to the negative-going threshold level ( $\approx 0.6$  V) before switching back to the original state will occur. Figure 4 illustrates the threshold levels of the TL560. Because the input current increases after the positive-going threshold voltage level has been exceeded, the input voltage will be reduced by an amount dependent on the source resistance. If the reduced input voltage is not below the negative-going threshold voltage level, a stable state will exist. If the source resistance is too high, oscillation or periodic switching may occur.

The positive-going threshold voltage level (V_{T+}) is guaranteed to be 3.00 ± 0.20 volts at a V_{CC} of 5 V. It is also approximately 60% of the supply voltage over the supply voltage range of 2.5 V to 7 V. With a resistor-capacitor network as illustrated in Figure 7, a V_{T+}/V_{CC} ratio of 60% results in a timed interval of approximately RC seconds, independent of the V_{CC} level. Since the input current is nominally 2 nA just below the V_{T+} level, very large values of R and/or large values of C may be used to achieve long-timed intervals. The duration of the timed interval may be greatly increased (at the expense of accuracy) by using a P-N-P transistor as shown in Figure 11 in a capacitance-multiplication technique. The timed interval is, however, sensitive to variations in the h_{FE} of the P-N-P transitor. Also for any of the timing applications, very-low-leakage capacitors are necessary for accurate operation.

The low input current (30 nA maximum for I_T+) and high output sink current (160 mA maximum) make the TL560 excellent in applications of interfacing between low-level systems and TTL systems where precision level detection is required. The output is capable of sinking up to a maximum of 160 mA with a TTL-compatible on-state voltage of 0.4 V maximum guaranteed at a sink current of 48 mA. With an appropriate output pull-up resistor (R_L  $\approx$  2 k $\Omega$  to 5 V), a fan-out of approximately 30 Series 74 TTL loads can be accommodated.

In addition to applications interfacing with TTL systems, the TL560 finds application in driving relays, lamps, solenoids, thyristors (SCRs and triacs), and other peripheral devices.



Output turns off when V _ > V_T+ Output turns on when V _ < V_T-

where  $V_1 = V_{CC} \frac{H2}{R1+R2}$ 



FIGURE 6-BASIC SENSOR CIRCUIT

FIGURE 7-BASIC TIMED-INTERVAL CIRCUIT

#### TYPICAL APPLICATION DATA





100 RELAY П OPEN

FIGURE 8-EXTERNAL N-P-N TRANSISTOR FOR INCREASING SINK CURRENT

FIGURE 9-EXTERNAL P-N-P TRANSISTOR FOR INCREASING SOURCE CURRENT

#### FIGURE 10-RELAY DRIVER

Vcc

Rı

П

FIGURE 12-BOUNCELESS SWITCH





NOTE A: This circuit can be used as a touchcontrol switch with  $R_{feedback}\approx 10~M\Omega_{\star}$ FIGURE 13-SWITCH WITH TWO STABLE STATES







П

REF 0 N CONDUCTIVE ۷cc



FIGURE 17-SINE-WAVE-TO-SQUARE-WAVE CONVERTER

Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY T IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSI



FIGURE 16-THYRISTOR DRIVER CIRCUIT







## LINEAR INTEGRATED CIRCUITS

## **TYPES TL601, TL604, TL607, TL610** P-MOS ANALOG SWITCHES

BULLETIN NO. DL-S 7612401, JUNE 1976

- Switches ±10-V Analog Signals
- TTL/DTL Logic Capability
- 5- to 30-V Supply Ranges
- Low (100  $\Omega$ ) On-State Resistance
- High (10¹¹  $\Omega$ ) Off-State Resistance
- **8-Pin Functions**

#### description

The TL601, TL604, TL607, and TL610 are a family of monolithic P-MOS analog switches that provide fast switching speeds with high roff/ron ratio and no offset voltage. The p-channel enhancement-type MOS switches will accept analog signals up to ±10 volts and are controlled by TTL-compatible logic inputs. The monolithic structure is made possible by BI-MOS technology, which combines p-channel MOS with standard bipolar transistors.

These switches are particularly suited for use in military, industrial, and commercial applications such as data acquisition, multiplexers, A/D and D/A converters, MODEMS, sample-and-hold systems, signal multiplexing, integrators, programmable operational amplifiers, programmable voltage regulators, crosspoint switching networks, logic interface, and many other analog systems.

The TL601 is an SPDT switch with two logic control inputs. The TL604 is a dual complementary SPST switch with a single control input. The TL607 is an SPDT switch with one logic control input and one enable input. The TL610 is an SPST switch with three logic control inputs. The TL610 features a higher roff/ron ratio than the other members of the family.

The TL601M, TL604M, TL607M, and TL610M are characterized for operation over the full military temperature range of -55°C to 125°C, the TL6011, TL604I, TL607I, and TL610I are characterized for operation from -25°C to 85°C, and the TL601C, TL604C, TL607C, and TL610C are characterized for operation from 0°C to 70°C.



## **TEXAS INSTRUMENTS**







TL607



TL610 с

s



FUNCTION TABLE

LOGIC	INPUTS	ANALOG SWITCH						
Α	в	S1	S2					
L	x	OFF (OPEN)	ON (CLOSED)					
x	L	OFF (OPEN)	ON (CLOSED)					
н	н	ON (CLOSED)	OFF (OPEN)					



FUNCTION TABLE

INPUTS	ANALOG SWITCH							
A ENABLE	S1	S2						
ХL	OFF (OPEN)	OFF (OPEN)						
LH	OFF (OPEN)	ON (CLOSED)						
нн	ON (CLOSED)	OFF (OPEN)						



 FUNCTION TABLE

 LOGIC INPUT
 ANALOG SWITCH

 A
 S1
 S2

 H
 ON (CLOSED)
 OFF (OPEN)

 L
 OFF (OPEN)
 ON (CLOSED)



	FUNCTION TABLE											
INPUTS			ANALOG SWITCH									
A	В	С	S									
L	х	х	OFF (OPEN)									
x	L	х	OFF (OPEN)									
x	х	L	OFF (OPEN)									
н	н	н	ON (CLOSED)									

H = high logic level L = low logic level X = irrelevant Switch positions shown are for all inputs high.

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC+ (see Note 1)
Supply voltage, VCC
VCC+ to VCC- supply voltage differential
Control input voltage
Switch off-state voltage
Switch on-state current
Operating free-air temperature range: TL601M, TL604M, TL607M, TL610M
TL601I, TL604I, TL607I, TL610I
TL601C, TL604C, TL607C, TL610C
Storage temperature range
Lead temperature 1/16 inch from case for 60 seconds: JG package
Lead temperature 1/16 inch from case for 10 seconds: P package
NOTE 1: All voltage values are with respect to network ground terminal.

#### recommended operating conditions

	TL601M, TL604M TL607M, TL610M			TL6011, TL6041 TL6071, TL6101			TL TL	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC+} (see Figure 1)	5	10	25	5	10	25	5	10	25	v
Supply voltage, V _{CC-} (see Figure 1)	-5	-20	25	5	-20	-25	-5	-20	25	V
$V_{CC+}$ to $V_{CC-}$ supply voltage differential (see Figure 1)	15		30	15		30	15	_	30	v
Control input voltage	0		5.5	0		5.5	0		5.5	V
Switch on-state current			10			10			10	mA
Operating free-air temperature, TA	-55		125	-25		85	0		70	°C

Figure 1 shows power supply boundry conditions for proper operation of the TL601 Series. The range of operation for supply V_{CC}- from +5 V to +25 V is shown on the vertical axis. The range of supply V_{CC}- from -5 V to -25 V is shown on the horizontal axis. A recommended 30-volt maximum voltage differential from V_{CC}+ to V_{CC}- governs the maximum V_{CC}+ for a chosen V_{CC}- (or vice versa). A minimum recommended difference of 15 volts from V_{CC}+ to V_{CC}- and the boundaries shown in Figure 1 allow the designer to select the proper combinations of the two supplies.



# electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 10 \text{ V}, V_{CC-} = -20 \text{ V}$ , analog switch test current = 1 mA (unless otherwise noted)

						TL6M					
	PARAMETER	TEST	CONDITION	NS [†]		TL6I					UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level control input voltage				2			2			V
VIL	Low-level control input voltage						0.8			0.8	V
Чн	High-level control input current	VI = 5.5 V				0.5	10		0.5	10	μA
41	Low-level control input current	VI = 0.4 V				-50	-250		-50	-250	μA
	0	$V_{1(sw)} = -10^{10}$	۷,	T _A = 25°C		-400	-800		-500	-1000	рА
'off	Switch off-state current	See Note 2		TA = MAX		-50	-100		-10	20	nA
				TL601							
		V1(ew) = 10 V		TL604		55	100	ļ	75	200	
		$10(m) = -1 \pi$	hΑ	TL607							
		.0(300)	0(311)			40	80		40	100	0
ron	Switch on-state resistance			TL601							
		VI(sw) =10	TL604		220	400		220	600		
		IO(sw) = -1 m	nA	TL607				1			
				TL610	Ι	120	300		120	400	]
roff	Switch off-state resistance					1 X 10 ¹¹			5 X 10 ¹⁰		Ω
Con	Switch on-state input capacitance	$V_{I(sw)} = 0 V, 1$	= 1 MHz		Τ	16			16		pF
Coff	Switch off-state input capacitance	VI(sw) = 0 V, 1	= 1 MHz			8			8		pF
				TL601	T	5	10		5	10	
		Logic input(s)		TL604		5					
		at 5.5 V,	Enable		1	-	10		-	10	
LCC+	Supply current from VCC+	All switch	input high	TI 607		5	10		5	10	mA
		terminals	Enable	1100/		-	-			E	]
		open	input low			3	5		3	5	
				TL610		5	10		5	10	
				TL601	1		26		1.2	2.5	
		Logic input(s)		TL604		-1,2	-2.5		1.2	-2.5	
1		at 5.5 V,	Enable		T	25	-			=	
lice-	Supply current from VCC-	All switch	input high			-2.5	-5		-2.5	-5	
1.00		terminals	Enable	1160/					0.05		
		open	input low			-0.05	-0.5		-0.05	-0.5	
				TL610		-1.2	-2.5		-1.2	-2.5	

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at  $T_A$  = 25°C. NOTE 2: The other terminal of the switch under test is at  $V_{CC+}$  = 10 V.

#### switching characteristics, $V_{CC}$ = 10 V, $V_{CC-}$ = -20 V, $T_A$ = 25°C

<u> </u>		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	toff	Switch turn-off time			400	500	
	ton	Switch turn-on time	n i ksz, c 35 pr, See Figure 2		100	150	115

T	EXAS	INST	RUM	ENTS
---	------	------	-----	------



FIGURE 2



FIGURE 3





Printed in U.K.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

AS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

## LINEAR INTEGRATED CIRCUITS

## TYPES uA733M, uA733C DIFFERENTIAL VIDEO AMPLIFIERS

BULLETIN NO. DL-S 7611415, NOVEMBER 1970-REVISED JUNE 1976

#### FORMERLY SN52733, SN72733

- 200 MHz Bandwidth
- 250 kΩ Input Resistance
- Selectable Nominal Amplification of 10, 100, or 400
- No Frequency Compensation Required
- Designed to be Interchangeable with Fairchild µA733 and µA733C

#### description

The uA733 is a monolithic two-stage video amplifier with differential inputs and differential outputs.

Internal series-shunt feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads and all stages are currentsource biased to obtain high common-mode and supply-voltage rejection ratios.





Fixed differential amplification of 10, 100, or 400 may be selected without external components, or amplification may be adjusted from 10 to 400 by the use of a single external resistor connected between G1A and G1B. No external frequency-compensating components are required for any gain option.

The device is particularly useful in magnetic-tape or disc-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.

The uA733M is characterized for operation over the full military temperature range of  $-55^{\circ}$ C to  $125^{\circ}$ C; the uA733C is characterized for operation from 0°C to 70°C.

#### terminal assignments



NC-No internal connection

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA733M	uA733C	UNIT
Supply voltage Vcc+ (See Note 1)	Supply voltage V _{CC+} (See Note 1)			V
Supply voltage Vcc (See Note 1)		8	-8	v
Differential input voltage		±5	±5	V
Common-mode input voltage	±6	±6	V	
Output current	10	10	mA	
Continuous total power dissipation at (or below) 25°C (	ree-air temperature (see Note 2)	500	500	mW
Operating free-air temperature range		-55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C	
Lead temperature 1/16" from case for 60 seconds	J, L, or U package	300	300	°C
Lead temperature 1/16" from case for 10 seconds	N package	260	260	°C

NOTES: 1. All voltage values, except differential input voltages, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC+} and V_{CC-}

2. For operation above  $25^{\circ}$ C free air temperature, refer to Dissipation Derating Curves, Section 2. electrical characteristics.  $V_{CC+} = 6 V$ ,  $V_{CC-} = -6 V$ ,  $T_A = 25^{\circ}$ C

PARAMETER		TEST CONDITIONS		GAIN [†]	u.	4733	м	u/	4733	2	LIAUT			
		FIGURE	TEST CONDITIONS	SELECT	MIN	TYP	MAX	MIN	TYP	MAX	UNIT			
	1			1	300	400	500	250	400	600				
AVD	Large-signal differential	1	V _{OD} = 1 V	2	90	100	110	80	100	120				
	voltage amplification		-	3	9	10	11	8	10	12				
				1		50			50					
BW	Bandwidth	2	R _S = 50 Ω	2		90			90		MHz			
			-	3		200			200					
40	Input offset current			Any		0.4	3	1	0.4	5	μA			
1 B	Input bias current			Any		9	20		9	30	μA			
VI	Input voltage range	1		Any	±1			±1			v			
	Common-mode									2.4				
Voc	output voltage	1		Any	2.4	2.9	3.4	2.4	2.9	3.4	v			
				1		0.6	1.5	1	0.6	1.5				
Voo	Output offset voltage	1		2&3		0.35	1		0.35	1.5	v			
	Maximum peak-to-peak	k .												
VOPP	output voltage swing	1		Αnγ	3	4./		3	4./		v			
	Input resistance				1		1		4		1	4		
ri -		3	V _{OD} < 1 V	2	20	24		10	24		kΩ			
				3		250			250					
ſo	Output resistance					20			20		Ω			
Ci	Input capacitance	3	V _{OD} ≤ 1 V	2		2		t	2		pF			
	Common-mode		VIC = ±1 V, f ≤ 100 kHz	2	60	86		60	86		ar			
CMRR	rejection ratio	4	$V_{IC} = \pm 1 V$ , $f = 5 MHz$	2		70		1	70		- 00			
	Supply voltage		$\Delta V_{CC+} = \pm 0.5 V_{c}$		50	70		50	70		ap			
4VCC/4VIO	rejection ratio	1	ΔV _{CC} = ± 0.5 V	2	50	70		50	/0		uв			
	Broadband equivalent	_		A		10		Ι	12					
vn	input noise voltage	5	BW = 1 kHz to 10 MHz	Any		12			12		μ.			
			P 50 0	1		7.5			7.5					
tpd	Propagation delay time	2	$n_{\rm S} = 50.32$	2		6.0	10		6.0	10	ns			
			Output voltage step - 1 v	3		3.6			3.6					
			8 50.0	1		10.5			10.5					
tr	Rise time	2	HS = 50 12,	2		4.5	10		4.5	12	ns			
			Output voitage step = 1 V	3		2.5		Ι	2.5					
	Maximum output				25	2.0		2.5	26		-			
lsink(max)	sink current			Any	2.5	3.6		2.5	3.6		mA			
1cc	Supply current	[	No load, No signal	Any		16	24		16	24	mA			

[†]The gain selection is made as follows: Gain 1... Gain Select pin G1A is connected to pin G1B, and pins G2A and G2B are open. Gain 2... Gain Select pin G1A and pin G1B are open, pin G2A is connected to pin G2B. Gain 3... All four gain-select pins are open.

# electrical characteristics (continued), V_{CC+} = 6 V, V_{CC}- = -6 V T_A = -55°C to 125°C for uA733M, 0°C to 70°C for uA733C

PARAMETER		TEST	TEST CONDITIONS	GAIN [†]	uA733M		uA733C		LINIT		
		FIGURE		SELECT	MIN	MAX	MIN	MAX	UNIT		
				1	200	600	250	600			
AVD	voltees amplification	1	V _{OD} = 1 V	2	80	120	80	120			
	vortage amprincation			3	8	12	8	12			
10	Input offset current			Any		5		6	μA		
Чв	Input bias current			Any		40		40	μA		
V _I	Input voltage range	1		Any	±1		±1		V		
Vee	Output offset voltage					1		1.5		1.5	v
*00				2&3		1.2		1.5	v		
Von	Maximum peak-to-peak			Any 2.5	25		20		v		
* OPP	output voltage swing				2.5		2.0		v		
ri	Input resistance	3	V _{OD} < 1 V	2	8		8		kΩ		
CMBB	Common-mode	4	VIC = ±1 V, f ≤ 100 kHz	2	50		50		dB		
0.001111	rejection ratio	-	V _{IC} = ±1 V, f = 5 MHz	2					UD		
	Supply voltage		$\Delta V_{CC+} = \pm 0.5 V,$	2	50		FO		dB		
4.00/2010	rejection ratio	! '	ΔV _{CC} = ±0.5 V	2	50		50				
1	Maximum output			<b>A</b>	2.2						
'sink(max)	sink current			Any	2.2		2.5		mA		
ICC	Supply current		No load, no signal	Any		27		27	mA		

[†]The gain selection is made as follows:

Gain 1 . . . Gain Select pin G1A is connected to pin G1B, and pins G2A and G2B are open.

Gain 2 . . . Gain Select pin G1A and pin G1B are open, pin G2A is connected to pin G2B.

Gain 3 . . . All four gain-select pins are open.

#### **DEFINITION OF TERMS**

Large-Signal Differential Voltage Amplification (AVD) The ratio of the change in voltage between the output terminals to the change in voltage between the input terminals producing it.

Bandwidth (BW) The range of frequencies within which the differential gain of the amplifier is not more than 3 dB below its low-frequency value.

Input Offset Current (I10) The difference between the currents into the two input terminals with the inputs grounded.

Input Bias Current (IIB) The average of the currents into the two input terminals with the inputs grounded.

Input Voltage Range (V) The range of voltage that if exceeded at either input terminal will cause the amplifier to cease functioning properly.

Common-Mode Output Voltage (VOC) The average of the d-c voltages at the two output terminals.

Output Offset Voltage (VOO) The difference between the d-c voltages at the two output terminals when the input terminals are grounded.

Maximum Peak-to-Peak Output Voltage Swing (VOPP) The maximum peak-to-peak output voltage swing that can be obtained without clipping. This includes the unbalance caused by output offset voltage.

Input Resistance (r;) The resistance between the input terminals with either input grounded.

Output Resistance (ro) The resistance between either output terminal and ground.

Input Capacitance (Ci) The capacitance between the input terminals with either input grounded.

**Common-Mode Rejection Ratio** (CMRR) The ratio of differential voltage amplification to common-mode voltage amplification. This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset voltage.

Supply Voltage Rejection Ratio  $(\Delta V_{CC}/\Delta V_{IO})$  The absolute value of the ratio of the change in power supply voltages to the change in input offset voltage. For these devices, both supply voltages are varied symmetrically.

Equivalent Input Noise Voltage ( $V_n$ ) The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals of the device that represents the part of the internally generated noise that can properly be represented by a voltage source.

Propagation Delay Time  $(t_{pd})$  The interval between the application of an input voltage step and its arrival at either output, measured at 50% of the final value.

Rise Time (tr) The time required for an output voltage step to change from 10% to 90% of its final value.

Maximum Output Sink Current ( $I_{sink}(max)$ ) The maximum available current into either output terminal when that output is at its most negative potential.

Supply Current (ICC) The average of the magnitudes of the two supply currents ICC1 and ICC2.



**TEXAS INSTRUMENTS** 

FIGURE 13



#### TYPICAL CHARACTERISTICS

8

SINGLE-ENDED VOLTAGE AMPLIFICATION



SUPPLY CURRENT SUPPLY VOLTAGE





#### TYPICAL CHARACTERISTICS

**TEXAS INSTRUMENTS** 



#### TYPICAL CHARACTERISTICS

6

## **TEXAS INSTRUMENTS**

Printed in U.K. TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIM IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE

# **Military Products**

## **MILITARY PRODUCTS**

#### MIL-M-38510 AND MIL-STD-883 MILITARY HIGH REL INTEGRATED CIRCUITS

The Texas Instruments MIL-M-38510 and MIL-STD-883 programs offer a variety of options designed to meet contractual, reliability, and cost goals. MIL-M-38510 and MIL-STD-883 have been fully implemented to provide a broad product line of control circuits for both military original equipment and logistic requirements. Included in this section is a complete cross reference from the JAN part number to the corresponding standard catalog part number for ease in locating the commerical equivalent. The cross-reference from the catalog number to the JAN slash sheet number is also included.

When system designs utilize control circuits not listed on the current QPL or where no slash sheet specification exists, the TI /883 or MIL-M-38510 JAN-processed program is recommended as a cost-effective substitute for non-standard program drawings or specifications.

As an aid to predicting system reliability performance, the following is the estimated quality factor,  $\Pi_Q$ , for Texas Instruments Linear Control Circuits, when processed to the options outlined in Table A.

OPTION		по
JAN MIL-M-38510	CLASS B	2
JAN-PROCESSED	CLASS B	3
/8838		4
STANDARD HERMETIC		10

The following military documents (see Note 1) establish the processing, quality, and reliability assurance requirements for JAN integrated circuits. The detail requirements of each individual JAN device are specified in the slash sheets.

MIL-M-38510/XXX, Microcircuits, Digital, TTL, ..., Monolithic Silicon (Slash Sheets) MIL-M-38510, Microcircuits, General Specification for MIL-STD-883, Test Methods and Procedures for Microelectronics QPL-38510, Qualified Products List for MIL-M-38510

NOTE 1: Copies of these documents may be requested from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa. 19120.

#### MILITARY HIGH-REL PRODUCTS

#### I. JAN MIL-M-38510 CLASS B PRODUCT

These devices will be manufactured to the full requirements of the appropriate MIL-M-38510 slash sheet in DESC approved domestic production facilities. The TI Linear Department is supplying only Class B product (see Table A, Column I).

#### A. Ordering Instructions:



#### II. MIL-M-38510 JAN-PROCESSED CLASS B PRODUCT §

These devices will be tested to the electrical requirements of the JAN slash sheet specification and 100% processed to the MIL-STD-883 Class B requirements of Method 5004 (see Table A, Column II).

A. Ordering Instructions: same numbering system as JAN with the omission of the JAN designation (see 1 above)

Order Entry Code*	TL/XXXXXBXX
Device Type	M38510/XXXXXBXX

B. Symbolization:

M38510/XXXXXBXX TI Symbol (Trade Mark) 4-Digit Date Code

•Order entry code is used because the TI order entry system is limited to 14 digits.

‡"Χ" Denotes finish A, B, or C at option of manufacturer. Devices will be marked A, B, or C as applicable.

## **MILITARY PRODUCTS**

#### III. 883 CLASS B/CLASS C PRODUCT

These devices will be tested to the Data Book full-temperature electrical requirements and 100% processed to the MIL-STD-883 Class B or Class C requirements of Method 5004 (see Table A, Column III).



B. Symbolization:

(Device prefix, designator and package) // /883B TI Symbol (Trade Mark) 4-Digit Date Code

Group A Conformance

Group A conformance shall consist of the electrical parameters in the manufacturer's data sheet. If an inspection lot is made up of a collection of sublots, each sublot shall conform to Group A, as specified.

LTPD (%)

CI.		c	D	റ		р
$\mathbf{s}\mathbf{u}$	ъ	u	n	υ	υ	г

	LEVEL I 38510C	LEVEL II	LEVEL III 38510B	LEVEL IV 38510A
Subgroup 1 25°C, dc	5	7	5	5
Subgroup 2 High Temperature, dc	10	10	7	5
Subgroup 3 . Low Temperature, dc	10	10	7	5
Subgroup 4	10	10	7	5

Dynamic and Switching Tests @ 25°C,

NOTE: Functional tests included in D.C. tests.

Final Electrical Test (Set I)

Each integrated circuit shall be required to pass the electrical requirements of Subgroup 1 of the detail specification. The manufacturer shall also perform such additional testing necessary to assure the parts will meet the temperature extreme limits.

When specifically called out and funded on the purchase order or contract, the manufacturer shall perform subgroups 2, 3 and 4 of the above table in accordance with Method 5004 of MIL-STD-883, Notice 3.

#### IV. STANDARD HERMETIC PRODUCT

This material will be tested to the Data Book electrical requirements and processed per Table A, Column IV.

Ordering Instructions:

Device Prefix

Package

B. Symbolization

(Device prefix, designator and package)¶ TI Symbol (Trade Mark) 4-Digit Date Code

Designator ¶

¶See ordering instructions on page 35.

6



TABLE A

#### MILITARY PRODUCTS PROCESS FLOW

MILITARY PRODUCTS

## MILITARY PRODUCTS

TABLE I. JAN INTEGRATED CIRCUITS AND CIRCUIT-TYPE CROSS-REFERENCE								
JAN	СКТ	JAN	СКТ	JAN	СКТ	JAN	CKT	
/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	
00101	5430	01401	54150	03303	15950	07102	54S112	
00102	5420	01402	9312‡	03304	9094	07103	54S113	
00103	5410	01403	54153	03501	MH0026	07104	54S114	
00104	5400	01404	9309	04001	54H50	07105	54S174	
00105	5404	01405	54157	04002	54H51	07106	54S175	
00106	5412	01406	54151	04003	54H53	07201	54S40	
00107	5401	01501	5475	04004	54H 54	07301	54S02	
00108	5405	01502	5477	04005	54H55	07401	54S51	
00109	5403	01503	54116	04101	54L51	07402	54564	
00201	5472	01504	9314‡	04102	54L54	07403	54S65	
00202	5473	01601	5408	04103	54L55	07501	54S86	
00203	54107	01602	5409	04104	54L54	07502	54S135	
00204	5476	01701	54174	04201	54L121	07601†	54S194	
00205	5474	01702	54175	04202	54L122	076021	54S195	
00206	5470	01703†	54173	04301	93L18	077011	54S138	
00207	5479‡	01801	54170	04401	93L24	077021	54S139	
00301	5440	01901	54180	04501†	93L14	077031	54S280	
00302	5437	02001	54L30	04502+	93L08	078011	54S181	
00303	5438	02002	54L20	04601	93L09	078021	54S182	
00401	5402	02003	54L10	04602	93L12	07901	54S151	
00402	5423	02004	54L00	04603	93L22	07902	54S153	
00403	5425	02005	54L04	05001	4011A	07903	54S157	
00404	5427	02006	54L01/54L03	05002	4012A	07904	54S158	
00501	5450	02101	54L71	05003	4023A	07905	54S251	
00502	5451	02102	54L72	05101	4013A	07906	54S257	
00503	5453	02103	54L73	05102	4027A	07907	54S258	
00504	5454	02104	54L78	05201	4000A	08001	54S11	
00601	5482	02105	54L74	05202	4001A	08002	54S15	
00602	5483	02201	54H72	05203	4002A	08101	54S140	
00603	9304‡	02202	54H73	05204	4025A	08201†	54S85	
00701	5486	02203	54H74	05301	4007A	10101	52741	
00801	5406	02204	54H76	05302	4019A	10102	52747	
00802	5416	02205	54H101	05303	4030A	10103	52101A	
00803	5407	02206	54H103	05401	4008A	10104	52108A	
00804	5417	02301	54H30	05501	4009A	10105	LH2101A	
00805	5426	02302	54H20	05502	4010A	10106	LH2108A	
00901	5495	02303	54H10	05503	4049A	10107	52118	
00902	5496	02304	54H00	05504	4050A	10201	52723	
00903	54164	02305	54H04	05505	4041A	102021	52104	
00904	54165	02306	54H01	05601	4017A	102031	52105	
00905	54194	02307	54H22	05602	4018A	10301	52710	
00906	54195	02401	54H40	05603	4020A	10302	52711	
009071	9300‡	02501	54L90	05604	4022A	10303	52106	
009081	9328	02502	54L93	05605	4024A	10304	52111	
009091	54198	02503	54L193	05701	4006A	10401	55107	
00910†	54166	02504	93L10	05702	4014A	10402	55108	
01001	5442	02505	93L16	05703	4015A	10403	55114	
01002	5443	02601	54L86	05704	4021A	10404	55115	
01003	5444	02701	54L02	05705	4031A	10405	55113	
01004	5445	02801	54L95	057061	4035A	10406	7831	
01005	54145	02802	54L164	057071	4034A	10407	7832	
01006	5446	02803	93L28‡	05801†	4016A	105011	52733	
01007	5447	02804	93L00	06001	10501‡	10601	LM1021	
01008	5448	02805	76L70	06002	10502±	10602	52110	
01009	5449	02806+	54L91	06003	10505±	10701	52109	
01101	54181	02901	54L42	06004	10506±	107021	LM140-12	
01102	54182	02902	54L43	06005	10507±	107031	LM140-15	
01201	54121	02903	54L44	06006	10509±	107041	I M140-24	
01202	54122	02904	54L46	06101	10531±	10801	3018A	
01203	54123	02905	54L47	06102	10631 +	10802	3045	
01204	9601	02906	76L42A	06103	105761	10901+	52555	
01205	9602	02907	93L01	06104	10535±	10902+	52556	
01301	5492	03001	15930	062011	10504	15001	5485	
01302	5493	03002	15935	07001	54500	15101	5413	
01303	54160	03003	15936	07002	54S03	15102	5414	
01304	54163	03004	15946	07003	54504	15103	54132	
01305	54162	03005	15962	07004	54S05	15201	54154	
01306	54161	03101	15932	07005	54S10	15202	54155	
01307	5490	03102	15944	07006	54S20	15203	54156	
01308	54192	03103	15957	07007	54S22	15204	8250	
01309	54193	03104	15958	07008	54S30	15205	8251	
013101	54196	03105	15933	07009	54S133	15206	8252	
013111	54197	03301	15945	07010	54S134	15301	54125	
01312†	54177	03302	15948	07101	54S74	15302	54126	

NOTE: Only the basic JAN and commercial numbers are shown, [†]Slash sheets not released as of date of this publication.

*Not recommended for new designs. Class S only.
# **MILITARY PRODUCTS**

TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE							
CKT	JAN	CKT	JAN	CKT	JAN	СКТ	JAN
54L S153	20902+	541 164	02802	5422	/NU.	TYPE EALCO	/NO.
54L S157	200021	541 102	02502	5425	00402	54103	00002
54L S159	303031	54500	07001	5425	00403	54104	00903
541 \$160	21502+	54500	07201+	5420	00805	54100	00904
541 5161	31504+	54502	07002	5427	16201+	54100	01702+
5415161	20606+	54503	07002	5420	00101	54173	017031
541 5169	21505+	54504	07003	5430	16101+	54174	01701
541 5160	21506+	54505	07004	5432	00202	54175	01212+
541 51 74	20106+	54010	08001	5429	00302	53177	01001
541 \$175	301071	54515	08002	5440	00303	54181	01101
541 5181	30801	54520	07006	5442	01001	54182	01102
541 \$192	315071	54522	07007	5443	01002	54186	20101
541 \$193	315081	54530	07008	5444	01003	54192	01308
54LS194	306011	54540	07201	5445	01004	54193	01309
54LS195	306021	54S51	07401	5446	01006	54194	00905
54LS196	32001	54564	07402	5447	01007	54195	00906
54LS197	32002	54\$65	07403	5448	01008	54196	01310
54LS221	314021	54574	07101	5449	01009	54197	01311†
54LS251	30905t	54\$85	08201	5450	00501	54198	009091
54LS253	309081	54586	07501	5451	00502	5531	23001† (256 RAM)
54LS257	309061	54S112	07102	5453	00503	55107	10401
54LS258	309071	54S113	07103	5454	00504	55108	10402
54LS261	31801†	54S114	07104	5470	00206	55113	10405
54LS266	30303	54S133	07009	5472	00201	55114	10403
54LS279	316021	54S134	07010	5473	00202	55115	10404
54LS283	312021	54S135	07502	5474	00205	76L42A	02906
54LS290	32003	54S138	077011	5475	01501	76L 70	02805
54LS293	32004	54S139	077021	5476	00204	7831	10406
54LS295	30606	54S140	08101	5477	01502	8250	15204
54LS298	30909	54S151	07901	5479‡	00207	8251	15205
54LS324	31702†	54S153	07902	5482	00601	8252	15206
54LS395	30607†	54S157	07903	5483	00602	9093	03304
54LS670	31901	54S158	07904	5485	15001	93L00	02804
54L00	02004	54S174	07105	5486	00701	93L01	02907
54L01	02006	54S175	07106	5490	01307	93L08	045021
54L02	02701	54S181	07801†	5492	01301	93L09	04601
54L03	02006	54S182	078021	5493	01302	93L10	02504
54L04	02005	54S194	076011	5495	00901	93L12	04602
54L10	02003	54S195	076021	5496	00902	93L14	045011
54L20	02002	54S251	07905	54107	00203	93L16	02505
54L30	02001	54S257	07906	54116	01503	93L18	04301
54L42	02901	54S258	07907	54120	154011	93L22	04603
54L43	02902	54S280	077031	54121	01201	93L24	04401
54L44	02903	545387	202011	54122	01202	93L 28‡	02803
54L46	02904	5400	00104	54123	01203	9300‡	009071
54L4/	02905	5401	00107	54125	15301	9300	159011
54L51	04101	5402	00401	54126	15302	9304‡	00603
541.54	04102, 04104	5403	00109	54132	15103	9308	01503
541 55	04103	5404	00105	54145	15001	9309	01404
54170	02101	5405	00106	54147	15603	93121	01402
04L/2 54L72	02102	5400	00001	54160	01401	9314‡	15902
54L73	02103	5407	00603	54150	01401	9317	15602+
541 78	02103	5400	01602	54153	01403	93181	01405
541.86	02601	5410	00103	54154	15201	0328	00908
541.90	02501	5412	00106	54155	15202	0334	16001
541 91	02806	5413	15101	54156	15202	0338	15701
541 93	02502	5414	15102	54157	01405	93410	23002 (266 BAM)
54L95	02801	5416	00802	54160	01303	9601	01204
54L121	04201	5417	00804	54161	01306	9602	01205
54L122	04202	5420	00102	54162	01305		

NOTE: Only the basic JAN and commercial numbers are shown. Slash sheets not released as of date of this publication.
Not recommended for new designs.
Class S only.

# **MILITARY PRODUCTS**

JAN     CKT     JAN     CKT     JAN     CKT     JAN     CKT       1NO,     TYPE     NO,     TYPE     NO,     TYPE       15001     54120     30002     541.503     30502     541.586     312021     541.581       15501     541471     30005     541.510     30661     541.595     313021     541.511       156011     54147     30006     541.521     30661     541.535     314021     541.531       156011     5321     301011     641.573     307011     541.538     315021     541.531       15701     3938     30009     541.531     307011     541.5318     315041     541.531       15801     3321     301061     541.511     307031     541.5318     315041     541.5161       15801     33303     301031     541.517     306021     541.511     315071     541.5172       16001     3334     301061     541.517     306021     541.5313     316011     541.512	TABLE L. JAN INTEGRATED CIRCUITS AND CIRCUIT-TYPE CROSS-REFERENCE								
NO.     TYPE     NO		JAN	CKT	JAN	СКТ	JAN	СКТ	JAN	СКТ
15401     54120     30002     541803     30502     5418386     312071     5418381       15501     54141     30005     541810     306037     5418396     313071     541831       15501     541471     30006     541812     306647     5418396     313071     541831       156011     54147     30006     541822     306661     5418323     315011     541821       156021     54147     30006     5418373     307011     541839     315031     541821       158021     3321     301011     541873     307011     541839     315041     5418319       158021     3323     301031     541873     307031     5418313     315041     5418319       158021     3323     301031     541873     307031     5418313     315041     5418319       159021     3324     301087     5418375     309014     5418319     315041     5418319       159021     5428     301081     5418375     309014     5418318		/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE
1550     24410     30004     F41.805     306021     F41.8185     313021     F41.818       15503     541421     30006     541.812     306041     541.856     314021     541.812       156021     54148     30007     541.830     306041     541.856     314021     541.821       156021     54148     30007     541.830     306071     541.838     315031     541.831       15801     3338     300009     541.830     306071     541.838     315031     541.816       15801     3321     301014     541.873     307021     541.818     315031     541.816       15801     3302     301021     541.817     307021     541.818     315071     541.818       15801     3323     301021     541.817     309021     541.818     315071     541.818       15801     5422     301071     541.817     309021     541.818     316021     541.818       15901     542837     80100     542.817     30001     541		15401	54120	30002	54LS03	30502	54LS86	312021	54LS283
15503     544/21     30006     54L510     306031     54L595     313031     54L513       156011     54147     30006     54L530     306041     54L595     314021     54L513       156011     53161     30161     54L530     306041     54L535     315031     54L515       15801     9321     301011     54L573     307011     54L5139     315031     54L516       15802     9317     301021     54L573     307011     54L5139     315051     54L516       15802     9302     301031     54L5112     307031     54L513     315061     54L516       158011     9302     301031     54L517     315061     54L516     316011     54L517       152011     5432     301061     54L517     306021     54L5153     316011     54L527       20102     MCM5304     30201     54L517     318011     54L528       20101     MK5207     318011     54L517     318011     54L527       20021     94L		15501	54HU8 54H11	30003	541.505	306021	54LS195	313011	54LS13
isioit     64147     30006     64LS12     306041     54LS164     314011     64LS12       186021     33181     30008     54LS20     306651     54LS138     315011     54LS20       18601     33181     30008     54LS273     307011     54LS38     315011     54LS38       18601     3321     301021     54LS173     307011     54LS183     315041     54LS161       18601     3023     301021     54LS173     307041     54LS42     315665     54LS163       18001     3323     301041     54LS173     307041     54LS42     316601     54LS163       18001     5323     301071     54LS175     306021     54LS157     316011     54LS75       20101     5428     301091     54LS170     309041     54LS173     317011     54LS124       20101     5436     30203     54LS38     309061     54LS253     320001     54LS164       20101     5436     310011     54LS164     310011     54LS174		15503	54H21	30005	54LS10	306031	54LS95	313031	54LS132
16021     64148     30007     64LS20     306051     54LS164     314022     54LS164       156031     33121     301011     54LS22     306051     54LS255     316011     54LS13       156031     3323     301011     54LS12     307011     54LS139     316051     64LS161       156011     5300     301031     54LS12     307031     54LS42     316051     54LS161       159021     5328     301041     54LS114     30601     54LS153     316071     54LS163       161011     5432     301051     54LS174     30601     54LS153     316071     54LS173       20102     MCM5304     301061     54LS173     30601     54LS153     317027     54LS324       20103     IM66334     30100     54LS173     30601     54LS267     316011     54LS216       202017     MS4371(PROM 1024)     30204     54LS27     316011     54LS216     317027     54LS216       203007     554LS261     310001     54LS216     310001		156011	54147	30006	54LS12	306041	54LS96	31401†	54LS123
16037     93181     30008     941827     30007     9418399     318011     9418399       15601     9321     301021     541873     307015     5418183     315041     5418161       15601     9300     301031     5418112     307021     5418142     315665     5418163       159011     9323     301041     5418113     316041     54181513     316011     54181513       16001     9323     301041     5418113     316011     54181513     316011     5418157       16001     5423     301091     5418175     309021     5418157     316011     5418175       20101     5426     MCM53041     30201     541838     309061     54182573     310011     5418124       202011     54381//PROM 1024     30201     541838     309061     5418253     320001     5418186       230011     5484817     30202     541838     309061     5418253     320001     541816       230011     55418301     30402     541838		156021	54148	30007	54LS20	306051	54LS164	31402†	54LS221
15001     3321     301011     54L373     307011     54L3139     315031     54L316       15802     9317     301021     54L312     307021     54L3139     315041     54L316       159021     9328     301041     54L3113     307041     54L347     315061     54L316       159021     9328     301041     54L313     307041     54L313     315011     54L316       15101     54138     301061     54L3175     306021     54L3153     315011     54L3175       20102     MCM5304     301081     54L3107     309031     54L3158     315011     54L3175       202011     54L387     302031     54L323     309041     54L3158     315011     54L3261       202021     Mc6337     MAM     302031     54L3281     309095     54L3257     318011     54L3261       230021     MS4050 (4K RAM)     30303     54L3263     31002     54L313     32023     54L3283     32030     54L3283     310201     54L3283     32101255		156031	9318‡	30008	54LS22	306061	54L5295	315017	541.590
15802     9377     301021     54L574     307021     54L512     307021     54L542     315041     54L515       159017     9328     301041     54L5113     307041     54L542     315061     54L515       16001     9334     301061     54L5114     30601     54L5181     315061     54L5175       161011     5433     301061     54L5174     30601     54L5157     315061     54L5172       20101     MCM53041     301061     54L5167     306061     54L5151     315061     54L512       20102     MCM53041     301061     54L576     306061     54L5251     317011     54L532       202021     M5633     30202     54L533     306061     54L5258     31901     54L587       230011     551L726 FAMM     30302     54L532     31002     54L515     32001     54L527       230011     554L502     31003     54L527     31003     54L527     32001     54L522       235031     MM56064K RAM     30302		15801	9321	301011	541 \$73	307011	54LS138	315031	54LS160
159011     9300     301031     54L.S112     307031     54L.S42     315051     54L.S161       159021     9328     301041     54L.S113     307041     54L.S13     315061     54L.S113       161011     5423     301061     54L.S114     308011     54L.S153     315061     54L.S113       162011     54268 (PROM 512)     301061     54L.S107     308011     54L.S158     311001     54L.S127       20102     MCM5304     30100     54L.S107     309061     54L.S158     311011     54L.S261       202011     S45337 (PROM 1024)     30201     54L.S183     309061     54L.S253     32001     54L.S188       230011     S54LS267     316001     54L.S263     32002     54L.S198       230011     S54LS47     31002     54L.S198     32002     54L.S198       230011     S54LS47     31002     54L.S198     32001     54L.S283       33001     S44LS261     31002     54L.S283     32001     54L.S283       33001     S44LS01		15802	9317	301021	54LS74	307021	54LS139	315041	54LS161
19902r     9328     30104r     54L S113     30704r     54L-S47     31506r     54L S181       16001r     5434     30107r     54L S114     3001r     54L S181     31507r     54L S181       16001r     5436     30107r     54L S175     30002r     54L S157     31601r     54L S175     31602r     54L S177       20101     54168     76008r     54L S107     30093r     54L S157     31602r     54L S127       20102     MCMS304t     30109r     54L S163     30906r     54L S258     31901r     54L S42       202021r     1545387     71002r     54L S27     310001     54L S283     30906r     54L S278     31901r     54L S670       235017     TMS4060 (4K RAM)     30302     54L S27     31002     54L S13     32001     54L S28     32010     54L S28     32010     54L S28     32001     54L S22     32501     54L S20     32001     54L S22     32501     54L S22     32501     54L S22     32501     54L S22     32001     54L S22		15901†	9300	301031	54LS112	307031	54LS42	31505†	54LS168
10011     3434     30100     544,511     30001     544,513     31000     544,515       162011     5428     30107     544,5175     306021     544,5153     316017     544,5175       20101     5418 (PROM 512)     301081     544,5173     316017     544,5175       20102     MCMS304     301091     544,5176     309061     544,5151     317021     544,5312       202011     54387 (PROM 1024)     30202     544,537     309061     544,5251     318011     544,5261       230011     5541,256 RAM     30202     544,537     309061     544,5233     32001     544,519       230011     5541,626 RAM     30302     544,523     31001     544,5233     32001     544,519       230011     544,844     74001     544,511     32004     544,523       23504     TMS4050 (4K RAM)     30302     544,523     31001     544,523       30001     544,503     312011     544,523     32102     544,523       30001     544,503 <t< td=""><td></td><td>159021</td><td>9328</td><td>301041</td><td>54LS113</td><td>307041</td><td>54LS47</td><td>315061</td><td>54LS169</td></t<>		159021	9328	301041	54LS113	307041	54LS47	315061	54LS169
112011     5428     20107     54LS175     20002     54LS157     316011     54LS77       20101     S4186 (PROM 512)     301081     54LS107     306031     54LS157     316021     54LS372       20102     MCMS3041     301091     54LS163     309061     54LS251     317021     54LS324       202017     54S337 (PROM 1024)     30201     54LS38     309071     54LS253     32001     54LS172       230021     53410 (256 RAM)     30204     54LS38     309071     54LS258     32002     54LS173       230021     53410 (256 RAM)     30302     54LS173     31002     54LS173     32002     54LS173       235031     TMS4060 (4K RAM)     30302     54LS154     31004     54LS173     32101     54LS22       235031     TMS4050 (4K RAM)     30401     54LS154     31101     54LS184     32102     54LS22       30001     54LS10     310011     54LS254     42001     8080A       30001     54LS10     310011     54LS251     32101		16001	9334	301051	5415114	30801	5415151	315071	5415192
20101     54186 (PROM 512)     301081     54L:S109     300041     54L:S157     316021     54L:S124       20102     MCM5304     3011091     54L:S16     309061     54L:S158     317011     54L:S124       202011     S4337 (PROM 1024)     30201     54L:S37     309061     54L:S257     318011     54L:S261       230011     S531 (256 RAM)     30203     54L:S38     309061     54L:S283     32001     54L:S18       230011     S531 (256 RAM)     30203     54L:S38     309061     54L:S283     32002     54L:S18       235021     TMS4060 (4K RAM)     30303     54L:S26     31003     54L:S28     32102     54L:S28       30001     54L:S00     30401     54L:S13     31101     54L:S26     31003     54L:S26     30001     54L:S26     31001     54L:S26     30001     54L:S26     30001     54L:S26     31001     54L:S26     30001     54L:S26     30001     54L:S26     30001     54L:S26     30001     54L:S26     30001     54L:S26     30001		162011	5428	301071	54LS175	309021	54LS153	31601†	54LS75
20102 20103     MCM3304‡ MK603A     30109 3010     54LS169 54LS27     300904† 30005     64LS251     317021     54LS32 54LS26       202017     54S37(PROM 1024)     30201     54LS40     309007     64LS263     318011     54LS26       202021     M6623     Santo     30201     54LS37     309007     54LS268     31901     54LS268       203001     FMS400     FALS28     309007     54LS163     32003     54LS27       235017     TMS4060 (4K RAM)     30302     54LS27     31002     54LS13     32003     54LS22       23501     TMS4060 (4K RAM)     30401     54LS26     31001     54LS21     32101     54LS22       30001     54LS02     312011     54LS26     31201     54LS22     31201     54LS22       30001     54LS03     312011     54LS28     42001     8000     8000       30001     54LS03     312011     54LS28     312011     54LS28     31201       2112     INTSCRUTTYPE AND AN INTEGRATED CIRCUITS CROSA REFERENCE     CKT     JAN </td <td></td> <td>20101</td> <td>54186 (PROM 512)</td> <td>30108†</td> <td>54LS107</td> <td>30903†</td> <td>54LS157</td> <td>316021</td> <td>54LS279</td>		20101	54186 (PROM 512)	30108†	54LS107	30903†	54LS157	316021	54LS279
201031     IM5603A     30110     54L526     317021     54L5251     317021     54L5242       202011     54L532     30201     54L532     3030071     54L5253     318011     54L5670       230011     5511 (22618     31201     54L523     300071     54L5253     318011     54L5670       235011     TM54060 (4K RAM)     30302     54L522     31001     54L5231     32003     54L5232       23503     TM54060 (4K RAM)     30302     54L521     32101     54L522       30001     54L500     30401     54L523     312011     54L523       30001     54L500     30402     54L532     312011     54L523       30001     54L500     30401     52111     10304     54L513     313011       L12101A     10105     3018A     10801     52111     10304     54L513     313011       L12101A     10106     3045     10801     52111     10302     54L513     31002       L12101A     10105     3018A     10		20102	MCM5304 ‡	301091	54LS109	309041	54LS158	31701†	54LS124
ZU2011     States     States<		201031	IM5603A	30110	54LS76	309051	54LS251	317021	54LS324
230011     E531 (256 RAM)     30204     54L538     306061     54L5253     32001     54L5196       230021     93410 (256 RAM)     303024     54L520     31001     54L511     32003     54L5293       235021     TMS4050 (4K RAM)     30302     54L527     31002     54L515     32004     54L523       23503     TMS4050 (4K RAM)     30302     54L5266     31003     54L521     32101     54L522       30001     54L500     30401     54L524     31101     54L585     40001     6800       30501     54L520     312011     54L584     31101     54L585     40001     6800       30501     54L532     312011     54L533     313014     10805     42001     8000       LH2101A     10105     3018A     10601     52111     10304     54L513     313014       LH2101A     10105     3018A     10601     52111     10302     54L513     313014       LH2105A     10101     54051     10007     4002A     6		202011	1M5623	30201	541 537	309071	54L S258	31901	541 5670
230021     93410 (256 RAM)     30204     54L528     30009     54L5286     32002     54L5290       235017     TMS4060 (4K RAM)     30301     54L527     31002     54L515     32004     54L5292       23503     TMS4060 (4K RAM)     30302     54L526     31003     54L508     32102     54L522       23504     TMS4060 (4K RAM)     30402     54L532     312011     54L538     40001     6800       30001     54L502     312011     54L533A     42001     8080A       TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT     JAN		230011	5531 (256 RAM)	30203	54LS38	309081	54LS253	32001	54LS196
235011     TMS4060 (4K RAM)     30301     54LS202     31001     54LS11     32003     54LS233       23503     TMS4060 (4K RAM)     30302     54LS266     31003     54LS21     32101     54LS233       23504     TMS4050 (4K RAM)     30401     54LS54     31101     54LS83     40001     8800       30601     54LS23     312011     54LS83     40001     8800       TABLE II. CIRCUIT.TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT     JAN		230021	93410 (256 RAM)	30204	54LS28	30909	54LS298	32002	54LS197
23b02T     TMS4050 (4K RAM)     30302     54L526     31002     54L521     32101     54L522       23b04     TMS4050 (4K RAM)     30401     54L526     31004     54L508     32102     54L522       30001     54L500     31001     54L508     31001     54L508     42001     8080A       30001     54L502     312011     54L538     42001     8080A       TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT JAN CKT JAN CKT JAN CKT JAN       TYPE /NO.       LH12108A     10106     30485     108012     52118     10107     54L513     313021       LM140-12     10702t     4001A     05202     52556     109011     54L522     32102       LM140-24     10704t     4002A     05201     52711     10301     54L526     33102       LM140-24     10704t     4002A     05501     52723     10201		23501†	TMS4060 (4K RAM)	30301	54LS02	31001	54LS11	32003	54LS290
23500 30001     TMISAUED (TK RAW) 54LS00     30401 30401     54LS50 54LS54     31101 3101     54LS08 54LS58     32102 40001     6800 6800       TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT     JAN		235021	TMS4050 (4K HAM)	30302	541527	31002	54LS15	32004	54LS293
50001     54LS00     30402     54LS54     31101     54LS83     42001     6800       TABLE II. CIRCUIT.TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT     JAN     CKT		23503	TMS4050 (4K BAM)	30401	54LS51	31003	54LS08	32102	54LS26
30501     54LS32     312011     54LS3A     42001     8080A       TABLE II. CIRCUIT.TYPE AND AN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT     JAN     CKT     JAN     CKT     JAN       TYPE     /NO.     TYPE     /NO.     TYPE     /NO.     TYPE     /NO.     TYPE     /NO.       LH2101A     10105     3016A     10801     52111     10304     54LS14     313017       LM140-12     10001     4000A     05201     52555     109017     54LS14     31002       LM140-15     107031     4002A     05203     52710     10301     54LS21     31003       LM140-24     107041     4006A     05701     52723     10201     54LS22     32101       MH0026     03501     4407A     05301     52741     10101     54LS23     30204       TM54050     23504 (4K RAMI)     4009A     05501     52741     10101     54LS23     30204       TM54050     23504 (4K RAMI)     4014A     05002     <		30001	54LS00	30402	54LS54	31101	54LS85	40001	6800
TABLE II. CIRCUIT-TYPE AND JAN INTEGRATED CIRCUITS CROSS-REFERENCE       CKT     JAN     CKT     JAN     CKT     JAN       TYPE     /NO.     TYPE     /NO.     CKT     JAN       LH2101A     10105     3018A     10801     52111     10304     54LS13     313011       LH2108A     10106     3045     10801     52118     10107     54LS13     313021       LM102     10601     4000A     05201     52556     109021     54LS20     30007       LM140-15     107031     4002A     05203     52710     10301     54LS21     310031       LM140-24     107041     4002A     05501     52733     105011     54LS26     321021       MH0026     23501 (4k RAM)     4009A     05501     52741     10101     54LS28     30204       TMS4050     23501 (4k RAM)     4013A     05101     54H33     30201       TMS4060     235031 (4k RAM)     4013A     05101     54H33     30201       TMS4060     2				30501	54LS32	31201†	54LS83A	42001	8080A
CKT     JAN     CKT     JAN     CKT     JAN     CKT     JAN       TYPE     /NO.     TYPE     /NO.     TYPE     /NO.     TYPE     /NO.       LH2101A     10106     3018A     10802     52111     10304     54LS13     313011       LH120     10601     4000A     05201     52555     199011     54LS14     313021       LM140-12     107021     4001A     05202     52555     199011     54LS21     310031       LM140-24     107041     4006A     05701     52711     10301     54LS22     32101       MCM53044     20102     4007A     05301     52723     10201     54LS22     303021       TMS4050     23502 (4K RAM)     4010A     05502     54H01     02306     54LS37     30202       TMS4050     23503 (4K RAM)     4012A     05002     54H04     02305     54LS37     30202       TMS4060     23501 (4K RAM)     4012A     05002     54H04     02305     54LS37 <td< td=""><td></td><td></td><td>TABLE II. CI</td><td>RCUIT.TYPE</td><td>AND JAN INTEGRA</td><td>TED CIRCU</td><td>ITS CROSS-REFER</td><td>ENCE</td><td></td></td<>			TABLE II. CI	RCUIT.TYPE	AND JAN INTEGRA	TED CIRCU	ITS CROSS-REFER	ENCE	
TYPE     /NO.     TYPE     /NO.     TYPE     /NO.     TYPE     /NO.       LH2101A     10106     3018A     10802     52111     10304     54LS13     313011       LM102     10601     4000A     05201     52555     109011     54LS14     313021       LM140-12     10702+     4001A     05202     52555     109011     54LS22     30007       LM140-15     10703+     4002A     05203     52710     10301     54LS22     310031       LM140-24     10704+     4006A     05701     52733     10201     54LS22     30204       MCM53044     20102     4007A     05502     52741     10101     54LS28     30204       TMS4050     23504     4K <rami< td="">     4010A     05502     54H00     02306     54LS38     30203       TMS4050     23503 (4K RAMI     4013A     05101     54H08     02305     54LS43     30203       TMS4050     23503 (4K RAMI     4013A     05102     54H410     02303<td></td><td>СКТ</td><td>JAN</td><td>СКТ</td><td>JAN</td><td>СКТ</td><td>JAN</td><td>СКТ</td><td>JAN</td></rami<>		СКТ	JAN	СКТ	JAN	СКТ	JAN	СКТ	JAN
LH2101A 10105 3018A 10801 52111 10304 54LS13 31301† LH2108A 10106 3045 10802 52118 10107 54LS14 31302† LM102 10601 4000A 05201 52555 10901† 54LS15 31002 LM140-15 10703† 4002A 05203 52710 10301 54LS21 31003 LM140-24 10704† 4002A 05203 52711 10302 54LS22 32101 MCM5304‡ 20102 4007A 05301 52723 10201 54LS26 32102 MH0026 03501 4009A 05501 52731 10201 54LS28 30204 TMS4050 23502 (4K RAM) 4009A 05501 52741 10101 54LS28 30204 TMS4050 23501 (4K RAM) 4010A 05502 54H00 02304 54LS32 30501 TMS4060 23501 (4K RAM) 4011A 05502 54H04 02306 54LS32 30501 TMS4060 23501 (4K RAM) 4013A 05101 54H01 02306 54LS32 30501 TMS4060 23501 (4K RAM) 4013A 05101 54H01 02306 54LS32 30203 1M5603A 201031 4013A 05101 54H04 02305 54LS37 30202 1M5603 20103 4013A 05101 54H04 02305 54LS37 30202 1M5603 20103 4013A 05101 54H04 02305 54LS37 30202 1M5602 20103 4013A 05101 54H04 02305 54LS37 30202 1M5603 20103 4013A 05101 54H08 05302 54LS42 307031 10501 06001 4016A 05703 54H11 002303 54LS41 307031 105054 06002 4017A 05601 54H21 02307 54LS42 307031 105054 06002 4017A 05601 54H21 02307 54LS42 307031 105055 06003 4019A 05302 54H30 02301 54LS51 30401 105054 06004 4020A 05603 54H40 02301 54LS73 30101† 105055 06003 4019A 05302 54H30 02301 54LS73 30101† 105071 06005 40221A 05704 54H50 04001 54LS77 316011† 105071 06005 4022A 05603 54H50 04003 54LS83 31201 105531 06101 4022A 05603 54H51 04002 54LS87 30101† 105074 06006 4022A 05603 54H50 04001 54LS77 316011† 105075 06006 4022A 05603 54H50 04001 54LS77 316011† 105074 06005 4022A 05603 54H50 04001 54LS75 316011† 105764 06101 4023A 05605 54H50 04003 54LS83 31201 105531 06104 4024A 05605 54H50 04002 54LS86 30502 106314 06102 4027A 05102 54H50 04005 54LS86 30502 10631 10613 4025A 05505 54H101 02205 54LS13 31001† 15936 03003 4044A 05706† 54H70 02204 54LS96 30604† 15936 03003 54U50A 05505 54H101 02205 54LS13 31001† 15948 03302 52106 10203 54LS		TYPE	/NO.	TYPE	/NO.	TYPE	/NO.	TYPE	/NO.
LH102 1060 3045 10802 5218 10107 54LS14 31302T LM140-12 10702+ 4001A 05202 52556 10902+ 54LS20 30007 LM140-15 10703+ 4002A 05203 52710 10301 54LS21 31003 LM140-24 10704+ 4006A 05701 52733 10201 54LS22 32101 MCM5304; 20102 4007A 05301 52723 10201 54LS22 32102 MH0026 03501 4006A 05501 52733 10501+ 54LS27 30302+ TMS4050 23502 (4K RAM) 4010A 05502 54H00 02304 54LS33 30209 TMS4050 23503 (4K RAM) 4010A 05502 54H01 02306 54LS33 30209 TMS4050 23503 (4K RAM) 4011A 05001 54H01 02306 54LS33 30209 TMS4050 23503 (4K RAM) 4012A 05002 54H01 02306 54LS33 30209 TMS4050 23503 (4K RAM) 4012A 05002 54H04 02305 54LS37 30202 1M5603A 20103+ 4014A 05702 54H01 02303 54LS40 30201 1M5603A 20103+ 4014A 05702 54H11 15502 54LS43 30203 1M5603 2002+ 4015A 05702 54H11 15502 54LS47 30704† 10501 05001 4016A 05602 54H21 15503 54LS37 30202 1M5600 24003 4013A 05101 54H21 15503 54LS47 30704† 10504 06201+ 4016A 05602 54H21 15503 54LS54 30402 10505 06005 4022A 05603 54H30 02301 54LS47 30101† 10506 05002 4022A 05603 54H40 02401 54L574 30102† 10507 06005 4022A 05603 54H50 04001 54L574 30102† 10507 06005 4022A 05603 54H50 04003 54LS54 30101† 10508 06101 4022A 05605 54H50 04004 54L576 301101 10531 06101 4022A 05605 54H50 04003 54LS83 31201 10531 06101 4022A 05605 54H50 04004 54LS76 30101† 10509 06006 4022A 05603 54H410 02201 54LS76 30101† 10509 06100 4022A 05605 54H50 04004 54LS86 30502 10631 06101 4023A 05605 54H50 04005 54LS88 30502 10631 06104 4024A 05605 54H50 04004 54LS88 306031 15930 03001 4030A 05705† 54H70 02201 54LS18 306031 15931 06104 4024A 05605 54H50 04005 54LS88 306031 15936 03003 4041A 05705 54H73 02202 54LS89 316011 15936 03003 4041A 05705 54H50 04005 54LS88 306031 15936 03003 4041A 05705 54H310 02205 54LS109 301091 15948 03300 254LS12 310001 54		LH2101A	10105	3018A	10801	52111	10304	54LS13	31301†
Linitabiliz     10702+ 10702+     4001A 4001A     05502 05202     52256 10802+ 52710     10802+ 10801     54L520 54L520     30007 30007       Linitabiliz     10704+ 4000A     4007A     05501     52711     10301     54L521     310031       MCM5304; MH0026     23501     4007A     05301     52723     10201     54L522     32102       MH0026     03501     527231     10601+     54L526     32002     4407A     05301     527231     10601+     54L527     30302+       MH0026     23501 (4K RAM)     4008A     05501     52741     10101     54L528     30204       TMS4050     23501 (4K RAM)     4011A     05001     54H01     02305     54L537     30203       IM5602     20103     4013A     05101     54H04     02305     54L537     30203       IM5602A     20103     4013A     05101     54H10     02303     54L541     307031       IM5602A     20103     4013A     05101     54H21     02302     54L541     307031 <td></td> <td>LM102</td> <td>10601</td> <td>3045</td> <td>05201</td> <td>52555</td> <td>10107</td> <td>54L514</td> <td>313021</td>		LM102	10601	3045	05201	52555	10107	54L514	313021
LM140-15     10703†     4002A     05203     52710     10301     54L521     31003       LM140-24     10704†     4006A     65701     527111     10302     54L522     32101       MCM5304‡     20102     4007A     65301     52723     10501     54L526     32102       MH0026     03501     4008A     05501     52731     105011     54L528     30204       TMS4050     23504 (4k RAM)     4010A     05502     54H00     02304     54L532     302091       TMS4050     23501 (4k RAM)     4011A     05501     54H01     02306     54L532     302031       TMS4050     23503 (4k RAM)     4013A     05101     54H04     02305     54L537     30203       TMS603A     201031     4013A     05101     54H04     02305     54L531     30203       1M5603A     202021     4015A     05703     54H11     02305     54L51     307031       10501     06001     4015A     05703     54H22     02307		LM140-12	10702†	4001A	05202	52556	109021	54LS20	30007
LM140-24     10704†     4006A     05701     52711     10302     54L522     32101       MCM50304     20102     4007A     05301     52723     10201     54L526     32102       MH0026     03501     4008A     05401     52733     105011     54L527     303021       TMS4050     23502 (4K RAM)     4010A     05502     54H01     02304     54L530     300091       TMS4060     23501 (4K RAM)     4011A     05002     54H01     02306     54L533     30202       IM5600     20103     4013A     05101     54H04     02305     54L543     30203       1M5603     201031     4014A     05702     54H11     15502     54L542     307031       1M5623     202021     4015A     05702     54H21     15503     54L541     30401       10501 ±     06001     4016A     05602     54H21     15503     54L541     304021       10502 ±     06002     4017A     05601     54H21     15503     54L54		LM140-15	10703†	4002A	05203	52710	10301	54LS21	31003
MICH03204;     20102     4007A     05301     52/23     10201     54L526     32102       MH0026     03501     03501     52733     105011     54L526     303021       TMSA050     23502 (4K RAM)     4008A     05501     52741     10101     54L528     303021       TMSA050     23504 (4K RAM)     4010A     05502     54H01     02304     54L533     30501       TMSA050     23503 (4K RAM)     4013A     05001     54H04     02305     54L533     30203       1M5603A     201031     4013A     05101     54H04     02303     54L543     307031       1M5602A     201031     4015A     05703     54H11     02302     54L542     307031       10501     06001     4015A     05703     54H21     02307     54L542     307031       10504     06002     4017A     05601     54H21     02307     54L541     30402       10505     06004     4020A     05603     54H40     02401     54L573     <		LM140-24	107041	4006A	05701	52711	10302	54LS22	32101
Introlyze     Oscial     Strat     Introlyze     Strat     Introlyze     Strat     Stra     Stra <t< td=""><td></td><td>MCM53041 MH0026</td><td>20102</td><td>4007A</td><td>05301</td><td>52/23</td><td>10201</td><td>54LS26</td><td>32102</td></t<>		MCM53041 MH0026	20102	4007A	05301	52/23	10201	54LS26	32102
TMSA050     23504     (ak RAM)     4010A     05502     54H00     02304     54LS30     30009t       TMSA060     23501 (ak RAM)     4011A     05001     54H01     02306     54LS37     30202       IMS600     20103     4013A     05101     54H04     02305     54LS37     30202       IMS600     20103     4013A     05101     54H08     15551     54LS37     30202       IMS603     20103t     4014A     05702     54H11     15502     54LS42     30703t       10901     4016A     05702     54H11     15503     54LS41     30703t       10901     4016A     05801t     54H21     02302     54LS41     30703t       10901     4016A     05801t     54H21     02307     54LS41     30401       10902     06002     4017A     05601     54H32     02307     54LS41     30402       10905t     06003     4019A     05302     54H30     02301     54LS73     30101       10		TMS4050	23502 (4K BAM)	4009A	05501	52741	10101	541 528	30204
TMS4060     23501 (4K RAM)     4011A     05001     54H01     02306     54L332     30501       TMS4060     23503 (4K RAM)     4013A     05101     54H04     02305     54L337     30202       1M5603     20103     4013A     05101     54H04     02305     54L337     30202       1M5603     201031     4013A     05703     54H110     02303     54L342     307031       10501     06001     4016A     05801     54H21     02302     54L547     307041       10504     06001     4017A     05601     54H21     02307     54L551     30401       10505     06003     4019A     05302     54H30     02301     54L573     301011       10506     06006     4021A     05704     54H50     04001     54L575     316011       105051     06104     4022A     05003     54H54     04004     54L586     30502       105314     06101     4022A     05005     54H54     04004     54L586		TMS4050	23504 (4K RAM)	4010A	05502	54H00	02304	54LS30	300091
TMS4060     23503 (4K HAM)     4012A     05002     54H04     02305     54LS37     30202       1M5600     20103 +     4013A     05101     54H04     02305     54LS33     30203       1M5603A     20103 +     4014A     05702     54H110     15502     54LS40     30201       1M5603A     20202 +     4015A     05703     54H111     15502     54LS47     30704 +       10501 +     06001     4016A     05801 +     54H21     15503     54LS47     30401       10502 +     06002     4017A     05601     54H21     15503     54LS54     30402       10504     06201 +     4018A     05602     54H22     02307     54LS54     30401       10506 +     06004     4020A     05603     54H40     02401     54LS74     30101 +       10507 +     06006     4022A     05604     54H51     04002     54LS85     31101       10531 +     06101     4024A     05605     54H54     04004     54LS858		TMS4060	23501 (4K RAM)	4011A	05001	54H01	02306	54LS32	30501
Iniseduo     20103     4013A     05101     54103     54133     30203       IM5603A     201031     4014A     05702     544110     02303     541543     30201       IM56023     202021     4015A     05703     544110     02302     541544     307031       108017     06001     4016A     058011     544120     02302     541547     307041       108021     06002     4017A     05601     54421     15503     541551     30401       10804     062011     4018A     05602     54422     02307     541551     30401       10806     06003     4019A     05302     54430     02301     54157     310111       108061     06006     4022A     05604     54450     04001     54157     316011       108051     06006     4022A     05605     544450     04003     541583     301201       108311     06101     4022A     05605     544450     04004     541586     305021		TMS4060	23503 (4K RAM)	4012A	05002	54H04	02305	54LS37	30202
IMBER23     202021     4015A     05703     54H11     15502     54L842     307031       105011     06001     4016A     058011     54H12     02302     54L847     307041       105021     06002     4017A     05601     54H21     15503     54L851     30401       10504     06201     4018A     05601     54H22     02307     54L854     30402       10505     06003     4019A     05302     54H30     02301     54L857     301011       105061     06005     4021A     05704     54H50     04001     54L575     316011       105051     06006     4022A     05603     54H54     04003     54L833A     31201       105315     06101     4023A     05605     54H54     04004     54L886     30502       106331     06103     4022A     05604     54H54     04004     54L886     30501       106341     06104     4024A     05605     54H472     02201     54L886     30501 <td></td> <td>1056034</td> <td>20103</td> <td>40134</td> <td>05702</td> <td>54H10</td> <td>02303</td> <td>541.536</td> <td>30203</td>		1056034	20103	40134	05702	54H10	02303	541.536	30203
105011     06001     4016A     058011     54H20     02302     54L847     307041       105021     06002     4017A     05601     54H21     15503     54L854     30401       10504     062011     4018A     05602     54H22     02307     54L854     30402       105064     06004     4020A     05603     54H40     02301     54L874     301011       105064     06004     4020A     05603     54H40     02401     54L874     301011       105071     06006     4022A     05604     54H50     04000     54L876     301011       105351     06104     4022A     05605     54H53     04004     54L885     31101       105351     06103     4025A     05204     54H55     04005     54L886     30502       106311     06102     4027A     05102     54H72     02201     54L893     315011       105362     03001     4030A     05303     54H74     02203     54L896     306031 <td></td> <td>1M5623</td> <td>20202†</td> <td>4015A</td> <td>05703</td> <td>54H11</td> <td>15502</td> <td>54LS42</td> <td>30703†</td>		1M5623	20202†	4015A	05703	54H11	15502	54LS42	30703†
105021     06002     4017A     05601     54H21     15503     54L551     30401       10504     06201+     4019A     05601     54H21     15503     54L551     30402       10505     06003     4019A     05302     54H30     02301     54L573     30101+       10506     06005     4021A     05704     54H40     02401     54L573     30101+       105061     06006     4022A     05604     54H51     04001     54L575     31601+       105031     06101     4022A     05603     54H54     04003     54L5883A     31201       105354     06104     4022A     05605     54H54     04004     54L586     30502       106314     06102     4027A     05102     54H54     04005     54L586     30502       108314     06102     4027A     05102     54H72     02201     54L593     31501+       10833     03101     4030A     05303     54H74     02202     54L595     30603+		10501‡	06001	4016A	05801†	54H20	02302	54LS47	30704†
IUS04     UB24     US04     UB22     D4122     D2307     D41254     304022       10805     06004     4019A     05802     D4130     02301     54L534     301011       10505     06004     4020A     05603     54H40     02401     54L573     301011       10505     06006     4022A     05604     54H50     04001     54L576     301101       10531     06104     4022A     05604     54H51     04002     54L583     31201       10535     06104     4022A     05605     54H54     04004     54L585     315021       10576     06102     4027A     05102     54H73     02202     54L596     306031       15930     03001     4030A     05705     54H73     02202     54L595     306031       15935     03002     4035A     05707     54H76     02204     54L595     306031       15936     03003     4041A     05505     54H710     02205     54L5107     301081 </td <td></td> <td>10502‡</td> <td>06002</td> <td>4017A</td> <td>05601</td> <td>54H21</td> <td>15503</td> <td>54LS51</td> <td>30401</td>		10502‡	06002	4017A	05601	54H21	15503	54LS51	30401
105061     06004     4020A     05603     54H40     02401     54L574     301021       105071     06005     4021A     05704     54H50     04001     54L574     316011       105071     06005     4022A     05604     54H50     04001     54L576     316011       105311     06101     4022A     05605     54H53     04002     54L583     31201       105351     06104     4024A     05605     54H54     04004     54L583     31501       106311     06102     4025A     05204     54H55     04005     54L586     30602       108317     06102     4027A     05102     54H72     02201     54L586     30502       108317     06102     4027A     05102     54H74     02202     54L583     315011       15930     03001     4030A     05303     54H74     02203     54L596     306031       15935     03002     4034A     057061     54H74     02205     54L5107     301091 <td></td> <td>10504</td> <td>06003</td> <td>4018A 4019A</td> <td>05602</td> <td>54H22</td> <td>02307</td> <td>54L554 54L573</td> <td>30402</td>		10504	06003	4018A 4019A	05602	54H22	02307	54L554 54L573	30402
10507 i     06005     4021A     05704     54H50     04001     54L575     316011       10509 i     06006     4022A     05604     54H51     04002     54L576     30110       10531 i     06101     4022A     05603     54H53     04003     54L583     31201       10535 i     06104     4024A     05605     54H54     04004     54L586     30100       10635 i     06103     4025A     05204     54H54     04005     54L586     30502       10631 i     06102     4027A     05102     54H72     02201     54L586     30501       10631 i     06102     4027A     05102     54H74     02202     54L593     315011       15930     03001     4030A     05706 i     54H74     02202     54L596     306041       15935     03002     4034A     05706 i     54H70     02205     54L5107     301081       15936     03003     4041A     05505     54H101     02205     54L510     3		10506±	06004	4020A	05603	54H40	02401	54LS74	301021
105091     06006     4022A     05604     54451     04002     54L576     30110       105314     06101     4023A     05603     54453     04003     54L583A     31201       105354     06104     4024A     05605     54455     04004     54L583A     31201       105764     06102     4027A     05102     54472     02201     54L596     30502       106764     06102     4027A     05102     54473     02202     54L593     315021       15930     03001     4030A     05705     54473     02202     54L593     306031       15935     03002     4035A     057075     54476     02204     54L595     306031       15935     03002     4035A     057071     544170     02205     54L5107     301081       15936     03003     4041A     05505     544103     02206     54L5109     301091       15946     03301     4050A     05504     54L503     30001     54L5113     30104		10507‡	06005	4021A	05704	54H50	04001	54LS75	31601†
ID331     OBIO1     4023A     OBO33     O4033     O4034     O5102     O4044     O41303     O4033     O4133     O4133     O4133 <t< td=""><td></td><td>10509‡</td><td>06006</td><td>4022A</td><td>05604</td><td>54H51</td><td>04002</td><td>54LS76</td><td>30110</td></t<>		10509‡	06006	4022A	05604	54H51	04002	54LS76	30110
105761     06103     4025A     05204     544156     04005     54L586     30502       105761     06102     4027A     05102     544172     02201     54L586     30502       105761     06102     4027A     05102     544173     02202     54L586     30502       15930     03001     4030A     05303     544173     02202     54L593     306031       15932     03101     4031A     05705     544174     02203     54L595     306031       15935     03002     4035A     05707     544176     02204     54L5107     301081       15936     03002     4035A     057071     5441103     02205     54L5107     301081       15936     03002     4049A     05503     54L500     30001     54L5112     301031       15946     03004     52101A     10103     54L503     30002     54L5113     301051       15948     03303     52104     102021     54L503     30004     54L5123     <		105311	06104	4023A	05605	54H53	04003	54L 585	31201
10631 15930     06102     4027A     05102     54472     02201     54L590     315011       15930     03001     4030A     05303     54473     02202     54L593     315021       15932     03101     4031A     05705     54476     02203     54L595     306031       15933     03105     4034A     057065     54476     02204     54L596     306041       15935     03002     4035A     057071     5441101     02205     54L5107     301081       15936     03003     4041A     05505     5441101     02205     54L5109     301091       15946     03301     4045A     05505     544103     02006     54L5119     301091       15946     03301     4045A     05503     54L500     30001     54L5113     301041       15945     03301     40450A     05504     54L503     30002     54L5113     301041       15946     03302     52104     102021     54L505     30003     54L5123		10576±	06103	4025A	05204	54H55	04005	54LS86	30502
15930     03001     4030A     05303     54H73     02202     54L593     31502†       15932     03101     4031A     05706     54H74     02203     54L595     30603†       15933     03105     4034A     05706†     54H74     02204     54L596     30603†       15935     03002     4035A     05706†     54H101     02205     54L5107     30108†       15936     03003     4041A     05505     54H103     02206     54L5109     30109†       15944     03102     4049A     05503     54L500*     30001     54L5113     30104†       15945     03301     4050A     05504     54L503     30002     54L5113     30104†       15946     03302     52104     10202†     54L506     30003     54L5123     31401†       15956     03303     52106     10303     54L506     30004     54L5123     31301†       15956     03304     52106     10303     54L506     30004     54L5132 <t< td=""><td></td><td>10631</td><td>06102</td><td>4027A</td><td>05102</td><td>54H 72</td><td>02201</td><td>54LS90</td><td>31501†</td></t<>		10631	06102	4027A	05102	54H 72	02201	54LS90	31501†
15932     03101     4031A     05/05     54H /4     02203     54LS95     306031       15933     03105     4034A     65706*     54H /76     02204     54LS95     30604*       15935     03002     4035A     65707*     54H 101     02205     54LS107     30108*       15936     03002     4041A     65505     54H 103     02206     54LS107     30109*       15944     03102     4049A     05503     54LS02     30301     54LS112     30103*       15946     03304     52101A     10103     54LS03     30002     54LS112     30109*       15946     03302     52104     10202*     54LS03     30004     54LS123     31401*       15946     03303     52105     10203*     54LS05     30004     54LS123     31401*       15956     03303     52106*     10203*     54LS05     30004     54LS123     3133*       15957     03103     52106*     10203*     54LS05     30004     54LS132		15930	03001	4030A	05303	54H73	02202	54LS93	31502†
10333     03102     40384A     037051     54176     02204     54L5195     300041       15935     03002     4035A     057071     5441101     02205     54L5107     301081       15936     03003     4041A     08505     544103     02206     54L5107     301081       15944     03102     4049A     05503     54L500'     30001     54L5113     301041       15945     03301     4050A     05504     54L503     30002     54L5113     301041       15946     03302     52104     102021     54L503     30002     54L5123     310011       15948     03303     52106     102031     54L506     30004     54L5123     310011       15951     03201     52106     10303     54L506     30004     54L5123     313031       15957     03103     52108     10104     54L510     30005     54L5132     313031       15957     03104     52109     10701     54L513     307021     54L5139		15932	03101	4031A	05705	54H /4	02203	54LS95	306031
15936     03003     4041A     05505     54H 103     02206     54L 5109     301091       15944     03102     4049A     05503     54L 500     30001     54L 5109     301091       15944     03102     4049A     05503     54L 502     30301     54L 5112     301031       15945     03301     4050A     05604     54L 502     30301     54L 5113     301041       15946     03004     52101A     10103     54L 504     30002     54L 5114     301051       15946     03303     52105     102031     54L 504     30003     54L 5123     314011       15950     03303     52105     102031     54L 504     30004     54L 5124     317011       15951     03201     52108     10303     54L 508     31004     54L 512     313031       15957     03103     52108A     10104     54L 510     30005     54L 5132     313031       15958     03104     52109     10701     54L 512     30006 <td< td=""><td></td><td>15935</td><td>03002</td><td>4035A</td><td>05707†</td><td>54H101</td><td>02205</td><td>54LS107</td><td>301081</td></td<>		15935	03002	4035A	05707†	54H101	02205	54LS107	301081
15944     03102     4049A     05503     544.s00     30001     544.s112     30103†       15945     03301     4050A     05503     544.s02     30301     544.s112     30103†       15946     03304     52101A     10103     544.s02     30002     54Ls114     30105†       15946     03302     52101A     10202†     54Ls04     30003     54Ls123     31401†       15950     03303     52105     10203†     54Ls05     30004     54Ls123     31401†       15951     03201     52106     10303     54Ls05     30004     54Ls132     3133†       15957     03103     52106A     10303     54Ls04     30005     54Ls132     3133†       15957     03103     52108A     10104     54Ls10     30005     54Ls132     31303†       15958     03104     52109     10701     54Ls13     30901†     54Ls139     30701†       15958     03104     52109     10702     54Ls12     300006     54Ls131 <td></td> <td>15936</td> <td>03003</td> <td>4041A</td> <td>05505</td> <td>54H103</td> <td>02206</td> <td>54LS109</td> <td>30109†</td>		15936	03003	4041A	05505	54H103	02206	54LS109	30109†
15945     U3301     4050A     05504     54L502     30301     54L513     30104t       15946     03004     52101A     10103     54L503     30002     54L5113     30105t       15948     03302     52104     10202t     54L503     30003     54L5123     31401t       15950     03303     52106     10203t     54L506     30004     54L5123     31701t       15951     03201     52106     10303     54L503     31004     54L5123     31303t       15957     03103     52106     10303     54L510     30005     54L5132     31303t       15957     03104     52109     10701     54L511     31001     54L5139     3070tt       15958     03104     52109     10701     54L512     30006     54L513     30901t       15956     03005     52101     10602     54L512     30006     54L513     30901t		15944	03102	4049A	05503	54LS00	30001	54LS112	301031
15940     03007     52107A     10103     54L503     50002     54L5114     301051       15948     03302     52104     102021     54L504     30003     54L5123     314011       15950     03303     52105     102031     54L504     30004     54L5123     314011       15951     03201     52106     102031     54L508     30004     54L5123     313031       15957     03103     52108A     10104     54LS10     30005     54LS138     307011       15958     03104     52109     10701     54LS12     30006     54LS139     307021       15962     03005     52110     10602     54LS12     30006     54LS139     307021		15945	03004	4050A	05504	54LS02	30301	54LS113	301041
15950     03303     52105     10203†     54LS05     30004     54LS124     31701†       15951     03201     52106     10303     54LS05     30004     54LS124     31701†       15951     03201     52106     10303     54LS05     30004     54LS132     31303†       15957     03103     52108A     10104     54LS10     30005     54LS132     30701†       15958     03104     52109     10701     54LS13     31001     54LS139     30702†       15962     03006     52110     10602     54LS12     30006     54LS139     30901†		15948	03302	52104	102021	54LS03	30002	54LS123	31401†
15951     03201     52106     10303     544,508     31004     54,5132     31303†       15957     03103     52108A     10104     544,510     30005     54,5132     30701†       15958     03104     52109     10701     544,511     31001     54,5139     30702†       15952     03005     52109     10701     544,512     30006     54,5139     30702†		15950	03303	52105	102031	54LS05	30004	54LS124	31701†
1995/ 03103 52108A 10104 54LS10 30005 54LS138 30701† 15958 03104 52109 10701 54LS11 31001 54LS139 30702† 15962 03005 52110 10602 54LS12 30006 54LS151 30901†		15951	03201	52106	10303	54LS08	31004	54LS132	31303†
15962 03005 52110 10602 54L512 30006 54L5151 30901†		1595/	03103	52108A 52109	10104	54LS10	30005	54LS138	307011
		15962	03005	52110	10602	54LS12	30006	54LS151	309011

NOTE: Only the basic JAN and commercial numbers are shown,  $^\dagger {\rm Slash}$  sheets not released as of date of this publication.

‡Not recommended for new designs.

# IC Sockets and Interconnection Panels

### IC SOCKETS AND INTERCONNECTION PANELS

Texas Instruments lines of off-the-shelf interconnection products are designed specifically to meet the performance needs of volume commercial applications. They provide both the economy of a standard product line and performance features developed after many year's experience with custom designs. Foremost among these is our ability to selectively bond a wrought gold stripe at the contact point. No waste. Reduced cost. Reliable contacts.

#### Wrought Gold Contact

Plate a contact with gold and you get a better contact. More reliable, longer lasting. Increase the gold, you improve the contact. But gold is precious, so improved performance has to be costly – right? Wrong. Because now you can get the gold only where it is needed – at the point of contact.

How? With selective metallurgical bonding; a gold stripe inlay. Not porous plating, but durable wrought gold bonded to the contact by the same technology used to produce clad coins and thermostat metals.

Texas Instruments, Attleboro, Massachusetts, is the world's largest producer of these multimetal systems. We also know our way around electronics. The result? A full line of reliable, low cost, interconnection systems featuring an extra measure of gold where it's needed. Premium performance at no premium in price.

#### IC Sockets

Texas Instruments family of IC sockets includes every type and size in common use today, and as wide a choice of contact materials as you'll find anywhere. Choose from open or closed entry *wire-wrapped*[†] sockets, standard or low profile solder tail sockets, cable plugs, and component platforms. Sizes from 8 to 40 pins.

#### IC Panels

To match the industry's broadest line of IC sockets Tİ offers one of the industry's widest selections of off-the-shelf socket panel products. Logic panels. Logic cards. Accessories. Add TI's custom design capability and wire wrapping for full service.

Additional information including pricing and delivery quotations may be obtained from your nearest TI Supply Division Sales Office.

[†]Registered trademark of Gardner-Denver

# LOW PROFILE SOCKETS

# SOLDER TAIL

C-93 SERIES GOLD-CLAD CONTACTS C-83 SERIES TIN-PLATED CONTACTS

- Universal mounting and packaging
- Anti-wicking wafer
- Stand-off tabs on base for solder flush
- Redundant contact points for low contact resistance, high reliability and repetitive insertion
- Closed entry construction



# **STANDARD PROFILE SOCKET**

### **SOLDER TAIL**

C-82 SERIES PLATED CONTACTS • C-92 SERIES GOLD CLAD CONTACTS

### WIRE WRAP

### C-81 SERIES PLATED CONTACTS • C-91 SERIES GOLD CLAD CONTACTS

- · Designed for low cost, reliable, high density production packaging
- Universal mounting and packaging capabilities
- 8 to 40 pin lead configurations
- Contacts accommodate .015" through .024" rectangular or round dual-in-line leads
- Wire wrap posts held to true position of .015" providing a true position of .020" on boards for efficient automatic wire wrapping



		OPEN ENTRY	CLOSED ENTRY		
PART NUMBER SCHEDUL	E				
Contact Finish	Pins	Black Body	Black Cover		
	8	C810854	C810804		
Series	14	C811454	C811404		
C-81	16	C811654	C811604		
200-400	18	C811854	C811804		
microinch	20	C812054	C812004		
min tin	24	C812454	C812404		
per	28	C812854	C812804		
MIL-1-10/2/	36		C813604		
	40		C814004		
Sarias	8	C910850	C910800		
C-91	14	C911450	C911400		
FO minutest	16	C911650	C911600		
50 microinch	18	C911450	C911400		
and string	20	C912050	C911800		
inlay	24	C912450	C912000		
linay	28	C912850	C912800		
	36		C913600		
	40		C914000		

SOLDER TAIL					
		OPEN ENTRY	CLOSED ENTRY		
PART NUMBER SCHEDULE			Nam		
Contact	Pins	Black	Black		
Finish		Body	Cover		
Carrier	8	C820850	C820800		
C-82	14	C821450	C821400		
30 microinch	16	C821650	C821600		
min gold per	18	C821850	C821800		
MIL-G-45204 over	24	C822450	C822400		
50 microinch	28	C822850	C822800		
min nickel per OO-N-290	36		C823600		
	40		C824000		
Carias	8	C820852	C820802		
COD	14	C821452	C821402		
50 microinch	16	C821652	C821602		
min gold per	18	C821852	C821802		
MIL-G-45204	24	C822452	C822402		
100 microinch	28	C822852	C822802		
min nickel per	36		C823602		
dd 11 200	40		C824002		
0	8	C820854	C820804		
Series	14	C821454	C821404		
C-82	16	C821654	C821604		
200-400	18	C821854	C821604		
microinch min tin per	24	C822454	C822404		
MIL-T-10727	28	C822854	C822804		
	36		C823604		
	40		C824004		
	8	C920850	C920800		
Series	14	C921450	C921400		
C-92	16	C921650	C921600		
100-microinch	18	C921850	C921800		
gold stripe	24	C922450	C922400		
inlay	28	C922850	C922800		
	36		C923600		
	40		C924000		

### 



# STANDARD

### **D4 SERIES**

- 180 position panel or multiples of 30 position with 14 or 16 position socket pattern
- I/O 4 rows with 13 pins per row or 3 - 14 pin sockets
- Low cost standard hardware
- Available in 98 standard series
- Off-the-shelf availability



Group No.	I/O Option	Sockets Per Panel	C-81 Sock ets	C-91 Sockets
Group I 14 Pin PIN 14 VCC PIN 7 GRD	SOCKETS	30 60 90 120 150	D411211 D411212 D411213 D411214 D411214 D411215	D411231 D411232 D411233 D411234 D411234
	FEED-THRU PINS	30 60 90 120 150 180	D411216 D411411 D411412 D411413 D411413 D411414 D411415 D411416	D411236 D411431 D411432 D411433 D411434 D411435 D411436
Group II 14 Pin PIN V VCC PIN G GRD	SOCKETS	30 60 90 120 150 180	D434211 D434212 D434213 D434214 D434215 D434216	D434231 D434232 D434233 D434234 D434235 D434236
	FEED-THRU PINS	30 60 90 120 150 180	D434411 D434412 D434413 D434414 D434415 D434416	D434431 D434432 D434433 D434434 D434435 D434435 D434436.
Group III 16 Pin PIN 16 VCC PIN 8 GRD	SOCKETS	30 60 90 120 150 180	D423211 D423212 D423213 D423214 D423215 D423216	D423231 D423232 D423233 D423234 D423235 D423236
14 3 13 4 12 5 10 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7		30 60 90 120 150 180	D423411 D423412 D423413 D423414 D423415 D423416	D423431 D423432 D423433 D423434 D423435 D423436
Group IV 16 Pin PIN V VCC PIN G GRD	SOCKETS	30 60 90 120 150 180	D444211 D444212 D444213 D444214 D444215 D444216	D444231 D444232 D444233 D444234 D444235 D444236
15   2     14   3     13   4     12   5     11   6     10   7     9   8	FEED-THRU PINS	30 60 90 120 150 180	D444411 D444412 D444413 D444414 D444415 D444416	D444431 D444432 D444433 D444434 D444435 D444436

STANDARD PANEL PART NO. SCHEDULE --D4 Series



## STANDARD

DO2 SERIES

- Low Cost
- 14 16 pin socket pattern 60 position
- Standard ground and power pin commitment
- 8 standard designs
- Mates with dual 60 position edge connector



#### DO2 Series STANDARD CARD PART NO. SCHEDULE

Group No.	Board Thk.	C-81 Sockets	C-91 Sockets	
Group I 14 Pin PIN 14 VCC PIN 7 GRD	1/16"	D022110	D022130	
	1/8″	D021110	D021130	
Group II 14 Pin PIN V VCC PIN G GRD	1/16"	D022310	D022330	
	1/8″	D021310	D021330	
Group III 16 Pin PIN 16 VCC PIN 8 GRD	1/16"	D022210	D022230	
	1/8″	D021210	D021230	
Group IV 16 Pin PIN V VCC PIN G GRD	1/16"	D022410	D022430	
	1/8″	D021410	D021430	

.

