The Engineering Staff of

TEXAS INSTRUMENTS INCORPORATED
Semiconductor Group

Second Edition

FEBRUARY 1976

Texas Instruments

TABLE OF CONTENTS

1. ARCHITECTURE
1.1 Introduction 2
1.2 The Stack 2
1.3 Registers 2
1.4 The Arithmetic Unit 3
1.5 Status and Control 3
1.6 I/O Operations 3
1.7 Instruction Timing 3
2. TMS $\mathbf{8 0 8 0}$ INSTRUCTION SET
2.1 Instruction Formats 6
2.2 Instruction Set Description 7
2.2.1 Instruction Symbols 7
2.2.2 Accumulator Group Instructions 8
2.2.3 Input/Output Instructions 9
2.2.4 Machine Instructions 9
2.2.5 Program Counter and Stack Control Instructions 10
2.2.6 Register Group Instructions 11
2.3 Instruction Set Opcodes Alphabetically Listed 12
3. TMS 8080 ELECTRICAL AND MECHANICAL SPECIFICATIONS
3.1 Absolute Maximum Ratings 17
3.2 Recommended Operating Conditions 17
3.3 Electrical Characteristics 17
3.4 Timing Requirements 18
3.5 Switching Characteristics 18
3.6 Terminal Assignments 20
3.7 Mechanical Data 20
LIST OF ILLUSTRATIONS
Figure 1 TMS 8080 Functional Block Diagram 2
Figure 2 Voltage Waveforms 19

Information contained in this publication is believed to be accurate and reliable. However, responsibility is assumed neither for its use nor for any infringement of patents or rights of others that may result from its use. No license is granted by implication or otherwise under any patent or patent right of Texas Instruments or others.

TMS 8080 MICROPROCESSOR

1. ARCHITECTURE

1.1 INTRODUCTION

The TMS 8080 is an 8 -bit paraliel central processing unit (CPU) fabricated on a single chip using a high-speed N -channel silicon-gate process. (See Figure 1). A complete microcomputer system with a $2 \cdot \mu \mathrm{~s}$ instruction cycle can be formed by interfacing this circuit with any appropriate memory. Separate 8 -bit data and 16 -bit address buses simplify the interface and allow direct addressing of 65,536 bytes of memory. Up to 256 input and 256 output ports are also provided with direct addressing. Control signals are brought directly out of the processor and all signals, excluding clocks, are TTL compatible.

1.2 THE STACK

The TMS 8080 incorporates a stack architecture in which a portion of external memory is used as a pushdown stack for storing data from working registers and internal machine status. A 16 -bit stack pointer (SP) is provided to facilitate stack location in the memory and to allow almost unlimited interrupt handling capability. The CALL and RST (restart) instructions use the SP to store the program counter (PC) into the stack. The RET (return) instruction uses the SP to acquire the previous PC value. Additional instructions allow data from registers and flags to be saved in the stack.

1.3 REGISTERS

The TMS 8080 has three categories of registers: general registers, program control registers, and internal registers. The general registers and program control registers are listed in Table 1. The internal registers are not accessible by the programmer. They include the instruction register, which holds the present instruction, and several temporary storage registers to hold internal data or latch input and output addresses and data.

FIGURE 1-TMS 8080 FUNCTIONAL BLOCK DIAGRAM

1.4 THE ARITHMETIC UNIT

Arithmetic operations are performed in an 8-bit parallel arithmetic unit that has both binary and decimal capabilities. Four testable internal flag bits are provided to facilitate program control, and a fifth flag is used for decimal corrections. Table 2 defines these flags and their operation. Decimal corrections are performed with the DAA instruction. The DAA corrects the result of binary arithmetic operation on BCD data as shown in Table 3.

1.5 STATUS AND CONTROL

Two types of status are provided by the TMS8080. Certain status is indicated by dedicated control lines. Additional status is transmitted on the data bus during the beginning of each instruction cycle (machine cycle). Table 4 indicates the pin functions of the TMS8080. Table 5 defines the status information that is presented during the beginning of each machine cycle (SYNC time) on the data bus.

1.6 I/O OPERATIONS

Input/output operations (I/O) are performed using the IN and OUT instructions. The second byte of these instructions indicates the device address (256 device addresses). When an $I N$ instruction is executed, the input device address appears in duplicate on A7 through AO and A15 through A8, along with $\overline{W O}$ and INP status on the data bus. The addressed input device then puts its input data on the data bus for entry into the accumulator. When an OUT instruction is executed, the same operation occurs except that the data bus has OUT status and then has output data.

Direct memory access channels (DMA) can be OR-tied directly with the data and address buses through the use of the HOLD and HLDA (hold acknowledge) controls. When a HOLD request is accepted by the CPU, HLDA goes high, the address and data lines are forced to a high-impedance or "floating" condition, and the CPU stops until the HOLD request is removed.

Interfacing with different speed memories is easily accomplished by use of the WAIT and READY pins. During each machine cycle, the CPU polls the READY input and enters a wait condition until the READY line becomes true. When the WAIT output pin is high, it indicates that the CPU has entered the wait state.

Designing interrupt driven systems is simplified through the use of vectored interrupts. At the end of each instruction, the CPU polls the INT input to determine if an interrupt request is being made. This action does not occur if the CPU is in the HOLD state or if interrupts are disabled. The INTE output indicates if the interrupt logic is enabled (INTE is high). When a request is honored, the INTA status bit becomes high, and an RST instruction may be inserted to force the CPU to jump to one of eight possible locations. Enabling or disabling interrupts is controlled by special instructions (El or DI). The interrupt input is automatically disabled when an interrupt request is accepted or when a RESET signal is received.

1.7 INSTRUCTION TIMING

The execution time of the instructions varies depending on the operation required and the number of memory references needed. A machine cycle is defined to be a memory referencing operation and is either 3,4 , or 5 state times long. A state time (designated S) is a full cycle of clocks $\phi 1$ and $\phi 2$. (NOTE: The exception to this rule is the DAD instruction, which consists of 1 memory reference in 10 state times). The first machine cycle (designated M1) is either 4 or 5 state times long and is the "instruction fetch" cycle with the program counter appearing on the address bus. The CPU then continues with as many M cycles as necessary to complete the execution of the instruction (up to a maximum of 5). Thus the instruction execution time varies from 4 state times (several including ADDr) to 18 (XTHL). The WAIT or HOLD conditions may affect the execution time since they can be used to control the machine (for example to "single step") and the HALT instruction forces the CPU to stop until an interrupt is received. As the instruction execution is completed (or in the HALT state) the INT pin is polled for an interrupt. In the event of an interrupt, the PC will not be incremented during the next M1 and an RST instruction can be inserted.

TABLE 1
TMS $\mathbf{8 0 8 0}$ REGISTERS

NAME	DESIGNATOR	LENGTH	PURPOSE
Accumulator	A	8	Used for arithmetic, logical, and I/O operations
B Register	B	8	General or most significant 8 bits of double register BC
C Register	C	8	General or least significant 8 bits of double register BC
D Register	D	8	General or most significant 8 bits of double register DE
E Register	E	8	General or least significant 8 bits of double register DE
H Register	H	8	General or most significant 8 bits of double register HL
L Register	L	8	General or least significant 8 bits of double register HL
Program Counter	PC	16	Contains address of next by te to be fetched
Stack Pointer	SP	16	Contains address of the last byte of data saved in the memory stack
Flag Register	F	5	Five flags ($C, Z, S, P, C 1$)

NOTE: Registers B and C may be used together as a single 16 -bit register, likewise, D and E, and H and L.
TABLE 2
FLAG DESCRIPTIONS

SYMBOL	TESTABLE	DESCRIPTION
C	YES	C is the carry/borrow out of the MSB (most significant bit) of the ALU (Arithment Logic Unit). A TRUE condition ($C=1$) indicates overflow for addition or underflow for subtraction.
z	YES	A TRUE condition ($Z=1$) indicates that the output of the ALU is equal to zero.
S	YES	A TRUE condition ($S=1$) indicates that the MSB of the ALU output is equal to a one (1).
P	YES	A TRUE condition ($P=1$) indicates that the output of the ALU has even parity (the number of bits equal to one is even).
C1	NO	C 1 is the carry out of the fourth bit of the ALU (TRUE condition). C 1 is used only for BCD correction with the DAA instruction.

TABLE 3
FUNCTION OF THE DAA INSTRUCTION
Assume the accumulator (A) contains two BCD digits, X and Y

ACC

ACCUMULATOR BEFORE DAA				ACCUMULATOR AFTER DAA			
\mathbf{C}	$\mathrm{A}_{\mathbf{7}} \ldots \mathbf{A}_{\mathbf{4}}$	$\mathbf{C} 1$	$\mathbf{A}_{\mathbf{3}} \ldots \mathbf{A}_{\mathbf{0}}$	C	$\mathrm{A}_{\mathbf{7}} \ldots \mathbf{A}_{\mathbf{4}}$	$\mathbf{C} 1$	$\mathbf{A}_{\mathbf{3}} \ldots \mathbf{A}_{\mathbf{0}}$
0	$\mathrm{X}<10$	0	$\mathrm{Y}<10$	0	X	0	Y
0	$\mathrm{X}<10$	1	$\mathrm{Y}<10$	0	X	0	$\mathrm{Y}+6$
0	$\mathrm{X}<9$	0	$\mathrm{Y} \geqslant 10$	0	$\mathrm{X}+1$	1	$\mathrm{Y}+6$
1	$\mathrm{X}<10$	0	$\mathrm{Y}<10$	1	$\mathrm{X}+6$	0	Y
1	$\mathrm{X}<10$	1	$\mathrm{Y}<10$	1	$\mathrm{X}+6$	0	$\mathrm{Y}+6$
1	$\mathrm{X}<10$	0	$\mathrm{Y} \geqslant 10$	1	$\mathrm{X}+7$	1	$\mathrm{Y}+6$
0	$\mathrm{X} \geqslant 10$	0	$\mathrm{Y}<10$	1	$\mathrm{X}+6$	0	Y
0	$\mathrm{X} \geqslant 10$	1	$\mathrm{Y}<10$	1	$\mathrm{X}+6$	0	$\mathrm{Y}+6$
0	$\mathrm{X} \geqslant 9$	0	$\mathrm{Y} \geqslant 10$	1	$\mathrm{X}+7$	1	$\mathrm{Y}+6$

NOTE: The corrections shown in Table 3 are sufficient for addition. For subtraction, the programmer must account for the borrow condition that can occur and give erroneous results. The most straight forward method is to set $A=9916$ and carry $=1$. Then add the minuend to A after subtracting the subtrahend from A.

TABLE 4
TMS 8080 PIN DEFINITIONS

SIGNATURE	PIN	1/0	DESCRIPTION
A15 (MSB)	36	OUT	A15 through A0 comprise the address bus. True memory or 1/O device addresses appear on
A14	39	OUT	this 3 -state bus during the first state time of each instruction cycle.
A13	38	OUT	
A12	37	OUT	
A11	40	OUT	
A10	1	OUT	
A9	35	OUT	
A8	34	OUT	
A7	33	OUT	
A6	32	OUT	
A5	31	OUT	
A4	30	OUT	
A3	29	OUT	
A2	27	OUT	
A1	26	OUT	
A0 (LSB)	25	OUT	
D7 (MSB)	6	IN/OUT	
D6	5	IN/OUT	transferred on this bus.
D5	4	IN/OUT	
D4	3	IN/OUT	
D3	7	IN/OUT	
D2	8	IN/OUT	
D1	9	IN/OUT	
D0 (LSB)	10	IN/OUT	
$\mathrm{V}_{\text {SS }}$	2		Ground reference
$V_{B B}$	11		Supply voltage (-5 V nominal)
V_{CC}	20		Supply voltage (5 V nominal)
VDD	28		Supply voltage (12 V nominal)
¢1	22	IN	Phase 1 clock.
¢2	15	IN	Phase 2 clock. See page 19 for $\phi 1$ and $\phi 2$ timing.
RESET	12	IN	Reset. When active (high) for a minimum of 3 clock cycles, the RESET input causes the TMS 8080 to be reset. PC is cleared, interrupts are disabled, and after RESET, instruction execution starts at memory location 0 . To prevent a lockup condition, a HALT instruction must not be used in location 0 .
HOLD	13	IN	Hold signal. When active (high) HOLD causes the TMS 8080 to enter a hold state and float (put the 3 -state address and data bus in a high-impedance state). The chip acknowledges entering the hold state with the HLDA signal and will not accept interrupts until it leaves the hold state.
INT	14	IN	Interrupt request. When active (high) INT indicates to the TMS8080 that an interrupt is being requested. The TMS 8080 polls INT during a HALT or at the end of an instruction. The request will be accepted except when INTE is low or the CPU is in the HOLD condition.
INTE	16	OUT	Interrupts enabled. INTE indicates that an interrupt will be accepted by the TMS 8080 unless it is in the hold state. INTE is set to a high logic level by the EI (Enable Interrupt) instruction and reset to a low logic level by the DI (Disable Interrupt) instruction. INTE is also reset when an interrupt is accepted and by a high on RESET.
DBIN	17	OUT	Data bus in. DBIN indicates whether the data bus is in an input or an output mode (high = input, low = output).

TABLE 4 (CONTINUED)

SIGNATURE	PIN	I/O	DESCRIPTION
$\overline{\text { WR }}$	18	OUT	Write. When active (low) $\overline{W R}$ indicates a write operation on the data bus to memory or to an I/O port. SYNC
HLDAchronizing control line. When active (high) SYNC indicates the beginning of each			
machine cycle of the TMS8080. Status information is also present on the data bus during			
SYNC for external latches.			

TABLE 5
TMS $\mathbf{8 0 8 0}$ STATUS

SIGNATURE	DATA BUS BIT	
INTA	D0	I
$\overline{\text { WO }}$	D1	I
STACK	D2	I
HLTA	D3	I
OUT	D4	I
M1	D5	I
INP	D6	D7

Interrupt acknowledge.
Indicates that current machine cycle will be a read (input) (high = read) or a write (output) (low = write) operation.

Indicates that address is stack address from the SP.
HALT instruction acknowledge.
Indicates that the address bus has an output device address and the data bus has output data.

Indicates instruction acquisition for first byte.
Indicates address bus has address of input device.
Indicates that data bus will be used for memory read data.

2. TMS 8080 INSTRUCTION SET

2.1 INSTRUCTION FORMATS

TMS 8080 instructions are either one, two, or three bytes long and are stored as binary integers in successive memory locations in the format shown below.

One-Byte Instructions
D7 D6 D5 D4 D3 D2 D1 D0
OP CODE
Two-Byte Instructions
D7 D6 D5 D4 D3 D2 D1 D0

D7 D8 D5 D4 D3 D2 D1 D0

Three-Byte Instructions
D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

OP CODE
OPERAND

OP CODE
LOW ADDRESS OR OPERAND 1
HIGH ADDRESS OR OPERAND 2

2.2 INSTRUCTION SET DESCRIPTION

Operations resulting from the execution of TMS 8080 instructions are described in this section. The flags that are affected by each instruction are given after the description.

2.2.1 INSTRUCTION SYMBOLS

2.2.2 ACCUMULATOR GROUP INSTRUCTIONS

MNEMONIC	OPERANDS	BYTES	M CYCLES/ STATES
SBB	M	1	2/7
SBB	ra	1	1/4
SBI	b_{2}	2	2/7
STA	$b_{3} b_{2}$	3	4/13
STAX	r_{C}	1	2/7
- STC		1	1/4
SUB	M	1	$2 / 7$
SUB	ra	1	1/4
SUI	b_{2}	2	2/7
XRA	M	1	2/7
XRA	$r_{\text {a }}$	1	1/4
XRI	b_{2}	2	2/7

2.2.3 INPUT/OUTPUT INSTRUCTIONS

$\frac{\text { MNEMONIC }}{I N}$	$\frac{\text { OPERANDS }}{\mathrm{b}_{2}}$	$\frac{\text { BYTES }}{2}$	MCYCLES/ STATES
OUT	b_{2}	2	$3 / 10$

2.2.4 MACHINE INSTRUCTIONS

$\frac{\text { MNEMONIC }}{H L T}$ OPERANDS $\quad \frac{\text { BYTES }}{1} \frac{$| MCYCLES/ |
| :---: |
| STATES |}{$2 / 7$}

NOP
1
$1 / 4$

DESCRIPTION

$(A) \leftarrow(A)-(M)$-(carry), subtract the contents of M and the contents of the carry flag from register A and place in A. Two's complement subtraction is used and a true borrow causes the carry flag to be set (underflow condition). $\{C, Z, S, P, C 1\}$
$(A) \leftarrow(A)-\left(r_{a}\right)$-(carry). $\{C, Z, S, P, C 1\}$
$(A)-(A)-<b_{2}>-($ carry $) .\{C, Z, S, P, C 1\}$
$\left.\left.\left[<b_{3}\right\rangle<b_{2}\right\rangle\right] \leftarrow(A)$, store contents of A in memory address given in bytes 2 and 3.
$\left[\left(r_{c}\right)\right] \leftarrow(A)$, store contents of A in memory address given in $B C$ or DE.
(carry) $\leftarrow 1$, set carry flag to a 1 (true condition).
$(A) \leftarrow(A)-(M)$, subtract the contents of M from register A and place in A. Two's complement subtraction is used and a true borrow causes the carry flag to be set (underflow condition). $\{C, Z, S, P, C 1\}$
$(A) \leftarrow(A)-\left(r_{a}\right),\{C, Z, S, P, C 1\}$
$\left.(A) \leftarrow(A)-<b_{2}\right\rangle .\{C, Z, S, P, C 1\}$
$(A) \leftarrow(A) \operatorname{XOR}(M)$, take the exclusive OR of the contents of M and register A and place in A. The carry flag will be reset. $\{C, Z, S, P, C 1\}$
$(A) \leftarrow(A) \times O R\left(r_{a}\right) .\{C, Z, S, P, C 1\}$
$(A) \leftarrow(A) \times O R<b_{2}>$. $\{C, Z, S, P, C 1\}$

DESCRIPTION

(A) \leftarrow (input data from data bus), byte 2 is sent on bits A7-AO and A15-A8 as the input device address. INP status is given on the data bus.
(Output data) $\leftarrow(A)$, byte 2 is sent on bits A7-A0 and A15-A8 as the output device address. OUT status is given on the data bus.

DESCRIPTION

Halt, all machine operations stop. All registers are maintained. Only an interrupt can return the TMS 8080 to the run mode. Note that a HLT should not be placed in location zero, otherwise after the reset pin is active, the TMS 8080 will enter a nonrecoverable state (until power is removed), i.e., in halt with interrupts disabled. This condition also occurs if a HLT is executed while interrupts are disabled. HLTA status is given on the data bus.
$(P C) \leftarrow(P C)+1$, no operation.

2.2.5 PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

| MNEMONIC | |
| :--- | :--- | :--- | :--- |
| CALL | $\frac{\text { OPERANDS }}{\mathrm{b}_{3} \mathrm{~b}_{2}} \quad \frac{\text { BYTES }}{3} \quad$MCYCLES/
 STATES |
| $5 / 17$ | |

Conditional call instructions for true flags:

	(f)			$5 / 17$ (Pass)
$C C$	(carry)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	$3 / 11$ (Fail)
CPE (parity)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3		
$C M$	(sign)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	
$C Z$	(zero)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	

Conditional call instructions for false flags:

(f)		5	$5 / 17$ (Pass)
CNC (carry)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	$3 / 11$ (Fail)
CPO (parity)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	
CP (sign)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	
CNZ (zero)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	
DI		1	$1 / 4$
EI	1	$1 / 4$	
JMP	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	$3 / 10$

Conditional jump instructions for true flags:

(f)			
JC	(carry)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3
JPE	(parity)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3
JM	(sign)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3
JZ	(zero)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3

Conditional jump instructions for false flags:

(f)		$3 / 10$	
JNC (carry)	$\mathrm{b}_{3} b_{2}$	3	
JPO (parity)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	
JP (sign)	$\mathrm{b}_{3} \mathrm{~b}_{2}$	3	
JNZ (zero)	$\mathrm{b}_{3} b_{2}$	3	
PCHL		1	$1 / 5$
POP	PSW	1	$3 / 10$
		1	$3 / 10$
POP	rd $_{d}$	1	$3 / 11$
PUSH	PSW	1	
		1	$3 / 11$
PUSH	r_{d}	1	$3 / 10$

DESCRIPTION

$[(S P)-1][(S P)-2] \leftarrow(P C), \quad(S P) \leftarrow(S P)-2, \quad(P C) \leftarrow\left\langle b_{3}\right\rangle\left\langle b_{2}\right\rangle$, transfer $P C$ to the stack address given by $S P$, decrement $S P$ twice, and jump unconditionally to address given in bytes 2 and 3.

If $(f)=1,[(S P)-1][(S P)-2] \leftarrow(P C),(S P) \leftarrow(S P)-2,(P S) \leftarrow<b_{3}>$ $\left\langle b_{2}\right\rangle$, otherwise $(P C) \leftarrow(P C)+3$. If the flag specified, f, is 1 , then execute a call. Otherwise, execute the next instruction.

If $\left.(f)=0,[(S P)-1][(S P)-2] \leftarrow(P C),(S P) \leftarrow(S P)-2,(P C) \leftarrow<b_{3}\right\rangle$ $\left\langle b_{2}\right\rangle$, otherwise $(P C) \leftarrow(P C)+3$.

Disable interrupts. INTE is driven false to indicate that no interrupts will be accepted.
Enable interrupts. INTE is driven true to indicate that an interrupt will be accepted. Execution of this instruction is delayed to allow the next instruction to be executed before the INT input is polled.
$(\mathrm{PC}) \leftarrow<\mathrm{b}_{3}><\mathrm{b}_{2}>$, jump unconditionally to address given in bytes 2 and 3 .

If (f) $=1,(\mathrm{PC}) \leftarrow<\mathrm{b}_{3}><\mathrm{b}_{2}>$, otherwise $(\mathrm{PC}) \leftarrow(\mathrm{PC})+3$. If the flag specified, f, is 1 , execute a JMP. Otherwise, execute the next instruction.

If $\left.(f)=0,(P C) \leftarrow<b_{3}\right\rangle\left\langle b_{2}\right\rangle$, othewise $(P C) \leftarrow(P C)+3$.

Abstract

$(\mathrm{PC}) \leftarrow(\mathrm{HL})$ $(F) \leftarrow[(S P)], \quad(A) \leftarrow[(S P)+1], \quad(S P) \leftarrow(S P)+2$, restore the last stack values addressed by $S P$ into A and F. Increment $S P$ twice. $\left(r_{\mathrm{dL}}\right) \leftarrow[(\mathrm{SP})],\left(\mathrm{r}_{\mathrm{dH}}\right) \leftarrow[(\mathrm{SP})+1],(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$. $[(S P)-1] \leftarrow(A),[(S P)-2] \leftarrow(F),(S P) \leftarrow(S P)-2$, save the contents of A and F into the stack addressed by SP. Decrement $S P$ twice. $[(S P)-1] \leftarrow\left(r_{d L}\right),[(S P)-2] \leftarrow\left(r_{d H}\right),(S P) \leftarrow(S P)-2$. $(P C) \leftarrow[(S P)][(S P)+1],(S P) \leftarrow(S P)+2$, return to program at memory address given by last values in the stack. The SP is incremented by two.

DESCRIPTION

Conditional return instructions for true flags:

(f)			
RC (carry)	C	1	$1 / 5$ (Fail)
RPE (parity)	P	1	
RM (sign)	S	1	
RZ (zero)	Z	1	

Conditional return instructions for false flags:

(f)			$3 / 11$ (Pass)
RNC (carry)	C	1	$1 / 5$ (Fail)
RPO (parity)	P	1	
RP (sign)	S	1	
RNZ (zero)	Z	1	
\quad RST		1	$3 / 11$

$$
\begin{array}{lll}
\text { SPHL } & 1 & 1 / 5
\end{array}
$$

2.2.6 REGISTER GROUP INSTRUCTIONS

MNEMONIC	OPERANDS	BYTES	M CYCLES/ STATES
DCR	M	1	3/10
DCR	$r_{\text {a }}$	1	1/5
DCX	r_{b}	1	1/5
INR	M	1	3/10
INR	${ }^{\text {a }}$	1	1/5
INX	r_{b}	1	1/5
LHLD	$b_{3} b_{2}$	3	5/16
LXI	$r b^{\text {b }}{ }^{\text {b }}{ }_{2}$	3	3/10
MVI	M, b2	2	3/10
MVI	rab_{2}	2	2/7
MOV	$\mathrm{Mra}_{\mathrm{a}}$	1	2/7
MOV	ram^{M}	1	2/7
MOV	$r^{1} 1{ }^{\text {ra2 }}$	1	1/5
SHLD	$b_{3} b_{2}$	3	5/16
XCHG		1	1/4
XTHL		1	5/18

If $(f)=1,(P C) \leftarrow[(S P)] \quad[(S P+1],(S P) \leftarrow(S P)+2$. If the flag specified, f, is 1 , execute a RET. Otherwise, execute the next instruction.

If $(f)=0,(P C) \leftarrow[(S P)][(S P)+1],(S P) \leftarrow(S P)+2$.
$[(S P)-1][(S P)-2] \leftarrow(P C)(S P) \leftarrow(S P)-2,(P C) \leftarrow 00000_{8}$ where R is a 3 bit field in RST (RST $=3 R 78$). Transfer PC to the stack address given by $S P$, decrement $S P$ twice, and jump to the address specified by R.
$(S P) \leftarrow(H L)$.

DESCRIPTION

$(M) \leftarrow(M)-1$, decrement the contents of memory location specified by H and $L .\{Z, S, P, C 1\}$
$\left(r_{a}\right) \leftarrow\left(r_{a}\right)-1$, decrement the contents of register $r_{a} \cdot\{Z, S, P, C 1\}$ $\left(r_{b}\right) \leftarrow\left(r_{b}\right)-1$, decrement double registers $B C, D E, H L$, or $S P$. $(M) \leftarrow(M)+1$, increment the contents of memory location specified by H and L. \{Z,S,P,C1 \}
$\left(r_{a}\right) \leftarrow\left(r_{a}\right)+1$, increment the contents of register $r_{a} \cdot\{Z, S, P, C 1\}$ $\left(r_{b}\right) \leftarrow\left(r_{b}\right)+1$, increment double registers $B C, D E, H L$, or $S P$. (L) $\leftarrow\left[\left\langle b_{3}\right\rangle\left\langle b_{2}\right\rangle\right]$; $(H) \leftarrow\left[\left\langle b_{3}\right\rangle\left\langle b_{2}\right\rangle+1\right]$, load registers H and L with contents of the two memory locations specified by bytes 3 and 2 .
$\left(r_{b H}\right) \leftarrow<b_{3}>:\left(r_{b L}\right) \leftarrow<b_{2}>$, load double registers $B C, D E, H L$, or SP immediate with bytes 3,2 , respectively.
(M) $\leftarrow<\mathrm{b}_{2}>$, store immediate byte 2 in the address specified by HL
$\left(r_{a}\right) \leftarrow<b_{2}>$, load register r_{a} immediate with byte 2 of the instruction.
(M) $\leftarrow\left(r_{a}\right)$, store register r_{a} in the memory location addressed by H and L .
$\left(r_{a}\right) \leftarrow(M)$, load register r_{a} with contents of memory addressed by HL.
$\left(r_{a 1}\right) \leftarrow\left(r_{a 2}\right)$, load register $r_{a 1}$ with contents of $r_{a 2}, r_{a}$ contents remain unchanged.
$\left.\left[\left\langle\mathrm{b}_{3}\right\rangle\left\langle\mathrm{b}_{2}\right\rangle\right] \leftarrow(\mathrm{L}):\left[\left\langle\mathrm{b}_{3}\right\rangle\left\langle\mathrm{b}_{2}\right\rangle+1\right)\right] \leftarrow(\mathrm{H})$, store the contents of H and L into two successive memory locations specified by bytes 3 and 2.
$(H) \leftrightarrow(D) ;(L) \leftrightarrow(E)$, exchange double registers $H L$ and $D E$ $(L) \leftrightarrow[(S P)],(H) \leftrightarrow[(S P)+1],(S P)=(S P)$, exchange the top of the stack with register HL.

[^0]
\ddagger Only carry flag affected.
§All flags except carry affected.

			REGISTER AFFECTED		LOGIC Code D3－D0	$\operatorname{Cclock}_{\substack{\text { cycles }}} D E$
MNEMONIC	BYTES	DESCRIPTION	AFFECTED	$\underbrace{D 7-D 4}$	$\square^{\text {D3－D0 }}$	
MOV M，r	1	Move register to memory	B	7	0 y	7 \％
			C	7	1 \％	4
			D	7	2 ，	As，
			E	7	3	－＇
			H	7	4	\％
			L	7	5 ？	＋
			A	7	7	
MOV r，M	1	Move memory to register	B	4	610	7
			C	4	E	C－6
			D	5	6	¢
			E	5	E	心夊
			H	6	6	\cdots
			L	6	E	A）
			A	7	E \quad ？	$\therefore 26$
MOV r_{1}, r_{2}	1	Move register to register	B，B	4	0 ．	
			B， C	4	1	
			B，D	4	2	
			B，E	4	3	3.7
			B， H	4	4	Cise
			B，L	4	5	Ser
			B，A	4	7	27
			C，B	4	8	0
			C， C	4	9	$\therefore 3$
			C，D	4	A	07
			C，E	4	B	$\therefore \mathrm{O}$
			C，H	4	C	076
			C，L	4	D	$2^{2}+$
			C，A	4	F	$\bigcirc ヲ$
			D，B	5	0	6.2 .9
			D，C	5	1	Өr＇
			D，D	5	2	\cdots
			D，E	5	3	－x
			D，H	5	4	\cdots
			？${ }_{\text {\％}}$ L	5	5	$\therefore<$
			D，A	5	7	\cdots
			E，B	5	8	286
			E，C	5	9	10.6 ，
			E，D	5	A	cre
			E，E	5	B	0.3
			E，H	5	C	0\％
			E，L	5	D	\cdots
			E，A	5	F	065
			H，B	6	0	$0 \cdot 6$
			H，C	6	1	$0 \cdot$
			H，D	6	2	06.
			H，E	6	3	Orx
			H，H	6	4	$\because \infty$
			H，L	6	5	80.3
			H，A	6	7	？
			L，B	6	8	＋\％：

MNEMONIC	BYTES	DESCRIPTION	REGISTER AFFECTED	POSITI HEX	LOGIC \qquad	$\begin{gathered} \text { CLOCK } \\ \text { CYCLES* } \end{gathered}$
$\text { MOV } r_{1}, r_{2}$	1	Move register to register（continued）	L，C	6	$9 *$	CVE
			L，D	6	A	$\pm C 6$
			L，E	6	B	is\％
			L．，H	6	C	$16:$
			L，L．	6	D	icin
			L，A	6	F	
			A，B	7	8	125
			A，C	7	9 \％：	－
			A，D	7	A	$\cdots 2$
			A，E	7	B	123
			A，H	7	C ：	124
			A，L	7	D ${ }^{\text {\％}}$	$\therefore 2$
			A，A	7	$F: \rightarrow$	$12+$
MVI M	2	Move immediate memory		3	6	10 ¢゙く
MVI r	2	Move immediate register	B	0	6	7 亿．
			C	0	E	人
			D	1	6	勺ล
			E	1	E	－2
			H	2	6	O2 2
			L	2	E	N0，
			A	3	E	\cdots
NOP	1	No operation	4	0	0	4 ）\％
ORA M	1	OR memory with A^{\dagger}		B	6 ＜	7 \％\because
ORA r	1	OR register with A^{\dagger}	B	B	0	$4: 71$
			C	B	1	$\because \quad ?$
			D	B	2	
			E	B	3	？
			H	B	4	27
			L	B	5	4？
			A	B	7	4＜
ORI	2	OR immediate with A^{\dagger}		F	$6 \therefore \therefore \therefore$	72.46
OUT	2	Output		D	3	10 ifil
PCHL	1	H\＆L to program counter		E	9 ＊	5 ？ 3
POP B	1	Pop register pair B\＆C off stack		C	1	10 绿？
POP D	1	Pop register pair D\＆E off stack		D	1	10 さごく
POP H	1	Pop register pair H\＆L off stack		E	1	$10 \leq 5$
POP PSW	1	Pop A and flags off stack ${ }^{\dagger}$		F	1	10 ？
PUSH B	1	Push register pair B\＆C		C	5 \％	11
PUSH D	1	Push register pair D\＆C		D	5 －	11 is is
PUSH H	2	Push register pair H\＆L on stack		E	5 \％	11
PUSH PSW	1	Push A and Flags on stack		F	5 a	11 24
RAL	1	Rotate A left through carry \ddagger		1	7	4 为，
RAR	1	Rotate A right through carry ${ }^{\text {＊}}$		1	F ，	4 \％
RC	1	Return on carry		D	8	5／11 2？
RET	1	Return	．	C	9	10 － 5
RLC	1	Rotate A left \ddagger		0	7 in	4×2
RM	1	Return on minus		F	$8 \times$	5／11 \％
RNC	1	Return on no carry		D	0	5／11 2ご心
RNZ	1	Return on no zero		C	0	5／11 A 4．
RP	1	Return on positive		F	$0 \therefore$	5／11 \therefore 昭 6

[^1]| MNEMONIC | BYTES | DESCRIPTION | AFFECTED | $\begin{array}{r} \text { HEX } \\ \sqrt{D 7-D 4} \end{array}$ | D3-D0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RPE | 1 | Return on parity even | | E | 8 ？ | 5／11 З |
| RPO | 1 | Return on parity odd | | E | 0 | 5／11 7 20x |
| RRC | 1 | Rotate A right ${ }^{\dagger}$ | | 0 | F＊ | 4 50 |
| RST | 1 | Restart | | | | 11 aiau |
| | | | $\mathrm{PC} \leftarrow 0000_{16}$ | C | 7 \％ | A－ |
| | | | $\mathrm{PC} \leftarrow 00001_{16}$ | C | F ：\％ | 2， 0 |
| | | | $\mathrm{PC} \leftarrow 0010_{16}$ | D | 7 | ± 13 |
| | | | $\mathrm{PC} \leftarrow 001816$ | D | F ： | $\therefore 27$ |
| | | | $\mathrm{PC} \leftarrow 0020{ }_{16}$ | E | 7% ， | \therefore ¢ |
| | | | $\mathrm{PC} \leftarrow 002816$ | E | F | \％ $2-$ |
| | | | $P C \leftarrow 0030_{16}$ | F | 7 | 2×1 |
| | | | PC $\leftarrow 003816$ | F | F \quad ： | 28.8 |
| RZ | 1 | Return on Zero | | C | 8 | 5／11 2， |
| SBB M | 1 | Subtract memory from A with borrow ${ }^{\dagger}$ | | 9 | E \div | 7 4 |
| SBB r | 1 | Subtract register from A with borrow ${ }^{\dagger}$ | B | 9 | 8 | 4 ） |
| | | | C | 9 | 9 | \％ |
| | | | D | 9 | A | ¢－ |
| | | | E | 9 | B | 3 |
| | | | H | 9 | C | $\cdots 14$ |
| | | | L | 9 | D | ¢ \％ |
| | | | A | 9 | F． | \bigcirc \％ |
| SBI | 2 | Subtract immediate from A with borrow ${ }^{\dagger}$ | | D | E ： | 7 ， |
| SHLD | 3 | Store H\＆L direct | ， | 2 | 2 | $16 \bigcirc$ |
| SPHL | 1 | H\＆L to stack pointer | | F | 9 ， | 5 A 5 ， |
| STA | 3 | Store A direct | | 3 | 2 | 13 － |
| STAX B | 1 | Store A indirect | | 0 | 2 | 7 こぶ， |
| STAX D | 1 | Store A indirect | | 1 | 2 | 7 人20 |
| STC | 1 | Set carry \ddagger | | 3 | 7 | 4% |
| SUB M | 1 | Subtract memory from A^{\dagger} | | 9 | 6 | 7 \％ |
| SUB r | 1 | Subtract register from A^{\dagger} | B | 9 | $0 \cdots$ | 4 － |
| | | | C | 9 | 1 \％ | ？ 0 |
| | | | D | 9 | 2 | \％ 6 |
| | | | E | 9 | 3 | \cdots ¢ |
| | | | H | 9 | 4 | ह 2 |
| | | | L | 9 | 5 | 54 |
| | | | A | 9 | 7 | $0^{*} \because$ |
| SUI | 2 | Subtract immediate from A^{\dagger} | | D | 6 | 72% |
| XCHG | 1 | Exchange D\＆E，H\＆L registers | | E | B | 4 － 6 |
| XRAM | 1 | Exclusive OR memory with A^{\dagger} | | A | E | 7 令第 |
| XRA r | 1 | Exclusive OR register with A^{\dagger} | B | A | 8 So | 4 － 4 ¢ |
| | | | C | A | 9 | －r， |
| | | | D | A | A $\quad \therefore$ | 交加 |
| | | | E | A | B \quad ： | 1 T |
| | | | H | A | C | $\cdots 3$ |
| | | | L | A | D | \％ |
| | | | A | A | F | ＋ |
| XRI | 2 | Exclusive OR immediate with A^{\dagger} | | E | E \cdot | 72 y |
| XTHL | 1 | Exchange top of stack H\＆L | | E | 3 | 18 3， |

[^2]
3. TMS 8080 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)*

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Under absolute maximum ratings voltage values are with respect to the normally most negative supply voltage, $V_{B B}$ (substrate). Throughout the remainder cf this data sheet, voltage values are with respect to $V_{S S}$ unless otherwise noted

3.2 RECOMMENDED OPERATING CONDITIONS

	MIN	NOM
Supply voltage, V_{BB}	MAX	UNIT
Supply voltage, V_{CC}	-4.75	-5
Supply voltage, V_{DD}	-5.25	V
Supply voltage, $\mathrm{V}_{\text {SS }}$	4.75	5
High-level input voltage, $\mathrm{V}_{\text {IH }}$ (all inputs except clocks) (see Note 2)	11.4	12
High-level clock input voltage, $\mathrm{V}_{\text {IH }}(\phi)$	12.6	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}($ (all inputs except clocks) (see Note 3)	0	V
Low-level clock input voltage, $\mathrm{V}_{\text {IL }}(\phi)$ (see Note 3)	3.3	$\mathrm{~V}_{\mathrm{CC}}+1$
Operating free-air temperature, T_{A}	$\mathrm{V}_{\mathrm{DD}}-1$	$\mathrm{~V}_{\mathrm{DD}}+1$
	V	

3.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
11	Input current lany input except clocks and data bus)	$\mathrm{V}_{1}=0 \mathrm{~V}$ to V_{CC}			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{1}(\phi)$	Clock input current	$\mathrm{V}_{1(\phi)}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$			± 10	$\mu \mathrm{A}$
I/(DB)	Input current, data bus	$V_{\text {I }}(\mathrm{DB})=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$			-100	$\mu \mathrm{A}$
1 (hold)	Address or data bus input current during hold	$V_{\text {I }}(\mathrm{ad})$ or $\mathrm{V}_{1(\mathrm{DB})}=\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
		$\mathrm{V}_{1(\mathrm{ad})}$ or $\mathrm{V}_{\text {I }}(\mathrm{DB})=0 \mathrm{~V}$			-100	
V_{OH}	High-level output voltage	${ }^{\prime} \mathrm{OH}=100 \mu \mathrm{~A}$	3.7			V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}(\mathrm{DB})=1.7 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OL}}=0.75 \mathrm{~mA} \text { (any output except } \mathrm{DB} \text {) } \end{aligned}$			0.45	V
'BB(av)	Average supply current from V_{BB}	Operating at ${ }^{\mathrm{t}} \mathrm{C}(\phi)=480 \mathrm{~ns}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-0.01	-1	mA
ICC(av)	Average supply current from V_{CC}			60	75	
IDD(av)	Average supply current from $V_{\text {DD }}$			40	67	
C_{i}	Capacitance, any input except clock	$\begin{aligned} & V_{C C}=V_{D D}=V_{S S}=0 \mathrm{~V}, \\ & V_{B B}=-4.75 \text { to }-5.25 \mathrm{~V}, f=1 \mathrm{MHz}, \end{aligned}$ All other pins at 0 V		10	20	pF
$\mathrm{C}_{i}(\phi)$	Clock input capacitance			5	10	
C_{0}	Output capacitance			10	20	

[^3]
3.4 TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

 (SEE FIGURE 2)| | | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{c}}(\phi)$ | Clock cycle time (see Note 5) | 4802000 | ns |
| $\mathrm{t}_{\mathrm{r}}(\phi)$ | Clock rise time | $5 \quad 50$ | ns |
| $t_{f}(\phi)$ | Clock fall time | $5 \quad 50$ | ns |
| $\mathrm{t}_{\mathrm{w}}(\phi 1)$ | Pulse width, clock 1 high | 60 | ns |
| ${ }^{\text {w }}$ (ϕ 2) | Pulse width, clock 2 high | 220 | ns |
| $\mathrm{t}_{\mathrm{d}}(\phi 1 \mathrm{~L}-\phi 2)$ | Delay time, clock 1 low to clock 2 | 0 | ns |
| $\mathrm{t}_{\mathrm{d}(\phi 2-\phi 1)}$ | Delay time, clock 2 to clock 1 | 70 | ns |
| ${ }^{\mathrm{t}} \mathrm{d}(\phi 1 \mathrm{H}-\phi 2)$ | Delay time, clock 1 high to clock 2 (time between leading edges) | 130 | ns |
| $\mathrm{t}_{\text {su }}$ (da- 1 1) | Data setup time with respect to clock 1 | 50 | ns |
| $\mathrm{t}_{\text {su }}$ (da- $\mathrm{t}^{\text {2 }}$) | Data setup time with respect to clock 2 | 150 | ns |
| $\mathrm{t}_{\text {su }}$ (hold) | Hold input setup time | 140 | ns |
| $t_{\text {su }}$ (int) | Interrupt input setup time | 180 | ns |
| $\mathrm{t}_{\text {su }}$ (rdy) | Ready input setup time | 120 | ns |
| $t_{\text {h }}$ (da) | Data hold time (see Note 6) | tPD(DBI) | ns |
| t_{h} (hold) | Hold input hold time | 0 | ns |
| $t_{\text {f }}$ (int) | Interrupt input hold time | 0 | ns |
| $t_{\text {h }}(\mathrm{rdy})$ | Ready input hold time | 0 | ns |

NOTES: 5. $\mathrm{t}_{\mathrm{c}(\phi)}=\mathrm{t}_{\mathrm{d}(\phi 1 \mathrm{~L}-\phi 2)}+\mathrm{t}_{\mathrm{r}(\phi 2)}+\mathrm{t}_{\mathrm{w}(\phi 2)}+\mathrm{t}_{\mathrm{f}(\phi 2)}+\mathrm{t}_{\mathrm{d}(\phi 2-\phi 1)}+\mathrm{t}_{\mathrm{r}(\phi 1)} .480 \mathrm{~ns} \leqslant \mathrm{t}_{\mathrm{c}(\phi)} \leqslant 2000 \mathrm{~ns}$.
6. The data input should be enabled using the DBIN status signal. No bus conflict can then occur and the data hold time requirement is thus assured.

3.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS (SEE FIGURE 2)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
tPD(ad)	Propagation delay time, clock 2 to address outputs	$\begin{aligned} & C_{\mathrm{L}}=100 \mathrm{pF}, \\ & R_{\mathrm{L}}=1.3 \mathrm{k} \Omega \end{aligned}$	200	ns
tPD(da)	Propagation delay time, clock 2 to data bus		220	ns
tPD(cont)	Propagation delay time, clocks to control outputs		120	ns
tPD(DBI)	Propagation delay time, clock 2 to DBIN output		$25 \quad 140$	ns
tPD(int)	Propagation delay time, clock 2 to INTE output		200	ns
${ }^{\text {t }}$ I	Time for data bus to enter input mode		tPD(DBI)	ns
tPXZ	Disable time to high-impedance state during hold (address outputs and data bus)		120	ns

The time that the address outputs and output data will remain stable after $\overline{W R}$ goes high, ${ }^{W} W A$ and $t_{W D} \geqslant{ }^{t_{d}}(\phi 1 H-\phi 2)$.
The time between address outputs becoming stable and $\overline{W R}$ going low, $t_{A W} \leqslant 2 \mathrm{t}_{\mathrm{c}}(\phi)-\mathrm{t}_{\mathrm{d}}(\phi 1 \mathrm{H} \cdot \phi 2)^{-\mathrm{t}_{\mathrm{r}}(\phi)-120 \mathrm{~ns} \text {. }}$
The time between output data becoming stable and $\overline{W R}$ going low, $t_{D W} \geqslant t_{c}(\phi)-t_{d}(\phi 1 H-\phi 2)^{-t_{r}(\phi)-150 ~ n s . ~}$
The following are relevant when interfacing to devices requiring $\mathrm{V}_{1 \mathrm{H}}$ min of 3.3 V :
a) Maximum output rise time (t TLH) from 0.8 V to 3.3 V is 140 ns with C_{L} as specified for the propagation delay times above.
b) Maximum propagation delay times when measured to $V_{r e f}(H)=3 \mathrm{~V}$ (instead of 2 V) will be 60 ns more than as specified above with C_{L} as specified.

C_{L} includes probe and jig capacitance.
LOAD CIRCUIT

NOTES: a. This timing diagram shows timing relationships only, it does not represent any specific machine cycle.
b. Time measurements are made at the following reference voltages: Clock, $\mathrm{V}_{\text {ref }}(\mathrm{H})=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}(\mathrm{L})=1 \mathrm{~V}$. Other inputs, $\mathrm{V}_{\mathrm{ref}}(\mathrm{H})=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}(\mathrm{L})=0.8 \mathrm{~V}$.
c. Data in must be stable for this period when DBIN is high during S3. Requirements for both $\mathrm{t}_{\text {su }}\left(\mathrm{da}-\phi 1\right.$) and $\mathrm{t}_{\text {su }}(\mathrm{da}-\phi 2$) must be satisfied.
d. The ready signal must be stable for this period during S2 or SW. This requires external synchronization.
e. The hold signal must be stable for this period during S2 or SW when entering the hold mode and during S3, S4, S5 and SWH when in the hold mode. This requires external synchronization.
f. The interrupt signal must be stable during this period on the last clock cycle of any instruction to be recognized on the following instruction. External synchronization is not required.
g. During halt mode only, timing is with respect to the clock 1 falling edge.
3.6 TERMINAL ASSIGNMENTS

TMS 8080

A10	1		A11
$\mathrm{v}_{\text {SS }}$	2	39	A14
D4	3	38	A13
D5	4	37	A12
D6	5	36	A15
D7	6	35	A9
D3	7	34	A8
D2	8	33	A7
D1	9	32	A6
DOC	10	31	A5
$V_{B B}$	11	30	A4
RESET	12	29	A3
HOLD	13	28	VDD
INT	14	27	A2
¢2	15	26	A1
INTE	16	25	AO
DBIN	17	24	WAIT
WR	18	23	READY
SYNC	19	22	$\phi 1$
Vcc	20	21	HLDA

3.7 MECHANICAL DATA

40-PIN CERAMIC PACKAGE

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement. Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

GERMANY	FRANCE	ITALY	UNITED KINGDOM
Texas Instruments	Texas Instruments France	Texas Instruments Italia	Texas Instruments Limited
Deutschland G.m.b.H.	06 VILLENEUVE-LOUBET (A.M.)	O2100 RIETI (Italy)	Via Salaria per L'Aquilla, Cittaducale
Haggertystr.1, 8050 FREISING	Boite Postale 5	Manton Lane England	
Tel. 08161/80-1. Telex 0526529	Tel. 933103.64 . Telex 46045	Tel. 41314. Telex 62003	Tel. Bedford 67466. Telex 82178

[^0]: *Two possible cycle times (11/17) indicate instruction cycles dependent on condition flags.
 ${ }^{\dagger}$ All flags (C, Z, S, P, C1) affected.
 +Only carry flag affected.

[^1]: Two possible cycles times（11／17）indicate instruction cycles dependent on condition flags．
 All flags（C，Z，S，P，C1）affected．
 \＃only carry flag affected．

[^2]: ＊Two possible cycles times（11／17）indicate instruction cycles dependent on condition flags．
 ${ }^{\dagger}$ All flags（C，Z，S，P，C1）affected．
 \＃Only carry flag affected．

[^3]: ${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ and nominal voltages
 NOTES: 2. Active pull-up resistors of nominally $2 \mathrm{k} \Omega$ will be switched onto the data bus when DBIN is high and the data input voltage is more positive than $\mathrm{V}_{1 \mathrm{H}} \mathrm{min}$.
 3. The algebraic convention where the most negative limit is designated as minimum is used in this specification for logic voltage levels only

