TEXAS INSTRUMENTS - =

Introduction to
Microprocessors

Hardware and Software

$105S920.1d 0121\ O1 UoIONPOU|

October 1979

IMPORTANT NOTICES
Texas Instruments reserves the right to make changes at anytimein
order to improve design and to supply the best product possible.

Tl cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

Copyright©1979
Texas Instruments Incorporated

INTRODUCTION TO MICROPROCESSORS
HARDWARE AND SOFTWARE

Learning with the TM 990/189 University Board

Prepared by

GEORGE GOODE & ASSOCIATES, DALLAS, TEXAS

First Edition

Third Printing
October, 1979

PREFACE

This book was written primarily to satisfy the textbook re-
quirement at universities and colleges for a three credit-hour course
introducing students to microcomputers and to assembly 1language
programming. ItcomplementsTexasInstruments'TM990/189(University
Board), asing1e—boardmicrocomputerwith an on-board terminal devel-
oped to facilitate micrOprocessortraining and experiments with on-
and off-board peripherals. The board utilizes the TMS 9980A 16-bit
microprocessor and associated support chips.

Readers of this text are assumed to possess only a minimal
background in digital logic and computer operation. However, other
things being equal, a strong motivation to "learn-by-doing" is doubt-
less the key trait required for success in mastering the topics
covered in the text. Working professionals should find this text
and the University Board tobe a convenient means of "bootstrapping"”
into the new field of programmed iogic by means of self-paced,
free-time study with many exciting new vistas along the way.

For formal classroom instruction, teachers will find the con-
tents of the book suitable for the typical one-semester course re-
quirement of three hours of lecture per week with one to two hours
of supervised or self-paced lab, the latter requiring use of the
TM 990/189 Microcomputer Board. The bulk of the lecture material
can be coveredin about 12 weeks, thereby allowing time for selected
advanced topics, semester microcomputer projects, or more time for
introductory material (if needed). One of the key features of the
book is the use of many program examples which i1lustrate the in-
structions, programming techniques and 1/0 interfacing. A number
of graduated exercises and lab experiments are provided at the end
of most of the chapters to test the student's progress. Answers
are provided in Appendix B for the odd-numbered exercises.

An effort has been made to present the material in an orderly,
progressive manner which has been based, for the most part, on
experience in teaching courses on microprocessors to hundreds of
students in industry and at the university level.

Beginning with Chapter 1, the reader is introduced to computer
architecture,computeroperation,and some of the recent architectual
enhancements embodied 1in microprocessors. The chapter closes with
a description of the unique memory-to-memory architecture of the
TMS 9980A microprocessor and the features of the University Board.
Computer arithmetic and logic are reviewed in Chapter 2, with the
emphasis on the operation of the arithmetic 1logic unit (ALU).
Additionally, the firmware monitor (UNIBUG) commands are described

jii

and a number of experiments are given to exercise the on-board terminal
and toverify arithmetic and logic operations.

The key topic of computer addressing is introduced in Chapter
3 together with the first subset of TMS 9980A instructions. One
feature of the book is the way inwhich the instructions are described,
including examples and figures showing the configuration of the
ALU to achieve arithmetic, logic, Compare, and jump operations,
Flowcharting and machine coding are presented in working out the
first program example.

An overview of assembler functions is provided in Chapter 4
followed by details of the University Board symbolic assembler.
Directives, labels, and instruction syntax are discussed prior to
coverage of additional instructions and a sort algorithm program
example.

Memory systems for microcomputers are the focus of Chapter 5.
In addition, another subset of instructions is described followed
by a memory test program example. Input and output concepts are
introduced and overviewed in Chapter 6 with a versatile cycle gen-
erator employed as the program example. Chapter 7 continues with
input/output designdetai]sincludinginterfacingandspecia]periph-
eral component chip operation. A traffic-1ight controlier is used
as the program example.

Modular Programming, the powerful context switch, and user
accessible utilities resident in the UNIBUG firmware are discussed
in Chapter 8. A Morse code translator is developed as the program
example. Chapter 9 continues with the more advanced software en-
gineering concepts including nardware/software tradeoffs, top-down
design, linking, interrupt servicing, and real-time considerations.
Appropriately, the program example is a time-of-day clock.

Practical aspects of microprocessor/microcomputer product de-
velopment are discussed in the final Chapter. System design and
development, debugging, testing, and delivery are topics presented
from a realistic perspective.

As a historical note, the work of George Goode & Associates
with the TMS 9900 family of microprocessors began in 1976 with
in-plantseminarsattended by engineers, programmers, managers, and
engineering technicians. Later on, muchof the material was adapted
for a course in microprocessors taught at Southern Methodist Uni-
versity, School of Engineering. The Many questions raised by the
i fty ‘industrial

terest of the students in the course material pointed out the need

for publishing it, Thus, to these many hundreds of students, we
are indebted,

iv

Preface

CONTENTS

1 OVERVIEW OF COMPUTERS, MICROPROCESSORS, AND MICROCOMPUTERS

1.1

1.2

1.3

1‘4

Introduction 1

Nature of Data 2
Role of the Programmer 3

Basic Computer Architecture 3

Principal Building Blocks 4
Components of the CPU 7

Arithmetic and Logic Unit (ALU) 7
Control 8

Address Handling 8

Registers 8

Program Counter (PC) 9
Instruction Register (IR) 9
Memory Address Register (MAR) 10
Memory Data Register (MDR) 10
Accumulator or Working Register (ACC or WR) 10
Status Register (SR) 12

Buses 13

Memories 13
Input/Output 15

Typical 1/0 Configuration 15
1/0 Operation 16

Example of Computer Operation 19
Program Example 20

Loading the Program 22

Initialization of Data and Registers 23
Execution 23

Architectural Enhancements 29

CPU 29

Multiple Accumulators 29

Index Register (IR) 29
Workspace Pointer (WP) 30
Stack 32

Stack Pointer (SP) 32
Microprogram Control 33

Memory 34

ROM 36
PROM 36
EPROM 37
RAM 37

Input/Output 38

Single-Bit I/0 38

Interrupts 39

Direct Memory Access 42
Special I/0 Chips 43
Three-State Logic Devices 45

1.5 TMS 9980A Microprocessor 46

General Description 46
Architecture 48

Word/Byte Formats 49

Memory Map 50

Workspace Registers 50

TM 990/189 Microcomputer Board 52

Keyboard Display 52

LED Display 53
Piezoelectric Speaker 53
Audio Cassette Interface 56
EIA Interface 56

Bus Connector 56

I/0 Expansion Connector 56
Memory 56

1.6 Summary 56

ARITHMETIC, LOGIC, AND THE ALU
2.1 Introduction 59
2.2 Number Systems 59

Decimal Number System 59
Binary Number System 60
Octal Number System 62
Hexadecimal Number System 63
Fractional Numbers 65

Binary Coded Decimal 66

Vi

59

2.3

2.4
2.5

2.6
2.7

ASCII Code 68
Arithmetic Logic Unit 70

Description 70
Adders 70

- de s 7
ALU QOperation 73

Half-Adder 73

Full Adder 75
Complementing 76
ONE's Complement 77
TWO's Complement 77
Base Complementing 78

Signed and Unsigned Numbers 79

Number Range 79
Overflow 80
Carry and Overflow 81

Logical AND and OR Functions 81
On-Board Terminal 85
UNIBUG Monitor Commands 88

General Operation 89

UNIBUG Command Syntax 91

UNIBUG Command Descriptions 92
A--Assembler (Clear Symbol Table) 92
B--Assembler (Save Symbol Table) 92
C--CRU Inspect/Change 92

D--Dump Memory to Tape 93

E--Execute to Breakpoint 93

F--Flag (Status) Register Inspect/Change
J--Jump to Start of Expansion EPROM 94
L--Load Program From Tape 95

M--Memory Inspect/Change 95

P--Program Counter Inspect/Change 96
R--Register Inspect/Change 96
S--Single Step 97

T--Typewriter Program 98

W--Workspace Pointer Inspect/Change 98

Summary 99
Exercises 99

Positional Notation 99
Binary Conversions 99

Octal Conversions 100
Hexadecimal Conversions 100
Fractional Conversions 101

94

2.8

BCD Conversions 101
ASCII Conversions 101
Lab Experiments 102

INTRODUCTION TO COMPUTER ADDRESSING AND PROGRAM DEVELOPMENT

3.1

3.2

3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10

Introduction 107

Machine Language 107

Assembly Language 107

High-Level Language 108

Computer Addressing: What Does It Mean? 108
Location of an Operand 109

Location of Next Instruction 109
Location of a Peripheral Device 109
Address and Contents Distinguished 110
Program Example Introduced 110

Copy Operation 111

Register Direct Addressing 111
Instruction Subset 1A 112

Machine Code Format Example 115
Instruction Survey 116

Detailed Description of Instructions 116

The ADD WORDS Instruction 116
The SUBTRACT WORDS Instruction 117

Jump Addressing and Related Instructions 117
Machine Code Format 123

Assembly Code Format 123

Survey of Jump Instructions 125

Programming Example 125

Program Specification 129
Flowchart and Algorithm 129

Computer System Concepts Revisited 131
Register Addressing Modes 133

Immediate Addressing 136

Symbolic Memory and Indexed Addressing 137
Addressing Summary 139

Copy Function Revisited 139

Instruction Subset 1B 140

viii

107

3.12
3.13
3.14
3.15

Load Immediate Instruction 140

Add Immediate Instruction 144

An Additional Addressing Illustration 144
Decrement/Increment Instructions 147
Instruction Review 149

Program Production Process 154

Summary 157

Exercises 158

Lab Experiments 160

ASSEMBLY LANGUAGE

4.1

4.2

4.3

4.4

4.5

Introduction 161
Categories of Software (An Overview) 161

Systems Programming 161
Utility and Support Programs 162
Applications Programs 162

Overview of Principal Levels of Computer Language 162
Overview of Assembler Functions 164

Translation 166

Address Bookkeeping 166

Symbolic Constants Definition (Assembly-Time) 167
Error Indications 167

Output Control 168

University Board Symbolic Assembler 168

Execution of the Symbolic Assembler 169
Functions of the Symbolic Assembler 169
Entry Fields 170

Directives 171

Origin Control (AORG) 171

Line Cancellation (CANC Character) 171

Assembler Exit (END) 172

Block Declaration (BSS) 172

Word Initialization (DATA) 172

Symbolic Constant Definition (Assembly-Time) (EQU) 173
String Constant Initialization (TEXT) 174

Labels and Instruction Syntax 174

Label and Operand Correction 174
Instruction Syntax Review 175

ix

161

4.6

4.7
4.8
4.9

4.10
4.11
4.12

Symbol Table and Unresolved Labels 176
Instruction Subset 2 177
Initialization of the Workspace Pointer 177
Byte Instructions--Manipulation and Arithmetic 179
Compare Instructions 184

Compare Words Instruction 184

Compare Bytes Instruction 184

Compare Immediate Instruction 185
More Jump Instructions 185

The Jump if Equal (JEQ) 188

The Jump if Not Equal (JNE) 188

The Jump if Less Than (JLT) 188
Addition Instructions 188

Shift Left Arithmetic 188
Branch Instruction 194

Memory -Map 195

FTN1 Program Revisited 196

Program Example: Sort Algorithm 197
Program Idea 197

The Sort Algorithm 197

Program Specification 198

Program Flowchart 198

Source Code 200

Generation of Object Code 200
Program Testing and Modification 203
Summary 203

Exercises 204

Lab Experiments 207

MEMORY SYSTEMS 209

5.1

Introduction 209

Instruction Storage 209
Work Areas 210

Data Buffers 210
Data Manipulation 210
Memory Map 211

5.2 Memory Characterictics 211

Data Access 211
Memory Types 212

Volatile Memories 212
Nonvolatile Memory 217
Mass Storage 221
Configuration and Process Technology 224

Configuration 225
Process Technology 225

Applications 228
5.3 Memory Systems 229
Components 229
Control 230
Interface 231
Timing 233
5.4 Programming an EPROM for the University Board 234
5.5 Instruction Subset 3 235
Conditional Jump Instructons 235
Compare Instructions 235
Bit Manipulation Instructions 236
Shift Instructions 237
5.6 Program Example: Memory Test 253
5.7 Summary 256
5.8 Exercises 257

5.9 Lab Experiments 259

INPUT/OUTPUT CONCEPTS 261
6.1 Introduction 261
6.2 Computer System Review: 1/0 Function 261
6.3 Overview of 1/0 Categories 266
Program-Controlled 1/0 266
Interrupt-Driven 1/0 268

Direct Memory Access 1/0 273
Summary of I/0 Categories 278

xi

6.4

6.5

6.6
6.7
6.8

6.9

6.10
6.11

Overview of 9900 Family I/0 Options 278
Options Employing the Data Bus 278

Memory-Mapped 279
DMA 279

Communications Register Unit (CRU) 282

CRU Concept, Address Space, and Operation 282
CRU Concept 282

CRU Address Space 285

CRU Operation 287

External Instructions 293

Transfer Speed 293

UNIBUG Monitor Additional Commands (D and L) 295
Instruction Subset 4 296

Program Example: Cycle Generator 307

Goal of the Program Example 307

What the Program Does 307

Program Design 307

Program Operation 314

Summary 315

Exercises 315

Lab Experiments 319

INPUT/OUTPUT DESIGN

7.1
7.2

7.3

Introduction 321

I/0 Interfacing Considerations 321

Memory-Mapped 1/0 321

Direct Memory Access (DMA) 324

Communications Register Unit (CRU) 327
UART--Universal Asynchronous Receiver-Transmitter 329
A-to-D and D-to-A Converters 330
General-Purpose Interface 330

I/0 Peripheral Components 330

TMS 9901 Programmable Systems Interface 330
TMS 9902 Asynchronous Communications Controller (ACC) 334

>
-
-,

321

7.4 Timer Operation 334

7.5 Instruction Subset 5 336
Conditional Jumps 336
Byte Instruction 336
Logical Instructions 336

7.6 Program Example: Traffic-Light Controller 348
Specifications 348
Fiowchart 350
Program Listing 351

7.7 Summary 355

7.8 Exercises 355

7.9 Lab Experiments 356

8 MODULAR PROGRAMMING 359
8.1 Introduction 359
8.2 Program Modularity Concepts 359

Definition 359
Advantages 360

8.3 Subroutines 360
Definition 361
Usages 361
Characteristics 361
Entry Point 361
Exit Point 361
Data Passing 363
Relation of Subroutines to Past Program Examples 369
8.4 Context Switch 369
Definition 370
Usage 371
Context Switch Initiators 371

Hardware-Initiated Context Switch 372
Software-Initiated Context Switch 378

Returning from a Context Switch 383
8.5 Instruction Subset 6 383

Xiii

8.6 Defining an XOP 394
8.7 User Accessible Utilities (UNIBUG Firmware) 394
Summary of Utility Functions 396
XOP 8 - Write One Hexadecimal Character to the Terminal 396
XOP 9 - Read a Hexadecimal Word from the Terminal 397
XOP 10 - Write Four Hexadecimal Characters to the Terminal 399
XOP 11 - Echo a Character Received from the Keyboard to the Dis-
play 399
XOP 12 - Write a Character to the Terminal 400

XOP 13 - Read a Character from the Terminal 400
XOP 14 - Write a Message to the Terminal 400

8.8 Program Example: Morse Code Translator 400
Program Description 400
Program Design 402
Program Operation 409

8.9 Summary 409

8.10 Exercises 410

8.11 Lab Experiments 411

SOFTWARE ENGINEERING 413
9.1 Introduction 413
9.2 Hardware/Software Tradeoffs 413
Cost/Performance Tradeoffs 414
Run-Time Speed Versus Development Speed 414
Flexibility 417
Other Considerations 417
9.3 Structuring the Software 417
Top-Down Design 417
Concept 417
Advantages 418
Disadvantages 419
Structured Programming 419
Concept 419
Key Program Structures 420
Advantages 424
Disadvantages 424

Program Modularity 426

e
AN RS

9.4

9.5

9.6

9.7

Linking Program Modules 426

ROM/RAM Division 428
Memory Space Allocation 429

Program Module Memory Assignment 428
variable Data Memory Assignment 428
Memory-Mapped 1/0 Memory Assignment 425

Program Module Compaction 433
Intermodule Communication 435

Resolving Label Addresses with the ™ 990/189
Symbolic Assembler 436
Relocatable Assemblers and Relocating Loaders 436
Interrupt Servicing 438
Interrupt Service Routines 439
Saving the Interrupted Program's Environment 439
Identifying the Device Requiring Service 439
Processing the Interrupt 440
Resetting the Interrupt 441
Returning Control to the Interrupted Program 441
Interrupt Priorities and Response Time 441
Nested Interrupts 441
Restructuring the Priority Levels 442
Interrupt Response Time 443
Real-Time Considerations 444
Time Measurement and Delays 444

Program-Controlled Timing Loop 446
Hardware Clock 446

The Real-Time Clock (RTC) 447
Real-Time Operating Systems 450

Definition and Usages 450
Functions 450

Reentrancy 452
Concept 452
Considerations 453
Reentrancy Examples 453
Program Example: Time-of-Day Clock 456

Goal of the Program Example 456

XV

What the Program Does 457
Program Definition 457
Program Design 458
Program Operation 466

9.8 Summary 467

9.9 Exercises 467

9.10 Lab Experiments 470

10 PRODUCT DEVELOPMENT 473
10.1 Introduction 473
10.2 Product Development Overview 473
10.3 Product Definition 475
10.4 System Design 477
Random Logic Controller 477
ROM-Driven Controller 477

Microprocessor-Based Controller 478

Hardware/Software Tradeoffs 479
Design Considerations 480

10.5 System Development 480

Special Software Aspects 480
Hardware Development Technique 482

10.6 Software Development 482
10.7 Debugging, Testing, and Delivery 484
10.8 Development Tools 485
Firmware-Based Development System 486
Floppy-Based Development System 488
High-Level Language 490
10.9 Program Example Continued: Motor Control Ramp Generator 490

10.10 Summary 492

BIBLIOGRAPHY 497

xvi

APPENDIXES

A Glossary

B Answers to Odd-Numbered Exercises

C TMS 9900/9980 Instruction Formats

D Assignment of TMS 9902 Input and OQutput Bits
E TMS 9980A Pin Description

F Instruction Summaries, Alphabetized List

Xvii

—e

—e

-

CHAPTER 1
OVERVIEW OF COMPUTERS, MICROPROCESSORS, AND MICROCOMPUTERS

1.1 INTRODUCTION

This is a book about a particular microcomputer--the TM 990/189M
University Board manufactured by Texas Instruments Incorporated.
Before going into details of this board, however, it is appropriate to
survey a number of topics relating to computers to explain to the
reader (especially the novice) certain fundamental concepts and
definitions that are essential for an understanding of the material
in succeeding chapters.

Chapterl 1is an introduction to computers, microprocessors,
and microcomputers. An endeavor has been made to cover a wide
range of subjects in overview with details brought out in chapters
that follow. In many cases mention is made that "This will be
brought out in detail in Chapter ...," and in each case the
reader can refer to this detail immediately if he wishes, or, he
can proceed toward it in progression, whichever he chooses. How-
ever, this book is intended to be used as progressive teaching
material, and the student canbest benefit from it by following the
orderly exposition of the subjects as they are offered.

What is a computer? This is a question that needs to be
answered. First of all, it is a tool, a machine, a thing that
assists in the performance of a human task. It is designed to
process and manipulate data.

If a task is tobe performed by a computer, there are at Teast
three vital elements which must be involved:

° First is data. This can be in the form of numbers,

letters of the alphabet, or symbols of any type which

describe machine status, or virtually any information
that needs to be manipulated and processed.

Second, there must be a program. This consists of a

sequence of instructions carefully developed one after

the other in such a way that when executed in proper
order the task will be completed.

° Third is the need for peripheral equipment. At a
minimum this is some type of device outside of the
computer that provides data to or receives data from
the computer. Itcould be a printer, a display device,
a tape reader, a keyboard, or itcould be some external
machine or instrument...or any combination of these
devices.

The desired result of computation or processing is the comple-
tion of a desired task or function with a minimum of human in-
tervention. Commmonly such a task could be the performance of
some mathematical calculation, handling of a payroll, controlling a
manufacturing process, or any of a myriad of tasks that the typical
business or scientific Taboratory might require. More recently,
in view of the advent and availability of minicomputers and micro-
processors, one of the fastest growing applications of computers
is that of control--control of virtually any machine or instrument.
It could becontrol of aproduction line, a petrochemical process,
or an automated metal-drilling operation. With the new and in-
expensive LSI (Large Scale Integration) microprocessors and micro-
computers, computer control of even ordinary kitchen appliances
such as microwave ovens and mixers is now common. Games, all
types of instruments, machine tools, vehicle engines, and home
heating and cooling can be programmed and controlled easily and
inexpensively.

Nature of Data

Data for computer use is broken into two categories: digital
and analog. Digital means decimal or binary numbers, or digits of
any radix. One should also note that on-off signals, switch set-
tings, etc., fit into this category of digital data. In general,
any symbol that represents one of a finite set of discrete symbols
(such as letters in the alphabet) is an example of digital data.
For use with computers, digital means expressing such data with
a pattern of ones and zeroes.

Most of the dataor information in the world we live in couild
be categorized as analog. It is called analog because it has
aninfinite number of possible values which present a numerical
analogy of motion, position, state of being, etc. An example is the
exact position of a shaft that controls, say, a valve. Other ex-
amples are a meter reading of varying voltage, or a voice-signal
voltage on a telephone line. These all represent analogs, which
have maximum and minimum values (limits); however, the number
of possible positions or readings between the limits is infinite.
Fortunately, in the real world, analog data can be converted
(digitized) toa finite set of values or numbers. As long as the
analog-to-digital conversion results in adequate resolution of the
analog data for the task to be performed, such a conversion permits
use of digital circuits and computers for processing and manipulating
analog data. Although analog data can be manipulated and processed
with analog circuits, for an expanding number of applications a
less expensive and more versatile method is to convertit todigital
data and use microprocessors to process it.

]

Role of the Programmer

For the moment, assume there ijs a new and different task that
needs to be handled by a digital computer. Typically, what does it
take to create a program to handle it? First, the new task or
function must be analyzed and partitioned into various known sub-
tasks. Further, each of these subtasks must be broken down into
a logical sequence of steps. This latter process is facilitated
by constructing a flowchart. Then for eachstep to be accomplished,
the programmer writes down a 1list of instructions, each executed
in proper sequence for performance of all of the desired subtasks
and the overall task jtself. This latter process is called source
coding or simply coding.

Next, the programmer must translate each of the instructions
into code understood by the computer--generally called machine
code. Such a process is called assembling. This can be done
manually or it can be handled by a computer using what is called a
assembler.

To test the machine-code program, it must be loaded into the
computer upon which it is designed to run along with the data to
be manipulated. Andmore often than not (unless a program is simple
and short) it will probably not run the first time. Or, it may
run partialiy correct. Thus, a debug process comes next. The pro-
grammer endeavors to locate the point (i.e., instruction) in the
programwhere a"bug“(1ncorrectinstruction or instructions) exists.
Once a programmer thinks he has found a bug, he makes changes in
the program. That is, he deletes, adds, or modifies instructions
until the program appears to run satisfactorily. Note that the word
“appears" is used since the program may still have an additional
bug or bugs which have not been located due to failure of the
programmer to test all aspects of the program's operation. In fact,
some programs are so large and complex that they are never completely
debugged. Bugs are sometimes discovered by users months and even
years later.

An overview of the functions of a computer and the programmer
have thus been explained. 5o far, it has been stressed that the
computer must have data, must have a program to control it, and
must be connected to peripheral equipment.

With these basic concepts in mind, it is now appropriate to
focus on the computer itself and how it is constructed internally.

1.2 BASIC COMPUTER ARCHITECTURE

This sectiondeals with the building blocks of the computer or,
for that matter, any digital system. Once one learns these basic
blocks and their functions, then the exact manner in which they are
interconnnected constitutes a principal factor in the uniqueness of
a specificcomputer,whethermainframe,mini,ormicro. The approach
taken is to review these blocks then consider a configuration that

can be called the "classic" stored-program digital computer. A sim-
pPle hypothetical program will be tried out on this computer to
ensure that the reader has a basic understanding of the function of
each of the building blocks. It is then logical to proceed toexplore
many of the newer architectural enhancements (improvements) that
are prevalent in micros and minis today.

It should be stressed at this point that an understanding of a

computer's architecture js essential if optimum use is to be made
of its machine- and assembly-Tanguage instructions.

Principal Building Blocks

Starting with the high-level block diagram of a computer,
Figure 1-1 depicts the three major blocks in a stored-program
digital computer:

° CPU (central processing unit)
° Memory
° 1/0 (input/output).

In addition to the three major blocks, there are data and
control paths in the interconnections of these blocks. In some
systems, the I/0 is split into its two separate blocks--input and
output. However, it is common to combine input and output into
a single block as shown.

In general, the CPU is the portion of the computer where
instructions are decoded and then executed. Data is processed
in the CPU where arithmetic or Togical types of operations are
required in the execution of a program.

The memory portion contains read/write memory space for in-
terim results or for the temporary storage of data to be put out
to a peripheral device at some later time. Or, data often has
tobebroughtin from a peripheral device and stored in memory while
waiting to be processed. Also in memory is the program (sequence
of instructions) required for data processing or manipulation.

The 1/0 portion does exactly what is indicated. It is the
place in the system where external digital data is brought in,
either serially (a single bit at a time), or in parallel (multiple
bits simultaneously). Further, 1/0 is the point where data can
be output to peripheral devices ejther serially or in parallei.
In short, it is where the interface or connections are made between
the computer and the ‘external world.

Not showh in Figure 1-1 are the power supply and other essential
elements which, though necessary, are not a part of the main
functional configuration of the computer.

Moving now to each of the major blocks, the CPU is the Tocus
of the brain, or intelligence, of a computer. It controls the

ADDRESS BUS

170 p—s CPU = MEMORY
: :
CONTROL CONTROL
| DATA BUS

Figure 1-1. Block Diagram of a Computer

entire computer and executes each of the instructions one at atime
until the entire program is completed. The following lists provide
the principal functions of the CPU, the memory, and I/0 sections.
Afterward, further details are given on each section.

The CPU section:

° Fetches and decodes each instruction

° performs arithmetic and logical operations as required
by each instruction

° performs address housekeeping

° petermines internal status conditions (flags) resulting

from the CPU operation

Transfers data to and from the memory and to and from

the I1/0 sections

° generates and receives handshake control signals to and
from the memory and the I/0 sections .

° provides all internal timing and control signals for
the various registers and other components of the CPU
itself.

The memory section:

° Stores the instructions
° Stores data from or provides data to the CPU

DATA BUS

CONTROL ' v :
ya ! . Z
| I X X : 1
INSTRUCTION : :
DECODER AND : : REGISTERS
SEQUENCER : :
' _ ; ¥
’ J : 1
S ! P
TIMING AND ! ADDRESS : ‘X;‘;JTHL%EGTIICC
CONTROL : HANDLING :
f.--] : 1 1 PROCESSING
v NS
CONTROL BUS DDRESS BUS

Figure 1-2. Typical CPU Structure

° Performs under direction

CPU (or DMA controller,
The 1/0 section:

°

the CPU

CPU or memory

L]

the CPU or memory

nals from the CPU.

Transmits data and commands

of control signals from the

tobe discussed later).

Provides the interface between peripheral devices and
to peripherals from the
Receives data from peripherals and passes it on to

Alerts the CPU when peripheral devices need service

In general, performs under the direction of control sig-

INPUT A

RESULT | ALU

INPUT B

STATUS
oS | AU CONTROL

Figure 1-3. Arithmetic and Logic Unit

Components of the CPU

A detailed view of theCPU is provided inFigurel-2. A slash
mark on a line indicates two or more parallel lines. Being a very
complex and critical part of the computer, the CPUandits component
parts merit close attention. Consequently, each of the functional
blocks in Figure 1-2 is discussed in detail.

Arithmetic and Logic Unit (ALU). Figure 1-3 is a diagram
of the ALU showing two parailel inputs (A and B), one parallel
output (RESULT), plus a status register. Notice that there is also
a control input that selects one of a set of possible functions
that the ALU can perform. Specifically, the ALU can be controlled
to perform any one of the following arithmetic or logic operations.

Arithmetic Operations Logic Operations
° Add ° AND
° Shift/Rotate ° OR
° Compare ° EXCLUSIVE Or
° Increment ° Complement (Invert)
° Decrement ° Clear
° Negate ° Preset.
° Multiply
° Divide

It should be noticed that there is no subtract function indicated.
That is no problem because to subtract, the ALU merely forms the
negative of the subtrahend and adds algebraically to achieve the
desired result. Further detailsoneach ALU operation is provided
in subsequent chapters along with the role of the status bits re-
sulting from these operations.

Control. As depicted in Figure 1-2, the control portion of
the CPU consists of the instruction decoder and sequencer along
with the timing and control circuits.

The control portion of CPU:
® Fetches the instruction from memory at the location
pointed to by the program counter and moves it to the
instruction register

Decodes the instruction in the instruction register
Executes the instruction by means of sequencing a series
of control and timing signals to the other appropriate
components of the CPU, the memory, and the 1/0
Performs all operations under control of the clock
Controls all data transfers between various components,
both external (memory and 1/0) and internal

In general, controls the entire computer by means of the
timing and control circuits.

Address Handling. Quite often in a computer it is necessary
to perform an addition on an initial address in order to provide
the desired or effective address to either an instruction or a
data word in memory. cConsequentiy, computers sometimes utiiize
special circuits that assist in forming such addresses. Exampies
of this are given in detail Tater. However, at the present,
modifying an address might consist of using, say, an index reg-
ister (to be discussed later) and perhaps even using a special
incrementer/adder circuit designed expressly for modifying a data
pointer or a program counter. In many computers, this address han-
dling is performed by the arithmetic logic unitin conjunction with
the registers indicated in Figure 1-2.

Registers. Perhaps the variety of registers and their configura-
tions constitutes one of the major distinguishing features of a
given computer. A listing of a number of various types of registers
is given below followed by some detailed information on the special
function of each.

Program counter (PC)

Instruction register (IR)

Memory address register (MAR)

Memory data register (MDR)

Accumulator or working register (ACC or WR)
Status register (SR).

© 0 0 0 0o ©

MEMORY
FIRST

INSTRUCTION h
ADDRESS

(@
Py e
Gl
pc
f DPROGRAM
=
7

Figure 1-4. Program Counter

Program Counter (PC). This register is responsible for keep-
ing track of the next instruction to be fetched from memory. Typi-
cally, it is 16 bits in length; however, it can be shorter, with
the correspondingly smaller address space in memory. Highlights of
the program-counter operation are as follows.

° It is automatically updated when each instruction is

fetched so that it will be ready when the next fetch

is needed (see Figure 1-4).

Unless instructed otherwise, the CPU will keep on

executing instructions sequentially.

Transfer-of-control instructions alter the contents of

the PC to cause program control to go (i.e., Jjump

or branch) to a different point in the program.

° A special instructionmay cause theCPU to stop incre-
menting the PC and, thus, stand in place.

o

o

Instruction Register (IR). As mentioned above, the program
counter is always pointing to the next instruction to be fetched.
Thus, when it is time to fetch the next instruction, the program
counter contents are transferred to the memory address register
along with appropriate control signals. In return, the instruction
pointed to is fetched and transferred into the instruction register
as shown in Figure 1-5. The IR holds the instruction while the
CPU executes it. The decoding logic in the CPU analyzes the various

0

ADDRESS

I

[=7 1) PROGRAM

~INSTRUCTION . } DATA
CPU S

psls

Figure 1-5. Instruction Register

fields in the instruction to determine what operation is to be
performed.

Memory Address Register (MAR). This register (Figure 1-6) con-
tains addresses for instructions, memory data, and I/0 devices.
The address to be placed in the memory-address register is controlled
by the CPU at all times. For example, when an instruction is to
be fetched, then, obviously, the contents of the program counter
must be transferred to the MAR. Similarly, when an instruction

references memory, the dinstruction will contain a memory address
- -~ e a
to be transferred to the MAR.

Memory Data Register (MDR). The principal function of the MDR
is to buffer data going into and coming from the memory. It is
used primarily to pass data between the central processing unit
and memory, or, between the central processing unitand I/0 devices.
Thus, it is a bi-directional register. See Figure 1-7 for ablock
diagram. Sometimes a computer is designed with a set of two MDR's--one
for input and one for output. Such an arrangement would not be
bi-directional. In minicomputers and microcomputers, this latter
type of design is becoming very rare.

Accumulator or Working Register (ACC or WR). This is a temporary
working register of the CPU, accessible to the programmer. It is
used in a variety of operations including the source or destination
for data transfers, arithmetic and logic operations, and other
special-purpose instructions. Typically the result of an ALU operation
is placed in the accumulator as depicted in Figure 1-8. Generally
the accumulator is connected to one of the input data ports of
the ALU as shown (indicated by the A bus input). In the discus-
sions that follow, when the term ‘"register" is used without a
qualifying adjective, it usually refers to a working register or
accumulator,

10

ADDRESS BUS

MAR — PROGRAM —
- - - -
L MUX] .
°) e
e

CONTROL ‘ PC I | DATA CONTROL

DATA—
[/0 cPU MEMORY
Figure 1-6. Memory Address Register
ADDRESS BUS
CPU
170 e MEMORY

-
)
rv

DATA BUS

Figure 1-7. Memory Data Register

11

INTERNAL BUS

ACC MSB e o o LSB

N BITS

RESULT

ALU

Figure 1-8. Accumulator or Working Register

In earlier CPU's, it was quite common to have only one accumu-
Tater and, as its name indicates, it would accumulate the result.
However, as wiil be shown TJater, a single accumuiator turns out
tc be a bottleneck in the execution of a program.

Status Register (SR). This register, shown in Figurel1l-9, con-
tains all of the status or flag bits that must be retained in
the CPU after each arithmetic or 1logical operation is completed.
In some machines this is called a program status word (PSW) or
flag byte. Some of the more typical status flag bits are

Arithmetic carry

Arithmetic overflow

Result of an operation being zero

Result of comparing two operands: operands equal or
one operand arithmetically greater (signed value),
or logically greater than (unsigned value) the other
Parity on the last result

Sign of the Tast result

Interrupt enable status.

0o 0o 0 o

One may well ask, "What is the purpose of the status register
and each of the status bits?" The answer 1is that conditional
jump or branch instructions make decisions by the condition (ONE
or ZERO) of selected SR bits. Thiscancause the program to transfer

-
(A

(1] 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
IR | P PV P RV AN (L N Y, S W . W N U N O AL, S L A |
L L> } A> i EQ 1| C i oV l oF i X lk\\\\\ f?c\a:\nv:\u\\ \\\\\i INTERRUPT MASK i

T

L> LOGICALLY GREATER THAN OV OVERFLOW

A> ARITHMETICALLY GREATER THAN OP ODD PARITY

EQ EQUAL X XOP BEING EXECUTED
C CARRY

Figure 1-9. University Board Status Register

control to another area of the program based upon the results
from a prior operation that set the SR bits. For example, after
comparing two operands, the programmer might wish touse a transfer-
of-control instruction such as "Jump if Equal." Insuch asituation,
after finding the two operands to be equal, the machine automati-
caily transfers controi to another point in the program ({not the
next instruction as it would otherwise),

Buses. A bus is simply a common parallel path over which
information is transferred, from any of several sources to any
of several destinations. Referring back momentarily to Figurel-2,
it should be observed that all the interfaces to the CPU are buses.
At the top is the data bus over which data going to and from memory
and going to and from the I/0 wlll flow. But, since this flow
must be controlled, there must be control signals transmitted on
the control bus to ensure that proper timing does occur. Another
bus indicated on Figure 1-2 is the address bus. Addresses going
to the memory and also to the I1/0 devices come out of this one-way
bus.

The data bus itself is generally bi-directional, i.e., data
flows both ways over the same lines under control of signals from
the CPU. On the other hand, the control bus usually has a separate
set of lines to handle input-sensing control signals and to handle
the output of control signals generated by the CPU.

Memories

There would be no such thing as a stored-programdigital computer
if there were not some type of medium for storing the program.
In fact this is so vital to computer technology that one can say
that computer technology cannot itself advance without advances in
the development of newer memories with certain desirable features.

|

[
ROW * ROW ! | MEMORY
ADDRESS o DECODER :> I
INPUTS @ | MATRIX

r—— — — l ————————
. l
[]
DIN ——— WRITE
-
R/W ————— CIRCUIT
COLUMN
. CHIP DECODER
SELECT
l T e o o T
SENSE
DOUT = QUTPUT - COLUMN ADDRESS INPUTS

Figure 1-10. Block Diagram of Random Access Memory Chip

In general, one can say that the function of memory is that
of a storage medium which holds a sequence of computer words. Each
memory word may contain a program instruction or it may contain
simply data, either a constant or a variable. Each memory word has
a distinct location called a memory address, and the data stored
at that address is stored as a set of electrical voltages that
represent binary ONE's and ZERO's. The number of memory devices
(generally called "chips") required by a given computer system will
depend upon its total needs with regard to read/write and read-only
memory. Details on the configurations of both types of these memories
are given in Chapter 5.

There are twomain types of memories: nonvolatile (permanent)
and volatile (requires power in order to maintain the memory con-
tents). Nonvolatile memories are further broken down into read/
write and read-only categories, although most nonvolatile semicon-
ductor memory devices are in the read-only category. There have

14

been many improvements and breakthroughs in semiconductor memory
technology, some of which are reviewed in Chapter 5.

For a clearer understanding of memories and memory systems,
Figure 1-10 shows a typical read/write semiconductor memory device.
Such devices are generally referred to as RAM, random access memory.
Referring to the diagram, a memory address from the CPU's address
bus is provided to the address pins on the memory chip (or chips).
This address can be considered to contain two fields as in an X-Y
coordinate system. Once the X-Y coordinates settle in the memory
chip they are decoded by the respective row and column decoder
and thus select a given cell position. The cell position is often
replicated within the chip to provide a parallel N-bit word at
the selected X-Y address position. If the chip-select (CS-) input
is active, then the RAM chip would be ready for either reading
or writing depending upon the activity on the read/write (R/W) line
shown on the diagram. Typically, the data coming in and going
out of the chip are handled with a singlebi-directional data 1/0
port consisting of one or more pins. In Figure 1-10, separate IN
and OUT pins are shown.

Input/Output

The computer cannot process data without getting data from
the outside (input). Likewise results or control to external devices
cannot happen without output. Thus, an important measure of the
versatility and utility of a computer is its ability to communicate
with external devices or equipment.

One of the simplest configurations for handling I/0 is to use
a special input/output register. Whenever a data word 1is ready
for output, it is transferred from memory or from the accumulator
into this I1/0 register. Or, conversely, when an external peripheral
device needs to input a word into the CPU, it merely puts the
word in its output register and sets its status latch to indicate
that data is ready to be transferred into the computer.

Typical 1/0 Configuration. Referring to Figure 1-11, itcanbe
seen thata CPUnotonly requires the I/0 register but also requires
an address register. The latter can be expressly for I/0operations
or the CPU can share the same address register as that used for
memory operations. If the memory-address register is used and
if the data appears on the data bus in conjunction with memory
control signals, the type of I/0 is called memory-mapped input/
output. In this case, the I/0 circuits look T1ke memory circuits
to the CPU, and are "mapped" into certain addresses (circuits respond
when certain address line values are present). Alternately, of course,
the 1/0 register can be on data lines separate from the memory
data 1ines, but still share the address lines. Another scheme might
be to share common address and data lines, but provide separate I1/0
control signals. In still another type of CPU, the I/0 register
shown on the diagram might also be used to carry the address in

—» DATA
- == CONTROL
STROBES |) - T3
r CPU “ ADDRESS
b 1/0 REG 7 DECODER
| | : T T 1
READ WRITE
(1N OUT)_ . _! bl
r——- —-z-z-c-Z a0
0 BUSK | ! P ——-T 17§
¥ 1 4 4y t 4
OUTPUT INPUT éﬂ?‘;ﬂ? INPUT
DEVICE DEVICE DEVICE DEVICE
PRINTER TAPE READER KB AND 4 PERIPHERAL
PRINTER ‘—j STATUS
REGISTER

Figure 1-11. Typical I/0 Configuration

a time-multiplexed mode. Insuch cases, h
on the I/0 register first followed by

address would appear
by th ata
would have to be latched externally to hol

ul

e
d Thus, the address

t
é it for decoding. Subse-
d then appear con the 1/0

Tt & LLIC U

quently, the data to be transferred wo
bus.

In addition to the 1/0 register and the address register, it
should be noted that two strobes are a partof theI/0 interfacing:
read (IN) and write (0UT). Connected to the I/0 bus in Figure
1-11 areoneoutput device (printer), two input devices (tape-reader
and peripheral status register), and one input/output device (key-
board/ printer terminal). Alternately, the two signals canbe organi-
zed such that one indicates active 1/0, and the other gives the
direction, say, a ONE for a read (IN) or a ZERO for a write (OUT).

1/0 Operation. The operation to be describedis called pro-
gram-controlled I/0. For the moment, assume that the CPU has just
fetched an input instruction. The reason for the input instruction
is to have the CPU check, say, a peripheral status register. The
latter contains the status of various peripheral devices connected
to the CPU. 1In short, the CPU is checking to determine if a given
peripheral device is ready to receive data or if it has data to
transmit to the CPU. This operation is called polling and, as
can be surmised, it can be wasteful of CPU time if the data being
input is coming from a keyboard activated by a human operator,

—r
o

a relatively slow form of input compared to the speed of the CPU.

In some cases, keyboard datamay be loaded ina terminal buffer
as a sequence or block of characters. The time spent polling
or waiting for the device to be ready is called software overhead.
The temporary storage of characters in a buffer serves to reduce
this overhead. When a device is ready another input instruction
ijs executed. The input operation proceeds as follows.

° The input device address is placed on an address bus.
° An address strobe is sent out on the appropriate control
line.

The device places its data onto the data input bus.
A data strobe is sent on the appropriate control 1ine
to acknowledge to the peripheral device that the data
has been received by the CPU.

A similar sequence of events occurs for outputting data to
a peripheral device. The principal exceptionis that the CPUwould
first place the device address on the address bus, then place on
the data bus the word of data to be transferred. Strobes function
in the same way as discussed above.

It should be stressed that the timing for this particular I1/0
operation is constant, but, in any case, it should be sufficient
to make certain that the address decoder for the peripheral devices
(shown in Figure 1-11) has sufficient time to settle down and to

activate the addressed peripheral device.

To summarize the I/0 operation described above, it can be said
that three actions take place toperform an input/output operation:

° An address must be sent out to the peripheral device
to be decocded.

° The data must be placed on the data bus going to or
coming from the peripheral device.

° sujtable strobes or clock signals mustbe provided to
ensure synchronous operations of all transfers.

As mentioned earlier, the particular configuration and opera-
tion of input/output described above is called program controlled
1/0. Several significant enhancements or improvements in I/0 opera-
tions are discussed in a later section. The principal weakness of
the program-controlled I/0 operation is that in some applications
a great deal of time could be spent in polling and therefore not
performing any useful work.

A problem common to most computers is that multiple devices
need to be connected to the CPU. Therefore, some means of isolating
each of the devices is necessary so that only the addressed device
is active on the I/0 bus. In earlier computers, this was handled
with what is called open collector interface devices using what
is termed collector logic. With time, improvements have been made
in this area as discussed later in the chapter.

17

|]2 L[Peripremac L TAPE FRONT [F1/0
| STATUS READER | L—e] PANEL « CONTROL
{ { { =
y y
e A4t |
MEMORY
RaM ' RaM e— R/W
| e— MEM ENABLE
4
| IFRonT PANEL | ~ 1 170 BUS
AND MONITOR
} (ROM))
VARIABLE
l_..___f“"ﬂ“”__u__j'______

| _nia_] [MR | [I/OVREI
| R

<—f INSTRUCTION
=% | DECODER AND | & 1/0
o | SEQUENCER_ | o MEMORY

<] TIMING AND == CONTROL
CONTROL

—
0
e cm— ot— cm— —— ont— om— ww—— s—

Figure 1-12. Computer Configuration Showing CPU, Memory, and 1/0

'8"‘”” O|0O|0|0O] |O|00|0] |O|0]|0|0] |O]|0|0|0
ORUN o 1 2 3 4 s ls] 7 e |9 |rto]n 12 |13 f14a |1
s) | o R i | o | o | o | [o | |

Pg:FER UNLOCK ‘H?‘lLt—T RUN RESET LOAD WP PC ST MA WP PC ST MA MDD MAI MDE CLW®
(ij) oooao goaooao gaoao aoaa

TEXAS INSTRUMENTS 990

-

Figure 1-13. An Exampie of an Operator Control Panel

So that the reader will more fully understand the function
of the various component parts of a computer, a program example
is now given.

1.3 EXAMPLE OF COMPUTER OPERATION

To illustrate a computer's operation, Figure 1-12 4is used to
provide a view of the entire computer with CPU, memory, and input/
output. There is sufficient detail to trace various data and program
words throughout the system. To avoid starting at too elementary
a level, it is assumed that already loaded into the memory are
two programs in ROM, namely:

° Front panel service routine--a program which senses
the positions of 16 switches used for inputting al6-bit
word (either address or data), and 16 display 1lights
(LED's) used for displaying a result. In addition,
there are other inputs such as pushbuttons that are
used to initiate certain actions. See Figure 1-13 for
anexampieof a typical front panel configuration.

° Monitor--a program that enables the user to commun-
icate with the CPU. It allows him to input programs
by means of a tape recorder/reproducer or keyboard and
also toprintout dataon a terminal printer. In addition,

19

the monitor allows the user to inspect and modify the
contents of the program counter, the status register,
and the accumulator. A11 of this is achieved by means
of simple commands from the keyboard followed by appro-
priate numerical data (generally hexadecimal format).

Having both a front-panel subroutine anda monitor now permits
the user to make a choice on how he will 1oad his program. He can
load it through the tape reader using themonitor's built-in loader,
or he could use the keyboard and simply modify memory. Further,
he can load it awordata time by means of the front-panel switches.
If the program is short, it really will not make much difference
which way it is loaded, because it takes very little time to load
a short program by means of the front switches or the keyboard. A
point to be stressed is that, in any case, the user must find some
means to get his programinto the memory of the system if he wants to
execute it. If the program were longer and used frequently, it could
be stored inone or more ROM chips which are merely plugged into the
memory of the computer and, therefore, wouldbe ready for execution.

Program Example

The program selected for this example is as follows.

Add the two values stored in memory at locations
X and Y, put the sum (result) out to thebinary front-
panel display and then branch to the monitor program.
If an output carry occurs in the addition process, put
out all ONE's to the binary front panel display, then
branch to the monitor.

A flowchart and complete 1isting of the program example are given in
Table 1-1.

Prior to stepping through each instruction and data movement
on Figure 1-12, it would be helpful to first review the binary
formats of computer instructions generally and the purpose and func-
tion of each particular instruction in this program example.

Several examples of instruction formats are depicted in Figure
1-14. A single-word instruction is illustrated in Figurel-14(a),
indicating that half of the N-bit word is used as an operation
code ("op code") field, and the remainder is used to contain an
immediate operand or an address of an operand. When a CPU has
several addressable registers or accumulators, then often the address
of two of them canbe putinthis portion (field) of the instruction.
A direct memory address using the entire second word of a two-word
instruction iﬁ shown in Figure 1-14(b). An N-bit word thus addresses
a total of 2" words inmemory. The format for a two-word instruction
With the second word as an immediate operand is illustrated in
Figure 1-14(c). Not shown, but common in more sophisticated instruc-
tion sets, is a three-word instruction consisting of an op code
(first word) and two memory addresses (second and third words).

[AV]
o

TABLE 1-1
LISTING AND FLOWCHART OF PROGRAM EXAMPLE

,_
I»
o
m
phk
—

NSTRUCTION COMMENT

-
>
5o
-~
=

oV X

=

In
v

(]

MOVe the value at

memory 16£H£;bﬁ-% to
ACCumulator. CZEEEEZD

2. ADD Y,ACC ADD the value at p—
“memory location Y to [:3::Am
accumulator; if carry
occurs, indicate in
status register.

oy
»
w

i s

3. JOC ERR Jump On Carry to in-
struction labeled
ERR, i.e., if carry
occurs, jump.

4. DISP MOV ACC,IOREG MOVe value in ACC to ONES—e=ACC

I0REG. P .

)
5. OUT FP OUTput contents of ACC—=1OREG

IOREG to address of :

Front Panel. DISPLAY
I0REG
6. BR MONITOR BRanch unconditionally
to monitor program.)
G0 TO
MONITOR

7. ERR LDI ACC,ALLONES LoaD Immediate ACC
with all ONE's.

END
8. JMP DISPLAY JuMP unconditionally

“to instruction labeled
DISPLAY.

With regard to the program example, the first instruction says
tomove the value at memory location X to the accumulator. Sometimes
this is referred toas a "load" instruction. The second instruction
says to add the value at memory location Y to the contents of
the accumulator (which prior to the execution of instruction 2 con-
tained the value that was moved to it from location X). The third
instruction says to jump on carry, that is, take a jump to location
Jabeled ERROR if an output carry occurs in the addition process
executed in the prior instruction. This means that the CPU will
have to test or sense the carry-status latch in the status register
to determine whether or nota jump is to be taken. At the moment,
assume that a carry did not occur. Instruction 4 requires that
the contents of the accumulator bemoved to the I/0 register. Instruc-
tion 5 requires that the contents of the 1/0 register be output
to the front panel--a peripheral device--the address of which is
indicated with the abbreviation FP.

ro
(oY

The sixth instruction re-
> quires that the CPU make an

- N-BIT WORD unconditional branch (change in
the contents of the programcoun-
—WW ter)to the starting address ofthe
monitor program. Generally, when

._QQD_E____OB_ADDBQSS_ the monitor program is executed

itindicates that it is working
properly by issuing a "prompt”
character to the printer or dis-

UPERATIUN CODE play device. The prompt character
indicates to the operator that he
MEMURY ADDRESS may enter amonitor command, say,

to inspect or modify memory, or,
perhaps, to inspector change the
program counter, accumulator, or
status register.

OPERATION CODE) . ,
Going back to instruction 3,
IMMEDIATE OPERAND suppose that a carry was indeed

generated in the additionpro-
cess. The CPU, having sensed the
carry on the status register,

would then proceed to add a dis-
Figure 1-14, Typical Instruction g}actehmee";rz;:,:g tgoﬁzieﬁ?n:ﬁ?:;
Formats would cause the computer to jump
over or skip threeinstructions
(instructions 4-6) and proceed directly to the instruction labled
ERR. This instruction requires that the accumulator be Toaded im-
mediately with a valye of al} ONE's. In short, a binary word
consisting of all ONE's is lcaded into the accumulator by this
instruction. Instruction 8 then causes the program to jump uncon-
ditionally to the instruction labled DISP whereupon the contents
of the accumulator would be moved to the I/0 register and then
on out to the front-panel display before branching to the monitor.
Thus, the operator would see at a glance that all of the light
indicators on the front-panel display are active, clearly indicating
that a carry condition did exist in the addition process.

Loading the Program

Since the program example is relatively short (about a dozen
words), it will be loaded by means of the front-panel switches.
The front-panel switches are first selected to input the address
where the first instruction is to be located, say, memory location
100. With the address set up on the switches of the front panel,
an appropriate pushbutton is depressed causing the address to be
loaded into the CPU's memory address register. See circle 1 path
on Figure 1-15. A switch on the front panel now selects data to
be input at that address, and the firstwordof the first instruction
is set up on the front-panel switches. The LOAD DATA pushbutton
is depressed indicating that the data is to be transferred through

22

the 1/0 register and the memory-data register into the memory a
location 100, indicated with a circle 2 on the diagram. At thi
point the memory-address register is incremented, handled by a sep
arate pushbutton on the front panel. The new incremented value move
along the circle 1 path. The second word of the first instructio
contains the address X = 120, for this example. The LOAD DAT
pushbutton is depressedagain causing the value 120 tobe transferre
through the I/0 register and the memory-data register into tf
location at address 101, illustrated again in Figure 1-15 wit
the circle 2 on the dotted line.

In a similar way, the second instruction, also consisting ¢
two words, is loaded through the front-panel switches.

As in the first instruction, the initial word of the secot
instruction contains the operation code of the instruction indicatir
that the accumulator is to be the destination of this particuli
operation. The secondwordof the instruction contains the addre:
of location Y, namely 121. The remaining instructions are load
one word at a time until instruction 8 is loaded, at which tir
the loading process is complete.

Initialization of Data and Registers

In this example, values for X and Y at locations 120 and 12
respectively, are loaded into memory. The program counter thi
must beinitialized to the first instruction of the program, locati
100, using the front-panel switches. Circle 2 and 3 paths on Figu
1-15 indicate the data movement path for this. Actually, under fron
panel control, the value for the PC loaded through the front-pan
switches is not immediately transferred to the PC but is held
a temporary register until the RUN button is depressed. ‘,%fh t

accummr—awd—thrmtﬁ—fegfs%er-—d&w_ne_dmiﬁ;_}lﬂ_
for proper execution of this program. Thérefore, the profgram
now ready for execution. ; o)

i

Execution

The next step is to cause the program to be executed 'by mea
of depressing a pushbutton on the front panel called RUN. Up
this point, the computer has been running; however, it has be
under full control of the front-panel subroutine--the subrouti
that has allowed the operator to load inoneata time the instructio
required for his program. In order to execute a user progra
the front-panel pushbutton labeled RUN must be depressed, resulti
in the program-counter value entered earlier being loaded into t
program counter to cause the first instruction of the user's progr
to be fetched.

Referring now to Figure 1-16, the contents of the progr
counter are transferred to the memory-address register and tf
on the memory, shown with a circle 4. The word at location 1

23

INPUT/OUTPUT

R HRE FRONT [s120
STATUS READER | Lo PANEL « CONTROL
T =
{ { k1l
— — —_——— . 7 ::;-:%J:___ __J
MEMORY D@
LT R/W i
e MEM ENABLE 1 4
| S I
y
- — =] [FRONT PANEL] i /0 BUS
| AND MONITOR ! Ho
N ®om | X 1K
11 | —— J 11 H
| VARTABLE ! |
IO ' S R
[T T 1
MR | | MR
e I J

INTERNAL BUS

.--—-/,-J
[

£

< INSTRUCTTON
%] DECODER AND
| SEQUENCER

TIMING AND [
CONTROL

[
.
-

-———s—-ﬁa——_——_————_

> CONTROL

* 10
o MEMORY

—
o
|

|

I

|

|

|

I

|

Figure 1-15.

Paths for Loading the Program
and Initializing the PC

24

N ,
i [PERTPHERAL TAPE FRONT [s10
STATUS READER | L—a{ PANEL o CONTROL
“ I B R
L-] i __I
MEMORY
T RN | fe— RN
RAM =— MEM ENABLE

] | N | Y 1/0 BUS

| 7=+ fromemL| Do - ---F==1 /

AN AND MONITOR |

! o | Ll

1) 1 |

Pt

]! VARTABLE '
O IO 1 RS P
ik ary ﬂ

MAR 1/0 [®
| [l |
| el . St |

| (8 INTERNAL BUS |
! = =" Iy l

14 | (@)l LA
| ACC } IR |

) | %

| | 4 K r l

| 1 AU | < INSTRUCTION |-=-
|1 | S 'l %] DECGDER AND| 3 1/0 |

L-———— - [o | SEQUENCER | o MEMORY
| ® 21z > [riviv e f= covreaL |
| | CONTROL |
| TR ALU_CONTROL] |
L CPU |

Figure 1-16, Instruction and Data Transfers Required

for Execution of the First Instruction

25

(the first instruction) is now transferred out of memory into the
memory-data register and then over to the instruction register
as indicated by a circle 5. The instruction is decoded and requires
that the secondwordof the instructionbe fetched before the instruc-
tion can be executed. While the first instruction word was being
transferred to the instruction register the program-counter contents
were fed to the ALU to beincrementedconcurrent1y and the incremented
value placed back in the program counter; circle 6 path. Thus the
second word of the instruction, at address 101, is now fetched
and brought not totheinstructionregisterbut to the memory-address
register (MAR) as indicated by circle 7 on Figure 1-16.

This second word of the first instruction contains the address
120, which is what has been called Tocation X. The value at location
X is now moved from memory to the accumulator by means of the path
indicated with circle 8.

Referring now to Figure 1-17, the third word is fetched in
a similar way, labeled with circle 9. It contains the instruction
for ADD. The second word of this instruction contains the address
Y (121) which is fetched and transferred to the MAR (circle 10)
in order that the contents of location of 121 may be transferred
from the memory through the MDR to the B input or port of the
ALU (circle 11). Notice also that the contents of the accumulator
(containing the value at Tocation 120) are now connected into the
other port of the ALU (circle 12). Once these values are in place,
the control unit issues the appropriate control signal to the ALU
to cause the addition of the two values, one from the accumulator
and one that has been placed in the MDR from memory. The result
is now transferred to the accumulator (circle 13).

Assume for the moment that no carry occurred in the addition
process. Then when instruction 3 is fetched, the control unit
would sense the carry flip-flop in the status register and detect
that no carry existed. Consequently, the next instruction would
be fetched and cause the contents of the accumulator to be moved
to the I/0 register, circle 14 on Figure 1-17. When instruction 5
is fetched, the control unit Causes the contents of the /0 register
to be transferred to the address of the front panel. The address
is contained in the second word of the OUT instruction. Therefore,
before this instruction can be completed the address of the front
panel mustbetransferredfrommemory(secondwordof the instruction)
to the memory-address register (MAR) and then on out to the decoder
in the input/output section of the diagram. See circle 15 path
out of MAR. The decoder recognizes the address for the front panel
and activates the front panel (circle 16) to receive the word being
transferred from the 1/0 bus (circle 17). The final step in the
instruction execution is a strobe generated by the control unit
to cause the front panel to receive and hold (latch) the contents
transferred to it from the 1/0 register.

Once this transfer of data to the front panel is made, the

next fetch executes a branch to the monitor, causing the first
instruction of the monitor program to be brought into the instruction

26

| = , l

| e :
| | [PERIPHERAL L TAPE FRONT <1/
| | E STATUS READER | L—of PANEL |;_cmmzoL

|

| { P i
L_:.__.._.._..__..__’__.__:A__I

, MEMORY |

| YT e— R/W !

i w | 0 e— MEM ENABLE |

n U n

— 7 ,

= FROMPANqu-----: O, |4/ 1/0 BS

ik ANDMONITOR <o 1k .

o (N Wil w i NY & |

! —_\ h

H1 VARIABLE ! !
ﬁﬂlfw___Ju_L___

|

INSTRUCTION
DECODER AND
| SEQUENCER _|

TIMING AND
CONTROL

et

¢ 10

o MENORY
L~

= CONTROL

|

Figure 1-17. Data Transfers Required for
Execution of Additional Instructions

27

register. At this point the user's program has been completed,
and the CPU is now operating under control of instructions in the
monitor program. Consequently, a prompt would be generated by
the program and transferred through the I/0 register to the printer
shown on the diagram, Figure 1-17.

Going back to the program example for a moment, assume now
that the addition process did result in a carry. In this case
the control unit senses the carry and instead of fetching instruc-
tion 4, it fetches instruction 7. It achieves this by taking the
displacement value (typically eight bits) from the JUMP ON CARRY
instruction and adds it to the program-counter value utilizing the
ALU, thereby modifying the PC to the required address of instruction
7. With instruction 7 (LDI), the control unit recognizes that the
instruction contains a second word (all ONE's). Thus it fetches
this word and brings it directly into the accumulator as required
by the instruction. It then proceeds to fetch the next instruction,
number 8 (JMP DISPLAY), which requires an unconditional Jump to
the location Tabeled DISPLAY. This means that the unconditional-jump
instruction contains a negative displacement value. This negative
value, when added to f{he present contents of the program counter
(already advanced to the next location), results in the address
of instruction 4. The program proceeds as discussed above to complete
the execution of the program and branch to the monitor.

Instruction 6 (BR MONITOR), when fetched, requires that the
second word of the instruction be transferred from memory directly
into the program counter in order to cause an immediate change in
the program counter to the starting point of the monitor program.
This means, of course, that the old value of the program counter
is destroyed and replaced by the address of the monitor's first
instruction.

With this illustration of a program execution, it should be
evident that many transfers and many control signals occur throughout
a CPU in a precise and logical order to cause the program to be
executed. Of course, the program itself must be designed so that
each step is the logical next step for proper processing of the
data to obtain the desired result.

If the operator desired to execute the program a second time,
then he could, by means of the monitor program, go into the memory
with a modify memory keyboard monitor command and modify the contents
at locations X and Y to set the program up for new data to be
added. Then the monitor can be used to modify the value in the
program counter to prepare for execution of the user program. A
special keyboard command is entered on the keyboard to cause the
program to run. Thus, Toading of data into the memory, initialization
of the program counter, and execution of the program can all be
handled conveniently by using the monitor keyboard commands.

28

1.4 ARCHITECTURAL ENHANCEMENTS

Because of the rapid, almost revolutionary, developments in
semiconductor technology, substantial improvements have been made
in the architectural design andconfiguration of computers--partic-
ularly microprocessors--in recent years. This section reviews some
of the highlights of these developments to enable the reader to
have a better perspective of the total spectrum of capabilities
now available in the form of microprocessor and microcomputer chips.
The architectural enhancements discussed here cover the CPU, memory,
and input/output.

PU
Principal enhancements in the CPU's architecture include mul-
tiple accumulators, some special types of registers, a stack, and
microprogram control. Fach of these enhancements is covered in
some detail below. '

Multiple Accumulators. Probably the single feature which has
added more convenience for the programmer has been the inclusion
of multiple accumulators or working registers. Suchan arrangement
may well imply the need for dual internal buses so that both a
source and a destination register canbe addressed in an instruction.
As pointed out earlier, an accumulator or working register allows
the programmer to hold the temporary results for use in some later
process. With some CPU's, the multiple accumulators may also have
functions other than as general-purpose accumulators. One example
of a multiple register arrangement in aCPU is given inFigurel-18.

This diagram shows how a single demultiplexer is used to take
the result, say, from the ALU and transfer it inthe selected register
(RO,R1...,R15). On the other side of the registers are found
a sourcemultiplexer and a destination multiplexer. The source multi-
plexer selects one of the 16 registers for placement on the A
bus while the other multiplexer selects one of the 16 registers
for connection to the B bus. (Details on the operation of data
multiplexers and demultiplexers are provided in The TTL Data Book
for Design Engineers, Second Edition.)

Index Register. Often a CPU contains what is called an
index register. This registeris used to holdadisplacement or off-
set value to, say, the beginningof a table of constants in memory.
Then an instruction can reference any word in the table merely
by adding this displacement or offset value to the address portion
of the idinstruction. Thus, when the instruction is fetched, the
address portion is transferred to one port of the ALU. To the
other port15transferredthecontentsof the index register. Addition
is then performed, resulting inwhat iscalled the targetor effective
address. The index register itself may be a completely separate
register or it may be one or more of the working registers or

29

REG SELECT
CONTROL
ONTRO BUS
\\
BUS B
R1]
/// R2 w.)
RESULT DATA /f/' ™
FROM <
AL DEMUX ° °
[] ® |
T -
REG SELECT
CONTROL N 7‘;
REG SELECT 19 a Ly
CONTROL

Figure 1-18. Multiple Accumulators or Working Registers

accumulators. Figurel-19 depicts the process of forming an effective
address by means of an index register.

It is stressed that this addition of an instruction address
and the displacement in the index register to form the effective
address does not normally change the value in the index register
itself. By using such instructions as increment, decrement, add,
and subtract, the programmer can readily modify the value in the
index register and thereby systematically step through the table.

Workspace Pointer (WP). One of the most recent enhancements
to CPU architecture is the workspace pointer. The workspace pointer
is a register 1loaded under program control and used as a pointer
(contains the address) to a block of, say, 16 workspace registers
contained in RAM. This means that the accumulators or working
registers are located in memory rather than in the CPU's hardware,
as illustrated in Figure 1-20. The principal advantage of this
concept is that the programmer can select more than one block of
registers to solve a complex programming problemby merely reloading
the workspace pointer whenever his program requires a "context
switch" (e.g., interrupt). In short, when the programmer reaches
a point in his program where he needs more registers to perform
a subroutine, he merely uses a type of branch instruction which
contains not only an address to the new portion of the memory
where the subroutine is located but also a new value which is Toaded

30

PART OF INSTRUCTION

| BASE ADDRESS

/ 4

A 4

[DISPLACEMENT |

INDEX REGISTER

TARGET
ADDRESS

MEMORY

> TABLE

Figure 1-19. Index Register Operation

CPU

)

LOADED BY PROGRAM

WP

——

BRA.

BLOCK OF
REGISTERS

Figure 1-20. Workspace Register Concept

31

into the workspace pointer. This allows the programmer to use
a separate block of registers exclusively for the subroutine. Natu-
rally, the last program counter value and the prior value of the
workspace pointer have to be saved in a context switch, but there
is no requirement to save the prior block of registers since they
are already stored in memory, thereby saving time. Exactly how the
"context switch" is achieved is treated in Chapter 8. The single
drawback of using a workspace pointer with registers in RAM is
that it takes more time to access memory when processing instructions
referring to workspace registers. Recent experience indicates that
the advantages of the workspace pointer concept outweigh this single
drawback, especially in real-time (interrupt-driven) applications.

Stack. A hardware stack is a special kind of memory which
has sequential access in the following way. Words are pushed on
to the the top of the stack in sequence and are pulled off the
top of the stack in reverse order. Such a memory is called tast-
in-first-out (LIFO). Words are pushed one at a time onto the stack
from a bus and pulled off the top of the stack back onto the bus
as shown in Figure 1-21,

For housekeeping purposes, there is special logic connected
to the bottomof the stack (OR gate) so that whenever a word moves
into the bottom location, a stack full signal is generated and
fed to the control portion of the CPU. Asimilar signal is sometimes
used to indicate that the stack is empty.

The main purpose of the stack is to allow the programmer to
save the contents of the registers (the CPU machine state) on the
stack for temporary storage while the program transfers to another
Tocation for processing a subroutine or an interrupt. As discussed
previously, a CPU using a workspace pointer achieves the same result
quite conveniently by means of the "context switch." The addressing
mode for a stack is particularly simple since there is only one
address to the stack, namely, the "top." The stack's usefulness
in nested subroutine operation can be significant.

Stack Pointer(SP). Some central processingunits donotprovide
for either a stack or a workspace pointer in their hardware con-
figuration, but instead use what is called a stack pointer. This
is a register that is initialized by the programmer and points to
the location of the first place in RAM memory designated by the
programmer as stack. This is illustrated in Figure 1-22 wherein
a number of locations are shown below the top location of stack.
This is sometimes called a software stack and places the burden of
housekeeping on the programmer to make certain that stack operations
are always between the top and bottom locations. The burden is
somewhat offset by the advantage that a larger amount of stack
storage 1is available in memory which can accommodate a very deep
stack before reaching "bottom."

32

To illustrate, assume that
the stack pointer is initialized

to memory location 1031 and that

the bottom location has the ad- INTERNAL BUS
dress of 1000. This provides a t

total of 32 word locations for _] I PULL
use by the programmer for all] |

stack operations. The first word

pushed onto the stack is stored

at location 1031, afterwhich the UPUSH

SP is automatically decremented

to the address 1030. The second TOP

word is pushed onto the stack at
location 1030 and again the SP
is automtically decremented to

the value 1029, etc. When a PULL *
(or POP) instruction is executed, .
the CPU automatically increments »
the stack pointer to the next

higher address; then it transfers BOTTOM

this word. This 1eaves that par-
ticular location available for

a PUSH instruction if one should —_—
occur prior to a PULL instruc- STACK FULL
tion.

Figure 1-21. Stack
It should be clear that the

operation of the stack pointer

address is such that the software stack works on the same basis
as the hardware stack; namely, lastin-first-out. The "housekeeping"”
chore of keeping all stack operations within the top and the bottom
locations has to be assumed by the programmer. This is generally
handled by checking the value of the stack pointer after eachoper-
ation. Needless to say, if the vaiue in the stack pointer ever
goes outside the limits of the top and the bottom addresses, tem-
porary data could be destroyed thereby causing erroneous program
operation and results.

Microprogram Control. The use of microprogram control in a
processor to decode and generate the various control signals within
a CPU represents a significant improvement in the systematic design
and operation of the control portion of the CPU. In one sense,
the microprogram control portion of a CPU may be considered an
inner computer. In brief, when an instruction is fetched, the
instruction causes a sequence of micro instructions within the micro-
programmed control unit to commence exécution. Eachmicro instruction
directs the central processing unit to perform one step in the
execution of the instruction. Thus, a set of micro instructions
constitutes what is called a macro or machine instruction. Macro
instructions are, therefore, the machine instructions used by the
programmer to develop a program. In the vast majority of cases,
the manufacturer of the CPU defines the instruction set in what
is called microcode; therefore, the instruction set is fixed by

33

INITIAL ’
LOAD ToP: 1831
{
® - : b STACK

BOTTOM: 1800)

Figure 1-22. Stack Pointer

means of the internal mask that becomes a part of the standard
processor design.

Although such a microcode was developed (microprogrammed) by
the manufacturer, this does not mean that it is microprogrammabile
by a user. Generally, chips referred to as bit-slice microprocessors
are microprogrammable. The latter constitute multiple-chip CPU's
and are beyond the scope of this book; however, they should be
considered when a very high speed, special purpose microcomputer
is required.

Figure 1-23 depicts aconfiguration for amicroprogrammed control
unit.

Memorx

In recent years there has been an upsurge and proliferation
of semiconductor memory devices. In addition, new configurations
of magnetic storage devices have been developed to provide bulk
auxiliary storage of programs and data for rapid access. A review
of the two major categories of nonvolatile and volatile storage
devices available will provide some idea of the extent of the growth
in this technology.

A listof various types of nonvolatile storage devices includes

Semiconductor devices

° ROM (Read Only Memory)

® PROM TProgrammable Read Only Memory)

° EPROM TEraseable Programmable Read Only Memory)
° EAROM (Electricalfy Alterable Read Only Memory)

34

iR

ADDRESS A V4

MODIFICATION re
ROM ADDRESS $ STATUS
.

ROM
MICROINSTRUCTIONS:
A SET REQUIRED FOR
EACH MACHINE
INSTRUCTION

ROM OUTPUT be— CLOCK
REGISTER

o o 0 ‘__.

CONTROL LINES
TO ALU, ALL REGISTERS,
1/0 STROBES

Figure 1-23. Microprogram Contfo1 Unit

Magnetic Devices

° Core (for years the principal type of computer main
memory) '

Tape (reel-to-reel, cassette, and cartridge)
Disk (rigid and floppy)

Bubble (MBM, Magnetic Bubble Memory)

Drum (rigid) — - -

o 0o 0 o

Nonmagnetic Devices

° Paper Tape
° Cards.

(98]
(3,

Similarly, a list of the various types of volatile memories, all
of which are semiconductor, includes

° Static RAM (Random Access Memory)
Dynamic RAM

° Shift Register (dynamic and static)

® CCD (Charge Coupled Device).

Some of the features, characteristics, and comparisons of the
new semiconductor memory devices are reviewed below to provide some
idea of the impact of this technology on engineering design and
development as well as on production of products based on these
devices.

ROM. Although a ROM memory also has random-access capability,
for some reason the use of the word RAM is commonly applied only
to read/write random-access memory. A read-only-memory is manufac-
tured so that desired data will be read-out, and no other data
can be written into the device. The data pattern is fixed at
manufacturing time. The lowest cost approach to ROM requirements
is met by using mask-programmed ROM's which means that a special
processing mask of ONE's and ZERO's is used during device manu-
facture. Some of the advantages offered are

® Larger memory size per chip (number of words and
size of the word) per chip
Lowest cost in quantities
Low power
° Fast access.

However, one must keep in mind disadvantages such as the relatively
high cost of making the mask, and the need for absolutely correct
data, because the mask is permanent and cannot be modified short
of creating a whole new mask at the factory. Another factor to
be kept in mind is the long lead time on initial delivery of the
chips.

Some of the more common applications for mask programmed ROM's
are

Microprocessor program storage

Lookup tabtles

Code conversion

Character generation and, in general

A1l types of sequential ROM-driven controllers.

© 0 0 0 o

PROM. The invention of field-programmable semiconductor PROM's
was a significant advance in semiconductor memories. These PROM's
allow the user tocreate his ownROM by applying a series of electri-
cal programming pulses to the device in a special piece of equipment
called the PROM programmer. Generally, the programming process
destroys a fusible 1ink in a semiconductor cell to create the desired

36

logic state of a ZERO. If the fusible 1link is not destroyed the
cell retains the logic ONE state. :

Some of the clear advantages of the PROM over the ROM are

° Rapid turn-around during the development phase

° Low cost for a few copies

° When the project gets to the production stage there is
usually a ROM counterpart which, in volume, can be
purchased at a substantially lower cost.

Disadvantages to keep in mind are

° Difficult if not impossible to correct mistakes
° programming equipment can be expensive.

Fortunately, many suppliers of PROM's have programming equipment
that they make available to their customers.

EPROM. Invention of erasable PROM's was another breakthrough
in memory technology. An EPROM can be programmed by a controlled
series of electric impulses. If an error in the program is discovered,
or if the program is discarded or transferred to mask ROM, the
EPROM can be erased and reprogrammed. Even though EPROM's are rei-
atively highin cost and often require expensive programming equip-
ment, they still maintain significant advantages:

Fast turn-around time

Permanent storage

Stored data can be changed as desired by erasing and
reprogramming

Good density

Low power

Fast access time

Usually a pin-compatible ROM is available.

o 0 o

© 0 0 o

An ultraviolet light source is used to erase or clear the EPROM
prior to reprogramming.

RAM. The emphasis here is on active semiconductor devices
which require power to maintain the information being stored. 1In
general, RAM is used to store intermediate or temporary results
of the program as well as to store blocks of input and output data.
In the latter function the RAM serves as an input and output buffer.
There are two principal types of semiconductor RAM's: dynamic and
static. Dynamic RAM's are generally of higher densities than static
RAM's. The principle of operation of a dynamic RAM cell is that
a parasitic capacity charge is stored, and in order to hold the
charge, it must be regenerated periodically, i.e., refreshed. Gen-
erally, this refresh must be accomplished at least every two milli-
seconds. A failure to refresh will cause a loss of data even though
power is still applied. Usually, dynamic RAM memory systems require

37

external hardware to periodically refresh the cells. In some cases,
however, the microprocessor Chip itself may have built-in Circuity
to handle this requirement.

Static RAM's use the multiple-gate transistor Tatch to store
each bit in a memory cell; therefore, no refresh is required. Con-
sequently, a minimum of external hardware is required, if any.
Although static RAM's are less dense than dynamic RAM's, they will
retain the data stored in them as long as proper power is supplied.

Input/Output

. There have been considerable enhancements in the I/0 capability
of microprocessors in recent years. The improvements discussed 1in
this section are

° Addressable single-bit 1/0

° Vectored, prioritized, maskable interrupts
Direct memory access (DMA)

° Special LSI chips for 1/0 timing and control
® Three-state logic devices

°

As pointed out earlier, the input/output capability of a processor
represents one of its principal capabilities because controlling
external devices and processing external input data are what proc-
essors are designed to do.

Single-Bit I1/0. Ever since the birth of the first computer
it hasbeen possible to transfer data into and out of the processor

stricted to just a few of the available processors. When this feature
has been available, these single I/0 bits have been restricted in
number to approximately a half'dozen or less. More recently, processors
have been introduced which allow the programmer to address any one
of up to4096 individual 1/0 bits. Although a system that requires
that many 1/0 bits would be rare, it is not unusual 1in certain
types of control applications to require several hundred individual
input (sense) bits and several hundred output (discrete control)
bits.

The two principal ways that single-bit I1/0 is achieved are
illustrated in Figures 1-24 and 1-25. Whenever this capability
is built in (Figure 1-24), the number of control flags (outputs)
Must be restricted as well as the number of sense inputs, since
Pin limitations force this restriction on the designer of the device.

exactly the number required for a given application. One such con-
figuration is shown in Figure 1-25, Further details on this single-

38

bit 1/0 architectural enhance-
ment shed in Chapter 6.

The major advantage of sin-
gle-bit I/0 is the ease of han-
dling discrete input and output.
A jarge percentage of control
applications involve sensing the
position of switches, push-
buttons, and other single-bit
information. After sensing, the:

rocessor makes a decision to
Eontro1 certain discrete output MICROPROCESSOR/
peripherals such as solenoids, CPU
relays, display LED's, etc.

-t

CONTROL ¢
FLAGS. o

-—

Interrupts. The use of com-

puters or real-time applica- INPUTS
tions involving control and proc-
essing created a need for a new
capability that was not required
in nonreal-time applications.
The word real-time implies the
need for immediate service of one
type or another in situations : : : .
whgre the events occurring are Figure 1-24. Single Bit 1/0:
time-dependent. Some typical Built-In Capability
real-time applications are

—i
T SENSE .
[]

D

° Fire-detection system

° Limit switch in a machine controlled by a proc-
essor

° High-speed terminal interfaced to a processor.

Several examples of nonreal-time processing which require no
interrupt capability are

° processing of payroll checks
° Scientific calculations
° Preparation of management information reports.

The word "immediate" above is used in the time frame of the
electronics involved, typically microseconds or milliseconds. In
a relatively simple system there may be only one interrupting de-
vice, such as the fire-detection system mentioned above. In this
case the interrupt device could be connected into the CPU as shown
in Figure 1-26(a). This is an example of a CPU with a single
interrupt line which is nonvectored. Whenever the interrupt device
needs service, it activates the interrupt. request line. Such
servicing entails setting aside the current program and the CPU
machine state before addressing the interrupt device to determine the
nature of the interrupt (requiring input or output, etc.). In the
case of the fire detector, the type of service would be quite explicit;

39

|

- 1

|

outPuTs - | ADORESSABLE | pury fpry
. LATCHES ,

- ——————{

CLOCK

|

CPU/
ADDRESS MICROPROCESSOR

l

— -————i——a-

- DATA BIT
INUTS - | MULTIPLEXER !
— l

|

<— EXTERNAL !

HARDVARE

Figure 1-25. Single Bit 1/0: Using External Hardware Devices

namely, to activate a sprinkler system and/or set off an alarm.
Now suppose there are multiple interrupt devices such as multiple
Timit switches on a machine. The interrupt request line coming out
of each of the interrupt devices is OR'ed with appropriate logic
and tied into the single interrupt-request line going into the CPU.
Thus, when any of the interrupt devices becomes active, a single
request goes to the interrupt line. The CPU must resolve which
of the devices requested service. It can handle this by means of
polling. The requirement for the CPU to poll various devices to
determine which one is active, however, can be eliminated by using
a technique called vectored interrupt.

One type of vectored interrupt is indicated in Figure 1-26(b).
Here, multiple-interrupt devices are shown connected directly to
multilevel-interrupt request lines on the CPU. Built into the CPU
is a priority encoder (PE). In the case of a single interrupt
being active, the priority encoder merely supplies the correspond-
ing code (vector) to the CPU so that the CPU is able to immediately
identify and service that device without polling. In the case of
several devices being active simultaneously, the priority encoder
automatically provides the CPUwith the code of the highest priority
interrupt device. In the illustration, four interrupt devices are
shown connected to the the multilevel-interrupt request Tine. The
number of levels has tobe restricted because, again, of pinlimita-
tions on the device itself.

40

®

©

ADDRESS BUS

{I > ADDRESS

C

<> DATA 1/0

INTERRUPT
REQUEST LINE

INTERRUPT

DEVICE

DATA BUS
4 . ADDRESS ADDRESS . 7
LEVEL O [TNTERROPT
DEVICE
CPU U e
= WL .
| PE o= INTERRUPT TNTERRUPT
L =7 RwESTLNS = i
@DATA 10
4 > ADDRESS]\/L
LEVEL O —reRrueT
DEVICE

INTERRUPT CODE

(VECTOR)

...’

<> DATA 1/0

INTERRUPT REQUEST LINE |pye 15

INTERRUPT
DEVICE

Figure 1-26. Three Types of Interrupt Capability

41

To get around the problem of pinlimitations designers developed
still another technique for handling multiple-interrupt devices as
shown inFigurel-26(c). This diagram depicts 16 interrupt devices
connected into a block labled PE (priority encoder), which performs
the -same function as in the prior configuration. The priority
encoder chip (or chips) automatically provides a binary encoded
vector, four bits in this case, of the highest active priority
interrupt device.

As one can see there has been a progression in interrupt capa-
bility wmoving from a single-interrupt request line to multilevel
interrupt request lines, and then finally to provision for an
interrupt code vector with all of the priority encoding logic
being done externally. It should be noted in Figure 1-26(c) that
even though there is only one interrupt request line the interrupt
code vector consists of, typically, three or four lines to provide
for eight to 16 priority-interrupt levels.

Whenever a CPU has interrupt capability itisalsoessential that
it has some means of masking out such interrupt requests due to high-
priority processing that it may be performing at the time. In the
simplest case, an interrupt-enable latch is used. This latch,
when set to one, allows interrupt requests to be fed into the CPU
and serviced as has been discussed. However, when the interrupt-
enable latch is cleared, the CPU will not recognize any interrupt
requests active on the interrupt request line.

In the case of multiple-level interrupt request 1ines and systems
using an interrupt code or vector, the CPU can have built into it
a method of individually masking out a given interrupt level or
masking out all interrupt requests having a lower priority than a
predetermined level. This feature permits the programmer to determine
at any given time inhis program which particular levels of interrupt
he will allow to be enabled and which would not be enabled. Such
masking of interrupt levels 1is essential for orderly processing
of complex real-time interrupt requests.

Direct Memory Access. Up to this point all the input/output
discussed can be categorized as program controlled. It should be
evident also that polling techniques for control of input/output
are initiated under program control except in the case of those
initiated by interrupt request. Direct memory access (DMA) is
different fromother forms of I/0 inthatitiscompletely independent
from program control because it is initiated by the DMA device
controller, and all transfers are made under its control.

In brief, the DMA device is allowed to get direct access to
the memory so that the data being transferred to or from memory
does not pass intermediately through the CPU as in the case of
ordinary CPU-controlled I/0. A typical sequence of operations given
with reference to Figure 1-27 follows.

42

The DMA device (disk inthis case) makes a request via
the HOLD line for use of the three CPU buses.
The CPU ceases execution when it has completed the
current instruction and then issues a HOLD ACKNOWLEDGE
signal to the DMA controller, while simultaneously
;e]easing control of the address, data, and control
uses. .
° The machine state of the CPU is frozen during the
sequence of operations to follow.
The DMA controller sends the proper control signals
(read/write, memory enable, etc.) directly to the
memory and commences to place an address on the
address bus and data on the data bus (to transfer
it to memory), or prepares to receive data from the
data bus as required.
Such transfers can consist of only a single word or
multiple words (block) as required in the system.
° Wwhen the transfer is completed, the DMA controller
deactivates the HOLD line which causes the CPU to
deactivate its HOLD ACKNOWLEDGE, thereby returning
control to the CPU.
Program execution continues with the instruction imme-
diately following the last instruction executed by the
cPU.

Special 1/0 Chips. To complement the rapid advancement made in
microprocessor chips, manufacturers have developed special 1/0chips
which aid immeasurably in handling various input/output functions
normally associated with processors of various types.

One of the most common chips is that called a UART, an acronym
for gniversal—Asynchronous-Receiver-lransmitter. This type of chip
permits the designer to oft-1oad from the CPU the task of timing
and formatting asynchronous serial data that would ordinarily be
transferred to or received from a terminal. Asynchronous means
that each character code format contains its own start and stop
bits utilized by the receivingdevice to achieve character decoding
synchronization on a charater-by-character basis. Such an activity
can consume a fair amount of initial software development time and
also CPU execution time, the latter of which could be used to per-
form other tasks. Typical of the terminals that can be interfaced
to a microprocessor using the UART chip are the Teletype Model 33
and the Tl Silent 700 series. In addition, there are numerous other
terminals that utilize the same 8-bit data character format, referred
to as ASCII code (see Chapter 2).

Similar to the UART is the USART, the latter an acronym for
ypiversa}—§ynchronousuﬁsynchronous—geceiver-lransmitter. This chip
can do everything that the UART can do plus handle synchronous
digital communication devices by means of additional timing logic
built into the chip and controlled by software under programmer
control. Synchronous means that the bits constituting each character

are transmitted at a fixed clock rate without the need for start

43

ADDRESS BUS

A —
TO CONTROLS
BUS o
CONTROL N
BUS HOLD
e e
RAM . - DMA DISK
MEMORY | e CONTROLLER = DEVICE

SR | B °

HOLD ACK H

o e

DATA AND I/0 BUS

Figure 1-27. DMA Capability

and stopbits attached to each character code. The need for individual
character synchronization is obviated by the use of a block- or
frame-synchronization code at the beginning of the block of data.

Two additional LSI chips for I/0 use are the PIO and DMA
controller chips. The former is for Programmable-Input- Qutput. Such
chips make it rather easy for the designer to design abi-directional
I/0 port interface onhis microprocessor. In addition, the PIO chip
generally permits several pins to be programmed as interrupt
inputs--generally multiple-level interrupts.

The DMA controller chip is designed to handle the special
controller function discussed earlier (see Figure 1-27).

In general, all of these chips make the job of the designer
much easier and reduce considerably the software housekeeping and
overhead tasks that the CPU would have to performif these specialized

44

BIDIRECTIONAL DATA BUS

- . o
T)™ o T = | 70 OTHER
CPU . ® (PERIPHERALS
g _T _____ N -
THREE-STATE
[X X J \ \ GATES
) B S — L PERIPHERAL
e0e OUTPUT DEVICE
I TR f REGISTER
ENABLE PERIPHERAL OUTPUT
LINE DEVICE

Figure 1-28. Example of Three-State Logic Devices

chips were not available. A more detailed discussion of several
of these chips is given in Chapter 7 and in Appendix D.

Three-State Logic Devices. One of the continuing problems
since the beginning of computers has been the need to attachmultiple
peripheral 1/0 devices onto a common data bus. The first break-
through was that of utilizing collector 1logic. By using open
collector devices, the designer could, under certain limitations,
connect multiple devices onto a common bus as long as only one
device was actively putting data on the bus at a time. Some limitations
of this approach led to the development of what iscalled three-state
logic.

In a three-state logic device, there are the regular states
for ONE and ZERO plus an additional third state called the high-
impedance state. An example of three-state logic gates tying a
peripheral output-device register onto adatabus is given inFigure
1-28. Only when the enable line is active does the data in the
peripheral output-device register appear on the data bus. When the
enable is inactive, the output of the typical three-state gate
is in a very high-impedance state--for all practical purposes dis-
connected from the data bus. There is more on this technique in
Chapter 7.

4
()]

1.5 TMS 9980A MICROPROCESSOR

A1l of the material in prior sections has been designed to
introduce to the reader the concept of a stored-program digital
computer, basic computer architecture and components, and the recent
architectural enhancements in computers generally and microprocessors
and microcomputers in particular. It is now appropriate to focus
attention on the TMS 9980A microprocessor since it is the prin-
cipal teaching vehicle used in this textbook.

Throughout this manual, "TMS 9980A" refers to the MP 9529

microprocessor, a version of the TMS 9980A specially selected for
the TM 990/189.

General Description

In a 40-pin DIP package, the TMS 9980A single-chip micropro-
cessor is instruction-set compatible with the 990 and 9900 family
of minicomputers and microprocessors manufactured by Texas Instru-
ments. The TMS 9980A has a 16-bit central-processing unit (CPU)
but has a convenient 8-bit data bus, plus an on-chip clock. In
general, the TMS 9980A features have been designed to minimize
the system cost for smaller system applications as opposed to the
TMS 9900 microprocessor which is in a 64-pin package and has a
16-bit data bus. The instruction set of the TMS 9980A is the
same as that of the TMS 9900 and offers the full capability of
a minicomputer ininstruction power. One of the outstanding features
of the 9900 family is the memory-to-memory architecture which permits
multiple register files to be resident in memory, resulting in
faster response to interrupts and, in general, improved programming
flexibility. In addition to the chip itself, there is a compatible
set of MOS and TTL wmemory and logic-function circuits that can
be used with the TMS 9980A in various applications.

Additional features and characteristics of the TMS 9980A are

Up to 16,384 bytes of addressable memory

Six prioritized interrupts

DMA 1/0 capability in addition to memory-mapped I/0
Single-bit 1/0 by means of an internal Communications
Register Unit (CRU).

o 0 0o o

It is stressed that the 16-bit word size of the TMS 9980A is
one of the reasons for its powerful instruction set. At the same
time, however, its data bus is only 8-bits wide, which means that
to fetcha single-word instruction requires two memory read cycles.
Here the trade-off of a longer time to read an instruction word
versus the more cost-effective but smaller 8-bit data bus turned
out to be attractive in view of reduced overall system cost using
available memory and other associated MOS chips.

46

ADDRESS BUS

1€0-1C2 AD-A13
(cruOUT)
7/11 ™

— 16 16
3
SN2
16 RESET,
< LOAD AND
INTERRUPT MEMORY
INSTRUCTION LOGIC ADORESS
REGISTER T REGISTER
kel N— «/‘s ~
16 T2)
~Z 16
PROGRAM COUNTER q |
CONTROL
Aom WORKSPACE REGISTER| RSEL‘I‘ST':’JESR
c
) 16
N
a -—
o
L
CONTROL
— v 16 18
AOLD
HOLDA A 8
we i AU
READY : \ /
MEMEN AND F
DBIN crock L
= GENERATOR
o3 16
1AQ
cRUCLK
0SCOUT -f— 1
(9981 ONLY) W,

CKIN 4
. _/ 6 &

)
z -
B
-

REGISTER

16 16
COUNTER
SOURCE DATA] }

@ SHIFT REGISTER

B
Q) %o DATA BUS

Figure 1-29. TMS 9980A Microprocessor Architecture

47

Architecture

Keeping in mind general architectural characteristics and some
of the more recent enhancements, it is suitable now to examine
the specific architecture of the TMS 9980A. The discussions in
the next few paragraphs wlll be centered around Figure 1-29, a
block diagram of the TMS 9980A.

In the upper right-hand corner of the diagram is found the
memory address register (circle 1). It is shown that the output
of the memory address register is restricted to 14 bits, thereby
Timiting the address capability to 16,384 bytes.

Shifting slightly down and to the left is the status register
{(circle 2). It contains the most recent status bits resulting
from the prior ALU operation such as carry, overflow, and Togical
and arithmetic comparison bits (to be discussed later).

Moving further down. and to the left is the ALU in the center
of the diagram (circle 3). It has two ports going into it, the
left onebeing controlled by multiplexer A. Above this multiplexer
is the program counter (circle 4). Thus it is clear that the
program counter is incremented or is modified by means of processing
it through the ALU.

Moving over to the left side of the diagram and toward the
top is the instruction register (circle5). The instruction register
holds the current instruction which is used to address the micro-
program-control ROM shown below it. The block below the control
ROM is that of the control logic and clock generator (circle 6).

"'The lines on the control bus that are going into and out of
the control-logic block are each discussed below:

° HOLD -- wused by the DMA controller to indicate to
the CPU that a DMA transfer is requested.
® HOLDA -- the handshake signal used by the CPU to in-

dicate to the DMA controller that the CPU is acknow-
ledging the HOLD request.

WE -- the write enable signal indicating that the CPU
will bewriting to memory or to a memory- mapped-output
peripheral device.

° READY -- a handshake signal used by memory and input
peripheral devices (memory-mapped) to indicate READY
status.

® MEMEN -- memory enable which the CPU must activate

in order to either read or write to the memory or
to memory-mapped I/0 devices.

DBIN -- data bus in signal which, when active, indicates
that the CPU will be reading in data on its data bus.
@3 -- phase three of the clock generator.

IAQ --a signa]indicatinginstructionacquisitionfetch
of the first word of the instruction.

° CRUCLK -- a signal for the CRU clock used to strobe

48

data out serially from the CRUOUT 1ine.
° CKIN -

The data bus is located at the bottom of the diagram (circle

7). It is bi-directional and has an 8-bit latch which holds the
first byte of a word fetched from memory. When the second byte
arrives, then the two bytes are put together to form the 16-bit
word used by the CPU. Similarly, data going out onto the data
bus comes from the source data register (circle 8). Normally, the
source data register wouldcontain the result of the last ALU opera-
tion. To the right (circle 9) is the shift register used for CRU¥
(serial in, serial out) operations. Precise details on this operation
are discussed in Chapter 6. Suffice it to say, special instruc-
tions are used to shift data in a bit at a time on the CRUIN
line (bottom of the diagram), and similarly to shift it out on
the CRUOUT line (upper right portion of the diagram).

The address bus (circle 10) consists of 14 pins, as mentioned
earlier. Located to the left are the interrupt code lines (circle
11, 1c0-1Ic2). When an external device desires to interrupt the
CPU it will place its device interrupt code on these three lines.
Additional details are furnished in Chapter 8.

It should be noted that there is no accumulator on the micro-
processor chip itself. Below the program counter, however, there
is a workspace pointer which ijs loaded with the address of register
0 (abbreviated by RO). One of the main characteristics of the
entire 990/9900 family is that of workspace registers being located
in memory space. The workspace pointer is used to point to register
0 in a block of 16 general-purpose registers. Additional blocks
of 16 registerscanbe defined by changing the value in the workspace
pointer.

Word/Byte Formats

A11 of the memory locations in the TMS 9980A memory space are
addressable as 8-bit bytes. A word is defined as 16 bits (or two
consecutive bytes) in memory starting with an even address. The
most-significant half (8 bits) of a 16-bit word is located at the
even address and the least-significant half of the word resides
at the subsequent odd address. Since the TMS 9980A has both word
and byte instructions, any byte at an even or odd address can be
addressed by the different address modes inherent in the instruction
set. Figurel-30 depicts the typical word and byte formats utilized
in the TMS 9980A. It should be noticed that the most-significant
bit (MSB) of a word is labled as bit 0 while the least-significant
bit (LSB) is labled with bit 15. Similarly, the MSB is bit 0
in a byte while the LSB is labled bit 7.

*CRU = Communications Register Unit

49

EVEN ADDRESS | 8 1 2 3 4 5 6 7 WORD

ODDADDRESS | 8 | 8 |10 | 11 | 12 | 13 | 14 | 15 | FORMAT
58
MSB LSB

EVENADORESS | 8 | 1 [2 [3 [4 |5 |6 | 7 | BYE
ODDADDRESS | @ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | FORMAT

Figure 1-30. Word and Byte Formats (MSB=Sign Bit)

Memory Map

A memory map addressable by the TMS 9980A is shown in Figure
1-31. The first two words (addresses 0000 through 0003) are used
for the RESET interrupt vector. In brief, whenever the CPU is
reset, the CPU program-counter register is loaded with data bytes
from locations two and three while the workspace pointer is loaded
with the word in byte locations zero and one. As shown on the
diagram, the interrupt vectors for levels one through four occupy
memory addresses four through 13 (hexadecimal). Finally, the load-
signal vector is located at the bottom of the diagram at the highest
four bytes of memory.

On the TM 990/189 University Board, special on-board firm-
ware (software programmed into PROM's) is contained at locations
Q00016 to O7FF16. This special firmware contains the monitor which
1S used by the operator to enter machine code to inspect and
modify memory and to perform other operations on the CPU in
preparation for running or debugging a program. The symbolic

assembler is used to assemble programs a line at a time as
discussed in Chapter 4.

Workspace Registers

As mentioned earlier, the workspace pointer on the TMS 9980A
CPU points to RO of a block of 16 workspace registers. This is
sometimes called a workspace-register file. Each workspace register
can hold dataor an address andcan function as an operand register,
an accumulater, an address register, or an index register (RO cannot
be used as an index register). The CPU can address any register
in the workspace merely by adding a register displacement value
from an instruction to the contents of the workspace pointer. The
resulting value is then used to address the memory with a read
or write request. In addition, a program can use as many of these

50

RESET VECTOR

INTERRUPT
VECTORS T

XOP SOFTWARE
TRAP VECTORS

LOAD SIGNAL
VECTOR

BYTE

ADDRESS

=T = T — T = Y = B = Y =]
0o 0o 0 0 0 o o
o O 0O 0 © o o

o o o ©

o © o o
o o o o
Eo A

o o o o
(=T = — N)
NN NN

W W W w

1]

o o o ©

m MM T

1]

[T Y

m 7m mm

N R Wy s

mmo o wWw N = O W N = O

mm o o0

GENERAL
MEMORY AREA

GENERAL
MEMORY
AREA

-

MEMORY MAP

WP

PC

WP

PC

_Y__A.W—A—W._N—Y-_J

WP

PC

WP

PC

___Y_A_Y—J__Y_A._T_J

—

wp

wpP

PC

>

.

7

LEVEL 0
INTERRUPT

LEVEL 1
INTERRUPT

LEVEL 4
INTERRUPT

XoP 0

Xop 15

Figure 1-31. Memory Map

51

l6-register blocks as required. In fact, the number of registers
available to a program is limited only by the amount of memory.

The workspace-register file concept is particularly wuseful
during operations that require a context switch, which is a change
from one program environment to another. An interrupt or branch
to a subroutine are examples of a context switch. Such an operation
is depicted in Figure 1-32 where the program counter is shown to
be pointing to the main program being executed out of the program
A portionof the memory while the workspace pointer (WP) is pointing
to register 0 of workspace A. When, say, an interrupt occurs, then
the interrupt vector for the respective interrupt level 1is used
to change the program counter to the value required for program
B, (shown with a dotted line) while the workspace-pointer portion
of the interrupt vector is used to change the workspace pointer
to point to workspace B (shown also with a dotted line). At the
same time, the original value of the program counter and workspace
pointer are stored along with the status-register contents--all for
program A--in the upper three registers of workspace B (R13, R14,
and R15). In this manner, the programmer is not required to push
onto stack or otherwise store the program counter and accumulators
or registers in order to service the interrupt or to make a sub-
routine call. Thus, by exchanging the program counter, workspace
pointer, and status register, the TMS 9980A is able to accomplish
a complete context switch with six store cycles and six fetch cycles
to memory. This is a considerable time saving over the more con-
ventional approach used in the majority of other microprocessors
to handle interrupt servicing and calls to subroutines. The context
switch operation is described more fully in Chapter 8.

Note: The status register and statusbits are discussed

in detail inChapter 2 and lateron in subsequent chapters
dealing with the conditional jump instructions.

TM 990/189 Microcomputer Board

To acquaint the reader with the microcomputer board used as
a teaching vehicle, reference is nowmade to Figures 1-33 and 1-34,
a photograph and a layout of the TM 990/189 (University Board). This
single-board microcomputer systemwas developed for use as alearning
aid in the instruction of microcomputer fundamentals, machine- and
assembly-language programming, and microcomputer applications and
interfacing. '

In addition to the TMS 9980A microprocessor, already described,
this board contains a number of other component parts. These parts
are described briefly in the following paragraphs.

Keyboard Display. This is themain on-board 1/0 peripheral which
operates as an ASCIT terminal. The keyboardwith associated circuitry
and monitor software is capable of generating the 87 most used
ASCII characters using a 45-key pad. Al0-character display (7-segment

52

MEMORY

PROGRAM A
@

° /
VORKSPACE . /
A
° v / /
WORKSPACE REGISTER 15 /
" /1

° /
° /
PROGRAM B /

Y
~ Y\ l
~ N~
=
"o
E>

°
WORKSPACE
b« f

Figure 1-32. Context Switch

LED) is capable of displaying any nine contiguous characters of a
maximum 64-character line (as if a typewriter-1like terminal was
used).

LED Display. Four LED display indicators are on board for
genera]sing]e-bit CRU output display and monitoring purposes under
user program control. In addition, three other LED indicators are
dedicated for monitoring specific functions under monitor firmware
control.

Piezoelectric Speaker. A piezoelectric audio-output peripheral
js available under user program control for generation of single
tone sounds, music, key click, beep, etc.

53

&
£
o
3
o
e
&
3
5
]
i

54

Photograph of TM 990/189 University Board

-3 3.

Figure 1

6§

rmn

Ve v
N
[=1
W
3
b D
v
Xl

—r
5 4:‘[
3 + o
=
E38 S
m E39 2 "
ci2 EW0 n 3
——F Eul / 5
— £u2
— \ , 11}
~
s —F
€20 ¢33 ®
3
7 u20 U2 U2z V23
[{] o -3
g ’2 é E] o E6L mmeem]
5 S
£15 . 8
Els ,g: > § 3
:IS ‘- = V. -
12 —
ci6 2 l] S
= T T
) H) czo rz" 30
i} —r
*:‘I —r —
« +c ce? RiI
S - <«
) = 51,
En 2 E34 " RIO 5 ES8
£30 > =; €48
eof | s 1o ¥2°] £s7 E47
E33 | Ro . E46]
2 ~ ! U7
9 2 5 25 v cze = e _
[E8 20 =] RI3 =
¥ " 3 B — —r .
E6 17 c2u 3
€S ° RS CR6 LOAD
E16 €28 £32 g - car § e — e —
IDLE FWD 1 I
: @ = <, B Ly o-—— L[]
€2 7 ﬂ ' " R7 RS T™M 990/189
o __/,/_\ cR7
~ . e
) \ R3 2 S S E
Rr2 [
N\ x 5 3 i I SHIFT PN
-~ _ ES6 Yy -
o Hsh shl el 0ol =T el —r

Figure 1-34. Layout of Components on the
TM 990/189 University Board

Audio Cassette Interface. A standard audio cassette recorder/
reproducer canbe connected to the microcomputer for dumping programs
and data from memory in a format compatible with the TM 990/302
Software Development Board. Similarly, programs and data stored on
cassette can be 1loaded into memory. Both of these operations are
handled by means of monitor keyboard commands. Space and circuitry
is available on the board for deck-control relay mounting and opera-
tion.

EIA Interface. A standard EIA RS-232 interface can be added
at the user's option if an external EIA terminal is desired in
place of the on-board microterminal.

Bus Connector. A 40-pin connector is provided for attaching
external cards or devices to the microcomputer address, data, and
control buses. This canbe used for memory or parallel 1/0 expansion.

I1/0 Expansion Connector. A 40-pin connector is provided to
permit expansion of the CRU 1/0 capability.

Memory. The board contains 4K bytes of ROM/EPROM, which holds
the UNIBUG monitor and symbolic assembler as firmware. There is
expansion space for 2K additional bytes of ROM/EPROM for user-
supplied application firmware. The board has 1K bytes of RAM,
expandable by the user to 2k by tes.

Extended discussions of these component parts and the opera-
tion of the TM 990/189 microcomputer board are covered in later
chapters as follows.

Chapter 2: On-board terminal and UNIBUG monitor operation
Chapter 4: Symbolic assembier

Chapter 5: Memories

Chapter 6: CRU I/0 port and audio cassette interface
Chapter 7: TMS 9901 and TMS 9902 peripheral components
Chapter 8: UNIBUG user-accessible utilities.

1.6 SUMMARY

This chapter has introduced the reader to the field of computers
in general and the rapidly emerging field of microprocessors and
microcomputers in particular. The discussion has been lTimited to
selected topics which are designed to set the stage for an in-depth
coverage of subjects in subsequent chapters.

The principal building blocks of computers were discussed,
namely, the components of the CPU, memory, and input/output. To
more fully understand computer operation, a program example was
used to illustrate the step-by-step process of executing a sequence
of instructions to achieve a given task.

56

A numberofarchitectura]enhancementsavailab]ein recent years
were also covered. The importance of multiple accumulators, the
index register, the concept of the workspace pointer and workspace
register file, the stack and microprogram control were stressed.
Some of the features and characteristics of ROM, PROM, EPROM, and
RAM memory chips were reviewed. With regard to input/ output,
the single-bit I/0 concept along with multiple level, vectored and
prioritized interrupts, direct memory access, special I/0 chips,
and three-state logic devices were also discussed.

Finally, the TMS 9980A microprocessor was described along with

the TM 990/189 microcomputer board...the latter being the teaching
vehicle used throughout the book for examples and exercises.

57

58

CHAPTER 2

ARITHMETIC, LOGIC, AND THE ALU

2.1 INTRODUCTION

In this chapter the reader is reacquainted or, perhaps intro-
duced to the various number systems pertinent to the field of
microprocessors. Other number bases are explained by comparing
them with the more familiar decimal, or base-ten, system. This
chapter can enable a person to become proficient in the trans-
lation and manipulation of decimal-, binary-, octal-, and hexa-
decimal-based numbers. The special number codes such as BCD (binary
coded decimal) and ASCII (American Standard Code for Information
Interchange) are also presented.

The reader will use the foundation gained in number systems
and other digital codes as 2 basis for understanding the concept
of an ALU (arithmetic logic unit). The ALU circuitry can be
called the "brain" of the microprocessor. It can perform the
four basic arithmetic functions (addition, subtraction, multipli-
cation, and division) as well as Boolean logic operations. The
general flow of binary input data, processing, and the output from
the ALU will be covered in this chapter.

The last portion of the chapter is devoted to the description
and operation of the University Board terminal and UNIBUG monitor.
Wherever possible, the terminal's usage is related to the previously
discussed material.

2.2 NUMBER SYSTEMS

This section describes the most common number systems or codes
encountered when dealing with processors. By understanding the
foundations of the decimal number system and the concept of positional
notation, the reader will be in a position to understand the other
number systems and codes including binary, octal, hexadecimal, BCD,
and ASCII.

Decimal Number System

Decimal digits are usually the first numeric values that are
encountered. There are ten digits in the decimal number system;
therefore, itcan be said the decimal number system has a base or
radix of ten. The digits zero through nine are used to represent

59

the ten values in the system. The maximum-value digit, nine, is
one less than ten, the base. Similarly, binary (base 2), octal
(base 8), and hexadecimal (base 16) systems have as their maximum-
value digits 1, 7, and 15, respectively. It is shown later that
the value 15 is indeed a single digit in the hexadecimal system.
Whenever the number base is not implicitly known, a subscript (equal
to the base) commonly follows the right-most digit of the number.
For example, 36510 indicates a base 10 (decimal) number.

The decimal number system illustrates the importance of a
digit's position within a number. Although terms 1like units, tens,
hundreds, andthousandsareused,pgsitiona] notation is the under-
lying concept. The table below illustrates the relationship between
those terms and the powers of base ten.

100 = 1 = units (any base with zero exponent is one)
10} = 10 = tens

102 = 100 = hundreds

103 = 1,000 = thousands

104 = 10,000 = ten-thousands

10° = 100,000 = hundred-thousands.

Positional notation can be explained using the cash regis-
ter drawer analogy. Suppose an item in a store costs $357 and
the clerk 1is handed a certain combination of bills. After the
transaction, a previously empty drawer might appear as below.

Drawers --- $100's $10's $1's
T 7T T 7T
| 3 | | 5 | | 71

Although the price tagused themore familiar shorthand nota-
tion, 357, the cost can be written in positional notation:

[3x(hundreds)] + [5x(tens)] + [7x(ones)] or
using the powsr of ten table,

[3x(109)7 + [5x(101)1 + [7x(100)7 or
once again, by evaluation,

[300] + [50] + [7] = 357.

It can be seen that the digit's positionwithin a number deter-
mines its importance or weight. In this example, three (3) is
called the most-significant digit (MSD) and seven (7) is the lTeast-
significant digit (LSD).

Binary Number System

Early mechanical calculating machines used decade (ten state)
gears to performarithmetic operations. Digital computers, including
the microprocessor, use high-speed logic switching circuits. Like
a light switch, two basic states prevail in its Togic circuitry:

60

on and off. There is a number system which has only two digits
or states: the binary system. This number system contains the
digits zero and one. Zero can be used to represent off and one
to represent on.

Fach digit in the binary number system is called a bit. The
term "bit" is compounded from "binary" and "digit." When working
with a microprocessor, it is often necessary to referto the number
of bits in a binary number. Three of the more common bit-group
names are nibbles, bytes, and words. A nibble consists of four
bits of data (half a byte) and has a maximum decimal value of
15. A byte contains eight bits of data and has a maximum decimal
value of 255. A word can be any number of bits, since it is
usually a characteristic of the computer being discussed. For in-
stance, an eight-bit microprocessor's word size is a byte. A mini-
computer typically has a word size of 16 bits.

As with the decimal system, the digits (bits) in the binary
system have positional importance within the number. Except for
the different base, the binary positional-notation scheme is the
same as that of decimal numbers. The first nine positive entries
in the binary system are listed in Table 2-1.

Table 2-1. Powers of Two

20 = 110 = 1
nIopel e
23 = 89 - 10005
2% = 167q = 100005
25 = 3279 = 100000,
26 = 6479 = 1000000,
27 = 12815 = 10000000,
28 = 2567 = 1000000007

In binary notation, a nibble of alternate ONE's and ZERO's
is written as 1010,. This same binary number can be expanded into
positional-notation form as follows.

From the 'powgrs of two' tgb]e,

] S o x 214 1x (201 + o x (291, or

using decimal evaluation,

[1 x (8)1 + [0 x (4

(81 + [0] + [2] + [
Hence, 10102 = 101q-

When the binary number (10105) is evaluated in positional nota-
tion, it has a value equal to decimal ten. The same approach can
be taken to find the equivalent decimal value for any other base
number. In the previou§ example, the most-significant bit's (MSB)
weight 1is two cub8d (2°) or eight. The least-significant bit's
(LSB) weight is (27) or one.

61

In reverse fashion, a whole decimal value can be converted
to a binary number through a series of divisions by the base two.
Each time the base is divided into the decimal number, the remainder
is recorded and the new quotient is used for a subsequent division
by the base. This process continues until the dividend is zero.
The first remainder represents the least-significant bit and the
last remainder represents the most-significant bit.

The procedure, or “algorithm", for the conversion is given
below.

B D
2 |10 R B = Base
2 5 0 LSD D = Dividend
2 2 1 R = Remainder
2 1 0
2 0 1 MSD

Hence, 1010 = 10102.

Octal Number System

Octal based numbers are also used in the computer field. This
system's base or radix iseight and contains the digitszerothrough
seven. These digits are the same as those in the decimal system
except, of course, their weights are based on eight rather than
ten. The first five positive entries in the powers of eight table
are listed in Table 2-2,

Table 2-2. Powers of Eight

0
87 = 1,4 = 1
8l - g0 - 10g
82 = 647, = 100g
83 - 5127 - 10004
8% = 4096, = 10000

As an example, an octal number such as 7048 can be written
in shorthand notation. The same occtal number can be expanded into
positional-notation form:

From the powers 05 eight table
L7 x (82)1 + [0 x (81)1 + [4 x (80)] or
using decimal evaluation,
[7 x (64)1 + [0 x (8)] + [4 x (1)] =
L4481 + [0] + [4] = 452;,

Hence, 7048 = 45210.

Conversion of a decimal number to octal can alsobe accomplished
with the algorithm previously discussed:

62

B) B = Base
8 1452 R D = Dividend
8 56 4 LSD R = Remainder
8 7 0
o)
A MSD
Hence, 45210 = 704g.

Conversions fromoctal tobinary numbers are quite simple because
an octal digit can be represented by three bits. For example,

7045 = (111), (000), (100)
8 =111000§002. 2 2
Conversely, abinary number such as 110101111 can be regrouped
into an octal number equivalent:
110101111, = (110)- (101), (111), = 657g.

Hence, 657g = 110101111,.

It should also be apparent from this example why the octal
scheme is sometimes used for binary representation. Three octal
digits are easier to remember and to work with than a nine-digit
binary number. The octal number system is used by some computer
manufacturers to represent instruction codes and other binary data.

Hexadecimal Number System

Hexadecimal is perhaps the most common number system used with
microprocessors and computers in general. The system's base or
radix 1is 16. It contains the values zero through 15. Thedigits
0 through 9 have the same value as those in the decimal system
except that their positional weights are based on powers of 16.
The values 10 through 15 are represented by the alphabetic characters
A through F. There]ationshipbetweenhexadecima]anddecimalnumbers

is shown in Table 2-3.

NOTE: The ">" sign indicates hexadecimal (e.g., >F = 151g)-

Table 2-3. Hexadecimal and Decimal Equivalent

%16 - 010 816 = 810
16 = 110 916 = 910
216 = 210 A1e = 1019
310 - 3 Bip = 11
3.6 10 16 = 1l1g
16 = 410 Cig = 1210
516 = 510 Dig = 1310
615 = 619 E16 = 1410
716 = 710 Fie = 1510

63

The first four entries 1in: the powers ‘of 16 table are shown
in Table 2-4.

Table 2-4. Powers of Sixteen

= l11g = 1
161 = 16 = 101 ¢
162 = 25615 = 100y,
163 = 4096, = 1000,

In shorthand notation, an example hexadecimal number is written

as lBC1 . However, the same hexadecimal number can be expanded
in pos1€iona1 notation as follows. ,

From the 'powgrs of 16°' tab]eI - 0
[1 x (16°)] + [Byg x (161)1 + [Cye x (169)7 or

using decimal evaluation,
[1 x (256)] + [11 x (16

]+
[256] + [176] + [12] 1

)1+ [12 x (1)] =
434 .

0
Hence, 1BC1g = 44410.

Applying the same algorithm to convert a decimal number to
a hexadecimal value produces the following.

B [D B = Base
16444 R D = Dividend
%g 2; i%fglﬁ LSD R = Remainder
P16
16 0 |1 !'
: -1 MSD
Hence, 44410 = lBC16.

Conversionsfromhexadecima]tobinarynumbersaresimp]ebecause
16 combinational values can be represented by a nibble or four
bits. This relationship enables each hexadecimal digit to be ex-
pressed as a four-bit binary grouping. The examplebelow demonstrates
how quickly the hexadecimal value F17 can be converted to its binary
equivalent.

F1716 = (1111), (0001), (0111),.

Note that leading zeroes are hsed to fill the four-bit require-
ment when hexadecimal digits are less than eight.

Conversely, a binary number such as 1001011 can be regrouped,
beginning with the lTeast-significant bit and preceding toward the
most-significant bit, into the equivalent hex number 4B:

1001011, = (0100), (1011)2,
= 4B16.

64

Thus, the hexadecimal system affords the user yet another con-
venient alternative to strings of binary digits.

Fractional Numbers

In order to simplify the presentation on base conversions,
only integer numbers inthe various systems are explained. However,
just as fractions exist in the decimal system (e.g., 3.125), they
also exist in the other number systems as well.

For instance,thepositiona]notationfor3.1251ocanbewritten:

(3 x (109)1 + [1 x (1?'1)] + [(2 x 1072)1,+ [5 x (1073)7 =
[371 + [1/7101] + [2/10°] + [5/10%] =
£31000] + [.100] + [.020] + [.005] = 3.125.

Converting this fractional decimal number to another base
requires two steps. First, the integer portion, 3, can be converted
using the algorithm already discussed. Secondly, the fractional
portion, .125, can be converted by successively multiplying the
fraction by the given base. As integers result in the products,
they are recorded. '

The fraction's conversion from decimal tobinary is demonstrated
below.

B DF p 1 - B = Base
2 .125 0.250 0 MSD DF = Decimal Fraction
2 .250 0.500 0 — P = Product
2 .500 1.000 1 -]1 I = Integer
ey LSD
Hence, 3.12510 = 11.001,.

The multiplication process of base times a fractional number
continues until the product contains all zeroes to the right of
the decimal (indicating an exact binary equiva]ent) or until the
desired precision is obtained.

Converting a different base fractional or mixed number to a
decimal value is similar to the process used earlier. As an example,
the binary fraction 1011.0101, will be converted into its decimal
equivalent.

) Taking the bits to the left of the binary point and convert-
ing:

[1x (23)] + [0 x (28)] + |1x(2])]

+ [1 x (2Y)]
(8] + [0] + [2] + [1] = 114

65

Taking thebits tothe right of the binary point and converting:

[0 x (2°1)T + [1 x (272)] + [0 x (273)] + [1 x (2-4)] =
L0 x (1/2)1 + [1 x (1/4)] + [0 x (1/8)] + [1 x (1/16)] =
-[01 + .[25] + [0] + .[0625] = .3125,.

Hence, 1011.0101, = 11.3125;,.

Table 2-5 below shows a comparison between several fractional
values in the hexadecimal, binary, and decimal number systems.

Table 2-5. Fraction Comparison Table

Hexadecimal Binary Decimal
0.01 0.00000001 0.00390625
0.02 0.0000001 0.0078125
0.03 0.00000011 0.01171875
0.04 0.000001 0.015625
0.05 0.00000101 0.01953125
0.06 0.0000011 0.0234375
0.07 0.00000111 0.02734375
0.08 0.00001 0.03125
0.09 0.00001001 0.03515625
0.0A 0.0000101 0.0390625
0.0B 0.00001011 0.04296875
0.0C 0.000011 0.046875
0.0D 0.00001101 0.05078125
.0.0E 0.0000111 0.0546875
0.0F 0.00001111 0.05859375
0.1 0.0001 0.0625

Note that just as with decimal numbers, a period separates
the whole (or integer portion) from the fractional part. These
periods are called hexadecimal point, binary point, and decimal
point, depending upon the number system in which they appear.

Binary Coded Decimal

Since many digital applications use decimal digits, the need
to convert binary codes to decimal conveniently gave rise to the
"binary-coded decimal” (BCD) system. The 8-4-2-1 weights for binary
digits Tend themselves to easy transition into the decimal digits
zero through nine.

The decimal value 789 may be converted to BCD in the following
manner.

710 = [0 x (8)] + [1 x (4)] + [1 x (2)] + [1 «x (1)] = 0111,
810 = [1 x (8)] + [0 x (4)] + [0 x (2)1 + [0 x (1)] = 1000,
970 = [1 x (8)1 + [0 x (4)] + [0 «x (2)] + [1 x (1)] = 1001,

Hence, 78%cp = (0111)z (1000), (1001),.

66

[]

—

Figure 2-1. Two Digit Decimal Readout

The binary-coded value 10001100011 canbe converted to decimal
by grouping each four bits from the least-significant to the most-
significant bit as follows.

(0100), (0110), (0011)p = 463gcp,

As a practical illustration, suppose an instrument panel re-
quires two decimal digits for readout. One approach would be to
mount two numeric displays as illustrated inFigure2-1. An alterna-
tive approachmight beto mount two vertical rows of lamps as shown
in Figure 2-2. Note that in both instances the decimal value 39
is displayed. '

A byte of data in binary code equals a maximum decimal value
of 255. A byte of BCD data is less efficient since it can represent
a maximum decimal value of only 99. Table 2-6 below shows further

relationships.

Table 2-6. Relationship of Decimal, BCD, and Binary Values

Decimal BCD Binary
0 0000 0000 0000
1 0000 0001 0001
2 0000 0010 0010
3 0000 0011 0011
4 0000 0100 0100
5 0000 0101 0101
6 0000 0110 0110
7 0000 0111 0111
8 0000 1000 1000
9 0000 1001 1001

10 0001 0000 1010
11 0001 0001 1011
12 0001 0010 1100
13 0001 0011 1101
14 0001 0100 1110
15 0001 0101 1111

67

EIGHT EIGHT

FOUR FOUR

WO TWO

ONONONO
ONONONO

ONE ONE

Figure 2-2. Two Digit BCD Readout

Table 2-6 also illustrates the simplicity with which decimal
numbers can be converted to BCD. However, the binary-to-BCD conversion
is not as direct. A binary number must first be converted to
decimal and then translated into BCD, as in the next example.

110.01, = 6.25)9 = (0110.0010 0101)p¢p.

ASCII Code

There are other forms of binary code which represent alphabetic
characters and numbers. Three of the most common alphanumeric
codes are ASCII, BAUDOT, and EBCDIC. However,on]ytheASCII(American
Standard Code for Information Interchange) code will be described
here. The ASCII code is widely used 1in microprocessor systems to
communicate with peripherals and other microprocessors systems.

Within the JASCII code system, there exists the six-bit (26)
and seven-bit (2/) codes. The six-bit code contains 64 characters
encompassing the upper-case alphabet, the decimal numbers 0 through
9 and other special characters. The seven-bit code contains 128
characters, including the lTower-case alphabet and additional special
characters. The special characters are used for punctuation and
control. The seven-bit ASCII code is shown in Table 2-7. Control
character abbreviations are listed and explained following the table.

68

69

*ASCIl CHARACTER CODE

*ASCH CONTROL CODES

BINARY HEXADECIMAL BINARY HEXADECIMAL BINARY HEXADECIMAL

CHARACTER [CODE CODE CHARACTER | ;opE cope CONTROL l CODE CODE

Space 010 0000 20 P 101 0000 50 NUL - Null 000 0000 00

i 010 0001 21 Qa 101 0001 s1 SOH - Start of heading 000 0001 01

” 1dbi. quote) 010 0010 22 R 101 0010 52 STX -~ Start of text 000 0010 02

~ 010 0011 23 s 101 0011 53 ETX - End of text 000 0011 03

. 010 0100 24 T 101 0100 54 EOT - End of transmission 000 0100 04

% 010 0101 25 u 101 0101 55 ENCQ — Enquiry 000 0101 08

& 010 0110 28 v 101 0110 56 ACK - Acknowledge 000 0110 06

* (sgl. quota) 010 0111 27 w 101 0111 57 BEL - Bell 000 0111 o7

{ 010 1000 28 x 101 1000 58 BS - Backspace 000 1000 o8

) 010 1001 29 Y 101 1001 59 HT — Horizontal tabulation 000 1001 o9

* (asterisk} 010 1010 2A z 101 1010 SA LF - Line feed 000 1010 0A

+ 010 1011 28 [10t 1011 5B VT - Vertical tab 000 1011 oB

, {comma) 010 1100 2c N 101 1100 5C FF - Form feed 000 1100 oc

- {minus) 010 1103 2D 1 101 1101 5D CR - Carriage return 000 1101 o

{penod) 010 1110 2€ A 101 1110 SE SO - Shift out 000 1110 OE

/ 010 1111 2F - (underline) 101 1111 SF S§I - Shiftin 000 1111 OF

0 011 0000 30 110 0000 60 DLE -~ Data link escape 001 0000 10

1 011 0001 3 a 110 0001 61 DC1 - Device control 1 001 0001 i1

2 011 0010 32 b 110 0010 62 DC2 - Device control 2 001 0010 92

3 011 0011 33 ¢ 110 0011 83 DC3 — Device control 3 001 0011 13

4 011 0100 34 a 110 0100 64 DC4 - Device control 4 (stop) 001 0100 14

5 011 0101 35 ° 110 010t 85 NAK — Negative acknowledge 001 0101 15

[} 011 0110 36 ! 110 0110 66 SYN — Synchronous idle 001 0110 6

7 011 0111 37 [110 01 87 ETB — End of transmission block 001 0111 17

8 011 1000 k] h 110 1000 68 CAN - Cancel 001 1000 18

9 011 1001 39 ¢ 110 1001 69 EM - End of medium 001 1001 19
011 1010 3A 1 110 1010 6A SUB - Substitute 001 1010 1A

: 011 1011 38 K 110 1011] ESC - Escape 001 1011 1B

< 011 1100 3c 1 110 1100 6c FS - File separator 001 1100 1C
011 1101 ko) m 110 110% 6D GS - Group separator 001 1101 10

> 011 1110 3E 1 110 1110 6E RS - Record separator 001 1110 1E

? o011 1N 3F o 110 1411 6F US - Unit separator 001 1111 1F

@ 100 0000 40 0 +11 0000 70

A 100 000 2 a 111 0001 n DEL - Delete, rubout 111 11 7F

[:] 100 0010 42 4 111 0010 72 *American Stendards Instiute Publication X3 4-1968

c 100 0011 a3 s 111 0011 73

D 100 0100 a4 ' 111 0100 74

3 100 0101 a5 L] v 111 0101 7%

F 100 0110 46 Fl v 111 0110 76

G 100 0111 a7 w 11 ot 77

H 100 1000 a8 x 111 1000 78

' 100 1001 a9 v 111 1001 79

3 100 1010 4A z 111 1010 7A

K 100 1011 a8 { 11 101 78

L 100 1100 ac \ 111 1100 7

] 100 1101 40 } m o 70

N 100 1110 aE ~ 11 1110 7%

[¢] 100 1311 4F

Institute

X34-1268

abueyouaju] uoLjeuwdojul J40j

9p0) pJepuURLS UBDLJBWY Fig-/ DUl

*L-2 9l9qel

In the seven-bit ASCII code, the most-significant or eighth
bit is often used as a parity or check bit todetermine the validity
of a character's transmission. The value of thisbit is set according
to whether even or odd parity is desired. Even parity means that
the number of ONE bits, including the parity bit, is even. 0dd
parity means that the number of ONE bits, including the parity
bit, is odd. The following example uses the character "U" to illu-
strate parity.

0dd parity:

11010101, = D5 Number of ONE bits
2 16

Even parity:

010101012 = 5516 Number of ONE bits

5, an odd number

4, an even number.

2.3 ARITHMETIC LOGIC UNIT

As mentioned in the previous chapter, the arithmetic logic
unit (ALU) is a complex network of digital circuitry designed to
execute arithmetic and logic operations as specified in the micro-
processor's instruction set. A complete study of the ALU is not
within the scope of this chapter; however, a cross section of some
of the more typical instruction operations will be presented.

Description

The ALU's relationship to other computer system components is
shown in Figure 2-3. Briefly, the control unit fetches instructions
sequentially from memory, decodes, and executes them. Depending
upon the instruction, data may be input from registers, memory,
or an external device and transferred to the ALU for arithmetic
or logical processing. Subsequently, the control unit outputs the
resulting new data to memory or an external device. ’

Adders

In its simplest form, the arithmetic portion of the ALU can
be thought of as a bank of binary adder circuits. The binary
digital adders are usually called half-adders or full-adders. A half-
adder performs addition upon two binary digits without taking into
account a possible carry from a preceeding stage. Referring to
Figure 2-4, the A and B inputs represent the two individual bits
to be added by a half-adder unit. The S output is the least-signi-
ficant bit of their sum. The Couyr (carry) output is set to one
if the result of the addition exceeds one. Table 2-8 shows the
operation of a half-adder for the four possible input combinations.
It should be noted here that the sum output by ahalf-adder produces
a logical functionknown as Exclusive-0R (EX-0R). The symbolic logic
equation for EX-OR is A Y B = S,

70

ADDRESS BUS

\/

MEMORY

\Y? CONTROL
INPUT p————m
ALU
OUTPUT
A ‘
DATA BUS

Figure 2-3. Simplified Microprocessor System .

71

Cour <

A

b

B

¢

HALF
ADDER

Figure 2-4. Half Adder

Figure 2-5. Full Adder

A B A B A B
<— MSB f< <— — —— — — o LSB fe—
Cout CIN
S S S
Figure 2-6. Parallel Adder Bank

72

The full-adder unit s Table 2-8. Truth Table for
needed to perform the arithmetic Half Adder
functions inside the ALU. Refer-
ring to Figure 2-5, it can be
seen that the full-adder is much
like the half-adder since both
produce two outputs, sum and
carry. Notice, however, thatin
addition to the A and B inputs,
the full-adder has another input
called the carry-in (Cy,). This
input enables the adder to take
into account the carry output by
a preceeding stage. Table 2-9
shows the operation of the full-
adder for all possible input
combinations.

-
+

oo
1

=
=

The adder examples pre-
sented thus far have shown ad-
ditions only upon a single bit
of binary data. In most micro-
processors, the adders are par-
allel and number at least as
many bits as are presentin the
system’s word size. Thiscollec-
tive aspect of the ALU is il-
lustrated in Figure 2-6. The
Texas Instruments' TMS 9980A is a parallel multi-bitmicroprocessor,
capable of both 16- and 8-bit operations. A simplified version of
the TMS 9980A's ALU is illustrated in Figure 2-7. The ALU's inputs
(A and B) along with the output (RESULT) each represent a word
of data. The carry-out (C0u) is output from the most-significant
bit's adder. carry-in {Cy,) which is input at the least-
significant bit's adder may be derived from the previous ALU
operation's carry output. Selection of the data word size (either
16 bits or 8 bits) and the particular operation to be performed
by the ALU upon the data at the two inputs is determined by the
controller circuit via the control (CTL) input lines. The overflow
(0V) output line and the complement (COMP) input lines arediscussed
in the following section.

— | — =
— =) —
=N |r— | =]
— =Ra=:I=

Th
ine car

ALU Operation

For a more thorough understanding of the various ALU func-
tions several examples are shown. These examples are presented
in the formof a problemand a solutionin both binary and hexadecimal.

Half-Adder. The next example illustrates the function performed
by a parallel bank of half-adders. Note that the carry from each
bit's addition is ignored, thus creating an EX-OR result from the
two binary values.

73

Table 2-9. Truth Table

A + B 1 ¢y | = s Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

comwp

0V Cor , T
ALU CONTROL CTL

Figure 2-7. Simplified Version of the TMS 9980A ALU

74

EXAMPLE: Half-add (EX-OR)
PROBLEM: 0011011111101111, EX-ORed with 1101010101000001;
SOLUTION: A = (0011), (0111), (1110), (1111), = 37EF;¢,

B , = D54

= (1101), (0101), (0100), (0001), = D541j6.
msb 1sb
BIT T00[01[02[03]04[05][06]07[08[09[10[II[12[I3[14]15
R oT ol T T ol I 1| 1 I| 1| 1{ 0| L[1| I| !
B T 1] o] 11 0] 1| 0| 1] 0] 1| 0] o[of O] Of 1
5 T 1] 1] 0] 0] 0] 1| 0] 1| o] 1| of L[1] I] O

ANSWER: S = (1110), (0010), (1010), (1110)p = E2AEq4.

EXERCISE: 1010101111001101, EX-ORed with 0011011101000101,.

ANSWER: >9C8381¢

Full Adder. The following example utilizes the carry bit from
each stage of addition to the next. A full addition is performed
using the two binary values.

EXAMPLE: Full-add (ADDITION).

PROBLEM: 1111101011001110, + 00011010110110115.

SOLUTION: A = (1111), (1010)p (1100)5 (1110)p = FACE;6.
B = (0001)5 (1010)7 (1101)5 (1011); = 1ADBy¢.
msb 1sb

BIT (0070110203 [04T05[06[07[08[09[T0[TI[I2][I3[14]15

cin T i1 1 trof ifof 1 rfof 1f 1f 1f 1] o

Cout] 10 1] 1] 1y 11 of 1T of 1} 11 O] 1 11 1] 1] O

ANSWER: S = (0001), (0101), (1010), (1001), = 15A9;4.

75

The example above was solved by singularly adding each bit
of the two 16-bit words. Since this method of addition is time
consuming, an alternate and faster method uses hexadecimal arithmetic
as shown below.

PROBLEM: FACE;c + 1ADByg.

*C<-=--1 1 1
(15 10 12 14

SOLUTION: (FACE)l (%
1 10 13 11)1p

(1ADB) ¢

1 (17 21 26 25);,

(-16 -16 -16 -16)7q

Solve the following problem using binary and hexadecimal methods
of addition.

EXERCISE: 0101110000110110, + 0010110110001011,.
ANSWER: 1000100111000001, or 89Clg.

Complementing. Referring to the ALU diagram in Figure 2-7,
note the COMP block through which input word B must pass. The
controller (CTL) can cause input word B to be preconditioned prior
to its addition with input word A. This preconditioning forces
each bit in word B to be inverted. The process of inverting each
bit, (ZERO to ONE, ONE to ZERO) is called complementing. The result
is called theONE's complement of the original number. The process
of forming the ONE's complement of a number is shown inthe following
example.

EXAMPLE: B--->B (1's COMP).
PROBLEM: ONE's complement 1011010101111111,.
SOLUTION: B = (1011), (0101), (0111), (1111), = B57Fi¢.

BIT 00|/01{02{03|{04]05{06{07108|09|10411]12]13|14|15

B 17 0 1y 1 of 1y o 1} Of 1y 1} 1y 1y 17 11 1

B(1 coMp)i Of 1{ o} of 1} Of 1| oy 1{ o] Of O} Of O] O] O,

© ANSWER: B(1's COMP) = (0100), (1010), (1000), (0000), = 4A80;.
EXERCISE: ONE's complement 0111111001101000,.

ANSWER: 1000000110010111, or 8197;¢.

*C <~--1 means "a carry of one." When restricted to a 16-bit
answer, the carry (17th bit) is Tost.

76

A shorter
15 complement.
using the same

method for determining ONE's complement is to use
This procedure is illustrated in the following example
values from the previous example.

EXAMPLE: B--->B (15's COMP).
PROBLEM: 15 complement B57F, 4.
SOLUTION: (FFFF)qg = (15 15 15 15)10

(857FI16 = I—l]. -5 -7 -15)1n

—(4 10 8 0)10 = 4A8016'

EXERCISE: 15 complement 81974.
ANSWER: 7E6874.
ONE's Complement. This action by the ALU 1is also known as

the logical function called NOT. To execute an instruction which
inverts or complements a word, the controller might present zero
at input A and issue a commandwhichcomplements the wordat input B.
An addition can thenbe performed as usual causing the complemented
B value to be placed into the ALU's output word (RESULT).

TWO's Complement. This action by the ALU is performed by
full-adder units which add one to the least-significant bit of the
resulting ONE's complement of a number. The next example illustrates
the TWO's complement process.

EXAMPLE: B--->B (2's COMP).

PROBLEM: TWO's complement 01100011101000002.

SOLUTION: B = (0110), (0011), (1010), (0000), = 63A0;.
[BIT [00T0IT021030410506107 108109 I0 I1TI2TI3[I4T15]
| S T TN T T TR T T T I U O B I
[B { 0{1I 1 of of o IT IT IT O 1T O OT O OT 0|
I || N N N I I |
[B(1"s COMP) } iy 0] OF I[I[1T o[o] Oof I[0] I I Tl IT
| || N N I T
Add 1 T T T T 1T T T 71 I 11
|| I O N S N A SN I

B (2"s COMP)[IT O O I[I I[O] O Of I] I[O 0 O 0] O]
I N N N U IO Y T N S O A I B
B {2's COMP} = (1001}, (1100}, (0110}, (0000}, = 9C60;4.
EXERCISE: TWO's complement 1000010100011001, or 8519;¢.
ANSWER: 0111 1010 1110 0111, or 7AE7{¢.

77

A shorter method for determining TWO's complement using hexa-
decimal numbers can be accomplished by using the following rules.

1) Copydown any least-significant zeros of hexadecimal
number,

2) Subtract the least-significant nonzero digit from
16,

3) Subtract all higher significant hex digits from 15.

Using these rules, the 16's complement is accomplished in the
following manner.

PROBLEM: 16 complement 63A0 4.

SOLUTION: (15 15 16 0)q¢
(-6 -3 -100)jqa
(9 12 6 0)?6 = 9C6016'

EXERCISE: Sixteen's complement 2DByg.
ANSWER: D25;4.

Base Complementing. The termappliedto the previously presented
examples is called "base complementing." This process is important
because it enables the microprocessor to subtract two values using
addition. The principle can be seen from the following decimal
subtraction problem. Suppose43 is subtracted from 75. The result,
of course, is 32. The same problem can also be solved by taking
the TEN's complement of 43, adding it to 75 and considering only
the two least-significant digits of the result:

(9 10)
4 3)ig
43's (10 COMP)= "5 710
adding, , 7 510
113 210 = 3210.

Although subtraction was used to obtain the TEN's complement,
recall that the microprocessor simply complements the bits of the
word, increments by one and then adds to obtainthe TWO's complement.

Word B = 43 = 2B = 0010 1011
10 (1'5180MP) = 1101 01002

+1

(2's comp) = 1101 0101,

Word A = 75y, = 4B 0100 1011
resBur 11 ooTO OOOOS

*] means "ignore carry." (0010), (0000)p = 2016 = 3210-

78

Signed and Unsigned Numbers

For a microprocessor to fulfiil the requirements of some appli-
cations, signed numbers must be employed. Positive numbers have a

zero as their most-significant bit. By forming the TWO0's complement
of a number, a number of equal absolute value, but having an opposite
sign, i5 produced. With negative numbers, the most-significant bit
js set to. ONE. Conversely, a positive number can be formed by

TWO's complementing its negative equivalent.

For example, a byte value of positive one is represented by
00000001,. A negative one is the TWO's complement of positive
one or 11111111,. As with decimal values, adding a positive one
to a negative one yields zero.

0000 0001,

‘ 1111 1111
~carry 1! 0000 0000,.

Number Range. The range, R, of absolute numbers for a computer
the word size of which is n bits can be expressed as

0 <R<2" - 1.

Therefore, a byte's absolute deii%F1-number range can be computed
26 _

as zero for the minimum and 255 1) for the maximum.

The range of signed numbers for a computer with a word size
of n bits can be expressed as

sn-l e r < 2™l -1

I3

Therefore, %b¥te'sysigned decimal-number ran e (n=8) canbe computed
as -128 (-2°"%) for the minimum and 127 (2°7 - 1) for the maximum.

A11 the signed numbers for which n=4 are given below.

Table 2-10. Signed Number With n=4

0111, = +7
01102 = +6
01012 = +5
0100, = +4
0011, = +3
00102 = +2
00015 = +1
00002 = 0
11112 = -1
1110, = -2
1101, = -3
1100, = -4
10112 = —5
1010, = -6
1001, = -7
10005 = -8

-~d
(Y]

Overflow. Referringto the ALU diagram in Figure 2-7, overflow
(0V) is a status-Tine output by the unit. Overflow is a condition
which exists whenever two signed numbers are addedfnd the resTItis
not within the signed-number range defined by -2N"-1 ¢ R < 2n=1 1,
There are several rules which enableone todetermine when an overflow
condition will occur. Therules concerning overflow are as follows.

1. It applies only to signed-number addition.

2. When the two operands have opposite signs, overflow
is impossible.

3. When the two operands have the same sign, overflow
is possible and occurs whenever the sign of the sum
is opposite that of the operands.

NOTE: Rules 2 and 3 apply after any TWO's complement
operation has been performed on the subtrahend prior to
the addition.

- As stated inRule 2, overflow cannot occur whenever two numbers
with different signs are added. In an effort to produce overflow,
extreme values are used in the next two examples.

Maximum positive value 12719 = 0111 1111,
Maximum negative value =179 = 1111 11112
+12610 0111 11102
Mininum nonzero positive value 116 = 0000 0001,
Minimum negative value -12810 = 1000 00002
-127;9 = 1000 0001,.

There was no overflow, sinceboth results lie within the range
-128 to 127.

As stated inRule3, overflow is possible whenever two numbers
with 1Tike signs are added. A sum with a different sign (i.e.,
incorrect sum) is an indication of overflow. The next four examples
represent some possible combinations.

+ 6410 = 0100 00002

+ 64 = 0100 0000

——-10 T v VUVLo

+1287 = 1000 0000 = -12875 (overflow)

+ 64749 = 0100 0000,

+ 63 = 0011 1111,

+1?710 0111 1111, = +1271¢ (no overflow)
- 64 = 1100 0000

- 6410 = 1100 00002

-12310 = 1000 0000, = -1281¢ (no overflow)
- gglo = 1100 0000, ‘

- 1o = 1011 1111,

-1297y = OIIT I111; = +127;, (overflow).

80

Carry and Overflow. Referringto Figure 2-7, carry (Cy,¢) and
overflow (0V) are two status output lines from the ALU. Examp]es
using a bit width of three will be used here to illustrate the
relationship between carry and overflow in signed numbers.

Signed Binary Number Set Decimal Equivalents
011 3
010 ’ 2
001 1
000 0
111 -1
110 -2
101 -3
100 -4

A number greater than 3 or less than -4 is not within the range
of the three-bit signed-binary-number set. Should any two numbers
in the set be added, it 1is possible for the result to be outside
the range (overflow state) and therefore invalid. The next four
addition cases demonstrate this principle.

Case I: 010= +2 No overflow results since there
001 = +1 was not a carry out of the two
011 = +3 most-significant bits.
Case 1I: 011 = +3 Overflow results since a carry
011 = +1 has occurred out of thebit that
100 # +4 precedes the sign bit.
Case III: 101 = -3 No overflow results since car-
111 = -1 ries have occurred out of the
¢ = 1]100 = -4 sign and preceding bit.
Case 1V: 101 = -3 Overflow results since a carry
110 = -2 out of the sign bit has occurred.
c = 1]011 # -5

Logical AND and OR Functions

In the interest of simplicity, earlier discussions concerning
the ALU's arithmetic operation treated half- and full-adders as the
fundamental blocks. However, these blocks are comprised of even
more elementary logic circuits called AND and OR gates. The AND
circuit principle can best be illustrated using the simple circuit
in Figure 2-8. '

The AND circuit contains two switches in series. For current
to flow from the battery and 1ight the lamp, both switch A and
switch B must be closed. Hence, the term AND circuit. A chart
(truth table) of the possible switch combinations and associated
lamp status can be constructed as follows.

81

B OFF ON B 0 1
A LETTING O = OFF A
OFF OFF OFF 1 = ON 0 0 0
ON OFF ON 1 0 1

The electronic symbol for the AND circuit is shown in Figure 2-9.

The A and B inputs to the AND circuit can be thought of as
the series switches previously discussed. Using the truth table,
two bytes of binary data can be ANDed as follows.

A = 10011101,
B = 110101005
R = .

The OR circuit principle can best be illustrated using the
simple circuit in Figure 2-10.

The OR circuit contains two switches in parallel. For current
to flow from the battery and light the lamp, either switch A or
switch B must be closed. Hence, the term OR circuit.

A truth table of the possible switch combinations and associated ,
lamp status can be constructed as follows.

B OFF ON B 0 1
A LETTING 0 = OFF A
OFF OFF ON 1 = 0N 0 0 1
ON ON ON 1 1 1

The electronic symbol for the OR circuit is shown in Figure2-11.

The A and B inputs to the OR circuit can be thought of as
the parallel switches previously discussed. Using the truth table,
two bytes of binary data can be ORed as follows.

A = 10011101,
B = 110101005
R = TI0III01,.

The EX-OR Togic has been previously discussed. Its truth table
is reviewed below.

B OFF ON B 0 1
A A
OFF OFF ON LETTING 0 = OFF 0 0 1
1 = ON
ON ON OFF 1 1 0

82

SWITCH A SYITCH B
~

B l'

LANP 9 BATTERY :'I:

Figure 2-8. The "AND" Circuit Principle

RESULT

Figure 2-9. The Symbol for an "AND" Circuit

SWITCH A
\

SWITCH B

LAMP _— 1 parrery

T

Figure 2-10. The "OR" Circuit Principle

83

RESULT

Figure 2-11. The Symbol for the "OR" Circuit

A
RESULT

Figure 2-12. The Symbol for the "EX-OR" Circuit

The electronic circuit symbol for the EX-0R circuit is shown
in Figure 2-12.

Two binary numbers may be EX-ORed in the following manner.

A = 10011101,
B = 11010100,
R™= 01001007T5.

The adders contained in the ALU can now be broken down into
the equivalent AND and EX-OR logic circuits as depicted in Figure
2-13,

84

’ \ CARRY
J
_\
J SUM
B —— 7

Figure 2-13. The "Adder" Circuit

The truth (addition) table can be written as follows.

A 0 0 1 1
B 0 1 0 1
SUM 0 1 1 0

CARRY 0 0 0 1

2.4 ON-BOARD TERMINAL

The TMS 9980A microprocessor, as a single integrated-circuit
package, cannot function as a computer without additional related
circuitry. This circuitry usually includes a clock generator for
system timing, volatile memory storage called RAM (random access
memory), communication ports, nonvolatile memory storage called ROM
(read only memory), and a means for interacting with a user. The
University Board contains all of the necessary components to form
a microcomputer capable of being programmed.

The ROMon the University Board contains a programcalled UNIBUG.
The name is taken from the first three letters in University and

85

the Tast three letters of debug. Debug isthe term used to describe
program trouble-shooting. The UNIBUG program enables the user to
converse with the system via a set of key switches and display
elements collectively known as the "on-board" terminal or, optionally,
with an "off-board" terminal connected to the board.

The input portionof thecalculator-like on-board terminal con-
sists of a five-by-nine keyboard matrix pad. The keyboard pad contains
a shift key, which causes the UNIBUG program to interpret each
key in the matrix as one of two possible characters. Even though
there are only 45 keys, this shifting procedure enables practically
the full ASCII character and control set tobe represented. Notable
exceptions are the lower case letters and the ampersand (&) character.

Figure 2-14 shows the keypad's unshifted key code designations.
Note the shift key located in the lower lefthand corner of the
matrix pad. ST

The keys in the unshifted mode can be determined readily from
their inscriptions. -The space and carriage-return keys are marked
Sp and Ret respectively.

Temporary depressionof the shift key causes the keyboard matrix
to assume the designations shown in Figure 2-15.

Many of the keys in the shifted mode are used for control,
while the other keys are commonly used for special symbols. The
control keys are used principally in data transmission protocol.
The control key's abbreviations and descriptions are listed below.

ETB - End of transmission block
CAN - Cancel

EM - End of medium

DC1 - Device control
DC2 - Device control
DC3 - Device control
DC4 - Device control
NAK - Negative acknowledge
FF - Form feed

DEL - Delete

SO0 - Shift Out

SI - Shift In

DLE - Data-1ink escape

BEL - Bell (audible)

BS - Backspace

HT - Horizontal tab

LF -~ Line feed

VT - Vertical tab

STX - Start of text

ETX - End of text

EOT - End of transmission

ENQ - Enquiry

ACK - Acknowledge

ESC - Escape

SOH - Start of heading.

SwWwn

86

v
|
Q
|

L .
|
G
|
B
L]

6
[
1
|
+
m

“ 1 w N
S
@ w]
" v bl
o ™ - [o} - ~
~ o w 1 i N

l.
-
1
©
O
~
=
00
o

Figure 2-14. The Terminal Keypad (Unshifted)

i U 1 el
R vC: B ocz B oca S oc B B8
G B |0
@M EEE
BN G0 E§ ER 0D
B N B C3 B
- e Em .

% A

() /
- B N I .

TR LR
TM 990/189

Figure 2-15. The Terminal Keypad (with Shift Key Depressed)

87

These ASCII control codes are not printab]e;therefore,their pres-
ence is represented by a blank in the display when they are keyed
while in the UNIBUG monitor.

The output portion of the terminal consists of ten individual
seven-segment displays as shown in Figure 2-16. These Tamps will
display the appropriateASCIIsymbo]each time aprintable character's
key is depressed. The DISPLAY LEFT (<---D), DISPLAY RIGHT (D--->)
and the CURSOR are not ASCII keys, but represent special controls
for manipulating the display characters.

2.5 UNIBUG MONITOR COMMANDS

Once the University Board has been initialized, the nonvolatile
ROM on the board is programmed to respond to keyboard-command char-
acter entries and perform certain functions. The monitor can perform
the functions listed below.

Input Key Monitor Function

Assembler execute with new symbol table
Assembler execute with current symbol table
CRU inspect/change

Dump memory to tape

Execute (to breakpoint)

Status register inspect/change

Jump to start of expansion EPROM

Load program from tape

Memory inspect/change

Program-counter inspect/change
Workspace register inspect/change
Single-step program execution
Typewriter function

Workspace-pointer inspect/change.

Z—-IU);U'UZI—C_'HFHDGUJ:D

i
ALAH

Figure 2-16. The Onboard Terminal Display

88

General QOperation

Even though there are a nultitude of programming functions
to be mastered by the TM 990/189 user, one of the very first 1is
the manual operation of the unit itself. Like learning to drive
an automobile, the fastest method for becoming familiar with the
University Board computer is to begin “hands-on" operation as soon
as possible. Most of this section will use the "cookbook® approach
toward learning to use the system; however, the operational knowledge
gained here will be used throughout the remainder of the book.

The TM 990/189, 1ike other electronic devices, must have elec-
trical power to operate. Once power is applied, the circuit board
is activated. This action causes an initialization routine within
UNIBUG to begin execution. Part of this routine's responsibility
is to perform a brief self-check operation on the major electronic
components of the system. Apartof the self-diagnostic is a series
of audible "beeps" from the speaker, a series of flashes from the
four user-addressable LED's, and a "CPU READY" message appearing
in thedisplay. Thissame1n1tializationsequencecanbe accomplished
by depressing the LOAD switch.

The SHIFT lamp is always off after the initialization process,
indicating that the keypad is in the unshifted state. The user can
now press the SHIFT key and observe the lighted SHIFT lamp and
accompanying "click"” from the speaker. The keypad is now in the
shifted state and the keys assume the second set of ASCII values
shown in Figure 2-15. The keypad can be returned to the unshifted
state by depressing another key after the SHIFT key (except for the
DISPLAY LEFT and DISPLAY RIGHT keys, which leave the keyboard in
the shift state).

Since the TM 990/189canserviceeitherthe on-board terminal or
an external terminal, theuser must informthe system which terminal
type will be used for interaction.

Ensuring that the keyboard is in the unshifted state, press
Ret (carriage return) for use of the on-board terminal. (Otherwise,
the letter P may be keyed for use of an external terminal device
connected to the communication port.) Only the on-board terminal's
usage will be discussed here.

After the Ret key has been pressed, a question mark (?) appears
in the leftmost display. This symbol prompts the user to enter a
command character: A,B,C, etc. A1l of the various commands are
discussed later, but only the T (typewriter) command is discussed
at this point.

Each display element has only seven segments to represent an
ASCII character. This causes some of the symbols not tobe readily
discernable. The T command enables the user to key in the various
characters and observe their associated symbols in the display.
(Table 2-11 lists the printable ASCII characters and their associated
symbols.) With the T command, these characters can be shifted
or unshifted and entered in any order.

89

Table 2-11. Display Character Font

AscHi DISPLAY SEGMENTS Ascil DISPLAY SEGMENTS
CHARACTER CHARACTER ILLUMINATED CHARACTER CHARACTER ILLUMINATED
A Fq a,b,c,e,f 6 Eﬁ a,c,d,e,f,g
B tl c,d,e,f,g 7 _! a,b,c
C :_ a,d,e,f 8 tj a,b,c,d,e,f,g
D |:{ b,c,d,e,g 9 GR a,b,c,d,f,g
E ;E a,d,e,f,g 0 {] a,b,c,d,e,f
F - a,e,f,g : SPACE _ (none)
G ¥ a,c,d,e,f @ =;' a,b,d,e,f,g
H H b,c,e,f,q 3 P a,c,d,f,p
I [c * ‘f. b,c,g,p
J o b,c,d,e ' ' b
K - b,e,f,g > L a,b
L {: d,e,f + n b,c,g
M M a,Cc,e,g - - g
N M c,e,g (- d,e,g
0 [c,d,e,g) 2 c,d,g
P E? a,b,e,f,g % - b,e,q,p
Q H a,b,c,f,g / |‘j b,e,g
R ;: e,g = %i d,g
S l.J a,c,d,f ~ ~ a,b,f
T = d,e,f,g < = a,f.g
U L} a,c,d,e,f , - d,p
v I;’ b.d.f.g . o p
W U a,c,d,e | : e c,d,p
X Z a,d,g : L. c,p
I -
Y :l b,c,d,f,g ? I~ o a,b,e,q,p
z :_: a,b,d,e ! i, b,c.p
1 s b,c B _ d
2 éz a,b,d,e,g ! ': b,f
3 4 a,b,c,d,g # | b,c,d,g
4 H b,c,f.g
5 5 a,c,d,f,q

90

Using the key labeled (8/#) as an example, the unshifted mode
produces an "8" symbol and the shifted mode produces the “4" symbol.
Verify this operation by temporarily depressing the SHIFT key followed
by the (8/#) key. Observe that the SHIFT lamp goes off and a
win symbol is in the display. Again depress the (8/#) key and note
that an 8 appears in the display to the right of the "#"

symbol. The user may key various others characters to become more
familiar with their representations.

Although only ten characters (including cursor) canbedisplayed
at a time, an internal RAM memory-storage buffer allows up to 64
characters to be saved. The display normally contains the rightmost
ten characters currently stored in the buffer. These rightmost
characters are left-justified in the display. The tenth display
character, ablinking cursor, indicates the position in the display
where the next printable character will be placed.

The normal mode of display, as described above, canbe altered
by using the DISPLAY LEFT (shift V) and and DISPLAY RIGHT {shift Z)
keys. Each depression of the DISPLAY LEFT key causes the sixbuffer
characters to the left of those being displayed to be rotated into
view. Conversely, each depression of the DISPLAY RIGHT key causes
the six buffer characters to the right of those being displayed to
be rotated into view.

To illustrate the operation of these function keys, activate
the LOAD switch, key in an Ret followed by the Tetter T. While in
the typewriter mode, key-in the alphabetic characters A through Z.
Notice that once the display has been filled, depressing another key
causes the leftmost character to be rotated off the display and
into the storage buffer, while the rightmost character displayed
is the one just entered. After the entire alphabet has been entered,
depress the DISPLAY LEFT and DISPLAY RIGHT keys while observing
the rotation of the characters to and from the buffer. After suffi-
cient experimentaton, the typewriter mode can be exited by again
pressing the LOAD switch.

UNIBUG Command Syntax

Most of the 14 UNIBUG commands either require or allow optional
parameterfields tobe entered with a command. The following explains
the various command syntax conventions.

Unibug Command Syntax

T1 Indicates a space (SP) must be entered

T2 Indicates that either a space or comma must be
entered

T3 Indicates that either a space, commd or return
(Ret) must be entered

[13 Indicates that the content of the brackets is an
optional item supplied by the operator

(Ret) Return.

91

UNIBUG Command Descriptions

The principal UNIBUG commands are described in the following
paragraphs of this section. Each command's explanation consists of
an appropriately titled paragraph, proper syntax format, a brief
description and an example of its usage. Some of the commands
Tisted here are described in detail in the following chapters. In
those cases, reference will be made to those chapters. The commands
can be entered when the question mark prompt is displayed. Note
that UNIBUG will display a space prior to displaying the first
operand.

A--Assembler (Clear Symbol Table)

Syntax:

A [address]T3

Description: This command calls the symbolic assembler. Use
of this command causes the symbol table storage area to be cleared
in preparation for adifferent program's assembly. A more complete
descriptionof the assembler and its operation is given in Chapter 4.

Example:

?A 2000(Ret)

B--Assembler (Save Symbol Table)

Syntax:
B [address]T3

Description: This command calls the symbolic assembler; however,
the symbol table is not cleared in memory. By saving an existing
symbol table, a new program can be assembled which references 1abels
in previously assembled programs or assembly can continue on the
existing program. A more detailed description of this command's
function is found in Chapter 4.

Example:

?B >2020(Ret) NOTE: >indicates hexadecimal

C--CRU Inspect/Change

Syntax:
C [CRU R12 ADDRESS] 72 [count] T3
Description: This command causes up to 16 bits of the given

communication register unit (CRU) ports to be displayed in hexa-
decimal representation. The selected bits are displayed right-

92

justified 1in a hexadecimal word. The first addressed CRU bit is
represented by the least-significant bit of the hexadecimal word.
ThenextaddressedCRUbit isrepresentedby‘thenext1east—significant
bit of the hexadecimal word, and so forth for the specifiedcount.
The CRUR12 ADDRESS isa hexadecimal value representing the hardware
CRU bit address multiplied by two. (For example, the R12 ADDRESS
for the CRU bit at CRU hardware address 40y 1is 8016‘) The CRU
R12 ADDRESS is a hexadecimal value which contains the 11-bit hardware
CRU bit address in bit positions 4 through 14 of the word. The
CRU output bits that correspond to the displayed CRU input bits
displayed may be altered by keying in the desired hexadecimal data,
right-justified. A terminating character after this data causes
the data to be output. A carriage return as the terminating character
causes a return to the UNIBUG command scanner following the data
output. A minus sign (-) or a space as the output data terminating
character causes the selected CRU output bits to be displayed again.
The default value for the CRU R12 ADDRESS is zero and the default
value for the count is 16.

Example:

?2C >20,4(Ret) causes the state of the four user LED's
on theUniversity Board tobedisplayed
as the rightmost hexadecimal digit.
Changingthisva]ue,fo]]owedbyiaterm-
inating <character, would cause the
LED's to reflect the value input.

NOTE: The CRU is further explained in subsection 6.5.

D--Dump Memory to Tape

Syntax:
D [start address} T2 [stop address] T2 [entry address] T2
—~Monitor Prompts 4
DT =!<NAME> <T1> READY <Y>
¢ > = must item
[] = optional item

Description: Memory js dumped to thecassette interface fromthe
given "start address" to the "stop address." "Entry address" isthe
address in memory where program execution is to begin. IDT is the
1- to 8-character name to be given to the dumped data. Use of
this command is described in Chapter 6.

F--Execute to Breakpoint

Syntax:
£ [breakpoint address]T3

Description: Thet command causes program execution to begin wiih
the current values in the workspace pointer (WP), program counter

93

(PC), and status register (ST). An optional breakpoint (stop execu-
tion) address canbe used to specify the location of an instruction
where execution of the progranm stops and control returns to the
monitor. This allows a programto be stopped at selected locations
for debugging purposes. ~

Example:
?E (Ret)
?E 1000(Ret)

F--Flag (Status) Register Inspect/Change

Syntax:
F

Description: The user program's status register (ST) flags can
be inspected and changed by this command. A full 16-bit value (4
hexadecimal digits) must be entered followed by an (Ret) to alter the
register's contents. This requires the user to maintain all the
flag-bit states except for those that are to be changed. The fol-
]owing]istidentifiesthefunction of each flagbit inthe register.

BIT 0 = Logical greater than (L>) (no sign bit)

BIT 1 = Arithmetic greater than (A>)(MSB is sign bit)
BIT 2 = Equal (EQ)

BIT 3 = Carry (C)

BIT 4 = Overflow (OV)

BIT 5 = 0dd parity (OP)

BIT 6 = Extended operation (X)

BITS 7-11 = Reserved
BITS 12-15 = Interrupt mask.

Figure 1-9 shows the status register.

Example:

?F

?F = 2002 2000 (Ret) changes the contents of the user
program's status register from 2002,¢ to
2000, ¢.

J--Jump to Start of Expansion EPROM

Syntax:
J [value 1] T2 [value 2] T2 [value 3] T3

Description: The J command causes a branch to the expansion
EPROM on the University Board. The user must place a program in
an EPROM device and place the device in the available socket on
the TM 990/189. Upto three values can be passed to the program in
the expansion EPROM; these will be stored starting at address
00801¢- A

94

Examp1e:

J 125A,3,72E(Ret) causes the three values 125Ajg,
’ 3, and 72E to be passed to
addresses %8801 , 00821¢, and
0084163 and con%ro] given to a
program in the expansion EPROM

SOCKET.
L--Load Program From Tape
Syntax:
L
Description: Memory is loaded from the cassette interface

using the addresses and data found on the tape. Refer to Chapter 6
for a detailed description of this command.

~ Example:

7L

M--Memory Inspect/Change

Syntax:
M [address]T3

Description: Memory inspect/change "opens" the selected hexa-
decimal memory location, displays the contents of that location and
allows the option of changing the data in that location. There is
alsc a provision for advancing to the next tocation or backing up
to the previous address. The termination character used after a
memory location is opened (and optional data is entered) causes
different results. If the termination character is a

Carriage return, control returns to the UNIBUG command
scanner : '

A space or comma, the next memory location is opened
and displayed

A minus sign, the previous memory location is open and
displayed

A hexadecimal value, it is entered priorto the termi-
nation character, and the dispiayed memory location is
updated to the value entered.

The ‘default value for the address operand is zero.

95

Example:
?M 200(Ret)
0200

FOFF T2 FOFF is contents of location
020016

0202

0012 FFFF T2 causes FFFF ¢ to rep]ace001216
at location 0202¢.

AOBO - _ A08016 is contents of location
020416; minus sign causes pre-
vious address to be displayed.

0204

0202

FFFF(Ret) FFFF16 iscontents of location
020216;(Ret)exitsmemory com-
mand.

P--Program Counter Inspect/Change

Syntax:
P

Description: The user program's program counter (PC) can be
inspected and, optionally, changed by this command. The value in
this register is the address at which execution begins when the E
or S command is used.

To alter the displayed value, enter a new hexadecimal value
followed by a (Ret).

Example:
7P
?P = 20AE 220(Ret) changes the contents of the user

program's program counter from
20AE16 to 022016.

R--Register Inspect/Change

Syntax:
R{hexadecimal register number]T3

Description: The user-program's working-register contents can
be inspected and, optionally, altered by this command. The contents
of the selected register is displayed as four hexadecimal digits.
The contents can be changed by entering a new hexadecimal value
followed by a terminating character. The permissible terminating
characters and the resulting action is the same as described wWith
the M command. The selected register is referenced by a hexadecimal
digit. The default hex register number is zero.

96

Examples:

?R9(Ret) displays the contents of working regis-
ter 9.

R9 = FFF7(Ret) FFF7;4 is the contents of register?9.

?RB(Ret) displays the contents of working regis-
ter11.

RB = 3362 7CDS8 changes the contents of R11 from 336214

The selected register's number is displayed a long with the
contents of the register. 1f subsequent registers are examined
(by use of a space orminus character), the address of the subsequent
register is displayed with the contents of the address.

For example, assume the workspace pointer is set to 100y4.
?R9(Ret) operator specifies register 9.

R9 = 012A(Sp) contents of register 9 (memory
lTocation 0112, s 012A4¢-
Operator enters'space to examine
next register.

0114 = 9D34(Ret) 114, is address of register
A,.. Contents of register A
116 A 16
is~ 9D344¢. Carriage return
exits the command sequence.

Notice that the selected register should be specified as a
hexadecimal digit. 1f more than one digit is entered, only the
last digit is used to determine the selected register.

For example, if the operator enters R11 with the intention

of examing register 11 (Byg), only the last digit will be wused
to select the register, therefore register 1 will be displayed.

S--Single Step

Syntax:
S

Description: The single-step command causes executiontobegin
at the address inthe user's programcounter. Execution is limited to
one instruction at atime, which enables the use of the other UNIBUG
command functions between instructions todebugthe program. Succes-
sive instructions are executed by successive pressing of theS key.
The display will show the letter S. To the right of the S is the
address of the next instruction. To the left of the § is the least
significant 8-bits (two hexadecimal digits) of the address of the
instruction just executed. A carriage return exits the command.

97

Example:
?S

02S 0204 0204 is the address of the next in-
struction and 02 represents the
leastsignificant 8-bits of the ad-
dress of the instruction just ex-
ecuted.

T--Typewriter Program

Syntax:

T

Description: Thetypewritercommandenablestheuserto evaluate
the terminal characters and controls. The mode can be exited only by
reactivating the LOAD switch.

Example:

?T ABCDEF123456789

W--Workspace Pointer Inspect/Change

Syntax:
W

Description: The user-program's workspace pointer (WP) can be
inspected and changed by this command. The value in this register
is the address at which the user's workspace registers start. This
is the address of the workspace implemented whenever the E or S
command is used.

Example:

W

?W =00CC 380(Ret) changesthecontentsof the user pro-
gram' s workspace pointerfromOOCC16
to 038016'

98

2.6 SUMMARY

In this chapter one of the main objectives is to demonstrate
fundamental facts common to different number systems. It is shown
that positional notation is the avenue toward converting a value
of any number base to an equivalent decimal value. Simple algorithms
are used to convert decimal values into another base. The chapter
deals mostly with the mechanical manipuiation of the number systems
in order to convey only the essential knowledge necessary for work-
ing with microprocessors.

Although the range of number bases is infinite, only the more
useful ones such as decimal, binary, octal, and hexadecimal are used
with computers. It is shown that binary numbers lend themselves to
electrical switching principles and are, therefore, the basic system.
Convenient grouping of the binary digits gave rise to the octal
and hexadecimal systems as well as BCD and ASCII.

The EX-OR, ADD, INV, AND, and OR functions are shown to be
the fundamental tasks performed by the Arithmetic Logic Unit with
carry (C) and overflow (OV) being two important states output. Carry
is characteristic of both signed and unsigned numbers while overflow
pertains only to signed numbers.

Finally, usage of the UNIBUG commands is discussed to allow
the user to perform and verify these logical functions with the
TM 990/189. The facts learned in this chapter should prove useful
in the subsequent chapters.

2.7 EXERCISES

1. Write the following numbers in positional notation.
(a) 1357;,4
(b) 409,
{c) 549

2. MWrite thefo]lgwing numbers in shorthand n8tation.
(a) [7 x (19)1 + [2 x (18)] + [0 x (107)]
(b) [3 x 10 1] + [8 x (10 &]
(¢) [9 x (101)] + [9 x (10°)1]

Binary Conversions

3. Convert the following binary numbers to decimal.

(a) 1011, =
(b) 111111115 = T

99

4. Convert the following decimal numbers to binary.

(a) 12810 = 2
(b) 1510 = b
(C) 25510 = 2

Octal Conversions

5. Convert the following decimal numbers to octal.

(a) 81 =
(5) 2010 :
(c) 31210 = 8
6. Convert the following octal numbers to decimal.
(a) 108 = 10
(b) 1008 = 10
(c) 1008 = 10
7. Convert the following binary numbers to octal.
(a) 010110010, = 8
(b) 110010112 = 8
(C) 1012 = 8

8. Convert the following octal numbers to binary.
(a) 1778 = 2
(b) 358 = >
(c) 127g = 5

Hexadecimal Conversions

9. Convert the following decimal numbers to hexadecimal.

(a) 3210 = 16
(b) 12810 = 16
(c) 30074 =
10 16
10. Convert the following hexadecimal numbers to decimal.
(a) D¢ = 10
(b) CA? 6 = 10
(C) FAD 16 = 10

11. Convert the following binary number to hexadecimal.

(a) 100000012 = 16
(b) 10111112 = 16
(C) 10112 = 16
12. Convert the following hexadecimal numbers to binary.
(b) 5BEj¢ = 2
(c) 9CDjg = 2

100

Fractional Conversions

13. Convert the following decimal fractions to the three
different bases.

(a) 3.142810 = 2
(b) 10;12510 = 8
(C) 1.76810 = 16
14. Convert the following three base fractions to decimal.
(a) 1.1011 = 10
(b) 7.345 = 10
(C) A-CDE16 = 10

BCD Conversions

15. Color-in the lamps representing the following decimal
numbers.

0---8---0
0---4---0
(a) 17 = 0---2---0
10 0---1---0
0---8---0
0---4---0
(b) 80 = 0---2---0
10 0---1---0
0---8---0
(c) 0---4---0
c 6lyn = 0---2---0
10 0---1---0
16. Convert the following binary values to BCD equivalents.
(a) 01010110, = BCD
(b) 1000.000 N BCD
17. Convert the following BCD values to binary digits.
(a) 73 D = 2 .
(b) 1.58 = ?
(c) 14.0,000=
¢ UBCD T 2

ASCII Conversions

18. Using the hexadecimal ASCII table, evaluate the following

characters. To the right, evaluate the same characters using odd
parity.

(a) A = 16 16

(b) L = 16 16

101

19. Using the hexadecimal ASCII table, evaluate the following
hex codes. To the right, indicate an odd or even number of bits.

|
|

Ve ve uwe we

Nt et e
w
w
=
N
oo

20. Perform the following logical functions on the hexadecimal
values 7DF3 and ABCD.

) Half-add (EX-OR)

) Full-add (ADD)

) Invert (each value)

) TWO's complement (each value)
) Subtract first from second

) 'AND'
) IORI

o~ o~ p— o~
Q-dao oo

2.8 LAB EXPERIMENTS

The exercises presented in this section are used to reinforce
the knowledge gained during the course of this chapter. First solve
the problem manually and then verify the solution by using the
University Board. Enter (via the on-board terminal) and execute
short programs which leave the correct result in the specified reg-
isters.

Each of the given programs has the same workspace area and
same starting address but requires breakpoints at various addresses.
The following instructions pertain to the proper entry and execution
procedure needed to obtain the correct problem solution for each
program. This procedure is described only once but is used throughout
the remainder of the 1ab experiments in this chapter. Refer to the
UNIBUG command descriptions, if necessary, for further explanations.

(1) Enter a workspace pointer value of hexadecimal 300
using the W command.

(2) Enter a starting address valye of hexadecimal
value 200 (labeled START) using the P command.

(3) Clear the status register by entering into it
the value zero using the F command.

(4) Enter the listed hexadecimal values representing the
short program using the M command starting at memory
address 20016'

(8) Verify proper entry of the program by once again

cycling through memory and ensuring that the correct
instruction value is contained in the proper location.

102

(6)

(7)

1.
and C541.

Manual:

Program:

2.

Finally, the single-step S commands can be used to
sequentially execute the program s 1nstruct10ns un-
til the address labeled STOP is reached.

The user should then inspect the requested register's
contents.

Exclusive - OR (half add) the two hexadecimal values 27tF

First convert the values to binary numbers.

27EF = 2
C54lig = 2
Answer = 2 = 16
Address Code Instruction
0200 0200 START LI RO,>27EF
0202 27EF
0204 0201 L1 R1,>C541
0206 C541
0208 2801 XOR R1,R0O
020A 1000 STOP NOP
Inspect RO = 16

E2AE

Full-add the two hexadecimal values 7FFF and 7FFF. Also

determine the resulting OVERFLOW and CARRY states after the addition.
First convert the values to binary numbers. '

Manual:

Program:

TFFFyg =
7FFF%2 = g
Answer = 2 = 16
oV = s CY 2
Address Code Instruction
0200 0200 START LI RO,>7FFF
0202 TFFF
0204 €040 MOV RO,R1
0206 A040 A RO,R1
0208 1000 STOP NOP
Inspect Rl = i6
Inspect Flag Reg. = 16
Overflow = 2
Cal"r_y = 2

103

3. Fifteen's complement the decimal valuel6. First, convert
the value to hexadecimal, then complement.

Manual :
1679 = 16 = COM
Program:
Address Code Instruction
0200 0200 START LI RO,16
0202 0010
0204 0540 INY RO
0206 1000 STOP NOP
Inspect RO = ‘ 16

4. Sixteen's complement decimal value 16. First convert the
value to hexadecimal.

Manual:

1619 = 16 = COM
Program:

Address Code Instruction

0200 0200 START LI RO,16

0202 0010

0204 0540 INV RO

0206 0580 INC RO

0208 1000 STOP NOP

Inspect RO = 16

5. Subtract 169 from100;qusing sixteen's complement. First
convert the values to hexadecimé%.

Manual: 10010

16
-16y9 = 16
Answer = 16
Program:
Address Code Instruction
0200 0200 START LI RO,100
0202 0064
0204 0220 Al RO,-16
0206 FFFO
0208 1000 STOP NOQP
Inspect RO = 16

104

6. Using successive subtractions determine how many times 167
can be removed from 100;45. Also give the remainder.

Manual:
| |
Bl D |
1 i
16 | 100 | R
[|
| |
| |
Program:
Address Code Instruction
02060 04C0O START CLR RO
0202 0201 LI R1,100
0204 0064
0206 0221 LOOP Al R1,-16
0208 FFFO
020A 1702 JNC FINISH
020C 0580 INC RO
020E 10FB JMP LOOP
0210 0221 FINISH Al R1,16
0212 0010
0214 1000 STOP NOP
Inspect RO = 16 COUNT
Inspect R1 = 16 REMAINDER

105

106

CHAPTER 3
INTRODUCTION TO COMPUTER ADDRESSING AND PROGRAM DEVELOPMENT

3.1 INTRODUCTION

This chapter introduces the user of the University Board (TM
990/189) to three major computer programming topics. Computer ad-
dressing is presented in relation to computers in general, and
To the TMS 9980A microprocessor in particular. Computer instruc-
tions are presented and explained, along with related exercises
and application notes. Then, the proper procedure for producing
a computer program js introduced. These three topics are correlated
with exercises and lab experiments.

As a background to this introduction to computer programming,
the three principal levels of programming language will be discussed
briefly. These are

° Machine language

° Assembly language
° High-level language.

Machine Language

Machine Language (also known as machine code} is tne most
elementary (though not the simplest) of these levels. It is the
"software” language of ONE's and ZERQO's by which the computer can
be programmed directly. It is important, indeed necessary, to have
an understanding of this level of computer programming language,
even if one intends to program mainly in assembly language or a
high-level language. This understanding is necessary for a program-
mer to modify (patch) the machine code of a program. Program
patching is generally done when small changes are needed. When
a bug is discovered, patching is beneficial to check out a proposed
solution. Such verification avoids investing time in documenting
an incorrect solution. It is unwise for a programmer to attempt
to patch aprogram if he lacks a clear understanding of the related
machine-language formats.

Assembly Language

Although machine language is the most elementary level, assem-
bly language is currently themost popular level for microprocessor

applications and is the focus for this book. Assembly.language

107

is "one step above" machine language. It could be referred to
as the "humanized" version of machine language. Assembly language
can be defined simply as mnemonic code, which uses word abbrevia-
tions having a one-to-onerelationship tomachine-language instruc-
tions. Assembly language ismost popular for microprocessor applica-
tions for the following reasons.

°® In contrast to machine language, it provides abalance
between readability and capability to control computer
functions.

° In contrast to high-level language, it generally exe-
cutes faster, and it requires less memory space.

Although assembly 1language is the most popular level for
microprocessor applications, it is important to consider the third
principal level of computer programming language.

High-Level Langquage

The interest in high-level language is illustrated by the pro-
liferation of languages such as FORTRAN, COBOL, Pascal, BASIC, and
many others which are oriented toward users. In these languages
each source statement becomes five or ten machine codes in contrast
to the one-to-one relationship for assembly language. Further dis-
tinctions between assembly Tlanguage and high-level language are
given in Chapter 4.

3.2 COMPUTER ADDRESSING: WHAT DOES IT MEAN?

Computer addressing means a lot of different things. It is
considered here first with respect to computers in general, then
the discussion focuses upon the specifics of computer addressing
with respect to the TMS 9980A microprocessor.

The word "addressing"” or "address" refers to some location,
such as the address of a friend's house. The friend who lives
in the house and the address of the house are two different things,
but the address does indicate the location of the house and, thus,
the location of the friend.

With computers in general, an address, or‘addressing, simi-
larly refers toa location. The items in these locations can be
considered in three categories:

° Location of an operand
° Location of next instruction
° Location of a peripheral device.

108

Location of an Operand

The first and primary category of addressing is the Tlocation
of an operand. An operand is an item to be operated upon, such
as an addend in addition. With computers in general, the operand's
location will be one of five different types:

° peripheral input or output device

° Register

° Instruction (called an immediate operand)
° Stack

° Memory.

Location of Next Instruction

The computer address can alsc refer to the location of the
next instruction. Typically, the next instruction is located imme-
diately following the current instruction. Thus, the program counter
(PC) is simply incremented during the execution of the current in-
struction in preparation for the next instruction fetch. However,
a transfer of control instruction (often called jump, branch, or
skip instructions) canbe used to change the program flow, in which
case the address of the PC is modified so that it points to an
instruction other than the next one. Thus, the location of the
next instruction can be determined by any one of the following.

° Program Counter--The program counter usually contains
The location of the next instruction because it is
incremented during the executionof the current instruc-
tion.

Register--The location of the next instruction may be
Tocated in some register; therefore, the contents of
this register would be moved into the program counter.
Instruction--The location of the next instruction may
be immediately a part of the current instruction; if
so, this constant would be moved into the program coun-
ter.

Stack--The Tocationof the next instruction may be in a
hardware or software stack, e.g., the return address
of a subroutine.

Memory--The location of the next instruction may be
in some memory location.

Location of a Peripheral Device

As indicated, addressing refers to the location of an operand
or it may refer to the 1location of the next instruction. A third
category of computer addressing relates to the location of a peripheral
device. These devices may fall into several subcategories as mentioned
in Chapter 1. A1l threeof these addressing categories are summarized
in Table 3-1.

109

Table 3-1. Summary of Addressing Categories

Location of Location of the Location of a
an Operand Next Instruction Peripheral Device
Peripheral Program Input and/or output
input/output device Counter Serial and/or parallel
Register Register Type of device control
Instruction Instruction -Program-controlled
Stack Stack -Interrupt-driven
Memory Memory -DMA

Address and Contents Distinguished

It is important to clearly distinguish the address of the loca-
tion from the contents of the Tocation. Computer addressingis similar
to street addressing. On each house there is a number, which is
the address. Each house has a person (or persons) living in.it,
which corresponds to the contents of the house. It is essential
in programming a computer to keep this distinction clear since both
the contents and the address will be numbers. Even though they
look similar, they are different! One number, which is called
the address will refer to ‘the location where something is. This
location will contain the contents. So, the numerical address
will point to the 1location which contains the numerical contents
to which reference is made.

For example, memory location 04004 (address) may contain the
number 1234, (contents), which is the number to be added to the
contents of register 1. Note that the operand has an address which
is different from the contents. In all likelihood, there is also
a location 1234;, (address) which probably contains a different
number. ‘

From this point on in the book, any hexadecimal value may
be indicated with the greater than symbol (>) tosimplify notation.
Hence,

04007 ¢

123414

>0400
>1234,

nwou

Program Example Introduced

In the first half of this chapter, the computer instructions
necessary to implement a program example are presented. This program
example calculates the function of N1 and N2 represented in the
following equation:

F(N1,N2) = [4 (N1 - N2)]2
This function can be clarified by breaking it down as follows.

First, subtract N2 from N1, then, multiply that result by 4 and,
finally, square that result.

110

UNCHANGED “DIFFERENT"

AFTER AFTER
R1 1234 - 12 3 4 R9
SOURCE DESTINATION

EXAMPLE: MOV R1,R9
(MOVE FROM SOURCE TO DESTINATION)
(MOVE FROM REGISTER 1 TO REGISTER 9)

Figure 3-1. Register Direct Addressing I1lustration

Copy Operation

To introduce the six principal addressing modes of the 990/
9900 family (of which the TMS 9980A is a member), the copy operation
will be considered first. This isoneof themostelementary computer
operations. Itcopies fromthe contents of one location (the source)
to the contents of another (the destination). In this operation,
the contents of the destination are changed to become identical
with the contents of the source, but the source is left unchanged.
This operation is similar to sending a page through a copy machine.
In the TMS 9980A instruction set, this copy operation is called a
"move. " It is stressed that the source does not move in the
normal sense but remains in the same place. To illustrate, suppose
the operator desires to transfer or copy the contents of register
1 to register 9. This would be written in mnemonic code as:
MOV R1,R9. The contents of register 1 are copied into the contents
of register 9 with the contents of register 1 left unchanged (see
Figure 3-1).

Register Direct Addressing

Register direct addressing is the first of the six principal
addressing modes and is illustrated inFigure3-1. With this mode,
the contents of the register are used directly by the instruction
operation. In mnemonic code, it is written as MOV R1,R9. Note
that the address of the source operand is register 1. The contents
of this register may be any possible16-bit number. After execution
of the instruction, the contents of register9 (the destination) will
be the same as that in register 1 {the source). Thus, when the
contents of a register are referred to directly, it is called reg-
ister direct addressing. Register direct addressing is indicated
inmnemonic code simply by referring to the register number (with
no special character precedingit). Correspondingly, inmachine code
code, there is a special field to indicate how the register is

111

to be used. This special field is explained further on. Recall
from Chapter 1, in the TMS 9980A architecture, registers are in
memory . Consequently, when the instruction refers to a register,
it is referring to a memory location. Each of the 16 workspace
registers, as well as having a specific memory location, has an
abbreviated name for the corresponding address, i.e., a register
number, The Tocation of these workspace registers depends upon
‘the contents of the workspace pointer register (as discussed in
Chapter 1). :

Depending on the instruction, either the source operand or
the destination operand (or both) can use register direct addressing.

3.3 INSTRUCTION SUBSET 1A

As each of the instructions is presented in this book, an
instruction summary is provided in accordance with a standard instruc-
tion summary format indicating: (1) the instruction name, (2) the
mnemonic opcode, (3) the assembly language format, (4) the machine
code format, (5) the instructionlength, (6) the abbreviated indica-
tion of theresult, and (7) the status bits affected. The instruction
summary for the Move Word instructionis presented as a model (Instruc-
tion Summary 3-1). An explanatory "item is provided for each of
these parts of the format. Each part of the standard instruction
format is keyed to an explanatory itemby the numberiin parentheses.
These numbers in parentheses are not part of the standard format,
but are provided as a convenience to the reader.

(1} Theinstruction name presents the name of the instruc-
. tion (at upper Teft). - ' ‘
v (2) The mnemonic opcode presents the standard abbrevia-

tion (assembly Tanguage opcode) for the instruction
(at upper right). :

(3) The assembly language format (CODE) presents the
opcode and operand format for this instruction's
implementation in assembly language.

In the ‘assembly lTanguage format, there are certain
operand symbols and key words:

S indicates general* source operand

D indicates general* destination operand
R indicates workspace register only

10P indicates immediate operand

C indicates count (a value from0 to 15)

Displacement indicates relative displacement (PC
relative or CRU relative).

Location indicates the target address for a Jump
instruction.

*This means all five general addressing modes (register direct,
register indirect, register indirectvautoincrement, symbolic
memory, and indexed symbolic memory). These are explained later in
this section. Ce

112

MOVE WORD MoV

' (4b) ?
(4a) 10 |1 12 13 14 1516 {7 18 |9 110{11]12]13]14]15]
on MOV S D €000 l1 }'l }0 !0 { T‘ } | RI | l | | | I
C E: TS I - & n I T R
s i6 42 1 01 g ! D t Ig | S
3) 1 {
| §o!r5e_(gr_Dgs_t_iﬂa£ignl Memory Reference |
RESULT: (S) —= (D) 1 _ _ _ _Destination Memory Reference _ _ _ |
6)
Length: 1 or 2 or 3 words
{01112 1314 1516 17 18 |9 110{11]12]13|14]15|
STATUS T 1T 1 } |
|

REGISTER: [L>|A>1EQ
{7)

OPERATION: ~ (8)

The destination operand is replaced with a copy of
the source operand (16 bits). The operand is compared
with zero, and the L>, A>, and EQ status bits are
affected accordingly.

NOTES: (9)

This MOV instruction allows the operator to move a
16-bit word from one location to another. It permits
moving a word from one general memory location to
another general memory location in one instruction.
This is one of the key aspects of the advanced archi-
tecture of the 990/9900 computer family.

The MOV instruction is used frequently to set up counters, to save results, and
to initialize various items at the start of software routines. Note that it is
called MOV, but it really is a copy instruction.

The store and load instructions used in other computers represent a subset of
this instruction.

Example:
MOV R1,R9 Machine Code: C241
before: after:
(R1) = >1234 (R1) = >1234
(R9) = >FFFE (R9) = >1234

L>=1, A>=1, EQ=0

Instruction Summary 3-1

113

(4)

(6)

(8)

The machine code format for this instructionis in two

forms: summarized and detailed.

a. Thesummarized format presents the machine opcode.

b. The detailed format presents the machine opcode
in binary and indicates the location and contents
of each of the related fields. In the detailed
machine format, there are symbols used for the
various fields (in addition to those used in-
assembly language format):

Tg -- T field for the source workspace register
(indicator of which general mode of ad-
dressing)

Rg -- Source workspace register field

Tp -- T field for the destination workspace

register (indicator of which general mode
of addressing) (
Rp -- Destination workspace register field.

Also the detailed format indicates the number of
words (inmachine code). Dashed 1ines indicate possi-
ble words, depending on choice of addressing mode.
If there are references to memory, then the source
reference will precede the destination reference.

The inctruction length (LENGTH) specifies the
various possible Tengths (1 word for register-to-
register addressing, 2 words for register-to-mem-
ory addressing, and 3 words for memory-to-memory
addressing).

The abbreviated indication of result (RESULT) indi-
cates, in Tshorthand"” style, the result of the
operation.

Parentheses mean "contents of," i.e., (S) means
contents of the source.

The status bits affected (STATUSREGISTER)indicates
which status bits are affected as a result of the
instruction.

The operation resultis comparedwith zero to affect
the L>, A>, andEQ status bits, unless the instruction
operation description specifically indicates other-
wise. The C and OV status bits are affected as a
result of arithmetic operations as discussed in Chap-
ter 2, unless specifically indicated otherwise.

The instruction definition (OPERATION) verbally ex-
plains the operation of the instruction, and, as
appropriate, a figure showing the specific inputs,
outputs, and control signals presents the related
ALU operation.

The notes (NOTES) provide application notes, ex-
amples, typical uses, and programming hints.

114

EXAMPLE: MOV R7,R9
MNEMONIC CODE MACHINE CODE

c247

MOV R7,R9

OPCODE |DESTINATION SOURCE

FIELD FIELD
1100 Tp Rp Tg Rg
MOV S.D = 1100 XX XX XX XX XXX X = CXXX
MOY R7,R9 = 1100 00 1001 00 0111 = (247
R9 R7

FIGURE 3-2. Machine Code Format for MOV Instruction

Machine Code Format Example

Machine code formats must be understood to successfully use
machine code. The machine code for the MOV instruction is presented
in Figure 3-2 as a primary example of machine code formats for
the TMS 9980A instruction set.

From Instruction Summary 3-1 and Figure 3-2, note that the
MOV instruction has a 4-bit field for the operation code (C) and
12 additional bits to be defined. These undefined bits can be
subdivided into two fields: six bits for the source and six bits
for the destination. FEach of these 6-bit fields can be further
subdivided into two fields: four bits for the register field and
two bits forthe T field. This format is commonto 11 other instruc-
tions in the TMS 9980A instruction set. The operation code appears
in the leftmost portion of the instruction word. In the case of
the MOV instruction, this will be a hexadecimal C or binary 1100.
In the MOV instruction, the rightmost six bits are for the source.
0f these six bits, the rightmost four bits will be the source-register
field, and the preceding two bits are for the source T field which
indicates how the source register is used. In the first example,
Figure 3-2, the register field is used as register direct. The
T-field indicator for this is binary 00. There are several other
ways in which this register can be used. Inthis example (MOV R7,R9)
the source is register 7, so the 4-bit source-register field (at
the right) contains a7 (binary0l1l1l). Since the register is being

115

used as register direct, its related T field is also binary 00.
Furthermore, the destination-register field contains 9 (binary 1001)
for register 9. Since the destination register is also used as
register direct, its related T field is also binary 00.

With reference to the T field, a binary 00 always indicates
register direct addressing. This is indicated 1in mnemonic code
by having no character preceding the register symbol (R7 is a pre-
defined symbol for register 7 in this application). It is not necessary
for the source and destination operands to use the same addressing
mode. The options depend upon the particular instruction. One can
see that there are at least four addressing modes based on the
fact that the T field can take on one of four values (of which
only one has been discussed). For the instruction expressed in
mnemonic form (MOV R7,R9), the hexadecimal machine code is C247
Notice that the source register in the machine code can be read
easily, while the destination register cannot be read as easily
since it is "split" between two hexadecimal digits.

Instruction Survey

Before introducing the other instructions to be considered
in this chapter, it would be helpful to present a brief survey
of the arithmetic instructions, the data manipulation instructions
(Lgad, Mgve,)Store, and Swap) and shift instructions. (See Figures
3-3 and 3-4.

There are arithmetic instructions to add and subtract both
word and byte values. Also, there are multiply and divide instructions
(both in microcode). Furthermore, there are some other arithmetic
instructions to perform special arithmetic operations.

With regard to data manipulation instructions, either word or

byte values can be moved. Shift instructions provide for shifting
bits to the left and right within registers.

Detailed Description of Instructions

The ADD WORDS Instruction. The word instruction for add can
be remembered easily because it is simply represented by the mnemonic
code, A, as shown in Instruction Summary 3-2. Both source and
destination have general addressing capabilities. To produce the
machine code for the instructionA R3,R4, the bit pattern is composed
from right-to-left as follows. The source register field is 3
(binary 0011) and its related T-field for register direct is binary
00. Further, the destination register field is 4 (binary 0100)
and 1tsre]atedT-fie]dforregisterdirect1sbinary00.Theoperation
code (the next four bits) is a hexadecimal A (binary 1010). Thus,
the machine code for this instruction is 1010 00 0100 00 0011
or >Al03. To verify the A R3,R4 instruction, the reader can enter
the following sequence of machine codes as a machine language program
starting at location >380.

116

Location Code Mnemonics

380: 02EQ LWPT >0300
382: 0300

384: A103 A R3,R4
386: 0340 IDLE

Initialize registers 3 and 4 by entering the number 2 in memory
location >306 and the number 3 in memory location >308. Execute
the program starting at location >380, and inspect the result at
memory location >308 (register 4). It should contain5 (3 +2 =05).

The SUBTRACT WORDS Instruction. The subtract instruction is
another instruction that performs arithmetic operations on 16-bit
numbers, as shown in Instruction Summary 3-3. The reader should
note carefully which number is subtracted from which. Of course,
in the addition operation the order does not matter. In subtraction,
the source is subtracted fromthe destination, and the result replaces
the destination.

To illustrate, the instruction S R3,R4 is used. The reader
can enter the following sequence of machine codes as a machine-
language program starting at location >380.

Location Code Mnemonic
380: 02E0 LWPI >0300
382: 0300
384: 6103 S R3,R4
386: 0340 IDLE

To perform this example program, initialize registers 3 and 4 by
entering a number such as 2 in memory location >306 ({register 3)
and a number such as 3 in memory location >308 (register 4). Execute
the programstarting at location >380. Inspect the result at memory
location >308 (register 4); it should contain 1 (3 -2=1).

3.4 JUMP ADDRESSING AND RELATED INSTRUCTIONS

It is unlikely that a program will be written in assembly Tang-
uage which will not contain a jump instruction. Thus, it is very
important for the operator to understand how jump instructions work.
There are13 different jump instructions, but the addressing scheme
for each is exactly the same. Jump addressing allows the program
to change the program counter within a range of +127 to -128 words
(or +254 to -256 bytes). In brief, the program counter can shift
its contents by a certain "reach" with each jump instructicn. This
is called "relative addressing” since thedestination is not absolute
but is relative to the jump instruction's location.

117

ARTITHMETIC INSTRUCTIQGNS

A S,D (A000)
WORDS -=----
Al R,IOP (0220)
ADD ----eoo-- ¢
_BYTES ------- AB S,D (B0OO0O)
(" WORDS -=----- S S,D (6000)
SUBTRACT ---- ¢
_BYTES —--ucano SB S,D (7000)
MULTIPLY =-mmmemeeee MPY S,R (3800)
DIVIDE =-cocmmemmeeo__ DIV S,R (3€c00)
INCREMENT BY ONE oo ____ INC S (0580)
INCREMENT BY TWO oo ___ INCT S (05C0)
DECREMENT BY ONE - __________ DEC S (0600)
DECREMENT BY TWO _ __________ DECT S (0640)
ABSOLUTE VALUE -=v-ecoeaoo oo ABS S (0740)
CHANGE SIGN =-vccemmmmm oo NEG S ‘ (0500)
NOTE:

indicates
indicates
indicates
OP indicates
indicates

=D T W,

any general source (register or memory)

any general destination (register or memory)
any workspace register

an immediate operand

count

Figure 3-3 Survey of Arithmetic Instructions

118

DATA MANIPULATION INSTRUCTIONS

(LOAD, MOVE, STORE, & SWAP)

REGISTER ---=-=- L1 R,IOP (0200)
LOAD ~=-----===- WP (REG) ~==---- LWPI IO0P (02E0Q)
INT MASK ----=-- LIMI I0P (0300)
WORD --==m=-==-=- MOV S,D (c000)
MOVE --=--=c==-=
BYTE ---m=---=== MOVB S,D (D00D)
ST (REG) --===-- STST R (02€0)
STORE --==-====- -
UWP (REG) ------- STWP R (02A0)
SWAP BYTES ---m=---cmemmmmmc—coomnn= SWPB S (06C0)
SHIFT INSTRUCTIONS
SHIFT LEFT ARITHMETIC -====-=-=----- SLA R,C (0A00)
. ARITHMETIC ----- SRA R,C (0800)
SHIFT RIGHT ----- LOGICAL ---====- SRL R,C (0900)
CIRCULAR ---=--=-~ SRC R,C (0B0O)

Figure 3-4. Survey of Data Manipulation and Shift Instructions

119

ADD_WORDS A

[]
CODE: A S,D A000;¢ |1 10 |1 [0 | Tp

RESULT: (D) + (S) —a=(D) 1__ _ _ Destination Memory Reference I

Length: 1 or 2 or 3 words

10 11 12 13141516 |7 I8 |9 110]11]12]13]14]15]

STATUS T T 1T 1771 T

REGISTER: |L>|A>|EQIC |oV| |
OPERATION:

The source operand is added to the destination operand
and the resulting sum replaces the destination operand.
The 16-bit result is compared with zero, and the L>,
A> and EQ status bits are correspondingly affected. The
addition operation causes the C andQV bits to be af-
fected.

NOTES:

The ADD instruction is used to take the sum of two

16-bit numbers. This instructionwill be used quite frequently when arithmetic
operations are involved. Take note that the source operand is added to the
destination operand and the destination operand is changed. For example, as-
sume that register 3 contains a number which is to be added to the number in
register4, sothat the result will be located in register4. Register 3 is said
to be the source, and register 4 to be the destination. Write the mnemonic
instruction A R3,R4 to produce the desired result. The format for the machine
Code is the same as that discussed under the MOV instruction (see Figure 3-2).

Example:
A R9,R11 Machine Code: A2C9
(R9) = >2468 (R9) = >2468
(R11) = >1234 (R11) = >369C

L>=1, A>=1, EQ=0, C=0, OV=0

Instruction Summary 3-2

120

SUBTRACT WORDS S

01112 13 14 1516 |7 [8 19 110]11]12|13]14]15
TTrr17rrrr1rrr1r 1T 17717 11
CODE: S S,D 6000 10 11 11 10 1Ty 1 Ry | Tg | Rg
T
| Source {or Destination) Memory Reference |
T T
M%H:(M-(Q-—»W)_L___J@@y@g@@@xyﬁyyg____i
Length: 1 or 2 or 3 words
10 |1 12 13 14 {5 16 17 18 19 110]11112]13|14]15|
STATUS T T 17 T T 1 |
REGISTER: [L>|A>IEQ|C {OV] |

OPERATION:

The source operand is subtracted from the destination
operand and the resultreplaces the destination oper-
and. The 16-bit result is compared with zero, and
thel>, A>and EQ status bits are correspondingly af-
fected. The subtraction operation also causes the C
and OV status bits to be affected.

NOTES:

The SUBTRACT instruction isused to take the difference

of two 16-bit numbers. This instruction will be used quite frequently when
arithmetic operations are involved. Take note that the source operand is
subtracted from the destination operand and the destination operand is changed.
For example, say that register 5 contains a number which is to be subtracted
from the number in register6. Register 5 is said to be the source, and regis-
ter 6 tobe the destination. Write the mnemonic instruction S R5,R6 to produce
the desired result. The format for the machine code isthe same as that discussed
under the MOV instruction.

Example:
S R5,R6 Machine Code: 6185
before: after:
(R5) = >1234 (R5)=>1234
(R6) = >369C (R6)=>2468

L>=1, A>=1, C=1, OV=0, EQ=0

Instruction Summary 3-3

121

ABSOLUTE VALUE ABS

17 18 19 |10]11}12]13]14]15]
I I I I
11 J0 J1 | Te | Re¢

CODE: ABS S 0740, 10 [0 J0 |0

I Source Memory Reference

Length: 1 or 2 words
RESULT: [(S)| ~—m=(S)

STATUS 10 |1 |2 13 |14 |5 |6 |7 18 |9 110]11]12|13]14]15]
REGISTER: T T T T T 1
IL>|A>[EQ] Jov]
OPERATION:

Compute the absolute value of the source operand and
replace it with this result. In other words, if the
source operand is negative, replace itwith its cor-
responding 2's complement; if positive, leave un-
changed. The original source operand is compared with
zero, and the L>, A>, and EQ status bits are cor-
respondingly affected. If the result is > 8000, the
overflow bit will be set to ONE.

NOTES:

The ABS instruction allows the operator to be sure that a number is positive.
If a number is already positive, it will remain unchanged. If a number is
negative, the CPU will attempt to make it a corresponding positive number.
For example, a minus 2 will become a plus 2. There is one negative number
which does not have a positive counterpart, namely >8000. If the absolute value
instruction is attempted on >8000, the number is unchanged, but the overflow
status bit is set to ONE.

Experiment with the following program to take the absolute value of the contents
of location >0300:

Location Machine Code Mnemonic Instruction

380: 0760 ABS ©>300
382: 0300
384: 0340 <stop>

Instruction Summary 3-4

122

LOC MACHINE CODE

300: 109; THIS JMP INSTRUCTION
*pC (BEFORE): 302: -———
_ 304: -———- CAUSES AN UNCONDITIONAL
306: -——— I
PC (AFTER): 308: _———— JUMP OF g WORDS TO >308.

*NOTE: WHILE EXECUTING THE INSTRUCTION AT >300,
THE PROGRAM COUNTER IS INCREMENTED TO >302.

Figure 3-5. Jump Addressing I1Tustration

Machine Code Format

Each jump instruction requires one 16-bit word, and its dis-
placement (or reach) is a signed 8-bit field. The contents of this
8-bit field will cause the program counter to be incremented or
decremented by the amount of the machine code displacement (in
words). For example, in Figure 3-5 the jump instruction is shown
to cause the PC to increment by three words (or six bytes) from
location >302 (the next instruction) to location >308. If the dis-
placement were zero, the program counter would simply point to
the next instructionsince thePC is always automatically incremented
to point to the next instruction. In effect, an unconditional jump
instruction with a zero displacement is a NO QOperation (NOP) in-
struction.

Assembly Codé Format

Assembly code for jump instructions has two formats. The first
of these is to "jump to" a location indicated by an absolute address,
such as »>0388, or by a label such as a Y (e.g., JMP >0388 or
JMP Y). Obviously, the Jjump instruction's target location must
be within the reach of the instruction. This format has the advantage
that the programmer does not have to count the number of words
of displacement. This counting task is handled by the assembler.

The second format is still a jump to a location, but it 1is
a jump to the current locationplus or minus adisplacement. However,
the displacement in the machine code format and the displacement
in the assembly code format are not the same. This will be clarified
with an example.

Referring to Figure 3-6, assume that a jump instruction is

located at >0380 and a jump to location >0388 js desired. If location
50388 had a label of Y associated with it, one could write JMP Y

123

MNEMONIC MACHINE

LOC CODE CODE
LC 380 JMP >0388 ---- JMP $48 ---om-- 1003
382 —eeeee-o- - PC
384 ceeee--
8 BYTES 386 ~-cemee-aa- 3 WORDS
- 388 m-eeeee-- -
LC -- LOCATION COUNTER PC ~-- PROGRAM COUNTER

Figure 3-6. Comparison of Jump Addressing Formats

or, equivalently, JMP >0388. In assembly code the current location
of the instruction (also referred to as the lTocation counter,
LC) canbe represented by adollar sign ($). In this instruction,
the current Tocation is >0380. Thus, using the second jump in-
struction format, the mnemonic code is JMP $+8, whichis equivalent
to JMP >0388. The three instruction formats, JMP Y, JMP >0388,
and JMP $+8 are all equivalent if the instruction is located at
at >0380.

It can be seen further from Figure 3-6 that the program
counter starting at location >382, increments by one word to
>384, by two words to >386, and by three words to >388. The
machine code displacement is therefore three words. Note in
Figure 3-6 that the location counter for this idinstruction and
the program counter differ by one word (or two bytes). Note
further that the assembly code displacement is in bytes whereas
the machine code displacement is in words. Thus, the eight bytes
in the assembly code displacement format are equivalent to the
three words inthe machine codedisplacement. This canbe derived
by converting the eight bytes of assembly code displacement to
the equivalent four words and then subtracting one word due to
the fact that the location counter and the effective program counter
reference differ by one word. That is, eight bytes of assembly
code displacement divided by twominus one word equals three words
of machine code displacement (8/2 - 1 =3). In other words: Loca-
tion Counter + assembly code displacement (in bytes) = Program
Counter + 2 times machine code displacement (in words).

Most programmers prefer not to have to count these bytes
and words. Assuming that an assembler is available (as it is
with the TM 990/189), the programmer can always write a jump to
a labeled Tocation (such as JMP Y). But one shouldstill understand
the machine code format of the Jump instruction to be able to
patch a program.

124

Survey of Jump Instructions

As was mentioned, there are 13 different jump instructions.
One, the JMP instruction, is unconditional, which means that the
jump will be executed regardless of the condition of the status
register. In contrast, the other 12 jump instructions require
the CPU to test the condition of one or more status bits. The
CPU will then execute the jump if the specified condition is met.
Otherwise, it will simply step to the next instruction. There are
six status bits tested by the 12 ‘conditional jump instructions.
These status bits are: logical greater than (L>), arithmetic greater
than (A>), equal (EQ), carry (C), overflow (oV), and odd parity (OP).
The 13 jump instructions are listed and categorized in Table 3-2.

NOTE: The length of the jump 1is a signed displacement
in words maintained in the eight least-significant bits
of the machine code. When a jump is to occur, this signed
displacement is translated into bytes and added to the
program counter value (in bytes) in order to determine
the address of the next instruction. This displacement
range, or "reach" of the instruction, is from -128 to
+127 words (-256 to +254 bytes) fromthe program counter
as it points to the next instruction following the jump.

It is obvious from Table 3-2 that there are many kinds of
jump instructions. This table summarizes the 13 jump instructions
and categorizes them by the status bits that are examined by each
instruction. The only means by which the status bits canbe tested
directly, is with these instructions. Notice that each instruction
has its machine code in parentheses beside it. The two leftmost
hexadecimal digits are the 8-bit machine opcode for the instruction
and the two rightmost "00" digits are reserved for the 8-bit dis-
placement field. Each of these instructions is covered in more
detail in this and subsequent chapters.

Regarding the 13 jump instructions listed in Table 3-2, note
that some cause a jump to occur upon the condition of a single
status-registerbit. Inothercases, a jump occurs upon a combination
of status-register bits. Furthermore, note that there are certain
jump conditions which may occasionally be desired for which jump
instructions do not exist. These jump instructions can be derived

by a combination of two or three existing jump instructions.
Detailed descriptions of the Unconditional Jump (JMP) and the

Jump if Greater Than instructions are given jnInstruction Summaries

3-5 and 3-6. :

3.5 PROGRAMMING EXAMPLE

At this juncture, sufficient background has been presented
to write the program code based on the programming idea indicated

125

Table 3-2. Jump Instructions Survey

LOGICAL CONDITIONS (L> & EQ) CARRY CONDITIONS (c)
Low - JL (1A00) Carry - J0c (1800)
Low or Equal - JLE (1200) ~ No Carry - JNC (1700)
High - JH (1800)

High or Equal JHE (1400)

ARTTHMETIC CONDITIONS (A> & EQ) OVERFLOW CONDITIONS (0QV)

Less Than - JLT (1100) No Overflow - JNO (1900)
Greater Than - JGT (1500)

EQUAL CONDITIONS (EQ) PARITY CONDITIONS (opP)
Equal - JEQ (1300) 0dd Parity - JOP (1c00)
Not Equal - JNE (1600)

UNCONDITIONAL JumpP

JMP (1000)

NOTES:

1. Logical values do not have a sign bit.

2. Arithmetic values have a sign bit.

3. 0dd parity occurs in byte operations with byte values having
an odd number of ones. -

126

UNCONDITIONAL JUMP JMP

| ol 1} 21 3] 41 51 6] 7| 8| 9110111112113]14]15]
Trrrrrrrrr i 7T i 11711
CODE: JMP Location 100046 | 0| O] 0| 1] ol o] o] 0| Displacement (words) |

Length: 1 word
RESULT: (PC) + (Displacement in bytes) —w (PC)

| 0] 1} 21 31 41 51 61 71 8| 9110]11]12]13|14115]
!

STATUS T
REGISTER: | Not Affected |

JMP_INSTR
OPERATION: D1sp

Add the signed displacement in bytes of the machine
code instruction to the contents of the PC and place
the sum into the contents of the PC.

 NOTES:

The JMP instruction is used any time one wants to do
a short-range unconditional jump. The following ex-
ample illustrates two mnemonic instruction formats for
the same instruction.

Example:
Alternate
Mnemonic Mnemonic
Location Instruction Instruction Machine Code
>200: IJMP Y JMP $+6 1002
>206: Y e mmmeee- ——
Maximum Reach Backward Maximum Reach Forward
Mnemonic Machine Mnemonic Machine
Loc Code Code Loc Code Code
202 c—megemme- ' 300 JMP $+256 107F
300 JMP $-254 1080 400 2 ----Fee--

The jump range is expressed as: (PC) - 128 words < PC Result < (PC) +127 words
or: (PC) - 256 bytes< PC Result < (PC) +254 bytes

Instruction Summary 3-5

127

JUMP IF GREATER THAN JGT

[Ol 1] 2] 3] 4] 5] 6] 7] 8| 9110]11]12]13]14]15]
T T T T T T I T T T T T 17T
CODE: JGT Location 150016 | 0| 0] 01 11 0] 1] 0] 1| Displacement (words) |
Length: 1 word
RESULT: If A> =1, (PC) + Displacement in bytes —a= (PC)
If A> =20, (PC) unchanged
| O] 11 2| 3] 4| 5] 6] 7] 8| 9110]11]12]13]14|15]
STATUS I T
: Not Affected
REGISTER: | ot Affecte I 6T INSTR
OPERATION:

If the A> status bit is set to ONE, add the signed
displacement in bytes (of the machine-code instruc-
tion) to the contents of the PC and place the sum
into the PC; otherwise, leave the PC unchanged.

NOTES:
The JGT instruction is a conditional jump instruction

which will be used quite frequently since it facili-
tates the implementation of a program Toop.

This instruction tests the A> status bit. It can be used to determine whether
a previous result is both positive and nonzero. It is quite useful in certain
applications. For example, it provides a means of going through a loop a cer-
tain number of times. One couldseta register to a specific value such as +10,
then count down toward zero by ones and test the result each time until it is
not greater than zero. This test is accomplished immediately following the
subtraction from the Toop counter by using a jump if greater than instruction.
Recall that the subtraction operation will cause the statusbits tobe affected.

An example of its use in a program loop:

LI R1,1 PUT THE VALUE 1 IN R1

LI R9,8 LOAD R9 WITH THE VALUE 8 (Set Toop counter)

LP —meeeeee *100p: (Perform 1oop operation)
-------- *1oop
-------- *operation
-------- *block
S R1,R9 SUBTRACT 1 FROM R9 (Decrement loop counter by one)
JGT LP JUMP TO LP IF LOOP COUNTER >0 (Continue loop if counter +,

Instruction Summary 3-6

128

earlier. Recall that the programming idea was to impiement the
function (FTN) indicated by the equation:

F(NL,N2) = [4 (N1 - N2)12

Program Specification

It is important to have a programming specificationwhich states
precisely the programming objectives. The program specification for
this function could be stated as:

Calculate the function: F(Nl,N2)=[4(N1—N2)]2, where N1
and N2 are two signed 16-bit integers. Assume that the
values for these integers will not produce an overflow.
Place all initial values as required in workspace regis-
ters before the program is executed. Develop the program
using as few instructions as possible without concern for
error conditions. Provide the results of the function
calculation in register 0 (RO).

Flowchart and Algorithm

Assuming one understands the function, the next step is to
produce a logical and sequential representation of the actions to
achieve the desired result for this program. One form of this
is called a flowchart. Itis ahigher level graphical representation
from which an operator can almost directly produce an assembly lang-
uage program. In a flowchart, rectangles containing words are used
to indicate specific operations, and diamonds to indicate conditional
tests. These conditional tests have one entry point and at least
two exits to indicate yes and no answers to the tests. Flowcharts
use directed lines (arrows) to indicate the flow of the operation.

Prior toconstructing the flowchart, the programmer should have
in mind an approach for what must be accomplished to implement
this programming idea. One approach, for example, is to simply
take the difference of the two numbers which are. in registers,
multiply the result by four, and then take the result and multiply
it times itself. One might ask how multiplication is to be done,
since themultiply instructionhas not been discussed yet. To accom-
plish multiplication by four, a number can be added accumulatively
to itself four times. In the case of the second multiplication
(or squaring), the number could be added to itself an appropriate
number of times. For example, if the number to be squared 1is
12, 12 added accumulatively to jtself 12 times is 144. This approach
is an algorithm (method of attack) for this program.

At this point, the programming idea and program specification
can be implemented in flowchart form. The program flowchart given
in Figure 3-7 1is oriented generically and independent of the in-
struction set to be used.

129

Form Difference
(N1 - N2)

1

Form Absolute
Value of Diff.
INI - N2|

'

Multiply IN1 - N2|
by 4

!

Setup Loop Counter
for Squaring Oper.

-

Add 4|Diff.| to
Result Accum.

'

Decrement Loop
Counter by 1

Is the
Loop Counter
>07?

HALT

INITIAL CONDITIONS:

(prior to prog. exec.)

(WP) = >300 (PC) = >320
(RO) =0

(R1) = N1

(R2) = N2

(R3) =1

(R4) = Scratch

(R5) = Scratch

QUTPUT RESULTS:

(RO) = Result

Figure 3-7. FTN1 Program Flowchart

130

Observe that certain initial conditions are assumed (see
upper right-hand portion of Figure 3-8). Values for N1 and N2
must be assigned. Also, the result accumulator is initialized
to zero. Two scratch registers are required tomaintain intermediate
program values and to preserve input data.

The first program step is to form the difference (N1-N2).
The second program step is to take the absolute value of this
difference. Since the result of a squaring operation is positive
and this difference may be negative, taking an absolute value at
this point ensures a positive result at program completion. The
third program step is to multiply by four. This is done by
adding the number to itself and then adding that result to itself.
The fourth program step is to set up a loop counter equal to
the result of four times the difference. The fifth program step
is to add this result into the result accumulator and decrement
the Toop counter until the loop counter is zero. When this occurs,
the program halts with a jump instruction to itself.

Figure 3-8 is a code sheet showing the resulting mnemonic
code program with the corresponding machine code.

The reader can try hand-assembling this program and compare
the resulting machine code with that shown in Figure 3-8. Then
the machine code along with the initial conditions (indicated in
Figure 3-7) can be entered and the program executed. Suggested
values for N1 and N2 are 5 and 3. The result found in RO should
be >0040 (641¢).

Considering this program's implementation, it is important
to observe the initial conditions. The initial MOV instruction
was done to allow preservation of the initial value of N1. If
the programmer desired to shorten the program and use fewer reg-
jsters, he could delete the first jnstruction and could substitute
Rl for R4 and R2 for R5. Further, as additional instructions
are introduced, more elegant implementations can be considered.

Note that in the process of producing this program, the follow-
ing steps were used: programming idea, program specification (in-
cluding related algorithm), program chart (e.g., a flowchart),
and program encoding.

3.6 COMPUTER SYSTEM CONCEPTS REVISITED

As discussed in Chapter 1, a computer system can be viewed
as having three major parts: processor (or CPU), memory, and input/
output (devices).

The processor acts as the central administrator and executes
the program. The memory stores the program as well as providing
data storage and buffering. Program memory may or may not be
changeable during program execution.

131

FTNL PROGRAM: F(NI,N2)=(4*(N1-N2))2

MNEMONIC CODE COMMENT LOC CODE
ST MOV R1,R4 MOVE N1 TO R4 (TEMP.) 0320 c101
S R2,R4 FORM DIFF: N1 - N2 IN R4 0322 6102
ABS R4 FORM ABS VALUE OF DIFF 0324 0744
A R4,R4 *MULTIPLY |DIFFERENCE | 0326 A104
A R4,R4 *BY 4 0328 A104
MOV R4,R5 SET UP LOOP COUNTER IN R5 032A Cl44
LP A R4,RO ADD 4|DIFF| TO RESULT ACCUM 032C A004
S R3,R5 DECREMENT LOOP COUNTER BY 1 032E 6143
JGT LP IF THE LOOP COUNTER >0, JUMP 0330 15FD
HL JMP HL OTHERWISE, HALT 0332 10FF

INITIAL CONDITIONS:

OUTPUT RESULTS:

(WP) = >300 (R1) = N1 (RO) = RESULT
(PC) = >320 (R2) = N2
(RO) = 0 (R3) =1
(R4) & (R5) = SCRATCH
Figure 3-8. FTN1 Program: Mnemonic and Machine Code

132

The input/output provides contact with the external "world"
to receive and transmit information. Some examples of input/output
devices are a printer, a keyboard, a yisual display, a motor, and
a magnetic-tapedrive. Acomputer system without input/output would
not provide any usable results.

The key concept behind a computer system is that of a stored
program. The processor performs under control of instructions stored
in memory. Its performance can be altered by changing these in
structions without rewiring the hardware. Furthermore, these in-
structions can be permanently stored in a type of memory which
will not lose information when power is removed.

In connection with the stored-program concept, there arethree
terms which need to be defined: hardware, software, and firmware.
Hardware can be defined simply as those items which can be seen
and touched such as printers, computer boards, ICchips, transistors,
wire, chassis, visual displays, and other components.

Software refers to the program or sequence of instructions
written to cause the computer system to perform some function.
It is called "soft"-ware because typically it can be considered
as a separate entity from the hardware, and it cannot be directly
seen or touched when stored in the machine. It can be changed
easily (thus the "soft" reference), and may even be lost, as when
power is removed from certaintypes of volatile storage media. Firm-
ware is a concept which fits in between hardware and software.
One definition of the term "firmware" is computer program instruc-
tions stored in memory such that they will remain unchanged during
execution and will be retained when power is removed. This generally
means the program is stored in ROM (as opposed to RAM); thus it is
"firm"-ware. Firmware cannot be changed as easily as software.

One should recognize that the boundaries between these terms
are not always clearly observed. Sometimes firmware is included
with hardware; sometimes it is evenloosely referred to as software.
Sometimes firmware is specifically used torefer tomicroprogram code.
Sometimes, and definitely incorrectly, programming of microcomputers
is referred to as microprogramming.

3.7 REGISTER ADDRESSING MODES

Register direct addressing, explained in section 3-2, accesses
the contents in the register or registers specified. One example
is MOV R1,R2 where the contents within register 1 is placed into
register 2. There are two other types of register addressing used
within this instruction set:

° Register indirect
° Register indirect autoincrement

In thefirstofthese,registerindirectaddressing,thecontents
of the register are not used as an operand; instead, the contents

133

MNEMONIC CODE MEMORY
BEFORE| AFTER
MOV R12,*R8 C60C | C60C | } MACHINE copet
RO
MEMORY fe-ce—e-- R8 0256 | 0256
POINTER { : .
1 ° °
5 R12 | 2345 [2345 (UNCHANGED)
! . .
i . . DATA
H TRANSFER
] . L4 I —
I & 256 |TC--- 7345 (CHANGED)
Tc60c: 1100 01 1000 00 1100

Figure 3-9. Register Indirect Addressing Illustration

of the register are used as a pointer to the operand (in memory).
This type of addressing can be used for either a source or ades-
tination operand, or both.

To illustrate its use inconnectionwith a destination operand,
consider a postman coming to a house to deliver a package. The
house corresponds to a register and the package to an operand.
In illustrating register direct addressing, the postman simply de-
livers the package to the house. In contrast, to illustrate register
indirect addressing, the postman looks in the mailbox and finds
a card which says, for example, "Deliver the package to 1234 Maple."
In the case of register indirect addressing, the contents of the
register, as with the card, points to the desired destination.

A more specific example 1is depicted in Figure 3-9. One may
wish tomove a number from register 12 to the memory location pointed
toby the contents of register 8. If register 12 contains the number
>2345 and register 8 contains the number >0256, then the CPU transfers
the number >2345 from register 12, not to register 8, but to the
memory location >0256 pointed to by the contents of R8. This in-
struction is written in mnemonic code as: MOV R12,*R8. Note that
with the destination operand there is an asterisk prefix. This pre-
fixed asterisk indicates that the register istaobe used as register
indirect (memory pointer), rather than as registerdirect. In machine
code, this asterisk correspondsto aT field of binary 01. To trans-
lTate into machine code the mneumonic instructions MOV R12,*R8, one

134

MNEMONIC CODE ' MEMORY
BEFORE| AFTER :
MOV R12,*R8+ CEOC | CEOC |)} MACHINE CODE
RO
MEMORY p-m-——m R8 | 0256 10258 |(AUTOINCREMENTED)
POTNTER : :
I . PS
| R12|77335 [2345 (UNCHANGED)
! e []
| . . DATA
| TRANSFER
] Y . ——
Le——s 256| == 1 2345 (CHANGED)
fcEOC: 1100 11 1000 00 1100

Figure 3-10. REGISTER INDIRECT (Autoincrement) Addressing
Illustration

would, going from left to right (see Figure 3-9), use a binary
1100 (>C) for the operation code field, then a binary 01 (register
indirect) for the destination T field, a binary 1000 (R8) for the
destination register field, a binary 00 (register direct) for the
source T field, and, finally, a binary 1100 (R12) for the source-
register field. Altogether, the machine code in hexadecimal is
ce60C.

The other type of register indirect addressing is called register
indirect autoincrement. Notice that the name of this third type
of register addressing is very similar to register indirect address-
ing, .but has the additional feature of being autoincrement. To observe
the one item of difference, consider the previous example with reg-
ister indirect autoincrement. It is written in mnemonic code as:
MOV R12,*R8+. The "+" suffix indicates autoincrement and applies only
to register indirect. Figure3-10illustrates this addressing mode.

Using the same numbers again one can see that the number >2345
will move from register 12 to memory location >0256 pointed to by
the contents of register 8. Up to this point, it is exactly the
same as register jindirect addressing, but there is one more step,
the autoincrement feature. After using R8 as a pointer, the CPU
automatically increments the contents of the specified register.
In this case, R8 is incremented by 2, i.e., from >0256 to >0258,
and now points to the next word in memory. The CPU increments by
2 because itis a word instruction, i.e., it operates uponl6 bits.

135

MNEMONIC CODE MEMORY

BEFORE| AFTER
LI R10,7 “020A | 020A MACHINE?
~0007 | 0007 CODE
.) DATA
: : TRANSFER
R10| === [0007 (CHANGED)

T020A: 000000100000 1010

Figure 3-11. Immediate Addressing Illustration

On a similar instructionof thebyte type, the autoincrement is by 1.
This type of incrementing allows the programmer to index automatical Ty
through byte-oriented tables with byte instructions and through
word-oriented tables with word instructions.

Note in Figure 3-10 that the T field for register indirect
autoincrement contains binary 11.

Thus, there are three types of register addressing. For in-
structions where there is a choice of general source or destination
addressing, register direct addressing is indicated by a T field
of binary 00, register indirect by a T field of binary 01 and
register indirect autoincrement by a T field of binary 11 (see
Table 3-3).

3.8 IMMEDIATE ADDRESSING

Another type of addressing is called immediate. With it,
the numerical constant (operand) to be used by the instruction is
located within the instruction. If the programmer desires to load
the constant, 7, immediately into register 10, then he writes a load
immediate instruction as LI R10,7. With this instruction, the
first word of the machine code indicates the operation of load
immediate into register 10. The immediate operand, 7, is in the
second instruction word. The operation is portrayed in Figure 3-11.

Note that register 10 is indicated by the >A in the right four
bits of the first machine code instruction word and the immediate
operand (7) is the second 16-bit machine code instruction word.
The immediate operand for the load immediate instruction can be
any 16-bit number (signed or unsigned). This 1is the same as a
copy function except with immediate addressing. The copying in
this case is done from a word in the instruction to a register.

136

MNEMONIC CODE MEMORY

BEFORE| AFTER
MOV ©>380,6>300 €820 | €820 ~ MACHINET
(===—===—=|"0380 | 0380 CODE
S 0300 | 0300
MEMORY v . .
POINTERS | i
: l * *
] ! * °
b
E L 300| === (2345 (CHANGED)
] . .
} DATA
: : TRANSFER
]
Lew—w 38072345 | 2345 (UNCHANGED)

tc820: 1100 10 0000 10 0000

Figure 3-12. Memory Symbolic Addressing Illustration

3.9 SYMBOLIC MEMORY AND INDEXED ADDRESSING

There are two additional subcategories of addressing which
need to be mentioned, both of which come under the general category
of memory addressing:

° Symbolic memory (not indexed)
° Symbolic memory indexed

With symbolic memory addressing, one can, for example, move an
operand from one general memory location to another with one
instruction. To move a number from memory Tlocation >0380 to
memory location >0300, simply write MOV @>0380,8>0300 (note Figure
3-12). In mnemonic code, the "@" symbol is used to explicitly
indicate memory addressing, thus clearly distinguishing between
a memory address value and a register value.

If the programmer had attempted to write register >0380 as
part of an instruction, it would have been an error because the
register numbers go only from 0 to 15. Note that there is a
register number 10 as well as a memory location 10, so that the
following operands refer to different types of addressing:

10
*10
*10+
@10

o o 0 o

137

In particular, the first of these items indicates that the
operand is contained in register 10 (mnemonic code defaults to
decimal). The second item (register indirect) indicates that the
operand is located in a memory location pointed to by the contents
of register 10. The third item is the same as the second except
that the contents of R10 are automatically incremented during in-
struction execution. The fourth and last item (symbolic memory)
indicates that the operand is located at memory location 10. When
there is an option as to which type of general addressing is to
be used, the T-field code, summarized in Table 3-3, indicates to
the CPU which is to be used.

Table 3-3. T-Field Indicators

Addressing Mode T Field . Mnemonic Equiv.
Register direct 00 RX
Register indirect 01 *RX
Memory 10 eLoc
Register indirect 11 *RX+

autoincrement

The second subcategory of symbolic memory addressing is called
symbolic memory indexed addressing. In this addressing mode, the
symbolic memory address can be modified by adding to it the value
in a designated register. In assembly language, the register is
specified in parentheses following the symbolic memory address:

MOV ©>380(R8),08>300

In this case, a word will be moved into memory address >0300 from
an effective memory address calculated by adding the contents of
register 8 to the value >380.

For this instruction the concern is for the contents of the
effective source address. The effective source address in this
Case is the number >0380 plus the contents of register 8. Thus,
the instruction is pointing to a table starting at >0380 offset
by the number contained in register8 (the related index register).
If the register contains the number 4, the effective source address
is >0380 + 4 or >0384, and it is the contents of location >0384
which are moved to memory address >0300.

This mode of addressing enables the programmer to access tables
more easily. For example, suppose there is a table, organized
into two-word blocks, from which the programmer wants to access
the first word of each block. The table begins at memory address
>0380. The programmer can designate successive memory locations
>0380, >0384, >0388, etc.; however, in writing an algorithm to
repetitively access every other word in the table, some complicated
means must be used to change the memory address each time. Indexing
makes this memory address modification easy. By using abase address

138

MNEMONIC CODE MEMORY

BEFORE| AFTER +
MOV @>380(R8),R9 €268 €268 MACHINE
0380 0380 CODE
R8 0004 10004
R9 ---- IBABE (CHANGED)
0004 DATA
: TRANSFER
380
0384 382
----- » 384 | BABE BABE (UNCHANGED)
0380

tcogg: 1100 00 1001 10 1000

Figure 3-13. Memory Indexed Addressing I11ustratidn

(pointing to the starting address of the table) and an index register
(providing the increment value), the start of each block is accessed
by a single instructionwith the index register being updated before
each access. By adding 4 to the index register each time, the desired
word can be moved and acted upon by the algorithm. Access is made
to the first word of each two word block in the tabie as shown
in Figure 3-13.

Thus, indexing allows for flexible programming by inclusion
of a variable into the instruction. By arranging for an index
register to have a different value (or offset) each time the in-
struction is executed, the instruction accessed a different word
in the table each time it is executed.

3.10 ADDRESSING SUMMARY
The five general modes af addressing plus immediate addressing

are summarized with examples in Figure 3-14.

Copy Function Revisited

To summarize the addressing modes, reconsider the copy function.
Figures 3-15 through 3-20 illustrate the operations of the six
modes of addressing.

139

DIRECT -=--mmme- MOV R7,R8

REGISTER (INDIRECT -==---- MOV *R7,R8
INDIRECT AUTOINC MOV *R7+,R8
SYMBOLIC -=-mm-m- MOV @TABLE,RS
ADDRESSING | MEMORY -
MODES INDEXED -===m-m- MOV @TABLE(R1),R8
IMMEDIATE =—=cmmmmmmmmmme oo L1 R8,>BEEF

Figure 3-14, Summary of Addressing Modes
3.11 INSTRUCTION SUBSET 1B

Load Immediate Instruction

The Load Immediate (LI) instruction is the first of seven in-
structions having an immediate operand in the second 16-bit word.
Each of these seven instructions is easily identified since each
contains the word "immediate" in the name of the instruction, and
each mnemonic code has an "I" as the final letter. The symbol
"IOP" is used in the instruction summaries to represent an immediate
operand.

The Load Immediate instruction, shown in Instruction Summary
3-7, is frequently used to initialize various registers at the out-
set of a program. During the course of a program, if the programmer
desires a constant to be placed in a specific memory 1location,
he would likely use a Load Immediate instruction with a register
and then move the register contents to the memory Tocation. Note
that a Load Immediate instruction always transfers a constant from
the instruction to a register; thus, only register direct addressing
is being used for the "destination." Since this is the only kind
of register addressing used with this instruction, there is no
associated T field. Thus, the registers in immediate instructions
can be used only in the direct mode and not in the indirect mode.

140

MNEMONIC CODE MEMORY

BEFORE| AFTER
LI R15,>4321 020F | 020F MACHINE
43721 | 4321 | — CODE
* * DATA
. * TRANSFER
R15| ==-<= | 4321 |-e—J (CHANGED)

mmediate Addressing Illustration

L
-1
w2
3
D
Ay
]
s
[4,]
o
(=]

MNEMONIC CODE MEMORY
BEFORE| AFTER
MOV R8,R15 C3C8 | C3C8 |} MACHINE CODE
R8 | 2345 | 2345 (UNCHANGED)
) : | DATA
* * TRANSFER
R15|=—-- | 2345 (CHANGED)

Figure 3-16. Register Direct Addressing Illustration

This limitation of workspace registers as the only type of
destination will apply tothe first five of these immediate instruc-
tions. Each of the remaining two of the seven will have as its
destination a non-workspace register within the CPU.

As an example, alLoad Immediate instructioniswrittenlLI R9,>400
with the register indicated first followed by a comma and the 16-bit
constant. Since there is no T field involved, there is no need
for any special marks as in the MOV instruction. Also, it is
occasionally desired to load a register with a symbolic address
such as ST, AF, CD, etc. In such case one merely specifies the
symbol in the immediate operand field without the preceding @ sign
since there is no T field to be defined. For example, LI R2,ST
(load R2 with the address corresponding to the symbol ST).

With the LI instruction, one can initialize RO to zero using
LI RO,0 at the beginning of the FTNl program rather than initializing

et
Y
[

MNEMONIC CODE

MOV *R8,*R9

MEMORY m———————

POINTERS

MEMORY
BEFORE] AFTER
€658 658
0380 0380
0300 0300
- 369C
L] *
369C 369C

}

MACHINE CODE

(CHANGED)

DATA
TRANSFER

(UNCHANGED)

Figure 3-17. Register Indirect Addressing Illustration

MNEMONIC CODE

MOV *R8+,*R7+

MEMORY p—————ee R7
POINTERS | p-m-—mmmm- RS
b
1 1}
| |
R » 320
|
|
|
|
(I » 360

MEMORY
BEFORE| AFTER
“CDF8 | CDF8
(] L)
0360 | 0362
DEED | DEED
. L]
~=-= [DEED

)

MACHINE CODE

(INCREMENTED)
(INCREMENTED)

(UNCHANGED)

DATA
TRANSFER

(CHANGED)

Figure 3-18. Register Indirect Autoincrement Addressing

ITlustration

142

MNEMONIC CODE

MEMORY

-

BEFORE| AFTER

MOV ©>300,@>280 ~C820 | €820 _

R — —0300 | 0300

| pmmmmmmm oo 0280 | 0280 | J

l ' [} L)
MEMORY | | . .
POINTERS ! ! . .

[}

i Loceeee—w= 280 | =--- [DEAF

i -]

]

: . .

H

] . .

I

b & 300| DEAF | DEAF

MACHINE
CODE

(CHANGED)

DATA
TRANSFER

(UNCHANGED)

Figure 3-19. Memory Symbolic Addressing ITTustration

MNEMONIC CODE

MOV R7,8300(R8)

0-RY

MEM
BEFORE

AFTER

CACQ1

CAUL
0300

0300
S

| 4568
0006 _

~0300 |
R7 | 4568
R8 | 0006
300
302

——mee—= 306 | ===

4568

MACHINE
CODE

(UNCHANGED)
(UNCHANGED)

DATA
TRANSFER

(CHANGED)

Figure 3-20. Memory Indexed Addressing IT1lustration

143

INSTRUCTIONS CPU MEMORY
| BTN — 1 0000
pC |7 E—
. ST
3FFE

Figure 3-21. TM 990/189 Microcomputer (Software Perspective)

register 0 to zerowith the UNIBUG monitor program. Since the machine
opcode for this instruction translates into >0200 (the least-sig-
n;ficant 0 forRO, with the next word being >0000 (for the constant
0 . ' ‘

Add Immediate Instruction

The Add Immediate (AI) instruction is the second of the seven
immediate instructions with an immediate operand as the second in-
structionword. It isused to add signed 16-bit constants to workspace
registers. There is no subtract immediate instruction. This is
not a difficulty since a negative number can be used with the Add
Immediate instruction. The Add Immediate instruction is used when
the programmer desires to add or subtract a constant from an existing
number in a register, for example, when stepping up or down through
a table of numbers. See Instruction Summary 3-8.

In the FTN1 program example, a register was initialized with
the valuel and then this 1 was subtracted from the loop counter to
provide a loop which repeated a definite number of times. The Add
Immediate instruction can be used to accomplish the same function
using -1 as the immediate operand. For example, AI R2,-1. The
hexadecimal machine code is 0222 FFFF. This instruction could be
substituted for the S R3,R2 instruction in Figure 3-8.

An Additional Addressing Illustration

From a software viewpoint, the TM 990/189 contains software
instructions, memory, and a CPU with three hardware registers WP,PC,
and ST as shown in Figure 3-21.

To more fully explain the operation of various instructions
and addressing modes, another example is presented. See Figure 3-22

144

LOAD IMMEDIATE ' LI

| of 11 2] 3] 4] 5] 6] 7| 8| 9{10111112)13114}15
1T 11 171011t 1 bt 11
CODE: LI R,IOP 020016 | o] o] o] o} o] o] 1| o] o] Ol o] O} ' R
- T -
| ~Iop
RESULT: I0P —m=(R) Length: 2 words
1 Of 11 21 3] 415 16 |7 18 19 110]11112113]14]15]
STATUS T 1T 1 |
REGISTER: |L>|A>|EQ] |
OPERATION:

Place the 16-bit immediate operand in the specified workspace register. The
16-bit value is compared to zero and the L>, A>, and EQ status bits are set
accordingly.

NOTES:

The L1 instruction is used frequently to initialize constants in registers,

and addresses or constants in various counters. I

Examples:
Mnemonic Instruction Comment Machine Code
LI R5,>FEED LOAD R5 WITH THE ADDRESS >FEED 0205
LI R7,10 LOAD R7 WITH THE CONSTANT TEN : gggg
LI R1,>0200 LOAD R5 WITH THE ADDRESS >0200 ggg?
LI R2,>320 LOAD R2 WITH THE ADDRESS >320 gggg
MOV R2,0400 AND STORE IT IN MEMORY LOCATION >400 g%é%

Instruction Summary 3-7

145

ADD_IMMEDIATE Al

| Ol 1] 2] 3] 4] 5] 61 71 8] 9]10l11/12]13}14]15|
T T T T T T T T T T T 17 171 {
l
|

CODE: AI R,IOP 0220, | 0] 0] 0] 0] 0] 0] 1] 0] 0] 0] 1] 0} R
|
| I0P (16 bit)

RESULT: (R) + IOP —=(R) Length: 2 words
| O] 1] 2] 3| 415 16 17 |8 19 [10§11}12]13|14]15]
STATUS T T T 171
REGISTER: |L>|A>|EQ| Clov|
OPERATION:

Add the immediate 16-bit operand to the specified
workspace register. The sum is compared to zero
and thel>, A>, and EQ status bits are set accordingly.
The C and OV statusbits are affected by the addition
operation.

NOTES:

This instruction is used to add an immediate value to
a workspace register.

Example:
Mnemonic Instruction Comment Machine Code
Al R2,>15 ADD >15 TO R2 0222

0015

Instruction Summary 3-8

146

INSTRUCTIONS cPy MEMORY
0280: LI R1,>348 Wp | 0300 0000
LI R2,CK pC | 0280 —
MOV R1,R3 sT |~0000_ :
A 0SZ,R3 - P1 | TI234_
MOV R3,*R2 P2 | 5678
LI R4,0 .
LI R5,0 :
LP A @P1(R4),R5 RO || 0300
MOV @P1(R4),*R1+ s
Al R&,2 :
S R1,8CK R15 || 031E
JGT GO :
A R1,0CK :
JMP OU sz |0004_
GO A R1,@CK —
______ JMP_LP______ .
T CK 033A
T1 || 0348
T2 || 034A
— | 3FEE.

Figure 3-22. Addressing Review Program Example

for the program example and the given initial conditions of the
CPU registers and memory.

After executing the instructions through the JMP 0U, the memory

locations contain the values indicated in Figure 3-23. The inter-
mediate steps are left as an exercise for the reader.

Decrement/Increment Instructions

The instruction Al R2,-1 inthe previous discussion introduces
the entire field of incrementing and decrementing using small numbers.
This instruction set supports the use of arithmetic with small numbers
such as 1 and 2 with certain special instructions. Consider first
what is required if the programmer wants to subtract 1 from a number
in a memory location. As an example, he would first have to select
a register such as R14 for the intermediate work, then write the

147

MEMORY

P1 1234
P2 5678
RO 0300
R1 034C
R2 033A
R3 034C
R4 0004
R5 68AC

R15 031E
SZ 0004
CK 034C 033A

T1 1234 0348
T2 5678 034A

Figure 3-23. Memory Contents After Execution of Addressing Review
Program Example

instruction LI R14,-1. Using memory location >2468 as an example,
he would writeA R14,08>2468. Note that this operation of subtract-
ing one from memory location >2468 requires two instructions and
four instruction words. It has already been shown how this can
be accomplished with one instruction if the destination result is
a register, with the Al instruction. Whether a general memory location
or a workspace register, this operation can be accomplished with
half as many words using a Decrement instruction.

This Decrement instrucion (DEC) is used oftenbecause it allows
the programer to count down to zero to implement a repeated loop,
with the completion test being accomplished without a compare in-
structionsincethearithmeticoperation of the Decrement instruction
causes the status bits to be set by comparing the result to zero.
Also, the TMS 9980A instruction set allows the programmer to perform
an autoincrement (register indirect autoincrement) on the contents
of a register, but it does not allowhimto perform an autodecrement;

148

Table 3-4. Instruction Subset 1.

1 MOV 7. LI

2. A 8 Al
3.8 ol o
2 mes 10, INC
5. awe 11. DECT
6. JGT 12. INCT

therefore, a loop involving decrementing will generally involve
a DEC instruction. See Instruction Summary 3-9.

For example, to perform an operation ten times:
LI R1,10
LOOP BEGINNING OF
REPEATED OPERATION

END OF OPERATION

The contrasting instruction isthe Increment (by one) instruc-
tion (INC). This instruction works similarly to the Decrement in-
struction but adds one to the source operand. See details in In-
struction Summary 3-10.

‘Instruction Summaries 3-11 and 3-12 detail the Decrement by
Two (DECT) and Increment by Two (INCT) dinstructicns. : .

Instruction Review

At this point, the reader should be familiar with the opefation
of the instructions given in Table 3-4.

The first three (MOV, A, S) involve two operands (both general)
and may be one, two, or three words in length.

149

DECREMENT (BY ONE) DEC

| 0| 1] 2] 3| 41 5] 6] 7| 8] 9]10/11|12|13]14/15|
LT T T T T T T T T T T T T T T 1T
CODE: DEC S 0600, ¢ =0|0|0|0|011|1|0|0|0|TS | Rg ﬁ%

Length: 1 or 2 words

RESULT: (S) - 1 —m=(S)

| Ol 1] 2] 31 41 5] 61 71 8] 9]10]11112|13|14|15]
STATUS T T T 11 I
REGISTER: |L>|A>|EQ] C|OV]| |
OPERATION:

Subtract 1 from the source operand and replace the
source operand with the difference. The 16-bit re-
sult is compared with zero and the L>, A>, and EQ
status bits are correspondingly affected. The sub-
traction operation also affects the C and OV bits.

NOTES:
DEC is particularly useful in loop operations.
Example:

To perform an operation 200 times:

LI R3,200
LP (BEGINNING OF REPEATED
OPERATION)
END OF OPERATION
DEC R3
JGT LP

Instruction Summary 3-9

150

INCREMENT (BY ONE) INC

o] ti 2| 31 41 51 6] 7] 8] 9110]11]12]13]14]15]
i rrrrrrrrriT

CODE: INC S 0580, | 0| 0] 0] 0] 0] 11 O] 1] 1} 0] Te | Re
I

|

RESULT: (S) + 1 —= (S} Length: 1 or 2 words
] o] 1} 2] 3| 41 5| 6] 7| 8| 9|10111(12]13|14]15|
STATUS 17 T 1T 711 : |
REGISTER: |L>|A>|EQ|C jovi |
-
OPERATION: LOC 400

Add 1 to the source operandword and replace the source
operand with the sum. The 16-bit result is compared
with zero and the L>, A>, and EQ status bits are
correspondingly affected. The addition operation also
affects the C and OV status bits.

NOTES:

The INC instruction will often be used to provide a
counter. 1In fact, it allows any memory location to
be used directly as a counter since the incrementing
of a memory location canbe accomplishedwith one in-
struction.

This instruction is also useful in stepping through various tables (particularly
byte-oriented tables) when the autoincrement feature is not conveniently avail-
able.

These instructions (INC and DEC) allow the operator to implement "up" and/or
“down" counters in any memory location.

Examples:
LI R7,-20 INITIALIZE R7 FOR TIMER OPERATION
LP INC R7 COUNT UP TO ZERO
JNE LP IF (R7) # O, JUMP TO LP
INC ©>400 INCREMENT MEMORY LOCATION >400

The hexadecimal machine code for INC @>400 is 05A0 0400.

Instruction Summary 3-10

151

DECREMENT BY TWO DECT

| 0l 1] 2| 3] 41 51 6] 7| 8| 9110]11|12]13]|14|15

P T T T T T T T T T 1T T T 071
CODE: DECT S 0640;¢ | 0l 0] 0] 0] 0] 1] 1] 0] 0] 1] Te | Re¢
' I

RESULT: (S) - 2 —m=(S) ' Length: 1 or 2 words
| O] 1] 2]-3] 4] 5] 6] 7] 8] 9110]111112]13]14]15]
STATUS T T T T T 1 T
REGISTER: |L>|A>|EQ|C |oV| [
OPERATION:

Subtract 2 from the source operand and replace the
source operand with the difference. The result is
compared to zero and the L>, A>, and EQ status bits
are set accordingly. The C and OV status bits are
also affected. S

NOTES:

This instruction is useful in stepping through word-

oriented tables. This instruction is particularly

useful if decrementing is required relative to a word table since 'there is no
auto-decrement feature.

Example:
LI R1,20) LOAD R1 WITH DECIMAL 20
NX MOV ©>500(R1),@>600(R1) MOVE FROM ONE TABLE TO ANOTHER
DECT R1 DECREMENT INDEX REGISTER R1
JGT NX JUMP BACK TO NX IF R1>0

The machine code for DECT R1 is: 0641.

Instruction Summary 3-11

152

INCREMENT BY TWO INCT

| of 1] 21 31 4} 5| 6] 7| 8| 9{10)11§12113]14]|15
TTrr 11171 i1 T 17 T 1
CODE: INCT S 05C0;¢6 %_pl ololojol1lol1] 111l Tg | Re
| _ _ _ _ _ Source Memory Reference __ _ _ _ _ 1
RESULT: (S) + 2 —»=(S) Length: 1 or 2 words
| 0l 1] 2| 3] 4| 51 61 7] 8| 9110111}12]13114/15|
STATUS T 1717 711 [
REGISTER: |L>IA |EQIC [0V} |
LOC 464

OPERATION:

Add 2 to the source operandandrep\acethe source op-
erand with the sum. The 16-bit resultis compared to
zero and the L>, A>, and EQ status bits are corres-
pondingly affected. The addition operation aiso af-
fects the C and OV status bits.

NOTES:

This instruction is useful in stepping through word-
oriented tables.

Exampie:
INCT @>450(R7) INCREMENT CONTENTS OF INDEXED ADDRESSED LOCATION BY 2
The hexadecimal machine code for INCT ©>450(R7) is O5E7 0450.

For ALU operation above, assume (R7) = >14.

Instruction Summary 3-12

153

The next one (ABS) involves one operand (general) and may be
one or two words in length.

The next two (JMP and JGT) are only one word in length and
use PC relative or jump addressing.

The next two (LI and AI) use immediate operands and are always
two words in length. These are the first two of seven immediate
operand instructions, each of which is two words in length.

The Tast four (DEC, INC, DECT, and INCT) are special "one
operand"” instructions, each of which are one or two words inlength.

3.12 PROGRAM PRODUCTION PROCESS

Now that the program production process has been illustrated
with a specific example, it is important to discuss the various
steps of the process explicitly, as outlined in Figure 3-24.

The steps outlined in Figure 3-24 are briefly discussed in
the following paragraphs.

(1) The first step in producing a program is to have a general
programming idea. Td1s may emerge from a project on which one

is working or itmay be assigned by someone. Itis simply a general
statement of what is to be accomplished.

(2) The second step is to specify or objectify this idea
with a specific programspecification. This specification indicates
in objective detail what are to be the inputs and outputs and what
is to be accomplished by the program. Although programmers write
program specifications, onhigh-level, large, or sophisticated pro-
grams, this is the task for a systems engineer or a system analyst.
Failure to provide sucha specification at an early stage may invite
problems. On very short stand-alone programs (about ten or fewer
instructions) the difficulties and changes are usually not signifi-
cant. Thespecificationstepa]soinc]udesdocumentingany algorithms
ormethods of attack as wellasa plan to test the resulting program.

(3) The third step in producing a program is to construct a
programchart--a logical and sequential presentation of the program
structure. There are a number of different types of charting tech-
niques. The one selected generally depends on the type of program
at hand. In any case, this chartrepresentationfunctiona11y spells
out the program operation showing the sequence and the 1logic. A
primary example of this is a flowchart. This is an important
step, for it forces one to think out the details of the problem
at hand on ahigh level and to document the logic and the sequence.
It is helpful (sometimes crucial) to the phase of debugging and
error correction as well as for later understanding of program oper-
ation. This again is often produced by programmers, but for high-
level, Tlarge, or sophisticated programs, this should be the task
for a systems engineer or a systems analyst.

154

(1) GENERAL PROGRAMMING IDEA

(2) PROGRAM SPECIFICATION

(3) PROGRAM CHART (E.G. FLOWCHART)

(4) PROGRAMMER CODE SHEETS

(5) > SOURCE CODE

(6) 0BJECT CODE

(7) PROGRAM READY TO RUN (LOAD)

(8) PROGRAM TESTING AND ERROR DETECTION*
(9) L PROGRAM ERROR CORRECTION*

i

*DEBUGGING IS A PHASE WHICH OVERLAPS BOTH
PROGRAM ERROR DETECTION and PROGRAM ERROR CORRECTION.

Figure 3-24. Program Production Process

155

(4) The fourth step is the actual programming, in which the
programmer “transTates”™ the specification and the program chart

into machine related language(whetherhigh-level, assembly, or ma-
chine language). This generally results in programmer code sheets,
which may or may not be readable by someone else. This task is
called programming (or sometimes called coding). If the specific-
ation and chart are clear, logical, and consistent, this step is
fairly straightforward but often particular "knots" will exist in
this process.,

(5) The fifth step is a clerical one of making the resulting
program readable by the machine. When referring to assembly language
or high-level language, this machine-readable form is called source
code. Basically, the process of going from programmer code sheets
to source code is clerical and is called source entry. In the case
of the TM 990/189 (University Board), it simply entails entering
the mnemonic code via the keyboard from the code sheets.

(6) When the source code is composed of assembly language in-
structions, the sixth step is the work of the assembler program
to convert from source code to object code. The source input is
in mnemonic code and the output is in machine code (sometimes spe-
cifically formulated for easy 1oading from machine-readable medium).
The output of the assembler on the TM 990/189 is machine code which
is stored in RAM memory ready for execution.

(7) The seventh step is to load the object into the computer
via the loader program to provide a program in memory ready to
run. In many applications, the program is loaded from some magnetic
medium. For the TM 990/189, it is done by the assembler directly.
Or, if the program has been "dumped" to cassette then it is done
by "loading" from cassette. The format on the tape in that case
is, in Texas Instruments' terminology, "standard object format."

(8) The eighth step is to run the program to checkout its
operation and detect program errors (bugs). This is best done
according to the specified test plan. Generally, a monitor program,
such asUNIBUG,isavai]ableanda]]owstheoperatorto set and inspect
registers, etc. This phase is called program testing. The operator
may also refer to it as a phase of debugging if he assumes that
there are program errors. Such an assumption will generally be well-
founded.

(9) The ninth step is to correct program errors. This is the
second phase of debugging. It is one thing to detect a bug and an-
other to identify and correct it. It should be noted that one may
well produce new bugs while correcting a previous bug.

This process of correcting program errors is best done to the
permanent record of the source program. But in general it could
be done to:

° The resulting machine code (i.e., patching)
® The machine-readable object code

156

° The source code '
° The programmer's code sheets.

Then, if errors are still present, the cyc1é is repeated.

The programmer continues around this loop of detecting, cor-
recting, and reassembling until no more errors are detected, which
may mean the program is “error free;" or, it may mean the bugs
are hiding in an uninvestigated area.

3.13 SUMMARY

This chapter has endeavored to provide the reader with a clear
understanding of - = : : - :

The three types of register addressing
The two types of memory addressing
Immediate addressing o
Jump addressing.

o o o o

In addition, the instructions in subset 1A and 1B have been described
and illustrated, using both mnemonic and machine code formats. The
nine steps in the program production process were introduced to
provide the reader with a methodology that can lead to success in
in programming. " ' ' :

157

3.14 EXERCISES

For exercises 1-10 assume for each exercise the following con-
tents for the WP and for each of the memory locations indicated.

(wpP) = >0300

(0300) = >0406 (0400) = >2468
(0302) = >CACE (0402) = >0101
(0304) = >8234 (0404) = >BABE
(0306) = >0405 (0406) = >0000
(0308) = >0406 (0408) = >FFFF
(030A) = >0408 (040A) = >8000
(030C) = >030cC (040C) = >CBA9

Execute each of the following stand-alone instructions and
determine the result (location and contents) and the condition of
the status register. Indicate the related machine code.

Result Machine Code
Example: MOV ©>404,R2 (R2)=>BABE COAO 0404
L>=1, A>=0, EQ=0
1. A R2Z,RO
2. S *R3,R1

3. MOV *R4,*R5

4. ABS €>040A

5. MOV *R0O,@>100(R6)

6. A €>040C,0>0303

7. LI R5,>1234

8. AI R3,>0101

9. INCT ©>0300

10. DEC ®@>FFFB(R3)

11. Write the mnemonic code equivalent of MOV R2,*R3 using
memory indexed addressing.

158

12. Determine the machine code for the following Jjump
instructions.

(a) JdMP ST (b) JGT $+12 ~ (c) JMP $-6

ST
13. Will the following program reach the jnstruction located

at OU? If it does, what will be the values in R7, R8 and R9? How
many times is the JMP LP instruction executed?

LI R9,0
LI R7,-4
LI R8,9
LP DECT R8
A R8,R9
INC R7
JGT OU
JMP LP
oy JmMP OU

14. Consider the following program segment given:
(R3) = >220 {>220) = >ABCD
(R4) = >280 (>280) = >9876
(PC) AQ
AQ A *R3+,*R4+
JGT NX
FS JMP AD
NX

(a) Whatis thePC value after the execution of the
first two instructions?

(b) What is the contents of the status register?

(c) What memory locations have changed and what
are their contents?

159

3.15 LAB EXPERIMENTS
1. Load and execute the FTNI program Tisted in Figure 3-8

using the values for N1 and N2 given in Table 3-5 and indicate
results. See Chapter 2 for UNIBUG commands to do this.

Table 3-5. FTNl Program Input Values

N1 5 2 10 35 40010 30,00010
Inputs
N2 3 5 -2 -30 10010 2.00010
Hexa-
decimal
Result
Decimal
Comments

2. Encode, enter, andexecute the FTN1 program with the change
suggested on pages 141 & 144 for the LI and A instructions.

3. Enter and execute the sample programs illustrating the A
instruction and the S instruction on page 117. (Note initial
values.)

4. MWrite, encode, enter, and execute a program to step through
a table of words starting at location >300 and continuing to >3FF,
If a nonpositive word is found, stop with an appropriate pointer
in register 1. If the table is completedwithout finding a nonposi-
tive number, the pointer should contain >400.

5. Write a timing program to turn on the "idle" light (see
picture of TM 990/189 board, Figure 1-33) after a specified number
of seconds. End the program with >0340 to turn on this light. Use
the following basic timing loop.

LI RX,>220F LOAD REGISTER X WITH >220F
LP DEC RX DECREMENT REGISTER X
JGT LP IF (RX)>0, JUMP TO LP

This timing]oOprequiresapproximately100nﬁllisecondsto complete.
6. Write a program for N greater than zero to calculate the
N-factorial function, e.g., 5! (5-factorial) =5 * 4 *¥3 *2 *1 =120.

Provide the specified N in Rl (using a LI R1,N) or initialize
via UNIBUG. Provide the result in RO.

160

CHAPTER 4
ASSEMBLY LANGUAGE

4.1 INTRODUCTION

This chapter introduces the user of the University Board to
three items of special interest: the context and use of assembly
language, the functions and features of the Symbolic Assembler,
and Instruction Subset 2. These three items and correlated exercises
using the assembler program are covered in this chapter.

Categories of Software (An Overview)

As background, it is important for the reader to know that
there are different categories of software, and that each has
different challenges and requires different approaches. Generally,
software programming can be categorized as systems, utility and
support, and applications.

Systems Programming. Consider first the category called systems
programming. This generally refers to the development of operating
systems. An operating system is a software package whichwill take
control of a computer and will interface between the applications
programs and the computer system to facilitate:

Accessing a disk

Controlling a printer

Configuring memory

Loading programs from the disk

Controlling a CRT

Coordinating the sharing of computer time between pro-
programs

Taking care of error modes, failure modes, power
failures, power restarts, etc.

© o 06 0 o o

A special category of systems programs interface a computer with
one or more peripheral devices--a printer, a CRT, a keyboard, or
all of these. Theprincipal goal for operating systems, and systems
programming in general, is to control and coordinate computer system
resources to include computer-system facilities, computer time, mem-
ory space, and the peripheral devices.

161

Utility and Support Programs. Utility and support programs,
in contrast, are those programs which facilitate development of
their own applications or which facilitate the use of a production
computer system. Several examples of these are the software tools
commonly used to aidindeveloping programs such as (a) an assembler
which will convert mnemonic codes into machine codes such as the
University Board Symbolic Assembler, (b) a text editor which
assists users in editing or changing programs during development,
such as the TM 990/302 Text Editor (the TM 990/302 1is discussed
in Chapter 10), (c) a compiler which helps programmers convert from
high-level language to machine language such as the TI 990 DX10
FORTRAN Compiler, (d) a linker which helps a programmer link two
separately developed programs together 1into one working module,
and (e) aninterpreter which allows the use of high-level languages
such as the Texas Instruments POWER BASIC (mentioned in Chapter 10).
An additional example of a utility program is one which provides
anoutput-print format, with theutility programhandling the details
involved or a disk utility program to reorganize files on a disk.
Furthermore, there may be special mathematical packages for the
applications programmer to use.

Applications Programs. An applications program is one written
for a specific appTication, such as for a word-processing system,
or amotor-control system, or a mathematical calculation. These are
the uses for which most programs are written. Applications programs
can be subdivided further into three basic categories: scientific,
commercial, and real-time processing and control. These three sub-
categories require different types of programming discipline.

Applications programs in the scientific category generally re-
quire significant understanding of mathematics by the programmer
in their implementation into software programs. This area is gen-
erally represented by work in high-Tevel languages such as FORTRAN.
Such programs in commercial usage generally involve accounting and
bookkeeping tasks, extensive manipulation of files, and detailed
formatting of outputs. In real-time processing and control generally
involved are high-speed analysis and reaction to random inputs,
coordination of correlated functions being performed simultaneously,
and detailed control of external devices.

Overview of Principal Levels of Computer Language

As is described in Chapter 3, there are three principal levels
of computer language: machine language, assembly language, and high-
level language. The most elementary level, although not the simplest,
is machine language. Some programmers have written programs inmachine
language with as many as 200 instructions. Shorter programs of
less than 100 instructions written in machine language are common.
Lengthy programs in this Tanguage tend to be particularly troublesome
to write, debug, and modify. But, it is essential for a programmer
to know machine language if he is to modify (patch) a program.
Patching is expected to be necessary in the final stages of de-

162

bugging. If anoperator does not have an assembly program to convert
from assembly or mnemonic code to machine language then he must
program in machine language (as is done in the previous chapter's
exercises). He may, as in Chapter 3, code in mnemonic code then
hand assemble. This provides an important level of documentation
one step above machine language code.

The next level, which is the focus of this chapter, is assembly
language. It is defined as a one-for-one correspondence between
mnemonic code and machine code. This correspondence is illustrated
in Figure 4-1.

There are two facts which must be emphasized:

° Assembly language is the most commonly used level of
computer language for microprocessor and real-time
applications due to the balance between readability,
execution speed, and efficient use of memory space.

The assembly 1anguage programmer must understand the com-
puter's architecture to implement a program.

The principal advantage of assembly language over machine language
is its readability.

The third level of computer language is called high-level lan-
guage. It is also referred to as problem-oriented or programmer-
oriented language. And, as mentioned in Chapter 3, each source
statement usually will cause generation of five to ten machine
codes by the compiler, rather than the one-for-one correspondence
of assembly language. The reader may have heard of a number of
high-level languages. Some of the more common ones are:

° FORTRANW ° BASIC
° COBOL ° Pascal
° pPL/1 ° PL/M

° ALGOL ° ATLAS.

MOV R1,R2 ——= C081

NOP - 1000

LI R10,1234 ——»= 020A
— 1234

JMP $§ —————— 10FF

Figure 4-1. Mnemonic Code and Corresponding Machine Code

163

The primary advantage of the use of high-level language for imple-
menting applications programs is the saving in programming time.

High-level programs tend to be less CPU dependent, that is,
the programs may be transportable fromone computer to another without
total rewriting and, possibly, with 1ittle or no change. The primary
disadvantage of high-level language is that the resulting program
is generally notas efficient interms of memory space and computer
time when compared to a similar program implemented 1in assembly
language.

To further illustrate this difference between these two levels
of computer Tanguage, consider Figure 4-2. As was stated in Chapter
3, one typically starts the development of a programwith a program-
ming idea.

Figure 4-2 shows that there are many ways to express a program,
starting with a programming idea, progressing to a flowchart, then
to assembly language, and finally to machine language. It also illus-
trates how the same program is expressed in higher level languages.
Note that the degree of readability to the casual eye becomes less
as we proceed from the programming idea to the flowchart to the
assembly language and then to machine language. In fact, most would
consider the machine language unreadable. In contrast, the higher
level language implementation can be seen to correspond to this
programming idea, even if one does not know these languages. For
the interested reader, Example A in Figure 4-2 is FORTRAN, Example
B is a version of BASIC, and Example C is PL/1.

On the other hand, from the machine's point of view, the machine
language is much more "readable" than assembly language or higher
level language, and the flowchart and the programming idea are totally
unreadable. Thus, the degree of readability depends upon one's
perspective. So there is a need for a middle ground between the
human perspective and the machine perspective. This usually is
met by use of assembly language or higher Tevel language.

4.2 OVERVIEW OF ASSEMBLER FUNCTIONS

Assembly language is the input format to an assembler program
(usually referred to as the "assembler"). There are certain basic
functions which all assemblers perform, including the symbolic
assembler provided with theUniversity Board. These basic functions
are

Translation

Address bookkeeping

Symbolic constant definition (assembly-time)
Error indications

Qutput control.

0O 0o 0o o O

164

TYPES OF PROGRAMMING EXPRESSION

PROGRAMMING IDEA: CALCULATE [4(N1 - N2)]2

FLOWCHART ASSEMBLY LANGUAGE | MACHINE LANGUAGE
START
[INITIALIZE | START LWPI >0300 02E0
{ 0300
CLR RO 04C0
FORM DIFF: S R2,Rl 6042
N1 - N2
[MULT DIFF BY 4] SLA R1,2 0A21
MULT RESULT ABS Rl 0741
BY ITSELF MOV R1,R2 co81
LOOP A R1,RO AOO1
DEC R2 0602
JGT LOOP 15FD
FINISH HALT IDLE 0340
EN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>