
. SPND001A

TMS7000
· Family Data
Manual

• TEXAS
INSTRUMENTS

TMS7000
Family Data

Manual

8-bit Microcoinputer Fatnily

IMPORTANT NOTICE

Texas Instruments reserves the right to make changes at any time in

order to improve design and to supply the best product possible.

Texas Instruments assumes no responsibility for infringement of patents

or rights of others based on Texas Instruments applications assistance

or product specifications, since Tl does not possess full access to data
concerning the use or applications of customer's products. Tl also

assumes no responsibility for customer product designs.

Copyright © 1983 by Texas Instruments Incorporated

TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION
1 . 1 General . 1-1
1.2 Background And Design Philosophy : 1-1

1.2.1 Strip Chip Architecture Topology (SCAT) . 1-2
1.2.2 Microprogramming . 1-3

1.3 Key Fe.atures Of The TMS7000 Family . 1-4
1 .4 Support . 1-6

1.4. 1 Development Tools . 1-6
1 .4. 2 Hotline Assistance ·. 1-7
1 .4. 3 Training Support . 1-7

1 .4.3. 1 TDC-700-TMS7000 Family Systems Design 1-8
1.4.3.2 ATS-710-TMS7000 Family Microprogramming 1-8

1 .4.4 Design Expertise . 1-8

2. TMS7000 FAMILY ARCHITECTURE
2.1 On-Chip RAM And Registers 2-2

2.1. 1 Register File (RF) . 2-2
2. 1. 2 Peripheral File (PF) : : 2-3
2.1.3 Stack Pointer (SP) . 2-3
2.1.4 Status Register (ST) . 2-3
2.1. 5 Program Counter (PC) . 2-4

2.2 On-Chip General Purpose 1/0 Ports 2-4
2.3 Memory Modes . 2-6

2.3.1 Single-Chip Mode. 2-8
2.3. 2 Peripheral Expansion Mode . 2-13
2.3.3 Full Expansion Mode . 2-14
2.3.4 Microprocessor Mode . 2-14
2.3. 5 System Emulator Mode ·. 2-1 5

2.4 1/0 Control Registers . 2-16
2.5 Interrupt and Reset Clock Options . 2-19

2. 5. 1 Interrupt Priority . 2-1 9
~.5.2 Device Initialization 2-20
2.5.3 CPU Interface To Interrupt Logic . 2-21
2. 5.4 Interrupt Logic .. ·. 2-22

2.6 Programmable Timer/Event Counters ~ 2-24
2.6.1 Real Time Clock (RTC) . 2-27
2.6.2 Event Counter (EC) 2-27
2.6.3 Timer And Prescaled Clock 2-27
2.6.4 Timer Interrupt Pulse . 2-28
2.6.5 Timer 2 .. 2-28
2.6.6 Pulse Width Measure{Tlent . 2-29
2.6. 7 Pulse Width Modulation (PWM) Theory Of Operation 2-29
2.6.8 Multi-Interrupt Pulse Width Modulation (PWM). 2-31

2.7 Serial Port (TMS70X1 Versions Only) 2-33
2. 7. 1 Description . 2-33
2. 7 .2 Clock Sources And Serial Port Modes . 2-35

2. 7 .2.1 Asynchronous Communication Mode 2-35
2.7.2.2 lsosynchronous Communication Mode ~ 2-36
2. 7 .2.3 Serial 1/0 Communication Mode . 2-37

iii

3.

2.8

2.7 .3 Multiprocessor Communication ~ 2-37
2. 7.3.1 Motorola (MC6801) Protocol 2-38
2.7.3.2 lntel(l8051)Protocol 2-39

2. 7 .4 Timer 3 2-40
2.7.5 Serial Port Registers 2-42

2. 7. 5.1 Mode Register (SM ODE) . 2-42
2.7.5.2 Serial Control 0 Register (SCTLO) 2-44
2. 7.5.3 Serial Port Status Register (SSTAT) 2-45

· 2. 7. 5.4 Serial Control 1 Register (SCTL 1) 2-46
2. 7 .5.5 Timer 3 Data Register . 2-48
2.7.5.6 Receiver Buffer 2-48
2. 7 .5. 7 Transmitter Buffer -. 2-49

2. 7 .6 Serial Port Initialization . 2-49
2. 7. 7 Serial Port Interrupt . 2-49
Pin Description . 2-50

STANDARD INSTRUCTION SET
3.1 Definitions . 3-1
3.2 Addressing Modes . 3-3

3.3

3.2.1 Direct Addressing Modes 3-3
3.2.1.1 Single Register Addressing Mode 3-3
3.2.1.2 Register File Addressing Mode 3-4
3.2.1.3 Peripheral File Addressing Mode 3-5
3.2.1.4 Immediate Addressing Mode . 3-6
3.2.1.5 Program Counter Relative Addressing Mode 3-6

3.2.2 Extended Addressing Modes . 3-7
3.2.2.1 Direct Memory Addressing 3-7
3.2.2.2 Register File Indirect Addressing Mode 3-7
3.2.2.3 Indexed Addressing Mode' 3-8

Instructions ·. 3-8
3.3.1 Implied Operand Instructions . 3-8
3.3.2 Single Operand Instructions : 3-9
3.3.3 Dual Operand Instructions . 3-10

3.3.4

3.3.5
3.3.6

3.3.3.1 Register File Instruction Types . 3-11
3.3.3.2 Peripheral File Instruction Types . 3-11
Jump Instructions ,, 3-12
3.3.4.1 Simple Relative Instruction Type 3-13
3.3.4.2 Single Relative Instruction Type 3-13
3.3.4.3 Dual Relative Instruction Type . 3-13
3.3.4.4 Peripheral Relative Instruction Type · ·. . 3-14
Extended Address Instructions . 3-14
Miscellaneous 1.nstructions · . 3-15
3.3.6.1 MOVD Instruction . 3-16
3.3.6.2 TRAP Instructions . 3-17

3.4 Custom Microcoding . 3-17
· 3.5 Instruction Descriptions ~ 3-20

3.5.1 ADC-Add With Carry : : 3-21
3.5.2 ADD-Add .. 3-22
3.5.3 AND-And : 3-22
3.5.4 ANDP-And Peripheral Register 3-23
3·.5.5 BT JO - Bit Test And Jump If One . 3-23
3.5.6 BT JOP- Bit Test And Jump If One Peripheral 3-24
3. 5. 7 BT JZ - Bit Test And Jump If Zero . 3-24

iv

3.5.8.
3.5.9
3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18
3.5.19
3.5.20
3.5.21
3.5.22
3.5.23
3.5.24
3.5.25
3.5.26
3.5.27
3.5.28
3.5.29
3.5.30
3.5.31
3.5.32
3.5.33
3.5.34
3.5.35
3.5.36
3.5.37
3.5.38
3.5.39
3.5.40
3.5.41
3.5.42
3.5.43
3.5.44
3.5.45
3.5.46
3.5.47
3.5.48
3.5.49
3.5.50
3.5.51
3.5.52
3.5.53
3.5.54
3.5.55

BT JZP - Bit Test And Jump If One Peripheral 3-25
BR - Branch . 3~25

CALL - Call . 3-26
CLR - Clear . 3-26
CLRC - Clear The Carry Bit · ; 3-27
CMP - Compare · . 3-27
CMPA- Compare Accumulator Extended 3-27
DAC - Decimal Add With Carry . 3-28
DEC - Decrement . 3-28
DECO - Decrement Double . 3-29
DINT - Disable Interrupts .. .- ·. 3-29
DJNZ - Decrement Register And Jump If Not Zero 3-30
DSB - Decimal Subtract With Borrow ·. 3-30
EINT - Enable Interrupts . 3-31
IDLE - Idle Until Interrupt . 3-31
INC - Increment . 3-32
INV - Invert . 3-32
JMP - Jump Unconditional · . 3-33
J <end > -Jump On Condition . 3-33
LOA - Load A Register . 3-34
LDSP - Load Stack Pointer . 3-35
MOV- Move ... 3-35
MOVD - Move Double ·. 3-36
MOVP - Move To/From Peripheral File . 3-36
MPY - Multiply : . 3-37
NOP - No Operation ... : . 3-37
OR - Or .. 3-38
OPR - Or Peripheral File Register ·. 3-38

. POP - Pop From Stack . 3-39
PUSH - Push On Stack . 3-39
RETI - Return From Interrupt ·. 3-40
RETS - Return From Subroutine . 3-40
RL - Rotate Left . 3-41
RLC - Rotate Left Through Carry . 3-4 1
RR- Rotate Right . 3-42
RRC - Rotate Right Through Carry . 3-42
SBB - Subtract With Borrow . 3-43
SETC - Set Carry . 3-43
STA - Store A Register . .• 3-44
STSP - Store Stack Pointer ... · . 3-44
SUB - Subtract . 3-45
SWAP - Swap Nibbles . 3-45
TRAP - Trap To Subroutine . 3-46
TSTA-Test.A Register 3-47
TSTB-Test B Register 3-47
XCHB- Exchange with B Register 3-47
XOR - Exclusive Or . 3-48
XORP - Exclusive Or Peripheral File . 3-48

4. ELECTRICAL SPECIFICATIONS
4.1 TMS7000/TMS7020/TMS7040/TMS70120/TMS7001/TMS7041 4-1

4.1.1 Description Of The TMS7000/TMS7020/TMS7040/TMS70120
TMS7001 /TMS7041 Devices 4-1

v

4.2 •

4.3

4.1.2
4.1.3

4.1.4
4.1.5
4.1.6

4.1.7

Key Features
Absolute Maximum Ratings Over Operating Free-Air Temperature
Range .. .
Recommended Operating Conditions
Electrical Characteristics Over Full Range Of Operating Conditions
Recommended Crystal/Clockin Operating Conditions Over Full
Operating Range
Memory Interface Timing At 1 OM Hz Over Full Operating Free Air
Temperature Range

4.1.8 Application Of Ceramic Resonator ·
4.1 .9 ·Serial Port Timing · ..

4.1.9.1 Internal Serial Clock
4.1.9.2 External Serial Clock
4.1.9.3 RX Signals In Communication Modes
4.1.9:4 TX Signals In Communication Modes
4.1 .9.5 RX Signals In Serial 1/0 Mode
4.1.9.6 TX Signals In Seriall/O Mode

4. 1 . 10 Pin Descriptions
4. 1. 10.1 Pin Descriptions Of The TMS7000/TMS7020/TMS7040

TMS70120
4.1.10.2 Pin Descriptions Of The TMS7001 /TMS7041

TMS70COO/TMS70C20/TMS70C40
4.2.1 Description Of The TMS70COO/TMS70C20/TMS70C40
4.2.2 Key Features
4.2.3 Absolute Maximum Rating Over Operating Free-Air Temperature

4.2.4
4.2.5
4.2.6
4.2.7

4.2.8

Range .. .
Recommended Operating Conditions
Electrical Characteristics Over Full Range of Operating Conditions
AC Characteristics For Input/Output Ports
Recommended Crystal/Clockin Operating Conditions Over Full
Operating Range
Memory Interface Timing At VDD = 5V, FOSC = 3M Hz Over
The Full Operating Free-Air Temperature Range

4.2.9 Pin Descriptions Of The TMS70COO/TMS70C20/TMS70C40
SE70P161
4.3.1 Description Of The SE70P161 Prototyping Component
4.·3.2 Prototyping .. .

4.3.3
4.3.4

4.3.5
4.3.6
4.3.7

4.3.8

4.3.9

4.3.2.1 TMS7041 Prototyping
4.3.2.2 TMS7020/TMS7040/TMS70120 Prototyping
Programming And Installing Eproms
Absolute Maximum Ratings Over Operating Free-Air Temperature
Range .. .
Recommended Operating Conditions
Electrical Characteristics Over Full Range Of Operating Conditions. . ..
Recommended Crystal/Clockin Operating Conditions Over Full
Operating Range.
Memory Interface Timing At 1 OM Hz Over Full Operating Free-Air
Temperature Range ·
Pin Description Of The SE70P161

5. MICROPROGRAMMING

4-2

4-3
4-3
4-3

4-4

4-5
4-7
4-8
4-8
4-9
4-10
4-11
4-12
4-13
4-14

4-14
4-15
4-16
4-16
4-17

4-18
4-18
4-18
4-19

4-19

4-21
4-24
4-25
4-25
4-25
4-25
4-25
4-26

4-26
4-27
4-27

4-27

4-28
4-30

5. 1 TMS7000 Custom Microcoding Description . 5-1
5. 1 .1 Typical Applications . 5-1

vi

5.2

5.3

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

Key Features
Microcoding Example
Tradeoffs Of Microcoding
Microcode Development Cycle
Available Support
5.1.6.1 TMS7000 Microassembler Software Package
5.1.6.2 TMS7000 AMPL Emulator System
5.1.6.3 TMS7000 Microcode Documentation Package

Microcoded Benchmarks ;
5.2.1 Benchmark Rules •
5.2.2 Benchmark 1: 16 Bit Binary Addition
5.2.3 Benchmark 2: 16 Bit Binary Coded Decimal Addition
5.2.4 Benchmark 3: Block Move
5.2.5 Benchmark 4: Table Search
5.2.6 Benchmark 5: Binary To BCD Conversion
5.2. 7 Benchmark 6: Bit 1/0 ... ,
Microarchitecture Description ~
5.3.1 TMS7000 Family Address Space
5.3.2 Basic TMS7000 Architecture
5.3.3 Microinstruction Format

5.3.3.1 Microinstruction Cycle Timing
5.3.3.2 Memory Cycle Timing
5.3.3.3 Short Memory References
5.3.3.4 Long Memory References
5.3.3.5 Interrupt Vector Reads
5.3.3.6 Memory Control Signals

5.3.4 Organization OfThe TMS7000 CPU
5._3.4. 1 P Bus
5.3.4.2 N Bus
5.3.4.3 AL Bus
5.3.4.4 AH Bus ·.
5.3.4.5 0 Bus
5.3.4.6 MD Bus ·
5.3.4. 7 ALU Operation
5.3.4.8 Shifter Operation :
5.3.4.9 IR Register
5.3.4.10 Status Register ;

5.3.4.10.1 (STC) Status Carry Bit
5.3.3.10.2 STSB - Status Sign Bit
5.3.3.10.3 STEZ - Status Equal To Zero Bit
5.3.3.10.4 STINT - Status Interrupt Enable Bit ... ·

5.3.4.11 BCD Constant Register
5.3.4.12 Other Registers

5.3.5 Microinstruction Sequence Control Overview
5.3.5.1 Dispatch Conditions

5.3.5.1.1 Unconditional Branching - JUNC
5.3.5.1.2 Function Dispatch- IRL
5.3.5.1.3 Test Sign Bit-JT7
5.3.5.1.4 Test If Zero - JUZ
5.3.5.1.5 Te.st If Interrupt- INT
5.3.5.1.6 Group Dispatch - IRH
5.3.5.1. 7 Test If Carry - JC
5.3.5.1.8 Test Status Register- MJMP

5.3.6 Reset Operation

vii

5-2
5-5
5-5
5-6
5-8
5-8
5-8
5-8
5-9
5-9
5-10
5-10
5-11
5-12
5-13
5-14
5-15
5-15
5-16
5-18
5-20
5-21
5-21
5-23
5-24
5-25
5-26
5-28
5-28
5-29
5-29
5-30
5-32
5-33
5-35
5-37
5-38
5-39
5-39
5-39
5-40
5-40
5-43
5-44
5-45
5-45
5-45
5-46
5-47
5-47
5-48
5-49
5-50
5-51

6. DESIGN AIDS
6.1 Interfacing The TMS7000 To Peripheral And Memory Devices

6.2

6.3

6.1.1 Introduction · ;
6.1.2 Peripheral Expansion Mode Example

6.1.2.1 Read Cycle Timing For The Peripheral Expansion Mode
6.1.2.2 Write Cycle Timing For The Peripheral Expansion Mode

6.1.3 Microprocessor Mode Example
6.1.3.1 Read Cycle Timing For The Microprocessor Mode
6.1.3.2 Write Cycle Timing For The Microprocessor Mode

6.1.4 Software Considerations
Serial Communication With The TMS7000 Family
6.2.1 Communication Formats
6.2.2 Design Constraints For Software And Hardware UART

6.2.2.1 Design Of A Software UART For The TMS7040
6 .. 2.2.2 Hardware UART (TMS7041 I :
6.2.2.3 RS-232-C Interface
6.2.2.4 Other Design Approach

Instruction Set Application Notes
6.3.1 The Status Register

6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

6.3.1.1 Compare And Jump Instructions
6.3.1.2 Addition And Subrtaction Instructions
6.3.1.3 Swap And Rotation Instructions
Stack Operations ·
Subroutine Instructions ·
Multiply And Shifting
Branch Instructions
Interrupts

6-1
6-1
6-4
6-4
6-5
6-7
6-7
'6-8
6-10
6-11
6-11
6-12
6-13
6-25
6-34
6-36
6-48
6-48
6-49
6-51
6-54
6-56
6-57
6-58
6-61
6-61

7. DEVELOPMENT SUPPORT TOOLS
7 .1 Introduction . 7-1

7.1.1 XDS Concept .. 7-2
7 .1 .2 Key Features . 7-3

7.2 CrossWare .. 7-3
7 .3 XDS Hardware · 7-3

7.3.1 Model 22 .. 7-4
7.3.2 Model 33 ... 7-4
7.3.3 Differences And Similarities - Model 22/Model 33 7-6
7.3.4 XMPL ... 7-7
7.3.5 Breakpoint And Trace Functions 7-8
7.3.6 Multiprocessing 7-9

7.4 Evaluation Modules . 7-9
7.4.1 TMS7000 EVM 7-10

7 .4.1.1 Operating System . 7-10
7.5 Prototype Component ... 7-10

7.5.1 SE70P161 Description 7-11
7.5.1.1 ·Prototyping ~ 7-12
7.5.1.2 TMS7041 Prototyping 7-12
7.5.1.3 TMS7020/TMS7040/TMS70120 Prototyping 7-12
7 .5.1.4 SE70P161 Electrical Data . 7-12

7 .6 Physical And Ordering Information . 7-12
7.6.1 CrossWare•................ 7-12
7.6.2 XDSHardware 7-12

7 .6.2.1 Physical Specifications . 7-13

'viii

7 .6.3 Evaluation Modules . 7-13
7 .6.4 Warranty And Subscrip~ion Services . 7-13

8. INDEPENDENT SUPPORT
8.1 Introduction . 8-1
8.2 Processor Innovations - Intel Based Support Tools . 8-1

8.2.1 XI Workstation Device Support . 8-1
8.2.2 Company To Contact . 8-2
8.2.3 Product Offerings .. . 8-3

8.2.3.1 PIDS1810-11 8-3
8.2.3.2 PIDS 1810-12 8-3
8.2.3.3 PIDS 1810-32 8-3

8.3 Allen Ashley - CP/M Based Support Tools . 8-3
8.3.1 Company To Contact . 8-4
8.3.2 Product Offerings . 8-4

8.3.2.1 CP/M Based Development Software ForTMS7000 Family .. 8-4
8.4 SEEQ: Self-Adaptive EEROM . 8-4

8.4.1 Company To Contact 8-5

9. QUALITY AND RELIABILITY
9.1 Introduction ·. 9-1
9.2 Average Outgoing Quality . 9-1
9.3 New Product And Major Change Reliability Qualification Testing 9-2
9.4 Reliability Monitoring . 9-2
9. 5 TMS7020/TMS7040 Reliability Performance . 9-3

10. GENERAL INFORMATION
10.1 TMS7000 Family Devices . 10-1

10.1.1 Prototype And Production Flow . 10-1
10.1.2 Device Prefix Designators . 10-3
10.1.3 Clock Options . 10-5
10.1.4 Reserved ROM Locations . 10-6
10.1. 5 Ordering Information 10-6

10.1.5.1 TMS7000 Family Members With On-Chip ROM 10-6
10.1.5.2 TMS7000 Family Members Without On-Chip ROM 10-7

10.1.6 Mechanical Data . 10-8
10.2 Development Support Tools . 10-10

10.2.1 Cross Ware . 10-10
10.2.2 XDS Hardware ·. 10-10
10.2.3 Evaluation Modules : . 10-10

10.3 TMS7000·Family Documentation . 10-10
10.4 Worldwide Regional Technology Centers (RTC) . 10-11

APPENDICES

APPENDIX PAGE

Appendix A Instruction Execution Times . A-1
Appendix B TMS7000 Bus Activity Chart . B-1
Appendix C TMS7500 Data Encryption Device . C-1
Appendix D References . D-1

ix

LIST OF ILLUSTRATIONS

FIGURE PAGE

1-1 TMS7020 Microcomputer Bar Plan . 1-3
2-1 TMS7000 Internal Architecture . 2-1
2-2 Example Of Stack Initialization In the Register File . 2-3
2-3 Status Register (ST) . 2-3
2-4 Bidirectional 1/0 Logic . 2-5
2-5 1/0 Ports: Single-Chip Mode . 2-9
2-6 Interrupt Generation: System Emulator Mode 2-15
2-7 IOCNTO - 1/0 Control Register 0 2-17
2-8 IOCNT1 - 1/0 Control Register 1 . 2-18
2-9 CPU· Interface To Interrupt Logic : ... '. 2-22
2-10 Interrupt Logic · : . 2-23
2-11 Programmable Timer/Event Counter . 2-25
2-12 Timers 1 & 2 Data And Control Registers ~ . 2-25
2-13 Pulse Width Measurement ; 2-29
2-14 Pulse Width Modulated Pulse Train .. · · 2-29
2-1 5 TMS7000 PWM INT3 Timing . 2-30
2-16 Simultaneous Interrupts, INT2 Preceding . 2-31
2-17 Simultaneous Interrupts, INT3 Preceding ~ . . . 2-32
2-18 Serial Port Functional Blocks . 2-34
2-19 Serial Port 1/0 Logic . 2-35
2-20 Asynchronous Communication Format . 2-36
2-21 lsosynchronous Communication Format . 2-36
2-22 Serial 1/0 Communication Format . 2-37
2-23 Double Buffered WUT And TXSHF . 2-39
2-24 Motorola Multiprocessor Communication Format . 2-39
2-25 Intel Multiprocessor Communication Format . 2-40
2-26 TIMER 3 Block Diagram . 2-41
2-27 Serial Mode Register - SMODE ·. 2-42
2-28 Serial Control 0 Register - SCTLO : : 2-44
2-29 Serial Port Status Register - SSTAT . 2-45
2-30 Serial Control 1 Register - SCTL 1 . 2-47
2-31 Timer 3 Data Register - T3DATA . 2-48
2-~2 Receiver Buffer-RXBUF . 2-48
2-33 Transmitter Buffer - TXBUF . 2-49
2-34 SC, PE, FE, And Microprocessor Pin Assignments . 2-52
2-35 System Emulator Mode Pin Assignments ... ·. 2-54
3-1 Single Register Addressing Mode Object Code ·. 3-4
3-2 Register File Addressing Mode Object Code •. . . . 3-5
3-3 Peripheral File Addressing Mode Object Code . 3-5
3-4 Immediate Addressing Mode Object Code . 3-6
3-5 Program Counter Relative Addressing Mode Object Code . 3-6
3-6 Direct Memory Addressing Mode Object Code ·. 3-7
3-7 Register File Indirect Addressing Mode Object Code . 3-7
3-8 Indexed Addressing Mode Object Code . 3-8
3-9 Trap Vector Table · ·. 3-17
4-1 Output Loading Circuit For Test ... : . 4-3
4-2 Measurement Points For Switching Characteristics · .. ·. . . . 4-4
4-3 Clock Timing · . 4-4
4-4 Recommended Clock Connections . 4-5

x

4-5 Read and Write Cycle Timing . 4-6
4-6 Ceramic Resonator Circuit . 4-7
4-7 SC, FE, PE, and Microprocessor Mode Pin Assignments (TMS7000) ·. 4-14
4-8 SC, FE, PE, and Microprocessor Mode Pin Assignments (TMS7001) 4-15
4-9 Output Loading Circuit For Test . 4-19
4-10 Clock Timing . 4-20
4-11 Measurement Points For Switching Characteristics (VDD = 5V) 4-20
4-1 2 Read And Write Cycle Timing . 4-22
4-13 Recommended Clock Connections . 4-23
4-14 SC, FE, PE, and Microprocessor Mode Pin Assignments . .. 4-24
4-1 5 Read And Write Cycle Timing . 4-29
5-1 TMS7000 CPU Internal Block Diagram . 5-4
5-2 Assembly Language Multiply Sequence . 5-5
5-3 Non-Core Assembly Language Instructions . 5-6
5-4 Microcode Development Flowchart . 5-7
5-5 TMS7000 Family Address Space . 5-16
5-6 TMS7000 Overall Block Diagram . 5-17
5-7 Sample Of A Micasm Statement . 5-20
5-8 Microinstruction Cycle Phases . 5-20
5-9 On-Chip RAM Memory Cycle Timing . 5-22
5-10 Long Memory Cycle Timing . 5-23
5-11 Interrupt Vector Reads . 5-24
5-12 Interrupt Vector References . 5-25
5-13 Internal Organization OfThe TMS7000 CPU . 5-27
5-14 P Bus Sources . 5-28
5-1 5 N Bus Sources 5-28
5-16 AL Bus Sources . 5-29
5-1 7 AH Bus Sources . 5-30
5-18 Lowwrite (1-0) Description . 5-30
5-19 0 Bus Destinations . 5-31
5-20 MD Bus Destinations ... 5-32
5-21 ALU Block Diagram .. 5-33
5-22 ALU Functions ·. 5-33
5-23 ALU Carry In Values . 5-34
5-24 Microcode Example . 5-35
5-25 SHIFT/ALU Carry-In Controls . 5-36
5-26 Shifter Operation . 5-37
5-27 IR Register Formats . 5-38
5-28 Status Register ... : . 5-38
5-29 ST Register Sources . 5-39
5-30 !3CD Correction Constant Generation . 5-41
5-31 BCD Arithmetic Operation Timing 5-42
5-32 MICASM Statement . 5-43
5-33 Microinstruction Dispatch Example . 5-44
5-34 Next ~ICRO Address Generation , 5-45
5-35 IRL Dispatch ... 5-46
5-36 JT7 Dispatch . 5-46
5-37 JUZ Dispatch . 5-4 7
5-38 INT Dispatch .. 5-47
5-39 TMS7000 Group Numbers . 5-48
5-40 IRH Dispatch ... ; . 5-49
5-41 JC DISPATCH ' 5-50
5-42 Macro Jump Conditions . 5-50

xi

5-43
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
7-1
7-2
7-3
7-4
7-5
7-6
10-1
10-2
10-3
10-4
10-5
10-6

MJMP Dispatch .. 5-51
TMS70XX Read And Write Cycle Timing 6-3
Peripheral Expansion Mode Example ... ~ ·. . 6-6
Memory Address Decode . 6-7
Microprocessor Mode Example : . 6-9
Asynchronous Communication Format . 6-11
l/O'·f nterface . 6-12
SWXMIT Routine Flowchart ,. 6-17
SWCRVD Routine Flowchart : 6-20
Delay Constants Calculation . 6-21
Start Bit Detection . 6-22
Interrupt 4 Service Routine . 6-31
HWXMIT Routine Flowchart .. 6-32
HWRCVD Routine Flowchart . 6-33
Status Register . 6-48
Unsigned System With 8 Bits Of Magnitude: 0-255 , 6-53
Signed System With 7 Bits Of Magnitude: -127 TO + 127 . 6-53
SWAP And Rotation Operations 6-55
Example Of A Dispatch Table . 6-56
Example Of A Subroutine Call . 6-58
Example Of A 16-Bit By 16-Bit Multiplication Subroutine . 6-60
Typical Microprocessor Development System . 7-1
Typical XDS Configuration ~ 7-2 ·
The XDS Model 22 .. 7-5
Memory Configuration : . 7-7
Levels Of XMPL Interface .. 7-8
The RTC/EVM 7000 Evaluation Module . 7-9
Prototype And Production Flow . 10-1
Development Flowchart' . 10-4
Tl Standard Symbolization . 10-7
Tl Standard Symbolization With Customer Part Number . 10-7
Tl Standard Device Symbolization Without On-Chip ROM . 10-8
40 Pin Plastic Package, 100 Mil Pin Spacing (N Package) . 10-8

10-7 40 Pin Plastic Package_, 70 ~.~H Pin Spncing (NS Package)
10-8 40 Pin Plastic Package, 70 Mil Pin Spacing (JD Package)

i0-9
10-9

LIST OF TABLES

TABLE PAGE

1-1 TMS7000 Family Members . 1-5
1-2 TMS7000 Standard NMOS Product Family: TMS7000, TMS7020, TMS7040,

TMS70120, TMS7001, TMS7041 . 1-5
1-3 TMS7000 Standard CMOS Product Family: TMS70COO, TMS70C20, TMS70C40 1-6
2-1 TMS7000 Family Summary . 2-2
2-2 Mode·Select Conditions . 2-6
2-3 70XO Memory Map . 2-7
2-4 70X1 Memory Map .. 2-7
2-5 TMS70XO Peripheral Memory Map . 2-10
2-6 TMS70X 1 Peripheral Memory Map ·. 2-11
2-7 Reset And Interrupt Vector Locations In ROM . 2-22

xii

2-8 Serial Port Control Registers . 2-33
2~9 SC, PE, FE, AND Microprocessor Pin Assignments . 2-51
2-10 System Emulator Mode Pin Assignments . 2-53
3-1 TMS7000 Symbol Definitions . 3-2
3-2 TMS7000 Addressing Modes . 3-3
3-3 Implied Operand Instructions . 3-9
3-4 Machine Instruction Format: Implied Operand Instructions . 3-9
3-5 Single Operand Instructions ·. 3-9
3-6 Machine Instruction Formats: Single Operand instructions . 3-10
3-7 Dual Operand Instructions . 3-10
3-8 Machine instruction Formats: Register File . 3-11
3-9 Machine Instruction Formats: Peripheral File Instructions . 3-12
3-10 Jump Instructions .. ·. 3-12
3-11 Machine Instruction Formats: Simple Relative Instructions . 3-13
3-12 Machine Instruction Formats: Single Relative Instructions . 3-13
3-13 Machine Instruction Formats: Dual Relative Instructions . 3-14
3-14 Machine Instruction Formats: Peripheral Relative Instruction . 3-14
3-15 Extended Address Instructions . 3-14
3-16 Machine Instruction Formats: Extended Address Instructions 3-15
3-17 Machine Instruction Formats: Miscellaneous Instructions . 3-1 5
3-18 Machine Instruction Formats: MOVD Instruction . 3-16
3-19 TMS7000 Core (Reserved) Instructions . 3-18
3-20 TMS7000 Non-Core (Available For Microcode) Instructions . 3-20
3-21 Conditional Jump Instructions . 3-34
4-1 TMS70XO and TMS70X 1 Family Features . 4-1
4-2 TMS70CXO Family Features ; . 4-16
4-3 Eprom Use .. : 4-26
5-1 Benchmark 1-6 Comparison (2.5 MHz) 5-9
5-2 Microinstruction Word Format . 5-19
5-3 Memory Controls _ , 5-26
6-1 Timing Data For Sample Circuits . 6-1
6-2 1/0 Pin Assignments , ~ 6-13
6-3 Cycle Calculation . 6-21
6-4 Half Bit Cycles Calculation . 6-22
6-5 Crystal-Dependent Constants For The Software UART . 6-23
6-6 Serial Port Registers . 6-26
6-7 P And L Values In Hex . 6-34
6-8 Classification Of Instructions According To Status Bits Affected 6-48
6-9 Compare Instructions Examples: Status Bit Values . 6-49
6-10 Status Bit Values For Conditional Jump lnstructi.ons . 6-50
6-11 Add And Subtract Instructions . 6-51
6-12 Multi-Bit Right Or Left Shifts By Immediate Multiply . 6-59
7-1 Hardware Configuration Difference Model 22 To Model 33 · 7-6
7-2 EPROM Use ... 7-11
9-1 Dynamic Life Test . 9-3
9-2 Environmental Tests : 9-4
10-1 Valid ROM Start Addresses . 10-5

xiii

1. INTRODUCTION

1.1 GENERAL

This section of the manual introduces the TMS7000 family of single-chip microcomputers and
presents the underlying design philosophy and information on family support tools and
assistance.

The use of TMS7000 refers to all family members (TMS7000, TMS7020, TMS7040,
TMS70120, TMS7001, TMS7041, TMS70COO, TMS70C20, TMS70C40, SE70P161, and
all future family members) unless otherwise stated.

Sections 2 through 4 present in detail the TMS7000 family architecture, instruction set, and
electrical specifications. These sections present the specifics required by the user to
implement a TMS7000 solution in his application. Application examples for hardware interface
and software algorithms are presented in Section 6 after the reader has acquired a thorough
understanding of the standard instruction set.

Development support tools are an extremely important aspect of microcomputer selection and
algorithm development, Sections 7 and 8 present the support tools and several development
scenarios for the TMS7000 family.

The enormous technological advances in integrated circuits have enabled semiconductor
manufacturers to offer single-chip microcomputers incorporating a central processing unit
(CPU), read only memory (ROM), random access memory (RAM) and input/output (1/0) all on a
single silicon chip. Texas Instruments' TMS 1000 family was the original 4-bit microcompute1·
entry. The TMS1000 family's price, performance, and reliability have made it-the industry
leader in a broad range of applications including timers, electronic toys and games, appliance
controls, vending machines, temperature controllers, automotive instruments, test
instruments, and a variety of other controller applications. The TMS9900 family, the industry's
first 16-bit microcomputer, continues to stand in the fore-front of single-chip microcomputer
products. Recent TMS9900 family introductions include the TMS9995 and TMS99000 which
expand the families use to very high performance applications. It was a logical progression
then, for Texas Instruments to introduce the first fully programmable 8-bit microcomputer, the
TMS7000 family.

The TMS7000 family capitalized on Texas Instruments' experience and leadership position in
the microcomputer market, thereby introducing a true second generation 8-bit Microcomputer·
family. The second generation design approach is evident by the powerful instruction set,
addressing modes, and 1/0 flexibility all centered around the basic register to register
architecture. Flexibility, in hardware and software,· was a basic design goal, therefore the
TMS7000 family consists of a variety of RAM and ROM sizes, 1/0 functions, and instruction
set definitions, in both NMOS and CMOS, to efficiently address the user's application
requirements.

1.2 BACKGROUND AND DESIGN PHILOSOPHY

Originating from extremely low cost calculator-chip designs, early microcomputers necessarily
implemented extremely simple CPU's, resulting in primitive instruction sets that made the
simplest programming tasks at best difficult and at worst impossible. This seed of primitive,
hard to program instruction sets continues today in many microcomputers.

The reason for this trend lies in economics·, not engineering. Microcomputers are typically used
in extremely high volume applications. The recurring costs of the system, i.e., the price of the

1-1

device far outweigh the one-time cost of the program development. So the emphasis is on
building the least expensive device cont~i'ning the most functionality. It.is an established
economic fact of VLSI design that the larger the silicon bar, the more expensive the device.
Therefore a basic question in the design philosophy of microcomputers centers around the
trade-off in bar size between the CPU complexity (which determines the power of the
instruction set) and the amount of program memory, ROM and RAM.

The CPU, which implements the instruction set, is typically made up of: an accumulator and
other registers, an arithmetic logic unit (ALU), a control programmed logic array (PLA), and a
large number of data buses and control lines interconnecting the three. Traditional
microcomputers built with PLA's and random logic implement the simplest possible CPU. to
minimize bar area, resulting in instructions which may be simple to implement in the design of
the bar, but extremely difficult to program. In these traditional microcomputers, the trade-off in
maintaining minimum bar area through implementation of a simple CPU, is at the expense of
larger ROM and RAM requirements to implement the user's algorithm with the resulting

· primitive instruction set. One example of this is the restriction among many first generation
microcomputers limiting jumps to within the same page of ROM.

It is fact that the larger the bar, the more expensive the device, however, this does not imply
that a more powerful CPU cannot be implemented on a single microcomputer chip without
increasing the bar size and cost of the device. The issue lies .in the traditional design and layout
of microcomputers. Two significant design innovations have allowed the TMS7000 family to
provide true second generation capabilities and still maintain an extremely small bar and low
cost. These innovations in microcomputer design philosophy are:

• Strip Chip Architecture Topology (SCAT)

• Microprogramming

1.2. 1 Strip Chip Architecture Topology (SCAT)

1·2

SCAT is Texas Instruments' term for the design philosophy which incorporates the
non-memory elements of a microcomputer architecture (the registers, ALU and control logic) in
a strip of vertical blocks in the logic des~gn. Figure 1-1 shows the overall layout of the
TMS7020, the 2K ROM version of the TMS7000 family. The row of blocks labeled "timer",
"1/0 control", etc., is called the "strip", and all of the logic is implemented in the early mask
steps of the silicon bar itself. Most of the interconnection between the blocks (in the form of
data and address buses) is implemented on a layer of metal over the silicon. As a result,
valuable bar area is not wasted in providing the interconnect of the logic elements. This is the
essence of SCAT, designing the structures of the entire bar before logic design begins, so that
logic element and interconnect space requirements are minimized, thereby reducing the cost of
the chip.

The modularity of SCAT inherently enable existing TMS7000 designs to be easily modified and
additional features implemented to create new members of the TMS7000 family customized
to the user's needs. The indirect benefit which SCAT offers to the user is a full featured product
family with various ROM, RAM, and 1/0 configurations, as well as greatly reduced design cycle
time and minimum bar size of all subsequent family additions. Exampies of SCAT designs are
the doubling of the ROM from 2K bytes (TMS7020) to 4K bytes (TMS7040), and the addition
of the UART function to the 4K byte member (TMS7041).

1.2.2

.
I PRET1~CE~LER E

s N
T CONTROL

~ '
'

DECODE
a 2KBYTE
u
F

IOCONTRL

BYTE
0

'.< §
PROGRAMMABLE i5 ~

Ou

CODE ~~ Vi_S

u CHGP

~
PCH
PCL

D5

AOOR
BUFFER R(F

DJ x DEC

co Ct C• C' C6 C7

FIGURE 1-1 - TMS7020 MICROCOMPUTER BAR PLAN

Microprogramming

Another important feature of the TMS7000 family is the Microcode Control Rom (CROM) and
the internal control of the TMS7000 by microprogramming. Most other microcomputers
implement their internal control by a programmed logic array (PLA). Each instruction execution
is divided into a· number of "states" and on each state the PLA outputs both the current control
signals and the next state number. The PLA is a very compact logic structure, but it still leaves
the problem of routing the relevant control signals throughout the rest of the bar for decoding
and control.

With a microprogramming Control ROM, all of the necessary control signals are contained in a
single microinstruction. The outputs of the microcode CROM are made .available lengthwise
down the microcode CROM. Like any other ROM, each microinstruction has its own address,
and when it is read, it immediately supplies the control signals horizontally across to the strip,
right where they are needed. No complex routing or combinational logic is required. The block
of logic called "entry point" in the strip calculates the next address to feed to the microcode
CROM, and the "micro state" is entered. Because a ROM is more compact than a PLA, more
control transistors can be built in the form of a microcode CROM than in a PLA, therefore a
more powerful TMS7000 family standard instruction set was implemented in the microcode
CROM than in an equivalent bar area for a PLA and control decode approach. The benefits to
the user of the microcode CROM with the standard instruction set are sm~ller bar size, thereby
reducing the cost of the device, and the implementation of a more powerful instruction set
since all CPU control is provided directly by the microcode CROM.

Another direct benefit for the user is the ability of the TMS7000 family microcode CROM to be
re-microprogrammed by the user, modifying the standard instruction set to optimize the
TMS7000 in the user's application. A user defined instruction set provides the advantages of
faster throughput, more efficient utilization of program ROM memory, and improved system
security through unique software algorithms. The ability to re-microcode the TMS7000 family
also provides an alternate solution for designs initially using the standard instruction set, but
encountering a critical timing loop or macro code ROM space limitations, thereby avoiding
system redesign through re-microprogramming of the TMS7000.

1·3

Microcoding of the TMS7000 family can be performed by the user, an independent consultant,
the Regional Technology Center (RTC), or the factory. Full support in the form of
documentation, microassemblers, and in-circuit emulators are described in Section 5.

1.3 KEV FEATURES OF THE TMS7000 FAMIL V

1·4

• Microprogrammable instruction set
• Strip Chip Architecture Topology (SCAT) for rapid family expansion
• Register-to-register architecture
• Family members with 2K, 4K, and 12K bytes of on-chip ROM and ROM less versions
• On-chip 8-bit timer/event counter with:

Programmable 5-bit prescale
Internal interrupt with automatic reloading
Capture latch

• 128-byte RAM register file
· • Full-feature data/program stack

• 32 Individual 1/0 pins:
16 bi-directional pins
8 output pins
8 high-impedance input pins
Memory-mapped ports for easy addressing

• 256-byte peripheral file
• Memory expansion capability:

64K byte address space
• 8-bit instruction word ·
• Eight powerful addressing formats including:

Register-to-register arithmetic
Indirect addressing on any register pair
Indexed and indirect branches and calls

• Two's complement arithmetic
• Single-instruction binary coded decimal (BCD) add and subtract
• Two external maskable interrupts
• Flexible interrupt handling:

Priority servicing o.f simultaneous interrupts·
Software execution of hardvvarc inteiiupts
Precise timing of interrupts with the capture latch
Software monitoring of interrupt status

• Accurate pulse width measurement and modulation
• Silicon gate NMOS and CMOS, 5-volt power supply
• 40-pin, 600 mil, dual in-line package
• 100-mil or 70-mil pin-to-pin spacing packages

Tables 1-1, 1 ~2. and 1-3 present the features. and· benefits of the TMS 7000 family in
addressing the user's application requirements.

384

TABLE 1-1 - TMS7000 FAMILY MEMBERS

FEATURES 7000 7020 7040 70120 7001 7041 70P161 70COO 70C20 70C40

16K

ON-CHIP ROM (BYTES) NONE 2K 4K 12K NONE 4K
EPROM

NONE 2K 4K
PIGGY
BACK

ON-CHIP RAM (BYTES) 128 128 128 128 128 128 128 128 128 128

INTERRUPT LEVELS 4 4 4 4 6 6 6 4 4 4

TIMERS 113-BIT 1 1 1 1 2 2 2 1 1 1

110-BIT 0 0 0 0 1 1 1 0 0 0

1/0 LINES:
Bl-DIRECTIONAL 16 16 16 16 22 22 22 16 16 16
INPUT ONLY 8 8 8 8 2 2 2 8 8 8
OUTPUT ONLY 8 8 8 8 8 8 8 8 8 8

ADDITIONAL 1/0 - - -
SERIAL SERIAL SERIAL - - --
PORT PORT PORT

PROCESS
TECHNOLOGY NMOS NMOS NMOS NMOS NMOS NMOS NMOS CMOS CMOS CMOS

TABLE 1-2.-TMS7000STANDARD NMOS PRODUCTFAMILYTMS7000, TMS7020, TMS7040. TMS70120, TMS7001,

TMS7041

CUSTOMER NEED FEATURES
I

BENEFITS

. SATISFY COMPLEX . SECOND GENERATION . ADDRESSES HIGH
APPLICATIONS 8 BIT MICROCOMPUTER PERFORMANCE PRODUCTS

. PRODUCT UPGRADE WITH . WIDE SPECTRUM OF . INCREASE CAPABILITY WITHOUT
NO SOFTWARE REDESIGN FAMILY MEMBERS NOW. HARDWARE CHANGE;

ALL FUTURE MEMBERS BUILDS ON PRIOR SOFTWARE
SOFTWARE COMPATIBLE EFFORTS

. LARGE MEMORY FOR DATA, . UP TO 12K BYTES OF . 3 DEVICES FOR THE PRICE
HIGH-LEVEL LANGUAGES, ON CHIP ROM OF 1.5.
VOCABULARIES

. FEWER EXTERNAL . 161/0 PINS . MINIMUM SYSTEM COST
1/0 CHIPS (INDIVIDUALLY DIRECTION THROUGH FLEXIBLE

PROGRAMMABLE), 1/0 STRUCTURE
8 INPUT ONLY

(1/0 ON 7001/7041).
8 OUTPUT ONLY

. HIGH THROUGHPUT AND . 8X8 MULTIPLY, BCD/ . FLEXIBLE AND EASY TO USE
CODE DENSITY, MINIMUM BINARY ADD/SUBTRACT, INSTRUCTION SET
PROGRAMMING TIME SINGLE AND DOUBLE

PRECISION, S/WTRAPS, 1/0
INSTRUCTIONS 9 ADDRESSING
MODES

. REAL-TIME CONTROL . ON CHIP TIMERS . ELIMINATES EXTERNAL PARTS

. COMMUNICATIONS LINK . ON-CHIP UART (SERIAL PORT . ELIMINATES NEED FOR
ON7001/7041) EXTERNAL UART PARTS;

LOWER SYSTEM COST

1-5

TABLE 1-3 - TMS7000 STANDARD CMOS PRODUCT FAMILY TMS70COO, TMS70C20, TMS70C40*

CUSTOMER NEED FEATURES BENEFITS

. BATTERY POWER OPERATION . CMOS TECHNOLOGY, 6 MA . USEABLE IN PORTABLE
TYPICAL SUPPLY CURRENT APPLICATIONS, LOW COST

POWER SUPPLY OR BA TT ERV

. LESS POWER CONSUMPTION . WAKE-UP MODE = 500 UA, . BATTERY LONGEVITY
DURING STANDBY HALT MODE = 250 UA

. INEXPENSIVE POWER SUPPLY, . 3V - 6V POWER REQUIREMENT . TOLERANT POWER
OPERATES ON LOW BATTERIES SUPPLY VOLTAGE

. OPERATION IN AN . INCREASED NOISE MARGIN . GREATER IMMUNITY TO
ELECTRICALLY NOISY WITH CMOS INPUTS ELECTRICAL NOISE
ENVIRONMENT

. ADDED SYSTEM FUNCTIONS . LOWER OPERATION POWER . EXTENDED PRODUCT LIFE
WITH EXISTING POWER SUPPLY

* CMOS FEATURES INCLUDE MICROPROGRAMMABILITY, SCAT AND S/W COMPATIBILITY WITH NMOS VERSIONS

1.4 SUPPORT

Tl offers extended development support that consists of the following facits:

• Development Tools

• Hotline Assistance

• Training Support

•

1.4. 1 Development Tools

1-6

A microcomputer product, being complex and mask ROM programmed, must be supported by
high level development tools.to facilitate ease of application development and verification, and
increase development productivity. The TMS7000 family of 8-bit microcomputers has
available a complete spectrum of development tools from single board systems to full scale
development systems. Each provides in-circuit emulation, with various levels of development
and debug capability. The XDS (Extended Development Support) concept provides host.
independent in-circuit emulation and debug. When coupled with the transportable crossware
(cross support software package), which operates on the system alrea-dy familar to the user,
the TMS7000 famify will provide the user with a cost effective approach to full scale
microcomputer .. development. The AMPL-7000 Development System provides for standard
macrocode development and emulation as well as microcode support for those applications
utilizing this capability. The single board evaluation module (EVM) has been developed for
evaluation and basic in-circuit emulation of the TMS7000 family in an extremely cost effective
manner. The SE70P161 prototyping component is provided to support form factor emulation
in the user's application. In addition to these development tools to support system

development through in-circuit emulation, the TMS7000 family is supported by software
development tools through several third party independent sources. This wide range of
development tools provides the user with options to select the appropriate level of support
required for his application development. Development support tools and independent support
are described in Sections 7 and 8.

1.4.2 Hotline Assistance

Customers may call into one of the worldwide Regional Technology Centers (RTC) for
assistance on TMS7000 family development. Whether it be an elaboration of the basic
instruction set or a question regarding the microcomputer architecture, the RTC's have the
expertise and tools to provide the answer. Please consult the following list and contact the
closest RTC if assistance is needed.

Atlanta
Texas Instruments, Inc.
3300 N.E. Expressway
Building 8
Atlanta, GA 30341
(404) 452-4682
(404) 452-4686 Hotline

Northern California
Texas Instruments, Inc.
5353 Betsy Ross Drive
Santa Clara, CA 95054
(408) 748-2220
(408) 980-0305 Hotline

Bedford, England
Texas Instruments, LTD
Manton Lane
Bedford, MK41 7PA
0234 223000

Tokyo, Japan
Texas Instruments Japan
Aoyama Fuji.Bldg.
6-12, Kita Aoyama 3 Chome
03-498-2111

Boston
Texas Instruments, Inc.
400-2 Totten Pond Rd.
Waltham, MA 021 54
(617) 890-6671
(617) 890-4271 Hotline

Southern California
Texas Instruments, Inc.
17981 Cartwright Rd.
Irvine, CA 92714
(714) 660-8140
(714) 660-8164 Hotline

Freising, West Germany

Chicago
Texas Instruments, Inc.
515 W. Algonquin Rd.
Arlington Heights, IL
(312) 640-2909
(312) 228-6008 Hotline

Dallas
Texas Instruments, Inc.
10001 E. Campbell Road
Richardson, TX 75081
(214) 680-5066
(214) 680-5096 Hotline

Texas Instruments Deutschland GmbH
Haggertystr. 1
8050 Freising
08161 800

Hannover, West Germany
Texas Instruments Deutschland GmbH
Kirchhorsterstr Str 2'
3000 Hannover 51
0511 /648021

1.4.3 Training Support

384

The Regional Technology Centers (RTC's) offer courses for the benefit of customers requiring
engineering details on Texas Instruments' parts for design or evaluation purposes. Information
(description, schedules, entry instructions) regarding any of the RTC seminars may be obtained
by contacting the local RTC.

All courses are offered on a regularly scheduled basis in the RTC, but can also be presented at
the customer's location when more than four to five students request training.

1-7

1.4.3.1

Two courses are offered for the TMS7000 family of Microcomputers:

• TDC-700-TMS7000 Family System Design

• ATS-710-TMS7000 Family Microprogramming

TDC-700-TMS7000 Family Systems Design

The TMS7000 family Systems Design course is an introduction to the TMS7000 family of
single-chip microprocessors. leading off with a description of the chip architecture, the course
gives an understanding of instruction set usage in example situations. The labs give hands-on
experience with the TMS7000 and its development systems. Experience in assembly language
programming and microprocessor/microcomputer hardware design is a prerequisite.

1. 4. 3. 2 ATS-71 O-TMS7000 Family Microprogramming

1.4.4

1-8

The TMS7000 family Microprogramming course is intended for engineers who need to
customize the standard microcoded instruction set to better suit their needs. It starts with an
introduction to microprogramming in general and leads into the specifics of microprogramming
the TMS7000 family.

Through examples, students learn the ope;·ation of the standard instruction set and how to
customize. it to efficiently implement new instructions through microcoding. Testing
considerations are discussed and hands-on lab sessions allow the student to gain experience in
the use of development software. Experience in assembly language programming and a basic
familiarity with the TMS7000 instruction set and architecture is a prerequisite.

Design Expertise

Texas Instruments can provide in-depth technical design assistance through consultations
with contract design services. This assistance can take many forms that encompass the
application hints in this document to the application groups in the factory and the design
assistance teams in the RTC. Contact your local Field Sales Engineer for current information.

2. TMS7000 FAMILY ARCHITECTURE

384

Throughout this manual the term TMS7000 family or TMS7000 will include all of .the members
of the group. The term 70X 1 refers to those devices containing a serial port (7001, 7041 and
70P161). The term 70XO refers to those devices which do not contain a serial port (7000,
7020, 7040, 70120, 70COO, 70C20, 70C40). ThemajorcomponentsoftheTMS7000family
in.ternal architecture are shown in Figure 2-1 . For a mare detailed description consult the
TMS7000 FAMILY MICROARCHITECTURE USER'S GUIDE (MP061). The main features ofthe
TMS7000 family devices are summarized in Table 2-1.

'CENTRAL

PROCESSING

UNIT

8 8

MD AH

PERIPHERAL

/MEMORY

CONTROLLER

RAM

128 x 8

ROM

TYPICALLY

2K/4K x 8

EXTERNAL INTERFACE

A
I \

PORT A

8
PORT B

8
PORT C

PORT D

RESET

INT1, l_NT3

MEMORY CONTROL (MC)

4
(2 4 CRYSTAL I

4 I
"2 4 Vee. Vss

40 PINS TOTAL

FIGURE 2-1 - TMS7000 INTERNAL ARCHITECTURE

2-1

TABLE 2-1 - TMS7000 FAMIL V SUMMARY

GROUP 70XO 70X1

-70CXO-

DEVICE 7000 7020 7040 70120 70COO 70C20 70C40 7001 7041 70P161

ROM 0 2K 4K 12K 0 2K 4K 0 4K 16K

External

RAM 128 128 128 EPROM

TYPE NMOS CMOS NMOS

TIMERS 1 1 3

INT. CLOCK 2.5 MHz 1.75 MHz 2.5 MHz

INTERRUPTS 3 +RESET 3 +RESET 5 +RESET

INT TYPE 3 LATCHED and LEVEL 1 LATCHED 3 LATCHED and LEVEL

2 LATCHED and LEVEL

SERIAL PORT NO NO YES

GENERAL PURPOSE

INPUT PINS 8· 8 2

GENERAL PURPOSE

OUTPUT PINS 8 8 8

GENERAL PURPOSE

l/OPINS 16 16 22

CLOCKOPTNS 12.14 /2,/4 /2,/4 12 only /2only 12 ,/4

VOLTAGE 5V 3V-6V 5V

OTHER LOW POWER ASYNCH AND SYNCHR

HALT MODE SERIAL PORT, MULTI-

WAKE-UP MODE PROCESSOR COMMUN.

CASCADEABLE TIMERS

2.1 ON-CHIP RAM AND REGISTERS

The TMS7000 family has a maximum memory address space of 64K bytes. On-chip and Off-chip
memory address spaces vary accoiding to the particulai Trv1S7000 f arr.Hy n1ernber used {see
Tables 2-3 or 2-4) and the operating mode selected (see Section 2.3). In the sections that follow,
the Register File (RF) and the Peripheral File (PF) are described along with three important registers
in the CPU: the Stack Pointer (SP), the Status Register (ST), and the Program Counter (PC).

2. 1. 1 Register File (RF)

2-2

The 128-byte on-chip RAM resides in locations >0000 to >007F ('>' means hex) of the
TMS7000's address space and is called the Register File (RFL The RAM is treated as registers by
much of the instruction set and is numbered RO- R127. The first two registers, RO and R1, are also
called the A and B registers respectively. Several instructions specify A or B as either the source or
destination register, e.g., STSP stores the contents of the Stack Pointer (SP) in the B register.
Except where stated otherwise, any register in the Register File can be addressed as an· 8-bit
source or destination register. ·

The stack is also located in the Register File. Refer to Section 2.1.3 for information regarding the
initialization of the Stack Pointer (SP) and stack definition in the Register File.

384

2. 1.2 Peripheral Rle (PF)

The Peripheral File (PF) resides in locations >0100 to >01 FF of the TMS7000's address space.
Some of the TMS7000 instructions are optimized for efficient access to and from registers that
reside in the peripheral file. Peripheral File locations are numbered PO - P255. The PF registers are
used for memory expansion, interrupt control, parallel 1/0 ports, timer control, and serial port
control (if available).

2.1.3 Stack Pointer (SP)

The Stack Pointer (SP) is an 8-bit register in the CPU that is typically used to hold a pointer in RAM
(the Register File). However, the SP can also be used as temporary data storage if a stack is not
implemented, or if the SP contents are not needed. When a stack is implemented, the SP points to

. the last or top entry on the stack. The SP is automatically incremented just before data is pushed
onto the stack and automatically decremented immediately after data is popped from the stack.
Upon assertion of the RESET function (see Section 2.5), >01 is loaded into the SP. The size of the
stack can be changed from the 126-level stack at RESET to a smaller stack by executing a st~ck
initialization program as illustrated in Figure 2-2. This feature allows the stack to be located
anywhere in the Register.File. The SP is initialized through the B register (R1).

INIT MOV
LDSP

>0000
TOP OF STACK ON RESET - >0001

INITIAL TOP OF STACK - >0060

UPPER STACK LIMIT - >007F

%>60,8

AGURE 2·2 - EXAMPLE OF STACK INITIALIZATION IN THE REGISTER FILE

2. 1.4 Status Register (ST)

Increment
then
store

Fetch
then
decrement

The Status Register (ST) is an 8-bit register in the CPU that contains three conditional status bits;
Carry (C), Sign (N), Zero (Z), and a global Interrupt Enable bit (I) as shown in Figure 2-3.

7 6 5 4 3 2 1 . 0

c N z

C CARRY OUT
N SIGN
Z ZERO

INTERRUPT ENABLE

FIGURE 2-3 - STATUS REGISTER ISTI

2·3

The C, N, and Z bits are used mostly for arithmetic operations, bit rotating, and conditional
branching. The Carry (C) bit is used as the carry-in and the -carry-out for most of the rotate and
arithmetic instructions. the Sign (N) bit contains the most significant bit of the destination operand
contents after instruction execution. The Zero (Z) bit contains a one when all bits of the destination
operand are equal to zero after instruction execution. The C, N, and Z status bits also have
jump-on-condition instructions associated with them. The global Interrupt Enable (I) bit must be set
to one by the EINT instruction in order for any of the individual interrupts (INTn) to be recognized by
the CPU. The Interrupt Enable (I) bit can be cleared by the DINT instruction or by executing a device
RESET (see Section 2.5.2). A detailed description of the condition of these bits for each instruction
is d~scribed in the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE (MP916).

2.1.5 Program Counter (PC)

The TMS7000's 16-bit Program Counter (PC) consists of two 8-bit registers in the CPU which
contain the MSB and the LSB respectively of a 16-bit address: the Program Counter High (PCH)
and Low (PCL). The PC acts as the 16-bit address pointer of the opco,des and operands in memory
of the currently executing instruction. Upon assertion of the RESET function, the MSB and the LSB
of the PC are loaded into the A and B registers of the Register File (see Section 2.5.2).

2.2 ON-CHIP GENERAL PURPOSE 1/0 PORTS

2-4

The TMS7000 fa111ily members have 32 1/0 pins organized as four 8-bit parallel ports labelled Ports
A, B, C, D. Each port is mapped into an 8-bit data value register in the Peripheral File (PF) depending
upon the memory mode configuration of the device. The data value registers are usually called
APbRT, SPORT, CPORT, and DPORT in a program. Ports C and Dare implemented as bidirectional
1/0 ports on all TMS7000 family devices. In addition, Port A is also partially implemented as a
bidirectional port on all TMS70X 1 devices. Each bidirectional 8-bit port has a corresponding 8-bit
Data Direction Register (DOR) that programs each 1/0 pin as an input or output. A bit set to one in
the DDR will cause the corresponding pin to be an output, while a zero in the DDR will cause the pin
to be a high impedance input. Upon RESET, the DDR flip-flop registers are set to zero by the on-chip
circuitry, forcing them to become inputs. Likewise, the output DATA flip-flop registers are set to
one by on-chip circuitry upon RESET. After RESET, if' 1 's are written to the DDR register sometime
before the output data register is changed then the corresponding 1/0 pins will output a '1 '. For this
reason, it is good prctctice that Ports A, C and D output data registers be ioaded with the desired
value before any bits are configured as outputs. The logic for each bidirectional 1/0 line is shown in
Figure 2-4.

384

DATA
READ

DOR

OUTPUT READ

ENABLE DOR a D
DOR

WRITE

FLIP- DOR
_FLOP WRITE
a STROBE

1/0 OUTPUT
PIN

VALUE OUTPUT DATA

a D WRITE
DATA

3-STATE
FLIP· DATA

DRIVER
FLOP WRITE a STROBE

FIGURE 2-4 - BIDIRECTIONAL 1/0 LOGIC

If a port is bidirectional, i.e., if it is Port C or Don the 70XO devices, or Port A, C, or Don the 70X 1
parts then a single pin in the port may be used for both input and output by modifying its Data
Direction Register bit. As shown in Figure 2-4, the output value in the DATA flip-flop register is not
changed when the DDR ·flip-flop bit is switched into the input mode.

The characteristics of the four Ports A, 8, C, D can be summarized as follows:

Port A:

Port B:

Port C:

On the 70XO parts, Port A is an 8~bit high impedance input only port, providing·
eight general-purpose input lines. Pin A 7 may also be used to clock the on-chip
timer/event counter. On the 70X 1 parts, bits 0-4 and bit 7 of Port A are
bidirectional 1/0 lines. Port A pins A5 and A6 are input only pins that also have
other functions when using the serial port. Pin A5 is RXD which receives
incoming serial data and pin A6 is the serial clock output or the serial clock
input. Pin A6 and A 7 may also be used to clock the on-chip timer/event
counters, Timer 2 and Timer 1 respectively, of the 70X1 devices.

When in the single chip mode, Port B is an eight bit general-purpose output
port. In all other modes, Port B is split into two parts with the lower nibble (pins
80-83) being general-purpose output only pins and the most significant nibble (
pins 84-87) are the bus control signals: ALATCH, R/W, ENABLE, and CLOCK
OUT. On 70X 1 devices, pin 83 is also the serial output line (TXD) for the serial
port.

In Single-Chip Mode, Port C is an 8-bit bidirectional 1/0 port where any of its
eight pins may be individually programmed as an input or output line under
software control. In any other mode, Port C becomes a multiplexed
address/data port for the off-chip memory bus; in this case, the least significant
byte of a 16-bit address is provided followed by 8-bits of read or write data.

2-5

Port D: In Single-Chip or Peripheral Expansion Mode, Port D is an 8-bit bidirectional 1/0
port where any of its eight pins may be individually programmed as an input or
output line under software control. In Full Expansion and Microprocessor
Modes, Port D provides the most significant byte of the 16-bit address.

Further details of 1/0 and memory operations are contained in the memory mode sections in
Section 2.3.

2.3 MEMORY MODES

2-6

The TMS7000 can be reconfigured to reference up to 64K bytes of ROM and RAM. Five memory
modes can be selected by a combination of software and hardware: the Single-Chip, Peripheral
Expansion, Full Expansion, Microprocessor, and System Emulator modes. The Mode Control (MC)
input pin, if at a logic one, will force the TMS7000 into the Microprocessor Mode. If the MC pin is
held at + 14 volts, the TMS7000 will enter the System Emulator mode. If the MC pin is held at
logic zero, .the remaining memory modes are selected by the two MSBs of the 1/0 Control Register
(IOCNTO). i.e., bits 6 and 7, as shown in Table 2-2.

TABLE 2-2 - MODE SELECT CONDmONS

MODE SELECT CONDITIONS

MODE CNTL 1/0 CONTROL

MODE PIN REG. BIT 7, 6

Single-Chip ov 0 0

Peripheral Expansion 0 \(0 1

Full Expansion ov 1 0

Microprocessor Vee x x
System Emulator +14 v x x

NOTE: X = Don't Care

Upon RESET, the IOCNTO Register is set to zeros. Refer to Section 2.5.2 for a detailed description
of RESET and the recommended initialization procedure for the IOCNTO Register. The five memory
modes are summarized in Table 2-3 and 2-4 and described in the following paragraphs.

384

>0000-
>007F
>0080-
>00FF
>0100-
>0108-
>010C
>0200-

>COOO-

>0000-

>FOOO-

>F800-

>FFFF-

>0000-
>007F-

>0080-
>00FF
>0100-
>0117-
>0118-
>01FF
>0200-

>FOOO-

>FFFF-

TABLE 2-3 - 70XO MEMORY MAP

SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO. EMULATOR

REGISTER FILE

"
RESERVED FOR FUTURE EXPANSION

ON CHIP 1/0 (TIMERS, INTERRUPTS, 1/0 PORTS)

PERIPHERAL EXPANSION

NOT AVAILABLE c
NOT AVAILABLE

f--- .--- .----- MEMORY EXPANSION

70120 70120 70120

I--- I--- I-
7040 7040 7040 TMS7000

70C40 t-- 70C40 1--- 70C40 1--- USES THESE

7020 7020 7020 MODES ONLY

12K 4K 70C20 12K 4K 70C20 12K 4K 70C20 (No on-chip ROM)

ROM ROM 2K ROM ROM 2K ROM ROM 2K

ROM ROM ROM

SINGLE CHIP PERIPHERAL EXP FULL EXPANSION MICRO- EMULATOR
PROCESSOR

TABLE 2-4 - 70X1 MEMORY MAP

SINGLE CHIP l PERIPHERAL EXP l FULL EXPANSION MICRO. l EMULATOR

REGISTER FILE

RESERVED FOR FUTURE EXPANSION

ON CHIP 1/0 (TIMERS, INTERRUPTS, 1/0 PORTS.SERIAL PORT) l
l PERIPHERAL EXPANSION

NOT AVAILABLE 1 MEMORY EXPANSION

~ 7001 USES

7041 ON-CHIP PROGRAM ROM, 4K BYTES ONLY THESE

MODES.

SINGLE CHIP J PERIPHERAL EXP

I
FULL EXPANSION MICRO- 1 EMULATOR

PROCESSOR

2-7

SINGLE-CHIP MODE:

In the Single-Chip mode, all 32 1/0 pins are used for input/output, and no off-chip memory bus
is implemented. All programs and data reside in the on-chip ROM and RAM.

PERIPHERAL EXPANSION MODE:

In the Peripheral Expansion mode, the Peripheral File addresses are available externally. 20 of
the 32 general purpose 1/0 lines are still used as general purpose 1/0 and 12 pins implement a
multiplexed 8-bit address/data bus and a 4-bit control bus. Out of the total 256 addresses in
the Peripheral File, 246 of these are memory mapped externally on the 70XO devices and 238
are mapped externally on the 70X 1 devices. This expansion mode may be used to address
ROfy1, RAM, or peripheral devices.

FULL EXPANSION MODE:

In the Full Expansion mode, 12 of the 32 1/0 pins are used for general purpose 1/0. The
remaining 20 1/0 pins are then used to implement a 8-bit most significant address bus, a
multiplexed 8-bit least significant address and 8-bit data bus, and a 4-bit control bus, to
external memory. The on-chip ROM is still used, but additional off-chip memory for program or
data storage may also be referenced.

MICROPROCESSOR MODE:

In the Microprocessor mode, the 32 1/0 pins are in the same configuration as in the Full
Expansion mode. However, th.e addresses for the on-chip ROM are located off-chip, allowing
the user's program to be prototyped in EPROM. Since the TMS7000 and TMS7001 have no
on-chip ROM, this mode and the emulator mode are usually the only modes in which they can
operate.

SYSTEM EMULATOR MODE: The System Emulator mode is provided for self-emulation and
system development. No on-chip 1/0 is implemented. In addition, the on-chip timer and
interrupt controls are disabled.

2.3.1 Single-Chip Mode

2·8

In the Single-Chip mode, the TMS7000 functions as a standalone microcomputer with no
off-chip memory expansion bus. The 32 1/0 lines may be used for various purposes, such as
scanning keyboards, driving displays, and controlling other mechanisms. The four ports are
configured as shown in Figure 2-5.

~o INPUT

. A7 LINES

BO

I OUTPUT
LINES

B7

a). TMS70XO
co BIDIRECTIONAL I
C7

LINES

DO BIDIRECTIONAL I
D7 LINES

------------A5/RXD

______ ..._ A6/SCLK

A5 AG

AO-A4 BIDIRECTIONAL

A7
LINES

BO-B2 OUTPUT

B4-B7
LINES

b) TMS70X1

B3

BIDIRECTIONAL
LINES

BIDIRECTIONAL
LINES

--------~..._ B3/TXD

FIGURE 2-5 - 1/0 PORTS: SINGLE-CHIP, MODE

2·9

2-10

Table 2-3 and 2-4 illustrate the Single-Chip mode memory map. The unused Peripheral File (PF)
locations and off-chip memory addresses are not available. When reading from unavailable
addresses, an undefined value is returned. Writing to these addresses has no effect. Peripheral
File registers, PO-P11, are used to reference the 1/0 ports and other on-chip functions. Table
2-5 and 2-6 list the Peripheral File (PF) registers that are available in the Single-Chip mode
configuration.

TABLE 2-5 - TMS70XO PERIPHERAL MEMORY MAP

SINGLE CHIP I PERIPHERAL EXP. FULL EXPAND. MICROPROCESSOR

>0100- 1/0 CONTROL REGISTER (IOCNTO)

>0101- RESERVED

>0102- TIMER DATA (TIDATA)

>0103- . TIMER CONTROL (TICNTL)

>0104- PORT A DATA VALUE (APORT)

>0105- ! RESERVED

>0106- -BITS0-3 - PORT B DATA VALUE (BPORT)

>0106- PORT B DATA l PERIPHERAL EXPANSION - BITS4-7 -

>0107- RESERVED

>0108- PORTC DATA

>Q109 CPORTDATA PERIPHERAL EXPANSION
D!RECT!ON
(COOR)

>010A PORT D DATA VALUE (DPORT)

>01 OB- :DPORTDATA
DIRECTION REGISTER (ODOR)

>010C-

>01 FF-.
UNUSEABLE l PERIPHERAL EXPANSION

I

' I

PO

P1

P2

P3

P4

PS

P6

P6

P7

P8

pg

P10

P11

P12

P255

SINGLE CHIP
FULL.

EXPANSION
MICROPROCESSOR PERIPHERAL EXP

NOTE: There are no on-chip peripheral registers in the Emulator mode.

384

>0100

>0101

>0102

>0103

>0104

>0105

>0106

>0106

>0107

>0108

>0109

>010A

>010B

>010C
>010F
>0110

-

>0111

>0112

>0113

>0114

>0115

>0116

>0117

>0118
>01FF -

TABLE 2-6 - TMS70X1 PERIPHERAL MEMORY MAP

SINGLE CHIP PERIPHERAL EXP. FULL EXP. l MICROPROCESSOR

1/0 CONTROL REGISTER 0 (IOCNTO)

RESERVED

TIMER DATA (T1DATA)

TIMER CONTROL (T1CNTL)

PORT A DATA VALUE (APORT)

PORT A DATA DIRECTION REG. (ADDR)

-BITS0-3 - PORT B DATA VALUE (BPORT)

PORTBDATA. PERIPHERAL EXPANSION - BITS4-7-

RESERVED

PORTCDATA

CPORTDATA PERIPHERAL EXPANSION
DIRECTION (CDDR)

PORT D DATA VALUE (DPORT)

D PORT DATA DIRECTION REG. PERIPHERAL EXPANSION

UNUSEABLE

1/0 CONTROL REGISTER 1 (IOCNT1 I

FIRST WRITE SERIAL MODE (SM ODE)
WRITE SERIAL CONTROL 0 (SCTLO)
READ STATUS REGISTER (SST AT)

TIMER2DATA (T2DATA)

TIMER 2 CONT.AOL (T2CNTL)

TIMER3DATA (T3DATA)

SERIAL CONTROL (SCTL1 I

RECEIVER BUFFER (RXBUF)

TRANSMITTER BUFFER (TXBUF)

UNUSEABLE PERIPHERAL EXPANSION

SINGLE CHIP PERIPHERAL EXP FULL EXP. I MICROPROCESSOR

PO

P1

P2

P3

P4

P5

P6

P6

P7

P8

pg

P10

P11

P12-
P15
P16

P17

P18

P19

P20

P21

P22

P23

P24
P255

2·11

2-12

Port A is referenced as PF Register P4 (APO RT). When P4 is read, such as with a move from PF
(MOVP) instruction, the .value on the Port A input pins is returned. The input data is read
approximately two machine cycles before the completion of the instruction.

Bit AO is the LSB, and bit A 7 is the MSB of Port A. When the on-chip Timer/Event Counter is
placed in the External Event Counter Mode, bit A 7 serves as the external clock input, triggering
the Event Counter on every positive-going transition.

On the 70X 1 parts, pins AO-A4 and pin A 7 are bidirectional 1/0 pins. Each of these pins can
become either an output or an input pin depending upon the value in the A port Data Direction
Register (ADDR) P5. If a '1' is put in the bit position of P5 then the corresponding pin of the A
port is an output. If a 'O' is written there, then the A port pin becomes a high impedance input
pin. Referto Figure 2-4 for a diagram of the bidirectional 1/0 logic. Oil the 70X1 parts, A5 and
A6 have multiple functions. Normally they are both input only pins like the 70XO parts, but A5
also can be the serial data receiver (RXD). Pin A6 can also be the serial clock 1/0 pin (SCLK) for
the serial port. It can be either the serial clock output or it can drive the on-chip serial clock
when connected to an external clock. See the serial port section for more information, Section
2. 7 .2. Pin A6 can also be the external clock input for Timer 2.

The Port B pins always assert the value of ttie Port B data value register, which is PF Register P6
(BPORT). Writing to P6 loads the Port B register and hence modifies the Port B output pins.
Positive logic is used. While RESET is active, Port B register contents are forced to ones by the
on-chip circuitry.

The C and D ports (CPORT and DPORT) are bidirectional 1/0 pins and are located at PS and P10
of the Peripheral File. Each of these pins can become either an output or an input pin depending
upon the value in the C and D port Data Direction Register (CDDR and DDDR), P9 and P11. If a
'1' is put in a bit position of the DDR then the corresponding pin of the port is an output. If a 'O' is
written there, then the port pin becomes a high impedance inpu~ pin. Writing to CPORT or
DPORT modifies the programmed output pins but has no effect on the input pins. Reading
CPORT and DPORT provides the input values for input pins and the current output value for
output pins. Refer to Figure 2-4 for a diagram of the ~idirectional 1/0 logic.

· Rea~ing from an output pin (or a bidirect!ona! pin in the output mode) provides the current va!uc
being output on that pin. Peripheral File instructions ANDP, ORP, and XORP perform a
read/modify/write. cycle to PF registers so that when applied to a port data register, these
instructions can clear, set, and complement the output pins on the port. The following program
fragment illustrates the use of the 1/0 lines in the Single-Chip mode:

2.3.2

IOCNTO EQU PO
A PORT EQU P4
BPORT EQU P6
CPO RT EQU P8
CDDR EQU pg
DPORT EQU P10
DDDR EQU P11

RESET MOVP % >3F,IOCNTO Set Single-Chip Mode, enable all interrupts,

L1
L2

clear all pulse flip-flop
MOVP %>02,DPORT Load Port D with 0000 001 0
MOVP %>00,CPORT Load Port C with 0000 0000
MOVP % >FO,CDDR Config C7-C4 outputs, C3-CO inputs
MOVP % >OF,DDDR Config 03-DO outputs, D7-D4 inputs
ORP %>04,DPORT SetD2
ANDP % >7F,CPORT ClearC7
BTJZP % >08,CPORT,L 1 Jump if C3 is 'O'
MOVP %>55,BPORT Set Port B to 0101 0101
XORP %1,BPORT Toggle bit BO
BTJOP % >41,APORT,L2 Jump if either A6 or AO is a '1'

NOTE

The percent sign (%)indicates the Immediate Addressing Mode (see Section 3.1).
The instruction set is described in Section 3.2.

Peripheral Expansion Mode

The Peripheral Expansion mode incorporates features of both the 1/0-intensive single-chip
mode and the memory-intensive Full Expansion mode. Table 2-5 and 2-6 show the memory
maps for the Peripheral Expansion mode. References to addresses in· the Peripheral File
(locations >0100 to >01 FF) not corresponding to on-chip registers, result in off-chip memory
cycles. During peripheral file instructions, a peripheral file port is read, even if the value is not
needed such as in a MOVP A,P6. If this read is undesirable because of hardware configuration,
a STA (store Al instruction with the memory-mapped address of the peripheral register can be

. used.

The ability to reference off-chip addresses permits the TMS7000 to be directly connected to
m.ost of the popular peripheral devices developed for 8-bit microprocessors. The TMS7000's
Peripheral File (PF) instructions can be used to reference these off-chip peripherals just as easily
as the on-chip PF registers are accessed. In Peripheral Expansion Mode, Port A functions the
same al:! in Single-Chip Mode.

Port B is divided into two sections: B3-BO function as individual output pins, the same as in
Single-Chip Mode; pins B7-B4, however, function as external memory bus controls as follows:

• Pin B4 (ALATCH) is strobed to logic one while Port C asserts the memory address.

• Pin B5 (R/Wl is driven to logic one for a read cycle and to logic zero for a write cycle.

• Pin B6 (ENABLE) is asserted at logic zero whenever an external memory cycle is in
progress.

• Pin B7 (CLOCKOUT) is an output clock intended for general memory control timing.

2-13

2.3.3

2.3.4

2-14

Exact signal timing is described in Section 4.

References to the PF register corresponding to Port B are handled in a special manner. When a
write is done to the Port B data value register, 83-BO·output their new value. An external
memory write cycle, writing the full 8-bit Port B value. to address >0106, is performed as well.

•when a read is done from the Port B data value register, the least significant nibble is provided
by the current value on pins 83-80. The most significant nibble, however, is obtained from an
external memory read cycle, reading from address >0106. The least significant nibble from
the external memory read cycle ls discarded; ·

Port C functions as a multiplexed address/data port for the memory expansion bus. In normal
configurations, Port C is attached to the input of an 8-bit latch such as an SN74LS373. Signal
84 (ALATCH) drives the G input of the latch, so that: the outputs follow the inputs while
ALATGH is high, and latch when ALATCH falls. After ALATCH falls, Port C either becomes a
high-impedance input for read cycles or it asserts the output data for write cycles. Port D
functions identically to a bit-programmable bidirectional 1/0 port, as in the Single-Chip Mode.

NOTE

Because ALATCH and Port C are active for both external and internal (ROM and
RA.Ml memory cycles, it is recommended that ENABLE be gated with the chip select
input of all external memory devices.

Fuli Expansion Mode

The Full Expansion Mode may be used to extend the memory addressing capability of the
TMS7000 to its full 64K byte limit. External memory may be accessed with instructions using
the Direct, Register File Indirect, and Indexed Addressing modes of the instruction set. This
capability allows a variety of application requirements to be met by expanding the external
program or data storage.

Full Expansion Mode input/output is identical to the Peripheral Expansion mode except that
Port D is used to output the most significant byte (MSB) of the 16-bit address and is not
available as an 1/0 port. Thel/O memory assignments for the Full Expansion mode are shown in
Tabie 2-5 and Tabie 2-6.

As in the Peripheral Expansion mode, addresses to the Peripheral File (locations >0100 to
>01 FF) which are not directly implemented as on-chip registers, result in off-chip memory
cycles. The on-chip Peripheral File registers are listed in Table 2-5 and Table 2-6. Note that the
Port D data value register (DPORT) and the Port D ·Data Direction Register (ODOR) are
implemented as off-chip addresses in the Full Expansion mode.

Microprocessor Mod~

The Microprocessor mode is intended for applications not justifying the use of on-chip ROM.
The port pins are configured exactly ;;is in the Full Expansion mode (see Table 2-2). However,
unlike the Full Expansion mode, no on-chip ROM is referenced in the Microprocessor mode as
shown in Tabl.e 2-3. The MC pin must be held at + 5 volts to place the device into the
Microprocessor Mode.

2.3.5 System Emulator Mode

The System Emulator mode is a special purpose mode designed to support system
development and self-emulation. The TMS7000 is placed in the System Emulator mode by
applying a + 14 volt level to the Mode Control (MCI input pin. This disables all internal ROM and
1/0. In addition, the internal structure for handling interrupts is disabled.

NOTE

The last 48 bytes (>FFDO- >FFFFI of off~chip memory may be assigned to Traps
0-23.

The usefulness of System Emulator Mode is predicated on its flexible interrupt structure. Up to
128 interrupts may be implemented by wire-ORing them to either the maskable interrupt input
(INTI or to the non-maskable interrupt input (NMI).

Both interrupt lines are level-activated in System Emulator Mode~ They do not have the pulsed
interrupt latch, as described in Section 2.5.

The processor acknowledges interrupts in the System Emulator mode by asserting an Interrupt
Acknowledge (INTAI output on pin B3 of Port B. This is comparable to the INTA signal sent
from the CPU to internal interrupt logic, described in Section 2.5.3. When INTA is asserted,
external circuitry must apply an 8-bit interrupt code into Port C, which is then used by the CPU
to generate the address of the interrupt vector. The vector address is computed by adding the
interrupt code input to > FFOO and then rotating the result left one bit. This is the address of the
LSB of the vector: the MSB is in the preceding address.

The interrupt vector is the same as the TRAP instruction opcode; for example, a Level 2
interrupt code is >FD, which is the same as the TRAP 2 opcode. Interrupt vector generation is
illustrated in Figure 2-6.

PROGRAM MEMORY

> FFFA
> FD (INT2 INTERRUPT CODE) - > FFFB

TRAP VECTORS

ENTRY POINT MS BYTE
ENTRY POINT LS BYTE

FIGURE 2-6 - INTERRUPT GENERATION: SYSTEM EMULATOR MODE

As with all interrupts, the processor pushes the contents of tlie Status Register and the
Program Counter onto the stack before branching to the address specified by the interrupt
vector.

2-15

2.4 1/0 CONTROL REGISTERS

2·16

The 1/0 control registers are located in the Peripheral File and are responsible for memory mode
definition and interrupt control. All TMS7000 family members contain the 1/0 Control 0
(IOCNTO) register; however, the 1/0 Control 1 (IOCNT1) register is available only in the 70X1
members. The 1/0 control registers are mapped into locations PO (IOCNTO) and P16 (IOCNT1)
of the Peripheral File as shown in Figures 2-7 and 2-8. The memory expansion modes and
individual interrupt masks and resets are controlled through these registers. The interrupt
sources may also be individually tested by reading the interrupt flags. The interrupt flag values
are independent of the interrupt enable values. Section 2.3 describes how bits 7 and 6 of the
IOCNTO, together with the Mode Control (MC) pin, determine in which memory expansion
mode the TMS7000 is functioning. See Table 2-2.

The INTn FLAG values are independent of the INTn ENABLE values. Writing a '1' to the INTn
CLEAR bit will clear the corresponding INTn FLAG, but writing a 'O' to the INTn CLEAR bit has
no effect on the bit. If INTn is to be recognized by the CPU, three conditions must be met:

1) A one must be written to the INTn ENABLE bit in t~e IOCNTO or IOCNT1 Register.

2) The global INTERRUPT ENABLE bit, i.e., bit 4 or I in the Status Register (see Section
2.1.4), must be set to one by the EINT instruction.

3) INTn must be the highest priority interrupt asserted within an instruction boundary
(see Section 2.5).

All of the TMS7000's interrupts may be tested in software, independent of whether the
interrupt is enabled or disabled. For example, the following program fragment waits for the
rising edge of the interrupt input on the INT1 pin by testing INT1 FLG:

WAIT BTJOP % >02,PO,WAIT Wait for INT1 .

This allows the interrupt pins to be polled as 'latching' inputs when the interrupt action is not
desired. Refer to Section 2.5 for a detailed description of the TMS7000's interrupt logic and
nni:>r::>tinn -,....-·-··-···

384

0 = INT3 Inactive

1 = INT3 Active ~

PF number = PO
Address = > 0100

0 = INT2 Inactive

1 1
= INT

2
Active 0 = INT1 Inactive

I
1

1 = INT1 Active

PO

7 6

MEMORY MEMORY
MODE 1 MODEO

oo = Single Chip

01 = Peripheral
Expansion

10 =Full
Expansion

11 = Undefined

5 4 3 2 1 0

INT3 INT3 INT2 INT2 INT1
INTI ~

FLAG ENABLE FLAG ENABLE FLAG ENABLE
READ

INT3 INT3 INT2 INT2 INT1 INT1 WRITE
CLEAR ENABLE CLEAR ENABLE CLEAR ENABLE

0 =INT1 Disable
1 = INT1 Enabled

·O = No effect
1 = Clear INT1 flag

0 = INT2 Disabled
1 = INT2 Enabled

0 = No effect
1 = Clear INT2 flag

0 = INT3 Disabled
1 :::;: INT3 Enabled

0 = No effect
1 = Clear INT3 flag

FIGURE 2-7 - IOCNT0-1/0 CONTROL REGISTER 0

2·17

2-18

(Register NOT cleared
by RESET)

7 6 5 4

0 = INT5 Inactive I 1 = INT5 Acdve

3 2

O =INT4 Inactive
/1 =INT4Active

1 0

I 0 0 0 0
INT5 INT5 INT4 INT4
FLAG. ENB FLAG ENB

P16

READ

0 0

PF number: P16
Address: >0110

0 0
INT5

CLEAR
INT5
ENB

INT4
CLEAR

INT4 WRITE
ENB

l 0 = INT4 Disabled
1 = INT4 Enabled

0 =No effect
1 = Clear INT 4 flag

·o = INT5 Disabled
1 = INT5 Enabled

0 =No effect
1 =Clear INT5 flag

FIGURE 2-8 - IOCNT1 - 1/0 CONTROL REGISTER 1

Due to the read/modify/write nature of the bit manipulation instructions (ANDP, ORP, and
XORP), it is possible that a pulsed interrupt could occur during the operation of these
instructions on the IOCNTO and IOCNT1 and be missed. These instructions could also cause
the other interrupt flags to be unintentionally cleared or set. For example, there is no problem if
an XORP instruction is used to enable INT1 and not alter the condition of the INT1 flag (XORP
% >03,PO), as long as the flag flip-flop does not change state during instruction execution.
However, if a short INT1 pulse occurs during execution, a 0 may be read and a 1 would be
written to reclear the INT1 flag. In this case, the INT1 pulse would be undetected by the
processor. This same instruction would also affect the INT2 and INT3 flags as they are also
located in IOCNTO. To avoid these occurrences, use the MOVP and and STA instructions when
writing data to IOCNTO and IOCNT1.

384

The following code segment is an example of how the user can regulate the memory mode bits
and individual interrupt masks and resets through program control:

IOCNTO EOU PO
MOVP % >3B,IOCNTO SINGLE-CHIP MODE, CLEAR ALL INT FLAGS

*
BTJOP
ANDP

ENABLE INT1 AND INT3
% >08,IOCNTO,LABEL TEST IF INT2 SET, IF SET THEN JUMP
% >E5,IOCNTO CLEAR AND DISABLE INT3

LABEL EOU $

NOTE

This example is one of the few situations where use of the ANDP instruction on the
IOCNTO register is possible.

On RESET, the IOCNTO register is written with all Os. This disables INT1, INT2, and INT3
individually and configures the TMS7000 in Single-Chip mode. In the 70X 1 devices, the
IOCNT1 register is not written to during RESET. In order to ensure that INT4 and INT5 are also
individually disabled, it is recommended that all 'O's be written to the IOCNT1 regist'3r
immediately after RESET. Note that following RESET, all interrupts are globally disabled
because the Interrupt (I) bit in the status register is reset to 0.

Because the state of the interrupt flag flip-flops (INTn FLG) are undetermined after RESET, it is
recommended that the flags be cleared by writing a 1 to bit positions 1, 3, and 5 in PO
(IOCNTO) and positions 1 and 3 in P16 (10CNT1).

2.5 INTERRUPTS AND RESET CLOCK OPTIONS

The internal ma.chine cycle frequency, called Phi (<!>), is derived from either a crystal or an
external clock source. There are two options available for converting the external frequency to
<I> and they are called the divide by two (/2) or the divide by four (/4) clock options. These are
mask options which means the option is placed on a manufacturing template, a mask, which
copies the actual circuit onto the silicon device. This means the clock option is finalized at the
start of manufacture and is NOT changeable by software or hardware. If the /2 clock option is
chosen, the external frequency divided by 2 is the internal machine cycle. A 5 MHz crystal
would give and internal cycle of 2.5 MHz with the divide by 2 option. If the /4 clock option is
used, the external clock is divided by 4 so that the same 5 MHz crystal would result in a <I> of
1.25 MHz. In order to get a 2.5 MHz internal cycle a 10 MHz crystal would be used.

The /2 option is. recommended for use with crystals and the /4 option can·use either crystals or
another external source. It is not recommended to use an external source to drive a 12 device. If
a crystal is used it is connected between pins XTAL 1 and XTAL2. To improve the crystal
waveform, 1 5 pF capacitors are connected between XTAL 1 and ground and between XTAL2
and ground. If an external clock source is used it is connected to CLKIN, also called XTAL2, and
XTAL 1 is left floating.

2.5.1 Interrupt Priority

The TMS70XO has priority servicing of three interrupt levels and reset, the TMS70X1 has five
interrupt levels plus reset. These levels are defined as follows:

1) Level 0 is the highest priority and is reserved for the RESET function.

2) Level 1 is the second highest priority and is a user-defined external interrupt (INT1).

3) Level 2 is the third highest priority and is reserved for the on-chip hardware Timer 1
(INT2).

2·19

2.5.2

2·20

4) Level 3 is the fourth highest priority and is a user-defined external interrupt (INT3).

5) Level 4 is the fifth highest priority and is available only on the 70X 1 devices. This
interrupt is used when the serial port is ready for data transfer, or it can be used by
Timer 3 (INT4).

6) Level 5 is the lowest priority and is available only on the 70X 1 devices. This interrupt is
reserved for the on-chip hardware Timer 2 (INT5).

All external interrupts and RESET have Schmitt trigger inputs. The external interrupt interface
consists of three discrete active low input lines which require no external synchronization:
RESET, INT1, and INT3. The INT1 and INT3 inputs are both latch and level triggered on all
TMS7000 devices, with some exceptions on CMOS parts. The INT1 input is only latch
triggered on the TMS70COO, TMS70C20 and TMS70C40. Interrupt Level 2 (INT2) is asserted
upon rollover of the programmable timer (see Section 2.6).

Each interrupt (INTn) is associated with an INTn ENABLE and FLAG bit in the IOCNTO and
IOCNT1 Registers (see Section 2.4). The INTn ENABLE bit must be set before INTn can be
recognized by the interrupt logic. In addition, there is a global INTERRUPT ENABLE bit (I) in the
Status Register which must be set by the EINT instruction in order for an interrupt to be
recognized by the CPU.

The TMS7000's reset function, CPU/interrupt interface, and interrupt logic are described in the
sections that follow. ·

Device Initialization

Interrupt Level 0 (RESET) cahnot be masked and will be recognized immediately, even in the
middle of an instruction. To execute the Level 0 interrupt, the RESET pin must be held low for a
minimum of 1.25 internal Clock cycles (<)>) to guarantee recognition by the device. During
assertion of the RESET pin, the Data Direction Registers COOR and ODOR registers (and ADDR
on 70X1 devices) are cleared to all 'O's and the OUTPUT DATA flip-flops of Ports B, C, and D
(and Port A on 70X1 devices) are set to all ones (see 1/0 logic, Figure 2-4). This causes Ports C
and D (and Port A on 70X1 devices) to be placed in the high impedance input mode and Port B
to output all ones (>FF) regardless of the state of the internal machine clock. When RESET is
removed, the following operations are performed prior to the first instruction aquisition.

1) All zeros are written to the IOCNTO Register and the Status Register. This disables
INT1, INT2, and INT3 and leaves the INTn FLAG bits unchanged. Note that the
IOCNT1 Register in 70X1 devices is not written to.

2) The MSB and LSB valu!3S of the Program Counter just before RESET are stored in RO
and R 1 (A and B registers) respectively.

3) The Stack Pointer is initialized to >01.

4) The MSB and LSB of the reset vector are fetched from locations > FFFE and > FFFF
respectively (see Table 2-10) and loaded into the Program Counter.

5) Program execution begins from the address placed in the Program Counter.

As stated above, the reset function does not change the INTn FLAG bits in the IOCNTO register
(since all zeros are written) and does not write at all to the IOCNT1 register. Also, the OUTPUT
DATA flip-flops of the A, C, a~d D Ports are set to all '1 's. If any of the bits in a DOR register is

2.5.3

set to a '1' ; the corresponding port pin would become an output, producing a '1' level. It is
generally good practice to initialize the OUTPUT DATA flip-flop with the desired output value
(by writing to the port data value register) before writing to the DOR flip-flop to make the
corresponding pin an output. The following sequence of code is an example of what a typical
initialization routine could be after a RESET. · ·

RESET MOVP %>2E,PO Clear INT1 ,·INT2, and INT3 FLAGS and
place device in Single-Chip mode.
Enable INT2.

MOVP %>0A,P16 Clear INT4, INT5 FLAGS (70X1 only).
Disable INT4 and INT5

MOVP %VALU1,P8 Load Port C data value register
(CPORT).

MOVP %MASK1,P9 Load Port C data direction register
(COOR).

·MOVP %VALU2,P10 Load Port D data value register
(DPORT).

MOVP %MASK2,P11 Load Port D data direction register
(DOOR).

MOVP · %VALU3,P2 · Load Timer 1 Latch (TL).
MOVP %VALU4,P3 Load timer source, internal prescaler

latch and start timer.
EINT Set global interrupt enable bit to

allow interrupts.

The Stack Pointer can also be reinitialized in the Register File following reset by executing a
program similar to the one below.

STACK MOV %VALUE,B
LDSP

CPU Interface To Interrupt Logic

Load B with the stack starting point
Put this value into the stack pointer •

Once an interrupt has been asserted (the INTn pin goes low), it becomes active if its ENABLE
bits are set to one, and the global Status Register INTERRUPT ENABLE bit (I) is set to one. An
active interrupt is one which is capable of being recognized by the CPU but has not yet been
acknowledged.

As shown in Figure 2~9, the TMS7000's on-chip logic recognizes ari active interrupt and sends
an INT ACTIVE signal to the CPU. When the currently executing instruction is completed, the
CPU selects the highest priority active interrupt and routes INTA back to the INTn ACK
(interrupt acknowledge) line of the recognized interrupt. In the case of more than one interrupt
active within the same instruction boundary, i.e., simultaneous interrupts, then the interrupts
will be acknowledged by the CPU according to the priority levels described at the beginning of
Section 2.5. For example, if both INT2 and INT3 occur within the same instruction boundary,
INT2 will always be serviced first. Refer to Section 2.6.8 for an application of this example.

2·21

2.5.4

2·22

- -;;.E~U;.;-L~IC--, · r c-;;-
INT1

INT1 ACK.
INTA I

INT1 ACTIVE

INT2 ACK. I
INT2 PRIORITY

LOGIC INT ACTIVE
INT2 ACTIVE I I
INT3 ACK.

INT3
INT3 ACTIVE I I

INTERRUPT
CODES

DATA

FIGURE 2·9 - CPU INTERFACE TO INTERRUPT LOGIC

Once INTn has been acknowledged by the CPU, the INTn ACK line, as shown in Figure 2-10,
clears the corresponding INTn FLAG flip-flop. The CPU then pushes the contents of the Status
Register and the Program Counter (MSB and LSB) onto the stack, and zeros the Status
Register, including the global INTERRUPT ENABLE (I) bit. The CPU reads an interrupt code from
the interrupt logic and branches to the address contained in the corresponding interrupt vector
location in memory. The addresses of the trap vector locations for each interrupt level are
shown in Table 2-7. There are 19 internal clock cycles (<I>) required between the end of an
instruction in the interrupted program and the start of the first instruction of the interrupt
routine. Interrupting out of the IDLE state requires 17 machine cycles.

TABLE 2· 7 - RESET AND INTERRUPT VECTOR LOCATIONS IN ROM

VECTOR VECTOR SERVICE
MSB LSB

DESCRIPTION ORDER

>FFFE >FFFF RESET Immediate
>FFFC >FFFD !!\JT1 Extern a! 1
>FFFA >FFFB INT2 Timer 1 2
>FFF8 >FFF9 INT3 External 3

70X 1 only below
>FFF6 >FFF7 INT4 Serial port 4
>FFF4 >FFF5 INT5 Timer.2 5

The interrupt service routine can explicitly enable nested interrupts by executing the EINT
instruction to directly set the I bit in the status register to a one, thus permitting nested
interrupts to be recognized. When the nested interrupt service routine completes, it returns to
the previous interrupt service routine by executing the RETI intruction. ·

Interrupt Logic

The internal interrupt logic for each the three maskable interrupts for the 70XO devices and five
maskable interrupts for the 70X 1 devices is shown in Figure 2-10.

The logic is slightly different for INT1 on the 70CXO devices so that this interrupt logic will only
detect the Q1 output of the Pulse flip-flop and not INTn. On the CMOS parts, INT1 is a latched
interrupt and not a latched and level as on the other interrupts.

To even further conserve the already low power requirements of the CMOS devices, two low
power modes are provided. These modes are called Halt and Wake-up and are entered by
executing a IDLE instruction. Either an external interrup or the timer interrupt will release the
device from the low power modes depending on whether it is in the Halt or Wake-up mode. See
Section 4 for a complete description of the modes and interrupts. ·

IOCNTO
REGISTER

-T-
INTERRUPT I

PIN
OR

TIMER

INTn

I
I
I
I

+5

INTn

CLEAR FLAG

CLR
D 01

PULSE
FF

WR RD

INTn
ENABLE

WR RD

ENABLE
LATCH

STATUS
REGISTER

--r INTn

I ACK

I
I TO

PRIORITY

I LOGIC

I
INTn
ACTIVE

__ J_ __
SYNC

FF
"Removed from INT1 logic on TMS70CXX versions

NOTE: <Pis a clock with frequency of fosc/2 (+ 2 option).

INT ENABLE

f 0 sc/4 (+ 4 ~ption).

FIGURE 2-10 - INTERRUPT LOGIC

When an external interrupt is first asserted, its level is gated into the Sync flip-flop by the Phi
(<I>) clock signal, which has a frequency of fosc/2 for the /2 clock option and fosc/4 for the /4
clock option. In order for a pulse interrupt signal to be detected, the pulse width must be a
minimum of 1 . 25 Phi (<I>) frequency periods. The output of the Sync flip-flop clocks a 1 into the
Pulse flip-flop. This is the only time a 1 is loaded into the Pulse flip-flop. The Pulse flip-flop will
be set within 1.25 machine cycles (<I>) of the assertion of the interrupt. If INTn is removed
before the interrupt is recognized, its occurreflce is latched in by the INTn Pulse flip-flop (Q1).
The INTn ENABLE bit is used separately to individually mask interrupt levels. This bit must be 1
for the interrupt to be recognized.

As previously stated, all interrupt control bits are implemented in the IOCNTO and IOCNT1
registers in the Peripherial File. 1/0 instructions may simply read from and write to each INTn
ENABLE bit (Q2).

2-23

The INTn FLAG is handled differently. When the INTn FLAG bit is read, the logical OR of the
Pulse flip-flop output (01) and I NTn (inverted I NTn pin) is returned. As long as the INTn pin
is low, the INTn FLAG bit will be read as a 1, regardless of the· state of the pulse flip-flop. This
makes the external interrupts both latch and level sensitive. This is different on INT1 of the
70CXO devices however. When the INT1 FLAG is read, the pulse flip-flop output (01) is the
·on.ly return. This makes INT1 of the TMS70CXO a latched interrupt only and not a level
interrupt. When a 1 is written to the INTn CLEAR bit (See Section 2.5.3), the pulse flip-flop is
cleared. Writing a 0 to INTn CLEAR has no effect.

The pulse flip-flop allows short pulsed external interrupt signals to be recognized by the CPU. A
pulsed interrupt signal must have a minimum pulse width of 1.25 Phi (<I>) frequency periods in
order to be gated into the pulse flip-flop. The pulse flip-flop will retain the signal until the
interrupt is recognized. When the interrupt is acknowledged by the CPU, the pulse flip-flop is
cleared automatically. To make sure the pulsed interrupt is not interpreted as a level signal, the
maximum pulse (time low) of a pulsed interrupt cannot exceed the following:

(16+N)/ <I>

where N equals the number of machine cycles in the interrupt service routine, up to and
including the EINT or RETI instruction and <I> is the internal machine clock frequency.

This ensures that the INTn FLAG is cleared prior to the first possible i~struction boundary in
which· the interrupt could be reserviced. Note that this is not of any concern to INT1 on the
TMS70CXO devices since INT1 is not level sensitive.

The interrupt structure of the TMS7000 also permits wire-AN Ding of multiple interrupt sources
onto a single INTn pin, by allowing level-sensitive interrupt_ detection in addition to
pulse-sensitive detection. A high-to-low transition on the INTn pin sets the pulse flip-flop, as
previously described, and this, as well as the low level of the INTn pin, sets the INTn FLAG in
the active state. When the interrupt is accepted, the pulse flip-flop is cleared and will not be set
again untii after the next high-to-low transition of the INTn pin. If the INTn pin remains at a low
level, the corresponding INTn FLAG will remain active, and the interrupt will be recognized
again.

This siruciure aiiows muitiple interrupts to be wire-ANDed onto one interrupt, since the
interrupt will be repeatedly recognized as long as the interrupt pin is low. An application
program could determine which of several interrupts are requesting service and set its own
priority structure.

Interrupt inputs can be tested, using the interrupt FLAG bits (See Section 2.4) without actually
recognizing tile interrupt, thus permitting flexible multi-device control. Under program control,
each interrupt routine can retain complete control of the processor or allow nested interrupts,
as described in Section 2.4.

2.6 PROGRAMMABLE TIMER/EVENT COUNTERS

2-24

The programmable timer/event counters are 8-bit counters with a programmable prescaled
clock source as shown in Figure 2-11. The TMS70XO devices contain one timer/event counter
and the TMS70X1 devices contain two timer/event counters. Timer 1, with its 8-bit capture
latch, is available in all TMS7000 family members and is accessed at P2 and P3 of the
peripheral file. Timer 2 is available only in the TMS70X1 family members and is accessed at
P18 and P19 of the peripheral file (see Figure 2-12).

384

• 4118
EXTERNAL IA7)

.SIGNAL --+=t--<.

MODE

PF number: P2

A(6)SCLK
CASCADE

SOURCE

</>/8
CASCADE

SOURCE

TIMER 1
INTERRUPT

CASCADE

7

MSB

Address: >0102
MSB

7

PF number: P3 MSB
Address: >0103

TIMER 1

TIMER 2

8-BITTIMER
LATCH (TL)

8-BIT TIMER
(CURRENT

VALUE)

INT2

5-BIT PRESCALE
LATCH IPL)

5-BIT
PRESCALER

CAPTURE
VALUE

8-BIT TIMER
LATCH (TL)

B-BIT TIMER
(CURRENT

VALUE

INT5 TIMER
VALUE

FIGURE 2-11 - PROGRAMMABLE TIMER/EVENT COUNTER

TIMER 1 DATA REGISTER - T1 DATA

6 5 4 3 2 0

CURRENT' TIMER VALUE LSB

TIMER LATCH VALUE (TL) LSB

TIMER 1 CONTROL REGISTER - T1 CTRL

6 5 4 3 2 0

CAPTURE LATCH VALUE (CL) LSB

START SOURCE IDLE PRESCALE LATCH VALUE
(PL)

0 for all NMOS devices

0 = Wake-up low power mode, 70CXO only

1 = Halt low power mode, 70CXO only

= External clock source from pin A 7

0 = Internal clock source = <J>/8

= Start timer

0 = Stop timer

FIGURE 2-12 - TIMERS 1 AND 2 DATA AND CONTROL REGISTERS

READ

WRITE

READ

WRITE

2-25

2-26

PF number: P18
Address: >0112

PF number: P19
Address: >0113

7

MSB

MSB

7

0

START

Tl~ER 2 DATA REGISTER - T2DATA

6 5 4 3 2 0

CURRENT TIMER VALUE LSB READ

TIMER LATCH VALUE (TL) LSB WRITE

TIMER 2 CONTROL REGISTER - T2CTRL

6 5

0 0

SOURCE CAS-
CADE

4 3 2

0 0 0 0

msb PRESCALE LATCH VALUE lsb
(PU

1 =Timer 1 output (INT2) is clock source
overides SOURCE bit

0 = SOURCE bit determines clock source

= External clock source from pin A6
0 = Internal clock source =· cp/8

= Start timer
0 = Stop timer

0

0 READ

WRITE

FIGURE 2-12 - TIMERS 1AND2 DATA AND CONTROL REGISTERS (CONTINUED)

The clock source and prescaling value of both timers are determined by the timer control
registers (T1 CTRL/T2CTRL). These control bits are write-only and therefore restrict tin:ier
centre! register munipulations to the fOUowing lnsiruciions:

MOVP %>XX,Pn STA @>01XX

MOVP A,Pn STA *Rn

MOVP B,Pri. STA @>01XX(B)

Where:
>XX = Immediate 8-bit data value in hex
>01 XX = 16-Bit peripheral file address in hex
A = A register
B = B register
Rn = General purpose register pair flUmber
Pn = Peripheral file register number

The same instructions are required for writing to the timer data registers.

384

The clock source of Timer 1 and Timer 2 is determined by bit 6 (SOURCE) of T1 CTRL and
T2CTRL respectively. A SOURCE bit of 0 selects the internally generated cJ>/8 (f osc/32, /4
option or fosc/16, /2 option) clock and places the Timer/Event Counter in the Real Time Clock
(RTC) mode. A SOURCE bit of 1 selects the external clock source and places the Timer/Event
Counter in the Event Counter mode. In the external mode, the clock sources for Timers 1 and 2
are input on the two Most Significant Bits of 1/0 port A (A 7) and (A6) respectively.

Bit 7 of the timer control registers is the START bit for the respective programmable timers.
When a 0 is written to the START bit, the timer chain is disabled or frozen at the current count
value. When a 1 is written to the START bit, regardless of whether it was a 0 or a 1 before, the
prescaler and counter decrementers are loaded with the corresponding latch values, and the
Timer/Event Counter operation begins. When the prescaler and counter decrement through
zero together, an interrupt flag is set and the prescaler and counter decrementers are
immediately and automatically reloaded with the corresponding latch values. The interrupt
levels generated by the timers are INT2 for Timer 1 and INT5 for Timer 2. Timer 1 has a Capture
Latch (CL) associated with it which "captures" the current value of the counter whenever
INT3 is triggered. The capture latch will store the timer value even when INT3 is disabled.
On the CMOS parts, the capture latch is disabled during the IDLE instruction.

2.6.1 Real Time Clock (RTC)

2.6.2

2.63

384

In the RTC mode, the internally generated cJ>/8 (fosc/32, /4 option or fosc/16, /2 option) is th~
decrementer clock source. Each positive pulse transition of the cJ>/8 period signal decrements
the count chain.

The RTC mode allows a program to periodically call a service routine, such as a display refresh,
by simply setting the prescale latch value and the timer latch value so the routine is called at the
desired frequency.

Event Counter (EC)

When Timer 1 or Timer 2 is in the EC mode, the counter functions as in the RTC mode except
pin A 7 and A6 of Port A are the decrementer clock sources for Timer 1 and Timer 2
respectively. A positive edge transition on these external pins decrements the count chain.
Note that this will allow INT2 and INT5 to function as a positive eqge-triggered external
interrupt by loading a start value of 'O' into both the prescaler and timer latches. A positive
transition on A 7 or A6 will decrement the corresponding timer through zero and generate an
INT2 or INT5. The EC mode can also be used as an externally provided RTC if the external clock
is input to 1/0 pin A 7. The maximum clock frequency on A 7 or A6 in the EC mode must not be
greater than cJ>/8; or fosc/32, assuming the /4 cl9ck option and fosc/16, assuming the /2 clock
option. The minimum pulse width must not be less than 1.25 machine cycles (1.25 x <t>l as
shown in Section 4.

Timer and Prescaled Clock

The timer clock, whether internal or external, is prescaled by a 5-bit modulo-N counter. The
prescaling value is determined by the least significant five bits of the timer control register. The
actual prescaling value is equal to the timer control latch value plus one. Thus, a value of >88, (
> 80 + > 8 where > 80 is the start bit and > 8 is the prescale value) in the timer control latch
would result in a fosc/160 clock output from the prescaler, assuming a /4 clock option.

An INT2 interrupt for Timer 1 or an INT5 interrupt for Timer 2 is momentarily pulsed when both
the prescaler and counter decrement past the zero value together. This sets the INT2 or INT5
flag flip-flop, as described in Section 2. 5.4. The prescaler and counter are then immediately

2-27

2.6.4

2.6.5

2-28

reloaded with the contents of the prescale latch (PL) and the timer latch (TL) and the timer will
~tart decrementing with the new PL and TL value. The TL is loaded through the Timer 1 data
register (T1 DATA) for Timer 1 and the Timer 2 data register (T2DATA) is loaded into Timer 2.
This value is write-only. When read, the timer data register contains the current value of the
COUf!ter. The PL is loaded through the Timer 1 control register (T1 CTRL) for Timer 1 and the
Timer 2 control register (T2CTRL) loads into Timer 2. When read, the T1 CTRL contains the
Capture latch (CL) value and the T2CTRL contains all zeros.

• Timer Interrupt Pulses

The period of the timer INT2 and INT5 interrupt pulses may be calculated by the following
formula:

t1NT = tcLK *(PL+ 1)*(TL+1)

where:

t1NT · = period of timer interrupts

tcLK = 8/¢ (32/fosc on/4 option or 16/fosc on /2 option) for internal RTC
mode or the period of input external ·
EC mode

PL = Prescaler Latch value

TL = Timer Latch value

At the falling edge of the INT3 input, the Timer 1 value is loaded into the Capture Latch (CL).
When read, the Timer 1 contrnl register contains the CL value. This feature provides the
capability to determine when an external event occurred relative to the internal timer.

NOTE ·

During the HALT mode of the CMOS version, the capture latch may not be loaded by
INT3.

Timer2

Timer 2 is only available on the TMS70X1 family devices (i.e. TMS7001, TMS7041,
SE70P161). Timer 2 is similar to Timer 1 except that there is no Capture Latch associated with
Timer 2, and INT5 is generated by Timer 2. In addition, T2CTRL also contains the CASCADE bit
(bit 5). This bit is used in conjunction with T2CTRL SOURCE (bit 6) to determine the
decrementing source of Timer 2.

A CASCADE bit of 1 selects the interrupt generated by Timer 1 (INT2) as the decrementing
input to the prescaler of Timer 2. The CASCADE bit overrides the SOURCE bit, i.e., if the
CASCADE bit is set to 1 the SOURCE bit of Timer 2 has no effect.

As with Timer 1, a SOURCE bit.of 0 selects the internally generated <)>/8 (fosc/32, /4 option or
fosc/16, /2 option), and places the the timer in the Real Time Clock (RTC) mode:A SOURCE bit
of 1 selects the external clock source and places the Timer/Event Counter in the Event Counter
(EC) mode.

. 384

The external EC input for Timer 2 is general purpose 1/0 pin A6/SCLK of Port A. A6/SCLK is
also the 1/0 line (depending on mode of operation) for the baud rate generator clock (SCLK).
Section 2. 7 .2 describes the SCLK signal.

Driving the external EC line for Timer 2 with the A6/SCLK produces the following modes·:

1) With both SCLK and T2 external, the input signal drives the baud rate timer (T3) and
Timer 2 (T2).

2) With SCLK external and T2 internal, the 1/0 bit (A6/SCLK) drives the baud rate timer
(T3) and cj>/8 drives Timer 2's prescaler.

3) With SCLK and T2 internal, the A6/SCLK pin is the 1 x baud rate output signal from T3
and the T2 source is cj>/8.

4) With SCLK internal and T2 external, A6/SCLK is the 1 x baud rate signal from T3 and
drives T2. In this mode, the baud rate timer and Timer 2 are cascaded, with the baud
rate timer driving Timer 2. This is done by setting the CASCADE bit to 0 and the Timer
2 SOURCE bit to 1. Timer 2 can then be cascaded with either Timer 1 or the baud rate
timer.

2.6.6 Pulse Width Measurement

Through the use of the Capture Latch (CL) the Timer/Event Counter can work with pulse width
measurement applications. A simple exclusive OR- gate is all that is needed to set up the
TMS7000 to handle a pulse width modulated input as shown in Figure 2-13. In software,Jthe
user outputs the inverted input pulse train through one of the output lines (80 in this case). This
line is exclusive-ORed with the input data line resulting in an input to the INT3 pin. This causes
the Capture Latch to be loaded with the current value of the timer at each transition of the input
pulse train. The user program can then compare these values to determine width values.

INPUT DATA
TMS7000

INT3

FIGURE 2-13 - PULSE WIDTH MEASUREMENT

2.6:7 Pulse Width Modulation (PWM) Theory of Operation

Pulse Width Modulation (PWM) involves the encoding of information in the width of a pulse.
Information can be contained in the widths of the these pulses when these pulses occur at a
base frequency as shown in Figure 2-14.

t- ·t- ·r
INPUT _J I 11 I
TRAIN .. _____ -----...

~w,....j H w2 '--w3--.I
. f = 1/t

FIGURE 2-14 - PULSE WIDTH MODULATED PULSE TRAIN

2-29

2-30

Since the interrupts are only latched on a low level, a technique to give a low level at the
beginning and end of a pulse is shown in Figure 2-15 which allows a simple timing program to
measure the pulse width. This technique can be extended from PWM to any interval
measurement application:

The TMS7000 is equipped to perform pulse measurement with the addition of a single
exclusive OR-gate.

The edges of the PWM measurement are driven off of INT3 while the onboard counter times
the event. The TMS7000 interrupt is structured so that the current value of the timer is
captured at the CL (P3) on receipt of INT3. The actual time between events can then be derived
from this captured value. The additional output BO is used to disable INT3 between successive
edges of input train (Figure 2-15).

INPUT _J n L TRAIN

INT3

l---w3--.1

BO I LJ I
SERVICE A) Bl A B A B
ROUTINE START STORE

ACTION TIMER CAPTURE
LATCH

FIGURE 2-15 - TMS7000 PWM INT3 TIMING

The decoded data, now encoded in the interval between INT3s, is available on alternate
interrupts at the Capture Latch (P3L A sample INT3 service routine is:

INT3 XORP % >01,P6 TOGGLE BO
DEC R2 MARK YOUR PLACE

BTJO % >01,R2,RSTRT JUMP OFF OF MARKER
MOVP P3,B SAVE CAPTURE LATCH DATA
RETI

RSTRT MOVP %>80,P3 RESTART TIMER
RETI

In this sample, R2 is used to keep the interval measurement on the proper portion of the pulse,
and to flag the interrupt to the mainline program. Pin BO saves the Capture Latch data for the
mainline program to interpret.

384

2.6.8

For long pulse widths, the prescale value can be adjusted to prevent the timer from rolling over
before receiving an INT3. An alternate solution is to maintain a zero value of prescale, but use
INT2 (the timer interrupt) to drive a software counter. A sample code is:

INT2 ____. ORP % >08,PO

INC
RETI

R4

CLEAR INT2 FLAG

INCREMENT UPPER STAGE
COUNTER

NOTE:

This sample code involves using the TMS7000 in a multi-interrupt environment.
Care must be taken to ensure that a correct sequence of interrupts is performed.
Multi-interrupt Pulse Width Modulation is described in the following paragraphs . .

Multi-Interrupt Pulse Width Modulation (PWM)

A simultaneous interrupt occurs when the INT3 service routine is delayed due to the receipt of
a high~r priority INT2 at the same time.

For example, when the user is operating the INT2 timer at high resolution (low value of
prescale) to time intervals between successive INT3 events, the INT2 service routine
increments a software controlled RAM byte. This byte serves as an upperstage byte for the
timer, so the high resolution offered by a low value of prescale can be maintained.

However, when both interrupts occur within an instruction cycle, one of the two sequences
shown in Figures 2-16 and 2-17 has occurred.

14

I IAQ
1-

I
INT2

TIMER
ROLLS
OVER

INSTRUCTION TIME

I
INT3

CAPTURE
LATCH

LOADED .

IAQ = INSTRUCTION
ACQUISITION

FIGURE 2-16 - SIMULTANEOUS INTERRUPTS, INT2 PRECEDING

In the first sequence, if INT2 precedes INT3 within an instruction boundary, the receipt of INT2
implies that the timer has rolled over and its latch value (>FF) is reloaded into the current timer
register. The current timer value was captured upon receipt of the interrupt (3). The INT2
service routine increments the software (RAM) counter and exits. The INT3 is then
immediately serviced as the current timer value was captured upon receipt of the interrupt (3).
The servic.e routine reads the capture latch value, and a correct interval may be deduced from
this capture value and the software upperstage counter value.

2·31

2-32

I--------- INSTRUCTION TIME -------Ii.I

~~' IAQ ~~~~~~~~~~~~____.~, -IA-Q~~-
I

INT3

CAPTURE
.LATCH
LOADED

I
INT2

TIMER
ROLLS
OVER

IAO = INSTRUCTION
ACQUISITION

FIGURE 2-17 - SIMULTANEOUS INTERRUPTS, INT3 PRECEDING

The second sequence that ·can occur is when INT3 precedes INT2 within an instruction
boundary. As in the previous case, INT2 is serviced first. However, the current timer value is
captured by hardware when INT3 comes in, before actual servicing of INT3. INT2 has not yet
occured and the hardware has therefore captured a timer value that has not rolled over. This
timer value is likely to be near or at >00. The INT2 service routine, if it does not check for this
condition (by testing the most significant bit (MSB) of the timer for rollover) will increment the
upper stage of software by default and will cause an incorrect value to be assumed for the
interval. This condition occurs because the timer (implemented in hardware) and the program's
upperstage counter (software driven) are out of sync.

The following code will correct the situation.

INT2

OKAY

BTJZP
BTJO

INC

RET3 RETI

INT3 then becomes:

INT3 XORP
DEC

BJTO
MOVP
RETI

RSTRT MOVP
CLR
RETI

% >20,PO,OKAY
% >80,P3,0KAY
or:-r~
llL.l'tJ

01.. ~n1 ca
/V ' V I ti \J

R2

% >01,R2,RSTRT
P3,B

%>80,P3
R4

CHECK FOR PENDING INT2
CHECK CAPTURED VALUE

O!<AY TO INCREMENT UPPER STAGE

Tr\l"'l"'ll'"'nr\
IV\.J\.JL.&.:UV

MARK YOUR PLACE

JUMP OFF OF MARKER
SAVE CAPTURE LATCH DATA

RESTART TIMER
RESET SOFTWARE UPPER STAGE

384

2.7 SERIAL PORT (TMS70X1 VERSIONS ONLY)

2.7.1 Description

The TMS70X 1 contains a serial port which greatly enhances its 1/0 and communication
capability. It is not available in the TMS70XO vesions of the TMS7000 family. The serial port
can operate in several modes which let the TMS70X 1 interfqce with Universal Asynchronous
Receiver/Transmitter (UART) peripheral devices, as well as multiple microcomputers
(TMS70X1, MC6801, 18051). These serial links are implemented using standard
asynchronous protocols. These multiprocessor protocols, described in Section 2. 7 .3, are
compatible with those used by the Motorola MC6801 and Intel 18051.

A second mode, isosynchronous, permits very high transmission rates.*

The'third mode, a serial 1/0 mode, can be used to expand 1/0 lines using external shift registers,
and to communicate with peripheral devices requiring a non-UART serial input (e.g. display
drivers).

Including a hardware serial port on-chip saves ROM code and allows much higher transmission
rates than could be achieved in software. The full-duplex serial port has a double buffered
transmitter and receiver.

The serial port consists of a receiver (RX), transmitter (TX), and Timer 3 (T3). The complete
functional definition of the serial port is programmed by the TMS70X 1 software. A set of
control words must first be sent out to the serial port to initialize it, so that it supports the
desired communications format. These control words will determine the baud rate, character
length, even/odd/off parity, number of stop bits, etc.

The' serial port is controlled and accessed through registers in the peripheral file. The registers
associated with the serial port are:

TABLE 2-8 - S~RIAL PORT CONTROL REGISTERS

REGISTER NAME TYPE FUNCTION

P17 SMODE FIRST WRITE Serial Port Mode
P17 SCTLO WRITE Serial Port Control-0
P17 SST AT READ Serial Port Status
P20 T3DATA R/W Timer3 Data
P21 SCTL1 R/W Serial Port Control-1
P22 RXBUF READ Receiver Buffer
P23 TXBUF WRITE Transmission Buffer

The SMODE register is the receive/transmit (RX/TX) write-only control register. The SCTLO
and SSTAT are the RX/TX write-only control register and read-only status register, respectively.
These registers are all accessed through P1 7. The first write after a hardware or serial port
reset accesses SMODE (See Section 2. 7.5.1). All subsequent writes access SCTLO. These
registers are common to both RX and TX, and both RX and TX will have the same mode and
frame format.

* lsosynchronous is the term given to this second communication mode of the serial port. This mode has the same frame format as the
asynchronous mode, but uses only one serial clock (SCLK) cycle per data bit as opposed to 16 SCLKs per data bit for the asynchronous mode.
This allows transmission rates 16 times those of the asynchronous mode.

384 2-33

2·34

The T3DATA register accesses the Timer 3 8-bit timer. It is similar to T1 DATA and T2DATA.
The SCTL 1 register is a read/write control register for the RX/TX and Timer 3.

The RXBUF is a read-only register containing data from the RX. The RXBUF is double buffered
with the internal shift register (RXSHF) so that the the TMS70X1 CPU has at least a full frame
to read the received data before the RX may overwrite it with new data.

The TXBUF is a write-only register from which the TX takes the data it transmits. It is double
buffered with the TX shift register (TXSHF), so that the TMS70X1 CPU has a full frame to
write new data before TXBUF becomes empty.

Figure 2-18 is a block diagram of the serial port registers and fur:ictional blocks. Figure 2-19
illustrates serial port 1/0 logic. Section 2. 7 .5 describes serial port registers in detail.

CPU

SERIAL PORT

SM ODE/

SCNTLO/SSTAT

T3DATA/ A6/SCLK
SCNTL 1 TIMER3

INT4

SCLK
RXBUF RXSHF A5/RXD

INT4

TXBUF TXSHF 83/TXD

FIGURE 2-18 - SERIAL PORT FUNCTIONAL BLOCKS

384

2.7.2

2.7.2.1

TMS70X1

RXD

A6

SCLK
EXTERNAL
SCLK
INTERNAL
CLK BIT

0 =EXT
1 =INT

TXD
83

A5

FIGURE 2-19 - SERIAL PORT 1/0 LOGIC

A5/RXD
16

SCLK/A6
15

83/TXD
37

The TXD and RXD lines use 1/0 lines 83 and AS respectively. This configuration allows the TXD
and RXD pins to be used as 1/0 pins if desired. If serial port transmission is disabled, then TXD
follows 83. If reception is disabled, then no receiver interrupts occur and AS is an input bit.

Clock Sources and Serial Port Modes

The serial port can be driven by an internal (Timer 3) or external baud rate generator. The source
ofthe serial clock (SCLK) is determined by the clock (CLK) bit, SCTL1 (6) (See Section 2. 7.S).
Art external clock source is input on the high impedance A6/SCLK line. An internal clock source
is output on the low impedance A6/SCLK line, being derived from Timer 3 via a <f>/2 clock
(fosc/8 for /4 option, f osc/4 for /2 option) as shown in Figure 2-19. The internally generated
SCLK has a SO% duty cycle. The current value of SCLK (internal or external) can be determined
by reading A6/SCLK. The RX receives data on the rising SCLK edges and the TX transmits data
on the falling SCLK edges.

The RX/TX has three communication modes: asynchronous, isosynchronous, and serial 1/0.
The serial 1/0 mode is used to link the serial port to shift registers for simple 1/0 expansion. The
isosynchronous and asynchronous communication modes are used to link to other
synchronous and asynchronous devices. These two mode also have extra features for two
formats of multipr~cessor communication~ In all modes 1/0 is NRZ (non-return to zero) format,
i.e. data value 1 = high level, and data value 0 = low level.

Asynchronous Communication Mode

When the serial port is operating in the asynchronous communication mode, the frame format
consists of a start bit, five to eight data bits, even/odd/no parity, and one or two stop bits. The
bit period is 16 times the SCLK period. ,

2·35

2.7.2.2

2-36

SCLK

TXD
RXD

RX operation is initiated by reception of a valid start bit, which consists of a negative edge (1
and then 0 in adjacent SCLK periods) followed by taking a majority vote of three samples where
2 of the samples must be zero. These samples occur seven, eight, and nine SCLK periods after
the negative edge. This sequence provides false start bit rejection and also locates the center of
bits in the frame, where the bits will be read on a majority basis. Figure 2-20 illustrates the
asynchronous communication format, with a start bit showing how edges are found and
majority vote taken.

FALLING
EDGE DETECTED MAJORITY VOTE TAKEN

10 11 12 13 14 15 16

.----------DATA BIT PERIOD = 16 SCLK PERIODS---------~-

FIGURE 2-20 - ASYNCHRONOUS COMMUNICATION FORMAT

Since the RX synchronizes itself to frames, the external transmitting and receiving devices do
not have to use the same SCLK; it may be generated locally. If the internal SCLK is used it will
be output continuously on pin A6.

/sosynchronous Communication Mode

In this mode, the frame format consists of a start bit, five to eight data bits, even/odd/no parity,
and one or two stop bits. The bit period equals the SCLK period. RX operation is initiated by
reception of a valid start bit, which consists of a negative edge. Bits are read on a single value
basis. Since the RX does not synchronize itself to data bits the transmitter and receiver must be
supplied with a common SCLK. If the internal SCLK is used it is output continuously on pin
A6/SCLK. Figure 2-21 illustrates the isosynchronous communication format, with a complete
frame consisting of a start bit, six data bits, even parity, and two stop bits. ·

SCLK

TXD
RXD

FALLING EDGE
INDICATES
START BIT

D2 D3

..__..
DATA BIT PERIOD = SCLK PERIOD

S1

FIGURE 2-21 - ISOSYNCHRONOUS COMMUNICATION FORMAT

S2

In both the asynchronous and isosynchronous communication modes, when a frame is fully
received, RXBUF is loaded from RXSHF, RXRDY and INT 4 FLG are set to 1, and the error status
bits are set accordingly. RXRDY is reset to 0 when the CPU reads RXBUF.

Transmission is initiated after the CPU writes to TXBUF. This sets TXRDY to 0. Once TXSHF is
empty, it is loaded from TXBUF, setting TXRDY and INT4 FLG to 1. Upon completion of the
transmission, TXSHF will reload if TXBUF is full; if not the TX will idle and TXE will be 1 until
TXBUF is written to.

2. 7.2.3 Serial 110 Communication .Mode

2.7.3

When the serial 1/0 mode is in operation, the frame format is five to eight data bits and one stop
bit, with no corresponding clock edge for the stop bit. The cloak does not send pulses during
the stop bits. The bit period is equal to the SCLK period. TX operation is initiated by writing to
TXBUF, when TXRDY equals 1 . RX operation is initiated by writing a 1 to the RXEN bit. Figure
2-22 illustrates the serial 1/0 format for two back to back frames, each containing five data
bits. .

INTERNALLY
GENERATED

SCLK

TXo----..
RXD

f

SCLK ACTIVE AND DATA BEING TRANSMITTED OR RECEIVED

' ' ' ' ' ' ' ' ' '
DO D1 D2 D3 D4 SO DO D1 D4

f
SCLK & TXD INACTIVE AND HIGH

FIGURE 2-22 - SERIAL 1/0 COMMUNICATION FORMAT

so

f f

An internal SCLK source will be output on pin A6/SCLK. In the serial 1/0 mode, SCLK is gated
on pin A6/SCLK and will only be active when data is being transmitted or received; otherwise,
pin A6/SCLK will have a one value. An external SCLK may be selected and will drive the serial
port. However, this clock mode will be useless since there is no on-chip method to generate a
gated SCLK to drive the external shift registers.

Multiprocessor Commu~ication

When the serial port is in either the asynchronous or isosynchronous communications mode,
the multiprocessor communication formats are available. These formats are used to transfer
information between many microcomputers on the same serial link. Information is transferred
as a block of frames from a particular source to some destination(s). The TMS70X1 has
features to identify the start of blocks, and suppr~ss interrupts and status information from the
RX until a block start is identified.

2-37

2.7.3.1

2·38

In both multiprocessor modes the sequence is as follows: the serial port wakes up at the start
of a block and the TMS70X1 CPU reads the first few frames (containing a destination address).
If the block is addressed to the microcomputer the CPU reads the rest of the block; if not it puts
the serial port to sleep again and therefore will not receive serial port interrupts until the next
block start.

In order to provide more flexibility, the TMS70X1 implements two multiprocessor protocols,
one supported by Motorola and the other by Intel. These protocols are described in the
following paragraphs. The Motorola protocol is compatible with the Motorola MC6801
processor mode and the Intel protocol is compatible with the Intel protocol for the 8051. The
mode of TMS70X1 multiprocessor protocol is software selectable via the MULTI bit in the
SMODE register (s~e section 2.7.5). Both formats use the WU and SLEEP flags to control the
TX and RX features of these modes.

Because the Intel multiprocessor mode contains an extra address/data bit, it is not as efficient
as the Motorola mode in handling large blocks (over 10 bytes) of data. The Intel mode on the
other hand, is more efficient in handling many small blocks of data because it does not have to
wait in between blocks of data as does the Motorola mode.

Motorola (MC6801) Protocol

In this protocol, blocks are distinguished by having a longer idle time between the blocks than
between frames in the blocks. An idle time 10 bits or more after a frame indicates the start of a
new block.

In the Motorola mode of multiprocessor communications, the processor wakes up (serial port
resets the SLEEP bit to Oi a lier iht: uiol:k ::;iC:1ri ::;ignC:1i. The processor wiii now recognize the next
serial port interrupt. The user's service routine then receives the address sent out by the
transmitter and compares this address to its own. If the CPU is addressed, the service routine
will not set the SLEEP bit, and receive the rest of the block. If the CPU is not addressed, the
service routine sets the SLEEP bit (in software) to a 1 . This lets the CPU continue to execute its
main program without being interrupted by the serial port. The serial port will set the SLEEP bit
to 0 whenever it detects a block start signal. ·

There are two ways to send a block start signal. The first is to deliberately leave an idle time of
10 bits or more by delaying the time between the transmission of the last frame of data in the
previous block and the address frame of the new block. In the second way, the TMS70X1
implements a more efficient method of sending a block start signal. Using the wake up (WU)
bit, an idle time of exactly one frame (timed by the serial port) can be sent. The serial
communications line is therefore not idle any longer than necessary.

Associated with the WU bit is the wake up temporary (WUT) flag. WUT is an internal flag,
double·buffered with WU. When TXSHF is loaded from TXBUF, WUT is loaded from WU and
WU is reset to 0. This configuration is shown in Figure 2-23.

TXBUF

TXSHF

FIGURE 2-23 - DOUBLE BUFFERED WUT AND TXSHF

Sending out a block start signal of exactly one frame time is accomplished as follows:

A 1 must first be written to the WU bit. Then a data word (don't care) must be written to the
TXBUF. When the TXSHF is free again, the contents of the TXBUF are shifted to the TXSHF,
and the WU value is shifted to WUT. If the WU bit had been set to a 1, the start, data, and parity
bits will be suppressed and an idle period of one frame, timed by the serial port, will be
transmitted. The next data word, shifted out of the serial port after the block start signal, will be
the second data word written to the TXBUF after writing a 1 to the WU bit. The first data word
written is suppressed while the block start signal is sent out, and ignored after that.

However, writing the first don't care data word to the TXBUF is necessary so the WU bit value
can be shifte'd to WUT. After the don't care data word is shifted to the TXSHF, the TXBUF (and
WU if necessary) may be written to again, since WUT and TXSHF are both double buffered.

Although the RX still operates when the SLEEP bit is 1, it will not set RXRDY, INT4 FLG, or the
error status bits to 1 . The RX will set the SLEEP bit to 0 if it times an appropriate 10 bit idle time
on RXD. The Motorola multiprocessor communication forma~ is shown in Figure 2-24. c:::::::: BLOCKTRAMES ~ ..

I -, ~
RXD/TXD CJ LJ LJ CJf CJ LJ CJ .LJ LJ t

2.7.3.2

FIRST FRAME WITHIN
BLOCK IS ADDRESS.
IT FOLLOWS IDLE
PERIOD OF 10 BITS
OR MORE.

DATA

FRAME WITHIN
BLOCK

IDLE PERIODS OF 10 BITS OR MORE .

f sP ~ls_T.l ____ D_A_T_A _____ fsP

IDLE PERIOD
LESS THAN 10 BITS

FIGURE 2-24 - MOTOROLA MULTIPROCESSOR COMMUNICATION FORMAT

Intel (18051 J Protocol

In the Intel protocol, the frame has an extra or address bit just before the parity bit. Blocks are
distinguished by the first frame(s) in the block with the address bit set to 1, and all other frames
with the address bit set to 0. The idle period timing is irrelevant.

2-39

2.7.4

2-40

The WU bit is used io set the ·address bit. In the TX, when the TXBUF and WU are loaded into
the TXSHF and WUT, WU is reset to 0 and WUT is the value of the address bit of the current
frame. Thus, to send an address, the WU bit must be set to a 1, and the appropriate address
value should then be written to the TXBUF. When this address value is transferred to the
TXSHF and shifted out, its address bit will be sent as a 1, which flags the other processors on
the serial link to read the address. Since the TXSHF and WUT are both double buffered, the
TXBUF and WU may be written to immediately after TXSHF and WUT are loaded. To transmit
non-address frames in the block, the WU bit must be left at 0.

On the serial link, all processors set their SLEEP bit to 1 so that they will only be interrupted
when the address bit in the data stream is a 1 . When the processors receive the address of the
current block, they compare it to their own addresses and those processors which are
addressed set their SLEEP bit to· a 0, so that they will read the rest of the block.

Though the RX still operates when the SLEEP bit is 1, it will not set RXRDY, INT4 FLG, or the
error status bits to 1 unless the address bit in the received frame is a 1 . The RX does not alter
the SLEEP bit: this must be done in software. The Intel multiprocessor communication format
is shown in Figure 2-25.

. -------BLOCKS Or FRAMES -------- . ·

,---JC:--.. ;- ' . ~
RXD/TXD LJ LJ LJ o,o,o LJ LJ LJ

t ' t IDLE PERIOD OF NO SIGNIFICANCEt t t

RXD/TXD --,
EXPANDEQ .. ?_T ... l ___ A_DD_R __ ... 1 1~1 SP!ST!

y
FIRST FRAME WITHIN
BLOCK IS ADDRESS.

THE ADDR/DATA BIT
IS 1.

A

DATA

y
ADDR/DATA BIT
IS 0 FOR FRAME
WITHIN BLOCK.

lsTI

y
I

IDLE TIME IS OF
NO SIGNIFICANCE.

DATA

FIGURE 2·25 - INTEL MULTIPROCESSOR COMMUNICATION FORMAT

Timer3

Io lsp

Timer 3 is a simplified version of Timer 1 and 2 and, like Timer 2, is only available on the
TMS70X1 versions of the TMS7000 family. Figure 2-26 is a block diagram of Timer 3.

384

</>/2

2-BIT
LATCH

2-BIT
PRESCALER

RX/TX GENERATED
INTERNAL SCLK

8-BIT LATCH
0
T3DATA 17-0)

READ FROM T3DATA 17·0)

SET T3FLG= 1

SET INT4FLG = 1, IF T3ENB = 1

DIVIDE BY 2

FIGURE 2-26 - TIMER 3 BLOCK DIAGRAM

Timer 3 is accessed through T3DATA (similar to T1 DATA and T2DATA), and SCTL 1 (shared
with RX/TX functions). The clock source for Timer 3 is internal only, and has a frequency of
Q>/2. Timer 3 is a free running clock and is updated with new timer values when it decrements
through zero.

Timer 3 consists of a 2-bit prescaler and an 8-bit timer. Both the prescaler and the timer are
reloaded from 2-bit and 8-bit latches respectively, when they decrement through zero. The
latches are write only, but the 8-bit counter can be read.

The Timer 3 output goes to the serial port via a divide by two circuit, producing an equal
mark-space ratio internal SCLK. The baud rate generated by Timer 3 is user programmable and
is determined by the value of the 2-bit prescaler and the 8-bit timer latch. The equations for
determining the baud rates for both the asynchronous and isosynchronous modes are as
follows:

Asynchronous Baud Rate = ______ <!> ____ _

64 x (PL + 1) x (TL + 1)

lsosynchronous Baud Rate = ______ <!> ____ _

4 x (PL + 1 l x (TL + 1 l

where:

fosc =crystal frequency
<!> = Internal machine clock frequency

(either 1 /4 or 1 /2 off osc depending on clock choice)
PL = Timer 3 prescale latch value
TL = Timer 3 latch value

For example, to program the serial port to operate at 300 baud in the asynchronous mode (with
<!> = 2.5 MHz), the prescaler value is set to 0 and the latch value set to 129 decimal, or >81 ~

2-41

2.7.5

2.7.5.1

.2·42

The Timer 3 output always sets T3FLG to 1, and sets INT4 FLG to 1 if T3ENB is a 1 when the
timer and prescaler decrement thro

0
ugh 0. This allows Timer 3 to be used as a utility timer if it is

not used by the serial port. Timer 3 and its flags are not affected by the serial port software
reset, UR. Therefore, Timer 3 may be used independently of the serial port.

Serial Port Registers

Mode Register (SMODE)

SMODE (see Figure 2-27) is a write-only register and is accessed through P17 in the peripheral
file. -It describes the character format and type of communications mode (asynchronous or
isosynchronous). SMODE is only accessible after a hardware reset or after resetting the UART
through the UR bit. It must be the first register written to in the serial port immediately following
a reset. After writing to the SMODE register, it cannot be accessed without first performing a
reset operation. The first operation to location P17 in the peripheral file, immediately following
a reset, will access the SMODE register. All subsequent writes to P17 will access the control
register (SCTLO).

PF
number:
P17
Address:
>0111

7

STOP

6

SIO

(First write after RESET)

5 4

PEVEN PEN

3 2 0

CHAR1 CHARO COMM MULTI WRITE ONLY

1 J 0 = Motorola protocol
.__1 = Intel protocol

1--0 = lsosynchronous
communication

1 = Asynchronous
communication

00 = 5 bits/characte
'- 01 = 6 bits/charade

10 == 7 bits/characte

l
L 11 ~ 8 bits/characte

1 = Parity enabled
0 = Parity disabled

1 = Even parity
0 = Odd parity

"-- 0 = Serial 1/0 mode
1 = Communication mode

'--0 = One stop bit
1 = Two stop bits

FIGURE 2-27 - SERIAL MODE REGISTER - SMODE

384

NOTE

If the serial port is configured so that some features are irrelevant, then the
corresponding flags are don't care. For example, when configured in the serial 1/0
mode, bits 7, 4, 1, and 0 are Don't Cares.

MULTIPROCESSOR MODE (MULTI) BIT 0:

There are two possible multiprocessor protocols, the Motorola and the Intel. Both are described
in Section 2. 7.3. Setting this.bitto a 0 selects the Motorola protocol; setting it to a 1 selects the
Intel protocol. The multiprocessor communication is different from the other communication
modes in that the multiprocessor mode uses the Wake-Up and the Sleep functions.

COMMUNICATIONS MODE (COMM) BIT 1 :

This bit determines the serial port mode of communication. Setting the bit to 1 selects the
asynchronous mode. In this mode the bit period is 16 times the SCLK period and bits are read
on a two out of three vote basis. Setting the bit to 0 selects the isosynchronous mode. In this
mode, the bit period is equal to the SCLK period and bits are read on a single value basis. These
modes of operation are described in section 2. 7 .2.

NUMBER OF BITS PER CHARACTER (CHAR1 ,CHARO) BITS 2,3:

Characters are programmable to 5, 6, 7 or 8 bits. Characters of less than 8 bits are
right-justified in RXBUF and TXBUF. Characters of less than 8 bits are padded with leading
zeros in the RXBUF. The unused leading bits in the TXBUF may be written as don't care values.
The RXBUF and TXBUF register formats are given in sections 2.7.5.6 and 2.7.5. 7.

PARITY ENABLE (PEN) BIT 4:

If parity is disabled then no parity bit is generated during transmission or expected during
reception. A received parity bit is not transferred to the RXBUF with the received data as it is
not considered one of the data bits when programming the character field.

PARITY EVEN (PEVEN) BIT 5:

If PEN is set, then this bit defines odd or even parity according to the number of odd or even 1
bits in both transmitted and received characters.

SERIAL 1/0 OR COMMUNICATION MODE (SIO) BIT 6:

This bit determines whether the serial port operates in the serial 1/0 mode or one of the
communication modes. Setting this bit to a 0 sets the serial port in the serial [JO mode. Deletion
of the start and stop bits, in conjunction with an internal 1 x clock, allows ease of 1/0 expansion
by use of external shift registers. Setting this bit to a 1 selects the communication mode. When
this bit is set to 1 the COMM bit determines whether the serial port is in the asynchronous or
isosynchronous mode.

NUMBER OF STOP BITS (STOP) BIT 7:

This bit determines the number of stop bits sent when the serial port is in one of the
communication modes. Setting this bit to a 0 selects one stop bit, and setting it to a 1 selects
two stop bits. The receiver checks for one stop bit only.

2-43

2.7.5.2

2-44

Serial Control 0 Register (SCTLOJ

SCTLO (see Figure 2-28) is a write-only register, and is accessed through P17 of the peripheral
file. The SCTlO register is used to control the serial port functions, such as transmit and receive
enable, clearing of error flags and software reset. After a hardware or software reset, the
SM ODE register must be written to before accessing the SCTLO register, since the SMODE and
SCTLO registers are accessed through the same location. Any subsequent writes to this
register location (P17) will load the SCTLO register. SCTLO is cleared by a reset (hardware or
software).

PF number:
P17
Address:
>0111

7

x

~

6

UR

....__

5

x

=

4 3

ER x

.

2

RXEN

'--1

1 0

x TXEN

L·Tr
0 =Tr

WRITE ONLY

ansmitter enabled
ansmitter disabled

=Receiver
0 =Receiver

enabled
disabled

'---1 = Reset error flag .
0 == No reset flags

rial Resetse po rt
0 =No reset

FIGURE 2-28 - SERIAL CONTROL 0 REGISTER - SCTLO

TRANSMIT ENABLE (TXEN) BIT 0:

Data transmission through TXD cannot take place unless this bit is set to a 1 . When resetting to
a 0, the transmission is not halted until all the data previously written to TXBUF has been sent.
TXEN is set to 0 by a reset (hardware or software).

RECEIVE ENABLE (RXEN) BIT 2:

In the communication modes (asyhnchronous and isosynchronous) setting the RXEN bit to 1
allows RX to set INT4 FLG, and enable RXRDY. When reset to 0, this bit prevents received
characters from being transferred into the receiver buffer, and no RXRDY interrupt is
generated. However, the receiver shift register continues to assemble characters. Thus, if
RXEN is set partially through reception of a character, it will be transferred complete into
RXBUF. In the serial 1/0 mode writing a 1 to RXEN initiates RX operation. If an internally
generated SCLK is used, a gated SCLK at pin A6 is enabled: When the entire frame is received,
RX disables SCLK and sets RXRDY and INT4 FLG to a 1, and RXEN to 0. RXEN has no direct
effect on RXRDY or INT4 FLG in this mode. RXEN is set to 0 by UR.

ERROR RESET (ER) BIT 4:

Writing a 1 to this bit clears all three error flags in the SSTAT register (PE, OE, FE). Writing a 0
has no effect.

384

SOFTWARE UART RESET (UR) BIT 6:

Writing a 1 to this bit puts the serial port in the reset condition, and enables the SMODE register
for initialization. A6/SCLK is put in the high impedance state (input), the TXD signal is held at 1,
so that the B3 pin may be used as a general purpose output line (see Figure 2-19). Until a 0 is
written to UR, all affected logic is held in the reset state. UR must be set to 0 before the
TMS70X1 CPU can write a 1 to CLK and output SCLK on Port A. UR is set to 1 by reset
(hardware). The UART Reset affects only the items above and it is not a general device reset
like the RESET pin.

2. 7.5.3 Serial Port Status Register (SSTAT)

384

This status register (see Figure 2-29) is a read-only register and is accessed through P17 of the
Peripheral Fil,e. It is used for determining the status of the serial port. Bits 0, 1, and 6 of this
register are cleared by a reset (hardware or software).

7 '6 5 4 3 2 0
PF number: P17 1--~--+-~~1--~--+-~~1--~-+-~--1~~~-+-~~~~
Address: >0111 0 IBRKDT FE OE PE TXE RXRDY TXRDY READ ONLY

L

[1 = TXBUF ready
for character

0 = TXBUF full

'--- 1 = RXBUF ready with
new character

0 = RXBUF empty

1 = Transmitter empty
0 = Transmitter written to

1 = Parity error
0 = No parity error

'--- 1 = Overrun error
0 = No overrun error

.____ 1 ·= Framing error
0 = No framing error

1 = Break detected
0 =No break

FIGURE 2-29 - SERIAL PORT STATUS REGISTER· SSTAT

TRANSMITTER READY (TXRDY) BIT 0:

The TXRDY bit is set by the transmitter to indicate that TXBUF is ready to receive another
character, and is automatically reset when a character.is loaded. The serial port interrupt (INT4)
is issued at the same time (if enabled) the TXRDY bit is set. This bit is set to 1 by UR.

RECEIVER READY (RXRDY) BIT 1:

This bit is set by the receiver to indicate that RXBUF is ready with a new character, and is
automatically reset when the character is read out. The serial port interrupt (if enabled) is
issued at the same time the RXRDY bit is set. RXRDY is set to 0 by UR.

2·45

TRANSMITTER EMPTY (TXE) BIT 2: .

The TXE bit is set to 1 when the transmitter shift register and TXBUF are empty, and reset to 0
when the TXBUF is written to. This bit is set to 1 by UR.

PARITY ERROR (PE) BIT 3:

PE is set when a character is received with a mismatch between the number of 1 s and its parity
bit. This bit is reset by the ER bit in SCTLO.

OVERRUN ERROR (OE) BIT 4:

The overrun error bit is set when a character is transferred into RXBUF before the previous
charater has been read out. The previous character is overwritten and lost. OE is reset by the
ER bit in SCTLO.

BREAK DETECT (BRKDT) BIT 6:

The BRKDT bit will show that a break condition has occurred. BRKDT is set if the RXD line
remains continuously low for 10 bits or more, starting from the end of a frame (stop bit). When
the break ends, BRKDT is set to a 0 immediately. In the serial 1/0 mode BRKDT remains a 0. This
bit is reset to 0 by UR. A break is generated by setting Port B bit 3 low. Setting B port bit 3 high
again resumes operation of the TXD line.

Figure 2-16, Serial Port 1/0 Logic, shows how the TXD and RXD lines are multiplexed on 1/0
lines B3 and AS respectively. This configuration allows the TXD and RXD pins to be used as 1/0
pins if desired. If transmission is disabled, then TXD follows B3. If reception is disabled, then no
receiver interrupts occur and AS is an input bit.

FRAMING ERROR (FE) BIT S:

The FE bit is set when a character is received with a 0 stop blt. The stop bit indicates that
synchronization with the start bit has been lost and the character is incorrectly framed. FE is
reset by the ER bit in SCTLO.

2. 7. 5. 4 Serial Control 1 Register (SCTL 1)

2·46

The SCTL 1 (see Figure 2-30) is a read/write register and is accessed through P21 in the
peripheral file. This register is used to control the source of SCLK, multiprocessor.
communications, Timer 3 interrupt, and the Timer 3 prescaler value.

384

Pf number
P21

Address:
>0115

7

0

x

6 5 4

CLK SLEEP WU

.--a = T3FLG was cleared by software

I
1 = Timer 3 decremented through zero

or T3FLG was set by software

3 2 0

T3FLG T3ENB PRE3(1) PRE3(0) READ

CLK SLEEP WU T3FLG T3ENB PRE3(1) PRE3(0) WRITE

1 J
L2-Bit prescale

latch for Timer

.__ 0 = Disables T3 interrupt
to set INT 4 FLG

1 = Enables T3 interrupt
to set INT4 FLG

'-- 0 = Clear T3FLG
1 =Set T3FLG

..__ Controls TX multiprocessor communication

'--- Controls RX multiprocessor communication

L-o = External SCLK from pin A6/SCLK
= Internal SCLK from Timer 3

FIGURE 2-30 - SERIAL CONTROL 1 REGISTER - SCTL 1

TIMER 3 PRESCALE LATCH (PRE3(1), PRE3(0)) BITS 0, 1:

Thes~ bits act as the prescale bits for Timer 3. The internal clock input to the Timer 3 is either
fosc/4, /8, /16, or /32 (/2 option) or fosc/8, /16, /32, or /64 (/4 option) depending on the
setting of these bits. The output of timer 3 divided by 2 is the actual baud rate for the
isosynchronous mode or divided by 32 for the asynchronous mode.

TIMER 3 INTERRUPT ENABLE (T3ENB) BIT 2:

When T3ENB is set to a 1, Timer 3 will set INT4FLG to a 1 when it sets T3FLG to a 1. T3ENB is
reset to 0 by a hardware reset; but not by UR. This allows Timer 3 to operate independently of
the serial port.

TIMER 3 INTERRUPT FLAG (T3FLG) BIT 3:

The T3FLG bit is set to a 1 when both the Timer 3 prescaler and Timer 3 decrement through
zero together. T3FLG indicates that Timer 3 was the source of the serial port interrupt. T3FLG
must be cleared by software in the T3 interrupt service routine, since it is not cleared when the
INT4 vector is fetched by the CPU; This bit is also reset to 0 by a h'ardware reset, but not by UR.
This allows Timer 3 to operate independently of the serial port.

2-47

2.7.5.5

WAKE UP (WU) BIT 4:

The WU bit controls the TX featurP.s nf th13 rnu!tipmcessor modes {Section 2. 7.3). V'./U b rc:;ot
to 0 by U~ and cannot be set again until UR is cleared.

SLEEP (SLEEP) BIT 5:

The SLEEP bit is used to control the RX features of the multiprocessor modes (Section 2.7.3).
This bit is reset to 0 by UR.

SERIAL CLOCK SOURCE (CLK) BIT 6:

The CLK determines the source of SCLK. Setting this bit to a 0 selects an external SCLK, which
is input on the high impedance A6/SCLK line. Setting it to a 1 selects an internal SCLK, derived
from Timer 3. This signal is output on the low impedance A6/SCLK line. The CLK bit is reset to
0 by UR and cannot be set again until UR is cleared.

Timer 3 Data Register

The Timer 3 Data register- T3DATA (see Figure 2-31) is a read/write register and is accessed
through P20 in the Peripheral File.

PF number:P20
Address: >0114

7 6 5 4 3 2

msb CURRENT TIMER VALUE

msb TIMER LATCH VALUE (TL)

FIGURE 2-31 - TIMER 3 DATA REGISTER -T3DATA

0

lsb READ

lsb WRITE

2. 7.5.6 Receiver Buffer

2-48

The receiver buffer - RXBUF (see Figure 2-32) is a read-only register and is accessed through
P22 in the Peripheral File. This register contains the current data from the RX. Writing has no
direct effect on this register. Note that the read/write sequence of the MOVP instruction (as
well as ORP, XORP, ANDP) performs a read before a write. This action will perform a spurious
clearing of t,he RXBUF, and will set RXRDY to 0. Data in the RXBUF is right justified with padded
Os.

7 6 5 4 3 2 0

PF number:P22 msb RECEIVER DATA lsb
Address: >0116

0 0 0 5 data bits ...
0 0 ~ 6 data bits ...
0 7 data bits

8 data bits

FIGURE 2-32 - RECEIVER BUFFER· RXBUF

2.7.5.7

2.7.6

2.7.7

Transmitter Buffer

The transmitter buffer - TXBUF (see Figure 2-33) is a write-only register and is accessed
through P23 in the Peripheral File. This register contains the data to be transmitted by the TX.
Reading P23 returns .>00. Data written to the TXBUF must be right justified since the left-most
bits will be ignored for characters less than eight bits in length.

7 6 5 4 3 2 0

PF number:P23 msb TRANSMITTER DATA lsb
Address: >0117

x x x ~ 5 data bits ...
x x • 6 data bits ...
x 7 data bits

8 data bits

FIGURE 2-33 - TRANSMITTER BUFFER - TXBUF

Serial Port Initialization

To use the serial port on the TMS70X 1, the user must first initialize it. After initializ"ation, the
serial port is operated by simply reading and writing to Peripheral File registers. Initialize the
serial port as follows:

1) .set 83 Data value to 1. This allows the TXD line to transmit.

2) Write to the SMODE register (P17). This sets the character format and the type of
communication mode.

3) Write to the SCTLO register (second write to P17) to set the UR bit to 0. This same write
can also enable the transmitter, receiver, or both.

Once the serial port is initialized it can be operated continuously in the selected operational
mode. If the mode needs to be changed, the serial port must be reset, and then reinitialized for
the desired mode. The serial port can be reset in two ways; hardware reset (via RESET pin), or
software reset (via UR bit in SCTLO).

Serial Port Interrupts

INT4 is dedicated to the serial port. Three sources can generate an interrupt through INT4: the
transmitte.r (TX), the receiver (RX), and Timer 3 (T3). Setting TXEN to a 1 allows data loaded
into the TXBUF to be shifted into the TXSHF. The TX sets TXRDY and INT4 FLG to 1 when
TXSHF is loaded from TXBUF.

In the communication modes, if RXEN is set to 1 the RX sets RXRDY and INT 4 FLG to a 1 when
RXBUF is loaded from RXSHF. If RXEN is 0, the RXSHF still receives frames and shifts them
into the RXBUF, but RXRDY and INT4 FLG are held to 0. If a character is in RXBUF, and RXEN is
then set to a 1, RXRDY and INT 4 FLG will be set to 1.

In the serial 1/0 mode the RXEN is set to initiate the reception of a frame. When the last bit of
the frame is received RXEN is reset to 0.

2·49

However, RXRDY and INT4 FLG are still set to 1 when the character is shifted from RXSHF to
RXBUF. RXRDY and INT4 FLG bits are not masked by RXEN.

Timer 3 sets T3FLG, and INT4 FLG if T3ENB = 1, when its prescaler and timer decrement
through 0 together.

Thus when INT4 is acknowledged by the CPU; RXRDY, TXRDY, and T3FLG are the flags to
indicate its source. The INT4 service routine must determine which of these sources caused
INT4 in the specific application. For example, if all three are likely sources, the INT4 service
routine must check for the following possible situations:

1) RXRDY only
2) TXRDY only
3) T3only
4) RXRDY, TXRDY, T3
5) RXRDY, TXRDY
6) RXRDY, T3

· 7) TXRDY, T3
8) None

The last situation check is necessary because RXRDY, TXRDY, or T3FLG can set INT4 FLG.
Therefore it is possible that one or more interrupts may occur between CPU acknowledgement
of INT4 and INT4 service routine testing of RXRDY, TXRDY, and T3FLG. The INT4 FLG bit is
cleared by the CPU when it acknowledges INT4. If a second source of INT4 is set in the time
between this clearing and the software testing, the second or third interrupts will be serviced
by current INT4 service routine. Thus when INT4 is again acknowledged (INT4 FLG was set
again by the second interrupt) RXRDY, TXRDY, and T3FLG will all be set to 0.

2.8 PIN DESCRIPTION

2-50

Table 2-9 and Table 2-10 defines the pin assignments and describes the function of each pin for
the Single~Chip, Peripheral Expansion, Full Expansion, Microprocessor and Emulator modes for
the TMS70XO and TMS70X 1. All the TMS7000 family devices discussed in this manual are
pin compatible. Some pins on 70X 1 devices have extra functions and CMOS devices have
different electrical specifications (see Section 4). '

TABLE 2-9 - SC, PE, FE, AND MICROPROCESSOR PIN ASSIGNMENTS

SIGNATURE 1/0 DESCRIPTION
APPLICABLE
SECTIONS

AO 1/0 . AO-A4 and A 7 are general purpose bi-directional 2.2
A1 1/0 pins and A5,A6 are input-only general purpose 2.3
A2 1/0 pins for the 70X 1 only.
A3 1/0 AO-A 7 are general purpose input pins for
A4 1/0 70XO devices.
A5/RXD IN Serial port receiver 2.7.1
A6/SCLK 1/0 Serial port clock, input or output 2.7.2
A7 1/0 Real Time Clock used to decrement Timer 1 2.6.1

BO OUT BO-B3 Output only pins 2.2
B1 OUT· B4-B7 Output only pins in single chip mode 2.3
B2 OUT B4-B7 Memory interface in all other modes
B3/TXD OUT Serial port transmitter in 70X1 devices only 2.7.1
B4/A~TCH OUT Memory interface Address Latch strobe
B5/RMJ OUT Memory interface Read or Write signal
B6/ENAB LE OUT Memory interface Enable strobe
B7 /CLOCKOUT OUT Internal clock out

co 1/0 General purpose bi-direction pins in single 2:2
C1 1/0 chip mode 2.3
C2 1/0
C3 1/0 MultiplexE!d low address and data bus in
C4 1/0 all o~her modes
C5 1/0
C6 1/0
C7 1/0

DO 1/0 General purpose Bi-direction pins in single 2.2
D1 1/0 chip and peripheral expansion modes 2.3
D2 1/0
D3 1/0 High address bus in Full Expansion and
D4 1/0 Microprocessor modes
D5 1/0
D6 1/0
D7 1/0

INT1 IN Maskable interrupt of higher priority 2.4
INT3 IN Maskable interrupt of lower priority 2.4
RESET IN Device reset 2.5.2
MC IN Mode control 2.3

XTAL2/CLKIN IN Crystal input for control of internal oscill. 2.5
or input pin for external oscill.

XTAL1 IN Crystal input for control of internal oscill. 2.5
leave open for external oscill.

Vee IN Supply voltage (+ 5V NMOS, 3 to 6V for CMOS)

Vss IN ground reference

2-51

BS/RtW TI 40 Vss
B7/CLOCKOUT 2 39 BG/ENABLE

BO 3 38 84/ALATCH
B1 4 37 83

B2 s 3G MC

AO G 3S C7

A1 7 34 CG

A2 8 33 cs
A3 9 32 C4

A4 10 70XO 31 C3
A7 11 30 C2

INT3 12 29 Cl

INT1 13 28 co
RESET 14 27 DO

AG 1S 2G 01

AS 1G 2S Vee
XTAL2/CLKIN 17 24 02

XTAL1 18 23 D3

07 19 22 04

DG 20 21 OS

BS/R/W u 40 vss
B7/CLOCKOUT 2 39 BG/ENABLE

BO 3 38 B4/ALATCH
Bl 4 37 83/T>~D

82 5 36 MC

AO G 3S C7

·Al 34 CG

A2 8 33 cs
A3 9 32 C4

A4 10 31 C3
A7 11 70X1 30 C2

INT3 12 29 Cl

IN Tl 13 28 co
RESET 14 27 DO

AS/SCLK 15 2G 01
A5/RXD 16 25 Vee

XTAL2/CLKIN 17 24 02

XTALl 18 23 03

D7 19 22 D4

DG 20 21 D5

FIGURE 2-34 - SC, FE, PE. AND MICROPROCESSOR MODE PIN ASSIGNMENTS

2-52

TABLE 2-1Q- SYSTEM EMULATOR MODE PIN ASSIGNMENTS

SIGNATURE 1/0 DESCRIPTION
APPLICABLE
SECTIONS

AO 1/0 Not Connected 2.3.5
A1 1/0 NC
A2 1/0 NC
A3 1/0 NC
A4 1/0 NC
A5/RXD IN NC
A6/SCLK 1/0 NC
A7 1/0 NC

BO OUT NC
81 OUT NC
82 I OUT NC
83/TXD OUT Interrupt Acknowledge 2.5.3
84/A~TCH OUT Memory interface Address latch 2.3.5
85/R/VI/ ·- OUT Memory interface Read or Write 2.3
86/ENA8 LE OUT Memory interface Memory Enable
87 /CLOCKOUT OUT Internal clock out

co 1/0 ADD RO
C1 1/0 ADDR1 2.3
C2 1/0 ADDR2 Multiplexed low address and data bus ·
C3 1/0 ADDR3
C4 1/0 ADDR4
C5 1/0 ADDR5
C6 1/0 ADDR6
C7 1/0 ADDR7

DO, 1/0 ADD RB 2.2
D1 1/0 ADDR9 2.3
D2 1/0 ADDR10
D3 1/0 ADDR11 High order address byte
D4 1/0 ADDR12
D5 1/0 ADDR13

. D6 1/0 ADDR14
D7 1/0 ADDR15
--
NMI IN Non-Maskable interrupt of higher priority 2.3.5
INT IN Maskable interrupt of lower priority 2.3.5

--- Note: This pin is NC on the CMOS version
RESET IN Device reset 2.5.2
MC IN 'Mode control: must be held at + 14 Volts 2.3

XTAL2/CLKIN IN Crystal input for control of internal oscill. 2.5
or input pin for external oscill.

XTAL1 IN Crystal input for control of interanl oscill. 2.5
leave open for external oscill.

Vee IN Supply voltage (+ 5 V NMOS, 3V to 6V for CMOS)
vss · 1N Ground reference

2-53

BS/ RfiJ 1 r' u 40 vss
B7/CLOCKOUT 2 39 BG/ENABLE

BO 3 38 84/ALATCH
Bl 4 37 BJ/INT A
B2 s JG MC
AO G JS C7
Al 7 34 CG
A2 8 33 cs
AJ 9 32 C4
A4 10 31 CJ
A7 11 30 C2

NrM 12 29 Cl
INT 13 28 co

RESET 14 27 DO
AG 1S 2G 01
AS 1G 2S vcc

XTAL2/CLKIN 17 24 02
XTAL1 18 23 03

07 19 22 04
DG 20 21 OS

FIGURE 2-JS - SYSTEM EMULATOR MODE PIN ASSIGNMENTS

2-54

3. STANDARD INSTRUCTION SET

The TMS7000 instruction set is composed of 61 instructions that provide for input, output,
manipulation, and comparison of data. The instruction set is divided into eight functional.
categories:

ARITHMETIC INSTRUCTIONS

BRANCH AND JUMP INSTRUCTIONS

COMPARE INSTRUCTIONS

CONTROL INSTRUCTIONS

LOAD AND MOVE INSTRUCTIONS

LOGICAL INSTRUCTIONS

SHIFT INSTRUCTIONS

1/0 INSTRUCTIONS

Refer to the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE (MP 916) for a
detailed description of the instruction set, machine formats, addressing modes, and other
information relevant to the execution of a TMS7000 assembly language program. The
sections that follow summarize the key features of the TMS7000 Assembler.

3. 1 DEFINITIONS

The symbols used in the instructions are listed and defined in Table 3-1.

3·1

TABLE 3-1 - TMS7000 SYMBOL DEFINITIONS

SYMBOL DEFINITION

$ Current value of Program Counter
A Register A or RO in Register File
B Register B or R 1 in Register File
b Bitnumberasinb7(0 <= b <= 7)
Rn Register n of Register File (0 < = n < = 127)
Rn-1 Regsiter File number n-1 (0 < = n < = 127)
Pn Port n of Peripheral File (0 < = n < = 255)
PC Program Counter
IPC Interpretive Program Counter
ST Status Register
SP Stack Pointer
s Source operand (either a reg or an immed 8-bit operand)
Rs Source register in Register File (0 < = s < = 127)
d Destination operand (always a register)
Rd Destination register in Register File (0 < = d < = 127)
Pd Destination in peripheral file
Rd-1 Register File number d-1 (0 < = d < = 127)
iop Immediate operand
ra Relative Address (ra ~ ta - pen)
ta Target Address (ta = ra pen)
pen Location of the next instruction
end Condition
@ Indicates an address or label
% Indicates immediate operand

* Indicates Indirect Register File Addressing Mode

> Hexidecimal number
MSB Most significant byte or bit
LSB Least significant byte or bit

3-2

3.2 ADDRESSING MODES

The TMS7000 Assembly Language supports eight addressing modes. Five of these modes
specify 8-bit operands and are classifed as Direct Addressing Modes. The remaining three
addressing modes generate a 16-bit address and are classified as Extended Addressing Modes.
Table 3-2 summarizes both classifications.

TABLE 3-2 - TMS7000 ADDRESSING MODES

CLASS
ADpRESSING

EXAMPLE
SEE

MODE SECTION

DIRECT SINGLE REGISTER LABEL DEC B
INC R45

CLR R23 3.2.1.1
REGISTER FILE LABEL MOV B,A

ADD A,R17
CMP R32,R73 3.2.1.2

PERIPHERAL FILE LABEL XORP A,P17
MOVP P42,B 3.2,1.3

IMMEDIATE LABEL AND %>C5,R55
ANDP %VALUE,P32
BTJO % >D6,R80,LABEL 3.2.1.4

PROGRAM COUNTER
RELATIVE LABEL1 JMP LABEL

DJNZ A, LABEL
BTJO % > 16,R12,LABEL
BTJOP B,P7,LABEL 3.2.1.5

EXTENDED DIRECT MEMORY LABEL LOA @>F3D4
CMPA @LABEL 3.2.2.1

REGISTER FILE
INDIRECT LABEL STA *R43 3.2.2.2
INDEXED LABEL2 BR @LABEL(B). 3.2.2.3

3.2. 1 Direct Addressing Modes

3.2.1.1

384

The five Direct Addressing modes specify 8-bit operands. Each is described in the following
sections.

Single Register Addressing Mode

The Single Register Addressing mode specifies a single register in the Register File as
containing the 8-bit operand. The register can be sepcified as Rn or n {See Table 3-2), where n is
the Register File number and 0 is less than or equal to n which is less than or equal to 127.
When specifying either the A or B register, A or B can be substituted for RO or R 1 respectively in
the operand field of the assembly language statement. As is explained in Section 3.3. 1,
instructions using the Single Register Addressing mode are also called implied operand
instructions if either the A or B register is specified. Instructions using the Single Register
Addressing Mode and specifying Rn, where 2 is less than or equal to n which is less than or

3.3

3.2.1.2

3-4

equal to 127, are also called single operand instructons and are described in Section 3.3.2.
Figure 3-1 illustrates the object code generated by a Single Register instruction for the the
following cases:

Case 1: <inst> A
<inst> B

Case 2: <inst> Rn (where O less than or equal ton which is less than or equal to
127)

(PC)~ IPCI~

IPC+11~ (WhereO,,; n,,; 1271

CASE 1 CASE 2

FIGURE 3-1 - SINGLE REGISTER ADDRESSING MODE OBJECT CODE

Register File Addressing Mode

The Register File Addressing mode specifies a source and a destination register in the Register
File as containing the 8-bit operands. As illustrated in Table 3-2, the assembly language
statement specifies the source register before the destination register. Figure 3-2 illustrates the
object code generated by an instruction using the Register File Addressing mode for the
following cases:

Case 1: <inst> B,A

Case 2: <inst> A,B
<inst> Rs,A
<inst> Rs,B

Case 3: <inst> A,Rd
<inst> B,Rd
<inst> Rs,Rd

NOTE:The MOV instruction is uniquely defined for Register File Addressing mode. Refer to Table 3-8 for definition.

{PC) --1 opcode

CASE 1

(PC)~

IPC+11 -----c=J

CASE 2·

{PC)~

IPC+11-----c=J

IPC+21 -----c=J

CASE 3

FIGURE 3-2 - REGISTER FILE ADDRESSING MODE OBJECT CODE

3. 2. 1. 3 Peripheral File Addressing Mode

The Peripheral File Addressing mode is used to perform 1/0 tasks. Each PF register is an 8-bit
port which can be referred to as Pn or n, as shown in Table 3-2. There are four instructions that
use the Peripheral File Addressing mode: MOVP, ANDP, ORP, and XORP. BT JOP and BT JZP are
also peripheral instructions but they have a different format which is discussed in Section
3.3.4.3. All four instructions may be executed using either the A or B register as the source
register and Pn as the destination register. However, only the MOVP instruction may also be
executed using the Pn as the source register and either A or B as the destination register. Figure
3-3 illustrates the object code generated by an instruction using the Peripheral File Addressing
mode for the following cases:

Case 1:

Case 2:

<inst>
<inst>

MOVP
MOVP

A,Pn
B,Pn

Pn,A
Pn,B

(PC)~

IPC+11~

CASES 1 AND 2

FIGURE 3-3 - PERIPHERAL FILE ADDRESSING MODE OBJECT CODE

3.5

3.2.1.4 lmmediaieAddressingMode

The Immediate Addressing mode uses the contents of the byte following the opcode byte as an
8-bit operand. As shown in Table 3-2, the immediate operand {iop) can be a hex constant or a
label, and is indicated by a percent sign preceding the expression. Immediate operands can be
used by RF, PF, and Jump instructions. Refer to Tables 3-8, 3-9, 3-13, and 3-14 for an
illustration of the particular machine instruction formats. In addition, the MOVD instruction
uses immediate operands in two special formats (See Table 3-18). Figure 3-4 illustrates the
simplest case of an instruction using the Immediate Addressing mode.

IPCI~

1Pc + 1, ~----io_p ___ I
•
•
•

FIGURE 3-4 - IMMEDIATE ADDRESSING MODE OBJECT CODE

3. 2. 1. 5 Program Counter Relative Addressing Mode

3·6

The Program Counter Relative Addressing mode is used by all jump instructions. As shown in
Table 3-2, the assembly language statement for a jump instruction always includes a target
address (ta) in the form of a label. During assembly, the target address is used by the
microcomputer to calculate a relative address (ra) as follows: ra =ta -pen, where pen is the
location of the next instruction and -128 is less than or equal to ra which is less than or equal to
127. Note that the relative address is also referred to as the offset. The machine instruction
formats for the various types of jump instructions are given in Tables 3-11, 3-12, 3-13, and
3-14. Figure 3-5 illustrates the object code generated by a jump instructon.

(PC) __, ___ o_p_c_o_d_e __ ..

n iop*

b
y d*
t
e
s
• s*

•

(PC+nl__, ra

•n optional bytes, depending upon the particular jump instruction

FIGURE 3-5 - PROGRAM COUNTER RELATIVE ADDRESSING MODE OBJECT CODE

3.2.2

3.2.2.1

3.2.2.2

Extended Addressing Modes

The three Extended Addressing modes generate 16-bit addresses to memory. The 16-bit
address space includes the Register File, the Peripheral File, on-chip program memory, and
off-chip memory. Each of the Extended Addressing modes is described in the sections that
follow.

Direct Memory Addressing Mode

Direct Addressing Mode specifies a 16-bit address that contains the operand. As shown in
Table 3-2, the 16-bit address is preceded by an@ sign and can be written as a hex constant or
as a label. Figure 3-6 shows how the object code produced by an instruction using the Direct
Memory Addressing mode is used to generate a 16-bit effective address.

(PC) ----1., ___ o_pc_o_d_e __ _.

(PC+1) addr MSB

(PC+2) addr LSB

FIGURE 3-6 - DIRECT MEMORY ADDRESSING MODE OBJECT CODE

Register File Indirect Addressing Mode

The Register File Indirect Addressing mode uses the contents of a register pair as a 16-bit
effective address. As shown in Table 3-2, the indirect register file address is written as a
register number (Rn) pre~eded by an asterisk (*), i.e.: *Rn. The LSB of the address is contained
in Rn, and the MSB of the address is contained in the previous register (Rn-1). Note that RO
cannot be specified. Figure 3-7 shows how the object code produced by.an instruction using
the Register File Indirect Addressing mode is used to generate a 16-bit effective address.

IPCI __, ___ o_p_c_o_d_e __ _
Rn-'2

(PC+1) Rn

384

Rn-1 addr MSB

.__ ___ Rn
addr LSB

Rn+ 1

FIGURE 3-7 - REGISTER FILE INDIRECT ADDRESSING MODE OBJECT CODE

16-BIT
EFFECTIVE
ADDRESS

3.7

3.2.2.3 Indexed Addressing Mode

The Indexed Addressing mode generates a 16-bit address by summing the contents of the B
register with a 16-bit direct memory address. As shown in Table 3-2, the assembly language
statement for the Indexed Addressing mode contains the direct memory address written as a
label preceded by an@ sign, followed by a Bin parentheses, i.e.: @LABEL(B). The summing
operation automatically transfers any carries into the MSB. Figure 3-8 illustrates how the
object code produced by an instruction using the Indexed Addressing mode is used to generate
a 16-bit effective address. This mode should not be confused with the move double (MOVD)
instruction's % VALUE(B) addressing mode; see Section 3.3.6.

(PC) __, ___ o_p_c_o_d_e __ _
Reg B
Index

(PC+1) addr MSB

(PC+2) addr LSB

16-BIT
1--------------... +---- EFFECTIVE

ADDRESS

FIGURE 3-8 - INDEXED ADDRESSING MODE OBJECT CODE

3.3 INSTRUCTIONS

The instruction set is divided into the following types of instructions: Implied Operand, Dual
Operand, Jump, Extended Address, and Miscellaneous instructions. Each instruction type is
defined in the sections that follow. For additional details, refer to the TMS7000 ASSEMBLY
LANGUAGE PROGRAMMER'S GUIDE (MP 916).

3.3.1 Implied Operand Instructions ·

3-8

Implied Operand instructions are one-byte instructions whose operands, if any, are implied by
the opcode· itself. Table 3-3 lists the implied operand instructions in alphabetical order, along
with a brief functional description of each instructon. Table 3-4 shows the machine instruction
format for all Implied Operand instructions.

384

TABLE 3-3 - IMPLIED OPERAND INSTRUCTIONS

STATUS BITS
MNEMONIC MEANING DESCRIPTION

AFFTECTED

CLRC Clear Carry Bit C,N,Z 0 - C,N,Z, set from A register

DINT Disable Interrupts C,N,Z,I 0 - I, 0 - C, 0 - n, 0 - Z

EINT Enable Interrupts C,N,Z,I 1 - I, 0 - C, 0 - n, 0 - Z

IDLE,. Idle until Interrupt none Su:;pcnd until interrupt

LDSP Load Stack Pointer none B register - SP

NOP No operation none PC+ 1 - PC

POP ST Pop Status from Stack none Top of Stack_. ST; SP - 1 - SP
PUSH ST Push Status onto Stack none SP + 1-SP; ST - Top of stack

SETC Set Carry C,N,Z 1 - C, 0 - N, 1 - Z

STSP Store Stack Pointer none SP - B register

Operand address - PC

RETI Return from Interrupt loaded from Stack - PC LSB byte, SP - 1 - SP

stack Stack - PC MSB byte, SP - 1 - SP

Stack-ST, SP-1-SP

RETS Return from Subroutine none Stack - PC LSB byte, SP - 1-SP

Stack - PC MSB byte, SP - 1 ~SP

TABLE 3-4 - MACHINE INSTRUCTION FORMAT: IMPLIED OPERAND INSTRUCTION

ASSEMBLY LANGUAGE STATEMENT MACHINE INSTRUCTION FORMAT (BYTE 11

3.3.2

<inst> opcode

Single Operand Instructions

Single Operand instructions are either one- or two-byte instructions that use the Single Register
Addressing mode exclusively. Table 3-5 lists the Single Operand instructions in alphabetical
order, along with a brief functonal description of each. Table 3-6 shows the machine instruction
formats for all single operand instructions.

TABLE 3-5 - SINGLE OPERAND INSTRUCTIONS

MNEMONIC MEANING
STATUS BITS

DESCRIPTION
AFFTECTED

CLR Clear Operand C,N,Z 0 - dest
DEC Decrement C,N,Z Dest - 1 - dest
DECO Decrement Double C,N,Z Register pr - 1 - register pr
INC Increment C,N,Z Dest + 1 - dest
INV Invert C,N,Z Inverted dest - dest
POP Pop from Stack C,N,Z Top of Stack - dest, SP - 1-SP
PUSH Push on Stack C,N,Z SP -i- 1 -· sp; Dest - top of stack
RL Rotate Left C,N,Z bn - bn + 1,b7- bO,C
RLC Rotate Left through carry C,N,Z bn - bn + 1,C - bO, b7 - C
RR Rotate Right C,N,Z bn + 1 - bn,bO - b7,C
RRC Rotate Right through carry C,N,Z bn + 1 - bn, C - b7,b0 - C
SWAP Swap Nibbles C,N,Z b7-b4 - b3-b0
XCHB Exchange with Register B C,N,Z B - dest, N,Z set on Dest contents

3-9

3.3.3

TABLE 3-6 - MACHINE INSTRUCTION FORMATS: SINGLE OPERAND INSTRUCTIONS

ASSEMBLY LANGUAGE STATEMENT
MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2

<inst> A

<inst> B
opcode

<inst> Rd opcode d

Dual Operand Instructions

Dual Operand instructions are one-, two-, or three-byte instructions that specify one of the
following:

• Both a source and destination register

• An immediate operand and a destination register

Table 3-7 lists the Dual Operand instructions in alphabetical order, along with a brief description
of each.'

TABLE 3-7 - DUAL OPERAND INSTRUCTIONS

MNEMONIC MEANING
STATUS BITS

DESCRIPTION
AFFECTED

ADC Add with Carry C,N,Z Source + dest +.carry - dest

ADD Add Bytes C,N,Z Source + dest - dest

AND AND bytes C,N,Z Source logically· ANDed with dest - dest

ANDP AND Peripheral File C,N,Z Source logically ANDed with PF - PF

CMP Compare C,N,Z Dest - source computed but not stored

DAC Decimal Add w/Carry C,N,Z Source + dest + carry - dest
DSB Decimal Subtract w/Borrow C,N,Z Dest - source - 1 + carry - dest

MOV Move C,N,Z Source - dest

MOVP Move to/from PF C,N,Z. Read or write data from/to Pf

MPV Multiply C,N,Z Source x Dest-A, B

OR OR C,N,Z Source logically ORed with dest - dest
ORP OR Peripheral File C,N,Z Source logically ORed with PF - PF

SBB Subtract with Borrow C,N,Z Dest - source - 1 + carry - dest

SUB Subtract Bytes C,N,Z Dest - source - dest ·

XOR Exclusive OR C,N,Z Source exclusively ORed with dest - dest

XORP Exclusive OR PF C,N,Z Source exclusively ORed with PF - PF

3·10

3.3.3.1

3.3.3.2

Register File Instruction Types

Table 3-8 lists the machine instruction formats for the Dual Operand instructions which
address the Register File. The instructions which use these formats are:

ADC ADD AND CMP DAC DSB

MOV MPY OR SBB SUB XOR

These instructions use either the Register File Addressing mode or a combination of the
Register File and Immediate Addressing modes. Note that the MOV instruction is specifically
illustrated in Table 3-8, because its formats are uniquely defined.

TABLE 3-B - MACHINE INSTRUCTION FORMATS: REGISTER FILE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE
MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3

<inst> B,A opcode
<inst> A,B

<inst> Rs.A opcode s
<inst> Rs,B

<inst> A,Rd

<inst> B,Rd opcode s d

<inst> Rs.Rd

<inst> o/o<iop>,A
opcode iop

<inst> o/o <iop>,B

<inst> o/o<iop>,Rd opcode iop d ..
MOV A,B

opcode
MOV B,A

MOV A,Rd

MOV B,Rd opcode d
MOV Rs.A

opcode s
MOV Rs,B

Peripheral File Instruction Type

Table 3-9 shows the machine instruction formats for the Dual Operand instructions that
address the Peripheral File. The instructions which use these formats are:

ANDP MOVP ORP XORP

These instructions use either the Peripheral File Addressing mode or a combination of the
Peripheral File and Immediate Addressing modes. Note that the MOVP instruction is
specifically illustrated in Table 3-9 because its formats are uniquely defined.

3·11

3.3.4

TABLE 3-9 - MACHINE INSTRUCTION FORMATS: PERIPHERAL FILE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE
MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3
<inst> A, Pn

opcode
<inst> B, Pn

n

<inst> %<iop>, Pn opcode iop n

MOVP Pn, A

MOVP Pn, B
opcode

MOVP A, Pn
n

MOVP B, Pn

Jump Instructions

Jump instructions are two-, three-, and four-byte instructions that use the Program Counter
Relative Addressing mode. These instructions are divided into four format types: Simple
Relative, Single Relative, Dual Relative, and Peripheral Relative. All jump instructions must
specify a target address (ta) in the form of a label in the assembly language statement, so that a
relative address (ra) can be calculated according to the following formula:

ra =ta - pen

where pen is the location of the next instruction and -128 is less than or equal to ra which is less
than or equal to 127 (See Section 3.2.1.5). Table 3-10 lists all jump instructions in alphabetical
order, along with a brief description of each instruction.

TABLE 3-10 - JUMP INSTRUCTIONS

STATUS BITS
MNEMONIC MEANING DESCRIPTION

AFFECTED

BTJO Bit Test Jump if One C,N,Z If source ANDed with dest * 0, jump

BTJOP Bit Test Jump if One PF C,N,Z If source ANDed with PF =t- 0, jump

BTJZ Bit Test Jump if Zero C,N,Z If source ANDed with inverted dest =t- 0, jump

BTJZP Bit Test Jump if Zero PF C,N,Z If source ANDed with inverted PF =t- 0, jump

DJNZ Dec.Reg.Jump Non-Zero none Dest - 1 - dest, if dest =t- 0, jump

JMP Jump Unconditional none PC + offset - PC

JC/JHS Jump if Carry Set/ none If C = 1, PC + offset - PC

Jump if Higher or Same

JN Jump if Negative none lf.N = 1, PC+ offset - PC

JNC/JL Jump if No carry/ none If C = 0, PC + offset - PC

Jump if Lower

JNZ/JNE Jump if Not Zero/ none If Z = 0, PC + offset - PC

Jump if Not Equal

JP Jump if Positive none If N = 0, Z = 0, PC + offset - PC

JPZ Jump if Pos. or Zero none If N = 0, PC + offset - PC

JZ/JEQ Jump if Zero/ none If Z = 1, PC + offset - PC

Jump if Equal to

NOTE: Some conditional jump instructions have two names: one indicating the condition of the Status Register bits that are tested and one
indicating the result of a CMP (compare) instruction.

3·12

3.3.4.1

3.3.4.2

Simple Relative Instruction Type

Table 3-11 shows the machine instruction format for the Simple Relative Instruction type. This
format requires only the target address (label) in the operand field of the assembly language
statement. The Simple Relative Jump instructions are:

JMP

JC/JHS
JN
JNC/JL
JNZ/JNE
JP
JPZ
JZ/JEQ

Jump (Unconditional)

Jump If Carry Set/Jump If Higher Or Same
Jump If Negative ·
Jump If No Carry/Jump If Lower
Jump If Not Zero/Jump If Not Equal
Jump If Positive
Jump If Positive Or Zero
Jump If Zero/Jump If Equal To

TABLE 3-11 - MACHINE INSTRUCTION FORMAT: SIMPLE RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATEMENT
MACHINE INSTRUCTION FORMAT

.BYTE 1 l BYTE 2

<inst> <ta> opcode I ra

Single Relative Instruction Type

Table 3-12 shows the machine instr.uction formats for the Single Relative instruction type.
These formats require a Register File number and a target address (label) in the operand field of
the assembly language statement. DJNZ is the only Single Relative jump instruction.

TABLE 3-12 - MACHINE INSTRUCTION FORMATS: SINGLE RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE
BYTE 1

MACHINE INSTRUCTION FORMAT

BYTE 2 BYTE 3

<inst> A, <ta>
opcode

<inst> B, <ta>
ra

<inst> Rn, <ta> opcode n ra

3.3.4.3 Dual Relative Instruction Type

Table 3-13 shows the machine instruction formats for the Dual Relative instruction type. These
formats require a target address (label) and either a Register File number or an immediate
operand in the operand field of the assembly language statement. BT JO and BT JZ are the Dual
Relative Jump instructions.

3·13

3.3.4.4

3.3.5

TABLE 3-13 - MACHINE INSTRUCTION FORMATS DUAL RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE
MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3 BYTE 4
<inst> B, A, <ta> opcode ra

<inst> Rs, A, <ta>
opcode

<inst> Rs, B, <ta>
s ra

<inst> Rs, Rd, <ta> opcode s d ra
<inst> % <iop>, A, <ta>

opcode iop
<inst> %<iop>, B, <ta>

ra

<inst> %<iop>, Rd, ta opcode iop d ra

Peripheral Relative Instruction Type

Table 3-14 shows the machine instruction formats for the Peripheral Relative instruction type.
These formats require a target address (label), a Peripheral File register number, and either an
immediate operand or one of two possible Register File Registers (the A or B register) in the
operand field of the assembly language statement. BT JOP and BT JZP are the Peripheral
Relative jump instructions. ·

TABLE 3-14 - MACHINE INSTRUCTION FORMATS: PERIPHERAL RELATIVE INSTRUCTIONS

ASSEMBLY LANGUAGE STATE
MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3 BYTE 4

<inst> A, Pn, <ta>
opcode

<inst> B, Pn, <ta>
n ra

<inst> %<iop>, Pd, <ta> opcode iop n ra

Extended Address Instructions

Extended Address instructions are two- or three-byte instructions that reference a 16-bit
address in memory. Table 3-15 lists the Extended Address instructions in alphabetical order,
along with a brief description of each instruction.

TABLE 3-15 - EXTENDED ADDRESS INSTRUCTIONS

STATUS BITS

MNEMONIC MEANING DESCRIPTION

AFFECTED
BR Unconditional Branch none Dest - PC

CALL Call Subroutine none SP + 1 - SP, PCMS byte - stack
SP + 1-SP, PCLS byte- stack

CMPA Compare to A Register C,N,Z A - Source computed but not stored
LOA Load A Register C,N,Z Source - A
STA Store A Register C,N,Z A - dest

3-14

3.3.6

Table 3-16 shows the machine instruction formats for the three addressing modes available to
Extended Address instructions: Direct, Register File Indirect, and Indexed Addressing modes.

TABLE 3-16 - MACHINE INSTRUCTION FORMATS: EXTENDED ADDRESS INSTRUCTIONS

MACHINE INSTRUCTION FORMAT
ASSEMBLY LANGUAGE STATE

BYTE 1 BYTE 2 BYTE 3

<inst> @<addr> opcode addr MSB addr LSB

<inst> *Rd opcode d

<inst> @<addr>(B) opcode addr MSB addr LSB

Miscellaneous Instructions

The MOVD and the twenty-four TRAP instructions are special instructions that do not belong in
any of the previously described catagories of instruction types or addressing modes. These
instructions are shown in Table 3-17 and are discussed in the sections that follow.

TABLE 3-17 - MACHINE INSTRUCTIONS FORMATS: MISCELLANEOUS INSTRUCTIONS

MNEMONIC MEANING
STATUS BITS

DESCRIPTION
AFFECTED

MOVD Move Double C,N,Z a. iop - register pr
b. indexed iop - register pr
c. register pr - register pr

TRAP 0 Trap to Subroutine none SP+ 1 - SP, PCMS byte - stack
[::,. SP + 1 - SP, PCLS byte - stack
[::,.

[::,. Entry vector -. PC
TRAP 23

3-15

3.3.6.1

3-16

MOVD Instruction

The MOVD instruction moves•a two-byte value into a register pair in the Register File. This
destination register pair is specified by a single register number; Rd , which indicates that the
MSB is contained in Rd-1 and the LSB is contained in Rd. As shown in Table 3-18, the two-byte
value may be a 16-bit immediate operand, a 16-bit indexed immediate operand, or the contents
of a register pair in the Register File. These formats are useful for the following ~asks:

MOVD %iop,Rd Register pair initialization with an immediate value before
executing an instruction in the Register File Indirect
Addressing mode. ·

MOVD %iop(B),Rd Register pair initialization with an indexed immediate value
before executing an instruction in the Register File Indirect
Addressing mode.

MOVD Rs, Rd Register pair to register pair transfer in the Register File.

The C, N, and Z status bits are affected by the execution of the MOVD instruction as follows:

C - Set to zero

N - Set to one if MSB is negative; set to zero if MSB is positive or zero

Z - Set to one if MSB is zero; set to zero if MSB is nonzero

Refer to Section 3.4.2 for more details on the status bits.

TABLE 3-18 - MACHINE INSTRUCTION FORMATS: MOVD INSTRUCTION

ASSEMBLY LANGUAGE STATE
MACHINE INSTRUCTION FORMAT

BYTE 1 BYTE 2 BYTE 3 BYTE 4

MOVD % iop, Rd opcode iop MSB iop LSB d
MOVD % iop, (8), Rd opcode iop MSB iop LSB d

MOVD Rs, Rd opcode s d

3.3.6.2 TRAP Instructions

The TRAP instructions branch to a two-byte location in a reserved section of memory called the
Trap Vector Table. As shown in Figure 3-9, each trap location stores a 16-bit address which
references either the reset function (TRAPO), one of the three interrupt service routines
(TRAP1-INT1, TRAP2-INT2, TRAP3-INT3), or a subroutine (TRAP4-23).

'>FFDO

>FFD1

>FFEO

>FFE1

>FFFA

>FFFB

>FFFC

>FFFD

>FFFE

>FFFF

TRAP23 Address
TRAP23 Address

TRAP1 5 Address

TRAP1 5 Address

TRAP2 Address

TRAP2 Address

TRAP1 Address

TRAP1 Address

TRAPO Address

TRAPO Address

FIGURE 3-9. - THE TRAP VECTOR TABLE

MSB
LSB

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

The TRAP instructions are all single-byte instructions, i.e., the machine instruction format
requires only th~ opcode byte. No status bits are affected by the execution of these
instructions.

TRAPs 0-23 push the contents of the Program Counter onto the stack (PC MSB followed by PC
LSB) before executing the subroutine stored at the address in the Trap Vector Table. See
Section 3.5.50 and Section 6.3.3 for more information.

3.4 CUSTOM MICROCODING

For applications requiring unusually high performance, or for customers wishing to tailor the
instruction set to their application program, the TMS7000 instruction set is implemented with
i 60 micro-instructions of 45 bits each with which Texas Instruments is prepared to support
limited customer re-microcoding. More details of custom microcoding can be found in Section
5 of this book.

3.17

3-18

Certain instructions in the instruction set may be removed and replaced with a unique
customer-defined instruction, others may not. The instructions which may not be altered
comprise the core instruction set; those which may be altered or removed are classified as
non-core instructions. A listing of the core (reserved) and non-core (available for microcoding)
instructions is provided in Tables 3-19 and 3-20 respectively.

TABLE 3-19 - TMS7000 CORE (RESERVED) INSTRUCTIONS

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

NOP 00 OR Rn.A 14 BTJO Rn.A 16

IDLE 01 OR %n,A 24 BTJO %n,A 26

MOV Rn.A 12 OR Rn,B 34 BTJO Rn,B 36

MOV %n,A 22 OR Rn.Rn 44 BTJO Rn.Rn 46

MOV Rn,B 32 OR %n,B 54 BTJO %n,B 56

MOV Rn.Rn 42 OR B,A 64 BTJO B,A 66

MOV %n,B 52 OR %n,Rn 74 BTJO %n,Rn 76

MOV B,A 62

MOV o/on,Rn 72 XOR Rn.A 15 BTJZ Rn.A 17

MOV A,B co XOR o/on,A 25 BTJZ %n,A 27

MOV A,Rn DO XOR Rn,B 35 BT JZ Rn,B 37

MOV B,Rn 01 XOR Rn.Rn 45 BTJZ Rn.Rn 47

XOR %n,B 55 BTJZ %n,B 57

AND Rn.A 13 XOR B,A 65 BTJZ B,A ' 67

AND %n,A 23 XOR %n,Rn 75 BTJZ %n,Rn 77

AND Rn,B 33

AND Rn.Rn 43 TSTA/CLRC BO PO PST OB

AND o/on,B 53 TSTB C1 PUSH ST OE

AND B,A ·63 SETC 07 LDSP OD

AND %n,Rn 73 RETS OA STSP 09

DINT 06 RETI OB EINT 05

ADD Rn.A 1B ADC Rn,A 19 SUB Rn.A 1A

ADD o/on,A 2B ADC o/on,A 29 SUB %n,A 2A

ADD Rn,B 3B ADC Rn,B 39 SUB Rn,B 3A

ADD Rn.Rn 4B ADC Rn.Rn 49 SUB Rn.Rn 4A

ADD %n,B 5B ADC o/on,B 59 SUB %n,B 5A

ADD B,A 6B ADC B,A 69 SUB B,A 6A

ADD o/on,Rn 7B ADC %n,Rn 79 SUB %n,Rn 7A

SBB Rn.A 1B LDA@n BA STA@n BB

SBB o/on,A 2B LOA *Rn 9A STA *Rn 9B

SBB Rn,B 3B LOA @n(B) AA STA @n(B) AB

SBB Rn.Rn 4B

SBB o/on,B 5B BR @n BC CALL @n BE

SBB B,A 6B BR *Rn 9C CALL *Rn 9E

SBB %n,Rn 7B BR @n(B) AC CALL @n(B) AE

CMP Rn.A 10 DEC A ·B2 INC A B3

CMP o/on,A 20 DEC B C2 INC B CJ

CMP Rn,B 30 DEC Rn 02 INC Rn 03

CMP Rn.Rn 40

CMP o/on,B 50 INVA 64 CLR A B5

CMP B,A 60 INV B C4 CLR B C5

CMP o/on,Rn 70 INV Rn 04 CLR Rn 05

TABLE 3-19 - TMS7000 CORE !RESERVED) INSTRUCTIONS !CONTINUED)

MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE

PUSH A BS POPA B9 DJNZ A BA

PUSH B ca POP B C9 DJNZ B CA

PUSH Rn 08 POP Rn 09 DJNZ Rn DA

RR A BC RRC A BO RL A BE

RR B cc RRC B CD RL B CE

RR Rn DC RRC Rn DD RL Rn DE

TRAP 7 F8 RLC A BF JMP EO

TRAP 6 F9 RLC B CF JN/JLT E1

TRAP 5 FA RLC Rn OF JZ/JEQ E2

TRAP 4 · FB JC/JHS E3

TRAP 3 FC JP/JGT E4

TRAP 2 FD JPZ/JGE ES

TRAP 1 FE JNZ/JNE E6

TRAPO FF JNC/JL E7

. 3-19

TABLE 3-20 - TMS7000 NON-CORE (AVAILABLE FOR MICROCODE) INSTRUCTIONS

MNEMONIC OPCODE MNEMONIC OPCODE

MPV Rn.A 1C TRAP 23 EB

MPV %n,A 2C TRAP 22 E9

MPV Rn,B 3C TRAP 21 EA

MPV Rn.Rn 4C TRAP 20 EB

MPV %n,B 5C TRAP 19 EC

MPV B,A 6C TRAP 1B ED

MPV %n,Rn 7C TRAP 17 EE

TRAP 16 FF

DAC Rn,A 1E TRAP 15 FO

DAC %n,A 2E TRAP 14 Fl

DAC Rn,B • 3E TRAP 13 F2

DAC Rn.Rn 4E TRAP 12 F3 '

DAC %n,B 5E TRAP 11 F4

DAC B,A 6E TRAP 10 F5

DAC %n,Rn 7E TRAP 9 F6

TRAP B F7

DSB Rn.A 1F ANDP A,Pn B3
DSB %n,A 2F ANDP B,Pn 93

DSB Rn,B 3F ANDP o/on,Pn A3

DSB Rn.Rn 4F

DSB %n,B 5F ORP A,Pn 84

DSB B,A 6F ORP B,Pn 94

DSB %n,Rn 7F ORP %n,Pn A4

MOVD %n,Rn BB XORP A,Pn 85

MOVD Rn.Rn 9B XORP B,Pn 95

MOVD %n(B),Rn AB XORP o/on,Pn A5

DECO A BB BTJOP A,Pn 86

DECO B CB BTJOP B,Pn 96

DECO Rn ::>B BTJOP %n,Pn A6

SWAP A B7 BTJZP A,Pn B7

SWAPB C7 BTJZP B,Pn 97

SWAP Rn 07 BTJZP o/on,Pn A7

CMPA@n 80 MOVP A,Pn B2

CMPA *Rn 90 MOVP B,Pn 92
CMPA @n(B) AD MOVP o/on,Pn A2

XCHB A B6 MOVP Pn,A BO

XCHB B C6

XCHB Rn 06 MOVP Pn,B 91

3.5 INSTRUCTION DESCRIPTIONS

3-20

The assembler for the TMS7000 family will accept these instructions in the indicated
Assembly Language format. The byte count for each instruction may be determined from its
instruction type and its operands. Refer to Appexdix A for specification for opcode assignment
and instruction timing information.

The instruction descriptions are presented in alphabetic order. The discussion of each
instruction includes mnemonic, syntax, instruction type, example, status bits affected,and
some useful notes. All instructions may have optional labels before the mnemonic and
comments after the operands. Label, mnemonics, operand field and comments must be
separated by a space.

3.5.1

All of the logical instructions, AND, OR, XOR, ORP ... follow the tables below. These functions
operate on the eight bits in the source and their corresponding bits in the destination. The AND
function is useful in clearing bits, the OR function can set bits to '1' and the XOR function can
toggle the bits from '1' to 'O' or from 'O' to' 1 '.

LOGICAL FUNCTIONS
-AND- -OR- -XOR-

Src Ost Rst Src Ost Rst Src Ost Rst

0 0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0

Src = source bit
Dst = destination bit
Rst = result bit

ADC Add with Carry ADC

SYNTAX: ADC <s>,<d>

EXECUTION RESULTS: (s) + (d) + C -+ (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL ADC

Dual Register

R66,R117 Adds the contents of register 66 to
register 117 plus the carry.

C - set to '1 ' on carry-out of (s) + (d) + C
Z - set on result
N - set on result

ADC with an immediate operand of zero value is equivalent to a conditional increment of the
destination operand. ADC may also be used to implement multi-precision addition of signed or
unsigned integers. For example, the 16-bit integer in register pair (R2,R3) may be added to the
16-bit integer in (A,B) as follows:

ADD
ADC

R3,B
0

R2,A
Low order bytes added
High order bytes added

3-21

3.5.2.

3.5.3

3·22

ADD Add

SYNTAX: ADD <s>,<d>

EXECUTION RESULTS: (s) + (d) --+ (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL ADD A,B

Dual Register

C -! 1 ' on carry-out of (s) + (d)
Z - set on result
N - set on result

ADD

Adds the contents of the A and B
register and stores the results in B

A.DD is used to add two bytes, and may be used for signed two's complement or unsigned
addition.

AND And

SYNTAX: AND <s>,<d>

EXECUTION RESULTS: (s) .AND. (d) --+ (d)

EXAMPLE:

TYPE:

STATUS
BITS:

AND % > 1,R12 Clear all bits in R12 except bit 0

Dual Register

c +-- 0
N - set on result
Z - set on result

AND

AND is used to perform a logical AND of the two operands. Each bit of the 8-bit result follows
the truth table which is at the beginning of this section. AND is useful in clearing or resetting
bits. If a bit needs to be cleared in the destination, then a 'O' is put at that bit location in the
source. A '1' in the source will cause the bit in the destination to remain the same.

3.5.4

3.5.5

ANDP And Peripheral Register

SYNTAX: ANDP <s>,<d>

EXECUTION RESULTS: (s) .AND. (p) --+ (p)

EXAMPLE:

TYPE:

STATUS
.BITS:

CLRBIT ANDP

Dual Peripheral File

c +- 0
N - set on result
Z - set on result

% >DF,P6 Clear bit 5 of the B port

ANDP

ANDP may be used to clear one or more bits in the peripheral file. Thus, it may be used to reset
an individual output line to zero. This may be done with an ANDP instruction where the source
is an immediate operand that serves as a mask field. The example above shows how bit 5 of
the B Port (P6) is cleared. The only valid source operands are A, Band o/oiop.

BTJO Bit Test and Jump if One

SYNTAX: BTJO <s>, <d>, <offset>

EXECUTION RESULTS: If (s).AND.(D) < > 0, then PC + (offset) --+ PC

EXAMPLE:

TYPE:

STATUS
BITS:

BITS ET BTJO % > 14,R4,ISSET Jump if R4 (bit 2) or

Dual Relative

c +-0
N - set on (s).AND.(d)
Z - set on (s).AND.(d)

R4 (bit 4) is a '1 '

BTJO

Use the BT JO instruction to test for at least one bit which has a corresponding '1' bit in each
operand. For example, the source operand can be used as a bit mask to test for one or more '1'
bits in the destination address. The operands are not changed by this instruction.

3·23

3.5.6

3.5.7

3·24

BTJOP Bit Test and Jump if One Peripheral

SYNTAX: BT JOP <s >, <p >,<offset>

EXECUTION RESULTS: If (s).AND.(p) < > 0, then PC + (offset) -.. PC

EXAMPLE:

.TYPE:

STATUS
BITS:

LABEL BT JOP % >81,P4,THERE Jump if Port A(bit 0) or

Peripheral-Relative

c .-o
N - set on (s).AND.(p)
Z - set on (s).AND.(p)

Port A(bit 7) is' 1'

BTJOP

Use the BT JOP instruction to test for at least one bit position which has a corresponding '1' in
each operand. For example, the source operand can be used as a bit mask to test for at least
one '1' bit in the destination peripheral file register. The example above tests bit 0 and bit 7 of
the input A port, and jumps if either is a '1 '.

BTJZ Bit Test and Jump if Zero

SYNTAX: 'BTJZ < s >, < d >, <off set >

EXECUTION RESULTS: if (s).AND.(NOT d) < > 0, then PC + (offset) -.. PC

EXAMPLE:

TYPE:

STATUS
BITS:

I SZE RO

Dual Relative

c .- 0

BTJZ A,R23,ZERO If any' 1' bits in A correspond to
to 'O' bits in R2.3 then jump

N - set on (s).AND.(NOT d)
Z - set on (s).AND.(NOT d)

BTJZ

Use the BT JZ instruction to test for at least one 0 bit in the destination operand which has a
corresponding '1' bit in the source operand. The operands are not changed by the instruction.

3.5.8

3.5.9

BTJZP Bit Test and Jump if Zero Peripheral

SYNTAX: BT JZP <s >, <d >,<offset>

EXECUTION RESULTS: if (s).AND.(NOT d) < > 0, then PC + (offset) ~ PC

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL BTJZP

Peripheral Relative

c .,_ 0

% >21,P4, THERE Jump if P4(bit 0) or
P4(bit 5) is 'O'

N - set on (s).AND.(NOT d)
Z - set on (s).AND.(NOT d)

BTJZP

Use the BT JZP instruction to test for at least one bit position which has a '1 ' in the source and
an 'O' in the peripheral file register. For example, the source operand can be used as a bit mask
to. test for zero bits in the destination peripheral file register. The example above tests bit 0 and
bit 5 of the input A port, and jumps if either is a 'O'. The jump is calculated starting from the
opcode of the instruction just after the BT JZP. The operands are unchanged by this instruction.

BR

SYNTAX: BR <d>

EXECUTION RESULTS: (d)-. PC

EXAMPLES:

TYPE:

STATUS
BITS:

LABEL BR
BR
BR

Extended Address

Not changed

Branch BR

@THERE Direct addressing
@TABLE(B) Indexed addressing
*R14 Indirect addressing

BR may be used to branch to ANY location in the the 64K memory space including the Register
space. This extended address type instruction supports three different modes. The powerful
concept of computed GOTO's is supported by the BR *Rn instruction. An indexed branch
instruction of the form BR @TABLE(B) is an extremely efficient way of executing one of several
actions on the basis of some control input. This is similar to the CASE statement of Pascal and
other high-level languages. For example, suppose register R3 contains a control value. The
program can branch to label ACTIONO if R3 = 0, ACTION 1 if R3 = 1, etc, for up to 128 different
actions. This technique may also be used to transfer control on character inputs, error codes,
etc. See section 6.3.5 for examples.

3-25

3.5.10

3.5.11

3-26

CALL Call

SYNTAX: CALL <d>

EXECUTION RESULTS: SP+ 1
_. SP

PC MS Byte
_. stack

SP+ 1 --+ SP
PC LS Byte

_. stack
operand address+ PC

EXAMPLES: LABEL 1 CALL
CALL
CALL

TYPE:

STATUS
BITS:

Extended Address

Not changed

@LABEL4 Direct addressing
@LABEL5(B) Indexed addressing
* R 1 2 ·indirect addressing

CALL

CALL is used to invoke a subroutine. The PUSH and POP instructions can be used to save,
pass, or restore status or register values. The extended addressing modes of the CALL
instruction allow powerful transfer of control functions.

CLR

SYNTAX: CLR <d>

EXECUTION RESULTS: 0 _. (d)

EXAMPLE:

TYPE:

STATUS
BITS:

ZEROIT CLRB

Single Register

Clear

CLR is used to clear or initialize any file register including the A and B registers.

CLR

3.5.12

3.5.13

3.5.14

CLRC Clear the Carry bit
SYNTAX: CLRC

EXECUTION RESULTS: status bits set

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL CLRC

Implied Operand

c +- 0
N - set on value of A register
Z - set on value of A register

CLRC

CLRC is used to clear the carry flag if required before an arithmetic or rotate instruction. Note
that the logical and move instructions typically clear the Status carry bit. The CLRC opcode is
equivalent to the TSTA opcode.

CMP

SYNTAX: CMP

Compare

<s>,<d>

EXECUTION RESULTS: (d) - (s) computed

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL CMP R13,R89

Dual Register ·

C - '1' if (d) is l9gically greater than
or equal to (s)

N - Sign of result
Z - '1' if (d) is equal to (s)

CMP

CMP is used to compare the destination operand to the source operand. For a complete
discussion of this instruction see 6.3.1.1.

CMPA

SYNTAX: CMPA

Compare Accumulator Extended

<s>

EXECUTION RESULTS: (A) - (s) computed but not stored

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL CMPA
CMPA
CMPA

Extended Address

@TABLE2 Direct addressing
@TABLE(B) Indexed
* R 123 Indirect

C - '1 ' if (A) is logically greater than or
equal to (s)

N - '1 ' if (A) is arithmetically less than (s)
Z -'1' if (A) is equal to (s)

CMPA

CMPA may be used to compare a long-addressed operand (e.g., via direct, indirect, or indexed
addressing modes) to the A register. It is especially useful in table lookup programs in which the
table is stored either in extended memory or in program ROM. The status bits are set exactly as
if register A were the destination (d) and the addressed byte the source (s).

3-27

3.5.15

3.5.16

3-28

DAC Decimal Add With Carry DAC

SYNTAX: DAC <s>,<d>

EXECUTION RESULTS: (s) + (d) + C-+ (d) Decimal

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL DAC

Dual Register

% > 24,A Add the packed BCD value 24 to
Accum.

C -' 1 ' if value of (s) + (d) + · C > = 100
N - set on result
Z - set on result

DAC is used to add bytes in binary-coded decimal (BCD) form. Each byte is assumed to contain
two BCD digits. Operation of DAC is ~ndefined for non-BCD operands. DAC with an immediate

·operand of zero value is equivalent to a conditional increment of the destination operand. The
DAC instruction automatically performs a decimal adjust on the binary sum of (s) + (d) + C. The
carry bit is added to facilitate adding multi-byte BCD strings, and so the carry bit must be
cleared before execution of the first DAC instruction.

DEC Decrement

SYNTAX: DEC <d>

EXECUTION RESULTS: (d)-1 (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL DEC R102

Single Register

C -'O' if (d) decrements from >00 to >FF;
'1' oth_erwise.

N - set on result
Z - set on result

DEC

The DEC instruction is used to subtract a value of' 1' from any addressable operand. The DEC
instruction is also useful in counting and addressing byte arrays.

3.5.17

3.5.18

DECO Decrement Double DECO

SYNTAX: DECO <rp>

TYPE: Single Register

EXAMPLE: LABEL DECO R51 Decrement (R50,R51 l register pair
R51 = LSB

EXECUTION RESULTS: (rp) - 1-. (rp)

STATUS
BITS:

C -'O' if most significant byte decrements from
>OOto >FF. Otherwise, C = '1'.

N - set on most significant byte of result
Z - set on most significant byte of result

DECO may be used to decrement 16-bit indirect addresses stored in the register file. Tab!es
longer than 256 bytes may be scanned using this instruction.

DINT Disable Interrupts

SYNTAX: DINT

EXECUTION RESULTS: o-.interrupt enable status bit

EXAMPLE: LABEL DINT

TYPE: Implied Operand

STATUS
BITS:

I +-0
C+-0
N+-0
Z+-0

DINT

DINT is used to turn off all interrupts simultaneously. Since the interrupt enable flag is stored in
the status register, the POP ST; RETI or LDSP instructions may reenable interrupts even though
a DINT instruction has been executed. During the interrupt service, the interrupt enable bit is
automatically cleared after the old status register value has been pushed onto the stack.

3-29

3.5.19

3.5.20

3·30

DJNZ Decrement Register And Jump If Not-Zero

SYNTAX: DJNZ <d >,<offset>

EXECUTION RESULTS: (d)-1-.(d); if (d) < > 0, then PC+ (offset) -+PC

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL DJNZ R15,THERE

Single-Relative

Not changed

DJNZ

The DJNZ instruction is used for looping control. Combines the DEC and the JNZ instruction
together to give a more compact and faster instruction. This instruction does not change any of
the status bits. '

DSB Decimal Subtract With Borrow

SYNTAX: DSB <s>, <d>

EXECUTION RESULTS: (d) - (s) - 1 + C-+ (d) Decimal

EXAMPLE:

TYP.E:

STATUS
BITS:

LABEL DSB R15,R76

Dual Register

C -! 1' no borrow required, 'O' if borrow required
N - ·set on result
Z - set on result

DSB

DSB is used for multiprecision decimal BCD subtraction. A DSB instruction with an immediate
operand of zero value is equivalent to a conditional decrement of the destination operand. The
carry status bit functions as a borroW'bit, so if no borrow in is required, the carry bit should be
set to '1 '. This can be accomplished by executing the SETC instruction.

3.5.21

..

3.5.22

EINT Enable Interrupts

SYNTAX: EINT

EXECUTION RESULTS: 1 --. interrupt enable

EXAMPLE: LABEL EINT

TYPE: Implied Operand

STATUS
BITS:

I +-1
C+-1
N +-1
z +-1

EINT

EINT is used to turn on all enabled interrupts simultaneously. Since the interrupt enable flag is
stored in the status register, the POP ST, LOST, and RETI instructions may disable interrupts
even though a EINT instruction has been executed. During the interrupt service, the interrupt
enable bit is automatically cleared after the old status register value has been pushed onto the
stack. Thus, the EINT instruction must be included inside the interrupt service routine to permit
nested or multilevel interrupts.

IDLE Idle until Interrupt

SYNTAX: IDLE

EXECUTION RESULTS: pc-. pc until interrupt
pc + 1--. pc after return from interrupt

EXAMPLE: LABEL IDLE

TYPE: Implied Operand

STATUS
BITS: Not changed

IDLE

IDLE is used to allow the program to suspend operation until either an interrupt or reset occurs.
It is the programmer's responsibility to assure that the interrupt enable status bit (and individual
interrupt enable bits in the 1/0 control register) are set before executing the IDLE instruction.
Upon return from an interrupt, control passes to the instruction following the IDLE instruction.

3·31

3.5.23

3.5.24

3-32

INC Increment

SYNTAX: INC <d>

EXECUTION RESULTS: (d) :+ 1 (d)'

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL ' INC A

Single Register

C --! 1 ' if (d) incremented from >FF to >00;
'O' otherwise.

N - set on result
Z - set on result

INC

·-

INC is used to increment the value of any register. It is useful in incrementing counters into
tables.

INV Invert INV

SYNTAX: INV <d>

EXECUTION RESULTS: NOT (d)-+ (d)

EXAMPLE: LABEL INV A

TYPE: Single Register

STATUS c.-.o
BITS: N - set on result

Z - set on result

INV performs a logical or one's complement of the operand. A two's complement of the
operand can be made by following the INV instruction with an increment (INC). A one's
complement reverses the value of every' bit in the destination.

3.5.25

3.5;26

JMP Jump unconditional JMP

SYNTAX: JMP <offset>

EXECUTION RESULTS: PC + (offset)_. PC The PC is taken from the instruction
after the JMP

EXAMPLE: LABEL JMP THERE

TYPE: Simple Relative

STATUS
BITS: . Not changed

Jump unconditionally to the address specified in the operand. The second byte of the JMP
instruction is loaded with the 8-bit relative address of the operand. The operand address must
therefore be within -128 to + 127 bytes of the location of the instruction following the JMP
instruction. The assembler wiU indicate an error if the target address is beyond -128 to + 127
bytes from the next instruction. For a' longer jump the BR (branch l instruction can be used.

J<cnd> Jump On Condition •

SYNTAX: J <end> <offset>

EXECUTION RESULTS: If testeq condition is true, PC + offset-. PC

EXAMPLES: LABEL
LABEL

JNC
JP

TYPE: Simple Relative

STATUS
BITS: Not affected

THERE
HERE

J<cnd>

3.33

3.5.27

3-34

TABLE 3-21 - CONDITIONAL JUMP INSTRUCTIONS

CONDITION FOR JUMP
INSTRUCTION MNEMONIC (STATUS BIT VALUES)

CARRY NEGATIVE ZERO

Jump If Carry JC 1 x x
Jump If Equal JEQ x x 1
Jump If Higher Or Same JHS 1 x x
Jump If Lower JL 0 x x
Jump If Negative JN x 1 x
Jump If No Carry JNC 0 x x
Jump If Not Equal JNE x x 0
Jump If Non-zero JNZ x x 0
Jump If Positive JP x 0 0
Jump If Positive Or Zero JPZ x 0 x
Jump If Zero JZ x x 1

The J <end> instructior.is may be used after a CMP instruction to branch according to the
relative values of the operands tested. After MOV, MOVP, LDA, or STA operations, a JZ or JNZ
may be used to test if the value moved was equal to zero. JN and JPZ may be used in this case
to test the sign bit of the value moved. For a more complete description of the Jump
instructions see 6.3.1.1.

LOA Load A register

SYNTAX: LDA <s>

EXECUTION RESULTS: (s)--. Addr

EXAMPLES:

TYPE:

STATUS
BITS:

LABEL 1 LDA
LABEL2 LOA
LABEL3 LOA

Extended Address

c.-o
N - set on value loaded
Z - set on value loaded

@LABEL4
@LABEL5(B)
*R13

LOA

Direct
Indexed
Indirect

The LOA instruction is used fo read values stored anywhere in the full q4K memory space. The
direct addressing mode provides an efficient means of directly accessing a variable in memory.
Indexed addressing gives an efficient table look-up capability for most applications. Indirect
addressing allows the use of very large look-up tables and the use of multiple memory pointers
sin,ce any pair of registers can be used as the pointer. The DJNZ (Decrement and Jump if
Non-Zero) instruction can be used with either indexed or indirect addressing to create fast and
efficient program loops or table searches.

384

3.5.28

3.5.29

LDSP Load Stack Pointer LDSP

SYNTAX: LDSP

EXECUTION RESULTS: (B).,...SP

EXAMPLE: LABEL LDSP

TYPE: Implied Operand

STATUS
BITS: Not changed

Copy the contents of the B register to the stack pointer register. LDSP is used to initialize the
stack pointer.

MOV

SYNTAX: MOV <s>,<d>

TYPE: Dual Register

EXECUTION RESULTS: (s).,...(d)

EXAMPLES:

STATUS
BITS:

LABEL 1
LABEL2
LABEL3

c.-o

MOV
MOV
MOV

N -;- set on value loaded
Z - set on value loaded

Move

A,B
R32,R105
%10,R3

MOV

Move the contents of A reg. to B reg.
Move the contents of R32 to R 105
Move the value 10 to R3

MOV.is used to transfer values within the register space. Immediate values may be loaded into
registers directly from the instruction. The fact that the A or B register is an operand is implied in
the MOY opcode, resulting in shorter and quicker moves from the A or B register.

3.35

3.5.30

3.5.31

3-36

MOVD Move Double MOVD

SYNTAX: MOVD <s>,<d>

EXECUTION RESULTS: (rp)-+(rp)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL MOVD
MOVD
MOVD

Miscellaneous

c-o

%>1234,R3
R5,R3
%TAB(B),R3

Load Register Pair R2,R3 with > 1234
Copy R4,R5 to R2,R3 R5,R3 = LSB
Copy indexed address to R2,R3

N -:-- set on most significant byte moved
Z - set on most significant byte moved

MOVD moves a two-byte value to the register pair indicated by the destination register number.
The destination is the second operand of the instruction and ·it points to the LSB of the
destination register pair. The source may be a 1 6-bit constant, another register pair, or an
indexed address. For the latter case, the source must be of the form "%ADDR(B)" where
ADDR is a 16-bit constant or address. This 16-bit value is added (via 16-bit addition) to the
contents of the B register, and the result placed in the destination register pair. This will store an
indexed address into a register pair, for use later in indirect addressing mode.

MOVP Move To/From Peripheral File

SYNTAX: . MOVP <s>,<d>

EXECUTION RESULTS: <s>-+ <d>

EXAMPLE:

TYPE:

STATUS
BITS:

SETI MR
RD PORT

MOVP
MOVP

Peripheral File

c .-o
N - set on value moved
Z - set on value moved

A,P2
P4,B

Setup timer value
Read Port A data

MOVP

MOVP is used to transfer values to and from the peripheral file. This may be used to input or
output 8-bit quantities on the 1/0 ports. The peripheral file also contains control registers for the
interrupt lines, the 1/0 ports, and the timer controls. The operands supported by this instruction
are A, Band %iop.

During peripheral file instructions, a peripheral file port is read. The read can include out
put operations each as 'MOV A,P6'. If this read is undesirable because of hardware con
figuration, a ST A (Store A) instruction with the memory-mapped address of the peripheral
register can be used.

3.5.32

3.5.33

MPV Multiply

SYNTAX: MPV <s>, <d>

EXECUTION RESULTS: (s) X (d)--. (A,Bl Result always stored in A,B

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL
LABEL2

MPV
MPV

Dual Register

c.-o

R3,A.
%32,B

Multiply R3 and A
Shift B register 5 places left

N - set on most significant byte of results (A register)
Z - set on most significant byte of results (A register l

MPV

MPV performs an 8-bit multiply for a general source and destination operand. The 16-bit result
is placed in the 'A,B' register pair with the most significant byte in A. Multiplying by a power of
two is a convenient means of performing double-byte shifts. If a double byte shift is three
places or less, then it may be faster to use RLC or RRC instead of multiply. If a single byte needs
shifting then it is almost always faster to use RLC or RRC.

NOP No Operation

SYNTAX: NOP

EXECUTION RESULTS: PC+ 1--. PC

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL NOP

Implied Operand

Not changed

NOP

NOP is useful as a pad instruction during program development, to "patch out" unwanted or
erroneous instructions or to leave room for code changes during development. It is also useful
in software timing loops.

3-37

3.5.34

3.5.35

3·38

OR Or

SYNTAX: OR . <s>,<d>

EXECUTION RESULTS: (s) .OR. (d)-. (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL
SET BIT

OR
OR

Dual Register

c 4-0
N - set on result

· Z - set on result

A,R12
%>0F,A

OR

Or the A register with R 12, Store in R 12
Set lower nibble of A to '1 's, leave
upper nibble unchanged

QR is used to perform a logical OR of the two operands. Each bit of the 8-bit result follows the
truth table at the beginning of this section. The OR operation is used to set bits in a register. If a
register needs a '1 ' in the destination then a '1 ' is placed in the corresponding bit location in the
source operand.

ORP OR Peripheral File Register

SYNTAX: ORP <s>,<d>

EXECUTION RESULTS: (s) .OR. (d)-. (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL OAP

Peripheral File

c._o
N - set on result
Z - set on result

A,P12

ORP

ORP is used to perform a logical OR of the source operand with a peripheral file location, and
write the result back to the peripheral file. This may be used to set an individual 1/0 bit of a
peripheral register. Since the peripheral file is read before it is ORed, it may not work with some
peripheral locations which have different function when reading then when writing.

3.5.36

3.5.37

POP POP From Stack

SYNTAX: POP <d>

EXECUTION RESULTS: Stack top -+ (d)
SP-1 -+SP

EXAMPLES: GETIT
PU TB CK

POP
POP

TYPE: Single Register

R32
ST

"POP ST" Special, see below

STATUS
BITS:

C+-0
N - set on value POPed
Z - set on value POPed

Move value then decrement SP

POP

The data stack can be used to save or to pass values, especially during subroutines and
interrupt service routines. The POP instruction pulls a value from the stack. The status register
may be replaced with. the contents on the stack by the statement: POP ST. This one-byte
instruction is usually executed in conjunction with a previously performed "PUSH ST"
instruction.

PUSH Push On Stack

SYNTAX: PUSH <d>

EXECUTION RESULTS: SP + 1 _. SP; Increment SP then move value
(d) _. (stack top)

EXAMPLES: STORE1
SAVEST

PUSH A
PUSH ST

TYPE:

STATUS
BITS:

Single Register
"PUSH ST" Special, see below

C+-0
N - set on value PUSHed
Z - set on value PUSHed

PUSH

The data stack is used to save or pass values, especially during subroutines and interrupt
service routines. The PUSH instruction places a value on the stack. The Status register may be
pushed on the stack with the statement: PUSH ST. This one-byte instruction is usually
executed in conjunction with a subsequently performed "POP ST" instruction. The status
register is unaffected.

3.39

3.5.38 RETI Return From Interrupt RETI

3.5.39

3-40

SYNTAX: RETI

EXECUTION RESULTS: Stack

EXAMPLE:

TYPE:

STATUS
BITS:

SP-1
Stack
SP-1
Stack
SP-1

LABEL RETI

Implied Operand

Status Register
is loaded from
the stack

-+ PC LS Byte
-+ SP
-+ PC MS Byte
-+ SP
-+ ST SP

RETI is typically the last instruction in an interrupt service routine. RETI restores the status
register to its state immediately before the interrupt occurred and branches back to the
program at the instruction boundary where the interrupt occurred. The A and B registers, if
used, must be restored to original values before the RETI instruction.

RETS

SYNTAX: RETS

EXECUTION RESULTS: Stack
SP-1
Sta.ck
SP-1

EXAMPLE: LABEL RETS

TYPE: Implied Operand

STATUS
BITS: Not changed

Return From Subroutine RETS

.... PC LS Byte SP
-+ PC MS Byte
-+ SP

RETS is typically the last instruction in a subroutine. RETS results in a branch to the location
immediately following the subroutine call instruction. In the called subroutine there must be an
equal number'of POPs and PUSHes so that the stack is pointing to the return address and not
some other data. ·

3.5.40

3.5.41

RL Rotate Left

SYNTAX: RL <d>

EXECUTION RESULTS: Bit(n)
Bit(7)

-+ Bit(n+ 1)

. EXAMPLE:

TYPE:

STATUS
BITS:

-+ Bit(O) and' Carry

LABEL. RL R102

Single Register

C - set to bit 7 of the original operand
N - set on result
Z - set on result

~· I •I,____ msb_.__I 6__.____._5 _4 ,____3 _.__2__.____.__lsb ~

RL

An example of the RL instruction is: If the B register contains the value >93, then the RL
instruction changes the contents of B to > 27 and sets the carry status bit.

RLC Rotate Left Through Carry

SYNTAX: RLC <d>

EXECUTION RESULTS: Bit(n) _,. Bit(n + 1)
Carry _,. Bit(O)
Bit(7) _,. Carry

EXAMPLE: LABEL RLC R72

TYPE: Single Register

STATUS
BITS:

C set to bit 7 of the original operand
N - set on result
Z - set on result

·~~m-sb~l-6~5~4~3---2~~1sb~'=1

RLC

An example of the RLC instruction is: if the B register contains the value > 93 and the carry
status bit is a zero, then the RLC instruction changes the operand value to > 26 and carry to
one. Rotating left effectively multiplies the value by 2. Using multiple rotates, any power of 2 (
2, 4, 8, 16 ...) can be achieved. This type of multiply is usually faster than the MPV (multiply)
instruction. This instruction is also useful in rotates where a value is contained in more than one
byte such as an address or in multiplying a large multibyte number by 2. Care must be taken to
assure that the carry is at the proper value. The SETC or CLRC instructions may be use to setup
the correct value.

3·41

3.5.42

3.5.43

3·42

RR Rotate Right

SYNTAX: RR <d>

EXECUTION RESULTS: +1)
Bit(O)

-+ Bit(n)

EXAMPLE:

TYPE:

STATUS
BITS

-+ Bit (7) and carry

LABEL RR A

Single Register

C - set to bit 0 of the original value
N - sat on result

. Z - set on result

6 5 4

RR

2 lsb~

An example of the RR instruction is: If the B register contains the value >93, then the "RR B"
instruction changes the contents of B to > C9 and sets the carry status bit.

RRC Rotate Right Through Carry

SYNTAX: RRC <d>

EXECUTION RESULTS: Bit(n + 1)-+ Bit(n)
Carry -+ Bit(7)
Bit(O) -+ Carry

EXAMPLE:

·TYPE:

STATUS
BITS:

LABEL RRC R32

Single Register

C - set to bit 0 of the original value
N - set on result
Z - set on result

.~~m-sb~l_a_.J__s--L--4--L--3-l--2-L----L-1s_b~

RRC

An example of the RRC instruction is: If the B register contains the value > 93 and the carry
status bit is zero, then the 'RRC B' instruction changes the operand value to >49 and sets the
carry status bit. When the carry is 'O' this instruction effecively divides the value by 2. A value
of >80 becomes >40. By using this instruction more once, the value can be divided by any
power of 2. Care must be taken to assure the correct value in the carry bit.

3.5.44

3.5.45

SBB Subtract With Borrow

SYNTAX: SBB <s>,<d>

EXECUTION RESULTS: (d) - (s) - 1 + C-+(d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL SBB %23,B Subtract 23 from B register ·

Dual Register

C - set to '1' if no borrow; 'O' otherwise
N - set on result.
Z - set on result.

SBB

SBB is used for multiprecision two's complement subtraction. An SBB instruction with an
immediate operand of zero value is equivalent to a conditional decrement of the destination
operand. With (s) = 0, and C = 'O', then (d) is decremented, otherwise it is unchanged. A
borrow occurs if the result is negative. In this case, the carry bit is set to 'O'.

SETC

SYNTAX: SETC

EXECUTION RESULTS: 1-+ carry

EXAMPLE: LABEL SETC.

TYPE: Implied Operand

STATUS
BITS:

C+-1
N+-0
z +-1

Set Carry

SETC is used to set the carry flag if required before an arithmetic or rotate instruction.

SETC

3.43

3.5.46

3.5.47

3.44

STA Store A Register

SYNTAX: STA <d>

EXECUTION RESULTS: (A)-+(d)

EXAMPLES:

TYPE:

STATUS
BITS:

LABEL 1 STA
LABEL2 STA
LABEL3 STA

Extended Address

C+-0
N - set on value loaded
Z - set on value loaded

@LABEL4
@LABEL5(8)
*R13

STA

Direct addressing
Indexed
Indirect

The STA instruction is used to store values anywhere in the 64K memory address space. The
direct addressing provides an efficient means of directly accessing a variable in general
memory. The indexed addressing provides an efficient table look-up capability. Indirect
addressing allows the use of very large look-up tables and the use of multiple memory pointers
since any pair of registers can be used as the pointer. The Decrement Register and Jump if
Non-Zero instruction (DJNZ) can be used with either indexed or indirect addressing to create
fast and efficient program loops or table searches.

STSP Store Stack Pointer

SYNTAX: STSP

EXECUTION RESULTS: (SP)-+(8)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL STSP

Implied Operand

Not changed

STSP

STSP is used to make a copy of the SP if required. This instruction can be used to test the stack
size. The indexed addressing mode may be used to reference operands on the stack. Ex: STSP
then LOA @>OOOO(B) will put the present value on top of the stack into A register.

3.5.48

3.5.49

SUB Subtract

SYNTAX: SUB <s>,<d>

EXECUTION RESULTS: (d) - (s)--. (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL SUB R19,B

Dual Register

C -set to '1' if result > = 0, 'O' otherwise
N - set on result
Z - set on result

SUB

SUB is used for two's complement subtraction. The carry bit is set to 'O' if a borrow is required.
The carry bit could be renamed a "No-Borrow" bit in this case.

SWAP Swap Nibbles

SYNTAX: SWAP <d>

EXECUTION RESULTS: bits(7,6,5,4, 3,2, 1,0)--. bits(3,2, 1,0, 7,6,5,4)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL SWAP R45

Single Register

C - set to bit 0 of the result or bit 4 of the original
N - set on results
Z - set on results

SWAP.

SWAP exchanges the first four bits with the second four bits. This instruction is equivalent to 4
consecutive RL (rotate left) instructions. It is used to manipulate four bit operands, especially
during packed BCD operations.

J.45

3.5.50

3-46

TRAP Trap To Subroutine

SYNTAX: TRAP <n> n = 0-23

EXECUTION RESULTS: SP+ 1 -+ SP

EXAMPLE:

TYPE:

STATUS
BITS:

PC MS Byte
SP+ 1
PC LS Byte
Entry vector

LABEL TRAP 15

Miscellaneous'

not changed

-+ stack
--+ SP
-+ stack
-+ PC

TRAP

The operand < n > is a trap number which identifies a location in the Trap Vector Table,
addresses > FFDO to > FFFF in memory. The contents of the two-byte vector location form a
16-bit trap vector to which a subroutine call is performed. TRAP is an efficient way to invoke a
subroutine. The highest block of memory is the Trap Vector Table, and contains as many
subroutine addresses as available traps for the TMS7000 family member. The subroutine
addresses are stored like all other addresses in memory, with the least significant byte in the
higher-addressed location, as shown below.

TRAP VECTOR TABLE

>FFDO Trap 23 address msb
>FFD1 Trap 23 address lsb

>FFEO Trap 1 5 address msb
>FFE1 Trap 1 5 address lsb

>FFFA Trap 2 address msb
>FFFB lsb
>FFFC Trap 1 address msb
>FFFD lsb
>FFFE Trap 0 address msb
>FFFF Trap 0 address lsb

Note that TRAPs 0, , 1 ,2 and 3 correspond to the hardware-invoked interrupts 0, 1, 2, and 3
respectively. The har.dware-invoked ·interrupts, however, push the program counter and the
status register before branching to the interrupt routine, while the TRAP instruction pushes
only the program counter. TRAP 0 will branch to the same code executed for a system reset but
will not set or clear all the registers like the hardware RESET. For more information see Section
6.3.3.

3.5.51

3.5.52

3.5.53

TSTA Test A Register

SYNTAX: TSTA

EXECUTION RESULTS: C,N,Z bits set

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL TSTA Test A register

Implied Operand

c.-o
N - set on value in A register
Z - set on value in A register

TSTA

This instruction can be used to set the status bits according to the value in the A register. This
instruction is equivalent to the CLRC (Clear Carry) instruction. '

TSTB . Test B Register

SYNTAX: TSTB

EXECUTION RESULTS: C,N,Z bits set

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL TSTB

Implied Operand

c .-o

Test
Register

N - set on value in B register
Z - set on value in B register

B

TSTB

This instruction can be used to set the status bits according to the value in the B register. It may
be used to clear the carry bit. This instruction is equivalent to the XCHB B (exchange B with B)
instruction.

XCHB Exchange With B Register XCHB

SYNTAX: XCHB <d>

EXECUTION RESULTS: (B) .-+ (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL XCHB
XCHB

Single Register

c.-o

A
R3

N - set on originalcontents of B
Z - set on original contents of B

exchange B register with A register
exchange B register with R3

XCHB is used to exchange a register with the B register without going through an intermediate
location. The XCHB instruction with the B register as the operand is equivalent to the TSTB
instruction.

3-47

3.5.54

3.5.55

3-48

XOR Exclusive Or

SYNTAX: XOR <s>,<d>

EXECUTION RESULTS: (s) .XOR. (d)--. (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL XOR
XOR

_Dual Register

c--o
N - set on result
Z - set on result

R98,R125
% 1,R20 Toggle bit 0 in R20

XOR

XOR is used to perform a bit-wise exclusive OR operation on the operands. The XOR
instruction can be used to complement bits in the destination operand. Each bit of the 8-bit
result follows the truth table shown at ttie beginning of this section. This operation can also
toggle a bit in a register. If the bit value in the destination needs to be the opposite from what it
currently is, then the source should contain a '1' in that bit location.

XORP Exclusive Or Peripheral File

SYNTAX: XORP <s>,<d>

EXECUTION RESULTS: (s) .XOR. (d)-+ (d)

EXAMPLE:

TYPE:

STATUS
BITS:

LABEL XORP

Peripheral File

c--o
N - set on result
Z - set on result

% >01,P9 Reverse direction of pin C(O)

XORP

XORP is used to perform a bit-wise exclusive OR operation on the operands. The XORP
instruction can be used to complement bits in the destination PF register. The example above
inverts bit 0 of P9, which is the port C data direction register, thus reversing the direction of the
pin.

. 4. ELECTRICAL SPECIFICATIONS

4.1 TMS7000/TMS7020/TMS7040/TMS70120/TMS7001 /TMS7041

4.1.1 Description Of The TMS7000/TMS7020/TMS7040/TMS70120/TMS7001 /TMS7041

The TMS70XO devices (TMS7000, TMS7020, TMS7040, and TMS70120) are single chip
8-bit microcomputers containing a CPU, timer, 1/0, RAM, and various amounts of on-chip
ROM. The TMS7020 contains the CPU, RAM, timer, .and 1/0 on-chip, and also provides 2K
bytes of on-chip ROM. The TMS7040 offers the same features as the TMS7020 and has an
increased on-chip ROM size of 4K bytes. The TMS70120 offers the same fea,tures as the
general family and efficiently handles large programs with 12K bytes of on-chip ROM. The
TMS7000 family member contains the same features of the TMS7020 except it contains no
on-chip ROM.

The TMS70X 1 devices (TMS7001 and TMS7041) contain a flexible on-chip serial port in
addition the CPU, timer, 1/0, and on-chip RAM and ROM. The TMS7041 contains 4K bytes of
on-chip ROM, while the TMS7001 has no on-chip ROM.

Each member in the TMS70XO and TMS70X1 families have 128 bytes of on-chip RAM, and all
have the capability through memory expansion modes, to access up to 64K bytes of address
space. For additional information on the TMS7000 family architecture, refer to Section 2.

Table 4-1 depicts the TMS70XO and TMS70X 1 family features.

TABLE 4·1 - TMS70XO AND TMX70X1 FAMILY FEATURES

FEATURES
FAMILY MEMBERS

7000 7020 7040 70120 7001 7041

ON-CHIP ROM (BYTES) NONE 2K 4K 12K NONE 4K

ON-CHIP RAM (BYTES) 128 128 128 128 128 128

INTERRUPT LEVELS 4 4 4 4 6 6

TIMERS 113-BIT 1 1 1 1 2 2
j 10-BIT 0 0 0 0 1 1

1/0 LINES:
Bl-DIRECTIONAL 16 16 16 16 . 22 22
INPUT ONLY 8 8 8 8 2 2
OUTPUT ONLY 8 8 8 8 8 8

ADDITIONAL 1/0
SERIAL SERIAL - - - -
PORT PORT

PROCESS
TECHNOLOGY NMOS NMOS NMOS NMOS NMOS NMOS

Unless otherwise indicated the following specifications for the TMS7000 apply to the
TMS7020, TMS7040, TMS7012o, TMS7001, and TMS7041.

384 4·1

4.1.2

4·2

Key Features

• Microprogrammable instruction set
• Strip Chip Architecture Topology (SCAT) for rapid family expansion
• Register-to-register architecture
• Family members with 2K, 4K, and 12K bytes of on-chip ROM and ROM less versions
• On-chip 8-bit timer/event counter with 5-bit prescale:

Internal interrupt with automatic reload
Capture latch
Second 8-bit timer/event counter with 5-bit prescale and cascade capability
(TMS7001 and TMS7041 only)

• Flexible on-chip serial port (TMS7001 and TMS7041 only)
Fully software programmable
Internal or external baud rate generator
Separate baud ratetimer usable as a third timer
Asynchronous, isosynchronous, or serial modes
Two multiprocessor communication formats

• 1 28-byte RAM register file
• Full-feature data/program stack
• 32 TTL-compatible 1/0 pins:

16 bi-directional pins (22 bi-directional pins on TMS7001 and TMS7041)
8 output pins .
8 high-impedance input pins (2 input pins on TMS7001 and TMS7041)

• Memory-mapped ports for easy addressing
• 256-byte peripheral file
• Memory expansion capability:

64K byte address space
8-bit instruction word
Eight powerful addressing formats including:

Register-to-register arithmetic
Indirect addressing on any register pair
Indexed and indirect branches and calls

Two's complement arithmetic
0 Single-instruction binary coded decimal (BCD) add and subtract
• Two external maskable interrupts

Flexible interrupt handling:
Priority servicing of simultaneous interrupts
Software execution of hardware interrupts
Precise timing of interrupts with the capture latch
Software monitoring of interrupt status

• Accurate pulse width measurement and modulation
• N-channel silicon gate MOS, 5-volt power supply
• 40-pin, 600-mil, dual-in-line package
• 100-mil or 70-mil pin-to-pin spacing packages

4.1.3 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)t ·

Supply voltage, Vee (See Note 1) ... -0.3 V to 7 V
All input voltages -0.3 V to 20 V
All output voltages -0.3 V to 7 V
Continuous power dissipation . 1 W
Operating free-air temperature range 0°e to 70°C
Storage temperature range -55°C to 150°C

t Stresses beyond those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section
of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vss·

4.1.4 Recommended Operating Conditions

PARAMETER MIN NOM MAX UNIT

Supply voltage, Vee 4.5 5 5.5 v
CLOCKIN 2.6 Vcc+o.5 v

High-level input voltage, V1H MC 14 v
All others 2 Vcc+o.5 v
CLOCKIN 0.6 v

Low-level input voltage, V1L
All others 0.8 v

High-level output current, loH -400 µA

Low-level output current, loL 10 mA

Operating free-air temperature, TA 0 70 oc

4.1.5 Electrical Characteristics Over Full Range of Operating Conditions

PARAMETER TEST CONDITIONS MIN TvPt MAX UNIT

11 Input current, Port A INPUT-only pins V1=Vss to Vee ±2 ±10 µ.A

11 Input current, 1/0 pins v1 =0.4 v to Vee ±10 ± 100 µ.A

C1 Input capacitance 2 pF

VoH High-level output voltage lo= -400 µ.A 2.4 2.8 v
Vol Low-level output voltage lo =3.2 mA 0.2 0.4 v
tr(O) Output rise timel 9 50 ns

tf(O) Output fall time t 10 60 ns

ice Supply current 80 150 mA

PD_.iavl Average power dissipation
All outputs open

400 825 mW

t All typical values are at Vee = 5 V, TA = 25°e. · ·
~Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-2). Outputs

have 100-pF loads to V55.

2.192 v

. ~ 560 0

Vo--1 r 100 pf

FIGURE 4-1 - OUTPUT LOADING CIRCUIT FOR TEST

384 4.3

ou~:~4T~~ ____ _

2.2v-----

o.sv __ _
0.4V

0---------------------------

- - -- -- - -- _VOH (MINI
-------90%

-----10%
- - - Vol IMAX)

INPUTS I
2.0V ------ ------V1HIMINI

1.88V ------ ---- -90%

0.92 v ----- --------- --- 10%
0.80 V - - - - - - ------ --VIL IMAX)

0------------------------------------
FIGURE 4-2 - MEASUREMENT POINTS FOR SWITCHING CHARACTERISTICS

4.1.6 Recommended CRYSTAL/CLOCKIN. Operating Conditions Over Full Operating Range

PARAMETER MIN TVP MAX UNIT

fosc CRYSTAL/CLOCKIN frequency ldivide-by-4 option) 2.0 10.1 MHz

fosc CRYSTAL frequency (divide-by-2 option) (see Note 1) 1.0 5.05 MHz

tc(PI CRYSTAL/CLOCKIN cycle time (divide-by-4 option) 99 500 ns

tc(P) CRYSTAL cycle time (divide-by-2 option) 198 1000 ns

tc(SI Internal state cycle time 396 2000 ns

tw(PH) CLOCKIN pulse width high 45 ns

tw(PL) CLOCKIN_Q_ulse width low 45 ns

tr CLOCKIN rise timel 30 ns

tf CLOCKIN fall timet 30 ns

td(PH-CL) CLOCKIN rise to CLOCKOUT rise delay_ 125 200 ns

t Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-2). Outputs
have 100-pF loads to V55.

NOTE 1: Divide-by-4 option recommended with external clock drive.

4-4

r---tc(Pl.--...f

I . I
1-,~tr'

t,~ r-i I I
XTAL2/ I I
CLKIN

rttwlPHI

I J--+ tw(PL)

tdlPH-CLI.,....,

CLKOUT v
I

\ __ ----t"(
I

----------tc1s1---------_..

FIGURE 4-3 _: CLOCK TIMING

__

4.1.7

tc(C)

lw_iCH_l

lw(CL)
td(CH-JL)

tc:tl.CH-EIJ.

lw!.JHI

td(AH-Jl,J,

t<itAL-JLI

th(JL-A!J.

tdlRW-JL)

th1EH-RW1

thl.EH-AH..1.

th(EH-0)

td(O-EH)

tdiAF-EU

td(EH-AFJ

tdiEL-D_l

tl:!iEH-D_l

td(A-D_l

td(A-EH)

(a) TMS70XX

XT AL 1 XT AL2/CLKIN

18 17
5 MHz,

-o....---
PARALLEL

15pF l RESONANT 115 pF

(b)

nc

CLOCK
SOURCE

XTAL1

TMS70XX

XT AL2/CLKIN

NOTES: The divide-by-2 input can be used with XTAL only. Divide-by-4 can be used with XTAL or CLKIN inputs.
Alternative use of ceramic resonators is illustrated in Section 4. 1.8.

FIGURE 4-4 - RECOMMENDED CLOCK CONNECTIONS

Memor"Y Interface Timing At 10 MHz Over Full Operating Free-Air Temperature Range

PARAMETER MIN TYP MAX
CLOCKOUT cycle time (see Note) 400 2000

CLOCKOUT high pulse width 130 170 200

CLOCK OUT low pulse width 150 190 240

CLOCKOUT rising to ALATCH falling edge 260 300 340

CLOCKOUT rising to~ falling -10 15 50

ALATCH high pulse width 150 190 . 230

High address valid before ALATCH fall 50 170 220

Low address valid before ALA TCH fall 50 150 220

Low address hold after ALA TCH fall 30 45 80

RD/WR valid before LATCH fall 50 140 200

RD/WR hold after~ rise 40 100

High address hold after~ rise 30 40

Data out hold after~ rise 65 80

Data out valid before~ rise 230 290

~fall after low address Hl-Z 0 30 120

~rising to next address drive 60 85

Data in after~ falling 155 190
Data in hold after~ rise 0

Access time, data in from valid address 400 470

ENA high after address valid 580 730

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

· ns
ns

ns

ns

ns

ns

ns

ns

ns

NOTE: tclCJ is defined to be 4/fosc (or 2/fosc if the divide-by-2 option is selected) and may be referred to as a machine state or simply a state.

4.5

EXTERNAL READ

CLKOUT (87)

ALATCH (84)

HI ADDR (OO-D7) ESS

LO ADDR (CO-C7)

'ENABLE (86)

RD/WR (85)

4·6

EXTERNAL WRITE

I
I

H-t h(EH-RW)

I 1--td(A-EH)

RAM READ

FIGURE 4-5 - READ AND WRITE CYCLE TIMING

INTERNAL READ

HIADDR

4.1.8 Application of Ceramic Resonator

The resonant circuit shown in Figure 4-6 provides an economical alternative to quartz crystals
where frequency tolerance is not a major concern. Frequency tolerance over temperature is
about 1 %.

Ceramic resonator suppliers.

MURATA CORPORATION OF AMERICA
1148 Franklin Rd. SE.
Marrietta, GA. 30067
404/952-9777
Telex: 0542329 Murata ATL

NGK SPARK PLUGS (USA) INC.
20608 Madrona Ave.
Torrance, CA 90503
213/328-6882
Telex: 664290

KYOCERA INTERNATIONAL
8611 Balboa Ave.
San Diego, CA 92123
714/279-8310
Telex: 697929

For 5 MHz operation
Resonator ceralock CSA5.00MT
Resistor 1 MD. 10%
Capacitors (both) 30 pF

For 5 MHz operation
Resonator R5.0M
Resistor 1 MD. 10%
Capacitors 68 pF ± 10%

RESONATOR

RESISTOR y CAPACITORS

FIGURE 4-6 - CERAMIC RESONATOR CIRCUIT

4.7

4.1.9

4.1.9.1

td(CL,SL)

td(CL-TD)

td(RD-CLI

tw(RD)

4-8

Serial Pon Timing (TMS7001, TMS7041, And SE70P161 Only)

Internal Serial Clock

. CLKOUT
8(7)

(NOTES a.bl

SCLK
A161

(NOTE cl

..... td(CL-SLI
I

I
I

--I ~td(CL-TDI
TXD
8(31

--x
RXD
Al51

Don't Ca~e

NOTES:

TXD

td(RD-CLl--t I--

I I
rltw(RDI

RXD
SAMPLE SAVED

a) The CLKOUT signal is not available in Single-Chip mode.
bl CLKOUT = tc(C) ~ 0
c) Example shows SCLK = 0/8.

PARAMETER

CLKOUT low to SCLK low

CLKOUT low to new TXD data

RXD data valid before CLKOUT low

RXD data valid time

TYP UNIT

1/4 tc(CI

1/4 tc(CI

1/4 tc(CI
ns

1/2 tc(CI

4.1.9.2

td(RD-CL)

tw(RDl

td(SB-TD)

td(SE-TD)

External Serial Clock

CLKOUT
8171

(NOTE al

SCLK
A(61

(NOTE bl

TXD
8131 --------------------------..J~~--------T-x_o ______________ __

~ t--tdtRD·CLI

RXD
A(51

--------------------D-o-n-·t_C_a_r_e---------------------~

~

NOTES:

tw(RDl+--1

RXD
SAMPLE SAVED

a) The CLKOUT signal is not available in Single-Chip mode.
CLKOUT = tc(C) = 0

bl Example shows SCLK = 0/10.
cl SCLK sampled; if 1 then 0, fall transition found.
d) SCLK sampled; if 0 then 1, rise transition found.

PARAMETER

RXD data valid before CLKOUT low

RXD data valid time

Start of SCLK sample to new TXD data

End of SCLK sample to new TXD data

TYP

1/4 tc(Cl

1/2 tc(Cl

3Y. tc(Cl

2Y. tc(C)

UNIT

ns

-

4-9

4.1.9.3

INT4
FLG

RXRDY

RXD

4-10

Rx Signals In Communication Modes

lt---2 __ __,,

,____ _ ___,,

NOTES:

a) Format shown is start bit + seven data bits + stop bits.
b) SCLK is continuous, external or internal.
c) User means user software executed by CPU.
d) If RXEN = 0, RXSHF still receives data from RXO. However, the data

is not transferred to RXBUF and RXRDY and INT4 FLG are not set.

SEQUENCE OF EVENTS

STOP

1) RXSHF data is transferred to RXBUF. Error status bits are set if an error is detected.
2) {User writes to INT4 CLR to clear INT4 FLG. If not, CPU clears.
3) INT4 FLG on entry to Level 4 interrupt routine.
4)' User reads RXBUF.

4.1.9.4 Tx Signals In Communication Modes

INT4

J FLG

TXEN

TXE I ----------.11~
l

TXRDY

~
TXD

NOTES:

al Format shown is start plus eight data parity bits plus two stop bits.
bl SCLK is continuous whether internal or external.
cl User means user software executed by CPU.

SEQUENCE OF EVENTS

!: } User writes to TXBUF.

21}{- TXBUF and WU data is transferred to "!"XSHF and WUT and
51 INT4 FLG and TXRDY are set.
61 User resets TXEN; current frame will finish and transmission will stop whether TXBUF is full or empty.
71 TXE is set if TXBUF and TXSFT are empty.

31 User writes to INT4 CLR to clear INT4 FLG or CPU clears INT4 FLG on entry to level 4 interrupt routine.

4·11

4.1.9.5 Rx Signals in Serial 110 Modes

4-12

RXD)(O)(1)(2)(3)(4)(5)(6)(7

©j
SCLK

NOTES:

al RXEN has no effect on INT4 FLG or RXRDY in serial 1/0 mode.
bl RXD is sampled on SCLK rise; external shift registers should be clocked on SCLK fall.
c) The SCLK source should be internal as it is gated by internal circuitry.

SEQUENCE OF EVENTS

1) User starts receiving by setting RXEN.
2) Gated SCLK starts and data is received.
3) RXEN is automatically cleared in last data bit.
4) RXSHF data is transferred to RXBUF and RXRDY and INT4 are set.
5) User writes to INT4 CLR to clear INT4 FLG; if not CPU clears INT4 FLG on entry to level 4 interrupt

routine.
6) User reads RXBUF.

4.1.9.6 Tx Signals in Serial 110 Modes

INT4
FLG

TXEN

TXE

TXRDY

1

TXD \ox, X 2 x 3 x 4 x 5 x 6 x 7 /

SCLK

NOTES:

al Format shown is eight data bits.
bl The SCLK source should be internal as it is gated by internal circuitry.

SEQUENCE OF EVENTS

1) UserwritestoTXBUF.
2) TXBUF data is transferred to TXSFT; INT4 FLG and TXRDY are set and SCLK starts.
3) User resets TXEN, current frame will finish and transmission will halt whether TXBUF is full or empty.

4) Frame ends and SCLK stops because TXEN = 0.

4·13

4.1. 10 Pin Descriptions

4.1.10.1 Pin Description of The TMS7000/TMS7020/TMS7040/TMS70120

Figure 4-7 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor Modes
for the TMS70XO family (TMS7000, TMS7020, TMS7040, TMS70120).

SIGNATURE PIN 1/0 DESCRIPTION
AO (LSB) 6 IN 1/0 Port A: Input lines
A1 7 IN (Specific 1/0 configuration for;
A2 8 IN Sin!lle Chip Mode - see Section 2 .3.1,

8S/RtW TI 40 Vss
87/CLOCKOUT 2 39 86/ENA8LE

BO 3 ;:i 38 84/ALATCH
A3 9 IN Peripheral Expansion Mode - see 81 4 37 BJ
A4 10 IN Section 2.3.2,-Full Expansion
AS 16 IN Mode - see Section 2.3.3, Micro-
A6 1S IN processor Mode - see Section 2.3.4)

82 s 36 MC

AO 6 3S C7

A7 (MSB) 11 IN Al 7 34 C6
A2 8 33 cs

BO (LSB) 3 OUT 1/0 Port B: Output lines AJ 9 J2 C4
81 4 OUT (Specific 1/0 configuration for;
82 s OUT Single Chip Mode - see Section 2.3.1,
83 37 OUT Peripheral Expansion Mode - see
84/ALATCH 38 OUT Section 2.3.2, Full Expansion
85/R/W 1 OUT Mode -.see Section 2.3.3,

A4 10 31 CJ
A7 11 J:; JO C2

. fiij'j'J 12 ~ 29 C1
INTl lJ 28 co

86/ENABLE 39 OUT Microprocessor Mode - see Section RESET 14 27 DO
87 /CLOCKOUT 2 OUT 2.3.4)

CO (LSB) 28 1/0 1/0 Port C: General purpose bidirectional.
C1 29 1/0 lines (Specific 1/0 configuration for; Single
C2 30 1/0 Chip Mode - see Section 2.3.1, Periph.eral

A6 lS ~ 26 Dl
AS 16 2S Vee

XTAL2/CLKIN 17 24 D2

XTALl 18 2J DJ
C3 31 1/0 Expansion Mode - see Section 2.3.2,Full D7 19 22 D4
C4 32 1/0 Expansion Mode - see Section 2.3.3,
cs 33 1/0

D6 20 21 DS

C6 34 1/0 Microprocessor Mode - see Section 2.3.4)
C7 (MSB) 3S 1/0

DO (LSB) 27 1/0 1/0 Port D: General purpose
D1 26 1/0' bidirectional lines (Specific
D2 24 1/0 1/0 Configurations for; Single
D3 23 1/0 Chip Mode - see Section 2.3.1,
D4 22 1/0 Peripheral Expansion Mode - see
DS 21 1/0 Section 2.3.2, Full Expansion Mode -
D6 20 1/0 see Section 2.3.3, Microprocessor
D7 (MSB) 19 1/0 Mode - see Section 2.3.4)

iNTI 13 IN Maskable Interrupt
TNf3 12 IN Maskable Interrupt
RESE"i 14 IN RESET
MC 36. IN . Mode Control

XTAL2/CLKIN 17 IN Crystal input for control of internal OSC.;
input pin for external OSC. or LAC
networks

XTAL1 18 IN Crystal input for control of internal OSC.;
leave open for external OSC.

Vee 25 IN Supply voltage (+SV)
Vss ~ IN Ground reference

FIGURE 4-7 - SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

4-14

4.1.10.2 Pin Description Of The TMS7001/TMS7041

SIGNATURE

AO (LSBl

A1

A2

A3

A4

A5/RXD

A6/SCLK
A7
BO (LSB)

B1

B2

B3/TXD

B4/ALATCH

B5/R/W

B6/E'N'ABL'E

Figure 4-8 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor Modes
for the TMS70X 1 family (TMS7001 and TMS7041)

PIN 1/0 DESCRIPTION

6 1/0 1/0 Port A: Gene·ral Purpose Bidirectional lines

7 1/0 (Specific 1/0 configuration for:
BS/R/W Li 40 Vss

8 1/0 Single Chip Mode - see Section 2.3.1, B7/CLOCKOUT 39 BG/ENABLE
9 1/0 Peripheral Expansion Mode - see BO 38 64/ALATCH

10 1/0 Section 2.3.2, Full Expansion Bl 37 B3/TXD

Mode - see Section 2.3.3, Micro-
B2 3G MC

16 IN
AO 35 C7

15 1/0 processor Mode - see Section 2.3.4) Al 34 CG
11 IN A2 33 cs
3 OUT 1/0 Port B: General purpose Output lines A3 32 C4
4 OUT (Specific 1/0 configuration for: A4 10 31 C3

5 OUT Single Chip Mode - see Section 2.3.1, A7 11 30. C2

37 OUT Peripheral Expansion Mode - see INT3 12 29 Cl
INTl 13 28 co

38 OUT Secti.on 2.3.2, Full Expansion RESET 14 27 DO
OUT Mode - see Section 2.3.3, AG/SCLK 15 2G 01

39 OUT Microprocessor Mode - see Section AS/RXD 16 25 Vee
2 OUT 2.3.4) XTAL2/CLKIN 17 24 02 B7/CLOCKOUT

XTALl 23 OJ 18

CO (LSBl 28 1/0 1/0 Port C: General purpose bidirectional 07 19 22 04

C1 29 1/0 lines (Specific 1/0 configuration for: Single
06 20 21 05

C2 30 1/0 Chip Mode - see Section 2.3.1, Peripheral

C3 31 1/0 Expansion Mode - see Section 2.3.2.' Full

C4 32 1/0 Expansion Mode - see Section 2.3.3,

C5 33 1/0

C6 34 1/0 Microprocessor Mode - see Section 2.3.4).

C7 (MSBl 35 1/0

DO (LSB) 27 1/0 1/0 Port D: General purpose
01 26 1/0 bidirectional lines (Specific
02 24 1/0 1/0 Configuration for: Single
03 23 1/0 Chip Mode - see Section 2.3.1,
04 22 1/0 Peripheral Expansion Mode - see
05 21 1/0 Section 2.3.2, Full Expansion Mode -
06 20 1/0 see Section 2.3.3, Microprocessor
07 (MSBl 19 1/0 Mode - see Section 2.3.4).

INT1 13 IN Maskable Interrupt
INT3 12 IN Maskable Interrupt

RESET 14 IN RESET

MC 36 IN Mode Control

XT AL2/CLKIN 17 IN Crystal input for control of internal OSC.;

input pin for external OSC. or LRC networks

XTAL1 18 IN Crystal input for control of internal OSC.;

leave open for external OSC.

Vee 25 IN Supply voltage (+ 5 Vl

Vss 40 IN Ground reference

FIGURE 4-8 - SC. FE, PE. AND MICRO.PROCESSOR MODE PIN ASSIGNMENTS

4-15

4.2 TMS70COO/TMS70C20/TMS70C40

4.2. 1 DESCRIPTION OF THE TMS70COO/TMS70C20/TMS70C40

4-16

The TMS70COO, TMS70C20, and TMS70C40 devices extend the TMS7000 family line into
low power CMOS applications. They are single chip 8-bit microcomputers containing CPU,
timers, 1/0, and on-chip RAM and ROM. Table 4-2 presents the basic features of the present
TMS70CXX family members.

The TMS70CXX family (TMS70COO, TMS70C20, and TMS70C40 devices) are fully software
and. pin compatible with their TMS70XX NMOS counterparts. They differ in the areas of
interrupt operation, power down modes, input/output levels, operating voltage, and frequency
range.

The TMS70CXX family maintains the four hardware interrupt levels of the TMS70XX family
(RESET, I NT1, I NT2, and I NT3). The TMS70CXX family implements INT1 as only a
latched interrupt, not a latched and level interrupt as on the TMS70XX NMOS devices. The
TMS70CXX family implements RESET, I NT2, and I NT3 in exactly the same manner as in
the TMS70XX family (i.e., I NT3 is both latch and level sensitive). Refer to Section 2.5 for
additional information on interrupt operation.

The TMS70CXX family supports two low power modes, the WAKE-UP mode and the HALT
modes. Both of these modes are entered via execution of the IDLE instruction. The selection of
the power down mode is determined by bit 5 of the timer 1 control register (T1 CTRL) and then
executing the IDLE instruction. The device is released from both power down modes through
activation of RESET or acknowledgement of an enabled interrupt. Note that interrupts must
be enabled in the status register and the 1/0 control register (IOCNTO) before the power down
mode is entered for I NT 1 , I NT 2 (timer), or I NT 3 to be acknowledged. It is important that
both power down modes provide RAM data retention. ·

Unless otherwise indicated, the following specifications for the TMS70COO apply to the
TMS70C20 and TMS70C40 as well.

TABLE 4-2 - TMS70CXO FAMILY FEATURES

FAMILY MEMBER
FEATURES

· 70COO 70C20 70C40

ON-CHIP ROM (BYTES) NONE 2K 4K

ON-CHIP RAM (BYTES) 128 128 128

INTERRUPT LEVELS 4 4 4

GENERAL PURPOSE
128 128 128

INTERNAL REGISTERS

TIMERS 13-BIT 13-BIT 13-BIT

1/0 LINES:
Bl-DIRECTIONAL 16 16 16
INPUT ONLY 8 8 8
OUTPUT ONLY 8 8 8

ADDITIONAL 1/0 - - -

PROCESS
TECHNOLOGY CMOS CMOS CMOS

4.2.2 Key Features

• Microprogrammable instruction set
• Strip Chip Architecture Topology (SCAT) for rapid family expansion
• Register-to-register architecture ·
• Family members with 2K and 4K bytes of on-chip ROM and a ROMless version
• On-chip 8-bit timer/event counter with:

Programmable 5-bit prescale
Internal interrupt with automatic reloading
Capture latch ·

• 128-byte RAM register file
• Full-feature data/program stack
• . 32 CMOS-compatible 1/0 pins:

16 bi-directional pins
8 output pins
8 high-impedance input pins

• Memory-mapped ports for easy addressing
• Wide voltage operating range, frequence range

3 V - 1 MHz typical
5 V - 3.3 MHz typical

• Two software selectable low-power modes
• 256-byte peripheral file
• Memory expansion capability:

64K byte address space
• 8-bit instruction word
• Eight powerful addressing formats including:

Register-to-register arithmetic
Indirect addressing on any register pair
Indexed and indirect branches and calls

• Two's complement arithmetic
• Single-instruction binary coded decimal (BCD) add and subtract
• Two external maskable interrupts
• Flexible interrupt handling:

Priority servicing of simultaneous interrupts
Software execution of hardware interrupts
Precise timing of interrupts with the capture latch
Software monitoring of interrupt status

• Accurate pulse width measurement and modulation
• Complementary silicon gate MOS
• 40-pin, 600-mil, dual-in-line package
• 100-mil or 70-mil pin-to-pin spacing packages

4-17

4.2.3 Absolute Maximum Rating Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)t

Supply voltage, Voo (See Note 1) -0.3 V to 7 V
All input voltages . -0.3 V to Voo + 0.3 V
All output voltages -0.3 V to Voo + 0.3 V
Input current - + 10 mA
Continuous power dissipation 0. 5 W
Operating free-air temperature range 0°C to 70°C
Storage temperature range -55°C to 1 50°C

t Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. ~his is a stress rating only and
functional operation of the device at thP.~P. or any other conditions beyond those indicated in the "Rt:i.;ummended Operating Conditions" section
of this specification is not implied. Exposure to absolute-maximum-rated conditons for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vss·

4.2.4 Recommended Operating Conditions -

PARAMETER MIN NOM MAX UNIT

Supply voltage, Voo 3 5.5 v
Voo = 5 v Voo-1 v

High-level input voltage, V1H v00 = 4 v v00 -o.7 v
Voo = 3 v v00 -o.5 v
v00 = 5 v 1 v

Low-level input voltage, V1L Voo = 4 v 0.7 v
Voo = 3 v 0.5 .v

Operating temperature range, TA t 0 70 oc

t Plans are underway to extend the operating temperature range from -40°C to 85°C.

4.2.5 Electrical Characteristics Over Full Range Of Operating Conditions

PARAMETER TEST CONDITIONS MIN Tvpt MAX UNIT

VoH High-level output voltage
IQH = -1 mA, v00 = 5 v Voo-2.5 v0 o-0.5 v
IQH = -0.4 mA, v00 = 5 v Voo-o.5 v00 -o.2

VOL Low-level output voltage loL = 1.7 mA, v00 = 5 v 0.3 0.4 v
11 Input leakage current v, = Voo, v00 = 5V 5 µA

VoH = v00 -o.5 v. v00 = 5V -0.3 -1.2

VoH = v00 -o.5 v. v00 = 4 v -0.2 -0.8
loH Source current mA

VoH = v00 -o.5 v. v00 = 3 v -0.1 -0.5

VoH = 2.5 V, Voo = 5 v -1 -4.5

VOL = 0.4 V, Voo = 5 v 1.7 2.4

loL Sink current VoL = 0.4 V, v00 = 4 v 1.2 1.8 mA

Vol= 0.4 V, v00 = 3 v 0.7 1

Operating,
5.5 8 mA

fosc = 3 MHz, v00 = 5 v
Wake-up mode,

500 800 µA

loo Supply current
fosc = 3 MHz, v00 = 5 v
Halt mode,

fosc = 3 MHz
v 00 = 5 v 250 550 µA

Halt mode, XTAL/CLKIN = GNO,
2 10 µA

all input = Voo or GNO, v00 = 5 v

t All typical values are at Voo = 5 V, TA = 25°C.

4·18 384

LOAD VOLTAGE

VQ--!9700
l 100pF

FIGURE 4-9 - OUTP.UT LOADING CIRCUIT FOR TEST

4.2.6 AC Characteristics For Input/Output Ports

PARAMETER TEST CONDITIONS MIN .TYPt MAX UNIT

tr(IO) 1/0 port output rise time t
CL = 15 pF, Voo = 5 v 50

CL = 50 pF, Voo = 5 v 70 110 150
ns

tf(IO) 1/0 port output full time*
CL = 15 pF, Voo = 5 v 20

CL = 50 pF, Voo = 5 v 25 50 70
ns

tt(IO) 1/0 port input rise/fall time* Voo = 5 v 70 ns

t All typical values are at Voo = 5 V, TA = 25°C.

:j: Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points (see Figure 4-11).

4.2.7 Recommended CRVSTAL/CLOCKIN Operating Conditions Over Full Operating Range

PARAMETER TEST CONDITIONS MIN TYP MAX

v00 = 5 v 0.5 3.6

fosc CRYSTAL frequency (see note 1) v00 =4V 0.5 2.7

Voo = 3 v 0.5 1.3

Voo = 5 v 277 2000

tc(P) CRYSTAL cycle time v00 = 4V 370 2000

v00 = 3 v 769 2000

v00 = 5 v 554 4000

tc(S) Internal state cycle time v00 = 4V 740 4000

v00 = 3 v 1538 4000

tr CRYSTAL rise time t 30

tf CRYSTAL fall timet 30

dose CRYSTAL duty cycle 45 50 55

td(PL-CL) CRYSTAL fall to CLOCKOUT rise delay 100 200

t Rise and fall times are measured between the maximum low level and the minimum high level using the 10% and 90% points.

NOTE 1: TMS70CXX family members currently use only the divide-by-two option as the INPUT CLOCK option.

UNIT

MHz

MHz

MHz

ns

ns

ns

ns

ns

ns

ns

ns

%

ns

4·19

4-20

~td{PL-CL)

CLKOUT __ i '~......---:;j
i i

\ r ------"

OUTPUTS

4.5 v
4.1 v

0.8 v
0.4 v

! I
·1

FIGURE 4-10 - CLOCK TIMING

----- -- - -- VoH (MINI
---- -- ---- 90%

------------ ------ - _10%
------- - - Vol IMAX)

0--~

INPUTS

4
.0V ------1-------~--------· V1HIMINI 3.7V ------- ------- -------90%

13V -------- --------- -------10%
1:ov ------- --------- -------- V1LIMAX)

0---

FIGURE 4-11 - MEASUREMENT POINTS FOR SWITCHING

CHARACTERISTICS IVoo = 5 VI

4.2.8

tdCL

tw(CHI

twlCL)

td(CH-JL)

tcj_t_CH-ELJ..

tw(JH)

td(AH-JLJ

td_lAL-JIJ..

tdJ_JL-Al.l_

tqi.RW-JLJ..

th_lEH-RW.1

th(EH-AH)

th(EH-Q)

td(Q-EHl

tdJ_AF-ELJ..

td_lEH-AF.l

td(EL-Dl

thJ_EH-D.l

td(A-DI

td(A-EHI

Memory lnteface Timing At Voo
Temperature Range

PARAMETER

CLOCKOUT cycle time (see note)

CLOCKOUT high pulse duration

CLOCKOUT low pulse duration

5 V, f osc

CLOCKOUT rising to ALATCH falling edge

CLOCKOUT rising to ENABLE falling

ALATCH high pulse duration

High address valid before ALATCH fall

Low address valid before ALA TCH fall

Low address hold after ALATCH fall

RD/WR valid before ALATCH fall

RD/WR hold after ENABLE rise

High address hold after ENABLE rise

Data out hold after ENABLE rise

Data out valid before ENABLE rise

ENABLE fall after low address Hl-Z

ENABLE rising to next address drive

Data in after ENABLE falling

Data in hold after ENABLE rise

Access time, data in from valid address

ENA high after address valid

3 MHz Over The Full Operating Free-Air

MIN TYP MAX UNIT

665 ns

260 340 470 ns

190 270 360 ns

400 580 ns

30 60 ns

'260 370 ns

230 330 ns

.220 320 ns

110 160 ns

220 320 ns

170 ns

165 ns

130 190 ns

330 480 ns

0 0 20 ns

130 ns

290 ns

0 ns

770 ns

800 1150 ns

NOTE: TMS70CXX family members use a cycle time, tc(C)• that is equal to 2/fosc and is referred to as a machine state or simply a state.

4-21

CLKOUT (B7)

ALATCH (B4)

HI ADDA (DO-D7) ESS

LO ADDA (CO-C7)

ENABLE (B6)

RD/WR (BS)

4-22

EXTERNAL READ EXTERNAL WRITE

n
I

td(AH-JL)

_j 1-- th(EH-AH)

I
I .

It- t h(EH-RW)

I 1--td(A-EH)

RAM READ

I
rtd(O-EH)

FIGURE 4-12 - READ AND WRITE CYCLE TIMING

INTERNAL READ

n

·HI ADDA

(a) TMS70CXX (b)

XTAL1 XT AL2/CLKIN
nc XTAL1

18 17 TMS70CXX
3 MHz,

D CLOCK XT AL2/CLl<IN

SOURCE
PARALLEL

15 pF r RESONANT r 15 pF

(c)

[] RESONATOR

RESISTOR y CAPACITORS

NOTE: The TMS70CXX family currently uses only the divide-by-two option as the input clock options. Sources of. ceramic
resonators are given in Section 4.1.8.

FIGURE 4-13 - RECOMMENDED CLOCK CONNECTIONS

4-23

4.2.9 Pin Description Of The TMS70COO/TMS70C20/TMS70C40

Figure 4-14 defines the pin assignments and describes the function of each pin for the
Single-Chip (SC), Peripheral Expansion (PE), Full Expansion (FE), and Microprocessor modes
for the TMS70CXO family (TMS70COO, TMS70C20, TMS70C40).

SIGNATURE PIN 1/0 DESCRIPTION
AO (LSB) 6 IN 1/0 Port A: Input lines
A1 7 IN (Specific 1/0 configuration for;

85/RtW TI 40 Vss
87/CLOCKOUT 2 39 86/ENABLE

A2 8 IN ·Single Chip Mode - see Section 2.3.1,
A3 9 IN Peripheral Expansion Mode - see
A4 10 IN Section 2.3.2, Full Expansion
A5 16 IN Mode - see Section 2.3.3, Micro-
A6 15 IN processor Mode - see Section 2.3.4)

BO 3 38 84/ALATCH
Bl 4 37 BJ

82 s 36 MC
AO 6 3S C7

A7 (MSB) 11 IN Al 7 34 C6

BO (LSB) 3 OUT 1/0 Port B: Output lines
81 4 OUT (Specific 1/0 configuration for;
82 5 OUT Single Chip Mode - see Section 2.3.1,
83 37 OUT Peripheral Expansion Mode - see

A2 8 33 cs
A3 9 32 C4
A4 10 31 CJ
A7 11 30 C2

84/ALATCH 38 OUT Section 2.3.2, Full Expansion
85/R/W 1 OUT Mode - see Section 2.3.3,
B6/ENABLE 39 OUT Microprocessor Mode - see Section
87/CLOCKOUT 2 OUT 2.3.4)

INT3 12 29 Cl
INTl 13 28 co

RES~T 14 27 DO
A6 1S 26 01

CO (LSB) 28 1/0 1/0 Port C: General purpose bidirectional AS 16 2S Vee
Cl 29 1/0 lines (Specific 1/0 configuration for; Single XTAL2/CLKIN 17 24 02
C2 30 1/0 Chip Mode - see Section 2.3.1, Peripheral XTALl 18 23 03
CJ 31 1/0 Expansion Mode - see Section 2.3.2,Full
C4 32 1/0 Expansion Mode - see Section 2.3.3,
C5 . 33 1/0

07 19 22 04
06 20 21 05

C6 34 1/0 Microprocessor Mode - see Section 2.3.4)
C7 (MSB) 35 1/0

DO (LSB) 27 1/0 1/0 Port D: General purpose
01 26 1/0 bidirectional lines (Specific
02 24 1/0 1/0 Configurations for; Single
03 23 1/0 Chip Mode - see Section 2.3.1,
04 22 1/0 Peripheral Expansion Mode - see
05 21 1/0 Section 2.3.2, Full Expansion Mode -
06 20 1/0 see Section 2.3.3, Microprocessor
07 (MSB) 19 1/0 Mode - see Section 2.3.4)

iN'ff 13 IN Maskable Interrupt
INT3 12 IN Maskable Interrupt
RESET 14 IN REID
MC 36 IN Mode Control

XTAL2/CLKIN 17 IN Crystal input for control of internal OSC.;
input pin for external OSC. or LRC
networks

XTALl 18 IN Crystal input for control of internal OSC.;
leave open for external OSC.

Vee 25 IN Supply voltage (+5V)
Vss 40 IN Ground reference

FIGURE 4-14 - SC, FE, PE, AND MICROPROCESSOR MODE PIN ASSIGNMENTS

4-24

4.3 SE70P161

4.3.1 Description Of The SE70P161 Prototyping Component

4.3.2

4.3.2.1

4.3.2.2

384

The SE70P161 prototyping component is another member of the TMS7000 family of
single-chip 8-bit microcomputers. The SE70P161 is pin compatible with the TMS7020,
TMS7040, TMS70120, TMS7041, and has the same instruction set described in Section
3 of this data manual.

The SE70P161 can also be used to emulate CMOS members of the TMS7000 family, with the
following limitations. Because the SE70P161 is an NMOS device, its logic levels are not CMOS
compatible. Also, this device does not support the low-power modes of the CMOS devices
such as HALT or wake-up. Finally, INT1 on the SE70P161 is both latched and level triggered as
in the NMOS devices, not just latched, as in the CMOS devices. Further details of these
differences are provided in the sections which discuss the function.

The SE70P161 serves as a prototyping component forthe TMS7000 devices and provides the.
ability to verify in real-time software written for all TMS7000 family members mentioned in the
preceding paragraphs. This device uses standard TMS2764 or TMS27128 EPROMs. The
EPROMs are located in a socket on top of a 40-pin dual-in-line package.

The SE70P 161 is packaged so that ari EPROM device can be plugged into the top of the
package (piggy back). This two chip unit acts as an emulator of the TMS7020 (2K bytes of
internal ROM space), the TMS7040/7041 (4K bytes of internal ROM space) and the
TMS70120 (12K bytes of internal ROM spaceL The SE70P161 can also be used as an
emulator of any future members derived from the TMS7040/7041 with up to 16K bytes of
internal ROM space.

Prototyping

NOTE

System emulators and development tools are only to be used in a prototype
environment. Texas Instruments does not warrant their use in customer's
applications.

TMS7041 Prototyping

The SE70P161 uses either 2764 or 27128 EPROMs with 250 nanoseconds access time or
better. The SE70P161 is identical to the TMS7041 except the supply current is a maximum of
150 mA higher because of the EPROM.

TMS7020!7040!70120 Prototyping

The SE70P161 system emulator can be used as a TMS7020/TMS7040/TMS70120
prototype. In this mode, internal peripheral port 16 must be cleared by adding MOVPo/o >00,
P16 to the initialization routine.

In any expansion mode, peripheral ports 13 through 23 are used internally and are not
accessible to external peripherals in this memory space. In addition, in the full expansion mode,
memory locations COOO through FFFF are. reserved for an EPROM and are. not externally
available.

4·25

4.3.3

4.3.4

Programming And Installing EPROMS

All EPROM access times are not more than 250 nanoseconds. Pin 1 is identified by a nearby
L-shaped gold trace; socket 1 for the EPROM is located in in the same corner. Table 4-3 shows
the use of the EPROMS.

TABLE 4-3 - EPROM USE

EPROM
70XX 70XX+ 27XX

TYPE
ROM START START

SPACE ADDRESS ADDRESS

27128 1SK Bytes >coos >OOOS

27S4 SK Bytes >EOOS >OOOS

27S4 4K Bytes >FOOS >100S

27S4 2K Bytes >F806 >180S

tNOTE: Texas Instruments reserves the first 6 bytes of ROM. Addresses in this range may not be defined by the user

program.

The SE70P161 is fabricated in two versions. Both versions have fixed internal ROM space of
16K bytes (COOO-FFFF), one with a divide-by-two clock generator and the other with a
divide-by-four. Note that on the SE70P161, none of the 16K EPROM address space can be
mapped as external addresses except in microprocessor mode.

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise
Noted)t

Supply voltage, VCC (See Note 1) -0.3 V to 7 V
All input voltage .. -0.3 V to 20 V
All output voltages ... - 0.3 V to 7 V
Continuous power dissipation . 1 W
Operating free-air temperature range 0°C to 55°C
Storage temperature range 0°C to 100°C

t Stresses beyond those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at, these or any other conditions indicated in the "Recommended Operating Conditions" section of this
specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Unless otherwise noted, all voltages are with respect to Vss·

4-26

4.3.5 Recommended Operating Conditions

PARAMETER MIN NOM MAX UNIT

Supply voltage, Vee 4.5 5 5.5 v

CLOCKIN 2.6 vcc+0.5
v High-level input voltage, V1H

All others 2 Vcc+0.5

CLOCKIN 0.6
Low-level input voltage, V1L v

All others 0.8

High-level output current, IQH -400 µ.A

Low-level output current, IQL 10 mA

Operating free-air temperature, TA 0 55 oc

4.3.6 Electrical Characteristics Over Full Range Of Recommended Operating Conditions

PARAMETER TEST CONDITIONS MIN TV Pt MAX UNIT

VQH High-level output voltage loH =· - 0.4 mA 2.4 v

Vol Low-level output voltage loL = 2 mA 0.4 v

11 Input current V1 = Vss to Vee 10 µ.A

ice Average supply current* All outputs open 80 150 mA

t All typical values are at Vee = 5 V, TA = 25 °C.
*Average supply current without piggyback EPROM device installed.

4.3.7 Recommended CRYSTAL/CLOCKIN Operating Conditions Over Full Operating Range

PARAMETER MIN TVP MAX UNIT

fosc CRVST AL/CLOCKIN frequency (divide-by-4 option) 2.0 10.1 MHz

fosc CRYSTAL fre·quency (divide-by-2 option) (see Note 1) 1.0 5.05 MHz

tc(P) CRVSTAL/CLOCKIN cycle time (divide-by-4 option) 99 500 ns

tc(Pl CRY ST AL cycle time (divide-by-2 option) 198 1000 ns

tc(S) Internal state cycle time 396 2000 ns

tw(PH) CLOCKIN pulse width high 45 ns

tw(Pll CLOCKIN_.E..ulse width low 45 ns

tr CLOCKIN rise time* 30 ns

tf CLOCKIN fall time* 30 ns

tdJ.PH-CL) CLOCKIN rise to CLOCKOUT rise del!IY_ 125 200 ns

* Rise and fall times are measured between the maximum low level and the minimum high level u.sing the 10% and 90% points (see Figure 4-3). Outputs
have 100-pF loads to V55.

NOTE 1: Divide-by-4 option recommended with external clock drive.

384 4·27

4.3.8 Memory Interface Timing At 10 MHz Over Full Operating Free-Air Temperature Range

PARAMETER MIN NOM MAX UNIT

tc;J_C_l CLOCKOUT cycle time (see Note) 400 2000 ns

twJ_CHJ CLOCKOUT high pulse width 130 170 200 ns

tw.lClJ. CLOCKOUT low pulse width 150 190 240 ns

tdl_CH-JlJ. CLOCKOUT rising to ALATCH falling edge 260 300 340 ns

tdtCH:lli CLOCKOUT rising to ENABLE falling -10 15 50 ns

tw.lJH_l ALA TCH high pulse width 150 190 230 ns

td(AH-JLI High address valid before ALATCH fall 50 170 220 ns

tdl__AL-JIJ. Low address valid before ALA TCH fall 50 150 220 ns

tl].J_JL-ALl Low address hold after ALATCH fall 30 45 80 ns

tdl_RW-JlJ. RD/WR valid before ALATCH fall 50 140 200 ns

th1_EH-RW_l RD/WR hold after ENABLE rise 40 100 ns

tlll..EH-AH_l High address hold after ENABLE rise 30 40 ns

thj_EH-Q_l Data out hold after ENABLE rise 65 80 ns

t~Q-EH_l Data out valid before ENABLE rise 230 290 ns

tdl__AF-ElJ. ENABLE fall after low address Hl-Z 0 30 120 ns

t~EH-Ai:l ENABLE rising to next address drive 60 85 ns

tdl__EL-D_l Data in after ENABLE falling 155 190 ns

th_1EH-D_l Data in hold after ENABLE rise 0 ns

td_1A-DI Access time, data in from valid address 400 470 ns

td(A-EHI ENA high after address valid 580 730 ns

NOTE: tc!CI is defined to be 4/fosc. (or 2/fosc if the divide-by-2 option is selected) and may be referred to as a machine state or simply a state.

4·28

EXTERNAL READ EXTERNAL WRITE RAM READ INTERNAL READ

CLKOUT (87)

ALATCH (84)

I
fd(AH-JL)

j 1-- fh(EH-AH)

HI ADDA (DO-D7) ESS HIADDR

LO ADDA (CO-C7)

ENABLE (86)

RD/WR (85)

FIGURE 4-15 - READ AND WRITE CYCLE TIMING

4·29

4.3.9 Pin Description OfThe SE70P161

P.iW815l 1- -40 Vss
CLK OUT 8(7) 2- 70P161 -39 8(6)/ENA8LE

8(0) 3- ovcc Vee.a -38 8(4)/ALATCH
8(1) 4- OA12 PGM o -37 8(3)/TXD
8(2) 5- oA7 A13 o -36 MC
A(O) 6- OA6 A8 o -35 C(7) (MS8)
A(l) 7- OA5 A9 o -34 C(6)
A(2) -8- oA4 A11 o -33 C(5)

A(3) 9- OA3 'Gto -32 C(4)
A(4) 10- OA2 A10 o -31 C(3)
A(7) 11- OA1 Et o -30 C(2)

INT3 12- OAO 07 0 -29 C(l)

INT1 13- ooo 06 0 -28 C(O)
RST 14- 001 05 0 -27 0(0)

A(6)/SCLK 15- 002 04 0 -26 0(1)
A(5)/RXD 16- oVss 03 0 .:....25 Vee (MAIN ICC SUPPLY)

XT AL 2/CLKIN 17- -24 0(2),
XTAL 1 18- -23 0(3)

0(7) 19- -22 0(4)

0(6) 20- -21 0(5)

t PIN LOW, EPROM ALWAYS ENABLED

4·30 384

5. MICROPROGRAMMING

5.1 TMS7000 CUSTOM MICROCODING DESCRIPTION

Standard members of the TMS7000 family implement a general purpose instruction set
intended to address the needs of most potential users. A general purpose instruction set,
however, does not directly address the requirements of any specific application. Microcoding is
a technique which can be used to tailor the instruction set to more efficiently satisfy the
particular application needs. Basic performance attributes of the TMS7000, such as speed and
program size, may be greatly improved by microcoding.

Microcoding involves modifying the CPU control logic. This logic implements the instruction
set of the CPU and, when modified, includes the user functions as a new assembly language
instruction. The control information (called microinstructions) is contained in a ROM called the
Control ROM, or CROM (see Figure 5-1 TMS7000 CPU Internal Block Diagram). This
microprogram is similar to an assembly language program contained in memory. The control
logic may be modified to implement a new user function by using similar methods as the
masked program ROM. Modifying this microcoded control information allows a relatively
inexpensive way to implement a more efficient user routine. Normally, this routine would be
written in assembly language code which uses more time and ROM. In contrast, altering the
instruction set of a CPU which is not microprogrammed is expensive and usually impractical
due to the complexity of modifying the random logic used to implement its control section.

With custom microcoding, the new function is normally initiated by executing a single, newly
defined assembly language instruction which generates· a uni.qua opcode that causes the
function to execute. Microcoding can produce a 40% or greater improvement in performance
depending o·n the function implemented.

5.1. 1 Typical Applications

In a wide variety of applications, microcoding efficiently bridges the performance and cost gap
between general purpose microprocessors/microcomputers and expensive high performance
dedicated controllers. Applications for microcoding are from areas where extended
performance and control at the bit level are required in a dedicated micro
processor/microcomputer based system. These requirements can include speed and program
size improvements. Texas Instruments' microcoding capability and support for the TMS7000
makes this microcomputer family the ideal choice for these types of applications.

5·1

Some typical applications for TMS7000 custom microcoding are listed below:

• AUTOMOTIVE
DASHBOARD CONTROL
DASHBOARD DISPLAY
RADIOS
CAR COMPUTER

• COMPUTER PERIPHERALS
PRINTERS
DISK CONTROLLERS
KEYBOARDS
ALPHA-GRAPHIC TERMINALS
TAPE CONTROLLERS
SMART MODEMS
HANDHELD COMPUTERS
PLOTTERS

• RETAIL
POINT OF SALE TERMINALS
SCALES
BAR CODE READERS
VENDING MACHINES
DATA ENCRYPTION
REMOTE BANK TELLERS
METERING

• TELECOMMUNICATIONS
MEMORY PHONES
AUTOMATIC DIALERS
PHONE LINKED COMPUTER

TERMINAL

• INDUSTRIAL
MACHINE CONTROL
SPEED CONTROL
POSITION CONTROL
TEMPERATURE CONTROL
HIGH-LEVEL LANGUAGE

COMPUTER CONTROL
TIMER-CONTROLLER-CLOCKS

• CONSUMER
HOME COMPUTERS
GAMES
EDUCATIONAL PRODUCTS
SPEECH PRODUCTS
SECURITY
SMART APPLIANCES
STEREO EQUIPMENT

5.1.2 Key Features

5·2

There are several advantages to using microcode to implement a given function instead of
coding that function in assembly language. Among these are:

• IMPROVED EXECUTION SPEED

• REDUCED PROGRAM SIZE REQUIREMENTS AT THE ASSEMBLY LANGUAGE LEVEL

• ALGORITHM SECURITY

• LESS EXTERNAL LOGIC REQUIRED

One of the most important advantages is the improvement in execution speed of microcoding
over assembly language. This improvement in execution speed results because microcode is
more specific than assembly language and therefore performs less redundant operations in its
execution. This results in more compact and efficient code which executes in fewer CPU
cycles, thereby executing faster.

As an example of this redundancy, consider a sequence of assembly language code that
operates .on a byte of data. Any operation on that byte will typically involve bringing the byte
into the CPU, operating on. it and possibly another operand and then storing the re.suit of this
operation in memory. Subsequent operations on this result require that the data be again
brought into the CPU before it can be used. In a microcoded version of the same sequence, a

significant amount of execution time can be saved since the data which is required at a later
stage of processing can remain in the CPU. This eliminates the overhead of multiple memory
accesses which store and then retrieve the same information.

Another advantage of microcode is that since the CPU operates more efficiently, less assembly
language code is required to perform a given function. This results in reduced program size and
ROM memory requirements, especially if this code is used repetitively. Specifically, a function
which may take many instructions to implement in assembly language may be executed in
microcode with only one assembly language instruction. Clearly, this can result in significant
savings in memory requirements.

Algorithm security is another positive aspect of microcoding. Once microcoded functions are
implemented on the TMS7000 chip, the algorithm used in their implementation is significantly
more difficult to access than if it were an assembly language program contained in ROM. Thus,
if a particular method of implementing a function is proprietary for any reason, microcoding the
function will increase' the security of this information. This is important, for example, in
applications which implement data encryption type functions and in highly competitive
markets such as toys and games.

Microcoding can also reduce the amount of additional logic circuitry required in a system. This
reduction in additional circuitry in a system results because many of the functior:is to be

. performed in the external logic can be accomplished by the microcoded sequences. These
functions include such operations as bit shifting, latching, counting, timing synchronization
and many other functions which can be easily accomplished in microcode. Implementing these
functions in microcode results in a lower system chip count which results in lower system cost
and improved reliability. ,

5.3

UI
~

0(7·0)

s
H
I
F
T
E
R

0(7·0)

7

OTMD
_L

P(7.0) 8

HH1)

8

8 "Mi5(7.0) MEMORY
DATA BUS

AH(7·0) 8 8 AH(7·0) ADDRESS BUS
I I I I v I ____., ,. I / HIGH BYTE

HH1)

01HEX
CONST

TO
AH BUS

8 AL(7·0) ADDRESS BUS
-.......x.~~~--...--~--.~~--.._~~~~__,..c........._;____;_LOWBYTE

POINT
ENTRY)R 45

LOGIC ~ CONTROL

2·4 DECODE

NOTE: Transfer gate controls in parentheses indicate only the clock phase on which the control occurs. Controls are not activated each cycle of the clock,

only when the control signal is asserted.

FIGURE 5·1 - TMS7000 CPU INTERNAL BLOCK DIAGRAM

TO RAM,
ROM,1/0

5.1.3 Microcoding Example

To illustrate the contrast between functions coded in assembly language vs. functions
implemented in microcode, it is interesting to consider two sequences which perform the same
operation. Figure 5-2 shows an assembly language code. sequence which implements the
same multiply algorithm that the TMS7000 MPV instruction uses.

LOOP1
LOOP2

LABEL

CLR
CLR
CLRC
RRC
RRC
JNC
INC
ADD

·JMP
INC
CMP
JNE
TSTA

A
R3 ·

A
B
@LABEL
R3
R2,A
@LOOP2
R3
%9,R3
@LOOP1

RESULT INITIALLY ZERO
CLEAR LOOP COUNT
CLEARS STC BIT
SHIFT RESULT RIGHT 1 BIT
CHECK MULTIPLIER BIT
ADD OR NO ADD?
INCREMENT LOOP COUNT
PERFORM ADDITION
PROCESS NEXT BIT
INCREMENT LOOP COUNT
NINE LOOPS COMPLETE?
NO, PROCESS NEXT BIT
IF YES, SET STATUS, EXIT

FIGURE 5·2 - ASSEMBLY LANGUAGE MULTIPLY SEQUENCE

The assembly language sequence performs an eight by eight bit multiplication. This sequence
leaves the resultant 16-bit product in the A/B register pair and sets the Status Register bits
according to the contents of the A Register (just as the MPV instruction does). The sequence
implements the multiply function as a subroutine and assumes that the two operands are
located in R1 (the B Register) and R2. It should be noted that if a general addressing scheme
had been implemented, additional code would have been required.

Although this sequence implements the same multiply algorithm that the MPY instruction
uses, a minimum of 358 cycles (143.2 µs with a 2. 5 MHz internal clock rate) are required for its
execution, whereas .. the microcoded MPV instruction executes in a maximum of 48
microinstruction cycles (19. 2 µs). The magnitude of this difference illustrates how much more
efficient microcoded functions can be than functio.ns coded in assembly language.

The significant savings of microcode over assembly language often makes microcoding
indespen~ible in meeting a design's performance goals.

5. 1.4 Considerations Of Microcoding

There are several tradeoffs to consider in determining whether microcoding is appropriate for a
given application. These tradeoffs include:

• DESIGN CYCLE EXTENDED.

• DEVICE TESTING REQUIREMENTS INCREASED

• AVAILABLE CROM SPACE RESTRICTED TO 46 WORDS (OUT OF 160)

• ONE OR MORE ASSEMBLY LANGUAGE INSTRUCTIONS MUST BE SACRIFICED

5-5

Each of these tradeoffs require consideration in the microcoding process. A potentially longer
and more complex design cycle needs to be taken into account during the early planning stages
bf a microcoding task. This is also true of additional testing requirements dictated by a custom
microcoded CPU. Both considerations should be anticipated and provided for. Also, since the
standard instruction set microcode occupies t_he full 160 words of CROM, some of the
standard instructions must be removed to make room for custom microcode. The standard
instructions to be removed should be considered carefully to avoid limiting assembly language
programming.

The standard assembly language instruction set has been divided into two groups of
instructions designated core and non-core. Core instructions, considered to be essential in
maintaining architectural integrity, are provided with all TMS7000's and may not be removed
for microcoding purposes. Non-core instructions may be removed from the standard
instruction set to allow room for microcoding. Of the 160 words in the CROM, 46 are non-core.
The non-core assembly language instructions are listed in Figure 5-3.

MPV Multiply
DAC Decimal Add with Carry
DSB Decimal Subtract with Borrow
DECD Decrement Double
MOVD Move Double
SWAP Swap
CMPA Compare A
XCHB Exchange B
TRAPn Traps 8-23
Peripheral File instructions

FIGURE 5-3 - NON-CORE ASSEMBLY LANGUAGE INSTRUCTIONS

5.1.5 Microcode Development Cycle

5-6

The microcode development support packnge makes development of microcode for the
TMS7000 straightforward and efficient. The microcode development cycle comprises many
steps. These steps are briefly summarized below:·

• GENERATE SPECIFICATION FOR MICROCODE

• GENERATE AND VERIFY MICROCODE

• GENERATE AND VERIFY TEST PATTERNS

• PRODUCE AND TEST PROTOTYPE DEVICES

The first step in the microcode development cycle is to determine that microcode is appropriate
for the application and to identify which functions are to be microcoded. Once this is
accomplished, a speCification for the microcode is generated and writing of the microcode can
begin. Also at this time, the assembly language code to be contained in the TMS7000's
program ROM should be generated.

The flowchart in Figure 5-4 shows the microcode development cycle in detail. Contact the Tl
Factory for details of project timing.-Microcode can be generated by four different sources: (1)
customer (2) Tl's Regional Technology Center - RTC (3) 3rd party (4) Tl factory. It should be
noted that this flowchart depicts the flow for microcode developed by a customer; however,

Texas Instruments will generate custom microcode if required. The development cycle in this
case is similar to the one shown except that the flow includes validation of the code by the
customer to ensure that the desired function is implemented.

GENERATE
TEST

PATTERNS

NO

GENERATE
SPEC FOR

MICROCODE

GENERATE
MICROCODE

RUN
ON

EMULATOR

GENERATE
TEST

INPUTS

SEND TRANSFER
PACKAGE

TOTI

TEST
PARTS

SAMPLES
TO

CUSTOMER

GENERATE
ASSEMBLY

CODE

FABRICATE
PARTS

FIGURE 5-4 - MICROCODE DEVELOPMENT FLOWCHART

5-7

5. 1.6 Available Support

5.1.6.1

5.1.6.2

Support for microcoding is provided through a comprehensive package of software, hardware
and documentation. This support includes: ·

. • TMS7000 MICROASSEMBLER SOFTWARE PACKAGE

• TMS7000 AMPL EMULATOR SYSTEM

• TMS7000 MICROCODE DOCUMENTATION PACKAGE, CONSISTING OF:

TMS7000 MICROCODE DEVELOPMENT GUIDE (MP #458)

TMS7000 MICROASSEMBLER USER'S GUIDE (MP #457)

TMS7000 MICROARCHITECTURE USER'S GUIDE (MP#061)

TMS7000 MICROPROGRAMMER'S REFERENCE CARD (MP#459)

TMS7000 Microassembler Software Package

This package is the softwar~ used for running the microassembler on the Tl 990 hard disk
computer. The TMS7000 microassembler (called MICASM) is the microcode assembler for the
TMS7000 family which allows prog~ammers to modify the standard TMS7000 family
microcode and create a microcode object file. ·

TMS7000 AMPL Emulator System

The TMS7000 AMPL Emulator, which runs on Tl 990 computers under AMPL, supports the
TMS7000/TMS7020/TMS7040 devices (and their CMOS versions with the same limitations
as the SE70P161, see Section 7.5) and the TMS70120. It allows in-circuit emulation of the
microcoded device running at full speed or single stepping through the microcode.

5.1.6.3 TMS7000MicrocodeDocumentationPackage

5·8

The Microcode Development Guide is a general microcode development aid which includes a
tutorial on microcoding; This manual is normally the first document required and is helpful in
determining whether microcoding is appropriate for a given application.

The TMS7000 Microassembler User's Guide describes the TMS7000 microassembler
program which is used to generate microinstructions from statements containing mnemonics
for microcode functions.

The Microarchitecture User's Guide contains' all of the details of the internal operation of the
TMS7000 that are necessary for microcoding.

The Microprogrammer's Reference Card contains a useful collection of reference information
pertinent to microcoding the TMS7000.

5.2 MICROCODED BENCHMARKS

Benchmarks are a common method of comparing the performance of different computing
elements executing the same function. A set of common microprocessor/microcomputer
benchmarks has been microcoded to demonstrate the typical speed improvements possible
through microcoding. These benchmarks and the speed improvements for each a·re listed in
Table 5-1.

TABLE 5-1 - BENCHMARK 1-6 COMPARISON (2.5 MHz)

BENCHMARK
7000 7000

MICROCODED RANK STANDARD RANK

BINARY ADDITION 4 1.0 6.4 .63
BCD ADDITION 5.6 1.0 10 .56
BLOCK MOVE 315 1.0 1780 .21
TABLE SEARCH 101 1.0 453 .22
BINARY TO BCD 100 1.0 295 .34
BITl/O 10 1.0 20 .50 -- --
RELATIV.E RANKING 1.0 .41

Note that the performance of the TMS7000 assembly language benchmark ranges anywhere
from 21 % to 63 % of the performance of the microcoded version. These variations are due to
which speed improvement techniques were applied and the extent to which they were able to
be applied.

All benchmarks (except Benchmark 3) are responsible for fetching their own operands.
Therefore the custom microcode must be entered directly from the instruction acquisition
sequence of microcode. The TRAP B instructions all share the TGBO microstate which is
entered directly from IAQ2, the last instruction acquisition microstate. All benchmarks will use
the TGBO microstate for the first microinstruction of the benchmark. The instructions, TRAP 8
through TRAP 15, all enter the TGBO state. Non-core microinstructions were used as needed
starting from the first non-core microinstructions listed in the TMS7000 standard instruction
set source file.

Benchmark 3 uses shared microcode to fetch some of its' operands. An unused instruction is
used to enter the shared microcode. This unused instruction will execute the TESTO state after
the addressing mode microcode. The TESTO microstatement is executed after the Long
Addressing Function microcode fetches two of the necessary operands. The opcode used will
be >89 which is currently unimplemented in the standard instruction set.

5.2. 1 Benchmark Rules

The following list describes the rules used when microcoding the benchmarks:

1) All of the registers used in the assembly language code may be used. No other
registers may be used.

2) The PCH, PCL, and SP registers must not be modified except where it is necessary to
read operands. The program counters (PCH and PCL) may be stored on the stack to
allow general use of ~hese registers. ·

5-9

3) The microcode can assume where its operands are if operand placement is the same
as in the assembly language benchmark.

4) The CPU's T, MAL, and IR registers are available for storage. The IR register, which
uses the opcode as a ba-sis for dispatches may be used because no function 'or group
dispatches will be performed once the benchmark microcode is entered.

An individual description of each microcoded benchmark and what speed improvement
techniques were applied follows.

5.2.2 Benchmark 1: 16 Bit Binary Addition

Two 16-bit unsigned binary integers in on-chip RAM (the register file) are added together; the
result is stored back into on-chip RAM. One integer is contained in the A (MSB) and B registers,
and the other operand is contained in registers R3 (MSB) and R4. The result is left in the A and B
registers. The asse'!lbly language code to perform binary addition is:

ADD R4,B Add LSBs together ... set up carry for MSB addition
ADC R3,A Add MSBs together ... add i~ carry from LSB addition

This code occupies four bytes. of memory and takes 6.4 microseconds to execute. The
corresponding microcode implementation occupies one byte of memory and executes in 4
microseconds. Seven unique microstatements were required to perform binary addition. The
following techniques were used to obtain the 38% speed improvement:

1) Elimination of instruction fetch and PC increment operations for the ADC instruction.

2) Benchmark 1 assumes the operands are located in registers A, B, R3 and R4.
Constants are generated to address registers R3 and R4.

Only a.38% speed improvement was possible in this benchmark due to the simplicity of the
function:

5.2.3 Benchmark 2: 16 Bit Binary Coded Decimal (BCD) Addition

5·10

Two unsigned 4 digit packed BCD integers in on-chip RAM are added together and the result
stored back into on-chip RAM. One of the integers is contained in the A (MSB) and B registers
and the other is located in registers R3 (MSB) and R4. The assembly language code is:

CLRC
DAC
DAC

R4,B
R3,A

Clear carry for LSB addition
Add with carry LSBs
Add MSBs together with carry from LSB addition

This code uses five bytes of memory and executes in 10 microseconds. This benchmark's
microcode occupies one byte of code space and executes in 5.6 microseconds. Eleven unique
microstatements were required to implement this function. This represents a speed
improvement of 44%. The following techniques provided the 44% improvement:

1) Elimination of instruction fetch and PC increment operations.

2) Assumption of operand placement. Again, as in Benchmark 1, constants are
generated to address registers R3 and R4.

5.2.4

Only a 44% speed improvement was poss!ble due to the simplicity of the algorithm. Note that
BCD arithmetic is slightly more complex than binary addition, and thus a 44% improvement
was obtained, versus 38% for Benchmark 1. Also note that a CLRC instruction is required
before the first addition since there is only one BCD addition instruction and it adds in the carry
bit from the status registers.

Benchmark 3: Block Move

A block of 127 bytes in off-chip memory is moved to another location also in off-chip memory.
The assembly language code to move blocks of data is: .

LOOP
Set up number of bytes to move
Read a FROM block data byte
Store byte to a TO block address

MOV
LOA
STA
DJNZ

%127,B
@FROM-1(B)
@T0-1(B)
B,LOOP Decrement block move counter ... jump if

non-zero

This code uses 10 bytes of code, and when a block length of 127 bytes is specified, will
execute in 1780 microseconds. Note that the table move is started from the end of the table.
The microcode requires five operands: the number of bytes to move, the FROM addresses, ·and
the TO addresses. The opcode and operands of Benchmark #3 will appear in memory in the
following order:

LOCATION X
X+1
X+2
X+3·
X+4
X+5

BENCHMARK 3 OPCODE
TOMSB
TOLSB
FROMMSB
FROM LSB
NUMBER BYTES TO MOVE

Six bytes of program storage are needed and program execution will take 315 microseconds.
Twenty-five unique microstatements are required. The CPU register usage is as follows:

PCH register - FROM MSB
PCL register - FROM LSB
T register - TO MSB
MAL register - TO LSB
IR register - Byte move counter

The microcoded block move allows a variable block move function. If the microcode is passed
a block length of zero, 256 bytes will be moved. The microcode makes no check for being
passed.a block length of zero.

Two 16-bit addresses need to be referenced by this benchmark: the FROM block address and
the TO block address. Because there are only two general purpose CPU registers available to
address memory with (T and MAL), the program counter registers (PCH and PCL) are used to
store one of the 16 bit block addresses. The program counter registers are saved on the stack.
Therefore, two bytes of stack must be available for use by this benchmark's microcodes.

Benchmark 3 uses shared microcode to fetch the TO MSB and the TO LSB addresses. The
Long Addressing function is used to fetch these two operands into the T and MAL registers. An
unused opcode, >89, is available in the Long Addressing function group to be used. The
opcode > 89 will direct execution to the TESTO microinstruction after the long addressing

5-11

mode fetched the TO addresses. The TESTO non-core microstatement is the first non-core
microinstruction used by the benchmark microcode.

The following techniques were applied to yield the 82% speed improvement:

1) Elimination of instruction fetch and PC increment operations.

2) The LDA and STA instructions move the data byte to the A register for storage. The
microcode leaves the data byte inside the CPU.

3) The loop downcounter decrement operation is performed at the end of the block
move loop. However the downcounter equal to zero check is done during the first
microinstruction of the block move loop. This allows the loop to execute in fewer
microstates.

4) The program counters are incremented when they are retrieved from the stack. Two
cycles are saved because the incrementing of the program counters is done the same
cycle the program counter values are passed thru the ALU to the program counter
registers.

5.2.5 Benchmark 4: Table Search

5-12

Benchmark 4 searches a table looking for a key character. The assembly language code
appears like this:

LOOP

NFND
FND

MOV %KEY,A Set up byte to look for
MOV %40,B Set up table length
CMPA @TABLE-1 (B) Does the table byte match key character
JEci FND If bytes match, jump
DJNZ B,LOOP Decrement table length counter; jump if non zero
. Key Not Found
. Key Found

This code occupies 11 bytes and executes in 326 microseconds. The timings are all done for
the KEY not found condition. The microcode version requires four operands and occupies five .
bytes of code space. The microcoded instruction and its operands will appear in memory as
follows:

LOCATION X
X+1
X+2
X+3
X+4

BENCHMARK 4 OPCODE
· TABLE LENGTH

KEY VALUE TO SEARCH FOR
TABLE ADDRESS MSB
TABLE ADDRESS LSB

When a table length of 40 is passed to the microcode, execution will take place in 101.6
microseconds. Again, the microcode implementation allows variable table lengths and KEY
values. Twenty-one unique microstatements were required to implement the table search
algorithm. The CPU register usage is as follows:

T register - Table address MSB
MAL register - Table address LSB
IR register - Key value to search for

5.2.6

The A reQister holds the table length original value. This value is stored for later subtraction
with the current B offset value to yield the correct table offset value when the KEY is found.
The table length downcounter is contained in the B register.

The assembly language version searches the table from back to front. The microcode version
· searches the table from front to back. If the microcode searched the table from back to front as
the assembly code does, the table address would have to be reread every iteration of the loop
because of the current table offsets addition into the table base address. The CMPA instruction
does the table offset addition into the base address in the as.sembly language version. Reading
the table from front to back allows the table address, contained in T and MAL, to be continually
incremented to point to successive table locations; The B register, which contains the table
offset downcounter, is read, decremented, written back to the B register, and then checked for
having reached zero. ·

The original table length is stored in the A register. Once the KEY is found, the B register is
subtracted from the original table length (in Al to yield the correct table offset.

To obtain the 69% speed improvement, the following techniques were used:

1) Elimination of instruction fetch and PC increment operations.

2) Elimination of unnecessary reads/writes. The table addresses and the KEY character
are all stored internal to the CPU.

3) The table value and the KEY value are compared during the same cycle the B register
is read for the decrement operation.

4) The decision of whether the KEY is found or not is made in the same microcycle that
the B register is decremented and written.

5) The table address is incremented the same cycle as a microjump is done on the table
empty condition.

If the KEY was not found, the B register contents are >FF. This limits the table length to 254
bytes, or >FE. Because the microcode cannot determine the address of the code to execute
when the KEY is found, the PC will be _incremented by two to point past the KEY not found
return. This requires that a two byte jump be placed at the NFND label to jump over the KEY
found code.

Benchmark 5: Binary To BCD Conversion

This benchmark performs binary to BCD conversion. A 16 bit binary number, contained in
registers R2 (MSB) and R3, is converted to a Binary Coded Decimal value to be left in registers
A (MSB) and B. The conversion is dpne by looping 16 times, rotating A and B through the
status carry and adding the BCD number to itself (which sets up the carry for the rotations).
The assembly language code is:

CLR
CLR
MOV

LOOP RLC
RLC
DAC
DAC
DJNZ

A
B
%16,R4
B
A
R3,R3
R2,R2·
R4,LOOP

Clear MSB result
Clear LSB result
Set up loop count
The BCD result in A and B
Is generated through the carry bit
Decimal add binary MSB to itself to set up carry
Decimal add binary LSB to itself to set up carry
Decrement loop count and jump if non zero

5·13

This code occupies 16 bytes, and takes 295 microseconds to execute. The microcode version
occupies only one byte of code space and takes 100 microseconds to execute. A speed
improvement of 66% is obtained. Generally speaking, iterative functions will yield a greater
speed improvement when microcoding than non-iterative functions.

The T register is used to hold the "A" register value (binary MSBl. The T register is written to
the A register at the end of the conversion. The binary LSB is stored in 'the B register as is done
by the assembly code.

The loop downcounter is stored in the IR register. To decrement a value by one, it will be placed
on the ALU P bus with a zero gated onto the N bus. The ALU will then perform a subtraction
(PSUBNl operation with a zero carry in to decrement the operand. Because the IR only
connects to the N bus, an extra cycle is required each loop iteration transferring the IR thru the
ALU to the MD bus where the next microinstruction will gate the value onto the P bus to
perform the decrement operation.

The 66% speed improvement was obtained through the use of the following techniques:

1 l Elimination of instruction fetch and PC increment operations.

21 Assumption of operand placement. The binary number is assumed to be in R2 and
R3 and the result is assumed to be placed in A and B.

31 Elimination of unnecessary reads/writes. The binary MSB, which the assembly code
manipulates to/from the A register, is left internal to the CPU in the T register.

41 The constant value "3" (to address R3l and the constant "16" are generated
simultaneously. ·

51 The binary MSB and LSB (assembly uses CLR A and CLR Bl are cleared
simultaneously.

61 The loop downcounter decrement, and equal to zero check, are done at the same
time as the constant "2" is incremented to point to R3.

5.2. 7 Benchmark 6: Bit 1/0

5·14

Benchmark 6 tests the ability of microcomputers to perform bit 1/0 operations. An input only
port (port Al and an ouput only port (port Bl are used. If any one of three input bits are a "1"
then an output bit will be set to a "1 ". Then, if another input bit is a "O" three output bits are
toggled. All inputs may be on the same 8 bit port, but inputs and outputs must be on different
ports. The assembly language code is:

NEXT

ANDP
JZ
ORP
BTJOP

XORP
DONE

%1MASK1,PA
NEXT
%0MASK1,PB
%1MASK2,PA,DONE

%0MASK2,PB

AND functions checks for" 1" bits on PA
If none are set, jump over bit set instruction
Set the output bit to a " 1 "
If any masked bits are a "O", jump over toggle
function
Toggle output bits values

This code occupies 1 5 bytes and takes 20 microseconds. The timings are calculated assuming
neither of the two jumps were taken; the ORP and XORP instructions were executed.
Benchmark 7 is passed the following parameters in the order they are obtained from the
program counter pointers:

LOCATION X
X+1
X+2
X+3
X+4

BENCHMARK 6 OPCODE
IMASK1
OMASK1
IMASK2
OMASK2

The microcode application of this benchmark uses five bytes of code space and executes in 10
microseconds which represents a 50% speed improvement.

Only the T register is used by this benchmark. The mask values are read into the T register. The
peripheral port values are read onto the MD bus and operated on with the mask value~ to
provide a port output value or to set up the status (for decision making).

The 50% speed improvement was gained by the application of the following techniques:

1) Elimination of instruction fetch and PC increment operations.

2) Rearrangement of algorithm functions. While the Port A decision is being made, the
read of the output mask is started. Even if the output mask is not needed, the
program counter still needs to be incremented to point to either the next operand or
the next instruction.

3) Port A is an input only port but the ANDP instruction writes to this port. Writing to
port A is not required by this benchmark and was ~emoved in the microcode
·application of the benchmark.

5.3 MICROARCHITECTURE DESCRIPTION

This section contains a description of the internal architecture of the TMS7000. It describes
primarily the operation of CPU; the memory and on-chip 1/0-circuitry may vary among the
TMS7000 family members, and will be described in the documentation for those individual
devices. This section is intended to present information regarding the internal architecture of
the TMS7000 family necessary for microcoding these devices. A symbolic microinstruction
assembler called MICASM is provided for assembling microcode instruction mnemonics. This
assembler is described in the TMS7000 MICROASSEMBLER USER'S GUIDE (Part Number
MP457).

5.3.1 TMS7000 Family Address Space

The TMS7000 family address space is divided into multiple 256-byte pages. Addresses
>0000 to >007F are utilized as a 128-byte Register File or RF, and reference the on-chip RAM.
On-chip ROM is located at the top of the address space, from addresses >F800 to >FFFF for
the TMS7020, and >FOOO to >FFFF for the TMS7040. The last 48 bytes of memory,
addresses > FFDO to > FFFF, are reserved for trap and interrupt vectors. The TMS7000 family
address space is shown in Figure 5-5. Note that the TMS70120, not depicted in Figure 5-5, has
12K bytes of ROM.

5·15

5.3.2

5·16

ADDRESSES MEMORY

>0000- >007F RAM REGISTER FILE

>007F - >OOFF RESERVED

>0100 - >01 FF PERIPHERAL FILE

>0200 - >EFFF • .
• MEMORY EXPANSION • . •

>FOOO - >F7FF PROGRAM ROM (TMS7040 ONLY)

>FSOO - >FFCF PROGRAM ROM (TMS7020/40)

>FFDO - >FFFF TRAP VECTORS

FIGURE 5-5 - TMS7000 FAMILY ADDRESS SPACE

The Peripheral File, or PF, is a special 256-byte page in the memory address space. Each
location of the PF is a special control or data register. On-chip circuitry interprets PF Registers
as 1/0 control, programmable timer, memory expansion, and other registers to control features
of the chip. For example, the four 1/0 ports may be accessed as four registers in the PF.
Accesses to the Peripheral File are recognized by the Peripheral/Memory Controller (PMC)
external to the CPU. In general, all chip functions not implemented by the CPU will be
implemented by the Peripheral/Memory Controller, and controlled via accesses to Peripheral
File Registers.

The advantage of defining special pages for the Peripheral and Register files is that accesses to
these areas may be made by specifying an offset of 8 bits, rath~r than a full 16-bit memory
address. The Register File is located at memory addresses > 0000 thru > 007F and the
Peripheral File is implemented in the second page of memory address space, from addresses
>0100to >01FF.

Basic TMS7000 Architecture

The major components of the TMS7000 architecture are the CPU, the Peripheral/Memory
Controller, and the RAM and ROM. These components and their interconnections are shown in
Figure 5-6.

MD

CENTRAL
PROCESSING

UNIT

8 8

AH AL

RAM
128 x8

ROM
TYPICALLY

2K/4K x 8

EXTERNAL INTERFACE

A
\ I

8
PORTA

8
PORT B

8
PORTC

PORTO

RESET 2
INT1, INT3

MEMORY CONTROL (MC)

4 ;
(2 4 CRYSTAL

4 >
,2 4 Vee, Vss

40 PINS TOTAL

FIGURE 5-6 - TMS7000 OVERALL BLOCK DIAGRAM

The Central Processing Unit (CPU) contains the internal registers, which store the operands of
an instruction, and the Arithmetic Logic Unit (ALU), which operates on the internal register
values. A shifter is provided to rotate the output of the ALU before its results are either stored in
an internal CPU register or written to a memory location. The CPU is described in further detail
in paragraph 5.3.4.

The Peripheral/Memory Controller (PMC) is a collection of modules which interface the CPU
with the 1/0 ports, memory, and the interrupt inputs. The CPU is connected to the PMC via the
Address Low (AL), Address High (AH), Memory Data (MD), and Control (C) Buses. The MD
Bus, AL Bus, and AH Bus are also connected to the on-chip RAM and ROM memories .

. The Peripheral/Memory Controller (PMC) performs many functions. It interfaces the CPU to the
outside world by providing control and data registers for 1/0 ports, interrupts, and internal timer
controls. The interface control registers appear to the CPU as addresses in the Peripheral File. In
the TMS7000, the PF is implemented in the second 256 byte page of memory, at addresses
>0100 to >01 FF. Input/output in the TMS7000 is accomplished by reading and writing bytes
in the Peripheral File implemented by the PMC. In terms of the microarchitecture, the exact
functions of the Peripheral File registers are family member dependent.

5-17

5.3.3

5-18

The Control (C) Bus connecting the PMC and the CPU carries control information required in the
interface between these two subsections' of the TMS7000. The C Bus is made up of seven
signals, each of which is described briefly below.

•

•

#MEM (Memory): set by the CPU during any memory access .

#MEMCNT (Memory Continue): set by the CPU· during the first cycle of two cycle
memory accesses.

• #WR (Write): set to 1 by the CPU to indicate a memory write operation.

• STINT (Status Interrupt Enable): set by the CPU to allow the PMC to assert IACT.

• IACT (Interrupt Active): set by the PMC if a valid interrupt is active and STINT is a 1.

• RST (Reset): set to 1 by the PMC whenever the external RESET pin is a 0.

• OTMD (0 Bus to MD Bus Enable): set by the PMC to enable the 0 Bus to drive the MD Bus.

Each of these signals is discussed in greater depth in later sections of this manual. Further
· details of interrupt control may be found in the TMS7000 8-Bit Microcomputer Data Manual

(Part Number MP 008A).

Microinstruction Format

This section describes the format of the TMS7000 microinstructions, and details the internal
timing of microinstruction execution.

The CROM is organized as a 6~-bit wide, 160-word memory. The current microarchitecture of
the TMS7000 uses 45 bits per microinstruction to control its operation. To allow for future
expansion of this architecture, however, a total of 64 microinstruction bits are reserved in the
architecture definition. Table 5-2 describes the format of the TMS7000 microinstruction word.

TABLE 5-2 - MICROINSTRUCTION WORD FORMAT

BITS FIELD FUNCTION

63-56 #JMPADDR(7-0) BASE ADDRESS FOR NEXT INSTRUCTION
55-53 #JMPCNTL(2-0) JUMP FUNCTION SELECTION

52 #0> PCH GATES 0 BUS TO PCH REGISTER
51 #MD>T GATES MD BUS TOT REGISTER
50 #-MD> IR GATES MD BUS TO IR'REGISTER

49-48 #LOWWRITE(l -0) SELECTS ONE OF 3 0 BUS DESTINATIONS
47 #-0> ST GATES 0 BUS TO ST REGISTER
46 #MD>P GATES MD BUS TO P BUS
45 #PCH> P GATES PCH REGISTER TOP BUS
44 #PCL> P GATES PCL REGISTER TO P BUS

43 #MD>N GATES MD BUS TO N BUS
42 #T>N GATES T REGISTER TO N BUS
41 #ST>N GATES ST REGISTER TON BUS
40 #BCD>N GATES BCD CONSTANT TON BUS
39 #IR>N GATES IR REGISTER TO N BUS

38 #ONE> AL GATES CONSTANT ONE TO AL BUS
37 #PAL GATES P BUS TO AL BUS
36 #MAL> AL. GATES MAL REGISTER TO AL BUS
35 #SP>AL GATES SP REGISTER TO AL BUS
34 #T>AH GATES T REGISTER TO AH BUS

33 #PCH>AH GATES PCH REGISTER TO AH BUS
32 #ONE>AH GATES CONSTANT ONE TO AH BUS
31 #MEMCNT FIRST ONE OF TWO CYCLE MEM. ACCESS
30 #MEM INDICATES A MEMORY ACCESS
29 #WR INDICATES A MEMORY WRITE

28 #-LST UPDATES STATUS REGISTER BITS
27-24 #SHIFTCNTL(3-0) SELECTS SHIFT/ALU CARRY FUNCTIONS
23-20 #ALUCNTL(3-0) SELECTS ALU FUNCTION

19 #ABL LOGICAL (VS. ARITHMETIC) ALU OP'S
18-0 Reserved

NOTE: In multiple bit fields bit 0 is the LSB.

All· 160 words of the CROM are required to implement the standard instruction- set of the
TMS7000. Because of this, adding other microcoded functions to the TMS7000 requires that
some of the standard instructions be deleted to allow space for the new instructions.

The TMS7000 Standard Instruction Set· has been divided into two instruction groups
designated core and non-core instructions. Non-core instructions are those instructions which
Texas Instruments will allow to be· removed in order to implement other microcoded functions.
Core instructions may not. be removed and are provided with any TMS7000 whether further
microcoding has been implemented or not. Core and Non-core instructions are described in the
TMS7000 Microcode Development Guide, (Part Number MP 458).

A symbolic microprogram assembler, MICASM, is available to aid microprogram generation.
MICASM accepts mnemonic names for bit fields in a microinstruction word, and builds the
appropriate bit patterns. The names of each bit field in the TMS7000 microinstruction word are
given in Figure 5-7. They are distinguished from other signal names by preceeding them with a
'#'.

5-19

5.3.3.1

5-20

For single bit fields, if the MICASM statement contains the name of the bit, it is asserted in the
assembled instruction. For high-true signals, the bit is set to 1; for low-true signals (such as
#-O>ST), the bit is set to 0. For multiple-bit fields, MICASM accepts any one of a set of
possible names, where each name corresponds to a bit pattern for the multi-bit field. A sample
of a MICASM statement is shown in Figure 5-7 .

. ORG ADDO
Z>AH,
MAL>AL,
MD>P,
T>N,.

MW,
JUNC(NEXT);

'ADD Dual Operand Function
'AH = 0 for Page 0 access
'AL= destination register#
'Source operand to P bus
'Destination operand to N bus PADDN,ZCl,LST

PADDN,ZCl,LST
'Add them, load status register
'Write the result to destination
'Jump to next microinstruction

FIGURE 5-7 - SAMPLE OF A MICASM STATEMENT

The .ORG line establishes the address of the microinstruction in the Control ROM. The
remaining lines contain symbols which set bits in the current microinstruction word. The last
line indicates the next microinstruction that is to be executed.

Microinstruction Cycle Timing

Each microinstruction cycle has four overlapping clock phases; H1, H2, H3, and H4. H1 and
H3 are non-overlapping, and H2 and H4 are non-overlapping. Microinstruction cycles begin on
the rising edge of H 1 . Two versions of clock generator circuitry are available for the TMS7000.
The first version uses the external crystal frequency directly to generate H 1-H4. The second
version divides the crystal frequency by two before generating the internal clock phases.
Figure 5-8 shows the timing relationships of the four internal clock phases H 1-H4 and the
signal from the crystal oscillator.

*NOTE: This waveform represents the crystal oscillator output divided by.two if that version of the clock generator circuitry is
used.

XTAL*

H1

H2

H3

H4

CYCLEi CYCLEi+I .
FIGURE 5-8 - MICROINSTRUCTION CYCLE PHASES

H 1-H4, the four internal clock phases, are used as data transfer signals throughout the
architecture. In particular, the current microinstruction is gated out of the Control ROM during
H1. Microinstruction bits required during later phases (H2, H3, H4) are approprie1tely sampled
by the hardware.

The internal implementation of the TMS7000 uses MOS dynamic ratioless logic which allows
the chip to operate with lower power requirements than with other types of MOS logic. Signal
lines considered to be valid during phase HX (e.g. H 1) are precharged during the
non-overlapping phase of HX (e.g. H3). For this reason, timing diagrams in this document will
indicate signal values only during the phase in which they are valid, with a don't care indication
during the phase in which they are precharged.

5. 3. 3. 2 Memory Cycle Timing

Memory references to the on-chip Register File (RF) require one microinstruction cycle, and are
called short memory cycles. All other references, i.e. to on-chip ROM, extended memory, or
the Peripheral File, require two microinstruction cycles, and are called long memory cycles.
Extended memory must be able to respond in this time period, since no wait states are provided
in the TMS7000.

5. 3. 3. 3 Short Memory References

The timing for a read or write to the on-chip Register File is shown in Figure 5-9.

5-21

5·22

ON-CHIP RAM MEMORY CYCLE TIMING

H1

H2

H3

H4

ALL SHORT REFS:

#MEM

#MEMCNT

AL BUS

AH BUS

READS:

#WR

MD BUS

WRITES:

#WR

MD BUS

i+1

FIGURE 5-9 - ON-CHIP RAM MEMORY CYCLE TIMING

i+2

For a Register File read during cycle i, the microinstruction loaded at the initiation of cycle ,i
asserts #MEM high and #MEMCNT low. #MEM is asserted at all times when a memory
reference is active, and #MEMCNT is asserted high only during the first cycle of two-cycle (ie.
long) memory cycles. #WR is set low for read operations and high for write operations.
Microinstruction i also specifies the contents of the the address bus, placing a >00 on the AH
(Address High) Bus and the register number on the AL (Address Low) Bus. During H2, the MD
Bus is precharged and the RAM is accessed. For the duration of H4, the RAM output data on
write operations and the RAM input data on read operations is on the MD Bus.

Because H4 of cycle i overlaps H 1 of cycle i + 1, the data read on cycle i may be loaded into
registers T or IR at the end of cycle i or gated onto the P or N Buses at the beginning of cycle
i + 1 . This characteristic of the MD Bus can be very useful in optimizing microcode
performance.

Initial members of the TMS7000 family implement only 128 bytes of the 256-byte Register
File; attempts to write to addresses in non-existent on-chip memory will be ignored. Attempts
to read non-existent memory will produce >00.

5. 3. 3. 4 Long Memory References

The timing for all long memory references is shown in Figure 5-10.

H1

H2

H3

H4

ALL LONG MEM REFS:

#MEM

#MEMC NT

AL BUS

READ:

#WR

#MD BUS

WRITE:
#WR

#MD BUS

i+1

OFF CHIP ONLY ~ ~ I ·J
ON CHIP ONL v-•---t-1•

WRITE DATA ASSERTED

FIGURE 5· 10 - LONG MEMORY CYCLE TIMING

i+2

The memory control signals #MEMCNT, #MEM, and #WR are specified in the microinstruction
directly. Figure 5-10 shows these signals valid during a full microinstruction cycle because,
once specified for a cycle, their state will not change during that cycle.

For all long memory references, #MEM must be asserted high for two consecutive cycles.
#MEMCNT should be 1 for the first cycle, and 0 for the second cycle. #MEMCNT is asserted by
specifying the MCNT symbol in the MICASM statements for the microinstruction. Various
combinations of the #MEM and #WR microinstruction bits are specified by other MICASM
symbols, as explained in paragraph 5.3.3.6. The 16-bit address to be accessed must be gated

5-23

onto the AH and AL Buses during the first cycle. The Peripheral/Memory Controller latches the
memory address, so the address need not be asserted during the second cycle. It should be
noted that this feature can be used to great advantage in microcode sequences since this
allows the AH and AL Buses to be used for other functions during the second microinstruction
cycle. In this manner, microcode functions may be overlapped which can result in 6horter,
faster executing microcode.

For read cycles, #WR is set to 0 for both cycles. The result of a read appears on the MD Bus in
phase H4 of the second cycle. It may either be loaded into the Tor IR Registers at the end of the
second cycle or loaded 'into the P or N Bus at the beginning of the third cycle.

For write cycles,•#WR is set to 1 for both cycles. When the write's destination is an en-chip
address, the write data must be valid during H4 of the second microinstruction cycle; when the
writes destination is an off-chip address, the write data is required to be valid during H4 of the
first microinstruction cycle. The data used in an off-chip write is latched by the PMC during the
first cycle, and therefore need not be valid during the second cycle, and conversely the data in
an on-chip write need not be valid during the first cycle. This can be used advantageously in
certain microcoding situations. If desired, however, data may be asserted during both cycles.

5. 3. 3. 5 Interrupt Vector Reads

5·24

When an· interrupt is received by the Peripheral/Memory Controller, the PMC asserts IACT on
the Control Bus to the CPU, provided that STINT is a 1. The state of IACT may be tested by the
CPU using an INT dispatch (see paragraph 5.3.5.1.5). If an interrupt is active the CPU may then
read an interrupt vector supplied by the PMC on the MD Bus, indicating which interrupt has
occurred. The interrupt vector read requires two cycles, as shown in the timing diagram in
Figure 5-11 .

H1

H4

#MEMC NT

#MEM

#WR

AL,AH BUS

MD BUS

. i

CYCLE

i+1

VECTOR SUPPLIED ~ . · ~
FIGURE 5-11 - INTERRUPT VECTOR READS

i+2

Notice that #MEM and #WR must be low for both cycles of the interrupt vector read. As with a
long memory read, the vector is not available until the end of the second microinstruction
cycle. An interrupt vector read may be coded in MICASM using the statements described in
Table 5-3.

The value of the vector supplied by the PMC for each interrupt is shown in Figure 5-12. There is
a distinction between the interrupt vector supplied by the PMC and the trap vector address at
which the interrupt subroutine entry point address is stored.

INTERRUPT
LEVEL

0 (Reset)
1
2
3

VECTOR
SUPPLIED

>FE
>FD
>FC

TRAP VECTOR
ADDRESS

>FFFE
>FFFC
>FFFA
>FFF8

FIGURE 5· 12 - INTERRUPT VECTOR REFERENCES

The vector supplied by the PMC is the same as the TRAPn opcode for the TMS7000 Standard
Instruction Set. In order to call the interrupt handler, the microcode generates the trap vector
address from the vector supplied, and reads memory at that location to get the address of the
interrupt handler subroutine: It should be noted that the interrupt trap vector addresses shown
in Figure 5-12 are those implemented in the currently supplied TMS7000 Standard Instruction
Set Microcode. Different trap vector addresses may be implemented if additional microcode is
written to handle modified interrupt servicing.

5. 3. 3. 6 Memory Control Signals

The three memory control signals output by the CPU and interpreted by the Peripheral/Memory
Controller are:

• #MEMCNT (Memory Continue): asserted on the first cycle of a two-cycle long memory
reference.

• #MEM (Memory): asserted if the microinstruction references memory of any kind (RAM,
ROM, extended, peripheral).

• #WR (Write): 1 if a write is being performed; 0 if a read.

The interpretation of various combinations of these signals is described in Table 5-3.

5·25

TABLE 5-3 - MEMORY CONTROLS

#MEMCNT #MEMCNT #MEM lfWR Function OTMD MICASM
(previous) h:urrent) Symbol

0 0 0 0 - No Mem Reference - 0 -See Note 1-
0 0 0 1 Gate o Bus to MD Bus 1 O> MD-See Note 2
0 0 1 0 Short Memory Read 0 MR
0 0 1 1 Short Memory Write , .

MW
1 0 0 0 2nd State·lnt. Vector 0 INTVEC
1 0 0 1 * Illegal * 1 -
1 0 1 0 2nd State Long Read 0 MR
1 ·o 1 1 2nd State Long Write 1 M.W
0 1 0 0 1st State Int. Vector 1 MCNT, INTVEC
0 1 0 1 *Illegal* 1 -
0 1 1 0 1st State Long Read 1 MCNT, MR
0 1 1

..
1 1st State Long Write 1 MCNT, MW

1 1 x x * Illegal * 1 -

NOTES: 1. MICASM is not capable of generating this combination of memory controls directly.

5.3.4.

5-26

2. This combination of memory control signals is also the default combination, produced by MICASM when no memory control is specified.

The MICASM symbol or symbols listed in Table 5-3 must be used to specify the appropriate
combination of memory control signals. The '#MEMCNT Microinstruction Bit is set
independently by the MICASM symbol MCNT. The various combinations of #MEM and #WR
Microinstruction Bits are set by specifying the MICASM symbols 0 >MD, MR, and MW.
0 >MD may be specified when no memory access is desired, but the ALU Output (0) Bus
contents are t~ be gated onto the Memory Data (MD) Bus. OTMD, the signal which enables the
0 Bus to drive the MD Bus, is generated by the PMC and is defined as OTMD =#WR .OR.
#MEMCNT. The 0 >MD MICASM statement has been defined only to assert OTMD during
non-memory cycles by generating a unique combination of #WR and #MEMCNT which does
not occur during actual memory cycles. (0 >MD should not be coded during memory
accesses). Note, however that the combination of memory controls produced by O>MD is
also the default and will be produced by MICASM if no memory controls are coded in a
particular microinstruction cycle.

MR is specified for a memory read operation, and MW for a memory write. For long memory
cycles, which require two microinstructions, MCNT is specified in the first microinstruction
only. MR or MW must be specified in both microinstructions.

Organization Of The TMS7000 CPU

This section describes the internal organization of the TMS7000 CPU. A.block diagram is
shown in Figure 5-13. Each of the internal registers and buses are 8 bits wide. The internal CPU
buses are used to transfer information between registers and to devices external to the CPU.
Normally a bus will be used to transfer data between twd. particular locations during a
microinstruction cycle. (Buses are precharged at various times during each microinstruction
and therefore cannot be used to store data). These types of transfers of information are
explained in the following descriptions of the various buses and registers within the CPU. In
most cases, a bus will usually have only one source or destination; however, it may be desirable
,to have either multiple sources or destinations for bus.

The case of multiple destinations of a bus is a simple extension of a single bus destination; a
bus's contents are merely gated to several places simultaneously. This can be accomplished by

simply including the MICASM statements for each destination, ie., MD >N and MD >P both
coded in the same microinstruction cycle. ·

Multiple sources for a bus is more complex. Logically this may be coded in MICASM in a
straightforward manner, just a.s multiple bus destinations are, however the result is quite
different. The contents of a bus when multiple sources are specified is the logical OR of the two
sources. This may be used advantageously in saving microcode in some situations with one
restriction: the TMS7000 Emulator cannot be used to debug the microcode. It should be
emphasized that this technique should be used only when absolutely necessary and the
Emulator may not be used to check the microcode, which can make a design very difficult to
debug.

"'"' "'"' (JU

OTMD !TRANSFER GATE
~ FROM MEM. CONTROL!

r•MDTNIH11 t•MDTPIH1)

I- •PALIPI

INTERR. LOG. AST

FIGURE 5-13 - INTERNAL ORGANIZATION OF THE TMS7000 CPU

•MEM,•MEMCNT,m"WR

(ABOVE}~
IACT

8 AITf.01

TO
PERIPHERALS

1 RAM
2 ROM
3 PORTS
4 TIMER
5 INTERRUPTS
6 MEM. CONTROL

5-27

5.3.4.1

5.3.4.2

5-28

THEPBUS

The P Bus is one of the inputs to the Arithmetic Logic Unit, or ALU. It is called P for positive
because it always contains the positive or left-hand operand; in subtract operations, the ALU
always computes P-N and in add operations, P + N is computed. The P Bus is loaded from the
MD Bus, the AL Bus, the PCH Register, the PCL Register or with the constant >00 or >01. Any
of the AL Bus sources may be placed on the P Bus by gating them onto the AL Bus and
asserting the #PAL microinstruction bit, connecting the P Bus to the AL Bus. A P Bus source
must be coded in each microinstruction cycle. All of the possible P Bus sources are shown in
Figure 5-14.

PBUS a al" A l'•a
1•11"Wtt~n11

HEX REPRESENTATION
SOURCE SVMBOL(s)

MD Bus MD>P 0000 4000 0000 000
PCH Register PCH>P 0000 2000 0000 000
PCL Register PCL>P 0000 1000 0000 000
MAL Register MAL~AL, AL>P 0000 0030 0000 000
SP Register SP>AL, AL>P 0000 0028 0000 000
>01 constant ONE>AL, AL>P 0000 0060 0000 000
>00 constant Z>PorDC>P ' 0000 0000 0000 000

FIGURE 5-14 - P BUS SOURCES

The hex representation in Figure 5-14 indicates the bits in a microinstruction that are affected
when the MICASM symbol_ shown is specified for the P Bus source. Note that if a
microinstruction requires no source on the P Bus, the MICASM symbol DC> P must be
specified to indicate a don't care condition on the bus.

The P Bus is loaded at the beginning_ of a microinstruction cycle, on phase H 1.

The N Bus

The N Bus is the second input to the ALU. It is called N for negative because in an ALU subtract
operation, the N Bus contains the negative or right-hand operand. The N Bus is loaded from the
MD Bus, the T Register, the IR Register, the Status Register, the BCD Constant Register or the
constant >00. The source of the N Bus is indicated directly by a bit in the microinstruction
.word. If the bit is 1, the source is gated onto the N Bus. An N Bus source must be coded in each
microinstruction cycle. All the possible N Bus sources are shown in Figure 5-15.

NBUS MICASM
SOURCE SVMBOL(s) HEX REPRESENTATION

MD Bus MD>N 0000 0800 0000 0000
T Register T>N 0000 0400 0000 0000
Status Register ST>N 0000 0200 0000 0000
BCD Constant BCD>N 0000 0100 0000 0000
IR Register IR>N 0000 0080 0000 0000
>00 constant Z>N orDC>N 0000 0000 0000 0000

FIGURE 5-15 - N BUS SOURCES

5.3.4.3

5.3.4.4

If a microinstruction does not require an operand on the N Bus, the MICASM symbol DC>N
must be specified to indicate a don't care condition on the bus.

The N Bus is loaded at the beginning of a microinstruction cycle, on phase H 1.

TheALBus

The AL (Address Low) Bus holds the the lower 8 bits of all memory addresses. This includes
references to the Register File, Peripheral File, on-chip, and extended memory. The AL Bus is
loaded during phase H 1, at the beginning of a microinstruction cycle. The sources of the AL
Bus are the MAL Register, the SP Register, or the constant >00 or >01. The constant >01 is
provided to efficiently address RAM location >01, (the B register of the standard TMS7000).
This also facilitates addressing registers 16 and 17 (> 10 and > 11). An AL Bus source must
be specified in each microinstruction cycle.

The AL Bus may also be connected to the P Bus by asserting the #PAL microinstruction bit,
which can be accomplished by coding the P >AL MICASM instruction. In this manner, the AL
Bus sources (MAL, SP, or the constant >00 or >01) may be gated onto the AL Bus and then
onto the P Bus to be operated on by the ALU. Likewise, the P Bus sources (PCH, PCL, and MD
Bus contents) may be gated onto the P Bus and then onto the AL Bus to serve as low order
addr.ess lines. The .MD Bus contents transferred are those present at the start of the
microinstruction, i.e., those output by the previously executed microinstruction. All of the
possible sources of the AL Bus are listed in Figure 5-16.

ALBUS MICASM
HEX REPRESENTATION SOURCE SVMBOL(s)

MAL Register MAL>AL 0000 0010 0000 0000
SP Register SP>AL 0000 0008 0000 0000
PCL Register PCL>P, P>AL 0000 1020 0000 0000
PCH Register PCH>P, P>AL 0000 2020 0000 0000
MD Bus MD>P, P>AL 0000 4020 0000 0000
>01 Constant ONE>AL 0000 0040 0000 0000
>00 Constant Z>ALorDC>AL 0000 0000 0000 0000

FIGURE 5-16 - AL BUS SOURC~S

If no AL Bus source is required, the MICASM symbol DC> AL must be specified to indicate a
don't care condition on the bus:

TheAHBus

The 8-bit AH (Address"High) Bus contains the high-order byte of the address referenced by the
CPU. It is loaded during H1, at t~e beginning of a microinstruction cycle. It may be loaded with
the contents of the PCH Register, the T Register, or the constant >00 or >01. The high byte of
the program counter is intended to be stored in PCH; the T Register is intended to hold the high
byte of other addresses in memory. The constant >01 is provided tO efficiently access
addresses in the Peripheral File (i.e., addresses of the form >01 XX). An AH Bus source must
be coded in each microinstruction cycle. The sources of the AH Bus are summarized in Figure
5-17.

·5-29

5.3.4.5

5·30

AH BUS MICASM
HEX REPRESENTATION

SOURCE SVMBOL(s)

PCH Register PCH>AH 0000 0002 0000 0000
T Register T>AH 0000 0004 0000 0000
>01 Com~tant ONE>AH 0000 0001 0000 0000
>00 Constant Z>AH or DC>AH 0000 0000 0000 0000

FIGURE 5-17 - AH BUS SOURCES

If no AH Bus source is required, the MICAS!\~ symbol DC> ,"\H must be specified to indicate a
don't care condition on the bus.

TheOBus

The 0 (Output) Bus always contains the output of the ALU-Shifter combination. Its contents
may be loaded onto the MD Bus, or into the Status, PCH, PCL, MAL, or SP Registers. The
Status Register is loaded by the low-true microinstruction bit #-0 >ST. The PCH Register is
loaqed by the high-true microinstruction bit #0 > PCH. The load signals for the 0th.er destination
registers (MAL, PCL, and SP) are encoded in the microinstruction bits #LOWWRITE(1-0), as
shown in Figure 5-18. Note that since these bits are encoded, these three 0 Bus destinations
are mutually exclusive; that is, only one of these destinations may be specified in a given
microinstruction cycle.

#LOWWRITE

0

0
0

0
1
0

OBUS

DESTINATION

--none-
MAL Register
PCL
SP

MICASM

SYMBOL

O>MAL
O>PCL

.O>SP

FIGURE 5-18 - LO'wWJRITE (1-0) DESCRIPTION .
There is no microinstruction bit that directly loads the MD Bus from the 0 Bus, because the MD
Bus contents are under control of the Peripheral/Memory Controller (PMC). This transfer is
controlled by the OTMD signal sent from the PMC to the CPU on the C Bus. OTMD is asserted
on every memory write cycle, (on-chip or extended memory), and on the first state of every
long memory cycle. This is diagrammed in Table 5-3.

The 0 Bus is normally gated onto the MD Bus unless otherwise required in a memory cycle.
Optionally, the 0 >MD symbol may be coded in a MICASM 'Statement. MICASM sets up the
appropriate values of the #MEM and #WR microinstruction bits so that OTMD will be asserted
by the Peripheral/Memory Controller. The 0 Bus contents may then be loaded into the Tor IR
Registers from the MD Bus. Refer to paragraph 5.3.3.6 for a description of OTMD.

To write the 0 Bus contents to memory, the memory control signals must be specified. The
destinations of the 0 Bus are identified in Figure 5-19.

OBUS MICASM MICROINSTRUCTION FIELD
DESTINATION SYMBOL HEX REPRESENTATION

ST Register O>ST 0000 0000 0000 0000 (Low True)
PCH Register O>PCH 0010 8000 0000 0000
PCL Register O>PCL 0002 8000 0000 0000}
MAL Register O>MAL 0001 8000 0000 0000 Only One
SP Register O>SP 0003 8000 0000 0000 Of Three
T Register *[O>MDJ,MD>T 0008 8000 2000 0000
IR Register *[O>MDJ,MD>IR 0004 8000 2000 0000
Short Mem Cycle MW 0000 8000 6000 0000
Long Mem, Cycle 1 ·MCNT,MW ·oooo 8000 Eooo 0000
Long Mem, Cycle 2 MW 0000 8000 6000 0000

*Specifying O>MD here is optional
FIGURE 5-19 - 0 BUS DESTINATIONS

The 0 Bus is loaded during phase H4 of the microinstruction cycle. It contains the result of the
ALU and Shifter operations specified in the current microinstruction.

5·31

5.3.4.6

5-32

The MD Bus

The MD (Memory Data) Bus is a bidirectional bus that transfers data to and from the CPU1 Data
is valid on MD during phase H4 of a microinstruction cycle, which spans two micr.oinstructions.
Thus, data may be read from the MD Bus onto the P or N Bus at the beginning of a cycle (H1),
and the ALU results then loaded back onto the MD Bus at the end of the cycle (H4). It is
important to note that when using data from the MD Bus during H 1 of a particular
microinstruction cycle, the actual data available will be the contents loaded onto the MD Bus
during the end of the previous cycle.

At the end of~ cycle, the MD Bus may be loaded in one of three ways:

1) The 0 Bus contents may be gated onto the bus.

2) The on-chip RAM or ROM may place data onto the bus.

3) The Peripheral/M~mory Controller may place data onto the bus.

The MD Bus contents are controlled by the Peripheral/Memory Controller (PMC). The PMC
sends the OTMD signal to the CPU to signal loading the MD Bus from the 0 .Bus. The CPU
requests use of the MD Bus by asserting combinations of the #MEM,#MEMCNT, and #WR
signals, as shown in Table 5-3. The PMC sends signals to the on-chip ROM and RAM to control
their accesses to the bus.

The timing of read and write accesses to memory is explained in paragraph 5.3.2.3. For short
memory reads, data is available at the end of the microinstruction that initiated the read. This
data may be loaded into the T or IR Registers during that microinstruction by specifying the
MD> Tor MD> IR MICASM symbols, respectively. The data may be loaded into the P or N Bus
on the next microinstruction by specifying the MD >P or MD >N symbols in the MICASM
statement for the next microins.truction. For short memory cycle writes, the 0 Bus data is
placed on.the MD Bus, and the MW MICASM symbol specified. For long memory reads, the
desired address is placed on the AH.and AL lines, and the MR and MCNT symbols specified in
the first of the two cycles required. At the end of the second cycle, data is available on MD.
(The memory address is latched by the PMC on the first cycle, and need not be asserted on the
second cycle). For long memory writes, the address is specified in the first cy.cle, and the data
is placed on the MD Bus for the first and/or second cycles. The destinations of the MD Bus in
the CPU are described in Figure 5-20.

MD BUS MICASM
SYMBOL

DESTINATION WHEN LOADED

T Register End of Cycle MD>T
IR Register End of Cycle MD>IR
PBus Start of Cycle MD>P
N Bus Start of Cycle MD>N

FIGURE 5-20 - MD BUS DESTINATIONS

5.3.4. 7 ALU Operation

384

The Arithmetic Logic Unit (ALU) accepts as inputs the values on the P and N Buses, and
outputs its result to the Shifter. The ALU operation is controlled by the #ALUCNTL(3-0) and
#ABL lines from the current microinstruction. The ALU operates on the values loaded on the P
and N Buses during H 1 of the current microinstruction and produces an 8-bit output which is
input to the Shifter, and a carry bit (COUT), which is an arithmetic carry bit based on the 8-bit
ALU operation. To specify the carry-in, the ALU accepts the #SHIFTCNTL(3-0) bits from the
current microinstruction. An overall block diagram of the ALU appears in Figure 5-21.

TO
SHIFTER

ALU
8

OUTPUT

COUT

4

STC UC

FIGURE 5-21 - ALU BLOCK DIAGRAM

The available operations of the ALU are defined in Figure 5-22.

#ALUCNTL HEX
(3-0)#ABL REPRESENTATION

0000 0 0000 0000 0000 0000
0000 1 0000 0000 0008 0000
0001 0000 0000 0018 0000
0010 0000 0000 0028 0000
0011 0000 0000 0038 0000
0100 0000 0000 0048 0000
0101 0000 0000 0058 0000
0110 0000 0000 0068 0000
0111 0000 0000 0078 0000
1000 0000 0000 0088 0000
1001 0000 0000 0098 0000
1010 0000 0000 OOA8 0000
1011 0000 0000 0088 0000
1100 0000 0000 OOC8 0000
1101 0000 0000 0008 0000
1110 1 0000 0000 OOE8 0000
1111 0 0000. 0000 OOFO 0000
1111 1 0000 0000 OOF8 0000

FIGURE 5-22 - A~U FUNCTIONS

N BUS

P BUS

SHI FTCNTL(3-0)

MICASM
SYMBOL ALU OUTPUT

PADON P + N +Cl
XNOR PXNORN
AND PANDN
IPORN (NOT Pl ORN
PASSN N
PORIN POR (NOTN)
PASSP p

FF >FF
OR PORN
NOR PNORN
ZERO >00
INVP NOTP
IPANDN (NOT Pl ANON
INVN NOTN
PAN DIN PANO (NOTNl
NANO PNANDN
PSUBN P- N-1 +Cl
XOR PXORN

5-33

5.34

The Carry-in. Bit of the ALU (Cl) is specified by the #SHIFTCNTL(3-0) bits of the
microinstruction, which are described in full in the next section. For operations requiring no
shifting of the ALU contents, the possible carry-in bits are defined in Figure 5-23.

#SHIFTCNTL MICASM ALU CARRY IN

3 2 1 0 SYMBOL (Cl)

0 0 0 0 ZCI 0
0 0 0 1 ONECI 1
0 0 0 UCI UC - Micro Carry Bit
0 0 1 1 STCI STC - Status Carry Bit

FIGURE 5-23 - ALU CARRY IN 'VALUES

The Micro Carry Bit (UC) is the carry-out from the ALU operation of the immediately preceeding
microinstruction. This is not the same as the Shift-out Bit (SOUT) from the Shifter operation of
the previous microinstruction. The Status Carry Bit (STC) is the Carry bit of the Status Register.

The arithmetic Carry-out Bit from the ALU (COUT) is 1 if there is a carry-out during an add
(PADON) or subtract (PSUBN) operation in the ALU. For an add operation, COUT = 1 indicates
there was a carry, i.e., the sum of the (unsigned) operands exceeds 255. For a subtract
operation, COUT =0 indicates there was a borrow, i.e., the P operand was lower than the N
operand (unsigned). For all other operations, i.e., logical operations, COUT is set to 0. COUT is
sent to the Status Register circuitry for possible loading into STC, the Status Carry Bit. ·

As an example of ALU operation, the following symbols appearing in a MICASM statement,

. PADDN,ZCI

will cause the ALU to calculate the sum of the P and N Bus contents. To calculate the difference
between the P and N Bus contents,

PSUBN,ONECI

must be specified. A 1 must be carried in since no borrow was desired. Figure 5-24 details two
microcode examples. The microinstructions read the current byte addressed by the PC, place it
in the T Register, and increment the PC.

.ORG IMMED1
PCL>P,P>AL,
PCH>AH,
Z>N,
PADDN,ONECI,
O>PCL,
MCNT,MR,
JUNC(IMMED2);

.ORG IMMED2
DC>~H,DC>AL,

PCH>P,
Z>N,
PADDN,UCI,
O>PCH,
MR,
MD>T,
JUNC(NEXT);

' Read immediate byte, 1st cycle
' Define location of microinstruction
' Place PCL on AL Bus via P Bus
' Place PCH on AH Bus
' Place Zero on N Bus
' Increment PCL by 1 (sets Micro Carry UC
' Place result back in PCL
' 1 st cycle of long read
' Goto next cycle

' Read immediate byte, 2nd cycle
' Don't care what's on AH and AL since address was

latched on 1 st cycle
' Place PCH on P Bus
' Place Zero on N Bus
' Add micro carry from PCL increment
' Place result back in PCH
' Meanwhile, continue memory read
' And place the byte read into T
' Then goto next instruction

FIGURE 5-24 - MICROCODE EXAMPLE

Notice that an increment was done.in IMMED1 by using an·ALU carry-in of 1. The second
instruction (IMMED2) incremented the high byte of the PC only if the Micro Carry Bit (UC)
generated by IMMED1 was 1.

5. 3. 4. 8 Shifter Operation

The Shifter performs a variety of 1-bit shift operations on the output of the ALU. The
#SHIFTCNTL(3-0l lines cont.rel the following ALU and Shifter characteristics:

• The ALU Carry-in Bit (Cl)

• The shift direction (Lor R)

• The bit shifted into the Shifter

Figure 5-25 shows the various combinations of shift control lines.

5-35

5-36

#ShiftCntl ALU Shift Shift-In MICASM
3 2 1 0 Cl Direction Bit Symbol

0 0 0 0 0 - ZCI
0 0 0 1 1 No - ONECI
0 0 1 0 UC Shift - UCI
0 0 1 1 STC - STCI

0 1 0 0 0 ALU(7) RLO
0 1 0 1 1 Shift ALU(7) RLZ
0 1 1 0. 0 Left STC RLCO
0 1 1 1 1 STC RLCZ

1 0 0 0 0 ALU(O) RRO
1 0 0 1 1 Shift ALU(O) RRZ
1 0 1 0 0 Right STC RRCO
1 0 1 1 1 STC RRCZ

1 1 xx * Invalid * *

FIGURE 5-25 - SHIFT/ALU CARRY-IN CONTROL

For#SHIFTCNTL=OOXX, no shifting is performed, and the ALU Carry-in Bit Cl is as described
in the ALU description, above. For #SHIFTCNTL=010X, the ALU output is rotated left, with
the most significant bit, ALU(7), shifted in from the right. For #SHIFTCNTL=011X, the ALU
output is rotated left through the Status Carry Bit, STC. F.or #SHIFTCNTL = 1 OOX, the ALU
output is rotated right, and for #SHIFTCNTL = 101 X, the output is rotated right through the
carry bit. The MICASM symbols represent this, with the last character indicating the value of
the ALU Cl bit. #SHIFTCNTL = 11 XX is an invalid command and must never be specified.

The Shift-out Bit (SOUT) shifted out in a rotate instruction is sent ta the Status Register. It will
be loaded as the new Status Carry Bit (STC) if the #-LST microinstruction bit is set. Operation
of each of the shift instructions is diagrammed in Figure 5-26. ·

384

5.3.4.9

ROTATE
RIGHT

ROTATE
RIGHT
THRU

CARRY

ROTATE
LEFT

ROTATE
LEFT

THRU
CARRY

IR Register

SOUT =SHI FT-OUT BIT
STC =STATUS CARRY BIT

d ++I +a H mjoof--)--• souT

------. --ALU(O)--------·

STc -----J 01 I 05 I 05 I 04 I 03 I 02 I 01 fool ... ___ souT

..
SOUT .. c.1++1+++100~

ALU(7)

4

SOUT 4 I 071 061 051 041031 02 I 01 I DO ~ STC

FIGURE 5-26 - SHIFTER OPERATION

The Instruction Register (IR) is a register intended to hold the assembly language opcode. It is
loaded from the MD Bus by specifying the MD >IR symbol in a MICASM statement. It may be
loaded onto the N Bus with the IR> N MICASM symbol.

The TMS7000 Microarchitecture is designed to dispatch (branch) on various subfields of the IR
contents, providing for the execution of appropriat'e microcode for each assembly language
instruction. The IR may be considered to have two possible formats:

1) Format 0 is indicated by a 0 in IR(7), the most significant bit of the IR Register. In this
format, bits IR(6-4) form a 3-bit Group field and bits IR(3-0) form a 4-bit Function field.

2) Format 1 is indicated by a 1 in IR(7). In this format, bits IR(6-3) form a 4-bit Group field
and bits IR(2-0) form a 3-bit Function field.

The formats of the IR Register are diagrammed in Figure 5-27.

5-37

IR REGISTER .

7 6
I

5
I

4 3
I

2 0
I I

FORMAT 0 0 GROUP FUNCTION

7

I
.6

I
5

I
4 . 3 2

I I
0

I
I

FORMAT 1 1 GROUP FUNCTION

FIGURE 5-27 - IR REGISTER FORMATS

The terms group and function refer to logical subsets of assembly language opcodes. In tho
TMS7000 standard instruction set the Group field in an opcode indicates the addressing mode
of the instruction, and the Function field indicates the arithmetic or logical operation performed
on the operands. The microarchitecture · is designed to allow significant sharing of
microinstructions among opcodes within the same group or function. In the microcode for the
standard TMS7000, for instance, all opcodes of the form > 1 X share microcode which fetches
the A Register and a general RF register.

The mechanisms for dispatching on the Group and Function field values in the IR are described
in Section 4. Dispatching on an IR subfield may be performed on the first microinstruction after
the IR is loaded. Thereafter, dispatching may be performed by microinstructions up to and
including the next one that reloads the IR. If no dispatching is required, then the IR may be used
as a general purpose 8-bit register.

5. 3. 4. 10 The Status Register

5-38

The Status, Register (ST) is an 8-bit register with contents indicating various conditions of the
CPU. Each bit of the Status Register has a special meaning and separate circuitry devoted to it.
The format of the ST Register is shown in Figure 5-28.

7 6 5 4 3
j_

2
j_ l

0

' T T

STC STSB STEZ STINT RESERVED FOR .EXPANSION

FIGURE 5-28 - STATUS REGISTER

STC is the Status Carry Bit. It holds either the carry-out of the ALU, the shift-out of the Shifter,
or the decimal arithmetic carry-out. STSB is the Status Sign Bit. It contains the most significant
bit of the 0 Bus contents. STEZ is the Status Equal to Zero Bit. It contains a 1 when all bits of
the 0 Bus are zero. STINT is the Status Interrupt Enable Bit. Bits 3-0 of the Status Register are
reserved for future expansion. These bits wil be zeros when the ST Register is loaded onto the
N Bus.

The existing Status Register Bits may be modified in one of two ways:

1) All bits may be replaced by the contents of the 0 Bus.

2) The STC, STSB, and STEZ bits may be set according to their particular input circuitry.
The STINT Bit is unaffected in this case.

The Status Register Sources are summarized in Figure 5-29.

ST REGISTER MICASM
HEX REPRESENTATION

SOURCE SYMBOL

OBus O>ST 0000 0000 1000 0000 (Asserted low)
Input
Circuitry LST 0000 8000 0000 0000 (Asserted low)

FIGURE 5-29 - ST REGISTER SOURCE

The 0 Bus is gated into the Status Register if the #-0 >ST Microinstruction Bit is asserted low.
This may be specified by the 0 >ST symbol appearing in a MICASM statement. The STC,
STSB, and STEZ Bits are loaded when the #-LST Microinstruction Bit is asserted low. This may
be specified by the LST symbol appearing in the MICASM statement. There is no way to
individually load the STC, STSB, and STEZ Bits; they must be loaded together. This feature
permits an efficient implementation of the TMS7000 status logic, typically a very costly item in
single-chip microarchitectures. The special circuitry defining the value of the STC, STSB, and
STEZ Registers is described in the following paragraphs.

5.3.4.10.1 The Status Carry Bit (STC)

When the #-LST signal is asserted by coding the.LST MICASM instruction, the STC Bit will be
loaded from one of three sources:

1) The ALU Arithmetic Carry-out Bit (COUT); This is the carry/borrow bit generated by
the ALU on arithmetic operations. COUT is loaded if no Shifter operation is specified,
i.e., #SHIFTCNTL=OOXX.

2) The Shifter Shift-out Bit (SOUT). This is the bit shifted out in Shifter operations. If a
Shifter operation is specified-Le., #SHIFTCNTL>0011-then SOUT is loaded into
the STC Bit (whether a rotate thru carry was specified or not).

3) The BCD Decimal Carry/Borrow Out Bit (DCOUT). This is the carry bit computed by
the decimal adjust hardware within the BCD Constant Register. It is loaded into the
STC Status Carry Bit if the #BCD >N Bit is set, indicating a decimal adjust constant is
loaded onto the N Bus.

5.3.4.10.2 The Status Sign Bit (STSB)

When #-LST is asserted, the input to the STSB Bit is 0(7), the most significant bit of the 0 Bus.

5.3.4.10.3 The Status Equal To Zero Bit (STEZ)

When #-LST is asserted, the input to the STEZ Bit is the Micro Equal-to-Zero Bit, UEZ. The UEZ
Bit is simply the logical NOR of all 0 Bus lines. That is, if all 0 Bus lines are 0, UEZ is set to 1 .
Otherwise, it is set to 0.

5-39

5.3.4.10.4 The Status Interrupt Enable Bit (STINT)

The STINT Bit may only be modified by loading the 0 Bus contents into the Status Register. The
STINT Bit corresponds to bit 0(4) in this case. STINT is output from the CPU to the
Peripheral/Memory Controller on the C (Control) Bus between the CPU and PMC. If STINT= 0,
the PMC will not pass an interrupt to the CPU via the IACT line (also in the C Bus). If STINT= 1,
the PMC will assert IACT on an interrupt. By dispatching on the IACT bit, the microcode is able
to test for interrupts.

Due to propagation delay~, the effect of loading STINT on IACT takes two microinstruction
cycles to be asserted. Accordingly, if STINT is updated in cycle i, IACT will not be valid until
cycle i + 2. Thus a JINT dispatch on IA.CT wi!! not jump correctly if coded in state i + 1.

5. 3.4. 11 . BCD Constant Register

5·40

The BCD Constant Register is a module which generates a corrl}ction constant for binary coded
decimal arithmetic operations. Decimal numbers on the TMS7000 are represented with 2
binary coded decimal digits per byte, with the least significant digit in the least significant
nibble, bits 3-0, of a byte. For example, the decimal number 78 would be represented in binary
as '01111000', or > 78. To perform decimal addition on two BCD Bytes X and Y, the following
operations must be performed:

1) The binary sum of X and Y is computed, with the STC Bit carrie~ in, and the result
saved temporarily.

2) A decimal correction constant is computed by the BCD hardware.

3) The correction constant is added to the saved result to produce the final BCD sum.

Each of these operations requires a microinstruction cycle.

The STC Bit is added in order to permit adding multiprecision strings of BCD digits. Decimal
subtraction (with borrow) is similar to the above procedure. The binary difference X-Y is first
computed, and the correction constant then subtracted from the result.

Figure 5-30 indicates the decimal correction constant and decimal carry out bit generated for
decimal addition and subtraction.

7 4 3 0

OPERAND·1 I H1 I L1 I C = STATUS CARRY BIT ISTC)

I
B = STATUS BORROW BIT

OPERAND 2 H2 I L2 I (INVERSE OF STC)

DCOUT = DECIMAL CARRY OUT

L1+L2+C<10 1 0 < = L 1 + L2 + C L1-B> =L2 L1 -B< L2
H1 +H2<9 >00 >06 H1>H2 >00 DCOUT >06 DCOUT
H1 +H2=9 >00 >66 DCOUT H1 =H2 >00 DCOUT >66
H1 +H2>9 >60 DCOUT >66 DCOUT H1 <H2 >60 >66

DECIMAL ADD WITH CARRY DECIMAL SUBTRACT WITH BORROW

FIGURE 5-30 - BCD CORRECTION CONSTANT GENERATION

The BCD constant logic uses signals from the ALU such as the 8-bit carry (COUT), the ALU
operation code #ALUCNTL(3-0), and ALU outputs on the 0 Bus to determine the correction
constant and Decimal Carry-out Bit (DCOUT). Like the binary arithmetic carry, DCOUT is 1 if a
carry is required after an addition, and 0 if a borrow is required after a subtraction. Figure 5-30
indicates the conditions in which DCOUT is 1. DCOUT is sent to the Status Register for
possible loading into the STC Status Carry Bit.

Three microinstruction cycles are required to perform a decimal arithmetic operation. The
timing for a decimal arithmetic operation is shown in Figure 5-31 .

5-41

5-42

H1

H4

P BUS

N BUS

0 BUS

BCD RESULT

MD BUS

BINARY RESULT BINARY RESULT BCD RESULT
SAVED READ WRITTEN

#BCD>N

LOAD CONST ANT ONTO N BUS

#-LST

LATCH DCOUT INTO STATUS REGISTER

FIGURE 5-31 - BCD ARITHMETIC OPERATION TIMING

The first state loads the BCD operands onto the P and N Buses, and performs the appropriate
ALU operation (PADON or PSUBN) to produce the binary result. The binary result must be
stored in a temporary location for use in the third state. The BCD operation diagrammed in
Figure 5-31 assumes the result is stored in the RF. The second state reads this binary result
from the Register File and leaves it on the MD Bus. This state allows the BCD constant
hardware to determine the correction constant and Decimal Carry-out Bit, DCOUT. The third
state loads the binary result onto the P Bus and the correction constant onto the N Bus and
performs the appropriate ALU operation to produce the correct BCD result. The Status Register
should be.loaded in this state by coding an LST instruction in MICASM.

The MICASM statement shown in Figure 5-32 implement a decimal add with carry. A source
operand is added to a destination operand, and the result stored in the destination operand (a
register in the RF). The T Register is assumed to contain the source operand, the MD Bus
contains the destination operand, and the MAL Register contains the register number of the
destination operand.

.ORG DACO
Z>AH,
MAL>AL,
MD>P,
T>N,
PADDN,STCI,
MW,
JUNC(DAC1);

·.ORG DAC1
Z>AH,
MAL>AL,
DC>P, DC>N,
PADDN,ZCI,
MR,
JUNC(DAC2);

.ORGDAC2
Z>AH,
MAL>AL,
MD>P,
BCD>N,
PADDN,ZCI,
LST,
MW,
JUNC(NEXT);

' Decimal Add w I Carry, first state
' Place destination register address

on address bus: AH =0, AL=MAL
' Dest. operand to P Bus
' Source operand to N Bus
' Add them, including carry from last DAC
' Store binary result in dest. register
'GotoDAC1

'DAC, second state
' Read binary result back. Put dest. addr

on addr. bus: AH= 0, AL= MAL
'Don't cares to P andN Bus
' Maintain ALU operation code (PADON)
'Read binary result, placed on MD Bus
'Goto DAC2

' DAC, third state
' Put destination address on Address Bus

(AH =0, AL=MAL)
' Put binary result on P Bus
' Put BCD correction constant on N Bus
' Add them (with no carry)
' Load Status register with decimal carry
·' Store BCD result to destination registe
'Goto next microinstruction.

FIGURE 5-32 - MICASM STATEMENT

For a decimal subtract operation, the PADON symbols should be replaced with PSUBN. State
DAC2 should subtract the BCD constant via the MICASM symbols PSUBN,ONECI. A carry-in
of 1 is needed since no borrow is required.

5.3.4. 12 Other Registers

The remaining registers implemented in the TMS7000 CPU include five storage registers and
two constant registers. Two of the storage registers, the PCH and PCL, are used to hold the
high and low bytes of the Program Counter. The Program Cqunter contents are normally
essential to CPU operation, hence the PCH and PCL registers are almost never used as general
purpose storage.

Two other storage registers, the Temporary or T Register and the MAL or Memory Address Low
Byte Register may be paired to store the high and low bytes of a memory address, or used
separately with the T Register serving as temporary storage and a memory address being
generated from the MAL and a constant.

There are two constant registers used for generating the constant >01; one for each of the AH
and AL Buses. Thus either of these buses may be loaded with either >00 or >01 if necessary.
T~is capability is used for, among other things, generating RF and PF Addresses.

The SP or Stack Pointer is normally used to hold a pointer to the stack in RAM, but may be used
as temporary data storage if a stack is not implemented or if the SP contents are not needed.

5.43

5.3.5 Microinstruction Sequence Control Overview

5-44

This section describes the mechanisms used in controlling the sequence of microinstruction
execution, which include generation of the next microinstruction address in both conditional
and unconditional branching. Included is a description of dispatching capabilities which can be
used to share microstates among several assembly language instructions.

Microinstructions are stored in the Control ROM, or CROM, on the TMS7000 chip. A
characteristic of horizontally microprogrammed architectures like the TMS7000 is that each
microinstruction indicates the address at which the next microinstruction to be executed is
located. In the TMS7000,the next microaddress is specified by two fields:

1) #JMPADDR(7-0), an 8-bit field indicating a base address in CROM.

2) #JMPCNTL(2-0), a 3-bit code indicating one of 8 dispatch offsets from the base
address in #JMPADDR.

If #JMPCNTL(2-0) = 000, then the #JMPADDR field is simply the address of the next
microinstruction. If #JMPCNTL(2-0) is nonzero, it indicates what data will replace the low
order bits of #JMPADDR, and thus form the next microaddress. This technique is called
dispatching, and is extremely easy to implement in MOS technology.

All conditional branching in microcode is accomplished by means of dispatching. A base
address is specified in the #JMPADDR(7-0) bits of the microinstruction. The #JMPCNTL(2-0)
lines indicate what data is used to form the low order bits of the base address to generate the
new microinstruction address. As an example, Figure 5-33 depicts dispatching on the IR(3-0)
Bits.

76543210

#JMPADDR(7-0)

l

765432

IR REGISTER

76543210

NEXT ADDRESS

FIGURE 5-33 - MICROINSTRUCTION DESPATCH EXAMPLE

0

The dispatch field bits, like IR(3-0), actually replace. the low order address bits in the
#JMPADDR(7-0) field; they are not OR'ed with them. For example, suppose #JMPADDR

1

was
specified t be > 11, and the #JMPCNTL(2-0) lines are set to 110, indicating a dispatch on STC,
the Status Carry Bit. If STC were 0, the next microaddress would be > 10.

Figure 5-34 summarizes the possible dispatch fields and the MICASM code to indicate the next
address.

5.3.5.1

#JMPCNTL
2 1 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

0 1
1 0
1 1

7

J7
J7
J7
J7
J7
J7
J7
J7

Jn
I Rn
T7
UEZ
IACT
STC
MJMP

baseaddr
oneaddr
zeroaddr

Dispatch Conditions

6

J6
J6
J6
J6
J6
J6
J6
J6

NEXT ADDRESS
5 4 3 2 0

J5 J4 J3 J2 J1 JO
J5 J4 IR3 IR2 IR1 IRO
J5 J4 J3 J2 J1 T7
J5 J4 J3 J2 J1 UEZ
J5 J4 J3 J2 0 IACT
J5 IR7 IR6 IR5 IR4 (1)
J5 J4 J3 J2 J1 STC
J5 J4• J3

(1) IR3 .or. (.not. IR7)

#JMPADDR(n)
IA Register bit n

J2 J1 MJMP

T register sign bit (bit 71
1 if 0 bus = > 00, 0 otherwise
Interrupt Active line from PMC
Status Carry Bit .
Macro jump: test Status Register bits
Base micro-address for dispatch
Next micro-address if bit 0 is 1
Next micro-address if bit 0 is 0

FIGURE 5-34 - NEXT MICRO ADDRESS GENERATION

MICASM
Format

JUNC(addr)
IRL(baseaddr)
JT7 (oneaddr,zeroaddr)
JUZ(oneaddr,zeroaddr)
INT(oneaddr,zeroaddr)
IRH(baseaddr)
JC(oneaddr,zeroaddr)
MJMP(oneaddr,zeroaddr)

Each of the dispatch possibilities is further explained in the following sections.

5.3.5.1.1 Unconditional Branching (JUNC)

If conditional branching of the microcode is not desired, #JMPCNTL should be set to 000. The
symbol

JUNC(addr)

appearing in a MICASM ~tatement will cause the TMS7000 to branch unconditionally to the
microinstruction at address addr after the current microinstruction is executed. The addr field
may be a constant or, more practically, a symbol equated to the desired address of the
microinstruction. The address addr is loaded into the #JMPADDR(7-0) field of the current
microinstruction.

5.3.5.1.2 Function Dispatch (IRL)

When #JMPCNTL = 001, the n~xt microinstruction is determined by the low four bits of the the
IR Register. This is specified in MICASM as:

IRL(baseaddr)

The baseaddr is loaded into the #JMPADDR(7-0) field of the microinstruction. The next micro
address is determined by replacing the bits 3-0 of the base address with bits 3-0 of the IR
·Register. To avoid confusion, it is convenient to make the base address a multiple of 16 i.e., bits
baseaddr(3-0) =0, since they will be ignored. The IRL dispatch is indicated pictorially in Figure
5-35. .

5.45

BASEADDR

BASEADDR+1

• .
BASEADDR+15 l

CONTROL ROM

IR(3-0) = 0

IR(3-0) = 1

• • •• • .
IR(3-0) = 15 I

FIGURE 5-35 - IRL DISPATCH

NEXT MICROINSTRUCTION
ADDRESS FOR:

IRL(BASEADDR)

An IRL dispatch is a dispatch on the Function field of the IR. In the TMS7000 Standard
lnstr~ction Set the Function field indicates the arithmetic operation to be performed. This is
contrasted with the Group field, bits 7-4, which indicates the addressing mode of the
instruction. Even though Format 1 instructions have a 3-bit Functio.n field; IR(2-0), the IRL
dispatch still performs a 16-way branch on the lower 4 bits of the IR Register. The Function
dispatch for Format 1 opcodes thus depends on the value of the IR(3) Bit.

5.3.5.1.3 Test Sign Bit (JT7)

5-46

The sign bit of the contents of the T Register may be dispatched on by specifying
#JMPCNTL=010. This is indicated by

JT7 (oneaddr,zeroaddr)

in a MICASM statement. The oneaddr field should be the 8-bit address of the microinstruction ·
to be executed if T(7) is 1, and the zeroaddr field is the address of the microinstruction to be
executed if T(7) is 0. This is shown in Figure 5-36.

ZEROADDR

ONEADDR

CONTROL ROM

T(7) = 'O'

T(7) = '1' }

NEXT MICROINSTRUCTION
ADDRESS FOR:

JT7 (ONEADDR, ZEROADDR)

FIGURE 5-36 - JT7 DISPATCH

Typically, zeroaddr and oneaddr are MICASM labels initialized by an .EOU statement. It is
required that zerroaddr be even and that oneaddr = zeroaddr + 1.

5.3.5. 1.4 Test If Zero (JUZ)

The microcode may test the value on the 0 Bus of the immediately preceeding microinstruction
by specifying #JMPCNTL =011. This is indicated by

JUZ(oneaddr,zeroaddr)

appearing in a MICASM statement. When JUZ appears in microinstruction i, it tests the 0 Bus
contents of the previously executed microinstruction, i-1. The entry-point logic replaces
JMPADDR(O) with the UEZ Bit from the Status Register, which is 1 when the 0 Bus is all zeroes
(>00)' and 0 otherwise. The symbol oneaddr denotes the address to which control is
transferred if the 0 Bus was zero, i.e., if UEZ = 1. The symbol zeroaddr denotes the address
jumped to if the 0 Bus was nonzero, i.e., if UEZ =0. Like the JT7 MICASM symbol, zeroaddr
must be even and oneaddr must equal zeroaddr + 1. The dispatch on the UEZ Bit is depicted in
Figure 5-37.

ZEROADDR

ONEADDR

5.3.5.1.5 Test If Interrupt (INT)

CONTROL ROM

UEZ=O

UEZ = 1 }

NEXT MICROINSTRUCTION
ADDRESS FOR:

JUZ(ONEADDR~ZEROADDR)

FIGURE 5-37 - JUZ DISPATCH

The microcode may test for a pending interrupt by dispatching on the IACT (Interrupt Active)
signal input from the Peripheral/Memory Controller. This is accomplished by specifying
#JMPCNTL = 100, or in a MICASM statement by:

INT(oneaddr,zeroaddr)

As with the JT7 and JUZ instructions, oneaddr denotes the microinstruction address branch to
if IACT = 1, and Zeroaddr is the address branched to if IACT = 0. Zeroaddr and oneaddr must be
adjacent, as depicted in Figure 5-38.

CONTROL ROM

ZEROADDR I IACT = 0 I } NEXT MICROINSTRUCTION
,.. ---------.. ADDRESS FOR:

ONEADDR IACT = 1 INT (ONEADDR, ZEROADDR)

FIGURE 5-38 - INT DISPATCH

The IACT line is asserted by the Peripheral/Memory Controller (PMC) when an interrupt
condition is detected. IACT can be asserted only when STINT (Status Interrupt Enable) is 1.
Operation of the PMC in asserting interrupts is further explained in the TMS7000 8-Bit
Microcomputer Data Manual (Part Number MP 008A).

5-47

5.3.5.1.6 Group Dispatch (IRH)

5-48

Dispatching on the Group field of the IR Register is accomplished by specifying 101 in the
#JMPCNTL field. This is indicated by coding

IRH (baseaddr)

in a MICASM statement. The baseaddr field is loaded into the #JMPADDR field of the
microinstruction being defined.

There are 24 groups defined, 8 in Format 0 (IR(7) = 0) and 16 in Format 1 (IR(7) = 1) . The
groups are numbered in Figure 5-39.

FORMATO FORMAT1

IR
GROUP

IR
GROUP

NUMBER NUMBER

ooooxxxx 0 10000XXX BL
0001XXXX 10001XXX SH
0010XXXX 2 10010XXX 9L
0011XXXX 3 10011XXX 9H
0100XXXX 4 10100XXX AL
0101XXXX 5 10101XXX AH
0110XXXX 6 10110XXX BL
0111XXXX 7 10111XXX BH

11000XXX CL
11001XXX CH
11010XXX DL
11011XXX DH
11100XXX EL
11101XXX EH'
11110XXX FL
11111XXX FH

FIGURE 5-39 - TMS7000 GROUP NUMBERS

The IRH(baseaddr) symbol performs a 24-way dispatch on the Group field. This is done by
replacing the low order bits of #JMPADDR with a function of the Group number. The high nibble
of the IR Register, IR(7-4), is placed in the low nibble of the next address, shifted by 1 bit. The
low order bit of the next address, is defined as NEXTADRESS(O) = IR(3).0R.(.NOT.IR(7)). For
Format 0 instructions, NOT IR(7) = 1, and NEXTADDRESS(O) always equals 1 . Thus, the
machine will jump to microaddress baseaddr +(group* 2) + 1 for Forl'"!lat 0 group numbers. For
Format 1 instructions, NOT IR(7) =0, and NEXTADDRESS(O) equals IR(3). Thus, the machine
will jump to microaddress baseaddr +(group* 2) + IR(3) for Format 1 group numbers. The
group names given in Figure 5-39 are the first hex digit in the two-digit hex representation of
the IR Register contents. Format 1 names have an L if IR(3) = 0 and H if IR(3) = 1. The operation
of the Group decode is shown in Figure 5-40.

CONTROL ROM

BASEADDR

BASEADDR+1 GROUPO

BASEADDR+3 GROUP1

BASEADDR+5 GROUP2

.
•

BASEADDR+>OF GROUP7

BASEADDR+>10 GROUP SL

BASEADDR+ >11 GROUP SH

BASEADDR+>12 GROUP9L

BASEADDR+>13 GROUP9H

• •
BASEADDR+>1E GROUP FL

BASEADDR+>1 F GROUPFH

FIGURE 5-40 - IRH DISPATCH

• . .

. .
•

The CROM addresses baseaddr, baseaddr+2, baseaddr +4, etc., may be used for other
microinstructions. The microcode for the TMS7000 Standard Instruction Set uses the IRH
dispatch immediately after the assembly language instruction is loaded into the IR. Each group
corresponds to an addressing mode for the instruction, and the microcode executed after the
dispatch fetches the appropriate operands. Typically, a Function, or IRL, dispatch is then
performed, and the microcode branches to perform the appropriate ALU function on the
operands. In this manner, the operand fetch microinstructions are shared among the assembly
language instructions and each instruction has its own microcode to perform the function of
that instruction.

5.3.5.1.7 Test If Carry (JC)

The microcode may test the value of the carry bit in the Status Register by performing a
dispatch on the STC Bit. This is indicated by specifying #JMPCNTL(2-0) = 110, or

JC(oneaddr,zeroaddr)

appearing in a MICASM statement. The bit tested is the. value of the STC (Status Carry) Bit
after the execution of the immediately preceeding microinstruction, i.e., the microinstruction
executed prior to the one containing the JC(oneaddr,zeroaddr) statement. The STC Bit is
placed in bit 0 of #JMPADDR, and the result used as the next microinstruction address.

5-49

If the STC Bit is 1, control transfers to oneaddr, and if STC =O, control transfers to zeroaddr.
The locations zeroaddr and oneaddr must be adjacent, with zeroaddr on an even address and
oneaddr on the subsequent odd address. This is diagrammed in Figure 5-41.

CONTROL ROM

ZEROADDR

I }
NEXT MICROINSTRUCTION

t------------1. ADDRESS FOR: ..

JC(ONEADDR, ZEROADDRi
---------~

STC = 1

STC=O

ONEADDR

FIGURE 5-41 - JC DISPATCH

5.3.5.1.8 Test Status Register (iviJiviP)

5·50

The contents of the status register may be tested with the Macro Jump dispatch by specifying
#JMPCNTL(2-0) = 111. This is indicated by

MJMP(oneaddr,zeroaddr)

appearing in the MICASM statement for a microinstruction. The MJMP dispatch tests eight
possible conditions of the Status Register, indicated by the 3 bits in IR(2-0). If the condition is
true, control transfers to oneaddr. If the condition is not true, control transfers to zeroaddr. The
conditions tested are indicated in Figure 5-42.

IR(2-0)
CONDITION TESTED

COMMENT
STC STSB STEZ

0 0 0 x x x Unconditionally Jump
0 0 x x Jump if Negative
0 0 x x Jump if Zero
0 1 1 1 x x Jump if Carry

0 0 x 0 0 Jump if Positive
0 x 0 x Jump if Positive or Zero

0 x x 0 Jump if Not Zero
0 x ·X Jump if No Carry

FIGURE 5-42 - MACRO JUMP CONDITIONS

The Xs in the Condition T~sted column indicate don't care conditions.

_The result of the condition test is placed in Bit 0 of #JMPADDR to form the new
microinstruction address. The address oneaddr must be the odd address immediately following
zeroaddr, as shown in Figure 5-43.

5.3.6

ZEROADDR

ONEADDR

CONTROL ROM

CONDITION FALSE

CONDITION TRUE }

NEXT MICROINSTRUCTION
ADDRESS FOR:

MJMP (ONEADDR, ZEROADDR)

FIGURE 5-43 - MJMP DISPATCH

The MJMP dispatch is used in the microcode of the TMS7000 Standard Instruction Set to
implement the conditional branch instruction.

Reset Operation

WheR the lfE"S'rr pin is asserted externally, the PMC asserts the RST signal on the C Bus
between the PMC and CPU. The entr'{-point logic immediately forces the next microinstruction
address to be >FF. Unlike the normal interrupt facility, the microcode does not poll the RST line;
rather, the microinstruction at CROM address >FF is unconditionally forced to be the next
microinstruction executed.

In the TMS7000 Standard Instruction Set, the sequence of microinstructions executed upon
reset fetch a subroutine entry point address at address > FFFE in memory (in the on-chip ROM)
and branch to the subroutine.

5-51

5-52

6.

6.1

6.1.1

td(A-DI

td(EL-DI

td(EH-AFI

th(EH-RWI

th(EH-D)

th(EH-0)

td(Q-EH)

DESIGN AIDS

INTERFACING THE TMS7000 TO PERIPHERAL AND MEMORY DEVICES

Introduction

All TMS7000 family devices feature 32 pins which can be used for general purpose 1/0.
However, several of these pins may be reconfigured to form an off-chip memory expansion
bus. This reconfiguring allows the microcomputer to reference up to 64K bytes of ROM, RAM,
or other peripheral devices. Two sample designs are presented which interface external
peripheral and memory devices to the TMS7000.

All TMS70XX * devices are software compatible and differ only in special hardware features
such as on-chip ROM size, extra timers, serial ports, etc. The timing data of the devices used in
the two sample circuits are listed in Table 6-1. The timing information is taken from the data
manual of that particular device. The timing data specified for the TMS70XX assumes a /4
clock option and a 10 MHz input clock frequency. Timing data for a 9 MHz clock was
interpolated by multiplying the values specified in the data manual by 10/9. Refer to the timing
diagram in Figure 6-1 .

TABLE 6-1 - TIMING DATA FOR SAMPLE CIRCUITS

PARAMETER

TMS70XX(UJI
TIMING DATA (+4 OPTION)

TEST CONDITIONS

f = 9 MHz
Access time, data in from valid address

f = 10 MHz

Data-in ;ifter ENABLE falling
f = 9 MHz

f = 10MHz

ENABLE rising to next address drive
f = 9 MHz

f = 10 MHz

R/W hold after ENABLE rise
f = 9 MHz

f = 10 MHz

Data-in hold after ENABLE rise
f = 9 MHz

f = 10MHz

Data-out hold after ENABLE rise
f = 9 MHz

f ~ 1.0 MHz

Data-out valid before EN'ABi:E rise
f = 9 MHz

f = 10MHz

MIN MAX UNIT

444 522

400 470
ns

172 211-

155 190
ns

67 94

60 85
ns

44 111 ns
40 100

0
ns

0

72 89
ns

65 80

255 322

230 290
ns

" TMS70XX refers to all family devices except as noted.

6-1

TABLE 6-1 - TIMING DATA FOR SAMPLE CIRCUITS (CONTINUED)

TMS9918A(U51

TIMING REQUIREMENTS

PARAMETER NOM UNIT

tsu(D-WHI Data setup time before CSW high 100
Data hold time after CSW high 30

ns
th(WH-D)

SWITCHING CHARACTERISTICS

PARAMETER TYP MAX UNIT

ta(CSR) Data access time from CSR low 100 150

tpvx . Data disable time after ~ high 65 100
ns

TMS2516-35(U 111

SWITCHING CHARACTERISTICS

PARAMETER TYP MAX UNIT

ta(AI Access time from address 250 350

ta(S) Access time from chip select 120 ns

tdis(S) Output disable time from chip select during read mode only 100

TMS4016-25(U10)

TIMING REQUIREMENTS

PARAMETER MIN MAX UNIT

tsu(D) Data setup time 100

th(D) Data hold time 10
ns

SWITCHING CHARACTERISTICS

PARAMETER MIN MAX UNIT

ta(A) Access time from address 250

ta(S) Access time from chip select low 120 ns

tdis(S) Output disable time after chip select high 80

74LSOO(U11. 74S32(U21. 74LS373(U41. 74LS245(U6).

7408(U71. 74LS04(U8), and 74S138(U9)

SWITCHING CHARACTERISTICS

PARAMETER TYP MAX UNIT

tpd 74LSOO(U1 l propagation delay time 10 15 ns

tpd 74S32(U2) propagation delay time 4 7 ns

tpd 74LS373(U4) propagation delay time 12 18 ns

tpd 74LS245(U6) propagation delay time 8 12 ns

tpLz 74LS245(U6) output disable time from low level 15 25 ns

tpd 7408(U7) propagation delay time 17.5 27 ns

tpd 74LS04(U8) propagation delay time 10 15 ns

tPHL
74S138(U9) propagation delay time, high-to-low level

7 11 ns
from enable to any output (2-levels of logic)

tPLH
74S138(U9) propagation delay tfme, low-to-high level

5 8
from enable to any output (2-levels of logic)

ns

6-2

CLKOUT (87)

ALATCH (84)

HI ADDR (DO-D7) ESS

LO ADDR (CO-C7)

ENABLE (86)

RD/WR (85)

EXTERNAL READ

I td(AH-JL)

EXTERNAL WRITE

I
I

i-+-t h(EH-RW)

I 1--•dCA-EH)

RAM READ

FIGURE 6-1 - TMS70XX READ AND WRITE CYCLE TIMING

INTERNAL READ

HIADDR

6·3

6.1.2 Peripheral Expansion Mode Example

6.1.2.1

6·4

The schematic in Figure 6-2 is a TMS70XX - TMS9918A VDP (Video Display Processor) logic
design using a minimum number of parts. The TMS70XX is configured for the Peripheral
Expansion Mode, so only the C port and half of the B port are dedicated to the TMS9918A
memory map interface. The C port becomes the multiplexed address/data bus and the upper
nibble of the B port becomes the interface control bus. A 9 MHz crystal is used for the 70XX
because the read access time of the TMS9918A is too long for a 70XX running at the full speed
of 10 MHz (with divide by 4 clock option). The A port, D port, and the other half of the B port
(lower nibble) of the 70XX remain available as 1/0 ports for other system functions. The A port
is input'only (1/0 on the 7041), the D port is 1/0, and the lower B port nibble is output only. U4
latches the 8-bit address from the address/data bus during read and write memory cycles. U6
is a bidirectional data buff er which is necessary for a fast disable time of read data on the
address/data bus before the next processor read/write cycle. A very simple address decode is
accomplished v.vith U 1 and U2.

There are 246 bytes of external memory mapped addressing possible with the TMS70XX in
Peripheral Expansion Mode (238 bytes for the 7041). A complete address decoding scheme is
not necessary because the TMS9918A is the only peripheral device depicted in this design.
Eight address lines (A 7 - AO) are available in the Peripheral Expansion Mode and three of these
are needed for address decoding in this application. The MODE input pin of the TMS9918A is
used to decode the two separate memory addresses it requires. A5 is used to enable write
cycles to the TMS9918A and A6 is used to enable read cycles from the TMS9918A. Separate
addresses are used for VDP read and write because of the read-before-write nature of many of
the 70XX instructions (see paragraph 6.1.4, Software Considerations). The TMS9918A
select starts at >0120 and >0140 and will not interfere with any of the dedicated or reserved
peripheral file addresses of the 70XX. AO is connected to the MODE input of the TMS9918A.
The four 16-bit addresses are decoded as follows.

A15 AB A7 AO

0000 0001 X01X xxxo
0000 0001 X01X XXX1 Write only addresses (X = don't care)

0000 0001 X10X xxxo
0000 0001 X10X. XXX1 Read only addresses

Read Cycle Timing For The Peripheral Expansion Mode

In a TMS70XX read cycle, the read data from the TMS9918A should be available as soon as
172 ns (td(EL-.Qlj_after ENABLE signal falls low. The TMS9918 will deliver data 150 ns
maximum from CSR low. The minimum access time calculated for this circuit is:

td(EL-D) = Maximum delay time from ENABLE low to read data valid
td(EL:Dl = ta(CSR) + tdpU2 + tpdU6 = 150 + 7 + 12 = 169 ns.

6.1.2.2

As mentioned earlier, U6 is a bidirectional data buffer which is necessary for a fast disable time
of read data on the address/data bus before the next processor read/write cycle. The minimum
ENABLE rise to the next address drive time of the TMS70XX running at 9 MHz (td(EH-AFl l is
67 ns, so the design goal is to have a data disable time of less than or equal to 67 ns in the read
cycle. The TMS9918 's data disable time from CSR high (tpvx) is at maximum 100 ns. U6 is
used to solve this possible data bus conflict problem. The maximum data bus disable time is
calculated next.

td(EH-AF) = Maximum time data bus is tristate after ENABLE high
td(EH-AF) = tpdU2 + tpdU7 + tPLZU6 = 7 + 27 + 25 = 59 ns

It is necessary to ensure that the RMJ signal does not change state befor~ any buffers driving
the data bus are disabled. For example, if the U6 bidirectional buffer were enabled (Glow) and
the RMJsignal changed state (DIR low-high or high-low) then the previous buffer inputs would
become buffer outputs and cause possible bus conflict in the system. The RMJ signal from the
TMS70XX is held in a steady-state for at least 44 ns after ENABLE goes high (th(EH-RW)).
Consequently, the G signal to U6 must be high within 44 ns of ENABLE going high.

th(EH-G) = Maximum time G goes high after ENABLE rise

th(EH-G) = tpdU2 + tpdU7 = 7 + 27 = 34 ns

Write Cycle Timing For The Peripheral Expansion Mode

In a Write Cycle the TMS9918A expects the write data from the TMS70XX to be valid for
approximately 100 ns (tsu(D-WH) l before the CSWsignal goes inactive (high). The circuit will
easily meet this requirement as shown next.

tsu(D-WH) = Minimum time data is valid before CSWhigh

tsu(D-WHl = (td(Q-EH) + tpdU2l - tpdU6 = (255 + 4) - 12 = 24 7 ns

The TMS9918A expects a dat~ hold time of about 30 ns (th(WH-D)l after CSW rises. The data
hold time in this circuit is calculated as follows,

th(WH-Dl = Minimum time data is valid after CSW rise

th(WH-Dl = tpdU7 + tPLZU6 = 17. 5 + 15 = 32. 5 ns

6·5

C'I
a,

U3
TMS70XX

J
9.0
MHz I

PERIPHERAL EXPANSION MODE EXAMPLE ·
TMS70XX TO TMS9918A/9928A/9929Al

U4
74LS373

FIGURE 6-2 - PERIPHERAL EXPANSION MODE EXAMPLE

/

U5
TMS9918A

10.139 T
~ MHz -::-

6.1.3 Microprocessor Mode Example

In the Full Expansion Mode and the Microprocessor Mode, all 16-bits of addressing is available
on the C and O ports of the TMS70XX. The on-chip ROM (if any), RAM, and limited 1/0 of the
70XX can still be used in the Full Expansion Mode, but the ROM is disabled in the
Microprocessor Mode and its address space is available externally.

The schematic in Figure 6-4 is an example of a memory interface to a 10 MHz TMS70XX
operating in the Microprocessor Mode. The Mode Control (MC) pin is tied to VCC to place the
70XX in this mode. The 0 port becomes the most significant 8-bit address bus (A 15 - AB).
The C port becomes the multiplexed least significant 8-bit address bus (A 7 - AO) and full 8-bit
data bus, just as in the Peripheral Expansion Mode. The memory control signals are brought out
on the upper nibble of the B port, just as in the Peripheral Expansion Mode. The A port remains
an input only port (1/0 port on the TMS7001 /TMS7041) and the lower nibble of the B port
remains an output only port.

The least significant 8-bits of the 16-bit address (A 7 - AO) are latched into U4 by the ALATCH
from the address/data bus during read/write memory cycles. U6 is a bidirectional data buffer
which is necessary for a fast disable time of read data to the 70XX before the next read/write
cycle. A full address decode is accomplished with US and U9. Eight memory select lines
(SE L 0 to SE L 7) are generated by U9 and are each individually activated on an address block
of 2048 bytes. Figure 6-3 lists the address range decoded by each select pin.

Pin Address Range

SELO >COOO - >C7FF
SEL 1 >CBOO - >CFFF
SEL2 >0000- >D7FF
SEL3 >0800 - >OFFF
SEL4 >EOOO- >E7FF
SE L 5 >E800 - >EFFF
SE L6 ->FOOO - >F7FF
SE L 7 >F800 - >FFFF

FIGURE 6-3 - MEMORY ADDRESS DECODE

The example schematic in Figure 6-4 shows a TMS4016-25 static RAM selected by SE L 0
and a TMS2516-35 EPROM selected by SECT. Any combination of ROM, RAM or other
peripheral device could be added into the circuit and enabled by the other SEL pins, provided
that their timing requirements allow them to be interfaced to the TMS70XX.

6. 1. 3. 1 Read Cycle Timing For The Microprocessor Mode

The minimum address to data access time required by the TMS70XX is 400 ns (td(A-0)). The
following equation is used to check if U 10 and U 11 can deliver read data in less than or equal to
400ns.

td(A-0) = Max read data valid time from address (A 10 - AO)
td(A-0) = ta(A)U 10 .+ tpdU4 + tpdU6 = 250 + _ 18 -t: 12 = 280 ns
td(A-0) = ta(A)U11 + tpdU4 + tpdU6 = 350 + 18 + 12 = 380 ns

6-7

6.1.3.2

6·8

The minimum ENABLE to data access time required by the TMS70XX is 155 ns (td(EL-0)).
Consequently, the chip select to data access of U 10andU11 must be less than or equal to 155
ns.

td(EL-0) = Maximum delay time read data is valid from ENABLE low
td(EL-0) = ta(A)U 10 + tPHLU9 + tpdU6 = 120 + 11 + 12 = 143 ns
td(EL-0) = ta(S)U11 + tPHLU9 + tpdU6 = 120 + 11 + 12 = 143 ns

The minimum ENABLE rise time to the next address drive time of the TMS70XX is 60 ns (
td(EH-AF)). The data bus is not to be driven by any external devices within this time: this is the
main purpose of U6.

td(EH-AF) = Maximum time data bus is tristate after ENABLE high

td(EH-AF) = (2 X tpdUS) + tPLZU6 = (2 X 15) + 25 = 55 ns

As mentioned earlier, to avoid any possible bus conflict, the data direction of U6 must not be
reversed by the RM/signal while this device is enabled (Glow). Therefore,-G of U6 must be high
within the time ENABLE goes high and RM/changes state.

th(EH-G) = Maximum time G goes high after ENABLE rise

th(EH-G) = 2 X tpdU8 = 2 X 15 = 30 ns

Write Cycle Timing For The Microprocessor Mode

The output data from the TMS70XX must be valid long enough before ENABLE rises to
satisfy the TMS4016-25 RAM. The following equation derives the minimum time that write
data will be valid to the memory devices while they are selected.

tsu(O)U1 o = Minimum time data is valid before S rise

tsu(OJU 1 O = (td(Q-EHJ + tPLHU9) - tpdU6 = (230 + 5) - 12 = 223 ns

A tsu(OJU 1 o of 223 ns easily excedes the minimum data setup requirement of 100 ns for the
TMS4016-25 RAM. The 4016 requires a minimum data hold time of 10 ns after S rises (
th(O)U 1 o) , so the value for th(O-S) must be greater than or equal to 10 ns. The purpose of the
two inverters (U8) going to the G input of U6 is to ensure sufficient data hold time for the RAM.

th (0JU1 o = Minimum data hold time to U 10 after S rise

th(OJU 10 = [(2 X tpdUSl + tPLZU61 - tPLHU9 = [(2 X 10) + 151 - 8

th(O)U 1 O = 27 ns

C7I
cC

U3
TMS70XX

MICROPROCESSOR MODE EXAMPLE
(TMS70XX TO TMS2516 EPROM AND TMS4016 RAM)

Al10-0I U10 U4
74LS373

- 3 C7'--- AD7 ---, (~------~--=~~~~------~
C6 AD6 - SD SQ A7 --.,

- 7D

7

A6 \ _!!!S4016-25

C5 AD5 . Q l A 10 I -
C4 AD4 - 60 6Q A5 , ~ A10 oas....i'7

CJ _ ADJ - 50 5Q A4 _ ~ A9 DQ7 06 l

C2

AD

2

- 40 4Q AJ ~ AB DQS D5,
. - A7 --.

C1L AD1 -JD JQL A2 , ~ A7 DQ5 D4
COL ADO - 20 ·2Q A 1 , ~ A6 DQ4 DJ -

84/ALATCHL--- ALATCH 11° 1Q AO , ~ A5 DQJ _1)2 ---1 G- QC b-c, '- A• - A4 DQ
2

01 -

85/R/W ~ w- L f ""' ~ A3 DO--...
-1 - - r DQ1 ... L-........... =---
'- U9 - t--E-- A2 ~

BS/ENABLE-I- ENABLE - -..,) r__,.;7~4:.::S;,.:.1 ~38~_ I\. A 1

- -A1
.,... .._ AO

DJ["--=:==:JA~1'45~-----------+----1D7~4~L~S0~4.J_ __ l__j vorh--....:.~S;E~LO~--------f-----l.1-----____ __JAO us ~
D6 [L---=~A~1~4~-----------+--~.,....:-=~=cJ=:J~ G2A Y1 h. SEL 1- ___ _ - S- G-05~ A1J _GI y2h SEL2- · _ - W•

04~ A12 C VJ.__gLJ:_ ~ - _

DJ A11 B V4"- gL4- _

02 A 10 A Y5 h. SEL5- U11
01 A9 J ,_J Y6 b-_g_L5 - ~S2516-J5
DO AB) ' G28 y7I SEL7- - ,-- 'S- - 07

74LS04 '] ~ J ,_. A10·

1

QB ----.,

~ BIJ-01 L I us 74,'.'.~45 - ~ A9 :;o ~: ~= -,
-v AVAILABLE 1 µL AB Q5 _04 --.

A AS "- AD7 ~ G- DIR w- I ~ A7 DJ ~
V Al7·0I - 1/0 "-- AD6 - 88 AB~ - ~ A6 Q4 02 ~

y - I'- - AD5 87 A7J6 - ~ AS Q3 D1 -, D ' 02r~----~•

L MC Vee r-...__ AD4 - 86 A6~ 5 ~ A4 Q1L DO ~ ~ "- ADJ 85 A5..._!'
4

.... ~ AJ

r:_D~ "- AD2 B4 A4~ ~ A2

T 10 MH• T "- AD1 83 AJ~ ~ A1 = = '- ADO 82 A2~ ~AO Vppf-+5V
B1 A 1 ~I PD/PGM-f-°'

I I ,,, I J ~
'-- Dl7-0l -)

FIGURE 6-4 - MICROPROCESSOR MODE EXAMPLE

6.1.4

6·10

Software Considerations

The TMS70XX microcomputer features a variety of instructions which allow easy access to
external memory mapped devices. The address space from >0100 to >01 FF serves as the
peripheral file. A special set of instructions are dedicated to the peripheral file for more efficient
1/0 communication to peripheral devices memory mapped in this space. The Peripheral
Expansion Mode of the 70XX allows this space to be available externally. All instructions
dedicated to the peripheral file use the letter 'P' at the end of the opcode mnemonic. These
instructions are MOVP, BT JOP, BT JZP, ANDP, ORP, and XORP (see Section 3.3.3.2).

As indicated previously in the Peripheral Expansion Mode example, separate addresses are
used for reads and writes. Due to processor design, many of the TMS70XX instructions
perform a read-before-write cycle on the destination operand. This is true with the peripheral
file instructions that would most likely be used to write to the TMS9918A:

MOVP A,Pn
MOVP B,Pn
MOVP %10P,Pn

where:
A,B
n
IOP

= accumulators
= peripheral file number
= immediate data value

These will read the peripheral file address before writing to it. If the CSW and CSR pins of the
TMS9918A are decoded at the same address, a false read would occur when using these
instructions. Therefore read and write addresses must be decoded separately. There is a
method to allow the use of the same address for reading and writing in the TMS9918A
example. This method is to use an instruction that does not read-before-write on the
destination address.

STA @LABEL
STA @LABEL(B)
STA *Rn

where:
LABEL = 16-bit destination address
B = index register .
n = register pair number

The instructions listed above will not perform an unnecessary read cycle on the destination
address before writing to it. The TMS9918A address decode could be simplified by using just
two address lines (A5,AO) instead of three (A6,A5,AO) when using these instructions.

A program can be executed from anywhere in the TMS70XX 64K byte address space where
memory is available. This includes the 128 byte register file which is located at >0000 to
>007F. Caution should be taken if a program is allowed to execute in the peripheral file address
space because some of these locations are reserved for special on-chip functions. The Full
Expansion Mode and Microprocessor Mode allow the use of additional external memory. The
Microprocessor Mode example shows that RAM can be added externally as well as EPROM. A
program can write to and read from this RAM by using the extended instructions LDA and STA.
Direct, indirect, and indexed addressing modes are possible with the following instructions.

LDA
LDA
LDA
STA
STA
STA

where: ·
LABEL

@LABEL
*Rn
@LABEL(B)
@LABEL
*Rn
@LABEL(Bl

= 16-bit source/destination address
n = register pair number
B = index register

The TMS70XX is a versatile single-chip microcomputer that can be reconfigured to address
external peripheral and memory devices. This allows the TMS70XX to meet system
requirements that could not be satisfied with single-chip mode.

6.2 SERIAL COMMUNICATION WITH THE TMS7000 FAMILY

This section is intended to assist the TMS7000 family user in performing serial communication
via a UART (Universal Asynchronous Receiver Transmitter) function. It describes the
implementation of the UART function in software using the TMS7040. and with the on-chip
serial port using the TMS7041 .

6.2.1 Communication Formats

384

Serial communications occur in one of two basic formats; synchronous or asynchronous.
These formats are similar in that they both require framing bits to be added to the data to enable
proper detection of the data at the receiving end.

In synchronous format, blocks of data are sent as a continuous string of characters where the
string is preceded and terminated by framing bits; the preceding framing bits are used by the
receiving device to synchronize its clock with the transmitter's clock.

In asychronous format, as shown in Figure 6-5, eqch character to be transmitted is preceded
by a START framing bit and followed by a parity bit (if parity is enabled), then one or more STOP
framing bits.

•'41---- CHARACTER BITS ------11••

MARKING START DO 01 Dn PARITY STOP MARKING
LSB MSB

----· INCREASING TIME

FIGURE 6-5 - ASYNCHRONOUS COMMUNICATION FORMAT

6·11

6.2.2

6·12

The START bit is a logical zero, or SPACE. It notifies the receiver to start assembling a character
and allows the receiver to synchronize itself with the transmitter.

A PARITY bit is an additional bit added to a character for error checking. The PARITY bit is set to
'O' or' 1' in order to make the number of' 1 's in .the character (including the PARITY bit) even or
odd depending on whether even or odd parity is selected.

The STOP bit is a logical one or MARK. One or more STOP bit(s) are added to the end of the
character to ensure that the START bit of the next character will cause a transition on the
communication line and give the receiver time to catch up with the transmitter if its basic clock
happens to be running slightly slower than that of the transmitter.

Design Constra!nts For Tha Softw·waia And HaidWaie UARTS

The purpose of this design is to implement the UART function using the TMS7000 family.
There are two main routines to be written: the 'transmit' routine that transmits the character in
the A Register and 'receive' routine that receives the character and stores it in the A register.
The routines for the software UART will be called SWXMIT and and SWRCVD; likewise, the
routines for the hardware UART will be called HWXMIT and HWRCVD. Both the software and
hardware UART implementations use the same 110 pihs as shown in Figure ·6-6.

+5 v

83
37 TX 11

'LS241

A5
16 RX

70XX

4 iiTR
81.

'LS241

A2
8 DSR

FIGURE 6-6 - 1/0 INTERFACE

Port A5 (pin 16) and Port B3 (pin 37) are used for receiving data and transmitting data. Port A2
(pin 8) and Port B1 (pin 4) are used for the inputting and outputting of the handshaking signals.
Table 6-2 defines the pin assignments and the function of each pin.

TABLE 6-2 - 1/0 PIN ASSIGNMENT

SIGNATURE PIN 1/0 FUNCTION

A2 8 I Data Set Ready (DSR)
A5 16 I Receive Data (RXD)
81 4 0 Data Terminal Ready (DTR l
B3 37 0. Transmit Data (TXD)

The flowcharts together with the complete program listings for the XMIT and RCVD routines
are included later in this section.

6.2.2. 1 Design Of The Software UART For The TMS7040

Listed below is the register assignment for the software UART:

REGISTER

R34=BDCNT1
R35=BDCNT2
R36=HFBAUD
R37=MODE
R38=BITCNT
R39=BITIME
R40=DLAYR1
R41 =DLAYR2
R42=UATREG
R43=TMP
R44=STAT
R45=RCHAR
R46=SHFCNT

NAME

BIT COUNTER
BIT COUNTER
HALF BAUD RATE
MODE REGISTER
COUNTER INITIALIZER
TIMER INITIALIZER
DELAYLOOP1
DELAYLOOP2
UART REGISTER
TEMPORARY REGISTER
STATUS REGISTER
RECEIVED CHARACTER
SHIFT COUNTER

FUNCTION

STORE DELAY CONSTANT
STORE DELAY CONSTANT
STORE HALF BIT DELAY CONSTANT
SET MODE OF OPERATION
FOR # OF BITS TO BE XMITTED
FOR DELAY
USED IN DELAY LOOPING
USED IN DELAY LOOPING
TEMPORARY REGISTER
TEMPORARY REGISTER
FOR CHECKING PARITY ERROR
STORE THE RECEIVED CHARACTER
FOR BIT POSITION ADJUSTMENT

Each register has been assigned a name and its function is listed beside it.

• R34 and R35 provide the time constants for looping in the delay subroutine.

• R36 provides the delay constant for sampling the start bit at the half bit position.

• R37 controls the number of STOP bit(s), odd/even/no parity and the number of bits in the
character.

• R38 controls the number of bits to be transmitted.

• R39 provides the delay constant for time compensation.

• R40 and R41 are used in the actual delay looping in the delay subroutine. They are loaded
from R34 (BDCNT1) and R35 (BDCNT2) at the beginning of the delay subroutine.

6-la

6-14

• R42 contains a parity error flag at bit 0.

• R45 is used to store the received character.

• R46 is used to make the bit position adjustment so that the received data is right-justified.

Mode Register R37 =MODE

. MODE is accessed through R37 in the register file. It describes the character format of the
software UART.

R37=MODE

7 6 5 4 3 2

CHAR 1 CHARO POIS STOP 0 0

0

0 PODD

0 = Even Parity
1 = Odd Parity

0 = One Stop Bit
1 = Two Stop Bits

0 = Parity Enabled
1 = Parity Disabled

00 = 5 bits/Character
01 = 6 bits/Character
10 = 7 bits/Character
11 = 8 bits/Character

Parity Odd (PODD) Bit 0 - If this bit is set to a 1, then odd parity is is selected. The parity bit will
be set to 0 or 1 in order to make the total number of 1 'sin the character (including the PARITY
bit) odd.

Bit 1 to Bit 3 are reserved and must be set to O's.

Number of Stop bits (STOP) Bit 4 - This bit determines the number of STOP bit(s) to be sent.
Setting this bit to a 0 selects one STOP bit and setting it to a 1 selects two STOP bits.

Parity Disable (POIS) Bit 5 - If this bit is set to a .1, then no PARITY bit is generated during
transmission or expected during reception.

Number of Bits per Character (CHARO, 1) Bit 6, 7 - A character is programmable to 5, 6, 7 or 8
bits. Characters less than 8 bits are right-justified.

Status Register R44 =STAT

STAT is accessed through R44 of the register file. It is used for determining the parity error in
the received character.

)

R44=STAT

7 6 5 4 3 2 0

x x x x x x x PARE
I

L 0 = No Parity Error
1 = Parity Error

Parity Error (PARE) Bit 0 - This bit indicates that a parity error is encountered on the received
character if this bit is set to a 1 after a character is. received.

SOFTWARE UART ROUTINE DESCRIPTION

The details of the routines for the software UART can be best understood by going through
Figure 6-7 , 6-8 and the program listings in this section.

In the SWXMIT routine, the character is contained in the A Register. This character is to be
transmitted through the transmit line (TXD) according to the format specified in the MODE
(R37) register.

The following is a portion of the SWXMIT routine listing:

0008 XMIT1 EQU >08 TRANSMIT I 1 '.
MASK(OR)

OOFD RTS EQU >FD READY TO SEND (AND)
0004 DSR EQU >04 DATASET

READY (TEST)
0004 UARTIN EQU P4 PORT A-UART

INPUT (1)
0006 UARTOT EQU P6 PORTS-UART

OUTPUT (1)

0032 F006 cs SWXMIT PUSH B SAVE CONTENTS
OF THE B REG.

0033 F007 A4 ORP %XMIT1 ,UARTOT PLACE A 'MARK'
ONXMITLINE

FOOS 08
F009 06

0034 FOOA A3 ANDP %RTS,UARTOT ' ASSERT 'RTS'
FOOB FD
FOOC 06

0035 FOOD A6 WAIT BTJOP %DSR,UARTIN,WAIT WAIT FOR
HANDSHAKING

FOOE 04
FOOF 04
F010 FC

6-15

6-16

The SWXMIT routil')e listing starts by saving the B Register value on the stack so that the value
can be restored after the execution of the routine.

Symbols refer to SWXMIT flowchart in Figure 6-7.

A It places a 'MARK' or 1 on the transmit line (TXD) and then places a 0 on the
output handshaking line (DTR) informing the receiving end that it is Ready
To Send the character. It waits for the input handshaking line (DSR) to be
pulled to a 0 by the receiving end. Refer to SWXMIT listing immediately
above.

B Once it receives a 0, it starts initializing the Bit Counter (R38) and the Timer
Initializer (R39).

C It jumps to 'LOOP2' to send out the START bit. After calling the delay
subroutine, it jumps back to 'LOOP1' and starts sending the character bits.
The total number of bits to be sent is determined by Bit Counter (R38).

D After all the character bits have been transmitted, it tests the MODE (R37l
register for parity. If parity is enabled, it will output the parity bit, otherwise;
it jumps to the STOP bit and outputs the number of STOP bit(s) specified in
bit 4 of MODE (R37).

E After sending the STOP bit(s), it places a 1 on the output handshaking line
(DTR) and restores B-register.

A

·{
c{

START

SAVE B REGISTER
PLACE A

'MARK' ON
XMIT LINE

AND ASSERT 'RTS'

INITIALIZE
BIT COUNTER

AND TIME
COMPENSATION

OUTPUT START
BIT THEN

DATA BITS

OUTPUT
PARITY

BIT

OUTPUT
STOP '
BIT(S)

DISASSERT
'RTS'

AND RESTORE
B REGISTER

END

FIGURE 6-7 - SWXMIT ROUTINE FLOWCHART

D

}·

6-17

In the SWRCVD routine, the character is received through the receive line A5(RX'?) and stored
in the A Register.

The following is a portion of the SWRCVD routine listing:

OOFD RTS EOU >FD READY TO SEND (AND)
0020 DIN EQU >20 DATA IN (TEST)
0004 UARTIN EQU P4 PORTA-UART

INPUT (1)
0006 UARTOT EQU P6 PORTB-UART

OUTPUT (1)
0113 FOAE A3 ANDP %RTS,UARTOT ASSERT 'DTR'

FOAF FD
FOBO 06

0114 FOB1 A7 MARKCK BT JZP %DIN,UARTIN,MARKCK LOOP UNTIL
MARK OCCURS

FOB2 20
FOB3 04
FOB4 FC

0115 FOB5 A6 STRBIT BTJOP %DIN,UARTIN,STRBIT LOOP UNTIL
SPACE OCCURS

FOB6 20
FOB7 04
FOBS FC

0116 FOB9 32 MOV HFBAUD,B INITIALIZE
COUNTER

FOBA 24
0117 FOBB 00 HERE2 NOP TIME

COMPENSATION (4)
0118 FOBC 00 NOP (4)
0119 FOBD CA DJNZ B,HERE2 WAIT HALF A BIT (7 + 2)

FOBE FC
0120 * SAMPLE START BIT AT HALF BIT
0121 FOBF A6 BTJOP %DIN,UARTIN,STRBIT BRANCH IF

FALSE START
FOCO 20
FOC1 04
FOC2 F2

6-18

Symbols refer to SWRCVD flowchart in Figure 6-8:

A It starts by saving 8-register, initializing the Bit Counter (R38) and the Shift
Counter (R46).

8 Then, it places a 0 on the output handshaking line (DTR-) informing the
transmitting end that it is Ready To Receive the character. It checks the
receive line (RXD) for 'MARK' or 1. After this condition is satisfied, it waits
for the START bit to occur. Once the START bit is detected, it waits half a bit
and samples again. Refer to the listing immediately above. ·

C If the .START bit is valid after half bit, it starts assembling the character bits
after calling the delay subroutine for one bit delay. The received character is
stored in RCHAR (R45).

D It checks for a parity error and sets the STAT (R44) accordingly. Ttie
character received is also made right-justified.

E Then, it places a 1 on the output handshaking line (DTR-) and moves the
character from R45 to A-register. Finally it restores 8-register.

6·19

B

6·20

START

SAVE B REGISTER
INITIALIZE BIT
COUNTER AND

SHIFT COUNTER

ASSERT
'DTR'

ASSEMBLE
THE

CHARACTER
BITS

CHECK
PARITY AND

SET THE
STATUS REGISTER

MAKE THE
NECESSARY#

OF SHIFTS
FOR

ADJUSTMENT

DISASSERT

'DTR'

STORE THE
RECEIVED

CHARACTER IN
A REGISTER

AND RESTORE
B REGISTER

FIGURE 6-8 - SWRCVD ROUTINE FLOWCHART

D

E

CALCULATION OF THE DELAY CONSTANTS AND FORMULAS

Figure 6-9 describes how the delay works and how the bit time is
calculated.

Let T = time per bit in micro seconds.

MARKING START BIT CHARAC'FER BITS

.. ~i----- T __ ___,..,~

FIGURE 6-9 - DELAY CONSTANTS CALCULATION

For instance, if the microcomputer is operating at the crystal/clockin frequency fosc = 10 MHz
with the divide by 4 option (fosc = 5 MHz with the divide by 2 option) as shown in Figure 6-9.
The clockout cycle time tc(c) = 400 n seconds. Table 6-3 shows the total number of cycles
needed in the delay loop for the corresponding baud rates.

TABLE 6-3 - CYCLE CALCULATION

BAUD RATE
TIN #OFCYCLES TOTAL# OF CYCLES

MICRO SEC NEEDED IN DELAY LOOP*

300 3333 8333 8221
600 1667 4167 4055

1200 8333 2083 1971
2400 417 1042 930
4800 208 521 409
9600 104 260 148

*NOTE: There are 112 cycles needed to manipulate the next bit to be sent out.

Refer to the delay subroutine in the SWUART program listing at the end of this section. The
following is a sample of that program.

DELAY
ENTRY
HERE1

MOV
MOV
DJNZ
DJNZ
RETS

BDCNT2,DLAYR2 INITIALIZE OUTER COUNT
BDCNT1 ,DLAYR1 INITIALIZE INNER COUNT
DLAYR1 ,HERE1 INNER COUNT
DLAYR2,ENTRY OUTER COUNT

OF CYCLES PER
INSTRUCTION

10
10

9+2
9+2

7

Let A = Value in BDCNT1 and B = Value in BDCNT2 where A and B range from 1 to 255.

Therefore, total number of CYCLES in the delay subroutine

=(11A+21)B+ 17-2(B+ 1)

= 11 AB+ 198 + 1 5

6-21

6-22

For example, if the total number of cycles in the delay subroutine = 4055, A = 35 and B = 10
are needed.

A simple program can optimize the value of A and B to provide the correct number of delay
cycles.

Values of A and B with different crystal frequencies are provided in Table 6-5 at the end of this
section.

Figure 6-10 describes how the start 'half bit' works and is calculated. Listed below is a sample
of the start bit detection program found in the SWRCVD routine.

OF CYCLES PER
INSTRUCTION

STRBIT BT JOP
MOV

%DIN,UARTIN,STRBIT
HFBAUD,B

LOOP UNTIL START BIT OCCURS
INITIALIZE COUNTER

12
8
4
4

TIME COMPENSATION
TIME COMPENSATION
WAIT HALF A BIT 7+2

HERE2 NOP
NOP
DJNZ
BTJOP

B,HERE2
%DIN,UARTIN,STRBIT SAMPLE AGAIN, BRANCH IF

FALSE START BIT

MARKING 'O' detected Sample again
at

half bit

+
START BIT

FIGURE 6-10 - START BIT DETECTION

CHARACTER BITS

Once the START bit is detected, the program will wait half a bit time and sample again as
shown in Figure 6-10. This sequence provides false start bit rejection and also locates the .
center of bits in frame for assembling the character. Refer to Figure 6-8 SWRCVD flowchart -
symbol B. Table 6-4 shows.the number of cycles needed for a half bit delay.

TABLE 6-4 - HALF BIT CYCLES CALCULATION

BAUD RATE
#OF CYCLES FOR #OF CYCLES NEEDED

HALF BIT FOR HBAUD DELAY*

300 4167 4147
600 2083 2063

1200 1042 1022
2400 521 501
4800 260 240
9600 ! 130 110

* NOTE: 20 Cycles are used to set up the half bit delay after the start bit is detected.

Let X =value in HFBAUD where X ranges from 1to255.

Therefore, (4 + 4 + (7 + 2)]X-2 = #OF CYCLES NEEDED FOR HFBAUD DELAY

For example, if the number of cycles needed for a HBAUD delay is 414 7, a value of X equal to
244 is needed. ··

X values with different crystal frequencies are provided in Table 6-5.

The crystal-dependent constants (BDCNT1, BDCNT2 and HFBAUD) used in the software
UART are given in Table 6-5. These constants must be loaded into the corresponding registers
and the MODE register must be set before SWXMIT or SWRCVD is called.

TABLE 6-5 - CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)

300 18 1D F4
600 23 OA 79

1200 06 17 3C
2400 1A 03 1E
4800 22 01 OE
9600 OA 01 07

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
10MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
.or 5MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)

300 1C 14 C3
600 90 02 61

1200 OB OB 30
2400 09 06 17
4800 07 03 01;3
9600 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
8MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 4MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6-23

TABLE 6-5 - CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART (CONTINUED)

BAUD RATE BDCNT1(A) BDCNT2(BI HFBAUD(XI

300 23 OA 79
600 06 17 3C

1200 1A 03 1E
2400 22 01 OE
4800 OA 01 07

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
5MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 2.5MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(XI

300 90 02 61
600 OB OB 30

1200 09 06 17
2400 07 03 OB
4800 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
4MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 2MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

BAUD RATE BDCNT1(A) BDCNT2(B) HFBAUD(X)

300 83 04 AE
600 80 02 57

1200 10 07 2B
2400 11 03 15
4800 02 06 OA
9600 01 02 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.579MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6-24

TABLE 6-5 - CRYSTAL-DEPENDENT CONSTANTS FOR THE SOFTWARE UART (CONTINUED)

BAUD RATE BDCNT1(A) BDCNT2(8) HFBAUD(X)

300 80 02 57
600 10 07 2B

1200 11 03 15
2400 02 06 OA
4800 01 . 02 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.579MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR

·BAUD RATE BDCNT1(A) BDCNT2(8) HFBAUD(X)

300 1B 11 A1
600 02 40 50

1200 37 02 27
2400 OB 04 13
4800 12 01 09
9600 02 01 04

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
3.°3MHz CRYSTAL WITH DIVfDE BY 2 OSCIL.LATOR

BAUD RATE BDCNT1(A) BDCNT2(8) HFBAUD(X)

300 OB OB 30
600 09 06 17

1200 07 03 OB
2400 02 02 05

CRYSTAL-DEPENDENT CONSTANTS GIVEN IN HEX:
2MHz CRYSTAL WITH DIVIDE BY 4 OSCILLATOR
or 1 MHz CRYSTAL WITH DIVIDE BY 2 OSCILLATOR

6.2.2.2 Hardware UART (TMS70X1)

The serial port consists of a receiver (RX), transmitter (TX), and TIMER3 (T3). The complete
functional definition of the serial port is configured by the TMS7041 software. A set of control
words must first be sent out to the serial port to initialize it, so that it will support the UART
function. '

The serial port is controlled and accessed through registers in the peripheral file. The registers
associated with the serial port are shown in Table 6-6.

6-25

6·26

TABLE 6-6 - SERIAL PORT REGISTERS

REGISTER NAME TYPE FUNCTION

P17 SM ODE WRITE Serial Port Mode
P17 SCTLO WRITE Serial Port Control-0
P17 SST AT READ Serial Port Status
P20 T3DATA R/W Timer3 Data
P21 SCTL1 R/W Serial Port Control-1
P22 RXBUF READ Receiver Buffer
P23 TXBUF WRITE Transmission Buffer

The following diagrams are bit assignments of the peripheral file registers. They are included
here for reference. It is suggested that the reader consult Section 2. 7 for a complete
description and explanation regarding their uasge.

Mode Register (SMODE)

SMODE is accessed through P17 in the peripheral file. It is used to control the character format
and type of communications mode (asynchronous or isosynchronous).

7 6 5 4 3

STOP SIO PEVEN PEN

P17=SMODE

2 0

COMM MULTI

0 = Motorola protocol
1 · = Intel protocol

0 = lsosync
communication

1 = Async
communication

00 = 5 Bits/character
01 = 6 Bits/character
10 = 7 Bits/character
11 = 8 Bits/character

1 = Parity enabled
0 = Parity disabled

1 = Even parity
0 = Odd parity

0 = Serial 1/0 mode
1 = Communication

mode

0 = One stop bit
1 = Two stop bits

Serial Control 0 Register (SCTLO)

SCTLO is accessed through P17 of the perpheral file. The SCTLO register is used to control the
serial port functions, such as transmit and receive enable, clearing of error flags and software
reset.

7 6 5 4 3

x UR x ER x

P17=SCTLO

2 0

RXEN x TXEN

0 = Transmitter disabled
1 = Transmitter enabled

0 = Receiver disabled
1 = Receiver enabled

1 = Reset error flag
0 = No reset error flags

1 = Reset serial port
0·= No reset

6-27

6·28

Status Register (SSTAT)

The Status is accessed through P17 of the Peripheral File. It is used for determining the status
of the serial port.

7 6 5 4 3

x BRKDT FE OE PE

P17=SSTAT

2 0

TXE RXRDY

1 = TXBUF ready for
character

0 = TXBUFfull

1 = RXBUF ready with
character

0 = RXBUF empty

1 = Transmitter empty
0 = Transmitter

written to

= Parity error
0 = No parity error

1 = Overrun error
0 = No overrun error

1 = Framing error ·
0 = No framing error

1 = Break Detected
0 =No break

Serial Control 1 Register (SCTL 1)

The SCTL 1 is accessed through P21 in the peripheral file. This register is used to control the
source of SCLK, multiprocessor communications, TIMER3 interrupt, and the TIMER3 prescaler
value.

P17=SCTL1

7 6 5 4 3 2 0

X CLK SLEEP WU T3FLG T3ENB PRE3 PRE3

2-bit prescaler
forTIMER3

0 = Disable T3 INT
1 =Enable T3 INT

----------- 0 = ResetT3FLG
1 =Set byT3

Control TX
multiprocessor

Control RX.
multiprocessor

0 = External Clock
1 = Internal Clock

6-29

6·30

DESCRIPTION

SMODE is only accessible after a RESET operation (hardware or software). The first write
operation to location P17 in the peripheral file, immediately following a RESET, will access the
SMODE register. All subsequent writes to P17 will access the control register (SCTLO).

INT4 is dedicated to the seri.al port. Three sources can generate an interrupt through INT4: the
transmitter (TX), the receiver (RX), and TIMER3 (T3). The serial port can be driven by an
internal TIMER3 or external baud rate generator.

In this HWUART program, the T3 interrupt is disabled and the internal TIMER3 is chosen for the
serial clock. The INT4 service routine as shown in Figure 6-11 must determine which flag
caused the INT4 and take the necessary action. The INT4 vector is stored in memory
addresses > FFF6 and > FFF7.

MOVE THE
CHARACTER FROM

RXBUF TO
REGISTER A

START

RETURN FROM
INT4 SERVICE

ROUTINE

END

y

FIGURE 6-11 - INTERRUPT 4 SERVICE ROUTINE

6·31

6-32

In the HWXMIT rqutine (refer to Figure 6-12 HWXMIT flowchart and the listing at the end of
the section) the peripheral file registers are set in the following orders:

1) P5 =ADDA
2) P16 = IOCNT1
3) P17 = SCTLO
4) P21 = SCTL 1

Port A Direction Register
1/0 Control Register 1
Serial Port Control Register 0
Serial Port Control Register 1

START

CLEAR INT4 FLAG
AND ENABLE INT4,

(ADDR & IOCT1 I

CLEAR ALL
ERROR FLAGS AND

ENABLE THE
TRANSMITTER

(SCTLOI

USE INTERNAL
CLOCK RESET T3
FLAG. DISABLE

INTERRUPT
GENERATED BY T3

AND SET P~O
(SCTL 11

ASSERT 'RTS'

ENABLE INTERRUPT

MOVE CHARACTER
FROM A REGISTER

TO TXBUF THUS
GENERATES IN1:4

INTERRUPT 4
SERVICE ROUTINE

DISABLE THE
TRANSMITIER

CLEAR INT4 FLAG &
DISABLE INT4

ISCTLO & IOCT1 I

DISASSERT
'RTS'

FIGURE 6-12 - HWXMIT ROUTINE FLOWCHART

It then places a 'O' on the output handshaking line 81 (DTR-) informing the receiving end that it
is ready to send. After receiving the ready signal A2(DSR~ = 0) from the receiving end, it
enables the maskable interrupt, moves the character from the A Register to TX8UF thus
generating an INT4. Upon returning from the INT4, it disables the transmitter and places a '1'
on the output handshaking line 81 (DTR-).

In the HWRCVD routine (refer to Figure 6-13 HWRCVD flowchart and the listing at the end of
the section) the peripheral file registers are set in the following order:

1) PS =ADDR
2) P·16 = IOCNT1

Port A Direction Register
1/0 Control Register 1 ·

3) P17 = SCTLO
4) P21 = SCTL1

Serial Port Control Register 0
Serial Port Control Register 1 ·

START

SET INPUT HAND
SHAKING PORT,

CLEAR INT4 FLAG
AND ENABLE INT4

(ADQR & IOCT11

CLEAR ALL
ERROR FLAGS AND

ENABLE THE
RECEIVER (SCTLOI

USE INTERNAL CLOCK
RESET T3 FLAG,

DISABLE INTERRUPT
GENERATED BY T3

AND SET P=O
ISCTL11

ENABLE INTERRUPT

ASSERT ,'DTR' AND
WAIT FOR INT4

INTERRUPT 4
SERVICE ROUTINE

DISABLE THE
RECEIVER CLEAR

INT4 FLAG &
DISABLE INT4

(SCTLOI & IOCT1 I

DISASSERT 'DTR'

FIGURE 6-13 - HWRCVD ROUTINE FLOWCHART

6·33

where:

ln the transmit operation, the maskable interrupts are enabled and a 'O' is placed on the output
handshaking line B1 (DTR-) informing the transmitting end that it is ready to receive the
character. It waits for the INT4 generated by the Receiver to occur. Upon returning from the
INT4, the routine clears the INT4 flag and disables INT4. Then, it sets the output handshaking
line B1 (DTR-) to a 1.

The baud rate generated by TIMER3 is user programmable and is determined by the value of
the 2-bit prescaler and the 8-bit timer latch. The equation for determining the baud rates for
asynchronous mode is as follows:

ASYNCHRONOUS BAUD RATE

<I> = Internal clock frequency
P = TIMER3 prescaler value

64*(P + 1)*(L + 1)

L = TIMER3 latch value (to be stored in T3DATA Register)

For instance, if the mjcrocomputer is operating at the crystal/clockin frequency fosc = 10 MHz
with. the divide by 4 option (fosc = 5 MHz with the divide by 2 option), the internal clock
frequency, Q>, equals 2.5 MHz. The corresponding P and L values in hex are listed in Table 6-7.

TABLE 6-7 - P AND L VALUES IN HEX

BAUD RATE p L

300 0 81
600 0 40

1200. 0 20
2400 0 OF
4800 0 07
9600 0 03

19200 0 01
38400 0 00

The SMODE register, the T3DATA register, and the INT4 vectors (in this case, memory
addresses > FFF6 = FO, > FFF7 = 42) must be set before the HWXMIT or HWRCVD routine is
called.

6.2.2.3 RS-232-C Interface

6·34

The RS-232-C interface consists of SN75188 line drivers and SN75189A line receivers as
shown in Figure 6-6. The A port (input) of the TMS70XX (software and hardware UART) is
used on all data and handshaking receptions. The B port (output) is used on all data and
handshaking transmissions. As shown in Figure 6-6, the receive-data line goes to connector
pin 2 and the transmit-data line to pin 3. The handshaking signal DSR (Data Set Ready) is
received through pin 20 and DTR (Data Terminal Ready) is transmitted through pin 6. This
configuration forms a port suitable for connection to an RS-232-C compatible terminal.

Before the data is transmitted, the TMS70XX will place + 12V through the line driver
SN75188 on ·connector pin 6 and wait until pin 20 rises above + 4 V. After the handshaking
signal is received, the data is then transmitted. If at any time the DSR is not asserted, it will wait
in a loop until it is asserted.

CABLING EXAMPLES

25 PIN CONNECTOR PORT 1/0

PIN01 PROTECTIVE GND
PIN02 DATA RX I
PIN03 DATA TX 0
PIN06 DTR(HANDSHAKE OUTPUT) 0
PIN07 SIGNALGND
PIN08 +12V
PIN09 +12V
PIN 10 -12V
PIN20 DSR(HANDSHAKE INPUT)

EIAPORT 820KSR

PIN02 RX PIN02 TX
PIN03 TX PIN03 RX
PIN06 DTR PIN06 DSR
PIN07 GND PIN07 GND
PIN08 PDCD PIN08 DCD
PIN20 DSR PIN 11 SCA

PIN 04 TO PIN 05

EIAPORT 743 KSR

PIN01 GND PIN09 GND
PIN02 RX PIN 13 TX
PIN03 TX PIN 12 RX
PIN07 GND PIN01 GND
PIN08 PDCD PIN 11 DCD
PIN 20 DSR PIN 15 DTR

EIAPORT 810LP

PIN01 GND PIN01 GND
PIN03 TX PIN03 RX
PIN06 DTR PIN06 DTR
PIN07 GND PIN07 GND
PIN08 PDCD PIN08 DCD
PIN20 DSR PIN 11 DTR

EIAPORT 990CARD

PIN02 RX PIN03 TX
PIN03 TX PIN02 RX
PIN06 DTR PIN20 DSR
PIN07 GND PIN07 GND
PIN08 PDCD PIN 18 DCD
PIN20 DSR PIN08 RTS

6-35

6.2.2.4

6-36

Other Design Approa~hes

In the example given above, the microcomputer operates at the maximum internal clock rate of
2.5 MHz. For the TMS7000 family members with different timing requirements, the new
crystal-dependent constants and the value of T3DATA can be determined by the given
formulas. This allows both the sqftware and hardware UARTs to operate at other baud rates.

In the software UART, TIMER1 may be used instead of a software delay loop. This can greatly
increase the microcomputer's throughput.

SWUART 7000 FAMILY MACRO ASSEMBLER 2.0
PAGE 0001

0001 OPTION XREF
0002 IDT 'SWUART'
0003 **
0004 ooos XMITl EQU >OS TRANSMIT I 11 MASK (OR)
0005 OOF7 XMITO EQU >F7 TRANSMIT IO I MASK (AND)
0006 0002 NRTS EQU >02 NOT READY TO SEND (OR)
0007 OOFD RTS EQU >FD READY TO SEND (AND)
ooos 0004 DSR EQU >04 DATA SET READY (TEST)
0009 0020 DIN EQU >20 DATA IN (TEST)
0010 *
0011 0022 BDCNTl EQU R34 BIT COUNTER (1)
0012 0023 BDCNT2 EQU R35 BIT COUNTER (1)
0013 0024 HFBAUD EQU R36 HALF BAUD RATE (1)
0014 0025 MODE EQU R37 MODE REGISTER (1)
0015 0026 BITCNT EQU R3S COUNTER INITIALIZER(!)
0016 0027 BITIME EQU R39 TIMER INITIALIZER (1)
0017 002S DLAYRl EQU R40 DELAY LOOP! (1)
OOlS 0029 DLAYR2 EQU R41 DELAY LOOP2 (1)
0019 002A UATREG EQU R42 UART REGISTER (1)
0020 002B TMP EQU R43 TEMPORARY (1)
0021 002C STAT EQU R44 STATUS REGISTER (1)
0022 ·002D RCHAR EQU R45 RECEIVED CHARACTER(!)
0023 002E SHFCNT EQU R46 SHIFT COUNTER (1)
0024 *
0025 0004 UART IN EQU P4 PORT A-UART INPUT (1)
0026 0006 UARTOT EQU P6 PORT B-UART OUTPUT(!)
0027 F006 AORG >F006
002S *
0029 *===
0030 * CHARACTER TO BE TRANSMITTED IS IN THE A REGISTER
0031 *===~=======
0032 F006 cs SWXMIT PUSH B SAVE CONTENTS OF THE B REG.
0033 F007 A4 ORP %XMIT1,UARTOT PLACE A 'MARK' ON XMIT LINE

FOOS OS
F009 06

0034 FOOA A3 ANDP %RTS,UARTOT ASSERT 'RTS'
FOOB FD
FOOC 06

0035 FOOD A6 WAIT BTJOP %DSR,UARTIN,WAIT WAIT FOR HANDSHAKING
FOOE 04
FOOF 04
FOlO FC

0036 *
0037 FOll 42 MOV MODE,BITCNT INITIALIZE

F012 25
F013 26

003S F014 DE RL BITCNT BIT
F015 26

0039 F016 DE RL BITCNT COUNTER
F017 26

0040 FOlS 73 AND %>03,BITCNT
F019 03
FOlA 26

0041 FOlB 7S ADD %>07,BITCNT
FOlC 07
FOlD 26

0042 *

6·37

PAGE 0002

0043 FOlE 72 MOV %>05, BITI!1E INITIAL TIME CONSTANT
FOlF 05
F020 27

0044 F021 D5 CLR TMP SET UP START BIT
F022 2B

0045 F023 42 MOV MODE,UATREG
F024 25
F02S 2A

0046 F026 EO JMP LOOP2
F027 10

0047 F028 72 LOOP! MOV %>01,TMP SET UP MASK FOR A REG 9
F029 01
F02A 28

0048 F02B 43 AND A,TMP COPY LSB OF A REG TO TMP 10
F02C 00
F02D 2B

0049 F02E 48 ADD TMP,UATREG CALCULATE PARITY 10
F02F 28
F030 2A

ooso F031 BC RR .A SET UP NEXT BIT FOR XMIT s
·OOSl F032 DE RL TMP ADJUST FOR BIT LOCATION 7

F033 28
OOS2 F034 DE RL TMP ADJUST FOR BIT LOCATION 7

F03S 2B
0053 F036 DE RL TMP ADJUST FOR BIT LOCATION 7

F037 2B
0054 F038 91 LOOP2 MOVP UARTOT,B COPY P6 INTO B REG 8

F039 06
ooss F03A S3 AND %XMITO,B MASK OUT BIT OF B REG 7

F03B F7
0056 F03C 34 OR TMP,B SET UP B REG FOR XMIT P6 8

F03D 2B
0057 F03E 92 MOVP B,UARTOT DATA BIT XMITTED TO EIA 9

F03F 06
0058 F040 BE CALL @DELAY DELAY TO PROPER BAUD RATE14

F041 F084
0059 F043 DA DJNZ BITCNT,LOOPl JUMP TO XMIT LOOP 9+2

F044 26
F045 E2

0060 F046 76 BTJO %>20,MODE,STOPB JUMP TO STOPS IF .PARITY IS
F047 20
F048 25
F049 18

0061 * DISABLED
0062 F04A DA SELF! DJNZ BI TIME, SELF! TIME COMPENSATION

F04B 27
F04C FD

0063 F04D 00 NOP
0064 F04E 77 BTJZ %>01,UATREG,PARZ

F04F 01
F050 2A
F051 05

0065 F052 A4 ORP %XMIT1,UARTOT OUTPUT PARITY BIT ONE
F053 08
F054 06

0066 FOSS EO JMP PDONE
FOS6 OS

6·38

PAGE 0003

0067 F057 A3 PARZ ANDP %XMITO,UARTOT OUTPUT PARITY BIT = ZERO
FOSS F7
F059 06

0068 FOSA. 00 NOP
0069 FOSB 00 NOP TIME COMPENSATION
0070 FOSC BE PDONE CALL @DELAY

FOSD F084
0071 FOSF 00 NOP
0072 F060 00 NOP
0073 F061 00 NOP TIME COMPENSATION
0074 *
0075 F062 D7 STOPB SWAP UATREG GET NUMBER

F063 2A
0076 F064 73 AND %>01,UATREG OF STOP BIT

F065 01
F066 . 2A

0077 F067 D3 INC UATREG INC BY 1 FOR COMPENSATION
F068 2A

0078 F069 72 MOV %>03, BITIME
F06A 03
F06B 27

0079 F06C DA SELF2 DJNZ BI TIME I SELF2 TIME COMPENSATION
F06D 27
F06E FD

0080 F06F A4 ORP %XMIT1,UARTOT OUTPUT STOP BIT
F070 08
F071 06

0081 F072 72 SECOND MOV %>07,BITIME
F073 07
F074 27

0082 F075 DA SELF3 DJNZ BITIME,SELF3 TIME COMPENSATION
'F076 27
F077 FD

0083 F078 00 NOP
0084 F079 BE CALL @DELAY

F07A F084
0085 F07C DA DJNZ UATREG,SECOND JUMP FOR SECOND STOP BIT

F07D 2A
F07E F3

0086 F07F A4 ORP %NRTS,UARTOT DISASSERT 'RTS'
F080 02
F081 06

0087 F082 C9 POP B RESTORE B REGISTER
0088 F083 OA RETS
0089 *---
0090 *DELAY ROUTINE
0091 *---
0092 F084 42 DELAY MOV BDCNT2,DLAYR2 INITIALIZE OUTER COUNT 10

FOSS 23
F086 29

0093 F087 42 ENTRY MOV BDCNTl,DLAYRl INITIALIZE INNER COUNT 10
FOSS 22
F089 28

0094 F08A DA HERE! DJNZ DLAYRl,HEREl INNER COUNT 9+2
F08B 28
F08C FD

0095 F08D DA DJNZ DLAYR2,ENTRY OUTER COUNT 9+2

6·39

6·40

F08E
F08F

0096 F090
0097
0098
0099
0100 F091
0101 F092

F093
F094

0102 F09S
F096

0103 F097
F098

0104 F099
F09A
F09B

OlOS F09C
F09D
F09E

0106 F09F
FOAO
FOAl

0107 FOA2
FOA3

0108 FOA4
FOAS
FOA6

0109
0110 FOA7

FOA8
0111 FOA9

FOAA
FOAB

0112 FOAC
FOAD

0113 FOAE
FOAF
FOBO

0114 FOB!
FOB2
FOB3
FOB4

OllS FOBS
FOB6
FOB?
FOBS

0116 FOB9
FOBA

0117 FOBS
0118 FOBC
0119 FOBD

FOBE
0120
0121 FOBF

FOCO
FOci

29
F7
OA

CB
42
2S
26
DE
26
DE
26
73
03
26
42

. 26
2E
74
FC
2E
04
2E
78
OS
26

DS
2D
73
FE
2C
DS
28
A3
FD
06

PAGE 0004

RETS 7
*===
* SOFTWARE UART RECEIVE ROUTINE
*===
SWRCVD PUSH B

MOV MODE,BITCNT

RL BITCNT

RL BITCNT

AND %>03,BITCNT

MOV BITCNT,SHFCNT

OR %>FC,SHFCNT

INV SHFCNT

ADD %>0S,BITCNT

*
CLR RCHAR

AND %>FE,STAT

CLR TMP

ANDP %RTS,UARTOT

SAVE B REG
INITIALIZE

BIT

COUNTER

GET NUMBER OF SHIFT

CLEAR INCOMING CHAR REGISTER

SET STATUS BIT-0 TO ZERO

CLEAR TMP REG

ASSERT 'DTR'

A7 MARKCK BTJZP %DIN,UARTIN,MARKCK LOOP UNTIL MARK OCCURS
20
04
FC
A6
20
04
FC
32
24
00
00
CA
FC

STRBIT BTJOP %DIN,UARTIN,STRBIT LOOP UNTIL SPACE OCCURS

HERE2

MOV

NOP
NOP

HFBAUD,B

DJNZ B,HERE2

* SAMPLE START BIT AT HALF BIT

INITIALIZE COUNTER

TIME COMPENSATION(4)
(4)

WAIT HALF A BIT (7+2)

A6 BTJOP %DIN,UARTIN,STRBIT BRANCH IF FALSE START
20
04

PAGE 0005

FOC2 F2
0122 FOC3 72 MOV %>01,UATREG

FOC4 01
FOC5 2A

0123 FOC6 43 AND MODE,UATREG MASK PARITY BIT
FOC7 25
FOCB 2A

0124 FOC9 00 NOP
0125 FOCA 00 NOP TIME COMPENSATION
0126 FOCB 00 NOP
0127 FOCC 00 NOP
0128 FOCD 00 NOP
0129 FOCE 00 NOP
0130 FOCF BE SAMPLE CALL @DELA"/ DELAY FOR PROPER BAUD RATE

FODO F084
0131 *
0132 FOD2 52 MOV %>04,B TIME COMPENSATION

FOD3 04
0133 FOD4 CA RECHER DJNZ B,RECHER DELAY CNT IS THE SAME

FOOS FE
0134 * XMIT AND RCVD
0135 * SAMPLE DATA BIT HERE
0136 FOD6 A7 BTJZP %DIN,UARTIN,ZERO READ DATA BIT JUMP IF 0

FOD7 20
FODB 04
FOD9 05

0137 FODA 03 INC UATREG
FODE 2A

0138 FODC 07 SETC
0139 FOOD EO JMP BYPASS

FODE 05
0140 FODF 00 ZERO NOP TIME COMPENSATION TO ENSURE
0141 FOEO 00 NOP
0142 FOE! 00 NOP ZERO BIT IS THE SAME LENGTH
0143 FOE2 00 NOP
0144 FOE3 00 NOP AS ONE BIT
0145 FOE4 DD BYPASS RRC RCHAR PLACE BIT INTO MSB RCHAR

FOES 20
0146 FOE6 00 NOP
0147 FOE? 02 DEC BITCNT

FOES 26
0148 FOE9 E6 JNZ SAMPLE

FOEA E4
0149 FOEB BE CALL @DELAY

FOEC F084
0150 *
0151 FOEE 76 BTJO %>20,MODE,THERE IS PARITY BIT ENABLE?

FOEF 20
FOFO 25
FOFl 13

0152 * IF NO, JUMP TO DONE
0153 FOF2 52 MOV %>03,B TIME COMPENSATION

FOF3 03
0154 FOF4 CA CYCLE DJNZ B,CYCLE 34 CLOCK CYCLES LOOP

FOF5 FE
0155 *
0156 * SAMPLE PARITY BIT HERE

6-41

PAGE 0006

0157 FOF6 A7 BTJZP %DIN,UARTIN,PZ JUMP TO PZ IF PARITY BIT=O
FOF7 20
FOF8 04
FOF9 02

0158 FOFA 03 INC TMP INCREMENT TMP IF PARITY
FOFB 2B

0159 * BIT=l
0160 FOFC 45 PZ XOR TMP,UATREG CHECK FOR PARITY ERROR

FOFD 2B
FOFE 2A

0161 FOFF 73 AND %>01,UATREG MASK, SAVE
FlOO 01
FlOl 2A

0162 Fl02 44 OR UA~REG,STAT AND PUT THE RESULT IN
Fl03 2A
Fl04 2C

0163 * STAT BIT 0
0164 Fl05 D5 THERE CLR TMP

Fl06 2B
0165 Fl07 4D SHIFT CMP SHFCNT,TMP MAKE THE

Fl08 2E
Fl09 2B

0166 FlOA E2 JZ DONE NECESSARY
FlOB 06

0167 FlOC BO CLRC NUMBER OF
0168 FlOD DD RRC RCHAR SHIFT

FlOE 2D
0169 FlOF DA DJNZ SHFCNT,SHIFT

FllO 2E
Flll F5

0170 *
0171 Fll2 A4 DONE ORP %NRTS,UARTOT DISASS.ERT 'DTR'

Fll3 02
Fll4 06

0172 Fll5 12 MOV RCHAR,A MOVE THE DATA BIT TO A
Fll6 2D

0173 Fll 7 C9 POP B RESTORE B REG
0174 Fll8 OA RETS
0175 END
NO ERRORS, NO WARNINGS

6·42

LABEL VALUE DEFN REFERENCES PAGE 0007

BDCNTl 0022 0011 0093
BDCNT2 0023 0012 0092
BITCNT 0026 0015 0037 0038 0039 0040 0041 0059 0101 0102 0103

0104 0105 0108 0147
BI TIME 0027 0016 0043 0062 0078 0079 0081 0082
BYPASS FOE4 0145 0139
CYCLE FOF4 0154 0154
DELAY F084 0092 0058 0070 0084 0130 0149
DIN 0020 0009 0114 0115 0121 0136 0157
DLAYRl 0028 0017 0093 0094
DLAYR2 0029 0018 0092 0095
DONE Fl12 0171 0166
DSR 0004 0008 0035
ENTRY F087 0093 0095
HERE! F08A 0094 0094
HERE2 FOBB 0117 0119
HFBAUD 0024 0013 0116
LOOP! F028 0047 0059
LOOP2 F038 . 0054 0046
MARK CK FOB! 0114 0114
MODE 0025 0014 0037 0045 0060 0101 0123 0151
NRTS 0002 0006 0086 ·0171
PARZ F057 0067 0064
PDONE F05C 0070 0066
PZ FOFC 0160 0157
RCHAR 002D 0022 0110 0145 0168 0172
RECHER FOD4 0133 0133
RTS OOFD 0007 0034 0113
SAMPLE FOCF 0130 0148
SECOND F072 0081 0085
SELF! F04A 0062 0062
SELF2 F06C 0079 0079
SELF3 F075 0082 0082
SHFCNT OOZE 0023 0105 0106 0107 0165 0169
SH!FT Fl07 0165 0169
STAT 002C 0021 0111 0162
STOPS F062 0075 0060
STRBIT FOBS 0115 0115 0121
SWRCVD F091 0100
SWXMIT F006 0032
THERE F105 0164 0151
TMP 0028 0020 0044 0047 0048 0049 0051 0052 0053 0056 0112

0158 0160 0164 0165
UART IN 0004 0025 0035 0114 0115 0121 0136 0157
UARTOT 0006 0026 0033 0034 0054 0057 0065 0067 0080 0086 0113

0171
UATREG 002A 0019 0045 0049 0064 007.5 0076 0077 0085 0122 0123

0137 0160 0161 0162
WAIT FOOD 0035 0035
XMITO OOF7 0005 0055 0067
XMITl 0008 0004 0033 0065 0080
ZERO FODF 0140 0136

6-43

6·44

HWUART

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032

0033

F006
F006
F007
FOOS
F009
FOOA
FOOB
FOOC
FOOD
FOOE

7000 FAMILY MACRO ASSEMBLER 2.0
PAGE 0001

OPTION XREF
IDT I HWUART I

**
0008
OOF7
0002
OOFD
0004

XMITl
XMITO
NRTS
RTS
DSR
*

EQU
EQU
EQU
EQU
EQU

>08
>F7
>02
>FD
>04

TRANSMIT 'l' MASK
TRANSMIT '0' MASK
NOT READY TO SEND
READY TO SEND
DATA SET READY

(OR)
(AND)
(OR)
(AND)
(TEST)

*---
* P. REGISTER DEFINITION
*---

0000 IOCNTO EQU PO I/O CONTROL REGISTER 0
0004 UARTIN EQU P4 PORT A-UART INPUT
0005 ADDR EQU PS PORT A DIRECTION
0006 UARTOT EQU P6 PORT B-UART OUTPUT
0010 IOCNTl EQU P16 I/O CONTROL REGISTER
0011 SMODE EQU Pl7 SERIAL PORT MODE
0011 SCTLO EQU Pl7 SERIAL PORT CONTROL-0
0011 SSTAT EQU P17 SERIAL PORT CONTROL STATUS
0014 T3DATA EQU P20 TIMER 3 DATA
0015 SCTLl EQU P21 SERIAL PORT CONTROL-!
0016 RXBUF EQU P22 RECEIVER BUFFER
0017 TXBUF EQU P23 TRANSMITTER BUFFER

*---
* REGISTERS DEFINITION
*---~-----
* *---

AORG >F006
A3 HWXMIT ANDP %>FB,ADDR
FB
05
A2 MOVP %>03,IOCNTl
03
10
A2 MOVP %>11,SCTLO
11
11

SET A2=INPUT

CLEAR INT4 FLAG & ENABLE INT4

NO RESET OF SERIAL PORT

0034 * CLEAR ALL ERROR FLAGS AND
ENABLE TXEN=l, RXEN=O DISABLED
USE INTERNAL CLK,RESET T3FLAG

0035 *
0036 FOOF A2

FOlO 40
FOll 15

0037
0038 F012

F013
F014

A3
FD
06

*

0039 F015
F016
F017
F018

A6 WAIT
04

0040 F019
0041 FOlA

FOlB
0042 FOlC
0043 FOlD

04
FC
05
82
17
01
A2

MOVP %>40,SCTLl

ANDP %RTS."UAR'I:OT
DISABLE T3 INTERRUPT& SET P=O
ASSERT 'RTS'

BTJOP %DSR,UARTIN,WAIT WAIT FOR HANDSHAKING

EINT ENABLE MASKABLE INTERRUPT
MOVP A,TXBUF

IDLE WAITING FOR INT4
MOVP %>02,IOCNTl CLEAR INT4 FLAG & DISABLE INT4

384

PAGE OOOZ

FOlE oz
. FOlF 10

0044 FOZO AZ MOVP %>00,SCTLO NO.RESET, DISABLE XMIT TXEN=O
FOZl 00
FOZZ 11

0045 * RXEN=O
0046 FOZ3 A4 ORP %NRTS,UARTOT DISASSERT 'RTS'

F024 02 ,•v
F025 06

0047 FOZ6 OA RETS
0048 *
0049 *
0050. *
0051 *
0052 F027 A3 HWRCVD ANDP %>FB,ADDR SET A2=INPUT

F028 FB
FOZ9 05

0053 F02A AZ MOVP %>03,IOCNTl CLEAR INT4 FLAG & ENABLE INT4
FOZB 03
F02C 10

0054 F02D AZ MOVP %>14,SCTLO NO RESET OF SERIAL PORT
F02E 14
F02F 11

0055 * CLEAR ALL ERROR FLAGS & ENABLE
0056 * RECEIVER RXEN=l,TXEN=O DISABLE
0057 F030 A2 MOVP %>40,SCTLl INTERNAL CLK, P=O

F031 40
F03Z 15

0058 * RESET T3FLAG & DIASBLE T3 INT
0059 F033 05 EINT ENABLE HASKABLE INTERRUPT
0060 F034 A3 ANDP %RTS,UARTOT ASSERT 'DTR'

F035 FD
F036 06

0061 F037 01 IDLE WAITING FOR INT4
006Z F038 A2 HOVP %>00,SCTLO DISABLE RCVER RXEN=O; TXEN=O

F039 00
F03A 11

0063 F03B A2 MOVP %>02,IOCNTl CLEAR INT4 FLAG& DISABLE INT4
F03C oz
F03D 10

0064 F03E A4 ORP %NRTS,UARTOT DISASSERT 'DTR'
F03F oz
F040 06

0065 F041 OA RETS
0066 *
0067 *---
0068 * INTERRUPT 4 SERVICE ROUTINE
0069 *---~---
0070 F04Z A7 BTJZP %>OZ,SSTAT,TX

F043 02
F044 11
F045 oz

0071 F046 80 MOVP RXBUF,A INT4 GENERATED BY HWRCVD
F047 16

0072 F048 A7 TX BTJZP %>01,SSTAT,FIN JUMP TO FINISH
F049 01
F04A 11

384 6-45

6-46

F04B
0073 F04C

F04D
F04E
F04F

0074 FOSO
0075
0076

04
A7 LOOP
04
11
FC
OB FIN

*
NO ERRORS, NO WARNINGS

BTJZP %>04,SSTAT,LOOP

·RETI

END

PAGE 0003

INT4 GENERATED BY HWXMIT

INTERRUPT VECTOR STORE
. AT FFF6 AND FFF7

LABEL VALUE DEFN REFERENCES PAGE 0004

ADDR 0005 0015 0031 0052
DSR 0004 0008 0039
FIN F050 0074 0072
HWRCVD F027 0052
HWXMIT F006 0031
IOCNTO 0000 0013
IOCNTl 0010 0017 0032 0043 0053 0063
LOOP F04C 0073 0073
NRTS 0002 0006 0046 0064
RTS OOFD 0007 0038 0060
RXBUF 0016 0023 0071
SCTLO 0011 0019 0033 0044 0054 0062
SCTLl 0015 0022 0036 0057
SMODE 0011 0018
SSTA'r 0011 0020 0070 0072 0073
T3DATA 0014 0021
TX F048 0072 0070
TXBUF 0017 0024 0041
UART IN 0004 0014 0039
UARTOT 0006 0016 0038 0046 0060 0064
WAIT F015 0039 0039
XMITO OOF7 0005
XMITl 0008 0004

6-47

6.3 INSTRUCTION SET APPLICATION NOTES

This section provides supplemental information about the instruction set as an aid to program
development. Refer to the TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE !MP
916) for further application notes.

6.-3. 1 The Status Regist~r

6-48

The Status Register has four status bits that provide conditional execution of a variety of
arithmetic and logical tasks (see Figure 6-14). The Carry (C), Sign (N), Zero (Z), and Interrupt
enable (I) occupy bits 7-4 of the Status Register. The global INTERRUPT ENABLE (I) bit is only
affected by the EINT, DINT, and POP ST instructions. The C, N, and Z bits are affected by a
number· of instructions. Table 6-8 classifies the instruction set according to the status bits
affected by each instruction.

Bit MSB 7 6 5 4 3 2 0 LSB

c N z Future Use

FIGURE6-14- STATUS REGISTER

Among the initialization-type instructions, two of the most useful are the compare instructions
CMP and CMPA. Section 6.3.1. 1 describes the way in which CMP and CMPA can be used to
create the necessary status conditions for either a logical-type (unsigned) or arithmetic-type
(signed) jump instruction. In Section 6.3. 1 .2, the effects of addition and subtraction on the
Status Register are diagrammed for both signed and unsigned systems. Finally, Section
6.3.1.3 describes how SWAP and the rotation instructions RR, RRC, RL, and RLC can be used
to clear, set, shift, or test the various status bits as required.

INIT
STATUS

REG.

DINT
EINT
POP ST
RETI
SETC
CLRC

TABLE 6-8 - CLASSIFICATION OF INSTRUCTIONS

ACCORDING TO STATUS BITS AFFECTED

INSTRUCTION TYPES

CLEAR CARRY, CLEAR CARRY, CLEAR CARRY,
CONDITIONAL

SETN,ZON SETN,ZON SETN,ZON
A B RESULT

STATUS

LOA TSTB AND ADC
STA XCHB ANDP ADD
TSTA BTJO CMP

BTJOP CMPA
BTJZ DAC
BTJZP DEC
CLR DECO
INV DSB
MOV SBB
MOVD SUB
MOVP
OR
ORP
POP
PUSH
XOR
XORP

NO
STATUS

AFFECTED

BR
CALL
DJNZ
IDLE
J(CNDI
JMP
NOP
PUSH ST
RETS
STSP
TRAP
LDSP

6.3.1.1 Compare And Jump Instructions

The compare instructions CMP and CMPA, affect the C, N, and Z bits in the Status Register by
subtracting a source operand (s) from a destination operand (d). The result of (d) - (s) is not
stored and is computed as follows:

(d)-(s) = (d) + (s) + 1 = 8-bit Result

where (s) is a direct one-for-one bitwise inversion, one's complement, of (s). The C bit serves
as a "no borrow" bit and is set to '1' if (d) is greater than or equal to (s). The N bit is set to the
same vafue as the MSB of the result. For two's complement (signed) systems, N = 1 indicates
a negative number, and N = 0 a positive number. The Z bit is set to '1 ' if the source is equal to
the destination ((d) = (s)). The CMP instruction uses the contents of a register (Rn) in the
Register File as the destination operand, and either an immediate operand (IOP) or the contents
of another Rn as the source operand. The CMPA instruction uses the contents of the A register
as the destination operand and one of the Extended Addressing modes (Direct, Register File
Indirect, or Indexed) is used to generate the source operand. Table 6-9 illustrates the limits of
both signed and unsigned systems by listing the status bits affected for various source and
destination operands substituted into the (d) - (s) expression.

TABLE 6-9 - COMPARE INSTRUCTION EXAMPLES: STATUS BIT VALUES

SRC DEST D~S c N z INSTRUCTIONS THAT WILL JUMP

FF 00 01 0 0 0 JL JNC JNE .JNZ JP JPZ
00 FF FF 1 ' 1 0 JHS JC JNE JNZ JN
00 7F 7F 1 0 0 JHS

0

JC JNE JNZ JP JPZ
81 00 7F 0 0 0 JL JNC JNE JNZ JP JPZ
00 81 81 1 1 0 JHS JC JNE JNZ JN
80 00 80 0 1 0 JL JNC JNE JNZ JN
00 80 80 1 1 0 JHS JC JNE JNZ JN
7F 80 01 1 0 0 JHS JC JNE JNZ JP JPZ
80 7F FF 0 1 0 JL JNC JNE JNZ JN
7F 7F 00 1 0 1 JHS JC JEQ JZ JPZ
7F 00 81 0 1 0 JL JNC JNE JNZ JN

Since the compare instructions do not alter the source and destination operands, these
instructions can be executed prior to a conditional jump instruction to test for a particular
relationship between the source and destination operands. Table 6-10 lists the necessary
status bit conditions for each of the conditional jump instructions and the type of system in
which it is applicable, i.e., signed or unsigned.

6-49

6-50

TABLE 6-10 - STATUS BIT VALUES FOR CONDITIONAL JUMP INSTRUCTIONS

CONDITION ON
STATUS BIT

MNEMONIC INSTRUCTION WHICH JUMP
VALUES FOR

SIGNED UN-

IS TAKEN
JUMP: SIGNED

c N z

JC/JHS Jump If Carry/Jump
If Higher Or Same (d)unsigned > = (s) 1 x x y y

JNC/JL Jump If No Carry/
Jump Jf Lower (d)unsigned < = (s) 0 x x y y

JZ/JEQ Jump If Zero/Jump
If Equal (d) = (s) x x 1 y y

JNZ/JNE Jump If Non-zero/
Jump If Not Equal (d) < > (s) x x 0 y y

JP Jump If Positive (d)-(s) =pas# x 0 0 y N

JN Jump If Negative (d)-(s) =neg# x 1 x y N

JPZ Jump If Positive (d)-(s) =pas#
Or Zero orO x 0 x y N

X = Don't care

Table searches are efficiently performed through the use of the compare A register extended
(CMPA) instruction'. In the following example, A 150 byte table is searched for a match with a 6
byte string:

*
SEARCH MOV %150+ 1,R2 Table length = 150 bytes
LOOP1 MOV %6,B String length = 6 bytes
LOOP2 XCHB R2 Swap-pointers, long string in B

DEC B Table end ? if so, no match found
JZ NO FIND
LDA @TABLE-1 (8) Load test character
XCHB R2 Swap pointers, string pointer in B
CMPA @STRING-1 (8) Match?
JNE LOOP1 If not, reset string ptr. else test
DJNZ B,LOOP2 next character.

MATCH EOU $ Match found

NOFIND EOU $ No match found

The indexed addressing mode is used in this example and has the capability to search a 256
byte string if needed. The B register alternates between a pointer into the 6 byte test string and
a pointer into the longer table string.

384

6. 3. 1. 2 Addition And Subtraction Instructions

The TMS7000 instruction set supports both single and multi-precision addition and subtraction
for either binary or BCD, signed (two's complement) or unsigned data.

·The following example illustrates how to perform a 32-bit addition with the ADD and ADC
_instructions:

ADD
ADC
ADC
ADC

R30,R120
R29,R119
R28,R118
R27,R117

Since no initial carry-in is desired, the first instruction is ADD. The ADC instruction is then
executed three times in succession to transfer the carry through all 32 bits.

The following example illustrates how to perform a 24-bit subtraction with the SUB and SBB
instructions:

SUB
SBB
SBB

R4,R127
R3,R126
R2,R125

Since no initial borrow-in is desired, the first instruction is SUB. The SBB instruction is then
executed twice in succession to achieve the 24-bit result. The addition and subtraction
instructions, their execution results, and the status bits affected are listed in Table 6-11.

TABLE 6-11 - ADD AND SUBTRACT INSTRUCTIONS

INSTR DESCRIPTION EXECUTION RESULTS STATUS BITS AFFECTED

ADD Add [(s) + (d)] -- (d) C: 1 on carry out of[...]
N: set on result
Z: set on result

ADC Add w/Carry [(s) + (d) +CJ._ (d) C: 1 on carry out of[...]
N: set on result
Z: set on result

DAC Dec Add w/C [(s) + (d) +CJ._ (d) C: 1 if[..] > = 100 decimal
- Decimal BCD - N: set on result

Z: set on result

SUB Subtract [(d)-(s)] ... (d) C: 1 if[.:]>= 0
N: set on result
Z: set on result

SBB Sub w /Borrow [(d)-(s)-1 +CJ-- (d) C: 1 if no borrow
N: set on result
Z: set on result

DSB Dec Sub w/B [(d)-(s)-1 +CJ._ (d) C: 1 if no borrow
- Decimal BCD - N: set on result

Z: set on result

6-51

6·52

The overflow/underflow conditions for both signed and unsigned systems are summarized in
Figures 6-15 and 6-16, respectively. Note that an Exclusive OR of the C and N bits ANDed with
the Exclusive OR of the MSBs of the operands can always be used as a check for an overflow or
underflow for subtraction in a signed system (if (C XOR N) AND (MSB1 XOR MSB2) = 1 then
out of range). When adding two signed numbers, the test for an out of range condition is
similar to the subtraction method. When an Exclusive OR of the C and N bits ANDed with the
inverse of the Exclusive OR of the MSBs of the two operands equals one then an overflow or
underflow has occured (if (C XOR N) AND (NOT(MSB1 XOR MSB2)) = 1 then out of range) .

. *.ROUTINE TO CHECK FOR SIGNED UNDERFLOW OR OVERFLOW
* If (N XOR N l AND (MSB1 XOR MSB2) = 1 then out of range

MOV
XOR
SUB
JN

NOTNEG JNC
JMP

ISNEG JC
CXORN1 TSTA

JPZ

OUTANG
*
NOERR

OPRND1,A
OPRND2,A
OPRND1 ,OPRND2
ISNEG
NOERR
CXORN1

NOERR

NOERR

get XOR of the MSBs
Subtract 2 signed numbers

N = 0
C XOR N = 1, First part of equation
is true.
N=1
C XOR N = 1 ; set flags for MSB 1 XOR MSB2
If (N XOR Cl AND (MSB1 XOR MSB2) = 1 then
out of range. For addition change this
instruction to JN NOERR
Out of Range. Underflow or overflow

No underflow or overflow

In an unsigned system, the C bit always reveals the overflow/underflow status as follows:
addition overflow if C = 1 after addition, and subtraction underflow if C = 0 after subtraction.
Figures 6-15 and 6-16 show the > 00 to >FF boundary as being detectable by the C bit. The
decrement instructions DEC and DECO set the C bit to 0 if the > 00 to >FF boundary is
crossed, i.e., the 0 to 255 boundary in the unsigned system, and the 0 to -1 boundary in the
signed system.

SUBTRACT

ADDITION OVERFLOW
IC= 1 POST ADDITION)

ADD

N=X (DON'T CAREi

SUBTRACTION UNDERFLOW
(C=O POST SUBTRACTION)

FIGURE 6-15 - UNSIGNED SYSTEM WITH 8 BITS OF MAGNITUDE: 0-255 I >oo- >FF)

SUBTRACTION UNDERFLOW -----t•

SUBTRACT

> 0
0

Z=O I Z=O
Z=1

I

ADD

FIGURE6-16- SIGNED SYSTEM WITH 7 BITS OF MAGNITUDE: -127to + 127 l>81->7Fl

6-53

The following subroutine shows the use of the addition instructions in adding two multi-digit
numbers together. Each of the numbers is a packed BCD strings of less than 256 bytes (512
digits) stored at memory locations STR 1 and STR2 . This routine adds the two strings together
and places the result in STR2 placing the result in STR2. The strings must be stored with the
most significant byte in the lowest number register. With most all of the TMS7000 family
instruction set, it is convenient to store all numbers and addresses with the most significant
byte in the lower numbered location. ·

*
*

*

DECIMAL ADDITION SUBROUTINE
ON INPUT : B = LENGTH OF STRING (NUMBER OF BYTES)

STACK MUST HAVE 3 AVAILABLE BYTES.

ON OUTPUT STR2 = STR 1 + STR2

ADDBCD CLRC Clear carry bit
PUSH

LOOP LDA
MOV
LDA
POP
DAC
PUSH
STA
DJNZ
POP
RETS

ST
@STR1-1 (B)
A,R2
@STR2-1(B)
ST
R2,A
ST
@STR2-1(B)
B,LOOP
ST

Save status of stack
Load current byte
Save it in R2
Load next byte of STR2
Restore carry from last add
Add decimal bytes
Save the carry from this add
Store result
Loop until done
Restore stack to starting position
Back to calling routine

Notice the use of the indexed addressing mode to reference the bytes of the decimal strings.
Notice also the need to push the status register between decimal additions, to save the decimal
carry bit. The B register is used to keep count of the number of bytes that have been added.

6. 3. 1. 3 SW~P and Rotation Instructions

6-54

The rotation operations performed by the four rotation instructions Rotate Right (RR), Rotate
Right Through Carry (RRC), Rotate Left (RL), and Rotate Left Through Carry (RLC) are
illustrated in Figure 6-17. The SWAP instruction executes the equivalent of four consecutive RL
instructions, with the C bit in the Status Register set equal to Bit 4 of the original operand or Bit

· 0 of the result, i.e., LSB of the result. A SWAP instruction example is also given in Figure 6-17.

ai u.
U1

B7 B6 B5 B4 B3 B2 B 1 BO B7 B6 B5 B4 B3 B2 B1 BO

RL RR

c B7 B6 B5 B4 B3 B2 B1 BO B7 B6 B5 84 B3 B2 B1 BO c

cD 1111!111'1 cllll!llll DJ

old
c

0

RLC RRC

old old new new
MSN LSN MSN LSN

new

7 6 5 4 3 2 1 0 c 7 6 5 4 3 2 1 0

I 1 I 1 I 1 I 1 I 0 I olo I al SWAP g I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I
I • • I
Note: N and Z set on result for RL, RLC, RR, RRC, and SWAP.

FIGURE 6-17 - SWAP AND ROTATION OPERATIONS

6.3.2

6-56

Stack Operations

The stack is located in RAM and can be tailored to the specific needs of the user. One powerful
application- of the stack is the establishment of tables. For example, Figure 6-18 illustrates a
dispatch table with an interpretive program counter (IPC). An IPC is used in some high level
languages, such as PASCAL, to give the proper execution sequence. The IPC can be contained
in any register and it points to an interpretive pseudo code (PCODE) byte that in turn specifies
one of 256 dispatch routines. The overall effect of this function is that a program can execute
one of a large number of different routines depending on a single value stored in a register. Two
separate 256-byte sections are required for the high and low address bytes of each dispatch
routine. The first entry of each section (ROVO) corresponds to PCODE =0, and the second
entry (ROV1) to PCODE = 1, etc.

IPC

DTABLE

EQU
LOA
DECO
MOV
LOA
PUSH
LOA
PUSH
RETS

BYTE
BYTE

R3
*IPC
IPC
A,B
@DTABLE(B)
A
@DTABLE + 256(B)
A

ROV0/256
ROV1/256

BYTE ROV255/256

BYTE
BYTE

ROVO
ROV1

BYTE ROV255

Interpretive Program Counter
Get the input Code, range = 0-255
Point to the next input code
PCODE Index Register
Lookup Address MSB
Put MSB on stack
Lookup Address LSB
Put LSB on stack
Jump to the Address on the stack

Beginning of MSB table

LSB table starts here
- Warning Messages May

Appear Here But They Do
Not Affect Results

FIGURE 6-18 - EXAMPLE OF A DISPATCH TABLE WITH AN INTERPRETIVE PROGRAM COUNTER (IPCI

It should be noted that the assembler expressions have 16-bit values. For those instructions
requiring an 8-bit operand, the expression is truncated to the least significant 8 bits. A warning
message may result from this truncation, but the value will be correct. Thus, the following
instructions place byte values >AA, >55, and >55 at memory locations >8000, >8001, and
>8002, respectively:

8000
8000
8002

AA55

AA55
55

LABEL EQU
AORG
DATA
BYTE

>AA55
>8000
LABEL
LABEL LSB only

6.3.3

The most significant byte (MSB) of an expression can be obtained by dividing the value by 256
(23) as shown below:

8000
8000
8002

AA55

AA55
AA

Subroutine Instructions

LABEL EQU
AORG
DATA
BYTE

>AA55
>8000
LABEL
LABEL/256 MSB only

There are two types of instructions for invoking subroutines: CALL and TRAP. Both instructions
save the current value of the Program Counter (PC) on the stack before transferring control to
the subroutine. Since the return address is stored on the stack, subroutines can be easily
nested. The two types of instructions differ only in the way in which the subroutine address is
determined and in the amount of program memory required for execution of the subroutine.

The CALL instruction uses the Extended Addressing modes (Direct, Register File Indirect, and
Indexed) to specify the subroutine address. This permits simple ca,lls with a fully specified
address as well as more complex calls with a calculated address. Of the two types of
instructions, the CALL instruction requires more program memory than the TRAP instructions.
For example:'

CALL @Bl TT EST

requires three bytes of memory: one byte for the opcode and two bytes for the subroutine
address. If the subroutine call is required at six locations, 18 bytes are necessary to implement
the CALLs. The equivalent task for the TRAP instruction requires only 8 bytes for six
successive uses of the same TRAP, since only the opcode byte is necessary after the first use.
Six of these 8 bytes are the TRAP opcodes and the other two bytes are the trap vector. The first
use of the TRAP instruction requires one opcode byte plus the two bytes of the subroutine
address which are located in the Trap Table. The next use and every subsequent use will only
require one more byte as compared to the 3 bytes for every call. All the trap vectors are stored
.at the end of memory with the most significant byte of the trap subroutine stored in the lower
numbered location. The exact address where the trap vector (which is the trap subroutine
address) is stored i,s found from the following formula. '

LSB of Addresss which contains the TRAP subroutine address = > FFFF - 2 x N where N is
the TRAP number.

MS~ of address = LSB - 1

6·57

6.3.4

6-58

The TRAP instructions (TRAPs 4-23) provide the most efficient means of invoking subroutines.
Figure 6-19 illustrates an example of a subroutine call generated by a TRAP instruction.

I (Main Program)
TRAP 4 I (More Main Program)

BR MAIN PR

BITTEST EOU $

I (Subroutine Body)
RETS

AORG >FFF6
DATA BITTEST

FIGURE 6-19 - EXAMPLE OF A SUBROUTINE CALL BY MEANS OF A TRAP INSTRUCTION

The Return-From Subroutine (RETS) instruction should be executed to pop the PC from the
stack and restore program control to the instruction immediately following the CALL or TRAP
instruction.

Multiplication And Shifting

The MPY instruction performs an 8-bit by 8-bit multiply with a 16-bit result that is stored in the
A and B registers. The most significant byte (MSB) of the result is in A, and the least significant
byte (LSB) is in B. The MPY instruction can also be used to perform multi-bit right or left shifts
by using an immediate operand as the multiplier. For example:

MPY %8,B

The above example takes the value of Band multiplies it by 8. After the instruction executes, B
contains the previous value left-shifted three bits (23 = 8) with no fill bits. The A register
contains the previous value's most significant 3 bits which gives a value equivalent to shifting
the previous value right 5 bits (8-3 = 5) with no fill bits. Using this method it is possible to shift
any 8 bit value left or right up to 8 bits. In most cases this is faster than the rotate instructions
and almost always takes less program bytes. Table 6-12 lists the number of bits right- or
left-shifted for a range of immediate multipliers.

TABLE 6-12 - MULTI-BIT RIGHT OR LEFT SHIFTS BY IMMEDIATE MULITPLY

IMMEDIATE
BITS BITS

RIGHT LEFT
MULTIPLIER

SHIFTED SHIFTED

2 7 1
4 6 2
8 5 3

16 4 4
32 3 5
64 2 6

128 1 7

NOTE: Rotate instructions may take less execution time than a Multiply instruction.

Multi-precision multiplications can be easily ·executed by breaking the multiplier and tne
multiplicand into scaled 8-bit quantities, as shown in Figure 6-20 (16 x 16 bit multiplication
with a 32-bit result in R6-R9).

6-59

6-60

*
*
*

*

*

*
XH
XL
YH
YL
RSLT3
RSLT2
RSLT1
RSLTO
*

16 BIT MULTIPLICATION ROUTINE
MULTIPLIES THE 16 VALUE IN REGISTER PAIR R2,R3 BY THE
VALUE IN REGISTER PAIR R4,R5. THE RESULTS ARE STORED
IN R6, R7, RS, R9 AND THE A AND B REGISTERS ARE ALTERED

EQU
EQU
EQU
EQU·
EQU
EQU
EQU
EQU

16-BIT MPV:
x

XLYHm

XH
YH

XLYLm
XHYLm
XLYHI

+ XHYHm XHYHI

RSLT3 RSLT2 RSLT1

R2 Higher operand of X
R3 Lower operand of X
R4 Higher operand of Y
R5 Lower operand of Y
R6 Msb of the final result
R7
RS.
R9 Lsb of the final result

XL X VALUE
YL YVALUE

XLYLI I= lsb
XHYLI m = msb

RSLTO

MPY32 CLR RSLT2 Clear the present value
CLR RSLT3
MPV XL,YL Multiply lsb's
MOV B,RSLTO Store lsb in result register 0
MOV A,RSLT1 Store msb in result register 1
MPV XH,YL GetXHYL
ADD R1 ,RSLT1 Add to existing result XL YL
ADC RO,RSLT2 Add carry if present
MPV XL,YH Multiply to get XL YH
ADD R1 ,RSLT1 Add to existing result XLYL + XHYL
ADC RO,RSLT2 Add to existing results and carry
ADC %0,RSLT3 Add if carry present
MPV XH,YH Multiply msb's
ADD R1,RSLT2 Add once again to the result reg
ADC RO,RSLT3 Do_the final add to the result reg

*

FIGURE 6-20 - EXAMPLE OF A 16-BIT BY 16-BIT MULTIPLICATION SUBROUTINE

6.3.5

6.3.6

Branch Instruction

The branch instruction (BR) is used to unconditionally transfer program control to any desired
location in the 64K byte memory space. The BR instruction supports direct, indexed, and
indirect addressing. Direct addressing is used for simple "GOTO" programming. Indexed
addressing allows table branches. This indexed branch technique is similar to the Pascal
"CASE" st~tement, Program control is transferred to location CASEO if the input is 'O ',to
CASE 1 if it is a' 1 ',etc. This transferring method can implement up to 85 different cases. In the
example below, indexe~ addressing is used to access a relative branch table:

JTABLE MOVP P4,A Get data from A port (Value' 85)
ADD A,B Add twice to triple value
ADD A,B Multiply it by 3 (BR is 3 bytes long)
BR @CTABLE(B) branch accordin.g to the A port value * 2

CTABLE BR @CA SEO If P4 = 0 do this branch
BR @CASE1 If P4 = 1 do this branch
BR @CASE2 If P4 = 2 do this branch

The branch instruction can also be used with indirect addressing in order to branch to a
computed address. For example, suppose that a computed branch address has been
constructed in R19 and R20. The desired program control transfer is made by:

BR *R20

Interrupts

The number of interrupts and the hardware configuration for an TMS7000 family device is
specified by each device in Section 2. The TMS7020, for example, has three interrupts in
addition to RESET.

RESET and the interrupts are vectored through predetermined memory locations. RESET uses
the "TRAP O" vector which is stored at memory locations >FFFE- >FFFF. The interrupts also
use the TRAP vector table with INT1 using the "TRAP 1 " vector, etc. Thus, the "TRAP 2"
instruction involves the same code as the interrupt INT2 (see Section 6.3.3).

The interrupts differ from the TRAPs in that they also push the status register value on the
stack, clear the interrupt enable bit in the status register, and reset the corresponding interrupt
flag bit. Thus the EINT instruction must be used if nested interrupts are desired. The return from
interrupt (RETI) instruction restores the status register and the program counter, re-enabling
interrupts.

Many interrupt service routines alter the status of key registers such as the A and B registers.
These routines should use the stack to restore the machine state to the desired value. For
example, the following interrupt routine performs an 1/0 driven table look-up. The A and B
registers are used, but their values are saved and restored:

6·61

6·62

INT PUSH
PUSH
MOVP
LOA
MOVP
POP
POP
RETI

A
B
P4,B
@LOOKUP(Bl
A,P6
B
A

Store A and B registers on stack

Get input from the A port
Do a table lookup to get new value
Output new value on B port
Restore A and B registers in the
reverse order that they were put on
Back to main progralJI.

Normally all interrupts are disabled during an interrupt service routine. If an interrupt needs to
be able to occur while the processor is servicing another interrupt, then the interrupt enable bit
in the status register should be set to a '1 '. The number of interrupts that can be serviced at any
one time is determined by the size of the stack which is always a maximum of 128 bytes
because the stack resides in the register file. Since other registers and data will most likely
share the same space, the stack size is usually much less. When doing nested interrupts, great
care must be taken to avoid corrupting the data in the registers used by the most recent
routine. If INT1 interrupts an ongoing INT1 service routine, then the registers used by the INT1
routine are used in two different contexts. If provisions are not made for these type situations,
such as disabling all interrupts at critical times, then d.ata errors will result.

Sometimes a program will have distinct parts which require different responses to the same
interrupt call. Since the interrupt vector is always set in nonchangeable ROM, another method
must be used to change the vector for each part. One way of accomplishing this is to store a
second vector in a RAM register pair a11d let the first instruction in the interrupt routine execute .
an indirect branch on that register. The example below shows how this is done.

*
*'

SERVIC

SERVl2

INT1

PROGRAM TO DEMONSTRATE MULTIPLE INTERRUPT SERVICE ROUTINE
LOCATIONS.

main program
MOVD %SERVIC,R127
EINT
IDLE
MO\/D %SERVl2,R127

First interrupt 1 service routine

Put Int. 1 service routine
address in register
turn on and wait for interrupts
change Int. 1 routine to SERVl2.

PUSH A Beginning of the Int. 1 service
PUSH B routine for this part of the program

Second interrupt 1 service routine
PUSH A Start of another interrupt 1 service
DEC R4 routine

BR *R127 The entire Int. 1 service routine.
Tranfers control to the address which
is in R127 and R126

Interrupt vector table at end of memory
AORG >FFFC
DATA INT1
DATA >F806

Address of Interrupt 1 service routine
Reset vector Start of program.

The following routine is an example of a bubble type sorting program. This routine
demonstrates the utility of the indexed mode of addressing. Tables up to 256 bytes in length
can be sorted using the routine. Longer tables can be sorted using the indirect addressing
mode.

FLAG
*
SORT

LOOP1

LOOP2

150BYTEBUBBLESORT

EOU

CLR
MOV
LDA
CMPA
JL
INC
PUSH
LDA
STA
POP
STA
DJNZ
BTJO

R2

FLAG
%149,8
@TABLE(B)
@TABLE-1 (B)

LOOP2
FLAG '
A
@TABLE-1 (B)
@TABLE(B)
A
@TABLE-1(B)
B,LOOP1
% >FF,FLAG,SORT

'S~ap has been made' flag

Reset swap flag
Number of bytes to be sorted
Look at entry in table
Look at next lower byte
If lower skip to next value
Entry is not lower, set swap flag
Store upper byte
Take lower byte
Put where upper was
Get the old upper byte
Pu~ where the lower byte was
Loop until all the table is looked at
If swap was made then resweep table
If no swap was made, then table is done

6-63

0

6-64

7. DEVELOPMENT SUPPORT TOOLS

7.1 INTRODUCTION

With the introduction of the XDS * (Extended Development Support) concept of high
performance support for the development needs of its customers, Tl has taken a major step
toward making it easier to use its microcomputers. This ease of use coupled with the high
performance of the XDS tools will increase development productivity. Figure 7-1 shows the
typical microprocessor development system.

~
FLOPPY

DISK

HARD DISK

DEVELOPMENT
PROCESSOR

[Cl\
VDT CONSOLE

TRACE

IN-CIRCUIT
EMULATOR

~\
·~

PROM PROGRAMMER

PRINTER

FIGURE 7-1 - TYPICAL MICROPROCESSOR DEVELOPMENT SYSTEM

• XDS is a registered trademark for Texas Instruments lncorporat~d, Dallas, Texas 75265. All rights are reserved.

TARGET

7-1

As shown in Figure 7-2, the configuration for XDS development is different from the traditional
devlopment system configuration but results in the same functionality for the system
developer. The ability to use the system tools that the developer is familiar with greatly
enhances the productivity of the developer.

r----Hc>sTcoMPUrER ____ l ~
PRINTER

....-~~~-~

HARD DISK

I
I RS 232

DEVELOPMENT
PROCESSOR

IN-CIRCUIT
EMULATOR

PROM
PROGRAMMER

TARGET

L----------~~l~:!:_~ __ _J
VDT CONSOLE BREAKPOINT /TRACE

FIGURE 7-2 - TYPl,CAL XDS CONFIGURATION

7 .1.1 XDS Concept

The XDS concept is centered around host independence that features a consistent
development tool set' for Tl microcomputers and microprocessors. Included in the XDS
concept are versatile Macro Assemblers pre-configured to run on a number of hosts. These
Macro Assemblers include the necessary information to service the XDS workstations. The
XDS workstations are powerful in-circuit emulators that include breakpoint and trace
capabilities. As an option, intelligence can be added to provide XMPL * (High Level Debug
Language) for increased target control.

The host-independent configuration of the XDS, coupled with a consistent set of development
and debug tools lets the user select the Tl processor best suited to solving his problem. Having
a common set of tools available means the basic development format has to be learned only
one time and then can be used with any member of the supported Tl TMS7000 family.

XDS cross-assemblers and host interfaces are available for running under IBM 370 MVS and
CMS operating systems, DEC VAX VMS operating system, and Tl operating systems TX4,
TX990, and DX10. This broad range of systems capability permits the development of
software systems using pre-installed tools familiar to the user. This ever increasing range of
operating systems supported allows development on many different hardware configurations
(IBM 370, 3033, 43xx; DEC VAX 11; Tl TMAMSOOO, FS990/4, FS990/10, DX10, and
others) with more to come in the future (DEC PDP-11, IBM PC, Tl PC, COMPAQ, and others). In
addition, independent vendors offer support on a number of other systems (Intel MOS, Series
II, Series Ill; CP/M based systems; etc.).

Emulation of a Tl microcomputer is provided by the XDS unit using a RS232 link for interface
with a variety of host systems. User supplied peripherals are also connected through similar
RS232 links, thus creating a low-cost high-performance hardware/software development

* XMPL is a registered trademark for Texas Instruments Incorporated, Dallas, Texas 75265. All rights are reserved.

7-2

7.1.2

system. The XDS family of products supports RS232 downlink capabilities, in-circuit
emulation, and target system debugging with breakpoint and trace capabilities. These
capabilities enhance software development while executing real-time target system
debugging.

Key Features

• Host independent (cross-assemblers available for IBM MVS and IBM CMS, VAX VMS,
and Tl DSG TX4, TX990, and DX10-with others planned)

• Provides support for TMS7000, TMS320, TMS9995, AND'TMS99000 microprocessor
families

• Real-time in-circuit emulation capability

• High performance at low cost

• User friendly hardware and software

• Easily expandable

• Convenient desk-top workstation, see Figure 7-3

• Allows integrated system level debug rather than just hardware or software

7.2 CROSS SUPPORT SOFTWARE PACKAGE

. 7.3

CrossWare * (Cross Support Software Package) is available to run on many hosts to support Tl
XDS development. Tl CrossWare packages are available for the IBM MVS and CMS operating
systems, DEC VMS operating system, and Tl TX4, TX990, and DX10 operating systems.
Support is available for Intel MOS 800, Intel Series II, Intel Series Ill, and CP/M based systems
from independent vendors. See Section 8 on independent support. Future support is planned
for the DEC PDP-11, IBM PC, Tl Professional Computer and others.

The CrossWare packages come complete with a full featured macro assembler and a linkage
editor to support modular software with link of the modules at link time rather than at
assembly. This approach encourages writing of small modules and speeds the correction of
program errors.

CrossWare documentation provides the installation information necessary for each specifip
host to implement the support package and support attachment of XDS hardware for target
debug.

XDS HARDWARE

XDS hardware supports TMS7000 microcomputer system development utilizing a host
independent approach. Currently, there are two product offerings available in the XDS
hardware family. The Model 22 is .a full featured, real-time in-circuit emulator offering hardware
breakpoints and logic state trace capabilities. The Model 33 XDS offers all of the capabilities of
the Model 22 with the added feature of built in intelligence running the t'tigh level target debug
lar:iguage XMPL (Extended Microprocessor Prototyping Language).

* CrossWare is a registered trademark for Texas Instruments Incorporated, Dallas, Texas 7 5265. All rights are reserved.

7 .3. 1 Model 22

7.3.2

7.4

The XDS Model 22 includes a chassis, card cage, power supply, fan, and a three board set
consisting of an emulator, communications and memory expansion board, and a separate
board for setting breakpoints and logic state tracing (see Figure 7-3).

The software written and developed on the host can be downloaded into the Model 22
emulator memory space through a standard RS232 EIA link. Further development and testing
of target hardware and software is aided through the versatile and comprehensive debug
monitor located in firmware, onboard the emulator. Over 65 commands are available (including
HELP) to give the user complete control over the target system. Key among the 65 monitor
commands is an assembler permitting almost any system to be used as an intelligent terminal
and prepare the source text for assembly by the XDS box. The XDS Model 22 can perform full
speed in-circuit emulation with breakpoint and trace capabilites.

Utilizing the hardware and software breakpoint commands and the logic state trace analyzer, a
complete reco_rd of events can be examined to rapidly increase debugging efficiency and
decrease development time. The user can select a range· of memory addresses and 1/0
addresses to set valid breakpoints. The breakpoint/trace (B/T) board can breakpoint on any
memory cycle, a memory read, a memory write, or an instruction acquisition. For 1/0
operations, the BIT board can breakpoint o'n any 1/0 cycle, 1/0 read, or 110 write, if the 1/0
address qualifications are met. A trace is provided to give a history of execution prior to the
breakpoint. Trace samples are stored in the trace memory and can be read back after-execution
has been halted. The user can trace memory cycles and 1/0 cycles.

This cycle of 48ing the host computer and the XDS Model 22 for testing produces a quick
efficient way for target system development. After debugging is complete, EPROMs can be
programmed using the host computer's PROM programming capabilities.

Model33

The XDS Model 33 is one of the most advanced development support tools available on the
market today. It includes the feature set of the XDS Model 22, and it presents a user-friendly,
high-level interface and debug language for complete control of the target application system.

XMPL, a sophisticated, high level target debugging language, supports the previously
mentioned Tl microcomputers. The user interface presented by XMPL is screen oriented to
maximize system use and offers a procedure oriented command system. By defining new
screen formats and command processes, a collection of procedures can be supplied to support
a wide variety of applications. XMPL gives the user a means of controlling emulator functions
and communicating with the host system to gain access to mass storage and data generated
·on the host.

FIGURE 7-3 - THE XDS MODEL 22

7.5

7 .3.3 Differences And Similarities - Model 22/Model 33

7-6

Table 7-1 provides the differences and similarities between the Model 22 and the Model 33
products.

TABLE 7-1 - HARDWARE CONFIGURATION DIFFERENCE MODEL 22 TO MODEL 33.

MODEL22

SLOT BOARD FUNCTION

7 ------ FUTURE EXPANSION

' 6 ------ MODEL 33 EXPANSION

5 ------ MODEL 33 EXPANSION

4 COMMUNICATIONS COMM. WITH HOST

3 ------ Tl EMULATOR SPACE

2 EMULATOR IN-CIRCUIT EMULATION

1 BREAKPT /TRACE BREAKPOINTS/TRACE

MODEL33

SLOT BOARD FUNCTION

7 ------ FUTURE EXPANSION

6 TM990/233 XMPL PROGRAM MEMORY

5 TM990/103 · USER INTERFACE (HLll

4 COMMUNICATIONS COMM. WITH HOST

3 ------ Tl EMULATOR SPACE

2 EMULATOR IN-CIRCUIT EMULATION

1 BREAK PT /TRACE BREAKPOINTS/TRACE

Model 22 XDS and Model 33 XDS are packaged in the same modular table top workstation.
This workstation contains a dual motherboard providing for the interface between the
emulation modules and the TM990 modules used to provide the intelligence for the XMPL
language. Using this bus structure provides for easy upgrade and changing CPU support. A
diagramatic reference is provided in Table 7-1 to illustrate the similarities/differences in the
Model 22 and the Model 33.

7.3.4

The memory map of the XDS for the TMS7000 family is extremely flexible. As shown in Figure
7-4, the map can be arranged in any practical configuration that the developer desires. This
flexibility facilitates system level debug rather than just software or hardware debug.

Microprocessor

TMS70XX

Memory Location
Emulator : Memory Expansion

64K bytes : (not used, all memory in emulator)

TMS7000: Allocated in 256 byte blocks, X blocks as on-chip ROM and Y blocks as off-chip memory,
where 256(X + Y) = 64K bytes.

XMPL

FFFF

0

TMS70XX Emulator

Full address
space of TMS70XX

Memory accessable
in 256 byte blocks

FIGURE 7-4 - MEMORY CONFIGURATION IN XDS/70 MODEL 22/33

The XMPL high level debug language controls the emulation of target application programs by
setting breakpoints, defining of data or address comparison events, data and address trace, as
well as direct target system 1/0 and memory manipulation. These procedures are
programmable in a high level language using integer and boolean mathematics. The Pascal
constructs included are capable of repetitive sequences and decision making. Allowing a
program to test and act upon target application events, XMPL reads emulator and trace
conditions while viewed by the user through self-defined windows on the video screen.

The sere.en 9riented user interface is designed to maximize system use. The user is encouraged
to customize the interface to a particular application by writing a procedure to display target
registers or memory pertinent to his application. The output of the procedure is displayed in a
temporary window. If the user makes the window permanent, the information is upd,ated
whenever a command is entered and the emulator is not running. With very little effort the user
has created a constant visible description of the state of his application.

XMPL supports multiple levels of user sophistication. This allows the experienced user to
quickly enter commands and parameters all on one line, while the inexperienced user is helped
by self prompting sequences which quickly direct the user to entering the required information.
The flowchart in Figure 7-5 demonstrates the three levels.

7-7

7·8

COMMAND

(EXPERIENCED
USER)

YES NO

7.3.5

(INTERMEDIATE
USER)

EXECUTE
COMMAND

YES NO

FIGURE 7-5 - LEVELS OF XMPL INTERFACE

Breakpoint And Trace Functions

(INEXPERIENCED
USER)

NO

The XDS breakpoint and trace (B/T) board allows the user to set a hardware interrupt or
breakpoint which halts emulator execution. Breakpoints can be set on 1/0 and/or memory
operations with three simple monitor commands. The user can select a range of memory
addresses and 1/0 addresses for valid breakpoints, or can select two separate memory
addresses or two separate 1/0 addresses. The BIT board can breakpoint on any memory cycle;
memory read, memory write, or an instruction acquisition. For 1/0 operations, the BIT board
can breakpoint on any 1/0 cycle; 1/0 read, or 1/0 write if the 1/0 address qualifications are met.

The trace function is provided to give a history of execution prior to the breakpoint. It is used to
analyze a set of signals based.on addresses and commands. Trace samples are stored in trace
memory and can be read back after execution has been halted. The user can trace both
memory and 1/0 cycles including memory read, memory write, and instruction acquisitions or
all memory cycles, and 1/0 read, 1/0 write, or any 1/0 cycle.

7.3.6

The trace memory can hold 2048 words by 48 bits of trace samples. The user is given the
option of how many of these 2048 samples to take, or to keep wrapping around in trace
memory, writing over the oldest trace sample with the newest trace sample.

Multiprocessing

With the ever increasing use of sophisticated designs of multiple microprocessor systems,
there is need for multiprocessor development support. Tl's XDS offers this multiprocessor
support to debug up to 9 stations linked together in a daisy chained fashion. These systems
can be ar:iy of the XDS supported Tl processors (TMS7000 family, TMS320 family, TMS9995
family or the TMS99000). The XDS system is connected to the host computer via the RS232
port of the last XDS workstation. A single user CRT interface can control each of the
workstations. The target system may be of any configuration of Tl microprocessors that are
supported by XDS. Each workstation may be utilized individually or the workstations can be
grouped or subgrouped to synchronize control over the entire target system.

7 .4 EVALUATION MODULES

The Texas Instruments RTC series of evaluation modules are designed for hands-on hardware
evaluation of specific Tl microcomputers. In addition, the RTC/EVM's can function as a limited
feature, stand-alone development system for the family of parts that they support. To facilitate
the evaluation/development functions, EVMs offer text editing, audio cassette interface,
upload/download support, assembler, and EPROM programming utility.

The RTC/EVM7000, Figure 7-6, is designed to emulate the single-chip mode of the TMS7000.
It does not support the expansion modes of the TMS7000 family of processors.

FIGURE 7-6 - THE RTC/EVM 7000 EVALUATION MODULE

7-9

7.4.1 TMS7000 EVM

7.4.1.1

The RTC/EVM7000 is a single board system capable of emulating the single-chip mode of
operation of the TMS7000 family of microcomputers. There are two versions of the evaluation
module: the RTC/EVM7000N-1 for NMOS members of the TMS7000 family and the
RTC/EVM7000C-1 for CMOS versions. The EVM can stand alone as a development.system,
using the on-board text editor for creation of TMS7000 Asssembly Language text files, and the
audio cassette tape interface, with limited directory and file search capability as a mass storage
media. A more productive environment can be accomplished by connecting the EVM to a
resident host computer that is used to develop and save the text files and either using
Cross Ware to assemble them on the host or download the text files to the EVM for assembly by
the on-board assembler. To support this and other possible configurations the EVM has two EIA
RS232 ports.

The EVM firmware supports three ports in the operation of loading and dumping data (text,
object code) for storage and/or display. Two of these ports conform to EIA RS232C and are
called PORT 1 and PORT 2. The third port is the audio tape connection, PORT 3. The baud rates
supported on PORTs 1 and 2 are 110 through 9600 baud.

The EVM comes equipped with eight BK byte sockets for the entire 64K byte address space of
the TMS7000. Currently, 16K bytes of the EPROM is devoted to the resident firmware
(>COOO to >FFFF). User RAM is expanded in BK byte increments, from 16K bytes to 32K
bytes. Available to the user for addition of logic is a wire-wrap development area.with all
required signals provided and labeled.

To facilitate evaluation/development of a TMS7000 project, the EVM offers a limited feature
emulation capability. The crystal frequency of the EVM can be tied to the target application
through the emulation cable.

Operating System

The EVM operating system firmware resides in 16K bytes of EPROM and is divided into three
functional areas:

• Debug monitor and EPROM programmer
• Assembler
• Text Editor

All the software is designed to interact with itself and the user to provide an easy to use
development/evaluation tool.

The EPROM programmer provides control for:

• TMS2764 EPROMS
• TMS2712B EPROMS

During assembly/debug operations, the EVM RAM can be configured to emulate all TMS7000
family members and for the emulation of the 2K and 4K ROM version devices, allows assembly
of text files directory from RAM.

7.5 PROTOTYPE COMPONENT

7-10

The SE70P161 is a protyping component that Texas Instruments offers to support form factor
evaluation of a TMS7000 target.

7.5.1 SE70P161 Description

The SE70P161 protyping component is another member of the TMS7000 family of single-chip
8 bit microcomputers. The SE70P161 is pin compatible with the TMS7020, TMS7040,
TMS70120, and TMS7041, and has the same instruction set as these devices. The
SE70P161 can also be used to emulate CMOS members of the TMS7000 family, with the
following limitations. Because the SE70P161 is an NMOS device, its logic levels are not CMOS
compatible. Also, this device does not support the low-power modes of the CMOS devices
such as HALT or Wake-up. Finally, INT1 on the SE70P 161 is both latched and level triggered as
in the NMOS devices, not just latched, as in the CMOS devices. Further details of these
differences are provided in the sections which discuss the function.

The SE70P161 serves as a form fit and function component for the TMS7000 devices and
provides the ability to verify in real-time the software written for all TMS7000. family members
mentioned in the preceding paragraphs. This device uses standard 2764 or 27128 EPROMs.
The EPROMs are located in a socket in the top of the 40 pin SE70P161. Refer to Table 7-2 for
mapping information for the various EPROMs supported.

The SE70P161 is packaged so that an EPROM device can be plugged into the top of the
package (piggy back). This two chip unit acts as an emulator of the TMS7020 (2K bytes of
internal ROM space), the TMS7040/7041 (4K bytes of internal ROM space), and the
TMS70120 (12K bytes of internat ROM space).

TABLE 7-2 - EPROM USE

EPROM 70XX
70XX* 27XX

TYPE ROM
START START

ADDRESS ADDRESS

27128 16K Bytes >C006 >0006

27128 12K Bytes >0006 >1006

2764 BK Bytes >E006 >0006

2764 4K Bytes >F006 >1006

2764 2K Bytes >F806 >1806

•NOTE: Texas Instruments reserves the first 6 bytes of ROM. For example addresses from > FOOO to >FOOS may not be defined
by the user program for a TMS7040.

The SE70P161 is available in two versions. Both versions have fixed internal ROM space of
16K bytes (COOO-FFFF), one with a divide by two clock generator and the other with a divide
by four. Note that on the SE70P161, none of the 16K EPROM address space can be mapped as
external addresses except in microprocessor mode.

7-11

7.5. 1.1 Prototyping

7.5.1.2

System emulator~ such as the SE70P161 are only designed to be used in a prototype
environment and as such are tested and supported for that purpose. ·

TMS7041 Prototyping

The SE70P161 serves as a prototyping component for the TMS7000 devices and provides the
ability to verify in real-time software written for all TMS7000 family members mentioned in
Section 4. This device uses standard .TMS2764 or TMS27128 EPROMs. The EPROMs are
located in a socket on top of a 40-pin dual-in-line package.

7. 5. 1. 3 TMS7020/TMS7040/TMS70120 Prototyping

The· SE70P161 system emulator can also be used as a TMS7020/TMS7040/TMS70120
prototype. In this case, Pl 6 (Peripheral File location >010), must be cleared during the device
initialization routine to prevent spurious interrupts from the unused serial port logic. One way to
accomplish this is by coding MOVP % >OO,P16 in the initialization routine.

7.5.1.4 SE70P161 Electrical Data

Refe!ence Section 4.3 (SE70P161) for electrical specifications.

7.6 PHYSICAL AND ORDERING INFORMATION

7.6.1 CrossWare

PART NUMBER DESCRIPTION OPERATING SYSTEM

TMDS7040113-21 Tl 990DSDD TX-5
TMDS7040123-06 Tl 990T50 DX10
TMDS7040123-08 ·Tl 990Tape DX10
TMDS7040123-10 Tl 990 DS10 DX10
TMDS7040123-22 Tl 990 CD1400 DX10
TMDS7040133-03 Tl 990SSSD TX-4
TMDS7040210-08 DEC VAX Tape VMS3.0
TMDS7040310-08 IBM Mainframe MVS
TMDS7040320-08 IBM Mainframe CMS

7 .6.2 XDS Hardware

\

MICROCOMPUTER·
XDS

PART NO.
MODEL NO.

TMS7020, TMS7040
TMS7041, TMS70120 Model 22 TMDS7062210

Model 33 TMDS7063310

7-12

7.6.2.1

7 .. 6.3

7.6.4

384

Physical Specifications

The XDS equipment is a professionally styled table top sized unit suitable for most work
surfaces. The XDS Models 22 and 33 have an air inlet on each side of the unit and an air
exhaust port on the rear of the unit. A minimum of five inches clearance must be maintained
between the XDS and neighboring equipment on the sides and rear for proper air flow. Listed
below are the dimension and clearance requirements.

DIMENSIONS

Width = 17 .0 Inches (43.2 CM)
Depth = 16.5 Inches (41.9 CM)
Height = 7.4 Inches (18.8 CM)

Target Cable = 1_ 8.0 Inches (46.0 CM)

CLEARANCE REQUIREMENTS

Sides: 5 Inches Minimum (15.2 CM)
Back 5 Inches Minimum (15.2 CM)
Top None Required
Front None Required

Evaluation Modules

The RTC/EVM is available in two configurations. The first configuration RTC/EVM7000N-1
supports the NMOS versions of the TMS7000 single chip microcomputer family. The
RTC/EVM7000C-1 is designed to support the CMOS members of the TMS7000 family. Listed
below are the RTC/EVM part numbers.

RTC/EVMPN DEVICES SUPPORTED

RTC/EVM7000N-1 7020/7040/70120/7041

RTC/EVM 7000C-1 70C20/70C40

Warranty Services

A limited warranty covers the cost of parts and labor if any defects in materials or maufacturing
methods require service within 90 days from the date of purchase fro'!' Tl. The software
license agreement and subscriber card must be completed and returned to Tl before the license
is in force.

All technical questions and requests for service for XDS development of hardware and
software should be directed to the customer support lines at the nearest Tl Regional
Technology Center (See paragraph 1.4.2, Hotline Assistance).

Repair of XDS equipment is performed at the system level with chassis and all boards being
returned to the Houston factory repair center.

7-13

7-14

8. INDEPENDENT SUPPORT

8.1 INTRODUCTION

The TMS7000 family of single chip microcomputers is supported by product offerings from a
number of independent vendors. These support products take many forms, from cross
assemblers that run on small systems to second sources for the TMS7000 components.
Included in this section are a number of tools that augment the support provided by Texas
Instruments. Inclusion of a product in this section does not constitute product endorsement on
the part of Texas Instruments but merely an attempt at product awareness. The products listed
here are representative of independent vendor supplied products and are not intended to be an
all inclusive list of independent vendor supplied support tools.

8.2 PROCESSOR INNOVATIONS* - INTEL* BASED SUPPORT TOOLS

8.2.1

The· XI* Core Cross-Development Package enhances an lntellec * system to provide
stand-alone development facilities for designing vyith Texas Instruments' TMS320, TMS7000,
TMS99XX, and TMS99XXX microprocessor families. The XI Core Cross-Development
Package consists of an Xl-90/30 CPU module, the XI Software System, and companion
documentation.

The XI CPU module is a busmaster module which converts an lntellec system into a dual
processor XI development station. The XI CPU module, when inserted . in an available
busmaster slot within the lntellec system chassis, coexists with the lntellec system's current
8080 family CPU module. The module is passive during microprocessor development sessions
with Intel microprocessors and active for all XI microprocessor cross-development sessions for
the TMS7000 family.

The XI Software System consists of Processor Innovations' XI cross-development operating
system plus a companion set of target product development, debug, and firmware
manufacturing utilities for execution on the X~ system. The XI operating system is dedicated to
microprocessor development cross-support and is functionally equivalent to the Texas
Instruments' AMPLUSt operating system for Tl development systems.

The XI Core Cross-Development Package has been designed to accommodate all currently
available lntellec development systems.

XI Workstation Device Support

The XI Core Cross-Development Package converts an lntellec system into an XI workstation
capable of supporting both Intel and Texas Instruments microprocessor development activity.
An XI workstation, when used to design with Texas Instruments' microprocessors, supports
the following lntellec and XI devices:

• lntellec dual disk drive system (single or double density)

• lntellec display terminal

• lntellec line printer

* Processor Innovations and XI are registered trademarks for Processor Innovations Corporation, Eatontown, N.J. 07724. Intel and lntellec are
registered trademarks for Intel Corporation, Santa Clara, CA. 95051. All rights are reserved.

t AMPLUS is a registered trademark for Texas Instruments Incorporated, Dallas, Texas 75265. All rights are reserved.

8·1

8.2.2

8-2

• XI RS232C serial communications interface

• XI CRU expansion chasis interface

The XI RS232C interface is heavily used by the XI Software System to extend XI device
support to include:

• Board level target systems, such as Texas Instruments' TMS7000 evaluation modules.

• RS232C based in-circuit emulation tools, such as Tl's XDS* emulator instruments for:

TMS7000 8 bit single-chip microcomputer family

RTC/EVM evaluation modules

TMS320 32 bit processor family

TMS99000 16 bit processor family

TMS9995 16 bit microprocessor

RS232C PROM/EPROM programmers

The CRU expansion chassis interface is a high speed serial link used with separately-packaged
XI software utilities to extend XI device support to include:

• Tl CRU based in-circuit emulator systems for:

TMS7000 assembler and microassembler

TMS9900/9900-40

TMS9980A/9981

TMS9989

TMS9940

• Tl CRU based logic state trace system

• CRU based PROM/EPROM programmer system

Additional development hardware support will be provided in later XI Software System
releases and through the introduction of planned XI add-on packages.

Company To Contact

Processor Innovations Corp.
P.O. Box L
Eatontown, N.J. 07724

Phone (201) 542-6500

Contact - Marketing

8.2.3

8.2.3.1

8.2.3.2

Product Offerings

PIDS 1810-11

The Xl-800 Core Cross-Development Package contains the hardware, software and
documentaion necessary to upgrade an lntellec Model 800 to an Xl-800 development
workstation. This package contains an Xl-90/30-20 CPU module, 4 floppy diskettes (2 single,
2 double density), and supporting documentation.

PIDS 1810-12

The XI-II Core Cross-Development Package contains the hardware, software and
documentation necessary to upgrade an lntellec Series 11/80 or lntellec Series 11/85 system to
an Xl-11 development workstation. This package contains an Xl-90/30-30 CPU module, 2
floppy diskettes (1 single, 1 double density) and supporting documentation .

. 8.2.3.3 PIDS 1810-32

The XI TMS7000 family Macro Assembler Package contains the software and documentation
necessary to add TMS7000 assembly language program translation capability to an XI
development workstation. It contains two XI floppy diskettes (1 single, 1 double density) and
supporting documentation.

8.3 ALLEN ASHLEY - CP/M* BASED SUPPORT TOOLS

Included in the Allen Ashley cross assembler series are cross assemblers for Tl's TMS7000
family, TMS9900 family, and TMS320 family of processors. This series of cross assemblers
allows any CP/M system to serve as a development station for single-chip microcomputers and
microprocessors.

With minor exceptions the SYSTEM-TMS7 assembler features instruction mnemonics and
syntax as defined by Texas Instruments. The SYSTEM-TMS7 includes the ASMB interactive
assembler/editor, the MAKRO macro assembler, the EDIT text editor, a cross reference
generator, and off-loading facilities.

The ASMB editor/assembler is intended for the creation, modification and test of program
modules. ASMB includes a simple ass~mbler, a line editor, and the facilities for saving and
retrieving files from disk. Source code for ASMB ·is maintained in memory to eliminate the
requirement for a separate edit cycle. The source language is assembled into object code
directly into RAM for immediate testing. Program errors can be caught, repaired and
re-assembled in seconds with ASMB. Validated program modules developed with ASMB can
be saved on disk for input to the more powerful MAKRO disk assembler.

The MAKRO assembler includes full macro and conditional assembly features, as well as the
ability to link a series of source files together during a single assembly. MAKRO reads the
source code from·disk and writes object code back to disk: all available memory is free for
symbol tables and macro expansion. MAKRO is the vehicle by which the modules developed
under ASMB can be collected together into a single program. MAKRO treats the disk as an
extension of memory, and source files exceeding available memory size can be assembled.

• CP/M is a registered trademark for Digital Research Incorporated, Pacific Grove, CA. 93950. All rights are reserved.

8·3

EDIT is a full spectrum string oriented text editor which includes all the features required to
create or modify source progr~ms for the MAKRO assembler. Source programs on an input disk
file are paged into a dynamic memory buffer, modified and written out to the output disk file.
Commands include block move or delete, string search or change, and disk file merge. A single
command reformats the line-oriented source file created under ASMB to the free-form source
input of MAKRO.

Programs-created with the development systems must be off-loaded to the target processor.
Facilities are provided to implement the offload as a direct transfer from memory, via a byte
stream over a CPU port, or via COM or HEX files. An off loader for HEX files is provided. Direct
support for off loading to the XDS line of Tl support tools is included.

8.3.1 Company To Contact

8.3.2

8.3.2.1

Allen Ashley, Inc.
395 Sierra Madre Villa
Pasadena, Ca. 91107

Phone(213)793-5748

Contact - Marketing

Product Offerings

CP/M Bases Development Software For The TMS7000 Family

The SYSTEM-TMS7 is a total software package for the development of TMS7000 code on a
CP/M based small microprocessor system complete with documentation and utilities.

The following formats can be supplied:

IBM PC Morrow Micro Decision
TRS-80 (TRSDOS) Mod Ill
Osborne I
Kaypro II
North Star - CP/M
Micropolis Mod II
Xerox 820
Standard 8" CP/M format (SSSD)

8.4 SEEQ *: SELF-ADAPTIVE EEROM

The SEEQ 72720 is a full function single-chip microcomputer, fabricated in N-channel Silicon
Gate technology, which contains a 2K x 8 5V nonvolatile electrically erasable (EEROM)
program memory. The program memory can be erased and programmed via the processor
itself during normal program execution or can be programmed under control as if it were a
standard 5V EEROM memory component. The EEROM can easily be expanded off-chip using
the processor's Full Expansion Mode. External EEROM can be programmed with the same
instruction used to alter on-chip EEROM.

* SEEQ, DiTrace, and Silicon Signature are registered trademarks for SEEQ Technology Incorporated, San Jose, CA. 95131. All rights are
reserved.

8-4

8.4.1

A security lock mechanism is implemented in EEROM memory which allows the user's
program to inhibit external access to its proprietary program code. Once activated this lock can
be reset only by an external EEROM block clear operation which erases the entire program
memory contents.

As with other EEROM devices which SEEQ manufactures, the 72720 has DiTrace * and Silicon
Signature* features to facilitate production testing tracking. Each device is encoded with
detailed processing and testing results which are stored in a special EEROM memory as it
passes through the manufacturing cycle. Also stored is an unalterable identification code
which contains information such as mask revision and EEROM programming parameters.

An EEROM Microcomputer member of the TMS7000 family is desirable because the
availability of a single-c_hip microcomputer with nonvolatile program memory which can be
altered under process control makes possible the design of low cost products with many new
features:

•

•

•

•

•

•

•

Self adaptive code for machines that learn as they perform t~eir tasks .

In-Circuit reprogrammability to eliminate product disassembly for firmware updates .

Remote reprogrammability to eliminate service calls for firmware updates .

Internally stored product history including factory test results, product configuration,
revision level, and service records.

Stored initialization parameters to eliminate front panel switches . and automatically
configure product for one or many users.

Product usage and error logging to simplify maintenance and pinpoint product failure
modes.

Code and data security to protect proprietary programs and confidential data .

Company To Contact

SEEQ Technology Incorporated
1849 Fortune Drive
San Jose, California 95131

Phone(408)942-1990

Contact - Marketing

* SEEQ, DiTrace, and Silicon Signature are registered trademarks for SEEQ Technology Incorporated, San Jose, CA. 95131. All rights are
reserved.

8·5

8·6

9. QUALITY AND RELIABILITY

9.1 INTRODUCTION

Quality and reliability (Q&R) performance of Texas Instruments Programmable Products, which
includes the TMS7000 family, relies upon systematic input from:

• Our customers

• Our total manufacturing operation from front end wafer fabrication through final shipping
inspection

• Product quality and reliability monitoring

Our customers' perception of quality must be the governing criteria for judging performance,
and this concept is- the basis for Texas Instruments Corporate Quality Policy, which is as
follows:

"For every product or ser\tice we offer we shall define the requirements that solve
the customers' problems, and we shall conform to those requirements without
exception."

The Programmable Products Division (PPD) has established aggressive internal quality and
reliability goals for the TMS7000 series but is even more concerned with receiving continuing
customer feedback to ensure user satisfaction. Customer perceived performance is the most
important PPD Q&R measurement, though it is the last input received for any product delivery
cycle.

9.2 AVERAGE OUTGOING QUALITY

PPD continually inspects its products prior to shipment for electrical and mechanical
compliance to Data Manual or Customer Specifications. Discrepancies are analyzed and
corrective actions are taken to achieve our internally established goals, which are ·as follows:

4083 4084 4085

Electrical Testing 800PPM 400PPM 200PPM

Visual/Mechanical Inspection 800PPM 400PPM 200PPM

More significantly, PPD is currently working very closely with several customers to achieve
comparable levels of performance, as measured by the customer in a system environment.

9-1

9.3 NEW PRODUCT AND MAJOR CHANGE RELIABILITY QUALIFICATION TESTING

As part of PPD's normal process of introducing new products or making major changes, plastic
packaged devices must demonstrate satisfactory performance in the following
environments:

1000 hours, 125 °C Dynamic Operating Life Test
1000 hours, 1 50 °C Storage
1000 hours, 85 °C/85% Relative Humidiity, Biased
1000 cycles, -65 °C to 1 50 °C Temperature Cycling
96 hours, Autoclave @ 1 5 PSI
Electro Static Discharge resistance

Additional tests may also be performed when appropriate.

Failure mechanisms are identified through failure analysis, and corrective actions are
implemented to provide continual performance improvements.

Current PPD goals for key performance environments are as follows:
. J

4083 4084 4085

Dynamic Operating Life Test 100 60 50
Derated to 55 °C, .5EV, 60%UCL FITS FITS FITS

85 °C/85% Relative Humidity, .8 .5 .3
Biased % Failures

Temperature Cycling .3 .25 .1
% Failures

Wherever possible PPD encourages customer cooperation/participation in achieving
qualification certification for PPD. Joint customer/PPD qualifications have been achieved and
provide an efficient approach to demonstrating required reliability performance for both PPD
and the user.

9.4 RELIABILITY MONITORlNG

9·2

After products are initially qualified, representative product samples are tested on a quarterly
basis to measure and verify performance to goals for the key performance environments:

• Operating life test

• 85 °C/85% relative humidity, Biased

• Temperature cycling

• Autoclave

Analysis of failures is performed to determine the need for design or manufacturing
improvements.

9.5 TMS7000 Family Reliability Performance

384

A summary of recent performance data on this family of devices demonstrates the following
results:

TABLE 9-1 - DYNAMIC LIFE TEST

TEMP
DEVICE HOURS

DEVICE oc SAMPLE SIZE FAILURES (.5eV @ 55 °C)
Millions

7040 150 42 0 2.23
7040 125 687 0 10.70
7040 85 194 0 .85
7041 125 182 1 4.09
7041 95 78 0 .53
70120 125 455 0 10.23

1638 1 28.63

(60% UCL) Failure Rate: 71 FITS
MTTF: 1614 Years

9-3

9.4

TABLE 9-2 - ENVIRONMENTAL TESTS

ENVIRONMENT
SAMPLE

FAILURES
%

SIZE FAILURES

Biased 85°/85.% RH, 1000 Hours 275 3 1.1

1 50 C Storage, 1000 Hours (Mil Std 883B) 220 1 0.5

Temp Cycle, -65°/150°, 1000 Cycles
(Mil Std 883BI 401 2 0.5

Auto Clave, 96 hours 262 0 0

Cycled Biased Humidity, 1000 Hours 38 1 2.6

100TempCycles-65°/150° + 500Hours
85 °/85% RH + 500 Hours 125 °Dynamic Life Test 45 0 0

Solderability (Mil Std 883BI 48 0 0

Lead Fatigue (Mil Std 883B) 5 0 0

Salt Atmosphere (Mil Std 8833B) 10 0 0

PPD is committed to satisfying your qualty and reliabiility requirements and invites comments
and questions in supporting customer needs.

10.

10.1

10.1.1

GENERAL INFORMATION

TMS7000 FAMILY DEVICES

Prototype And Production Flow

The TMS7000 family of masked ROM microcomputers are semi-custom devices with ROM
tailored to the customer's application requirements. The semi-custom nature of these devices
requires a standard, defined interface between the customer and the factory in the production
of TMS7000 devices with on-chip ROM. Figure 10-1 shows this standard
prototype/production flow for customer ROM receipt. The following sequential steps refer to
the blocks in Figure 10-1 . ·

CUSTOMER SUBMITS
ROM CODE

NO

NO

CUSTOMER SUBMITS
MICROCOMPUTER SPEC

Tl PERFORMS
ROM RECEIPT

. Tl ORDERS MASKS,
MANUFACTURES AND
SHIPS 25 PROTOTYPES

CUSTOMER RELEASE
TO PRODUCTION

Tl SHIPS
PRODUCTION DEVICES

CUSTOMER SUBMITS
NPRF

FIGURE 10-1 - PROTOTYPE AND PRODUCTION FLOW

10·1

10-2

1) For Tl to accept the receipt of a customer ROM algorithm, each of the following three
items must be received by the Tl factory:

A. The customer completes and submits a New Products Release Form (NPRF) to Tl
describing the custom features of the device (e.g., customer information,
prototype and production quantities and dates, any exceptions to standard
electrical specifications, customer part numbers and symbolization, package
type, etc). The NPRF is available from Tis' field sales engineers.

B. The customer submits a copy of the specification for the microcomputer in their
system, including the functional description and electrical specification (including
absolute maximum ratings, recommended operating conditions, and timing
values).

C. When the customer has completed code development and after verification of this
code with the development system, the standard TMS7000 tagged object code is
sublJlitted to the Tl factory on ·an acceptable media for processing. These include:

• Single-sided, single density floppy disks formatted by the 990/4 TXDX
floppy disk operating system or the TX990.conversion utilities on hard-disk
based AMPL systems.

• Double-sided, double density floppy disks formatted by the TMAM9000
AMPLUS operating system.

• Bulk Data Transfer from a Texas Instruments Regional Technology Center
(RTC) to the Tl Wilcrest facility to the DX990.

• Coded EPROM devices (i.e., 2516, 2532, 2716, 2732)

The mask ROM codes should be sent to:

Texas Instruments Microcomputer Division
P.O. Box 1443, MS 6435
Houston, TX 77001

2) Code review and ROM receipt is performed on the customer's code and a
manufacturing ROM code number is assigned to the customers algorithm. All future
correspondence shoud indicate this number. The ROM receipt procedure reads the
ROM code information, processes it, and reproduces the customers tagged ROM
object code which is returned to the customer for verification of correct ROM receipt.

3) The customer then verifies that the ROM code received by Tl is correct and that no
information was misinterpreted in the transfer. The customer will then return written
confirmation of correct ROM receipt verification or will re-submit the code for
processing.

4) Tl generates the prototype photomask, processes, manufactures, and tests 25
prototype devices for shipment to the customer. Limited quantities in addition to the
initial 25 prototypes may also be purchased by the customer for use in customer
evalation.

10.1.2

NOTE

Texas Instruments recommends that prototype devices not be used in production
system since their expected end-use failure rate is undefined but is predicted to be
greater that standard qualified production.

All prototype devices are shipped against the following disclaimer:

"It is understood that, for expediency purposes, the initial 25 prototype devices (and any
additional prototype devices purchased) were assembled on a prototype (i.e., non-production
qualified) manufacturing line whose reliability has not been characterized. Therefore, the
anticipated inherent reliability of these devices cannot be expressly defined." · '

5) The customer verifies the operation of these prototypes in the system and responds
with either written customer prototype approval ?r disapproval.

6) With customer algorithm approval, the ROM code is released to production and Tl will
begin shipment of production devices according to customer's final specification and
order requirements.

Two leadtimes are quoted in reference to the preceeding flow:

Prototype leadtime - elapsed time from the receipt of written ROM receipt verification to
the delivery of 25 prototype devices.

Production leadtime - elapsed time from the receipt of written customer prototype approval
to delivery of production devices.

For the latest TMS7000 family leadtimes, contact the nearest Tl field sales office.

Device Prefix Designators

To provide expeditious system evaluations by customers during the product development
cycle, Texas Instruments assigns a prefix designator with four options: TMS, TMP, TMX, and
SE.

TMX, TMP, and TMS are representative of the evolutionary stages of product development
from engineering prototypes through fully qualified production devices. Figure 10-2 depicts
this evolutionary development flowchart.

10-3

TMX XXXX

TMP XXXX

TMS XXXX

10·4

. Experimental devices that are not
repres~ntative of the final device's
electrical specifications.

Final silicon die that conforms to the
device's electrical specifications but has
not completed reliability verification.

Fully qualified production devices.

FIGURE 10-2 - DEVELOPMENT FLOWCHART

384

10.1.3

384

TMX devices are shipped against the following disclaimer:

1) Experimental product and its reliability has not been characterized.

2) Product is sold "as is".

3) Product is not warranted to be exemplary of final production version if or when
released by Texas Instruments.

TMP devices are shipped against the following disclaimer:

1) Customer understands that the product purchased hereunder has not been fully
characterized and the expectation of reliability cannot be defined; therefore, Texas
Instruments standard warranty refers only to the device's specifications.

TMS devices have been fully characterized and the quality and reliability of the device has been
fully demonstrated. Texas Instruments' standard warranty applies.

The SE prefix desig.nation is given to the system evaluator devices used for prototyping
purposes. Currently this designation applies only to the SE70P161 member of the TMS7000
family.

SE devices are shipped against the following disclaimer:

1) System evaluators and development tools are for use only in a prototype environment
and not warranted for sale in the customer's application.

Clock Options

There are two clock options available on the NMOS TMS7000 family devices (TMS7000,
TMS7020, TMS7040, TMS70120, TMS7001, TMS7041) for converting the external
frequency to the internal machine cycle frequency, called Phi (<)>) They are termed the divide by
two (12) or the divide by four (14) clock options. These are mask options which means the
option is finalized at the time of manufacture and is NOT changeable by software or hardware.
If the divide by two clock option is chosen, the external frequency divided by 2 is the internal
machine cycle frequency. A 5 MHz crystal would generate an internal machine cycle of 2.5
MHZ with the divide by two option. If the divide by four clock optiOn is chosen, the external
clock is divided by 4 so that the same 5 MHZ crystal would generate an internal machine cycle
of 1 .25 MHz. (In this example a 10 MHz crystal would be used to get a 2.5 MHz internal
machine cycle.)

The divide by two clock option is recommended for use with crystals and the divide by four
clock option use either a crystal or another external clock source. It is not recommended to use
an external source to drive a divide by two device. If a crystal is used it is connected between
pins XTAL 1 and XTAL2. To improve the crystal waveform, 15 pF capacitors are connected
between XTAL 1 and ground and XTAL2 and ground. If an external clock source is used, it is
connected to XTAL2 (also called CLKIN), while XTAL 1 is left floating.

10·5

10.1.4

10.1.5

The selection of the divide by clock option for TMS7000 family members with on-chip ROM is
designated by the customer in the New Products Release Form (see Section 10.1.1), while
standard TMS7000 family members without on-chip ROM have this designation as part of
their part number (see Section 10.1.5.2).

Reserved ROM Locations

TMS7000 family members with on-chip ROM have the first 6 byte locations reserved for Tl
use. Therefore these locations must not be used by the customer in the development of the
ROM code. The user must remember this when performing development using the XDS
emulator, the EVM, the SE70P161, or a TMS7000 family member without on-chip ROM. Table
10-1 depicts the valid ROM starting address for the common family members.

TABLE 10-1 - VALID ROM START ADDRESSES

FAMILY
MEMBER

7020,70C20
7040, 7041, 70C40
70120

Ordering Information

ROM
SPACE

2K Bytes
4K Bytes

12K Bytes

VALID START
ADDRESS

>F806
>F006
>0006

TMS7000 family devices can be divided into two categories for ordering information and
symbolization, with the distinction being made on the presence (or absence) of on-chip ROM.

10. 1.5. 1 . TMS7000 FC?mi/y Members With On-Chip ROM

TMS7000 family members with on-chip ROM are semi-custom devices with the ROM mask
programmed to the customer's requirements. These devices follow the prototyping and
production flow outlined in Section 10. 1. 1. Since they are semi-custom devices, they receive a
distinct identification as follows:

c
MICROCODE DESIGNATOR i

C standard

4 5 2

l custom

UNIQUE CUSTOMER ROM
CODE IDENTIFICATION

PACKAGE
N plastic DIP, 100-mill pin spacing
N2 plastic DIP, 70-mill pin spacing
JD side brazed ceramic DIP, 100-mill pin spacing

All packages are currently 40-pin, 600-mil dual-in-line packages (DIP). Refer to section
10.1.6 for complete package dimensions.

10·6 384

There are two types of symbolization for TMS7000 family members with on-chip ROM. These
are:

1) Tl standard symbolization

2) Tl standard symbolization with customer part number.

(a) (bl (c) MEANING OF MARKINGS

line 1: .,, C12345N2 DBUA8327 (al Texas Instruments trademark
(b) Customer's ROM code

line 2: (d) ©1981TI ©1983 Tl (fl (c) Tracking mark and date code
(d) Tl microcode copyright

line3: (el 24655 (gl Philippines (e) Lot code
(f) Copyright of ROM code
(gl Assembly site

FIGURE 10-3 - Tl STANDARD SYMBOLIZATION

(al (gl MEANING OF MARKINGS

line 1: .,, 123456789012 (a) Texas Instruments trademmk
(bl (cl (b) Customer's ROM code

line 2: (dl ©1981 Tl C12345N2 DBUA8327 (c) Tracking mark and date code
(d) Tl microcode copyright

line3: (el 24655 ©1983 Tl (fl (e) Lot code
(f) Copyright of ROM code

line 4: (hl Philippines (g) Customer part number

(hl Assembly site
FIGURE 10-4 - Tl STANDARD SYMBOLIZATION WITH CUSTOMER PART NUMBER

10. 1. 5. 2 TMS7000 Family Members Without On-Chip ROM

384

TMS7000 family members without on-chip ROM are standard device types, and therefore
have a standard identification as follows:

DEVICE TYPE

CLOCK OPTION

TEMPERATURE RANGE
L 0 C to 70 C
A -40 C to 85 C

PACKAGE

2 divide by two
4 divide by four

N plastic DIP, 100-mill pin spacing
N2 plastic DIP, 70-mill pin spacing
JD side brazed ceramic DIP, 100-mill pin spacing

All packages are currently 40-pin, 600-mill dual-in-line packages (DIP). Refer to section 10.1.6
for complete package dimensions. ·

10-7

Examples of common TMS7000 family members without on-chip ROM are:

TMS7000NL-2
TMS7000NL-4

TMS7001 NL-4
TMS7001 N2L-2

The standard symbolization for these de.vices is shown in Figure 10-5.

(a) (b) MEANINGS OF MARKINGS

line 1: " TMS7001 NL-2 (a) Texas Instruments trademark
(b) Standard device number

line2: (d) ©1981TI DBUA8327 (c) (c) Tracking mark and date code
(d) Tl microcode copyright

line 3: (e) 24655 (f) Philippines (e) Lot code
(f) Assembly site

FIGURE 10-5 - Tl STANDARD SYMBOLIZATION FOR DEVICES WITHOUT ON-CHIP ROM

10.1.6 Mechanical Data

·--~ •• ~'.
~ .

I' 53.09 12.0901 MAX •1

~~~~~,~:::::::::::::::::~I 
ct. 15.24 - 0.254 ct. 0---- ----@ 
!4"'10 600: 0.01011 

I I 0, 508 10.0201 • 

·~10: =. '1. _ S'AO,_G eCAN,ilnonn11nnnnnnnnnonn11
1 

~nd ~~I0. 200I MAX 

~- ~ . -v v v vv v v v v v li li v v v v VllilV~ ~ 1 3 .
17

10.
1

2
5

1MIN 
~~279 • 0.0761~ 0.457' 0,076 -+iie-~ j __J_ 

10.011 • ·0.0031 i\ . 10.010' o.0031 I . ~ o.838 10.0331 MIN 

10-8 

PIN SPACING 2.54 10 1001 T P . ~'.!6/gg;;ll 
' !See Note al 1, 52 10 0601 NOM 

NOTES: a. Each pin centerline is located within 0.254 10.0101 of its true longitudinal position. 
b. All linear dimensions are in millimeters and parenthetically in inches. 

FIGURE 10-6 - 40 PIN PLASTIC PACKAGE, 100 MIL PIN SPACING 

(TYPE N PACKAGE SUFFIX). 

384 



40-PIN PLASTIC PACKAGE (0.070 PIN SPACING) 

t 35,31 (1.390) MAX •1 

~~1~~·~::::::::::::::::::1 
CD @ 

ct. 15.24 :!: 0,254 ct. 

l,(0.600±0.010)J -4 '·"~:.:~ .. t.J. - _,,.,, .. ,,..,~j ~ E5,08(0.200lMAX 

00o 0.
457 

±0,0
76 

3.17 10.1.25) MIN 

0.279 :!: 0,0761~ (0 018±0 003)-1~ i-11 
10.011 :1: 0.0031 II · · · I · 

PIN SPACING 1,78 (0.070)T.P. j 1,27 10.050) MAX 
. (See Note al 1•02 C0.040l NOM 

NOTES: a. Each pin centerline Is located within 0,254 (0.0101 of its true longitudinal position. 
b. All linear dimensions are in millimeters and parenthetically in Inches. 

FIGURE 10-7 - 40 PIN PLASTIC PACKAGE, 70 MIL PIN SPACING 

(TYPE N2 PACKAGE SUFFIX). 

r--·1)1'20ZOOMAX 

r-···~· .. ·1 · . 

.. L 
101001•·:·: ....... , L-

.... ·-.. ~1§11§1[§j[§j1§11§1, 1§11§1 

!9l !9l !9l !9l !9l !9l !9l !9l !9l J ~!91 ~r 

Notes: a. Each pin centerline is located within 0. 127 10.0051 of its true longitudinal position. 
b. All dimensions are in millimeters and parenthetically in inches. 

FIGURE 10-8 - 40 PIN CERAMIC PACKAGE, 100-MIL PIN SPACING 

(TYPE JD PACKAGE SUFFIX!. 
10·9 



10.2 DEVELOPMENT SUPPORT TOOLS 

10.2.1 Cross Ware 

PART NUMBER DESCRIPTION OPERATING SYSTEM 

TMDS7040113-21 Tl 990DSDD TX~5 
TMDS7040123-06 Tl 990T50 DX10 
TMDS7040123-08 Tl 990Tape DX10 
TMDS7040123-10 Tl 990 DS10 DX10 
TMDS7040123-22 Tl 990 CD1400 DX10 
TMDS7040133-03 Tl 990SSSD TX-4 
TMDS7040210-08 DEC VAX Tape VMS 
TMDS7040310-08 IBM Mainframe MVS 
TMDS7040320-08 IBM Mainframe CMS 

• 10.2.2 · XDS Hardware 

PART NUMBER XDSMODEL# TMS7000 FAMILY SUPPORT 

TMDS7062210 Model 22 TMS7020, TMS7040, TMS7041, TMS70120 

10.2.3 Evaluation Modules 

PART NUMBER DEVICES SUPPORTED 

RTC/EVM7000N-1 TMS7000, TMS7001, TMS7020, TMS7040, TMS7041, 
TMS70120 

RTC/EVM7000C-1 TMS70C20, TMS70C40 

10.3 TMS7000 FAMILY DOCUMENTATION 

DOCUMENT 
NUMBER DOCUMENT 

TMS7000 FAMILY DATA MANUALS: 

MP008A TMS7000/7020/7040 8-BIT MICROCOMPUTER DATA MANUAL 
SPNF002 TMS7000 PROGRAMMERS POCKET REFERENCE CARD 
SPNV002 TMS7500 DATA ENCRYPTION DEVICE PRODUCT DESCRIPTION 
SPNS004 TMS7500 DATA ENCRYPTION DEVICE PRELIMINARY DATA 

MANUAL 

TMS7000 DA TA SHEETS AND BROCHURES: 

SPNS005 TMS7007 DAT A SHEET 
SPNB001 TMS7000 SALES BROCHURE 
SPDS002 7000 XDS MODEL 22 DATA SHEET 
SPDV002 7000 XDS MODEL 22 BROCHURE 
SPNS006 SE70P161 DATA SHEET 

10·10 384 



10.4 

384 

TMS7000 FAMILY MICROCODE SUPPORT: 

SPNV001 
MP061 
SPNU001 
MP457 
MP459 

TMS7000 CUSTOM MICROCODING PRODUCT DESCRIPTION 
TMS7000 FAMILY MICROARCHITECTURE USER'S GUIDE 
TMS7000 MICROCODE DEVELOPMENT GUIDE 
TMS7000 FAMILY MICROASSEMBLER USER'S GUIDE 
TMS7000 MICROPROGRAMMERS REFERENCE CARD 

TMS7000 FAMILY SOFTWARE SUPPORT: 

TMS7000 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE SPNU002B 
MPB45 
MPB52 
MPB10 
MPB53 
MPB38 
MPB37 

TMS7000 SOFTWARE DEVELOPMENT SYSTEM INTRODUCTION GUIDE 
TMS7000 SOFTWARE DEVELOPMENT SYSTEM INSTALLATION GUIDE 
TMS7000 IBM CROSS SUPPORT REFERENCE GUIDE 
TMS7000 VAX CROSS SUPPORT REFERENCE GUIDE 
TMS7000 EMULATOR INSTALLATION AND OPERATION GUIDE 
TMS7000 EMULATOR COMMAND LANGUAGE GUIDE 

TMS7000 FAMILY APPLICATION NOTES: 

SPNA001 
SPNA002 
SPNA003 
SPNU003 

INTERFACING TMS7000 TO PERIPHERAL AND MEMORY DEVICES 
TMS7000 BUS ACTIVITY CHART 
TMS7000 KEYBOARD INTERFACE APPLICATION REPORT 
8051 - TMS7041 SYSTEM CONVERSION USER'S GUIDE 

WORLDWIDE REGIONAL TECHNOLOGY CENTERS (RTC) 

Atlanta Boston Chicago 
Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc 
3300 N.E. Expressway 400-2 Totten Pond Rd. 515 W. Algonquin Rd. 
Building 8 Waltham, MA 021 54 Arlington Heights, IL 
Atlanta, GA 303.41 (617) 890-6671 (312) 640-2909 
(404) 452-4682 (617) 890-4271 Hotline (312) 228-6008 Hotline 
(404) 452-4686 Hotline 

Northern California Southern California Dallas 
Texas Instruments, Inc. Texas Instruments, Inc. Texas Instruments, Inc. 
5353 Betsy Ross Drive 17981 Cartwright Rd. 10001 E. Campbell Road 
Santa Clara, CA 95054 Irvine, CA 92714 Richardson, TX 75081 
(408) 748-2220 (714) 660-8140 (214) 680-5066 
(408) 980-0305 Hotline (714) 660-8164 Hotline (214) 680-5096 Hotline 

Bedford, England Freising, West Germany 
Texas Instruments, LTD Texas Instruments Deutschland GmbH 
Manton Lane Haggertystr. 1 
Bedford, MK41 7PA 8050 Freising 
0234223000 08161 800 

Tokyo, Japan Hannover, West Germany 
Texas Instruments Japan Texas Instruments Deutschland GmbH 
Aoyama Fuji Bldg. Kirchhorsterstr Str 2 
6-12, Kita Aoyama 3 Cherne 3000 Hannover 51 
03-498-2111 0511 /648021 

10-11 



10·12 

WORLDWIDE REGIONAL TECHNOLOGY CENTERS (Concluded) 

Stockholm, Sweden 
Nordic Technology Center 
Texas Instruments 
Sverigefilialen 
Norra, Hamnvagen 3 
Box 39103 
S-100 54 Stockholm, Sweden 
8-235480 

Rieti, Italia 
Rieti Technology Center 
Semiconduttori 
Italia S .. P.A. 
Viale Delle Scienze, 1 
0201 5 Cittaducale 
Rieti, Italia 
746-6941 

Cedex, France 
Paris Technology Center 
Texas lnstr'uments 
8-10 Avenue Morane Saulnier 
Boite Postale 67 
78141 Velizy-Villacoublay 
Cedex, France 
39-46-9712 

384 



APPENDIX A 
INSTRUCTION EXECUTION TIMES 

A.1 INSTRUCTION EXECUTION TIMES 

384 

Each instruction of a TMS7000 family device requires from 1 to 4 bytes of program space. 
Execution time varies from 4 to 48 machine cycles with most instructions requiring less 
than 9 cycles to complete. Table A-1 summarizes the byte and machine cycle counts for 
each instruction. A variety of addressing modes are provided for each instruction, and the 
byte qnd cycle count for each is indicated. The form of the entries is byte count/cycle count. 
Table A-2 is the instruction opcode set. 

A-1 



TABLE A· 1 - INSTRUCTION EXECUTION TIMES 

OPERATION ADDRESSING MODES 

A B RF PF @lab •RF @lab (B) OTHER NOTES 

ADC 8,-- 1/5 
RF,-- 2/8 2/8 3/10 
%iop,-- 2/7 2/7 3/9 

ADD B,-- 1/5 
RF,--. 2/8 2/8 3/10 
%iop,-- 2/7 2/7 3/9 

AND 8,-- 1/5 
RF,-- 2/8 2/8. 3/10 
%iop,-- 2/7 2/7 3/9 

ANDP A,-- 211'0 
8,-- 2/9 
%iop,-- 3/11 

BTJO 8,-- 2/7 (1) 
RF,-- 3/10 3/10 4/12 
%iop,-- 3/9 3/9 4/11 

BTJOP A,-- 3/11 (1) 
8,-- 3/10 
%iop.-- 4/12 

BTJZ · 8,-- 2/7 (1) 
RF,-- 3/10 3/10 4/12 
%iop,-- 3/9 3/9 4/11 

BTJZP A.-- 3/11 (1) 

8,-- 3/10 
%iop,-- 4/12 

BR -- 3/10 2/9 3/12 
CALL -- 3/14 2/13 3/16 
CLR - - 1/5 1/5 2/7 
CLRC -- 1/6 
CMP 8,-- 1/5 

RF,- - 2/8 2/8 3/10 
%iop,- -- 2/7 2/7 3/9 

CMPA -- 3/12 2/11 3/14 
DAC 8,-- 117 

RF,--- 2/10 2/10 3/12 
%iop,-- 2/9 2/9 3/11 

DEC -- 1/5 1/5 2/7 
DECO -- 1/9 1/9 2/11 
DINT -- 1/5 
DJNZ -- 2/7 2/7 3/9 (1) 

DSB B, - 1/7 
RF, -- 2/10 2/10 3/12 
%iop,-- 2/9 2/9 3/11 

EINT --· 1/5 
IDLE -- 1/6+ 
INC ·- 1/5 1/5 2/7 
INV -- 1/5 1/5 2/7 
JMP -- 2/7 
Jcnd lab 2/5 (1,2) 
LOA - - 3/11 2i10 3/13 
LDSP --- 1/5 
MOV A,- - 1/6 2/8 

8,-- 1/5 2/7 
RF,-- 2/8 2/8 3/10 
0/t)iop,-- 2/7 2/7 3/9 

MOVD %iop,- - 4/15 
%iop (Bl,- - 4/17 
RF,-- 3/14 

MOVP A.-- 2/10 
B.-- 2/9 
%iop,-- 3/11 
PF,-- 2/9 2/8 

A-2 384 



TABLE A-1 - INSTRUCTION EXECUTION TIMES (CONTINUED) 

OPERATION ADDRESSING MODES 
A e RF PF @lab •RF @lab IBI OTHER NOTES 

MPV B,-- 1/44 
RF,-- -- 2/47 2/47 3/49 
%iop,-- 2/46 2/46 3/48 

NOP -- 1/4 

OR 8,-- 1/5 
RF,-- 218 218 3/10 

%iop,-- 217 211 3/9 
OAP A,-- 2/10 

8,-- 219 

%iop,-- 3/11 

POP -- 1/6 1/6 218 
POP ST -- 1/6 

PUSH -- 1/6 1/6 2/8 
PUSH ST -- 1/6 

RETI -- 1/9 

RETS -- 1/7 

RL -- 1/5 1/5 217 
RLC -- 1/5 '1/5 217 
RR --- 1/5 1/5 217 
ARC -- 1/5 1/5 217 
SBB 8,-- 1/5. 

RF,-- 2/8 2/8 3/10 

%iop,--- 217 217 3/9 
SETC -- 115 
STA -- 3111 2/10 3/13 
STSP -- 1/6 

SUB 8,-- 1/5 
RF,-- 2/8 2/8 3/10 

%iop,-- 217 2/7 3/9 
SWAP -- 1/8 1/8 2/10 
TSTA -- 1/6 

TSTB -- 1 /5 

TRAP n -- 1/14 

XCHB -- 1/6 1/6 2/8 
XOR 8,-- 1/5 

RF,-- 2/8 2/8 3/10 

%iop,--- 217 217 3/9 
XORP A.~- 2/10 

B.-- 2/9 

o/oiop,--· 3/11 

NOTES: 
(1) Add 2 to cycle count if branch is taken. 
(2) Conditional Jump Instructions (see Table 3-3). 

NOTATION: Data Form - number of bytes/number of internal clock cycles. 

A A register 
B B register 
RF Register File number 
PF Peripheral File number 
lab Label 
lop Immediate operand 

A-3 



A·4 

ADC 
ADD 
AND 

ANDP 
BTJO 

BTJOP 
BTJZ 

BTJZP 
BR 

CALL 
CLR 

CLRC 
CMP 

CMPA 
DAC 
DEC 

DECO 
DINT 
DJNZ 

DSB 
EINT 
IDLE 
INC 
INY 

JMP 
JC/JHS 
JN/JLT 
JNC/JL 

JNZ/JNE 
JP/JGT 

JPZ/JGE 
JZ/JEQ 

LOA 
LDSP 
MOY 

MOYD 
MOYP 

MPV 
NOP 

OR 
ORP 
POP 

PUSH 
RETI 

RETS 
RL 

RLC 
RR 

RRC 
see 

SETC 
STA 

STSP 
SUB 

SWAP 
TSTA 
TSTB 
TRAP 
XCHB 

XOR 
XORP 

SINGLE 
OPERAND 

c c( m a: 

BS cs OS 

82 C2 02 
BB CB DB 

BA CA DA 

83 C3 03 
84 C4 04 

89 C9 09 
88 CB DB 

BE CE DE 
BF CF OF 
BC CC DC 
BO CD DD 

87 C7 07 

86 06 

INSTRUCTION - OPCODE SET 

DUAL OPERAND PERIPHERAL 

c 
~ 

m c c c c ~ c m m ~ ~ ~ a.. 
.;. c a: a: a.. 

&. 
a.. i. c m a: ~ a: ~ .;. rri.;. rri ~ 

69 19 29 39 S9 49 79 
88 18 28 38 58 48 78 

1.§.3 ll. 23 33ll3 43 73 

ii [il A3 
88 16 28 38 58 46 76 

B6 96 A6 
67 17 27 37 S7 47 77 

B7 97 A7 

60 10 20 30 SD 40 70 

6E 1E 2E 3E SE 4E 7E 

@f_ !.E ~lE. ISF 4F 7F 

co 62 12 22 32 S2 42 72 DO 01 

B2 BO 92 91 A2 
6C 1C 2C 3C SC 4C 7C 

64 14 24 34 54 44 74 
84 94 A4 

~18 28 38 SB 48 78 

,. 
6A 1A 2A 3A SA 4A 7A 

6S 1S 2S 3S SS 4S 7S 
BS 95 AS 

EXTENDED OTH· 
ER 

I-I- :il u u ffi LI.I >< LI.I a: LI.I :i:: a: i5 c I-
i5 :!: :!: 0 

BC 9C ~ 
BE 9E AE 

BO 

BO 90 AD 

~ 

OS 
01 

EO 
E3 
E1 
E7 
E6 
E4 
ES 
E2 

BA 9A AA 
OD 

BB 98 AB 

00 

08 
OE 
OB 
OA 

07 
BB 98 AB 

09 

BO 
C1 

E8·FF 

STATUS 
WORD 

VI 
I- z iii 11.11-
ci ..:iii z 
0 :!: 
u 

x 
x 
x 
x 

_x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 
x x 

x 
x x 

X· 
x 

x 

x 
x 
x 
x 

x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 

x 
x 
x 
x 

x 
x 
x 

ADC 
ADD 
AND 
ANDP 
BTJO 
BTJOP 
BTJZ 
BTJZP 
BR 
CALL 
CLR 
CLRC 
CMP 
CMPA 
DAC 
DEC 
DECO 
DINT 
DJNZ 
DSB 
EINT 
IDLE 
INC 
INY 
JMP 
JC/JHS 
JN/JLT 
JNC/JL, 
JNZ/JNE 
JP/JGT 
JPZ/JGE 
JZ/JEQ 
LOA 
LDSP 
MOY 
MOYD 
MOYP 
MPV 
NOP 
OR 
ORP 
POP 
PUSH 
RETI 
RETS 
RL 
RLC 
RR 
RRC 
see 
SETC 
STA 
STSP 
SUB 
SWAP 
TSTA 
TSTB 
TRAP 
XCHB 
XOR 
XORP 

384 



APPENDIX B 
TMS7000 BUS ACTIVITY CHART 

The following tables describe the information present on the address and data buses during 
each cycle of each instruction. This informatior is useful to: 

1 ) Document the contents of the address and data buses and control pins on a cycle by 
cycle basis. 

2) Calculate instruction execution times. 

3) Compare actual results to expected results. 

4) Gain a better understanding of microcomputer operation. 

The information on the address and data buses, as well as the control pins, can be externally 
monitored only when the device is in either the full expansion, peripheral expansion, 
microprocessor, or system emulator modes. 

Because the TMS7000 is implemented using a microcoded architecture, the microcode that 
fetches the instructions and their data can be shared by many instructions. This allows the 
instruction set to be grouped according to the types of operands the instructions require and 
how they are fetched. The instruction set bus activity chart will be presented according to the 
different instruction groups supported. Each instruction group is based on one of. the 
addressing modes supported by the TMS7000. The different addressing modes supported by 
the TMS7000 are as follows: 

1) Double Operand Functions (DOPFUN). These instructions require 2 operands for 
execution. The instructions in this group are: ADC, SUB, SBB, MOV, AND, OR, XOR, 
BT JO, BT JZ, ADD, CMP, DAC, DSB, and MPV. 

2) Miscellaneous Functions (MISCFUN). These instructions need no operands because 
the instruction function is implied in the opcode. Contained in this group are: NOP, 
IDLE, EINT, DINT, SETC, POPS'.°, STSP, RETS, RETI, LDSP, and PUSH SP. 

3) Long Addressing Functions (LAFUN). This group of instructions requires a sixteen bit 
address which is used to address the entire 64K address range of the TMS7000. The 
instructi?ns in this group are: LDA, STA, BR, CMPA, and CALL. 

4) Single Operand Functions-Special (SOPFUNS). These instructions need 1 operand 
for execution. The instructions in this group are: DEC, INC, INV, CLR, XCHB, SWAP, 
MOV A,B, MOVA, RN, MOV B, RN, TSTA/CLRC, and TSTB. 

5) Single. Operand Functions - Normal(SOPFUNN). These instructions need one 
operand for execution. Because of the way CPU control is implemented and the 
number of supported single operand instructions, two groups of single operand 
functions are needed. The instructions that belong to this group are: PUSH, POP, 
DJNZ, DECO, RR, RRC, RL, and RLC. . . 

6) Dol!ble Operand Functions, Peripheral (DOPFUNP). These instructions require two 
operands and interact with the TMS7000's peripheral ports. The instructions are: 
MOVP, ANDP, ORP, XORP, BT JOP, and BT JZP. . 

B-1 



B·2 

7) Move Double (MOVD). MOVD moves a register pair to a register pair. 

8) Relative Jumps. These conditional and unconditional jumps alter program flow by 
adding or subtracting an 8 bit value from the program counter. 

9) Traps (TRAP). This group of instructions is used to perform subroutine calls. 

Each instruction's execution consists of three basic parts: instruction acquisition, operand 
, addressing (addressing modes), and functional operation on the operands (functional modes). 

To construct the cycles required to execute any instruction, start with t~e instruction 
acquisition function as shown in Table 8-2. These three cycles are needed to fetch the 
instruction opcode, increment the program counter, and pre-fetch the 8 register. Next, 
construct the number of addressing mode cycles needed to fetch the instruction's operands by 
looking up which instruction group the instruction belongs to in Table 8-1 and then referencing 
that table (Tables 8-3 through 8-11 ). Each table consists of two parts: the addressing mode 
and the functional part. After the operand addressing cycles are found, the second half of the 
table will detail the cycles involved with the functional part of instruction execution. Add all 
these cycles together to obtain the bus activity present during that instruction's execution. As 
an example of this, Figure 8-1 shows the execution steps involved with the instruction 
II ADD R5,R6". 

ADDRMODE CYCLE ADDRESS BUS DATA BUS R/VV 

ALL INSTRUCTIONS Opcode address Irrelevant data R 
2 Opcode address Instruction Opcode R 
3 B reg. ~ddress B reg. contents R 

The first two cycles fetch the ADD instruction's opcode and increment the program counter. 
The third state prefetches the 8 register to speed up instructions that reference the 8 register. 
The addressing mode is entered next. This information comes from Table 8-2. 

ADDA MODE IS Rn, Rn CYCLE ADDRESS BUS DATA BUS R/VV 

MOV,AND,OR,XOR,BT JO, 1 Opcode Address + 1 Irrelevant Data R 
DAC,ADD,SUB,SBB,MPY, 2 Opcode Address + 1 Rsrc address R 
BT JZ,CMP,DSB 3 Rsrc address Rsrcdata R 

4 Opcode address + 2 Irrelevant data R 
5 Opcode address + 2 Rdest address R 
6 Rdest address Operand data R 

FIGURE B-1 - ADD RS. R6 EXAMPLE 



The ADD instruction is a double operand function requiring two operands. Double operand 
functions are described in Table B-3. Cycles 1 and 2 of this mode read the "R5" operand 
address. Cycle 3 reads the register contents. Note that the internal register read (or a write) is a 
one cycle operation. All other reads/writes are two cycles long, requiring that the address bus 
be held stable for two complete machine cycles. Each machine cycle corresponds to one clock 
period of the CLKOUT signal (pin 2), starting with the rising edge of this signal. Cycles 4 and 5 
read the Rdest address, "R6", which is where the resultant value will be left. Cycle 6 reads the 
contents of register R6. At this point, both operands are inside the CPU and the indicated 
function can be performed. 

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS 

ADD Register address Register data w 

The functional portion of the 11 ADD" instruction is detailed in the second half of Table B-3. The 
second half of each table describes the functional portion for each instruction group. Once both 
operands are inside the CPU, only one cycle is needed to perform the add operation. The result 
is written back to register R6 during this cycle. A total of 10 cycles was required to perform an 
II ADD R5, R6". 

The instruction acquisition sequence is common to all instructions, and therefore is presented 
separately for clarity. Each addressing mode will be presented followed by the functional 
portion of each.instruction's execution. 

The tables are arranged in the following order: 

TABLE 

8-1 
B-2 
8-3 
8-4 
8-5 
8-6 
8-7 
8-8 
8-9 
8-10 
8-11 
8-12 

TABLE CONTENTS 

Alphabetical Index Into Instruction Groups 
Instruction Acquisition Functions 
Double Operand Instructions 
Miscellaneous Instructions 
Long Addressing Instructions 
Single Operand Instructions - Special . 
Single Operand Instructions - Normal 
Double Operand Instructions - Peripheral 
Move Double Instructions 
Relative Jump Instructions 
Trap Instructions 
Reset Function 

Each table will consist of two parts: the addressing mode portion and the functional portion.· 

Table B-1 is provided as an index into the rest of the tables. Table B-1 lists all standard 
TMS7000 instructions in alphabetical order with the correponding addressing mode. 

Each table indicates whether a read or a write is performed that cycle. The RAN signal will be high 
for reads and low (logic zero level) for writes. The memory control signals, ALATCH and ENA8 LE, are 
asserted during both reads and writes. Reference the memory interface timing diagrams contained in 
Section 4 of this manual for further information. 

8-3 



TABLE B-1 - ALPHABETICAL INDEX INTO INSTRUCTION GROUPS 

INSTR ADDRMODE TABLE# FUNCTION 

ADC DOPFUN 3 ADD WITH CARRY 
ADD DOPFUN 3 ADD 
AND DOPFUN 3 AND 
ANDP DOPFUNP 8 AND VALUE WITH PERIPHERAL PORT 
BTJO DOPFUN 3 TEST BIT AND JUMP IF ONE 
BTJOP DOPFUNP 8 TEST PERIPHERAL BIT & JUMP IF ONE 
BTJZ DOPFUN 3 TEST BIT AND JUMP IF ZERO 
BTJZP DOPFUNP 8 TEST PERIPHERAL BIT & JUMP IF ZERO 
BR LA FUN 5 LONG BRANCH 
CALL LA FUN 5 SUBROUTINE CALL 
CLR SOPFUNS 6 CLEAR 
CLRC SOPFUNS 6 CLEAR STATUS CARRY BIT 
CMP DOPFUN 3 COMPARE VALUE 
CMPA ·LAFUN .5 COMPARE VALUE WITH A REGISTER 
DAC DOPFUN 3 DECIMAL ADD WITH CARRY 
DEC SOPFUNS 6 DECREMENT VALUE 
DECO SOPFUNN 7 DECREMENT DOUBLE REGISTER PAIR 
DINT MISCFUN 4 DISABLE INTERRUPTS 
DJNZ SOPFUNN 7 DECREMENT AND JUMP IF NOT ZERO 
DSB DOP.FUN 3 DECIMAL SUBTRACT 
EINT MISCFUN 4 ENABLE INTERRUPTS 
IDLE MISCFUN 4 IDLE (PC IS HELD UNCHANGED) 
INC SOPFUNS 6 INCREMENT 
INV SOPFUNS 6 INVERT 
JMP REL JUMPS 10 UNCONDITIONAL RELATIVE JUMP 
Jcnd REL JUMPS 10 CONDITIONAL RELATIVE JUMPS (JN/JLT,JZ/JEQ, 

JL,JC/JHS,JP/JGT,JPZ/JGE,JNZ/JNE,JNC) 
LOA LA FUN 5 LOAD A REGISTER FROM LONG ADDRESS 
LDSP MISCFUN 4 LOAD STACK POINTER 
MOV DOPFUN 3 MOVE A DATA VALUE 

SOPFUNS 6 
MOVD MOVD 9 MOVE A 16 BIT VALUE TO REG. PAIR 
MOVP DOPFUNP 8 MOVE A DATA VALUE TO/FROM PORT 
MPY DOPFUN 3 MULTIPLY TWO 8 BIT VALUES 
NOP MISCFUN 4 NO OPERATION 
OR DOPFUN 3 OR TWO VALUES TOGETHER 
ORP DOPFUNP 8 OR PORT VALUE WITH ANOTHER VALUE 
POP SOPFUNN 7 POP A'vALUE OFF THE STACK 
POP ST MISCFUN 4 POP STACK VALUE INTO STATUS REG. 
PUSH SOPFUNN 7 PUSH A VALUE ONTO THE STACK 
PUSH ST MISCFUN 4 PUSH STATUS REGISTER ONTO STACK 
RETI MISCFUN 4 RETURN FROM INTERRUPT 
RETS MISCFUN 4 RETURN FROM SUBROUTINE 
RL SOPFUNN 7 ROTATE LEFT 
RLC SOPFUNN 7 ROTATE LEFT THROUGH CARRY BIT 
RR SOPFUNN 7 ROTATE RIGHT 
RRC SOPFUNN 7 ROTATE RIGHT THROUGH CARRY BIT 
SBB DOPFUN 3 SU BRACT WITH BORROW 
SETC MISCFUN 4 SET CARRY BIT 

B·4 



TABLE B-1 - ALPHABETICAL INDEX INTO INSTRUCTION GROUPS ICONTINUEDI 

INSTR ADDRMODE TABLE# FUNCTION 

STA LAFUN 5 STORE A REGISTER TO LONG ADDRESS 
STSP MISCFUN 4 STORE STACK POINTER TO B REGISTER 
SUB DOPFUN 3 SUBTRACT 
SWAP SOPFUNS 6 SWAP NIBBLES OF AN 8 BIT VALUE 
TSTA SOPFUNS 6 TEST A REGISTER AND SET STATUS 
TSTB SOPFUNS 6 TEST B REGISTER AND SET STATUS 
TRAPn TRAP 11 TRAP TO SUBROUTINE 
XCHB SOPFUNS 6 EXCHANGE VALUE WITH B REGISTER 
XOR DOPFUN 3 EXCLUSIVE OR 
XORP DOPFUNP 8 EXCLUSIVE OR WITH PERIPHERAL PORT 

TABLE B-2 - INSTRUCTION ACQUISITION MODE - OPERATION CODE FETCH 

ADDRMODE CYCLE ADDRESS BUS DATA BUS 

ALL INSTRUCTIONS Opcode address Irrelevant data R 

NOTES: 1. 

2. 

3. 

4. 

2 Opcode address Instruction Opcode R 

If an interrupt is pending, go to interrupt code listed below 
3 B reg. address B reg. contents R 

Go to Addressing Mode (Tables 3 through 11) 

This mode is executed for all instructions to fetch the instructions's operation code, or opcode. 

The B register is pref etched to speed up the execution of instructions that reference the B register. 

The Program Counter is incremented during cycles 1 and 2 of this mode. 

During cycle 2 an interrupt check is performed. If an interrupt is detected, cycle #3 is not executed. Control is 

passed immediately to the interrupt handling code shown below. 

B-5 



8-6 

ADDRMODE 

INTERRUPTS 

TABLE B-2 - INSTRUCTION ACQUISITION MODE-INTERRUPT HANDLING 

CYCLE 

2 

ADDRESS BUS 

Irrelevant data 
Irrelevant data 

DATA BUS 

Irrelevant data 
Irrelevant data 

Jump to cycle number 5 if opcode was IDLE ( >01 ). If it was 
an IDLE instruction, do not decrement PC because desired 

·return is past the IDLE instruction. 

3 Irrelevant data Irrelevant data 
4 Irrelevant data Irrelevant data 
5 SP register Status register 
6 Irrelevant data Irrelevant data 
- Jump to Trap group at Table B-11 -

w 

NOTES: 1. The Program Counter is decremented during cycles number 3 and 4. This is done because the instruction that 

the PC had pointed at has not been executed. 

2. The status register is saved on the stack during cycle #5. When control is passed to the Trap group (at Table 

B-111 the program counters will be saved. 



. TABLE B-3 - DOUBLE OPERAND FUNCTIONS - ADDRESSING MODES 

Instructions: ADD,ADC,AND,BT JO,BT JZ,CMP,DAC,DSB,MOV,MPY,OR,SBB,SUB,XOR 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN>/ 

1 Opcode Address + 1 Irrelevant Data R 

Rn, A 2 Opcode Address + 1 Rn Address R 

3 Rn Address Rn data R 
4 A register address A register data R 

Go To Functional Modes For This Addressing Group 

. . -
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN-I 

,, 1 Opcode Address + 1 Irrelevant Data R 

%n,A 2 Opcode Address + 1 Immediate value (o/on) R 

3 A register address A register data R 
Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN>/ 

1 Opcode Address + 1 Irrelevant data R 

Rn,B 2 Opcode Address + 1 Rn address R 

3 Rn address Rn data R 
4 B register address Operand data R 

Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN-I 

1 Opcode Address + 1 Irrelevant Data R 
Rn, Rn 2 Opcode Address + 1 Rsrc address R 

3 Rsrc address Rsrc data R 
4 Opcode address + 2 Irrelevant data R 
5 Opcode address + 2 Rdest address R 
6 Rdest address ~dest data R 

Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN-I 

1 Opcode Address + 1. Irrelevant Data R 
%n,B 2 Opcode Address + 1 Immediate data R 

3 B register address B reg. data R 
.Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN-I 

B,A 1 A register address A register data R 

Go To Functional Modes For This Addressing Group 

B-7 



TABLE B-3 - DOUBLE OPERAND FUNCTIONS - FUNCTIONAL MODES (CONTINUED) 

Instructions: ADD,ADC,AND,BT JO,BT JZ,CMP,DAC,DSB,MOV,MPY,OR,SBB,SUB,XOR 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RfiJ 

Opcode Address + 1 Irrelevant Data R 
o/on, Rn 2 Opcode Address + 1 Immediate data R 

3 Opcode Address + 2 Irrelevant data R 
4 Opcode Address + 2 Rn address R 
5 Rn address Rn data R 

Go To Functional Modes For This Addressing Group 

-
MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RMI 

MOV 1 Register address Register data w 

AND 1 Register address Register data w 

OR 1 Register address Register data w 
XOR 1 Register address Register data w 
ADD 1 Register address Register data w 
ADC 1 Register address Register data w 
SUB 1 Register address Register data w 
SBB 1 Register address Register data w 
CMP 1 Irrelevant data Irrelevant data -
DAC 1 Register address Register data w 
DAC 2 Register address Register data R 

DAC 3 Register address Register data w 

DSB 1 Register address Register data w 
DSB 2 Register'address . Register data R 
DSB 3 Register address Register data w 

MPV 1 B reg. addre$S B reg. data w 
MPV 2 Irrelevant data Irrelevant data -

MPV 3 Irrelevant data Irrelevant data -MPY} 4 B reg. address B reg. data R 
MPV 5 B reg. address B reg. data w 
MPV 9 iterations 6 Irrelevant data Irrelevant data -
MPV 7 Irrelevant data Irrelevant data -
MPV. 8 A reg. address MSH mult. product w 
MPV 9 Irrelevant data Irrelevant data -
BTJO,BTJZ 1 Irrelevant data Irrelevant data -

BTJO,BTJZ 2 Opcode address + 1 Irrelevant data R 
BTJO,BTJZ 3 Opcode address + 1 Jump PC offset R 
BTJO,BTJZ 4 Opcode address + 1 Jump PC offset R 
BTJO,BTJZ 5 Irrelevant data Irrelevant data -
BTJO,BTJZ 6 Irrelevant data Irrelevant data -
BTJO,BTJZ 7 Irrelevant data Irrelevant data -

Jump To Instruction Acquisition Sequence 

B·B 



NOTES: 1. 

TABLE B-3 - DOUBLE OPERAND FUNCTIONS - FUNCTIONAL MODES (CONTINUED) 

MPV - This microcode iterates to perform the multiply. The functional portion of the MPV instruction requires 40 

states for execution. · 

2. BT JO.BT JZ- N9t all states are executed. Either state 2 or 3 is executed but not both. The same applies to states 

6and 7. 

3. Where referenced, Rsrc is the first operand listed and Rd is the second. The ·resultant value will be stored at the · 

Rd address. 

TABLE B-4 - MISCELLANEOUS FUNCTIONS - ADDRESSING MODES 

Instructions: DINT,EINT,IDLE,LDSP,NOP,POP ST,PUSH ST,RETl,RETS,SETC,STSP 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W 

SP contents Stack value R 
Go To Functional .Modes For This Addressing Group 

TABLE B-4 - MISCELLANEOUS FUNCTIONS - FUNCTIONAL MODES 

Instructions: DINT,EINT,IDLE,LDSP,NOP,POPST,PUSHST,RETl,RETS,SETC,STSP 

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS R/W 

EINT Irrelevant data Irrelevant data 

DINT Irrelevant data Irrelevant data 

SETC Irrelevant data Irrelevant data 

POP ST 1 SP contents Stack data R 
POP ST 2 Irrelevant data Irrelevant data 

STSP Irrelevant data Irrelevant data 

STSP 2 B reg. addr SP contents w 
RETS Irrelevant data Irrelevant data 

RETS 2 Register address Register data R 
RETS 3 Irrelevant data Irrelevant data 

RETI 1 Irrelevant data Irrelevant data 

RETI 2 Register Address Register data R 
RETI 3 Irrelevant data Irrelevant data 

RETI 4 SP contents Register data R 
RETI 5 Irrelevant data Irrelevant data 

LDSP Irrelevant data Irrelevant data 

PUSH ST Irrelevant data Irrelevant data 

PUSH ST 2 SP contents Status register w 
IDLE 1 Irrelevant data Irrelevant data 

IDLE 2 
,. 

Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 

NOTE: 1. NOP does not have an execution state. From the addressing mode control is passed back to the instruction 

acquisition microcode. 

B-9 



TABLE B-5 - LONG ADDRESSING FUNCTIONS - ADDRESSING MODES 

Instructions: BR, CALL, CMPA, LOA, STA 

ADDRESSING 'MODE CYCLE ADDRESS BUS DATA BUS RJW 

1 Opcode address + 1 Irrelevant data R 
2 Opcode address + 1 MSH of long address R 

@n 3 Opcode address + 2 Irrelevant data R 
4 Opcode address + 2 LSH of long address R 
5 Irrelevant data Irrelevant data -

Go To Functional Modes For This Addressing Group 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RJW 

1 Opcode address + 1 Irrelevant data R 
*Rn 2 Opcode address + 1 Rn address R 

3 Rn address LSH of long address R 
4 Rn - 1 address MSH of long address R 

Go To Functional Modes For This Addressing Group 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RJW 

1 Irrelevant data Irrelevant data -
@n(B) 2 Opcode address + 1 Irrelevant data R 

3 Opcode address + 1 MSH of long address R 
4 Opcode address + 2 Irrelevant data R 
5 Opcode address + 2 LSH of long address R 
6 Irrelevant data Irrelevant data -
7 Irrelevant data Irrelevant data -

Go To Functional Modea For This Addressing Group 

0 

8-10 



TABLE B-5 - LONG ADDRESSING FUNCTIONS· FUNCTIONAL MODES (CONTINUED) 

lnstruct!ons: BR, CALL, CMPA, LOA, STA 

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS R/W 

LOA 1 Operand address Irrelevant data R 

LOA 2 -Operand address Operand data R 

LOA 3 A reg. address Operand data w 
STA 1 A reg. address A reg. contents R 

STA 2 Operand address A reg. contents w 
STA 3 Operand address A reg. contents w 
BR 1 Irrelevant data Irrelevant data 

BR 2 Irrelevant data Irrelevant data 

CMPA 1 Operand address Irrelevant data R 

CMPA 2 Operand address Operand data R 

CMPA 3 A reg. address A reg. contents R 

CMPA 4 Irrelevant data Irrelevant data 
CALL 1 Irrelevant data Irrelevant data 

CALL 2 SP contents PCH contents w 
CALL 3 Irrelevant data Irrelevant data 

CALL 4 SP+ 1 PCL w 
CALL 5 Irrelevant data Irrelevant data 

CALL 6 Irrelevant data Irrelevant data 
Jump To Instruction Acquisition Sequence 

TABLE B-6 - SINGLE OPERAND FUNCTIONS. SPECIAL· ADDRESSING MODES 

Instructions: CLR; DEC; INC; INV; MOV A,B; MOV A.RN; MOV B,RN; 
SWAP; TSTA/CLRC; TSTB; XCHB; 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RMJ 

A 1 A register address · A reg. contents R 
Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W 

B 1 B register address B reg. contents R 
Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RN'/ 

1 Opcode address + 1 Irrelevant data R 

Rn 2 Opcode address + 1 Rn address R 

3 Rn address Rn data R 

Go To Functional Modes For This Addressing Group 

B-11 



TABLE B-6 - SINGLE OPERAND FUNCTIONS, SPECIAL - FUNCTIONAL MODES 

Instructions: CLR; DEC; INC; INV; MOV A,B; MOV A,RN; MOV B,RN; 
SWAP; TSTA/CLRC; TSTB; XCHB; " 

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS 

DEC Register address Register Data 
INC Register address Register Data 
INV Register address Register Data 
CLR Register address Register Data 
XCHB B reg. address Register Data 
XCHB 2 Register address Register Data 
SWAP 1 Irrelevant data Irrelevant data 
SWAP 2 Irrelevant data Irrelevant data 
SWAP 3 Irrelevant data Irrelevant data 
SWAP 4 Register address Register data 
MOVA,B A reg. address A reg. data 
MOVA,B 2 B reg. address A reg. data 
MOVA,Rn 1 A reg. address· A reg. data 
MOVA,Rn 2 Register address A reg. data 
MOV B,Rn Register address B reg. data 
TSTA/CLRC A reg. address A reg. data 
TSTA/CLRC 2 Register address Register data 
TSTB B reg. address Register. data 

Jump To Instruction Acquisition Sequence 

TABLE B-7 - SINGLE OPERAND FUNCTIONS, NORMAL - ADDRESSING MODES 

Instructions: DECO, DJNZ, POP, PUSH, RL, RLC, RR, RRC 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS 

A 1 A reg. address A reg. data 
Go To Functional Modes For This Addressing Group 

ADDR~SSING MODE CYCLE ADDRESS BUS DATA BUS 

B 1 B reg. a~dress B reg. data 
Go To Functional Modes For This Addressing Group 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS 

1 Opcode address + 1 Irrelevant data 
Rn 2 Opcode address + 1 Rn address 

3 Rn address Rn data 
Go To Functional Modes For This Addressing Group 

8-12 

w 
w 
w 
w 
w 
w 

w 
R 
w 
R 
w 
w 
R 
w 
w 

Rm 

R 

Rm 

R 

Rm 

R 
R 
R 



TABLE B-7 - SINGLE OPERAND FUNCTIONS, NORMAL - FUNCTIONAL MODES 

Instructions: DECO, DJNZ, POP, PUSH, RL, RLC, RR, RRC 

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS RfVIJ 

PUSH Irrelevant data Irrelevant data 

PUSH 2 SP contents Register data w 
POP SP contents Register data R 
POP 2 Register data Register data w 
RR Register data Register data w 
RRC Register data Register data w 
RL Register data. Register data w 
RLC Register data Register data w 
DECO Register data Register data w 
DECO 2 Irrelevant data Irrelevant data 
DECO 3 Irrelevant data Irrelevant data. 
DECO 4 Register address Register data R 
DECO ·5 Register address · Register data w 
DJNZ 1 Register address Reg. data -1 w 
DJNZ 2 Opcode address + 1 Irrelevant data R 

If result is not = 0, jump to state 4 
DJNZ 3 Opcode address + 1 Jump PC offset R 

Jump to instruction acquisition sequence 
DJNZ 4 Opcode address -i- 1 . Jump PC offset R 
DJNZ 5 Irrelevant data Irrelevant data 

If jump PC offset is positive, jump to state 7 
DJNZ 6 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 
DJNZ 7 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 

B-13 



TABLE B-8 - DOUBLE OPERAND FUNCTIONS, PERIPHERAL - ADDRESSING MODES 

Instructions: ANDP, BT JOP, BT JZP, MOVP, ORP, XORP 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RiiJ 

1 A reg. address A reg. data R 
A,Pn 2 Opcode address + 1 Irrelevant data R 

3 Ope.ode address + 1 Pn address R 
4 Pn address Irrelevant data R 
5 Pn address Pn data R 

Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS -RNV 

1 Opcode address + 1 Irrelevant data R 
B,Pn 2 Opcode address + 1 Pn address R 

3 Pn address Irrelevant data R 
4 Pn address Pn data R 

Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RNV 

1 Opcode address + 1 Irrelevant data R 
o/on, Pn 2 Opcode address + 1 %n (immediate data) R 

3 Opcode address + 2 Irrelevant data R 
4 Opcode address + 2 Pn address R 
5 Pn address Irrelevant data R 

·6 Pn address Pn data R 
Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE' CYCLE ADDRESS BUS DATA BUS RNV 

1 A reg. address A reg. data R 
Pn,A 2 Opcode address + 1 Irrelevant data R 

3 Opcode address + 1 Pn address R 
4 Pn address Irrelevant data R 
5 Pn address Pn data R 

Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS RNV 

1 Opcode address + 1 Irrelevant data R 
Pn,B 2 Opcode address + 1 Pn address R 

3 Pn address Irrelevant data R 
4 Pn address Pn data R 

Go To Functional Modes For This Addressing Group 

NOTES: 1. Addressing modes "A, Pn" and "Pn, A" fetch their operands the same way. 

2. Addressing modes "B, Pn" and "Pn, B" fetch their opera~ds the same way. 

8-14 



TABLE B-8 - DOUBLE OPERAND FUNCTIONS. PERIPHERAL - FUNCTIONAL MODES 

Instructions: ANDP, BT JOP, BT JZP, MOVP, ORP, XORP 

" MACROINSTRUCTION 

MOVPX, Pn 
MOVPX, Pn 
MOVPPn,A 
MOVPPn, B 
ANDP 
ANDP 
ORP 
ORP 
XORP 
XORP 
BTJOP 
BTJOP 

BTJOP 

BTJOP 
BTJOP 

BTJOP 

BTJOP 
BTJZP 
BTJZP 

BTJZP 

BTJZP 
BTJZP 

BTJZP 

BTJZP 

CYCLE ADDRESS BUS 

Pn address 
2 Pn address. 
1 A reg. address 

B reg. address 
Pn address 

2 Pn address 
1 Pn address 
2 Pn address 
1 Pn address 
2 Pn address 
1 Irrelevant data 
2 Opcode address + 1 

If bit tested is equal to a 1 , jump to state 4 
3 Opcode address + 1 

Jump to instruction acquisition sequence 
4 Opcode address + 1 
5 · Irrelevant data 

If jump P.C offset is positive, jump to state 7 
6 Irrelevant data 

Jump To Instruction Acquisition Sequence 
7 Irrelevant data 

Irrelevant data 
2 Opcode address + 1 

If bit tested is equal to a 0, jump to state 4 

DATA BUS 

Peripheral reg. data 
Peripheral reg. data 
Register data 
Register data 
Peripheral reg. data 
Peripheral reg. data 
Peripheral reg. data 
Peripheral reg. data 
Peripheral reg. data 
Peripheral reg. data 
Irrelevant data 
Irrelevant data 

Jump PC offset 

Jump PC offset 
Irrelevant data 

Irrelevant data 

Irrelevant data 
Irrelevant data 
Irrelevant data 

3 Opcode address + 1 Jump PC offset 
Jump to instruction acquisition sequence 

4 Opcode address + 1 Jump PC offset 
5 Irrelevant data Irrelevant data 

If jump PC offset is positiye, jump to state 7 
6 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 
7 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 

NOTE: 1. MOVP X, Pn - Xis either the A or B register, or an 8 bit immediate value %n. 

R/VV 

w 
w 
w 
w 
w 
w 
w 
w 
w 
w 

R 

R 

R 

R 

R 

R 

B-15 



TABLE B-9 - MOVE DOUBLE· ADDRESSING MODES 

Instructions: MOVD 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W 

1 Opcode address + 1 Irrelevant data R 
%n, Rn 2 Opcode address + 1 MSH of immed. data R 

3 Opcode address + 2 Irrelevant data R 
4 Opcode address + 2 LSH of irnmed. data R 
5 Irrelevant data Irrelevant data -

Go To Functional Modes For This Addressing Group 

-
ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS R/W 

1 Opcode address + 1 Irrelevant data R 
Rn, Rn 2 Opcode address + 1 Rn source address R 

3 Rn source address Rn data-LSH R 
4 Rn - 1 source addr. Rn - 1 data - MSH R 

Go To Functional Modes For This Addressing Group 

ADDRESSING MODE CYCLE ADDRESS BUS DATA BUS Rm 

1 Irrelevant data Irrelevant data -
2 Opcode address + 1 lrrelev.ant data R 

%n(8), Rn 3 Opcode address + 1 MSH of immed. data R 
4 Opcode address + 2 Irrelevant data R 
5 Opcode address + 2 LSH of irnrned. data R 
6 Irrelevant data Irrelevant data -

7 Irrelevant data Irrelevant data -
Go To Functional Modes For This Addressing Group 

J 

TABLE B-9 - MOVE DOUBLE· FUNCTIONAL MODE 

MACROINSTRUCTION CYCLE ADDRESS BUS DATA BUS Rm 

MOVD 1 Irrelevant data Irrelevant data 
MOVD 2 Opcode address + 2/3 Irrelevant data R 
MOVD 3 Opcode address + 2/3 Destination Rn addr R 
MOVD 4 Irrelevant data Irrelevant data 
MOVD 5 Dest. Rn address LSH register data w 
MOVD 6 Irrelevant data Irrelevant data 
MOVD 7 Dest. Rn-1 address MSH register data w 

Jump To Instruction Acquisition Sequence 

NOTE: 1. MOVD ·States 2 and 3 will be Opcode address + 2 for the "o/on, Rn" and the "Rn, Rn" addressing modes. 

States 2 and 3 will be Opcode addrress + 3 for the "o/on(B), Rn" addressing mode. 

8-16 



TABLE B-10 - RELATIVE JUMPS - ADDRESSING AND FUNCTIONAL MODES 

Instructions: JM P,J N/ JL T,JZ/ JEQ,J Cl JH S ,JP I JGT,JPZ/ JG E,JNZ/ JN E,J NC ,JL 

RELATIVE JUMPS CYCLE ADDRESS BUS DATA BUS 

Opcode address + 1 Irrelevant data R 
If jump condition is true, jump to state 3· 

2 Opcode address + 1 Jump PC offset R 
. Jump To l~struction Acquisition Sequence 

3 Opcode address + 1 Jump PC offset R 
4 Irrelevant data Irrelevant data 

If jump offset is positive go to state 6 
5 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 
6 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 

NOTES: 1. Cycle 1 tests the jump condition. If the jump is true, go to state 3, else execute state 2 and return to the 

instruction acquisition sequence. 

2. · Cycle 4 tests whether the jump offset is positive or negative. If the jump offset is positive. go to state 6. 

TABLE B-11 - TRAPS· ADDRESSING AND FUNCTIONAL MODES. 

Instructions: Trap 0 through Trap 23 

TRAPS CYCLE ADDRESS BUS DATA BUS RiiJ 

· Trap 0 - 7 (Group A) lrrele\/ant data Irrelevant data 
Trap 8 - 1 5 (Group 8) Irrelevant data Irrelevant data 
Trap 16 - 23 (Group Cl Irrelevant data Irrelevant data 

2 Irrelevant data Irrelevant data 
3 Addr. > FFOO + Opcode Irrelevant data R 
4 Addr. > FFOO + Opcode LSH trap vector R 
5 Addr. > FFOO + Opcode - 1 Irr. data R 
6 Addr. > FFOO + Opcode - 1 MSH trap vector R 
7 Sp contents PCH contents w 
8 Irrelevant data Irrelevant data 
9 Sp + 1 contents PCL contents w 
10 Irrelevant data Irrelevant data 
11 Irrelevant data Irrelevant data 

Jump To Instruction Acquisition Sequence 

B-17 



8-18 

TABLEB-12- RESET FUNCTION 

RESET CYCLE ADDRESS BUS DATA BUS R/W 

Reset Function Irrelevant data Irrelevant data R 

NOTES: 1. 

2. 

3. 

4. 

5. 

2 Irrelevant data Zeroes 
3 Address >0100 Zeroes w 
4 Address >0100 Zeroes w 

Jump to Trap Group 

read operation is done the first cycle even though the address and data buses contain irrelevant data. This read is 
done to protect memory in case a long write was in progress when the Reset action occured. 

The write to address >0100 i.s done to disable all interrupts. 

The Stack Pointer is initialized to >01. 

The Program Counter is stored in the register pairs A and B. 

The Trap Group code will take the Reset vector from > FFFE and > FFFF and place it in the Program Counter. 

The RESET function is initiated when the RESET line of the TMS7000 device is held at a logic 
zero level for at least five clock cycles. The Reset function is active at a logic zero level, and 
occurs on pin 14 of the device. When an active signal is detected on the RESET line the 
following sequence is entered immediately after the current machine cycle is done. 



APPENDIXC 
TMS7500 DATA ENCRYPTION DEVICE 

C.1 DESCRIPTION 

C.1.1 

The TMS7500 Data Encryption Device (OED)* is a peripheral device designed to perform the 
National Bureau of Standards (NBS) Data Encryption Standard (DES) algorithm as specified in 
the Federal Information Processing Standard (FIPS) Publication 46. The TMS7500 OED can be 
memory mapped on computer systems requiring the use of the Data Encryption Standard. The 
TMS7500 is a standard preprogrammed TMS7020 8-bit single-chip microcomputer using the 
standard microcoded instruction set. This allows the TMS7500 to be a very cost effective 
solution for low cost data encryption requirements. The device comes in a 40-pin package, 
requires a single 5 volt supply, and all 1/0 pins are TTL compatible (see Figure C-2). For more 
information on the TMS7500 refer to the TMS7500 Data Encryption Device Data Manual. 

Typical Applications 

The TMS7500 is particularly well suited for any system requiring the use of a low cost, medium 
speed data encryption device. It can easily keep up with the data rates required by most 
modems and terminals without sacrificing system performance. Some typical applications are: 

• Computer to terminal communication links 

• Home bariking communication links 

• Teller machines for banks 

• Portable terminals 

• Point of sale terminals 

• Small business systems 

• Trade market software protection 

• Any system requiring a low cost, medium speed Data Encryption Device 

* The products covered by this document (TMS7500) are within the group of electronic products that are wholly or partly of U. S. origin or 
technology, the export of which is subject to export license control by the U.S. Government. Therefore, prior to exportation, you are obligated to 
obtain the required expQrt license from the U.S. Department of State. (Refer to Title 22, Code of Federal Regulations.) 

C·1 



C.1.2 

C·2 

Key Features 

A number of key features, most of which are user programmable, enables the TMS7500 to 
enhance the flexibility of any system using data encryption. The device can store two keys at 
one time and operate in two of the standard data encryption modes. Some of the key features 
are highlighted below: · 

• Validated by the National Bureau of Standards 

• Can store both a Master and an Ac~ive 64-bit key 

• Active key can be encrypted or decrypted by the master key internally 

• Electronic Codebook (ECB) or Cipher Feedback (CFB) modes of operation 

• Dual 8-bit data bus operation possible; one for plain data, and one for cipher data 

• Command register programmable from data bus or from external pins on chip 

• Status is displayed on external pins and can be read from the data bus 

• Clock source can be internal or external 

• On-Chip clock uses crystal or ceramic resonator 

• Maximum data rate of 3200 bits per second (ECB) or 400 bits per second (CFB) with 5 
MHz clock (divide by 2 option) or 10 MHz clock (divide by 4 option) 

• Single power source requirement ( + 5V) 



C.2 PROCESSOR INTERFACE 

All communications between a host processor and the TMS7500 can be handled through the 
main 8 bit data bus. The processor can access the command and status registers, both master 
and active key registers, and the 8 byte data buffer through this bus. An optional cipher data 
bus can be used to handle all encrypted data. The 7 bit read only status register provides the 
host processor with current status information such as: 

• Key entered 

• Key parity error 

• Active key register is being accessed 

• Encrypt or decrypt mode 

• Electronic codebook or cipher feedback ll)ode 

• Initialization Vector loaded (for cipher feedback mode) 

The five bit write only command register accepts several different commands from the 
processsor, including the following commands: 

• Reset the OED 

• Enter an active key 

• Enter active key and encrypt or decrypt under master key 

• Encrypt or decrypt data 

• Electronic codebook or cipher feedback operation 

The master and active key registers are write only registers. This prevents the key value from 
ever being discovered once it is entered into the device. Another unique feature is that a new 
active key, when entered into the OED, can be encrypted or decrypted by the master key 
before it is stored into the active key register. This allows the user to send a new active key to 
the OED in encrypted or decrypted form for maximum security. 

The 8 byte data buffer is used to handle all plain data and ciphered data sent to and read from 
the OED. 

C.3 EXTERNAL COMMAND AND STATUS DISPLAY 

The command and status registers may also be accessed from external pins. Status register 
contents are displayed at all times on six status display pins. The command register is 
accessible from five external command pins when the external command mode is enabled .. 

C-3 



C.4 FUNCTIONAL BLOCK DIAGRAM 

The functional block diagram of the TMS7500 OED in Figure C-1 illustrates an architecture 
organized around certain registers, buffers, and 1/0 buses which are all linked together through 
the data selectors. All of the necessary data path sequences through these selectors are 
determined by a 5-bit Command Register and 8 external Control-Handshake pins. The device 
status is stored. in the Status Register and is also available on the Status Display Pins. The 
64-bit key values and encryption data are passed along the 8-bit Main Data Bus and Cipher 
Data Bus. 

CONTROL AND 
HANDSHAKE PINS 

MAIN CIPHER 
DATA BUS DATA BUS 

5 EXTERNAL 
COMMAND----_,,,.._ __ ~ 

5 COMMAND DAT A 

C-4 

PINS 

STATUS 6 
DISPLAY _ __,...__ ..... 

PINS 

PARITY STATUS 

64-BIT 
ACTIVE KEY 

REGISTER 

64-BIT 
MASTER KEY 

REGISTER 

8 

TO DATA SELECTORS 

7 STATUS DATA 

KEY DATA 

64 

64 
CIPHERED 

8 

64 

56 

INPUT DATA 

64 

64 

64-BIT 
OUTPUT BLOCK 

KEY DATA'-----+------~ 

FIGURE C-1 - TMS7500 FUNCTIONAL BLOCK DIAGRAM 



C.5 PIN-OUT AND PIN FUNCTION 

Figure C-2 shows the TMS7500 pin-out. Following is a description of the pin functions. 

FIGURE C-2 - TMS7500 DATA ENCRYPTION DEVICE PIN-OUT 

OED PIN-OUT 

HANDSHAKE PINS {. 

ODAV 1 40 GND 

BUSY 2 36 GND 

LOIN 13 25 Vee 
ODAC 12 

ECBST 3 35 MDB7 

CFBST 4 34 MDB6 

STATUS DISPLAY D/E ST 5 33 MDB5 

PINS EAKYST 37 32 MDB4 

MDB3 
MAIN DATA BUS 

KY ENT 39 31 

KYPER 38 TMS7500 30 MDB2 

ECB 6 OED 29 MD Bl 
40-PIN 

EXTERNAL COMMAND { 
CFB 7 28 MDBO 

PINS D/E 8 19 CDB7 

EAKY 9 20 CDB6 

RESET 14 21' CDB5 

DU ALBS 16 22 CDB4 
CIPHER DATA BUS 

XTAL1 17 23 CDB3 

XTAL2 18 24 CDB2 
MISC. PINS 

EXTCMD 15 26 CDBl 

CMND 10 27 COBO 

STATUS 11 

C-5 



C.5.1 Handshake Pins 

SIGNATURE l PIN l 1/0 l DESCRIPTION 

ODAV 0 Output Data Available-ODAV becomes active (high) when the 
OED has data available to be read on one of the data buses. After 
one read cycle·, ODAV will go inactive (low). 

BUSY 2 0 Busy - BUSY becomes active (low) after L D I N is driven active 
(low), indicating that data was written to one of the data buses 
and is being stored by the OED. The OED will then set BUSY 
high. More data should not be fed to the OED until 8 US Y 
becomes inactive (high). 

ODAC 12 Output Data Accepted ODAC is made active (low) when a read 
cycle is executed from either the Main Data Bus or the Cipher 
Data Bus. This signal alerts the OED that output data has been 
read by the host processor. ODAC is ignored if the OED does not 
have output data available to be read. 

LOIN 13 Load Data In - L D I N is driven active (low) when a write cycle is 
executed to either the Main Data Bus or the Cipher Data Bus. 
When LOIN becomes active, the OED will activate BUSY and 
store the byte of data. LOIN is ignored if the OED is waiting for 
any output data to be read. 

C.5.2 Status Display Pins 

SIGNATURE I PIN I 1/0 I DESCRIPTION 

ECBST 3 0 Electronic Codebook Status-ECBST reflects the logic level of the 
ECB bit in the Command Register. 

.CFBST 4 0 Cipher Feedback Status-CFBST reflects the logic level of the 
CFBST bit in the Status Register. 

D/E-Si 5 0 Decrypt/Encrypt Status-DIE ST reflects the logic level of the 
D/E ST bit in the Status Register. 

EAKYST 37 0 Enter Active Key Status-EAKYST reflects the logic level of the 
EAKYST bit in the Status Register. 

KYPER 38 0 Key Parity Error - KYPER reflects the logic level of the KYPER. bit 
in the Status Register. 

KYE NT 39 0 Key Entered - KYENT reflects the logic level of the KYENT bit in 
the Status Register. 

C·6 



C.5.3 External Command Pins. 

SIGNATURE I PIN l 1/0 l DESCRIPTION 

ECB 6 Electronic Codebook- If the EXTCMD and CMND pins are active 
(high), the ECB bit in the Command Register will reflect the logic 
level of the ECB pin. 

CFB 7 Cipher Feedback - If the EXTCMD and CMND pins are active 
(high), the CFB bit in the Command Register will reflect the logic 
lev·e1 of the CFB pin. 

D/E 8 Decrypt/Encrypt - If the EXTCMD and CMND pins are active 
(high), the D/E bit in the Command Register will reflect the logic 
level of the D/E pin. · 

EAKY 9 Enter Active Key - If the EXTCMD and CMND pins are active 
(high),· the EAKY bit in the Command Register will reflect the 
logic level of the EAKY pin. 

RESET 14 Reset - When active (low), the OED is reset, regardless of the 
logic level on any other pin. A reset will clear the Status Register, 
Status Display pins, Command Register, and both key registers. 
Both data buses will be in a high impedance (input) state. After 
the RESET pin is initiated, a delay time of at least 174 
microseconds is required before any other commands can be 
given to the OED. 

C.5.4 Cipher Data Bus Pins 

SIGNATURE I PIN 1 1/0 1 DESCRIPTION 

CDB0-7 19-24, 1/0 Cipher Data Bus - When DU ALBS is active 26-27 (high), the 8-bit 
26,27 Cipher Data Bus is used to pass all encrypted data to and from 

the OED. CDB7 is the most significant bit and COBO is the least 
significant bit. When DUALBS is inactive (low), the Cipher Data 
Bus is disabled and left in a high impedance state. 

384 C-7 



C.5.5 Main Data Bus Pins 

SIGNATURE l PIN l 1/0 I 
MDB0-7 28-35 1/0 

C.5.6 Miscellaneous Pins 

SIGNATURE I PIN I 1/0 I 
CMND 10 

STATUS 11 

EXTCMD 15 

DU ALBS 16 

XTAL1 17 

XTAL2 18 

Vee 25 

vss 36,40 

C·B 

DESCRIPTION 

1/0 Main Data Bus - When DUALBS is inactive (low), the Main 
Data Bus is used to pass all data to and from the OED. When 
DU ALBS is active (high), the Main Data Bus is used to pass only 
unencrypted data to and from the OED. MDB7 is the most 
significant bit and MDBO is the least significant bit. 

DESCRIPTION 

Command Register Update - When active (high), CMND will 
direct data to the Command Register. The source of command 
data is determined by the EXTCMD pin. When CMND is inactive 
(low), access to the Command Register is disabled. 

Read Status-When STATUS is active (high), the Status Register 
contents are available on the Main Data Bus (never on the Cipher 
Data Bus). The STATUS pin should be made inactive (low), 
before a read cycle is executed to get the status data from the 
bus. 

External Command - When active (high), all command data is 
received from the External Command Pins. When inactive (low), 
all command data is received from the Main Data Bus. 

Dual Data Bus - When active (high), the DED will communicate 
on both the Main Data Bus and the Cipher Data Bus. When 
inactive (low), the OED will only communicate on the Main Data 
Bus. 

Crystal Input 1 - Crystal input for internal clock oscillator. Leave 
open if an external clock source is used . 

. Crystal Input 2 - Crystal input for internal clock oscillator. Also 
input for an external clock source (divide by 4 only). 

Power Source - Power supply source = + 5 V. 

Power Ground - Power ground = 0 V. Both pins must be 
grounded. 

384 



DU ALBS D/E CIPHER DATA MAIN DATA 
PIN PIN BUS BUS 

0 0 NOT USED READ/WRITE 

0 1 NOT USED READ/WRITE 

1 0 ·READ FROM WRITE TO 

1 1 WRITE TO READ FROM 

FIGURE C-3 - OED DATA FLOW 

C.6 STATUS AND COMMAND 

The OED has two separate internal registers for command and status data. Most of the statu~ 
data is also available on the Status Display Pins. The optional External Command Pins can be 
used to load the command register. 

C.6.1 OED Status Register 

The Status Register contains the operational status of the OED at all times. This is a read only 
register. All of the status bits, except for MSGST, are also available on the Status Display Pins. 
The OED status register contents can also be read from the Main Data Bus. This is done by 
setting the STATUS pin high and then low and doing a Read Cycle. A request for status can be 
initiated any time during OED operations, even during a DES calculation or when output data is 
available. It is important to note, however, that all other operations stop until the status byte is 
read from the OED. All status bits are true when equal to one. The Status Register is cleared 
when RESET or RESET2 is initiated. The following is the Status Register layout and bit 
descriptions. 

STATUS REGISTER 

7 6 5 4 . 3 2 0 

KY ENT MSG ST KYPER EAKYST D/E-ST CFBST ECBST 

MSB LSB 

KYENT - Key Entered - KYENT indicates when a key has been initially loaded into the OED 
after a RESET or RESET2 function. KYENT is cleared upon reset and is set to one 
after 8 bytes of key data have been loaded into the Master Key Register. 

SGST - Message Start - MSGST indicates that the next 8 bytes loaded into the OED are to 
be used as an lntitialization Vector (iV) for the CFB mode of operation. MSGST is 
set to one when the CFB mode has been initialized in the Command Register. It is 
cleared after 8 bytes are loaded in for an IV, upon a reset, or when any other mode 
of operation is entered. 

C-9 



C.6.2 

C·10 

KYPER- Key Parity Error - KYPER indicates that a parity error was detected on the last key · 
loaded into the OED. This is only to detect key parity errors and will not prevent 
continued operations of the OED. KYPER is set to one when parity errors are 
detected and will be cleared if the next key entered does not have a parity error or 
upon reset. 

EAKYST - Enter Active Key Status - EAKYST reflects the logic level of the EAKY bit in the 
Command Register. 

D/E ST-

CFBST-

ECBST-

Decrypt I Encrypt Status - D/E ST reflects the logic level of the D/E bit in the 
Command Register~ 

Cipher Feedback Status - CFBST reflects the logic level of the CFB bit in the 
Command Register. 

Electronic Codebook Status - ECBST reflects the logic level of the ECB bit in the 
Command Register. 

OED Command Register 

All OED operations are controlled from the Command Register. Th.e Command Register is a 
write only register that can be accessed in two different ways, depending on the state of the 
EXTCMD pin. When EXTCMD is low, command data is received from the Main Data Bus. 
When EXTCMD is high, command data, except for RESET2, is received from the EAKY, D/E, 
CFB, and ECB pins on the External Command Bus. The RESET pin ignores the logic level of the 
EXTCMD pin and can be activated any time. In either case, the CMND pin ·determines when 
data will be directed to the Command Register. When EXTCMD is high and CMND is set high 
for a minumum of 42 µs and then low, the data on four External Command Pins are latched into 
the lower nibble of the Command Register. When EXTCMD is low and CMND is held high, the 
next byte written to the Main Data Bus is moved into the Command Register. All command bits 
are true when high. The Command Register is cleared upon either a RESET or RESET2. The 
following is a layout of the Command Register and pin descriptions. 

COMMAND REGISTER 

7 6 5 4 3 2 0 

RESET2 x x x EAKY D/E CFB ECB 

MSB ( X = DON'T CARE I LSB 

RESET2 - Software Reset - when set to one, RESET2 will cause the OED to reset. The results 
are the same as if a reset occured from the RESET pin. 

EAKY - Enter Active Key - when .set to one, EAKY allows access to the Active Key 
Register from the Main Data Bus or the Cipher Data Bus. 

D/E Decrypt I Encrypt - This bit can determine the direction of data flow as well as 
whether the OED will Encrypt or Decrypt. D/E is set to one for Decrypt and zero for 
Encrypt operations. This bit also affects the direction of data flow when the DED is 
using both data buses (DU ALBS pin equal one). 



C.6.3 

CFB - Cipher Feedback - When set to one, the OED will run in the Cipher Feedback mode 
of operation. EAKY and ECB should be equal to zero while in this mode. D/E is set 
for encrypting or decrypting. 

ECB - Electronic Codebook - When set to one, the OED will run in the Electronic 
Codebook mode of operation. CFB should be equal to zero while in this mode. 
EAKY could be a one since it uses ECB to encrypt or decrypt new active keys, but 
should be zero for normal ECB operation. D/E is set for encrypting or decrypting. 

System Interface 

Depending on system requirements, all or part of the TMS7500 1/0 capability may be utilized. 
Figure C-4 is an example of using all of the TMS75001/0 options. In this configuration two data 
buses are used as separated channels for clear data and ciphered data when the DUALBS pin 
connected to VCC. All ciphered data is passed along the Cipher Data Bus; all plain text data, 
master key, active key, and the Initialization Vector (IV) for the CFB mode is passed along the 
Main Data Bus. The two data buses can be memory mapped in separate locations of a single 
host microprocessor for added system security. They may also be hooked to two separate 
processors in a multiprocessor application. 

With the EXTCMD pin connected to VCC, commands to the OED are received from external 
switches rather than from the Main Data Bus. A command is entered by setting the appropriate 
toggle switches and pushing the. command button (see Figure C-4) to latch the bit pattern into 
the command register. The OED is reset by pushing the external reset button. The status is 
displayed constantly on LED indicators driven by the Status Display pins. · 

C-11 



C-12 

a:<. 
Ow 
U) (.J 
U) < w u. 
(.J a: ow 
a: I
ll. ~ 

a: Ill 
Ow 
U) (.J 
U) < w u. (.) a: ow 
a: I
ll.~ 

vcc 

8 DATA BUS A 8 

RS·A 

WSA 

WSB 

STATUS INDICATORS 

r-1'-.. 
l'J' KYENT 

8-BIT 
LATCH 

74LS373 
OE G 

8-BIT 
LATCH 

74LS373 

G ae 

8-BIT 
LATCH 

74LS373 
OE G 

8-BIT 
LATCH 

74LS373 

G OE 

COMMAND 
SWITCHES 

ST 

8 MAIN DATA BUS ,,... __ _, 

8 

CIPHER DATA BUS 8 

Vee------

=Vss 
8 

= vss 

FIGURE C-4 - FULL TMS7500 1/0 USAGE 

Vee Vss 

05Ac 

ODAV 

imSY 

CDBO-CDB7 

r:om 
DUAL BS 

EXTCMD 

STATUS 

COM ND 

TMS7500 
OED 

RE5ET 

EAKY 

DIE 

CFB 

ECB 

KYENT 

KYPER 

EAKYST 
D/E ·ST 

CFBST 

ECBST 

0 
~ 

= Vss 



APPENDIXD 
REFERENCES 

0.1 HEXADECIMAUDECIMAL CONVERSION TABLE 

Table D-1 lists the hexadecimal/decimal conversion table. To convert a hexadecimal number to 
decimal, add the decimal equivalents for each of the four positions. To convert from decimal to 
hexadecimal, use the hex equivalents of the largest decimal numbers in each position that add 
up to the desired number. Begin summing the nearest MSB number that is less than (or equal 
to) the desired decimal number. 

TABLE D·1 - HEXADECIMAUDECIMAL CONVERSION TABLE 

MSB 
0 3 4 7 8 11 12 15 

HEX DEC HEX DEC HEX DEC HEX DEC 
LSB 

0 0 0 0 0 0 0 0 
1 4096 1 256 1 16 1 1 
2 8192 2 512 2 32 2 2 
3 12288 3 768 3 48 3 3 
4 16384 4 1024 4 64 4 4 

5 20480 5 1280 5 80 5 5 
6 24576 6 1536 6 96 6 6 
7 28672 7 . 1792 7 112 7 7 
8 32768 8 2048 8 128 8 8 
9 36864 9 2304 9 144 9 9 
A 40960 A 2560 A 160 A 10 

B 45056 B 2816 B 176 B 11 
c 49152 c 3072 c 192 c 12 

D 53248 D 3328 D 208 D 13 

E 57344 E 3584 E 224 E 14 

F 61440 F 3840 F 240 F 15 

D·1 



D.2 ACRONYMS AND ABBREVIATIONS 

ACK Acknowledge 
AMPL Advanced Microprocessor Prototyping Laboratory 
BCD Binary Coded Decimal 
BR KOT Break Detect 
CHAR Character 
CL Capture Latch 
CLK Clock 
COMM Communication Mode 
CPU Central Processing Unit 
CROM Control ROM 
DOR Data Direction Register 
EC Event Counter 
ENB Enable 
EPROM Eraseable Programmable Read Only Memory 
ER Error Reset 
FE Framing Error 
FLG Flag 
1/0 Input/Output 
IAO Instruction Acquisition 
IOCNTL 1/0 Control Register 
LSB Least Significant Bit/Byte 
MC Mode Control 
MOS Metal Oxide Semiconductor 
MSB Most Significant Bit/Byte 
MULTI Multiprocessor Mode 
OE Overrun Error 
PC Program Counter 
PE Parity Error 
PEN Parity Enable 
PEVEN Parity Even 
PF Peripheral File 
PL Prescaler Latch 
PLA Programmable Logic Array 

,PWM Pulse Width Modulation 
R/W Read/Write 
RAM Random Acc~ss Memory 
RF Register File 
ROM Read Only Memory 
ATC Real Time Clock or Regional Technology Center 
RX Receiver 
RXBUF Receiver Buffer 
RXEN Receiver Enable 
RXRDY Receiver Ready 
SCAT Strip Chip Architecture Topology 
SCLK Serial Clock 
SCTL Serial Control 
SHF Shift Register 
SMODE. Serial Mode 
SP Stack Pointer 
SSTAT Serial Port Status Register 
ST Status. Register 

D-2 



STOP 
TCTRL 
TDATA 
TL 
TTL 
TX 
TXBUF 
TXD 
TXE 
TXEN 
TXRDY 
TXSHF 
UR 
WU 
WUT 
XDS 
XMPL 
XTAL 

Stop Bit 
Timer Control 
Timer Data 
Timer Latch 
Transistor-Transistor Logic. 
Transmitter 
Transmitter Buffer 
Transmit Data 
Transmitter Empty 
Transmit Enable 
Transmitter Ready 
Transmitter Shift Register 
Software UART Reset 
Wake Up 
Wake Up Temporary 
Extended Development Support 
Extended Microprocessor Prototyping Laboratory 
Crystal 

D-3 



D·4 



TI Sales Offices 
ALABAMA• Hunuville. 500Wynn Drive, Suire 514. 
Huntsville, AL 35805, (205) 837-7530. 

ARIWNA: Pboena. P.O. Box35160, 8102 N. 23n! A.e., 
SuiteA, l'l>oenix, AZ85021, (602) 995-1007. 

CALIK>RNIA• El Squndo, 831 S. Dougla1 St., El Squndo, 
CA90245. (213)973-2571: Irvine, 17891 Cartwright Rd., 
Irvine, CA 92714, (714) 660-1200: Sacram<nto, 1900 Point 
West Way, Suire 171, Sacramento, CA 95815, (916) 929·1521; 
San Diqo, 4333 View Rids< A.e., Suire B., San Diego, CA 
92123. (714) 278-9600; Santa Clara, 5353 Betsy Ro.a Dr .. 
Santa Clara, CA 95054, (408) 980-9000; Woodland Hllh, 
21220ErwinSt., Woodland Hilla, CA 91367, (213) 704·7759. 

COLORAD01 Den- 9725 I!. Hampden St., SuitdOl, 
Den.er, CO 80231, (303) 695-2800. 

CONNECTICUf 1 W.Ulncford, 9 Barna Industrial Park 
Rd., Barna lnduaaial Park, Walling{on!, CT 06-492, (203) 
269-0074. 

FLORIDA• a.or-..,, 2280 U.S. Hwy. 19 N., Suire 232, 
Cleaiwaur, A. 33515, (813) 796-1926: Ft. Laud..dale, 2765 
N.W. 62nd St., Ft. Lauden!ale, A. 33309, (305) 973-8502: 
Maidmd, 2601 Maitland Center l'lrkway, Maitland, A. 32751, 
(305) 646-9600. 

GEORGIA: Atlanta, 3300 Northeast Expy., Building 9, 
Atlanta, GA 30341, (404) 452-4600. 

llJ.INOIS: Arlington Heichu. 515 W. Algonquin, Arlington 
Heights, IL 60005, (312) 640-2934. 

INDIANA• Ft. Wayne, 2020 Inwood Dr., Ft. Wayne, IN 
46805, (219) 424-5174; lndlampllia, 2346 S. Lynhunt, Suire 
]-400, lndianapolil, IN 46241, (317) 248-8555. 

IOWA: Cedar Raplda, 373 Collin1 Rd. NE, Suite 200, Cedar 
Rapids, IA 52402, (319) 395-9550. 

MARYLAND: lloltimoft, 1 Rutherford Pl., 7133 Rutherford 
Rd., Bakimore, MD 21207, (301) 944-8600. 

MASSACHUSETTS: Waldwn, 504 Totten Pond Rd., 
Wakham, MA 02154, (617) 890-7400. 

MICHIGAN: Fanninaton Hlllo, 33737 W. 12 Mile Rd., 
Farmington Hdh, Ml 48018, (313) 553-1500. 

MINNESOTA: Edina, 7625 Parklawn, Edina, MN 55435, 
(612)830-1600. 

MISSOURI• Konau City, 8080 Wan! Plcwy., Karuaa City, MO 
64114, (816) 523-2500; St. Louil, 11861 Westline lndustTial 
Dri.e, St. Louil, MO 63141, (314) 569-7600. 

NEW JERSEY: Clarlt, 292 Terminal Ave. West, Clark, NJ 
07066, (201) 574-9800. 

NEW MEXICO: Alhuqumiue, 5907 Alice NSE, Suire E., 
Albuqueique, NM 87110, (505) 265-8491. 

NEW \'ORK1 Eaat Syncuae, 6700 Old Collamer Rd., East 
Syracuse, NY 13057, (315) 463-9291: Endicott, 112 Nanticoke 
A.e., P.O. Box 618, Endicott, NY 13760, (607) 754-3900; 
Melville, I Huntington Quadrangle, Suire 3CIO, P.O. Box 
2936, Melville, NY 11747, (516)454-6600;Pou&f>k-le, 
201 South Ave., Poughk-ie. NY 12601, (914) 473-2900: 
Rochell<r, 1210 )efft:non Rd., Rochester, NY 14623, (716) 
424-5400. 

NOKill CAROLINA: Charlotte, 8 Woodlawn Grttn, 
Woodlawn Rd., Charlotte. NC 28210, (704) 527-0930; 
RaleJ&h, 3000 High~ Blvd., Suite 118, Raleigh, NC 27625, 
(919)876-2725. 

OHIO: Beachwood, 23408 Commm:e Park Rd., Beachwood, 
OH 44122, (216) 464-6100; Dayton, Kinpley Bldg .. 4124 
Linden A.e .. Dayton, OH 45432, (513) 258-3877. 

OKLAHOMA: Tulaa, 3105 E. Skelly Dr., Suite 110, Tulaa, 
OK74105, (918) 749-9547. 

OREGON: Beaverton, 6700 SW 105th St., Suite 110, 
Beaverton, OR 97005, (503) 643-6758. 

PENNSYLVANIA: Ft. Wubington, 575 VUJ!nia Dr., Ft. 
Waohington, PA 19034, (215) 643-6450: Co100pOlia, PA 
15108, 420RouaerRd., 3 Airport Office PK, (412) 771-8550. 

TENNESSEE1 )ohnaon City, P.O. Drawer 1255, Erwin Hwy., 
Johnson City, TN 37601, (615) 461-2191. 

TEXAS1 Austin, 12501 Research Blvd., P.O. Box 2909, 
Austin, TX 78723, (512) 250-7655; Dallu, P. 0. Box 1087, 
Richan!aon, TX 75080; Houaron, 9100 Southwost Frwy., Suite 
237, Houston, TX 77036, (713) 778-6592: San Antonio, 1000 
C.naal Park South, San Antonio, TX 78232, (512) 496-1779. 

lTl'AH: Salt Laite City, 3672 West 2100 South, Salt Lake City, 
IJl' 84120, (801) 973-6310. 

VIRGINIA1 Fairfax. 3001 Prosperity, Fairfax. VA 22031, 
(703) 849-1400: Midlothian, 13711 Sutter'• Mill Circle, 
Midlothian, VA 23113, (804) 744-1007. 

WISCONSIN1 Brookfield, 205 Biahopt Way, Suite 214, 
Brookfield, WI 53005, (414) 784-3040. 

WASHING'ION1 Redmond, 2723 152nd A.e., N.E. Bldg 6, 
Redmond, WA 98052, (206) 881-3080. 

CANADA: Ottawa, 436 Mac Laren St., Ottawa, Canada, 
KZPOM8,(613) 233-1177; Richmond Hill, 280CenaeSt. E .. 
Richmond Hill l4C1Bl, Ontario, Canada, (416) 884-9181; St. 
Lau .. nt, Ville St. Laurent Quebec, 9460 T12ns Canada Hwy., 
St. Laurent, Quebec, Canada H4SlR7, (514) 334-3635. B 

TI Distributors 
ALABAMA: Hall-Mark (205) 837-8700. 

ARIWNA1 Phoenix, Kiendfl (602) 243-4101; Manhall (602) 
968-6181; Wyle (602) 249-2232: Tucaon, Kierulff (602) 
624-9986. 

CALIK>RNIA1 Loo Angel~ County, Arrow (213) 
701-7500, (714) 851-8961; lECl)ACO (714) 540-5600, (213) 
998-2200; Kierulff(213) 725-0325, (714) 731-5711; Manhall 
(213) 999-5001. (213)442-7204, (714) 556-6400; R.V. 
Weatherford (714) 634-9600, (213) 849-3451, (714) 623-1261: 
Wyle (213) 322-8100, (714) 641-1600, San Oiqo, Arrow (619) 
565-4800; Kierulff(619) 278-2112; Manhall (619) 578-9600; 
R. V. Weatherford (619) 695-1700: Wyle (619) 565-9171; San 
Francbco Boy A..., Arrow (408) 745-6600; Kierulff (415) 
968-6292: Marshall (408) 732-1100; Wyle (408) 727-2500; 
Santa Barbara, R. V. Weatherfon! (805) 965-855 l. 

COLORAD01 Arrow (303) 758-2100; Kierulff (303) 
790-4444; Wyle (303) 457-9953. 

CONNECTICUf1 Arrow (203) 265-7741: Diplomat (203) 
797-9674; Kierulff (203) 265-1115; Manhall (203) 265-3822: 
Milgray(203)795-0714. 

FLORIDA: Ft. Laudmlale, ArroN (305) 776· 7790: Diplomat 
(305) 971-7160; Hall-Mark (305) 971-9280; Kierulfl (305) 
652-6950: Orlando, Arrow (305) 725-1480; Diplomat (305) 
725-4520; Hall-Mark (305) 855-4020; Milgray (305) 647-5747: 
Tampo, Diplomat (813) 443-4514; Hall-Mark (813) 576-8691; 
Kierulfl(813) 576-1966. 

GEORGIA• Arraw (404) 449-8252: Hall-Mark (404) 
447-8000: Kierulfl(404) 447-5252: Manhall (404) 923-5750. 

ILLINOIS1 Arrow (312) 397-3440; Diplomat (312) 595-1000; 
Hall-Mark (312) 860-3800; Kierulff (312) 640-0200; Newark 
(312)638-4411. 

~ 
TEXAS 

INSTRUMENTS 
Creating useful products 

and services for you. 

INDIANA1 lndlaaapolla, A=w (317) 243-9353; Graham 
(317) 634-8202: Ft. Wayne, Graham (219) 423-3422. 

IOWA: Arrow (ll9) 395-7230. 

KANSAS• Konau City, Component Sped,;kies (913) 
492-3555: Hall-Mark (913) 888-4747; Wichita, LCOMP (316) 
265-9507. 

MARYLAND• Arrow(301) 247-5200; Diplomat(301) 
995-1226: Hall-Mark (301) 796-9300; Kierulff(301) 247-5020; 
Milgray (301) 468-6400. 

MASSACHUSETIS: Arrow (617) 933-8130: Diplomat (617) 
429-4120; Kierulfl(617l 667-8331; Manhall (617) 272-8200; 
Time (617) 935-8080. 

MICHIGAN1 Detroit, ArtCTN (313) 971-8200; Newark (313) 
967-0600: Grand Rapida, Newark (616) 243-0912; Arrow (616) 
243-0912. 

MINNESOfA1Arrow (612) 830-1800: Hall-Mark (612) 
854-3223;Kierullf(612)941·7500. 

MISSOURI: Konau City, LCOMP (816) 221-2400: St. Loula, 
Arraw (314) 567-6888; Hall-Mark (314) 291-5350; Kierulff 
(314) 739-0855. 

NEW HAMPSHIRE: ArtCTN (603) 668-6968. 

NEW JERSEY: Arrow (201) 575-5300, (609) 235-1900; 
Diplomat (201) 785-1830; General Radio (609) 964-8560: Hall· 
Mark (201) 575-+415. (609) 424-7300, JACO (201) 778-4722: 
Kierulfl (201) 575-6750; Manhall (201) 882-0320: Milgray 
(609) 983-5010. 

NEW MEXICO: Arrow (505) 243-4566; International 
Electronics (505) 345-8127. 

NEW\'ORK: Lonalaland,Anow (516) 231-1000; Diplomat 
(516) 454-6334; Hall-Mark (516) 737-0600;JAC0(516) 
273-5500; Manhall (516) 273-W4: Milgray (516) 546-5600, 
(800) 645-3986: Hall-Mark (516) 737-0600; Rochat<~ ArtCTN 
(716) 275-0300: Manhall (716) 235-7620: Roc:heater Radio 
Supply (716) 454-7800; Syncuse, Arrow (315) 652-1000: 
Diplomat (315) 652-5000; Marshall (607) 754-1570. 

NOKill CAROLINA: Arrow (919) 876-3132, (919) 
725-8711: Hall-Matk (919) 872-0712: Kierulff (919) 852-9440. 

OHIO: Cincinnati,Graham(51J) 772-1661: Hall-Mark(513) 
563-5980; Cleveland, Arrow (216) 248-3990; Hall-Mark (216) 
473-2907; Kierulff (216) 587-6558; Columbue, Hall-Mark (6141 
891-4555, Dayt0n, Arrow (513) 435-5563: ESCO (513) 
226-1133;Manhall(513)236-ll088. 

OKLAHOMA: Arrow (918) 665· 7700; Component Specialties 
(918) 664-2820; Hall·Matk(918) 665-3200; Kierulfl (918) 
252-7537. 

OREGON: Kierulfl (503) 641-9150: Wyle (503) 640-6000. 

PENNSYLVANIA: Arrow (4lll 856-7000, (215) 928-1800; 
Gene12I Radio (215) 922· 7037: Hall-Mark (215) 355-7300. 

TEXAS: Austin, Arrow (512) 835-4180: Component 
Speciakiea (512) 837-8922; Hall-Mark (512) 258-8848: Kierulfl 
(512) 835-2090; Dallaa, Arrow (214) 386-7500; Component 
Speciakies (214) 357-6511; Hall-Mark (214) 341-1147; 
International Elecaonics (214) 233-9323: Kierulfl (214) 
343-2400: El Fuo, International Electronics (915) 778-9761; 
Houston, Arrow (713) 491-4100; Component Specialties (713) 
771-7237; Hall-Mark (713) 781-6100; Harrison f<iuipment 
(713) 879-2600: Kierulff (713) 530-7030. 

UTAH: Diplomat (801) 486-4134; Kierolff (801) 973-6913; 
Wyle (801) 974-9953. 

VIRGINIA1 Arrow (804) 282-0413. 

WASHINGTON: A""" (206) 643-4800: Kierulfl (206) 
575-4420; Wyle (206) 453-8300. 

WISCONSIN: Arrow (414) 764-6600; Hall-Mark (414) 
761-3000: Kierulfl (414) 784-8160. 

CANADA• Calpry, Future (403) 259-6408; Varah (403) 
230-1235; Hamilton, Varah (416) 561-93ll:Monbal,CESCO 
(514) 735-5511; Future (514) 694-7710; Ottawa.CESCO (613) 
226-6905; Future (6lll 820-8313; QuebecCity,CESCO (418) 
687-4231; To10nto, CESCO (~16) 661-0220; Future (416) 
663-5563: Vancou- Futur• (604) 438-5545: Varah (604) 
873-32ll;W1DDipec,Varah(204)633-6190. BB 



TI Worldwide 
Sales Offices 
ALABAMA• Hun11villo, 500 Wynn Drive, Suite 514, 
Huntsville, ALJS80S. (20S)8J7-7SJO. 

ARIZONA1Pboenb.,P.O BoxJSl60, 8102N. 23n!A,,.., 
Suite A, Phoenix, AZ 8S021, (602) 99S-1007. 

CALIFORNIA: El Sesundo, 8JI S. Douglao Sr.: El S.1Undo. 
CA 9024S. (2tl) 973-2571; Irvine, 17891 CartwriihtRd., 
Irvine, CA 92714, (714) 660-1200; S.cnmento, 1900 Point 
Wesr Way, Suit< 171, Sacramenro, CA 9S81S, (916) 929-IS21; 
Son Diqo, 4JJJ View Ridge AV<., Su11e B., San Diego, CA 
92123, (114) 278-9600; S.nta Clan, SJSJ Betsy Rou Dr., 
San!• Clara, CA 9SOS4, (408) 980-9000; Woodland Hilla, 
21220E...,inSr., Woodland Hdls, CA 91l67, (21J) 704-77S9. 

COWRAD01 O.n""~ 972S E. Hampden St., Suite JOI, 
DenV<r, CO 80231, (30J) 69S-2800. 

CONNECTICUT1Walllnsford,9 Bame1 lndu11iial Park 
Rd., S.ma lnduotrial Park. Wallincfunl, CT 06492, (20J) 
269.0074. 

FLORIDA• Clea,......, 2280U.S. Hwy. 19N., Suite 232. 
c1 .......... FL 33515, (Sil) 796-1926; Ft. uudetdale, 276S 
N.W. 62nd Sr., Ft. uudenlale, FL JJJ09, ()OS) 973·8S02; 
Maltlond, 2601 Maitland Cenm Parkway, Maitland, FL J27S I, 
(JOS) 646.96()(). 

GEORG1A1 Atlanta, 3300 Norrhea5! Expy., Buildin19, 
Arlant .. GA JCJ41, (404) 4S2-4600. 

ILLINOIS1 Arllnston Helsft11, SIS W. Alronquin, Adington 
Hcigha, IL 60005, (312) 6-40-2934. 

IND1ANA1 Ft. Wayne, 2020 Inwood Dr., Fr. Wayne, IN 

~~,1~~~:~4;,1~. IJ.!'~'t4'T'.(~~·2~~s~Iynhunr, Suit< 

IOWA: Cedar Rapld1, J7J ColliN Rd. NE, Suire 200, Cedar 
llapida, IA S2402, (Jl9) J9S-9SSO. 

MARYLAND: Boltlmor., I Rutherfunl Pl., 7,IJJ Ruth•rfunl 
Rd., Balrimore, MD21207, (301)944-8600. 

MASSACHUSE1TS1 Waltham, 504 To<ten Pond Rd., 
Wakham, MA 02154, (617) 890-7400. 

MICHIGAN: Fannlnrton Hilla, JJ737 W. 12 Mil• Rd., 
Farmington Hills, Ml 48018, (313) S5J-ISOO. 

MJNNESOTA1 Edina, 762S Parklawn, Edina, MN SSOS, 
(612) 8J0-1600. 

MISSOURI: Kanau City, 8080 Wan! Pkwy., Kansai Ciry, MO 
64114, (816) S2J·2SOO; St. Louia, 11861 Westline Industrial 
Drive, St. Louis, M063141, (314) 569-7600. 

NEW JERSEY1 Clark, 292 Terminal AV<. Wnt, Clark, NJ 
. 07066, (201) S74-9800. 

NEW MEXICO: Albuqurrqu•, S907 Alice NSE. Suite E .• 
Albuqueniur, NM 87110, (SOS) 265-8491. 

NEW YORK• Eut Syncu1e, 6700 Old Collamer Rd., E111 , 
Syracusr, NY IJOS7, (JIS) 463-9291; Endicott, 112 Nanticoke 
Ave., P.O Box 618, Endicot1, NY 13760. (607) 7S4-J900; 
M.lvilk, I Hunrington Quadrangl•, Suite JCIO, P.O Box 
2936, Melville, NY 11747, (Sl6) 454-6600; Poup.keq>1ie, 
201 SourhAV<., Poughk .. psie, NY 12601, (914) 473-2900; 
Rochnter, 1210 Jeffen<>n Rd., Rochester. NY 14623, (716) 
424·S400. 

NORlll CAROLINA: Charlotte, B Woodlawn Orren, 
Woodlawn Rd., Charlo<r., NC 28ZIO, (704) SZ7-09JO; 
Ralelah. 3000 H:ghwoods Blvd., Suite 118, Raleigh, NC 27625, 
(919)876-27ZS. 

OHIO: llachwood, 23408 Commercr Park Rd., Beachwood, 
OH441ZZ, (Zl6) 464-6100; Doyton, K:ngslry Bldg., 41Z4 
Lindon Ave .. Dayton, OH 4S432, (513) 258-J877. 

OKLAHOMA: Tulaa, 3105 E. Skelly Dr .• Suite 110, Tulsa, 
OK74105, (918) 749-9547. 

OREGON1 Beawrton, 6700 SW 105rh St., Suite 110, 
Beaverton, OR 97005, (50J) 643·67S8. 

PENNSYLVANIA1 Ft. Wuhlnston, 57S Virginia Dr., Fr. 
Washinrton, PA 19034, (Zl5) 643-6450;Coraopolil, PA 
15108. 420RousrrRd., J AirportOfficr PK. (412) 771·85SO. 

TENNESSEE• John'°" Clry, P.0 Onw.r 1255, Erwin Hwy., 
Johnson City, TN 37601. (615) 461·2191. 

TEXAS• Auatln, 12501 R..""arch Blvd., P.O Box 2909, 
AU1tln, TX 7872J, (512) Z50-765S:O.U..,P. 0 Box 1087, 
R:chardaon, TX 75080; H0111ton, 9100 Southwesr Frwy., Suit< 
237, Housron, TX 77036, (71J) 778-6592; S..Antcnlo, 1000 
Central Park Sourh, San Antonio, TX 7823Z. (51Z) 496-1779. 

UTAH1 Salt Lak• City, J672WntZ100 South, Salr Lake City, 
UT 84120, (801) 973-6JIO. 

VIRGIN!A1 Fairfax, JOO! Prosprrity, Fairfax, VA 220JI, 
(70J) 849·1400: Midlothlan, IJ711 Sutr.1~ Mill Circle, 
Midlo<hian, VA ZJl1J, (804) 744·1007. 

WISCONSIN• Brookfield, 205 Bi1hop1 Way, Suire 214, 
Brookfield, WI SJ005, (414) 784-3040. 

WASHING10N1Redmond, 2723 ISZndAve., N.E. Bldg6, 
R.dmond, WA 98052, (206) B81·J080. 

CANADA1 Ottawa, 436 Mac Laren Sr., Ottawa, Canada, 
KZPOM8,(6tl) 233·1177; Rkhmond HUI, Z80CentreSt. E .• 
Richmond Hill L4CIBI, Ontario, Canada, (416) 884·9181; St. 
uuimt, Ville St. uurent Qurbrc, 9460 Trana Canada Hwy., 
St. Lauren!, Quebrc, Canada H4SIR7, (Sl4) JJ4.J6J5. B 

ARGENTINA, Teus INtrum•nn Argrntina S.A.l.C.F.: 
Esmeralda tlO, 15th Floor. 1035 BurnosAim, A,..nrina, 
J~4-Z96J. 

AUSTRALIA(&. NEW ZEALAND~ T•us INtrum•nts 
Australia Ltd.: 6-10 Talavera Rd., North Ryde (Sydney), New 
Sourh Wale1,AU1ttal:a2) IJ, OZ +887-112Z; 5rh Aoor, 418 St. 

~~1:a2~~6J1~~1nu~ji~~~;~:;:.£1~:~t~~uth Australia 
1112, C8+ZS5-Z066. 

AUSTRIA, Texas lnnrumenu Ges.m.b.H.: lndustriesmbe 
8116, A-2345 Brunn!Grbirge, 2236-846ZIO. 

BELGIUM, Texas INrrumrnu N. V. Belgium S.A.: Mercure 
Centre, f..akeutraar 100, Rued. la Fuaee, 11JO Brusaela, 
Belgium, OZl720.80.00. 

BRAZIL, Teu1 INtruments Elrctronlcos do Bra1il Lida.: Av. 
Faria Lima, ZOOJ, ZO 0 Andar-Pinhe:roa, Cep-01451 Sao 
Paulo, Brazil, 815-6166. 

DENMARK, Texa1 lnstrumen11 A/S, Mariel~ndvej 46E, 
DK·Z730 Herl.v, Denmark, Z • 91 74 00. 

FINLAND, Texas lnstrumenuFinlandOY: PL 56, 00510 
H•binki 51, Finland, (90) 701Jlll. 

FRANCE. Ttxas lnmumtnts France: Heaclquarten and Prod. 
Plan!, BP05, 06Z70 Villen•uve-Loub.1, (93) Z0.01·01; Pari1 
Office, BP67 8-10 Avenue Mora .. ·Saulnier, 78141 Veliry· 
Villacoublay, (J) 946-97·1Z; Lyon Sal•• Office, L'Oree D'Ecully, 
Batim•n! B, Chemin do la Fomti•rr, 691l0 Ecully, (7) 8JJ. 
04-40; SrrasbourJI Sain Office, t. S.bastopol J, Quai Kl•b.r, 
67055 S1ra1bourJ1Cedex. (88) 22-12-66; R.nnrs, 23.z5 Rue du 
PuiuMauger, 35100R.nnn, (99) 79-54-81;.Toulou .. Sal .. 
Office, Le Ptripole-2, Chemin Ju Plreonn1er de Ja C.epiere, 
JI IOOToulou1e, (61) 44·18-19; ManrilleSalesOffi<•, Noilly 
Paradia-146 Rue Parad:s, 13006Manrille, (91) 37·25-JO. 

~ 
TEXAS 

INSTRUMENTS 
Creating useful products 

and services for you 

GERMANY, Trx11 INtruments Deu11ehlond OmbH: Hq· 

f95li9':.~i1~·:.~n1t':~"fo-~m~~~h~;; 
belam .... D-4JOO Elam, 0201-24250; Ftankfurter Ali.. 6-8, 
D-6236 Eschborn I, 06196·4J074; Hamburger SIT'..,. I I, 
0.2000 Hamburg 76, 040· 2201154, KirchhontenrruM 2, 
[).JOOO Hannover 51, 0511-648021; Arabellutnaae 15, 0-8000 
Muench•n 81, C89-92l4l;Maybochatn11< II, 0.7302 Olt· 
fildrm 2/Nellinren, 0711-J40JO. 

HONG KONG ( + PEOPLES REPUBLIC OP CHINA~ 
Texa1 INtrum•nll Aaia Ltd.: 81h Aoor. World Shippi"I Ctr., 
Harbour City, 7 Canton Rd., Kowloon, Hone KDn,, 
3+722-IZZJ. 

IRELAND, Trx11 INtrumrnts (lroland) limired: 25 St. 
Sr<ph•N Orem, Dublin 2. Eire, 01 609222. 

ITALY, T rxa1 INtrum•nts S.micondutrori Italia Spa: Vlaw 
Delle Scienu, I, OZ015CittaducJI• (Rirtli haly, 0746694.I; 
Via Solaria KM 24 (Pala= Co.ma), Monterotondo Scalo 
(Romo), Italy, 06 9004J9S; Vial• Europa, JS-44, 2009J 
ColornoMonu .. (Milano), OZ Z5J2541:ConoSvinen, 185, 
IOIOOTorino, Italy, Oil 774S4S; Via). Bonxzl, 6, 45100 
Bologna, haly, 051 JSS8SI. 

JAPAN, Trxu INtruments Aaia Ltd.: 4F Ao,oma Fuji Bid,., 
6·12, Kita AO!"ma J-Chomr, Minato·ku, Tolcyo, japan 107, 
OJ.498-ZI 11; Osaka Bnnch, SF, Nillho lwai Bids., JO lmabuhl 
J-Chome, Hlp1hi·ku, Osaka, Japon 541, 06-204-1881; N._ 
Bnnch, 7F O.ini Toyora W•st Blda., 10..27, M•i•kl 4.a.om., 
Nakamura·ku, N._, japan 450, 052-SSJ.8691. 

KOREA, TrxH ININment1 Supply Co.: Room 201, K...,,,. 
poonr Bld1 .• 24-1. H.....,.nd·Oong, 5ungdonc·ku, lJJ Seoul, 
Korn, OZ+464-6274/S, 

MEXICO, Texa1INtrumm11d.MexicoS.A.: Ponimte 116, 
No. 489, Colonia Vall•jo, Mnlco, D.F. 02300, 567-9200. 

MIDDLE EAST, Trx11 ln11rumrn11: No 13, ht Floor Mannai 
Bldg., Diplomatic Arn, Manama, P.O Box 2633S, Bahrain, 
Arabian Gulf, 97J • 72 46 81. 

NETiiERLANDS, Trxu INtrummts Holland B. V., P.O. Boa 
IZ995, (BullrwiJkl llOOAZA1111terdam, Zuld-Ooat, Holland 
(OZO) 5602911. 

NORWAY, Trx11 lnnruments Norway A/S: Kr. A-. 13, 
O.lo !. Norway, (2) 20 60 40. 

PHILIPPINES, Trx11 lnstrummn Aaia Ltd.: 14th Floor, Bo· 
t.panro Bldg., 8747 Paaeo do Rona, Makoti, M•no Manila, 
Philippines, 88Z465. 

POR'IUGAL, Trx11 INtrum<n11 Equipammto Elrctronico 
(Portugal), Lda.: Rua En,. Fmlerico Ulrich, 2650 Moreira Oa 
Maia, 4470 Maia, Portupl, 2·948JOOJ. 

SCOI'LAND, Trxu INtrum•nts Limited: IZ6·1280.0. 
Strttt, Edinburgh, Scorland, EHi 2AN, OJI 226 2691. 

SINGAPORE ( + INDIA, INDONESIA, MALAYSIA, 
THAILAND~ Texu lnstrumenll Aaia Ltd.: P.O. Box IJ8, 
Unit #OZ.08, Block 6, Kolam A.,.r lndwtrial En .. Kalianr 
Sector, Singapore 1334, R.public of Singapore, 747-22SS. 

SPAIN, Texa1 INtrumrn11 Espana, S.A.: C/)ooe Lazaro 
Oaldiano No. 6, Madrid 16, 1/458.14.58. C/Bolma, 89 
Barcelona-8, 2SJ 60 OOIZSJ Z9 OZ. 

SWEDEN, Texas Instruments lnterrsational Track Corpontton 
(Sverigefilialen): Box J9JOJ, 10054 Stockholm, Swed.n, 08 • 
23S480. 

SWITZERLAND, Trxa1 INtrumrn11, Inc. Ri.dmuae 6, 
CH-89SJ O;•rikon (Zuerich) Swin.rland, 1·740 22ZO. 

TAIWAN, Tn11INr:rummt1SupplyCo.: !Orhfloor, fu. 
Shing Bldg., 71 Sung-Klang Rood, Taiprl, Taiwan, R.public of 
China, OZ+52).9J21. 

UNITED KINGDOM. Trx11 lnstrum•nt1 Limited: Manton 
Lano, Bedfunl, MK41 7PA, En,land, 0234 67466; 186 Hirh 
Strttr, Slough, SLI ILD, En,land, 0753 JSS4S; St. Jama 
~f«·z~~~n Rood North, Stockport, SK4 2RT. EnrIU:e 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 



NOTES 





April '1984 
Revision A 
1603481-9701 
Prlrited in U.S.A. 

~ 
TEXAS 

INSTRUMENTS 
Creating useful products 

and services for you. SPND001A 


