
TMS320C3x/C4x
Code Generation Tools
Getting Started Guide

Release 5.00

SPRU119B
March 1997

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This manual tells you how to install release 5.00 of the TMS320C3x/C4x float-
ing-point DSP code generation tools on your system. It also does the following:

� Tells you how to set environment variables for parameters that you use
often

� Gets you started using the compiler, linker, and assembler

� Details the enhancements included and tells you where to find further in-
formation

� Describes how you can resolve problems that you may encounter on a
PC running DOS (MS-DOS or PC-DOS)

How to Use This Manual

The goal of this book is to get you started using the development tools specifi-
cally designed for the TMS320C3x/C4x floating-point DSPs. Following are the
topics covered in this user’s guide:

For information about … Refer to …

Installing the code generation tools or setting environment variables
on a PC running:

MS–DOS, PC–DOS, or Windows 3.1
Windows NT or Windows 95

Chapter 1
Chapter 2

Installing the code generation tools or setting environment variables
on a SPARCstation running SunOS Chapter 3

Installing the code generation tools or setting environment variables
on an HP 9000 Series 700 PA–RISC computer running HP–UX Chapter 4

Getting started using the code generation tools Chapter 5

Release notes Chapter 6

Troubleshooting DOS systems Appendix A

Accessing TMS320C3x peripherals through C pointers Appendix B

Notational Conventions

iv

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold verson of the spe-
cial typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages,
etc.). Here is an example of a command that you might enter:

mkdir tool_dir

In this example, you should type mkdir as shown and replace tool_dir

with the name of your directory.

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface and parameters are in an italic typeface. Portions of a syntax that
are in bold should be entered as shown; portions of a syntax that are in
italics describe the type of information that should be entered. Here is an
example of a command syntax:

.sfloat value

� Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you do
not enter the brackets themselves. Here is an example of a command that
has optional parameters:

set DOS4GVM=[option[#value]] [option[#value]] ...

This command allows you to specify one or more options and to indicate
values with each option, if appropriate. In this example, you must include
the # symbol if you enter a value.

 Related Documentation From Texas Instruments

v Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320C3x/C4x floating-point DSPs and
related support tools. To obtain a copy of any of these TI documents, call the
Texas Instruments Literature Response Center at (800) 477–8924. When
ordering, please identify the book by its title and literature number.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature
number SPRU035) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C3x and ’C4x generations of devices.

TMS320C3x/C4x Optimizing C Compiler User’s Guide (literature number
SPRU034) describes the TMS320 floating-point C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the ’C3x and ’C4x generations of
devices.

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C4x C Source Debugger User’s Guide (literature number
SPRU054) tells you how to invoke the ’C4x emulator and simulator ver-
sions of the C source debugger interface. This book discusses various
aspects of the debugger interface, including window management, com-
mand entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
32-bit floating-point microprocessor (developed for digital signal proces-
sing as well as general applications), its architecture, internal register
structure, instruction set, pipeline, specifications, and DMA and serial
port operation. Software and hardware applications are included.

TMS320C32 Addendum to the TMS320C3x User’s Guide (literature num-
ber SPRU132) describes the TMS320C32 floating-point microprocessor
(developed for digital signal processing as well as general applications).
Discusses its architecture, internal register structure, specifications, and
DMA and serial port operation. Hardware applications are also included.

Related Documentation From Texas Instruments

vi

TMS320C4x User’s Guide (literature number SPRU063) describes the ’C4x
32-bit floating-point processor, developed for digital signal processing as
well as parallel processing applications. Covered are its architecture, in-
ternal register structure, instruction set, pipeline, specifications, and op-
eration of its six DMA channels and six communication ports.

Parallel Processing with the TMS320C4x (literature number SPRA031) de-
scribes parallel processing and how the ’C4x can be used in parallel pro-
cessing. Also provides sample parallel processing applications.

TMS320C4x General-Purpose Applications User’s Guide (literature num-
ber SPRU159) describes software and hardware applications for the
’C4x processor. Also includes development support information, parts
lists, and XDS510 emulator design considerations.

TMS320C30 Evaluation Module Technical Reference (literature number
SPRU069) describes board-level operation of the TMS320C30 EVM.

Digital Signal Processing Applications With the TMS320C30 Evaluation
Module Selected Application Notes (literature number SPRA021)
contains useful information for people who are preparing and debugging
code. The book gives additional information about the TMS320C30
EVM, as well as C coding tips.

TMS320 Family Development Support Reference Guide (literature number
SPRU011) describes the ’320 family of digital signal processors and cov-
ers the various products that support this product line. This includes
code-generation tools (compilers, assemblers, linkers, etc.) and system
integration and debug tools (simulators, emulators, evaluation modules,
etc.). Also covered are available documentation, seminars, the universi-
ty program, and factory repair and exchange.

Digital Signal Processing Applications with the TMS320 Family , Volumes
1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017) Vol-
umes 1 and 2 cover applications using the ’C10 and ’C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors as well as the ’C30 floating-point processor.

TMS320 DSP Designer’s Notebook: Volume 1 (SPRT125). Presents solu-
tions to common design problems using ’C2x, ’C3x, ’C4x, ’C5x, and other
TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of ’320 digital signal processors. A myriad
of products and applications are offered—software and hardware devel-
opment tools, speech recognition, image processing, noise cancellation,
modems, etc.

 Trademarks

vii Read This First

Trademarks

DOS/4G is a trademark of Tenberry Software, Inc.

HP 9000 Series 700, PA-RISC, and HP-UX are trademarks of Hewlett-
Packard Company.

IBM, OS/2, OS/2 Warp, PC DOS, and PC are trademarks of International Busi-
ness Machines Corp.

MS-DOS, MS-Windows, Windows NT, and Windows 95 are registered trade-
marks of Microsoft Corp.

OpenWindows, SunOS, and Solaris are trademarks of Sun Microsystems, Inc.

Pentium is a trademark of Intel Corporation.

SPARCstation is licensed exclusively to Sun Microsystems, Inc.

UNIX is a registered trademark of Unix System Laboratories, Inc.

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

If You Need Assistance

viii

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the book.

 Contents

ix

Contents

1 Setting Up the Tools on a PC Running DOS or Windows 3.1 1-1.
Provides installation instructions for PCs running MS-DOS, PC-DOS, or Windows 3.1.

1.1 System Requirements 1-2.
1.2 Installing the Tools 1-3.

Installing the tools on DOS systems 1-3.
Installing the tools on Windows 3.1 systems 1-3.

1.3 Setting Up the Environment 1-4.
Identifying the directory that contains the executable files (PATH statement) 1-4.
Identifying alternate directories for the assembler (A_DIR) 1-5.
Identifying alternate directories for the compiler (C_DIR) 1-5.
Setting default shell options (C_OPTION) 1-6.
Using virtual memory (DOS4GVM) 1-7.
Specifying a temporary file directory (TMP) 1-9.

1.4 Performance Considerations 1-10.
1.5 Where to Go From Here 1-11.

2 Setting Up the Tools on a PC Running Windows NT or Windows 95 2-1.
Provides installation instructions for PCs running Windows NT or Windows 95.

2.1 System Requirements 2-2.
2.2 Installing the Tools 2-3.
2.3 Setting Up the Environment 2-4.

Setting environment variables under Windows NT 2-4.
Setting environment variables under Windows 95 2-4.
Identifying the directory that contains the executable files (PATH statement) 2-5.
Identifying alternate directories for the assembler (A_DIR) 2-5.
Identifying alternate directories for the compiler (C_DIR) 2-5.
Setting default shell options (C_OPTION) 2-6.
Specifying a temporary file directory (TMP) 2-7.

2.4 Where to Go From Here 2-8.

3 Setting Up the Tools on a SPARCstation 3-1.
Provides installation instructions for SPARCstations running SunOS.

3.1 System Requirements 3-2.
3.2 Mounting the CD-ROM and Installing the Tools 3-3.

Mounting the CD-ROM 3-3.

Contents

x

Installing the tools 3-4.
Unmounting the CD-ROM 3-4.

3.3 Setting Up the Environment 3-5.
Identifying the directory that contains the executable files (path statement) 3-5.
Identifying alternate directories for the assembler (A_DIR) 3-6.
Identifying alternate directories for the compiler (C_DIR) 3-6.
Setting default shell options (C_OPTION) 3-7.
Specifying a temporary file directory (TMP) 3-8.

3.4 Where to Go From Here 3-9.

4 Setting Up the Tools on an HP Workstation 4-1.
Provides installation instructions for HP 9000 Series 700 PA-RISC computers running with HP-
UX.

4.1 System Requirements 4-2.
4.2 Mounting the CD-ROM and Installing the Tools 4-3.

Mounting the CD-ROM 4-3.
Installing the tools 4-3.
Unmounting the CD-ROM 4-3.

4.3 Setting Up the Environment 4-4.
Identifying the directory that contains the executable files (path statement) 4-4.
Identifying alternate directories for the assembler (A_DIR) 4-5.
Identifying alternate directories for the compiler (C_DIR) 4-5.
Setting default shell options (C_OPTION) 4-6.
Specifying a temporary file directory (TMP) 4-7.

4.4 Where to Go From Here 4-8.

5 Getting Started With the Code Generation Tools 5-1.
Provides an overview of how to invoke and use assembler, linker, and compiler.

5.1 Getting Started With the Assembler and Linker 5-2.
5.2 Getting Started With the C Compiler 5-5.

6 Release Notes 6-1.
Provides information on tools and new features revised since the last release, including all en-
hancements made to the TMS320C3x/C4x assembly language tools and optimizing C compil-
er.

6.1 Release Enhancements 6-2.
6.2 Useful Tips 6-4.

A Troubleshooting DOS Systems A-1.
Lists kernel and DOS/4G error messages and explains how you can resolve them.

A.1 Troubleshooting in the Protected-Mode Environment A-2.
The PMINFO.EXE program A-3.

A.2 Kernel Error Messages A-5.
A.3 DOS/4G Error Messages A-9.

 Contents

xi Contents

B Tables of Peripheral Registers,Structure-Member Names, and Bit-Field Names B-1.
Lists the data structure member names that are used to access each of the peripheral registers
and bit fields through C peripheral pointers. This appendix is provided as an update to the paral-
lel runtime-support table.

C Glossary C-1.
Defines acronyms and key terms used in this book.

Tables

xii

Tables

A–1 PMINFO Fields A-4.
B–1 Bus Control Registers B-2.
B–2 DMA Control Registers B-3.

Examples

5–1 file1.asm 5-2.
5–2 file2.asm 5-2.
5–3 file2.lst, the Listing File Created by asm30 file2.asm –l 5-3.
5–4 Output Map File, lnker2.map 5-4.
5–5 Sample C File for the C Compiler Walkthrough, function.c 5-5.
5–6 Diagnostic Messages Produced by the Compiler 5-6.
B–1 Bus Control B-2.
B–2 DMA Control B-3.

1-1

Setting Up the Tools on a
PC Running DOS or Windows 3.1

This chapter helps you install release 5.00 of the TMS320C3x/C4x code
generation tools and set up your code-development environment on a PC
running MS-DOS, PC-DOS, or Windows 3.1. These tools include an
optimizing C compiler and a full set of assembly language tools for developing
and manipulating assembly language and object (executable) code.

The C compiler tools include:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utility

The assembly language tools are composed of the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Release 5.00 supports extended memory on DOS. Extended memory lets you
compile or assemble large files that could not be built previously under DOS.
Extended memory is enabled by the DOS/4GW memory extender from
Tenberry Software, Inc. (formerly Rational Systems, Inc.), which is embedded
in the TMS320C3x/C4x code generation tools package.

Topic Page

1.1 System Requirements 1-2.

1.2 Installing the Tools 1-3.

1.3 Setting Up the Environment 1-4.

1.4 Performance Considerations 1-10.

1.5 Where to Go From Here 1-11.

Chapter 1

System Requirements

 1-2

1.1 System Requirements

To install the TMS320C3x/C4x code generation tools on a PC, you need the
following items:

� 80386, 80486, or Pentium-based PC running MS-DOS, PC-DOS, or
Windows 3.1

� 4–16 Mbytes of free memory. 16 Mbytes is recommended to ensure
optimum performance when compiling large C functions

� 10 Mbytes of disk space for the executable files and libraries

� CD-ROM drive

Note: Memory Needed

The code generation tools, when installed on a PC, require at least 4 Mbytes
of memory, but you can expect some performance problems when using only
4 Mbytes. (16 Mbytes is recommended.) You may want to free as much
memory as possible before installing the tools, especially if you have less
than 16 Mbytes.

Installing the Tools

1-3Setting Up the Tools on a PC Running DOS or Windows 3.1

1.2 Installing the Tools

The code generation tools package is shipped on CD-ROM. The installation
instructions vary according to your operating system.

Installing the tools on DOS systems

To install the tools on a DOS system, follow these steps:

1) Insert the TMS320C3x/C4x Software Toolkit CD-ROM into your CD-ROM
drive.

2) Change to the CD-ROM drive (replace d with the name of your CD-ROM
drive):

d:

3) Enter the following command:

install

4) Follow the on-screen instructions.

Installing the tools on Windows 3.1 systems

To install the tools on a Windows 3.1 system, perform the following steps:

1) Insert the TMS320C3x/C4x Software Toolkit CD-ROM into your CD-ROM
drive.

2) Start Windows 3.1.

3) From the File menu, select Run.

4) In the dialog box, enter the following command (replace d with the name
of your CD-ROM drive):

d:\setup.exe

5) Click on OK.

6) Follow the on-screen instructions.

Setting Up the Environment

 1-4

1.3 Setting Up the Environment

Before or after you install the tools, you can define environment variables that
set certain code generation tool parameters you normally use. An environment
variable is a system symbol that you define and assign to a string. When you
use environment variables, default values are set, making each individual
invocation of the tools simpler because these parameters are automatically
specified. When you invoke a tool, you can use command line options to over-
ride many of the defaults that are set with environment variables.

The code generation tools use environment variables for finding or obtaining
certain types of information. By default, the installation program sets up these
environment variables:

set PATH=C:\ tool_dir ;%PATH%
set A_DIR=C:\ tool_dir
set C_DIR=C:\ tool_dir
set DOS4GVM=VirtualMemory:ON
set DOS4G=

If you choose not to have the environment variables set up automatically, you
can modify your autoexec.bat file to include the SET commands above.

The remainder of this section describes these environment variables and
other variables that you can define.

Identifying the directory that contains the executable files (PATH statement)

You must include the tool_dir directory in your PATH statement. This allows
you to specify the assembler and compiler tools without specifying the name
of the directory that contains the executable files.

Modify your autoexec.bat file to change the path information, and add the
following to the end of the PATH statement:

;C:\ tool_dir

Setting Up the Environment

1-5Setting Up the Tools on a PC Running DOS or Windows 3.1

Identifying alternate directories for the assembler (A_DIR)

By default, the assembler searches for copy/include files or macro libraries in
the current directory and then in directories named by the –i (name alternate
directories) option. Use the A_DIR environment variable to define additional
search paths. The format of the command for assigning the environment
variable is as follows:

set A_DIR= pathname1[;pathname 2 . . .]

You can separate the pathnames with a semicolon or a blank.

Once you set A_DIR, you can use the .copy, .include, or .mlib directive in
assembly source without specifying path information.

For more information on the –i option, see the TMS320C3x/C4x Assembly
Language Tools User’s Guide or the TMS320C3x/C4x Optimizing C Compiler
User’s Guide.

Identifying alternate directories for the compiler (C_DIR)

By default, the compiler searches the current directory for #include files and
object libraries such as the runtime-support and C I/O libraries. Use the C_DIR
environment variable to define additional search paths. The format of the
command for assigning the environment variable is as follows:

set C_DIR=pathname1[;pathname 2 . . .]

You can separate the pathnames with a semicolon or a blank.

Once you set C_DIR, you can use the #include directive in your C source code
without specifying path information.

Setting Up the Environment

 1-6

Setting default shell options (C_OPTION)

When using the shell program (cl30), you might find it useful to set default
options for the compiler, assembler, and linker using the C_OPTION
environment variable. After reading the command line options and input file-
names, the shell reads the contents of the C_OPTION environment variable.
Notice that options defined with C_OPTION do not override the options
specified on the command line.

Setting up default options with the C_OPTION environment variable is
especially useful when you want to run consecutive times with the same set
of options and/or input files. The options and/or input filenames that you define
with C_OPTION are used every time you run the shell.

The syntax for the C_OPTION environment variable is:

set C_OPTION=option1[option2 . . .]

Options specified in the environment variable are specified in the same way
and have the same meaning as they do on the command line. For more
information about compiler and assembler options, see the TMS320C3x/C4x
Optimizing C Compiler User’s Guide and the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

For example, if you want to always run quietly (the –q option), enable C source
interlisting (the –s option), and link (the –z option), set up the C_OPTION
environment variable as follows:

set C_OPTION=–qs –z

In this example, each time you run the shell program, it runs the linker. Any
options following –z on the command line or in C_OPTION are passed to the
linker. This enables you to use the C_OPTION environment variable to specify
default compiler and linker options and then specify additional compiler and
linker options on the shell command line. If you have set –z in the environment
variable and want to compile only, use the –c option of the shell. These
additional examples assume C_OPTION is set as shown above:

cl30 *.c ; compiles and links
cl30 –c *.c ; only compiles
cl30 *.c –z c30.cmd ; compiles and links using a

; command file
cl30 –c *.c –z c30.cmd ; only compiles (–c overrides –z)

For more information on linker options, see the Linker Options section in the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

Setting Up the Environment

1-7Setting Up the Tools on a PC Running DOS or Windows 3.1

Using virtual memory (DOS4GVM)

Virtual memory management (VMM) allows protected-mode programs to use
more RAM than your computer actually has available. The DOS4GVM
environment variable controls VMM. You can set the DOS4GVM environment
variable using the following format:

set DOS4GVM= [option :value] [option :value] ...

You must use a colon before the value for each option; the DOS command
shell does not accept an equal sign in place of the colon. Unless you specify
otherwise for your system, these options are not case sensitive.

DOS4GVM options take effect only when VMM is enabled, which causes the
default values to be used for all options. To enable VMM, enter:

set DOS4GVM=VirtualMemory:ON

The DOS4GVM options are described below:

DeleteSwapFile DeleteSwapFile: {ON |OFF}

By default, a new swap file is created each time your
code runs, which slows down program startup. If you
run your code over and over again and you can spare
the disk space, you can set DeleteSwapFile to OFF so
that an existing swap file is reused. If your code
spawns another program that uses extended memory,
do not set DeleteSwapFile.

PhysMax PhysMax: n{K |M |G}

PhysMax specifies the maximum amount of physical
memory (RAM) managed by VMM. The default is all
available memory up to 64 Mbytes. This setting
minimizes disk swapping so that large programs run as
fast as possible. However, the default setting might
actually slow down small programs on machines with
a lot of memory because more memory is managed
than is actually needed.

You might want to restrict the amount of physical
memory VMM uses for the following reasons:

� Your code is small, and you know its maximum
memory requirement. You can speed up startup by
telling VMM not to manage everything.

� You need to spawn another program that uses
extended memory, and you need to leave enough
memory available for the other program.

Setting Up the Environment

 1-8

PhysMin PhysMin: n{K |M |G}

PhysMin specifies the minimum amount of physical
memory (RAM) managed by VMM. The default is
1024 Kbytes. Set PhysMin to the minimum hardware
requirement necessary for running your code. If your
code requires a 4-Mbyte machine, set PhysMin to
4 Mbytes. If your code is small and can run in
512 Kbytes, set PhysMin to 512 Kbytes.

SwapFileName SwapFileName: [path] [filename]

SwapFileName specifies the filename of the swap file.
The default filename is DOS4GVM.SWP, and the file
is placed in the directory where the executable file
resides. Specify the complete path name if you want to
keep the swap file in another directory.

SwapInc SwapInc: n{K |M |G}

SwapInc specifies the size by which the swap file
grows. The default size is 4096 Kbytes. As your
program runs, the swap file increases by 4 Mbytes
when the file needs to grow. A smaller size causes the
swap file to take less time to increase but to increase
more frequently. A larger size causes the swap file to
take longer to increase but to increase less frequently.

To have a static swap file rather than a dynamic swap
file, set SwapInc to 0 and set SwapMin to the static size
you want.

SwapMin SwapMin: n{K|M|G}

SwapMin specifies the minimum or initial size of the
swap file. The default is 0 bytes. If you want VMM to
create a full-size swap file at startup time, set SwapMin
to the full size of the swap file and set SwapInc to 0.

VirtualSize VirtualSize: n{K|M|G}

VirtualSize specifies the size of the virtual memory
space. The default is 16384 Kbytes. Set VirtualSize to
a larger size if your program uses more than 16 Mbytes
of code and data, but do not set it to more than twice
the size of your program’s memory requirement.

Setting Up the Environment

1-9Setting Up the Tools on a PC Running DOS or Windows 3.1

You can change the defaults in two ways:

1) Specify parameter values as arguments to the DOS4GVM environment
variable, as shown in the example below. Note that you must have at least
8192 Kbytes of free memory to use this example:

set DOS4GVM=deleteswapfile:ON physmax:8192K swapfilename:c:\swap.tmp

2) Create a configuration file with the filetype extension .VMC, and call that
file as an argument to the DOS4GVM environment variable, as shown
below:

set DOS4GVM=@NEW4G.VMC

A .VMC file contains VMM parameters and settings, as shown in the
example below. You can include comments. Comments on lines by them-
selves must be preceded by an exclamation point (!). Comments that
follow option settings must be preceded by white space. Do not insert
blank lines; processing stops at the first blank line.

!Sample .VMC file
!This file shows the default parameter values
physmin:512K At least 512 bytes of RAM required
physmax:4M Uses no more than 4MB of RAM
virtualsize:16M Swap file + allocated memory is 16MB

See Appendix A, Troubleshooting DOS Systems, for information on problems
and solutions when using DOS/4GW.

Specifying a temporary file directory (TMP)

The shell program creates intermediate files as it processes your program. For
example, the parser phase of the shell creates a temporary file used as input
by the code generator phase. By default, the shell puts intermediate files in the
current directory. However, you can name a specific directory for temporary
files by using the TMP environment variable.

This feature allows the use of a RAM disk or other file systems. It also allows
source files to be compiled from a remote directory without writing any files into
the directory where the source resides; this is useful for protected directories.

To set the TMP environment variable, use this syntax:

set TMP=pathname

For example, to set up a directory named temp for intermediate files on your
hard drive, enter:

set TMP=C:\temp

Performance Considerations

 1-10

1.4 Performance Considerations

You may notice a speed degradation when you use the code generation tools.
Much of this speed degradation is due to the switch rate from protected to real
mode necessitated by DOS calls. Higher-speed processors and later-
generation processors in the 80386, 80486, and Pentium series minimize the
time needed for this switch.

Virtual-memory management (VMM) may also degrade system performance.
It is recommended that VMM be enabled only for programs that cannot be built
with VMM disabled.

If you encounter error messages when you use the code generation tools on
a PC with DOS, run PMINFO to determine the configuration of your system
before you contact technical support. For more information about PMINFO,
see Appendix A, Troubleshooting DOS Systems.

Where to Go From Here

1-11Setting Up the Tools on a PC Running DOS or Windows 3.1

1.5 Where to Go From Here

Your code generation tools are now installed. At this point, you should do the
following:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes, to understand the new features included
in the 5.00 release of the code generation tools.

� Use Appendix A, Troubleshooting DOS Systems, as necessary. This
appendix lists kernel and DOS/4G error messages and explains how you
can resolve the messages.

2-1

Setting Up the Tools on a
PC Running Windows NT or Windows 95

This chapter helps you install release 5.00 of the TMS320C3x/C4x code
generation tools and set up your code-development environment on a PC
running Windows NT or Windows 95. These tools include an optimizing
C compiler and a full set of assembly language tools for developing and
manipulating assembly language and object (executable) code.

The C compiler tools include:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utility

The assembly language tools are composed of the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Topic Page

2.1 System Requirements 2-2.

2.2 Installing the Tools 2-3.

2.3 Setting Up the Environment 2-4.

2.4 Where to Go From Here 2-8.

Chapter 2

System Requirements

 2-2

2.1 System Requirements

To install the TMS320C3x/C4x code generation tools on a PC, you need the
following:

� 32-bit x86 or Pentium -based PC running

� Windows NT 3.51 (or higher)
� Windows 95

� 4–16 Mbytes of free memory. 16 Mbytes is recommended to ensure
optimum performance when compiling large C functions

� 10 Mbytes of disk space for the executable files and libraries

� CD-ROM drive

Note: Memory Needed

The code generation tools, when installed on a PC, require at least 4 Mbytes
of memory, but you can expect some performance problems when using only
4 Mbytes. (16 Mbytes is recommended.) You may want to free as much
memory as possible before installing the tools, especially if you have less
than 16 Mbytes.

Installing the Tools

2-3Setting Up the Tools on a PC Running Windows NT or Windows 95

2.2 Installing the Tools

The code generation tools package is shipped on CD-ROM. To install the tools
on a PC running Windows NT or Windows 95, follow these steps:

1) Insert the TMS320C3x/C4x Software Toolkit CD-ROM into your CD-ROM
drive.

2) Start Windows NT or Windows 95.

3) From the File menu (Windows NT 3.51) or the Start menu
(Windows NT 4.0 or Windows 95), select Run.

4) In the dialog box, enter the following command (replace d with the name
of your CD-ROM drive):

d:\setup.exe

5) Click on OK.

6) Follow the on-screen instructions.

Setting Up the Environment

 2-4

2.3 Setting Up the Environment

Before or after you install the tools, you can define environment variables that
set certain code generation tool parameters you normally use. An environment
variable is a system symbol that you define and assign to a string. When you
use environment variables, default values are set, making each individual
invocation of the tools simpler because these parameters are automatically
specified. When you invoke a tool, you can use command line options to over-
ride many of the defaults that are set with environment variables.

The code generation tools use environment variables for finding or obtaining
certain types of information. By default, the installation program sets up these
environment variables:

set PATH=C:\ tool_dir ;%PATH%
set A_DIR=C:\ tool_dir
set C_DIR=C:\ tool_dir

The remainder of this section describes these environment variables and
other variables, and discusses alternative ways that variables can be defined.

Setting environment variables under Windows NT

Under Windows NT, the environment variables are set up in the registry under:

HKEY_CURRENT_USER\ENVIRONMENT

If you choose not to have the environment variables automatically set up in the
registry, it is recommended that you set up the environment variables in the
System applet of the Control Panel.

To set up the environment variables in the System applet of the Control Panel,
simply open the System applet and for each environment variable listed
above, enter the name of the Variable and its associated Value, then select
Set. In the System applet, you can make the environment variables available
to all users or you can define them for specific individuals.

Setting environment variables under Windows 95

Under Windows 95, the environment variables are set up in your autoexec.bat
file.

If you choose not to have the environment variables set up automatically, you
can modify your autoexec.bat file manually to include the SET commands
above.

Setting Up the Environment

2-5Setting Up the Tools on a PC Running Windows NT or Windows 95

Identifying the directory that contains the executable files (PATH statement)

You must include the tool_dir directory in your PATH statement. This allows
you to specify the assembler and compiler tools without specifying the name
of the directory that contains the executable files.

� If you modify your autoexec.bat file to change the path information, add
the following to the end of the PATH statement:

;C:\ tool_dir

� If you set the PATH statement from the command line, use this format:

set PATH=C:\ tool_dir;%PATH%

The addition of ;%PATH% ensures that this PATH statement does not
undo the PATH statements in any other batch files (including the
autoexec.bat file).

Identifying alternate directories for the assembler (A_DIR)

By default, the assembler searches for copy/include files or macro libraries in
the current directory and then in directories named by the –i (name alternate
directories) option. Use the A_DIR environment variable to define additional
search paths. The format of the command for assigning the environment
variable is as follows:

set A_DIR= pathname1[; pathname 2 . . .]

You can separate the pathnames with a semicolon or a blank.

Once you set A_DIR, you can use the .copy, .include, or .mlib directive in
assembly source without specifying path information.

For more information on the –i option, see the TMS320C3x/C4x Assembly
Language Tools User’s Guide or the TMS320C3x/C4x Optimizing C Compiler
User’s Guide.

Identifying alternate directories for the compiler (C_DIR)

By default, the compiler searches the current directory for #include files and
object libraries such as the runtime-support and C I/O libraries. Use the C_DIR
environment variable to define additional search paths. The format of the
command for assigning the environment variable is as follows:

set C_DIR=pathname1[; pathname 2 . . .]

You can separate the pathnames with a semicolon or a blank.

Setting Up the Environment

 2-6

Once you set C_DIR, you can use the #include directive in your C source code
without specifying path information.

Setting default shell options (C_OPTION)

When using the shell program (cl30), you might find it useful to set default
options for the compiler, assembler, and linker using the C_OPTION
environment variable. After reading the command line options and input file-
names, the shell reads the contents of the C_OPTION environment variable.
Notice that options defined with C_OPTION do not override the options
specified on the command line.

Setting up default options with the C_OPTION environment variable is
especially useful when you want to run consecutive times with the same set
of options and/or input files. The options and/or input filenames that you define
with C_OPTION are used every time you run the shell.

The syntax for the C_OPTION environment variable is:

set C_OPTION=option1[option2 . . .]

Options specified in the environment variable are specified in the same way
and have the same meaning as they do on the command line. For more
information about compiler and assembler options, see the TMS320C3x/C4x
Optimizing C Compiler User’s Guide and the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

For example, if you want to always run quietly (the –q option), enable C source
interlisting (the –s option), and link (the –z option), set up the C_OPTION
environment variable as follows:

set C_OPTION=–qs –z

In this example, each time you run the shell program, it runs the linker. Any
options following –z on the command line or in C_OPTION are passed to the
linker. This enables you to use the C_OPTION environment variable to specify
default compiler and linker options and then specify additional compiler and
linker options on the shell command line. If you have set –z in the environment
variable and want to compile only, use the –c option of the shell. These
additional examples assume C_OPTION is set as shown above:

cl16 *.c ; compiles and links
cl16 –c *.c ; only compiles
cl16 *.c –z c30.cmd ; compiles and links using a

; command file
cl16 –c *.c –z c30.cmd ; only compiles (–c overrides –z)

For more information on linker options, see the Linker Options section in the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

Setting Up the Environment

2-7Setting Up the Tools on a PC Running Windows NT or Windows 95

Specifying a temporary file directory (TMP)

The shell program creates intermediate files as it processes your program. For
example, the parser phase of the shell creates a temporary file used as input
by the code generator phase. By default, the shell puts intermediate files in the
current directory. However, you can name a specific directory for temporary
files by using the TMP environment variable.

This feature allows use of a RAM disk or other file systems. It also allows
source files to be compiled from a remote directory without writing any files into
the directory where the source resides; this is useful for protected directories.

To set the TMP environment variable, use this syntax:

set TMP=pathname

For example, to set up a directory named temp for intermediate files on your
hard drive, enter:

set TMP=C:\temp

Where to Go From Here

 2-8

2.4 Where to Go From Here

Your code generation tools are now installed. At this point, you should do the
following:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the as-
sembler, linker, and compiler.

� Read Chapter 6, Release Notes, to understand the new features included
in the 5.00 release of the code generation tools.

3-1

Setting Up the Tools
on a SPARCstation

This chapter helps you install release 5.00 of the TMS320C3x/C4x code
generation tools and set up your code-development environment on a
SPARCstation running SunOS versions 4.1.x (or higher). These tools
include an optimizing C compiler and a full set of assembly language tools for
developing and manipulating assembly language and object (executable)
code.

The C compiler tools include:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utility

The assembly language tools are composed of the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

This release is dynamically linked to take advantage of shared libraries.

Topic Page

3.1 System Requirements 3-2.

3.2 Mounting the CD-ROM and Installing the Tools 3-3.

3.3 Setting Up the Environment 3-5.

3.4 Where to Go From Here 3-9.

Chapter 3

System Requirements

 3-2

3.1 System Requirements

To install the TMS320C3x/C4x code generation tools on a SPARCstation, you
need the following items:

� SPARCstation or compatible system with SPARCstation 2 class or higher
performance

� 4 Mbytes of disk space for the software tools

� OpenWindows version 3.0 (or higher) running under SunOS
version 4.1.x (or higher). If you are using SunOS 5.x (also known as
Solaris 2.x), you must have the Binary Compatibility Package (BCP)
installed; if you do not, get your system administrator’s help.

� CD-ROM drive

� Root privileges to mount and unmount the CD-ROM if you have
SunOS 4.1.x, SunOS 5.0, or SunOS 5.1

Mounting the CD-ROM and Installing the Tools

3-3Setting Up the Tools on a SPARCstation

3.2 Mounting the CD-ROM and Installing the Tools

To install the software tools, you must mount the CD-ROM, copy the files to
your system, and unmount the CD-ROM.

Note:

If you are running SunOS 4.1.x, 5.0, or 5.1, you must have root privileges to
mount or unmount the CD-ROM. If you do not, get help from your system
administrator.

Mounting the CD-ROM

The code generation tools package is shipped on CD-ROM. The steps to
mount the CD-ROM vary according to your operating system version:

� If you have a SunOS 4.1.x, as root, load the CD-ROM into the drive and
enter the following from a command shell:

mount –rt hsfs /dev/sr0 /cdrom
exit
% cd /cdrom/sparc

� If you have SunOS 5.0 or 5.1, as root, load the CD-ROM into the drive and
enter the following from a command shell:

mount –rF hsfs /dev/sr0 /cdrom
exit
% cd /cdrom/cdrom0/sparc

� If you have SunOS 5.2 or higher:

� If the CD-ROM drive is already attached, load the CD-ROM into the
drive. Enter:

% cd /cdrom/cdrom0/sparc

� If the CD-ROM drive is not attached, you must shut down your system
to the PROM level (at the OK prompt) and attach the CD-ROM drive.
As root, enter:

boot –r

Log on, load the CD-ROM into the drive, and enter:

% cd /cdrom/cdrom0/sparc

Mounting the CD-ROM and Installing the Tools

 3-4

Installing the tools

Be sure you are not logged on as root. To install the software tools, follow these
steps:

1) If you do not already have a tools directory, create one. Enter:

mkdir tool_dir

Replace tool_dir with your own directory name, including the path
information, to install the tools.

2) Copy the files to your directory:

cp –r * tool_dir

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files.

� If you have a SunOS 4.1.x, SunOS 5.0, or SunOS 5.1, as root, enter:

cd
umount /cdrom
eject /dev/sr0
exit

� If you have SunOS 5.2 or higher, enter:

% cd
% eject

Setting Up the Environment

3-5Setting Up the Tools on a SPARCstation

3.3 Setting Up the Environment
Before or after you install the tools, you can define environment variables that
set certain code generation tool parameters you normally use. An environment
variable is a system symbol that you define and assign to a string. When you
use environment variables, default values are set, making each individual
invocation of the tools simpler because these parameters are automatically
specified. When you invoke a tool, you can use command line options to over-
ride many of the defaults that are set with environment variables.

To set up the environment, enter these commands. Be sure you are not logged
on as root.

� For C shells:

setenv C_DIR ” tool_dir ”
setenv A_DIR ” tool_dir ”
set path=(tool_dir $path)

� For Bourne or Korn shells:

C_DIR=tool_dir
A_DIR= tool_dir
PATH=tool_dir :$PATH

You can move these commands into your .login or .cshrc file (for C shells) or
.profile file (for Bourne or Korn shells) to avoid entering the commands each
time you invoke a new shell.

The remainder of this section describes these environment variables and
other variables that you can define.

Identifying the directory that contains the executable files (path statement)

You must include the tool_dir directory in your path statement. This allows you
to specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your .cshrc file (for C shells) or .profile file (for Bourne or Korn
shells) to change the path information, add the following to the end of the
path statement:

tool_dir

� If you set the path statement from the command line, use this format:

� For C shells:

set path=(tool_dir $path)

� For Bourne or Korn shells:

PATH=tool_dir $PATH

The addition of $path /$PATH ensures that this path statement does not
undo the path statements in the .cshrc or .profile file.

Setting Up the Environment

 3-6

Identifying alternate directories for the assembler (A_DIR)

By default, the assembler searches for copy/include files or macro libraries in
the current directory and then in directories named by the –i (name alternate
directories) option. Use the A_DIR environment variable to define additional
search paths. The format of the command for assigning the environment
variable is as follows:

� For C shells:

setenv A_DIR ” pathname1;pathname2 … ”

� For Bourne or Korn shells:

A_DIR=” pathname1;pathname2 … ”
export A_DIR

You can separate the pathnames with a semicolon or a blank.

Once you set A_DIR, you can use the .copy, .include, or .mlib directive in
assembly source without specifying path information.

For more information on the –i option, see the TMS320C3x/C4x Assembly
Language Tools User’s Guide or the TMS320C3x/C4x Optimizing C Compiler
User’s Guide.

Identifying alternate directories for the compiler (C_DIR)

By default, the compiler searches the current directory for #include files and
object libraries such as the runtime-support and C I/O libraries. Use the C_DIR
environment variable to define additional search paths. The format of the
command for assigning the environment variable is as follows:

� For C shells:

setenv C_DIR ” pathname1;pathname2 … ”

� For Bourne or Korn shells:

C_DIR=” pathname1;pathname2 … ”
export C_DIR

You can separate the pathnames with a semicolon or a blank.

Once you set C_DIR, you can use the #include directive in your C source code
without specifying path information.

Setting Up the Environment

3-7Setting Up the Tools on a SPARCstation

Setting default shell options (C_OPTION)

When using the shell program (cl30), you might find it useful to set default
options for the compiler, assembler, and linker using the C_OPTION
environment variable. After reading the command line options and input file-
names, the shell reads the contents of the C_OPTION environment variable.
Notice that options defined with C_OPTION do not override the options
specified on the command line.

Setting up default options with the C_OPTION environment variable is
especially useful when you want to run consecutive times with the same set
of options and/or input files. The options and/or input filenames that you define
with C_OPTION are used every time you run the shell.

The syntax for the C_OPTION environment variable is:

� For C shells:

setenv C_OPTION ” option1 option2 … ”

� For Bourne or Korn shells:

C_OPTION=” option1 option2 … ”
export C_OPTION

Options specified in the environment variable are specified in the same way
and have the same meaning as they do on the command line. For more
information about compiler and assembler options, see the TMS320C3x/C4x
Optimizing C Compiler User’s Guide and the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

For example, if you want to always run quietly (the –q option), enable C source
interlisting (the –s option), and link (the –z option), set up the C_OPTION
environment variable as follows:

setenv C_OPTION ”–qs –z” ; for C shells
C_OPTION=”–qs –z” ; for Bourne or Korn shells
export C_OPTION

In this example, each time you run the shell program, it runs the linker. Any
options following –z on the command line or in C_OPTION are passed to the
linker. This enables you to use the C_OPTION environment variable to specify
default compiler and linker options and then specify additional compiler and
linker options on the shell command line. If you have set –z in the environment
variable and want to compile only, use the –c option of the shell. These
additional examples assume C_OPTION is set as shown above:

cl30 *.c ; compiles and links
cl30 –c *.c ; only compiles
cl30 *.c –z c30.cmd ; compiles and links using a

; command file
cl30 –c *.c –z c30.cmd ; only compiles (–c overrides –z)

Setting Up the Environment

 3-8

For more information on linker options, see the Linker Options section in the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The shell program creates intermediate files as it processes your program. For
example, the parser phase of the shell creates a temporary file used as input
by the code generator phase. By default, the shell puts intermediate files in the
current directory. However, you can name a specific directory for temporary
files by using the TMP environment variable.

This feature allows use of a RAM disk or other file systems. It also allows
source files to be compiled from a remote directory without writing any files into
the directory where the source resides; this is useful for protected directories.

To set the TMP environment variable, use this syntax:

� For C shells:

setenv TMP ”/temp”

� For Bourne or Korn shells:

TMP=”/temp”
export TMP

Where to Go From Here

3-9Setting Up the Tools on a SPARCstation

3.4 Where to Go From Here

Your code generation tools are now installed. At this point, you should do the
following:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes, to understand the new features included
in the 5.00 release of the code generation tools.

4-1

Setting Up the Tools
on an HP Workstation

This chapter helps you install release 5.00 of the TMS320C3x/C4x code
generation tools and set up your code-development environment on an
HP 9000 Series 700 PA-RISC computer with HP-UX 9.0x. These tools
include an optimizing C compiler and a full set of assembly language tools for
developing and manipulating assembly language and object (executable)
code.

The C compiler tools include:

� Parser
� Optimizer
� Code generator
� Interlist utility
� Library-build utility

The assembly language tools are composed of the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex conversion utility

Topic Page

4.1 System Requirements 4-2.

4.2 Mounting the CD-ROM and Installing the Tools 4-3.

4.3 Setting Up the Environment 4-4.

4.4 Where to Go From Here 4-8.

Chapter 4

System Requirements

 4-2

4.1 System Requirements

To install the TMS320C3x/C4x code generation tools on an HP workstation,
you need the following items:

� HP 9000 Series 700 PA-RISC computer

� 4 Mbytes of disk space for the software tools

� HP-UX 9.0x operating system

� CD-ROM drive

� Root privileges to mount and unmount the CD-ROM

Mounting the CD-ROM and Installing the Tools

4-3Setting Up the Tools on an HP Workstation

4.2 Mounting the CD-ROM and Installing the Tools

To install the software tools, you must mount the CD-ROM, copy the files to
your system, and unmount the CD-ROM.

Note:

You must have root privileges to mount or unmount the CD-ROM. If you do
not, get help from your system administrator.

Mounting the CD-ROM

The code generation tools package is shipped on CD-ROM. As root, you can
mount the CD-ROM using the UNIX� mount command or the SAM (System
Administration Manager):

� To use the UNIX mount command, enter:

mount –rt cdfs /dev/dsk/ your_cdrom_device /cdrom
exit

Make the hp directory on the CD-ROM the current directory. For example,
if the CD-ROM is mounted at /cdrom, enter:

% cd /cdrom/hp

� To use SAM to mount the CD-ROM, see System Administration Tasks, the
HP documentation about SAM, for instructions.

Installing the tools

Be sure you are not logged on as root. To install the software tools, follow these
steps:

1) If you do not already have a tools directory, create one. Enter:

mkdir tool_dir

Replace tool_dir with your own directory name, including the path
information, to install the tools.

2) Copy the files to your directory:

cp –r * tool_dir

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files. As root, enter:

cd
umount /cdrom
exit

Setting Up the Environment

 4-4

4.3 Setting Up the Environment
Before or after you install the tools, you can define environment variables that
set certain code generation tool parameters you normally use. An environment
variable is a system symbol that you define and assign to a string. When you
use environment variables, default values are set, making each individual
invocation of the tools simpler because these parameters are automatically
specified. When you invoke a tool, you can use command line options to over-
ride many of the defaults that are set with environment variables.

To set up the environment, enter these commands. Be sure you are not logged
on as root.

� For C shells:

setenv C_DIR ” tool_dir ”
setenv A_DIR ” tool_dir ”
set path=(tool_dir $path)

� For Bourne or Korn shells:

C_DIR=tool_dir
A_DIR= tool_dir
PATH=tool_dir :$PATH

You can move these commands into your .login or .cshrc file (for C shells) or
.profile file (for Bourne or Korn shells) to avoid entering the commands each
time you invoke a new shell.

The remainder of this section describes these environment variables and
other variables that you can define.

Identifying the directory that contains the executable files (path statement)

You must include the tool_dir directory in your path statement. This allows you
to specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your .cshrc file (for C shells) or .profile file (for Bourne or Korn
shells) to change the path information, add the following to the end of the
path statement:

tool_dir

� If you set the path statement from the command line, use this format:

� For C shells:

set path=(tool_dir $path)

� For Bourne or Korn shells:

PATH=tool_dir $PATH

The addition of $path /$PATH ensures that this path statement does not
undo the path statements in the .cshrc or .profile file.

Setting Up the Environment

4-5Setting Up the Tools on an HP Workstation

Identifying alternate directories for the assembler (A_DIR)

By default, the assembler searches for copy/include files or macro libraries in
the current directory and then in directories named by the –i (name alternate
directories) option. Use the A_DIR environment variable to define additional
search paths. The format of the command for assigning the environment
variable is as follows:

� For C shells:

setenv A_DIR ” pathname1;pathname2 … ”

� For Bourne or Korn shells:

A_DIR=” pathname1;pathname2 … ”
export A_DIR

You can separate the pathnames with a semicolon or a blank.

Once you set A_DIR, you can use the .copy, .include, or .mlib directive in
assembly source without specifying path information.

For more information on the –i option, see the TMS320C3x/C4x Assembly
Language Tools User’s Guide or the TMS320C3x/C4x Optimizing C Compiler
User’s Guide.

Identifying alternate directories for the compiler (C_DIR)

By default, the compiler searches the current directory for #include files and
object libraries such as the runtime-support and C I/O libraries. Use the C_DIR
environment variable to define additional search paths. The format of the com-
mand for assigning the environment variable is as follows:

� For C shells:

setenv C_DIR ” pathname1;pathname2 … ”

� For Bourne or Korn shells:

C_DIR=” pathname1;pathname2 … ”
export C_DIR

You can separate the pathnames with a semicolon or a blank.

Once you set C_DIR, you can use the #include directive in your C source code
without specifying path information.

Setting Up the Environment

 4-6

Setting default shell options (C_OPTION)

When using the shell program (cl30), you might find it useful to set default
options for the compiler, assembler, and linker using the C_OPTION
environment variable. After reading the command line options and input file-
names, the shell reads the contents of the C_OPTION environment variable.
Notice that options defined with C_OPTION do not override the options
specified on the command line.

Setting up default options with the C_OPTION environment variable is
especially useful when you want to run consecutive times with the same set
of options and/or input files. The options and/or input filenames that you define
with C_OPTION are used every time you run the shell.

The syntax for the C_OPTION environment variable is:

� For C shells:

setenv C_OPTION ” option1 option2 … ”

� For Bourne or Korn shells:

C_OPTION=” option1 option2 … ”
export C_OPTION

Options specified in the environment variable are specified in the same way
and have the same meaning as they do on the command line. For more
information about compiler and assembler options, see the TMS320C3x/C4x
Optimizing C Compiler User’s Guide and the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

For example, if you want to always run quietly (the –q option), enable C source
interlisting (the –s option), and link (the –z option), set up the C_OPTION
environment variable as follows:

setenv C_OPTION ”–qs –z” ; for C shells
C_OPTION=”–qs –z” ; for Bourne or Korn shells
export C_OPTION

In this example, each time you run the shell program, it runs the linker. Any
options following –z on the command line or in C_OPTION are passed to the
linker. This enables you to use the C_OPTION environment variable to specify
default compiler and linker options and then specify additional compiler and
linker options on the shell command line. If you have set –z in the environment
variable and want to compile only, use the –c option of the shell. These
additional examples assume C_OPTION is set as shown above:

cl30 *.c ; compiles and links
cl30 –c *.c ; only compiles
cl30 *.c –z c30.cmd ; compiles and links using a

; command file
cl30 –c *.c –z c30.cmd ; only compiles (–c overrides –z)

Setting Up the Environment

4-7Setting Up the Tools on an HP Workstation

For more information on linker options, see the Linker Options section in the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The shell program creates intermediate files as it processes your program. For
example, the parser phase of the shell creates a temporary file used as input
by the code generator phase. By default, the shell puts intermediate files in the
current directory. However, you can name a specific directory for temporary
files by using the TMP environment variable.

This feature allows use of a RAM disk or other file systems. It also allows
source files to be compiled from a remote directory without writing any files into
the directory where the source resides; this is useful for protected directories.

To set the TMP environment variable, use this syntax:

� For C shells:

setenv TMP ”/temp”

� For Bourne or Korn shells:

TMP=”/temp”
export TMP

Where to Go From Here

 4-8

4.4 Where to Go From Here

Your code generation tools are now installed. At this point, you should do the
following:

� Go to Chapter 5, Getting Started With the Code Generation Tools. This
chapter provides you with an overview of how to invoke and use the
assembler, linker, and compiler.

� Read Chapter 6, Release Notes, to understand the new features included
in the 5.00 release of the code generation tools.

5-1

Getting Started With the
Code Generation Tools

This chapter helps you start using the assembler, linker, and compiler tools by
providing basic startup information. For more information about invoking and
using these tools, see the TMS320C3x/C4x Assembly Language Tools User’s
Guide and the TMS320C3x/C4x Optimizing C Compiler User’s Guide.

Topic Page

5.1 Getting Started With the Assembler and Linker 5-2.

5.2 Getting Started With the C Compiler 5-5.

Chapter 5

Getting Started With the Assembler and Linker

 5-2

5.1 Getting Started With the Assembler and Linker

This section provides a quick walkthrough of the assembler and linker so that
you can get started without reading the entire TMS320C3x/C4x Assembly
Language Tools User’s Guide. These examples show the most common
methods for invoking the assembler and linker.

Create two short source files to use for the walkthrough; call them file1.asm
and file2.asm. (See Example 5–1 and Example 5–2.)

Example 5–1. file1.asm

.file ”file1.asm”

.ref addvec

.global __stack

.global start

__stack .usect ”.stack”, 0

.text
stack_a .word __stack
vector .float 10.0, 20.0, 30.0, 40.0
vector_a .word vector
start:

ldp @stack_a
ldi @stack_a, sp
ldi @vector_a, ar0
call addvec
bu $

Example 5–2. file2.asm

 .file ”file2.asm”
 .def addvec

 .text

addvec:
 ldf 0,r0

 rpts 3
 addf *ar0++,r0
 rets

Getting Started With the Assembler and Linker

5-3Getting Started With the Code Generation Tools

1) Enter the following command to assemble file1.asm:

asm30 file1

The asm30 command invokes the assembler. The input source file is
file1.asm. (If the input file extension is .asm, you do not have to specify the
extension; the assembler uses .asm as the default.)

This example creates an object file called file1.obj. The assembler creates
an object file only if there are no errors. You can specify a name for the
object file, but if you do not, the assembler uses the input filename with an
extension of .obj.

Note: The –v30 Option is the Assembler Default

The asm30 command invokes the TMS320C3x/C4x assembler. By default,
the assembler generates code for the ’C30, as if the –v30 option had been
used.

Use the –v31 option to generate code for the ’C31. Use the –v32 option to
generate code for the ’C32. Use the –v40 option to generate code for the
’C40. Use the –v44 option to generate code for the ’C44.

2) Now enter the following command to assemble file2.asm:

asm30 file2.asm –l

This time, the assembler creates an object file called file2.obj. The –l
(lowercase L) option tells the assembler to create a listing file; the listing
file for this example is called file2.lst. It is not necessary to create a listing
file, but it gives you information and assures you that the assembly has
resulted in the desired object code. The listing file for this example is
shown in Example 5–3.

Example 5–3. file2.lst, the Listing File Created by asm30 file2.asm –l

TMS320C3x/4x COFF Assembler Version 5.00
Fri Dec 20 11:01:34 1996
Copyright (c) 1987–1996 Texas Instruments Incorporated

file2.asm PAGE 1

1 .file ”file2.asm”
2 .def addvec
3 00000000 .text
4 00000000 07608000 addvec: ldf 0,r0
5 00000001 13fb0003 rpts 3
6 00000002 01c02001 addf *ar0++,r0
7 00000003 78800000 rets

No Errors, No Warnings

3) Now enter the following command to link file1.obj and file2.obj:

lnk30 file1 file2 –m lnker2.map –o prog.out

Getting Started With the Assembler and Linker

 5-4

The lnk30 command invokes the linker. The input object files are file1.obj
and file2.obj. (If the input file extension is .obj, you do not have to specify
the extension; the linker uses .obj as the default.) The linker combines
file1.obj and file2.obj to create an executable object module called
prog.out. The –o option supplies the name of the output module.
Example 5–4 shows the map file resulting from this operation. The map
file is produced only if you use the –m option.

Example 5–4. Output Map File, lnker2.map

TMS320C3x/4x COFF Linker Version 5.00

Fri Dec 20 11:03:11 1996

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 00000000 0000000f

 00000000 0000000b file1.obj (.text)
 0000000b 00000004 file2.obj (.text)

.data 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file1.obj (.data)
 00000000 00000000 file2.obj (.data)

.bss 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file1.obj (.bss)
 00000000 00000000 file2.obj (.bss)

.stack 0 0000000f 00000400 UNINITIALIZED
 0000000f 00000000 file1.obj (.stack)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 edata
00000000 .data 00000000 .data
00000000 .text 00000000 end
00000400 __STACK_SIZE 00000000 .bss
0000000f __stack 00000000 .text
0000000b addvec 00000006 start
00000000 edata 0000000b addvec
00000000 end 0000000f etext
0000000f etext 0000000f __stack
00000006 start 00000400 __STACK_SIZE

[10 symbols]

Getting Started With the C Compiler

5-5Getting Started With the Code Generation Tools

5.2 Getting Started With the C Compiler

The TMS320C3x/C4x C compiler consists of two passes: the first pass parses
the code, and the second pass produces a single assembly language source
file that must be assembled and linked. You can specify an optional
optimization pass after the first pass. The simplest way to compile, assemble,
and link a C program is to use the compiler shell program with the –z option.
This section provides a quick walkthrough so that you can get started without
reading the entire TMS320C3x/C4x Optimizing C Compiler User’s Guide.

1) Create a sample file called function.c that contains the code shown in
Example 5–5.

Example 5–5. Sample C File for the C Compiler Walkthrough, function.c

/***/
/* function.c */
/* (Sample file for walkthrough) */
/***/

int abs_func(int i)
{
 int temp = 1;
 if (temp < 0) temp *= –1;
 return (temp);
}

void main(void)
{
 int x = –3;
 x = abs_func(x);
}

2) To invoke the shell program to compile and assemble function.c, enter:

cl30 –o function

The –o option invokes the optimizer at the default level. The shell program
prints the following information as it compiles the program:

Getting Started With the C Compiler

 5-6

Example 5–6. Diagnostic Messages Produced by the Compiler

[function]
TMS320C3x/4x ANSI C Compiler Version 5.00
Copyright (c) 1987–1997 Texas Instruments Incorporated
 ”function.c” ==> abs_func
 ”function.c” ==> main
TMS320C3x/4x ANSI C Optimizer Version 5.00
Copyright (c) 1987–1997 Texas Instruments Incorporated
 ”function.c” ==> abs_func
 ”function.c” ==> main
TMS320C3x/4x C Code Generator Version 5.00
Copyright (c) 1987–1997 Texas Instruments Incorporated
 ”function.c” ==> abs_func
 ”function.c” ==> main
TMS320C3x/4x COFF Assembler Version 5.00
Copyright (c) 1987–1997 Texas Instruments Incorporated
 PASS 1
 PASS 2

 No Errors, No Warnings

The shell program runs the two compiler passes, the optimizer, and the
assembler as follows:

ac30 → C parser
opt30 → Optimizer
cg30 → Code generator
asm30 → Assembler

By default, the shell deletes the assembly language file from the current
directory after the file is assembled. If you want to inspect the assembly
language output, use the –k option to retain the assembly language file:

cl30 –o –k function

3) Also by default, the shell creates a COFF object file as output; however,
if you use the –z option, the output is an executable object module. The
following examples show two ways of creating an executable object
module:

a) The example in step 2 creates an object file called function.obj. To
create an executable object module, run the linker separately by
invoking lnk30 as in the following example:

lnk30 –c function.obj c30.cmd –o function.out –l rts30.lib

Getting Started With the C Compiler

5-7Getting Started With the Code Generation Tools

The –c linker option tells the linker to observe the C language linking
conventions. The linker command file, lnk.cmd, is shipped with the
code generation tools. The –o option names the output module,
function.out; if you do not use the –o option, the linker names the
output module a.out. The –l option names the runtime-support library.
You must have a runtime-support library before you can create an
executable object module; the prebuilt runtime-support library, rts.lib,
is included with the code generation tools.

b) In this example, use the –z option, which tells the shell program to run
the linker. The –z option is followed by linker options.

cl30 –o function.c –z c30.cmd –o function.out –l rts30.lib

This example runs the two compiler passes, the optimizer, the
assembler, and the linker as follows:

ac30 → C parser
opt30 → Optimizer
cg30 → Code generator
asm30 → Assembler
lnk30 → Linker

For more information on linker commands, see the Linker Description
chapter of the TMS320C3x/C4x Assembly Language Tools User’s Guide
and the Linking C Code chapter of the TMS320C3x/C4x Optimizing C
Compiler User’s Guide.

4) The TMS320C3x/C4x compiler package also includes an interlist utility.
This program interlists the C source statements as comments in the
assembly language compiler output, allowing you to inspect the assembly
language generated for each line of C. To run the interlist utility, invoke the
shell program with the –ss option. For example:

cl30 –ss function –z c30.cmd –o function.out

The output of the interlist utility is written to the assembly language file
created by the compiler. (The shell –ss option implies –k; that is, when you
use the interlist utility, the assembly file is automatically retained.)

6-1Release Notes

Release Notes

This chapter contains documentation of tools and features that are new or
have been changed since the last release. It details all enhancements made
to the TMS320C3x/C4x floating-point DSP assembly language tools and
optimizing C compiler.

Topic Page

6.1 Release Enhancements 6-2.

6.2 Useful Tips 6-4.

Chapter 6

Release Enhancements

 6-2

6.1 Release Enhancements

This section lists the release enhancements for version 5.00 of the
TMS320C3x/C4x floating-point DSP code generation tools. Each
enhancement includes a reference to the manual in which it is further detailed.
The following abbreviations are used:

ALT See the TMS320C3x/C4x Assembly Language Tools
User’s Guide (literature number: SPRU035C)

COMP See the TMS320C3x/C4x Optimizing C Compiler User’s
Guide (literature number: SPRU034G)

� The OS/2 operating system is not supported in this release

� The following command line options have been added (COMP,
Section 2.1.3):

–adname Predefines the constant name for the assembler

–auname Undefines the constant name for the assembler

–ml Runtime support assembly calls use far calls

–mp Performs speed optimizations at the cost of increased code
size

–ms Assumes all memory is accessible when optimizing

–mtc Generates an additional header for every C function
compiled, allowing it to be used with the Tartan LAJ function
calling method

–os Interlists optimizer comments into the compiler’s assembly
language output

–ss Invokes the interlist utility, which interlists C source
statements into the compiler’s assembly language output

� The –mx command line option has been removed

� Six new runtime support libraries are included: (COMP, Section 2.3)
rts30g.lib, rts30gr.lib, rts30r.lib
rts40g.lib, rts40gr.lib, rts40r.lib

� New intrinsics have been added:
fast_ftoi(), ansi_ftoi(), fast_imult(), fast_invf() (COMP, Section 2.8)

� Long doubles are now represented in extended–precision 40-bit format
(COMP, Section 3.2.1)

� The compiler supports far calls (COMP, Section 3.7)

Release Enhancements

6-3Release Notes

� The compiler includes enhanced support for filling the three delay slots
generated for branches (COMP, Section 3.8)

� The big memory model places constants in a .const section (COMP,
Section 4.2.5)

� The register calling convention has been modified. All registers are now
assigned by the compiler. (COMP, Section 4.3)

� There are three runtime-support arithmetic functions specifically for
extended-precision arithmetic: MPY_LD (multiply), DIV_LD (divide), and
INV_LD (inverse/reciprocals). These functions support the 40-bit long
double data type. (COMP, Section 4.7)

� The compiler uses the MPYI instruction more effectively for integer
multiplication (COMP, Section 4.7)

� When the –mp option is specified, the SQR inline function is used for
squaring, which reduces cycle time (COMP, Section 4.7)

� The runtime-support library includes C I/O support (COMP, Appendix B)

� The following version symbols have been added to the assembler: (ALT,
Section 3.9.3)
.C3x, .C30, .C31, .C32, .C4x, .C40, .C44

� The assembler supports the .regalias directive, which allows registers
named Fn to be aliases for floating-point versions of Rn data registers
(ALT, Chapter 4)

� The archiver (ar30) now accepts command files (ALT, Section 7.2)

� The archiver includes the –u option. This option, used in conjunction with
the –r option, causes the archiver to replace specified members in the
library only if they have a more recent modification date. (ALT, Section 7.2)

� The absolute lister (abs30), a debugging tool that allows you to create a
listing of absolute addresses of object code, has been added to the
product (ALT, Chapter 9)

� The hex converter includes the –m1, –m2, and –m3 options to support the
Motorola S1, S2, and S3 formats, respectively. (ALT, Section 10.11.3)

� COFF2 is the default format generated by the compiler, assembler, and
linker. This version of COFF supports subsections, conditional linking, and
long names. (ALT, Chapter 2 and Appendix A)

� Benchmark improvements average 10% over version 4.70

Useful Tips

 6-4

6.2 Useful Tips

� The –mf compiler option ensures that pointer access to an external
variable never uses direct addressing. If you do not use the –mf option, the
compiler may use direct addressing if a local variable pointer is assigned
the address of the external variable. Use of the option will not make all
addressing to all external variables indirect.

� When the compiler generates code for the ’C4x, it assumes that the SET
COND bit in the ST register is set to 0. The compiler will not work correctly
if the SET COND is set to 1.

� When you use the –x option with asm30 or the –ax option with cl30, a
COPY section with cross reference information is included in the COFF
file. Although the COPY section is not supposed to be loaded, TI loaders
with core debugger versions older than 3.33 will attempt to load the
section. You can use the –mv option on the debugger command line to find
the debugger core version.

The ’C3x simulator version 2.20 and the ’C4x simulator version 1.30/1.31
loaders have this problem. The following loaders do not have the problem:

� ’C4x XDS510/XDS510WS debugger version 2.40
� ’C3x XDS510/XDS510WS debugger version 5.00

A work-around to this problem is to specify in the SECTIONS directive of
the linker command file that the .xref section be allocated at a specific
memory location that will not disturb the program. The other option is not to
use the –x option if you intend to use one of the affected loaders.

� DOS restricts the length of the command line to a total of 128 characters.
The 128-character restriction also exists for the command lines that cl30
creates for calling the other tools (ac30, opt30, cg30, etc.). When these
command lines are generated, the entire path is included for the
executable (for example c:\tools\rel460\ac30.exe). This means that more
options can be included if you run the tools from the directory where they
exist or if you shorten the length of the path to the executable files.

Another solution is to use the –@ shell option. This option causes the
compiler to read shell options and commands from a command file.

Useful Tips

6-5Release Notes

� You cannot nest GROUP (group output sections) and UNION directives
in a linker command file. You can, however, group input sections within a
UNION directive (A GROUP directive groups output sections). This
accomplishes the same thing since the linker continuously allocates
output sections. For example:

MEMORY
{
 EXT0 : org = 0x001000, len = 0x0800
 RAM0 : org = 0x809800, len = 0x0400
}

SECTIONS
{
 UNION run = RAM0
 {
 .text1: load = EXT0
 {
 file1.obj(.text)
 file2.obj(.text)
 }
 .text2: load = EXT0
 {
 file3.obj(.text)
 file4.obj(.text)
 }
 }

}

� If you have multiple sections that need to start at the same run address and
they require alignment by different amounts, you can use overlays. This
is one way to simulate what would happen if you could nest GROUP
directives in UNION directives. The one thing to be aware of is that some
loaders may use the page information to place code into different banks
of memory. All of the TI loaders (EVM, emulator, and simulator) do not use
the page information in the COFF file.

MEMORY
{
 PAGE 0 : RAM0 : org = 0x001000, len = 0x0800
 PAGE 1 : RAM0 : org = 0x809800, len = 0x0400
 PAGE 2 : RAM0 : org = 0x809800, len = 0x0400
}

SECTIONS
{
 .text1 : load = RAM0 PAGE 0, run = RAM0 PAGE 1 align 128
 .text2 : load = RAM0 PAGE 0, run = RAM0 PAGE 1 align 64
 .text3 : load = RAM0 PAGE 0, run = RAM0 PAGE 2 align 512
 .text4 : load = RAM0 PAGE 0, run = RAM0 PAGE 2 align 8
}

Useful Tips

 6-6

� An alternative to using mk30 to build a library is to use use cl30 to compile
all of the .c and .h files and then use ar30 to archive all of the .obj files to
an object archive:

SPARC:

cd ~/float/rts
ar30 –x ~/float/rts.src
cl30 –o3 –ol0 –op0 –i. *
ar30 –a rts.lib *.obj

DOS:

cd c:\float\rts
ar30 –x c:\float\rts.src
cl30 –o3 –ol0 –op0 –i. *.*
ar30 –a rts.lib *.obj

� The branch instructions (BR, BRD, CALL, RPTB, RPTBD, LAJ, Bcond,
BcondAF, BcondAT, BcondD, CALLcond, DBcond, DBcondD, LAJcond,
LATcond, RETIcond, RETIcondD, RETScond, etc.) have either 16- or
24-bit displacement fields (+/– 32K or +/– 8M words, respectively). In most
cases, the compiler uses the conditional branches with 16-bit offsets.
However, there are several ways that you can specify 24–bit calls:

� Use a function pointer to call the function. This will use the register
addressing mode rather than the PC-displacement addressing mode.

� Use the far modifier when defining the function. For example,

extern far int function(parameters);

tells the compiler to use the 24–bit version of the call.
� Use the –ml option. This option tells the compiler to use 24–bit far calls

when calling internal RTS functions such as MPY_I30.

� Using the .sect directive to define a user definable initialized section in C
code does not always work correctly. This method is often used when you
want to give a portion of code different run and load addresses. The
compiler may generate .text information, then it may generate .const or
.cinit information, and then go back to generating more .text information.
This means that a portion of the code that was intended for the user section
may be placed in the .text section.

The .label directive can be used with any initialized section like .text, .data,
or other user definable initialized sections (.sect directive) to place a label
at the load address. It does not make sense to have a run address for the
.cinit section since the data is copied to .bss at boot time or load time and
then never referenced again. Uninitialized sections like .bss, .stack or
.sysmem only have runtime addresses. Therefore, it does not make sense
to have a separate load address.

Useful Tips

6-7Release Notes

A general method of placing C code at a separate load address is
illustrated in the following code segments. The example consists of four C
files, move.c, move1.c, move2.c, and exit.c, and an assembly language
file, boot.asm. The C file exit.c and the assembly language file boot.asm
are not reproduced here as they are included in the runtime support library.
The linker command file move.cmd controls the linking process. The five
files are compiled, assembled, and linked with the following command
line:

cl30 –g move.c move1.c move2.c exit.c boot.asm –z move.cmd

The file move.c contains the function main_run() that we want to relocate
at runtime. The asm statement is used to embed TMS320C3x/C4x
assembly language statements. The .sects statement create named
sections called .load and .end. The .label statement creates a special label
that refers to the load address of the labels __load_addr and __load_end
that mark the beginning and ending of the code to be relocated at run time.

*********************** move.c ***********************

asm(” .sect \”.load\” ”);
asm(” .global __load_addr ”);
asm(” .global __run_addr ”);
asm(” .label __load_addr ”);
asm(”__run_addr .text ”);

extern int test(int in);

int main_run(int in)
{
 int out = test(in);
 return out;
}

asm(” .sect \”.end\” ”);
asm(” .global __load_end ”);
asm(” .label __load_end ”);

Useful Tips

 6-8

The file move1.c contains the C code that moves the function main_run()
from its load address to its run address.

*********************** move1.c ***********************

extern int _load_addr;
extern int _load_end;
extern int _run_addr;
extern int main_run(int in);

main()
{
 int (*ptr_main)(int n) = main_run;
 int *load_addr = &_load_addr;
 int *load_end = &_load_end;
 int *run_addr = &_run_addr;
 int len = load_end – load_addr;
 int i;
 for(i=0; i<len; i++)
 *run_addr++ = *load_addr++;
 i = (*ptr_main)(100);
}

The file move2.c contains a function call to the function test(). Note that the
code that relocates the function must run before the function can be called.

*********************** move2.c ***********************

int test(int in)
{
 return in;
}

The file move.cmd contains a linker command file for the preceding
example. The most important part of this command file for the purpose of
the example is the SECTIONS directive that allocates move.obj and
move2.obj to load into external memory and run in RAM block 1. Note that
the linker command file allocates the space, but it is the file move1.c that
contains the code that actually moves functions main_run() and test() from
their load addresses to their run addresses.

Useful Tips

6-9Release Notes

******************************** move.cmd *************************************

–c /* USE C ROM MODEL */
–stack 0x100 /* STACK */
–heap 0x100 /* HEAP */
–lrts30.lib /* RUN–TIME SUPPORT LIBRARY */
–m c3x.map /* GENERATE MAP FILE */
–o c3x.out /* NAME OUTPUT FILE */
–x /* REREAD LIBRARIES */
–w /* WARN */

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 ROM: org = 0x0 len = 0x1000 /* INTERNAL 4K ROM */
 EXT0: org = 0x1000 len = 0x7ff000 /* EXTERNAL MEMORY */
 XBUS: org = 0x800000 len = 0x2000 /* EXPANSION BUS */
 IOBUS: org = 0x804000 len = 0x2000 /* I/O BUS */
 RAM0: org = 0x809800 len = 0x400 /* RAM BLOCK 0 */
 RAM1: org = 0x809c00 len = 0x400 /* RAM BLOCK 1 */
 EXT1: org = 0x80a000 len = 0x1000 /* EXTERNAL MEMORY */
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 .boot: > EXT0
 {
 boot.obj (.text)
 move1.obj (.text)
 exit.obj (.text)
 }
 .text: load = EXT0, run = RAM1
 {
 move.obj (.load)
 * (.text)
 move.obj (.end)
 }
 .cinit: > RAM1 /* INITIALIZATION TABLES */
 .const: > RAM1 /* CONSTANTS */
 .stack: > RAM1 /* SYSTEM STACK */
 .sysmem: > RAM1 /* DYNAMIC MEMORY – DELETE IF NOT USED */
 .bss: > RAM1, block 0x10000 /* VARIABLES */
}

A-1 Chapter Title—Attribute Reference

Appendix A

Troubleshooting DOS Systems

DOS/4GW is a memory manager that is embedded into the TMS320C3x/C4x
code generation tools, so you may occasionally see DOS/4GW error
messages while you are using the tools. The executable files for DOS/4GW
are not shipped as such, nor is any documentation provided on this tool, except
for the list of error messages.

Section A.2, Kernel Error Messages, and Section A.3, DOS/4G Error
Messages, are excerpted from the DOS/4GW User’s Manual (reproduced
here with the permission of Tenberry Software, Inc.) Included are lists of error
messages with descriptions of the circumstances in which the error is most
likely to occur and suggestions for remedying the problem. (Portions of the
excerpt have been modified to provide you with specific information about
using TI tools.)

Topic Page

A.1 Troubleshooting in the Protected-Mode Environment A-2.

A.2 Kernel Error Messages A-5.

A.3 DOS/4G Error Messages A-9.

Appendix A

Troubleshooting in the Protected-Mode Environment

A-2

A.1 Troubleshooting in the Protected-Mode Environment

Getting 32-bit programs to execute properly under DOS can be frustrating.
Your computer’s configuration and memory management can cause problems
that may be difficult to find because many programs are interacting.

This list of error messages is reproduced here because they may occur when
executing any tools, since all of the tools have been assembled along with the
DOS/4GW memory extender. When reading this material, keep these
considerations in mind:

� When an Action directs you to technical support, determine the configura-
tion of your system by using the PMINFO (on page A-3) programs before
contacting technical support:

To contact technical support, call the following telephone number:

DSP Hotline (281) 274–2320

� Some error messages are not included in this section because they are
rarely seen when using DOS/4GW with the TMS320C3x/C4x tools. Also,
many of the messages that are documented here are seldom seen when
using DOS/4GW with the TMS320C3x/C4x tools. Nevertheless, you may
find this text to be useful in debugging your programs.

Should you encounter any error message not listed here, or should problems
persist, contact technical support as directed above.

 Troubleshooting in the Protected-Mode Environment

A-3 Troubleshooting DOS Systems

The PMINFO.EXE program

Purpose: Run PMINFO.EXE to determine the performance of protected/
real-mode switching and extended memory.

Notes: The time-based measurements made by PMINFO may vary
slightly from run to run.

If this error message appears:

DOS/16M error: [17] system software does not follow VCPI
or DPMI specifications

check for a statement in your CONFIG.SYS containing
NOEMS. If such a statement exists, remove it and reboot your
computer.

If the computer is not equipped with extended memory or if
none is available for DOS/4GW, the extended-memory
measurements will not display.

Other DOS/4GW error messages are in Section A.3, DOS/4G
Error Messages.

Example: The following example shows the output of the PMINFO pro-
gram on an 80486 AT-compatible machine running at 33 MHz.

–================================= PMINFO =======================================–

 Protected Mode and Extended Memory Performance Measurement –– 4.45
 Copyright (c) Tenberry Software, Inc. 1987 – 1995

DOS memory Extended memory CPU performance equivalent to 33.0 MHz 80486
–––––––––– –––––––––––––––
 640 17854 K bytes configured (according to BIOS).
 640 31744 K bytes physically present (SETUP).
 550 17585 K bytes available for DOS/16M programs.
21.6 (0.0) 19.1 (0.5) MB/sec word transfer rate (wait states).
35.4 (0.5) 34.4 (0.5) MB/sec 32–bit transfer rate (wait states).

Overall cpu and memory performance (non–floating point) for typical
DOS programs is 7.78 � 0.62 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 18078/sec (55 �sec/switch, 33 up + 21 down),
DOS/16M switch mode 11 (VCPI).

Troubleshooting in the Protected-Mode Environment

A-4

PMINFO provides the information shown in Table A–1.

Table A–1. PMINFO Fields

Measurement Purpose

CPU performance Shows the CPU processor equivalent and the speed of the CPU (in MHz).

According to BIOS Shows the configured memory in DOS and extended memory as provided by the
BIOS (interrupts 12h and 15h, function 88h).

SETUP Shows the configuration obtained directly from the CMOS RAM as set by the com-
puter’s setup program. It is displayed only if the numbers are different from those
in the BIOS line. They are different if the BIOS has reserved memory for itself or
if another program has allocated memory and is intercepting the BIOS configura-
tion requests to report less memory available than is physically configured.

DOS/16M programs If displayed, shows the low and high addresses available to DOS/4GW in
extended memory.

Transfer rates PMINFO tries to determine the memory architecture. Some architectures perform
well under some circumstances and poorly under others; PMINFO shows the best
and worst cases. The architectures detected are cache, interleaved, page-mode
(or static column), and direct.

Measurements are made by using 32-bit accesses and are reported as the num-
ber of megabytes per second that can be transferred. The number of wait states
is reported in parentheses. The wait states can be a fractional number, like 0.5,
if there is a wait state on writes but not on reads. Memory bandwidth (that is, how
fast the CPU can access memory) accounts for 60% to 70% of the performance
for typical programs (those that are not heavily dependent on floating-point math).

Overall CPU and memory
performance

Shows a performance metric developed by Tenberry Software, Inc. (formerly
known as Rational Systems, Inc.), indicating the expected throughput for the com-
puter relative to a standard 8-MHz IBM PC/AT (disk accesses and floating-point
operations are both excluded).

Protected/real switch rate Shows the speed with which the computer can switch between real and protected
modes, both as the maximum number of round-trip switches that can occur per
second, and as the time for a single round-trip switch, broken into the real-to-
protected (up) and protected-to-real (down) components.

 Kernel Error Messages

A-5 Troubleshooting DOS Systems

A.2 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded
in the TMS320C3x/C4x code generation tools. Kernel error messages can
occur because of severe resource shortages, corruption of the executable file,
corruption of memory, operating system incompatibilities, or internal errors. All
of these messages are quite rare.

DOS/16M protected mode available only with 386 or 486
Description DOS/4G did not detect the presence of a 386, 486, or

Pentium-based processor. You may see this error message
even if you are using a 386 PC or later.

Action If you are running the tools on a 386 (or later) PC, rerun the
program. If you are running the tools on a 286 PC, reinstall
and run the tools on a 386 PC or later.

0: involuntary switch to real mode
Description The computer was in protected mode but switched to real

mode without going through DOS/16M. This error most often
occurs because of an unrecoverable stack segment
exception (stack overflow) but can also occur if the Global
Descriptor Table or Interrupt Descriptor Table is corrupted.

Action Restart your computer. If the problem persists, contact
technical support.

2: not a DOS/16M executable <filename>
Description DOS4G.EXE or a bound DOS/4G application has probably

been corrupted in some way.

Action Recopy the file from the source media.

6: not enough memory to load program
Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

8: cannot open file <filename>
Description The DOS/16M loader cannot load DOS/4G, probably

because DOS has run out of file units.

Action Set a larger FILES= entry in the CONFIG.SYS file, reboot,
and try again.

Kernel Error Messages

A-6

9: cannot allocate tstack

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

10: cannot allocate memory for GDT

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

11: no passup stack selectors – GDT too small

Description There is an internal error in DOS/4G or an incompatibility with
other software.

Action Contact technical support.

12: no control program selectors – GDT too small

Description There is an internal error in DOS/4G or an incompatibility with
other software.

Action Contact technical support.

13: cannot allocate transfer buffer

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

14: premature EOF

Description DOS4G.EXE or a bound DOS/4G application has probably
been corrupted.

Action Recopy the file from the source media.

15: protected mode available only with 386 or 486

Description DOS/4G requires an 80386 (or later) CPU. It cannot run on an
80286 (or earlier) CPU.

Action Reinstall and run the tools on a 386 (or later) PC.

 Kernel Error Messages

A-7 Troubleshooting DOS Systems

17: system software does not follow VCPI or DPMI specifications

Description Some memory-resident program has put your 386 or 486
CPU into Virtual 8086 mode. This is done to provide special
memory services to DOS programs, such as EMS simulation
(EMS interface without EMS hardware) or high memory. In
this mode, it is not possible to switch into protected mode
unless the resident software follows a standard that
DOS/16M supports (DPMI, VCPI, and XMS are the most
common).

Action Contact the vendor of your memory-management software.

22: cannot free memory

Description Memory was probably corrupted during execution of your
program.

Action Make more memory available and try again.

23: no memory for VCPI page table

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

24: VCPI page table address incorrect

Description This is an internal error.

Action Contact technical support.

25: cannot initialize VCPI

Description An incompatibility with other software was detected.
DOS/16M has detected that VCPI is present, but VCPI
returns an error when DOS/16M tries to initialize the interface.

Action Find the other software that uses VCPI and disable it (stop its
execution).

28: memory error, avail loop

Description Memory was probably corrupted during execution of your
program. Using an invalid or stale alias selector may cause
this error. Incorrect manipulation of segment descriptors may
also cause it.

Action Rerun the program and/or restart your computer.

Kernel Error Messages

A-8

29: memory error, out of range

Description Memory was probably corrupted during execution of your
program. Writing through an invalid or stale alias selector may
cause this error.

Action Check your source code for references to variables that are
not declared or are no longer in scope.

32: DPMI host error (possibly insufficient memory)
33: DPMI host error (need 64K XMS)
34: DPMI host error (cannot lock stack)

Description Memory under DPMI is probably insufficient.

Action Under Windows, make more physical memory available by
eliminating or reducing any RAM drives or disk caches. You
can also edit DEFAULT.PIF so that at least 64K bytes of XMS
memory is available to non-Windows programs. Under OS/2,
increase the DPMI_MEMORY_LIMIT in the DOS box
settings.

35: general protection fault

Description An internal error in DOS/4G was probably detected. Faults
generated by your program should cause error 2001 instead.

Action Contact technical support.

38: cannot use extended memory: HIMEM.SYS not version 2

Description An incompatibility with an old version of HIMEM.SYS was
detected.

Action Upgrade to a more recent copy of DOS or upgrade your DOS
memory extender.

40: not enough available extended memory (XMIN)

Description An incompatibility with your memory manager or its configu-
ration was detected.

Action Configure the memory manager to provide more extended
memory or change memory managers.

 DOS/4G Error Messages

A-9 Troubleshooting DOS Systems

A.3 DOS/4G Error Messages

DOS/4G errors are more common than kernel errors when using DOS/4G or
DOS/4GW with the TMS320C3x/C4x code generation tools. They are usually
related to an unknown path name, corrupt files, or memory problems. Memory
problems can include inadequate memory, poor configuration, or corrupted
memory.

1000 ”can’t hook interrupts”
Description A DPMI host has prevented DOS/4G from loading.

Action Contact technical support.

1001 ”error in interrupt chain”
Description A DOS/4G internal error was detected.

Action Contact technical support.

1003 ”can’t lock extender kernel in memory”
Description DOS/4G couldn’t lock the kernel in physical memory,

probably because of a memory shortage.

Action Free some memory for the DOS/4G application.

1005 ”not enough memory for dispatcher data”
Description There is not enough memory for DOS/4G to manage user-

installed interrupt handlers properly.

Action Free some memory for the DOS/4G application.

1007 ”can’t find file <program> to load”
Description DOS/4G could not open the specified program. The file

probably does not exist. It is possible that DOS ran out of file
handles or that a network or similar utility has prohibited read
access to the program.

Action Make sure that the filename was spelled correctly.

1008 ”can’t load executable format for file <filename>
[<error code>]”
Description DOS/4G did not recognize the specified file as a valid execut-

able file. DOS/4G can load linear executables (LE and LX)
and EXPs (BW).

Action Recopy the file from the source media.

DOS/4G Error Messages

A-10

3301 ”unhandled EMPTYFWD, GATE16, or unknown relocation”
3302 ”unhandled ALIAS16 reference to unaliased object”
3304 ”unhandled or unknown relocation”

Description If your program was built for another platform that supports
the LINEXE format, it may contain a construct that DOS/4G
does not currently support, such as a call gate. One of these
messages may also appear if your program has a problem
mixing 16- and 32-bit code. A linker error is another likely
cause.

Action Check for viruses and reinstall the tools from the source
media. If the problem persists, contact technical support.

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

Tables of Peripheral Registers,
Structure-Member Names, and Bit-Field Names

The TMS2320C3x peripheral control library provides C data structures for
manipulating the TMS320C3x peripherals. The tables in this appendix list the
data structure member names that are used to access each of the peripheral
registers and bit fields through C peripheral pointers. For a detailed
explanation of the register and bit-field descriptions, refer to the TMS320C3x
User’s Guide.

This appendix provides an update to the parallel runtime-support table.

The first entry for each register shows how to access that register as an integer.
The remaining entries show how to access the register’s bit fields individually.
Each table is followed by an example.

Appendix B

Tables of Peripheral Registers, Structure-Member Names, and Bit-Field Names

B-2

Table B–1. Bus Control Registers

Register Assignment Bit Field Member name

STRB0 Bus Control Integer –––– –>strb0_gcontrol

Bit-field STRB Switch –>strb0_gcontrol_bit.strbsw

STRB Config –>strb0_gcontrol_bit.strbcnfg

Sign Ext/Zero Fill –>strb0_gcontrol_bit.signext

Physical Memory Width –>strb0_gcontrol_bit.memwidth

Data Size –>strb0_gcontrol_bit.datasize

BNKCMP –>strb0_gcontrol_bit.bnkcmp

WTCNT –>strb0_gcontrol_bit.wtcnt

SWW –>strb0_gcontrol_bit.sww

HIZ –>strb0_gcontrol_bit.hiz

NOHOLD –>strb0_gcontrol_bit.nohold

HOLDST –>strb0_gcontrol_bit.holdst

STRB1 Bus Control Integer –––– –>strb1_gcontrol

Bit-field Sign Ext/Zero Fill –>strb1_gcontrol_bit.signext

Physical Memory Width –>strb1_gcontrol_bit.memwidth

Data Size –>strb1_gcontrol_bit.datasize

BNKCMP –>strb1_gcontrol_bit.bnkcmp

WTCNT –>strb1_gcontrol_bit.wtcnt

SWW –>strb1_gcontrol_bit.sww

IOSTRB Bus Control Integer –––– –>strb1_gcontrol

Bit-field WTCNT –>strb1_gcontrol_bit.wtcnt

SWW –>iostrb_gcontrol_bit.sww

Example B–1. Bus Control

#include <bus32.h>
BUS_REG *bus_ptr=BUS_ADDR; /* Define pointer to bus peripheral */
bus_ptr–>iostrb_gcontrol = 0; /* zero wait states on IOSTRB bus */

 Tables of Peripheral Registers, Structure-Member Names, and Bit-Field Names

B-3 Tables of Peripheral Registers, Structure-Member Names, and Bit-Field Names

Table B–2. DMA Control Registers

Register Assignment Bit FIeld Member Name

DMA0 Global Control Integer –––– –>gcontrol

Bit-field PRIORITY MODE –>gcontrol_bit.pri_mode

DMA PRI –>gcontrol_bit.dma_pri

TCINT –>gcontrol_bit.tcint

TC –>gcontrol_bit.tc

SYNC –>gcontrol_bit.sync

DECDST –>gcontrol_bit.decdst

INCDST –>gcontrol_bit.incdst

DECSRC –>gcontrol_bit.decsrc

INCSRC –>gcontrol_bit.incsrc

STAT –>gcontrol_bit.stat

START –>gcontrol_bit.start

DMA1 Global Control Integer –––– –>gcontrol

Bit-field TCINT –>gcontrol_bit.tcint

TC –>gcontrol_bit.tc

SYNC –>gcontrol_bit.sync

DECDST –>gcontrol_bit.decdst

INCDST –>gcontrol_bit.incdst

DECSRC –>gcontrol_bit.decsrc

INCSRC –>gcontrol_bit.incsrc

STAT –>gcontrol_bit.stat

START –>gcontrol_bit.start

DMAx Source Address Integer –––– –>source

DMAx Destination Address Integer –––– –>destination

DMAx Transfer Counter Integer –––– –>transfer_counter

Example B–2. DMA Control

#include <dma32.h>
DMA_REG *dma0=DMA_ADDR(0); /* Define pointer to DMA0 */
dma0–>gcontrol_bit.start=STOP; /* Stop DMA by setting start bits */

C-1

Appendix A

Glossary

A

ANSI: American National Standards Institute. An organization that
establishes standards voluntarily followed by industries.

asm30: The name of the command that invokes the assembler for the
TMS320C3x/C4x.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions,
directives, and macro directives. The assembler substitutes absolute
operation codes for symbolic operation codes, and absolute or
relocatable addresses for symbolic addresses.

B

.bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

C

C compiler: A program that translates C source statements into assembly
language source statements.

cl30: The name of the compiler shell program for the TMS320C3x/C4x.
(Note that the second character in the shell name is a lowercase L.)

common object file format (COFF): A binary object file format that
promotes modular programming by supporting the concept of sections.

Appendix C

Glossary

C-2

D

DOS/4G: The base version for DOS/4GW. You may occasionally see this
term in an error message. If so, refer to Appendix A, Troubleshooting
DOS Systems, for the appropriate action.

DOS/4GW: A memory extender that is bound with the MS-DOS version of
the TMS320C3x/C4x tools. The executable DOS/4GW file is not shipped
separately but is embedded within the other executables. Error
messages from DOS/4GW are included in Appendix A, Troubleshooting
DOS Systems, to assist you in debugging. If you receive one of these
error messages, contact technical support for assistance, and remember
that the tools are shipped as object files with the memory extender
embedded.

DOS/16M: The executable filename for a tool that is embedded in the
TMS320C3x/C4x code generation tools. You may occasionally see this
term in an error message. If so, refer to Appendix A, Troubleshooting
DOS Systems, for the appropriate action.

E

environment variables: System symbols that you define and assign to a
string. They are usually included in batch files (for example, in the
AUTOEXEC.BAT file).

G

global: A kind of symbol that is either 1) defined in the current module and
accessed in another, or 2) accessed in the current module but defined
in another.

I

initialized section: A COFF section that contains executable code or
initialized data. An initialized section can be built up with the .data, .text,
or .sect directive.

interlist utility: A utility that inserts as comments your original C source
statements into the assembly language output from the assembler. The
C statements are inserted next to the equivalent assembly instructions.

 Glossary

C-3 Glossary

L

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320C3x/C4x system memory and
executed by the device.

listing file: An output file created by the assembler that lists source
statements, their line numbers, and their effects on the section program
counter (SPC).

lnk30: The name of the command that invokes the linker for the
TMS320C3x/C4x.

M

map file: An output file, created by the linker, that shows the memory
configuration, section composition, section allocation, and symbol
definitions and the addresses at which the symbols were defined for your
program.

O

optimization: Improvement in the execution speed of a program or in the
reduction of the size of C programs.

P

pragma: Preprocessor directive that provides directions to the compiler
about how to treat a particular statement.

protected-mode programs: 32-bit extended MS-DOS programs. These
programs require an extended memory manager and run on 80386-,
80486-, and Pentium-based PCs only. Protected-mode programs can
use all available RAM on the computer up to 64 Mbytes.

R

real mode: 16-bit native MS-DOS mode. This mode limits the available
memory to 640K bytes. Calls to DOS may involve switching from
protected to real mode. DOS real-mode tools are no longer supported by
the TMS320C3x/C4x code generation tools.

GlossaryGlossary

Glossary

C-4

S

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the TMS320C3x/C4x memory map.

static variable: A kind of variable whose scope is confined to a function or
a program. The values of static variables are not discarded when the
function or program is exited; their previous value is resumed when the
function or program is re-entered.

string table: A table that stores symbol names that are longer than eight
characters (symbol names of eight characters or longer cannot be stored
in the symbol table; instead, they are stored in the string table). The name
portion of the symbol’s entry points to the location of the string in the
string table.

subsection: A relocatable block of code or data that will ultimately occupy
contiguous space in the TMS320C3x/C4x memory map. Subsections
are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

swap file: The file where virtual memory(secondary memory) is allocated on
the hard disk.

symbolic debugging: The ability of a software tool to retain symbolic
information so that it can be used by a debugging tool such as a simulator
or an emulator.

T

.text: One of the default COFF sections. The .text section is an initialized
section that contains executable code. You can use the .text directive to
assemble code into the .text section.

U

uninitialized section: A COFF section that reserves space in the memory
map but that has no actual contents. These sections are built up with the
.bss and .usect directives.

Glossary

 Glossary

C-5 Glossary

V

virtual memory: The ability of a program to use more memory than a
computer actually has available as RAM. This is accomplished by using
a swap file on disk to augment RAM. When RAM is not sufficient, part of
the program is swapped out to a disk file until it is needed again. The
combination of the swap file and available RAM is the virtual memory.
The TMS370C16 tools use the DOS/4GW memory extender to provide
virtual memory management (VMM). This memory extender is not
provided as an executable file but is embedded in several of the tools
shipped by TI. Contact technical support for more information.

Index

Index-1

Index

A
A_DIR environment variable

for DOS 1-5
for HP workstations 4-5
for SPARCstations 3-6
for Windows 3.1 1-5
for Windows 95 2-5
for Windows NT 2-5

abs30
absolute lister 6-3

absolute lister 6-3

–ad option 6-2

ANSI
defined C-1

ar30
archiver 6-3

archiver
command files 6-3
–u option 6-3

arithmetic functions
extended-precision 6-3

asm30
defined C-1
invoking 5-3

assembler
.regalias directive 6-3
defined C-1
version symbols 6-3

assembler walkthrough 5-2 to 5-4

–au option 6-2

B
benchmark improvements 6-3

branch instructions 6-6

.bss section
defined C-1

bus-control
example B-2
registers B-2

C
C compiler

defined C-1
walkthrough 5-5 to 5-8

C I/O support 6-3
C_DIR environment variable

for DOS 1-5
for HP workstations 4-5
for SPARCstations 3-6
for Windows 3.1 1-5
for Windows 95 2-5
for Windows NT 2-5

C_OPTION environment variable
for DOS 1-6
for HP workstations 4-6 to 4-7
for SPARCstations 3-7 to 3-8
for Windows 3.1 1-6
for Windows 95 2-6
for Windows NT 2-6

cl30
defined C-1
invoking 5-5

COFF
common object file format 5-6
defined C-1

COFF2 format 6-3
command line options

added in this release 6-2
removed in this release 6-2

.const section 6-3
constants

placed in .const section 6-3

Index

Index-2

D
delay slots 6-3

DMA-control
example B-3
registers B-3

DOS
DOS4GVM environment variable 1-7 to 1-9
installing the tools 1-3
memory requirements 1-2
PMINFO A-3 to A-10
setting up the environment 1-4 to 1-9
system requirements 1-2
virtual memory

defined C-5
virtual memory management (VMM) 1-7 to 1-9,

1-10

DOS/16M
defined C-2

DOS/4G
defined C-2
error messages A-9 to A-10

DOS/4GW
defined C-2
definition A-1
error messages A-1 to A-10

DOS4GVM environment variable 1-7 to 1-9

E
enhancements 6-2

environment variables
defined C-2
for DOS 1-4 to 1-9
for HP workstations 4-4 to 4-7
for SPARCstations 3-5 to 3-8
for Windows 3.1 1-4 to 1-9
for Windows 95 2-4 to 2-7
for Windows NT 2-4 to 2-7

error messages
DOS/4G A-9 to A-10
kernel A-5 to A-8

example
assembler 5-2 to 5-3
compiler 5-5 to 5-7
linker 5-4 to 5-6
PMINFO A-3

extended-precision
40-bit format

long doubles 6-2
arithmetic functions 6-3

F
far calls 6-2

G
global symbols

defined C-2

GROUP statement 6-5

H
hex converter

support for Motorola formats 6-3
HP workstations

installing the tools 4-3
setting up the environment 4-4 to 4-7
system requirements 4-2

I
initialized sections

defined C-2

installation
for DOS 1-3
for HP workstations 4-3
for SPARCstations 3-3 to 3-4
for Windows 3.1 1-3
for Windows 95 2-3
for Windows NT 2-3

interlist utility 5-7
defined C-2

intrinsics 6-2
invoking

assembler 5-2 to 5-4
compiler 5-5 to 5-8
linker 5-2

K
kernel error messages A-5 to A-8

Index

Index-3

L
library build utiliy 6-6

linker
defined C-3

linker walkthrough 5-2 to 5-4

listing file
defined C-3

lnk30
defined C-3
invoking 5-3

long doubles
extended-precision 40-bit format 6-2

M
map file

defined C-3

memory requirements
for DOS 1-2
for Windows 3.1 1-2
for Windows 95 2-2
for Windows NT 2-2

–mf option 6-4

–ml option 6-2

mounting the CD-ROM
for HP workstations 4-3
for SPARCstations 3-3

–mp option 6-2, 6-3

MPYI instruction 6-3

–ms option 6-2

MS-DOS
command line length 6-4

–mtc option 6-2

–mx option 6-2

O
optimizer

defined C-3

–os option 6-2

P
PATH statement

for DOS 1-4
for Windows 3.1 1-4
for Windows 95 2-5
for Windows NT 2-5

path statement
for HP workstations 4-4
for SPARCstations 3-5

performance considerations 1-10
peripheral control library B-1
PMINFO A-3 to A-10
pragma

defined C-3
protected mode

environment
troubleshooting A-2

programs
defined C-3

R
real mode

defined C-3
.regalias directive 6-3
register calling convention

modified 6-3
relocating code at runtime 6-6
runtime support libraries 6-2

S
.sect directive 6-6
section

defined C-4
SET COND bit 6-4
SPARCstations

installing the tools 3-3 to 3-4
setting up the environment 3-5 to 3-8
system requirements 3-2

–ss option 6-2
static variable

defined C-4
string table

defined C-4

Index

Index-4

subsection
defined C-4

swap file
defined C-4

symbolic debugging
defined C-4

system requirements
for DOS 1-2
for HP workstations 4-2
for SPARCstations 3-2
for Windows 3.1 1-2
for Windows 95 2-2
for Windows NT 2-2

T
.text section

defined C-4
tips 6-4
TMP environment variable

for DOS 1-9
for HP workstations 4-7
for SPARCstations 3-8
for Windows 3.1 1-9
for Windows 95 2-7
for Windows NT 2-7

U
uninitialized sections

defined C-4
UNION statement 6-5
unmounting the CD-ROM

for HP workstations 4-3
for SPARCstations 3-4

V
virtual memory

defined C-5

virtual memory management (VMM)
performance considerations 1-10
using the DOS4GVM environment

variable 1-7 to 1-9

W
walkthrough

assembler 5-2 to 5-4
C compiler 5-5 to 5-8
linker 5-2 to 5-4

Windows 3.1
installing the tools 1-3
memory requirements 1-2
setting up the environment 1-4 to 1-9
system requirements 1-2

Windows 95
installing the tools 2-3
memory requirements 2-2
setting up the environment 2-4 to 2-7
system requirements 2-2

Windows NT
installing the tools 2-3
memory requirements 2-2
setting up the environment 2-4 to 2-7
system requirements 2-2

X
–x option 6-4

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks
	If You Need Assistance...

	Contents
	Tables
	Examples
	Setting Up the Tools on a PC Running DOS or Windows 3.1
	System Requirements
	Installing the Tools
	Installing the tools on DOS systems
	Installing the tools on Windows 3.1 systems

	Setting Up the Environment
	Identifying the directory that contains the executable files (PATH statement)
	Identifying alternate directories for the assembler (A_DIR)
	Identifying alternate directories for the compiler (C_DIR)
	Setting default shell options (C_OPTION)
	Using virtual memory (DOS4GVM)
	Specifying a temporary file directory (TMP)

	Performance Considerations
	Where to Go From Here

	Setting Up the Tools on a PC Running Windows NT or Windows 95
	System Requirements
	Installing the Tools
	Setting Up the Environment
	Setting environment variables under Windows NT
	Setting environment variables under Windows 95
	Identifying the directory that contains the executable files (PATH statement)
	Identifying alternate directories for the assembler (A_DIR)
	Identifying alternate directories for the compiler (C_DIR)
	Setting default shell options (C_OPTION)
	Specifying a temporary file directory (TMP)

	Where to Go From Here

	Setting Up the Tools on a SPARCstation
	System Requirements
	Mounting the CD-ROM and Installing the Tools
	Mounting the CD-ROM
	Installing the tools
	Unmounting the CD-ROM

	Setting Up the Environment
	Identifying the directory that contains the executable files (path statement)
	Identifying alternate directories for the assembler (A_DIR)
	Identifying alternate directories for the compiler (C_DIR)
	Setting default shell options (C_OPTION)
	Specifying a temporary file directory (TMP)

	Where to Go From Here

	Setting Up the Tools on an HP Workstation
	System Requirements
	Mounting the CD-ROM and Installing the Tools
	Mounting the CD-ROM
	Installing the tools
	Unmounting the CD-ROM

	Setting Up the Environment
	Identifying the directory that contains the executable files (path statement)
	Identifying alternate directories for the assembler (A_DIR)
	Identifying alternate directories for the compiler (C_DIR)
	Setting default shell options (C_OPTION)
	Specifying a temporary file directory (TMP)

	Where to Go From Here

	Getting Started With the Code Generation Tools
	Getting Started With the Assembler and Linker
	Getting Started With the C Compiler

	Release Notes
	Release Enhancements
	Useful Tips

	Troubleshooting DOS Systems
	Troubleshooting in the Protected-Mode Environment
	The PMINFO.EXE program

	Kernel Error Messages
	DOS/4G Error Messages

	Tables of Peripheral Registers, Structure-Member Names, and Bit-Field Names
	Glossary
	Index

