
1991 

-I!1 TEXAS 
INSTRUMENTS 

Digital Control Applications 
lNith the TAfS320 Fatnily 

1991 Digital Signal Processing Products 



Digital Control Applications 
lNith the TMS320 Family 

Edited by 
IrfanAhmed 

Digital Signal Processing-Semiconductor Group 
Texas Instruments Incorporated 

~ 
TEXAS 

INSTRUMENTS 

I 



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes to or to discontinue any 
semiconductor product or service identified in this publication without notice. TI ad­
vises its customers to obtain the latest version of the relevant information 10 verify, 
before placing orders, that the information being relied upon is current. 

TI warrants performance of its semiconductor products to current specifications in 
accordance with Tl's standard warranty. Testing and other quality control tech­
niques are utiiized to the extent TI deems necessary to support this warranty. Un­
less mandated by govemment requirementlil, specific testing of all parameters of 
each device is not necessarily performed. 

TI assumes no liability for TI applications assistance, customer product design, 
software performance, or infringement of patents or services described herein. Nor 
does TI warrant or representthat license, either express or implied, is granted under 
any patent right, copyright, mask work right, or other intellectual property right of 
TI covering or relating to any combination, machine, or process in which such semi-
conductor products or services might be or are used. . , 

Texas Instruments products are not intended for use in life-support appliances, de­
vices, or llystems. Use of a TI product in such applications without the written con­
sent of the appropriate TI officer is prohibited. 

TRADEMARKS 

Apollo is a trademark of Apollo Computer, Inc. 
Apple and Macintosh are trademarks of Apple Computer Corp. 
CROSSTALK is a trademark of Microstuf, Inc. 
DEC, VAX, and VMS are trademarks of Digital Equipment Corp. 
18M, OS/2, PC, PC-DOS, PC/XT, and PS/2 are trademarks of IBM Corp. 
Intel is a trademark of Intel Corporation 
MS-DOS and MS OS/2 are registered trademarks of Microsoft Corp. 
NEC is a trademark of NEC Corp. 
Power-14 and Power-8ource are trademarks of Teknic, Inc. 
Sun is a trademark of Sun Microsystems, Inc. 
UN/X is a registered trademark of AT&T Bell Laboratories, Inc. 
VMEbus is a trademark of Motorola, Inc. 
XOS is a trademark of Texas Instruments, Inc. 

Copyright © 1991, Texas Instrl!ments Incorporated 



CONTENTS 

Preface ......................................................................... ix 

PART I Introduction To Digital Controllers 

DSP·Based Control Systems ........................................................ 3 
Control Systems ............................................................... 3 

Analog Control Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 
Digital Control Systems ... . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
Analog Versus Digital Controllers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 

Processor Requirements for Digital Controllers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 
Architecture ................................................................ 6 
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 
Peripheral Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 

DSP Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 
TMS320 Digital Signal Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 

TMS320 Fixed-Point DSPs ................................................... 10 
TMS320 Floating-Point DSPs ................................................. 10 

TMS320C14-An Optimal Solution .............................................. 10 
Summary .................................................................... 12 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 

Digital Signal Processors Simplifying High.Performance Control ...... :................. 13 
(Irfan Ahmed and Steven Lindquist; reprinted from Machine Design. Sept. 10. 1987) 

Taking Control with DSPs .. . . . . .. . .. . . . . . . . . .. . . . .. .. .. . . . .. . . . . . . . . . . . . .. .. . . . . .. 19 
(lrfan Ahmed and Tom Bucella; reprinted from Machine Design, Oct. 12, 1989) 

Using Digital Signal Processors for Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 
(Herbert Hanselmann; reprinted from IECON '86, 1986) 

PART II Design of Digital Controllers 

Designing Control Systems ........................................................ 35 
Discrete Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

z-Transforms .............................................................. 35 
Discretization Methods for Analog Systems ...................................... 37 

Step Invariant Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37 
Ramp Invariant Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 
Matched Pole-Zero ....................................................... 38 
Backward Difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 
Bilinear Transformation ................................................... 39 
Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 

iii 

IIi' 'I 



Behavior of Poles in z-Domain ...................•....•...................•.•. 39 
Plant Modelling ...... '. . . . . . . . . . • . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . . . . . . . . . . . • . . .. 40 
Digital Controller Design ................. :..................................... 43 

Control Algorithms ............................•............................ 44 
Compensation Techniques • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. 44 
PID ...••...•................•..•............................•..•..•..• 44 
Deadbeat •••••.••.•..•........•...•....•.••..••••.•.•..•..•.••.•...••••.. 44 
State Space Model . . . . . . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . . . . . . • . • . . . • . . . . .. 44 
Observer Model . . . . . . . . . . . • . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •• 44 
Optimal Control. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . .. 44 
Kalman Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 
Adaptive Control .• . • . . . • . • • . . . . . . . . . . . . . • . . . . . • . • • . . . . • . . . . . . . . . . . . . • . . .. 44 

Performance Specifications ..........•................................•..•.... 45 
Step Response. • . . . • . . • . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • . . . . .. 45 
Frequency Response ....................•..........•......•............... 47 
Additional Criteria for Performance Specification ..•..•. . . . . . . . . . . . . . . . . . . . . . . .. 48 

PID Controller ..............•........................•..•.................. 48 
Controller Design ........................................................ 49 
Implementation Considerations. . . . . • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 

Deadbeat Controller . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 
Controller Design ....•..•.......................•........................ 53 
Implementation Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 

State Space Model .......................................................... 56 
State Controller Design ..................................................... 56 
Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . .. 58 

Observer Model ............................................................ 58 
Observer Model and Estimator Designs ....................................... 59 
Transfer Function Form ..........................................•....... " 60 
State Controller and Estimator with Reference Input ... . . . . . . . . . . . . . . . . . . . . . . . . .. 63 
Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 

Optimal Control and Estimation .....................•................ " . . . . . . .. 64 
Linear Quadratic Regulator . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . .. 64 
Kalman Filter. . • . . . • . . . . . . • . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 
Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 

Summary ...•... ~ . . • . . . . . . . • . . . • . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . .. 70 
Appendix I ...............................•........•......................... 71 
Appendix 2 .......•.•...•..•.•.....•........••..•.....•..•..............•.... 74 
Appendix 3 .................................................................. 76 
Appendix 4 ..............•..............•................•................... 79 

Matrix Oriented Computation Using Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 
(Jeffrey C. Kantor) , 

Modeling and Analysis of a 2-Degree-of-Freedom Robot Arm ........................... 93 
(Integrated Systems Inc.; reprinted from Application Note brochure) 

Simnon - A Simulation Language for Nonlinear Systems 
(Tomas SchOnthal) 

iv 

103 



PART III Implementation of Digital Controllers 

Implementing Digital Controllers ................................................... 111 
Fixed-Point Versus Floating-Point ................................................ III 
Binary Arithmetic ........................... '.' ................................ 112 
Finite Word-Length Effects ..................................................... 113 

Coefficient Quantization ..................................................... 114 
Signal Quantization ......................................................... 114 

AID and D/A Quantization Effects ........................................... 114 
Truncation and Round-Off Effects ........................................... 114 
Overflow Effects ......................................................... 114 

Scaling ...................................................................... 115 
Controller Structures ........................................................... 116 

Transfer Function Forms ..................................................... 117 
State Space Form ............................................................ 119 

Computational Delay ......................................................... 120 
Sampling Rate Selection. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . .. . . . . . .. . . . .. 121 
Antialiasing Filters ........................................................... 122 
Controller Design Tools ....................................................... 122 
Algorithm Development ....................................................... 122 
Software Development. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . .. . . . .. 122 

High-Level Languages. . . . . .. .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . .. . .. . . . . . .. .. 123 
Assembly Language. . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. 123 
Signal Processing Languages. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . .. . . . .. 123 
Code Generation Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. 124 

Device Simulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . .. . . .. . . . .. 124 
Hardware Design ............................................................ 124 
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 
Appendix 1 ................................................................. 126 

Hardware/Software-Environment for DSP-Based Multivariable Control .. . . . . . . . . . . . . . .. 141 
(H. Hanselmann, H. Henrichfreise, H. Hostmann, and A. Schwarte; reprinted from 
Proceedings of 12th 1MACS Conference) 

Implementation of Digital Controllers - A Survey .................................... 145 
(H. Hanselmann; reprinted from Automatica, Vol. 23, No. I, 1987) 

The Programming Language DSPL .... . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . .. . . . .. 171 
(Albert Schwarte and Herbert Hanselmann; reprinted from PCIM, June 25 - 28, 1990) 

Application of Kalman Filtering in Motion Control Using TMS320C25 
(Dr. S. Meshkat) 

185 

Implementation of a PID Controller on a DSP ....................................... 205 
(Karl Astrom and Hermann Steingrimsson) 

DSP Implementation ofa Disk Driver Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .. 239 
(Hermann Steingrimsson and Karl Astrom) 

v 



PART IV Applications of Digital Controllers with the TMS320 

Digital Control Applications with the TMS320 . . . . . . . . . . . .. . .. .. . . .. . .. . . . .. . . . . . .. .. 257 
Computer Peripherals ......................................................... 257 

Disk Drives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 257 
Tape Drives .............................................................. 257 

Power Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 257 
AC Servo Drives ............................................................ 257 
UPSs and Power Converters ................................................. 257 
Robotics and Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 258 

Automotive ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 258 
Active Suspension ......................................................... 258 
Anti-Skid Braking ...........................•............................. 258 
Engine Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 258 

Computer Peripherals 

DSP Helps Keep Disk Drives on Track. . . . .. . . . . . . . . . . . . . . . . . .. . . . .. . . .. . . . .. . . . . . .. 259 
(James Corliss and Richard Neubert; reprinted from Computer Design, June 15, 1988) 

LQG - Control of a Highly Resonant Disk Drive Head Positioning Actuator '" ......... " 265 
(Herbert Hanselmann and Andreas Engelke; reprinted from IEEE Transactions on 
Industrial Electronics, Vol. 35, No. I, Feb. 1988) 

High Bandwidth Control of the Head Positioning Mechanism in a Winchester Disc Drive ... 271 
(Herbert Hanselmann and Wolfgang Moritz; reprinted from IECON 1986,1986) 

Fast Access Control of the Head Positioning Using a Digital Signal Processor ............. 277 
(S. Hasegawa, Y. Mizoshita, T. Ueno, and K. Takaishi; reprinted from SPIE Proceedings, 
Vol. 1248, 1990) 

Motion Control and Robotics 

Implementation of a MRAC for a 1\vo Axis Direct Drive Robot Manipulator Using a 
Digital Signal Processor ...................................................... 287 
(G. Anwar, R. Horowitz, and M. Tomizuka; reprinted from Proceedings of American 
Control Conference, June 1988) 

Implementation of a Self-TIming Controller Using Digital Signal Processor Chips ......... 291 
(K.H. Gurubasavaraj; reprinted from IEEE Control Systems Magazine, June 1989) 

Motion Controller Employs DSP Technology ........................................ 297 
(Robert van der Kruk and John Scannell; reprinted from PCIM, Sept. 1988) 

Power Electronics 

Using DSPs in AC Induction Motor Drives .......................................... 303 
(Dr. S. Meshkat and Mr. I. Ahmed; reprinted from Control Engineering, Feb. 1988) 

Microprocessor-Controlled AC-Servo Drives with Synchronous or Induction Motors: 

vi 

Which is Preferable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 307 
(R. Lessmeier, W. Schumacher, and W. Leonhard; reprinted from IEEE Transactions on 
Industry Applications, Vol. IA-22, No.5, Sept./Oct. 1986) 



A Microcomputer-Based Control and Simulation of an Advanced IPM Synchronous Machine 
Drive System for Electric Vehicle Propulsion .................................. , .. 315 
(Bimal K. Bose and Paul M. Szczesny; reprinted from IEEE Transactions on Industrial 
Electronics, Vol. 35, No.4, Nov. 1988) 

DSP-Based Adaptive Control ofa Brushless Motor ................................... 329 
(Nobuyuki Matsui and Hironori Ohashi; reprinted from Conference Record of the 1988 
IEEE Industry Applications Society) 

High Precision Torque Control of Reluctance Motors ................................. 335 
(Nobuyuki Matsui, Norihiko Abo, and Tomoo Wakino; reprinted from Conference Record 
of the 1989 IEEE Industry Applications Society) 

High Resolution Position Control Under 1 Sec. of an Induction Motor with Full Digitized 
Methods ................................................................... 341 
(Isao Takahashi and Makoto Iwata; reprinted from Conference Record of the 1989 IEEE 
Industry Applications Society) 

A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator ....... , 349 
(R.J. Chance and J.A. Taufiq; reprinted from Third International Conference on Power 
Electronics and Variable Speed Drives, Conference Publication Number 291, July 1988) 

Design and Implementation of an Extended Kalman Filter for the State Estimation of a 
Permanent Magnet Synchronous Motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 355 
(Rached Dhaouadi, Ned Mohan, and Lars Norum; reprinted from Proceedings of Power 
Electronic Specialists Conference, June 1990) 

Automotive 

Trends of Digital Signal Processing in Automotive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 363 
(Kun-Shan Lin; reprinted from Proceedings of Convergence '88, Oct. 1988) 

Application of the Digital Signal Processor to an Automotive Control System ............. 375 
(D. Williams and S. Oxley) 

Dual-Processor Controller with Vehicle Suspension Applications. . . . . . . . . . . . . . . . . . . . . . .. 383 
(Kamal N. Majeed; reprinted from IEEE Transactions on Vehicular Technology, Vol. 39, 
No.3, Aug. 1990) 

An Advanced Racing Ignition System .............................................. 389 
(T. Mears and S. Oxley; reprinted from IMechE, 1989) 

Active Reduction of Low-Frequency Tire Impact Noise Using Digital Feedback Control .... 395 
(Mark H. Costin and Donald R. Elzinga; reprinted from IEEE Control Systems Magazine, 
Aug. 1989) 

Specialized Applications 

Implementation of a Tracking Kalman Filter on a Digital Signal Processor ............... 399 
(Jimfron Tan and Nicholas Kyriakopoulos; reprinted from IEEE Transactions on 
Industrial Electronics, Vol. 35, No. I, Feb. 1988) 

A Stand-Alone Digital Protective Relay for Power Transformers. . . . . . . . . . . . . . . . . . . . . . .. 409 
(Ivi Hermanto, y'V.V.S. Murty, and M.A. Rahman; reprinted from IEEE Transactions on 
Power Delivery, Vol. 6, No. I, Jan. 1991) 

vii 



A Real-Time Digital Simulation of Synchronous Machines: Stability Considerations and 
Implementation . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 421 
(Jonathan Pratt and Sheldon Gruber; reprinted from IEEE Transactions on Industrial 
Electronics, Vol. IE-34, No.4, Nov. 1987) 

Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based 
Learning Controller ......................................................... 433 
(W. Thomas Miller, m, Robert P. Hewes, Filson H. Glanz, and L. Gordon Kraft, III; 
reprinted from IEEE Transactions on Robotics and Automation, Vol. 6, No. I, Feb. 1990) 

BIBLIOGRAPHY 

TMS320 Bibliography ........................................................... 445 

Automotive .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 445 

Control ...................................... :............................. 445 

Industrial ............................................................... '. . .. 447 

viii 



Preface 

Using digital methods for controlling motors, robotic arms, or disk drives is not new. But technical ad­
vances in digital signal processing and high-performance digital signal processors (DSPs) such as the 
TMS320 family are rapidly moving digital control from the laboratory to the market place. Personal 
computers, automated manufacturing equipment, automobiles, military weapons, toys, and games are 
examples of products that are enhanced by the application of digital control technology. 

This book introduces the reader to the concepts of signal processing and DSPs as they apply to digital 
control theory. It also presents a collection of published articles that review selected applications within 
the broad spectrum of digital control. The book is divided into four parts and a bibliography: 

PART I Introduction to Digital Controllers 

PART II Design of Digital Controllers 

PART III Implementation of Digital Controllers 

PART IV Applications of Digital Controllers with the TMS320 

BIBLIOGRAPHY 

Each part is introduced by the editor so that readers can gain insight into its purpose. The bibliography 
is furnished for those who wish to seek additional studies in the areas of automotive, control, and indus­
trial applications. 

Opportunities to design digital control systems have grown enormously over the past few years. This 
book is being published to aid practicing control engineers in becoming familiar and comfortable with 
digital control theory. It can also be a valuable tool for teaching at the undergraduate and graduate lev­
els. The book brings together the latest concepts and applications in digital control theory to meet the 
needs of both new and experienced designers. 

The editor, authors, and I hope that you enjoy this application book and gain valuable information to 
assist you in designing new digital control systems as well as modifying current systems. 

Gene A. Frantz 
Applications Manager 

Digital Signal Processing 
Texas Instruments Incorporated 
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DSP-Based Control Systems 

Digital signal processors (DSPs) are making digital control more practical. The special architecture and 
high perfonnance of DSPs make it possible to implement a wide variety of digital control algorithms pre­
viously reserved for research work and simulation studies in laboratories. This general introduction dis­
cusses these aspects and uses of DSPs in digital control systems. It is followed by papers that discuss the 
suitability of DSPs for implementing digital controllers. 

Control Systems 

A control system commands or regulates a process in order to achieve a desired output from the process. 
As shown in Figure I, a simple control system consists of three main components: sensors, actuators, and 
a controller. Sensors measure the behavior of the system or the process and provide feedback to the control­
ler. Some of the sensors used in control systems are resolvers, shaft encoders, and current sensors. Actuators 
supply the driving and corrective forces to achieve a desired output. Typical actuators are AC/DC motors 
and valves. 

The controller generates actuator commands in response to the commands received from the operator and 
to the feedback provided by the sensors. The controller consists of computation elements that process these 
signals to achieve a desired response from the entire system. The function of the controller is to ensure that 
the actuator responds to the commands as quickly as possible and at the same time to ensure that the system 
remains stable under all operating conditions. Typically, a controller will modify the frequency response 
of the system. The computational elements of the controller are implemented with either analog or digital 
components. 

Figure 1. Control System 

Controller Actuator 

-Nt- -I-

~ Reference 

~ 
Output 

Command 

Sensor I 

V 
I 
I ___ .J 

'---
Encoder 

Analog Control Systems: Control systems have traditionally been implemented with analog compo­
nents like operational amplifiers, resistors, and capacitors. Figure 2 shows a simple analog controller. These 
elements are used to implement filter-like structures that modify the frequency response of the system. AI-
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though more powerful analog processing elements like multipliers are available, they are generally not used 
because of their high cost. In spite of the simpler processing elements, analog controllers can be used to 
implement high-performance systems. 

Most analog systems use single-purpose characteristics of an error signal like P (proportional), I (integral), 
D (derivative), or a combination of these characteristics. This limits most analog systems to designs based 
on classical control theory. 

Figure 2. Analog Controller 

RS 

Digital Control Systems: With the high performance and increasing reliability of microprocessors, dig­
ital controllers are taking over many applications from analog controllers. In the digital control system 
shown in Figure 3, a DSP (TMS32OCI4) processes the feedback/error signal [y(n)] in relation to the input! 
reference signal [r(n)]. A digital-to-analog converter (D/ A) changes the digital output of the processor into 
an analog signal to drive the power amplifier (PA) and actuator. The D/ A is typically represented by a ZOH 
(zero order hold). Similarly, on the input side, an analog-to-digital converter (AID) interfaces the sensor's 
signal to the DSP. In addition, memory is required to store the commands necessary for the operation of 
the system; the TMS320C 14 uses its on-chip memory for that purpose. 

Figure 3. Digital Control System 

Analog Versus Digital Controllers: Several tradeoffs have to be made in selecting a controller. Ana­
log controllers continuously process a signal and can be used for very high bandwidth systems. They also 
give very high resolution of a measured signal and thus provide precise control. Analog controllers have 



been around for a long time, are well understood. and are easy to design. They can be implemented with 
relatively inexpensive components. 

On the negative side. analog controllers suffer from component aging and temperature drift. Even a perfect­
ly designed controller will exhibit undesired characteristics after a while. Analog controllers are hard-wired 
solutions. making modifications or upgrades in the design difficult. Analog controllers are also limited to 
simpler algorithms from classical control theory. like PID and compensation techniques. 

Most processes are analog in nature. Digital systems can only attempt to approximate them. The accuracy 
of this approximation determines the performance of the digital system. Digital controllers sample the sig­
nal at discrete time intervals. This limits the bandwidth that can be handled by the controller. The accuracy 
of the signal and coefficients that can be represented is limited by the resolution or the word length of the 
processor. Digital controllers require additional components like AIDs and D/As. although newer proces­
sors include these components on the same chip. Digital controllers are relatively new. and their behavior 
is not thoroughly understood. Thus. designing high-performance digital controllers can be challenging. 

However, digital controllers have some major advantages. They are not affected by component aging or 
temperature drift. and they provide stable performance. Designing in the z-domain helps to control their 
behavior more precisely. Digital controllers can be used to implement more sophisticated techniques from 
modem control theory, such as state controllers. optimal control, and adaptive control. They can also handle 
nonlinear systems. Digital controllers are programmable and make it easy to upgrade and maintain design 
investment. They can be time-shared to implement additional functions like notch filters and system control 
to reduce system cost. If digital controllers are designed properly. their advantages greatly outweigh their 
disadvantages. Table I compares analog and digital controllers. 

Table 1. Analog Versus Digital Controllers 

Advantages 

Disadvantages 

i-ligh bandwidth 
High resolution 
Ease of design 

Component aging 
Temperature drift 
Hard-wired design 
Good dnly for Simpler design 

Processor Requirements for Digital Controllers 

Programmable solution 
Insensitive to environment 
Shows ptecise behavior 
Implements advanced algorithms 
Capable of additional functions 

Creates numerical problems 
Must use high-performance processor 
Difficult to design 

The choice of processor is critical in determining the performance and behavior of the digital controller. 
The poor performance of a digital system can generally be traced to selection of the wrong type of processor. 
Available choices" are microcontrollers, geneml-purpose microprocessors, and DSPs. In addition, reduced 
instruction set computer (RISC) processors and bit-slice processors can be used. although their usage is not 
practical in most cases because of high cost. The following factors must be considered when selecting a 
processor: 

• Architecture 
• Performance 
• Peripheral Integration 

5 
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Architecture:, Processor architecture is probably the most important factor. A control system is a de­
manding, realtime signal processing system. Control theory essentially deals with proper techniques for 
processing control signals. Processing signals in realtime raises numerical issues that must be resolved 
correctly, to ensure that performance from a digital controller is acceptable. Some of the problems resulting 
from inadequate processor architectures are quantization noise, truncation noise, limit cycles, and over­
flow-handling. 

Quantization noise results from representing a signal in discrete or quantized inagnitude levels. The signals 
and gain coefficients must be represented accurately without any loss of resolution for the smallest and 
largest magnitudes. A processor should support a large word length and scaling shifters to provide the 
resolution and dynamic range needed. This aIlows the signals and coefficients to be scaled to the full resolu­
tion of the processor. In some cases, floating-point support may be necessary if gain coefficients and signals 
are time-varying variables and have large dynamic ranges. 

Truncation noise results from the processing ofsignals in realtime. Either a higher resolution orlarger word 
length is needed for interim results. For example, the result of a 16 x 16 multiplication is 32 bits. If only 
a 16-bit storage capacity is available to the 32-bit resultant, the loss of the lower 16 bits is known as trunca­
tion error. A processor should be able to support a larger intermediate word length for interim results. 

Limit cycles usually result from quantization and truncation errors. Insufficient resolution of the output 
causes the outputto oscillate around the actual value without being able to reach it. Minimization of quanti- ' 
zation and truncation errors reduces limit cycles. 

Realtime processing requires a large number of mathematical operations. Sometimes the results will exceed 
the range handled by registers. When registers overflow, they may make a positive number tum negative. 
A processor should be able to handle this overflow situation without significant change in the value of the 
result. 

Performan~: Performance is another important criterion in selecting a processor for a digital controller. 
Sampling the signal at discrete time intervals requires certain performance requirements from the proces­
sor. The sampling rate should be at least 10 to 20 times the system bandwidth. The processor must finish 
processing the signal before the arrival of the next sample, or information will be lost. The processing re­
quirement is also dependent upon the controller structure and the algorithm. 

Another aspect of performance is the computational delay. The processor should finish processing the sig­
nal as soon as possible. Too much delay in calculation will add phase delay and will affect the phase margin 
and stability of the system. The processor should have fast instruction cycle time. It should also have a very 
fast mUltiplying time because multiplication is the basic element in discrete representation of all signal pro­
cessing control algorithms. 

Peripheral Integration: The final consideration is the amount of peripheral integration on the system. 
Peripheral integration is important from a system cost, ease of design/interface, and board space point of 
view. Typical peripherals are on-chip timers for sample rate selection, 0/ A or PWM (pulse-width modula­
tion) circuitries to drive the actuators. either an AID converter or an interface to optical encoders, or other 
sensors. In addition, bit I/O pins are required to look at system flags and other conditions. 

Digital controllers have not been widely used, because most processors lack appropriate architectures for 
signal processing. Microcontrollers have been designed primarily to replace hard-wired logic, to handle data 
acquisition, and to implement logical decisions. On the other hand, microprocessors have been designed 
primarily to act as computing elements in computer systemS. Thus, both types of architecture have failed 
to meet the requirements of signal processing; nevertheless, they have been used for it. Only DSP architec­
tures can solve the fundamental problems encountered in control and other signal processing applications. 



DSP Architectures 

The TMS320 DSP architecture has been optimized for signal processing systems. Figure 4 shows the 
typical architecture of a basic DSP. Some of the key elements are multiple buses, l6-bit architecture, 32-bit 
registers, and hard-wired implementation of various functions. It minimizes numerical problems in signal 
processing and meets the bandwidth requirements of high-perfonnance systems using sophisticated 
techniques. The features and benefits ofTMS320 architecture are shown in Table 2. 

Figure 4. DSP Architecture 
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Table 2. TMS320 Architectural Features 

Feature Benefit 

Single-cycle Instructions Execute advanced control algorithms In realtime 

Pipelined architecture Controls high~bandwidth systems 

Harvard architecture Simultaneously accesses data and Instructioris 

Hardware multiplier Minimizes computational delays 

Hardware shifters Have larger dynamic range 

16-bit word length Minimizes quantization errors 

32-bit registers Minimizes truncation errors 

Hardware stack Supports fast interrupt processing 

Saturation moqe Prevents wrap-around of accumulator 

To minimize numerical problems, the fixed-point TMS320 architecture has a 16-bit word length with 32-bit 
accumulator and other registers. The TMS320 DSPs include hardware shifters, which allow scaling, pre­
vent overflows, and keep the required precision. These shifters allow shifting to take place simultaneously 
with other operations and without additional execution time. 

Also, the instruction set has been optimized for signal processing. The DMOV instruction implemet)ts the 
Z-1 operator. The MACD instruction implements four operations simultaneously: multiplies two values, 
moves data, accumulates previous result, and loads T register. To handle overflow during arithmetic opera­
tions, an overflow mode is included. This allows the accumulator to saturate at most positive or least nega­
tive values (similar to analog circuits), instead of rolling over and varying between positive and negative 
values. 

Several features ofDSP architecture provide the perfonnance necessary to implement digital controllers. 
All functions are perfonned internally in hard-wired logic so that it takes a single cycle to execute most 
functions. Processors not optimized for signal processing usualIy perfonn functions in microcode and 
require numerous cycles to do so. The TMS320 devices employ an internal multiple-bus architecture that 
alIows simultaneous fetching of instructions and data operands. 

The TMS320 DSPs contain a hardware multiplier that perl'onns a 16 x 16 multiplication in a single cycle. 
This minimizes the computation delay time and alIows very fast sampling rates to be implemented for 
high bandwidth systems. An on-chip hardware stack reduces interrupt response time and minimizes stack 
pointer manipulations. Table 3 compares the architectural features of a DSP and a microprocessor/micro­
controller (J.tP/~C). 

Table 3. DSP Versus Microprocessor/Microcontroller 

Advantages 

Disadvantages 

Signal processing architecture 
High performance 
Advanced control techniques 
Additional functions 

Limited peripherals 

On-chip peripherals 
Supervisory functions 
Familiar architecture 

Low performance 
Computation delay 
Numerical problems 



Table 4. Feature Comparison 

FEATURE 320C14 320C25 8OC196 68000 68020 UNIT 

Instruction cycle time 160 100 333 400 120 ns 

Frequency 25 40 12 10 24 MHz 

Multiply (16 x 16) -+ 32 0.16 0.1 2.2 7.0 1.0 ns 

PIDloop 2.2 1.3 27.0 25.0 4.8 lis 

Matrix multiply (3 x 3) (3 x 1) 4.3 2.7 24.3 65.2 9.5 lis 

Many on-chip DSP features enhance system integration; peripherals include RAM, ROMJEPROM, serial 
ports, timers, PWM, encoder interface, and parallel I/O. Table 4 compares performance characteristics of 
the TMS320C14, TMS320C25, and several f.lCs and f.lPs. 

TMS320 Digital Signal Processors 

The TMS320 family consists of five generations of fixed-point devices and floating-point devices (see 
Figure 5), offering different performance ranges. Members of each generation are object code and, in some 
cases, pin compatible. 
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Figure 5. TMS320 Family Roadmap 
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TMS320 Fixed·Point DSPs: There are three generations ofTMS320 fixed-point DSPs: TMS320C I x, 
TMS320C2x, and TMS32OC5x. All fixed-point DSPs have a 16-bit architecture with 32-bit ALU and accu­
mulator. They are based upon a Harvard architecture with separate buses for program and data, allowing 
instructions and operands to be fetched simultaneously. They also feature a 16 x 16 == 32 hardware multiplier 
for single-cycle multiply operations, and a hardware stack for fast context-save operations. An overflow 
saturation mode prevents wrap-around. All instructions (except branches) are executed in a single cycle. 
Perfonnance ranges from 5 MIPS (million of instructions per second) to 28.5 MIPS. 

The TMS320Clx generation is based on the first DSP, the TMS3201O, introduced in 1982. It includes 
144/256 words of on-chip RAM and 4K words of address space. Instruction cycle time is 160 ns. Members 
of this generation include the TMS320CIO, TMS32OC14 and its EPROM version TMS320EI4, 
TMS32OCI5/E 15, and TMS320C 17/ E 17. All these devices have expanded memory of 256 words of on­
chip RAM and 4K words of on-chip ROM/EPROM. The TMS320C 14/E 14 has been optimized for digital 
control applications. An additional member, TMS320C 16, has an expanded memory address space of 64K 
words. Low-power versions are also available for 3-V systems. 

The TMS320C2x generation is based on the TMS320C25, featuring 544 words of on-chip RAM and 4K 
words of on-chip ROM. Total address space is expanded to 64K words for both data and program. The in­
struction set has been considerably enhanced overthe TMS320CI x instruction set, reducing the instruction 
cycle time to 100/80 ns. Other members include the TMS320E25 (an EPROM version ofTMS32OC25), 
TMS32020, and TMS320C26. 

The TMS320C5x generation includes the TMS32OC50 with 10K words of on-chip RAM and 2K words 
of on-chip ROM and the TMS320C51 with 2K words of on-chip RAM and 8K words of on-chip ROM. 
With an instruction set even more enhanced than the TMS320C2x instruction set, a TMS320C5x device 
is designed to execute an instruction in 35 ns. New features include a separate PLU, shadow registers for 
fast context save, ITAG serial scan emulation, and software wait states. 

TMS320 Floating.Point DSPs: There are two generations of TMS320 floating-point DSPs: 
TMS320C3x and TMS320C4x (the first DSP designed for parallel processing). All floating-point devices 
have a 32-bit architecture with 4O-bit extended precision.registers and are based on a Von Neuman archi­
tecture. Multiple buses have been added for even faster throughput than the traditional Harvard architec­
ture (program and data memory in separate spaces). Features include a hardware floating_point mUltiplier 
and a floating-point ALU. 

The TMS320C3x generation is based on the TMS32OC30, featuring 2K x 32 words of on-chip RAM, 4K 

x 32 words of on-chip ROM, and a 64-word instruction cache. Other features include a separate DMA, two 
serial ports, two timers, two external 32-bit data buses, and a 16 M-word address space. Instruction cycle 
time is 60 ns, and the device is capable !Jf perfonning up to 33 MFLOPS (million floating-point operations 
per second). Another member of the TMS32OC3x generation is the TMS320C31. 

The TMS320C4x generation includes the TMS32OC40, a parallel digital signal processer. It includes six 
communication ports, a self-programmable/six-channel DMA coprocessor, a developing/debugging anal­
ysis module, two independent 32-bit memory interfaces, a 16G-byte addressing space, and two timers. Oth­
er features include two 4K-byte RAM blocks, one 16K-byte ROM block, and a 512-byte instruction cache. 
This generation is designed to execute an instruction in 40 ns, perfonn up to 275 MOPS (million operations 
per second), and provide a 320-Mbyte/sec throughput. 

TMS320C14 - An Optimal Solution 
The TMS320C14 is the first device that provides an optimal solution for implementing digital controllers 
on a single chip. Its TMS320C 15 CPU meets the architectural and processing requirements for controllers, 
and it incorporates all the I/O peripherals needed in controllers and typically found in l6-bit microcontrol-



Figure 6. TMS320C14/E14 Key Features 
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• 160-ns instruction cycle 
• 100% object code compatible with TMS320C15 
• 416-bittimers 

- 2 general-purpose timers 
- 1 watchdog timer 
- 1 baud-rate generator 

• 16 individual bit-selectable VO pins 
• Serial port - UART 
• Event manager with 6-channel PWM D/A capability 
• CMOS technology 
• 68-pin PLCC and CLCC packages 

lers. These peripherals include 16 pins of bit I/O, four timers, six channels of PWM, four capture inputs 
for optical encoder interface, a serial port with UART mode, and 15 interrupts. Figure 6 shows the key fea­
tures of the TMS320C14. 

The TMS320Cl4 can address 4K words of on-chip ROM or EPROM or off-chip memory, and 256 words 
of on-chip RAM. It has an on-chip hardware multiplier that performs a 16 x 16 = 32 multiplication in 160 
ns. The TMS320C14 has a 32-bit ALU and 32-bit accumulator. It contains two hardware shifters and a 
four-deep on-chip hardware stack. Two auxiliary registers provide indirect and autoincrement addressing 
modes. The TMS32OC14 has a general-purpose and DSP-specific instruction set and is 100% object code 
compatible with the TMS320C 15 and other members of the TMS320C I x generation. The TMS320C 14 has 
16 pins of bit I/O that can be individually selected as inputs or outputs. In addition, each bit can be individu­
ally controlled without affecting the others. The 16-bit I/O port has the capability to detect and match 
patterns on the input pins and generate an interrupt when a specific pattern is detected. 
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The TMS320C 14 contains four 16-bit timers. Two of the timers can be used as event counters with internal 
or external clocks. A third timer can be used as a watchdog timer and can also give a pulse output to drive 
external circuitry to indicate a time-out. The fourth timer can be used as a baud-rate generator for the serial 
port. Each timer is associated with a 16-bit period register and can also generate a separate maskable inter­
rupt to the CPU. 

The TMS320C14 has an event manager that consists of a compare subsystem and a capture subsystem. The 
compare subsystem has six compare registers that are constantly comparing their outputs with one of the 
timers. Associated with each compare register is an action register that controls all of the six output pins 
and two interrupt pins. The action registers determine an action that takes place on output pins in case of 
a match between the timer and a compare register. The compare subsystem can also be configured to gen­
erate six channels of high-precision PWM using a high-speed timer mode. In this mode, the compare sub­
system can generate a PWM output that can be varied from 8 bits of resolution at 100kHz to 14 bits of 
resolution at 1.6 kHz. 

The event manager also contains four capture inputs that capture the value of a timer in a four-deep FIFO 
when a certain transition is detected on a capture input pin. Each capture input can detect pulses as narrow 
as 160 ns and can also generate a maskable interrupt to the CPU. 

The TMS320C 14 serial port is capable of full-duplex asynchronous operation with a transmission/recep­
tion rate of up to 400K bps. The serial port has a separate dedicated timer for generation of baud rates. The 
serial port also supports two industry standard protocols for interprocessor communication. 

Finally, the TMS32OC14 has a total of 15 internal/external interrupts, which can be individually masked. 
All the interrupts trigger a master interrupt that is controlled by the INTM bit in the status register. 

Summary 
The TMS320 family ofDSPs solves many of the fundamental problems of signal processing in digital servo 
control systems. With their processing power, it is now possible to implement advanced concepts from 
modern control theory in cost-effective control systems. DSPs provide the precision and bandwidth of ana­
log systems and at the same time provide the reliability of digital systems. Newer DSPs like the 
TMS32OC14 provide a single-chip solution for the majority of servo control applications. 
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Electronic control systems of 
few years ago were frequently 
designed around a general­

purpose microprocessor or micro­
controller. But though con­
ventional micros are versatile, they 
sometimes fall short when applied 
to high-speed tasks in telecommu­
nications and computers, and in 
electromechanical tasks such as au­
tomotive engine control. . 

The problem is that advanced 
control algorithms, as used in digi­
tal filtering and discrete Fourier 
transforms, demand numerous 
multiplications and additions. 
When done in software on an ordi-

Data RAM 

Shifters 

Many digital signal processors are built with a Harvard architecture, where 
data and instructions occupy separate memories and travel over separate 
buses to speed program execution. The two buses are,evident in this 
simplified block diagram of a TMS320C25, a second generation CMOS 
processor. Other features of note on the 68-pin chip include eight auxiliary 
registers and a hardware multiplier specially designed to handle complex 
arithmetic. 
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When reduced to a block diagram, traditional analog control 
systems resemble the digital counterpart. But analog controller qualities 
are determined by circuit elements, while those of digital counterparts 
are programmed In a few lines of code. 

. "'DEAD8EAT·CONTROLLER 
Soine adVantage.; c:i a DSP· beCome clear when imp1e­
lDi!Iliing fUbctions that are difficult Of impossible to rialize 
iii . analog .controllers. A deadbeat controller serves .as an 
example, 

In prinCipie, analog controllers require lin infinite time to . 
settle toa reference input signal. In practice, they usually 
approach ·the l'ilference quickly enough for most purpoSes. 
Bu.t when extremely fast settling is needed, digital deadbeat 

nary processor, these operations 
can consume too much time to pro­
vide high-speed control. 

Most new classes of control algo­
rithms, along with other algorithms 
such as state modeling, state esti­
mation, Kalman filtering, and opti­
mal control can be implemented 
with analog circuitry. In practice, 
however, it is difficult to design 
analog hardware that offers the pre­
cise and often nonlinear behavior 
required in such approaches. In ad­
dition, it is often expensive to build 
in the needed stability and temper­
ature range. 

The modification of a control al­
gorithm implemented in hardware 
can also be complicated. Changes 
may sometimes be made simply by 
substituting a simple component, 
but can also involve redesigning 
part of the control system. 

An approach to solving the speed 
requirements associated with mod­
ern control algorithms is to use a 
special kind of processor chip. Digi­
tal signal processors (DSPs) are 
constructed to speedily perform the 

controller. may be preferred. .. CO~:~~~::::::!::;;r!: As a review, deadbeat controllers are those that settle toa • 
steady state iii as few samples as pOSIlible. Ifn is the order if 
tl\e controller, deadbeat controllers reach steady state in: 
n + tsamples. Tbey are constructed byselectmg the proper 
elements for the feedback loop. Control theory says that this 

MACHINE DESIGN/SEPTEMBER 10.1987 



kinds of arithmetic operations 
associated with digital filtering and 
processing. Most DSPs are built 
with what is called a Harvard ar­
chitecture. This configuration is 
unlike conventional computer ar­
chitectures in that it employs sepa-

rate data and instruction memories 
that are accessed by separate buses. 
The benefit of this arrangement is 
increased speed because in­
structions and data can move in 
parallel instead of sequentially. 

carry high-speed hardware multi­
pliers and fast on-chip memories 
that eliminate delays associated 
with shuttling information on and 
off chip to peripheral devices. This 
promotes fast program execution. 

In addition, these les generally For example, a DSP can fetch an 

APPLYING DSPs IN SIMPLE CONTROL 
A PID loop provides a simple example of how DSPs can be 
applied to common control problems. A basic analog PID 
(proportional-integral-differential) control algorithm is 
frequently defined by 

u(t) = Kpe(t) + Kf e (t)dt + Kdde/dt 

where e = some input voltage that varies over time. U = 
output voltage and Kp , K" and K~ are constants. This 
equation indicates that output voltage is proportional to the 
sum of an input error voltage, the time integral of the error 
voltage, and the time rate of change of the error voltage. 

For the sake of review, PID control functions as follows. 
The integral term is added to the basic proportional term to 
reduce the steady-state error to zero. It makes possible a 
nonzero control output even when, the error signal (control­
ler input) is zero. In this manner, it serves to anticipate 
increasing error and apply a correction faster than would 
normally be the case. 

The derivative term is added to improve the stability of 
the feedback loop. It allows the system to provide more 
correction for a faster rate of change of error. The propor­
tional K constants are usually chosen using standard 8-

plane techniques such as root-locus diagrams, Routh-Hur­
witz criterion, Bode plots, and state variable techniques. 

A typical approach to implementing a digital control 
algorithm is to, write the analog transfer function in the 
usual way using Laplace transforms, and then convert the 
equation into a sampled data version through use of z trans­
forms. Next, the digital transfer function is converted to a 
difference equation in the time domain. A program is then 
written for a DSP that implements this time domain differ-
ence equation. . 

The two most widely used analog/digital transformation 
methods are the lI!atched pole-zero (also called matched 
z -transform) and the bilinear transformation. Though the 
former method is simpler, it is somewhat heuristic and does 
not always produce a suitable controller. The bilinear trans­
formation is more complex but mimics analog functions 
more closely. This is because it uses the trapezoidal rule 
instead m rectangular areas to solve the differential equa­
tion specifying the transfer characteristic. 

Tbe bilinear transformation converts expressions in LaP.­
lace transforms into corresponding equations in z using the 
identity . 

, 
2(0-1) 

s= T(.+l) 

where T= sample period. 
Under the bilinear transformation, parallel or cascaded 

control elements retain their respective structures. Overall 
frequency response is treated less faithfully, however. Low 
frequencies map accurately, but high frequencies do not. 

Fo~ that reason, a frequencYprewarping scheme is usually 
employed with this technique. Here a single critical fre­
quency ismatcbed in 'the ana10g and digital domains by 
replacing each 8 in the analog tr~er functi6lf'With (01./ . 

Wp)s, where w. is the frequency (in rad/s) to be matched in 
the digital transfer functions and 

"p - (21T) tan ( ... T /2) 

To summariie, the design of any digital control function 
usually begins with the specification of a few critical fre­
quencies (ws) and magnitude requirements (K s). These are 
prewarped into a set of analog specifications by plugging 
each w into the prewarping formula. The resulting fre­
quencies are then used in deriving the Laplace transform 
version of the transfer function. This function ins is derived 
in the usual way, and then is converted to a digital transfer 
function in z, generally by means of tbe bilinear trans­
formation. Finally, an inverse z transformation applied to 
this expression yields a difference equation that is expressed 
in terms of sample times. This equation can then be coded 
into a DSP. 

The procedure can be readily applied to the equations 

defining a PID looIi. The exact sequence m operations is too 
lengthy to be given here, but the resulting difference equa­
tionis 

u(n) = u(n-2) + K,e(n) + K.e(n-1) +K,.(n-2), 

K, - K;, + 2Kd/T + K,T/2 
K. = K,T - 4Kp/T 
K. = 2Kd IT-Kp + K,T/2 

Here e (n lis the nth fnputsample of the controller, the nth 
sample of the error voltage; It (n) is the nth output sample m 
thecontro\ler, u(n-l) is the n·t sample,and so forth. 

Because this equation represents quantities in terms m 
sample number rather than as functions m time, it can be 
easily implemented in IKitwarefor a DSP.· The accom­
panying l3-instruction program for the 32011) processor 
executes the above PID difference equation in about 2.6 lIS 
when the processor runs at 20 MHz. In contrast, a similar 
program running on a general purpose processor such as a 
lO-MHz 68000 would<lODSUme 25.4 lIS. or 26.1 /18 on a 
l2-MHz 8096 processor. 
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instruction while loading two num­
bers into its multiplier. An ordinary 
processor such as a 68000 might 
chew up as many as 80 clock cycles 
to multiply two numbers and add 
the result to an existing sum. A DSP 
chip such as Tl's TMS320C25 can 
do the same operation in a single 
clock cycle covering about 100 ns. 

DSPs take the form of single-chip 
ICs, specialized board-level com­
puters, and bit-slice chips opti­
mized for signal processing oper­
ations. Of these, single-chip ver­
sions are the most widely used be­
cause their low cost makes digital 
signal processing practical in a va­
riety of applications, ranging from 
consumer electronics to automotive 
engine control. 

Simple approach 
DSP architecture arises from the 

calculation sequence used to syn­
thesize digital filters and discrete 
Fourier transforms. These two 
functions form the basis for much of 
the digital signal processing now 
used in industry. The calculation 
sequence, in general terms, is one of 
a linear constant coefficient differ­
ence equation: 

N 
y(n)--I: a>JI(n-k) 

k=l 

M 
+ I: b.X(n - k) 

k-O 

This equation basically says that 
any output y can be expressed as a 
weighted sum of the input x at the 
present time n, past inputs x(n - k) 
for some number of past samples k, 
and past outputs y(n - k). Terms a. 
and b. are the weighting factors. A 
computer optimized to quickly 
synthesize this equation must be 
able to store an input, multiply it by 
a weighting factor, and sum it with 
previous inputs. 

DSP architecture provides these 
functions by incorporating a large 
degree of parallelism, carrying out 
multiple operations per machine 
cycle. The ability to perform paral­
lel fetches from two registers and 
store the contents in two memory 
locations is an example. In addition, 
the memory on chip is extremely 
fast and constructed in ways de­
signed to facilitate data transfers. 
For example, the Harvard architec­
ture on the TMS320 DSP family 

Trapezoidal rule Rectangular 
approximation 

The bilinear transformation maps analog transfer functions into the 
digital domain through the representation of error signals as a series of 
trapezoids. The simpler matched pole-zero transformation is less 
precise because it employs a more crude rectangular approximation. 

Compared to first generation DSPs such as the EPROM-version 320E15, 
second generation devices sport higher speed and more on-chip features. 
The cmos 320C25, for example, provides a 100 ns cycle time and 544 
bytes of on-chip RAM. 

contains provisions for transferring 
information between data and in­
struction memories. 

Because DSPs typically do not 
need to store large programs or 
blocks of data, they usually lack the 
extensive memory-management 
circuitry found in general-purpose 
microprocessors. Nevertheless, 
DSPs have become very powerful. 
The first such chips had only 
limited instruction sets and mem­
ory, and were limited to fixed-point 
(integer) calculations. 

In contrast, DSP chips today are 
second and third-generation de­
vices that eliminate such problems. 
They typically use clock rates of 20 
MHz, and 40 MHz clocks are not 
unheard of. Newer DSPs also pro­
vide on-board functions such as 

serial ports, analog/digital and dig­
ital/analog converters, EPROM, 
bit I/O timers, and similar func­
tions that enhance capability. 

The cost of single-chip DSPs is 
on the order of a few dollars, com­
parable to that of conventional mi­
croprocessors used in control ap­
plications. Recently developed 
DSPs tend to provide sophisticated 
functions that enable them to op­
erate with video and radar-fre­
quency signals. Examples of such 
functions can be found in the 
TMS320C30, a third-generation 
chip. The device provides floating­
point math capability, facilities for 
handling off-chip memory as well as 
on-chip RAM and ROM, a more 
extensive instruction set, and clock 
cycle times of about 60 ns. _ 
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Taking 
Control 
with 
asps 
New DSP micro­
controllers offer many 
improvements over 
current analog and 
digital control systems. 

TOM BUCELLA 
Tekniclnc. 
Rochester, NY 

IRFANAHMED 
Texas Instruments 
Houston, TX 

In many control systems, digital 
signal processors (DSPS) are rele­
gated to computational chores that 
bog down conventional processors. 
But their limited role is expected to 
increase because new DSPS can 
manage I/O tasks as well. 

These revolutionary les are basi­
cally microcontrollers with on-chip 
digital signal-processing hardware. 
They make possible single-chip 
control for real-time multiaxis sys­
tems. In addition, software and 
hardware support tools simplify 
their use in motion applications. 

Analog to digital 
Digital signal processors have en­

abled control systems to advance 
from analog to full-digital imple­
mentations. Microprocessor-based 
systems are only a halfway point. 
They are an improvement over 
analog controllers, but lack pro­
cessing speed to totally displace 

older technology. Dsps, on the 
other hand, have powerful arith~ 
metic logic units (ALVS) capable of 
high-speed processing. 

Early solid-state controls consis­
ted of hard-wired analog networks 
built around operational ampli­
fiers. Analog controls offer two dis­
tinct advantages over digital sys­
tems. First, they provide higher 
speed control by processing input 
data in real time. They also have, 
higher resolution over wider band­
widths because of infinite sampling 
rates. However, they have several 
drawbacks. 

Analog component values vary 
with age and temperature, necessi­
tating periodic adjustments to 
maintain consistent operation. For 
example, high-gain amplifier pa­
ralll.eters such as offset and gain 
can drift by as much as 20% in their 
lifetime. Such fluctuations can 
cause major changes in the fre-

Reprinted, with permission, from Machine Design. Oct. 12, 1989. 

quency response of band-pass and 
band-reject filters. 

Other weaknesses stem from the 
construct;ion of analog hardware. 
Reliability can be a problem be­
cause analog systems typically 
have high part counts. Also, com­
ponent lot tolerances frequently 
complicate design and may intro­
duce error. And field upgrades are 
nearly impossible, often requiring 
redesign and repackaging of the 
hard-wired circuits. 

In contrast, microprocessor­
based motion systems offer many 
improvements over their analog 
counterparts. Drift is eliminated 
because most functions are per­
formed digitally. Upgrading or 
modifying a digital system usually 
involves rewriting the software: 
hardware does not need to be re­
placed. And single-chip solutions 
for simple applications are possible 
with microcontrollers that have on-
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chip hardware for I/o operations. 
Even the best microcontrollers, 

however, have limitations. In many 
applications, they are too slow. 
Processor time is largely spent 
managing system I/O, leaving little 
time for data manipulation. Also, 
microcontroller ALUS are not suited 
for high-speed processing. Only 
simple control algorithms can be 
supported. Real-time, adaptive, or 
multiaxis control is inefficient and 
often impossible because com­
putations overload the processor. 

Most' processor-based systems 
employ lookup tables to avoid cal­
culations. But interpolation and 
round-off errors reduce precision. 
Also, lookup tables can consume 
vast memory space, often limiting 
algorithms only one variable. 

'Ib reduce table size, data word 
lengths are sometimes shortened. 
But this approach may introduce 
limit cycling. Cycling occurs when 
output commands have fewer sig­
nificant digits than the required 
operating point. For example, a set 
point of 7.42 cannot be achieved 
with two-digit word. In that case, 
the output would cycle con­
tinuously between 7.5 and 7.4. 

There are several reasons why 
standard microcontrollers are slow 
and inefficient in complex applica­
tions. One is that they have only a 
single bus for both program com­
mands and data. Another reason is 
that a conventional ALU multiplies 
numbers by repetitive addition. 
These hardware limitations slow 
the processor and ultimately re­
duce asmpling rates. 

Dsp micro controllers, on the 
other hand, are geared for high­
speed control applications. A dual­
bus (Harvard) architecture allows 
simultaneous processing of pro­
gram instructions and data. The 
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ALU features hardware multipliers 
that handle multiply/accumulate 
operations in a single instruction 
cycle. This is particularly im­
portant for motion-control appli­
cations because control algorithms 
are dominated by multiply and ac­
'cumulate instructions. 

While general-purpose pro­
cessors take from 5 to 20 itS to mul­
tiply two l6-bit numbers, DSPs 
need only 60 to 150 ns, about 100 
times faster. Such speed im­
provements make possible sam­
pling rates of over 20 kHz. They 
also allow controllers to extract 
more information from feedback 
data during the time between sam­
pling periods. For instance, DSPs 
can provide speed control by calcu-

lating velocity from encoder posi­
tion data. Microprocessor-based 
systems, on the other hand, are too 
slow to estimate velocity and typi­
cally use tachometers for feedback. 

Other hardware enhancements 
include barrel registers. Barrel reg­
isters allow DSPS to scale numbers 
in a single instruction cycle. Scaling 
pushes all insignificant zeros to the 
right side of the number field by 
shifting the data string to the left. 
These maneuvers increase pre­
cision by making room for less sig­
nificant bits during calculations. 
They also minimize truncation er­
rors. Conventional processors scale 
numbers in software, shifting them 
one bit at a time. A one-bit word in 
a l6-bit field may eat up 15 clock 

THE BASICS OF CONVERSION 
A basic DSP controller consists of an piing rate that provides distorti<m·free 
analog-to-digital (a/d) converter or data is determined b)' Nyquist, sam· 
quantizer on the front end to sample piing theory. For an analog signal whose 
analog input signals. A high·speed pro- highsst frequency comPonent 1$, f •• the 
cessor operates on the data according to miuimllm sampling rate is 2f.. 'lYPi­
a control algorithm in memory. The cally,asamplingfrequencyof6tolO/.is 
processor provides digital outputs that ueed. ' 
may be tapped directly or converted to If sampling ,frequency is. too low, the 
an analog format through a digital.to- DSP sees a so.ca1led alias signal at a 
analog (dla) converter. frequency substantia1ly different from 

DsP systems depend on IlId convert· t,. O!lCe aliasing occurs, it is impciaaible 
ers to obtain accurate measurements of to recQverthe original signal: F.iltering 
analog signals. Aid converters sample or any other technique ~tIQt bring it 
continuous·data ,(analog) signals by back' , " 
capturing small sliCes at periodic inter- A~ple methodto prevent aliasing is . 
vals. The sampled signal is recon· to increase the samp\illlf raj;e,. ~'a, 
structedandtheDSl.>lieesisuccessionof filter thet liniita the aDaiogsignal's 
amplitude-modu]ateil,zero.width bandwidth isanOther~ But'aliasing can· 
puilles whose envelopel:llllforms to the not be totally prevented bees_of tba 
analog signal. ' , filter's nonideal qu8Iitiet and Wgb...fre- , 

A.ccI)m.cy of digitized; information is a ~uency noiseoompoilents.iI1,tba@alog 
function of the nllm\1et of data, pmnt$ signal, ,", " . , 
sampled per ~'t'hehigher,this" . ~r~ with, tba llIablput 
number, the ~the ,~~OI!:'<:itthe _tapIS llpeJ1:utetil!ie,-theL.nM.'kot,tinie" ' 
~cted~:Mwm~~;,~:. "~~~Itng.~fake.e,~~~:;:c, 



cycles. 
Improvements also result from 

reduced instruction sets oriented 
toward signal processing. For ex c 

ample, a single DSP command 
called MACD multiplies two num­
bers, adds the product to an accu­
mulator' and shifts the data to an 
adjacent register. This sequence of 
operations synthesizes a digital fil­
ter pole or zero. Commands such as 
MACD simplify software develop­
ment by reducing the. number of 
code lines. 

Dsps, furthermore, allow con­
trollers to provide functions impos­
sible with analog or microprocessor 
systems. For instance, they can 
produce sharp-cutoff notch filters 
that eliminate narrow-band me-

the analog input. Its maximum value 
depends on required accuracy and 
analog signal slew rate. Signals with 
high slew' rates need shorter aperture 
times to maintain accuracy. 

After sampli"!!,, the quantizer (aid 
converter) chR"!!'es the data to a digital 
format. Rounding signal magnitude up 
or down to the nearest threshold level 
introduces quantization error. Thres­
hold le\l!lls are discrete valueS that digi­
tal strings can assume. Quantizationer­
ror is the difference between. the actual 
analog signal and the nearest threshold 
value. Maximum quantization error for 
a linear ramp signal, for instance, is one­
half the separation hetween adjacent 
threshold levels. 

As threshold levels move closer to­
gether, resolution increases and the dis­
crepilncy between the analog input and 
thequlll1tiz,edolJ,tput decreases. Quan­
tizat;iQQ1!FI'I!l'J(!im -only be reduced. by 
~~~~ofdiscretecon-

1ll'~<HeVels. 
:!ley DSPSys-

. . ... d!a;con, 
111.. .. -accepts digital 

~:,p~tutalog outp!J,ts. 

chanical resonances. In motion sys­
tems, mechanical vibrations may 
occur from about 1 to 100 Hz, with 
some as high as 10 kHz. Notch fil-

A digitally 
reconstructed 
signal is a 
succession of 
amplitude­
modulated, 
zero-width 
pulses whose 
envelope 
conforms to the 

ters remove energy that would oth­
erwise excite resonant modes and 
possibly make the system unstable. 

In addition to control functions, 

original analog signal. Analog-to-digital converters record signal amplitude 
at periodic intervals between which all control algorithm computations must 
be completed. 

One type of converter employs elec­
tronic.switches that turn on a voltage or 
current in response to the input. An­
other form converts digital values into 
variable duty-cycle pulses. Such pulse­
width-modulation (PWM) converters 
can directly drive electromechanical 
loads through switching amplifiers. 

An important dla converter property 
is its. linearity. Linearity measures the 
converter's ability to produce the same 
analog output, ch8"!re for equivalent 
digital input changes. Thus, a digital 
transition from 1 to 10 and another 

from 41 to 50 should cause relatively the 
same effects on the output. For in­
stance, both transitions should raise the 
output 18 m V. 

Accuracy, a static comparison of in­
puc and output values, is also important 
in dl a conversion. Another concern, so­
called a· "glitch", is an undesired ex­
cursion of the output voltage when a 
chR"!!'e at the input is registered. Glit­
ches can occur while the input goes from 
one value (switch configuration) to an­
other. It is caused by the indeterminate 
nature of switches hetween states. 
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DSPS also offer other services to the 
system such as diagnostic moni­
toring. Diagnostic monitoring is 
achieved with FFT (Fast Fourier 
Thansform) or spectrum analysis. 
By observing the frequency spec­
trum of mechanical vibrations, fail­
ure modes can be predicted and 
corrected in early stages. 

Perhaps the most powerful DSP 
capability is adaptive control. The 
technique is possible because DSPS 
have the speed to concurrently 
monitor the system and control it. 
A dynamic-control algorithm 
adapts itself in real time to vari­
ations in system behavior. For in­
stance, FFT data can be used to 
tune notch filters to track and elim­
inate vibrational modes as they 
vary with system speed, weight, 
balance, or other parameter. 

DSPs in motion 
Digital signal processors were 

originally designed for audio/video 
applications such as speech coding 
and image recognition. But new ap­
plications in motion control de­
mand hardware and software fea­
tures not included on most com­
mercially available DSPS. 

A new breed of DSP microcon­
trollers, led by the TMS320C14, 
combines both signal-processing 
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'Software conkol mab. modifications and 
upgradeeesy 

Silllie-ehip solution i. possible 

Limited multiaxis coorclinstion 

Insensitive to aging and temperature 
variations 

Dual-bus (Harvard) architecture boosts 
speed 

Scftware Control siinplifies modifications 
and upgr8de 

High sampling rateS imprOve precision 
Single-chip solution is possible 
HAAdIes multiaxis systems 
Implements complex algorithms such as 
adaptive control 

Provides special filtering impossible with 
other techniques 

Speed limited by single-bus 
architecture 

Lookup tsbles reduce 
precision and speed 

Repetitive-addition 
multiplies reduce speed 

Low sampling rates reduce 
precision 

Requires expert knowledge of 
system 

Currently high costs (will 
d •• line) 

No compiler for TMS32OC14 

and system-management functions 
on a single Ie. The signal-pro­
cessing section samples inputs and 
runs control algorithms, while the 

system manager handles interrupts 
and schedules tasks, I/O, and other 
events that require interpretation, 

For a particular application, 
minimum processing speed is de­
termined by the required sampling 
rate, Sampling rate depends on the 
bandwidth of the system under 
control. According to Nyquist's 
theory, an analog signal must be 



sampled at more than twice the fre­
quency of its highest frequency 
component. In practice, however, 
controllers typically sample at 
rates six to ten times above the 
highest frequency. 

All processing must be com­
pleted between sampling periods. A 
controller with a sampling rate of 
10 kHz, for instance, has 100 I1S to 
sample the input and calculate the 
output. In many cases, multiply 
and accumulate procedures ac­
count for the majority of calcu­
lations. Some algorithms may call 
up to 50 multiplies per sample. 
Thus, high-speed multiply and ac­
cumulate hardware is necessary for 
DSP controllers. 

Such hardware is available in the 
320C14. In one instruction cycle, it 
multiplies two 16-bit numbers and 
stores the result in a 32-bit accu­
mulator. Instruction cycle time for 
the 25-MHz processor is only 160 
ns, for a throughput of 6.4 Mips 
(million instructions per second). 

It is important that the product 
of two 16-bit numbers be stored in 
a 32-bit accumulator. But not all 
16-bit processors have 32-bit accu­
mulators. If only a 16-bit register is 
available, 16 bits are lost with each 
multiply. Truncation of this sort 
reduces precision and may show up 
as random fluctuations or noise in 
the system variables. Attempts to 
control noise often degrade system 
operation. 

Processing capability is also a 
function of internal data format. 
For instance, floating-point pro­
cessors are suited for applications 
with wide dynamic range because 
their data registers contain large 
exponential fields. This type of 
data representation frees designers 
from concerns over signal mag­
nitude. The drawback with float­
ing -point processors, however, is 
their high price. 

Fixed-point processors, on the 
other hand, cost much less. They 
also provide greater accuracy be­
cause their data registers contain 
larger mantissa fields. The trade­
off is a lower dynamic range. Dy­
namic range can be expanded by 
doing floating-point calculations in 
software. But this approach re­
duces speed. For example, the 
320C14 executes 16-bit floating­
point multiplies in 6.5 I1S. 

Overflow protection is another 

DSP BU,LDINO·BLOCKS 
The building blocks rA analog control systems are Qperational amplifiers, while 
in digital signal-processing (DSP) systems they are multipliers. Multipliers are 
key hardware for executing digital filters and Fast Fourier 'llansforms (FFTs) 
in srAtware. Originally, multiplier ICe wereavaileble only in individual pack­
ages. Now, they are integrated into most DSPs chips. 

Digital filters are capable rAhigher speeds and sharper cutoffs than analog 
filters. In addition, they provide better stability with less drift. They also re­
qutre no adjustments and can have nearly an unlimited signal-to-nQise ratio 
(SNR). The SNR of a digital filter is proportional to its anaIog-to-digitai (a/d) 
resolution. 

Digital filters are usually based on a linear constant-coefficient difference 
equation such as 

N M 
yIn) = :l: a.y(n-k) +:!: b.x(n-k) (1) 

.11-0 ,t ... o 

where,x(n) = filter input sequence,y (n) = filteroutputsequence,a. = output 
coefficients, and b. = input coefficient. 

When the input coefficients are all zero, equation 1 reduces to 

M 
y(n) = :!: b.x(n-k) (2) 

'-0 
This is called a finite impulse response (FIR) filter of length M + 1. Such a fil­

ter consists of a tapped delay line with a series of M digitally summed multi­
plies. It has no feedback, making it unconditionally stable. 

Another digital filter type, the infinite impulse response (1m) filter, is de­
fined when at least one a. term is nonzero. An IIR filter has both feedforward 
and feedback terms like some op-amp-based analog filters. It is simpler than 
the FIR in terms of hardware and srAtware. But it is also potentially unstable 
and susceptible to offsets and nonlinear response. 

Multipliers and accumulators also play an important role in implementing 
FITs. The FFT is a hardware-efficient version of the Fourier transform. It de­
composes a time function into its frequency components, providing frequency 
analysis of the signal. 

Dsp system analysis is simplified by techniques such as the z transform. The 
z transform does for sampled -data systems what the Laplace transform does 
for continuous-data systems:·it describes system output for a specified transfer 
function and .input. Like the Laplace transform, the z transform permits alge­
braic techniques instead of differential equations. 
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concern. Control algoritlmls, with 
many successive multiply and ad­
dition operations, can easily over­
flow registers. In an overflow, data 
registers on many processors recy­
cle from their most positive to their 
most negative number. But po­
larity changes at the output Of a 
motor controller, for instance, can 
reverse motor direction. Accu­
mulation· registers on the 320C14, 
on the other hand, latch at the 
most negative or most positive 
value. This feature eliminates the 
need to protect against polarity 
(motor) reversal. 

'Ib function as system manager, 
DSPS must have on-chip 1/0 and 
other peripherals. For starters, the 
320C14 has 16 bit-selectable digital 
I/O lines that can be configured in 
any combination Of inputs and out­
puts. The I/o lines can be used, for 
example, to scan keyboards or 
drive' external devices. A special in­
put feature sets an interrupt flag 
when inputs collectively match a 
stored nUlpber. This facilitates 
counting or timing applications. 

The IC also features an event 
manager that controls capture 
(input) and compare (output) sub­
systems. The capture section is 
equipped with hardware optimized 
for timing applications. For in­
stance, encoder feedback pulses 
can be timed with up to 160-ns res­
olution to provide accurate posi­
tion and speed data. 

The compare subsystem is basi­
cally the chip's output. Its hard­
ware is optimized for driving mo­
tion systems. One operating mode, 
for instance, allows it to function as 
a 6-channel PWM controller with up 
to 40-ns resolution. Six compare 
(CMP) registers work in harmony 
with two internal timers. When a 
match is detected between the CMP 
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register and its specified timer, the 
event manager changes the state Of 
the CMP output pin. '!\vo internal 
interrupts are also generated. 

Other on-chip peripherals in­
clude an array of 16-bit timers. 
'!\vo timer/counters are intended 
for clocking external events and 
serving the event manager. An­
other, the watchdog timer, pre­
vents internal sOftware hang-ups. 
When the watchdog times out, a 
maskable interrupt is set and a 
pulse is generated on an output pin. 
The pulse may reset external hard­
ware or the processor. 

Development systems 
Although DSP control systems Of­

fer numerous benefits, designing 
them can be difficult. For the most 
part, familiar analog design tools 
such as breadboards and scopes of-

fer little help. And because com­
pilers are not yet available for the 
320014, code must be written in as­
sembly language. Limited stack 
space with room for only 4-1evel 
calling poses another challenge. A 
call is a branch statement that 
jumps to a subroutine. Because few 
subroutines may be called, sections 
Of code must often be repeated 

" .•.. ' .• : ..: ;'\'11&. 
.,?,.~ ... 

throughout programs. 
Despite these obstacles, makers 

Of development systems for the 
320014 have found ways to sim­
plify the design process. For one, 
their products compensate hard­
ware shortcomings by supple­
menting memory space. Secondly, 
they allow engineers to prototype 
DSP control systems on PC plat-



forllJl!, using methods similar to 
those for microprocessors or micro· 
fontrollers. Thknic Inc., for exam· 
pIe, makes a development board 
called the Power· 14. 

Power·14 is designed for motion 
control applications. On·board 
switching servoamplifiers deliver a 
total of 750 W for driving various 
types of motors, linear actuators, 
and proportional valves. At the in· 
put, eight channels of 12·bit anal· 
og·to·digital conversion accept ta·_ 
chometer, potentiometer, and 
other sensor signals. The 20·1'8 con· 
verter provides extremely high 
(0.02%) resolution. In many appli· 
cations, 0.4% resolution from 8·bit 
conversion is sufficient. 

The Power·14 board adapts to a 
wide range ofmotion·control appli· 
cations because its I/O sections can 
be configured by the user. Config. 
uring is done in software. On·board 
configuration logic interfaces the 
I/O hardware with the 320C14's 
event manager (CAP and CMP lines). 
CMP lines connect to ser· 
voamplifiers, while encoder inputs 
are fed to CAP lines. 

Four input modes accommodate 
a variety of feedback schemes. In· 
put logic, in addition to routing sig. 
nals, converts quadrature encoder 
feedback into count·up and count· 
down pulses. It also includes edge. 
detection circuits for index signals. 
The extra hardware reduces soft· 
ware overhead and improves sys· 
temspeed. 

Likewise, ,there are four output 
modes. Output logic controls driv· 
ers independently or in pairs 
through nonoverlap hardware. The 
board can be adapted for brush or 
brushless dc motors, single or 
three· phase ac drives, stepper mo· 
tors, variable reluctance motors, 
and other ac or dc loads. 

Output hardware consists of six 
power transistors. Each has a no· 
load current·sensing device. Cur· 
rent feedback signals (12 bit) warn 
of overcurrent conditions and pro· 
vide information such as torque or 
force to control algorithms. In dc 
brush motors, for instance, torque 
is directly proportional to the 
amount of current into the wind· 
ings. But torque calculations for dc 
brushless motors require an addi· 
tional term equal to the angle be· 
tween the windings and the rotor. 

High·speed MOS transistors form 

three half.bridge (totem·pole) am· 
plifiers. Switching speed is deter· 
mined by the number of bits in the 
output command. Up to 16 bits of 
digital·to·analog resolution are 
possible. A larger number of -bits 
gives higher resolution, but slower 
amplifier switching rates. For ex· 
ample, 10 bits of resolution, suffi· 
cient for most systems, are avail· 
able at a 25·kHz switching rate. 
Adding only one bit halves switch· 
ing frequency to about 12 kHz. 

Another Power·14 feature is a 
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40·pin connector that makes the 
320C14's digital I/O directly avail· 
able. Configuration logic and on· 
board peripherals are bypassed. 
This allows designers to develop 
custom nonmotion applications. 
Off·board connections, for in· 
stance, can be made to CODECs and 
external clock sources. CODECS 
code and decode signals for pulse· 
code· modulation (PCM) transmis· 
sions. On·board connections can be 
made to capture, compare, and dig. 
ital I/O lines. 

An example servoflndexer system configuration demonstrates the Power· 14 
evaluation board. The system employs a brush·type de motor, two.phase opti· 
eal encoder, dc supply with regulated 5· V and ± 12· V signals, and servomotor 
power supply. A PC running a terminal emulator program provides system con· 
trol from the keyboard. A potentiometer is used for manual position control. 
Also required is a 3201X assembler/linker. 

The software package provides full control over the system, allowing users to 
vary PID coefficients and observe the effect on system operation. The potenti· 
ometer can be used to adjust servo position. Encoder feedback position may be 
disp1a;yed to rewa! steady-state error. 

Users may also generate custom code. Developers begin by writing program 
modules in 320014 assembly language on the monitor/debugger. Programs 
may be tested with various emulator and simulator software. To be applied to 
the live system, the code must be assembled and linked into a TI TAG file. A 
communications program such as Crosstalk or Procom downloads the code to 
the board. The monitor provides utilities to run and debug the program. 

Development or 320014 applications can be accelerated with 'Thknic's Pow· 
er·Source software package. The modular library d. calls and routines makes 
code writing faster and easier. It can be used, for instance, as tl!e basis d. a cus· 
tom DSP control design. The PID loop can be taken out and replaced with the 
user's algorithm. Supporting commands that initialize and run the chip may 
not need to be modified. 

DSPdesign 
example 

A TMS32OC14 Indexing sflrvosystem can be configured with the 
Power· 14bosrdarn:Jcontrolledbythe demonstration software. Encodsr 
phase signals Bre fed through up/ downcounters (input mode 2). while B 
-PWM dljve (output mode 2) ~rs thBmotor. 
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A small on-board prototyping 
area provides a place to fabricate 
special signal-conditioning circuits. 
For instance, encoder inputs may 
be fed through decoder /prescalers 
to reduce software overhead. Sen­
sor signals may be amplified, fil­
tered, or isolated. Outputs may 
likewise be modified with digital­
to-analog or frequency-to-voltage 
converters. 

Other hardware on the Power-14 
includes a TMS320E14 processor 
and 8k words of on-board down­
loadable program memory. The 
320E14 is the EPROM version of the 
32OC14. Suppression circuits are 
added to reduce conducted electro­
magnetic interference (EMI) from 
the amplifiers. An RS-232 serial 
port is also available. The port al­
lows the board to communicate 
with the development platform. 

Users can generate code, test 
software, and control motion sys­
tems from the host's monitor/de­
bugger screen. 'lYpically, the host 
is a PC running a terminal emulator 
program. A command-driven mon­
itor interface providee access to all 
debugging facilities. Code is en­
tered on screen, assembled, and 
downloaded through the RS-232 
port for execution. A demonstra­
tion program based on a simple PID 
algorithm allows users to experi­
ment with DSP control systems. 

The demonstration/test program 
is supplied on a 5V4-in. floppy disk. 
It is specifically written for a DSP 
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control system consisting of a dc 
motor and an optical encoder. 
From the monitor, users adjust 
PWM rates and duty cycles, dump 
current analog-to-digital converter 
values, display and set I/O ports 
and memory contents, and vary PID 
coefficients. 

Users may also develop their own 
code. The monitor/debugger allows 
them to download code, set break­
points, and display and modify 
memory register contents. Break­
points allow users to see exactly 
what is going on (register contents) 

at specific points in the program. If 
software is causing a problem or 
hanging up during a certain task, a 
breakpoint can be used to a obtain 
a snapshot of the register states at 
the point of interest. 

Breakpoints also allow users to 
develop code in stages. One part is 
written and tested, while the re­
mainder of the program is art­
ificially simulated with values 
plugged into registers. External 
hardware provides one breakpoint, 
while multiple software break­
points are possible. _ 
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ABSTRACT 

Digital single-chip signal proce .. ors solve speed 
problems arising with the implementation of measure­
ment and control algorithms. After a discussion of pro­
cessinc power and applications an outline is given of an 
advanced CAE support system for the implementation 
of complex control and related systems. 

I INTROPUCTION 

Dicital sine Ie-chip signal proce .. ors (DSP) are very 
attractive means for the implementation of measure­
ment and control algorithms, mainly because of their 
computing speed, which is more than an order of mag­
nitude hicher than with fast modern 16/32 bit mi­
croprocessors or microcontroUer •. using ftxed point ar­
ithmetic (Hanselmann. 1986a. 1986b. 1987). 

A list of present devices that seem to be useful for 
control implementation and are available to the public 
is eiven In Tab. I. 

DSP make implementallon of nontrivial controllers 
with hieh sampling rate feasible at reasonable cost; the 
TJoIS 32010 in particular has already been used in many 
control applications. as described for example by 
Slivinski and Borninski (1985), Kanade and Schmitz 
(1985). Hanselmann (1986b). 

In the following some speed benchmarks are 
presented. then some applications are discussed, fol­
lowed by a brief discussion of DSP limitations and how 
they will develop with future DSP. The last sections are 
on Computer Aided Control Engineering (CACE) for the 
Implementation of rast and complex control systems. 
particularly on DSP. 

2 SPEEP BENCHMARKS 

Even older DSP deliver impressive speed in meas­
urement and control applications as shown by the fol­
lowine benchmark data for the Texas Instruments TMS 
32010: infinite-impulse response filter biquad section 
2.2 ,.... finite-impulse response IIlter 0.4 ,... per tap. 
complex 64 point FFT 06 ma. 1024 points 43 ms 
(Burrus and Parks. 1985). table-lookup with linear in-

terpola\.ion 8 JJ.8. generation of maximum sequence 
PRBS noise out of a 32 bit register 5.4 ,... per clock. 
sine function eeneration 6.6 ,... per point (JoIehrgardt, 
1984). 9th order controller al 31 kHz sampline rate, in­
cluding overftow management code. 15th order mul­
tivariable controller with 13 Inputs and 3 outputs. with 
some nonlinearities. al 10 kHz sampline rate. 

Some future DSP from Tab. I even promise to be 
Significantly faster. The JoIotorola 58000 for Instance 
will be about 4 times faster with IIR or nR tilters due to 
shorter cycle lime, and almost 10 times faster In the 
1024 point FIT application where the TMS 32010 is 
slowed down due to RAM limitations. 

For the 9th order controller mentioned above a 
speed comparison has been made aeainst 16/32 bit mi­
croproce .. ors. This single input single output controll­
er arose in an industrial application with a very fast 
electromechanical positioning system (Hanselmann. 
le86b; Hanselmann and JoIoritz, 1966). Since with gen­
eral microprocessors the multiply operation mainly 
determines the execution time, an upper bound for the 
achievable sampline rate can be given based only on 
the total number of multiplications. This upper bound 

sil!nalprocessors tvoe 
NEC ""D 7720 U 
Texas Instr. TJoIS 32010 U 
Fujitsu JoIB 8764 U 
STC DSP 128 U 
Texas Instr. TJoIS 32020 U 
Texas Inw. TMS 320C25 U 
Nat. Semi. L1132900 UC 
Analog Dev. ADSP 2100 UC 
Phillips PCB 5011 U 
Thomson TS 66930 U 
Motorola DSP56000 U 
Nat. Semi. L11628 A 
NEC ""D 77220 U 
NEC ~D77230 U 

U universal 
C processor core (external memory) 
A allorithm-specific 
F fioatine-point arithmetic 

Tab. 1 present and future DSP 

F 

available 
1982 
1983 
1984 
1985 
1985 
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is given in the rightmost column of Tab. II. The controll­
er had 33 nonzero and non-one coefficients. i.e. 33 16 x 
16 bit multiply operations had to be performed per 
sampling inte,rvaJ. Since there are also additions and 
data transfer operations to be performed the sampling 
frequency actually achievable would be somewhat 
lower. A comparison of the estimate with actual exper­
imental results was carried out on a filter (from Phillips 
and Nagle. 1964). and on the controller which Table II is 
based on. The target was a 66000 system running at 10 
MHz. programmed in assembly language. Actual sam­
pling rates turned out to be about 50:1: of the upper 
bound estimate In the filter case. where subroutines 
and loops were used. and about 70:1: in the controller 
case with fast subroutine- and loop-less code. 

microDrocessor clock , 
6066 8MHz <2kHz 

Z6000 5 MHz <2 kHz 
86000 10 MHz < 4 kHz 
32016 10 MHz <5 kHz 

TMS32010 SiGnal erocessor 31 kHz 

Tab. 2 achievable sampling frequencies 

The same controller was also implemented on a 
TMS 320 I 0 Signal processor and ran at 31 kHz sampling 
frequency. with overflow management code included 
for the control variable output computation. Thus the 
sllnal processor Is an order of magnitude faster. The 
main reason for this is that with the microprocessors 
the fixed-point multiplications are too time-consuming. 
a typical execution time being 6 JMI for a 10 MHz 32016 
processor (operands in memory). Due to hardware 
multipliers and efficient routing of operands and 
results through various buses the execution times of 
add I subtract as well as multiply operations of DSP 
are In the range of 100 ns to 300 ns. Multiplication is no 
longer the most time-consuming operation. 

3 APPUCATIONS 

Typical control applications of DSP are found in 
the field of controlling fast mechanical devices. usine 
fast servohydraulic or electromechanical actuators. 
This is because the required control bandwidth can well 
be from 100 Hz up to several kHz. and sampUne fre­
quencies considerably hieher than this are necessary. 

Furthermore it is precisely with the control of 
mechanical devices that detailed models can and 
should be obtained. with many deere ... of 'reed am and 
high system order. So the controllers frequenUy are of 
higher order too. particularly when standard tech­
niques such as LQG control (i.e. state variable control 
with Kalman-/lltering) are applied. 

But even with more classical control structures 
the control algorithms frequently have to 10 beyond 
simple PfD-type control. A load example is the plat­
form control system described by SliVinski and Domin-
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ski (1965). where a bulk of structural notch filters 
pushes the total controller order up to 19. Structural 
notch fi.Jler. are used to cope wiLh resonances in the 
mechanical structure by making them approximately 
"invisible" in the control loop. In the magnetic disc 
drive head positioning application described by Hansel­
mann (1966b) and Hanselma.nn and Moritz (1966) this 
approach has also been used (one of the controllers 
studied was that mentioned in section 2 and Tab 11). 
The computational power required is particularly high 
there because of very high control bandwidth. 

We use an experimental lab system with the TMS 
32010 for implementation of such controllers. It is also 
used by some R&D departments in industry. This sys­
tem accommodates up to 15 inputs and outputs each 
(analog or digital) and is equipped with a Z60 single 
board computer for host-target communication (RS 
232). sampling-rate programming. TMS program down­
load. and program storage in nonvolatile RAM. Along 
with appropriate CACE software (see section 5) this ex­
perimental system forms a very powerful tool for con­
trol system realization and evaluation. 

Examples of applications apart from the magnetic 
disc drive are the active or semiaclive suspension of 
vehicles and multiaxis robot contro\. 

Vehicle suspension using a fully active hydraulic 
actuator Instead of the passive spring I damper system 
has been realized for a. single wheel test bed using the 
Intel 2920 DSP (Lilckel and Kasper. 1984; Kasper. 1965). 
and will be realized for a Volkswagen Golf car in the fu­
ture usine the TMS system. A semiactive suspension 
(single wheel in the ftrst stage) is under study In an in­
dustrial "Dmpany using our TMS system. A 4 wheel 
suspension is expected to reqUire cQntrollers of order 
10 ... 20. with more than 10 inputs from sensors. and 4 
outputs to the actuators. Controllers are to a large ex­
tent linear. but there are some nonlinear compensa .. 
tions of nonlinear plant behaviour to perform. The 
sampling frequencies will ranee from some hundred Hz 
up to about 5 kHz. the higher sampling frequencies be­
ing required for the fast hydraulic subsystems. 

The objective of the robot control application is 
damping and stiffening of an elastic robot by control 
(Moritz .t Ill .• 1985; Moritz and Henrichtrelse. 1986). A 
three axis robot with electric servomotors. Harmonic 
Drive gearboxes, and light. aluminum anna haa recent.ly 
been successfully controlled by a multivariable con­
troller using the TMS system. Oscillations visible by the 
naked eye when conventional cascade control was used 
were completely damped in all relevant deerees of free­
dom with the multivariable controller. Without the 
feedforward inputs there were 4 inputs from strain 
gage sensors. 3 Inputs from angle encoders. 3 inputs 
from tachogenerators. 3 angle reference inputs to the 
controller. and 3 outputs to the motors. The order of 
this mullivariable controller was only 6 in this first 
development stage. and the sampling frequency of 23 
kHz was hieher than required. In lhe nexl slage the 
controller will be augmented by friction observers and 
compensalors. and lhe workload for the DSP will in­
crease. 



4 !JMlIATIONS 

The computing speed of DSP is impressive, but 
t.here are also severallimitalions. 

Compared to microcontrollers such as the Intel 
8096 or the NEC 78312 a DSP system usually requires 
far more hardware surrounding the processor chip. 
These microcontrollers Include sophisticated ilo func­
tion blocks, right up to AD-converters, decoders for in­
cremental angle sensors, and serial communication cir­
cui try, whereas current DSP are only computing 
machines (with the exception of so-called algorithm­
specific DSP such as the one listed in Tab. I, which is 
however very special purpose). DSP often also require 
very fast stalic RAM for program and data slorage. 

Another drawback with some DSP is lheir limited 
addressing capability, which is most Severe with data 
RAM. The NEC 7720 and TMS 32010 have 128 and 144 
16 bit words of on-chip data RAM, withoulthe possibili­
ty of extending data RAM externally at full speed. 

If the applicalion' requires service of interrupts 
from various sources, the next problem with DSP is en­
countered. Of the 'on-the-markel' DSP from Tab. I, 
only lhe TMS 32020 allows for more lhan one inlerrupl 
source (i.e. 3 eXlernal plus some internal ones), 
whereas the MB 8764 and the DSP 128 have no inter­
rupl mechani.sm al all. One reason for lhis may be lhal 
some hardware precaulions are necessary when pipe­
lined instrucLion execution is interrupted. 

A common restriction with all presenl DSP is that 
they are only fasl wilh fixed-point arilhmetic, see for 
instance Blasco (1993) ror the TMS 32010 and Crowell 
(l985) for the IllS 32020. Because standard operand 
wordlenglh is 16 bit, and accumulation (think 01 scalar 
product computations) is in most cases performed with 
extended preciSion (up to 35 bil) at no extra cost, the 
accuracy and dynamic range will usually be sutricienl 
for control purposes, provided the control algorithm 
has been prepared approprialely (see section 5). The 

MJE EOU .,. • scale-factor ;posrtive yalue 

desire to have lIoating-point arithmelic is of len caused 
by lack of know-how and tools lor precisely this 
preparation of • controller lor ftxed-point implementa­
lion. 

A last drawback to be mentioned is due to lack 01 
programming supporl. With the exception 01 the TldS 
32010 (see section 6) only assembly language program­
ming is supporled commercially. For runtime 
etriciency most users also tend towards assembly level 
progranuninl. However. because of 'exotic' arehilec­
tures and instruction sels compared to general mi­
croprocessors, programming easily gets tedious and 
error-prone. This applies particularly lo those DSP 
which have a 'microcode-like' inslructlon set, such as 
the NEC 7720, the liB 8764 end some 01 the announced 
DSP. 

Additionally, memory restrictions may require 
tailored coding lor every version 01 a controller, and 
etricient code constructs may be dependenl on the ac­
tual numerical values 01 operands, leading lo frequenl 
reprogramming when a controller is in iU development 
stage where numerical values are nol yet IIxed. For an 
example see the TMS 32010 code of Fiji. 1. It checks 
the result 01 a downscaled scalar product computalion 
(Hanselmann, IS86b, IS87) 

(1) 

(where all coetricients in c. have been downscaled Irom 
lhe original coetricienl vector by e common factor 2" to 
fit them into the Iraclional number range) whether lhe 
rescaled t.rue result is overflowing. in which case sa­
turation is performed. Version a) is valid lor: all rea­
sonable v, whereas lhe much fasler version b) is only 
valid for lwo values of v because of restriclions or lhe 
processor. And for some olher values or v lhere is even 
another oplimal version (nol shown) in between. Fig. 1 
also shows another problem of DSP: qulle complicaled 

MJE EQU ••• ; .eale-factor 
ALLl EQU 11111111111111118 
ALLlMS88 EOU 1l11111111111111S 

PDS: LAC HI. M.E+2 
SACH Z.' 

MAX EOU 327S70 
nlN EOU -327S80 

MAX EOU 327&70 
nlN EIIU -327&80 

;do&.lnscaled ,..sult in accumulator 
SACH HI.' • save ace 
SACL LO 
BGEZ PDS 

Inegative value 
LIIC HI. N.IE+2 
SACH z.a 
ZALS Z 
XOR ALL1 
BZ NlOF 

;sat ..... t. 
ZALS nlN 
SACL RESUL T ~ 
8 ENIICF --.J 

a) 

ZALS Z 
BZ NIICF 

;a.turate 
ZALS MAX 
SACL RESULT 
B EtGlF 

Ina avrffow 
NIICF: LIIC LD.IS 

SIICH LD.' 
ZALS LD 

ENIlDF: 

AND ALLlMSB8 
SAC!. LD 
LAC HI. lIJE+l 
SACL HI 
ZALH HI 
AlII LO. NUE+2 
SACH RE5U.T 

Fig. 1 overllow-handling code (TMS 32010) 

;dolM1scaled result In accullulator 
SACH RESlLT. fIIJE+I 
BLZ NEIi 

;politiv. valu. 
SUB MAX. lS-NUE 
BLEZ ENODF 

; •• t .... t. 
LIIC MAX. lS-NUE 
SACH RESlLT. NUE+I 
8 ENODF 

;negative valu. 
NEIi: sua niN. IS-NUE 

BGEZ ENODF 
;s.tLrat. 

EtGIF: 

LIIC niN. 1S-MJE 
SACH RESULT. NI.IE+I 

b) Cv= 00r30nly, 
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run-time and memory conauminl code con8tructs may 
be required to do rather simple thlnes, quite unlike the 
computina of acalar producta which DSP are desilned 
for. 

Some of the problems discussed will !lisappear with 
80me future OSP, which will not only be faster, but also 
allow for more proaram and data memory, incorporate 
more hardware for miscellaneous t.asks (timers, com­
munication ports), and have more fiexible instruction 
set.. The dynamic ranle of fixed-point arithmetic will 
also be extended (although rarely really needed in con­
trol· applications), by longer accumulators and in some 
cases (Motorola 56000 and NEC 77220) by a larger basic 
operand word length of 24 bit. noatine-point arithmet­
ic DSP are also appearing. There is already one 
(proprietary) OSP at Bell Labs performing full 32 bit 
fioaling-point arithmetic at 150 ns per operation, and 
one DSP for the public (by NEC) has been announced 
(see Tab. I). It can also be expected that more pro­
gramming tools such as general or special purpose 
language compilers will emerge. 

5 CACE-TOOI's 

Efficient use of OSP for control implementation re­
quires some CACE-tools to assist in the preparation of 
the controller before programming it, and also it is 
desirable to circumvent processor specific assembly 
level programming. 

In the pre-programming phase there are decisions 
to be made and cheeks to be performed which are 
mainly related to discretization, quantization, and tim­
ing. All this is not specific to DSP used in control, but 
would also apply to application of general microproces-
80rs or microcontrollers. Only the peculiarities and 
problems of fixed-point arithmetic become irrelevant 
when fioating-point arithmetic can be used with mi­
croprocessors or microconlrollers. 

The CACE-tools we developed and still use 
comprise sortware·modules which perform. or at least 
assist, in performing the following tasks: 

... discretization of continuous designs via a selection of 
methods, 
... choice or realization structures for muJlivariable sys· 
terns with respect to finite wordlength restrictions, 
- scaling for fixed pOint (fractional) arithmetic, scale 
factors supplied by user from for example simulation, 
or found automatically, 
- checking for differences in frequency or for example 
step response due to discretization and due \.0 fixed 
point coefficient representation. 
- checking for effects of AD- or DA- sl/lnal quantization, 
arithmetic, overftow, and nonsimultaneous sampling by 
nonlinear conlrol syslem simulation. 
- automatic code generation' (Iormerly for Intel 2920, 
now for TMS 32010) from a description of a linear con­
troller in state-space, plus optional nonlinear exten­
sions. 

In the early stages of design only a few assump­
tions such as on the future AD-converter resolution 
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and a rouch estimate of .. mpline rate may be involved 
In later atages discretization and limine effects are 
t.aken int.o account. ftr.\.. Lhen an accura\.e abstract 
model of the tarcet DSP program , already involving 
finite wordlencth effects, comes into play. It depends 
on the user'. experience and on the controller whether 
the CACE-tools for implementation have to be used lo 
the full. It is not uncommon for only discretization, 
selection of a standard realization structure, and au­
tomatic sealing to have to be performed. A more de­
tailed discussion of these steps to be taken in the pre­
programming phase can be found in Hanselmann 
(1987). 

The last step, i.e. programming, is performed fully 
automatically for the linear part of a controller by an 
automatic code generator (Fig. 2) for the TMS 32010 
(Loges, 1985). "The controller is assumed to have been 
translated into a single state space ditrerence equation 
of the form 

Xk+1 = A xk + B Uk + f.{xk,uk'Yk,k), 

Yk = C Xk + D Uk + f,{Xk,Uk,k) (2) 

Code lor the nonlinear parts i. not generated but 
linked to the generated code. The code generator pro­
vides overftow management code, so-called scaJar pro­
duct scaling, and extended precision arithmetic on 
demand, and copes with the data RAM limitations of the 
TMS 32010 by gradually moving to memory saving code 
if necessary in a run-time optimal way. The code gen­
erator concepl has also been used by workers in the 
general signal processing (tilterlng etc.) tield, lor refer­
ences see Hanselmann (19B7). 

numerical data 
(matrices A, B, C, D) 

optimal assembly code 

coded functions 
Iromlibrary 

Fig. 2 automatic code generator 

Experience shows that, using the abovementioned 
tools, in routine cases a control design can be brought 
to experimental evaluation in less than an hour, and 
virtually no knowledge 01 the target DSP Is necessary 
for the control engineer who is only interested in get­
ting his control system working. Our previous work 
has, however, been restricted to a certain class of con­
trollers (single state-space description, Single-rate, 
nonlinear terms supporled but nol integrated in the 
CACE-software data structure). loIore complex controll­
ers now demand a more advanced concepl. 



6 FUTURE CACE-CONCEPT 

The main reslrictions of our previous CACE-lools 
have been: (i) assumption of the eonlrolJer in the 
form of (2). (ii) separation of informalion belonging 
logelher logically. '(iii) lask dependency. (iv) largel 
processor dependency in code generation tools. 

We are going to remove these restrictions now by 
developing tools based on models of complex con troll· 
ers and by layering the code generation procedure. 

The goal is to close the gap betwecn sophisticated 
control system design and realization of a designed 
controller by means of mostly automatic lools working 
on a model of lhe conlroller. This model may be for an 
analog version of lhe conlroller inilially. and will subse­
quenlly be lransformed slep by slep inlo a full digilal 
controller model via the stages of sampling rale selec­
lion. discretization. structure selection. scaling etc .. 

Designing a modeling concepl on which such im­
plementation loa Is can be based is a nontriviailask for 
complex controllers. The usual collection of a few 
discrete state-space models or z-transfer-functions is 
far from sutricienllo make up a model. 

Il should for inslance be possible lo represenl 
complex controllers constructed from'submodels in a 
hierarchical way. In the vehicle suspension application 
mentioned in section 3 there are controllers for the in­
dividual wheel hydraulics on a medium hierarchical lev­
el. the subsystems encapsulated in these controllers 
are on the lowest level. and on the highest hierarchical 
level is the lolal 4 wheel conlroller (including pilch and 
roll control elc.). 

The same example also shows the need to account 
for multi-rate systems because of high sampling rates 
for servohydraulic control. and lower rates for car 
body altilude conlrol. 

It is also important to accommodate liming infor­
mation. i.e. informalion about when input signals are 
sampled. when output signals are available and what 
the sequence of execution of subsystem algorithms is. 

Information regarding dala formals and arilhmel­
ic in lhe largel processor should also be representable 
in a form sufficiently abstract to be processor indepen­
dent. but close enough to the hardware and architec­
ture of target processors for running a control system 
simulation for instance to yield 'real-world' resulls. 

In order to manage all this information it is advis­
able to follow the lines at modern soCtware engineering. 
The approach we are investigating is to define a model 
language which works in the user's technical tenns as 
much as possible. and represenls the information in a 
readable. consistent, and logical way. A model descrip­
lion given in this lan&uage is lhen lo be used 
throughout the design and implementation process, up 
to simulation and final code generation. The conven­
lional data structures such as collections of matrices 
are only a part of a model. possibly a small one. Even 
there, several distinctions must be made and types of 
controller submodels such as standard state space 
models. FIR-lIllers. FSVD-lype slale space models (Han­
selmann. 1987) should be introduced. 

high level abslracl 
conlroller model 
(hierarchical. 
nonlinear) 

- selection of sampling rates 
. discretization 
- realization structures 
- decisions on arithmetic 
- scaling 
- checks for discretization. 

quantizalion. delays. 
asynchroneous sampling . ... 

. simulation 

DSPL compiler 
for largel 
processor 1 

high level abslracl 
digilal conlroller 
model (hierarchical. 
multi-rale. nonlinear) 

lower level largel 
hardware independent 
description (DSPL) 

DSPL compiler 
for largel 
processor 2 

assembly language 

Fig. 3 fulure code generalion 

The IInal slage or code generation will now also be 
based on the conlroller model. Because of lhe pOSSible 
complexity of such models. and in order to gel more 
target processor independency. code generation will be 
performed in al leasl lwo slages (Fig. 3). wilh an inler­
mediate control task representation in a specific medi~ 
um level language (DSPL. digilal syslem programming 
language) program which will be derived from lhe 
abslracl conlroller model by means of a lranslalor. We 
have designed a IIrsl version of DSPL (Hanselmann and 
Schwarte. 1987). and we expecl to have a preliminary 
DSPLcompiler for lhe TMS 32010 by the end of 1986. 
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We prefer to ha". a lanluace which Ia' \.aIlored ~o 
alln.1 procea8lnc and conlrol l.Iialcs ra~er ~an ualnc 
leneral purpose prolrammlnc lancuaces .uch a. C or 
P .... 1. Compllere for ~ese lwo laneuacea emerled re­
cenUy for lhe TIIS 32010 procaeor (Jlarrin, 1885). Our 
10.1 Is lo cre.le .n .Inslrumenl which lenerales code 
e. enicienl (bul more enicienUy) .s lh.l which. hu­
man prolrammer would for the tasks we de.1 wI~, and 
lo keep lhe lIreel h.rdware .nd processor dependenl 
p.rla .s small .s possible. This will be achieved by con­
cenlraling such dependencies Inlo the compiler for lhe 
ralher basic DSPL laneuaee. which can be modified for 
new processors (even cuslom-deaiened onea) wilh rea­
sonable enorl. 

7 CONC!.USIONS 
As shown by benchmarks and applicaUons. dlellal 

signal processors are allracliVe for conlrol implemen­
talion due lo lheir compuline speed. Compared to 
some other lypes of processors lhere are some llmill­
tions however. which will parUy be removed with the 
new sicnal procesore expecled In lhe near fulure. It 
has been slressed lhal elTicienl use of DSP for conlrol 
Implemenllllon requires some CACE-tools to assist In 
the preparation of lhe controller before programmine 
il. and in proeramming ilaell. 
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Designing Control Systems 

The design of a control system involves two major steps: (1) the process or plant must be put into a 
mathematical form so that its behavior can be analyzed and evaluated (Le .• a plant model must be derived). 
and (2) an appropriate controller must be designed so that the plant gives the desired response under the 
influence of the control system. Designing a controller requires selecting an appropriate structure and 
specifying performance requirements from the control systems. This introduction gives a brief overview 
of discrete systems. tells how to model a plant and convert it into a discrete mathematical form, and 
describes how to design different types of controllers. Most of the following information can be found in 
those textbooks appearing within the Reference section. The articles that follow this introductory material 
describe several of the commercially-available CAD packages that may be used for designing and simulat­
ing either the controller or the entire control system. 

Discrete Systems 
A system must be represented in its discrete form in orderto be implemented on a DSP or a microprocessor. 
Discrete representation involves two elements. First, the signal is represented by its samples at discrete time 
intervals. These time intervals depend upon the sampling rate of the system. Second. the magnitude of the 
signal and its samples is also represented by discrete magnitude. The resolution of this magnitude depends 
upon the word length of the processing element. Here, only the sampling rate affects our treatment of this 
subject. However, in Part In's introduction, where we are concerned about the actual implementation. the 
effects of magnitude representation on a processor will greatly influence our treatment of that subject. 

z-Transforms: In the continuous time domain, the system is represented with differential equations, and 
the analysis is carried out with Laplace transforms. Similarly, in the discrete time domain, a system is rep­
resented with difference equations, and the analysis is carried out with z-transforms. The z-transform of 
a signal is a representation of that signal as a sequence of samples as shown in Figure 1. Mathematically, 
it is given as a power series in z-n with coefficients equal to the value of that signal or 

X(z) = Z(x(t) = Xo + XtZ-1 + X2Z-2 + ... + xnz-R (I) 

Z represents the z-transform; z-n represents the delay of n samples, where n represents the position (0, 
1,2,··· ,00) of time; xo, Xh X2,···, and xn represent the magnitude of signal x(t) at that time. 

Figure 1. z-Transform 

""".-.--- .""""., ........ - .,.... --
//, : ;-.. ......,. <f""" /, .' 

I : I ----I _.----- I 

• T .• 
:+-+: 

x, lime 

35 



36 

The z-transfonn represents the sampling process in a digital control systems. It converts a continuous signal 
to a discrete signal. The continuous signal can be recovered from the discrete signal as shown in Figure 2 
by using aZOH (zero order hold). The fact that both signals are equivalent allows us to do all our processing 
in the discrete time domain. Once the processing is complete, the signal can be converted back to continuous 
fonn. 

Figure 2. A Continuous Signal Recovered from the Discrete Signal 

/ 
~~~-+~--~~~-T~'~9T~'--~~1-2~T~--+1~5T=-~~1~8=T~nme 

, '/ 
:/ 

One important consideration must be taken into account before the sampling is allowed to take place. 
According to Shannon's theorem, a signal must be sampled at a rate that is twice the highest frequency 
component of the signal. If this rule is not observed, the original signal cannot be recovered. Figure 3 shows 
a sine wave signal x(t) that is superimposed with a higher frequency sine wave. The higher frequency signal 
is giving the exact same samples as the signal x(t) and causing distortion. This effect is known as aliasing. 
To prevent this, low-pass filters known as antialiasing filters are used to filter out high-frequency compo­
nents. Only the frequency of interest passes through. However, antialiasing filters should be used carefully 
in control systems because they introduce phase delay and affect the phase margins of the system. 
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I \ 

Figure 3. A Sine Wave Signal 
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A general representation of any system in the z-domain can, by use of a transfer function, be given by the 
following equation where H(z) denotes the response of the system. 

H(z) = [ y(z) ] = [bo + b.z-· + b:zz-2 + ... + bnz-n ] (2) 
X(z) 1 + a.z-· + a2z-2 + ... + a.z-n 

X(z) represents the z-transform of the input signal, Y(z) represents the z-transform of the output signal. 
a •... an and bo··· bn are coefficients that determine the response of the system. Ifboth the denominator 
and numerator are factorized, the denominator represents the poles of the system and the numerator rep­
resents the zeros of the system. The output of the system is obtained by restating equation (2) as 

Y(z) = - (a.z-I + a2z-2 + ... + anz-n)[y(z)] + (bo + b.z-I + b2z-2 + . . . + bnz-n)[X(z)] 

Since z-I represents the delay of one sample time, the above equation can be restated in the time domain 
as a difference equation given by: 

yen) =- (a.)[y(n - 1)] - (a2)[y(n - 2)] + ... + bo[x(n)] + b.[x(n -1)] + ... (3) 

where yen - 1), yen - 2), x(n), and x(n - 1) represent samples of yet) and x(t) at time intervals of n, n - 1, 
n-2, etc. 

Equation (3) is the standard form of representing systems in the discrete time domain, just as differential 
equations are the standard form of representing systems in the continuous time domain. Equation (3) also 
represents the standard form of implementation on a DSP. 

In classical control, the analysis is frequently carried out with Laplace transforms. It is possible to conven 
directly from the s-domain to the z,-domain. The relationship between s-domain and z-domain is given by 
the following equation: 

z=esT 

where T is the sampling period. However, in practice, several approximations are used to conven from one 
plane to another since an exact transformation is not possible. Table I shows the z-transform of some of 
the functions. Using these relationships, it is possible to carry out the analysis in the s-domain arid transfer 
the results to the z-domain, or vice versa. 

Table 1. z· Transform 

FUNCTION LAPLACE TRANSFORM z-TRANSFORM 

u(l) 1 z - (z-l) s 

I 
1 Tz 
S2 (Z_1)2 

1 Z 
e-<'. -- (z-e-81) s+a 

Discretization Methods for Analog Systems: Different techniques can be used to convert continu­
ous systems into discrete systems. However, a continuous system can only be approximated and can never 
be exactly equivalent. The conversion from the s-domain to the z-domain usually causes some distonion 
in the response and must be considered. 

Step Invariant Method: This technique also known as ZOH (zero order hold) produces a discrete system 
whose step response is the same as the original continuous system at the sampling instants. It assumes that 
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the system is preceded by a ZOH (D/ A converter) and followed by a sampler (AID converter) so that both 
input and output of the resulting system are digital. Both the ZOH and sampler are included in the conver­
sion scheme. The conversion is given by the following equation: 

H(z) = (I -Z-I) Z [L-1 H~S)] (4) 

where Z represents the z-transform, and L -1 represents the inverse Laplace transform. 

This transformation is usually what is required to convert a continuous plant to a discrete form; however, 
it gives unsatisfactory response with controllers and should be avoided when transforming continuous con­
trollers. The ZOH introduces phase lag and distorts the frequency response of the controller. The Laplace 
transform can be split up by using partial fractions and z-transform tables. 

Ramp Invariant Method: In this method, the step input described above is replaced by a ramp input, 
also called a first-order hold method. The ramp invariant conversion is given by the following equation: 

H(z) = [(I_Z-I)2] Z [L-1 H(S)] (5) 
Tz-I S2 

where T is the sampling period. 

The ramp invariant usuaIly gives good results and may be used when converting continuous controllers. 

Matched Pole-Zero: In this technique, the poles of the s-domain are directly mapped into the z-domain 
according to the relationship z = eTs, where T is the sampling period. To equal the number of poles and zeros, 
additional zeros are added at z =-1. The gain ofthe two systems is matched at a critical frequency by choos­
ing an arbitrary gain constant. This method does not take into consideration any aliasing effects. 

Backward Difference: This technique replaces the derivative of a function by the difference between 
present and previous samples and is given by 

dy y(n)-y(n-l) 
dt= T 
where T is the sampling period. 

The transformation can also be done by using the following mapping: 

I-z-I 
s=--

T 

This transformation maps the left half of the s-plane to a circle inside the unit circle of the z-plane. Hence, 
stable analog controIlers also result in stable digital equivalents. In fact, some unstable analog systems give 
stable digital equivalents. Thejco axis in the s-plane does not map to the unit circle in the z-plane, thus de­
grading the frequency response. Using a higher sampling frequency gives a better approximation. Figure 4 
shows the mapping from the s-plane to the z-plane for a backward difference approximation. 

Figure 4. Mapping from s·Plane to z·Plane for Backward Difference Transformation 
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Bilinear Transformation: This technique, also called the Tustin transfonnation or the trapezoidal ap­
proximation, uses the relationship 

s = (~)(::~) (6) 

to transform an s-domain function into the z-domain. The left half of the s-plane band limited by the 
sampling frequency, fs, is mapped into the unit circle in the z-plane. Thus, it is important to select as a high 
a sampling frequency as possible so that all poles are included. Although the frequency response of the 
continuous systems is replicated in the z-domain, it warps the frequency response at the critical frequencies 
of the system. To overcome the problem for systems like notch filters, the critical frequencies of the original 
s-domain are prewarped so that they end up in the z-domain system where they belong. The critical 
frequency COo is prewarped to another frequency by the transfonnation, 

w = (~)[ tan(OJ;T)] 
where T is the sampling period. 

This is the most commonly used method and always generates stable poles in the z-domain if the original 
s-plane poles are stable. Figure 5 shows the mapping from the s-plane to the z-domain for the bilinear trans­
fonnation. 

Figure S. Bilinear Mapping from s-Plane to z-Plane for Bilinear Transformation 
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Other Methods: These are some other methods for transfonnation: 

• Forward difference rectangular 

• Matched pole-zero mapping 

• Impulse invariant 

z-Plane 

• 
They are less commonly used than the ones given previously and are not discussed here. However, different 
transfonnations result in different behavior and may be suitable for some structures. 

Behavior of Poles in z-Domain: Conversion techniques change an existing analog design into a digital 
design. To ensure successful implementation of the control system design, some knowledge of the behavior 
of the poles in the z-domain is essential. As it is obvious from the mapping schemes above, the left half of 
the s-plane maps into the unit circle on the z-plane. This is the region of stability in the z-plane. Any poles 
(real or imaginary) located outside the unit circle are unstable and have an unbounded response. Poles 
located inside the unit circle give a stable response. Poles that lie on the unit circle provide oscillatory 
behavior. This corresponds to the joo axis on the s-plane. As poles move toward the origin, their response 
decays at a faster rate. Zeroes may be located anywhere in the z-plane; however, as they move from the 
origin towards z = I, they increase the overshoot of the system. If zeroes are located outside the unit circle, 
such a system is called a nonminimum phase system. Figure 6 shows the different pole locations and their 
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corresponding responses both inside and outside of the unit circle. One thing should be remembered; that 
unlike the s-plane, the mapping in z-plane is not unique. It is dependent upon the sampling frequency used 
for the discretization technique. A different sampling frequency gives a different mapping in the z-plane. 

Figure 6. Response with DitTerent Pole Locations in the z-Domain 

~ ~ 

Plant Modelling 
The first part of designing any control system is to convert the plant into its mathematical form orto identify 
its parameters. The following example descri~s the derivation of a mathematical model for a plant. 

A DC servo motor is used to represent the plant, and a model is developed for the motor. The motor is an 
analog device, and the given electrical and mechanical characteristics describe its behavior in the continu­
ous time form. This model must be transferred into a discrete form or into the z-domain for use with a digital 
controller. The zero order hold method (ZOH) is used to transform the model into a discrete form. 

In general, the electrical characteristics of a DC motor are given by 

L di+Ri=V_emf 
dt 

(7) 



where 

L = inductance of motor 
R = resistance 
V = applied voltage 

= current 
di = instantaneous current 
dt 

emf = back emf = Ke iJ 
where Ke = emf constant 

iJ = velocity 

The mechanical characteristics are given by 

1mB +BiJ + K9 = TL -1LB 
where 

1m = motor interia 

(J = displacement 

(J' dO I' = dt = ve OClty 

d2(J 
6 = dt2 = acceleration 

K = stiffness constant 

B = damping constant 

1L = load inertia 

T L = load torque = K,i 

K, = torque constant 

i = current 

Figure 7 shows an equivalent electrical and mechanical model of the DC servo motor, 

Figure 7. A Representation of a DC Servo Motor Model 

+ 

v 

(8) 
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The motor is a Pittman model 94120316. It has the following parameters: 

R =6.40hm 
Jm = 1.54 x 10 -6 kg-m2 

Kt = 0.0207 N-m/A 
Ke = 0.0206 volt/(radls) 

L B 
The electrical time constant is given by R ' and the mechanical time constant is given by -J • In practice, 
LB' 
-«-
R J 

Electrical steady-state conditions are reached quickly. Assuming steady-state current is reached, equation 
(7) is reduced to 

Ri = V -emf = V-K.6 

Combining (8) and the above equation results in 

'" (V-Ke8) (Jm + h)6 + B6 + K(J = K, --R-

Assuming both Jm + JL = J = system inertia and K = 0 = stiffness constant, the system equation becomes 

6 + + ( B + K~ Ke)8 = + (i) V 

The Laplace transform of (9) is 

(S2 + as>[6(s)j = b[U(s)j 

where 

a=+(B+K~K.) 

b =+(!,) 

If 

U(s) = V(s) 

then 

6(s) b 
V(s) = s(s + a) 

(9) 

(10) 

Equation (10) is the final form of the transfer function of the motor in continuous form. This must be con­
verted into a discrete form. The zero order hold (ZOH) transformation is used. 

Zero order hold states that 

0(,) - ( 1 - .-') { z[ L -, ~(.) 1 } (11) 



Then, 

G(s) b b 
-s- = s[s(s + a)] = S2(S + a) 

Expanding as partial fractions, the above can be expressed as 

G(s) Al A2 A3 
-- =-+-+--

s s S2 S + a 

Solving for AI, A2, and A3 gives 

G(s) (- ~) (~) (~) 
-- =-- + -- + --

s S S2 s+a 

When mUltiplying by (1 - z -I) and using tables to derive the z-transform, 

{ ~ [(eaT -1) + aT]z-'} + {~ [(I-eaT) - (aTe-<lT )]r2} 
G(z) = a a 

1 - [(1 +e .... T)z-l] + e .... Tz-2 

(12) 

where T = sampling period. 

Substituting values for a, b, and T of 

a = 1.116 
b=53.906 
T=O.OOI 

the transfer function of the motor becomes 

G (z) = 9(z) = (0.2694rl + 0.2693r2 ) IQ4 K 
m V(s) I _ I.999r' + 0.999 B 

where Kg is a gain constant. 

By introducing a numerator gain factor, the above equation can be rewritten 

G (z) = 9(z) = (0.2694Z-1 + 0.2693r2 )Km 
m V(s) 1 - I.999z-' + 0.999 

(13) 

where Km is a numerator gain factor. 

Digital Controller Design 

The next step in designing a digital control system is to design the controller. Before designing the control­
ler, an appropriate structure for the controller must be selected. This will be influenced by the performance 
requirements of the system and the processing capability of the processor. The controller may be designed 
in the continuous domain or s-domain and then converted into discrete form by using one of the previously 
described discretization methods. Alternatively, the entire design may be carried out in the discrete domain 
or z-dorilain. It is assumed here that the design is carried out in the discrete domain. Here, an overview of 
different types of control algorithms is given and designing/implementing considerations for selected con-
trollers are discussed. . 
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Control Algorithms: The first step in designing the controller is to select an appropriate algorithm or 
controller structure. The processing burden imposed upon the controller is directly dependent upon the 
complexity and type of controller structure. 

Compensation Techniques: Compensation techniques are one of the most commonly used control tech­
niques. In this technique, the controller adds poles and zeros to get a desired system response. If the low­
frequency response is modified, the controller is known as a lag compensator; if the high-frequency response 
is modified, it is known as a lead compensator. For a continuous control system, the controller is designed 
in the s-domain by implementing some of the well-known methods such as root locus, Bode plots, and 
Nyquist plots. The analog or s-domain design is then transferred into a discrete form or z-domain via trans­
formation technique. Alternatively, the compensator can be designed directly In the z-domain by using 
z-domain frequency response methods or the z-domain root locus method. Compensation techniques allow 
for somewh~t accurate modification to system behavior. 

PID: The P (proportional), I (integral), and D (derivative) is a very commonly used analog control tech­
nique. In a PID controller, terms proportional to the error term, its integral, and its derivative are summed 
to achieve the controller output. A PID controller may be designed in the s-domain and then transferred into 
the z-domain by using one of the transformation methods. Alternatively, the PIO algorithm is converted 
into a discrete form, and the design is carried out entirely in the z-domain. PID is probably the most com­
monly used algorithm. PID controllers are very robust, although the design of coefficients is somewhat 
arbitrary. 

Deadbeat: A deadbeat algorithm is used when a quick settling time is required. Deadbeat design is carried 
out entirely in the z-domain. A deadbeat controller replaces the poles of the system with poles at the origin 
of z-domain. 

State Space Model: In a state space model, a complete representation ofthe system is made in matrix 
form. This is accomplished by identifying and developing the relationship between the different states or 
variables of the plant. An appropriate feedback gain can be chosen to place the poles of the system at any 
desired location in the z-domain. State controllers are used to control multiple variables or states. These 
controllers are not implemented directly, because it may not be possible to measure alLstates. They are usu­
ally used in conjunction with observers. State space controllers allow precise control of system behavior. 

Observer Model: Often in control systems, some of the states of the system are not available for measure­
ment. An observer model or an estimator can be used to estimate the unknown states from the measurement 
of some of the known states. The estimated states along with an appropriate feedback gain can be used to 
complete the control loop and place the poles at any desired location. Observers are typically used in con­
junction with state controllers when access to all state variables is not available. 

Optimal Control: Optimal control synthesis is used when a specific performance or cost criterion (time 
and energy) must be minimized. Using the given criterion or function, an appropriate control law is derived, 
which is then implemented with a compensator (LQR - Linear Quadratic Regulator) or controller. 

Kalman Filter: An observer model is used in a system where an exact measurement of some states is 
available. However, in stochastic systems, the presence of noise or uncertainty makes it impossible to make 
an exact measurement. A Kalman filter is an observer model in a noisy or stochastic system. 

Adaptive Control: Adaptive control is used in systems in which there is insufficient information about 
the plant parameters, making it impossible to derive a plant model. It is also used in systems where plant 
parameters or plant models change overtime, making the controller unstable. An adaptive controller tracks 
realtime changes in the plant by redesigning the controller to give optimum control system. 



The next step in designing the controller is to specify the perfonnance requirements of the system. 

Performance Specifications: Perfonnance requirements of the system dictate selection and design 
goals of an appropriate controller structure. The specifications can be given in tenns of the step (ortransient) 
response, the frequency response, or another criteria. 

Step Response: For the step or transient response as shown in Figure 8, the controller requirements are 
given in tenns of the following specifications: 

• Steady-state accuracy 

• Rise time 

• Overshoot 
• Settling time 

The steady-state error is defined as the deviation at steady-state of the actual system response from the de­
sired system response. For a discrete system (i.e., an integrator), the steady-state error becomes 0 ifGH(z) 
has at least one pole at z = I, where G(z) is the plant transfer function, and H(z) is the controller transfer 
function. For a ramp input, the steady-state error becomes 0 it GH(z) has double pole at z = 1. For a unit 
acceleration input, the steady-state error becomes 0 if GH(z) has a triple pole at z = 1. 

Figure 8. Performance Specification for the Step or Transient Response 
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The rise time, overshoot, and settling time can be specified in lenns of the damping ratio ~ and the natural 
frequency COn. To carry out the design in the digital domain, these perfonnance requirements must be 
mapped to pole locations in the z-plane . 

. The rise time is specified as when the output reaches 90% of its final value. 
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The settling time is specified as when the output settles and remains within the desired range of its final 
output. This is specified as an absolute percentage of the final value usually 2%. It is given by: 

4.6 
t.=-

{;cvn 

This implies that 

~ 4.6 cv ;::­
n t. 

The overshoot is defined as the maximum deviation in percentage of the systems response from the desired 
value and is given by: 

Mp = looexp(- ~) 
V 1_{;2 

A constant damping ratio, zeta, in the s-plane for 0 < ~ < I, is mapped as a logarithmic spiral in the z-plane. 
Ifthe poles are specified as having a'damping ratio of not less than ~), then the poles must lie within the 
region bounded by the logarithmic spiral corresponding to ~ = ~ 1. For a desirdble second-order system, the 
damping rate must be between 0.4 and 0.8. Small values of ~, such as ~ < 0.4, yield excessive overshoot 

and large values, such as ~ > 0.8, make the response sluggish. 

A constant natural frequency COn in the s-plane maps as a straight line emanating from the origin. Figure 9 
shows the loci of constant ~ and line of constant con in the unit circle in the z-plane. 
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Figure 9. Root Locus of Constants ~ and COn 
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Frequency Response: If the performance specifications are specified in terms of the frequency response, 
they are given in terms of phase margin, gain margin, and cross-over frequency roc as shown in Figure 10 
-- essentially specifying the bandwidth of the closed-loop system. 

The cross-over frequency roc is defined as the frequency where the phase angle. LGH(jro). of an open-loop 
system equals -180 o. 

The gain margin is defined as the magnitude. IGH(jCl)I. (in decihels) that lie~ both below 0 db and at the 
cross-over frequency. 

The phase margin is defined as the phase. LGH(iro). (in deg,.ees) that lies both above -180 ° and at the zero 
gain frequency. 

To directly use frequency response methods. the z-plane is mapped into the w-plane by using the inverse 
bilinear transformation given by 

w=fC::) 
The w-plane mathematics is similar to the s-plane mathematics. The controller is transformed to the 
w-plane, and most of the classical techniques like Bode analysis can be carried out in the w-plane. Once 
the compensator is designed in the w-plane. it can be transformed back into the z-plane. 

Figure 10. Frequency Response Curves 
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Additional Criteria/or Performance Specification: Some of the other performance requirements can 
be specified as: 

• Disturbance reje~tion 

• Control effort 
• Sensitivity to parameter changes 

One of the primary goals of a control system is to reject disturbances while maintaining stability under a 
wide variety of operating conditions. In fact. without disturbances, there would be no need for closed­
loop control systems. The feedback gains in a control loop act to minimize disturbances. For example, if 
a disturbance is constant, then integral action will cause the steady-state error to be zero. However, if the 
disturbance is of a different nature, then additional steps may have to be taken. It is important to take into 
account the source of the disturbance and make the preceding gain large. If the disturbance is outside the 
control loop and affects the measurement or reference input, then a feed forward path can minimize the 
disturbance. If the disturbance is inside the loop and affects the plant itself. then the loop gain must be 
made large. 

Sensitivity to parameter changes can be an important consideration. especially if the plant has slow-varying 
parameters due to drift. Minimizing these effects is similar to handling disturbances. However, some 
controller structures like deadbeat controllers that perform pole-zero cancellations are more sensitive to 
parameter variations and should be avoided. If parameter variation is an extremely critical consideration, 
then adaptive control should be used. 

Sometimes it is necessary to minimize either the control effort or other parameter(s) in the system. Optimal 
control techniques can be used to determine a control law and do pole placement. They are discussed in sub­
section Optimal Control and Estimation. In general, a system with either minimum response or a high 
bandwidth requires higher control efforts. 

PID Controller: This topic describes the design and implementation of a PIO controller. Figure 11 
shows a block diagram of a control system using the PID controller. PID is a commonly used technique in 
classical control. In designing controllers, it is often found that just minimizing a term proportional to the 
error is not sufficient. The inclusion of the integral of the error term will reduce the steady-state error to 

Figure 11. Block Diagram of a Control System Using PID Controller 
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zero because it represents the accumulated error. To further improve stability and plant dynamics, a differ­
ential of the error term is introduced. This term represents the error rate. A PID controller that includes all 
three terms can give very good results. It can be used in its discrete form with digital control systems. If 
both low-frequency and high-frequency responses are modified, this controller can be viewed as a special 
lead-lag compensator. 

Controller Design: The trapezoidal approximation is used for conversion of PID into discrete form. 
Usually, the tra.pezoidal approximation is used for the integral term, and the backward difference is used 
for the differential term. However, when the design is carried out in the z-domain, the approximation tech­
niques are not important. The design is carried out as a compensator with a pole at z= I to ensure integral 
behavior. Hence, the following design is done directly in the z-domain using pole placement techniques. 

The analog PID algorithm is given by: 

u(t) = Kpe(t) + K j f edt + K.t de 
dt 

where 

Kp, Kj, and K.t = PID constants 

u(t) = output of controller 

e(t) = error signal 

(14) 

In a trapezoidal approximation, also called Tustin transformation, the area of the integral fedt is given by 
the summation of small trapezoids, see Figure 12. 

The integral fedt can also be solved by taking the Laplace transform of equation (14) and substituting for 
the s. The Laplace transform of (14) gives 

U(s) = (Kp + sK.t+ ~j)[E(S)] 

.. 
'C 
:::I 
:t: a. 
E 
<I: 

Figure 12. Trapezoidal Approximation 
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Using the Tustin approximation or substituting for s where 

s=(~)(::~) 
After substitution and solving where Z-I represents a delay of one sample time, 

u(n) = u(n- 2) + Kp[c(n)-c(n-2)] + C~ )[c(n)- 2e(n-1} +c(n-2)] + (K~T ) [e(n) + 2e(n-\) +c(n-2)] 

Combining elements, the above equation can be restated as 

u(n) = u(n - 2) + KI[e(n)] + K2[e(n -1)] + K3[e(n - 2)J 

where 

KI = Tl" + 2K.! + KiT 
.~ T . 2 

K, = K-T _ 4K.! 
- I T 

2K.! KIT 
K3 =--:r -Kp+T 

U(n) = nth sample of output of controller 

. u(n-2) = (n-2)nd sample of output. 

(15) 

This is the final form of the PID controller. At this point, the controller coefficients must be determined. 
The PID controller can be designed by determining Kp, K;, and K.!, solving K1, K2, and Kl , and substituting 
into equation (15). Alternatively, the design can be carried out in the z-domain; and, constants K .. K2, and 
K3 can be directly determined. 

The gain constants K .. K2, and K3 are designed by selecting the poles for the system transfer function (i.e., 
controller + plant). The dominant poles are selected by choosing a desired characteristic equation. The rest 
of the poles can be selected by placing them near the origin. These polar locations are chosen to ensure sys­
tem stability and a desired system response. Note that pole locations can also be chosen by using both the 
step response performance criteria and the root locus from the z-plane's unit circle in Figure 9. However, 
some fine-tuning may be necessary to achieve an optimum response from the system. As the poles move 
toward the unit circle, the system response speed decreases while the overshoot increases, and the system 
may become unstable if the poles are selected just inside or outside of the unit circle's boundary. For exam­
ple, Figure 13, Figure 14, and Figure 15 show step-response curves of a PID controller being influenced 
by the system's poles. The transfer function for the controller can be stated as 

G ( ) - KI + K2Z-1 + K3Z-2 (16) 
c z - l_z-2 

The transfer function of the plant is given by 

G (z) = 0.2694z + 0.2693 
p Z2 - 1.999z + 0.999 

The overall system transfer function is expressed as 

G( ) _ [Gp(z)][Gc(z)] 

s z - I + [Gp(z)][Gc(z)] 
(17) 
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Figure 13. Position Step Response of a PID Controller 
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Figure 14. Position Step Response of a PID Controller 
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Figure 15. Position Step Response of a PID Controller 
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The denominator of the system transfer function provides us the poles of the overall system. The stability 
and robustness of the system depend upon the location of these poles in the z-domain. Assuming pole loca­
tions of 0.96, 0.95, 0.20, and 0.15, a desired characteristic equation is obtained. To solve for values of Kio 
K2, and K3, the coefficients of powers of z for the denominator of the system transfer function are compared 
with the desired polynomial. Appendix I shows the design carried out by usit:lg PC-Matlab. The zero order 
hold represents the function of the D/Aconverter; the sampler represents the function of the AID converter. 
The closed-loop system pole locations are input to the program, and the coefficients Kio K2, and Kjare cal­
culated to ensure desired pole locations. One of the pole locations is chosen at z= I to ensure integral action. 
Solving for Kio K2, and K3 gives 

KI 1.4795 

K2 -2.845 
K3 1.3636 

Our final algorithm comes out to: 

u(n) = u(n-2) + 1.4795[e(n)] -2.8405[e(n-I)] + 1.3636[e(n-2)] (18) 

Implementation Considerations: The PID design above has used the traditional or textbook definition. 
'In practice, a number of refinements are made to the standard form to give'it better behavior in some cases. 
Although designing directly in the z-domain avoids some of the problems, several concerns are discussed 
here. 

One of the major problems faced in implementation of PID controllers is integral windup. A large change 
in the error signal can cause the integral to build up a large gain and make the actuator saturate. This essen­
tialJy means that the control loop is running open. Even after the error goes to zero, the controller continues 
to integrate because of the integral action; consequently, the integral, term could become very large. The 
error signal must change sign long before the controller normalizes; otherwise. the integral windup could 
cause large transients. 

Several options can minimize the effect of integral windup. One possibility is to build an extra feedback 
loop around the actuator and control the error between the controller output and the actuato~output. Another 
possibility is to stop the integral action when the output saturates. This can be done very easily in the proces­
sor by detecting output saturation (using saturation mode in TMS320) and using another set of coefficients 
that do not include integral action. Also, it is good practice to limit the contribution of the integral term be­
tween 10 %. and 20 % of the control effort. 

Another concern is the behavior of the derivative term. A large number of controllers are implemented as 
PI controJlers to avoid derivative action. Differentiation enhances noise, and derivative term can contribute 
to high-frequency measurement noise. It is necessary to limit the derivative gain at high frequency by plac­
ing a pole in the derivative term given by 

1 

1 + SKp 
N 

where N is in the range of 3 - 10. 

The derivative term also wiII amplify the noise for any sudden changes in the set point. This is known as 
the derivative kick. For this reason, the set point is sometimes fed only to the integral term. 

One of the disadVantages of carrying out the design in the discrete domain is that the PID gains are not ex­
plicit, and no direct control over integral, derivative, and proportional gains is available. However, pole 



placement design techniques give more control over the frequency response and treat the controller as a 
standard compensator. Integral action is ensured by placing a pole at :z=l. Actually. the PID controller is 
a special case of:l phase lag-lead compensator. The PO control action affects the high-frequency region by 
increasing the phase-lead angle. It improves system stability and thus increases the speed of response. The 
PI control action affects the low-frequency portion by increasing the low-frequency gain and reducing the 
steady-state error. 

Deadbeat Controller: One of the desired characteristics in a control system design is a quick settling 
time. In al'l analog controller, the system output theoretically uses an infinite time to settle exactly to the 
reference input signal. A deadbeat controller is used when a quick or finite settling time is required. A dead­
beat controller will reach a steady-state in n+ I samples where n is the order of the controller. Essentially, 
a deadbeat controller cancels all the poles of the system and replaces them with poles at the origin. Another 
advantage of deadbeat controllers is that they require few calculations. Therefore, they can be used in sys­
tems where synthesis must be repeated frequently (e.g., adaptive control systems). 

Controller Design: The transfer function of a deadbeat controller is given by 

G _ Po + PIZ-I + P2Z-2 + ••• + PnZ-n 
db - q" + qlZ-1 + q~Z-2 + ... + qnZ·n 

(19) 

The order n of the controller transfer function is the same as the order of the plant transfer function. or n=2. 
The deadbeat controller will reach final state in n+ I or three sample time intervals. 

To design the deadbeat controller. its coefficients p" ... Po and q() ... qo must be found from the parameters 
of the motor. 

The general form of a plant (Le., motor) is given by 

G (z) = b() + bIz-I + b~z-2 + ... + bnz-n 
p 110 + UIZ-I + a2z-2 + ... + BoZ-n 

If R(z) is the reference input, the coefficients Pn and qn are 
r r 

p ----
o - L bi - bo + bl + b2 + ... 

Pn =anPo 

and 

qo = r- boPo 
ql =-bIPo 
q2=-b2Po 
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The transfer function of the DC selVO motor is 

G (z) = O.2694:c1 + O.2693:c2 

p 1 - 1.999z-1 + O.999z-2 

Since the plant transfer function is a second-order system. the deadbeat controller i~ also a second-order 
system (n = 2). 

From the plant transfer function. 

80 = I, al = -1.999, 

bo = 0, b l = 0.2694, 

a2 = 0.999 

b2 = 0.2693 

The numerator and denominatorofGdb(Z) is divided by r. Thus, rdisappears from the calculations of coeffi­
cients. 

Solving for the coefficients yields 
1 

Po = 0.1566 
bo + bl + b2 

PI = alPo = -0.3129 

P2 = a2PO = 0.1564 

qo= 1- boPo = 1 
r 

q, =-b,po =-0.4218 

q2 = -b2Po = -0.4216 

The controller becomes 

G (z) = 0.1566 - 0.3129z-' + 0.1564:c2 

db 1 _ 0.4218z ' _ 0.4216z-2 

or, in time domain, it can be represented as 

(20) 

u(n) = 0.1566[u(n-l)] + 0.4216[u(n-2)] + 0.1566[e(n)] - 0.3129[e(n-I)] + 0.1564[e(n-2)] (21) 

Appendix 2 shows a PC-Matlab program that designs and simulates a deadbeat controller. Figure 16, 
Figure 17, and Figure 18 show the response of a deadbeat controller with different values of sampling rates 
and DC gain. 

Implementation Considerations: Deadbeat controllers compensate for the poles of the system and place 
all the poles of the closed-loop system at the origin or z=O; therefore, they should not be applied to unstable 
systems with poles outside the unit circle or with poles in the vicinity of the unit circle in the z-plane. Simi­
larly, zeroes outside the unit circle should not be cancelled with unsrdble poles. Thus, deadbeat controllers 
should be used only with stable plants or processes to prevent instability. Since deadbeat controllers do 
pole-zero cancellation, they are also sensitive to parameter variations. Deadbeat controllers can also be 
viewed as a special case of pole placement where all the poles are placed at the origin. 

The only design parameter in deadbeat controllers is the sampling period; therefore, it is important to care;­
fully choose the sampling period when using deadbeat control. Selection of the sampling period influences 
the magnitude of the control signal; the magnitude of the control signal increases with a decreasing sam­
pling period. This can lead to a large amount of gain and then to actuator saturation. This is one of the main 
reasons why deadbeat controllers are not commonly used. 



Figure 16. Position Step Response of a Deadbeat Controller 
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Figure 17. Position Step Response of a Deadbeat Controller 
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Figure 18. Position Step Response of a Deadbeat Controller 
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Deadbeat controllers are designed to optimize rise and settling time. They trade overshoot for rise time, so 
they may exhibit large overshoot. Overshoot can be reduced by increasing the settling time. Besides increas­
ing the sampling period, there are two ways to reduce the overshoot. The first method is to design an 
extended order deadbeat controller that can specify either u(O) or the initial control action. Since u(O) has 
the largest magnitude, this controls the overshoot. An alternate method is to divide the r(t) or the desired 
final state into two or three sublevels and to reach final steady-state in [2(n+I)] or [3(n+I)] sample times 
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instead of (n+ 1") sample times. This essentially has the same effect as increasing the sample time. However, 
the final overshoot can be more precisely controlled depending upon how r(t) is subdivided. 

State Space Model: State space formulation is one of the fundamental concepts of modem control 
theory. Most modem control systems are designed using a state space model approach. A state space model 
allows the representation of a complete system, whether single variable or multiple input/output. The state 
controller is able to simultaneously control all of the specified states or variables of that system. This type 
of controller lends itself naturally to solutions with computers and can be used to handle certain types of 
nonlinear and time-varying systems. 

In a state space model, the system is described by a number offirst order equations. An analog or continuous 
data system is represented by a set of first-order differential equations, caIled state equations. For a digital 
or discrete data system, the state equations are first-order difference equations. These are then combined 
into vector-matrix equations. The use of vectors and matrices greatly simplifies the mathematical descrip­
tion of the system. 

State Controller Design: In a state controIler, feedback gains are provided to all of the states or variables 
(i.e., position, velocity, torque) that are included in the state space model. These feedback gains can be either 
constant or time-varying. Pole placement techniques are used to place all the poles of the closed-loop sys­
tems at the selected locations and to calculate the feedback gains, thus obtaining the desired response. This 
analysis assumes that all the states are being measured and are known. In practice, this is unrealistic. Hence, 
the analysis is carried out in two phases. In the first phase, it is assumed that all the states are available and 
that an appropriate controIler will be designed; the second phase shows the use of estimators. The estimator 
is used to reconstruct all the states of the system from measurement of some of the states. For the analysis 
below, it does not matter whether the states are being measured with sensors or are being reconstructed with 
estimators. 

In general, the state space description of system is given by these equations: 

x(n+l) = A [x(n)] + B [u(n)] 

y(n) = C[x(n)] + D[u(n)] 

The actual controller is given by the following equation: 

u(n) = - {K[x(n)]} 

where x(n+l), x(n), A, B, C, D, and K are matrices described as follows. 

x(n), x(n+ 1) - state vectors describe the system states 
A - state transition matrix describes plant behavior 

B - input matrix describes affects of inputs 
C - output matrix describes which states are measured 
D - direct link matrix describes feedforward gains 
K - feedback matrix describes feedback gains 
u - control vector describes control inputs 
y - output vector describes measure~ents of plant output 

(22) 

(23) 

The state space model for a DC motor can be derived from the electrical and mechanical characteristics of 
the motor. The mechanical characteristics are given by 

Imij + DB + KO = TL -JJj 



The electrical characteristics are given by 

L di +Ri =V-emf 
dt 

Simplifying and combining above two equations yields 

6=bu-a6 

a=(+)(B + ~K.) 

b=(+)(~') 
u = V 

K= 0 

Assuming that the states are described as 

x I (J for position 

X2 XI = iJ for velocity 

X2 6 
The state space model can be defined as 

(24) 

(25) 

(26) 

Combining (25) and (26) in a matrix form. the model for a continuous data system can now be defined as 

(27) 

Equation (27) is a set of first-order differential equations and describes the system in a continuous data form. 
A conversion to a set of difference equations is necessary for use in a discrete data system. The discrete form 
is given by equation (28). The derivation of this is fairly involved and not presented here. However. if the 
values of a and b are substituted in equation above. the discrete equivalent can be found by using PC­
Matlab. The general form of the discrete state space model is given by: 

where 

T = sampling interval 

xl(n) = position at time interval n 

x2(n) = velocity at time interval n+ I 

(28) 

57 



<,58 

Using the PC-Matlab function given below and substituting values for a, b. and T. we can obtain the discrete 
equivalent. 

Using czd(aa,bb) = A,B,C,D and the given values for its parameters, we find the discrete equivalent of the 
model as: 

[ 
x)(n+l) ] [I 0.041] [ x)(n) '] 

x2(n+ I) 0 0.219 x2(n) 

+ [
< 0.039]< < 

87.9 u(n) 

0.78 (29) 

The design problem is to find elements offeedback gain matrix K(k h k2 •••• ) so that the closed-loop system 
has the desired response. 

After substituting (23) for u(n). equation (22) can be restated as 

x(n+l) = A[x(n)] - B{K[x(n)]) 

or 

x(n+ I) = (A - BK)[x(n)] (30) 

Equation (30) describes the closed-loop state model. The behavior of the closed loop is determined by solv­
ing of the ~haracteristic equation given by 

IzI - A + BKI = 0 

Solving this gives an equation with unknowns kl and k2 (elements ofK). kl and k2 can be solved by compar­
ing coefficients with the polynomial with desired pole locations (in other words, if pole locations for the 
actual controller are chosen as 0.90 and 0.95, the characteristic polynomial is given by Z2- 1.85z + 0.855). 
kl and k2 will be found again by using PC-Matlab. The function PLACE, given pole locations r, will solve 
for kl and k2. Using the following command, 

K = PLACE(A,B,r) 

we obtain the following values 

kl =0.089 

k2 = 0.001 

The state controller is then implemented as 

u(n) = - 0.089[xl(n)] - 0.001 [x2(n)] (31) 

Implementation Considerations: See Implementation Considerations for the observer model on 
page 63. 

Observer Model: The concept of being observable is another fundamental idea of modem control 
,theory. An observer model.is an estimate of all the states of a plant derived from measurements of some 
of the oUfputs (for instance, states such as velocity or current can be derived from measurement of displace­
ment). Essentially, it reconstructs the state by simulating in realtime the behavior of the system and then 
compares the results to the measurements. In some cases, design of this tyPe may be necessary if one of 
the states that is needed for the controller is not measurable. In other cases, use of an observer can reduce 
the number of sensors required or allow lower-cost sensors to be used. Figure 19 shows the block diagram 
of a state controller and an estimator. 



Figure 19. State ControllerlEstimator 
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Observer Model and Estimator Designs: The observer model is described by 

x(n + I) = A[x(n)] + B[u(n)] + L[y(n)-Cx(n)] 

where 

y(n)-Cx(n) 

x(n) = 
C 
L 

estimation error 
estimated states 
[I 0] for position mea~urement 
observer gain matrix 

Equation (32) can be rearranged in the form of 

x(n + 1) = (A- LC)fx(n)j + B[u(n)] + L[y(n)] 

Substituting for u(n), the equation can be restated as 

x(n + 1) = (A - BK - LC)[x(n)] + L[y(n)] 

yen) 

(32) 

(33) 

According to the principle of separation, the controller dynamics can be separated from the observer 
dynamics, and both can then be designed independently. The controller dynamics are determined by the 
characteristic equation given by 

IzI-A-BKI 

The estimator dynamics are given by this characteristic equation: 

IzI-A-LCI 
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The estimator design is developed like the controller design in the previous paragraphs; that is, gains are 
designed for the estimator matrix L (i.e., II, b). II and b are found by selecting the poles of the observer 
to be slightly faster than the system to allow quicker convergence. If the poles are placed at:z=O, the ob­
server is then referred to as a deadbeat observer. 

Solving the equation IzI - A - Lei provides an equation in term of unknowns II and h. Selecting desired 
pole locations gives a characteristic polynomial. The poles of the controller are given by 

Zh Z2 = 0.9, 0.95 

Using slightly faster poles for the observer and placing them at 

Zh Z2 = 0.4, 0.5 gives the characteristic polynomial as 

z2 - 0.9z - 0.20 

II and b were found by using the PLACE function of PC-Mat lab given pole location I, L = PLACE(A' ,c' ,I), 

11 =0.79 

12 =2.95 

Appendix 3 shows the complete listing of the PC-Matlab program. The observer model is 

[ 
Xt(n+1)] 

x2(n+1) 

[ 
1.07 0.041] [Xt(n)] + [ 2.8] + [ 0.79] 

--{).09 0.219 x2(n) 68.5 u(n) 2.95 y(n) 

(34) 

Figure 20 (a and b), Figure 21 (a and b), Figure 22 (a and b), and Figure 23 (a and b), show the response 
of a state controller and an estimator for various pole locations. 

Transfer Function Form: The observer and the state controller can be implemented by using equation 
(34), or the mathematics can be further simplified by combining some of the matrices and obtaining an 
equivalent transfer function. This is possible only for a SISO (single-input/single-output); 

The control law given by (31) is assumed. and the state controIlerdesigned earlier will be used. The control­
ler is given by 

u(n) = - K[x(n)] 

Taking the z-transform of equation (33) 

z[x(z)] = (A- BK- LC)[x(z)] + L[y(z)] 

or 

x(z) == (zI - A + BK + LC)"lL[y(z)] 

(35) 

(36) 

Taking the z-transform of equation (35) and substituting (36), the controller/observer transfer function can 
be stated as 

~~:~ = - K(zI - A + BK + LC)"IL (37) 



Figure 20. Step Response and Control Effort of the State Controller/Estimator 

0.9 

0.8 

0.7 

g 0.6 

~ 0.5 
o 
0. 0.4 

0.3 

0.2 

0.1 

-' 

.. I... .. .. 

... ... ,-

20 40 

a) Step Response 

, .. .. .. .. 

-' - _ _ l 
.. .. .. I ... 

, .. ... ... ... 

.. .. .. .. , 

60 80 100 
Time In lISamples 

, , .. .. ... ... 

- Actual Position 
- - Estimated Position 

Pole Locations 
z, = 0.95 
Z2 = 0.90 

120 140 160 

f~ E;..;...:: ..:...~ ..:...-.;..-__ :: .;;..-.;;..-..... :: __ :b) ___ co __ ntro_~ I_~ffo_-rt_;_-: _--_-_-:-! -_-_-_;_: -------tj 
-50 0 20 40 60 80 100 120 140 160 

Time In lISamples 

Figure 21. Step Response and Control Effort of the State Controller/Estimator 
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Figure 22. Step Response and Control Effort of the State ControllerlEstimator 
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Figure 23. Step Response and Control Effort of the State Controller/Estimator 
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Substituting values of A, B, L, C, and K and solving (37), we obtain 

G(z) = U(z) 0.OO8z-1 + 1.388z-2 

Y(z) 1- 0.95z-1 + 0.12z-2 
(38) 

where 

A = [; 0.041 ] 

0.219 

[ 
2.81 ] 

68.56 
B 

C [I OJ 
K [0.089 0.001 J 
Transferring (38) in the time domain, 

u(n) = 0.95[u(n-l)] - 0.12[u(n-2)] + O.OO8[y(n-I)] + 1.388[y(n-2)] (39) 

Equation (39) is the final form of the state controller plus observer model in a transfer function form. How­
ever, this form is not commonly used because it loses insight into the estimator dynamics. 

State Controller and Estimator with Reference Input: The controller design in the previous topic was 
done assuming no reference inputs or commands. Instead, the problem deals with driving all the states to 
zero. This is known as a regulator application. However, there are cases when the state controller may be 
required to follow a reference commancl r(n). Such a system is known as a servo system. 

The general description of a state controller and estimator with reference input can be stated as 

x(n + 1) = (A - BK - LC)[x(n)] + L[y(n)] + M[r(n)] (40) 

and the controller can be described as 

u(n) = - K[x(n)] + N[i"(n)] 

N is a scale factor and acts like a DC gain between input and output. M is given by BN. 

If a reference signal is not available, but instead the error between the reference and output signal 
e(n) = yen) - r(n) is available, then the same structure given by equation (40) can be applied. However, in 
this case, we let N=O and M= -L; yen) is replaced by yen) - r(n). The state model can be described as 

x(n + 1) = (A - BK - LC)[x(n)] + L[y(n) - r(n)] 

u(n) = - K[x(n)] 

(41) 

Appendix 3 lists the PC-Matlab program that also simulates a state controller and an estimator with refer­
enceinput. 

Implementation Considerations: State controllers and estimators are generic structures, which can be 
used to meet a variety of requirements. They allow full control of closed-loop dynamics and the use of CAD 
tools. Pole placement can be done by using either optimal methods or classical methods. Realtime pole 
placement techniques can be used for adaptive control. State controllers are good analytical tools for 
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designing controIlers, but one must be sure that the design can be implemented. For example, if poles are 
placed at z=O, the problem becpmes the same as a deadbeat controIler. Care must also be exercised when 
selecting the states. Although it may be possible to represent the states mathematicaIly, the states may not 
be controllable or observable. State controIlers may also result in a higher-order system, which implies a 
more sophisticated processing requirement from the controIler. The observer's pole locations need to be 
considered as weIl. Those pole locations that lie closer to the origin aIlow the observer to achieve a faster 
response while, at the same time, increasing its susceptibility to noise. Those that lie farther from the origin 
improve the observer's noise characteristics while slowing its dynamics. 

Optimal Control and Estimation: The previous topics described the design techniques that use pole 
placement. It was assumed that pole locations were known. This can usuaIly work weIl for single-input! 
single-output or low-order systems; but, for high-order systems, pole placement becomes difficult. Espe­
ciaIly where multi-input or multi-output systems are concerned, choosing pole locations can be difficult, 
and an exact solution may not occur. This topic describes an alternative method to selecting feedback gains 
that will provide an optimal solution. The first part explains how to choose optimal gains for a feedback 
controIler known as LQR (linear quadratic regulator); the second part describes how to design an optimal 
observer known as Kalman filter; the final part considers implementation. Appendix 4 lists the PC-Matlab 
program that simulates both the linear quadratic regulator and the Kalman filter. 

Linear Quadratic Regulator: The feedback gain for a LQR controIler is chosen by minimizing a cost 
function or a performance index. This is typicaIly a quadratic function given by 

J = 2JxT(n)Q(n)x(n) + uT(n)R(n)u(n)] (42) 

where uCn) is control vector, x(n) is state vector, and matrices Q and R are weighting matrices that have 
to be designed. Matrix Q is symmetric and positive semi-definite, and R is symmetric and positive definite 
(a matrix is positive definite if all its eigenvalues are real and positive, and a matrix is positive semi-definite 
if all its eigenvalues are either real and positive or zero). The first term in the cost function minimizes the 
states and drives the states to zero as rapidly as possible. The second term minimizes the control effort. Al­
ternative cost functions can also be chosen. 

The cost function for a second-order system can be written as 

[ 
qll q12] [ XI ] 

J= [XI X2] + 

q21 q22 X2 

If it is necessary to minimize Xl and X2, then only Xl 2 and X22 need to be minimized. Or, ql2 and q2l can be 
set to O. Similarly, rl2 and r2l can be set to o. 

The control law is given by 

u=-Kx 

where 

K is the optimal gain. 



K is given by 

K = [R + BTpBjlBTpA (43) 

where 

P is given by 

P(n+ 1) = ATpA + Q - ATpB[BTpB + R]B-IBTpA (44) 

Equation (43) is known as the algebraic Riccati equation. For steady-state. the above matrices can be as­
sumed to be constant and the optimal gain K can be chosen off-line. The gain for the example is again 
calculated using facilities ofPC-Matlab and is given by the following function 

K=dlqr(A,B,Q,R) 

The following values were selected for Q and R. 

Q [~ o.oo~ ] 
R 

This puts a higher cost on minimizing XI. The following value is obtained for the feedback gain K. 

K = [456.9 14.8 ] 

Figure 24 (a and b), Figure 25 (a and b), Figure 26 (a and b), and Figure 27 (a and b) show the response of 
the system with various values of Q and R. In practice, there is no method for determining exact values for 
matrices Q and R. A trial and error method is used to select these matrices. A common technique is to test 
the step response of the system with various values of Q and R. This technique allows explicit control of 
different variables. Even in cases where a loss function is not known, this gives better results than pole 
placement techniques. 

Kalman Filter: The state estimation techniques discussed earlier assumed that accurate measurements 
are available. In some cases, this is not true. A Kalman filter allows estimation despite noise in the measure­
ments. This topic discusses the Kalman filter with constant gains, which is called a stationary Kalman filter. 
The gains are calculated off-line. The structure of the filter is the same as the observer that was discussed 
earlier, except that a different procedure is used to calculate the observer gain matrix L. It is also possible 
to implement a Kalman filter with time-varying gains; in which, case the structure becomes similar to an 
adaptive control or system identification problem. 

The plant can now be described with an equation given as 

x(n + 1) = A[x(n)] + B[u(n)] + wen) 

where 

x, U, A, and B are as described earlier. wen) is process noise or a disturbance acting upon the plant. 

The output is given by 

yen) = C[x(n)] + Yen) 

where 

(45) 

(46) 

y, X, and C are as described earlier. v(n) is noise resulting from the l)ensor and/or acting upon the measure­
ment. The inputs wen) and Yen) are assumed to be unrelated and to have Gaussian distributions. 
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Figure 24. Step Response .and Control Effort of the LQR 
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Figure 25. Step Response and Control Effort of the LQR 
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Figure 26. Step Response and Control Effort of the LQR 
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Figure 27. Step Response and Control Effort of the LQR 
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The Kalman filter requires minimizing the mean square estimation error. This is given by 

J = 2Je(n)eT(n)] (47) 

where 
e(n) is the estimation error given by 

e(n) = x(n) + i(n) 

In general. the design equation for a steady-state Kalman filter is expressed as 

i(n + 1) = XCn + I) + Lp{[y(n + I)] - C[XCn + I)]} 

XCn + 1) = A[i(n)] + B[u(n)] 

This is also referred to as a current estimator because the latest measurement y(n+ I) is used for the estima­
tion error. When the latest measurement y(n+ 1) is made. X(n + 1) will then be precomputed and updated. 
The estimator gain Lp is the Kalman gain. It minimizes the mean square estimation error and is represented 
by 

Lp = PCT(R. + CPCT)-I 

where 

P = Rw + APAT - APCT(R. + cPCT)-ICPAT 

Matrices Rw and Rv are known as covariance matrices and must be designed. They are usually selected as 
diagonal matrices because there is no information on cross-correlation of the noise elements. The rms value 
of the sensor noise can be directly used in the measurement covariance matrix R •. The values given for Rw 
and Rv are chosen by using the facilities of PC-Matlab and the function dlqe. 

The Kalman gain Lp is obtained by 

Lp = dlqe(A.G.B.Rv.Rw) 

where 

L - I -6[ 0.3162 ] 
p - e 0.00003 

and 

[ .0001 0 ] 
Rw = 0 .000001 Rv = 0.1 

Figure 28 shows a block diagram of the Kalman Filter. 

Figure 28. Kalman Filter 
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Figure 29 (a, b, and c) shows the response of a Kalman filter due to sensor noise and disturbance effects. 

Figure 29. Response of the Kalman Filter 
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Implementation Considerations: Implementation considerations for LQR controllers and Kalman fil­
ters are not essentially different from those for state controllers and estimators. Their structures are the 
same, only the design approach is different. Still, the following should be taken into account. 

When designing an LQR controller, some weight should be placed on the R mlltrix as controi signals could 
become excessively large. Note that the LQR approach to controlling does not necessarily guarantee that 
the optimum solution will be found. Still, the Q and R matrices do allow the designer to trade-off between 
control effort and speed of the response while, at the same time, guaranteeing a stable system. 

When designing a Kalman filter, R. can usually be chosen realistically since some information on sensor 
characteristics and accuracy is available from the manufacturer. Rw is more difficult to chose. If it is chosen 
to be zero due to lack of information, the Kalman filter's gain is zero; the estimator runs open-loop. As a 
result, no adjustment is made to the estimated states. This causes the model to slowly drift. Again, as in the 
case of Q and R for the LQR controller, the designer can trade-off between reliability of measurements and 
plant model. As Rw increases, more reliance is placed upon the measurements, while less reliance is placed 
upon the plant model. As R. increases, more reliance is placed upon the plant model. and less reliance is 
placed upon the measurements. 

Summary 
This paper has given a basic overview of digital control theory without going into too much mathematical 
detail. The use of CAD tools like PC-MatIab, Matrix-X, and Simnon is strongly recommended in order 
to eliminate some of the drudgery in the math calculations and to provide simulation of a system under de­
sign. 

The choice of the appropriate controller structure will depend largely upon the user's background and 
application. Classical control techniques have been practiced for a long time, and people have acquired an 
intuitive feel of the behavior of those designs. Modern control theory now gives more capabilities to these 
systems; but, at the same time, most of the theoretical/implementation information is still fairly new and 
unfamiliar. . 

However, it should be emphasized that the behavior of any system in actual practice largely depends upon 
the implementation and not upon the elegance of its design. Elegant theories are attractive: but a simple de­
sign, when properly implemented, can yield a more superior performance, higher reliability, and better 
manufacturability than a sophisticated design that is poorly implemented. 

In general, it is advised that modern control theory be used. With their powerful simulation capabilities, 
today's new CAD design tool can eliminate much of the user's fear and uncertainty, along with the laborious 
mathematical calculations. At the same time, powerful processors like DSPs are able to implement complex 
designs in practical and cost-effective systems. 
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Appendix 1 

% 
% 

This program will do simulation of a PIO controller using 
trapezoidal approximation and a pole placement technique 

% 
% If the plant transfer function is G(z) = A/B 
% 
% and controller function is given by H(z) 
% 
% then the closed loop response is given by 
% 
% 
% 
% 
% 
ggg=l 

G(Z)H(z) AC 

1 + G(z)H(z) AC + BO 

c/o 

while ggg==l 
% 

% run simulation continously 

% This section will implement simulation of a dc servo motor 
% the motor used in the example is a Pittman motor, model 9412 
% 
Kt=O.0207; 
Ke=Kt; 
j=O.00006; 
R=6.4; 

% Torque constant 
% 
% Armature inertia + assumed load inertia 
% Resistance 

sampling period in milliseconds') 
% get sampling period 

input ( , input 
T=ans/lOOO; 
a=(Kt"2)/(R*j) 
b=Kt/ (j*R) 

% a, and b will give transfer f~nction in s-domain 

pause 
ab=b/(a"2); % Calculate values to transfer into z-domain 
c=exp(-a*T); 
dl=a*T; 
d=(c-l+dl); 
e=(l-c-(c*dl»; 
input('input numerator gain ') 
Kg=ans; % get numerator gain 
bl=ab*d*Kg; % numerator terms 
b2=ab*e*Kg; 
al=-(l+c); % denominator terms 
a2=c; 
num=[O bl b2] % numerator of transfer function in z-domain 
den=[l al a2] % denominator of transfer function in z-domain 
[A,B,C,O]=tf2ss(num,den) 
% 
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% 
'% 

% 
% 

This section will design a PIO controller using pole placement 
techniques. Desired pole locations have to be input. The PID 
is converted into discrete form using trapezoidal approximation 

% Enter desired pole locations in the next step 
'Enter the location of your poles' 
input('Input location of pole 1: 
p1=ans; 
input('Input location of pole 2: 
p2=ans; 
input('Input location of pole 3: 
p3=ans; 
input ( 'Input location of pole 4: 
p4=ans; 
p=[p1 p2 p3 p4]; 

') 

') 

') 

') 

% The desired characteristic polynomial is found as 
Q(1:5)=poly(p) 
% The coefficients of different powers are given by 
q2=Q (:,2); 
q3=Q (: (3) ; 
q4=Q (:,4) ; 
q5=Q ( : , 5) ; , 
% The system polynomial is given by 
% (KIz**2 + K2*z + K3) (b1*z + b2) + (z - 1) (z - r) (z**2 - a1*z +a2) 
% Equating coefficients of different powers we get 
% four linear equations. The next few steps will solve for 
% K1, K2" K3 and r, where r is an arbitrary location of one of the 
% poles of the controller. 
o = [ b1 0 0 

b2 b1 0 
o b2 b1 
o 0 b2 

% 
01= q2+1-a1 0 0 

q3+a1-a2 b1 0 
q4+a2 b2 b1 
q5 0 b2 

% 
D2= b1 q2+1-a1 

b2 q3+a1-a2 
0 q4+a2 b1 
0 q5 b2 

% 
03= b1 0 

b2 b1 
0 b2 
0 0 q5 

% 
04= b1 0 0 

b2 b1 0 
0 b2 b1 
0 0 b2 
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0 
0 

-1 
l-a1 
a1-a2 
a2 ]; 

-1 
1-a1 
a1-a2 
a2 ] ; 

-1 
1-a1 

a1-a2 
a2 1 ; 

q2+1-a1 -1 
q3+a1-a2 1-a1 
q4+a2 a1-a2 

a2 1 ; 

q2+1--a1 
q3+a1-a2 
q4+a2 

qo 1 ; 



d=det(D); 
dl=det(Dl); 
d2=det(D2); 
d3=det(D3); 
d4=det(D4); 
Kl=dl/d 
K2=d2/d 
K3=d3/d 
r=d4/d 
% This section will implement closed loop simulation of 
% PID controller and the DC motor 
% 
numl=[Kl K2 K3); 
Rl=[l,r); 
denl=poly(Rl); 
compnum=numl; 
compden=denl; 
procnum=num; 
procden=den; 

% numerator of PID controller 
% poles of the PID controller 
% calculate denominator 

num5=conv(numl,num); % Multiply numerators 
den5=conv(denl,den); % Multiply denominators 
input ('specify the time in secs over which you want to see the step: ') 
t=ans; 
n=t/T; % Calculate number of samples to see simulation 
input('input a loop gain: ') % Enter any additional loop gain 
g=ans; 
u=ones(n,l); % Number of samples to see simulation 
closnum=g*num5 % numerator of closed loop system transfer function 
closden=g*num5+den5 % denominator of closed loop system trnasfer function 
y=dlsim(closnum,closden,u); % do discrete simulation 
plot(y) 
title('Position Step Response') 
xlabel('Time in # of samples') 
ylabel('Position in radian') 
grid 
pause 
end 
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Appendix 2 

% This file will ,do simulation of a closed loop deadbeat controller 
% 
% If the plant transfer function is G(z) = A/B 
% 
% and controller function is given by H(z) 
% 
% then the closed loop response is given by 
% 
% 
% 
% 
% 
ggg=l 

G(z)H(z) 
-------~,~ .... 

1 + G(z)H(z) 

while ggg==l 
% 

AC 

AC + BO 

% Keep doing 

c/o 

% The next section will implement simulation of a dc servo motor 
% the motor used in the example is a Pittman motor, model 9412 
% 

% Torque constant' 
% 

Rt=O.0207; 
Re=Rt; 
j=O. OOOQ,~,~ 
R=6.4; 

% Armature inertia + assumed load inertia 
% Resistance 

sampling period in milliseconds') 
% get sampling period 

input ( , ~Oli'ut 
T=ans/1000; 
a=(Rt"2)/(R*j) 
b=Kt/ (j*R) 

% a, and b will give transfer function in s-domain 

pause 
ab=b / (a ~,2,); ~ 
c=exp(-a*T); 
d1=a*T; 
d= (c-1+d1) ; 
e=(1-c-(c*d1»; 

% Calculate values to transfer into z-domain 

input ( 'input numerator gain ' ) 
Kg=ans; % get numerator gain 
b1=ab*d*Kg; % numerator terms 
b2=ab*e*Kg; 
a1=- (1+c) ; 
a2=c; 

% denominator terms 

num=[O b1 b2] % numerator of transfer function in z-domain 
den=[l a1 a2] % denominator of transfer function in z-domain 
[A,B,C,O]=tf2ss(num,den) 
% 
% This section will implement design of a deadbeat controller 
% The form of the controller is given by the following equation 
% 
% 
% 
% 
% 
% 
% 

-1 -2 -3 -.0 

pO + p1*z + p2*z + p3*z ........ pn~z 
G (z) = --------------------------------------------

db -1 -2 -3 -n 
qO + q1*z + q1*z + q3*z ........ qn*z 



If the plant transfer function is given by % 
% 
% 
% 
% 

-1 -2 -3 -n 
bO + bl*z + b2*z + b3*z .....•.. bn*z 

G 

P 
(z) = --------------------------------------------

-1 -2 -3 -n 
aO + al*z + a2*z + a3*z ........ an*z 

% 
% 
% 
% 
% 
pO 
pI 
p2 
qO 
ql 
q2 
% 
% 
% 
% 

then the following procedure can be used to design a 
deadbeat controller 
1/(1 + bl + b2) 
al*pO 
a2*pO 
1 
-bl*pO 
-b2*pO 

This section will implement closed loop simulation of the 
deadbeat controller and the DC motor 

numl=[pO pl p2]; 
denl=[qO ql q2]; 
compnum=numl; 
compden=denl; 
procnum=num; 
procden=den; 

% Numerator of the controller 
% denominator of controller 

num5=conv(numl,num); % multiply both numerators 
den5=conv(denl,den); % multiply both denominators 
input ('specify the time in secs over which you want to see the step: ') 
t=ans; 
n=t/T; % Calculate number of samples to see simulation 
input('input a loop gain: ') 
g=ans; 
u=ones(n,l); 
closnum=g*num5; % Enter additional closed loop gain 
closden=g*num5+den5; % Calculate denominator of closed loop system 
y=dlsim(closnum,closden,u); % Do closed loop simulation 
plot(y) 
title('Position Step Response') 
xlabel('Time in # of samples') 
ylabel('Position in radian') 
grid 
pause 
end 
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Appendix 3 

% This file will do simulation of a closed looped system with 
% a DC servo motor and a state controller/estimator. The estimator 
% will make a full estimate of states from position measurement> 
% The state controller is given by the following equations 
% 
% x(n+l) = A*x(n) + B*u(n) + L[y(n) - C*x(n)] --- State estimation 
% y C*x(n) estimation of measured variable 
% u = -K*x(n) ------ control law 
% 
% States of the system will be position and velocity 
% 
aaa=l 
while 
% 

aaa==l % Do simulation continously - to exit do CTRL C 

% The first section will build model of dc motor 
% The motor used in this example is a Pittman motor, model 9412 
% 
clear; 
Kt=0.207; 
Ke=Kt; 
j=0.0006; 
R=6.4; 
a=(Kt"2)/(R*j) 
b=Kt/ (j*R) 
pause 
num=[O 1 b] 
den=[l a 0] 
pause 
F=[O 1 

o -a] 
G=[O 

% Torque constant 
% Back emf constant 
% Armature inertia + assumed load intertia 
% resistance 
% a, and b will give transfer function in s-domain 

% define numerator and denominator of transfer function 

% state representation of motor in continous time 

b] % convert state model to discrete form 
input('Input sampling period in milliseconds ') 
T=ans/lOOO; % get sampling period 
[A,B]=c2d(F,G,T) 
C=[l 0] % Assume position measurement 
% 
% 
% 
% 
% 
% 

The next section will implement design of the state controller 
and observer using pole placement techniques. Pole locations will 
have to be input for the controller. The estimator poles will be 
chosen to faster than the controller. 

, Enter 0 if you will have complex poles' 
input(' and 1 if you will have real poles: ') 
X=ans; 
if X==O 
input('input real part of pole location: ') 
rlreal=ans; 
input ( 'input imaginary part of pole location: . ) 
rlirnag=ans 
i=sqrt(-l) 
r=[rlreal+ *rlirnag; rlreal-i*rlimag]; 
end 
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if X==l 
input('input location of pole 1: 
r1=ans; 
input('input location of pole 2: 
r2=ans; 
r=[r1; r2]; 
end 

, ) 

, ) 

K=place(A,B,r) 
l=r/2 
ll=place(A',C',l) 
L=ll' 

% do pole placement for controller 

% 
% 
% 

% choose observer poles to 1/2 distance from origin 
% do pole placement for observer 

The next section will do simulation of the closed loop system 

D=[O] % direct link matrix is 0 
input('input reference signal in radians: 'l 
re=ans; 
N=[l;O] % position command will be input 
xr=N*re % reference state 
input ('specify time in sec over which you want to see step: ') 
t=ans; 
n=t/T; % calculate number of samples 
x=[O;O] % actual states - initial values 
xe=[O;O] % estimated states - initial values 
u= 0 % control action - initial value 
% 
% This section will do simulation of the motor 
% 
for i=l:n, 
x = A*x + B*u; % simulation of actual plant 
y(i)= C*x; 
% This section will do simualtion of the controller and estimator 
% 
u -K*xe + K*xr; % implement control law 
yu(i) = u; 
xe = A*xe + B*u + L*(y(i)-C*xe); % do state estimation 
ye(i) = C*xe; % estimated postion 
end 
clg 
plot(y) % plot actual postion 
hold on 
plot (ye, '+g') % plot estimated position 
ylabel ( 'Postion ' ) 
xlabel('Time in # of samples') 
title('Step response of State Controller/Estimator') 
text(O.60,O.40, ,---- actual postion', 'sc') 
text(O.60,0.30, '**** estimated postion', 'sc') 
grid 
pause 
hold off 
clg 
subplot(211),plot(y),title('Step response - Actual Position'), 
subplot(212),plot(ye),title('Step response - Estimated Position'), 
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pause 
plot(yu),title('Control effort'), 
grid 
ylabel ('u') 
xlabel('Time in f of samples') 
end 
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Appendix 4 

% This program will do simulation of Linear Quadratic Regulator (LQR) 
% and a stationary Kalman Filter. 
% The controller and estimator are given by the following equations: 
% x(n+1) = A*x(n) + B*u(n) + Lp[y(n) - C*x(n)] --- state equation 
% y = C*x(n) --- estimation of measured variable 
% u = ~ K*x(n) --- control law 
% K is optimal gains and Lp is kalman gains 
% 
aaa=l 
while 
% 

aaa===l % run simulation simultaneously - to exit use CTRL C 

% This section will build model of a dc servo motor 
% The motor used in the example is a Pittman motor, model 9412 
% 
clear; 
Kt=0.207; % Torque constant 
Ke=Kt; % back e.m.f. constant 
j=0.0006; % 
Res=6.4; % 

rotor inertia + assumed load inertia 
resistance 

a=(Kt A 2)/(Res*j) 
b=Kt/ (j*Res) 
F=[O,l;O,-a] 
G=[O;b] 

% state representation in continous time 

input('Input sampling period in milliseconds ') 
T=ans/1000; % get sampling period 
[A,B]=c2d(F,G,T) % convert state model to discrete time 
C=[l 0] % Assume position measurement 
% 
% 
% 
% 
% 
% 

The next section will design the LQ Regulator and the 
Kalman filter. The cost functions will be input to 
to calculate the optimal gains and noise characteristics 
will be input to calculate Kalman gains 

input ('enter cost function matrix Q:') 
Q=ans; 
input ('enter cost function R: ') 
R = ans; 
input ('enter measurement noise covariance Rv:') 
Rv=ans; 
input ('enter disturbance matrix g:') 
g=ans; 
input ('enter disturbance covariancce matrix Rw:') 
Rw=ans; 
K=dlqr(A,B,Q/T,R*T) 
Lp=dlqe(A,g,C,Rw*T,Rv/T) 
pause 
% 

% calculate optimal gains 
% calculate Kalman gains 

79 



% 
% 

The next section will do simulation of the closed loop 
system 

% 
D=[O) 
input ( , input 
re=ans; 
N=[l;O) 
xr=N*re 

% no direct link input 
reference signal in radians: ') 

% position command will be assumed 
% reference state 

input ( , specify 
t=ans; 

time in sec over which you want to see step: ') 

n=t/T; % calculate number of samples to do simulation 
x=[O;O); % actual states - initial values 
xe=[O;O); % estimated states initial value 
yv= rand('normal'); % characteristics for injected sensor noise 
yv=rand(n,l); 
uv=rand('normal'); 
uv=rand(n,l) , 

% characteristic for disturbance noise 

u=O; % control signal - initial value 
% 
% 
% 

Next section will do simulation of the motor 

for i=l:n, 
x = A*x + B*u; 
y(i)= C*x + yv(i,l); 

% simulation of actual plant 
% measured position 

% 
% 
% 

Next section will simulate regulator and kalman filter 

u -K*x + K*xr + uv(i,l); % control action with disturbance 
yu(i) = u; 
xe = A*xe + B*u + Lp*(y(i)-C*xe); % state estimator 
ye(i) = C*xe; % estimated position 
end 
clg 
plot(y, 'r'); % plot actual position 
hold on 
plot (ye, '.g') % plot estimated position 
title('Measured position vs Estimated postion') 
grid 
text(0.60,0.24, ,---- measured postion', 'sc') 
text (0.60,0.18, , • • •. estimated post ion ' , 'sc') 
xlabel('Time in t of samples') 
ylabel ('position') 
pause 
hold off 
clg 
plot(y),title('Step response - Measured Position'), 
grid 
xlabel('Time in t of samples') 
ylabel('position') 
pause 
clg 
plot(ye),title('Step response - Estimated Position'), 
grid 
xlabel('Time in f of samples') 
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ylabel('position') 
pause 
clg 
plot(yu),title('Control effort with disturbance'), 
xlabel('Time in t of samples') 
ylabel('Control u') 
grid 
end 
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Matrix Oriented Computation Using Matlab 

Jeffrey C. Kantor 
Department of Chemical Engineering 

University of Notre Dame 
Notre Dame, IN 46556 

Phone: (219) 239 5797 
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Fa.x: (219) 239 8007 

MaUab is a tool for interactive numerical computa­
tion. It contains as built-in functions essentially all of 
the numerical linear algebra algorithms in LIN PACK 
and EISPACK. Coupled with a programmable inter­
preter and good scientific graphics capability, Matlab 
can be used for algorithm development in many areas 
of engineering and science. 

To demonstrate some of its funct.ionality, I've in­
cluded in this article several examples where MaUab 
has proven useful in my own teaching and research ac­
tivities. These examples are not comprehensive since 
t.hey neither fully exploit all of the features of Mat.lab 
or do they show all of our appiications. The exam­
ples were chosen only because they seemed to be rela­
tively st.raightforward and self-contained illustrations 
of how Matlab can be used. 

1 Some Background 

Matlab was originally conceived by Cleve Moler just 
over a decade ago while he was teaching numeri­
cal methods at the University of New Mexico. He 
found it, frustrating to simultaneously teach numer­
ical methods and the programming tricks it takes 
to implement them. The effort required to write 
numerically sophisticated FO RTRAN code can sim­
ply overwhelm a student and not leave much time 
left over for doing applications, So to address the 
problem, Cleve Moler wrote a simple interpret.er in 
portable FO HTRAN for a high-level matrix oriented 
language. The interpreter was based on one given 
l>y N. Wirth for a model language called PL/O [12]. 
Naturally, the numerical algorithms were based on 
the recently completed Linpack and Eispack projects 
to which Cleve Moler had made substantial contri­
butions. This primitive MaUab interpreter was ev­
idently quite successful and ported to a number of 
machines during the late 1970's and early 1980's, un­
dergoing minor revisions in the process. 

Several companies subsequently adopted Matlab as 

Reprinted, with pennission from author. 

a platform for developing and delivering commercial 
control synthesis and analysis software. Systems Con­
trol Technology produced a package called Control-C, 
and at about the same time, Matrix-X was developed 
by Integrated Systems, Inc. Both companies found 
many shortcomings in the original MaUab interpreter 
including workspace constraints, lack of function def­
initions, and overall performance. The Matlab inter­
preter was largely rewritten at each of these compa­
nies to support their products. 

A few of the professiona.l st.aff from these compa­
nies joined together to form a new company called the 
MathWorks, Inc. There they produced an entirely 
new version of Mat.lab writ.t.en in C for port.abilit.y 
and efficiency. The interpreter was greatly enhanced 
to include an ability for the user to program Matlab 
functions. They also developed an integrated facility 
for producing a basic set of puhlication quality scien­
tific graphs. The Math Works currently markets this 
version of MatIah for a variet.y of hardware platforms, 
the details are given at the end of this article. 

Beyond the basic interpret.er, there are several 
'toolboxes' intended for specific application areas. A 
'toolbox' is typically a collection of functions and 
scripts that implement specialized numerical algo­
rithms. These generally are not finished applications 
in the sense of a well-developed user interface with 
a lot menUs and the like, but are rather integrated 
collections of algorithms that you either can use di­
rectly or build into your own script.s. It is sort of 
like using a FORTRAN subroutine library, but with 
the advantage of being able to directly execute the 
routines in the interactive MaUab environment. The 
Math Works distributes a Signal Processing Toolbox 
with Matlab, and markets several others including 
a Control Design Toolbox, Robust Control Toolbox, 
System Identification Toolbox, a Chemometrics Tool­
box. There are also tool boxes commercially available 

-from third parties, in addition to a number that Uni­
versity researchers may have put together for their 
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own purpOl!ell. 
Now for the confusing part. There is a 'public da­

main' IBM PC version of Matlab. In addition several 
universities sell very low cost versions of Matl~b avail­
able for the Macintosh and IBM PC. These are based 
on Moler's original FORTRAN code, sometimes with 
enhanced graphics and macro writing facilities. l A 
person should be careful with these since they are 
not of the same calibre as the MathWorks and sim­
ply don't include the tools necessary for doing real 
work. Nor will the toolboxes cited above work with 
these versions. A corollary of this advice is to not let 
an exposu re to these other versions color your view 
of Matlab. 

2 What is Matlab? 

In some ways, the Matlab interpreter vaguely resem­
bles a crOAS between BASIC and APL in the sense 
that it is programmable and endowed with a rich set 
o.f op.erat.ors for matrix manipulations. The key dis­
tmctlon IS that Matlab incorporates well-developed 
and reliable algorithms for numerical linear algebra. 
'Moreover, the built-in graphics capability is often en­
tirely sufficient for presenting results in final pub­
lished form. (The graphics in this article, for exam­
ple, were pasted in directly from MatJab). 

Let me give an example of how these capabilities 
can be used for day-ta-day 'scratchpad' kind of cal­
culal.ions I,hat pop up. A few days ago a colleague of 
mine walked into my office with an idea for process­
ing video images to enhance the edges of discs that 
appear in the picture. lie acquires these images in 
his experiments on concentrated suspensions of non­
colloidal p"rticles. lie started off by saying (roughly) 
·Suppose you have a noisy image of a disc" at which 
point I stopped him, turned on my computer, and 
typed the following commands in Matlab 

x = -1:.1:1; % X mesh 
1 = -1:.1:1; % Y mesh 
[XX,1Y] = meshdom(x,y); Y. 2D mesh 

x=sqrt(xx,·2+yy."2)<O,S; 
rand ( 'normal'); 
x = x + O,OS.rand(z); 
me8h(x}; 
xlabel('Roisy Disk'): 

Y. l1lake disk 
Y. white noise 
% add to di8k 
% 3D plot 
Y. add title 

which produced the image shown in Figure 1. 
This code segment demonstrates several of the key 

,features oC Matlab. First of all, the variables x, y, x 

I Incidently, Ihe oriSinal FOIU'RAN code w,," never de­
d........ 10 be public domain. Thu. II. own .... hip .t .. tus i. a 
bit confused. 

Noisy Disk 

Figure 1: Noisy image of a disk. 

represent vectors and matrices. Matrices are an ele­
mentary data type within Matlai,. Because matrices 
can be manipulated directly as single objects, much 
of tedium of writing loops to do e1emeut by element 
calculation.s is removed, alon.g with the need for a lot 
of extran,eous indexing. In the sixth line, for example, 
a matrix is constructed with the same dimensions as 
z consisting of normally distributed random numbers 
(rand(z», multiplied by 0.05, and the result added 
to x, The third line demonstrates how MaUab func­
tions can return multiple results, which in this case 
are two matrices xx and ". 

Duly impressed, my colleague went on at the black­
board to describe a simple algorithm requiring that 
the image be processed by a pair of 20 convolutions. 
Since this might be done more than once to differ­
ent data sets, it seemed sensible to encapsulate the 
algorithm as a Matlab function. 

function [y] = 80bel(x) 

% SOBEL 
% Do edge detection on a 2D array 

s = [1 2 1; 0 0 0; -1 -2 -1]; 
h = conv2(z. s); % 2D convolution 
v = conv2(z,s'); Y. 2D convolution 
y = sqrt(h,·2 + v,"2); 

A function is prepared as a separate text file that is 
subsequently read by 'the Matlab int,erpreter when ita 
name is encountered in a command line. A user writ­
ten Cunction behaves in the same way as any built-in 
function. In this example, a function named sobel is 
defined which takes a single input argument x, then 
utilizes a built-in Matlab function conv2 to construct 



Edge Filtered Disk 

Figure 2: The r"sult of filt.ering the noisy disk shown 
in Figure 1 to enhance the disk edges. 

two 20 convolutions with a matrix, s, and its trans­
pose, s'. The fundion output, y, is found by taking 
the harmonic mean of the two convolutions. 

The edge detection function was used in the follow­
ing commands 

zf = sobal(z); 
mashed) ; 
xlabel('Edga Filtered Disk'); 

to produced the edge enhanced picture shown in Fig­
ure 2. 

In. general. funct.ions can have multiple-input. and 
multiple-out.put argument,s. Just as in FORTR.AN, 
any variablf'S used in writing a function are t.reated 
as local and will not be confused with other variables 
of the same name used in other functions or the com­
mand environment. 

So during the course of a half-hour conversation, 
my colleague was able to (watch me) construct and 
test an edge detection algorithm. It is this abilit.y 
to quickly protot.ype and test algorithms using a rich 
base of numerical tools that makes MaUab a valuable 
computational tool. 

3 Using Matlab in the Class­
room 

I have used Matlab in teaching a graduate course on 
Process Control (Fall, 1987), the linear algebra por­
tion of a course covering Mathematical Methods for 
first,..yeargraduate students (Fall 1988 and Fall 1989), 
and for a Junior-level course on Computer Methods 
for Chemical Engineers (Spring, 1989). Matlab seems 

to provide an appropriate software base for each of 
these courses. 

In the case of teaching Advanced Process Control, 
the main goal in using Matlab was to provide the 
student with experience in doing time-series analy­
sis, model identification, control design, and simu­
lation. There are competing software packages that 
could also be used for these purposes, among them 
Program-CC, but none seemed to offer any significant 
advantage over Matlab for linear analysis. Besides, 
my teaching assistant had already had some expe­
rience with Matlab, and it was already installed on 
several Sun workstations in the Department. Over­
"II, the teaching experience was a very good one. By 
the end of course the students demonstrated a real fa­
cility with Matlab, the Control Design Tqolbox. and 
the System Identification Toolbox. Later in the arti­
cle there is an example that came from a homework 
problem assigned in the course. ' 

For t.he undergraduate Comput.er Methods course, 
there were addit,ional considerations tba~ came up 
when considering" choice of software tool •. Among 
them wa., t,be choice between using Matla\> or a pack­
age of FORTRAN Bubrout,ines such as given in Pr""s. 
et al. [11]. On the one hand, FORTRAN remains as 
t,be principle programming language for numerically 
int.ensive engineering applications, t.herefore a facility 
with FORTRAN is highly desirable. Moreover, our 
st.udent,s all take a required Freshman Engineering 
course that teaches the element.s of FOR'"~"RAN. 

On t.he other hand, it. is significant.ly fa..ter to writ.e 
and t.est small codes usin/!: t.he high-I .. vel Ma.t.lab in­
terpret.er. The st.udent.. also indicat,r" a st.rong pref. 
erence for microcompllt,er ba.,ed software tools which 
could be used on various workstation clusters about 
campus rather than be tied to a single minicomputer 
located in the Engineering College. 

On balance, I felt that a more productive environ­
ment would allow the course to survey more topics 
with more emphMis on applications. so I chose to 
use Matlab. I have been pleased to note how stu­
dents have transfered their new computational skills 
to other courses. They continue to use Matlab to do 
routine laboratory calculations, data fitting, and for 
computations in their Senior Design courses. 

Recent textbooks have appeared which incorporate 
various amounts of Matlab into the text and exercises. 
The third edition of the classic linear algebra text by 
Noble [10] contains is number of Matlab exercises and 
examples. Another linear algebra text,book by Hill is 
basically centered 'on Matlab, with chapters regarding 
programming technique [7]. It is sO complete that it 
could serve as a low-cost Matlab manual for students. 
The Handbook for Matrir Computations is useful to 
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anyone doing numerical linear algebra, and includes 
a survey of relevant Fortran, BLAS, Linpack, as well 
as Matlab [4). 

Lennert Ljung's book on system identification (9) is 
closely coupled to the System Identification Toolbox. 
The toolbox, in fact, was written by Ljung, and the 
text provides excellent technical documentation. 

The following two sections present two examples of 
incorporating Matlab into classroom activities. 

4 Classroom Example: Linear 
Programming 

Three years ago our Department introduced a new 
required course for our undergraduate majors enti­
tled Comp.t/er Methods for Chemical Engineers. This 
course is normally taken by Spring semester Juniors 
after having completed the normal Mathematics se­
quence, and before commencing the two-semester Se­
nior design sequence. The course covers elements of 
numerical met.hods with application to problems in 
chemical engineering. 

Linear programming is discussed in Borne detail in 
the course because it is' one of those skills that an 
engineer can transfer to a wide variety of problem 
areas. A key teaching goal is for the student to be able 
to recognize a problem as a linear Program, and then 
to formulate the requisite objective and constraints. 

I prefer to use the Active Set method as outlined by 
Fletcher [5) to teach the principles behind linear pro­
gramming. It seems to leave the student with a more 
intuitive understanding of the role of constraints and 
their sensitivities than does the usual presentation of 
the Simplex method. If the students can undcrstand 
the relatively simple strategy to solving a linear pro­
gram, it is then much easier to motivate and teach 
the numerical tricks it takes to implemcnt an efficient 
algorithm. 

The linear programming problem is formulated as 
minimizing the linear objective 

minz = cT z 
" 

where x is a n vector, subject to m linear constraints 

a;z?,b; i=1,2, ... ,m 

where n :£ m. If positivity constraints are present, 
then these are explicitly included in the constraint 
list. It is easy to show that if the feasible region is 
bounded, then optimum will always be found at a ver­
tex defined by the intersection of n active constraints. 

The basic algorithm is, firstly, to find any active 
set of n constraints forming a feasible vertex, then 

to move systematically from one vertex to another 80 

as to reduce the value of the objective function at 
each step. Each step of the algorithm is defined by 
just two rules. The first rule identifies a constraint 
to throw out of the active constraint set in order to 
decrease the objective. The second rule determines 
which constraint to add to the active set to establish 
a new feasible vertex. 

Let A be the set of active constraints th at deter­
mine a feasible vertex. The vertex is given by solving 
a set linear equations to give 

where AA and bA are const,meted from the coefficients 
of the active constraints. Now suppose the right hand 
side of each active constraint is altered by a small pos­
itive amount ';' Positive values of the <; 's correspond 
to feasible perturbations, while negative values would 
cause constraint violations. As a resu It of a feasi­
ble perturbation, the vertex then shifts from x to x" 
where 

x, = A:;,lbA + A:;' 1 , 

Substituting x, into the objective function yields 

z = cT A:;,lbA + cT A:;' I, 

The second term shows the change in the objective 
function due to independent perturbations in the ac­
tive constraint set. Thus the elements of the row 
vector 

A = cT AAI 

play the role of 'sensitivity coefficients' revealing how 
the objective function responds to feasible perturba­
tions in the active constraint scI.. If any element of 
A is negative, then the objective function can be re­
duced by removing that const.raint from the active 
set. Just as in the Simplex met.hod, we choose to re­
move the constraint corresponding to the most nega­
tive element of ~. 

Let Ap be the most negative element of A. Then the 
effect of removing the p'h active constraint is given 
by 

x! = X + f p 8p 

where 8p is the p'h column of A:;' I. How large can 
'p be before some other constraint becomes active? 
This can be computed explicitly as 

The search is done over all constraints not in the ac­
tive set (i ¢ A), but only for those constraints in 



which the right hand side becomes smaller as (p in­
creases. (GiSp < 0). 

The conotraint which realizeo the minimum lp io 
exactly the one to be added to the active constraint 
set. !laving done that, the procedure repeats itself 
until no further improvement in the objective is pos­
sible, i.e., until all of the sensitivit¥ coefficients are 
non-negative. 

This hMic algorithm cleanly translates to the fol­
lowing Matlab function. The function Ip takes four 
arguments specifying the coefficients on the len and 
right hand sides of the constraints, coefficients of the 
objective ftlnction, and an initial feasible constraint 
set. The function retllfns the optimal value of the ob­
jective function, the optimal solution for the decision 
variables, the value of the senoitivity coefficients, and 
the final active con·straint set. 

function[z,x.lamb.activ]=lp{a.b.c.feas) 

% Initialization 

[a.n] .. size (a) : 
acth feas{:): 

% Compute Initial Vertex 

ainv = inv{a(activ.:»: 
x = ainv.b(activ.:): 
lamb = c,,"ainv: 

while any (lamb < 0). 

% Find which constraint to drop. p 
Ctmp.p] = min{lamb): 
ap ,. ainv{: .p): 

% Find which constraint to add. q 

alpha = Inf: 
q .. 0: 
for i=1:m. 

if -any{i==activ). 
den = a(i.:).sp: 
if den < O. 

tmp = (b(i)-a(i.:).x)/den: 
if tmp < alpha. 

alpha .. tmp: 
q = i; 

end 
end 

end 
end 
% aecompute x. lamb. and z 

activ{p) .. q: 
ainv .. inv{a{activ.:»: 
x. ainv.b{activ.:); 
lamb = c.ainv: 

end 

z = c.x: % Compute objective function 

This example uses several of the Matlab control 
structures to simplify the coding process. The con­
struction 

whila any{lamb < 0). 
C ••• ] 

end 

controls the main iteration over vertices of the feasible 
region. The iteration continues as long as any element 
of the vector lamb is less than zero. Nested within 
this loop is an iteration 

for 1'=1:m. 
[ ... J 

end 

which specifies a conventional indexed iteration loop 
where i successively takes values between 1 and m. 
Within this loop are several nested conditional state­
menta such as 

if -any(i==activ). 
[ ... ] 

end 

In this ease, the conditional code is executed if 'not 
any' of the elements of the vector activ are equal to 
i. The practice of indenting nested control structures 
graphically reveals program flow and is strongly nrged 
on the stndents. 

This function is a zeroth order cut at a practical al­
gorithm for linear programming, it will work for small 
problems but will be inefficient and error prone when 
applied to larger problems. As exercises, the students 
are asked to correct several of the glaring deficien­
cies. Foremost is to avoid the repeated inversions 
of the active constraint matrix with a more efficient 
procedure using rank-one updates (Le., the Sherman­
Morrison formula). Having done this, the algorithm 
is then identical to the usual revised simplex method 
as discussed in most textbooks. Other exercises in al­
gorithm development could include writing a code to 
identify an initial feasible constraint set, or to modify 
the algorithm to handle equality constraints. 
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5 Classroom Example: 
cess Control 

Pro-

The next eJ!:ample iIIustratefl the use of several tool­
boxes ~o do model identification and a simple control 
design. Students taking a graduate course in Ad­
vanced Process Control during Fall, 1987, were as­
signed a homework project in which they were to an­
alyze input-output data for a small gas furnace. They 
were to first obtain a transfer function model, then 
use the model to design a PIO, minimum variance, 
and optimal LQG controllers. The three controllers 
were to be evaluated by simulation. The students 
were given one week to complete the assignment. 

The gas furnace data was adapted from Appendix 
B of Box and Jenkins [2] consisted of 300 pairs of 
input-output measurements {\l(k), y(k)} obtained 
at 9 second ,ntervals. The manipulated input is gas 
Oowrate, and the measured output is the percentage 
of CO2 in the stack gas. These data were given to 
the students as a MatIab file called GasFurnaceData 

. The file can be read and plotted using the following 
commands to produce the following plots shown in 
Figure 3. 
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% Read data record 

GasFurnaceData; 
udata = u; 
ydata = y; 

% Plot input-output data 

subplot(211); % Specifies upper plot 
plot(udata); 
title('Gas Flow (Input)'); 
ylabel('CFM'); 

subplot(212); % Specifies lower plot 
plot(ydata); 
title('C02 Composition (Output)'); 
ylabel('% C02'); 
xlabel( 'Time'); 

The first task for the students was to identify a 
discrete-time transfer function model for the gas fur­
nace. A non-parametric spectral analysis provides a 
starting point for estimating model order. This is 
done with the following commands: 

y = detrend(ydata); 
u = detrend(udata); 
z"[yuJ; 
gO = spa(z); 
bodeplot(gO); 

% System_lD toolbox 
% Systea_ID toolbox 

O'8~ 
~O.6~ 

0.4 L--__ -'--__ -'-__ -' 

o 100 200 300 

Time 

Figure 3: Input-Output data for a gas furnace. The 
data is adapted from Appendix B of Box and J enkill8. 

The function detrend (from the Signal Proceflsing 
Toolbox) is used to remove means and linear trends 
from the input and output data series. Then apa 
(also from the Systell1ldentification Tholbox) is ap­
plied to construct a transfer function estimate that is 
stored as gO. The transfer function is displayed using 
bodeplot to give the refluit shown in Figure 4. 

There are a number of possible model~ that could 
be used to describe this data. Of these, an ARMAX 
model in the form 

B(q) C(q) 
yet) = A(q) u(t - nt) + A(q) e(l) 

or, explicitly, as 

b -I + +b -n, Iq ... n,q U(t-nl)+ 
1 + olq-I + ... + on.q-n. yet) = 

clq-I + ... + cn,q-n. e(t) 
1 + olq-I + ... + on.q-n. 

does an adequate job (,-I is the backward shift op­
erator). The following commands use functions in 
the System Identification Toolbox to fit an ARMAX 
model for the case n. = n&·= n. = 2, nl = 1. The fit­
ted transfer function is then evaluated and Bode plot 
is displayed to compare the fitted transfer function to 
the previous non-parametric estimate. 

th = armax(z, [2 22 1J); 
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Figure 4: A nonparametric estimate of the transfer 
function between the input and output of the gas fur­
nance based on the data in Figure 3. The results are 
computed using the System Identification Toolbox. 

g = trf(th); 
bodeplot([g gO]); 

The resulting Bode plots shown in Figure 5 demon­
strate a reasonable fit of the data using a second or­
der model. 'Goodness of fit' can also be explored by 
computing an estimated autocorrelation function for 
the residuals, and an estimated cross correlation be­
tween the input. This is done with the command 
e = rellid(z. th) to produce the results shown in 
Figure 6. 

These plots indicate that there is little significant 
correlation left in the residua" so there is no stati ... 
tical justification for employing higher order models. 
(Attempting to fit a first-order model to this data pro­
vides an example where statistically significant corre­
lations do remain in the residuals.) The fitted model' 
coefficients are displayed as follows: 

pre.ant(th) 
Thi. matrix was created by the command 
ARMAX on 2/28 1989 at 10:47 

Lo •• fen: 0.09217 
Akaike's FPE: 0.09593 
Sampling interval 1 

::l::~~:] 
10-2 10-1 1oo 101 

frequency 

Or~-=~PHA~~SE~PLOT~~~~ 

l:l:=S::] 
10-2 10-1 1oo 101 

frequency 

Figure 5: Comparison between the nonparametric es­
timate of the gas furnace transfer function, and the 
transfer function by fitting a second order ARMAX 
model. A good fit is obtained except at relatively 
high frequencies where noise is expected to be the 
dominant contribution. 

The polynomial coefficients and their 
standard deviations are 

B = 

A = 

c = 

o -6.3133 16.9243 
o 1.9007 2.3403 

1. 0000 -1. 3899 
o 0.0618 

1.0000 
o 

0.1386 
0.0858 

0.6299 
0.0480 

0.1307 
0.0659 

At this point in the exercise, the student has de­
veloped a transfer function model for the gas furnace 
that can be used for designing simple control systems. 
Omitting the details, an optimal LQG controller can 
be designed to minimize the loss function 

J/, = E[1I2(k) + pu'(k») 

by the computational method outlined in Chapter 12 

89 



90 

Correlation function of residuals 

0.5 

o 
-0.5 L-____ ~ __ ___l 
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lag 

oSross correlation: Input 1 and Residuals 

o~ 
-O.~ -20 o 

lag 
20 40 

Figure 6: The auto- and cross-correlation functions 
of the residuals obtained after fitting a pal'ametric 
model provides a simple test of model fit. In this 
case, a second-order ARMAX model appears to ade­
quately account for all of the essential correlations in 
the gas furnace data. The horizontal lines mark the 
96% confidence intervals for the null hypothesis. 

of Astrom and Wittenmark [1). The necessary calcu­
lat.ions are encapsulated in the function dlqg given 
below. This function makes use of others defined 
in the Control Systems Toolbox. These are dlqr, 
which computes a solution to the algebraic discrete 
time Ricatti equation, and aa2tf, which convert.. .. 
state-space model representation to a transfer func­
tion description. 

function [B,r]=dlqg(th,rho) 
XDLQG 
X Cr,B] = DLQG(theta,rho) compute8 
X the LQ optimal controller to 
% minimize the objective function 
X 
X 
X 
X 

2 2 
E[y (k) + rho.n (k)] 

X The reaulting controller i. given 

X in transfer function fora 
X 
X 
% 
X 
% 
X 
X 
X 

seq) 
n(k) .. - ---- y(k) 

R(q) 

The plant model h gben by theta 
in the standard fora of the Systam 
Identification Toolbox. 

X Ref:Chapter 12, Astrom a Vittenmark 

% J.C. Kantor, 3 December 1987 

[a,b,c,d,f]=polyfora(th): 
a"conv(a,f): 
na = length(a)-1: 
nb " length(b)-l: 
nc = length(c)-l: 
n = max([na,nb,nc]): 
A = [zeroa(n,l),[eye(n-1): .. 

zeroa(l,n-l)]] : 
1(1:na,l) .. -a(2:na+1)': 
B = zero8(n,O: 
B(l:nb,l) = b(2:nb+l)': 
K = z8ros(n,n: 
K(l:nc,l) = c(2:nc+l)': 
K = K + 1(:,0: 
C" [l,zeros(l,n-1)]: 

L" real(dlqr(A,B,C'.C,rho»: 

[a,r] = a82tf(A-K.C-B.L,K,L,[O] ,1): 

Letting p = 10-5 gives an approximation to min­
imum variance control. The resulting controller is 
given by u(t) = -Gc(q)y(t) where 

5(q) 0.0762q-1 - 0.0512q-' 
Gc = R(q) = 1 + 1.1555q-1 + 1.6364q-2 

Finally, the student can compute the simulated re­
sponse of the closed-loop glIB furnace control system. 
The closed-loop transfer function between the output 
and exogenous disturbances e(t) is given by 

C(q)R(q) 
y(t) = A(q)R(q) + 8(q)5(q) e(t) 

The following sequence of commands computes the 
products of polynomials using the MatIab convolution 
operator conv, does a simulation of the closed-loop 
plant models, and displays the results. 

% Compute control and closed-loop 
% tran8fer fuctionB 



[s,r] = dlqg(th,O.OOOOl); 
[a,b,c]=polyfor.(th); 
p = conv(a,r) + conv(b,s); 
qy = conv(c,r); 
qu = conv(c,.); 

t Construct a white noise input 

rand( 'normal'); 
w = O.1.rand(200,l); 

t Output simulation 

subplot(211) ; 
plot(dlaim(qy,p,w»; 
title('Output'); 
ylabel('C02'); 

t Control aimulation 

Bubplot(212); 
plot(d181m(qu,p,w»; 
t1tle('Control Action'); 
ylabel('Gaa Flow'); 

The simulated performance of the closed-loop reg­
ulator results in a 20.5% reduction in the variance 
of the CO2 sl.ack gas composition compared to the 
CaRe of no control. The results are shown in Figure 
7. Many additional aspects of !.lte problem can be 
readily treated using simple Matlab procedures. 

6 Summary Remarks (Why 
Matlab Can't be Used for 
Everything?) 

In spite of its many useful real.ures, Matlab is not 
an appropriate tool for all applications. While it is 
difficult to draw precise boundaries, there are some 
general guidelines. 

• MaUd is useful when your problems are 'vector­
izable '. 

Matlab exhibits excellent floating point perfor­
mance when using its matrix oriented primitive 
operations. However, because it is an interpreted 
(not compiled) language, it sutTers some perfor­
mance degradation on scalar and non-numeric 
operations. Some algorithms, such aR for inte­
grating ordinary differential equations, can be 
quite slow in Matlab for this reason. 

-:~ o 50 100 150 200 

0.05 Control Action 

t~~ 
o 50 100 150 200 

Figure 7: Response of the gaR furnace with LQ con­
trolin place. 

• M allah is useful for prototllping algorithms. 

Matlab is a high-level language with a large num­
ber of primitives so that even complex algorithms 
can be written in a minimal number of lines. The 
interpreter provides a convenient mechanism for 
debugging numerical algorithms. For example, 
simply by deleting the semicolon at the end of 
a line, the intermediate results oC any compu­
tation are printed. There are also facilities Cor 
introducing keyboard interrupts and monitoring 
intermediate values. 

• M allah is useful when you need results fast. 

In addition to the points given above, the avail­
able toolboxes and graphics Cacilities are oC­
ten sufficient for solving problems from start to 
finish, including the production of publication 
graphics. 

• Mallab does not replate either FORTRAN or 
specialized application software. 

Matlab is not a replacement for a FORTRAN 
compiler and a good package of scientific subrou­
tines. It not suited to truly large scale compu­
tation, nor can it be used effectively in a batch 
mode. Linear programming provides an exam­
ple of the tradeoffs. Straightforward Matlab LP 
codes might be useful for problems with, say, up 
to a few hundred constraints. This is no match 
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for commercial that can handle many thousands 
of constraints. 

• MaUd is not fie,., effective /or IIon-ovmeriml al­
gorithms. 

Matlab treats essentiaily all inC ormation as ma­
trices of real or complex floating point numbers. 
The simple facilities for handling textuai data in 
Matlab are inade,quate for anything beyond ma­
nipulating titles and labels. It would be a mis­
take to use Matlab to do data base programming, 
for example, or Cor writing compilers. 

7 Where to Obtain Matlab 

Academic institutions can purchase Matlab directly 
from the MathWorks, Inc. Their address is 

The MathWorks, Inc. 
21 Eliot Street 
South Natick, MA 01760 
Phone: (508) 653-1415 
Fax: (508) 653-2997 
E-mail: tung@mathworks.com 

The Math Works has special licensing provisions for 
e1asi1room and educational use. For commercial uses, 
Matlab is also distributed by 

MGA, Inc. 
73 Junction Sljuare Dr. 
Concord, MA 01742 
Phone: (508) 369-5115 

Versions of Matlab are available for IBM PC, AT, and 
80386 platforms, including Weitek support. Also for 
the Apple MacintOBh (with and without support for 
the 68881), Sun and Apollo workstations, DEC Vax, 
Gould, and Ardent machines. The Ardent version has 
Cacilities Cor 3D solids rendering. 
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Application Note 

Modeling and Analysis of a 
2~Degree~orFreedom Robot Arm 

This application note describes the modeling and analysis of a 
two-linkage robot arm using MATRlX,c"' and SystemBuildTl'. 

The nonlinear equations of motion of the system are presented, 
followed by the SystemBuild block diagram description of those 
equations. The SystemBuild model is lineari:zed and an optimal 
regulator is designed based on the lineari:zed model. The re­
sponse of the closed-loop system is found through simulation 
and the results are plotted. 

Modeling 

Consider the two-linkage robot arm shown in Figure 1. Both 
links are assumed to be perfectly rigid and are connected by a 
frictionless pin joint. The system thus has two degrees of 
freedom, 6, and 62 , There are two control inputs to the system, 
the motor torques '1', and '1'2 at the rotating joints. For a 
particular set of arm masses, lengths, and inertias, the nonlinear 
equations of motion for the system are: 

(1) ~=1.['I'1-'I'2+0.01 ih~sin2/h] 
I 

(2) ~=....!L_l.ih2 sin2/h 
O.ot 2 

where I is given by: 

(3) 1 = 0.07 + 0.06 coS2 /h + 0.05 sin 2/h 

These nonlinear dynamic equations can be represented in 
SystemBuild, the interactive block diagram modeling facility of 
MA TRIXx, using combinations of algebraic and dynamic blocks. 
Block diagrams constructed in SystemBuild are hierarchical. 
Each node in the hierarchy is represented by a SuperBlock, 
which can contain up to 99 other blocks, including other 
SuperBlocks. 

Figure 2 illustrates how the dynamics of the two-linkage robot 
arm can be modeled in SystemBuild. The ROBar super-block 
shown in Figure 2 contains two algebraic general expression 
blocks, four Nth order integrator blocks, two trigonometric 
function blocks, and one gain block. Figure 3 gives the neces­
sary details required to define each block. 

General expression blocks are defined by passing text strings in 
the block form. The following text string was used in dt;fining 

Figure 1: Two-Degree-of-Freedom (2-00F) Robot Ann 

the block with an ID of (32) and having inertia as an output (see 
Figures 2 and 3). 

Y = 0.07 + 0.06 • U2 * U2 + 0.05 • Ul * Ul 

This block calculates inertia as defined in Equation (3). The 
strings used to calculate ih and ~ in the algebraic expression 
block with an ID of (12) are: 

Yl =(Ul- U2 + O.ot * U3 * U4 * U:;)/U6 
Y2 = U21o.01 - 112 * U3 * U3 * U5; 

Note: . Y1 is the calculation of ih , and Y2 is the calculation of 
~as defined in Equations (1) and (2). 

Once all of the blocks have been defined as illustrated in 
Figure 2, the system can be analyzed through the ANALYZE 
option of System Build. When this option is selected under the 
BUILD menu, SystemBuild creates and internal simulation 
model by assembling all of the SuperBlocks in the hierarchy. A 
reference map is then created which displays the structure of 
the super-block hierarchy: 

Super-Block Reference Map: 
ROBOT 

All super-blocks identified 
System Built with 0 error(s) and 0 warning(s) . 
Use SIM ('IALG') to set the integration algorithm 

The ANALYZE option in SystemBuild returns the user to the 
MA TRIXx command level where he can simulate the system, 
lineari:ze it, or issue any MA TRlXx command. 

Reprinted. with permission, from Application Note brochure. 93 



Yl- (Ul • UZ + O.Ol*UJ*U4*US)/U6 
HET! 1 DOlIlILE DOT 

cos THETA 

F~e 2: Robot Ann.lJynamics 

linearization and Controller Design 

In MA TRIXx the continuous state space model is described by 
II system Jrultrix, S and the number of states, NS. The S Jrultrix is 
defined as the collClltenationofthefour Jrultrices, (A,B, C, and 
D) used in describing a linear system as given by the following 
relation between the 'system output, y and the inputs, u. 

and 

x,=Ax +Bu 
y=Cx +Du 
whemx{O)=x 

S =[~;] 
Once back at the MA TRIXx com=nd level (the <> prompt), 
the system built in SystemBuild can be linearized with the LIN 
command: 

<> [SL,NSL),.LIN(.l) 

where the argument of the LIN comJrulnd is the she of the 
perturbation to be applied to all system states and inputs when 
the partials are computed numerically. MA TRIXx teturns the 
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system state space Jrultrix, SL, and the number of states, NSL, 
which represent the linearized system: 

NSL 
4. 

SL 

0.0000 
1.0000 
0.0000 
0.0000 
1.0000 
0.0000 
0.0000 
0.0000 

0.0000 0.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 1.0000 
0.0000 0.0000 
1.0000 0.0000 
0.0000 1.0000 
0.0000 0.0000 

0.0000 7.6923 -7.6923 
0.0000 0.0000 0.0000 
0.0000 0.0000 100.0000 
0.0000 0.0000 0.0000 
0.0000 0.0060 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 

The system has four states (ih, th, ik and Ik ), twO inputs (the 
motor torques) and four outputs (which are the states). 

Once the ROBOT SuperBlock has been linearized, one can de­
sign a linear regulator controller. The REGULATOR com­
Jrulnd computes the optiJrulI constant gain, state-feedback JruI­

trices for continuous-time systems under t:heassumption of full 
state feedback. 



Inputs into the REGULATOR command Include the A and B 
(plant and input) components of the system mattix, S and the 
design weighting matrices, R".. R ... and R .... where R. is op­
tiona\. The design weighting matrices provide weights on the 
states, x, and controls, II, as defined by the follOWing quadratic 
cost function: 

COSI' = 1-(x·R..x + II·R.Jl + x'R~ + II·R'....x)dt 

Note: Ruu must be positive definite and Rxx must be positive 
semi-definite. 

The A and B parts of the system matrix, SL, can be extracted 
with the SPLIT command: 

<> [A,B)-SPLIT(SL,NSL) 

B 

7.6923 
0 •. 0000 
0.0000 
0.0000 

-7.6923 
0.0000 

100.0000 
0.0000 

~c &QUATIQIlS (ALGI 
TYPE; GI:IISML &XrUS8IOH 
IHPDtS: , 
OD'1"PO'1'S: 2 
ALGEUAIc IQIJATIOIfS: 

Yl - -------; 
Y2 ... ------; 

Y2"UZ/O.Ol-112'U)'U3'U5 

ALGEBU.I.c EQIlI,.'1'IOIIS: 
y ... -----; 

KETAlDOOBLBDOT 

A 

o. o. o. O. 
1. O. O. O. 
O. O. O. o. 
O. O. 1. O. 

Diagonal state (RXX) and control (RUU) weighting matrices 
are defined for the purpose of designing an optimal regulator. 

<> RXX-DIAG ([10 100 1 100) 

RXX 

10 O. 
O. 100. 
o. 
O. 

o. 
O. 

o. 
O. 

o. 
o. 

1. O. 
O. 100. 

<> ROU-DIAG([20 100]) 

ROO 

20. O. 
O. 100. 

ALGURAIC BQIJ.'1'IQlS (ALGI 
TYPE: GAIM BLOClC 
IIIl'UTs: 1 
OOTI'OTS: 1 
GA.III;2 

T1tIGI'VNCl'IOMS ('tIlG) 
n,,; COSlli! Cu) 
IIIPU'l'8:1 
OUTPOTS; 1 

FiguTe 3: Block Fonn Details (ROB SuperBlock) 
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The optimal regulator is designed with the REGULATOR 
command: 

<>[EV,KRI-REGOIATOR(A,B,RXX,RIJU) 

MATRIXx returns the closed-loop eigenvalues (of the linear­
izedsystem) and the optimal regulator state feedback gains, KR. 

KR 

1.0365 2.2261 0.0683 0.2112 
-0.0298 -0.0944 0.1727 0.9955 

EV 

-8.7233 + 4.8199i 
-8.7233 - 4.8199i 
-4.0127 
-4.0127 

+ 1.1024i 
- 1.1024i 

The closed-loop system can now be completed in SystemBuild 
as the SuperBlock SYSTEM, which is illustrated in Figure '4. 
This SuperBlock includes the SuperBlock ROBOT (the open­
loop plant), the gain block, MINUS KR, and two summing 
junctions. Rectangular, gain matrices are defined in 
SystemBuild as state space systems with zero states. Thus the 
gain block, MINUS KR is defined as a state space system with 
zero states, four inputs, and two outputs, and with the gain 

• T TA 0 

matrix -KR passed from the MA TRIXx stack (note: input as 
[-KRj). The SuperBlock SYSTEM has six external inputs, the 
first four being the reference states being the last two are refer­
ence (disturbance) torques. -SYSTEM also has four external 
outputs which are the actual states. The summing junction in 
the top left of Figure 4 computes the difference between the 
reference states and the actual states. This error vector goes to 
the gain block, which computes the control torques. These 
control torques are differenced from the reference torques in 
the summing junction which is just below the MINUS KR 
block in Figure 4. The outputs of this summing junction are the 
actual torques which are inputs to the differential equations in 
the ROBOT SuperBlock. Figure 5 gives the details necessary to 
fill out each of the block forms in the SYSTEM SuperBlock. 

Closed-loop Simulation 

The closed-loop system can be analyzed through the 
ANAL 'YZE option of SystemBuild. Selecting SYSTEM for 
analysis results in: 

Super-Block Reference Map : 
SYSTEM 

ROBOT 
All super-blocks identified 
System Built with 0 error(s) and 0 warning(s) • 
Use SIM ( 'IALG') to set the integration algorithm 

ONTROL TORQUE 1 

ONTROL TORQUE 2 

ROBOT 

T 

~ ET 2 BLOCK 

THETA 

Figure 4: Closed-Loop System 
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ALGEBRAIC BLOC!< (ALG) 
TYPE: SUM. 01' VECTORS 
INPUTS: 8 

DYNAMIC SYSTEMS (DYN) 
TYPE: STATE-SPACE SYSTEM 
IIIPUTS: 4 

ALGEBRAIC BLOC!< (ALG) 
TYPE: SOH OF VECTORS 
INPUTS: .. 

OUTPUTS: .. otrrPOTS: 2 OUTPUTS: 2 
tIlIPUT VECTORS: 2 STATES: 0 tINPUT VECTORS: 2 

STATE-SPACE MATRIX: -KR 

TORQUE 1 

TORQUE 2 

SUPER BLOCK (SUP) 
NAME: ROB 
INPUTS: 2 
OUTPUTS: .. 

Figure 5: Block Form Details (sysTEM SuperBlock) 

After receiving the above message you will be at the MA TRIXx 
command level. The time vector used for simulation is defined 
as starting at 0 and going to 10 seconds in steps of 0.1 seconds. 

<> 1'-[O:0.1:10!'; 

The reference states call for step rotations of both joints at 
consistent angular velocities (0.5 and 0.375 radians/seconds) 
from 0 to 2 seconds. after which the final angles (0.1 aru:lO.075 
radians) are to be held. The reference states are then defined as: 

<> THE100l'-[O.05*ONES (21,1) ; O*ONES (80,1) ]; 
<> THE1-[O.05*T(1:21) ;0.10*0NES(80,1)]; 
<> TllE2OOl'-[O.0375*0NES(21, 1) ; O*ONES (80,1) ]; 
<> THE2-[O. 0375*T (1:21) ; 0.07S*ONES (80, 1) 1; 

<> USTATE-[TBE1DOT THE! TBE2DOT TBE21; 

The reference states can be plotted by typing the following 
command (see Figure 6): 

<> PIDT (T, USTATE, 'STRIP REPORr XLlIB/TIME (sec) I . .. 
YLAB/THETAl DOT I THETA11 TBETA2 DOT I TllETA211 ••• 
TITLE/REFERENCE INPUT VS TIME/') 

The reference (disturbance) torques are defined as: 

<> TAU1-<l*ONES (T) ; 
<> TAU2-0*ONES (T) ; 

<> UTORQ-[TAU1 TAU2]; 

The reference states and torques can be combined to define the 
system input matrix: 

<> USYS-[USTATE UTORQl; 

The closed-loop response is then simulated with the SIM com­
mand as follows: 

<> Y-5IM(T,USYS) 

Figure 7 illustrates the system response to the system inputs. 
This plorcan be generated by typing the following: 

<> PIDT (T, USTATE, 'STRIP REPORT XLlIB/TIME (sec) I . .. 
YLAB/TIIETA1 !lOT I TIIETA1I TBETA2 DOT I TBETA21/ ••• 
TITL/SYSTEM RESPONSE VS TIME/') 
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We can compare the commanded and the actual trajectory by 
plotting both the Input and the response on the same plot (see 
FigureS). 

<> PLOT(T, !USYS Yl, 'STRIP2 REPORT lCLAB/TIME(sec) / ••• 
YLAB/T/IETAl DOT I THETAll THETA2 DOT I THETA2 I / ••• 
TITL/REFERENCE INPUT , SYSTEM RESPONSE VS TIME/') 

The response of the system over a larger (more nonlinear) state 
trajectory can be computed with: 

<> Y2=SIM (T, 2*USY5) ; 

The results are shown in Figures 9 through 11. Note the 
responses are similar to those obtained with the smaller 
trajectory. 

Alternate Methods 

We have described an approach to modeling and analyUng a 
two-linkage robot arm using the lSI Product Family. Many 
different modeling approaches could also be taken. Using 

algebraic loops, the joint angular actelerations could be written 
in terms of themselves, i.e.: 

~ = J{~. ih. ~. in. th. Bl. -r1. -rJ 
~=f(~, ih.~. in. th. Bl. -r1. -rJ 

This approach could be useful If the equations are hard to 
separate. FORTRAN blocks could also be used to define the 
dynamic equations. This would allow one to include existing 
FORTRAN simulation code into SystemBuild where the dy­
namics could be analyzed and controllers designed. One could 
use a symbolic manipulation program to generate the dynamic 
equations and the FORTRAN code to simulate them. 

The controller design presented is a very simple continuous­
time linear one. In practice. robot controllers tend to be 
nonlinear and multi-rate digital. Designing nonlinear multi­
rate controllers is very easy with SystemBuild, as there are a 
wide variety of nonlinear blocks available. Sampling rates are 
defined at the SuperBlock level. Different sampling rates can 
be used for different SuperBlocks, without restricting the rates 
to being multiples of each other. Adaptive controllers could 
also be designed. 

l : r-------\ I 

i ~ l/>--~,-:-'---m---'-----'---~-m----I 
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Simnon - A Simulation Language for 

Nonlinear Systems 

Tomas Sehonthal 

Department of Automatic Control 
Lund Institute of Technology 

S-221 00 Lund, Sweden 

Ab.tract. This paper presents Simnon, an inter­
active simulation environment for nonlinear sys­
tems, developed by the Department of Automatic 
Control, Lund Institute of Technology, Lund Swe­
den. The following topics are covered: System de­
scriptions, interactive facilities, examples, appli­
cation areas and technical features. 

1. Introduction 

Simnon is a modular high level language for 
describing dynamical systems with continuous 
and/or discrete time. Equally important, it is an 
interactive command language, a "software labo­
ratory", designed to organize and carry out simu­
lation runs, vary circumstances (i.e. parameters, 
initial values or the models themselves) and dis­
play results graphically or numerically. A macro 
facilitity permits developers to pack models and 
command sequences into "turn-key" applications. 
The first version of Simnon appeared as the re­
sult of a master thesis in 1972. At that time dig­
ital simulation meant expensive batch runs on 
main frames, or writing your own dedicated For­
tran programs, since there hardly existed any 

interactive systems with reasonably flexible in­
put formats for the type of computers that a 
small research group could afford. Simnon soon 
became a standard tool at Automatic Control, 
Lund. In the years to follow Simnon went through 
several stages of development. Today Simnon is 
used worldwide by many universities for research 
and education in several disciplines and is equally 
popular in industry. Thanks to the MS-DOS ver­
sion, Simnon is rapidly finding new users in both 
large and small organizations. 

2. System Descriptions 

The key concept is the system, which corre­
sponds to a mathematical model of the real­
ity being studied. In Simnon a system is a 
sequence of statements in a special modeling 
language. There are continuous systems (dif­
ferential equations) and discrete systems (dif­
ference equations). A third type of system, 
connecting system, is used to form compound 
systems from continuous and discrete systems. 
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inputs u states x outputs y 

Continuous system: 

z = J(z,u,t) 

y= g(z, u, t) 

Discrete system: 

Z(tt+1) = J(z(t.), u(tA:), tA:) 

y(tt) = g(z(t.), u(tA:) , tt) 

tl:+1 = h(z(tA:)' u(t.), tt) 

As we shall see later, describing a process (con­
tinuous system) controlled by a digital regulator 
(discrete system) is very natural in Simnon, but 
Simnon as such has no "built-in control theory". 
The approach is "open architecture" , deferring all 
that is specific to a particular discipline to the 
user written models. 
The statements of the system description lan­
guage are: declarations (type of system, type of 
variable), assignments of variables, initial val­
ues and parameters. Variable assignment: vari­
able = [IF condition THEN expression ELSE) 
expression. Expressions are formed by the com­
mon arithmetic operators and elementary func­
tions. Random numbers, time delays, interpola­
tion and the ability to drive a simulation by an 
external data file are also provided. Please refer to 
'Technical Features, Compiler' for more details. 
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3. Interactive Facilities 

Once a system has been written according to the 
rules of the system description language, the user 
can, with the aid of the command language, begin 
to experiment with it. First of all, the system has 
to be translated by Simnon;s compiler. Then vari­
ables are selected for plotting, and a simulation 
over a selected time interval is started. 
Simulation, in general, is very much a trial-and­
error process. If the results differ from those ex­
pected, it is easy, with Simnon, to change a pa­
rameter, an initial value, or even an equation and 
repeat the simulation. In the meantime Simnon 
can accumulate raw material for a report. All this 
can be accomplished conveniently with only a few 

ofSimnon's 43 commands. In addition to this, op­
erating system commands may be executed from 
within Simnon. 
The interaction mode is command driven, i.e. 
commands can be entered in arbitrary order, like 
when you communicate with conventional oper­
ating systems such as MS-DOS, Unix or VMS. In 
'Technical Features, Macros' it is indicated how 
the user may influence this situation. 

4. Examples 

4.1 Chaos 

In 1963 Loren. derived a set of ordinary differ­
ential equations to approximate the behavior of 
atmospheric air currents: 

z = a(y- z) 

iI = bz - y- z.z 

2: = zy- c.z 

These equations can be represented by the follow­
ing Simnon system: 

continuoUs system Lorenzeq 
state x y z States 
der dx dy dz Derivatives 

dx=a*(y-x) ComputatiDn8 
dy=b*x-y-x*z 
dz=x*y-c*z 

a: 10 Parameter. 
b: 28 
c: 2.667 

x: -8 Initial value. 
y: -8 
z: 24 
end 

To solve the equations we type: 

syst Lorenzeq 
store x y z 
~rror 1e-6 
simu 0 20 
ashow z(y) 

Tran.late the Iydem 
Store the ,olution 
Demand higher accuracy 
Simulate 
Plot Z VI Y 

text 'Simulare Necesse Est!' 
Add a title 

hcopy Print the diagram 



4.2 Control 

A simple example of a nonlinear control is one 
that respects the saturation limits of its regulator: 

This model is represented in Simnon as a continu­
ous process called proc, a discrete regulator called 
pireg and a connecting system called regsys. 
The discrete PI regulator has logic to limit satu­
ration, or windup, on its integrator. 
To simulate the model without anti-windup (de­
fault), type: 

syst proc pireg regsys 
store yr y[proc] 
simu 0 40 
sp1it 2 1 
ashov y yr 
text 'Output and set-point' 
ashov uclip 
text 'Control signal' 

which produces: 

1.5 ou .......... .-.. l.e 

I •• 

-II .• 

-II.lr-______ ~~~----~~---4~~------~ 

Now we can activate the anti-windup by setting 
the low and high values of the control. We then 
specify overplotting and repeat the simulation: 

par ulov: -.1 
par uhigh: .1 
plot y[proc]:l 1 uclip:2 1 
simu 

1.5 OIIt ... t ... d .. t-potnt 

1.5 

II 
'.1 ContN. lipa. 

I .• 

-1.1:1 

-•. l!--------:1:---4----..",.L---~'-T------___,c 

This gives far better performance. If we instead 
wish to try an adaptive regulator in this environ­
ment, we could replace the module pireg with 
a "plug compatible" (i.e. having the same inputs 
and outputs) module adaptreg, and repeat the 
above commands, except, of course, that the pa­
rameter tunings would look different. 

5. Application Areas 

Simnon is used for education and research in 
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such diverse disciplines as automatic control, bi­
ology, chemical engineering, economics, electrical 
engineering, mathematics, mechanical engineer­
ing, etc. Typical problems include engine control, 
food processing, power systems, process control, 
robotics and ship steering. ' 

6. Technical Features 

6.1 Compiler 

Before a model can be simulated, it has to 
be translated by Simnon's integrated compiler. 
The compiler not only checks for syntax errors, 
but also ensures that all quantities appearing to 
the right of an assignment have defined values. 
Thanks to the equation sorter, equations may be 
entered in arbitrary order, and algebraic loops 
will be detected. One kind of optimization is 
made: Time-invariant expressions are only eval­
uated once. 
Numerical errors (e.g. zero divide) during simu­
lation will be pinpointed in their source context. 
'Since the models are compiled into machine code, 
the simulations will run as fast as Fortran pro­
grams. In contrast to conventional programming 
techniques, the turnaround times are neglible, al­
lowing the users to modify their models "on the 
fly" . 
The MS-DOS version has dynamic memory allo­
cation, which permits very large models. 
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6.2 Data Formats 

Simnon is file oriented: System descriptions and 
macros are normal text files that can be prepared 
by any text editor. Time series are stored as bi­
nary files. These can be exported to printable 
ASCII (a time series then forms a column) and 
re-imported. 
There exists a one-way path from PC-Matlab 
(The MathWorks, Inc, Sherborn, Mass.) to Sim­
non at the system description level: Included with 
Simnon is a preprocessor written as a Matlab 
function that takes as arguments a matrix set 
comprising a linear, time-invariant system and 
produces a complete Simnon system description. 
The command hcopy dumps the graphics part of 
the screen to a plotting device or to a file for 
further processing. 

6.3 Documentation 

Simnon comes with an English 180 page computer 
set tutorial and reference manual with many ex­
amples. The on-line help utility has over 100 en­
tries. 

6.4 Macros 

Simnon usually takes commands from the key­
board, but a sequence of commands can be de­
fined as a macro (for historical reasons the term 
'macro' is used; perhaps a more adequate term 
is 'command procedure'). A macro can then be 
invoked by typing its name and any associated 
arguments. In this way the user may add extra 
commands to the Simnon vocabulary. There is 
provision for jumps and input/output just like 
in a programming language. Macros can be used 
to change Simnon's interaction mode from com­
mand driven to question and answer sequences, 
which may be utilised for demonstrations. Macros 
enable one person to develop and test a simula­
tion model and someone else to use it. Macros 
have the reel of genuine Simnon commands, or 
they could act as "programs within the program" . 
Typically, such a macro could present the user 
with a list of alternatives, then prompt the user 
for a choice (input wave form, PID-control or 
adaptive, etc.), or a numerical value. 

6.5 System Requirements, MS-DOS ver­
sion 

• IBM PC, XT, AT, PS/2, 80386-based or com­
patible personal computer 

.8087,80287 or 80387 maths coprocessor 

• MS-DOS/PC-DOS version 2.00 (or later) or 
OS/2 with Compatibility Box 

• 256 kB of RAM or more 

• 3.5 or 5.25 inch diskette drive 

• Hard disk (strongly recommended) 

• One of these graphics systems (highest res­
olution used): CGA, EGA (enhanced or 
mono display), Ericsson PC, Hercules, Olivetti 
M24/ AT&T, Toshiba PC or VGA/MCGA 

• Recommended hard-copy devices: 
- Epson MX-80, IBM 5152 or compatible 
- HP LaserJet family 
- PostScript printers (e.g. Apple LaserWriter) 

6.6 Prices, MS-DOS version 

(July 1988, version 2.11) North American cus­
tomers pay in US $. All other customers pay in 
Swedish currency (SEK). Swedish'customers will 
be charged value ad.ded tax. 

One copy of Simnon costs US $ 695 (SEK 5000). 
Quantity discounts: 

3--4 copies 10 % 
5-9 copies 15 % 

10- copies 20 % 



For universities and schools the following prices 
apply: 

1 copy 
5 copies 

10 copies 
20 copies 

us S 345 (SEK 2500) 
US S 1250 (SEK 9000) 
US S 1750 (SEK 12500) 
US S 2500 (SEK 18000) 

Universities and schools may buy the ClaS61'OOm 
Kit for US $ 500 (SEK 3500), provided that they 
(have) order( ed) at least one copy of regular Sim­
non. This reduced problem-size version of Sim­
non, which is intended for education only, comes 
with a license for 10 PCs. 
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Implementing Digital Controllers 

A lot of work has been done recently in the area of modem control theory. and many quite elegant theories 
have resulted. However. implementation has lagged substantially behind theory and idealized mathemati­
cal design. The outcome is that modem control theory is still limited somewhat to research labs. and most 
of the servo control applications in the industry utilize classical control techniques. This introduction dis­
cusses some of the issues in implementing digital controllers. It should be emphasized that there are no easy 
solutions-digital controllers still lag in the body of knowledge that is available for implementation. The 
introduction and the articles in this part may not provide canned solutions; however. they do highlight many 
pitfalls and problems of implementation and provide suggestions to minimize them. 

The major issues in implementing digital controllers are the effects offinite word length. optimal controller 
structures, computational delays, and software development for microprocessors/DSPs. The most impor­
tant issue in implementation is the effects offixed-point arithmetic and finite word length. Some problems 
can be minimized by using floating-point processors; however, this may not always be possible. Before 
going into the effects of finite word length, section Fixed-Point Versus Floating.Point wiII review fixed­
point and floating-point arithmetic formats. 

Fixed·Point Versus Floating.Point 
Floating-point processors have a very large dynamic range. In floating-point. a number is represented with 
a mantissa and an exponent. The mantissa represents the fraction, and the exponent represents the number 
of digits to the left of the decimal point. For example, assuming that a four-digit storage is available, 3740 
can be written as 0.374 x I Q4. In floating-point, this can be represented as 4.374; where, exponent = 4 and 
mantissa = 374. 

The largest floating-point number represented by four digits is 9.999 or 0.999 x 1()9 = 999000000. The 
largest fixed-point number represented by four digits is 9999. 

Floating-point numbers thus allow amuch larger dynamic range than fixed-point numbers. However, float­
ing-point does not necessarily eliminate all finite word-length effects. Storage length is still limited, but 
with a larger dynamic range. There is also some loss of resolution. The number of significant digits in a 
mantissa determines the accuracy of the numerical value. However, the mantissa does not use all the storage 
capacity as some of the storage is taken up by the exponent. In practice, to minimize this loss of resolution, 
floating-point formats use 24 bits or greater to represent the mantissa. The TMS320 floating-point genera­
tions, TMS32OC3x and TMS32OC4x, have 32-bit architectures. Three floating-point formats are available: 
short format with a 12-bit mantissa and a 4-bit exponent, standard-precision format with a 24-bit mantissa 
and an 8-bit exponent, and extended-precision format with a 32-bit mantissa and an 8-bit exponent. 

Floating-point processors are generally more expensive than fixed-point processors, and the cost may not 
be justified in some applications. Floating-point may be needed in applications where either gain coeffi­
cients are time varying or signals and gain coefficients have a large dynamic range. Other cases where 
floating-point can be justified is where development cost is more significant than component cost, and very 
low quantities are required. Floating-point processors usually allow code to be developed in high-level 
languages and reduce the need to fully identify the system's dynamic range. 

Fixed-point processors generally are less expensive because less hardware is required on chip. In addition, 
they have smaller word length (typically 16 bits), and system cost is lower. However, more effort isrequired 
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to develop appropriate scaling factors to eliminate the effects of truncation or overflow during the intenne­
diate and final states. Even in applications requiring use of floating-point for dynamic range requirements, 
it may be possible to use to use fixed-point processors. If gain coefficients have a large dynamic range but 
are constant, their dynamic range can usually be reduc;:ed-by structure optimization techniques. If gain coef­
ficients are time-varying and require adaptive control, a hybrid scheme can be used. Calculations for system 
identification typically have a slower update rate and can be perfonned with pseudo-floating-point fonnat. 
The controller calculations, on the other hand, have a much faster rate and can be implemented in fixed­
point arithmetic. Fixed-point processors can thus be used in most applications. The next section, Binary 
Arithmetic, will deal with fixed-point numbers only. 

Binary Arithmetic 
In binary fonnat, a number can be represented in signed magnitude, where the left-most bit represents the 
sign and the remaining bits represent the magnitude: 

+52 (decimal) = 34 (hex) is represented as 00110100 (binary) 
-52 (decimal) =-34 (hex) is represented as 1011 0100 (binary) 

Twos complement is an altemate fonn of representation used in most processors, including the TMS320. 
The representation of a positive number is the same in twos complement and in signed magnitude: 

+52 (decimal) = 34 (hex) is represented as 0011 0100 (binary) 

However, the representation of a negative number is different; as its name implies, the magnitude of a nega­
tive number is given in twos complement. 

-52 (decimal) = -34 (hex) is represented by taking its twos complement, 1100 1100 (binary); i.e., 
Convert+52to OOtt 0100 
Invert all bits to get ones complement 1100 1011 
Add one to get twos complement + I 
Twos complement is II 00 1100 

Therefore, -52 (decimal) = -34 (hex) is represented as 1100 1100 

Adding 52 and (-52) gives 0011 0100 
+ 1100 1100 

00000000 

as expected. The main advantage of twos complement is that only one adder is required to handle both posi­
tive and negative numbers. An addition will always give the correct result for both addition and subtraction. 
Also, if the final result is known to be within the processor's number range, an intennediate overflow can 
be ignored as the correct final result will still be produced. The largest positive number that can be repre­
sented with 8 bits is 7F (hex) or 127 (decimal), and the largest negative number represented with 8 bits is 
80 (hex) or-128 (decimal). 

The fixed-point binary representation does not have any binary point and does not represent fractions. How­
ever, it is sometimes advantageous to use an implied binary point to represent fractions. In signal process­
ing, it is common to represent a number in fractions. For example, if 0.99 is the highest number that.can 
be represented, the result of multiplying any two numbers will always be less than one - an overflow will 
never occur. 

The location of the implied binary point affects neither the arithmetic unit nor the multiplier. It affects only 
the accuracy of the result and location from which that value will be read. For fractional arithmetic, the re­
sult is read from the upper 16 bits. For integer arithmetic, the result is read from the lower 16 bits (assuming 
no overflow). Fractional arithmetic loses accuracy but protects from overflows, while integer arithmetic 



provides an exact result but offers no protection from overflow. In fractional arithmetic. an addition or a 
subtraction could produce an overflow, but a multiplication never causes one; generally, a single carry bit 
is sufficient to handle the overflow. 

ForTMS320processors, numbers are typically represented in the QI5 format; where. the numberfoUowing 
the letter Q represents the quantity of fractional bits. This implies that, in Q I 5, each number is represented 
by I sign bit, 15 fractional bits. and no integer bits. Likewise, a number in the QI3 format has I sign bit, 
13 fractional bits, and 2 integer bits. The following shows both Q formats of eight decimal fractions and 
one integer: 

decimal 
+0.5 
+0.25 
+0.125 
+0.875 
-0.5 
-0.25 
-0.125 

-0.875 
-1.000 

Q15 
0.100 0000 0000 0000 
0.010 0000 0000 0000 
0.001 0000 0000 0000 
0.111 0000 0000 0000 
1.100 0000 0000 0000 
1.110 0000 0000 0000 
1.111 0000 0000 0000 
1.001 0000 0000 0000 
1.000 0000 0000 0000 

Q13 
000.1 0000 0000 0000 
000.0 1000 0000 0000 
000.00100 0000 0000 
000.1 11 00 0000 0000 
100.1 0000 0000 0000 
100.1 1000 0000 0000 

100.1 11 00 0000 0000 
100.00010 0000 0000 
100.00000 0000 0000 

When two QI5 numbers are multiplied, the result is Q30 format and is also a fraction. The result has 30 
fractional bits, 2 sign bits, and no integer bit. 

1.1 00 0000 0000 0000 
x 0.100 QQQQ QQQQ QQQQ 

-0.5 

x~ 
-0.25 11.11 0000 0000 0000 0000 0000 0000 0000 

To store the result as a Q I 5 number, a left shift of one is performed to eliminate the extra sign bit, and the 
left-most significant 16 bits are stored. The result is stored as 1.I JO 0000 0000 0000. 

Multiplication never gives an overflow in QI5 format. but successive additions may. If the final result is 
Known to be within range, overflow in partial results will give correct results for the final sum. However, 
the saturation mode on the TMS320 must be tumed off. For example. 

+0.875 

+ ±Q.& 
+1.375 

+ :::Q.SQQ. 
+0.875 

1.1 00 0000 0000 0000 

+ 0.100 0000 0000 0000 
1.01\ 0000 0000 0000 

+ 1.1 00 ()()()() 0000 0000 
0.111 0000 0000 0000 

Finite Word-Length Effects 

(Q15 format) 

(add twos complement to obtain result) 

Finite word-length effects are probably the most critical issue in implementing controllers. Most digital 
controllers use fixed-point processors. In a fixed-point processor, only a finite amount of storage length­
for example. 4, 8, or 16 bits - is available to represent the signal and coefficients. Signals and coefficients 
must be scaled to fit in the dynamic range and word length of the processor. This limited storage capacity 
is referred to as the finite word-length issue. Finite word-length effects show up as noise in the system and 
may cause limit cycles or instability. But, it should be noted that finite word-length effects are somewhat 
forgiving in first- ,and second-order controllers. Finite word-length affects the controller in two ways: 
coefficient quantization and signal quantization. 
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Coefficient Quantization: Finite word length affects the representation of coefficients. The coeffi­
cients may need to be truncated or rounded to fit in that word length. If truncation or round-off is necessary, 
the process is called coefficient quantization. Coefficient quantization alters the transfer function of the 
system and changes the pole-zero locations and the gain of the system. Coefficient quantization is depen­
dent upon the sampling rate as well as the word length. As the sampling rate gets higher, the poles tend to 
move toward and cluster around z= I, making the system very susceptible to coefficient quantization. Coef­
ficient quantization can be minimized by using proper structures. Some of these structures make the system 
less susceptible to errors resulting from the effects of truncation/round-off. This is discussed in section 
Controller Structures. 

Signal Quantization: Finite word length can also cause signal quantization. This can be divided into 
three different categories. 

AID and DIA Quantization Effects: One type of signal quantization occurs upon the conversion and 
representation of a'continuous signal into discrete magnitude by an AID or a D/A converter. The AID and 
D/A word lengths are usually limited to 8-12 bits. AID and D/A conversion also affects the controller by 
contributing to computational delay. This is discussed in section Computational Delay. 

Most commercial AID and D/ A converters are available in the range of 8 to 16 bits with heavy premium 
on higher resolutions. An 8-bit AID converter gives an accuracy of I in 256 or error of 0.4%, while a 10-bit 
AID converter gives a resolution of a I in 1024 or an error of 0.1 %. Unlike errors caused by the other 
quantization processes, errors in the processor's word length due to AID and D/ A effects are not recursively 
fed back into the control system. In most cases, signal conversion requires a smaller word length than the 
processor word length. Sensor accuracy must also be taken into account. If the sensor has a 5-m V noise in 
a 5-V system, then there is no point in having an AID with greater than 10-bit resolution. Once the AID is 
selected, the D/A is chosen to have the same.or slightly higher resolution. Selection of AIDs and D/As are 
usually not a major problem when implementing the controller. Too often, errors from numerical calcula­
tions (truncation or round-oft) are mistaken as low resolution in the input/output signal. 

If the controller is used in the servo mode and forced to follow a reference signal, the reference signal must 
then be represented correctly. If it is represented with a higher precision than the AID's resolution, the error 
will never go to zero, causing a limit cycle. 

Truncation and Round-Off Effects: The second kind of signal quantization appears when results of 
signal processing are truncated or rounded. As intermediate calculations are carried out, they need higher 
precision. For example, a 16 X 16 multiply requires a 32-bit register to store the result. If only 16 bits are 
available, the lower 16 bits are thrown away; this is known as truncation errOT. If the LSB is rounded before 
throwing away the lower 16 bits, this is knoWn as round-off error. Since both of these errors are fed back 
recursively, they will accumulate as successive calculations are performed. 

Truncation and round-off introduce bias and noise into the system, which may produce limit cycles because 
of nonlinearities. If q denotes the quantization step, /.l denotes the mean of noise density, and 6 denotes the 
variance of noise density, then 

/.l = q/2 and 6 = q2/12 for truncating 

/.l = 0 and 6 = q2/ 12 for rounding 

These effects can be minimized by the proper selection of structures. For example, a fourth-order system 
becomes less sensitive to truncation and round-off errors if it is broken into lower-order parallel structures. 

Overflow Effects: A third effect of signal quantization is overflow conditions. Successive calculations 
(i.e., addition) can cause registers to overflow even when fractional arithmetic is used. This, in return, will 
force the contents of associated registers to wrap around and change magnitude from most pOsitive to most 



negative numbers. This is equivalent to changing the direction of the control. To prevent this, a check for 
overflows must be continuously made during the intennediate and final stages. When twos complement 
arithmetic is used, intennediate overflows can sometimes be ignored if the final result is known to be within 
bounds. In the lMS320 architecture, a saturation mode is provided to prevent the contents of registers from 
wrapping around and changing sign when an overflow occurs. Overflow effects can be minimized by the 
proper selection of scaling factors and by leaving extra guard bits. 

Scaling 
Selection of a proper scaling factor is critical in minimizing the effects offinite word length. The scale factor 
should support the full dynamic range of signals and coefficients. A large scale factor may cause an over­
flow condition. Although overflow protection is built into the lMS320 architecture, it is advisable to mini­
mize the possibility of overflows. To solve that problem, sometimes it may be necessary to choose a smaller 
(12-13 bits) scale factor. The small scale factor could, on the other hand, increase quantization noise. 

Usually, there is little choice in handling the dynamic range of signals. If the dynamic range is too big, it 
may dictate selection of a floating-point instead of a fixed-point processor. Simulations are required to de­
tennine the dynamic range. In some cases, it may be possible to switch modes and change scale factors. 

For proper scaling, a two-step approach is required. The first step requires optimization of the structure. 
Once the structure has been transfonned into a suitable one for implementation, scaling can be carried out. 
If transfer functions are used, direct structures should be avoided and broken into smaller cascaded struc­
tures. If necessary, different scale factors can be chosen for each substructure. The scale factor is found by 
first calculating the worst-case response, H(z), of a system under maximum input signal conditions. Differ­
ent techniques,lp, 110 and h (described later in this section) may be used to find H(z). Next, H(z) must be 
scaled down in value to prevent an overflow during the intennediate and final stages. If fractional represen­
tation of a Q 15 fonnat is assumed, the scaled response, H' (z), must be less than unity. The scale factor, Sn, 
is finally found by satisfying the following relationship: 

H(z) 
H'(z) 

Sn 
where 

H(z) < I 
Sn 

For state space structures, diagonal scaling can be used. Again, before scaling, the first step requires the 
transfonnation process. Techniques like Schur transfonnation or Modal transfonnation can be used to 
optimize structures. These transfonnation techniques not only reduce the dynamic range of coefficients, 

. but also reduce the number of nonzero elements in the structure. This minimizes the calculations that the 
processor must carry out. 

The next step is to find the appropriate scale factors. The scaling factor must take into accountthe translation 
of proper input/output variables (Le., voltage range of the AJDand D/A converters). In addition, it must 
prevent overflow or saturation during the intennediate states. Extensive simulations are usually necessary 
to ascertain the maximum and minimum values of states to provide the necessary scale factors. The scaling 
procedure can be broken into two different operations: input/output scaling and state vector scaling. 

Input/output scaling transfonns the internal fractional representation of numbers to external physical vari­
ables. Internal numbers within the range of +0.9999 to-I.OOOOmay have to be changed into external values 
of ±Volts for the AID and D/A converter. For example, given a system 

Xn+l = AXn + BUn 

Yn = Cxn+Dun 
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Then B, C, and D matrices must be scaled by the following relationship 

B. = B[(Su)-1] 

c. = [(Syrl]C 

D. = [(Syrl]D[(Su)-i] 

where (Sy)-l and (Su~l are diagonal matrices. 

For a system with an input/output physical range of ± t 0 V and a processor number range of ± 1.0000, we 
have 
B. = lOB 
C. = O.lC 
Ds = D 

For state vector scaling each, state variable must be scaled to keep it within the number range of the proces­
sor. Each state vector is divided by the following diagonal scale factor matrix. 

Xs = [(Sxri]x 

The system can now be represented as 
Xs.n+1 = A.x.,n + B.Un 
Yn = C.x.,n + DUn 

where 

As = [(Sx)-I]ASx 
B. = [(Sx)-I]B 
C. = CSx 

There are three different ways to calculate the scale factor matrices. 

The first way to choose Sx is to simulate the closed loop under worst-case conditions and to check for 
overflow at each node or summation. The worst case is defined as when the largest absolute value of a state 
variable is selected for the calculation. This is know as Ip scaling. 

Given 

S,,\ = max[abs(xnJl] 

then 

S,=diag(f) 
x.' 

The second approach is to statistically analyze for the probability of overflow at each node instead of doing 
actual simulations. This is known as 12 scaling. 

The third approach is to perform an analysis with certain bounded conditions of input signals. This is known 
as II scaling. II scaling can be applied only to stable systems. 

Controller Structures 
Selection of the proper control structure for digital controllers is a very critical issue, and its importance 
cannot be overemphasized. It is often the most overlooked aspect of implementation. Digital controllers 
can be described in terms of different, but equivalent structures. These structures have the same infinite 



word-length behavior but different finite word-length behavior. The difference in finite word-length behav­
ior results from the fact that some structures have coefficients that are less sensitive to coefficient truncation 
or that lie within a smaller numerical range. thus making it easier to scale. They may also produce lower­
order equations. 

Transfer Function Forms: Several different structures can represent systems when transfer functions 
are used. The simplest form is the direct structure shown in Figure 1. 

Usually, in this structure, the coefficients have a wide range, depending upon the pole-zero locations. This 
makes the structure very susceptible to coefficient quantization. round-off error, and overflow. The struc­
ture can be represented in a transfer function form as 

1>0 + bl:cl + b:zz-2 + b]2:-3 + b4z-4 
H(z) = =-.;.....:.:..:;.,.......;....;~~=,.......;..~:.,.. 

I + alz-I + a2:c2 + a3z-3 + ~z-4 

Figure 1. Direct Structure 
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Another alternate structure is the cascaded structure as shown in Figure 2. 

This can be represented in a transfer function given by 

(blO + bl1z-1 + bI2z-2) (b20 + b21z-1 + bz2z-2) 
H(z) = 

(I + al1z-1 + alz:CZ) (1 + aZlz-1 + azzz-2) 

Yn 

Yn-l 

Yn-2 

Yn-2 

Yn-4 

The cascaded structure is somewhat less susceptible to round-off error and overflow than the direct struc­
ture. One advantage of this method is that poles and zeroes close to each ather can be matched together. 
This will reduce the range of coefficients for each substructure. Different scale factors can then be chosen 
for them. A transfer function should be broken into first- or second-order cascaded functions to derive the 
~reatest advantage from this structure. 
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Figure 2. Cascaded Structure 
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A parallel structure can also be chosen to represent a system. This is shown in Figure 3. 

It ,is least susceptible to round-off errors and overflow problems. A paraIlelstructure can be obtained by 
partial fraction expansion or division. This can be represented as 

H() _ (blO + bllz-J) (bw + b2Jz·J) (blO + blJz·J) (b40 + b41z"1) 
Z - (1 + a,iz"l) + (1 + a21z"1) + (I + a3Iz·l) + (1 + Il.!rz·l) 

For example, if the transfer function is given by 
~-azl +bZl 

H(z):::; Z2 - 1.9979 + 0.9979 

the poles of the systems are at Zl :::; 0.9988 and Z2 :::; 0.9991 . 

If this system is represented with coefficient round-off, it becomes 
Zl-azl + bZ1 

H(z):::; Z2 - 1.998 + 0.998 

The new pole locations are now Zl:::; 0.9980 and Z2 :::; 1.0000. 

If this system had been represented as a cascade of two first-order substructures, the new structure after 
round-off would be 

(z - at) (z- a2) 
H(z) :::; 

(z - 0.998) (z - 0.999) 

Thus, the cascaded structure shows less sensitivity to coefficient round-off. 

Figure 3. Parallel Structure 



State Space Form: If the state space fonn is used, the controller can again be represented in different, 
but equivalent state space structures that can give better finite word-length behavior. Structure transfonna­
tion techniques should also be employed to create structures that will have less numerical sensitivity. 
Structural fonns like Modal or Schur can reduce the number of nonzero elements in the structure. 

The Modal fonn of a matrix is a diagonal matrix with all its eigenvalues as the diagonal elements. If the 
eigenvalues are complex, then the diagonal elements are a 2-by-2 matrix. The Modal fonn requires that all 
eigenvalues be linearly independent. This is referred to as the diagonal canonical fonn. The Modal fonn 
is represented as follows: 

lf1 0 0 0 01 
o f2 0 0 0 I 

o 0 f3 0 0 I 
o 0 0 r4 0 I 
o 00 0 f~ 

The Schur representation of a matrix is the upper-fight triangular portion of the matrix with its eigenvalues 
on the diagonal. If the eigenvalues are complex, then they are 2-by-2 blocks on the diagonal. The Schur 
representation is given as follows: 

l f1 x X X Xl o f2 x X X 

o 0 f3 X X 

o 0 0 f4 X 

o 0 0 0 rs 

The following example shows the effects of structure transfonnation; complete implementation examples 
along with the TMS320Cl4 code are given in Appendix I. The state controller and estimator that were de­
veloped in PART II's introduction are used here. The structure is transfonned with the Schur method and 
Impex® software. The A matrix now represents 

A-BK-LC 
from the original matrices in order to satisfy the input requirements for the Impex® software. The original 
system is given by the following set of coefficients. The software uses extended-precision/floating-point 
fonnat to represent the original that system. After structure optimization and scaling, the numbers are con­
verted into 16-bit/fixed-point fonnat for implementation and code generation. For illustrational purposes, 
the system will also be represented in 32-bitlfixed-point fonnat to show the loss of resolution due to lack 
of structure optimization. 
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After the Schur transfonnation, the matrices are obtained as follows: 

Note that the Schur transfonnation has tremendously reduced the dynamic range of the coefficients, thus, 
making it easier to scale them. Matrix C is not treated since it can be scaled independently. 

Computational Delay 
Computational delay is a critical disadvantage to using digital controllers. It has prevented widespread use 
of microprocessors and microcomputers in digital controllers because the amount of computational delay 
that is produced by these processing elements is unacceptable. With the high-perfonnance of DSPs compu­
tational delay becomes more manageable. Computational delay shows up as phase delay within the system 
and affects the phase margins of that system. The negative phase-shift contribution can be calculated as 
follows: 

phase delay = (computational delay)(bandwidth frequency)(360 0) 

For a system with a I-kHz bandwidth, a lOO-).ls computa~ional delay will produce a negative phase shift 
of 36 degrees. 

Even when using DSPs, it is advisable to minimize the effect of computational delay. This may be done by 
adopting appropriate structures or signal flows. For example, a compensator is represented by the following 
difference equation: 

u(n) = K\[u(n-2)] + K2[u(n-I)] + K3[y(n-2)] + ~[y(n-l)] + Ks[y(n)] 

Only the last element, Ks[y(n)], is dependent upon the latest measurement. The remaining elements can 
be precomputed and stored into memory. As soon as the measurement is made, the last element can becalcu­
lated an4 the control output u(n) sent to the actuator. 

Similarly, a state estimator is expressed as 

x(n + I) = A[x(n)] + B[u(n)] + L[y - Cx(n)] 

y = C[X(n)j 

u = -K[x(n)] 

These can be split up as follows: 

X(n + I) = Ax(n) + B[u(n)] 

y = C[X(n + I)] 

As soon as the measurement y is made, the control can be calculated by the following: 

x(n+ I) = X(p+ I) + L{y - y) 
u = -K[x(n+I)] 

This structure is usually referred to as a current estimator. 



Another aspect of computational delay is the contribution by the AID and D/ A converters; the AID usually 
being the main factor. The AID has some minimum conversion time, while the D/A requires settling time. 
The conversion delay of the AID creates a negative phase shift and affects the phase margin and stability 
of the system. The ZOH hold action of the D/A converter produces a delay of one sample time. This delay 
is comprehended into the design when the plant is discretized. The AID conversion and the D/A settling 
times, on the other hand, must be taken into account during the implementation. 

Typical AID converters available in the market today range in conversion time from 50 ns for video applica­
tions to 50 ~s for data acquisition. There is often a trade-offbetween conversion time and resolution. Those 
AIDs with fast conversion times usually have lower resolution. For most control systems, AID converters 
are chosen with conversion time of 15 ~s or less. However, the selection depends upon the bandwidth and 
phase margin of that system. The phase delay is given by 

phase delay = (computational delay)(bandwidth frequency)(360 0) 

For a system with a I-kHz bandwidth and an AID converter with a I O-~s conversion time, the AID converter 
will contribute a negative phase shift of 3.6 degrees. 

Sampling Rate Selection 

Another important consideration is the selection of sampling rate. In signal processing, the sampling rate 
should be at least twice the bandwidth or twice the highest frequency component in the system. Iflower 
sampling rates are selected, noise from the high-frequency components may be introduced into the system 
and would be indistinguishable from the signal. Antialiasing filters are installed before the controller so that 
high-frequency components can be attenuated. In control systems, the sampling rate is commonly chosen 
to be ten to twenty times the system's bandwidth. However, this refers to the closed-loop bandwidth for the 
controller. If the system has structural resonances so that notch filters are needed to cancel them, a sampling 
rate of two times the bandwidth or higher is sufficient for the filters. 

Theoretically. a digital system should be equivalent to an analog system if the sampling rate is very high. 
However, in practice, when the sampling frequency becomes too high, the poles will cluster around z= 1. 
making the system more susceptible to coefficient quantization. Modifying the structure may be necessary 
to minimize this effect. 

Another factor that needs to be taken into account is stability. When a stability analysis is done by mapping 
pole locations or eigenvalues on the z-unit circle, it is true only for that sampling frequency. As the sampling 
frequency is changed, it creates a new mapping of eigenvalues on the unit circle. 

Table I shows the pole locations for various sampling frequencies of a lead-notch controller, which is trans­
formed into the z domain using the bilinear transformation. The lead-notch controller is given by 

Go(s) = [(S + 0.35)] [(S2 + O.06s + 1.2)] 
(s + 8) (s + 27)2 

In addition to the controller's sampling rate, the sensor's bandwidth needs to be considered. Sensors like 
encoders give digital outputs. At high sampling rates and low speeds, their outputs may be heavily quan­
tized, causing large variations from sample to sample. Taking a moving average of the last few samples may 
be necessary to eliminate those variations. This essentially implements a low-pass filter for the input signal. 
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Table 1. Location of Poles for a Lead-Notch Controller 

Antialiasing Filters 
In a digital signal processing system, a minimum sampling rate must be implemented to allow reconstruc­
. tion of the information in the digital domain. According to the Nyquist criteria, the sampling frequency must 
be at least twice the highest frequency component in the signal. If a lower sampling frequency is used or 
if high-frequency noise is present, some of the information will be lost. This is known as aliasing. If un­
wanted high-frequency components are present, they must be removed through circuits known as antialias­
ing filters. 

In control systems, antialiasing filters must be used carefully; they can cause phase delay, which also adds 
to the computatiomil delay of the controller. A negative phase shift affects the phase margin of that system. 
Due to the oversampling intervals (10 - 20 times the frequency) in control systems, it is usually possible 
to avoid the usage of antialiasing filters. If antialiasing filters are used, they should be first-order filters with 
minimum phase delay. The negative phase-shift contribution of the filter should be taken into account along 
with the computational delay and AID conversion delay. 

Controller Design Tools 
Analog controller implementation requires only hardware design. A digital controller implementation not 
only requires a hardware design, but also extensive software design. The hardware design of a digital con­
troller is somewhat easier to accomplish, and standard forms of processor interface can be chosen indepen­
dently of the type of controller structure selected. The burden of software design can be eased by the wide 
selection of CASE (Computer Aided Software Engineering) and code-generating tools that are available 
today. These tools tremendously increase the productivity of the control designer. 

Algorithm Development 
In control systems, extensive simulation of control algorithms is necessary before the design can be carried 
out. Simulations may also be necessary under worst-case conditions so that appropriate scaling factors can 
be obtained. Numerous software packages are available that allow not only simulation capability but also 
design capability. As mentioned earlier, some of the more popular packages are PC-Matlab, Matrix-X, and 
Simnon. The Impex® software package also has extensive simulation capabilities. It supports simulation 
with AID and Df A converters and the effects of the converters' resolution and conversion delay. It can also 
comprehend computational delays and different levels of quantization on all or some of the states. 

Software Development 
Software development is another major concern in implementing digital controllers. The programmable 
approach to controllers allows easy upgrade and maintenance. It protects development investment but, at 



the same, requires more initial development effort. Still, programming with DSPs requires slightly different 
techniques than programming with ordinary processors. 

Typically, in control systems, processors are used for supervisory functions, and analog circuits are used 
for signal processing functions. When DSPs are used, they may be required to implement not only the signal 
processing functions but also the supervisory functions. With ordinary processors, there is usually a large 
reliance on lookup tables for math and other functions. With DSPs, it is more common to calculate the actual 
math functions or the algorithms. Functions like sine and cosine may be easily calculated using the expan­
sion series. Due to the high speed ofDSPs, it is very common to eliminate as much of the extemal hardware 
as possible and, instead, use on-chip processing for those functions. For example, low-cost sensors could 
be used; or, some of the sensors can be eliminated entirely, and on-chip processing can compensate for their 
removal. 

DSPs have been designed for realtime signal processing and have very fast interrupt response. On earlier 
processors, the facilities for concurrently running multiple tasks were limited due to their smaller-sized 
hardware stacks, although larger software stacks were possible. This reduced the number of nested inter­
rupts or subroutines that the processors could handle. Therefore, it is normally advisable to use macros and 
the straight-line code instead of repeated subroutine cal1s. 

DSPs do not have a single-cycle divide instruction, so division should be avoided. If necessary, the first 
choice is a multiplication by an inverse procedure. Division can also be performed by repetitive executions 
ofthe SUBC instruction. Or, a limited division can be performed by right-shift operations. 

Fourdifferent approaches to software development can be taken: high-level languages, assembly language, 
signal processing languages, and code generation software. 

High.Level Languages: Using a high-level language (HLL) like C, Pascal, or FORTRAN can substan­
tially cut development effort. Such languages are familiar to everybody and easy to program. 1Ypical1y, 
high-level languages are used for initialization and nonrealtime code. They are not optimized with respect 
to signal processing functions and to particular processor architectures. Code compiled on a processor is 
always larger than handwritten assembly code and may be 2 to 4 times the size of assembly code; this is 
a high penalty trade-off for time-critical signal processing applications. In cases where a high-level lan­
guage is necessary, it is beneficial to have a thorough knowledge of processor architecture to make the most 
efficient use of the special signal processing features. 

Due to the general trend towards more usage ofHLL in industry, new TMS320 architectures are also being 
optimized for HLL. Floating-point generations (TMS32OC3x and TMS320C4x) of the TMS320 family 
have architectures especially designed for greater support of high-level language code and produce highly 
efficient assembly code. On the other hand, the fixed-point generations may require assembly coding for 
their time-critical routines. 

Assembly Language: Assembly language produces the most efficient coding. When using a high-level 
language, it may be necessary to use assembly language for the more time-critical operations. Assembly 
language programming requires an intimate knowledge of the processor architecture. At the same time, the 
nature of performance requirements for some signal processing systems requires maximum code efficien­
cy,leaving very little choice in the usage of assembly language. To give assembly language some resem­
blance of high-level language, macro libraries are often developed for more frequently used functions. 

Signal Processing Languages: Signal processing languages can provide a middle ground betweel. 
high-level language coding and assembly language coding. They can ease the development of standard 
high-level languages. At the same time, they offer code efficiency that is comparable to that of assembly 
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language because they are designed for specific signal processing applications. Digital signal processing 
language (DSPL) from dSPACE is one example. One disadvantage is that there is no standard for these lan­
guages, and none of the languages is widely known. 

Code Generation Software: Code generation packages that will automatically generatea.~sembly code 
.for particular processors are becoming available. For example, the Impex$ software package from 
dSPACE will generate TMS320 assembly code from a mathematical description of the controller. The 
DFDP (Digital Filter Design Package) from ASPI will generate assembly code for TMS320 processors 
from a description of a filter. These packages are becoming increasingly popular because they allow the 
control designer to focus on design issues instead of developing assembly language software. 

Device Simulators 

Another useful tool in designing software is the device simulator. Simulators for the TMS320 family run 
on common platforms like PC and VAX, which provide full simulation of the instruction set along with in­
struction timing. Such simulation of the controller software can fully check the effects of math operations 
on internal registers and memory without the need for off-chip hardware. In some ca.'les, software simula­
tors have features that are not available on hardware development tools. These include full access to and 
tracing of internal processor memory and registers and sometimes even internal pipeline operations. Also 
available are full breakpoint capabilities for the inspection of the processor's state at the required/desired 
instances. 

Hardware Design 

A wide variety of tools is available for designing the hardware for a controller. These include target systems 
and EVMs that plug into a PC or are stand-alone. The in-circuit emulators can be used for complete system 
debugging. The XDS/22 emulators from TI support complete in-circuit emulation along with extensive 
breakpoint and tracing capabilities. Also available are device behavioral models that can simulate the 
timing and bus behavior of a complete target system without additional hardware. Logic Automation 
provides behavioral models for most members of the TMS320 family that run on popular workstations. 
Manufacturers like HP and Tektronix produce logic analyzers that can be used for extensive tracing. These 
logic analyzers can debug code by disassembling captured data. 

Figure 4 shows the typical block diagram of a digital controller. A digital controller normally requires a 
processor, a memory interface to the processor, and AID and D/A converter interfaces. Figure 5 shows a 
typical interface of a TMS320 DSP with memory and AID and 0/ A devices. Further information is avail­
able in the appropriate TMS320user's guides. 

Figure 4. Digital Controller 

'---------1 . AID 
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Implementation of digital controllers is a relatively new area as the limited availability of infonnation 
suggests. Most of the previous commercial implementations in industry were either first- or second-order 
systems. Typically, these are low-bandwidth systems like process control and do not take full advantage 
of the capabilities that modem control theory has to offer. Limitations of earlier processors had prevented 
widespread use of digital controllers in many segments of industry. DSPs are the first class of processors 
that have the right combination of architecture, perfonnance, and cost to make it possible for implementing 
these advance concepts in practical everyday systems. This combination now allows people to implement 
advanced controllers in a wide variety of products and services and to solve the major problems in imple­
mentation of digital controllers. PART IV's introduction as well as articles describe many of these products 
and applications. 

Digital controller implementation, however, is fundamentally different from analog controller implemen­
tation. Since natural analog processes are approximated, a fair amount of work must be done in preparing 
a controller design for implementation. This introduction highlighted some of the major problems that are 
usually encountered when implementing digital controllers. Undoubtedly, there are countless other prob­
lems that are unique to each application. However, minimizing these problems that are discussed here will 
provide a solid foundation for control system implementation. The use of CASE tools like Matrix-X, Im­
pex, and DFDP is again recommended because they not only automate design and implementation pro­
cesses but also represent years of experience by experts. 
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This shows an example of a 
controller was designed in 
locations were' chosen to 
parameters were obtained. 

APPENDIX 1 

design and implementation using CASE Tools. The 
the previous section using PC-Matlab. The pole 
be z=0.90 and z=0.95. The following design 

A [ L 000000:0000000 0.00099444139773 1 
0.98890343243454 

[ 0.00002685315106 

1 
B 

0.05360660659645 

C 1 o 1 

D 0 

K [ 93.27208561511948 2.54443979371671 

[ 0.01063'03432437 

1 
L 100 

2.78492351899385 

A - BK - LC [ 
-0.00066408081842 

100 
0.00000926115172 1 
0.00852504649404 -2.83492351899385 

The Impex software will be used for code generation that is suitable for 
implementation on the TMS320E14. The next sections of Appendix 1 show the 
different outputs of the software. 

1a. This shows the original system derived from PC-Matlab and the input to 
the Impex software. The matrices A, B, K, and L have to be combined as 
shown above and will be referred to as the "a" matrix in the system. The 
remaining matrices will remain the same. 

lb. This shows the effect of schur transformation in the system. The 
dynamic range of the coefficients has been significantly reduced. 

1c. This shows the system after 'scaling and schur transformation. The C 
matrix is not scaled as this can be done via input output scaling or even 
with an external amplifier. 

ld. This shows the realized system and the DSPL (Digital Signal Processing 
Language) code for the state controller/estimator. 

1e. This shows the assembly language code for this controller on the 
TMS320E14 DSP. The code also shows the macros that will be used in the 
expansion. The code interface to a DSII01 ( a TMS320E14 board developed by 
dSPACE). Initialization and peripheral addresses can be changed for other 
systems. 
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Appendix la 

- This is the original system obtained from PC-Matlab 
- Dynamic_matrix a represents A - BK - LC in the design. 

basic block is 
state controller/estimator 

system info text is 
example for a second order state controller/estimator 
with one input and one output. 

end system_info_text; 

sampling-period := 0.001; 

system inputs is 
name-=> pos err, unit => v, 

lower bound => -1.00000000000000E+01, upper_bound => 
1.00000000000000E+Ol; 
end system_inputs; 

system outputs is 
name-=> plant con, unit => v, 

lower bound-=> -1.00000000000000E+Ol, upper_bound => 
1.00000000000000E+01; 
end system_outputs; 

system_equations ssd is 

system_representation := PHYSICAL; 

system states is 
name-=> state xl; 
name => state-x2; 

end system_states; 

dynamic matrix is 
a ( 1,-1) := -6.66408081842000E-02; 
a( 2, 1) := -2.83492351899385E+02; 
a( 1, 2) := 9.26115172000000E-04; 
a( 2, 2) := 8.52505649404000E-01; 

end dynamic_matrix; 

column input matrix pos err is 
b( 1):= 2. 68531510600000E-05; 
b( 2) := 5.36066065964500E-02; 

end column_input_matrix; 

row output matrix plant con is 
c( 1) :=- 1.00000000000000E+OO; 

end row_output_matrix; 

direct link pos err to plant con is 
d - := O~OOOOOOOOOOOOOOE+OO; 

end direct_link; 

end system_equations; 

end basic_block; 
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Appendix lb 

- This shows the controller after performing schur 
~ transformation on it. 

basic block is 
state controller/estimator 

system info text is 
example f~r a second order state controller/estimator 
with one input and one output. 

end system_info_text; 

sampling~eriod := 1.OOOOOOOOOOOOOOE-03; 

system inputs is 
name-=> pos err, unit => v, 

lower bound => -l.OOOOOOOOOOOOOOE+Ol, upper_bound => 
1.OOOOOOOOOOOOOOE+Ol; 
end system_inputs; 

system outputs is 
name-=> plant con, unit => v, 

lower bound-=> -l.OOOOOOOOOOOOOOE+Ol, upper_bound => 
1.OOOOOOOOOOOOOOE+Ol; 
end syste~outputs; 

system_equations ssd is 

system_representation := SCHUR; 

system states is 
name-=> state xl schur; 
name => state-x2-schur; 

end system_states;-

dynamic matrix is 
a ( 1,-1) := -6.66408081842000E-02 
a( 2, 1) := -5.53695999803486E-Ol 
a( 1, 2) := 4.74170968064000E-Ol 
a( 2, 2) := 8.52505649404000E-Ol 

end dynamic_matrix; 

column input matrix pos err is 
b( 1):= 1.37488l33427200E-02; 
b( 2) :- 5.36066065964500E-02; 

end column_input_matrix; 

row output matrix plant con is 
cT 1) :=- 1,953l2500000000E-03; 

end row_output_matrix; 

end syste~equations; 

end basic_block; 
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Appendix lc 

- This shows the controller after performing schur transformation and 
scaling on it 

basic block is 
state-controller/estimator 

system info text is 
example for a second order state controller/estimator 
with one input and one output. 

end system_info_text; 

sampling-period := 1.00000000000000E-03; 

system inputs is 
name-=> pos err scaled, 

lower bound => -1.00000000000000E+OO, upper_bound => 
1.00000000000000E+OO; 
end system_inputs; 

system outputs is 
name-=> plant con scaled, 

lower bound-=> ~1.00000000000000E+OO, upper_bound => 
1.OOOOOOOOOOOOOOE+OO; 
end system_outputs; 

system_equations ssd is 

system_representation := SCHUR; 

system states is 
name-=> state xl schur. scaled; 
name => state-x2-schur-scaled; 

end system_states;- -

dynamic matrix is 
a ( 1,-1) :- -6.66408081842000E-02; 
a( 2, 1) := -3.05727555099513E-01; 
a( 1, 2) := 8.58759911760409E-01; 
a( 2, 2) := 8.52505649404000E-01; 

end dynamic_matrix; 

column input matrix pos err scaled is 
b( 1):= 2.04659364615941E-01; 
b( 2) := 4.40603476246127E-01; 

end column_input_matrix; 

row output matrix plant con scaled is 
c( 1) :=- 1.31209002384973E-04; 

end row_output_matrix; 

end system_equations; 

end basic_block; 
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Appendix 1d 

- This shows the realized system and the DSPL code to implement it. 

system realization linear system is 
2nd order state controller/estimator 

type fractional is 
fix' (bits => 16, 

fraction => 15, 
representation => twoscomplement); 

scptype state1 is 
fix' (acculength => 32, 

round => on, 
scale => on, 
saturation => on); 

scptype out1 is 
fix' (acculength => 32, 

round => on, 
scale => common, 
saturation => on); 

a1 : scalable constant vector (2) of fractional 
:= ( -6.665039062500E-002 , 

8.587646484375E-001 ); 
a2 : scalable constant vector (2) of fractional 

:= ( -3.057250976563E-001 , 
8.525085449219E-001 ); 

bl : scalable constant vector (1) of fractional 
:= ( 2.046508789063E-001); 

b2 : scalable constant vector (1) of fractional 
:= ( 4.406127929688E-001); 

c1 : scalable constant vector (2) of fractional 
:= ( 1.220703125000E-004, 

O.OOOOOOOOOOOOE+OOO ); 

xk vector (2) of fractional; 
xkl vector (2) of fractional: 
u vector (1) of fractional; 
input is u; 
y vector (1) of fractional; 
output is y; 

begin 
every 1.OOOOOOOOOOOOE-003 do 

update (xk1, xk); 
input (u); 
output (y); 
accumulate scalpro (state1, 1.OOOOOOOOOOOOE+OOO 

xkl(l) := a1 * xk + b1 * u: 
end accumulate ; 
accumulate scalpro (statel, 1.000000000000E+OOO 

xk1(2) := a2 * xk + b2 * u; 
end accumulate ; 
accumulate scalpro (out1, 1.000000000000E+OOO ) 

y(l) := c1 * xk1; 
end accumulate 

end every ; 
end linear_system: 
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Appendix 1e 

TMS320e14 assembly code for the controller/estimator 

.tit1e "linear system" 

.list - enable listing 

.global RESET user program entry 

code for OSPL's initialization 

standard version 

version for OSl101 TMS 320e14 / E14 processor board 

WARNING: no interrupt besides TIMINT1 must be used '" 

revision 2.01 / 09-Nov-1989 

(e) 1989 dSPAeE GmbH 

in it $macro callno,blkno 

TIMINT1 bit? .set 16 

bsr? . set 7 
ddr? . set 1 
if? .set 4 
im? .set 5 
fclr? .set 6 
adcO? .set 8 
adc1? . set 9 
strb? .set OAR 
comreg? .set OEH 

initialize RESET vector and INT vector 

.asect "RESET", 0 

b 
b 

RESET 
ISR 

.asect "OSPL" 

define. initial processor state 

dint 
rovm 

vector to user program entry 
vector to interrupt dispatcher 

return to OSPL compiler's code section 

disable interrupts 
disable hardware overflow mode 

initialize constant because INIT is called before OSPL code 
transfers data to on-chip RAM 

lack 1 
sacl one 

6 
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initialize interrupt system 

zac 
sacl * 
out * , bsr? select BANKO 
out *, ddr? configure parallel port as input 
sub one 
sacl * 
out *, im? ; mask off all interrupts 
out * , fclr? ; clear all interrupt flags 

dummy read 12 bit ADCs to enableADC operation 

lack adcO? 
tblr * 
lack adcl? 
tblr * 

dummy read communications port to reset rxfull flag 

lack comreg? 
tblr * 

clear incremental encoder counter registers 

lack 30H 
sacl * 
lack strb? 
tblw * 

b exit? 

interrupt service routine 
; 
ISR in 

lack 
and 
bz 
sacl 
out 
call 

no TIMINTl? 
eint 
ret 

exit? 

.endm 
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*, if? 
TIMINTl bit? 
* 
no TIMINTl? 
*, -0 
*, fclr? 
timintl 

initialization complete 

read interrupt flag register 



==================================================================== 

code for DSPL's EVERY-statement (begin) 

standard version 

version for TMS 320C14 / E14 on-chip timer 1 

formal parameter TIME passes requested sampling period in s 

160 ns <= samplingyeriod <= 
10.4 ms < samplingyeriod <= 
41. 9 ms < samplingyeriod <= 

revision 2.01 / 09-Nov-1989 

(C) 1989 dSPACE GmbH 

evbeg $macro callno, blkno, time 

time? .set :time: 
bsr? .set 7 
bankO? . set 0 
im? .set 5 
fclr? . set 6 
bank2? .set 2 
tcon? .set 4 
tpr1? .set 1 
tlint? .set 0010H 

on-chip timer setup TMR1 

lack bank2? 
sacl 
out 

*, 0 
*, bsr? 

$if time? < 03333H 
lack 006H 
$else 
$if time? < OCCCCH 
lack 002H 
$else 
lack 004H 
$endif 
$endif 

sacl * , 0 
out * , tcon? 

It one 
mpyk tpr? 
pac 
tblr ,* 
out * , tprl? 

lack bankO? 

10.4 ms, resolution 160 ns 
41. 9 ms, resolution 640 
65.5 ms, resolution 2.56 

select BANK2 

prescale 0 

prescale 4 

prescale 16 

update TCON 

load timer period value 
set TPR1 

ns 
s 
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tpr? 

tpr? 

tpr? 

sacl * , 0 
out * , bsr? 

It one 
mpyk imval? 
pac 
tblr * 
out *, im? 

lack tlint? 
sacl * , 0 
out * , fc~r? 

eint 
b $ 

$if time? < 03333H 
.word time? * 5 
$else 
$if time? < 6CCCCH 
.word time? * 5 I 4 
$else 
.word time? * 10 I 32 
$endif 
$endif 

imval? .word ~t1int? 

timint1 

.endm 

select BANKO 

set 1M register 

c~ear TMR~ interrupt flag bit 

enable interrupts 
wait for interrupt 

if period < 13.107 ms 

if period < 52.428 ms 

code for DSPL's EVERY-statement (end) 

standard version 

version for TMS 320C14 I E14 on-chip timer 1 

revision 2.01 I 09-Nov-1989 

(C) 1989 dSPACE GmbH 

============================================================= 

evend $macro callno,blkno,time 

ret 

.endm 
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code for OSPL's INPUT-statement 

standard version 

version for OS1101 on-board 12 bit ADCs 

revision 2.01 I 09-Nov-1989 

(C) 1989 dSPACE GmbH 

in12 $macro callno,blkno,data,channel 

iop? .set 0 

lack 
wait? in 

and 
bnz 

1 « (:channel:-8) 
*, iop? 

setup busy test mask 
get busy bit 

lack 
tblr 

.endm 

* 
wait? 

: channel: 
:data: 

test busy bit 
wait until adc ready 

read adc data 

=================~=========================================== 

code for OSPL's START macro 

version for OS1101 on-board 12 Bit ADCs 

revision 2.01 I 31-0ct-1989 

(C) 1989 dSPACE GmbH 

============================================================= 

start $macro callno,blkno 

strb .set OAH 

lack 003H 
sacl * 
lack strb 
tblw * 

.endm 

strobe for ADCO .. 1 

start both ADCs 
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============================================================= 

code for DSPL's OUTPUT-statement 

version for DS1101 on-board 14 bit DACs 

revision 2.01 / 31-0ct-1989 

(C) 1989 dSPACE GmbH 

=================================================-=========== 

out14 $macro callno,blkno,data,channel 

lack 
tblw 

.endm 

: channel: 
:data: 

.asect "DSPL", OOOlOh 

; write data to DAC 

; program memory base address 

status register save location (data page 1) 
st .set OOOffh 

; predefined constants 
c1 .set OOOOOh predefined constant 

.word 1 
c2 .set 0000lh predefined constant 

.word 32767 
c3 .set 00002h predefined constant 

.word -32768 
c4 .set 00003h predefined constant 

.word -1 
; declarations for.UPDATE variables 
v1 .set 00004h xk1(1) 

.word 0 
v2 .set 00005h xk(l) 

.word 0 
v3 . set 00006h xk1(2) 

.word 0 
v4 .set 00007h xk(2) 

.word 0 
; declarations for variable vectors 
v5 .set 00008h u(l) 

.word 0 
v6 .set 00009h y(l) 

.word 0 
; declarations for coefficients 
c5 .set OOOOah a1(2) 

.word 28140 
c6 .set OOOObh b1(1) 

.word 6706 
c7 .set OOOOch a2(1) 

.word -10018 
c8 . set OOOOdh a2(2) 

.word 27935 
c9 .set OOOOeh b2(1) 

.word 14438 
; declarations for external procedures 
one .set OOOOfh constant for procedure init 
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zero 

v7 

v8 

. word 

.set 

. word 

.set 

. word 

.set 

. word 

1 
00010h 
o 
00011h 
o 
00012h 
o 

constant for procedure in12 

parameter for procedure in12 

parameter for procedure out14 

start of program 

RESET 
lark ar1, 000e7h initialize software stack pointer 
1arp ar1 make stack accessible 
ldpk OOOh select data page 
init 0,1 ; call external procedure init 

perform data RAM initialization 

11 

line 

line 

line 

line 

line 

lark ar1, 19 initialize counter 
lark arO, OOOOOh initialize destination pointer 
lack 00010h initialize source pointer 

larp arO 
tblr *+, ar1 
add c1 
banz -11 
lark ar1, 000e7h 
larp ar1 
42 
evbeg 0,1,1000 

16 cycles 

43 
ldpk OOOh 
dmov v1 
dmov -v3 

3 cycles 

44 
start 0,1 
in12 0,1, _v5,00008h 

56 cycles 

45 
out14 0,1,_v6,00008h 

4 cycles 

46 
zac 
It v2 
mpyk ::-2184 
1ta v4 
mpy -c5 
Ita -v5 
mpy -c6 
apac 

select destination pointer 
transfer word, select counter 
increment source pointer 
repeat until transfer complete 
initialize software stack pointer 
make stack accessible 

begin block statement 

select data page 
xk1(1) --> xk(l) 
xk1(2) --> xk(2) 

initialize input 
input u(l) 

output Y (1) 

xk(l) 
a1 (1) 
xk(2) 
a1(2) 
u (1) 
b1 (1) 

add c1, 14 perform rounding 
overflow test and rescaling 0 bit 
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sach '" , 1 
bIz 12 
sub :c2, 15 
blez 13 
lac :c2, 0 
b 14 

12 
sub _c3, 15 
bgez 13 
lac -c3, 0 
b -14 

13 
lac "', 0 

14 
sacl _vI, 0 

19 cycles 

line 49 
zac 
It v2 
mpy -c7 
Ita -v4 
mpy -c8 
Ita -v5 
mpy -c9 
apac 
add c1, 14 

overflow test and rescaling 
sach '" , 1 
bIz 15 
sub -c2, 15 
blez -16 
lac -c2, 0 
b -17 

save result 
branch if result negative 
positive limit 
branch if no positive overflow 
use positive saturation 
update result 

negative limit 
branch if no negative overflow 
use negative saturation 
update result 

reload 

xk1(1) 

xk(l) 
a2 (1) 
xk(2) 
a2(2) 
u(l) 
b2(1) 

result 

; perform rounding 
Obit 

save result 
branch if result negative 
positive limit 
branch if no positive overflow 
use positive saturation 
update result 

15 
sub _c3, 
bgez 16 
lac -c3, 
b -17 

15 

0 

negative limit 
branch if no negative overflow 
use negative saturation 
update result 

16 
lac '" , 0 reload result 

17 
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sacl _v3, 

19 cycles 

line 52 
zac 
It vI 
mpyk 4" 
apac 

0 xk1(2) 

xk1(1) 
cl(l) 

add c1, 14 perform rounding 
overflow test and rescaling 0 bit 

sach "', 1 save result 
bIz 18 branch if result negative 
sub -c2, 15 positive limit 
blez -19 branch if no positive overflow 
lac -c2, 0 use positive saturation 
b -110 update result 



18 
sub c3, 15 -bgez 19 
lac =c3, 0 
b 110 

19 
lac * , 0 

110 
sacl _v6, 0 

15 cycles 

line 55 
evend 0,1,1000 

2 cycles 

b $ 
. end 

negative limit 
branch if no negative overflow 
use negative saturation 
update result 

reload result 

y(l) 

end block statement 

wait for interrupt 
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HARDWARE/ SOFIWARE-ENVIRONMBNT FOR DSP-BASBD MULTIVARIABLB CONTROL 

H. Haosclmana.1t Hcmichfrcisc, It HosIDIIUUI and A. Schwarte 

dSPACB diplalsipal procesain& and coollOl en&ioeerinc GmbH 
AD dcr Sc:hCIneo Aussichl2, 0-4790 PadcIbom, Fed. Rep. Gcnnany 

AIIIIIJQ 
Sin&l~hip Diplal Si&naI Processors (DSP) are powcdul candidates 
for the implementation of multivariablc control for fast systems. We 
repon briefly on several applications of DSP in the control of 
mechanical systems. The success of these applications was 10 a large 
extent due to a set of software and hardware tools for controller 
implementation. Buildin& upon our experiences of these applications 
we derive requilements and concepts for a novel deve10pmcnt 
system (hanlwarc/soflware~nvironment) for DSP in multivariable 
control. 

Cumollm 
The reason for considering DSP for control is their computing 

speed. In most other respects DSP are inferior to other kinds of 
processors ... The speed of DSP comes mainly from the integrated 
hardware multiplier and accumulator, and from the multiple bus 
architecture. Thc latter is necessary in order to keep the fast 
arithmetic units busy, i.e. 10 allow the operand and result data 
transfers 10 keep up with thc usually single-cycle arithmetic opera­
tions. 

A detailed descriplion of DSP architectures is not given here. 
Some comparisons of current DSP chip architeclUrcs can be found in 
.... A few benchmark results related 10 conllOl are mentioned in .... and 
some more arc reported below in the applications scclioo. 

The spectrum of DSP has grown rather broad now. II is divided 
into two blocks: one with fIXed point and one with floating point 
arithmetic hanlware. 

The low cnd is represented by low cost devices such as the 
Texas Instruments TMS32010 with 16 bit fixed point arithmetic (32 
bit in Ihe accumulator) and rather limited data memory address range 
(144 words on-chip), which needs 400 os for a multiply-and-accu­
mulale operation (mac). In the medium range are devices which also 
suppon 16 bit fixed point arithmetic but are abouttwicc as fast, have 
increased addressing space, and have increased Cunctionality (such as 
on-chip serial interfaces). One example is the TMS320C2S. High 
end fixed point arilhmetic chips are the AT&T DSP16 with its speed 
(7S ns per mac), and the Motorola DSPS6000 with its extended 
wordlength (24 bit operands and S6 bit in the accumularor). For high 
volume industrial use versions wilh on-chip program EPROM 
(TMS320E I S) or even EEPROM (General Instruments 
DSP32OEEI2) are panicularly interesting. 

A few floating point DSP have become available n:ccnlly, most 
notably the NEC77230 and the AT&T DSP32. Both chips offer 32 
bit arithmelic with ISO ns (NBC, pi!'Clined) 10 2SO ns (AT&T) for a 
mac. So Ihere' Is only a small time penalt~ for floating poinl 
arithmetic if these chips are used. Even faster wtll be the chips which 
arc scheduled 10 be sampled in 198811989 such as the AT&T 
DSP32C (up 10 80 ns per mac) and the Te_ Instruments 
TMS32030 (60 ns per mac). 

These chi~ will use 0.7S JIIII and I JIIII technology. The same 
technology will enable fixed point chips 10 be faster, but whal Is 
often more imponanl for industrial usc, Ihe chip area saved by 
sticking 10 fixed poinl hardware can be used 10 increase the chip's 
functionality by integrating more timers, pons. interrupt conlWl etc .. 
MiclOCOlltrollers like the Intel 8096 bul with DSP core may be 
c""'ted Ihat way. Using more conventional technology will on the 
other hand lower chip cost and thus open up high-volume applicati­
ons. Fixed point DSP will have a place in industrial applications for 
years 10 come. 

AppJjcatjons 

In this section we repon briefly on some multivariablc control 
applications using DSP. Unless otherwise stated these are applicati­
ons we were involved in during our work at the Dcpanmcnt of 
Automatic Control in Mechanical Engineering at the University of 
Paderbom. 

WincheslCr~~ 

Modern high performance disc drives usc Cast voice coil 
actuators for the positioning of magnetic heads onlO desired tracks 
and for keeping them on track against various dislurbanccs by 
closed-loop control. Hcad positioning conIIOI comprises two tasks: 
(A) Positioning on a target track (maybe across many tracks), and 
(B) track following during read and wme operations. Modem control 
techniques can be expected 10 improve control speed and accuracy 
for both tasks. 

For task (A) state eslimator techniques help to solve the problem 
of estimating the state of the fast moving actuator from the track 
error, which is the only measurement variable usually available. For 
task (B) controllers can be designed which achieve high control 
bandwidth and good disturbance rejection despite the complicated' 
nature oC the mechanical plant. 

Using a simple low order model (double integrator) for the 
actuator an estimator-based controller was impicmcnted on an Inlel 
8096 rnicrocontroller by IBM '. Owing 10 the medium performance 
embedded servo technique, the crossover frequency (around 300 Hz) 
and the sampling rate (around 4 kHz) were nor very bigh and the 
controller was relatively unambitious with respect 10 processor 
compuling speed. 

The computing power of a TMS32010 DSP was utilized in the 
track following control studies reported in ". A 9th order controller 
based on notch filter techniques (to compensate for structural 
resonance effects) was designed and implemented, running at about 
30 kHz sampling rate '. A crossover frequency around 900 Hz was 
achieved. The crossover frequency was limited mostly by model 
unccnainty, bulthe high sampling rate was not a luxury because of 
strong resonances in the plant even at 10 kHz. This controller was 
for an 8 inch drive with dedicated servo and a rotary voice coil 
actuator. A disturbance observer with disturbance feedforwanl was 
added to the 9th order controller for improved disturbance rejeclion. 

A different controller with exccllcnt dislurbance rejection based 
on Iq (linear quadratic optimal) controller design for the same drive 
was also implemented and ran at 34kHz sampling rate '. 

Tailoring positioning controllers 10 modelled disturbance dy­
namics, incorporating adaptive techniques, or increasing the usable 
frequency range of the mechanical construction (smaller drives and 
beller construction) will funher increase processor power demand. 
So disc drives arc an interesting fte1d for DSP application. 

~l![~~1IW!£I1Jkm 
Active vehicle suspension means toW replacement of the 

convenlional spring and shock absorber asscmbIies. Hydraulic 
cylinders driven by servovalvel arc used instead. The system relies 
fully on control'. 

The abovementioned ~up at the University of Padcrbom has 
been working on this subJcct for years under contract with several 
groups of Daimler Benz AG. Multivariable control techniques are 
applied. Mullivariablc controllers with more than 10 sensor inputs, 4 
actuator outputs, several diagnostic outputs, and orders above 20 are 
common. These controllers are mostly linear with some added 
lumped nonlincaritics for the compensation of nonlinear hydraulic 
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flow ~ Fill dynamicl of the hydraulic systems require 
sampIin, n.ICI above I kHz. After aiop IXiI _·bed IIudica _ 
yean 1,0 (mady usUal DSP) ... experimenw off·road truck is 
cum:ndy bcinl equipped 10 ruB _in !he field. A Sludy for ~ 
type of vehicle is underway. TMS32010 systems _ used Wllil 
rcccndy. and have DOW been rcpJ-s by TMS32020 IfIICIDS DOW. 

10 prcparaIioo fot !he off·road truck _ the eyllndcr coasllUC­
lion was ICSICd &I the uaivcnily lab in • hardw_in·tbc-Joop 
simulation. Tbc RaI eylinder. which is 10 rcpJace !he IjIIins/lbsorbcr 
uscmbIY. was used. Tbc road and the vchiclc body _ limulalCd 
in a TMS32010. lO,elbu with the suspension c:oatroIlCl' and !he 
COIlIrOlIcr for • second cylinder I_linl !he c:omct dynamic load 
such as !he IUlpension eylinder would find in !he RaI vehicle. Tbc 
10181 system could have ruB at 7 kHz samplinl rate, _what more 
than nec:essuy. 

A fully aclive system bu also been designed and implcmcnlCd 
for • nee car at Lotus Co .• UK. also usUal a TMS320 processor. 17 
sensors are involved. 

Senliactive vehicle suspension means replacement of !he con· 
ventional shock absorber by an adjusllble one. In contraSlIO exisling 
slowly and I or discontinuously adjusllble absorbccs the aclUator 
mechanism has servovalve charac:terislics in order 10 come close 10 
an active system in performance. Such a sYSlem is under develop­
ment in an industrial company which is advised by !he abovemen· 
tioned universilY. Again • TMS32020 syslcm is used. which 
replaced. TMS32010 system n:ccnJly. 

~&!WI 
With cOnventional control. !he elaSlic movemenlS in Ihe drives 

and the flexibility of !he anus of lightweight robots resuh in large 
vibrations of !he band. panicularly during and aflCr high acceleration 
intervals. A multivariablc controllCl' bas been designed and im{lle· 
mcnlCd for • tbtcc-joInt atticulalcd robot driven by elc:caical 
scrvo-drivel ..... This controller n:movcd the vibrations virtually 
completely without. speed penalty. 

Each motor was equipped wilh a position encoder and a 
tacho-generaror and the two anus c:anied two strai .... gages each for 
curvature mcuurcments in bo!h deflection directions. The IOIal 
number of sensors was thus 10. The reference Irajectory was fed inlO 
tbe controllCl' as 3 position. 3 velocity and 3 accemtion fcedfor· 
ward signals. The controllCl' thus had 19 inputs and 3 outputs 10 thc 
1IlOIOI'S. The order of tbe conlrOller was only 6 due 10 !he special 
design lCchnique and duc 10 !he fact that many sensors were been 
used (many SIalic gains). Tbc conlrOllCl' was implemenled on a 
TMS32010 and !he sampling rate used was 10 kHz. The sampling 
rate could however have been more than twice that. so there was 
considerable spare computing power for additional IaSks to be 
perfonncd by tbe processor. 

lWIrmIIilo &!WI 
For tasks requiring medium speed but very high acceleration 

(such as water jet culling) a S desn:es-of·frecdom (6 drives) ganary 
robot is under conSlrUCtion at an industrial company. Hydraulic 
drivcs have been chosen because of their good !OIque·lO-weight 
ratio. The conslrUCtion is DOvel in many respects and makcs use of 
very lightweight materials. 

Two particular challenging requirements for control design and 
implcmcnlalion have been: (a) 10 maintain lOugh trajectory control 
under maximum accelCl'ation (i.e. max. error 0.2 mm at 30 mls'). (b) 
10 use DO other sensors than the position encoders of each hydromo­
tor (absolute minimum). 

Requirement (a) ncccssilalcd nonlinear compensation 10 cope 
with the SIrODI nonlinearitics of hydraulic flow through the servo­
valve. Rc<J.uirement (b) was met (in !he axis designs ~1e1Cd at the 
time of wnting) by relying on Kalman·Filters for cstimanng tbc plant 
Slate. This was successful because high resolution position encoders 
arc used. The IrOlley position for example spans 2m and !he 
associated encoder SlCpsizc is about BIIJIl. 

The lrOIIcy controllCl' consiSla of a 6!h order linear KaIman·FiI· 
Ier plus state-feedback •• CODIICCICd linear 4th otdcr SUbs}'SICm for 
nonlinear compensation. and !he oonlinearity. which requues some 
simple operations and a squarcrool performed via table-Iookup. 

All drive control of !he whole robot is performed by two 
TMS32020 boards. the sampling ralCS beinll around S kHz. 16 bit 
fixed point ari!hmetic is used with the eKcepnon of a few conccntrat· 
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ed simple operations on !he larser position sensor words. To keep !he 
high resolution (large word) infonnation out oflhc linear conlrOllCl' 
computations. spcciallCchnique bu been devclopcd ". 

At the time of writing !he controllers for IOIIIC of the 6 drivcs 
have been desi&ned and implcmcnlCd up 10 simulations. One of the 
IXiI conlrOllers (for the lrOIIcy) bu also bCen ICSICd experimenwly. 
It worked as prcdiclcd. 

Deyelopment SmmD RMuimD'Gms 
In this section we specify what • development sySICm orienlCd 

IOwards DSP control should comprise. Foe the projcclS of the 
previous section (these are DOl the only ones) we used severalrools 
which have been developed over yean 10 facilillte and in some cues 
even automate the implementation of oonnivial conlrOllers on DSP. 
Recent relevant papers are ..... p. A new generation of DSP conlrOl 
developmentlools is now in the making at dSPACE GmbH. building 
upon paSl experience. 
~ Considerations 
The main line is to suppon conlrOlier implemenlation as well as 

is usually expeclCd for conlrOller design and simulation. and 10 do 
this in terms accessible 10 the control designer. Often DOl much 
consideration is given 10 implemenlation during design. mosdy 
because design specialists are rarely implemealltion specialists as 
well and work is Iraditionally split between conlrOl theory I design 
peoplc on one side and processor I elccttonics I programming penple 
on the other side. It proved highly benefICial for control designers 10 
be able to study implemenlation issues tbcmselves during design. 10 
produce DSP programs (via automatic code gcneratorS), and 10 carry 
out cxperiments without delegating responsibility at any stage of this 
process. The value of direcl/eetibad: belWtl'" desigll. imple"ulnltJ· 
lioll. and experimelll canDOt be overestimated. 

A second aspect conccms tbe choice of a target hardware 
system. Foe preliminary studies of implemenl&tion issues and 10 
check feuabililY of the control system Ihcrc should be DO forced 
dependence on specifIC processors. their software. or specific target 
hardware. Most of all. it should DOl be Dcccssaty 10 build hardware 
before knowing what hardware is actually needed and sufficient. 
Thus it should be possible 10 study implementation based on flexible 
models of Ihe target processor hard· and software. 

When experimcnlll evaluation is about 10 begin. it should still 
not be necessary to build special hard~ in every case. A set of 
ready·lO-use hardware components (boards fining inlO a pc·AT 
computer for inSlanCC) is preferable whenever possiblc. Only after 
experimenw validation of the design should tailoring of hardware 
for low cost C1C. be made. We frequcndyobserved in indusary that 
early decisions on target hardware were made and then much 
engineering resources were wasted in squeezing code (c.g. 10 meet 
speed requirements problems) and dealing with secondary limita· 
tions although the conlrOller design was DOl yet sctded. It is much 
beller 10 have a quick validation of the conlrOller design. with the 
lowest implementation e«on possible. and !hen 10 invesligate 
possibilities of downsizing (memol)'. processor version elC.) !he 
wgct hardware afterwards. This may eventually lead 10 custom 
chips with DSP cores. 

1faI:lUmQ 

Our approach is 10 provide a sct of processor boards all 
compatible with the same set of peripheral boards (ADC, DAC. 
decoders) so thai. if desired. one may stan with a floating point DSP 
iml'lcmeDlalion (which is !he simplcst). then move to a (lSI fixed 
POlOt DSP with a lar,.e memol)' of the same family. then move 10 a 
10wcsl-c05t device wllh more restrictions. AIlIhese SlCPS would be 
carried out with the same ready·lO·use peripheral boards. The last 
step may be to move 10 custom hardware if the standard boards do 
!IOI meet space or economy requiremenl4. 

We choose 10 host the bardware on PC·AT and compatibles. 
This provides a convenient devclopmcnl environment and, by 
making use of industrial AT computerS, ... AT·host CUI even be 
useful for final products such as robot control systems. 

The AT·bus is of course nOl used for DSP·i/O. We provide up 10 
32 bit wide daI& transfer. This is useful for the next generation of 
DSP and accommodates for ins_ the wide dala words delivered 



=-.ICSOIUIion positiOO"scnson (absolulC encoders or inc:rcmcIIIal 
wi!h counlCll) used 10 roboI c:ootrol. 

~ 1IIIIDIi: Different Ipplication fields "'Iuin: different 
typca of ~ • II !he focUi il on !he experimenlal validation of 
• control c:oncept, rhea high pedOl1JllllCe f1011ing point DSP will 
normally be Ihe fust choice. llihe focus is on producing proIOIyJles 
for final prodllClS, !{uilC different DSP may be used. In a high-vol­
ume disk drive appbcadoo, for insIance, Ibe goal will be 10 find !he 
lowesI-cost device which is JUII sufficient. So !h"", should be a 
nll1llber of proc:essor boards which, as far II possible, are similar 
from the host-side, and which fit a single set of peripherals. Our 
choice Is Ihe Texas llISInIlDCnts TMS family, which covers alIlypCS 
of DSP of inlCreSL 

FISI host-IO-DSP communicalion is provided by means of DUe 
dual-pun-RAM. On Ihe host side DMA can be used. The DSP does 
DOl need 10 be hailed during host access. This feature is not 
necessary for Ihe development of SIInd-alone DSP applications, but 
is useCul Cor applicadons such II roboI control wi!h trajeclOly data 
delivered by !he holl. 

DSP usually have very limiled interrupt control Cacilities. In 
order 10 allow peripherals 10 "'lueS! lCJYice or flag Ibeir stale (e.g. 
ADC-ready), some hardware is necessary to allow !he DSP progmn 
10 find OUt !he interrupt sowce and its priority quickly. 

~: Dependiog 00 Ibe application fields !he requin:men­
ts are raIhcr diff"",nL What is needed is a broad range of boards such 
as !he one available on !he general data acquisition market. However, 
our c:ootrol field requin:meots differ in some respects. For example, 
in cootrast 10 common data acquisidoo tasks, we sometimes oced 
random access 10 input II well II output channels, and we cannot 
toleralC significant delays. 

Random access is desin:d Cor inllance because sampling ralCS on 
channels of !he same board may be required 10 be different 
(multi-rate cootrol), and even controller stale-driven (instead of 
time-scheduled) access 10 channels may be necessary. Output of 
control signals 10 Ibe actualOr OCCUII preferably II soon as these 
signals are c:ompulCd in order to minimize the delay introduced into 
the control loop. These arguments rule out FIFO-bIIed (tran­
sient-recorder like) architectures and external constant-frequency 
sampling control. 

For analog sensor signals 12 bit ADC$ will, in our experience, in 
vinually all ~ be sufficient Cor control, II well II 12 bit DACs 
Cor analog output. If !he final product hll 10 have lower resolution 
conveners for economy reasons, it is easy 10 round off to any desired 
number of bits by very smaU pieces of code in experiments. Higher 
resolution is frequently necessary in position control, but in Ibis case 
digital seosors are nonn'!Uy used (~). It would oevenheless 
be fine 10 have up to 16 bll"conveners available. 

Suc:ccssive approximation ADCs usually should have a sam­
pltlhold-cbeuit (SHC) 1\ Ihe analog side, bUI in control applications 
II is sometimes beneficial with respect to loop delay not to use the 
SHC '. If experiments prove thal the SHC can indeed be omilled this 
may in addition decrease final product cost considerably (gond and 
flSl SHCs are DOl cheap). Bypllsing the SHC should therefore be 
possible under host control. 

It may sometimes be necessary 10 place anti-aliasing filters 
(AAF) in front of ADCs. In all of Ibe applications we have ever 
carried out, there WII only one single occasion when we needed an 
AAF, and Ibis WII a very simple one (first order). In contrast to 
many data acquisition tasks, we are reluctant 10 put sharp filters into 
the control loop because of !heir strong adverse effect on loop 
frequency response phase '. We consider it best 10 keep AAFs out of 
the ADC boards, and 10 provide optional extra boards, with pro­
grammable active filters. The most flexible architecture allows for 
!he fillers 10 be progranuncd and bypused both under DSP and host 
control. Note Ibal it is necessary 10 make accurale AAF frequency 
response models available 10 the controller design software, because 
filter dynamics mull usually be taken inlO account in the design. 

Digital sensor signals provided by absofule position cocoders 
(multi-turn) mull be accommodaled (robotics). They are oftco wider 
lhan 16 bits and f"'luenlly supply data via special flSl serial 
interfaces. Conversion from Gray 10 binary code might be done in 
software, bul • hardware decoding facility for optional use should be 
available on Ihe peripheral board. 

Incremental position encoder signals should be decoded on a 

peripheral board. The widlb of Ihe counlCr should DOl be below 24, 
bits. RcSCI by delCCtion of • reCereocc pulse IIlUSI be possible, eilher 
by hardware or by !he action of Ihe DSP or hosI after it hII ~ 
gtvCO notice of !he ref"",ncc pulse transidoo. 

In our experiences it would be very uscful for experiments on 
!he real planl 10 have means of monilOring (graphic display) !he 
sensor and control signals from !he host througb Ihe same ADC or 
digital channels IIlhe DSP. It is already of great help to be able 10 
do Ibis before !he DSP is staned, bul monitoring acosor and control 
signals while Ibe DSP is running is evco beuer, 

Commonly a sel of scparale _meat devices is used for 
such monilOring, but this is inferior 10 our Ipproacb for various 
reasons: (a) !he bil patlCmS seen by !he DSP are nOl recovered 
precisely, (b) LSB-f1ipping of ADCs cannot be observed, (c) 
possible oCfocts of ADCs remain undctected~~':..SIIOts 
are different, (e) digitalscnSOll signals (from ) are 
usually not accommodalCd by mcaswement devices. 

These deficiencies can 10 some exlCnt be remedied by passing 
the words received by !he DSP 10 additional monitoring outputs. 
However, this not only requin:s additional output channels bul also 
makes necessary additions 10 the DSP program, which have nothing 
to do with !he control task. Wi!h simpler DSP such llihe TMS3201" 
family in papicular, any software exlCnSion of this kind may make 
large software changes necessary, Cor instance because on-chip data 
memory may be only sufficient II long II no cxlensions are made. It 
is much betler if !he DSP prop1UD can remain uodiSIurbed. 

SWhYilmIJW 
The tasks 10 perform whea a multivarisble controller such II 

those oC !he applicadons discussed above is 10 be implemenlCd can 
be divided inlO two main blocks: (A) !he preparation of a designed 
controller for matching !he capacities of target hardware, (B) 
progranuning. Only some brief considerations can be givco here. A 
detailed discussion of these issues is given in ", which presents a 
basis for a controller implementation oricolCd software syslCm. 

~: It is particularlywilb fixed pulnl DSP Ibat (A) is 
Dot trivial. Because arilhmctic is IimilCd in range and iesolution, it is 
very imponant 10 select IpFpria!" reaI~zation SIJ1I.CIures, 10 decide 
if and where extended precISIon anlbmetIC (costly) IS necessary, and 
to scale stale variables and intermediate results. It is crucial 10 have 
gond methods (in tool form) for !he tasks mentioned. The desin: to 
have 32 bit floating point arithmetic is frequently"due 10 lack of 
methods and tools for doing Ibe same wilb 16 bit fixed point 
arithmetic. NOIe that in all our applications !he taller was entirely 
sufficient. Many of the tasks can be automated or almost aUlOmalCd 
for linear control systems so thal controller implementation becomes 
easy. 

The situation changes wilb controllers with many nonlinear 
operations, where selection of !he computational Slructure and 
scaling cannOl be supponed so strongly by melhods and algorithms 
as in the linear case. But note that Ihe hydraulic robot II well II the 
vehicle suspension applications had nonlinear controllers. The 
nonlinearities had been isolated from Ibe larger linear pans and 
linear methods wcrc applicable for preparation of !he linear con­
troller subsystems. 

With 32 bit floating point DSP scaling is no longer a problem. 
Structure selection remains an issue but is less critical. A direct form 
or parallel form realization structwe, for inSlancC, which may be 
selected at first may still fail. For example, we encounlered a case 
wh"", 32 bit floating poinl coefficients were not sufficient to 
represent a 3rd order controller IUbsyslCm, bul 16 bit fixed point 
sufficed when a parallel form WII used, and we encountered just the 
opposile too (floating point parallel form failed and fixed point direct 
form WII good for. 3rd order subsyslCm). 

As described in " Ibere are Ihrec main issues associated with 
com~ulCr IIsisted or aU1Oma1ed preparation of a designed controller 
for tmplementation: (a) !he representation of digital controller 
models, (b) model management, and (c) !he tools acting upon the 
models. 

The representation of digital controller models should be such 
that every piece of information about !he controller is incorporalCd. 
This means for example Ibat, in con.trIII 10 some Iheory orico.tedt 
CACSD packages, a dtgital controller IS much more !han • collectton 
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of &-II1IDIfcr malric:ca cc IIaIC vuiabIo maaix c:oefficicnll. 'J'biap 
like samplinl! delays (skewed 1IIIIPIinal, ADC nogc II1II 1eIOIIIIion, 
II1II dcscripllOlll of the type ol aifihmclic performed must be 
inrepalCd info a model. 

Ja ... bicnrcbical mulli-nuc c:onlrOlJcn model, 1M c:ooslclcrcd. 
Our appllcaliona 10 fu have beca sin&1c-11I1C. BUI If muld-arc 
c:onuobCn had been supponcd, in CIllO case a probJcm willa a slow 
COIIIrOIIcc subl)'IICID coUld have beca deall willi !hal way inSICId of 
lelliag II run aI the sincJc (bigh) nuc and using exlClldcd prccIsioa 
(slow IIIlbl)'llCml run aI 100 liigb I1Ire 1M likely' 10 poac precision 
problems). ~guding bierarchical models, describing a conlIOIlcr as 
a conncclion of IUbs)'llCml on one level sbouId be abc minimum 
supponcd (CIllO level lisdng Iublysacms and cooocclions, and abc 
level of individual subsysrcms dcscripdons). 

A model managemenl fllllililY (dalallasc) is also ncc:cssuy. 
Imagine a coodnuous conooller as • saaning poinL Then, during 
implcmcnwion process ilCl1llions, several differenlly discmi:ocd 
conoollers may be gcDCl1lrcd. Each of \hem may be lI1IOIfonncd inlO 
seVCl1lI realizalion S\IUClureS fcc lI1Idc-off Sludies, and each of Ihcse 
may be scaled seVCl1lI limes under diffCRIII assumpdons. Then for 
IORIC of Ihcse differenl uilhmelic type and wordlcnglh spcci/icadons 
may be investigated. II Is cIcu !hal "managcmcol by filenames" is 
IlOl sulrlCicnl hen:. Adding 10 a111his, we c:oosidcr iI ncc:cssuy !hal a 
I0OI crealing one coollOller modcI dcrivaac from anolhcr (c.g. scaIcd 
from unsealed) n:conIs all laformadon which allows abc 1001's 
funclion 10 be reuicved complclcly I&Icr on. Such n:conIs muSl be 
logically conncclcd 10 abc gcncrarcd model. Such n:quiR:ments can 
only be met by IORIC kind of speciali:ocd dalabase. 

The prcparadon IOOIs should as an absolure minimum comprise 
lhe following wks for linear coooollers or conooller subsySICIIIS: 
(I) discn:dzalion, (2) SllUClure selection, and (3) scaling (for faxed 
poinl DSp). Some IOOI~ 10 analyse abc co:ects of cfi:5crc;dzalion, 
sampling and compuaarional dclsys, COCffiCICIII quanuzauon, and 
signal quandzalion uc also very helpful. Appropriarc IIICIhods havc 
been discussed in .... 

And IaSI, bul _ leasl, • simuladon f""iIily is desirable. We bad 
very posidve results with a prcIiminuy 1001 which was able 10 
simulalc nonlincu plants wilh linear or nonlinear digital conoollers, 
delays, ADCs and DACs, and processor uilhlDClic. Given complcrc 
digital cooooller models as oudined abovc and in .. , all ncccssuy 
infomaadon can be derived from abc model by Ihe simuladon 1001. II 
is _ ncc:cssuy 10 havc code or even know abc IUgCl processor for 
simulation. The uitbmclic can be specified. So such a simulation can 
be said 10 work willa an "absll1lCt processor model". 

For our applicslions 10 darc this lias mosdy been SUfflCienl, 
because we cou\d rely on error-free IUgCl processor code produced 
by our auaomatic code gcDCl1lIOrS. Once abc abs\lllCl model worbd. 
lhe final real code worbd 100. When hand-coded parts 1M mixed 
inlO gcncraled code abc silualion is diffCRIIL It would be a greal 
enhancemenl If absll'llCt modcI simulation were camplcmcoled by 
code simulation. Common code simulators unfonunatcly 1M _ 
designed 10 be operaled witbin a closed-loop control sysrcm simula­
lion. Wc tbink it very wonhwhile 10 produce a simulation Crogl1lm 
which allows both abs\lllCl models as well as proccssor-p us-codc 
models. 

Pmmmmjng: For a long lime assembly languagc (ASM) 
progI1Imming was lhe only choice for DSP. ASM programming is 
generally undesirable for quick conool implcmenlalion as outlined In 
lhe gCDCl1lI considerations subscclion. Some DSP have uchilCClures 
and instruction sets which 1M less casy 10 use than those of gcneral 
microprocessors, 1liii, more important, there 1M severe reslriclions 
wilh IORIC DSP ,. This makes ASM programming particularly 
Unalll1lCtive for our purpose. rugh Ievcl languagc compilers havc 
emerged but abcy have difficulties In dealing with restriclions and iI 
is likely iJw abcy produce far lea oplimal code than an experienced 
ASM proS-. This Is backed by benchmark resulls given in u. 

After years of good expericncc wilh wk-specific aUlOmalic 
code gcncraIOnI we consider iI besl 10 auaomadcally gCDCl1lrc DSP 
code from a conllOller modcI as far as possible bul 10 provide foe 
linking wilh pans which C8IIIIOI be produced aulORlllica\ly and 1M 
1Iand-eodcd, or wbich 1M IlOl criIicaI and 1M produced by a HLL 
compiler. A code generator can perform optimizations wbich 1M 
virlually OUI of reach for a eE HLL and ilS compiler U. 

Such • code geIICI1IIOI" may in IWO srcps: fusa an Intcrmcdi­
&Ie Ian,URgC represcnlalion derived from lhe model. and then this 
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reprcscnaadon Is compiled In ASM code. A gcneraaor I compilca 
f01lowin, this 8JIIII"08Ch Is under dcvcIopmcaa (almnsa complcrcd) aI 
abc lime of wrlMe. The pbi~ iI as well as preliminary 
results 1M described in D. The . language Is tailored 10 
(Il0l rcsuicICd 10) faxed point DSP and lias fIcxibIc mechanisms for 
laking peripheral 110 inlO IICCOIIDI. 

For abc Iaresl fJoadng point DSP abc progmmming wk Is casler 
with respecllO uilhmclics, and for some ills also casier due 10 more 
regular ucbilCClure and instruc:don sell. HLL compiIcr wrllerS may 
find II easier 10 produce good code then. However, fJoadng poinl 
uilhlDClic does IlOl as such mean casy ASM programming. Pipclin­
ing cffCClS and difficult inSllUCdon sets (NBC 77230) may sdll make 
ASM progl1lmming awkwanl. A &ood compromise would probably 
be 10 havc an Intcnncdlarc language which is close 10 a general 
~ HLL (as commercial HLLs for DSP already uc) bullO havc 
additionallangua~c CODSIrUCtS which enable abc compiler 10 produce 
bcuer code by OP!lmizations under a global viewpoinl and by making 
use of lhe very special inSlrUClion COOSIrUCIS found In ASM 
instruction sets of DSP. 

~ 
(I) H. Hanselmann, "Using Digilal Signal Processors for ConuoJ" 

prcsenled allEEE Industrial EJccuonics Conf. IECON'86, 
Milwaukee, Wisconsin, SepL 29 - Ocl. 3, 1986. 

(2) H. Hanselmann, "Implcmcnlalion of Digilal Conoollers - A 
Swvcy", AUlOlDaljca Vol. 23, pp. 7 - 32, Jaauary 1987. 

(3) J. Titus, mm. pp. 163 - 176, Oct. 16, 1986. 

(4) R.Gluth, "InrcgrierleSignalprozcssorcn",~ Vol. 18, 
pp. 112 - IlS, ScPL 5, 1986. 

(5) M. C. Stich, "Digilal Servo Algorithm for Disk AClualOf 
Conool" in filii;, Confmnce I!IlAm!licdMmiml~ 
CAMC87, Minneapolis, Minnesota, June 16 - 18, 1987. 

(6) H. Hansclmann and W. Moritz, "High Bandwidlh Control of 
the Hcad Posililming Mechanism in a Winchester Disk Drivc", 
rmm~SnImllMuBis.pp.15-19,OcI.1987. 

(7) H. Hanselmann and A. Engelkc. "LQG-Conool of a Highly 
Resonant Disk Drive Head Posilioning Actuator", mm3 It:ioJ: 
A!<Iil!IIllllllDdlwiW ElccJl'OOjcs. ""hcdulcd for Februuy issue, I 
1988. 

(8) J. Liickel, R. Kasper and K. Jliker; "A PI1Iclical Concept for the 
Activc Suspension of Road Vchiclcs" in fw!l:imi 1IC.ulIh IfAC 
.wm:Jd~ Munich, Vol. 3, pp. 178 -183, 1987. 

(9) H. Henrichfreise, W. Moritz and H. Sicmensmeycr, "Conool of 
a Ughl, Elaslic; Manipulation Devicc" in filii;, Conference I!Il 
~ MlIlilm C!mJml CAMC87, Minneapolis, Minncsoaa, 
pp. 57 -66, June 16 - 18. 1987. 

(10) H Henrichfreise, "The Conool of an elastic Manipulalion 
Device Using DSp·, will be presenrcd al American Conlrol 
Conf. ACC, AIIIUlIa, Georgia, June IS - 17, 1988. 

(11) H. Hanselmann, "Low Resolulion Im!emcnlalion of High 
Resolution Posilion ConIlOl", rmm T!!nsacljoosl!ll A.IWImlJJi!< 
C!mJml. scheduled for AugUS! issue, 1988. 

(12) H. Hanselmaon, "A Concept for Mosdy Automalic Implemenl­
alion of Conool Algorilhms", presenled .1 IEEE Compuler 
Aided Control Sysrcm Design, ArIinglOO, Virginia, sepl. 24 -
26,1986. 

(13) H. Hanselmann and A. Schwane, "Gcncralion of FaS! Tugcl 
Processor Code From Higb LcvcI ConuoJler Dcscripdoos", in 
fw!l:imiIlC.ulIhlfAClYlII:IdOlo&lm, Munich, Vol. 4, pp. 90 
-9S, 1987. 



""uromarica. Vol 23, No.1, pp. 7- 32, 1987 
Printed in Great Britain. 

0005-1098/87 $3.00+0.00 
Perpmon JOllmals Ltd. 

© 1987 International Federation of Automatic Control 

Survey Paper 

Implementation of Digital Controllers-A Survey* 

H. HANSELMANNt 

Key Words-Digital control; microprocessor control. 

Abstract-Stimulated by microprocessor technology there is 
increasing interest in the issues of digital control implementation. 
This paper reviews these issues, from algorithms through current 
hardware up to the various problems arising with non-ideal 
behaviour of digital controllers. 

1. Introduction 
For many years, theorists in the control engineering field have 

claimed that due to advances in microelectronics, their new 
algorithms could easily be implemented. Talking to the people 
who have to perform the implementation actually quite often 
reveals that nothing is that easy. 

This applies even in the simplest cases of linear control, if the 
implementation is to be carried out under difficult conditions, 
e.g. without the possibility of resorting to minicomputers pro­
grammed in a high-level language using high-precision floating­
point arithmetic, with plenty of speed. There are still compara­
tively few pUblications dealing with the problems of controller 
implementation in difficult conditions, and most of these are 
either from the sixties, or quite recent, stimulated by the 
increasing availability of microprocessors. 

The situation has always been different in the related field of 
general digital signal processing, particularly digital filtering. 
The problems plaguing the implementer when he has to use 
fixed-point arithmetic with small wordlength were attacked by 
theorists persistently and systematically from the early days of 
digital filtering onwards. M ueh can be learned from this field 
for controller implementation, although modifications and 
additional research have been or are still necessary. This has 
been pointed out particularly in the work of Moroney, Willsky 
and Houpt (Willsky, 1979; Moroney et al., 1980. 1981; Moroney, 
1983). 

The main problems with digital controller implementation as 
considered in this paper arise from: (a) quantization of signals 
and coefficients, particularly in the case of fixed-point arithmetic; 
(b) serial computation in a processor; (c) lack of computing speed 
in critical applications; and (d) lack of programming support in 
cases where high-level language programming is not adequate. 

Because microprocessor technology is advancing rapidly, it 
could be argued that most of these problems are going to lose 
importance anyway, but there will always be implementation 
tasks either with demands exceeding the current capabilities of 
common microprocessor hardware, or with constraints that 
involve expending more engineering effort to get a more efficient 
product tailored to the application. Thus for instance fixed­
point arithmetic may be attractive and sufficient if dealt with 
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World Congress on A Bridge Between Control Science and 
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t University of Paderborn, Department of Automatic Control 
in Mechanical Engineering, Pohlweg 55, 0-4790 Paderbom, 
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appropriately. even when fast floating-point hardware abounds. 
The above list of problem sources already indicates that in 

this paper the scope of the term "implementation" will not be 
restricted to the more theoretical questions but will also include 
the selection and evaluation of current possible hardware. 
Some consequences for software tools for computer..assisted 
implementation within a Computer-Aided Control Engineering 
(CACE) environment are also discussed. On the other hand the 
type of control to be implemented will be restricted to a certain 
class, i.e. the focus is on implementation of mostly linear. time­
invariant control. This is felt to be justified because even with 
this restricted class there are many problems to discuss and such 
controllers form the kernel of many control tasks. This is also 
the case when algorithms such as adaptation mechanisms, gain 
schedules and the like surround this kernel in more complicated 
control systems. 

The organization of this paper has been chosen to reflect a 
quite common situation for control engineers: 

-these are some control algorithms I want to realize, 
-and that is promising hardware, 
-but what are the issues in between? What steps must be taken 
in order to make use of the hardware? 

Therefore, after the discussion of control algorithms and the 
issue of discretizing continuous controllers in Section 2 a review 
of current hardware is given in Section 3. Various classes of 
digital processors are reviewed, particularly with respect to 
speed and architecture. Whereas general microprocessors might 
allow for comfortable floating-point arithmetic, there are quite 
often restrictions dictating the use of short wordlength fixed­
point arithmetic. There might be speed reasons for this, or the 
chosen hardware might even not allow for anything else. This 
entails many consequences., hence some basics on arithmetic 
are discussed in Section 4, including some "exotic" types of 
arithmetic. 

Chronologically, once the discrete or discretized. controller is 
known, the first step of the implementation procedure is to 
choose a structure for the controller, suitable for implementation 
with the available arithmetic. With fixed-point arithmetic at 
least, it is in most cases crucial to transform a discrete controller 
description into another description which is input-output 
equivalent. but exhibits better behaviour, for instance with 
respect to limited wOrdlength coefficient sensitivity. This issue 
is discussed in Section 5. Determination of "good" structures 
has long been a main issue in the digital filter field, and work 
still continues on this. Transformation into a well-behaved 
structure may also be necessary with floating-point arithmetic 
in critical cases. Such cases have indeed been encountered in 
practice. 

In the case of fixed-point arithmetic the next step must be 
scaling (Section 6). Fixed-point numbers have • much more 
limited dynamic range than tlo.ting-point numbers with com­
parable word.length. In order to avoid overflow but at the same 
time minimize quantization effects, the variables oftbe controller 
must be scaled. Scaling also intluences the coefficients of the 
controller which have to fit into the coefficient number range 
.vailable. 

Finally, the target processor program can be written. This 
should be quite an easy task if a high-level language can be 
·used and if the control algorithms are straightforward, but 
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feedback 

FIG. 1. Example of a structured control system. 

programming can be more challenging under less convenient 
circumstances. Some relevant points are discussed in Section 7. 

It is always advisable to carry out analysis and simulation in 
parallel to the steps or the implementation procedure, checking 
for the effects of discretization, skewed sampling, finite word­
length arithmetic-effects and the like. Although appropriate 
analysis tools apart from simulation are valuable, the final word 
at least should come from a full-blown simulation of the whole 
control system. This task is not as trivial as it might seem, and 
deserves some discussion in Section 8. 

2. Control algorithms 
Before discussion of implementation issues it is useful to have 

a look at some or the algorithms which are possibly to be 
implemented and at some implications of these algorithms with 
respect to implementation. 

It is common practice to design Jinear control systems and 
to apply them to the usually non-linear plants. Thus linear 
controllers are the main focus. However, linear controllers are 
sometimes augmented by specific non-lineanties, such as non­
linear friction-compensating terms, non-linear command or 
rererence generating models and the like. This should he taken 
into account at least when it comes to software, both for aiding 
in the implementation process and for target processor program 
development. 

A complex control system is usuany composed of subsystems. 
For an example see Fig. 1. Such a subsystem structure may be 
imposed by the design process, but there are usually also 
technical reasons for the structuring. It is often appropriate to 
preserve this structure in the controller implementation, 
although it may be easy to merge everything together into a 
single system description with the set of inputs comprising all 
measurements from the plant as well as external inputs, and 
with the variables acting on the plant as outputs. Such a 
global controller description may facilitate handling or the 
implementation tasks, because CACE software then only has to 
deal with simple single-system descriptions. This, however, is 
usually the only advantage of using a global description. In 
terms of maintenance, modifiability and self-documentation it 
is certainly better to keep the subsystem structure throughout, 
up to and including the final target processor program. Variables 
with physical meaning sometimes need to be preserved and may 
be lost in the global description, at least after transformations, 
which occur in the implementation process, have been perfor­
med. A description which reflects the modular structure of 
the system is also adequate if the controller is compqsed of 
subsystems running at different sampling frequencies, i.e. it is a 
multi-rate system, and if there are non-linear subsystems a 
structured description is almost mandatory anyway. 

2.l. Some basic types of discrete control algorithms. In this 
subsection a discussion of basic control algorithm types is given 
with regard to the typical individual subsystem types. 

I 
,, _____ ..J 

possibly unstable 

<a) [b) 

FIG. 2. Implementation with actuator saturation. 

2.1.1. Observer/estimator and state feedback. The observed (or 
estimated) state vector i is computed via 

~'" = <I>~. + rup .• + K[yp.' - H~.] (1) 

(Franklin and Powell, 1980; Astram and Wittenmark, 1984), 
where up is the vector of control inputs to the plant and yp may 
contain plant measurement variables as well as reference inputs 
or measured external disturbances, in the case of reference and 
disturbance modelling. The observed state vector is then used 
in 

(2) 

where Lis a constant state feedback matrix, possibly including 
columns for feedforward of observed referen~ or disturbance 
model states. In (1) there could additionally he input terms 
separate from the control input term in the case of additional 
measurable external plant input signals. The term in brackets 
could he augmented by - Dup." when the discrete plant state 
space description contains it as a direct feed through term. This 
occurs for instance when dealing with computational delay of 
the control processor using the approach given by K wakernaak 
and Sivan (1972). The state observer/estimator may also come 
in another version, slightly different rrom (I): 

~1+ I = <l>x, + rup~ + K[yp ... I - H<I>x.]. (3) 

This version is called "current" estimator by Franklin and 
Powell (1980). Astram and Wittenmark (1984) distinguish the 
predictor version given by (1) from the filter version given by 
(3). The presence of Yp,lr.+ I has implications with respect to non­
zero computation time (see Subsection 2.2). 

Because Up,t; which is computed via (2) also appears on the 
right-hand sides or (I) and (3) it is sometimes argued that (2) 
could just as easily be included in (1) or (3), yielding ror instance 

x.+ I = (<I> - rL)~. + K[yp.H 1 - H<I>~.] . (4) 

in the case or (3), along with (2) ror computing the control input 
to the plant. This could however be dangerous when up as input 
to the plant saturates (Astram and Wittenmark, 1984). The 
versions (1) and (3) still work (Fig. 2a) but in the case or (4) the 
control system is broken up due to saturation into the plant 
and a system whose eigenvalues are those or <I> - rL-KH<I>, 
which are not even guaranteed to he stable (Fig. 2b). The control 
system may never again regain stable operation after saturation 
has occurred. Astonishingly, this simple ract has rrequently been 
ignored in the literature. Note that this problem ties in with the 
loop transfer recovery issue of continuous control (Doyle and 
Stein, 1981) as well as with antiwindup compensation (Astram 
and Wittenmark, 1984). From the author's own experience 
designs are not unlikely to end up with an unstable system (4). 
In such cases at least, the control inputs to the plant should 
also be explicit inputs to the controller. If saturation occurs 
only at the DA-converter, an internal feedback of up under 
saturation in the control processor to the right-hand side or (1) 
or (3) may suffice, otherwise the inputs to the plant should he 
measured. Note that even when (4) is stable, the dynamics may 
be very unsatisfactory. If a continuous controller is designed 
and afterwards discretized, the discrete controller with reedback 
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as in Fig. 2b may be unstable if actuator saturation occurs, even 
if the continuous controller remains stable. 

In (1) and (3) there is an explicit computation of the observa­
tion/estimation error (the bracketed tenns). The term depending 
on ::I. could however be omitted if <I> - KH in (1) or <I> - KH<I> 
in (3) are used for <I> instead. The controller (I), (2) can then be 
reduced to a standard state space fonn 

Xu. = (<I> - KH)x, + (r, K)[U'.'] 
Yp,k 

(5) 

which is equivalent to (1), (2) with infinite arithmetic precision. 
With short wordlength arithmetic there may however be cases 
where the representation of (() - KH) and K in the processor 
causes observation/estimation errors. 

The reduction of (3) and (2) to standard state-space form is 
prevented by the presence of y,.u. in (3). An input/output 
equivalent standard state-space form could be found (see below) 
but *- would not be preserved. 

2.1.2 Standard state-space systems. If the controller design 
method does not yield a specific algorithmic structure such as 
(1) and (2), but just a discrete dynamic system with some inputs 
and some outputs, or in cases where the structure is not required 
to be preserved, the standard state-space description may be 
adequate: . 

Xk + 1 = AXk + BUk 

Yk = eXk + Duk , 

(6) 

Such a system may also appear as a subsystem in a complex 
controller. Its input thus does not necessarily coincide with the 
plant measurement. reference and measured disturbance vectors 
as in (1), and its output is not necessarily the control input 
vector to the plant. The usual convention of " being the input 
and y being the output of this system has therefore been adopted, 
and will be used in similar cases below. It is important to include 
the direct feedthrough terms in (6) because controllers frequently 
have such a term (think of simple P, PI, PD, PID type 
controllers). 

If (6) describes an unstable controller/compensator with "k 
which does not contain the actuator control variables (as 
opposed to (5)), the same problems in the case of actuator 
saturation arise as discussed above. The closed-loop system of 
course should be stable but breaking of the loop because of 
actuator saturation is likely to have disastrous consequences (due 
to possibly only "conditional stability" in Bode's terminology). 
Astrom and Wittenmark (1984) suggest a neat way of circum­
venting such problems by implementing the system (instead of 
(6)) 

Xu. = (A - MC)x, + (B - MD)u, + My" (7) 

Yk = CXt + DUb 

which is equivalent to (6) as long as everything is linear. The 
point is that (7) is a feedback system because y, appears as 
Yk-I in the computation ofxt • Assume now Y to be the control 
input to the plant, and U to be the plant output. If y, now 
saturates, not only the controller/plant loop is broken, but 
also the loop in (7) (see again Fig. 2 with (7) replacing the 
observer/estimator/feedback system there). Thus one is left with 
a system the dynamics of which are determined by A - MC 
instead of A, and A - MC may have more desirable eigenvalues 
because M can be chosen freely. 

21.3. State space system with "current" term. Frequently the 
system description contains a "current" term. which means that 
Xk depends not only on "t-l but also on the currently sampled 
Uk or 

XU1 = AXl + B1Uk+l + BO"l 

Yk = eXk + DUk' 

(8) 

This occurs if certain methods are used to discretize an analog 
controller. But the simple PlD controller given by 

"P,k = rxet 

"l,k = UU-l + pet 

UD,k = }'"D,It-l + 8(et - e,,-t) 

Uk = Up,lt + UI,k + "D,t 

(9) 

also yields a description of the form (8), if the integral part UI 

and the differential part UD ared chosen as state variables. If it 
is not necessary to preserve the state variables, (8) can be 
translated into (6) using the substitution (Hanselmann, 1984) 

resulting in 

X:+l = Ax: + (ABl + Bo)uk 

y, = Cx; + (CB. + D)u,. 

(10) 

(11) 

2.1.4. Transfer junctions. Controllers or controller subsystems 
are often given in transfer function form if they are SISO. MISO 
or SIMO systems. In the case of MIMO systems the transfer 
matrix description is not directly appropriate for implementation 
purposes because of the underlying minimal realization problem. 
For this reason and because state-space models are more easily 
amenable to numerical treatment, basing CACE tools on state 
space descriptions might be preferred, with some important 
extensions as given in Subsection 5.4. 

In the SISO case it is quite natural to derive an implementable 
difference equation directly from the z-transfer function in 
polynomial form: 

could be implemented as 

This is only the simplest equation, requiring more storage 
elements than necessary. There are various other structures also 
involving the polynomial coefficients of(12) more or less directly 
(see for example Phillips and Nagle, 1984). The problem is that 
such an implementation is very likely to fail with finite precision 
arithmetic even in low order cases, so transfer functions are 
usually realized in different, more appropriate forms (see Section 
5). 

If an observer/feedback controller is given in transfer function 
form in the case of a SISO plant, it has at least two inputs and 
one output. The two minimal inputs are the control input to 
the plant as measured and the plant's output variable. Additional 
inputs for the command or reference signals and measured 
disturbances may be present. So such a controller is always 
MISO. It may be tempting to eliminate the input of the plant's 
actuating variable into the controller which computed that 
variable. The problem associated with actuator saturation 
discussed above in the state-space context then also arises. If, 
originally, the controller is a compensator without this actuating 
variable feedback, and it is unstable or exhibits unsatisfactory 
dynamics, it is also possible to remedy this in transfer function 
form (Astrom and Wittenmark, 1984~ corresponding to the 
modification shown in (7). 

2.1.5, Finite impulse response filters. Finite imPl1:1se response 
(FIR) filters are known from digital filler theory (Oppenheim 
and Schafer, 1975). They are commonly realized as non-recursive 
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systems, i.e. the difference equation has only input terms on the 
right-hand side 

(14) 

but note that recursive realization is also possible. an example 
being the 'common recursive realization of a moving average 
filter. In a control system context, FIR filters may appear as 
subsystems for filtering purposes. They may also be used directly 
as controllers in certairi settings (Fromme and Haverland, 1983; 
Wid row and Walach, 1983). 

2.1.6. Non-linearities. AU the controllers or subsystems discussed 
above only require simple scalar product operations involving 
coefficient vectors (matrix rows) and data (signal) vectors. 
This computation of sums of products, which requires only 
multiplications and additions. is the type of operation predomi­
nant in general digital signal processing. for instance in digital 
filtering or correlation computations. Thus processor architec­
tures suited to the strong market of general digital signal 
processing are usually also well suited to controlJer implemen~ 
tation (see Section 3). 

Practical control systems, however, frequently need extensions 
of the simple linear timeeinvariant systems discussed. Examples 
are: compensation of stateedependent noneviscous friction in 
mechanical systems (Henrichfreise, 1985; Walrath, 1984), non­
linear command or reference generators (Broussard et al.. 1985~ 
compensations of kinematic non~linearities in robot control, or 
adaptive mechanisms (Aslram, 1983). Computations introducing 
operations such as decision making, divisions, table lookup. 
interpolation, polynomial evaluation, and computation of non­
linear functions may give rise to problems with processors which 
are intended for linear digital filtering. 

2.2. Implications of computational delay. In the difference 
equations discussed above the subscript k of input or output 
variables expresses time instants where sampling or output 
occurs respectively. Thus u, in (6) means u(k1) and y, means 
~k1). Sampling and output musl therefore be performed exactly 
simultaneously. Note that the state vector may have a meaning 
with respect to time instants 100 as in the case of (1) or (3), 
where t is the observed plant stale but this depends on the 
design method which yielded 'the controller. It is in any case 
irrelevant at what time instant the state vector is computed, as 
long as it is computed before it has to be used for the 
computation of the output. 

If there is no direcl feedthrough from input to output and 
there is no current term in the state update equation (as in (1). 
(2), (5) and (6) if D = 0) then the output can be readily computed 
before the input is sampled and sampling and output can be 
simultaneous in reality. Otherwise, there is inevitable delay 
because-take (6) for instance-Du, al leasl has to be computed 
and added to Cx" which might already have been computed 
because x, does not depend on u,. If ex, is precomputed, delay 
is minimized. The control processor program can easily be 
organized that way (Franklin and Powell, 1980; Hanselmann, 
1982; Astrom and Wittenmark, 1984). Similar arguments apply 
to the observer/estimator described by (3) with (2), where, 
in order to compute U".II' Y".a must be available and the 
computational effort is at least the addition of Kyp., to the 
precomputable part of ~" and finally the computation of up., 
=-UII • 

If the minimized delay is not negligible, it should be taken 
into account in the controller design. How this is done depends 
on the design method. With classical Bode diagram design for 
instance the delay introduces additional negative phase which 
could be assigned to the plant for this purpose. With direct 
discrete design the delay may also be assigned to the plant and 
design is then based on a discrete description for the plant with 
input delay. This description is compuled either in the z-domain 
using modified z-transforms (Franklin and Powell, 1980; Astram 
and Witlenmark, 1984; Phillips and Nagle, 1984~ or in state 
space (Franklin and Powell, 1980; Astram and Wittenmark, 
1984; Wittenmark, 1985). In all these cases the delay shows up 
in the design of the controller. 

(a) 

(b) 

(k-1)T 

(k -1)7' 

kT 

1 output of 
conlrol signal Up 

latest instant for 
measuring plant output yp 

k'/" t 

1 !output of "Up 

measurement of yp 

FIG. 3. Computational delay. 

With observers/estimators there are more elegant possibilities 
which compensate for the delay. In the approach given by 
Kwakernaak and Sivan (1972), the time grid is fixed to the time 
when output of the control signal U",k to the plant occurs, i.e, 
up., means u,J.k 1) (Fig. 3a). With the requirement of simultaneous 
sampling and output the latest measurement usable to compute 
u,J.k1) would be y,J.k - 1)1). If skewed (non-simultaneous) 
sampling were used. the latest measurement could however 
preferably be y,J.(k - I)T + Ii), where Ii = T -- t" and t, means 
the computational delay. Thus an observer/estimator design 
based on a plant descriplion with output y,(kT + Ii) instead of 
y,(k1) would compensale for the computational delay. 

In the approach given by Meisinger and Lange (1976), the 
lime grid is fixed to the sampling of y,J.k1) but the compulation 
of up., is based on a predicted plant slate X(kT + t,) (Fig. 3b). 
The prediction is easily incorporated into the observer/estimator 
equations with no additional computational overhead. Similar 
ideas are used by Mita (1985). Meisinger and Lange's approach 
appears different from that of Kwakernaak and Sivan. and no 
reference to the latter is given. In fact, the equations describing 
the estimator can be shown to be equivalent. The difference is 
~hat Meisinger and Lange express the estimator gain matrix in 
terms of the "no delay" gain matrix assumed to be computed 
first. 

The observation that direcl feedthrough terms, or current 
lerms which map into direct feedthrough, cannol be 
implemented exactly with finite speed processors, has led to the 
exclusion of such systems in the whole work of Moroney et al. 
(1980, 1981, 1983) and Moroney (1983). However it seems 
reasonable not to exclude such systems as models, firstly for 
cases where delay can indeed be neglected, secondly ror cases 
where delay is assigned to the plant during design, and finally 
because such systems may be sericswconnected to others which 
do not have direct feed through, so that the input and output 
operations of the series connection visible from outside may 
well occur at the correct time instants. 

2.3. Discretization of continuous controllers. 

2.3.\. Motivation. Although the common design methods are 
available in discrete form, it is quite common to carry out 
continuous design first, so that discretization can be assigned 
to the implementation task. Discretization of continuous designs 
is sometimes ruled out as being inefficient with respect to 
necessary sampling rates, giving up some possibilities present 
only in discrete design (such as deadbeat behaviour), and being 
simply imprecise beeause discretized control never behaves like 
the continuous design. Experience shows however that it is far 
from uncommon for none of these arguments to be of significant 
relevance in practice, and there may be several reasons why the 
indirect way via continuous design may be the better choice. 

One possible reason is that in order to exploit the exactness 
of discrete design there must be early decisions on sampling 
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FIG. 4. Discretization methods. 

frequency, and possible sampling skew (non-simultaneous sam­
pling of aU inputs) or computational delay must be known in 
aqvance. But all ~his depends on what shows up to be computed, 
what the numencal data are, and which processor and which 
data format will be used. If inadequate estimates have been used 
initially, the control system has to be redesigned. 

2.3:2. Methods. There are so many methods available for trans­
latmg a linear time-invariant controller into a discrete "equiva­
lent" system (which in fact can never be completely equivalent), 
that this topic could be the subject of a survey in itself. [n 
the following, not much more than a classification and a 
bibliography are given, plus a short discussion of two methods. 

The discretization methods available can be classified as 
indicated in Fig. 4. 'There are two main groups. The tirst 
comprises methods which do not take into account the fact that 
~he controller will be connected to the plant and wiIJ operate 
m closed loop. At most there are a few assumptions about the 
input signals. [n the second group, discretization is carried out 
considering the clQscd-loop use of the controller. 

Among the contributions to the secon,d group are those 
published by Kuo (1980), Kuo et al., (1973), Yackel et til., (1974), 
Smgh et al., (1974) and Miller (1985). They consider the redesign 
of continuous system state feedback and reference feedforward 
matrices for the discrete case with the objective of matching the 
state or parts of the state of the discrete control system to those 
of the continuous system in closed-loop operation. 

Also connected with state feedback and reference feedforward 
matrix redesign is another approach given by Kuo et al., (1973) 
and Kuo and Peterson (1973) (also in Kuo, 1980) based on a 
Taylor expansion of those matrices about T = O. These tnethods 
have been reviewed and further discussed by Kleinman and Rao 
(1977), who also give a so-called average gain method with the 
objective of approximating control signals instead of states. 
Closed-loop redesign is also the objective with the methods 
proposed by Rattan and Yeh (1978), Rattan (1981, 1982, 1984) 
and Shieh et al., (1982), which are based on frequency response 
curve fitting. 

The group of methods for "isolated" discretization, where 
only the system to be discretized is considered without taking 
its later connection to the other systems into account, is the 
largest. The most widely described methods within this group 
assume that the s·transfer function G(s) of the continuous system 
is given. With the most prominent method, the so-called bilinear 
transform, (see for instance Oppenheim and Willsky, 1983) the 
recipe is: substitute s by 2(z - I)/T(z + 1). A z-transfer function 
GJz) is thus achieved. This transformation is also known as 
Tustin's method and relates to discrete integration, i.e. to 
simulation. It "has the nice property of never generating unstable 
z-poles as long as the s-poles are stable. Another property is 
that the frequency response of G(s) is exacdy replicated in the 
freql:'ency response of the discrete system (more precisely 
G,(o''''), i.e. without hold device) but unfortunately with a 
wa~ped frequency axis. The response of the continuous system 
shnnks to the range 0 ... w&/2, where roll is the angular sampling 
frequency. 

The bilinear transform is widely in use, and tests on numerical 
examples (Katz, 1981; Hanselmann, 1984) indicate that this is 
not a bad choice. It is also quite simple to formulate this method 
in state space for multivariable systems. Given the continuous 
system 

x = Acx + 8(u 

y = ex + Du 

(15) 

the discrete system is of the form of (8) (Haberland and Rao 
1973; Hanselmann, 1984), with ' 

(16) 

where [ means identity matrix. Note that A is a tirst-order Pade 
approximation for the transition matrix exp (Ae 7). 

The formulation in state space directly translates into a simple 
computer program. The calculations based on the transfer 
functions can however also be mechanized (Ahmed and Natar­
jan, 1983; Bose, 1983; Pei, 1985). Bilinear transformation is not 
the only method from the transform or substitution class. More 
can be found for instance in Katz (1981) and Franklin and 
Powell (1980) along with some comparisons by examples, and 
10 Rosko (1972) and Smith (1977). A "small T' root and frequency 
response error (continuous/discrete) analysis for the bilinear 
transformation is given by Howe (1982). 

Since. determination of a discrete system equivalent to a 
continuous one is related to simulation, methods from that field 
may also be of interest here. [n fact, the bilinear transformation 
already corresponds to a simulation of an equivalent continuous 
state space system ·via implicit trapezoidal integration. Hansel­
mann (1984) also derived discrete systems from Heun's simul­
ation method and one of the Runge-Kutta type and compared 
them to other methods. Experience showed no general advantage 
over for instance bilinear transformation and over the ramp­
invariance method described below. One method which seems 
very interesting and also has some connection with simulation 
has recently been published by Forsythe (1983, 1985). It is given 
for SISO systems and is based on expressing the samples of the 
input and output variables via Taylor series expansion of the 
continuous functions. Results are shown which are clearly 
superior to those of the bilinear transform in a large frequency 
range, although at the expense of increased gain in the high 
frequency region. This could be dangerous in a closed-loop 
control system. 

The last class of methods is based on assumptions on test 
input signals applied both to the continuous system and to the 
discrete one to be determined. The objective is to achieve 
agreement of both outputs at sampling instants. Assumption of 
a step input leads to a step-invariant and to a ramp input to a 
ramp~jnvariant discretization, occasionally called "zero order" 
and "first order hold equivalence" methods, respectively. The 
step-invariant discretization is just what has to be performed in 
order to describe a continuous plant driven by a zero-order 
hold (ZOH). A table of step-invariant transfer functions can be 
found in Neuman and Baradello (1979). The ramp-invariant 
discretization is also easy to achieve, either via transfer function 
calculation, i.e. 

G (z) = Y'(z) = (z - If Z{G(S)-'-} (17) 
, R(z) Tz s' ' 

or in state space. The assumption of a ramp input between 
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sampling instants leads to the state-space equation solution 
(continuous system (15) assumed) 

x .. , = exp(A,T)x. + f. T exp[A(T - T)] 

B [u + Uk+1 - UktJdT ,. T 

= Ax, + Hu, + H.(u .. , - uJIT 

=Ax,,+Bt"Hl + BOuk• 

(18) 

The transition matrix and the input matrices Hand H. can 
be computed simultaneously via a single transition matrix 
calculation (Hanselmann, 1984), but also by other means. The 
power series expression of exp(AtT), for instan_cc, which is 
sometimes used as a basis for computation of A and H, also 
leads to algorithms for oomputing H •. Schittke and Dettinger 
(1975) used this (unfortunately there is an error in the series 
given in their equation (15)). The approach given by Kiillstrom 
(1973) for computation of A and H based on one single series 
calculation can also be extended*. The series to be summed is 

>/I = f (A,Tj'/(i + 2)! (19) 
;=0 

then 

A = I + A,T+ T'A:>/I (20) 

H = (TI + A,T '>/I)B, (21) 

H,= T'>/IB,. (22) 

Definition and derivation of the ramp-invariance method in 
state space has already been found in a paper by Haberland 
and Rao (1973). The expressions given there for B, and Bo can 
be derived from (20)-(22). A small T study concerning scalar 
transfer function zeros generated via impulse-, step-, or ramp­
invariance has been carried out by Bondarko (1984), whose 
step-invarlance results relate to those of Astrom et al., (1984~ 

The author's experiences with the ramp-invariance method 
are very good, particularly in critical cases where there are 
continuous system eigenfrequencies near mJ2. The step­
invariant results, however, showed bad frequency responses 
compared to those of the continuous systems in practically 
every application. Sampling frequency could have been lowered 
by a factor of five using ramp invariance instead of step 
invariance with a high-order controller for a hydraulic system 
(Hanselmann, 1984). So the unsatisfactorr experiences with 
discretized continuous designs, compared to discrete designs, 
which are sometimes reported may well be due to inappropriate 
discretizatIon. 

2.3.3. Influence of zero-order hold. A general problem with 
discretized controllers is that the ZOH at the outputs introduces 
collsiderable phase lag. Thus discretized controller frequency 
responses are likely either to show more negative phase com­
pared to the continuous controller, or to show increased gain 
in the higher frequency region, which stems from the attempt 
to lift phase. Stability and damping problems could occur. In 
applications carried out by the author, sampling frequency had 
to be from a factor of 3 to 10 higher than crossover frequency, 
in order to preserve reasonably the behaviour of the continuous 
system. From aliasing and roughness of control signal consider­
ations, which often also dictate sampling frequencies in that 
range, such a ratio does not seem to be excessive. 

With some of the discretization methods the phase lag of the 
ZOH can be taken into account directly. This applies naturally 
to the closed-loop discretization method class. The "isolated 

• Thanks to Prof. K.-J. Astrom who brought this to my 
attention. 

discretization" method of FOTSythe (1985) is also able to do 
this, and furthermore to compensate somewhat for possible 
computational delay. The price of delay compensation however 
is again an increased high frequency gain. The same applies to 
what might be caned "post-filters", which are digital filters 
conllec!ed between the controller difference equation output 
and the ZOH. Such filters have been described by Yekutiel 
(1980) and Beliczynski and Kozinski (1984). They lift phase but 
must be handled with care unless a rapid gain rolloff beyond 
the crossover frequency is guaranteed. 

3. Implementation hardware 
The author is well aware of the fact that any discussion of 

hardware is doomed to be obsolete within a very short time. So 
this survey gives only & snapshot of current implementation 
hardware, but there are some points which might be relevant 
for a few years. 

3.1. Spectrum of CUTl"ent hardware. The range of possible 
hardware for implementation of algorithms as discussed in 
Section 2 is very broad. A rough overview is given in Table 1. 

3.1.1. Specialmnchines for rapid experimenting. At the upper end 
in terms of cost as well as computational power there are 
high-speed computers specifically designed for real time data 
acquisition and computation. The ADIO from Applied Dynam­
ics International, Ann Arbor, Michigan, is capable of 30 million 
arithmeticoperations- 1 and 10kHz data acquisition on 32AjD 
channels simultaneously (Powers, 1985; Kerckhoffs et al. 1985), 
but costs are in the US $200,000 range. Advanced versions 
recently available are also capable of floating-point computation 
(Fadden, 1984), but at even greater cost. Such systems are 
attractive for experimental work in the early stages of a control 
system design and implementation project, in order to obtain 
feedback from real experiments as early as possible, and as easily 
as possible, with the convenience of floating-point arithmetic, 
flexible programming, and plenty of speed. Common minicom­
puters backed up with array processors may also be used with 
similar power but also at high cost (Jacklin et al. 1985). Without 
array processors, the speed of minicomputers is usually rather 
modest. A less costly system which is marketed specifically for 
experimental linear control system evaluation is the PC 1000 
from Systolic Systems Inc., San Jose, California, starting at US 
$ 25,000. It is rated at 200 ns multiply as well as addition 
time with 32-bit floating-point numbers, and 2kHz maximum 
sampling rate. Controllers of type (6) with up to 32 states and 
16 inputs and outputs can be accommodated under the control 
of a personal host computer with download facility. 

3.1.2. Fast floating-point chips. Roughly the same compu­
tation speed as described above will be possible with systems 
based on so-called word-slice chip sets from Advanced Micro 
Devices (Flaherty, 1985; Quong and Perlman, 1984) and Analog 
Devices (Windsor, 1985; Taetow, 1984). They evolved from 
the more traditional bit-slice ooncepts and now oomprize all 
necessary building blocks to develop microprogrammed high­
speed signal processing systems with just a few chips, among 
which are special purpose arithmetic chips, i.e. separate chips 
solely for accumulating or multiplying floating-point numbers. 

Floating-point computation in the same speed range as with 
word-slice devices is possible using arithmetic chips from Weitek 
Corporation. Separate 32-bit floating-point adder and multiplier 
chips along with 32-word register file devices form a powerful 
numerical processor. Control of the devices must be derived 
from microcode memory and control logic. About 2 MFLOPs 
(mega floating-point operations per second) can be achieved in 
low latency flowthrough mode, which means that the result of 
• single arithmetic operation is available as soon as possible. If 
pipelining can be used 10MFLOPs are achievable, but results 
are then not immediately usable in subsequent operations. 

Another two-chip set for floating-point arithmetic is available 
from TRW (Eldon and Winter, 1983), which is, however, 
restricted to a 16-bit mantissa 6-bit exponent fOTmat. Note that 
division is not as directly perfoTmed as accumulation (addition 
and subtraction) or multiplication with these chips, nor is it 
with the above-mentioned word-slice devices. Division must be 
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TABLE 1. IMPLEMENTATION HARDWARE 

Experimental use in the laboratory 
High cost Medium cost Low cost 

Dedicated 
low volume 

Dedicated 
high volume 

word-slice 
High 
speed 

AD-IO minicomp. and 
array processors 
Systolic Systems 
PC 1000 

floating~point 
chips 

VLSI signal processors 

Medium 
speed 

minicomputer microprocessor with custom 
VLSI numerical coprocessors 

Microcontrollers 

performed using table-lookup methods to yield rough estimates 
which are then improved via additional operations, or it is 
performed totally iterativeJy. This means that division and any 
other function computation involving division is performed 
much more slowly than the elementary scalar product operation 
ace: = ace + coefficient. variable. Within the Weitek register 
file there is an integrated lookup table for computing l/x and 
Jx. 
3.1.3. Microprocessors. Easy implementation and testing of 
controllers at much lower cost and 'effort is of course possible 
using standard personal computers or microcomputer board 
level systems, equipped with process interfaces, and speeded up 
by numerical coprocessors, such as the Intel 80286/80287 or the 
National Semiconductor NS 32016/32081 combinations. Such 
systems are easy to program in high-leve11anguages and deliver 
medium speed (see Subsection 3.3), sufficient for implementing 
even complex process control in many cases, but frequently not 
fast enough for control of fast systems such as mechanical ones. 
Attaching fast hardware multipliers to general microprocessors 
may also seem to be an alternative. They are available in 
abundance from many companies, up to (24 x 24)-bit fixed­
point format at 200ns mUltiply speed or (16 x 16)-bit in 35ns. 
But data transfer from and to such a chip via a microprocessor 
is much too slow, so the multiplier would be idle most of the 
time. Avoiding this would necessitate not only using a hardware 
multiplier, but surrounding it with a lot of hardware to achieve 
more independent operation on local data memory, under local 
sequencing control. 

3.1.4. Microcontrollers. The term microcontroller is used com­
monly for single-chip microprocessors which are designed to be 
used as dedicated processors. But control is meant here in a 
much broader sense than considered in this paper, including 
sequencing control, pulse-width or pulse-frequency modulation 
control, and so on. Microcontrollers stand somewhere between 
traditional single-chip microcomputers and general purpose 
microprocessors. Three powerful 16-bit devices shaH be named 
here, the Motorola MK 68200. the Nippon Electric NEC I'PD 
78312, and the Intel 8096. Typically, the arithmetic computation 
speed is not much higher than with generaI16/32-bit micropro­
cessors for fixed-point arithmetic. But there are features like on­
chip AD-converters or timers and modulators which make such 
processors attractive for developing products. It is interesting 
to note that the 8096 evolved from a chip originally designed 
according to requirements specifications made by Ford Motor 
Company for control applications in an automobile (Powers, 
1985; Breitzman, 1985; Simmers and Arnett, 1985). 

3.1.5. Signal processors. Very attractive computation speed is 
achieved with a number of VLSI signal processors at micropro­
cessor level cost (Hanselmann and Loges, 1983, 1984; Hansel­
mann 1986). Present devices of that kind that seem to be useful 
for control implementation and are available to the public are 
the Nippon Electric NEC 7720 (Nishitani et al. 1981), the Texas 
Instruments TMS 32010 (McDonough et a1. 1982), the Fujitsu 
MB8784 (Gambe et al. 19831 the STCDSP128 (Pickvance, 
1985), and the Texas Instruments TMS 32020 (Magar et a1., 
1985; Essig et ai., 1986). Some descriptions can also be found in 
Quarmby (1984), Marrin (1985), and of some recently announced 
processors in Marrin (1986). 

The signal processors mentioned are off-the-shelf products. 
The cJass of only mask-programmable signal processors has 
been excJuded. They are not of course useful for the average 
control implementation task. There is great activity in the 
development of signal processors. Several companies have 
announced such devices. 

For medium to high volume applications, custom chips may 
be the choice. Custom design is advancing in supplying quite 
complex building blocks such as multipliers, arithmetic units 
and memory (Cole, 1985). Furthermore, there is considerable 
effort towards fully automated chip design (Cappello, 1984). 
Pope et al. (1984) and Rabaey et al. (1985) for instance describe 
a silicon compiler which starts with some high-level descriptions 
of what the signal processor chip is expected to perform. The 
software then chooses optimal parameters of a parameterized 
architecture and finally outputs a complete chip layout. Combin­
ing building blocks into a freely designed architecture is another 
approach (Olesner et a1., 1986). . 

VLSI signal processors make implementation of non-trivial 
controllers at high sampling rate feasible at reasonable cost, 
and particularly the TMS 32010 has already heen used in many 
control applications, as described for example by Slivinski and 
Bominski (1985), Kanade and Schmitz (1985), Hanselmann 
(1986). The power of signal processors is due to their architecture, 
not to exotic silicon process technology. It may therefore be 
interesting to have some general discussion of architectural 
features in the next subsection. 

3.2. Architectural issue.'). When a chip or chip set is to be 
selected for controller implementation, there are many criteria 
which might be relevant. Their priority depends mostly on the 
type of application intended. Building a tool for flexible lab 
experimentation sets priorities other than looking for a medium 
volume dedicated industrial instrumentation system. 

3.2.1. General considerations. How general purpose 16/32-bit 
microprocessors. a typical microcontroller, and the current 
VLSI signal processors meet some of the relevant criteria is 
shown in Table 2 (for a survey of microprocessors see Gupta 
and Toong, 1983, 1984). The 8096 has been chosen as representa­
tive ofa trend in microcontrollers. Note the amount ofinput/out­
put support right up to multi-channel on-chip AD-conversion. 
Microcontrollers are particularly well suited to industrial appli­
cations, where control of the type discussed in Section 2 
is frequently only one task among many others, including 
sequencing, complex timing, interrupt processing and communi­
cation. Computing speed is however not as high as with signal 
processors. Apart from the special input/output features, the 
architecture of the 8096 is much like that of traditional general 
microprocessors, with the exception of an increased number of 
on-chip registers fonning a so-called register file. There are 232 
bytes free to the user to be referenced as byte, word or double 
word registers. This is an important feature, because such an 
on-chip register file can be accessed more quickly than external 
memory. It is large enough to carry out large portions of the 
task locally and also helps speed up context switching during 
processing interrupts. 

When so many functions as a microcontroller has are inte­
grated on a single chip, something must be sacrificed in 
comparison with general purpose 16/32-bit microprocessors. 
One of the features of the latter, missing in a microcontroller, 
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TABLE 2. PROCESSOR COMPARISON 

Microprocesors 

Floating point slow, 
medium with 
coprocessor 
(,.,5-15I's 

mull. or add) 

Speed 16 x 16 5-121" 
fixed-point mull. 

ALU wordsize 16-32 

Program address >IMB 
space 

Data address space same 

On-chip ADIDA 

Special 1/0 

On-chip ROM. 

Memory speed medium 
required 

Interrupts flexible via 
interrupt 

control1ers 

Multiprocessor ext. logic 
capability 

Program language best 
support 

Chip count high 

is the large address space, which is in fact not necessary for 
control implementation. A small address space saves much room 
on the chip, because the address space is reflected in all registers 
and logic related to effective address computation, as well as in 
the bus interface. Provisions for memory management can also 
be dispensed with. 

Other savings stem from reduced instruction decoding circu­
itry due to a simpler instruction set, excluding advanced high­
level language-like instructions as for instance incorporated in 
the VAX-like instruction set of the NS 32016 general micropro­
cessor. The reduction in instruction decoding and processing 
logic due to a simpler instruction set is also a general line of 
development with advanced supermicroprocessors for general 
purposes. These processors are said to be of the RISe type 
(RISe means reduced instruction set computer)(Wallich, 1985). 
They are characterized by an instruction set which includes only 
the most used instructions and by executing one instruction 
every machine cycle. Operations are performed on operands in 
large register files, not on memory, which is accessed only by 
load and store operations. Among the digital VLSI signal 
processors there are also some which are RISe-like. particularly 
the TMS 32010 and the DSP 128 signal processors. 

3.2.2. Specifics of signal processors. Whereas the 8096 microcon­
troller discussed above appears, from outside the chip, to be 
of the traditional "von Neumann" computer type, internally 
instructions go their own way separately from the data. It is a 
well-known bottleneck of traditional processors (von Neumann 
type) that instructions and data travel on the same bus. 
This architecture must be abandoned if data transfer between 
registers, data memory, and arithmetic units is t9 be fast for 
maximum throughput. One step away is the so-calleq 'Harvard' 

Microcontroller Signal 
8096 processors 

slow impossible or 
slow 

71's 0.1-0.31" 

16 16-35 

64kB 1.5-128kB 

same 128-588 x 16 for 
onchip RAM (external 

ex:tension possible 
with newest proe.) 

4-8 AD chan!,els, 
10 bit 

pulse widtp. mod., 
timer, counter, 

watchdog, ports 

8kB all but one 

medh",m 25-150ns 

7 sources internal, 0-3 
J external 

newest proc. 

some asm only in most 
cases; high level 

language support 
for one, processor 

low medium to high 

architecture. In this architecture the instruction bus is separated 
from the data bus so that instruction fetch and data transfer do 
not interfere with each other. Some signal processors exhibit 
even more data paths. For mustration, a sketch of the core 
architecture of a hypothetical hut typical signal processor is 
given in fig. 5, showing the data manipula~ion part (instruction 
bus and control unit are separate). There are two 16-bit data 
buses, each connected. to a block of data memory and to the 
hardware mUltiplier inputs. Factors can thus be routed to the 
multiplier without bus conflicts. The arithmetic/logic unit (ALU) 
gets operands either from the accumulator, from memory, or 
from the multiplier, converted to 32-bit where necessary. Typical 
components are the shifters, particularly the barrel shifter. It 
allows the shifting of an operand by multiple bits within a single 
data transport operation. 

Besides the multiple bus and data path structure, the most 
significant difference between signal processors and general 
microprocessors or microcontrollers is the integrated parallel 
hardware. multiplier. This multiplier produces a (16 x 16)-bit 
product in every machine cycle (see discussion of speed in 
Subsection 3.3), which is afterwards directly fed through the 
ALU into the accumulator in the next cycle in order to perform 
the basic operation 

ace: = ace + coeff * variable. 

With a hardware multiplier the multiplications no longer 
dominate execution times as usual. They are as fast as additions 
or logic operations. It is however important not only to have a 
hardware multiplier, but also to have a powerful data path 
structure. Otherwise the precious arithmetic units cannot be 
kept busy all the time. Note that these ,components ronsume 
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FIG. 5. Typical signal processor core. 

large parts of the chip aTea (see photographs in Cushman, 1982). 
With the TMS 32010 fOT instance, a scalar product computation 
a = cT x proceeds as fonows: 

LTAx(i) 

MPYc(i) 

LTAx(i+ 1) 

MPYc(i+ 1) 

where the LTA instruction loads one operand in one of the 
multiplier's input registers, but at the same time performs 
accumulation of the previously computed product. The MPY 
instruction loads the second operand into the second multiplier 
input register and in the same cycle the multiplication is 
performed, the result of which is accumulated during the next 
LTA. The operands travel to the multiplier over a single data 
bus, so loading takes two cycles. With processors having split 
memory (as in Fig. 5) the coefficients (of cT in the example) and 
variables representing signals (x in the example) could be stored 
~parately and loaded simultaneously, so single-.cycle operation 
is possible. This can frequently be found in signal processor 
architectures. 

The integrated hardware multiplier, along with an appropriate 
data path structure connecting the arithmetic units (ALU, 
multiplier, shifters) and memory are the keys to the high speed 
of VLSI signal processors. There are however quite a number 
of miscellaneous features which also contribute to speed, mostly 
by devoting hardware to tasks traditionally performed by 
software. The VLSI signal processors are currently acknowl­
edged as being ·attractive candidates for control implementation, 
not only in the sense of Section 2. They are also weU-suited to 
performing arithmetic subtasks as a slave to a general 

microprocessor host within a control system (Schumacher and 
Leonhard, 1983; Rojek and Wetzel, 1984; Leonhard, 1986). They 
cannot however directly compete with microcontroUers in terms 
of functionality. 

3.2.3. Arithmetic and data formats. A last important point of 
discussion is the arithmetic data format supported by the 
different processors. This point can be as crucial as speed. In 
many cases floating-point arithmetic is desired, be it because 
the dynamic range required is indeed large, or because the 
implementer does not want to deal with the problems of fixed­
point arithmetic. With general microprocessors as well as 
microcontrollers, floating-point arithmetic in a common format 
(IEEE standard 754, 32-bit) is easy to achieve through subroutine 
libraries or floating-point coprocessors, providing considerable 
speed. 

With present VLSI signal processors, however, floating-point 
arithmetic is not easily achievable. There has been an effort to 
perform Hoating-point arithmetic on a TMS 32010 (Blasco, 1983) 
and on the TMS 32020 (Crowell, 1985), but speed results are 
rather disappointing compared to general microprocessor/co­
processor combinations. No effort to implement floating-point 
arithmetic on the other fixed-point signal processors has been 
reported. There is one VLSI signal processor, the Hitachi 
HD61810 (Hagiwara et al., 1983), which is specifically designed 
for a particular kind of floating-point arithmetic, but it is only 
available with mask programmed ROM, and floating-point 
accuracy is limited by a (12 x l2)-bit multiplier. There are 
some known developments of signal processors with full 32-bit 
floating-point hardware on the chip (from Bell Labs, Nippon 
Electric and Texas Instruments), but the first is not available to 
the public, the second has just been announced, and the third 
still seems to be in the design stage. Thus with present VLSI 
signal processors one must deal with fixed-point arithmetic and 
aU the associated problems. 

Within this group of fixed-point processors there are still 
differences in the useful data formats, which stem from architec­
ture design decisions. The main differences are in the processing 
of products from the multiplier, and in the format of the 
accumulator. With the exception of MB 8764 all processors 
provide at least 32 bits for accumulation of (16 x 16)-bit 
products, so that full precision is preserved until storage of a 
final scalar product result (see Section 4). At this point rounding 
or truncation is usually performed to obtain the most significant 
16 bits of the result, although more precision is possible with 
most processors, at the cost of more complicated code and 
slower execution. 

3.2.4. New architectures. In addition to the more conventional 
architectures just discussed, there are other developments which 
are already having an impact on signal processing and also 
beginning to have one on control. The transputer concept 
(Taylor, 1984), systolic architectures (Kung, 1984; Jover and 
Kailath, 1986), and data flow processor concepts (Chong, 1984; 
Hartimo et al., 1986) should be mentioned here. 

3.3.' Speed. Although there are usually many aspects of 
processor selection other than speed, it is nevertheless often the 
most pressing factor in controller implementation. This is 
typical of the field of controlling mechanical devices via fast 
electromechanical or servohydraulic actuators. Eigenfrequencies 
from 100Hz up to 10kHz are not uncommon, and higher order 
controllers are often necessary to cope with structural resonance 
effects (see for example Slivinski and Dorninski, 1985; Kanade 
and Schmitz, 1985; Hanselmann, 1986). 

A speed comparison for general microprocessors for the task 
of digital filter implementation, which is many respects similar 
to controller implementation, has been given by Nagle and 
Nelson (1981), also published in Phillips and Nagle (1984) (note 
that some of the programs originally published have been 
corrected in the latter pUblication). Speed comparisons on 
instruction and routine level using general data processing 
benchmarks have been published by Gupta and Toong (1983) 
and Toong and Gupta (1982). 
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TABLE 3. SAMPUNO FREQUENCIES WITH AN EXAMPLE 

CONTROLLER USING FIXED-POINT ARITHMETIC 

Microprocessor Clock (MHz) !. (kHz) 

8086 8 <2 
Z8000 5 <2 
68000 10 <4 
32016 10 <5 
TMS 32010 signal processor 31 

If floating-point arithmetic is required the current signal 
processors can be excluded from the comparison. Their fixed~ 
point speed is about the same as the floating-point speed of the 
fast word-slice and floating-point chips from Section 3.1.2. The 
fastest chip set (using the AMD 29325) achieves computation 
of a length n scalar product in about n. 200 ns, with full 32-bit 
IEEE standard data format. This should be compared with 
the often "thought to be fast" microprocessor/coprocessor 
combinations such as the Intel 80286/80287 or the faster 
National Semiconductor 32016/32081. The latter require about 
n. 20 /lS for the same thing (at 10 MHz clock, slave processor 
protocol execution included, from measurements by the author). 

Roughly the same speed as 'with microprocessor/coprocessor 
combinations can be achieved with the microprocessors alone 
iffloating-poinfarithmetic is dispensed with. Compared to adds 
and subtracts or miscellaneous operations, the fixed-point 
multiplications are the most time-consuming. ones. A typical 
execution time is 6/lS for a 10 MHz 32016 processor (operands 
in memory). 

With VLSI signal processors the execution times of add/sub­
tract as well as multiply operations are in the range l00-300ns. 
Multiplication is no longer the most time-consuming operation. 
Remember that in the example of a scalar product computation 
with the TMS 32010 in Subseetion 3.2 only two instructions 
provide computation of a product (16 x 16 bit) and its accumu­
lation (32 bit). This takes just 4OOns. 

In Table 3 a comparison is made between some microproces­
sors and a signal processor (Hanselmann and Loges, 1984; 
Hanselmann, 1986). The comparison is based on the implemen~ 
tation of a 9th order controner with only one input and one 
output. This controller arose in an industrial application with 
a very fast electromechanical positioning system. Since with 
general microprocessors the multiply operation mainly deter~ 
mines the execution time, an upper bound for the achievable 
sampling rate can be given based only on the total number of 
multiplications. This upper bound is given in the rightmost 
column. The controller had 33 non-zero and non~one 
coefficients, i.e. 33 (16 x 16)-bit multiply operations had to be 
performed per sampling interval. Since there are also additions 
and data transfer operations to be performed the sampling 
frequency actually achievable would be somewhat lower. A 
comparison of the estimate with actual experimental results was 
carried out on a filter (from Phillips and Nagle, 1984~ and on 
the controller on which Table 3 is based. The target was a 68000 
system running at 10 MHz, programmed in assembly language. 
Actual sampling rates turned out to be about 50% of the upper 
bound estimate in the filter case, where subroutines and loops 
were used, and about 70% in the controller case with fast 
subroutine~ and loop-less code. 

The same controller was also implemented on a TMS 32010 
signal processor and ran at 31 kHz sampling frequency. Thus 
the signal processor is an order of magnitude faster. Roughly 
the same applies to the other signal processors mentioned, and 
this compares quite well with the 17 kHz achieved in what seems 
to be a similar situation using an ADIO machine (Howe, 1982). 

3.4. Processors with special architecture related to control. The 
average control engineer still only has access to off-the-shelf 
processors such as general purpose microprocessors or signal 
processors. Custom processor design, however, is already begin­
uing to play.a part. In the general digital signal processing field 
there is much going on in that direction (Cappello, 1984). Since 
there are many relationships between general signal processing 
and control these efforts also have an impact on this field. 
Proposals for processor architectures directly related to control 

were made years ago by Tabak and Lipovsky (1980) and recently 
by Jaswa et al. (1985~ Proposals for processors using non­
standard arithmetic such as that given by Lang (1984) or 
Tan and McInnis (1982) should also be mentioned here; the 
arithmetic issue will however be discussed in Section 4. 

3.5. Interfacing to the plant. It is not the intention to go into 
the details of analog and digital interfacing techniques here, but 
there are some points which seem to be worth making. 

A typical analog-to-digital interface consists of an analog 
prefilter for each channe~ a multiplexer if an analog-to-digital 
converter (ADC) is to be shared among several inputs, a sarnple­
hold circuit, and the, ADC. The purpose of prefilters is to avoid 
aliasing due to spectral components of the input. signal above 
f.l2, where!. is the sampling frequency. Clearly such filters have 
to be chosen carefully in control applications, because generally 
the sharper the cutoff in the magnitude frequency response, the 
lower the phase introduced into the loop. FQ.r instance even a 
simple second order low pass (damping I/J2) designed to give 
a mere 20 dB attenuation atfJ2 still introduces about 25 degrees 
negative phase at 0.05/" where the crossover frequency mi~t 
be. Most often it will be necessary to include prefilter dynamICs 
in the control design (Astrom and Wittenmark, 1984). 

Measurement noise effects under variation of prefilter band~ 
width and sampling rate have been studied by Peled and Powell 
(1978). The results are also given in Franklin and Powell (1980). 
!tis shown that good noise attenuation at quite low sampling 
rates can be achieved with prefilter bandwidth only about twice 
the control bandwidth, provided that appropriate digital lead 
compensation is introduced to counteract the prefilter lag. 

The purpose of a sample-hold (SH) circuit in front of an ADC 
is to provide a constant input signal to the normal successive 
approximation ADC during conversion (Davies, 1985; Jaege~, 
1982). SH circuits in front of the multiplexer are necessary If 
simultaneous sampling of several channels is desired, sharing 
only a single ADC. It is always taken for granted that a 
successive approximation ADC must be preceded by a SH. 
Otherwise changes of the input signal during conversion may 
be reflected in the binary conversion result. This is considered 
to be erroneous since the value at the definite sampling time, 
i.e. at start-of-conversion time, is expected to be converted. To 
prevent such a change of the input signal, its amplitUde and/or 
frequency must be very low or a SH must be inserted (Jaeger, 
1982; Shoreys, 1982). In the control application it may however 
sometimes be reasonable to omit the SH, because in that case 
changes in the input signal occurring during conversion influence 
the conversion result so that it can be nearer to the input signal 
value at the end of the conversion than in the SH case. Thus 
reduced effective conversion delay can be expected. Experiments 
by the author showed delay reduction of a factor of up to ~. 
This factor is even higher if the acquisition time of the SH IS 

significant. The effective delay reduction is however dependent 
on signal amplitude and spectrum, so some dynamic non~ 
linearity is introduced. 

At the analog outputs of a controller there are commonly 
digital-to-analog convertors (DAC). Standard components are 
fast enough for conversion time to be neglected. But spectrum 
shaping may be of interest to smooth the staircase output 
signal or correspondingly .to remove the extra high frequency 
components introduced by the zero-order hold device. Analog 
reconstruction or low pass filters for that purpose are often used 
in general digital signal processing or signal generation. With 
control systems such output filters are introduced more reluc­
tantly, because of effects on system dynamics similar to those 
of prefilters. Reducing actuator wear as well as preventing 
excitation of high frequency structural modes in mechanical 
systems might however require output filtering. 

The last point to be discussed is the sequencing of inputs 
and outputs. In the usual "near-theory" case there will be 
simultaneous sampling and simultaneous output, possibly with 
delay between the two, but non-simultaneous sampling may 
be dictated hy processor hardware, or may be deliberately 
introduced to include the latest measurements in the compu­
tation. For example, numerical processing of channell input 
may take considerable time before channel 2 is involved. It 
might then be reasonable to delay sampling of the latter. The 
same applies if ADCs with quite different speeds are used. 
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Non·simultaneous output may also occur for similar reasons. 
Although such cases do not fit well to common control design 
software, they do exist, and should be considered, at least in 
simulation. 

4. Arithmetics and their implications 
Basically, there are several choices of arithmetic which could 

be used to implement a controller. The most well known are 
floating- and fixed-point binary arithmetic and they are the 
ones supported by standard processors. Fixed·point arithmetic 
is mainly used because of the high speed which can be achieved 
with relatively simple arithmetic units. In speed, space, or cost­
critical applications fixed-point arithmetic will most likely be 
chosen. In the following some main issues concerning fixed­
point arithmetic will be reviewed. Floating-point arithmetic 
will be discussed only briefly as well as some other possible 
candidates. Unfortunately, the chapters on arithmetic found in 
most texts on digital filters or digital control are quite rudimen­
tary. There are, however, some texts on computer arithmetic 
covering the material needed to understand the principles and 
problems of the mechanics of binary (and other types of) 
arithmetic, such as Flores (1963), Hwang (1979), Waser and 
Flynn (1982). Classical original papers on arithmetic as reprinted 
in Swartzlander (1980) are also quite instructive. 

4.1. Fixed-point arithmetic 

4.1.1. Basics. The usual fixed-point data formats in digital signal 
processing make use of two's complement representation. Here, 
the decimal value of a number is 

(23) 

where the bj.j = 0 •... ,1- 2 represent the binary digits, i.e. bits, 
b,_ t carries the sign infonnation, I is the total wordlength, and 
B determines the location of the binary point. Two special cases 
are B = 0, which means r is an integer, and B = 1- 1, which 
means r is a fractional number. With floating-point number 
representation B could be different for each number whereas 
with fixed-point numbers B is fixed throughout. 

The reason why the representation (23) is .called two's comp­
lement becomes obvious in the important case of fractions, 
where B = I - 1 and thus 

/-2 

r = -b/- 1 + L bj 21-,I-I). 
j:O 

(24) 

If r < 0 but the binary representation bit pattern of Irl is known, 
then the binary representation bit pattern of the positive two's 
complement number 2 - Irl yields the bi in (24) exactly, because 
2 - Irl - 2 = -Irl = r and subtracting 2 has the same effect as 
changing the weight of the b,_ t bit from + 1 to -1, as is done 
in (24). No bit is altered from the bit pattern representing 2 -Irl, 
only the interpretation as decimal value is affected by changing 
the weight of bI - t . A 4-bit fractional two's complement represen­
tation for example is 

0.875 0.111 

0.125 0.001 

o 0.000 

-0.125 1.111 

-I 1.000 

and for instance the bit pattern for -0.125 is that of the binary 
representation of2 - 0.125 = 1.875. The example also illustrates 
that the number range is unsymmetrical, i.e. 

-1.0 ~ r ~ 1.0 - 2-(/-1) (25) 

in the fraction case. An implication of this is that the product 

-1.0. -1.0 = + 1.0 (all decimal) can never be represented. In 
fact, processors usually yield the wrong result -1.0 in this case. 
In consideration of the dynamic range of data in connection 
with scaling (Section 6) the upper limit is simply approximated 
by 1.0 to simplify discussion. 

The main advantage of two's complement representation 
compared to other candidates lies in the simplicity of hardware 
for adding or subtracting (Shaw, 1950). No distinctions need to 
be made as to what the signs and magnitudes of operands are 
and a single adder unit plus a simple complementer circuit is 
sufficient to perform addition and subtraction. 

Another advantage is that a sequence of two's complement 
additions or subtractions, as encountered in the scalar product 
computation, always produces the correct result as long as this 
is in the number range. Intermediate overflows of partial sums 
thus do not matter and can be ignored. This nice property 
however is only useful if the result is indeed known to be in the 
number range. Where it is not, it is even impossible to detect 
this and to supply a maximum or minimum value. Sometimes 
arithmetic units have an extended accumulator to accomorlate 
overflowing bits up to the moment where the result is going to 
be stored away. Then a check can be made on whether the 
result is valid or should be replaced by max or min values. 

Although multiplication of two's complement numbers may 
seem complicated at first due to the negative weight of h,- l , it 
can be carried out quite easily, for instance by performing 
appropriate sign extensions on negative number representations, 
or using Booth's algorithm or modifications of it (Booth, 1951; 
MacSorley, 1961; Rubinfield, 1975; Cappellini). These algorithms 
work for any combination of signs of the factors and at the 
same time speed is gained as compared to the simple "shift and 
add" technique. They are incorporated for instance within the 
hardware multipliers of signal processors. 

The basic idea behind such algorithms is based on the 
observation that a string of ones in a binary number could be 
replaced by only two non-zero digits, ifnegative weights (denoted 
by bar) are allowed, for example 

0111011110 ~ 01111000To ~ lOOOTOOOTO. (26) 

Thus if the leftmost binary pattern represents a factor in a 
multiplication, the right-hand side of (26) shows that the product 
can be computed with one addition.and two subtractions, along 
with appropriate shifts. This compares to seven additions with 
shifts necessary originally. See for instance Peled and Liu (1976) 
for a short but instructive discussion. Translation of a binary 
number into this so-called canonical signed digit code (CSD) 
can easily be mechanized in an iterative process. 

Multiplication based on CSD code has also found a number 
of applications in signal processors, which execute the shifts 
and adds or subs under program control, saving a hardware 
multiplier. A well-known chip of this kind was the now outdated 
Intel 2920 signal processor, (Hanselmann, 1982) but it is not the 
only one. In the design of chip area-effective custom signal­
processing devices this kind of multiplication aroused (for 
instance Schmidt, 1978) and still arouses interest (Gaszi and 
Giilliioglu, 1983; Steinlechner et al., 1983; Pope et al., 1984). 

The product of two I-bit numbers is a (21-1)-bit number. This 
is because there is a sign bit in each factor, but the product 
needs only one. It is important to understand that a multiplier 
device is not usuaUy concerned with the binary point location. 
It can multiply integers as well as fractions because the interpret­
ation of the bit pattern of a number representation only takes 
place when the (21-I)-bit product is stored away, see Fig. 6 for 
a 16-bit example. Here a 32-bit product register or accumulator 
is assumed, and the product bit pattern is right justified. So if 
the factor bit patterns were meant to represent integers, the 
result (assuming it should be 16 bits long) would be found in 
the lower (right) half of the register. If the factors were however 
meant to represent fractional numbers the result would be found 
in bits 15 through 30. Note that with some processors the output 
oftbe multiplier is aligned differently by hardware: to be specific, 
a fraction result could be left justified so that the store operation 
does not overlap into the lower half of the 21-bit accumulator. 
Note also that rounding could be performed before storing the 
truncated 16-bit result away by adding, prior to storing, a 1 
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FIG. 6. Fixed·point arithmetic product. 

into the most significant of the bits which will be discarded. i,e. 
into bit 14 in Fig. 6 in the fractional case. 

The reason for preferring fractions in digital signal processing 
or control is that products, or accumulated products with scalar 
product computation, can easily be cut down to the size of the 
factors for storage and further processing by dropping the least 
significant I-I bits. Fractional fixed-point arithmetic thus trades 
precision for number growth. Integer arithmetic on the other 
hand would not allow for this. It is always exact but at the price 
of excessive risk of overflow. Overflow of course can also happen 
with fractional arithmetic in add or subtract operations, but not 
with multiplication. Sometimes implementors of digital filters 
or controUers claim to use "integer arithmetic", A closer look 
however shows that indeed processor instructions for integer 
arithmetic are used, but there is "scaling", "shifting" and the 
like. In fact, fraction arithmetic or something close to it is 
actually performed. 

4.1.2. Overflow. Because of the limited number range with usual 
wordlength, say 16 bits, care must be taken that data, for 
instance controller states, and coefficients fit well into this range. 
Numbers should not exceed the range, but at the same time 
should not be so small that the quantization has undesirable 
effects. Controller scaling and rea1ization structure selection are 
the major means to achieve this, These are considered in Sections 
5 and 6. 

In the case of scalar product computation, which is the 
basic operation with the controller equations, the partial sum 
overflows can be ignored with two's complement arithmetic, as 
mentioned abOve. provided the final result is guaranteed to be 
in range, but there may be quantities to be computed during 
evaluation of the controller equations which cannot be guaran­
teed never to overflow, so there may be results not guaranteed 
to be in range. This is very likely the case for controUer outputs, 
i.e. actuating signals, but may also apply to state variables. 

Two's complement arithmetic then suffers from "wrap~ 
around". For instance adding binary 0.010 (0.25 decimal) and 
0.110 (0.75 decimal) yields binary 1.000, which would erroneously 
be interpreted as -1 decimal in two's complement fractional 
arithmetic, whereas the saturated binary value 0.111 (4-bit 
arithmetic assumed) would be preferable. This means that the 
desired saturation (Fig. 7) must be provided by code (Loges, 
1985). 

Signal processors sometimes incorporate optional saturation 
hardware intended for such cases, but the problem is that 
intermediate results, i.e, partial sums, are better not saturated 
because this would destroy an otherwise possibly non~overflow­
ing result. The decision about whether the final result is in 
overflow and with which sign can only be made if there are 
enough spare bits in tbe accumulator to the left of the leftmost 
bit oftbe result to be stored away (Fig. 6). Perhaps the processor's 
accumulator provides a few bits for this purpose, but they may 
be too few for long scalar products, or the processor provides 
none at all, Overflow processing then requires computation of 
a downscaled scalar product which does not overflow, and a 
rescaling operation preceded by overtlow checking, i.e. first 
a':= c'TX is computed .instead of a:= cTx, with C'T = 2-PcT, 
P '" 1. Then the content of the accumulator (a') is either left 

-I 

overflowed 
number 
value 
I 

(u) 
wrap around of overflowlTlg 
lwo's complement numl'cr 

Ib) 

number 
va!tH' 
WlthOLlL 
ov('rnOW 

suturatlon O\('rl1ow 

FIG, 7. Arithmetic overflow (with fractional numQers). 

shifted p positions under saturation. if the processor provides 
for this at enough speed, or the result is read out of the 
accumulator displaced by p bits, see Fig. 8 for an example. Both 
operations are. equivalent to multiplying a' by 2', correcting for 
the downscaling of CT. 

4.1.3. Signal quantization. As discussed above. products are of 
almost double length and thus must usually be cuI down to the 
size ofthe factors. If the processor's accumulator is double length, 
which is quite often the case, the products 8re accumulated in 
futl length and the truncate or round operation is performed 
only with the final result. In any case truncation or rounding 
introduces a quantization error into the computations. Note 
that additions and subtractions are exact as long as there are 
no overflow problems. 

Discussion of the influence of the quantization error was 
always an issue in the digital filter field, and can be found in 
most textbooks (for instance Oppenheim and Schafer, 1975), 
but there were also early papers in the control field (Bertram. 
1958; Slaughter, 1964; Johnson, 1965, 1966; Knowles and 
Edwards, 1965a, 1965b, 1966; Lack, 1966; Curry, 1967), and the 
issue is now also to some extent dealt with in digital control 
textbooks, particularly in Katz (1981), Franklin and Powell 
(1980), and Jacquol (1981). Quantization (of variables or signals; 
for coefficients see Section 5) introduces three effects: bias, noise, 
and limit cycles. Bias is introduced with truncation, because in 
two's complement trunc (x) < x for x positive as well as negative. 
It is better to use rounding, which is quite easily achieved, as 
mentioned ahove. 

4.1.3.1. Noise model. The noise model of quantization is 
widely used and replaces the quantizer by a purely Hnear gain 
block foHowed by an injection of an additive white noise 
sequence, uncorrelated with the input. Two's complement arith­
metic with truncation or rounding is assumed here. otherwise 
there could be correlation (Claasen er al., 1975). If the quantiz­
ation step is described by q, which is equal to 2 -B according to 
(23), then the noise statistics are taken as follows: 

variance 
mean 

, 

(1' =q'/12 
1'= -q/2 
1'=0 
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FIG. 8. ,Scalar product scaling example (fractional numbers, 
p = 3, TMS 32010 processor). 
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The expressions for (12 and jJ foHow from the assumption of 
uniform quantization error distribution in the q interval. As has 
been shown by Widrow (1956, 1961), Katzenelson (1962~ Sripad 
and Snyder (1977). and Boite (1983), this assumption is valid 
under some conditions, particularly if the amplitudes of the 
signal to be quantized are not too low. A Gaussian signal, for 
instance, with variance a few times greater than q2/12 already 
renders the model very Dear to what has been evaluated 
analytically and experimentally. 

This classical noise model is, however, based on the assump­
tion of a continuous amplitude input to the quantizef. This is 
the situation of AD-converter quantization, but within the 
digital computations the quantizer input is not continuous. In 
fact, with the rounding of product of a coefficient and a variable 
(state variable for instance) which is already quantized, the 
model predicts noise variance less accurately (Halyo and McAl­
pine, 1971; Sjoding, 1973; Eckhardt, 1975; Boite, 1983). Then 
there are pecularities leading to coefficient-dependent noise 
variance, and additionally correlation of error and signal may 
become significant even with larger signal amplitudes (Barnes 
et al., 1985). 

The noise model of quantization can easily be exploited to 
compute the total noise contribution to every variable of interest 
within a control system using standard covariance computation 
techniques for linear systems (Franklin and Powell, 1 t'~O; 
Moroney et at, 1983). Transfer function-based variance con~··,u­
tation is also possible, for instance via the simplified methods 
given by Patney and Dutta Roy (1980) and Mitra et al. (1974). 

4.1.3.2. Limit cycles. Of course, the noise model of quantiz­
ation is only an approximation. If signal variations are small 
compared to q, such as near the steady state of a control system, 
the non-linear nature of quantization shows up. The result may 
be limit cycles. Limit cycles observed in practical control systems 
are often due to the quantization of AD- and DA-conversion, 
but may as easily be caused by arithmetic. Since there are many 
quaotizers at the same time, analysis of limit cycles in a closed 
loop control system is difficult. Much has been published on 
limit cycles in digital filters operated open loop, but the results 
are of little significance io a closed loop control system. This 
has been clearly pointed out by Moroney (1983), who gives a 
comprehensive discussion of the approaches in the digital filter 
field and their relevance to control. 

Some discussion of limit cycle existence for SISO systems and 
some techniques for bounding their amplitudes (whether they 
exist or not) are also given by Ahmed and Belanger (l984b). 
The basic idea of such bounding techniques is to exploit the 
boundedness of the quantization errors and to check which 
signal amplitudes can be generated from those error sources. 
Absolute (Long and Trick, 1983) as well as rmg (Sandberg and 
Kaiser, 1972) bounds, partly exploiting the periodicity ofa limit 
cycle. have been derived for filters, and have been used for 
control by Ahmed and Belanger (1984b). They also demonstrate 
that for low external input (reference or disturbance) signal 
amplitudes limit cycles may be dominant in the output, but for 
increasing amplitudes the noise model of quantization comes 
into play and limit cycles may be quenched off, resulting in less 
output noise than for low input signal amplitudes. 

The value of the available techniques for limit cycle bounding 
for higher order multi variable control systems seems however 
to be limited. Since they have to be carried out numerically for 
given parameters, it is probably more attractive to check the 
effects directly via simulation in practice, taking into account 
realistic input signals. Note that even slight measurement noise 
may already quench off limit cyc1es in the critical "steady state" 
situation. This is the same effect which sometimes leads to the 
deliberate introduction of dither signals in non-linear systems. 
On the same lines is the technique of random rounding known 
from digital filters (Callahan, 1976; Buttner, 1977). 

4.1.3.3. Double precision arithmetic and error feedback. In Fig. 
6 it has been assumed that accumulation in scalar products is 
carried out with the full length. partial products. Quantization 
occurs only when the result is stored away and (assuming 
fractionals) the least significant bits are discarded. To compen­
sate somewhat for the discarded residues thus produced they 
could be stored too, and inc1uded in some simple way in 

the next sample computation. This technique, called "error 
feedback", plays some part in the digital filter field (a recent 
paper is by Vaidyanathan, 1985), and has also recently been 
proposed for Kalman filter implementation by Williamson 
(1985). Such techniques are however not far away from perfor­
ming double precision arithmetic (on signals, not coefficients), 
as has been pointed out by Mullis and Roberts (1982). 

A special technique for performing almost double precision 
scalar product computation in an efficient way has been 
described by Loges (1985) for a signal processor. Even if both 
coefficients and signals are desired to have extended precision 
this technique leads only to a four-fold increase in processing 
timc. This is quite good because doing anything other than 
performing the arithmetic the processor is designed for (16-bit 
in this case) is difficult and normally costs a lot cif instructions. 

4.2. Floating-point arithmetic. If standard wordlength floati­
ng-point arithmetic can be used, there is usually no reason to 
worry about accuracy and dynamic range, provided that the 
numerical values of data are in a reasonable range and compu­
tation of small differences of large numbers is taken care of. The 
usual single precision format (standard IEEE 754) consists of 
the mantissa's sign bit, an 8-bit biased exponent e, and 23 
mantissa bits for the fraction f The decimal value is given by 

(-I)'· [2'-"'] ·(1 + f). (28) 

The dynamic range spans 2- 126 ~ 10- 38 up to 2+ 128 ~ 3.1038, 

and the accuracy according to 2- 23 as value of the least 
significant bit in f corresponds to about seven decimal places. 

If much shorter wordlength floating-point fonnats were used 
it might however be necessary to introduce scaling to keep data 
in the dynamic range, as discussed in Section 6, and quantization 
effects might become significant. Note that a fundamental 
difference from fixed-point quantization is that there the error 
is an absolute one, i.e. the noise model may assume noise 
injection to be independent of the signals, but with floating~ 
point arithmetic the error is a relative one, dependent on the 
signal amplitude. 

Studies of quantization errors for floating-point arithmetic 
operations and the resulting signal to noise ratio decrease effects 
in digital filters go back to the end of the sixties (Sandberg, 
1967; Weinstein and Oppenheim, 1969; Liu and Kaneko, 1969; 
Kaneko and Liu, 1973; Fettweis, 1974). There are also studies 
concerning digital control. Rink and Chong (1979a) derived an 
upper bound for the variances of the plant state in a state 
feedback plus observer regulator control system in a stochastic 
setting. The bound can be quite loose, however. More accurate 
analysis is possible by computing covariances directly (Rink 
and Chong, I 979b). Van Wingerden and de Koning (1984) 
studied the increase of the cost function due to roundoff noise 
from mantissa rounding when an LQG state feedback is 
implemented using floating-point arithmetic. Some examples 
indicate good agreement between roundoff analysis and simul­
ation. Emphasis is placed on derivation of approximate 
expressions for means and variances of errors in floating­
point addition and multiplication by improved modelling of 
quantization. Phillips (1980) proposed a simulation scheme for 
evaluating the variance of the error between a control system 
output in the infinite and finite wordlength cases under the 
assumption of a deterministic input (reference or disturbance). 
This approach is however not far away from dispensing with 
analysis and checking for wordlength directly with simulation. 
Generally, the value of existing roundoff analysis for practical 
purposes seems limited. Results can perhaps more easily and 
more significantly be found by simulation, which is also more 
easily adaptable to complicated situations, for example if differ­
ent wordlengths are to be used at different points in a controller: 

4.3. Non-standard arithmetic. Apart from the common fixed­
and floating-point binary data formats and arithmetic, there are 
at least two other candidates, logarithmic and residue arithmetic. 

157 



158 

Survey Paper 

Logarithmic number representation might seem to be particu­
larly well suited to control. Let the value to he represented he 
v, and fractional numher range he assumed, i.e. Ivl < I, then '" 
in 

v' = v + Av = sign(v)' D',O < D < I (29) 

could be stored as a conventional binary number in the 
processor, representing v' which is the quantized version of v, 
with .&V as quantization error. Practical values of D would be 
close to 1. The interesting property of this representation is that 
the quantized values are unevenly spaced. With fixed-point 
numbers. spacing is equal and quantization error is absolute. 
With logarithmic number representation closest spacing is 
achieved in the low magnitude range. If control system trajecto­
ries for large state transitions are not required to be very close 
to the intinite precision ones, the higher quantization errors 
resulting from large signal magnitudes may be tolerable. If in 
steady state operation the signals (controller states, outputs, 
partial sums) are of low magnitude, the increased resolution in 
that range may be beneficial, leading to lower quantization 
noise or less limit cycle amplitude. Interfaces to the plant should 
however also be logarithmic. This is non-standard but possible 
for AD- as well as DA-conversion, for instance via switched 
attenuator networks. The arithmetic computations inside a 
logarithmic number processor are obviously simple in the case 
of multiplication. Addition and subtraction require logarithm 
computation but this .can he replaced by table lookup (Kings­
bury and Rayner, 1971; Swartzlander and Alexopoulos, 1975; 
Etzel, 1983; Frey and Taylor, 1985). 

The use of logarithmic number representation for digital 
filtering has heen proposed by Hall et al. (1970) and Kingsbury 
and Rayner (1971), preceded by yet earlier proposals motivated 
by construction of calculators, and has been discussed in several 
papers since then. The digital control application has already 
heen mentioned in Lee and Edgar (1977) and Edgar and Lee 
(1979). They proposed a numher system with an integer and a 
fractional part. The representation corresponding to (29) has 
recently been proposed as a basis for a special-purpose control 
processor by Lang (1984). 

For control there seem to be two main problems. The first is 
that the controUer coefficients are not likely to be of low 
magnitude, thus they are quantized relatively coarsely and 
possibly this is detrimental to the control system's behaviour. 
The second is that with practical control systems pure logarith­
mic signal representation will frequently be simply inadequate. 
Imagine, for instance, a position control system involving high 
resolution shaft encoders., where the position values are reqUited 
to be represented with equal absolute accuracy over the entire 
range. The assumption that near steady-state operation leads 
to near~zero signals wiU often be unjustified, for instance 
when measurement signals are to be processed or preprocessed 
separately from reference signals, instead of taking differences 
first. 

The last number system to be mentioned here is the residue 
numher system (Waser and Flynn, 1982). It was proposed long 
ago for arithmetic unit construction and digital tiltering. It also 
showed up in control-related. publications (Tan and McInnis, 
1982; Pei and Ho, 1984). The main advantage is that very fast 
computation is possible because operations are on digits instead 
of whole numbers. There are no carries, possibly propagating 
through all digits, thus slowing down the hardware. A high 
degree of parallelism is possible in principle. It may well be that 
residue arithmetic will gain ground in special purpose processor 
designs. 

5. Structures 

5.1. Basic issues. Frequently, a state space description of a 
controller or controller subsystem is derived in a manner 
motivated by design theory. An example is the observer/state 
feedback controller (I), (2), where the state has a physical 
meaning (assuming that the plant state had one) and correspond. 
ing matrices are involved. If it is not necessary to preserve the 
state meaning, but achieving the desired closed-loop control is 
the only objective, then any system with equivalent i/o behaviour 
from input to output will do the job. There may he i/o equivalent 

bo 

FIG. 9. A direct structure. 

systems which are preferable to the original one in the following 
respects: 

number of storage elements; 
number of non-zero non-one coefficients; 
computational delay; 
multi-input/output capability; 

" state space description possible or not; 
coefficient range; 
coefficient sensitivity; 
round/truncate noise. 
If transfer functions are the starting point there may be 

seemingly natural choices for obtaining programmable differ­
ence equations, such as (13) for (12), but other i/o equivalent 
equations may be preferable. Traditionally. specitic organiz­
ations of the difference equation computation are depicted in 
block diagrams involving the Z-1 or delay element, as in Fig. 
9, so that the structure becomes visible. The term "structure" 
(or synonymous "form") is also used generalJy. for instance when 
one state-space description (6) is transformed into another by a 
similarity transformation 

A= rlAT 

B= T-1B 

C=CT 

(30) 

yielding new matrices with different zero/non-zero entry pat· 
terns. or at least new numerical values. 

Determination of "good" structures has always been a main 
issue in digital tiltering. It seems to be quite reasonable to adopt 
for control purposes structures which proved to be useful in 
this field. However, some aspects are usually not addressed in 
digital filtering, namely computational delay, MIMO capability, 
and the influence of the closed.loop operation. In the following 
some basic structures are discussed without taking the closed 
control loop into account; work on this is reviewed in the 
penultimate subsection. AU discussions are on system (6). 

5.1.1. Direct structures. The simplest case to consider is realiz­
ation of a SISO transfer function G(z) from (12). In (13) a 
corresponding structure is given in terms of its difference 
equation. This structure belongs to the class of so-called direct 
forms or structures because the polynomials appear directly as 
coefficients in the difference equation or block diagram. As given 
in (13), n + m delay or storago elements would he needed, but 
this can be remedied. Various direct structures can be derived. 
and a few of these at least can be found in any textbook on 
digital filtering ,or control, for instance in PhiUips and Nagle 
(1984), Oppenheim and Schafer (1975). In Fig. 9 one of the direct 
structures is shown, assuming m = n for convenience. This 
structure can easily be extended to the MISO case. 

It is well known that direct structures suffer from various 
drawbacks. First, the coefficients can easily be spread over a 
large number range, causing problems with number represen­
tation and arithmetic. This is because, according to Vieta's 
theorem, sums, products, and sums of products of polyriomial 
roots form the coefficients, and roots can be anywhere from the 
origin even to outside the unit circle in the z-plane· with 
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controllers. This is sc;>mewhat in contrast to digital filters, where 
poles and zeros are usually positioned well off the origin. Second, 
the sensitivity of roots or coefficient errors can be up to infinity. 
Such errors are introduced by the quantizing of coefficients to 
represent them in the processor. If ;.v denotes a root of IUkf 

p(z) = z" + P,,-lZ,,-1 + ... + Po (31) 

and Pi is perturbed by APi, then Av is shifted by &).v and .1.iv is 
given (to first order, denoted by "') by 

A}·v == -" ).~ APi' (32) 

2: [i., - i.;J 
{~! 

which clearly indicates high root sensitivity for clustered roots 
(Kaiser, 1966; Oppenheim and Schafer. (975). 

The situation becomes particularly bad when unclustered 
"slow eigenvalues" in the s-plane generate clusters near 1 in the 
z-plane. There is some remedy to this case by means of "delay 
replacement" (Agarwal and Burrus, 1975; Nishimura et ai., 1981; 
Orlandi and Martinelli, 1984; Goodwin, 1'185; Middleton and 
Goodwin, 1985). One version of this is to replace the z- 1 blocks 
by so-called Ii -I blocks. A Ii - I block realizes the z-transfer 
function TI(z-l) and thus represents a discrete integrator. 
Implementing a b-1-block requires the operation 

(33) 

(. output variable, P input variable of the /i-I-block), instead 
of the Z-l shift operation. A z-transfer function then transforms 
into a b-transfer function, which can be realized using any 
suitable structure known for z-transfer functions, but now 
involving b-1-blocks instead of z-I-blocks. The advantage over 
the z-!-block based realization is that the corresponding z­
poles can be orders of magnitude less sensitive to errors in b­
polynomial coefficients, just in the case of pole clusters near 
z = 1 as introduced with relatively fast sampling. 

The first order root sensitivity of (32) is not always of great 
importance, but sensitivities of impulse response (Knowles 
and Olcayto, (968) and frequency response (Crochiere and 
Oppenheim, (975) are high as well with direct structures. 
Another related drawback is potentially high gain sensitivity. 
Assuming a stable transfer function G(z) with notation of (12) 
for simplicity. the final value of the output after a unit step 
input is 

fbi 
yk!k .... OC=~. 

1 + 2: ai, 
i=! 

(34) 

A direct structure, directly involving the quantized versions of 
hi and ai' is now likely to introduce inaccurate small differences 
of large numbers in (34), because the coefficients are frequently 
of large absolute value with alternating signs. Finally, direct 
structures suffer from particularly high signaJ quantization noise, 
which relates to high coefficient sensitivity (Feitweis, 1972,1973; 
Jackson, 1976). The conclusion drawn from aU this is to 
recommend direct structures only for low order systems or 
subsections of higher order systems, and to use them with care. 

5.1.2. Cascade structure. A more reliable SISO structure, which 
is well accepted in digital filtering, is the cascade structure, 
where G(z) is implemented in factorized form as a series 
connection of low order blocks, usually of first or second order 
(Oppenheim and Schafer, (975), see Fig. 10 for an example. This 
structure offers possibilities of optimal distribution of poles and 
zeros among the blocks, and internal block structures can be 
chosen optimaJly. However, there are drawbacks for control 
application. First, the structure introduces increased comput­
ational delay in the common case of G(z) having direct 
feedthrough, i.e. bo I< 0 in (12). This is because output appears 
only after computation in every block is finished, unless direct 
feedthrough is bypassed directly from input to output, which 

FIG. 10. Cascade structure example. 

means departing from pure cascade structure. The second 
drawback is that this structure is limited to the SISO case, so 
that it may be valuable for SISO subsystems in a complex 
structured controller, but not for a complete MIMO controller. 

5.1.3. Parallel structure. A structure which is widely regarded 
to be as.good a candidate as the cascade structure is the parallel 
structure (Jackson, J970b). It corresponds to implementing G(z) 
in a partial fraction expansion form (Gold and Rader, 1969). 
The partial fraction blocks are commonly chosen to be of first 
and second order and can be implemented by suitable structures. 
Special cases of the paraJlel form have received much attention 
in digital filtering as being suboptimal in some respect to certain 
optimal structures, as discussed below (Jackson et al., 1979; 
Mullis and Roberts, (976). An advantage of parallel structures 
is that they can be used in MIMO cases. 

5.1,4. Other structures. The above discussion does not cover all 
types of structure. There are several additional structures of 
practical importance known in digital filtering, such as wave 
digital filters or ladder structures. For an overview and bibli­
ography see the recent paper of Fettweis (1984). However. such 
structures have not yet appeared in control applications. 

5.1.5. Relevance of non-state-space structures. That a structure 
can be described by standard state-space models might be taken 
for granted by control engineers who are used to thinking in 
state-space terms, but there are many structures which cannot 
be represented by a single standard state-space model (Willsky, 
19.79; Moroney, 1983). This is because a state-space structure 
places restrictions on what nodes ~ay be present. Take the 
cascade structure of Fig. 10 for example, where signal v occurs 
at a node not accounted for in a state-space model. If the 
cascade structure is restructured to map into a state-space 
structure, such as in Katz (1981), other coefficients are involved 
and intermediate signals are no longer represented. This is 
only irrelevant under infinite precision arithmetic. A useful 
description solving this representation problem is discussed in 
the last subsection. 

5.2. State-space structures. Given a state-space description (6) 
(treatment of types other than (6) is obvious), an infinite number 
of structures can be derived via similarity transformation (30). 
The control engineer may be tempted to pick well-known 
canonical forms first, such as a control canonical form. This and 
related forms, however, involve transfer-function polynomial 
coefficients more or less directly and thus suffer from the 
problems discussed above. The only real advantage of such 
structures is their minimum coefficient count. For lower order 
systems or subsystems, they may be used in general without 
problems, although the author has encountered practical appli­
cations where canonical forms of only third order caused 
accuracy problems even with 32-bit floating-point arithmetic. 

More promising for higher order controllers are the parallel 
structures. A typical one has a block diagonal A 
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with (2,2) silbmatrices Aj accomI11odating complex eigenvalues, 
and n, C possibly non~zero everywhere. This or related. structures 
play an important role in digital filtering. It is a special case of 
that devised by Mullis and Roberts (1976) with special Aj as 
suboptimal quantization noise structure. The latter leads to 
dense A. requiririg much computational effort, and has thus 
been considered unattractive. Several authors took the block· 
optimal structure as a starting point and then focussed on the 
second order structures, i.e. on the A j and the associated parts 
of Band C (Jackson et a1., 1979, Barnes, 1979, 1984; Mills er 
a1., 1981; Bomar, (985). The second order substructure also 
attracted authors because results on overflow stability and limit 
cycles could be derived (Mills er a1., 1978; Jackson, 1979). 

Various structures can be chosen for the second order 
subsystems which accomodate complex eigenvalues (1 ± jw and 
the selection may be guided by the sensitivity, qU811tization 
noise, or limit cycling considerations discussed in the literature 
quoted above. The coefficient number range and the number of 
coefficients contributing to the computation time may also 
influence the decision. If, for instance, the number of non~zero 
non~unity coefficients is to be minimized, control canonical or 
observer canonical forms may be of interest, e.g. 

Aj~[~ -U~;W2] (36) 

i'j~(O,I) 

for a MISO controller. Another choice is 

A~[ u w] 
J -w (J 

(37) 

with no special pattern in Bj , C!, The resulting matrix A is well 
known in control~related algebra as a real valued version of the 
diagonal form. Stable controllers always have lui < 1,Iwi < I, thus 
Aj is wen suited to fractional arithmetic. Transformation of any 
state~space model of the controUer into the real diagonal form 
(35), (37) can easily be achieved using standard EISPACK 
software, provided the eigenvectors of A are sufficiently linearly 
independent in a numerical sense. A successful transformation 
using CAD software does not however guarantee that the 
resulting state·space model can be implemented with sufficient 
accuracy with shorter wordJength arithmetic on the target 
processor. Problems with large numbers in Band C can be 
expected. They correspond to large residues in a partial fraction 
expansion of the transfer functions, where contributions of terms 
are likely to almost cancel, thus producing large errors. The 
author encountered a case in a practical application where three 
real eigenvalues spaced 5% from each other caused such 
accuracy problems even with 24~bit mantissa ftoating~point 

arithmetic. 
The same problems may occur with any attempt to force a 

model into any parallel structure in Cases where there are 
clustered eigenvalues requiring a series connection represen· 
tation instead of a parallel one. The obvious way to treat such 
cases is to introduce parallel blocks of higher order with 
appropriate internal structure. C1ustered eigenvalues could then 
be accommodated within a lordan block or a companion form 
block. But this should not simply be done after the observation 
of eigenvalue clusters without checking the residues, because 
clusters with inherent parallel block structure also occur. 
Additionally, it is with clustered eigenvalues that companion 
forms suffer from high eigenvalue sensitivity. The problems just 
mentioned h~ve astonishing)y not been an issue in digital 
filtering. The Jordan form played some part in Barnes and Fam 
(1977) but not with respect to the residue problems mentioned. 

Particular types of state~space structures which have received 
a lot of attention are the minimum roundoff-noise structures 
proposed by Mullis and Roberts (1976) and Hwang (1977). They 
minimize signal quantization noise arising from the state update 
computation in (6) while retaining scaling of the state vector. 
Scaling is performed in such a way that the overHow probability 
is made equal for every state variable assuming a white noise 
input signal. The reasoning behind the optimal minimum 
roundoff realization is based on the derivation of a lower bound 

on the variance of the output noise generated by roundoff in 
the state vector computation. A lower bound exists because the 
scaling constraint has to be met. Attaining the lower bound is 
possible. and a corresponding transformation matrix T can be 
constructed. 

The optimal realizations suffer however from the fact that A 
generally has no specific structure. All coefficients can be 
non-zero and non·unity. This has always been considered 
unattractive. But with a digital signal processor as a target the 
computation of long scalar products is not so time consuming 
in relation to other operations such as overflow management. 
If for example an optimal realization enabled single-word 
arithmetic to be used, whereas a structure with sparse A 
demanded multi-word arithmetic, the former might lead to 
the faster solution. Considering optimal structures in control 
applications thus seems worthwhile. Moroney (1983) adapted 
the theory to closed-loop operation, but focussed on the block· 
optimal case. From his numerical example, as well as from open­
loop filter examples by Jackson er .1. (1979), there is some 
indication that non~optimal parallel structures with second 
order blocks perform quite closely to corresponding block­
optimal ones. 

5.3. Closed~/oop considerations. It is quite useful to have a 
collection of "known-to·be-good" structures and guidelines from 
which to select under given conditions. In most c!lses such a 
selection without closed·loop optimization will be sufficient. 
Given a 16-bit target processor, for instance. it does not matter 
much whether the minimum wordlength necessary to achieve 
satisfactory closed-loop operation is 8~ or lO .. bit, because 16·bit 
will be the increment. The situation changes, however, at the 
boundary, and in cases where wordlength is not fixed. as in 
custom VLSI processor design. Methods of structure selection 
or optimization considering the closed~loop operation, which 
optimize with respect to roundoff noise from signal quantization 
as well as with respect to coefficient quantization effects, should 
be useful in such cases. These issues have been studied by 
Moroney (1983). Moroney et al. (1980, (983), and Sasahara er 
al. (1984). All assume a stochastic setting in an LQG context. 

As mentioned above, Moroney el al. adapted the theory of 
Mullis, Roberts and Hwang to the closed-loop SISO case 
and additionally devised an iterative structure optimization 
technique for minimizing roundoff noise, which could be aug­
mented to extend optimization to coefficient wordJength effects. 
The objective is to minimize the increase of an LQG cost 
function. The influence of coefficient wordlength is introduced 
via a statistical wordlength technique. The idea of statistical 
wordlength estimation'is already found in Knowles and 01cayto 
(1968) and was later used by Avenhaus (1972) and Crochiere 
(1975), who estimated filter frequency response errors by 
assuming coefficient quantization errors to be independent 
random variables, leading to a variance estimate on frequency 
response. This is not as pessimistic as the equally possible worst· 
case bound, which is based on the assumption that individual 
coefficient errors are maximum in absolute value with signs 
opposed to the corresponding sensitivity of the response to the 
coefficient. But Crochiere's examples show that the statistical 
estimate is likely to be still somewhat pessimistic. 

The statistical wordlength concept has been applied by 
Moroney( 1983) to estimation of LQG cost function degradation. 
Second order sensitivities are involved because first order 
sensitivities are zero owing to LQG design. The structure 
optimization technique of Moroney allows for constraints in 
the structure, so the matrices of the controller description can 
be kept sparse, if so wished. Furthermore, the, class of structures 
considered is wide, because everything is done for a generalized 
state-space structure discussed in the next subsection. 

Sasahara et al. (1984) also minimize cost function degradation 
(for digital filters see also Kawamata and Higuchi, 1985). They 
derive a transformation matrix Tfor a Kalman filter, plus state 
feedback controller, which minimizes degradation due to signal 
quantization noise. So far this is also an adaptation of the 
Mullis, Roberts and Hwang theory to closed-loop control. From 
statistical modeHing of coefficient quantization errors they 
then conclude that this approximately minimizes coefficient 
Quantization degradation too. This conclusion is in line with 
results from digital filtering (Fettweis, 1973; Jackson, 1976; 
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Jackson et al., 1979; Antoniou et al., 1983) also showing close 
relationships between minimal noise and minimal sensitivity. 
An example given by Sasahar8 et al. shows large improvements 
in cost function degradation using the optimized structure 
compared to a direct form. and improvement on an unfortu­
nately not specified canonical form is also considerable. Agree­
ment between analysis and simulation appears to be very good 
for roundoff noise. but less so for coefficient quantization. 

Since LQG cost function degradation is not always a suitable 
objective in practical applications, other means of analysis and 
optimization should also be developed. Quite effective tools 
could probably be derived from closed-loop eigenvalue sensi­
tivity analysis. Closed loop frequency response sensitivity might 
also be interesting, possibly exploiting non-approximate large­
change sensitivity expressions as discussed for digital filters by 
Jain et a/. (1985). 

5.4. Serialism. As mentioned in Subsection 5.1.4, the cascade 
structure of Fig. 10 cannot be described as a standard state­
space model. Obviously, variable v between the first order blocks 
cannot be represented because it is neither a state nor an output 
and these are the only variables, i.e. network nodes, available 
in state-space formulation. 

From another viewpoint, the example possesses serialism, 
whereas in a state-space structure aU state vector components 
could be updated in parallel from the "old" state and the input 
vector. In order to describe more general structures (the cascade 
is only one example), it is necessary to account for precedence. 

Crochiere and Oppenheim (1975) distinguish node precedence 
from multiplier precedence. In the structure of Fig. 10 there are 
two node precedence levels: first node signal v" must be com­
puted. then y". There are also two multiplier precedence levels: 
multiplications involving ao. bo, b l , ai' b2 for instance could be 
performed in parallel first, but multiplication with b, has to 
await computation of Vi' However, the number of multiplier and 
node precedence levels is not always the same. The motivation for 
considering multiplier precedence lies in the dominance of 
multiply execution time frequently encountered. The number of 
multiplier precedence levels of a structure then determines the 
minimum sampling period achievable assuming that as many 
multiplies as possible are carried out in parallel using multiple 
arithmetic units. 

This issue may be of importance in special purpose processor 
design, but precedence also has important implications in the 
usual single processing unit case. One implication is that 
minimum achievable computational delay in the case of direct 
feed through is dependent on precedence. another is that struc­
tures with precedence might be preferable with respect to finite 
wordlength effects. In this case it is necessary to have a 
description of the structure representing the original coefficients 
and the original node signals. Such a description has been 
introduced to the control field by Moroney (1983) and Moroney 
et al. (1980,1981,1983). It had previously been used with digital 
filters by Chan (1978), and recently by Mullis and Roberts (1984) 
in a VLS[ filter chip design context, labelled factored state 
variable description (FSVD). Using this description. the struc­
ture of Fig. 10 would be represented by 

(38) 

or 

(39) 

Serialism is now expressed by the first computed intermediate 
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FIG. 11. Pipelining with structure from Fig. 10: (a) unpipelined; 
(b) pipelined. 

result r". 
Each", i matrix necessary in a FSVD corresponds to one node 

precedence level. The intermediate signals can be represented 
and so can the coefficients. Note that revoking the factorization, 
introducing e = 'I'.l '1'1 immediately yields a standard state· 
space description (by partitioning e into A, B, C, D appropri­
ately) but neither the intermediate signal nor all original 
coefficients are then represented. 

Thus FSVD could be useful for modelling general structures 
within an implementation oriented CACE environment. Cascade 
structure is only one example of such a more general (with 
respect to standard state-space) structure, a delay-replacement 
state-space structure based on (33) being another one. 

In the work of Moroney et al. a slight modification has been 
made. Owing to their restriction to LQG compensators without 
direct feedthrough (see Subsection 2.2) they introduce the output 
(SISO case) as a state and call the result "modified state-space 
representation". All their work, which has frequently been 
quoted in this paper, is based on this representation. 

Another issue linked with precedence is pipelining. In the 
example in Fig. 10, imagine that there is double hardware, so 
that multiplies and adds for the left-hand block 1 and the right­
hand block 2 can be executed simultaneously, i.e. in parallel. 
Then simply letting block 2 hardware wait for completion of 
block 1 computation so that one hardware unit is always idle 
would of course be unattractive. But if a delay (i.e. storage) is 
inserted between the blocks for storing V", the multiplier as welt 
as node precedence levels are reduced to one, and both hardware 
units could always be busy, running at double sampling fre­
quency, see Fig. 11. This is pipelining. It allows an increased 
throughput rate but introduces delay. In a control feedback 
loop this delay must then be accounted for in design (Moroney, 
1983; Moroney et al., 1981) but despite this delay the control 
system performance can possibly be improved compared to the 
lower sampling frequency non-pipelined case. 

6. Scaling 
At least when using fixed-point arithmetic it is usually 

necessary to perform scaling on the controller to be implemented. 
The primary objective is to fit data which are computed during 
the course of a difference equation calculation into the limited 
number range, so that overflows are avoided without provok~g 
excessive signal quantization effects. A second objective WIth 
scaling is to alter coefficients in such a way that they fit into 
the coefficient number range. This is not always achieved when 
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scaling is only oriented towards data overflow avoidance and 
scale-factors then have to he altered appropriately. 

The following discussion is on a controller formulated as a 
state-space system, but the concepts apply equally well in other 
formulations. such as (13), for example. The scaling task may 
he partitioned into three subtasks, which might he called 

input and output scaling; 
state vector scaling; 
scalar product scaling. 

They are dicussed below in this order, which also reflects the 
chronological sequence within the implementation process. Note 
however that scaling cannot always be handled separately after 
structure selection. Any kind of. structure optimization or 
evaluation with respect to finite precision arithmetic should 
have a scaling procedure as an underlying process, because 
scaling affects the numerical values of the coefficients. 

6.1. Input and output scaling. During controller design the 
plant's outputs and control inputs are often conveniently 
handled' as physical variables without normalization, i.e. outputs 
of a system may be in bar and ms -I. Once the range of values 
occurring in closed-loop control system operation are known, 
the transducer gains can be determined. The output of a 
transducer, say -10V ... + lOV, must be repr~ented in the 
processor according to the data fonnat used in the controller 
implementation. Using fractional arithmetic, the bit pattern 
output of the AD-converter representing -lOV ... + lOV may 
be aligned to give -1 ... + 1 in the processor, i.e. the most 
significant bit (msb) of the ADC output is also the msb of the 
data word. then used for the input to the difference equations. 
In the case of digital input, for instance from a position encoder, 
the alignment could also be done in this way, and for the outputs 
of the controller it is just the same. 

Let the physical variable range of a planfs input, which has 
been used in designing the controller, be given for example as 
Yi in the range -20A ... +20A for an electromechanical 
actuator. This variable is represented in the range -1 ... + 1 in 
the processor (fractional arithmetic assumed). Possible inter­
mediate variable transformations, for instance into -10V ... 
+ lOV via a DAC and then into the y i range via a power 
amplifier, do not matter here. The gain between the value in the 
processor and the physical value used in the controller derivation 
must however be accounted for by scaling the controller 
equations before supplying them to the further steps of the 
implementation procedure. In the example the ith row of C and 
D must he multiplied by 1/20 to obtain the correct numerical 
values. As a whole, there must be input and output scaling to 
change the B, C, and D matrices of(6) for example, to BS;;', 
S,,-IC, and S; 1 DS,,- t respectively. The scaling matrices are 
diagonal and their elements are given by 

R'" 
S .=-

1',1 R:~' 

(40) 

where RlJI' means the number range span in the processor (same 
number range for inputs and outputs assumed), i.e. 2 for 
fractional arithmetic, and Rph means the physical variable range 
span used in the design of the controller which led to the original 
A, B, C, D matrices, i.e. 40 A for Rr. In the case of an 
unsymmetrical physical variable range. for example 0 ... 40 A, 
appropriate offset must he added, preferably at the transducer 
or amplifier side. 

In the above discussion it has been assutned that the range 
of the physical variables, and accordingly the measurement 
ranges of the transducers are known. This is usually the case. If 
it is not, the techniques discussed below for determination of 

maximum deflections of state variables could also be used. 
correspondingly to get that information. 

6.2 State vector scaling. For a system. (6), the state variables 
are scaled via 

x" ..... = diag (t,)x = S; 'x (41) 

thus the scaled system is given by 

Y.t = CS xXtcah,d.k + Dul; (43) 

leading to new matrices AI, Bs, and C •. The scale factors sz,i can 
always be chosen so that Xscated stays within the number range 
given by the data format used. But in order to minimize data 
quantization effects Xsca1ed should not be permanently far off the 
limits during operation of the closed-loop control system, i.e. 
scaling should be such that the maximum absolute value of a 
variable is just below the upper number range limit under worst­
case conditions. 

What remains to be discussed. is determination of the scale 
factors. Basically, there are two approaches to determining the 
sz,i analysis and simulation. The conceptually simplest is to 
simulate the closed-loop control system under various con­
ditions, preferably under conditions which are anticipated to be 
worst-case with respect to the values of x. The largest absolute 
values of the components of x can be coUected and scale factors 
can easily be derived from the largest absolute values overall 
per state variable. All this can be automated by appropriate 
software. Although the effort in performing a number of simula­
tions might be considerable, the data collection mentioned can 
often be a by~product of simulations carried out anyway in the 
case of control design evaluation. 

In the digital filtering field, state vector scaling has been dealt 
with analytically since the early seventies and is represented in 
most textbooks in this field. Some prominent papers have been 
published by Jackson (1970a, 1970b1 Hwang (1975a,b), Mullis 
and Roherts (1976). Concepts developed there have been used 
in control engineering by Moroney (1983), who gives an extensive 
discussion and bibliography, by Moroney et al. (1980, 1983), 
Sasahara et al. (1984), Scharf and Sigurdsson (1984), and Ahmed 
and Belanger (1984a). In the digital filtering field, the digital 
systems usually operate in open loop and are of the SISO type. 
Analytic scaling is based there on certain assumptions about 
the input signal to he expected. In the MISO or MIMO 
controller case, such assumptions cannot be made as easily 
because the plant measurement outputs, which are inputs to the 
controller, are interdependent according to the plant dynamics 
and structure. Furthermore, the closed-loop nature of controller 
operation should be taken into account. 

If scaling is allowed to be a bit pessimistic, experience shows 
that quite often useful scale factors could have been found by 
driving the digital open-loop controller alone with worst-case 
input signals. For a SISO servo-control system, for example, 
full-scale step reference inputs may be supposed to be worst~ 
case. Indeed, the largest deflections of the controller's state 
variables frequently occur right after the step, and where the 
plant reacts slowly, the feedback case is not much different from 
the open-loop case in terms of maximum deflection of the 
controller state. So, simple calculation of controller state after 
a step input in open loop yields reasonable scale factors in such 
a case, called unit-step scaling with respect to Iilters in Phillips 
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and Nagle (1984) and also used by Mitchell and Demayer (1985). 
Note however that such an approach only works with stable 
controllers. An integral part in the controller would only be 
allowed if it affected only onc state variable, i.e. if it were 
decoupled in the controller. It could then be scaled separately. 
based on what is expected to be specified as its maximum 
contribution to the actuating variables. 

Generally. scaling of controllers would be most safe and least 
pessimistic when based on closed~loop, considerations. As in the 
open-loop case of digital filters, there must be some assumptions 
about input signals, but now these are not necessarily input 
~ignals to the controIler. They may be inputs to the plant. 
for example disturbances. The dosed-loop system must be 
sufficiently linear, because the analytic scaling approaches rely 
on linear models. 

After a linear discrete model of the closed~loop system has 
been set up assumptions about input signals are in order. In 
stochastic settings it is reasonable to assume worst-case stochas­
tic input signals and then to compute the variances O'~.i of the 
controller state variables by standard techniques. In the case of 
zero~mean Gaussian signals, for instance, the probability that 
the amplitude exceeds 3.3 u is only 0.001, thus a scale factor S",I 

in the range 30'.11:,1 ... 100' ",i should be reasonable for fractional 
arithmetic overflow limits -1 ... + 1. The actual value selected 
depends on the supposed quality of the Gaussian model of the 
real signal. 

\ The variance-oriented scaling approach has been used in 
connection with control by Moroney et al. (1980), Moroney 
(1983), Scharf and Sigurdsson (1984), Sasahara et al. (1984), and 
Ahmed and Belanger (1984a). If there are constant (not step) 
disturbances or reference inputs in addition to the stochastic 
signals, the mean values XI of the controller state variables must 
also be computed for worst-case situations and scare factors 
must be selected so that IXil + C(1 x,i ~ 1. C = 3 ... 10, in the case 
of fractional arithmetic. Moroney (1983) and Moroney et al. 
(1983) propose some remedy for the non~zero setpoint situation 
in order to obtain zero-mean controller state variables, but it 
seems to be rather limited from a practical viewpoint. 

Deterministic input signals are probably most often accounted 
for in practice by simulating the closed-loop system for the 
operating conditions expected in reality, as mentioned above. 
Possibly a linear simulation is sufficient for collecting scale 
factors. In digital filtering other means have been developed to 
determine scale factors based on deterministic assumptions on 
input signals. They can be adopted for closed-loop control as 
discussed by Moroney (1983). The aim is to calculate upper 
bounds for the controller state variables XI under some boundM 

edncss assumptions on the input signals. The basic idea of 
bound-based scaling is illustrated by the following. 

Given an input signal to the closed-loop system represented. 
by its samples vA:' a controller's state variable is given by 

, 
x i .1- = L hi.k_jVj , 

j=O 

(44) 

where {hk } is the impulse reponse sequence of this transfer path. 
The sum in (44) can now be bounded via the Holder inequality 
(Epstein, 1970; Hwang, 1975a, 1975b), thus 

(45) 

where! + ! = 1. Since the factors ( .. . )1/" and ( .. . )1/1 are I" and 
p q 

Iq norms of vectors, scaling based on such bounds is called I" 
scaling (Hwang, 1975a, 1975b). The name of tbe norm used for 
the impulse response sequence is used by convention. 

With digital filtering, 12 scaling plays an important role in 
connection with optimal realization structures (see Section 5). 

In this case the Euclidean norm of the impulse response sequence 
as well as the input sequence is used, which in fact means that 
an assumption on an energy bound on {v,,} must be made from 
a deterministic viewpoint. This type of scaling corresponds to 
the stochastic overflow-probability scaling discussed above in a 
stochastic setting, with {v,,} a white noise sequence, in which 
case the variance of XI is given by 

(46) 

If the only assumption on {v.J were that any sample is 
bounded by v,l :s; M, then q = ao and p = 1 should be taken. 
Note that this is the limiting case but (45) is still valid (Epstein, 
1970). Equation (45) then yields 

Ix,.,1 " M t Ihi.J (47) 
i="O 

It is obvious that this yields an absolutely worst-case, pessimistic 
bound. Equality in (47) holds if Vj in (44) is always at its limits 
+ Mar - M with the sign corresponding to that of h,,k- j' Note 
that the impulse response sequence must form an absolutely 
convergent series for (41) to be useful. but this is guaranteed for 
a stable linear closed-loop system (Str~c, 1981). The opposite 
case to that last discussed is q = I, p = 00, which leads to an 
assumption on :t Iv}l. Only signals whose number sequence is 
absolutely summable are allowed here. 

The norm~based bounding techniques outlined above work 
in the time domain. Similar techniques are available in the 
frequency domain based on function space norms, in which case 
frequency response and input signal spectrum assumptions are 
involved (Hwang, 1975a, 1975b; Moroney, 1983; Ahmed and 
Belanger, 1984a). 

A strong point of bound-based scaling techniques is that 
absolutely worst-case (although perhaps conservative) scaling is 
possible, whereas with simulation the safety of scaling depends 
on how well the worst-case situations have been anticipated. It 
was interesting to the author of this survey to check the degree 
of conservatism in the simple control system example given by 
Ahmed and Belanger (1984a). They Used I, norm-based scaling 
assuming the reference signal to be absolutely bounded by M. 
It turned out that the 11 worst-case scaling was not very 
conservative at all. Compared with a reference step input of 
value M over·scaling was only about 50%. Since the given c;lata 
wordlength of a processor may be sufficient to allow for worst­
case scaling, it is attractive to let an automatic scaling algorithm 
perform this. The control engineer then needs only to supply 
hounds on input signals. Experience with such 'I scaling applied 
to the controller alone (open loop) indicates that even this 
simple automatic scaling method yields good results for stable 
controllers or controller subsystems. 

Note that in the discussion given above as well as in the 
literature only single input signals have been considered, whereas 
several signals might act on plant and controller simultaneously 
in reality. With '1 scaling this is accomodated for by computing 

(48) 

where M ~ are the bounds on the individual input signals, and 
{hi,i,v} is the impulse response sequence for an impulse at the 
vth input. 

6.3. Scalar product scaling. From the discussion in Section 4, 
it is not sufficient to scale only the state vector in the case of 
other than two's complement arithmetic. Partial sum overflow 
during scalar product evaluation also has to be avoided. With 
two's complement arithmetic the same is necessary if it cannot 
be ensured that X.caled is overflow free, and the saturation value 
should be taken if overflow occurs. The scalar product scaling 
as discussed in Section 4 can be used for !his purpose, leading 
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to computation of an intermediate downsca1ed state 

which must be rescaled 

(49) 

(SO) 

(51) 

to yield the new scaled state. This rescaling operation has to be 
performed by the target processor, whereas downscaling in (49) 
only modifies the coefficients of the matrices supplied before 
target processor programming. 

A similar situation arises with the output computation'(43). 
With practical control systems it is very likely that outputs of 
the controller will saturate in certain states of operation. This 
is a very common case, for instance, with drives and positioning 
mechanisms. In order to be able to determine correct output 
saturation it is necessary to perform scalar product scaling here, 
i.e. first to compute a downscaled overftow~free version of the 
output vector and then to rescale it using a saturation overflow 
mechanism. 

This downscaling procedure also conveniently scales down 
the coefficients (matrix elements) 'of the output equation, which 
are very often quite large. Values in the hundreds are not 
uncommon here when fractional arithmetic is used, in which 
case coefficients should not exceed the range - I ... + I (at least 
not much; small integer parts may still be realized using multiple 
adds and subs). The reason for large coefficients here is that in 
contrast to digital filters, controller transfer functions frequently 
have gains far above unity. Since the state vector will be scaled 
so that it fits into the number range, high gains consequently 
show up in the output equation in the Cs matrix. The direct 
"feed through matrix might also have large coefficients. particu­
larJy with controllers of PO type where a step input immediately 
produces a large output. Th~ scalar product scaling technique 
has been implemented to be carried out automatically in an 
automatic code generator for a certain signal processor by Loges 
(1984), Hanselmann and Loges (1984), Loges (1985). 

7. Programming 
In any case where computation speed is not crucial and a 

common and welI~supported general microprocessor is used as 
target" programming of controllers as introduced in Section 2 
should not cause problems. Common general high-level langu­
ages (HLL) can then be used, along with convenient floating­
point arithmetic. It is, however, necessary to account for real­
time operation. 

7.1. Multi~tasking and languages. Where the controller is the 
only task for a dedicated processor, timing is sometimes achieved 
through simply polling a status signal ("ADC ready" for example) 
of a peripheral which is under timer control, leaving the 
processor idle while waiting. If there is something more useful 
for it to do instead of waiting, a foreground/background solution 
would be better. In that case, the background job is interrupted 
by a real-time clock whenever the controlJer has to be served. 
This type of real~time operation is quite primitive, but may be 
appropriate for simple systems and is widely used (for an 
example see Clarke, 1982). It works with HLLs even if they were 
not original1y designed for real~time operation, provided the 
machine code generated by the compiler is re-entrant. This 
means that routines which are used in both foreground and 
background (such as library routines) can be interrupted. re­
used, and resumed without errors due to altered local variables. 

In a multi-rate system for example, composed of several 
subsystems, the situation is a bit more complicated. since 
modules executed at a slower rate have to be interrupted to 
Jet high-rate modules be serviced. Foregroundfbackground 
operation then becomes clumsy. If additionally asynchronous 
events occur, or if synchronization problems have to be solved, 
a multi~tasking executive becomes more and more necessary. 

There are ways of staying with HLLs, though, because some 
languages have at least basic real-time operations support built 
into them, such as Modula 2, some versions of Pascal, and 
Forth environments, or real-time facilities are achievabJe 

S()tup duta 

numerical data 
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coded functions 
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FIG. 12. Automatic code generation. 

through widely available real-time operating system kernels. 
available to intetface with C or Pascal programs for example 
(Evanczuk, 1983; Ready, 1984; Heider, 1982). Although real­
time executives (operating system kernels) are quite an effective 
means of achieving multi-tasking. they usually require consider~ 
able proCessor execution time for task management. Switching 
from one task to another may easily take around lOOJ-ls and 
more. even with a modern 16-bit processor. So, if appropriate, 
more primitive means might be the choice. 

A problem with HLLs is that they most often only support 
integer and Hoating-point arithmetic. If the latter is too slow, 
fractional arithmetic would be an alternative, but one might be 
forced to program the equation evaluation parts in assembly 
language. Emulation of fractional arithmetic through integer 
computations is possible but with a loss of speed. It is interesting 
to note that there are Forth language environments which 
include not only multi-tasking (Pountain, 1985) but also frac­
tional arithmetic. This backs the claim of Forth advocates that 
this environment is well suited to real-time control. at least for 
small systems. 

The lowest level of programming is of course the use of 
assembly language. [n most cases it is chosen for reasons of 
speed. With a modern microprocessor the assembly code for 
implementing a controller can be quite concise owing to powerful 
instruction sets. For examples of coded digital filters see Phillips 
and Nagle (1984), where subroutines and loops have been used. 
Maximum speed is obtained if straight code without loops and 
subroutines is used because then there is no associated overhead. 
Straight code. however, contradicts'what is good programming 
sty'e. A satisfying solution' to this could come from automatic 
program generators. Such a generator would generate tailored 
code once the type, dimensions and numerical values of a 
controller from Section 2 were known (Fig. 12). and should be 
fairly easy to write for a general microprocessor. 

7.2. Code generation. The generator concept has repeatedly 
been applied to signal processor programming for digital filtering 
and related tasks (Schafer el al., 1984; Mintzer et al., 1983; 
Skyttii et al., 1983; Herrmann and Smit, 1983), and also for 
controller implementation (Hanselmann, 1982; Hanselmann and 
Loges, 1983, 1984; Loges, 1984, 1985). An interesting project 
aimed at automatic program generation for a microcontroller 
(the 8096 from Section 3) has been described by Srodawa el al. 
(1985). Since the starting point is a language description of the 
computations to be performed, this tool is more a compiler than 
a code' generator. Compilers translating high level descriptions 
into signal processor code are also emerging commercially, both 
for special signal processing languages and for suitably modified 
general HLLs, such as Pascal or C (Marrin, 1985). 

An early control-related generator for the Intel 2920 signal 
processor developed by Hanselmann (1982) was aimed at MIMO 
controllers in the form of (6). Good experiences with this tool 
later led to application of the code generator concept to the 
TMS32010. A brief description of this generator fonows as an 
example of what can be expected from implementation tools at 
the programming end today. Details on internals can be found 
in Loges (1985). and details on how to use it in Hanselmann 
and Schwarte (1985). 

The generator is aimed at implementation of MIMO control­
lers and accepts the four matrices of (6) as its input. Output is a 
mnemonic assembly language program, which. can be assembled 
and downloaded to the target. Because everything is automatic, 
less attention needs to be paid to the readability and length of 



Survey Paper 

the program (as long as there is sufficient program RAM, which 
is usually the case). and straight code without unnecessary loops 
and without subroutines is generated to increase speed. The 
generator also copes with data RAM limitations. If it detects 
lack of RAM it automatically trades program space against 
data space by utilizing an immediate multiply instruction of the 
target processor so that coefficient space is saved in the data 
RAM. This instruction only accommodates t 3-bit numbers, but 
even in cases where there are too many more-than-13-bit 
coefficients the generator finds a way out (Loges, 1983, 1985). 

Another important option is extended precision arithmetic. 
The generator provides this on two levels: extended coefficient 
precision, and extended coefficient and signal variable precision. 
With the special extended precision computation technique 
realized by the generator the controller of Section 3.3 and Table 
3 for example would run at 7 kHz with full precision (coefficients 
and signal variables) instead of 31 kHz with single precision. 
The generator also automatically provides overflow manage­
ment code along with rescaling of scalar products (see Section 
4). Finally, the generator has a facility to include function code 
automatically. This is particularly useful for extending linear 
controllers (for which the generator does coding) by non-linear 
functions 

destination: = f(destination, states, inputs, aux. variables), 

where destintion can be a predefined variable such as a state or 
output or a user-defined variable used in another function call. 
A major type of function code performs table lookup with or 
without interpolation, leading to very fast non-linear function 
computation. At present, the generator concept is even being 
applied to tailoring such function code. For instance there is a 
program which generates square-root function code according 
to the user's specifications, such as argument range, table length 
allowed, or precision desired. 

Automatic code generation seems to be a viable means of 
achieving application-specific code with about the same 
efficiency as an expert programmer coding by hand would 
attain. This is particularly valuable for target processors with 
non-standard architectures and instruction sets, such as special 
signal or custom design processors. . 

Code generation as just discussed is aimed at production of 
optimal assembly code, but generation ofHLL code shOUld also 
be mentioned. It helps in translating application oriented 
descriptions of a controller, for example in the form of a block 
diagram with transfer functions, into general programming 
languages. A recent example is the RT BUILD facility of the 
MATRIX. CACE-Package (Shah et al., 1985~ which generates 
ADA language source code for controller implementation. 

8. Simulation of digital control systems 
In any realistic control design and implementation project, 

digital simulation is an invaluable tool. This applies even more 
to digital control. As mentioned earlier, simulation is useful in 
the determination of scale factors. It can also reveal effects 
due to quantization, overflows, spectrum aliasing, and non­
simultaneous sampling and output. Such effects are only partIy 
emanable to limited analysis. Very few publications addressing 
the problems of digital simulation of digital control systems 
have appeared up to now, although there are indeed several 
problems, as discussed briefty below. They fall mainly into two 
groups: efficient simulation/integration methods, and modelling. 

If the plant is linear (rare case), a simulation based on 
transition matrix techniques could be augmented by the model­
ling of delays (computational, sampling, and output) and quanti­
zers, including overflow simulation if necessary. The usual case, 
however, will be with additional non-linearities in the continuous 
part of the control system, so that general integration methods 
for differential equations must be used. This results in certain 
peculiarities: 

(a) Integration is on the continuous system state only, but the 
state derivatives depend on the discrete system's outputs, 
which are held constant between update time instants. 

(b) For the sake of accuracy, the integration step boundaries 
should be made coincident with the controller's sampling 
and output time instants. This may dictate a small step size 

with variable step-size integration. 

(c) The discrete system introduces discontinuities due to stair­
case functions. Discontinuities force multi-step integration 
into restart and since this occurs many times, such integration 
methods may become inefficient. Fortunately, the time 
instants at which discontinuities occur are known (as long 
as there are no sources other than the staircase function 
output), so if (b) is satisfied there is no need to perfonn the 
discontinuity-finding operations (Hay, 1984, 1985) familiar 
from problems where discontinuity occurrence is state depen­
dent. 

(d) Integration of slow subsystems with larger step size (sop 
called multi-rate simulation (Gear, 1984) may seem to 
provide a solution to the small step size problem. It requires 
interpolation in order to provide the samples for the control­
ler, and decimation at fast-to-slow system interfaces which 
should prevent aliasing effects. Fidelity for instance with 
respect to limit cycles due to quantization must be ques­
tioned. In fact this field seems to be largely unexplored. 

The points given are partly addressed by some known 
simulation packages (for a survey of simulation software see 
Cellier, 1983), such as MATRIX. (Shah et al., 1985); SIMNON 
(Astrom and Wittenmark, 1984). There are also commercial 
packages to be mentioned such as ACSL by Mitchell and 
Gauthier Inc. and CSSL-IV by Simulation Services. For (a) for 
instance, there is a so-called DISCRETE section in ACSL which 
combines with the DERIVATIVE section for the continuous 
system, and (b) is satisfied because sampling and output instants 
are placed in an event list supervized by the integration control 
mechanism, which steers integration step boundaries to coincide 
with any event. Point (b) can also be satisfied by choosing 
appropriate integration routines. 

The points discussed so far have to do with the event nature 
of sampling and output and apply to discrete control. They are 
also partly considered by Stirling (\983) and Zimmennan (1983). 
Digital control additionally requires simulating AD- and DA­
converters. quantizers in general, and possibly overflow behav­
iour, along with an interactive overflow detection mechanism. 
Quantizers and limiters are usually available in the package 
libraries, but not high-level constructs, although it seems possible 
to build them up from primitives. 

A special purpose package where the user no longer deals 
with quantizers and limiters, but "talks" to the progr.am in 
higher-1evt?1 terms such as ADC-wordlength, two's complement 
arithmetics, 32-bit accumulation, and the like (Hanselmann et 
al., 1983) proved to be very useful. Simulation on the basis of 
sufficiently detailed and realistic models abstracted from the 
actual processor and its software should always be available. In 
contrast to the processor simulators sometimes supplied by 
processor vendors, mapping all registers, flags etc., and instruc­
tions of a specific device, the use of abstract models yields 
processor independency. It also allows experiments (with arith­
metic for example) which help determine what processor should 
be used, regardless of availability of the processor or its 
simulator. This will become particularly important for custom 
control processor design. 

9. Conclusions 
Controller implementation is a topic involving many disci­

plines at the same time, from processor technology and elec~ 
tronies through system theory aspects up to software engineer­
ing. Even in the rather restricted case of mostly linear control 
there may be many problems when the idealizations of cohlmon 
theory of algorithms and design methods no longer hold. 

Some of the issues arising were already considered in the 
old direct digital control days in the sixties. Stimulated by 
microprocessor technology, these issues are once more arousing 
interest. Some of the problems encountered still require further 
work, and more experience should be gained to know which of 
the methods prove to be practical. 

Much could be gained by integration of all implementation 
related tools into CACE software (and also hardware to some 
extent) environments. All the steps necessary in the implemen­
tation process should be integrated into the CACE environment 
and should be supported as much as possible by software tools 
(Hanselmann and Loges, 1984; Hanselmann, 1986). Possibilities 
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range from the minimum of having consistent controller data 
structures throughout the process up to the coding stage, to the 
maximum. of fully automatic structure selection, scaling, and 
final code generation for the target processor, accommodating 
complex controllers, composed of several subsystems, possibly 
of the multi·rate type. 

The advantages of extending CACE to control implemen­
tation are now well recognized by control engineers. This is 
reflected in .recent discussions of CACSD/CACE scopes given 
by Spang (1985), Sutherland and Sonin (1985) and Powers 
(1985). pesigning such software is certainly not a trivial task 
because of the many disciplines involved, the fast pace of 
processor technology, and increasing control system complexity. 
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Abstract 

Digital signal processors (DSP) are increasingly used in many application fields like motion 
control systems and power conversion systems due to their impressive computl\tional perfor­
mance. However, appropriate tools for programming such 'devices are still lacking. Therefore 
DSPs are mainly programmed using assembly language. The high level language DSPL 
introduced here has been developed with the typical application fields in mind. Characteristic 
elements of DSPs have also been regarded. This results in compilers capable of generating 
extremely efficient code. Furthermore DSPL's automatic scaling features simplify program­
ming of applications for DSP with fixed-point arithmetic. 

Introduction 

For a few years now digital signal processors 
have been available as very powerful devices for 
computational intensive applications possibly 
demanding real-time performance. DSPs have 
been developed primarily for signal processing 
applications like filtering, speech analysis, data 
communication and the like. Comparing the 
mathematical algorithms used in these fields with 
the algorithms used in modem multi-variable 
control theory shows however, that both appli­
cation field!! have to deal with many common 
problems. Thus DSPs are increasingly used for 
the implementation of complex control systems 
and other industrial applications like. motion 
control systems, power conversion systems and 
hardware-in-the-loop simulation systems. 

DSPs are a very special class of microprocessors. 
They typically contain hardware optimized to 
carry out multiplications and accumulations. 
Most DSPs are able to perform a multiplication 
within a single machine cycle and perform the 
accumulations of products in parallel. This leads 
to extremely high throughput for the computation 
of scalar products, a central element· of signal 

processing algorithms. Another feature that dis­
tinguishes DSPs from conventional microproces­
sors is the Harvard-architecture used by many 
such devices. They usually have several separate 
memory blocks connected to the CPU core with 
multiple data and address busses. These data 
paths can be used in parallel so that several 
operands can be transferred at the same time. 

Utilizing such specific DSP elements is nearly 
impossible with conventional high level program­
ming languages like C or Pascal, because such 
languages have no appropriate constructs which 
allow a compiler writer to make use of these 
elements. Another problem not addressed by 
these languages is the lack of an appropriate data 
type for DSPs using fixed-point arithmetic. 
Fixed-point arithmetic is however still used by 
most DSPs, and especially the low-cost ones 
embedded in products manufactured in large 
quantities. 

Special features of DSPL 

Nevertheless most of the few high level language 
compilers available represent a more or less 
comprehensive subset of the C programming 
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language. The Digital Signal Processing Lan­
guage (DSPL) introduced here follows a more 
problem oriented approach. It has been developed 
with the intention to be particularly useful for the 
special application fields of digital signal pro­
cessing using DSPs for the implementation. 
Especially for fixed-point DSPs DSPL provides 
extensive support by defining an appropriate data 
type and automatic scaling features. 

DSPL data formats 

Standard DSPs like the first and second genera­
tion TMS 320 series use a 16 bit fixed-point data 
fonnat. Using this fonnat for the conventional 
integer arithmetic leads to a quantization of 8 bit 
for data and coefficients in order to avoid over­
flows when computing a product. Accumulation 
of products as required for a scalar product 
requires additional scaling, so that the worst case 
sum of the partial products does not overflow the 
integer value range. Using only 8 bits for the 
representation of data and coefficients however 
results in a very small number range with low 
resolution. This is not acceptable for most indus­
trial applications. As the same problem arises for 
conventional microprocessors system designers 
have developed algorithms to perfonn float­
ing-point arithmetic with fixed-point processors. 
With the aid of floating-point arithmetic an 
arbitrary number range with arbitrary resolution 
can be realized according to the number fonnat 
selected, but at the cost of largely increased 
execution time. This is also possible for DSPs, of 
course, but using such a floating-point software 
package decreases the DSP's perfonnance so far 
that conventional microprocessors combined with 
hardware floating-point coprocessors seem more 
attractive, at least for applications where the price 
of the processors is not a primary issue. 

DSPL follows a third way which can provide a 
good compromise for most applications. It cou­
ples the speed of integer arithmetic with a 
resolution of 16 bit for the above mentioned 
processors. To achieve this DSPL provides the 
fractional data fonnat. Data are interpreted as 
two's complement numbers having the binary 
point directly right to the sign bit (MSB) which 
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leads to a value range of -1.0 .. 0.99996 ... 

Obviously the multiplication of fractional num­
bers can never overflow the fractional value 
range and can be implemented easily as most 
DSPs provide an accumulation register at least 
twice as long as the data fonnat used, e.g. 32 bit 
for the TMS 320 series. The fractional fonnat 
allows to use all 16 bit for the representation of 
data which results in a quantization good enough 
for most applications. Only when accumulating 
fractional numbers the result can overflow the 
value range. On the one hand this can be avoided 
by properly scaling data during preparation of the 
implementation, and on the other hand by using 
DSPL's automatic scaling features for the com­
putation of scalar products. As the fractional data 
fonnat is just another interpretation of the binary 
data fractional arithmetic except division can be 
implemented on the machine instruction level 
which results in the same execution speed as 
integer arithmetic. Fractional numbers are the 
main vehicle for carrying out computations in 

. DSPL. They are supported by the compilers not 
only for the computation of scalar products but 
also for any other basic arithmetic expression 
including division. 

Besides the fractional fonnat a conventional 
integer data type and boolean data are also 
supported. In addition to the basic operations 
DSPL allows bitwise handling of integer vari­
ables with logical operators. This is especially 
useful for manipulating hardware devices on the 
bit level, particularly because variables can be 
allocated at arbitrary physical addresses. Boolean 
variables can be used in arbitrary expressions as 
well. They are mainly useful for controlling 
program flow in conjunction with if-statements. 

Scalar product computation 

Many digital signal processing algorithms consist 
mainly of the computation of scalar products. 
FIR filters and difference equations of controllers 
or IIR filters provide good examples. 



Implementing scalar products on processors with 
fixed-point arithmetic is a cumbersome and error­
prone task due to the scaling requirements. DSPL 
supports the implementation of scalar products 
by providing the necessary constructs on the 
language level including automatic scaling for 
products of a coefficient vector and a variable 
vector. Scalar product scaling guarantees that 

overflows can be detected and handled appro­
priately by saturation conditions simulated in 
software 

coefficients outside the fractional value range 
can be realized 

coefficient scaling can be performed automati­
cally by the compiler. 

Scaling of all Co is performed completely at 
compile time. Only the necessary rescaling oper­
ations for the final result (r) need to be done at 
runtime. Rescaling is implemented by optimized 
code constructs depending on the actual data. 
Within scalar products even coefficients outside 
the fractional number range can be realized with 
special code constructs. If scalar product scaling 
is performed automatically by the DSPL compil­
er a worst case scaling is performed. Maximum 
scaling values can optionally be speCified by the 
user in case they are already known from simula­
tion or measurements. for example. Scalar prod­
uct scaling can also be completely disabled. The 
code necessary for rescaling can automatically 
include instructions to test for overflows of the 
scalar product result. Saturation conditions can 
then be simulated by software upon request. A 
special form of the scalar product statement 
allows the implementation of a FIR filter with a 
single DSPL statement. In this case the update of 
the variable vector is performed in parallel to the 
computation of the filter taps. 

High level language compilers usually rely on 
library routines for the computations of scalar 
products. which simply execute a loop for all 
elements of the vectors involved to compute the 

sum of the partial· products. However. this kind of 
computation is very inefficient. particularly for 
control algorithms where often sparse coefficient 
matrices have to be multiplied by variable vec­
tors. This leads to the problem of loading the 
processor with unnecessary code for multiplying 
zeroes. Using appropriate transformations the 
number of non-zero coefficients can be mini­
mized. DSPL does never use library routines but 
generates the appropriate code in-line depending 
on the actual data. The code is extremely efficient 
because every information the compiler needs for 
code generation is already known at compile 
time. Not a single instruction is wasted to per­
form address computations or adjust loop coun­
ters at runtime. Immediate instructions can often 
be used to realize small coefficients which leads 
to very economical use of data memory. a very 
scarce resource on some DSPs. 

Block moves of data 

Many DSPs contain special hardware provisions 
or at ll!ast efficient machine instructions to per­
form moving a block of data in memory. Block 
moves are required by many signal processing 
algorithms to implement the .-1 operation or to 
move the data samples through a filter. Such 
special elements can only be utilized by a com­
piler if an appropriate language construct is 
defined. DSPL provides the update-statement for 
this purpose. It allows to copy a data vector to a 
second one. Because the size of the vectors is 
already known during compile time code can be 
generated code without containing time consum­
ing instructions for address computations. 

Realization of sampling systems 

Digital signal processing systems often require 
the algorithm to be carried out with a dermed 
sampling period. DSPL provides an appropriate 
statement which allows the specification of the 
required sampling period. The compiler generates 
appropriate code to realize the sampling clock 
based on macros adaptable to the target hard­
ware. Usually a timer capable of generating 
interrupts will be used for this purpose. In case a 
hardware system contains several timers with 
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interrupt capabilities even multi-rate systems can 
easily be implemented. 

declarations and statements available in DSPL. 
Short comments will describe !he meaning of 
each element. 

DSPL language constructs 

The follOwing tables provide a summary of !he 

I Declaration I Purpose 

TYPE declaration of fractional data representation details 

fractional, integer, boolean scalar data types, fractional data can also be declared as 
vectors, constants and variables possible 

SCPTYPE type declaration used for defining details of scalar product 
computations like automatic scaling and saturation handling 

SCALABLE attribute of a fractional constant, allows !he constant to be 
scaled by the compiler 

ALTERABLE attribute of a fractional constant, allows a scalable constant 
to be included in scalar product computation, such a 
constant may be altered during runtime as required by 
adaptive systems 

AT address clause, allows to specify the physical address where 
the declared object shall be allocated 

INPUT / OUTPUT instructs the compiler to associate the declared variable as 
with a physical input or output channel 

EXTERNAL allows the declaration of formal procedure headers, external 
procedures must be implemented in assembly language 

INTERRUPT instructs the compiler to associate this name with an 
interrupt source 

RENAME declares an alias name for a component of a fractional 
vector 

Table 1 : Declarations provided by DSPL 

Statement Purpose 

BEGIN start of executable program body 

ON ident DO surrounds the interrupt service routine for an .. identifier declared as an interrupt source, any 
END INTERRUPT number of interrupt-statements are possible 

174 



EVERY time DO surrounds the block of statements to be execut-
.. ed with regular time intelVals. the time speci-

END EVERY fied represents the sampling period of sampled 
data systems 

ACCUMULATE SCALPRO (ident) a complete scalar product with an arbitrary 
.. number of partial products is accumulated. the 

END ACCUMULATE identifier references a scalar product type dec-
laration 

ACCUMULATE PRESCALPRO (ident) same as before except that the accumulation 
.. register is pre-loaded with a full accumula-

END ACCUMULATE tor-length value 

ACCUMULATE SCALPRO (ident) AND UP- special form of scalar product accumulation. 
DATEident allows efficient computation of FIR filter 

.. 
END ACCUMULATE 

INPUT a scalar or a vector of input variables is read 
from an I/O channel 

OUTPUT a scalar or vector of output variables is written 
to an I/O channel 

UPDATE copies a variable vector to a second one 

assignment the assignment statement allows the computa-
tion of arbitrarily complex arithmetic expres-
sions. 

ABS*/+- operators dermed for fractional operands 
=/=«=>=> 

ABS NOT * / MOD + - operators defined for integer operands 
=/=«=>=> 
ANDORXOR 

NOT AND OR XOR operators defined for boolean operands 

IF condition THEN the if-statement allows to control program flow. 
ELSIF condition THEN any number of ELSIF parts are allowed. the 
ELSE ELSIF and ELSE parts are optional 
END IF 

LOOP the loop-statement in conjunction with the 
.. exit-statement allows the implementation of 
EXIT any kind of program loops 
.. 

END LOOP 

FOR ident IN range LOOP the for-statement allows the implementation of 
.. loops with a determined number of repetitions • 

END LOOP up-counting and down-counting loops are pos-
sible 

175 



procedure call allows the call of external procedures defined in 
the declarative section, actual parameters must 
be specified according to the fonnal procedure 
header declaration 

in-line assembler assembly language statements may be inserted 
anywhere, access to DSPL variables by name is 
supported 

Table 2 : Statements provided by DSPL 

Hardware independence 

A DSPL program is nearly independent from the 
target hardware system. Each DSPL compiler can 
support arbitrary hardware environments sur­
rounding a particular target DSP. This great 
flexibility is possible because every DSPL pro­
gram is augmented by an environment descrip­
tion. This description instructs the compiler 
which address ranges it may use for program and 
data allocation, for example. It also contains the 
necessary connections between logical input and 
output variables of the DSPL program and the 

I Declaration 

PROCESSOR IS "TMS 320C25" 

PROGRAM SPACE OFF CHIP IS ... 

DATA SPACE ON CHIP IS ... 
DATA SPACE OFF CHIP IS ... 

STACK SPACE IS ... 

CYCLE TIME IS ... 

PROGRAM MEMORY WAIT STATE IS ... 

DATA MEMORY WAIT STATE IS ... 
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physical I/O channels. DSPL compilers are 
open-ended with respect to all the language 
constructs depending on hardware characteristics. 
They use macros for the implementation of input 
and output and for the realization of the sampling 
clock for example. These macros can easily be 
adapted to any target hardware system by the 
user, which needs to be done only once. 

The following table describes the infonnation 
contained in the environment description valid 
for the DSPL compiler for TMS 320C25 DSPs. 

I Purpose 

declares the target processor, used by the 
compiler for consistency check 

declaration of memory section available for 
program code allocation 

declaration of memory sections available for 
data allocation 

declaration of memory section available for 
stack allocation 

declaration of basic machine cycle, used for 
the computation of execution time statistics 

number of wait states required by the target 
hardware when accessing external program 
memory, used for the computation of execu-
tion time statistics 

number of wait states required by the target 
hardware when accessing external data 
memory, used for the computation of execu-
tion time statistics 



INTERRUPT ident IS VECfOR ... declares the connection between the DSPL 
name of an intelTllpt source and an actual 
hardware intelTllpt 

INPUT SPECIFICATION IS declares the connection between the DSPL 
ident IS CHANNEL number USING macro name of an input variable and a physical 
.. input channel, for each single input channel 

SEQUENTIAL an appropriate macro can be used, optionally 
ident IS CHANNEL number USING macro sequential inputs can be used in cases. the 
.. target hardware prescribes 

END INPUT a particular sequence for reading input chan-
nels 

OUTPUT SPECIFICATION IS declares the connection between the DSPL 
ident IS CHANNEL number USING macro name of an output variable and a physical 
.. output channel, for each single output channel 

SEQUENTIAL an appropriate macro can be used, optionally 
ident IS CHANNEL. number USING macro sequential outputs can be used in cases the 
.. target hardware prescribes a particular se-

END OUTPUT quence for writing output channels 

Table 3 : Elements of the environment description 

Compiler output 

A DSPL compiler generates completely docu­
mented assembly language source files which a 
user might optionally try to optimize .. After 
assembling the program it can be downloaded to 
the target hardware and is ready for execution. 
Complete statistical information is also generat­
ed. This includes a detailed cross-reference list­
ing showing allocation information for code and 
data sections. More interesting however is that 
the compiler also computes execution time statis­
tics as far as possible. The cross-reference listing 
will contain information about the execution time 
requirements of the block-statements and com­
pute the processor load based on the requested 
sampling rates. The assembly language source 
listing will contain information about the ma­
chine cycles used by the code generated for each 
single DSPL statement. These statistics will even 
regard such issues as the influence of wait-states 
required by the target hardware for the access to 
different memory sections. In case of program­
ming errors the compilers generate a source 
listing with interspersed error messages giving 
detailed information about the errors detected. 

Depending on the program compiled the DSPL 
compilers compile from several hundred to sever­
al thousand lines of code per minute on typical 
PCs. 

Development system 

Currently DSPL compilers for the TMS320C25 
DSP and the TMS 3IOCIX DSP family are 
available. Although they can be used stand-alone 
as powerful development tools they can also be 
used in conjunction with a complete development 
system primarily designed for the realization of 
control systems. This development system con­
sists of additional software and hardware compo­
nents using PC-AT class machines as host. The 
IMPEX software supports all the necessary steps 
for the preparation of linear multi-variable con­
trol systems prior to the implementation. Starting 
from differential or difference equations IMPEX 
supports discretization, scaling, structure trans­
formation, simulation of closed loop systems 
including effects of DSP arithmetic and NO and 
D/A converters and the generation of the appro­
priate DSPL program. On the DSPL level any 
non-linear extensions can be added to the pro-
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gram. This can be supported by the NMAC tool 
whi~ can generale optimized table-lookup based 
external DSPL procedures for the implementation 
of arbitrary one-dimensional non-linear func­
tions. After assembling the assembly language 
source file resulting from the DSPL compilation 
the object code can be down-loaded to the target 
hardware where it can be examined with a 
powerful real-time TRACE module. This module 
wodes on the system level rather than on the 
machine instruction level and is capable of 
displaying the time response of arbitrary vari­
ables. Sophisticated hardware systems built 
around the TMS 320 family DSPs, including the 
new TMS 320C30 floating-point DSP which is 
programmed in C rather than DSPL, augmented 
by powerful peripheral boards for analog and 
digital I/O and incremental encoder interfaces 
support the automatic implementation of standard 
applications often within minutes by providing 
completely software controlled board setups, for 
example. 

Examples and applications 

A large number of applications have already 
been realized using DSPL as the programming 
language. Some examples are described below in 
order to give an estimate about the computation­
al performance of DSPs and of the quality of the 
code generated by the DSPL compilers. Impres­
sive sampling rates can be achieved even for 
very complex applications. 

The first example regards a 3rd order PD con­
troller with notch filter as described by the 
following equations. 

.. , = 0.0 0383240 0.252007 "'_I 0.473315 -,_, (
0.333333 0.0 0.0 J {'-O.66666~ 

0.0 -'-0.518211 0383240 0.587474 

1,=(-16.723549 -13.152899 0.0) ... ~.098620 _, 

Assuming that all state variables are properly 
scaled for the fractional number range so that no 
overflow test and saturation handling is required 
for the states, and that overflow test and satura­
tion handling are included for the output by 
using scalar product scaling, a TMS 320C25 
DSP can execute the code generated by the 
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DSPL25 compiler within 7.3 IU. The same 
program compiled with the DSPLlX compiler 
can be executed within 10.4 IU by a TMS 
320El4 DSP. This does not include time re­
quired for i/o and timer interrupt processing. The 
corresponding DSPL program and excerpts from 
the compiler generated assembly language 
source are presented below. The statistical infor­
mation computed by the compiler is also pre­
sented. 

The second example represents a 9th order state 
controller with Kalman filter having 2 inputs and 
one output. The controller was designed for a 
disk drive (computer peripheral). As this con­
troller includes an integrator the corresponding 
state variable is computed with saturation using 
scalar product scaling. Otherwise the same as­
sumptions apply as given above. A TMS 320C25 
DSP can execute the necessary code within 19 
IU. The execution time for a TMS 320El4 DSP 
is 27.5 IU. 

Other applications implemented with DSPL in­
clude the following (sampling rates are given for 
a TMS 320C25). 

Compliant articulated robot with electrical 
drives: Linear vibration damping I tracking 
controller with 10 sensors, 3 motors, 9 reference 
inputs, running at 20 kHz. 

High-acceleration gantry type robot with hy­
draulic drives: Vibration damping I tracking 
controller of order 10 (including Kalman filter 
and non-linear compensation for hydraulic ef­
fects) for each single axis, with 1 sensor (posi­
tion encoder), I motor and 3 reference inputs, 
running at 10 kHz. Several axes can be selVed by 
a single DSP . 

Kalman-filter-based track following control (see 
second example above). 

Notch-filter-based controller of 11th order for 
the same application runs at > 30kHz. 

Vehicle control: Various active suspension con­
trollers of up to 40th order running with sam­
pling rates in the kHz range. 



Hardware-in-the-Ioop simulation: Hydraulic 
cylinder for active vehicle suspension under test 
and actuating cylinder simulating the stress and 
motion, both given in hardware. The DSP hard­
ware system does the rest, i.e. controls the 
suspension and actuating cylinder, simulates 
wheel and car body dynamics, and performs the 
noise filtering for road surface simulation, all at 
14kHz. 

model of 18th order (11 mechanical degrees of 
freedom) running at 6 kHz on a TMS 320C2S. 
Used to test and optimize ABS in the lab. 

Anti-skid-braking (ABS) hardware-in-the-loop 
simulation: Four-wheeled non-linear vehicle 

Simplified proportional-differential control and 
plant identification: lust to show a mixture of 
DSPL constructs in an application program. The 
sampling rate is > 20 kHz for a TMS 320C2S. 
The listings below show the DSPL prognlm, the 
associated environment description, the statisti­
cal information and excerpts from the code 
generated by the DSPL2S compiler. 

system specification controller_gain_ident is 
type fractional is 

fix' (bits => 16, fraction => 15, representation => twoscomplement); 
scptype state1 is 

fix' (acculength => 32, round => on, scale => on, saturation => on); 
scptype del is 

fix' (acculength => 32, round => on, scale => off, saturation => off); 
scptype out1 is 

fix' (acculength -> 32, round => on, scale => common, saturation -> on); 
a1 scalable constant vector (1) of fractional ;= (0.333); 
b1 scalable constant vector (2) of fractional (0.330, -0.330); 
c1 scalable constant vector (1) of fractional ;= (-14.141); 
d1 scalable constant vector (2) of fractional ;= (7.699, -7.699); 
xk vector (1) of fractional; 
xk1 ; vector (1) of fractional; 
u vector (2) of fractional; 
input is u; 
y vector (1) of fractional; 
output is y; 
temp1 ; rawaccumulator; 
r_coeff ; scalable constant vector (1) of fractional := (17.2405); 
rk_del~coeff ; scalable constant vector (3) of fractional ;~ (0, 0, 1); 
cnt ;' integer; 
lk ; fractional; 
rk_del ; vector (3) of fractional; 
rk ; fractional; 
yfk ; fractional; 
ufk ; vector(l) of fractional; 
yfkl ; fractional; 
gain old ; fractional .. 0.2; 
gain ; fractional; 
ginc : fractional; 
al _flt scalable constant vector 
a2 flt scalable constant vector -
bl flt scalable constant vector 
b2 _flt scalable constant vector 
cl flt scalable constant vector -
dl flt scalable constant vector -

(2) of fractional .= (0.950, 0.074); 
(2) of fractional := (-0.017, 0.950); 
(1) of fractional .- (0.067) ; 
(1) of fractional .= (-0.046) ; 
(2) of fractional := (-0.671, -1. 049) ; 
(1) of fractional .. (9.379E-04); 
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xk_flt1 
xk1_fltl 
u_fltl 

vector 
vector 
vector 
vector 

(2) 
(2) 
(1) 
(1) 

of fractional; 
of fractional; 
of fractional; 
of fractional; y fltl 

temp1_fltl 
xk_flt2 
xk1_flt2' 

: rawaccumulator; 
vector (2) of fractional; 
vector (2) of fractional; 
vector (1) of fractional; 
vector (1) of fractional; 

u_flt2 
y_flt2 
temp1_flt2 : rawaccumulator; 
begin 
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every 1.OE-04 do 
-- controller 
update (xk1, xk); 
-- sample inputs 
input (u); 
accumulate prescalpro (outl) 

yIlt :- templ + dl * u; 
end accumulate; 
-~ output to plant 
output (y); 
accumulate scalpro (statel) 

xkl(l) :- al * xk + b1 * u; 
end accumulate; 
accumulate scalpro (outl) 

templ :- cl * xk1; 
end accumulate; 
-- identification 
u_fltl(l) :- yIlt; 
u_flt2 (1) :- u (2); 
-- low-rate identification 
cnt :- cnt + 1; 
if cnt > 10 then 

cnt :- 0; 
ufk(l) :- y,:""fltl(l); 
yfk1 :- yfk; 
yfk :- y_flt2(1); 
lk :- yfk - yfkl; 
accumulate scalpro (statel) 

rk :- r_coeff*ufk; 
end accumulate; 
rk_del(l) :- rk; 
-- FIR delay-line 
accumulate scalpro (del) and update rk_del 

rk :- rk_del_coeff*rk_del; 
end accumulate; 
gain_old :- gain; 
ginc :c (lk-rk*gain_old)*rk; 
gain :- gain_old + ginc + ginc; 

end if; 
~- high-rate lowpass filtering for gain identification 
-- input filter 
update (xk1_fltl, xk_flt1); 



accumulate prescalpro (outl) 
y_fltl(l) :z templ_fltl + dl_flt * u_fltl; 

end accumulate; 
accumulate scalpro (statel) 

xkl_flt~ (1) :- al_flt * xk_fltl + bl_flt * u_fltl; 
end accumulate; 
accumulate scalpro (statel) 

xkl_fltl(2) := a2_flt * xk_fltl + b2_flt * u_fltl; 
end accumulate; 
accumulate scalpra (outl) 

templ_fltl :- cl_flt * xkl_fltl; 
end accumulate; 
-- output filter 
update (xkl_flt2, xk_flt2); 
accumulate prescalpro (outl) 

y_flt2(1) := templ_flt2 + dl_flt * u~flt2; 
end accumulate; 
accumulate scalpro (statel) 

xkl_flt2(1) := al_flt * xk_flt2 + bl_flt * u_flt2; 
end accumulate; 
accumulate scalpro (statel) 

xkl_flt2(2) := a2_flt * xk_flt2 + b2_flt * u_flt2; 
end accumulate; 
accumulate scalpro (outl) 

templ_flt2 := cl_flt * xkl_flt2; 
end accumulate; 

end every; 
end controller_gain_ident; 

Listing 1: DSPL example program 

environment "D5l00l" is 
processor is "TM5 320C2S"; 
program space off chip is from 20h to 3fffh; 
data space on chip is from 200h to 3ffh; 
data space off chip is from 400h to 3fffh; 
stack space is from 60h to 7fh; 
cycle time is 100; 
program memory wait state is 0; 
data memory wait state is 0; 
input specification is 

u(l) is channel OeeOlh using ds200l with start; 
u(2) is channel Oee03h using ds200l with start; 

end input; 
output specification is 

y(l) is channel OefObh using ds2l0l; 
end output; 
end environment; 

Listing 2: Environment description 
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DSPL - cross compiler, Vs 2.01, MS-DOS, target CPU 
Copyright (C) 1988, 1989 by dSPACE GmbH 

TMS 320C25 

source file 
environment file 
assembler file 
xref file 
error file 

pcim.dsp 
pcim.env 
pcim.asm 
pcim.xrf 
pcim.err 

Compilation completed. No errors detected. 

execution time requirements 

task I cycles I rate (kHz) I time (us) I rqst (us) I use (%) 

1 I 431 23.202 I 43.100 I 100.000 I 43.10 

total processor load 43.10 % 

498 words of code (off-chip) . 
45 words of data (on-chip) . 
32 words stack (on-chip) . 

134 lines compiled. 
2323 lines I minute. 

Listing 3: Statistical infonnation generated by DSPL25 compiler 

; line 113 
zac 
It 
mpyk 
Ita 
mpy 
Ita 
mpyk 
apac 

v6 
-564 

v7 
_c8 
_v18 
-1533 

xk_flt1 (1) 
a2_flt (1) 
xk_flt1(2) 
a2_flt (2) 
u_flt1 (1) 
b2_flt (1) 

adlk 1, 14 - 0 perform rounding 
overflow test and rescaling 0 bit 

_120 

_121 

122 
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sach *, 1 save result 
sf1 sign bit into carry flag 
bc _120 branch if result < 0 
bgez 121 branch if no positive overflow 
1alk 07fffh, 0 use positive saturation 
b _122 update result 

blz _121 
lalk 08000h, 
b _122 

lac * , 0 

sacl _v5, 0 

24 cycles 

0 
branch if no negative overflow 
use negative saturation 
update result 

reload result 



line 116 
zac 
It 
rnpyk 
Ita 
rnpyk 

_v4 
-688 
_vS 
-1074 

xkl_fltl (1) 

cl_flt (1) 
xkl_fltl (2) 
cl_flt (2) 

apac 
sacl _v3l, 
sach _v3l 

0 
+ 1, 0 

templ_fltl 
raw format 

8 cycles 

line 119 
blkd 00207h, 
blkd 0020Bh, 

vlO 
v11 

xkl_flt2(1) --> xk_flt2(1) 
xkl_flt2(2) --> xk_flt2(2) 

6 cycles 

Listing 4: Excetpts from assembly language source code generated by DSPL25 compiler 

Conclusions 

General purpose programming languages seem 
not very suitable for signal processing applicati­
ons because of the lack of appropriate language 
constructs. Taking into account the special prob­
lems of digital signal processing and the special 
features of DSPs when designing a programming 
language, allows the implementation of compil­
ers capable of generating extremely compact and 
efficient code. It also allows to provide the user 
with powerful support in the area of scaling, 
which is particularly important when working 
with fixed-point processors. 
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Application or Kalman Filtering in Motion Control Using TMS310Cl5 

Dr. S. Meahkat 
The Control Group 

One common problem in many industrial drive/control applications is sensing-sensing variables such as position, 
velocity or current for the purpose of control. The task of seDsiDg signals that truly represent system variable is 
difficult either because of cost, imperfect sensors or environmentally induced random noise. The result is a control 
loop with less than optimum performance. To perform a proper control one has to "estimate" all or some of the 
missing system variables from a measurement that may be corrupted by noise (like a noisy encoder or current 
sensor) from a system that is excited by a random external force such as torque disturbance. The output of an 
optimum observer can be used in a feedback control system for the purpose of tracking or regulation. 

But let's rarst define an estimation process. Estimation is referred to the process of extracting information, 
unavailable for measurement for any reason, from the available data. This data may contain measurement error 
and may also be influenced by external random disturbance. You may imagine, for instance, in a radar antenna 
positioning application where wind acts as a random torque disturbance, upon the motor shaft - a shaft whose 
position measurement is corrupted by random noise. In this application the observer or estimator must estimate the 
pure values for position and velocity. A Kalman fdter is an optimum observer for these problems when state 
excitation noise (i.e., torques disturbance) and observation noise (i.e., the encoder noise) are uncorrelated, in other 
words encoder noise is totally unrelated to the torque disturbance. 

To present the idea of designing a Kalman filter let's start with the model of a dc motor (See Appendix A. "Model of 
adcMotor.") 

9(s) 
(1) 

u(s) s(T 015 + 1) 

Since the filter is implemented in a digital control environment we transfer this equations to the z domain. 

(z + b) aT-l + e-aT 

G(z) 
a 

1 
b= 

aT-l + e-aT 
, a = (2) 

In terms of state space representation: 

[ O(a + 1) 1 [ O(a) 1 A + B u(n) 
oo(n + 1) oo(n) (3) 

A-[ 
1 (. _, -.T)/,] B- r K",(T-1/ .. ,4T) I 
0 e-aT ~(l_e-aT) 
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u(n) =·F [ 
8(n) 1 
<o(n) 

This system may be excited by a random torque disturbance, W(n), furthermore position measurement may include 
random noise V(n) (see figure 1.) 

F"1gUl"C 1: 

X(n> 

• 

X(n-1) 

State space representation of a motion control 
system with torque disturbance W and measurement 
noise V 

Optimum Observer 

VCn) 

The problem can be stated as follows: design an observer that uses the measurement, z(n), as well as the statistical 
information about the measurement noise, V(n), and disturbance, W(n), to optimally estimate the actual position 
and velocity. 

The reconstruction of data must be based on a structure that penalizes the deviation of estimator's output from the 
actual system output to oorrect the estimation process. 

~(n) .. A ~(n.l) + K [z(n) • ~n-l») 

where ~n) is the estimated vector of position and 
velocity and H is the output vector (e.g. for position 
H = [1 0)) 

This is presented in figure 2. 

• 

• 
~(n) 

~--~ ...... "~~,. ..... :1, ... i1 ... 1 
!,Cn-1) 

F"1gUl"C 2: State space representation of optimum observer 
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Therefore the design problem can be simplified to finding mter K. Designing K requires the statistical information 
about the random disturbance and the measurement noise. This must be intuitively clear; simply because one could 
not imagine that without this information any "proper" reconstruction would be possible. This statistical information 
can be obtained from the knowledge of the torque disturbance intensity and the frequency range over which it is 
active. For our disturbance intensity and the frequency range over which it is active. For our measurement noise, 
we need to know the rms value of the noise and its frequency range. To be more precise, this information helps us 
compute the "state variance matrix of reconstruction error" from which K can be extracted. 

Let's assume our motor is disturbed by external torque with an intensity of 12.5 N2m2s over the frequency spectrum 
of 0 - 30 Hz and the position mea.~urement is corrupted by noise with the rms value of 0.2 degrees which has a nat 
spectral density over a 350 Hz range. 

Figures 3 (a) and (b) show the actual position and velocity of our motor shaft when the motor is driven by the 
torque disturbance only. That is, if we had perfect position and velocity sensors we could take measurements like 
those illustrated in figures 3 a and b. 
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n O. 2. ················~·················r················r·· .............. : .. , . ········r··············· 
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Figure 3: (a) the actual motor shaft position (b) actual shaft velocity 

a 

b 

However, the real measurement is totally distorted by a random noise making it appear as shown in figure 4. Figure 
4 shows a position measurement that looks absolutely hopeless. You must remember the noise, corrupting our 
position measurement, is not a high frequency noise that may be filtered by a conventional low pass filter. This 
noise spans a wide frequency range! The Kalman IiIter, however, can estimate the actual position (see figure 5) 
form the measurement signal (see figure 4). You may observe the perfect performance of this filter for velocity 
estimation as well (see figure 6). Our assumption is that the mean values of random disturbance and measurement 
noise are both zero. 
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Figure 4: The measured position corrupted by noise 
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Figure 5: Estimated position using the optimum observer 
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F'agure 6: Estimated velocity using the optimum observer 

Optimum Control 
The estimation process provides the feedback data useful for the purpose of control. Using optimum control theory 
we may use the output of an optimum observer in a state feedback control configuration. The state feedback 
controller multiplies a designed control gain matrix, F, by the output of our estimator, x(n), in order to compute the 
control signal, u(n). Like any control design, F must be designed such that it satisfies a certain performance criteria. 
The performance criteria are dictated by the application. For example, in punch press application where achieving a 
fast response time is of crucial importance we need a time optimal control design. In machine tool applications 
where the instantaneous position/velocity error must be minimized, a linear quadratic controller may be an 
optimum choice. Although the performanee criteria will influence the design procedure for matrix F, the 
implementation process in a state feedback control algorithm .remains the same. 

Combining Observer and Controller 
Let's now look at the combination of our optimum observer and state feedback controller using linear quadratic 
criteria. Again, we start with the actual position and velocity values depicted in figures 7(a) and 7(b). Figure 8 
shows the noisy measurement signal. The idea is to de.~ign an estimator combined with a regulator that use the 

188 



measured position, estimate the variables and use them in a state feedback control for the purpose of position and 
velocity regulation. F'JgIII'CS 9(a) and 9(b) show the contrast between what was available to the controller and the 
regulated results. The impressive contrast shows the power of optimum control in motion control applications. 
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Figure 7: (a) actual motor shaft position (b) actual shaft velocity 
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Figure 8: Measured position signal corrupted by noise 

a 

b 
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Figure 9: (a) measured position vsregulated position (b) measured vs regulated velocity 

a 

b 

In a DSP environment an optimum observer combined with a linear quadratic regulator can be implemented and 
run at a sampling rate less than 30 microseconds. This can be done through cascading the various blocks of our 
control algorithm. Control algorithms implemented hy DSPs allow systems with imperfect sensors to achieve and 
impressive level of performance - performance that is not achievable with classical control techniques. 

Design and Implementation or Kalman Filter 
To design a Kalman filter you may follow the steps discussed in sections "Theoretical Background .. ." then you may 
proceed with the selection of a simulation program. Three of the more popular control simulation programs that 
run on an IBM PC are: Matlab, Control C and Matrix X. 

We used Matlab for the design and simulation of the Kalman filter. The Matlab program starts with data entry for 
your system matrices. You are also required to enter the statistical information about the plant disturbance and 
measurement noise. The program will simulate and plot the actual position and velocity on your EGA screen. It 
discretizes your system using the sampling period it was initially provided with. From this informa(ion, the discrete, 
stationary Kalman gain is computed and used in an optimum state observer. The estimated position is plotted and 
contrasted with the measurement signal. (Please see appendix B) 

Hardware Setup 
Once the design proves successful, you may readily convert your Kalman IiIter to a form that is implementable on 
TMS320C25 processor. For our implementation experiment we use the setup as appears in Figure 1. We used the 
IBM PC with a 80386 processor and 80387 co-processor to emulate the motor, in realtime. The C program on the 
PC was also responsible for the generation of the uncorrelated normally distributed random disturbance and 
measurement noise. We used the IBM Data Communication Card to DIA and AID our data. Through the 
communication card and Texas Instruments AlB board we could connect our emulated system to a TMS320C25 
processor board. Needless to say, the TMS32OC25 processor board was responsible for the implementation of 
Kalman filter and the initiation 
of the two A/Ds and one D / A with a sampling period of 1 ms on the AlB board. 

The filter we implemented embodies the generic form of equation 4 in the section entitled, "Application of Kalman 
Filtering in Motion Control Using DSPs." The state equations which were finally implemented are: 
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xl(n+l) = xl(n) + al~(n) +azyp 

~(n+l) = bOu(n) + bl~(n) + b2yp 
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where: 
a1 .. 0.0020 
~. 0.1737 

bO" 16.000 
bl = 0.9905 
b2" 0.0008 

][1 is the estimated positiOn 
~ is the estimated velocity 
lin is the input signal, u, plus the disturbance ud 
yp is the measured signal corrupted by noise wm 

(Please see appendix B) 

Theoretical Background for Designing Kalman Filter 

Let's present a continuous time system by the following state equations. 

x(t) .. a(t)x(t) + b(t)u(t) + w1(t) 

y(t) = c(t)x(t) + w2(t) 

where wI(t) and w2(t) are the state excitation noise and the measurement noise respectively. 

(1) 

The joint process of the two noise signals (i.e. col[wt w2J) can be expressed, as white noise, by the intensity matrix, 
V(t): 

E{ col[wt(tt) W2(tt)][w?(tv wl(tvll • 

V(t1) (tl • tV 

When the two noise signals are uncorrelated vl2 = v21 = 0 
and the intensity matrix becomes: 

V(t) .. 

We can form the full order observer as: 

~(t) = a(t)~(t) + b(t)u(t) + K(t)[y(t) • c(t)~(t)l 
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(2) 

(3) 

(4) 



The rec:oDStruetion error can be defined as: 

e(t) = x(t) - ~t) (5) 

Further we define the mean square l'CCOIIStruc:tion error as: 

E{ e T(t)W(t)e(t)} (6) 

where W(t) is a positive-defmite symmetric matrix. 

The mean square reconstruction error value is a criterion to measure the observer's reconstruction capability. 

So, the design problem can be stated as: DcsiKn K(!} such that the mean square reconstruction error is minimi7&d. 

It can be proven that the solution to the optimum observer problem can be obtained from: 

(7) 

Where O(t) is the solution of the matrix Riccati equation: 

O(t) = a(t)O(t) + O(t)aT(t) + vl(t) - 0(t)cT(t)vi1(t)c(t)0(t) 

(8) 

Therefore, the design process starts with obtaining all information regarding the procc.~ and the initial conditions 
for the estimated states. In addition, you need to obtain the values for the disturbance covariance matrix, Vt, and 
the measurement covariance matrix, v2. This information helps you solve the matrix Riccati equations (8). 

In the time-invariant case where all the matrices of equation 8 are constant, the steady-state solution to the 
observer's Riccati equation (8) can be obtained from: 

(9) 

Accordingly, "the steady-state optimum observer Sain matrix" can be calculated as: 

(10) 

Notice that in the time invariant case, there is always a trade off between the observer's speed and the immunity to 
the observation noise. In terms of design practice, one may experiment with the two factors of observer speed and 
noise immunity. To do this: keep vl constant, choose a positive-definite symmetric matrix for v2 with a positive 
scalar multiplier m. Clearly, increasmg m will increase the state reconstruction speed. The value for m may be 
increased to a pOint that while the observer attains a fast speed, noise immunity is not compromised. 
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Example: 

Let's assume that our plant is a motl)r, disturbed by a zero mean white noise external torque, T d' and our shart 
position measurement is corrupted by a zero mean white noise, Mn, uncorrelated to the disturbance noise. This 
plant can be modeled as: 

9(5) Km 

where ~ =[l/K.r] (KT is motor torque constant) and Tm = RJ/K.r2 (R is the armature resistanc and J is the 
total inerllalload.) 

In terms of state equations: 

1 

x(t) + u(t) + x(t) = [ : 111m 

The state disturbance noise intensity, vd may be obtained from the variance of the torque disturbance and the 
frequency range over which it is active. . 

torque disturbance variance 

2( active frequency range) 

The same for the measurement noise intensity, vm 

v = m 

Measurement noise variance 

2(active frequency range) 

from this inform/ltiori VI and v2 can be obtained as follows: 

0 0 

VI = 

0 vd/J2 

and 

v2 = vm 

The above information enables us to solve equation 9 for Q and plug in the result in equation 10. The solution 
obtained for the optimum observer gain, K can be used in our reconstruction equation (i.e., equation 4). 
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APPENDIX A 

Model For. DC Motor 
The model equations are obtained using the physical relation between the variables in each functional block. We 
use Laplace operator, S, to simplify the solution method; but remember that "5" is an appropriate operator only for 
linear systems. The mathematical model of a dc motor will allow us to simulate the system dynamic response on a 
computer before an actual design. 

PIIyIIaII MCIdII ... --
.. L 

t ~ e VII 

I 

Figure 1 shows an electromechanical block diagram of a DC motor. This model describes the relationship between 
the voltage applied across the armature winding ,0, and velocity, w. 

Where R 
L 
J 
B 

~ e 

armature's resistance 
armature's inductance 
motor inertia 
viscous damping coefficient 
Torque constant 
back emf voltage constant 

Using figure I, the relationship between (5) and U(5) can be written as: 

00(5) 

u(s) 

1 

U s2 +(R/L + B/J)s + RB + ~Ke/U 

Equation 1 describes a second order model for a DC motor. In MKS system, Ke = ~. 

00(5) 1 

u(s) u 52 + (R/L + B/J)s + RB + ~2/U 

In a practical motor the roots of the denominator, ·poles" are in general real and negative. These roots are: 

1.. 1,1.. 2 = (-1/2)(R/L + B/J) + /- j!/2 (R/L + B/J)2 - 4(RB + ~)/U 

For a step-wise input voltage to a motor, u(s) = 1/s, output velocity is: 
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1 1 (1) 
(0(5) = 

5 u 

The model presented by the above equation can be simplified to a first order model using the following 
assumptions. The fust assumption is that the electrical time constant, 1 e' in most conventional DC motors is much 
shorter than the mechanical time constant, 1 m. This will let us ignore the term s.L in equation 1. 

(0(5) 

U(5) RJs + RB + Kr.2 

The second assumption is Kr. 2 > > RB 

(0(5) 

u(s) 

1 1 

1 + RJ 5 

Kr.2 

Where 1 JD = RJ/Kt2 is the mechanical time constant. So, for a stepwise input voltage applied to the armature 
winding the shaft speed w(s) is given by: 

1 1 1 
(0(8) = 

S 

Extending this relation to the angular position, will result in: 
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8(6) 

u(s) 
'" 

S(1 mS + 1) 



% 
% 
% 
% 
% 
% 
% 

AppendlxB 

DiscnJte 7ime, Sllltionary KIllman FilteT 

In this segment of program you will enter the 
continuous time system motrices a,b and c. 
We assume d = O. 

subplot (211) 
input ('input the continuous time system matrix a: ') 
a = ansi 
input('input the continuous time input vector b: ') 
b=ans;/ 
input('input the continuous time output vector c::. ') 
c=ans; 
% 
% 
% 
% 
% 
% 
% 

At this point you will enter the sampling period, T. 
This value efUlbles your program to discretize the 
entered system equations. 

input('input the sampling period T: ') 
T = ansi 
% 
% 
% 
% 
% 
% 
% 
% 

At this point you will be asked to enter the 
statistical information about the disturlHlnce 
noise and the measurement noise. For more 
information please refer to the document entitled 
"theoretical background. " 

input('input the system disturbance vector g: ') 
g = ansi 
input('input the disturbance covariance matrix q; ') 
q = ansi 
input('input the variance value for the disturbance vard: ') 
vard = anSi 
input('input the variance value for the measurement varm: ') 
varms = anSi 
r=varm/1OOO; 
% 
% 
% 
% 
% 
% 

In this part you will enter any known input signal from 
which the program will generate the total input. 

input('Enter the input u') 
u2 = ansi 
[A,S] = c2d(a,b,T) 
pause 
u=rand('normal'); 
ul = rand('normal'); 
u=vard*rand(300,l); 
u=u+u2; 
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ul .. varm*rand(300,I); 
% 
% 
% 
% 
% 
% 
% 

At this point program can simulate the 
actual positioo and velocity signals as well as the 
optimum discrete observer gains. 

yp = dlsim(A,B,c,O,u); 
yv = dlsim(A,B,[O 1],O,u); 
q1 = vard/1000; 
q = q1*q; 
[L,M,P] = dlqe(A,T*g,c,q*T,r/T) 
pause 
t = 1:1:300; 
plot(t,yp) 
title('Real Position vs. TilJle') 
grid 
ylabel(,Pos in Rad') 
plot(t,yv) 
title('Real Velocity vs. TilJle') 
grid 
x1abel('Twe in II of S8IJlpling Periods') 
ylabel('Vel in Rad/s') 
pause 
yp = yp+ul; 
plot(t,yp) 
title('Measured POI vs. Twe') 
grid 
ylabel('Pos in Rad') 
x = [O;OJ; 
% 
% 
% 
% 
% 
% 

Using the Kalman gain, the program will structure a 
recursive equation for the optimum estimation process. 

kgain = A-L*c; 

for i = 1:1:300; 

end 
% 
% 

x = kgain*x+ B*u(i,l) + L ·yp(~I); 
pos(~l) = x(l,1); 
vel(i,I) = x(2,I); 

% 
% 
% 

At this point the program will plot the estimated 
position and velocity, and contrast them against 
measured ones. 

% 
plot(t,pos) 
titlc('Estimated POI vs Twc') 
grid 
ylabel('Pos in Rad') 
x1abel('Time in II of Sampling Periods') 
pause 
plot( t,yp,'.' ,t,pos) 
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title('Measured & Estimated Pos vs. Time') 
grid 
ylabel('Pos in Rad') 
plot(t,yv,'.',t,vel) 
title('Actual & Estimated Vel vs. Time') 
grid 
ylabel('Vel in Rad/s') 
xJabel('Time in /I of Sampling Periods') 
metamm 
subplot 
end 
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AppendixC 

(}(}()1 ..................................................... 
(}(}()2 • • 
(}(}()3 • Ko1man Filtering using TMS32OC25 
(}(}()4 • • 
(}(}()5 •••••••••••••••••••••••••••••••••••••••••••••••••••• 
()(J()6 

0007 
(}()()9 ()(}()() text 
(J(JIO ()(}()() TEMP .equ Oh ;For temportary storage 
(J(Jll 
(J(J12 (}(}()I yp .equ Ih ;BLOCK BO FOR STATE 

VARIABLES 
(J(J13 (}(}()2 VN .equ 2h ;DATA MEMORY 
(J(J14 (}(}()3 XNL .equ 3h 
(J(J15 (}(}()4 XNH .equ 4h 
(J(J16 (}(}()5 UN .equ 5h 
(J(J17 • 
(J(J18 • 
(J(J19 (}()()6 A2 .equ 6h ;THEY STORE THE 

COEFFICIENTS 
(J(J20 0007 Al .equ 7h 
0021 0008 B2 .equ 8h 
0022 (}()()9 Bl .equ 9h 
0023 OOOA BO .equ OAh 
0024 • 
(J(J25 
(J(J26 ()(}()() .asect "AORG(J(J" 00h 
(J(J27 ()(}()() FFBO B STRT 
(}(}()1 (J(J20 
(J(J28 
(J(J29 
(J(J30 
(J(J31 ()(}()() .data 
(J(J32 (J(JI0 .aseet ''AORGOl" lOh 
(J(J33 
(J(J34 0010 1387 RATE .word 4999 ;samplingperiod 1 msee {= (5MHz 

/(RATE+l)J 
(J(J35 (J(Jll (J(JFA MODE .wor,) OFAh ;For AlB initization 
(J(J36 
(J(J37 
0038 
(J(J39 
0040 ()(}()() . .text 
0041 (J(J20 .aseet ''AORG02" 20h 
0042 
0043 • 
0044 • 
0045 • Start main program 
0046 • 
0047 • 
0048 
0049 
(J(J50 0020 STRT: .equ $ 
(J(J51 (J(J20 CE06 RSXM ;TURN OFF THE SIGN 
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EXTENTION MODE 
oo52 
oo53 0021 CBOO LDPK 0 
oo54 0022 5589 LARP ARI 
oo55 
oo56 
oo57 0023 Cloo LARK ARl,O :ZERO THE DATA 

MEMORY (Oh TO Sh) 
oo58 0024 CAoo ZAC 
oo59 0025 CB07 RPTK 7 
0060 oo26 6OA0 SACL *+ 
0061 
0062 
0063 
0064 * 
0065 • Initialize the coefficients 
0066 * 
0067 
0068 
0069 
0070 oo27 DOOI LALK. 712,0 :STORlNG COEFFS IN DATA 

MEM (A2 = .1737012) 
0028 02C8 

0071 0029 6006 SACL A2,O ;AND XFER THEM TO 
PROGMEM 

0072 
0073 002A DOOI LALK 8,0 :(AI = 0.002 STORED IN 

012) 
002B 0008 

0074 OO2C 6007 SACL AI,O 
0075 
0076 002D DODI LALK 3,0 :(B2 = 0.(}()()7324 STORED 

IN 012) 
oo2E (}()()3 

0077 oo2F 6008 SACL B2,O 
0078 
oo79 0030 DODI LALK. 4057,0 ,'(BI = 0.9905 STORED IN 012) 

0031 'OFD9 
0080 0032 6009 SACL Bl,O 
0081 
0082 0033 DODI LALK 4(}96,0 :(BO = 16 STORED IN 08) 

oo34 I(}()() 
0083 0035 600A SACL BO,O 
0084 
0085 
0086 
0087 *-
0088 • Initialize the AlB board 
0089 . -------------
0090 
0091 0036 LOOP: .equ $ 
0092 0036 CAIO LACK RATE ;AlB BOARD SET FOR I MS 

SAMPLlNG.RATE 
0093 • ;AND FOR 2ANALOG TO 

DIGITAL 
CONVERTERS 

0094 0037 5800 TBLR TEMP 
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0095 0038 EIOO OUT TEMP,I ;WRlTE THE SAMPLING PERIOD 
TOAIB 

0096 * ;BOARD PORT I 
0097 
0098 0039 CAll LACK MODE ;INITIALlZE THE AlB BOARD 
0099 OOlA 5800 TBLR TEMP ; 
0100 003B EOOO OUT TEMP,O ;WRITE THE SAMPLING PERIOD 

TOAIB 
0101 * ;BOARD PORT 0 
0102 003C CE08 SPM 0 ;reset the P register output shift mode 
0103 
0104 
0105 
0106 
0107 003D FA80 WAlT: BIOZ TAKE ;WAIT FOR THEA/D 

INTERRUPT COMES 
003E 0041 

0108 003F FF80 B WAlT 
0040 003D 

0109 
0110 
0111 
0112 
0113 *==================================== 
0114 * 
0115 * Stl11t doing each sampling calculations 
0116 * 
0117 *==================================== 
0118 
0119 
0120 0041 TAKE: .equ $ 
0121 
0122 0041 8201 IN yp,2 ;TAKE SAMPLE OF FIRST ADC--

STORE IN yP 
0123 0042 8305 IN UN,J ;TAKE SAMPLE OF SECOND 

ADC - STORE IN UN 
0124 
0125 OO4J CAOO ZAC ;CLEAR ACCUMULA TOR 
0126 
0127 0044 JC01 LT yP ; 
0128 0045 3806 MPY A2 ;P REG. = A2*YP SHIFTED 4 

PLACES LEFT 
0129 0046 CEOA SPM 2 
0130 
0131 
0132 0047 3D02 LTA VN ;MULT REG = A2*YP SHIFTED 4 

PLACES LEFT 
0133 0048 3807 MPY Al ; 
0134 0049 CEOB SPM 3 ;RlGHT SHIFT 6 PLACES 
0135 004A CE15 HAC ;ACC = A1*VN + A2*YP 
0136 
0137 OO4B 4903 ADDS XNL ;ADD XNH,xHL TO ACC 
0138 OO4C 4804 ADDH XNH 
0139 
0140 OO4D 6003 SACL XNL,O ;SAVE THE NEW STATE VALUE 
0141 OO4E 6804 SACH XNH,O 
0142 
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0143 
0144 
0145 
0146 004F CAOO ZAC ;CLEARACCUMULATOR 
0147 
0148 0050 3809 MPY B1 ;P=B1*VN 
0149 0051 CEOA SPM Z 
0150 
0151 0052 3005 LTA UN ;ACC=B1*VN 
0152 0053 380A MPY BO ;P=BO*UN 
0153 
0154 0054 CEOB SPM 3 ; 
0155 0055 3D01 LTA W ;ACC = B1·VN+BO*UN 
0156 0056 3808 MPY B2 ;P=W*B2 
0157 0057 CE15 APAC ;ACC = BZ·W + BI·VN + 

BO*UN(RESULn 
0158 • ;lS SHIFTED LEFT 4 PLACE TO 

MAKE 
0159 • ;BO Q12 AND THUS BO·UN Q1Bu 
0160 
0161 0058 6802 SACH VN ;STORE THE NEWVN 
016Z 
0163 0059 E205 OUT UN,Z ;CHECK TO SEE IF OPERATION 

ENDED 
0164 

0165 OOSA FFBO B WAIT ;BACK FOR MORE SAMPLES 
005B 003D 

0166 
0167 END 
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Implementation of a PID Controller on a DSpt 

Karl J ohan Astrom 
Department of Automatic Control 

Lund Institute of Technology 
Lund, Sweden 

1. Introduction 

The PIDcontroller is by far the most com­
monly used control algorithm. [Deshpande 1981] 
Although it is of limited complexity it can be used 
to solve a large number of industrial control prob­
lems. The textbook version of the PID controller 
can be described by the equation 

u(t) = Xc (e(t) + ~i t e(s)ds + Tel ~~») (1) 

where u is the control variable and e is the control 
error, defined as e = 'Y,p - 'Y, where 'Y,p is the set 
point and 'Y is the process output. The parameters 
of the controller are: gain Xc, integral time Ti, and 
derivative time Tel. 

The purpose of the integral action is to in­
crease the low-frequency gain and thus reduce 
steady-state errors. Derivative action adds phase 
lead, which improves stability and increases sys­
tem bandwidth. 

Implementation of a PID controller using a 
DSP will be discussed in this paper. A lot of expe­
rience has accumulated over many years of use of 
the algorithm. This has led to significant modifica­
tion of the algorithm (1). These modifications will 
be discussed in Section 2, where the discretization 
issues are also dealt with. The result is a nonlinear 
digital algorithm that is suitable for implementa­
tion on a general purpose digital computer. 

The algorithm can be implemented in a 
straightforward way in a DSP with floating point 
hardware. Implementation using an ordinary DSP 
does, however, require special considerations, be­
cause all calculations have to be made in integer 
arithmetic. These issues are discussed in Section 3; 

, Part of this work was done when the first author was 
visiting professor and the second author a graduate student 
at the University of Texas at Austin. 

Reprinted with permission from author. 

Hermann Steingrimsson 
Graduate School of Business 

University of Wisconsin 
Madison, Wisconsin, USA 

Some special problems related to quantization in 
AD- and DA-converters are discussed in Section 4. 
An overview of the DSP code for a PID controller is 
described in Section 5. The complete code is given 
in the Appendix. In Section 6 it is described how 
the code can be tested. The tests given include both 
linear and nonlinear behavior. 

2. Modification and 
Discretization 

The algorithm (1) has several drawbacks. Signifi­
cant modifications of linear and nonlinear behavior 
are necessary in order to obtain a practically use­
ful algorithm. See [Astrom and Hagglund 1988]. 
To obtain equations that can be implemented us­
ing computer control it is also necessary to replace 
continuous time operations like derivation and in­
tegration by discrete time operations. See [Astrom 
and Wittenmark 1990]. These modifications will be 
described in this section. 

Proportional Term 

The proportional term Xce(t) is implemented sim­
ply by replacing the continuous time variables with 
their sampled equivalences. One additional modifi­
cation set point weighting [Astrom and Hagglund 
1988] has been found useful. This means that the 
proportional term only acts on a fraction b of the 
command signal. The proportional term then be-
comes 

P(tlc) = X c (b1l,p(tlc) - 1I(tlc» (2) 

where {tic} denotes the sampling instants. The 
parameter b admits independent adjustment of set 
point and load disturbance responses. It may also 
be viewed as "zero-placement". 
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Integral Term 

When a controller operates over a wide range of op­
erating conditions, the control variable may reach 
actuator limits. The feedback loop is then broken 
and the system effectively runs open loop. When 
this happens in a controller with integral action, 
the error will continue to be integrated and the 
integral term may become very large. The integra­
tor "winds up". The error must then change sign 
for a long period of time to "unwind" the integra­
tor and bring the system back to normal. Windup 
can also cause problems when the controller is im­
plemented on a microprocessor having finite word 
length. Since the processor can only store numbers 
limited in magnitude, windup may cause overllow 
oscillations in the control variable, unless satura­
tion arithmetic is used. 

There are several ways to avoid windup. One 
possibility is to introduce an extra feedback loop 
by measuring the output from the actuator and 
forming an error signal as the difference between 
the controller output v, and the actuator output u. 
If the output of the actuator is not available, the 
signal may be computed by using a mathematical 
model of the actuator. The error signal is fed 
to the input of the integrator through the gain 
11Th where the constant Tt is called the tracking 
time constant. The extra feedback will ensure that 
the integral obtains a value so that the controller 
output tracks the saturated output. Tracking is 
accomplished with the time constant Tt . Using 
this method of avoiding windup the integral term 
becomes 

let) = ~; ! e(s)ds + ~t ! (u(s) - v(s))ds (3) 

To obtain an algorithm that can be implemented 
on a computer, the integral term let) is differenti­
ated 

dl(t) = Kc e(t) + !. e.(t) 
dt T; Tt 

where e.(t) = u(t) - vet). Approximating 
derivative by a forward difference gives 

l(tle+l) - I(tlc) = Kc e(tlc) + !. e.(tlc) 
h T, Tt 

the 

where h is the sampling period. Finally, by rear­
ranging terms, we get the following equation to 
compute the integral term 

f(tlcH) = f(tlc) + i;.h e(tlc) + ;t e.(tlc) (4) 
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Derivative Term 

A pure derivative should not be implemented, 
because the controller gain becomes very large at 
high frequency. This leads to amplification of high­
frequency noise. The derivative term is therefore 
approximated by 

(5) 

Notice that the approximation is good for signals 
whose frequency contents are significantly below 
N lTd. Also notice that the approximating transfer 
function has a maximum gain of N. Parameter 
N is therefore called maximum derivative gain. In 
analog controllers N is given a fixed value, typically 
in the range of 5-20. 

It is also advantageous not to let the derivative 
act on the set point signal. The set point is constant 
for most of the time and its derivative is therefore 
zero. A step change in the set point may, however, 
cause an undesirable jump in the control variable 
if the derivative acts on the set point. With these 
modifications the derivative term can be written as 

There are several methods to approximate the 
derivative. Common methods are the forward dif­
ference approximation, the backward difference 
approximation, Tustin's approximation and ramp 
equivalence. See [As tram and Wittenmark 1990]. 
These approximations all have the same form 

D(tlc) = aD(tlc_l) - b(y(tlc) - y(tlc-l») (7) 

and are stable only if lal < 1. The forward differ­
ence approximation is stable if,Td > Nh12. It thus 
becomes unstable for small values of Td. Tustin's 
approximation has the disadvantages that a goes to 
1 as Td goes to zero. This gives a ringing response 
for small Td. The ramp equivalence approximation 
gives exact outputs at the sampling instants if the 
signal is continuous and piece wise linear between 
the sampling instants, but it requires computations 
of an exponential. The backward difference approx­
imation gives good results for all values of Td, The 
parameter a goes to zero as Td goes to zero. Here 
the backward difference approximation is chosen. 



The following is obtained when Equation (6) 
is approximated by a backward difference: 

Rearranging terms, gives (7) with 

a= Td and b= KcTdN 
Td+ Nh Tel + Nh 

which is the formula that will be used to compute 
the derivative term. 

The PID Algorithm 

Summarizing we find that a practical version ofthe 
PID algorithm can be described by the following 
equations: 

P(tTe) = Kc (b1l.p - 1I(tTe» 

D(tTe) = aelD(tTe_l) + bel (1I(tTe-l) - 1I(tTe» 
v(tTe) = P(tTe) + J(tTe) + D(tTe) 

u(tTe) = f(v(tTe») 

J(tTe+1) = J(tTe) + b.(1I,p - 1I(tTe») 

+ bt(u(tTe) - v(tTe» 

(8) 

This algorithm has anti-windup reset, limitation of 
derivative gain (N) and set point weighting (b). 

The function / describes the nonlinear charac­
teristic of the actuator. For a linear actuator with 
saturation at Urn ... and Urnaz we have 

{ 
Urnaz if v(tTe) > Urn. 

f(v(tTe» = Urni.. ifv(tTe) < Urn ... 

v( tTe) otherwise 
(9) 

Since Equations (10) have to be updated only 
when the controller parameters are changed, the 
code should be organized so that parameters ael, 
bel, b. and be are computed initially and when the 
PID parameters are changed. This will reduce the 
computational load during the execution of the 
PID algorithm. The structure of the PID algorithm 
given by Equation (8) is shown in Figure 1. Notice 
that the algorithm is in parallel form. 

The PI algorithm 

In many cases the derivative action is not neces­
sary. The algorithm then reduces to 

P(tle) = Kc (b1l.p - 1I(tTe» 
v(tTe) = P(tle) + J(tTe) 

u(tTe) = f(v(tTe») 

J(tlc+l) = J(tTe) + b.(1I.p - 1I(tTe») 

+ bt(u(tTe) - vetTe») 

(11) 

which is a PI controller with anti· windup reset and 
set point weighting (b). 

The function f is the same as in Equation (9) 
and the parameters b. and bt are related to the 
parameters K c , T. and T, as follows: 

bi = KchlT;. 

b, = hiT, 
(12) 

which is the same as Equation (10). The reason for 
considering this special case is that PI controllers 
are in fact more common than controllers with 
derivative action. 

Y 

For actuators with other limitations the function f Y-,s::c..._--+J. ___ J 
should be modified. The parameters ael, bel, bi and 
b, are related to the primary parameters K c, T., Y 
Tel, Tt and N at the PID controller as follows: ::...-------+1 

ael = TeI+ Nh 

b _ KcNTeI 
eI- TeI+ Nh 

b. = KchlT;. 

bt = hlTt 

(10) 

L...-_--' 

Figure 1. Structure of the PID controller with 
anti-windup. 
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Table 1. Number of arithmetic operations for PI 
and pm control. 

PI PID 
M A M A 

P 2 1 2 1 
D 0 0 2 2 
v 0 1 0 2 
f X X X X 
I 2 4 2 4 

Tot 4 6 6 9 

Operations Count 

It is a common practice to estimate c()mputation 
times by a simple operation cOWlt. This can be 
strongly misleading when using fixed point calcu­
lation, because much of the ~omputation time may 
be spent on overflow handling and scaling. Table 1 
shows the minimum number of multiplications and 
additions required for the PID and PI algorithms. 
The PID algorithm requires 15 arithmetic opera­
tions, while the PI algorithm requires 10 opera­
tions. 

3. Implementation Issues 

Implementation of a PID-controller using a DSP 
with fixed point will now be discussed. General 
practice on implementing algorithms for DSP are 
given in [Texas Instruments 1986], [Texas Instru­
ments 1989a], [Texas Instruments 1989b], [Texas 
Instruments 1990a] and [Texas Instruments 1990b]. 

To perform fix-point calculations it is neces­
sary to know orders of magnitude of all variables. 
Simulations were performed to get this informa­
tion. In the simulations the process model 

1 
G(s) = (s + 1)4 

was used. Figure 2 shows the step response of 
the system with parameters K" = 0.6, T" = 0.5, 
7i = 2.2, Tt = 0.5, N = 8, and a sampling period 
of 0.1 s. At the time t = 0.3 s a load disturbance 
of 0.3 V is introduced. 

Two C-programs were written to test the ef­
fects of scaling and roundoff. One pr<>gram imple­
ments the PID controller in double precision arith­
metics with no attempt to simulate the effect of 
finite word length. The other program simulates 
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Figure 2. Step response of the s,.stem. 

the Texas Instruments DSP by using a 32-bit ac­
cumulator and a 16-bit word length. The effect of 
using different resolution of the A/D- and DI A­
converters can also be simulated. 

Selection of Sampling Period 

There are several rules of thumb for choosing the 
sampling period for digital controllers. For a PI­
controller the sampling period is related to the 
integration time. A rule of thumb [Astrom and 
Wittenmark 1990] is 

h 
7i ~ 0.1- 0.3 

A PID controller requires a much shorter sam­
pling period. The sampling period should be short 
enough 80 that the pole II = - NIT", introduced to 
limit the high frequency gain of the derivative, can 
be approximated appropriately. This leads to the 
following rule of thumb: 

hN 
T" ~ 0.2- 0.6 

See [Astrom and Wittenmark 1990]. 

Integral Offs~t 

ROWldoffmay give an offset when the integral term 
is implemented on a computer with a short word 
length. This can be understood as follows. Consider 
the equation for the integral term in Equation (8). 
The correction term bce(tlo) = KchlTi ·e(tlo} is usu­
ally small in comparison to l(tlo} and may there­
fore be rounded off. With fractional arithmetic, the 
largest magnitude of the correction term is Kch/7i. 
To avoid roundoff, it is therefore necessary to have 
a word length of at least 

um.b f b · loge K"h/n} 
n er 0 Its = - log(2) 



More bits are of course required to obtain meaning­
ful values. For example, with h = 0.02 s, ~ = 10 s 
and Ke = 0.1 the number of bits required to obtain 
less than 5% error in the integral requires a word 
length of at least 

number of bits = 10g(0.0002 . 0.05) I::l 11 
log(2) 

Longer sampling periods for computing the inte­
gral may be used to avoid the offset. This can be 
done simply by adding the error over each sam­
pling period and updating the integral term in reg­
ular intervals. Another way to avoid offset due to 
roundoff is to store the integral with higher preci­
sion. In most DSPs (like the TMS320xx) values can 
be stored in double precision, with little overhead. 

Scaling 

The PID controller given by Equations (8) is 
already in parallel form, with the modules of zero 
and first order. Figure 1 illustrates the realization 
of the controller. Because of the parallel form, the 
P, I and D terms can be scaled and computed 
separately and then unified to form 11. 

Coefficient Scaling 

Because of the wide number range of the param­
eters, some restrictions must be imposed on the 
magnitude of coefficients. It Collows from Equation 
(10) that bd is the largest parameter. A limit should 
therefore be set on the gain K a, and the high­
frequency derivative gain N. H Kc and N are lim­
ited to 16, we have bd < KeN = 256 and Kc ~ 16. 
These parameters must therefore be divided by 256 
and 16 respectively before they are stored. To re­
store the magnitude of the signal, the derivative 
term must be shifted left by 8 bits and the propor­
tional term shifted left by 4 bits. 

The other parameters, ad, bi and bt are within 
the number range, but because b. and bt may 
become very small, it is advantageous to also set a 
lower limit on hiT. and hlTt • 

Signal Scaling and Saturation Arithmetic 

It must be insured that overflow does not occur 
when computing the states of the controller. With 
the structure of the PID controller shown in Fig­
ure 1 the states are D(tlo) and I(tlo+1). Care must 
also be taken so that overflow does not occur when 
the P, I and D terms are added to obtain 11. 

0.6 

0.5 

0.4 / 
0.3 
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0.1 

-0.1 

-0.2 
0 5 10 15 20 25 30 35 40 

s 
Figure S. The term. of the pm controller. 

The proportional term will always be within 
the number range, since the multiplication of a 
fraction with a fraction gives a fraction. Overflow 
can occur if K c is larger than 1 when the magnitude 
of the signal is restored. It is thereCore necessary 
to use saturation arithmetic when computing the 
proportional term. 

One additional advantage of using the anti­
windup reset when computing the integral term 
is that the integral is within the number range. 
Saturation arithmetic is therefore not necessary. 
Integration can result in overflow if anti-windup 
is not used or if 7t is chosen poorly. Saturation 
arithmetic should therefore be used before the 
integral is stored. 

Since the derivative depends only on the pro­
cess output, it is difficult to use analytic scaling 
methods effectively. It is easy to predict the worst 
possible input, but Cor most processes that would 
be too pessimistic. A good engineering approach is 
therefore to simulate the closed loop system and 
store the output of the derivative for a few repre­
sentative examples. The derivative should normally 
not account for more than 20% of the control sig­
nal. Since bd can take large values, saturation arith­
metic should be used before storing the derivative. 
A number of simulations were made in order to 
obtain typical orders of magnitude of the propor­
tional, integral and derivative term. It turns out, 
that under normal operation conditions, the vari­
ables are within the number range. Since we are 
allowing a gain larger than one, it is very likely 
that an overflow will occur under some operation 
condition, for example during start-up. Saturation 
arithmetic is therefore used on both states and on 
the control signal 11. Figure 3 shows Simnon plots 
of the P, I and D terms for step response and load 
disturbances, for the process and the controller pre­
viously used. 
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Gain, Input and Output Scaling 

To implement a high gain (Ke > 1) one can 
either include the gain in the digital algorithm 
or move the gain "outside" of the DSP by using 
a linear amplifier. The advantage of the latter 
approach is that the control algorithm can be 
scaled to eliminate the danger of overflow and 
therefore avoiding the large overhead associated 
with saturation arithmetic. This gives a shorter 
code and a faster controller. But there is also a 
disadvantage. Under normal steady-state operation 
the error is small and any changes in the control 
signal will be a relatively small part of the whole 
dynamic range. A change in the control signal of 
one quantization step will be amplified, resulting 
in a large jump. It may also give rise to limit 
cycles. When a high gain is incorporated in the 
DSP code, saturation arithmetic must be used on 
internal calculations. 

4. Quantization Effects 

Issues related to the interfacing of the DSP to the 
plant will now be considered. The key questions 
are related to quantization of A/D- and DI A­
converters 

Quantization of the Set-Point Value 

When implementing the controller the set point 
should be quantized in the same way as the 
controller input. That is, the set-point value should 
either be read through the same, or a similar, A/D­
converter as is used for the input signal (if A/D­
converter is being used) or quantized internally by 
using the same resolution as of the AID-converter. 
If this is not done there may be an offset or a 
limit cycle due to the quantization. Figure 4 shows 
the result of a simulation, when a 6-bits A/D­
converter is used for the input signal but the set­
point value of 0.455 V is represented with a 16-
bit accuracy. The system goes into a limit cycle 
with a period of 6.77 seconds and an amplitude 
of 3.8 mY. The reason for this is that the set­
point value of 0.455 V can not be represented by 
the 6-bits AID-converter. In steady-state the error 
between the process output and the set-point value 
will be either 17.5 mV or -13.8 mY. This error 
will be summed up by the integrator, resulting in 
a limit cycle. 
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Figure 4. Limit cycles due to high resolution of 
the set point. 
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Because the limit cycle is very close to a si­
nusoid it is reasonable to assume that the period 
and the amplitude of the limit cycle can be pre­
dicted by using describing function analysis. Since 
the system is in steady-state and the oscillation 
corresponds to one quantization step of the A/D­
converter, we can assume a zero set-point value and 
model the AID-converter by a relay nonlinearity 
centered around zero with the quantization limits 
+0.00157 and -0.00157. The describing function for 
this nonlinearity is 

N(A) = 2q = 0.0199 
7ra a 

where a is the amplitude of the input signal and q 12 
is half the quantization step. The calculations are 
simplified if the digital PID-controller is approxi­
mated by a continuous-time PI-controller with the 
transfer function 

K 
Ge(s) = K +­

Ts 

where K = 0.6 and T = 2.2. Possible limit cycle is 
given by the equation 

1 + Yq(A)L(jw) = 0 

Which is equivalent to 

-1 
L(jw) = N(a) (13) 

where L is the loop transfer function of the con­
troller and the process, in cascade, i.e. 

Ls_ K +TKs 
( ) - Ts(s + 1)4 "(14) 



Since the describing is real-valued, one simply has 
to find the intersection of L(jw) with the negative 
real axis. When jw is substituted for. in Equation 
(14) we get, after separating the real and the 
imaginary part 

. K(A(w) + iB{w» 
L(Jw) = T{4w4 _ 4w2)2 + (w5 _ 6w3 + w)2 (15) 

where A = T{w8 - 6w4 + w2) + 4w4 - 4w2 and 
B = T{4w5 - 4wS) - w5 + 6ws - w). The problem 
is therefore reduced to finding the frequency where 
the imaginary part is zero, i.e. 

7.8w4 - 2.8w2 - 1 = 0 (16) 

The equation has one positive real root w = 0.7616, 
which corresponds to a limit-cycle period of 8.25 s. 
This is longer than the period T = 6.778, obtained 
in the simulation. The amplitude of the limit cycle 
is then determined by solving Equation (13) for 
w = 0.7616, which gives a = 5.6 mY. The value 
a = 3.8 mV was obtained in the simulation. 

A/D- and D / A-Conversion 

If the controller is interfaced to the plant by A/D­
and D I A-converters the effect of the resolution 
of the converters has to be determined. Figure 5 
shows the result of one of several simulations where 
the AID-converter has a higher resolution than the 
DI A-converter. A limit cycle was observed in those 
simulations. Because of the higher resolution of 
the AID-converter, the controller produces control 
signals which are not representable by the D/A­
converter. This results in an oscillation over one 
quantization step of the D I A-converter. This phe­
nomenon can also be predicted by using describing 
function analysis, where we assume a zero set-point 
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0.455 

0.45 

0.445 

0.442'-0 --...J25'---'30---3..L5---4.L0---4'-5--...J50 

Figure 5. Response with a lO-bit AID and a 8-
bit D/A. 
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Figure 8. Response with a 8-bit AID and a 10-
bit D/A. 

value and the D I A-converter is approximated by a 
relay. The problem can be avoided by replacing the 
function I giyen by Equation (9) by a function that 
also models the roundoff in the DI A-converter. 

Figure 6 shows a good result when an 8-
bit AID-converter and a lO-bit DI A-converter is 
used when a step input of 0.45 V is applied. 
These observations indicate that using a D I A­
converter with a lower resolution than the A/D­
converter may give rise to a limit cycle. It should 
be emphasized that there are of course many other 
factors which may be responsible for limit cycles. 
There are also many other factors that in1I.uence 
the selection of the resolution of the A/D- and 
D I A-converters, e.g. the required accuracy of the 
system. 

Simulations also showed that a very low res­
olution (down to 4-bits) of the converters did not 
have much effect on the step response of the sys­
tem. The accuracy of the system is, of course, less 
with low resolution converters. Figure 7 shows the 
response of the same system when a load distur­
bance of 0.3 V is introduced at t = 20 s. 

0.7 

0.6 

0.5 .. 
0.4 \ 0.3 

/ \ 
0.2 "-0.1 ~ 

00 5 10 15 20 25 30 35 

Figure 7. Same as Figure 6 but with a load 
disturbance. 
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5. The nSP-Code 

To develop and test assembly code of the PID­
controller on the Texas Instruments Family of 
DSPs the Texas Instruments Software Develop­
ment System (SWDS) was used. This'system con­
sists of a PC-board with a TMS320C25 signal pro­
cessor and PC development environment, which 
has many features. It is possible to set break-points 
and single-step through the program. One useful 
feature is the possibility to specify an input file (or 
files) to the DSP and to direct the output (or out­
puts) of the DSP to an output file. This feature 
makes it easy to test an algorithm, since a prede­
fined input signal can be fed to the controller to 
test its open loop response. 

Programs for PI- and PID-controllers were 
written for the signal processors TMS32010 and 
TMS320C25. The complete codes are given in 
Appendices A, B, C and D. The code for the PID­
controller is organized in the following way: 

INITIALIZE 
load constants from program memory 

to data memory 
clear variables 
load y(n-1) and ysp 
reset external devices (f.ex. analog board) 

PID 
wait for input yen) 
compute derivative (D) 
round off, cheCk for overflow and store D 
compute proportional part (P) 
add D, P and I 
round off, check for overflow and store in v(n) 
compute u(n) from saturation function 
output u(n) 
compute I 
check for overflow and store I 

in double precision 
GO TO PID 

The code for the PI-controller is obtained by 
deleting the computations of the D-term. 

Initialization 

After reset the program jumps into the initial­
ization routine. This part disables interrupts, sets 
overflow mode and loads coefficient. from program 
memory (where they are stored permanently) into 
data memory. Then the states of the controller are 
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cleared, the set point value (yap) is read from PA3 
and the process output (y(n - 1» from PAO. By 
filling up the y-vector before entering the PID loop 
a jump due to the derivative is avoided. The pro­
gram then goes into an infinite loop, to compute 
the control signal. 

Pin Calculations 

The magnitude of the coefficient bd 'of the deriva­
tive term is less than 256. To represent it in the 
DSP it must be scaled by dividing by 256. This can 
be done by shifts. Before the derivative is stored it 
is therefore Shifted left by 9 bits (8 bits plus one 
left shift to account for the extra sign bit which is 
generated in the multiplication). 

The largest proportional gain is 16. The pro­
portional term is therefore divided by 16. It was 
advantageous also to divide the D and I terms by 
16 and restore the signal after the control signal 11 

has been calculated. The same saturation, round­
ing and shifting can then be applied to both the 
derivative term and the control signal. Since the 
derivative must be divided by 16 before it is added 
to the proportional part, it is advantageous to store 
ad divided by 16. A little trick was used to calculate 
the correct derivative. After adD(tli_l) has been 
calculated and stored in the accumulator the term 
bd(y(tli-l) - y(tli» is calculated, and the result is 
stored in the P register. The value of the P register 
is then added 16 times to the accumulator to form 
the correct derivative divided by 16. By doing this 
in overflow mode, overflow results in saturation of 
the accumulator. This would not be the case if the 
value in the accumulator were simply shifted left. 
With the TMS320C25 adding is easily done using 
the repeat instruction. After these calculations the 
derivative is in the accumulator. The proportional 
term is then added to the accumulator to obtain 
(P+D)/16. In this way the proportional term does 
not have to be stored separately. 

To obtain the output 11, the integral computed 
pr~viously is divided by 16 by shifting the value 
right 4 bits. It is then added to P+D in the accu­
mulator. The output then goes through the satura­
tion arithmetic. It is rounded and shifted before it 
is stored as a 16-bit number. The saturation func­
tion f is called to form the final output u. 

Since the control signal u depends on the inte­
gral from the previous sample, it can be converted 
to analog form before the integral is updated. This 
shortens the computational delay between the AID 



Table 3. Cycle count and maximum IILmpling 
frequency for PI- and pm-c:ontrollera. 

PI pm 

DEVICE cy:les KHs cycle. KH. 

TMS32010 94 53 145 34 
TMS320C14 94 66 145 43 
TMS320C25 89 112 141 70 

and D/ A-conversions. To avoid integral offset, the 
integral is computed and stored in double preci­
sion. Saturation arithmetic is performed before it 
is stored, although it is actually not necessary if 
proper anti-windup is used. 

With the chosen method of organizing the 
calculations the P, D and I terms are added, to 
form 11, with a precision of 27 bits. The terms D 
and 11 are then stored with a precision of 16 bits 
and the integral is calculated and stored with a 
precision of 31 bits. 

Saturation Arithmetic. Before the derivative 
or the control signal 11 is stored in memory as a 16-
bit value, it nmst by shifted left by 5 bits, because 
the signal is divided by 16 in internal calculations 
and an additional left shift must be performed to 
account for the extra sign bit generated in the nml­
tiplication. The value is rounded and checked for 
overflow before shirting it. If overflow is detected, 
the value is replaced by the largest positive or neg­
ative number. 

Set-Point Value. The set point is read via 
interrupt. This interrupt is disabled when the 
control value is computed, but is allowed for a short 
period, before the next process output is read. 

Computation Time 

By using the timer on the TMS320C25 it was pos­
sible to count the cycles required for one execution 
of the PID (or PI) loop. To find the number of 
cycles required for one execution of the TMS32010 
(TMS320C14) code, a simple cycle count was done. 
In all instances it is assumed that the internal 
memory of the DSPs are used. 

Table 2 shows the number of cycles for each 
controller 'and the maxinmm sampling frequency 
which can be used. From this table we see that the 
calculation of the derivative consumes a large por­
tion of the total cycles, approximately 50%. The 
reason for this is that the shifting and saturation 
arithmetic on the derivative is complicated, be­
cause the coefficients of the controller are scaled 

Table 3. Cycles count for difFerent parb of the 
PID-controller. 

TMS32010 
OPERATION cycle. 

Derivative 9 

-.. 
- arll 43 

Proportional 7 
Integral Bhifting 12 
BlSB on v 23 
anti-windup 12 
Integral 15 
Integral B.a. 10 
I/O and other 14 

Total 145 

BrBI = saturattoD, round, shift, store 
B.a. = Baturation arithmetic 

TMS32OC25 
cycleo 

9 
45 
7 
8 

23 
12 
13 
10 
14 
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differently. If the coefficients would all have the 
same upper limit the same scaling constant could 
be used and the shifting and saturation arithmetic 
would be simpler and faster. Table 3 shows how 
the cycles are divided between different functions of 
the algorithm. Notice that the division is somewhat 
arbitrary, because it is not obvious when one op­
eration begins and the other ends. The saturation 
arithmetic-, rounding- and shifting-function used 
on the derivative and the output 11 uses 19 cycles, 
the saturation arithmetic on the integral uses 10 
cycles and the anti-windup function uses 12 cycles. 

Notice that the code must be modified if Kc 
and N are to be larger than 16. Also notice that 
the code can be improved if the parameters of 
the controller can be limited to smaller ranges. 
For specific applications, where tighter bounds on 
parameters and controller states are available, the 
code can be shortened drastically by removing 
saturation arithmetic and by simplifying scaling. 

It is interesting to note that a crude time 
estimate, based on the operation count in Table I, 
underestimates the computation time by an order 
of magnitude. 

6. Testing 

To obtain high quality code it is necessary to 
develop good testing procedures. The DSP code for 
the PI and PID controllers were tested by simple 
laboratory experiments to verify that the controller 
worked as a proper PID controller. To ensure that 
the code gives the correct numerical results, the 
following procedure was introduced. Since a PID 
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Figure 8. Test of the proportional and integral 
actions. 

Figure 9. Test of the derivative action. 
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controller is a dynamical system, its behavior can 
be tested by computing its response to given input 
data with known responses. The test can easily 
be automated by storing the data in files. This 
was easily done using the facilities in the Texas 
Instrument Software Development System. This 
section describes how the testing was done. The 
parameters used were K = 0.6, Tel = 0.5, Ti = 2.2, 
Tt = 0.5 and N = 8. Parameters ael, bel, bi and bl 

were calculated by assuming a sampling period of 
0.1 s. 

To test proportional and integral action a 
symmetrical square wave with a period of 40 s 
and an amplitude of 0.1 V was used as an input 
sequence. To get a simple case the parameters of 
the derivative term were set to zero (which is really 
not necessary, since the derivative dies out very 
quickly). This sequence can therefore also be used 
to test a PI controller. Figure 8 shows the input 
and the resulting output. For a constant input the 
outPllt of the controller at the time t should be 

tK 
'U(t) = Tie e + 1(0) + Kee 

With 1(0) = 0 the output should be equal to 
-0.6055 V after 20 seconds. The line y = -0.6055 
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Figure 10. Test of the saturation arithmetic. 
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Figure 11. Test o~ the anti-windup. 

is also drawn in Figure 8 indicating that the 
proportional and the integral term work properly. 

To test the derivative action two impulses, 
lasting one sampling period, Qf magnitude -0.1 V 
and +0.1 V where applied to the input at the time 
t = 1 sec. and t = 3 sec. Figure 9 shows the result. 
The formula for the derivative term is 

If an impulse of magnitude 0.1 V is applied to the 
derivative we get the sequence: -0.2446, 0.1136, 
0.0437, 0.0168, 0.0065, .... The first numbers of 
this sequence are also plotted on the Figure 9, 
showing that the derivative action works properly. 
The small error in the beginning of the second 
response is due to the integral of the first impulse. 
This integral is canceled out by the second impulse 
resulting in a final output equal to zero. To test the 
saturation arithmetic the amplitude of the input 
square wave was increased to 0.7 V. Figure 10 
shows good results. When the output reaches 
the limit it is saturated without causing overflow 
oscillations. Finally, Figure 11 shows the result 
when the anti-windup reset function is used to limit 
the output to ±0.3 V. All versions of the PI- and 
PID-controller were tested by using these input 



sequences. Once a correct set of output files have 
been obtained one can test modified algorithms 
simply by comparing the output files. either by 
plotting the output or by using a file-compare 
program. 

Other testing procedures were also developed 
using ideas similar to the ones described above. 

7. Conclusions 

This paper has given algorithms for high quality 
PI and PID controllers with features like set-point 
weighting, limitation of derivative gain and anti­
windup. It has also been demonstrated how the 
code can be implemented on a DSP using fix-point 
calculations. Such an implementation necessarily 
requires some a priori knowledge of signal and pa­
rameter ranges. This means that the code given 
here only works well in cases that fit the assump­
tions made. 

We have attempted to describe our reasoning 
in sufficient detail so that the code can be easily 
adapted to other situations. Some test procedures 
that we have found useful are also presented. The 
performance estimates show that PI controller can 
be executed at 53 kHz on a TMS32010 and at 
112 kHz on a TMS320C25. 

8. References 

.!strOm. K. J .• and T. Hiigglund (1988): Auto­
lllJ1tic Tuning ofPID Controllers. ISA. Research 
Triangle Park. NC. 

Astrom, K. J .• and B. Wittenma.rk (1990): Com­
puter Controlled Systems - Theory and Design, 
Second edition, Prentice-Hall, Englewood Cliffs, 
NJ. 

Deshpande. P. B., and R. H. Ash (1981): Com­
puter Process Control, ISA, Research Triangle 
Park, NC. 

Texas Instruments (1986): Digital Signal Process­
ing Applications with the TMS320 Family - The­
ory, Algorithms, and Implementations, Digital 
Signal Processing, Semiconductor Group. 

Texas Instruments (1989a): TMS320Clx / 
TMS320C2x - User's Guide, Digital Signal Pro­
cessor Products. 

Texas Instruments (198gb): TMS320 Family De­
velopment Support - Reference Guide, Digital 
Signal Processor Products. 

Texas Instruments (1990a): Digital Signal Process­
ing - Applications with the TMS320 Family, 
Application book volume 3, Digital Signal Pro­
cessor Products. 

Texas Instruments (1990b): TMS320C3x - User's 
Guide, Digital Signal Processor Products. 

215 



Appendix A: Pl-Controller for TMS32010 

PI Controller for TMS32010 Version 1.0 
Author: le~ Steinsrimsson 
Date: 3-26-1990 

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES 
.bss ITE1,1 i Temporary storages 
.bss LTE1,1 
.bss ITE2,1 
.bss LTE2,1 
.bss 11,1 ilntegral high 
.bss IL,l ilntegral low 
.bss KC,l iCoeff for P 
.bss KCB,l 
.bss BI,l jCoeff for I 
.bss BT,l 
.bss UMU,l jMaximum output 
.bss UMIN,l iMinimum output 
.bss MODE,l iExtra constant 
.bss CLOCK,l i Sampling rate 
.bss ONE,l iOne 
.bss MUNUM,l i Maximum number 
.bss MINNUM, 1 i Minimum number 

DTend .bss MINUS ,1 iFFFF 
iEnd of parameters in data memory 

.bss YN,l 

.bss YNM1,1 

.bss YSP,l 

.bss UN,l 

.bss VN,l 

.bss STAO,l 

jy(n) 
iy(n-1) 
iY set point 
iOutPUt 
iOutput before f 
iSpace to store status register 

iBegin program memory 

.sect 
B 
B 

"IRUPTS" 
START 
ISR 

iBranch to start of program 
iInterupt service routine 

iStore parameters in program memory 

Ptable 

Ptend 
SCALE 
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. data 

.set 

. word 

. word 

. set 

.set 

$ 
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768 
-1 
$-1, 
15 
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iInitialize 

• text 
START DINT 

NOP 
SOVM 

iDisable interupts 

iSet overflow mode 

iLoad coeff from prog. mem to data memo use TBLR (not BLKP) for 1. generation 
idevices 

LARK ARO,DTend 
LARK AR1,Ptend-Ptable 
LACK Ptend 

LOAD LARP ARO 
TBLR *-,ARl 
SUB ONE 
BANZ LOAD 

iInitialize variables 

LDPK IH 
ZAC 
SACL IH 
SACL IL 

OUT MODE,PA4 
OUT CLOCK ,PAS 

WAITl BIOZ GETl 
B WAITl 

GETl IN YSP,PA3 

WAIT2 BIOZ GET2 
B WAIT2 

GET2 IN TNM1,PAO 

iBegin PI 

WAIT BIOZ GET 
B WAIT 

GET IN TN,PAO 

ZAC 

iP-section 

LT YSP 
MPJ KCB 

iARO points to end of data block 
iCounter 
iBeginning addre,ss :j.n program memory 
iPoint to ARO 
i Move , decr. ARO and point to ARl 
iSubtract one from accumulator 
iARl not 0 then decr. ARl and branch 
i=> Coeff loaded into data memory 

iPoint to correct data page 
iClear variables 

iInit analog board 

iLoad ysp 

iLoad yen-l) 

iWait for input 

iClear accumulator 

iy(n) * KCB 
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LTl 
MPY 
SPAC 

SACH 
SACL 

ZALH 
ADDS 
SACH 
SACL 
LAC 
SACH 
LAC 
lOR 
AND 
ADD 

ADDS 
ADDH 

LARK 
LARP 
CALL 

CALL 
OUT 

iI-section 

ZAC 
LT 
MPY 

LTl 
MPY 
SPAC 

LT 
MPY 

LTl 
MPY 
SPAC 

ADDS 
ADDH 
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Yli 
XC 

HTEl 
LTEl 

m 
n 
HTE2 
LTE2 
LTE2.12 
LTE2 
MINUS. 12 
MINUS 
LTE2 
HTE2.12 

LTEl 
HTEl 

ARO.VB 
ARO 
ROUOF4 

FUNCT 
UN.PAl 

YSP 
BI 

IN 
BI 

UN 
BT 

VB 
BT 

n 
m 

iacc • y(n)*XCB - ysp*XC 

iStore P temporarily 

iShift integral right 4 

iI in acc rigth shifted 4 

iAdd P to acc to for.m P + I 

iPoint ARO to VN 

iRound off and overflow check 

iActuator saturation function 
iOutput control signal 

iAdd old I with double precision 
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INEG 

SACH 
SACL 

BLZ 
SUB 
BLEZ 
LAC 
SACH 
SACL 

IH 
IL 

INEG 
MAlNUH,SCALE 
OUT4 
MAlNUH,SCALE 
IH 
IL 

B OUT5 

SUB MINNUH,SCALE 
BGEZ OUT4 
LAC MINNUH , SCALE 
SACH IH 
SACL IL 
B OUT5 

OUT4 NOP 

OUT5 

NOP 
NOP 
NOP 
NOP 
EINT 
NOP 
NOP 
DINT 
B WAIT 

;Store integral 

;Overflow check (10 instr. cycles) 
;Subtract maximum pos. number 
;If acc <= 0 then no overflow 
;else store maximum number 

;Subtract maximum neg number 
;If acc >= 0 then no overflow 
;else store minimum number 

;Enable interupt 

;Disable interupt 
;Loop again 

;Rounding and overflow function (11 cycles) 

ROUOF4 BLZ RNEG 

RNEG 

ADD ONE,SCALE-5 
SACH HTEl 
SACL LTEl 
SUB 
BLEZ 
ZALS 

MAlNUM,SCALE-4 
RNO 
MAlNUM 

SACL * 
RET 

ADD ONE,SCALE-5 
SACH HTEl 
SACL LTEl 
SUB MINNUM,SCALE-4 
BGEZ RNO 
ZALS MINNUM 
SACL * 
RET 

;Check if number negative 
; Round 
;Store value 

;Subtract scaled max pos number 
;If acc <= 0 then no overflow 
;else store max num 

; Round 
;Store value 

;Subtiact scaled min neg number 
;If acc >= 0 then no overflow 
;else store min neg number 
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RNO ZALH HTE1 jShift number left 4 before store 
ADDS LIE1 
SACH HTE1,4 
SACL LIE1 
ZALH LIE1 
SACH LIE1,4 
ZALH HTE1 
ADDS LIE1 
SACH .,16-SC.lLE 
RET 

jSaturation function (14 instr. cycles) 

FUNCT Z.lLH VN jLoad VN 
SUBH OMIN 
BLZ LOWER1 j Branch if v < umin 
Z.lIJl VN 
SUBH UH.lI 
BLZ SAME j Branch if v < umax 
B HIGHER jV > .. umax 

LOWER1 ZALH OMIN 
SACH UN jU .. umin 
NOP jAlways same time 
NOP 
NOP 
NOP 
NOP 
NOP 
RET 

SAME Z.lLH VN 
SACH UN jU = v 
NOP 
NOP 
RET 

HIGHER ZILH OM.lI 
SACH UN jU .. umax 
RET 

jlnterupt service routine. To read set point value 

ISR SST STAO jSave status 
IN YSP,PAS j~oad ysp 
LST STAO iRestore status 
RET jReturn 
.endaa 
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Appendix B: PI-Controller for TMS320C25 

PI Controller for TMS320C25 Version 1.0 
Author: Hermann Steingrimsson 
Date: 3-26-1990 

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES 
.bss HTE1, 1 iTemporary storages 
.bss LTE1,l 
.bss HTE2, 1 
.bss LTE2,l 
.bss IH,l iIntegral high 
.bss IL,l ilntegral low 
.bss KC,l iCoeff for P 
.bss KCB,l 
.bss BI,l iCoeff for I 
.bss BT,l 
.bss UMAI,l i Maximum output 
.bss UMIN,l i Minimum output 
.bss MODE,l iExtra constant 
.bss CLOCK,l i Sampling rate 
.bss ONE,l iOne 
.bss MAINUM,l i Maximum number 
.bss MINNUM, 1 i Minimum number 

DTend .bss MINUS ,1 iFFFF 
iEnd of parameters in data memory 

.bss YN,l 

.bss YNM1,l 

.bss YSP,l 

.bss UN,l 

.bss VN,l 

.bss STAO,l 

.bss ST11,l 

iBegin program memory 

. sect "IRUPTS" 
B START 
B ISR 

iy(n) 
iy(n-l) 
iY set point 
iOutput 
iOutput before f 
iSpace to store status register 

iBranch to start of program 
ilnterupt service routine 

i Store parameters in program memory 

. data 
Ptable .set 

• word 
• word 

Ptend .set 
SCALE .set 

$ 
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768 
-1 
$-1 
15 
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jlnitialize 

.text 
START DINT 

NOP 
SOVM 
SSIM 
SPM 0 

jDisable interupts 

jSet overflow mode 
jSet sign-extension mode 
jNo shifting from P register 

jLoad coeff from prog. mem to data memo 

LRLK ARO,DTend 
LARK AR1,Ptend-Ptable 
LALK Ptend 

LOAD LARP ARO 
TBLR *-,AR1 
SUBK 1 
BANZ LOAD 

jlnitialize variables 

LDPK IH 
ZAC 
SACL IH 
SACL IL 

OUT MODE,P14 
OUT CLOCK,PA5 

jWAITi BIOZ GET1 
B WAITi 

GET1 IN YSP,PA3 

jBegin PID 

JWAIT BIOZ GET 
B WAIT 

WAIT IN Yll,PAO 

jP-section 

LT YSP 
MPY KCB 

LTP Yll 
MPY KC 
SPAC 

222 

jARO points to end of data block 
jCounter 
jBeginning address in program memory 
jPoint to ARO 
jMove. decr. ARO and point to AR1 
jSubtract one from accumulator 
jAR1 not 0 then decr. AR1 and branch 
j=> Coeff loaded into data memory 

jPoint to correct data page 
j Clear variables 

jlnit analog board 

jLoad ysp 

jWait for input 

jChange WAIT to GET when are removed 

jy(n) * KCB 

jacc = y(n)*KCB - ysp*KC 
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SACB 
SACL 

ZALB 
ADDS 
SPR 
SPR 
SPR 
SPR 

ADDS 
ADDB 

LRLK 
LARP 
CALL 

CALL 
OUT 

iI-section 

IT 
MPY 

lTP 
MPY 

lTS 
MPY 

LTA 
MPY 
SPAC 

ADDS 
ADDH 

SACH 
SACL 

BlZ 
SUB 
BlEZ 
LAC 
SACH 
SACl 
B 

BTE1 
LTE1 

IH 
IL 

LTE1 
BTE1 

.&.RO,VN 

.&.RO 
ROUOP4 

FUllCT 
UN,PA1 

YSP 
BI 

TN 
BI 

UN 
BT 

VN 
BT 

Il 
IH 

IH 
IL 

INEG 
MAlNUM, SCALE 
OUT4 
MAlNUM ,SCALE 
m 
Il 
OUT5 

iStore P 

iShift integral right 4 
ibecause coeff of P where divided by 16 

iAdd,P to acc to form P + I 

iPoint ARO to VN 

iRound off and overflow check 

iActuator saturation function 
iOutPUt control signal 

iAdd old I with double precision 

iStore integral 

iOverflov check (10 instr. cycles) 
iSubtract maximum pos. number 
iIf acc <= 0 then no overflow 
ielse store maximum number 

, 

! 
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INEG SUB 
BGEZ 
LAC 
SACH 
SACL 
B 

OUT4 NOP 
NOP 
NOP 
NOP 
NOP 

OUT5 ElNT 
NOP 
NOP 
DINT 
B 

MINNUM,SCALE 
OUT4 
MINNUM,SCALE 
IH 
IL 
OUT5 

WAIT 

;Subtract maximum neg number 
;If acc )- 0 then no overflow 
;else store minimum number 

;Enable interupt 

;Disable interupt 
;Loop again 

Rounding, overflow and shifting function (13 cycles) 

ROUOF4 BLZ 
ADD 
SACH 
SACL 
SUB 
BLEZ 
ZJ.LS 
SACL 
NOP 
RET 

RNEG ADD 
SACH 
SACL 
SUB 
BGEZ 
ZALS 
SACL 
NOP 
RET 

RNO ZALH 
ADDS 
SACH 
RET 

RNEG 
ONE,SCALE-5 
BrEl 
LTEl 
MAlNOM ,SCALE-4 
RNO 
MAlNOK 

* 

ONE,SCJ.LE-5 
BTEl 
LTEl 
KINNUM,SCALE-4 
RNO 
KINNOK 
* 

BTEl 
LTEl 
*,5 

;Check if number negative 
; Round 
; Store value . 

;Subtract scaled max pos number 
;If acc <= 0 then no overflow 
;else store max num 

; Round 
;Store value 

;Subtract scaled min neg number 
;If acc )= 0 then no overflow 
;else store min neg number 

;Shift number left 4+1 before store 

;Saturation function (12 instr. cycles) 
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FUNCf ZILI VB iLoad VN 
SUBI UMIIl 
BLZ LOWER1 iBranch it v < umin 
ZALI VB 
SUBI UMll 
BLZ SIME : Branch it v < UlIUlX 

ZILI UM1l :v >= UlIUlX 

SACI Ull :u = UlIUlX 

RET 

LOWER1 ZILI UMI!l 
SICI UN :u • umin 
!lOP :llways same time 
!lOP 
!lOP 
!lOP 
RET 

SAME ZILI VB 
SACI UN :u = v 
RET 

:Interupt service routine. To read set point value 

ISR SST STAO :Save status 
SST1 ST11 
III YSP,PA3 :Load ysp 
LST STAO : Restore status 
LST1 ST11 
RET : Return 
.endaa 
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Appendix C: PID-Controller for TMS32010 

PID Controller for TMS32010 Version 1.0 
Roundoff Corrected 
Bermann Steingrimsson 
Date: 3-26-1990 

ad and Kc must be divided by 16 before stored 
bd must be divided by 256 before storage 

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS,AND VARIABLES 
.bss HTE1,1 ;Temporary storages 
.bss LTE1,1 
.bss BTE2,1 
.bss LTE2, 1 
.bss IB,1 ;Integral high 
.bss IL,1 ;Integral lOll 
.bss DB,1 ; Derivative high 
.bss KC,1 ;Coeff for P 
.bss KCB,1 
.bss BI,1 ;Coeff for I 
.bss BT,1 
.bss BD,1 ;Coeff for D 
.bss AD,1 
.bss UMAI,1 ; Maximum output 
.bss UMIN,1 ;Minimum output 
.bss MODE,1 ;Extra constant 
.bss CLOCK,1 ; Sampling rate 
.bss ONE,1 ; One 
.bss MAIWM,1 ; Maximum number 
.bss MINNUM,1 ; Minimum number 

DTend .bss MINUS,1 ;FFFF 
;End of parameters in data memory 

.bss YN,1 

.bss YBM1,1 

.bss YSP,1 

.bss UN,1 

.bss VN,1 

.bss STAO,1 

;Begin program memory 

.sect 
B 
B 

"IRUPTS" 
START 
ISR 

;y(n) 
;y(n-1) 
;y set point 
; Output 
;Output before f 
;Space to store status register 

;Branch to start of program 
;Interupt service routine 

;Store parameters in program memory 
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. data 
Ptable .set 

. word 

. word 
Ptend .set 
SCALE .set 

jInitialize 

. text 
START DINT 

NOP 
SOVM 

$ 
1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768 
-1 
$-1 
15 

jDisable interupts 

jSet overflow mode 

jload coeff from prog. mem to data memo use TBlR (not BlKP) for 1. generation 
jdevices 

lARK ARO,DTend 
LARK AR1,Ptend-Ptable 
LACK Ptend 

lOAD LARP no 
TBlR *- ,ARl 
SUB ONE 
BANZ lOAD 

jInitialize variables 

lDPK II 
ZAC 
SACl II 
SACl IL 
SACl DI 

OUT MODE,PA4 
OUT ClOCK,PA5 

WAITl BIOZ GETl 
B WAITl 

GETl IN YSP,PA3 

WAIT2 BIOZ GET2 
B WAIT2 

GET2 IN YNM1,PAO 

jBegin PID 

WAIT BIOZ GET 
B WAIT 

JARO points to end of data block 
jCounter 
jBeginning address in program memory 
jPoint to ARO 
jMove, decr. ARO and point to ARl 
jSubtract one from accumulator 
jARl not 0 then decr. ARl and branch 
j=> Coeff loaded into data memory 

jPoint to correct data page 
jClear variables 

jInit analog board 

jload ysp 

jload y(n-l) 

jWait for input 
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GET II 

;D-section 

Z1LK 
SUBK 
SACK 
DMOV 

LT 
HPY 
PIC 

LT 
MPY 

IPIC 
IPIC 
!PAC 
APAC 
IPIC 
!PAC 
APAC 
APAC 
!PAC 
APAC 
APAC 
IPIC 
APAC 
IPIC 
!PIC 
!PAC 

SACB 
SICL 
LARK 
L1RP 
CILL 
ZALB 
ADDS 

iP-section 

LT 
HPY 

LTl 
HPY 
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Ylf,PI0 

YlfMl 
Ylf 
!TEl 
Ylf 

DB 
AD 

!TEl 
BD 

il 
i2 
i3 
;4 
;5 
;6 
i7 
;8 
i9 
;10 
ill 
i12 
;13 
i14 
i15 
i16 

!TE2 
LTE2 
ARO,DB 
ARO 
ROUOF4 
HTE2 
LTE2 

YSP 
KCB 

Ylf 
KC 

;Change WAIT to GET when are removed 

iy(n-l) - yen) 

iStore difference 
iCOPY YI into YIMl 

;ad*D (ad was divided by 16) 

;difference * bd 

;Since bd was divided by 256, bd*diff is 
iadded 16 times to the accumulator to 
iform D divided by 16. By doing this the 
ioverflow mode will take care of overflow 

iStore derivative 

iPoint to DB 

;Check for overfl. shift and store 
iRestore the derivative 

;y(n) * KCB 

iacc = y(n)*KCB - ysp*KC 
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SPAC 

SACH HTEl ;Store P + D 
SACL LTEl 

Z!LH m jShift integral right 4 
ADDS IL 
SACH HTE2 
SACL LTE2 
LAC LTE2,12 
SACH LTE2 
LAC MINUS, 12 
lOR MINUS 
AND LTE2 
ADD HTE2,12 jI in acc right shifted 4 

ADDS LTEl jAdd P + I to acc to form P + I + D 
ADDH HTEl 

LARK !RO,VN jPoint ARO to VN 
LARP !RO 
CALL ROUOF4 jRound off and overflow check 

CALL PUNCT jActuator saturation function 
OUT UN ,PAl jOutput control signal 

jI-section 

ZAC 
LT YSP 
MPY BI 

LTA TN 
MPY BI 
SPAC 

LT UN 
MPY BT 

LT! VN 
MPY BT 
SPAC 

ADDS IL jAdd old I with double precision 
ADDH m 

SACH m ;Store integral 
SACL IL 
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!NEG 

BLZ 
SUB 
BLEZ 

!NEG 
MlINUM,SCALE 
OUT4 

LAC MAINUM,SCALE 
SACH IH 
SACL IL 
B OUTS 

SUB MINNUM,SCALE 
BGEZ OUT4 
LAC MINNUM , SCALE 
SACH IH 
SACL IL 
B OUTS 

OUT4 NOP 

OUTS 

NOP 
NOP 
NOP 
NOP 
EINT 
NOP 
NOP 
DINT 
B WAIT 

;Overflow check (10 instr. cycles) 
;Subtract maximum pos. number 
;If acc <= 0 then no overflow 
;else store maximum number 

;Subtract maximum neg number 
;If acc >= 0 then no overflow 
;else store minimum number 

;Enable interupt 

;Disable interupt 
;Loop again 

Rounding, overflow and shifting function (19 cycles) 

ROUOF4 BLZ RNEG 

RNEG 
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ADD ONE,SCALE-5 
SACH HTEl 
SACL LTEl 
SUB MllNUM,SCALE-4 
BLEZ RNO 
ZALS MAINUM 
SACL • 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
RET 

ADD ONE,SCALE-5 
SACH HTEl 
SACL LTEl 
SUB MINNUM,SCALE-4 

;Check if number negative 
; Round 
;Store value 

;Subtract scaled max pos number 
;If acc <= 0 then no overflow 
;else store max num 

; Round 
;Store value 

;Subtract scaled min neg number 
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BGEZ RNO iIf acc >= o then no overflow 
ZALS MINNUM ie1se store min neg number 
SACL ... 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
RET 

RNO ZALH HTEl iShift number left 4 before store 
ADDS LTEl 
SACH HTE1.4 
SACL LTEl 
ZALH LUl 
SACH LTE1.4 
ZALH HTEl 
ADDS LTEl 
SACH .... 16-SCALE 
RET 

iSaturation function (12 instr. cycles) 

FUNCT ZALH VN iLoad VN 
SUBH UMIN 
BLZ LOWERl iBranch if v < umin 
ZALH VN 
SUBH UMAI 
BLZ SAME iBranch if v < umax 
ZALH UMAI iV >= umax 

SACH UN iU = umax 
RET 

LOWERl ZALH UMIN 
SACH UN iU = umin 
NOP iA1ways same time 
NOP 
NOP 
NOP 
RET 

SAME 2ALH VN 
SACH UN ;u = v 
RET 

iInterupt service routine. To read set point value 
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ISR SST S110 iSave status 
IN YSP.P13 iLoad ysp 
LST S110 iRestore status 
RET iReturn 
.endal 
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PID Controlle~ for TKS320C25 
Roundoff Corrected 
Author: Hermann Steingrimsson 
Date: 3-26-1990 

ad and Kc must be divided by 16 before stored 
bd must be divided by 256 before storage 

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES 
.bss HTE1,1 iTemporary storages 
.bss LTE1,1 
.bss HTE2,1 
.bss LTE2,1 
.bss IH,1 i Integral high 
.bss IL,1 i Integral low 
.bss DH,1 iDerivative high 

DTbeg .bss KC,1 iCoeff for P 
.bss KCB,1 
.bss BI,1 iCoeff for I 
.bss BT,1 
.bss BD,1 iCoeff for D 
.bss AD,1 
.bss UMAl,1 i Maximum output 
.bss UMIN,1 i Minimum output 
.bss MoDE,1 i Extra constant 
.bss CLoCK,1 i Sampling rate 
.bss oNE,1 ione 
.bss MAlNUM,1 i Maximum number 
.bss MINNUM,1 i Minimum number 

DTend .bss MINUS, 1 iFFFF 
iEnd of parameters in data memory 

.bss YN,1 

.bss YNM1,1 

.bss YSP,1 

.bss UN,1 

.bss VN,1 

.bss STAO,1 

.bss ST11,1 

iBegin program memory 

.sect 
B 
B 

"IRUPTS" 
START 
ISR 

iy(n) 
iy(n-1) 
iY set point 
ioutput 
ioutput before f 
iSpace to store status register 

iBranch to start of program 
iInterupt service routine 

iStore parameters in program memory 
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• data 
Ptable .set 

• word 
. word 

$ 
1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768 
-1 

Ptend .set $-1 
SCALE .set 15 

; Initialize 

.text 
START DINT iDisable interupts 

NOP 
SOVM iSet overflow mode 
SSIM ;Set Sign-extension mode 
SPM 0 iNo shifting from P register 

iLoad coeff from prog. mem to data memo use BLKP 

LRLK ARO ,DTbeg 
LARP ARO 
RPTK Ptend-Ptable 
BLKP Ptable,*+ 

;Initialize variables 

LDPK IR 
ZAC 
SACL IR 
SACL IL 
SACL DR 

OUT MODE,PH 
OUT CLOCK,PA5 

WAITl BIOZ GET 1 
B WAITl 

GETl IN YSP,PA3 

WAIT2 BIOZ GET2 
B WAIT2 

GET2 IN TNM1,PAO 

;Begin PID 

WAIT BIOZ GET 
B WAIT 

GET IN TN,PAO 
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iARO points to end of data block 

iSet up counter 
;Move data 
i=> Coeff loaded into data memory 

iPoint to correct data page 
;Clear variables 

,i Ini t analog board 

iLoad ysp 

iLoad y(n-1) 

;Wait for input 

;Change WAIT to GET when are removed 
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;D-section 

ZALB 
SUBB 
SACB 
DHOV 

LT 
HPY 

LTP 
HPY 

RPTK 
APAC 

SACB 
SACL 
LRLK 
LARP 
CALL 
ZALB 
ADDS 

;P-section 

LT 
HPY 

L11 
HPY 
SPAC 

SACB 
SACL 

INHl 
IN 
HTEl 
IN 

DB 
AD 

HTEl 
BD 

15 

HTE2 
LTE2 
ARO,DB 
ARO 
ROUOF4 
HTE2 
LTE2 

YSP 
KCB 

YN 
KC 

HTEl 
LTEl 

;y(n-l) - yen) 

;Store difference 
;Copy YN into YNHl 

;ad*D (ad was divided by 16) 

;difference * bd, and store previous product 

;Since bd was divided by 256, bd*diff is 
;added 16 times to the accumulator to 
;form D divided by 16. By doing this the 
;overflow mode will take care of overflow 

;Store derivative 

;Point to DB 

;Check for overfl. shift and store 
;Restore the derivative 

;y(n) * KCB 

;acc = y(n)*KCB - ysp*KC 

;Store P + D 

;P + D are now divided by 16 => shift integral right 4 bits before adding 
ito P + D 

ZALB lB 
ADDS n 
SFR 
SFR 
SFR 
SFR 

;Shift integral right 4 

235 



PID Controller for TMS320C25 Version 1.0 Page 4 

ADDS lTEl ;Add P + I to acc to form P + I + D 
ADDH UTEl 

lRLK ARO,VN ;Point ARO to VN 
LARP ARO 
CAll ROUOF4 ;Round off and overflow check 

CAll FUMCT ;Actuator saturation function 
OUT UN,PAl ;Output control signal 

; I-section 

IT YSP 
MPY BI 

lTP TN 
MPY BI 

lTS UN 
MPY BT 

lTA VN 
MPY BT 
SPAC 

ADDS Il ;Add old I with double precision 
ADDH IH 

SACH IH ;Store integral 
SACl n 

BlZ INEG ;Overflow check (10 instr. cycles) 
SUB MAlNUM , SCALE ; Subtract maximum pos. number 
BlEZ OUT4 ;If acc <= 0 then no overflow 
LAC MAlNUM,SCAlE ; else store maximum number 
SACH IH 
SACl n 
B OUT5 

INEG SUB MINNUM,SCAlE ;Subtract maximum neg number 
BGEZ OUT4 ;If acc >= 0 then no overflow 
LAC MINNUM, SCALE ;else store minimum number 
SACH IH 
SACl n 
B OUT5 

OUT4 NOP 
NOP 
NOP 

236 



PID Controller for TMS320C25 Version 1.0 

OUT5 

NOP 
NOP 
EDIT 
NOP 
NOP 
DINT 
B WAIT 

;Enable interupt 

;Disable interupt 
;Loop again 

Rounding, overflow and shifting function (19 cycles) 

ROUOF4 BLZ RNEG 

RNEG 

RNO 

ADD ONE,SCALE-5 
SACH HTE1 
SACL LTE1 
SUB MAlNUM,SCALE-4 
BLEZ RNO 
ZALS MAlNUM 
SACL * 
NOP 
RET 

ADD ONE,SCALE-5 
SACH HTE1 
SACL LTE1 
SUB HINNUM,SCALE-4 
BGEZ RNO 
ZALS MINNUM 
SACL * 
NOP 
RET 

ZALH HTE1 
ADDS LTE1 
SACH *,5 
RET 

;Check if number negative 
; Round 
;Store value 

;Subtract scaled max pos number 
;If acc <= 0 then no overflow 
;else store max num 

; Round 
;Store value 

;Subtract scaled min neg number 
;If acc>= 0 then no overflow 
;else store min neg number 

;Shift number left 4 before store 

;+1 shift because of sign 

;Saturation function (12 instr. cycles) 

FUNCT ZALH VN 
SUBH UMIN 
BLZ LOWER1 
ZALH VN 
SUBH UMAI 
BLZ SAME 
ZALH UMAI 
SACH UN 
RET 

LOWER1 ZALH UMIN 

;Load VN 

; Branch if v < umin 

;Branch if v < umax 
;v >= umax 
iU = umax 

Page 5 
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SiCH UN jU = umin 
NOP jilllays same time 
NOP 
ROP 
NOP 
RET 

SAME ZUH VR 
SiCH UN jU = v 
RET 

jInterupt service routine. To read set point value 

ISR SST SUO jSave status 
SST1 STU 
IN YSP,Pi3 jLoad ysp 
LST SUO jRestore status 
LST1 STU 
RET jReturn 
.endaa 
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DSP Implementation of a Disk Drive Controllert, 

Hermann Steingrimsson 
Graduate School of Business 

University of Wisconsin 
Madison, Wisconsin, USA 

1. Introduction 

The purpose of this paper is to study implementa­
tion of a controller based on state estimation and 
feedback from estimated states on a digital signal 
processor. Design of a control system for a disk 
drive is chosen as an example. The controller is 
implemented on a DSP that does not have float­
ing point hardware. The control problem is de­
scribed in Section 2, which also describes math­
ematical models of different complexity. Design of 
a controller is discussed in Section 3. This section 
contains a derivation of a continuous time con­
troller and a discrete time controller. The continu­
ous controller is used to choose design parameters 
and to estimate orders of magnitude. The discrete 
time controller is the algorithm implemented on 
the DSP. The section on control design also con­
tains a discussion of design trade-offs. Implemen­
tation of the controller on a DSP is discussed in 
Section 4. Scaling of parameters and states is a 
major issue. An outline of the code is given. The 
complete code is listed in the appendix. Testing of 
the code is described in Section 5 and the paper 
ends with conclusions and references. 

2. Disk Drive Control 

Modern disk drive use fast voice coil actuators to 
position the magnetic heads on a track and to 
keep them on track under closed loop control. The 
task of the position control system is twofold: to 
position the heads over a desired track and to keep 
it there. The first task is a servo proble~ whereas 
the second task is a regulation problem. This paper 
treats the regulation problem. 

, Part of this work was done when the first author w .... 
visiting professor and the second author a graduate student 
at the University of Texas at Austin. 

Reprinted, with permission from author. 

Karl Johan Astrom 
Department of Automatic Control 

Lund Institute of Technology 
Lund, Sweden 

Two methods are currently used for feedback 
measurements. In a dedicated servo an entire sur­
face is used for position information, that could 
have been used for data. In an embedded servo the 
position information are embedded into the data 
track at the beginning of each sector, instead of 
using a separate surface. It is also possible to have 
dual layers so that the servo information is on a 
layer below the data layer. 

The advantage of the dedicated servo is that 
position information available continuously. With 
a dedicated servo it is therefore possible to use a 
controller with a high bandwidth. In an embedded 
servo, position information is only obtained at a 
sector boundary. This limits the track following 
bandwidth and results in longer seek times, and 
more sluggish track following. A dedicated servo 
uses an extra surface for the position information. 
Thermal differences between the position surface 
and the data surfaces also give rise to errors. 

Linear or rotary actuators with a permanent 
magnet and a voice coil are used to move the head 
across the tracks. The arm is ideally a rigid body 
which can be modeled as a double integrator. The 
large accelerations will, however, excite resonant 
modes. This makes it difficult to achieve a high 
bandwidth for positioning and track following. 

Analog controllers have been used for servos. 
They contain amplifiers, compensation networks, 
notch filters, switches and passive components. The 
parameters of the analog components change with 
temperature and component aging can result in 
deteriorated performance of the servo. 

There are several advantages in using a digi­
tal servo. Components having drift and aging are 
avoided, the number of components can be reduced 
and servo performance can be increased. a digital 
servo will, however, require high sampling rates. 
This makes a micro controller less suitable. The in­
expensive DSP's offer computational power an or-
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der of magnitude greater than the microcontrollers 
and some, like the TMS320C14, do also have the 
hardware for input-output similar to a micro con­
troller. Such components are ideally suited for im­
plementation of fast servos of the type used in disk 
drives. 

Position Detector 

The head/track misalignment is the only informa­
tion available to the controller. Control thus has 
to be based on error feedback. The position de­
tector generates a voltage which is proportional to 
the misalignment of the -head and track. The op­
erating range is 23JtID. and the output voltage is 
in the range 0-5 V. After A/D-conversion one unit 
in the processor corresponds to a track/head mis­
alignment of 1l.5JtID. . The useful track width is 
approximately 4.3JtID.. 

Control Signal 

The D / A-converter generates a voltage in the range 
±5 V. This voltage is amplified by an amplifier 
which generates a current. The current passes 
through the voice coil and generates a torque to 
move the arm. 

Physical Constants of the Drive 

The drive system has the following parameters: 
Pivot to head radius 

R: 0.08m 
Power amplifier gain 

Kpo: Q.5 A/V 
Torque constant of the actuator 

Kc: 0.09 Nm/ A 
Total moment of inertia 

J: 50.10-8 Kgm2 

Mathematical Model 

A mathematical model describing the position of 
the arm as a function of the current trough the 
coil is a double integrator 

(1) 

where '(J is the angle of the arm. The transfer 
function from voltage u to arm position y is 

G (.I) = yes) = Kl' 
l' U(s).s2 

(2) 
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where 
Kl' = KpoKcR/ J ~ 72m/s2V 

The model given by Equation (1) neglects the fact 
that the arm has compliance. If this is considered, 
the plant transfer function becomes Gpl = GpG1 , 

where 

(3) 

Typical values of w and "'1 are 2 KHz and 3 KHz. 
The model given by Equation (1) is a good ap­
proximation of low frequencies. Because of the res­
onances this model does, however, not describe the 
system well at frequencies approaching one kHz. 
For those frequencies it is necessary to use models 
like (3) and (4) or even more complicated models. 

Disturbances 

The major disturbances acting on the system are 
low frequency load disturbance and a periodic 
tracking error. Load disturbances are due to the 
torque from the wires connected to the arm. This 
torque is almost constant at a given track, but it 
changes with the track. It may also change with 
temperature. The second disturbance is due to 
the eccentricity of the disk which translates into 
a periodical tracking error. Since the amplitude 
of this error is small, the disturbance can be 
approximated by a sinusoid with the rotational 
frequency of the disk. By introducing the state :1:3, 

the load disturbance can be added to equation (1), 
giving 

(5) 

3. Controller Design 

Control algorithms for the disk drive will be de­
rived in this section. A continuous time controller 
for the simple rigid body model is first derived. 



This derivation gives insight into the control prob­
lem and guide lines for choosing the design param­
eters. The controller is obtained using a straight­
forward pole-placement method. See [.A.strom and 
Wittenmark, 1990]. A discrete time algorithm is 
then derived. This algorithm is the basis for the 
DSP implementation. 

A state-space model of (5) is 

where 

A= [~ 
1 
0 
0 

and ZI: 

Z2: 

Z3: 

Kp: 
u: 

:iI(t) = Az(t) + Bu(t) 
yet) = Cz(t) 

~lB= [~plY= (1 

position [m] 
velocity [m/s] 
torque [Nm] 
gain [m/s2V] 
control signal [V] 

Continuous-Time Controller 

(6) 

0 0) 

It is easily verified that the states ZI and Z2 of the 
model (6) are controllable. The disturbance state 
Z3 is naturally not controllable. All the states of 
the system are observable. A controller based on 
a state-feedback and an observer can therefore be 
designed. 

Sta.te Feedback. The controller will now be de­
rived in the straightforward manner. See [.A.strom 
and Wittenmark, 1990]. It is first assumed that all 
states are measurable. The state feedback 

gives the closed-loop system 

:iI(t) = (A - BL)z(t) (8) 

The gains 11 and 12 are selected such that the 
characteristic polynomial of the closed loop system 
becomes 

8(,,2 + 2CpWp" + III;) (9) 

Notice that the zero at the origin is due to the un-
controllable disturbance mode. The characteristic 
polynomial of (8) is 

11(82 + Kpl28 + Kp1l) 

To obtain (9) the feedback gains 11 and 12 should 
thus be chosen as 

11 = ",;/Kp 

12 = 2Cp"'p/ Kp 
(10) 

The gain 13 is chosen to give perfect disturbance 
cancellation, i.e. 

13 = l/Kp (11) 

The control law (7) can be interpreted as a feed­
back from the process states ZI and Z2 and a feed­
forward from the disturbance state Z3. 

Sta.te Obllerver. A state observer is given by 

i(t) = A:i:(t) + Bu(t) + K(y(t) - C:i:(t» (12) 

where :i: is the estimate of the state vector z. The 
reconstruction error iii = z - :i: is given by 

:ii(t) = (A - KC)i(t) (13) 

The characteristic polynomial of this system is 

8S + 1:1 ,,2 + k211 + k3 

The observer gains k1, k2 and k3 are chosen so that 
the observer has the characteristic polynomial 

The following observer gains are then obtained 

kl = 2'0"'0 + 0.0 

1:2 = "'~ + 2'oWoao 

1:s = ",!ao 

Discrete-Time Controller 

(15) 

To derive a discrete time controller the system (6) 
is sampled. This gives 

z(k + 1) = 4!z(k) + ruCk) 
(16) 

y(k) = Cz(1:) 

where 

[~ 
h 

h 2 /2 ] [ Kph2/2j 
4!= 1 h , r= Kph 

0 1 0 (17) 

C= ( 1 0 0) 
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and h is the sampling interval. The states :1:1 and 
:1:2 of the discrete time system (17) are controllable 
but disturbance state :1:3 is of course uncontrollable. 
All states are observable. 

First consider the case when all states are 
measured. With state feedback the closed loop 
system has the characteristic polynomial 

(18) 

Notice that the pole z = 1 is due to the uncontrol­
lable disturbance mode. The desired closed loop 
characteristic polynomial is obtained by sampling 
(9). This gives 

(z- 1) (z2 + 1Zp1Z + 1Zp2) 

where 

1Zp1 = -2e-Cp"'phcos (wphJl -,~ ) 
1Zp2 = e -2Cp"'ph 

(19) 

Choosing the feedback gains It and h so that (19) 
and (18) are the same gives 

I _ 1Zp1 + 1lp2 + 1 
1 - K p h2 

I _ 1Zp1 - 1Zp2 + 3 
2 - 2Kph 

(20) 

State Obse.,."e,.. A state-observer of the form 

z(klk) = z(klk - 1) + K(y(k) - y(klk - 1» 

z(k + 11k) = ~z(klk) + ruCk) 
y(k + 11k) = Cz(k + 11k) 

(21) 
is chosen. The reconstruction error is then given by 

:il(k + 11k) = ~(I - KC):il(klk - 1) (22) 

This system has the characteristic polynomial 
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Requiring that this polynomial be equal to 

where ao1 and ao2 are given by equation (19) and 

a03 = e-tJoh (23) 

gives 

k1 = 1 - ao2aoa 

k _ ao1 - ao2 - aoa + ao1 ao3 + 3ao2aoa + 3 
2- n ~~ 

k _ aQ1 + ao2 - aoa - ao1ao3 - ao2aoa + 1 
3 - h2 

The Control Algorithm 

Reorganizing the calculations to minimize the de­
lay between the AID- and D I A-conversions gives 
the following algorithm. 

ALGORITHM 1 

1. Read 

2. Compute 

3. Output 

4. Update 

5. Wait 

y(k) 

z(klk) = z(klk -1) + Ke(t) 
e(t) = y(k) - y(klk - 1) 
v(k) = -Lz(klk) 
u(k) = f(v(k» 
u(k) 

z(k + 11k) == ~z(klk) + ruCk) 
y(k + 11k) = Cz(k + 11k) 

where the function f is a model of the actuator 
nonlinearity. 0 

Notice that the algorithm has been organized so 
that the computational delay between the AID and 
D I A converters are minimized. Notice also that 
Step 2 of this algorithm can be expressed as 

z(k + 11k) = ~nz(klk - 1) + r ny(k) 
v(k) = Cnz(klk - 1) + Dny(k) 

where 

~n = ~ - ~KC -rL +rLKC 
rn=~K-rLK 

Cn = -L+LKC 

Dn = -LK 

(25) 



Sampling Frequency and Anti-Aliasing 
Filter 

The following rule of thumb for the selection of 
sampling frequency for a digital controller with a 
zero-order hold, is given by [Astrom and Witten­
mark, 1990j. 

0.2 $; weh $; 0.6 (26) 

where We is the crossover frequency. With a sam­
pling frequency of 20 KHz the crossover frequency 
can be at least 1 kHz. This was judged adequate 
for the application. 

A prefilter in the form of a second order Bessel 
filter with the bandwidth 7500Hz was chosen to 
avoid aliasing. 

Design Parameters 

The controller has the design parameters: wP ' (p, 
WO, (0' ao and h that must be chosen. The choice of 
sampling interval has already been discussed. Pa­
rameters (p and (0' which represent relative damp­
ing, can easily be chosen. Then there remain three 
parameters wp , Wo and ao • Requirements on desired 
settling time and disturbance rejection have to be 
matched against constraints due to model uncer­
tainty. Recall that the rigid body model used for 
the design was not valid for frequencies approach-

Head position ImJ 
15x 10-6 

ing 1 kHz. After some experimentation the follow­
ing design parameters were chosen for the nominal 
case. 

Wp = 100011' 

(p = 0.80 

Wo = 150011' 

(0 = 0.80 

ao = 20011' 

Figure 1 shows a simulation of the response of 
the system with the nominal design parameters. 
In the simulation a step command at 11.5 pm is 
first applied. After 3 rna a torque disturbance in 
the form of a step of 0.013 Nm is applied. 

The simulation was performed assuming that 
the plant model is given by Equation (3), which 
has a resonance of 2 kHz. The settling time iii 
about 1.5 ms and the resonant modes are not 
much excited by the command signal. With the 
rigid body process model given by Equation (2) 
the system has an amplitude margin of 3.2 and 
phase margin of 310 • The gain cross-over frequency 
is 460 Hz and the phase cross-over is 1036 Hz. This 
indicates that the design based on the rigid body 
model has acceptable margins. 

The effects of the neglected dynamics on the 
margins can be estimated as follows. Assuming 

o~------------.-------------.--------------r~ 

Control signal (V) 

ol-~v-
-1t-------------.-------------,,-------------r---

a 0.005 0.010 

Figure.1. Step response of the closed loop system. 

0.015 
Time 
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_lL--L~ __ L--L~ __ L--L~ __ L-~ 
-4 -3 -2 -1 0 

Figure 2. Nyquist curves for the loop transfer 
functions with the rigid body dynamics, Equation 
(2), and the dynamics with one resonant mode, 
Equations (2) and (3). 

that the system dynamics is described by the 
model having one resonant mode, Equation (3). 
The additional dynamics is then given by 

where WI is the undamped natural frequency 
(2 KHz) and , is the relative damping (0.1). The 
magnitude M of the transfer function G1 at W is 

1 
M = -V7.(;=l =_=W==2=;/ W::;~;;:)==2 +=::;( 2==,==w=;/ W=1""")2 

(28) 

Head position (m) 

15x10- 6 -20·'. 

IOxlO-6 

5xlO- 6 

0.005 

Introducing W = W.pc = 1036 Hz this equation gives 
M = 1.36. The gain margin is thus decreased to 
1. 77. The argument of the transfer function of W is 

2,W/Wl 
a = - arctan 2/ 2 (29) 

1-w WI 

with Wgc = 460 Hz, which gives 2.80 • Figure 2 
shows the Nyquist curves with the nominal process 
transfer function (2) and the transfer function with 
one resonant mode (3). These curves show that the 
essential effects of the resonant mode is to decrease 
the amplitude margin. 

An additional illustration of the sensitivity to 
gain variations is illustrated in the simulation in 
Figure 3, which shows the time response of the 
closed loop systems, where the loop gain changes 
with ±20%. Compare with the nominal case in 
Figure 1. 

Tracking Error 

Misalignment errors is a common source of tracking 
errors. Such disturbances can be approximated by 
a sinusoidal. The sensitivity of the closed loop 
system to such errors can be modeled by the pulse 
transfer function. 

1 
Htraclc(Z) = 1- H(z)G(z) (30) 

With the chosen controller we find that distur­
bances of 60 Hz are attenuated by a factor of 32. 
This agrees well with the simulation results that 
showed a reduction from 5 p.m to 0.2 p.m. 

0.010 0.015 
Time 

Figure 3. Responses of the closed loop system to a step command and 
a step change in the torque when the process gain changes by ±20%. 
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4. DSP Implementation 

Implementation of the controller using a nsp 
with fixed point Cl: '.culations will now be dis­
cussed. The key issues are scaling of coefficients and 
states. See [Roberts and Mullins, 1987], [Hansel­
mann, 1987], [Texas Instruments, 1986], [Texas 
Instruments, 1988a], [Texas Instruments, 1988b], 
[Texas Instruments, 1989a], [Texas Instruments, 
1989b], [Texas Instruments, 1990a] and [Texas In­
struments, 1990b]. 

The controller derived can be described by the 
matrices: 

[
1 5 ·10-& 

T = 0 1 
o 0 

1.25 .10-9 ) 

5 ·10-& 

1 

r = (9.25. 10-8 3.7.1O-3 0)T 

C=(1 00) 

[ 
3.352917424019266.10-1 1 

K = 1.100808656418762· 103 

5.695461161564441 . 105 

( 
1.176909751519137. 10& ) T 

L = 6.300506379182784.101 

1.351351351351351.10-2 

(31) 

The elements of these matrices have numbers that 
are widely spread. To accommodate this on a nsp 
with fix point arithmetic it is necessary to scale the 
numbers appropriately. 

I/O-Scaling 

The range of the output signal in tracking mode 
corresponds to ±11.5,an. The scaling will be cho­
sen so that this corresponds to ±1 units in the nsp. 
The input scaling factor 81/ is therefore 

8" = U.51'm 

Since the dimensions of III 12 and 13 are [vim], 
[sv/m] and [s2v/m] respectively, it is advantageous 
to multiply L with 8" rather than dividing C with 
81/' The output must also be scaled since the n I A­
converter converts ±1 into ±5 V. The matrix L is 
thus multiplied by the output scaling factor 

2 "u = 10 V = 0.2 V-I 

The vector r is in the same way as L. Hence 

and the scaled vectors r and L become 

[ 
4.021739130434783· 10-2 ] 

r = 1.60869565~173913 . 103' 

[ 
2.706892428494014. 10-1 ] T 

L= 1.449116467212040.10-4 

3.108108108108108.10-8 

Coefficient Scaling 

(32) 

(33) 

The coefficients of system (31), and (32) and (33) 
can not be represented in the nsp. A similarity 
transform Z <=> Tcz is used to scale the coefficients. 
This gives 

(T r C K L)<=> 

(TcTTc-1 Tcr CT;l TcK LTc-I) 
(34) 

The elements of the matrices T, K, r and L are 
proportional to powers of h. It is therefore natural 
to use a scaling matrix of the form 

The following scaling matrix was obtained after 
some trial and error 

~) 1 
&r. (35) 

State-vector scaling 

With the chosen scaling of all controller coefficients 
have magnitudes less than one. It now remains 
to scale the state-vector. Simulations showed that 
overflow could occur when the head is positioned 
at the edge of the track and the disk controller is 
switched to track-following. The scale factors 81, 82 

and "3 were chosen from a simulation of this case. It 
was found that 1Il1 had to be scaled down and that 
1Il2 could be scaled up. Scaling of IllS depends on 
the maximum possible load disturbance. For a load 
disturbance of 0.3 Nm it was not necessary to scale 
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:1:3. The following transformation was therefore 
chosen to scale the state vector 

T.e = diag( 1/2.8 1/0.3 1) (36) 

The following controller matrices were obtained 
after scaling: 

~ = [~ q,;2 :::] 
o 0 1 

[ 
4.079845420409798. 10-2 ) 

r = 9.742508490121855.10-1 

o 
C = (9.857577226616642.10-1 0 0) (37) 

[ 
3.401360544217687. 10-1 ) 

K = 6.666666666666667. 10-1 

2.5.10-2 

[ 
2.668340115802361 . 10-1 ] T 

L = 2.392799926898983.10-1 

7.080843606269305.10-1 

where 

q,12 = 8.375348965918672.10-2 

q,13 = 2.888874735967583.10-2 

q,23 = 6.898517895130376.10-1 

The system matrices are finally transformed to in­
tegers to fit the 16 bit fractional format of the DSP. 
The transformation is done by multiplying the co­
efficients with 216 and rounding each coefficient to 
the nearest integer. The matrices then become 

r=[;::~r 
[ 

1 2744 947] 
~ = 0 1 22605 

o 0 1 

C = (32301 0 0) 
(38) 

K = [~~~:: I 
819 

L = (8744 7841 23203) T 
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The largest roundoff error 0.04% occurs in q,13. To 
find how the poles of the controller are affected by 
the coefficient rounding, the characteristic equa­
tion of the controller was calculated. The largest 
pole deviation is 0.0013% from the design value. 

5. The DSP Code 

The control algorithm was implemented on the 
TMS320C25 by using the Texas Instruments Soft­
ware Development System. The complete code is 
listed in Appendix A. The organization of the code 
is straightforward. It is composed of the following 
steps: 

1. Perform A/D conversion. 
2. Compute the state estimate. 
3. Compute the new control signal. 
4. Saturate control signal. 
5. Perform D / A conversion. 
6. Update equations for state estimate. 

Compare with Algorithm 1. Approximately 32% of 
the computational power of the TMS320C25 used 
when the controller was running. 

It can be estimated how processor loading in­
creases with the order of the controller. Neglect­
ing saturation arithmetic and anti-windup calcula­
tions, the number of multiply/accumulate instruc­
tions are proportional to n 2 + 5n where n is the or­
der of the controller. A 6th order controller would 
therefore exhaust the computational power of the 
C25. The saturation arithmetic routine must be 
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Figure 4. Impulse response of the controller (a) 
and the error compared to an ideal implementation 
(b). 



called approximately 2n times. In our case, the sat­
uration arithmetic consumes almost 50% of the to­
tal execution time. Therefore, if saturation arith­
metic can be avoided by using more careful scaling, 
one can estimate that a 10th order controller can 
be implemented on the C25. 

6. Testing 

The open loop behavior of the controller was tested 
using the development system. The impulse re­
sponse of the controller was generated and com­
pared to the ideal impulse response. Figure 4(a) 
shows the responses of the controller to two im­
pulses of magnitude 0.9 and -0.9. Figure 4(b) shows 
the error between the ideal and actual impulse re­
sponse of the controller. The small error small is 
due to the roundoff in the controller. Notice that 
the quantization step is approximately 3 . 10-5 • 

The observer was tested separately. A con­
trol signal was generated and the corresponding 
ideal response of the arm was calculated. The in­
put signal was piecewise constant with jumps at 
t = 0, 0.001, 0.0018, and 0.0021. A load distur­
bance that was unknown to the observer was added 
at time t = 0.0025. All signals were scaled appro­
priately and fed to the observer whose response 
was recorded. Figure 5 shows the velocity estimate 
and its error. Figure 6 shows the position estimate 
and its error. The error is very small before time 
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Figure 5. Actual and estimated velocity (a) and 
estimation error (b). 
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Figure 6. Actual and estimated position (a) and 
estimation error (b). 

t = 0.0025, where the load disturbance was intro­
duced. The load disturbance does, however, intro­
duce significant errors both in velocity and position 
estimates. This is natural, because the observer 
does not have information about this load distur­
bance. The error will, however, decrease when the 
observer improves its estimate of the disturbance 
as is indicated in Figure 6. 

Although open loop testing can never replace 
actual closed loop testing of the whole system, 
these results indicate that the controller works 
properly. 

Remarks on a Roundoff Algorithm 

The first tests of the algorithm used a roundoff 
scheme found in a programming example in [Texas 
Instruments, 1986]. This resulted in a large esti­
mation error, see Figure 7. The problem was inves­
tigated, since the error was larger than estimates 
based on analysis of roundoff errors. The reason for 
this is an error in the roundoff algorithm. To re­
duce quantization errors the numbers are rounded 
off, rather than truncated, before they are stored as 
16-bit numbers. This roundoff is done in software. 
To roundoff a positive number, a bit is added to the 
MSB of the lower half of the 32-bit number before 
it is stored away. At first sight it appears natural to 
subtract the bit from the number to roundoff a neg­
ative number. This was done in the coding exam­
ple [Texas Instruments, 1986]. This is not correct 
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Figure 7. Position error with an incorrect round­
off algorithm. 

with the chosen number representation. The round­
off algorithm gives -2 when applied to the number 
-1 because of the computational scheme used in 
the DSP. If the upper half of the number is com­
plemented without considering the lower half, the 
result will not be the same as if the whole number 
is complemented. The correct code for the roundoff 
is given in Appendix A. 

7. Conclusions 

This paper shows that it is straightforward to 
implement a controller based on an observer and 
feedback from the observed states using a DSP 
with fix point calculations. Some effort is required 
to obtain proper scaling. The coefficient scaling 
is quite straightforward and can be automated. 
Scaling of the states is more difficult. It requires 
that the ranges of the states are known. This can 
be determined from simulation. Great care has to 
be exercised to find the worst cases. The code for 
the disk controller is much simpler than the code 
for the PIDccontroller discussed in [Astromand 
Steingrlmsson, 1991]. The reason is that the disk 
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controller is designed for a specific process while 
the PID-controller is designed as a general purpose 
controller. The coefficient ranges for the PID­
controller are therefore much wider. This requires 
more complex scaling and saturation arithmetic, 
which is a large part of the code [Astrom and 
Steingrimsson, 1990]. 
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Appendix A: Disk Controller for TMS320C25 

Disk Controller for the TMS320C2S 
Based on a Rigid Body Model of the Arm 
Version 1.0 
Author: 'Hermann Steingrimsson 
Date: 3-31-1990 

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES 
DTbeg .bss A12,1 :The matrix A (or Phi) 
.bss A13,1 
.bss A23,1 
.bss B1,1 :The vector B (or Gamma) 
.bss B2,1 
.bss C1,1 :C1 
.bss K1,1 :The vector K (in this case CK/2) 
.bss K2,1 
.bss K3,1 
.bss L1,1 :The vector L 
.bss L2,1 
.bss L3,1 
.bss MA1NUM,1 :Maximum number 
.bss MINNUM,1 :Minimum number 
.bss UMA1,1 :Saturation limits 
.bss UMIN,1 
.bss ONE,1 :ONE=1 
.bss MODE,1 
DTend .bss CLOCK,1 :End of parameters in data memory 
.bss 1E1,1 :State vector x(k+1lk) 
.bss 1E2,1 
.bss 1K1,1 :Vector x(klk) 
.bss 1K2,1 

.bss 1K3,1 
.bss YE,1 :Estimate of ye 
.bss Y,1 :Input 
.bss ERR,1 
.bss V,1 :Control signal before saturation 
.bss U,1 :Control signal after saturation U=SAT(V) 

:Begin program memory 

.sect "IRUPTS" 
B START :Branch to start of program 

:Store parameters in program memory 

. data 
Ptable .set • 
• word 2744,947,22608,1337,31924,32301,11146,21845,819,8744,7841,23203 
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Disk Controller for TMS320C25 Version 1.0 

. word 32767,-32768,32766,-32766,1,1,1 

.word ,...1 
Ptend . set $-1 
SCALE .set 15 

jInitialize 

.text 
START DINT jDisable interupts 
Nap 
SoVM jSet overflow mode 
SSIM jSet sign-extension mode 
SPM 0 jNo shifting from P register 

jLoad coeff from prog. mem to data memo use BLKP 

LRLK ARo,DTbeg jARO points to begining of data block 
LARP ARO 
RPTK Ptend-Ptable iSet up counter 
BLKP Ptable,*+ iMove data 
j=> Coeff loaded into data memory 

jlnitialize variables 

LDPK A12 jPoint to correct data page 
ZAC iClear variables 
SACL IEl 
SACL XE2 
SACL IK3 
SACL YE 
SACL U 

OUT MoDE,PA4 jlnit analog board 
OUT CLOCK,PA5 
LARP 0 jPoint to ARO 

jBegin loop 

JVAIT BIoZ GET jWait for input 
; B WAIT 
WAIT IN Y,PAO ;Change WAIT to GET when are removed 

ZALH Y jForm ERR = y{k) - ye{klk-l) 
SUBH YE 
SACH ERR 

jCompute x{klk) = x{klk-l) + K*err 
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Disk Controller for TMS320C26 Version 1.0 

LAC lEl,SCAlE ;Calculate xl(klk) 
LT ERR 
MPY Kl 
APAC 
lRlK ARO,lKl 
CAll ROUOF 

LAC lE2,SCALE :Calculate x2(klk) 
LT ERR 
MPY K2 
APAC 
lRlK ARO,lK2 
CALL ROUoF 

LAC lK3,SCAlE :Calculate x3(klk) (Estimate xe3 not needed) 
LT ERR 
MPY K3 

APAC 
LRLK ARO,lK3 
CAll RoUoF 

: Calculate control signal u(k) -lx(klk) 

ZAC 
LT lKl 
MPY L1 

LTS lK2 
MPY l2 

lTS lK3 
MPY l3 
SPAC 

lRlK ARo,V 
CALL RoUoF 

:Saturation function (12 instr. cycles) 

ZAlH V 
SUBH UMIN 
BlZ loWERl : Branch if v < umin 
ZAlH V 
SUBH UMAI 
BlZ SAME :Branch if v < umax 
ZAlH UMAI :v >= umax 
SACH U :u = umax 
B FIN :Begining of loop 
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LOWERl ZALH UMIN 
SACH U iU = umin 
NOP iAlways same time 
NOP 
NOP 
NOP 
B FIN 

SAME ZALH V 
SACH U iU = v 
NOP 
NOP 

FIN OUT U,PA2 iOutput control signal 

iUpdate the estimate xe(k+llk) • Ax(klk) +·Bu(k) 
ye(k+llk) • Cxe(k+llk) 

LAC IK1,SCALE iCalculate xel 

LT IK2 
MPY Al2 

LTA IK3 
MPY Al3 

LTA U 
MPY Bl 
APAC 

LRLK ARO,IEl 
CALL ROUOF 

LAC IK2,SCALE iCalculate xe2 

LT IK3 
MPY A23 

LTA U 
MPY B2 
APAC 

LRLK ARO,IE2 
CALL ROUOF 

iNo need to update xe3 (xe3 = xk3) 

LT IEl iCalculate ye 
MPY Cl 

252 

Page 4 



Disk Controller for TMS320C25 Version 1.0 

PAC 

LRLK ARO,YE 
CALL RoUoF 

B WAIT :Loop 

Rounding, overflow and shifting function (11 cycles) 

ROUoF BLZ NEG :Check if number negative 
ADD ONE,SCALE-l :Round 
SACH *,16-SCALE :Store value 
SUB MAINUM,SCALE :Subtract scaled max pos number 
BLEZ NOOV ;If acc <- 0 then no overflow 
ZALS MAINUM ;else store max num 
SACL * 
RET 

NEG ADD ONE,SCALE-l ;Round 
SACH *,16-SCALE ;Store value 
SUB MINNUM,SCALE :Subtract scaled min neg number 
BGEZ NOoy iIf acc )= 0 then no overflow 
ZALS MINNUM ielse store min neg number 
SACL * 
RET 

NOoy NOP 
NOP 
RET 

.end;e 
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Digital Control Applications with the TMS320 

More designers are using DSPs to solve problems that commonly occur in control applications. DSPs now 
make practical some applications that were previously difficult to implement or were not cost-effective. 
As the cost of DSPs decreases, these processors are rapidly replacing microcontrollers and analog compo­
nents in many control applications. 

Some applications in which DSPs are already cost-effective are servo control for computer peripherals, 
power control in uninterruptible power supply (UPS) and DC power supply systems, motion control for 
numerical control (CNC) systems and robotics, suspension/engine/brake control for automotive systems. 
and vector control for AC and other brushless motors. Other applications are missile guidance and "smart" 
weapon control for military systems. 

This introduction presents a few areas of DSP-controlled applications. Following it, papers discuss topics 
pertainiog to those and other areas. Most of these documented applications have evolved into very success­
ful commercial products. 

Computer Peripherals 

Many computer peripherals use DSPs for applications such as read/write head control in winchester disk 
drives, tape control in tape drives, pen control in plotters, and optical beam positioning and focusing in opti­
cal disks. 

Disk Drives: Disk drives were early to adopt DSPs. DSPs are used for servo control of the actuator driving 
the read/write head. Disk drives employ a voice-activated coil motor with high bandwidth. Data is read from 
the disk at a very high rate; sampling rates of up to 50 kHz are sometimes used. In addition to implementing 
the compensator, DSPs can implement notch filters to attenuate undesirable frequencies that cause mechan­
ical resonances or vibrations. 

Tape Drives: In tape drives, DSPs are used to control the tape mechanism. A tape drive has two servo loops: 
one controls the tape speed, and the other controls the tension placed on the tape. Position feedback is ob­
tained from an optical encoder, and tension infonnation is fed from a tension sensor. DSPs are also used 
to filter undesirable frequencies that cause mechanical resonances. 

Power Electronics 

DSPs can be used in multiple applications in power electronics. These applications include AC servo drives, 
inverter control, robotics, and motion control. 

AC Servo Drives: In AC servo drives, DSPsare used for vector control of AC motors. AC drives are less 
expensive and easier to maintain than DC drives. However, AC drives have complex control structures as 
a result of the cross-coupling of three-phase currents. Vector rotation techniques are used to transfonn three­
phase axes into rotating two-phase "d - q" axes. This two-phase rotation technique greatly simplifies the 
analysis, making it equivalent to analyzing field-wound DC motors. 

UPSs and Power Converters: In uninterruptible power supplies (UPSs) and power converters, DSPs are 
used for PWM generation along with power factor correction and harmonic elimination. Advanced mathe-
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matical techniques can be used to control the firing angles of the inverter, creating low-hannonic PWM with 
unity power factors. 

Robotics and Motion Control: DSPs are used in large-scale applications in robotics and other axis control 
applications. DSPs support high-precision control alo~g with implementation of advanced techniques like 
state estimators and adaptive control. A single controller can handle speed/position control as well as cur­
rent control. Time-varying loads Can be handled with adaptive control techniques. Adaptive control tech­
niques can also be used to create universal controllers that can be used with different motors. In addition 
to implementing controllers, DSPs implement notch filters to attenuate undesirable frequencies that causes 
resonances or vibrations. 

Automotive 

DSPs can be used for many automotive applications such as active suspension. anti-skid braking, engine 
and transmission control, and noise cancellation. 

Active Suspension: Active suspension systems use hydraulic actuators. DSPs can take into consideration 
body dynamics, such as pitch, heave, andfOll, and then use this information to control four actuators inde­
pendently and dynamically for counteracting external forces and the car's attitude changes. 

Anti·Skid Braking: In anti-skid braking systems, DSPs can read the wheel speed from sensors, calculate 
the skid distance, and control the pressure in the wheel's brake cylinder. Traction-regulating systems can 
be added to control the vehicle in adverse driving conditions, to prevent wheel(s) from locking or spinning, 
and to increase general vehicular stability, steerability, and drivability. 

Engine Control: In engine control applications, DSPs can be used with in-cylinderpressure sensors to per­
form engine pressure waveform analysis. This information can be applied to determine the best spark tim­
ing, most effective firing angles, and optimal air/fuel ratios. The closed-loop engine control scheme can 
tolerate external turbulences, aging, and wearing. while maintaining optimum engine performance and fuel 
efficiency. 



DSP helps keep 
disk drives on track 
Using a sophisticated DSP chip to implement adaptive embedded 
servo control avoids the head-positioning errors tbat can plague 
high-density Winchester disk drives. 

Conventional design approaches are inadequate to 
meet the demand for ever-higher track densi­

ties on Winchester disk drives. When densities ex­
ceed 1,200 tracks/in., drives relying on dedicated 
servo feedback for positioning accuracy become 
unpredictable parts of computer systems. Imple­
menting embedded servo control with adaptive po­
sitioning features, however, allows the design and 
manufacture of adequately margined disk drives 
that provide a solid platform for higher densities. 

Since designers can't predict exact performance, 
a disk drive with adequate margin requires reserve 
capability in all areas. Materials or components, 
for example, may not be within specifications, and 
environmental conditions may also exceed specifi­
cations or combine in unpredictable ways. For in­
stance, electrical noise may combine with tempera­
ture changes in a peculiar way that even an ex­
haustive testing schedule could miss. In addition, 
materials and components change with time. 

The search for ample safety margins led Vermont 
Research to use the 32020 digital signal processing 
(DSP) chip, from Texas Instruments (Dallas, TX), 
to incorporate adaptive embedded servo control 
into its Model 7030 hard disk drive. Digital signal 
processing of feedback signals offers immense flex­
ibility for designers of many products, from disk 
drives to numerically controlled machine tools to 

James M. Corliss and Richard Neubert 
Corliss is principal engineer and Neubert is a design 
engineer at Vermont Research (North Springfield, VT). 

aircraft control systems. Exploited to its fullest, 
the power of DSP can be used to expand reliability 
margins in numerous motion control applications. 

The dedicated servo approach 
The most common method of locating a track on a 
Winchester disk drive has been the dedicated servo 
approach. The designer reserves one surface in the 
stack of platters where servo control information is 
written. If the head on that surface is correctly lo­
cated, it's assumed that all other heads on the car­
riage are also on their tracks. 

Sometimes dedicated servo drives work well, but 
higher track densities can make them hypersensitive 
to temperature changes, especially when combined 
with shock or vibration. The drives develop high 
error rates and may not retrieve data at all if condi­
tions have changed since the recording. The prob­
lem is that positioning errors that may be man­
ageable at lower track densities can cause signifi­
cant positioning difficulty at higher track densities 
because the errors represent a larger percentage of 
the narrower tracks .. If the heads aren't properly 
positioned, the analog signal-to-noise ratio plum­
mets on readback, causing skyrocketing error rates 
and, sometimes, an unusable drive. 

Embedded servo control provides feedback in 
the form of bursts of prerecorded positioning infor­
mation embedded in data on the track that's being 
read. Adaptive positioning actively compensates 
for both external disturbances such as shock and 
vibration and internal changes such as the aging of 
shock mounts and creep of materials. Of course, 
the effectiveness of embedded servo control is 

Reprinted with permission from the June 15, 1988 issue of COMPUTER DESIGN Magazine, copyright 1988, PennWell 
Publishing Company, Advanced Technology Group. 

259 



limited by the frequency at which positioning feed­
back is provided. If the sampling frequency is too 
low, the track-following errors that accumulate be­
tween samples will be larger than the errors a dedi­
cated servo approach would have allowed. 'Inade­
quate feedback also makes positioning perfor­
mance suffer. 

Adaptive embedded servo positioning, as im­
plemented in the Model. 7030 disk drive, wasn't 
practical before the advent of sophisticated DSP 
chips, which can analyze rapid-fire bursts of servo 
information and make quick position corrections. 
Implementing adaptive positioning without sacri­
ficing access time or user flexibility required a new 
level of servo information analysis that relies heav­
ily on digital signal processing. Pre-DSP electronics 
wouldn't have been practical for the adaptive em­
bedded servo approach at a satisfactory sampling 
rate. The cost and real estate requirements of dis­
crete logic would have been prohibitive. 

That's not to say that using an advanced DSP 
chip like the TI 32020 for multiple signal processing 
functions is completely straightforward. Since the 
functions can't be truly simultaneous, priorities 
must be carefully established. Also, there are some 
disadvantages to using adaptive. embedded servo 
control. One is a recording overhead of 15 percent 
of a drive's capacity, compared to 10 percent for 
dedicated servo and 7 or 8 percent for embedded 
servo with lower sampling rates. Fortunately, 
though, this overhead cost is more than o~f~et by 

. the ability to reliably use higher track denSities. 
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The shock sensitivity of a drive 
with embedded servo is a func­
lion of the amount of time be­
tween sampling. At a 100kHz 
sampling rate, a 2-G shock in­
duces only a 4-,un. off-track 
error; at 1.2 kHz, It's 256 
,un.-enough to accidentally de­
stroy data on an adjacent track. 

Living within a budget 
Like every physical device, a disk drive has toler­
ances. Absolute perfection in head positioning isn't 
required for reliable drive performance, but there's 
a set limit on how much deviation is acceptable for 
each case. Disk drive designers commonly use a 
"tracking error budget" when analyzing all possi­
ble sources of track-following deviations. If the 
drive can't achieve an acceptable bit error rate un­
less the heads are, say, within 60 /Lin. of perfect po­
sitioning, then 60 /Lin. is the tracking error budget. 

Suppose, for example, that differential thermal 
expansion may cause as much as 35 /Lin. of track­
following error, despite the servo system's best 
compensation efforts. If shock and vibration con­
tribute no more than 10 /Lin. and all other sources of 
error combined will be no more than 10 /Lin., the 
total possible error is 55 pin., and the 60-pin. error 
budget won't be exceeded. 

As track widths diminish, however, error budget 
shrinks disproportionately. At 1,200 tracks/in., for 
example, a 60-/Lin. error budget is 10 percent of the 
track width. At a 1,500-track/in. density, though, 
with the accompanying decrease in absolute signal 
strength from the head, the error budget may have 
to shrink to 8 percent of the track width. In this 
case, the error budget becomes a mere 38 pin. 

A matter of degrees 
Temperature changes caused by operating or en­
vironmental conditions are a common source of 
trouble for reliable positioning. Differential ther-



mal expansion among the various materials in head 
support arms, disks, carriages, spindles, bearings 
and housings in the 5-in.-long chain of parts be­
tween the head and the disk is typically 5 ",in. lin.! dc. 
At 1 ,200 tracks/in. on an 8-in. drive, that can 
mean that a track written when a drive is cold can 
shift half a track or more when the drive is warm. 
A mere change of 2.5°C can consume an entire 
60-Itin. error budget. 

Careful attention to air circulation in the drive 
can minimize temperature differences within it but 
can't eliminate them. While the temperature is 
changing, parts within the drive will expand or con­
tract differently, even if they subsequently stabilize 
at a new temperature. A drive depending on dedi­
cated servo information is blind to head shift dur­
ing temperature changes. Thus, even though the 
servo head is positioned properly, the data head 
may not be. The drive will compensate for the 
dimensional changes affecting the reference head, 
but it can't compensate for the fact that the parts 
that locate the data heads are changing in a dif­
ferent way. In practice, temperature sensitivity 
means that a disk drive may need a warm-up period 
before it works reliably. It also may mean that in­
formation recorded last week is unavailable this 
week because of changes in the room temperature. 

With adaptive embedded servo control, however, 

,TraCking Error Components 
-1 

Cause 
Range 
("in.) -2 

50 -3 

w -, 
10 ~ 

a: -5 
0 
a: 

5 a: -6 w 

5 
t:: 
CD -7 

5 
-8 

5 -9 

-10 
5 

5 -150 

(b) 

(a) 

temperature sensitivity ceases to be an issue. The 
drive needs no warmup, data written cold can be 
read hot and vice versa, and changes in room tem­
perature won't affect performance. System build­
ers can ship software on the disk and be sure the 
disk will boot up. They'll see dramatic reductions in 
the number of dead-on-arrival drives and systems 
and won't have to carry a large inventory to com­
pensate for failures. 

Other sources of head-track misalignment that 
can cause positioning difficulty include creep and 
stress relief in materials, bearing runout, shock and 
vibration, head stack tilt, disk slip, and bending or 
twisting of the main frame chassis. All of these phe­
nomena may affect one disk in the stack differently 
than the others, creating track-following errors for 
data heads even if the servo head is on track. 

Coping with internal variables 
One significant internal variable is head width, 
which typically varies ± 10 percent and, thus, af­
fects positioning accuracy. In the Model 7030 drive, 
head widths are measured by the DSP hardware 
during the factory configuration and test process 
and stored in nonvolatile RAM for use during op­
eration. Other component characteristics, such as 
the actuator motor's magnet profile, are also pro­
grammed in firmware when the disk is built. One of 

NORMAL TRACKING ERROR (9): 
• TEMPERATURE CHANGES 
• NOISE 
• SHOCK AND VIBRIITION 

...... 

TRACKING ERROR 
(1) (2) 

(3) 

(4) 

(5) 

When a typical disk drive's tracking error budget from all sources (a) 
exceeds 100 !'in., bit error rates begin to rise dramatically (b). A 60 "in. 
budget provides a greater margin for safety. 

(6) 

(7) 

(8) 
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Embedded servo scheme guarantees accurate positioning 'I" Vermont Research's recently introduced 648-
Mbyte, 8-in. Winchester disk drive (Model 7030), 

factory-recorded servo information bursts are em­
bedded in data every 128 bytes, providing a posi· 
tlonsampling rate of 9.6 kHz. This rate is, in fact, 
the practical equivalent of continuous feedback 
.lor track following and ensures quick, accurate 
positioning. Even a 1·G shock can move the heads 
only 3 "in. between samples, which isn't enough to 
perceptibly affect the data signal integrity. 

The servo zone is divided into multiple parts. 
Before it enters a data zone, a head encounters a 
short preamble and a sector index mark, then a 
Gray·coded track address mark, and finally a pair 
of servo marks, offset in time, with one lying inside 
the track (toward the disk spindle) and one outside. 
The servo bursts are displaced in time so they can 
be distinguished. If the head is centered on the 
data track, the servo Signals have the same ampli· 
tude; if not, one Is larger than the other. Small vari-

SERVO ZONE (8 BYTES) 

ations In the timing of the servo bursts have no 
effect on the measurement as long as they occur 
within an allotted time window. 

Each time the drive is started up, a self-test pro· 
gram is loaded into a Texas Instruments 32020 
digital Signal processor. The program verifies its 
own operation, the exte'mal data bus and the inter­
rupt structure,and calibrates the analog·to-digital 
and digital·to·analog conversion circuitry and the 
signal path for positioning signals. It reads signal 
A into both channel A and B, and does the same 
with signal B, to measure the dc offsets and the 
gain ratio between the two channels. This guards 
against the possibility that the gains of the two 
position-indicator Signal converters may have 
drifted apart. 

To determine signal amplitude, the peak-to·peak 
value of each set of dipulses is averaged, which 
removes some high·frequency noise. The ampli­
tude value of each position signal is digitized, and 

the DSP applies the measured 
values of dc offset and gain ra· 

~~= ~~~ 

__ _ 
___ 

TRACK~CENTERS ... /, 

GREY-CODED TRACK ADDRESS 
(8 BYTES) 

m"~~~ 
-(APPROX, 128 B~S~ 

tio to make any necessary cor· 
rections. The DSP then com­
putes the difference of tl:1e two 
Signals and divides the result 
by their sum to obtain a raw 
amplitude·compensated ratio 
that Indicates the degree by 
which the head is off·track. 
This ratio is numerically fil­
tered in a finite impulse reo 
sponse filter to remove further 
high·frequency noise. ---DATA ZONE -1--=.,..., 

(APPROX. 128 BYTES) 

7 
WRITE·TO-READ 

RECOVERY ZONE 

The processed signal is now 
a position indicator. The mea· 
sured rate of positional change 
also provides velocity and ac· 
celeration information, which 
the DSP uses to compute the 

SECTOR INDEX 
(1 BYTE) 

PREAMBLE (1 BYTES) 

the major strengths of adaptive positioning, how­
ever, is its ability to dynamically compensate for 
changing variables. 

The force of the flex circuits connecting the heads 
to the drive electronics tends to move heads off­
track. Mechanically, the flex circuit is a spring, so 
its force varies with the track address; during opera­
tion, the DSP computes the offsetting actuator cur­
rent for each track address. As the flex circuit ages, 
its spring constant changes, but the drive adapts to 
the change with each startup. The DSP chip mea­
sures the force constant of the linear head actuator 
motor on startup by applying a pulse of current and 
measuring the resulting motion. If necessary, the 
drive can be rezeroed during operation to adjust 
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amount of current to supply to 
the linear motor powering the 
head actuator. 

for a temperature-changed force constant-or any 
other parameter. 

A more complex adaptive feature is compensa­
tion for movement of the head-disk assembly on its 
shock mounts. The high forces needed to accelerate 
the head carriage displace the entire head-disk 
assembly on its shock mounts, typically by 0.020 
in.-the equivalent of 20 tracks or more. The dis­
placement becomes a damped oscillation in the 20-
to 40-Hz range after the seek is completed. 

Without compensation for the shock-mount os­
cillation, the drive's servo loop could follow about 
99.7 percent of the displacement induced by the 
mounts, but that still leaves a 0.3 percent un­
compep.sated displacement on the first cycle of the 



damped oscillation, which represents 10 percent of 
a track width, or 60 /-tin.-the maximum that can be 
tolerated from all Sources of error combined. Even 
after the first cycle, uncompensated oscillation 
would consume at least half of the drive's error 
allowance. That error represents margin that could 
hinder quick actuator settling time and, thus, ad­
versely affect overall seek performance. 

In the Model 7030, a mathematical model of the 
response of the shock-mounted assembly, which in­
cludes factors for frequency, amplitude and damp­
ing, is stored in the firmware of the 32020 DSP, 
which uses it to predict the damped oscillation and 
apply the inverse actuator current to cancel it. The 
DSP continually updates the parameters of the 
model, automatically adjusting for changes in the 
elastomer of the shock mounts and in other mater­
ials as they age or change temperature. Once per 
minute, the updated model is pulled into non­
volatile RAM, along with the updated flex circuit 
spring constant, as an accurate starting point in 
subsequent startups. A similar method is used to 
compensate for resonance of the actuator assembly 
after a seek, a problem that introduces some degree 
of track-following error in all disk drives. 

In addition to improving performance, the in­
herent flexibility of adaptive embedded servo con­
trol lets a disk drive design take advantage of on­
going improvements in heads and disk coatings 
without requiring radical redesign. An additional 
benefit of insensitivity to component variations is 
that no adjustments are needed when boards are 
changed in the field, which saves time and requires 
less expertise from field service technicians. 

The advanced DSP technology used for adaptive 
positioning also provides for sophisticated self­
diagnosis and monitoring of environmental and 
power supply conditions. This capability can save 
hours of field service time by making it possible to 
pinpoint temperatures or voltages outside of specs 
as the source of difficulties that otherwise would 
cause a wild goose chase. CD 
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LQG-Control of a Highly Resonant Disk Drive 
Head Positioning Actuator 

HERBERT HANSELMANN, MEMBER, IEEE, AND ANDREAS ENGELKE 

Abstract-A fast fine-positioning controller bas been designed for a 
rotary actuator type magnetic stoel&e di.k drive. The controller was 
de.lgned using the Iqg (linear quadratic gau •• ian) methodology and bas 
been Implemented on a digital signal pro .... or. It is sbown tbat Iqg design 
is a viable approacb, and that varlou. problems a.sociated witb tbe 
structural resonances of the actuator can be solved. 

Keywords-Iftagnetic disk stonge, position control, microproeessor 
control. 

I. INTRODUCTION 

MODERN DISK DRIVES use fast voice coil actuators for 
positioning magnetic heads on desired tracks and 

keeping them on track against various disturbances using 
closed-loop control. Two types of actuators are predominant 
in state-of-the-art drives: rotary and linear actuators, both 
driven by a current passing through a coil in a strong magnetic 
field. 

In high-performance drives the head position is measured 
from a dedicated servo platter. Measurement electronics 
supply a head/track misalignment error voltage which is 
proportional to this error within track width. Current flowing 
through the coil generates torque or force so there must be 
closed-loop control. 

We investigated fine-positioning control in an industrial 
prototype 8-in drive using a rotary actuator, as shown in Fig. 
1. As described in some detail in [I], the studies were carried 
out on an experimental version of the drive with fixed disk­
spindle. With an operating drive the investigations would have 
been hindered because of the required clean-room conditions. 
The position error measurement was achiev(,d through an 
optical sensing device capable of measuring in the real position 
range of an operating drive (useful track width + - 9 /tm) with 
excellent resolution. 

In [I] results of modal structural analysis as well as of 
control using a classical approach have been presented. The 
controller was of double PD-type with 3 notch-filters. It had 
finally been extended by a synthetic disturbance feedforward 
system. 

It is the purpose of this paper to report on our effort to 
design and implement an appropriate controller using the Iqg/ 
Itr methodology. The plant is of the SISO (single-input single­
output) type because only position error measurement is 
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Fig. 1. Prototype disk drive. 

available. Thus designing a controller might seem to be fairly 
simple at first glance, but the strong structural resonance 
effects posed some problems, and the experience with the 
approaches taken might be of interest for others working on 
the control of mechanical systems. 

II. PLANT MODEL 

A simple mathematical model would be a double integrator 
(torque to position). But the control bandwidth desired is so 
high that structural mechanics effects can by no means be 
neglected. Figure 2 shows the measured frequency response 
from input current to position in the 1- to lO-kHz frequency 
range. There are many resonances and notches, and zoomed 
analysis would show even more. 

The second curve in Fig. 2 shows the frequency response as 
computed from a 30th order input-output (black-box) model, 
which has been formulated in state-space form. This model has 
basically' been formed from resonance frequency, damping, 
and residue data obtained with the curve fitting facility of the 
structural dynamics analyzer we used. Additional tedious 
manipulations were however necessary in order to improve the 
model in both phase and amplitude response. The model is 
fairly good below 2 kHz and above 4 kHz, but less so between 
these frequencies. In particular the two deep notches between 
3 and 4 kHz are not well represented in the model, and 
correspondingly there is considerable phase mismatch. The 
classical (notch-filter based) controller from [I], which was 
designed with a view to amplitude stabilization, was not 
sensitive to this model mismatch, in contrast to the Iqg 
controller, as shown below. Certaiuly we should do some 
work on improving the model by better computerized model 
matching methods. 

© 1988 IEEE. Reprinted, with pennission, from IEEE TranstictiollS ol1ll1dustrial Electrol1ics. 
Vol. 35, No.1, Feb. 1988. 265 
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Fig. 2. Frequency response truth model (2)/measurement (I). 

III. CONTROL DESIGN 

Fine-positioning control may seem to be very easy because 
the plant is SISO and is virtually linear. Linearity is only lost 
when the current saturates. It turns out that the current limit is 
not reached with fine-positioning regulating control because 
the current range is designed for fast large-distance positioning 
at high torque. The plant is SISO because for economic 
reasons the only measurement presently available for control 
is the track position error itself. 

From a design viewpoint, the difficulties of control arise 
mainly from the structural resonances ranging up to 10 kHz. A 
classical approach to coping with resonances is the well­
known introduction of properly designed notch-filters. They 
compensate for resonance peaks to such an extent that these 
peaks drop significantly below 0 dB. In this case insensitivity 
to phase behavior of the plant is gained (amplitude stabiliza­
tion). The controller from [1], which had been designed that 
way, yielded high bandwidth and performed well in the 
experiment. The design procedure was however not satisfacto­
rily systematic. Fine-tuning of the filter parameters took a lot 
of time because we always had to look carefully at the total 
phase introduced by the filters around the projected crossover 
frequency. Tuning the controller was easier when we used a 
numerical parameter optimization program as reported in [1], 
but amplitude stabilization was lost, and design was still time­
consuming. 

This experience provided the motivation of trying. the Iqg 
approach, from which we hoped to get useful controllers in a 
systematic way with little effort. Some obstacles had however 
been anticipated; namely 

1) a reduced:order design model was necessary, in contrast 
to the classical design which always worked with the full order 
'truth model', 

2) insensitivity to pkase behavior is not guaranteed, so 
trouble with the phase mismatch of the model, as well as with 
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phase deviations in the real plant (which have been observed 
and are due for instance to temperature-dependent stress) 
could be expected, 

3) due to the 20 dB/decade slope of the open loop when true 
Iqg state feedback is employed, problems with the high­
frequency resonance peaks of the 'truth model' and the real 
plant were thought to be likely. 

A. Design Model 

The order of the design model determines directly the order 
of the final dynamic compensator/controller which consists of 
an observer or a Kalman filter with state feedback. In order to 
be comparable to the classical controller and to keep the 
control processor's workload reasonably low, a design model 
of 8th order was derived. Figure 3 shows the frequency 
responses of both the 'truth model' and the design model. 
There is good matching only up to 3 kHz. Even to achieve this, 
it was necessary to include the 7-kHz resonance in the design 
model, because it had much 'stray influence' into the lower 
frequency range. 

Since the range of good matching is fairly small with respect 
to the projected crossover frequency range of 600-900 Hz, we 
had to be prepared to face robustness problems when applying 
the Iqg controller to the 'truth model' or to the real plant. 

This design model has been augmented by an integrator, the 
output of which adds to the control input. This integrator 
models a constant torque disturbance. This disturbance can be 
observed by the Kalman filter and the estimate fed forward to 
the control input. The final design model thus was of 9th order 
both for the feedback and the Kalman filter design. 

B. Open-Loop Shaping 

As noted above we expected to run into problems with the 
high-frequency behavior of the true plant, which is not well 
represented in the design model. We therefore aimed first at 
forcing rapid rolloff of the open-loop frequency response 
beyond the projected crossover-frequency into the controller 
design. 

A viable method of doing this is 
1) put a low-pass filter into the loop at the plant's input, 
2) design state feedback and Kalman filter for the aug­

mented plant, 
3) implement the controller structure from Fig. 4. 
This approach corresponds to the 'frequency-shaped cost 

functionals' technique given in [2] (particularly example 4). 
It might seem to be a problem that the filter states 

themselves are also fed back and thus the filter characteristic 
changes. We chose the corner frequency of the 2nd-order filter 
near to the desired crossover frequency (usually a bit lower) 
and there was only weak feedback of the filter states. The 
filter's poles were only slightly shifted and the desired rolloff 
was achieved without significant loss of control bandwidth, as 
shown in Fig. 5. The small effect of filter feedback can be 
explained by the cost which any larger changes in the filter 
dynamics would introduce, which are therefore avoided by the 
Iq-optimal feedback design as long as the control bandwidth is 
not forced to be much higher than the filter corner frequency. 

It turned out however that operi-Ioop shaping was not really 
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Fig. 3. Frequency response truth model (I)/design model (2). 

Fig. 4. Control structure with open-loop sharing. 
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Fig. 5. Results of open-loop shaping: (a) Open-loop frequency response 
magnitude, (h) step response, (1) with open-loop shaping, (2) without open­
loop shaping. 

necessary for our drive actuator control. The controller 
described below had moderate but sufficient roll-off without 
this technique, yet open-loop shaping might be necessary when 
manufacturing tolerances or the like require a more safe 
design. The oscillation visible in Fig. 5(b), which results from 

the near O-dB resonance peak at 2 kHz, could also be avoided 
by weighting a suitably defined variable in the Iq cost 
functional (see below). 

C. Igq/ltr Design 

The Itr method of designing a state-feedback plus Kalman 
filter (observer) based controller is now, well established and 
already appears in textbooks, for instance [3]. In effect it 
means introducing fictitiously high process' noise at the control 
inputs (one in our case). Increasing this noise forces the 
Kalman filter to rely more and more on the measurements, 
thus using the control input information less and less. In the 
limit case this information is no longer used at all. The loop 
transfer functions of the original full state feedback without 
Kalman filter are then 'recovered'. The purpose of this 
strategy is to make the control loop less sensitive to certain 
mismatches between the plant model used in the Kalman filter 
design and the real plant. 

The limit case is however not practically useful, because it 
yields an ultrafast filter with too noisy estimates. A compro­
mise has to be found. Our strategy generally is to observe the 
filter poles when increasing the control input noise and to 
locate the poles somewhere in the region which corresponds to 
the desired dynamics of the control system. The pole 
corresponding to the disturbance model is also located in an 
appropriate region through a suitable disturbance noise inten­
sity. 

Figure 6 shows the control system structure. Due to the Itr 
procedure no problems arose with' using the equivalent SISO 
compensator instead of the original 2-input controller with the 
control signal being explicitly fed into the Kalman filter. Note 
that without the fictitious Itr noise the Kalman filter would 
have relied far more on the control signal than on the 
measurement. In such cases the compensator may turn out to 
be unstable, so that the control system becomes only 'condi­
tionally stable', which is very undesirable. 

The result of the first attempt to design the state feedback 
and the Kalman filter is shown by the step response in Fig. 
7(a). This response was simulated with the design model as 
plant, i.e., without any model mismatches. The state feedback 
had been designed with cost function weight on the control 
signal and the head position error. 

The problem with this design was the 2-kHz oscillation 
visible in the step response. It is typical of Iqg designs that 
lightly damped plant modes do not always come out well 
damped in the closed loop. Even if the damping achieved here 
were considered to be sufficient, it was unfortunately not 
retained when the controller was applied to the truth model of 
the plant. In fact, the oscillation built up, and the closed loop 
was unstable. To remedy this it was necessary to force the Iqg 
design to yield more damping of the critical mode. 

D. Modal Weighting 

In resonant mechanical systems it is often necessary to 
achieve higher damping than given by the Iqg design when 
weight is put only on the controlled or related variables [4]. 
Frequently the mechanical motion dominantly associated with 
a critical mode can be identified, such as the relative motion of 
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Fig. 6. Control structure. 
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Fig. 7. Step responses simulated with design model: <a) without modal 
weighting, (b) with modal weighting. 

two masses connected by a spring. Then it may suffice to put 
cost function weight on appropriate variables related to this 
relative motion in order to get good damping without affecting 
the eigenfrequency or other eigenvalues too much. 

In the disk drive application we unfortunately do not have an 
appropriate mechanical plant description, we only have a 
black-box input/output model. It is however still possible to 
apply 'modal weighting', by introducing an auxiliary output 
variable YM (one per critical mode) which only reflects the 
critical mode in the transfer function from the control input u 
to 1M, and does this in a certain manner, i.e. 

YM(S} ks 
U(s} = s2+2rwo+w~ . 

(1) 

Finding this auxiliary variable here requires computing the 
eigenvectors of the plant state space system matrix. Combin­
ing the two conjugate complex left eigenvectors I; and I: T of 
the critical mode by 

with appropriate constants c" C2 and defining 

1M=CTX 

268 

(2) 

(3) 

(x being the state vector) yields the required auxiliary output 
variable. 

It is crucial to take the constants in such a way that the 's­
term' is in the numerator of (I). It can be shown [4] that this 
ensures that damping is achieved by weighting 1M without 
affecting the eigenfrequency too much. Strictly spoken, it is 
possible to move the critical eigenvalues exactly along the 
'constanteigenfrequency/more damping-path' by weighting 
1M, provided that not the eigenvectors of the uncontrolled 
plant are used, but those. of the already controlled (but 
insufficiently damped) plant. If the critical eigenvalues have 
not been affected significantly in the previous control design, 
it may be assumed that the eigenvectors are almost nnchanged 
too. Then it is more convenient, and sufficient, to use the 
plant's eigenvectors, and this we did. 

With this 'modal-weighting' technique we achieved suffic­
ient damping very easily (Fig. 7 (b}), and this then carried over 
to the truth model based simulation, and later on to the real 
implementation (see below). 

IV. IMPLEMENTATION REsULTS 

For the implementation of fast controllers we routinely use 
our own TMS 32010-based digital signal processing system 
along with a set of design and implementation software tools, 
including an automatic code generator [5]. We carried out the 
design in the analog domain, and discretized the controller 
with methods briefly described in [6]. The discretized control­
ler given in state space form was then transformed to 'real 
modal form' and was scaled automatically for 16-bit fixed 
point arithmetic by a II-scaling technique [6). After checking 
for the effects of discretization, computational delay, AD- and 
DA-quantization, and finite wordlength arithmetic by simula­
tion, the signal processor code was automatically generated 
and downloaded. The sampling rate was about 34 kHz. 

Figure 8 shows the step response. result obtained with the 
truth model of the disk drive by simulation with the all-digital 
controller as mentioned above. Figure 9 shows the same 
response measured from the real drive. In contrast to the 
results in [1], where the experimental and the simulated 
response were very close, we observe considerable deviations 
here. The reason lies in the higher sensitivity of the Iqg 
controller mainly with respect to plant phase as compared to 
the 'amplitude-stabilization'-type design of [I]. The mismatch 
between our design and truth models and the true plant is too 
high for ·a 'controller whose design relies too much on the 
fidelity of the model. Nevertheless, the controller works, and 
it has some advantages, as discussed below. 

First of all, to our own surprise, the Iqg controller was much 
quieter than the controller from [1] in the experiment. The 
high reduction of audible noise can be explained by the 
controller's magnitude frequency response given in Fig. 10. 
The high-frequency gain is much lower than that of the PDPD­
notch-type controller from [1]. Secondly, the disturbance 
response is about twice as fast as with the controller from [1]. 
When the controller gain was increased by 20 percent, the 
disturbance response was even faster (Fig. 11), and reference 
signal step response was also improved somewhat, without 
running into robustness trouble. 
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Fig. 8. Simulated step response with truth model and digital controller. 
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Fig. 9. Measuted step response. 
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Fig. 10. Controller frequency response comparison: (I) double PD & notch­

type controller from [II, (2) Iqg controlier. 

Fig. II. Disturbance step responSe. 

In order to show that the design efforts were worthwhile 
compared to a quick design of a simple controller we show the 
step response obtained with a PD contrp!ler in Fig. 12. Note 

... ..""' . 
Fig. 12. Step response with simple PD controller. 

that the dynamics of this control system would become worse 
if an integrator were added for achieving constant disturbance 
rejection, which the controller from [1] and the lqg controller 
already had built in. 

V. CONCLUSIONS 

We have shown that lqg design, if done properly, can be 
used to obtain reasonable controllers for highly resonant 
mechanical systems such as the disk drive. Designs can b;: 
completed systematically and quickly, as long as there are no 
problems with model fidelity. There are means to achieve 
robustness against high-frequency mismatch (the low-pass 
filter technique) but in the medium frequency range the model 
should be good. 

There is still much more potential in the lqg design of fine­
positioning control. Accurate modelling of disturbances (har­
monic ones from disk rotation [7], stochastic and shock 
disturbances from the environment) promises to be beneficial. 
The resulting increase in controller order should not be a 
severe obstacle with today's low-cost high-performance signal 
processor devices and suitable software support. 
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HIGH BANDWIDTH CONTROL OF THE HEAD POSITIONING 
MECHANISM IN A WINCHESTER DISC DRIVE 
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ABSTRACT 

Modern disc drives use fast voice coil actuators for 
the positioning of magnetic heads onto desired tracks 
and keeping them on track against various distur­
bances by closed-loop control. Problems stem from 
high desired control bandwidth (ca. 1 kHz) requiring 
digital signal processing rates above 10 kHz and from 
complexity due to structural mechanics effects. 

1 INTRODUCTION 

Modern disc drives use fast voice coil actuators for 
positioning magnetic heads on desired tracks and 
keeping them on track against various disturbances by 
closed-loop control. Two types of actuators are 
predominant in state of the art drives: rotary and 
linear actuators. both driven by a current passing 
through a coil in a strong magnetic field. 

In high performance drives the head position is 
measured from a dedicated servo platter, Measurement 
electronics supply a head I track misalignment error 
voltage which is proportional to this error within track 
width. Current flowing through the coil generates 
torque or force so there must be closed-loop control. 

Head positioning control comprises two tasks: Po­
Sitioning on a target track (maybe across many 
tracks), and fine-positioning. The former task consti­
tutes a servo problem (nonlinear for large initial / tar­
get track distances). whereas the laller IS a regulator 
problem. 

We concentrated on fine-positioning control in an 
industrial prototype 8" drive using a rotary actuator, 
as shown in Fig. 1. 

Initial studies had been per~ormed on the actuator 
assembly separated from the drive housing. Because of 
considerable interaction of the actuator with the hous­
ing (base-plate) and platter/spindle assembly it was 
however necessary to use a more complete drive. 

The setup now is an almost complete drive without 
top plate, with fixed spindle, and with an optical sensor 

for head position. Fixing the spindle of course means 
that several effects which exist in the operating drive 
are not accounted for. These are: (a) vibration of the 
(Whitney-type) slider / head assembly (Mizoshita ct a!., 
1985); (b) aerodynamic suspension of the flying head; 
(c) vibration from spindle / bearing inaccuracies 
(1'aruse et aI., 1983); (d) noise from misalignment 
detection electronics. 

The head position range in our setup is however 
realistic. The optical sensor consists of a s·mall plate 
with a borehole in place of the head which moves 
between a differential photo-diode and an LED mounted 
on adjacent platters. Resolution and linearity is very 
good so that we can operate in the original track width 
pOSition range (+-18 J.LID maximum. +-9 J-Lm used) with 
sensor noise in the 0.2 J.Lm rms range. 

The magnetic actuator is driven by linear current 
driver electronics so that the torque is directly propor­
lional to the control input voltage to the driver. 

Fig. 1 disc drive setup 

© 1986 IEEE. Reprinted. with pennission. from IECON 1986.1986, 
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3 MOPEIJ,ING 

In order to study control, a mathematical model of 
the plant is necessary. A simple mathematical model 
would be a double integrator (torque to position). But 
the control bandwidlh desired is so high that structur­
al mechanics effects can by no means be neglected. 

F'requency response. Fig. 2 shows the measured 
frequency response from input current to position in 
the 1 liz lo 10 kHz frequency range. There are many 
resonances and notches. and zoomed analysis would 
show even morc. An interesting facl is that obviously 
the transfer function of such a mechanical system can 
be of non minimum phase type. This can be concluded 
from the phase behaviour around 3 kHz, where the 
deep amplitude notches are not ac'cornpanied by a 
phasc lifl. In facl phase goes down 360 cieg'rees. We did 
nol cxpccl lhis bul il can been shown lhal some kind 
of mechanical vibration mode can indeed lead to such 
behaviour. which is expressed by pairs of conjugate 
complex transfer function zeroes in the right half­
plane. Such behaviour is known to be undesirable for 
control. 

The second curve in Fig. 2 shows the frequency 
response as computed from an input-output (black­
box) model with a 30lh order lransfer function. This 

t-..... A 
"""-" \ 

rI 
\ 
'V' V\ I~ 

'1\'-1 If I\: 
model/' 

-, 
VI' 

mcasured _I'" 

l{ 
N 

"" ~ 
~ 

mOdel/ \'t hn " p -V [T lr-.. 
measured 

I\n 

1 kHz 10 kHz 

Fig. 2 plant frequency response 
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model has basically been formed from resonance fre­
quency, damping, and residue data oblained with the 
curve filling facility of the slructural dynamics 
analyzer we used. Additional tedious manipulations' 
have however been necessary in order to improve the 
model in both phase and amplitude responsc. The 
model is fairly good below 2 kHz and above 4 kHz, but 
less so between these frequencies. In particular the 
lwo deep nolches belween 3 and 4 kHz are not well 
represented ~n the model, and correspondingly there is 
considerable phase mismatch. Because we focussed on 
gain stabilization (see next section) we accepted this 
for the time being. Bul certainly we should do some 
work on improving the model by better computerized 
model matching method •. 

For frequency response computation, control 
design and simulation, the model has been formulated 
in state-space parallel form. 

Modal analysis. It is interesting to know with which 
vibrational modes the significant resonances are asso­
ciated. So we performed experimental modal analysis 
using a slruclural dynamics analyzer (in fact modal 
analysis was the first step in the study and gave impor­
tant clues as to where to improve the mechanical con­
struction). 

The first step is the measurement of the frequency 
response between the control input (torque or current) 
and several accessible points of the mechanical struc­
ture. fig. 3 a) shows such poinls for a 3D model 9f the 
actuator. This model was used in previous studies of 
the actuator where it was not built into the drive hous­
ing. The rotary arm for 6 platters is shown in bold lines 
along with the voice coil (I). The mounting frame (II) is 
shown in thin lines. It carries the bearing for the rotary 
arm's shaft (Ill) and is screw-mounted onlo lhe 
baseplate. The magnet (N) is moun led on the lrarne. 

Vibrational deflection was measured via subminia­
ture accelerometers, weighing only 0.6 grams. Th(! 
modal analysis for the whole disc drive was restricted 
to a 2D study because only the top level of the arm is 
then available for measurements. Figs. 3 b) - e) show 
the 2D model used with dolted /i'nes for the undeflecled 
'state and bold lines for the deflections associated wit.h 
each vibrational mode. 

Each resonant peak in the frequency response of 
such a weakly damped mechanical structure is associ­
ated approximately with a real vibrational mode. SU.<'h 
modes can be determined by the structural dynamiCs 
analyzer via frequency response curve fitting around 
the resonances. It is possible to get animated pictures 
of the individual modes on the screen, which do not 
however show the actual movements of the structure 
under some excitation, but only the form of the contri­
butions of the individual modes. 

Some of the modes which are relevant in control 
design are shown in Figs. b) - e). The lowest rec<onance 
frequency (1.76 kHz, Fig. 3 b)) is associated wllh a 
bending mode of the arm, as one might expe~t. But 
frame and magnet, allhough being very sohd and 
heavy, also conlribule lo this mode. The nearby re~o­
naqce at 2.06 kHz (Fig, 3c)) also belongs to a bendmg 



mode, but magnet, frame and bearing do not contri­
bute significantly to this movement. It is typical of the 
high frequency modes (Figs. 3 d) and e» that the 
deflections at the tip of the arm are very small com­
pared to those of the voice coil on its carrier construc­
tion. 

a) view of actuator with bearing and magnet 

b) 1.78 kHz mode 

c) 2.08 kHz mode 

Possible deflections of the top platter were also in­
vestigated, because track misalignment depends on the 
movement of the slider at the tip of the arm in relation 
to the platter. Previous analyses, where the platter 
spindle had not been fixed as in this setup, indicated 
that there can be such relative movements of the 
platters at low frequencies, even though the spindle is 
mounted several inches away on the baseplate. In this 
setup we could not however observe significant platter 
movements. Deflections of the individual arms (there 
are 6) relative to each other were found in previous 
analyses. but were not investigated herc. 

Some discrepancies bctween the frequency 
response from the control input to the slidcr's position 
and the responses measured via the accelerometer 
(after double integration in the frequency domain) 
must be attributed to the muss of the accelerometer. 

It should be clear that experimental modal 
analysis reveals most efficiently the coupling of the 
components of the mechanical structure. It gives in­
formation needed for incorporating the important 
effects in rigid body or finite-clement modelling. and 
gives clues as to where improvcments to the construc­
tion could be made. In our case it should be beneficial 
to fix the magnet·to the baseplate more rigidly, and to 
have a more rigid voice coil constructio~. which would 
presumably prevent large amplitude high frequency 
resonances which pose difficulties for high bandwidth 
control (see below). 

d) 7.13 kHz mode 

e) 9.55 kHz mode 

Fig. 3 vibration modes o.f actuator 
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4. CONTROL 

Fine-positioning control may seem to be very easy 
because the plant is SISO (single-input single-output) 
and is virtually linear. Linearity is only lost when the 
current saturates. It turns oul that the current limit is 
not likely to be violated with fine-positioning regulating 
control because the current range is designed for fast 
large-dist.ance positioning at high torque. The plant is 
SISO because for economic reasons the only measure­
ment presently available for control is the track posi­
lion error itself. 

The difficulties of control arise mainly from the 
structural resonances, the very uneven phase 
response. and the nonminimum phase behaviour. High 
control bandwidth, which is desired for disturbance 
suppression and quick response, can only be achieved 
by insertion of phase lead (PD-type controller) near the 
desired crossover frequency. This in turn makes the 
structural rcsonances more significant due to in­
creased high frequency gain in the loop, thus leading to 
stability problems. Hesonance peaks cOming close to 
lhc a dB level in lhe open-loop amplitude response 
(gain stabilization) should be avoided, because it can­
nol 'be guaranteed lhat phase will slay off the - v'160 
(v= 1,3 .... ) degree levels at the resonance peaks. This 
applies even if the measured frequency response shows 
acceptable phase margins, because plant phase is quite 
sensitive to slight alterations in the mechanical struc­
ture even with one given drive. Problems would be 
magnified if the controller would be applied to series 
drives wiLh manufacturing tolerances. 

Classical control. A sol,ution within the scope of 
c I~l.ssical con lrol comes from slructural nolch filters. 
ThIs tcchnique is becoming common no~. particularly 
WIth the conlrol of flexible mechanical structures in 
spacc. The controller shown in Fig. 4 is composed of 

a) block diagram 

FREQUENCY·" 

b) frequency response 

Fig. 4 classical controller 
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Fig. 5 loop frequency response 

two PD-type blocks and three notch fillers in series. 
The notch filters make the resonances at 2, 4, and 7 lo 
9 kHz sufficiently "invisible" in lhe loop (rIg. b). The 
loop gain has been chosen so lhal crossover frequency 
is around 900 Hz. However the phase margin is lhen 
quite low, so lhe command step response in Fig. 6 

I 

o 5 ms 

b) 

o 5ms 

Fig. 6 step response 
a) simulated 
b) measured 

(nole slightly different time scale) 



shows large overshoot and oscillation. This might be 
considered unsatisfactory. but is of secondary impor­
tance because the focus is on regulator behaviour (not 
servo), and, if desired, a prefilter (with complex zeroes) 
in the command path could easily eliminate both 
overshoot and oscillation while retaining fast rise time. 
A slight gain reduction also eliminates oscillation, but 
overshoot remains large. 

Note that the simulation result in Fig. 6 
corresponds fairly well to the measured response. This 
is because of the high quality of the plant model and 
our 'near-to-reality' simulation concept, including im­
plementation effects from processor arithmetics, non­
simultaneous sampling, AD- and DA-conversion, and 
measurement noise. 

The controller has been implemented in state­
space form 

Xk+l = A xk + B Uk 

Yk = C xk + D Uk 
(1) 

on a TMS 32010 signal processor at 30 kHz sampling 
frequency using the CACE-system described in a com­
panion paper (Hanselmann, 1986). A natural form of 
implementation would have been to realize each of the 
2nd order blocks from Fig. 4 a) in a series connection 
(cascade structure). In order to minimize computa­
tional delay between sampling and output we prefer 
form (1). It proved however beneficial to choose a 
series connection of 2nd order blocks for the structure 
of A. The parallel form (Hansel mann, 1987) which we 
picked first was suffering heavily from state-variable 
quantization noise, although the eigenvalues of A 
seemed to be sufficiently spaced from each other (oth­
erwise problems would have been no surprise). 

Synthetic disturbance !eed!orward. Although there 
are two integrators in the plant. this does not ensure 
rejection even of constant disturbances. There is for 
instance some almost constant torque in the rotary ac­
tuator from a spring moving the actuator to the land­
ing position when power is ofT. This torque acts as a 
disturbance at the plant's input ar. j leads to some j.l.ffi 

of constant deviation of head pOSition. 

Instead of incorporating an integrator into the 
controller from Fig. 4 a), which would cause stability 
problems. we chose to make use of synthetic distur­
bance feedforward. This means definition of a distur­
bance model {an integrator for constant disturbances}, 
design of a disturbance observer, and determination of 
the gain factors (only one in the case of the simple in­
tegrator), with which the observed disturbance is fed 
forward in order to compensate for the real distur­
bance. 

The usual way to do all this unfortunately requires 
building a full observer for the plant plus disturbance 
model. Doing this for the 30th order drive model for 
the sole purpose of disturbance feedforward is clearly 
undesirable, and certainly also not a trivial task. 
Therefore we simply built the synthetic disturbance 
feedforward system around the original closed-loop 
system (Fig. 7). This disturbance compensation system 

r' 

Fig. 7 synthetic disturbance feed forward 

contains a model of the closed-loop control system, nn 
observer observing the disturbance as it seems to act 
at the output, and feed forward to the former reference 
input of the original control system. Note that the na­
ture of the physical disturbance and the point where it 
acts on the plant in reality need not be known. It is 
sufficient to know and model the effect the disturbance 
has at the original control system's output. 

The closed-loop model can be quile simple. This is 
because in the closed-loop response there is not much 
influence of the resonances of the plant, due to the 
notch type controller. We used a 2nd order model ac­
cording to the step response shown in Fig. 6. The quali­
ty of this model determines how fast the disturbance 
feedforward can be. If the model matches the actual 
closed-loop response perfectly, then lhe disturbance 
observer is never affected by the original reference in­
put variable r, and the observer which determines the 
speed of the disturbance compensation can be 
designed to be arbitrarily fast. This is of course not 
the case here, but, as Fig. 8 shows, the disturbance 
feedforward is nevertheless satisfactorily fast, much 
faster than necessary for compensating the abovemen­
tioned torque. 

without feed forward. 

o 5 ms 

Fig. 8 step disturbance response 
(measured) 
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Note that for the constant disturbance consideJ;"ed 
here the model is a simple integrator; so feedforward 
gain, disturbance model and observer gain together 
form!, 1 st order lag system. And since there is unity 
gain in the original closed-loop transfer function from 
r to x, the disturbance compensating transfer function 
rrom x to f is simply 

-1 
G(s) = (1 +T;;j"" (2) 

where the single design parameter T determines how 
fast the disturbance compensation works. The 
timcconslun t selected, should not be too small because 
due to mismatch between the closed-loop model and 
thc relll closed-loop system the poles of the original 
closed-loop system would be affected. This would not be 
the case with perfect model match, 

G'ontruller optimization, We also subjected the con­
troller from Fig. 4 to a parameter optimization using 
the program described briefly by LUckel et a!. (1965). 
The main aim of this optimization was to get informa­
lion on what we sacrificed by applying gain stabiliza­
tion when we designed the original controller. Thus we 
let lhe' optimization program vary all 17 controller 
parameters in order to minimize the rms value of the 
return difference (tracking error), where the reference 
input was white noise filtered by a 1 s timeconstant 
lowpuss filter (thereby approximating the spectrum of 
a step input). 
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"optimized" 

o 5ms 

Fig. 9 effect of controller "optimization" 

Fig. 9 shows the step responses 0:, the. c~ntr~l ::;~ 
tern both with the original and the optimized 
troller (analog versions). Because in the. pa~ameter 
optimization no restriction to gain stablhzatlon was 
made the optimizer was free to exploit the phase 

, nces con-
(phase stabilization) and lirted some resona 'b 

siderably. This saved some negative Pha::h:~n~:~t~~ 
lions from the controller and made som. h h' h 
control possible. The effect is clearly seen In t e Ig 

" ., d" step response 
frequency contents of the optimize h h d been kept 
due to resonances from the plant, whlc a 
low in the original design. 

5 CONCJ.JJSIONS 

It has been shown that the strongly resonant disc 
drive head positioning system can be digitally con. 
trolled with high bandwidth. The reqUirements arc, <I 

good model, appropriate controller design, and .imple­
mentation tools for fast controllers. 

F'rom an analysis of the vibrational modes which 
posed difficulties in the controller design, improv('­
'ments to the mechanical construction can be su~g('st­
ed, which may lead to a further increase in control 
bandwidth. 
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Using a Digital Signal Processor 
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ABSTRACf 

We have developed a new digital servo controller for a 5· hard disIc drive which has average access time of 10 ms for a 
2S mm sl1'oke. To obtain this fast access speed, we used a state estimator with a new acceleration trajectory model. The 
estimator and trajectory generator are implemented using a digital signal processor. 

There are two problems for fast access control: mOlor coil inductance and the mechanical resonance of the actuator and disk 
enclosure. To solve these problems and to achieve precise head positioning, we developed the following control method. 

To solve the voice coil motor inductance and actuator resonance problems, we used a new acceleration trajectory model 
which is not affected by the coil inductance when the head moves quickly. This design is based on an optimal control 
theory which minimizes the square of differentiated acceleration. By using this new trajectory model, the high harmonics of 
actuator drive are damped and the residual vibration of actuator immediately after access is decreased. 

1. INTRODUCTION 

Direct access storage devices (DASD) are required to have faster and faster access speeds. be smaI1er and smaller, and have 
larger storage capacity. To satisfy these requirements, we have to figure out how to achieve the high speed access and precise 
positioning at the same time. Mechanical resonance of the DASD becomes important and limits the me access speed.l.2 

The mechanical resonance problem is divided into two parts associated with the frequency band: low and high frequency 
vibration. Vibrations below the servo bandwidth (300 - 700Hz) are caused by forces through the shock absorbers which 
support the head disk assembly base and the reaction fon:e of the actuator when it moves quickly. 

High frequency vibration (bandwidth above servo bandwidth) is caused by mechanical resonance of the actuator, which is 
composed by magnetic heads, sliders, gimbals and head anns. 

Low frequency vibration can be controlled by using a state estimator to estimate the mechanical resonance of the planL 
Unfortunately, it is impossible to make an active controller using only feedback for high frequency vibration. Smooth 
acceleration and deceleration in the seek are not the cause of the high harmonics. 

We propose a new acceleration trajectory which is based on the movement of the human body.3 In this model the 
trajectory is determined as minimizing the square of differentiated acceleration. There was an example of application to the 
adaptive control of a robot arm.4 

Conventionally, the controller of the head positioning in hard disIc drives has used a general purpose microprocessor. 
Recently the requirements for the advanced control and additional functions are increasing, and high speed digital signal 
processing is the way to achieve this control because the ability of the digital controller depends mainly on its sampling 
frequency. Thus, using a digital signal processor (DSP) ,which is fast, in the head positioning system has become common. 
5,6,7,8 

© 1990 IEEE. Reprinted, with pennission. from SPIE Proceedings. Vol. 1248. 1990. 277 



2. CONFIGURATION OF mE DIGITAL SERVO SYSTEM 

Figure 1 shows the configuration of the digital control system for the head positioning system we developed. 
Double phase position signals (poSN,POSQ) are generated by the position transducer using the servo pulse from servo 

head. Each linear part of these position signals is selected by an analog switch and input to the AID convertor whose 
conversion time is 3 J.IS. Track cross pulse is generated from these position signals and input to the counter. 

At every sampling period. DSP calculates the current drive and outputs it to a power amplifier through the D/ A 
converter. The TMS320C2S was chosen as the DSP because of its speed (one instruction per 100 ns) and price. 

Fig.l Digital servo system for head positioning 

Table 1 lists characteristics of the control disk drive. 

Table 1. Characteristics of the Control Disk Drive 

Disk diameter 
Servo type 
Stroke 
Actuator type 
VCM force constant 
Actuator moving mass 

so 
dedicated servo 
2S mm 
rotary 
2.1 N/A 
10.1 g (equivalent) 

Figure 2 shows mechanical transfer function of the actuator. It has mechanical resonance at 1.5 kHz. 2.1 kHz and 6.4 
kHz. so we cannot set the servo band width over 700 Hz in this drive. 
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Fig.2. Mechanical Transfer Function 
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3. CONTROL SYSTEMS 

3.1. State estimator model 

We designed state space controller for head positioning. We assumed the plant as simple double integrator model In this 
way, feedback staleS which arc necessary for control arc position and velocity. Among them, velocity is not measurable stale. 
So we used state estimator model. . 

In the double integrator model, the digitized space equation can be stated in matrix form. 

[ X1(k)] 
x(k) = x2(k) 

We used following translation: 

x(k+l) = «lI x(k) + r U(k) 

y(k+I) = H x(k+l) 

L= [t~] H = [1 0] 

x2(k) <-- T x2(k) g <___ T2 
2 b 

T is sampling period and b is its mechanical,gain. The estimator model can be stated as: 

::(k+l) = [«lI • LH) ::(k) + r U(k) + L x(k) 

(I) 

(2) 

(3) 

where /I. means an estimated value. Matrix L is a correction factor, it is designed based on the response Speed of the 
estimator. 

3.2. Track follow <weration 

Figure 3 is a block diagram of the track follow control. To reduce average offset, integrated position xo is added to the 
feedback loop. The xo is the running sum of measured position. The control law is : 

(4) 

The feedback gain series Klo K2, KG was determined by pole placcmenL9 Sampling frequency is 30 kHz, SO the influence 
of phase lag, which depends on delay, is small. 
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Figure 4 shows the open loop transfer function in IraCldng operation. Zero aoss frequency is 530 Hz and the phase 
lead at this frequency is about 36!fegzees. 
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Figure 5 is a block diagram of Ihe seek operation. The sampling frequency is the same as track following. 
This operation creates a velocity feedback loop. The control law is 

U(lt) = Kv ( Vtarget - ~2(1t» + Kf x3(1t) (5) 

where V target is velocity trajectory profile and X3(1c) corresponds to the feedforward signal. 
In a conventional controller Ihe velocity trajectory is taken from a calculated table. This table usually represents a desired 

velocity at a given distance f1'pm target track.10 
In this conb'Ol system. we did not use this table. We used a new velocity and acceleration trajectory to reduce ~citation 

of Ihe resonance during seek operation. We will explain the design of Ihis new trajectory in Ihe next section. 
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Fig.5. Seek control a1gorilhm 



3.4. Implementation to DSP 

Figure 6 is a basic flow chan of the control program we developed. The designed sampling time (33.3 1lS) was achieved 
by the timer inlemlpt function of the DSP chip. Tasks are scheduled by two subroutines: t:racIcing and seek routines. In both 
routines, the DSP calculates the states from fonnula (3). and in the seek routine, it also calculates the velocity trajeclOry and 
the feed faward. 

Back mUDd fa. Sdtcdllltd I"sk, 

Fig. 6. Digital servo system using the DSP 

4 DESIGN OF NEW ACCEJ,ERAUON TRAJECTORY 

4.1. Principles 

F'ust we consider the simple third order model of the actuator (Fig.7). The differentiated acceleration (da/dt) is added 10 
the basic double integrator model. u(t) is redefined as shown in Fig.7.: 

Fig. 7. Third order model of the actuator 

Thus the state equation is 

position 
XI 

(6) 
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We then by 10 get solutions for minimizing the cost function P (cquation(7) with the initial condition (Sa) and the 
terminal condition (Sb). 

where a is the seek distance and TO is seek time. 
Using adjoining state vector p. we usc the HamillOnian H 

H = pT ( A x + B u) + u2 
where the matrices are 

A = 0 0 1 [ 0 1 0] 

000 

Then optimal input u(t) is given as: 

and canonical equations are 

We define the characteristic equation of A and D as gA(s) and gOes). their relation is 

gD(s) = g A(s) g A(-s) 

gD(s) =- s6 

Therefore the eigenvalue of HamillOnian matrix D is 

s = 0 (6th root) 

(Sa) (8b) 

(9) 

(10) 

(11) 

(12) 

Consequently solutions for optimal state become 6th order time variable functions. and the unknown COefficients in the 
functions can be delemlincd from the initial and terminal conditions (Sa).(8b). 

position 1 t)S 1 t 4 1 t)3 XI(t) .. -60 a (-C;t --C;t) +-C;t ) 
10 0 4 0 6 0 

(13) 

velocity X2(t) = -60.!.. (1 <4 t -tt )3 + 1 <4 )2) TO 2 0 0 2 0 
(14) 

ac:c:cleration x3(t) = -60..L ( 2<4 )3. 3 tt )2 + <4 ) 
T02 0 0 0 

(15) 
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Figure 8 shows calculated state trajectory from (13)(14)(15). Acceleration becomes sinusoidal and its peaks are located 
at 1/1'0= 0.21, 0.79. 

Figure 9 shows trajectories of position, velocity and other variables when actuator accesses the average access tracks 
(702 tracks). We verified that the average access time was 10 ms. 

In this figure, current drive, feedforward drive, and velocity agree with the designed value of Fig.8 very well. The 
normalized time (I/I'O),which is output every sample period for reference increases linearly from the start of the seek. It 
suggests that the following movement occurs during seek operation. 
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8 ~ I<l 
d ? 
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Fig. 8. Optimal state trajectories 

4.2, Comparison wjth conventional trajectory 

Fig. 9. Seek operation 

Estimated 
velocity 

Normalized 
time 

position 

Feedforward 
drive 

Current drive 

position 

Figure 10 shows the difference between conventional trajectory and new developed trajectory. These trajectories are 
output from the reference DAC every sampling period. 

In conventional seek control, the actuator is accelerated wit!) full power amplifier until its speed reaches the desired 
velocity trajectory given in the table. In this case, therefore, the amplifier saturates at first stage of acceleration and the 
transient stage from acceleration to deceleration in specific track seek. 

In our new seek control, desired trajectory is calculated in real time • And through full stage, smooth transient of 
current drive can be observed. 

I iiiii -

Velocity trajectory , ... ~ ... ;~ .. 
" 

~ ~ ~ 
Estimated velocity ~ ~ .~ ... . 

Current ~, ~ 
.. .... .... . ~ .. 

2,U: LOll1U r 1,] 

New trajectory Conventional trajectory 

Fig. 10 New and conventional trajectories 
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4 3. Yibratjon reduction 

Figure 11 shows simulation of acceIemtion and power spectrum against current drive for the three kinds of conbO] : 
minimum time conbO] (bang-bang control), conventional trajectory conbO], and our new trajectory conbOI. The ideal 
minimujn time cannot achieved because of the motor coil inductanc:e. 

In our trajectory conbO], the vibration is reduced. effectively. At 2 kHz, it can reduce power spectrum gain 20 to 30 dB 
lower than the (lthers. 

Figure 12 shows the vibration reduction in the time domain between these three conbOls. The residual vibration after 
access can be most efl'ectively reduced by our trajectory (F'lg. 13). 
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Fig. 11. Comparison with conventionaluajectories (power spectrum) 
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Fig. 12 Comparison willi conventional trajectories (time domain: resonance = 1.8 kHz) 
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Fig. 13 Comparison of measured vibration after access (repeat seek: 100 tracJcs) 
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5. CONCLUSION 

We have developed a new digilal servo controller for a S· hard disk drive. The state control with estimator was made 
using a digital signal processor. A stable tracking control and seet opeJlIIiOll results in an avetllge access time of 10 ms. 

To avoid the high frequency mechanical resonance. which depends 011 Current driving during fast access, we proposed a 
new velocity ttajectory calculated to minimize the square of dift'aentiated acceIel3tion. 
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IMPLEMENTATION OF A MRAC FOR A TWO AXIS DIRECT 
DRIVE ROBOT MANIPULATOR USING A DIGITAL SIGNAL 

PROCESSOR 
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ABSTRACT 

'Ibis poper is _ witII tile diJitaI impIomeD­
ta'ion of a Model aew-. Adaptiv. Coo ... 1 (MRAC) 
algorithm 00 a Tuu IaIcrumoat TMS32OIO Diptal SiI­
DaI ProcesIQl' (DSP). Tho MRAC wu delipocl to coo ... 1 
a two nis diRct drive SCAIlA typo lObo! _p"ator. 
Tho prinwy purpoao of lb. adaptive conIIO .... is to com­
POIllllIe for !be iaortiaI varialioar duo to cbaDgo. ia 
cODli.uratiaa and payload. &porimeDtaI _alta JlI1!IODIed 
c1.arIy iUUltnto !be ...... for adaptive cODln>I over coo­
national PID con....... for tile typo of arm ItI1ICIUrO 
used iD tlo. oxporimeall. D_lIioo 00 tile ... of DSP iD 
controls is p"'aootod ia IOImI of tboir c:apabilitiea and !be 
ialUCDC. tboir ~ will hav. GO tile aampliag 
tim. of diSital coDln>I 'Y ........ 

1. INTRODUCTION 

With lbe advent of ~t drive robot manipUlators. there has 
been 3 rising interest in the implementation of adaptive control to 
this panicolar cill. of moo' anns (IJ.(2J.(3J. and (4J t . Direct drive 
robolS. unlike indirect drive robots, are much more sensitive to 
configuration and payload c:hanges. makin, Ibem ideal caadidales for 
adaptive conttol. Due to real-time computational speed limitation, 
much of the studies in adaptive CORbOl have been limited 10 
mathematical analysis and computer simulation. however. it is now 
possible to implement adaptive conll'Ol on direct drive manipulalon 
with the availabilily of affordable high speed digilal signal processors 
(DSP). '1 is Ihe aim of this paper 10 presenl a digital implementation 
of a Model Ref.rence Adaptive Control (MRAC) for a two nis 
SCARA-typo robol manipulator using tloo TMS32OIO from T .... 
Instruments. The paper will concenll'ate on the details of implemen· 
talion and actual ex.perimenrarion rather than rhe derivation of the 
adaptive controller. "The details of the adaptive conlrOl design are 
referenced from our previous works [4], 

The remainmg sections of this paper are organized as foOows. 
section 2 will briefty describe the adaptive conb'ol algorithm used, 
followed by 01 detail discussion of the implementation of the algo. 
"thm on the TMS32010 in section 3. SectioD 4 will discuss the 
ex-penmenlal resuhs, and the paper wiD conclude with section S dis­
cussmg some of the advantages of using the TMS32010 DSP for 
real-lime control applications. 

1. ADAPTIVE CONTROL SCHEME 

The rwo axis direcl drive robot arm used for the experiments is 
shown in Fig. 1.0. The dynamic equalions for such a two axis mani­
pulalor can be C"lI.pre::lsed as lll,{2}.and [31, 

(I) 

(2) 

where M(XI'I IS lhe :!x:! inerlia matnll. which is symmetric and posi­
tiVI! dl!llIlIt~, "I"x, and q an! respectively the: two dlmens.ional Joint 
wsplacement, joint velocity, and lorque vectors. The vector v 
repr~!oen15 Ihe nonhnear lerms due to Coriolls and centripelal 
ac(;ekrallon~. The Coulomb friction torque vector IS represented by 
d. 

A"umiag tloat tile torque vector q is preceded by a zero .,.dec 
hold. tho dynamic equations (I) and (2) are discre'izod to 

x,14+I) = x,(t) + Ta.lk) 

+ fM(l)-'(q(l)-VIl)-dll» (3) 

x.(HI) = x.(l) + TM(l)-tlq(kl-v(kHl(l)) (4) 

whore T is tho sampliag poriod. 

Ba .... on Eqs. (3) and (4) a Serio. Parallel Model (4J can be 
doMed u _ 

x_(k+I) = x.lk) + Tu(l) 

and tloo torque iDpal vOClOr is doacribed by 

q(l) = Mlk)Ulk) + ;,Il) + d(k) 

(5) 

(6) 

whore MU) , ;,(l) • iJ(l) • are tho •• timare. of M ••• d • respec­
tively. Defining the adapCatlon error as 

elk) = x •• (k) - x,(k). (7) 

tloe parameter adaptation algorithm for M(l) • vU) . d(l) • are giv.n 
by 

where 

M(t) = MIt-I) + TK.e(k)uTlk-l) 

;,(k) = [v,(k) v,(k) ... vo(k)] T 

d(k) = d..(k)s(l<,(k).U(k)) 

(8) 

(9) 

(10) 

v.(k) = X~lk)N"'(k)x'(k) (II) 

H'" = H'·'lk-I)+TK ....... (k) •• (k-I)x~(k-l) (12) 

d.(k) = d.lt-I) + TK,s(x,lk),u(k»)elk) 

The Coulomb friction function, s(x,,(k ).u(.t) , is given by 

{
Si8n IX",1 if IX~kl > £ .... 

8(x,.lk),u(k)) = sign,".J if IX,.I $ _'. 

(\3) 

(14) 

where signIA.~] = 0 if Ix"1 == 0, and E~ is a velocity resoluuon 
deadband. K .. , KN,I, • and K~ are constant poSitive adaptation gain 
mab'ices, and ,.,(t) is the k-th element of the vector e(t). 11le block 
diagram of the model reference adaptive conb'Ol scheme is shown in 
Fig. 2.0. Interested readers should refer to Horowitz et. al. 141 for 
the details of derivation and stability analysis of this algonthm. 

3. TMS31010 IMPLEMENTATION 

The NSK-UCB rooo, illustrated in Fig. 1.0 is a SCAR A-typo 
arm dnvCR by two NSK direct drive moton. Axis I is driven by a 
model 1410 motor with a maJtimum torque capability of 245 Nm. 
AXIS :2 i.~ driven by a smaller motor. model 608. capable of deliver­
IDg up 10 39.2 Nm torque. 80th motors are powered by swilching 
amplifiers from NSK. SCrlCS 1.5 and Serics 1.0 for the model 1410 
and model 608. respectively. A block diagram of the real-time can· 
ltol syslem is iIlustraled in Fig. 3.0. 
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Two IBM-AT's are used to implement the algorithm described 
III Iht,;' prl"ViOU5 sCL":tion. TIle firsl IBM·AT is used to close the 

proporlional position loop for both axes in 7 ms 1be NSK 
amplifiers prov ide a two phase quadrature signal for posicion feed· 
bad: .. Both motors provide a resolution of 153,600 pulses per revolu­
tion. The qdadralure signals are decoded to a 16 bit integer which is 
sampled by the IBM·AT and internally converted to a 32 bit integer 
by software. The IBM-AT calcul.tes the appropriate velocity com­
mand signal for each axis and delivers the command to the second 
IBM·AT through two digital to analog con\'erlers (O/A). 

The .«ond IBM-AT which houses the TMS32010 DSP board 
from Atlanta Signal Processors, Inc .• samples the velocity command 
from the first IBM·AT via two Analog to Digiral cooverters lAID). 
Th~ nunor adaptive velocilY loop for each axis resides on Ihe 
TMS32010 board. The second 18M·AT serves only as a data acquisi­
tion computer for the TMS. The IBM-AT is responsible for sampling 
four AID's and controlling two DIA's, during real-lime execution. 
The four AID's are two tor Ihe velocity command, and two for me 
velocity fcedback signal. The velocity feedback signals for both axes 
are provided by the NSK amplifiers as analog signals ranging from 
+10 volts to -10 volts. which corresponds to 1.0 RPS to -1.0 RPS. 
Tb~ Iwo D/A's are used to deliver the computed torque commands 
from Ihe TMS 10 the NSK amplifiers. For our system the NSK 
amplifiers have a gain of 47 Nm/V for axis I. and 25 Nm/V for axis 
2. The system is configured such that the TMS is a high speed 
numeric processor for the IBM. The real-time program is interrupt 
drivcn Ihrough the system timer of the IBM. 1be IBM controls the 
sample, and when data is ready delivers them to the TMS through a 
common sbared memory space between the IBM and the TMS. The 
IBM in turns signal the TMS to begin execution. Upon completion 
the TMS delivers the computed torque command to the mM lhrough 
the same shared memory space and signals the IBM tbat the compu­
ration for that rime slice is complete. The IBM then delivers the 
torque command to the appropriate NSK amplifiers via the two 
D/A's. 

The adaptive velocitY loop for both axis were implemented in 
TMS assembly. The resulting code was 755 bytes, with a minimum 
Po .. ibl< loop time of IS I ,",' . However. the overall algorithm was 
limited to .bout 700 ,",S, due to the limiting speed of the IBM-AT 
and me IBM Oaea AcquisitioQ Board used. A similar version of the 
algorithm was written in assembly for the 80286 on the IBM-AT 
whi<:h raD at a minimum tale of 2 ms . NOle. that if it was not for the 
limitation of the 1/0 drivers. by virtue of pure software execution 
time, the use of the DSP over conventional general purpose CPU's 
can decreue the sampling linle by almost one order of magnitude. 

The entire algorithm was coded with fix point arithmetic in 
mind. For this particular adaptive conuol algorithm. a fix point for· 
mat of 7 bit integer and 8 bit fraction, which corresponds to a numer· 
ical r'olnge of :t27.r", was sufficient. The task or scaling was 
simplified by Ihe TMS, since it provides a 0 to IS bit barrel shifter 
which can shift the data as it is heing loaded from the memory to the 
arithmetic logic unit \ALU). Another feature of the TMS which 
makes it performance superior to mos. general purpose processors is 
the: pardUel hardware: mullipier ~hich aUows the TMS to perlonn a 
16xl6 bit multiply in 200 ns. An imponanl fealure of the TMS, 
which is beneficial 10 most conlJ'Ol application and is not available in 
general purpose processon is the owrjlow modt. which when set 
prevents numeric overilows and underflows. Anodler" point which 
sbould be mentioned is that the macro capabiliry of the TMS assem­
bly language has made the programming task bearable and actuaUy 
rather liimple. 

4. EXPERIMENTAL RESULTS 

The adaptive control allorilhm was implemented on the NSK­
UeB robot, and the resulls are illustrated in Figs. 4.0 to 6.0. The 
robot was subjected to a payload change for approximately 7.S Kg. 
Both axes wen: tracking • third order trajectory which required each 
axis to b'averse over ISO" and return. The p10ts shown are closeups 
of 1he second axis posilion response as it reaches its 180" destination. 

Fig. 4.0 illustr.ues Ih~ non-adaptive case in which the system was 
tuned without the payload. The perfonnance is fair without payload. 
however, the system expeflence tremendous overshoot when the pay­
load was adckd. Fig 5.0 illustrales Ihe opposing case. where the sys· 
tem is tuned wilh lh~ payload and becomes highly oscillatol)' when 
the payload is lost. Fig. 6.0 shows the adaptive case which is nearly 
ind.isungulshabJe for either payload configuration. The results are for 
a sampling nle of 7 ms for both the position and adaptive velocity 
loops. 

s. CONCLUSIONS 

Th\! digital implt!m~nlation of a MRAC to a two axis direct 
drive robot using the TMS32010 Digital Signal Processor in conjunc· 
tion wllh two IBM·A T's was pre~nted. From Ihe actual ex.perience 
gamcd Ihrough impl~mc"IHalion. few features of I~ TMS were found 
to" be extremely benefiCial to controls. these are : 

• Macro capability of TMS assembly language 
... Small and simple inslruclion set 
*' 0 to 15 bit banel shifter for scOiling 
• 200 ns 16x16 bit hardware multiplier 
• Single cycle instruction for simple timing analysis 
• 32 bi1 Accumulator 
... OverOow Mode lor automatic numerical wrap·around 

prevention. 

A k.ey to the success of this implemcoution was the t.:areful 
scaling and unsealing of intennediate values throughout the calcula· 
tions. It should be noted thai this may no longer be a I.:oncern with 
today'li availability of floating point digital slgnaJ processors, such as 
AT&T',DSP32. 
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Implementation of a Self-Tuning 
Controller Using Digital Signal 

Processor Chips 

ABSTRACT: This paper describes imple­
mentation aspects of a self-tuning motion 
controller, which uses the Texas Instruments 
TMS32010 digital signal processor (DSP) 
chip. The potential advantages in using a 
DSP chip include reduced operation time, 
reduced development time, and reduced cost. 
The self-tuning controller can track varia­
tions in system parameters as well as system 
disturbances. Algorithms are described, ex­
perimental results are presented, and imple­
mentation strategies to overcome I imitations 
of such systems are discussed. 

Introduction 

In many applications of electromechanical 
systems, parameters such as inertia and load 
torque may vary over time. Variation of load 
torque, manufacturing variations, and aging 
can degrade system performance. The de­
sign framework of self-tuning control is suit­
able for adjusting control parameters as well 
as compensating for disturbances [I], [2]. 
However, cost considerations have tended to 
limit the implementation of adaptive control 
to process control applications, where the 
control costs can be justified. The advances 
in microprocessor technology with reduced 
cost have made it possible to apply adaptive 
control to electromechanical systems be­
cause digital signal processing (DSP) chips 
reduce cost and development time. In par­
ticular, the implementation of adaptive con­
trol presented in this paper is currently being 
considered for use in a commercial product. 

Digital control normally is implemented 
with a microcontroller, and microcontroller 
architecture is well suited for handling inputs 
and outputs for motion control systems. 
However, the arithmetic logic unit of such 
devices is slow, due to the general-purpose 
microprocessor architecture. For example, 
16-bit multiplications normally require 5-20 
!,sec. These slow times preclude using these 
devices for simultaneous identification and 
control of an electromechanical system. On 

K. H. Gurubasavaraj is with the Xerox Corpora­
tion. Business Products and Systems Group, 1350 
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the other hand, the architecture of a DSP 
chip is quite suitable for intensive compu­
tation. Multiplication times for 16-bit DSP 
chips are in the range of 60-200 nsec. This 
time improvement makes possible real-time 
on-line adaptive control. 

This paper discusses the implementation 
of self-tuning adaptive control using a DSP. 
Many vendors, such as Texas Instruments, 
Fujitsu, AT&T, Motorola, National Semi­
conductor, and NEC, produce a wide range 
of DSPs. The AT&T DSP32, Texas Instru­
ments TMS32030, and NEC !,PD77230 have 
32-bit floating-point hardware architecture. 
They are capable of producing multiply and 
accumulate floating-point operations within 
60-150 nsec. Other DSPs have fixed-point 
data architecture. The cycle time of these 
first-generation devices is in the range of 
100-200 nsec. As a result of hardware mul­
tipliers, multiply and accumulate fixed-point 
operations are performed in 160 nsec com­
pared to 12-16!,sec using Intel 8086 or 8096 
devices. The cost of these devices is com­
parable to other microcontrollers, costing less 
than $10. The Texas Instruments TMS32010 
device is used here for self-tuning controller 
development because of cost considerations 
and availability of development systems. 
Furthermore, all control functions of a mi­
crocontr"lIer are integrated with the 
TMS32010 central processing unit (CPU) in 
the new device, referred to as digital signal 
controller DSC32014. This chip can be con­
sidered as a true single-chip controller ca­
pable of performing identification, control, 
and input -output signal processing in real 
time. 

The TMS320 family of processors have 
Harvard-type architecture with separate data 
and address lines. The instructions are suited 
for implementation of digital filters. For ex­
ample, the combination of L T.D and MPY 
instructions load a coefficient in a register, 
multiply and accumulate with previous prod­
ucts, and move the data memory to the next 
higher memory address space. Hence, im­
plementation of each additional pole and zero 
can be performed with two instructions. 
More information about these devices can be 
found in Refs. [3]-[5]. 

There are implementation constraints with 
these chips because of the fixed size of ran­
dom access memory (RAM) space and hard­
ware architecture suited for fixed-point op­
erations. Our objective is to design the 
adaptive control with the capability to esti­
mate the maximum number of parameters 
and control the system. Simultaneously, the 
implemented controller can track the veloc­
ity or position of a given electromechanical 
system. Experiments have been conducted to 
measure the effect of mismatch between the 
assumed model and the actual system. 

System Model 

The dynamics of many electromechanical 
systems can be represented using well-known 
models. For illustrative purposes, the per­
manent magnet DC motor driving a load with 
total inertia J can be represented by the fol­
lowing equations, where R, L, K" K" B, v, 
i. and Td indicate resistance, inductance, 
torque constant, back electromotive-force 
constant, damping coefficient, voltage ap­
plied, current through the armature, and dis­
turbance torque, respectively. 

L di(t)ldt + Ri(t) + K, wet) = vet) (I) 

J dw(t)ldt + Bw(r) = K,i(r) - Td (2) 

The operation of the Laplace transform 
yields the following transfer-function rela­
tionships. where K*. a*, b*, and c* are de­
termined from Eqs. (1) and (2). 

w(s) = [K!'V(s) - K: (s + ef) Td(S)] 

.;- (s2 + afs + at) (3) 

The equivalent Z-domain transfer function 
using zero-order hold gives the following re­
lationship among velocity, voltage, and 
torque disturbance. 

w(z) = [K,(z + b,) V(z) - K,(z + e,) 

Td(z)]/(z2 + a, Z + a2) (4) 

The adaptive control methodology pre­
sented here develops the control parameters 
as if the system parameters were known. A 
suitable identification procedure is used to 
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tune the initial control parameters. The fol­
lowing section describes the identification 
procedure. 

System Identification 

The discrete dynamic equations for the 
system in Eq. (4) can be written in the time 
domain using the following recursive equa­
tion, where the system parameters are rep­
resented by 8;. 

w(k + 1) = 8,w(k) + 82w(k - 1) 

+ 8",(k) + 84 v(k - 1) 

+ 85 T,,(k) + 86 Td(k - 1) 

(5) 

The system equations can be written in 
vector notation, where the vector e repre­
sents system parameters, the <I> vector con­
stitutes all known signals, and superscript T 
denotes transpose of the vector. 

w(k + 1) = <I>T(k)e(k) (6) 

If the torque disturbance is constant, then 
Td(k) equals TAk - 1), and the last two 
terms in Eq. (5) can be combined to give a 
single bias term. This unknown bias can be 
included in the system parameters 8;. A 
straightforward recursive least-squares (RLS) 
estimation procedure can be used to identify 
the system parameter vector e. However, 
when the torque disturbances vary over time 
and the torque disturbance sequence is not 
known, the estimation process becomes non­
linear due to unknown torque disturbance 
terms T,,(k) and T,,(k - 1) in the <I> signal 
vector, which mUltiply the unknown param­
eter vector e. 

For the preceding class of problems, the 
elements of the parameter vector e as well 
as the unknown elements of the signal vector 
<I> need to be estimated. The estimation prob­
lem can be solved by using either the ex­
tended least-squares (ELS) method or the ap­
proximate maximum likelihood (AML) 
estimation method [6). If the propenies of 
the disturbance noise distribution are known, 
the AML estimate has superior convergence 
propenies compared to the ELS method. In 
the absence of such knowledge, both 
schemes exhibit similar convergence prop­
enies. The simplicity of the ELS algorithm 
and the absence of knowledge about the dis­
turbance prompted us to use ELS estimation. 
The recursive estimation scheme is given by 
tbe following equations, which are similar to 
Kalman filter equations for linearized esti­
mation, where the superscript on e indicates 
the estimat~ and the vector B represents the 
gain. 
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{I(k + I) = {I(k) + B(k + I)(w(k + I) 

- <I>T(k){I(k» (7) 

Since not all elements of the <I> vector are 
known in this equation, the unknllwn ele­
ments Td(k) and Td(k - I) are replaced by 
their residual sequence.· The residual se­
quence of Td(k) is obtained from the follow­
ing version of Eq. (5), where the parameters 
'are replaced by estimates obtained from Eq. 
(7). 

Td(k - I) 

= (i/{l5)[W(k) - {I, w(k - I) 

_. {I,w(k - 2) 

- {I,v(k - 1) - {I.v(k - 2) 

- {l6 T.,(k - 2») (8) 

The Td(k) estimates in the <I> vector of Eq. 
(7) are replaced by Td (k - 1) from Eq. (8). 
The preceding substitution assumes that the 
disturbances are continuous in nature aod the 
bandwidth of such disturbances is much 
lower than the sampling rate. The recursive 
equations to determine the vector gain B are 
similar to the Kalman filter equations. 

B(k + 1) = P(k)<I>(k) 

~ [1 + <I>T(k)P(k)<I>(k)) 

(9) 

P(k + I) = [/ - B(k + 1)<I>(k))P(k) 
(10) 

Here P(k) is the covariance matrix, which is 
initialized by setting P (0) equal to a diagonal 
matrix. Elements of the parameter vector e 
are initialized by some initial guess. 

The design of the controller is carried out 
by using estimates of the system parameters 
instead of actual values. The single-step­
ahead prediction is used to generate control 
signals. The desired reference velocity dur­
ing the next sample time is equated to the 
single-step-ahead velocity prediction by 
using the following version of Eq. (5): 

v(k) = (l/il,)[w", (k + 1) 

- il,w(k) - il,w(k - I) 

- il4 v(k - 1) - 85 Td(k) 

- 8.Td (k - 1)) (11) 

Implementation Considerations 

The preceding real-time identification and 
control laws have been implemented using 
an Intel 8051 family controller with a Texas 
Instruments TMS32010 DSP as a coproces-

sor. The block diagram of the hardware 
schematic is as shown in Fig. l. The DSP 
is used to generate velocity profiles and per­
form estimation and control calculations to 
generate the controlled input. The timers and 
counters on the 8051 are used to perform 
bookkeeping functions. All interface logic, 
input and output processing, and the 
TMS32010 CPU are integrated in the device 
DSC320l4. This device provides the needed 
input and output processing capabilities as 
well as the fast computation capabilities of 
a DSP. Hardware design based on the 
DSC32014 is in progress. 

The implementation of the preceding 
equations should consider the internal hard­
ware architecture of the device. The archi­
tecture of the TMS320 devices is optimized 
to implement digital filters. For example, the 
TMS32010 can implement loading the reg­
ister, adding the value to the accumulator, 
and moving the signal value into the next 
memory location. These capabilities are well 
suited for any classical filter implementation. 
However. the estimation routines need ma­
trix or vector manipulations. Subroutines can 
be written for doing these manipulations. The 
time needed for these calls can be saved if 
the operations are performed in scalar form. 
Scalar manipulations decrease the RAM size 
requirement, while increasing the read-only 
memory (ROM) requirement due to addi­
tional coding. At the present juncture, this 
trade-off is advantageous due to limited RAM 
space (144 words) compared to ROM space 
(1536 words) available on these chips. 

Estimation Routine and Control Design 

The estimation routine used in Eqs. (7)­
(10) can be directly 'implemented for esti­
mating a small number of parameters. Esti­
mating a larger number of parameters re­
quires larger memory space. The covariance 
matrix P in Eqs. (9) and (10) should be pos­
itive definite for assuring convergence. The 
matrix P can lose positive definiteness due 
to subtraction operations in Eq. (10), leading 
to divergence. To provide numerical stabil­
ity, the update of the covariance matrix can 
be accomplished with the square-root ver­
sion of the P matrix instead of the P matrix 
itself, which is known as square-root filter­
ing in the literature. However, square-root 
filtering is computationally expensive. Bier­
man's UDUT method [7) provides the ad­
vantage of less memory space and does not 
need square-root calculations, while accom­
plishing the same. objective. Bierman's 
method requires n(n - 1)12 locations for 
covariance matrix manipulation instead of n' 
locations in a regular filter implementation. 
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Fig. 1. Block diagram of implementation hardware. 

Hence, Biennan's UDU' method is em­
ployed to provide numerical robustness and 
for its applicability to estimation of other 
higher-order systems. Details about this al­
gorithm can be found in Ref. [7]. 

The norm of the covariance matrix (and. 
hence, the filter gain) decreases as time in­
creases and eventually goes to zero. This is 
desirable if the system is indeed time in­
variant. If the parameters are time varying, 
the decrease causes the loss of adaptive ca­
pability. To keep the filter active, the co­
variance matrix elements are divided by a 
constant less than I, which is known as a 
forgetting factor. At the same time, Eq. (9) 
is also modified slightly. The TMS320 ar­
chitecture needs a subroutine to perfonn di­
visions. The reciprocal of the forgetting fac­
tor is used to multiply the covariance matrix 
elements. Experiments were conducted to 
observe the effects of different forgetting fac­
tors. In some cases, the mismatch of the for­
getting factor can increase the covariance 
matrix values to cause numerical instabilities 
or decrease them to small numbers. (For­
getting factors of less than 0.9 lead to in­
creases in the elements of the covariance ma­
trix. Forgetting factors of 0.98 and 0.99 
provided better results for our specific ap­
plications.) To provide some protection 
against these situations, bounds on the min­
imum and maximum nonns were employed. 
Resetting of the covariance matrix was per­
formed at these boundaries, and this strategy 
worked fairly well in practice. 

The convergence of RLS estimation can 
be assured while tracking only system pa­
rameter variations. The convergence is in­
dependent of the initial parameter estimates. 
When significant disturbances are present, 
the equation error due to the disturbance se­
quences leads to biased estimates. The con­
sistency of RLS relies on the uncorrelated 
residual sequence, which requires a special 
noise structure. A correlated residual se­
quence leads to biased estimates. The ELS 
estimation is used to estimate disturbance 
torques and associated parameters. In this 
case, convergence is dependent on the initial 
parameter estimates. For many electrome-

chanical systems, the parameter bounds are 
known. The estimator 'converges to the true 
values when the initial estimates of the pa­
rameters are in the proximity of the actual 
values. The estimates of the product 9, and 
Td(k) are known to a greater degree of cer­
tainty than the individual components. 

In actual implementation, the gain tenn 9, 
can be normalized. For the case presented, 
the total number of parameters that need to 
be adapted is five. OverHow and underHow 
situations may occur due to fixed-point rep­
resentation of numbers. Appropriate scaling 
becomes important to avoid these problems. 
Scaling is a continuous conflict between the 
dynamic range and resolution of signals or 
coefficients. Sign··plus two's complement 
arithmetic is used to represent numbers. 
Coefficient scaling is accomplished by esti­
mating the maximum value of the coefficient 
estimates. Then, all coefficients can be nor­
malized within the available word length. 
Similarly, signals are scaled. Setting of the 
overHow mode saturates the coefficient value 
at the maximum. This feature recovers the 
estimator from soft saturation without lead­
ing to damaging consequences. Appropriate 
safeguards need to be provided for eventual 
saturation problems. Many different ad hoc 
strategi~s can be used, depending on the type 
of saturation. The ELS algorithm using fixed­
point arithmetic requires approximately 200 
I"sec for computation. 

For a set-point regulator problem, the ab­
sence of persistent excitation may cause the 
filter to diverge. For the cases studied, the 
frequency components of torque distur­
bances appear to provide the needed fre­
quency components and prevent divergence. 
Some divergence-related problems are no­
ticed in linear systems without disturbances. 
Many investigations are being carried out to 
detennine the cause of such divergence. At 
present, it is ascribed to insufficient excita­
tion of input signals. If these disturbances 
are absent, then some perturbation may have 
to be provided in the input signal to prevent 
filter divergence [8]. Providing the needed 
excitation for the estimator and good regu­
latory perfonnance seem to be a challenge. 

Experimental Results 

An Electrocraft E543 motor is used in the 
laboratory experiments. Using a magnotrol 
brake, torque disturbances of varying mag­
nitudes are induced. The amplitude of such 
torque disturbance variation is limited to 31 
oz.-in. Different torque magnitudes are used 
in the experiments. A sample period of 400 
I"sec is used. 

Identification and Predictive Control 
for Constant Disturbance Torques 

The predictive control using RLS estima­
tion is shown in Fig. 2. The servo is tracking 
a series of trapezoidal profiles. As can be 
seen, the adaptation is complete during the 
ramp-up period. Ten or twelve samples of 
data are needed for convergence. Similar re­
sults confinn adaptation to different sets of 
system parameters by using different motors, 
inertias, and frictional loads. However, this 
estimation scheme leads to biased results 
when significant variations of torque distur­
bances are present. Figure 3 shows the per­
fonnance for triangular torque disturbances 
at a frequency of 5 Hz. The velocity varia­
tion is limited to ±5 counts/sample. The 
nonadaptive compensator perfonnance for 
torque variation is similar to the RLS 
method. 

Performance Under Varying Torque Loads 

The penonnance of the controller based 
on ELS identification is compared with a 
well-tuned proportional-integral-derivative 
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Fig. 2. Velocity profile tracking using 
RLS identification (under no torque 
disturbance). 

Time -

Fig. 3. Response during constant velocity 
using RLS identification (under 5-Hz torque 
disturbance). 
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Fig. 4. Comparison of controller response to torque 
disturbances. 

(PIO) controller in the presence of sinusoidal 
torque distumance with an amplitude of 25 
oz.-in. at a frequency of 5 Hz. These low­
frequency disturbances within the c1osed­
loop bandwidth are difficult to handle using 
conventional controllers. The experimental 
setup remains the same for this identification 
and control procedure as that used previ­
ously. The results are shown in Fig. 4. The 
PIO control errors are limited to ±4 encoder 
counts/sample, whereas the adaptive control 
errors are within ± 1 encoder count/sample. 
The error bounds are invariant to the varia­
tion in the commanded reference level. 
Hence, the resolution of the encoder be­
comes a limiting factor in attaining lower 
steady-state error. 

Conclusions 

Adaptive control has become a viable al­
temative for controlling electromechanical 
systems. The computation power of the dig­
ital signal processor can be conveniently ex­
ploited to provide performance significantly 
higher than possible with conventional mi­
croprocessors . 

Performance, Adaptability, and Reliability 

'these controllers update their information 
regularly. This increase in the knowledge 
base contributes to the adaptability of the 
system. The real-time performance improves 
significantly if the system has significant dis­
tumances compared to any other conven­
tional scheme. The major strength of adap­
tive control is its superior performance under 
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system parameter vanatIons and distur­
bances. The adaptive capability provides the 
desired performance throughout the life of 
the mechanism. Reliability is enhanced since 
the system meets the expected performance 
in spite of aging of the mechanisms. 

Cost Implications 

The monotonically decreasing cost of 
electronics offers the capability of modifying 
the dynamics cost-~ffectively in electronic 
hardware and software. One of the benefits 
may be the relaxation of tolerance specifi­

. cations of mechanical components. After a 
certain point, precise tolerances increase the 
component cost exponentially. The optimal 
trade-off point for a given system has to be 
explored in greater detail. Since the control­
lers are self-tuning in nature, they will not 
need tuning in the field. This reduces the 
service calls and improves reliability. In ad­
dition, the state of the system can be esti­
mated. These estimated states can be used 
as diagnostics for replacement of the com~ 
ponents prior to actual mechanism failure. 
This aspect can be used to plan and schedule 
maintenance activities. 

Reduction in Development-Cycle Time 

The design basically encompasses the fol­
lowing aspects. The identification of the sys­
tem, controller design, and implementation 
are performed in real time. The identifica­
tion, compensator design, and transfer of the 
designed parameters into a workable hard­
ware or software are eliminated in the design 
cycle. The faster computation capability of 

signal processors can be used advanta­
geously to control higher-o~er dynamic sys­
terns. This feature allows sensor placement 
at the load end and' includes all dynamics 
within the loop. The preceding adaptive con­
trollers are used successfully as fixture de­
velopment controllers at Xerox during de­
velopment, when the system parameters are 
partially known and/or vary over the devel­
opment period. 

Limite.. ions and Future Research 

Adaptive controllers are more complex 
than traditional feedback control systems, 
and they are nonlinear in nature. There are 
some recent results to prove overall stability 
of such systems under restrictive conditions. 
Additional research is needed to prove over­
all convergence and stability of such systems 
under relaxed conditions. Software integrity 
becomes an important issue for the employ­
ment of these controllers. The overflow and 
underflow conditions make the scaling prob­
lem more difficult. The convergence of many 
recursive estimation schemes depends on 
persistently exciting input signals. However, 
during regulation periods, the estimation 
process diverges due to the absence of per­
sistent excitation. Dithering of the input sig­
nals or pausing the estimation process during 
regulation provides a partial solution at the 
cost of reduced performance or adaptability. 
More research in this direction is needed. 
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INTELLIGENT MOTION 

Motion Controller Employs 
DSP Technology 
Hobbert van der Kruk and John Scannell 
Philips Centre for Manufacturing Technology 

Several control strategies are considered to improve the 
performance of a digital motion controller, including: feedback 
design, velocity and disturbance observers, trajectory generator 
and feedforward compensation. 

Development of a digital motion 
controller must carefully consider 
the sampled data nature of the 

system. For example, a stable position 
servo system must provide electronic 
damping, which often means tachometer 
feedback or else a simple derivative action 
in the position feedback loop. Using a 
tachometer increases the cost of the servo 
system, whereas a simple digital 
differentiation technique amplifies the 
quantization noise on the digital position 
signal. This causes excessive current ripple 
in the motor together with unpleasant 
audible noise. This new design uses a 
velocity observer to drastically reduce the 
quantization problem associated with 
simple digital velocity estimators. 

Elimination of steady state errors has 
long been performed using an integrator 
in the error path. However, this technique 
has several disadvantages (e.g. wind-up, 
tuning) and tends to reduce the stability 
margins. This new design employs a more 
advanced technique, a disturbance 
observer, to eliminate steady state errors. 

Many servo systems exhibit low 
frequency mechanical resonances due to 
the finite stiffness of the coupling between 
the motor shaft and the load. We will show 
that set point functions with programmable 
jerk dramatically improve the performance 
of such systems. 

Modem automation applications place 
ever increasing demands on the tracking 
accuracy of servo controllers. Velocity and 
acceleration feedforward techniques can be 
employed to minimize tracking errors. The 
new design incorporates feedforward 
techniques. 

From Analog to Digital Control 
Introduction of the microprocessor, and 

more recently the signal processor, have 
radically altered the field of high 
performance servo control over the past 
decade. The advent of digital techniques 
has presented the designer with 

tremendous flexibility in the control 
algorithm design1,2,3A. In addition. the 
provision of extensive diagnostics and 
status information has become a relatively 
simple operation thus easing the tasks of 
system development and support. However, 
this migration from analog to digital has 
several problems associated with it. In 
particular, the design of the control 
algorithm must take account of the 
sampled data nature of the system. 
Problems due to the delays introduced by 
the sample period and the calculation time 
must be carefully considered in the design 
of the feedback parameters. The 
quantization noise due to the digital nature 
of the position information must also be 
carefully analyzed and its effects minimized. 

Consider the simple block diagram of the 
digital servo system in Figure 1. Assume 
that the power amplifier has a large 
bandwidth compared with the servo loop 
and may therefore be modeled as a gain 
ekment. The motor model is a double 
integrator and neglects friction and 
mechanical resonances. 

The open loop transfer function of the 
continuous elements, including the sample 
and hold effect and the calculation delay is: 

Xene(s) e-sTe (l_e-ST) 
H(s) ~ U(s) ~ K s3 ,(1) 

s ~ Laplace operator 
where 
K ~ !\iae Ka Km KenelJ 
!\,Jae ~ gain of the DIA converter 
Ka ~ gain of the amplifier 
Km ~ motor constant 
Kene ~ resolution of the position encoder 
J ~ motor inertia, 

The most convenient method of 
analyzing this sampled data system is to 
convert H(s) into its discrete time 
equivalent, H(z), where z is the discrete 
time operator.5,6. However, the z plane 
analysis only provides information atthe 

Reprinted, with pelmission, from PCIM, Sept. 1988. 

sample instants, i.e., fractional delays are 
not allowed, Thus, in order to examine the 
effect of the calculation delay, Te, the two 
extreme cases are considered: no 
calculation delay, Te ~ 0, and maximum 
calculation delay, Te ~ Ts. 

Calculation of the feedback parameters 
is first considered for zero calculation 
delay, For Te ~ 0, Equation (1) becomes: 

Xene(z) 1 
H(z) ITe~O ~ -- ~ Z{L - [H(s)J} ~ 

U(z) 

-.l KT2 (z + 1) 
2 s (z-1)2 . 

(2) 

A suitable value of the velocity feedback 
gain, Kv, is calculi\ted by considering the 
loop transfer function. From Figure 1, the 
motor velocity is approximated by using the 
pulse count technique, The open loop 
transfer function of the velocity loop is: 

z-l 
V(z) ITc~O ~ -z- H(z) ITe~O ~ 

-.l KT~ (z+ I) . (3) 
2 z(z-I) 

Using the root locus technique suitable 
value of Kv may be derived7. A robust 
selection, giving sufficient design freedom 
for the outer position loop, is 
Kv ~ 0.343IKTs2. This gives a damping 
ratio of 1.0. Using this value of Kv the 
open loop transfer function of the position 
loop is: 

P(z) ITe~O ~ 

-.l KT~ z(z+ 1) (4) 
2 (z-l) (z-0.414)2 

As before, the root locus technique is 
used to calculate a value for the position 
feedback gain, Kp. Selecting a damping 
ratio of 0,7 gives Kp ~ 0.072IKTs2. 

In a similar manner, the loop parameters 
may be determined when a calculation 
delay of one sample period is assumed. In 
this case Equation (2) becomes: 

1 2 (z+l) 
H(z) ITe~Ts ~ 2' KTs z(z-1)2' (5) 

The corresponding values of Kv and Kp, 
for the same damping ratios, are 
Kv ~ O.lBOIKTs2. 

The results obtained are summarized in 
Table 1, where Fs is the sample frequency 
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(F, - lIT sl. Generalizing these results for 
calculation delays between 0 and T, gives: 

K, = 0.3S K 
KTs(Ts+TJ' P = 

0.072 
(6) 

Kv.KTl Kp.KTl Total Delay Bandwidlll 

Tc = 0 0.343 0.072 Ts Fs/17.5 
Tc = Ts 0.180 0.018 2Ts Fsl35.0 

Bandwidth = (7) 
17.S(Ts+Tc) 

These generalized results have also been 
verified for fractional calculation delays. i.e. 

D' ital Controller 

R 

O<Tc<Ts. From the results it can be 
concluded that the sample frequency must 
be at least 17.S times higher than the 
required bandwidth of the position loop. 

Velocity Observer 
The straightforward pulse count method 

of velocity estimation results in poor 
resolution at low speeds. The quantization 
error in the velocity signal becomes worse 
with increasing sample frequency and can 
cause excessive current ripple in the motor 
together with audible noise .(Figure 3a). 
This problem can be reduced by using a 
position encoder with a greater resolution, 
but this is a rather expensive solution. In 
addition, increasing encoder resolution 

y 

Figure 1. Simple Second-Order Digital Controller. 

DSP Controller 

Equations (S) and (8) yield the observer 
structure shown in Figure 2, where 
Kcic - KTl. Two feedback terms are used 
to 'Correct for deviations between the 
observer and the system. The choice of K j 
and K2 involves a trade-<lff between the 
bandwidth of the observer correction loop 
and the quantization of the estimated 
velocity, VIz). Since the objective of the 
velocity observer is to reduce the velocity 
quantization level, the choice of Kj and 
K2 are determined using this criterion. 
The value of K j must be less than 'h in 
order to provide a better resolution than 
the pulse count method. Practical values 
are Kj = 0.04 and K2 = Kj2, resulting in 
a resolution enhancement factor of 
'hKj = 12.5 and an observer -3dB 
bandwidth of Fs/10S. 

For very stiff servo systems, where the 
second order model is valid, the relation 
between the measured position, VIz), and 
the observer estimated velocity, VIz) is: 

VIz) = 2 (z-l) VIz) . 
(z+l) 
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(9) 

This shows that the observer is 
essentially an implementation of Tustin's 
rule9• This rule is an approximation of the 
differential operator and is without 
additional phase shift. However, it cannot 
be programmed directly due to stability 
problems caused by the pole at z = -1. 

Using the velocity approximation of 
Equation (9), the feedback analysis may be 
repeated for a servo system with the 
velocity observer. The corresponding 
general results are: 

K - 0.5 , Kp = 0.125 
v - KTs(Ts+TJ K(Ts+Tc)2 

and (10) 

Bandwidth = (11) 
13.8(Ts+ Tcl 

From these results it can be seen that 
the sample frequency of a system using the 
velocity observer must be at least 13.8 
times higher than the desired position loop 
bandwidth. Thus, for the same sample time 
and calculation delay, a system using the 
velocity observer has a 27% higher 
bandwidth than the same system using the 
pulse count method. The velocity observer 

unnecessarily increases the data speed, 
which can lead to a decrease in the 
maximum servo velocity. A velocity 
observer, estimating the servo velocity with 
a higher resolution than the pulse count 
method, can be used ·to overcome this 
quantization problem 7,8. The discrete time 
transfer function from the servo command, 
U(z), to the position output, Xenc(z), is 
given by Equation (S), (Tc = T sl. The 
transfer function from the servo command, 
U(z), to the velocity output, VIz), is: 

G(z) = VIz) = Z{L-l[sH(s)j} = 
U(z) 

KT1 __ 1_, Tc = Ts. 
z(z-l) 

(8) 
(continued) 

Figure 2. Velocity Observer Block Diagram. 

has one machine-deperident parameter, 
Kdc, which can be simply tuned by 
monitoring the observer error. 

The performance improvement yielded 
by the velocity observer is demonstrated in 
Figure 3. A reference velocity signal of 2.S 
position increments per sample period 
(2.SinC/T sl is applied to a brushless linear 
motor used in the Philips chip mounting 
machines. Figure 3a shows the current in 
the motor when the pulse count method 
of velocity estimation is used. In contrast, 
when the velocity is estimated using the 
observer the high frequency current 
components are eliminated as shown in 
Figure 3b. This reduction in the current 
ripple results in less motor heating, less 
dissipation in the power amplifier and a 
significant reduction in the audible noise 
level. 

Disturbance Observer 
The observer error signal, E(z), in 

Figure 2 represents the reconstruction 
error between the observer and the servo 
system. The input signal, D(z), represents 
an external force or torque disturbance. If 
we assume that the observer model is exact 



1.5~ 0.0 , ..... ) 
-2.0 

o m' 
(al Pul"" count. 

u~ ~tO.O , ..... ) 
-2.0 
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(b) Vclocityobsenocr. 

Figure 3. Comparison of Motor Current for 
Brush/ess Linear Motor Running at 
2.5 incs/Ts. 

then the expression for the error is: 

E(z) -..!.. Koc 
2 

(12) 

(z+1) 
z(z-1)2 + KI(z-1) (z+1) + K2(Z+1) O(z). 

This expression for E(z) is the 
disturbance, D(z), low pass filtered by the 
observer poles. Thus, the observer error 
signal provides an estimate of the 
disturbance. This may be used to 
compensate the system and correct for 
errors caused by the disturbance. When 
applying the observer error signal to the 
system (Figure 4), two conditions must be 
met: 

1. In steady state, the magnitude of the 
compensation signal, C(z), must equal 
the magnitude of disturbance: 

lim C(z) _ 1 . (13) 
z .... 1 D(z) , 

2. The closed poles of the observer must 
remain unchanged. 

Fulfilling these two conditions gives the 
disturbance observer block diagram shown 
in Figure 4 8.10. 

In steady state we have: 

lim C(z) - 2K2 lim E(z) = d (14) 
z .... 1 K.tc z .... 1 

where d is the steady state value of the 
disturbance D(z). For a stable, well damped 
observer the equation K2 = K 12 is valid 
where KI'';;0.17. It can be shown that the 
bandwidth of the disturbance observer is 
directly proportional to the value of KI 
while the quantization noise fed to the 
motor is proportional to K2, i.e. K12. 
Thus, the choice of K 1 is a trade-off 
between the bandwidth of the disturbance 
compensation and the quantization noise. 
Note, however, that the value of KI is 
independent of the velocity and position 
loop gains and therefore the tuning of the 
disturbance observer may be performed 
independently of the outer control loops. 

Due to the similarity between the velocity 
and disturbance observer structures it is 

possible to use a single observer for both 
velocity estimation and disturbance 
compensation. However, for the tuning of 
the velocity observer the reduction of 
quantization noise is generally more 
important than the bandwidth of the 
feedback loop. For the disturbance 
observer the bandwidth ·of the disturbance 
rejection is the more important tuning 
criterion. Therefore, for optimal 
performance, two separate observers are 
necessary. 

If(z) 

Control 
signal 

settling times. Higher order set point 
functions may be used to overcome these 
saturation problems. More common 
position set points are the ramp (first 
order), the parabolic profile (second order) 
and the cubic profile (third order). Here, 
attention is paid to the parabolic and the 
cubic set points7. 

A parabolic position set point results in 
a triangular velocity profile with 
discontinuous acceleration. If this set point 
is applied to a servo system with a low 

+ 

Y(z) 

Servo 
Position 

r,,(z) 

Figure 4. Disturbance Observer B/ock Diagram. 

Figure 5 shows the response of a linear 
servo motor when a step disturbance of 20 
Newton is applied. The bandwidth of the 
position loop is 44Hz with a damping ratio 
of O.B. Using integral compensation the 
maximum position error is 92,..m 
(l,..m = 1 inc) and the steady state 
condition, with zero position error, is 
recovered at 90msec. Using the 
disturbance observer the maximum 
position error is only 19,..m and the 
recovery time· is 36msec. The performance 
improvem.ent yielded by the disturbance 
observer stems from its relatively high 
bandwidth, 70Hz. By comparison, the 
bandwidth of the integrator is limited to 
BHz in order to maintain the position loop 
stability margins. 

In the design of the disturbance observer 
the effect of friction is neglected. This 
design procedure has been validated by 
tests, in which the effect of friction forces 
has been found to have a negligible effect 
on the disturbance observer performance. 

Trajectory Generator 
Response of a servo system to a step 

input can be used as a measure of the 
system performance. However, in practical 
applications position steps are rarely used 
as set points as they can cause controller 
saturation resulting in nonlinear servo 
behavior. This results in large tracking 
errors, significant overshoot and poor 

)00 

POSII.LOR 

.~ 

("m) (t 
o U D"wb~" 

observer 

0 m' 
Figure 5. Comparison of Disturbance 
Rejection for Step Disturbance of 20N 
App/ied to a Brush/ess Linear Motor. 
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frequency mechanical resonance then the 
discontinuous acceleration (and hence 
discontinuous torque) excites the resonant 
frequency resulting in undesirable 
overshoot and tracking errors. This is 
shown in Figure 6a where a triangular 
velocity profile is applied to a servo system 
with a 5.4Hz mechanical resonance 
frequency. This measurement is performed 
using a stiff servo motor connected to a 
mechanical load via a flexible coupling. A 
position encoder on the motor shaft 
provides feedback signals for the digital 
controller. A second encoder after the 
flexible coupling measures the load velocity 
responses shown in Figures 6a and b. 

In contrast, a third order profile has no 
torque discontinuities and hence does not 
tend to excite the system resonance as 
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demonstrated in Figure 6b. It can also be 
shown that the position error at the 
moment that the set point trajectory is 
finished (the lag error) is smaller for the 
cubic profile than for the parabolic profile. 
However, for the same d)splacement and 
time, the cubic profile requires a 50% 
higher maximum acceleration and hence 
a larger maximum current. 

0.0 s~. 4.0 

<a) Load velocity profile for parabolic position set point. 

0.0 s~. 4.0 

(b) Load velochy profile for cubic posiuoo sel poinL 

Figure 6. Velocity Profiles of a Mechanical 
Load Connected to a Servomotor Via a 
Flexible Coupling (Mechanical Resonance 
Frequency = 5.4Hz) 

Generation of cubic set point profiles 
may be performed by a trajectory 
generator. This unit is programmed with 
the desired displacement, velocity, 
acceleration and jerk. The necessary 
position set point profile is then calculated 
by a series of numerical integration 
operations as shown in Figure 7. 

pas ... 
o 

VEL ... 
o 

ACC 

~ 

Figure 7 . . Generation of Cubic Position 
Profile. 

Feedforward 
Use of feedback as a control stategy 

yields a servo system with good disturbance 
rejection (stiff system). However, the servo 
response to set point commands is not 
optimum. Set point feedforward can be 
used to reduce the tracking error7• 
Figure 8 shows a block diagram of a servo 
mechanism controlled by velocity and 
position feedback loops. Hrr is the 
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feedforward transfer function. If no 
saturation or external disturbances occur, 
and the system is linear and time-invariant, 
then Hrr is calculated by requiring 
E(z) =0. 

9E(z) = R(z) - H(z)[KpE(z) - K.G(z)Y(z) 
+ Hff(Z)R(z)] = 0 (15) 

Solution of this equation (ignoring the 
trivial solution of R(z) = 0) gives: 

Hff(Z) = H-l(z) + K.G(z). (16) 

Thus, the feedforward transfer function 
consists of the inverse transfer function of 
the servomechanism and the compensation 
of the velocity feedback loop. For 

G(z) = 2(z-l) 
(z+l) 

(Tustin's method) and H(z) = 

! KT; ~ (stiff servo) (17) 
2 (z-I)2 

then 

H (z) = 2Kr.(z-I)2 + 2Kfy(z-l) (18) 
ff z+1 z+1 

R(z) 

Reference 
position 

Veloclly 
estimalor 

where 

are the feedforward acceleration and 
velocity gains, respectively. 

However, Equation (18) is non-causal 
and cannot be programmed directly. For 
servo systems using trajectory generators, 
the reference position can be calculated by 
a numerical integration technique. This is 
illustrated in Figure 9 where the reference 
position is generated from a jerk profile. 
By using the intermediate results of the 
reference acceleration and reference 
velocity the feedforward can be 
implemented. 

Figure 10 shows the effect of acceleration 
feedforward on the following error during 
a set point movement. The velocity 
feedforward parameter is optimized for 
both traces giving an average following 
error of zero when the servo is moving with 
constant velocity. The effect of the 
acceleration feedforward term is clearly 
seen in the reduction of the following error 
during acceleration and deceleration. 

Y(z) 

Servo 
po.illoD 

Figure 8. Discrete Time Control Using Feedback and Feedforward . 

Acceleration 

Feedforward 

I---'-'~ 
~ 1>a'a:, r-.... /'" Refe~,,:nce 

J \... --" pO~I11on 

Figure 9. Trajectory Generator and Feedforward. 



The MCV60 
The control strategies described in the 

preceding sections are implemented on a 
motion control card, the MCV60. This card 
communicates with a host computer via the 
VMEbus. Software on the host provides a 
user·friendly environment for commis­
sioning of the system and adjusting of the 

:~ 
-lS 

0.0 Sec. 3.5 

~E3 
Figure 10. Position Error During Cubic Set 
Point Movement [DC motor: velocity = 
29.3 rev/sec, acceleration = 39 rev/sec2, 
jerk = 78 rev/sec3j. 

parameters during operation. This card is 
designed to control two brush-type DC 
motors or one brushless DC motor. Up to 
sixteen cards may be used together on the 
same bus. A functional block diagram of 
the MCV60 is in Figure 11. 

The MCV60 hardware is based around 
the TMS320C25 signal processor running 
at 40MHz. This high clock frequency, 
together with the arithmetic capabilities of 

the signal processor, yield a high sample 
frequency and a short calculation delay 
(Ts = 150l-'sec, Tc = 40l-'sec). The 
maximum encoder data speed is 7MHz. 
On-board memory includes 16k words of 
program memory and 8k words of data 
memory of which 2k words is in dual­
ported RAM. This provides high speed, 
bidirectional communication with the VME 
host computer. The data RAM has a 
battery back-up for the retention of system 
parameters when the card is not powered 
up. Three different position encoders are 
supported. An incremental encoder 
interface is standard on the card while 
piggyback interfaces for resolvers and sine­
wave encoders may be simply mounted. 
Two 16-bit DACs deliver drive signals to 
the current amplifiers while a second pair 
of DACs provide monitor information. 
Hardware synchronization between several 
cards is also provided with the facility for 
master-slave control. In addition, five 
optically isolated outputs and four optically 
isolated inputs are provided for interfacing 
with programmable logic controllers. 

The motion control software may be 
divided into card and host levels. At the 
card level, the controller algorithm 
implements the various strategies already 
described. In addition, continuous path 
movements can be implemented using 
cubic spline interpolation techniques. 
Software for auto-homing is provided and, 
for brushless motors, an automatic 
magnetic alignment routine together with 

commutation software is available ll . 
Extensive hardware and servo diagnostics 
are performed at power-up and critical 
hardware checks are performed each 
sample period. System monitoring is 
performed each sample period generating 
the two monitor DAC variables. Other 
performance indicators are also recorded 
such as the maximum error during a 
movement, the overshoot, the settling time, 
etc. 

At the host level, drivers are provided for 
communicating with the MCV60_ A menu­
driven, user-friendly test environment 
initializes and tunes system parameters. 
Self-tuning facilities initialize the controller 
parameters to suitable values based on the 
system characteristics. More refined 
parameter tuning may then be simply 
carried out by a series of well-<lefined tests. 
Communication with the card occurs each 
time a parameter is changed. This facili­
tates on-the-f1y variation of system 
parameters for use in systems employing 
gain scheduling techniques. 

Figures 12 and 13 demonstrate the speed 
and accuracy of the MCV60 motion 
controller. In Figure 12 the response of a 
brushless linear motor to a set point 
displacement of IOmm (10,000 increments) 
is shown. Figure 13 shows the motor 
velocity profile and the position error of the 
same servo when running at maximum 
velocity (data speed = 1.5MHz). The 
maximum position error is only 12 
increments (12I-'m). 
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Figure 11, Block Diagram of the MCV60 Connected to 8 Three-Phase BrushlesB Motor. 

301 



(al Generator \ldod\y. 

("~ 
m'S 

(1.0 

(I mS ~) 

(b) Obs~rv~r \lelodly. 
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Figure 13. High Speed Following 
Accuracy - Data Speed = 1.5MHz. 
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Note: Patents are pending for the work 
described in this article. 
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Using DSPs in AC 
Induction Motor Drives 
OR. s. MESH KAT, Motion Research Inc., Plymouth, Minn., and I. AHMED, Texas Instruments, Houston, Tex. 

Although simple to manufacture, ac induction 
motors require very complex control 
techniques if they are to be used in servo 
applications. High performance DSPS can solve 
the BC motor control problem. 

Dc drives still account for a large 
portion of drives used in indus­
trial control, even though they 

are less reliable and more expensive 
than their ac counterparts. This is 
mainly due to the fact that dc drives 
have fairly simple control structures 
and allow precise control. 

Ac drives, on the other hand, are 
less expensive and more reliable, es­
pecially in harsh industrial environ­
ments. However, ac drives require 
very complex control techniques and 

this has prevented them from replac­
ing a large number of dc drives in ro­
botics and motion control. 

Ordinary microcontrollers lack the 
computing performance necessary to 
carry out these complex control 
schemes. Faster devices like 32-bit 
microprocessors and bit-slice proces­
sors are too expensive. 

But, due to unprecedented perform­
ance offered by digital signal proces­
sors, this may be changing. DSPS pro­
vide more speed than the fastest 

32-bit microprocessors, and they do 
this at a fraction of their cost. They 
make it possible to implement the 
complex structures needed to make 
ac drives the workhorse of industrial 
control applications. 

Dynamics of an ac motor 
In a conventional field-wound dc mo­
tor, there are two independently con­
trollable currents: the field current 
and the armature currerit. 

In an ac motor, however, there are 
three phase currents, and the three 
are tightly coupled together. This 
means that none of them is indepen­
dently controllable. 

The three currents are represented 
by the stator current vector i •. Unlike 
the case of the dc motor, there is no 
linear relationship between I. and ei­
ther the torque or the flux. 

The torque vs. current relationship, 

Personal computer based software tools allow low-cost development of DSP software. At right is shown Texas Instruments' entire family of 
DSP chips. The back two rows are first generation, the second row is second generation. and the third generation-released now in sample 
quantities-is in the foreground. Also in the foreground are two DSP packages that contain 4K of EPROM, used in software development. 

Reprinted, with permission, from Control Engineering, Feb. 1988_ 303 



All functional components of the control system for a field oriented ac induction drive can be implemented in software on a single-chip DSP. 

in a conventionally controlled ac in­
duction motor, is nonlinear and can be 
represented as equation (1): 

1 + (w. T,)2 

Where Lm is the stator / rotor mutual 
inductance; P is the number of poles; 
L, is the rotor induction (referred to 
the stator); T, is L,/ R, (R, is the rotor 
resistance, referred to the stator); i. 
is magnitude of stator current vector; 
and w, is the slip frequency. The slip 
frequency is the amount the rotor lags 
behind the synchronous speed Wm 

i.e .• Wm = W. + (&Jr' 

Equation ( 1 ) shows a nonlinear re­
lation between torque and slip fre­
quency w,. This simply means that no 
servo loop can be closed around a 
traditionally driven ac induction mo­
tor. This is the reason why ac induc­
tion motors have been used primarily 
in constant speed applications. 

Over the past decade, several dif­
ferent control methods for "squirrel 
cage" induction motors have been 
proposed. The most popular of the al­
ternatives is the field orientation 
scheme. In this control scheme, the 
magnetic flux is measured (or calcu­
lated) and fed back to the control unit 
as a basis for the commutation of the 
stator current vector. This method is 
called "vector control." 

The main objective of vector control 
is to decouple the torque generating 
component of the stator current from 
the field producing one. In our nota­
tion, we will use i .. and ida to represent 
the torque generating component and 
the flux generating component, re­
spectively, of the stator current. 

The result of separating the torque 
and field components forces the ma­
chine to resemble a field-wound dc 
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motor. Once this is accomplished, the 
rest of the control algorithm remains 
the same as an ordinary dc motor. 

A field oriented ae servo 
To explain how field oriented control 
works, we simplify the description 
and analysis of a three-phase motor 
to two phases. This way one can visu­
alize more easily the relation between 
the components of the stator vector in 
a vector diagram. 

Let the values of the stator current 
vector i. be represented as compo­
nents i~, i:, and i~ of stator windings r, 
s, and t. Then to transform them to a 
two phase system that has compo­
nents ia and in' we use the following 
transformation matrix (equation 2): 

o 

y3/3 y3/2 

In the two phase system, ia and i 
represent the stator current in the st'l­
tionary reference frame. 

But the reference frame we are in­
terested in, for the reason of control­
ling field and torque independently of 
each other, is the moving d-q coordi­
nate system (see diagram, next 
page). The orthogonal d-q (d stands 
for direct, q for quadrature) coordi­
nates rotate at the synchronous 
speed Wm with respect to the station­
ary reference frame. Projecting the 
stator current vector i. onto d-q yields 
the components io• and i ••. 

To control torque and field, we must 
control iq, and i.,. In order to achieve 
this objective, the stator current vec­
tor I. must be oriented to d-q. ('Y is the 
orientation angle). That is, since the 
only controllable variables are those 

in the stationary frame of reference 
(i.e. ia and in)' the stator windings 
must be energized by a current vector, 
that at any point of time is rotated by 
angle 'Y. Notice that this is an indirect 
way of controlling i .. and ids' 

In an induction motor, the rotor 
speed, w" lags behind the synchro­
nous speed at the rate of slip frequen­
cy w,. The orientation angle, 'Y, and 
synchronous speed Wm are related via 
equation (3): 

Wm = dy/dt 

In order to calculate 'Y, the slip fre­
quency w. must be added to rotor 
speed W,' and the result integrated 
over time. Then to obtain io• and ida' 
use the transformation matrix repre­
sented by equation (4): 

1 ~:·I = 1-~oS 'Y sin 'Y 11',:a
ll 

1 
'0. sm 'Y cos 'Y 

We must remember that the above 
relations were derived for a two­
phase system. To make the findings 
useful for a conventional three-phase 
motor, we must transfer equations 
(2) and ( 4) back to three phase con­
figuration using inverse transforms. 
The actual implementation of the in­
verse of equation (4) in TMS320 
code is shown on the next page. 

Relation between Iqs and Ids 
In a vector controlled ac induction mo­
tor, the relation between the two com­
ponents of current in field coordinates 
simplifies to equation (5): 

iqal ida = ",.' T, 

Simple inspection of equation (5) re­
veals that for a fixed field COmmand 
(ids = constant), the slip value is 



forced to linearly follow the generated 
torque. Under this control, eq. (1) 
can be simplified to equation (6): 

T 

Therefore the value of the torque con­
stant K" for a vector controlled ac in­
duction motor, when compared to an 
ordinary dc motor can be given as 
equation (7): 

K, is a value that represents the field 
strength. Equation (7) shows that K, 
can be controlled by changing i.s . This 
is especially gratifying in operations 
that demand a wide range of speed 
and torque control. The act of de­
creasing the flux value by means of 
reducing the field current to expand 
the speed range is referred to as 
"field weakening." 

The block diagram 
The figure at the top of the previous 
page shows a functional block dia­
gram of the control system for a vec­
tor controlled ac induction motor in a 
velocity loop. In addition to velocity 
loop, there are loops for i .. , i ... and the 
magnetizing current im,. All of the cal­
culations in the block diagram-the 
control calculations, matrix multipli­
cations, and so on-can be done by 
software running on a single-chip digi­
tal signal processor. 

Block number 1, which is the block 
at the right enclosed with dolled lines 
and containing four smaller yellow 
blocks, is the "vector rotator block. " 
The current vector is rotated from the 
moving reference to the stationary 
one (top two yellow blocks) and 
back to the moving reference ( bottom 
two yellow blocks). Block 1 imple­
ments equations (2) and (4) in the 
top two yellow blocks and their in­
verse transforms in the bottom two 
yellow blocks. 

Dotted-line block 2 shows the con­
trol actions working on the velocity 
and current errors. 

Block number '3, also enclosed in 
dotted lines, illustrates how the slip 
angular velocity, "'s' is derived and 
used in obtaining the magnetizing cur­
rent angle 'Y. Note that 'Y is used as an 
input to the vector rotator block. 
Function blocks 1, 2 and 3 are com­
putationally demanding ones; there 
are, however Simpler control blocks 
that we do not address here. 

Starting from block 1, we notice 

Vector rotation diagram to define coordi­
nates and angles in the d-q representation. 

that each vector rotation requires the 
multiplication of a matrix by a vector. 
Transformation of 2 to 3, and the in­
verse transfer of 3 to 2 phases, re­
quire several adds and multiplies. The 
DSP code for one of these matrix mul­
tiplications (the inverse of equation 
4) is shown in the box at the bottom of 
this page. 

Block 2 involves several computa­
tions of angle 'Y using rotor speed and 
calculated Slip frequency. We can see 
the need for two multiplies, a divide 
and precise integration or accumula­
tion of synchronous speed. 

In spite of the demanding require­
ments of this control system, the en­
tire system can be implemented with 
a single TMS320 DSP device. 

DSP systems 
DSP systems, like control systems, 
have special requirements to allow ef­
ficient implementation of those algo­
rithms. DSP .devices implement new 
architectures to provide solutions for 
these requirements. Initial DSP de­
vices were expensive and did not 
have the functionality available on mi­
crocontrollers (a situation similar to 
early microprocessors). But prices 
have dropped tremendously, and to­
day DSPS are at par with 16-bil 
microcontrollers. 

Furthermore, DSPS are being intro­
duced that have most of the function­
ality of microcontrollers. In the future, 
the functionality of DSP devices may 
be indistinguishable from that of ordi­
nary microcontrollers. 

Microcontrollers were designed to 
replace hardwired logic; DSPs were 
designed for signal processing. As 
system costs of DSPS goes down, 
they will eventually replace analog 
systems and microcontrollers in most 
servo control applications. 0 
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Microprocessor-Controlled AC-Servo Drives with 
Synchronous or Induction Motors: Which is 

Preferable? 
R. LESSMEIER, W. SCHUMACHER, AND W. LEONHARD, SENIOR MEMBER, IEEE 

Abstract-With the ruent advances of power transistors and micro­
processors it has b~ome possible to design high-dynBmic-performance 
ae-servo drives free of moving contacts using synchronous or asynchron­
ous motors. Both schemes have their particular strengths. A general 
control principle, based on field or rotor orientation, is described which 
has been realized with a state-of-the-art microcomputer, where all the 
signal processing, including modulation of the inverter, is performed by 
software. Extensive tests have been carried out with different motors to 
compare the characteristics of the various types of drives. 

INTRODUCTION 

CONTROLLED electrical drives with high dynamic 
performance are today almost invariably dc drives fed by 

power electronic converters. At larger ratings and in station­
ary applications the converters are of the line-commutated 
type, presenting an acceptable compromise between dynamic 
performance, efficiency, and cost. The dc motors, with their 
transparent control structure, are well suited for high-perform­
ance duty: the separately excited field affords flexibility and 
permits an enlarged speed range at reduced torque, similar to a 
continuously variable gear. 

For servo applications between 1-10 kW, the motors are 
normally fed from dc-link transistor converters switching at 
higher frequency (1-5 kHz) to improve the response; the dc 
link is supplied from a line-side rectifier or a battery. The field 
winding is usually replaced hy permanent magnets, thus 
excluding the possibility of field-weakening. 

To minimize motor inertia, which is important for rapid 
acceleration, two types of dc-servo motors have evolved: the 
slim-drum type motor of otherwise conventional design and 
the disk motor, having an iron-free armature and axial 
magnetic field. The first is often used for machine tool feed 
drives, while the second is preferred on robots because of its 
compact design and short axial length. 
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The motor is normally coupled to the mechanical load 
through gears because, with an electrical drive, a large power­
to-weight ratio calls for high rotational speed. Of course the 
mechanical commutator sets a limit, often at 3000 min-I; 
furthermore there are restrictions on temporary torque over­
load, particularly at very low speed or standstill, which is a 
frequent mode of operation with position-controlled servo 
drives. 

It is for these reasons that there is intense interest in 
commutatorless ac-servo drives where these restrictions are 
lifted; it could eventually open the way to lightweight motors 
operating at very high speed, for example beyond 10 000 
min - I, or to high-torque gearless direct drives. 

The obstacles for controlled ac drives for servo applications 
have in the past been twofold: 

• the cost of the power converters and 
• the complexity of an ac motor as a nonlinear multi varia­

ble control plant. 

With the rapid development of semiconductors, solutions 
for both problems are in sight. 

• Fast-switching bipolar and field-effect power transistors 
requiring minimal snubbing circuits and in cost-saving 
modular assemblies are becoming available. 

• The complex control systems necessary with ac motors 
can be realized through software on ever more powerful 
microelectronic components. 

This has resulted in accelerated research and has led to the 
emergence of prototype and early commercial high-perform­
ance ac drives. It is the aim of this paper to assess the control 
aspects of ac-servo drives and to compare the relative merits of 
different types of ac motors. 

AC-Servo Drive with Transistor Inverter and 
Microcomputer Control 

The tasks of electromechanical power and ac/dc conversion, 
which are jointly carried out in the armature of a dc motor are 
separated in the ac drive, resulting in greater flexibility ~ith 
regard to motor design. The magnetic flux necessary for 
producing torque is set up either by permanent magnets in the 
rotor or by magnetizing current in the stator windings. Thus 
synchronous or induction motors result, both of which can be 
designed as slim-drum or short -disk type motors. 

Synchronous motors with permanent-magnet excitation may 
be further classified in those having an approximately sinusoi-
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dal flux distribution in the airgap and sinusoidal stator currents 
and the so-called brushless dc motors with built-in position 
sensor, having a trapezoidal flux distribution and a current­
source dc link. Only the synchronous motor with approxi­
mately sinusoidal stator currents (below voltage limit) and the 
induction motor will be discussed here. Both are supplied from 
a voltage-source transistor inverter with pulsewidth modula­
tion; best dynamic performance is obtained by employing 
constant link voltage. Both drives permit field-weakening and 
four-quadrant operation, even though the power generated 
during dynamic braking is usually absorbed in a ballast 
resistor to simplify the line-side collverter. 

A digital pulsewidth modulator may be directly coupled to 
the microcomputer controlling the drive. If the sampling 
frequency at which the complete control algorithm is repeated 
is identical with the pulse frequency of the power inverter, 
there is the additional benefit that the ripple on the current 
signals may be greatly reduced without the need for smoothing 
filters. If the desirable stator frequency is 200 Hz, this calls for 
a switching frequency of the inverter of about 4 kHz, leaving 
250 /LS for performing the control algorithm. This is feasible 
with a higb-speed microcomputer containing a signal proces­
sor. 

Another feature of a purely digital control scheme is that the 
stator currents can be impressed by current control loops that 
are closed in transformed coordinates so that the software 
current controllers are processing dc quantities in steady state. 
This is explained in more detail later. 

To arrive at a valid comparison of the different types of 
drives, the same inverter and microcomputer hardware will be 
used for all the tests. The control algorithm is identical, with 
the exception that the synchronous motor is controlled in rotor 
coordinates while the induction motor control is performed in 
field coordinates, based on rotor flux. This calls for a flux 
model, which is bypassed in the case of the synchronous 
motoT. Obviously, when designing a control scheme for 
exclusive use with synchronous motors, the program could be 
simplified or 'a slower processor would suffice. 

For measuring motor speed and position, an optical incre­
mental sensor with 1024 lines/r is attached to the motor shaft. 
To achieve smooth operation at very low speed and standstill, 
the analogue sin-, cos-signals are evaluated with AID con­
verters prior to quantization so that more than a quarter million 
(2 18) increments/r are available for interpolation; outside the 
low-speed range (± 150 min-I) the additional bits for high 
resolution become meaningless and are disregarded. 

MATIlEMATICAL MODEL OF SYMMETRICAL AC MOTORS 

All the motors employed for the tests show rotational 
symmetry including constant effective airgap. In the case of 
the synchronous motor this is achieved by placing rare-earth 
magnets directly on the circumference of the rotor. Since these 
magnets exhibit low permeability to external fields and higb 
resistivity, they may be considered as part of the airgap. It has 
been shown [18]-[21] that with the usual simplifications, such 
as symmetrical three~phase windings and sinusoidal MMF 
distribution (no spatial harmonics), smooth stator and rotor 
surfaces (no slots), neglecting saturation and iron losses, a 
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two-pole motor with symmetrical stator and rotor windings 
can be described by a set of four nonlinear differential 
equations: 

. dis d." 
RSIS+Ls -=-+Lo - (IRe) )=us(t), 

- dt dt - -
(1) 

(2) 

(3) 

dE 
-=w. 
dt 

(4) 

The instantaneous phase currents and voltages are combined 
to form complex time-varying vectors in the plane perpendicu­
lar to the motor axis: 

~s(t) = isl(t) + idt)eh + is3 (t)eJ2" l' = 2311" (5) 

and 

'!s(t) = USI(t) + uS2(t)eh + uS3(t)eJ2,. (6) 

Corresponding definitions hold for the rotor currents and 
voltages. The following symbols are used. 

J 

w 

Winding resistances per phase. 
Stator, rotor, and mutual inductances per 
phase, assuming same number of turns in 
stator and rotor. 
Inertia of motor. 
Electrical driving, torque and load torque at 
motor coupling. 
Angular velocity. 
Angle of rotation. 
Conjugate complex vector of ~R • 

The model equations are valid for any waveform of currents 
and voltages as long as the condition for isolated neutral, e.g., 

iSI +is2 +is3 =O, (7) 

is maintained. 
This unified model may be adapted to the constraints of an 

induction motor with cage rotor by introducing the short­
circuit condition at the rotor terminals UR = O. The mOdel of a 
synchronous motor with permanent-nmgnet excitation is ob­
tained when the fictitious rotor windings are supplied from 
assumed de sources, !ft = 2/3 Ip , rendering the rotor voltage 
equation superfluous. Further simplifications result when the 
stator currents are impressed by current sources, even though 
the current control loops may in fact be closed in a 
transformed coordinate system as is shown in the next 
paragraph. This finally leaves (2)-(4) as the dynamical models 
for controlling the induction motor and (3), (4) for controlling 
the synchronous motor. 

CONTROL OF AC MOTORS IN MOVING COORDINATES 

The principle of field orientation as formulated by Blaschke 
[2] has emerged as a very effective method for controlling ac 



machines with high dynamic performance; it may be applied to 
asynchronous as well as synchronous motors. With a stator­
fed machine, it calls for transformation of the stator current 
vector into a moving frame of reference given by the rotor 
current vector (or rotor flux vector-whichever is more 
convenient to access). By splitting the transformed stator 
current vector into direct and quadrature components isd , is., 
respectively, inputs for decoupled control of flux and torque 
are obtained as is the case with a dc machine. 

Control oj Synchronous Motor 

With a permanently excited synchronous motor this princi­
ple is easy to apply, because the fictitious rotor current vector 
is fixed to the rotor position, 

(8) 

Hence the mechanical equation (3) becomes 

(9) 

where Ii ~ - f is the load angle and 

iSq= is sin Ii (10) 

the quadrature current in a rotor-based coordinate system (Fig. 
1). Maximum torque for a given stator current is obtained for Ii 
= ± 'lr/2, i.e., purely quadrature current. In the base speed 
range this is the optimal mode of operation but at higher speed; 
where the maximum inverter voltage would be exceeded a 
negative direct component iSd < 0 may be introduced for 
limiting the terminal voltage of the motor. 

Control oj Induction Motor 

Field-oriented control of an induction motor is much more 
difficult because the rotor flux moves across the rotor at slip 
speed and the rotor currents cannot be measured directly. The 
rotor flux may be characterized by an equivalent stator-based 
magnetizing current containing a component for magnetic 
leakage 

~mR(t) = ~s + (1 + I1R )~Rej, = imRe jp , (II) 

where I1R is the coefficient representing rotor leakage. The 
angle p may be used as a frame of reference for field 
orientation. Instead of direct flux-sensing schemes (Hall 
sensors, search coils, etc.) it was found to be more effective to 
compute the magnetizing current in a dynamic model on the 
basis of terminal quantities and speed [11], [15], [21]; no 
modifications of the motor are then required. The model 
remains operative even at standstill, which is an important 
condition for servo drives. Combining (2) and (II) results in 

T dimR • R [. -;] . 
R&+lmR= e!se P =IStb (12) 

dp 1 1 . _; is. 
-=WmR=W+- --. -Im[~se P]=w+--. -, (13) 
dt TR TRlmR TRlmR 

= ___ ~_stQtor QJ(i~ 
Fig. 1. Coordinates for controlling synchronous motor. 

Rotor Qxis 

"",,::r:....-L-L ___ Stator Qxis 

(0) 

iSJ 

- tS2 

iSl 

(b) 
Fig. 2. Induction motor. (a) Coordinates for motor control. (b) Flux model 

for motor control. 

which represent' a flux model with the stator currents and 
speed serving as input signals (Fig. 2a, 2b). By solving these 
equations with the microcomputer in real time and with 
adequate precision, estimates for the modulus and angle of the 
magnetizing current, as well as the components of the 
transformed stator current vector and the electrical torque, are 
obtained. 

The only uncertain parameter is the rotor time constant TR , 

which depends on rotor temperature and saturation. T~mpera­
ture effects are quite slow, but the degree of saturation changes 
rapidly when the motor accelerates into the field-weakening 
range. It has been shown [12], [16], [31], [35] that an 
estimate of TR may be obtained by utilizing terminal voltages 
except at very low speed, where all voltage measurements 
become uncertain due to the large resistive component. The TR 
adaptation is performed by comparing the vector of the 
measured stator voltages with that derived from the flux 
model; if differences are detected, the model parameter TR is 
changed accordingly. 

Measuring the fundamental components of the terminal 
voltages proves difficult with a PWM inverter because of the 
highly distorted waveforms. However, considerable simplifi­
cations result when the current control loops are closed within 
the microcomputer, because the voltage reference signals are 
then available in the computer program and there is no need 
for voltage sensors. 

Realization oj the Control Scheme with a 
Microcomputer 

An overview of the control scheme is shown in Fig. 3, 
containing the hardware and software structure in the usual 
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Microcomputer TMS 99105!TMS 320 --t------ ~~dc~:~ter 
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Fig. 3. Block diagram for ac motor control in moving frame of coordinates. 

form of a block diagram. Compared with an earlier realization 
[32] the following features have been implemented. 

• Totally digital control by employing a single signal 
processor. 

• Sampling period of 256 I-'S for all control loops. 
• Improved resolution of current and voltage signals. 
• TR adaptation in case of the induction motor. 
• Minimum control delay between the sampling instant of 

the currents and the center of the subsequent stator 
voltage pUlse. 

The Microcomputer 

Both the complex control algorithms already discussed and 
the short sampling period necessary for achieving a high 
dynamic performance drive call for considerable computing 
power (see Fig. 4). In particular. the two transformations from 
stator to field coordinates and the reverse (each requiring four 
multiplications with sin p, cos p, as well as the flux model for 
the induction motor, are computationally demanding, but a 
cost-effective microelectronic solution has become possible 
with signal processors [30]. This method has been further 
advanced by performing all arithmetic operations necessary 
for controlling the motors in a single-signal processor: TMS 
32010. This arithmetic unit is tied by two-port RAM to a 
control processor, TMS 99105, which handles the I/O 
interface and the communication with an operator's console. 
The double processor card (233 x 160 mm) is suitable for 
connection to a multiprocessor bus to accommodate multi-axis 
drives such as found on machine tools and robots. A local bus 
connects each processor card to an interface card containing 
the AID converters and modulator. 

The Interface Card 

As explained earlier, control of a high-performance ac­
servo drive requires the measurement of instantaneous stator 
currents, rotor velocity, and rotor position. Both mechanical 
signals are derived from an optical incremental sensor with 
1024 lineslr, which has been augmented by analogue tech­
niques to the very high resolution necessary for smooth 
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operation at very low speed and standstill. With the 256 I-'S 
sampling period, the speed increment is 0.2 min -I [33]. 

Two of the stator currents are measured by commercial 
magnetic sensors employing Hall devices. They provide 
electrical insulation and approximately 50-kHz bandwidth. 
The output signals of the sensors are sampled by two 12-bit 
AID converters with 12-l-'s settling time. 

The output signals of the controller, representing reference 
values for the three-phase voltages, are transferred to a digital 
pulsewidth modulator, which is designed with transistor­
transistor logic (TTL) providing pulsewidth increments of 
1116 I-'s, which corresponds to 12-bit resolution of the 256-l-'s 
sampling period. 

All these I/O channels are placed on the interface card. 

The Transistor Inverter 

The voltage-source three-phase transistor inverter is sup­
plied with a constant dc link voltage U D = 300 V, generating 
a maximum sinusoidal line-to-line voltage U,m, = 220 V. 
Several bipolar transistors are parallel-connected in each leg of 
the inverter bridge circuit, allowing a maximum sinusoidal 
output current of I,m, = 40 A. Of course the maximum output 
power of 15 kV A is not always used during the tests where the 
current limit is set to a value compatible with each machine. 
The switching frequency of the inverter can be raised to 20 
kHz, i.e., beyond the audible range; but to achieve synchro­
nous operation with the control unit, the frequency was set at 4 
kHz. 

List of Motors 

To demonstrate the flexibility of the microprocessor control 
unit, six different ac motors were used during the tests 
(corresponding to rotors shown in Fig. 5). 

I) A specially designed low-inertia synchronous motor 
with SmCo magnets attached to a slim rotor [23]. The 
four-pole machine has a continuous rating of about 1.2 
kW at 2000 min-I 

2) A specially designed low-inertia induction motor em­
ploying the same stator as for I). 
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Fig. 4. Microcomputer for ae motor control. 

(a) 

(b) 
Fig. 5. Rotors of motors used during tests. (a) Synchronous and induction 
motor rotors (shown as 1) and 2). respectively), (b) Induction motor rotors. 

3) A standard induction machine (4 poles, 1.5 kWat 1420 
min-i). 

4) A special induction machine (4 poles, 1.5 kWat 1420 
min-I), which had roughly the shape of two axially 
joined standard motors. 

5) An industrial high-speed induction motor (2 poles, I kW 
at 12 000 min -i) designed for intermediate-frequency 
power tools. 

6) A disk -type induction motor (4 poles) consisting of a 
commercial stator for a synchronous disk motor (1.5 kW 
at 6000 min-i) and an aluminum rotor disk [30). 

Test Results 

To simplify the comparison, only the results with moto~s I) 
and 2), which are identical in shape and employ the same 
stator with a two-layer three-phase winding skewed by one slot 
(to avoid lock-in effects), will be discussed. In view of the 
higher flux density possible with induction motor 2), the dc 
link voltage was raised to 450 V. 

Figs. 6 and 7 show the results of tests in steady state, where 
the rms stator currents are plotted against no-load speed and 
torque at standstill. The synchronous motor with permanent 
magnets has a linear current -torque characteristic and a very 
low no-load current below rated speed; this is due to the 
absence of rotor losses and magnetizing current. However, 
when the motor is operated into the field-weakening region, 
which may be desirable for rapid traversing, the motor is 
overexcited and draws huge reactive current from the inverter, 
causing high stator losses. The reason is the relatively wide 
airgap of the synchronous motor. This large reactive current is 
in contrast to the magnetizing current of the induction motor, 
which is reduced above rated speed. 

The test indicates that the absence of a magnetizing current 
in case of the synchronous motor below rated speed should not 
be overemphasized, because with a servo motor this is only a 
small fraction of the maximum current which may be required 
during temporary overload conditions; also, when the motors 
are loaded, reactive power is caused not only by magnetizing 
current but also by armature reaction and magnetic leakage, 
which is present with both motors. None of the motors can 
operate with unity power factor under load. 

The overall steady-state performance of the two motors at 
rated torque is described by Fig. 8, which shows the efficiency 
between the de link and the mechanical output measured by a 
dynamometer; hence the losses of the inverter are included. 
Clearly the synchronous motor is superior, which is due 
mainly to the rotor losses of the induction motor. At higher 
speed, where the stator losses of the synchronous motor rise, 
the differences tend to become smaller. The rotor losses are a 
definite disadvantage of the induction motor for servo applica-
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Fig. 6. Stator currents versus no-load speed for drives I) and 2). 
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Fig. 7. Stator currents versus torque at standstill for drives I) and 2). 
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Fig. 8. Efficiency of drives 1) and 2) at rated torq~e. 

tions because they may necessitate forced cooling while in the 
other case natural cooling might suffice. 

The dynamic performance of the two drives with speed 
control at no-load is exemplified by the two frequency 
response curves shown in Fig. 9. The measurements were 
taken at small amplitude to avoid nonlinearities. The curves 
show flat resl'0nse up to aboq! 100 Hz. The difference 
between the two motors is not characteristic for the synchro­
nous and induction motor drive, but depends also on slightly 
different controller settings. 

Finally, large signal transients are depicted in Figs. 10 and 
11, again for the motors 1) and 2). They show speed­
reversing transients of the speed-controlled drives at no-load, 
where the maximum current was limited to 2S A, correspond-
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Fig. 9. Frequency response curves of speed-controlled drives I) and 2) at 
no-load . 
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Fig. 10. No-load reversing transients for speed-controlled drives. (a) Drive 
1). (b) Drive 2). 

ing to approximately S times rated current. The curves show 
very rapid response; at 1000 min - 1 the braking distance is 
about 20·, roughly one slot division. The difference between 
the motors is minimal, even though the inertia of the induction 
motor is larger due to the copper cage winding. At higher 
speed the response of the induction motor is somewhat delayed 
because of the field lag, which becomes effective When 
the field is weakened. 

Finally in Fig. 12 large signal step responses are shown; 
with the pOsition control loops closed; the position controllers 
used for these tests were of the nonlinear, time-optimal 
response type. The differences between the two drives are 
again negligible. The performan(le pf these drives is' quite 
remarkable; following a change in' position reference, the 
torque responds within one sampling period of the controller, 
i.e., after 250 p.s. 

As a result of these tests it can be stated that very high­
performance ac-servo drives can be designed with pulsewidth­
modulated transistor inverters and microcomputer control. 
Synchronous motors with permanent-magnet excitation and 
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Fig. 12. Step response of position-controlled drives employing time-optimal 
conlrol. <a) Drive I). (b) Drive 2). 

induction motors are both suitable. In our view, the choice is 
still open because it depends on a number of factors that can 
only be determined with fully optimized designs and more 
industrial experience. The main points to be taken into 
consideration are as follows. 

• With regard to the rating of the inverter, the synchronous 
motor has a slight advantage as long as field-weakening is 
avoided. This is mainly due to the rotor losses in the 
induction motor; the fact that the synchronous motor 
needs no magnetizing current seems less important in 
view of the fact that servo drives are normally rated for 
intermittent duty and high short-time overload. 

• There will be borderline cases where the synchronous 
motor can be operated without forced cooling while the 
induction motor would normally need forced cooling. 

• The induction motor permits easy field-weakening over a 
wide speed range with constant power; this makes this 
'motor particularly attractive for spindle drives, but it is 
also applicable for position-controlled feed drives. 

• The induction motor, even when specially designed for 
low inertia and leakage, is likely to be less expensive than 
the synchronous motor with rare-earth permanent mag­
nets. The design would take advantage of the fact that full 
line voltage starts do not occur with inverter-fed motors. 
Also, the induction motor can be designed for higher flux 
density than the synchronous motor with permanent 
magnets. 

• The microcomputer can be simpler for the synchronous 
motor because no signal processor is required. In 
principle it could be designed without a microprocessor 
at all, given the capabilities of VLSI custom design, but 

the additional flexibility in the speed and position-control 
function are a definite asset of control by software. 

CONCLUSIONS 

Extensive laboratory tests have been conducted to explore 
the design of microcomputer-controlled ac-servo motors with 
synchronous and induction motors fed by a pulsewidth 
modulated transistor inverter. The control is all digital, 
employing 4-kHz sampling frequency and synchronous 
switching of the inverter. The results obtained thus far show 
that both types of motor are applicable even though there are 
special strengths and weaknesses with each of them. One 
criterion could be the condition of a wide field-weakening 
speed range, which would rule out the synchronous motor; on 
the other hand the induction motor has rotor losses and is more 
difficult to control. 

Only time will tell which design will eventually prove 
s~perior in the majority of applications; our belief is that there 
wIll be a bright future for both of them. 
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A Microcomputer-Based Control and Simulation of 
an Advanced IPM Synchronous Machine Drive 

System for Electric Vehicle Propulsion 
BIMAL K. BOSE, SENIOR MEMBER, mEE, AND PAUL M. SZCZESNY 

Abatract-Ad •• nced digital control .nd comput ...... ld.d control .ys­
t.m design technlqu., are pl.ying k.y roles In tb. compl.x dri •• sy.t.m 
design .nd control Implementation. The p.p.r describes a hlgb.perform. 
IDee microcomputer-based control and digital simulation of an inverter .. 
fed Interior permanent magnet (IPM) .ynchronou. m.cbine th.t uses • 
Neodymlum·Iron·Boron magnet. The fully operatlon.1 four·qu.drant 
drive system includes 8 cons18Dt .. torque region with zero speed operation 
.nd I blgh-speed field· ..... k.ning constant·po .... r region. Tb. control 
uses tbe VMor or field-oriented technique in constant-torque region with 
the direct axI. aligned to tb. stator fiux, ... here •• the constant·power 
region control is bued on torque .ngie orientation of tb. Impressed 
sq .............. oltage. AD tbe key feedb.ck signal. for th. control .re 
estimated with precision. Th. dri.e .yst.m is blslcaUy designed wltb .n 
outer torque eoDtr~lloop for electric vehicle application, but speed and 
position conlrolloop. c.n he added for otb.r Industrial .ppllcations. The 
dl.trIbuted mlcrocomput.r·based control .y.tem is bued on Intel-8O% 
microcontroU.r and TexiS Inslrom.nt. TMS32010 type digitll signal 
p .......... r. Th. complete dri •• sysIem has been .Imul.ted using tb. VAX· 
based simulation Isnlul" SIMNON' to verify the feasability of the 
control I .... s .nd to study tb. perform.nces of th. drive .yst.m. Tbe 
slmulatiOll results are found to have .xceU.nt correl.tion with th. 
I.boratory breadbo.rd t ..... 

I. INTRODUCTION 

I NTERIOR OR buried type permanent magnet synchronous 
machines are showing increasing promise for industrial 

drive applications, and recently a considerable amount of 
research and development effort is being made in that 
direction. Because of buried magnet installation, IPM mao 
chines are robust and thus permit higher operating speed. The 
effective airgap in this class of machines is low and therefore 
armature reaction effect is very dominant. This permits 
control of the machine in constant ·torque region as well as in 
field·weakening constant ·power region up to a high speed such 
that the machine can be used for traction type applications. 
Again, the saliency (X/p > X ds) in this type of machine permits 
economical machine design because torque is contributed by 
the magnet field as well as by the reluctance effect. In the past, 
ferrite and Cobalt-Samarium magnets have generally been 
used in PM machines. Recently, a Neodymium-Iron-Boron 
(NeFeB) magnet has been introduced, which shows considera· 
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ble promise. The NeFeB magnet has much higher energy 
density at reasonably "low cost" and therefore permits 
economical machine design. However, one characteristic of 
the magnet is that its field strength weakens as the temperature 
increases. Considering the recent research and development 
trends, it is expected that the price of the NeFeB magnet will 
fall considerably and its characteristics will improve, thus 
promoting extensive applications in the future. 

In the past, induction motors have generally been consid· 
ered as viable ac machines for electric vehicle drive applica· 
tions. Although induction machines are simple, economical, 
and satisfy all the performance needs of electric vehicle drives, 
this type of machine has some additional loss penalties 
compared to the PM synchronous machine because of rotor 
copper loss. Besides conservation of energy, which is of 
paramount importance in the EV drive system, extensive 
analysis indicates that the life cycle cost of the !PM machine 
drive system is generally lower than that with an induction 
motor, not only for EV but for general industrial applications 
also. An IPM machine can be operated near unity power factor 
(unlike an induction machine), except at high speed and low 
torque where the power factor becomes low (leading) because 
of excessive counter emf. 

The high performance requirements of the IPM machine 
drive system for EV application demands a considerable 
amount of control complexity and this is the subject of 
discussion in this paper. Fortunately, microcomputer technol· 
ogy and computer·aided control system design techniques 
have advanced tremendously in recent years and advanced 
control laws are being implemented easily in real time that 
could not be done before. The paper will first review the 
control principles of the IPM machine, which include con· 
stant·torque and constant·power regions. Then, after review· 
ing the salient features of the simulation language SIMNON, 
the drive system simulation is described. The hardware and 
software design features of the distributed microcomputer· 
based control are then described. Finally, laboratory tests that 
verify the simulation results are discussed. 

II. DESCRIPTION OF CONTROL SYSTEM 

The complete. drive control system of the IPM synchronous 
machine is described in [1]. It will be briefly reviewed here for 
completeness of the paper. Fig. 1 shows the simplified 
schematic of the drive system power circuit. The traction 
battery (204-V nominal) shown on the left is the lead·acid type 
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Fig. 1. Simplified schematic of the drive system power circuit. 

and supplies power to the PWM transistor inverter. The 
inverter generates variable-frequency variable-voltage (or 
current) power supply for the IPM machine. The machine 
shaft power is transmitted to the drive axle through a two­
speed transmission. The drive system operates in all four 
quadrants, and regenerative braking energy is easily absorbed 
by the battery. The machine shaft has an analog resolver type 
absolute position encoder that permits the drive system to be 
controlled in the "brushless dc machine" mode. The drive 
system has essentially two different modes of operation. In the 
constant-torque region the inverter is current-controlled in the 
PWM mode so that the desired flux -torque relationship can be 
maintained. In an IPM machine, the flux can be controlled by 
stator injected reactive current, which can be lagging (magnet­
izing) or leading (demagnetizing). As the inverter saturates at 
higher speed, the current control is lost and then the drive 
system enters into the field-weakening constant-power region. 
With this condition, the inverter generates a six-step square­
wave voltage, which is phase-shifted to control·the developed 
torque. As the machine speed increases in the constant-power 
mode, the induced voltage increases proportionally with 
speed, thus demanding more leading reactive current to 
balance with the constant stator voltage. The invertor/motor 
controls are shown as a block in Fig. 1 where transistor base 
drive signals are generated from the operator torque command 
and feedback signals. 

A simplified control block diagram of the drive system in 
the constant-torque region is shown in Fig. 2. The core drive 
system in this region is current-controlled by. using the 
hysteresis-band (bang-bang) PWM principle. The vector or 
field-oriented control principle is used to enhance the system 
transient performance. The IPM synchronous machine can be 
considered as somewhat analogous to a wound-field synchro­
nous machine where the "field current" is controlled from the 
slater s'dt Therefore in vector control the direct axis has been 
aligned t.. the stator flux [2}, [3}, [16} instead of magnet flux. 
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In such a control mode, the in-phase or active component of 
the stator current can be controlled to control the developed 
torque, whereas the quadrature or reactive component of the 
current can be controlled to control the stator flux. In Fig. 2, 
the operator commanded torque is controlled by the close loop 
and the torque component of current (It) is generated by the 
torque loop. The drive system incorporates a flux control loop 
to prevent flux drift due to parameter variation. The command 
flux (9":) is programmed with torque (T:) to optimize the 
core loss so that the overall drive efficiency is improved. The 
flux is essentially controlled in the feed-forward manner with 
the help of the current program ·as shown, except the 
incremental 1!1It, from the flux loop supplements the current 
program output. The current signals It and It,are processed 
through the overlay current control loops (Fig. 3), and the 
output current signals in the synchronously rotating reference 
frame are then vector rotated to transform into stationary 
frame phase current commands for the inverter current­
controller. 

All the essential feedback signals for the control system as 
shown in the feedback signal processing block are estimated 
with precision. These signals include torque (T.), stator flux 
(9",), torque angle (cos 8, sin 8), rotor position (cos 9" sin 9,), 
and rotor temperature for magnet flux compensation. The 
detailed description of feedback signal processing can be 
found in [I}. Basically, the d' and q' components of stator flux 
are described respectively as a function of magnet flux with 
the stator d'-q' currents and the stator d'-q' currents. The 
relations are derived by extensive. modeling and laboratory 
calibration where parameter saturation and cross-coupling 
effects have been taken into consideration. The torque and 
torque angle are estimated by the equations 

T,=K,[", dsiqa- "'qaids} 

sin 8= "'qa 
""'~ H~ 

(1) 

(2) 
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Fig. 2. Simplified control block diagram of the drive system in constant torque region (PWM mode). 
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(3) 
the help of magnet temperature information. A simplified 
single time constant dynamic thermal model is solved to 
compute the magnet temperature approximately from the 
Stator temperature. 

it~. it., are the stator de_qe flux components (rotating 
frame) and ids, i., stator de_qe current components (rotating 
frame). 

Fig. 3 shows the overlay active and reactive current control 
loops with forward vector rotation. These loops permit vector 
control to be effective in partial saturation of the current­
controller (quasi-PWM) and help smooth transition between 
the PWM and square-wave modes. The operati.on of the loops 

It was mentioned before that the NeFeB magnet flux has some 
negative temperature sensitivity that should be corrected with 
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can be considered as redundant in normal PWM operation. A 
smaIl amount of coupling is introduced [5] in vector control by 
the loops that tends to slow down the response, but this can be 
ignored because of high loop gains. The current coordinate 
shifter converts the d'-q' current components to 1M and Ir by 
the relations 

IM=iq, cos /j-ids sin /j 

IT= iqs sin /j + ids cos /j. 

(4) 

(5) 

The loops compare the respective command and feedback 
currents and generate outputs through the PI compensators. 
The PI control assures matching of command and feedback 
currents as long as current control remains effective. The loop 
outputs I~ and It, are vector rotated by the unit vector 
signals cos (IJ. + /j) and sin (IJ. + /j) such that I~ and 1* are 
aligned to phase voltage V, and stator flux v" respecti~ely. 
In normal PWM mode, I~ signals remain identical to the 
respective command signals. But, as speed increases in the 
constant-torque region, the current-controller enters into the 
quasi-PWM mode due to increasing counter emf. With this 
condition, the loop outputs become higher than the respective 
command inputs while assuring matching between the com­
mand and feedback signals. As speed increases, the number of 
chops in the current-controller decreases and eventually at 
square-wave output voltage, the loop outputs I~ and It, 
saturate to the clamped values A and B, respectively. Then, 
the control of the overlay loops is completely lost and the 
switch is thrown to the "SW" position, as shown. The drive 
system then enters into the constant-power region with square­
wave impressed voltage and the control block diagram shown 
in Fig. 4 becomes valid. It should be mentioned here that 
efficiency consideration dictated that the drive system should 
operate in square-wave mode in the constant power region; 
otherwise, vector control, which gives better transient re­
sponse (but demands PWM operation mode), could have been 
implemented. The strocture change in Fig. 4 for the PWM 
control mode is shown by the two switches. The torque loop 
error generates the sin /j* command through a PI compensator, 
which is then converted into the torque angle command /j* 
through a look-up table. The /j* angie is then added with the 
rotor position angie IJ. to generate the unit vector signals cos 
(IJ. + /j) and sin (IJ. + /j). These signals permit phase shift 
angle (/j) cpntrol of the machine input voltage by the same 
vector rotator and current-controller as described before. In 
fact, the control principle is essentially the saIile as shown in 
Fig. 3 with the switch in "SW" position and considering cos /j 
and sin /j as the command signals. Since the magnitude of A is 
very high and B = 0, the vector rotated signals can be 
expressed as 

i:= V:o=A cos (IJ.+/j*) (6) 

it= Vto=A cos (IJ.+/)*-1200) (7) 

j~= V~o=A cos (IJ.+/j*+ 120°) (8) 

where ¥;'O' vto' and ~o are the respective phase voltage 
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commands with respect to the hypothetical battery center 
point. 

Note that the steep sides of the current commands will force 
the current-controller to switch only at the edges of the half­
cycle, thus generating square voltage waves. The above 
equations indicate that the applied phase voltage will be 
aligned at an angie /j with the respective induced voltage. Fig. 
4 indicates an alternate /j* angle control loop where the three­
phase square command current waves are fabricated directly 
from the IJ. + /j* angle. This control is implemented at higher 
speed (forward direction only) where small computation 
sampling time is needed for the desired torque resolution. 
Although flux control loop is inactive in the square-wave 
mode, the loop error, as shown, helps in the transition to the 
PWM mode, which is explained later. 

The transition between PWM and square-wave modes is 
required to be fast. and smooth under all conditions of 
operation of the drive system. The transition performance is 
especially demanding if it overlaps with gear shifting. An UP 
or DOWN shifting request placed independently by the higher 
level vehicle control computer will cause a fast speed change 
in the machine and therefore the control response should be 
fast compared to the rate of speed change. The transition is 
designed such that if gear shifting is requested during 
transition, -it will be inhibited until transition is completed 
successfully. However, transition should be successful if 
initiated during gear shifting. Fig. 5 shows the sequence 
diagram for the transition, which also indicates the criteria for 
transitions and the corresponding actions. The transition from 
the PWM to square-wave mode is initiated when the current­
controller is near saturation that is indicated by the transistor 
base drive pulse transistion counts in two successive funda­
mental frequency cycles. As this condition is detected, sin /j* 
control is activated with the initial value updated by computa­
tion and then the switch in Fig. 3 is transferred to the "SW" 
position. For successful operation, the control requires that the 
polarity of A is to be sensitive to the direction of machine 
rotation (+ A for forward rotation). Once the system is 
transitioned to the square-wave mode, a delay time is added to 
settle the transients and then the look-up table control method 
is activated (in forward direction only). The criterion for the 
square-wave to PWM mode transition is determined by the 
flux loop error as indicated in Fig. 4. As the error decreases 
and eventually becomes negative, the PWM mode is activated 
by enabling the overlay currents and flux control loops. Note 
that a transition may occur at constant torque due to speed 
variation, at constant speed due to torque variation, or due to 

battery voltage variation at the same operating point on torque­
speed plane. 

III. DRIVE SYSTEM SIMULATION 

Computer-aided control system design tools are playing 
increasingly impbrtant roles in the design of power electronic 
and drive systems. These tools are becoming simple, economi­
cal to use, and more user-friendly day by day. A complex 
newly developed control system can be conveniently designed 
and simulated on a computer to verify the feasibility 'of the 
control laws. The control system design parameters can be 



TORQUE 
COMMAND 

T, 

RESOLVER 
WITH RID 

CONVERTER 

9, 

'-________ ~ ___ _I-TORQUE (T,) ESTIMATION 

-STATOR FLUX (~ESTIMATION 

- TEMPERATURE COMPENSATION 
OF MAGNET FLUX (-.> 

FEEDBACK SIGNAL 
PROCESSING 

T, 
STATOR 
TEMPERATURE 
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iterated on simulation until the static and dynamic perform­
ances become optimal_ Besides, the' harmonics and the fault 
performance of the system can be studied in considerable 
detaiL The simulation approach is often time-saving and 
economical and has less ,risk of damage than the trial-and-error 
method of breadboard design_ However, it should be noted 
that simulation performance of a system can be only as good as 
its model description, and therefore, this approach should be 
considered for preliminary study of a system_ An approximate 
model simulation with a breadboard test is usually the 
desirable approach because an accurate model description of a 
physical system is often very involved_ 

A_ Review oj the Simulation Language SIMNON 

SIMNON is a popular simulation language among a number 
of computer-aided design tools that have been available 
recently [17], [19]. This language has been used in the present 
drive system simulation, and therefore its salient features will 
be briefly reviewed. SIMNON is a command driven interac­
tive program for simulation of dynamical systems that can be 
described by linear/nonlinear ordinary differential and differ­
ence equations. The commands, for example, can change 
parameters of the model, perform simulation, graphically plot 
results on a terminal, and modify the modeL With the macro 
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facility, the user can construct a command string. ThiS 
compiler is included in the program and works in parallel with 
an editor. This enables the user to correct the erroneous lines 
of the program immediately. 

For SIMNON simulation, a large system is normally 
resolved into a number of subprograms. These subprograms 
are then interconnected by input and output signals through a 
connecting routine. The SIMNON programs can be connected 
with specially formatted FORTRAN files. SIMNON offers a 
sPecial advantage for a microcomputer-controlled system. 
Here, the physical process, which is normally a continuous 
system, can be modeled by differential equations, whereas the 
controller, which is a discrete time system, can be described 
by difference equations. All the system descriptions are in 
state space form. Table I shows the general structure of a 
SIMNON program, for a continuous system. The structure of 
the discrete time system follows a similar pattern, and is 
illustrated later. The program starts with a heading that defines 
the type of system and gives a filename. The body of the 
program consists of three sections: declarations, initial sec­
tion, and assignments, and then terminates with an END 
statement. The sequence of program statements is arbitrary 
and SIMNON automatically sorts them into proper order. The 
INPUT and OUTPUT statements indicate the signals that link 
with other programs. The TIME declaration is necessary if a 
time related statement appears in the program. The STATE 
and DER statements· relate to state variables and their 
derivatives, respectively, of the state space equations, and 
must be declared in the same order. The SORT statement is 
required only if an INITIAL statement has been included and it 
acts as the terminator lor the section. The assignment 
statements are FORTRAN-like and these include' parameter 
and state initial values. This section may include standard 
functiOll8, such as SIN(X), SQRT(X), ABS(X) , etc. When 
multiple programs are interconnected by INPUT and OUT­
PUT signals, a connecting system of the following structure 
should be used: 

CONNECTING SYSTEM <name> 
Declarations 
Connect section 
END 

For integration of state space equations in a continuous 
system, one of the following algorithms can be selected: 

HAMPC Hanuning predictor corrector (default) 
RK Runge-Kutta variable step size 
RKFIX' Runge-Kutta fixed step size 
DAS Integration routine for stiff systems 

Once the SIMNON program for the entire system is written, a 
typical string of commands as follows can be exercised: 

> SYST X Y Z Compiles the system containing. 

> EDIT X 
>STOREABC 

X, Y, Zflles 
Changes the program 
Stores the variables 

>ALGOR <name> Selects the algorithm 
> SIMU 0 T Simulates the system for interval 

T 
>ASHOW A 
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Plots the stored variable A with 
automatic scaling 

TABLE I 
GIlNERAL STRUCTURE OF SIMNON PROGRAM 

ICOIITINDOOS niTA < •. yat •• identifier» 
UDO"!! <1i1lP1. variabl.> 
IOO"rpO"r <.illPl. varioble> 
(TID <a1 .. 1 ••• riable> 
(S"rA"rB <oiap1e .. riobl.> 
IDBR <01111'1. variable> 

COlIPutatlon of initial "alu •• for atate variabl •• ~I.ITIAL ] 

Coaputation of par •• ter. ' 
SOR"I! 

[Coaput.tion of auxiliary .ariablee) 
[Computation of output variablesl 
(ColIPutation of derivatiye.] 
(Parameter assignments] 
(Initial value a •• ign.enta) 
IIRD) 

B. Drive System Simulation in SIMNON 

The complete drive system including the inverter and the 
machine was simulated in the computer using the VAX-based 
SIMNON program. The purpose of simulation is to verify the 
complex control algorithms, design the controller parameters, 
and study the static and dynamic performances of the system 
before building the laboratory breadboard. In fact, once the 
initial simulation phase was completed, the iteration of 
simulation and laboratory tests. went hand-in-hand whenever 
the test results were not up to expectation. It may be of interest 
to mention here that the simulation also included the study of 
dc link harmonics and fault performance of the inverter­
machine system, but these aspects will not be described here. 

Fig. 6 shows the simulation block diagram of the drive 
system where each functional block can be identified from 
Figs. 2 and 4. A SIMNON program is written for each 
functional block with the program name as indicated, and then 
all the blocks are interconnected with the 110 signals using the 
connecting system CON. The nature of the system (continuous 
or discrete time) is indicated in each block. The discrete time 
systems use the actuaJ sampling times that are used for 
microcomputer implementation. Thus, the design of sampling 
times in multitasking microcomputer control could be verified 
by simulation. The PWM and square-wave control modes 
were simulated independently using the common program 
modules as indicated, i.e., the simulation does not incorporate 
the sequence diagram of Fig. 5. SIMNON has some limita­
tions in looping and sequencing operations and therefore 
further study is needed to simulate the sequencing control. In 
Fig. 6, the basic simulation functions are 

1) Controller transfer functions-converted to difference 
equations in state space form 

2) Flux and current programs-described by segmented 
straight lines 

3) Algebraic relations 
4) Standard functions 
5) Inverter-described by ideal on-ilff switches 
6) Machine-described by differential equations in state 

space form 

Table II illustrates the simulation program for the machine 
(the machine rotor has negligible damping and therefore the 
rotor eqnivalent circuits are considered open). It is developed 
in the format described in Table I. The comments in each 
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Fig. 6. Simulation block diagram of the drive system. 

TABLE II 
SIMULATION PROGRAM FOR THE MACHINE 

CONTINUOUS SYSTEM IPMM 
uIPM MACHINE MODEL IN SYNC. REF. FRAME(INERTIA LOAD) 
INPUT VQSE VOSE "MODULE INPUT SIGNALS 
OUTPUT IA IB Ie TE TEM WE X3 X4 IQS! rOSl 
TIME T "IN SECONDS 
STATE IQS IDS W TH 
OER DIQS DIDS OW DTH "DERIVATIVE OF STATES 

DIQS = (WB/XQS) * (VQSE-RS*IQS-WE*XDS*IDSjWB-WE*EFFjWB) 
DIDS = (WB/xes) * (VDSE+WE*XQS*IQSjWB-RS*IDS) 
FDSEP = IDS*XDS liD-AXIS ARMATURE REACTION 
FQSE =- IQS*XQS 
TE = (3/WB)" «FDSEP+EFF) *IQS-FQSE*IDS) "IN Hm. 
ow = (2jJ)'" (TE-TL) 119PEED EQUATION 
DTH '" W 
WE = W 
THE::: MOD(TH,6.2831) uROTOR ANGLE, 0-360 DEG. 
X3 = cos (THE) 
X4 = SIN (THE) 
IQSS = IQS*X3+IDS*X4 "STA. FRAME Q-CURRENT 
lOSS = -IQS*X4+IOS*X3 
lA = lQSS "PHASE A CURRENT 
IB = -(IDSS*SQRT(3)+IQSS)/2 
IC "" -IA-IB 
TEM = TE*.738 "TORQUE IN LB. FT. 
IQSl = lQS "ROTATING FRAME Q-CURRENT 
10Sl = IDS 
WB:710.48 
XQS:O.16 
RS:O.00443 
XOS;0.103 
EFF:57.4 
J: 1.2 
W: 100 
TH:O 
END 

"B4SE FREQUENCY (RAD. / S. ) 
"MACHINE PARAMETERS AT WB 

"MAG. FLUX AT WB (VOLTS) 
" INERTIA 
II INITIAL SPEED 
" 'INITIAL ANGLE 

statement make the program self-explanatory. The program 
inputs the voltages (from the program CC-see Table III) to 
the synchronously rotating frame equivalent circuits and 
solves the stator currents using the following sets of equations: 

Machine equations 

(9) 

(10) 

(II) 

(12) 

dWe 
-=6e • 
dt 

Vector rotation equations 

where 

i~s = iqs cos 8e + ids sin 8e 

ids= - iqs sin 8e+ ids cos Be 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Vfo is the machine induced voltage at base speed Wb (in 
radians per second) 

P is the number of poles 

All other quantities are given in standard notation [3]. The 
machine parameters are given in the lower part of the table. 

Table III illustrates the simulation program for the current 
controller (CC), which is described as a discrete time system 
with a sampling time of 0.1 ms. In laboratory breadboard, the 
hysteresis-band current -controller has been designed by using 
dedicated hardware. The format of a discrete time system is 
similar to that of a continuous system except that the 
statements STATE, NEW, TSAMP and TS characterize the 
description of difference equations. In the program, the 
command currents lAC, IBC, and ICC are compared with the 
feedback currents lA, IB, and IC, respectively to generate the 
current loop errors as shown. The state of the inverter switches 
is generated by comparing the current error with the hysteresis 
band HB. The inverter output voltages in the rotating frame 
are then generated by the following equations [3]: 

U",= VB' NA (19) 

ubs= VB . NB (20) 

Vcs= VB . NC (21) 

2 
v~s="3 vas -"3 Vbs-"3 Vcs (22) 

I I 
ud.,= - -J3 Ub,+ -J3 Ue, (23) 

Vqs = v~s cos Be - vds sin (Je (24) 

Vds = v~s sin 8e + v:U cos De (25) 

where 

VB is the Battery voltage 
NA, NB, NC are the new states of the inverter phase legs 

and all other variables are in standard symbols. The inverter 
starts with the initial state shown in the table. 

The simulation program of the whole drive system was built 
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TABLEll 
SIMULATION PROORAM FOR THE CURRENT CONTROLLER 

DISCRETE SYSTEM CC 
"HYSTERESIS-BAND CURRENT-CONTROLLED PWM INVERTER 
INPUT VB lAC ISC ICC IA IS IC X3 X4 
OUTPUT VQSE VDSE 
TIME T "IN SECONDS 
STATE ABC "STATE OF A PHASE LEG: 1 OR 0 
NEW NA NE Ne "NEW STATE 
TSAMP TS "SAMPLING INSTANT 

IS - T+O,1E-3 
lAE .. IAC-lA "CURRENT LOOP ERROR 
IBE .. IBC-,IB 
ICE - ICC-IC 
NA ... IF IAE>H8 THEN 1 ELSE IF IAE<-HB THEN 0 ELSE A 
H8 - IF IBDHB THEN 1 ELSE IF IBE<-HB mEN 0 ELSE B 
Ne .. IF leDHB THEN 1 ELSE IF ICE<-HB mEN 0 ELSE C 
VQSS .. VB"'(NA*2-NB-NC)/3 "STA. FRAME Q-VOLTAGE 
voss .. VB*(NC·NB)/SQRT(3) 
VQSE - VQSS*X3.VDSS*X4 "ROTATING FRAME Q-VOLTAGE 
VDSE - VQSS*X4+VDSS*X3 
HE: 30 nHYSTERESIS BAND 
A: 1 ~INlTIAL STATE DEFINATION 
8:1 
C:O 
END 

up step by step starting with the inner core drive elements. 
Fig. 7 shows the typical simulation command and feedback 
current waves in the PWM mode. The large sampling time of 
the simulation often causes the current to exceed the 20-A band 
of the command wave as evident in the figure. pig. 8 shows 
the typical close loop torque response in PWM mode with a 25 
lb ft step command. The ripple in the estimated torque was 
found to be higher than that of the shaft output. 

IV. MICROCOMPUTER CONTROL 

Since the advent of microcomputers in the early 1970's, the 
technology has gone through a dynamic evolution in the last 
one and a half decades. Microcomputers are available today 
with large word-size, high computation speed, and large 
functional integration, and this trend will continue in the 
future. Super microcomputers, based on the same principle as 
the super computer (such as CRA Y 2) where parallel 
processors add to the processing speed, look very promising 
and will add tremendous capability for real time control of 
systems in the future. The control system under consideration 
uses state-of-the-art microcomputers and their hardware and 
software design features are described as follows: 

A. Hardware Design 
The microcomputer-based control hardware uses two Texas 

Instruments TMS32010 digital signal processors (DSP) and 
one Intel-8097 (generic name 8096) microcontroller. The key 
features of these devices are given in Tables IV and V, 
respectively. Both are 16-bit high-performance microcompu­
ters and are ideally suitable for real time control applications. 
The 16 x 16-bit dedicated parallel multiplier on the DSP chip 
that multiples in 200 ns permits very time-critical 110 signal 
processing (including vector rotation) in the drive control 
system. The TMS32010 DSP chip was selected over the 
alternate DSP chips based on performance benchmarks, 
military spec. availability, and excellent hardwarel software 
development support. Although the DSP chips are extremely 
fast and allow software implementation for high-speed control 
functions, they do not provide general purpose hardware 
interfaces that allow simple connections to standard 110 
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Fig. 7. Typical command and feedback current waves. 
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Fig. 8. Close loop torque response in PWM mode. 

TABLEN 
KEY FEATURES OF THE DiOlTAL SIGNAL PROCESSOR TMS32010 

• l60-u in~~ion c)'Ck 
• 144·word on-chip data RAM 
• ROMltss \'Crsioa-TMS32OIO 
• l.SK-word oa-chip pIOJI'am ROM-TMSll(lMIO 
• E:tlcmal memory expansion to a total of 4K WO.D 

.1 {uU spud 
• 16-bit inst1'UCtionldata word 
• 32-bit ALU/accum .... lor 
• 16 )( 16-bil multiply in l60-ns 
.0 to IS·bit barrel Wher 
• EiJbt input and ciJht output channels 
• 16-bil bidircdioDal data bus with SO-mc •• bilt-pCr· 

secoad traasfer rate ' 
• IntemIpt willi full c:ontnt IIVC 
• Sipcd lWeI" c:ompIcmcDl tied-poiDl aritIunetk 
oNMOS-,y 
o SiqIe 50 V sappty 
• Two venioaI available 

'IMS3201.0020 ••• 20.5 MHz Clock 
TMS320100ZS ••• ZS.O MHz Clock 



TABLE V 
KEY.PEA TURES OF THE INTEL 8096 MICROCOMPUTER 

• 8K-byte on-chip ROM 
• 232-byte register .pace (RAM) 
• lO-bit, eight-channel AID converter 

• Five 8-bit YO porl1 
• FuU-duple. serial pori 
• High-speed pulse YO 
• Pulse-width-modulated output 
• Eight interrupt sources 
• Four 16-bit software timers and two 16-bit hardware timers 
• Watchdog timer 
• Hardware siJlled and unsigned multiply/divide 

RS-2)2 

Fig. 9. Simplified block diagram of controller hardware. 

devices. Furthermore, implementation of functions that do not 
require high-speed processing becomes cumbersome because 
of small stack size and limited program and data memory 
spaces. The Intel-8097 microcontroller, which incorporates 
the bulk of control functions, overcomes the above problems. 
Besides an expansive instruction set, it has a high level of 
functional integration. 

Fig. 9 shows the simplified controller hardware architec­
ture. The two signal processors have the same core hardware 
design and each is tailored to its specific tasks via the 
respective I/O devices. The input signal processor (ISP) is 
interfaced to A/D converters for acquiring the machine 
current signals, whereas the output signal processor (OSP) has 
D/ A converters to supply reference current waves to the 
current-controller. The resolver-to-digital (RID) converter 
provides 100bit (0.352° resolution) shaft angle (8.) informa­
tion up to the maximum tracking rate of 20 400 rpm. All 
interprocessor communications are accomplished with 160bit 
wide l6-location FIFO (first-in-first-out) registers. A key goal 

in the DSP-hased I/O hardware design is to use the full 
potential of the processors by minimi2ing the software 
overhead required to perform 110. 

The Intel-8097 consists of a powerful CPU tightly coupled 
with program and data memory along with several 110 features 
all integrated into a single chip. The 8097 chip incorporates a 
lO-bit unipolar (0-5 V) AID converter and an 8~hannel 
analog multiplexer on the same chip. This converter is used 
for acquisition of signals required for drive system sequencing 
and in-line monitoring functions. 

B. Software Design 

The distribution of control functions among the three 
microcomputers and their processing rates were determined by 
system analysis. The processing rate, i.e., the sampling time 
interval of each task, was verified by SIMNON simulation. 
Obviously, the control functions that require high sampling 
rates (5-30 KHz) are executed by the signal processors 
whereas the less time~ritical functions are executed in the 
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Fig. 10. Simplified structure of TMS32010 software (output DSP). 

8097 microcomputer. The high throughput capability of the 
DSP's is utilized for performing transformations from rotating 
to stationary reference frame and vice-versa, regulation of the 
active and reactive currents in the PWM mode, and generation 
of the transistor switching commands in the. square-wave 
mode. The table look-up capability of the TMS320 permits 
easy synthesis of sin lie and COS lie functions from the input lie 
signal. The ability to make decisions in software to reconfi­
gure the control schemes in real time provides a great 
advantage over a dedicated hardware approach. Additionally, 
diagnostic functions are incorporated to ease the development 
process. 

Software for all the three microcomputers is written in 
assembly language (ASM-96, XASM) using scaled integer 
arithmetic. An Intel Series IV development system and an Intel 
SBE-96 board were used for the development of the 8096 
software system. The software for the TMS32010 signal 
processing systems was developed with the V AX-based cross­
assembler and bench tested with the TI TMS32010 simulator. 
Real time testing of the DSP software was performed on the TI 
EVM-32010 evaluation module boards. 

A simplified structure chart of the output DSP is shown in 
Fig. 10 that also indicates the key functions under each task 
and the task processing intervals. The interrupt input to the 
signal processor is connected to a 30-I's pulse train that serves 
to set the basic sampling rate (33 KHz). Upon receipt of the 
interrupt, the return address of the interrupted program is 
saved on the processor stack, interrupts are disabled, and 
control is passed to the task handler. Since the TMS32010 
stack is only four words deep, another logic stack in data RAM 
is utilized to save the status of key registers. The TASK 1 (30 
I's) functions are executed and a counter to detect if TASK 3 is 
ready is decremented. The state of the BIO input is polled to 
determine if the 8096 processor is requesting an interaction. If 
so the interrupt is enabled and TASK 2 is started. TASK 2 
either loads (lSP) or unloads (OSP) the FIFO registers that are 
interfaced to the 8096 computer system and serves to 
synchfonize the inter-processor communications. If no inter-
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action is requested or when TASK 2 is complete, the TASK 3 
counter is tested to determine if TASK 3 should be executed. 
Finally, whether or not TASK 3 is run, the status of the 
registers is restored and execution of the interrupted program 
is resumed. Task priorities are established by the sequence in 
which the task handler schedules them (TASK 1 highest --> 
TASK 3 lowest). A fourth lowest priority task called BACK­
GROUND task that never finishes (loops) serves to occupy the 
CPU when all the essential tasks are completed. 

The ISP software structure is similar to Fig. 10 and both 
signal processors share the same operating system design, 
except that the OSP is structured differently depending on the 
mode of control. In other words, the ISP executes the same set 
of software routines from power-up to power-down, whereas 
the OSP software is configured by the 8096 to allow operation 
in and transitions between the PWM and square-wave modes 
of control. The two DSP's also share a common diagnostic 1/0 
routine and data RAM initialization scheme. 

The 8096 computer system is primarily responsible for 
estimating and regulating the torque and flux of the IPM 
machine. Inputs to the estimators are obtained from the input 
signal proCessor and outputs from the regulators are trans­
formed into three-phase current references by the output signal 
processor. Additional 8096 microcomputer system functions 
include: vehicle control microcomputer interface, start-upl 
shut-down sequencing, in-line monitoring functions, PWM < 
---> square-wave mode transitions, and diagnostics. 

An operating system similar to the one used for the DSP 
systems serves to schedule the tasks at fixed sampiing rates. 
The 8096 software timer interrupt is programmed to generate 
the basic 2-ms clock ticks and software counters are main­
tained in RAM to generate the additional sampling intervals. 
The 8096 architecture differs from most c\lmputers in that 
there are no general purpose registers; any internal RAM 
location can serve as the operand in instructions. In order to 
maintain compatibility with the PUM-% language and 
provide a more conventional environment, four 16-bit RAM 
locations are defined as working registers. The statuses of 
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Fig. 11. Simplified stnu:ture of Intel-8096 software. 

these registers are preserved and restored every time it task is 
perfonned. Once again task busy flags are used to prevent 
stack overrun. 

Fig. 11 shows the simplified structure chart of 8097 
software, which also indicates the functions uoder various 
tasks and task sampling intervals. Every 2 ms a new set of 
inputs is obtained (input fullctions) and used for the 
computation of the machine fluxes and torque. These estima­
tions are regulated to match the commanded values and the 
data are output (output functions). Sequencing logic serves to 
select the appropriate control algorithm for either the PWM or 
square-wave mode and open loop modes are incorporated for 
debugging. The output routines, feedback calculations, and 
outpUt fullctions remain the same in all modes of control. The 
software also permits various feedback loop configurations so 
that the system can be debugged systematically starting with 
the core drive elements. The configurations can be summa­
rized as follows: 

Mode 0 Open all the loops with a = 0 
Mode 1 Open all the loops and release a 
Mode 2 Close ovetlay current loops and initialize torque 

loop integrator 
Mode 3 Close torque loop and use current program 
Mode 4 Close torque loop and get loop gains from AID 

channels 
Mode 5 Initialize flux loop integrator 
Mode 6 Close all PWM loops 
Mode 7 Open vector rotator square-wave mode loop 
Mode 8 Open table look-up square-wave mode loop 
Mode 9 Close vectOr rotator square-wave mode 
Mode 10 Close table look-up square-wave mode loop 
Mode 11 Close all PWM modes and evaluate transition to 

square-wave 
Mode 12 PWM -- > square-wave mode transition 
Mode 13 Square-wave --> PWM transition 

V. Dms SYSTEM TESTS 

The complete drive system with the microcomputer control­
ler was thoroughly tested in laboratory on a dynamometer and 
performances were found to be excellent. The test also showed 
genetal correlation with the simulation results. The 70-hp 4-
pole star-connected IPM machine under test was custom 
designed using an NeFeB (Crumax 30A) magnet in segments. 
The key machine parameters are included in the simulation 
program shown in Table n. The machine luis a base or corner­
point speed of 3394 rpm, crossover speed (the speed at which 
the machine countetemf balances the fundamental frequency 
square-wave voltage) of 5044 rpm, and a maximum speed of 
13750 rpm. the battery voltage varied from 135 to 265 V 
corresponding to worst case motoring lind regeneration, 
respectively. The inverter consists of three phase-leg modules 
wbete each Darlington transistor was rated for 500 A, 500 V. 
A Darlington transistor again consists of three component 
matched transistors in parallel of200-A rating. The dynamom­
eter used for the tests could be operated in constant (but 
programmable) speed or inettia mode. The test set-up includes 
a computer-based data acquisition and analysis system [18], 
where steady state waveforms can be captured and drive 
performances, such as efficiencies, power factor, various 
losses, etc., can be calculated and displayed on a video 
terminal. 

Once the drive system was simulated successfully and the 
controller hardware and software were debugged, the syatem 
was ready for extensive laboratory tests on the dynamometer. 
A careful test procedure was formulated so that the task 
becomes smooth and time efficient. The microcomputet­
controllet permitted various test modes where, starting with 
the inlier core drive system, the outer loops could be added in 
ateps and thoroughly tested. Initially, all the tests were 
performed on the dynamometet in COIIstant speed mode, then 
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Fig. 12. Waves at PWM forward motoring mode (Te = 25 Ib ft, 1000 
rpm). Top: Command and feedback currents (50 Aid). Bottom: Rotor 
position (ISO' Aid). 

the inertia mode was exercised, and finally the transitions as 
shown in Fig. 5 were tested. 

Fig. 12 shows the typical command and feedback phase 
current waves (top) in the PWM mode when the dynamometer 
was operating at constant speed. The rotor position (Be) 
obtained from the RID converter is also shown at the bottom. 
The Be = 0 corresponds to alignment of the magnet north pole 
with the stator phase a-axis. The figure indicates that the 
current phasor leads the magnet flux by an obtuse angle. Fig. 
13 shows the typical phase voltage (with respect to the battery 
center-tap) and phase current waves in square-wave mode. 
The current slightly leads the voltage wave, and the inverter 
switching at each edge of the square-wave is evident. As the 
speed increases at constant torque, the phase lead increases 
because of increasing machine counter emf. Fig. 14 shows the 
four-quadrant operation of the drive system with the dyna­
momete~ in inertia mode. The system starts at zero speed in 
the forward direction with a constant motoring torque as 
shown. As the speed increases beyond a critical value, 
transition occurs smoothly from PWM to square-wave mode. 
As the torque command is reversed, the drive system enters 
into regeneration with immediate transition to PWM mode 
because of increase of the battery voltage. The system then 
goes through zero speed and eventually speed builds up in the 
reverse direction. The performance in the reverse direction is 
essentially symmetrical to that in the forward direction. 

VI. CONCLUSION 

An advanced digital control of a drive system that uses an 
interior magnet synchronous machine with an Neodymium­
Iron-Boron permanent magnet has been described. The drive 
system operated with full performance in the constant-torque 
region as well as in the field-weakening constant-power 
region. The drive system has been designed with close loop 
torque control for electric vehicle application, but the control 
can be easily extended for other industrial applications also. 

The drive system has been extensively simulated using the 
VAX-based simulation language SIMNON. The salient fea­
tures of SIMNON have been revieWed, and then the drive 
simulation has beCn described. A simulation study of the 
compl~" drive system was found to be extremely valuable to 
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Fig. 13. Phase voltage current waves at square wave motoring 

T' . 
21b. H./d 

T. 
21b. flJd 

." 

200 RPMld 

mode (Te = 25 Ib ft, SOO4 rpm, SO Aid, V = 166 V). 

Fig. 14. Four-quadrant operation of the drive system. 

verify feasibility of the control laws and to design the 
controller parameters. 

The drive system uses a distributed. microcomputer-based 
control system where state-of-the-art Intel-8096 microcontrol­
ler and Texas Instruments TMS32010 digital signal processors 
are used. The 8096 is essentially responsible for feedback 
control and signals estimation functions, whereas 32010 
processors perform the time-critical 1/0 signal processing 
functions. The hardware and software design features of the 
controller have been discussed. 

A 70-hp inverter-fed drive system has been extensively 
tested in the laboratory with the help of a dynamometer, and 
experimental results show good correlation with the simulation 
results. The test results, including four-quadrant operation on a 
dynamometer that was programmed in the inertia mode, have 
heen discussed. The performance in transition between the 
PWM and square-wave modes with and without gear shifting 
was found to be excellent. The results of this study will help to 
promote IPM synchronous machine drives for various indus­
trial applications in the future. 
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ABSTRACT 

The paper presents the software control 
of the brushless DC motor with the parameter 
identification. Not only speed and current 
controls but a real time identification of the 
motor parameter can be implemented by software 
of the digital signal processor, TMS320C25. 

The unique current control is performed 
according to an instantaneous voltage equation 
of the d-q model of the motor. In the system, 
the control accuracy depends on the motor 
parameters so the parameter identification in 
regard to armature inductance and emf constant 
is necessary. The identification algorithm 
has been verified by both simulations and 
experiments. The control program, including an 
parameter identification is of 2.SK words and 
the processing time is 99 ~s. 

INTRODUCTION 

The inverter drive of AC motors has many 
advantages over the conventional DC motors and 
high performance drives have increased in 
popularity as AC servo motors. The required 
control characteristics are becoming higher so 
the introduction of modern control theories 
and high performance processors is positively 
tried to meet the requirements. Especially, 
by using the high performance processor, it is 
possible not only to implement the feedback or 
feedforward control but to realize the various 
compensating capabilities. 

It is well known that the precise current 
Control is the key technology to realize the 
high performance AC drives such as brushless 
:notors and vector controlled induction motors. 
Consequently, the problem of obtaining precise 
Current control has received much attention. 
!t is requested that the motor current is 
always coincident with the sinusoidal current 
command under the steady state and transient 
::onditions. In the existing current control 
,lUng the voltage-fed inverter, the current 
.lYsteresis controlled PWM and the sub-harmonic 

r--::k;base 

_1fT 4i 
i * i 

+ -

(a) (b) 
Fig.1. Conventional current controls. 
(a)current hysteresis controlled PWM, 
(b) sub-harmonic PWM. 

PWM shown in Fig.l have been widely used(~)(3) In 
the current hysteresis controlled PWM, the 
sinusoidal current is maintained within the 
hysteresis band but a voltage waveform is not 
necessarily desirable and the switching fre­
quency of the inverter changes according to 
the operating condition of the motor. On the 
other hand, the sub-harmonic PWM has no 
problem associated with the voltage waveform 
and the switching frequency but the steady 
state phase lag is the problem to the high 
frequency operation. 

In this paper, a new current control for 
brushless motors using the digital signal 
processor, TMS320C25, is presented. In the 
system, DSP performs not only the current 
control but the necessary control processing 
such as the rotor position sensing, the speed 
calculation and the calculation of the torque 
command through the speed control loop. The 
current control is performed by selecting PWM 
patterns for the inverter according to the on 
line calculation of the ideal voltage. The 
calculation is based on the d-q axis voltage 
equation of the brushless motor. Two PWM 
strategies are explained and compared. This 
control leads to good coincidence of the motor 
current with the current command under steady 
state and transient conditions. 

As the control presented in this paper is 
based on the voltage equation of the motor, 
the control error depends on the parameters 
used in the controller. The dependency of the 
current control error on the parameters is 
investigated and the identification using the 
reference model is explained. The simulations 
and experiments show the effectiveness of the 
proposed identification. 

CURRENT CONTROL ALGORITHM(I) 

Fig.2 shows the well known equivalent d-q 
axis model of the brushless motor. The voltage 
equation is obtained as follows; 

v = ( R + pL ) X + E --------------(1) 

In equation (1), w, n: and IE 
respectively, the applied voltage, 
the induced emf vectors which are 
the following relations. 

represent, 
cur,rent and 
defined by 

vd, vq Jr, J[ [ id, iq { ----(2) 

E e [ L iq, Ke - L id JT ---------- (3) 

In equation (1), Rand L are the armature 
resistance and inductance and Ke(=Mif) is the 
emf constant, respectively. These parameters 
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Fig.2. Equivalent d-q model of brush less motor 

are reduced to the equivalent d-q axis model. 
To perform the software control, the differ­
ence equation corresponding to equation (1) is 
necessary. The instantaneous applied voltage, 
current and induced emf are approximated to 
the corresponding average values during the 
sampling interval, that is; 

w = W(n), 11: = K(n), IE = iE(n) -----(4) 

and the derivative term in equation (I) is 
approximated to the term given below: 

pK = [ K(n+l) - K(n) J I T -------(5) 

where T is the sampling period. Using these 
approximations, the difference equations below 
are obtained. 

Wen) = R '[en) + (LIT) [ ][(n+l) - K(n) J 

+ iE(n) -------------(6) 

E(n) i(n) [ L Iq(n), Ke - L Id(n) f 

-------------(7) 

In Fig.2, it is noted that the torque of 
the brushless motor is proportional to the q­
axis current and the d-axis current does not 
contribute to the production of torque. There­
fore, the d-axis current is controlled to be 
zero. Now, the ideal voltage V*(n) is defined. 
This voltage is applied between the n-th and 
n+l-th samplings to makes the motor current 
][(n) equal to the current command 1I:*(n+l) at 
the next sampling. Replacing J[(n+l) in 
equation (6) with the current command ][*(n+l), 
the equation for the ideal voltage is obtained 
below. 

W*(n) = R '[en) + (LIT) [ 1I:*(n+l) - J[(n) J 

+ E(n) ----------------------(8) 
men) Sen) [ L iq(n), Ke f ---------(9) 

The current at the n-th sampling in 
equation (8) can be predicted by voltage and 
current prior to the n-th sampling using equa­
tions (6) and (7). Inserting this prediction 
into equations (8) and (9), together with the 
approximate relations below; 
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R E(n) ~ R E(n-l) ~ R ][(n-l) -------(10) 

(1/2) [E(n) + E(n-l) J ~ IE(n) ----(11) 

(b) 
Fig.3. Two PWM strategies. (a)vector 

selection PWM, (b)average voltage PWM. 

the ideal applied voltage is, therefore, given 
by the following equations. . 

W*(n) = 2 R K(n-l) - Wen-I) + 2 lE(n) 

+ (LIT) [ ][*(n+l) - ][(n-l) J (12) 

lE(n) ,; 9(n-1) L iq(n-l) + T [ vq(n-l) 

- Ke 9(n-1) - R iq(n-I) J, Ke JT --(13) 

These equations show that the ideal applied 
voltage between the n-th and n+l-th samplings 
can be calculated ,using the voltage and 
current prior to the n-th sampling. This means 
that the ideal applied voltage can be obtained 
by on line calculations before the n-th sam­
pling and, therefore, it can be applied by the 
PWM control of the inverter without sampling 
delay. 

PWM STRATEGY 

The ideal voltage given by equations (12) 
and (13) is the space vector in the d-q model. 
Therefore, it should be transformed to the 
three phase voltage to drive the inverter. The 
transformed voltage 'vector W3*(n) and the 
eight possible voltage vectors of the three 
phase voltage-fed inverter are shown in Fig.3. 
rt is noted that there are six vdltage vectors 
with amplitude of (2/3)Vdc and two (called as 
zero vectors, hereafter.) without amplitude. 
Two PWM methods, vector selection PWM and 
average voltage PWM, are proposed in order to 
realize the V3*(n) with the inverter. 

(l)Vector Selection PWM In the vector 
selection PWM, one of the eight vectors is 
selected during the sampling period. For 
selecting the vectors, the space is divided 
into eight regions [OJ-[6J as shown in Fig. 3 
(a) and the vector may be selected depending 
on the position of V3*(n); for example, V(1102 )J 

may be chosen when W3*(n) exists in region [. 
and zero vector may be chosen for W3*(n) In 
region [OJ. As a result, the selected voltagr 
vector differs from the calculated ldea 
voltage vector both in amplitude and phase. 



(2lAverage voltage PWM In this PWM method, 
~) is synthesized by two adjacent vectors 

nd zero vectors}2) For example, V3*(n) in Fig. 
~(bl can be synthesized by the combination of 
V(lOO), V{llO) and zero vector as shown in the 
figure. The time interval for each vector is 
aasi1y calculated and is controlled by the 
interrupt from the internal timer of the DSP. 
the method is similar to the conventional sub­
harmonic PWM but the switching frequency would 
be reduced to 2/3 when the ideal voltage is 
~ithin a hexagon shown in Fig.3(b). 

CURRENT CONTROL CHARACTERISTICS 

Here, the experimental comparison of two 
PWM strategies are briefly explained .. Fig.4 
shoWS the steady state voltage and current 
waveforms for the 1.5 kW, 4-pole brushless 
motor under the rated current load. Fig.4(a) 
was obtained when the inverter was operated by 
the vector selection PWM, where the sampling 
ceriod of the current control loop was 100 pSe 
On the other hand, the waveforms in (b) were 
obtained for the average voltage PWM, where 
the sampling period was 100 MSe It is apparent 
from the figures that the current waveform for 
the average voltage PWM is better than that of 

(a I 
Vector selection 
PWM. 

(bl 
Average vol tage 
PWM. 

Fig.4. 

the vector selection PWMe However, it may be 
concluded from the experiments that the vector 
selection PWM can reduce the acoustic noise 
compared with the average voltage PWM. Fig.5 
Shows the comparisons of the harmonic analysis 
between the two PWM methods under 25 Hz rated 
current load when the sampling period is 100 

Fig.5. Harmonic current. 

2000 
Motor speed [rpm] 

Fige6. Switching frequency characteristics. 

pSe Compared with the vector selection PWM, 
the average voltage PWM has a reduced harmonic 
contents below 5 KHz, thus improving the 
current waveformse 

In Fig.6 are shown the characteristics of 
the switching frequency versus motor speede As 
apparent from the figure, switching frequency 
of the vector selection PWM varies according 
to the motor speed and has the maximum near 
1000 rpm. ,When the operating frequency is low 
in the lower speed range, the required applied 
voltage is also low and the zero vectors are 
frequently selected in sequence. On the other 
hand, the required voltage is high in the high 
speed range and the,voltage vectors with an 
amplitude are frequently selected in sequence 
to produce the applied voltage. It is noted 
that no switching occurs when the same vector 
is selected i~ succession at every sampling. 
However, in the intermediate speed range, the 
zero vectors and the voltage vectors with an 
amplitude are often selected alternately to 
produce an intermediate applied voltage near 
1000 rpm. This is the reason why the switching 
frequency has the maximum near 1000 rpm. 
However, the switching frequency for the 
average voltage PWM are substantially constant 
and nearly equal to (2/31*(1/2TI, where T is a 
sampling periode 

Fig.7 shows the step response of the q­
axis current for two types of PWM methods when 
the stepwise change in the current command is 
applied. These figures show that there is no 
appreciable difference between the two PWM 
methods in regard to the transient responsee 
For a small change in the current command, the 
motor current settles in one sampling because 
the output voltage of the inverter does not 
saturates. However, for the large change in 
the current command, for example, from 2 A to 
10 A as shown in the figure, the current can 
not settle in one sampling and 3 - 4 samplings 
(this corresponds to 300-400 ps) are required 
since the inverter voltage saturates. 

step response current. 
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the output voltage of the inverter saturates, 
the settling time is as short as JOO or 400 
ps, thus realizing the high speed transient 
response of the motor current. 

EFFECTS OF PARAMETER VARIATION 

As stated, the proposed current control 
is implemented by calculating the ideal 
voltage based on equation (12) and the control 
error would increase when the parameters used 
in calculation differ from ,those of the motor. 
The experiments were done to investigate the 
variation of the motor parameters due to the 
maqnetic saturation and temperature rise. The 
results showed. that there was no appreciable 
variation in armature inductance even when the 
motor current was increased up to five times 
the rated current, whereas the armature 
resistance increased by about 50 percent. On 
the other hand, the emf constant increased by 
about 16 percent due to the temperature rise. 

The effect of parameter variations on the 
accuracy of current control characteristics 
has been investigated by the simulation. In 
simulating the system, the inverter has been 
treated to perform the PWM strategy explained 
in the preceding chapter but the dead time has 
not been considered. The results obtained for 
two kinds of PWMs have shown no appreciable 
difference and, therefore, the results for the 
average voltage PWM with sampling time of 100 
ps are shown hereafter. 

Steady State Characteristics Fig.8 shows the 
current control error for the same current 
command when parameters R, Land Ke of the 
motor varies while parameters used in the DSP­
based controller are constant. Fig.S (a) gives 
the result for low speed operation and (b) for 
the rated speed. The variation coefficient k 

.0 

(a) 

so 
;; 

(b) -50 

O.S 

O-L 

O-x. 
l>-R 

N_ 500[rpm) 

iq*·ll[A) 

1.0 1.5 2.0 

Variation coefficient X 

O-L N.2000Irpal) 
iq*.llIA) 

1.0 1.S 2.0 

Vazoiation coefficient X 
Fig.8. Control error for parameter variation. 

(a)sOO rpm, (b)2000 rpm. 
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is defined for each parameter as follows; 

R/L/Ke of motor 
k 

R/L/Ke of controller 
------- (14 1 

and th~ control error is defined as follows; 

Iqx - Iqo 
e ----------------(151 

Iqo 

where Iqo means the average q-axis current 
when the motor parameters are coincident witb 
the controller parameters whereas Iqx is the 
average q-axis current when there is the para_ 
meter disagreement in motor and controller 
The conclusion is summarized as follows. • 

(a)Armature Res'istance: The control error 
is not hardly affected by the variation of the 
armature resistance, regardless of the motor 
speed. 

(b)Armature Inductance: The effect of the 
armature inductance variation on the control 
error is somewhat different depending on the 
mot~r speed, but not serious in the range of 
k larger than 0.5, as shown in the figure. 
Below k=O.s, the fluctuation of the motor 
current increases because the inductance of 
the motor is small compared with that used in 
the controller, so approximations psed in the 
development of the current control algoritro. 
are assumed to be ineffective. 

(c)EMF Constant(=torque constant): The 
effect of the variation of the emf constant is 
also somewhat different depending on the motor 
speed and the error increases with an increase 
of the motor speed. Due to the limitation of 
the inverter voltage, the error increases with 
the variation coefficient in the range of k 
larger than 1.5 when the motor speed is high. 

Transient Characteristics 

1500 ., 
· · ." 
!i · 1000 
0 c 

= (a) 
.. 
.3 .. 500 • .. 

0.5 

., SO 

• ! 40 

~ 30 
c . 

(b) 
e 20 
.3 .. 
: 10 

0.5 

The q-axis current 

O-L 
O-Ie 
l>-R 

1.0 

N.2000 I rpm) 
iq*.O-.131Al 

1.5 2.0 

Variation coefficient It 

O-L 
0-[0 
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1.0 

N_ 4001rpmJ 
1q*.O.-...3(Al 

1.5 2.0 

Vari.ation coefficient It 

Fig.9. Performance index. (a)saturated volta~e 
command, (b)un-saturated voltage cornman • 



's used to estimate the effects of parameter 
~ariation on the transient characteristics. 
The performance index given by equation (16) 
is introduced for a stepwise change of the 
current command; 

J = [[ iq*(1) - lq(i)]' ---------(16) 

For calculating equation (16), summation was 
made from i=O to i=99, because the oscillatory 
response might be obtained in some cases where 
there were the disagreements in parameters but, 
even in that case, an oscillation would settle 
within 100 samplings. Fig.9 shows the perfor­
mance index, where in (a) the inverter voltage 
is saturated for the large change of current 
command and in (b) the change of the current 
command is small so that the inverter voltage 
does not saturate. It is concluded from these 
estimations that the yariation of armature 
resistance has no appreciable effect on the 
transient characteristics whereas variations 
of armature inductance and emf constant have 
significant effects on the transient charac­
teristics. 

IDENTIFICATION ALGORITHM 

Parameter identification in regard to the 
armature 
performed 
brushless 
model is 
equations 
and; 

inductance and the emf constant is 
by using the reference model of the 
motor. The mathematical reference 

obtained by replacing n with n-2 in 
(6) and (7) and solving for X(n-l) 

lI(n-l) = (T/L)[V(n-2) - E(n-2) - RX(n-2)] 

+ X(n-2) -----------------(17) 

lE(n-2) = 9(n-2) [ 
L iq(n-2) 

] -- (18) 
Ke - L id(n-2) 

where approximate relation ~(n-2) ~ E(n-2) was 
used. Taking X(n-1) in equation above as the 
reference output ~(n-1) and replacing Land Ke 
with corresponding parameters to be identified 
~(n-2) and Ke(n-2), the reference model is 
finally given by the following relation. 

E(n-1) = [T!L(n-2) J[ V(n-2) - R 1I(n-2)] 

-iq(n-2) 
+ 9(n-2) T ] 

id(n-2) - Ke(n-2)/L(n-2) 

+ ][(n-2) -----------------------(19) 

Then, the difference dX(n-1) is obtained 
as follows by using equations (17) and (19). 

dlI(n-1 ) 

x 

x 

Ke/L - Ke(n-2)!L(n-2) 

9(n-2) T + T [ 1!L(n-2) - 1/L ] 

[ V(n-2) - R 1I(n-2)] -----(20) 

Equation (20) means that ~][(n-1) would be 
Zero when the identified parameters should be 
coincident with the motor parameters. When the 
parameters should not be identified correctly, 
dlI(n-1) • 0 would result. 

According to the previous explanation, the 
parameters could be identified by processing 
the current error jx given by equation (20) 
through the PI controller and by taking the d­
axis component as L(n-l) and q-axis component 
as ~(n-1). Here, the d-axis component of 
equation (20) is; 

Llid(n-1) = Ad(n-2) [1/L(n-2) -1/L J 

-----------------(21 ) 

Ad(n-2) T [ Vd(n-2) - R id(n-2) ] 

-----------------(22) 

It is apparent from equations above that 
L would converge to the motor inductance L 
when the terms [ 1!E(n-2) - 1/L ] and Llid(n-1) 
would have the same sign. For the emf 
constant, on the other hand, the relation for 
identification would be obtained from the q­
axis component of equation (20) under the 
assumption that the armature inductance should 
have been identified as L = ~(n-1) using the 
equations (21) and (22) and is given below. 

./liqtn-1 ) Aq(n~2) [T/L(n-1)] 

x [ Ke - Ke(n-2) ] ----(23) 

Aq(n-~) = 9(n-2) ------------------(24) 

Ke would converge when [Ke - Ke(n-2) ] and 
Lliq(n-1) would have the same sign. From the 
discussion above, the identification algorithm 
is, therefore, given as in equation (25). 

where 

L(n-1 ) 
] = IKp Sgn[ .QI.(n-2) ] dll(n-1) 

Ke(n-1) 
n-I 

+ IKi [[ Sgn[ ./A(k-1) ] ,1[(k) ----(25) , 

S,gn(x) 
+ 1 

o 
- 1 

x :> 0 
x = 0 
x <: 0 

-------(26) 

.QI.(k,l = [ 
Ad(k), 0 

0, Aq(k) 
---------------(27) 

and IKp and IKi are the gain matrix of the 
proportional integral type compensator and are 
given as follows. 

Kpd, 0 Kid, 0 
IKp = ], IKi ] -- (28) 

0, Kpq 0, Kiq 

Fig.10. Adaptive current control system. 
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Fig.10 shows the block diagram of the 
adaptive current control system including the 
parameter identification. In the figure, the 
current control algorithm, the reference model 
and the identification algOrithm correspond, 
respectively, to equations (12) and (13), 
equation (19) and equations (25) through (28). 
To verify the identification algorithm, simu­
lations were made. The results of simulations 
have proved that the current control error can 
be greatly reduced by adding the ability of 
parameters identification to the precediqg 
current control algorithm. 

EXPERIMENTAL RESULTS 

Fig.11 is the control system configuration 
of the prototype of the 1.5 kW brushless motor 
with 10X resolver. The configuration of the 
controller is quite simple because TMS320C25 
can perform all necessary controls such as the 
position and speed calculations, identifi­
cation and current control by software. The 
external electronics are necessary only for 
the resolver, the current detection and the 

1 OX resolver 

Speed command 
Fig.11. Control system configuration. 

base amplifier. The position information is 
received from the 10X resolver every 800 ps 
and is interpolated every 100 ~s by using the 
speed information to obtain the intermediate 
position information for the current control. 
The 16-bit speed information is obtained using 
the difference of position divided by sampling 
period. The motor current is detected every 
100 ~s by a Hall-CT and transformed through a 
12-bit AID converter. The control program was 
of 2.5K words and the required processing time 

Identification 

't'[~6 stTrts 

40 

20 
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Re[t1 
60 
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Fig.12. Convergence characteristics. 
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t(s1 

1.5 
t[sJ 

D-without identification 
(true parameters) 

.6.-without identification 
(false parameters) 

1000 2000 

Motor speed r rpm I 

Fig.13. Current control characteristics. 

was as short as 99 ps. 

Fig.12 is the convergence characteristics 
of the parameters identification where in (a) 
the armature inductance and emf constant in 
the DSP-based controller were set 1.5 times as 
large as those of the motor, while in (b) the 
parameters used in the controller were set 0.5 
times ~the motor parameters. 

The current control characteristics with 
and. without identification are shown in Fig.13. 
In the figure, 0 corresponds to the case where 
the parameters in a controller are coincident 
with those of the motor itself, ~ corresponds 
to the case where inductance of the controller 
is 70 percent of that of the motor and the emf 
constant is 30 percent of that of the motor. 

CONCLUSIONS 

In this paper, the new current control 
scheme for brushless DC motors using the high 
performance digital signal processors has been 

. described. The system has a feature that the 
motor parameters used in the controller to 
determine the voltage command are identified 
at every sampling and, therefore, the current 
control can be always attained with high 
accuracy, regardless of the operating 
conditions such as the temperature rise. The 
algorithm has been verified by simulations and 
experiments. 

REFERENCES 

(1)T. Takeshita, K. Kameda, H. Ohashi and N. 
Matsui,"Digital Signal Processor-Based High" 
Speed Current Control of Brushless Motor 
Trans. Inst. Elect. Eng. Japan, vol-106B, No. 
9, Sep. 1986. 

(2 )A. J. Pollmann, "Software Pulsewidth Modu­
lation for ~p Control of AC Drives" Trans. 
on Ind. App. vol-IA-22, No.4, July/August, 
1986. 

(3)P.Enjeti, P. D. Ziogas, J. F. Lindsay, and 
M. H. Rashid. " A New Current Control scheme 
for AC Motor Drives" I.E.E.E. 1987 IAS Annual 
Meeting Conf. Record, pp202-208. 



HIGH PRECISION TORQUE CONTROL OF RELUCTANCE MOTORS 

Nobuyuki Matsui, Norihiko Akao and Tomoo Wakino 

Department of Electrical and Computer Engineering 
Nagoya Institute of Technology 

Gokiso, Showa, Nagoya 466, Japan. 

ABSTRACT 

This paper presents the high precision 
torque control of the reluctance motor for 
servo applications. The prototype is the 3-
phase, 8-pole reluctance motor driven by the 
MOSFET inverter. The current control as well 
as the speed control is performed by software 
of the digital signal processor, TMS 32010. 

The motor is supplied by the sinusoidal 
current and two current control methods are 
proposed. One is based on the vector control 
principle to achieve the linearity between 
current and torque and another is developed 
to obtain the maximum torque/current ratio. 

Due to the saliency, the instantaneous 
torque 'contains a large amount of ripple 
component. In case of the test motor, the 
ripple torque was as much as 26% of the rated 
torque under the sinusoidal current drive. 
The experiment showed the ripple component 
could be reduced to 6 % by superimposing the 
compensation current component to the current 
reference. 

INTRODUCTION 

Recently, the research on variable speed 
control of the reluctance motor has been done 
as "the switched reluctance motor" allover 
the world. The reasons for tqis tendency is 
that the motor is simple in construction and 
economical compared to the synchronous motor 
and the induction motor. In addition to that, 
the unipolar drive of the reluctance motor is 
possible and, therefore, the converter to 
drive the motor requires fewer switching 
devices compared to the inverter. From these 
reasons, the drive system can be more simple, 
economical and reliable. 

Many papers have been reported on the 
switched reluctance motor in the past, but 
their main interests have been focused to the 
analysis and design of the motor or the 
drive circuit configurations. There are few 
papers which discuss the control aspects of 
the reluctance motor. In most of the control 
discussed in the literature, the winding 
current has the constant amplitude and is 
supplied to the motor in accordance with the 
rotor position. 

This paper presents the digital signal 
processor-based control of the reluctance 
motor which is capable of operation as the 
servo motor. The controller functions 
include the computations of the rotor 
position and the feedback speed, current 
control and the compensation of the torque 
ripple. The current control, wholly imple-

mented by software of the digital signal 
processor(DSP), is performed to obtain the 
linear relationship between current and 
torque similar to the concept of the vector 
controlled induction motor. In addition to 
that, nnother current control is proposed to 
obtain the maximum torque for the given 
winding current. In any case, the winding 
current is sinusoidal. However, due to the 
saliency, motor produces the torque ripple 
under the sinusoidal current excitation. The 
current control can also perform the compen­
sation of the torque ripple by superimposing 
the compensation component to the current 
command. The amplitude and frequency of the 
compensation component can be determined by 
the information of the winding inductance. 

The complete control system has been 
constructed and tested and the test results 
have been found excellent as a servo motor. 

BASIC ANALYTICAL MODEL 

Fig.1 is the configuration of the test 
motor whose construction is the same as the 
3-phase variable reluctance type stepping 
motor. As the first approximation, the flux 
distribution along the air gap is assumed to 
be sinusoidal, then, the analytical model for 
one pole pair of the motor is obtained as in 
Fig.2. The inductance varies with the rotor 
position and, therefore, the self inductance 
is assumed as; 

Rotor 
Fig.1. Configuration of test motor. 

(All dimensions are in mm.) 
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Fig.2. Analytical model for one pole pair of 
test motor. 

Lu LgO + Lg2 cos 29 

Lv LgO + Lg2 cos 29 + 21r/3 ---(1 ) 

Lw LgO + Lg2 cos 29 - 21(/3 

where, 

LgO Lmax + Lmin )/2 
----------(2) 

Lg2 Lmax - Lmin )/2 

The mutual inductance between the stator 
windings is also assumed as; 

Muv MgO + Mg2 cos ( 29 - 2Tr/3 ) 

Mvw MgO + Mg2 cos 29 --(3) 

Mwu MgO + Mg2 cos ( 29 + 2Tr/3 ) 

where, 

MgO Mmax + Mmin )/2 - LgO/2 

Mg2 Mmax - Mmin )/2 Lg2 

Using these definitions, the voltage equation 
of the motor is obtained as follows: 

---------------(4) 

Using the well known d-q axis defined in 
Fig.2, the voltage equation (4) can be 
transformed into; 

vd R + pLd, -9 Lq id 
) = [ )[ ) (5) e Ld , R + pLq iq vq 

where, 

Ld 3( LgO + Lg2 )/2 

Lq 3( LgO - Lg2 )/2 
------------(6) 

and, from this equation, the analytical model 
of the reluctance motor is obtained as shown 
in Fig.3, assuming that the flux distribution 
is sinusoidal. The torque equation can be 
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Fig.3. Equivalent d-q axis model of test 
motor. 

obtained from Fig.3 and; 

T = Ld - Lq ) id iq -------------(7) 

As a result, the two torque control 
methods can be proposed as follows; 

(1) Vector Control Based on the model, the 
winding current can be controlled in the same 
way as that of the vector controlled 
induction motor, that is, the d-axis current 
is controlled as the exciting component and 
q-axis current as the torque component. In 
this case, the q-axis inductance is generally 
smaller than the d-axis inductance and, 
therefore, q-axis current is chosen as the 
torque component to achieve the fast response 
of the torque. As a result, the motor torque 
can be controlled to be proportional to the 
q-axis current as follows; 

T = K iq, K ( Ld -Lq ) id ------(8) 

(2)Maximum Torgue Control For the given 
winding current iw, the ratio id/iq can be 
controlled. In this case, the linearity 
between current and torque can not be 
achieved and the torque is given by the 
following relation; 

T = (3/2) iw 2 ( Ld - Lq ) sin 2D ---(9) 

where, 

tanD 

Neglecting the magnetic saturation 
motor, the maximum torque is obtained 
= 45(deg.) 

CONTROL SYSTEM 

--I 1 0) 

of the 
for D 

Fig.4 shows the control system configu­
ration of the reluctance motor. Unlike the 
many drives of the reluctance motor in the 
literatures, the FET inverter supplies the 
sinusoidal current to the motor. The simple 
unipolar drive circuit for the sinusoidal 
current drive is. now under consideration. The 
current hysteresis controlled PWM implemented 
by software was used to supply the sinusoidal 
current, where current control program was of 
1.4 k words and the processing time was as 
short as 34 usec. The rotor position is 
obtained by the incremental type encoder(1000 
ppr, Nikon RX1000-22-1). The output of the 
encoder is multiplied by four and is trans-



Voltage-fed inverter R.M. 

Curro reference id*,iq* 

3<1 8ple 
Fig.4. Control 

rated volt 11.6V 

Fig.S. Torque 

S 1.5 0 id=0.4(AJ 

~ 1::1. 0.6 
0> [J 0.8 
J( 

(:;' '" 1.0 

Q) 
¢ 1.2 
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i 
measuring 

UPHS66H-8 
(Oriental 

motor Co.) 

system. 

1.0 0 1.4 
II' 11 .. 
0 
E-

1.6 
D 1.8 

0.5 

(for rated curr.) 

0.5 1.0 1.5 iq(AJ 
Fig.6. Torque-current characteristics for 

vector control. 

formed into 12-bit digital quantity in the 
position detecting circuit. The winding 
current is detected by the Hall CT(NANA 
Electronics, 20CA-W) and is also transformed 
into 12-bit digital quantity. 

The estimation of the motor torque was 
performed by using the measuring system shown 
in Fig.5. This system was used to estimate 
both the steady state torque characteristics 
and the instantaneous torque characteristics. 
The steady state torque-speed characteristics 
can be obtained when the load DC generator is 
coupled with the axis. On the other hand, the 
torque ripple can be measured by connecting 
the stepping motor and the harmonic gear 
(1:100) to the shaft in place of the load 
generator. As the step angle of the stepping 
motor is 0.36 deg/step, the resu'ltant 
resolution is 0.0036 deg/step and, therefore, 
it is possible to measure the instantaneous 
torque with respect to every rotor position 
by rotating the reluctance motor at very low 
speed( 1.9 rpm). 

TORQUE CONTROL CHARACTERISTICS 

The steady state torque-current curves 
are shown in Fig.6 when the vector control is 
performed. In the figure, the d-axis current 
(exciting component) is the parameter and the 
dashed line corresponds to the rated current. 
Within the rated current region, the torque 
can be controlled to be proportional to the 
torque current. 

Fig.7 shows the relation between torque 
and the current ratio angle 0 for the rated 
winding current. Two calculated curves 
obtained from equation (9) are shown in the 
figure, one is based on the motor inductances 
measured by impedance method and another by 
torque method. The details of the measurement 
will be explained later. Fig.S shows torque­
winding current characteristics when the 
maximum torque control is performed. 

In Fig.4, the speed control loop can be 
added by modifying the control software. Fig. 
9 shows the step response of the motor speed 
when the speed command is changed from -900 
rpm to 900 rpm. In the figure, the current 
limit of the winding current is 1(A) and (a) 
was obtained according to the vector control 
for id=1(A) and (b) was obtained according 
to the maximum torque control. 

e 
u 

" " go 0.5 
o 

E-< 

-(a) 

o (b) 

o (c) 000 B 

10 20 30 40 50 60 10 80 90 
D(degJ 

(a)Impedance method 

(b)Torque method 

(c) Experimented 

Fig.7. Torque and current ratio angle for 
the rated winding current. 
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Q) 
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k 
o 

Eo< 

0.5 

A Impedance method 
o Torque method 0 
o Experimented 

1.0 
Winding curro iw[A) 

Fig.8. Torque-winding current characteristics 
for the maximum torque control. 

(a) 

Speed command 
900[rpm) 

-900[rpm) 

20(ms/divj 
(b) 

Fig.9. step response of the motor speed. 
(For speed command change from 
-900 to 900 rpm) (a) vector control 
for id=IA (b) maximum torque control 

Fig.l0 is the instantaneous output torque 
characteristics versus rotor position when 
the vector control is performed for id=I(A). 
As expected, the torque ripple is notable. It 
is observed from this figure that the shape 
of instantaneous torque curves differs for 
different torque current and that the torque 
ripple exists even when the torque current 
is zero(This corresponds to the detent torque 
of the conventional stepping motor.). 

MEASUREMENT OF INDUCTANCE 

(I)Impedance Method In this method, the 
winding impedance is measured at every rotor 
position using the voltmeter, ammeter and 
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(a) 

360 

o 

(b) 

O[kg'cm) 
(c) 

0.4[kg·cm/div) 

l[s/dlv) 
(a)Rotor position elec. deg.[deg) 

(b)Torque for iq=I[A) 

(c)Torque for iq=O[A) 

Fig.IO. Instantaneous torque current versus 
rotor position. 

wattmeter. The measurement was done at every 
five mechanical degrees under the 60 Hz 
commercial supply. It should be noted that 
the current is distorted at a certain rotor 
position, which may produce the measurement 
error. The result is given in Fig.ll. 

Lu( 8) [mH] 
60 

o Impedance method 

- Torque method 

90 180 270 360 
Rotor position 9(deg] 

Fig.ll. Winding inductance versus rotor 
position. 

(2)Torque Method As is well known, the 
developed torque is given by equation (11) 
when, for example, only the U phase winding 
is excited by the dc current Iu. When the 
inductance Lu can be expressed as a 
sinusoidal function of e, the developed 
torque is also a sinusoidal function of e. 
However, when the inductance Lti 

Table 1. Results of harmonic analysis of 
inductance. 

(a) 

(b) 

(c) 

(d) 

2 3 4 5 6 7 8 9 

3.99 5.34 2.96 0.11 1.64 0.15 0.60 0.04 

3.35 5.03 2.78 0.12 1.51 0.23 0.64 0.06 

3.93 5.57 2.11 0.15 0.65 - - -
Fundamental amplitude is 100%. 

(a)Harmonic order 

(b)Iu=0.5[A](Torque method) 

(c)Iu=I.O[A)(Torque method) 

(d)Iu=0.5(A] (impedance method) 

10 

0. 20 

0.21 

-



Tu : ( Iu'/2 ) aLu/ ae -------------(11) 

contains the harmonic components, equation 
( 1 2) should be used Lu in (11) .. 

Lu(S) : LgO + Lg2 r hn cos2ne -----(12) 
n:: 1 

and, therefore, 

Tu : -Iu'Lg2 I hn n sin2ne ---------(13) 
n =1 

is obtained. Equations (12) and (13) 
that the frequency analysis of torque 
the inductance as a function of the 
position. The result is also shown in 
by a straight line Table-l shows the 
of the harmonics analysis. 

mean 
gives 
rotor 

Fig.ll 
result 

ESTIMATION AND COMPENSATION OF TORQUE RIPPLE 

The mutual inductance of the reluctance 
motor is relatively small compared to the 
self inductance(in the test motor, it was 1-2 
% of the self inductance) and, therefore, it 
can be neglected for the estimation of the 
developed torque. As a result, the torque 
equation is given as follows. 

T : r ( ik' /2 ) aLk/ BG ----------- (14) 
k=UVW 

Considering the harmonic component of 
inductance, equation (14) can be arranged as 
follows by substituting equation (12) into 
equation (14) 

T : - Lg2 [I hn n { iu'sin2nG + 
n= I 

iv'sin n(2G+2lT/3) + iw'sin n(2G-21T/3)) J 

-----------------------(15) 

Here, the winding current is approximately 
related to the d-q axis current as follows. 

[

COSS 

cos (G-2lT/ 3) 

cos(9+21T/3) 

-sinS J id 
-sin( 9-21T/3) [iq] 

-sin(G+21T/3) 

-----------------------(16) 

Fig.12 shows the results of calculation for 
iq:O[A) and iq:l(A) under the same excitation 
id:l(A). It is noted that the higher harmonic 

Torque T[kg.cm] - Torque method 

1.0 id:l[A] iq:l[A] ..... Impedance method 

O.B 

0.6 

0.4 

0.2 

0+--f--\--1~1-i_+_+_\___;f-+_+-l 

-0.4 Rotor position S[deg] 

Fig.12. Calculated instantaneous torque. 

e 
u 

~ O. 3 

'" '0 

() Before compensation 
6. After compensa tion A 

o After compensation B 

~ O.2~ __ <r __ ~--~r-~~--v 
a. 
e 
..: 

~ 0.1 

.~ ~~==~~===r~==~t}::::~:::::cJ 
OJ 
::> 
0' ... 
o 
8 

Fig.13. 

O. 2 O. 4 O. 6 O. B I. 0 
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Amplitude of torque ripple versus 
torque current before and after 
compensation. 

components of torque obtained by impedance 
method are omitted due to the inaccuracy of 
inductance. Fig.10 is the corresponding ex­
perimental result, which shows the calculated 
and the experimental values are well in 
accord. The amplitude of the torque ripple 
was measured for the constant excitation(id=l 
A) and the result is shown in Fig.13. From 
this result, it is confirmed that the 
amplitude of the torque ripple is nearly 
proportional to the torque current. There­
fore, the torque ripple can be expressed by 
equation (17), where the first term 

flT : KO FO(e) + Kl iq Fl (9) -------(17) 

represents the detent torque and the second 
term is associated with the torque current. 
In equation (17), KO and Kl are the constants 
and FO(9) and Fl (9) are the torque ripple 
functions which can be determined by equation 
(15) or from Fig.13. 

There are two stages to compensate the 
torque ripple, compensation A and B. 
(Compensation A) To compensate the detent 
torque, the compensation current iqO defined 
by the following relation should be supplied 
to the motor. 

T : K iqO + KO FO(S) : 0 -----------(18) 

(Compensation B) Once the detent torque has 
been compensated, the torque can be given by 

T K iqO + Kl Fl (S) iqO 

K iqO 1 + Kl F1(9)/K ] -------(19) 

equation (19) and, therefore, the compen­
sation current iql in equation (20) should be 

iql 

supplied 
constant 
position. 

iqO 

+ Kl Fl (9) /K 

iqO 1 - Kl Fl (G) /K ) ------- (20) 

in place of iq for developing the 
torque independently of the rotor 

Fig.14 shows the result of compensation 
A. From this figure, it is observed that the 
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(a) 

360 

o 

(b) 

O[kg·cm] 
(c) 

0.4[kg·cm/div] 

(a)Rotor position elec. deg.[deg] 

(b)Torque for iq=I(A] 

(c)Torque for iq=O[A] 

Fig.14. Result of torque ripple compensation. 
(Compensation A) 

(a) 

360 

o 

(b) 

O[kg·cm] 
(c) 

0.4[kg·cm/div] 

(a)Rotor position elec. deg.(deg] 

(b)Torque for iq=I[A] 

(c)Torque for iq=O[A] 

Fig.IS. Result of torque ripple compensation. 
(Compensation B) 

detent torque is compensated but the torque 
ripple due to the torque current is still 
remained. The amplitude of the torque ripple 
is also shown in Fig.13., Fig.IS is the 
result of compensation B. The amplitude of 
the torque ripple is measured and plotted in 
Fig.13. 

The effect of compensation is largely 
affected by the estimation of the torque. As 
explained, the torque is calculated by 
equation (IS) and the accuracy of inductance 
is important. The amplitude of the torque 
ripple has been reduced from 26 % to 6 % of 
the rated torque when the inductance obtained 
by the torque method has,been used, whereas 
it has been only reduced to 10 % when the 
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inductance by the impedance method has been 
used. 

CONCLUSIONS 

This paper describes the digital signal 
processor-based high precision torque control 
of the reluctance motor with the sinusoidal 
current excitation. Based on the analytical 
model, two types of the torque control are 
proposed, one is the ~ector control and 
another is the maximum torque control. In the 
vector control, the developed torque is 
proportional to the torque current as in the 
conventional vector controlled induction 
motor. In the maximum torque control, the 
linearity between torque and current is not 
achieved but the maximum torque is obtained 
for the given winding current. 

It is well known that the reluctance 
motor produces the large amount of torque 
ripple. In the test motor, the ampli tude of, 
the torque ripple was as much as 26 % of the' 
rated torque. For the estimation of the 
torque ripple, the accuracy of the winding 
inductance measurement is very important and, 
therefore, the measurement is discussed in 
the paper. Using the results, the torque 
ripple is estimated and compared to the 
experimental values. In addition, the 
compensation of the torque ripple by the 
current control is proposed. The prototype 
was tested and the performances were to be 
excellent. 
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Abstract 

The paper proposes a method of high resolution 
position control using an induction motor drive system. 
To get high resolution position control, it 1s combined 
two control methods. 

One is ultra-low speed control based on principles 
of impulsive torque drives by using a high frequency 
dither signal which can compensate standstill frictions 
at low ·speed. 

The other is linear control along an optimum sliding 
line which is decided by free-run characteristics of 
the mechanical load. The sliding line enables the 
improvement of a response and robustness of the system, 
and linear control area situated along this line 
improves the accuracy and stability. 

The control circuit is composed of a high resolution 
position sensor (1296Kpulses/rev.), a controller using 
by a Digital Signal Processor(DSP) and a PWM inverter 
having optimized PWM switchinp. patterns. The PWM 
pattern memorized in a ROM is made to generate the 
impulsive torque. The nsp makes simple circuit 
configurations, short calculation times and a speed 
s"msorless system. Moreover it is marle to have 
flexibiHty and intelligent abilt.ty such as auto tuning 
control for a parameter variations of the load. 

The accuracy of the position control obtained in the 
experiment is 1/1296000 (rev. ) which corresponds to 
one second of the mechanical angle. 

1. Introduction 

Recently, factory automation systems such as 
industrial robots and numerically controlled machines 
became highly advanced. Owing to maintenance-free, the 
use of an ac servo in the system would be most 
desirable in todays industry servo applications. But 
its complexity and expensiveness of the control circuit 
disturb its popularization, therefore a dc servo is 
still now widely applied for mechanical actuators. 

Because' of having stronger structure and better 
overload endurance, an induction motor is more 
suitable to ove,rworked servo drive systems than de OJ; 

ac motors using permanent magnets. 
The requirements of high accuracy, quick response 

and high stiffness characteristics are indispensable to 
highly advanced servo mechanism. In higher resolution 
position control systems, direct drives servo systems 
become applied in exchange for servo systems with 
reduction gears. But most of all these motors are 
reluctance machines with a large number of poles to get 
high position resolution. Therefore, the small size 
ana light weight of the motor cannot expected and 
smaller, air gap construction of the machine is also 
necessary to get the larger torque. 

In spite of' above merits, the induction motor has 

Makoto Iwata 

Power Supply Division 
Sanken Electric Co., Ltd 

677 Ohnohara SiJroakasaka Kawagoe Japan 356 

not applied in these systems because of difficulty to 
get the control accuracy. In the position control 
system, the more high resolution is needed the more 
affects stand-still frictions at low speed on the 
resolution. 

This paper proposes a method of high resolution 
position control strategies using the induction motor 
for improving the above problem. To reduce effects of 
the stand-still friction at low speed control, the 
pulsation torque generated by the PWM inverter is 
employed for the torque dither signaL By using 
principles of its impulsive torque drive, ultra-low 
speed control of the induction motor under 1 rpd(day) 
has been experimentally realized. (11 

It combines the above ultra-low speed control with 
an optimum sliding line which has linear control 
regions near along the sliding line. The control can 
make not only robust systems but also stabilized and 
high resolution systems. 

By the recent advancement of high speed and low 
cost micro-processors, it becomes possible to replace 
a conventional analog control circuit for a dizital 
control one. The use of micro-processors makes the 
circuit simpler as well as gives more sophisticated 
functions such a intelligent control as auto tuning 
adaptive control. The auto tuning control by the 
optimum sliding line for a parameter variations of the 
load is also proposed in this paper. 

In the experiments, the accuracy of the position 
control ( 1/1296000 (rev.», 1.e., one second is 
achieved. which has never been realized by the usual 
induction motor drive technique. 

2. Principles of the high resolution position 
control 

Because of having robustness, a sliding mode has 
become increasing. But I from the point of view of high 
resolution control, the sliding mode control method 
would not always be suitable because of its large 
torque ripples or acoustic noises. 

The control presented in this paper is somewhat 
different from the usual switching type sliding mode 
control as follows; 
(1) A optimum sliding line 

Figure 1 shows an optimum sliding line on a phase 
plane. To achieve the mentioned characteristics, the 
line is decided as close as to coincides with the free­
run decelerate characteristic curve at low speed 
condition. And at the other speed region, to minimize 
the setting time, the line has to be set up as maximull 
deceleration curve as the drive system can generate. 

Accordingly, because of the small torque ripple aD 
the optimum sliding line near the target position, it 
is not only suitable a high resolution position control 
but also torque ripples or acoustic noises to minimum. 

(2) Impulsive torque drive 
In the linear control region, the impulsive torque 

is generated by using a PWM torque modulator. In this 
regions, the torque is proportional to the status error 
S decided from the speed wand the position error 8e .a 
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Figure I Optimum sliding control on a 
phase plane 

Unear region width Ar 
T 

o 
for large Be 

(a) Relation of status 
error and torque 

(b) Relation of position 
:ia~~ and linear region 

Figure 2 Control methods of the linear 
control region 

shown in figure 2(a). The status error S will be 
discussed fully in next section. The saturation level 
of the motor torque Ts varies with Se as shown in 
figure 2(b). At low speed, the· system could have a 
fairly large gain under stable states. Therefore, for 
getting the good accuracy. it is better to use the high 
gain at the low speed and small error position states. 

It is known that a high frequency dither sIgnal 
makes compensate a non-linearity of the control system 
such as a static friction.C2J It can realize by 
superimposing the high frequency torque generated by 
inverter switchings to the mechanical load. As the 
stand-still friction must be canceled in the high 
resolution position servo mechanism, the high frequency 
impulsive torque drive would be superior to the 
linearly controlled one. 

Figure 3 shows the schematic diagram of the ultra­
low speed control system by the impulsive torque drive. 
Applying the high frequency and small amplitude 
impulsive torque slightly larger than the static 
friction, ul tra-Iow and smooth speed control can be 
achieved. As shown in this figure, the motor speed wm 
is measured by a dc tacho-generator and directly 
feedbacked. Comparing the reference wm. with the speed 
wm, the speed error wm*-wm is controlled to minimize by 
• high-gain PI circuit. Superimposing the impulsive 
triangular carrier, the non-linear .load is linearlized 
and the system becomes more stable. 

Figure 4 shows the inverter control circuit which 
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AAAli. i_Isive torque --vvv- carrier 

Figure 3 Schematic diagram of an 
ultra-low speed control 

gives the impulsive torque to the induction motor. The 
absolute value of the output of the PI circuit is pulse 
width modulated with a impulsive triangular carrier 
wave and makes run/stop(R/S) signal of the motor. The 
carrier f.requency used in the experiment is 2.0 KHz. 

The output of comparator CI which detects the 
polarity of PI output, gives forward/backward(F/B) 
signal of the motor and the output of C2 is RIS signal 
which specifies the time ratio of the non zero and zero 
voltage vector of the inverter. R/S signal gates 30 KHz 
clock signal which drives a 9 bits up/down counter and 
adjusts the inverter frequency. F/B signal is connected 
to the up/down control terminal of the counter and 
controls the direction of the phase rotation of the 
inverter. The output of the counter is connected to the 
address lines AO AS of a ROM • 

. Figure 5 shows the relation of waveforms of the 
impulsive carrier, the PI output and the motor control 
signals, FIB and Rls signals. 

The ROM is programmed to get Vlf constant control 
and least torque ripple. The impulsive torque frequency 

Figure System configuration of an 
inverter controller 

forward 

stop 

backward 

Figure 5 Relation of the PI output, impul.sive 
carriers and control signals 
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counter 

Figure 6 Schematic arrangement of PWM 
switching patterns of the ROM 

controlled by RIS signal specifies the amplitude of the 
torque ripple. If the frequency is too low, the large 
torque ripple causes the position error. But too high, 
the system approaches to linear control and becomes 
unstable. 

Figure shows a schematic diagram of contents of 
the ROM composed of four kinds of the optimum switching 
patterns. The patterns are set for getting the minimum 
harmonic current at steady states. It has four 
switching patterns; run and stop modes for forward and 
backward modes, respectively. The run mode patterns 
generate the vectors to follow the circular locus of 
the primary flux linkage WI as close as possible with 
smallest number of switching. The patterns can reael 
only by ac:cessing the address A9 to the high level. 

The zero voltage vectors patterns are used to 
decrease the vol tage and frequency of the output. 
When the patterns are accessed, the flux is stopped 
its rotation and the motor decreases its torque. 
Accessing the signal of A9 to the low level, the 
patterns corresponding address of the above switching 
pattern can be read and simultaneously the counter is 
stopped by closing the gate. 

Figure 7 shows an experimental results of ultra-low 
speed control characteristics of a conventional 0.75 
KW induction motor. The speed control from I rpd (day) 

to 1500 rpm .at no load condition is experimentally 
obtained. The speed ripple will be under + 0.2 rpd. For 
forward, locked, and backward control states, the speed 
drift and unstable states are not observed even in the 
loaded state. 

Orpd 

I rpd -I rpel 

o ~------I~~------2~~~------JOCO~~ 

t (sec) 

Figure 7 Experimental resul t of ul tra­
low speed motor control 

3. Optimum sliding control line 

The principles of ul tra-low speed control can be 
applied to linear region control in the optimum sliding 
control. But a design of a PI circuit in figure 3 is 
very difficult to get a high stiffness and stability in 
all the area of the phase plane. 

The simple PI circui t in figure 3 is only composed 
of the integrator wi th the constant gain of Ki and the 
proportional component with the constant gain of Kp. 
Since the output of the integrator lis corresponds to a 
position error Be and the output of the proportional 
component is the speed of the Diotor, those trajectory 
can be expressed by the straight line on the phase 
plane. 

If the control is perfectly performed, it moves 
along the switching line as follows; 

Kpw + KiSe :::: 0 (1) 

If the trajectory moves along the line, no output 
vol tage is appeared in toe inverter terminal because of 
no PI output voltage. But, in free-run condition, the 
trajectory doesn't always draw a straight line as 
equation (1). 

Assuming that the load torque TL composed of the 
constant stationary torque TLO, the damper component 
Ow, and the moment of inertia Jw, the state equation of 
the motion is 

[~e 1 = [~ -D~J 1 [~e 1 + [-I~J j(TLO+Tm) (2) 

where, 
Tm ; motor torque 

In the case of the low speed operation, the value IIp 

is sm&ll in comparison with TLO so that equation (2) is 
rewritten as follows; 

ee + (1/2)(TLO/J)w2 = aeO (w>O) 

ae - (1/2)(TLO/J)w2 = aeO 
(3) 

(w<O) 

where, 
SeQ; offset of the position 

When the torque component of Dw is fairly large in 
comparison with TLO such as 1n the high speed case, the 
trajectory is expressed by a straight line as follows 

ae + (J/D)w = eeO (4) 

Accordingly, assuming the offset of the position is 
zero, it may be considered that a optimum sliding line 
which equals to the free-run trajectory of the system 
at low speed as equation (3) is set to the curve 5::::0 in 
equations (5). 

Clee - C2(Kw)n (w<O) 
(5) 

= Clae + C2(Kw)n (w>O) 

where, 
n = 2, CI = I, C2 = (l/2)(TLO/J) ; at low speed 
n ... I, CI = I, C2 = J/D ; a t high speed 

The value of S is the status error. On the optimum 
sliding line, there is no switching and torque ripple­
less operation is obtained. 
But in the high speed region, the motor speed must be 
operated at the maximum speed, and must generate 
maximum braking torque if a minimum setting time is 
desired. In linear region, according to the value of S 
in equation (5), the torque is pulse-width modulated 
with the impulsive triangular carrier. It makes not 
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nsp controller (TMS320l0) 

Sa 
reference 

FIB 
Switching 
patterns 
circuit 

(Figure 4) 

1296000 pulses/rev. 

Figure 8 Schematic diagram of the DSP controller 

only itnpulsive torque but also the linear control 
along the optimum sliding line. The carrier frequency 
used in the experiment 1s 2.0 KHz. 

To co~pensate the error by the variation of the 
stand still load torque, another PI control must be 
also applied. The reference of the modulator 
corresponding to the PI output is switched to the value 
expressed by the following equation. 

U = S + K' (8e)fSdt (6) 

where, 
K' variable function of Be 

S status error in equation (5) 

The second term can be used for compensation of a 
small disturbance torque and it acts within only a 
small ge region as I ee I < 32 (sec.). In the other 
region, the integration is stopped and saturated to 
reduce the extra transient phenomena. A time constant 
KI(Be) of the integrator is a function of Be and the 
value becomes larger as near 6e=O. For a disturbance 
torque, the more works the integrator with high gain, 
the more maximum position error becomes small and gets 
higher response. The first term in equation (5) is a 
proportional cotpponent to improve stability. (3) 

4. System configuration and Software 

Figure 8 shows a configuration of the proposed DSP 
controller. As shown in this figure, the position 6a of 
the induction motor is measured by a optical position 
sensor (81000 pulses per revolution) I and one p~lse is 
electrically divided into 16 to obtain the pulse train 
of 1296000 pulses per revolution which corresponds to 
one second of the mechanical angle. 

Comparing 6a with the digital reference 6a* by a 24 
bits up/down cOl!nter, the 24 bits position error e is 
applied to the nsp (TMS320l0) controller. Inside of the 
controller, the data calculated using upper 16bits, but 
limited in 20 bits to simplify the calculation. 

In this controller, calculating the status error 
Uin equation (6), FIB signal and RIS time ratio data 
is decided just as the same way as shown ~n figure 4. 
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The RIS time ratio data is transformed RIS signal by a 
pres~table timer. But the amplituqe of the carrier is 
modulated by AT shown in figure 2(b) and the PI gain is 
changed according to the optimum sliding line. FIB 
signal and R/S signal are applied to ttle switching 
pattern control circuit as shown in figure 4, and 
dri ves the PWM inverter by the optimum switching 
pattern. 

Figure 9 shows the flowchart of the proposed linear 
sliding control algorithm of the nsp controller. 

The motor speed w at (k+I)T is estimated in high 
speed conditions by the following way. 

s - CI6e - C2cJl 
(w < 0 ) 

S = CI6e + C2W n 
( w > 0 ) 

.... __ .-_---1 FIB, RIS 

Figure 9 Flowchart of the DSP software 



w«k+I)T) ~ Be«k+I)T) - Be(kT)/T 

where, 
8e ; position error 
T ; sampling period 

(7) 

It is only calculated by the pulse number of the 
position sensor during sampling period T. Sampling 
period T in the experiment is 500 Vsec. (2.0KHz) which 
is equal to the period of the impulsive triangular 
carrier wave. Assuming that the output pulse of the 
position sensor is 2.0 KHz, the minimum detectable 
speed of the motor is 0.0926 (rpm). 

When the nsp estimates the speed w as zero, another 
measuring scheme must be applied under 0.0926 rpm. It 
is realized by measuring the pulse duration of the 
position sensor as shown in figure 8. When the value of 
w«K+l)T) becomes zero, the low speed detector works by 
switching SW to wLOW side. And when the counter data of 
the .low speed detector is saturated, the speed W Is 
regarded as zero. Be is limited 20 bits (+524288 ~ _ 
524288 pulses) in this controller. 

To get the status error S, Be and ware substituted 
in equation (5). When IBel < 60(32sec.), another PI 
control expressed in equation (6) is applied. The 
linear region width AT is decided by the position 
error. It corresponds to amplitude of the" impulsive 
triangular carrier wave. 

The status error S calculated from equation (5) is 
compared with zero and give FIB signal. The absolute 
value of S is pulse width modulated with the impulsive 
triangular carrier to get RIS time ratio, and gives Rls 
time ratio data. 

The optimum sliding line with auto tuning controlled 
for a parameter variations will be discussed in next 
section. The calculation time is accomplished within 60 
llsec. It is so sm;U compared to T, but, considering 
from the stability problem, it is better to set the 
value as small as possible. 

5. Auto tuning control 

The recent development of a micro-processor enables 
digital controllers with a high intelligent abilities. 
Increasing the demands of complex servo mechanisms, it 
becomes very difficul t to adj ust the gains of 
controllers. 

Accordingly, an auto tuning control is now a very 
promising method to the 'motion control system. (5) In 
this system, a simple auto tuning control 1s tried by 
changing the slope of the optimum sliding line with a 
parameter variations. The optimum Sliding line is 
varied instantly by observing the relation of the phase 
plane trajectory and the sliding line. 

The phase plane trajectory usually varies along to 
specified the sliding line as shown in figure 10(a). 
But as shown it:l the trajectory (b), when the slope of 

w 
Speed 

B"'().02J rad div. 

""<J.185 rps div. 

Figure 10 Phase plane trajectories for 
various sliding lines 

(simulation results) 

the sliding line is larger than that of the trajectory, 
the trajectory has some ripples. On the other hand, as 
trajectory (e), when the slope of. the sliding line is 
too smaller, the overshoot and the limit cycle is 
observed. Accordingly, the optimum sliding line would 
be able to specified by observing the motor and load 
characteristics variation. 

Figure 11 shows a control result using the tuned 
optimum sliding line. As shown in this figure, two 
auto tuning lines 5L"'O and 5H-0 are considered in both 
sides of the optimum sliding line. When the trajectory 
collides with the lower auto tuning line SL=O, it is 
better to use the larger slope optimum 'sliding line to 
get more stable response. On the other hand, the 
trajectory doesn't reach the higher side of the auto 
tuning line 5H=0, the slope'of the optimum, sliding line 
must be increased. 

The auto tuning lines 5L and 8H are specified in 
this paper as follows; 

SL ~ CI ee - C2(KLw)n (w<O) 
(8) 

SH - CIBe - C2(KHw)n (w>O) 

where, 
KL ; K - .6K , KH ; K + .6K 
K ; the gain of equation (5) 

In this region, only the gain of K in the optimum 
sliding line is adjusted, whether the trajectory 
collides with the optimum sliding line or not. 

F,igure 11 (a) shows the trajectory with no auto 
tuning where the ripple is observed in the phase plane 
trajectory. Figure (b) is auto tuning where the ripple 
is compensated. These real time control is easily 
executed by the nsp controller. 

Figure 12 shows a schematic diagram of the nsp 
software of proposed auto tuning control. S in equation 
(5) is calculated from Be and w by the sliding line 
controller and SL and SH are by the auto tuning lines 
controller. Comparing the value of S with the value of 
SL and SH, the output of 3-state comparator is 

Speed 

Be'().023 rad div. 

w'().185rps div. 

Position 
error 

(a) no-auto tuning control 

Speed 
Position 

error 

Be ~ 0.023 rad div. 

w '().185rps div. 

Figure 11 

(b) auto tuning control 

Control resul ts using the tuned 
optimum sliding line 

(simulation results) 
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auto tuning controller 

digitally integrated for calculating the optimum gain 
factor K. At every sampling period, K 1s decided by 
adding the adjusting coefficient Ac of K which 
corresponds to the output of the- 3-state comparator, 
6K, 0 or -.6K. Thus the optimum sliding line can be 
adjusted if auto tuning lines are decided. 

Figure 13 shows a flowchart of the auto tuning 
control. Only the auto tuning control loop is expressed 
by solid line. To get the values of S, SL and SH, ee 
and 6J are substituted into equations (5) and (8). 
Comparing the results S with SL and SH, the adjusting 
coefficient Ac of the gain K is decided using above 
method. When S is smaller than SL, the adjusting 
coefficient Ac is -.o.K. When S is larger than SH, Ac is 
+6K. 

Accordingly, when S is situated between SL and SH, 
the sliding line is recognized as an optimum sliding 
line, and Ac is zero. Otherwise, K is modified by Ac 
at next time. To decide the gain K of the optimum 
sliding line, Ac is integrated at sampling period. The 
adjusting coefficient .6K is set to 0.2K in this 
software. The calculation for the auto tuning is 
accomplished within 10 J..Isee •• 

Be r······ .... --.. ~. 
~~:.:?-'t ~:~:~) r.-- -.... I .. _ ..... , 

: w(k)-ee(k+I)-Ile(k) .: 

:::::::: ::1:::::: :::: 
S = Clile - C2(Kw)n 

Figure 13 
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Flowchart of 
auto 'Luning 
contro L 

..... __ --....J interrupt signal 

6. Experimental resul ts 

Figure 14 (a) shows the step response at no load 
condition and figure 14 (b) shows its phase plane 
trajectory under the condition. The reference ea* is 
1296000 pulses - 2w (rad.). In this figure (a). 
because of the position error llmiter(20bits), it is 
saturated from 1296000 pulses to 524288 pulses. 

Figure 15 shows the transient response near the 
target position. In this figure. the minimum 1 step of 
the position error corresponds to II 1296000 (rev.) • 1 
(sec.). The accuracy of the position control obtained 
in the system is 1/1296000 (rev.) ~ 1 (sec.) 

Figure 16 shows the distribution of the position 
error of one hundred times tests. Considering the 
allowable error of ±1 pulse, 90 % of the test results 
are satisfied the error limit. 

Figure 17 shows the response of the stepwise 
disturbance torque input. As shown in this figure, the 
position 'error is observed during 20 msec but it is 
canceled by a disturbance compensator shown by equation 
(6) • 

Figure 18 shows the trajectories of the untuned and 
tuned cases. If the sliding line is not optimum, a 
trajectory ripple are observed 8S shown in figure (a). 
It gives not only the torque vibration to the 
mechanical load but also a bad response and accuracy. 
Comparing with these figures, it is shown that the 
trajectory ripple and the response are fairly improved 
by auto tuning control as shown in figure (b). 

pos~tion 
error 

ee 

speed 

w 

I I 
524288puise tl \ 

12%1XXlpulse \ 

1\ ea". 2w(tad.) 

0 
\ 

/ 3.0 rps~div. 

IV--I--' 1~/iiv. 

(a) Step response at no load 

w 

~~ eo 

ea"-2w(r \.i) ~ 
ition 
or 

0 

\ 
3.03 rps/d v. I"-1---.. 

I'-i 

(b) Phase plane trajectory 

Figure 14 Step response of 1 revo1utiqn 
of the system 



Figure 15 Transient response near the 
target 

" ···1··"···1 
37 f test n~ri 
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Figure 16 Distribution of position 
errors 

7. Conclusion 

In this paper, to get the high resolution position 
control method of an induction motor t skillful control 
techniques are applied. And the following resul ts are 
obtained: 

1) By using the impulsive torque drive at 
region has a good stability and precision at low 
area. 

linear 
speed 

2) Optimum sliding mode control with the variable 
gain which is different from conventional one, enables 
the improvement of an accuracy, responses and 
robustness. 
3) For compensation of a disturbance torque at the 

stand-still condition, the PI controller with the 
variable time constant is also employed. 

4) The use of the DSP makes simple circuit 
configurations and a speed sensor less system. 

S) The system' is made to have flexibility and 
intelligent ability such as auto tuning control of 
sliding mode switching line for parameter 
variations in the motion control system. 

As' the results, the proposed motion control method 
would be available in a high resolution servo under 1 
sec. resolution. 

Through experimental resul ts, the validity of 
proposed control is provided to be very promising and 
skillful techniques to the high resolution position 
control system. 
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Figure 17 Response to the disturbance torque 
input 
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A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator' 

ILJ.Ch'lm:p Hnd J.A.Taufiq, Oept. Ele-ctronic A· El(>(:lrical En~., llni\"€'rsity of Birmingham, Birmingham SIS 2IT, UK 

This papPI' d("scrit~s a gvst('m for' dyrvuni('al J~ 
calculating optimizf'd pulse ~idth mcxlulated tr\.~1) 
~a\'f'forms for liSP lo.:ith volt.aq:e source im:erter (V51 l 
ff'd induction motor drives in rai hmy traction 
appl iCfltions. A DfS32010 siECnal procf'ssin~ 
microproc{'ssor, capable of fast ari t.hmetic is 
i ntt.'rfac('d t.o R. nOH'1 random accE'SS memory based 
wavefonn genE-rating hardv.:are. This pro\'idE's t.he 
capabi Ii t;.· to control waveform detai 1 impossible wi th 
more conventional microprocessor based systems. 
Although the pap€"r concentrates on the implementation 
of a parti cular algorithm, the design can implement 
variable pulse widths in mul tiphase systems and in real 
time. An important aspect of this work is the role 
playiE"d by microprocessor simulation in testing the 
design. 

Nomenc la ture 

m number of switching angles per quarter cycle of 
PWM wavefonn. 

cx..k kth switching angle 
NPI modulation depth of PWM wavefonn 
Vdc inverter de 1 ink vol tage 
VSI voltage source inverter 
f inverter output frequency 

Introduction 

With the increasing availability of high power gate 
turn off (Gro) thyristors, there has been a renewed 
interest in inverter drives for electric multiple Wlit, 
metro and light rail applications. Comparing the GTO 
inverter and GTO chopper from an economic viewpoint, it 
is widely accepted that the GI'O voltage source inverter 
(VS!) is the most favourable of all the inverter 
configurations. The GIO VSI does not require a 
preconditioning chopper and. input voltage fluctuation 
is compensated by the VSI controller. 

From a signalling vi~int, the main di fference 
between the VSI and the fixed frequency chopper drives 
is that the fonner can potentially generate components 
over a wide range of frequencies as the VSI operates 
from minimwn to maximum frequency. Previous experience 
wi th chop~r generated interference suggests that 
methods of control which can theoretically eliminate 
components at the signalling frequencies will be 
required. by most metro authorities when new equipment 
like the GTO \.rSI is considered. In this respect, it has 
been shown [1,2] that a harmonic elimination optimized 
WM based ratio changing scheme which is tailored to 
suit the type of signalling system used. is the best 
solulion. Although other types of PWM scheme such as 
regular sampled .and distortion minimised are more 
commonly used in industrial AC drives, these are not 
really the ideal in this particular application. 

With these drivE'S, the problem of signalling 
interference is more pronounced with power frequency 
type track cireui ts. As in this case the signalling 
frequenc.ies are relatively low, typically below 400 Hz, 
any components at these frequencies generated by the 
GTO \lSI will not be significantly attenuated by the 
input fj 1 ter of t.he t.raction equipment. Therefore it is 
essential t.o ensure that the Gro VSI does not generate 
any components at these signalling frequencies. In the 
case of audio frequency type track circlli ts, the range 
1)[ signalling frequencies used is usually around 2-10 
KHz and with t.he t.ypical constraint on the maximum 

im'ertpr ~\oo'itching: frequency, it is not possible to 
('J iminatC' the> inverter generated hannonics in this 
h,'md. IIm,:e\"(~r'l with typicR,l input filter values I it can 
be> shown that the si~nalling frequency components in 
the rails will bE" much less than the typical threshold 
1",",'1s (1,2], 

To date, the implementation of this type of optimized 
P\-.:-'I scheme has been I imi ted to a look-up table of the 
exact switching angle data, which is precomputed for a 
given inverter input volta~e and ratio changing scheme. 
A high incremental resolution of the angles may be 
needed which could requi re substantial memory. Also 
fluctuations in the OC input voltage can only be 
compensated by perfonning an interpolation of exact 
switching angle data. Therefore the preferred solution 
would De to generate these switching angles on-line. It 
has been shown [2] that it is possible to approximate 
thE" exact swi tching angle . trajectories by an 
algorithmic approach, which results in relatively 
simple equations. This algorithm has also been shown to 
generate near optimal switching angles for any number 
of angles per quarter cycle, m. The equations to be 
computed are derived in 11] and can be sumnarized as 
follows: 

For odd k, (k- 0.5) x 59.20 

l!.k = 0.4 sin [ m + 60.4°] 

(k+1)x60° [1200 X4kXNP'] 
~ = (m + 15 - 0.8 (.1+ 15 .. 4Dk 

where l1Dk = 0 for NP1 .:s 0.8 

'3 (NP1_ 0.8) a 1800 X k ] 
6lJc = 0.Q9m. X siD [~ for NP1 > 0.8 

For even k, 
k 12.5Q 

] 

Ok = 0.4 sin [ r.;:v ( 58.60 -1iii=2») 
kx60°1200 XAkXHP1] 

~ = li+'iT + [ 0.8 (m+ 1) - Aile 

(2) 

where AIle "" 0 for NP1 < 0.8 

14 (NP1_0:8)' [ 1800 • (k-',5)] 
l!.Ik .. 0.09m aiD III for JfP1 > 0.8 

Choice of microprocessor 

This type of microprocessor based PWM wavefonn 
generator design often uses a general purpose 
microprocessor interrupted by a counter-timer as 
described in [3]. Three different types of 
microprocessor, ZBO, 8086 and TMS32010 were benchmarked 

TABLE 1 
PERFCJR.'lANCE OF 3 PJl(X;ESSORS FOR OPI'IMISED PI'M SCHEME 

Z80(4MHz) 8086(5MHz) TMS32010(20 MHz) 
multiply time 
(16,,16 bit) ..... 
divide time 
(16/8 bit) ....•.. 
memory/register 
transfer time 
(16 bit word) ...• 
estimated time 
to compute (2) 

300 

400 

(NPI < .8)....... 3000 
on chip RAo'i 
(bytes).......... 0 
timer peripheral 

30 

40 

310 

o 

availability..... good good 
multi-level 
interrupts. . . . . . . good good 
{all times are in microseconds} 

0,2 

4 

0.2 

20 

288 

poor 

poor 
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for this wa'"E'fonn ge-llE."rator as shown in tablE" 1. 

Onl~' th£' 'r.-IS32010 can conn:'1ute all th(> S\.;i tching angles 
with Ul(~ algol"ithm in lh~ desirf'd t i~ of 2 ms. It also 
h.-"lS E.'noll~h random access mE"mor~· ( H:\~1l on ch i p for 
(>xcclllin~ th('> ah;orilhm. The main difficult~· .... ·ith the 
TMS32010 is t.hf' lack of suitR..bl('> counter/timer 
l-"I("riphE"I'f\ls. The~fore a lotall~' eJiff£'rC"nt approach has 
~n usC'd for "avefonn generation. 

On£' mE.~t.h()d of generating a "ave-fonn is to stOrE" it as a 
binar~· patt.€'rn in RM-t. Thus a square wave, for example, 
can ~ cI'E"ated by storing N binary one's followed by N 
zeros and reading these locations at regular intervals. 
The RAM address becomes in effect the wavefonn angle or 
time which can be generated by a binary counter. This 
method is not efficient for generating a changing 
wavefonn because a large munber of RAM locations must 
be continually updated. However the memory based 
wavefonn generation hardware used here is based on the 
storage of identifying codes only at the addresses 
(switching edges) where a wavefonn state change occurs. 
This reduces to a minimum the memory locations lIsed to 
define the desired wavefonn. 4096 words of 8 bits are 
used wi th two bits of each word per phase, so that six 
bi ts can produce a three phase wavefonn. 1be wavefonn 
is stored as a 'map' of switching angles or times as 
illustrated in Fig. 1. 

H --RAIl _ .. ----- ~ 
o 1 14 

} bit~ 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 
1 1 1 0 1 1 1 
1 o 1 1 1 1 0 
1 o 1 1 1 1 1 
1 11 1 1 0 1 

1 o 1 1 1 
1 11 1 1 
I" O' '1 1 1 
1 11 1 1 

1 1 
0 1 
1 1 
0 1 

: ) 
: ) 

3 
2 

bit 0 

:::~"-1 

:::~ ....... z 

:::~"""'3 

--~~-----ongle 

Fig.1 Codes to generate a three phase wavefonn from RAM 

Each address location contains the two bits per·phase 
coded as follows to load an output latch as the address 
generator (binary counter) is incremented: 

11 no change in latch state. 
01 set output latch to '1'. 
10 reset output latch to '0'. 
00 not used. 

The outputs of three such latches thus generate the 
wavefonns for a three phase supply. Before using the 
RAM, all locations are initialised to the 11 (no 
change) condition. A wavefo~ is created. by writing 
either a 01 or a 10 into RAM locations which correspond 
to the desired switching angles. To change this 
wavefom, the contents of these addresses must be reset 
to the no change ( 11) state before new values are 
written. 

Two methods may be used to generate a wavefonn of 
variable frequency. To drive the coWlter that supplies 
the RAM address from a variable frequency source while 
storing a complete wavefonn cycle or alternatively from 
a fixed frequency source so that the RAM addresses 
become equivalent to time delays. The first method 
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requirE'"S an inconveniently high frequency source of 70 
MHz to givE" 'hE" 1% resolution required at 150 Hz. The 
s~conrl fIlE'thod. rE"'qui res the RAM contents to be chRnged 
several t i~s in on(' cycle and therefore to be ul~at.ed 
frequently even when A constant output f['('{juf>nc:y is 
genC"rated. ThE> potential accurac~{ of this generator is 
high and is the one used here. This method of using RAM 
external to the processor addrE'sS space for generating 
the PWM wavefonns for a variable frequE'ncy VSJ is 
apparantly "novel. Existing wavefonn generators usually 

lise SOllIE" fonn of cOlmter-timE."r. 

TMS32010 wavefonn generator interface 

The implementation of this scheme is shown in Fig. 2. 
The TMS32010 'CLKOOT' signal is divided from 5 MHz by a 
prescaler to drive the 12 bit binary count,er. This rate 
is current.ly 1.25 MHz. Thus external RAM address 
updates by the counter are synchronised to processor 
operations. During every machine cycle, the TMS32010 
produces one of the following MlITUALLY EXCWSIVE 
signals: 

(1) MEN 
(2) WE 
(3) DEN 

instruction fetch. 
port wri te (output). 
port read (input). 

In a TMS32010 running at 20 HHz, MEN occurs at a 5 HHz 
rate except during the input and output operations. 
This makes it possible for the hardware cOWlter to 
'steal t the MEl\!" cycles for updating the wavefonn from 
the output RAM while allowing the TMS32010 to access 
the RAM without constraint. In Fig.2 the following 
operations are carried out: 

Fig.2 Data pathways in the wavefonn generation hardware 

* Output a new divider value (A) 
* Input the current address (B,G). 
* Output a new RAM address (C) to the buffer/latch. 
* Input RAM contents (I,D) at the previously latched 

address (H) . 
* Output new RAM contents (E,J) from the TMS32010 at 

the previously latched address (H). 

The above TMS32010 operations all coincide with either 
a DEN or WE TMS32010 machine cycle and are interleaved 
wi th output latch updates performed in hardware during 
the MEN (data path K ; address path F) time slots. 

Software Overview 

The 1MS320l0 software may be conveniently split into 
four sections: obtaining m and NFl, calculation of 
switching angles, conversion of angles to time delays 
and output RAM update. 

Obtaining m and NP1 

The inverter output frequency and dc link voltage 
values are obtained from two analog to digi tal 
convertors. From these two inputs, the two varia,bles in 
(1) and (2), namely m and NP1, need to be deduced. The 



required value of m for a given value of inverter 
output frequency is obtained from a look up table 
equivalent to Fig.3. 

(svitcbias freq. (Hi» 

10 20 30 40 50 60 70 80 90 100 

Fig.3 Ratio changing scheme for deriving m from 
inverter output frequency 

This particular ratio changing pattern has been devised 
to ensure that the VSI drive does not produce any 
components at typically used signall ing frequencies 
over the entire inverter output frequency range [2]. 
The required variation of the VSI fundamental line 
vol tage wi th inverter output frequency is also stored 
as a table. In railway traction systems t Vdc is subject 
to a +20% -30% variation. In order to keep the motor 
line voltage constant, irrespective of this variation, 
NP1 is altered to compensate. 

Swi tching angle calculation 

The angles are calculated from ( 1) and (2) using 
integer arithmetic. The output of this stage is a list 
of switching angles between zero and 1t /2 radians. Sine 
and cosines are derived from a table. 

Angle to time conversion 

The switching angles must be divided by the inverter 
output frequency f to give corresponding time delays. A 
16 bit word does not give the required 1/300,000 time 
resolution. This problem has been solved by a fonn of 
block floating point [41 which may be efficiently used 
on the THS32010. For frequencies above 12 Hz, times are 
divided by 4,lbut below 12 Hz, they are divided by -64. 

Updating wavefonn generation RAM 

The expanded time value hss 22 bits. Bits 0-11 become 
the RAM address, bits 12-21· represent the number of 
times that the RAM must cycle through its 4096 
addresses to reach the correct swi tching time. 

Table 2 shows the updating of this RAM which is carried 
out on ei ther the upper or the lower 2048 addresses. 
While the lower addresses are being accessed by the 
hardware which reads RAM contents to the output latch, 
the upper ones can be updated by the 'IMS32010 and vice 
versa. Before new switching times can be written to a 
2048 word portion of RAM, the times from the previous 
cycle must be deleted. Note thst the 1MS32010 hss 
unrestricted access to the chosen half of the memory 
and therefore updating does not have to be done in a 
particular order. Addresses containing switching codes 
for a particular half cycle are saved in 1MS32010 

TABLE II 
OUTPUT RI\M ACfIVITY WITH TIlE P.<\.<;SAGE OF THIE 

RAM ADDRESS/ WAVEFORM DELETE OLD INSERT NEW 
CUJNTER VALUE GENERATED CODES CODES 

o - 2047 from RAM from RAM for RAM 
cycle N c~'cle N-l cycle N 

............... 0-2047 20~8-~095 2048-4095 
20~8 - 4095 from RAM from R~M for RAM 

cycle N c~·cle N cycle N+l 
............... 2048-4095 0-2047 0-20~7 

o - 2047 from RAM from RAM for RAM 
cycle N+1 cycle N c~'cle N+l 

............... 0-2047 20~8-4095 20~8-4095 

2048 - 4095 from RAM from RAM for RAM 
cycle N+l cycle N+l cycle N+2 
2048-4095 0-2047 0-2047 

internal data memory for deletion during the next 
cycle. As the end of the ~ wavefonn will hardly ever 
occur at RAN address zero, the address of this point 
nlst be added t.o the swi tching t.imes for the next eye Ie 
of the wavefonn. 

Testing the System 

Practically all the development of this project was 
perfonned on simulated rather than real hardware. 

The 1MS32010 simulator 

A simulated TMS32010 [51 was used to test the software 
to the point where it could be used with confidence in 
the tsrget hardwsre (see appendix A). This si ... llator 
has particularly versatile means of interfacing to 
1MS32010 streams of test dsts held on the host 
computer. Additionally, real or even non-existant 
peripheral devi.ces can be simulated in the 'e' 
'language. In this case, the wavefonn generator hardware 
of Fig 2 was completely simulated in software. 

TMS32010 eguaUon calculations 

The scheme shown in Fig. 4 was used to check the 
TMS32010 equation calculations perfome<l in integel' 
ari thmetic against 'accurate' values carried out in 
floating point. Values of NPI and m were ·supplied as 
input dsts fUes to sinrulated 1MS32010 ports. Angles 
computed by the simulated TMS32010 were saved on fUe. 
'Ibis fi Ie was used as the input to a BASIC program 
which computed the same angles in floating point 
ari tiunetic, and thus the 

CAILIJlATE 
AllGlES 

IAI 

TI1SJlO 
AIfi!IIIlHH -

CALt\JlATE 
Al«jLES 

181 

Fig.4 Testing TMS32010 arithmetic for angle calculation 
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errors in the TMS32010 program. This comparison showed 
that the worst case error was of t,he order of 0.03%. 
Had this been perfonned in the target hardware, the 
data (NPl & m) \<"ould have been deri~'ed from ,l\IX.::s and 
been neither exact nor repeatable. Speed tests 
conducted on the simulator show that the time to 
compute (1) on the TMS32010 is 24.8 microseconds (odd 
k) and for (2) (even k) is 32.4 microseconds with NPI 
less than 0.8. The corrections for NPl > 0.8 add 23.-1 
microseconds. 

Simulating the wavefonn generation hard\<"are 

The TMS32010 simulator allows thE' "cormection" of a 
simulated peripheral device lIsually written in 'e' 
(appendix A). In order to expedite testing of the 
complete 'IMS32010 software, a simulation of the 
wavefonn generation hardware was created and interfaced 
to the simulator. It allows testing which would be 
nearly impossible on the real hardware. 

The wavefonn generation RAM is simulated by an array of 
integers updated entirely by the TMS32010 program which 
can be examined by the user or written to file. A COWlt 
is kept of the number of times that the simulated RAM 
address passes through zero allowing output pulse 
widths to be computed and saved on file for test 
purposes. Note that digital values of long times 
(equivalent to more than 2048 RAM addresses) -are not 
obtainable from the hardware. They could include errors 
introduced outside the angle -computations e. g. due to 
the block floating point representation or failure to 
delete angles from the wavefonn generation RAM . 

The speed of the TMS32010 program in perfonning the 
hardware updates is of course very dependant upon the 
type o-fwavefonn and the part of the cycle involved. 
However as an indication, at 17 Hz, simulation shows 
that 127 microseconds is necessary to update the 
hardware during the worst case RAM half cycle. This 
compares with 1.6 milliseconds which is available while 
the RAM cycles through 2048 addresses, 

Perfonnance in hardware 

The functional integri ty of the hardware was tested 
wi th small programs to excercise the various sections. 
Thus, by the time the software described above was 
transferred to the target system, the hardware was 
known to be capable of executing a TMS32010 program, 
generating a wavefonn from the wavefonn generation 
hardware and correctly reading the analog to digital 
converters used to input the dc link voltage and the 
inverter output frequency. Waveforms produced by this 
hardware on the first trial, agreed with expectations 
predicted by simulation. 

Design Adaptability 

The high speed of the TMS32010 has resulted in spare 
computing capacity which can be used in several ways. 

Non-complementary wavefonns 

The system described. so far can generate the three 
phase pole switching waveforms to drive a three phase 
inverter. In each phase, the complementary device can 
only be switched on at a finite time after the other 
device in the same phase has been switched off, thus 
avoiding a dc link short circuit. Therefore, for a 
definite time interval, both gate drive signals for a 
phase are off. This delay time td must be greater than 
the turn-off time tq of the GTO used. tq varies wi th 
the type of GTO and the anode current being coovnutated. 
Therefore, in this application, tq will vary depending 
on the point in the inverter current waveform at which 
t.he inverter current is turned off. However, for a 
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given application, it is IX>ssible to predict the 
maximum value of tq , and td is set to a constant val ue 
\<"hich is slightly greater than this. Having derived the 
ideal complementary .gate drive wa\-eforms from the thr€'e 
Th1!-f waveforms, the effect of td is to delay the turn-on 
edge of these gate dri ve wave-forms and leave the 
turn-off edge unaltered as shown in Fig. 5. 
This dela:..' can be incor}XJrated in hardware but, \;o'ith 
this RAM based method of generating the waveforms, the 
delay can be incor}XJrated in software. This reduces the 
hard",'are requirement especially if the delay must be 
variable. All four binary codes are used wi th t\<,'o 
output latches per phase in the swi tching angle map as 
follows: 

11 output latches remain unchanged 
10 set output latch I, reset latch 2 
01 reset output latch 1, set latch 2 
00 reset both latches 

With this system, a typical switching sequence might be 
as follows: 

10 device 1 on, device 2 off 
11 
00 both devices off 
11 
01 device 2 on,device 1 off 

Of course twice as many RAM accesses need to be made 
but this is no problem with the TMS32010. A PAL e.g. 
the PAL 16R6 is ideal for implementing the Boolean 
expressions to directly generate the 6 GTO gate drive 
signals from the RAM contents. 

=- flJ1J1 l' • I I, I 

ileal JLnJ1 
gate 0, ,',,' 

drive 1LJUij 
~SO, '1'1' 
_, ...... 1:ri :ri:ri 
.~- .:J LLJ L!J L 
gate 0, • I " I 

drive 11 : r1 : r1 : 
waveformsO~ -.. LJJ.U 

td 

Fig.5 Generation of G'IO gate drive signals 

Due to the turn-off time tq , the G'ID inverter pole 
switching waveform will be slightly different from the 
generated PWM waveform. This small error in the power 
electronics reproduction of these wavefonns will result 
in a slight change in the harmonic spectrum measured. in 
the power circuit compared with the ideal case. It is 
possible to compensate for this effect if the variation 
of tq with anode current is known [ 7]. The spare 
computing capacity on the TMS32010 means that it will 
be possible to incor}XJrate a closed loop controller to 
compensate for the varying GTO turn-off time. 

Practical Resul ts 

After extensive testing and debugging of the software 
using the simulation facility already described, the 
software was evaluated in the target hardware. Prior to 
interfacing the TMS32010 based waveform generator to a 
G'ID inverter, the hannonic spectra of the near optimal 
pWM wavefonn produced were analysed. Fig .. 6 shows this 
ideal pole switching wavefonn spectrum for m = 5 and, 
as expected, the 5th, 7th, 11th and 13th harmonics 
(i.e. m-l harmonics) are almost zero. This confirms the 
theoretical work carried out on evaluating the accuracy 
of the algorithm [1]. As explained in [ 1] , thE' 
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Fig.6 Ideal pole switching waveform spectnUR for m = 5 

algorithm is least accurate when m = 3, especially for 
high NP1 values. This is clearly demonstrated by Fig. 7, 
which shows the effect of the increase in the value of 
NPl as Vdc decreases to its minimum value • .. , .7 I6t+1 VOlt ••• ... , ... : 
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Fig.7 Ideal pole switching wavefonn spectra for m = 3 
showing the effect of a decrease in Vdc 

Using the algorithm, if the 7th harmonic in the m = 3 
mode is unacceptably high in amplitude, then as 
explained in [11 the situation can be easily improved 
by using the exact switching angles instead. The 
1MS32010 based wavefonn generator was finally 

5 7 13 17 19 

(a) Line current spectnun 

6 12 18 24 30 

( b) Link current spectrum 

Fig.8 Measured spectrum for m = 5 

interfaced to a 2kVA GTO VSI driving a small induction 
motor. The measured. line current spectrum for m = 5 is 
shown in Fig. 8a and the' first signi ficant hannonic 
present is the 17th as expected. The corresponding 
inverter OC link current wavefann spectnun is shown in 
Fig.8b. As anticipated, the 6th and 12th DC side 
hannonics are aIlIK>st zero and the first main hanoonic 
is the 18th due to the 17th and 19th N:; side harmonics. 
Similarly accurate results were also obtained for 
higher ValuE'S of m. 

Further tests were carried out to investigate the 
transition during gear changes. Fig.9a & b show the 
inverter line current wavefonn during the transition 
from m = 5 to m = 3 and m = 1 to m = 0 (quasi-square) 
respectively. As can be seen, the transitions occur 
smoothl~' and there is no observable transient in the 
inverter line current wavefann. 

Conclusion 

The use of a hannonic elimination optimized PWM ratio 
changing scheme is essential if railway traction VSI 
drives are to be compatible with signalling systems. In 
particular lit is shown that it would be advantageous 
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if the switching anglE:"s could be computed OIl-line by a 
g('fl€>ralized algorithm which gives nE:"ar optimal 

(b) Transition from m = 1 to 0 

Fig.9 Inverter line current during ratio changes 

switching angles. This paper shows that a high speed 
signal processing microprocessor can be used 
efficiently in implementing such an algorithm. The 
calculation time is extremely small when compared with 
conventional processors. The fast cycle time makes it 
desirable to use·novel methods for waveform generation. 
The one described gives exceptional wavefom control 
and a low chip count. 

The use of an Wlusual TMS32010 simulator has not only 
allowed the testing of TMS32010 algorithms using 
integer arithmetic but also enabled the exact pulse 
width output values to be analysed. Due to the Wlusual 
output stage, this would have been di fficul t in real 
hardware. It has allowed complete debugging of the 
software before the final implement.ation. 

In this implementation, the computation of E:"ach even or 
odd swi tching angle takes 24 .8 liS or 32.4 ps 
respectively. When the required flUldamental pole 
switching amplitude is greater t.han O.8Vdc PI/2, the 
correction factor equations add a further 23.4 )lS. 
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AEE!1ndix A The TMS32010 Simulator 

The Simulator used in this work [5,8] is part of a 
TMS32010/20/C25 development syst.em written by one of 
the authors (RJC). It includes a TMS32010 assembler and 
simulator the normal host being an IBM Personal 
Computer. 'The simulator accepts machine code created by 
the assembler and allows simulated execution of 
1MS32010 programs. The usual facilities such as break 
point setting, access to user symbols, instruction 
timing elc. are provided. This simulator is . 
psrticularly intended to be used for linking digital 
data streams to TMS32010 i/o ports or memory for test 
purposes. One advantage is that values are precise 
digi tal values rather than analog signals and are thus 
repeatable and accurate. In addition, powerful software 
tools on the host may be easily used to generate or 
analyse i/o data. 

The use of such a simulator would be limited. without 
the ability to simulate essential peripheral hardware 
e.g. the wavefonn. generation RAM. This simulator is 
supplied in object library fonnat. The user may create 
a software simulated peripheral 'device t, to be linked 
at the object code level to the TMS320 simulator. Such 
a simulated peripheral is usually written in '·C'. This 
enormously extends the use of the simulator and allows 
debugging methods impractical in hsrdware such as the 
trapping of complex i/o data. Simulated peripherals 
have been used not only to allow the use of real 
hardware and imaginary hardware used only for testing. 
The simulated peripheral concept has also been used (9) 
in multiple TMS320 simulation, program execution in a 
mixed real/simulated envirorunent and simulator 
veri fication. 
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ABSTRACT: 

This paper discusses practical considerations for 
implementing the discrete extended Kalman filter in real 
time with a digital signal processor. 

The system considered is a Permanent Magnet 
Synchronous Motor (PMSM) without a position sensor. 
and the extended Kalman Filter is designed for the on-line 
estimation of the speed and rotor position by only using 
measurements of the motor voltages and currents. 

The algorithms developed to allow efficient 
computation of the filter are presented. The computational 
techniques used to simplify the filter equations and their 
implementation in fixed-point arithmetic are discussed. 
Simulation and experimental results using the TMS 
320C2S digital signal processor are presented to 
demonslrate the feasibility of this estimation process. 

1. INTRODUCTION: 

High performance motion control systems need more 
computing power than today's standard microprocessors are 
capable of delivering; sophisticated control laws such as 
observer based schemes or Kalman filtering in real time 
require a very fast signal processor specia1ized and optimized 
to perform complex mathematical calculations and 
manipulate large amounts of data. 

The extended kalman filter algorithm is an optimal 
recursive estimation algorithm for nonlinear systems. It 
processes all available measurements regardless of their 
precision. to provide a quick and accurate estimate of the 
variables of interest, and also achieves a rapid convergence. 
This is done using the following factors: 

• A knowledge of the system and measurement device 
dynamics. 
• The statistical description of the system noises. 
disturbances. measurement errors. and uncertainties in 
the system model. 
• Any available information about the initial 
conditions of the variables of interest. 
The algorithm is computationally intensive. and all of 

the steps involved require a vector or a.matrix operation. 
Therefore. an efficient formulation of the algorithm needs to 
be made rather than a straightforward implementation. 

LarsNorum 
Member. IEEE 

Dept. of Eleclrical Engineering 
Norwegian Institute of Technology 
Trondheim. Norway 

Moreover. for a practical application of the filter in real 
til!'~, different aspects of implementation have to be 
addressed: Among these aspects are the computational 
requirements for the filter and the constraints imposed by 
the computer used. 

The computational requirements include mainly the 
computation time per filter cycle and the required memory 
storage. Knowledge of these quantities in advance will 
enable the choice of a meaningful data sampling rates and 
the required memory size for the system. The constraints of 
the computer to be used are defined by its speed (cycle 
execution time). its calculation capability (instruction set), 
the type of arithmetic used (fixed point or floating point), 
and its wordlength (l6-bit or 32-bit). 

The extended Kalman filter approach is ideally suited to 
the state estimation of a Permanent Magnet Synchronous 
Motor (PMSM). It appears to be a viable and 
computationally efficient candidate for the on-line 
estimation of the speed and rotor position. This is possible 
since a mathematical model. describing the motor dynamics 
is sufficiently well known. The terminal quantities like 
voltages and currents can be measured easily and are suitable 
for the determination of the rotor position and speed in an 
indirect way. 

The paper is organized in eight sections. Section I is 
an introduction. In sections 2 and 3. the state space model 
of the PMSM is developed. and the extended Kalman filter 
algorithm is presented. Using these formulations, the 
computational requirements of the filter and its 
implementation with fixed point arithmetic are discussed in 
sections 4 and S. The results and the practical aspects of 
implementation are discussed in sections 6 and 7. Section 8 
has the conclusion and the future research on the subject. 

2. SYSTEM MODEL: 

The system considered is a permanent magnet 
synchronous motor having permanent magnets mounted on 
the rotor, and a sinusoidal flux distribution. A dynamic 
model for this motor in a stator-fIXed reference frame (a,/3), 
by choosing the current components ia• ib' the rotor speed 
CJ)r' and the rotor position ar as state variables is as 
follows: 
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.!l . Rs. ~f V~ 
dt I~. - IS Ip - IS (Or COS(8r) + IS 

d 3 !.t 
dt (Or· 2 J (ip COS(8r) -Ia sln(8r) ) 

B !J.. J (Or- J 

where, 
Rs: swa per-phase resistance 
Ls: SIaIOr per-phase inductance 
1Ilf. pennanent magnet flux linkage 

J: rotor moment of inertia 
B: viscous damping 

(1 ) 

(2) 

(3) 

(4) 

The voltage components Va. Vp. and the average load 
torque TL are the deterministic control inputs of the 
system. Both the voltage and current components· are 
measurable quantities. They are obtained from the three 
phase stator components by a linear transformation: . 

(5) 

(6) 

Similar equations hold for the voltages. 
To summarize. the system is driven by the stator 

voltages Va. Vp and the resulting outputs are the stator 
clDTCnts ia • ip. The state space model [Eqs. I through 4] is 
nonlinear due to the cross product of the state variables Olr. 
ia.isand Or 

The motor parameters used are listed in Appendix A of 
the paper. 

3. THE EXTENDED KALMAN FILTER ALGORITHM: 

The Filter algorithm can be summarized as follows [9]: 
Let the system of interest be described by the nonlinear 
dynamic Slate space model 

X(t) = f[X(t).U(t).t) + w(t) (7) 
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where the initial state vector X(I() is modeled as a gaussian 
nmdom vector with mean Xo and covariance PO. U(t) is the 
deterministic control input vector. and w(t) is a zero..mean 
white gaussian noise independent of X(I(). and with a 
covariance matrix Q(t). 

Let the available discrete-time measurements be 
modeled as: 

Y(tj) = h[X(ti).ti] + v(tj) (8) 

where v(lj) is a zero.mean white gaussian noise that is 
independent of X(I() and w(t). and with a covariance matrix 
R(tj). 

1\ 
The optimal state estimate X(t) generated by the filter 

is a minimum variance estimate of X(t). and is computed in 
a recursive manner as shown in Pig.I. The filter has a 
predictor-corrector SttUctlJli as tollows (superscripts - and + 
refer to the time before and after the measurements have 
been processed): 

The optimal state estimate ~ and the state covariance 
matrix P are propagated from measurement time (ti-I) to 
measurement 
time (ti). based on the previous values. the system 
dynamics. and the previous control inlluts and errors of the 
actual system. This is done by numerical integration of the 
following equations: 

X(t) = f ( X(t) • U(t). t ) 

P(t) = pT .. p(t) + P(t) .. p + Q 

starting from the initial conditions: X(~~I)' P(t7.1) 

where: 
p _ a f(X.U,1) 

- ax 

(9) 

(10) 

(11) 

By comparing the measurement vector. Y. to the 
1\ . 

estimated one. Y. a correction factor is obtained and is used 
to update the state vector. 

The filter gain matrix K(ti) is defined as: 



where: (13) 

evalU8ledIlX .. X(ti) 

The IllCllSURlment update equations for the state vector 
and the covariance malrix are: 

+ - -X(~ ) .. X(t i) + K(Ii~ ( Y(Ii)-h[X(ti),lj] ) (14) 

P(t:') .. p(t.) - K(',)*H(t1·)*P(t.) (15) 
1 1"1 1 

where, X(~) represents the optimal state vector estimate. 

4. COMPUTATIONAL REQUIREMENTS: 

The objective of the design presented in this paper is to 
minimize the filter cycle time. while obtaining a reasonable 
accuracy in the fllter equations implementation. The method 
used for the numerical integration of Eq. 9 from one sample 
time to the next is the fust order Euler integration 
technique: 

.. 
'"'' H(X<i,>.', J 

Q R p. 

Fig. I Block diagram of the extended Kalman fllter 

Iii order to achieve a reasonable accuracy. the 
integration step size which is the sampling period T s 
shCillld be appreciably smallez than the characteristic 'time 
constants of the system. The choice of the sampling time 
Ts should be made to meet both the total computation time 
of the filter and a reasonable integration accuracy. 
Integration accuracy can be improved by using a second 
order integration technique. or by dividing the interval 
[ti-I. ti] into N subintervals and applying a first order 
Euler integration technique to each subinterval. This 
howevez will result in increased computation time. 

The time propagation equation for the state covariance 
matrix p. (Eq.IO). can be solved using the transition matrix 
technique [9]. This method preserves both the symmetry 
and the positive defmiteness of p. and yields adequate 
perfunnance: 

where. 

ti 
Qd(tj,!j-I> = I 4I(ti.t )*Q(t)*4IT(ti.t) dt (18) 

ti-I 

4I(ti.t) denotes the state transition matrix associated 
with F(t,x(t» for all tE [ti_l.ti). 

Qd(ti.ti-I) is next evaluated using a trapezoidal 
integration: 

~(tj,ti_}) = [4I(ti.li_l)O<Q.4IT(ti.ti_})+Qj. ~ (19) 

This form is atlnlCtive since it replaces having to know 
4I(ti.t) for all t. by evaluating only 4I(ti.ti_I)' 

(20) 

Clearly. all of the steps involved above require a vector 
or a matrix operation. These operations consist largely of 
multiply or multiply-accumulates. Moreover. all these 
computations must be performed within one sampling 
interval of the system. This therefore motivates the need for 
a very fast signal processor with dedicated arithmetic unit 
and instruction set 

Table I shows the different steps and the number of 
operations needed for the filter computation. The defining 
equations for the filter can be programmed as shown under 
the column labeled "computation". The total number of 
multiplications. additions and divisions for each 
computation are also listed. 

The total computation time of the filter is equal to the 
total execution time of all multiplications. additions and 
divisions. plus the total logic time which is the execution 
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· lime of the additional stepS required for properly coatlO11ing 
and sequencing the different operations. The logic time is 
Vf!CIJ sensitive to the order of.the system's model, and can be 
substantially important since most of the openuions include 
either a matrix multiplication or a matrix addition. 

S. IMPLEMENTATION WITH FIXED_POINT 
ARITHMETIC: 

This section presents the methods of solving the 
Kalman Filter equations, in a computationally efficient 
IIIIUlIIeI' using fixed-point arithmetic. The microprocessor 
coaside.red for this application is the TMS 320C2S digital 
signal processor. It is a l(i-bit microconttoller specifically 
designed and optimized for high speed processing, and is 
shown to be well suited for high performance conttol 
applications. 

The dynamic range in fIXed point arithmetic with a 16-
bit word length is from 2-15 to 1. Therefore, to avoid the 
overflow and underflow problems, all variables in the filter 
equations (Eq. 9 - 15) must be scaled to values less than 
one. 

The state variables in Eqs. 1 through 4 are scaled with 
respect to their maximum values. This results in scaled 
differential equations where all variables are nonnaIized. The 
subscript n denote a normalized variable: 

d. Rsn . Cilfn . 1 
~ Ian'" X Ian + y- CDrn sln(9rl + -X Van 

sn '''Sn sn 

d 3 Cilfn (. (I' . ( ~ CDrn = :2 . Tn . Ipn cos 9r - Ian sin 9rl I 

~ CDrn 
dt • 2,;" 

where, 't = fl)n.t , is the normalized time, and fl)n is the 
nonnalizing frequency. 

The scaling factors of the covariance malrices were 
determined tJuough computer simulation, by looking at the 
maximum values of the malrices elements for different 
simulation runs. . 

However, the maximum values of the gain matrix 
elements were found to have a large dynamic range and were 
difficult to predict. To avoid this scaling problem, the 
solution used was to update the state vector and the state 
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covariance matrix direcdy, without explicidy computing 
the gain coefficient mattix K[1]. The measurement update 
equations [Eqs. 14 and 15] are therefore transformed and 
expressed as follows: 

X(~)=X(9 + A*B-l*y (21) 

P(t~) = P(l.) - A*B-l*AT 
1 1 

where, A=P(l.)*HT 
1 

B=H*A+R 

Y .. Y(tj} - H*X(li) 

(22) 

(23) 

(24) 

(2S) 

This formulation resulted in a simpler scaling 
procedure and a greater numerical precision. 

6. FILlER TUNING: 

The critical step in a Kalman filter design is to obtain a 
numerical evaluation of the flIter parameters specified by 
the initial state Xo and the covariance matrices PO, Q and 
R. This process is called tWIing and it involves an iterative 
search for the coefficient values that yield the best 
estimation performance possible. 

The noise covariance Q accounts for the model 
inaccuracy, the system disturbances and, the noise 
introduced in the voltage measurements (sensor noise, AID 
converters quantization). The rounding and truncation errors 
in the computations due to the fixed word length of the 
processor can corrupt the filter performance, and are 
considered as additional sources of system noise. The noise 
covariance R on the other hand, reflects the measurement 
noise inttoduced by the current sensors, and the coding 
effects of the AID converters. 

Changing the covariance matrices Q and R affects both 
the transient duration and the steady state operation of the 
flIter. Increasing Q would indicate either stronger noises 
driving the system or increased uncertainty in the model. 
This will increase the values of the state covariance 
elements. The filter gains will also increase thereby 
weighting the measurements more heavily, and the filter 
transient performance is faster. Similarly, increasing the 
covariance R indicateS that the measurements are subjected 
to a stronger corruptive noise and should be weighted less 
by the filter. Consequendy the values of the gain matrix K 
will decrease, and the transient performance is slower. 

For the initial state covariance matrix PO, the diagonal 
terms represent variances or mean squared errors in 
knowledge of the initial conditions. Varying Po yields a 
different magnitude transient characteristic. The transient 
duration will be the same and the steady state conditions are 
unaffected. 



Table 1 

Variable Defining equation Computation 'of , of Add 'ofDiv 
Mult 

X(~) + + 
X(~ ) + Ts.f(X(~ » 14 11 3 

F iJf 14 1 
ax 

~ I + Ts·P 16 4 
Qs T Qo~T 16 0 (~Q.~T+Q) • .!l 

2 
~(Qo~T) 64 48 

~(Qo~T)+Q 0 4 

(~Q.~T+Q>- f 16 0 1 

P(tj) ~.p(~).~T + Qd P(t~).4>T 64 48 
1 

4>.(p(~) .. ~T) 64 48 

~.p(~).4>T + Qd 0 16 

K(tj) P(tj ).HT .(H.;.P(tj ).HT + Rr 1 p(9HT 32 24 

H"(P(l. ).HT) 16 12 
1 

H"P(l. ) .. HT + R 0 2 
1 

[H"P(lj )"H+T + Ryl 
2 1 4 

P(l. ).HT .. [.r1 16 8 
1 

H.X(lj) 
8 6 

Y -H"X(li ) 
0 2 

X(~+) X(tj) + K.(Y-H.X(tj » K.(Y-H.X(li» 
8 4 

X(ij ) + K"(.) 0 4 

P(~+) (1- K.;.H).p(l i ) 
K .. H 32 16 

I-K .. H 0 4 

(I - K"H)"P(li ) 
64 48 

TOIal 446 311 8 

The covariance matrices Q. R and Po are assumed to be 
diagonal for Ihe lack of sufficient statistical information to 
evaluate Iheir off-diagonal terms. In Ihe following 
simulation. Ihe best filler performance was obtained wilh: 

Q = 0.02.1(4) ; Po • 0.01.1(4) ; R .. 0.1"1(2) 

where. 1(2) and 1(4) are the 2x2 and 4x4 identity matrices. 
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7. SIMULATION AND EXPERIMENTAL RESULTS: 

Simulation results: 

The filter algorithm was first simulated to get all the 
influences of the system parameters on the filter 
performance. The computer program developed simulates 
fixed-point arithmetics with a l6-bit word length. The 
control input voltages and motor currents are also 
simulated. They are assumed to be real-time measured 
values obtained from a PMSM running in steady state, as 
shown in Fig. 2. A random noise was added to the currents 
to simulate the measurement noise. 

~'r----------------------------. 

l<t··· .. 
,. 
10 

-10" 

I 
-%OJ 

I 
·30> 

I ......... 
-tOo 0.005 0.01 0.01' 0.02 0.02!! 0.03 0.03!! 0.04 

Time (Iit() 

10r-----------------

l···· .. ··\ i~ :[ , ...... \ .. 

" 
O~ 

, .,. 
I .. ~ 
i :[ 
i 

.IO~' ---__ -..".,..-__ ,--~,.,_~:::__::_:::_:__:_ 
o ~ ~ ~ w ~ ~ ~ ~ 

Fig. 2 Simulated voltages and currents for the PMSM 
running at constant speed (1500 rpm). 

The filter starts from rest with the motor already in steady 
state. The initial values of the currents are assumed to be 
known to the filter and are set equal to the initial measured 
values. The starting value of the speed was set to zero, and 
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the simulation starts when the actual rotor position reaches 
9r = O. The initial position used by the filter was used as a 
variable. 

1 

I 
o . 

-0.10 O.OW: 0.01 0.015 0.02 0.0l! 0.03 0,035 0.04 

0.' 

0.' 

0.7 

.1 0 .• 

1 
'II 0.5 I O. 

0.3 

0.' 

0.1 .. ~ ••••• /: 
1 

,.... (lee) 

.. 

~ ~ ~ ~ ~ ~ = ~ ~ 
na. (ICe) 

Fig. 3 Transient and steady state behavior of the estimated 
speed and rotor position. 1) 9r(0) = 0 deg. 
2) 9r(0) = 30 deg. 3) 9r(0) = 60 deg. 

Figure 3 shows the behaviour of the estimated values 
of the speed and the rotor position.The actual steady state 
normalized speed is equal to CIlrn = 0.5. It can be seen that 
even though the initial speed used by the filter is Cilr(O) = 0, 
the estimated speed follows closely the actual speed after an 
initial transient. Similarly, the estimated position go 
through a transient and then converges to follow the actual 
position. The magnitude and duration of the transient and 
the steady state performance are adjusted by the values of 



the covariance mlllrices Q. R and PO. The transient duration 
is about IS msec. 

It is clear that the Extended Kalman filter tracks very 
well the speed and rotor position of the motor. The precise 
modeling of the system. and a good estimate of the initial 
conditions will improve further the performance of the 
filter. 

ExperimeDtal results: 

Implementation of the Kalman filter in real time was 
carried out using the TMS 320C2S digital signal processor. 
The system hardware (data acquisition system) and software 
was developed and tested using the XDS/22 Hardware 
Emulator and its supporting program tools. 

The total filter algorithm was performed in (284 msec). 
Table 2 lists the various execution times for the different 
steps involved in the filter computation. The processing 
time of the measurement vector Y(ti) and the control input 
vector U(ti-l) is not included in the filter computation. 
These variables are assumed to be available to the filter at 
no computing expense. Clearly. the largest execution time 
is taken by the covariance matrix computations. This 
computation time can be further reduced by computing only 
the lower lriangular form of the symmettic mattices. 

Table 2 

Operation Execution time' 
in usee 

Compute the cosine of the position 7.2 
angle 

Compute the sine of the position S.3 
angle 

Compute the ttansition mattix 7.3 

Time propagation of the state 4.4 
vector 

Time propagation of the state 99.0 
covariance mattix 

Measurement update of the state 160.7 
vector and the state 

Covariance matrix 

Total 283.9 

The filter can operate in a system having a maximum 
sampling frequency of 3.52 kHz. or a theoretical system 
bandwidth of 1.76 kHz. This high bandwidth allows the 
Extended Kalman Filter implemented on the TMS 32OC25 
to be used in high performance real-time motion control 
systems. 

Figure 4 shows the behaviour of the estimated values 
of the speed and the rotor position. using numerically 
simulated currents and voltages waveforms. These results 
are comparable to the off-line simulation results in Fig. 3. 

The above results show that the extended Kalman filter 
can be efficiently implemented in real time to estimate the 
speed and rotor position of the PMSM. 

a) 

b) 

Fig. 4 Experimental results for the estimated speed and 
rotor position with zero initial conditions. 
a) Speed: 300 rpm/div. Time: 2 mscc/div 
b) Position: 72 deg/div. Time: 5 msec/div. 
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8. CONCLUSION: 

In Ihis paper, Ihe design and implementation of an 
extended Kalman filter wilh a digital signal processor has 
been investigated. A systematic and analytic approach for 
developing the algoridlm was presented. The computational 
techniques used to simplify Ihe filter equations and their 
implementation in fixed-point arilhmetics are discussed. 
The filter was tuned by varying the parameters Q, R, Po, 
Xo , to meet the desired ttansient and steady state 
perfonnance. The discrete Extended Kalman Filter have been 
found to be well suited to Ihe speed and rotor position 
estimation of a Permanent Magnet Synchronous Motor. 
The proposed approach has been validated using computer 
simulation and actual implementation in real time wilh Ihe 
TMS320C25 digital signal processOr. 

The next step in this research project will be to testlhe 
filter wililhe actual currents and voltages of a PMSM drive 
system, and use Ihe estimated position for the control of the 
PMSM instead of a position sensor. This will be reported 
in a following paper. 
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APPENDIX A 

Motor parameters: 
Maximum speed = 3000 rpm 
Rsted torque = 2.2 N.m 
Rs=0.70 
Ls=5mH 
4lf = 0.193 V.sec/rad 
J = 9'10-5 kg.m2 
B=O 
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TRENDS DF DIGITAL SIGNAL PRDCESSING IN AUTOMOTIVE 

KUN-SHAN LIN 
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ABSTRACT 

The advent of single-chip programmable 
digital signal processors (DSP) has 
expanded dl glta 1 sl gna 1 processl ng Into 
automotive applications. Digital signal 
processors, compatible In cost to 
general-purpose microcomputers, offer 
much higher throughput In performing 
computationally Intensive tasks. 
Because of this advantage, closed loop 
control, adaptive control, and digital 
audio processing can now be Implemented 
In a cost effective manner. Some of the 
DSP automotive applications Include 
combustion feedback engine control, 
active suspension systems, anti-skid 
brakes Incorporating traction control 
and digital audio-based entertainment 
systems. The availability of digital 
signal processors is changing many 
aspects of automotive designs. Early 
adopters of thl s technology for 
Innovative automotive products will 
enjoy leadership and financial benefits 
over their competition. The Impact of 
DSP to the automobile has just begun and 
will continue beyond the year 2000 (1). 
Thl s new technology has al so presented 
tremendous challenges to both automotive 
and semiconductor industries. 

This paper first discusses digital 
signal processing characteristics. 
After reviewing historical digital 
signal processing solutions, the paper 
focuses on single-chip programmable 
digital signal processors and compares 
thei r architectural desi gns to general­
purpose microprocessors and 
mlcrocontrollers. Deficiencies of early 
digital signal processors are discussed 
and trends of DSP are explored. 
Performance and cost benefits of using 
DSPin digital control 'systems are 
explained. Automotive applications of 
digital signal processors are discussed 
in areas of powertrain, body and chassis 
control, and entertainment systems. The 
last part of the paper discusses the 
challenges presented to both automotive 
industry and semiconductor vendors. 

CHARACTERISTICS 
PROCESSING 

OF DIGITAL SIGNAL 

Digital signal processing Is concerned 

with the representation of signals by 
sequences of numbers, and the 
transformation, processing or 
controlling of such signal 
representations by numerical computation 
procedures. Digital signal processing 
encompasses a broad spectrum of 
applications. Some application examples 
include digital filtering, speech 
coding, image processing, spectral 
analysis, radar signal processing, 
robotic control, and missile guidance. 
The recent development of programmable 
single-chip digital signal processors 
has further expanded the field of DSP 
applications Into high volume consum'er 
products: digital audio, consumer toys, 
and automotives. 

These appl ications and those considered 
digital signal processing (2-10) have 
several characteristics in common: 

-Mathematically Intensive algorithms, 
-Realtime operation, 
-Sampled data 'Implementation, and 
-System flexibility. 

let's illustrate these characteristics 
in the following paragraphs: 

Mathematically Intensive Algorithms 

A common DSP equation that has to be 
computed (and often repeatedly computed 
in each time critical loop) takes the 
form of (5-10): 

N-l 

yIn) =I:a(l) * x(n-i) + 

I =D 

M 

Lb(k) * y(n-k) 

k = 1 

where yIn) 
y(n-k) 

x(n) 
x (n -I) 

a (i), b (k) 

= present output, 
past outputs, 

= present input, 
= past inputs, and 

weighting factors. 

This equation basically says that any 
output y can be computed as a wei ghted 
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sum of the Input at the present time n' 
past inputs x(n-i). and past output; 
y(n-k). Terms a(i) and b(k) are the 
weighting factors. If output y is 
Independent of the past outputs. a 
simplified version of the equation can 
be obtained: 

N-1 

y(n) -La (i) * x(n-I) 

1-0 

- a(O) * x(n) + a(1) * x(n-l) + 
+ a(N-l) * x(~-N+l) 

In digital signal . processing 
terminology. this Is the general form 
for Finite Impulse Response (FIR) filter 
and also the convolution of two 
sequences of numbers. a(1) and x(i). 
Both FIR filtering and convolution are 
fundamental to di gital signal 
processing. They also have some 
physical significance. For example. an 
FIR filter is a common technique used to 
\!liminate the erratic nature of stock 
market prices. When the day-to-day 
closing prices are plotted. it Is 
sometimes difficult to obtain the 
desired information. such as the trend 
~f the stock. because of the large 
variations. A simple way of smoothing 
the data is to calculate the average 
closing values of the previous five 
days. For the new average val ue each 
day. the oldest value is dropped and the 
newest value added. Each daily average 
value would be the sum of the weighted 
value of the latest five days. where the 
weighting factor is 1/5. In equation 
form. the stock average value is 
determined by: 

average(n) • - * x(n) + - * x(n-l) + 
5 5 

1 
- * x(n-2) + - * x(n-3) + - * x(n-4} 
555 

where x(n-i} is the daily stock closing 
price for the (n-i)th day. This 
equation assumes the same fO'rm as the 
FIR filter and sometimes is referred to 
as the moving average. 

A digital signal processor has to be 
optimized to quickly compute N 
multiplications and additions or sums of 
products as indicated .in the above 
equat i on s. Thi s capabi 1 i ty is enhanced 
with OSP instructions. such as multiply 
(MPy). addition (ADD). and multiply and 
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accumulate (MAC). Furthermore in recent 
OSP. each of these instructions can be 
executed in a single machine cycle. 

Realtime Processing 

In addition to being mathematically 
intensive. DSP algorithms must be 
performed in realtime. Realtime can be 
defined as a process that is 
accomplished by the DSP without creating 
a delay noticeable to the user. In the 
stock market example. as long as the new 
average value can be computed prior to 
the next day when it is needed. it is 
considered to be completed in realtime. 
In digital signal processing 
applications. processes happen faster 
than on a daily basis. In the FIR 
filter example. the sum of products must 
be computed usually within hundreds of 
mi croseconds before the next sample 
comes into the system. A second example 
is in a speech recognition system where 
a noticeable delay between a word being 
spoken and being recognized would be 
unacceptable and not considered 
realtime. Another example is in image 
processing. where it Is considered 
realtime if the processor finishes the 
processing within the frame update 
period. If the pixel information cannot 
be updated withi n the frame update 
period. problems such as flicker. 
smearing. or missing information will 
occur. 

Because of this realtime requirement. a 
di gital si gnal processor often 
implements DSP functions. such as MPY. 
ADO and MAC. with on-chip hardware. 
rather than software or microcode as in 
general-purpose microprocessors and 
microcomputers. This hardware intensive 
approach allows most of the OSP 
operations to be executed in single 
machine cycles. To further increase the 
processor capabil ity for realtime 
processing. multiple instructions are 
often being executed in parallel. 
revealing a high degree of parallelism. 

Sampled Data Implementation 

The application must be capable of being 
handled as a sampled data system in 
order to be processed by digital 
processors. such as digital signal 
processors. The stock market is an 
example of a sampled data system. That 
is. a specific value (closing value) is 
assigned to each sample period or day. 
Other periods may be chosen. such as 
hourly prices or weekly prices. In FIR 
filter. the output y(n) is calculated to 



be the weighted sum of the previous N 
inputs. In other words. the input 
signal. x(n). is sampled at periodic 
intervals (1 over the sample rate). 
multiplied by weighting factor. a(i). 
and then added together to give the 
output result of yIn). Examples of 
sample rates for some typical sampled 
data applications (2-5) are shown in 
Table 1. 

Table 1. Sample Rates vs. Applications 

Norlal 
Appl ication Sa.ple Rate 

Control 1 KHz 
TelecOilunications 8 KHz 
Speech Processing 8-10 KHz 
Audio Processing 4D-48 KHz 
Video Frale Rate 25-3D Hz 
Video Pixel Rate 14-18 MHz 

In a typical DSP appl1catlon. the 
processor must be able to effectively 
handle (input. output. and store) 
sampled data in large block quantity and 
also perform arithmetic computations on 
these data In realtime. Note that the 
higher the sample rate required by the 
application. the more demand on the 
processor throughput to meet the 
realtime requirement. 

System Flexibility 

The design of the digital Signal 
processing system must be flexible 
enough to allow improvements in the 
state-of-the-art. We may find out after 
several weeks of using the average stock 
price as a means of measuring a 
particular stock's value that we need to 
adapt our methods to get better results. 
Some of the adaptations may include a 
different method of obtaining the dally 
information. different daily weightings. 
a di fferent number of periods over 
which to average, and a different 
procedure for calculating the result. 
Enough flexibility in the system must be 
available to allow for these variations. 
In many DSP applications, techniques are 
still in the developmental phase, and 
therefore the algorithms tend to change 
over time. As an example, speech 
recognition is presently an Inexact 

technl que 
al gorithmlc 
example we 
flexibil ity 
updated. 

requiring continual 
modification. From this 

can see the need for system 
so the DSP algorithm can be 

A programmable DSP system can provide 
this flexlb11 ity to the user. This 
capabil ity Is further enhanced with 
large on-chip EPROM for the ease of 
prototyplng and field testing of new 
products. 

HISTORICAL DSP SOLUTIONS 

Over the past several decades, di !lital 
signal processing machines have gone 
through several evolutions Incorporating 
these characteristics. Large mainframe 
computers were initially used to process 
signals In the digital domain. 
Typically. because of state-of-the-art 
l1mitatlons. this was done In non­
realtime. As the state-of-the-art 
advanced. array processors were added to 
the processing task. Because of thel r 
flexibil ity and speed. array processors 
have become the accepted solution for 
the research laboratory, and have been 
extended to end-applications in many 
Instances. However, integrated circuit 
technology has matured, allowing the 
design of faster microprocessors and 
microcomputers. As a result, many 
digital signal processing applications 
have migrated from the array processor, 
to microprocessors and microprocessor 
subsystems (i.e., bit-slice machines). 
This mi grat I on has brought the cost of 
the DSP solution ijown to a point that 
allows pervasive use of the technology. 
The recent Introduction of single-chip 
digital signal processors with their 
increased performance and relatively low 
cost have further expanded digital 
signal processing from traditional 
telecommunication ·and military to 
consumer audio and automotive 
appl1cations. 

SINGLE-CHIP PROGRAMMABLE DIGITAL SIGNAL 
PROCESSOR 

As noted previously, the underlying 
assumption regarding a digital signal 
processor is fast arithmetic operati ons 
and high throughput to handle 
mathematically intensive algorithms in 
realtime. In a typical single-chip 
digital signal processor (11-15), this 
is accomplished by using the following 
basic concepts: 
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-Harvard architecture, 
-Extensive pipelining, 
-A dedicated hardware multiplier, 
-Special DSP instructions, and 
-A fast instruction cycle. 

let's explain the benefit of 
I ncorporat i ng these concepts In DSP 
arch~tectural design: 

Harvard Architecture 

The Harvard architecture ·(16) is used 
for speed and flexibility, in which the 
on-chip program and data lie in two 
separate spaces and are carried in 
parallel by two separate buses. This 
permits a full overlap of instruction 
fetch and execution. In a typical 
general-purpose microprocessor, Von 
Neumann (16) architecture is used, where 
program and data are carried 
sequentially on the same bus. 
Instructions are therefore executed in 
seri al • 

Extensive Pipelining 

In conjunction with the Harvard 
architecture, pipelining is used 
extensively' to reduce the instructron 
cycle time to its absolute minimum, and 
to increase the throughput of the 
processor. In pipeline operation, the 
instruction prefetch, decode, and 
execute operations are handled in 
parallel, thus allowing the execution of 
instructions to overlap. As a result of 
this extensive pipelining, multiple OSP 
operations, such as multiply, add, 
shift, and data move (MACO), can be 
executed in one single machine cycle. 

Dedicated Hardware Multiplier 

As we saw in the general form of an FIR 
filter, multiplication is an important 
part of digital signal processing. For 
each fi 1 ter tap (denoted by i), a 
multiplication and an addition (MAC) 
must take place. The faster 
multiplication can be performed, the 
higher the performance of the digital 
signal processor. In ge"neral-purpose 
microprocessors, the multiplication 
instruction is constructed by a series 
of additions, therefore taking many 
instruction cycles. In comparison, the 
characteristic of every OSP device is a 
dedicated hardware multiplier. 
Important DSP operations, such as MPY 
and MAC, can be executed in single 
machine cycle as a result of the on-chip 
multiplier and extensive piplining. In a 
typical general-purpose microprocessor, 
these operations are typically executed 
in 30 to 40 machine cycles. 
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Special DSP Instructions 

Special instructions resembling typical 
DSP operations are created to ease DSP 
algorithm development and speed up 
machine throughput. Examples of these 
DSP Instructions are: MAC (multiply and 
accumulate), OMOV (data move, 1 OMOV 
represents a delay of 1 sample period), 
RPT (repeat, for repeating 
instructions), BlKO (block move of data) 
and BLKP (block move of program). 

Fast Instruction Cycle 

The realtime processing capability is 
further enhanced by the raw speed of the 
processor in executing instructions. 
The characteristics which we have 
discussed, combined with optimization of 
the Integrated circuit design for speed, 
give OSP devices instruction cycle times 
approaching 5.0 nsec (nanosecond). This 
includes executing complicated DSP 
operations, such as MAC and MACD, within 
one single machine cycle. 

Since the invention of the single-chip 
DSP in early 80's, many semiconductor 
vendors have introduced generations of 
digital signal processors into the 
market. One of the most popular fami ly 
of digital Jignal processors, TMS320, 
now has three generations and over 15 
members of devices available for the 
automotive designer to choose from (11-
15). The early programmable digital 
signal processors were designed in NMOS. 
These devi ces now have been redesi gned 
in CMOS to take advantage of lower power 
consumption and increased speed. Newer 
generations of DSP have also been added 
with further improvements in speed, 
throughput, and device density. As a 
point of reference in comparing DSP to 
general-purpose microprocessors, Table 2 
lists the clock speed, throughput (in 
MIPS, million instructions per second), 
MAC execution, and device density for 
the Texas Instruments TMS320 DSP fami ly 
and Intel 80386 (ll-IS), one of the most 
popular general-purpose microprocessors 
in the market today. 



Table 2. TMS320 asp vs. 80386 
Microprocessor 

ICllpl1 bit 
dota lizl 

TMS32010 
1982 

16 
(J st glnlratl on) intlglr 

TMS320C25 1986 16 
C2nd glneratl an) Intlger 

TMS320C30 32 
1988 Integer/ 

C3rd generatl on) fltg. pt. 

Intel 80386 1985 32 
Integer 

TRENDS OF SINGLE-CHIP PROGRAMMABLE 
DIGITAL SIGNAL PROCESSOR 

The early versions of digital signal 
processors have made significant 
contributions to telecommunication and 
military applications (2-5). They also 
exlhiblt some deficiencies: 

- Unfamiliar architecture to 
microprocessor designers 

- Lack of friendly development support 
tools 

- Device too costly for large volume 
applications 

These early deficiencies haye started 
being resol ved by some of the DSP 
vendors. The following DSP improvements 
and technology trends have begun and 
will continue Into the 1990's. 

- Merging with general-purpose 
mlcroprocessor/microcontroller 
features 

- Lower cost. especially lower system 
cost 

- Higher performance 

Merging with General-purpose Features 

Dri Yen by the 1 atest I-u CMOS 
semiconductor processing technology and 
Improvement In the DSP architecture (14-
15). the latest digital signal 
processors are now featuring 32 bit 
architecture, fixed and floating-point 
operations, 50-nsec cycle time, large 

clock throughput MAC devlcI 
splld IXlcution dlnslty 

20 MHz 5 MIPS 400 nSlle 58.000 
transistors 

40 MHz 10 MIPS 100 osle 160.000 
transistors 

20 MIPS/ 
40 MHz 50 nsee 695.000 

40 MFLOPS transistors 

16 MHz 4 MIPS 1.375 nSlc 275.000 
transistors 

on-chip 4K x 32 ROM and 2K x 32 RAM, 
instruction cache, concurrent Direct 
Memory Access (DMA), and large 16M x 32 
address area In one continuous memory 
space. These devices offer more, and 
expanded digital signal processing 
functions and run at much higher speed 
than thei r predecessors. The throughput 
of these devices has reached 20 MIPS or 
40 megaflops (millions floating-point 
operations per second). previously 
unobtainable except with supercomputers. 
These architectural Improvements 
coupled with more general-purpose 
instruction set, high level language 
support (1 ike C), added thi rd parties, 
and installed software base are making 
digital signal processors much easier to 
use. 

Another aspect of the development is 
integrating more microprocessor and 
microcontroller type of peripherals on­
chip for DSP spinoffs. These peripherals 
include better memory management, 
timers, serial ports, co-processor 
interface, •• features quite familiar to 
microprocessor desi gners. A few DSP 
vendors have al so started offering 
processors with on-chip EPROM (12) for 
ease of prototype development, field 
testing, and early production runs. 

Lower Cost 

Early digital signal processor chips 
were sold for hundreds of dollars. Some 
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of these devices have been redesigned In 
CMOS with small geometry. which offers a 
reduction In size. cost and power 
consumption. and also an Increase In 
throughput. DSP devices are now 
available In sub-fhe dollars range for 
high volume applications. Further 
syst~m cost reduction Is possible by 
Integrating more peripherals on chip for 
semi-custom sol ut Ions. This enabl es DSP 
to be used I n cost sen s It ive 
applications. such as compact discs 
(CD). Intelligent toys. and computer 
di sk dri vers. 

Figure 1 shows the DSP price In dollars 
per MIP (S/MIP) over a period of six 
years using the first-generation of the 
Texas Instruments TMS320 DSP (12) as an 
example : 

50 

$ 
;10 
M 
I 
P 

\ 

'11 

+---r---,---,----r--.---,-.--,-----r-
82 83 B4 85 86 B7 88 

YEAR 
Figure 1. First-generation TMS320 S/MIP 

vs. Year 

The cost cutting trend shown in Figure 1 
will certainly be continued beyond the 
1990's and will definitely benefit 
automotive designers In choosing DSP as 
solutions for their applications. 

Higher Performance 

Performance can be measured based on 
cycle time. algorithm benchmarks. 
applicatons throughput. or the 
combination of several or all of them. 
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One of the major' DSP desl gn emphases is 
to be able to compute MAC (multiply and 
accumulate) quickly. This capability 
has been Improved substantially over the 
last few years. demonstrated In Figure 2 
comparing the ,MAC (16-by-16 multiply and 
add) execution speed between the TMS320 
devices and some of the popular general­
purpose microcontrollers (GP uC) and 
microprocessors (GP uP) (17-22). The 
performance of DSP will continue to be 
increased and remain one of the primary 
driving forces for future DSP 
generations. 

10,000 
A 8096 

X 68000 A 68HCll 

M 
A 

A 80CI96 

C X 80386 
1.000 168020 

i 
n I TMS32010 

I TMS32020 
n 
s 100 I TMS320C25 

e 50 HOSP 
I 

C I'"1GP uP TMS320C30 

uCP uC 

10 T-'-'-
79 80 81 82 83 84 BS 86 87 BB 

YEAR 
Figure 2. OSP and uC/uP MAC Execution 

vs. Year 

DSP IN DIGITAL CONTROL SYSTEMS 

Control systems have traditionally been 
implemented in analog form. With the 
availability of microprocessors and 
mlcrocontrollers. digital control 
systems are taking over most 
applications from analog systems. 
Digital control systems have numerous 
advantages over analog systems. Most 
analog systems are limited to control 
using single-purpose characteristics of 



the error signal 11ke P (proportional). 
I (Integral). or D (derivative). or a 
combination of these characteristics. 
Digital systems allow greater 
computational activity. thus making it 
possible to implement more sophisticated 
algorithms. Since digital systems are 
programmable. they can be used for 
control systems requi ri ng onl i ne update 
of a 1 gori thms and process pa rameters to 
compensate for system changes. Di gltal 
systems are insensitive to component 
aging and temperature dri fts. They .1 so 
allow the same processor to be used to 
control multiple processes or implement 
multiple functions. 

Digital control systems are used for 
applications In areas of robotiCS. 
numerical control. di sk dri ye control. 
and engine control. These applications 
are increasingly requiring 
implementation of sophisticated control 
algorithms to meet their performance 
requirements. However. traditional 
8/l6-bit microprocessors and 
microcontrollers lack the speed of 
numerical calculations to meet some of 
these requirements (23-27). This has 
resulted in some compromise in control 
system design. such as using table 
lookup for· algorithms and open loop 
controls • 

AlIlIo PROtESSING. 
DIGITAL RADIO 

The digital signal processors introduced 
previously have been specifically 
designed for these demanding 
appl i cat ions. and offer a new tool for 
automotive deSign engineers. The 
computational speed ayallable from a 
digital signal processor allows 
automotive deSigners to now execute 
control algorithms mathematically 
instead of using look-up tables. More 
sophisticated control algorithms. such 
as feedback control. multi -variable 
control. observer model sand adapthe 
control can all be implemented with a 
single-chip digital signal processor 
(23-27). 

The benefits offered with thi s new 
approach are 

lower system cost: 

- Because of the replacement of the 
large lookup table and a 
microcontroller with a single-chip 
DSP. system cost can be reduced. 

- Furthermore. when Observer Model (a 
software model to estimate control 
system parameters) is implemented. 
some expensi ve sensors in the system 
can be eliminated and replaced by 
software estimation of these 
parameters using DSP. 

CDMPACT DIS!( CELLULAR PtlH. 
GRAPHIC EIlUAllZER / yoICE DIAlING 
SIlIIIl EJIIAHCEMEHT FIL TERINC 

• 
/ 

ACTIYE SUSPENSION SYSTEM. 

yolt£ CIJIOW(J, 

SPEED! RECIlQIITION !E.G. LIGHTS. IIN1lO11 
SPEAKER YERIFlCATlON FOR S£OJRE LDCK 

Figure 3. DSP Automo.tive Applications 

HYDRAlLIC OR AIR PRESSURE tDNTRIl. 
tAR ATTlT\IlE DYNAMIC t1lNTRIl. 
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and better system performance: 

- More accurate control values can be 
obtained with mathematical calculation 
using a 16/32-bit DSP processor than 
those obtained from an 8/16-bit 
microcontroller. Interpolation between 
two val ues from the lookup table is 
not needed with DSP numerical 
calculation. 

- State-variable control is now 
possible, while adaptive con.trol will 
ensure the system performs optimally. 
Realtime diagnostics can be added to 
the DSP control software to check the 
proper performance of the controller, 
seniors and actuators. 

- Much faster system response time can 
be achieved with the DSP. This means 
the vehicle can be designed to respond 
to the driver or driving environment 
more promptly, safely, and reliably. 

DSP IN AUTOMOTIVE APPLICATIONS 

Many automotive applications can benefit 
from using digital signal processors. 
This ranges, shown in Figure 3, from 
engine/transmission control, active 
suspension, adaptive ride control, 
antiskid braking, traction control to 
digital audio processing. 

Powertrain Control Applications 

The performance of the current 
electronic engine control can be 
improved by a closed-loop control system 
incorporating a DSP and sensors, such as 
in-cylinder pressure sensors reporting 
the precise operating status of each 
cylinder at every cycle (1,28). 

ELECTRONIC OUTPUTS, 
~-~ENGINE ENGINE 

INPUTS: CONTROLLER 
DRIVER & '---..-_-' 
SENSORS 

TORQUE, 
'--.,----,SPEEO 

Figure 4. DSP Closed-loop Engine 
Control 
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The DSP in the system, Figure 4, 
performs engine pressure waveform 
analysi s and determines the best spark 
timing, firing angles, and the optimal 
air/fuel ratios. The closed loop 
engine control scheme can tolerate 
external turbulances, aging, wearing, •• 
and maintains optimum engine performance 
and fuel efficiency (28). 

Vehicle Control Applications 

One of the most exciting new concepts in 
the vehicle control area is the active 
suspension system (29-31). Conventional 
vehicle suspension, utilizing dampers 
and springs, is insufficient to control 
the vehicle properly and incapable of 
responding to the rapidly changing 
forces inputted from the road conditions 
and car attitude changes. Improvement 
can be made with the programmed ride 
control suspension by introducing 
variable damping ratios into dampers. 
This type of system, typically utilizing 
an 8-bit microcontroller, has the 
deficiency of slow system response time 
and is unable to completely overcome 
external forces inputted to the 
vehicle. 

The first active suspension system 
introduced by Lotus incorporates a 
TMS320 digital signal processor 
controlling four hydraul ic actuators 
(29-31). This system is described in 
the following figure: 

HUB DISPLMNT 
.-_---,FORWD VELOC.r--__ --, 

ANALOG FORWD SPEED 

FRONT END LA TERAL AC 
BODY ATTITUDE •.. 

TRANSDUCER INPUTS 
FROM EACH WHEEL HOST 

COMPUTER 

HYDRAULIC 
ACTUATOR 

SERVOVALVE 

Figure 5. lotus Active Suspension 
System 



The TMS3Z0 OSP takes into consideration 
body dynamics. such as pitch, heave and 
roll. and controls the 4 hydraulic 
actuators independently and dynamically 
to counter the external forces and car 
attitude. changes. The TMS320 performs 
control algorithms with system 
parameters adaptively updated to achieve 
optimal comfort ride and road handling. 
Lotus race cars installed with the 
active suspension won 1987 Grands Prix 
In both Monaco and Detroit. The 
excitement has spurred much interest in 
introducing the active suspension design 
Into commercially produced vehicles. As 
the cost of the entire system (both 
electronic and mechanical portions) Is 
reduced, we can expect active suspension 
to appear in many vehicles in the 90's 
( 1. 31) • 

Another important vehicle control is the 
anti-skid braking (ABS) system. In the 
current ABS design, typically an 8-bit 
mlcrocontroller ;s Incorporated to read 
the wheel speed from sensors. calculate 
the skid. and control the pressure In 
the wheel brake cylinders. Traction 
control has been experlmentaJly added to 
the ABS to control the vehicle in 
extreme conditions (wheel lock and 
spinning) in order to further increase 
vehicle stability. steerability and 
drivabillty. Added new features to the 
ABS. such as traction control and more 
diagnostics software, will demand more 
processing capability on the controller. 
Since 8-bit microcontrollers are running 
short of power. digital signal 
processors will become a prime candidate 
for the next generation ABS design. 

It is interesting to note that the OSP 
based control system for the active 
suspension can be extended to control 
the s'kid and spinning of the wheel s by 
sfmply adding anti-skid and traction 
control software. The OSP should have 
enough processing capabi 1 ity to perform 
all of these functions simultaneously. 

Entertainment System Applications 

The vehicle entertainment system has 
evolved from the traditional radios 
offering AM and AM/FM reception to the 
added features, such as cassette tape 
drives, graphics equalizers and power 
amplifiers. Recent advancements in CD 
(compact disc) and OAT (digital audio 
tape) have started impacting the 
entertainment system design. The audiO 
systems produced for the 90's will be 
r,equi red to have better sound qual ity 
and hi gher bandwidth in order to 
reproduce the high fidelty in CD (with 

44 kHz sample rate) and OAT (with 48 kHz 
sample rate). The entertainment system 
for the 90's will al so evol ve to become 
an Information center. Communication 
between vehicles and stations. and 
between vehicles will be Increased. 
This will demand information processing 
capability be built Into the 
entertainment system. These requirements 
wi 11 demand DSP be integrated into the 
futu re enterta I nment/I nforma t i on center 
as shown in the following block 
diagram: 

/ 
CD OAT 

AMPS. I 

SPEAKERS 
OTHER COM­
MUNICATION 
MEDIA 

Figure 6. DSP Based Entertainment/ 
Information Center 

Some of the functions performed by the 
DSP in this system are: 

current existing features: 

- graphics eqalization 
- tone, base. and volume control 
- noise reduction 

added new features: 

- automatic volume control 
acoustics noise cancellation 

- radio personalization, such as 
station search, music/speech 
search, •• 

- RDS (radio data system) 
- speech recognition for controlling 

non-critical functions 
- speaker verification for anti-theft 
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The DSP based entertainment/information 
center wll1 not only preserve high 
fidelity in CD and DAT, but also add 
friendliness, personalization, 
communi cat ion, and securl ty to the 
user. 

Other DSP Applications 

There are many other automot i ve 
applications that could benefit from 
DSP. Some of these are: image 
processing for collision avoidance. 
voice dialing and noise filtering for 
cellular phones. Kalman filtering for 
Global Positioning Systems (GPS). 
realtime combustion analysis (32). 
exhaust noise and vibration cancellation 
(33), and acoustics noise suppresston 
(34). 

CHALLENGES TO THE AUTOMOTIVE INDUSTRY 

While the DSP technology is becoming 
more mature. it is presenting tremendous 
challenges to the automotive industry. 
Control desi gners. who are used to a 
lookup table approach in designing a 
system. are now having to adjust to a 
new design practice. Elements in the 
control lookup table are usually 
generated by large computer simulat I on 
or simply trial-and-error. DSP. being 
an order of magnitude faster than 8/16-
bit microcontrollers. implements control 
strategies in mathematical equations. 
This means control engineers must have 
the precise model or mathematical 
description for the system that he is 
controll ing. 

In the current control system design, 
designers are limited t"o simple control 
strategies, such as open-loop control, 
PID, and single or limited variable 
control. With the speed improvement 
offered by DSP, control designers can 
now implement more sophisticated 
algorithms: closed-loop control, state­
variable control and adaptl ve control. 
10 take full advantage of DSP, control 
designers must familiarize themselves 
with these digital control algorithms. 
The increased degree of freedom and 
potential benefit will demand more R&D 
effort to not only understand the engine 
model and vehicle dynamics, but also 
control them with better strategies to 
achieve the optimal vehicle performance. 

For the entertainment system deSigner, 
the greatest challenge is not to replace 
the current matured analog solution, but 
Instead to use DSP for added 
functionality. This additional 
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funct10nality must have a perceived 
val ue by the user. Dtherw1se, the DSP 
product w111 not be successful. A good 
example of a misuse of the technology Is 
to simply replace warn1ng 11ghts and 
buzzers with 'annoying' speech 
synthesis, and buttons and switches with 
'1naccurate' speech recogn1tion. 

CHALLENGES TD DSP VENDORS 

Some vendors are able to provide 
commercially available DSP In military 
spec1ficat10ns (12-13). The same, If 
not more stringent requirements, w111 
a 1 so be needed to meet au t omot 1 ve 
appl1catlons for the harsh underhood and 
underbody environment. To be successful 
In automotive electronics, vendors need 
to be able to supply DSP devices 'with 
military specification quality, but at a 
consumer affordable price'. 

Continual pressure from automotive 
deSigners will push DSP vendors for more 
support in documentation. software, and 
development tools. More general­
purpose features will continue to be 
added to the future DSP devices. 
Semi custom DSP solutions will also be 
needed for high volume, cost sensitive 
automotive applications. 

CONCLUSIONS 

Digital signal processors offer an order 
of magnitude higher performance than 
general-purpose microcontrollers and 
microprocessors for time critical and 
numerical intensive tasks. Closed loop 
control and more sophisticated control 
and digital signal processing algorithms 
can now be implemented fo·r automotive 
applications. There are some learning 
curves that both DSP vendors and the 
automotive industry have to go through 
in order to take full advantage of thi s 
new technology. The benefits will lead 
to more reliable, safer, higher 
performance, better handling and 
drivable vehicles. 
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APPLICATION OF THE DIGITAL SIGNAL PROCESSOR TC AN AUTOMOTIVE CONTROL SYSTEM. 

D.A. Williams. 

Cranfield Institute of Technology. 

INTRODUCTION. 

A conventional vehicle suspension, 
consisting of four dampers and four (or, 
possibly, six) springs has two serious 
deficiencies. Firstly, the number of 
elements is insufficient to control 
properly even the eight "ideal" vehicle 
degrees of freedom; secondly, the 
suspension reacts to all forces applied to 
it. Improvements in performance can be made 
by introducing non-linearities in both· 
dampers and springs, and by adding passive 
rubber "isolators" at the suspension 
attachment points. However, none of these 
features is free from undesirable side 
effects. Essentially, a conventional 
passive suspension achieves, at best, a 
compromise solution to the problem of 
controlling body and wheel responses to 
external inputs. It is worth noting, 
perhaps, that this criticism also applies 
to most of the present generation of 
I'active ll suspension systems. 

The Lotus Active Suspension system 
overcomes many of the deficiencies of a 
conventional suspension by replacing the 
springs, dampers, anti-roll bars, etc: by 
four irreversible hydraulic actuators. 
Measurements of a range of vehicle and 
actuator parameters are then used to 
control the position and velocity of each 
aetuator in real time so as to synthesize 
an "ideal" vehicle suspension. 

Control over the actuators is achieved by 
computing required actuator velocities, and 
feeding the appropriate command to an 
Electro-Hydraulic Servo Valve (EHSV) 
connected to each actuator. The necessary 
computations can be performed in one of 
several ways. The most versatile method is 
to implement the algorithms in a high speed 
digital processor. All the controllers used 
recently to implement the Lotus Active 
Suspension system have been based upon a 
family of Digital Signal Processors (DSP) 
designed and produced by Texas Instruments 
Inc. 

This paper contains an outline history of 
the Lotus system, a discussion of the 
requirements for the controller, an 
introduction to the family of DSP's 
selected, and descriptions of two active 
suspension controllers which incorporate 
Digital Signal Processors. The paper 
concludes with a description of a possible 
production standard control system. 

Reprinted, with permission from author. 

S. Oxley. 

Texas Instruments Ltd. 

BACKGROUND. 

The Lotus active suspension system was 
conceived in 1981 as one way of providing a 
ground effect racing car with a controlled 
ride without the suspension reacting to 
aerodynamic downforce, which at that time 
had a maximum value of around three times 
vehicle static weight. After their own 
elegant (mechanical) solution to the 
problem had been declared illegal, a 
prototype active suspension system was 
commissioned by Lotus. This was designed by 
the Flight Systems and Measurement 
Laboratories, cn', and installed in a Turbo 
Esprit for evaluation. The prototype used 
commercial hydraulic components and a 
purpose buil t an.alogue computer to control 
the actuators. Hydraulic power was provided 
by an engine driven pump fitted with an 
hydro-mechanical pressure control system. 

AerodynamiC downforce was, of course, small 
in the prototype installation. Therefore, 
in order to demonstrate the' capability of 
the system to respond to loads selectively, 
the suspension was programmed to be 
insensitive to inertial forces which 
disturb a vehicle during manoeuvres. 

It was clear from the start that· the 
vehicle handled well when inertia 
components were removed from load 
measurements, allowing an average 
improvement in cornering speed of around 10 
percent. It was also discovered that 
significant· improvements in primary ride 
could be achieved without affecting 
handling. The obvious disadvantages of the 
system were increased complexity, weight 
and power consumption. 

Information gathered from the prototype was 
used to specify a racing version of the 
system. This featured an optimized 
hydraulic system and a hybrid controller in 
which the gains of hard wired analogue 
control loops were set digitally by an 
eight bit processor. The processor had 
access to many of the measurements. and was 
programmed to modify loop gains adaptively, 
iterating at about 250 Hz. A single racing 
system was produced and tested extensively. 
It completed two Grands Prix before being 
removed, primarily for financial reasons. 
Although the car was not competitive in 
absolute terms, the handling improvements 
demonstrated in the prototype were 
confirmed in the racing system. 
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The publicity given to the active 
suspension race car resulted in contracts 
to convert several types of road vehicle to 
active suspension for research pur,poses. 
The requirement to be able to modify 
control laws stimulated the development of 
• fully digital controller. The controller 
developed for this application was based 
upon a THS32010 Digital Signal Processor 
(DSP). It has been fitted to a total of 
seventeen cars during the past fouryears. 
and continues to give reliable service. 

Cert'atn installations have enhancements 
such as four wheel steer and four wheel 
drive. When such enhancements .re fitted, 
these systems have a duplex version of the 
controller. which gives the potential for 
monitoring independently the performance of 
the various systems. 

One further development has taken place 
during the last year. This is the 
development of a "lightweight" controller 
for the current generation of Lotus Formula 
One racing cars. The controller for this 
system, is based upon the THS32020 DSP. At 
the time of writing, five vehicles have 
been fitted with the system. All are 
operating successfully in environments 
where vibration levels exceed 20 gn RHS. 

Development of the Lotus Active Suspension 
System continues with the objective of 
defining, under contract to a major 
manufacturer, a version of the system for 
installation in production vehicles. 

CONTROLLER REQUIREMENTS. 

A digital controller used in an active 
suspension system is required to sample 
analogue measurements in a chosen sequence 
and with a precise time interval between 
successive samples of a measurement. It 
must be capable of transforming the samples 
into actuator com~ands. and must. in 
general. be capable of ,converting those 
commands into analogue drive signals. The 
controller must also have discrete control 
over hydraulic fluid supply so that 
hydraulic energy can be dissipated directly 
by the controller in the event of a 
detected fault. The controller was also 
required to control' the swashplate angle of 
the hydraulic pump in order to limit supply 
pressure. with over-riding limits on flow 
rate. and/or power consumption. The over­
ride facilities were provided to enable the 
characteristics of different pumps to be 
emulated. Although not strictly part of the 
controller. transducer signal conditionipg 
units were combined with the controller in 
order to minimize size and weight of the 
installation. 

The sampling specification was dictated by 
the requirement to minimize variations in 
transport delay, between one channel and 
another. and between the "frame" of samples 
and the corresponding actuator commands. 
The latter implied th~t interrupts should 
be avoided during control law Calculations 
and. inCidentally. control law code should 
be structured so as to minimize both 
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transport delay and variations in transport 
delay. 

Frequency bandwidth requirements for the 
system were unknown at the start of the 
project. However. tests carried out on 
conventional dampers revealed that the 
performance of such devices could be 
expected to deteriorate rapidly at 
frequencies above 20 Hz. Further tests 
carried out on a "Single corner" test rig 
suggested that phase errors might be 
detectable if the cut-off frequencies (two 
pole) of certain transducers were to fall 
much below 100 Hz. It was concluded from 
the tests that an iteration interval of one 
millisecond would be required. With a 32 
channel multiplexer. this implied an ADC 
sample rate in ~~e order of 50 KHz. 

The dynamic range required of the 
controller was dictated by a requirement to 
achieve control down to frequencies of the 
order 0.1 Hz. with a one millisecond 
iteration interval. together with the 
requirement for a load resolution of around 
0.02 percent of full scale. 

It was considered to be impractical to 
achieve both the required load resolution 
and the required full scale load. at least 
outside the laboratory. The solution to the 
difficulty was to scale load measurements 
so that half full scale corresponded to the 
ADC maximum. This arrangement gave a 
resolution close to the ideal. The reduced 
maximum observable load was not considered 
to be a serious restriction. since a load 
of this magn1tude would normally cause 
maximum actuator velocity to be demanded. 

It became clear from the above that s high 
speed 16 bit processor would be required 
fOl' the application. having the capablli ty 
of working to 32 bits when integration was 
required. The processor required the 
capability of accessing several peripheral 
channels. as well as handling at least two 
types of interrupt (Power up RESET and ADC 
End of Frame.) A secondary requirement was 
for a processor which' could be integrated 
into a practical system with a minimum 
number of additional components. 

THE DIGITAL SIGNAL PROCESSOR. 

The processor chosen initially for 
evaluation was a TMS32010. manufactured by 
Texas Instruments. At the time hardware was 
available in sample quantities only. 
However. a proprietary Evaluation Board was 
purchased. The board allowed the basic 
performance of the processor to be 
assessed, and enabled engineers to become 
familiar with its internal architecture. 
The processor was not actually designed for 
real time process control applications. but 
its capabilities appeared to match the 
requirements for a suspension controller 
almost exactly. The internal architecture 
of the processor is shown in figure 1. 



Evaluation of the processor showed that its 
performance, in a typical control 
application, was around 15 times that of an 
Intel 80B6. However, certain factors could 
reduce e!fective performance dramatically. 
If the 144 internal registers were 
insufficient for the application, then 
additional workspace could be obtained by 
interchanging blocks between internal and 
external RAM. This turned out to be a 
lengthy operation, requiring 7 cycles (1.4 
microseconds) per word moved. The second 
factor affecting performance would occur if 
the 4K word program space became 
insufficient for the control program. This 
would require program segments to be 
overlaid, and would make the processor 
unattractive for control applications. 

The TMS;2010 was incapable of "pausing" to 
accommodate true dual porting, or slow 
store. This feature presented difficulties 
to the system deSigner, but not otherwise. 
Overall, the processor has proved to be 
remarkably easy to use, and is almost 
completely immune to interference from 
external sources. 

Many of the constraints imposed by the 
TMS;2010 were removed with the introduction 
of the TMS;2020 processor. The latter has 
544 internal registers, sixteen read and 
sixteen write ports, can address 64 Kwords 
of programme and data store, and can be 
paused to accommodate various types of 
store. In addition, the processor 
incorporates a high speed serial port, an 
internal timer, additional interrupt 
vectoring, and has an enhanced i'nstruction 
set. A diagram of the TMS32020 internal 
architecture is shown in figure 2. 

The TMS;2020 has the same clock rate as the 
TMS;2010. However, the expanded internal 
store and instruction set means that, in 
the Active Suspension application, the 
control algorithm executes in about half 
the time required by the TMS;2010. The 
sixteen bit address width and the ability 
to pause gives the system designer much 
improved flexibility in interfacing 
peripherals. 

The TMS;20 has been expanded into three 
distinct generations of DSP'. (figure ;). 
The move to CMOS technology provides the 
designer with the advantages of low power 
consumption, wide temperature range and 
general suitability to the hostile 
automotive environment. Another trend which 
has increased the adapt~bility of the 
family is the addition of internal timers 
and se~i~l interfaces. What started as a 
simple DSP with a small quantity of on-chip 
memory has become a truly versatile micro­
controller. 

CONTROLLER APPLICATION. 

The logical arrangement of the Lotus 
TMS;2010 controller is shown in figure 4. 
The control algorithm is stored, togeth~r 
with an initial set of parameters, 1n 
EPROM, which is connected to the processor 
via two ports. The EPROM b081'd contains an 

address latch which is reset when Port 0 is 
accessed, and which is incremented after 
each word transfer. A ROM, mapped to the 
first 32 words of program space, contains a 
small program to transfer the control 
program and parameters from EPROM into 
external RAM whenever a RESET interrupt 
occurs. An R-C network is used to £orce a 
RESET whenever the controller is powered 
up. 

The sampling requirement is achieved with 
an independent Analogue/Digital Converter 
(ADC) SUb-system. The SUb-system includes 
its own timing circuits and Dual Access 
Random Access Memory (DARAM). The sub­
system samples each measurement in a preset 
sequence, storing each sample in RAM at the 
appropriate address. On completion of a 
frame, the sub-system interrupts the 
control processor and then idles for a 
preset time before restarting the sampling 
sequence exactly one millisecond after 
starting the previous one. 

The Control Processor (CP) executes an 
"Idle" loop until interrupted by the ADC 
sub-system. After receipt of the interrupt, 
the CP transfers the last frame from DARAM 
to internal memory, calculates new actuator 
velocity commands and outputs these to the 
Digital/Analogue Converters (DAC). The CP 
continues to perform various "housekeeping" 
chores such as updating transducer and EHSV 
bias estimates before returning to the Idle 
loop to await the next interrupt. A timing 
diagram for the controller is shown in 
figure 5. 

The five Digital/Analogue Converters are 
interfaced to the processor via two write 
ports. Port 5 is used to set the address 
latch to aCcess the appropriate DAC; Port 6 
is used to output the data to the DAC. 

An optional Pulse Code Modulation (PCM) 
encoder is interfaced. to output Port x. 
This allows the control program to output 
any accessible set of data to an external 
magnetic tspe recorder, PCM bit rate is 
variable, but has been set to ;6 Kbits per 
second for the present application. This 
has been used to sample 28 channels (}O, 
including two sync words) at a rate of 100 
per second. 

The controller includes a communications 
routine which will accept Commands via an 
eight bit latch, data from one sixteen bit 
latch, and inputs data from another 16 bit 
latch. The latches are interfaced to an 
Intel 80}1 eight bit processor, which 
controls an LCD display, and receives 
commands either from an RS2;2C serial link 
or from a Simple keyboard. The eO;l is 
programmed to display any four TMS;2010 
registers, and to pass on commands either 
from the keyboard or from the serial link. 
A simple communications protocol 1s used to 
allow the operator to modify parameters, or 
even code, on-11ne. 

377 



For formal tests, files of parameters are 
stored in a portable general purpose 
computer. A small BASIC program executing 
in the portable computer is used to 
communicate with the controller via the 
RS232C link, and to transfer parameters 
between files and the controller as 
specified by the user. 

The TMS32020 version of the Active 
Suspension controller differs from the 
earlier version in a number of respects. 
The internal timer is used to clock the 
ADC, and channel selection and conversions 
are initiated from an Interrupt Service 
Routine. Copies of suspension parameters 
are held in EEPROM, and are transferred 
during the RESET routine to internal RAM. 
Parameters are then copied in sets to a 
IIwork" page for execution. When a parameter 
is changed, both the EEPROM master and the 
internal copy are modified, so that the new 
value is preserved even if the controller 
is switched off. Each DAC is mapped 
directly to an output port. Communication 
with the controller is via a UART which is 
mapped into a Data address area. A diagram 
of the controller is shown in figure 6. 

A novel feature of the controller is the 
adoption of solid state memory for 
recording data. This uses dynamic RAM 
controlled by a second TMS32020 which is 
programmed to refresh the RAM and, to 
organize data storage. The two processors 
communicate via the high speed serial link. 
Data are transferred continuously until the 
driver selects "data off l '. Data are 
recovered, again via the high speed serial 
link, to a similar, off-board, dynamic RAM 
board, which is later interrogated by a 
Hewlett Packard general purpose computer. 
This fairly complicated arrangement 
developed to minimize the time required to 
transfer data from the vehicle. The entire 
256 Ksamples are transferred from the 
vehicle in about 5 seconds and plot. of the 
data, scaled into engineering units, are 
available within one minute. 

The ACC arrangement used in the TMS32020 
controller reduced the size of the system, 
but i6 now considered to be inferior to the 
arrangement used in the TMS32010 
controller. The reasons are that time 
jitter can be introduced because certain 
instructions temporarily disable 
interrupts, and that full context switching 
is required within the service routine. 
Context switching in the TMS32020 is a 
relatively lengthy process. 

Again, no serious difficulties have been 
experienced in using the TMS32020 processor 
in a (severe) automotive environment. The 
time required to move the design from 
inception to production prototype was 
eround four months, and the production 
prototype first worked some two months 
before running in its first Grand Prix. By 
then three vehicles were fully operational, 
backed up by two complete sets of spares. 
Since that time a similar system has been 
fitted to another type of racing car. 
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FUTURE DEVELOPMENTS. 

To date,. only IIresearch lf Active Suspension 
systems have been designed. Work is 
proceeding to develop a "production" system 
to improve both performance and safety of 
passenger cars. One possible arrangement 
for such a system could be to integrate a 
controller into each strut, complete with 
transducers and signal conditioning. 
Communicatioris between each strut 
controller would be via serial links 
attached to a fifth controller mounted 
central~y. A diagram of a possible 
arrangement is shown in figure 7. 

Each strut controller would be programmed 
to manage its strut in isolation, and the 
central controller would be programmed to 
modify strut parameters (when required) and 
to modify strut responses as necessary; the 
central controller would, for example, 
simUlate the action of roll bars. The 
failure mode, if serial communications were 
lost, would thus be relatively "soft." The 
central controller would also service any 
driver controls, displays, etc. The five 
controllers could be identical, each 
comprising a processor, memory, an eight 
channel ADC, two DAC's, five 100 KHz. 
serial links, and a discrete output latch. 
In a production system, signal conditioning 
would be integrated into each transducer. 

Quite clearly, the controller. would have to 
be very small and rugged (ideally on a 
single chip), and environmental sealing 
WOuld have to be effective. Computing power 
available, if ,TMS320 series DSP's were 
used, would be considerable, and would 
admit the possibility of integrating'other 
vehicle functions, such as anti-lock 
braking, engine management, four wheel 
steer, torque control, etc. into a single, 
distributed system. 

Technologies under development at Texas 
Instruments could make the proposed 
arrangement feasible within the next five 
years. These include Application Specific 
Integrated Circuits (ASIC) which integrate 
precise analogue functions with complex 
digital circuits, and Application Oriented 
Controllers (AOe). The latter is a new 
family of standard modules which can be 
combined in a single chip to produce custom 
processors quickly and efficiently. 
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Dual-Processor Controller with Vehicle Suspension 
Applications 

KAMAL N. MAJEED, MEMBER, IEEE 
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state estbaation of • "quarter-ar" SlllJleDlion~test ril. 

I. INTRODUCTION 

T OW-COST general-purpose microcontrollers became 
Lwidely used in the 1970's, in applications ranging from 
vending machines to engine control. In the 1980's, a new 
generation of microprocessors evolved: the general-purpose 
digital signal processors (DSP). These processors were distin­
guished for their impressive speeds in nwnerical computations 
such as multiplication and product accumulation. Also, the in­
struction set is designed for complex algorithms requiring in­
tensive numerical calculations. Initial use of these micro's has 
been in the area of signal processing such as digital filters and 
fast Fourier transforms. However, in recent years an increas­
ing number of advanced control algorithms has been imple­
mented using digital signal processors. In such applications, 
the update loop time must be small enough for proper im­
plementation (one millisecond is not uncommon). To achieve 
that goal, the dual-processor controller discussed in this work 
was designed to optimally utilize each microprocessor in its 
area of strength. 

The paper is organized as follows. Section II contains the 
controller architecture and design. Section III covers a fast 
Fourier transform applied to road characterization. In Section 
IV, a state estimator of a "quarter-car" test rig is described. 

II. CONTROLLER ARCIDTECTURE AND DESIGN 

The electronic controller is architectured around the digital 
signal processor (Texas Instruments TMS32O(15) and micro­
controller (Motorola 68HCll) (Fig. 1). The 68HCll is used 
most effectively in input/output (1/0) operations, data mov­
ing, and logical microcontroller functions. This results in re­
lieving the digital signal processor from any 110 overhead to 
optimally utilize it in the algorithmic and numerical compu­
tations. The interprocessor communication is done through a 
dual-port random-access memory (DP-RAM). 

MaDuscript _ Jamwy IS, 1990; revised April 13, 1990. 
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Referring to Fig. I, the sensor signals are conditioned with 
anti-a1iasing filters, then multiplexed through a 24-channel 
multiplexer to a sample-and-hold (SIH) and a l2-bit analog­
to-digital (AID) converter. The analog signals are converted 
by the 68HCll and then stored in the dual-port.RAM. The 
TMS 320 reads this set of raw sensor data and processes the 
algorithm computations. The resulting control signals are then 
stored in the dual-port RAM. The 68HCll processor outputs 
these signals to the system drivers. The 68HCll can out­
put any data memory as digital on/off pulse-width-modu1ated 
(PWM) or as an analog signal through the digital-ro-analog 
(D/A) converter. The 68HCll has a serial communication 
port which is used to communicate with a portable personal 
computer (PC) for system monitoring. 

The analog signal conversion to digital form is shown in 
Fig. 2. There are three degrees of pipelining (channels K + I, 
K, and K - 1 are processed concurrently). This results in a 
maximum of 9-,.s conversion time from analog signal at the 
sensor to digital data in the DP-RAM. In Fig. 3, an opposite 
operation is done for the analog outputs. Eight output channels 
share the same DI A through the use of eight SIH integrated 
circuits. Here again a maximum of 9 ,.s is achieved for total 
conversion time. 

The dual-port RAM data can be read from either port si­
multaneously. However, a write access to the same address 
by both processors at the same time can have unpredictable 
results. For this reason, the software program must ensure a 
no-conftict access of the DP-RAM. 

Fig. 4 shows the flowchart of a typical application program 
for the dual-processor controller. The 68HCll starts tiy con­
verting all the analog sensor signals, then sends a synchro­
nization signal to the DSP processor. The TMS320 reads 
the converted sensor signals from tbe !Iuai-port RAM and 
processes them through the application algorithm. If a con­
trol signal is generated, the DSP stores it in the DP-RAM and 
branches to the beginning of the loop. The 68HCll reads the 
control signal and sends it to the appropriate drivers. After 
processing the display and communication routines, the mi­
crocontroller waits to complete the specified loop time and 
restarts another cycle. 

m. FFT RoAl'.CHARAcrERJZATION 

With the emergence of automatically variable damping ve­
hicles, there is a need for a damping adjusttnent mechanism. 
The use of the frequency domain [1] has the desirable property 
of distinguishing between the body and wheel-hop frequencies 
(about 1 Hz and 10 Hz, respectively). The midrange frequen-

© 1990 IEEE. Reprinted, with permission. from IEEE Transactions on "ehiclllar Technology, 
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Fig. 2. Analog-kHligitai cllllWnioo. 

AT~ 

cies (about 5 Hz), where the human sensitivity to vibrations 
is high, can also be used to influence the damping adjustment. 

wheel resonant frequencies. Thus the two peak at about I Hz 
and 10 Hz (corresponding to the body and wheel resonance 
frequencies, respectively). On the other hand, the "waves" 
test road (at certain car speeds) excites mainly the body mode. 
The "smooth concrete "test road has a flat spectrum, which 
is obviously the result of ·the small displacements in the sus­
pension. 

A fast Fourier ttansform (FFr) of a vehicle body-to-wheel 
displacement was implemented in real time [I]. This was pos­
sible mainly due to the computing power of the TMS320 DSP 
chip. Fig. 5 shows the results of ditferent test roads. It is n0-

ticed that the "chatterbumps" test road excites both body and 
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Fig. 4. DuaI-proc:essor ftowchart. 

Proper application of the FFT to produce an accurate spec- or 
trum of a signal depends on a good parameter selection [2]. 
This selection is governed by the relationships outlined next. T < 1/2/h. (2) 

T Sampling time. 
I. Sampling frequency = lIT. 
F Frequency resolution of the FFT. 

The increment between the outpnt FFT spectral components 
F is determined by the record length 

t p Record length (effective signal period). 
Ih Highest frequency in spectrum. 
N Number of samples in record. 

To avoid aliasing and the distortion of the FFT spectrum. 
it is necessary thst 

I. >2/h (1) 

F = l/tp. (3) 

Thus a long enough t p must be selected for the specified fre­
quency resolution. The number of time samples N (same as 
FFT frequency components number) is 

N = I./F = tpIT. (4) 
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Equations (2)-(4) yield 
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II 
Fig. 6. Quarter-car leSt rig. 

lution of the FFT components (for the same number of points 
N) in the frequency range of interest. 

The processing of the 128-point FFT (using the TMS 
320CIS processor) takes about 3 ms while it takes tp = 3.3S 
s (at 38-Hz sampling frequency) to fill the 128-point time data 
buffer. The frequency resolution of the resulting FFI' spec­
trum F is about 0.3 Hz. 

IV. QuARTER-CAR TEsT RIo STATE EsTIMATION 

Recently there has been increasing interest in electronically 
controlled suspensions. One such suspension is the active sus­
pension where a force generator, usually a hydraulic actuator, 
is commanded by a controller to achieve desired suspension 
characteristics. A set of sensors is read and the appropriate 
control is determined by an algorithm. Some control algo­
rithms use full state feedback control where the whole state 
of the system is fed back: This approach is used in the works 
of Thompson [5] and Chalassani and Alexandridis [6], where 
the active suspension control law is derived using the linear 

N >2/h/F. (5) quadratic Gaussian (LQG) optimal control theorY. Another 
practical approach is to use limited state feedback to control 
the active suspension system, as in the work of Majeed [7]. In 
either case, some of the states of the system can be measured 
while other states are estimated. 

Thus for a given highest "appreciable" signal frequency 
f. and a specified frequency resolution F, (S) detennines the 
required number of time samples N. 

The results of Fig. 5 are based on an N = 128 point FFI'. 
The 256- and S12-pOint FFI"s were found to produce only 
marginal road signature imprOvements when compared to the 
128-point FFI'. A sampling frequency f. of 38 Hz was ad­
equate to process the signal frequencies in the range (0-10 
Hz). This sampling frequency must be increased if the signal 
level is appreciable at frequencies beyond 19 Hz (as mandated 
by (I». Rlr this reason anti-aliasing low-pass filters were used 
to prevent the distortion of the FFI' spectrum by attenuating 
the spectrum beyond the wheel-hop frequency of 10 Hz. To 
protect against the aliasing problem, (4) shows that one can 
increase the sampling frequency at the expense of lower reso-
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An experiment was performed using the dual-processor of 
Section II and the quarter-car test rig of Fig. 6. The rig 
consisted of a sprung mass (M = 500 kg), spring (Ks = 18 
kN/m), passive damper (Cd = I kN·s/m), and the unsprung 
whec!l (m = 70 kg) with a tire spring (Kt = 2SO kN/m». The 
resonance frequencies of the sprung and unsprung masses are 
about I Hz and 10 Hz, respectively. Simulated road inputs 
were available and all system states were directly measured 
for evaluation of the estimator results. The state estimator 
was fed the measurementS of sprung and unsprung mass iner­
tial velocities XI and X2 (integrated accelerations), body-to­
wheel relative velocity (XI-X2) and disp1acement (XI-X2). 
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Fig. 8. Slate estimator- wheel displacement. 

The two main estimated states of interest were the body (or 
sprung mass) displacement Xl and the tire deflection (X2-r). 

The full state estimator !est results are shown in Figs. 7 
and 8. Fig. 7 shows the estimated sprung mass displacement 
versus the actual (measured directIy to the floor) for a step 
road input. Fig. 8 shows the wheel displacement for a IO-Hz 
sine-wave road input. 

The quarter-carsystem can be represented in a state space 
form as follows: 

where 

X=AX+BU 

Y=CX 

X system states rate vector (4 x I), 
X system states vector (4 xl), 
A system matrix (4 x 4), 
U actuators force vector (1 xl), 
B control matrix (4 x 1), 
Y system outputs vector (4 xl), 
C output matrix (4 x 4). 

(6) 

(1) 

The control vector U for the full-state feedback [5), [6) is 
computed from 

U=KcX (8) 

while for limited-state or output feedback [7) 

(9) 

where K. is the optimal gain matrix. 
To estimate the states of the system, a Luenberger observer 

or a discrete Kalman filter is used [3). 
The steady-state gain discrete Kalman filter is given by 

where 

X.+1 = rf>(T)X. +K,(Y. -CX.). 

estimated state vector at time n + I, 
sampling time, 
steady-state Kalman filter gain, 
system transition matrix, 
measurement vector at time n. 

(10) 

The Kalman filter gainK, is computed using a control soft­
ware paclcage such as Matlab [11). The Kalman gain compu­
tation is based on the solution P of the Riccati equation: 

The Riccati equation is solved with Q and R representing 
the plant and sensor Gaussian noise processes of zero mean. 
The Q and R values represent the compromise between the 
plant noise and uncertainty and the sensor noise, respectively. 

iii real-time implementations of state space equations, such 
as (8)-( 10), it is desirable to create vector and matrix-times­
vector macros. This greatly simplifies the programming task 
and improves appreciably the execution speed compared to the 
subroutine approach. The penalty of using macros is a larger 
program memory requirement. Equation (10) is computed on­
line iteratively every loop time. One millisecond was used for 
the quarter-car test. 

V. CONCLUSION 

A dual-processor controller incorporating a microcontroller 
and a digital signal processor was successfully developed for 
implementation of computation-intensive algorithms. The goal 
of very short loop time was achieved by optimum use of the 
two processors' resources. The effectiveness of such controller 
was demonstrated by a real-time FFT application to road char­
acterization and by state estimation of a quarter-car test rig. 
Also, the capability of such controllers to handle modem con­
trol theory requirements was shown by the quarter-car test-rig 
state estimation. 
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An advanced racing ignition system 
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SYNOPSIS This paper describes the rationale and development of a high performance 
racing ignition controller based on a Digital Signal Processor. Applying new 
techniques such as these in the high pressure racing environment allows companies 
such as Lucas to develop strategies for production engine management systems in the 
1990's. The vastly increased processing power available allows designers to begin 
to consider control techniques previously considered impractical for low cost 
production systems. 

INTRODUCTION 

The current generation of high 
·performance racing engines have been 
developed to such a degree that a 15000 
r/min V12 engine is now a reality. Such 
an engine, by its very nature, requires 
full electronic control of both fuelling 
and ignition in order to extract the 
maximum performance. Traditional 
electronic engine management systems 
(EMS) are unable to provide accurate 
control for such an engine - the main 
barrier being processing speed. Lucas 
have applied a single chip Digital 
Signal Processor (DSP) from the Texas 
Instruments TMS320 family to achieve 
distributorless mapped ignition for high 
performance racing engines. In future, 
mapped sequential fuelling will be added 
with the DSP controlling a slave 
processor. The alternative to using a 
DSP was to implement the system as a 
multiprocessor configuration which is 
both inelegant and difficult to develop 
and maintain as a reliable system. 

2 SYSTEM REQUIREMENTS 

The system being described is required 
to be able to control a Capacitor 
Discharge Ignition (COl) system on a 
variety of engines up to a V12, 15000 
r/min Formula 1 version. Additionally, 
the system must be able to be tailored 
to a variety of engine geometries and 
firing orders. 

The dominant factor for such 
engines is the operating speed of the 
system - the V12 engine referred to 
above, with a 40 degree V-angle and 10 
degree timing markers, requires 
processing of degree markers that are a 
mere 111uS apart at full speed. It is 
obvious that conventional microcomputers 
with minimum instruction cycle times of 
2 to 4uS (complex instructions such as 
mUltiply may take 10 times this period 

to execute) could not be used to 
implement a single processor system. 

The speed requirement is the reason 
for using COlon racing engines -
conventional' inductive coil based sys­
tems would be unable to build up suffi­
cient energy in the time between sparks 
at full engine speed. 

In order to obtain the maximum 
performance from an engine, the follow­
ing time critical operations must be 
performed accurately in real-time:-

Record the period between adjacent 
teeth on a timing wheel mounted on 
the engine - typically at 10 degree. 
intervals. 

2 Recognise and maintain synchronisa­
tion with a missing tooth on the tim­
ing wheel and an independent TDC 
marker. 

Trigger the CD circuit at an angle 
defined by a three-dimensional map 
(16 by 64 points - throttle angle 
against speed). Full interpolation 
is provided between the discrete 
points on the map with modifying 
functions applied for temperature, 
boost, pressure, etc. 

Points 1 and 2 require precise 
measurement of the tooth intervals 
without latencies caused by interrupt 
actions which can give an uncertainty at 
least as long as the longest instruc­
tion. The output function, point 3, 
requires rapid mathematical processing 
to allow the ignition timing to be based 
on the most up-to-date information as 
possible. It then requires an output to 
be driven at a precise time after a 
specified tooth number. 

In the short term a separate fuel­
ling controller is being used, with the 

Reprinted by permission of the Council of the Institution of Mechanical Engineers from [MechE, 1989. 
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ignition controller passing speed and 
syncrronis?tion information to allow 
map,ped sdquential injection to be 
achieved. 

In order to meet these requirements 
without using a processor with the speed 
of a DSP, a multiprocessor system would 
be mandatory. Multiprocessing creates 
many additional problems in terms of 
synchronisation, data sharing and 
overall maintainability. There are 
systems available with up to 10 proces­
sors in one controller - a nightmare to 
develop and use in the high pressure 
racing world. 

3 ATTRIBUTES OF THE DSP BASED 
HICROeONTROLLER 

The device at the heart of the ignition 
system is the TMS320E14 from Texas 
Instruments. This device takes the 
first generation CMOS DSP core from the 
industry standard TMS320 family and adds 
the functions found in more complex 
microcontrollers. 

Firstly let us define a DSP (1) -
it is generally accepted that such a 
device must be a single chip with on­
chip memory (RAM/ROM) and a single cycle 
hardware multiplier. In its original 
form the DSP was intended for real-time 
digital processing of analogue signals. 
In essence it was designed to perform 
filter functions which can be treated 
discretely as a sum of products. The 
same mathematical functions are required 
for many digital control systems used 
today - see Fig 1, PID implementation. 
What at first may appear rather odd 
instructions, are in fact functions that 
normally take several instructions to 
implement in conventional microcontrol­
lers, i.e. LTD. 

LTD - loads Register T with data from 
memory 

- adds Register P contents into 
the Accumulator 

data in memory is copied to next 
higher address 

This type of instruction is very 
useful for map interpolations to derive 
values between map sites. 

The fact that all instructions 
execute in a single cycle means that 
with a 25MHz crystal each instruction 
takes 160nS. 

However, the reason that the DSP 
has not been used in automotive systems 
to any great extent is due to its pre­
vious requirement for several support 
chips to handle I/O and timing funC­
tions. In the TMS320E14 an event 
manager has been added that provides 
input capture and output compare facili­
ties in hardware ~ this ensures that 
criti~al time related functions occur l 
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~ndependently of the CPU, thus avoiding 
the associated latencies. Additionally 
there are 16 I/O lines which may be 
manipulated independently under software 
control. An on-chip serial port and 
Watchdog timer complete the additions 
that have turned the DSP into a micro­
controller - see Fig. 2, TMS320E14 block 
diagram. 

4 SYSTEM IMPLEMENTATION 

The TMS320E14 is an EPROM device with 
4K wo.rds of EPROM and 256 words of RAM. 
Whilst the controller could easily be 
implemented without additional memory, 
the capability to address a further 4K 
words of off-chip memory has been 
exploited. The off-chip memory 
comprises 2K words of EPROM, used for 
map storage and 2K words of non­
volatile RAM for diagnostic and tele­
metry functions. 

Outputs used to drive the CD 
circuits are driven from 4 of the 6 
output compare registers - the system 
being able to multiplex in software 
these 4 signals on to the 12 outputs 
required. 

A block diagram of the system is 
given in Fig 3 which serves to high­
light the integration of I/O functions 
on to the DSP chip, thus minimising the 
requirement for support circuitry. 

The programme is a conventional 
'real time control implementation in 
which time critical responses are 
performed in the foieground (interrupt 
driven) routine, and non-time critical 
calculations and management tasks are 
performed in the background routine. 

The primary foreground task is an 
interrupt routine triggereq by the 
signal from a 36 tooth wheel with ten 
degree tooth spacing. The flywheel has 
one missing tooth situated at T.D.C. on 
the reference cylinder. Since on a v8 
engine, there are two crankshaft 
revolutions for a complete firing of 
each cylinder, it is not enough to 
simply detect the missing tooth to syn­
chronise the engine. A second signal 
derived from a half engine speed sensor 
situated on the camshaft is used to 
indicate the cycle. 

The software is designed to operate 
in the range of 51 to 16000 r/min on 
engine configurations up to and 
including V12. At high speeds the fre­
quency of interrupts from the crankshaft 
sensor is given by:-

Engine speed 16000 r/min 

(16000 X 6) degrees/s 

Time for 10 degrees 

Hence frequency 9600Hz 



.A~ this speed, it is the phenomenal 
processing power of the TMS320E14 that 
enables c9ntrol to be achieved. Running 
at 16MHz, single cycle execution is 
250nS, enabling 416 instructions to be 
executed in the tooth period. This 
enables both the interrupt task and a 
significant proportion of the background 
task to be completed in one tooth 
period. For example, on a V8 engine, 
there are approximately 9 tooth periods 
between sparks, the processor is easily 
capable of cylinder by cylinder update 
of the advance angle. 

The background task uses engine 
speed and throttle angle to address the 
main ignition map. This map has 16 load 
(throttle position) and 64 speed sites 
making a lK map. Only 8 bits are 
needed, but since the DSP is word 
oriented, each memory location contains 
two contiguous map values. This means 
that the 16 by 64 site main 'ignition map 
actually uses 512 words of memory. The 
hardware uses an external 8 bit AID 
converter to measUre the throttle angle. 
This raw value is filtered using the 
equation: 

Filtered position 

3 X previous filtered position) 
+ measured position 

4 
The hardware multiplier plus very 

simple divide mechanism enables extreme­
ly fast and reliable implementations of 
the above type of algorithm. Since the 
microprocessor does not have a right 
shift instruction, the author tends, 
where possible, to avoid using left 
shifts to do division because the load 
accumulator with shift instruction is 
sign extended. This, where the dividend 
has a one in bit 15, requires masking of 
the extended bits. It is far simpler to 
use the subtract with carry instruction 
in this application. In general terms, 
processing speed is high enough to use 
slower algorithms in order to conserve 
memory. 

The filtered throttle position is 
used to derive the load site and load 
interpolation steps. These are both 
numbers in the range 0 to 15, and fix 
precisely the load sites accessed on the 
ignition map. Load breakpoint preshap­
ing is programmable, enabling the load 
breakpoints to be grquped closer toge­
ther in an area of the map in which 
close throttle pre shaping is required. 
Usually, the breakpoints are grouped 
closer together where the throttle first 
begins to open. The breakpoints are 
spaced wider as the throttle is opened 
further. 

Engine speed is measured by timing 
the tooth period and filtering in a 
similar way to the throttle position. 
This parameter is global to the back­
ground task and the speed site is calcu-

lated as a number between 0 and 64. For 
a speed range of 16000 rlmin, the speed 
breakpoints are fixed at 250 rlmin, but 
for a reduced range, the breakpoint 
separation is programmable. Basically, 
the time for 250 rlmin is divided by the 
tooth period to produce the speed site. 
The subtract with carry divide instruc­
tion is very useful here, because the 
remainder from the division is conve­
niently located in the high part of the 
accumulator. This is then used to cal­
culate the speed interpolation steps. 

Load and speed sites together with 
the interpolation steps are fed into the 
main ignition interpolation routine, 
which uses the four surrounding map 
sites to the engine operating position 
to calculate the interpolated ignition 
advance map value. This routine 
contains eight mUltiply and 4 additions, 
as well as data manipulation, and 
executes in 63 cycles, which is 15.75uS. 
For comparison this is 15 times faster 
than the same algorithm on the Motorola 
6805 running at 4MHz. 

The background task also handles 
diagnostics and telemetry via a serial 
communications routine, and measurement, 
filtering, and preshaping on the 
following ignition modifiers. 

1) Air temperature 
2) Coolant temperature 
3) Barometric pressure 
4) Overall trim 
5) Boost pressure 
6) Air humidity 

The foreground task performs time 
critical control tasks, including the' 
conversion of the ignition angle into a 
timer value which is loaded into the 
output compare structure. The primary 
tasks carried out in the input capture 
interrupt routine are as follows. 

Synchronisation is initiated and 
maintained using missing tooth detec­
tion. On receipt of the tooth inter­
rupt, the period between this tooth and 
the previous tooth is read from the 
input capture FIFO. If the missing 
tooth has either not been initially 
detected, or is expected then the 
missing tooth detection algorithm is 
implemented. A successful detection is 
valid if 

Tooth period < 5/8 X previous period. 

After successful synchronisation, 
the tooth is identified, and calcula­
tions for the engine cycle are perfor­
med. Basically, the first tooth after 
TDC is called tooth 0, the next tooth 1 
etc, up to tooth 9, on a v8 engine, when 
the cycle repeats itself ,for the next 
cylinder. 

On tooth zero, the tooth to fire 
count is calculated, and decremented on 
each successive .interrupt, until the 
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firing tooth is arrived at. The tooth 
to fire· counter is calculated from the 
advance angle by dividing it by fifty. 

The remainder from this division is 
used to calculate the advance degrees. 
When the tooth to fire count has decre­
mented to 1, the time for ten degrees at 
this point is used to calculate the 
timer value, by mUltiplying the advance 
degrees by the period timer, and divid­
ing this result by ten. 

When the tooth to fire count is 
zero, the angle timer value is loaded 
into the appropriate compare register, 
and the action register is enabled, and 
the correct channel selected. When the 
timer mat~hes the compar~ register, 
compare output will go high, triggering 
the CO circuit, and sparking. 

In conclusion, the input capture 
interrupts are used for mathematical 
manipulation, loading timer values, 
counting teeth, and selecting the cor­
rect channel for the relevant cylinder. 
The overhead of these tasks is easily 
managed by the TMS320E14 at very high 
speed, whereas other conventional micro­
processors simply cannot perform them in 
time. Hence, a single DSP can be used 
in place of a multiprocessor system. 

5 FUTURE DEVELOPMENTS 

Having achieved the ignition control 
performance required by current racing 
engines, Lucas are working on expanding 
the system to full engine management. 
With the current OSP microcontroller 
there are insufficient output lines to 
control 12 injectors as well as 12 
channels of COl. Consequently, it is 
the I/O limitation rather than CPU power 
that requires a slave processor to 
handle the fuel injector outputs. The 
intention is to use a TMS370 8 bit 
microcontroller to drive the injectors 
sequentially under direct control of the 
DSP controller. The majority of the 
fuelling calculations will take place in 
the current ignition controller with the 
slave processor being passed the appro­
priate injection timing information. 

Whilst we have concentrated on the 
racing applications in this paper, Lucas 
have used this programme to measure the 
effectiveness of the OSP for Automotive 
engine control. New control strategies 
are being developed to enhance the per­
formance of engine control for passenger 
cars in order to both increase efficien­
cy and decrease emissions. 

One of these strategies is adaptive 
ignition control whereby the control 
system applies small perturbations to 
the engine's running condition to deter­
mine the optimum torque/speed point. 
Lucas have great experience of such a 
technique and expect it to be applied in 
future production systems (2). 
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Another technique yet to be ex~loi­
ted in production is that of cylinder 
pressure sensing (3). In this case a 
pressure waveform is used to provide 
closed loop control of the engine. At 
present the main barrier to this tech­
nique is the availability of a robust, 
cost effective sensor. It is well known 
that there are several developments 
under way including ones internal to 
Lucas. However, the pressure signal in­
side a cylinder is of a complex form 
that requires much filtering and proces­
sing. OSP's have already been used in 
research applications to extract the in­
formation contained in this complex sys­
tem - speed, combustion quality, engine 
health, etc. Again it is the real-time 
digital filtering ability of the OSP 
that is its strength for this function. 
The controller described appears to have 
sufficient spare capacity to be able to 
handle a cylinder pressure sensor - the 
story is common, the electronics are 
available and cost effective, but it i's 
the sensor technology that is lacking. 

6 CONCLUSIONS 

It has been effectively demonstrated 
that a microcontroller with OSP func­
tions included can provide the core for 
a high performance ignition controller. 
The efficiency of the instruction set 
coupled with its speed of operation 
would allow engine management to be car­
ried out on a single chip - the limiting 
factor is the amount of timer driven I/O 
available on the current device. The 
merits of having a very fast processing 
core can be summarised as:-

1) Control data updated closer to the 
time it is used. 

2) No tradeoff of control functions 
against engine speed. 

3) Opportunity to include new control 
techniques in single processor sys­
tem, i.e. cylinder pressure sensing. 

The TMS320E14 is the first step at 
availing the OSP functionality in a 
microcontroller device - it is expected 
that the lessons learnt from this and 
other automotive control projects will 
further enhance its capability as new 
devices are brought to production. 

This system should not be viewed 
solely as a faster versioh of current 
systems, but rather one which may be 
used to effectively apply the more com­
plex strategies required of engine 
management systems in the 1990's (4) -
and in a reliable and cost effective 
manner. 
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Active Reduction of 
Low-Frequency Tire Impact Noise 
Using Digital Feedback Control 

Mark H. Costin and Donald R. Elzinga 

ABSTRACT: Feedback control theory is 
used to develop an active noise control sys­
tem to reduce transient-induced road noise 
in a vehicle interior. The system consists of 
a detector microphone, a high-speed digital 
controller, amplifiers, an analog smoothing 
filter, and a headphone. The digital control 
algorithm uses the output of the microphone 
combined with the past history of the control 
signal to calculate the current value of the 
control signal. This signal is passed through 
a low-pass filter (to smooth the steps result­
ing from the digital-to-analog conversion) 
and then amplified and sent to the headphone 
near the driver's ear. Two control algorithms 
are evaluated. A proportional-integral con­
troller reduced the noise by about 5 dB over 
the 20-60 Hz range. A modified generalized 
minimum variance controller was able to re­
duce the noise by about 10 dB for the 25-
60-Hz range. 

Introduction 

This paper presents a system for reducing 
broadband, low-frequency noise. The partic­
ular application described here is the reduc­
tion of road noise in passenger vehicles; 
however, the concept can be used for other 
applications as well. 

Typical noise-reducing strategies, such as 
the use of acoustic absorbing material, work 
well on high-frequency sounds, but have lit­
tle effect on noise in the 20-200 Hz range. 
This frequency range is important because 
the vehicle's tires and suspension act as low­
pass filters. This results in a rough road­
induced sound spectrum, which typically 
peaks around 100Hz. The problem is es­
pecially acute in vehicles with large passen­
ger compartments and large amounts of body 
structural motion, which create high levels 
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Elzinga was with the Engineering Mechanics De­
partment, General Motors Research Laboratories. 
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of low-frequency noise. Station wagons and 
vans are good examples of such vehicles. 

The method investigated here to reduce the 
unwanted low-frequency sound is ,known as 
active noise control. This technique consists 
of broadcasting sound with the same ampli­
tude as, but 180 deg out of phase with, the 
objectionable noise, thereby canceling it. In 
actual practice, reductions of over 20 dB have 
been obtained for periodic noise and for 
broadband noise in a duct [I J. Reductions of 
this magnitude require the canceling signal 
to match the unwanted sound fairly pre­
cisely; small errors in the gain or phase rap­
idly degrade the performance of the system. 

Active noise control has been imple­
mented for the case of periodic noise by as­
suming that the waveform within the upcom­
ing period is identical to that which preceded 
it. In the case of a duct, feed forward control 
can be used. The noise is measured at one 
point upstream by a detector microphone; 
the canceling signal is then sent to a speaker 
positioned downstream. The noise reaches 
the speaker just as its antiphase counterpart 
is being generated. 

In the case of nonperiodic broadband noise 
in a vehicle's interior, there is no way to 
measure the offending sound before it reaches 
the driver. For this case, the use of a feed­
back controller to reduce the noise is ex­
amined. The use of a feedback controller for 
this situation was first proposed by Olson 
and May [2]; however, their feedback con­
sisted simply of an analog amplifier (gain), 
which does not take into account any system 
dynamics. Ffowcs Williams [31 reported that 
attempts to duplicate Olson and May's ex­
perimental results have revealed severe in­
stability problems. The approach outlined 
here tries to address the instability problem 
by detailed system modeling, for both the 
system electronics and noise characteristics, 
and by designing a digital control algorithm 
using minimum variance control theory. 

System Configuration and Modeling 

The experiments described in this report 
were carried out in a midsized station wagon 

passenger vehicle. A foam-rubber ball was 
positioned where the driver's head would 
normally be located. A microphone was 
embedded in the ball at the driver's right ear 
location. A production active noise control 
system would normally use a speaker as the 
canceling noise actuator. However, to sim­
plify the system for this feasibility study, a 
headphone set was placed over the ball (and 
microphone) to act as the canceling speaker. 

The control algorithms were implemented 
using a 320/PC digital signal processing 
(OSP) board made by Atlanta Signal Pro­
cessors, Inc. This is an add-in board for the 
IBM PC-AT. It includes a Texas Instruments 
TMS 32010 OSP chip to perform the re­
quired high-speed arithmetic and a digital­
to-analog (01 A) converter and an analog-to­
digital (AID) converter for control input and 
output. Modeling data and control results 
were collected using a Metrabyte Oash-16 
AID board. 

All the experiments were performed with 
the vehicle stationary in the lab. "Road 
noise" was generated by striking the right 
front tire with an air hammer. This generated 
a repeatable input that approximately simu­
lated driving over a bump in the road about 
the size of a 2-cm-high tar strip at 50 kml 
hr. 

The block diagram of the feedback control 
system is given in Fig. 1, with a microphone 
as the sensor and headphones as the actuator. 
Figure I also includes a shaping filter after 
the 01 A. This filter is necessary because the 
output of the 01 A is a series of steps that 
change in level at' the discrete sampling in­
tervals. If not removed, these discrete steps 
create a buzzing noise. Therefore, an analog 
low-pass filter (a fourth-order Bessel filter 
with a cutoff frequency of 300 Hz) was used 
in the system. The output of the filter goes 
into an amplifier that is used to adjust the 
gain of the system. 

To produce the desired canceling signal, 
models for the noise to be canceled and the 
dynamics of the components shown in Fig. 
I must be determined. U sing time-series 
analysis, a discrete-time model of the fol­
lowing form can be developed [4], where 
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Fig. 1. System block diagram. 

y(t) is the measured variable, u(t) the system 
input, a(t) a random-noise component, t the 
integer number of sampling intervals, and f 
the integer-valued system delay. The func­
tions w(q), a(q), 6(q), and </>(q) are polyno­
mials in the backward shift opemtor q -I, 
where q-IU(t) equals u(t - I). 

y(t) = w(q) u(t _ f - I) + 6(q) a(t) (1) 
o(q) </>(q) 

The first term on the right-hand side of Eq. 
(1) is referred to as the system tmnsfer func­
tion and the second term the noise tmnsfer 
function. 

The noise detected by the microphones re­
sulting from the "bump" (striking of the 
right front tire) is given in Fig. 2. The noise 
model, the second part of Eq. (1), was de­
tennined from these data at a data sampling 
mte of 2 kHz using the commercial time­
series analysis package "SeA" [5). This 
yielded Eq. (2), with 6 = 0.38, </>1 = 1.97, 
and </>, = -0.98, whe1:" Po1(t) (open-loop 
pressure) is the time series of the signals 
measured by the microphones during the 
"bump." 

Po1(t) = Fa(q)a(t) 

(1 - 6q-l) a(t) 2 
(I - </>Iq 1- </>,q ') ( ) 

.~.J 
0.2 O.4-""TO~6· O.B 1.2 1.4 

Time (sec) 

Fig. 2. Response of microphone to 
striking the tire twice, with the second tire 
strike occurring at approximately 1.4 sec. 
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The physical interpretation of Eq. (2) is 
that the time series a(t) is an impulse cor­
responding to striking the tire. Po1(t) is the 
impulse response of the tmnsfer function, 
which represents the filtering of the impulse 
by the tire and the structure of the vehicle. 

The denominator of Eq. (2) models a 
damped sinusoid. Box and lenkins [4) give 
the formulas below for determining the fre­
quency that the </> coefficients are modeling, 
where fo is the frequency of the sinusoid in 
cycles per sample and d the damping factor. 

</>1 = 2d cos (hfo) 

where 

d = _(</>,)112 

Therefore, the model given by Eq. (2) cor­
responds to a slightly damped sinusoid (d = 
0.99) with a frequency of34.0 Hz. The mag­
nitude-versus-frequency plot for this model 
is given in Fig. 3, which compares very well 
to the same plot for the data of the tire strike, 
Fig. 4. Note that the cutoff frequency is ap­
proximately 60 Hz. 

Next, the system Imnsfer function (repre­
senting the shaping filter, canceling signal 
amplifier, headphone, microphone, and mi­
crophone amplifier), the first part ofEq. (I), 

Frequency (Hz) 

Fig. 3. Magnitude-versus-frequency plot 
of Eq. (3) (amplitude at 5 Hz normalized 
to approximately the same value as in 
Fig. 4). 

Time ($&C) 

Fig. 4. Spectrum of tire hit. 

was modeled. Figure 5 shows the response 
of this system to a 40-Hz square wave. To 
identify this system, it was excited by white 
noise filtered at 500 Hz, sampled at 2 kHz 
(the sampling mte of the controller). A least­
squares analysis was performed between the 
measured output and the input yielding Eq. 
(3). A gain term represented by k was in­
cluded to represent the variable gains of the 
amplifiers. 

kF.(q)u(t - 2) 

k(1 + 0.14q-1)(1 - O.99q-l) 

(1 - 1.53q 1 + O.67q 2) 

. u(t - 2) (3) 

The denominator of Eq. (3) represents an 
underdamped sinusoid with a natuml fre­
quency of 116.6 Hz. The first polynomial of 
the numemtor (I + O.14q-l) models a par­
tial delay, which, along with the one whole 
period of deadtime, models the shaping fil­
ter. The (I - 0.99q-') term is very close to 
(1 - q-I), which corresponds to a derivative 
in the model. The presence of a derivative 
is expected because of the almost zero 
steady-state gain observed in the square-wave 
tests of Fig. 5. 

The overall system model is obtained by 
combining Eqs. (2) and (3), leading to the 
following expression for y(t), where k and 

Frequency (Hz) -

Fig. 5. Step response of shaping filter­
amplijier-headphone-microphone-amplijier 
system. 



tJte variance of a(t) depend on the gains of 
the amplifiers. 

y(t) = kF.(q).(t - 2) + F.(q) a(l) (4) 

Minimum Variance Control Theory 

For systems modeled in the form of Eq. 
(I), an effective controller design method­
ology is minimum variance control theory 
[6]. This technique finds the control that 
minimizes the variance of the measurement 
y(t). 

The minimum variance controller for Eq. 
(I) can be shown as 

-o(q)T(q) 
U(I) = w(q) <b(q) i'(q) y(/) (5) 

The functions T(q) and if(q) are polyno­
mials derived from the identity 

O(q) = '1'( ) + T(q)q -f-I (6) 
<b(q) q <b(q) 

where 

i'(q). = I + i'lq-1 + ... + iffq-f 

The minimum variance controller [Eq. (5)] 
has the property of reducing y(t) to iJi(q)a(/). 

The closed-loop controller described by 
Eq. (5) also has its limitations. Equation (5) 
has the term iJi(q) in its denominator. Ifi'(q) 
has any roots in q -I inside the unit circle, 
the controller will be unstable. This means 
that, theoretically, to achieve minimum 
variance control, the variance of U(/) will be 
unbounded. In a practical implementation, 
the high output energy of an unstable con­
troller will cause the entire system to be 
unstable. 

Unfortunately, for the model described by 
Eq. (4), if(q) = (I + 1.96q-l) has its root 
inside the unit circle. For cases with unstable 
controllers, many modifications to minimum 
variance control have been proposed. One of 
the most popular is called the generalized 
minimum variance (GMV) controller [7], 
where the variance of P(q)y(/) is minimized 
instead of the varianceofy(l) [P(q) = PN(q)! 
Po(q) is a digital filter, and PN(q) and Po(q) 
are polynomials in q -I]. 

The minimum variance controller [Eq. (5)] 
also has the disadvantage that it minimizes 
the measured signal with equal weighting on 
all frequencies. This is not always desirable. 
For example, since sounds below 20 Hz are 
virtually inaudible and difficult to reproduce 
with a small speaker, we are not interested 
in controlling these frequencies. The P(q) 
filter of the GMV algorithm can also be used 
to selectively weight certain frequencies. 
P(q) could, for example, be made to ap­
proximate the A-weighting curve, which ap-

proximates the filtering done by a typical hu­
man's auditory system. The controller would 
then minimize the noise as sensed by the 
vehicle's occupants. 

The GMV controller can be shown as 

U(I) = -o(q)T(q)y~) . 
Po(q) w(q) <b(q) if (q) 

(7) 

The functions T(q) and Y (q) are polyno­
mials derived from the following identity, 
which is similar to Eq. (6). 

where 

-It(q) = I + -Itlq-I + ... + -Itfq-f 

The minimum variance controller [Eq. (5)] 
is a special case of Eq. (7), where P(q) = I. 

The application of controller (7), and also 
a simple proportional-integral (PI) control­
ler, to the active noise control problem is 
described in the following section. 

Closed-Loop Control Results 

To more easily describe and compare the 
controllers, all the controllers were imple­
mented as U(I) = a(q)y(t)![3(q), where a(q) 
and [3(q) are polynomials of controller pa­
rameters and Nand M are the maximum 
number of controller coefficients. 

In the remainder of this section, when de­
scribing an individual controller, a parame­
ter's value is zero unless it is indicated ex­
plicitly. 

Two types of controllers were imple­
mented in the TMS 32010. The first con­
troller tried was a PI controller, where N = 

I, M = I, [30 = I, and [31 = -1. The 
parameters "'0 and al were determined by 
trial and error as "'0 = 2.94 and al = -1.94. 
The denominator was implemented as III = 
-0.98 (as opposed to III = -I) to reduce 
numerical round-off problems. 

The second controller, a GMV controller, 
was designed for Eq. (4) using Eq. '(7). P(q) 
= (I - 0.6q-1)!(1 + 0.6q-1) was used to 
force if(q) to be stable. This form for P(q) 
was selected by computer simulation of sys­
tem model (4). The resulting controller was 
determined to have the following parameter 
values: "'0 = 0.955, al = -1.97, "'2 

1.20, "'3 = 0.0014, "" = -0.151, [31 = 
-1.83, [32 = -0.0361, 113 = 1.26, Il. = 
-0.103, [3s = -0.263, and [3. = -0.0321. 

Unfortunately, the GMV controller de-

signed for Eq. (4) performed very poorly. 
When implemented, the system became 
unstable even before the disturbance was in­
troduced by hitting the tire. The instability 
is thought to be caused by the controller's 
very high gain at low frequencies. This high 
gain is due to the formulation of the mini­
mum variance controller, which inverts the 
model transfer function. For the case of Eq. 
(3), the term (I - 0.99q-l) mOdels very low 
gains at low frequencies, resulting in a min­
imum variance controller with very high 
gains at low frequencies. Because of this low 
gain and the modeling technique used, the 
low-frequency components of the system 
probably were modeled inaccurately. This 
could cause any minimum variance control­
ler designed from this model to exhibit un­
desirable properties at low frequencies (i.e., 
inadequate gain and phase margins). 

To remedy this, an ad hoc controller de­
sign was performed that involved recalcu­
lating the GMV controller using Eq. (4) after 
the (I - O. 99q - I) term was removed from 
the transfer function. The result was a mod­
ified GMV controller with ao = 0.955, "'I 

= -1.97, "'2 = 1.20, "'3 = 0.0014, "" = 
-0.151, [30 = I, [31 = -0.839, 112 = 
-0.867, [33 = 0.405, Il. = 0.298, and Ils 
= 0.0325. This controller was stable and 
provided good control. Although this mod­
ified GMV controller is probably not opti­
mal, as discussed later, it performed better 
than the PI controller, demonstrating the fea­
sibility of the concept and the model-based 
controller design. 

Figure 6 shows the spectrum of the tire hit 
for the uncontrolled sound, and PI and mod­
ified GMV controllers. The· PI controller 
shows a reduction of 5-10 dB for the 20-60 
Hz interval. The modified GMV controller 
shows a 10-20 dB reduction between 25 and 
60 Hz. The reduction is limited above 60 Hz 
because striking the tire introduces very little 
noise above this frequency (the cutoff fre-

Frequency (Hz) 

Fig. 6. Comparison of open-loop, PI 
control, and modified GMV control lire hil 
spectra. 
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quency of Figs. 3 and 4). From about 15 to 
20 Hz, the modified GMV controller ex­
hibits an amplification of 5-10 dB; however, 
these frequencies are on the border of the 
audible range and would not be heard by 
most people. 
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Implementation of a Tracking Kalman Filter on a 
Digital Signal Processor 
JIMFRON TAN AND NICHOLAS KYRIAKOPOULOS 

Abstract-A Kalman filter for tracking moving objects has been 
implemented on a TMS32010 digital signal processor. Tracking accuracy 
and quantization effects of the implementation have been measured by 
comparing the filter to one implemented on a general purpose computer 
with a 32-bit word length. The filter design has been optimized to 
minimize the program memory requirements and execution speed. 
Although the filter has been implemented on a specific signal processing 
cbip, the design is general enough to be applicable to any other digital 
signal processor. The filter can be used for tracking objects for industrial 
or other applications where range and bearing measurements are 
available. For motion on a plane, the filter caR be used to track objects 
where the maximum system bandwidth is 1680 Hz; for three-dimensional 
motion the system bandwidth is 1120 Hz. Using the approach presented in 
this paper higher system bandwidths can be accommodated through 
higher speed digital signal processors. 

I. INTRODUCTION 

THE theory of Kalman filters is by now well covered in the 
literature [I], [2]. [3]; applications can be found in any 

area where the problem can be modeled as a dynamic process. 
Implementation of even the most efficient algorithms requires 
rather heavy computational capacity. Memory requirements 
are dominated by program instructions for systems with a 
small number of states, and by matrix storage for large state 
sizes. For program execution, the largest amount of time is 
taken up by multiplications and additions in the computation of 
the covariance matrix; in general, the number of these 
mUltiplications is proportional to the third power of the state 
size [4]. 

Recently, the trend in special purpose signal processing 
devices has been toward the integration of array multipliers 
with the ALU; as aresult, there has been an improvement in 
the multiplication time compared to the software implementa­
tion of the multiply instruction. The improvement in the 
instruction execution time makes the on-line, real-time imple­
mentation of Kalman filters for industrial applications a 
realistic possibility. This paper discusses the implementation 
of such a filter on a special purpose digital signal processor. 
Some of the currently available devices such as the NEC 
p.PD7720, and the Texas Instruments TMS320 are capable of 
4.0 x 106 and 5.0 x 106 multiplications per second, 
respectively. The Kalman filter described in this paper is 
implemented on the TMS320. 

Since the multiplication time and memory capacities of 
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these devices are fixed, the objective ofthe design presented in 
this paper is to minimize cycle time and maximize the state 
size of the filter. At the same time, the arithmetic roundoff 
errors are bounded. 

The filter implemented in this paper is a tracking filter 
where the state variables are position and velocity. Tracking 
filters have a wide range of applications from perfonning 
mechanical operations such as controlling the motion of robot 
arms to the sensing of objects through radar or sonar. The 
implementation presented in this paper is in tenns of a 
normalized system of units; it is thus applicable to any 
problem formulated as object tracking. 

Section II describes the formulation of the tracking prob­
lem. Section III gives the development of the Kalman filter. 
The details of the program design are given in Section IV, 
while the evaluation of the program is described in Section V. 

II. FORMULATION OF THE TRACKING PROBLEM 

The tracking problem considered in this paper assumes 
motion of an object on a plane; three-dimensional motion can 
be handled through repeated use of the two-dimensional 
system. The problem can be viewed either as an object moving 
with respect to a sensor or the converse; the two situations are 
handled through a simple coordinate transformation. It is 
assumed that range and bearing are measured independently; 
therefore, these two measurements are decoupled and the 
polar coordinate system is used. This decoupling of states is 
essential to the optimization of the computer program since the 
number of multiplications for the covariance matrix is propor­
tional to the third power of the state size; thus the number of 
multiplications for estimating position and velocity in three­
dimensional motion would be 63 = 216 for coupled systems 
versus 3 X 23 = 24 for a decoupled one. 

Consider an object moving on a plane. Let the sampling 
frequency be high enough so that the object speed between any 
two sequential sampling instances can be considered constant; 
every change occurs at the sampling instances, and those 
changes are disturbed by random accelerations. In the polar 
system. along each coordinate, there is the associated variable 
xl(k) and its corresponding rate of change xl(k) = x2(k). For 
each coordinate the equations of motion are 

~(k) 

=F(k)x(k) + G(k)w(k) (I) 
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where T is the sampling period, w(k) is the random 
acceleration disturbance, and 

F(k)= [FII(k) Flz(k)] = [1 T] 
FzI(k) Fzz(k) 0 1 . 

The measurements consist of range and bearing readings; 
each measurement variable z(k) is corrupted by additive noise 
lI(k); therefore 

where 

z(k) = [I O]x(k) + lI(k) 

=H(k)x(k) + lI(k) 

H(k) = [HI (Ii) Hz(k)]. 

ill. DEVELOPMENT OF THE KALMAN FILTER 

(2) 

The equations describing the Kalman filter for the system 
described by (1) and (2) have been developed in the literature 
[1], [2]. The most time consuming process in the implementa­
tion of the filter is the multiplications required for computing 
the error covariance matrix lind the filter gain. For the tracking 
problem considered in this paper the number of operations is 
minimized by converting the filter matrix equations into scalar 
forms. These scalar equations require fewer assembly lan­
guage instructions than the original form of the filter. 

. Designating the error covariance matrix as 

P= [~:: ~~] 
the extrapolated covariance matrix as 

S= U:: ~~] 
and the extrapolated state estimate as y, the filter equations are 

y=Fi (3) 

S=FPFT +GQGT (4) 

r=s HT [H S HT+R]-I (5) 
j 

x=y+r[z-Hy] (6) 

p=[I-rHlS (7) 

where r is the filter again. The scalar equations (3)-(7) are the 
basis for the assembly language program of the digital signal 
processor. The flowchart for the filter implementation on the 
TMS320 processor is shown in Fig. I. 

IV. PROGRAM DESIGN 

The development of the filter equations has been influenced 
by the architecture of the digital signal processor. If the 
Kalman filter is implemented in terms of array operations, a 
single subroutine executing vector multiplication can be 
defined; such a subroutine can be called whenever vector 
operations are needed. If, on the other hand, the filter 
equations are implemented in scalar form, the call and return 
times for the subroutines are eliminated; the program memory 
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Fig. I. Kalman filter implementation on the TMS320 digital signal 
processor. 

requirements for the scalar implementation are much greater 
than those for the vector implementation. This imbalance is 
corrected by the improvement in the execution time. The total 
time required for generating an output data array can be 
measured in instruction cycle times. For array multiplication 
the total number of instruction cycle times consists of the time 
required to operate on the array elements, the time required to 
call and return the array subroutine, and the number of times 
the array subroutine is called. For scalar operations, the call 
and retl:rn times are saved. Thus if the total number of 
instruction cycles for executing an array operation is compara­
ble to the instruction cycles required for calling and returning a 
subroutine, the scalar formulation of the equations yields a 
faster filter implementation. For example, the inner product of 
two n-dimensional arrays requires n multiplications and (n -
1) additions. Since the instruction cycle times nT is typically 
equal to the multiply time, the total time required for such an 
operation is n T. If the inner product is programmed as a 
subroutine, the call and return times require more than one 
instruction cycle time, or aT where a > 1; the total time 
required for calling and executing the subroutine is (nxa)T. 
Consider now the multiplication of two n x n matrices using 
the array multiplying subroutine; the total number of cycle 
times would be n(n + alT. In a scalar implementation of the 
same operation, the total number of cycle times would be nZT;, 
thus the ratio of the scalar implementation execution time to 
the vector implementation is n/(n + a). It is seen that as n iJ> 
a the ratio tends to 1 and the saving in execution time is 
insignificant compared to the increased amount of memory 
required to store the instruction required for the scalar 
implementation. For the two degrees of freedom under 
consideration in this paper, n = 2, and the ratio becomes 2/(2 
+ a); since a is always greater than I, the scalar implementa-



tion of the Kalman filter will be at least twice as fast as the 
corresponding vector realization. 

A. The Digital Signal Processor 

The Texas Instruments TMS32010 [5] was chosen for the 
implementation of the Kalman filter described in the previous 
sections. The approach to the filter design described in this 
paper is equally applicable to any other signal processing chip. 
There are, however, some general observations that would be 
useful in choosing a particular DSP chip for implementing a 
filter. It has been seen that the decrease in processing time is 
accompanied with an increase in program memory require­
ments. Some DSP chips partition the ROM into a program 
ROM and a data ROM in addition to the data RAM; others 
have only data RAM and program ROM. The Kalman filter 
algorithm is instruction intensive with minimal requirements 
for data storage; therefore a DSP architecture with a large 
nonpartitioned ROM and relatively small RAM would allow 
the implementation of a larger dimension Kalman filter in the 
scalar form, thus decreasing the computation time for obtain­
ing the state estimates. From the faster available devices the 
NEC ILpD7720 has 512 x 23 program ROM and 512 x 23 
data ROM, while the TMS 32010 has 1536 x 16 program 
ROM only; therefore, on the basis of the previous consider­
ations it was considered more suitable. 

B. Word Length Considerations 

The finite length registers of the DSP chip affect the 
accuracy of the filter; the fixed point representation of the 
numbers can cause overflow or underflow. The effects of 
parameter quantization can be studied either analytically or by 
comparing the performance of the filter to a similar one with 
much larger word length. For this paper, the latter option has 
been chosen; the reference filter has been implemented on a 
32-bit general purpose machine in both integer and floating 
point realizations; the results are discussed in a subsequent 
section. 

To avoid the overflow or underflow problems associated 
with integer arithmetic the filter equations were scaled 
appropriately. Proper scaling factors for each variable and 
parameter were determined from the implementation of the 
filter on the general purpose computer using floating point 
arithmetic. The filter variables and parameters for each sample 
point were printed out under a wide range of operating 
conditions. Ideally, the statistics of these variables should be 
determined using Monte Carlo simulation; in practice, how­
ever, reasonable values can be obtained. by operating the filter 
under conditions close to the maximum range and bearing. 
Once the ranges of values for the variables have been obtained 
from the large word iength computer, considered the reference 
standard, the scaling factors for the DSP implementation are 
chosen by also taking into account the required accuracy for 
each variable. 

Let Xmax be the maximum value of a variable x, and ax the 
corresponding accuracy. The number of bits, M, required to 
accommodate Xmax would be log2 Xmax oS M; to obtain the 
required accuracy, the number of necessary bits must satisfy 
2 -N oS ax. For a 16-bit DSP, M + N = 15 since one bit is 

TABLE I 
INITIAL CONDmoNs, SCAUNG FACTORS AND THE NORMAUZED 
VALUES USED IN IMPLEMENTING THE KALMAN FILTER IN THE TMS 320 

ParameterS Initial Scaling Normalized 
or Variables Values Factors Initial 

Values 

F11 
, , , 

F,. 0 
, 0 

F., .. ' .' , 
F •• 

, , , 
G, 

,-, .' , 
G. ,'. •• , 
H, 0 , 

0 

H. 
, , , 

X, .x. 0 .1 0 

P11 '00 .' 1600 

p,. 0 .' 0 

p •• '00 •• 25600 

511 .4 

s,. ,5 •• .' 
'I,,~,2,V 

.1 

~,Il..'W 
.4 

~ (range) .00 ..' .6 
a: (ranga) 

, .' '6 
O'~ (bearing) 360 2 .. ' 8100 

(J~ (bearing) 9 " 144 

reserved for sign. The dynamic range of the system is Xm • .I ax 
= 2 IS = 32768. Obviously, there is a tradeoff between the 
maximum range of a variable and the corresponding accuracy .. 

For the system under consideration the maximum values for 
the range and bearing were 200 units and 180·, respectiVely; 
the corresponding accuracy was 0.01. Therefore, log2 200 < 
8 = M, and 2 -7 < 0.01 so that N = 7. The scaling factors 
for the computed variables are determined by examining the 
range of these variables from the simulation runs. For 
example, the maximum value of P II , (4) was approximately 
1000 so that M <!: log2 1000, or M = 10 bits. The error 
covariance at every sample point depends on the assumed 
initial values for this variable; for the present simulation only a 
few different values of initial conditions were used so that 
there is a certain degree ofunceltainty for the value P II max' To 
minimize possible computational errors due to this uncer­
tainty, M was increased to 11 bits, implying a P II max of 2048. 
Under these conditions, N = 15 - M = 4 bits and the scaling 
factor for P II is taken as 24 = 16. Similarly, the scaling factor 
for SII has been computed as 24. The scaling factors for all the 
variables are shown in Table I. Application of these factors to 
the filter equations (3)-(7) yields the scaled version of the 
Kalman filter given in Table II, which has been implemented 
in the TMS320 DSP. 

C. Reference Program 

The performance of the filter has been evaluated by 
comparing it to a filter implemented on an mM 370 machine. 
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TABLEll 
NORMAUZEO KALMAN FILTER EQUATIONS 

YI ::: FBXl + F12X2 

Y2::: F12XI + Fnx2 

2 2 2 2 
Sn= FnPn+ Fn FI2PI7i8 + F12P22/16 + G1"Q 

S12 = FI1P12Pll + P12F21P12/16 + FI1F22P12 + FIIF22P22 + GIG2iQ"2 

S22 = Fi,Pl1!16 + F21F22PI7i8 + F2iP22 +G2~ci64 

01 = Sl1H, + Sl2HzlI6 

02= S 12H 1/16 + S22Hzl16 

W=HIDI +H2D2 + 0'; 

v = z· (HtYt + H2Y2) 

Pu= Sl1 - oiIW 

P12 = S12 - 01Dz/(W'16) 
2 

P22 = S22 - Dz/(W.16) 

:'" 
: '" 
I '" 

: '" : "" NOMINAl. COURSE 

: '" r '" !jK+1),Y,IK+ll --1------------,,----------

XIKl 
a 

" : I 
I 

Fig. 2. Effects of acceleration noise on a nominal course of an object. 

X. 

To make the two filters as similar as possible, the filter 
equations in scalar f0111) given in Table II have also been 
implemented on the general purpose machine; input range and 
bearing data simulating the motion of the object being tracked 
are generated by subroutine INPUT; these measurements are 
corrupted by noise produced by a system subroutine. 

The equations describing the object trajectory can easily be 
derived with the help of Fig. 2. At the kth sampling instant, 
the object is at position p(k), lI(k) with velocity p(k) and 9(k) 
which have cartesian representations x(k) and velocity lI(k), 
respectively. Assuming that the velocity is constant in magni­
tude and direction in the interval kT:$ t < (k + 1) T, at the 
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(k + 1 )st instant the object would be in position 

xo(k+ l)=x(k)+ TIJ(k). (8) 

Consider now the object being subjected to an acceleration 
noise; for example, an object moving on a conveyor belt is 
subject to vibration, or an airplane is subject to wind effects. 
Let the acceleration vector be g(k); then the actual position of 
the object will be 

1 
x(k+ I)=xo(k+ 1)+- gT2. 

2 
(9) 

To determine the estimation error, given p(k) and 8(k), we 
need p(k + I) and 8(k + I) for comparison with p(k + I) 
and 8(k + I) which are the outputs of the Kalman filter. Since 
(8) and (9) involve vector addition, the polar coordinates for 
the kth instant are converted into cartesian form and the noise­
free position given by (8) is obtained; then, the impact of the 
acceleration vector g(k) is added and the actual position x(k 
+ I) is obtained, which is subsequently converted to p(k + I) 
and 8(k + I). These transformations are straightforward with 
the help of Fig. 2. 

Designating as 8,(k) and p,(k) the direction and magnitude, 
respectively, of the velocity lJ(k) along the nominal course, 
the noise-free position of the object is given by 

xbo(k+ I) = p(k) cos 9(k) + Tp, cos 9,(k) 

xbo(k+ I)=p(k) sin 9(k)+ Tp,(k) sin 9,(k). (10) 

The actual position of the object is given by 

where pg(k) and 8g(k) are the magnitude and direction, 
respectively, of g(k). 
The magnitude and direction of the acceleration disturbance 
are uniformly distributed random variables in the ranges {O -
jgjmax} and the range and bearing at the (k + I)st instant are 
found as 

p(k+ I)=.jx~(k+ 1)+X~(k+ I) 

xb(k+ 1) 
9(k+I)=tan ---. 

xa(k+ I) 
(12) 

Equations (10), (11), and (12) are used in the simulation 
program to describe the trajectory of the object, and the 
estimation error is determined by comparing the output of the 
filter to the values obtained from (12). 

V. PROGRAM VERIFICATION 

The filter program is simu'Iated using the XDS/320 Macro 
Assembler, Linker, and Simulator, which are the software 

support programs for the TMS320 products [5], [6]. The 
source program is compiled, linked, and loaded into the XDSI 
320 simulator; input and output files may be attached to VO' 
ports to simulate peripherals connected to the processor. 

Verification of the filter operation involves 1) implementa­
tion of the filter equations on a 32-bit machine using floating 
point arithmetic, 2) generation of actual object trajectory, with 
a state vector X32, on a 32-bit machine using the model 
described in Section IV, 3) generation of an estimated 
trajectory with a state vector i 32 , and 4) generation of the 
estimated state vector i l6 by the filter implemented on the 
TMS320 using integer arithmetic. 

The tracking properties of the reference filter are deter­
mined by computing the estimation error i32 = X32 - Xl2 for 
various object trajectories. For testing purposes, eight differ­
ent trajectories have been generated, four along straight lines 
and four containing midcourse changes in direction, The noise 
variances used are listed in Table 1. Four of those trajectories 
are shown in Figs. 3-6; each trajectory contains 50 sampling 
points; course changes occur at the 26th sample. The 
estimation error X32 is a measure of the optimal performance of 
the reference filter; the equations of this filter are identical to 
those implemented on the TMS320. 

The effects of the 16-bit integer arithmetic on the filter 
performance are determined by comparing the estimated state 
vector Xl6 from the TMS320 simulator to the state estimate i32 
from the reference filter; this difference forms the quantization 
error xQ = i32 - i 16• 

In Figs. 3-6, the actual position is given by the solid line 
which contains the effects of noise on the object trajectory; the 
crosses indicate the measured position determined from noisy 
measurement, and the squares indicate the estimated positions. 
The measurement system is located at the origin of the 
coordinate system which is calibrated in unspecified distance 
units. It should be noted that as the distance of the object from 
the origin increases, both the measurement and estimation 
error increase; this is due to the bearing measuring system 
which is subject to a given noise power. At points close to the 
origin the effects of the bearing measurement noise are small; 
as the range increases, the effects become very significant thus 
affecting the filter accuracy. 

The performance of the filter during the entire tracking 
period can be determined by considering the mean estimation 
error for every sample point over a large number of different 
trajectories, or 

E[x(k)'tk=l, "',50 

over a set of sample vectors xU, k», j = I, ... , 8, where 
x(j, k) = X32(j, k) - XI6(j, k) is the estimation error at the 
kth sample of jth trajectory. The means of the range and 
bearing estimation errors, p(j, k) and iJ(j, k), respectively, 
for the eight sample trajectories are shown in Fig. 7. From 
these plots it is evident that the performance of the system is 
consistent throughout the entire tracking period. 

The quantization effect are similarly determined by consid­
ering the mean and variance of the range and bearing 
quantization errors for each sample over the set of sample 
trajectories. Fig. 8 shows E[pn(k) - PI6(k)] and var [Pdk) 
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Fig. 3. Filter performance for a nominal straight line trajectory subject to 
acceleration noise with initial position close to the origin. 
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Fig. 6. Filter performance for a l1'I\iectory involving 90" change from initial 
course. 
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tation compared to a thirty-two bit implementation over a set of eight 
sample trajectories. 

- PI6(k)] ." k =. 1, "', 50 over a sample trajectory range j 
= 1, "',8. Fig. 9 shows similar information about bearing 
quantization errors. From these figures it is evident that the 
filter performance is not degraded due to quantization effects . 

Anotl).er aspect of the filter performance is the maximum 
system bandwidth under which the filter can operate in real 
time. The filter implementation presented in this paper 
requires 1488 instruction cycles to generate one sample 
estimate. With an instruction cycle time of 0.2 I'S, the filter 
can operate in a system having a maximum sampling fre­
quency of 3.36 kHz or a system bandwidth of 1.68 kHz. This 
bandwidth is more than sufficient to allow the Kalman filter 
implemented on the TMS32010 to be used in any application 
where mechanical motion is involved. The latest signal 
processing chips having instruction cycle times on the order of 
0.1 I'S, and can be used in real time systems with bandwidths 
up to 3.36 kHz. For three-dimensional motion the correspond­
ing systems bandwidths are 1.12 kHz and 2.24 kHz, respec­
tively. These bandwidths are derived by considering that the 
filter estiniates a two-dimensional state vector for each 
coordinate. The 1488 instruction cycles involve the calculation 
of two state vector each of dimension 2 as shown in Fig. 1; 
thus for the three-dimensional case, the total number of 
instruction cycles required will be approximately equal to two­
thirds of these required for the two-dimensional system. 

VI. CONCLUSION 

This paper presents a detailed implementation of a tracking 
Kalman filter on a special purpose digital signal processor. 
Implementation of such a filter on a real time basis allows for 



the design of distributed real time control systems for 
applications involving multiple sensor tracking of moving 
objects. Although the design of the fllter is based on a specific 
signal processor, the principles involved, especia1\y in the 
modeling of the system noise effects, are general enough to be 
used for implementing the fllter on any other processor. 
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ABSTRACT 

This paper deals with the complete design of a stand-alone 
prototype digital protective relay for three-phase power trans­
formers. The major emphasis of the paper will be on the de­
tailed description of the hardware and software of the proto­
type relay. The protection functions implemented include: a 
percentage differential protection with a second-harmonic re­
straint for magnetizing inrush and a fifth-harmonic restraint for 
overexcitation conditions, and a separate protection for high 
impedance primary and secondary ground faults. The present 
relay design is tested with the Fourier algorithm and any other 
relay algorithm can be used by replacing only one subroutine. 
The relay hardware consists of a data acquisition board and 
a digital processing board which is based on the TMS320E15 
processor. Sample real-time test cases arc included in the pa­
per. The results show that the relay never misoperated and 
correctly identified all the faults that are applied. 

Key words: 

Digital Relay, Power Transformer, Signal Processing. 

INTRODUCTION 

The digital protection of electrical power apparatus has 
been an active area of research for the past twenty years. These 
research results are being utilized in some of the digital relay 
designs in recent years [1]. Considerable amount of research 
has been done on digital protection of power transformers. A 
number of relay algorithms have been developed [2,3]. The 
digital protection of power transformers requires complex cal­
culation and logic, hence the use of a digital processor seems 
natural and attrnctive. 

Transformers are usually protected by means of a differen­
tial scheme. Unlike in the bus differential scheme, the trans­
former differential relay should be designed such that it does 
not misoperate during magnetizing inrush [4} and overexcita­
tion conditions which fools differential relay operation. Fortu­
nately these non~linear conditions are characterised by a heavy 
harlnonic content in their current signals which can be used to 
prevent the misoperation of the differential relay. 

This paper describes the complete design details of the 
hardware and software of the prototype digital protective re-
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lay for 3-phase power transformers. The following sections of 
the paper describe the percentage differential and ground fault 
protection, digital relay hardware and software design and real­
time test results. 

PERCENTAGE DIFFERENTIAL 
AND GROUND FAULT PROTECTION 

Principles of differential protection of transformers is well 
documented [5]. A typical percentage differential characteris­
tic (PDC) which is used for power transformer protection is 
shown in Figure 1. The threshold Co should be selected based 
on the magnitude of the magnetizing current, and the differ­
ential current resulting from the on-load tap-changing during 
normal loading conditions of the transformer. During overex­
citation conditions the threshold Co should be increased to C~ 
in order to prevent relay misoperation. The slope (Cll of the 
PDC should be adjusted to make the differential relay insen­
sitive to transformer tap-changing, C.T. saturation and ratio 
errors during through fault conditions. In addition the relay 
should also be equipped with a second-harmonic restraint for 
inrush currents [6,7] and a fifth-harmonic restraint. for 
O\'erexcitation condition. 

The sensitivity of the differential protection is somewhat 
limited for ground faults, due to the magnitude of ground fault 
impedance. Sensitive protection for ground faults can be ob­
tained by providing a separate primary and secondary ground 
fault protection. 

In order to design the digital relay with the above features, 
it is required to calculate the differential, through and ground 
fault currents. From Figure 2, the differential currents are: 

id.(t) i .. (t) - [i2.(t) - i.,(t)]n2/n, } 
idO(t) = ilb(t) - [i,,(t) - i2.(t)]n./I1, 
i",(t) = i,,(t) - [i.,(t) - i .. (t)]n./n, 

the through currents are: 

i,.(t) {i,.(t) + [i •• (t) - i.,(t)]n./n.}/2 } 
i .. (t) = {ilbet) + [i .. (t) - i2.(t)]n./n.}/2 
i,,(t) = {i,,(t) + [i.,(t) - i2b(t)]n./n.}/2 

and the ground fault currents are: 

(1) 

(2) 

i,,/(t) =, i,.(t) + ilb(t) + i,,(t) } 
i.g/(t) = i 2.(t) + i .. (t) + i.,(t) + i.,(t) (3) 

where n./n, is the turns ratio of the transformer. 

The main signal processing required for a digital trans­
former protective relay is the calculation of fundamental and 
harmonic components of the above current signals. There are 
many digital .. elay algorithms available for this purpose [2,3J. 
In this work an algorithm based on the discrete Fourier traIlS-
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Figure 1. Percentage differential characteristic. 
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form (OFT) is used [8,9]. When the recursive version of the 
DFT [9] is used, the algorithm worked well in the digitalsim. 
ulation, but when implemented, it showed convergence prob­
lems during very low signal magnitudes (overexcitation and 
high impedance faults) due to quantization errors. Hence, the 
direct implementation of the OFT is used and it is briefly de­
scribed here. Consider a sampled signal (sampling period T), 
z(k), at kth instant (time t = kT), the Fourier sine and cosine 
components of an n,h harmonic component are given as follows: 

2 N-l ) FSn(k) = Ii ~z(k - r)sin27rrIN 

2 N-l 
FCn(k) = Ii L,z(k-r)cos27rTIN 

r=O 

(4) 

and the squared magnitude of the nth harmonic component at 
any time. instant is given by: . 

h! = FS! + FC! (5) 
where hn is the nth harmonic component and N is the number 
of samples in one fundamental cycle (N = 16 is used in the 
present design). 

In order to provide a secure harmonic restraint function 
for inrush and overexcitation conditions, the harmonic compo­
nents of all the three phases (only the differential currents) are 
combined as follows: 

ID! = (Id!n + Itf,n + I,pm), n = 1,2 and 5 (6) 

where Id.n,Id ... and Id"" are the nth harmonic components 
of the three differential currents and I Dn is the nth harmonic 
component of the combined differential current. The relay soft­
ware, given in a subsequent section, fully describes the actual 
implementation of the percentage differential and the ground 
fault protection. 

DIGITAL RELAY HARDWARE DESIGN 

The overall laboratory test set-up is shown in Figure 2. 
A 3-phase transformer with t.IY connection is chosen (this 
transformer and the C.T.s are obtained from the Newfound-

------------------------, 
Data AcquiSItion Board Dlllltil ProCissinli Baird 

Figure 2. LaboratQry test set-up. 

for the secondary ground current. A triac-controlled circuit 
breaker (C.B.) is used for tripping. The circuit breaker has 
a built-in optiCal isolation between power and control circuits 
which provides complete isolation, and the breaker can operate 
within one half cycle. The digital relay hardware consists of 
two different boards, namely, the data acquisition board (DAB) 
and the digital processing board (DPB). The DAB consists of 
seven identical circuits each having a scaling circuit, a sixth 
order Chebyshev anti-aliasing filter (LPF) and a sample-and­
hold (S/H) circuit. These seven analog signals are then multi­
plexed (MPX) and the output of the MPX i. connected to the 
AID converter which is on the DPB. The DPB consists of a 
TMS320E15 digital signal processor, an AID converter, digital 
1/0 ports and a sampling clock generator. The details of the 
above are given as follows: 

Daia Acquisition Board 

The detailed circuit diagram of the data acquisition board is 
shown in Figure 3. Since the board has seven identical circuits, 
only two of them are shown in detail. 

land and Labrador Hydro). Seven C.T.s are used, three for Figure 3. Circuit diagram of the data acquisition board (DAB). 
the primary current., three for the secondary currents and one 
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Analog Scaling Circuit: Analog scaling circuit is used to 
s<"le the C.T.'s output signal to be compatible with the AID 
converter input voltage and also to tJ°im any gain errors be­
tween channels caused hy either the C.T. shunt resistor mis­
match or the gain mismatch of the LPFs. Figure 3 shows the 
analog scaling circuit which utilizes one operational amplifier 
(LM324AN) and is configured in non-inverting mode. The gain 
of the amplifier is given as follows: 

.!1=1+ R• 
Vi R, 

(7) 

The voltage gain of the amplifier can be varied by adjusting 
R •. 

Anti-Aliasing Filter: If the analog signal cannot be sampled 
at a rate higher than the Nyquist sampling frequency (twice the 
highest frequency component in the signal), an error termed as 
aliasing will occur. Aliasing er~or occurs due to the fact that 
the sampled signal may contain low frequency components that 
are not present in the signal. The aliasing problem can be mini­
mized by using an analog low-pass prefilter; the prefilter should 
reject all frequency components beyond 1./2, where I. is the 
sampling frequency. Since the relay logic utilizes up to fifth­
harmonic component of the current signals, the prefilter should 
pass all frequency components up to fifth-harmonic (300 Hz). 
Based on the time required for computations and other con­
siderations, a sampling' frequency of 960 Hz is chosen. To meet 
the above-mentioned criteria a sixth-order lo\V-pass Chebyshev 
filter i. designed[lOj,and it is shown in Figure 4. The filter con­
sists of three cascaded biquadratic sections. Each filter section 
is a low-pass filter whose general transfer function is: 

G. _ I 
( ) - s·(C,C.R') + s(2RC.) + I (8) 

The values of resistors and capacitors are obtained for the 
required frequency response and they are given in Figure 4. 
The frequency response of the filter is shown in Figure 5. The 
amplitude gain is almost unity from 0 to 360 Hz and the fre­
quency components above 480 Hz are sufficiently attenuated. 
The filter input and output signals are shown in Figure 6, which 
indicates a delay of approximately 2 msec between the input 
and output signals. 

Sample-and-Hold Circuit: To achieve simultaneous sam­
pling of all the seven current signals, seven SIHs (LF398) are 
used and they are shown in Figure 3. The LF39S holds the ana­
log input signal constant during the AID conversion to avoid 
any conversion errors due to rapid fluctuation in the input sig­
nal. The hold capacitor is 1000 pF, polystyrene type, which 
provides fast acquisition time. The dc offset of the SIH can 
be adjusted by a voltage divider circuit connected to the offset 

~~LI &.JOa4 Uf324 ~ UU24 

Vii R R· ,A R· A R • Vo 

I C12 R • tltoh. I C22 1 C32 

tU • S .0158 uf 
tli! • 0.1066 uF 

t21· 1.3814 uF 
C22 • 0.196 uF 

e31 • 3.1923 uF 
Cl2 • 0.0442 uF 

Figure 4. Circuit diagram of the anti-aliasing filter (LPF). 
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Figure 5. Frequency response of the anti-aliasing filter. 
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Figure 6. Input and output signals of the LPF: Inrush condition. 

pin of the LF398. The acquisition time of the SIH is around 4 
I'sec. The S/Ji pin of the LF39S is connected to the output of 
the sampling clock generator which gen.erates a 50% duty cy­
cle square wave of period 1.04166 msec (960 Hz). During the 
'high' state of tbe sampling clock, the SIH is put in the 'sam­
ple' mode and when the clock changes to 'low' state, the SIH 
holds the sampled data. Since the S /Ji pins of all the seven 
SIHs are tied to the sampling clock, simultaneous sampling of 
all the seven signals is achieved. Figure 7 shows the input and 
output signals of one of the sample-and-hold. 

Analog Multiplexer: The connection of the analog multi­
plexer (MPX) is shown in Figure 3. The HI-50S is an eight 
channel single-ended CMOS analog multiplexer. It has a fast 
access time of 250 nsec, fast settling time of 600 nsec and the 
break-before-make switching feature eliminates the chance of 
channel corruption. The three digital control lines AD, A" and 
A. are software controlled and they are interfaced directly to 
the digital out.put port of the DPB (Fig. 8). 

Figure 7. I put 1111<1 output signals of the sample-and-hold. 
(Input and output signals are level shifted.) 
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Digital Processing Board 

The detailed circuit diagram of the digital processing board 
(DPB) is given in Figure 8. The heart of the DPD is a single­
chip digital signal processor (TMS320E15 [11)). TMS320 fam­
ily of signal processors utilizes a modified Harvard architectur~ 
for speed and flexibility. Pipelined multiply, accumulate and 
data shift operations can be executed in two instruction cy­
cles (400 nsec) whichmakes it very attractive for digital signal 
processing applications. If a general purpose microprocessor 
is chosen, it would require a complex hardware with multiple 
microprocessors to implement the transformer protective relay. 
The TMS32oE15 has an on-chip program memory (EPROM) 
of 4k words and a data memory (RAM) of 256 words, whicll is 
quite sufficient to implement the transformer protective relay; 
no external memory interfacing is used. The TMS320E15 is 
interfaced with a digital output port (U2 ). D, to Da bits of U2 

provide the channel address for the analog multiplexer, hit-Ds 
is used to clear the interrupt generating latch (Us), bit-D. is 
used to control the AID converter operation (RIG), bit-D. is 
used to send the trip signal to the circuit breaker, and bits D. 
and D7 are available for any future use. The DPB is also in­
terfaced with a 12-bit AID converter (U7 ). The AID converter 
control logic is not fast enough to be directly interfaced with 
the TMS320, hence it is connected through a tri-state buffer 
(Ua, U.). The AID converter output is in offset binary form 
and the TMS320 works with 2's complement numbers, hence 
the bit~D'2 of the AID converter is complemented to obtain 

U,: TMS320E15 
U2 : 18212 
Ua: 74LS245 
U.: 74LS245 
U.: 74LS175 
U.: 74LS93 

1r-----~....,A1 

1~~~~l'2 
A3 
A. 
A5 
A6 U3 
'7 

the output in 2'8 complement representa.tion. Since the AID 
converter has only 12-bit resolution, the remaining four bits 
(B, to B. of U3 ) can be used as a digital input port for any fu­
ture expansion. The chip select (G) for the input port (Ua, U.) 
is tied to the DEN and the chip select DS, for the output 
port (U2 ) is tied to the WE. This does not create any con­
flict because only one input port and one output port are used 
in the design. The clock generator circuit generates a square 
wave of frequency 15.36 kHz and it is divided by 16 using a 
4-bit counter (U.) to obtain a square wave offrequency 960 Hz 
(sampling clock). 

DIGITAL RELAY SOFTWARE 

The overall flowchart of the relay software is given in Fig­
ure 9. The software starts by initializing all the variables. The 
circuit breaker is closed by sending a logic 'high' through the 
bit-D. of the output port (U2 ). At the falling edge of the 
sampling clock the sampled current signals are held and at the 
same time the I NT pin of U1 goes 'low' which inturn interrupts 
the processor. One of the MPX channel is selected by sending 
an appropriate address through the digital output port. Un­
til now the AID converter is in read mode, and a logic 'low' is 
sent to the RIG pin of the AID converter to initiate conversion 
of the selected channel. At the end of conversion (around 22 
J-'sec), the STS line of the AID converter which is connected 
to the BIO line of the processor goes 'low' and the proces­
sor then reads the converted data. When all the seven signals 

.. 

U§~~'1il AO 

~! 
TRIP 

ANALOG INPUT j; 10V) 

U7 : HI-574AKD 
Us: 74LS04 

Power Supply Requirements 
(including DAB) 

+5 V,@O.4A 
+15 V,@O.1 A 
-15 V,@O.1 A 

~----~~., el~~~~~~~~11j "2 82 
A3 83 
A4 84 
A5 85 

As U4 es ~ A7 87 
A8 88 

,.cLS245 

Figure 8. Circuit diagram of the digital processing board (DPB). 
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Figure 9. Overall flowchart of the relay software. 

have been read, the differential, through and ground fault cur­
rents (eqn.s (1) to (3)) are calculated. Then, the instantaneous 
threshold is checked as follows: if anyone of the differential 
currents exceeds an instantaneous threshold, Cit (C j ,= 10 pu is 
used), and stays for two consequtive samples then a trip sig­
nal is sent, else, the program proceeds. A subroutine which is 
based on the DFT is then called to compute the fundamental­
(IcI!.,IcP.. and I~.l second- (IcI!"IcP.. and I~.) and fifth­
harmonic (IcI!.,IcP..; and I~5) components of the three differ­
ential currents, fundamental components (1t~., It~. and It~.) 
of the three through currents and fundamental (1: •• ,I~ •• ) and 
second-harmonic (rt •• , I:.,) components of eacb ground fault 

current. Then the combined harmonic components (I D~, I D~, 
and IDn are calculated using eqn. (6). 

All the computed harmonic components are stored in the 
data memory and the second harmonic restraint is checked 
as follows: if C1 x ID~ exceeds ID: (C. = 0.1767, 17.67% 
threshold) an inrush condition is declared, then the program 
branches to the ground relay, else, the overexcitation condi­
tion is checked. The presence of a fifth-harmonic component 
in the differential current, which indicates overexcitation, is 
checked as follows: if Cl x ID~ exceeds ID~ (C. = 0.125, 
12.5% threshold), then an overexcitation condition is declared 
and the upper pick-up value (Ch is selected, else, the lower 
value (CJ) i. selected. Then, using the fundamental compo­
nent. of the differential and through cunents the P DC (shown 
il1 Figure 1) i. checked. The PDC is checked three times, once 
for each phase. If tripping is declared, then the fault counter of 

that particular phase is incremented, else, it is reset. The pro­
gram then proceeds to check for the presence of any primary 
or secondary,ground fault. In addition to the level restraint 
a second-harmonic restraint (8.8% threshold) is also used for 
both the ground relays. The reason for using the harmonic 
restraint is that the ground relay is found to operate when 
the C.T.s saturate during inrush and through fault conditions. 
During a through fault, a large second and higher order har­
monics are present in the ground fault current, whereas during 
ground fault of either primary or secondary, the second and 
higher order harmonics are very low. Hence with this har­
monic restraint, the ground rela.y is able to differentiate be­
tween a through fault and a ground fault. The sensitivity of 
the ground relay, then, can be adjusted as desired by varying 
the pick-up value C •• (C •• =O.1 pu is used). If a ground fault is 
declared, then the program increments the corresponding fault 
counter, else, it is reset. Finally the program checks all the 
fault counters (differential a,b,c phases, and the primary and 
secondary ground fault). If anyone of the fault counter exceeds 
its threshold value, Td (Td= 1 for the differential relay and Td=5 
for the ground relay), then a trip signal is sent to the circuit 
breaker, else, the program returns and wai ts for the next in­
terrupt. If a trip signal is sent, then the program waits in a 
loop until the reset button is pressed by the user to restart the 
relay softwure. The entire software occupied around lk words 
of program memory -Bnd 220 words of data memory. The worst 
"ase execution time of the software (including data acquisition 
time of 200 pscc) is around 750 psec which is well within one 
sampling period (T=1.04166 msec). 

REAkTIME TEST RESULTS 

Various types of tests are conducted on the prototype digi­
tal relay in the laboratory over a three-month period. The re­
lay correctly identified all the faults that are applied and never 
misoperated. The TMS320E15 does not have en~ugh mem­
ory (RAM) to store a large number of re-a1-time data samples 
and test results. Hence, for the purpose of plotting the re­
sults at each sample, the DPB is disconnected from the rela.y 
hardware and the TMS320EVM [12] and AlB [13] hardware is 
used instead. At each sample the differential current signals, 
ground fault current signals, calculated harmonic components 
are stored in the program memory of the TMS32010 (EVM). 
These results are up-loaded to an IBM-PC and they are s.hown 
in the following figures. 

Figures 10 to 13 show the performance of the relay during 
real-time testing. Figure 10 shows the performance of the relay 
during an inrush condition followed by an internal fault. The 
relay does not operate during the inrush and it operates within 
a cycle after the initiation of the fault. Figure 11 shows the 
performance of the relay during switching on a high impedance 

.internal fault condition. In this case, the tripping decision 
is delayed due to the presence of a heavy second harmonic 
content resulting from the inrush currents. Figure 12 gives 
the performance of the ground relay during a high impedance 
ground fault. The relay operation time is slightly more than 
one cycle due to the use of 5 sample delay (Td=5 for ground 
relay). Figure 13 gives the performance of the ground relay 
during a through fault. In this case, tbe primary ground fault 
current exceeded its threshold value (C,.=O.1 pu), but the relay 
did not mjsoperate due to the 8econd~harmonic restraint. 
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Figure 10. Inrush followed by an internal fault: phase a-b fault 
on primary side. 

(a) Actual differential currents recorded on the oscilloscope 
(b) Calculated values of differential currents 
(c) Calculated combined harmonic components 
(d) Ratios of combined harmonic components 
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Figure 11. Switching on a high impedance internal fault: 
phase a-b fault on 'primary side. 

(a) Actual differential currents recorded on the oscilloscope 
(b) Calculated values of differential current. 
(c)' Calculated' combined harmonic components 
(d) Ratios of combined har;"onic components 
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(a) Actual differential CUl'l"ents recol'ded on the oscilloscope 
(b) Calculated value of primary ground fault current 
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Figure 13. Through rault condition: performance of the 
primary ground relay. 

(a) Actual primary and secondary currents recorded 
on the oscilloscope 

(b) Calculated value of primary ground fault current 
(c) Calculated harmonic components 
(d) Ratio of harmonic components 
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Several other tests conducted on the relay in the labora~ 
tory include: faults between the primary and secondary wind~ 
iugs, faults between transformer tappings, and operation of the 
transformer at different tap positions during normal loading, 
overexcitation and through fault conditions. In all these cases 
the relay performance was as expected. 

CONCLUSION 

The design of a stand-alone prototype digital protective re~ 
lay for power transformers is described. The major emphasis 
of this paper has been the detailed description of the hard­
ware and software development of the relay. The relaying func­
tions implemented include: a percentage differential protection 
with the second-harmonic restraint for inrush currents and a 
fifth-harmonic restraint for overexcitation conditions, and pri­
mary and secondary ground fault protection. The ground relay 
is also equipped with a second-harmonic" restraint to prevent 
tripping during inrush and through fault conditions with C.T. 
saturation. 

The detailed circuit diagrams of the relay hard\vare which 
is based on the TMS320E15 are included in the paper. The 
relay had gone through an extensive real-time testing in the 
laboratory and the results of the sample test cases are reported 
in the paper. The relay is superior to its electromechanical 
counterparts in terms of its performance and cost. Currently 
plans are underway to install the developed relay at one of 
the Newfoundland and Labrador Hydro substations for in-situ 
testing and evaluation. 
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Diseusslon 

E. A. Baumgartner. (Baumgartner & Associates. Beaumont. TX): The 
authors point out in the paper that the sensitivity of the digital protective 
scheme is somewhat limited for ground faults. It would be of interest to 
know if the digital relay is sensitive enough to detect a tum to turn 
winding fault in the secondary of a power transformer. A typical percent­
age differential relay in common use to protect large power transfonners is 
somewhat insensitive to this type of winding failure, especially if the fault 
current source from the secondary side is low in magnitude. 

It would also be of interest to know what type of test equipment will be 
needed in the field to check out the relay for operational testing after it is 
installed in one of the Newfoundland and Labrador Hydro substations for 
in-situ testing and evaluation as proposed by the authors in the paper. 

P. K. Dash, J. K. Satpathy, (Regional Engineering College, Rourkela, 
India): The authors are highly commended for writing an excellent paper 
on transformer differential protection. The description of the practical 
details regarding the hardware and software development of the relay is 
very noteworthy. Rarely such details ate found in many relaying applica· 
tion papers. The following points, however, need some clarifications: 

I. The digital relay algorithm uses a OFf technique for computing the 
magnitudes of the restraining and operating signals. It has been 
shown earlier in the relaying literature that the DFT results in to to 
15 % of error in the calculation of fundamental and harmonic compo­
nent magnitudes and its accuracy is very much prone to noise 
magnitudes in the differential current signal. 

2. The sampling frequency for this application is 960 Hz, although 720 
Hz sampling frequency could have been adequate for this applica­
tion. Earlier Butterwonh filters were used for signal conditioning 
and it will be interesting to get some co~parison regarding delay 
introduced in case of these two types of filters. 

3. The basis for the choice of c2 and c5 for computing the restraining 
quantities for transformer protection is nol very clear. In cases 
where the inrush current contains substantial components of load 
current (when the transformer secondary is loaded) these quantities 
(c2 and c5) need to be altered for providing restrain during inrush 
and overexcitation conditions. 

The prototype building of the relay along with real·time test results is 
very interesting. It will be interesting to note the effect of a fault during 
intialization period of this relay. The discusser has also noted with interest 
the results for the high impedance ground fault on the performance of this 
relay. 

Once again the discusser commends the effons of the authors for an 
excellent, well written paper on digital protection. 

B. Jeyasurya (Indian Institute of Technology, Bombay): The authors have 
presented a detailed paper on a digital relay for three~phase power 
transfonners. The test results presented in the paper indicate that the relay 
operation time is above one cycle. The Fourier algorithm, as implemented 
by the authors (equation 4) use a data window of one cycle. It is possible 
to obtain a faster estimate of the fundamental and harmonic components of 
the input signals using a sub-cycle data window. The sensitiveness of this 
method to the decaying de components in the current signals can be 
minimised by modifying the reference sine/cosine wavefonns [AJ. 

The authors use a sixth order low-pass Chebyshev filter to avoid 
aliasing errors. Figure 2 indicates that this filter has introduced a delay of 
about 5 mscc. A third order Butterworth filter could have provided a 
maximally ftat response with significantly less delay between input and 
output signals. 

For the differential relay, the authors have used a fault counter threshold 
value, Td = 1. How reliable is the tripping decision based on a single 
count? 

The authors must be commended for a well-written paper. The dis~ 
cusser looks forward to repons of field experience with this digital "relay. 

Reference 

[AJ. A. Wiszniewski. "How to Reduce Errors of Distance Fault Locat­
ing Algorithms", Trans. IEEE, Vol. PAS·IOO, No. 12, December 
1981, pp. 4815-4820. 

A. GANGOPAOHYAY (Federal Pioneer Ltd., Toronto, 
Ontario,Canada): The authors are to be congratulated for 
real time implementation of a 3-phase digital differential and 
ground faull relay for power transformers. The algorithm 
and the basic equations for differential protection are well­
known and I do not find any discussion is necessary in that 
aspect of the paper, However, I would like to place Cew 
suggestions to the authors regarding hardware part oC the 
relay. 

1. The author has used LM324AN op-amp Cor analog scaling 
and low pass filter circuits. LM324 has an input ofCset 
voltage oC maximum :1 7mv. Since the output of sealing and 

. each stage oC LPF are cascaded together, the final ofCset 
voltage may be predominant and will be reflected at the 
input oC the SIH. Using LM124, which has much lower input 
oCCset voltage, or using any other op-amp with lower offset 
voltage will be an improvement. 

2. It would be preferable to have LPF be Core scaling circuit. 
There will be transient noises coming from power surge, 
switching and other electrical disturbances in the input 
circuit. The voltage gain of the scaling circuit will amplify 
those noises. It is always better to attenuate a low 
magnitude noise than an amplified one. Besides, any 
unwanted noise should be arrested at the very input for a 
better electronic design. 

3. TMS320E15 is a powerCul machine for OFT calculation. 
However, I do not agree with the authors that using other 
micropoeessors will make the design more complex. There 
are quite a few general purpose micro-controllers available in 
the market which are much cheaper in price than 
TMS320E15. With the proper selection of crystal Crequency 
it is possible to compute the algorithms shown in the paper 
with 16 samples/cycle. 

4. The authors could have avoided an external sampling 
clock. Instead of, a .precise sampling pulse could have been 
generated from the microprocessor by software control in 
either of the following manners. 

a) SoCtware Timing Loop, if t!me is still available after 
computation. 

b) Internal timer of microprocessor. 

The advantage is that the sampling interval is fully under 
control of the designer by above method. The same relay 
could be used in 50Hz system by mere changing the software, 
to modify the sampling time at no extra cost of additional 
hardware, 

5. It Is shown in the Fig, 9 of the paper that the relay waits 
for the Reset button to be pressed after issuing a trip signal. 
This is not desired from practical viewpoint. What will 
happen iC the circuit breaker fails to trip or the relay is 
protecting a transformer in an unmanned substation? The 
relay should be self reset in this case. 

6. An addi tional feature can be supplemented to the design 
by adding a LED or LCD display, ACter tripping the breaker 
at a Cault, the relay can calculate the RMS value oC the fault 
current Crom one cycle information that the relay has already 
collected. It can keep the fault magnitude in it's memory and 
can be displayed to the user at any time. This will give an 
idea to the user about the extent of the fault current, i.e. 
whether it is an interturn fault or it involves quite a Cew 
number oC turns. 

7. NOthing much has been mentioned about the design of the 
power supply circuit. If it is intended to be taken Crom the 
station battery supply, two dc to dc conversion circuits will 
be needed. If it is to be taken from UPS, proper 
consideration should be given to design two different VOltage 
levels. It resolution Cor harmonic computation can be 
sacrificed to certain extent, there are standard techniques 
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which can be employed to handle the bipolar signals by 
unipolar AID converters. . 

8. One would like to see an analog backup circui t in the 
event.oi failure oi main processor or it's other electronic 
accessories. Also, external noise suppression and overvoltage 
protection due to open CT secondaries will be required to 
meet several ANSI and IEEE standards beiore· the relay can 
be used ior practical purposes. 

Manuscript received July 20, 1989. 

IVI HERMANTO, YALIA, V.V.S. HURTY and K.A. RAHIIAN: The 
authors thank the discussers for their interest and 
thoughtful comments on our paper. 

Our response to the questions raised by Kr. 
Baumgartner is as follows. The first question deals 
with the performance of the relay for a turn~to-turn 

fault on the secondary winding. Since the test 
transformer did not have individual turn taps brought 
out to create a turn-to-turn fault, it was not possible 
to test for this condition. However. the tests 
conducted on the transformer include a short cireui t 
between the taps on the secondary side. Here. an 
additional test case which represents a short circuit 
between the. 575 V and 600 V taps on the phase.-a­
secondary is provided in Figure Flo This represents a 
case when 4.166X of the phase·"a- secondary winding is 
short circuited. The relay successfully operated within 
one cycle. It can be seen froll Figure Fl (c) that the 
value of IDI reaches about 0.95 pu. Vith the threshold 
(CO) set at 002 pu, this shows that the relay will 
operate even if a smaller percentage of the winding, 
perhaps less than lX, is involved in the fault. 

The second question deals with the type of test 
equipment that will be required for operational testing 
in the field. An IBK PC will be required in the 
sub~tation which will be connected to the relay through 
a serial link. The PC will continuously monitor the 
relay operation and acquire the data during various 
operating conditions. In order to completely isolate 
the digital relay from the existing relay equipment of 
the transfomer I additional current transformers will 
be used. 

Our reply to the questions raised by Professor 
Dash and Mr. Satpathy is as follows. The first question 
deals with the choice of the relay algorithm. As 
mentioned in the paper, any relay algorithm. can be used 
by simply modifying the appropriate subroutine. There 
are various algorithms available with their own 
advantages and disadvantages. and the user can select 
the algorithm. suitable for any particular application. 
Since the implementation of the discrete Fourier 
transform (DFT) algorithm is considered to be 
computationally more complex than most of the other 
algorithms I it will be an easy task to replace it with 
any other algorithm. 

The second question deals with the choice of the 
sampling frequency and the antialiasing filter design. 
The execution time of the relay software is around 750 
microseconds and the use of 960 Hz sampling frequency 
leaves about 290 microseconds for any other tasks. 
Of course, one can use 720 Hz sampling frequency but it 
requires a very good antiallasing filter whose frequency 
response has a very fast roll~off near its cut-off 
frequency. The au~ors. used Butterworth filters in an 
earlier design and the delay introduced by the Chebyshev 
filter is nearly the same as the Butterworth filter if 
both filters are of the same order and have the same 
cut-,?ff frequency. 
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Figure Fl. Internal fault condition: fault between 
575.600 V taps on phase:a:: 

a) Experimental differential currents, b) Calculated 
differential currents, c) Calculated harmonic components 

The third question deals with the choice of relay 
settings C2 and C5. The values selected are for the 
test transformer and these c.an be changed to other 
values depending on the application. The initialization 
time for the relay software is around 250 microsecond, 
and hence it does not introduce any major delay. 

Our response to the questions of Hr. Gangopadhyay 
is as follows: 

L 'We agree with the discusser that the operational 
amplifier used in the design has a high offset 
voltage. However. the offset voltage is not a 
major concern. since .the DFT algorithm effectively 
filters out any de offset present. 

2. The gain of the analog scaling circuit used· in the 
design is very close to unity. Hence I it does not 



3. 

4. 

amplify the noise. It is mainly used to trim any 
gain errors between channels. Also. the analog 
scaling circuit provIdes very high input. 
impedance. 

Considering the equation (4) of the paper. each 
harmonic calculation requires 32 multiplications. 
A total of 16 harmonic calculations (fundamental, 
second and fifth harmonic components of three 
differential currents. fundamental components and 
second harmonic components of two ground fault 
currents) were performed in each sampling 
interval. This gives a total of 512 
multiplications plus several additions and other 
operations are required. In the opinion of the 
aut.hors it is difficult to perform these 
calculations on any presently available low cost 
microcontroller within a reasonable sampling 
interval. 

The software generation of sampling interval is 
not suitable for 'this type of application. The 
authors agree that the sampling interval could 
have been generated by a hardware timer wh~ch 
would give flexibility in changing the sampling 
clock for 50/60 Hz systems. In fact one could use 
THS 320£17 processor which is software compatible 
with THS320E15 and also has an intern~l 16·bit 
timer. 

5. The authors agree that in certain applications the 
relay should be of self reset type. The software can 
be easily modified to achieve this. 

6-8. The authors agree that more work needs to be done 
in developing the user interface I power supply and 
other related hardwares compatible to ANSI/IEEE 
standards. 

Our response to the questions raised by Dr. B. Jeyasurya 
is as follows: 

The laboratory test shows that the relay operating 
time was within one cycle of 60 Hz for various internal 
faults except in the case of switching on a high 
impedance faults. In the case of high :f..mpedance faults 
t.he relay operating time was above one cycle due to the 
presence of strong second harmonic component. One cycle 
data window of the Fourier algor! thm was used in our 
design. However. any other algorithms can be easily 
implemented. 

From Figure 6. it is quite clear that the delay 
between the input and output signals of the antl~ 
aliasing filter is only 2 milliseconds not 5 
milliseconds as mentioned by the discusser. Both 
Chebyshev and Butterworth filters have nearly thie same 
delay for a given order. 

The authors agree with this discusser that a 
tripping decision based on a single fault counter 
threshold is not reliable. However. this fault counter 
can be increased easily to any other safe threshold 
value. 

Manuscript received November 13, 1989. 
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A Real-Time Digital Simulation of Synchronous 
Machines: Stability Considerations and 

Implementation 
JONATHAN P. PRATT AND SHELDON GRUBER, SENIOR MEMBER, IEEE 

Abstract-The study of the transient bebavior of a large power system 
has been difficult and time consuming even on mainframe computers. 
One way to obtain real-time studies is to configure digital simulation 
modules in B parallel processing network that corresponds to the physical 
system. The foeus of this work is on tbe creation of a generator module 
tbat is compatible with such a digital simulation network. To approacb 
operation in real time, a fast and accurate state equation integrator is 
required. Investigation has revealed thai the load Imposed on tbe 
simulated generator plays a major role In the stability of the integration 
routines. Tbe linearized stability limits of forwacd difference, modified 
Euler, fourth-order Rung .... Kutla and Adams-Basbfortb-Moulton Int ... 
gration methods were calculated for an impedance terminated generator. 
These were found to agree closely with tbe corresponding experimentally 
determined nonlinear limits. The TMS32010 digital signal processor was 
chosen as the heart of the generator simulator module, and fixed-point 
arithmetic routines were developed to make It a bigb-speed state equation 
integrator. Operation in real time was achieved for an infinite bus-type 
termination, but an impedance load led to a somewhat slower simulation. 

1. INTRODUCTION 

ELECTRIC POWER systems are particularly well suited 
for simulation, as the infonnation gleaned in their study 

would usually be sought in advance of their construction or 
expansion. The expense of power system operation as well as 
customer expectations require that reliability and efficiency be 
assured under a variety of stressful conditions. Studies on 
existing equipment are necessarily limited by the need to 
maintain service, thus simulation becomes a realistic tool [1]. 

A primary concern in a power system's assembly is that it 
will maintain stable operation for a reasonably wide range of 
operating conditions. Two important types of instability 
receive most of the attention in literature: dynamic and 
transient [2]. The variables of power system stability are rotor 
speeds are relative positions, and generator loads. Dynamic 
stability is concerned with the usual smiill-speed variations 
within a system which can become oscillatory and growing in 
nature. Transient instability refers to the system response to a 
major fault. In either case loss of synchronism may occur, an 
event that tends to break up a system. Such considerations play 
an important role in power system planning, even more in the 
last 20 years than before, due to the "very extensive 
interconnection of power systems with greater dependence on 
finn power flow over ties" [2]-[4]. 

Manuscript received September 11, 1985; revised January 20, 1987. 
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Any study not using actual equipment [5] requires a 
mathematical model, and much work has been done to find the 
least complicated models for power system components that 
will still provide accurate results [2]-[7]. Once a model is 
derived, implementing the simulation is a matter of choosing 
between several methods, each with its own advantages and 
disadvantages. Use of a mainframe computer has been the 
dominant method. Flexibility and low cost per user make 
mainframes attractive. Unfortunately, if the power system of 
interest contains many elements-generators, exciters, loads, 
etc.-the serial solution of the system equations is cumber­
some and slow. Speed is increased at the expense of the model, 
and beyond a certain point the model becomes too simple to be 
useful. Alternatively, a parallel solution is possible. This 
exploits the system parallelism so that many smaller, inexpen­
sive units take the place of one fast computer. The choices for 
this method are analog [8], digital, or a combination of the 
two. A good discussion of the difficulties of an analog 
simulation is found in [9]. Among these are achieving correct 
scaling and avoiding a lack of flexibility. The usefulness of the 
analog method lies in its ability operate in real time. Until 
recently, reasonably priced digital hardware with sufficient 
speed did not exist. The analog-digital hybrid approach of [9] 
is an example of a useful intermediate step. Reas.onable real­
time results were obtained with a MC68000 microprocessor 
interfaced with appropriate conversion hardware to an analog 
bus. 

The simulation method chosen here parallels the construc­
tion of the power system which is divided into blocks of 
turbines, governors, generators, exciters, and loads. The 
scheme is one in which all power system components are 
replaced by digital hardware modules. These modules employ 
the models of the components they replace to create an 
accurate simulation. During each computation cycle the 
generator modules calculate and supply the rotating frame 
currents to a set of hardware matrix multipliers [10]. Follow­
ing the relation V = ZI the voltages of the power network are 
obtained. These in tum are used by the generator modules to 
compute the currents of the next cycle. Additionally, the 
exciter modules employ both the voltages and currents of their 
respective generators to apply appropriate regulation through 
the field voltages. Turbines, having time constants longer than 
those of interest, are simply represented as constant mechani­
cal powers within the generator modules. It should be noted 
that load representation by constant impedance is certainly not 
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ideal [l), [11), [12). Although variation of line frequency is 
usually small enough to render corresponding impedance 
variations negligible, the same does not hold true for line 
voltage changes. In Kent et al. (1) typical loads are reported to 
be distributed so that one-half are constant impedance and one­
half constant MV A. The latter is obviously not compatible 
with the matrix multiplication scheme. The influence of load 
representation on stability studies is not clear, but it can be 
significant [12). In spite of the necessary simplifications, the 
speed and flexibility of the completed simulation network will 
undoubtedly render it a useful tool in the analysis of power 
system behavior. The machine parameters used in the'remain­
der of this paper are typical of realistic machines. Those 
quantities nsed by the generator simulation program are found 
in Anderson and Fouad [6, ch. 4). 

The next section is devoted to the stability of the required 
integration routines, as this was found to be a significant 
limitation in the quest for real-time operation. In particular, 
the stability limits of forward difference, modified Euler, 
fourth-order Runge-Kutta, and fourth-order Adarns-Bash­
forth-Moulton predictor-corrector (ABM4) integration meth­
ods were investigated. Choice of hardware, program develop­
ment, and results are discussed in Section m. Module 
simulation data are compared to mainframe results. Suggested 
improvements are also included. Appendixes I and II refer to 
interlace hardware added to the TMS32010EVM board to 
make it function within the simulation network, and design for 
simplified generator modules employing the TMS32010 proc­
essor with the host processor interface that allows access to the 
new modules. 

II. INTEGRATOR STABIUTY 

A. General Considerations 

Table I is a summary of the seven state equations that model 
the behavior of a generator. The inherent noulinearity of these 
equations makes step-by-step numerical integration the only 
viable method of obtaining a solution apart from analog 
modeling. The transients to be studied by the simulation are 
large enough to render continuous time linear' models inade­
quate. In this section a brief survey is taken of some commonly 
used integration methods. 

The foremost consideration in the simulation is a faithful 
reproduction of generator's nonlinear behavior when it is 
connected to a load. The load may not be linear and consists of 
the transmission network and active sources which are also 
nonlinear. That this simulation proceed in real time is a 
requirement that makes compromises in the design necessary. 

The transient behavior of the system will not be adequately 
modeled if the sampling rate is lower than the Nyquist rate. An 
estimate of the latter can be obtained by examination of the 
eigenvalues of the linearized system. The magnitude of the 
largest eigenvalue is typically that due to currents injected into 
the rotor circuit needed to balance the constant stator flux and 
is approximately 60 Hz [6J. Thus it is reasonable to use a time 
interval of less than 8 ms. 

This is the upper limit in time step from the point of view of 
producing a model generator which must interact faithfully 
with the rest of the power system. There remains the question 
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of stability of the integration method using this time step. A 
recent paper [l3) presented a design technique which allows 
for a simulation step size to be chosen independently of the 
eigenvalues while maintaining stability of the integration. 
Unfortunately, application of the results of that paper to this 
problem is difficult in that the system at hand is nonlinear and 
would require constant examination for stability region viola­
tion as the integration proeeds and the instantaneous eigen­
values change. One additional faCtor in not utilizing the 
stability region approach is that the generator simulator must 
operate into unknown and nonlinear loads which form part of 
its system of equations in an indirect manner. That is, the 
model requires the terminal voltage of the generator from 
which it calculates the current vector. These currents com­
bined with those of the other generators in the simulated power 
system produce the terminal voltage for calculating the next 
time step. Thus the stability region idea is difficult to apply 
because of the parallel operation of many simulators. 

In keeping with the ultimate goal of this project, all effort 
was to minimize the' computation time per step, maintain 
reasonable accuracy, and insure stability. ' 

B. Parameter Representation 

The parameters used in the remainder of the paper are 
typical of realistic machines. Those quantities used are to be 
found in Anderson and Fouad [t!, ch. 4). To improve machine 
speed in the module, these parameters were rounded off to 16 
bits and the resulting numbers were deemed "exact." This is 
contrast to the parameters that are derived from the above 
values, namely, the inverse inductance matrix whose elements 



are only as accurate as the number of bits used to represent 
them. The time increment, T, of the module state equation 
integration is also treated as a 16-bit "exact" constant. Here it 
should be noted that time in the equations shown in Table I is 
normalized as are all the parameters in these equations. The 
normalization entails multiplication of true time by the 
nominal radian frequency, in this case 377 radls. This being 
the case, T is also measured in radians at 60 Hz. 

C. Integration Methods 

If the equations involved were linear, simple backwards 
differen<;e or trapezoidal integration methods could be applied. 
The advantages of these are discussed in the next section. But 
for a nonlinear system, the equivalent integration routines are 
forward difference and modified Euler. Assuming state 
equations of the form 

dY/dt=f(Y.) 

where Y is the vector of variables, then the methods compare 
as follows: ' 

Backward Difference 
Yn+1 = Yn+ T*f(Yn+l ) 

Trapezoidal 

Forward Difference 
Yn+1 = Yn+ T*f(Yn) 

Modified Euler 

(2.1) 

Yn+l = Yn+ T*(f(Yn) 
+f(Yn+l » 

Yn+h p= Yn+ TI2 * f(Yn) 
Yn+ 1= Yn + TI2 * (f(Yn) 

+f(Yn+hP». 

(2.2) 

Forward difference integration may be termed first order, 
and it has a global error term corresponding on the order of T, 
O(T). Modified Euler is second order and has a global error of 
O(T * T). The price of the improved accuracy is an additional 
evaluation of the derivative functions. Model error and 
integrator error should be approximately equal to obtain 
maximum efficiency. One of the most commonly used 
integration routines is fourth-order Runge-Kutta. Its global 
error is O(T ** 4), and in this paper is was used as a 
benchmark to provide the "definitive" answer. The particular 
version used was taken from [141: 

Yn+1 = Y.+ (kl +2k2+2k3+k4)/6 

kl=T* ·f(Yn) 

k2= T * f(Yn+kll2) 

k3= T * f(Yn+ k212) 

k4=T*f(Yn+ k3)· (2.3) 

The independent variable, time, is left out because in the 
generator model the state equations have no explicit time 
dependence. Note that four derivative calculations are re­
quired per cycle. As evaluating the derivatives is the most time 
consuming operation, it was worth investigating another 
integration method that yields similar accuracy for only two 

evaluations per cycle. In particular, the fourth order Adams­
Bashforth-Moulton predictor-corrector was explored. Known 
as a multistep method, ABM-4 requires that the past three 
derivatives be saved for use in a weighted average. Also from 
[141 

Predictor: 

Corrector: 

(2.4) 

D. Load Considerations 

With the state equations set up on terms of currents, the 
rotating frame voltages, Vd and Vq , must be supplied to the 
generator integration routines. For a mainframe simulation, 
there are two obvious possibilities. The first is to have the 
generator supply power to an infinite bus. The second is to 
have the generator connected to a constant impedance. The 
impedance can be chosen to maintain a steady state at the 
initial angle-that is, to make all of the derivatives in the state 
equations vanish. In either case, infinite bus or impedance, the 
voltage calculations are placed directly within the derivative 
evaluation routines. When the benchmark integration was 
performed on the infinite bus configuration, anticipated results 
were obtained. However, the impedance configuration proved 
to be much less stable, and could not be integrated except at 
much higher sample rates. From the system standpoint, this is 
a cause of considerable concern. The infinite bus approxima­
tion is only valid when there is a great deal of generating 
capacity on line, thus it is expected that the impedance results 
could reflect the behavior of a small multi-generator system. 
The desired integration sample rate determines the minimum 
number of generators that create a stable solution. Because a 
higher sample rate jeopardizes the ability of the simulation to 
run in real time, the stability phenomenon was explored in 
detail. It was discovered that there are fixed limits to the 
sample rate, under which the integration variables grow 
exponentially and invalidate the run. Even in cases where no 
initial perturbation was applied, roundoff changes in the least 
significant digits were enough to start the explosion. This was 
evidence that the nonlinear aspects of the state equations are 
not responsible, and indicated that it might be possible to apply 
linear analysis to the problem. To support this assertion, the 
moment of inertia of the generator was made infinite, 
effectively removing the mechanical state equations. The 
unstable behavior persisted. To find the cause of instability 
from a qualitative standpoint, the linear state equation matrices 
for infinite bus and impedance configurations were compared. 
The state equation may be written as 

dIldt=f(I)=M * I. (2.5) 

The most significant difference between the two generator 
loads is that the self-feedback terms for id and iq in the matrix, 
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M, become three orders of magnitude layer in the impedance 
load case. Also, these new coefficients are of the same order 
as the largest elements in their respective rows. 

E. Discussion of Stability of Linear Systems 

A brief discussion of stability considerations for linear 
systems should help in understanding the behavior of integra­
tion methods in the nonlinear case at hand. 

Most integrations of linear state equations based on a. 
discrete-time system can be described by a mapping from the 
complex s-plane of the Laplace transform to the complex z­
plane of the z-transform. To demons~te this, consider the 
continuous time system dYldt = M' * I. The Laplace 
transform of this results in the characteristic equation 

sI-M=O 

where I is the identity matrix of the same dimension as M. 
All of the single step integration methods of the previous 

section produce a sequence of the form Y.+ I = N * Y., which 
is a discrete time description of the original system. Applying 
the z-transform results in the characteristic equation 

zI-N=O. 

Because the matrix N is a function of M, an explicit mapping 
exists between the z and s planes. In the case of multistep 
integration methods, the p~ictor sequence includes more 
previous value terms, e.g., Y._ h Y.- 2, Y.- 3, •••• Conse­
quently there are higher powers of Z in the z-transform rela­
tion and hence in the mapping. The s and z domainS have 
the advantage of easily predicting the stability of systems. A 
stable continuous-time system has all its roots or eigenvalues 
in the left-half of the s-plane, wl1ile a stable discrete-time 
system has all its roots inside the unit circle centered at the 
origin of the z-plane [16]. A system with roots outsi4e of these 
boundaries is unstable. It is now apparent that a necessary 
feature of an integration method is its ability to map a stable 
continuous-time system intp II stable discrete-time system. 
That is, roots that were in the left half of the s-plane must map 
into the z-plane unit circle. The backward difference maps the 
left half of the s-plane into II subCircle within the z-plane unit 
circle and the trapezoidal metl!od maps the left-half plane into 
the interior of the unit circle. Both satisfy the stable-in stable­
out requirement. Unfortunately neither can be used for 
nonlinear equations, except with approXimations as in [15]. 
This is because the derivative at the n +. I step is now known 
exactly. Practical integration routines reply on predictions of 
the n + I derivative and function. In general, a smaller step 
size helps to squeeze the z-plane roots into the unit circle so 
that stability can be achieved. As will be shown, parameters of 
the function being integrated also play a role in determining 
stability . 

F. Some Results 

In Fig. I the linear continuous-time stability of the generator 
equations is demonstrated by a presentation of the system roots 
closest to the border of instability. As is done throughout, the 

. system parameters varied are generator angle and generator 
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open circuit voltage. Note that the roots move farther into 
stable territory as the angle increases. Beginning with forward 
difference, the linear stability of last section's four integration 
methods is explored in detail. Combining (2.1) and (2.5) 
yields Y.+ I = Y. + T * M * Y., which, after application of 
the z-transform and use of Z(Y.)J = JY. = I. Y. reveals the 
characteristic equation 

(z-I)I- T * M=O. 

A computer program was written to generate and solve the 
characteristic polynomial in z. In this case there are terms up 
to the fifth power of z. For given values of the angle and open 
circuit voltage the stability limit was calculated in terms of T. 
Thus in Fig. 2, integrator stability is achieved for values of T 
below the appropriate Voc curve. Limits have been calculated 
for five values of Voc. It is seen that at small angles an 
extremely large sample rate is necessary to avoid instability. 
Next the modified Euler method of integration is considered. 
Unlike forward difference, where it was possible to calculate 
directly the value of T that puts the z-plane roots on the unit 
circle stability boundary, modified Euler equations (and the 
other methods discussed) necessitate the use of a half-interval 
search method. That is, a high and a low T are selected 
initially, and the calculated stability of the average kt 
determines the new search interv/ll. In this fashion it is 
possible to converge on the correct limit to arbitrary accuracy. 
The stability limits of the modified Euler system are graphed 
in Fig. 3. Compared to forward difference this system is more 
stable at every point, and the low angle problem is no longer as 
severe. Fourth-order Runge-Kutta concludes the single step 
methods. Fig. 4 reveals that tt." stability limits of the Runge­
Kutta method are the most favorable of all. The lines of 
constant open-circuit voltage Voc , level out at small angles and 
prevent the required sample rate from becoming excessively 
large. Linearizing the ABM4 integration methOd is somewhat 
more COmplicated, but the idea is the same. The fact that this 
polynomial is of 20th degree and has roots of greatly different 
magnitudes makes it difficult to compute the stability limits as 
a smooth curve, even with double precision arithmetic. Fig. 5 
shows the results of this effort. The limit lines, though 
somewhat ragged, are very similar to those obtained with the 
single step methods. In this instance it is likely that the Jury 
test [16] would have been a better method of determining 
stability than calculating the roots directly. To test the validity 
of the calculated stability limits, values were determined 
experimentally for several cases. Tilis was accomplished by 
applying a small perturbation to the various integration 
routines, an4 observing the response as a function of the time 
increment. Since the generator equations were set up for 
steady-state operation, exponential growth of the current 
variables was taken to imply an unstable system. The stability 
liInits are quite distinctive, and as Fig. 6 shows, they are in 
good agreement with the calculated values. The irregular 
notches iii the calculated limits are a product of the root­
finding algorithm and do not appear in the tested limits. Now it 
is possible to make some observations about the results. One is 
the correlation between stability IIIId open-circuit voltage. In 
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Fig. 2. Stability limits of the forward difference integration method. 
Normalized time step versus machine angle. Again, open-circuit voltage is 
the parameter. 

all cases, a larger open-circuit voltage corresponds with more 
favorable stability conditions. Another feature of the results is 
the inverse relation between stability and angle. This is a sharp 
contrast to the stability behavior of real generators. The latter 
are more stable at small angles, whereas the integration 
routines are more stable at large angles. The relative merits of 
the integration routines is displayed in Fig. 6 as well for an 
open-circuit voltage of 1.8 per unit. Fourth-order Runge­
Kutta is the most stable, followed by modified Euler, forward 
difference, and ABM4 taking a disappointing last place, To 

pick the best method in terms of speed, it is necessary to 
balance the additional computations of the fourth-order 
Runge-Kutta method against the higher cycle rate required by 
the other methods. If the number of derivative evaluations is 
the judge of computational requirements, then for the sake of 
example it may be written that: 

T min (4th order RK) = 1.00 ms 

T ... (Mod. Euler) =0.50 ms 
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T min (ABM - 4) = 0.50 IDS 

T min (Forward Diff) = 0.25 IDS 

•• 0 

where T min is Ihe time it takes an arbitrary computer to 
calculate Ihe n + 1 set of variables. The ratio of T ..... (stability 
limit) to T min (computation time) for each me1hod can be taken 
as a figure of merit. Unity and greater implies a real-time 
simulation is possible. The problem wilh Ibis gauge of 
efficiency is demonstrated by its application to Fig. 6. For all 
angles greater !han 20 degrees forward difference is picked as 
!he best me1hod. Not taken into account is !he difference in 
accuracy between Ihe integration techniques. Stable integra-

tion is no guarantee that meaningful results are being 
produced. In conclusion, it must be stated that a variety of 
factors influence Ihe choice of an integration routine. It is 
difficult to obtain all Ihe desired properties in one me1hod. 
Some time was spend searching for more stable integration 
routines, but most were too complex to be considered for use 
in a real-time operation. 

ID. GENERATOR IMPLEMENTATION AND REsuLTS 

A. Mainframe Simulation 

To provide a source of comparison data, and to test the 
various me1hods of integrating Ihe generator state equations, a 
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B. Choice oj Processor 

100 

Fortran program was developed on a DEC VAX 111782. Any 
one of the four integration methods in Section II may be 
employed: fourth order Runge-Kutta, modified Euler, ABM-
4, and a forward difference. The derivative evaluation routine 
may be set to have the simulated generator supply power to 
either a constant impedance load or an infinite bus. A power 
transient of any duration and constant magnitude may be 
applied to the simulated generator or a bus-voltage transient of 
any duration and constant magnitude may be applied to the 
simulated generator. This does not apply to the case of an 
impedance load. 

With the generator state equations established, it was 
determined that a second order integration routine such as 
modified Euler would make at least 88 multiplications and 64 
additions/subtractions per cycle. Since real-time operation is 
desired,a cycle time of I ms was targeted. All arithmetic and 
bookkeeping must fit into this interval. Besides the speed 
requirement, there are two other important considerations in 
the choice of a processor: Namely cost and availability. The 
simulation network is designed to handle as many as 100 
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calculated using douJ>le-precision on a VAX IlnS2. The power transient is 
+ 30 percent from a machine angle of 3 degrees and open-<:ircuit voltage of 
1.5 into an infinite bus. 

generator modules, and at this quantity expense is certain to 
become a limitation. This makes the 'use of a mass-produced 
commercially available board desirable. One early prospect 
dismissed due to cost in time and money was having a 
microproceSsor such as the Intel 8086 control an arbitrary 
number of Intel 8232 floating-point units. The parallelism of 
the state equations is such that several calculations could be 
done simultaneously. However, the 8232 takes nearly lSI'S to 
add or subtract and about 50 J'S to multiply, implying that at 
least three would be required to even approach the target cycle 
time of 1 ms [17]. A stronger contender was a board that 
employed the 8086 microprocessor and the 8087 floating-point 
coprocessor. The times boasted by this combination are 14/18 
I'S for addition/subtraction and 19 I's for multiplication [18]. 
Although too slow, this looked like the best choice until the 
TMS32010 digital signal processor was considered. This 
processor can be programmed to do floating point arithmetic at 
a ,speed comparable to the 8087, and has the additional 
advantage of being able to ml!ltiply two 16-bit integers in 200 
ns [19]. The hardwired multiplier makes the 32010 very 
efficient at fixed-point arithmetic. MacMinn [9] showed that 
with proper care, fixed-point arithmetic can be used success­
fully in a generator simulation. Texas Instruments offers a full 
32010 development system for the relatively modest cost ,of 
about $700. This and its ready availability lead to the choice of 
the TMS32010EVM board as the generator module. This 
board uses a TMS9995 processor in a master-slave relation­
ship with the 32010, a lUXUry that is not needed once the 
generator module is successfully meshed in the simulation 
network. 

C. Implementation on the TMS32010 

The first step of developing a generator simulation program 
for the TMS32010 involved obtaining 32010 assembler and 
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simulation packages for the VAX. Programming in the VAX 
environment was found to be both convenient and efficient. 
The TMS32010 simulator allows YO through arbitrary files,so 
that a Fortran program can be used to supply initial parameters 
to the simulator; and output simulation data is readily 
obtainable for use by a plotting package. The first version of 
the generator simulation program employed fourth-order 
Runge-Kutta and used only 16-bit variables. Unfortunately, 
the precision was insufficient. Many of the state equation 
variables had magnitudes large enough to pUsh any increments 
out of the 16-bit range. Even when some of the key 
summations (those involving the subtraction of large numbers 
to yield small parameters) were done in double precision, 
proper operation could not be obtained. The program was 
rewritten to do most arithmetic in double precision (30 bits + 
sign bit, also fixed point). Only constants that could be defined 
as exact were left in l6-bit format (Section II-B). To 
compensate for the loss in execution speed, second-order 
Runge-Kutta integration was used. This method is essentially 
the same as modified Euler, except that a different set of 
constants is used. The linear stability of the two methods is the 
same. Figs. 7 and 8 compare TMS32010 simulation data to the 
benchmark fourth-order Runge-Kutta integration for power 
transients of plus and minus ten percent respectively. As this is 
for stand-alone operation, the generator program computes its 
own infinite bus voltage. The same results were obtained when 
the TMS32010 generator code was executed on one of the 
TMS32010EVM boards. With an integration cycle time of 
0.53 ms, the TMS32010 program can, simulate a generator on 
an infinite bus at a sample rate of nearly 2 kHz. The above 
results were reproduced at a sample rate of about a kilohertz, 
implying the simulation was taking place at nearly double the 
real-time rate. To see what is possible with an impedance load, 
the 0.53 ms. is converted to 0.2 rad of simulation time. With 
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reference to the stability limits of Section II, Fig. 3, it is seen 
that real-time simulation is possible to generator angles greater 
than about 9 degrees (Voc = 1.5). 

IV. CONCLUSION 

This paper has examined the design of a real-time digital 
simulator of a synchronous generator which is to operate in a 
network of such generators (parallel processors), a transmis­
sion system and nonlinear loads. It was determined that the 
nonlinear load that the generator faces places a significant 
constraint on the simulation time step. The design must use a 
cOllS\lrvative estimate of time step in order for the simulation 
to be stable in the presence of the a priori unknown loads. A 
16-bit generator simulator has been proposed and tested which 
uses the TMS32010 digital signal processing chip. 

APPENDIX A 

INTERFACE HARDWARE 

To work within the digital simulation network, the genera­
tor module must have a means of communicating with other 
elements of the network. specifically, the geneIiltor module 
must transmit its currents to the exciter unit and to the voltage 
determining matrix multiplier. In return, the generator re­
ceives its field voltage from the exciter, and its terminal 
voltages from the multiplier. 

Fig. 9. Generator module to network interface. 

Fig. 9 is a schematic of an interface designed to connect 
either the TMS32010EVM or the proposed generator module 
of Appendix B to the network. This circuit features a 16-bit 
bidirectional port betwee!1 the generator and exciter, a 16-bit 
input port from the multiplier, and a 24-bit output port to a 
Ii1aster controller. The controller is needed to orchestrate the 
transfer of all the generator modules' currents to each 
multiplier. Timing works as follows: 

1) TMS32010 saves generator angle to memory with Table 
Write (TBLW) instruction. 
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2) TMS32010 clears exciter. input registers by a dummy 
read ftom port 7. 

3) In 12-bit increments the TMS32010 writes the 24 most 
significant bits of id and iq to ports 0-3. Besides making 
the currents available to the controller, this operation 
also sends the currents to the exciter registers via a 
second bus. Access to port 3 activates the GENRDY 
signal. 

4) TMS32010 disables the interrupt line in order to give the 
controller free access to the exciter bus. 

5) When all generators signal that they are ready, the 
controller routes their currents to the multipliers. The 
controller deactivates the GENRDY signals, and when 
the' voltages have been calculated, it notifies the genera­
tors via the VLTRDY line. 

6) TMS32010 waits until the VLTRDY signal is acrtivated, 
and then enables the interrupt line. Next, the two 
terminal voltages are read from the particular multiplier 
assigned to this generator. This is accomplished by 
reading two sets of 16, 16, and 6 bits from ports 0-5. 

7) TMS32010 calculates machine variables for the next 
time step, then repeats the process from the top. 

8) When the exciter has calculated a new field Voltage for 
the generator, it activates the interrupt line of the 
TMS3201O. The interrupt service routine causes the 
TMS32010 to read the 16-bit field voltage from port 6. 
Reading from port 6 also clears the· interrupt holding 
flip-flop. Should the interrupt line be disabled when the 
exciter signals, then the TMS32010 will not respond 
until after the voltages have been calculated. 

APPENDIX B 

PROPOSED GENERATOR MODULE AND HOST INTERFACE 

Fig. 10 is a proposed design for future generator modules. 
It is intended to yield a low cost and compact system. 
The total chip count of this and the interface hardware of 
Appendix A is 31, and the total cost is probably under $200. 
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Fig. 11. Proposed host computer interface. 

The only expensive components are the TMS32010 processor 
and the accompanying fast memory. The system features easy 
direct memory access by a host computer. This facilitates the 
downloading of programs and uploading of results. One the 
host computer haS pulled the reset line iow it may treat the 
generator memory just like any 4K block of its own memory. 
The ,generator simulation program resides in the lower 2K 
bytes of the external ram memory and calculated generator 
angles are stored in the upper 2K bytes. The TMS320io is not 
allowed to write to the program portion of memory in order to 
prevent erasure of the first 8 bytes of memory by the OUT 



instruction. (The external signals of the OUT and TBLW 
instructions are indistinguishable.) Fig. II is an example of a 
host computer interface that allows many generator modules to 
be accessed. The reset lines of the generators are under 
software control. By addressing one memory location the host 
can reset all the generator modules and open up their 
memories to full speed access. Expansion is simple, as the 
addition of one 74LSI38 decoder chip allows another eight 
generators to be mapped into a 32K block of host address 
space. 

REFERENCES 

[I] M. H. Kent, W. R. Schumus, and F. A. McCrackin, "Dynamic 
modeling of loads in stability studies," IEEE Trans. Power App. 
Syst., vol. PAS-88, May 1969. 

[2] R. T. Byerly and E. W. Kimhnrd, Stability of Large Electric Power 
Systems. . New ,york: IEEE Press, 1974. 

[3] P. L. Dandeno and R. L. Hauth, "Effects of synchronous machine 
modeling in large scale system studie;," IEEE Trans. Power App. 
Syst., vol. PAS-92, Mar.lApr. 1973. 

[4] D. W. Olive, . 'Digital simulation of synchronous machine transients, ,. 
IEEE Trans. Power App. Syst .. vol. PAS-87, Aug. 1968. 

[5] Yoa-nan Yu, Jack H. Sawada, and M. D. Wvong, "A dynamic power 
system model for teaching and research," IEEE Trans. Power App., 
Syst .. vol. PAS-95, July/Aug. 1976. 

[6] P. M. Anderson and A. A. Fouad, Power System Control and 
Stability. Ames, IA: Iowa State Univ., 1977. 

[7] P. L. Dandeno, P. Kindur, and R. P. Schulz, "Recent trends and 
progress in synchronous machine modeling in the electric utility 
industry," Proc. IEEE, vol. 62, July 1974. 

[8] R. Joetten, T. Weiss, J. Wolters, H. Ring, and B. Bjorensson, "A new 
real-time simulator for power system studies, to presented at the PES 
Winter Meeting, 1985. 

[9] S. R. MilcMinn, "A digital model generator for real-time simulation," 
Ph.D. dissertation, Cornell Univ., Ithaca, NY, Aug. 1984. 

[10] S. Wiryaman, "Modular implementation of a fast matrix-vector 
multiplier," M.S. thesis, Case Western Reserve Univ., Jan. 1985. 

[Ii] F. !liceto and A. Ceyhan, "Behavior of loads during voltage dips 
encountered in stability studies. Field and laboratory tests," IEEE 
Trans. Power App .. Syst., vol. 91, Nov.lDec. 1972. 

[12] Computer Analysis of Power Systems Working Group of the Computer 
and Analytical Methods Subcommittee-Power System Engineering 
Committee, "System Load Dynamics-Simulation Effects and Deter­
minillion of Load Constants," IEEE Trans. Power App. Sysl., vol. 
PAS-92, Mar.lApr. 1973. 

[13] Tom T. Hartley and Guy O. Beale, "Integration operation design for 
real-time digital simulation," IEEE Trans. Ind. Electron., vol. 1E"32, 
Nov. 1985. 

[14] Curtis F. Gerald, Applied Numerical Analysis. Reading, MA: 
Addison-Wesley, May 1980. 

[IS] H. W. Dommeland N. Sato, "Fast transient stability solutions," IEEE 
Trans. Power App. Syst .. vol. PAS-9I, JulY/Aug. 1972. 

[16] Charles L. Phillips and H. Troy Nagle, Jr., Digital Control Systems 
Analysis and Design. Englewood Cliffs, NJ: Prentice-Hall. 

[17] Intel Corp., Component Data Catalog, Jan. 1981. 
[18] Intel Corp., iAPX 286 Programmer's Reference Manual, 1984. 
[19] Texas Instruments, TMS32010 User's Guide, 1983. 
[20] Texas Instruments, TMS32010 Evaluation Module User's Guide, 

1984. 

431 



432 



Real-Time Dynamic Control of an Industrial 
Manipulator Using a Neural-Network-Based 

Learning Controller 
W. THOMAS MILLER, III, MEMBER, IEEE, ROBERT P. HEWES, j;TUDENT MEMBER, IEEE, FILSON H. GLANZ, MEMBER, IEEE, 

AND L. GORDON KRAFT, III 

Abstract-The overall complexity of many robotic control problems, 
and the ideal of a truly general robotic system, have led to much 
discussion of the use of neural networks In robot control. A learning 
control technique is discussed wbich uses an extension of the CMAC 
network developed by Albus, and results of real-time control experiments 
are presented wbicb involved learning tbe dynamics of a five-axis 
industrial robot (General Electric P-5) during high-sp .. d movements. 
During each control cycle, a training scbeme was used to adjust the 
weigbts in the network in order to form an approximate dynamic model 
of tbe robot in appropriate regions of tbe control space. Simullaneously, 
the network was used during each control cycle to predict the actuator 
drives required to follow. desired trajectory, and these drives were used 
as feedforward terms in parallel to a fixed gain linear feedback controller. 
Trajectory tucking errors were found to converge to low values within a 
few tnining trials, and to be relatil'ely insensitive to the cboice of control 
system gains. The effects of network memory size and trajectory 
characteristics on learning system performance were investigated. 

I. INTRODUCTION 

NUMEROUS manipulator control schemes have been 
studied during the past decade. One approach involves 

using a dynamic model of the robot to calculate the joint drive 
torques for the specified trajectory (computed torque control­
lers) [1]-[5]. Recent work in this area has focused on efficient 
techniques for implementing robot dynamic models [6]-[16], 
custom parallel computer architectures suitable for high-speed 
implementation of robot dynamic models [17]-[20], and 
techniques for estimating dynamic model parameters [21]. 
While computed torque techniques are capable of providing 
excellent results if the complete dynamic model is known, they 
are generally inflexible in that the detailed model is highly 
specific to a particular robot and payload. 

Considerable work has also been reported concerning the 
application of adaptive control techniques to the robotic 
control problem [22]-[35]. These adaptive control schemes 
have the advantage that in general they require no a priori 
knowledge of the robot dynamics. A general drawback to 
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adaptive controllers is that the computational requirements for 
real-time parameter identification, and the sensitivities to 
numerical' precision and observation noise, tend to grow 
undesirably as the number of system state variables increases 
[36]. 

Several investigators have presented learning control 
schemes for improving the performance in trajectory follow­
ing tasks over successive attempts at following the same 
trajectory [37]-[39]. Typically, control torques for each time 
instant in the trajectory are adjusted iteratively based on 
observed trajectory errors at similar times during previous 
attempts. In the results presented by these investigators, the 
trajectories followed consistently converged on the ideal 
trajectories over several repetitions. A drawback to such 
control techniques is that they are only applicable to operations 
which are repetitive. 

Recently there has been considerable interest in learning in 
the form of simple models of networks of neurons. The overall 
complexity of many robotic control problems, and the ideal of 
a truly general robotic system, have led to much discussion of 
the use of neural networks in robot control [40]-[50]. The 
basic theme of all such discussions is that of using the network 
to learn the characteristics of the robot/sensor system, rather 
than having to specify explicit robot system models. While 
there seems to be widespread interest in this problem within 
the neural network and robotics communities, relatively little 
has been reported in the nature of actual robot control 
experiments. This is due, at least in part, to the computational 
speed and stability problems encountered when using typical 
neural models in networks of sufficient complexity to be useful 
for realistic robot control problems. 

Albus [51]-[54] proposed a unique control scheme devel­
oped from models of human memory and neuromuscular 
control. The control scheme was based on a neural model 
called CMAC (Cerebellar Model Arithmetic Computer) 
which, in a table look-up fashion, produced a vector output in 
response to a state vector input. In the controller, the state 
vector input was composed of position and velocity feedback 
from the robot joints, as well as additional state variables 
which provided a command input to the system. The output 
vector was the drive signal to the robot actuators. Assuming 
that the values in the table were adjusted correctly, the robot 
would automatically follow the correct trajectory if put in the 
correct initial state and given the correct command state (the 
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Fig. 1. A simple example of the network architecture with two inputs, one 
output. and four active units per input (C = 4). Note that only a subset of 
the state-space detectors is shown. 

current input state would result in a set of actuator drives 
which would cause the arm to move, generating a new input 
state which would result in new actuator drives, and so on). 
While the system was capable of generating such "learned 
responses" once the memory was trained, training techniques 
which would make the control approach suitable for use in 
industrial robotics were not proposed. 

During the past three years, we have been investigating a 
learning technique for the control of robotic manipulators 
[55]-[59] which utilizes a CMAC neural network similar to 
that developed by Albus. However, the control scheme is quite 
different from that proposed by Albus. The controller is 
similar to the computed torque controllers discussed above, 
with the robot dynamic model replaced by the neural network 
niodel. A training scheme is used to adjust the weights in the 
CMAC network on-line based on observations of the robot 
input! output' relationships, in order to form an approximate 
dynamic model of the robot in appropriate regions of the state 
space. The CMAC network is used to predict the actuator 
drives required to follow a desired trajectory ,and these drives 
are used as feedforward terms in parallel to a fixed-gain linear 
feedback controller. 

The learning control technique developed in our laboratory 
has been previously evaluated in a simulation study involving 
learning the dynamics of a two-axis robot arm [55], and in 
real-time control studies which successfully demonstrate the 
ability to learn the kinematics of a robot/video camera system 
interacting with randomly oriented objects on a moving 
conveyor, during both repetitive and nonrepetitive operations 
[56]-[59]. This paper presents the results of real-time experi­
ments which involved learning the dynamics of a five-axis 
industrial robot (General Electric P-5), during high-speed 
movements simuJating industrial tasks. 

II. METHODS 

A. The CMAC Network 

receives one input from the group of sensors for each input 
variable, and thus its input receptive field is the interior of a 
hypercube in the input hyperspace. If the input sensors were 
fully interconnected, a very large number of state-space 
detectors wouJd be excited for each possible input. The input 
sensors are interconnected in a sparse and regular fashion, 
however, so that each input vector excites exactly C state­
space detectors. The details of this input mapping are 
discussed elsewhere [52], [55]. 

The outputs of the state-space detectors are connected 
randomly to a smaller set of threshold logic units (called 
multiple-field detectors) with thresholds adjusted such that the 
output will be on if any input is on (a logical OR function). The 
receptive field of each of these units is thus the union of the 
fields of many of the state-space detectors. Since exactly C 
state-space detectors are excited by any input, at most C 
multiple-field detectors will be excited by any input. The 
converging connections between the large set of state-space 
detectors and the smaller set of multiple-field detectors are 
referred to as "collisions." 

Finally, the output of each multiple-field detector is 
connected, through an adjustable weight, to an output averag­
ing unit. The output for a given input is thus the average of the 
weights selected by the excited muJtiple-field detectors. 

For a practical control problem, the total number of state­
space detectors needed is large. However, since these units 
perform logical AND functions, and their interconnections with 
the input sensors are geometrically reguJar, they can be 
implemented as virtual units, and it is only necessary to 
consider a predictable set of C units for each input vector (C is 
typically less that 100). If the random interconnections 
between the state-space detectors and muJtiple-field detectors 
can be presented using a hashing function, it is possible to 
predict directly which weights are excited by a particuJar 
multidimensional input via a simple algorithm, and without 
analyzing all of the units in the network via a complete 
connectivity table. Software iniplementation of the network is 
thus very efficient, even for complex problems. 

The CMAC network will produce an output f(s) for any 
state vector s in the input space S, regardless of the number of 
adjustable weights in the. memory. However, since the 
memory is typically much smaller than the total number of 

Fig. 1 shows a simple example of the CMAC network as possible discrete input states, it is unlikely that a set of weights 
implemented in our laboratory, where s is a multidimensional, can be found which will produce the correct output for every 
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Fig. 2. A block diagram of the learning controller. 

possible input state. On the other hand, it is also unlikely that 
every possible system state will be encountered in solving a 
particular control problem (even one that is nonrepetitive). 
Learning involves finding values for the weights which will 
result in correct network output for input states in the regions 
of interest. 

B. Manipulator Control 

Consider a multi-axis manipulator with drive electronics to 
be an electromechanical system represented by the general 
equation 

V=m(/I, 6, ii) (I) 

where V is a vector of the applied actuator drives, /I, (J, and ii, 
are vectors of the joint positions, velocities, and accelerations, 
respectively, and m represents a nonlinear vector function 
describing the inverse robot dynamics and actuator drive 
characteristics. If the function m is known, (I) can be used to 
calculate the joint drives required to follow a desired trajec­
tory, and these estimated drives can be used as feedforward 
terms in parallel with a feedback controller. For typical 
manipulators, however, the function m is difficult to deter­
mine accurately and involves complex computations which are 
difficult to implement as part of a real-time controller. 

The CMAC network can be applied to the manipulator 
control problem as follows (Fig. 2). Let the CMAC input state 
vector S be formed from the vectors /I, (J, and ii, and let the 
CMAC function !(s) correspond to the manipulator function 
m(/I, (J, ii) (the CMAC network can produce a vector rather 
than a scalar output if every weight in Fig. I is assumed to 
contain a vector value). The only assumption being made is 
that the drive signal for each axis is a function of the desired 
positions, velocities, and accelerations of all of the axes. No 
restrictions are placed on the forms of these functions, except 
that they be single-valued. 

At each control cycle, the trajectory planner determines the 
desired state of the system Sd for the next control cycle (the 
desired positions, velocities, and accelerations of the actua­
tors) based on the ideal trajectory. The desired next state Sd is 
sent to the CMAC network which produces !(Sd). The 
resulting vector value is assumed to be an estimate of the 
actuator drives required to achieve the desired state Sd and is 
added to the output of the fixed gain error feedback controller 
to form the command vector V which is sent to the robot 
actuator drivers. 

At the end of each control cycle a training step is executed. 

The observed state of the system So during the previous control 
cycle is used as input to the CMAC network which produces 
!(so). The difference between the predicted drive value !(so) 
and the actual applied command vector Vo during the previous 
control cycle is used to compute the weight vector adjustment 
as follows: 

(2) 

where {3 is a training gain between 0 and 1. This correction 
vector is added to each of the weight vectors excited by the 
input state So. Note that this training procedure is similar to the 
well-known Widrow-Hoff training procedure for linear adap­
tive elements [60], [61]. The nonlinear characteristics of the 
CMAC neural network are embodied in the interconnections 
of the input sensors, state-space detectors, and multiple-field 
detectors, which perform a fixed nonlinear mapping of the 
continuous-valued input vector S to a many-dimensional 
binary-valued vector (the set of outputs from all of the 
multiple-field detectors). The training is linear in this many­
dimensional space and the convergence theorems for linear 
adaptive elements apply [61]. 

When the system is initialized, the weights contain all zeros 
such that ftSd) is the null vector for any desired state Sd and the 
command vector set to the robot is equal to the output of the 
fixed gain controller alone. As the CMAC network is 
continually trained following successive control cycles, the 
CMAC function !(s) forms an approximation of the system 
inverse dynamic transfer function m (/I, (J, ii) over particular 
regions of the state space. If the future desired states are in 
regions of the state space similar to previous observed states, 
the CMAC network output will be similar to the actual 
actuator drives required. As a result, the state errors will be 
small and the CMAC network will take over from the fixed­
gain controller. The more experience the controller obtains, 
the more closely the CMAC output !(s) approximates the 
actual system tranfer function in the appropriate regions of the 
state space. Note that while a repetitive trajectory may be the 
easiest to learn, the technique is applicable to nonrepetitive 
operations. The trained information is in the form of the 
system transfer characteristics at individual points in the state 
space, and is not explicitly related to the overall trajectory. 

C. The Experimental Model 

For this study, the learning control system was implemented 
using a VAX-I 11730 minicomputer with a TMS32010 auxil­
iary processor. The basic control architecture is shown in Fig. 
2. The robot was a General Electric P-5 five-axis articulated 
robot. This robot was driven by five loo-V dc motors with 
pulsewidth-modulated motor drivers. Feedback was available 
to the digital controller in the form of a pulse train position 
encoder for each axis. Maximum speed varied for each axis 
but was on the order of 100· /s for each. The position encoder 
resolution was on the order of 0.0 I· for each axis. Note that 
the drive signal being learned was the input to analog motor 
driver circuits containing analog tachometer and current sense 
feedback loops. 

A digital fixed-gain feedback controller was designed for 
each axis, including position error (encoder count units) and 
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velocity error (1 count/cycle units) terms. Gains were adjusted 
experimentally to give good performance. A fixed-gain 
velocity feedforward term was included in the controller. This 
term was added to the total drive after the training drive 
observation (Fig. 2). Thus the network was trained to 
represent the difference between the actual system and the 
approximate model (fixed feedforward). The "tuned" gain for 
the velocity feedforward term was obtained from a knowledge 
of the gain in the tachometer feedback loop for the correspond­
ing axis. 

In the learning module, the drive signal for each motor was 
assumed to be a function of the desired positions (800 count 
units), velocities (4 count/cycle units), and accelerations (2 
count/cycle/cycle units) of all five axes. The neural network 
thus had fifteen discrete numeric inputs and five discrete 
numeric outputs, with approximately 1 000 000 virtual state­
space detector units and 32 active units per input (C = 32). 
The number of multiple-field detector units and actual weight 
vectors in the memory varied from 32 768 to 8, as indicated in 
the results. The training gain was set to 0.05 in all experi­
ments. 

As discussed above, the ideal components for the input state 
vector s included the actuator positions at the beginning of a 
control cycle, actuator velocities at the beginning of a control 
cycle, and actuator accelerations during the control cycle. For 
the P-5 robot, however, only direct measurements of position 
were available to the digital controller. A symmetrical 
quadratic least squares estimator was used to estimate velocity 
from five sequential positions. A central difference estimator 
was used to estimate acceleration from two sequential esti­
mated velocities. The actual input state vectors used were thus 
functions of six sequential positions (three past and three 
future) for each actuator. During control computations, the 
future desired positions were readily available since the entire 
desired trajectory was known in advance. During training, the 
weight adjustment for a given control cycle was delayed by 
three cycles such that "future" position measurements would 
be available for the training computations. 

The control cycle time was 20 ms, accommodating both one 
learned feedforward computation (5.4 ms) and one training 
computation (7.7 ms). This control cycle time was marginal 
for the high-speed movements tested, but was possible because 
of the analog velocity feedback loops in series with the PWM 
motor drivers. 

Two test trajectories were designed. The first (CIRCLES) 
involved tracing ten tangential circles in three orthogonal 
Cartesian planes, holding the wrist orientation constant rela­
tive to the upper arm. This smooth trajectory was considered 
difficult in that the positions, velocities, and accelerations of 
the five individual actuators (including the wrist axes) were 
constantly changing during the 24-s exercise, and the peak 
drive voltage required for each of the five actuators was at 
least 80 % of the saturation drive. The second test trajectory 
(SEGMENTS) involved a series of long constant high actuator 
velocity moves (50% to 95% of maximum actuator velocity) 
separated by abrupt changes in velocity (brief intervals of high 
acceleration). The total trajectory duration was 6.6 s. This 
trajectory was difficult in that only limited information about 
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Fig. 3. The average position errors as a function of training trial for the 24-s 
exercise (CIRCLES) described in the text. Trial 0 corresponds to the fixed­
gain controller without learning. Error curves are shown for each of the five 
motors during experiments using the tuned-velocity feedforward, slightly 
reduced velocity feedforward (10% maladjustment), and no velocity 
feedforward (severe maladjustment). 

the system dynamics was available during the long constant 
actuator velocity intervals which dominated the trajectory in 
terms of total control cycles, and yet good system dynamics 
information was required in order to successfully achieve the 
desired abrupt velocity changes. 

III. RESULTS 

Fig. 3 shows the average trajectory position error, in 
position encoder units, for CIRCLES during each of ten 
sequential trials. Error curves are shown for the optimal 
velocity feedforward ("tuned gains"), for a 10 % reduction in 
feedforward gain (" 10% maladjustment"), and for no veloc­
ity feedforward ("severe maladjustment"). In each case, the 
intercept with the vertical axis (trial 0) indicates the average 
trajectory error of the fixed gain controller without learning. 
The maximum position error for each axis followed the same 
trend during training as the average error. The position errors 
for the fourth axis were higher because that motor was driven 
by an 8-b D/ A converter, while the other four motors. were 
driven by 12-b D/ A converters. 

Control system performance improved significantly, even 
when using the tuned fixed-gain controller, converging within 
five training cycles. Detuning the fixed feedforward (approxi­
mate system model) by only 10 % had a large effect on 
performance without learning, but had essentially no effect on 
performance after five training trials. Without velocity feed­
forward, the average control errors for the five motors were 
261,424,247,255, and 201 counts (about five times greater 
than the plot vertical scale in Fig. 3) when using the fixed gain 
controller without learning. Even for this severe detuning of 
the fixed gain controller, average trajectory position error 
converged to a low value within ten training trials. For all 
actuators, the final error was similar to or less than the 
trajectory error for the tuned controller without learning. 

Fig. 4 shows the percentage of the total drive signal for each 
motor which was provided by the combined feedforward terms 
(fixed gain velocity feedforward and lea~ed feedforward) as a 
function of training trial during the experiments depicted in 
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Fig. 4. The average feedforward drive rJ.lagnitude as a percentage of the 
average total drive magnitude during the three experiments depicted in Fig. 3. 

Fig. 3. Percent drive was computed as follows: 

FF% = 100 * IFFI 
IFFI+IFBI 

(3) 

where IFF! represents the summed absolute drive signal from 
the combined feedforward terms and jFBI represents the 
summed absolute drive signal from the combined error 
feedback term. 

By this measure, the tuned velocity feedforward provided 
over 90% of the total drive signal, even without learning. This 
is consistent with both the nature of the mechanical system and 
the presence of the analog tachometer feedback loops in the 
motor drive electronics. Learning was able to increase this 
percentage to 98 % or 99 % for each motor (the values for 
motor five are lower due to the lower total average drive 
magnitude for this motor). The 10% maladjustment of the 
velocity feedforward reduced its contribution to the total drive 
signal, but had almost no effect on the total feedforward 
contribution after five training trials. With the velocity 
feedforward gains set to zero, the learned feedforward term 
still accounted for over 90 % of the total drive signal after ten 
training trials. 

In these trials, a network memory containing 32 768 weight 
vectors was available (10 bytes per vector). After ten 24-s 
training trials, each involving 10 circles in Carteisan planes, 
2708 vectors had been accessed when using the tuned fixed 
gain controller. This implies that practical length tasks can be 
implemented using realistic amounts of memory. In order to 
test the effect of memory size on performance, the experiment 
was repeated using networks with memory sizes of 1024 
weight vectors and 64 weight vectors. The results are shown in 
Fig.5. 

Learning controller performance was essentially the same 
for the 1024-vector memory as for the 32 768-vector memory, 
even though the 2708 vectors used for the same problem with 
the larger memory imply that many collisions were certain. 
This indicates the network's ability to resolve collisions in the 
connections between the very large set of state-space detectors 
and the much smaller set of multiple-field detectors. Perform­
ance was measurably impaired when using the network with 
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Fig. 5. The average position errors as a function of training trial for the 24-s 
exercise (CIRCLES) described in the text. Trial 0 corresponds to the fixed­
gain controller without learning. Error curves are shown for each of the five 
motors during experiments using network memories containing 32 768 
weight vectors, 1024 weight vectors. and 64 weight vectors. 

only 64 weight vectors, but after five training trials was still 
significantly better than that obtained using the tuned fixed­
gain controller alone. 

It is informative to consider individual weights from the 
network memories. Given a sufficiently large memory, each 
individual weight is influenced primarily by training data 
corresponding to a particular region of the system state space. 
After several training trials, each network weight would reach 
a stable value, assuming that the system's properties are 
constant. In a smaller memory, each weight is influenced by 
training relative to multiple disjoint regions of the state space. 
Within reason, however, such network collisions should be 
resolved with sufficient training, resulting again in stable 
weight values. For very small network memories, each weight 
will be influenced by many or most regions of the state space, 
and the continuous training is likely to act as a low-pass filter, 
with each weight tracking the applied drive signal rather than 
reaching a stable value. 

In order to confirm these assumptions, individual weights 
were monitored during training trials with networks including 
32 768 weight vectors, 1024 weight vectors, 64 weight 
vectors, and 8 weight vectors. Typical results are shown in 
Fig. 6 for individnal weights as functions of the time during 
the 16th training trial for each network. the weights shown in 
the figure were deliberately chosen as having similar magni­
tudes (in order to facilitate comparison) but bore no other 
relation to each other. As expected, the weights reached stable 
values for both the large network memory (with relatively few 
likely network collisions) and for the smaller inemory (where 
many collisions were certain). Even for the very small 
memory (64 vectors), a stable average value with only a small 
deviation is clear. For the tiny network memory (8 weight 
vectors), the magnitude varies constantly during the trial, 
essentially tracking the applied drives as the result of the 
training algorithm. Note that although this weight appears 
unstable in the figure, the apparent oscillation was the direct 
result of the varying actuator drive required to track the 
sequence of circles, and did not reflect numerical training 
instability . 
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Fig. 6. Individual network weights as functions of time during the 16th 
training attempt for the CIRCLES trajectory in experiments using network 
memories 32 768 weight vectors, 1024 weight vectors, 64 weight vectors, 
and 8 weight vectors. 
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Fig. 7. The average position errors as a function of training trial for the 6.6-
s exercise (SEGMENTS) described in the text. Trial 0 corresponds to the 
fixed-gain controller without learning. Error curves are shown for each 
of the five motors during experiments using network memories containing 
32768 weight vectors, 102~ weight vectors, and 64 weight vectors. 

The same experiments were repeated for the SEGMENTS 
trajectory. Fig. 7 shows the trajectory position errors for the 
five actuators during a sequence of ten training trials for 
networks containing 32 768, 1024, and 64 weight vectors. 
For the larger network memory, performance converged 
rapidly to a low error during the first five trials, similar to the 
results for CIRCLES. Of the total available, only 1115 weight 
vectors were modified during the trials, which again was 
consistent with CIRCLES given the shorter duration of 
SEGMENTS. However, when the memory size was decreased 
to 1024 weight vectors, increasing the frequency of collisions, 
the performance degraded noticeably relative to the larger 
memory. When the network memory was further reduced to 
64 weight vectors, the average trajectory position errors with 
training were actually greater than when using the tuned fixed­
gain controller alone. 

At first, these results seemed contradictory in that CIR­
cLEs used three times more weight vectors in the large 
network than SEGMENTS, and yet CIRCLES mapped much 
more successfully into the smaller networks. This difference 
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can be explained, however, by considering the nature of the 
two trajectories. CIRCLES involved constantly and smoothly 
varying accelerations for all five axes. As a result, the training 
data were relatively rich in information ahout the system 
dynamics, with substantial generalization between sequential 
control cycle observations. Learned information was rein­
forced both during successive control cycles during each trial, 
and from one trial to the next. The effects of the frequent 
collisions in the network connections in the smaller memories 
were thus able to be resolved. 

On the other hand, SEGMENTS involved sequences of long 
movements with constant actuator velocity, separated by short 
intervals of high acceleration. The training data during the 
long constant velocity intervals contained relatively little 
dynamic information, and the short intervals of high accelera­
tion were quite different from the nearby control cycles, 
providing little reinforcement of the necessary dynamic 
information during each trial. When using the large network 
there was sufficient reinforcement from one trial to the next, 
with little destruction of information due to collisions, so that 
the performance converged to low errors. When using the 
smaller memories with large numbers of collisions, however, 
the information about the trajectory comers was not reinforced 
sufficiently during each trial to offset the destruction of 
information hy collisions. 

While trajectories which require moving all five axes 
simultaneously are the best test of performance, it is difficult 
to evaluate the results other than as error statistics. For this 
reason, a simple trajectory demonstrating the advantage of the 
learned feedforward term was devised. The arm was retracted 
and then the base axis was rotated through 80· at approxi­
mately 70% of full speed. The desired acceleration was set to a 
constant magnitude of 11 counts/cycle/cycle at the beginning 
and end of the move. The arm was then extended, and an 
opposite rotation of the base performed. The desired velocity 
profile for the hase axis was the same for the retracted and 
extended portions of the trajectory. However, the required 
drive signal was quite different as the result of the configura­
tion-dependent inertial terms. Fixed gain velocity and acceler­
ation feedfprward terms could not possibly generate the 
correct drive signals for hoth rotations. 

Fig. 8(a) shows the base-axis trajectory errors during the 
acceleration portions of the retracted and extended moves 
using two different controllers: error feedback with optimal 
velocity feedforWard, and error feedback with learned feed­
forward only (after 15 attempts). The fixed gain velocity 
feedforward resnlted in low error for the retracted case, but 
significant lag occurred for the extended arm during the 
acceleration phase. Addition of acceleration feedforward 
could have helped to reduce this lag, but at the cost of 
overdriving the retracted arm. The controller with learned 
feedforward showed small error for both the retracted and 
extended cases. 

Fig. 8(b) shows plots of the corresponding base drive 
signals. The dashed lines correspond to the drive saturation 
leveL The dotted lines indicate the drives that were (or wonld 
have been) predicted by the fixed-gain velocity feedforward. 
Note that for the retracted case, the velocity feedforward term 
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Fig. 8. Robot base axis position error (a) and drive voltage (b) as a function 
of time during base rotations with the arm retracted and extended. 
Corresponding data are shown for the controller with tuned-velocity 
feedforward and with learned feedforward only (after 15 trials). 

predicted nearly the correct drive signal. A similar drive signal 
was learned by the learned feedforward term when the arm 
was retracted. For the extended case, the velocity feedforward 
term did not predict the large transient drive required to 
accelerate the arm, thus the arm lagged behind the desired 
trajectory until sufficient error drive was generated to acceler­
ate the arm. On the other hand, the learning controller learned 
to apply a large drive signal immediately in order to accelerate 
the extended arm, and then to decrease the drive at the 
beginning of the fixed velocity phase. 

IV. DISCUSSION 

Computation time for the 15-input, 5-output nonlinear 
learning problem posed was 5.5 ms for the feedforward 
computation and 7.7 ms for the training computation (feed­
forward plus weight adjustment) using the VAX-1l1730-
TMS32010 processor pair. These times were adversely 
affected by the relatively slow UNIBUS pathway between the 
two processors (a factor-of-four improvement in speed for the 
same size problem has been achieved in our laboratory using a 
closely coupled 68000-TMS32010 processor pair). For gen­
eral use in the dynamic control of robotic manipulators, 
overall control cycle times on the order of I ms or less would 
be desirable. The natural parallel structure of the network 
makes it well suited to parallel implementation, using multiple 
RISC processors or special-purpose digital or analog hard­
ware. We are currently developing an implementation of the 
CMAC neural network using standard cell arrays on a dual­
height VME module. This hardware network implementation 
will include I 048 576 8-b adjustable weights and will be able 
to perform control or training operations, similar in dimension 
to those discussed in this paper, iII approximately 100 /LS. 

The results presented clearly indicate that with sufficient 
memory the learning controller converges to a low error 
within a few trials. This observation is consisl!:nt with the 
results of our previous simulation [55] and experimental 
studies [56]-[59]. While good performance was generally 
possible with the carefully adjusted fixed-gain controller, 

control system performance without learning was highly 
sensitive to controller maladjustment. In contrast, control 
system performance with learning was relatively insensitive to 
control parameter selection, resulting in control errors lower 
than or comparable to the tuned fixed-gain controller, even for 
severe parameter maladjustment. 

While ihe learning controller was relatively insensitive to 
the gains chosen for the fixed-gain controller, there was an 
obvious symbiotic relationship between the learning system 
and the fixed-gain error feedback. This is evident from the fact 
that the low trajectory position errors achieved with learning 
were well below the resolution of the position variables used in 
the network input vector. After training, the learning system 
formed a discrete ,model of the nonlinear system properties, 
and the fixed gain error terms (which were implemented at the 
full measurement resolution) served to correct remaining 
differences between this discrete noulinear model and the real 
system. 

An obvious adjustment to achieve even better performance 
might be to use the position, velocity, and acceleration terms 
at their full resolutions in the network input vector. Increasing 
input variable resolutions, however, decreases network gener­
alization, adversely affecting performance, unless the number 
of active units per input state (the parameter C) is correspond­
ingly increased. In our current software implementation, 
computation time is slightly less than proportional to C, 
prohibiting the use of very large values. In parallel implemen­
tations, network response time could be made nearly indepen­
dent of C (if the amount of parallel hardware was proportional 
to C), allowing large values and correspondingly increased 
input variable resolutions. 

Many learning control schemes are applicable only to 
repetitive tasks [37]-[39]. The learning system being devel­
oped in our laboratory does not suffer from this restriction, 
since the trained information is in the form of the system 
transfer characteristics at individual points in the state space, 
and is not explicitly associated with the trained trajectories 
[57], [59]. Clearly, it would be difficult to train a system to 
generate correct control outputs for every possible control 
objective. However, it is also difficult to imagine a useful 
nonrepetitive task that truly involved making random motions 
spanning the entire control space' of the mechanical system. 
The ability to learn to perform a variety of movements within a 
reasonable operating window should be' sufficient for most 
useful nonrepetitive operations. This follows the concept of an 
"expert" robot as being one which is trained for a certain 
class of operations, rather than one which is trained for 
virtually all possible tools and applications. 

The results obtained using the first trajectory demonstrate 
that tasks of reasonable complexity can be learned successfully 
using a network with relatively few weights. Thus it should be 
possible to train a system for a variety of operations using a 
network memory of practical size. The results obtained using 
the second trajectory tested, however, illustrate the pitfalls 
possible when trying to utilize a very small memory if 
important information is seen infrequently in the training data. 
The characteristics of the planned trajectories clearly have a 
direct impact on the ability to learn and to retain previously 
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learned information. This relationship has yet to be clearly 
defined. 

Currently accepted approaches to handling the nonlineari­
ties of robot dynamics during high-speed movements are 
generally related to the computed torque technique. In order to 
obtain high speeds and sufficiently high control rates with 
these techniques, computer code must be tailored to the 
specific robot to such an extent that transportability is 
impossible. Furthermore, attachment of a new tool requires 
code modification. Although many different adaptive and 
learning algorithms have been discussed recently in the 
literature as being of potential use in robotics, few have been 
tested in real time using an industrial manipulator. Some are 
too difficult to apply to a realistic manipulator with five or 
more axes (typically fifteen or more input variables). Others 
aretoo complex to implement in real time on typical hardware 
for suitable control cycle times. Investigation of these tech­
niques has typically been limited to simulation studies using 
simplified models. 

In contrast, the learning controller plesented here is well 
suited for practical application to the control of industrial 
robotic manipulators. The learning algorithm structure is 
simple and is independent of the choice of learning system 
parameters (the number of state variables, the size of the 
weight vector memory, the number of weight vectors accessed 
by each state, and so on). This makes adaptation of the control 
software to accommodate system changes unnecessary or 
relatively easy, and makes it possible to transport large 
portions of the control software from one robot to another. In 
addition, the algorithm is time-efficient, highly parallel, and 
can be implemented in real time using current, low-cost 
technology. Finally, the learning control system appears to 
provide good dynamic performance relative to other adaptive 
or learning control schemes. 

While the focus of this research was the dynamic control of 
industrial manipulators, the technique described is applicable 
to a wide range of robotics control problems which will be 
increasingly important in the future. For example, the use of 
low-mass materials in the construction of robots, for applica­
tions in space or on mobile platforms, will almost certainly 
require the use of high-performance learning controllers, since 
the control characteristics will be highly payload/task depen­
dent. As another example, the problem of sensor data fusion 
(combining information from multiple dissimilar sensors to 
achieve a single control objective) makes it difficult to derive 
explicit control transformations, but can be systematically 
approached using learning techniques [56]-[58]. 
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