
1991

-I!1 TEXAS
INSTRUMENTS

Digital Control Applications
lNith the TAfS320 Fatnily

1991 Digital Signal Processing Products

Digital Control Applications
lNith the TMS320 Family

Edited by
IrfanAhmed

Digital Signal Processing-Semiconductor Group
Texas Instruments Incorporated

~
TEXAS

INSTRUMENTS

I

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI ad­
vises its customers to obtain the latest version of the relevant information 10 verify,
before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor products to current specifications in
accordance with Tl's standard warranty. Testing and other quality control tech­
niques are utiiized to the extent TI deems necessary to support this warranty. Un­
less mandated by govemment requirementlil, specific testing of all parameters of
each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein. Nor
does TI warrant or representthat license, either express or implied, is granted under
any patent right, copyright, mask work right, or other intellectual property right of
TI covering or relating to any combination, machine, or process in which such semi-
conductor products or services might be or are used. . ,

Texas Instruments products are not intended for use in life-support appliances, de­
vices, or llystems. Use of a TI product in such applications without the written con­
sent of the appropriate TI officer is prohibited.

TRADEMARKS

Apollo is a trademark of Apollo Computer, Inc.
Apple and Macintosh are trademarks of Apple Computer Corp.
CROSSTALK is a trademark of Microstuf, Inc.
DEC, VAX, and VMS are trademarks of Digital Equipment Corp.
18M, OS/2, PC, PC-DOS, PC/XT, and PS/2 are trademarks of IBM Corp.
Intel is a trademark of Intel Corporation
MS-DOS and MS OS/2 are registered trademarks of Microsoft Corp.
NEC is a trademark of NEC Corp.
Power-14 and Power-8ource are trademarks of Teknic, Inc.
Sun is a trademark of Sun Microsystems, Inc.
UN/X is a registered trademark of AT&T Bell Laboratories, Inc.
VMEbus is a trademark of Motorola, Inc.
XOS is a trademark of Texas Instruments, Inc.

Copyright © 1991, Texas Instrl!ments Incorporated

CONTENTS

Preface ... ix

PART I Introduction To Digital Controllers

DSP·Based Control Systems .. 3
Control Systems ... 3

Analog Control Systems. .. 3
Digital Control Systems 4
Analog Versus Digital Controllers 4

Processor Requirements for Digital Controllers 5
Architecture .. 6
Performance .. 6
Peripheral Integration. .. 6

DSP Architectures. .. 7
TMS320 Digital Signal Processors .. 9

TMS320 Fixed-Point DSPs ... 10
TMS320 Floating-Point DSPs ... 10

TMS320C14-An Optimal Solution .. 10
Summary .. 12
References .. 12

Digital Signal Processors Simplifying High.Performance Control :................. 13
(Irfan Ahmed and Steven Lindquist; reprinted from Machine Design. Sept. 10. 1987)

Taking Control with DSPs 19
(lrfan Ahmed and Tom Bucella; reprinted from Machine Design, Oct. 12, 1989)

Using Digital Signal Processors for Control. .. 27
(Herbert Hanselmann; reprinted from IECON '86, 1986)

PART II Design of Digital Controllers

Designing Control Systems .. 35
Discrete Systems .. 35

z-Transforms .. 35
Discretization Methods for Analog Systems 37

Step Invariant Method. .. 37
Ramp Invariant Method. .. 38
Matched Pole-Zero ... 38
Backward Difference. .. 38
Bilinear Transformation ... 39
Other Methods .. 39

iii

IIi' 'I

Behavior of Poles in z-Domain•....•...................•.•. 39
Plant Modelling '. • • • • 40
Digital Controller Design :..................................... 43

Control Algorithms•............................ 44
Compensation Techniques • . • 44
PID ...••...•................•..•............................•..•..•..• 44
Deadbeat •••••.••.•..•........•...•....•.••..••••.•.•..•..•.••.•...••••.. 44
State Space Model • • • . • . . . • 44
Observer Model • • . •• 44
Optimal Control. • . • .. 44
Kalman Filter. .. 44
Adaptive Control .• . • . . . • . • • • • . • • • • 44

Performance Specifications•................................•..•.... 45
Step Response. • . . . • . . • • . • 45
Frequency Response•..........•......•............... 47
Additional Criteria for Performance Specification ..•..•. .. 48

PID Controller•........................•..•.................. 48
Controller Design .. 49
Implementation Considerations. • • .. 52

Deadbeat Controller • .. 53
Controller Design•..•.......................•........................ 53
Implementation Considerations. .. 54

State Space Model .. 56
State Controller Design ... 56
Implementation Considerations . • 58

Observer Model .. 58
Observer Model and Estimator Designs 59
Transfer Function Form ..•....... " 60
State Controller and Estimator with Reference Input 63
Implementation Considerations .. 63

Optimal Control and Estimation•................ " 64
Linear Quadratic Regulator • . • . .. 64
Kalman Filter. . • . . . • • • .. 65
Implementation Considerations .. 70

Summary ...•... ~ . . • • . . . • • .. 70
References . • 70
Appendix I•........•......................... 71
Appendix 2•.•...•..•.•.....•........••..•.....•..•..............•.... 74
Appendix 3 .. 76
Appendix 4•..............•................•................... 79

Matrix Oriented Computation Using Matlab .. 83
(Jeffrey C. Kantor) ,

Modeling and Analysis of a 2-Degree-of-Freedom Robot Arm 93
(Integrated Systems Inc.; reprinted from Application Note brochure)

Simnon - A Simulation Language for Nonlinear Systems
(Tomas SchOnthal)

iv

103

PART III Implementation of Digital Controllers

Implementing Digital Controllers ... 111
Fixed-Point Versus Floating-Point .. III
Binary Arithmetic '.' 112
Finite Word-Length Effects ... 113

Coefficient Quantization ... 114
Signal Quantization ... 114

AID and D/A Quantization Effects ... 114
Truncation and Round-Off Effects ... 114
Overflow Effects ... 114

Scaling .. 115
Controller Structures ... 116

Transfer Function Forms ... 117
State Space Form .. 119

Computational Delay ... 120
Sampling Rate Selection. 121
Antialiasing Filters ... 122
Controller Design Tools ... 122
Algorithm Development ... 122
Software Development. 122

High-Level Languages. 123
Assembly Language. 123
Signal Processing Languages. 123
Code Generation Software. 124

Device Simulators. 124
Hardware Design .. 124
Summary. .. 125
References .. 125
Appendix 1 ... 126

Hardware/Software-Environment for DSP-Based Multivariable Control 141
(H. Hanselmann, H. Henrichfreise, H. Hostmann, and A. Schwarte; reprinted from
Proceedings of 12th 1MACS Conference)

Implementation of Digital Controllers - A Survey 145
(H. Hanselmann; reprinted from Automatica, Vol. 23, No. I, 1987)

The Programming Language DSPL 171
(Albert Schwarte and Herbert Hanselmann; reprinted from PCIM, June 25 - 28, 1990)

Application of Kalman Filtering in Motion Control Using TMS320C25
(Dr. S. Meshkat)

185

Implementation of a PID Controller on a DSP 205
(Karl Astrom and Hermann Steingrimsson)

DSP Implementation ofa Disk Driver Controller 239
(Hermann Steingrimsson and Karl Astrom)

v

PART IV Applications of Digital Controllers with the TMS320

Digital Control Applications with the TMS320 257
Computer Peripherals ... 257

Disk Drives. .. 257
Tape Drives .. 257

Power Electronics .. 257
AC Servo Drives .. 257
UPSs and Power Converters ... 257
Robotics and Motion Control .. 258

Automotive 258
Active Suspension ... 258
Anti-Skid Braking•............................. 258
Engine Control .. 258

Computer Peripherals

DSP Helps Keep Disk Drives on Track. 259
(James Corliss and Richard Neubert; reprinted from Computer Design, June 15, 1988)

LQG - Control of a Highly Resonant Disk Drive Head Positioning Actuator '" " 265
(Herbert Hanselmann and Andreas Engelke; reprinted from IEEE Transactions on
Industrial Electronics, Vol. 35, No. I, Feb. 1988)

High Bandwidth Control of the Head Positioning Mechanism in a Winchester Disc Drive ... 271
(Herbert Hanselmann and Wolfgang Moritz; reprinted from IECON 1986,1986)

Fast Access Control of the Head Positioning Using a Digital Signal Processor 277
(S. Hasegawa, Y. Mizoshita, T. Ueno, and K. Takaishi; reprinted from SPIE Proceedings,
Vol. 1248, 1990)

Motion Control and Robotics

Implementation of a MRAC for a 1\vo Axis Direct Drive Robot Manipulator Using a
Digital Signal Processor .. 287
(G. Anwar, R. Horowitz, and M. Tomizuka; reprinted from Proceedings of American
Control Conference, June 1988)

Implementation of a Self-TIming Controller Using Digital Signal Processor Chips 291
(K.H. Gurubasavaraj; reprinted from IEEE Control Systems Magazine, June 1989)

Motion Controller Employs DSP Technology .. 297
(Robert van der Kruk and John Scannell; reprinted from PCIM, Sept. 1988)

Power Electronics

Using DSPs in AC Induction Motor Drives .. 303
(Dr. S. Meshkat and Mr. I. Ahmed; reprinted from Control Engineering, Feb. 1988)

Microprocessor-Controlled AC-Servo Drives with Synchronous or Induction Motors:

vi

Which is Preferable? .. 307
(R. Lessmeier, W. Schumacher, and W. Leonhard; reprinted from IEEE Transactions on
Industry Applications, Vol. IA-22, No.5, Sept./Oct. 1986)

A Microcomputer-Based Control and Simulation of an Advanced IPM Synchronous Machine
Drive System for Electric Vehicle Propulsion , .. 315
(Bimal K. Bose and Paul M. Szczesny; reprinted from IEEE Transactions on Industrial
Electronics, Vol. 35, No.4, Nov. 1988)

DSP-Based Adaptive Control ofa Brushless Motor 329
(Nobuyuki Matsui and Hironori Ohashi; reprinted from Conference Record of the 1988
IEEE Industry Applications Society)

High Precision Torque Control of Reluctance Motors 335
(Nobuyuki Matsui, Norihiko Abo, and Tomoo Wakino; reprinted from Conference Record
of the 1989 IEEE Industry Applications Society)

High Resolution Position Control Under 1 Sec. of an Induction Motor with Full Digitized
Methods ... 341
(Isao Takahashi and Makoto Iwata; reprinted from Conference Record of the 1989 IEEE
Industry Applications Society)

A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator , 349
(R.J. Chance and J.A. Taufiq; reprinted from Third International Conference on Power
Electronics and Variable Speed Drives, Conference Publication Number 291, July 1988)

Design and Implementation of an Extended Kalman Filter for the State Estimation of a
Permanent Magnet Synchronous Motor. .. 355
(Rached Dhaouadi, Ned Mohan, and Lars Norum; reprinted from Proceedings of Power
Electronic Specialists Conference, June 1990)

Automotive

Trends of Digital Signal Processing in Automotive .. 363
(Kun-Shan Lin; reprinted from Proceedings of Convergence '88, Oct. 1988)

Application of the Digital Signal Processor to an Automotive Control System 375
(D. Williams and S. Oxley)

Dual-Processor Controller with Vehicle Suspension Applications. .. 383
(Kamal N. Majeed; reprinted from IEEE Transactions on Vehicular Technology, Vol. 39,
No.3, Aug. 1990)

An Advanced Racing Ignition System .. 389
(T. Mears and S. Oxley; reprinted from IMechE, 1989)

Active Reduction of Low-Frequency Tire Impact Noise Using Digital Feedback Control 395
(Mark H. Costin and Donald R. Elzinga; reprinted from IEEE Control Systems Magazine,
Aug. 1989)

Specialized Applications

Implementation of a Tracking Kalman Filter on a Digital Signal Processor 399
(Jimfron Tan and Nicholas Kyriakopoulos; reprinted from IEEE Transactions on
Industrial Electronics, Vol. 35, No. I, Feb. 1988)

A Stand-Alone Digital Protective Relay for Power Transformers. .. 409
(Ivi Hermanto, y'V.V.S. Murty, and M.A. Rahman; reprinted from IEEE Transactions on
Power Delivery, Vol. 6, No. I, Jan. 1991)

vii

A Real-Time Digital Simulation of Synchronous Machines: Stability Considerations and
Implementation 421
(Jonathan Pratt and Sheldon Gruber; reprinted from IEEE Transactions on Industrial
Electronics, Vol. IE-34, No.4, Nov. 1987)

Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based
Learning Controller ... 433
(W. Thomas Miller, m, Robert P. Hewes, Filson H. Glanz, and L. Gordon Kraft, III;
reprinted from IEEE Transactions on Robotics and Automation, Vol. 6, No. I, Feb. 1990)

BIBLIOGRAPHY

TMS320 Bibliography ... 445

Automotive 445

Control :............................. 445

Industrial ... '. . .. 447

viii

Preface

Using digital methods for controlling motors, robotic arms, or disk drives is not new. But technical ad­
vances in digital signal processing and high-performance digital signal processors (DSPs) such as the
TMS320 family are rapidly moving digital control from the laboratory to the market place. Personal
computers, automated manufacturing equipment, automobiles, military weapons, toys, and games are
examples of products that are enhanced by the application of digital control technology.

This book introduces the reader to the concepts of signal processing and DSPs as they apply to digital
control theory. It also presents a collection of published articles that review selected applications within
the broad spectrum of digital control. The book is divided into four parts and a bibliography:

PART I Introduction to Digital Controllers

PART II Design of Digital Controllers

PART III Implementation of Digital Controllers

PART IV Applications of Digital Controllers with the TMS320

BIBLIOGRAPHY

Each part is introduced by the editor so that readers can gain insight into its purpose. The bibliography
is furnished for those who wish to seek additional studies in the areas of automotive, control, and indus­
trial applications.

Opportunities to design digital control systems have grown enormously over the past few years. This
book is being published to aid practicing control engineers in becoming familiar and comfortable with
digital control theory. It can also be a valuable tool for teaching at the undergraduate and graduate lev­
els. The book brings together the latest concepts and applications in digital control theory to meet the
needs of both new and experienced designers.

The editor, authors, and I hope that you enjoy this application book and gain valuable information to
assist you in designing new digital control systems as well as modifying current systems.

Gene A. Frantz
Applications Manager

Digital Signal Processing
Texas Instruments Incorporated

ix

x

PART I

Introduction to Digital Controllers
it -q 00 mE u t: id T !'!~H '!!;!!U!MfJ'awm _MRl I L Uf 1 ii f! M mmmlMl § fl.I:§II!IIHI~
;;:: : :;;;: ::;;::: : :::;:;;;;:;::::;:: ::: ::;: ::: ,;: ::: ;;:; ;; ;:;;;;::;:~;:~ ... ,_ "., .. :. ;; : :; :: :~: ;:: :~::;;:: "... ..L .. : :,:; ,:,::;:; : ,,;: ;;; :::; :;::::;:::::: ;::; :::::;: :: ;~

DSP-Based Control Systems .. 3

Digital Signal Processors Simplifying High-Performance Control 13
(Irfan Ahmed and Steven Lindquist)

Taking Control with DSPs .. 19
(Irfan Ahmed and Tom Bucella)

Using Digital Signal Processors for Control .. 27
(Herbert Hanselmann)

DSP-Based Control Systems

Digital signal processors (DSPs) are making digital control more practical. The special architecture and
high perfonnance of DSPs make it possible to implement a wide variety of digital control algorithms pre­
viously reserved for research work and simulation studies in laboratories. This general introduction dis­
cusses these aspects and uses of DSPs in digital control systems. It is followed by papers that discuss the
suitability of DSPs for implementing digital controllers.

Control Systems

A control system commands or regulates a process in order to achieve a desired output from the process.
As shown in Figure I, a simple control system consists of three main components: sensors, actuators, and
a controller. Sensors measure the behavior of the system or the process and provide feedback to the control­
ler. Some of the sensors used in control systems are resolvers, shaft encoders, and current sensors. Actuators
supply the driving and corrective forces to achieve a desired output. Typical actuators are AC/DC motors
and valves.

The controller generates actuator commands in response to the commands received from the operator and
to the feedback provided by the sensors. The controller consists of computation elements that process these
signals to achieve a desired response from the entire system. The function of the controller is to ensure that
the actuator responds to the commands as quickly as possible and at the same time to ensure that the system
remains stable under all operating conditions. Typically, a controller will modify the frequency response
of the system. The computational elements of the controller are implemented with either analog or digital
components.

Figure 1. Control System

Controller Actuator

-Nt- -I-

~ Reference

~
Output

Command

Sensor I

V
I
I ___ .J

'---
Encoder

Analog Control Systems: Control systems have traditionally been implemented with analog compo­
nents like operational amplifiers, resistors, and capacitors. Figure 2 shows a simple analog controller. These
elements are used to implement filter-like structures that modify the frequency response of the system. AI-

3

4

though more powerful analog processing elements like multipliers are available, they are generally not used
because of their high cost. In spite of the simpler processing elements, analog controllers can be used to
implement high-performance systems.

Most analog systems use single-purpose characteristics of an error signal like P (proportional), I (integral),
D (derivative), or a combination of these characteristics. This limits most analog systems to designs based
on classical control theory.

Figure 2. Analog Controller

RS

Digital Control Systems: With the high performance and increasing reliability of microprocessors, dig­
ital controllers are taking over many applications from analog controllers. In the digital control system
shown in Figure 3, a DSP (TMS32OCI4) processes the feedback/error signal [y(n)] in relation to the input!
reference signal [r(n)]. A digital-to-analog converter (D/ A) changes the digital output of the processor into
an analog signal to drive the power amplifier (PA) and actuator. The D/ A is typically represented by a ZOH
(zero order hold). Similarly, on the input side, an analog-to-digital converter (AID) interfaces the sensor's
signal to the DSP. In addition, memory is required to store the commands necessary for the operation of
the system; the TMS320C 14 uses its on-chip memory for that purpose.

Figure 3. Digital Control System

Analog Versus Digital Controllers: Several tradeoffs have to be made in selecting a controller. Ana­
log controllers continuously process a signal and can be used for very high bandwidth systems. They also
give very high resolution of a measured signal and thus provide precise control. Analog controllers have

been around for a long time, are well understood. and are easy to design. They can be implemented with
relatively inexpensive components.

On the negative side. analog controllers suffer from component aging and temperature drift. Even a perfect­
ly designed controller will exhibit undesired characteristics after a while. Analog controllers are hard-wired
solutions. making modifications or upgrades in the design difficult. Analog controllers are also limited to
simpler algorithms from classical control theory. like PID and compensation techniques.

Most processes are analog in nature. Digital systems can only attempt to approximate them. The accuracy
of this approximation determines the performance of the digital system. Digital controllers sample the sig­
nal at discrete time intervals. This limits the bandwidth that can be handled by the controller. The accuracy
of the signal and coefficients that can be represented is limited by the resolution or the word length of the
processor. Digital controllers require additional components like AIDs and D/As. although newer proces­
sors include these components on the same chip. Digital controllers are relatively new. and their behavior
is not thoroughly understood. Thus. designing high-performance digital controllers can be challenging.

However, digital controllers have some major advantages. They are not affected by component aging or
temperature drift. and they provide stable performance. Designing in the z-domain helps to control their
behavior more precisely. Digital controllers can be used to implement more sophisticated techniques from
modem control theory, such as state controllers. optimal control, and adaptive control. They can also handle
nonlinear systems. Digital controllers are programmable and make it easy to upgrade and maintain design
investment. They can be time-shared to implement additional functions like notch filters and system control
to reduce system cost. If digital controllers are designed properly. their advantages greatly outweigh their
disadvantages. Table I compares analog and digital controllers.

Table 1. Analog Versus Digital Controllers

Advantages

Disadvantages

i-ligh bandwidth
High resolution
Ease of design

Component aging
Temperature drift
Hard-wired design
Good dnly for Simpler design

Processor Requirements for Digital Controllers

Programmable solution
Insensitive to environment
Shows ptecise behavior
Implements advanced algorithms
Capable of additional functions

Creates numerical problems
Must use high-performance processor
Difficult to design

The choice of processor is critical in determining the performance and behavior of the digital controller.
The poor performance of a digital system can generally be traced to selection of the wrong type of processor.
Available choices" are microcontrollers, geneml-purpose microprocessors, and DSPs. In addition, reduced
instruction set computer (RISC) processors and bit-slice processors can be used. although their usage is not
practical in most cases because of high cost. The following factors must be considered when selecting a
processor:

• Architecture
• Performance
• Peripheral Integration

5

6

Architecture:, Processor architecture is probably the most important factor. A control system is a de­
manding, realtime signal processing system. Control theory essentially deals with proper techniques for
processing control signals. Processing signals in realtime raises numerical issues that must be resolved
correctly, to ensure that performance from a digital controller is acceptable. Some of the problems resulting
from inadequate processor architectures are quantization noise, truncation noise, limit cycles, and over­
flow-handling.

Quantization noise results from representing a signal in discrete or quantized inagnitude levels. The signals
and gain coefficients must be represented accurately without any loss of resolution for the smallest and
largest magnitudes. A processor should support a large word length and scaling shifters to provide the
resolution and dynamic range needed. This aIlows the signals and coefficients to be scaled to the full resolu­
tion of the processor. In some cases, floating-point support may be necessary if gain coefficients and signals
are time-varying variables and have large dynamic ranges.

Truncation noise results from the processing ofsignals in realtime. Either a higher resolution orlarger word
length is needed for interim results. For example, the result of a 16 x 16 multiplication is 32 bits. If only
a 16-bit storage capacity is available to the 32-bit resultant, the loss of the lower 16 bits is known as trunca­
tion error. A processor should be able to support a larger intermediate word length for interim results.

Limit cycles usually result from quantization and truncation errors. Insufficient resolution of the output
causes the outputto oscillate around the actual value without being able to reach it. Minimization of quanti- '
zation and truncation errors reduces limit cycles.

Realtime processing requires a large number of mathematical operations. Sometimes the results will exceed
the range handled by registers. When registers overflow, they may make a positive number tum negative.
A processor should be able to handle this overflow situation without significant change in the value of the
result.

Performan~: Performance is another important criterion in selecting a processor for a digital controller.
Sampling the signal at discrete time intervals requires certain performance requirements from the proces­
sor. The sampling rate should be at least 10 to 20 times the system bandwidth. The processor must finish
processing the signal before the arrival of the next sample, or information will be lost. The processing re­
quirement is also dependent upon the controller structure and the algorithm.

Another aspect of performance is the computational delay. The processor should finish processing the sig­
nal as soon as possible. Too much delay in calculation will add phase delay and will affect the phase margin
and stability of the system. The processor should have fast instruction cycle time. It should also have a very
fast mUltiplying time because multiplication is the basic element in discrete representation of all signal pro­
cessing control algorithms.

Peripheral Integration: The final consideration is the amount of peripheral integration on the system.
Peripheral integration is important from a system cost, ease of design/interface, and board space point of
view. Typical peripherals are on-chip timers for sample rate selection, 0/ A or PWM (pulse-width modula­
tion) circuitries to drive the actuators. either an AID converter or an interface to optical encoders, or other
sensors. In addition, bit I/O pins are required to look at system flags and other conditions.

Digital controllers have not been widely used, because most processors lack appropriate architectures for
signal processing. Microcontrollers have been designed primarily to replace hard-wired logic, to handle data
acquisition, and to implement logical decisions. On the other hand, microprocessors have been designed
primarily to act as computing elements in computer systemS. Thus, both types of architecture have failed
to meet the requirements of signal processing; nevertheless, they have been used for it. Only DSP architec­
tures can solve the fundamental problems encountered in control and other signal processing applications.

DSP Architectures

The TMS320 DSP architecture has been optimized for signal processing systems. Figure 4 shows the
typical architecture of a basic DSP. Some of the key elements are multiple buses, l6-bit architecture, 32-bit
registers, and hard-wired implementation of various functions. It minimizes numerical problems in signal
processing and meets the bandwidth requirements of high-perfonnance systems using sophisticated
techniques. The features and benefits ofTMS320 architecture are shown in Table 2.

Figure 4. DSP Architecture

X2ICLKIN

A11-AOI
PA2-PAO

Legend:
ACC = Accumulator
ARP = Auxiliary Register Pointer
ARO - Auxiliary Register 0
AR1 • Auxiliary Register 1
DP = Data Page Pointer
PC = Program Counter
P = P Register
T = T Register

OataRAM
(144/256
Words)

Oata

16

Instruction

Program
ROM/EPROM

(4KWords)

015-00

16

16

16

7

8

Table 2. TMS320 Architectural Features

Feature Benefit

Single-cycle Instructions Execute advanced control algorithms In realtime

Pipelined architecture Controls high~bandwidth systems

Harvard architecture Simultaneously accesses data and Instructioris

Hardware multiplier Minimizes computational delays

Hardware shifters Have larger dynamic range

16-bit word length Minimizes quantization errors

32-bit registers Minimizes truncation errors

Hardware stack Supports fast interrupt processing

Saturation moqe Prevents wrap-around of accumulator

To minimize numerical problems, the fixed-point TMS320 architecture has a 16-bit word length with 32-bit
accumulator and other registers. The TMS320 DSPs include hardware shifters, which allow scaling, pre­
vent overflows, and keep the required precision. These shifters allow shifting to take place simultaneously
with other operations and without additional execution time.

Also, the instruction set has been optimized for signal processing. The DMOV instruction implemet)ts the
Z-1 operator. The MACD instruction implements four operations simultaneously: multiplies two values,
moves data, accumulates previous result, and loads T register. To handle overflow during arithmetic opera­
tions, an overflow mode is included. This allows the accumulator to saturate at most positive or least nega­
tive values (similar to analog circuits), instead of rolling over and varying between positive and negative
values.

Several features ofDSP architecture provide the perfonnance necessary to implement digital controllers.
All functions are perfonned internally in hard-wired logic so that it takes a single cycle to execute most
functions. Processors not optimized for signal processing usualIy perfonn functions in microcode and
require numerous cycles to do so. The TMS320 devices employ an internal multiple-bus architecture that
alIows simultaneous fetching of instructions and data operands.

The TMS320 DSPs contain a hardware multiplier that perl'onns a 16 x 16 multiplication in a single cycle.
This minimizes the computation delay time and alIows very fast sampling rates to be implemented for
high bandwidth systems. An on-chip hardware stack reduces interrupt response time and minimizes stack
pointer manipulations. Table 3 compares the architectural features of a DSP and a microprocessor/micro­
controller (J.tP/~C).

Table 3. DSP Versus Microprocessor/Microcontroller

Advantages

Disadvantages

Signal processing architecture
High performance
Advanced control techniques
Additional functions

Limited peripherals

On-chip peripherals
Supervisory functions
Familiar architecture

Low performance
Computation delay
Numerical problems

Table 4. Feature Comparison

FEATURE 320C14 320C25 8OC196 68000 68020 UNIT

Instruction cycle time 160 100 333 400 120 ns

Frequency 25 40 12 10 24 MHz

Multiply (16 x 16) -+ 32 0.16 0.1 2.2 7.0 1.0 ns

PIDloop 2.2 1.3 27.0 25.0 4.8 lis

Matrix multiply (3 x 3) (3 x 1) 4.3 2.7 24.3 65.2 9.5 lis

Many on-chip DSP features enhance system integration; peripherals include RAM, ROMJEPROM, serial
ports, timers, PWM, encoder interface, and parallel I/O. Table 4 compares performance characteristics of
the TMS320C14, TMS320C25, and several f.lCs and f.lPs.

TMS320 Digital Signal Processors

The TMS320 family consists of five generations of fixed-point devices and floating-point devices (see
Figure 5), offering different performance ranges. Members of each generation are object code and, in some
cases, pin compatible.

P
E
R
F
o
R
M
A
N
C
E

Figure 5. TMS320 Family Roadmap

TMS320C10
TMS320C10·141·25
TMS320C14
TMS320E14
TMS320C15
TMS320E15
TMS32OC16
TMS320C17
TMS320E17

Ll Fixed-Point Generation

fI Floating-Point Generation

GENERATION

9

10

TMS320 Fixed·Point DSPs: There are three generations ofTMS320 fixed-point DSPs: TMS320C I x,
TMS320C2x, and TMS32OC5x. All fixed-point DSPs have a 16-bit architecture with 32-bit ALU and accu­
mulator. They are based upon a Harvard architecture with separate buses for program and data, allowing
instructions and operands to be fetched simultaneously. They also feature a 16 x 16 == 32 hardware multiplier
for single-cycle multiply operations, and a hardware stack for fast context-save operations. An overflow
saturation mode prevents wrap-around. All instructions (except branches) are executed in a single cycle.
Perfonnance ranges from 5 MIPS (million of instructions per second) to 28.5 MIPS.

The TMS320Clx generation is based on the first DSP, the TMS3201O, introduced in 1982. It includes
144/256 words of on-chip RAM and 4K words of address space. Instruction cycle time is 160 ns. Members
of this generation include the TMS320CIO, TMS32OC14 and its EPROM version TMS320EI4,
TMS32OCI5/E 15, and TMS320C 17/ E 17. All these devices have expanded memory of 256 words of on­
chip RAM and 4K words of on-chip ROM/EPROM. The TMS320C 14/E 14 has been optimized for digital
control applications. An additional member, TMS320C 16, has an expanded memory address space of 64K
words. Low-power versions are also available for 3-V systems.

The TMS320C2x generation is based on the TMS320C25, featuring 544 words of on-chip RAM and 4K
words of on-chip ROM. Total address space is expanded to 64K words for both data and program. The in­
struction set has been considerably enhanced overthe TMS320CI x instruction set, reducing the instruction
cycle time to 100/80 ns. Other members include the TMS320E25 (an EPROM version ofTMS32OC25),
TMS32020, and TMS320C26.

The TMS320C5x generation includes the TMS32OC50 with 10K words of on-chip RAM and 2K words
of on-chip ROM and the TMS320C51 with 2K words of on-chip RAM and 8K words of on-chip ROM.
With an instruction set even more enhanced than the TMS320C2x instruction set, a TMS320C5x device
is designed to execute an instruction in 35 ns. New features include a separate PLU, shadow registers for
fast context save, ITAG serial scan emulation, and software wait states.

TMS320 Floating.Point DSPs: There are two generations of TMS320 floating-point DSPs:
TMS320C3x and TMS320C4x (the first DSP designed for parallel processing). All floating-point devices
have a 32-bit architecture with 4O-bit extended precision.registers and are based on a Von Neuman archi­
tecture. Multiple buses have been added for even faster throughput than the traditional Harvard architec­
ture (program and data memory in separate spaces). Features include a hardware floating_point mUltiplier
and a floating-point ALU.

The TMS320C3x generation is based on the TMS32OC30, featuring 2K x 32 words of on-chip RAM, 4K

x 32 words of on-chip ROM, and a 64-word instruction cache. Other features include a separate DMA, two
serial ports, two timers, two external 32-bit data buses, and a 16 M-word address space. Instruction cycle
time is 60 ns, and the device is capable !Jf perfonning up to 33 MFLOPS (million floating-point operations
per second). Another member of the TMS32OC3x generation is the TMS320C31.

The TMS320C4x generation includes the TMS32OC40, a parallel digital signal processer. It includes six
communication ports, a self-programmable/six-channel DMA coprocessor, a developing/debugging anal­
ysis module, two independent 32-bit memory interfaces, a 16G-byte addressing space, and two timers. Oth­
er features include two 4K-byte RAM blocks, one 16K-byte ROM block, and a 512-byte instruction cache.
This generation is designed to execute an instruction in 40 ns, perfonn up to 275 MOPS (million operations
per second), and provide a 320-Mbyte/sec throughput.

TMS320C14 - An Optimal Solution
The TMS320C14 is the first device that provides an optimal solution for implementing digital controllers
on a single chip. Its TMS320C 15 CPU meets the architectural and processing requirements for controllers,
and it incorporates all the I/O peripherals needed in controllers and typically found in l6-bit microcontrol-

Figure 6. TMS320C14/E14 Key Features

32-BitALU

32-BitACC

16 x 16-Bit
Multiplier

Memory

0-, 1-, 4-Bit Shifter 32-Bit P-Reg

2 Auxiliary Registers

4-Level HIW Stack

• 160-ns instruction cycle
• 100% object code compatible with TMS320C15
• 416-bittimers

- 2 general-purpose timers
- 1 watchdog timer
- 1 baud-rate generator

• 16 individual bit-selectable VO pins
• Serial port - UART
• Event manager with 6-channel PWM D/A capability
• CMOS technology
• 68-pin PLCC and CLCC packages

lers. These peripherals include 16 pins of bit I/O, four timers, six channels of PWM, four capture inputs
for optical encoder interface, a serial port with UART mode, and 15 interrupts. Figure 6 shows the key fea­
tures of the TMS320C14.

The TMS320Cl4 can address 4K words of on-chip ROM or EPROM or off-chip memory, and 256 words
of on-chip RAM. It has an on-chip hardware multiplier that performs a 16 x 16 = 32 multiplication in 160
ns. The TMS320C14 has a 32-bit ALU and 32-bit accumulator. It contains two hardware shifters and a
four-deep on-chip hardware stack. Two auxiliary registers provide indirect and autoincrement addressing
modes. The TMS32OC14 has a general-purpose and DSP-specific instruction set and is 100% object code
compatible with the TMS320C 15 and other members of the TMS320C I x generation. The TMS320C 14 has
16 pins of bit I/O that can be individually selected as inputs or outputs. In addition, each bit can be individu­
ally controlled without affecting the others. The 16-bit I/O port has the capability to detect and match
patterns on the input pins and generate an interrupt when a specific pattern is detected.

11

12

The TMS320C 14 contains four 16-bit timers. Two of the timers can be used as event counters with internal
or external clocks. A third timer can be used as a watchdog timer and can also give a pulse output to drive
external circuitry to indicate a time-out. The fourth timer can be used as a baud-rate generator for the serial
port. Each timer is associated with a 16-bit period register and can also generate a separate maskable inter­
rupt to the CPU.

The TMS320C14 has an event manager that consists of a compare subsystem and a capture subsystem. The
compare subsystem has six compare registers that are constantly comparing their outputs with one of the
timers. Associated with each compare register is an action register that controls all of the six output pins
and two interrupt pins. The action registers determine an action that takes place on output pins in case of
a match between the timer and a compare register. The compare subsystem can also be configured to gen­
erate six channels of high-precision PWM using a high-speed timer mode. In this mode, the compare sub­
system can generate a PWM output that can be varied from 8 bits of resolution at 100kHz to 14 bits of
resolution at 1.6 kHz.

The event manager also contains four capture inputs that capture the value of a timer in a four-deep FIFO
when a certain transition is detected on a capture input pin. Each capture input can detect pulses as narrow
as 160 ns and can also generate a maskable interrupt to the CPU.

The TMS320C 14 serial port is capable of full-duplex asynchronous operation with a transmission/recep­
tion rate of up to 400K bps. The serial port has a separate dedicated timer for generation of baud rates. The
serial port also supports two industry standard protocols for interprocessor communication.

Finally, the TMS32OC14 has a total of 15 internal/external interrupts, which can be individually masked.
All the interrupts trigger a master interrupt that is controlled by the INTM bit in the status register.

Summary
The TMS320 family ofDSPs solves many of the fundamental problems of signal processing in digital servo
control systems. With their processing power, it is now possible to implement advanced concepts from
modern control theory in cost-effective control systems. DSPs provide the precision and bandwidth of ana­
log systems and at the same time provide the reliability of digital systems. Newer DSPs like the
TMS32OC14 provide a single-chip solution for the majority of servo control applications.

References

1. Texas Instruments, TMS320Clx User's Guide, 1989.
2. Texas Instruments, TMS320C141E14 User's Guide, 1988.
3. Texas Instruments, TMS320C2x User's Guide, 1990.
4. Texas Instruments, TMS320C3x User's Guide, 1990.
5. Texas Instruments, TMS320C4x User's Guide, 1991.
6. Texas Instruments, TMS320C5x User's Guide, 1990.
7. Texas Instruments, Digital Signal Processing Applications with the TMS320 Family, 1986.
8. Texas Instruments, Digital Signal Processing Applications with the TMS320 Family, Vol. 2,1990.
9. Texas Instruments, Digital Signal Processing Applications with the TMS320 Family, Vol. 3, 1990.

APPLIED TECHNOLOGY

DIGITAL SIGNAL
PROCESSORS
Simplifying
high-performanc

Registers 16

control

Modern control
algorithms often
demand real-time

• Address

speed that ordinary
microcontrollers Data_

cannot provide. .-------,-I."..,+-...t.,..,-...,.....,..,....,..,.,.,.~=~~~~~~

Digital signal
processors are
optimized to handle
such tasks.

IRFANAHMED
STEVEN LINDQUIST
Texas Instruments Inc.
Houston, TX

Electronic control systems of
few years ago were frequently
designed around a general­

purpose microprocessor or micro­
controller. But though con­
ventional micros are versatile, they
sometimes fall short when applied
to high-speed tasks in telecommu­
nications and computers, and in
electromechanical tasks such as au­
tomotive engine control. .

The problem is that advanced
control algorithms, as used in digi­
tal filtering and discrete Fourier
transforms, demand numerous
multiplications and additions.
When done in software on an ordi-

Data RAM

Shifters

Many digital signal processors are built with a Harvard architecture, where
data and instructions occupy separate memories and travel over separate
buses to speed program execution. The two buses are,evident in this
simplified block diagram of a TMS320C25, a second generation CMOS
processor. Other features of note on the 68-pin chip include eight auxiliary
registers and a hardware multiplier specially designed to handle complex
arithmetic.

Reprinted, with permission. from Machine Desi.r:1? Sept. 10, 1987. 13

14

Analog blQCk diagram

.~
Input

Analog
controller

~ Controlled
device (plant)

I

t y(t}

Loop delay yet}
(s·') Sensor

Digital block diagram

output

~
Digital I u(n} .. D/a u(t} Controlled

- :!: controller converter device (plant) Input

I

~ y(t)

Loop delay
1 .. Y(n} A/d y(t} - (z·') converter

Sensor

When reduced to a block diagram, traditional analog control
systems resemble the digital counterpart. But analog controller qualities
are determined by circuit elements, while those of digital counterparts
are programmed In a few lines of code.

. "'DEAD8EAT·CONTROLLER
Soine adVantage.; c:i a DSP· beCome clear when imp1e­
lDi!Iliing fUbctions that are difficult Of impossible to rialize
iii . analog .controllers. A deadbeat controller serves .as an
example,

In prinCipie, analog controllers require lin infinite time to .
settle toa reference input signal. In practice, they usually
approach ·the l'ilference quickly enough for most purpoSes.
Bu.t when extremely fast settling is needed, digital deadbeat

nary processor, these operations
can consume too much time to pro­
vide high-speed control.

Most new classes of control algo­
rithms, along with other algorithms
such as state modeling, state esti­
mation, Kalman filtering, and opti­
mal control can be implemented
with analog circuitry. In practice,
however, it is difficult to design
analog hardware that offers the pre­
cise and often nonlinear behavior
required in such approaches. In ad­
dition, it is often expensive to build
in the needed stability and temper­
ature range.

The modification of a control al­
gorithm implemented in hardware
can also be complicated. Changes
may sometimes be made simply by
substituting a simple component,
but can also involve redesigning
part of the control system.

An approach to solving the speed
requirements associated with mod­
ern control algorithms is to use a
special kind of processor chip. Digi­
tal signal processors (DSPs) are
constructed to speedily perform the

controller. may be preferred. .. CO~:~~~::::::!::;;r!: As a review, deadbeat controllers are those that settle toa •
steady state iii as few samples as pOSIlible. Ifn is the order if
tl\e controller, deadbeat controllers reach steady state in:
n + tsamples. Tbey are constructed byselectmg the proper
elements for the feedback loop. Control theory says that this

MACHINE DESIGN/SEPTEMBER 10.1987

kinds of arithmetic operations
associated with digital filtering and
processing. Most DSPs are built
with what is called a Harvard ar­
chitecture. This configuration is
unlike conventional computer ar­
chitectures in that it employs sepa-

rate data and instruction memories
that are accessed by separate buses.
The benefit of this arrangement is
increased speed because in­
structions and data can move in
parallel instead of sequentially.

carry high-speed hardware multi­
pliers and fast on-chip memories
that eliminate delays associated
with shuttling information on and
off chip to peripheral devices. This
promotes fast program execution.

In addition, these les generally For example, a DSP can fetch an

APPLYING DSPs IN SIMPLE CONTROL
A PID loop provides a simple example of how DSPs can be
applied to common control problems. A basic analog PID
(proportional-integral-differential) control algorithm is
frequently defined by

u(t) = Kpe(t) + Kf e (t)dt + Kdde/dt

where e = some input voltage that varies over time. U =
output voltage and Kp , K" and K~ are constants. This
equation indicates that output voltage is proportional to the
sum of an input error voltage, the time integral of the error
voltage, and the time rate of change of the error voltage.

For the sake of review, PID control functions as follows.
The integral term is added to the basic proportional term to
reduce the steady-state error to zero. It makes possible a
nonzero control output even when, the error signal (control­
ler input) is zero. In this manner, it serves to anticipate
increasing error and apply a correction faster than would
normally be the case.

The derivative term is added to improve the stability of
the feedback loop. It allows the system to provide more
correction for a faster rate of change of error. The propor­
tional K constants are usually chosen using standard 8-

plane techniques such as root-locus diagrams, Routh-Hur­
witz criterion, Bode plots, and state variable techniques.

A typical approach to implementing a digital control
algorithm is to, write the analog transfer function in the
usual way using Laplace transforms, and then convert the
equation into a sampled data version through use of z trans­
forms. Next, the digital transfer function is converted to a
difference equation in the time domain. A program is then
written for a DSP that implements this time domain differ-
ence equation. .

The two most widely used analog/digital transformation
methods are the lI!atched pole-zero (also called matched
z -transform) and the bilinear transformation. Though the
former method is simpler, it is somewhat heuristic and does
not always produce a suitable controller. The bilinear trans­
formation is more complex but mimics analog functions
more closely. This is because it uses the trapezoidal rule
instead m rectangular areas to solve the differential equa­
tion specifying the transfer characteristic.

Tbe bilinear transformation converts expressions in LaP.­
lace transforms into corresponding equations in z using the
identity .

,
2(0-1)

s= T(.+l)

where T= sample period.
Under the bilinear transformation, parallel or cascaded

control elements retain their respective structures. Overall
frequency response is treated less faithfully, however. Low
frequencies map accurately, but high frequencies do not.

Fo~ that reason, a frequencYprewarping scheme is usually
employed with this technique. Here a single critical fre­
quency ismatcbed in 'the ana10g and digital domains by
replacing each 8 in the analog tr~er functi6lf'With (01./ .

Wp)s, where w. is the frequency (in rad/s) to be matched in
the digital transfer functions and

"p - (21T) tan (... T /2)

To summariie, the design of any digital control function
usually begins with the specification of a few critical fre­
quencies (ws) and magnitude requirements (K s). These are
prewarped into a set of analog specifications by plugging
each w into the prewarping formula. The resulting fre­
quencies are then used in deriving the Laplace transform
version of the transfer function. This function ins is derived
in the usual way, and then is converted to a digital transfer
function in z, generally by means of tbe bilinear trans­
formation. Finally, an inverse z transformation applied to
this expression yields a difference equation that is expressed
in terms of sample times. This equation can then be coded
into a DSP.

The procedure can be readily applied to the equations

defining a PID looIi. The exact sequence m operations is too
lengthy to be given here, but the resulting difference equa­
tionis

u(n) = u(n-2) + K,e(n) + K.e(n-1) +K,.(n-2),

K, - K;, + 2Kd/T + K,T/2
K. = K,T - 4Kp/T
K. = 2Kd IT-Kp + K,T/2

Here e (n lis the nth fnputsample of the controller, the nth
sample of the error voltage; It (n) is the nth output sample m
thecontro\ler, u(n-l) is the n·t sample,and so forth.

Because this equation represents quantities in terms m
sample number rather than as functions m time, it can be
easily implemented in IKitwarefor a DSP.· The accom­
panying l3-instruction program for the 32011) processor
executes the above PID difference equation in about 2.6 lIS
when the processor runs at 20 MHz. In contrast, a similar
program running on a general purpose processor such as a
lO-MHz 68000 would<lODSUme 25.4 lIS. or 26.1 /18 on a
l2-MHz 8096 processor.

MACHINE DESIGN/SEPTEMBER 10. 1987 15

x(n) 0 ~ • ~ o y(n)

All poles H(z) AII;zeros

Equivalent block diagram

bo

x(n) 0 •• ® 0 y(n)
-e,

I Dalay I I Delay I b,

® ®
-e. ~ ~ ".

® @

~ "'--eN

~ ®
®

Form II realization
bo

x(n) 0 -e, 0 0 y(n)

~p(n-1) b,
@ @
-a. ~p(n-2) ".
@ @

-aN "'-I Delay lp(n_M)

@ ®
-eN

I Delay I
® PinoN)

Shorthand form II diagram

bo
x(n) 0 0 0 0 o y(n)

e, z·' b,
0 0 0

e. z·' ".
0 0 0

0 0 0
aN

16 MACHINE DESIGN/SEPTEMBER 10,1987

instruction while loading two num­
bers into its multiplier. An ordinary
processor such as a 68000 might
chew up as many as 80 clock cycles
to multiply two numbers and add
the result to an existing sum. A DSP
chip such as Tl's TMS320C25 can
do the same operation in a single
clock cycle covering about 100 ns.

DSPs take the form of single-chip
ICs, specialized board-level com­
puters, and bit-slice chips opti­
mized for signal processing oper­
ations. Of these, single-chip ver­
sions are the most widely used be­
cause their low cost makes digital
signal processing practical in a va­
riety of applications, ranging from
consumer electronics to automotive
engine control.

Simple approach
DSP architecture arises from the

calculation sequence used to syn­
thesize digital filters and discrete
Fourier transforms. These two
functions form the basis for much of
the digital signal processing now
used in industry. The calculation
sequence, in general terms, is one of
a linear constant coefficient differ­
ence equation:

N
y(n)--I: a>JI(n-k)

k=l

M
+ I: b.X(n - k)

k-O

This equation basically says that
any output y can be expressed as a
weighted sum of the input x at the
present time n, past inputs x(n - k)
for some number of past samples k,
and past outputs y(n - k). Terms a.
and b. are the weighting factors. A
computer optimized to quickly
synthesize this equation must be
able to store an input, multiply it by
a weighting factor, and sum it with
previous inputs.

DSP architecture provides these
functions by incorporating a large
degree of parallelism, carrying out
multiple operations per machine
cycle. The ability to perform paral­
lel fetches from two registers and
store the contents in two memory
locations is an example. In addition,
the memory on chip is extremely
fast and constructed in ways de­
signed to facilitate data transfers.
For example, the Harvard architec­
ture on the TMS320 DSP family

Trapezoidal rule Rectangular
approximation

The bilinear transformation maps analog transfer functions into the
digital domain through the representation of error signals as a series of
trapezoids. The simpler matched pole-zero transformation is less
precise because it employs a more crude rectangular approximation.

Compared to first generation DSPs such as the EPROM-version 320E15,
second generation devices sport higher speed and more on-chip features.
The cmos 320C25, for example, provides a 100 ns cycle time and 544
bytes of on-chip RAM.

contains provisions for transferring
information between data and in­
struction memories.

Because DSPs typically do not
need to store large programs or
blocks of data, they usually lack the
extensive memory-management
circuitry found in general-purpose
microprocessors. Nevertheless,
DSPs have become very powerful.
The first such chips had only
limited instruction sets and mem­
ory, and were limited to fixed-point
(integer) calculations.

In contrast, DSP chips today are
second and third-generation de­
vices that eliminate such problems.
They typically use clock rates of 20
MHz, and 40 MHz clocks are not
unheard of. Newer DSPs also pro­
vide on-board functions such as

serial ports, analog/digital and dig­
ital/analog converters, EPROM,
bit I/O timers, and similar func­
tions that enhance capability.

The cost of single-chip DSPs is
on the order of a few dollars, com­
parable to that of conventional mi­
croprocessors used in control ap­
plications. Recently developed
DSPs tend to provide sophisticated
functions that enable them to op­
erate with video and radar-fre­
quency signals. Examples of such
functions can be found in the
TMS320C30, a third-generation
chip. The device provides floating­
point math capability, facilities for
handling off-chip memory as well as
on-chip RAM and ROM, a more
extensive instruction set, and clock
cycle times of about 60 ns. _

MACHINE DESIGN/SEPTEMBER 10. 1987 17

Taking
Control
with
asps
New DSP micro­
controllers offer many
improvements over
current analog and
digital control systems.

TOM BUCELLA
Tekniclnc.
Rochester, NY

IRFANAHMED
Texas Instruments
Houston, TX

In many control systems, digital
signal processors (DSPS) are rele­
gated to computational chores that
bog down conventional processors.
But their limited role is expected to
increase because new DSPS can
manage I/O tasks as well.

These revolutionary les are basi­
cally microcontrollers with on-chip
digital signal-processing hardware.
They make possible single-chip
control for real-time multiaxis sys­
tems. In addition, software and
hardware support tools simplify
their use in motion applications.

Analog to digital
Digital signal processors have en­

abled control systems to advance
from analog to full-digital imple­
mentations. Microprocessor-based
systems are only a halfway point.
They are an improvement over
analog controllers, but lack pro­
cessing speed to totally displace

older technology. Dsps, on the
other hand, have powerful arith~
metic logic units (ALVS) capable of
high-speed processing.

Early solid-state controls consis­
ted of hard-wired analog networks
built around operational ampli­
fiers. Analog controls offer two dis­
tinct advantages over digital sys­
tems. First, they provide higher
speed control by processing input
data in real time. They also have,
higher resolution over wider band­
widths because of infinite sampling
rates. However, they have several
drawbacks.

Analog component values vary
with age and temperature, necessi­
tating periodic adjustments to
maintain consistent operation. For
example, high-gain amplifier pa­
ralll.eters such as offset and gain
can drift by as much as 20% in their
lifetime. Such fluctuations can
cause major changes in the fre-

Reprinted, with permission, from Machine Design. Oct. 12, 1989.

quency response of band-pass and
band-reject filters.

Other weaknesses stem from the
construct;ion of analog hardware.
Reliability can be a problem be­
cause analog systems typically
have high part counts. Also, com­
ponent lot tolerances frequently
complicate design and may intro­
duce error. And field upgrades are
nearly impossible, often requiring
redesign and repackaging of the
hard-wired circuits.

In contrast, microprocessor­
based motion systems offer many
improvements over their analog
counterparts. Drift is eliminated
because most functions are per­
formed digitally. Upgrading or
modifying a digital system usually
involves rewriting the software:
hardware does not need to be re­
placed. And single-chip solutions
for simple applications are possible
with microcontrollers that have on-

MACHINE DESIGN/OCTOBER 12, 1989 19

chip hardware for I/o operations.
Even the best microcontrollers,

however, have limitations. In many
applications, they are too slow.
Processor time is largely spent
managing system I/O, leaving little
time for data manipulation. Also,
microcontroller ALUS are not suited
for high-speed processing. Only
simple control algorithms can be
supported. Real-time, adaptive, or
multiaxis control is inefficient and
often impossible because com­
putations overload the processor.

Most' processor-based systems
employ lookup tables to avoid cal­
culations. But interpolation and
round-off errors reduce precision.
Also, lookup tables can consume
vast memory space, often limiting
algorithms only one variable.

'Ib reduce table size, data word
lengths are sometimes shortened.
But this approach may introduce
limit cycling. Cycling occurs when
output commands have fewer sig­
nificant digits than the required
operating point. For example, a set
point of 7.42 cannot be achieved
with two-digit word. In that case,
the output would cycle con­
tinuously between 7.5 and 7.4.

There are several reasons why
standard microcontrollers are slow
and inefficient in complex applica­
tions. One is that they have only a
single bus for both program com­
mands and data. Another reason is
that a conventional ALU multiplies
numbers by repetitive addition.
These hardware limitations slow
the processor and ultimately re­
duce asmpling rates.

Dsp micro controllers, on the
other hand, are geared for high­
speed control applications. A dual­
bus (Harvard) architecture allows
simultaneous processing of pro­
gram instructions and data. The

20 MACHINE DESIGN/OCTOBER 12.1989

ALU features hardware multipliers
that handle multiply/accumulate
operations in a single instruction
cycle. This is particularly im­
portant for motion-control appli­
cations because control algorithms
are dominated by multiply and ac­
'cumulate instructions.

While general-purpose pro­
cessors take from 5 to 20 itS to mul­
tiply two l6-bit numbers, DSPs
need only 60 to 150 ns, about 100
times faster. Such speed im­
provements make possible sam­
pling rates of over 20 kHz. They
also allow controllers to extract
more information from feedback
data during the time between sam­
pling periods. For instance, DSPs
can provide speed control by calcu-

lating velocity from encoder posi­
tion data. Microprocessor-based
systems, on the other hand, are too
slow to estimate velocity and typi­
cally use tachometers for feedback.

Other hardware enhancements
include barrel registers. Barrel reg­
isters allow DSPS to scale numbers
in a single instruction cycle. Scaling
pushes all insignificant zeros to the
right side of the number field by
shifting the data string to the left.
These maneuvers increase pre­
cision by making room for less sig­
nificant bits during calculations.
They also minimize truncation er­
rors. Conventional processors scale
numbers in software, shifting them
one bit at a time. A one-bit word in
a l6-bit field may eat up 15 clock

THE BASICS OF CONVERSION
A basic DSP controller consists of an piing rate that provides distorti<m·free
analog-to-digital (a/d) converter or data is determined b)' Nyquist, sam·
quantizer on the front end to sample piing theory. For an analog signal whose
analog input signals. A high·speed pro- highsst frequency comPonent 1$, f •• the
cessor operates on the data according to miuimllm sampling rate is 2f.. 'lYPi­
a control algorithm in memory. The cally,asamplingfrequencyof6tolO/.is
processor provides digital outputs that ueed. '
may be tapped directly or converted to If sampling ,frequency is. too low, the
an analog format through a digital.to- DSP sees a so.ca1led alias signal at a
analog (dla) converter. frequency substantia1ly different from

DsP systems depend on IlId convert· t,. O!lCe aliasing occurs, it is impciaaible
ers to obtain accurate measurements of to recQverthe original signal: F.iltering
analog signals. Aid converters sample or any other technique ~tIQt bring it
continuous·data ,(analog) signals by back' , "
capturing small sliCes at periodic inter- A~ple methodto prevent aliasing is .
vals. The sampled signal is recon· to increase the samp\illlf raj;e,. ~'a,
structedandtheDSl.>lieesisuccessionof filter thet liniita the aDaiogsignal's
amplitude-modu]ateil,zero.width bandwidth isanOther~ But'aliasing can·
puilles whose envelopel:llllforms to the not be totally prevented bees_of tba
analog signal. ' , filter's nonideal qu8Iitiet and Wgb...fre- ,

A.ccI)m.cy of digitized; information is a ~uency noiseoompoilents.iI1,tba@alog
function of the nllm\1et of data, pmnt$ signal, ,", " . ,
sampled per ~'t'hehigher,this" . ~r~ with, tba llIablput
number, the ~the ,~~OI!:'<:itthe _tapIS llpeJ1:utetil!ie,-theL.nM.'kot,tinie" '
~cted~:Mwm~~;,~:. "~~~Itng.~fake.e,~~~:;:c,

cycles.
Improvements also result from

reduced instruction sets oriented
toward signal processing. For ex c

ample, a single DSP command
called MACD multiplies two num­
bers, adds the product to an accu­
mulator' and shifts the data to an
adjacent register. This sequence of
operations synthesizes a digital fil­
ter pole or zero. Commands such as
MACD simplify software develop­
ment by reducing the. number of
code lines.

Dsps, furthermore, allow con­
trollers to provide functions impos­
sible with analog or microprocessor
systems. For instance, they can
produce sharp-cutoff notch filters
that eliminate narrow-band me-

the analog input. Its maximum value
depends on required accuracy and
analog signal slew rate. Signals with
high slew' rates need shorter aperture
times to maintain accuracy.

After sampli"!!,, the quantizer (aid
converter) chR"!!'es the data to a digital
format. Rounding signal magnitude up
or down to the nearest threshold level
introduces quantization error. Thres­
hold le\l!lls are discrete valueS that digi­
tal strings can assume. Quantizationer­
ror is the difference between. the actual
analog signal and the nearest threshold
value. Maximum quantization error for
a linear ramp signal, for instance, is one­
half the separation hetween adjacent
threshold levels.

As threshold levels move closer to­
gether, resolution increases and the dis­
crepilncy between the analog input and
thequlll1tiz,edolJ,tput decreases. Quan­
tizat;iQQ1!FI'I!l'J(!im -only be reduced. by
~~~~ofdiscretecon-

1ll'~<HeVels. 
:!ley DSPSys-

. . ... d!a;con, 
111.. .. -accepts digital 

~:,p~tutalog outp!J,ts. 

chanical resonances. In motion sys­
tems, mechanical vibrations may 
occur from about 1 to 100 Hz, with 
some as high as 10 kHz. Notch fil-

A digitally 
reconstructed 
signal is a 
succession of 
amplitude­
modulated, 
zero-width 
pulses whose 
envelope 
conforms to the 

ters remove energy that would oth­
erwise excite resonant modes and 
possibly make the system unstable. 

In addition to control functions, 

original analog signal. Analog-to-digital converters record signal amplitude 
at periodic intervals between which all control algorithm computations must 
be completed. 

One type of converter employs elec­
tronic.switches that turn on a voltage or 
current in response to the input. An­
other form converts digital values into 
variable duty-cycle pulses. Such pulse­
width-modulation (PWM) converters 
can directly drive electromechanical 
loads through switching amplifiers. 

An important dla converter property 
is its. linearity. Linearity measures the 
converter's ability to produce the same 
analog output, ch8"!re for equivalent 
digital input changes. Thus, a digital 
transition from 1 to 10 and another 

from 41 to 50 should cause relatively the 
same effects on the output. For in­
stance, both transitions should raise the 
output 18 m V. 

Accuracy, a static comparison of in­
puc and output values, is also important 
in dl a conversion. Another concern, so­
called a· "glitch", is an undesired ex­
cursion of the output voltage when a 
chR"!!'e at the input is registered. Glit­
ches can occur while the input goes from 
one value (switch configuration) to an­
other. It is caused by the indeterminate 
nature of switches hetween states. 

MACHINE DESIGN/OCTOBER 12, 1989 
21 



DSPS also offer other services to the 
system such as diagnostic moni­
toring. Diagnostic monitoring is 
achieved with FFT (Fast Fourier 
Thansform) or spectrum analysis. 
By observing the frequency spec­
trum of mechanical vibrations, fail­
ure modes can be predicted and 
corrected in early stages. 

Perhaps the most powerful DSP 
capability is adaptive control. The 
technique is possible because DSPS 
have the speed to concurrently 
monitor the system and control it. 
A dynamic-control algorithm 
adapts itself in real time to vari­
ations in system behavior. For in­
stance, FFT data can be used to 
tune notch filters to track and elim­
inate vibrational modes as they 
vary with system speed, weight, 
balance, or other parameter. 

DSPs in motion 
Digital signal processors were 

originally designed for audio/video 
applications such as speech coding 
and image recognition. But new ap­
plications in motion control de­
mand hardware and software fea­
tures not included on most com­
mercially available DSPS. 

A new breed of DSP microcon­
trollers, led by the TMS320C14, 
combines both signal-processing 

22 MACHINE DESIGN/OCTOBER 12. 1989 

~,\~:, ''-:!i/;i:~~', :" ", " , Asingvana'" tI~onstempezatwe ,- ~ 
,',i"" ", 

.. ,:-~~, ,=~='"::,~and 

Micro­
jlroeessOr 

Digitial 
signal 
processor 

modifications 
·,fteat,ti!lu"~1II Large component count 
lii6nite~pling:ra.te Limited to single-variable 

control 

~toagilll AAd teniperlltUre 
VlIritlba 

'Software conkol mab. modifications and 
upgradeeesy 

Silllie-ehip solution i. possible 

Limited multiaxis coorclinstion 

Insensitive to aging and temperature 
variations 

Dual-bus (Harvard) architecture boosts 
speed 

Scftware Control siinplifies modifications 
and upgr8de 

High sampling rateS imprOve precision 
Single-chip solution is possible 
HAAdIes multiaxis systems 
Implements complex algorithms such as 
adaptive control 

Provides special filtering impossible with 
other techniques 

Speed limited by single-bus 
architecture 

Lookup tsbles reduce 
precision and speed 

Repetitive-addition 
multiplies reduce speed 

Low sampling rates reduce 
precision 

Requires expert knowledge of 
system 

Currently high costs (will 
d •• line) 

No compiler for TMS32OC14 

and system-management functions 
on a single Ie. The signal-pro­
cessing section samples inputs and 
runs control algorithms, while the 

system manager handles interrupts 
and schedules tasks, I/O, and other 
events that require interpretation, 

For a particular application, 
minimum processing speed is de­
termined by the required sampling 
rate, Sampling rate depends on the 
bandwidth of the system under 
control. According to Nyquist's 
theory, an analog signal must be 



sampled at more than twice the fre­
quency of its highest frequency 
component. In practice, however, 
controllers typically sample at 
rates six to ten times above the 
highest frequency. 

All processing must be com­
pleted between sampling periods. A 
controller with a sampling rate of 
10 kHz, for instance, has 100 I1S to 
sample the input and calculate the 
output. In many cases, multiply 
and accumulate procedures ac­
count for the majority of calcu­
lations. Some algorithms may call 
up to 50 multiplies per sample. 
Thus, high-speed multiply and ac­
cumulate hardware is necessary for 
DSP controllers. 

Such hardware is available in the 
320C14. In one instruction cycle, it 
multiplies two 16-bit numbers and 
stores the result in a 32-bit accu­
mulator. Instruction cycle time for 
the 25-MHz processor is only 160 
ns, for a throughput of 6.4 Mips 
(million instructions per second). 

It is important that the product 
of two 16-bit numbers be stored in 
a 32-bit accumulator. But not all 
16-bit processors have 32-bit accu­
mulators. If only a 16-bit register is 
available, 16 bits are lost with each 
multiply. Truncation of this sort 
reduces precision and may show up 
as random fluctuations or noise in 
the system variables. Attempts to 
control noise often degrade system 
operation. 

Processing capability is also a 
function of internal data format. 
For instance, floating-point pro­
cessors are suited for applications 
with wide dynamic range because 
their data registers contain large 
exponential fields. This type of 
data representation frees designers 
from concerns over signal mag­
nitude. The drawback with float­
ing -point processors, however, is 
their high price. 

Fixed-point processors, on the 
other hand, cost much less. They 
also provide greater accuracy be­
cause their data registers contain 
larger mantissa fields. The trade­
off is a lower dynamic range. Dy­
namic range can be expanded by 
doing floating-point calculations in 
software. But this approach re­
duces speed. For example, the 
320C14 executes 16-bit floating­
point multiplies in 6.5 I1S. 

Overflow protection is another 

DSP BU,LDINO·BLOCKS 
The building blocks rA analog control systems are Qperational amplifiers, while 
in digital signal-processing (DSP) systems they are multipliers. Multipliers are 
key hardware for executing digital filters and Fast Fourier 'llansforms (FFTs) 
in srAtware. Originally, multiplier ICe wereavaileble only in individual pack­
ages. Now, they are integrated into most DSPs chips. 

Digital filters are capable rAhigher speeds and sharper cutoffs than analog 
filters. In addition, they provide better stability with less drift. They also re­
qutre no adjustments and can have nearly an unlimited signal-to-nQise ratio 
(SNR). The SNR of a digital filter is proportional to its anaIog-to-digitai (a/d) 
resolution. 

Digital filters are usually based on a linear constant-coefficient difference 
equation such as 

N M 
yIn) = :l: a.y(n-k) +:!: b.x(n-k) (1) 

.11-0 ,t ... o 

where,x(n) = filter input sequence,y (n) = filteroutputsequence,a. = output 
coefficients, and b. = input coefficient. 

When the input coefficients are all zero, equation 1 reduces to 

M 
y(n) = :!: b.x(n-k) (2) 

'-0 
This is called a finite impulse response (FIR) filter of length M + 1. Such a fil­

ter consists of a tapped delay line with a series of M digitally summed multi­
plies. It has no feedback, making it unconditionally stable. 

Another digital filter type, the infinite impulse response (1m) filter, is de­
fined when at least one a. term is nonzero. An IIR filter has both feedforward 
and feedback terms like some op-amp-based analog filters. It is simpler than 
the FIR in terms of hardware and srAtware. But it is also potentially unstable 
and susceptible to offsets and nonlinear response. 

Multipliers and accumulators also play an important role in implementing 
FITs. The FFT is a hardware-efficient version of the Fourier transform. It de­
composes a time function into its frequency components, providing frequency 
analysis of the signal. 

Dsp system analysis is simplified by techniques such as the z transform. The 
z transform does for sampled -data systems what the Laplace transform does 
for continuous-data systems:·it describes system output for a specified transfer 
function and .input. Like the Laplace transform, the z transform permits alge­
braic techniques instead of differential equations. 

MACHINE DESIGN/OCTOBER 12.1989 23 



concern. Control algoritlmls, with 
many successive multiply and ad­
dition operations, can easily over­
flow registers. In an overflow, data 
registers on many processors recy­
cle from their most positive to their 
most negative number. But po­
larity changes at the output Of a 
motor controller, for instance, can 
reverse motor direction. Accu­
mulation· registers on the 320C14, 
on the other hand, latch at the 
most negative or most positive 
value. This feature eliminates the 
need to protect against polarity 
(motor) reversal. 

'Ib function as system manager, 
DSPS must have on-chip 1/0 and 
other peripherals. For starters, the 
320C14 has 16 bit-selectable digital 
I/O lines that can be configured in 
any combination Of inputs and out­
puts. The I/o lines can be used, for 
example, to scan keyboards or 
drive' external devices. A special in­
put feature sets an interrupt flag 
when inputs collectively match a 
stored nUlpber. This facilitates 
counting or timing applications. 

The IC also features an event 
manager that controls capture 
(input) and compare (output) sub­
systems. The capture section is 
equipped with hardware optimized 
for timing applications. For in­
stance, encoder feedback pulses 
can be timed with up to 160-ns res­
olution to provide accurate posi­
tion and speed data. 

The compare subsystem is basi­
cally the chip's output. Its hard­
ware is optimized for driving mo­
tion systems. One operating mode, 
for instance, allows it to function as 
a 6-channel PWM controller with up 
to 40-ns resolution. Six compare 
(CMP) registers work in harmony 
with two internal timers. When a 
match is detected between the CMP 

24 MACHINE DESIGN/OCTOBER 12.1988 

register and its specified timer, the 
event manager changes the state Of 
the CMP output pin. '!\vo internal 
interrupts are also generated. 

Other on-chip peripherals in­
clude an array of 16-bit timers. 
'!\vo timer/counters are intended 
for clocking external events and 
serving the event manager. An­
other, the watchdog timer, pre­
vents internal sOftware hang-ups. 
When the watchdog times out, a 
maskable interrupt is set and a 
pulse is generated on an output pin. 
The pulse may reset external hard­
ware or the processor. 

Development systems 
Although DSP control systems Of­

fer numerous benefits, designing 
them can be difficult. For the most 
part, familiar analog design tools 
such as breadboards and scopes of-

fer little help. And because com­
pilers are not yet available for the 
320014, code must be written in as­
sembly language. Limited stack 
space with room for only 4-1evel 
calling poses another challenge. A 
call is a branch statement that 
jumps to a subroutine. Because few 
subroutines may be called, sections 
Of code must often be repeated 

" .•.. ' .• : ..: ;'\'11&. 
.,?,.~ ... 

throughout programs. 
Despite these obstacles, makers 

Of development systems for the 
320014 have found ways to sim­
plify the design process. For one, 
their products compensate hard­
ware shortcomings by supple­
menting memory space. Secondly, 
they allow engineers to prototype 
DSP control systems on PC plat-



forllJl!, using methods similar to 
those for microprocessors or micro· 
fontrollers. Thknic Inc., for exam· 
pIe, makes a development board 
called the Power· 14. 

Power·14 is designed for motion 
control applications. On·board 
switching servoamplifiers deliver a 
total of 750 W for driving various 
types of motors, linear actuators, 
and proportional valves. At the in· 
put, eight channels of 12·bit anal· 
og·to·digital conversion accept ta·_ 
chometer, potentiometer, and 
other sensor signals. The 20·1'8 con· 
verter provides extremely high 
(0.02%) resolution. In many appli· 
cations, 0.4% resolution from 8·bit 
conversion is sufficient. 

The Power·14 board adapts to a 
wide range ofmotion·control appli· 
cations because its I/O sections can 
be configured by the user. Config. 
uring is done in software. On·board 
configuration logic interfaces the 
I/O hardware with the 320C14's 
event manager (CAP and CMP lines). 
CMP lines connect to ser· 
voamplifiers, while encoder inputs 
are fed to CAP lines. 

Four input modes accommodate 
a variety of feedback schemes. In· 
put logic, in addition to routing sig. 
nals, converts quadrature encoder 
feedback into count·up and count· 
down pulses. It also includes edge. 
detection circuits for index signals. 
The extra hardware reduces soft· 
ware overhead and improves sys· 
temspeed. 

Likewise, ,there are four output 
modes. Output logic controls driv· 
ers independently or in pairs 
through nonoverlap hardware. The 
board can be adapted for brush or 
brushless dc motors, single or 
three· phase ac drives, stepper mo· 
tors, variable reluctance motors, 
and other ac or dc loads. 

Output hardware consists of six 
power transistors. Each has a no· 
load current·sensing device. Cur· 
rent feedback signals (12 bit) warn 
of overcurrent conditions and pro· 
vide information such as torque or 
force to control algorithms. In dc 
brush motors, for instance, torque 
is directly proportional to the 
amount of current into the wind· 
ings. But torque calculations for dc 
brushless motors require an addi· 
tional term equal to the angle be· 
tween the windings and the rotor. 

High·speed MOS transistors form 

three half.bridge (totem·pole) am· 
plifiers. Switching speed is deter· 
mined by the number of bits in the 
output command. Up to 16 bits of 
digital·to·analog resolution are 
possible. A larger number of -bits 
gives higher resolution, but slower 
amplifier switching rates. For ex· 
ample, 10 bits of resolution, suffi· 
cient for most systems, are avail· 
able at a 25·kHz switching rate. 
Adding only one bit halves switch· 
ing frequency to about 12 kHz. 

Another Power·14 feature is a 

DSPsATWORK 

40·pin connector that makes the 
320C14's digital I/O directly avail· 
able. Configuration logic and on· 
board peripherals are bypassed. 
This allows designers to develop 
custom nonmotion applications. 
Off·board connections, for in· 
stance, can be made to CODECs and 
external clock sources. CODECS 
code and decode signals for pulse· 
code· modulation (PCM) transmis· 
sions. On·board connections can be 
made to capture, compare, and dig. 
ital I/O lines. 

An example servoflndexer system configuration demonstrates the Power· 14 
evaluation board. The system employs a brush·type de motor, two.phase opti· 
eal encoder, dc supply with regulated 5· V and ± 12· V signals, and servomotor 
power supply. A PC running a terminal emulator program provides system con· 
trol from the keyboard. A potentiometer is used for manual position control. 
Also required is a 3201X assembler/linker. 

The software package provides full control over the system, allowing users to 
vary PID coefficients and observe the effect on system operation. The potenti· 
ometer can be used to adjust servo position. Encoder feedback position may be 
disp1a;yed to rewa! steady-state error. 

Users may also generate custom code. Developers begin by writing program 
modules in 320014 assembly language on the monitor/debugger. Programs 
may be tested with various emulator and simulator software. To be applied to 
the live system, the code must be assembled and linked into a TI TAG file. A 
communications program such as Crosstalk or Procom downloads the code to 
the board. The monitor provides utilities to run and debug the program. 

Development or 320014 applications can be accelerated with 'Thknic's Pow· 
er·Source software package. The modular library d. calls and routines makes 
code writing faster and easier. It can be used, for instance, as tl!e basis d. a cus· 
tom DSP control design. The PID loop can be taken out and replaced with the 
user's algorithm. Supporting commands that initialize and run the chip may 
not need to be modified. 

DSPdesign 
example 

A TMS32OC14 Indexing sflrvosystem can be configured with the 
Power· 14bosrdarn:Jcontrolledbythe demonstration software. Encodsr 
phase signals Bre fed through up/ downcounters (input mode 2). while B 
-PWM dljve (output mode 2) ~rs thBmotor. 

MACHINE DESIGN/OCTOBER 12, 1S119 25 



A small on-board prototyping 
area provides a place to fabricate 
special signal-conditioning circuits. 
For instance, encoder inputs may 
be fed through decoder /prescalers 
to reduce software overhead. Sen­
sor signals may be amplified, fil­
tered, or isolated. Outputs may 
likewise be modified with digital­
to-analog or frequency-to-voltage 
converters. 

Other hardware on the Power-14 
includes a TMS320E14 processor 
and 8k words of on-board down­
loadable program memory. The 
320E14 is the EPROM version of the 
32OC14. Suppression circuits are 
added to reduce conducted electro­
magnetic interference (EMI) from 
the amplifiers. An RS-232 serial 
port is also available. The port al­
lows the board to communicate 
with the development platform. 

Users can generate code, test 
software, and control motion sys­
tems from the host's monitor/de­
bugger screen. 'lYpically, the host 
is a PC running a terminal emulator 
program. A command-driven mon­
itor interface providee access to all 
debugging facilities. Code is en­
tered on screen, assembled, and 
downloaded through the RS-232 
port for execution. A demonstra­
tion program based on a simple PID 
algorithm allows users to experi­
ment with DSP control systems. 

The demonstration/test program 
is supplied on a 5V4-in. floppy disk. 
It is specifically written for a DSP 

26 MACHINE DESIGN/OCTOBER 12, 1989 

control system consisting of a dc 
motor and an optical encoder. 
From the monitor, users adjust 
PWM rates and duty cycles, dump 
current analog-to-digital converter 
values, display and set I/O ports 
and memory contents, and vary PID 
coefficients. 

Users may also develop their own 
code. The monitor/debugger allows 
them to download code, set break­
points, and display and modify 
memory register contents. Break­
points allow users to see exactly 
what is going on (register contents) 

at specific points in the program. If 
software is causing a problem or 
hanging up during a certain task, a 
breakpoint can be used to a obtain 
a snapshot of the register states at 
the point of interest. 

Breakpoints also allow users to 
develop code in stages. One part is 
written and tested, while the re­
mainder of the program is art­
ificially simulated with values 
plugged into registers. External 
hardware provides one breakpoint, 
while multiple software break­
points are possible. _ 



USING DIGITAL SIGNAL PROCESSORS FOR CONTROL 

Herbert Hanselmann 

University of Paderborn, Department of Automatic Control In JoIechanical Engineering 
4970 Paderbom, Federal Republic of Germany 

ABSTRACT 

Digital single-chip signal proce .. ors solve speed 
problems arising with the implementation of measure­
ment and control algorithms. After a discussion of pro­
cessinc power and applications an outline is given of an 
advanced CAE support system for the implementation 
of complex control and related systems. 

I INTROPUCTION 

Dicital sine Ie-chip signal proce .. ors (DSP) are very 
attractive means for the implementation of measure­
ment and control algorithms, mainly because of their 
computing speed, which is more than an order of mag­
nitude hicher than with fast modern 16/32 bit mi­
croprocessors or microcontroUer •. using ftxed point ar­
ithmetic (Hanselmann. 1986a. 1986b. 1987). 

A list of present devices that seem to be useful for 
control implementation and are available to the public 
is eiven In Tab. I. 

DSP make implementallon of nontrivial controllers 
with hieh sampling rate feasible at reasonable cost; the 
TJoIS 32010 in particular has already been used in many 
control applications. as described for example by 
Slivinski and Borninski (1985), Kanade and Schmitz 
(1985). Hanselmann (1986b). 

In the following some speed benchmarks are 
presented. then some applications are discussed, fol­
lowed by a brief discussion of DSP limitations and how 
they will develop with future DSP. The last sections are 
on Computer Aided Control Engineering (CACE) for the 
Implementation of rast and complex control systems. 
particularly on DSP. 

2 SPEEP BENCHMARKS 

Even older DSP deliver impressive speed in meas­
urement and control applications as shown by the fol­
lowine benchmark data for the Texas Instruments TMS 
32010: infinite-impulse response filter biquad section 
2.2 ,.... finite-impulse response IIlter 0.4 ,... per tap. 
complex 64 point FFT 06 ma. 1024 points 43 ms 
(Burrus and Parks. 1985). table-lookup with linear in-

terpola\.ion 8 JJ.8. generation of maximum sequence 
PRBS noise out of a 32 bit register 5.4 ,... per clock. 
sine function eeneration 6.6 ,... per point (JoIehrgardt, 
1984). 9th order controller al 31 kHz sampline rate, in­
cluding overftow management code. 15th order mul­
tivariable controller with 13 Inputs and 3 outputs. with 
some nonlinearities. al 10 kHz sampline rate. 

Some future DSP from Tab. I even promise to be 
Significantly faster. The JoIotorola 58000 for Instance 
will be about 4 times faster with IIR or nR tilters due to 
shorter cycle lime, and almost 10 times faster In the 
1024 point FIT application where the TMS 32010 is 
slowed down due to RAM limitations. 

For the 9th order controller mentioned above a 
speed comparison has been made aeainst 16/32 bit mi­
croproce .. ors. This single input single output controll­
er arose in an industrial application with a very fast 
electromechanical positioning system (Hanselmann. 
le86b; Hanselmann and JoIoritz, 1966). Since with gen­
eral microprocessors the multiply operation mainly 
determines the execution time, an upper bound for the 
achievable sampline rate can be given based only on 
the total number of multiplications. This upper bound 

sil!nalprocessors tvoe 
NEC ""D 7720 U 
Texas Instr. TJoIS 32010 U 
Fujitsu JoIB 8764 U 
STC DSP 128 U 
Texas Instr. TJoIS 32020 U 
Texas Inw. TMS 320C25 U 
Nat. Semi. L1132900 UC 
Analog Dev. ADSP 2100 UC 
Phillips PCB 5011 U 
Thomson TS 66930 U 
Motorola DSP56000 U 
Nat. Semi. L11628 A 
NEC ""D 77220 U 
NEC ~D77230 U 

U universal 
C processor core (external memory) 
A allorithm-specific 
F fioatine-point arithmetic 

Tab. 1 present and future DSP 

F 

available 
1982 
1983 
1984 
1985 
1985 

© 1986 IEEE, Reprinted, with permission, from IECON '86,1986. IECON'86 27 



is given in the rightmost column of Tab. II. The controll­
er had 33 nonzero and non-one coefficients. i.e. 33 16 x 
16 bit multiply operations had to be performed per 
sampling inte,rvaJ. Since there are also additions and 
data transfer operations to be performed the sampling 
frequency actually achievable would be somewhat 
lower. A comparison of the estimate with actual exper­
imental results was carried out on a filter (from Phillips 
and Nagle. 1964). and on the controller which Table II is 
based on. The target was a 66000 system running at 10 
MHz. programmed in assembly language. Actual sam­
pling rates turned out to be about 50:1: of the upper 
bound estimate In the filter case. where subroutines 
and loops were used. and about 70:1: in the controller 
case with fast subroutine- and loop-less code. 

microDrocessor clock , 
6066 8MHz <2kHz 

Z6000 5 MHz <2 kHz 
86000 10 MHz < 4 kHz 
32016 10 MHz <5 kHz 

TMS32010 SiGnal erocessor 31 kHz 

Tab. 2 achievable sampling frequencies 

The same controller was also implemented on a 
TMS 320 I 0 Signal processor and ran at 31 kHz sampling 
frequency. with overflow management code included 
for the control variable output computation. Thus the 
sllnal processor Is an order of magnitude faster. The 
main reason for this is that with the microprocessors 
the fixed-point multiplications are too time-consuming. 
a typical execution time being 6 JMI for a 10 MHz 32016 
processor (operands in memory). Due to hardware 
multipliers and efficient routing of operands and 
results through various buses the execution times of 
add I subtract as well as multiply operations of DSP 
are In the range of 100 ns to 300 ns. Multiplication is no 
longer the most time-consuming operation. 

3 APPUCATIONS 

Typical control applications of DSP are found in 
the field of controlling fast mechanical devices. usine 
fast servohydraulic or electromechanical actuators. 
This is because the required control bandwidth can well 
be from 100 Hz up to several kHz. and sampUne fre­
quencies considerably hieher than this are necessary. 

Furthermore it is precisely with the control of 
mechanical devices that detailed models can and 
should be obtained. with many deere ... of 'reed am and 
high system order. So the controllers frequenUy are of 
higher order too. particularly when standard tech­
niques such as LQG control (i.e. state variable control 
with Kalman-/lltering) are applied. 

But even with more classical control structures 
the control algorithms frequently have to 10 beyond 
simple PfD-type control. A load example is the plat­
form control system described by SliVinski and Domin-

28 

ski (1965). where a bulk of structural notch filters 
pushes the total controller order up to 19. Structural 
notch fi.Jler. are used to cope wiLh resonances in the 
mechanical structure by making them approximately 
"invisible" in the control loop. In the magnetic disc 
drive head positioning application described by Hansel­
mann (1966b) and Hanselma.nn and Moritz (1966) this 
approach has also been used (one of the controllers 
studied was that mentioned in section 2 and Tab 11). 
The computational power required is particularly high 
there because of very high control bandwidth. 

We use an experimental lab system with the TMS 
32010 for implementation of such controllers. It is also 
used by some R&D departments in industry. This sys­
tem accommodates up to 15 inputs and outputs each 
(analog or digital) and is equipped with a Z60 single 
board computer for host-target communication (RS 
232). sampling-rate programming. TMS program down­
load. and program storage in nonvolatile RAM. Along 
with appropriate CACE software (see section 5) this ex­
perimental system forms a very powerful tool for con­
trol system realization and evaluation. 

Examples of applications apart from the magnetic 
disc drive are the active or semiaclive suspension of 
vehicles and multiaxis robot contro\. 

Vehicle suspension using a fully active hydraulic 
actuator Instead of the passive spring I damper system 
has been realized for a. single wheel test bed using the 
Intel 2920 DSP (Lilckel and Kasper. 1984; Kasper. 1965). 
and will be realized for a Volkswagen Golf car in the fu­
ture usine the TMS system. A semiactive suspension 
(single wheel in the ftrst stage) is under study In an in­
dustrial "Dmpany using our TMS system. A 4 wheel 
suspension is expected to reqUire cQntrollers of order 
10 ... 20. with more than 10 inputs from sensors. and 4 
outputs to the actuators. Controllers are to a large ex­
tent linear. but there are some nonlinear compensa .. 
tions of nonlinear plant behaviour to perform. The 
sampling frequencies will ranee from some hundred Hz 
up to about 5 kHz. the higher sampling frequencies be­
ing required for the fast hydraulic subsystems. 

The objective of the robot control application is 
damping and stiffening of an elastic robot by control 
(Moritz .t Ill .• 1985; Moritz and Henrichtrelse. 1986). A 
three axis robot with electric servomotors. Harmonic 
Drive gearboxes, and light. aluminum anna haa recent.ly 
been successfully controlled by a multivariable con­
troller using the TMS system. Oscillations visible by the 
naked eye when conventional cascade control was used 
were completely damped in all relevant deerees of free­
dom with the multivariable controller. Without the 
feedforward inputs there were 4 inputs from strain 
gage sensors. 3 Inputs from angle encoders. 3 inputs 
from tachogenerators. 3 angle reference inputs to the 
controller. and 3 outputs to the motors. The order of 
this mullivariable controller was only 6 in this first 
development stage. and the sampling frequency of 23 
kHz was hieher than required. In lhe nexl slage the 
controller will be augmented by friction observers and 
compensalors. and lhe workload for the DSP will in­
crease. 



4 !JMlIATIONS 

The computing speed of DSP is impressive, but 
t.here are also severallimitalions. 

Compared to microcontrollers such as the Intel 
8096 or the NEC 78312 a DSP system usually requires 
far more hardware surrounding the processor chip. 
These microcontrollers Include sophisticated ilo func­
tion blocks, right up to AD-converters, decoders for in­
cremental angle sensors, and serial communication cir­
cui try, whereas current DSP are only computing 
machines (with the exception of so-called algorithm­
specific DSP such as the one listed in Tab. I, which is 
however very special purpose). DSP often also require 
very fast stalic RAM for program and data slorage. 

Another drawback with some DSP is lheir limited 
addressing capability, which is most Severe with data 
RAM. The NEC 7720 and TMS 32010 have 128 and 144 
16 bit words of on-chip data RAM, withoulthe possibili­
ty of extending data RAM externally at full speed. 

If the applicalion' requires service of interrupts 
from various sources, the next problem with DSP is en­
countered. Of the 'on-the-markel' DSP from Tab. I, 
only lhe TMS 32020 allows for more lhan one inlerrupl 
source (i.e. 3 eXlernal plus some internal ones), 
whereas the MB 8764 and the DSP 128 have no inter­
rupl mechani.sm al all. One reason for lhis may be lhal 
some hardware precaulions are necessary when pipe­
lined instrucLion execution is interrupted. 

A common restriction with all presenl DSP is that 
they are only fasl wilh fixed-point arilhmetic, see for 
instance Blasco (1993) ror the TMS 32010 and Crowell 
(l985) for the IllS 32020. Because standard operand 
wordlenglh is 16 bit, and accumulation (think 01 scalar 
product computations) is in most cases performed with 
extended preciSion (up to 35 bil) at no extra cost, the 
accuracy and dynamic range will usually be sutricienl 
for control purposes, provided the control algorithm 
has been prepared approprialely (see section 5). The 

MJE EOU .,. • scale-factor ;posrtive yalue 

desire to have lIoating-point arithmelic is of len caused 
by lack of know-how and tools lor precisely this 
preparation of • controller lor ftxed-point implementa­
lion. 

A last drawback to be mentioned is due to lack 01 
programming supporl. With the exception 01 the TldS 
32010 (see section 6) only assembly language program­
ming is supporled commercially. For runtime 
etriciency most users also tend towards assembly level 
progranuninl. However. because of 'exotic' arehilec­
tures and instruction sels compared to general mi­
croprocessors, programming easily gets tedious and 
error-prone. This applies particularly lo those DSP 
which have a 'microcode-like' inslructlon set, such as 
the NEC 7720, the liB 8764 end some 01 the announced 
DSP. 

Additionally, memory restrictions may require 
tailored coding lor every version 01 a controller, and 
etricient code constructs may be dependenl on the ac­
tual numerical values 01 operands, leading lo frequenl 
reprogramming when a controller is in iU development 
stage where numerical values are nol yet IIxed. For an 
example see the TMS 32010 code of Fiji. 1. It checks 
the result 01 a downscaled scalar product computalion 
(Hanselmann, IS86b, IS87) 

(1) 

(where all coetricients in c. have been downscaled Irom 
lhe original coetricienl vector by e common factor 2" to 
fit them into the Iraclional number range) whether lhe 
rescaled t.rue result is overflowing. in which case sa­
turation is performed. Version a) is valid lor: all rea­
sonable v, whereas lhe much fasler version b) is only 
valid for lwo values of v because of restriclions or lhe 
processor. And for some olher values or v lhere is even 
another oplimal version (nol shown) in between. Fig. 1 
also shows another problem of DSP: qulle complicaled 

MJE EQU ••• ; .eale-factor 
ALLl EQU 11111111111111118 
ALLlMS88 EOU 1l11111111111111S 

PDS: LAC HI. M.E+2 
SACH Z.' 

MAX EOU 327S70 
nlN EOU -327S80 

MAX EOU 327&70 
nlN EIIU -327&80 

;do&.lnscaled ,..sult in accumulator 
SACH HI.' • save ace 
SACL LO 
BGEZ PDS 

Inegative value 
LIIC HI. N.IE+2 
SACH z.a 
ZALS Z 
XOR ALL1 
BZ NlOF 

;sat ..... t. 
ZALS nlN 
SACL RESUL T ~ 
8 ENIICF --.J 

a) 

ZALS Z 
BZ NIICF 

;a.turate 
ZALS MAX 
SACL RESULT 
B EtGlF 

Ina avrffow 
NIICF: LIIC LD.IS 

SIICH LD.' 
ZALS LD 

ENIlDF: 

AND ALLlMSB8 
SAC!. LD 
LAC HI. lIJE+l 
SACL HI 
ZALH HI 
AlII LO. NUE+2 
SACH RE5U.T 

Fig. 1 overllow-handling code (TMS 32010) 

;dolM1scaled result In accullulator 
SACH RESlLT. fIIJE+I 
BLZ NEIi 

;politiv. valu. 
SUB MAX. lS-NUE 
BLEZ ENODF 

; •• t .... t. 
LIIC MAX. lS-NUE 
SACH RESlLT. NUE+I 
8 ENODF 

;negative valu. 
NEIi: sua niN. IS-NUE 

BGEZ ENODF 
;s.tLrat. 

EtGIF: 

LIIC niN. 1S-MJE 
SACH RESULT. NI.IE+I 

b) Cv= 00r30nly, 

29 



run-time and memory conauminl code con8tructs may 
be required to do rather simple thlnes, quite unlike the 
computina of acalar producta which DSP are desilned 
for. 

Some of the problems discussed will !lisappear with 
80me future OSP, which will not only be faster, but also 
allow for more proaram and data memory, incorporate 
more hardware for miscellaneous t.asks (timers, com­
munication ports), and have more fiexible instruction 
set.. The dynamic ranle of fixed-point arithmetic will 
also be extended (although rarely really needed in con­
trol· applications), by longer accumulators and in some 
cases (Motorola 56000 and NEC 77220) by a larger basic 
operand word length of 24 bit. noatine-point arithmet­
ic DSP are also appearing. There is already one 
(proprietary) OSP at Bell Labs performing full 32 bit 
fioaling-point arithmetic at 150 ns per operation, and 
one DSP for the public (by NEC) has been announced 
(see Tab. I). It can also be expected that more pro­
gramming tools such as general or special purpose 
language compilers will emerge. 

5 CACE-TOOI's 

Efficient use of OSP for control implementation re­
quires some CACE-tools to assist in the preparation of 
the controller before programming it, and also it is 
desirable to circumvent processor specific assembly 
level programming. 

In the pre-programming phase there are decisions 
to be made and cheeks to be performed which are 
mainly related to discretization, quantization, and tim­
ing. All this is not specific to DSP used in control, but 
would also apply to application of general microproces-
80rs or microcontrollers. Only the peculiarities and 
problems of fixed-point arithmetic become irrelevant 
when fioating-point arithmetic can be used with mi­
croprocessors or microconlrollers. 

The CACE-tools we developed and still use 
comprise sortware·modules which perform. or at least 
assist, in performing the following tasks: 

... discretization of continuous designs via a selection of 
methods, 
... choice or realization structures for muJlivariable sys· 
terns with respect to finite wordlength restrictions, 
- scaling for fixed pOint (fractional) arithmetic, scale 
factors supplied by user from for example simulation, 
or found automatically, 
- checking for differences in frequency or for example 
step response due to discretization and due \.0 fixed 
point coefficient representation. 
- checking for effects of AD- or DA- sl/lnal quantization, 
arithmetic, overftow, and nonsimultaneous sampling by 
nonlinear conlrol syslem simulation. 
- automatic code generation' (Iormerly for Intel 2920, 
now for TMS 32010) from a description of a linear con­
troller in state-space, plus optional nonlinear exten­
sions. 

In the early stages of design only a few assump­
tions such as on the future AD-converter resolution 

IECON'86 

30 

and a rouch estimate of .. mpline rate may be involved 
In later atages discretization and limine effects are 
t.aken int.o account. ftr.\.. Lhen an accura\.e abstract 
model of the tarcet DSP program , already involving 
finite wordlencth effects, comes into play. It depends 
on the user'. experience and on the controller whether 
the CACE-tools for implementation have to be used lo 
the full. It is not uncommon for only discretization, 
selection of a standard realization structure, and au­
tomatic sealing to have to be performed. A more de­
tailed discussion of these steps to be taken in the pre­
programming phase can be found in Hanselmann 
(1987). 

The last step, i.e. programming, is performed fully 
automatically for the linear part of a controller by an 
automatic code generator (Fig. 2) for the TMS 32010 
(Loges, 1985). "The controller is assumed to have been 
translated into a single state space ditrerence equation 
of the form 

Xk+1 = A xk + B Uk + f.{xk,uk'Yk,k), 

Yk = C Xk + D Uk + f,{Xk,Uk,k) (2) 

Code lor the nonlinear parts i. not generated but 
linked to the generated code. The code generator pro­
vides overftow management code, so-called scaJar pro­
duct scaling, and extended precision arithmetic on 
demand, and copes with the data RAM limitations of the 
TMS 32010 by gradually moving to memory saving code 
if necessary in a run-time optimal way. The code gen­
erator concepl has also been used by workers in the 
general signal processing (tilterlng etc.) tield, lor refer­
ences see Hanselmann (19B7). 

numerical data 
(matrices A, B, C, D) 

optimal assembly code 

coded functions 
Iromlibrary 

Fig. 2 automatic code generator 

Experience shows that, using the abovementioned 
tools, in routine cases a control design can be brought 
to experimental evaluation in less than an hour, and 
virtually no knowledge 01 the target DSP Is necessary 
for the control engineer who is only interested in get­
ting his control system working. Our previous work 
has, however, been restricted to a certain class of con­
trollers (single state-space description, Single-rate, 
nonlinear terms supporled but nol integrated in the 
CACE-software data structure). loIore complex controll­
ers now demand a more advanced concepl. 



6 FUTURE CACE-CONCEPT 

The main reslrictions of our previous CACE-lools 
have been: (i) assumption of the eonlrolJer in the 
form of (2). (ii) separation of informalion belonging 
logelher logically. '(iii) lask dependency. (iv) largel 
processor dependency in code generation tools. 

We are going to remove these restrictions now by 
developing tools based on models of complex con troll· 
ers and by layering the code generation procedure. 

The goal is to close the gap betwecn sophisticated 
control system design and realization of a designed 
controller by means of mostly automatic lools working 
on a model of lhe conlroller. This model may be for an 
analog version of lhe conlroller inilially. and will subse­
quenlly be lransformed slep by slep inlo a full digilal 
controller model via the stages of sampling rale selec­
lion. discretization. structure selection. scaling etc .. 

Designing a modeling concepl on which such im­
plementation loa Is can be based is a nontriviailask for 
complex controllers. The usual collection of a few 
discrete state-space models or z-transfer-functions is 
far from sutricienllo make up a model. 

Il should for inslance be possible lo represenl 
complex controllers constructed from'submodels in a 
hierarchical way. In the vehicle suspension application 
mentioned in section 3 there are controllers for the in­
dividual wheel hydraulics on a medium hierarchical lev­
el. the subsystems encapsulated in these controllers 
are on the lowest level. and on the highest hierarchical 
level is the lolal 4 wheel conlroller (including pilch and 
roll control elc.). 

The same example also shows the need to account 
for multi-rate systems because of high sampling rates 
for servohydraulic control. and lower rates for car 
body altilude conlrol. 

It is also important to accommodate liming infor­
mation. i.e. informalion about when input signals are 
sampled. when output signals are available and what 
the sequence of execution of subsystem algorithms is. 

Information regarding dala formals and arilhmel­
ic in lhe largel processor should also be representable 
in a form sufficiently abstract to be processor indepen­
dent. but close enough to the hardware and architec­
ture of target processors for running a control system 
simulation for instance to yield 'real-world' resulls. 

In order to manage all this information it is advis­
able to follow the lines at modern soCtware engineering. 
The approach we are investigating is to define a model 
language which works in the user's technical tenns as 
much as possible. and represenls the information in a 
readable. consistent, and logical way. A model descrip­
lion given in this lan&uage is lhen lo be used 
throughout the design and implementation process, up 
to simulation and final code generation. The conven­
lional data structures such as collections of matrices 
are only a part of a model. possibly a small one. Even 
there, several distinctions must be made and types of 
controller submodels such as standard state space 
models. FIR-lIllers. FSVD-lype slale space models (Han­
selmann. 1987) should be introduced. 

high level abslracl 
conlroller model 
(hierarchical. 
nonlinear) 

- selection of sampling rates 
. discretization 
- realization structures 
- decisions on arithmetic 
- scaling 
- checks for discretization. 

quantizalion. delays. 
asynchroneous sampling . ... 

. simulation 

DSPL compiler 
for largel 
processor 1 

high level abslracl 
digilal conlroller 
model (hierarchical. 
multi-rale. nonlinear) 

lower level largel 
hardware independent 
description (DSPL) 

DSPL compiler 
for largel 
processor 2 

assembly language 

Fig. 3 fulure code generalion 

The IInal slage or code generation will now also be 
based on the conlroller model. Because of lhe pOSSible 
complexity of such models. and in order to gel more 
target processor independency. code generation will be 
performed in al leasl lwo slages (Fig. 3). wilh an inler­
mediate control task representation in a specific medi~ 
um level language (DSPL. digilal syslem programming 
language) program which will be derived from lhe 
abslracl conlroller model by means of a lranslalor. We 
have designed a IIrsl version of DSPL (Hanselmann and 
Schwarte. 1987). and we expecl to have a preliminary 
DSPLcompiler for lhe TMS 32010 by the end of 1986. 

31 



We prefer to ha". a lanluace which Ia' \.aIlored ~o 
alln.1 procea8lnc and conlrol l.Iialcs ra~er ~an ualnc 
leneral purpose prolrammlnc lancuaces .uch a. C or 
P .... 1. Compllere for ~ese lwo laneuacea emerled re­
cenUy for lhe TIIS 32010 procaeor (Jlarrin, 1885). Our 
10.1 Is lo cre.le .n .Inslrumenl which lenerales code 
e. enicienl (bul more enicienUy) .s lh.l which. hu­
man prolrammer would for the tasks we de.1 wI~, and 
lo keep lhe lIreel h.rdware .nd processor dependenl 
p.rla .s small .s possible. This will be achieved by con­
cenlraling such dependencies Inlo the compiler for lhe 
ralher basic DSPL laneuaee. which can be modified for 
new processors (even cuslom-deaiened onea) wilh rea­
sonable enorl. 

7 CONC!.USIONS 
As shown by benchmarks and applicaUons. dlellal 

signal processors are allracliVe for conlrol implemen­
talion due lo lheir compuline speed. Compared to 
some other lypes of processors lhere are some llmill­
tions however. which will parUy be removed with the 
new sicnal procesore expecled In lhe near fulure. It 
has been slressed lhal elTicienl use of DSP for conlrol 
Implemenllllon requires some CACE-tools to assist In 
the preparation of lhe controller before programmine 
il. and in proeramming ilaell. 

REfERENCES 

Blasco. R. W. (1983). Floaling-Point DII!Ilal Signal Pro­
cessine USing a Fixed-Point Processor. Presented at 
Southcon; also in SigntIl Processing Prodw:ts and 
hchnoLoW. Texas Instrumenls. 

Burrus. C. S. and T. W. Parks (1985). Orl"/FFTAftd. 01,,­
wLtdion ALgorUhrns. Wiley" Sons. 

Crowell. C. D. (1985). Floallng-Point ArithmeUc with ~e 
TIIS 32020. h,.... Ins,",m ... ts AppLica.tiDn aport. 

Hanselmann. H. (1988a). Einsatz Dlgitaler £in-Chip­
Signalprozessoren In der Jles,.. und Regelungslech­
nik. BulLetv. .5l:hweuer Dettrotechnucher Verev., II. 
632. 

Hanselmann. H. (1988b). Dlgltale Ein-Chlp-
Signalprozessoren in der ~es,.. und Regeluneslech­
nik. 5. ...... Kon/erenz ".Anl4gen4ut~ng", 
Leipzig. GDR. 

Hanselmann, H. (1987). ImplementaUon of digital con­
trollere. Automatica, survey paper, accepted for pub­
IIcalion. 

Hanselmann. H. and A. Schwane (1987). Generallon of 
fasl targel processor code from high level conlroller 
descriptions. To III pUblished. 

Ha.nselmann. H. and W. Loges (1984). ImplementaUon of 
very fast slate-space conlrollers uslne digllal signal 
processors. Proc. 9th [FAC Worlel Cbngress. Pergamon 
Press, New York. 

32 

Hanselmann, H. andW. Moritz (1988). High bandwidth 
Control of the head poslUonlnl mechanism In a Wln­
chealer disc drive. Proe. IECON·86. Jlllwaukee. Wiscon­
llin. 

Jeanade. T. and D. Schmllz (1985). Developmenl of CMU 
Direct-DrIve Arm II. Proe. 11185 A .... ricAn Cbnlrol 
CbnJerenc •• Boslon. 703. 

Xasper, R. (1985). EnlwicklunC und Erprobunc elnes In­
alrumentellen Verfahrena zum Enlwurf von 
Jlehrlr6ssenreleluncen. Docloral di_ertalion. 
University of Paderbom. appeared In series VOl 
ForlschriUsberichLe. series 8. vol. 90. VOl Verlac. 
D6sseldorf. 

LoCe8. W. (1983). Schneller dicltaler Regier mil Sig­
nalprozessor. D.tlro,,£!:. 18.51. 

Loges. W. (1985). Rea.luu",ng leh""lI., digita.ler Regier 
Iobher Ordnung mil SignlJlprozelsoren. Doclaral 
dissertalion. University of Paderbom. appeared In 
series VOl Forlachrillsberichte. series 8. vol. 88. VOl 
Verlac. Dusseldorf. 

LUckel. J. and R. Kasper (1884). loIehrgrossenregelune. 
Entwurf und Reali.lerung moderner 
Mehrcrossenrecelungen am Beispiel eines hydrau-
1i8chen Fahrzeucpnafslands. lIa.schtne"I>Au. 3. 13 and 
4,27. 

Marrin. K. E. (1985). VLSI and eoflware move DSP lech­
niques inlo mainslream Computer Dengn. Sepl. 15. 
89. 

Mehrgardl. S. (1984). 32-Bil-Proze •• or erzeugl analoge 
Signale. D.ttron£!:. 7, 77. 

Morllz. W., H. Henrichfreise and H. Siemensmeyer 
(1985). A contribution to the conlrol of elaslic robols. 
Proc. IFAC :Jvrn.p. RDl>ot Control. Barcelona. 

Moritz. W .• and H. Henrichfreise (1986). Regelung eines 
elaslitlchen Knlckarm-Robolers. Proc. Wortshop 
"Steuenmg und Reg.lung """ RDbot ..... " 0/ VD1/VDE­
GeI.Useha/t 11 ... - imd Regelungstech"ik, Langen, 
Germany. 

Phillips. C. L. and H. T. Nagle (1984). Digital Cbnlrol 
SS/st...... Ana.lysit and Design. Prenlice-Hall. 
Enllewood-Cliffs. 

Slivinski. Ch. and J •. Bominskl (1985). Conlrol Syslem 
Compensalion and Implemenlalion wllh lhe 
TIIS32010. h"a.s Ins"""'''''" ApplicAtion Report. 



:::: 

PART II 

Design of Digital Controllers 
ti I EU ~1 fO IlL !fln rr !HI! J 'I.!~ 

::: ::: :::::::: ::::::::::::: :: ,:: :::::::: ::::: :::: :::: :: 

Designing Control Systems ........................................................ 3S 

Matrix Oriented Computation Using Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 
(Jeffrey C. Kantor) 

Modeling and Analysis of a 2-Degree-of-Freedom Robot Arm ....................... '. . .. 93 
(Integrated Systems Inc.) 

Simnon - A Simulation Language for Nonlinear Systems .............................. 103 
(Tomas SchOn thaI) 

I, 
iii • 





Designing Control Systems 

The design of a control system involves two major steps: (1) the process or plant must be put into a 
mathematical form so that its behavior can be analyzed and evaluated (Le .• a plant model must be derived). 
and (2) an appropriate controller must be designed so that the plant gives the desired response under the 
influence of the control system. Designing a controller requires selecting an appropriate structure and 
specifying performance requirements from the control systems. This introduction gives a brief overview 
of discrete systems. tells how to model a plant and convert it into a discrete mathematical form, and 
describes how to design different types of controllers. Most of the following information can be found in 
those textbooks appearing within the Reference section. The articles that follow this introductory material 
describe several of the commercially-available CAD packages that may be used for designing and simulat­
ing either the controller or the entire control system. 

Discrete Systems 
A system must be represented in its discrete form in orderto be implemented on a DSP or a microprocessor. 
Discrete representation involves two elements. First, the signal is represented by its samples at discrete time 
intervals. These time intervals depend upon the sampling rate of the system. Second. the magnitude of the 
signal and its samples is also represented by discrete magnitude. The resolution of this magnitude depends 
upon the word length of the processing element. Here, only the sampling rate affects our treatment of this 
subject. However, in Part In's introduction, where we are concerned about the actual implementation. the 
effects of magnitude representation on a processor will greatly influence our treatment of that subject. 

z-Transforms: In the continuous time domain, the system is represented with differential equations, and 
the analysis is carried out with Laplace transforms. Similarly, in the discrete time domain, a system is rep­
resented with difference equations, and the analysis is carried out with z-transforms. The z-transform of 
a signal is a representation of that signal as a sequence of samples as shown in Figure 1. Mathematically, 
it is given as a power series in z-n with coefficients equal to the value of that signal or 

X(z) = Z(x(t) = Xo + XtZ-1 + X2Z-2 + ... + xnz-R (I) 

Z represents the z-transform; z-n represents the delay of n samples, where n represents the position (0, 
1,2,··· ,00) of time; xo, Xh X2,···, and xn represent the magnitude of signal x(t) at that time. 

Figure 1. z-Transform 

""".-.--- .""""., ........ - .,.... --
//, : ;-.. ......,. <f""" /, .' 

I : I ----I _.----- I 

• T .• 
:+-+: 

x, lime 

35 



36 

The z-transfonn represents the sampling process in a digital control systems. It converts a continuous signal 
to a discrete signal. The continuous signal can be recovered from the discrete signal as shown in Figure 2 
by using aZOH (zero order hold). The fact that both signals are equivalent allows us to do all our processing 
in the discrete time domain. Once the processing is complete, the signal can be converted back to continuous 
fonn. 

Figure 2. A Continuous Signal Recovered from the Discrete Signal 

/ 
~~~-+~--~~~-T~'~9T~'--~~1-2~T~--+1~5T=-~~1~8=T~nme 

, '/
:/

One important consideration must be taken into account before the sampling is allowed to take place.
According to Shannon's theorem, a signal must be sampled at a rate that is twice the highest frequency
component of the signal. If this rule is not observed, the original signal cannot be recovered. Figure 3 shows
a sine wave signal x(t) that is superimposed with a higher frequency sine wave. The higher frequency signal
is giving the exact same samples as the signal x(t) and causing distortion. This effect is known as aliasing.
To prevent this, low-pass filters known as antialiasing filters are used to filter out high-frequency compo­
nents. Only the frequency of interest passes through. However, antialiasing filters should be used carefully
in control systems because they introduce phase delay and affect the phase margins of the system.

l\
I \

I \

Figure 3. A Sine Wave Signal

,/\ -----__ l\
,'I \ 1-"

, 'I \ /' "
IT \ I \'

l\
I \
/ \
/ \

3Ti \

f\
I \
/ \
/ \
I 5T

~--~----~+---~--~~---t----~----t-~~~--~r-~~nme
\ 4TI \: \ I

\ I
\ /

V
\ I 2T

\ I
\ /
\ I

V

\ ''I.
\ /'
\ I

V

\ I ~'
\ / " \ '"V---- \

A general representation of any system in the z-domain can, by use of a transfer function, be given by the
following equation where H(z) denotes the response of the system.

H(z) = [y(z)] = [bo + b.z-· + b:zz-2 + ... + bnz-n] (2)
X(z) 1 + a.z-· + a2z-2 + ... + a.z-n

X(z) represents the z-transform of the input signal, Y(z) represents the z-transform of the output signal.
a •... an and bo··· bn are coefficients that determine the response of the system. Ifboth the denominator
and numerator are factorized, the denominator represents the poles of the system and the numerator rep­
resents the zeros of the system. The output of the system is obtained by restating equation (2) as

Y(z) = - (a.z-I + a2z-2 + ... + anz-n)[y(z)] + (bo + b.z-I + b2z-2 + . . . + bnz-n)[X(z)]

Since z-I represents the delay of one sample time, the above equation can be restated in the time domain
as a difference equation given by:

yen) =- (a.)[y(n - 1)] - (a2)[y(n - 2)] + ... + bo[x(n)] + b.[x(n -1)] + ... (3)

where yen - 1), yen - 2), x(n), and x(n - 1) represent samples of yet) and x(t) at time intervals of n, n - 1,
n-2, etc.

Equation (3) is the standard form of representing systems in the discrete time domain, just as differential
equations are the standard form of representing systems in the continuous time domain. Equation (3) also
represents the standard form of implementation on a DSP.

In classical control, the analysis is frequently carried out with Laplace transforms. It is possible to conven
directly from the s-domain to the z,-domain. The relationship between s-domain and z-domain is given by
the following equation:

z=esT

where T is the sampling period. However, in practice, several approximations are used to conven from one
plane to another since an exact transformation is not possible. Table I shows the z-transform of some of
the functions. Using these relationships, it is possible to carry out the analysis in the s-domain arid transfer
the results to the z-domain, or vice versa.

Table 1. z· Transform

FUNCTION LAPLACE TRANSFORM z-TRANSFORM

u(l) 1 z - (z-l) s

I
1 Tz
S2 (Z_1)2

1 Z
e-<'. -- (z-e-81) s+a

Discretization Methods for Analog Systems: Different techniques can be used to convert continu­
ous systems into discrete systems. However, a continuous system can only be approximated and can never
be exactly equivalent. The conversion from the s-domain to the z-domain usually causes some distonion
in the response and must be considered.

Step Invariant Method: This technique also known as ZOH (zero order hold) produces a discrete system
whose step response is the same as the original continuous system at the sampling instants. It assumes that

37

38

the system is preceded by a ZOH (D/ A converter) and followed by a sampler (AID converter) so that both
input and output of the resulting system are digital. Both the ZOH and sampler are included in the conver­
sion scheme. The conversion is given by the following equation:

H(z) = (I -Z-I) Z [L-1 H~S)] (4)

where Z represents the z-transform, and L -1 represents the inverse Laplace transform.

This transformation is usually what is required to convert a continuous plant to a discrete form; however,
it gives unsatisfactory response with controllers and should be avoided when transforming continuous con­
trollers. The ZOH introduces phase lag and distorts the frequency response of the controller. The Laplace
transform can be split up by using partial fractions and z-transform tables.

Ramp Invariant Method: In this method, the step input described above is replaced by a ramp input,
also called a first-order hold method. The ramp invariant conversion is given by the following equation:

H(z) = [(I_Z-I)2] Z [L-1 H(S)] (5)
Tz-I S2

where T is the sampling period.

The ramp invariant usuaIly gives good results and may be used when converting continuous controllers.

Matched Pole-Zero: In this technique, the poles of the s-domain are directly mapped into the z-domain
according to the relationship z = eTs, where T is the sampling period. To equal the number of poles and zeros,
additional zeros are added at z =-1. The gain ofthe two systems is matched at a critical frequency by choos­
ing an arbitrary gain constant. This method does not take into consideration any aliasing effects.

Backward Difference: This technique replaces the derivative of a function by the difference between
present and previous samples and is given by

dy y(n)-y(n-l)
dt= T
where T is the sampling period.

The transformation can also be done by using the following mapping:

I-z-I
s=--

T

This transformation maps the left half of the s-plane to a circle inside the unit circle of the z-plane. Hence,
stable analog controIlers also result in stable digital equivalents. In fact, some unstable analog systems give
stable digital equivalents. Thejco axis in the s-plane does not map to the unit circle in the z-plane, thus de­
grading the frequency response. Using a higher sampling frequency gives a better approximation. Figure 4
shows the mapping from the s-plane to the z-plane for a backward difference approximation.

Figure 4. Mapping from s·Plane to z·Plane for Backward Difference Transformation
Backward Rectangle

"".:"
GI ~~-. ,

~ /wA I

15.. tJII ... I I

E ".f"', I I I

C I I I I I , , ,
Time

s-Plane

, ,

z·Plane

Bilinear Transformation: This technique, also called the Tustin transfonnation or the trapezoidal ap­
proximation, uses the relationship

s = (~)(::~) (6)

to transform an s-domain function into the z-domain. The left half of the s-plane band limited by the
sampling frequency, fs, is mapped into the unit circle in the z-plane. Thus, it is important to select as a high
a sampling frequency as possible so that all poles are included. Although the frequency response of the
continuous systems is replicated in the z-domain, it warps the frequency response at the critical frequencies
of the system. To overcome the problem for systems like notch filters, the critical frequencies of the original
s-domain are prewarped so that they end up in the z-domain system where they belong. The critical
frequency COo is prewarped to another frequency by the transfonnation,

w = (~)[tan(OJ;T)]
where T is the sampling period.

This is the most commonly used method and always generates stable poles in the z-domain if the original
s-plane poles are stable. Figure 5 shows the mapping from the s-plane to the z-domain for the bilinear trans­
fonnation.

Figure S. Bilinear Mapping from s-Plane to z-Plane for Bilinear Transformation

Trapezoidal Approximation
.,....1'"

<1"- , -8 ,;' ~ ,
:E '.J I

a. .,~:: I

.§ ,t' , • I I I J

~ I I I I I

I I I I I

TIme

s-Plane

Other Methods: These are some other methods for transfonnation:

• Forward difference rectangular

• Matched pole-zero mapping

• Impulse invariant

z-Plane

•
They are less commonly used than the ones given previously and are not discussed here. However, different
transfonnations result in different behavior and may be suitable for some structures.

Behavior of Poles in z-Domain: Conversion techniques change an existing analog design into a digital
design. To ensure successful implementation of the control system design, some knowledge of the behavior
of the poles in the z-domain is essential. As it is obvious from the mapping schemes above, the left half of
the s-plane maps into the unit circle on the z-plane. This is the region of stability in the z-plane. Any poles
(real or imaginary) located outside the unit circle are unstable and have an unbounded response. Poles
located inside the unit circle give a stable response. Poles that lie on the unit circle provide oscillatory
behavior. This corresponds to the joo axis on the s-plane. As poles move toward the origin, their response
decays at a faster rate. Zeroes may be located anywhere in the z-plane; however, as they move from the
origin towards z = I, they increase the overshoot of the system. If zeroes are located outside the unit circle,
such a system is called a nonminimum phase system. Figure 6 shows the different pole locations and their

39

40

corresponding responses both inside and outside of the unit circle. One thing should be remembered; that
unlike the s-plane, the mapping in z-plane is not unique. It is dependent upon the sampling frequency used
for the discretization technique. A different sampling frequency gives a different mapping in the z-plane.

Figure 6. Response with DitTerent Pole Locations in the z-Domain

~ ~

Plant Modelling
The first part of designing any control system is to convert the plant into its mathematical form orto identify
its parameters. The following example descri~s the derivation of a mathematical model for a plant.

A DC servo motor is used to represent the plant, and a model is developed for the motor. The motor is an
analog device, and the given electrical and mechanical characteristics describe its behavior in the continu­
ous time form. This model must be transferred into a discrete form or into the z-domain for use with a digital
controller. The zero order hold method (ZOH) is used to transform the model into a discrete form.

In general, the electrical characteristics of a DC motor are given by

L di+Ri=V_emf
dt

(7)

where

L = inductance of motor
R = resistance
V = applied voltage

= current
di = instantaneous current
dt

emf = back emf = Ke iJ
where Ke = emf constant

iJ = velocity

The mechanical characteristics are given by

1mB +BiJ + K9 = TL -1LB
where

1m = motor interia

(J = displacement

(J' dO I' = dt = ve OClty

d2(J
6 = dt2 = acceleration

K = stiffness constant

B = damping constant

1L = load inertia

T L = load torque = K,i

K, = torque constant

i = current

Figure 7 shows an equivalent electrical and mechanical model of the DC servo motor,

Figure 7. A Representation of a DC Servo Motor Model

+

v

(8)

41

42

The motor is a Pittman model 94120316. It has the following parameters:

R =6.40hm
Jm = 1.54 x 10 -6 kg-m2

Kt = 0.0207 N-m/A
Ke = 0.0206 volt/(radls)

L B
The electrical time constant is given by R ' and the mechanical time constant is given by -J • In practice,
LB'
-«-
R J

Electrical steady-state conditions are reached quickly. Assuming steady-state current is reached, equation
(7) is reduced to

Ri = V -emf = V-K.6

Combining (8) and the above equation results in

'" (V-Ke8) (Jm + h)6 + B6 + K(J = K, --R-

Assuming both Jm + JL = J = system inertia and K = 0 = stiffness constant, the system equation becomes

6 + + (B + K~ Ke)8 = + (i) V

The Laplace transform of (9) is

(S2 + as>[6(s)j = b[U(s)j

where

a=+(B+K~K.)

b =+(!,)

If

U(s) = V(s)

then

6(s) b
V(s) = s(s + a)

(9)

(10)

Equation (10) is the final form of the transfer function of the motor in continuous form. This must be con­
verted into a discrete form. The zero order hold (ZOH) transformation is used.

Zero order hold states that

0(,) - (1 - .-') { z[L -, ~(.) 1 } (11)

Then,

G(s) b b
-s- = s[s(s + a)] = S2(S + a)

Expanding as partial fractions, the above can be expressed as

G(s) Al A2 A3
-- =-+-+--

s s S2 S + a

Solving for AI, A2, and A3 gives

G(s) (- ~) (~) (~)
-- =-- + -- + --

s S S2 s+a

When mUltiplying by (1 - z -I) and using tables to derive the z-transform,

{ ~ [(eaT -1) + aT]z-'} + {~ [(I-eaT) - (aTe-<lT)]r2}
G(z) = a a

1 - [(1 +e T)z-l] + e Tz-2

(12)

where T = sampling period.

Substituting values for a, b, and T of

a = 1.116
b=53.906
T=O.OOI

the transfer function of the motor becomes

G (z) = 9(z) = (0.2694rl + 0.2693r2) IQ4 K
m V(s) I _ I.999r' + 0.999 B

where Kg is a gain constant.

By introducing a numerator gain factor, the above equation can be rewritten

G (z) = 9(z) = (0.2694Z-1 + 0.2693r2)Km
m V(s) 1 - I.999z-' + 0.999

(13)

where Km is a numerator gain factor.

Digital Controller Design

The next step in designing a digital control system is to design the controller. Before designing the control­
ler, an appropriate structure for the controller must be selected. This will be influenced by the performance
requirements of the system and the processing capability of the processor. The controller may be designed
in the continuous domain or s-domain and then converted into discrete form by using one of the previously
described discretization methods. Alternatively, the entire design may be carried out in the discrete domain
or z-dorilain. It is assumed here that the design is carried out in the discrete domain. Here, an overview of
different types of control algorithms is given and designing/implementing considerations for selected con-
trollers are discussed. .

43

44

Control Algorithms: The first step in designing the controller is to select an appropriate algorithm or
controller structure. The processing burden imposed upon the controller is directly dependent upon the
complexity and type of controller structure.

Compensation Techniques: Compensation techniques are one of the most commonly used control tech­
niques. In this technique, the controller adds poles and zeros to get a desired system response. If the low­
frequency response is modified, the controller is known as a lag compensator; if the high-frequency response
is modified, it is known as a lead compensator. For a continuous control system, the controller is designed
in the s-domain by implementing some of the well-known methods such as root locus, Bode plots, and
Nyquist plots. The analog or s-domain design is then transferred into a discrete form or z-domain via trans­
formation technique. Alternatively, the compensator can be designed directly In the z-domain by using
z-domain frequency response methods or the z-domain root locus method. Compensation techniques allow
for somewh~t accurate modification to system behavior.

PID: The P (proportional), I (integral), and D (derivative) is a very commonly used analog control tech­
nique. In a PID controller, terms proportional to the error term, its integral, and its derivative are summed
to achieve the controller output. A PID controller may be designed in the s-domain and then transferred into
the z-domain by using one of the transformation methods. Alternatively, the PIO algorithm is converted
into a discrete form, and the design is carried out entirely in the z-domain. PID is probably the most com­
monly used algorithm. PID controllers are very robust, although the design of coefficients is somewhat
arbitrary.

Deadbeat: A deadbeat algorithm is used when a quick settling time is required. Deadbeat design is carried
out entirely in the z-domain. A deadbeat controller replaces the poles of the system with poles at the origin
of z-domain.

State Space Model: In a state space model, a complete representation ofthe system is made in matrix
form. This is accomplished by identifying and developing the relationship between the different states or
variables of the plant. An appropriate feedback gain can be chosen to place the poles of the system at any
desired location in the z-domain. State controllers are used to control multiple variables or states. These
controllers are not implemented directly, because it may not be possible to measure alLstates. They are usu­
ally used in conjunction with observers. State space controllers allow precise control of system behavior.

Observer Model: Often in control systems, some of the states of the system are not available for measure­
ment. An observer model or an estimator can be used to estimate the unknown states from the measurement
of some of the known states. The estimated states along with an appropriate feedback gain can be used to
complete the control loop and place the poles at any desired location. Observers are typically used in con­
junction with state controllers when access to all state variables is not available.

Optimal Control: Optimal control synthesis is used when a specific performance or cost criterion (time
and energy) must be minimized. Using the given criterion or function, an appropriate control law is derived,
which is then implemented with a compensator (LQR - Linear Quadratic Regulator) or controller.

Kalman Filter: An observer model is used in a system where an exact measurement of some states is
available. However, in stochastic systems, the presence of noise or uncertainty makes it impossible to make
an exact measurement. A Kalman filter is an observer model in a noisy or stochastic system.

Adaptive Control: Adaptive control is used in systems in which there is insufficient information about
the plant parameters, making it impossible to derive a plant model. It is also used in systems where plant
parameters or plant models change overtime, making the controller unstable. An adaptive controller tracks
realtime changes in the plant by redesigning the controller to give optimum control system.

The next step in designing the controller is to specify the perfonnance requirements of the system.

Performance Specifications: Perfonnance requirements of the system dictate selection and design
goals of an appropriate controller structure. The specifications can be given in tenns of the step (ortransient)
response, the frequency response, or another criteria.

Step Response: For the step or transient response as shown in Figure 8, the controller requirements are
given in tenns of the following specifications:

• Steady-state accuracy

• Rise time

• Overshoot
• Settling time

The steady-state error is defined as the deviation at steady-state of the actual system response from the de­
sired system response. For a discrete system (i.e., an integrator), the steady-state error becomes 0 ifGH(z)
has at least one pole at z = I, where G(z) is the plant transfer function, and H(z) is the controller transfer
function. For a ramp input, the steady-state error becomes 0 it GH(z) has double pole at z = 1. For a unit
acceleration input, the steady-state error becomes 0 if GH(z) has a triple pole at z = 1.

Figure 8. Performance Specification for the Step or Transient Response

Steady-State Error

90%
----------------------1--1----

I
I
I
I
I
I
I

~tr I

~14----------------~ ----------------~~I

The rise time, overshoot, and settling time can be specified in lenns of the damping ratio ~ and the natural
frequency COn. To carry out the design in the digital domain, these perfonnance requirements must be
mapped to pole locations in the z-plane .

. The rise time is specified as when the output reaches 90% of its final value.

:n:
tr----,==

- 2aJnh _~2
This can be simplified to yield

1.8
(J) ;:::--

n tr

45

46

The settling time is specified as when the output settles and remains within the desired range of its final
output. This is specified as an absolute percentage of the final value usually 2%. It is given by:

4.6
t.=-

{;cvn

This implies that

~ 4.6 cv ;::­
n t.

The overshoot is defined as the maximum deviation in percentage of the systems response from the desired
value and is given by:

Mp = looexp(- ~)
V 1_{;2

A constant damping ratio, zeta, in the s-plane for 0 < ~ < I, is mapped as a logarithmic spiral in the z-plane.
Ifthe poles are specified as having a'damping ratio of not less than ~), then the poles must lie within the
region bounded by the logarithmic spiral corresponding to ~ = ~ 1. For a desirdble second-order system, the
damping rate must be between 0.4 and 0.8. Small values of ~, such as ~ < 0.4, yield excessive overshoot

and large values, such as ~ > 0.8, make the response sluggish.

A constant natural frequency COn in the s-plane maps as a straight line emanating from the origin. Figure 9
shows the loci of constant ~ and line of constant con in the unit circle in the z-plane.

-1.0

n
lVn ='T

-0.8

Figure 9. Root Locus of Constants ~ and COn

1m axis

-0.6 -0.4

NOTE: T = sampling period

Frequency Response: If the performance specifications are specified in terms of the frequency response,
they are given in terms of phase margin, gain margin, and cross-over frequency roc as shown in Figure 10
-- essentially specifying the bandwidth of the closed-loop system.

The cross-over frequency roc is defined as the frequency where the phase angle. LGH(jro). of an open-loop
system equals -180 o.

The gain margin is defined as the magnitude. IGH(jCl)I. (in decihels) that lie~ both below 0 db and at the
cross-over frequency.

The phase margin is defined as the phase. LGH(iro). (in deg,.ees) that lies both above -180 ° and at the zero
gain frequency.

To directly use frequency response methods. the z-plane is mapped into the w-plane by using the inverse
bilinear transformation given by

w=fC::)
The w-plane mathematics is similar to the s-plane mathematics. The controller is transformed to the
w-plane, and most of the classical techniques like Bode analysis can be carried out in the w-plane. Once
the compensator is designed in the w-plane. it can be transformed back into the z-plane.

Figure 10. Frequency Response Curves

Magnitude (db)
201--__ _

O~----------------------~~~----------~-------

Phase (deg)

I
I
I
I
I
I

:/000
r-----------------------------~--------------~--------ro

18

47

48

Additional Criteria/or Performance Specification: Some of the other performance requirements can
be specified as:

• Disturbance reje~tion

• Control effort
• Sensitivity to parameter changes

One of the primary goals of a control system is to reject disturbances while maintaining stability under a
wide variety of operating conditions. In fact. without disturbances, there would be no need for closed­
loop control systems. The feedback gains in a control loop act to minimize disturbances. For example, if
a disturbance is constant, then integral action will cause the steady-state error to be zero. However, if the
disturbance is of a different nature, then additional steps may have to be taken. It is important to take into
account the source of the disturbance and make the preceding gain large. If the disturbance is outside the
control loop and affects the measurement or reference input, then a feed forward path can minimize the
disturbance. If the disturbance is inside the loop and affects the plant itself. then the loop gain must be
made large.

Sensitivity to parameter changes can be an important consideration. especially if the plant has slow-varying
parameters due to drift. Minimizing these effects is similar to handling disturbances. However, some
controller structures like deadbeat controllers that perform pole-zero cancellations are more sensitive to
parameter variations and should be avoided. If parameter variation is an extremely critical consideration,
then adaptive control should be used.

Sometimes it is necessary to minimize either the control effort or other parameter(s) in the system. Optimal
control techniques can be used to determine a control law and do pole placement. They are discussed in sub­
section Optimal Control and Estimation. In general, a system with either minimum response or a high
bandwidth requires higher control efforts.

PID Controller: This topic describes the design and implementation of a PIO controller. Figure 11
shows a block diagram of a control system using the PID controller. PID is a commonly used technique in
classical control. In designing controllers, it is often found that just minimizing a term proportional to the
error is not sufficient. The inclusion of the integral of the error term will reduce the steady-state error to

Figure 11. Block Diagram of a Control System Using PID Controller

Controlier

~
Uret

e(t) e±:J U(l)

I ~de I dt

zero because it represents the accumulated error. To further improve stability and plant dynamics, a differ­
ential of the error term is introduced. This term represents the error rate. A PID controller that includes all
three terms can give very good results. It can be used in its discrete form with digital control systems. If
both low-frequency and high-frequency responses are modified, this controller can be viewed as a special
lead-lag compensator.

Controller Design: The trapezoidal approximation is used for conversion of PID into discrete form.
Usually, the tra.pezoidal approximation is used for the integral term, and the backward difference is used
for the differential term. However, when the design is carried out in the z-domain, the approximation tech­
niques are not important. The design is carried out as a compensator with a pole at z= I to ensure integral
behavior. Hence, the following design is done directly in the z-domain using pole placement techniques.

The analog PID algorithm is given by:

u(t) = Kpe(t) + K j f edt + K.t de
dt

where

Kp, Kj, and K.t = PID constants

u(t) = output of controller

e(t) = error signal

(14)

In a trapezoidal approximation, also called Tustin transformation, the area of the integral fedt is given by
the summation of small trapezoids, see Figure 12.

The integral fedt can also be solved by taking the Laplace transform of equation (14) and substituting for
the s. The Laplace transform of (14) gives

U(s) = (Kp + sK.t+ ~j)[E(S)]

..
'C
:::I
:t: a.
E
<I:

Figure 12. Trapezoidal Approximation

Time

49

50

Using the Tustin approximation or substituting for s where

s=(~)(::~)
After substitution and solving where Z-I represents a delay of one sample time,

u(n) = u(n- 2) + Kp[c(n)-c(n-2)] + C~)[c(n)- 2e(n-1} +c(n-2)] + (K~T) [e(n) + 2e(n-\) +c(n-2)]

Combining elements, the above equation can be restated as

u(n) = u(n - 2) + KI[e(n)] + K2[e(n -1)] + K3[e(n - 2)J

where

KI = Tl" + 2K.! + KiT
.~ T . 2

K, = K-T _ 4K.!
- I T

2K.! KIT
K3 =--:r -Kp+T

U(n) = nth sample of output of controller

. u(n-2) = (n-2)nd sample of output.

(15)

This is the final form of the PID controller. At this point, the controller coefficients must be determined.
The PID controller can be designed by determining Kp, K;, and K.!, solving K1, K2, and Kl , and substituting
into equation (15). Alternatively, the design can be carried out in the z-domain; and, constants K .. K2, and
K3 can be directly determined.

The gain constants K .. K2, and K3 are designed by selecting the poles for the system transfer function (i.e.,
controller + plant). The dominant poles are selected by choosing a desired characteristic equation. The rest
of the poles can be selected by placing them near the origin. These polar locations are chosen to ensure sys­
tem stability and a desired system response. Note that pole locations can also be chosen by using both the
step response performance criteria and the root locus from the z-plane's unit circle in Figure 9. However,
some fine-tuning may be necessary to achieve an optimum response from the system. As the poles move
toward the unit circle, the system response speed decreases while the overshoot increases, and the system
may become unstable if the poles are selected just inside or outside of the unit circle's boundary. For exam­
ple, Figure 13, Figure 14, and Figure 15 show step-response curves of a PID controller being influenced
by the system's poles. The transfer function for the controller can be stated as

G () - KI + K2Z-1 + K3Z-2 (16)
c z - l_z-2

The transfer function of the plant is given by

G (z) = 0.2694z + 0.2693
p Z2 - 1.999z + 0.999

The overall system transfer function is expressed as

G() _ [Gp(z)][Gc(z)]

s z - I + [Gp(z)][Gc(z)]
(17)

!II
C
II

Figure 13. Position Step Response of a PID Controller

1.4r-____ r-____ ~~~~--~P~O~sl~tl~on~S~wTP~R~es~p~onTse~--~----~----~--__ ~

1.2
!II

Ii 1
i
a:: 0.8
.5
c t o.6

If 0.4

0.2

2.5

2r - ,-

- .
.. .. i i ..

.......... , ,

10 20 30 40 50 60 70
Time In #Samples

.. J)

.. ,
Pole Locetlons

z, = 0.90
Z2 = 0.91
Z3 = 0.95
Z4 = 0.95

K." = 104

80 90

Figure 14. Position Step Response of a PID Controller
Position Step Response

'-

Pole Locations
z, = 0.20
Z2 = 0.24
Z3 = 0.30

- -

100

'6
&! 1.5 r - ,- Z4 = 0.22

Km = 104
,- , , - -

.5
c
~
!II
0 a.

-V,
0.5 ,- , , - - - -

0 0 10 20 30 40 50 60
Time In ilSamples

70 80 90 100

Figure 15. Position Step Response of a PID Controller

1.2r-----,------r-----r--~P~OS~lt~lo~n~S~t,e~pR=e=s~po=nrse~---r----~-----. ____ ~

!
';0.8-­
&!
.5 0.6
c
.2 lO.4

0.2

'-

'- '-

,

.. .. I.. ..

- --
, ,

- - - Pole Locetlons -­
z, = 0.96
Z2 = 0.95 - -
Z3 = 0.20
Z4 = 0.15 - -

Km = 104

°0~--~10.---~2O~---3~0.---~4O~--~~~---=60.---~7=0----=60.---~9~0--~100
Time In #Samples

51

52

The denominator of the system transfer function provides us the poles of the overall system. The stability
and robustness of the system depend upon the location of these poles in the z-domain. Assuming pole loca­
tions of 0.96, 0.95, 0.20, and 0.15, a desired characteristic equation is obtained. To solve for values of Kio
K2, and K3, the coefficients of powers of z for the denominator of the system transfer function are compared
with the desired polynomial. Appendix I shows the design carried out by usit:lg PC-Matlab. The zero order
hold represents the function of the D/Aconverter; the sampler represents the function of the AID converter.
The closed-loop system pole locations are input to the program, and the coefficients Kio K2, and Kjare cal­
culated to ensure desired pole locations. One of the pole locations is chosen at z= I to ensure integral action.
Solving for Kio K2, and K3 gives

KI 1.4795

K2 -2.845
K3 1.3636

Our final algorithm comes out to:

u(n) = u(n-2) + 1.4795[e(n)] -2.8405[e(n-I)] + 1.3636[e(n-2)] (18)

Implementation Considerations: The PID design above has used the traditional or textbook definition.
'In practice, a number of refinements are made to the standard form to give'it better behavior in some cases.
Although designing directly in the z-domain avoids some of the problems, several concerns are discussed
here.

One of the major problems faced in implementation of PID controllers is integral windup. A large change
in the error signal can cause the integral to build up a large gain and make the actuator saturate. This essen­
tialJy means that the control loop is running open. Even after the error goes to zero, the controller continues
to integrate because of the integral action; consequently, the integral, term could become very large. The
error signal must change sign long before the controller normalizes; otherwise. the integral windup could
cause large transients.

Several options can minimize the effect of integral windup. One possibility is to build an extra feedback
loop around the actuator and control the error between the controller output and the actuato~output. Another
possibility is to stop the integral action when the output saturates. This can be done very easily in the proces­
sor by detecting output saturation (using saturation mode in TMS320) and using another set of coefficients
that do not include integral action. Also, it is good practice to limit the contribution of the integral term be­
tween 10 %. and 20 % of the control effort.

Another concern is the behavior of the derivative term. A large number of controllers are implemented as
PI controJlers to avoid derivative action. Differentiation enhances noise, and derivative term can contribute
to high-frequency measurement noise. It is necessary to limit the derivative gain at high frequency by plac­
ing a pole in the derivative term given by

1

1 + SKp
N

where N is in the range of 3 - 10.

The derivative term also wiII amplify the noise for any sudden changes in the set point. This is known as
the derivative kick. For this reason, the set point is sometimes fed only to the integral term.

One of the disadVantages of carrying out the design in the discrete domain is that the PID gains are not ex­
plicit, and no direct control over integral, derivative, and proportional gains is available. However, pole

placement design techniques give more control over the frequency response and treat the controller as a
standard compensator. Integral action is ensured by placing a pole at :z=l. Actually. the PID controller is
a special case of:l phase lag-lead compensator. The PO control action affects the high-frequency region by
increasing the phase-lead angle. It improves system stability and thus increases the speed of response. The
PI control action affects the low-frequency portion by increasing the low-frequency gain and reducing the
steady-state error.

Deadbeat Controller: One of the desired characteristics in a control system design is a quick settling
time. In al'l analog controller, the system output theoretically uses an infinite time to settle exactly to the
reference input signal. A deadbeat controller is used when a quick or finite settling time is required. A dead­
beat controller will reach a steady-state in n+ I samples where n is the order of the controller. Essentially,
a deadbeat controller cancels all the poles of the system and replaces them with poles at the origin. Another
advantage of deadbeat controllers is that they require few calculations. Therefore, they can be used in sys­
tems where synthesis must be repeated frequently (e.g., adaptive control systems).

Controller Design: The transfer function of a deadbeat controller is given by

G _ Po + PIZ-I + P2Z-2 + ••• + PnZ-n
db - q" + qlZ-1 + q~Z-2 + ... + qnZ·n

(19)

The order n of the controller transfer function is the same as the order of the plant transfer function. or n=2.
The deadbeat controller will reach final state in n+ I or three sample time intervals.

To design the deadbeat controller. its coefficients p" ... Po and q() ... qo must be found from the parameters
of the motor.

The general form of a plant (Le., motor) is given by

G (z) = b() + bIz-I + b~z-2 + ... + bnz-n
p 110 + UIZ-I + a2z-2 + ... + BoZ-n

If R(z) is the reference input, the coefficients Pn and qn are
r r

p ----
o - L bi - bo + bl + b2 + ...

Pn =anPo

and

qo = r- boPo
ql =-bIPo
q2=-b2Po

53

54

The transfer function of the DC selVO motor is

G (z) = O.2694:c1 + O.2693:c2

p 1 - 1.999z-1 + O.999z-2

Since the plant transfer function is a second-order system. the deadbeat controller i~ also a second-order
system (n = 2).

From the plant transfer function.

80 = I, al = -1.999,

bo = 0, b l = 0.2694,

a2 = 0.999

b2 = 0.2693

The numerator and denominatorofGdb(Z) is divided by r. Thus, rdisappears from the calculations of coeffi­
cients.

Solving for the coefficients yields
1

Po = 0.1566
bo + bl + b2

PI = alPo = -0.3129

P2 = a2PO = 0.1564

qo= 1- boPo = 1
r

q, =-b,po =-0.4218

q2 = -b2Po = -0.4216

The controller becomes

G (z) = 0.1566 - 0.3129z-' + 0.1564:c2

db 1 _ 0.4218z ' _ 0.4216z-2

or, in time domain, it can be represented as

(20)

u(n) = 0.1566[u(n-l)] + 0.4216[u(n-2)] + 0.1566[e(n)] - 0.3129[e(n-I)] + 0.1564[e(n-2)] (21)

Appendix 2 shows a PC-Matlab program that designs and simulates a deadbeat controller. Figure 16,
Figure 17, and Figure 18 show the response of a deadbeat controller with different values of sampling rates
and DC gain.

Implementation Considerations: Deadbeat controllers compensate for the poles of the system and place
all the poles of the closed-loop system at the origin or z=O; therefore, they should not be applied to unstable
systems with poles outside the unit circle or with poles in the vicinity of the unit circle in the z-plane. Simi­
larly, zeroes outside the unit circle should not be cancelled with unsrdble poles. Thus, deadbeat controllers
should be used only with stable plants or processes to prevent instability. Since deadbeat controllers do
pole-zero cancellation, they are also sensitive to parameter variations. Deadbeat controllers can also be
viewed as a special case of pole placement where all the poles are placed at the origin.

The only design parameter in deadbeat controllers is the sampling period; therefore, it is important to care;­
fully choose the sampling period when using deadbeat control. Selection of the sampling period influences
the magnitude of the control signal; the magnitude of the control signal increases with a decreasing sam­
pling period. This can lead to a large amount of gain and then to actuator saturation. This is one of the main
reasons why deadbeat controllers are not commonly used.

Figure 16. Position Step Response of a Deadbeat Controller
Position Step Response

0.9 - - I
~0.8 - -
~0.7 - -
&!0.6 - - -
.5 0.5 - - - -, - -
~0.4 - - -= :I 0.3 c- - -
~0.2 - - -, - -

0.1 ;- I - _. - -

- -,
- - -, - - --

- --
- --
- --
- --
- --
- --

T _ 5msec -
Km = 104 _

00 5 10 15 20 25 30 35
Time In ilSamples

Figure 17. Position Step Response of a Deadbeat Controller

111
0•35 f- ' Ii 0.3

i0.25 -
~ 0.2 -

~0.15
ii 0.1
~0.05

o 0 10

~ -

20

Poshlon Step Response

.. -I'" ... T -I ..

30 40 50 60 70
Time In lISamples

·T
. Km

80

- -
- -
- -
- -

3msec -
1()4 _

90 100

Figure 18. Position Step Response of a Deadbeat Controller
Position Step Response

0.9 - - I - ,- -
~ 0.8 - -

:6 0.7 - -
&!0.6-- -
.50.5-- -
c
.20.4-- -= :1 0.3-" -
~0.2- - -,--

0.1 - I - -, - -
00 5 10 15 20

Time In lISamples

- -
- --
- --
- --
- --
- --

.. ... 1- -I" -

25

T =5msec­
Km = 105 -

30 35

Deadbeat controllers are designed to optimize rise and settling time. They trade overshoot for rise time, so
they may exhibit large overshoot. Overshoot can be reduced by increasing the settling time. Besides increas­
ing the sampling period, there are two ways to reduce the overshoot. The first method is to design an
extended order deadbeat controller that can specify either u(O) or the initial control action. Since u(O) has
the largest magnitude, this controls the overshoot. An alternate method is to divide the r(t) or the desired
final state into two or three sublevels and to reach final steady-state in [2(n+I)] or [3(n+I)] sample times

55

56

instead of (n+ 1") sample times. This essentially has the same effect as increasing the sample time. However,
the final overshoot can be more precisely controlled depending upon how r(t) is subdivided.

State Space Model: State space formulation is one of the fundamental concepts of modem control
theory. Most modem control systems are designed using a state space model approach. A state space model
allows the representation of a complete system, whether single variable or multiple input/output. The state
controller is able to simultaneously control all of the specified states or variables of that system. This type
of controller lends itself naturally to solutions with computers and can be used to handle certain types of
nonlinear and time-varying systems.

In a state space model, the system is described by a number offirst order equations. An analog or continuous
data system is represented by a set of first-order differential equations, caIled state equations. For a digital
or discrete data system, the state equations are first-order difference equations. These are then combined
into vector-matrix equations. The use of vectors and matrices greatly simplifies the mathematical descrip­
tion of the system.

State Controller Design: In a state controIler, feedback gains are provided to all of the states or variables
(i.e., position, velocity, torque) that are included in the state space model. These feedback gains can be either
constant or time-varying. Pole placement techniques are used to place all the poles of the closed-loop sys­
tems at the selected locations and to calculate the feedback gains, thus obtaining the desired response. This
analysis assumes that all the states are being measured and are known. In practice, this is unrealistic. Hence,
the analysis is carried out in two phases. In the first phase, it is assumed that all the states are available and
that an appropriate controIler will be designed; the second phase shows the use of estimators. The estimator
is used to reconstruct all the states of the system from measurement of some of the states. For the analysis
below, it does not matter whether the states are being measured with sensors or are being reconstructed with
estimators.

In general, the state space description of system is given by these equations:

x(n+l) = A [x(n)] + B [u(n)]

y(n) = C[x(n)] + D[u(n)]

The actual controller is given by the following equation:

u(n) = - {K[x(n)]}

where x(n+l), x(n), A, B, C, D, and K are matrices described as follows.

x(n), x(n+ 1) - state vectors describe the system states
A - state transition matrix describes plant behavior

B - input matrix describes affects of inputs
C - output matrix describes which states are measured
D - direct link matrix describes feedforward gains
K - feedback matrix describes feedback gains
u - control vector describes control inputs
y - output vector describes measure~ents of plant output

(22)

(23)

The state space model for a DC motor can be derived from the electrical and mechanical characteristics of
the motor. The mechanical characteristics are given by

Imij + DB + KO = TL -JJj

The electrical characteristics are given by

L di +Ri =V-emf
dt

Simplifying and combining above two equations yields

6=bu-a6

a=(+)(B + ~K.)

b=(+)(~')
u = V

K= 0

Assuming that the states are described as

x I (J for position

X2 XI = iJ for velocity

X2 6
The state space model can be defined as

(24)

(25)

(26)

Combining (25) and (26) in a matrix form. the model for a continuous data system can now be defined as

(27)

Equation (27) is a set of first-order differential equations and describes the system in a continuous data form.
A conversion to a set of difference equations is necessary for use in a discrete data system. The discrete form
is given by equation (28). The derivation of this is fairly involved and not presented here. However. if the
values of a and b are substituted in equation above. the discrete equivalent can be found by using PC­
Matlab. The general form of the discrete state space model is given by:

where

T = sampling interval

xl(n) = position at time interval n

x2(n) = velocity at time interval n+ I

(28)

57

<,58

Using the PC-Matlab function given below and substituting values for a, b. and T. we can obtain the discrete
equivalent.

Using czd(aa,bb) = A,B,C,D and the given values for its parameters, we find the discrete equivalent of the
model as:

[
x)(n+l)] [I 0.041] [x)(n) ']

x2(n+ I) 0 0.219 x2(n)

+ [
< 0.039]< <

87.9 u(n)

0.78 (29)

The design problem is to find elements offeedback gain matrix K(k h k2 ••••) so that the closed-loop system
has the desired response.

After substituting (23) for u(n). equation (22) can be restated as

x(n+l) = A[x(n)] - B{K[x(n)])

or

x(n+ I) = (A - BK)[x(n)] (30)

Equation (30) describes the closed-loop state model. The behavior of the closed loop is determined by solv­
ing of the ~haracteristic equation given by

IzI - A + BKI = 0

Solving this gives an equation with unknowns kl and k2 (elements ofK). kl and k2 can be solved by compar­
ing coefficients with the polynomial with desired pole locations (in other words, if pole locations for the
actual controller are chosen as 0.90 and 0.95, the characteristic polynomial is given by Z2- 1.85z + 0.855).
kl and k2 will be found again by using PC-Matlab. The function PLACE, given pole locations r, will solve
for kl and k2. Using the following command,

K = PLACE(A,B,r)

we obtain the following values

kl =0.089

k2 = 0.001

The state controller is then implemented as

u(n) = - 0.089[xl(n)] - 0.001 [x2(n)] (31)

Implementation Considerations: See Implementation Considerations for the observer model on
page 63.

Observer Model: The concept of being observable is another fundamental idea of modem control
,theory. An observer model.is an estimate of all the states of a plant derived from measurements of some
of the oUfputs (for instance, states such as velocity or current can be derived from measurement of displace­
ment). Essentially, it reconstructs the state by simulating in realtime the behavior of the system and then
compares the results to the measurements. In some cases, design of this tyPe may be necessary if one of
the states that is needed for the controller is not measurable. In other cases, use of an observer can reduce
the number of sensors required or allow lower-cost sensors to be used. Figure 19 shows the block diagram
of a state controller and an estimator.

Figure 19. State ControllerlEstimator

-K
uCn)

Controller
~(n)

Observer Model and Estimator Designs: The observer model is described by

x(n + I) = A[x(n)] + B[u(n)] + L[y(n)-Cx(n)]

where

y(n)-Cx(n)

x(n) =
C
L

estimation error
estimated states
[I 0] for position mea~urement
observer gain matrix

Equation (32) can be rearranged in the form of

x(n + 1) = (A- LC)fx(n)j + B[u(n)] + L[y(n)]

Substituting for u(n), the equation can be restated as

x(n + 1) = (A - BK - LC)[x(n)] + L[y(n)]

yen)

(32)

(33)

According to the principle of separation, the controller dynamics can be separated from the observer
dynamics, and both can then be designed independently. The controller dynamics are determined by the
characteristic equation given by

IzI-A-BKI

The estimator dynamics are given by this characteristic equation:

IzI-A-LCI

59

60

The estimator design is developed like the controller design in the previous paragraphs; that is, gains are
designed for the estimator matrix L (i.e., II, b). II and b are found by selecting the poles of the observer
to be slightly faster than the system to allow quicker convergence. If the poles are placed at:z=O, the ob­
server is then referred to as a deadbeat observer.

Solving the equation IzI - A - Lei provides an equation in term of unknowns II and h. Selecting desired
pole locations gives a characteristic polynomial. The poles of the controller are given by

Zh Z2 = 0.9, 0.95

Using slightly faster poles for the observer and placing them at

Zh Z2 = 0.4, 0.5 gives the characteristic polynomial as

z2 - 0.9z - 0.20

II and b were found by using the PLACE function of PC-Mat lab given pole location I, L = PLACE(A' ,c' ,I),

11 =0.79

12 =2.95

Appendix 3 shows the complete listing of the PC-Matlab program. The observer model is

[
Xt(n+1)]

x2(n+1)

[
1.07 0.041] [Xt(n)] + [2.8] + [0.79]

--{).09 0.219 x2(n) 68.5 u(n) 2.95 y(n)

(34)

Figure 20 (a and b), Figure 21 (a and b), Figure 22 (a and b), and Figure 23 (a and b), show the response
of a state controller and an estimator for various pole locations.

Transfer Function Form: The observer and the state controller can be implemented by using equation
(34), or the mathematics can be further simplified by combining some of the matrices and obtaining an
equivalent transfer function. This is possible only for a SISO (single-input/single-output);

The control law given by (31) is assumed. and the state controIlerdesigned earlier will be used. The control­
ler is given by

u(n) = - K[x(n)]

Taking the z-transform of equation (33)

z[x(z)] = (A- BK- LC)[x(z)] + L[y(z)]

or

x(z) == (zI - A + BK + LC)"lL[y(z)]

(35)

(36)

Taking the z-transform of equation (35) and substituting (36), the controller/observer transfer function can
be stated as

~~:~ = - K(zI - A + BK + LC)"IL (37)

Figure 20. Step Response and Control Effort of the State Controller/Estimator

0.9

0.8

0.7

g 0.6

~ 0.5
o
0. 0.4

0.3

0.2

0.1

-'

.. I...

... ... ,-

20 40

a) Step Response

,

-' - _ _ l
.. I ...

,

.. ,

60 80 100
Time In lISamples

, ,

- Actual Position
- - Estimated Position

Pole Locations
z, = 0.95
Z2 = 0.90

120 140 160

f~ E;..;...:: ..:...~ ..:...-.;..-__ :: .;;..-.;;..-..... :: __ :b) ___ co __ ntro_~ I_~ffo_-rt_;_-: _--_-_-:-! -_-_-_;_: -------tj
-50 0 20 40 60 80 100 120 140 160

Time In lISamples

Figure 21. Step Response and Control Effort of the State Controller/Estimator

c

0.9

0.8

0.7

0.6

~0.5
If 0.4

0.3

0.2

0.1

- '-

a) Step Response

.. I L

, ,

.. ,

, , ,

.. , - ;- I ..

...
- Actual Position
- - Estimated Position

Pole Locations
z, = 0.95
Z2 = 0.98

o 0~~--~-----40~----~6~0----~80~----1~0~0-----1~2O~--~1~40~--~160
Time In lISemples

61

62

Figure 22. Step Response and Control Effort of the State ControllerlEstimator
a) Step Response

1r---~~--~----~~--~----~----~----~-----'
0.9

0.8

0.7

cO.6
.!!
11 0.5

.f0.4

0.3

0.2

-

-

-,

, -

- ,
-,

20

-

- -

-

-

.. I.. f..

... I ..

- - - , - - - -, - - - '1

- - -, - -
- J - , - -, - - - J

- , - - - ~

- ,- - - -, - - - ,
40 60 80 100

Time In #Samples

.. I.. ...

,

- - - - - - - -, ,
- - -, -

- Actual Position --Estimated Position
Pole Locations

z, = 0.75
Z2 = 0.70

120 140 160

f~[J-:~ _~ -_-_-::_~)~_~:_~IE~_O~_~ -_----i---_::_~ ----I:j
-5000 20 40 60 80 100 120 140 160

Time In #Samples

Figure 23. Step Response and Control Effort of the State Controller/Estimator
a) Step Response

'1.4 ~--.-----r---r-'--...!......-'-----r---"-----'-----'

1.2-(\-:-
1 -~ -~~~--------~----~------~----~----~~--~

- -, - --

.§ 0.8
... __ 1 ___ .1.... _1 .. __ '" -, - - --

~ 11.0.6 ... I" , ,- I" , ,- - --
- Actual Position
- - Estimated Position -

Pole Locations
0.4 -- -........ --

" ,
0.2 Z, =Z2 =0.8±jO.3 -

20 40 60 80 100 120 140 160
Time In #Samples

j~K;; ___ ~_j_--_-_:-~_c~n~~(_:~_j-_-_-:-_--~_: ___ ~_j
-20000 20 40 60 80 100 120 140 160

Time In #Samples

Substituting values of A, B, L, C, and K and solving (37), we obtain

G(z) = U(z) 0.OO8z-1 + 1.388z-2

Y(z) 1- 0.95z-1 + 0.12z-2
(38)

where

A = [; 0.041]

0.219

[
2.81]

68.56
B

C [I OJ
K [0.089 0.001 J
Transferring (38) in the time domain,

u(n) = 0.95[u(n-l)] - 0.12[u(n-2)] + O.OO8[y(n-I)] + 1.388[y(n-2)] (39)

Equation (39) is the final form of the state controller plus observer model in a transfer function form. How­
ever, this form is not commonly used because it loses insight into the estimator dynamics.

State Controller and Estimator with Reference Input: The controller design in the previous topic was
done assuming no reference inputs or commands. Instead, the problem deals with driving all the states to
zero. This is known as a regulator application. However, there are cases when the state controller may be
required to follow a reference commancl r(n). Such a system is known as a servo system.

The general description of a state controller and estimator with reference input can be stated as

x(n + 1) = (A - BK - LC)[x(n)] + L[y(n)] + M[r(n)] (40)

and the controller can be described as

u(n) = - K[x(n)] + N[i"(n)]

N is a scale factor and acts like a DC gain between input and output. M is given by BN.

If a reference signal is not available, but instead the error between the reference and output signal
e(n) = yen) - r(n) is available, then the same structure given by equation (40) can be applied. However, in
this case, we let N=O and M= -L; yen) is replaced by yen) - r(n). The state model can be described as

x(n + 1) = (A - BK - LC)[x(n)] + L[y(n) - r(n)]

u(n) = - K[x(n)]

(41)

Appendix 3 lists the PC-Matlab program that also simulates a state controller and an estimator with refer­
enceinput.

Implementation Considerations: State controllers and estimators are generic structures, which can be
used to meet a variety of requirements. They allow full control of closed-loop dynamics and the use of CAD
tools. Pole placement can be done by using either optimal methods or classical methods. Realtime pole
placement techniques can be used for adaptive control. State controllers are good analytical tools for

63

64

designing controIlers, but one must be sure that the design can be implemented. For example, if poles are
placed at z=O, the problem becpmes the same as a deadbeat controIler. Care must also be exercised when
selecting the states. Although it may be possible to represent the states mathematicaIly, the states may not
be controllable or observable. State controIlers may also result in a higher-order system, which implies a
more sophisticated processing requirement from the controIler. The observer's pole locations need to be
considered as weIl. Those pole locations that lie closer to the origin aIlow the observer to achieve a faster
response while, at the same time, increasing its susceptibility to noise. Those that lie farther from the origin
improve the observer's noise characteristics while slowing its dynamics.

Optimal Control and Estimation: The previous topics described the design techniques that use pole
placement. It was assumed that pole locations were known. This can usuaIly work weIl for single-input!
single-output or low-order systems; but, for high-order systems, pole placement becomes difficult. Espe­
ciaIly where multi-input or multi-output systems are concerned, choosing pole locations can be difficult,
and an exact solution may not occur. This topic describes an alternative method to selecting feedback gains
that will provide an optimal solution. The first part explains how to choose optimal gains for a feedback
controIler known as LQR (linear quadratic regulator); the second part describes how to design an optimal
observer known as Kalman filter; the final part considers implementation. Appendix 4 lists the PC-Matlab
program that simulates both the linear quadratic regulator and the Kalman filter.

Linear Quadratic Regulator: The feedback gain for a LQR controIler is chosen by minimizing a cost
function or a performance index. This is typicaIly a quadratic function given by

J = 2JxT(n)Q(n)x(n) + uT(n)R(n)u(n)] (42)

where uCn) is control vector, x(n) is state vector, and matrices Q and R are weighting matrices that have
to be designed. Matrix Q is symmetric and positive semi-definite, and R is symmetric and positive definite
(a matrix is positive definite if all its eigenvalues are real and positive, and a matrix is positive semi-definite
if all its eigenvalues are either real and positive or zero). The first term in the cost function minimizes the
states and drives the states to zero as rapidly as possible. The second term minimizes the control effort. Al­
ternative cost functions can also be chosen.

The cost function for a second-order system can be written as

[
qll q12] [XI]

J= [XI X2] +

q21 q22 X2

If it is necessary to minimize Xl and X2, then only Xl 2 and X22 need to be minimized. Or, ql2 and q2l can be
set to O. Similarly, rl2 and r2l can be set to o.

The control law is given by

u=-Kx

where

K is the optimal gain.

K is given by

K = [R + BTpBjlBTpA (43)

where

P is given by

P(n+ 1) = ATpA + Q - ATpB[BTpB + R]B-IBTpA (44)

Equation (43) is known as the algebraic Riccati equation. For steady-state. the above matrices can be as­
sumed to be constant and the optimal gain K can be chosen off-line. The gain for the example is again
calculated using facilities ofPC-Matlab and is given by the following function

K=dlqr(A,B,Q,R)

The following values were selected for Q and R.

Q [~ o.oo~]
R

This puts a higher cost on minimizing XI. The following value is obtained for the feedback gain K.

K = [456.9 14.8]

Figure 24 (a and b), Figure 25 (a and b), Figure 26 (a and b), and Figure 27 (a and b) show the response of
the system with various values of Q and R. In practice, there is no method for determining exact values for
matrices Q and R. A trial and error method is used to select these matrices. A common technique is to test
the step response of the system with various values of Q and R. This technique allows explicit control of
different variables. Even in cases where a loss function is not known, this gives better results than pole
placement techniques.

Kalman Filter: The state estimation techniques discussed earlier assumed that accurate measurements
are available. In some cases, this is not true. A Kalman filter allows estimation despite noise in the measure­
ments. This topic discusses the Kalman filter with constant gains, which is called a stationary Kalman filter.
The gains are calculated off-line. The structure of the filter is the same as the observer that was discussed
earlier, except that a different procedure is used to calculate the observer gain matrix L. It is also possible
to implement a Kalman filter with time-varying gains; in which, case the structure becomes similar to an
adaptive control or system identification problem.

The plant can now be described with an equation given as

x(n + 1) = A[x(n)] + B[u(n)] + wen)

where

x, U, A, and B are as described earlier. wen) is process noise or a disturbance acting upon the plant.

The output is given by

yen) = C[x(n)] + Yen)

where

(45)

(46)

y, X, and C are as described earlier. v(n) is noise resulting from the l)ensor and/or acting upon the measure­
ment. The inputs wen) and Yen) are assumed to be unrelated and to have Gaussian distributions.

65

66

Figure 24. Step Response .and Control Effort of the LQR

a) Step Response
1.2.----r----~--~--~~~~~-,----,---~----~---,

1
c
~0.8
~0.6
tLO.4

[10 0]
Q. 0 0.001

R = 0.00001
0.2
O~0~~~--~--~~--~80~~1~0~0--~1~~~~1~~~~1±~~~1±~~--=200·

Time In #Samples

35

30
25

=~
.G15 c
810

5
o

0.9
0.8
0.7

~0.6
'i0.5
.f0.4

0.3
0.2
0.1

b) Control Effort

.~ ~ 100 1~ 1~ 1~ 1~ ~O
Time In #Samples

Figure 25. Step Response and Control Effort of the LQR

a) Step Response

c -, -

- -, - - - [10 Q= 0 O.OO~]
R=O.01 - - ,- -

~ 80 100 120 1~ 1~ 1~ ~O
Time In #Samples

b) Control Effort

- -
,- - - - - -, - - ,- - - - - - - --

- - --
------------, , - - - - - - --

~ 80100 1~ 140 160 180 200
Time In #Samples

Figure 26. Step Response and Control Effort of the LQR
a) Step Response

0.9 ,...---,---,.--,----i--:.....,---=--,---,----,---,---,

0.8
0.7

c O•6
o i o.5
~0.4

0.3
0.2
0.1

- -, .. - r -

[0.1 0]
Q = 0 0.0001

_ _, _ ~ = 0.01

00~--~-~~-~6~0-~8~0--z10bO~-1~2bO~~1~4~0-~1~6~0-~1~80~~2d00
Time In 'Samples

b) Control Effort
3.5 ,...---.----r--,.-----r:......::.=;..==:.:r----r---r---.----,

3
"2.5 e 2
~1.5
o 1

.. .. i I" .. -. 1- ,
------,

, ------
0.5 ~-~-~-~-~! ~-~-~-~-~-~±~~::::;:::::-::-i.'-;:::-~-'~-,,;;,-J
o 0 20 40 60 80 100 120 140 160 180 200

Time In 'Samples

Figure 27. Step Response and Control Effort of the LQR

1
0.9 - -, T-

0.8 --'--T
0.7

60.6
io.5
~0.4

0.3
0.2
0.1

a) Step Response

-, -
- - , - - -, -
- - , - -
- - , - -

- ,- - - , - -
- - , - -
- - , - -

- - , - c

[0.1 0]
Q = 0 0.0001

R = 0.00001 - - - -
°0~~~-~4O~-~-~~-~~~~-~~~~-~~~· 60 80 100 120 140 160 180 200

Time In ilSamples

Control Effort b)
35r----r----.---~r----r~--._--_.----_r----r---~----~

30
25

" _20
g15 c
810

5

- - , - -

O~~~~~~t=~~~~~.
60 80 100 120 200

Time In 'Samples

67

68

The Kalman filter requires minimizing the mean square estimation error. This is given by

J = 2Je(n)eT(n)] (47)

where
e(n) is the estimation error given by

e(n) = x(n) + i(n)

In general. the design equation for a steady-state Kalman filter is expressed as

i(n + 1) = XCn + I) + Lp{[y(n + I)] - C[XCn + I)]}

XCn + 1) = A[i(n)] + B[u(n)]

This is also referred to as a current estimator because the latest measurement y(n+ I) is used for the estima­
tion error. When the latest measurement y(n+ 1) is made. X(n + 1) will then be precomputed and updated.
The estimator gain Lp is the Kalman gain. It minimizes the mean square estimation error and is represented
by

Lp = PCT(R. + CPCT)-I

where

P = Rw + APAT - APCT(R. + cPCT)-ICPAT

Matrices Rw and Rv are known as covariance matrices and must be designed. They are usually selected as
diagonal matrices because there is no information on cross-correlation of the noise elements. The rms value
of the sensor noise can be directly used in the measurement covariance matrix R •. The values given for Rw
and Rv are chosen by using the facilities of PC-Matlab and the function dlqe.

The Kalman gain Lp is obtained by

Lp = dlqe(A.G.B.Rv.Rw)

where

L - I -6[0.3162]
p - e 0.00003

and

[.0001 0]
Rw = 0 .000001 Rv = 0.1

Figure 28 shows a block diagram of the Kalman Filter.

Figure 28. Kalman Filter
w(n)

Controller

estimator

Plant

Figure 29 (a, b, and c) shows the response of a Kalman filter due to sensor noise and disturbance effects.

Figure 29. Response of the Kalman Filter

4
a) Step Response - Measured Position

3 - -, - - -, r - - - -, -; ("

2
c
.2
1\1
0

Do

0

-1 '- ~ - - - - -
-20 20 40 60 80 100 120 140 160 180 200

Time In #Samples

1.2
b) Step Response - Estimated/Actual Position

- - , - - - - - - -,

0.8 - - - - - - - - - - - - - - - -
c

~0.6 - - - - - - - - - - - - - - - -
0
Do

0.4 - - - - - .'

0.2 · . . · . . .'

20 40 60 80 100 120 140 160 180 200
Time In lISamples

c) Control Effort with Disturbance
50

40 · ., - · " . . ,.
"

30 - ., . . . - , . .
::>

:g20 · ., . · . " . . ,. .
c
0
0

10 - ., - . . . - , - .

0

-10 0 20 40 60 80 100 120 140 160 180 200
Time In lISamples

69

70

Implementation Considerations: Implementation considerations for LQR controllers and Kalman fil­
ters are not essentially different from those for state controllers and estimators. Their structures are the
same, only the design approach is different. Still, the following should be taken into account.

When designing an LQR controller, some weight should be placed on the R mlltrix as controi signals could
become excessively large. Note that the LQR approach to controlling does not necessarily guarantee that
the optimum solution will be found. Still, the Q and R matrices do allow the designer to trade-off between
control effort and speed of the response while, at the same time, guaranteeing a stable system.

When designing a Kalman filter, R. can usually be chosen realistically since some information on sensor
characteristics and accuracy is available from the manufacturer. Rw is more difficult to chose. If it is chosen
to be zero due to lack of information, the Kalman filter's gain is zero; the estimator runs open-loop. As a
result, no adjustment is made to the estimated states. This causes the model to slowly drift. Again, as in the
case of Q and R for the LQR controller, the designer can trade-off between reliability of measurements and
plant model. As Rw increases, more reliance is placed upon the measurements, while less reliance is placed
upon the plant model. As R. increases, more reliance is placed upon the plant model. and less reliance is
placed upon the measurements.

Summary
This paper has given a basic overview of digital control theory without going into too much mathematical
detail. The use of CAD tools like PC-MatIab, Matrix-X, and Simnon is strongly recommended in order
to eliminate some of the drudgery in the math calculations and to provide simulation of a system under de­
sign.

The choice of the appropriate controller structure will depend largely upon the user's background and
application. Classical control techniques have been practiced for a long time, and people have acquired an
intuitive feel of the behavior of those designs. Modern control theory now gives more capabilities to these
systems; but, at the same time, most of the theoretical/implementation information is still fairly new and
unfamiliar. .

However, it should be emphasized that the behavior of any system in actual practice largely depends upon
the implementation and not upon the elegance of its design. Elegant theories are attractive: but a simple de­
sign, when properly implemented, can yield a more superior performance, higher reliability, and better
manufacturability than a sophisticated design that is poorly implemented.

In general, it is advised that modern control theory be used. With their powerful simulation capabilities,
today's new CAD design tool can eliminate much of the user's fear and uncertainty, along with the laborious
mathematical calculations. At the same time, powerful processors like DSPs are able to implement complex
designs in practical and cost-effective systems.

References
1. Astrom, K., and Wittenmark, B., Compllter COllfrolled Systems, Prentice-Hall, 1984.
2. Phillips, C., and Nagel, H., Digital COllfrol Systems, Prentice-Hall, 1984.
3. Isermann, R., Digital Control Systems, Springer-Verlag, 1981.
4. Franklin, G., Powell, D., and Workman, M., Digital Collfrol of Dynamic Systems, Addison-Wesley,

1990.
5. Jacquot, R., Digital Control Systems, Marcel Dekker, 1981.
6. Katz, P., Digital Control Using Microprocessors, Prentice-Hall, 1981.
7. Lewis, E,.oPtimai Comrol, John Wiley, 1986.
8. Lewis, E, Optimal Estimation, John Wiley, 1986.
9. Astrom, K., and Hagglund, T.,Automatic Tllning ofPID Comrollers, Instrument Society of America,

l~L .

Appendix 1

%
%

This program will do simulation of a PIO controller using
trapezoidal approximation and a pole placement technique

%
% If the plant transfer function is G(z) = A/B
%
% and controller function is given by H(z)
%
% then the closed loop response is given by
%
%
%
%
%
ggg=l

G(Z)H(z) AC

1 + G(z)H(z) AC + BO

c/o

while ggg==l
%

% run simulation continously

% This section will implement simulation of a dc servo motor
% the motor used in the example is a Pittman motor, model 9412
%
Kt=O.0207;
Ke=Kt;
j=O.00006;
R=6.4;

% Torque constant
%
% Armature inertia + assumed load inertia
% Resistance

sampling period in milliseconds')
% get sampling period

input (, input
T=ans/lOOO;
a=(Kt"2)/(R*j)
b=Kt/ (j*R)

% a, and b will give transfer f~nction in s-domain

pause
ab=b/(a"2); % Calculate values to transfer into z-domain
c=exp(-a*T);
dl=a*T;
d=(c-l+dl);
e=(l-c-(c*dl»;
input('input numerator gain ')
Kg=ans; % get numerator gain
bl=ab*d*Kg; % numerator terms
b2=ab*e*Kg;
al=-(l+c); % denominator terms
a2=c;
num=[O bl b2] % numerator of transfer function in z-domain
den=[l al a2] % denominator of transfer function in z-domain
[A,B,C,O]=tf2ss(num,den)
%

71

%
'%

%
%

This section will design a PIO controller using pole placement
techniques. Desired pole locations have to be input. The PID
is converted into discrete form using trapezoidal approximation

% Enter desired pole locations in the next step
'Enter the location of your poles'
input('Input location of pole 1:
p1=ans;
input('Input location of pole 2:
p2=ans;
input('Input location of pole 3:
p3=ans;
input ('Input location of pole 4:
p4=ans;
p=[p1 p2 p3 p4];

')

')

')

')

% The desired characteristic polynomial is found as
Q(1:5)=poly(p)
% The coefficients of different powers are given by
q2=Q (:,2);
q3=Q (: (3) ;
q4=Q (:,4) ;
q5=Q (: , 5) ; ,
% The system polynomial is given by
% (KIz**2 + K2*z + K3) (b1*z + b2) + (z - 1) (z - r) (z**2 - a1*z +a2)
% Equating coefficients of different powers we get
% four linear equations. The next few steps will solve for
% K1, K2" K3 and r, where r is an arbitrary location of one of the
% poles of the controller.
o = [b1 0 0

b2 b1 0
o b2 b1
o 0 b2

%
01= q2+1-a1 0 0

q3+a1-a2 b1 0
q4+a2 b2 b1
q5 0 b2

%
D2= b1 q2+1-a1

b2 q3+a1-a2
0 q4+a2 b1
0 q5 b2

%
03= b1 0

b2 b1
0 b2
0 0 q5

%
04= b1 0 0

b2 b1 0
0 b2 b1
0 0 b2

72

0
0

-1
l-a1
a1-a2
a2];

-1
1-a1
a1-a2
a2] ;

-1
1-a1

a1-a2
a2 1 ;

q2+1-a1 -1
q3+a1-a2 1-a1
q4+a2 a1-a2

a2 1 ;

q2+1--a1
q3+a1-a2
q4+a2

qo 1 ;

d=det(D);
dl=det(Dl);
d2=det(D2);
d3=det(D3);
d4=det(D4);
Kl=dl/d
K2=d2/d
K3=d3/d
r=d4/d
% This section will implement closed loop simulation of
% PID controller and the DC motor
%
numl=[Kl K2 K3);
Rl=[l,r);
denl=poly(Rl);
compnum=numl;
compden=denl;
procnum=num;
procden=den;

% numerator of PID controller
% poles of the PID controller
% calculate denominator

num5=conv(numl,num); % Multiply numerators
den5=conv(denl,den); % Multiply denominators
input ('specify the time in secs over which you want to see the step: ')
t=ans;
n=t/T; % Calculate number of samples to see simulation
input('input a loop gain: ') % Enter any additional loop gain
g=ans;
u=ones(n,l); % Number of samples to see simulation
closnum=g*num5 % numerator of closed loop system transfer function
closden=g*num5+den5 % denominator of closed loop system trnasfer function
y=dlsim(closnum,closden,u); % do discrete simulation
plot(y)
title('Position Step Response')
xlabel('Time in # of samples')
ylabel('Position in radian')
grid
pause
end

73

Appendix 2

% This file will ,do simulation of a closed loop deadbeat controller
%
% If the plant transfer function is G(z) = A/B
%
% and controller function is given by H(z)
%
% then the closed loop response is given by
%
%
%
%
%
ggg=l

G(z)H(z)
-------~,~

1 + G(z)H(z)

while ggg==l
%

AC

AC + BO

% Keep doing

c/o

% The next section will implement simulation of a dc servo motor
% the motor used in the example is a Pittman motor, model 9412
%

% Torque constant'
%

Rt=O.0207;
Re=Rt;
j=O. OOOQ,~,~
R=6.4;

% Armature inertia + assumed load inertia
% Resistance

sampling period in milliseconds')
% get sampling period

input (, ~Oli'ut
T=ans/1000;
a=(Rt"2)/(R*j)
b=Kt/ (j*R)

% a, and b will give transfer function in s-domain

pause
ab=b / (a ~,2,); ~
c=exp(-a*T);
d1=a*T;
d= (c-1+d1) ;
e=(1-c-(c*d1»;

% Calculate values to transfer into z-domain

input ('input numerator gain ')
Kg=ans; % get numerator gain
b1=ab*d*Kg; % numerator terms
b2=ab*e*Kg;
a1=- (1+c) ;
a2=c;

% denominator terms

num=[O b1 b2] % numerator of transfer function in z-domain
den=[l a1 a2] % denominator of transfer function in z-domain
[A,B,C,O]=tf2ss(num,den)
%
% This section will implement design of a deadbeat controller
% The form of the controller is given by the following equation
%
%
%
%
%
%
%

-1 -2 -3 -.0

pO + p1*z + p2*z + p3*z pn~z
G (z) = --

db -1 -2 -3 -n
qO + q1*z + q1*z + q3*z qn*z

If the plant transfer function is given by %
%
%
%
%

-1 -2 -3 -n
bO + bl*z + b2*z + b3*z•.. bn*z

G

P
(z) = --

-1 -2 -3 -n
aO + al*z + a2*z + a3*z an*z

%
%
%
%
%
pO
pI
p2
qO
ql
q2
%
%
%
%

then the following procedure can be used to design a
deadbeat controller
1/(1 + bl + b2)
al*pO
a2*pO
1
-bl*pO
-b2*pO

This section will implement closed loop simulation of the
deadbeat controller and the DC motor

numl=[pO pl p2];
denl=[qO ql q2];
compnum=numl;
compden=denl;
procnum=num;
procden=den;

% Numerator of the controller
% denominator of controller

num5=conv(numl,num); % multiply both numerators
den5=conv(denl,den); % multiply both denominators
input ('specify the time in secs over which you want to see the step: ')
t=ans;
n=t/T; % Calculate number of samples to see simulation
input('input a loop gain: ')
g=ans;
u=ones(n,l);
closnum=g*num5; % Enter additional closed loop gain
closden=g*num5+den5; % Calculate denominator of closed loop system
y=dlsim(closnum,closden,u); % Do closed loop simulation
plot(y)
title('Position Step Response')
xlabel('Time in # of samples')
ylabel('Position in radian')
grid
pause
end

75

Appendix 3

% This file will do simulation of a closed looped system with
% a DC servo motor and a state controller/estimator. The estimator
% will make a full estimate of states from position measurement>
% The state controller is given by the following equations
%
% x(n+l) = A*x(n) + B*u(n) + L[y(n) - C*x(n)] --- State estimation
% y C*x(n) estimation of measured variable
% u = -K*x(n) ------ control law
%
% States of the system will be position and velocity
%
aaa=l
while
%

aaa==l % Do simulation continously - to exit do CTRL C

% The first section will build model of dc motor
% The motor used in this example is a Pittman motor, model 9412
%
clear;
Kt=0.207;
Ke=Kt;
j=0.0006;
R=6.4;
a=(Kt"2)/(R*j)
b=Kt/ (j*R)
pause
num=[O 1 b]
den=[l a 0]
pause
F=[O 1

o -a]
G=[O

% Torque constant
% Back emf constant
% Armature inertia + assumed load intertia
% resistance
% a, and b will give transfer function in s-domain

% define numerator and denominator of transfer function

% state representation of motor in continous time

b] % convert state model to discrete form
input('Input sampling period in milliseconds ')
T=ans/lOOO; % get sampling period
[A,B]=c2d(F,G,T)
C=[l 0] % Assume position measurement
%
%
%
%
%
%

The next section will implement design of the state controller
and observer using pole placement techniques. Pole locations will
have to be input for the controller. The estimator poles will be
chosen to faster than the controller.

, Enter 0 if you will have complex poles'
input(' and 1 if you will have real poles: ')
X=ans;
if X==O
input('input real part of pole location: ')
rlreal=ans;
input ('input imaginary part of pole location: .)
rlirnag=ans
i=sqrt(-l)
r=[rlreal+ *rlirnag; rlreal-i*rlimag];
end

76

if X==l
input('input location of pole 1:
r1=ans;
input('input location of pole 2:
r2=ans;
r=[r1; r2];
end

,)

,)

K=place(A,B,r)
l=r/2
ll=place(A',C',l)
L=ll'

% do pole placement for controller

%
%
%

% choose observer poles to 1/2 distance from origin
% do pole placement for observer

The next section will do simulation of the closed loop system

D=[O] % direct link matrix is 0
input('input reference signal in radians: 'l
re=ans;
N=[l;O] % position command will be input
xr=N*re % reference state
input ('specify time in sec over which you want to see step: ')
t=ans;
n=t/T; % calculate number of samples
x=[O;O] % actual states - initial values
xe=[O;O] % estimated states - initial values
u= 0 % control action - initial value
%
% This section will do simulation of the motor
%
for i=l:n,
x = A*x + B*u; % simulation of actual plant
y(i)= C*x;
% This section will do simualtion of the controller and estimator
%
u -K*xe + K*xr; % implement control law
yu(i) = u;
xe = A*xe + B*u + L*(y(i)-C*xe); % do state estimation
ye(i) = C*xe; % estimated postion
end
clg
plot(y) % plot actual postion
hold on
plot (ye, '+g') % plot estimated position
ylabel ('Postion ')
xlabel('Time in # of samples')
title('Step response of State Controller/Estimator')
text(O.60,O.40, ,---- actual postion', 'sc')
text(O.60,0.30, '**** estimated postion', 'sc')
grid
pause
hold off
clg
subplot(211),plot(y),title('Step response - Actual Position'),
subplot(212),plot(ye),title('Step response - Estimated Position'),

77

pause
plot(yu),title('Control effort'),
grid
ylabel ('u')
xlabel('Time in f of samples')
end

78

Appendix 4

% This program will do simulation of Linear Quadratic Regulator (LQR)
% and a stationary Kalman Filter.
% The controller and estimator are given by the following equations:
% x(n+1) = A*x(n) + B*u(n) + Lp[y(n) - C*x(n)] --- state equation
% y = C*x(n) --- estimation of measured variable
% u = ~ K*x(n) --- control law
% K is optimal gains and Lp is kalman gains
%
aaa=l
while
%

aaa===l % run simulation simultaneously - to exit use CTRL C

% This section will build model of a dc servo motor
% The motor used in the example is a Pittman motor, model 9412
%
clear;
Kt=0.207; % Torque constant
Ke=Kt; % back e.m.f. constant
j=0.0006; %
Res=6.4; %

rotor inertia + assumed load inertia
resistance

a=(Kt A 2)/(Res*j)
b=Kt/ (j*Res)
F=[O,l;O,-a]
G=[O;b]

% state representation in continous time

input('Input sampling period in milliseconds ')
T=ans/1000; % get sampling period
[A,B]=c2d(F,G,T) % convert state model to discrete time
C=[l 0] % Assume position measurement
%
%
%
%
%
%

The next section will design the LQ Regulator and the
Kalman filter. The cost functions will be input to
to calculate the optimal gains and noise characteristics
will be input to calculate Kalman gains

input ('enter cost function matrix Q:')
Q=ans;
input ('enter cost function R: ')
R = ans;
input ('enter measurement noise covariance Rv:')
Rv=ans;
input ('enter disturbance matrix g:')
g=ans;
input ('enter disturbance covariancce matrix Rw:')
Rw=ans;
K=dlqr(A,B,Q/T,R*T)
Lp=dlqe(A,g,C,Rw*T,Rv/T)
pause
%

% calculate optimal gains
% calculate Kalman gains

79

%
%

The next section will do simulation of the closed loop
system

%
D=[O)
input (, input
re=ans;
N=[l;O)
xr=N*re

% no direct link input
reference signal in radians: ')

% position command will be assumed
% reference state

input (, specify
t=ans;

time in sec over which you want to see step: ')

n=t/T; % calculate number of samples to do simulation
x=[O;O); % actual states - initial values
xe=[O;O); % estimated states initial value
yv= rand('normal'); % characteristics for injected sensor noise
yv=rand(n,l);
uv=rand('normal');
uv=rand(n,l) ,

% characteristic for disturbance noise

u=O; % control signal - initial value
%
%
%

Next section will do simulation of the motor

for i=l:n,
x = A*x + B*u;
y(i)= C*x + yv(i,l);

% simulation of actual plant
% measured position

%
%
%

Next section will simulate regulator and kalman filter

u -K*x + K*xr + uv(i,l); % control action with disturbance
yu(i) = u;
xe = A*xe + B*u + Lp*(y(i)-C*xe); % state estimator
ye(i) = C*xe; % estimated position
end
clg
plot(y, 'r'); % plot actual position
hold on
plot (ye, '.g') % plot estimated position
title('Measured position vs Estimated postion')
grid
text(0.60,0.24, ,---- measured postion', 'sc')
text (0.60,0.18, , • • •. estimated post ion ' , 'sc')
xlabel('Time in t of samples')
ylabel ('position')
pause
hold off
clg
plot(y),title('Step response - Measured Position'),
grid
xlabel('Time in t of samples')
ylabel('position')
pause
clg
plot(ye),title('Step response - Estimated Position'),
grid
xlabel('Time in f of samples')

80

ylabel('position')
pause
clg
plot(yu),title('Control effort with disturbance'),
xlabel('Time in t of samples')
ylabel('Control u')
grid
end

81

82

Matrix Oriented Computation Using Matlab

Jeffrey C. Kantor
Department of Chemical Engineering

University of Notre Dame
Notre Dame, IN 46556

Phone: (219) 239 5797
Email: jeff@ndcheg.cheg.nd.edu

Fa.x: (219) 239 8007

MaUab is a tool for interactive numerical computa­
tion. It contains as built-in functions essentially all of
the numerical linear algebra algorithms in LIN PACK
and EISPACK. Coupled with a programmable inter­
preter and good scientific graphics capability, Matlab
can be used for algorithm development in many areas
of engineering and science.

To demonstrate some of its funct.ionality, I've in­
cluded in this article several examples where MaUab
has proven useful in my own teaching and research ac­
tivities. These examples are not comprehensive since
t.hey neither fully exploit all of the features of Mat.lab
or do they show all of our appiications. The exam­
ples were chosen only because they seemed to be rela­
tively st.raightforward and self-contained illustrations
of how Matlab can be used.

1 Some Background

Matlab was originally conceived by Cleve Moler just
over a decade ago while he was teaching numeri­
cal methods at the University of New Mexico. He
found it, frustrating to simultaneously teach numer­
ical methods and the programming tricks it takes
to implement them. The effort required to write
numerically sophisticated FO RTRAN code can sim­
ply overwhelm a student and not leave much time
left over for doing applications, So to address the
problem, Cleve Moler wrote a simple interpret.er in
portable FO HTRAN for a high-level matrix oriented
language. The interpreter was based on one given
l>y N. Wirth for a model language called PL/O [12].
Naturally, the numerical algorithms were based on
the recently completed Linpack and Eispack projects
to which Cleve Moler had made substantial contri­
butions. This primitive MaUab interpreter was ev­
idently quite successful and ported to a number of
machines during the late 1970's and early 1980's, un­
dergoing minor revisions in the process.

Several companies subsequently adopted Matlab as

Reprinted, with pennission from author.

a platform for developing and delivering commercial
control synthesis and analysis software. Systems Con­
trol Technology produced a package called Control-C,
and at about the same time, Matrix-X was developed
by Integrated Systems, Inc. Both companies found
many shortcomings in the original MaUab interpreter
including workspace constraints, lack of function def­
initions, and overall performance. The Matlab inter­
preter was largely rewritten at each of these compa­
nies to support their products.

A few of the professiona.l st.aff from these compa­
nies joined together to form a new company called the
MathWorks, Inc. There they produced an entirely
new version of Mat.lab writ.t.en in C for port.abilit.y
and efficiency. The interpreter was greatly enhanced
to include an ability for the user to program Matlab
functions. They also developed an integrated facility
for producing a basic set of puhlication quality scien­
tific graphs. The Math Works currently markets this
version of MatIah for a variet.y of hardware platforms,
the details are given at the end of this article.

Beyond the basic interpret.er, there are several
'toolboxes' intended for specific application areas. A
'toolbox' is typically a collection of functions and
scripts that implement specialized numerical algo­
rithms. These generally are not finished applications
in the sense of a well-developed user interface with
a lot menUs and the like, but are rather integrated
collections of algorithms that you either can use di­
rectly or build into your own script.s. It is sort of
like using a FORTRAN subroutine library, but with
the advantage of being able to directly execute the
routines in the interactive MaUab environment. The
Math Works distributes a Signal Processing Toolbox
with Matlab, and markets several others including
a Control Design Toolbox, Robust Control Toolbox,
System Identification Toolbox, a Chemometrics Tool­
box. There are also tool boxes commercially available

-from third parties, in addition to a number that Uni­
versity researchers may have put together for their

83

84

own purpOl!ell.
Now for the confusing part. There is a 'public da­

main' IBM PC version of Matlab. In addition several
universities sell very low cost versions of Matl~b avail­
able for the Macintosh and IBM PC. These are based
on Moler's original FORTRAN code, sometimes with
enhanced graphics and macro writing facilities. l A
person should be careful with these since they are
not of the same calibre as the MathWorks and sim­
ply don't include the tools necessary for doing real
work. Nor will the toolboxes cited above work with
these versions. A corollary of this advice is to not let
an exposu re to these other versions color your view
of Matlab.

2 What is Matlab?

In some ways, the Matlab interpreter vaguely resem­
bles a crOAS between BASIC and APL in the sense
that it is programmable and endowed with a rich set
o.f op.erat.ors for matrix manipulations. The key dis­
tmctlon IS that Matlab incorporates well-developed
and reliable algorithms for numerical linear algebra.
'Moreover, the built-in graphics capability is often en­
tirely sufficient for presenting results in final pub­
lished form. (The graphics in this article, for exam­
ple, were pasted in directly from MatJab).

Let me give an example of how these capabilities
can be used for day-ta-day 'scratchpad' kind of cal­
culal.ions I,hat pop up. A few days ago a colleague of
mine walked into my office with an idea for process­
ing video images to enhance the edges of discs that
appear in the picture. lie acquires these images in
his experiments on concentrated suspensions of non­
colloidal p"rticles. lie started off by saying (roughly)
·Suppose you have a noisy image of a disc" at which
point I stopped him, turned on my computer, and
typed the following commands in Matlab

x = -1:.1:1; % X mesh
1 = -1:.1:1; % Y mesh
[XX,1Y] = meshdom(x,y); Y. 2D mesh

x=sqrt(xx,·2+yy."2)<O,S;
rand ('normal');
x = x + O,OS.rand(z);
me8h(x};
xlabel('Roisy Disk'):

Y. l1lake disk
Y. white noise
% add to di8k
% 3D plot
Y. add title

which produced the image shown in Figure 1.
This code segment demonstrates several of the key

,features oC Matlab. First of all, the variables x, y, x

I Incidently, Ihe oriSinal FOIU'RAN code w,," never de­
d........ 10 be public domain. Thu. II. own hip .t .. tus i. a
bit confused.

Noisy Disk

Figure 1: Noisy image of a disk.

represent vectors and matrices. Matrices are an ele­
mentary data type within Matlai,. Because matrices
can be manipulated directly as single objects, much
of tedium of writing loops to do e1emeut by element
calculation.s is removed, alon.g with the need for a lot
of extran,eous indexing. In the sixth line, for example,
a matrix is constructed with the same dimensions as
z consisting of normally distributed random numbers
(rand(z», multiplied by 0.05, and the result added
to x, The third line demonstrates how MaUab func­
tions can return multiple results, which in this case
are two matrices xx and ".

Duly impressed, my colleague went on at the black­
board to describe a simple algorithm requiring that
the image be processed by a pair of 20 convolutions.
Since this might be done more than once to differ­
ent data sets, it seemed sensible to encapsulate the
algorithm as a Matlab function.

function [y] = 80bel(x)

% SOBEL
% Do edge detection on a 2D array

s = [1 2 1; 0 0 0; -1 -2 -1];
h = conv2(z. s); % 2D convolution
v = conv2(z,s'); Y. 2D convolution
y = sqrt(h,·2 + v,"2);

A function is prepared as a separate text file that is
subsequently read by 'the Matlab int,erpreter when ita
name is encountered in a command line. A user writ­
ten Cunction behaves in the same way as any built-in
function. In this example, a function named sobel is
defined which takes a single input argument x, then
utilizes a built-in Matlab function conv2 to construct

Edge Filtered Disk

Figure 2: The r"sult of filt.ering the noisy disk shown
in Figure 1 to enhance the disk edges.

two 20 convolutions with a matrix, s, and its trans­
pose, s'. The fundion output, y, is found by taking
the harmonic mean of the two convolutions.

The edge detection function was used in the follow­
ing commands

zf = sobal(z);
mashed) ;
xlabel('Edga Filtered Disk');

to produced the edge enhanced picture shown in Fig­
ure 2.

In. general. funct.ions can have multiple-input. and
multiple-out.put argument,s. Just as in FORTR.AN,
any variablf'S used in writing a function are t.reated
as local and will not be confused with other variables
of the same name used in other functions or the com­
mand environment.

So during the course of a half-hour conversation,
my colleague was able to (watch me) construct and
test an edge detection algorithm. It is this abilit.y
to quickly protot.ype and test algorithms using a rich
base of numerical tools that makes MaUab a valuable
computational tool.

3 Using Matlab in the Class­
room

I have used Matlab in teaching a graduate course on
Process Control (Fall, 1987), the linear algebra por­
tion of a course covering Mathematical Methods for
first,..yeargraduate students (Fall 1988 and Fall 1989),
and for a Junior-level course on Computer Methods
for Chemical Engineers (Spring, 1989). Matlab seems

to provide an appropriate software base for each of
these courses.

In the case of teaching Advanced Process Control,
the main goal in using Matlab was to provide the
student with experience in doing time-series analy­
sis, model identification, control design, and simu­
lation. There are competing software packages that
could also be used for these purposes, among them
Program-CC, but none seemed to offer any significant
advantage over Matlab for linear analysis. Besides,
my teaching assistant had already had some expe­
rience with Matlab, and it was already installed on
several Sun workstations in the Department. Over­
"II, the teaching experience was a very good one. By
the end of course the students demonstrated a real fa­
cility with Matlab, the Control Design Tqolbox. and
the System Identification Toolbox. Later in the arti­
cle there is an example that came from a homework
problem assigned in the course. '

For t.he undergraduate Comput.er Methods course,
there were addit,ional considerations tba~ came up
when considering" choice of software tool •. Among
them wa., t,be choice between using Matla\> or a pack­
age of FORTRAN Bubrout,ines such as given in Pr""s.
et al. [11]. On the one hand, FORTRAN remains as
t,be principle programming language for numerically
int.ensive engineering applications, t.herefore a facility
with FORTRAN is highly desirable. Moreover, our
st.udent,s all take a required Freshman Engineering
course that teaches the element.s of FOR'"~"RAN.

On t.he other hand, it. is significant.ly fa..ter to writ.e
and t.est small codes usin/!: t.he high-I .. vel Ma.t.lab in­
terpret.er. The st.udent.. also indicat,r" a st.rong pref.
erence for microcompllt,er ba.,ed software tools which
could be used on various workstation clusters about
campus rather than be tied to a single minicomputer
located in the Engineering College.

On balance, I felt that a more productive environ­
ment would allow the course to survey more topics
with more emphMis on applications. so I chose to
use Matlab. I have been pleased to note how stu­
dents have transfered their new computational skills
to other courses. They continue to use Matlab to do
routine laboratory calculations, data fitting, and for
computations in their Senior Design courses.

Recent textbooks have appeared which incorporate
various amounts of Matlab into the text and exercises.
The third edition of the classic linear algebra text by
Noble [10] contains is number of Matlab exercises and
examples. Another linear algebra text,book by Hill is
basically centered 'on Matlab, with chapters regarding
programming technique [7]. It is sO complete that it
could serve as a low-cost Matlab manual for students.
The Handbook for Matrir Computations is useful to

85

86

anyone doing numerical linear algebra, and includes
a survey of relevant Fortran, BLAS, Linpack, as well
as Matlab [4).

Lennert Ljung's book on system identification (9) is
closely coupled to the System Identification Toolbox.
The toolbox, in fact, was written by Ljung, and the
text provides excellent technical documentation.

The following two sections present two examples of
incorporating Matlab into classroom activities.

4 Classroom Example: Linear
Programming

Three years ago our Department introduced a new
required course for our undergraduate majors enti­
tled Comp.t/er Methods for Chemical Engineers. This
course is normally taken by Spring semester Juniors
after having completed the normal Mathematics se­
quence, and before commencing the two-semester Se­
nior design sequence. The course covers elements of
numerical met.hods with application to problems in
chemical engineering.

Linear programming is discussed in Borne detail in
the course because it is' one of those skills that an
engineer can transfer to a wide variety of problem
areas. A key teaching goal is for the student to be able
to recognize a problem as a linear Program, and then
to formulate the requisite objective and constraints.

I prefer to use the Active Set method as outlined by
Fletcher [5) to teach the principles behind linear pro­
gramming. It seems to leave the student with a more
intuitive understanding of the role of constraints and
their sensitivities than does the usual presentation of
the Simplex method. If the students can undcrstand
the relatively simple strategy to solving a linear pro­
gram, it is then much easier to motivate and teach
the numerical tricks it takes to implemcnt an efficient
algorithm.

The linear programming problem is formulated as
minimizing the linear objective

minz = cT z
"

where x is a n vector, subject to m linear constraints

a;z?,b; i=1,2, ... ,m

where n :£ m. If positivity constraints are present,
then these are explicitly included in the constraint
list. It is easy to show that if the feasible region is
bounded, then optimum will always be found at a ver­
tex defined by the intersection of n active constraints.

The basic algorithm is, firstly, to find any active
set of n constraints forming a feasible vertex, then

to move systematically from one vertex to another 80

as to reduce the value of the objective function at
each step. Each step of the algorithm is defined by
just two rules. The first rule identifies a constraint
to throw out of the active constraint set in order to
decrease the objective. The second rule determines
which constraint to add to the active set to establish
a new feasible vertex.

Let A be the set of active constraints th at deter­
mine a feasible vertex. The vertex is given by solving
a set linear equations to give

where AA and bA are const,meted from the coefficients
of the active constraints. Now suppose the right hand
side of each active constraint is altered by a small pos­
itive amount ';' Positive values of the <; 's correspond
to feasible perturbations, while negative values would
cause constraint violations. As a resu It of a feasi­
ble perturbation, the vertex then shifts from x to x"
where

x, = A:;,lbA + A:;' 1 ,

Substituting x, into the objective function yields

z = cT A:;,lbA + cT A:;' I,

The second term shows the change in the objective
function due to independent perturbations in the ac­
tive constraint set. Thus the elements of the row
vector

A = cT AAI

play the role of 'sensitivity coefficients' revealing how
the objective function responds to feasible perturba­
tions in the active constraint scI.. If any element of
A is negative, then the objective function can be re­
duced by removing that const.raint from the active
set. Just as in the Simplex met.hod, we choose to re­
move the constraint corresponding to the most nega­
tive element of ~.

Let Ap be the most negative element of A. Then the
effect of removing the p'h active constraint is given
by

x! = X + f p 8p

where 8p is the p'h column of A:;' I. How large can
'p be before some other constraint becomes active?
This can be computed explicitly as

The search is done over all constraints not in the ac­
tive set (i ¢ A), but only for those constraints in

which the right hand side becomes smaller as (p in­
creases. (GiSp < 0).

The conotraint which realizeo the minimum lp io
exactly the one to be added to the active constraint
set. !laving done that, the procedure repeats itself
until no further improvement in the objective is pos­
sible, i.e., until all of the sensitivit¥ coefficients are
non-negative.

This hMic algorithm cleanly translates to the fol­
lowing Matlab function. The function Ip takes four
arguments specifying the coefficients on the len and
right hand sides of the constraints, coefficients of the
objective ftlnction, and an initial feasible constraint
set. The function retllfns the optimal value of the ob­
jective function, the optimal solution for the decision
variables, the value of the senoitivity coefficients, and
the final active con·straint set.

function[z,x.lamb.activ]=lp{a.b.c.feas)

% Initialization

[a.n] .. size (a) :
acth feas{:):

% Compute Initial Vertex

ainv = inv{a(activ.:»:
x = ainv.b(activ.:):
lamb = c,,"ainv:

while any (lamb < 0).

% Find which constraint to drop. p
Ctmp.p] = min{lamb):
ap ,. ainv{: .p):

% Find which constraint to add. q

alpha = Inf:
q .. 0:
for i=1:m.

if -any{i==activ).
den = a(i.:).sp:
if den < O.

tmp = (b(i)-a(i.:).x)/den:
if tmp < alpha.

alpha .. tmp:
q = i;

end
end

end
end
% aecompute x. lamb. and z

activ{p) .. q:
ainv .. inv{a{activ.:»:
x. ainv.b{activ.:);
lamb = c.ainv:

end

z = c.x: % Compute objective function

This example uses several of the Matlab control
structures to simplify the coding process. The con­
struction

whila any{lamb < 0).
C •••]

end

controls the main iteration over vertices of the feasible
region. The iteration continues as long as any element
of the vector lamb is less than zero. Nested within
this loop is an iteration

for 1'=1:m.
[... J

end

which specifies a conventional indexed iteration loop
where i successively takes values between 1 and m.
Within this loop are several nested conditional state­
menta such as

if -any(i==activ).
[...]

end

In this ease, the conditional code is executed if 'not
any' of the elements of the vector activ are equal to
i. The practice of indenting nested control structures
graphically reveals program flow and is strongly nrged
on the stndents.

This function is a zeroth order cut at a practical al­
gorithm for linear programming, it will work for small
problems but will be inefficient and error prone when
applied to larger problems. As exercises, the students
are asked to correct several of the glaring deficien­
cies. Foremost is to avoid the repeated inversions
of the active constraint matrix with a more efficient
procedure using rank-one updates (Le., the Sherman­
Morrison formula). Having done this, the algorithm
is then identical to the usual revised simplex method
as discussed in most textbooks. Other exercises in al­
gorithm development could include writing a code to
identify an initial feasible constraint set, or to modify
the algorithm to handle equality constraints.

87

5 Classroom Example:
cess Control

Pro-

The next eJ!:ample iIIustratefl the use of several tool­
boxes ~o do model identification and a simple control
design. Students taking a graduate course in Ad­
vanced Process Control during Fall, 1987, were as­
signed a homework project in which they were to an­
alyze input-output data for a small gas furnace. They
were to first obtain a transfer function model, then
use the model to design a PIO, minimum variance,
and optimal LQG controllers. The three controllers
were to be evaluated by simulation. The students
were given one week to complete the assignment.

The gas furnace data was adapted from Appendix
B of Box and Jenkins [2] consisted of 300 pairs of
input-output measurements {\l(k), y(k)} obtained
at 9 second ,ntervals. The manipulated input is gas
Oowrate, and the measured output is the percentage
of CO2 in the stack gas. These data were given to
the students as a MatIab file called GasFurnaceData

. The file can be read and plotted using the following
commands to produce the following plots shown in
Figure 3.

88

% Read data record

GasFurnaceData;
udata = u;
ydata = y;

% Plot input-output data

subplot(211); % Specifies upper plot
plot(udata);
title('Gas Flow (Input)');
ylabel('CFM');

subplot(212); % Specifies lower plot
plot(ydata);
title('C02 Composition (Output)');
ylabel('% C02');
xlabel('Time');

The first task for the students was to identify a
discrete-time transfer function model for the gas fur­
nace. A non-parametric spectral analysis provides a
starting point for estimating model order. This is
done with the following commands:

y = detrend(ydata);
u = detrend(udata);
z"[yuJ;
gO = spa(z);
bodeplot(gO);

% System_lD toolbox
% Systea_ID toolbox

O'8~
~O.6~

0.4 L--__ -'--__ -'-__ -'

o 100 200 300

Time

Figure 3: Input-Output data for a gas furnace. The
data is adapted from Appendix B of Box and J enkill8.

The function detrend (from the Signal Proceflsing
Toolbox) is used to remove means and linear trends
from the input and output data series. Then apa
(also from the Systell1ldentification Tholbox) is ap­
plied to construct a transfer function estimate that is
stored as gO. The transfer function is displayed using
bodeplot to give the refluit shown in Figure 4.

There are a number of possible model~ that could
be used to describe this data. Of these, an ARMAX
model in the form

B(q) C(q)
yet) = A(q) u(t - nt) + A(q) e(l)

or, explicitly, as

b -I + +b -n, Iq ... n,q U(t-nl)+
1 + olq-I + ... + on.q-n. yet) =

clq-I + ... + cn,q-n. e(t)
1 + olq-I + ... + on.q-n.

does an adequate job (,-I is the backward shift op­
erator). The following commands use functions in
the System Identification Toolbox to fit an ARMAX
model for the case n. = n&·= n. = 2, nl = 1. The fit­
ted transfer function is then evaluated and Bode plot
is displayed to compare the fitted transfer function to
the previous non-parametric estimate.

th = armax(z, [2 22 1J);

:] ::~:~::~,:J
10-2 10-1 1oo 101

frequency

1:1::3:::]
10-2 10-1 1oo 101

frequency

Figure 4: A nonparametric estimate of the transfer
function between the input and output of the gas fur­
nance based on the data in Figure 3. The results are
computed using the System Identification Toolbox.

g = trf(th);
bodeplot([g gO]);

The resulting Bode plots shown in Figure 5 demon­
strate a reasonable fit of the data using a second or­
der model. 'Goodness of fit' can also be explored by
computing an estimated autocorrelation function for
the residuals, and an estimated cross correlation be­
tween the input. This is done with the command
e = rellid(z. th) to produce the results shown in
Figure 6.

These plots indicate that there is little significant
correlation left in the residua" so there is no stati ...
tical justification for employing higher order models.
(Attempting to fit a first-order model to this data pro­
vides an example where statistically significant corre­
lations do remain in the residuals.) The fitted model'
coefficients are displayed as follows:

pre.ant(th)
Thi. matrix was created by the command
ARMAX on 2/28 1989 at 10:47

Lo •• fen: 0.09217
Akaike's FPE: 0.09593
Sampling interval 1

::l::~~:]
10-2 10-1 1oo 101

frequency

Or~-=~PHA~~SE~PLOT~~~~

l:l:=S::]
10-2 10-1 1oo 101

frequency

Figure 5: Comparison between the nonparametric es­
timate of the gas furnace transfer function, and the
transfer function by fitting a second order ARMAX
model. A good fit is obtained except at relatively
high frequencies where noise is expected to be the
dominant contribution.

The polynomial coefficients and their
standard deviations are

B =

A =

c =

o -6.3133 16.9243
o 1.9007 2.3403

1. 0000 -1. 3899
o 0.0618

1.0000
o

0.1386
0.0858

0.6299
0.0480

0.1307
0.0659

At this point in the exercise, the student has de­
veloped a transfer function model for the gas furnace
that can be used for designing simple control systems.
Omitting the details, an optimal LQG controller can
be designed to minimize the loss function

J/, = E[1I2(k) + pu'(k»)

by the computational method outlined in Chapter 12

89

90

Correlation function of residuals

0.5

o
-0.5 L-____ ~ __ ___l

o 10 20 30
lag

oSross correlation: Input 1 and Residuals

o~
-O.~ -20 o

lag
20 40

Figure 6: The auto- and cross-correlation functions
of the residuals obtained after fitting a pal'ametric
model provides a simple test of model fit. In this
case, a second-order ARMAX model appears to ade­
quately account for all of the essential correlations in
the gas furnace data. The horizontal lines mark the
96% confidence intervals for the null hypothesis.

of Astrom and Wittenmark [1). The necessary calcu­
lat.ions are encapsulated in the function dlqg given
below. This function makes use of others defined
in the Control Systems Toolbox. These are dlqr,
which computes a solution to the algebraic discrete
time Ricatti equation, and aa2tf, which convert.. ..
state-space model representation to a transfer func­
tion description.

function [B,r]=dlqg(th,rho)
XDLQG
X Cr,B] = DLQG(theta,rho) compute8
X the LQ optimal controller to
% minimize the objective function
X
X
X
X

2 2
E[y (k) + rho.n (k)]

X The reaulting controller i. given

X in transfer function fora
X
X
%
X
%
X
X
X

seq)
n(k) .. - ---- y(k)

R(q)

The plant model h gben by theta
in the standard fora of the Systam
Identification Toolbox.

X Ref:Chapter 12, Astrom a Vittenmark

% J.C. Kantor, 3 December 1987

[a,b,c,d,f]=polyfora(th):
a"conv(a,f):
na = length(a)-1:
nb " length(b)-l:
nc = length(c)-l:
n = max([na,nb,nc]):
A = [zeroa(n,l),[eye(n-1): ..

zeroa(l,n-l)]] :
1(1:na,l) .. -a(2:na+1)':
B = zero8(n,O:
B(l:nb,l) = b(2:nb+l)':
K = z8ros(n,n:
K(l:nc,l) = c(2:nc+l)':
K = K + 1(:,0:
C" [l,zeros(l,n-1)]:

L" real(dlqr(A,B,C'.C,rho»:

[a,r] = a82tf(A-K.C-B.L,K,L,[O] ,1):

Letting p = 10-5 gives an approximation to min­
imum variance control. The resulting controller is
given by u(t) = -Gc(q)y(t) where

5(q) 0.0762q-1 - 0.0512q-'
Gc = R(q) = 1 + 1.1555q-1 + 1.6364q-2

Finally, the student can compute the simulated re­
sponse of the closed-loop glIB furnace control system.
The closed-loop transfer function between the output
and exogenous disturbances e(t) is given by

C(q)R(q)
y(t) = A(q)R(q) + 8(q)5(q) e(t)

The following sequence of commands computes the
products of polynomials using the MatIab convolution
operator conv, does a simulation of the closed-loop
plant models, and displays the results.

% Compute control and closed-loop
% tran8fer fuctionB

[s,r] = dlqg(th,O.OOOOl);
[a,b,c]=polyfor.(th);
p = conv(a,r) + conv(b,s);
qy = conv(c,r);
qu = conv(c,.);

t Construct a white noise input

rand('normal');
w = O.1.rand(200,l);

t Output simulation

subplot(211) ;
plot(dlaim(qy,p,w»;
title('Output');
ylabel('C02');

t Control aimulation

Bubplot(212);
plot(d181m(qu,p,w»;
t1tle('Control Action');
ylabel('Gaa Flow');

The simulated performance of the closed-loop reg­
ulator results in a 20.5% reduction in the variance
of the CO2 sl.ack gas composition compared to the
CaRe of no control. The results are shown in Figure
7. Many additional aspects of !.lte problem can be
readily treated using simple Matlab procedures.

6 Summary Remarks (Why
Matlab Can't be Used for
Everything?)

In spite of its many useful real.ures, Matlab is not
an appropriate tool for all applications. While it is
difficult to draw precise boundaries, there are some
general guidelines.

• MaUd is useful when your problems are 'vector­
izable '.

Matlab exhibits excellent floating point perfor­
mance when using its matrix oriented primitive
operations. However, because it is an interpreted
(not compiled) language, it sutTers some perfor­
mance degradation on scalar and non-numeric
operations. Some algorithms, such aR for inte­
grating ordinary differential equations, can be
quite slow in Matlab for this reason.

-:~ o 50 100 150 200

0.05 Control Action

t~~
o 50 100 150 200

Figure 7: Response of the gaR furnace with LQ con­
trolin place.

• M allah is useful for prototllping algorithms.

Matlab is a high-level language with a large num­
ber of primitives so that even complex algorithms
can be written in a minimal number of lines. The
interpreter provides a convenient mechanism for
debugging numerical algorithms. For example,
simply by deleting the semicolon at the end of
a line, the intermediate results oC any compu­
tation are printed. There are also facilities Cor
introducing keyboard interrupts and monitoring
intermediate values.

• M allah is useful when you need results fast.

In addition to the points given above, the avail­
able toolboxes and graphics Cacilities are oC­
ten sufficient for solving problems from start to
finish, including the production of publication
graphics.

• Mallab does not replate either FORTRAN or
specialized application software.

Matlab is not a replacement for a FORTRAN
compiler and a good package of scientific subrou­
tines. It not suited to truly large scale compu­
tation, nor can it be used effectively in a batch
mode. Linear programming provides an exam­
ple of the tradeoffs. Straightforward Matlab LP
codes might be useful for problems with, say, up
to a few hundred constraints. This is no match

91

92

for commercial that can handle many thousands
of constraints.

• MaUd is not fie,., effective /or IIon-ovmeriml al­
gorithms.

Matlab treats essentiaily all inC ormation as ma­
trices of real or complex floating point numbers.
The simple facilities for handling textuai data in
Matlab are inade,quate for anything beyond ma­
nipulating titles and labels. It would be a mis­
take to use Matlab to do data base programming,
for example, or Cor writing compilers.

7 Where to Obtain Matlab

Academic institutions can purchase Matlab directly
from the MathWorks, Inc. Their address is

The MathWorks, Inc.
21 Eliot Street
South Natick, MA 01760
Phone: (508) 653-1415
Fax: (508) 653-2997
E-mail: tung@mathworks.com

The Math Works has special licensing provisions for
e1asi1room and educational use. For commercial uses,
Matlab is also distributed by

MGA, Inc.
73 Junction Sljuare Dr.
Concord, MA 01742
Phone: (508) 369-5115

Versions of Matlab are available for IBM PC, AT, and
80386 platforms, including Weitek support. Also for
the Apple MacintOBh (with and without support for
the 68881), Sun and Apollo workstations, DEC Vax,
Gould, and Ardent machines. The Ardent version has
Cacilities Cor 3D solids rendering.

References

[I] Astrom, Karl J., and Bjorn WiUenmark (1984).
Computer Controlled Systems. Prentice-nail,
Englewood Clift's, NJ.

[2] Box, George E. P., and GwiIym M. Jenkins
(1976). Time Series Analysis: Forecasting lind
Control. Rev. Edition. liolden-Day, San fran­
cisco.

[3] Chapra, Steven C." and Raymond P. Canaie
(1988). Numerical Methods lor Engineers, Sec­
ond 'Edition. McGraw-Hili, New York.

[4] Coleman, Thomas F., and Charles Van Loan
(1988). H.ndbool: lor M.tri" Comput.'ion&
SIAM, Philadelphia .

[5] Fletcher, R. (1987). Prflctical Method, oIOp'i­
mization, Second Edition. John Wiley & Sons,
New York.

[6] Forsythe, George E., Michael A. Malcolm, and ,
Cleve B. Moler (1977). Computer Methods lor
Mathemaliml Computations. Prentice-nail, En­
glewood Clift's, NJ.

(7) lIi11, David R. (1988). Experiments ill Compu­
tational Matrix Algebrfl. Random House, New
York.

[8] Kahaner, David, Cleve Moler, and Stephen
NlISh (1989). Numerical Methods and SoftWfl.re.
Prentice-llall, Englewood Clift's, NJ.

[9] Ljung, Lennart (1987). System Identifictdion:
Theo,., lor the User. Prentice-Hail, Englewood
Cliffs, NJ.

[10] Noble, Ben, and James W. Daniel (1988). Ap­
plied Lillear Algebrfl, TAinl Edition. Prentice­
Hail, Englewood Clift's, NJ.

[111 Press, William H., Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling (1986).
Numeriml Recipes - The Art 01 Scientific Com­
puting. Cambridge University Press, Cambridge.

[12] Wirth, Nicklaus (1976). Algorithms + Data
Structures = Progrflms. Prentice-nail, Engle­
wood Cliffs, NJ.

lSI PRODUCT FAMILY • • • • • • • • • •

Application Note

Modeling and Analysis of a
2~Degree~orFreedom Robot Arm

This application note describes the modeling and analysis of a
two-linkage robot arm using MATRlX,c"' and SystemBuildTl'.

The nonlinear equations of motion of the system are presented,
followed by the SystemBuild block diagram description of those
equations. The SystemBuild model is lineari:zed and an optimal
regulator is designed based on the lineari:zed model. The re­
sponse of the closed-loop system is found through simulation
and the results are plotted.

Modeling

Consider the two-linkage robot arm shown in Figure 1. Both
links are assumed to be perfectly rigid and are connected by a
frictionless pin joint. The system thus has two degrees of
freedom, 6, and 62 , There are two control inputs to the system,
the motor torques '1', and '1'2 at the rotating joints. For a
particular set of arm masses, lengths, and inertias, the nonlinear
equations of motion for the system are:

(1) ~=1.['I'1-'I'2+0.01 ih~sin2/h]
I

(2) ~=....!L_l.ih2 sin2/h
O.ot 2

where I is given by:

(3) 1 = 0.07 + 0.06 coS2 /h + 0.05 sin 2/h

These nonlinear dynamic equations can be represented in
SystemBuild, the interactive block diagram modeling facility of
MA TRIXx, using combinations of algebraic and dynamic blocks.
Block diagrams constructed in SystemBuild are hierarchical.
Each node in the hierarchy is represented by a SuperBlock,
which can contain up to 99 other blocks, including other
SuperBlocks.

Figure 2 illustrates how the dynamics of the two-linkage robot
arm can be modeled in SystemBuild. The ROBar super-block
shown in Figure 2 contains two algebraic general expression
blocks, four Nth order integrator blocks, two trigonometric
function blocks, and one gain block. Figure 3 gives the neces­
sary details required to define each block.

General expression blocks are defined by passing text strings in
the block form. The following text string was used in dt;fining

Figure 1: Two-Degree-of-Freedom (2-00F) Robot Ann

the block with an ID of (32) and having inertia as an output (see
Figures 2 and 3).

Y = 0.07 + 0.06 • U2 * U2 + 0.05 • Ul * Ul

This block calculates inertia as defined in Equation (3). The
strings used to calculate ih and ~ in the algebraic expression
block with an ID of (12) are:

Yl =(Ul- U2 + O.ot * U3 * U4 * U:;)/U6
Y2 = U21o.01 - 112 * U3 * U3 * U5;

Note: . Y1 is the calculation of ih , and Y2 is the calculation of
~as defined in Equations (1) and (2).

Once all of the blocks have been defined as illustrated in
Figure 2, the system can be analyzed through the ANALYZE
option of System Build. When this option is selected under the
BUILD menu, SystemBuild creates and internal simulation
model by assembling all of the SuperBlocks in the hierarchy. A
reference map is then created which displays the structure of
the super-block hierarchy:

Super-Block Reference Map:
ROBOT

All super-blocks identified
System Built with 0 error(s) and 0 warning(s) .
Use SIM ('IALG') to set the integration algorithm

The ANALYZE option in SystemBuild returns the user to the
MA TRIXx command level where he can simulate the system,
lineari:ze it, or issue any MA TRlXx command.

Reprinted. with permission, from Application Note brochure. 93

Yl- (Ul • UZ + O.Ol*UJ*U4*US)/U6
HET! 1 DOlIlILE DOT

cos THETA

F~e 2: Robot Ann.lJynamics

linearization and Controller Design

In MA TRIXx the continuous state space model is described by
II system Jrultrix, S and the number of states, NS. The S Jrultrix is
defined as the collClltenationofthefour Jrultrices, (A,B, C, and
D) used in describing a linear system as given by the following
relation between the 'system output, y and the inputs, u.

and

x,=Ax +Bu
y=Cx +Du
whemx{O)=x

S =[~;]
Once back at the MA TRIXx com=nd level (the <> prompt),
the system built in SystemBuild can be linearized with the LIN
command:

<> [SL,NSL),.LIN(.l)

where the argument of the LIN comJrulnd is the she of the
perturbation to be applied to all system states and inputs when
the partials are computed numerically. MA TRIXx teturns the

94

system state space Jrultrix, SL, and the number of states, NSL,
which represent the linearized system:

NSL
4.

SL

0.0000
1.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000

0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 1.0000
0.0000 0.0000
1.0000 0.0000
0.0000 1.0000
0.0000 0.0000

0.0000 7.6923 -7.6923
0.0000 0.0000 0.0000
0.0000 0.0000 100.0000
0.0000 0.0000 0.0000
0.0000 0.0060 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
1.0000 0.0000 0.0000

The system has four states (ih, th, ik and Ik), twO inputs (the
motor torques) and four outputs (which are the states).

Once the ROBOT SuperBlock has been linearized, one can de­
sign a linear regulator controller. The REGULATOR com­
Jrulnd computes the optiJrulI constant gain, state-feedback JruI­

trices for continuous-time systems under t:heassumption of full
state feedback.

Inputs into the REGULATOR command Include the A and B
(plant and input) components of the system mattix, S and the
design weighting matrices, R".. R ... and R where R. is op­
tiona\. The design weighting matrices provide weights on the
states, x, and controls, II, as defined by the follOWing quadratic
cost function:

COSI' = 1-(x·R..x + II·R.Jl + x'R~ + II·R'....x)dt

Note: Ruu must be positive definite and Rxx must be positive
semi-definite.

The A and B parts of the system matrix, SL, can be extracted
with the SPLIT command:

<> [A,B)-SPLIT(SL,NSL)

B

7.6923
0 •. 0000
0.0000
0.0000

-7.6923
0.0000

100.0000
0.0000

~c &QUATIQIlS (ALGI
TYPE; GI:IISML &XrUS8IOH
IHPDtS: ,
OD'1"PO'1'S: 2
ALGEUAIc IQIJATIOIfS:

Yl - -------;
Y2 ... ------;

Y2"UZ/O.Ol-112'U)'U3'U5

ALGEBU.I.c EQIlI,.'1'IOIIS:
y ... -----;

KETAlDOOBLBDOT

A

o. o. o. O.
1. O. O. O.
O. O. O. o.
O. O. 1. O.

Diagonal state (RXX) and control (RUU) weighting matrices
are defined for the purpose of designing an optimal regulator.

<> RXX-DIAG ([10 100 1 100)

RXX

10 O.
O. 100.
o.
O.

o.
O.

o.
O.

o.
o.

1. O.
O. 100.

<> ROU-DIAG([20 100])

ROO

20. O.
O. 100.

ALGURAIC BQIJ.'1'IQlS (ALGI
TYPE: GAIM BLOClC
IIIl'UTs: 1
OOTI'OTS: 1
GA.III;2

T1tIGI'VNCl'IOMS ('tIlG)
n,,; COSlli! Cu)
IIIPU'l'8:1
OUTPOTS; 1

FiguTe 3: Block Fonn Details (ROB SuperBlock)

95

The optimal regulator is designed with the REGULATOR
command:

<>[EV,KRI-REGOIATOR(A,B,RXX,RIJU)

MATRIXx returns the closed-loop eigenvalues (of the linear­
izedsystem) and the optimal regulator state feedback gains, KR.

KR

1.0365 2.2261 0.0683 0.2112
-0.0298 -0.0944 0.1727 0.9955

EV

-8.7233 + 4.8199i
-8.7233 - 4.8199i
-4.0127
-4.0127

+ 1.1024i
- 1.1024i

The closed-loop system can now be completed in SystemBuild
as the SuperBlock SYSTEM, which is illustrated in Figure '4.
This SuperBlock includes the SuperBlock ROBOT (the open­
loop plant), the gain block, MINUS KR, and two summing
junctions. Rectangular, gain matrices are defined in
SystemBuild as state space systems with zero states. Thus the
gain block, MINUS KR is defined as a state space system with
zero states, four inputs, and two outputs, and with the gain

• T TA 0

matrix -KR passed from the MA TRIXx stack (note: input as
[-KRj). The SuperBlock SYSTEM has six external inputs, the
first four being the reference states being the last two are refer­
ence (disturbance) torques. -SYSTEM also has four external
outputs which are the actual states. The summing junction in
the top left of Figure 4 computes the difference between the
reference states and the actual states. This error vector goes to
the gain block, which computes the control torques. These
control torques are differenced from the reference torques in
the summing junction which is just below the MINUS KR
block in Figure 4. The outputs of this summing junction are the
actual torques which are inputs to the differential equations in
the ROBOT SuperBlock. Figure 5 gives the details necessary to
fill out each of the block forms in the SYSTEM SuperBlock.

Closed-loop Simulation

The closed-loop system can be analyzed through the
ANAL 'YZE option of SystemBuild. Selecting SYSTEM for
analysis results in:

Super-Block Reference Map :
SYSTEM

ROBOT
All super-blocks identified
System Built with 0 error(s) and 0 warning(s) •
Use SIM ('IALG') to set the integration algorithm

ONTROL TORQUE 1

ONTROL TORQUE 2

ROBOT

T

~ ET 2 BLOCK

THETA

Figure 4: Closed-Loop System

96

ALGEBRAIC BLOC!< (ALG)
TYPE: SUM. 01' VECTORS
INPUTS: 8

DYNAMIC SYSTEMS (DYN)
TYPE: STATE-SPACE SYSTEM
IIIPUTS: 4

ALGEBRAIC BLOC!< (ALG)
TYPE: SOH OF VECTORS
INPUTS: ..

OUTPUTS: .. otrrPOTS: 2 OUTPUTS: 2
tIlIPUT VECTORS: 2 STATES: 0 tINPUT VECTORS: 2

STATE-SPACE MATRIX: -KR

TORQUE 1

TORQUE 2

SUPER BLOCK (SUP)
NAME: ROB
INPUTS: 2
OUTPUTS: ..

Figure 5: Block Form Details (sysTEM SuperBlock)

After receiving the above message you will be at the MA TRIXx
command level. The time vector used for simulation is defined
as starting at 0 and going to 10 seconds in steps of 0.1 seconds.

<> 1'-[O:0.1:10!';

The reference states call for step rotations of both joints at
consistent angular velocities (0.5 and 0.375 radians/seconds)
from 0 to 2 seconds. after which the final angles (0.1 aru:lO.075
radians) are to be held. The reference states are then defined as:

<> THE100l'-[O.05*ONES (21,1) ; O*ONES (80,1)];
<> THE1-[O.05*T(1:21) ;0.10*0NES(80,1)];
<> TllE2OOl'-[O.0375*0NES(21, 1) ; O*ONES (80,1)];
<> THE2-[O. 0375*T (1:21) ; 0.07S*ONES (80, 1) 1;

<> USTATE-[TBE1DOT THE! TBE2DOT TBE21;

The reference states can be plotted by typing the following
command (see Figure 6):

<> PIDT (T, USTATE, 'STRIP REPORr XLlIB/TIME (sec) I . ..
YLAB/THETAl DOT I THETA11 TBETA2 DOT I TllETA211 •••
TITLE/REFERENCE INPUT VS TIME/')

The reference (disturbance) torques are defined as:

<> TAU1-<l*ONES (T) ;
<> TAU2-0*ONES (T) ;

<> UTORQ-[TAU1 TAU2];

The reference states and torques can be combined to define the
system input matrix:

<> USYS-[USTATE UTORQl;

The closed-loop response is then simulated with the SIM com­
mand as follows:

<> Y-5IM(T,USYS)

Figure 7 illustrates the system response to the system inputs.
This plorcan be generated by typing the following:

<> PIDT (T, USTATE, 'STRIP REPORT XLlIB/TIME (sec) I . ..
YLAB/TIIETA1 !lOT I TIIETA1I TBETA2 DOT I TBETA21/ •••
TITL/SYSTEM RESPONSE VS TIME/')

97

We can compare the commanded and the actual trajectory by
plotting both the Input and the response on the same plot (see
FigureS).

<> PLOT(T, !USYS Yl, 'STRIP2 REPORT lCLAB/TIME(sec) / •••
YLAB/T/IETAl DOT I THETAll THETA2 DOT I THETA2 I / •••
TITL/REFERENCE INPUT , SYSTEM RESPONSE VS TIME/')

The response of the system over a larger (more nonlinear) state
trajectory can be computed with:

<> Y2=SIM (T, 2*USY5) ;

The results are shown in Figures 9 through 11. Note the
responses are similar to those obtained with the smaller
trajectory.

Alternate Methods

We have described an approach to modeling and analyUng a
two-linkage robot arm using the lSI Product Family. Many
different modeling approaches could also be taken. Using

algebraic loops, the joint angular actelerations could be written
in terms of themselves, i.e.:

~ = J{~. ih. ~. in. th. Bl. -r1. -rJ
~=f(~, ih.~. in. th. Bl. -r1. -rJ

This approach could be useful If the equations are hard to
separate. FORTRAN blocks could also be used to define the
dynamic equations. This would allow one to include existing
FORTRAN simulation code into SystemBuild where the dy­
namics could be analyzed and controllers designed. One could
use a symbolic manipulation program to generate the dynamic
equations and the FORTRAN code to simulate them.

The controller design presented is a very simple continuous­
time linear one. In practice. robot controllers tend to be
nonlinear and multi-rate digital. Designing nonlinear multi­
rate controllers is very easy with SystemBuild, as there are a
wide variety of nonlinear blocks available. Sampling rates are
defined at the SuperBlock level. Different sampling rates can
be used for different SuperBlocks, without restricting the rates
to being multiples of each other. Adaptive controllers could
also be designed.

l : r-------\ I

i ~ l/>--~,-:-'---m---'-----'---~-m----I

98

~ ::: ~'-'-'-'-'-'-'-'\ I
oc(.02 I

w i
~ .01 i
O. ! t T ,

i ~ ~/----,-----,-------------~--------------I
o 3 4 5 6 7 10

motE (sec)
REFERENCE INPUT VS. TIME

Figure 6

TIME (sec)
SYSTEM RESPONSE VS TIME

Figure 7

~I- I
o -.l ___ :::: _ .. _ .. __ ~

'0 ,04 , ~. - " -< .02 n
t:i Ii
'" 0 ",,_. __ --;

-:~~ !! I ! :: /" ... _ .. _ .. _._.. ... __ . __ .. __ .--
0":- ' , ! ! ! • • ! • •

I
i ~ t/'"-_·--···--··_·_·· __ ··_·_···--I

ot !!! _

;:~
~ 0 . .'\../'

a t 2 '" 5 10
TI ... E (uc)

REFERENCE INPUT " SYSTEM RESPONSE vs nw[

Figure 8

99

100

!

• 5
TIME (sec)

TWO • REFERENCE INPUT VS TIME

FipTe9

10

:~: r(------------\ I
o __

-.05 !

':L/~------'------ ______ m ______ -------I

~r----t I

i ~ l//~--~---------------------I
a 2 4 to

TIME (sec)
SYSTEM RESPONSE TO TWO • REF'ERENCE INPUT

Figure 10

TIME (sec)
TWO • REFERENCE INPUT &c SYSTEM RESPONSE VS TIME

MATRIX", is aregislered _and SystemBuiId
is atrademarkofIntegmled Systems Inc.

Figure 11

ANOJ90 • Jj90

:sY;tejlraled
••••••• systems Inc.

Corporate Headquarters:

Integnucd Systems Inc.
2500 Mission College Blvd.
Santa Clara, CA 95054-12.3 3
Tel: (408) 980-1500

European Office:

Integrated Systems Inc Limited
274 Camhridgc Stience Park
Milton Rmd, Camhridgc CM 4WE
England
Tel: 022> 420999

101

102

Simnon - A Simulation Language for

Nonlinear Systems

Tomas Sehonthal

Department of Automatic Control
Lund Institute of Technology

S-221 00 Lund, Sweden

Ab.tract. This paper presents Simnon, an inter­
active simulation environment for nonlinear sys­
tems, developed by the Department of Automatic
Control, Lund Institute of Technology, Lund Swe­
den. The following topics are covered: System de­
scriptions, interactive facilities, examples, appli­
cation areas and technical features.

1. Introduction

Simnon is a modular high level language for
describing dynamical systems with continuous
and/or discrete time. Equally important, it is an
interactive command language, a "software labo­
ratory", designed to organize and carry out simu­
lation runs, vary circumstances (i.e. parameters,
initial values or the models themselves) and dis­
play results graphically or numerically. A macro
facilitity permits developers to pack models and
command sequences into "turn-key" applications.
The first version of Simnon appeared as the re­
sult of a master thesis in 1972. At that time dig­
ital simulation meant expensive batch runs on
main frames, or writing your own dedicated For­
tran programs, since there hardly existed any

interactive systems with reasonably flexible in­
put formats for the type of computers that a
small research group could afford. Simnon soon
became a standard tool at Automatic Control,
Lund. In the years to follow Simnon went through
several stages of development. Today Simnon is
used worldwide by many universities for research
and education in several disciplines and is equally
popular in industry. Thanks to the MS-DOS ver­
sion, Simnon is rapidly finding new users in both
large and small organizations.

2. System Descriptions

The key concept is the system, which corre­
sponds to a mathematical model of the real­
ity being studied. In Simnon a system is a
sequence of statements in a special modeling
language. There are continuous systems (dif­
ferential equations) and discrete systems (dif­
ference equations). A third type of system,
connecting system, is used to form compound
systems from continuous and discrete systems.

103

inputs u states x outputs y

Continuous system:

z = J(z,u,t)

y= g(z, u, t)

Discrete system:

Z(tt+1) = J(z(t.), u(tA:), tA:)

y(tt) = g(z(t.), u(tA:) , tt)

tl:+1 = h(z(tA:)' u(t.), tt)

As we shall see later, describing a process (con­
tinuous system) controlled by a digital regulator
(discrete system) is very natural in Simnon, but
Simnon as such has no "built-in control theory".
The approach is "open architecture" , deferring all
that is specific to a particular discipline to the
user written models.
The statements of the system description lan­
guage are: declarations (type of system, type of
variable), assignments of variables, initial val­
ues and parameters. Variable assignment: vari­
able = [IF condition THEN expression ELSE)
expression. Expressions are formed by the com­
mon arithmetic operators and elementary func­
tions. Random numbers, time delays, interpola­
tion and the ability to drive a simulation by an
external data file are also provided. Please refer to
'Technical Features, Compiler' for more details.

104

3. Interactive Facilities

Once a system has been written according to the
rules of the system description language, the user
can, with the aid of the command language, begin
to experiment with it. First of all, the system has
to be translated by Simnon;s compiler. Then vari­
ables are selected for plotting, and a simulation
over a selected time interval is started.
Simulation, in general, is very much a trial-and­
error process. If the results differ from those ex­
pected, it is easy, with Simnon, to change a pa­
rameter, an initial value, or even an equation and
repeat the simulation. In the meantime Simnon
can accumulate raw material for a report. All this
can be accomplished conveniently with only a few

ofSimnon's 43 commands. In addition to this, op­
erating system commands may be executed from
within Simnon.
The interaction mode is command driven, i.e.
commands can be entered in arbitrary order, like
when you communicate with conventional oper­
ating systems such as MS-DOS, Unix or VMS. In
'Technical Features, Macros' it is indicated how
the user may influence this situation.

4. Examples

4.1 Chaos

In 1963 Loren. derived a set of ordinary differ­
ential equations to approximate the behavior of
atmospheric air currents:

z = a(y- z)

iI = bz - y- z.z

2: = zy- c.z

These equations can be represented by the follow­
ing Simnon system:

continuoUs system Lorenzeq
state x y z States
der dx dy dz Derivatives

dx=a*(y-x) ComputatiDn8
dy=b*x-y-x*z
dz=x*y-c*z

a: 10 Parameter.
b: 28
c: 2.667

x: -8 Initial value.
y: -8
z: 24
end

To solve the equations we type:

syst Lorenzeq
store x y z
~rror 1e-6
simu 0 20
ashow z(y)

Tran.late the Iydem
Store the ,olution
Demand higher accuracy
Simulate
Plot Z VI Y

text 'Simulare Necesse Est!'
Add a title

hcopy Print the diagram

4.2 Control

A simple example of a nonlinear control is one
that respects the saturation limits of its regulator:

This model is represented in Simnon as a continu­
ous process called proc, a discrete regulator called
pireg and a connecting system called regsys.
The discrete PI regulator has logic to limit satu­
ration, or windup, on its integrator.
To simulate the model without anti-windup (de­
fault), type:

syst proc pireg regsys
store yr y[proc]
simu 0 40
sp1it 2 1
ashov y yr
text 'Output and set-point'
ashov uclip
text 'Control signal'

which produces:

1.5 ou-.. l.e

I ••

-II .•

-II.lr-______ ~~~----~~---4~~------~

Now we can activate the anti-windup by setting
the low and high values of the control. We then
specify overplotting and repeat the simulation:

par ulov: -.1
par uhigh: .1
plot y[proc]:l 1 uclip:2 1
simu

1.5 OIIt ... t ... d .. t-potnt

1.5

II
'.1 ContN. lipa.

I .•

-1.1:1

-•. l!--------:1:---4----..",.L---~'-T------___,c

This gives far better performance. If we instead
wish to try an adaptive regulator in this environ­
ment, we could replace the module pireg with
a "plug compatible" (i.e. having the same inputs
and outputs) module adaptreg, and repeat the
above commands, except, of course, that the pa­
rameter tunings would look different.

5. Application Areas

Simnon is used for education and research in

105

such diverse disciplines as automatic control, bi­
ology, chemical engineering, economics, electrical
engineering, mathematics, mechanical engineer­
ing, etc. Typical problems include engine control,
food processing, power systems, process control,
robotics and ship steering. '

6. Technical Features

6.1 Compiler

Before a model can be simulated, it has to
be translated by Simnon's integrated compiler.
The compiler not only checks for syntax errors,
but also ensures that all quantities appearing to
the right of an assignment have defined values.
Thanks to the equation sorter, equations may be
entered in arbitrary order, and algebraic loops
will be detected. One kind of optimization is
made: Time-invariant expressions are only eval­
uated once.
Numerical errors (e.g. zero divide) during simu­
lation will be pinpointed in their source context.
'Since the models are compiled into machine code,
the simulations will run as fast as Fortran pro­
grams. In contrast to conventional programming
techniques, the turnaround times are neglible, al­
lowing the users to modify their models "on the
fly" .
The MS-DOS version has dynamic memory allo­
cation, which permits very large models.

106

6.2 Data Formats

Simnon is file oriented: System descriptions and
macros are normal text files that can be prepared
by any text editor. Time series are stored as bi­
nary files. These can be exported to printable
ASCII (a time series then forms a column) and
re-imported.
There exists a one-way path from PC-Matlab
(The MathWorks, Inc, Sherborn, Mass.) to Sim­
non at the system description level: Included with
Simnon is a preprocessor written as a Matlab
function that takes as arguments a matrix set
comprising a linear, time-invariant system and
produces a complete Simnon system description.
The command hcopy dumps the graphics part of
the screen to a plotting device or to a file for
further processing.

6.3 Documentation

Simnon comes with an English 180 page computer
set tutorial and reference manual with many ex­
amples. The on-line help utility has over 100 en­
tries.

6.4 Macros

Simnon usually takes commands from the key­
board, but a sequence of commands can be de­
fined as a macro (for historical reasons the term
'macro' is used; perhaps a more adequate term
is 'command procedure'). A macro can then be
invoked by typing its name and any associated
arguments. In this way the user may add extra
commands to the Simnon vocabulary. There is
provision for jumps and input/output just like
in a programming language. Macros can be used
to change Simnon's interaction mode from com­
mand driven to question and answer sequences,
which may be utilised for demonstrations. Macros
enable one person to develop and test a simula­
tion model and someone else to use it. Macros
have the reel of genuine Simnon commands, or
they could act as "programs within the program" .
Typically, such a macro could present the user
with a list of alternatives, then prompt the user
for a choice (input wave form, PID-control or
adaptive, etc.), or a numerical value.

6.5 System Requirements, MS-DOS ver­
sion

• IBM PC, XT, AT, PS/2, 80386-based or com­
patible personal computer

.8087,80287 or 80387 maths coprocessor

• MS-DOS/PC-DOS version 2.00 (or later) or
OS/2 with Compatibility Box

• 256 kB of RAM or more

• 3.5 or 5.25 inch diskette drive

• Hard disk (strongly recommended)

• One of these graphics systems (highest res­
olution used): CGA, EGA (enhanced or
mono display), Ericsson PC, Hercules, Olivetti
M24/ AT&T, Toshiba PC or VGA/MCGA

• Recommended hard-copy devices:
- Epson MX-80, IBM 5152 or compatible
- HP LaserJet family
- PostScript printers (e.g. Apple LaserWriter)

6.6 Prices, MS-DOS version

(July 1988, version 2.11) North American cus­
tomers pay in US $. All other customers pay in
Swedish currency (SEK). Swedish'customers will
be charged value ad.ded tax.

One copy of Simnon costs US $ 695 (SEK 5000).
Quantity discounts:

3--4 copies 10 %
5-9 copies 15 %

10- copies 20 %

For universities and schools the following prices
apply:

1 copy
5 copies

10 copies
20 copies

us S 345 (SEK 2500)
US S 1250 (SEK 9000)
US S 1750 (SEK 12500)
US S 2500 (SEK 18000)

Universities and schools may buy the ClaS61'OOm
Kit for US $ 500 (SEK 3500), provided that they
(have) order(ed) at least one copy of regular Sim­
non. This reduced problem-size version of Sim­
non, which is intended for education only, comes
with a license for 10 PCs.

7. References

For all of these works Simnon has been used ex­
tensively:

.Astrom, K. J., Bell, R. D. (1987): Dynamic Mod­
els for Boiler-'1Urbine-AIternator Units: Data
Logs and Parameter Estimation for a 160 MW
Unit, CODEN LUTFD2/TFRT 3192, Depart­
ment of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

Simmon is a product of SSPA Systems,
PO Box 24001, S-400 22 Goteborg, Sweden.
Fax: +46 31 63 96 24, Phone: +46 31 63 95 00.

In North America, Simnon is provided exclusively by
Engineering Software Concepts, Inc.,
PO Box 66, Palo Alto, California 94301.
Fax: 415 325 0531, Phone: 800 325 1789
(in California 415 325 4321).

Simnon is a USA registered trademark of the
Department of Automatic Control, Lund, Sweden,
who invented Simnon, created a larger user community for it,
and developed it into a commercial product, but no longer
supports it.

Olsson, G., Holmberg, U. and Wikstrom, A.
(1985): A Model Library for Dynamic Simu­
lation of Activated Sludge Systems. Reprinted
from Instrumentation and Control of Water
and Wastewater Treatment and Transport Sys­
tems, Pergamon Press, Oxford and New York.

.Astrom, K. J. and Wittenmark, B. (1984): Com­
puter Controlled Systems - Theory and Design,
Prentice Hall Inc, Englewood Cliffs, N~.

.Astrom, K. J. and Wittenmark, B. (1988): Adap­
tive Control, Addison-Wesley, Reading, Mass.

Elmqvist, H., .Astrom, K. J. and Schonthal, T.
(1986): Simnon - User's guide for MS-DOS
Computers, Department of Automatic Con­
trol, Lund Institute of Technology, Lund, Swe­
den.

Mattsson, S. E. (1984): Modelling and Control
of Large Horizontal Axis Wind Power Plants,
Ph.D. dissertation,
CODEN: LUTFD2/TFRT-1026, Department
of Automatic Control, Lund Institute of Tech­
nology, Lund, Sweden.

107

108

PART III

Implementation of Digital Controllers
j fIT .'.fllI'lin. lIti1iWnX.llfnrn !! IW '§tU'I!iI If It r:

:: :::: :::: : ::: :::: : :: ::::: ;:~I: : ::: :: :: :
au Iii! 8$ (tUU

; : : :;:::::: , : :::::::::::::::::: :::::11

Implementing Digital Controllers ... 111

Hardware/Software-Environment for DSP-Based Multivariable Control. 141
(H. Hanselmann, H. Henrichfreise, H. Hostmann, and A. Schwarte)

Implementation of Digital Controllers - A Survey 145
(H. Hanselmann)

The Programming Language DSPL .. 171
(Albert Schwarte and Herbert Hanselmann)

Application of Kalman Filtering in Motion Control Using TMS320C2S 185
(Dr. S. Meshkat)

Implementation of a PID Controller on a DSP 205
(Karl Astrom and Hermann Steingrimsson)

DSP Implementation of a Disk Driver Controller .. 239
(Hermann Steingrimsson and Karl Astrom)

Implementing Digital Controllers

A lot of work has been done recently in the area of modem control theory. and many quite elegant theories
have resulted. However. implementation has lagged substantially behind theory and idealized mathemati­
cal design. The outcome is that modem control theory is still limited somewhat to research labs. and most
of the servo control applications in the industry utilize classical control techniques. This introduction dis­
cusses some of the issues in implementing digital controllers. It should be emphasized that there are no easy
solutions-digital controllers still lag in the body of knowledge that is available for implementation. The
introduction and the articles in this part may not provide canned solutions; however. they do highlight many
pitfalls and problems of implementation and provide suggestions to minimize them.

The major issues in implementing digital controllers are the effects offinite word length. optimal controller
structures, computational delays, and software development for microprocessors/DSPs. The most impor­
tant issue in implementation is the effects offixed-point arithmetic and finite word length. Some problems
can be minimized by using floating-point processors; however, this may not always be possible. Before
going into the effects of finite word length, section Fixed-Point Versus Floating.Point wiII review fixed­
point and floating-point arithmetic formats.

Fixed·Point Versus Floating.Point
Floating-point processors have a very large dynamic range. In floating-point. a number is represented with
a mantissa and an exponent. The mantissa represents the fraction, and the exponent represents the number
of digits to the left of the decimal point. For example, assuming that a four-digit storage is available, 3740
can be written as 0.374 x I Q4. In floating-point, this can be represented as 4.374; where, exponent = 4 and
mantissa = 374.

The largest floating-point number represented by four digits is 9.999 or 0.999 x 1()9 = 999000000. The
largest fixed-point number represented by four digits is 9999.

Floating-point numbers thus allow amuch larger dynamic range than fixed-point numbers. However, float­
ing-point does not necessarily eliminate all finite word-length effects. Storage length is still limited, but
with a larger dynamic range. There is also some loss of resolution. The number of significant digits in a
mantissa determines the accuracy of the numerical value. However, the mantissa does not use all the storage
capacity as some of the storage is taken up by the exponent. In practice, to minimize this loss of resolution,
floating-point formats use 24 bits or greater to represent the mantissa. The TMS320 floating-point genera­
tions, TMS32OC3x and TMS32OC4x, have 32-bit architectures. Three floating-point formats are available:
short format with a 12-bit mantissa and a 4-bit exponent, standard-precision format with a 24-bit mantissa
and an 8-bit exponent, and extended-precision format with a 32-bit mantissa and an 8-bit exponent.

Floating-point processors are generally more expensive than fixed-point processors, and the cost may not
be justified in some applications. Floating-point may be needed in applications where either gain coeffi­
cients are time varying or signals and gain coefficients have a large dynamic range. Other cases where
floating-point can be justified is where development cost is more significant than component cost, and very
low quantities are required. Floating-point processors usually allow code to be developed in high-level
languages and reduce the need to fully identify the system's dynamic range.

Fixed-point processors generally are less expensive because less hardware is required on chip. In addition,
they have smaller word length (typically 16 bits), and system cost is lower. However, more effort isrequired

111

112

to develop appropriate scaling factors to eliminate the effects of truncation or overflow during the intenne­
diate and final states. Even in applications requiring use of floating-point for dynamic range requirements,
it may be possible to use to use fixed-point processors. If gain coefficients have a large dynamic range but
are constant, their dynamic range can usually be reduc;:ed-by structure optimization techniques. If gain coef­
ficients are time-varying and require adaptive control, a hybrid scheme can be used. Calculations for system
identification typically have a slower update rate and can be perfonned with pseudo-floating-point fonnat.
The controller calculations, on the other hand, have a much faster rate and can be implemented in fixed­
point arithmetic. Fixed-point processors can thus be used in most applications. The next section, Binary
Arithmetic, will deal with fixed-point numbers only.

Binary Arithmetic
In binary fonnat, a number can be represented in signed magnitude, where the left-most bit represents the
sign and the remaining bits represent the magnitude:

+52 (decimal) = 34 (hex) is represented as 00110100 (binary)
-52 (decimal) =-34 (hex) is represented as 1011 0100 (binary)

Twos complement is an altemate fonn of representation used in most processors, including the TMS320.
The representation of a positive number is the same in twos complement and in signed magnitude:

+52 (decimal) = 34 (hex) is represented as 0011 0100 (binary)

However, the representation of a negative number is different; as its name implies, the magnitude of a nega­
tive number is given in twos complement.

-52 (decimal) = -34 (hex) is represented by taking its twos complement, 1100 1100 (binary); i.e.,
Convert+52to OOtt 0100
Invert all bits to get ones complement 1100 1011
Add one to get twos complement + I
Twos complement is II 00 1100

Therefore, -52 (decimal) = -34 (hex) is represented as 1100 1100

Adding 52 and (-52) gives 0011 0100
+ 1100 1100

00000000

as expected. The main advantage of twos complement is that only one adder is required to handle both posi­
tive and negative numbers. An addition will always give the correct result for both addition and subtraction.
Also, if the final result is known to be within the processor's number range, an intennediate overflow can
be ignored as the correct final result will still be produced. The largest positive number that can be repre­
sented with 8 bits is 7F (hex) or 127 (decimal), and the largest negative number represented with 8 bits is
80 (hex) or-128 (decimal).

The fixed-point binary representation does not have any binary point and does not represent fractions. How­
ever, it is sometimes advantageous to use an implied binary point to represent fractions. In signal process­
ing, it is common to represent a number in fractions. For example, if 0.99 is the highest number that.can
be represented, the result of multiplying any two numbers will always be less than one - an overflow will
never occur.

The location of the implied binary point affects neither the arithmetic unit nor the multiplier. It affects only
the accuracy of the result and location from which that value will be read. For fractional arithmetic, the re­
sult is read from the upper 16 bits. For integer arithmetic, the result is read from the lower 16 bits (assuming
no overflow). Fractional arithmetic loses accuracy but protects from overflows, while integer arithmetic

provides an exact result but offers no protection from overflow. In fractional arithmetic. an addition or a
subtraction could produce an overflow, but a multiplication never causes one; generally, a single carry bit
is sufficient to handle the overflow.

ForTMS320processors, numbers are typically represented in the QI5 format; where. the numberfoUowing
the letter Q represents the quantity of fractional bits. This implies that, in Q I 5, each number is represented
by I sign bit, 15 fractional bits. and no integer bits. Likewise, a number in the QI3 format has I sign bit,
13 fractional bits, and 2 integer bits. The following shows both Q formats of eight decimal fractions and
one integer:

decimal
+0.5
+0.25
+0.125
+0.875
-0.5
-0.25
-0.125

-0.875
-1.000

Q15
0.100 0000 0000 0000
0.010 0000 0000 0000
0.001 0000 0000 0000
0.111 0000 0000 0000
1.100 0000 0000 0000
1.110 0000 0000 0000
1.111 0000 0000 0000
1.001 0000 0000 0000
1.000 0000 0000 0000

Q13
000.1 0000 0000 0000
000.0 1000 0000 0000
000.00100 0000 0000
000.1 11 00 0000 0000
100.1 0000 0000 0000
100.1 1000 0000 0000

100.1 11 00 0000 0000
100.00010 0000 0000
100.00000 0000 0000

When two QI5 numbers are multiplied, the result is Q30 format and is also a fraction. The result has 30
fractional bits, 2 sign bits, and no integer bit.

1.1 00 0000 0000 0000
x 0.100 QQQQ QQQQ QQQQ

-0.5

x~
-0.25 11.11 0000 0000 0000 0000 0000 0000 0000

To store the result as a Q I 5 number, a left shift of one is performed to eliminate the extra sign bit, and the
left-most significant 16 bits are stored. The result is stored as 1.I JO 0000 0000 0000.

Multiplication never gives an overflow in QI5 format. but successive additions may. If the final result is
Known to be within range, overflow in partial results will give correct results for the final sum. However,
the saturation mode on the TMS320 must be tumed off. For example.

+0.875

+ ±Q.&
+1.375

+ :::Q.SQQ.
+0.875

1.1 00 0000 0000 0000

+ 0.100 0000 0000 0000
1.01\ 0000 0000 0000

+ 1.1 00 ()()()() 0000 0000
0.111 0000 0000 0000

Finite Word-Length Effects

(Q15 format)

(add twos complement to obtain result)

Finite word-length effects are probably the most critical issue in implementing controllers. Most digital
controllers use fixed-point processors. In a fixed-point processor, only a finite amount of storage length­
for example. 4, 8, or 16 bits - is available to represent the signal and coefficients. Signals and coefficients
must be scaled to fit in the dynamic range and word length of the processor. This limited storage capacity
is referred to as the finite word-length issue. Finite word-length effects show up as noise in the system and
may cause limit cycles or instability. But, it should be noted that finite word-length effects are somewhat
forgiving in first- ,and second-order controllers. Finite word-length affects the controller in two ways:
coefficient quantization and signal quantization.

113

114

Coefficient Quantization: Finite word length affects the representation of coefficients. The coeffi­
cients may need to be truncated or rounded to fit in that word length. If truncation or round-off is necessary,
the process is called coefficient quantization. Coefficient quantization alters the transfer function of the
system and changes the pole-zero locations and the gain of the system. Coefficient quantization is depen­
dent upon the sampling rate as well as the word length. As the sampling rate gets higher, the poles tend to
move toward and cluster around z= I, making the system very susceptible to coefficient quantization. Coef­
ficient quantization can be minimized by using proper structures. Some of these structures make the system
less susceptible to errors resulting from the effects of truncation/round-off. This is discussed in section
Controller Structures.

Signal Quantization: Finite word length can also cause signal quantization. This can be divided into
three different categories.

AID and DIA Quantization Effects: One type of signal quantization occurs upon the conversion and
representation of a'continuous signal into discrete magnitude by an AID or a D/A converter. The AID and
D/A word lengths are usually limited to 8-12 bits. AID and D/A conversion also affects the controller by
contributing to computational delay. This is discussed in section Computational Delay.

Most commercial AID and D/ A converters are available in the range of 8 to 16 bits with heavy premium
on higher resolutions. An 8-bit AID converter gives an accuracy of I in 256 or error of 0.4%, while a 10-bit
AID converter gives a resolution of a I in 1024 or an error of 0.1 %. Unlike errors caused by the other
quantization processes, errors in the processor's word length due to AID and D/ A effects are not recursively
fed back into the control system. In most cases, signal conversion requires a smaller word length than the
processor word length. Sensor accuracy must also be taken into account. If the sensor has a 5-m V noise in
a 5-V system, then there is no point in having an AID with greater than 10-bit resolution. Once the AID is
selected, the D/A is chosen to have the same.or slightly higher resolution. Selection of AIDs and D/As are
usually not a major problem when implementing the controller. Too often, errors from numerical calcula­
tions (truncation or round-oft) are mistaken as low resolution in the input/output signal.

If the controller is used in the servo mode and forced to follow a reference signal, the reference signal must
then be represented correctly. If it is represented with a higher precision than the AID's resolution, the error
will never go to zero, causing a limit cycle.

Truncation and Round-Off Effects: The second kind of signal quantization appears when results of
signal processing are truncated or rounded. As intermediate calculations are carried out, they need higher
precision. For example, a 16 X 16 multiply requires a 32-bit register to store the result. If only 16 bits are
available, the lower 16 bits are thrown away; this is known as truncation errOT. If the LSB is rounded before
throwing away the lower 16 bits, this is knoWn as round-off error. Since both of these errors are fed back
recursively, they will accumulate as successive calculations are performed.

Truncation and round-off introduce bias and noise into the system, which may produce limit cycles because
of nonlinearities. If q denotes the quantization step, /.l denotes the mean of noise density, and 6 denotes the
variance of noise density, then

/.l = q/2 and 6 = q2/12 for truncating

/.l = 0 and 6 = q2/ 12 for rounding

These effects can be minimized by the proper selection of structures. For example, a fourth-order system
becomes less sensitive to truncation and round-off errors if it is broken into lower-order parallel structures.

Overflow Effects: A third effect of signal quantization is overflow conditions. Successive calculations
(i.e., addition) can cause registers to overflow even when fractional arithmetic is used. This, in return, will
force the contents of associated registers to wrap around and change magnitude from most pOsitive to most

negative numbers. This is equivalent to changing the direction of the control. To prevent this, a check for
overflows must be continuously made during the intennediate and final stages. When twos complement
arithmetic is used, intennediate overflows can sometimes be ignored if the final result is known to be within
bounds. In the lMS320 architecture, a saturation mode is provided to prevent the contents of registers from
wrapping around and changing sign when an overflow occurs. Overflow effects can be minimized by the
proper selection of scaling factors and by leaving extra guard bits.

Scaling
Selection of a proper scaling factor is critical in minimizing the effects offinite word length. The scale factor
should support the full dynamic range of signals and coefficients. A large scale factor may cause an over­
flow condition. Although overflow protection is built into the lMS320 architecture, it is advisable to mini­
mize the possibility of overflows. To solve that problem, sometimes it may be necessary to choose a smaller
(12-13 bits) scale factor. The small scale factor could, on the other hand, increase quantization noise.

Usually, there is little choice in handling the dynamic range of signals. If the dynamic range is too big, it
may dictate selection of a floating-point instead of a fixed-point processor. Simulations are required to de­
tennine the dynamic range. In some cases, it may be possible to switch modes and change scale factors.

For proper scaling, a two-step approach is required. The first step requires optimization of the structure.
Once the structure has been transfonned into a suitable one for implementation, scaling can be carried out.
If transfer functions are used, direct structures should be avoided and broken into smaller cascaded struc­
tures. If necessary, different scale factors can be chosen for each substructure. The scale factor is found by
first calculating the worst-case response, H(z), of a system under maximum input signal conditions. Differ­
ent techniques,lp, 110 and h (described later in this section) may be used to find H(z). Next, H(z) must be
scaled down in value to prevent an overflow during the intennediate and final stages. If fractional represen­
tation of a Q 15 fonnat is assumed, the scaled response, H' (z), must be less than unity. The scale factor, Sn,
is finally found by satisfying the following relationship:

H(z)
H'(z)

Sn
where

H(z) < I
Sn

For state space structures, diagonal scaling can be used. Again, before scaling, the first step requires the
transfonnation process. Techniques like Schur transfonnation or Modal transfonnation can be used to
optimize structures. These transfonnation techniques not only reduce the dynamic range of coefficients,

. but also reduce the number of nonzero elements in the structure. This minimizes the calculations that the
processor must carry out.

The next step is to find the appropriate scale factors. The scaling factor must take into accountthe translation
of proper input/output variables (Le., voltage range of the AJDand D/A converters). In addition, it must
prevent overflow or saturation during the intennediate states. Extensive simulations are usually necessary
to ascertain the maximum and minimum values of states to provide the necessary scale factors. The scaling
procedure can be broken into two different operations: input/output scaling and state vector scaling.

Input/output scaling transfonns the internal fractional representation of numbers to external physical vari­
ables. Internal numbers within the range of +0.9999 to-I.OOOOmay have to be changed into external values
of ±Volts for the AID and D/A converter. For example, given a system

Xn+l = AXn + BUn

Yn = Cxn+Dun

115

116

Then B, C, and D matrices must be scaled by the following relationship

B. = B[(Su)-1]

c. = [(Syrl]C

D. = [(Syrl]D[(Su)-i]

where (Sy)-l and (Su~l are diagonal matrices.

For a system with an input/output physical range of ± t 0 V and a processor number range of ± 1.0000, we
have
B. = lOB
C. = O.lC
Ds = D

For state vector scaling each, state variable must be scaled to keep it within the number range of the proces­
sor. Each state vector is divided by the following diagonal scale factor matrix.

Xs = [(Sxri]x

The system can now be represented as
Xs.n+1 = A.x.,n + B.Un
Yn = C.x.,n + DUn

where

As = [(Sx)-I]ASx
B. = [(Sx)-I]B
C. = CSx

There are three different ways to calculate the scale factor matrices.

The first way to choose Sx is to simulate the closed loop under worst-case conditions and to check for
overflow at each node or summation. The worst case is defined as when the largest absolute value of a state
variable is selected for the calculation. This is know as Ip scaling.

Given

S,,\ = max[abs(xnJl]

then

S,=diag(f)
x.'

The second approach is to statistically analyze for the probability of overflow at each node instead of doing
actual simulations. This is known as 12 scaling.

The third approach is to perform an analysis with certain bounded conditions of input signals. This is known
as II scaling. II scaling can be applied only to stable systems.

Controller Structures
Selection of the proper control structure for digital controllers is a very critical issue, and its importance
cannot be overemphasized. It is often the most overlooked aspect of implementation. Digital controllers
can be described in terms of different, but equivalent structures. These structures have the same infinite

word-length behavior but different finite word-length behavior. The difference in finite word-length behav­
ior results from the fact that some structures have coefficients that are less sensitive to coefficient truncation
or that lie within a smaller numerical range. thus making it easier to scale. They may also produce lower­
order equations.

Transfer Function Forms: Several different structures can represent systems when transfer functions
are used. The simplest form is the direct structure shown in Figure 1.

Usually, in this structure, the coefficients have a wide range, depending upon the pole-zero locations. This
makes the structure very susceptible to coefficient quantization. round-off error, and overflow. The struc­
ture can be represented in a transfer function form as

1>0 + bl:cl + b:zz-2 + b]2:-3 + b4z-4
H(z) = =-.;.....:.:..:;.,.......;....;~~=,.......;..~:.,..

I + alz-I + a2:c2 + a3z-3 + ~z-4

Figure 1. Direct Structure

en bo

Z-1

en-I
b

Z-1

en-2 ~

Z-1

b
en-2

z-1

en-4 b4

Z-1

Z-1

Z-1

Z-1

Another alternate structure is the cascaded structure as shown in Figure 2.

This can be represented in a transfer function given by

(blO + bl1z-1 + bI2z-2) (b20 + b21z-1 + bz2z-2)
H(z) =

(I + al1z-1 + alz:CZ) (1 + aZlz-1 + azzz-2)

Yn

Yn-l

Yn-2

Yn-2

Yn-4

The cascaded structure is somewhat less susceptible to round-off error and overflow than the direct struc­
ture. One advantage of this method is that poles and zeroes close to each ather can be matched together.
This will reduce the range of coefficients for each substructure. Different scale factors can then be chosen
for them. A transfer function should be broken into first- or second-order cascaded functions to derive the
~reatest advantage from this structure.

117

118

Figure 2. Cascaded Structure
en Y1(n) 11m Yn

2:'"1 2:'"1 2:'"1 2:'"1

en-1 8" Y1(n-1) Yn-1
2:'"1 2:'"1 2:'"1

...... 2
8,2

Y1(n-2) Yn-2

A parallel structure can also be chosen to represent a system. This is shown in Figure 3.

It ,is least susceptible to round-off errors and overflow problems. A paraIlelstructure can be obtained by
partial fraction expansion or division. This can be represented as

H() _ (blO + bllz-J) (bw + b2Jz·J) (blO + blJz·J) (b40 + b41z"1)
Z - (1 + a,iz"l) + (1 + a21z"1) + (I + a3Iz·l) + (1 + Il.!rz·l)

For example, if the transfer function is given by
~-azl +bZl

H(z):::; Z2 - 1.9979 + 0.9979

the poles of the systems are at Zl :::; 0.9988 and Z2 :::; 0.9991 .

If this system is represented with coefficient round-off, it becomes
Zl-azl + bZ1

H(z):::; Z2 - 1.998 + 0.998

The new pole locations are now Zl:::; 0.9980 and Z2 :::; 1.0000.

If this system had been represented as a cascade of two first-order substructures, the new structure after
round-off would be

(z - at) (z- a2)
H(z) :::;

(z - 0.998) (z - 0.999)

Thus, the cascaded structure shows less sensitivity to coefficient round-off.

Figure 3. Parallel Structure

State Space Form: If the state space fonn is used, the controller can again be represented in different,
but equivalent state space structures that can give better finite word-length behavior. Structure transfonna­
tion techniques should also be employed to create structures that will have less numerical sensitivity.
Structural fonns like Modal or Schur can reduce the number of nonzero elements in the structure.

The Modal fonn of a matrix is a diagonal matrix with all its eigenvalues as the diagonal elements. If the
eigenvalues are complex, then the diagonal elements are a 2-by-2 matrix. The Modal fonn requires that all
eigenvalues be linearly independent. This is referred to as the diagonal canonical fonn. The Modal fonn
is represented as follows:

lf1 0 0 0 01
o f2 0 0 0 I

o 0 f3 0 0 I
o 0 0 r4 0 I
o 00 0 f~

The Schur representation of a matrix is the upper-fight triangular portion of the matrix with its eigenvalues
on the diagonal. If the eigenvalues are complex, then they are 2-by-2 blocks on the diagonal. The Schur
representation is given as follows:

l f1 x X X Xl o f2 x X X

o 0 f3 X X

o 0 0 f4 X

o 0 0 0 rs

The following example shows the effects of structure transfonnation; complete implementation examples
along with the TMS320Cl4 code are given in Appendix I. The state controller and estimator that were de­
veloped in PART II's introduction are used here. The structure is transfonned with the Schur method and
Impex® software. The A matrix now represents

A-BK-LC
from the original matrices in order to satisfy the input requirements for the Impex® software. The original
system is given by the following set of coefficients. The software uses extended-precision/floating-point
fonnat to represent the original that system. After structure optimization and scaling, the numbers are con­
verted into 16-bit/fixed-point fonnat for implementation and code generation. For illustrational purposes,
the system will also be represented in 32-bitlfixed-point fonnat to show the loss of resolution due to lack
of structure optimization.

119

120

After the Schur transfonnation, the matrices are obtained as follows:

Note that the Schur transfonnation has tremendously reduced the dynamic range of the coefficients, thus,
making it easier to scale them. Matrix C is not treated since it can be scaled independently.

Computational Delay
Computational delay is a critical disadvantage to using digital controllers. It has prevented widespread use
of microprocessors and microcomputers in digital controllers because the amount of computational delay
that is produced by these processing elements is unacceptable. With the high-perfonnance of DSPs compu­
tational delay becomes more manageable. Computational delay shows up as phase delay within the system
and affects the phase margins of that system. The negative phase-shift contribution can be calculated as
follows:

phase delay = (computational delay)(bandwidth frequency)(360 0)

For a system with a I-kHz bandwidth, a lOO-).ls computa~ional delay will produce a negative phase shift
of 36 degrees.

Even when using DSPs, it is advisable to minimize the effect of computational delay. This may be done by
adopting appropriate structures or signal flows. For example, a compensator is represented by the following
difference equation:

u(n) = K\[u(n-2)] + K2[u(n-I)] + K3[y(n-2)] + ~[y(n-l)] + Ks[y(n)]

Only the last element, Ks[y(n)], is dependent upon the latest measurement. The remaining elements can
be precomputed and stored into memory. As soon as the measurement is made, the last element can becalcu­
lated an4 the control output u(n) sent to the actuator.

Similarly, a state estimator is expressed as

x(n + I) = A[x(n)] + B[u(n)] + L[y - Cx(n)]

y = C[X(n)j

u = -K[x(n)]

These can be split up as follows:

X(n + I) = Ax(n) + B[u(n)]

y = C[X(n + I)]

As soon as the measurement y is made, the control can be calculated by the following:

x(n+ I) = X(p+ I) + L{y - y)
u = -K[x(n+I)]

This structure is usually referred to as a current estimator.

Another aspect of computational delay is the contribution by the AID and D/ A converters; the AID usually
being the main factor. The AID has some minimum conversion time, while the D/A requires settling time.
The conversion delay of the AID creates a negative phase shift and affects the phase margin and stability
of the system. The ZOH hold action of the D/A converter produces a delay of one sample time. This delay
is comprehended into the design when the plant is discretized. The AID conversion and the D/A settling
times, on the other hand, must be taken into account during the implementation.

Typical AID converters available in the market today range in conversion time from 50 ns for video applica­
tions to 50 ~s for data acquisition. There is often a trade-offbetween conversion time and resolution. Those
AIDs with fast conversion times usually have lower resolution. For most control systems, AID converters
are chosen with conversion time of 15 ~s or less. However, the selection depends upon the bandwidth and
phase margin of that system. The phase delay is given by

phase delay = (computational delay)(bandwidth frequency)(360 0)

For a system with a I-kHz bandwidth and an AID converter with a I O-~s conversion time, the AID converter
will contribute a negative phase shift of 3.6 degrees.

Sampling Rate Selection

Another important consideration is the selection of sampling rate. In signal processing, the sampling rate
should be at least twice the bandwidth or twice the highest frequency component in the system. Iflower
sampling rates are selected, noise from the high-frequency components may be introduced into the system
and would be indistinguishable from the signal. Antialiasing filters are installed before the controller so that
high-frequency components can be attenuated. In control systems, the sampling rate is commonly chosen
to be ten to twenty times the system's bandwidth. However, this refers to the closed-loop bandwidth for the
controller. If the system has structural resonances so that notch filters are needed to cancel them, a sampling
rate of two times the bandwidth or higher is sufficient for the filters.

Theoretically. a digital system should be equivalent to an analog system if the sampling rate is very high.
However, in practice, when the sampling frequency becomes too high, the poles will cluster around z= 1.
making the system more susceptible to coefficient quantization. Modifying the structure may be necessary
to minimize this effect.

Another factor that needs to be taken into account is stability. When a stability analysis is done by mapping
pole locations or eigenvalues on the z-unit circle, it is true only for that sampling frequency. As the sampling
frequency is changed, it creates a new mapping of eigenvalues on the unit circle.

Table I shows the pole locations for various sampling frequencies of a lead-notch controller, which is trans­
formed into the z domain using the bilinear transformation. The lead-notch controller is given by

Go(s) = [(S + 0.35)] [(S2 + O.06s + 1.2)]
(s + 8) (s + 27)2

In addition to the controller's sampling rate, the sensor's bandwidth needs to be considered. Sensors like
encoders give digital outputs. At high sampling rates and low speeds, their outputs may be heavily quan­
tized, causing large variations from sample to sample. Taking a moving average of the last few samples may
be necessary to eliminate those variations. This essentially implements a low-pass filter for the input signal.

12l"

122

Table 1. Location of Poles for a Lead-Notch Controller

Antialiasing Filters
In a digital signal processing system, a minimum sampling rate must be implemented to allow reconstruc­
. tion of the information in the digital domain. According to the Nyquist criteria, the sampling frequency must
be at least twice the highest frequency component in the signal. If a lower sampling frequency is used or
if high-frequency noise is present, some of the information will be lost. This is known as aliasing. If un­
wanted high-frequency components are present, they must be removed through circuits known as antialias­
ing filters.

In control systems, antialiasing filters must be used carefully; they can cause phase delay, which also adds
to the computatiomil delay of the controller. A negative phase shift affects the phase margin of that system.
Due to the oversampling intervals (10 - 20 times the frequency) in control systems, it is usually possible
to avoid the usage of antialiasing filters. If antialiasing filters are used, they should be first-order filters with
minimum phase delay. The negative phase-shift contribution of the filter should be taken into account along
with the computational delay and AID conversion delay.

Controller Design Tools
Analog controller implementation requires only hardware design. A digital controller implementation not
only requires a hardware design, but also extensive software design. The hardware design of a digital con­
troller is somewhat easier to accomplish, and standard forms of processor interface can be chosen indepen­
dently of the type of controller structure selected. The burden of software design can be eased by the wide
selection of CASE (Computer Aided Software Engineering) and code-generating tools that are available
today. These tools tremendously increase the productivity of the control designer.

Algorithm Development
In control systems, extensive simulation of control algorithms is necessary before the design can be carried
out. Simulations may also be necessary under worst-case conditions so that appropriate scaling factors can
be obtained. Numerous software packages are available that allow not only simulation capability but also
design capability. As mentioned earlier, some of the more popular packages are PC-Matlab, Matrix-X, and
Simnon. The Impex® software package also has extensive simulation capabilities. It supports simulation
with AID and Df A converters and the effects of the converters' resolution and conversion delay. It can also
comprehend computational delays and different levels of quantization on all or some of the states.

Software Development
Software development is another major concern in implementing digital controllers. The programmable
approach to controllers allows easy upgrade and maintenance. It protects development investment but, at

the same, requires more initial development effort. Still, programming with DSPs requires slightly different
techniques than programming with ordinary processors.

Typically, in control systems, processors are used for supervisory functions, and analog circuits are used
for signal processing functions. When DSPs are used, they may be required to implement not only the signal
processing functions but also the supervisory functions. With ordinary processors, there is usually a large
reliance on lookup tables for math and other functions. With DSPs, it is more common to calculate the actual
math functions or the algorithms. Functions like sine and cosine may be easily calculated using the expan­
sion series. Due to the high speed ofDSPs, it is very common to eliminate as much of the extemal hardware
as possible and, instead, use on-chip processing for those functions. For example, low-cost sensors could
be used; or, some of the sensors can be eliminated entirely, and on-chip processing can compensate for their
removal.

DSPs have been designed for realtime signal processing and have very fast interrupt response. On earlier
processors, the facilities for concurrently running multiple tasks were limited due to their smaller-sized
hardware stacks, although larger software stacks were possible. This reduced the number of nested inter­
rupts or subroutines that the processors could handle. Therefore, it is normally advisable to use macros and
the straight-line code instead of repeated subroutine cal1s.

DSPs do not have a single-cycle divide instruction, so division should be avoided. If necessary, the first
choice is a multiplication by an inverse procedure. Division can also be performed by repetitive executions
ofthe SUBC instruction. Or, a limited division can be performed by right-shift operations.

Fourdifferent approaches to software development can be taken: high-level languages, assembly language,
signal processing languages, and code generation software.

High.Level Languages: Using a high-level language (HLL) like C, Pascal, or FORTRAN can substan­
tially cut development effort. Such languages are familiar to everybody and easy to program. 1Ypical1y,
high-level languages are used for initialization and nonrealtime code. They are not optimized with respect
to signal processing functions and to particular processor architectures. Code compiled on a processor is
always larger than handwritten assembly code and may be 2 to 4 times the size of assembly code; this is
a high penalty trade-off for time-critical signal processing applications. In cases where a high-level lan­
guage is necessary, it is beneficial to have a thorough knowledge of processor architecture to make the most
efficient use of the special signal processing features.

Due to the general trend towards more usage ofHLL in industry, new TMS320 architectures are also being
optimized for HLL. Floating-point generations (TMS32OC3x and TMS320C4x) of the TMS320 family
have architectures especially designed for greater support of high-level language code and produce highly
efficient assembly code. On the other hand, the fixed-point generations may require assembly coding for
their time-critical routines.

Assembly Language: Assembly language produces the most efficient coding. When using a high-level
language, it may be necessary to use assembly language for the more time-critical operations. Assembly
language programming requires an intimate knowledge of the processor architecture. At the same time, the
nature of performance requirements for some signal processing systems requires maximum code efficien­
cy,leaving very little choice in the usage of assembly language. To give assembly language some resem­
blance of high-level language, macro libraries are often developed for more frequently used functions.

Signal Processing Languages: Signal processing languages can provide a middle ground betweel.
high-level language coding and assembly language coding. They can ease the development of standard
high-level languages. At the same time, they offer code efficiency that is comparable to that of assembly

123

124

language because they are designed for specific signal processing applications. Digital signal processing
language (DSPL) from dSPACE is one example. One disadvantage is that there is no standard for these lan­
guages, and none of the languages is widely known.

Code Generation Software: Code generation packages that will automatically generatea.~sembly code
.for particular processors are becoming available. For example, the Impex$ software package from
dSPACE will generate TMS320 assembly code from a mathematical description of the controller. The
DFDP (Digital Filter Design Package) from ASPI will generate assembly code for TMS320 processors
from a description of a filter. These packages are becoming increasingly popular because they allow the
control designer to focus on design issues instead of developing assembly language software.

Device Simulators

Another useful tool in designing software is the device simulator. Simulators for the TMS320 family run
on common platforms like PC and VAX, which provide full simulation of the instruction set along with in­
struction timing. Such simulation of the controller software can fully check the effects of math operations
on internal registers and memory without the need for off-chip hardware. In some ca.'les, software simula­
tors have features that are not available on hardware development tools. These include full access to and
tracing of internal processor memory and registers and sometimes even internal pipeline operations. Also
available are full breakpoint capabilities for the inspection of the processor's state at the required/desired
instances.

Hardware Design

A wide variety of tools is available for designing the hardware for a controller. These include target systems
and EVMs that plug into a PC or are stand-alone. The in-circuit emulators can be used for complete system
debugging. The XDS/22 emulators from TI support complete in-circuit emulation along with extensive
breakpoint and tracing capabilities. Also available are device behavioral models that can simulate the
timing and bus behavior of a complete target system without additional hardware. Logic Automation
provides behavioral models for most members of the TMS320 family that run on popular workstations.
Manufacturers like HP and Tektronix produce logic analyzers that can be used for extensive tracing. These
logic analyzers can debug code by disassembling captured data.

Figure 4 shows the typical block diagram of a digital controller. A digital controller normally requires a
processor, a memory interface to the processor, and AID and D/A converter interfaces. Figure 5 shows a
typical interface of a TMS320 DSP with memory and AID and 0/ A devices. Further information is avail­
able in the appropriate TMS320user's guides.

Figure 4. Digital Controller

'---------1 . AID

Host
Processor

Summary

Figure 5. Controller Interface

Memory

Timer

SerlailiF

PWM

EncoderliF

Implementation of digital controllers is a relatively new area as the limited availability of infonnation
suggests. Most of the previous commercial implementations in industry were either first- or second-order
systems. Typically, these are low-bandwidth systems like process control and do not take full advantage
of the capabilities that modem control theory has to offer. Limitations of earlier processors had prevented
widespread use of digital controllers in many segments of industry. DSPs are the first class of processors
that have the right combination of architecture, perfonnance, and cost to make it possible for implementing
these advance concepts in practical everyday systems. This combination now allows people to implement
advanced controllers in a wide variety of products and services and to solve the major problems in imple­
mentation of digital controllers. PART IV's introduction as well as articles describe many of these products
and applications.

Digital controller implementation, however, is fundamentally different from analog controller implemen­
tation. Since natural analog processes are approximated, a fair amount of work must be done in preparing
a controller design for implementation. This introduction highlighted some of the major problems that are
usually encountered when implementing digital controllers. Undoubtedly, there are countless other prob­
lems that are unique to each application. However, minimizing these problems that are discussed here will
provide a solid foundation for control system implementation. The use of CASE tools like Matrix-X, Im­
pex, and DFDP is again recommended because they not only automate design and implementation pro­
cesses but also represent years of experience by experts.

References

1. Maroney, P.,Issues in the Implementation of Digital Feedback Compensators, The MIT Press, 1983.

125

This shows an example of a
controller was designed in
locations were' chosen to
parameters were obtained.

APPENDIX 1

design and implementation using CASE Tools. The
the previous section using PC-Matlab. The pole
be z=0.90 and z=0.95. The following design

A [L 000000:0000000 0.00099444139773 1
0.98890343243454

[0.00002685315106

1
B

0.05360660659645

C 1 o 1

D 0

K [93.27208561511948 2.54443979371671

[0.01063'03432437

1
L 100

2.78492351899385

A - BK - LC [
-0.00066408081842

100
0.00000926115172 1
0.00852504649404 -2.83492351899385

The Impex software will be used for code generation that is suitable for
implementation on the TMS320E14. The next sections of Appendix 1 show the
different outputs of the software.

1a. This shows the original system derived from PC-Matlab and the input to
the Impex software. The matrices A, B, K, and L have to be combined as
shown above and will be referred to as the "a" matrix in the system. The
remaining matrices will remain the same.

lb. This shows the effect of schur transformation in the system. The
dynamic range of the coefficients has been significantly reduced.

1c. This shows the system after 'scaling and schur transformation. The C
matrix is not scaled as this can be done via input output scaling or even
with an external amplifier.

ld. This shows the realized system and the DSPL (Digital Signal Processing
Language) code for the state controller/estimator.

1e. This shows the assembly language code for this controller on the
TMS320E14 DSP. The code also shows the macros that will be used in the
expansion. The code interface to a DSII01 (a TMS320E14 board developed by
dSPACE). Initialization and peripheral addresses can be changed for other
systems.

126

Appendix la

- This is the original system obtained from PC-Matlab
- Dynamic_matrix a represents A - BK - LC in the design.

basic block is
state controller/estimator

system info text is
example for a second order state controller/estimator
with one input and one output.

end system_info_text;

sampling-period := 0.001;

system inputs is
name-=> pos err, unit => v,

lower bound => -1.00000000000000E+01, upper_bound =>
1.00000000000000E+Ol;
end system_inputs;

system outputs is
name-=> plant con, unit => v,

lower bound-=> -1.00000000000000E+Ol, upper_bound =>
1.00000000000000E+01;
end system_outputs;

system_equations ssd is

system_representation := PHYSICAL;

system states is
name-=> state xl;
name => state-x2;

end system_states;

dynamic matrix is
a (1,-1) := -6.66408081842000E-02;
a(2, 1) := -2.83492351899385E+02;
a(1, 2) := 9.26115172000000E-04;
a(2, 2) := 8.52505649404000E-01;

end dynamic_matrix;

column input matrix pos err is
b(1):= 2. 68531510600000E-05;
b(2) := 5.36066065964500E-02;

end column_input_matrix;

row output matrix plant con is
c(1) :=- 1.00000000000000E+OO;

end row_output_matrix;

direct link pos err to plant con is
d - := O~OOOOOOOOOOOOOOE+OO;

end direct_link;

end system_equations;

end basic_block;

127

Appendix lb

- This shows the controller after performing schur
~ transformation on it.

basic block is
state controller/estimator

system info text is
example f~r a second order state controller/estimator
with one input and one output.

end system_info_text;

sampling~eriod := 1.OOOOOOOOOOOOOOE-03;

system inputs is
name-=> pos err, unit => v,

lower bound => -l.OOOOOOOOOOOOOOE+Ol, upper_bound =>
1.OOOOOOOOOOOOOOE+Ol;
end system_inputs;

system outputs is
name-=> plant con, unit => v,

lower bound-=> -l.OOOOOOOOOOOOOOE+Ol, upper_bound =>
1.OOOOOOOOOOOOOOE+Ol;
end syste~outputs;

system_equations ssd is

system_representation := SCHUR;

system states is
name-=> state xl schur;
name => state-x2-schur;

end system_states;-

dynamic matrix is
a (1,-1) := -6.66408081842000E-02
a(2, 1) := -5.53695999803486E-Ol
a(1, 2) := 4.74170968064000E-Ol
a(2, 2) := 8.52505649404000E-Ol

end dynamic_matrix;

column input matrix pos err is
b(1):= 1.37488l33427200E-02;
b(2) :- 5.36066065964500E-02;

end column_input_matrix;

row output matrix plant con is
cT 1) :=- 1,953l2500000000E-03;

end row_output_matrix;

end syste~equations;

end basic_block;

128

Appendix lc

- This shows the controller after performing schur transformation and
scaling on it

basic block is
state-controller/estimator

system info text is
example for a second order state controller/estimator
with one input and one output.

end system_info_text;

sampling-period := 1.00000000000000E-03;

system inputs is
name-=> pos err scaled,

lower bound => -1.00000000000000E+OO, upper_bound =>
1.00000000000000E+OO;
end system_inputs;

system outputs is
name-=> plant con scaled,

lower bound-=> ~1.00000000000000E+OO, upper_bound =>
1.OOOOOOOOOOOOOOE+OO;
end system_outputs;

system_equations ssd is

system_representation := SCHUR;

system states is
name-=> state xl schur. scaled;
name => state-x2-schur-scaled;

end system_states;- -

dynamic matrix is
a (1,-1) :- -6.66408081842000E-02;
a(2, 1) := -3.05727555099513E-01;
a(1, 2) := 8.58759911760409E-01;
a(2, 2) := 8.52505649404000E-01;

end dynamic_matrix;

column input matrix pos err scaled is
b(1):= 2.04659364615941E-01;
b(2) := 4.40603476246127E-01;

end column_input_matrix;

row output matrix plant con scaled is
c(1) :=- 1.31209002384973E-04;

end row_output_matrix;

end system_equations;

end basic_block;

129

Appendix 1d

- This shows the realized system and the DSPL code to implement it.

system realization linear system is
2nd order state controller/estimator

type fractional is
fix' (bits => 16,

fraction => 15,
representation => twoscomplement);

scptype state1 is
fix' (acculength => 32,

round => on,
scale => on,
saturation => on);

scptype out1 is
fix' (acculength => 32,

round => on,
scale => common,
saturation => on);

a1 : scalable constant vector (2) of fractional
:= (-6.665039062500E-002 ,

8.587646484375E-001);
a2 : scalable constant vector (2) of fractional

:= (-3.057250976563E-001 ,
8.525085449219E-001);

bl : scalable constant vector (1) of fractional
:= (2.046508789063E-001);

b2 : scalable constant vector (1) of fractional
:= (4.406127929688E-001);

c1 : scalable constant vector (2) of fractional
:= (1.220703125000E-004,

O.OOOOOOOOOOOOE+OOO);

xk vector (2) of fractional;
xkl vector (2) of fractional:
u vector (1) of fractional;
input is u;
y vector (1) of fractional;
output is y;

begin
every 1.OOOOOOOOOOOOE-003 do

update (xk1, xk);
input (u);
output (y);
accumulate scalpro (state1, 1.OOOOOOOOOOOOE+OOO

xkl(l) := a1 * xk + b1 * u:
end accumulate ;
accumulate scalpro (statel, 1.000000000000E+OOO

xk1(2) := a2 * xk + b2 * u;
end accumulate ;
accumulate scalpro (out1, 1.000000000000E+OOO)

y(l) := c1 * xk1;
end accumulate

end every ;
end linear_system:

130

Appendix 1e

TMS320e14 assembly code for the controller/estimator

.tit1e "linear system"

.list - enable listing

.global RESET user program entry

code for OSPL's initialization

standard version

version for OSl101 TMS 320e14 / E14 processor board

WARNING: no interrupt besides TIMINT1 must be used '"

revision 2.01 / 09-Nov-1989

(e) 1989 dSPAeE GmbH

in it $macro callno,blkno

TIMINT1 bit? .set 16

bsr? . set 7
ddr? . set 1
if? .set 4
im? .set 5
fclr? .set 6
adcO? .set 8
adc1? . set 9
strb? .set OAR
comreg? .set OEH

initialize RESET vector and INT vector

.asect "RESET", 0

b
b

RESET
ISR

.asect "OSPL"

define. initial processor state

dint
rovm

vector to user program entry
vector to interrupt dispatcher

return to OSPL compiler's code section

disable interrupts
disable hardware overflow mode

initialize constant because INIT is called before OSPL code
transfers data to on-chip RAM

lack 1
sacl one

6

131

initialize interrupt system

zac
sacl *
out * , bsr? select BANKO
out *, ddr? configure parallel port as input
sub one
sacl *
out *, im? ; mask off all interrupts
out * , fclr? ; clear all interrupt flags

dummy read 12 bit ADCs to enableADC operation

lack adcO?
tblr *
lack adcl?
tblr *

dummy read communications port to reset rxfull flag

lack comreg?
tblr *

clear incremental encoder counter registers

lack 30H
sacl *
lack strb?
tblw *

b exit?

interrupt service routine
;
ISR in

lack
and
bz
sacl
out
call

no TIMINTl?
eint
ret

exit?

.endm

132

*, if?
TIMINTl bit?
*
no TIMINTl?
*, -0
*, fclr?
timintl

initialization complete

read interrupt flag register

==

code for DSPL's EVERY-statement (begin)

standard version

version for TMS 320C14 / E14 on-chip timer 1

formal parameter TIME passes requested sampling period in s

160 ns <= samplingyeriod <=
10.4 ms < samplingyeriod <=
41. 9 ms < samplingyeriod <=

revision 2.01 / 09-Nov-1989

(C) 1989 dSPACE GmbH

evbeg $macro callno, blkno, time

time? .set :time:
bsr? .set 7
bankO? . set 0
im? .set 5
fclr? . set 6
bank2? .set 2
tcon? .set 4
tpr1? .set 1
tlint? .set 0010H

on-chip timer setup TMR1

lack bank2?
sacl
out

*, 0
*, bsr?

$if time? < 03333H
lack 006H
$else
$if time? < OCCCCH
lack 002H
$else
lack 004H
$endif
$endif

sacl * , 0
out * , tcon?

It one
mpyk tpr?
pac
tblr ,*
out * , tprl?

lack bankO?

10.4 ms, resolution 160 ns
41. 9 ms, resolution 640
65.5 ms, resolution 2.56

select BANK2

prescale 0

prescale 4

prescale 16

update TCON

load timer period value
set TPR1

ns
s

133

tpr?

tpr?

tpr?

sacl * , 0
out * , bsr?

It one
mpyk imval?
pac
tblr *
out *, im?

lack tlint?
sacl * , 0
out * , fc~r?

eint
b $

$if time? < 03333H
.word time? * 5
$else
$if time? < 6CCCCH
.word time? * 5 I 4
$else
.word time? * 10 I 32
$endif
$endif

imval? .word ~t1int?

timint1

.endm

select BANKO

set 1M register

c~ear TMR~ interrupt flag bit

enable interrupts
wait for interrupt

if period < 13.107 ms

if period < 52.428 ms

code for DSPL's EVERY-statement (end)

standard version

version for TMS 320C14 I E14 on-chip timer 1

revision 2.01 I 09-Nov-1989

(C) 1989 dSPACE GmbH

===

evend $macro callno,blkno,time

ret

.endm

134

code for OSPL's INPUT-statement

standard version

version for OS1101 on-board 12 bit ADCs

revision 2.01 I 09-Nov-1989

(C) 1989 dSPACE GmbH

in12 $macro callno,blkno,data,channel

iop? .set 0

lack
wait? in

and
bnz

1 « (:channel:-8)
*, iop?

setup busy test mask
get busy bit

lack
tblr

.endm

*
wait?

: channel:
:data:

test busy bit
wait until adc ready

read adc data

=================~===

code for OSPL's START macro

version for OS1101 on-board 12 Bit ADCs

revision 2.01 I 31-0ct-1989

(C) 1989 dSPACE GmbH

===

start $macro callno,blkno

strb .set OAH

lack 003H
sacl *
lack strb
tblw *

.endm

strobe for ADCO .. 1

start both ADCs

135

===

code for DSPL's OUTPUT-statement

version for DS1101 on-board 14 bit DACs

revision 2.01 / 31-0ct-1989

(C) 1989 dSPACE GmbH

===-===========

out14 $macro callno,blkno,data,channel

lack
tblw

.endm

: channel:
:data:

.asect "DSPL", OOOlOh

; write data to DAC

; program memory base address

status register save location (data page 1)
st .set OOOffh

; predefined constants
c1 .set OOOOOh predefined constant

.word 1
c2 .set 0000lh predefined constant

.word 32767
c3 .set 00002h predefined constant

.word -32768
c4 .set 00003h predefined constant

.word -1
; declarations for.UPDATE variables
v1 .set 00004h xk1(1)

.word 0
v2 .set 00005h xk(l)

.word 0
v3 . set 00006h xk1(2)

.word 0
v4 .set 00007h xk(2)

.word 0
; declarations for variable vectors
v5 .set 00008h u(l)

.word 0
v6 .set 00009h y(l)

.word 0
; declarations for coefficients
c5 .set OOOOah a1(2)

.word 28140
c6 .set OOOObh b1(1)

.word 6706
c7 .set OOOOch a2(1)

.word -10018
c8 . set OOOOdh a2(2)

.word 27935
c9 .set OOOOeh b2(1)

.word 14438
; declarations for external procedures
one .set OOOOfh constant for procedure init

136

zero

v7

v8

. word

.set

. word

.set

. word

.set

. word

1
00010h
o
00011h
o
00012h
o

constant for procedure in12

parameter for procedure in12

parameter for procedure out14

start of program

RESET
lark ar1, 000e7h initialize software stack pointer
1arp ar1 make stack accessible
ldpk OOOh select data page
init 0,1 ; call external procedure init

perform data RAM initialization

11

line

line

line

line

line

lark ar1, 19 initialize counter
lark arO, OOOOOh initialize destination pointer
lack 00010h initialize source pointer

larp arO
tblr *+, ar1
add c1
banz -11
lark ar1, 000e7h
larp ar1
42
evbeg 0,1,1000

16 cycles

43
ldpk OOOh
dmov v1
dmov -v3

3 cycles

44
start 0,1
in12 0,1, _v5,00008h

56 cycles

45
out14 0,1,_v6,00008h

4 cycles

46
zac
It v2
mpyk ::-2184
1ta v4
mpy -c5
Ita -v5
mpy -c6
apac

select destination pointer
transfer word, select counter
increment source pointer
repeat until transfer complete
initialize software stack pointer
make stack accessible

begin block statement

select data page
xk1(1) --> xk(l)
xk1(2) --> xk(2)

initialize input
input u(l)

output Y (1)

xk(l)
a1 (1)
xk(2)
a1(2)
u (1)
b1 (1)

add c1, 14 perform rounding
overflow test and rescaling 0 bit

137

sach '" , 1
bIz 12
sub :c2, 15
blez 13
lac :c2, 0
b 14

12
sub _c3, 15
bgez 13
lac -c3, 0
b -14

13
lac "', 0

14
sacl _vI, 0

19 cycles

line 49
zac
It v2
mpy -c7
Ita -v4
mpy -c8
Ita -v5
mpy -c9
apac
add c1, 14

overflow test and rescaling
sach '" , 1
bIz 15
sub -c2, 15
blez -16
lac -c2, 0
b -17

save result
branch if result negative
positive limit
branch if no positive overflow
use positive saturation
update result

negative limit
branch if no negative overflow
use negative saturation
update result

reload

xk1(1)

xk(l)
a2 (1)
xk(2)
a2(2)
u(l)
b2(1)

result

; perform rounding
Obit

save result
branch if result negative
positive limit
branch if no positive overflow
use positive saturation
update result

15
sub _c3,
bgez 16
lac -c3,
b -17

15

0

negative limit
branch if no negative overflow
use negative saturation
update result

16
lac '" , 0 reload result

17

138

sacl _v3,

19 cycles

line 52
zac
It vI
mpyk 4"
apac

0 xk1(2)

xk1(1)
cl(l)

add c1, 14 perform rounding
overflow test and rescaling 0 bit

sach "', 1 save result
bIz 18 branch if result negative
sub -c2, 15 positive limit
blez -19 branch if no positive overflow
lac -c2, 0 use positive saturation
b -110 update result

18
sub c3, 15 -bgez 19
lac =c3, 0
b 110

19
lac * , 0

110
sacl _v6, 0

15 cycles

line 55
evend 0,1,1000

2 cycles

b $
. end

negative limit
branch if no negative overflow
use negative saturation
update result

reload result

y(l)

end block statement

wait for interrupt

139

140

HARDWARE/ SOFIWARE-ENVIRONMBNT FOR DSP-BASBD MULTIVARIABLB CONTROL

H. Haosclmana.1t Hcmichfrcisc, It HosIDIIUUI and A. Schwarte

dSPACB diplalsipal procesain& and coollOl en&ioeerinc GmbH
AD dcr Sc:hCIneo Aussichl2, 0-4790 PadcIbom, Fed. Rep. Gcnnany

AIIIIIJQ
Sin&l~hip Diplal Si&naI Processors (DSP) are powcdul candidates
for the implementation of multivariablc control for fast systems. We
repon briefly on several applications of DSP in the control of
mechanical systems. The success of these applications was 10 a large
extent due to a set of software and hardware tools for controller
implementation. Buildin& upon our experiences of these applications
we derive requilements and concepts for a novel deve10pmcnt
system (hanlwarc/soflware~nvironment) for DSP in multivariable
control.

Cumollm
The reason for considering DSP for control is their computing

speed. In most other respects DSP are inferior to other kinds of
processors ... The speed of DSP comes mainly from the integrated
hardware multiplier and accumulator, and from the multiple bus
architecture. Thc latter is necessary in order to keep the fast
arithmetic units busy, i.e. 10 allow the operand and result data
transfers 10 keep up with thc usually single-cycle arithmetic opera­
tions.

A detailed descriplion of DSP architectures is not given here.
Some comparisons of current DSP chip architeclUrcs can be found in
.... A few benchmark results related 10 conllOl are mentioned in and
some more arc reported below in the applications scclioo.

The spectrum of DSP has grown rather broad now. II is divided
into two blocks: one with fIXed point and one with floating point
arithmetic hanlware.

The low cnd is represented by low cost devices such as the
Texas Instruments TMS32010 with 16 bit fixed point arithmetic (32
bit in Ihe accumulator) and rather limited data memory address range
(144 words on-chip), which needs 400 os for a multiply-and-accu­
mulale operation (mac). In the medium range are devices which also
suppon 16 bit fixed point arithmetic but are abouttwicc as fast, have
increased addressing space, and have increased Cunctionality (such as
on-chip serial interfaces). One example is the TMS320C2S. High
end fixed point arilhmetic chips are the AT&T DSP16 with its speed
(7S ns per mac), and the Motorola DSPS6000 with its extended
wordlength (24 bit operands and S6 bit in the accumularor). For high
volume industrial use versions wilh on-chip program EPROM
(TMS320E I S) or even EEPROM (General Instruments
DSP32OEEI2) are panicularly interesting.

A few floating point DSP have become available n:ccnlly, most
notably the NEC77230 and the AT&T DSP32. Both chips offer 32
bit arithmelic with ISO ns (NBC, pi!'Clined) 10 2SO ns (AT&T) for a
mac. So Ihere' Is only a small time penalt~ for floating poinl
arithmetic if these chips are used. Even faster wtll be the chips which
arc scheduled 10 be sampled in 198811989 such as the AT&T
DSP32C (up 10 80 ns per mac) and the Te_ Instruments
TMS32030 (60 ns per mac).

These chi~ will use 0.7S JIIII and I JIIII technology. The same
technology will enable fixed point chips 10 be faster, but whal Is
often more imponanl for industrial usc, Ihe chip area saved by
sticking 10 fixed poinl hardware can be used 10 increase the chip's
functionality by integrating more timers, pons. interrupt conlWl etc ..
MiclOCOlltrollers like the Intel 8096 bul with DSP core may be
c""'ted Ihat way. Using more conventional technology will on the
other hand lower chip cost and thus open up high-volume applicati­
ons. Fixed point DSP will have a place in industrial applications for
years 10 come.

AppJjcatjons

In this section we repon briefly on some multivariablc control
applications using DSP. Unless otherwise stated these are applicati­
ons we were involved in during our work at the Dcpanmcnt of
Automatic Control in Mechanical Engineering at the University of
Paderbom.

WincheslCr~~

Modern high performance disc drives usc Cast voice coil
actuators for the positioning of magnetic heads onlO desired tracks
and for keeping them on track against various dislurbanccs by
closed-loop control. Hcad positioning conIIOI comprises two tasks:
(A) Positioning on a target track (maybe across many tracks), and
(B) track following during read and wme operations. Modem control
techniques can be expected 10 improve control speed and accuracy
for both tasks.

For task (A) state eslimator techniques help to solve the problem
of estimating the state of the fast moving actuator from the track
error, which is the only measurement variable usually available. For
task (B) controllers can be designed which achieve high control
bandwidth and good disturbance rejection despite the complicated'
nature oC the mechanical plant.

Using a simple low order model (double integrator) for the
actuator an estimator-based controller was impicmcnted on an Inlel
8096 rnicrocontroller by IBM '. Owing 10 the medium performance
embedded servo technique, the crossover frequency (around 300 Hz)
and the sampling rate (around 4 kHz) were nor very bigh and the
controller was relatively unambitious with respect 10 processor
compuling speed.

The computing power of a TMS32010 DSP was utilized in the
track following control studies reported in ". A 9th order controller
based on notch filter techniques (to compensate for structural
resonance effects) was designed and implemented, running at about
30 kHz sampling rate '. A crossover frequency around 900 Hz was
achieved. The crossover frequency was limited mostly by model
unccnainty, bulthe high sampling rate was not a luxury because of
strong resonances in the plant even at 10 kHz. This controller was
for an 8 inch drive with dedicated servo and a rotary voice coil
actuator. A disturbance observer with disturbance feedforwanl was
added to the 9th order controller for improved disturbance rejeclion.

A different controller with exccllcnt dislurbance rejection based
on Iq (linear quadratic optimal) controller design for the same drive
was also implemented and ran at 34kHz sampling rate '.

Tailoring positioning controllers 10 modelled disturbance dy­
namics, incorporating adaptive techniques, or increasing the usable
frequency range of the mechanical construction (smaller drives and
beller construction) will funher increase processor power demand.
So disc drives arc an interesting fte1d for DSP application.

~l![~~1IW!£I1Jkm
Active vehicle suspension means toW replacement of the

convenlional spring and shock absorber asscmbIies. Hydraulic
cylinders driven by servovalvel arc used instead. The system relies
fully on control'.

The abovementioned ~up at the University of Padcrbom has
been working on this subJcct for years under contract with several
groups of Daimler Benz AG. Multivariable control techniques are
applied. Mullivariablc controllers with more than 10 sensor inputs, 4
actuator outputs, several diagnostic outputs, and orders above 20 are
common. These controllers are mostly linear with some added
lumped nonlincaritics for the compensation of nonlinear hydraulic

Reprinted, with pennission. from Proceedings of 12111 IMACS COIlIt'rellce. 141

flow ~ Fill dynamicl of the hydraulic systems require
sampIin, n.ICI above I kHz. After aiop IXiI _·bed IIudica _
yean 1,0 (mady usUal DSP) ... experimenw off·road truck is
cum:ndy bcinl equipped 10 ruB _in !he field. A Sludy for ~
type of vehicle is underway. TMS32010 systems _ used Wllil
rcccndy. and have DOW been rcpJ-s by TMS32020 IfIICIDS DOW.

10 prcparaIioo fot !he off·road truck _ the eyllndcr coasllUC­
lion was ICSICd &I the uaivcnily lab in • hardw_in·tbc-Joop
simulation. Tbc RaI eylinder. which is 10 rcpJace !he IjIIins/lbsorbcr
uscmbIY. was used. Tbc road and the vchiclc body _ limulalCd
in a TMS32010. lO,elbu with the suspension c:oatroIlCl' and !he
COIlIrOlIcr for • second cylinder I_linl !he c:omct dynamic load
such as !he IUlpension eylinder would find in !he RaI vehicle. Tbc
10181 system could have ruB at 7 kHz samplinl rate, _what more
than nec:essuy.

A fully aclive system bu also been designed and implcmcnlCd
for • nee car at Lotus Co .• UK. also usUal a TMS320 processor. 17
sensors are involved.

Senliactive vehicle suspension means replacement of !he con·
ventional shock absorber by an adjusllble one. In contraSlIO exisling
slowly and I or discontinuously adjusllble absorbccs the aclUator
mechanism has servovalve charac:terislics in order 10 come close 10
an active system in performance. Such a sYSlem is under develop­
ment in an industrial company which is advised by !he abovemen·
tioned universilY. Again • TMS32020 syslcm is used. which
replaced. TMS32010 system n:ccnJly.

~&!WI
With cOnventional control. !he elaSlic movemenlS in Ihe drives

and the flexibility of !he anus of lightweight robots resuh in large
vibrations of !he band. panicularly during and aflCr high acceleration
intervals. A multivariablc controllCl' bas been designed and im{lle·
mcnlCd for • tbtcc-joInt atticulalcd robot driven by elc:caical
scrvo-drivel This controller n:movcd the vibrations virtually
completely without. speed penalty.

Each motor was equipped wilh a position encoder and a
tacho-generaror and the two anus c:anied two strai gages each for
curvature mcuurcments in bo!h deflection directions. The IOIal
number of sensors was thus 10. The reference Irajectory was fed inlO
tbe controllCl' as 3 position. 3 velocity and 3 accemtion fcedfor·
ward signals. The controllCl' thus had 19 inputs and 3 outputs 10 thc
1IlOIOI'S. The order of tbe conlrOller was only 6 due 10 !he special
design lCchnique and duc 10 !he fact that many sensors were been
used (many SIalic gains). Tbc conlrOllCl' was implemenled on a
TMS32010 and !he sampling rate used was 10 kHz. The sampling
rate could however have been more than twice that. so there was
considerable spare computing power for additional IaSks to be
perfonncd by tbe processor.

lWIrmIIilo &!WI
For tasks requiring medium speed but very high acceleration

(such as water jet culling) a S desn:es-of·frecdom (6 drives) ganary
robot is under conSlrUCtion at an industrial company. Hydraulic
drivcs have been chosen because of their good !OIque·lO-weight
ratio. The conslrUCtion is DOvel in many respects and makcs use of
very lightweight materials.

Two particular challenging requirements for control design and
implcmcnlalion have been: (a) 10 maintain lOugh trajectory control
under maximum accelCl'ation (i.e. max. error 0.2 mm at 30 mls'). (b)
10 use DO other sensors than the position encoders of each hydromo­
tor (absolute minimum).

Requirement (a) ncccssilalcd nonlinear compensation 10 cope
with the SIrODI nonlinearitics of hydraulic flow through the servo­
valve. Rc<J.uirement (b) was met (in !he axis designs ~1e1Cd at the
time of wnting) by relying on Kalman·Filters for cstimanng tbc plant
Slate. This was successful because high resolution position encoders
arc used. The IrOlley position for example spans 2m and !he
associated encoder SlCpsizc is about BIIJIl.

The lrOIIcy controllCl' consiSla of a 6!h order linear KaIman·FiI·
Ier plus state-feedback •• CODIICCICd linear 4th otdcr SUbs}'SICm for
nonlinear compensation. and !he oonlinearity. which requues some
simple operations and a squarcrool performed via table-Iookup.

All drive control of !he whole robot is performed by two
TMS32020 boards. the sampling ralCS beinll around S kHz. 16 bit
fixed point ari!hmetic is used with the eKcepnon of a few conccntrat·

142

ed simple operations on !he larser position sensor words. To keep !he
high resolution (large word) infonnation out oflhc linear conlrOllCl'
computations. spcciallCchnique bu been devclopcd ".

At the time of writing !he controllers for IOIIIC of the 6 drivcs
have been desi&ned and implcmcnlCd up 10 simulations. One of the
IXiI conlrOllers (for the lrOIIcy) bu also bCen ICSICd experimenwly.
It worked as prcdiclcd.

Deyelopment SmmD RMuimD'Gms
In this section we specify what • development sySICm orienlCd

IOwards DSP control should comprise. Foe the projcclS of the
previous section (these are DOl the only ones) we used severalrools
which have been developed over yean 10 facilillte and in some cues
even automate the implementation of oonnivial conlrOllers on DSP.
Recent relevant papers are p. A new generation of DSP conlrOl
developmentlools is now in the making at dSPACE GmbH. building
upon paSl experience.
~ Considerations
The main line is to suppon conlrOlier implemenlation as well as

is usually expeclCd for conlrOller design and simulation. and 10 do
this in terms accessible 10 the control designer. Often DOl much
consideration is given 10 implemenlation during design. mosdy
because design specialists are rarely implemealltion specialists as
well and work is Iraditionally split between conlrOl theory I design
peoplc on one side and processor I elccttonics I programming penple
on the other side. It proved highly benefICial for control designers 10
be able to study implemenlation issues tbcmselves during design. 10
produce DSP programs (via automatic code gcneratorS), and 10 carry
out cxperiments without delegating responsibility at any stage of this
process. The value of direcl/eetibad: belWtl'" desigll. imple"ulnltJ·
lioll. and experimelll canDOt be overestimated.

A second aspect conccms tbe choice of a target hardware
system. Foe preliminary studies of implemenl&tion issues and 10
check feuabililY of the control system Ihcrc should be DO forced
dependence on specifIC processors. their software. or specific target
hardware. Most of all. it should DOl be Dcccssaty 10 build hardware
before knowing what hardware is actually needed and sufficient.
Thus it should be possible 10 study implementation based on flexible
models of Ihe target processor hard· and software.

When experimcnlll evaluation is about 10 begin. it should still
not be necessary to build special hard~ in every case. A set of
ready·lO-use hardware components (boards fining inlO a pc·AT
computer for inSlanCC) is preferable whenever possiblc. Only after
experimenw validation of the design should tailoring of hardware
for low cost C1C. be made. We frequcndyobserved in indusary that
early decisions on target hardware were made and then much
engineering resources were wasted in squeezing code (c.g. 10 meet
speed requirements problems) and dealing with secondary limita·
tions although the conlrOller design was DOl yet sctded. It is much
beller 10 have a quick validation of the conlrOller design. with the
lowest implementation e«on possible. and !hen 10 invesligate
possibilities of downsizing (memol)'. processor version elC.) !he
wgct hardware afterwards. This may eventually lead 10 custom
chips with DSP cores.

1faI:lUmQ

Our approach is 10 provide a sct of processor boards all
compatible with the same set of peripheral boards (ADC, DAC.
decoders) so thai. if desired. one may stan with a floating point DSP
iml'lcmeDlalion (which is !he simplcst). then move to a (lSI fixed
POlOt DSP with a lar,.e memol)' of the same family. then move 10 a
10wcsl-c05t device wllh more restrictions. AIlIhese SlCPS would be
carried out with the same ready·lO·use peripheral boards. The last
step may be to move 10 custom hardware if the standard boards do
!IOI meet space or economy requiremenl4.

We choose 10 host the bardware on PC·AT and compatibles.
This provides a convenient devclopmcnl environment and, by
making use of industrial AT computerS, ... AT·host CUI even be
useful for final products such as robot control systems.

The AT·bus is of course nOl used for DSP·i/O. We provide up 10
32 bit wide daI& transfer. This is useful for the next generation of
DSP and accommodates for ins_ the wide dala words delivered

=-.ICSOIUIion positiOO"scnson (absolulC encoders or inc:rcmcIIIal
wi!h counlCll) used 10 roboI c:ootrol.

~ 1IIIIDIi: Different Ipplication fields "'Iuin: different
typca of ~ • II !he focUi il on !he experimenlal validation of
• control c:oncept, rhea high pedOl1JllllCe f1011ing point DSP will
normally be Ihe fust choice. llihe focus is on producing proIOIyJles
for final prodllClS, !{uilC different DSP may be used. In a high-vol­
ume disk drive appbcadoo, for insIance, Ibe goal will be 10 find !he
lowesI-cost device which is JUII sufficient. So !h"", should be a
nll1llber of proc:essor boards which, as far II possible, are similar
from the host-side, and which fit a single set of peripherals. Our
choice Is Ihe Texas llISInIlDCnts TMS family, which covers alIlypCS
of DSP of inlCreSL

FISI host-IO-DSP communicalion is provided by means of DUe
dual-pun-RAM. On Ihe host side DMA can be used. The DSP does
DOl need 10 be hailed during host access. This feature is not
necessary for Ihe development of SIInd-alone DSP applications, but
is useCul Cor applicadons such II roboI control wi!h trajeclOly data
delivered by !he holl.

DSP usually have very limiled interrupt control Cacilities. In
order 10 allow peripherals 10 "'lueS! lCJYice or flag Ibeir stale (e.g.
ADC-ready), some hardware is necessary to allow !he DSP progmn
10 find OUt !he interrupt sowce and its priority quickly.

~: Dependiog 00 Ibe application fields !he requin:men­
ts are raIhcr diff"",nL What is needed is a broad range of boards such
as !he one available on !he general data acquisition market. However,
our c:ootrol field requin:meots differ in some respects. For example,
in cootrast 10 common data acquisidoo tasks, we sometimes oced
random access 10 input II well II output channels, and we cannot
toleralC significant delays.

Random access is desin:d Cor inllance because sampling ralCS on
channels of !he same board may be required 10 be different
(multi-rate cootrol), and even controller stale-driven (instead of
time-scheduled) access 10 channels may be necessary. Output of
control signals 10 Ibe actualOr OCCUII preferably II soon as these
signals are c:ompulCd in order to minimize the delay introduced into
the control loop. These arguments rule out FIFO-bIIed (tran­
sient-recorder like) architectures and external constant-frequency
sampling control.

For analog sensor signals 12 bit ADC$ will, in our experience, in
vinually all ~ be sufficient Cor control, II well II 12 bit DACs
Cor analog output. If !he final product hll 10 have lower resolution
conveners for economy reasons, it is easy 10 round off to any desired
number of bits by very smaU pieces of code in experiments. Higher
resolution is frequently necessary in position control, but in Ibis case
digital seosors are nonn'!Uy used (~). It would oevenheless
be fine 10 have up to 16 bll"conveners available.

Suc:ccssive approximation ADCs usually should have a sam­
pltlhold-cbeuit (SHC) 1\ Ihe analog side, bUI in control applications
II is sometimes beneficial with respect to loop delay not to use the
SHC '. If experiments prove thal the SHC can indeed be omilled this
may in addition decrease final product cost considerably (gond and
flSl SHCs are DOl cheap). Bypllsing the SHC should therefore be
possible under host control.

It may sometimes be necessary 10 place anti-aliasing filters
(AAF) in front of ADCs. In all of Ibe applications we have ever
carried out, there WII only one single occasion when we needed an
AAF, and Ibis WII a very simple one (first order). In contrast to
many data acquisition tasks, we are reluctant 10 put sharp filters into
the control loop because of !heir strong adverse effect on loop
frequency response phase '. We consider it best 10 keep AAFs out of
the ADC boards, and 10 provide optional extra boards, with pro­
grammable active filters. The most flexible architecture allows for
!he fillers 10 be progranuncd and bypused both under DSP and host
control. Note Ibal it is necessary 10 make accurale AAF frequency
response models available 10 the controller design software, because
filter dynamics mull usually be taken inlO account in the design.

Digital sensor signals provided by absofule position cocoders
(multi-turn) mull be accommodaled (robotics). They are oftco wider
lhan 16 bits and f"'luenlly supply data via special flSl serial
interfaces. Conversion from Gray 10 binary code might be done in
software, bul • hardware decoding facility for optional use should be
available on Ihe peripheral board.

Incremental position encoder signals should be decoded on a

peripheral board. The widlb of Ihe counlCr should DOl be below 24,
bits. RcSCI by delCCtion of • reCereocc pulse IIlUSI be possible, eilher
by hardware or by !he action of Ihe DSP or hosI after it hII ~
gtvCO notice of !he ref"",ncc pulse transidoo.

In our experiences it would be very uscful for experiments on
!he real planl 10 have means of monilOring (graphic display) !he
sensor and control signals from !he host througb Ihe same ADC or
digital channels IIlhe DSP. It is already of great help to be able 10
do Ibis before !he DSP is staned, bul monitoring acosor and control
signals while Ibe DSP is running is evco beuer,

Commonly a sel of scparale _meat devices is used for
such monilOring, but this is inferior 10 our Ipproacb for various
reasons: (a) !he bil patlCmS seen by !he DSP are nOl recovered
precisely, (b) LSB-f1ipping of ADCs cannot be observed, (c)
possible oCfocts of ADCs remain undctected~~':..SIIOts
are different, (e) digitalscnSOll signals (from) are
usually not accommodalCd by mcaswement devices.

These deficiencies can 10 some exlCnt be remedied by passing
the words received by !he DSP 10 additional monitoring outputs.
However, this not only requin:s additional output channels bul also
makes necessary additions 10 the DSP program, which have nothing
to do with !he control task. Wi!h simpler DSP such llihe TMS3201"
family in papicular, any software exlCnSion of this kind may make
large software changes necessary, Cor instance because on-chip data
memory may be only sufficient II long II no cxlensions are made. It
is much betler if !he DSP prop1UD can remain uodiSIurbed.

SWhYilmIJW
The tasks 10 perform whea a multivarisble controller such II

those oC !he applicadons discussed above is 10 be implemenlCd can
be divided inlO two main blocks: (A) !he preparation of a designed
controller for matching !he capacities of target hardware, (B)
progranuning. Only some brief considerations can be givco here. A
detailed discussion of these issues is given in ", which presents a
basis for a controller implementation oricolCd software syslCm.

~: It is particularlywilb fixed pulnl DSP Ibat (A) is
Dot trivial. Because arilhmctic is IimilCd in range and iesolution, it is
very imponant 10 select IpFpria!" reaI~zation SIJ1I.CIures, 10 decide
if and where extended precISIon anlbmetIC (costly) IS necessary, and
to scale stale variables and intermediate results. It is crucial 10 have
gond methods (in tool form) for !he tasks mentioned. The desin: to
have 32 bit floating point arithmetic is frequently"due 10 lack of
methods and tools for doing Ibe same wilb 16 bit fixed point
arithmetic. NOIe that in all our applications !he taller was entirely
sufficient. Many of the tasks can be automated or almost aUlOmalCd
for linear control systems so thal controller implementation becomes
easy.

The situation changes wilb controllers with many nonlinear
operations, where selection of !he computational Slructure and
scaling cannOl be supponed so strongly by melhods and algorithms
as in the linear case. But note that Ihe hydraulic robot II well II the
vehicle suspension applications had nonlinear controllers. The
nonlinearities had been isolated from Ibe larger linear pans and
linear methods wcrc applicable for preparation of !he linear con­
troller subsystems.

With 32 bit floating point DSP scaling is no longer a problem.
Structure selection remains an issue but is less critical. A direct form
or parallel form realization structwe, for inSlancC, which may be
selected at first may still fail. For example, we encounlered a case
wh"", 32 bit floating poinl coefficients were not sufficient to
represent a 3rd order controller IUbsyslCm, bul 16 bit fixed point
sufficed when a parallel form WII used, and we encountered just the
opposile too (floating point parallel form failed and fixed point direct
form WII good for. 3rd order subsyslCm).

As described in " Ibere are Ihrec main issues associated with
com~ulCr IIsisted or aU1Oma1ed preparation of a designed controller
for tmplementation: (a) !he representation of digital controller
models, (b) model management, and (c) !he tools acting upon the
models.

The representation of digital controller models should be such
that every piece of information about !he controller is incorporalCd.
This means for example Ibat, in con.trIII 10 some Iheory orico.tedt
CACSD packages, a dtgital controller IS much more !han • collectton

143

of &-II1IDIfcr malric:ca cc IIaIC vuiabIo maaix c:oefficicnll. 'J'biap
like samplinl! delays (skewed 1IIIIPIinal, ADC nogc II1II 1eIOIIIIion,
II1II dcscripllOlll of the type ol aifihmclic performed must be
inrepalCd info a model.

Ja ... bicnrcbical mulli-nuc c:onlrOlJcn model, 1M c:ooslclcrcd.
Our appllcaliona 10 fu have beca sin&1c-11I1C. BUI If muld-arc
c:onuobCn had been supponcd, in CIllO case a probJcm willa a slow
COIIIrOIIcc subl)'IICID coUld have beca deall willi !hal way inSICId of
lelliag II run aI the sincJc (bigh) nuc and using exlClldcd prccIsioa
(slow IIIlbl)'llCml run aI 100 liigb I1Ire 1M likely' 10 poac precision
problems). ~guding bierarchical models, describing a conlIOIlcr as
a conncclion of IUbs)'llCml on one level sbouId be abc minimum
supponcd (CIllO level lisdng Iublysacms and cooocclions, and abc
level of individual subsysrcms dcscripdons).

A model managemenl fllllililY (dalallasc) is also ncc:cssuy.
Imagine a coodnuous conooller as • saaning poinL Then, during
implcmcnwion process ilCl1llions, several differenlly discmi:ocd
conoollers may be gcDCl1lrcd. Each of \hem may be lI1IOIfonncd inlO
seVCl1lI realizalion S\IUClureS fcc lI1Idc-off Sludies, and each of Ihcse
may be scaled seVCl1lI limes under diffCRIII assumpdons. Then for
IORIC of Ihcse differenl uilhmelic type and wordlcnglh spcci/icadons
may be investigated. II Is cIcu !hal "managcmcol by filenames" is
IlOl sulrlCicnl hen:. Adding 10 a111his, we c:oosidcr iI ncc:cssuy !hal a
I0OI crealing one coollOller modcI dcrivaac from anolhcr (c.g. scaIcd
from unsealed) n:conIs all laformadon which allows abc 1001's
funclion 10 be reuicved complclcly I&Icr on. Such n:conIs muSl be
logically conncclcd 10 abc gcncrarcd model. Such n:quiR:ments can
only be met by IORIC kind of speciali:ocd dalabase.

The prcparadon IOOIs should as an absolure minimum comprise
lhe following wks for linear coooollers or conooller subsySICIIIS:
(I) discn:dzalion, (2) SllUClure selection, and (3) scaling (for faxed
poinl DSp). Some IOOI~ 10 analyse abc co:ects of cfi:5crc;dzalion,
sampling and compuaarional dclsys, COCffiCICIII quanuzauon, and
signal quandzalion uc also very helpful. Appropriarc IIICIhods havc
been discussed in

And IaSI, bul _ leasl, • simuladon f""iIily is desirable. We bad
very posidve results with a prcIiminuy 1001 which was able 10
simulalc nonlincu plants wilh linear or nonlinear digital conoollers,
delays, ADCs and DACs, and processor uilhlDClic. Given complcrc
digital cooooller models as oudined abovc and in .. , all ncccssuy
infomaadon can be derived from abc model by Ihe simuladon 1001. II
is _ ncc:cssuy 10 havc code or even know abc IUgCl processor for
simulation. The uitbmclic can be specified. So such a simulation can
be said 10 work willa an "absll1lCt processor model".

For our applicslions 10 darc this lias mosdy been SUfflCienl,
because we cou\d rely on error-free IUgCl processor code produced
by our auaomatic code gcDCl1lIOrS. Once abc abs\lllCl model worbd.
lhe final real code worbd 100. When hand-coded parts 1M mixed
inlO gcncraled code abc silualion is diffCRIIL It would be a greal
enhancemenl If absll'llCt modcI simulation were camplcmcoled by
code simulation. Common code simulators unfonunatcly 1M _
designed 10 be operaled witbin a closed-loop control sysrcm simula­
lion. Wc tbink it very wonhwhile 10 produce a simulation Crogl1lm
which allows both abs\lllCl models as well as proccssor-p us-codc
models.

Pmmmmjng: For a long lime assembly languagc (ASM)
progI1Imming was lhe only choice for DSP. ASM programming is
generally undesirable for quick conool implcmenlalion as outlined In
lhe gCDCl1lI considerations subscclion. Some DSP have uchilCClures
and instruction sets which 1M less casy 10 use than those of gcneral
microprocessors, 1liii, more important, there 1M severe reslriclions
wilh IORIC DSP ,. This makes ASM programming particularly
Unalll1lCtive for our purpose. rugh Ievcl languagc compilers havc
emerged but abcy have difficulties In dealing with restriclions and iI
is likely iJw abcy produce far lea oplimal code than an experienced
ASM proS-. This Is backed by benchmark resulls given in u.

After years of good expericncc wilh wk-specific aUlOmalic
code gcncraIOnI we consider iI besl 10 auaomadcally gCDCl1lrc DSP
code from a conllOller modcI as far as possible bul 10 provide foe
linking wilh pans which C8IIIIOI be produced aulORlllica\ly and 1M
1Iand-eodcd, or wbich 1M IlOl criIicaI and 1M produced by a HLL
compiler. A code generator can perform optimizations wbich 1M
virlually OUI of reach for a eE HLL and ilS compiler U.

Such • code geIICI1IIOI" may in IWO srcps: fusa an Intcrmcdi­
&Ie Ian,URgC represcnlalion derived from lhe model. and then this

144

reprcscnaadon Is compiled In ASM code. A gcneraaor I compilca
f01lowin, this 8JIIII"08Ch Is under dcvcIopmcaa (almnsa complcrcd) aI
abc lime of wrlMe. The pbi~ iI as well as preliminary
results 1M described in D. The . language Is tailored 10
(Il0l rcsuicICd 10) faxed point DSP and lias fIcxibIc mechanisms for
laking peripheral 110 inlO IICCOIIDI.

For abc Iaresl fJoadng point DSP abc progmmming wk Is casler
with respecllO uilhmclics, and for some ills also casier due 10 more
regular ucbilCClure and instruc:don sell. HLL compiIcr wrllerS may
find II easier 10 produce good code then. However, fJoadng poinl
uilhlDClic does IlOl as such mean casy ASM programming. Pipclin­
ing cffCClS and difficult inSllUCdon sets (NBC 77230) may sdll make
ASM progl1lmming awkwanl. A &ood compromise would probably
be 10 havc an Intcnncdlarc language which is close 10 a general
~ HLL (as commercial HLLs for DSP already uc) bullO havc
additionallangua~c CODSIrUCtS which enable abc compiler 10 produce
bcuer code by OP!lmizations under a global viewpoinl and by making
use of lhe very special inSlrUClion COOSIrUCIS found In ASM
instruction sets of DSP.

~
(I) H. Hanselmann, "Using Digilal Signal Processors for ConuoJ"

prcsenled allEEE Industrial EJccuonics Conf. IECON'86,
Milwaukee, Wisconsin, SepL 29 - Ocl. 3, 1986.

(2) H. Hanselmann, "Implcmcnlalion of Digilal Conoollers - A
Swvcy", AUlOlDaljca Vol. 23, pp. 7 - 32, Jaauary 1987.

(3) J. Titus, mm. pp. 163 - 176, Oct. 16, 1986.

(4) R.Gluth, "InrcgrierleSignalprozcssorcn",~ Vol. 18,
pp. 112 - IlS, ScPL 5, 1986.

(5) M. C. Stich, "Digilal Servo Algorithm for Disk AClualOf
Conool" in filii;, Confmnce I!IlAm!licdMmiml~
CAMC87, Minneapolis, Minnesota, June 16 - 18, 1987.

(6) H. Hansclmann and W. Moritz, "High Bandwidlh Control of
the Hcad Posililming Mechanism in a Winchester Disk Drivc",
rmm~SnImllMuBis.pp.15-19,OcI.1987.

(7) H. Hanselmann and A. Engelkc. "LQG-Conool of a Highly
Resonant Disk Drive Head Posilioning Actuator", mm3 It:ioJ:
A!<Iil!IIllllllDdlwiW ElccJl'OOjcs. ""hcdulcd for Februuy issue, I
1988.

(8) J. Liickel, R. Kasper and K. Jliker; "A PI1Iclical Concept for the
Activc Suspension of Road Vchiclcs" in fw!l:imi 1IC.ulIh IfAC
.wm:Jd~ Munich, Vol. 3, pp. 178 -183, 1987.

(9) H. Henrichfreise, W. Moritz and H. Sicmensmeycr, "Conool of
a Ughl, Elaslic; Manipulation Devicc" in filii;, Conference I!Il
~ MlIlilm C!mJml CAMC87, Minneapolis, Minncsoaa,
pp. 57 -66, June 16 - 18. 1987.

(10) H Henrichfreise, "The Conool of an elastic Manipulalion
Device Using DSp·, will be presenrcd al American Conlrol
Conf. ACC, AIIIUlIa, Georgia, June IS - 17, 1988.

(11) H. Hanselmann, "Low Resolulion Im!emcnlalion of High
Resolution Posilion ConIlOl", rmm T!!nsacljoosl!ll A.IWImlJJi!<
C!mJml. scheduled for AugUS! issue, 1988.

(12) H. Hanselmaon, "A Concept for Mosdy Automalic Implemenl­
alion of Conool Algorilhms", presenled .1 IEEE Compuler
Aided Control Sysrcm Design, ArIinglOO, Virginia, sepl. 24 -
26,1986.

(13) H. Hanselmann and A. Schwane, "Gcncralion of FaS! Tugcl
Processor Code From Higb LcvcI ConuoJler Dcscripdoos", in
fw!l:imiIlC.ulIhlfAClYlII:IdOlo&lm, Munich, Vol. 4, pp. 90
-9S, 1987.

""uromarica. Vol 23, No.1, pp. 7- 32, 1987
Printed in Great Britain.

0005-1098/87 $3.00+0.00
Perpmon JOllmals Ltd.

© 1987 International Federation of Automatic Control

Survey Paper

Implementation of Digital Controllers-A Survey*

H. HANSELMANNt

Key Words-Digital control; microprocessor control.

Abstract-Stimulated by microprocessor technology there is
increasing interest in the issues of digital control implementation.
This paper reviews these issues, from algorithms through current
hardware up to the various problems arising with non-ideal
behaviour of digital controllers.

1. Introduction
For many years, theorists in the control engineering field have

claimed that due to advances in microelectronics, their new
algorithms could easily be implemented. Talking to the people
who have to perform the implementation actually quite often
reveals that nothing is that easy.

This applies even in the simplest cases of linear control, if the
implementation is to be carried out under difficult conditions,
e.g. without the possibility of resorting to minicomputers pro­
grammed in a high-level language using high-precision floating­
point arithmetic, with plenty of speed. There are still compara­
tively few pUblications dealing with the problems of controller
implementation in difficult conditions, and most of these are
either from the sixties, or quite recent, stimulated by the
increasing availability of microprocessors.

The situation has always been different in the related field of
general digital signal processing, particularly digital filtering.
The problems plaguing the implementer when he has to use
fixed-point arithmetic with small wordlength were attacked by
theorists persistently and systematically from the early days of
digital filtering onwards. M ueh can be learned from this field
for controller implementation, although modifications and
additional research have been or are still necessary. This has
been pointed out particularly in the work of Moroney, Willsky
and Houpt (Willsky, 1979; Moroney et al., 1980. 1981; Moroney,
1983).

The main problems with digital controller implementation as
considered in this paper arise from: (a) quantization of signals
and coefficients, particularly in the case of fixed-point arithmetic;
(b) serial computation in a processor; (c) lack of computing speed
in critical applications; and (d) lack of programming support in
cases where high-level language programming is not adequate.

Because microprocessor technology is advancing rapidly, it
could be argued that most of these problems are going to lose
importance anyway, but there will always be implementation
tasks either with demands exceeding the current capabilities of
common microprocessor hardware, or with constraints that
involve expending more engineering effort to get a more efficient
product tailored to the application. Thus for instance fixed­
point arithmetic may be attractive and sufficient if dealt with

• Received 6 September 1985; Revised 17 June 1986. The
original version of this paper was presented at the 9th IF AC
World Congress on A Bridge Between Control Science and
Technology which was held in Budapest, Hungary during July
1984. The published proceedings of this IFAC Meeting may be
ordered from Pergamon Books Limited, Headington Hill Hall,
Oxford, OX3 OBW England. This paper was recommended for
publication in revised form by Associate Editor B. Wittenmark
under the direction of Editor K. J. Astram.

t University of Paderborn, Department of Automatic Control
in Mechanical Engineering, Pohlweg 55, 0-4790 Paderbom,
F.R.G.

appropriately. even when fast floating-point hardware abounds.
The above list of problem sources already indicates that in

this paper the scope of the term "implementation" will not be
restricted to the more theoretical questions but will also include
the selection and evaluation of current possible hardware.
Some consequences for software tools for computer..assisted
implementation within a Computer-Aided Control Engineering
(CACE) environment are also discussed. On the other hand the
type of control to be implemented will be restricted to a certain
class, i.e. the focus is on implementation of mostly linear. time­
invariant control. This is felt to be justified because even with
this restricted class there are many problems to discuss and such
controllers form the kernel of many control tasks. This is also
the case when algorithms such as adaptation mechanisms, gain
schedules and the like surround this kernel in more complicated
control systems.

The organization of this paper has been chosen to reflect a
quite common situation for control engineers:

-these are some control algorithms I want to realize,
-and that is promising hardware,
-but what are the issues in between? What steps must be taken
in order to make use of the hardware?

Therefore, after the discussion of control algorithms and the
issue of discretizing continuous controllers in Section 2 a review
of current hardware is given in Section 3. Various classes of
digital processors are reviewed, particularly with respect to
speed and architecture. Whereas general microprocessors might
allow for comfortable floating-point arithmetic, there are quite
often restrictions dictating the use of short wordlength fixed­
point arithmetic. There might be speed reasons for this, or the
chosen hardware might even not allow for anything else. This
entails many consequences., hence some basics on arithmetic
are discussed in Section 4, including some "exotic" types of
arithmetic.

Chronologically, once the discrete or discretized. controller is
known, the first step of the implementation procedure is to
choose a structure for the controller, suitable for implementation
with the available arithmetic. With fixed-point arithmetic at
least, it is in most cases crucial to transform a discrete controller
description into another description which is input-output
equivalent. but exhibits better behaviour, for instance with
respect to limited wOrdlength coefficient sensitivity. This issue
is discussed in Section 5. Determination of "good" structures
has long been a main issue in the digital filter field, and work
still continues on this. Transformation into a well-behaved
structure may also be necessary with floating-point arithmetic
in critical cases. Such cases have indeed been encountered in
practice.

In the case of fixed-point arithmetic the next step must be
scaling (Section 6). Fixed-point numbers have • much more
limited dynamic range than tlo.ting-point numbers with com­
parable word.length. In order to avoid overflow but at the same
time minimize quantization effects, the variables oftbe controller
must be scaled. Scaling also intluences the coefficients of the
controller which have to fit into the coefficient number range
.vailable.

Finally, the target processor program can be written. This
should be quite an easy task if a high-level language can be
·used and if the control algorithms are straightforward, but

Reprinted. with pennission, from Alltomatica. Vol. 23, No.1. 1987. 145

146

Survey Paper

feedback

FIG. 1. Example of a structured control system.

programming can be more challenging under less convenient
circumstances. Some relevant points are discussed in Section 7.

It is always advisable to carry out analysis and simulation in
parallel to the steps or the implementation procedure, checking
for the effects of discretization, skewed sampling, finite word­
length arithmetic-effects and the like. Although appropriate
analysis tools apart from simulation are valuable, the final word
at least should come from a full-blown simulation of the whole
control system. This task is not as trivial as it might seem, and
deserves some discussion in Section 8.

2. Control algorithms
Before discussion of implementation issues it is useful to have

a look at some or the algorithms which are possibly to be
implemented and at some implications of these algorithms with
respect to implementation.

It is common practice to design Jinear control systems and
to apply them to the usually non-linear plants. Thus linear
controllers are the main focus. However, linear controllers are
sometimes augmented by specific non-lineanties, such as non­
linear friction-compensating terms, non-linear command or
rererence generating models and the like. This should he taken
into account at least when it comes to software, both for aiding
in the implementation process and for target processor program
development.

A complex control system is usuany composed of subsystems.
For an example see Fig. 1. Such a subsystem structure may be
imposed by the design process, but there are usually also
technical reasons for the structuring. It is often appropriate to
preserve this structure in the controller implementation,
although it may be easy to merge everything together into a
single system description with the set of inputs comprising all
measurements from the plant as well as external inputs, and
with the variables acting on the plant as outputs. Such a
global controller description may facilitate handling or the
implementation tasks, because CACE software then only has to
deal with simple single-system descriptions. This, however, is
usually the only advantage of using a global description. In
terms of maintenance, modifiability and self-documentation it
is certainly better to keep the subsystem structure throughout,
up to and including the final target processor program. Variables
with physical meaning sometimes need to be preserved and may
be lost in the global description, at least after transformations,
which occur in the implementation process, have been perfor­
med. A description which reflects the modular structure of
the system is also adequate if the controller is compqsed of
subsystems running at different sampling frequencies, i.e. it is a
multi-rate system, and if there are non-linear subsystems a
structured description is almost mandatory anyway.

2.l. Some basic types of discrete control algorithms. In this
subsection a discussion of basic control algorithm types is given
with regard to the typical individual subsystem types.

I
,, _____ ..J

possibly unstable

<a) [b)

FIG. 2. Implementation with actuator saturation.

2.1.1. Observer/estimator and state feedback. The observed (or
estimated) state vector i is computed via

~'" = <I>~. + rup .• + K[yp.' - H~.] (1)

(Franklin and Powell, 1980; Astram and Wittenmark, 1984),
where up is the vector of control inputs to the plant and yp may
contain plant measurement variables as well as reference inputs
or measured external disturbances, in the case of reference and
disturbance modelling. The observed state vector is then used
in

(2)

where Lis a constant state feedback matrix, possibly including
columns for feedforward of observed referen~ or disturbance
model states. In (1) there could additionally he input terms
separate from the control input term in the case of additional
measurable external plant input signals. The term in brackets
could he augmented by - Dup." when the discrete plant state
space description contains it as a direct feed through term. This
occurs for instance when dealing with computational delay of
the control processor using the approach given by K wakernaak
and Sivan (1972). The state observer/estimator may also come
in another version, slightly different rrom (I):

~1+ I = <l>x, + rup~ + K[yp ... I - H<I>x.]. (3)

This version is called "current" estimator by Franklin and
Powell (1980). Astram and Wittenmark (1984) distinguish the
predictor version given by (1) from the filter version given by
(3). The presence of Yp,lr.+ I has implications with respect to non­
zero computation time (see Subsection 2.2).

Because Up,t; which is computed via (2) also appears on the
right-hand sides or (I) and (3) it is sometimes argued that (2)
could just as easily be included in (1) or (3), yielding ror instance

x.+ I = (<I> - rL)~. + K[yp.H 1 - H<I>~.] . (4)

in the case or (3), along with (2) ror computing the control input
to the plant. This could however be dangerous when up as input
to the plant saturates (Astram and Wittenmark, 1984). The
versions (1) and (3) still work (Fig. 2a) but in the case or (4) the
control system is broken up due to saturation into the plant
and a system whose eigenvalues are those or <I> - rL-KH<I>,
which are not even guaranteed to he stable (Fig. 2b). The control
system may never again regain stable operation after saturation
has occurred. Astonishingly, this simple ract has rrequently been
ignored in the literature. Note that this problem ties in with the
loop transfer recovery issue of continuous control (Doyle and
Stein, 1981) as well as with antiwindup compensation (Astram
and Wittenmark, 1984). From the author's own experience
designs are not unlikely to end up with an unstable system (4).
In such cases at least, the control inputs to the plant should
also be explicit inputs to the controller. If saturation occurs
only at the DA-converter, an internal feedback of up under
saturation in the control processor to the right-hand side or (1)
or (3) may suffice, otherwise the inputs to the plant should he
measured. Note that even when (4) is stable, the dynamics may
be very unsatisfactory. If a continuous controller is designed
and afterwards discretized, the discrete controller with reedback

Survey Paper

as in Fig. 2b may be unstable if actuator saturation occurs, even
if the continuous controller remains stable.

In (1) and (3) there is an explicit computation of the observa­
tion/estimation error (the bracketed tenns). The term depending
on ::I. could however be omitted if <I> - KH in (1) or <I> - KH<I>
in (3) are used for <I> instead. The controller (I), (2) can then be
reduced to a standard state space fonn

Xu. = (<I> - KH)x, + (r, K)[U'.']
Yp,k

(5)

which is equivalent to (1), (2) with infinite arithmetic precision.
With short wordlength arithmetic there may however be cases
where the representation of (() - KH) and K in the processor
causes observation/estimation errors.

The reduction of (3) and (2) to standard state-space form is
prevented by the presence of y,.u. in (3). An input/output
equivalent standard state-space form could be found (see below)
but *- would not be preserved.

2.1.2 Standard state-space systems. If the controller design
method does not yield a specific algorithmic structure such as
(1) and (2), but just a discrete dynamic system with some inputs
and some outputs, or in cases where the structure is not required
to be preserved, the standard state-space description may be
adequate: .

Xk + 1 = AXk + BUk

Yk = eXk + Duk ,

(6)

Such a system may also appear as a subsystem in a complex
controller. Its input thus does not necessarily coincide with the
plant measurement. reference and measured disturbance vectors
as in (1), and its output is not necessarily the control input
vector to the plant. The usual convention of " being the input
and y being the output of this system has therefore been adopted,
and will be used in similar cases below. It is important to include
the direct feedthrough terms in (6) because controllers frequently
have such a term (think of simple P, PI, PD, PID type
controllers).

If (6) describes an unstable controller/compensator with "k
which does not contain the actuator control variables (as
opposed to (5)), the same problems in the case of actuator
saturation arise as discussed above. The closed-loop system of
course should be stable but breaking of the loop because of
actuator saturation is likely to have disastrous consequences (due
to possibly only "conditional stability" in Bode's terminology).
Astrom and Wittenmark (1984) suggest a neat way of circum­
venting such problems by implementing the system (instead of
(6))

Xu. = (A - MC)x, + (B - MD)u, + My" (7)

Yk = CXt + DUb

which is equivalent to (6) as long as everything is linear. The
point is that (7) is a feedback system because y, appears as
Yk-I in the computation ofxt • Assume now Y to be the control
input to the plant, and U to be the plant output. If y, now
saturates, not only the controller/plant loop is broken, but
also the loop in (7) (see again Fig. 2 with (7) replacing the
observer/estimator/feedback system there). Thus one is left with
a system the dynamics of which are determined by A - MC
instead of A, and A - MC may have more desirable eigenvalues
because M can be chosen freely.

21.3. State space system with "current" term. Frequently the
system description contains a "current" term. which means that
Xk depends not only on "t-l but also on the currently sampled
Uk or

XU1 = AXl + B1Uk+l + BO"l

Yk = eXk + DUk'

(8)

This occurs if certain methods are used to discretize an analog
controller. But the simple PlD controller given by

"P,k = rxet

"l,k = UU-l + pet

UD,k = }'"D,It-l + 8(et - e,,-t)

Uk = Up,lt + UI,k + "D,t

(9)

also yields a description of the form (8), if the integral part UI

and the differential part UD ared chosen as state variables. If it
is not necessary to preserve the state variables, (8) can be
translated into (6) using the substitution (Hanselmann, 1984)

resulting in

X:+l = Ax: + (ABl + Bo)uk

y, = Cx; + (CB. + D)u,.

(10)

(11)

2.1.4. Transfer junctions. Controllers or controller subsystems
are often given in transfer function form if they are SISO. MISO
or SIMO systems. In the case of MIMO systems the transfer
matrix description is not directly appropriate for implementation
purposes because of the underlying minimal realization problem.
For this reason and because state-space models are more easily
amenable to numerical treatment, basing CACE tools on state
space descriptions might be preferred, with some important
extensions as given in Subsection 5.4.

In the SISO case it is quite natural to derive an implementable
difference equation directly from the z-transfer function in
polynomial form:

could be implemented as

This is only the simplest equation, requiring more storage
elements than necessary. There are various other structures also
involving the polynomial coefficients of(12) more or less directly
(see for example Phillips and Nagle, 1984). The problem is that
such an implementation is very likely to fail with finite precision
arithmetic even in low order cases, so transfer functions are
usually realized in different, more appropriate forms (see Section
5).

If an observer/feedback controller is given in transfer function
form in the case of a SISO plant, it has at least two inputs and
one output. The two minimal inputs are the control input to
the plant as measured and the plant's output variable. Additional
inputs for the command or reference signals and measured
disturbances may be present. So such a controller is always
MISO. It may be tempting to eliminate the input of the plant's
actuating variable into the controller which computed that
variable. The problem associated with actuator saturation
discussed above in the state-space context then also arises. If,
originally, the controller is a compensator without this actuating
variable feedback, and it is unstable or exhibits unsatisfactory
dynamics, it is also possible to remedy this in transfer function
form (Astrom and Wittenmark, 1984~ corresponding to the
modification shown in (7).

2.1.5, Finite impulse response filters. Finite imPl1:1se response
(FIR) filters are known from digital filler theory (Oppenheim
and Schafer, 1975). They are commonly realized as non-recursive

147

148

!iurvey Paper

systems, i.e. the difference equation has only input terms on the
right-hand side

(14)

but note that recursive realization is also possible. an example
being the 'common recursive realization of a moving average
filter. In a control system context, FIR filters may appear as
subsystems for filtering purposes. They may also be used directly
as controllers in certairi settings (Fromme and Haverland, 1983;
Wid row and Walach, 1983).

2.1.6. Non-linearities. AU the controllers or subsystems discussed
above only require simple scalar product operations involving
coefficient vectors (matrix rows) and data (signal) vectors.
This computation of sums of products, which requires only
multiplications and additions. is the type of operation predomi­
nant in general digital signal processing. for instance in digital
filtering or correlation computations. Thus processor architec­
tures suited to the strong market of general digital signal
processing are usually also well suited to controlJer implemen~
tation (see Section 3).

Practical control systems, however, frequently need extensions
of the simple linear timeeinvariant systems discussed. Examples
are: compensation of stateedependent noneviscous friction in
mechanical systems (Henrichfreise, 1985; Walrath, 1984), non­
linear command or reference generators (Broussard et al.. 1985~
compensations of kinematic non~linearities in robot control, or
adaptive mechanisms (Aslram, 1983). Computations introducing
operations such as decision making, divisions, table lookup.
interpolation, polynomial evaluation, and computation of non­
linear functions may give rise to problems with processors which
are intended for linear digital filtering.

2.2. Implications of computational delay. In the difference
equations discussed above the subscript k of input or output
variables expresses time instants where sampling or output
occurs respectively. Thus u, in (6) means u(k1) and y, means
~k1). Sampling and output musl therefore be performed exactly
simultaneously. Note that the state vector may have a meaning
with respect to time instants 100 as in the case of (1) or (3),
where t is the observed plant stale but this depends on the
design method which yielded 'the controller. It is in any case
irrelevant at what time instant the state vector is computed, as
long as it is computed before it has to be used for the
computation of the output.

If there is no direcl feedthrough from input to output and
there is no current term in the state update equation (as in (1).
(2), (5) and (6) if D = 0) then the output can be readily computed
before the input is sampled and sampling and output can be
simultaneous in reality. Otherwise, there is inevitable delay
because-take (6) for instance-Du, al leasl has to be computed
and added to Cx" which might already have been computed
because x, does not depend on u,. If ex, is precomputed, delay
is minimized. The control processor program can easily be
organized that way (Franklin and Powell, 1980; Hanselmann,
1982; Astrom and Wittenmark, 1984). Similar arguments apply
to the observer/estimator described by (3) with (2), where,
in order to compute U".II' Y".a must be available and the
computational effort is at least the addition of Kyp., to the
precomputable part of ~" and finally the computation of up.,
=-UII •

If the minimized delay is not negligible, it should be taken
into account in the controller design. How this is done depends
on the design method. With classical Bode diagram design for
instance the delay introduces additional negative phase which
could be assigned to the plant for this purpose. With direct
discrete design the delay may also be assigned to the plant and
design is then based on a discrete description for the plant with
input delay. This description is compuled either in the z-domain
using modified z-transforms (Franklin and Powell, 1980; Astram
and Witlenmark, 1984; Phillips and Nagle, 1984~ or in state
space (Franklin and Powell, 1980; Astram and Wittenmark,
1984; Wittenmark, 1985). In all these cases the delay shows up
in the design of the controller.

(a)

(b)

(k-1)T

(k -1)7'

kT

1 output of
conlrol signal Up

latest instant for
measuring plant output yp

k'/" t

1 !output of "Up

measurement of yp

FIG. 3. Computational delay.

With observers/estimators there are more elegant possibilities
which compensate for the delay. In the approach given by
Kwakernaak and Sivan (1972), the time grid is fixed to the time
when output of the control signal U",k to the plant occurs, i.e,
up., means u,J.k 1) (Fig. 3a). With the requirement of simultaneous
sampling and output the latest measurement usable to compute
u,J.k1) would be y,J.k - 1)1). If skewed (non-simultaneous)
sampling were used. the latest measurement could however
preferably be y,J.(k - I)T + Ii), where Ii = T -- t" and t, means
the computational delay. Thus an observer/estimator design
based on a plant descriplion with output y,(kT + Ii) instead of
y,(k1) would compensale for the computational delay.

In the approach given by Meisinger and Lange (1976), the
lime grid is fixed to the sampling of y,J.k1) but the compulation
of up., is based on a predicted plant slate X(kT + t,) (Fig. 3b).
The prediction is easily incorporated into the observer/estimator
equations with no additional computational overhead. Similar
ideas are used by Mita (1985). Meisinger and Lange's approach
appears different from that of Kwakernaak and Sivan. and no
reference to the latter is given. In fact, the equations describing
the estimator can be shown to be equivalent. The difference is
~hat Meisinger and Lange express the estimator gain matrix in
terms of the "no delay" gain matrix assumed to be computed
first.

The observation that direcl feedthrough terms, or current
lerms which map into direct feedthrough, cannol be
implemented exactly with finite speed processors, has led to the
exclusion of such systems in the whole work of Moroney et al.
(1980, 1981, 1983) and Moroney (1983). However it seems
reasonable not to exclude such systems as models, firstly for
cases where delay can indeed be neglected, secondly ror cases
where delay is assigned to the plant during design, and finally
because such systems may be sericswconnected to others which
do not have direct feed through, so that the input and output
operations of the series connection visible from outside may
well occur at the correct time instants.

2.3. Discretization of continuous controllers.

2.3.\. Motivation. Although the common design methods are
available in discrete form, it is quite common to carry out
continuous design first, so that discretization can be assigned
to the implementation task. Discretization of continuous designs
is sometimes ruled out as being inefficient with respect to
necessary sampling rates, giving up some possibilities present
only in discrete design (such as deadbeat behaviour), and being
simply imprecise beeause discretized control never behaves like
the continuous design. Experience shows however that it is far
from uncommon for none of these arguments to be of significant
relevance in practice, and there may be several reasons why the
indirect way via continuous design may be the better choice.

One possible reason is that in order to exploit the exactness
of discrete design there must be early decisions on sampling

Survey Paper

discretizalion methods

Isolated

transform (s .z)
substltlltion

sImulatIon

closed loop

l':tatc mutching

expunsion

transllion matnx

frequency response
mutchmg

FIG. 4. Discretization methods.

frequency, and possible sampling skew (non-simultaneous sam­
pling of aU inputs) or computational delay must be known in
aqvance. But all ~his depends on what shows up to be computed,
what the numencal data are, and which processor and which
data format will be used. If inadequate estimates have been used
initially, the control system has to be redesigned.

2.3:2. Methods. There are so many methods available for trans­
latmg a linear time-invariant controller into a discrete "equiva­
lent" system (which in fact can never be completely equivalent),
that this topic could be the subject of a survey in itself. [n
the following, not much more than a classification and a
bibliography are given, plus a short discussion of two methods.

The discretization methods available can be classified as
indicated in Fig. 4. 'There are two main groups. The tirst
comprises methods which do not take into account the fact that
~he controller will be connected to the plant and wiIJ operate
m closed loop. At most there are a few assumptions about the
input signals. [n the second group, discretization is carried out
considering the clQscd-loop use of the controller.

Among the contributions to the secon,d group are those
published by Kuo (1980), Kuo et al., (1973), Yackel et til., (1974),
Smgh et al., (1974) and Miller (1985). They consider the redesign
of continuous system state feedback and reference feedforward
matrices for the discrete case with the objective of matching the
state or parts of the state of the discrete control system to those
of the continuous system in closed-loop operation.

Also connected with state feedback and reference feedforward
matrix redesign is another approach given by Kuo et al., (1973)
and Kuo and Peterson (1973) (also in Kuo, 1980) based on a
Taylor expansion of those matrices about T = O. These tnethods
have been reviewed and further discussed by Kleinman and Rao
(1977), who also give a so-called average gain method with the
objective of approximating control signals instead of states.
Closed-loop redesign is also the objective with the methods
proposed by Rattan and Yeh (1978), Rattan (1981, 1982, 1984)
and Shieh et al., (1982), which are based on frequency response
curve fitting.

The group of methods for "isolated" discretization, where
only the system to be discretized is considered without taking
its later connection to the other systems into account, is the
largest. The most widely described methods within this group
assume that the s·transfer function G(s) of the continuous system
is given. With the most prominent method, the so-called bilinear
transform, (see for instance Oppenheim and Willsky, 1983) the
recipe is: substitute s by 2(z - I)/T(z + 1). A z-transfer function
GJz) is thus achieved. This transformation is also known as
Tustin's method and relates to discrete integration, i.e. to
simulation. It "has the nice property of never generating unstable
z-poles as long as the s-poles are stable. Another property is
that the frequency response of G(s) is exacdy replicated in the
freql:'ency response of the discrete system (more precisely
G,(o''''), i.e. without hold device) but unfortunately with a
wa~ped frequency axis. The response of the continuous system
shnnks to the range 0 ... w&/2, where roll is the angular sampling
frequency.

The bilinear transform is widely in use, and tests on numerical
examples (Katz, 1981; Hanselmann, 1984) indicate that this is
not a bad choice. It is also quite simple to formulate this method
in state space for multivariable systems. Given the continuous
system

x = Acx + 8(u

y = ex + Du

(15)

the discrete system is of the form of (8) (Haberland and Rao
1973; Hanselmann, 1984), with '

(16)

where [means identity matrix. Note that A is a tirst-order Pade
approximation for the transition matrix exp (Ae 7).

The formulation in state space directly translates into a simple
computer program. The calculations based on the transfer
functions can however also be mechanized (Ahmed and Natar­
jan, 1983; Bose, 1983; Pei, 1985). Bilinear transformation is not
the only method from the transform or substitution class. More
can be found for instance in Katz (1981) and Franklin and
Powell (1980) along with some comparisons by examples, and
10 Rosko (1972) and Smith (1977). A "small T' root and frequency
response error (continuous/discrete) analysis for the bilinear
transformation is given by Howe (1982).

Since. determination of a discrete system equivalent to a
continuous one is related to simulation, methods from that field
may also be of interest here. [n fact, the bilinear transformation
already corresponds to a simulation of an equivalent continuous
state space system ·via implicit trapezoidal integration. Hansel­
mann (1984) also derived discrete systems from Heun's simul­
ation method and one of the Runge-Kutta type and compared
them to other methods. Experience showed no general advantage
over for instance bilinear transformation and over the ramp­
invariance method described below. One method which seems
very interesting and also has some connection with simulation
has recently been published by Forsythe (1983, 1985). It is given
for SISO systems and is based on expressing the samples of the
input and output variables via Taylor series expansion of the
continuous functions. Results are shown which are clearly
superior to those of the bilinear transform in a large frequency
range, although at the expense of increased gain in the high
frequency region. This could be dangerous in a closed-loop
control system.

The last class of methods is based on assumptions on test
input signals applied both to the continuous system and to the
discrete one to be determined. The objective is to achieve
agreement of both outputs at sampling instants. Assumption of
a step input leads to a step-invariant and to a ramp input to a
ramp~jnvariant discretization, occasionally called "zero order"
and "first order hold equivalence" methods, respectively. The
step-invariant discretization is just what has to be performed in
order to describe a continuous plant driven by a zero-order
hold (ZOH). A table of step-invariant transfer functions can be
found in Neuman and Baradello (1979). The ramp-invariant
discretization is also easy to achieve, either via transfer function
calculation, i.e.

G (z) = Y'(z) = (z - If Z{G(S)-'-} (17)
, R(z) Tz s' '

or in state space. The assumption of a ramp input between

149

150

Survey Paper

sampling instants leads to the state-space equation solution
(continuous system (15) assumed)

x .. , = exp(A,T)x. + f. T exp[A(T - T)]

B [u + Uk+1 - UktJdT ,. T

= Ax, + Hu, + H.(u .. , - uJIT

=Ax,,+Bt"Hl + BOuk•

(18)

The transition matrix and the input matrices Hand H. can
be computed simultaneously via a single transition matrix
calculation (Hanselmann, 1984), but also by other means. The
power series expression of exp(AtT), for instan_cc, which is
sometimes used as a basis for computation of A and H, also
leads to algorithms for oomputing H •. Schittke and Dettinger
(1975) used this (unfortunately there is an error in the series
given in their equation (15)). The approach given by Kiillstrom
(1973) for computation of A and H based on one single series
calculation can also be extended*. The series to be summed is

>/I = f (A,Tj'/(i + 2)! (19)
;=0

then

A = I + A,T+ T'A:>/I (20)

H = (TI + A,T '>/I)B, (21)

H,= T'>/IB,. (22)

Definition and derivation of the ramp-invariance method in
state space has already been found in a paper by Haberland
and Rao (1973). The expressions given there for B, and Bo can
be derived from (20)-(22). A small T study concerning scalar
transfer function zeros generated via impulse-, step-, or ramp­
invariance has been carried out by Bondarko (1984), whose
step-invarlance results relate to those of Astrom et al., (1984~

The author's experiences with the ramp-invariance method
are very good, particularly in critical cases where there are
continuous system eigenfrequencies near mJ2. The step­
invariant results, however, showed bad frequency responses
compared to those of the continuous systems in practically
every application. Sampling frequency could have been lowered
by a factor of five using ramp invariance instead of step
invariance with a high-order controller for a hydraulic system
(Hanselmann, 1984). So the unsatisfactorr experiences with
discretized continuous designs, compared to discrete designs,
which are sometimes reported may well be due to inappropriate
discretizatIon.

2.3.3. Influence of zero-order hold. A general problem with
discretized controllers is that the ZOH at the outputs introduces
collsiderable phase lag. Thus discretized controller frequency
responses are likely either to show more negative phase com­
pared to the continuous controller, or to show increased gain
in the higher frequency region, which stems from the attempt
to lift phase. Stability and damping problems could occur. In
applications carried out by the author, sampling frequency had
to be from a factor of 3 to 10 higher than crossover frequency,
in order to preserve reasonably the behaviour of the continuous
system. From aliasing and roughness of control signal consider­
ations, which often also dictate sampling frequencies in that
range, such a ratio does not seem to be excessive.

With some of the discretization methods the phase lag of the
ZOH can be taken into account directly. This applies naturally
to the closed-loop discretization method class. The "isolated

• Thanks to Prof. K.-J. Astrom who brought this to my
attention.

discretization" method of FOTSythe (1985) is also able to do
this, and furthermore to compensate somewhat for possible
computational delay. The price of delay compensation however
is again an increased high frequency gain. The same applies to
what might be caned "post-filters", which are digital filters
conllec!ed between the controller difference equation output
and the ZOH. Such filters have been described by Yekutiel
(1980) and Beliczynski and Kozinski (1984). They lift phase but
must be handled with care unless a rapid gain rolloff beyond
the crossover frequency is guaranteed.

3. Implementation hardware
The author is well aware of the fact that any discussion of

hardware is doomed to be obsolete within a very short time. So
this survey gives only & snapshot of current implementation
hardware, but there are some points which might be relevant
for a few years.

3.1. Spectrum of CUTl"ent hardware. The range of possible
hardware for implementation of algorithms as discussed in
Section 2 is very broad. A rough overview is given in Table 1.

3.1.1. Specialmnchines for rapid experimenting. At the upper end
in terms of cost as well as computational power there are
high-speed computers specifically designed for real time data
acquisition and computation. The ADIO from Applied Dynam­
ics International, Ann Arbor, Michigan, is capable of 30 million
arithmeticoperations- 1 and 10kHz data acquisition on 32AjD
channels simultaneously (Powers, 1985; Kerckhoffs et al. 1985),
but costs are in the US $200,000 range. Advanced versions
recently available are also capable of floating-point computation
(Fadden, 1984), but at even greater cost. Such systems are
attractive for experimental work in the early stages of a control
system design and implementation project, in order to obtain
feedback from real experiments as early as possible, and as easily
as possible, with the convenience of floating-point arithmetic,
flexible programming, and plenty of speed. Common minicom­
puters backed up with array processors may also be used with
similar power but also at high cost (Jacklin et al. 1985). Without
array processors, the speed of minicomputers is usually rather
modest. A less costly system which is marketed specifically for
experimental linear control system evaluation is the PC 1000
from Systolic Systems Inc., San Jose, California, starting at US
$ 25,000. It is rated at 200 ns multiply as well as addition
time with 32-bit floating-point numbers, and 2kHz maximum
sampling rate. Controllers of type (6) with up to 32 states and
16 inputs and outputs can be accommodated under the control
of a personal host computer with download facility.

3.1.2. Fast floating-point chips. Roughly the same compu­
tation speed as described above will be possible with systems
based on so-called word-slice chip sets from Advanced Micro
Devices (Flaherty, 1985; Quong and Perlman, 1984) and Analog
Devices (Windsor, 1985; Taetow, 1984). They evolved from
the more traditional bit-slice ooncepts and now oomprize all
necessary building blocks to develop microprogrammed high­
speed signal processing systems with just a few chips, among
which are special purpose arithmetic chips, i.e. separate chips
solely for accumulating or multiplying floating-point numbers.

Floating-point computation in the same speed range as with
word-slice devices is possible using arithmetic chips from Weitek
Corporation. Separate 32-bit floating-point adder and multiplier
chips along with 32-word register file devices form a powerful
numerical processor. Control of the devices must be derived
from microcode memory and control logic. About 2 MFLOPs
(mega floating-point operations per second) can be achieved in
low latency flowthrough mode, which means that the result of
• single arithmetic operation is available as soon as possible. If
pipelining can be used 10MFLOPs are achievable, but results
are then not immediately usable in subsequent operations.

Another two-chip set for floating-point arithmetic is available
from TRW (Eldon and Winter, 1983), which is, however,
restricted to a 16-bit mantissa 6-bit exponent fOTmat. Note that
division is not as directly perfoTmed as accumulation (addition
and subtraction) or multiplication with these chips, nor is it
with the above-mentioned word-slice devices. Division must be

Survey Paper

TABLE 1. IMPLEMENTATION HARDWARE

Experimental use in the laboratory
High cost Medium cost Low cost

Dedicated
low volume

Dedicated
high volume

word-slice
High
speed

AD-IO minicomp. and
array processors
Systolic Systems
PC 1000

floating~point
chips

VLSI signal processors

Medium
speed

minicomputer microprocessor with custom
VLSI numerical coprocessors

Microcontrollers

performed using table-lookup methods to yield rough estimates
which are then improved via additional operations, or it is
performed totally iterativeJy. This means that division and any
other function computation involving division is performed
much more slowly than the elementary scalar product operation
ace: = ace + coefficient. variable. Within the Weitek register
file there is an integrated lookup table for computing l/x and
Jx.
3.1.3. Microprocessors. Easy implementation and testing of
controllers at much lower cost and 'effort is of course possible
using standard personal computers or microcomputer board
level systems, equipped with process interfaces, and speeded up
by numerical coprocessors, such as the Intel 80286/80287 or the
National Semiconductor NS 32016/32081 combinations. Such
systems are easy to program in high-leve11anguages and deliver
medium speed (see Subsection 3.3), sufficient for implementing
even complex process control in many cases, but frequently not
fast enough for control of fast systems such as mechanical ones.
Attaching fast hardware multipliers to general microprocessors
may also seem to be an alternative. They are available in
abundance from many companies, up to (24 x 24)-bit fixed­
point format at 200ns mUltiply speed or (16 x 16)-bit in 35ns.
But data transfer from and to such a chip via a microprocessor
is much too slow, so the multiplier would be idle most of the
time. Avoiding this would necessitate not only using a hardware
multiplier, but surrounding it with a lot of hardware to achieve
more independent operation on local data memory, under local
sequencing control.

3.1.4. Microcontrollers. The term microcontroller is used com­
monly for single-chip microprocessors which are designed to be
used as dedicated processors. But control is meant here in a
much broader sense than considered in this paper, including
sequencing control, pulse-width or pulse-frequency modulation
control, and so on. Microcontrollers stand somewhere between
traditional single-chip microcomputers and general purpose
microprocessors. Three powerful 16-bit devices shaH be named
here, the Motorola MK 68200. the Nippon Electric NEC I'PD
78312, and the Intel 8096. Typically, the arithmetic computation
speed is not much higher than with generaI16/32-bit micropro­
cessors for fixed-point arithmetic. But there are features like on­
chip AD-converters or timers and modulators which make such
processors attractive for developing products. It is interesting
to note that the 8096 evolved from a chip originally designed
according to requirements specifications made by Ford Motor
Company for control applications in an automobile (Powers,
1985; Breitzman, 1985; Simmers and Arnett, 1985).

3.1.5. Signal processors. Very attractive computation speed is
achieved with a number of VLSI signal processors at micropro­
cessor level cost (Hanselmann and Loges, 1983, 1984; Hansel­
mann 1986). Present devices of that kind that seem to be useful
for control implementation and are available to the public are
the Nippon Electric NEC 7720 (Nishitani et al. 1981), the Texas
Instruments TMS 32010 (McDonough et a1. 1982), the Fujitsu
MB8784 (Gambe et al. 19831 the STCDSP128 (Pickvance,
1985), and the Texas Instruments TMS 32020 (Magar et a1.,
1985; Essig et ai., 1986). Some descriptions can also be found in
Quarmby (1984), Marrin (1985), and of some recently announced
processors in Marrin (1986).

The signal processors mentioned are off-the-shelf products.
The cJass of only mask-programmable signal processors has
been excJuded. They are not of course useful for the average
control implementation task. There is great activity in the
development of signal processors. Several companies have
announced such devices.

For medium to high volume applications, custom chips may
be the choice. Custom design is advancing in supplying quite
complex building blocks such as multipliers, arithmetic units
and memory (Cole, 1985). Furthermore, there is considerable
effort towards fully automated chip design (Cappello, 1984).
Pope et al. (1984) and Rabaey et al. (1985) for instance describe
a silicon compiler which starts with some high-level descriptions
of what the signal processor chip is expected to perform. The
software then chooses optimal parameters of a parameterized
architecture and finally outputs a complete chip layout. Combin­
ing building blocks into a freely designed architecture is another
approach (Olesner et a1., 1986). .

VLSI signal processors make implementation of non-trivial
controllers at high sampling rate feasible at reasonable cost,
and particularly the TMS 32010 has already heen used in many
control applications, as described for example by Slivinski and
Bominski (1985), Kanade and Schmitz (1985), Hanselmann
(1986). The power of signal processors is due to their architecture,
not to exotic silicon process technology. It may therefore be
interesting to have some general discussion of architectural
features in the next subsection.

3.2. Architectural issue.'). When a chip or chip set is to be
selected for controller implementation, there are many criteria
which might be relevant. Their priority depends mostly on the
type of application intended. Building a tool for flexible lab
experimentation sets priorities other than looking for a medium
volume dedicated industrial instrumentation system.

3.2.1. General considerations. How general purpose 16/32-bit
microprocessors. a typical microcontroller, and the current
VLSI signal processors meet some of the relevant criteria is
shown in Table 2 (for a survey of microprocessors see Gupta
and Toong, 1983, 1984). The 8096 has been chosen as representa­
tive ofa trend in microcontrollers. Note the amount ofinput/out­
put support right up to multi-channel on-chip AD-conversion.
Microcontrollers are particularly well suited to industrial appli­
cations, where control of the type discussed in Section 2
is frequently only one task among many others, including
sequencing, complex timing, interrupt processing and communi­
cation. Computing speed is however not as high as with signal
processors. Apart from the special input/output features, the
architecture of the 8096 is much like that of traditional general
microprocessors, with the exception of an increased number of
on-chip registers fonning a so-called register file. There are 232
bytes free to the user to be referenced as byte, word or double
word registers. This is an important feature, because such an
on-chip register file can be accessed more quickly than external
memory. It is large enough to carry out large portions of the
task locally and also helps speed up context switching during
processing interrupts.

When so many functions as a microcontroller has are inte­
grated on a single chip, something must be sacrificed in
comparison with general purpose 16/32-bit microprocessors.
One of the features of the latter, missing in a microcontroller,

151

152

Survey Paper

TABLE 2. PROCESSOR COMPARISON

Microprocesors

Floating point slow,
medium with
coprocessor
(,.,5-15I's

mull. or add)

Speed 16 x 16 5-121"
fixed-point mull.

ALU wordsize 16-32

Program address >IMB
space

Data address space same

On-chip ADIDA

Special 1/0

On-chip ROM.

Memory speed medium
required

Interrupts flexible via
interrupt

control1ers

Multiprocessor ext. logic
capability

Program language best
support

Chip count high

is the large address space, which is in fact not necessary for
control implementation. A small address space saves much room
on the chip, because the address space is reflected in all registers
and logic related to effective address computation, as well as in
the bus interface. Provisions for memory management can also
be dispensed with.

Other savings stem from reduced instruction decoding circu­
itry due to a simpler instruction set, excluding advanced high­
level language-like instructions as for instance incorporated in
the VAX-like instruction set of the NS 32016 general micropro­
cessor. The reduction in instruction decoding and processing
logic due to a simpler instruction set is also a general line of
development with advanced supermicroprocessors for general
purposes. These processors are said to be of the RISe type
(RISe means reduced instruction set computer)(Wallich, 1985).
They are characterized by an instruction set which includes only
the most used instructions and by executing one instruction
every machine cycle. Operations are performed on operands in
large register files, not on memory, which is accessed only by
load and store operations. Among the digital VLSI signal
processors there are also some which are RISe-like. particularly
the TMS 32010 and the DSP 128 signal processors.

3.2.2. Specifics of signal processors. Whereas the 8096 microcon­
troller discussed above appears, from outside the chip, to be
of the traditional "von Neumann" computer type, internally
instructions go their own way separately from the data. It is a
well-known bottleneck of traditional processors (von Neumann
type) that instructions and data travel on the same bus.
This architecture must be abandoned if data transfer between
registers, data memory, and arithmetic units is t9 be fast for
maximum throughput. One step away is the so-calleq 'Harvard'

Microcontroller Signal
8096 processors

slow impossible or
slow

71's 0.1-0.31"

16 16-35

64kB 1.5-128kB

same 128-588 x 16 for
onchip RAM (external

ex:tension possible
with newest proe.)

4-8 AD chan!,els,
10 bit

pulse widtp. mod.,
timer, counter,

watchdog, ports

8kB all but one

medh",m 25-150ns

7 sources internal, 0-3
J external

newest proc.

some asm only in most
cases; high level

language support
for one, processor

low medium to high

architecture. In this architecture the instruction bus is separated
from the data bus so that instruction fetch and data transfer do
not interfere with each other. Some signal processors exhibit
even more data paths. For mustration, a sketch of the core
architecture of a hypothetical hut typical signal processor is
given in fig. 5, showing the data manipula~ion part (instruction
bus and control unit are separate). There are two 16-bit data
buses, each connected. to a block of data memory and to the
hardware mUltiplier inputs. Factors can thus be routed to the
multiplier without bus conflicts. The arithmetic/logic unit (ALU)
gets operands either from the accumulator, from memory, or
from the multiplier, converted to 32-bit where necessary. Typical
components are the shifters, particularly the barrel shifter. It
allows the shifting of an operand by multiple bits within a single
data transport operation.

Besides the multiple bus and data path structure, the most
significant difference between signal processors and general
microprocessors or microcontrollers is the integrated parallel
hardware. multiplier. This multiplier produces a (16 x 16)-bit
product in every machine cycle (see discussion of speed in
Subsection 3.3), which is afterwards directly fed through the
ALU into the accumulator in the next cycle in order to perform
the basic operation

ace: = ace + coeff * variable.

With a hardware multiplier the multiplications no longer
dominate execution times as usual. They are as fast as additions
or logic operations. It is however important not only to have a
hardware multiplier, but also to have a powerful data path
structure. Otherwise the precious arithmetic units cannot be
kept busy all the time. Note that these ,components ronsume

Survey Paper

16

data~RAM

A

data~RAM

B

16

FIG. 5. Typical signal processor core.

large parts of the chip aTea (see photographs in Cushman, 1982).
With the TMS 32010 fOT instance, a scalar product computation
a = cT x proceeds as fonows:

LTAx(i)

MPYc(i)

LTAx(i+ 1)

MPYc(i+ 1)

where the LTA instruction loads one operand in one of the
multiplier's input registers, but at the same time performs
accumulation of the previously computed product. The MPY
instruction loads the second operand into the second multiplier
input register and in the same cycle the multiplication is
performed, the result of which is accumulated during the next
LTA. The operands travel to the multiplier over a single data
bus, so loading takes two cycles. With processors having split
memory (as in Fig. 5) the coefficients (of cT in the example) and
variables representing signals (x in the example) could be stored
~parately and loaded simultaneously, so single-.cycle operation
is possible. This can frequently be found in signal processor
architectures.

The integrated hardware multiplier, along with an appropriate
data path structure connecting the arithmetic units (ALU,
multiplier, shifters) and memory are the keys to the high speed
of VLSI signal processors. There are however quite a number
of miscellaneous features which also contribute to speed, mostly
by devoting hardware to tasks traditionally performed by
software. The VLSI signal processors are currently acknowl­
edged as being ·attractive candidates for control implementation,
not only in the sense of Section 2. They are also weU-suited to
performing arithmetic subtasks as a slave to a general

microprocessor host within a control system (Schumacher and
Leonhard, 1983; Rojek and Wetzel, 1984; Leonhard, 1986). They
cannot however directly compete with microcontroUers in terms
of functionality.

3.2.3. Arithmetic and data formats. A last important point of
discussion is the arithmetic data format supported by the
different processors. This point can be as crucial as speed. In
many cases floating-point arithmetic is desired, be it because
the dynamic range required is indeed large, or because the
implementer does not want to deal with the problems of fixed­
point arithmetic. With general microprocessors as well as
microcontrollers, floating-point arithmetic in a common format
(IEEE standard 754, 32-bit) is easy to achieve through subroutine
libraries or floating-point coprocessors, providing considerable
speed.

With present VLSI signal processors, however, floating-point
arithmetic is not easily achievable. There has been an effort to
perform Hoating-point arithmetic on a TMS 32010 (Blasco, 1983)
and on the TMS 32020 (Crowell, 1985), but speed results are
rather disappointing compared to general microprocessor/co­
processor combinations. No effort to implement floating-point
arithmetic on the other fixed-point signal processors has been
reported. There is one VLSI signal processor, the Hitachi
HD61810 (Hagiwara et al., 1983), which is specifically designed
for a particular kind of floating-point arithmetic, but it is only
available with mask programmed ROM, and floating-point
accuracy is limited by a (12 x l2)-bit multiplier. There are
some known developments of signal processors with full 32-bit
floating-point hardware on the chip (from Bell Labs, Nippon
Electric and Texas Instruments), but the first is not available to
the public, the second has just been announced, and the third
still seems to be in the design stage. Thus with present VLSI
signal processors one must deal with fixed-point arithmetic and
aU the associated problems.

Within this group of fixed-point processors there are still
differences in the useful data formats, which stem from architec­
ture design decisions. The main differences are in the processing
of products from the multiplier, and in the format of the
accumulator. With the exception of MB 8764 all processors
provide at least 32 bits for accumulation of (16 x 16)-bit
products, so that full precision is preserved until storage of a
final scalar product result (see Section 4). At this point rounding
or truncation is usually performed to obtain the most significant
16 bits of the result, although more precision is possible with
most processors, at the cost of more complicated code and
slower execution.

3.2.4. New architectures. In addition to the more conventional
architectures just discussed, there are other developments which
are already having an impact on signal processing and also
beginning to have one on control. The transputer concept
(Taylor, 1984), systolic architectures (Kung, 1984; Jover and
Kailath, 1986), and data flow processor concepts (Chong, 1984;
Hartimo et al., 1986) should be mentioned here.

3.3.' Speed. Although there are usually many aspects of
processor selection other than speed, it is nevertheless often the
most pressing factor in controller implementation. This is
typical of the field of controlling mechanical devices via fast
electromechanical or servohydraulic actuators. Eigenfrequencies
from 100Hz up to 10kHz are not uncommon, and higher order
controllers are often necessary to cope with structural resonance
effects (see for example Slivinski and Dorninski, 1985; Kanade
and Schmitz, 1985; Hanselmann, 1986).

A speed comparison for general microprocessors for the task
of digital filter implementation, which is many respects similar
to controller implementation, has been given by Nagle and
Nelson (1981), also published in Phillips and Nagle (1984) (note
that some of the programs originally published have been
corrected in the latter pUblication). Speed comparisons on
instruction and routine level using general data processing
benchmarks have been published by Gupta and Toong (1983)
and Toong and Gupta (1982).

153

154

Survey Paper

TABLE 3. SAMPUNO FREQUENCIES WITH AN EXAMPLE

CONTROLLER USING FIXED-POINT ARITHMETIC

Microprocessor Clock (MHz) !. (kHz)

8086 8 <2
Z8000 5 <2
68000 10 <4
32016 10 <5
TMS 32010 signal processor 31

If floating-point arithmetic is required the current signal
processors can be excluded from the comparison. Their fixed~
point speed is about the same as the floating-point speed of the
fast word-slice and floating-point chips from Section 3.1.2. The
fastest chip set (using the AMD 29325) achieves computation
of a length n scalar product in about n. 200 ns, with full 32-bit
IEEE standard data format. This should be compared with
the often "thought to be fast" microprocessor/coprocessor
combinations such as the Intel 80286/80287 or the faster
National Semiconductor 32016/32081. The latter require about
n. 20 /lS for the same thing (at 10 MHz clock, slave processor
protocol execution included, from measurements by the author).

Roughly the same speed as 'with microprocessor/coprocessor
combinations can be achieved with the microprocessors alone
iffloating-poinfarithmetic is dispensed with. Compared to adds
and subtracts or miscellaneous operations, the fixed-point
multiplications are the most time-consuming. ones. A typical
execution time is 6/lS for a 10 MHz 32016 processor (operands
in memory).

With VLSI signal processors the execution times of add/sub­
tract as well as multiply operations are in the range l00-300ns.
Multiplication is no longer the most time-consuming operation.
Remember that in the example of a scalar product computation
with the TMS 32010 in Subseetion 3.2 only two instructions
provide computation of a product (16 x 16 bit) and its accumu­
lation (32 bit). This takes just 4OOns.

In Table 3 a comparison is made between some microproces­
sors and a signal processor (Hanselmann and Loges, 1984;
Hanselmann, 1986). The comparison is based on the implemen~
tation of a 9th order controner with only one input and one
output. This controller arose in an industrial application with
a very fast electromechanical positioning system. Since with
general microprocessors the multiply operation mainly deter~
mines the execution time, an upper bound for the achievable
sampling rate can be given based only on the total number of
multiplications. This upper bound is given in the rightmost
column. The controller had 33 non-zero and non~one
coefficients, i.e. 33 (16 x 16)-bit multiply operations had to be
performed per sampling interval. Since there are also additions
and data transfer operations to be performed the sampling
frequency actually achievable would be somewhat lower. A
comparison of the estimate with actual experimental results was
carried out on a filter (from Phillips and Nagle, 1984~ and on
the controller on which Table 3 is based. The target was a 68000
system running at 10 MHz, programmed in assembly language.
Actual sampling rates turned out to be about 50% of the upper
bound estimate in the filter case, where subroutines and loops
were used, and about 70% in the controller case with fast
subroutine~ and loop-less code.

The same controller was also implemented on a TMS 32010
signal processor and ran at 31 kHz sampling frequency. Thus
the signal processor is an order of magnitude faster. Roughly
the same applies to the other signal processors mentioned, and
this compares quite well with the 17 kHz achieved in what seems
to be a similar situation using an ADIO machine (Howe, 1982).

3.4. Processors with special architecture related to control. The
average control engineer still only has access to off-the-shelf
processors such as general purpose microprocessors or signal
processors. Custom processor design, however, is already begin­
uing to play.a part. In the general digital signal processing field
there is much going on in that direction (Cappello, 1984). Since
there are many relationships between general signal processing
and control these efforts also have an impact on this field.
Proposals for processor architectures directly related to control

were made years ago by Tabak and Lipovsky (1980) and recently
by Jaswa et al. (1985~ Proposals for processors using non­
standard arithmetic such as that given by Lang (1984) or
Tan and McInnis (1982) should also be mentioned here; the
arithmetic issue will however be discussed in Section 4.

3.5. Interfacing to the plant. It is not the intention to go into
the details of analog and digital interfacing techniques here, but
there are some points which seem to be worth making.

A typical analog-to-digital interface consists of an analog
prefilter for each channe~ a multiplexer if an analog-to-digital
converter (ADC) is to be shared among several inputs, a sarnple­
hold circuit, and the, ADC. The purpose of prefilters is to avoid
aliasing due to spectral components of the input. signal above
f.l2, where!. is the sampling frequency. Clearly such filters have
to be chosen carefully in control applications, because generally
the sharper the cutoff in the magnitude frequency response, the
lower the phase introduced into the loop. FQ.r instance even a
simple second order low pass (damping I/J2) designed to give
a mere 20 dB attenuation atfJ2 still introduces about 25 degrees
negative phase at 0.05/" where the crossover frequency mi~t
be. Most often it will be necessary to include prefilter dynamICs
in the control design (Astrom and Wittenmark, 1984).

Measurement noise effects under variation of prefilter band~
width and sampling rate have been studied by Peled and Powell
(1978). The results are also given in Franklin and Powell (1980).
!tis shown that good noise attenuation at quite low sampling
rates can be achieved with prefilter bandwidth only about twice
the control bandwidth, provided that appropriate digital lead
compensation is introduced to counteract the prefilter lag.

The purpose of a sample-hold (SH) circuit in front of an ADC
is to provide a constant input signal to the normal successive
approximation ADC during conversion (Davies, 1985; Jaege~,
1982). SH circuits in front of the multiplexer are necessary If
simultaneous sampling of several channels is desired, sharing
only a single ADC. It is always taken for granted that a
successive approximation ADC must be preceded by a SH.
Otherwise changes of the input signal during conversion may
be reflected in the binary conversion result. This is considered
to be erroneous since the value at the definite sampling time,
i.e. at start-of-conversion time, is expected to be converted. To
prevent such a change of the input signal, its amplitUde and/or
frequency must be very low or a SH must be inserted (Jaeger,
1982; Shoreys, 1982). In the control application it may however
sometimes be reasonable to omit the SH, because in that case
changes in the input signal occurring during conversion influence
the conversion result so that it can be nearer to the input signal
value at the end of the conversion than in the SH case. Thus
reduced effective conversion delay can be expected. Experiments
by the author showed delay reduction of a factor of up to ~.
This factor is even higher if the acquisition time of the SH IS

significant. The effective delay reduction is however dependent
on signal amplitude and spectrum, so some dynamic non~
linearity is introduced.

At the analog outputs of a controller there are commonly
digital-to-analog convertors (DAC). Standard components are
fast enough for conversion time to be neglected. But spectrum
shaping may be of interest to smooth the staircase output
signal or correspondingly .to remove the extra high frequency
components introduced by the zero-order hold device. Analog
reconstruction or low pass filters for that purpose are often used
in general digital signal processing or signal generation. With
control systems such output filters are introduced more reluc­
tantly, because of effects on system dynamics similar to those
of prefilters. Reducing actuator wear as well as preventing
excitation of high frequency structural modes in mechanical
systems might however require output filtering.

The last point to be discussed is the sequencing of inputs
and outputs. In the usual "near-theory" case there will be
simultaneous sampling and simultaneous output, possibly with
delay between the two, but non-simultaneous sampling may
be dictated hy processor hardware, or may be deliberately
introduced to include the latest measurements in the compu­
tation. For example, numerical processing of channell input
may take considerable time before channel 2 is involved. It
might then be reasonable to delay sampling of the latter. The
same applies if ADCs with quite different speeds are used.

Survey Paper

Non·simultaneous output may also occur for similar reasons.
Although such cases do not fit well to common control design
software, they do exist, and should be considered, at least in
simulation.

4. Arithmetics and their implications
Basically, there are several choices of arithmetic which could

be used to implement a controller. The most well known are
floating- and fixed-point binary arithmetic and they are the
ones supported by standard processors. Fixed·point arithmetic
is mainly used because of the high speed which can be achieved
with relatively simple arithmetic units. In speed, space, or cost­
critical applications fixed-point arithmetic will most likely be
chosen. In the following some main issues concerning fixed­
point arithmetic will be reviewed. Floating-point arithmetic
will be discussed only briefly as well as some other possible
candidates. Unfortunately, the chapters on arithmetic found in
most texts on digital filters or digital control are quite rudimen­
tary. There are, however, some texts on computer arithmetic
covering the material needed to understand the principles and
problems of the mechanics of binary (and other types of)
arithmetic, such as Flores (1963), Hwang (1979), Waser and
Flynn (1982). Classical original papers on arithmetic as reprinted
in Swartzlander (1980) are also quite instructive.

4.1. Fixed-point arithmetic

4.1.1. Basics. The usual fixed-point data formats in digital signal
processing make use of two's complement representation. Here,
the decimal value of a number is

(23)

where the bj.j = 0 •... ,1- 2 represent the binary digits, i.e. bits,
b,_ t carries the sign infonnation, I is the total wordlength, and
B determines the location of the binary point. Two special cases
are B = 0, which means r is an integer, and B = 1- 1, which
means r is a fractional number. With floating-point number
representation B could be different for each number whereas
with fixed-point numbers B is fixed throughout.

The reason why the representation (23) is .called two's comp­
lement becomes obvious in the important case of fractions,
where B = I - 1 and thus

/-2

r = -b/- 1 + L bj 21-,I-I).
j:O

(24)

If r < 0 but the binary representation bit pattern of Irl is known,
then the binary representation bit pattern of the positive two's
complement number 2 - Irl yields the bi in (24) exactly, because
2 - Irl - 2 = -Irl = r and subtracting 2 has the same effect as
changing the weight of the b,_ t bit from + 1 to -1, as is done
in (24). No bit is altered from the bit pattern representing 2 -Irl,
only the interpretation as decimal value is affected by changing
the weight of bI - t . A 4-bit fractional two's complement represen­
tation for example is

0.875 0.111

0.125 0.001

o 0.000

-0.125 1.111

-I 1.000

and for instance the bit pattern for -0.125 is that of the binary
representation of2 - 0.125 = 1.875. The example also illustrates
that the number range is unsymmetrical, i.e.

-1.0 ~ r ~ 1.0 - 2-(/-1) (25)

in the fraction case. An implication of this is that the product

-1.0. -1.0 = + 1.0 (all decimal) can never be represented. In
fact, processors usually yield the wrong result -1.0 in this case.
In consideration of the dynamic range of data in connection
with scaling (Section 6) the upper limit is simply approximated
by 1.0 to simplify discussion.

The main advantage of two's complement representation
compared to other candidates lies in the simplicity of hardware
for adding or subtracting (Shaw, 1950). No distinctions need to
be made as to what the signs and magnitudes of operands are
and a single adder unit plus a simple complementer circuit is
sufficient to perform addition and subtraction.

Another advantage is that a sequence of two's complement
additions or subtractions, as encountered in the scalar product
computation, always produces the correct result as long as this
is in the number range. Intermediate overflows of partial sums
thus do not matter and can be ignored. This nice property
however is only useful if the result is indeed known to be in the
number range. Where it is not, it is even impossible to detect
this and to supply a maximum or minimum value. Sometimes
arithmetic units have an extended accumulator to accomorlate
overflowing bits up to the moment where the result is going to
be stored away. Then a check can be made on whether the
result is valid or should be replaced by max or min values.

Although multiplication of two's complement numbers may
seem complicated at first due to the negative weight of h,- l , it
can be carried out quite easily, for instance by performing
appropriate sign extensions on negative number representations,
or using Booth's algorithm or modifications of it (Booth, 1951;
MacSorley, 1961; Rubinfield, 1975; Cappellini). These algorithms
work for any combination of signs of the factors and at the
same time speed is gained as compared to the simple "shift and
add" technique. They are incorporated for instance within the
hardware multipliers of signal processors.

The basic idea behind such algorithms is based on the
observation that a string of ones in a binary number could be
replaced by only two non-zero digits, ifnegative weights (denoted
by bar) are allowed, for example

0111011110 ~ 01111000To ~ lOOOTOOOTO. (26)

Thus if the leftmost binary pattern represents a factor in a
multiplication, the right-hand side of (26) shows that the product
can be computed with one addition.and two subtractions, along
with appropriate shifts. This compares to seven additions with
shifts necessary originally. See for instance Peled and Liu (1976)
for a short but instructive discussion. Translation of a binary
number into this so-called canonical signed digit code (CSD)
can easily be mechanized in an iterative process.

Multiplication based on CSD code has also found a number
of applications in signal processors, which execute the shifts
and adds or subs under program control, saving a hardware
multiplier. A well-known chip of this kind was the now outdated
Intel 2920 signal processor, (Hanselmann, 1982) but it is not the
only one. In the design of chip area-effective custom signal­
processing devices this kind of multiplication aroused (for
instance Schmidt, 1978) and still arouses interest (Gaszi and
Giilliioglu, 1983; Steinlechner et al., 1983; Pope et al., 1984).

The product of two I-bit numbers is a (21-1)-bit number. This
is because there is a sign bit in each factor, but the product
needs only one. It is important to understand that a multiplier
device is not usuaUy concerned with the binary point location.
It can multiply integers as well as fractions because the interpret­
ation of the bit pattern of a number representation only takes
place when the (21-I)-bit product is stored away, see Fig. 6 for
a 16-bit example. Here a 32-bit product register or accumulator
is assumed, and the product bit pattern is right justified. So if
the factor bit patterns were meant to represent integers, the
result (assuming it should be 16 bits long) would be found in
the lower (right) half of the register. If the factors were however
meant to represent fractional numbers the result would be found
in bits 15 through 30. Note that with some processors the output
oftbe multiplier is aligned differently by hardware: to be specific,
a fraction result could be left justified so that the store operation
does not overlap into the lower half of the 21-bit accumulator.
Note also that rounding could be performed before storing the
truncated 16-bit result away by adding, prior to storing, a 1

155

156

Survey Paper

msb

15

II
• c

factor 1

Isb

15

I'
factor 2

7ii3
.~

.~{31 1610 0

~S ~ID~I==~==~i~il==~====1 ~ u

E ~ . result in case
n.o ~rf~~lci?o~~St' of integers

(truncated)

FIG. 6. Fixed·point arithmetic product.

into the most significant of the bits which will be discarded. i,e.
into bit 14 in Fig. 6 in the fractional case.

The reason for preferring fractions in digital signal processing
or control is that products, or accumulated products with scalar
product computation, can easily be cut down to the size of the
factors for storage and further processing by dropping the least
significant I-I bits. Fractional fixed-point arithmetic thus trades
precision for number growth. Integer arithmetic on the other
hand would not allow for this. It is always exact but at the price
of excessive risk of overflow. Overflow of course can also happen
with fractional arithmetic in add or subtract operations, but not
with multiplication. Sometimes implementors of digital filters
or controUers claim to use "integer arithmetic", A closer look
however shows that indeed processor instructions for integer
arithmetic are used, but there is "scaling", "shifting" and the
like. In fact, fraction arithmetic or something close to it is
actually performed.

4.1.2. Overflow. Because of the limited number range with usual
wordlength, say 16 bits, care must be taken that data, for
instance controller states, and coefficients fit well into this range.
Numbers should not exceed the range, but at the same time
should not be so small that the quantization has undesirable
effects. Controller scaling and rea1ization structure selection are
the major means to achieve this, These are considered in Sections
5 and 6.

In the case of scalar product computation, which is the
basic operation with the controller equations, the partial sum
overflows can be ignored with two's complement arithmetic, as
mentioned abOve. provided the final result is guaranteed to be
in range, but there may be quantities to be computed during
evaluation of the controller equations which cannot be guaran­
teed never to overflow, so there may be results not guaranteed
to be in range. This is very likely the case for controUer outputs,
i.e. actuating signals, but may also apply to state variables.

Two's complement arithmetic then suffers from "wrap~
around". For instance adding binary 0.010 (0.25 decimal) and
0.110 (0.75 decimal) yields binary 1.000, which would erroneously
be interpreted as -1 decimal in two's complement fractional
arithmetic, whereas the saturated binary value 0.111 (4-bit
arithmetic assumed) would be preferable. This means that the
desired saturation (Fig. 7) must be provided by code (Loges,
1985).

Signal processors sometimes incorporate optional saturation
hardware intended for such cases, but the problem is that
intermediate results, i.e, partial sums, are better not saturated
because this would destroy an otherwise possibly non~overflow­
ing result. The decision about whether the final result is in
overflow and with which sign can only be made if there are
enough spare bits in tbe accumulator to the left of the leftmost
bit oftbe result to be stored away (Fig. 6). Perhaps the processor's
accumulator provides a few bits for this purpose, but they may
be too few for long scalar products, or the processor provides
none at all, Overflow processing then requires computation of
a downscaled scalar product which does not overflow, and a
rescaling operation preceded by overtlow checking, i.e. first
a':= c'TX is computed .instead of a:= cTx, with C'T = 2-PcT,
P '" 1. Then the content of the accumulator (a') is either left

-I

overflowed
number
value
I

(u)
wrap around of overflowlTlg
lwo's complement numl'cr

Ib)

number
va!tH'
WlthOLlL
ov('rnOW

suturatlon O\('rl1ow

FIG, 7. Arithmetic overflow (with fractional numQers).

shifted p positions under saturation. if the processor provides
for this at enough speed, or the result is read out of the
accumulator displaced by p bits, see Fig. 8 for an example. Both
operations are. equivalent to multiplying a' by 2', correcting for
the downscaling of CT.

4.1.3. Signal quantization. As discussed above. products are of
almost double length and thus must usually be cuI down to the
size ofthe factors. If the processor's accumulator is double length,
which is quite often the case, the products 8re accumulated in
futl length and the truncate or round operation is performed
only with the final result. In any case truncation or rounding
introduces a quantization error into the computations. Note
that additions and subtractions are exact as long as there are
no overflow problems.

Discussion of the influence of the quantization error was
always an issue in the digital filter field, and can be found in
most textbooks (for instance Oppenheim and Schafer, 1975),
but there were also early papers in the control field (Bertram.
1958; Slaughter, 1964; Johnson, 1965, 1966; Knowles and
Edwards, 1965a, 1965b, 1966; Lack, 1966; Curry, 1967), and the
issue is now also to some extent dealt with in digital control
textbooks, particularly in Katz (1981), Franklin and Powell
(1980), and Jacquol (1981). Quantization (of variables or signals;
for coefficients see Section 5) introduces three effects: bias, noise,
and limit cycles. Bias is introduced with truncation, because in
two's complement trunc (x) < x for x positive as well as negative.
It is better to use rounding, which is quite easily achieved, as
mentioned ahove.

4.1.3.1. Noise model. The noise model of quantization is
widely used and replaces the quantizer by a purely Hnear gain
block foHowed by an injection of an additive white noise
sequence, uncorrelated with the input. Two's complement arith­
metic with truncation or rounding is assumed here. otherwise
there could be correlation (Claasen er al., 1975). If the quantiz­
ation step is described by q, which is equal to 2 -B according to
(23), then the noise statistics are taken as follows:

variance
mean

,

(1' =q'/12
1'= -q/2
1'=0

result if nol
down scaled and
ovcrflow-frt"c

31 21 161b

Willi 11111
~

resulllf downscaJcd:
bll Z7 . . 31 musl be
equal. olherwise
salurale

for truncation
for rounding. (27)

FIG. 8. ,Scalar product scaling example (fractional numbers,
p = 3, TMS 32010 processor).

Survey Paper

The expressions for (12 and jJ foHow from the assumption of
uniform quantization error distribution in the q interval. As has
been shown by Widrow (1956, 1961), Katzenelson (1962~ Sripad
and Snyder (1977). and Boite (1983), this assumption is valid
under some conditions, particularly if the amplitudes of the
signal to be quantized are not too low. A Gaussian signal, for
instance, with variance a few times greater than q2/12 already
renders the model very Dear to what has been evaluated
analytically and experimentally.

This classical noise model is, however, based on the assump­
tion of a continuous amplitude input to the quantizef. This is
the situation of AD-converter quantization, but within the
digital computations the quantizer input is not continuous. In
fact, with the rounding of product of a coefficient and a variable
(state variable for instance) which is already quantized, the
model predicts noise variance less accurately (Halyo and McAl­
pine, 1971; Sjoding, 1973; Eckhardt, 1975; Boite, 1983). Then
there are pecularities leading to coefficient-dependent noise
variance, and additionally correlation of error and signal may
become significant even with larger signal amplitudes (Barnes
et al., 1985).

The noise model of quantization can easily be exploited to
compute the total noise contribution to every variable of interest
within a control system using standard covariance computation
techniques for linear systems (Franklin and Powell, 1 t'~O;
Moroney et at, 1983). Transfer function-based variance con~··,u­
tation is also possible, for instance via the simplified methods
given by Patney and Dutta Roy (1980) and Mitra et al. (1974).

4.1.3.2. Limit cycles. Of course, the noise model of quantiz­
ation is only an approximation. If signal variations are small
compared to q, such as near the steady state of a control system,
the non-linear nature of quantization shows up. The result may
be limit cycles. Limit cycles observed in practical control systems
are often due to the quantization of AD- and DA-conversion,
but may as easily be caused by arithmetic. Since there are many
quaotizers at the same time, analysis of limit cycles in a closed
loop control system is difficult. Much has been published on
limit cycles in digital filters operated open loop, but the results
are of little significance io a closed loop control system. This
has been clearly pointed out by Moroney (1983), who gives a
comprehensive discussion of the approaches in the digital filter
field and their relevance to control.

Some discussion of limit cycle existence for SISO systems and
some techniques for bounding their amplitudes (whether they
exist or not) are also given by Ahmed and Belanger (l984b).
The basic idea of such bounding techniques is to exploit the
boundedness of the quantization errors and to check which
signal amplitudes can be generated from those error sources.
Absolute (Long and Trick, 1983) as well as rmg (Sandberg and
Kaiser, 1972) bounds, partly exploiting the periodicity ofa limit
cycle. have been derived for filters, and have been used for
control by Ahmed and Belanger (1984b). They also demonstrate
that for low external input (reference or disturbance) signal
amplitudes limit cycles may be dominant in the output, but for
increasing amplitudes the noise model of quantization comes
into play and limit cycles may be quenched off, resulting in less
output noise than for low input signal amplitudes.

The value of the available techniques for limit cycle bounding
for higher order multi variable control systems seems however
to be limited. Since they have to be carried out numerically for
given parameters, it is probably more attractive to check the
effects directly via simulation in practice, taking into account
realistic input signals. Note that even slight measurement noise
may already quench off limit cyc1es in the critical "steady state"
situation. This is the same effect which sometimes leads to the
deliberate introduction of dither signals in non-linear systems.
On the same lines is the technique of random rounding known
from digital filters (Callahan, 1976; Buttner, 1977).

4.1.3.3. Double precision arithmetic and error feedback. In Fig.
6 it has been assumed that accumulation in scalar products is
carried out with the full length. partial products. Quantization
occurs only when the result is stored away and (assuming
fractionals) the least significant bits are discarded. To compen­
sate somewhat for the discarded residues thus produced they
could be stored too, and inc1uded in some simple way in

the next sample computation. This technique, called "error
feedback", plays some part in the digital filter field (a recent
paper is by Vaidyanathan, 1985), and has also recently been
proposed for Kalman filter implementation by Williamson
(1985). Such techniques are however not far away from perfor­
ming double precision arithmetic (on signals, not coefficients),
as has been pointed out by Mullis and Roberts (1982).

A special technique for performing almost double precision
scalar product computation in an efficient way has been
described by Loges (1985) for a signal processor. Even if both
coefficients and signals are desired to have extended precision
this technique leads only to a four-fold increase in processing
timc. This is quite good because doing anything other than
performing the arithmetic the processor is designed for (16-bit
in this case) is difficult and normally costs a lot cif instructions.

4.2. Floating-point arithmetic. If standard wordlength floati­
ng-point arithmetic can be used, there is usually no reason to
worry about accuracy and dynamic range, provided that the
numerical values of data are in a reasonable range and compu­
tation of small differences of large numbers is taken care of. The
usual single precision format (standard IEEE 754) consists of
the mantissa's sign bit, an 8-bit biased exponent e, and 23
mantissa bits for the fraction f The decimal value is given by

(-I)'· [2'-"'] ·(1 + f). (28)

The dynamic range spans 2- 126 ~ 10- 38 up to 2+ 128 ~ 3.1038,

and the accuracy according to 2- 23 as value of the least
significant bit in f corresponds to about seven decimal places.

If much shorter wordlength floating-point fonnats were used
it might however be necessary to introduce scaling to keep data
in the dynamic range, as discussed in Section 6, and quantization
effects might become significant. Note that a fundamental
difference from fixed-point quantization is that there the error
is an absolute one, i.e. the noise model may assume noise
injection to be independent of the signals, but with floating~
point arithmetic the error is a relative one, dependent on the
signal amplitude.

Studies of quantization errors for floating-point arithmetic
operations and the resulting signal to noise ratio decrease effects
in digital filters go back to the end of the sixties (Sandberg,
1967; Weinstein and Oppenheim, 1969; Liu and Kaneko, 1969;
Kaneko and Liu, 1973; Fettweis, 1974). There are also studies
concerning digital control. Rink and Chong (1979a) derived an
upper bound for the variances of the plant state in a state
feedback plus observer regulator control system in a stochastic
setting. The bound can be quite loose, however. More accurate
analysis is possible by computing covariances directly (Rink
and Chong, I 979b). Van Wingerden and de Koning (1984)
studied the increase of the cost function due to roundoff noise
from mantissa rounding when an LQG state feedback is
implemented using floating-point arithmetic. Some examples
indicate good agreement between roundoff analysis and simul­
ation. Emphasis is placed on derivation of approximate
expressions for means and variances of errors in floating­
point addition and multiplication by improved modelling of
quantization. Phillips (1980) proposed a simulation scheme for
evaluating the variance of the error between a control system
output in the infinite and finite wordlength cases under the
assumption of a deterministic input (reference or disturbance).
This approach is however not far away from dispensing with
analysis and checking for wordlength directly with simulation.
Generally, the value of existing roundoff analysis for practical
purposes seems limited. Results can perhaps more easily and
more significantly be found by simulation, which is also more
easily adaptable to complicated situations, for example if differ­
ent wordlengths are to be used at different points in a controller:

4.3. Non-standard arithmetic. Apart from the common fixed­
and floating-point binary data formats and arithmetic, there are
at least two other candidates, logarithmic and residue arithmetic.

157

158

Survey Paper

Logarithmic number representation might seem to be particu­
larly well suited to control. Let the value to he represented he
v, and fractional numher range he assumed, i.e. Ivl < I, then '"
in

v' = v + Av = sign(v)' D',O < D < I (29)

could be stored as a conventional binary number in the
processor, representing v' which is the quantized version of v,
with .&V as quantization error. Practical values of D would be
close to 1. The interesting property of this representation is that
the quantized values are unevenly spaced. With fixed-point
numbers. spacing is equal and quantization error is absolute.
With logarithmic number representation closest spacing is
achieved in the low magnitude range. If control system trajecto­
ries for large state transitions are not required to be very close
to the intinite precision ones, the higher quantization errors
resulting from large signal magnitudes may be tolerable. If in
steady state operation the signals (controller states, outputs,
partial sums) are of low magnitude, the increased resolution in
that range may be beneficial, leading to lower quantization
noise or less limit cycle amplitude. Interfaces to the plant should
however also be logarithmic. This is non-standard but possible
for AD- as well as DA-conversion, for instance via switched
attenuator networks. The arithmetic computations inside a
logarithmic number processor are obviously simple in the case
of multiplication. Addition and subtraction require logarithm
computation but this .can he replaced by table lookup (Kings­
bury and Rayner, 1971; Swartzlander and Alexopoulos, 1975;
Etzel, 1983; Frey and Taylor, 1985).

The use of logarithmic number representation for digital
filtering has heen proposed by Hall et al. (1970) and Kingsbury
and Rayner (1971), preceded by yet earlier proposals motivated
by construction of calculators, and has been discussed in several
papers since then. The digital control application has already
heen mentioned in Lee and Edgar (1977) and Edgar and Lee
(1979). They proposed a numher system with an integer and a
fractional part. The representation corresponding to (29) has
recently been proposed as a basis for a special-purpose control
processor by Lang (1984).

For control there seem to be two main problems. The first is
that the controUer coefficients are not likely to be of low
magnitude, thus they are quantized relatively coarsely and
possibly this is detrimental to the control system's behaviour.
The second is that with practical control systems pure logarith­
mic signal representation will frequently be simply inadequate.
Imagine, for instance, a position control system involving high
resolution shaft encoders., where the position values are reqUited
to be represented with equal absolute accuracy over the entire
range. The assumption that near steady-state operation leads
to near~zero signals wiU often be unjustified, for instance
when measurement signals are to be processed or preprocessed
separately from reference signals, instead of taking differences
first.

The last number system to be mentioned here is the residue
numher system (Waser and Flynn, 1982). It was proposed long
ago for arithmetic unit construction and digital tiltering. It also
showed up in control-related. publications (Tan and McInnis,
1982; Pei and Ho, 1984). The main advantage is that very fast
computation is possible because operations are on digits instead
of whole numbers. There are no carries, possibly propagating
through all digits, thus slowing down the hardware. A high
degree of parallelism is possible in principle. It may well be that
residue arithmetic will gain ground in special purpose processor
designs.

5. Structures

5.1. Basic issues. Frequently, a state space description of a
controller or controller subsystem is derived in a manner
motivated by design theory. An example is the observer/state
feedback controller (I), (2), where the state has a physical
meaning (assuming that the plant state had one) and correspond.
ing matrices are involved. If it is not necessary to preserve the
state meaning, but achieving the desired closed-loop control is
the only objective, then any system with equivalent i/o behaviour
from input to output will do the job. There may he i/o equivalent

bo

FIG. 9. A direct structure.

systems which are preferable to the original one in the following
respects:

number of storage elements;
number of non-zero non-one coefficients;
computational delay;
multi-input/output capability;

" state space description possible or not;
coefficient range;
coefficient sensitivity;
round/truncate noise.
If transfer functions are the starting point there may be

seemingly natural choices for obtaining programmable differ­
ence equations, such as (13) for (12), but other i/o equivalent
equations may be preferable. Traditionally. specitic organiz­
ations of the difference equation computation are depicted in
block diagrams involving the Z-1 or delay element, as in Fig.
9, so that the structure becomes visible. The term "structure"
(or synonymous "form") is also used generalJy. for instance when
one state-space description (6) is transformed into another by a
similarity transformation

A= rlAT

B= T-1B

C=CT

(30)

yielding new matrices with different zero/non-zero entry pat·
terns. or at least new numerical values.

Determination of "good" structures has always been a main
issue in digital tiltering. It seems to be quite reasonable to adopt
for control purposes structures which proved to be useful in
this field. However, some aspects are usually not addressed in
digital filtering, namely computational delay, MIMO capability,
and the influence of the closed.loop operation. In the following
some basic structures are discussed without taking the closed
control loop into account; work on this is reviewed in the
penultimate subsection. AU discussions are on system (6).

5.1.1. Direct structures. The simplest case to consider is realiz­
ation of a SISO transfer function G(z) from (12). In (13) a
corresponding structure is given in terms of its difference
equation. This structure belongs to the class of so-called direct
forms or structures because the polynomials appear directly as
coefficients in the difference equation or block diagram. As given
in (13), n + m delay or storago elements would he needed, but
this can be remedied. Various direct structures can be derived.
and a few of these at least can be found in any textbook on
digital filtering ,or control, for instance in PhiUips and Nagle
(1984), Oppenheim and Schafer (1975). In Fig. 9 one of the direct
structures is shown, assuming m = n for convenience. This
structure can easily be extended to the MISO case.

It is well known that direct structures suffer from various
drawbacks. First, the coefficients can easily be spread over a
large number range, causing problems with number represen­
tation and arithmetic. This is because, according to Vieta's
theorem, sums, products, and sums of products of polyriomial
roots form the coefficients, and roots can be anywhere from the
origin even to outside the unit circle in the z-plane· with

Survey Paper

controllers. This is sc;>mewhat in contrast to digital filters, where
poles and zeros are usually positioned well off the origin. Second,
the sensitivity of roots or coefficient errors can be up to infinity.
Such errors are introduced by the quantizing of coefficients to
represent them in the processor. If ;.v denotes a root of IUkf

p(z) = z" + P,,-lZ,,-1 + ... + Po (31)

and Pi is perturbed by APi, then Av is shifted by &).v and .1.iv is
given (to first order, denoted by "') by

A}·v == -").~ APi' (32)

2: [i., - i.;J
{~!

which clearly indicates high root sensitivity for clustered roots
(Kaiser, 1966; Oppenheim and Schafer. (975).

The situation becomes particularly bad when unclustered
"slow eigenvalues" in the s-plane generate clusters near 1 in the
z-plane. There is some remedy to this case by means of "delay
replacement" (Agarwal and Burrus, 1975; Nishimura et ai., 1981;
Orlandi and Martinelli, 1984; Goodwin, 1'185; Middleton and
Goodwin, 1985). One version of this is to replace the z- 1 blocks
by so-called Ii -I blocks. A Ii - I block realizes the z-transfer
function TI(z-l) and thus represents a discrete integrator.
Implementing a b-1-block requires the operation

(33)

(. output variable, P input variable of the /i-I-block), instead
of the Z-l shift operation. A z-transfer function then transforms
into a b-transfer function, which can be realized using any
suitable structure known for z-transfer functions, but now
involving b-1-blocks instead of z-I-blocks. The advantage over
the z-!-block based realization is that the corresponding z­
poles can be orders of magnitude less sensitive to errors in b­
polynomial coefficients, just in the case of pole clusters near
z = 1 as introduced with relatively fast sampling.

The first order root sensitivity of (32) is not always of great
importance, but sensitivities of impulse response (Knowles
and Olcayto, (968) and frequency response (Crochiere and
Oppenheim, (975) are high as well with direct structures.
Another related drawback is potentially high gain sensitivity.
Assuming a stable transfer function G(z) with notation of (12)
for simplicity. the final value of the output after a unit step
input is

fbi
yk!k OC=~.

1 + 2: ai,
i=!

(34)

A direct structure, directly involving the quantized versions of
hi and ai' is now likely to introduce inaccurate small differences
of large numbers in (34), because the coefficients are frequently
of large absolute value with alternating signs. Finally, direct
structures suffer from particularly high signaJ quantization noise,
which relates to high coefficient sensitivity (Feitweis, 1972,1973;
Jackson, 1976). The conclusion drawn from aU this is to
recommend direct structures only for low order systems or
subsections of higher order systems, and to use them with care.

5.1.2. Cascade structure. A more reliable SISO structure, which
is well accepted in digital filtering, is the cascade structure,
where G(z) is implemented in factorized form as a series
connection of low order blocks, usually of first or second order
(Oppenheim and Schafer, (975), see Fig. 10 for an example. This
structure offers possibilities of optimal distribution of poles and
zeros among the blocks, and internal block structures can be
chosen optimaJly. However, there are drawbacks for control
application. First, the structure introduces increased comput­
ational delay in the common case of G(z) having direct
feedthrough, i.e. bo I< 0 in (12). This is because output appears
only after computation in every block is finished, unless direct
feedthrough is bypassed directly from input to output, which

FIG. 10. Cascade structure example.

means departing from pure cascade structure. The second
drawback is that this structure is limited to the SISO case, so
that it may be valuable for SISO subsystems in a complex
structured controller, but not for a complete MIMO controller.

5.1.3. Parallel structure. A structure which is widely regarded
to be as.good a candidate as the cascade structure is the parallel
structure (Jackson, J970b). It corresponds to implementing G(z)
in a partial fraction expansion form (Gold and Rader, 1969).
The partial fraction blocks are commonly chosen to be of first
and second order and can be implemented by suitable structures.
Special cases of the paraJlel form have received much attention
in digital filtering as being suboptimal in some respect to certain
optimal structures, as discussed below (Jackson et al., 1979;
Mullis and Roberts, (976). An advantage of parallel structures
is that they can be used in MIMO cases.

5.1,4. Other structures. The above discussion does not cover all
types of structure. There are several additional structures of
practical importance known in digital filtering, such as wave
digital filters or ladder structures. For an overview and bibli­
ography see the recent paper of Fettweis (1984). However. such
structures have not yet appeared in control applications.

5.1.5. Relevance of non-state-space structures. That a structure
can be described by standard state-space models might be taken
for granted by control engineers who are used to thinking in
state-space terms, but there are many structures which cannot
be represented by a single standard state-space model (Willsky,
19.79; Moroney, 1983). This is because a state-space structure
places restrictions on what nodes ~ay be present. Take the
cascade structure of Fig. 10 for example, where signal v occurs
at a node not accounted for in a state-space model. If the
cascade structure is restructured to map into a state-space
structure, such as in Katz (1981), other coefficients are involved
and intermediate signals are no longer represented. This is
only irrelevant under infinite precision arithmetic. A useful
description solving this representation problem is discussed in
the last subsection.

5.2. State-space structures. Given a state-space description (6)
(treatment of types other than (6) is obvious), an infinite number
of structures can be derived via similarity transformation (30).
The control engineer may be tempted to pick well-known
canonical forms first, such as a control canonical form. This and
related forms, however, involve transfer-function polynomial
coefficients more or less directly and thus suffer from the
problems discussed above. The only real advantage of such
structures is their minimum coefficient count. For lower order
systems or subsystems, they may be used in general without
problems, although the author has encountered practical appli­
cations where canonical forms of only third order caused
accuracy problems even with 32-bit floating-point arithmetic.

More promising for higher order controllers are the parallel
structures. A typical one has a block diagonal A

159

160

Survey Paper

with (2,2) silbmatrices Aj accomI11odating complex eigenvalues,
and n, C possibly non~zero everywhere. This or related. structures
play an important role in digital filtering. It is a special case of
that devised by Mullis and Roberts (1976) with special Aj as
suboptimal quantization noise structure. The latter leads to
dense A. requiririg much computational effort, and has thus
been considered unattractive. Several authors took the block·
optimal structure as a starting point and then focussed on the
second order structures, i.e. on the A j and the associated parts
of Band C (Jackson et a1., 1979, Barnes, 1979, 1984; Mills er
a1., 1981; Bomar, (985). The second order substructure also
attracted authors because results on overflow stability and limit
cycles could be derived (Mills er a1., 1978; Jackson, 1979).

Various structures can be chosen for the second order
subsystems which accomodate complex eigenvalues (1 ± jw and
the selection may be guided by the sensitivity, qU811tization
noise, or limit cycling considerations discussed in the literature
quoted above. The coefficient number range and the number of
coefficients contributing to the computation time may also
influence the decision. If, for instance, the number of non~zero
non~unity coefficients is to be minimized, control canonical or
observer canonical forms may be of interest, e.g.

Aj~[~ -U~;W2] (36)

i'j~(O,I)

for a MISO controller. Another choice is

A~[u w]
J -w (J

(37)

with no special pattern in Bj , C!, The resulting matrix A is well
known in control~related algebra as a real valued version of the
diagonal form. Stable controllers always have lui < 1,Iwi < I, thus
Aj is wen suited to fractional arithmetic. Transformation of any
state~space model of the controUer into the real diagonal form
(35), (37) can easily be achieved using standard EISPACK
software, provided the eigenvectors of A are sufficiently linearly
independent in a numerical sense. A successful transformation
using CAD software does not however guarantee that the
resulting state·space model can be implemented with sufficient
accuracy with shorter wordJength arithmetic on the target
processor. Problems with large numbers in Band C can be
expected. They correspond to large residues in a partial fraction
expansion of the transfer functions, where contributions of terms
are likely to almost cancel, thus producing large errors. The
author encountered a case in a practical application where three
real eigenvalues spaced 5% from each other caused such
accuracy problems even with 24~bit mantissa ftoating~point

arithmetic.
The same problems may occur with any attempt to force a

model into any parallel structure in Cases where there are
clustered eigenvalues requiring a series connection represen·
tation instead of a parallel one. The obvious way to treat such
cases is to introduce parallel blocks of higher order with
appropriate internal structure. C1ustered eigenvalues could then
be accommodated within a lordan block or a companion form
block. But this should not simply be done after the observation
of eigenvalue clusters without checking the residues, because
clusters with inherent parallel block structure also occur.
Additionally, it is with clustered eigenvalues that companion
forms suffer from high eigenvalue sensitivity. The problems just
mentioned h~ve astonishing)y not been an issue in digital
filtering. The Jordan form played some part in Barnes and Fam
(1977) but not with respect to the residue problems mentioned.

Particular types of state~space structures which have received
a lot of attention are the minimum roundoff-noise structures
proposed by Mullis and Roberts (1976) and Hwang (1977). They
minimize signal quantization noise arising from the state update
computation in (6) while retaining scaling of the state vector.
Scaling is performed in such a way that the overHow probability
is made equal for every state variable assuming a white noise
input signal. The reasoning behind the optimal minimum
roundoff realization is based on the derivation of a lower bound

on the variance of the output noise generated by roundoff in
the state vector computation. A lower bound exists because the
scaling constraint has to be met. Attaining the lower bound is
possible. and a corresponding transformation matrix T can be
constructed.

The optimal realizations suffer however from the fact that A
generally has no specific structure. All coefficients can be
non-zero and non·unity. This has always been considered
unattractive. But with a digital signal processor as a target the
computation of long scalar products is not so time consuming
in relation to other operations such as overflow management.
If for example an optimal realization enabled single-word
arithmetic to be used, whereas a structure with sparse A
demanded multi-word arithmetic, the former might lead to
the faster solution. Considering optimal structures in control
applications thus seems worthwhile. Moroney (1983) adapted
the theory to closed-loop operation, but focussed on the block·
optimal case. From his numerical example, as well as from open­
loop filter examples by Jackson er .1. (1979), there is some
indication that non~optimal parallel structures with second
order blocks perform quite closely to corresponding block­
optimal ones.

5.3. Closed~/oop considerations. It is quite useful to have a
collection of "known-to·be-good" structures and guidelines from
which to select under given conditions. In most c!lses such a
selection without closed·loop optimization will be sufficient.
Given a 16-bit target processor, for instance. it does not matter
much whether the minimum wordlength necessary to achieve
satisfactory closed-loop operation is 8~ or lO .. bit, because 16·bit
will be the increment. The situation changes, however, at the
boundary, and in cases where wordlength is not fixed. as in
custom VLSI processor design. Methods of structure selection
or optimization considering the closed~loop operation, which
optimize with respect to roundoff noise from signal quantization
as well as with respect to coefficient quantization effects, should
be useful in such cases. These issues have been studied by
Moroney (1983). Moroney et al. (1980, (983), and Sasahara er
al. (1984). All assume a stochastic setting in an LQG context.

As mentioned above, Moroney el al. adapted the theory of
Mullis, Roberts and Hwang to the closed-loop SISO case
and additionally devised an iterative structure optimization
technique for minimizing roundoff noise, which could be aug­
mented to extend optimization to coefficient wordJength effects.
The objective is to minimize the increase of an LQG cost
function. The influence of coefficient wordlength is introduced
via a statistical wordlength technique. The idea of statistical
wordlength estimation'is already found in Knowles and 01cayto
(1968) and was later used by Avenhaus (1972) and Crochiere
(1975), who estimated filter frequency response errors by
assuming coefficient quantization errors to be independent
random variables, leading to a variance estimate on frequency
response. This is not as pessimistic as the equally possible worst·
case bound, which is based on the assumption that individual
coefficient errors are maximum in absolute value with signs
opposed to the corresponding sensitivity of the response to the
coefficient. But Crochiere's examples show that the statistical
estimate is likely to be still somewhat pessimistic.

The statistical wordlength concept has been applied by
Moroney(1983) to estimation of LQG cost function degradation.
Second order sensitivities are involved because first order
sensitivities are zero owing to LQG design. The structure
optimization technique of Moroney allows for constraints in
the structure, so the matrices of the controller description can
be kept sparse, if so wished. Furthermore, the, class of structures
considered is wide, because everything is done for a generalized
state-space structure discussed in the next subsection.

Sasahara et al. (1984) also minimize cost function degradation
(for digital filters see also Kawamata and Higuchi, 1985). They
derive a transformation matrix Tfor a Kalman filter, plus state
feedback controller, which minimizes degradation due to signal
quantization noise. So far this is also an adaptation of the
Mullis, Roberts and Hwang theory to closed-loop control. From
statistical modeHing of coefficient quantization errors they
then conclude that this approximately minimizes coefficient
Quantization degradation too. This conclusion is in line with
results from digital filtering (Fettweis, 1973; Jackson, 1976;

Survey Paper

Jackson et al., 1979; Antoniou et al., 1983) also showing close
relationships between minimal noise and minimal sensitivity.
An example given by Sasahar8 et al. shows large improvements
in cost function degradation using the optimized structure
compared to a direct form. and improvement on an unfortu­
nately not specified canonical form is also considerable. Agree­
ment between analysis and simulation appears to be very good
for roundoff noise. but less so for coefficient quantization.

Since LQG cost function degradation is not always a suitable
objective in practical applications, other means of analysis and
optimization should also be developed. Quite effective tools
could probably be derived from closed-loop eigenvalue sensi­
tivity analysis. Closed loop frequency response sensitivity might
also be interesting, possibly exploiting non-approximate large­
change sensitivity expressions as discussed for digital filters by
Jain et a/. (1985).

5.4. Serialism. As mentioned in Subsection 5.1.4, the cascade
structure of Fig. 10 cannot be described as a standard state­
space model. Obviously, variable v between the first order blocks
cannot be represented because it is neither a state nor an output
and these are the only variables, i.e. network nodes, available
in state-space formulation.

From another viewpoint, the example possesses serialism,
whereas in a state-space structure aU state vector components
could be updated in parallel from the "old" state and the input
vector. In order to describe more general structures (the cascade
is only one example), it is necessary to account for precedence.

Crochiere and Oppenheim (1975) distinguish node precedence
from multiplier precedence. In the structure of Fig. 10 there are
two node precedence levels: first node signal v" must be com­
puted. then y". There are also two multiplier precedence levels:
multiplications involving ao. bo, b l , ai' b2 for instance could be
performed in parallel first, but multiplication with b, has to
await computation of Vi' However, the number of multiplier and
node precedence levels is not always the same. The motivation for
considering multiplier precedence lies in the dominance of
multiply execution time frequently encountered. The number of
multiplier precedence levels of a structure then determines the
minimum sampling period achievable assuming that as many
multiplies as possible are carried out in parallel using multiple
arithmetic units.

This issue may be of importance in special purpose processor
design, but precedence also has important implications in the
usual single processing unit case. One implication is that
minimum achievable computational delay in the case of direct
feed through is dependent on precedence. another is that struc­
tures with precedence might be preferable with respect to finite
wordlength effects. In this case it is necessary to have a
description of the structure representing the original coefficients
and the original node signals. Such a description has been
introduced to the control field by Moroney (1983) and Moroney
et al. (1980,1981,1983). It had previously been used with digital
filters by Chan (1978), and recently by Mullis and Roberts (1984)
in a VLS[filter chip design context, labelled factored state
variable description (FSVD). Using this description. the struc­
ture of Fig. 10 would be represented by

(38)

or

(39)

Serialism is now expressed by the first computed intermediate

(0) time

sampling sampling

I t
I block 1 1-----

I block 2
j

output

(b) time -
sampling sampling sampling

I t I
t I

block 1
I ---

\
block 1

\
I block I

I
block 2

I block 2 I ---
t \ PJpelme start

filled here output

FIG. 11. Pipelining with structure from Fig. 10: (a) unpipelined;
(b) pipelined.

result r".
Each", i matrix necessary in a FSVD corresponds to one node

precedence level. The intermediate signals can be represented
and so can the coefficients. Note that revoking the factorization,
introducing e = 'I'.l '1'1 immediately yields a standard state·
space description (by partitioning e into A, B, C, D appropri­
ately) but neither the intermediate signal nor all original
coefficients are then represented.

Thus FSVD could be useful for modelling general structures
within an implementation oriented CACE environment. Cascade
structure is only one example of such a more general (with
respect to standard state-space) structure, a delay-replacement
state-space structure based on (33) being another one.

In the work of Moroney et al. a slight modification has been
made. Owing to their restriction to LQG compensators without
direct feedthrough (see Subsection 2.2) they introduce the output
(SISO case) as a state and call the result "modified state-space
representation". All their work, which has frequently been
quoted in this paper, is based on this representation.

Another issue linked with precedence is pipelining. In the
example in Fig. 10, imagine that there is double hardware, so
that multiplies and adds for the left-hand block 1 and the right­
hand block 2 can be executed simultaneously, i.e. in parallel.
Then simply letting block 2 hardware wait for completion of
block 1 computation so that one hardware unit is always idle
would of course be unattractive. But if a delay (i.e. storage) is
inserted between the blocks for storing V", the multiplier as welt
as node precedence levels are reduced to one, and both hardware
units could always be busy, running at double sampling fre­
quency, see Fig. 11. This is pipelining. It allows an increased
throughput rate but introduces delay. In a control feedback
loop this delay must then be accounted for in design (Moroney,
1983; Moroney et al., 1981) but despite this delay the control
system performance can possibly be improved compared to the
lower sampling frequency non-pipelined case.

6. Scaling
At least when using fixed-point arithmetic it is usually

necessary to perform scaling on the controller to be implemented.
The primary objective is to fit data which are computed during
the course of a difference equation calculation into the limited
number range, so that overflows are avoided without provok~g
excessive signal quantization effects. A second objective WIth
scaling is to alter coefficients in such a way that they fit into
the coefficient number range. This is not always achieved when

161

162

Survey Paper

scaling is only oriented towards data overflow avoidance and
scale-factors then have to he altered appropriately.

The following discussion is on a controller formulated as a
state-space system, but the concepts apply equally well in other
formulations. such as (13), for example. The scaling task may
he partitioned into three subtasks, which might he called

input and output scaling;
state vector scaling;
scalar product scaling.

They are dicussed below in this order, which also reflects the
chronological sequence within the implementation process. Note
however that scaling cannot always be handled separately after
structure selection. Any kind of. structure optimization or
evaluation with respect to finite precision arithmetic should
have a scaling procedure as an underlying process, because
scaling affects the numerical values of the coefficients.

6.1. Input and output scaling. During controller design the
plant's outputs and control inputs are often conveniently
handled' as physical variables without normalization, i.e. outputs
of a system may be in bar and ms -I. Once the range of values
occurring in closed-loop control system operation are known,
the transducer gains can be determined. The output of a
transducer, say -10V ... + lOV, must be repr~ented in the
processor according to the data fonnat used in the controller
implementation. Using fractional arithmetic, the bit pattern
output of the AD-converter representing -lOV ... + lOV may
be aligned to give -1 ... + 1 in the processor, i.e. the most
significant bit (msb) of the ADC output is also the msb of the
data word. then used for the input to the difference equations.
In the case of digital input, for instance from a position encoder,
the alignment could also be done in this way, and for the outputs
of the controller it is just the same.

Let the physical variable range of a planfs input, which has
been used in designing the controller, be given for example as
Yi in the range -20A ... +20A for an electromechanical
actuator. This variable is represented in the range -1 ... + 1 in
the processor (fractional arithmetic assumed). Possible inter­
mediate variable transformations, for instance into -10V ...
+ lOV via a DAC and then into the y i range via a power
amplifier, do not matter here. The gain between the value in the
processor and the physical value used in the controller derivation
must however be accounted for by scaling the controller
equations before supplying them to the further steps of the
implementation procedure. In the example the ith row of C and
D must he multiplied by 1/20 to obtain the correct numerical
values. As a whole, there must be input and output scaling to
change the B, C, and D matrices of(6) for example, to BS;;',
S,,-IC, and S; 1 DS,,- t respectively. The scaling matrices are
diagonal and their elements are given by

R'"
S .=-

1',1 R:~'

(40)

where RlJI' means the number range span in the processor (same
number range for inputs and outputs assumed), i.e. 2 for
fractional arithmetic, and Rph means the physical variable range
span used in the design of the controller which led to the original
A, B, C, D matrices, i.e. 40 A for Rr. In the case of an
unsymmetrical physical variable range. for example 0 ... 40 A,
appropriate offset must he added, preferably at the transducer
or amplifier side.

In the above discussion it has been assutned that the range
of the physical variables, and accordingly the measurement
ranges of the transducers are known. This is usually the case. If
it is not, the techniques discussed below for determination of

maximum deflections of state variables could also be used.
correspondingly to get that information.

6.2 State vector scaling. For a system. (6), the state variables
are scaled via

x" = diag (t,)x = S; 'x (41)

thus the scaled system is given by

Y.t = CS xXtcah,d.k + Dul; (43)

leading to new matrices AI, Bs, and C •. The scale factors sz,i can
always be chosen so that Xscated stays within the number range
given by the data format used. But in order to minimize data
quantization effects Xsca1ed should not be permanently far off the
limits during operation of the closed-loop control system, i.e.
scaling should be such that the maximum absolute value of a
variable is just below the upper number range limit under worst­
case conditions.

What remains to be discussed. is determination of the scale
factors. Basically, there are two approaches to determining the
sz,i analysis and simulation. The conceptually simplest is to
simulate the closed-loop control system under various con­
ditions, preferably under conditions which are anticipated to be
worst-case with respect to the values of x. The largest absolute
values of the components of x can be coUected and scale factors
can easily be derived from the largest absolute values overall
per state variable. All this can be automated by appropriate
software. Although the effort in performing a number of simula­
tions might be considerable, the data collection mentioned can
often be a by~product of simulations carried out anyway in the
case of control design evaluation.

In the digital filtering field, state vector scaling has been dealt
with analytically since the early seventies and is represented in
most textbooks in this field. Some prominent papers have been
published by Jackson (1970a, 1970b1 Hwang (1975a,b), Mullis
and Roherts (1976). Concepts developed there have been used
in control engineering by Moroney (1983), who gives an extensive
discussion and bibliography, by Moroney et al. (1980, 1983),
Sasahara et al. (1984), Scharf and Sigurdsson (1984), and Ahmed
and Belanger (1984a). In the digital filtering field, the digital
systems usually operate in open loop and are of the SISO type.
Analytic scaling is based there on certain assumptions about
the input signal to he expected. In the MISO or MIMO
controller case, such assumptions cannot be made as easily
because the plant measurement outputs, which are inputs to the
controller, are interdependent according to the plant dynamics
and structure. Furthermore, the closed-loop nature of controller
operation should be taken into account.

If scaling is allowed to be a bit pessimistic, experience shows
that quite often useful scale factors could have been found by
driving the digital open-loop controller alone with worst-case
input signals. For a SISO servo-control system, for example,
full-scale step reference inputs may be supposed to be worst~
case. Indeed, the largest deflections of the controller's state
variables frequently occur right after the step, and where the
plant reacts slowly, the feedback case is not much different from
the open-loop case in terms of maximum deflection of the
controller state. So, simple calculation of controller state after
a step input in open loop yields reasonable scale factors in such
a case, called unit-step scaling with respect to Iilters in Phillips

Survey Paper

and Nagle (1984) and also used by Mitchell and Demayer (1985).
Note however that such an approach only works with stable
controllers. An integral part in the controller would only be
allowed if it affected only onc state variable, i.e. if it were
decoupled in the controller. It could then be scaled separately.
based on what is expected to be specified as its maximum
contribution to the actuating variables.

Generally. scaling of controllers would be most safe and least
pessimistic when based on closed~loop, considerations. As in the
open-loop case of digital filters, there must be some assumptions
about input signals, but now these are not necessarily input
~ignals to the controIler. They may be inputs to the plant.
for example disturbances. The dosed-loop system must be
sufficiently linear, because the analytic scaling approaches rely
on linear models.

After a linear discrete model of the closed~loop system has
been set up assumptions about input signals are in order. In
stochastic settings it is reasonable to assume worst-case stochas­
tic input signals and then to compute the variances O'~.i of the
controller state variables by standard techniques. In the case of
zero~mean Gaussian signals, for instance, the probability that
the amplitude exceeds 3.3 u is only 0.001, thus a scale factor S",I

in the range 30'.11:,1 ... 100' ",i should be reasonable for fractional
arithmetic overflow limits -1 ... + 1. The actual value selected
depends on the supposed quality of the Gaussian model of the
real signal.

\ The variance-oriented scaling approach has been used in
connection with control by Moroney et al. (1980), Moroney
(1983), Scharf and Sigurdsson (1984), Sasahara et al. (1984), and
Ahmed and Belanger (1984a). If there are constant (not step)
disturbances or reference inputs in addition to the stochastic
signals, the mean values XI of the controller state variables must
also be computed for worst-case situations and scare factors
must be selected so that IXil + C(1 x,i ~ 1. C = 3 ... 10, in the case
of fractional arithmetic. Moroney (1983) and Moroney et al.
(1983) propose some remedy for the non~zero setpoint situation
in order to obtain zero-mean controller state variables, but it
seems to be rather limited from a practical viewpoint.

Deterministic input signals are probably most often accounted
for in practice by simulating the closed-loop system for the
operating conditions expected in reality, as mentioned above.
Possibly a linear simulation is sufficient for collecting scale
factors. In digital filtering other means have been developed to
determine scale factors based on deterministic assumptions on
input signals. They can be adopted for closed-loop control as
discussed by Moroney (1983). The aim is to calculate upper
bounds for the controller state variables XI under some boundM

edncss assumptions on the input signals. The basic idea of
bound-based scaling is illustrated by the following.

Given an input signal to the closed-loop system represented.
by its samples vA:' a controller's state variable is given by

,
x i .1- = L hi.k_jVj ,

j=O

(44)

where {hk } is the impulse reponse sequence of this transfer path.
The sum in (44) can now be bounded via the Holder inequality
(Epstein, 1970; Hwang, 1975a, 1975b), thus

(45)

where! + ! = 1. Since the factors (.. .)1/" and (.. .)1/1 are I" and
p q

Iq norms of vectors, scaling based on such bounds is called I"
scaling (Hwang, 1975a, 1975b). The name of tbe norm used for
the impulse response sequence is used by convention.

With digital filtering, 12 scaling plays an important role in
connection with optimal realization structures (see Section 5).

In this case the Euclidean norm of the impulse response sequence
as well as the input sequence is used, which in fact means that
an assumption on an energy bound on {v,,} must be made from
a deterministic viewpoint. This type of scaling corresponds to
the stochastic overflow-probability scaling discussed above in a
stochastic setting, with {v,,} a white noise sequence, in which
case the variance of XI is given by

(46)

If the only assumption on {v.J were that any sample is
bounded by v,l :s; M, then q = ao and p = 1 should be taken.
Note that this is the limiting case but (45) is still valid (Epstein,
1970). Equation (45) then yields

Ix,.,1 " M t Ihi.J (47)
i="O

It is obvious that this yields an absolutely worst-case, pessimistic
bound. Equality in (47) holds if Vj in (44) is always at its limits
+ Mar - M with the sign corresponding to that of h,,k- j' Note
that the impulse response sequence must form an absolutely
convergent series for (41) to be useful. but this is guaranteed for
a stable linear closed-loop system (Str~c, 1981). The opposite
case to that last discussed is q = I, p = 00, which leads to an
assumption on :t Iv}l. Only signals whose number sequence is
absolutely summable are allowed here.

The norm~based bounding techniques outlined above work
in the time domain. Similar techniques are available in the
frequency domain based on function space norms, in which case
frequency response and input signal spectrum assumptions are
involved (Hwang, 1975a, 1975b; Moroney, 1983; Ahmed and
Belanger, 1984a).

A strong point of bound-based scaling techniques is that
absolutely worst-case (although perhaps conservative) scaling is
possible, whereas with simulation the safety of scaling depends
on how well the worst-case situations have been anticipated. It
was interesting to the author of this survey to check the degree
of conservatism in the simple control system example given by
Ahmed and Belanger (1984a). They Used I, norm-based scaling
assuming the reference signal to be absolutely bounded by M.
It turned out that the 11 worst-case scaling was not very
conservative at all. Compared with a reference step input of
value M over·scaling was only about 50%. Since the given c;lata
wordlength of a processor may be sufficient to allow for worst­
case scaling, it is attractive to let an automatic scaling algorithm
perform this. The control engineer then needs only to supply
hounds on input signals. Experience with such 'I scaling applied
to the controller alone (open loop) indicates that even this
simple automatic scaling method yields good results for stable
controllers or controller subsystems.

Note that in the discussion given above as well as in the
literature only single input signals have been considered, whereas
several signals might act on plant and controller simultaneously
in reality. With '1 scaling this is accomodated for by computing

(48)

where M ~ are the bounds on the individual input signals, and
{hi,i,v} is the impulse response sequence for an impulse at the
vth input.

6.3. Scalar product scaling. From the discussion in Section 4,
it is not sufficient to scale only the state vector in the case of
other than two's complement arithmetic. Partial sum overflow
during scalar product evaluation also has to be avoided. With
two's complement arithmetic the same is necessary if it cannot
be ensured that X.caled is overflow free, and the saturation value
should be taken if overflow occurs. The scalar product scaling
as discussed in Section 4 can be used for !his purpose, leading

163

164

Survey Paper

to computation of an intermediate downsca1ed state

which must be rescaled

(49)

(SO)

(51)

to yield the new scaled state. This rescaling operation has to be
performed by the target processor, whereas downscaling in (49)
only modifies the coefficients of the matrices supplied before
target processor programming.

A similar situation arises with the output computation'(43).
With practical control systems it is very likely that outputs of
the controller will saturate in certain states of operation. This
is a very common case, for instance, with drives and positioning
mechanisms. In order to be able to determine correct output
saturation it is necessary to perform scalar product scaling here,
i.e. first to compute a downscaled overftow~free version of the
output vector and then to rescale it using a saturation overflow
mechanism.

This downscaling procedure also conveniently scales down
the coefficients (matrix elements) 'of the output equation, which
are very often quite large. Values in the hundreds are not
uncommon here when fractional arithmetic is used, in which
case coefficients should not exceed the range - I ... + I (at least
not much; small integer parts may still be realized using multiple
adds and subs). The reason for large coefficients here is that in
contrast to digital filters, controller transfer functions frequently
have gains far above unity. Since the state vector will be scaled
so that it fits into the number range, high gains consequently
show up in the output equation in the Cs matrix. The direct
"feed through matrix might also have large coefficients. particu­
larJy with controllers of PO type where a step input immediately
produces a large output. Th~ scalar product scaling technique
has been implemented to be carried out automatically in an
automatic code generator for a certain signal processor by Loges
(1984), Hanselmann and Loges (1984), Loges (1985).

7. Programming
In any case where computation speed is not crucial and a

common and welI~supported general microprocessor is used as
target" programming of controllers as introduced in Section 2
should not cause problems. Common general high-level langu­
ages (HLL) can then be used, along with convenient floating­
point arithmetic. It is, however, necessary to account for real­
time operation.

7.1. Multi~tasking and languages. Where the controller is the
only task for a dedicated processor, timing is sometimes achieved
through simply polling a status signal ("ADC ready" for example)
of a peripheral which is under timer control, leaving the
processor idle while waiting. If there is something more useful
for it to do instead of waiting, a foreground/background solution
would be better. In that case, the background job is interrupted
by a real-time clock whenever the controlJer has to be served.
This type of real~time operation is quite primitive, but may be
appropriate for simple systems and is widely used (for an
example see Clarke, 1982). It works with HLLs even if they were
not original1y designed for real~time operation, provided the
machine code generated by the compiler is re-entrant. This
means that routines which are used in both foreground and
background (such as library routines) can be interrupted. re­
used, and resumed without errors due to altered local variables.

In a multi-rate system for example, composed of several
subsystems, the situation is a bit more complicated. since
modules executed at a slower rate have to be interrupted to
Jet high-rate modules be serviced. Foregroundfbackground
operation then becomes clumsy. If additionally asynchronous
events occur, or if synchronization problems have to be solved,
a multi~tasking executive becomes more and more necessary.

There are ways of staying with HLLs, though, because some
languages have at least basic real-time operations support built
into them, such as Modula 2, some versions of Pascal, and
Forth environments, or real-time facilities are achievabJe

S()tup duta

numerical data
(matrices)

optllnul assembly code

coded functions
FromllbrtU',y

FIG. 12. Automatic code generation.

through widely available real-time operating system kernels.
available to intetface with C or Pascal programs for example
(Evanczuk, 1983; Ready, 1984; Heider, 1982). Although real­
time executives (operating system kernels) are quite an effective
means of achieving multi-tasking. they usually require consider~
able proCessor execution time for task management. Switching
from one task to another may easily take around lOOJ-ls and
more. even with a modern 16-bit processor. So, if appropriate,
more primitive means might be the choice.

A problem with HLLs is that they most often only support
integer and Hoating-point arithmetic. If the latter is too slow,
fractional arithmetic would be an alternative, but one might be
forced to program the equation evaluation parts in assembly
language. Emulation of fractional arithmetic through integer
computations is possible but with a loss of speed. It is interesting
to note that there are Forth language environments which
include not only multi-tasking (Pountain, 1985) but also frac­
tional arithmetic. This backs the claim of Forth advocates that
this environment is well suited to real-time control. at least for
small systems.

The lowest level of programming is of course the use of
assembly language. [n most cases it is chosen for reasons of
speed. With a modern microprocessor the assembly code for
implementing a controller can be quite concise owing to powerful
instruction sets. For examples of coded digital filters see Phillips
and Nagle (1984), where subroutines and loops have been used.
Maximum speed is obtained if straight code without loops and
subroutines is used because then there is no associated overhead.
Straight code. however, contradicts'what is good programming
sty'e. A satisfying solution' to this could come from automatic
program generators. Such a generator would generate tailored
code once the type, dimensions and numerical values of a
controller from Section 2 were known (Fig. 12). and should be
fairly easy to write for a general microprocessor.

7.2. Code generation. The generator concept has repeatedly
been applied to signal processor programming for digital filtering
and related tasks (Schafer el al., 1984; Mintzer et al., 1983;
Skyttii et al., 1983; Herrmann and Smit, 1983), and also for
controller implementation (Hanselmann, 1982; Hanselmann and
Loges, 1983, 1984; Loges, 1984, 1985). An interesting project
aimed at automatic program generation for a microcontroller
(the 8096 from Section 3) has been described by Srodawa el al.
(1985). Since the starting point is a language description of the
computations to be performed, this tool is more a compiler than
a code' generator. Compilers translating high level descriptions
into signal processor code are also emerging commercially, both
for special signal processing languages and for suitably modified
general HLLs, such as Pascal or C (Marrin, 1985).

An early control-related generator for the Intel 2920 signal
processor developed by Hanselmann (1982) was aimed at MIMO
controllers in the form of (6). Good experiences with this tool
later led to application of the code generator concept to the
TMS32010. A brief description of this generator fonows as an
example of what can be expected from implementation tools at
the programming end today. Details on internals can be found
in Loges (1985). and details on how to use it in Hanselmann
and Schwarte (1985).

The generator is aimed at implementation of MIMO control­
lers and accepts the four matrices of (6) as its input. Output is a
mnemonic assembly language program, which. can be assembled
and downloaded to the target. Because everything is automatic,
less attention needs to be paid to the readability and length of

Survey Paper

the program (as long as there is sufficient program RAM, which
is usually the case). and straight code without unnecessary loops
and without subroutines is generated to increase speed. The
generator also copes with data RAM limitations. If it detects
lack of RAM it automatically trades program space against
data space by utilizing an immediate multiply instruction of the
target processor so that coefficient space is saved in the data
RAM. This instruction only accommodates t 3-bit numbers, but
even in cases where there are too many more-than-13-bit
coefficients the generator finds a way out (Loges, 1983, 1985).

Another important option is extended precision arithmetic.
The generator provides this on two levels: extended coefficient
precision, and extended coefficient and signal variable precision.
With the special extended precision computation technique
realized by the generator the controller of Section 3.3 and Table
3 for example would run at 7 kHz with full precision (coefficients
and signal variables) instead of 31 kHz with single precision.
The generator also automatically provides overflow manage­
ment code along with rescaling of scalar products (see Section
4). Finally, the generator has a facility to include function code
automatically. This is particularly useful for extending linear
controllers (for which the generator does coding) by non-linear
functions

destination: = f(destination, states, inputs, aux. variables),

where destintion can be a predefined variable such as a state or
output or a user-defined variable used in another function call.
A major type of function code performs table lookup with or
without interpolation, leading to very fast non-linear function
computation. At present, the generator concept is even being
applied to tailoring such function code. For instance there is a
program which generates square-root function code according
to the user's specifications, such as argument range, table length
allowed, or precision desired.

Automatic code generation seems to be a viable means of
achieving application-specific code with about the same
efficiency as an expert programmer coding by hand would
attain. This is particularly valuable for target processors with
non-standard architectures and instruction sets, such as special
signal or custom design processors. .

Code generation as just discussed is aimed at production of
optimal assembly code, but generation ofHLL code shOUld also
be mentioned. It helps in translating application oriented
descriptions of a controller, for example in the form of a block
diagram with transfer functions, into general programming
languages. A recent example is the RT BUILD facility of the
MATRIX. CACE-Package (Shah et al., 1985~ which generates
ADA language source code for controller implementation.

8. Simulation of digital control systems
In any realistic control design and implementation project,

digital simulation is an invaluable tool. This applies even more
to digital control. As mentioned earlier, simulation is useful in
the determination of scale factors. It can also reveal effects
due to quantization, overflows, spectrum aliasing, and non­
simultaneous sampling and output. Such effects are only partIy
emanable to limited analysis. Very few publications addressing
the problems of digital simulation of digital control systems
have appeared up to now, although there are indeed several
problems, as discussed briefty below. They fall mainly into two
groups: efficient simulation/integration methods, and modelling.

If the plant is linear (rare case), a simulation based on
transition matrix techniques could be augmented by the model­
ling of delays (computational, sampling, and output) and quanti­
zers, including overflow simulation if necessary. The usual case,
however, will be with additional non-linearities in the continuous
part of the control system, so that general integration methods
for differential equations must be used. This results in certain
peculiarities:

(a) Integration is on the continuous system state only, but the
state derivatives depend on the discrete system's outputs,
which are held constant between update time instants.

(b) For the sake of accuracy, the integration step boundaries
should be made coincident with the controller's sampling
and output time instants. This may dictate a small step size

with variable step-size integration.

(c) The discrete system introduces discontinuities due to stair­
case functions. Discontinuities force multi-step integration
into restart and since this occurs many times, such integration
methods may become inefficient. Fortunately, the time
instants at which discontinuities occur are known (as long
as there are no sources other than the staircase function
output), so if (b) is satisfied there is no need to perfonn the
discontinuity-finding operations (Hay, 1984, 1985) familiar
from problems where discontinuity occurrence is state depen­
dent.

(d) Integration of slow subsystems with larger step size (sop
called multi-rate simulation (Gear, 1984) may seem to
provide a solution to the small step size problem. It requires
interpolation in order to provide the samples for the control­
ler, and decimation at fast-to-slow system interfaces which
should prevent aliasing effects. Fidelity for instance with
respect to limit cycles due to quantization must be ques­
tioned. In fact this field seems to be largely unexplored.

The points given are partly addressed by some known
simulation packages (for a survey of simulation software see
Cellier, 1983), such as MATRIX. (Shah et al., 1985); SIMNON
(Astrom and Wittenmark, 1984). There are also commercial
packages to be mentioned such as ACSL by Mitchell and
Gauthier Inc. and CSSL-IV by Simulation Services. For (a) for
instance, there is a so-called DISCRETE section in ACSL which
combines with the DERIVATIVE section for the continuous
system, and (b) is satisfied because sampling and output instants
are placed in an event list supervized by the integration control
mechanism, which steers integration step boundaries to coincide
with any event. Point (b) can also be satisfied by choosing
appropriate integration routines.

The points discussed so far have to do with the event nature
of sampling and output and apply to discrete control. They are
also partly considered by Stirling (\983) and Zimmennan (1983).
Digital control additionally requires simulating AD- and DA­
converters. quantizers in general, and possibly overflow behav­
iour, along with an interactive overflow detection mechanism.
Quantizers and limiters are usually available in the package
libraries, but not high-level constructs, although it seems possible
to build them up from primitives.

A special purpose package where the user no longer deals
with quantizers and limiters, but "talks" to the progr.am in
higher-1evt?1 terms such as ADC-wordlength, two's complement
arithmetics, 32-bit accumulation, and the like (Hanselmann et
al., 1983) proved to be very useful. Simulation on the basis of
sufficiently detailed and realistic models abstracted from the
actual processor and its software should always be available. In
contrast to the processor simulators sometimes supplied by
processor vendors, mapping all registers, flags etc., and instruc­
tions of a specific device, the use of abstract models yields
processor independency. It also allows experiments (with arith­
metic for example) which help determine what processor should
be used, regardless of availability of the processor or its
simulator. This will become particularly important for custom
control processor design.

9. Conclusions
Controller implementation is a topic involving many disci­

plines at the same time, from processor technology and elec~
tronies through system theory aspects up to software engineer­
ing. Even in the rather restricted case of mostly linear control
there may be many problems when the idealizations of cohlmon
theory of algorithms and design methods no longer hold.

Some of the issues arising were already considered in the
old direct digital control days in the sixties. Stimulated by
microprocessor technology, these issues are once more arousing
interest. Some of the problems encountered still require further
work, and more experience should be gained to know which of
the methods prove to be practical.

Much could be gained by integration of all implementation
related tools into CACE software (and also hardware to some
extent) environments. All the steps necessary in the implemen­
tation process should be integrated into the CACE environment
and should be supported as much as possible by software tools
(Hanselmann and Loges, 1984; Hanselmann, 1986). Possibilities

165

166

Survey Paper

range from the minimum of having consistent controller data
structures throughout the process up to the coding stage, to the
maximum. of fully automatic structure selection, scaling, and
final code generation for the target processor, accommodating
complex controllers, composed of several subsystems, possibly
of the multi·rate type.

The advantages of extending CACE to control implemen­
tation are now well recognized by control engineers. This is
reflected in .recent discussions of CACSD/CACE scopes given
by Spang (1985), Sutherland and Sonin (1985) and Powers
(1985). pesigning such software is certainly not a trivial task
because of the many disciplines involved, the fast pace of
processor technology, and increasing control system complexity.

Acknowledgements-This work is much related to the work of
the control systems group at the author's institution, which is
headed by Prof. J. Locket. The author is indebted to his
colleagues for fruitful discussions, particularly to W. Loges and
A. Schwarte for help with hardware and software. Thanks also
to Prof. K.-J. Astrom for support and advice in preparation of
the paper, and to the anonymous reviewers for their constructive
remarks.

References
Agarwal, R. C. and C. S. Burrus (1975). New recursive digital

filter structures having very low sensitivity and roundoff noise.
IEEE Trans. Cets. Syst., CAS-n, 921.

Ahmed, M. E. and P. R. Belanger (1984a). Scaling and roundoff
in fixed-point implementation of control algorithms. IEEE
Trans. Ind. Electron., IE·31, 228.

Ahmed, M. E. and P. R. Belanger (1984b). Limit cycles in fixed·
point implementation of control algorithms. IEEE Trans. Ind.
Electron., IE-31, 235.

Ahmed, N. and T. Natarjan (1983). Discrete·time Signals and
Systems. Reston, Virginia.

Antoniou, A., C. Charalambous and Z. Motamedi (1983). Two
methods for the reduction of quantization effects in recursive
digital filters. IEEE Trans. Ccts. Syst., CAS-30, 160.

Astrom, K. J. (1983). Theory and applications of adaptive
control-a survey. Automatica, 19, 47l.

Astrom, K. J., P. Hagander and J. Sternby (1984). Zeros of
sampled systems. Automatica, 20, 31.

Astrom, K. J. and B. Wittenmark (1984). Computer Controlled
Systems. Prentice-Hall, Englewood Cliffs, New Jersey.

Avenhaus, E. (1972). On the design of digital filters with
coefficients of limited word length. IEEE Trans. Audio Elec­
troacoust., AU-ZO, 206.

Barnes, C., B. N. Tran and S. H. Leung (1985). On the statistics
of fixed-point roundoff error. IEEE Trans. Acoust. Speech Sig.
Process., ASSP·33, 595.

Barnes, C. W. (1979). Roundoff noise and overflow in normal
digital filters. IEEE Trans. Ccts Syst., CAS-26, 154.

Barnes, C. W. (1984). On the design of optimal state·space
realizations of second-order digital filters. IEEE Fans. Cets
Syst., CAS-31, 602.

Barnes, C. W. and A. T. Fam (1977). Minimum nonn recursive
digital filters that are free of overflow limit cycles. IEEE Trans.
Ccts Syst., CAS·Z4, 569.

Beliczynski, B. and W. Kozinski (1984). A reduced·delay sam·
pled·data hold. IEEE Trans. Aut. Control, AC-29, 179.

Bertram, J. E. (1958). The effect of quantization in sampled.
feedback systems. Trans. Am. Inst. Elec. Eng., 77·2, 177.

Blasco, R. W. (1983). Floating-point digital signal processing
using a fixed-point processor, presented at Southcon; also in
Signal Processing Products and 1echnology, Texas Instruments.

Boite, R. (1983). On the quantization of low-level signals: the
fixed-point casc. Proc. Eur. Conf. eet Theory and Design,
Stuttgart.

Bomar, B. W. (1985). New second-order state-space structures
for realizing low roundoff noise digital filters. IEEE Trans.
Acoust. Speech Sig. Process., ASSP·33, 106.

Bondarko, V. A. (1984). Discretization of continuous linear
dynamic systems. Analysis of the methods·. Syst. Control Lett.,
5,97.

Bnoth, A. D. (1951). A signed binary multiplication technique.
Q. J. M echo Appl. Math, 4, 236. Also in Swartz1ander, E. E.

(Ed.) (19801 Computer Arithmetic. Dowden, Hutchinson &
Ross, Stroudsbnrg, Pennsylvania.

Bose, N. K. (1983). Properties of the Qn·matrix in Bilinear
transformation. Proc. IEEE, 71,1110.

Breitzman, R. C. (1985). Development of a custom micropro­
cessor for automotive control. IEEE Control Syst. Mag., 23
May.

Broussard, J. R., D. R. Downing and W. H. Bryant (1985).
Design and flight testing of a digital optimal control general
aviation autopilot. Automatica, 21, 23.

Btittner, M. (1977). Elimination of limit cycles in digital filters
with very low increase in the quantization noise. IEEE 1rans.
Ccts Syst .. CAS·24, 300.

Callahan, A. C. (1976). Random rounding: some principles
and applications. Proc. IEEE Int. Can! Acoust. Speech Sig.
Process., Philadelphia.

Cappellini, V., A. G. Constantinides and P. Emiliani (1978).
Digital Filters and their Applications. Academic Press, London.

Cappello, P. R. (Ed.) (1984»VLSI Signal Processing. IEEE Press,
New York.

Cellier, F. E. (1983). Simulation software: today and tomorrow.
In Burger, 1. and Y. Jarny (Eds), Simulation in Engineering
Sciences. Elsevier Science, Amsterdam.

Chan, D. S. K. (1978). Theory and implementation of multidimen­
sional discrete systemsfor signal processing. Ph.D. Dissertation,
Mass. Inst. Technology.

Chong, Y. M. (1984). Data flow chip optimizes image processing.
Computer Design, 15 Oct., 97.

Claasen, T. A. C. M., W. F. G. Mecklenbrauker and J. B. H.
Peek (1975). Quantization noise analysis for fixed point digital
filters using magnitude truncation for quantization. IEEE
Trans. Ccts Syst., CAS-22, 887.

Clarke, D. W. (1982). A simple control language for microproces­
sors and its applications. Proc. IFAC Congr. Theory Applic.
Dig. Control, New Delhi.

Cole, B. C. (1985). Signal processing: a big switch to digital.
Electronics, 26 Aug., 42.

Crochiere, R. E. (1975). A new statistical approach to the
coefficient wordlength problem for digital filters. IEEE Trans.
Ccts Syst., CAS·n, 190.

Crochiere, R. E. and A. V. Oppenheim (1975). Analysis of digital
networks. Proc. IEEE,63, 581.

Crowell, C. D. (1985). Floating'point arithmetic with the TMS
32020. Texas Instruments Application Report.

Curry. E. E. (1961). The analysis of round-off and truncation
errors in a hybrid control system. IEEE Trans. Aut. Control,
AC·I2, 601.

Cushman, R. H. (1982). ICs and semiconductors. EDN, 16 July,
44.

Davies, E. (1985). Sample and hold-the key to fast A to D
conversion. Electronic Engng, Mar., 67.

Doyle, 1. C. and G. Stein (1981). Multivariable feedback design:
concepts for classical/modem synthesis. IEEE Trans. Aut.
Control, AC·26, 4.

Eckhardt, B. (1975). On the roundoff error of a multiplier. Arch.
Elektrische Uebertragungstechnik,29, 162.

Edgar, A. D. and S. C. Lee (1979). FOCUS microcomputer
number system. Comm. ACM, 22, 166.

Eldon, J. and G. E. Winter (1983). Floating·point chips carve
out FFT systems. Electron. Des., Aug., 4.

Epstein, B. (1970). Linear Functional AnalYSis. Saunders, ·Phila·
delphia.

Essig, D., C. Erskine, E. Caudel and S. Magar (1986). A second·
generation digital signal processor. IEEE Trans. Ccts Syst.,
CAS-33, 196.

Etzel, M. H. (1983). Logarithmic addition for digital signal'
processing applications. Proc. IEEE Int. Symp. Ccts Syst.,
New York.

Evanczuk, S. (1983). Real·time OS. Electronics, 24 Mar., 105.
Fadden, E. J. (1984). The System 10 Plus: a major advance in

scientific computing. Proc. Con/. Peripheral Array Processors,
Boston.

Fettweis, A. (1972). On the connection between multiplier word
length limitation and roundoff noise in digital filters. IEEE
Trans. Cct Theory, CT·19, 486.

Fettweis, A. (1973). Roundoff noise and attenuation sensitivity
in digital filters with fixed.point arithmetic. IEEE Tra~s. Cet

Survey Paper

Theory, CT-20, 174.
Fettweis, A. (1974). On properties of floating-point roundoff

noise. IEEE Trans. Acoust. Speech Sig. Process., ASSP-22,
149.

Fettweis, A. (1984). Digital circuits and systems. IEEE Trans.
Ccts Syst., CAS-31, 31.

Flaherty, T. J. (1985). Building blocks stack up to higb perform­
ance. Comput. Des., Feb, 161.

Flores, I. (1963). The Logic of Computer Arithmetic. Prentice­
Hall, Englewood Cliffs, New Jersey.

Forsythe, W. (1983). Algorithms for digital control. Trans. Inst.
Meas. Control,S, 123.

Forsythe, W. (1985). A new method for the computation of
digital filter coefficients. Simulation, 44, 23; 44, 75.

Franklin, G. F. and J. D. Powell (1980). Digital Control of
Dynamic Systems. Addison-Wesley, Reading. Massachusetts.

Frey, M. L. and F. J. Taylor (1985). A table reduction technique
for logarithmically architected digital filters. IEEE Trans.
Acoust. Speech Sig. Process., ASSP·33, 718.

Fromme, G. and M. Haverland (1983). Selbsteinstellende Digi­
talreg]er im Zeitbereich. Regelungstechnik, 31, 338.

Gambe, H., T. Ikezawa, N. Kobayashi, S. Sumi, T. Tsuda and
S. Fujii (1983). A general purpose digital signal processor.
Proc. Eur. Conj Cct Theory Des .• Stuttgart. VDE-Verlag,
F.R.G.

Gazsi, L. and GiiUiioglu (1983). Discrete optimization in CSD
code. Proc. IEEE M ELECON, Athens.

Gear, C. W. (1984). The numerical solution of problems which
may have high frequency components. In Haug, E. J. (Ed.),
Computer Aided Analysis and Optimization of Mechanical
System DynamiCS, Nato ASI Series, Vol. F9, Springer, Bedin.

Glesner, M., H. Joepen, J. Schuck and N. Wehn (1986). Silicon
. compilation from HDL and similar sources. In Hartenstein

(Ed.), Advances in CAD jar VLSI, Vol. 7. North-Holland,
Amsterdam.

Gold, B. and C. M. Rader (1969). Digital Processing of Signals.
McGraw-Hill, New York.

Goodwin, G. C. (1985). Some observations on robust estimation
and control. Proc. 7th IF AC Symp. ldent. Syst. Paramo Est.
York.

Gupta, A. and H. D. Toong (1983). Microprocessors-the first
twelve years. Proc. IEEE, 71, 1236.

Gupta, A. and H. D. Toong (1984). Microcomputers in industrial
control applications. IEEE 'Trans. Ind. Electron., IE-31, 2,109.

Gupta, A. and H. D. Toong (1983). An architectural comparison
of 32-bit microprocessors. IEEE Micro, Feb., 9.

Haberland, B. L. and'S. S. Rao (1973). Discrete-time models:
bilinear transform and ramp approximation equivalence.
IEEE Trans. Audio Electroacoust., AU-21, 382.

Hagiwara, Y., Y. Kita. T. Miyamoto. Y. Toba, H. Hara and T.
Akazawa (1983). A single chip digital signal processor and its
application to real-time speech analysis. IEEE Trans. Acoust.
Speech Sig. Process., ASSP-31, 339. .

Hall, E. 1.., D. D. Lynch and S. J. Dwyer (1970). Generation of
products and quotients using approximate binary logarithms
for digital filtering applications. IEEE Trans. Comput., C-19,
97.

Halyo, N. and G. A. McAlpine (1971). A discrete model for
product quantization errors in digital filters. IEEE Trans.
Audio Electroacoust., AU-I9, 255.

Hanselmann. H. (1982). Tischrechner programmiert Signalpro­
zessor als digitalen Mehrgrossenregler. Elektronik, 31. 21, 134.

Hanselmann. H. (1984). Diskretisierung kontinuierlicher Regier.
Regelungstechnik, 32, 326.

Hanselmann, H. (1986). Einsatz Digitaler Ein-Chip-Signalpro­
zessoren in der Mess- ond Regelungstechnik. Bull. Schweizer
Elektrotechnischer Verein (to appear).

Hanselmann, H., R. Kasper and M. Lewe (1983). Simulation of
fast digital control systems. Proc. 1st Eur. Simulation Cong.,
Aachen, Informatik-Fachbericht 71. Springer. Berlin.

Hanselmann, H. and A. Schwarte (1985). Guide to the T MS
320 controller code generator, version 1.1. University of
Paderborn, Dept. Aut. Control in Mech. Eng.

Hanselmann, H. and W. Loges (1983). Realisierung schneller
digitaler Regier hoher Ordnung mit Signalprozessoren. Rege­
lungstechnik, 31, 330.

Hanselmann, H. and W. Loges (1984). Implementation of very

fast state-space controllers using digital signal processors.
Proc. 9th IFAC WId Congr. Pergamon Press, New York.

Hartimo,l., K. Kronlof, O. Simula and J. Skytta(1986). DFSP:
A data flow signal processor. IEEE Trans. Comput., C~3S, 23.

Hay, J. 1.. (1984). ESL---advanced simulation language
implementation. Proc. 84 U KSC ConI, Bath. Butterworths,
London.

Hay, J. 1.. (1985). Applications of ESI.. Proc. 11th 1M ACS Wid
Congr., Oslo.

Heider. G. (I 982). Let operating systems aid in component
design. Comput. Des., Sept.

Henrichfreise, H. (1985). Fast elastic robots: control oran elastic
robot axis accounting for nonlinear drive properties. Proc.
11th IMACS Wid Conllr., Oslo.

Herrmann, O. E. and J. Smit (1983). A user-friendly environment
to implement algorithms on single-chip digital signal pro­
cessors. Proc. EU-RASIP. Elsevier Science, Amsterdam.

Howe. R. M. (J 982). Digital simulations of transfer functions.
Proc. Summer Simulat. Co'!{., La Jona, California.

Hwang. K. (1979). Computer Arithmetic. Wiley, New York.
Hwang, S. Y. (1975a). Dynamic range constraint in state-space

digital filtering. IEEE Trans. ACOUSl. Speech Sig. Process.,
ASSP-Z3, 591.

Hwang, S. Y. (1975b). On monotonicity of Lp and lp Norms.
IEEE Tran.Ij. ACOUSl. Speech Sig. Process .• ASSP-23, 593.

Hwang, S. Y. (1977). Minimum uncorrelated unit noise in
state-space digital filtering. IEEE Trans. Acoust. Speech Sig.
Process., ASSP-25, 273.

Jacklin, S. A., J. A. Leyland and W. Warmbrodt (1985). High­
speed, automatic controller design considerations for integrat­
ing array processor, multi-microprocessor, and host computer
system architectures. Am Control Conj, Boston, 1223.

Jackson, L. B. (1970a). On the interaction of roundoff noise and
dynamic range in digital filters. Bell Syst. Tech. J., 49, 159.

Jackson, L. B. (1970b). Roundoff-noise analysis for fixed-point
digital filters realized in cascade or parallel form. IEEE Trans.
Audio Electroacoust., AU-IS. 107.

Jackson, L. B. (1976). Roundoff noise bounds derived from
coefficient sensitivities for digital filters. IEEE Trans. Ccts
Syst., CAS-D, 481.

Jackson, L. B. (1979). Limit Cycles in State-Space Structures for
Digital Filters. IEEE Trans. ects Syst., CAS-26, 67.

Jackson, 1.. B., A. G. Lindgren and Y. Kim (1979). Optimal
Synthesis of Second-Order State-Space Structures for Digital
Filters. IEEE Trans. Ccts Syst., CAS-Z6, 149.

Jacquot. R. G. (1981). Modern Digital Control Systems. Marcel
Dekker, New York.

Jaeger, R. C. (1982). Analog data acquisition technology. IEEE
Micro. Aug., 46.

Jain, R., J. Vandewalle and H. J. de Man (1985). Efficient and
accurate multiparameter analysis of linear digital filters using
a multi variable feedback representation. IEEE Trans. Ccts
Syst., CAS-3Z, 225.

Jaswa, V. c., C. E. Thomas and J. T. Pedicone (1985). CPAC­
concurrent processor architecture for control. IEEE Trans.
Comput., C-34, 163.

Johnson, G. W. (1965). Upper bound on dynamic quantization
error in digital control systems via the direct method of
Liapunov. IEEE Trans. Aut. Control, AC-IO, 439.

Johnson, G. W. (1966). Author's reply. I EEE 1l'ans. Aut. Control,
AC-ll,333.

Jover, J. M. and T. Kailath (1986). A parallel architecture for
Kalman filter measurement update and parameter estimation.
Automatica, 22, 43.

Kaiser, J. F. (1966). Digital Filters, System AnalysiS by Digital
Computer. Wiley, New York.

Kiillstrom, C. (1973). Computing exp (A) and integral exp (As)ds.
Report 7309, Lund Inst. Technol.. Div. Aut. Control.

Kanade, T. and D. Schmitz (1985). Development ofCMU direct­
drive arm II. Proc. 1985 Am. Control Con[. Boston, p. 703.

Kaneko, T. and B. Liu (1973). On local roundoff errors in
floating-point arithmetic. JJ ACM, 20, 391.

Katz, P. (1981). Digital Control using Microprocessors. Prentice­
Han, Englewood Cliffs, New Jersey.

Katzenelson, J. (1962). On errors introduced by combined
sampling and quantization. I R'E Trans. Aut. Control, AC-72,
58.

167

168

Survey Paper

Kawamata, M. and T. Higuchi (1985~ A unified approach to
the optimal synthesis of fixed-point state-space digital filters.
IEEE Ira ... Acoust. Speech Sig. Process., ASSP-33, 911.

Kerckhoffs, E. J. H., B. Dobhelaere and G. C. Vansteenkiste
(1985). Some Donconventional digital computers in simul­
ation. Proc. 11th IMACS Wid Co.gr., Oslo.

Kingsbury, N. G. and P. J. W. Rayner (1971). Digital filtering
using logarithmic arithmetic. Electron. Lett., 7. 56. Also in
Swartzlander (1980).

Kleinman, D. L. and P. K. Rao (1977). Continuous-discrete
gain transformation methods for linear feedback control.
Automatica, 13, 425.

Knowles, J. B. and E. M. Olcayto (1968). Coefficient accuracy
and digital filter response. IEEE Ira ... Cct Theory, CT-1S,
31.

Knowles, J. B. and R. Edwards (1965a). Effect of a finite-word­
length computer in a sampled-data feedback system. Proc.
lEE, 112, 1197.

Knowles, J. B. and R. Edwards (1965b). Finite word-length
effects in multi rate direct digital control systems. Proc. lEE.
112,2376.

Knowles, 1. B. and R. Edwards (1966). Computational error
effects in a direct digital control system. Automatica. 4, 7.

Kung, S. Y. (1984). 'On supercomputing ··'ith systolic/wavefront
array processors. Proc. IEEE, 72., 86).

Kuo, B. C. (1980). Digital Control Systems. Holt, Rinehart and
Winston, Tokyo.

Kuo, B. c., G. Singh and R. Yackel (1973). Digital approximation
of continuous-data cqp.trol systems by point-by-point state
comparison" Comput. Elect. Engng, I, 155.

Kuo, B. C. and D. W. Peterson (1973). Optimal discretization
. of continuous-data control system. Automatica, 9, 125.

Kwakernaak, H. and R. Sivan (1972). Linear Optimal Control
systems. Wiley, New York.

Lack, G. N. T. (1966). Comments on "Upper bound on dynamic
quantization error in digital control systems via the direct
method of Liapunov".IEEE Trans. Aut. Control, AC-ll, 331.

Lang, J. H. (1984). On the design of a special-purpose digital
control processor. IEEE Trans. Aut. Control, AC-29, 195.

Lee, S. C. and A. D. Edgar (1917). The focus number system.
IEEE Trans. Comput., C-16, 1167.

Leonhard, W. (1986). Microcomputer control of high dynamic
performance ac-drives-a survey. Automatica, 22, 1.

Liu, B. and T. Kaneko (1969). Error analysis of digital filters
realized with floating-point arithmetic. Proc. IEEE, 57, 1735.

Loges, W. (1983). Regelsysteme hoberer Ordnung mit dem
Signalprozessor TMS 320. Elektronik, 32, 25, 53.

Loges, W. (1984). Codegenerator erstellt Reglerprogramm fUr
den TMS 320. Elektro.ik, 33, 22, 154.

Loges, W. (1985). Realisierung schneller digitaler Regier hoher
Ordnung mit Signalprozessoren. Doctoral dissertation, Univer­
sity of Paderborn, Dept. Aut. Control in Mech. Eng.; also
VDI Verlag, DUsseldorf.

Long, J. L. and T. N. Trick (1973). An absolute bound on limit
cycles due to roundoff errors in digital filters. IEEE Trans.
Audio Electroacoust., AU-21, 27.

MacSorley, O. L. (1961). High-speed arithmetic in binary com­
puters. IRE Proc., 49, 67. Also in Swartzlander, E. E. (Ed.)
(1980). Computer Arithmetic. Dowden, Hutchinson & Ross,
Stroudsberg, Pennsylvania.

Magar, S., E. Caudel, D. Essig and C. Erskine (1985). Digital
signal processor borrows from JlP to step up performance.
Electron Des., 21 Feb., 175.

Magar, S., S. J. Robertson and W. Gass (1985). Interface
arrangement suits digital processor to multiprocessing. Elec­
tron. Des., 7 March, 189.

Marrin, K. (1986). Six DSP processors tackle high-end signal­
processing applications. Comput. Des., 1 March, 21.

Marrin, K. E. (1985). VL!'>I and software move DSP techniques
into mainstream. Comput. Des., 15 Sept., 69.

McDonough, K., E. Caudel, S. Magar and A. Leigh (1982).
Microcomputer with 32-bit arithmetic does high-precision
number crunching. ElectronicS, Feb., 105.

Meisinger, R. and B. Lange (1976). Beriicksichtignng der Rech­
nertotzeit beim Entwurf eines diskreten Regelungs- uod
Beobachtungssystems. Regelungstechnik, 24, 232.

Middleton, R. H. and G. C. Goodwin (1985). Improved finite

word length characteristics in digital control using delta
operators. Dept. Electr. Compo Eng. Report, Univ. of Newcastle,
Australia.

Miller, D. F. (1985). Multivariable linear digital control via
state-space output matching. Opt. Control Applic. M eth., 6,
13.

Mills, W. L., C. T. Mullis and R. A. Roberts (1978). Digital filter
realizations without overflow oscillations. Proc. IEEE Int.
Corif. Acous!. Speech Sig. Process., Tulsa, Oklahoma.

Mills, W. L., C. T. Mullis and R. A. Roberts (198n Low roundoff
noise and normal realizations of fixed point IIR digital filters.
IEEE Irans. Acoust., Speech Sig. Process., ASSP-29, 893.

Mintzer, F., K. Davies, A. Peled and F. N. Ris (1983). The
real-time signal processor. IEEE Trans. Acoust. Speech Sig.
Process., ASSP-31, 83.

Mita, T. (1985). Optimal digital feedback control systems
counting computation time of control laws. IEEE Trans. Aut.
Control, AC-30, 542.

Mitchell, E. E. and R. Demoyer (1985). A versatile digital
controller algorithm incorporating a state observer and state
feedback. IEEE Irans. Ind. Electron., IE-32, 78.

Mitra, S. K., K. Hirano and H. Sakaguchi (1974). A simple
method of computing the input quantization and multipli­
cation roundoff errors in a digital filter. IEEE Trans. Acoust.
Speech Sig. Process., ASSP-22, 326.

Moroney, P. (1983). Issues in the Implementation of Digital
Feedback Compensators. MIT Press, Cambridge, Massachu­
setts.

Moroney, P., A. S. Willsky and P. K. Houpt (1980). The digital
implementation of control compensators: the coefficient word­
length issue. IEEE Trans. Aut. Control, AC~25, 621.

Moroney, P., A. S. Willsky and P. K. Houpt (1981). Architectural
issues in the implementation of digital compensators. Proc.
8th lFAC Wid Congr., Kyoto.

Moroney, P., A. S. Willsky and P. K. Houpt (1983). Roundoff
noise and scaling in the digital implementation of control
compensators. IEEE Trans. Acoust. Speech Sig. Process.,
ASSP-31, 1464.

Mullis, C. T. and R. A. Roberts (1976). Synthesis of minimum
roundoff noise fixed point digital filters. IEEE Trans. Ccts
Syst., CAS-23, 551.

Mullis, C. T. and R. A. Roherts (1982). An interpretation of
error spectrum shaping in digital filters. IEEE Trans. Acoust.
Speech Sig. Process., ASSP-30, 1013.

Mullis, C. T. and R. A. Roberts (1984). Digital processing
structures for VLSI implementation. In Cappello, P. R. (Ed.),
VLSI Signal Processing. IEEE Press, New York.

Nagle, H. T. and V. P. Nelson (1981). Digital filter implemen-
tation on 16-bit microcomputers. IEEE Micro, 23 Feb. .

Neuman, C. P. and C. S. Baradello (1979). Digital transfer
functions for microcomputer contro1./EEE Trans. Syst. Man
Cybern., SMC-9, 856.

Nishimura, S., K. Hirano and R. N. Pal (1981). A new class of
very low sensitivity and low roundoff noise recursive digital
filter structures. lEEE Trans. Cets. Syst., CAS-28, 1152.

Nishitani, T., R. Maruta, Y. Kawakami and H. Goto (1981). A
single-chip digital signal processor for telecommunication
applications. IEEE Jl Solid State Ccts, SC-16, 372.

Orlandi, G and G. Martinelli (1984). Low-sensitivity recursive
digital filters obtained via the delay replacement. IEEE Trans.
Ccts. Syst., CAS-31, 654.

Oppenheim, A. V. and A. S. Willsky (1983). Signals and Systems.
Prentice-Hall, Englewood Cliffs, New Jersey.

Oppenheim, A. V. and R. W. Schafer (1975). Digital Signal
Processing. Prentice-Hall, Englewood. Cliffs, New Jersey.

Patney, R. K. and S. C. Dutla Roy (1980). A different look at
roundoff noise in digital filters. IEEE Trans. Ccts Syst., CAS-
27,59.

Pei, S. C. (1985). Comments on "Properties of the Qn-matrix in
bilinear transformation". Proc. IEEE, 73, 841.

Pei, S. C. and K. C. Ho (1984). Comments on "Adaptive digital
control implemented using residue number systems". IEEE
Trans. Aut. Control, AC-Z9, 863.

Peled, A. and B. Liu (1976). Digital Signal Processing. Wiley,
New York.

Peled, U. and J. D. Powell (1978). The effect of prefilter design
on sample rate selection in digital flight control systems. Proc.

Survey Paper

AIAA Guid. Control Conf, Palo Alto, California.
Phillips, C. L. (1980). Using simulation to calculate floating­

point quantization errors. Simulation, June, 207.
Phillips, C. L. and H. T. Nagle (1984). Digital Control Systems

Analysis and Design. Prentice-Han, Englewood-Cliffs, New
Jersey.

Pickvance, R. (1985). A single chip digital signal processor.
Electron. Engng, Feb., 53; March, 55; Apr., 87.

Pope, S., J. Rabaey and R. W. Brodersen (1984). Automated
design of signal processors using macrocells. In Cappello, P.
R. (Ed.), V LSI Signal Processing. IEEE Press, New York.

Pountain, D. (1985). Multitasking FORTH. Byte, March, 363.
Powers, W. F. (1985). Computer tools for modern control

systems design. IEEE Control Syst. Mag., Feb., 14.
Quarmby, D. 1. (1984). Signal Processor Chips. Granada, Lon­

don.
Quong, D. and R. Perlman (1984). Single-chip accelerators speed

floating-point and binary computations. Electron. Des., 15
Nov., 246.

Rabaey, J., S. Pope and R. W. Brodersen (1987). An integrated
automated layout generation system for DSP circuits. J.
Comput. Aided Des. (to appear).

Rattan, K. S. (1981). Digital redesign of existing multiloop
continuous control systems. Proc. Jt Aut. Control Coni,
Charlottesville, Virginia.

Rattan, K. S. (1982). Digitalizing existing continuous-data con­
trol systems via "continous frequency matching". Proc. IFAC
Symp. Theory Applic. Dig. Control, New Delhi.

Rattan, K. S. (1984). Digitalization of existing continuous control
systems. IEEE Trans. Aut. Control, AC-29, 282.

Rattan, K. S. and H. H. Yeh (1978). Discretizing continuous­
data control systems. Comput.-Aided Des., 10, 299.

Ready, 1. F. (1984). Operating systems conform to application
needs. Mini-Micro Systems, Dec., 137.

Rink. R. E. and H. Y. Chong (1979a). Performance of state
regulator systems with floating-point computation. IEEE
Trans. Aut. Control, AC-24, 411.

Rink. R. E. and H. Y. Chong (1979b). Covariance equation for
a floating-point regulator system. IEEE Trans. Aut. Control,
AC-24,980.

Rojek, P. and W. Wetzel (1984). Mehrgrossenregelung mit
Signalprozessoren. Elektronik, 33, 16; 109.

Rubinfield, L. P. (1975). A proof of the modified Booth's
algorithm for multiplication. IEEE Trans. Comput., C-24,
1014.

Sandberg, I. W. (1967). Floating-point-roundoff accumulation
in digital-filter realizations. Bell Syst. Tech. J., 46,1175.

Sandberg, I. W. and J. F. Kaiser (1972). A bound on limit cycles
in fixed-point implementations of digital filters. IEEE Trans.
Audio Electroacoust., AU-20, 110.

Sasahara, H., M. Kawamata and T. Higuchi (1984). Design of
microprocessor-based LQG control systems with minimum
quantization error. Proc. I ECON '84, Tokyo.

Schafer, R., R. M. Mersereau and T. P. Barnwell (1984). Software
package brings filter design to PCs. Comput. Des., Nov., 119.

Scharf, L L. and S. Sigurdsson (1984). Fixed point implemen­
tation of fast Kalman predictors. IEEE Trans. Aut. Control,
AC-29,850.

Schittke, H. J. and R. Dettinger (1975). Simulation von linearen
zeitinvarianten Systemen bei stiickweise linearem Verlauf des
Steuervektors. Regelungstechnik, 23, 422; 24, 27.

Schmidt, L. A. (1978). Designing programmable digital filters
for LSI implementation, Hewlett-Packard J., 29, 13, 15.

Schumacher, W. and W. Leonhard (1983). Transistor-Fed AC­
servo drive with microprocessor control. Proc. Int. Power
Electron. Con/, Tokyo.

Shah, S. c., M. A. Floyd and L. L. Lehman (1985). MATRIX,:
control design and model building CAE capability. In Jamsh­
idi, M. and C. J. Herget (Eds), Advances in Computer-Aided
Control Systems Engineering. North-Holland, Amsterdam.

Shaw, R. F. (1950). Arithmetic operations in a binary computer.
Rev. Sci. Instrum., 21, 687. Also in Swartzlander, E. E. (Ed.)
(1980), Computer Arithmetic. Dowden, Hutchinson & Ross,
Stroudsberg, Pennsylvania.

Shieh, L. S., Y. F. Chang and R. E. Yates (1982). Model
simplification and digital design of multi variable sampled­
data control systems via a dominant-data matching method.

Proc. IFAC Symp. Theory Applic. Dig. Control, New Delhi.
Shoreys, F. (1982). New approach to high-speed high-resolution

analogue-to-digital conversion. lEE Electron. Power, Feb.,
175.

Simmers, C. and D. Arnett (1985). Specialized I/O and high­
speed CPU yields efficient microcontroller for automotive
applications. IEEE Trans. Ind. ELectron., IE-32, 278.

Singh, G., B. C. Kuo and R. A. Yackel (1974). Digital approxi­
mation by point-by-point state matching with high-order
holds. Int. J. Control, 20, 81.

Sjoding, T. W. (1973). Noise variance for rounded two's comp­
lement product quantization. IEEE Trans. Audio Electroac­
oust., AU-21, 378.

Skytta, J., O. Hyvarinen, I. Hartimo and O. Simula (1983).
Experimental signal processing and development system.
Proc. Eur. Con! eCI Theory Des., Stuttgart.

Slaughter, J. B. (1964). Quantization errors in digital control
systems. IEEE Trans. Aut. Control, AC-9, 70.

Slivinski, Ch. and J. Borninski (1985). Control system compen­
sation and implementation with the TMS3201 O. Texas Instru·
ments Application Report.

Smith, J. M. (1977). Mathematical Modelling and Digital Simul­
ationfor Engineers and Scientist$. Wiley, New York.

Spang, H. A. (1985). Experience and future needs in computer­
aided control design. IEEE Control Syst. Mag., Feb., 18.

Sripad. A. B. and D. L. Snyder (1977). A necessary and sufficient
condition for quantization errors to be uniform and white.
I EEE Trans. Acoust., Speech Sig. Process., ASSP-2S, 442.

Srodawa, R. J., R. E. Gach and A. Glicker (1985). Preliminary
experience with the automatic generation of production­
quality code for the Ford/Intel 8061 microprocessor. IEEE
Trans. Ind. Electron., IE-32, 318.

Steinlechner, S., E. Auer and E. Lueder (1983). A fast digital
signal processor without multipliers. Proc. Conf. Cct Theory
ECCTD, Stuttgart.

Stirling, R. (1983). Simulation of a digital aircraft flight control
system. Simulation, May, 171.

Strejc, V. (1981). State Space Theory of Discrete Linear Control.
Wiley, New York.

Sutherland, H. A. and K. L. Sanin (1985). Control engineers
workbench--a methodology for microcomputer implemen­
tation of controls. IEEE Control Syst. Mag., Feb., 22.

Swartzlander, E. E. (Ed.) (1980). Computer Arithmetic. Dowden,
Hutchinson & Ross, Stroudsburg, Pennsylvania.

Swartzlander, E. E. and A. G. Alexopoulos(1975). The signjloga­
rithm number system. IEEE Trans. Comput., C-24, 1238. Also
in Swartzlander, E. E. (Ed) (1980), Computer Arithmetic.
Dowden, Hutchinson & Ross, Stroudsberg, Pennsylvania.

Tabak, D. and G. J. Lipovski (1980). MOVE architecture in
digital controllers. IEEE Trans. Comput., C-29, 180.

Taetow, W. (1984). eM OS Bausteine fur mikroprogrammierbare
Signalprozesoren. Elektronik, 33, 22, 136, 23, 138.

Tan, C. and B. C. McInnis (1982). Adaptive digital control
implemented using residue number systems. IEEE Trans. Aut.
Control, AC-27, 449, 499.

Taylor, R. (1984). Signal processing with occam and the trans­
puter. lEE Proc., 131,610.

Toong, H. D. and A. Gupta (1982). Evaluation kernels for
microprocessor performance analyses. Perform. Evaluat., 2, 1.

Vaidyanathan, P. P. (1985). On error-spectrum shaping in state­
space digital filters. IEEE Tram •. ects Syst., CAS-32, 88.

Van Wingerden, A. J. M. and W. L de Koning (1984). The
influence of finite word length on digital optimal control.
IEEE Trans. Aut. Control, AC-29, 385.

Wal1ich, P. (1985). Toward simpler, faster computers. IEEE
Spectrum, Aug., 38.

Walrath, C. D. (1984). Adaptive bearing friction compensation
based on recent knowledge of dynamic friction. Autmatica,
20, 717.

Waser, Sh. and M. 1. Flynn (1982). Introduction to Arithmetic
for Digital Systems Designers. CBS College Publishing, New
York.

Weinstein, C. and A. V. Oppenheim (1969). A comparison of
roundoff noise in floating point and fixed point digital filter
realizations. Proc. IEEE,57, 1181.

Widrow, B. (1956). A study of rough amplitude quantization by
means of Nyquist sampling theory. IRE Trans. Gct Theory,

169

170

Survey Paper

PGCT-3, 266.
Widrow, B. (1961). Statistical analysis of amplitudtHIuantized

sampled-data systems. Tra AlEE, 79, 555.
Widrow, B. and E. Walach (1983). Adaptive signal processing

for adaptive control. Proc. IF AC Workshop Adapt. Syst.
Control Sig. Process., San Francisco.

Williamson, D. (1985). Finite wordlength design of digital
Kalman filters for state estimation. IEEE 7rans. Aut. Control,
AC.30,93O.

Willsky, A. S. (1979). Digital Signal Processing and Control and
Estimation Theory. MIT Press, Cambridge, Massachusetts.

Windsor, W. A. (1985~ IEEE floating point chips implement
DSP architectures. Comput. Des., Jan., 165.

Wittenmark, B. (1985). Sampling of a system with a time delay.
IEEE Trans. Aut. Control, AC..JO, 507.

Yackel, R. A., B. C. Kuo and G. Singh (1974). Digital redesign
'of continuous systems by matching of states at multiple
sampling periods. Automatica, 10, 105.

Yekutiel, O. (1980). A reduced-deiay sampled·data hold. IEEE
Trans. Auto. Control, AC-25, 847.

Zimmerman, B. G. (1983). MODEL S, a sainpled-data simul·
ation language. Simulation, May, 183.

The Programming Language DSPL

a problem oriented approach for
digital signal processing using DSP

Albert Schwarte and Herbert Hanselmann

dSPACE digital signal processing and control engineering GmbH
Paderbom, West Germany

Abstract

Digital signal processors (DSP) are increasingly used in many application fields like motion
control systems and power conversion systems due to their impressive computl\tional perfor­
mance. However, appropriate tools for programming such 'devices are still lacking. Therefore
DSPs are mainly programmed using assembly language. The high level language DSPL
introduced here has been developed with the typical application fields in mind. Characteristic
elements of DSPs have also been regarded. This results in compilers capable of generating
extremely efficient code. Furthermore DSPL's automatic scaling features simplify program­
ming of applications for DSP with fixed-point arithmetic.

Introduction

For a few years now digital signal processors
have been available as very powerful devices for
computational intensive applications possibly
demanding real-time performance. DSPs have
been developed primarily for signal processing
applications like filtering, speech analysis, data
communication and the like. Comparing the
mathematical algorithms used in these fields with
the algorithms used in modem multi-variable
control theory shows however, that both appli­
cation field!! have to deal with many common
problems. Thus DSPs are increasingly used for
the implementation of complex control systems
and other industrial applications like. motion
control systems, power conversion systems and
hardware-in-the-loop simulation systems.

DSPs are a very special class of microprocessors.
They typically contain hardware optimized to
carry out multiplications and accumulations.
Most DSPs are able to perform a multiplication
within a single machine cycle and perform the
accumulations of products in parallel. This leads
to extremely high throughput for the computation
of scalar products, a central element· of signal

processing algorithms. Another feature that dis­
tinguishes DSPs from conventional microproces­
sors is the Harvard-architecture used by many
such devices. They usually have several separate
memory blocks connected to the CPU core with
multiple data and address busses. These data
paths can be used in parallel so that several
operands can be transferred at the same time.

Utilizing such specific DSP elements is nearly
impossible with conventional high level program­
ming languages like C or Pascal, because such
languages have no appropriate constructs which
allow a compiler writer to make use of these
elements. Another problem not addressed by
these languages is the lack of an appropriate data
type for DSPs using fixed-point arithmetic.
Fixed-point arithmetic is however still used by
most DSPs, and especially the low-cost ones
embedded in products manufactured in large
quantities.

Special features of DSPL

Nevertheless most of the few high level language
compilers available represent a more or less
comprehensive subset of the C programming

Reprinted, with permission. from PCIM, June 25 - 28. 1990. 171

language. The Digital Signal Processing Lan­
guage (DSPL) introduced here follows a more
problem oriented approach. It has been developed
with the intention to be particularly useful for the
special application fields of digital signal pro­
cessing using DSPs for the implementation.
Especially for fixed-point DSPs DSPL provides
extensive support by defining an appropriate data
type and automatic scaling features.

DSPL data formats

Standard DSPs like the first and second genera­
tion TMS 320 series use a 16 bit fixed-point data
fonnat. Using this fonnat for the conventional
integer arithmetic leads to a quantization of 8 bit
for data and coefficients in order to avoid over­
flows when computing a product. Accumulation
of products as required for a scalar product
requires additional scaling, so that the worst case
sum of the partial products does not overflow the
integer value range. Using only 8 bits for the
representation of data and coefficients however
results in a very small number range with low
resolution. This is not acceptable for most indus­
trial applications. As the same problem arises for
conventional microprocessors system designers
have developed algorithms to perfonn float­
ing-point arithmetic with fixed-point processors.
With the aid of floating-point arithmetic an
arbitrary number range with arbitrary resolution
can be realized according to the number fonnat
selected, but at the cost of largely increased
execution time. This is also possible for DSPs, of
course, but using such a floating-point software
package decreases the DSP's perfonnance so far
that conventional microprocessors combined with
hardware floating-point coprocessors seem more
attractive, at least for applications where the price
of the processors is not a primary issue.

DSPL follows a third way which can provide a
good compromise for most applications. It cou­
ples the speed of integer arithmetic with a
resolution of 16 bit for the above mentioned
processors. To achieve this DSPL provides the
fractional data fonnat. Data are interpreted as
two's complement numbers having the binary
point directly right to the sign bit (MSB) which

172

leads to a value range of -1.0 .. 0.99996 ...

Obviously the multiplication of fractional num­
bers can never overflow the fractional value
range and can be implemented easily as most
DSPs provide an accumulation register at least
twice as long as the data fonnat used, e.g. 32 bit
for the TMS 320 series. The fractional fonnat
allows to use all 16 bit for the representation of
data which results in a quantization good enough
for most applications. Only when accumulating
fractional numbers the result can overflow the
value range. On the one hand this can be avoided
by properly scaling data during preparation of the
implementation, and on the other hand by using
DSPL's automatic scaling features for the com­
putation of scalar products. As the fractional data
fonnat is just another interpretation of the binary
data fractional arithmetic except division can be
implemented on the machine instruction level
which results in the same execution speed as
integer arithmetic. Fractional numbers are the
main vehicle for carrying out computations in

. DSPL. They are supported by the compilers not
only for the computation of scalar products but
also for any other basic arithmetic expression
including division.

Besides the fractional fonnat a conventional
integer data type and boolean data are also
supported. In addition to the basic operations
DSPL allows bitwise handling of integer vari­
ables with logical operators. This is especially
useful for manipulating hardware devices on the
bit level, particularly because variables can be
allocated at arbitrary physical addresses. Boolean
variables can be used in arbitrary expressions as
well. They are mainly useful for controlling
program flow in conjunction with if-statements.

Scalar product computation

Many digital signal processing algorithms consist
mainly of the computation of scalar products.
FIR filters and difference equations of controllers
or IIR filters provide good examples.

Implementing scalar products on processors with
fixed-point arithmetic is a cumbersome and error­
prone task due to the scaling requirements. DSPL
supports the implementation of scalar products
by providing the necessary constructs on the
language level including automatic scaling for
products of a coefficient vector and a variable
vector. Scalar product scaling guarantees that

overflows can be detected and handled appro­
priately by saturation conditions simulated in
software

coefficients outside the fractional value range
can be realized

coefficient scaling can be performed automati­
cally by the compiler.

Scaling of all Co is performed completely at
compile time. Only the necessary rescaling oper­
ations for the final result (r) need to be done at
runtime. Rescaling is implemented by optimized
code constructs depending on the actual data.
Within scalar products even coefficients outside
the fractional number range can be realized with
special code constructs. If scalar product scaling
is performed automatically by the DSPL compil­
er a worst case scaling is performed. Maximum
scaling values can optionally be speCified by the
user in case they are already known from simula­
tion or measurements. for example. Scalar prod­
uct scaling can also be completely disabled. The
code necessary for rescaling can automatically
include instructions to test for overflows of the
scalar product result. Saturation conditions can
then be simulated by software upon request. A
special form of the scalar product statement
allows the implementation of a FIR filter with a
single DSPL statement. In this case the update of
the variable vector is performed in parallel to the
computation of the filter taps.

High level language compilers usually rely on
library routines for the computations of scalar
products. which simply execute a loop for all
elements of the vectors involved to compute the

sum of the partial· products. However. this kind of
computation is very inefficient. particularly for
control algorithms where often sparse coefficient
matrices have to be multiplied by variable vec­
tors. This leads to the problem of loading the
processor with unnecessary code for multiplying
zeroes. Using appropriate transformations the
number of non-zero coefficients can be mini­
mized. DSPL does never use library routines but
generates the appropriate code in-line depending
on the actual data. The code is extremely efficient
because every information the compiler needs for
code generation is already known at compile
time. Not a single instruction is wasted to per­
form address computations or adjust loop coun­
ters at runtime. Immediate instructions can often
be used to realize small coefficients which leads
to very economical use of data memory. a very
scarce resource on some DSPs.

Block moves of data

Many DSPs contain special hardware provisions
or at ll!ast efficient machine instructions to per­
form moving a block of data in memory. Block
moves are required by many signal processing
algorithms to implement the .-1 operation or to
move the data samples through a filter. Such
special elements can only be utilized by a com­
piler if an appropriate language construct is
defined. DSPL provides the update-statement for
this purpose. It allows to copy a data vector to a
second one. Because the size of the vectors is
already known during compile time code can be
generated code without containing time consum­
ing instructions for address computations.

Realization of sampling systems

Digital signal processing systems often require
the algorithm to be carried out with a dermed
sampling period. DSPL provides an appropriate
statement which allows the specification of the
required sampling period. The compiler generates
appropriate code to realize the sampling clock
based on macros adaptable to the target hard­
ware. Usually a timer capable of generating
interrupts will be used for this purpose. In case a
hardware system contains several timers with

173

interrupt capabilities even multi-rate systems can
easily be implemented.

declarations and statements available in DSPL.
Short comments will describe !he meaning of
each element.

DSPL language constructs

The follOwing tables provide a summary of !he

I Declaration I Purpose

TYPE declaration of fractional data representation details

fractional, integer, boolean scalar data types, fractional data can also be declared as
vectors, constants and variables possible

SCPTYPE type declaration used for defining details of scalar product
computations like automatic scaling and saturation handling

SCALABLE attribute of a fractional constant, allows !he constant to be
scaled by the compiler

ALTERABLE attribute of a fractional constant, allows a scalable constant
to be included in scalar product computation, such a
constant may be altered during runtime as required by
adaptive systems

AT address clause, allows to specify the physical address where
the declared object shall be allocated

INPUT / OUTPUT instructs the compiler to associate the declared variable as
with a physical input or output channel

EXTERNAL allows the declaration of formal procedure headers, external
procedures must be implemented in assembly language

INTERRUPT instructs the compiler to associate this name with an
interrupt source

RENAME declares an alias name for a component of a fractional
vector

Table 1 : Declarations provided by DSPL

Statement Purpose

BEGIN start of executable program body

ON ident DO surrounds the interrupt service routine for an .. identifier declared as an interrupt source, any
END INTERRUPT number of interrupt-statements are possible

174

EVERY time DO surrounds the block of statements to be execut-
.. ed with regular time intelVals. the time speci-

END EVERY fied represents the sampling period of sampled
data systems

ACCUMULATE SCALPRO (ident) a complete scalar product with an arbitrary
.. number of partial products is accumulated. the

END ACCUMULATE identifier references a scalar product type dec-
laration

ACCUMULATE PRESCALPRO (ident) same as before except that the accumulation
.. register is pre-loaded with a full accumula-

END ACCUMULATE tor-length value

ACCUMULATE SCALPRO (ident) AND UP- special form of scalar product accumulation.
DATEident allows efficient computation of FIR filter

..
END ACCUMULATE

INPUT a scalar or a vector of input variables is read
from an I/O channel

OUTPUT a scalar or vector of output variables is written
to an I/O channel

UPDATE copies a variable vector to a second one

assignment the assignment statement allows the computa-
tion of arbitrarily complex arithmetic expres-
sions.

ABS*/+- operators dermed for fractional operands
=/=«=>=>

ABS NOT * / MOD + - operators defined for integer operands
=/=«=>=>
ANDORXOR

NOT AND OR XOR operators defined for boolean operands

IF condition THEN the if-statement allows to control program flow.
ELSIF condition THEN any number of ELSIF parts are allowed. the
ELSE ELSIF and ELSE parts are optional
END IF

LOOP the loop-statement in conjunction with the
.. exit-statement allows the implementation of
EXIT any kind of program loops
..

END LOOP

FOR ident IN range LOOP the for-statement allows the implementation of
.. loops with a determined number of repetitions •

END LOOP up-counting and down-counting loops are pos-
sible

175

procedure call allows the call of external procedures defined in
the declarative section, actual parameters must
be specified according to the fonnal procedure
header declaration

in-line assembler assembly language statements may be inserted
anywhere, access to DSPL variables by name is
supported

Table 2 : Statements provided by DSPL

Hardware independence

A DSPL program is nearly independent from the
target hardware system. Each DSPL compiler can
support arbitrary hardware environments sur­
rounding a particular target DSP. This great
flexibility is possible because every DSPL pro­
gram is augmented by an environment descrip­
tion. This description instructs the compiler
which address ranges it may use for program and
data allocation, for example. It also contains the
necessary connections between logical input and
output variables of the DSPL program and the

I Declaration

PROCESSOR IS "TMS 320C25"

PROGRAM SPACE OFF CHIP IS ...

DATA SPACE ON CHIP IS ...
DATA SPACE OFF CHIP IS ...

STACK SPACE IS ...

CYCLE TIME IS ...

PROGRAM MEMORY WAIT STATE IS ...

DATA MEMORY WAIT STATE IS ...

176

physical I/O channels. DSPL compilers are
open-ended with respect to all the language
constructs depending on hardware characteristics.
They use macros for the implementation of input
and output and for the realization of the sampling
clock for example. These macros can easily be
adapted to any target hardware system by the
user, which needs to be done only once.

The following table describes the infonnation
contained in the environment description valid
for the DSPL compiler for TMS 320C25 DSPs.

I Purpose

declares the target processor, used by the
compiler for consistency check

declaration of memory section available for
program code allocation

declaration of memory sections available for
data allocation

declaration of memory section available for
stack allocation

declaration of basic machine cycle, used for
the computation of execution time statistics

number of wait states required by the target
hardware when accessing external program
memory, used for the computation of execu-
tion time statistics

number of wait states required by the target
hardware when accessing external data
memory, used for the computation of execu-
tion time statistics

INTERRUPT ident IS VECfOR ... declares the connection between the DSPL
name of an intelTllpt source and an actual
hardware intelTllpt

INPUT SPECIFICATION IS declares the connection between the DSPL
ident IS CHANNEL number USING macro name of an input variable and a physical
.. input channel, for each single input channel

SEQUENTIAL an appropriate macro can be used, optionally
ident IS CHANNEL number USING macro sequential inputs can be used in cases. the
.. target hardware prescribes

END INPUT a particular sequence for reading input chan-
nels

OUTPUT SPECIFICATION IS declares the connection between the DSPL
ident IS CHANNEL number USING macro name of an output variable and a physical
.. output channel, for each single output channel

SEQUENTIAL an appropriate macro can be used, optionally
ident IS CHANNEL. number USING macro sequential outputs can be used in cases the
.. target hardware prescribes a particular se-

END OUTPUT quence for writing output channels

Table 3 : Elements of the environment description

Compiler output

A DSPL compiler generates completely docu­
mented assembly language source files which a
user might optionally try to optimize .. After
assembling the program it can be downloaded to
the target hardware and is ready for execution.
Complete statistical information is also generat­
ed. This includes a detailed cross-reference list­
ing showing allocation information for code and
data sections. More interesting however is that
the compiler also computes execution time statis­
tics as far as possible. The cross-reference listing
will contain information about the execution time
requirements of the block-statements and com­
pute the processor load based on the requested
sampling rates. The assembly language source
listing will contain information about the ma­
chine cycles used by the code generated for each
single DSPL statement. These statistics will even
regard such issues as the influence of wait-states
required by the target hardware for the access to
different memory sections. In case of program­
ming errors the compilers generate a source
listing with interspersed error messages giving
detailed information about the errors detected.

Depending on the program compiled the DSPL
compilers compile from several hundred to sever­
al thousand lines of code per minute on typical
PCs.

Development system

Currently DSPL compilers for the TMS320C25
DSP and the TMS 3IOCIX DSP family are
available. Although they can be used stand-alone
as powerful development tools they can also be
used in conjunction with a complete development
system primarily designed for the realization of
control systems. This development system con­
sists of additional software and hardware compo­
nents using PC-AT class machines as host. The
IMPEX software supports all the necessary steps
for the preparation of linear multi-variable con­
trol systems prior to the implementation. Starting
from differential or difference equations IMPEX
supports discretization, scaling, structure trans­
formation, simulation of closed loop systems
including effects of DSP arithmetic and NO and
D/A converters and the generation of the appro­
priate DSPL program. On the DSPL level any
non-linear extensions can be added to the pro-

177

gram. This can be supported by the NMAC tool
whi~ can generale optimized table-lookup based
external DSPL procedures for the implementation
of arbitrary one-dimensional non-linear func­
tions. After assembling the assembly language
source file resulting from the DSPL compilation
the object code can be down-loaded to the target
hardware where it can be examined with a
powerful real-time TRACE module. This module
wodes on the system level rather than on the
machine instruction level and is capable of
displaying the time response of arbitrary vari­
ables. Sophisticated hardware systems built
around the TMS 320 family DSPs, including the
new TMS 320C30 floating-point DSP which is
programmed in C rather than DSPL, augmented
by powerful peripheral boards for analog and
digital I/O and incremental encoder interfaces
support the automatic implementation of standard
applications often within minutes by providing
completely software controlled board setups, for
example.

Examples and applications

A large number of applications have already
been realized using DSPL as the programming
language. Some examples are described below in
order to give an estimate about the computation­
al performance of DSPs and of the quality of the
code generated by the DSPL compilers. Impres­
sive sampling rates can be achieved even for
very complex applications.

The first example regards a 3rd order PD con­
troller with notch filter as described by the
following equations.

.. , = 0.0 0383240 0.252007 "'_I 0.473315 -,_, (
0.333333 0.0 0.0 J {'-O.66666~

0.0 -'-0.518211 0383240 0.587474

1,=(-16.723549 -13.152899 0.0) ... ~.098620 _,

Assuming that all state variables are properly
scaled for the fractional number range so that no
overflow test and saturation handling is required
for the states, and that overflow test and satura­
tion handling are included for the output by
using scalar product scaling, a TMS 320C25
DSP can execute the code generated by the

178

DSPL25 compiler within 7.3 IU. The same
program compiled with the DSPLlX compiler
can be executed within 10.4 IU by a TMS
320El4 DSP. This does not include time re­
quired for i/o and timer interrupt processing. The
corresponding DSPL program and excerpts from
the compiler generated assembly language
source are presented below. The statistical infor­
mation computed by the compiler is also pre­
sented.

The second example represents a 9th order state
controller with Kalman filter having 2 inputs and
one output. The controller was designed for a
disk drive (computer peripheral). As this con­
troller includes an integrator the corresponding
state variable is computed with saturation using
scalar product scaling. Otherwise the same as­
sumptions apply as given above. A TMS 320C25
DSP can execute the necessary code within 19
IU. The execution time for a TMS 320El4 DSP
is 27.5 IU.

Other applications implemented with DSPL in­
clude the following (sampling rates are given for
a TMS 320C25).

Compliant articulated robot with electrical
drives: Linear vibration damping I tracking
controller with 10 sensors, 3 motors, 9 reference
inputs, running at 20 kHz.

High-acceleration gantry type robot with hy­
draulic drives: Vibration damping I tracking
controller of order 10 (including Kalman filter
and non-linear compensation for hydraulic ef­
fects) for each single axis, with 1 sensor (posi­
tion encoder), I motor and 3 reference inputs,
running at 10 kHz. Several axes can be selVed by
a single DSP .

Kalman-filter-based track following control (see
second example above).

Notch-filter-based controller of 11th order for
the same application runs at > 30kHz.

Vehicle control: Various active suspension con­
trollers of up to 40th order running with sam­
pling rates in the kHz range.

Hardware-in-the-Ioop simulation: Hydraulic
cylinder for active vehicle suspension under test
and actuating cylinder simulating the stress and
motion, both given in hardware. The DSP hard­
ware system does the rest, i.e. controls the
suspension and actuating cylinder, simulates
wheel and car body dynamics, and performs the
noise filtering for road surface simulation, all at
14kHz.

model of 18th order (11 mechanical degrees of
freedom) running at 6 kHz on a TMS 320C2S.
Used to test and optimize ABS in the lab.

Anti-skid-braking (ABS) hardware-in-the-loop
simulation: Four-wheeled non-linear vehicle

Simplified proportional-differential control and
plant identification: lust to show a mixture of
DSPL constructs in an application program. The
sampling rate is > 20 kHz for a TMS 320C2S.
The listings below show the DSPL prognlm, the
associated environment description, the statisti­
cal information and excerpts from the code
generated by the DSPL2S compiler.

system specification controller_gain_ident is
type fractional is

fix' (bits => 16, fraction => 15, representation => twoscomplement);
scptype state1 is

fix' (acculength => 32, round => on, scale => on, saturation => on);
scptype del is

fix' (acculength => 32, round => on, scale => off, saturation => off);
scptype out1 is

fix' (acculength -> 32, round => on, scale => common, saturation -> on);
a1 scalable constant vector (1) of fractional ;= (0.333);
b1 scalable constant vector (2) of fractional (0.330, -0.330);
c1 scalable constant vector (1) of fractional ;= (-14.141);
d1 scalable constant vector (2) of fractional ;= (7.699, -7.699);
xk vector (1) of fractional;
xk1 ; vector (1) of fractional;
u vector (2) of fractional;
input is u;
y vector (1) of fractional;
output is y;
temp1 ; rawaccumulator;
r_coeff ; scalable constant vector (1) of fractional := (17.2405);
rk_del~coeff ; scalable constant vector (3) of fractional ;~ (0, 0, 1);
cnt ;' integer;
lk ; fractional;
rk_del ; vector (3) of fractional;
rk ; fractional;
yfk ; fractional;
ufk ; vector(l) of fractional;
yfkl ; fractional;
gain old ; fractional .. 0.2;
gain ; fractional;
ginc : fractional;
al _flt scalable constant vector
a2 flt scalable constant vector -
bl flt scalable constant vector
b2 _flt scalable constant vector
cl flt scalable constant vector -
dl flt scalable constant vector -

(2) of fractional .= (0.950, 0.074);
(2) of fractional := (-0.017, 0.950);
(1) of fractional .- (0.067) ;
(1) of fractional .= (-0.046) ;
(2) of fractional := (-0.671, -1. 049) ;
(1) of fractional .. (9.379E-04);

179

xk_flt1
xk1_fltl
u_fltl

vector
vector
vector
vector

(2)
(2)
(1)
(1)

of fractional;
of fractional;
of fractional;
of fractional; y fltl

temp1_fltl
xk_flt2
xk1_flt2'

: rawaccumulator;
vector (2) of fractional;
vector (2) of fractional;
vector (1) of fractional;
vector (1) of fractional;

u_flt2
y_flt2
temp1_flt2 : rawaccumulator;
begin

180

every 1.OE-04 do
-- controller
update (xk1, xk);
-- sample inputs
input (u);
accumulate prescalpro (outl)

yIlt :- templ + dl * u;
end accumulate;
-~ output to plant
output (y);
accumulate scalpro (statel)

xkl(l) :- al * xk + b1 * u;
end accumulate;
accumulate scalpro (outl)

templ :- cl * xk1;
end accumulate;
-- identification
u_fltl(l) :- yIlt;
u_flt2 (1) :- u (2);
-- low-rate identification
cnt :- cnt + 1;
if cnt > 10 then

cnt :- 0;
ufk(l) :- y,:""fltl(l);
yfk1 :- yfk;
yfk :- y_flt2(1);
lk :- yfk - yfkl;
accumulate scalpro (statel)

rk :- r_coeff*ufk;
end accumulate;
rk_del(l) :- rk;
-- FIR delay-line
accumulate scalpro (del) and update rk_del

rk :- rk_del_coeff*rk_del;
end accumulate;
gain_old :- gain;
ginc :c (lk-rk*gain_old)*rk;
gain :- gain_old + ginc + ginc;

end if;
~- high-rate lowpass filtering for gain identification
-- input filter
update (xk1_fltl, xk_flt1);

accumulate prescalpro (outl)
y_fltl(l) :z templ_fltl + dl_flt * u_fltl;

end accumulate;
accumulate scalpro (statel)

xkl_flt~ (1) :- al_flt * xk_fltl + bl_flt * u_fltl;
end accumulate;
accumulate scalpro (statel)

xkl_fltl(2) := a2_flt * xk_fltl + b2_flt * u_fltl;
end accumulate;
accumulate scalpra (outl)

templ_fltl :- cl_flt * xkl_fltl;
end accumulate;
-- output filter
update (xkl_flt2, xk_flt2);
accumulate prescalpro (outl)

y_flt2(1) := templ_flt2 + dl_flt * u~flt2;
end accumulate;
accumulate scalpro (statel)

xkl_flt2(1) := al_flt * xk_flt2 + bl_flt * u_flt2;
end accumulate;
accumulate scalpro (statel)

xkl_flt2(2) := a2_flt * xk_flt2 + b2_flt * u_flt2;
end accumulate;
accumulate scalpro (outl)

templ_flt2 := cl_flt * xkl_flt2;
end accumulate;

end every;
end controller_gain_ident;

Listing 1: DSPL example program

environment "D5l00l" is
processor is "TM5 320C2S";
program space off chip is from 20h to 3fffh;
data space on chip is from 200h to 3ffh;
data space off chip is from 400h to 3fffh;
stack space is from 60h to 7fh;
cycle time is 100;
program memory wait state is 0;
data memory wait state is 0;
input specification is

u(l) is channel OeeOlh using ds200l with start;
u(2) is channel Oee03h using ds200l with start;

end input;
output specification is

y(l) is channel OefObh using ds2l0l;
end output;
end environment;

Listing 2: Environment description

181

DSPL - cross compiler, Vs 2.01, MS-DOS, target CPU
Copyright (C) 1988, 1989 by dSPACE GmbH

TMS 320C25

source file
environment file
assembler file
xref file
error file

pcim.dsp
pcim.env
pcim.asm
pcim.xrf
pcim.err

Compilation completed. No errors detected.

execution time requirements

task I cycles I rate (kHz) I time (us) I rqst (us) I use (%)

1 I 431 23.202 I 43.100 I 100.000 I 43.10

total processor load 43.10 %

498 words of code (off-chip) .
45 words of data (on-chip) .
32 words stack (on-chip) .

134 lines compiled.
2323 lines I minute.

Listing 3: Statistical infonnation generated by DSPL25 compiler

; line 113
zac
It
mpyk
Ita
mpy
Ita
mpyk
apac

v6
-564

v7
_c8
_v18
-1533

xk_flt1 (1)
a2_flt (1)
xk_flt1(2)
a2_flt (2)
u_flt1 (1)
b2_flt (1)

adlk 1, 14 - 0 perform rounding
overflow test and rescaling 0 bit

_120

_121

122

182

sach *, 1 save result
sf1 sign bit into carry flag
bc _120 branch if result < 0
bgez 121 branch if no positive overflow
1alk 07fffh, 0 use positive saturation
b _122 update result

blz _121
lalk 08000h,
b _122

lac * , 0

sacl _v5, 0

24 cycles

0
branch if no negative overflow
use negative saturation
update result

reload result

line 116
zac
It
rnpyk
Ita
rnpyk

_v4
-688
_vS
-1074

xkl_fltl (1)

cl_flt (1)
xkl_fltl (2)
cl_flt (2)

apac
sacl _v3l,
sach _v3l

0
+ 1, 0

templ_fltl
raw format

8 cycles

line 119
blkd 00207h,
blkd 0020Bh,

vlO
v11

xkl_flt2(1) --> xk_flt2(1)
xkl_flt2(2) --> xk_flt2(2)

6 cycles

Listing 4: Excetpts from assembly language source code generated by DSPL25 compiler

Conclusions

General purpose programming languages seem
not very suitable for signal processing applicati­
ons because of the lack of appropriate language
constructs. Taking into account the special prob­
lems of digital signal processing and the special
features of DSPs when designing a programming
language, allows the implementation of compil­
ers capable of generating extremely compact and
efficient code. It also allows to provide the user
with powerful support in the area of scaling,
which is particularly important when working
with fixed-point processors.

Literature

H. HanseJrnann, "Digital Signal Processors in
Motion Control" , Proceedings International
Workshop on Microcomputer Control of Electric
Drives, Triest, Italy, July 3 - 4, 1989.

H. Henrichfieise, "The Control of an elastic
Manipulation Device Using DSP", Proceedings
American Control Conference, Atlanta, Georgia,
Vol. 2, pp. 1029 - 1035, June 15 - 17, 1988.

H. HanseJrnann and A. Engelke, "LQG-Control
of a Highly Resonant Disk Drive Head Position­
ing Actuator", IEEE Transactions on Industrial
Electronics, pp. 100 - 104, February 1988.

H. HanseJrnann and W. Moritz, "High Band­
width Control of the Head Positioning Mecha­
nism in a Winchester Disk Drive", IEEE Control
Systems Magazine, pp. 15 - 19, October 1987.

H. HanseJrnann and A. Schwane, "Generation of
Fast Target Processor Code From High Level
Controller Descriptions", Proceedings 10th
lFAC World Congress, Munich, 1987.

183

184

Application or Kalman Filtering in Motion Control Using TMS310Cl5

Dr. S. Meahkat
The Control Group

One common problem in many industrial drive/control applications is sensing-sensing variables such as position,
velocity or current for the purpose of control. The task of seDsiDg signals that truly represent system variable is
difficult either because of cost, imperfect sensors or environmentally induced random noise. The result is a control
loop with less than optimum performance. To perform a proper control one has to "estimate" all or some of the
missing system variables from a measurement that may be corrupted by noise (like a noisy encoder or current
sensor) from a system that is excited by a random external force such as torque disturbance. The output of an
optimum observer can be used in a feedback control system for the purpose of tracking or regulation.

But let's rarst define an estimation process. Estimation is referred to the process of extracting information,
unavailable for measurement for any reason, from the available data. This data may contain measurement error
and may also be influenced by external random disturbance. You may imagine, for instance, in a radar antenna
positioning application where wind acts as a random torque disturbance, upon the motor shaft - a shaft whose
position measurement is corrupted by random noise. In this application the observer or estimator must estimate the
pure values for position and velocity. A Kalman fdter is an optimum observer for these problems when state
excitation noise (i.e., torques disturbance) and observation noise (i.e., the encoder noise) are uncorrelated, in other
words encoder noise is totally unrelated to the torque disturbance.

To present the idea of designing a Kalman filter let's start with the model of a dc motor (See Appendix A. "Model of
adcMotor.")

9(s)
(1)

u(s) s(T 015 + 1)

Since the filter is implemented in a digital control environment we transfer this equations to the z domain.

(z + b) aT-l + e-aT

G(z)
a

1
b=

aT-l + e-aT
, a = (2)

In terms of state space representation:

[O(a + 1) 1 [O(a) 1 A + B u(n)
oo(n + 1) oo(n) (3)

A-[
1 (. _, -.T)/,] B- r K",(T-1/ .. ,4T) I
0 e-aT ~(l_e-aT)

Reprinted, with permission from author. 185

u(n) =·F [
8(n) 1
<o(n)

This system may be excited by a random torque disturbance, W(n), furthermore position measurement may include
random noise V(n) (see figure 1.)

F"1gUl"C 1:

X(n>

•

X(n-1)

State space representation of a motion control
system with torque disturbance W and measurement
noise V

Optimum Observer

VCn)

The problem can be stated as follows: design an observer that uses the measurement, z(n), as well as the statistical
information about the measurement noise, V(n), and disturbance, W(n), to optimally estimate the actual position
and velocity.

The reconstruction of data must be based on a structure that penalizes the deviation of estimator's output from the
actual system output to oorrect the estimation process.

~(n) .. A ~(n.l) + K [z(n) • ~n-l»)

where ~n) is the estimated vector of position and
velocity and H is the output vector (e.g. for position
H = [1 0))

This is presented in figure 2.

•

•
~(n)

~--~ "~~,. :1, ... i1 ... 1
!,Cn-1)

F"1gUl"C 2: State space representation of optimum observer

186

(4)

Therefore the design problem can be simplified to finding mter K. Designing K requires the statistical information
about the random disturbance and the measurement noise. This must be intuitively clear; simply because one could
not imagine that without this information any "proper" reconstruction would be possible. This statistical information
can be obtained from the knowledge of the torque disturbance intensity and the frequency range over which it is
active. For our disturbance intensity and the frequency range over which it is active. For our measurement noise,
we need to know the rms value of the noise and its frequency range. To be more precise, this information helps us
compute the "state variance matrix of reconstruction error" from which K can be extracted.

Let's assume our motor is disturbed by external torque with an intensity of 12.5 N2m2s over the frequency spectrum
of 0 - 30 Hz and the position mea.~urement is corrupted by noise with the rms value of 0.2 degrees which has a nat
spectral density over a 350 Hz range.

Figures 3 (a) and (b) show the actual position and velocity of our motor shaft when the motor is driven by the
torque disturbance only. That is, if we had perfect position and velocity sensors we could take measurements like
those illustrated in figures 3 a and b.

O.02r---__ ~:----~~:~~~~~~n~u~.~T~I~~L-----~:------~

~ O. 015 ~ + ~ \ ! i ::::
1 o. 01 · .. · · · .. t .. · · t · .. · .. t · .. · j .. · .. ·........ 1 • • ..
no. 001 : ~ ~................ :
R ::: : = 0 . ..T t" · j" .. · t
-0.0010r-----,5~0.---~1r.O~O.---~~----~Obr----~25t.O.---~~

v 0.25 : Ro~1 VIID : : :
~ o. 2 · ···· .. · .. ··~ ······ i .. · ·· .. ··· .. t ·i j
j O. 1S ···· r t.u 1 ~ 0.:.
n O. 2. ················~·················r················r·· : .. , . ········r···············
~ o. 0: · ···~···:: .. ::::: f::::::::::::::::;::::: ::T::::::::::::::r::::::::::::::
·-O.050~----orl.-----.. 10~Or----.l~5ftO----~O~0r---~t.50.---~3~00

TI •• In • If ,..,llnl Perlld.

Figure 3: (a) the actual motor shaft position (b) actual shaft velocity

a

b

However, the real measurement is totally distorted by a random noise making it appear as shown in figure 4. Figure
4 shows a position measurement that looks absolutely hopeless. You must remember the noise, corrupting our
position measurement, is not a high frequency noise that may be filtered by a conventional low pass filter. This
noise spans a wide frequency range! The Kalman IiIter, however, can estimate the actual position (see figure 5)
form the measurement signal (see figure 4). You may observe the perfect performance of this filter for velocity
estimation as well (see figure 6). Our assumption is that the mean values of random disturbance and measurement
noise are both zero.

187

o .• ~----~----~~~~~~~~----:-----,
~ 0."
I 0.2

~ 0

R -0.2

= -0."
-0.60~~--~----~~---'~----~r---~~~-;~

Figure 4: The measured position corrupted by noise

0.01~----~----~~~~~~~~~ ____ ~ __ ~

:0. 011 ·t ··t' · j" · .. j" ~ ·
I O. 01 ··t t .. · ·~ · ·t' ·.... :
;0. 005 1" t" :-................ :
= 0 .. T t" j j"'
-0.00·O~----~O~----r.10~O~--~1~5~O----~2~ObO~--~~----~00

TI •• In _ It ' •• ,lln8 '.rlldl

Figure 5: Estimated position using the optimum observer

\I O. IS r-___ ""!'"...!:IlLL!l.I.L~.u.li.l..llI¥l&...uJI....!:+-..L.L.u.""""!"-__ --,

~ 0.2
I O.lS
n 0.1

: 0.05
, 0
I
-0.050~----,t,r-----~10~0r----,1~5~0----~1~0~0r---~1~50~--~3~OO

TI •• In_ .t ".'11 n, ,./,I I'"

F'agure 6: Estimated velocity using the optimum observer

Optimum Control
The estimation process provides the feedback data useful for the purpose of control. Using optimum control theory
we may use the output of an optimum observer in a state feedback control configuration. The state feedback
controller multiplies a designed control gain matrix, F, by the output of our estimator, x(n), in order to compute the
control signal, u(n). Like any control design, F must be designed such that it satisfies a certain performance criteria.
The performance criteria are dictated by the application. For example, in punch press application where achieving a
fast response time is of crucial importance we need a time optimal control design. In machine tool applications
where the instantaneous position/velocity error must be minimized, a linear quadratic controller may be an
optimum choice. Although the performanee criteria will influence the design procedure for matrix F, the
implementation process in a state feedback control algorithm .remains the same.

Combining Observer and Controller
Let's now look at the combination of our optimum observer and state feedback controller using linear quadratic
criteria. Again, we start with the actual position and velocity values depicted in figures 7(a) and 7(b). Figure 8
shows the noisy measurement signal. The idea is to de.~ign an estimator combined with a regulator that use the

188

measured position, estimate the variables and use them in a state feedback control for the purpose of position and
velocity regulation. F'JgIII'CS 9(a) and 9(b) show the contrast between what was available to the controller and the
regulated results. The impressive contrast shows the power of optimum control in motion control applications.

I
P , • •
I
n

2
R
• 0 d

-20

v 0; 1

r
I O. 01
n

R 0 • d
;'

1-0' 050 SO 100 1 0
TI .. In _ .f S..,lIna "rUdl

Figure 7: (a) actual motor shaft position (b) actual shaft velocity

P
• 1

I
n

". 1 r d POI ••. TI ...

Figure 8: Measured position signal corrupted by noise

a

b

189

P
: 0.5 ,
n

: -0.5
d

o Po (+) T.

· _ · . . . · . . . · ..

-10~----~5~0~----1~0~--~1~5~0----~2~ObO~--~2~50~--~3dOO

v O. l~ ____ ~~~~~~~~~~~v~.~.~.~~T'uu~ ______ ~

• I
, 0.05

" R

a ,
o

·-0.0·0~----'5"0r-----r.l0~or----.~----~tr----~n---~~
TI •• In - .t 541.,11"1 P.rlod.

Figure 9: (a) measured position vsregulated position (b) measured vs regulated velocity

a

b

In a DSP environment an optimum observer combined with a linear quadratic regulator can be implemented and
run at a sampling rate less than 30 microseconds. This can be done through cascading the various blocks of our
control algorithm. Control algorithms implemented hy DSPs allow systems with imperfect sensors to achieve and
impressive level of performance - performance that is not achievable with classical control techniques.

Design and Implementation or Kalman Filter
To design a Kalman filter you may follow the steps discussed in sections "Theoretical Background .. ." then you may
proceed with the selection of a simulation program. Three of the more popular control simulation programs that
run on an IBM PC are: Matlab, Control C and Matrix X.

We used Matlab for the design and simulation of the Kalman filter. The Matlab program starts with data entry for
your system matrices. You are also required to enter the statistical information about the plant disturbance and
measurement noise. The program will simulate and plot the actual position and velocity on your EGA screen. It
discretizes your system using the sampling period it was initially provided with. From this informa(ion, the discrete,
stationary Kalman gain is computed and used in an optimum state observer. The estimated position is plotted and
contrasted with the measurement signal. (Please see appendix B)

Hardware Setup
Once the design proves successful, you may readily convert your Kalman IiIter to a form that is implementable on
TMS320C25 processor. For our implementation experiment we use the setup as appears in Figure 1. We used the
IBM PC with a 80386 processor and 80387 co-processor to emulate the motor, in realtime. The C program on the
PC was also responsible for the generation of the uncorrelated normally distributed random disturbance and
measurement noise. We used the IBM Data Communication Card to DIA and AID our data. Through the
communication card and Texas Instruments AlB board we could connect our emulated system to a TMS320C25
processor board. Needless to say, the TMS32OC25 processor board was responsible for the implementation of
Kalman filter and the initiation
of the two A/Ds and one D / A with a sampling period of 1 ms on the AlB board.

The filter we implemented embodies the generic form of equation 4 in the section entitled, "Application of Kalman
Filtering in Motion Control Using DSPs." The state equations which were finally implemented are:

190

xl(n+l) = xl(n) + al~(n) +azyp

~(n+l) = bOu(n) + bl~(n) + b2yp

-cSr
w

m

u rO .. 1 ~ -- ADC PLANT DAC1
I

.. I DAC2
l un

l tOPIO~ I
[ADC

on CRT

IBM PC 8. Data
Communication
Board optimally

observec
state

--- l DAC l - r ADC2 ~
KALMAN FIL TER

... -- I ADC1 .. ~

TMS320C25 AlB BOARD
PROCESSOR BOARD

~ -

where:
a1 .. 0.0020
~. 0.1737

bO" 16.000
bl = 0.9905
b2" 0.0008

][1 is the estimated positiOn
~ is the estimated velocity
lin is the input signal, u, plus the disturbance ud
yp is the measured signal corrupted by noise wm

(Please see appendix B)

Theoretical Background for Designing Kalman Filter

Let's present a continuous time system by the following state equations.

x(t) .. a(t)x(t) + b(t)u(t) + w1(t)

y(t) = c(t)x(t) + w2(t)

where wI(t) and w2(t) are the state excitation noise and the measurement noise respectively.

(1)

The joint process of the two noise signals (i.e. col[wt w2J) can be expressed, as white noise, by the intensity matrix,
V(t):

E{ col[wt(tt) W2(tt)][w?(tv wl(tvll •

V(t1) (tl • tV

When the two noise signals are uncorrelated vl2 = v21 = 0
and the intensity matrix becomes:

V(t) ..

We can form the full order observer as:

~(t) = a(t)~(t) + b(t)u(t) + K(t)[y(t) • c(t)~(t)l

192

(2)

(3)

(4)

The rec:oDStruetion error can be defined as:

e(t) = x(t) - ~t) (5)

Further we define the mean square l'CCOIIStruc:tion error as:

E{ e T(t)W(t)e(t)} (6)

where W(t) is a positive-defmite symmetric matrix.

The mean square reconstruction error value is a criterion to measure the observer's reconstruction capability.

So, the design problem can be stated as: DcsiKn K(!} such that the mean square reconstruction error is minimi7&d.

It can be proven that the solution to the optimum observer problem can be obtained from:

(7)

Where O(t) is the solution of the matrix Riccati equation:

O(t) = a(t)O(t) + O(t)aT(t) + vl(t) - 0(t)cT(t)vi1(t)c(t)0(t)

(8)

Therefore, the design process starts with obtaining all information regarding the procc.~ and the initial conditions
for the estimated states. In addition, you need to obtain the values for the disturbance covariance matrix, Vt, and
the measurement covariance matrix, v2. This information helps you solve the matrix Riccati equations (8).

In the time-invariant case where all the matrices of equation 8 are constant, the steady-state solution to the
observer's Riccati equation (8) can be obtained from:

(9)

Accordingly, "the steady-state optimum observer Sain matrix" can be calculated as:

(10)

Notice that in the time invariant case, there is always a trade off between the observer's speed and the immunity to
the observation noise. In terms of design practice, one may experiment with the two factors of observer speed and
noise immunity. To do this: keep vl constant, choose a positive-definite symmetric matrix for v2 with a positive
scalar multiplier m. Clearly, increasmg m will increase the state reconstruction speed. The value for m may be
increased to a pOint that while the observer attains a fast speed, noise immunity is not compromised.

193

Example:

Let's assume that our plant is a motl)r, disturbed by a zero mean white noise external torque, T d' and our shart
position measurement is corrupted by a zero mean white noise, Mn, uncorrelated to the disturbance noise. This
plant can be modeled as:

9(5) Km

where ~ =[l/K.r] (KT is motor torque constant) and Tm = RJ/K.r2 (R is the armature resistanc and J is the
total inerllalload.)

In terms of state equations:

1

x(t) + u(t) + x(t) = [: 111m

The state disturbance noise intensity, vd may be obtained from the variance of the torque disturbance and the
frequency range over which it is active. .

torque disturbance variance

2(active frequency range)

The same for the measurement noise intensity, vm

v = m

Measurement noise variance

2(active frequency range)

from this inform/ltiori VI and v2 can be obtained as follows:

0 0

VI =

0 vd/J2

and

v2 = vm

The above information enables us to solve equation 9 for Q and plug in the result in equation 10. The solution
obtained for the optimum observer gain, K can be used in our reconstruction equation (i.e., equation 4).

194

APPENDIX A

Model For. DC Motor
The model equations are obtained using the physical relation between the variables in each functional block. We
use Laplace operator, S, to simplify the solution method; but remember that "5" is an appropriate operator only for
linear systems. The mathematical model of a dc motor will allow us to simulate the system dynamic response on a
computer before an actual design.

PIIyIIaII MCIdII ... --
.. L

t ~ e VII

I

Figure 1 shows an electromechanical block diagram of a DC motor. This model describes the relationship between
the voltage applied across the armature winding ,0, and velocity, w.

Where R
L
J
B

~ e

armature's resistance
armature's inductance
motor inertia
viscous damping coefficient
Torque constant
back emf voltage constant

Using figure I, the relationship between (5) and U(5) can be written as:

00(5)

u(s)

1

U s2 +(R/L + B/J)s + RB + ~Ke/U

Equation 1 describes a second order model for a DC motor. In MKS system, Ke = ~.

00(5) 1

u(s) u 52 + (R/L + B/J)s + RB + ~2/U

In a practical motor the roots of the denominator, ·poles" are in general real and negative. These roots are:

1.. 1,1.. 2 = (-1/2)(R/L + B/J) + /- j!/2 (R/L + B/J)2 - 4(RB + ~)/U

For a step-wise input voltage to a motor, u(s) = 1/s, output velocity is:

195

1 1 (1)
(0(5) =

5 u

The model presented by the above equation can be simplified to a first order model using the following
assumptions. The fust assumption is that the electrical time constant, 1 e' in most conventional DC motors is much
shorter than the mechanical time constant, 1 m. This will let us ignore the term s.L in equation 1.

(0(5)

U(5) RJs + RB + Kr.2

The second assumption is Kr. 2 > > RB

(0(5)

u(s)

1 1

1 + RJ 5

Kr.2

Where 1 JD = RJ/Kt2 is the mechanical time constant. So, for a stepwise input voltage applied to the armature
winding the shaft speed w(s) is given by:

1 1 1
(0(8) =

S

Extending this relation to the angular position, will result in:

196

8(6)

u(s)
'"

S(1 mS + 1)

%
%
%
%
%
%
%

AppendlxB

DiscnJte 7ime, Sllltionary KIllman FilteT

In this segment of program you will enter the
continuous time system motrices a,b and c.
We assume d = O.

subplot (211)
input ('input the continuous time system matrix a: ')
a = ansi
input('input the continuous time input vector b: ')
b=ans;/
input('input the continuous time output vector c::. ')
c=ans;
%
%
%
%
%
%
%

At this point you will enter the sampling period, T.
This value efUlbles your program to discretize the
entered system equations.

input('input the sampling period T: ')
T = ansi
%
%
%
%
%
%
%
%

At this point you will be asked to enter the
statistical information about the disturlHlnce
noise and the measurement noise. For more
information please refer to the document entitled
"theoretical background. "

input('input the system disturbance vector g: ')
g = ansi
input('input the disturbance covariance matrix q; ')
q = ansi
input('input the variance value for the disturbance vard: ')
vard = anSi
input('input the variance value for the measurement varm: ')
varms = anSi
r=varm/1OOO;
%
%
%
%
%
%

In this part you will enter any known input signal from
which the program will generate the total input.

input('Enter the input u')
u2 = ansi
[A,S] = c2d(a,b,T)
pause
u=rand('normal');
ul = rand('normal');
u=vard*rand(300,l);
u=u+u2;

197

ul .. varm*rand(300,I);
%
%
%
%
%
%
%

At this point program can simulate the
actual positioo and velocity signals as well as the
optimum discrete observer gains.

yp = dlsim(A,B,c,O,u);
yv = dlsim(A,B,[O 1],O,u);
q1 = vard/1000;
q = q1*q;
[L,M,P] = dlqe(A,T*g,c,q*T,r/T)
pause
t = 1:1:300;
plot(t,yp)
title('Real Position vs. TilJle')
grid
ylabel(,Pos in Rad')
plot(t,yv)
title('Real Velocity vs. TilJle')
grid
x1abel('Twe in II of S8IJlpling Periods')
ylabel('Vel in Rad/s')
pause
yp = yp+ul;
plot(t,yp)
title('Measured POI vs. Twe')
grid
ylabel('Pos in Rad')
x = [O;OJ;
%
%
%
%
%
%

Using the Kalman gain, the program will structure a
recursive equation for the optimum estimation process.

kgain = A-L*c;

for i = 1:1:300;

end
%
%

x = kgain*x+ B*u(i,l) + L ·yp(~I);
pos(~l) = x(l,1);
vel(i,I) = x(2,I);

%
%
%

At this point the program will plot the estimated
position and velocity, and contrast them against
measured ones.

%
plot(t,pos)
titlc('Estimated POI vs Twc')
grid
ylabel('Pos in Rad')
x1abel('Time in II of Sampling Periods')
pause
plot(t,yp,'.' ,t,pos)

198

title('Measured & Estimated Pos vs. Time')
grid
ylabel('Pos in Rad')
plot(t,yv,'.',t,vel)
title('Actual & Estimated Vel vs. Time')
grid
ylabel('Vel in Rad/s')
xJabel('Time in /I of Sampling Periods')
metamm
subplot
end

199

AppendixC

(}(}()1 ...
(}(}()2 • •
(}(}()3 • Ko1man Filtering using TMS32OC25
(}(}()4 • •
(}(}()5 ••
()(J()6

0007
(}()()9 ()(}()() text
(J(JIO ()(}()() TEMP .equ Oh ;For temportary storage
(J(Jll
(J(J12 (}(}()I yp .equ Ih ;BLOCK BO FOR STATE

VARIABLES
(J(J13 (}(}()2 VN .equ 2h ;DATA MEMORY
(J(J14 (}(}()3 XNL .equ 3h
(J(J15 (}(}()4 XNH .equ 4h
(J(J16 (}(}()5 UN .equ 5h
(J(J17 •
(J(J18 •
(J(J19 (}()()6 A2 .equ 6h ;THEY STORE THE

COEFFICIENTS
(J(J20 0007 Al .equ 7h
0021 0008 B2 .equ 8h
0022 (}()()9 Bl .equ 9h
0023 OOOA BO .equ OAh
0024 •
(J(J25
(J(J26 ()(}()() .asect "AORG(J(J" 00h
(J(J27 ()(}()() FFBO B STRT
(}(}()1 (J(J20
(J(J28
(J(J29
(J(J30
(J(J31 ()(}()() .data
(J(J32 (J(JI0 .aseet ''AORGOl" lOh
(J(J33
(J(J34 0010 1387 RATE .word 4999 ;samplingperiod 1 msee {= (5MHz

/(RATE+l)J
(J(J35 (J(Jll (J(JFA MODE .wor,) OFAh ;For AlB initization
(J(J36
(J(J37
0038
(J(J39
0040 ()(}()() . .text
0041 (J(J20 .aseet ''AORG02" 20h
0042
0043 •
0044 •
0045 • Start main program
0046 •
0047 •
0048
0049
(J(J50 0020 STRT: .equ $
(J(J51 (J(J20 CE06 RSXM ;TURN OFF THE SIGN

200

EXTENTION MODE
oo52
oo53 0021 CBOO LDPK 0
oo54 0022 5589 LARP ARI
oo55
oo56
oo57 0023 Cloo LARK ARl,O :ZERO THE DATA

MEMORY (Oh TO Sh)
oo58 0024 CAoo ZAC
oo59 0025 CB07 RPTK 7
0060 oo26 6OA0 SACL *+
0061
0062
0063
0064 *
0065 • Initialize the coefficients
0066 *
0067
0068
0069
0070 oo27 DOOI LALK. 712,0 :STORlNG COEFFS IN DATA

MEM (A2 = .1737012)
0028 02C8

0071 0029 6006 SACL A2,O ;AND XFER THEM TO
PROGMEM

0072
0073 002A DOOI LALK 8,0 :(AI = 0.002 STORED IN

012)
002B 0008

0074 OO2C 6007 SACL AI,O
0075
0076 002D DODI LALK 3,0 :(B2 = 0.(}()()7324 STORED

IN 012)
oo2E (}()()3

0077 oo2F 6008 SACL B2,O
0078
oo79 0030 DODI LALK. 4057,0 ,'(BI = 0.9905 STORED IN 012)

0031 'OFD9
0080 0032 6009 SACL Bl,O
0081
0082 0033 DODI LALK 4(}96,0 :(BO = 16 STORED IN 08)

oo34 I(}()()
0083 0035 600A SACL BO,O
0084
0085
0086
0087 *-
0088 • Initialize the AlB board
0089 . -------------
0090
0091 0036 LOOP: .equ $
0092 0036 CAIO LACK RATE ;AlB BOARD SET FOR I MS

SAMPLlNG.RATE
0093 • ;AND FOR 2ANALOG TO

DIGITAL
CONVERTERS

0094 0037 5800 TBLR TEMP

201

0095 0038 EIOO OUT TEMP,I ;WRlTE THE SAMPLING PERIOD
TOAIB

0096 * ;BOARD PORT I
0097
0098 0039 CAll LACK MODE ;INITIALlZE THE AlB BOARD
0099 OOlA 5800 TBLR TEMP ;
0100 003B EOOO OUT TEMP,O ;WRITE THE SAMPLING PERIOD

TOAIB
0101 * ;BOARD PORT 0
0102 003C CE08 SPM 0 ;reset the P register output shift mode
0103
0104
0105
0106
0107 003D FA80 WAlT: BIOZ TAKE ;WAIT FOR THEA/D

INTERRUPT COMES
003E 0041

0108 003F FF80 B WAlT
0040 003D

0109
0110
0111
0112
0113 *====================================
0114 *
0115 * Stl11t doing each sampling calculations
0116 *
0117 *====================================
0118
0119
0120 0041 TAKE: .equ $
0121
0122 0041 8201 IN yp,2 ;TAKE SAMPLE OF FIRST ADC--

STORE IN yP
0123 0042 8305 IN UN,J ;TAKE SAMPLE OF SECOND

ADC - STORE IN UN
0124
0125 OO4J CAOO ZAC ;CLEAR ACCUMULA TOR
0126
0127 0044 JC01 LT yP ;
0128 0045 3806 MPY A2 ;P REG. = A2*YP SHIFTED 4

PLACES LEFT
0129 0046 CEOA SPM 2
0130
0131
0132 0047 3D02 LTA VN ;MULT REG = A2*YP SHIFTED 4

PLACES LEFT
0133 0048 3807 MPY Al ;
0134 0049 CEOB SPM 3 ;RlGHT SHIFT 6 PLACES
0135 004A CE15 HAC ;ACC = A1*VN + A2*YP
0136
0137 OO4B 4903 ADDS XNL ;ADD XNH,xHL TO ACC
0138 OO4C 4804 ADDH XNH
0139
0140 OO4D 6003 SACL XNL,O ;SAVE THE NEW STATE VALUE
0141 OO4E 6804 SACH XNH,O
0142

202

0143
0144
0145
0146 004F CAOO ZAC ;CLEARACCUMULATOR
0147
0148 0050 3809 MPY B1 ;P=B1*VN
0149 0051 CEOA SPM Z
0150
0151 0052 3005 LTA UN ;ACC=B1*VN
0152 0053 380A MPY BO ;P=BO*UN
0153
0154 0054 CEOB SPM 3 ;
0155 0055 3D01 LTA W ;ACC = B1·VN+BO*UN
0156 0056 3808 MPY B2 ;P=W*B2
0157 0057 CE15 APAC ;ACC = BZ·W + BI·VN +

BO*UN(RESULn
0158 • ;lS SHIFTED LEFT 4 PLACE TO

MAKE
0159 • ;BO Q12 AND THUS BO·UN Q1Bu
0160
0161 0058 6802 SACH VN ;STORE THE NEWVN
016Z
0163 0059 E205 OUT UN,Z ;CHECK TO SEE IF OPERATION

ENDED
0164

0165 OOSA FFBO B WAIT ;BACK FOR MORE SAMPLES
005B 003D

0166
0167 END

203

204

Implementation of a PID Controller on a DSpt

Karl J ohan Astrom
Department of Automatic Control

Lund Institute of Technology
Lund, Sweden

1. Introduction

The PIDcontroller is by far the most com­
monly used control algorithm. [Deshpande 1981]
Although it is of limited complexity it can be used
to solve a large number of industrial control prob­
lems. The textbook version of the PID controller
can be described by the equation

u(t) = Xc (e(t) + ~i t e(s)ds + Tel ~~») (1)

where u is the control variable and e is the control
error, defined as e = 'Y,p - 'Y, where 'Y,p is the set
point and 'Y is the process output. The parameters
of the controller are: gain Xc, integral time Ti, and
derivative time Tel.

The purpose of the integral action is to in­
crease the low-frequency gain and thus reduce
steady-state errors. Derivative action adds phase
lead, which improves stability and increases sys­
tem bandwidth.

Implementation of a PID controller using a
DSP will be discussed in this paper. A lot of expe­
rience has accumulated over many years of use of
the algorithm. This has led to significant modifica­
tion of the algorithm (1). These modifications will
be discussed in Section 2, where the discretization
issues are also dealt with. The result is a nonlinear
digital algorithm that is suitable for implementa­
tion on a general purpose digital computer.

The algorithm can be implemented in a
straightforward way in a DSP with floating point
hardware. Implementation using an ordinary DSP
does, however, require special considerations, be­
cause all calculations have to be made in integer
arithmetic. These issues are discussed in Section 3;

, Part of this work was done when the first author was
visiting professor and the second author a graduate student
at the University of Texas at Austin.

Reprinted with permission from author.

Hermann Steingrimsson
Graduate School of Business

University of Wisconsin
Madison, Wisconsin, USA

Some special problems related to quantization in
AD- and DA-converters are discussed in Section 4.
An overview of the DSP code for a PID controller is
described in Section 5. The complete code is given
in the Appendix. In Section 6 it is described how
the code can be tested. The tests given include both
linear and nonlinear behavior.

2. Modification and
Discretization

The algorithm (1) has several drawbacks. Signifi­
cant modifications of linear and nonlinear behavior
are necessary in order to obtain a practically use­
ful algorithm. See [Astrom and Hagglund 1988].
To obtain equations that can be implemented us­
ing computer control it is also necessary to replace
continuous time operations like derivation and in­
tegration by discrete time operations. See [Astrom
and Wittenmark 1990]. These modifications will be
described in this section.

Proportional Term

The proportional term Xce(t) is implemented sim­
ply by replacing the continuous time variables with
their sampled equivalences. One additional modifi­
cation set point weighting [Astrom and Hagglund
1988] has been found useful. This means that the
proportional term only acts on a fraction b of the
command signal. The proportional term then be-
comes

P(tlc) = X c (b1l,p(tlc) - 1I(tlc» (2)

where {tic} denotes the sampling instants. The
parameter b admits independent adjustment of set
point and load disturbance responses. It may also
be viewed as "zero-placement".

205

Integral Term

When a controller operates over a wide range of op­
erating conditions, the control variable may reach
actuator limits. The feedback loop is then broken
and the system effectively runs open loop. When
this happens in a controller with integral action,
the error will continue to be integrated and the
integral term may become very large. The integra­
tor "winds up". The error must then change sign
for a long period of time to "unwind" the integra­
tor and bring the system back to normal. Windup
can also cause problems when the controller is im­
plemented on a microprocessor having finite word
length. Since the processor can only store numbers
limited in magnitude, windup may cause overllow
oscillations in the control variable, unless satura­
tion arithmetic is used.

There are several ways to avoid windup. One
possibility is to introduce an extra feedback loop
by measuring the output from the actuator and
forming an error signal as the difference between
the controller output v, and the actuator output u.
If the output of the actuator is not available, the
signal may be computed by using a mathematical
model of the actuator. The error signal is fed
to the input of the integrator through the gain
11Th where the constant Tt is called the tracking
time constant. The extra feedback will ensure that
the integral obtains a value so that the controller
output tracks the saturated output. Tracking is
accomplished with the time constant Tt . Using
this method of avoiding windup the integral term
becomes

let) = ~; ! e(s)ds + ~t ! (u(s) - v(s))ds (3)

To obtain an algorithm that can be implemented
on a computer, the integral term let) is differenti­
ated

dl(t) = Kc e(t) + !. e.(t)
dt T; Tt

where e.(t) = u(t) - vet). Approximating
derivative by a forward difference gives

l(tle+l) - I(tlc) = Kc e(tlc) + !. e.(tlc)
h T, Tt

the

where h is the sampling period. Finally, by rear­
ranging terms, we get the following equation to
compute the integral term

f(tlcH) = f(tlc) + i;.h e(tlc) + ;t e.(tlc) (4)

206

Derivative Term

A pure derivative should not be implemented,
because the controller gain becomes very large at
high frequency. This leads to amplification of high­
frequency noise. The derivative term is therefore
approximated by

(5)

Notice that the approximation is good for signals
whose frequency contents are significantly below
N lTd. Also notice that the approximating transfer
function has a maximum gain of N. Parameter
N is therefore called maximum derivative gain. In
analog controllers N is given a fixed value, typically
in the range of 5-20.

It is also advantageous not to let the derivative
act on the set point signal. The set point is constant
for most of the time and its derivative is therefore
zero. A step change in the set point may, however,
cause an undesirable jump in the control variable
if the derivative acts on the set point. With these
modifications the derivative term can be written as

There are several methods to approximate the
derivative. Common methods are the forward dif­
ference approximation, the backward difference
approximation, Tustin's approximation and ramp
equivalence. See [As tram and Wittenmark 1990].
These approximations all have the same form

D(tlc) = aD(tlc_l) - b(y(tlc) - y(tlc-l») (7)

and are stable only if lal < 1. The forward differ­
ence approximation is stable if,Td > Nh12. It thus
becomes unstable for small values of Td. Tustin's
approximation has the disadvantages that a goes to
1 as Td goes to zero. This gives a ringing response
for small Td. The ramp equivalence approximation
gives exact outputs at the sampling instants if the
signal is continuous and piece wise linear between
the sampling instants, but it requires computations
of an exponential. The backward difference approx­
imation gives good results for all values of Td, The
parameter a goes to zero as Td goes to zero. Here
the backward difference approximation is chosen.

The following is obtained when Equation (6)
is approximated by a backward difference:

Rearranging terms, gives (7) with

a= Td and b= KcTdN
Td+ Nh Tel + Nh

which is the formula that will be used to compute
the derivative term.

The PID Algorithm

Summarizing we find that a practical version ofthe
PID algorithm can be described by the following
equations:

P(tTe) = Kc (b1l.p - 1I(tTe»

D(tTe) = aelD(tTe_l) + bel (1I(tTe-l) - 1I(tTe»
v(tTe) = P(tTe) + J(tTe) + D(tTe)

u(tTe) = f(v(tTe»)

J(tTe+1) = J(tTe) + b.(1I,p - 1I(tTe»)

+ bt(u(tTe) - v(tTe»

(8)

This algorithm has anti-windup reset, limitation of
derivative gain (N) and set point weighting (b).

The function / describes the nonlinear charac­
teristic of the actuator. For a linear actuator with
saturation at Urn ... and Urnaz we have

{
Urnaz if v(tTe) > Urn.

f(v(tTe» = Urni.. ifv(tTe) < Urn ...

v(tTe) otherwise
(9)

Since Equations (10) have to be updated only
when the controller parameters are changed, the
code should be organized so that parameters ael,
bel, b. and be are computed initially and when the
PID parameters are changed. This will reduce the
computational load during the execution of the
PID algorithm. The structure of the PID algorithm
given by Equation (8) is shown in Figure 1. Notice
that the algorithm is in parallel form.

The PI algorithm

In many cases the derivative action is not neces­
sary. The algorithm then reduces to

P(tle) = Kc (b1l.p - 1I(tTe»
v(tTe) = P(tle) + J(tTe)

u(tTe) = f(v(tTe»)

J(tlc+l) = J(tTe) + b.(1I.p - 1I(tTe»)

+ bt(u(tTe) - vetTe»)

(11)

which is a PI controller with anti· windup reset and
set point weighting (b).

The function f is the same as in Equation (9)
and the parameters b. and bt are related to the
parameters K c , T. and T, as follows:

bi = KchlT;.

b, = hiT,
(12)

which is the same as Equation (10). The reason for
considering this special case is that PI controllers
are in fact more common than controllers with
derivative action.

Y

For actuators with other limitations the function f Y-,s::c..._--+J. ___ J
should be modified. The parameters ael, bel, bi and
b, are related to the primary parameters K c, T., Y
Tel, Tt and N at the PID controller as follows: ::...-------+1

ael = TeI+ Nh

b _ KcNTeI
eI- TeI+ Nh

b. = KchlT;.

bt = hlTt

(10)

L...-_--'

Figure 1. Structure of the PID controller with
anti-windup.

200

Table 1. Number of arithmetic operations for PI
and pm control.

PI PID
M A M A

P 2 1 2 1
D 0 0 2 2
v 0 1 0 2
f X X X X
I 2 4 2 4

Tot 4 6 6 9

Operations Count

It is a common practice to estimate c()mputation
times by a simple operation cOWlt. This can be
strongly misleading when using fixed point calcu­
lation, because much of the ~omputation time may
be spent on overflow handling and scaling. Table 1
shows the minimum number of multiplications and
additions required for the PID and PI algorithms.
The PID algorithm requires 15 arithmetic opera­
tions, while the PI algorithm requires 10 opera­
tions.

3. Implementation Issues

Implementation of a PID-controller using a DSP
with fixed point will now be discussed. General
practice on implementing algorithms for DSP are
given in [Texas Instruments 1986], [Texas Instru­
ments 1989a], [Texas Instruments 1989b], [Texas
Instruments 1990a] and [Texas Instruments 1990b].

To perform fix-point calculations it is neces­
sary to know orders of magnitude of all variables.
Simulations were performed to get this informa­
tion. In the simulations the process model

1
G(s) = (s + 1)4

was used. Figure 2 shows the step response of
the system with parameters K" = 0.6, T" = 0.5,
7i = 2.2, Tt = 0.5, N = 8, and a sampling period
of 0.1 s. At the time t = 0.3 s a load disturbance
of 0.3 V is introduced.

Two C-programs were written to test the ef­
fects of scaling and roundoff. One pr<>gram imple­
ments the PID controller in double precision arith­
metics with no attempt to simulate the effect of
finite word length. The other program simulates

208

O. 7 r---.---r---r-----.,r--~=____,._____,.____,

0.6

0.5

0.4

0.3

0.2

0.1

It

5 10 15 20 25 30 3~ 40

Figure 2. Step response of the s,.stem.

the Texas Instruments DSP by using a 32-bit ac­
cumulator and a 16-bit word length. The effect of
using different resolution of the A/D- and DI A­
converters can also be simulated.

Selection of Sampling Period

There are several rules of thumb for choosing the
sampling period for digital controllers. For a PI­
controller the sampling period is related to the
integration time. A rule of thumb [Astrom and
Wittenmark 1990] is

h
7i ~ 0.1- 0.3

A PID controller requires a much shorter sam­
pling period. The sampling period should be short
enough 80 that the pole II = - NIT", introduced to
limit the high frequency gain of the derivative, can
be approximated appropriately. This leads to the
following rule of thumb:

hN
T" ~ 0.2- 0.6

See [Astrom and Wittenmark 1990].

Integral Offs~t

ROWldoffmay give an offset when the integral term
is implemented on a computer with a short word
length. This can be understood as follows. Consider
the equation for the integral term in Equation (8).
The correction term bce(tlo) = KchlTi ·e(tlo} is usu­
ally small in comparison to l(tlo} and may there­
fore be rounded off. With fractional arithmetic, the
largest magnitude of the correction term is Kch/7i.
To avoid roundoff, it is therefore necessary to have
a word length of at least

um.b f b · loge K"h/n}
n er 0 Its = - log(2)

More bits are of course required to obtain meaning­
ful values. For example, with h = 0.02 s, ~ = 10 s
and Ke = 0.1 the number of bits required to obtain
less than 5% error in the integral requires a word
length of at least

number of bits = 10g(0.0002 . 0.05) I::l 11
log(2)

Longer sampling periods for computing the inte­
gral may be used to avoid the offset. This can be
done simply by adding the error over each sam­
pling period and updating the integral term in reg­
ular intervals. Another way to avoid offset due to
roundoff is to store the integral with higher preci­
sion. In most DSPs (like the TMS320xx) values can
be stored in double precision, with little overhead.

Scaling

The PID controller given by Equations (8) is
already in parallel form, with the modules of zero
and first order. Figure 1 illustrates the realization
of the controller. Because of the parallel form, the
P, I and D terms can be scaled and computed
separately and then unified to form 11.

Coefficient Scaling

Because of the wide number range of the param­
eters, some restrictions must be imposed on the
magnitude of coefficients. It Collows from Equation
(10) that bd is the largest parameter. A limit should
therefore be set on the gain K a, and the high­
frequency derivative gain N. H Kc and N are lim­
ited to 16, we have bd < KeN = 256 and Kc ~ 16.
These parameters must therefore be divided by 256
and 16 respectively before they are stored. To re­
store the magnitude of the signal, the derivative
term must be shifted left by 8 bits and the propor­
tional term shifted left by 4 bits.

The other parameters, ad, bi and bt are within
the number range, but because b. and bt may
become very small, it is advantageous to also set a
lower limit on hiT. and hlTt •

Signal Scaling and Saturation Arithmetic

It must be insured that overflow does not occur
when computing the states of the controller. With
the structure of the PID controller shown in Fig­
ure 1 the states are D(tlo) and I(tlo+1). Care must
also be taken so that overflow does not occur when
the P, I and D terms are added to obtain 11.

0.6

0.5

0.4 /
0.3

0.2

0.1

-0.1

-0.2
0 5 10 15 20 25 30 35 40

s
Figure S. The term. of the pm controller.

The proportional term will always be within
the number range, since the multiplication of a
fraction with a fraction gives a fraction. Overflow
can occur if K c is larger than 1 when the magnitude
of the signal is restored. It is thereCore necessary
to use saturation arithmetic when computing the
proportional term.

One additional advantage of using the anti­
windup reset when computing the integral term
is that the integral is within the number range.
Saturation arithmetic is therefore not necessary.
Integration can result in overflow if anti-windup
is not used or if 7t is chosen poorly. Saturation
arithmetic should therefore be used before the
integral is stored.

Since the derivative depends only on the pro­
cess output, it is difficult to use analytic scaling
methods effectively. It is easy to predict the worst
possible input, but Cor most processes that would
be too pessimistic. A good engineering approach is
therefore to simulate the closed loop system and
store the output of the derivative for a few repre­
sentative examples. The derivative should normally
not account for more than 20% of the control sig­
nal. Since bd can take large values, saturation arith­
metic should be used before storing the derivative.
A number of simulations were made in order to
obtain typical orders of magnitude of the propor­
tional, integral and derivative term. It turns out,
that under normal operation conditions, the vari­
ables are within the number range. Since we are
allowing a gain larger than one, it is very likely
that an overflow will occur under some operation
condition, for example during start-up. Saturation
arithmetic is therefore used on both states and on
the control signal 11. Figure 3 shows Simnon plots
of the P, I and D terms for step response and load
disturbances, for the process and the controller pre­
viously used.

209

Gain, Input and Output Scaling

To implement a high gain (Ke > 1) one can
either include the gain in the digital algorithm
or move the gain "outside" of the DSP by using
a linear amplifier. The advantage of the latter
approach is that the control algorithm can be
scaled to eliminate the danger of overflow and
therefore avoiding the large overhead associated
with saturation arithmetic. This gives a shorter
code and a faster controller. But there is also a
disadvantage. Under normal steady-state operation
the error is small and any changes in the control
signal will be a relatively small part of the whole
dynamic range. A change in the control signal of
one quantization step will be amplified, resulting
in a large jump. It may also give rise to limit
cycles. When a high gain is incorporated in the
DSP code, saturation arithmetic must be used on
internal calculations.

4. Quantization Effects

Issues related to the interfacing of the DSP to the
plant will now be considered. The key questions
are related to quantization of A/D- and DI A­
converters

Quantization of the Set-Point Value

When implementing the controller the set point
should be quantized in the same way as the
controller input. That is, the set-point value should
either be read through the same, or a similar, A/D­
converter as is used for the input signal (if A/D­
converter is being used) or quantized internally by
using the same resolution as of the AID-converter.
If this is not done there may be an offset or a
limit cycle due to the quantization. Figure 4 shows
the result of a simulation, when a 6-bits A/D­
converter is used for the input signal but the set­
point value of 0.455 V is represented with a 16-
bit accuracy. The system goes into a limit cycle
with a period of 6.77 seconds and an amplitude
of 3.8 mY. The reason for this is that the set­
point value of 0.455 V can not be represented by
the 6-bits AID-converter. In steady-state the error
between the process output and the set-point value
will be either 17.5 mV or -13.8 mY. This error
will be summed up by the integrator, resulting in
a limit cycle.

210

0.55 r-~--"--~--'-----'------'

25 30 35

Figure 4. Limit cycles due to high resolution of
the set point.

40

Because the limit cycle is very close to a si­
nusoid it is reasonable to assume that the period
and the amplitude of the limit cycle can be pre­
dicted by using describing function analysis. Since
the system is in steady-state and the oscillation
corresponds to one quantization step of the A/D­
converter, we can assume a zero set-point value and
model the AID-converter by a relay nonlinearity
centered around zero with the quantization limits
+0.00157 and -0.00157. The describing function for
this nonlinearity is

N(A) = 2q = 0.0199
7ra a

where a is the amplitude of the input signal and q 12
is half the quantization step. The calculations are
simplified if the digital PID-controller is approxi­
mated by a continuous-time PI-controller with the
transfer function

K
Ge(s) = K +­

Ts

where K = 0.6 and T = 2.2. Possible limit cycle is
given by the equation

1 + Yq(A)L(jw) = 0

Which is equivalent to

-1
L(jw) = N(a) (13)

where L is the loop transfer function of the con­
troller and the process, in cascade, i.e.

Ls_ K +TKs
() - Ts(s + 1)4 "(14)

Since the describing is real-valued, one simply has
to find the intersection of L(jw) with the negative
real axis. When jw is substituted for. in Equation
(14) we get, after separating the real and the
imaginary part

. K(A(w) + iB{w»
L(Jw) = T{4w4 _ 4w2)2 + (w5 _ 6w3 + w)2 (15)

where A = T{w8 - 6w4 + w2) + 4w4 - 4w2 and
B = T{4w5 - 4wS) - w5 + 6ws - w). The problem
is therefore reduced to finding the frequency where
the imaginary part is zero, i.e.

7.8w4 - 2.8w2 - 1 = 0 (16)

The equation has one positive real root w = 0.7616,
which corresponds to a limit-cycle period of 8.25 s.
This is longer than the period T = 6.778, obtained
in the simulation. The amplitude of the limit cycle
is then determined by solving Equation (13) for
w = 0.7616, which gives a = 5.6 mY. The value
a = 3.8 mV was obtained in the simulation.

A/D- and D / A-Conversion

If the controller is interfaced to the plant by A/D­
and D I A-converters the effect of the resolution
of the converters has to be determined. Figure 5
shows the result of one of several simulations where
the AID-converter has a higher resolution than the
DI A-converter. A limit cycle was observed in those
simulations. Because of the higher resolution of
the AID-converter, the controller produces control
signals which are not representable by the D/A­
converter. This results in an oscillation over one
quantization step of the D I A-converter. This phe­
nomenon can also be predicted by using describing
function analysis, where we assume a zero set-point

0.46 r---,.-----,r----,---r---y----,

0.455

0.45

0.445

0.442'-0 --...J25'---'30---3..L5---4.L0---4'-5--...J50

Figure 5. Response with a lO-bit AID and a 8-
bit D/A.

0.46 ,.---,----r---,---~--,--_,

0.455

0.45

0.445

0.442'-0---2'-5 --...J30---3..L5---4,c.O---4'-5--~50·

Figure 8. Response with a 8-bit AID and a 10-
bit D/A.

value and the D I A-converter is approximated by a
relay. The problem can be avoided by replacing the
function I giyen by Equation (9) by a function that
also models the roundoff in the DI A-converter.

Figure 6 shows a good result when an 8-
bit AID-converter and a lO-bit DI A-converter is
used when a step input of 0.45 V is applied.
These observations indicate that using a D I A­
converter with a lower resolution than the A/D­
converter may give rise to a limit cycle. It should
be emphasized that there are of course many other
factors which may be responsible for limit cycles.
There are also many other factors that in1I.uence
the selection of the resolution of the A/D- and
D I A-converters, e.g. the required accuracy of the
system.

Simulations also showed that a very low res­
olution (down to 4-bits) of the converters did not
have much effect on the step response of the sys­
tem. The accuracy of the system is, of course, less
with low resolution converters. Figure 7 shows the
response of the same system when a load distur­
bance of 0.3 V is introduced at t = 20 s.

0.7

0.6

0.5 ..
0.4 \ 0.3

/ \
0.2 "-0.1 ~

00 5 10 15 20 25 30 35

Figure 7. Same as Figure 6 but with a load
disturbance.

40

211

5. The nSP-Code

To develop and test assembly code of the PID­
controller on the Texas Instruments Family of
DSPs the Texas Instruments Software Develop­
ment System (SWDS) was used. This'system con­
sists of a PC-board with a TMS320C25 signal pro­
cessor and PC development environment, which
has many features. It is possible to set break-points
and single-step through the program. One useful
feature is the possibility to specify an input file (or
files) to the DSP and to direct the output (or out­
puts) of the DSP to an output file. This feature
makes it easy to test an algorithm, since a prede­
fined input signal can be fed to the controller to
test its open loop response.

Programs for PI- and PID-controllers were
written for the signal processors TMS32010 and
TMS320C25. The complete codes are given in
Appendices A, B, C and D. The code for the PID­
controller is organized in the following way:

INITIALIZE
load constants from program memory

to data memory
clear variables
load y(n-1) and ysp
reset external devices (f.ex. analog board)

PID
wait for input yen)
compute derivative (D)
round off, cheCk for overflow and store D
compute proportional part (P)
add D, P and I
round off, check for overflow and store in v(n)
compute u(n) from saturation function
output u(n)
compute I
check for overflow and store I

in double precision
GO TO PID

The code for the PI-controller is obtained by
deleting the computations of the D-term.

Initialization

After reset the program jumps into the initial­
ization routine. This part disables interrupts, sets
overflow mode and loads coefficient. from program
memory (where they are stored permanently) into
data memory. Then the states of the controller are

212

cleared, the set point value (yap) is read from PA3
and the process output (y(n - 1» from PAO. By
filling up the y-vector before entering the PID loop
a jump due to the derivative is avoided. The pro­
gram then goes into an infinite loop, to compute
the control signal.

Pin Calculations

The magnitude of the coefficient bd 'of the deriva­
tive term is less than 256. To represent it in the
DSP it must be scaled by dividing by 256. This can
be done by shifts. Before the derivative is stored it
is therefore Shifted left by 9 bits (8 bits plus one
left shift to account for the extra sign bit which is
generated in the multiplication).

The largest proportional gain is 16. The pro­
portional term is therefore divided by 16. It was
advantageous also to divide the D and I terms by
16 and restore the signal after the control signal 11

has been calculated. The same saturation, round­
ing and shifting can then be applied to both the
derivative term and the control signal. Since the
derivative must be divided by 16 before it is added
to the proportional part, it is advantageous to store
ad divided by 16. A little trick was used to calculate
the correct derivative. After adD(tli_l) has been
calculated and stored in the accumulator the term
bd(y(tli-l) - y(tli» is calculated, and the result is
stored in the P register. The value of the P register
is then added 16 times to the accumulator to form
the correct derivative divided by 16. By doing this
in overflow mode, overflow results in saturation of
the accumulator. This would not be the case if the
value in the accumulator were simply shifted left.
With the TMS320C25 adding is easily done using
the repeat instruction. After these calculations the
derivative is in the accumulator. The proportional
term is then added to the accumulator to obtain
(P+D)/16. In this way the proportional term does
not have to be stored separately.

To obtain the output 11, the integral computed
pr~viously is divided by 16 by shifting the value
right 4 bits. It is then added to P+D in the accu­
mulator. The output then goes through the satura­
tion arithmetic. It is rounded and shifted before it
is stored as a 16-bit number. The saturation func­
tion f is called to form the final output u.

Since the control signal u depends on the inte­
gral from the previous sample, it can be converted
to analog form before the integral is updated. This
shortens the computational delay between the AID

Table 3. Cycle count and maximum IILmpling
frequency for PI- and pm-c:ontrollera.

PI pm

DEVICE cy:les KHs cycle. KH.

TMS32010 94 53 145 34
TMS320C14 94 66 145 43
TMS320C25 89 112 141 70

and D/ A-conversions. To avoid integral offset, the
integral is computed and stored in double preci­
sion. Saturation arithmetic is performed before it
is stored, although it is actually not necessary if
proper anti-windup is used.

With the chosen method of organizing the
calculations the P, D and I terms are added, to
form 11, with a precision of 27 bits. The terms D
and 11 are then stored with a precision of 16 bits
and the integral is calculated and stored with a
precision of 31 bits.

Saturation Arithmetic. Before the derivative
or the control signal 11 is stored in memory as a 16-
bit value, it nmst by shifted left by 5 bits, because
the signal is divided by 16 in internal calculations
and an additional left shift must be performed to
account for the extra sign bit generated in the nml­
tiplication. The value is rounded and checked for
overflow before shirting it. If overflow is detected,
the value is replaced by the largest positive or neg­
ative number.

Set-Point Value. The set point is read via
interrupt. This interrupt is disabled when the
control value is computed, but is allowed for a short
period, before the next process output is read.

Computation Time

By using the timer on the TMS320C25 it was pos­
sible to count the cycles required for one execution
of the PID (or PI) loop. To find the number of
cycles required for one execution of the TMS32010
(TMS320C14) code, a simple cycle count was done.
In all instances it is assumed that the internal
memory of the DSPs are used.

Table 2 shows the number of cycles for each
controller 'and the maxinmm sampling frequency
which can be used. From this table we see that the
calculation of the derivative consumes a large por­
tion of the total cycles, approximately 50%. The
reason for this is that the shifting and saturation
arithmetic on the derivative is complicated, be­
cause the coefficients of the controller are scaled

Table 3. Cycles count for difFerent parb of the
PID-controller.

TMS32010
OPERATION cycle.

Derivative 9

-..
- arll 43

Proportional 7
Integral Bhifting 12
BlSB on v 23
anti-windup 12
Integral 15
Integral B.a. 10
I/O and other 14

Total 145

BrBI = saturattoD, round, shift, store
B.a. = Baturation arithmetic

TMS32OC25
cycleo

9
45
7
8

23
12
13
10
14

141

differently. If the coefficients would all have the
same upper limit the same scaling constant could
be used and the shifting and saturation arithmetic
would be simpler and faster. Table 3 shows how
the cycles are divided between different functions of
the algorithm. Notice that the division is somewhat
arbitrary, because it is not obvious when one op­
eration begins and the other ends. The saturation
arithmetic-, rounding- and shifting-function used
on the derivative and the output 11 uses 19 cycles,
the saturation arithmetic on the integral uses 10
cycles and the anti-windup function uses 12 cycles.

Notice that the code must be modified if Kc
and N are to be larger than 16. Also notice that
the code can be improved if the parameters of
the controller can be limited to smaller ranges.
For specific applications, where tighter bounds on
parameters and controller states are available, the
code can be shortened drastically by removing
saturation arithmetic and by simplifying scaling.

It is interesting to note that a crude time
estimate, based on the operation count in Table I,
underestimates the computation time by an order
of magnitude.

6. Testing

To obtain high quality code it is necessary to
develop good testing procedures. The DSP code for
the PI and PID controllers were tested by simple
laboratory experiments to verify that the controller
worked as a proper PID controller. To ensure that
the code gives the correct numerical results, the
following procedure was introduced. Since a PID

213

0.2
0.1

0
-0.1
-0.2
-0.3
-0.4

5 10 15 20 25 30 35

Figure 8. Test of the proportional and integral
actions.

Figure 9. Test of the derivative action.

40

controller is a dynamical system, its behavior can
be tested by computing its response to given input
data with known responses. The test can easily
be automated by storing the data in files. This
was easily done using the facilities in the Texas
Instrument Software Development System. This
section describes how the testing was done. The
parameters used were K = 0.6, Tel = 0.5, Ti = 2.2,
Tt = 0.5 and N = 8. Parameters ael, bel, bi and bl

were calculated by assuming a sampling period of
0.1 s.

To test proportional and integral action a
symmetrical square wave with a period of 40 s
and an amplitude of 0.1 V was used as an input
sequence. To get a simple case the parameters of
the derivative term were set to zero (which is really
not necessary, since the derivative dies out very
quickly). This sequence can therefore also be used
to test a PI controller. Figure 8 shows the input
and the resulting output. For a constant input the
outPllt of the controller at the time t should be

tK
'U(t) = Tie e + 1(0) + Kee

With 1(0) = 0 the output should be equal to
-0.6055 V after 20 seconds. The line y = -0.6055

214

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-1
0 5 10 15 20 30 35 40

Figure 10. Test of the saturation arithmetic.

0.3 ~-~---'---"-----'r-r--"'---,

0.2

0.1

o~------~--~--------------~

-0.1

10 20 30 40 50 60

Figure 11. Test o~ the anti-windup.

is also drawn in Figure 8 indicating that the
proportional and the integral term work properly.

To test the derivative action two impulses,
lasting one sampling period, Qf magnitude -0.1 V
and +0.1 V where applied to the input at the time
t = 1 sec. and t = 3 sec. Figure 9 shows the result.
The formula for the derivative term is

If an impulse of magnitude 0.1 V is applied to the
derivative we get the sequence: -0.2446, 0.1136,
0.0437, 0.0168, 0.0065, The first numbers of
this sequence are also plotted on the Figure 9,
showing that the derivative action works properly.
The small error in the beginning of the second
response is due to the integral of the first impulse.
This integral is canceled out by the second impulse
resulting in a final output equal to zero. To test the
saturation arithmetic the amplitude of the input
square wave was increased to 0.7 V. Figure 10
shows good results. When the output reaches
the limit it is saturated without causing overflow
oscillations. Finally, Figure 11 shows the result
when the anti-windup reset function is used to limit
the output to ±0.3 V. All versions of the PI- and
PID-controller were tested by using these input

sequences. Once a correct set of output files have
been obtained one can test modified algorithms
simply by comparing the output files. either by
plotting the output or by using a file-compare
program.

Other testing procedures were also developed
using ideas similar to the ones described above.

7. Conclusions

This paper has given algorithms for high quality
PI and PID controllers with features like set-point
weighting, limitation of derivative gain and anti­
windup. It has also been demonstrated how the
code can be implemented on a DSP using fix-point
calculations. Such an implementation necessarily
requires some a priori knowledge of signal and pa­
rameter ranges. This means that the code given
here only works well in cases that fit the assump­
tions made.

We have attempted to describe our reasoning
in sufficient detail so that the code can be easily
adapted to other situations. Some test procedures
that we have found useful are also presented. The
performance estimates show that PI controller can
be executed at 53 kHz on a TMS32010 and at
112 kHz on a TMS320C25.

8. References

.!strOm. K. J .• and T. Hiigglund (1988): Auto­
lllJ1tic Tuning ofPID Controllers. ISA. Research
Triangle Park. NC.

Astrom, K. J .• and B. Wittenma.rk (1990): Com­
puter Controlled Systems - Theory and Design,
Second edition, Prentice-Hall, Englewood Cliffs,
NJ.

Deshpande. P. B., and R. H. Ash (1981): Com­
puter Process Control, ISA, Research Triangle
Park, NC.

Texas Instruments (1986): Digital Signal Process­
ing Applications with the TMS320 Family - The­
ory, Algorithms, and Implementations, Digital
Signal Processing, Semiconductor Group.

Texas Instruments (1989a): TMS320Clx /
TMS320C2x - User's Guide, Digital Signal Pro­
cessor Products.

Texas Instruments (198gb): TMS320 Family De­
velopment Support - Reference Guide, Digital
Signal Processor Products.

Texas Instruments (1990a): Digital Signal Process­
ing - Applications with the TMS320 Family,
Application book volume 3, Digital Signal Pro­
cessor Products.

Texas Instruments (1990b): TMS320C3x - User's
Guide, Digital Signal Processor Products.

215

Appendix A: Pl-Controller for TMS32010

PI Controller for TMS32010 Version 1.0
Author: le~ Steinsrimsson
Date: 3-26-1990

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
.bss ITE1,1 i Temporary storages
.bss LTE1,1
.bss ITE2,1
.bss LTE2,1
.bss 11,1 ilntegral high
.bss IL,l ilntegral low
.bss KC,l iCoeff for P
.bss KCB,l
.bss BI,l jCoeff for I
.bss BT,l
.bss UMU,l jMaximum output
.bss UMIN,l iMinimum output
.bss MODE,l iExtra constant
.bss CLOCK,l i Sampling rate
.bss ONE,l iOne
.bss MUNUM,l i Maximum number
.bss MINNUM, 1 i Minimum number

DTend .bss MINUS ,1 iFFFF
iEnd of parameters in data memory

.bss YN,l

.bss YNM1,1

.bss YSP,l

.bss UN,l

.bss VN,l

.bss STAO,l

jy(n)
iy(n-1)
iY set point
iOutPUt
iOutput before f
iSpace to store status register

iBegin program memory

.sect
B
B

"IRUPTS"
START
ISR

iBranch to start of program
iInterupt service routine

iStore parameters in program memory

Ptable

Ptend
SCALE

216

. data

.set

. word

. word

. set

.set

$
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768
-1
$-1,
15

PI Controller for TMS32010 Version 1.0

iInitialize

• text
START DINT

NOP
SOVM

iDisable interupts

iSet overflow mode

iLoad coeff from prog. mem to data memo use TBLR (not BLKP) for 1. generation
idevices

LARK ARO,DTend
LARK AR1,Ptend-Ptable
LACK Ptend

LOAD LARP ARO
TBLR *-,ARl
SUB ONE
BANZ LOAD

iInitialize variables

LDPK IH
ZAC
SACL IH
SACL IL

OUT MODE,PA4
OUT CLOCK ,PAS

WAITl BIOZ GETl
B WAITl

GETl IN YSP,PA3

WAIT2 BIOZ GET2
B WAIT2

GET2 IN TNM1,PAO

iBegin PI

WAIT BIOZ GET
B WAIT

GET IN TN,PAO

ZAC

iP-section

LT YSP
MPJ KCB

iARO points to end of data block
iCounter
iBeginning addre,ss :j.n program memory
iPoint to ARO
i Move , decr. ARO and point to ARl
iSubtract one from accumulator
iARl not 0 then decr. ARl and branch
i=> Coeff loaded into data memory

iPoint to correct data page
iClear variables

iInit analog board

iLoad ysp

iLoad yen-l)

iWait for input

iClear accumulator

iy(n) * KCB

217

PI Controller for TMS32010 Version 1.0

LTl
MPY
SPAC

SACH
SACL

ZALH
ADDS
SACH
SACL
LAC
SACH
LAC
lOR
AND
ADD

ADDS
ADDH

LARK
LARP
CALL

CALL
OUT

iI-section

ZAC
LT
MPY

LTl
MPY
SPAC

LT
MPY

LTl
MPY
SPAC

ADDS
ADDH

218

Yli
XC

HTEl
LTEl

m
n
HTE2
LTE2
LTE2.12
LTE2
MINUS. 12
MINUS
LTE2
HTE2.12

LTEl
HTEl

ARO.VB
ARO
ROUOF4

FUNCT
UN.PAl

YSP
BI

IN
BI

UN
BT

VB
BT

n
m

iacc • y(n)*XCB - ysp*XC

iStore P temporarily

iShift integral right 4

iI in acc rigth shifted 4

iAdd P to acc to for.m P + I

iPoint ARO to VN

iRound off and overflow check

iActuator saturation function
iOutput control signal

iAdd old I with double precision

Page 3

PI Controller for TMS32010 Version 1.0

INEG

SACH
SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL

IH
IL

INEG
MAlNUH,SCALE
OUT4
MAlNUH,SCALE
IH
IL

B OUT5

SUB MINNUH,SCALE
BGEZ OUT4
LAC MINNUH , SCALE
SACH IH
SACL IL
B OUT5

OUT4 NOP

OUT5

NOP
NOP
NOP
NOP
EINT
NOP
NOP
DINT
B WAIT

;Store integral

;Overflow check (10 instr. cycles)
;Subtract maximum pos. number
;If acc <= 0 then no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

;Rounding and overflow function (11 cycles)

ROUOF4 BLZ RNEG

RNEG

ADD ONE,SCALE-5
SACH HTEl
SACL LTEl
SUB
BLEZ
ZALS

MAlNUM,SCALE-4
RNO
MAlNUM

SACL *
RET

ADD ONE,SCALE-5
SACH HTEl
SACL LTEl
SUB MINNUM,SCALE-4
BGEZ RNO
ZALS MINNUM
SACL *
RET

;Check if number negative
; Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

; Round
;Store value

;Subtiact scaled min neg number
;If acc >= 0 then no overflow
;else store min neg number

219

PI Controller for TMSS2010 Version 1.0

RNO ZALH HTE1 jShift number left 4 before store
ADDS LIE1
SACH HTE1,4
SACL LIE1
ZALH LIE1
SACH LIE1,4
ZALH HTE1
ADDS LIE1
SACH .,16-SC.lLE
RET

jSaturation function (14 instr. cycles)

FUNCT Z.lLH VN jLoad VN
SUBH OMIN
BLZ LOWER1 j Branch if v < umin
Z.lIJl VN
SUBH UH.lI
BLZ SAME j Branch if v < umax
B HIGHER jV > .. umax

LOWER1 ZALH OMIN
SACH UN jU .. umin
NOP jAlways same time
NOP
NOP
NOP
NOP
NOP
RET

SAME Z.lLH VN
SACH UN jU = v
NOP
NOP
RET

HIGHER ZILH OM.lI
SACH UN jU .. umax
RET

jlnterupt service routine. To read set point value

ISR SST STAO jSave status
IN YSP,PAS j~oad ysp
LST STAO iRestore status
RET jReturn
.endaa

220

Appendix B: PI-Controller for TMS320C25

PI Controller for TMS320C25 Version 1.0
Author: Hermann Steingrimsson
Date: 3-26-1990

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
.bss HTE1, 1 iTemporary storages
.bss LTE1,l
.bss HTE2, 1
.bss LTE2,l
.bss IH,l iIntegral high
.bss IL,l ilntegral low
.bss KC,l iCoeff for P
.bss KCB,l
.bss BI,l iCoeff for I
.bss BT,l
.bss UMAI,l i Maximum output
.bss UMIN,l i Minimum output
.bss MODE,l iExtra constant
.bss CLOCK,l i Sampling rate
.bss ONE,l iOne
.bss MAINUM,l i Maximum number
.bss MINNUM, 1 i Minimum number

DTend .bss MINUS ,1 iFFFF
iEnd of parameters in data memory

.bss YN,l

.bss YNM1,l

.bss YSP,l

.bss UN,l

.bss VN,l

.bss STAO,l

.bss ST11,l

iBegin program memory

. sect "IRUPTS"
B START
B ISR

iy(n)
iy(n-l)
iY set point
iOutput
iOutput before f
iSpace to store status register

iBranch to start of program
ilnterupt service routine

i Store parameters in program memory

. data
Ptable .set

• word
• word

Ptend .set
SCALE .set

$
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768
-1
$-1
15

221

PI Controller for TMS320C25 Version 1.0

jlnitialize

.text
START DINT

NOP
SOVM
SSIM
SPM 0

jDisable interupts

jSet overflow mode
jSet sign-extension mode
jNo shifting from P register

jLoad coeff from prog. mem to data memo

LRLK ARO,DTend
LARK AR1,Ptend-Ptable
LALK Ptend

LOAD LARP ARO
TBLR *-,AR1
SUBK 1
BANZ LOAD

jlnitialize variables

LDPK IH
ZAC
SACL IH
SACL IL

OUT MODE,P14
OUT CLOCK,PA5

jWAITi BIOZ GET1
B WAITi

GET1 IN YSP,PA3

jBegin PID

JWAIT BIOZ GET
B WAIT

WAIT IN Yll,PAO

jP-section

LT YSP
MPY KCB

LTP Yll
MPY KC
SPAC

222

jARO points to end of data block
jCounter
jBeginning address in program memory
jPoint to ARO
jMove. decr. ARO and point to AR1
jSubtract one from accumulator
jAR1 not 0 then decr. AR1 and branch
j=> Coeff loaded into data memory

jPoint to correct data page
j Clear variables

jlnit analog board

jLoad ysp

jWait for input

jChange WAIT to GET when are removed

jy(n) * KCB

jacc = y(n)*KCB - ysp*KC

PI Controller for TMS320C25 Version 1.0

SACB
SACL

ZALB
ADDS
SPR
SPR
SPR
SPR

ADDS
ADDB

LRLK
LARP
CALL

CALL
OUT

iI-section

IT
MPY

lTP
MPY

lTS
MPY

LTA
MPY
SPAC

ADDS
ADDH

SACH
SACL

BlZ
SUB
BlEZ
LAC
SACH
SACl
B

BTE1
LTE1

IH
IL

LTE1
BTE1

.&.RO,VN

.&.RO
ROUOP4

FUllCT
UN,PA1

YSP
BI

TN
BI

UN
BT

VN
BT

Il
IH

IH
IL

INEG
MAlNUM, SCALE
OUT4
MAlNUM ,SCALE
m
Il
OUT5

iStore P

iShift integral right 4
ibecause coeff of P where divided by 16

iAdd,P to acc to form P + I

iPoint ARO to VN

iRound off and overflow check

iActuator saturation function
iOutPUt control signal

iAdd old I with double precision

iStore integral

iOverflov check (10 instr. cycles)
iSubtract maximum pos. number
iIf acc <= 0 then no overflow
ielse store maximum number

,

!

223

PI Controller for TMS320C25 Version 1.0

INEG SUB
BGEZ
LAC
SACH
SACL
B

OUT4 NOP
NOP
NOP
NOP
NOP

OUT5 ElNT
NOP
NOP
DINT
B

MINNUM,SCALE
OUT4
MINNUM,SCALE
IH
IL
OUT5

WAIT

;Subtract maximum neg number
;If acc)- 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

Rounding, overflow and shifting function (13 cycles)

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZJ.LS
SACL
NOP
RET

RNEG ADD
SACH
SACL
SUB
BGEZ
ZALS
SACL
NOP
RET

RNO ZALH
ADDS
SACH
RET

RNEG
ONE,SCALE-5
BrEl
LTEl
MAlNOM ,SCALE-4
RNO
MAlNOK

*

ONE,SCJ.LE-5
BTEl
LTEl
KINNUM,SCALE-4
RNO
KINNOK
*

BTEl
LTEl
*,5

;Check if number negative
; Round
; Store value .

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

; Round
;Store value

;Subtract scaled min neg number
;If acc)= 0 then no overflow
;else store min neg number

;Shift number left 4+1 before store

;Saturation function (12 instr. cycles)

224

PI Controller tor TMS320C25 Version 1.0

FUNCf ZILI VB iLoad VN
SUBI UMIIl
BLZ LOWER1 iBranch it v < umin
ZALI VB
SUBI UMll
BLZ SIME : Branch it v < UlIUlX

ZILI UM1l :v >= UlIUlX

SACI Ull :u = UlIUlX

RET

LOWER1 ZILI UMI!l
SICI UN :u • umin
!lOP :llways same time
!lOP
!lOP
!lOP
RET

SAME ZILI VB
SACI UN :u = v
RET

:Interupt service routine. To read set point value

ISR SST STAO :Save status
SST1 ST11
III YSP,PA3 :Load ysp
LST STAO : Restore status
LST1 ST11
RET : Return
.endaa

225

Appendix C: PID-Controller for TMS32010

PID Controller for TMS32010 Version 1.0
Roundoff Corrected
Bermann Steingrimsson
Date: 3-26-1990

ad and Kc must be divided by 16 before stored
bd must be divided by 256 before storage

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS,AND VARIABLES
.bss HTE1,1 ;Temporary storages
.bss LTE1,1
.bss BTE2,1
.bss LTE2, 1
.bss IB,1 ;Integral high
.bss IL,1 ;Integral lOll
.bss DB,1 ; Derivative high
.bss KC,1 ;Coeff for P
.bss KCB,1
.bss BI,1 ;Coeff for I
.bss BT,1
.bss BD,1 ;Coeff for D
.bss AD,1
.bss UMAI,1 ; Maximum output
.bss UMIN,1 ;Minimum output
.bss MODE,1 ;Extra constant
.bss CLOCK,1 ; Sampling rate
.bss ONE,1 ; One
.bss MAIWM,1 ; Maximum number
.bss MINNUM,1 ; Minimum number

DTend .bss MINUS,1 ;FFFF
;End of parameters in data memory

.bss YN,1

.bss YBM1,1

.bss YSP,1

.bss UN,1

.bss VN,1

.bss STAO,1

;Begin program memory

.sect
B
B

"IRUPTS"
START
ISR

;y(n)
;y(n-1)
;y set point
; Output
;Output before f
;Space to store status register

;Branch to start of program
;Interupt service routine

;Store parameters in program memory

226

PID Controller for TMS32010 Version 1.0

. data
Ptable .set

. word

. word
Ptend .set
SCALE .set

jInitialize

. text
START DINT

NOP
SOVM

$
1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768
-1
$-1
15

jDisable interupts

jSet overflow mode

jload coeff from prog. mem to data memo use TBlR (not BlKP) for 1. generation
jdevices

lARK ARO,DTend
LARK AR1,Ptend-Ptable
LACK Ptend

lOAD LARP no
TBlR *- ,ARl
SUB ONE
BANZ lOAD

jInitialize variables

lDPK II
ZAC
SACl II
SACl IL
SACl DI

OUT MODE,PA4
OUT ClOCK,PA5

WAITl BIOZ GETl
B WAITl

GETl IN YSP,PA3

WAIT2 BIOZ GET2
B WAIT2

GET2 IN YNM1,PAO

jBegin PID

WAIT BIOZ GET
B WAIT

JARO points to end of data block
jCounter
jBeginning address in program memory
jPoint to ARO
jMove, decr. ARO and point to ARl
jSubtract one from accumulator
jARl not 0 then decr. ARl and branch
j=> Coeff loaded into data memory

jPoint to correct data page
jClear variables

jInit analog board

jload ysp

jload y(n-l)

jWait for input

227

PID Controller for TMS32010 Version 1.0

GET II

;D-section

Z1LK
SUBK
SACK
DMOV

LT
HPY
PIC

LT
MPY

IPIC
IPIC
!PAC
APAC
IPIC
!PAC
APAC
APAC
!PAC
APAC
APAC
IPIC
APAC
IPIC
!PIC
!PAC

SACB
SICL
LARK
L1RP
CILL
ZALB
ADDS

iP-section

LT
HPY

LTl
HPY

228

Ylf,PI0

YlfMl
Ylf
!TEl
Ylf

DB
AD

!TEl
BD

il
i2
i3
;4
;5
;6
i7
;8
i9
;10
ill
i12
;13
i14
i15
i16

!TE2
LTE2
ARO,DB
ARO
ROUOF4
HTE2
LTE2

YSP
KCB

Ylf
KC

;Change WAIT to GET when are removed

iy(n-l) - yen)

iStore difference
iCOPY YI into YIMl

;ad*D (ad was divided by 16)

;difference * bd

;Since bd was divided by 256, bd*diff is
iadded 16 times to the accumulator to
iform D divided by 16. By doing this the
ioverflow mode will take care of overflow

iStore derivative

iPoint to DB

;Check for overfl. shift and store
iRestore the derivative

;y(n) * KCB

iacc = y(n)*KCB - ysp*KC

PID Controller for TMS32010 Version 1.0

SPAC

SACH HTEl ;Store P + D
SACL LTEl

Z!LH m jShift integral right 4
ADDS IL
SACH HTE2
SACL LTE2
LAC LTE2,12
SACH LTE2
LAC MINUS, 12
lOR MINUS
AND LTE2
ADD HTE2,12 jI in acc right shifted 4

ADDS LTEl jAdd P + I to acc to form P + I + D
ADDH HTEl

LARK !RO,VN jPoint ARO to VN
LARP !RO
CALL ROUOF4 jRound off and overflow check

CALL PUNCT jActuator saturation function
OUT UN ,PAl jOutput control signal

jI-section

ZAC
LT YSP
MPY BI

LTA TN
MPY BI
SPAC

LT UN
MPY BT

LT! VN
MPY BT
SPAC

ADDS IL jAdd old I with double precision
ADDH m

SACH m ;Store integral
SACL IL

229

PID Controller for TMS32010 Version 1.0

!NEG

BLZ
SUB
BLEZ

!NEG
MlINUM,SCALE
OUT4

LAC MAINUM,SCALE
SACH IH
SACL IL
B OUTS

SUB MINNUM,SCALE
BGEZ OUT4
LAC MINNUM , SCALE
SACH IH
SACL IL
B OUTS

OUT4 NOP

OUTS

NOP
NOP
NOP
NOP
EINT
NOP
NOP
DINT
B WAIT

;Overflow check (10 instr. cycles)
;Subtract maximum pos. number
;If acc <= 0 then no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

Rounding, overflow and shifting function (19 cycles)

ROUOF4 BLZ RNEG

RNEG

230

ADD ONE,SCALE-5
SACH HTEl
SACL LTEl
SUB MllNUM,SCALE-4
BLEZ RNO
ZALS MAINUM
SACL •
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET

ADD ONE,SCALE-5
SACH HTEl
SACL LTEl
SUB MINNUM,SCALE-4

;Check if number negative
; Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

; Round
;Store value

;Subtract scaled min neg number

PID Controller for TMS32010 Version 1.0 Page 6

BGEZ RNO iIf acc >= o then no overflow
ZALS MINNUM ie1se store min neg number
SACL ...
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET

RNO ZALH HTEl iShift number left 4 before store
ADDS LTEl
SACH HTE1.4
SACL LTEl
ZALH LUl
SACH LTE1.4
ZALH HTEl
ADDS LTEl
SACH 16-SCALE
RET

iSaturation function (12 instr. cycles)

FUNCT ZALH VN iLoad VN
SUBH UMIN
BLZ LOWERl iBranch if v < umin
ZALH VN
SUBH UMAI
BLZ SAME iBranch if v < umax
ZALH UMAI iV >= umax

SACH UN iU = umax
RET

LOWERl ZALH UMIN
SACH UN iU = umin
NOP iA1ways same time
NOP
NOP
NOP
RET

SAME 2ALH VN
SACH UN ;u = v
RET

iInterupt service routine. To read set point value

231

PID Controller for TMS32010 Version 1.0

ISR SST S110 iSave status
IN YSP.P13 iLoad ysp
LST S110 iRestore status
RET iReturn
.endal

232

Appendix D: PID-Controller for TMS320C25

PID Controlle~ for TKS320C25
Roundoff Corrected
Author: Hermann Steingrimsson
Date: 3-26-1990

ad and Kc must be divided by 16 before stored
bd must be divided by 256 before storage

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
.bss HTE1,1 iTemporary storages
.bss LTE1,1
.bss HTE2,1
.bss LTE2,1
.bss IH,1 i Integral high
.bss IL,1 i Integral low
.bss DH,1 iDerivative high

DTbeg .bss KC,1 iCoeff for P
.bss KCB,1
.bss BI,1 iCoeff for I
.bss BT,1
.bss BD,1 iCoeff for D
.bss AD,1
.bss UMAl,1 i Maximum output
.bss UMIN,1 i Minimum output
.bss MoDE,1 i Extra constant
.bss CLoCK,1 i Sampling rate
.bss oNE,1 ione
.bss MAlNUM,1 i Maximum number
.bss MINNUM,1 i Minimum number

DTend .bss MINUS, 1 iFFFF
iEnd of parameters in data memory

.bss YN,1

.bss YNM1,1

.bss YSP,1

.bss UN,1

.bss VN,1

.bss STAO,1

.bss ST11,1

iBegin program memory

.sect
B
B

"IRUPTS"
START
ISR

iy(n)
iy(n-1)
iY set point
ioutput
ioutput before f
iSpace to store status register

iBranch to start of program
iInterupt service routine

iStore parameters in program memory

233

PID Controller for TMS320C25 Version 1.0

• data
Ptable .set

• word
. word

$
1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768
-1

Ptend .set $-1
SCALE .set 15

; Initialize

.text
START DINT iDisable interupts

NOP
SOVM iSet overflow mode
SSIM ;Set Sign-extension mode
SPM 0 iNo shifting from P register

iLoad coeff from prog. mem to data memo use BLKP

LRLK ARO ,DTbeg
LARP ARO
RPTK Ptend-Ptable
BLKP Ptable,*+

;Initialize variables

LDPK IR
ZAC
SACL IR
SACL IL
SACL DR

OUT MODE,PH
OUT CLOCK,PA5

WAITl BIOZ GET 1
B WAITl

GETl IN YSP,PA3

WAIT2 BIOZ GET2
B WAIT2

GET2 IN TNM1,PAO

;Begin PID

WAIT BIOZ GET
B WAIT

GET IN TN,PAO

234

iARO points to end of data block

iSet up counter
;Move data
i=> Coeff loaded into data memory

iPoint to correct data page
;Clear variables

,i Ini t analog board

iLoad ysp

iLoad y(n-1)

;Wait for input

;Change WAIT to GET when are removed

Page 2

PlD Controller for THS320C25 Version 1.0

;D-section

ZALB
SUBB
SACB
DHOV

LT
HPY

LTP
HPY

RPTK
APAC

SACB
SACL
LRLK
LARP
CALL
ZALB
ADDS

;P-section

LT
HPY

L11
HPY
SPAC

SACB
SACL

INHl
IN
HTEl
IN

DB
AD

HTEl
BD

15

HTE2
LTE2
ARO,DB
ARO
ROUOF4
HTE2
LTE2

YSP
KCB

YN
KC

HTEl
LTEl

;y(n-l) - yen)

;Store difference
;Copy YN into YNHl

;ad*D (ad was divided by 16)

;difference * bd, and store previous product

;Since bd was divided by 256, bd*diff is
;added 16 times to the accumulator to
;form D divided by 16. By doing this the
;overflow mode will take care of overflow

;Store derivative

;Point to DB

;Check for overfl. shift and store
;Restore the derivative

;y(n) * KCB

;acc = y(n)*KCB - ysp*KC

;Store P + D

;P + D are now divided by 16 => shift integral right 4 bits before adding
ito P + D

ZALB lB
ADDS n
SFR
SFR
SFR
SFR

;Shift integral right 4

235

PID Controller for TMS320C25 Version 1.0 Page 4

ADDS lTEl ;Add P + I to acc to form P + I + D
ADDH UTEl

lRLK ARO,VN ;Point ARO to VN
LARP ARO
CAll ROUOF4 ;Round off and overflow check

CAll FUMCT ;Actuator saturation function
OUT UN,PAl ;Output control signal

; I-section

IT YSP
MPY BI

lTP TN
MPY BI

lTS UN
MPY BT

lTA VN
MPY BT
SPAC

ADDS Il ;Add old I with double precision
ADDH IH

SACH IH ;Store integral
SACl n

BlZ INEG ;Overflow check (10 instr. cycles)
SUB MAlNUM , SCALE ; Subtract maximum pos. number
BlEZ OUT4 ;If acc <= 0 then no overflow
LAC MAlNUM,SCAlE ; else store maximum number
SACH IH
SACl n
B OUT5

INEG SUB MINNUM,SCAlE ;Subtract maximum neg number
BGEZ OUT4 ;If acc >= 0 then no overflow
LAC MINNUM, SCALE ;else store minimum number
SACH IH
SACl n
B OUT5

OUT4 NOP
NOP
NOP

236

PID Controller for TMS320C25 Version 1.0

OUT5

NOP
NOP
EDIT
NOP
NOP
DINT
B WAIT

;Enable interupt

;Disable interupt
;Loop again

Rounding, overflow and shifting function (19 cycles)

ROUOF4 BLZ RNEG

RNEG

RNO

ADD ONE,SCALE-5
SACH HTE1
SACL LTE1
SUB MAlNUM,SCALE-4
BLEZ RNO
ZALS MAlNUM
SACL *
NOP
RET

ADD ONE,SCALE-5
SACH HTE1
SACL LTE1
SUB HINNUM,SCALE-4
BGEZ RNO
ZALS MINNUM
SACL *
NOP
RET

ZALH HTE1
ADDS LTE1
SACH *,5
RET

;Check if number negative
; Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

; Round
;Store value

;Subtract scaled min neg number
;If acc>= 0 then no overflow
;else store min neg number

;Shift number left 4 before store

;+1 shift because of sign

;Saturation function (12 instr. cycles)

FUNCT ZALH VN
SUBH UMIN
BLZ LOWER1
ZALH VN
SUBH UMAI
BLZ SAME
ZALH UMAI
SACH UN
RET

LOWER1 ZALH UMIN

;Load VN

; Branch if v < umin

;Branch if v < umax
;v >= umax
iU = umax

Page 5

237

PID Controller for TMS320C25 Version 1.0 Page 6

SiCH UN jU = umin
NOP jilllays same time
NOP
ROP
NOP
RET

SAME ZUH VR
SiCH UN jU = v
RET

jInterupt service routine. To read set point value

ISR SST SUO jSave status
SST1 STU
IN YSP,Pi3 jLoad ysp
LST SUO jRestore status
LST1 STU
RET jReturn
.endaa

238

DSP Implementation of a Disk Drive Controllert,

Hermann Steingrimsson
Graduate School of Business

University of Wisconsin
Madison, Wisconsin, USA

1. Introduction

The purpose of this paper is to study implementa­
tion of a controller based on state estimation and
feedback from estimated states on a digital signal
processor. Design of a control system for a disk
drive is chosen as an example. The controller is
implemented on a DSP that does not have float­
ing point hardware. The control problem is de­
scribed in Section 2, which also describes math­
ematical models of different complexity. Design of
a controller is discussed in Section 3. This section
contains a derivation of a continuous time con­
troller and a discrete time controller. The continu­
ous controller is used to choose design parameters
and to estimate orders of magnitude. The discrete
time controller is the algorithm implemented on
the DSP. The section on control design also con­
tains a discussion of design trade-offs. Implemen­
tation of the controller on a DSP is discussed in
Section 4. Scaling of parameters and states is a
major issue. An outline of the code is given. The
complete code is listed in the appendix. Testing of
the code is described in Section 5 and the paper
ends with conclusions and references.

2. Disk Drive Control

Modern disk drive use fast voice coil actuators to
position the magnetic heads on a track and to
keep them on track under closed loop control. The
task of the position control system is twofold: to
position the heads over a desired track and to keep
it there. The first task is a servo proble~ whereas
the second task is a regulation problem. This paper
treats the regulation problem.

, Part of this work was done when the first author w
visiting professor and the second author a graduate student
at the University of Texas at Austin.

Reprinted, with permission from author.

Karl Johan Astrom
Department of Automatic Control

Lund Institute of Technology
Lund, Sweden

Two methods are currently used for feedback
measurements. In a dedicated servo an entire sur­
face is used for position information, that could
have been used for data. In an embedded servo the
position information are embedded into the data
track at the beginning of each sector, instead of
using a separate surface. It is also possible to have
dual layers so that the servo information is on a
layer below the data layer.

The advantage of the dedicated servo is that
position information available continuously. With
a dedicated servo it is therefore possible to use a
controller with a high bandwidth. In an embedded
servo, position information is only obtained at a
sector boundary. This limits the track following
bandwidth and results in longer seek times, and
more sluggish track following. A dedicated servo
uses an extra surface for the position information.
Thermal differences between the position surface
and the data surfaces also give rise to errors.

Linear or rotary actuators with a permanent
magnet and a voice coil are used to move the head
across the tracks. The arm is ideally a rigid body
which can be modeled as a double integrator. The
large accelerations will, however, excite resonant
modes. This makes it difficult to achieve a high
bandwidth for positioning and track following.

Analog controllers have been used for servos.
They contain amplifiers, compensation networks,
notch filters, switches and passive components. The
parameters of the analog components change with
temperature and component aging can result in
deteriorated performance of the servo.

There are several advantages in using a digi­
tal servo. Components having drift and aging are
avoided, the number of components can be reduced
and servo performance can be increased. a digital
servo will, however, require high sampling rates.
This makes a micro controller less suitable. The in­
expensive DSP's offer computational power an or-

239

der of magnitude greater than the microcontrollers
and some, like the TMS320C14, do also have the
hardware for input-output similar to a micro con­
troller. Such components are ideally suited for im­
plementation of fast servos of the type used in disk
drives.

Position Detector

The head/track misalignment is the only informa­
tion available to the controller. Control thus has
to be based on error feedback. The position de­
tector generates a voltage which is proportional to
the misalignment of the -head and track. The op­
erating range is 23JtID. and the output voltage is
in the range 0-5 V. After A/D-conversion one unit
in the processor corresponds to a track/head mis­
alignment of 1l.5JtID. . The useful track width is
approximately 4.3JtID..

Control Signal

The D / A-converter generates a voltage in the range
±5 V. This voltage is amplified by an amplifier
which generates a current. The current passes
through the voice coil and generates a torque to
move the arm.

Physical Constants of the Drive

The drive system has the following parameters:
Pivot to head radius

R: 0.08m
Power amplifier gain

Kpo: Q.5 A/V
Torque constant of the actuator

Kc: 0.09 Nm/ A
Total moment of inertia

J: 50.10-8 Kgm2

Mathematical Model

A mathematical model describing the position of
the arm as a function of the current trough the
coil is a double integrator

(1)

where '(J is the angle of the arm. The transfer
function from voltage u to arm position y is

G (.I) = yes) = Kl'
l' U(s).s2

(2)

240

where
Kl' = KpoKcR/ J ~ 72m/s2V

The model given by Equation (1) neglects the fact
that the arm has compliance. If this is considered,
the plant transfer function becomes Gpl = GpG1 ,

where

(3)

Typical values of w and "'1 are 2 KHz and 3 KHz.
The model given by Equation (1) is a good ap­
proximation of low frequencies. Because of the res­
onances this model does, however, not describe the
system well at frequencies approaching one kHz.
For those frequencies it is necessary to use models
like (3) and (4) or even more complicated models.

Disturbances

The major disturbances acting on the system are
low frequency load disturbance and a periodic
tracking error. Load disturbances are due to the
torque from the wires connected to the arm. This
torque is almost constant at a given track, but it
changes with the track. It may also change with
temperature. The second disturbance is due to
the eccentricity of the disk which translates into
a periodical tracking error. Since the amplitude
of this error is small, the disturbance can be
approximated by a sinusoid with the rotational
frequency of the disk. By introducing the state :1:3,

the load disturbance can be added to equation (1),
giving

(5)

3. Controller Design

Control algorithms for the disk drive will be de­
rived in this section. A continuous time controller
for the simple rigid body model is first derived.

This derivation gives insight into the control prob­
lem and guide lines for choosing the design param­
eters. The controller is obtained using a straight­
forward pole-placement method. See [.A.strom and
Wittenmark, 1990]. A discrete time algorithm is
then derived. This algorithm is the basis for the
DSP implementation.

A state-space model of (5) is

where

A= [~
1
0
0

and ZI:

Z2:

Z3:

Kp:
u:

:iI(t) = Az(t) + Bu(t)
yet) = Cz(t)

~lB= [~plY= (1

position [m]
velocity [m/s]
torque [Nm]
gain [m/s2V]
control signal [V]

Continuous-Time Controller

(6)

0 0)

It is easily verified that the states ZI and Z2 of the
model (6) are controllable. The disturbance state
Z3 is naturally not controllable. All the states of
the system are observable. A controller based on
a state-feedback and an observer can therefore be
designed.

Sta.te Feedback. The controller will now be de­
rived in the straightforward manner. See [.A.strom
and Wittenmark, 1990]. It is first assumed that all
states are measurable. The state feedback

gives the closed-loop system

:iI(t) = (A - BL)z(t) (8)

The gains 11 and 12 are selected such that the
characteristic polynomial of the closed loop system
becomes

8(,,2 + 2CpWp" + III;) (9)

Notice that the zero at the origin is due to the un-
controllable disturbance mode. The characteristic
polynomial of (8) is

11(82 + Kpl28 + Kp1l)

To obtain (9) the feedback gains 11 and 12 should
thus be chosen as

11 = ",;/Kp

12 = 2Cp"'p/ Kp
(10)

The gain 13 is chosen to give perfect disturbance
cancellation, i.e.

13 = l/Kp (11)

The control law (7) can be interpreted as a feed­
back from the process states ZI and Z2 and a feed­
forward from the disturbance state Z3.

Sta.te Obllerver. A state observer is given by

i(t) = A:i:(t) + Bu(t) + K(y(t) - C:i:(t» (12)

where :i: is the estimate of the state vector z. The
reconstruction error iii = z - :i: is given by

:ii(t) = (A - KC)i(t) (13)

The characteristic polynomial of this system is

8S + 1:1 ,,2 + k211 + k3

The observer gains k1, k2 and k3 are chosen so that
the observer has the characteristic polynomial

The following observer gains are then obtained

kl = 2'0"'0 + 0.0

1:2 = "'~ + 2'oWoao

1:s = ",!ao

Discrete-Time Controller

(15)

To derive a discrete time controller the system (6)
is sampled. This gives

z(k + 1) = 4!z(k) + ruCk)
(16)

y(k) = Cz(1:)

where

[~
h

h 2 /2] [Kph2/2j
4!= 1 h , r= Kph

0 1 0 (17)

C= (1 0 0)

241

and h is the sampling interval. The states :1:1 and
:1:2 of the discrete time system (17) are controllable
but disturbance state :1:3 is of course uncontrollable.
All states are observable.

First consider the case when all states are
measured. With state feedback the closed loop
system has the characteristic polynomial

(18)

Notice that the pole z = 1 is due to the uncontrol­
lable disturbance mode. The desired closed loop
characteristic polynomial is obtained by sampling
(9). This gives

(z- 1) (z2 + 1Zp1Z + 1Zp2)

where

1Zp1 = -2e-Cp"'phcos (wphJl -,~)
1Zp2 = e -2Cp"'ph

(19)

Choosing the feedback gains It and h so that (19)
and (18) are the same gives

I _ 1Zp1 + 1lp2 + 1
1 - K p h2

I _ 1Zp1 - 1Zp2 + 3
2 - 2Kph

(20)

State Obse.,."e,.. A state-observer of the form

z(klk) = z(klk - 1) + K(y(k) - y(klk - 1»

z(k + 11k) = ~z(klk) + ruCk)
y(k + 11k) = Cz(k + 11k)

(21)
is chosen. The reconstruction error is then given by

:il(k + 11k) = ~(I - KC):il(klk - 1) (22)

This system has the characteristic polynomial

242

Requiring that this polynomial be equal to

where ao1 and ao2 are given by equation (19) and

a03 = e-tJoh (23)

gives

k1 = 1 - ao2aoa

k _ ao1 - ao2 - aoa + ao1 ao3 + 3ao2aoa + 3
2- n ~~

k _ aQ1 + ao2 - aoa - ao1ao3 - ao2aoa + 1
3 - h2

The Control Algorithm

Reorganizing the calculations to minimize the de­
lay between the AID- and D I A-conversions gives
the following algorithm.

ALGORITHM 1

1. Read

2. Compute

3. Output

4. Update

5. Wait

y(k)

z(klk) = z(klk -1) + Ke(t)
e(t) = y(k) - y(klk - 1)
v(k) = -Lz(klk)
u(k) = f(v(k»
u(k)

z(k + 11k) == ~z(klk) + ruCk)
y(k + 11k) = Cz(k + 11k)

where the function f is a model of the actuator
nonlinearity. 0

Notice that the algorithm has been organized so
that the computational delay between the AID and
D I A converters are minimized. Notice also that
Step 2 of this algorithm can be expressed as

z(k + 11k) = ~nz(klk - 1) + r ny(k)
v(k) = Cnz(klk - 1) + Dny(k)

where

~n = ~ - ~KC -rL +rLKC
rn=~K-rLK

Cn = -L+LKC

Dn = -LK

(25)

Sampling Frequency and Anti-Aliasing
Filter

The following rule of thumb for the selection of
sampling frequency for a digital controller with a
zero-order hold, is given by [Astrom and Witten­
mark, 1990j.

0.2 $; weh $; 0.6 (26)

where We is the crossover frequency. With a sam­
pling frequency of 20 KHz the crossover frequency
can be at least 1 kHz. This was judged adequate
for the application.

A prefilter in the form of a second order Bessel
filter with the bandwidth 7500Hz was chosen to
avoid aliasing.

Design Parameters

The controller has the design parameters: wP ' (p,
WO, (0' ao and h that must be chosen. The choice of
sampling interval has already been discussed. Pa­
rameters (p and (0' which represent relative damp­
ing, can easily be chosen. Then there remain three
parameters wp , Wo and ao • Requirements on desired
settling time and disturbance rejection have to be
matched against constraints due to model uncer­
tainty. Recall that the rigid body model used for
the design was not valid for frequencies approach-

Head position ImJ
15x 10-6

ing 1 kHz. After some experimentation the follow­
ing design parameters were chosen for the nominal
case.

Wp = 100011'

(p = 0.80

Wo = 150011'

(0 = 0.80

ao = 20011'

Figure 1 shows a simulation of the response of
the system with the nominal design parameters.
In the simulation a step command at 11.5 pm is
first applied. After 3 rna a torque disturbance in
the form of a step of 0.013 Nm is applied.

The simulation was performed assuming that
the plant model is given by Equation (3), which
has a resonance of 2 kHz. The settling time iii
about 1.5 ms and the resonant modes are not
much excited by the command signal. With the
rigid body process model given by Equation (2)
the system has an amplitude margin of 3.2 and
phase margin of 310 • The gain cross-over frequency
is 460 Hz and the phase cross-over is 1036 Hz. This
indicates that the design based on the rigid body
model has acceptable margins.

The effects of the neglected dynamics on the
margins can be estimated as follows. Assuming

o~------------.-------------.--------------r~

Control signal (V)

ol-~v-
-1t-------------.-------------,,-------------r---

a 0.005 0.010

Figure.1. Step response of the closed loop system.

0.015
Time

243

_lL--L~ __ L--L~ __ L--L~ __ L-~
-4 -3 -2 -1 0

Figure 2. Nyquist curves for the loop transfer
functions with the rigid body dynamics, Equation
(2), and the dynamics with one resonant mode,
Equations (2) and (3).

that the system dynamics is described by the
model having one resonant mode, Equation (3).
The additional dynamics is then given by

where WI is the undamped natural frequency
(2 KHz) and , is the relative damping (0.1). The
magnitude M of the transfer function G1 at W is

1
M = -V7.(;=l =_=W==2=;/ W::;~;;:)==2 +=::;(2==,==w=;/ W=1""")2

(28)

Head position (m)

15x10- 6 -20·'.

IOxlO-6

5xlO- 6

0.005

Introducing W = W.pc = 1036 Hz this equation gives
M = 1.36. The gain margin is thus decreased to
1. 77. The argument of the transfer function of W is

2,W/Wl
a = - arctan 2/ 2 (29)

1-w WI

with Wgc = 460 Hz, which gives 2.80 • Figure 2
shows the Nyquist curves with the nominal process
transfer function (2) and the transfer function with
one resonant mode (3). These curves show that the
essential effects of the resonant mode is to decrease
the amplitude margin.

An additional illustration of the sensitivity to
gain variations is illustrated in the simulation in
Figure 3, which shows the time response of the
closed loop systems, where the loop gain changes
with ±20%. Compare with the nominal case in
Figure 1.

Tracking Error

Misalignment errors is a common source of tracking
errors. Such disturbances can be approximated by
a sinusoidal. The sensitivity of the closed loop
system to such errors can be modeled by the pulse
transfer function.

1
Htraclc(Z) = 1- H(z)G(z) (30)

With the chosen controller we find that distur­
bances of 60 Hz are attenuated by a factor of 32.
This agrees well with the simulation results that
showed a reduction from 5 p.m to 0.2 p.m.

0.010 0.015
Time

Figure 3. Responses of the closed loop system to a step command and
a step change in the torque when the process gain changes by ±20%.

244

4. DSP Implementation

Implementation of the controller using a nsp
with fixed point Cl: '.culations will now be dis­
cussed. The key issues are scaling of coefficients and
states. See [Roberts and Mullins, 1987], [Hansel­
mann, 1987], [Texas Instruments, 1986], [Texas
Instruments, 1988a], [Texas Instruments, 1988b],
[Texas Instruments, 1989a], [Texas Instruments,
1989b], [Texas Instruments, 1990a] and [Texas In­
struments, 1990b].

The controller derived can be described by the
matrices:

[
1 5 ·10-&

T = 0 1
o 0

1.25 .10-9)

5 ·10-&

1

r = (9.25. 10-8 3.7.1O-3 0)T

C=(1 00)

[
3.352917424019266.10-1 1

K = 1.100808656418762· 103

5.695461161564441 . 105

(
1.176909751519137. 10&) T

L = 6.300506379182784.101

1.351351351351351.10-2

(31)

The elements of these matrices have numbers that
are widely spread. To accommodate this on a nsp
with fix point arithmetic it is necessary to scale the
numbers appropriately.

I/O-Scaling

The range of the output signal in tracking mode
corresponds to ±11.5,an. The scaling will be cho­
sen so that this corresponds to ±1 units in the nsp.
The input scaling factor 81/ is therefore

8" = U.51'm

Since the dimensions of III 12 and 13 are [vim],
[sv/m] and [s2v/m] respectively, it is advantageous
to multiply L with 8" rather than dividing C with
81/' The output must also be scaled since the n I A­
converter converts ±1 into ±5 V. The matrix L is
thus multiplied by the output scaling factor

2 "u = 10 V = 0.2 V-I

The vector r is in the same way as L. Hence

and the scaled vectors r and L become

[
4.021739130434783· 10-2]

r = 1.60869565~173913 . 103'

[
2.706892428494014. 10-1] T

L= 1.449116467212040.10-4

3.108108108108108.10-8

Coefficient Scaling

(32)

(33)

The coefficients of system (31), and (32) and (33)
can not be represented in the nsp. A similarity
transform Z <=> Tcz is used to scale the coefficients.
This gives

(T r C K L)<=>

(TcTTc-1 Tcr CT;l TcK LTc-I)
(34)

The elements of the matrices T, K, r and L are
proportional to powers of h. It is therefore natural
to use a scaling matrix of the form

The following scaling matrix was obtained after
some trial and error

~) 1
&r. (35)

State-vector scaling

With the chosen scaling of all controller coefficients
have magnitudes less than one. It now remains
to scale the state-vector. Simulations showed that
overflow could occur when the head is positioned
at the edge of the track and the disk controller is
switched to track-following. The scale factors 81, 82

and "3 were chosen from a simulation of this case. It
was found that 1Il1 had to be scaled down and that
1Il2 could be scaled up. Scaling of IllS depends on
the maximum possible load disturbance. For a load
disturbance of 0.3 Nm it was not necessary to scale

245

:1:3. The following transformation was therefore
chosen to scale the state vector

T.e = diag(1/2.8 1/0.3 1) (36)

The following controller matrices were obtained
after scaling:

~ = [~ q,;2 :::]
o 0 1

[
4.079845420409798. 10-2)

r = 9.742508490121855.10-1

o
C = (9.857577226616642.10-1 0 0) (37)

[
3.401360544217687. 10-1)

K = 6.666666666666667. 10-1

2.5.10-2

[
2.668340115802361 . 10-1] T

L = 2.392799926898983.10-1

7.080843606269305.10-1

where

q,12 = 8.375348965918672.10-2

q,13 = 2.888874735967583.10-2

q,23 = 6.898517895130376.10-1

The system matrices are finally transformed to in­
tegers to fit the 16 bit fractional format of the DSP.
The transformation is done by multiplying the co­
efficients with 216 and rounding each coefficient to
the nearest integer. The matrices then become

r=[;::~r
[

1 2744 947]
~ = 0 1 22605

o 0 1

C = (32301 0 0)
(38)

K = [~~~:: I
819

L = (8744 7841 23203) T

246

The largest roundoff error 0.04% occurs in q,13. To
find how the poles of the controller are affected by
the coefficient rounding, the characteristic equa­
tion of the controller was calculated. The largest
pole deviation is 0.0013% from the design value.

5. The DSP Code

The control algorithm was implemented on the
TMS320C25 by using the Texas Instruments Soft­
ware Development System. The complete code is
listed in Appendix A. The organization of the code
is straightforward. It is composed of the following
steps:

1. Perform A/D conversion.
2. Compute the state estimate.
3. Compute the new control signal.
4. Saturate control signal.
5. Perform D / A conversion.
6. Update equations for state estimate.

Compare with Algorithm 1. Approximately 32% of
the computational power of the TMS320C25 used
when the controller was running.

It can be estimated how processor loading in­
creases with the order of the controller. Neglect­
ing saturation arithmetic and anti-windup calcula­
tions, the number of multiply/accumulate instruc­
tions are proportional to n 2 + 5n where n is the or­
der of the controller. A 6th order controller would
therefore exhaust the computational power of the
C25. The saturation arithmetic routine must be

(aJ

(bJ

0.2

0.1 n
0 r\ p,

l"l
-0.1 !

-0.2

o 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Figure 4. Impulse response of the controller (a)
and the error compared to an ideal implementation
(b).

called approximately 2n times. In our case, the sat­
uration arithmetic consumes almost 50% of the to­
tal execution time. Therefore, if saturation arith­
metic can be avoided by using more careful scaling,
one can estimate that a 10th order controller can
be implemented on the C25.

6. Testing

The open loop behavior of the controller was tested
using the development system. The impulse re­
sponse of the controller was generated and com­
pared to the ideal impulse response. Figure 4(a)
shows the responses of the controller to two im­
pulses of magnitude 0.9 and -0.9. Figure 4(b) shows
the error between the ideal and actual impulse re­
sponse of the controller. The small error small is
due to the roundoff in the controller. Notice that
the quantization step is approximately 3 . 10-5 •

The observer was tested separately. A con­
trol signal was generated and the corresponding
ideal response of the arm was calculated. The in­
put signal was piecewise constant with jumps at
t = 0, 0.001, 0.0018, and 0.0021. A load distur­
bance that was unknown to the observer was added
at time t = 0.0025. All signals were scaled appro­
priately and fed to the observer whose response
was recorded. Figure 5 shows the velocity estimate
and its error. Figure 6 shows the position estimate
and its error. The error is very small before time

(a) 0.8 r---.". L---,---.-----,r-----,-~
,.1

r-' '-~

0.4 ./E 1.
0.2 t,

o ".r

0.6

L
-0.2 I,

-0.4 \

-0.6 \1
-0.8 L..._---' __ -'L.J. __ --'-__ ...L. __ -'-----1

(')~~I : ,G~
o 0.001 0.002 0.003 0.004 0.005

Figure 5. Actual and estimated velocity (a) and
estimation error (b).

(a)
"........... 0.8

0.6 / 0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

(b)

-0.005

o 0.001 0.002 0.003 0.004 0.005

Figure 6. Actual and estimated position (a) and
estimation error (b).

t = 0.0025, where the load disturbance was intro­
duced. The load disturbance does, however, intro­
duce significant errors both in velocity and position
estimates. This is natural, because the observer
does not have information about this load distur­
bance. The error will, however, decrease when the
observer improves its estimate of the disturbance
as is indicated in Figure 6.

Although open loop testing can never replace
actual closed loop testing of the whole system,
these results indicate that the controller works
properly.

Remarks on a Roundoff Algorithm

The first tests of the algorithm used a roundoff
scheme found in a programming example in [Texas
Instruments, 1986]. This resulted in a large esti­
mation error, see Figure 7. The problem was inves­
tigated, since the error was larger than estimates
based on analysis of roundoff errors. The reason for
this is an error in the roundoff algorithm. To re­
duce quantization errors the numbers are rounded
off, rather than truncated, before they are stored as
16-bit numbers. This roundoff is done in software.
To roundoff a positive number, a bit is added to the
MSB of the lower half of the 32-bit number before
it is stored away. At first sight it appears natural to
subtract the bit from the number to roundoff a neg­
ative number. This was done in the coding exam­
ple [Texas Instruments, 1986]. This is not correct

247

0.0008 .-----,.----.--,----,,----,.--,

0.0007

/'~A
J \//.

0.0006

0.0005

0.00Q4 I ~

::)
0.0001 t

o 1r"L ! {c..t""i 'lr'--y
-0.0001 0 0.001 0.002 0.003 0.004 0.005

Figure 7. Position error with an incorrect round­
off algorithm.

with the chosen number representation. The round­
off algorithm gives -2 when applied to the number
-1 because of the computational scheme used in
the DSP. If the upper half of the number is com­
plemented without considering the lower half, the
result will not be the same as if the whole number
is complemented. The correct code for the roundoff
is given in Appendix A.

7. Conclusions

This paper shows that it is straightforward to
implement a controller based on an observer and
feedback from the observed states using a DSP
with fix point calculations. Some effort is required
to obtain proper scaling. The coefficient scaling
is quite straightforward and can be automated.
Scaling of the states is more difficult. It requires
that the ranges of the states are known. This can
be determined from simulation. Great care has to
be exercised to find the worst cases. The code for
the disk controller is much simpler than the code
for the PIDccontroller discussed in [Astromand
Steingrlmsson, 1991]. The reason is that the disk

248

controller is designed for a specific process while
the PID-controller is designed as a general purpose
controller. The coefficient ranges for the PID­
controller are therefore much wider. This requires
more complex scaling and saturation arithmetic,
which is a large part of the code [Astrom and
Steingrimsson, 1990].

8. References

Astrom, K. J. and H. Steingrimsson (1990): "Im­
plementation of a PID controller on a DSP ,"
Texal Instruments.

Astrom, K. J., and B. Wittenmark (1990): Com­
puter Controlled Systems - Theory and Design,
Second edition, Prentice-Hall, Englewood Cliffs,
NJ.

Dote, Y. (1990): Servo Motor Control Using
Digital Signal Processor, Prentice Hall, Texas
Instruments.

Hanselmann, H. (1987): "Implementation of digi­
tal controllers - A survey," Automatica, 23.

Roberts, R. A., and C. T. Mullins (1987): Digital
Signal Processing, Addison-Wesley Publ Co.

Texas Instruments (1986): Digital Signal Process­
ing Applications with the TMS320 Family - The­
ory, Algorithms, and Implementations, Digital
Signal Processing, Semiconductor Group.

Texas Instruments (1988a): First-Generation
TMS320 - User's Guide, TI Digital Signal Pro­
cessing, Prentice Hall.

Texas Instruments (1988b): Second-Generation
TMS320 - User's Guide, TI Digit&! Signal
Processing, Prentice Hall.

Texas Instruments (1989a): TMS320Clx /
TMS320C2x - User's Guide, Digital Signal Pro­
cessor Products.

Texas Instrumen~s (1989b): TMS320 Family De­
velopment Support - Reference Guide, Digital
Signal Processor Products.

Texas Instruments (1990a): Digital Signal Process­
ing - Applications with the TMS320 Family,
Application book volume 3, Digital Signal Pro­
cessor Products.

Texas Instruments (1990b): TMS320C3x - User's
Guide, Digital Signal Processor Products.

Appendix A: Disk Controller for TMS320C25

Disk Controller for the TMS320C2S
Based on a Rigid Body Model of the Arm
Version 1.0
Author: 'Hermann Steingrimsson
Date: 3-31-1990

RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
DTbeg .bss A12,1 :The matrix A (or Phi)
.bss A13,1
.bss A23,1
.bss B1,1 :The vector B (or Gamma)
.bss B2,1
.bss C1,1 :C1
.bss K1,1 :The vector K (in this case CK/2)
.bss K2,1
.bss K3,1
.bss L1,1 :The vector L
.bss L2,1
.bss L3,1
.bss MA1NUM,1 :Maximum number
.bss MINNUM,1 :Minimum number
.bss UMA1,1 :Saturation limits
.bss UMIN,1
.bss ONE,1 :ONE=1
.bss MODE,1
DTend .bss CLOCK,1 :End of parameters in data memory
.bss 1E1,1 :State vector x(k+1lk)
.bss 1E2,1
.bss 1K1,1 :Vector x(klk)
.bss 1K2,1

.bss 1K3,1
.bss YE,1 :Estimate of ye
.bss Y,1 :Input
.bss ERR,1
.bss V,1 :Control signal before saturation
.bss U,1 :Control signal after saturation U=SAT(V)

:Begin program memory

.sect "IRUPTS"
B START :Branch to start of program

:Store parameters in program memory

. data
Ptable .set •
• word 2744,947,22608,1337,31924,32301,11146,21845,819,8744,7841,23203

249

Disk Controller for TMS320C25 Version 1.0

. word 32767,-32768,32766,-32766,1,1,1

.word ,...1
Ptend . set $-1
SCALE .set 15

jInitialize

.text
START DINT jDisable interupts
Nap
SoVM jSet overflow mode
SSIM jSet sign-extension mode
SPM 0 jNo shifting from P register

jLoad coeff from prog. mem to data memo use BLKP

LRLK ARo,DTbeg jARO points to begining of data block
LARP ARO
RPTK Ptend-Ptable iSet up counter
BLKP Ptable,*+ iMove data
j=> Coeff loaded into data memory

jlnitialize variables

LDPK A12 jPoint to correct data page
ZAC iClear variables
SACL IEl
SACL XE2
SACL IK3
SACL YE
SACL U

OUT MoDE,PA4 jlnit analog board
OUT CLOCK,PA5
LARP 0 jPoint to ARO

jBegin loop

JVAIT BIoZ GET jWait for input
; B WAIT
WAIT IN Y,PAO ;Change WAIT to GET when are removed

ZALH Y jForm ERR = y{k) - ye{klk-l)
SUBH YE
SACH ERR

jCompute x{klk) = x{klk-l) + K*err

250

Page 2

Disk Controller for TMS320C26 Version 1.0

LAC lEl,SCAlE ;Calculate xl(klk)
LT ERR
MPY Kl
APAC
lRlK ARO,lKl
CAll ROUOF

LAC lE2,SCALE :Calculate x2(klk)
LT ERR
MPY K2
APAC
lRlK ARO,lK2
CALL ROUoF

LAC lK3,SCAlE :Calculate x3(klk) (Estimate xe3 not needed)
LT ERR
MPY K3

APAC
LRLK ARO,lK3
CAll RoUoF

: Calculate control signal u(k) -lx(klk)

ZAC
LT lKl
MPY L1

LTS lK2
MPY l2

lTS lK3
MPY l3
SPAC

lRlK ARo,V
CALL RoUoF

:Saturation function (12 instr. cycles)

ZAlH V
SUBH UMIN
BlZ loWERl : Branch if v < umin
ZAlH V
SUBH UMAI
BlZ SAME :Branch if v < umax
ZAlH UMAI :v >= umax
SACH U :u = umax
B FIN :Begining of loop

Page 3

251

Disk Controller for TMS320C26 Version 1.0

LOWERl ZALH UMIN
SACH U iU = umin
NOP iAlways same time
NOP
NOP
NOP
B FIN

SAME ZALH V
SACH U iU = v
NOP
NOP

FIN OUT U,PA2 iOutput control signal

iUpdate the estimate xe(k+llk) • Ax(klk) +·Bu(k)
ye(k+llk) • Cxe(k+llk)

LAC IK1,SCALE iCalculate xel

LT IK2
MPY Al2

LTA IK3
MPY Al3

LTA U
MPY Bl
APAC

LRLK ARO,IEl
CALL ROUOF

LAC IK2,SCALE iCalculate xe2

LT IK3
MPY A23

LTA U
MPY B2
APAC

LRLK ARO,IE2
CALL ROUOF

iNo need to update xe3 (xe3 = xk3)

LT IEl iCalculate ye
MPY Cl

252

Page 4

Disk Controller for TMS320C25 Version 1.0

PAC

LRLK ARO,YE
CALL RoUoF

B WAIT :Loop

Rounding, overflow and shifting function (11 cycles)

ROUoF BLZ NEG :Check if number negative
ADD ONE,SCALE-l :Round
SACH *,16-SCALE :Store value
SUB MAINUM,SCALE :Subtract scaled max pos number
BLEZ NOOV ;If acc <- 0 then no overflow
ZALS MAINUM ;else store max num
SACL *
RET

NEG ADD ONE,SCALE-l ;Round
SACH *,16-SCALE ;Store value
SUB MINNUM,SCALE :Subtract scaled min neg number
BGEZ NOoy iIf acc)= 0 then no overflow
ZALS MINNUM ielse store min neg number
SACL *
RET

NOoy NOP
NOP
RET

.end;e

Page 5

253

254

PART IV

Applications of Digital Controllers with the TMS320

;;; :; :;;;; ;: ! :::::::: : _:: ... "":: :i"1.1l.Ji.l.i :~ ~ .. ;: 1 :" ... :." : ... " .. : ... L.::...L.: ... " ... ___ " ,,:. .. ; .. #I .. ;;; .. : .. ~" ... ~ ... "_:.,,.L.~:_.: .. _ .. _ ... " t ... :.~

Digital Control Applications with the TMS320 257

Computer Peripherals

DSP Helps Keep Disk Drives on Track. 259
(James Corliss and Richard Neubert)

LQG - Control of a Highly Resonant Disk Drive Head Positioning Actuator 265
(Herbert Hanselmann and Andreas Engelke)

High Bandwidth Control of the Head Positioning Mechanism in a Winchester Disc Drive ... 271
(Herbert Hanselmann and Wolfgang Moritz)

Fast Access Control of the Head Positioning Using a Digital Signal Processor 277
(S. Hasegawa, Y. Mizoshita, T. Ueno, and K. Takaishi)

Motion Control and Robotics

Implementation of a MRAC for a Two Axis Direct Drive Robot Manipulator
Using a Digital Signal Processor ... 287
(G. Anwar, R. Horowitz, and M. Tomizuka)

Implementation ofa Self-Tuning Controller Using Digital Signal Processor Chips 291
(K.H. Gurubasavaraj)

Motion Controller Employs DSP Technology .. 297
(Robert van der Kruk and John Scannell)

Power Electronics

Using DSPs in AC Induction Motor Drives .. 303
(Dr. S. Meshkat and Mr. I. Ahmed)

Microprocessor-Controlled AC-Servo Drives with Synchronous or Induction Motors:
Which is Preferable? .. 307
(R. Lessmeier, W. Schumacher, and W. Leonhard)

A Microcomputer-Based Control and Simulation of an Advanced IPM Synchronous
Machine Drive System for Electric Vehicle Propulsion .. 315
(Bimal K. Bose and Paul M. Szczesny)

DSP-Based Adaptive Control of a Brushless Motor 329
(Nobuyuki Matsui and Hironori Ohashi)

High Precision Torque Control of Reluctance Motors 335
(Nobuyuki Matsui, Norihiko Akao, and Tomoo Wakino)

High Resolution Position Control Under 1 Sec. of an Induction Motor with
Full Digitized Methods ... 341
(Isao Takahashi and Makoto Iwata)

A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator. 349
(R.J. Chance and J.A. Taufiq)

Design and Implementation of an Extended Kalman Filter for the State Estimation
of a Permanent Magnet Synchronous Motor 355
(Rached Dhaouadi, Ned Mohan, and Lars Norum)

Automotive

Trends of Digital Signal Processing in Automotive 363
(Kun-Shan Lin)

Application of the Digital Signal Processor to an Automotive Control System 375
(D. Williams and S. Oxley)

Dual-Processor Controller with Vehicle Suspension Applications. .. 383
(Kamal N. Majeed)

An Advanced Racing Ignition System .. 389
(T. Mears and S. Oxley)

Active Reduction of Low-Frequency Tire Impact Noise Using Digital Feedback Control 395
(Mark H. Costin and Donald R. Elzinga)

Specialized Applications

Implementation of a Tracking Kalman Filter on a Digital Signal Processor
(Jimfron Tan and Nicholas Kyriakopoulos)

399

A Stand-Alone Digital Protective Relay for Power Transformers .. 409
(lvi Hermanto, Y.V.V.S. Murty, and M.A. Rahman)

A Real-Time Digital Simulation of Synchronous Machines: Stability Considerations and
Implementation 421
(Jonathan Pratt and Sheldon Gruber)

Real-'lime Dynamic Control of an Industrial Manipulator U/ling a Neural-Network-Based
Learning Controller ;.................................. 433
(W.Thomas Miller, m, Robert P. Hewes, Filson H. Glanz, and L. Gordon Kraft, Ill)

Digital Control Applications with the TMS320

More designers are using DSPs to solve problems that commonly occur in control applications. DSPs now
make practical some applications that were previously difficult to implement or were not cost-effective.
As the cost of DSPs decreases, these processors are rapidly replacing microcontrollers and analog compo­
nents in many control applications.

Some applications in which DSPs are already cost-effective are servo control for computer peripherals,
power control in uninterruptible power supply (UPS) and DC power supply systems, motion control for
numerical control (CNC) systems and robotics, suspension/engine/brake control for automotive systems.
and vector control for AC and other brushless motors. Other applications are missile guidance and "smart"
weapon control for military systems.

This introduction presents a few areas of DSP-controlled applications. Following it, papers discuss topics
pertainiog to those and other areas. Most of these documented applications have evolved into very success­
ful commercial products.

Computer Peripherals

Many computer peripherals use DSPs for applications such as read/write head control in winchester disk
drives, tape control in tape drives, pen control in plotters, and optical beam positioning and focusing in opti­
cal disks.

Disk Drives: Disk drives were early to adopt DSPs. DSPs are used for servo control of the actuator driving
the read/write head. Disk drives employ a voice-activated coil motor with high bandwidth. Data is read from
the disk at a very high rate; sampling rates of up to 50 kHz are sometimes used. In addition to implementing
the compensator, DSPs can implement notch filters to attenuate undesirable frequencies that cause mechan­
ical resonances or vibrations.

Tape Drives: In tape drives, DSPs are used to control the tape mechanism. A tape drive has two servo loops:
one controls the tape speed, and the other controls the tension placed on the tape. Position feedback is ob­
tained from an optical encoder, and tension infonnation is fed from a tension sensor. DSPs are also used
to filter undesirable frequencies that cause mechanical resonances.

Power Electronics

DSPs can be used in multiple applications in power electronics. These applications include AC servo drives,
inverter control, robotics, and motion control.

AC Servo Drives: In AC servo drives, DSPsare used for vector control of AC motors. AC drives are less
expensive and easier to maintain than DC drives. However, AC drives have complex control structures as
a result of the cross-coupling of three-phase currents. Vector rotation techniques are used to transfonn three­
phase axes into rotating two-phase "d - q" axes. This two-phase rotation technique greatly simplifies the
analysis, making it equivalent to analyzing field-wound DC motors.

UPSs and Power Converters: In uninterruptible power supplies (UPSs) and power converters, DSPs are
used for PWM generation along with power factor correction and harmonic elimination. Advanced mathe-

257

258

matical techniques can be used to control the firing angles of the inverter, creating low-hannonic PWM with
unity power factors.

Robotics and Motion Control: DSPs are used in large-scale applications in robotics and other axis control
applications. DSPs support high-precision control alo~g with implementation of advanced techniques like
state estimators and adaptive control. A single controller can handle speed/position control as well as cur­
rent control. Time-varying loads Can be handled with adaptive control techniques. Adaptive control tech­
niques can also be used to create universal controllers that can be used with different motors. In addition
to implementing controllers, DSPs implement notch filters to attenuate undesirable frequencies that causes
resonances or vibrations.

Automotive

DSPs can be used for many automotive applications such as active suspension. anti-skid braking, engine
and transmission control, and noise cancellation.

Active Suspension: Active suspension systems use hydraulic actuators. DSPs can take into consideration
body dynamics, such as pitch, heave, andfOll, and then use this information to control four actuators inde­
pendently and dynamically for counteracting external forces and the car's attitude changes.

Anti·Skid Braking: In anti-skid braking systems, DSPs can read the wheel speed from sensors, calculate
the skid distance, and control the pressure in the wheel's brake cylinder. Traction-regulating systems can
be added to control the vehicle in adverse driving conditions, to prevent wheel(s) from locking or spinning,
and to increase general vehicular stability, steerability, and drivability.

Engine Control: In engine control applications, DSPs can be used with in-cylinderpressure sensors to per­
form engine pressure waveform analysis. This information can be applied to determine the best spark tim­
ing, most effective firing angles, and optimal air/fuel ratios. The closed-loop engine control scheme can
tolerate external turbulences, aging, and wearing. while maintaining optimum engine performance and fuel
efficiency.

DSP helps keep
disk drives on track
Using a sophisticated DSP chip to implement adaptive embedded
servo control avoids the head-positioning errors tbat can plague
high-density Winchester disk drives.

Conventional design approaches are inadequate to
meet the demand for ever-higher track densi­

ties on Winchester disk drives. When densities ex­
ceed 1,200 tracks/in., drives relying on dedicated
servo feedback for positioning accuracy become
unpredictable parts of computer systems. Imple­
menting embedded servo control with adaptive po­
sitioning features, however, allows the design and
manufacture of adequately margined disk drives
that provide a solid platform for higher densities.

Since designers can't predict exact performance,
a disk drive with adequate margin requires reserve
capability in all areas. Materials or components,
for example, may not be within specifications, and
environmental conditions may also exceed specifi­
cations or combine in unpredictable ways. For in­
stance, electrical noise may combine with tempera­
ture changes in a peculiar way that even an ex­
haustive testing schedule could miss. In addition,
materials and components change with time.

The search for ample safety margins led Vermont
Research to use the 32020 digital signal processing
(DSP) chip, from Texas Instruments (Dallas, TX),
to incorporate adaptive embedded servo control
into its Model 7030 hard disk drive. Digital signal
processing of feedback signals offers immense flex­
ibility for designers of many products, from disk
drives to numerically controlled machine tools to

James M. Corliss and Richard Neubert
Corliss is principal engineer and Neubert is a design
engineer at Vermont Research (North Springfield, VT).

aircraft control systems. Exploited to its fullest,
the power of DSP can be used to expand reliability
margins in numerous motion control applications.

The dedicated servo approach
The most common method of locating a track on a
Winchester disk drive has been the dedicated servo
approach. The designer reserves one surface in the
stack of platters where servo control information is
written. If the head on that surface is correctly lo­
cated, it's assumed that all other heads on the car­
riage are also on their tracks.

Sometimes dedicated servo drives work well, but
higher track densities can make them hypersensitive
to temperature changes, especially when combined
with shock or vibration. The drives develop high
error rates and may not retrieve data at all if condi­
tions have changed since the recording. The prob­
lem is that positioning errors that may be man­
ageable at lower track densities can cause signifi­
cant positioning difficulty at higher track densities
because the errors represent a larger percentage of
the narrower tracks .. If the heads aren't properly
positioned, the analog signal-to-noise ratio plum­
mets on readback, causing skyrocketing error rates
and, sometimes, an unusable drive.

Embedded servo control provides feedback in
the form of bursts of prerecorded positioning infor­
mation embedded in data on the track that's being
read. Adaptive positioning actively compensates
for both external disturbances such as shock and
vibration and internal changes such as the aging of
shock mounts and creep of materials. Of course,
the effectiveness of embedded servo control is

Reprinted with permission from the June 15, 1988 issue of COMPUTER DESIGN Magazine, copyright 1988, PennWell
Publishing Company, Advanced Technology Group.

259

limited by the frequency at which positioning feed­
back is provided. If the sampling frequency is too
low, the track-following errors that accumulate be­
tween samples will be larger than the errors a dedi­
cated servo approach would have allowed. 'Inade­
quate feedback also makes positioning perfor­
mance suffer.

Adaptive embedded servo positioning, as im­
plemented in the Model. 7030 disk drive, wasn't
practical before the advent of sophisticated DSP
chips, which can analyze rapid-fire bursts of servo
information and make quick position corrections.
Implementing adaptive positioning without sacri­
ficing access time or user flexibility required a new
level of servo information analysis that relies heav­
ily on digital signal processing. Pre-DSP electronics
wouldn't have been practical for the adaptive em­
bedded servo approach at a satisfactory sampling
rate. The cost and real estate requirements of dis­
crete logic would have been prohibitive.

That's not to say that using an advanced DSP
chip like the TI 32020 for multiple signal processing
functions is completely straightforward. Since the
functions can't be truly simultaneous, priorities
must be carefully established. Also, there are some
disadvantages to using adaptive. embedded servo
control. One is a recording overhead of 15 percent
of a drive's capacity, compared to 10 percent for
dedicated servo and 7 or 8 percent for embedded
servo with lower sampling rates. Fortunately,
though, this overhead cost is more than o~f~et by

. the ability to reliably use higher track denSities.

260

The shock sensitivity of a drive
with embedded servo is a func­
lion of the amount of time be­
tween sampling. At a 100kHz
sampling rate, a 2-G shock in­
duces only a 4-,un. off-track
error; at 1.2 kHz, It's 256
,un.-enough to accidentally de­
stroy data on an adjacent track.

Living within a budget
Like every physical device, a disk drive has toler­
ances. Absolute perfection in head positioning isn't
required for reliable drive performance, but there's
a set limit on how much deviation is acceptable for
each case. Disk drive designers commonly use a
"tracking error budget" when analyzing all possi­
ble sources of track-following deviations. If the
drive can't achieve an acceptable bit error rate un­
less the heads are, say, within 60 /Lin. of perfect po­
sitioning, then 60 /Lin. is the tracking error budget.

Suppose, for example, that differential thermal
expansion may cause as much as 35 /Lin. of track­
following error, despite the servo system's best
compensation efforts. If shock and vibration con­
tribute no more than 10 /Lin. and all other sources of
error combined will be no more than 10 /Lin., the
total possible error is 55 pin., and the 60-pin. error
budget won't be exceeded.

As track widths diminish, however, error budget
shrinks disproportionately. At 1,200 tracks/in., for
example, a 60-/Lin. error budget is 10 percent of the
track width. At a 1,500-track/in. density, though,
with the accompanying decrease in absolute signal
strength from the head, the error budget may have
to shrink to 8 percent of the track width. In this
case, the error budget becomes a mere 38 pin.

A matter of degrees
Temperature changes caused by operating or en­
vironmental conditions are a common source of
trouble for reliable positioning. Differential ther-

mal expansion among the various materials in head
support arms, disks, carriages, spindles, bearings
and housings in the 5-in.-long chain of parts be­
tween the head and the disk is typically 5 ",in. lin.! dc.
At 1 ,200 tracks/in. on an 8-in. drive, that can
mean that a track written when a drive is cold can
shift half a track or more when the drive is warm.
A mere change of 2.5°C can consume an entire
60-Itin. error budget.

Careful attention to air circulation in the drive
can minimize temperature differences within it but
can't eliminate them. While the temperature is
changing, parts within the drive will expand or con­
tract differently, even if they subsequently stabilize
at a new temperature. A drive depending on dedi­
cated servo information is blind to head shift dur­
ing temperature changes. Thus, even though the
servo head is positioned properly, the data head
may not be. The drive will compensate for the
dimensional changes affecting the reference head,
but it can't compensate for the fact that the parts
that locate the data heads are changing in a dif­
ferent way. In practice, temperature sensitivity
means that a disk drive may need a warm-up period
before it works reliably. It also may mean that in­
formation recorded last week is unavailable this
week because of changes in the room temperature.

With adaptive embedded servo control, however,

,TraCking Error Components
-1

Cause
Range
("in.) -2

50 -3

w -,
10 ~

a: -5
0
a:

5 a: -6 w

5
t::
CD -7

5
-8

5 -9

-10
5

5 -150

(b)

(a)

temperature sensitivity ceases to be an issue. The
drive needs no warmup, data written cold can be
read hot and vice versa, and changes in room tem­
perature won't affect performance. System build­
ers can ship software on the disk and be sure the
disk will boot up. They'll see dramatic reductions in
the number of dead-on-arrival drives and systems
and won't have to carry a large inventory to com­
pensate for failures.

Other sources of head-track misalignment that
can cause positioning difficulty include creep and
stress relief in materials, bearing runout, shock and
vibration, head stack tilt, disk slip, and bending or
twisting of the main frame chassis. All of these phe­
nomena may affect one disk in the stack differently
than the others, creating track-following errors for
data heads even if the servo head is on track.

Coping with internal variables
One significant internal variable is head width,
which typically varies ± 10 percent and, thus, af­
fects positioning accuracy. In the Model 7030 drive,
head widths are measured by the DSP hardware
during the factory configuration and test process
and stored in nonvolatile RAM for use during op­
eration. Other component characteristics, such as
the actuator motor's magnet profile, are also pro­
grammed in firmware when the disk is built. One of

NORMAL TRACKING ERROR (9):
• TEMPERATURE CHANGES
• NOISE
• SHOCK AND VIBRIITION

......

TRACKING ERROR
(1) (2)

(3)

(4)

(5)

When a typical disk drive's tracking error budget from all sources (a)
exceeds 100 !'in., bit error rates begin to rise dramatically (b). A 60 "in.
budget provides a greater margin for safety.

(6)

(7)

(8)

261

Embedded servo scheme guarantees accurate positioning 'I" Vermont Research's recently introduced 648-
Mbyte, 8-in. Winchester disk drive (Model 7030),

factory-recorded servo information bursts are em­
bedded in data every 128 bytes, providing a posi·
tlonsampling rate of 9.6 kHz. This rate is, in fact,
the practical equivalent of continuous feedback
.lor track following and ensures quick, accurate
positioning. Even a 1·G shock can move the heads
only 3 "in. between samples, which isn't enough to
perceptibly affect the data signal integrity.

The servo zone is divided into multiple parts.
Before it enters a data zone, a head encounters a
short preamble and a sector index mark, then a
Gray·coded track address mark, and finally a pair
of servo marks, offset in time, with one lying inside
the track (toward the disk spindle) and one outside.
The servo bursts are displaced in time so they can
be distinguished. If the head is centered on the
data track, the servo Signals have the same ampli·
tude; if not, one Is larger than the other. Small vari-

SERVO ZONE (8 BYTES)

ations In the timing of the servo bursts have no
effect on the measurement as long as they occur
within an allotted time window.

Each time the drive is started up, a self-test pro·
gram is loaded into a Texas Instruments 32020
digital Signal processor. The program verifies its
own operation, the exte'mal data bus and the inter­
rupt structure,and calibrates the analog·to-digital
and digital·to·analog conversion circuitry and the
signal path for positioning signals. It reads signal
A into both channel A and B, and does the same
with signal B, to measure the dc offsets and the
gain ratio between the two channels. This guards
against the possibility that the gains of the two
position-indicator Signal converters may have
drifted apart.

To determine signal amplitude, the peak-to·peak
value of each set of dipulses is averaged, which
removes some high·frequency noise. The ampli­
tude value of each position signal is digitized, and

the DSP applies the measured
values of dc offset and gain ra·

~~= ~~~

__ _

TRACK~CENTERS ... /,

GREY-CODED TRACK ADDRESS
(8 BYTES)

m"~~~
-(APPROX, 128 B~S~

tio to make any necessary cor·
rections. The DSP then com­
putes the difference of tl:1e two
Signals and divides the result
by their sum to obtain a raw
amplitude·compensated ratio
that Indicates the degree by
which the head is off·track.
This ratio is numerically fil­
tered in a finite impulse reo
sponse filter to remove further
high·frequency noise. ---DATA ZONE -1--=.,...,

(APPROX. 128 BYTES)

7
WRITE·TO-READ

RECOVERY ZONE

The processed signal is now
a position indicator. The mea·
sured rate of positional change
also provides velocity and ac·
celeration information, which
the DSP uses to compute the

SECTOR INDEX
(1 BYTE)

PREAMBLE (1 BYTES)

the major strengths of adaptive positioning, how­
ever, is its ability to dynamically compensate for
changing variables.

The force of the flex circuits connecting the heads
to the drive electronics tends to move heads off­
track. Mechanically, the flex circuit is a spring, so
its force varies with the track address; during opera­
tion, the DSP computes the offsetting actuator cur­
rent for each track address. As the flex circuit ages,
its spring constant changes, but the drive adapts to
the change with each startup. The DSP chip mea­
sures the force constant of the linear head actuator
motor on startup by applying a pulse of current and
measuring the resulting motion. If necessary, the
drive can be rezeroed during operation to adjust

262

amount of current to supply to
the linear motor powering the
head actuator.

for a temperature-changed force constant-or any
other parameter.

A more complex adaptive feature is compensa­
tion for movement of the head-disk assembly on its
shock mounts. The high forces needed to accelerate
the head carriage displace the entire head-disk
assembly on its shock mounts, typically by 0.020
in.-the equivalent of 20 tracks or more. The dis­
placement becomes a damped oscillation in the 20-
to 40-Hz range after the seek is completed.

Without compensation for the shock-mount os­
cillation, the drive's servo loop could follow about
99.7 percent of the displacement induced by the
mounts, but that still leaves a 0.3 percent un­
compep.sated displacement on the first cycle of the

damped oscillation, which represents 10 percent of
a track width, or 60 /-tin.-the maximum that can be
tolerated from all Sources of error combined. Even
after the first cycle, uncompensated oscillation
would consume at least half of the drive's error
allowance. That error represents margin that could
hinder quick actuator settling time and, thus, ad­
versely affect overall seek performance.

In the Model 7030, a mathematical model of the
response of the shock-mounted assembly, which in­
cludes factors for frequency, amplitude and damp­
ing, is stored in the firmware of the 32020 DSP,
which uses it to predict the damped oscillation and
apply the inverse actuator current to cancel it. The
DSP continually updates the parameters of the
model, automatically adjusting for changes in the
elastomer of the shock mounts and in other mater­
ials as they age or change temperature. Once per
minute, the updated model is pulled into non­
volatile RAM, along with the updated flex circuit
spring constant, as an accurate starting point in
subsequent startups. A similar method is used to
compensate for resonance of the actuator assembly
after a seek, a problem that introduces some degree
of track-following error in all disk drives.

In addition to improving performance, the in­
herent flexibility of adaptive embedded servo con­
trol lets a disk drive design take advantage of on­
going improvements in heads and disk coatings
without requiring radical redesign. An additional
benefit of insensitivity to component variations is
that no adjustments are needed when boards are
changed in the field, which saves time and requires
less expertise from field service technicians.

The advanced DSP technology used for adaptive
positioning also provides for sophisticated self­
diagnosis and monitoring of environmental and
power supply conditions. This capability can save
hours of field service time by making it possible to
pinpoint temperatures or voltages outside of specs
as the source of difficulties that otherwise would
cause a wild goose chase. CD

Please rate the value oj this article to you by
circling the appropriate number in the "Editorial
Score Box" on the Inquiry Card.

High 264 Average 265 Low 266

263

264

LQG-Control of a Highly Resonant Disk Drive
Head Positioning Actuator

HERBERT HANSELMANN, MEMBER, IEEE, AND ANDREAS ENGELKE

Abstract-A fast fine-positioning controller bas been designed for a
rotary actuator type magnetic stoel&e di.k drive. The controller was
de.lgned using the Iqg (linear quadratic gau •• ian) methodology and bas
been Implemented on a digital signal pro or. It is sbown tbat Iqg design
is a viable approacb, and that varlou. problems a.sociated witb tbe
structural resonances of the actuator can be solved.

Keywords-Iftagnetic disk stonge, position control, microproeessor
control.

I. INTRODUCTION

MODERN DISK DRIVES use fast voice coil actuators for
positioning magnetic heads on desired tracks and

keeping them on track against various disturbances using
closed-loop control. Two types of actuators are predominant
in state-of-the-art drives: rotary and linear actuators, both
driven by a current passing through a coil in a strong magnetic
field.

In high-performance drives the head position is measured
from a dedicated servo platter. Measurement electronics
supply a head/track misalignment error voltage which is
proportional to this error within track width. Current flowing
through the coil generates torque or force so there must be
closed-loop control.

We investigated fine-positioning control in an industrial
prototype 8-in drive using a rotary actuator, as shown in Fig.
1. As described in some detail in [I], the studies were carried
out on an experimental version of the drive with fixed disk­
spindle. With an operating drive the investigations would have
been hindered because of the required clean-room conditions.
The position error measurement was achiev(,d through an
optical sensing device capable of measuring in the real position
range of an operating drive (useful track width + - 9 /tm) with
excellent resolution.

In [I] results of modal structural analysis as well as of
control using a classical approach have been presented. The
controller was of double PD-type with 3 notch-filters. It had
finally been extended by a synthetic disturbance feedforward
system.

It is the purpose of this paper to report on our effort to
design and implement an appropriate controller using the Iqg/
Itr methodology. The plant is of the SISO (single-input single­
output) type because only position error measurement is

Manuscript received March 27, 1987.
H. Hsnselmann was with the Department of Automatic Control in

Mechanical Engineering, University of Paderbom, Paderbom, W. Germany.
He is now with dSPACE Digital Signal Processing and Control Engineering
Gmbtt, Paderbom, W. Germany.

A. Engelke is with the Department of Automatic Control in Mechanical
Engineering, University of Paderbom, Paderbom, W. Gennany.

IEEE Log Number 8718148.

Fig. 1. Prototype disk drive.

available. Thus designing a controller might seem to be fairly
simple at first glance, but the strong structural resonance
effects posed some problems, and the experience with the
approaches taken might be of interest for others working on
the control of mechanical systems.

II. PLANT MODEL

A simple mathematical model would be a double integrator
(torque to position). But the control bandwidth desired is so
high that structural mechanics effects can by no means be
neglected. Figure 2 shows the measured frequency response
from input current to position in the 1- to lO-kHz frequency
range. There are many resonances and notches, and zoomed
analysis would show even more.

The second curve in Fig. 2 shows the frequency response as
computed from a 30th order input-output (black-box) model,
which has been formulated in state-space form. This model has
basically' been formed from resonance frequency, damping,
and residue data obtained with the curve fitting facility of the
structural dynamics analyzer we used. Additional tedious
manipulations were however necessary in order to improve the
model in both phase and amplitude response. The model is
fairly good below 2 kHz and above 4 kHz, but less so between
these frequencies. In particular the two deep notches between
3 and 4 kHz are not well represented in the model, and
correspondingly there is considerable phase mismatch. The
classical (notch-filter based) controller from [I], which was
designed with a view to amplitude stabilization, was not
sensitive to this model mismatch, in contrast to the Iqg
controller, as shown below. Certaiuly we should do some
work on improving the model by better computerized model
matching methods.

© 1988 IEEE. Reprinted, with pennission, from IEEE TranstictiollS ol1ll1dustrial Electrol1ics.
Vol. 35, No.1, Feb. 1988. 265

HANSELMANN AND ~GELKE: A HIGHLY RESONANT DISC DRIVE ACTUATOR 101

Magnitude

20 dB

1 kHz 10 kHz

Phase

125 deg

1 kHz 10 kHz

Fig. 2. Frequency response truth model (2)/measurement (I).

III. CONTROL DESIGN

Fine-positioning control may seem to be very easy because
the plant is SISO and is virtually linear. Linearity is only lost
when the current saturates. It turns out that the current limit is
not reached with fine-positioning regulating control because
the current range is designed for fast large-distance positioning
at high torque. The plant is SISO because for economic
reasons the only measurement presently available for control
is the track position error itself.

From a design viewpoint, the difficulties of control arise
mainly from the structural resonances ranging up to 10 kHz. A
classical approach to coping with resonances is the well­
known introduction of properly designed notch-filters. They
compensate for resonance peaks to such an extent that these
peaks drop significantly below 0 dB. In this case insensitivity
to phase behavior of the plant is gained (amplitude stabiliza­
tion). The controller from [1], which had been designed that
way, yielded high bandwidth and performed well in the
experiment. The design procedure was however not satisfacto­
rily systematic. Fine-tuning of the filter parameters took a lot
of time because we always had to look carefully at the total
phase introduced by the filters around the projected crossover
frequency. Tuning the controller was easier when we used a
numerical parameter optimization program as reported in [1],
but amplitude stabilization was lost, and design was still time­
consuming.

This experience provided the motivation of trying. the Iqg
approach, from which we hoped to get useful controllers in a
systematic way with little effort. Some obstacles had however
been anticipated; namely

1) a reduced:order design model was necessary, in contrast
to the classical design which always worked with the full order
'truth model',

2) insensitivity to pkase behavior is not guaranteed, so
trouble with the phase mismatch of the model, as well as with

266

phase deviations in the real plant (which have been observed
and are due for instance to temperature-dependent stress)
could be expected,

3) due to the 20 dB/decade slope of the open loop when true
Iqg state feedback is employed, problems with the high­
frequency resonance peaks of the 'truth model' and the real
plant were thought to be likely.

A. Design Model

The order of the design model determines directly the order
of the final dynamic compensator/controller which consists of
an observer or a Kalman filter with state feedback. In order to
be comparable to the classical controller and to keep the
control processor's workload reasonably low, a design model
of 8th order was derived. Figure 3 shows the frequency
responses of both the 'truth model' and the design model.
There is good matching only up to 3 kHz. Even to achieve this,
it was necessary to include the 7-kHz resonance in the design
model, because it had much 'stray influence' into the lower
frequency range.

Since the range of good matching is fairly small with respect
to the projected crossover frequency range of 600-900 Hz, we
had to be prepared to face robustness problems when applying
the Iqg controller to the 'truth model' or to the real plant.

This design model has been augmented by an integrator, the
output of which adds to the control input. This integrator
models a constant torque disturbance. This disturbance can be
observed by the Kalman filter and the estimate fed forward to
the control input. The final design model thus was of 9th order
both for the feedback and the Kalman filter design.

B. Open-Loop Shaping

As noted above we expected to run into problems with the
high-frequency behavior of the true plant, which is not well
represented in the design model. We therefore aimed first at
forcing rapid rolloff of the open-loop frequency response
beyond the projected crossover-frequency into the controller
design.

A viable method of doing this is
1) put a low-pass filter into the loop at the plant's input,
2) design state feedback and Kalman filter for the aug­

mented plant,
3) implement the controller structure from Fig. 4.
This approach corresponds to the 'frequency-shaped cost

functionals' technique given in [2] (particularly example 4).
It might seem to be a problem that the filter states

themselves are also fed back and thus the filter characteristic
changes. We chose the corner frequency of the 2nd-order filter
near to the desired crossover frequency (usually a bit lower)
and there was only weak feedback of the filter states. The
filter's poles were only slightly shifted and the desired rolloff
was achieved without significant loss of control bandwidth, as
shown in Fig. 5. The small effect of filter feedback can be
explained by the cost which any larger changes in the filter
dynamics would introduce, which are therefore avoided by the
Iq-optimal feedback design as long as the control bandwidth is
not forced to be much higher than the filter corner frequency.

It turned out however that operi-Ioop shaping was not really

102 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 35, NO. I, FEBRUARY 1988

20 dB

1 kHz 3 kHz 10 kHz

100 deg

1 kHz 3 kHz 10 kHz

Fig. 3. Frequency response truth model (I)/design model (2).

Fig. 4. Control structure with open-loop sharing.

20 dB I

0.1 kHz 10kHz

b

o rnsec 5msec

Fig. 5. Results of open-loop shaping: (a) Open-loop frequency response
magnitude, (h) step response, (1) with open-loop shaping, (2) without open­
loop shaping.

necessary for our drive actuator control. The controller
described below had moderate but sufficient roll-off without
this technique, yet open-loop shaping might be necessary when
manufacturing tolerances or the like require a more safe
design. The oscillation visible in Fig. 5(b), which results from

the near O-dB resonance peak at 2 kHz, could also be avoided
by weighting a suitably defined variable in the Iq cost
functional (see below).

C. Igq/ltr Design

The Itr method of designing a state-feedback plus Kalman
filter (observer) based controller is now, well established and
already appears in textbooks, for instance [3]. In effect it
means introducing fictitiously high process' noise at the control
inputs (one in our case). Increasing this noise forces the
Kalman filter to rely more and more on the measurements,
thus using the control input information less and less. In the
limit case this information is no longer used at all. The loop
transfer functions of the original full state feedback without
Kalman filter are then 'recovered'. The purpose of this
strategy is to make the control loop less sensitive to certain
mismatches between the plant model used in the Kalman filter
design and the real plant.

The limit case is however not practically useful, because it
yields an ultrafast filter with too noisy estimates. A compro­
mise has to be found. Our strategy generally is to observe the
filter poles when increasing the control input noise and to
locate the poles somewhere in the region which corresponds to
the desired dynamics of the control system. The pole
corresponding to the disturbance model is also located in an
appropriate region through a suitable disturbance noise inten­
sity.

Figure 6 shows the control system structure. Due to the Itr
procedure no problems arose with' using the equivalent SISO
compensator instead of the original 2-input controller with the
control signal being explicitly fed into the Kalman filter. Note
that without the fictitious Itr noise the Kalman filter would
have relied far more on the control signal than on the
measurement. In such cases the compensator may turn out to
be unstable, so that the control system becomes only 'condi­
tionally stable', which is very undesirable.

The result of the first attempt to design the state feedback
and the Kalman filter is shown by the step response in Fig.
7(a). This response was simulated with the design model as
plant, i.e., without any model mismatches. The state feedback
had been designed with cost function weight on the control
signal and the head position error.

The problem with this design was the 2-kHz oscillation
visible in the step response. It is typical of Iqg designs that
lightly damped plant modes do not always come out well
damped in the closed loop. Even if the damping achieved here
were considered to be sufficient, it was unfortunately not
retained when the controller was applied to the truth model of
the plant. In fact, the oscillation built up, and the closed loop
was unstable. To remedy this it was necessary to force the Iqg
design to yield more damping of the critical mode.

D. Modal Weighting

In resonant mechanical systems it is often necessary to
achieve higher damping than given by the Iqg design when
weight is put only on the controlled or related variables [4].
Frequently the mechanical motion dominantly associated with
a critical mode can be identified, such as the relative motion of

267

HANSELMANN AND ENGELKE: A mGRLY RESONANT DISC DRIVE ACTUATOR 103

compe lor

Fig. 6. Control structure.

o msec 5maec

J

o msec 5 msec

Fig. 7. Step responses simulated with design model: <a) without modal
weighting, (b) with modal weighting.

two masses connected by a spring. Then it may suffice to put
cost function weight on appropriate variables related to this
relative motion in order to get good damping without affecting
the eigenfrequency or other eigenvalues too much.

In the disk drive application we unfortunately do not have an
appropriate mechanical plant description, we only have a
black-box input/output model. It is however still possible to
apply 'modal weighting', by introducing an auxiliary output
variable YM (one per critical mode) which only reflects the
critical mode in the transfer function from the control input u
to 1M, and does this in a certain manner, i.e.

YM(S} ks
U(s} = s2+2rwo+w~ .

(1)

Finding this auxiliary variable here requires computing the
eigenvectors of the plant state space system matrix. Combin­
ing the two conjugate complex left eigenvectors I; and I: T of
the critical mode by

with appropriate constants c" C2 and defining

1M=CTX

268

(2)

(3)

(x being the state vector) yields the required auxiliary output
variable.

It is crucial to take the constants in such a way that the 's­
term' is in the numerator of (I). It can be shown [4] that this
ensures that damping is achieved by weighting 1M without
affecting the eigenfrequency too much. Strictly spoken, it is
possible to move the critical eigenvalues exactly along the
'constanteigenfrequency/more damping-path' by weighting
1M, provided that not the eigenvectors of the uncontrolled
plant are used, but those. of the already controlled (but
insufficiently damped) plant. If the critical eigenvalues have
not been affected significantly in the previous control design,
it may be assumed that the eigenvectors are almost nnchanged
too. Then it is more convenient, and sufficient, to use the
plant's eigenvectors, and this we did.

With this 'modal-weighting' technique we achieved suffic­
ient damping very easily (Fig. 7 (b}), and this then carried over
to the truth model based simulation, and later on to the real
implementation (see below).

IV. IMPLEMENTATION REsULTS

For the implementation of fast controllers we routinely use
our own TMS 32010-based digital signal processing system
along with a set of design and implementation software tools,
including an automatic code generator [5]. We carried out the
design in the analog domain, and discretized the controller
with methods briefly described in [6]. The discretized control­
ler given in state space form was then transformed to 'real
modal form' and was scaled automatically for 16-bit fixed
point arithmetic by a II-scaling technique [6). After checking
for the effects of discretization, computational delay, AD- and
DA-quantization, and finite wordlength arithmetic by simula­
tion, the signal processor code was automatically generated
and downloaded. The sampling rate was about 34 kHz.

Figure 8 shows the step response. result obtained with the
truth model of the disk drive by simulation with the all-digital
controller as mentioned above. Figure 9 shows the same
response measured from the real drive. In contrast to the
results in [1], where the experimental and the simulated
response were very close, we observe considerable deviations
here. The reason lies in the higher sensitivity of the Iqg
controller mainly with respect to plant phase as compared to
the 'amplitude-stabilization'-type design of [I]. The mismatch
between our design and truth models and the true plant is too
high for ·a 'controller whose design relies too much on the
fidelity of the model. Nevertheless, the controller works, and
it has some advantages, as discussed below.

First of all, to our own surprise, the Iqg controller was much
quieter than the controller from [1] in the experiment. The
high reduction of audible noise can be explained by the
controller's magnitude frequency response given in Fig. 10.
The high-frequency gain is much lower than that of the PDPD­
notch-type controller from [1]. Secondly, the disturbance
response is about twice as fast as with the controller from [1].
When the controller gain was increased by 20 percent, the
disturbance response was even faster (Fig. 11), and reference
signal step response was also improved somewhat, without
running into robustness trouble.

104 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 35, NO. I, FEBRUARY 1988

o IDIIec 5msec

Fig. 8. Simulated step response with truth model and digital controller.

... lEt
Fig. 9. Measuted step response.

._ , Ia. ...
Fig. 10. Controller frequency response comparison: (I) double PD & notch­

type controller from [II, (2) Iqg controlier.

Fig. II. Disturbance step responSe.

In order to show that the design efforts were worthwhile
compared to a quick design of a simple controller we show the
step response obtained with a PD contrp!ler in Fig. 12. Note

... ..""' .
Fig. 12. Step response with simple PD controller.

that the dynamics of this control system would become worse
if an integrator were added for achieving constant disturbance
rejection, which the controller from [1] and the lqg controller
already had built in.

V. CONCLUSIONS

We have shown that lqg design, if done properly, can be
used to obtain reasonable controllers for highly resonant
mechanical systems such as the disk drive. Designs can b;:
completed systematically and quickly, as long as there are no
problems with model fidelity. There are means to achieve
robustness against high-frequency mismatch (the low-pass
filter technique) but in the medium frequency range the model
should be good.

There is still much more potential in the lqg design of fine­
positioning control. Accurate modelling of disturbances (har­
monic ones from disk rotation [7], stochastic and shock
disturbances from the environment) promises to be beneficial.
The resulting increase in controller order should not be a
severe obstacle with today's low-cost high-performance signal
processor devices and suitable software support.

REFERENCES

[I] H. Hanselmann and W. Moritz, "High bandwidth control of the head
positioning mechanism in a Winchester disk drive, It in Proc.
IECON'86, Milwaukee, 1986; also accepted for the special IECON
issue of Control Syst. Mag., Oct. 1987.

[2] N. K. Gupta, "Frequency-shaped cost functionals: Extension of Iinear­
quadratic-Gaussian design methods," J. Guidance Contr., vol. 3. no.
6, pp. 529-535, 1980.

[3) B. Friedland, Control System Design. New York: McGraw-Hill,
1986.

[4) H. Hanselmann, "Achieving damping in Iq control of resonant
mechanical systems," to be published.

[5) H. Hanselmann, "Using digital signal processors for control," in
Proc. IECON'86, Milwaukee, 1986.

[6) H. Hanselmann, "Implementation of digital controllers-A survey,"
Automatica, vol. 23, no. I, pp. 7-32, 1987.

[7) T. Tsujisawa, H. Murayarna, and H. loada, "Modern control theory
application in high track density FDD," in ['roc. IECON'86,
Milwaukee, 1986.

269

270

HIGH BANDWIDTH CONTROL OF THE HEAD POSITIONING
MECHANISM IN A WINCHESTER DISC DRIVE

Herbert Hanselmann and Wolfgang Moritz

University of Paderborn. Department of Automatic Control in Mechanical Engineering

4970 Paderborn, Federal Republic of Germany

ABSTRACT

Modern disc drives use fast voice coil actuators for
the positioning of magnetic heads onto desired tracks
and keeping them on track against various distur­
bances by closed-loop control. Problems stem from
high desired control bandwidth (ca. 1 kHz) requiring
digital signal processing rates above 10 kHz and from
complexity due to structural mechanics effects.

1 INTRODUCTION

Modern disc drives use fast voice coil actuators for
positioning magnetic heads on desired tracks and
keeping them on track against various disturbances by
closed-loop control. Two types of actuators are
predominant in state of the art drives: rotary and
linear actuators. both driven by a current passing
through a coil in a strong magnetic field.

In high performance drives the head position is
measured from a dedicated servo platter, Measurement
electronics supply a head I track misalignment error
voltage which is proportional to this error within track
width. Current flowing through the coil generates
torque or force so there must be closed-loop control.

Head positioning control comprises two tasks: Po­
Sitioning on a target track (maybe across many
tracks), and fine-positioning. The former task consti­
tutes a servo problem (nonlinear for large initial / tar­
get track distances). whereas the laller IS a regulator
problem.

We concentrated on fine-positioning control in an
industrial prototype 8" drive using a rotary actuator,
as shown in Fig. 1.

Initial studies had been per~ormed on the actuator
assembly separated from the drive housing. Because of
considerable interaction of the actuator with the hous­
ing (base-plate) and platter/spindle assembly it was
however necessary to use a more complete drive.

The setup now is an almost complete drive without
top plate, with fixed spindle, and with an optical sensor

for head position. Fixing the spindle of course means
that several effects which exist in the operating drive
are not accounted for. These are: (a) vibration of the
(Whitney-type) slider / head assembly (Mizoshita ct a!.,
1985); (b) aerodynamic suspension of the flying head;
(c) vibration from spindle / bearing inaccuracies
(1'aruse et aI., 1983); (d) noise from misalignment
detection electronics.

The head position range in our setup is however
realistic. The optical sensor consists of a s·mall plate
with a borehole in place of the head which moves
between a differential photo-diode and an LED mounted
on adjacent platters. Resolution and linearity is very
good so that we can operate in the original track width
pOSition range (+-18 J.LID maximum. +-9 J-Lm used) with
sensor noise in the 0.2 J.Lm rms range.

The magnetic actuator is driven by linear current
driver electronics so that the torque is directly propor­
lional to the control input voltage to the driver.

Fig. 1 disc drive setup

© 1986 IEEE. Reprinted. with pennission. from IECON 1986.1986,
271

3 MOPEIJ,ING

In order to study control, a mathematical model of
the plant is necessary. A simple mathematical model
would be a double integrator (torque to position). But
the control bandwidlh desired is so high that structur­
al mechanics effects can by no means be neglected.

F'requency response. Fig. 2 shows the measured
frequency response from input current to position in
the 1 liz lo 10 kHz frequency range. There are many
resonances and notches. and zoomed analysis would
show even morc. An interesting facl is that obviously
the transfer function of such a mechanical system can
be of non minimum phase type. This can be concluded
from the phase behaviour around 3 kHz, where the
deep amplitude notches are not ac'cornpanied by a
phasc lifl. In facl phase goes down 360 cieg'rees. We did
nol cxpccl lhis bul il can been shown lhal some kind
of mechanical vibration mode can indeed lead to such
behaviour. which is expressed by pairs of conjugate
complex transfer function zeroes in the right half­
plane. Such behaviour is known to be undesirable for
control.

The second curve in Fig. 2 shows the frequency
response as computed from an input-output (black­
box) model with a 30lh order lransfer function. This

t-..... A
"""-" \

rI
\
'V' V\ I~

'1\'-1 If I\:
model/'

-,
VI'

mcasured _I'"

l{
N

"" ~
~

mOdel/ \'t hn " p -V [T lr-..
measured

I\n

1 kHz 10 kHz

Fig. 2 plant frequency response

272

model has basically been formed from resonance fre­
quency, damping, and residue data oblained with the
curve filling facility of the slructural dynamics
analyzer we used. Additional tedious manipulations'
have however been necessary in order to improve the
model in both phase and amplitude responsc. The
model is fairly good below 2 kHz and above 4 kHz, but
less so between these frequencies. In particular the
lwo deep nolches belween 3 and 4 kHz are not well
represented ~n the model, and correspondingly there is
considerable phase mismatch. Because we focussed on
gain stabilization (see next section) we accepted this
for the time being. Bul certainly we should do some
work on improving the model by better computerized
model matching method •.

For frequency response computation, control
design and simulation, the model has been formulated
in state-space parallel form.

Modal analysis. It is interesting to know with which
vibrational modes the significant resonances are asso­
ciated. So we performed experimental modal analysis
using a slruclural dynamics analyzer (in fact modal
analysis was the first step in the study and gave impor­
tant clues as to where to improve the mechanical con­
struction).

The first step is the measurement of the frequency
response between the control input (torque or current)
and several accessible points of the mechanical struc­
ture. fig. 3 a) shows such poinls for a 3D model 9f the
actuator. This model was used in previous studies of
the actuator where it was not built into the drive hous­
ing. The rotary arm for 6 platters is shown in bold lines
along with the voice coil (I). The mounting frame (II) is
shown in thin lines. It carries the bearing for the rotary
arm's shaft (Ill) and is screw-mounted onlo lhe
baseplate. The magnet (N) is moun led on the lrarne.

Vibrational deflection was measured via subminia­
ture accelerometers, weighing only 0.6 grams. Th(!
modal analysis for the whole disc drive was restricted
to a 2D study because only the top level of the arm is
then available for measurements. Figs. 3 b) - e) show
the 2D model used with dolted /i'nes for the undeflecled
'state and bold lines for the deflections associated wit.h
each vibrational mode.

Each resonant peak in the frequency response of
such a weakly damped mechanical structure is associ­
ated approximately with a real vibrational mode. SU.<'h
modes can be determined by the structural dynamiCs
analyzer via frequency response curve fitting around
the resonances. It is possible to get animated pictures
of the individual modes on the screen, which do not
however show the actual movements of the structure
under some excitation, but only the form of the contri­
butions of the individual modes.

Some of the modes which are relevant in control
design are shown in Figs. b) - e). The lowest rec<onance
frequency (1.76 kHz, Fig. 3 b)) is associated wllh a
bending mode of the arm, as one might expe~t. But
frame and magnet, allhough being very sohd and
heavy, also conlribule lo this mode. The nearby re~o­
naqce at 2.06 kHz (Fig, 3c)) also belongs to a bendmg

mode, but magnet, frame and bearing do not contri­
bute significantly to this movement. It is typical of the
high frequency modes (Figs. 3 d) and e» that the
deflections at the tip of the arm are very small com­
pared to those of the voice coil on its carrier construc­
tion.

a) view of actuator with bearing and magnet

b) 1.78 kHz mode

c) 2.08 kHz mode

Possible deflections of the top platter were also in­
vestigated, because track misalignment depends on the
movement of the slider at the tip of the arm in relation
to the platter. Previous analyses, where the platter
spindle had not been fixed as in this setup, indicated
that there can be such relative movements of the
platters at low frequencies, even though the spindle is
mounted several inches away on the baseplate. In this
setup we could not however observe significant platter
movements. Deflections of the individual arms (there
are 6) relative to each other were found in previous
analyses. but were not investigated herc.

Some discrepancies bctween the frequency
response from the control input to the slidcr's position
and the responses measured via the accelerometer
(after double integration in the frequency domain)
must be attributed to the muss of the accelerometer.

It should be clear that experimental modal
analysis reveals most efficiently the coupling of the
components of the mechanical structure. It gives in­
formation needed for incorporating the important
effects in rigid body or finite-clement modelling. and
gives clues as to where improvcments to the construc­
tion could be made. In our case it should be beneficial
to fix the magnet·to the baseplate more rigidly, and to
have a more rigid voice coil constructio~. which would
presumably prevent large amplitude high frequency
resonances which pose difficulties for high bandwidth
control (see below).

d) 7.13 kHz mode

e) 9.55 kHz mode

Fig. 3 vibration modes o.f actuator

273

4. CONTROL

Fine-positioning control may seem to be very easy
because the plant is SISO (single-input single-output)
and is virtually linear. Linearity is only lost when the
current saturates. It turns oul that the current limit is
not likely to be violated with fine-positioning regulating
control because the current range is designed for fast
large-dist.ance positioning at high torque. The plant is
SISO because for economic reasons the only measure­
ment presently available for control is the track posi­
lion error itself.

The difficulties of control arise mainly from the
structural resonances, the very uneven phase
response. and the nonminimum phase behaviour. High
control bandwidth, which is desired for disturbance
suppression and quick response, can only be achieved
by insertion of phase lead (PD-type controller) near the
desired crossover frequency. This in turn makes the
structural rcsonances more significant due to in­
creased high frequency gain in the loop, thus leading to
stability problems. Hesonance peaks cOming close to
lhc a dB level in lhe open-loop amplitude response
(gain stabilization) should be avoided, because it can­
nol 'be guaranteed lhat phase will slay off the - v'160
(v= 1,3) degree levels at the resonance peaks. This
applies even if the measured frequency response shows
acceptable phase margins, because plant phase is quite
sensitive to slight alterations in the mechanical struc­
ture even with one given drive. Problems would be
magnified if the controller would be applied to series
drives wiLh manufacturing tolerances.

Classical control. A sol,ution within the scope of
c I~l.ssical con lrol comes from slructural nolch filters.
ThIs tcchnique is becoming common no~. particularly
WIth the conlrol of flexible mechanical structures in
spacc. The controller shown in Fig. 4 is composed of

a) block diagram

FREQUENCY·"

b) frequency response

Fig. 4 classical controller

274

600.00 LG HZ 10.000 K

Fig. 5 loop frequency response

two PD-type blocks and three notch fillers in series.
The notch filters make the resonances at 2, 4, and 7 lo
9 kHz sufficiently "invisible" in lhe loop (rIg. b). The
loop gain has been chosen so lhal crossover frequency
is around 900 Hz. However the phase margin is lhen
quite low, so lhe command step response in Fig. 6

I

o 5 ms

b)

o 5ms

Fig. 6 step response
a) simulated
b) measured

(nole slightly different time scale)

shows large overshoot and oscillation. This might be
considered unsatisfactory. but is of secondary impor­
tance because the focus is on regulator behaviour (not
servo), and, if desired, a prefilter (with complex zeroes)
in the command path could easily eliminate both
overshoot and oscillation while retaining fast rise time.
A slight gain reduction also eliminates oscillation, but
overshoot remains large.

Note that the simulation result in Fig. 6
corresponds fairly well to the measured response. This
is because of the high quality of the plant model and
our 'near-to-reality' simulation concept, including im­
plementation effects from processor arithmetics, non­
simultaneous sampling, AD- and DA-conversion, and
measurement noise.

The controller has been implemented in state­
space form

Xk+l = A xk + B Uk

Yk = C xk + D Uk
(1)

on a TMS 32010 signal processor at 30 kHz sampling
frequency using the CACE-system described in a com­
panion paper (Hanselmann, 1986). A natural form of
implementation would have been to realize each of the
2nd order blocks from Fig. 4 a) in a series connection
(cascade structure). In order to minimize computa­
tional delay between sampling and output we prefer
form (1). It proved however beneficial to choose a
series connection of 2nd order blocks for the structure
of A. The parallel form (Hansel mann, 1987) which we
picked first was suffering heavily from state-variable
quantization noise, although the eigenvalues of A
seemed to be sufficiently spaced from each other (oth­
erwise problems would have been no surprise).

Synthetic disturbance !eed!orward. Although there
are two integrators in the plant. this does not ensure
rejection even of constant disturbances. There is for
instance some almost constant torque in the rotary ac­
tuator from a spring moving the actuator to the land­
ing position when power is ofT. This torque acts as a
disturbance at the plant's input ar. j leads to some j.l.ffi

of constant deviation of head pOSition.

Instead of incorporating an integrator into the
controller from Fig. 4 a), which would cause stability
problems. we chose to make use of synthetic distur­
bance feedforward. This means definition of a distur­
bance model {an integrator for constant disturbances},
design of a disturbance observer, and determination of
the gain factors (only one in the case of the simple in­
tegrator), with which the observed disturbance is fed
forward in order to compensate for the real distur­
bance.

The usual way to do all this unfortunately requires
building a full observer for the plant plus disturbance
model. Doing this for the 30th order drive model for
the sole purpose of disturbance feedforward is clearly
undesirable, and certainly also not a trivial task.
Therefore we simply built the synthetic disturbance
feedforward system around the original closed-loop
system (Fig. 7). This disturbance compensation system

r'

Fig. 7 synthetic disturbance feed forward

contains a model of the closed-loop control system, nn
observer observing the disturbance as it seems to act
at the output, and feed forward to the former reference
input of the original control system. Note that the na­
ture of the physical disturbance and the point where it
acts on the plant in reality need not be known. It is
sufficient to know and model the effect the disturbance
has at the original control system's output.

The closed-loop model can be quile simple. This is
because in the closed-loop response there is not much
influence of the resonances of the plant, due to the
notch type controller. We used a 2nd order model ac­
cording to the step response shown in Fig. 6. The quali­
ty of this model determines how fast the disturbance
feedforward can be. If the model matches the actual
closed-loop response perfectly, then lhe disturbance
observer is never affected by the original reference in­
put variable r, and the observer which determines the
speed of the disturbance compensation can be
designed to be arbitrarily fast. This is of course not
the case here, but, as Fig. 8 shows, the disturbance
feedforward is nevertheless satisfactorily fast, much
faster than necessary for compensating the abovemen­
tioned torque.

without feed forward.

o 5 ms

Fig. 8 step disturbance response
(measured)

275

Note that for the constant disturbance consideJ;"ed
here the model is a simple integrator; so feedforward
gain, disturbance model and observer gain together
form!, 1 st order lag system. And since there is unity
gain in the original closed-loop transfer function from
r to x, the disturbance compensating transfer function
rrom x to f is simply

-1
G(s) = (1 +T;;j"" (2)

where the single design parameter T determines how
fast the disturbance compensation works. The
timcconslun t selected, should not be too small because
due to mismatch between the closed-loop model and
thc relll closed-loop system the poles of the original
closed-loop system would be affected. This would not be
the case with perfect model match,

G'ontruller optimization, We also subjected the con­
troller from Fig. 4 to a parameter optimization using
the program described briefly by LUckel et a!. (1965).
The main aim of this optimization was to get informa­
lion on what we sacrificed by applying gain stabiliza­
tion when we designed the original controller. Thus we
let lhe' optimization program vary all 17 controller
parameters in order to minimize the rms value of the
return difference (tracking error), where the reference
input was white noise filtered by a 1 s timeconstant
lowpuss filter (thereby approximating the spectrum of
a step input).

276

"optimized"

o 5ms

Fig. 9 effect of controller "optimization"

Fig. 9 shows the step responses 0:, the. c~ntr~l ::;~
tern both with the original and the optimized
troller (analog versions). Because in the. pa~ameter
optimization no restriction to gain stablhzatlon was
made the optimizer was free to exploit the phase

, nces con-
(phase stabilization) and lirted some resona 'b

siderably. This saved some negative Pha::h:~n~:~t~~
lions from the controller and made som. h h' h
control possible. The effect is clearly seen In t e Ig

" ., d" step response
frequency contents of the optimize h h d been kept
due to resonances from the plant, whlc a
low in the original design.

5 CONCJ.JJSIONS

It has been shown that the strongly resonant disc
drive head positioning system can be digitally con.
trolled with high bandwidth. The reqUirements arc, <I

good model, appropriate controller design, and .imple­
mentation tools for fast controllers.

F'rom an analysis of the vibrational modes which
posed difficulties in the controller design, improv('­
'ments to the mechanical construction can be su~g('st­
ed, which may lead to a further increase in control
bandwidth.

Acknowledgement

Many of the computer and measurement resulls
presented here have been supplied by cando ing. A.
Engelke, who carried out the computer studies nnd
realizations during his diploma lhesis work.

Ef,FERENCES

Hanselmann, H. (1986). Using digital signal processors
for contro!. Proc. IECON'BB, Milwaukee.

Hanselmann, H. (1987). Implementation of digital con­
trollers. Automatica, survey paper, accepted for pub"'"
lication.

Lucke!. J., R. Kasper and K: Jaker (196~). Interacllve
optimization of controller and plant parameters in
the case of multiple design objectives. Proc. 3rd.
IFAC/IFfP Symp. Computer Aided Design in Control
and Egineering Systems., Lyngby', Denmark.

Mizoshita, Y., K. Aruga and T. Yamada (1985). Dynamic
characterstics of a magnetic head slider. J£'f;g Trans.

Magnetics, 1IAG-21, 1509. .
Naruse, J., M. Tsutsumi, T. Tamura, Y. Hirano, T. Bayama

and O. Matsushita (1963). Design of a large capacity
disk drive with two actuators. IEEE Tra.ns. Magnetics,
1IAG-19, 1695.

Fast Access Control of the Head Positioning
Using a Digital Signal Processor

S. Hasegawa, Y. Mizoshita, T. Ueno, K. Takaishi

Fujitsu Laboratories Lid. Fue Memory Laboratory
10-1 Morinosaco-Wakamiya, Atsugi 243-01,lapan

ABSTRACf

We have developed a new digital servo controller for a 5· hard disIc drive which has average access time of 10 ms for a
2S mm sl1'oke. To obtain this fast access speed, we used a state estimator with a new acceleration trajectory model. The
estimator and trajectory generator are implemented using a digital signal processor.

There are two problems for fast access control: mOlor coil inductance and the mechanical resonance of the actuator and disk
enclosure. To solve these problems and to achieve precise head positioning, we developed the following control method.

To solve the voice coil motor inductance and actuator resonance problems, we used a new acceleration trajectory model
which is not affected by the coil inductance when the head moves quickly. This design is based on an optimal control
theory which minimizes the square of differentiated acceleration. By using this new trajectory model, the high harmonics of
actuator drive are damped and the residual vibration of actuator immediately after access is decreased.

1. INTRODUCTION

Direct access storage devices (DASD) are required to have faster and faster access speeds. be smaI1er and smaller, and have
larger storage capacity. To satisfy these requirements, we have to figure out how to achieve the high speed access and precise
positioning at the same time. Mechanical resonance of the DASD becomes important and limits the me access speed.l.2

The mechanical resonance problem is divided into two parts associated with the frequency band: low and high frequency
vibration. Vibrations below the servo bandwidth (300 - 700Hz) are caused by forces through the shock absorbers which
support the head disk assembly base and the reaction fon:e of the actuator when it moves quickly.

High frequency vibration (bandwidth above servo bandwidth) is caused by mechanical resonance of the actuator, which is
composed by magnetic heads, sliders, gimbals and head anns.

Low frequency vibration can be controlled by using a state estimator to estimate the mechanical resonance of the planL
Unfortunately, it is impossible to make an active controller using only feedback for high frequency vibration. Smooth
acceleration and deceleration in the seek are not the cause of the high harmonics.

We propose a new acceleration trajectory which is based on the movement of the human body.3 In this model the
trajectory is determined as minimizing the square of differentiated acceleration. There was an example of application to the
adaptive control of a robot arm.4

Conventionally, the controller of the head positioning in hard disIc drives has used a general purpose microprocessor.
Recently the requirements for the advanced control and additional functions are increasing, and high speed digital signal
processing is the way to achieve this control because the ability of the digital controller depends mainly on its sampling
frequency. Thus, using a digital signal processor (DSP) ,which is fast, in the head positioning system has become common.
5,6,7,8

© 1990 IEEE. Reprinted, with pennission. from SPIE Proceedings. Vol. 1248. 1990. 277

2. CONFIGURATION OF mE DIGITAL SERVO SYSTEM

Figure 1 shows the configuration of the digital control system for the head positioning system we developed.
Double phase position signals (poSN,POSQ) are generated by the position transducer using the servo pulse from servo

head. Each linear part of these position signals is selected by an analog switch and input to the AID convertor whose
conversion time is 3 J.IS. Track cross pulse is generated from these position signals and input to the counter.

At every sampling period. DSP calculates the current drive and outputs it to a power amplifier through the D/ A
converter. The TMS320C2S was chosen as the DSP because of its speed (one instruction per 100 ns) and price.

Fig.l Digital servo system for head positioning

Table 1 lists characteristics of the control disk drive.

Table 1. Characteristics of the Control Disk Drive

Disk diameter
Servo type
Stroke
Actuator type
VCM force constant
Actuator moving mass

so
dedicated servo
2S mm
rotary
2.1 N/A
10.1 g (equivalent)

Figure 2 shows mechanical transfer function of the actuator. It has mechanical resonance at 1.5 kHz. 2.1 kHz and 6.4
kHz. so we cannot set the servo band width over 700 Hz in this drive.

FREC RESP
eo.o

de

E.!.JiL-
EUl
-40.0

F .. d Y 100 Las Hz

Fig.2. Mechanical Transfer Function

278

3. CONTROL SYSTEMS

3.1. State estimator model

We designed state space controller for head positioning. We assumed the plant as simple double integrator model In this
way, feedback staleS which arc necessary for control arc position and velocity. Among them, velocity is not measurable stale.
So we used state estimator model. .

In the double integrator model, the digitized space equation can be stated in matrix form.

[X1(k)]
x(k) = x2(k)

We used following translation:

x(k+l) = «lI x(k) + r U(k)

y(k+I) = H x(k+l)

L= [t~] H = [1 0]

x2(k) <-- T x2(k) g <___ T2
2 b

T is sampling period and b is its mechanical,gain. The estimator model can be stated as:

::(k+l) = [«lI • LH) ::(k) + r U(k) + L x(k)

(I)

(2)

(3)

where /I. means an estimated value. Matrix L is a correction factor, it is designed based on the response Speed of the
estimator.

3.2. Track follow <weration

Figure 3 is a block diagram of the track follow control. To reduce average offset, integrated position xo is added to the
feedback loop. The xo is the running sum of measured position. The control law is :

(4)

The feedback gain series Klo K2, KG was determined by pole placcmenL9 Sampling frequency is 30 kHz, SO the influence
of phase lag, which depends on delay, is small.

Rererence +
-1.)-'-"';"';'--+-1

KI

X=AX+BU

21(1t)
PosiJion

~
Velocity

Estimator

'''Gt:
~~

Fig.3 Tracking control

Mcaswccl
PosiJion

279

280

Figure 4 shows the open loop transfer function in IraCldng operation. Zero aoss frequency is 530 Hz and the phase
lead at this frequency is about 36!fegzees.

dB

I II
I II

III
III

~~---+--+-+-~~~----~~~~~~~--~
I II

-40.0 I j I
FMd Y~10~0~~--~~~~LLLL~L~a-S~H~Z--~~~~~~~~2~0~k~

FRED RESP
180

009

-180

FMd Y 11'0

3.3. Seek qperatiQn

I ·1 I I I III I I I
I I I I I III I I !.
I I I I ! I II I I I
I I I

""- : I I
I I III I I

I I I I I I II lr-l: I I I I I III

I I I I I III N :) I I I I I I II I

Las Hz

FigA Open loop transfer function

hili III
I

I !H I r~~ I I II·
I I III

I I\~ I P I I II

I : : i~ I

20k

Figure 5 is a block diagram of Ihe seek operation. The sampling frequency is the same as track following.
This operation creates a velocity feedback loop. The control law is

U(lt) = Kv (Vtarget - ~2(1t» + Kf x3(1t) (5)

where V target is velocity trajectory profile and X3(1c) corresponds to the feedforward signal.
In a conventional controller Ihe velocity trajectory is taken from a calculated table. This table usually represents a desired

velocity at a given distance f1'pm target track.10
In this conb'Ol system. we did not use this table. We used a new velocity and acceleration trajectory to reduce ~citation

of Ihe resonance during seek operation. We will explain the design of Ihis new trajectory in Ihe next section.

+

Stale
ConlrOllcr

+

X=AX+BU

~
_ Velocity

V

Estimator

Measured
Position

Velocity Trajectory
Generator

Fig.5. Seek control a1gorilhm

3.4. Implementation to DSP

Figure 6 is a basic flow chan of the control program we developed. The designed sampling time (33.3 1lS) was achieved
by the timer inlemlpt function of the DSP chip. Tasks are scheduled by two subroutines: t:racIcing and seek routines. In both
routines, the DSP calculates the states from fonnula (3). and in the seek routine, it also calculates the velocity trajeclOry and
the feed faward.

Back mUDd fa. Sdtcdllltd I"sk,

Fig. 6. Digital servo system using the DSP

4 DESIGN OF NEW ACCEJ,ERAUON TRAJECTORY

4.1. Principles

F'ust we consider the simple third order model of the actuator (Fig.7). The differentiated acceleration (da/dt) is added 10
the basic double integrator model. u(t) is redefined as shown in Fig.7.:

Fig. 7. Third order model of the actuator

Thus the state equation is

position
XI

(6)

281

We then by 10 get solutions for minimizing the cost function P (cquation(7) with the initial condition (Sa) and the
terminal condition (Sb).

where a is the seek distance and TO is seek time.
Using adjoining state vector p. we usc the HamillOnian H

H = pT (A x + B u) + u2
where the matrices are

A = 0 0 1 [0 1 0]

000

Then optimal input u(t) is given as:

and canonical equations are

We define the characteristic equation of A and D as gA(s) and gOes). their relation is

gD(s) = g A(s) g A(-s)

gD(s) =- s6

Therefore the eigenvalue of HamillOnian matrix D is

s = 0 (6th root)

(Sa) (8b)

(9)

(10)

(11)

(12)

Consequently solutions for optimal state become 6th order time variable functions. and the unknown COefficients in the
functions can be delemlincd from the initial and terminal conditions (Sa).(8b).

position 1 t)S 1 t 4 1 t)3 XI(t) .. -60 a (-C;t --C;t) +-C;t)
10 0 4 0 6 0

(13)

velocity X2(t) = -60.!.. (1 <4 t -tt)3 + 1 <4)2) TO 2 0 0 2 0
(14)

ac:c:cleration x3(t) = -60..L (2<4)3. 3 tt)2 + <4)
T02 0 0 0

(15)

282

Figure 8 shows calculated state trajectory from (13)(14)(15). Acceleration becomes sinusoidal and its peaks are located
at 1/1'0= 0.21, 0.79.

Figure 9 shows trajectories of position, velocity and other variables when actuator accesses the average access tracks
(702 tracks). We verified that the average access time was 10 ms.

In this figure, current drive, feedforward drive, and velocity agree with the designed value of Fig.8 very well. The
normalized time (I/I'O),which is output every sample period for reference increases linearly from the start of the seek. It
suggests that the following movement occurs during seek operation.

~ ~ ~'~----~----~----r-----r----.

.. ~
0 d

N ~
d d

;; N '" >< ><
8 ~ I<l
d ?

2i a Ii!
d d ?

8 8
d

D.40 D.'"
!/fo

Fig. 8. Optimal state trajectories

4.2, Comparison wjth conventional trajectory

Fig. 9. Seek operation

Estimated
velocity

Normalized
time

position

Feedforward
drive

Current drive

position

Figure 10 shows the difference between conventional trajectory and new developed trajectory. These trajectories are
output from the reference DAC every sampling period.

In conventional seek control, the actuator is accelerated wit!) full power amplifier until its speed reaches the desired
velocity trajectory given in the table. In this case, therefore, the amplifier saturates at first stage of acceleration and the
transient stage from acceleration to deceleration in specific track seek.

In our new seek control, desired trajectory is calculated in real time • And through full stage, smooth transient of
current drive can be observed.

I iiiii -

Velocity trajectory , ... ~ ... ;~ ..
"

~ ~ ~
Estimated velocity ~ ~ .~

Current ~, ~
.. ~ ..

2,U: LOll1U r 1,]

New trajectory Conventional trajectory

Fig. 10 New and conventional trajectories

283

4 3. Yibratjon reduction

Figure 11 shows simulation of acceIemtion and power spectrum against current drive for the three kinds of conbO] :
minimum time conbO] (bang-bang control), conventional trajectory conbO], and our new trajectory conbOI. The ideal
minimujn time cannot achieved because of the motor coil inductanc:e.

In our trajectory conbO], the vibration is reduced. effectively. At 2 kHz, it can reduce power spectrum gain 20 to 30 dB
lower than the (lthers.

Figure 12 shows the vibration reduction in the time domain between these three conbOls. The residual vibration after
access can be most efl'ectively reduced by our trajectory (F'lg. 13).

Acceleration type

~r---------r-------~

M' i 200

.~ 0

.fi
R -200
~
~O

o

Bang-bang control

r

so 100

Conventionallrajectory

-500 L...... ______ ---''--______ ---J

o SO 100

M'

i
.~
.fi
~ -200

New Irajectory

~L......--------'-----------J
o SO 100

Time [xO.l ms]

Power spectrum

~r-----------------~
Bang-bang control

-20

~'----------~----~~ o 2500 5000

~~----------------~

-20

~O

Conventional trajectory

2500 5000

60~------------------~

New lrajectory

2500
Frequency [Hz]

5000

Fig. 11. Comparison with conventionaluajectories (power spectrum)

284

BaDg-bang
control

Conventional
trajectory

New
trajectory

Current and AcceleratioD Position

• •
•
~AAA

• VVVV

• T

• T, 00 - TOle!!
,. I. 00

- TOle!!
,. .00

•
.1('\
• I\.)
T

• T 00 -. T "e!!
:IS 00

Fig. 12 Comparison willi conventional trajectories (time domain: resonance = 1.8 kHz)

New lrajectory Conventional trajectory

Position

Current

Fig. 13 Comparison of measured vibration after access (repeat seek: 100 tracJcs)

285

5. CONCLUSION

We have developed a new digilal servo controller for a S· hard disk drive. The state control with estimator was made
using a digital signal processor. A stable tracking control and seet opeJlIIiOll results in an avetllge access time of 10 ms.

To avoid the high frequency mechanical resonance. which depends 011 Current driving during fast access, we proposed a
new velocity ttajectory calculated to minimize the square of dift'aentiated acceIel3tion.

6. REFERENCE

I. I. Yamada and M. Nakagawa, Positioning Control of a Servomotor Mechanism with an Oscillatory Load, I. the
Society ofInstrument and Control Engineers, vol.18, 1,1982

2. K. Arup. eL ai, Accelel3tion Feedforward Control for Head Positioning in Magnetic Disc Drives, Trans. of ICAM
89, pp.19-24, 1989

3. T. Flash and N. Hogan, The Coordination of Arm Movements: An experimentally confinned mathematical m04el,
1. Neurosc:i. vol.S, pp. 1688-1703, 1985

4. M. Kawato, Mathematical Sciences, pp 76-83, no.289, Iuly 1987
S. M. C. Stich, Digilal Servo Algorithm for Disk Actuator Control, Conference on Applied Motion Control 1987
6. S. Hasegawa, eL ai, Trans. of no.944 Symposium, pp.16-18, ISME, 1987
7. I. Ahmed and S. Lindquist, Digital Signal Processors Simplifying High-Perfonnance Control, Machine Design,

Sep. 10, 1987
8. H. Hanselman, Using Digital Signal Processors for Control, mCON'86, IEEE, 1986
9. G. Franklin and 1. Powell, Digital Control of Dynamic Systems, Addison-Wesley, 1980

10. Y. Mizoshita and A. Futamata, Head-Positioning Servo Design for Disk Drives, Fujitsu Sci. & Tech. 1.,18, 1 pp.
101-lIS, 1982

286

IMPLEMENTATION OF A MRAC FOR A TWO AXIS DIRECT
DRIVE ROBOT MANIPULATOR USING A DIGITAL SIGNAL

PROCESSOR

R. HoroWilZ
N$n'QIII "0/"101

DeporImeat of Mec icaI Ba~
Ullivenity of Califomia, BcrUIey. CA 94120

ABSTRACT

'Ibis poper is _ witII tile diJitaI impIomeD­
ta'ion of a Model aew-. Adaptiv. Coo ... 1 (MRAC)
algorithm 00 a Tuu IaIcrumoat TMS32OIO Diptal SiI­
DaI ProcesIQl' (DSP). Tho MRAC wu delipocl to coo ... 1
a two nis diRct drive SCAIlA typo lObo! _p"ator.
Tho prinwy purpoao of lb. adaptive conIIO is to com­
POIllllIe for !be iaortiaI varialioar duo to cbaDgo. ia
cODli.uratiaa and payload. &porimeDtaI _alta JlI1!IODIed
c1.arIy iUUltnto !be for adaptive cODln>I over coo­
national PID con....... for tile typo of arm ItI1ICIUrO
used iD tlo. oxporimeall. D_lIioo 00 tile ... of DSP iD
controls is p"'aootod ia IOImI of tboir c:apabilitiea and !be
ialUCDC. tboir ~ will hav. GO tile aampliag
tim. of diSital coDln>I 'Y

1. INTRODUCTION

With lbe advent of ~t drive robot manipUlators. there has
been 3 rising interest in the implementation of adaptive control to
this panicolar cill. of moo' anns (IJ.(2J.(3J. and (4J t . Direct drive
robolS. unlike indirect drive robots, are much more sensitive to
configuration and payload c:hanges. makin, Ibem ideal caadidales for
adaptive conttol. Due to real-time computational speed limitation,
much of the studies in adaptive CORbOl have been limited 10
mathematical analysis and computer simulation. however. it is now
possible to implement adaptive conll'Ol on direct drive manipulalon
with the availabilily of affordable high speed digilal signal processors
(DSP). '1 is Ihe aim of this paper 10 presenl a digital implementation
of a Model Ref.rence Adaptive Control (MRAC) for a two nis
SCARA-typo robol manipulator using tloo TMS32OIO from T
Instruments. The paper will concenll'ate on the details of implemen·
talion and actual ex.perimenrarion rather than rhe derivation of the
adaptive controller. "The details of the adaptive conlrOl design are
referenced from our previous works [4],

The remainmg sections of this paper are organized as foOows.
section 2 will briefty describe the adaptive conb'ol algorithm used,
followed by 01 detail discussion of the implementation of the algo.
"thm on the TMS32010 in section 3. SectioD 4 will discuss the
ex-penmenlal resuhs, and the paper wiD conclude with section S dis­
cussmg some of the advantages of using the TMS32010 DSP for
real-lime control applications.

1. ADAPTIVE CONTROL SCHEME

The rwo axis direcl drive robot arm used for the experiments is
shown in Fig. 1.0. The dynamic equalions for such a two axis mani­
pulalor can be C"lI.pre::lsed as lll,{2}.and [31,

(I)

(2)

where M(XI'I IS lhe :!x:! inerlia matnll. which is symmetric and posi­
tiVI! dl!llIlIt~, "I"x, and q an! respectively the: two dlmens.ional Joint
wsplacement, joint velocity, and lorque vectors. The vector v
repr~!oen15 Ihe nonhnear lerms due to Coriolls and centripelal
ac(;ekrallon~. The Coulomb friction torque vector IS represented by
d.

A"umiag tloat tile torque vector q is preceded by a zero .,.dec
hold. tho dynamic equations (I) and (2) are discre'izod to

x,14+I) = x,(t) + Ta.lk)

+ fM(l)-'(q(l)-VIl)-dll» (3)

x.(HI) = x.(l) + TM(l)-tlq(kl-v(kHl(l)) (4)

whore T is tho sampliag poriod.

Ba on Eqs. (3) and (4) a Serio. Parallel Model (4J can be
doMed u _

x_(k+I) = x.lk) + Tu(l)

and tloo torque iDpal vOClOr is doacribed by

q(l) = Mlk)Ulk) + ;,Il) + d(k)

(5)

(6)

whore MU) , ;,(l) • iJ(l) • are tho •• timare. of M ••• d • respec­
tively. Defining the adapCatlon error as

elk) = x •• (k) - x,(k). (7)

tloe parameter adaptation algorithm for M(l) • vU) . d(l) • are giv.n
by

where

M(t) = MIt-I) + TK.e(k)uTlk-l)

;,(k) = [v,(k) v,(k) ... vo(k)] T

d(k) = d..(k)s(l<,(k).U(k))

(8)

(9)

(10)

v.(k) = X~lk)N"'(k)x'(k) (II)

H'" = H'·'lk-I)+TK (k) •• (k-I)x~(k-l) (12)

d.(k) = d.lt-I) + TK,s(x,lk),u(k»)elk)

The Coulomb friction function, s(x,,(k).u(.t) , is given by

{
Si8n IX",1 if IX~kl > £

8(x,.lk),u(k)) = sign,".J if IX,.I $ _'.

(\3)

(14)

where signIA.~] = 0 if Ix"1 == 0, and E~ is a velocity resoluuon
deadband. K .. , KN,I, • and K~ are constant poSitive adaptation gain
mab'ices, and ,.,(t) is the k-th element of the vector e(t). 11le block
diagram of the model reference adaptive conb'Ol scheme is shown in
Fig. 2.0. Interested readers should refer to Horowitz et. al. 141 for
the details of derivation and stability analysis of this algonthm.

3. TMS31010 IMPLEMENTATION

The NSK-UCB rooo, illustrated in Fig. 1.0 is a SCAR A-typo
arm dnvCR by two NSK direct drive moton. Axis I is driven by a
model 1410 motor with a maJtimum torque capability of 245 Nm.
AXIS :2 i.~ driven by a smaller motor. model 608. capable of deliver­
IDg up 10 39.2 Nm torque. 80th motors are powered by swilching
amplifiers from NSK. SCrlCS 1.5 and Serics 1.0 for the model 1410
and model 608. respectively. A block diagram of the real-time can·
ltol syslem is iIlustraled in Fig. 3.0.

© 1988 IEEE. Reprinted, with pelmission, from Proceedings {d"A/J/('/"iC£ln Control C(JJ!fi'r('llc(',

June 1988, 287

288

'-0 :.. ..,. - -- -_.
I --t =-~ .:------. ./--I I,

.... /' - - -- ... -

..... :=.::.

-.. -IMIL_
=-"'L. ~. ___ &117

FIG. I.' NSK·UCB Two ADs Direct Driye Manipulator

FIG. 2.' Adaptive Control'System

FIG. 3.' Experimental Stt-up

NON-ADAPTIVE
CAP
3,3

TIM a F "'YSTF.M TUNF.D WITHOUT PAYlDAIl ..

71!5.~

Q /Oh -..: e::

,

i
1

!J.
7!
VI

V ~ ,"," AYLO~

" V -...;;

I~ I--' ~
i1'Dr.s1RED ~

"WlTIIOUT PAYLOAD

2,

F)lCSX V <4.0!5 s •• 8::tSO S08 POS HAD

TIMF. (SF-C)

FIG. 4.0 Non-Adapaive Control

NON- ADAPTIVE

~

" \
•. 62

CAP
3.3

TIM au", S YSTEM TUNF.D 1I1TJ1 PAYlDAIl

715.=
~ /Dlv

e.
~ " •• 1
;::

~v
!J

I/~
'(II

2, ,F

1'\
kPf .J.

JI J
Ii'DESIRED

""J PAvloAD

I

J'\ rl\ 11'\
.\

K
~

~
WTnlOlIT PAYIDAD \!\

--~
J

F)CdXV oe Se . S I so eoa POS NAD .-:"'ii'2

~ e::

CAP
3.3

7!!5.~

/D' v

,

TIMI~ (SEC)

FIG. 5.0 Non-Adaptive Control

TIM AEC ADAPTJvr~

!!II P~YlDAb

!l wr IIOUT PAYIDAl 1\
ty'\,

ESIRID \
j

" I -\ I(f

v •• 05 .. Sl80 O. POS AD ._-L-.• r:"a'i;

TIMt: Vn-:C)

FIG. 6.' Adaptin Control

Two IBM-AT's are used to implement the algorithm described
III Iht,;' prl"ViOU5 sCL":tion. TIle firsl IBM·AT is used to close the

proporlional position loop for both axes in 7 ms 1be NSK
amplifiers prov ide a two phase quadrature signal for posicion feed·
bad: .. Both motors provide a resolution of 153,600 pulses per revolu­
tion. The qdadralure signals are decoded to a 16 bit integer which is
sampled by the IBM·AT and internally converted to a 32 bit integer
by software. The IBM-AT calcul.tes the appropriate velocity com­
mand signal for each axis and delivers the command to the second
IBM·AT through two digital to analog con\'erlers (O/A).

The .«ond IBM-AT which houses the TMS32010 DSP board
from Atlanta Signal Processors, Inc .• samples the velocity command
from the first IBM·AT via two Analog to Digiral cooverters lAID).
Th~ nunor adaptive velocilY loop for each axis resides on Ihe
TMS32010 board. The second 18M·AT serves only as a data acquisi­
tion computer for the TMS. The IBM-AT is responsible for sampling
four AID's and controlling two DIA's, during real-lime execution.
The four AID's are two tor Ihe velocity command, and two for me
velocity fcedback signal. The velocity feedback signals for both axes
are provided by the NSK amplifiers as analog signals ranging from
+10 volts to -10 volts. which corresponds to 1.0 RPS to -1.0 RPS.
Tb~ Iwo D/A's are used to deliver the computed torque commands
from Ihe TMS 10 the NSK amplifiers. For our system the NSK
amplifiers have a gain of 47 Nm/V for axis I. and 25 Nm/V for axis
2. The system is configured such that the TMS is a high speed
numeric processor for the IBM. The real-time program is interrupt
drivcn Ihrough the system timer of the IBM. 1be IBM controls the
sample, and when data is ready delivers them to the TMS through a
common sbared memory space between the IBM and the TMS. The
IBM in turns signal the TMS to begin execution. Upon completion
the TMS delivers the computed torque command to the mM lhrough
the same shared memory space and signals the IBM tbat the compu­
ration for that rime slice is complete. The IBM then delivers the
torque command to the appropriate NSK amplifiers via the two
D/A's.

The adaptive velocitY loop for both axis were implemented in
TMS assembly. The resulting code was 755 bytes, with a minimum
Po .. ibl< loop time of IS I ,",' . However. the overall algorithm was
limited to .bout 700 ,",S, due to the limiting speed of the IBM-AT
and me IBM Oaea AcquisitioQ Board used. A similar version of the
algorithm was written in assembly for the 80286 on the IBM-AT
whi<:h raD at a minimum tale of 2 ms . NOle. that if it was not for the
limitation of the 1/0 drivers. by virtue of pure software execution
time, the use of the DSP over conventional general purpose CPU's
can decreue the sampling linle by almost one order of magnitude.

The entire algorithm was coded with fix point arithmetic in
mind. For this particular adaptive conuol algorithm. a fix point for·
mat of 7 bit integer and 8 bit fraction, which corresponds to a numer·
ical r'olnge of :t27.r", was sufficient. The task or scaling was
simplified by Ihe TMS, since it provides a 0 to IS bit barrel shifter
which can shift the data as it is heing loaded from the memory to the
arithmetic logic unit \ALU). Another feature of the TMS which
makes it performance superior to mos. general purpose processors is
the: pardUel hardware: mullipier ~hich aUows the TMS to perlonn a
16xl6 bit multiply in 200 ns. An imponanl fealure of the TMS,
which is beneficial 10 most conlJ'Ol application and is not available in
general purpose processon is the owrjlow modt. which when set
prevents numeric overilows and underflows. Anodler" point which
sbould be mentioned is that the macro capabiliry of the TMS assem­
bly language has made the programming task bearable and actuaUy
rather liimple.

4. EXPERIMENTAL RESULTS

The adaptive control allorilhm was implemented on the NSK­
UeB robot, and the resulls are illustrated in Figs. 4.0 to 6.0. The
robot was subjected to a payload change for approximately 7.S Kg.
Both axes wen: tracking • third order trajectory which required each
axis to b'averse over ISO" and return. The p10ts shown are closeups
of 1he second axis posilion response as it reaches its 180" destination.

Fig. 4.0 illustr.ues Ih~ non-adaptive case in which the system was
tuned without the payload. The perfonnance is fair without payload.
however, the system expeflence tremendous overshoot when the pay­
load was adckd. Fig 5.0 illustrales Ihe opposing case. where the sys·
tem is tuned wilh lh~ payload and becomes highly oscillatol)' when
the payload is lost. Fig. 6.0 shows the adaptive case which is nearly
ind.isungulshabJe for either payload configuration. The results are for
a sampling nle of 7 ms for both the position and adaptive velocity
loops.

s. CONCLUSIONS

Th\! digital implt!m~nlation of a MRAC to a two axis direct
drive robot using the TMS32010 Digital Signal Processor in conjunc·
tion wllh two IBM·A T's was pre~nted. From Ihe actual ex.perience
gamcd Ihrough impl~mc"IHalion. few features of I~ TMS were found
to" be extremely benefiCial to controls. these are :

• Macro capability of TMS assembly language
... Small and simple inslruclion set
*' 0 to 15 bit banel shifter for scOiling
• 200 ns 16x16 bit hardware multiplier
• Single cycle instruction for simple timing analysis
• 32 bi1 Accumulator
... OverOow Mode lor automatic numerical wrap·around

prevention.

A k.ey to the success of this implemcoution was the t.:areful
scaling and unsealing of intennediate values throughout the calcula·
tions. It should be noted thai this may no longer be a I.:oncern with
today'li availability of floating point digital slgnaJ processors, such as
AT&T',DSP32.

ACKNOWLEDGMENT

Thu work was supported by .he National Science Foundation
under grant MSM-8SI195S, the IBM Corporation under the U.C.
Berkeley grant for distributed academic computing environment and
the NSK corporation.

REFERENCES

[I] Horowitz. It. and Tomizuta, M.(1980) .• An Adaptive Con­
trol Scheme for Mechanical Manipulators---Compensation
of Nonlinearity and Decoupling Control", ASME P.per
#80-W A/DSC-6 also in ASME Journal of Dynamics Sys­
tem, Measurement and Control. Vol 108. No.2, June 1986.
pp 127-13S.

[21

[31

[41

[51

Tomizuka, M. Horowitz, R. and Anwar, G. (1986) .. Adap­
tive Techniques for Motion Controls of Robotic Manipula·
tors", Japan-U.S.A: Symposium on flexible Automauon.
July 1986, pp 117-224.

S.degh, N. and Horowitz. R.,(l987) "Stability Analysis of
an Adapcive ControUer for Robotic ManipuJalors". Proceed­
ings of the 1987 IEEE Int. Conf. on Robotics and Autom.­
tion. pp. 1223-1229, April 1987.

Horowitz, R., Tsai, M.C .• Anwar. G., Tomizuta, M .• (1987)
"Model Reference Control of a Two Axis Direct Drive
Manipulator Arm·', Proceedings of the 1987 IEEE Int. Conf.
on Robotics and Automation, pp. 1216-1222, April 1987.

Texas Inslfuments, "TMS32010 User's Guide". Texas
Instruments Incorpor.ted. 1983.

289

290

Implementation of a Self-Tuning
Controller Using Digital Signal

Processor Chips

ABSTRACT: This paper describes imple­
mentation aspects of a self-tuning motion
controller, which uses the Texas Instruments
TMS32010 digital signal processor (DSP)
chip. The potential advantages in using a
DSP chip include reduced operation time,
reduced development time, and reduced cost.
The self-tuning controller can track varia­
tions in system parameters as well as system
disturbances. Algorithms are described, ex­
perimental results are presented, and imple­
mentation strategies to overcome I imitations
of such systems are discussed.

Introduction

In many applications of electromechanical
systems, parameters such as inertia and load
torque may vary over time. Variation of load
torque, manufacturing variations, and aging
can degrade system performance. The de­
sign framework of self-tuning control is suit­
able for adjusting control parameters as well
as compensating for disturbances [I], [2].
However, cost considerations have tended to
limit the implementation of adaptive control
to process control applications, where the
control costs can be justified. The advances
in microprocessor technology with reduced
cost have made it possible to apply adaptive
control to electromechanical systems be­
cause digital signal processing (DSP) chips
reduce cost and development time. In par­
ticular, the implementation of adaptive con­
trol presented in this paper is currently being
considered for use in a commercial product.

Digital control normally is implemented
with a microcontroller, and microcontroller
architecture is well suited for handling inputs
and outputs for motion control systems.
However, the arithmetic logic unit of such
devices is slow, due to the general-purpose
microprocessor architecture. For example,
16-bit multiplications normally require 5-20
!,sec. These slow times preclude using these
devices for simultaneous identification and
control of an electromechanical system. On

K. H. Gurubasavaraj is with the Xerox Corpora­
tion. Business Products and Systems Group, 1350
Jeffer.;on Road. Rochester, NY 14623.

K. H. Gurubasavaraj

the other hand, the architecture of a DSP
chip is quite suitable for intensive compu­
tation. Multiplication times for 16-bit DSP
chips are in the range of 60-200 nsec. This
time improvement makes possible real-time
on-line adaptive control.

This paper discusses the implementation
of self-tuning adaptive control using a DSP.
Many vendors, such as Texas Instruments,
Fujitsu, AT&T, Motorola, National Semi­
conductor, and NEC, produce a wide range
of DSPs. The AT&T DSP32, Texas Instru­
ments TMS32030, and NEC !,PD77230 have
32-bit floating-point hardware architecture.
They are capable of producing multiply and
accumulate floating-point operations within
60-150 nsec. Other DSPs have fixed-point
data architecture. The cycle time of these
first-generation devices is in the range of
100-200 nsec. As a result of hardware mul­
tipliers, multiply and accumulate fixed-point
operations are performed in 160 nsec com­
pared to 12-16!,sec using Intel 8086 or 8096
devices. The cost of these devices is com­
parable to other microcontrollers, costing less
than $10. The Texas Instruments TMS32010
device is used here for self-tuning controller
development because of cost considerations
and availability of development systems.
Furthermore, all control functions of a mi­
crocontr"lIer are integrated with the
TMS32010 central processing unit (CPU) in
the new device, referred to as digital signal
controller DSC32014. This chip can be con­
sidered as a true single-chip controller ca­
pable of performing identification, control,
and input -output signal processing in real
time.

The TMS320 family of processors have
Harvard-type architecture with separate data
and address lines. The instructions are suited
for implementation of digital filters. For ex­
ample, the combination of L T.D and MPY
instructions load a coefficient in a register,
multiply and accumulate with previous prod­
ucts, and move the data memory to the next
higher memory address space. Hence, im­
plementation of each additional pole and zero
can be performed with two instructions.
More information about these devices can be
found in Refs. [3]-[5].

There are implementation constraints with
these chips because of the fixed size of ran­
dom access memory (RAM) space and hard­
ware architecture suited for fixed-point op­
erations. Our objective is to design the
adaptive control with the capability to esti­
mate the maximum number of parameters
and control the system. Simultaneously, the
implemented controller can track the veloc­
ity or position of a given electromechanical
system. Experiments have been conducted to
measure the effect of mismatch between the
assumed model and the actual system.

System Model

The dynamics of many electromechanical
systems can be represented using well-known
models. For illustrative purposes, the per­
manent magnet DC motor driving a load with
total inertia J can be represented by the fol­
lowing equations, where R, L, K" K" B, v,
i. and Td indicate resistance, inductance,
torque constant, back electromotive-force
constant, damping coefficient, voltage ap­
plied, current through the armature, and dis­
turbance torque, respectively.

L di(t)ldt + Ri(t) + K, wet) = vet) (I)

J dw(t)ldt + Bw(r) = K,i(r) - Td (2)

The operation of the Laplace transform
yields the following transfer-function rela­
tionships. where K*. a*, b*, and c* are de­
termined from Eqs. (1) and (2).

w(s) = [K!'V(s) - K: (s + ef) Td(S)]

.;- (s2 + afs + at) (3)

The equivalent Z-domain transfer function
using zero-order hold gives the following re­
lationship among velocity, voltage, and
torque disturbance.

w(z) = [K,(z + b,) V(z) - K,(z + e,)

Td(z)]/(z2 + a, Z + a2) (4)

The adaptive control methodology pre­
sented here develops the control parameters
as if the system parameters were known. A
suitable identification procedure is used to

© 1989 IEEE. Reprinted. with pennission. from IEEE C011fml Systems Maga=ine. June 1989. 291

tune the initial control parameters. The fol­
lowing section describes the identification
procedure.

System Identification

The discrete dynamic equations for the
system in Eq. (4) can be written in the time
domain using the following recursive equa­
tion, where the system parameters are rep­
resented by 8;.

w(k + 1) = 8,w(k) + 82w(k - 1)

+ 8",(k) + 84 v(k - 1)

+ 85 T,,(k) + 86 Td(k - 1)

(5)

The system equations can be written in
vector notation, where the vector e repre­
sents system parameters, the <I> vector con­
stitutes all known signals, and superscript T
denotes transpose of the vector.

w(k + 1) = <I>T(k)e(k) (6)

If the torque disturbance is constant, then
Td(k) equals TAk - 1), and the last two
terms in Eq. (5) can be combined to give a
single bias term. This unknown bias can be
included in the system parameters 8;. A
straightforward recursive least-squares (RLS)
estimation procedure can be used to identify
the system parameter vector e. However,
when the torque disturbances vary over time
and the torque disturbance sequence is not
known, the estimation process becomes non­
linear due to unknown torque disturbance
terms T,,(k) and T,,(k - 1) in the <I> signal
vector, which mUltiply the unknown param­
eter vector e.

For the preceding class of problems, the
elements of the parameter vector e as well
as the unknown elements of the signal vector
<I> need to be estimated. The estimation prob­
lem can be solved by using either the ex­
tended least-squares (ELS) method or the ap­
proximate maximum likelihood (AML)
estimation method [6). If the propenies of
the disturbance noise distribution are known,
the AML estimate has superior convergence
propenies compared to the ELS method. In
the absence of such knowledge, both
schemes exhibit similar convergence prop­
enies. The simplicity of the ELS algorithm
and the absence of knowledge about the dis­
turbance prompted us to use ELS estimation.
The recursive estimation scheme is given by
tbe following equations, which are similar to
Kalman filter equations for linearized esti­
mation, where the superscript on e indicates
the estimat~ and the vector B represents the
gain.

292

{I(k + I) = {I(k) + B(k + I)(w(k + I)

- <I>T(k){I(k» (7)

Since not all elements of the <I> vector are
known in this equation, the unknllwn ele­
ments Td(k) and Td(k - I) are replaced by
their residual sequence.· The residual se­
quence of Td(k) is obtained from the follow­
ing version of Eq. (5), where the parameters
'are replaced by estimates obtained from Eq.
(7).

Td(k - I)

= (i/{l5)[W(k) - {I, w(k - I)

_. {I,w(k - 2)

- {I,v(k - 1) - {I.v(k - 2)

- {l6 T.,(k - 2») (8)

The Td(k) estimates in the <I> vector of Eq.
(7) are replaced by Td (k - 1) from Eq. (8).
The preceding substitution assumes that the
disturbances are continuous in nature aod the
bandwidth of such disturbances is much
lower than the sampling rate. The recursive
equations to determine the vector gain B are
similar to the Kalman filter equations.

B(k + 1) = P(k)<I>(k)

~ [1 + <I>T(k)P(k)<I>(k))

(9)

P(k + I) = [/ - B(k + 1)<I>(k))P(k)
(10)

Here P(k) is the covariance matrix, which is
initialized by setting P (0) equal to a diagonal
matrix. Elements of the parameter vector e
are initialized by some initial guess.

The design of the controller is carried out
by using estimates of the system parameters
instead of actual values. The single-step­
ahead prediction is used to generate control
signals. The desired reference velocity dur­
ing the next sample time is equated to the
single-step-ahead velocity prediction by
using the following version of Eq. (5):

v(k) = (l/il,)[w", (k + 1)

- il,w(k) - il,w(k - I)

- il4 v(k - 1) - 85 Td(k)

- 8.Td (k - 1)) (11)

Implementation Considerations

The preceding real-time identification and
control laws have been implemented using
an Intel 8051 family controller with a Texas
Instruments TMS32010 DSP as a coproces-

sor. The block diagram of the hardware
schematic is as shown in Fig. l. The DSP
is used to generate velocity profiles and per­
form estimation and control calculations to
generate the controlled input. The timers and
counters on the 8051 are used to perform
bookkeeping functions. All interface logic,
input and output processing, and the
TMS32010 CPU are integrated in the device
DSC320l4. This device provides the needed
input and output processing capabilities as
well as the fast computation capabilities of
a DSP. Hardware design based on the
DSC32014 is in progress.

The implementation of the preceding
equations should consider the internal hard­
ware architecture of the device. The archi­
tecture of the TMS320 devices is optimized
to implement digital filters. For example, the
TMS32010 can implement loading the reg­
ister, adding the value to the accumulator,
and moving the signal value into the next
memory location. These capabilities are well
suited for any classical filter implementation.
However. the estimation routines need ma­
trix or vector manipulations. Subroutines can
be written for doing these manipulations. The
time needed for these calls can be saved if
the operations are performed in scalar form.
Scalar manipulations decrease the RAM size
requirement, while increasing the read-only
memory (ROM) requirement due to addi­
tional coding. At the present juncture, this
trade-off is advantageous due to limited RAM
space (144 words) compared to ROM space
(1536 words) available on these chips.

Estimation Routine and Control Design

The estimation routine used in Eqs. (7)­
(10) can be directly 'implemented for esti­
mating a small number of parameters. Esti­
mating a larger number of parameters re­
quires larger memory space. The covariance
matrix P in Eqs. (9) and (10) should be pos­
itive definite for assuring convergence. The
matrix P can lose positive definiteness due
to subtraction operations in Eq. (10), leading
to divergence. To provide numerical stabil­
ity, the update of the covariance matrix can
be accomplished with the square-root ver­
sion of the P matrix instead of the P matrix
itself, which is known as square-root filter­
ing in the literature. However, square-root
filtering is computationally expensive. Bier­
man's UDUT method [7) provides the ad­
vantage of less memory space and does not
need square-root calculations, while accom­
plishing the same. objective. Bierman's
method requires n(n - 1)12 locations for
covariance matrix manipulation instead of n'
locations in a regular filter implementation.

r-----~------------,
I
I
I

Fig. 1. Block diagram of implementation hardware.

Hence, Biennan's UDU' method is em­
ployed to provide numerical robustness and
for its applicability to estimation of other
higher-order systems. Details about this al­
gorithm can be found in Ref. [7].

The norm of the covariance matrix (and.
hence, the filter gain) decreases as time in­
creases and eventually goes to zero. This is
desirable if the system is indeed time in­
variant. If the parameters are time varying,
the decrease causes the loss of adaptive ca­
pability. To keep the filter active, the co­
variance matrix elements are divided by a
constant less than I, which is known as a
forgetting factor. At the same time, Eq. (9)
is also modified slightly. The TMS320 ar­
chitecture needs a subroutine to perfonn di­
visions. The reciprocal of the forgetting fac­
tor is used to multiply the covariance matrix
elements. Experiments were conducted to
observe the effects of different forgetting fac­
tors. In some cases, the mismatch of the for­
getting factor can increase the covariance
matrix values to cause numerical instabilities
or decrease them to small numbers. (For­
getting factors of less than 0.9 lead to in­
creases in the elements of the covariance ma­
trix. Forgetting factors of 0.98 and 0.99
provided better results for our specific ap­
plications.) To provide some protection
against these situations, bounds on the min­
imum and maximum nonns were employed.
Resetting of the covariance matrix was per­
formed at these boundaries, and this strategy
worked fairly well in practice.

The convergence of RLS estimation can
be assured while tracking only system pa­
rameter variations. The convergence is in­
dependent of the initial parameter estimates.
When significant disturbances are present,
the equation error due to the disturbance se­
quences leads to biased estimates. The con­
sistency of RLS relies on the uncorrelated
residual sequence, which requires a special
noise structure. A correlated residual se­
quence leads to biased estimates. The ELS
estimation is used to estimate disturbance
torques and associated parameters. In this
case, convergence is dependent on the initial
parameter estimates. For many electrome-

chanical systems, the parameter bounds are
known. The estimator 'converges to the true
values when the initial estimates of the pa­
rameters are in the proximity of the actual
values. The estimates of the product 9, and
Td(k) are known to a greater degree of cer­
tainty than the individual components.

In actual implementation, the gain tenn 9,
can be normalized. For the case presented,
the total number of parameters that need to
be adapted is five. OverHow and underHow
situations may occur due to fixed-point rep­
resentation of numbers. Appropriate scaling
becomes important to avoid these problems.
Scaling is a continuous conflict between the
dynamic range and resolution of signals or
coefficients. Sign··plus two's complement
arithmetic is used to represent numbers.
Coefficient scaling is accomplished by esti­
mating the maximum value of the coefficient
estimates. Then, all coefficients can be nor­
malized within the available word length.
Similarly, signals are scaled. Setting of the
overHow mode saturates the coefficient value
at the maximum. This feature recovers the
estimator from soft saturation without lead­
ing to damaging consequences. Appropriate
safeguards need to be provided for eventual
saturation problems. Many different ad hoc
strategi~s can be used, depending on the type
of saturation. The ELS algorithm using fixed­
point arithmetic requires approximately 200
I"sec for computation.

For a set-point regulator problem, the ab­
sence of persistent excitation may cause the
filter to diverge. For the cases studied, the
frequency components of torque distur­
bances appear to provide the needed fre­
quency components and prevent divergence.
Some divergence-related problems are no­
ticed in linear systems without disturbances.
Many investigations are being carried out to
detennine the cause of such divergence. At
present, it is ascribed to insufficient excita­
tion of input signals. If these disturbances
are absent, then some perturbation may have
to be provided in the input signal to prevent
filter divergence [8]. Providing the needed
excitation for the estimator and good regu­
latory perfonnance seem to be a challenge.

Experimental Results

An Electrocraft E543 motor is used in the
laboratory experiments. Using a magnotrol
brake, torque disturbances of varying mag­
nitudes are induced. The amplitude of such
torque disturbance variation is limited to 31
oz.-in. Different torque magnitudes are used
in the experiments. A sample period of 400
I"sec is used.

Identification and Predictive Control
for Constant Disturbance Torques

The predictive control using RLS estima­
tion is shown in Fig. 2. The servo is tracking
a series of trapezoidal profiles. As can be
seen, the adaptation is complete during the
ramp-up period. Ten or twelve samples of
data are needed for convergence. Similar re­
sults confinn adaptation to different sets of
system parameters by using different motors,
inertias, and frictional loads. However, this
estimation scheme leads to biased results
when significant variations of torque distur­
bances are present. Figure 3 shows the per­
fonnance for triangular torque disturbances
at a frequency of 5 Hz. The velocity varia­
tion is limited to ±5 counts/sample. The
nonadaptive compensator perfonnance for
torque variation is similar to the RLS
method.

Performance Under Varying Torque Loads

The penonnance of the controller based
on ELS identification is compared with a
well-tuned proportional-integral-derivative

Q)
I 0

~ 2 ~
~il V V-

I

~~V \i \ r-
\/ ue

<Co. I

Time -

Fig. 2. Velocity profile tracking using
RLS identification (under no torque
disturbance).

Time -

Fig. 3. Response during constant velocity
using RLS identification (under 5-Hz torque
disturbance).

293

Torque . ~~
.in.-oz.)0 A Torque disturbance

(sinusoidal @ 5 Hz)
/'

Time

Counts \ pot

:~~leo I'-""~=::::, _:== :...-="===--~=_ ... _REFERENCE
Response of adaptive

compensation
(extended least squares)

~-200m~ -~

:nts\ ~ ~
sample _;:;:_<4 REFERENCE

period f':/ Response of nonadaptive L _ compensation
o ~ _ 200 mset tim.!

Fig. 4. Comparison of controller response to torque
disturbances.

(PIO) controller in the presence of sinusoidal
torque distumance with an amplitude of 25
oz.-in. at a frequency of 5 Hz. These low­
frequency disturbances within the c1osed­
loop bandwidth are difficult to handle using
conventional controllers. The experimental
setup remains the same for this identification
and control procedure as that used previ­
ously. The results are shown in Fig. 4. The
PIO control errors are limited to ±4 encoder
counts/sample, whereas the adaptive control
errors are within ± 1 encoder count/sample.
The error bounds are invariant to the varia­
tion in the commanded reference level.
Hence, the resolution of the encoder be­
comes a limiting factor in attaining lower
steady-state error.

Conclusions

Adaptive control has become a viable al­
temative for controlling electromechanical
systems. The computation power of the dig­
ital signal processor can be conveniently ex­
ploited to provide performance significantly
higher than possible with conventional mi­
croprocessors .

Performance, Adaptability, and Reliability

'these controllers update their information
regularly. This increase in the knowledge
base contributes to the adaptability of the
system. The real-time performance improves
significantly if the system has significant dis­
tumances compared to any other conven­
tional scheme. The major strength of adap­
tive control is its superior performance under

294

system parameter vanatIons and distur­
bances. The adaptive capability provides the
desired performance throughout the life of
the mechanism. Reliability is enhanced since
the system meets the expected performance
in spite of aging of the mechanisms.

Cost Implications

The monotonically decreasing cost of
electronics offers the capability of modifying
the dynamics cost-~ffectively in electronic
hardware and software. One of the benefits
may be the relaxation of tolerance specifi­

. cations of mechanical components. After a
certain point, precise tolerances increase the
component cost exponentially. The optimal
trade-off point for a given system has to be
explored in greater detail. Since the control­
lers are self-tuning in nature, they will not
need tuning in the field. This reduces the
service calls and improves reliability. In ad­
dition, the state of the system can be esti­
mated. These estimated states can be used
as diagnostics for replacement of the com~
ponents prior to actual mechanism failure.
This aspect can be used to plan and schedule
maintenance activities.

Reduction in Development-Cycle Time

The design basically encompasses the fol­
lowing aspects. The identification of the sys­
tem, controller design, and implementation
are performed in real time. The identifica­
tion, compensator design, and transfer of the
designed parameters into a workable hard­
ware or software are eliminated in the design
cycle. The faster computation capability of

signal processors can be used advanta­
geously to control higher-o~er dynamic sys­
terns. This feature allows sensor placement
at the load end and' includes all dynamics
within the loop. The preceding adaptive con­
trollers are used successfully as fixture de­
velopment controllers at Xerox during de­
velopment, when the system parameters are
partially known and/or vary over the devel­
opment period.

Limite.. ions and Future Research

Adaptive controllers are more complex
than traditional feedback control systems,
and they are nonlinear in nature. There are
some recent results to prove overall stability
of such systems under restrictive conditions.
Additional research is needed to prove over­
all convergence and stability of such systems
under relaxed conditions. Software integrity
becomes an important issue for the employ­
ment of these controllers. The overflow and
underflow conditions make the scaling prob­
lem more difficult. The convergence of many
recursive estimation schemes depends on
persistently exciting input signals. However,
during regulation periods, the estimation
process diverges due to the absence of per­
sistent excitation. Dithering of the input sig­
nals or pausing the estimation process during
regulation provides a partial solution at the
cost of reduced performance or adaptability.
More research in this direction is needed.

Acknowledgments

The author acknowledges .the invaluable
support of Vincent Williams in all aspects of
this project. The author also acknowledges
anonymous reviewers for their constructive
comments.

References

[I] K. J. Astrom and B. Wittenmark. "On Self­
Tuning Regulators." Automalica. vol. 9.
pp. 195-199. 1973.

12J K. J. Astrom and B. Wittenmark. "Self­
Tuning Controllers Based on Pole-Zero
Placement." lEE Proc .• vol. 127, pp. 120-
130. 1980.

[3] L. R. Morris, "Digital Signal Processing
Microprocessors: Forward to the Past?,"
IEEE Micro. pp. 6-8. Dec.)986.

14J K. S. Lin. G. A. Pmntz. and R. Simar.
"The TMS320 Family of Digital Signal
Processors," Proc. IEEE. vol. 75. no. 9.
pp. 1143-1159. 1987.

[SJ "TMS320 10 Users Guide." Texas Instru­
ments, 1983.

[6J G. S. Goodwin and K. S. Sin. Adaptive
Filtering Prediction and Control, Prentice­
Hall, 1984.

[71 G. 1. Biennan, Factorization Methods for
Sequential Estimation, New York: Aca­
demic Press.

[8] B. D. O. Anderson, "Exponential Conver­
gence and Persistent Excitation," 21st Conf.
Decision and Contr., 1982.

[9] W. L. Brogan, "Kalman Filtering in Iden­
tification and Control Problems," unpub­
lished short course notes presented at the
University 'of California, Los Angeles,
1984.

[101 K. H. Gurubasavaraj, "SelfCTuning Motion
Controller for Varying System Parame­
ters," Amer. Contr. Conf., 1988.

K. H. Gurubasavaraj
received the B.S. degree
in electrical engineering
from Mysore University
and the M.S. degree in
electrical engineering
from Bangalore Univer­
sity, Bangalorc, India, in
1971 and 1973, respec­
tively. He received the
Ph.D. degree in electrical
engineering from the Uni­

versity of Nebraska, Lincoln, in 1983. From 1973
to 1980, he was with Kamataka Electricity Board

and Bangalore University. From 1983 to 1985, he
was a faculty member at Union College, Sche­
nectady, New York.. During that period, he con­
sulted with the General Electric R&D Center.
Since 1985, he has been working as a Technical
Specialist/Project Manager of Control Technology
Development for the Xerox Corporation. He is
also an adjunct faculty member at Rochester In­
stitute of Technology. His current interests are in
the implementation of adaptive control, Kalman
filtering, and robust contml. concepts to improve
perfonnance and reliability of commercial prod­
ucts cost-effectively.

295

296

INTELLIGENT MOTION

Motion Controller Employs
DSP Technology
Hobbert van der Kruk and John Scannell
Philips Centre for Manufacturing Technology

Several control strategies are considered to improve the
performance of a digital motion controller, including: feedback
design, velocity and disturbance observers, trajectory generator
and feedforward compensation.

Development of a digital motion
controller must carefully consider
the sampled data nature of the

system. For example, a stable position
servo system must provide electronic
damping, which often means tachometer
feedback or else a simple derivative action
in the position feedback loop. Using a
tachometer increases the cost of the servo
system, whereas a simple digital
differentiation technique amplifies the
quantization noise on the digital position
signal. This causes excessive current ripple
in the motor together with unpleasant
audible noise. This new design uses a
velocity observer to drastically reduce the
quantization problem associated with
simple digital velocity estimators.

Elimination of steady state errors has
long been performed using an integrator
in the error path. However, this technique
has several disadvantages (e.g. wind-up,
tuning) and tends to reduce the stability
margins. This new design employs a more
advanced technique, a disturbance
observer, to eliminate steady state errors.

Many servo systems exhibit low
frequency mechanical resonances due to
the finite stiffness of the coupling between
the motor shaft and the load. We will show
that set point functions with programmable
jerk dramatically improve the performance
of such systems.

Modem automation applications place
ever increasing demands on the tracking
accuracy of servo controllers. Velocity and
acceleration feedforward techniques can be
employed to minimize tracking errors. The
new design incorporates feedforward
techniques.

From Analog to Digital Control
Introduction of the microprocessor, and

more recently the signal processor, have
radically altered the field of high
performance servo control over the past
decade. The advent of digital techniques
has presented the designer with

tremendous flexibility in the control
algorithm design1,2,3A. In addition. the
provision of extensive diagnostics and
status information has become a relatively
simple operation thus easing the tasks of
system development and support. However,
this migration from analog to digital has
several problems associated with it. In
particular, the design of the control
algorithm must take account of the
sampled data nature of the system.
Problems due to the delays introduced by
the sample period and the calculation time
must be carefully considered in the design
of the feedback parameters. The
quantization noise due to the digital nature
of the position information must also be
carefully analyzed and its effects minimized.

Consider the simple block diagram of the
digital servo system in Figure 1. Assume
that the power amplifier has a large
bandwidth compared with the servo loop
and may therefore be modeled as a gain
ekment. The motor model is a double
integrator and neglects friction and
mechanical resonances.

The open loop transfer function of the
continuous elements, including the sample
and hold effect and the calculation delay is:

Xene(s) e-sTe (l_e-ST)
H(s) ~ U(s) ~ K s3 ,(1)

s ~ Laplace operator
where
K ~ !\iae Ka Km KenelJ
!\,Jae ~ gain of the DIA converter
Ka ~ gain of the amplifier
Km ~ motor constant
Kene ~ resolution of the position encoder
J ~ motor inertia,

The most convenient method of
analyzing this sampled data system is to
convert H(s) into its discrete time
equivalent, H(z), where z is the discrete
time operator.5,6. However, the z plane
analysis only provides information atthe

Reprinted, with pelmission, from PCIM, Sept. 1988.

sample instants, i.e., fractional delays are
not allowed, Thus, in order to examine the
effect of the calculation delay, Te, the two
extreme cases are considered: no
calculation delay, Te ~ 0, and maximum
calculation delay, Te ~ Ts.

Calculation of the feedback parameters
is first considered for zero calculation
delay, For Te ~ 0, Equation (1) becomes:

Xene(z) 1
H(z) ITe~O ~ -- ~ Z{L - [H(s)J} ~

U(z)

-.l KT2 (z + 1)
2 s (z-1)2 .

(2)

A suitable value of the velocity feedback
gain, Kv, is calculi\ted by considering the
loop transfer function. From Figure 1, the
motor velocity is approximated by using the
pulse count technique, The open loop
transfer function of the velocity loop is:

z-l
V(z) ITc~O ~ -z- H(z) ITe~O ~

-.l KT~ (z+ I) . (3)
2 z(z-I)

Using the root locus technique suitable
value of Kv may be derived7. A robust
selection, giving sufficient design freedom
for the outer position loop, is
Kv ~ 0.343IKTs2. This gives a damping
ratio of 1.0. Using this value of Kv the
open loop transfer function of the position
loop is:

P(z) ITe~O ~

-.l KT~ z(z+ 1) (4)
2 (z-l) (z-0.414)2

As before, the root locus technique is
used to calculate a value for the position
feedback gain, Kp. Selecting a damping
ratio of 0,7 gives Kp ~ 0.072IKTs2.

In a similar manner, the loop parameters
may be determined when a calculation
delay of one sample period is assumed. In
this case Equation (2) becomes:

1 2 (z+l)
H(z) ITe~Ts ~ 2' KTs z(z-1)2' (5)

The corresponding values of Kv and Kp,
for the same damping ratios, are
Kv ~ O.lBOIKTs2.

The results obtained are summarized in
Table 1, where Fs is the sample frequency

297

(F, - lIT sl. Generalizing these results for
calculation delays between 0 and T, gives:

K, = 0.3S K
KTs(Ts+TJ' P =

0.072
(6)

Kv.KTl Kp.KTl Total Delay Bandwidlll

Tc = 0 0.343 0.072 Ts Fs/17.5
Tc = Ts 0.180 0.018 2Ts Fsl35.0

Bandwidth = (7)
17.S(Ts+Tc)

These generalized results have also been
verified for fractional calculation delays. i.e.

D' ital Controller

R

O<Tc<Ts. From the results it can be
concluded that the sample frequency must
be at least 17.S times higher than the
required bandwidth of the position loop.

Velocity Observer
The straightforward pulse count method

of velocity estimation results in poor
resolution at low speeds. The quantization
error in the velocity signal becomes worse
with increasing sample frequency and can
cause excessive current ripple in the motor
together with audible noise .(Figure 3a).
This problem can be reduced by using a
position encoder with a greater resolution,
but this is a rather expensive solution. In
addition, increasing encoder resolution

y

Figure 1. Simple Second-Order Digital Controller.

DSP Controller

Equations (S) and (8) yield the observer
structure shown in Figure 2, where
Kcic - KTl. Two feedback terms are used
to 'Correct for deviations between the
observer and the system. The choice of K j
and K2 involves a trade-<lff between the
bandwidth of the observer correction loop
and the quantization of the estimated
velocity, VIz). Since the objective of the
velocity observer is to reduce the velocity
quantization level, the choice of Kj and
K2 are determined using this criterion.
The value of K j must be less than 'h in
order to provide a better resolution than
the pulse count method. Practical values
are Kj = 0.04 and K2 = Kj2, resulting in
a resolution enhancement factor of
'hKj = 12.5 and an observer -3dB
bandwidth of Fs/10S.

For very stiff servo systems, where the
second order model is valid, the relation
between the measured position, VIz), and
the observer estimated velocity, VIz) is:

VIz) = 2 (z-l) VIz) .
(z+l)

298

(9)

This shows that the observer is
essentially an implementation of Tustin's
rule9• This rule is an approximation of the
differential operator and is without
additional phase shift. However, it cannot
be programmed directly due to stability
problems caused by the pole at z = -1.

Using the velocity approximation of
Equation (9), the feedback analysis may be
repeated for a servo system with the
velocity observer. The corresponding
general results are:

K - 0.5 , Kp = 0.125
v - KTs(Ts+TJ K(Ts+Tc)2

and (10)

Bandwidth = (11)
13.8(Ts+ Tcl

From these results it can be seen that
the sample frequency of a system using the
velocity observer must be at least 13.8
times higher than the desired position loop
bandwidth. Thus, for the same sample time
and calculation delay, a system using the
velocity observer has a 27% higher
bandwidth than the same system using the
pulse count method. The velocity observer

unnecessarily increases the data speed,
which can lead to a decrease in the
maximum servo velocity. A velocity
observer, estimating the servo velocity with
a higher resolution than the pulse count
method, can be used ·to overcome this
quantization problem 7,8. The discrete time
transfer function from the servo command,
U(z), to the position output, Xenc(z), is
given by Equation (S), (Tc = T sl. The
transfer function from the servo command,
U(z), to the velocity output, VIz), is:

G(z) = VIz) = Z{L-l[sH(s)j} =
U(z)

KT1 __ 1_, Tc = Ts.
z(z-l)

(8)
(continued)

Figure 2. Velocity Observer Block Diagram.

has one machine-deperident parameter,
Kdc, which can be simply tuned by
monitoring the observer error.

The performance improvement yielded
by the velocity observer is demonstrated in
Figure 3. A reference velocity signal of 2.S
position increments per sample period
(2.SinC/T sl is applied to a brushless linear
motor used in the Philips chip mounting
machines. Figure 3a shows the current in
the motor when the pulse count method
of velocity estimation is used. In contrast,
when the velocity is estimated using the
observer the high frequency current
components are eliminated as shown in
Figure 3b. This reduction in the current
ripple results in less motor heating, less
dissipation in the power amplifier and a
significant reduction in the audible noise
level.

Disturbance Observer
The observer error signal, E(z), in

Figure 2 represents the reconstruction
error between the observer and the servo
system. The input signal, D(z), represents
an external force or torque disturbance. If
we assume that the observer model is exact

1.5~ 0.0 ,)
-2.0

o m'
(al Pul"" count.

u~ ~tO.O ,)
-2.0

o InS

(b) Vclocityobsenocr.

Figure 3. Comparison of Motor Current for
Brush/ess Linear Motor Running at
2.5 incs/Ts.

then the expression for the error is:

E(z) -..!.. Koc
2

(12)

(z+1)
z(z-1)2 + KI(z-1) (z+1) + K2(Z+1) O(z).

This expression for E(z) is the
disturbance, D(z), low pass filtered by the
observer poles. Thus, the observer error
signal provides an estimate of the
disturbance. This may be used to
compensate the system and correct for
errors caused by the disturbance. When
applying the observer error signal to the
system (Figure 4), two conditions must be
met:

1. In steady state, the magnitude of the
compensation signal, C(z), must equal
the magnitude of disturbance:

lim C(z) _ 1 . (13)
z 1 D(z) ,

2. The closed poles of the observer must
remain unchanged.

Fulfilling these two conditions gives the
disturbance observer block diagram shown
in Figure 4 8.10.

In steady state we have:

lim C(z) - 2K2 lim E(z) = d (14)
z 1 K.tc z 1

where d is the steady state value of the
disturbance D(z). For a stable, well damped
observer the equation K2 = K 12 is valid
where KI'';;0.17. It can be shown that the
bandwidth of the disturbance observer is
directly proportional to the value of KI
while the quantization noise fed to the
motor is proportional to K2, i.e. K12.
Thus, the choice of K 1 is a trade-off
between the bandwidth of the disturbance
compensation and the quantization noise.
Note, however, that the value of KI is
independent of the velocity and position
loop gains and therefore the tuning of the
disturbance observer may be performed
independently of the outer control loops.

Due to the similarity between the velocity
and disturbance observer structures it is

possible to use a single observer for both
velocity estimation and disturbance
compensation. However, for the tuning of
the velocity observer the reduction of
quantization noise is generally more
important than the bandwidth of the
feedback loop. For the disturbance
observer the bandwidth ·of the disturbance
rejection is the more important tuning
criterion. Therefore, for optimal
performance, two separate observers are
necessary.

If(z)

Control
signal

settling times. Higher order set point
functions may be used to overcome these
saturation problems. More common
position set points are the ramp (first
order), the parabolic profile (second order)
and the cubic profile (third order). Here,
attention is paid to the parabolic and the
cubic set points7.

A parabolic position set point results in
a triangular velocity profile with
discontinuous acceleration. If this set point
is applied to a servo system with a low

+

Y(z)

Servo
Position

r,,(z)

Figure 4. Disturbance Observer B/ock Diagram.

Figure 5 shows the response of a linear
servo motor when a step disturbance of 20
Newton is applied. The bandwidth of the
position loop is 44Hz with a damping ratio
of O.B. Using integral compensation the
maximum position error is 92,..m
(l,..m = 1 inc) and the steady state
condition, with zero position error, is
recovered at 90msec. Using the
disturbance observer the maximum
position error is only 19,..m and the
recovery time· is 36msec. The performance
improvem.ent yielded by the disturbance
observer stems from its relatively high
bandwidth, 70Hz. By comparison, the
bandwidth of the integrator is limited to
BHz in order to maintain the position loop
stability margins.

In the design of the disturbance observer
the effect of friction is neglected. This
design procedure has been validated by
tests, in which the effect of friction forces
has been found to have a negligible effect
on the disturbance observer performance.

Trajectory Generator
Response of a servo system to a step

input can be used as a measure of the
system performance. However, in practical
applications position steps are rarely used
as set points as they can cause controller
saturation resulting in nonlinear servo
behavior. This results in large tracking
errors, significant overshoot and poor

)00

POSII.LOR

.~

("m) (t
o U D"wb~"

observer

0 m'
Figure 5. Comparison of Disturbance
Rejection for Step Disturbance of 20N
App/ied to a Brush/ess Linear Motor.

160

frequency mechanical resonance then the
discontinuous acceleration (and hence
discontinuous torque) excites the resonant
frequency resulting in undesirable
overshoot and tracking errors. This is
shown in Figure 6a where a triangular
velocity profile is applied to a servo system
with a 5.4Hz mechanical resonance
frequency. This measurement is performed
using a stiff servo motor connected to a
mechanical load via a flexible coupling. A
position encoder on the motor shaft
provides feedback signals for the digital
controller. A second encoder after the
flexible coupling measures the load velocity
responses shown in Figures 6a and b.

In contrast, a third order profile has no
torque discontinuities and hence does not
tend to excite the system resonance as

299

demonstrated in Figure 6b. It can also be
shown that the position error at the
moment that the set point trajectory is
finished (the lag error) is smaller for the
cubic profile than for the parabolic profile.
However, for the same d)splacement and
time, the cubic profile requires a 50%
higher maximum acceleration and hence
a larger maximum current.

0.0 s~. 4.0

<a) Load velocity profile for parabolic position set point.

0.0 s~. 4.0

(b) Load velochy profile for cubic posiuoo sel poinL

Figure 6. Velocity Profiles of a Mechanical
Load Connected to a Servomotor Via a
Flexible Coupling (Mechanical Resonance
Frequency = 5.4Hz)

Generation of cubic set point profiles
may be performed by a trajectory
generator. This unit is programmed with
the desired displacement, velocity,
acceleration and jerk. The necessary
position set point profile is then calculated
by a series of numerical integration
operations as shown in Figure 7.

pas ...
o

VEL ...
o

ACC

~

Figure 7 . . Generation of Cubic Position
Profile.

Feedforward
Use of feedback as a control stategy

yields a servo system with good disturbance
rejection (stiff system). However, the servo
response to set point commands is not
optimum. Set point feedforward can be
used to reduce the tracking error7•
Figure 8 shows a block diagram of a servo
mechanism controlled by velocity and
position feedback loops. Hrr is the

300

feedforward transfer function. If no
saturation or external disturbances occur,
and the system is linear and time-invariant,
then Hrr is calculated by requiring
E(z) =0.

9E(z) = R(z) - H(z)[KpE(z) - K.G(z)Y(z)
+ Hff(Z)R(z)] = 0 (15)

Solution of this equation (ignoring the
trivial solution of R(z) = 0) gives:

Hff(Z) = H-l(z) + K.G(z). (16)

Thus, the feedforward transfer function
consists of the inverse transfer function of
the servomechanism and the compensation
of the velocity feedback loop. For

G(z) = 2(z-l)
(z+l)

(Tustin's method) and H(z) =

! KT; ~ (stiff servo) (17)
2 (z-I)2

then

H (z) = 2Kr.(z-I)2 + 2Kfy(z-l) (18)
ff z+1 z+1

R(z)

Reference
position

Veloclly
estimalor

where

are the feedforward acceleration and
velocity gains, respectively.

However, Equation (18) is non-causal
and cannot be programmed directly. For
servo systems using trajectory generators,
the reference position can be calculated by
a numerical integration technique. This is
illustrated in Figure 9 where the reference
position is generated from a jerk profile.
By using the intermediate results of the
reference acceleration and reference
velocity the feedforward can be
implemented.

Figure 10 shows the effect of acceleration
feedforward on the following error during
a set point movement. The velocity
feedforward parameter is optimized for
both traces giving an average following
error of zero when the servo is moving with
constant velocity. The effect of the
acceleration feedforward term is clearly
seen in the reduction of the following error
during acceleration and deceleration.

Y(z)

Servo
po.illoD

Figure 8. Discrete Time Control Using Feedback and Feedforward .

Acceleration

Feedforward

I---'-'~
~ 1>a'a:, r-.... /'" Refe~,,:nce

J \... --" pO~I11on

Figure 9. Trajectory Generator and Feedforward.

The MCV60
The control strategies described in the

preceding sections are implemented on a
motion control card, the MCV60. This card
communicates with a host computer via the
VMEbus. Software on the host provides a
user·friendly environment for commis­
sioning of the system and adjusting of the

:~
-lS

0.0 Sec. 3.5

~E3
Figure 10. Position Error During Cubic Set
Point Movement [DC motor: velocity =
29.3 rev/sec, acceleration = 39 rev/sec2,
jerk = 78 rev/sec3j.

parameters during operation. This card is
designed to control two brush-type DC
motors or one brushless DC motor. Up to
sixteen cards may be used together on the
same bus. A functional block diagram of
the MCV60 is in Figure 11.

The MCV60 hardware is based around
the TMS320C25 signal processor running
at 40MHz. This high clock frequency,
together with the arithmetic capabilities of

the signal processor, yield a high sample
frequency and a short calculation delay
(Ts = 150l-'sec, Tc = 40l-'sec). The
maximum encoder data speed is 7MHz.
On-board memory includes 16k words of
program memory and 8k words of data
memory of which 2k words is in dual­
ported RAM. This provides high speed,
bidirectional communication with the VME
host computer. The data RAM has a
battery back-up for the retention of system
parameters when the card is not powered
up. Three different position encoders are
supported. An incremental encoder
interface is standard on the card while
piggyback interfaces for resolvers and sine­
wave encoders may be simply mounted.
Two 16-bit DACs deliver drive signals to
the current amplifiers while a second pair
of DACs provide monitor information.
Hardware synchronization between several
cards is also provided with the facility for
master-slave control. In addition, five
optically isolated outputs and four optically
isolated inputs are provided for interfacing
with programmable logic controllers.

The motion control software may be
divided into card and host levels. At the
card level, the controller algorithm
implements the various strategies already
described. In addition, continuous path
movements can be implemented using
cubic spline interpolation techniques.
Software for auto-homing is provided and,
for brushless motors, an automatic
magnetic alignment routine together with

commutation software is available ll .
Extensive hardware and servo diagnostics
are performed at power-up and critical
hardware checks are performed each
sample period. System monitoring is
performed each sample period generating
the two monitor DAC variables. Other
performance indicators are also recorded
such as the maximum error during a
movement, the overshoot, the settling time,
etc.

At the host level, drivers are provided for
communicating with the MCV60_ A menu­
driven, user-friendly test environment
initializes and tunes system parameters.
Self-tuning facilities initialize the controller
parameters to suitable values based on the
system characteristics. More refined
parameter tuning may then be simply
carried out by a series of well-<lefined tests.
Communication with the card occurs each
time a parameter is changed. This facili­
tates on-the-f1y variation of system
parameters for use in systems employing
gain scheduling techniques.

Figures 12 and 13 demonstrate the speed
and accuracy of the MCV60 motion
controller. In Figure 12 the response of a
brushless linear motor to a set point
displacement of IOmm (10,000 increments)
is shown. Figure 13 shows the motor
velocity profile and the position error of the
same servo when running at maximum
velocity (data speed = 1.5MHz). The
maximum position error is only 12
increments (12I-'m).

Trajectory Generalor DIGITAL CONTROLLER
VIlE
bus Cubic spline '""--' ~ interpolator Acc_ l 'orword I ~

Poinl to point /'.. .1
j. __ ~t~ __ ,

Joe ,.t. I Command Quick stop
HomiDI ../ .

K, +

.~ Power rl
P ••. Co •. -I amplifier -

+; 68000 DialDostics
I

1 1 Se:cr:g Slahll OUtUA. I Host ob .. n. O ... ersbool - -- Servo Settling time
Max. I!0s. err. mecbanism

ob •• ",. - - ri{fJ . ••• Stalus Position error .,
I\r- Velocity

L--- C.n. ace.L ~
CODtr~l ailDal

W 1
Hardware rEDCod.r/,....I .. r;-j L P •• iti ••• ' Status ."U,"' •• D

'Jl
I Aaal •• iD\.l'fac. I- I .,.i.1D

~

8 ~ O.cl~ID.CDD.

-V foooooo61 ~"~il Di.ital I/O ,/,/,/,/,/,/,/

Figure 11, Block Diagram of the MCV60 Connected to 8 Three-Phase BrushlesB Motor.

301

(al Generator \ldod\y.

("~
m'S

(1.0

(I mS ~)

(b) Obs~rv~r \lelodly.

Figure 12. Profiling Accuracy for a
Displacement of 10mm in 50ms.

m'5 " ~;::~
"rz=-~ .. ~. "M",
UII II

-~-_-T--"-----~

Figure 13. High Speed Following
Accuracy - Data Speed = 1.5MHz.

302

Note: Patents are pending for the work
described in this article.

References
1. Fritz, D., "High Precision Dynamic Position­

Controlled Servo-Drive System," Proc.

MOTOR-CON. April 1987, Hannover, pp.
344-357.

2. Squires, D., Kmetz, J., Cox, B., "A High Level
DC Servo Controller Impiemented as a New
Generation o(ASIC," Proc. MOTOR-CON,
April 1987, Hannover, pp. 175-182.

3. Tal, Jacob, "Motion Control by
Microprocessors," Mountain View, CA., Gam
Motion Control, 1984.

4. Dimitri S. Dimitri, "Trends in Motion Control
Monolithic Versus Modular Designs Continuous
Path, Linear and Circular Interpolation," Proc.
MOTOR-CON, April 1987, Hannover, pp.
238-247.

5. Astriim, KJ. and B. Wittenmark, "Computer
Controlled Systems: Theory and Design,"
Prentice-Hall International Edition, 1984.

6. Franklin, G.F. and J.D. Powell, "Digital Control
of Dynamic Systems," Addison-Wesley, 1981.

7. Kruk, RJ. van der, "Motion Control System
Concepts," Philips CFT Report, 32/87 EN.

8. Kruk, RJ. van der, "Digital Control of Position
Servo Systems," Journal A, 88/1.

9. Tustin, A., "A Method o(Analyzing the
Behaviour o(Linear Systems in Terms of Time
Series," JIEE (London), 94, pI. IIa, pp. 130-142,
1947.

10. Scannell, J.R.M., "A Disturbance Observer (or
the CFT Motion Control System," Philips CFT
Technical Note 01188 EN.

11. The Netherlands Patent Number 8701438,
"Drive Arrangement and Motor Energizing
System (or Use in the Arrangement." 0

Using DSPs in AC
Induction Motor Drives
OR. s. MESH KAT, Motion Research Inc., Plymouth, Minn., and I. AHMED, Texas Instruments, Houston, Tex.

Although simple to manufacture, ac induction
motors require very complex control
techniques if they are to be used in servo
applications. High performance DSPS can solve
the BC motor control problem.

Dc drives still account for a large
portion of drives used in indus­
trial control, even though they

are less reliable and more expensive
than their ac counterparts. This is
mainly due to the fact that dc drives
have fairly simple control structures
and allow precise control.

Ac drives, on the other hand, are
less expensive and more reliable, es­
pecially in harsh industrial environ­
ments. However, ac drives require
very complex control techniques and

this has prevented them from replac­
ing a large number of dc drives in ro­
botics and motion control.

Ordinary microcontrollers lack the
computing performance necessary to
carry out these complex control
schemes. Faster devices like 32-bit
microprocessors and bit-slice proces­
sors are too expensive.

But, due to unprecedented perform­
ance offered by digital signal proces­
sors, this may be changing. DSPS pro­
vide more speed than the fastest

32-bit microprocessors, and they do
this at a fraction of their cost. They
make it possible to implement the
complex structures needed to make
ac drives the workhorse of industrial
control applications.

Dynamics of an ac motor
In a conventional field-wound dc mo­
tor, there are two independently con­
trollable currents: the field current
and the armature currerit.

In an ac motor, however, there are
three phase currents, and the three
are tightly coupled together. This
means that none of them is indepen­
dently controllable.

The three currents are represented
by the stator current vector i •. Unlike
the case of the dc motor, there is no
linear relationship between I. and ei­
ther the torque or the flux.

The torque vs. current relationship,

Personal computer based software tools allow low-cost development of DSP software. At right is shown Texas Instruments' entire family of
DSP chips. The back two rows are first generation, the second row is second generation. and the third generation-released now in sample
quantities-is in the foreground. Also in the foreground are two DSP packages that contain 4K of EPROM, used in software development.

Reprinted, with permission, from Control Engineering, Feb. 1988_ 303

All functional components of the control system for a field oriented ac induction drive can be implemented in software on a single-chip DSP.

in a conventionally controlled ac in­
duction motor, is nonlinear and can be
represented as equation (1):

1 + (w. T,)2

Where Lm is the stator / rotor mutual
inductance; P is the number of poles;
L, is the rotor induction (referred to
the stator); T, is L,/ R, (R, is the rotor
resistance, referred to the stator); i.
is magnitude of stator current vector;
and w, is the slip frequency. The slip
frequency is the amount the rotor lags
behind the synchronous speed Wm

i.e .• Wm = W. + (&Jr'

Equation (1) shows a nonlinear re­
lation between torque and slip fre­
quency w,. This simply means that no
servo loop can be closed around a
traditionally driven ac induction mo­
tor. This is the reason why ac induc­
tion motors have been used primarily
in constant speed applications.

Over the past decade, several dif­
ferent control methods for "squirrel
cage" induction motors have been
proposed. The most popular of the al­
ternatives is the field orientation
scheme. In this control scheme, the
magnetic flux is measured (or calcu­
lated) and fed back to the control unit
as a basis for the commutation of the
stator current vector. This method is
called "vector control."

The main objective of vector control
is to decouple the torque generating
component of the stator current from
the field producing one. In our nota­
tion, we will use i .. and ida to represent
the torque generating component and
the flux generating component, re­
spectively, of the stator current.

The result of separating the torque
and field components forces the ma­
chine to resemble a field-wound dc

304

motor. Once this is accomplished, the
rest of the control algorithm remains
the same as an ordinary dc motor.

A field oriented ae servo
To explain how field oriented control
works, we simplify the description
and analysis of a three-phase motor
to two phases. This way one can visu­
alize more easily the relation between
the components of the stator vector in
a vector diagram.

Let the values of the stator current
vector i. be represented as compo­
nents i~, i:, and i~ of stator windings r,
s, and t. Then to transform them to a
two phase system that has compo­
nents ia and in' we use the following
transformation matrix (equation 2):

o

y3/3 y3/2

In the two phase system, ia and i
represent the stator current in the st'l­
tionary reference frame.

But the reference frame we are in­
terested in, for the reason of control­
ling field and torque independently of
each other, is the moving d-q coordi­
nate system (see diagram, next
page). The orthogonal d-q (d stands
for direct, q for quadrature) coordi­
nates rotate at the synchronous
speed Wm with respect to the station­
ary reference frame. Projecting the
stator current vector i. onto d-q yields
the components io• and i ••.

To control torque and field, we must
control iq, and i.,. In order to achieve
this objective, the stator current vec­
tor I. must be oriented to d-q. ('Y is the
orientation angle). That is, since the
only controllable variables are those

in the stationary frame of reference
(i.e. ia and in)' the stator windings
must be energized by a current vector,
that at any point of time is rotated by
angle 'Y. Notice that this is an indirect
way of controlling i .. and ids'

In an induction motor, the rotor
speed, w" lags behind the synchro­
nous speed at the rate of slip frequen­
cy w,. The orientation angle, 'Y, and
synchronous speed Wm are related via
equation (3):

Wm = dy/dt

In order to calculate 'Y, the slip fre­
quency w. must be added to rotor
speed W,' and the result integrated
over time. Then to obtain io• and ida'
use the transformation matrix repre­
sented by equation (4):

1 ~:·I = 1-~oS 'Y sin 'Y 11',:a
ll

1
'0. sm 'Y cos 'Y

We must remember that the above
relations were derived for a two­
phase system. To make the findings
useful for a conventional three-phase
motor, we must transfer equations
(2) and (4) back to three phase con­
figuration using inverse transforms.
The actual implementation of the in­
verse of equation (4) in TMS320
code is shown on the next page.

Relation between Iqs and Ids
In a vector controlled ac induction mo­
tor, the relation between the two com­
ponents of current in field coordinates
simplifies to equation (5):

iqal ida = ",.' T,

Simple inspection of equation (5) re­
veals that for a fixed field COmmand
(ids = constant), the slip value is

forced to linearly follow the generated
torque. Under this control, eq. (1)
can be simplified to equation (6):

T

Therefore the value of the torque con­
stant K" for a vector controlled ac in­
duction motor, when compared to an
ordinary dc motor can be given as
equation (7):

K, is a value that represents the field
strength. Equation (7) shows that K,
can be controlled by changing i.s . This
is especially gratifying in operations
that demand a wide range of speed
and torque control. The act of de­
creasing the flux value by means of
reducing the field current to expand
the speed range is referred to as
"field weakening."

The block diagram
The figure at the top of the previous
page shows a functional block dia­
gram of the control system for a vec­
tor controlled ac induction motor in a
velocity loop. In addition to velocity
loop, there are loops for i .. , i ... and the
magnetizing current im,. All of the cal­
culations in the block diagram-the
control calculations, matrix multipli­
cations, and so on-can be done by
software running on a single-chip digi­
tal signal processor.

Block number 1, which is the block
at the right enclosed with dolled lines
and containing four smaller yellow
blocks, is the "vector rotator block. "
The current vector is rotated from the
moving reference to the stationary
one (top two yellow blocks) and
back to the moving reference (bottom
two yellow blocks). Block 1 imple­
ments equations (2) and (4) in the
top two yellow blocks and their in­
verse transforms in the bottom two
yellow blocks.

Dotted-line block 2 shows the con­
trol actions working on the velocity
and current errors.

Block number '3, also enclosed in
dotted lines, illustrates how the slip
angular velocity, "'s' is derived and
used in obtaining the magnetizing cur­
rent angle 'Y. Note that 'Y is used as an
input to the vector rotator block.
Function blocks 1, 2 and 3 are com­
putationally demanding ones; there
are, however Simpler control blocks
that we do not address here.

Starting from block 1, we notice

Vector rotation diagram to define coordi­
nates and angles in the d-q representation.

that each vector rotation requires the
multiplication of a matrix by a vector.
Transformation of 2 to 3, and the in­
verse transfer of 3 to 2 phases, re­
quire several adds and multiplies. The
DSP code for one of these matrix mul­
tiplications (the inverse of equation
4) is shown in the box at the bottom of
this page.

Block 2 involves several computa­
tions of angle 'Y using rotor speed and
calculated Slip frequency. We can see
the need for two multiplies, a divide
and precise integration or accumula­
tion of synchronous speed.

In spite of the demanding require­
ments of this control system, the en­
tire system can be implemented with
a single TMS320 DSP device.

DSP systems
DSP systems, like control systems,
have special requirements to allow ef­
ficient implementation of those algo­
rithms. DSP .devices implement new
architectures to provide solutions for
these requirements. Initial DSP de­
vices were expensive and did not
have the functionality available on mi­
crocontrollers (a situation similar to
early microprocessors). But prices
have dropped tremendously, and to­
day DSPS are at par with 16-bil
microcontrollers.

Furthermore, DSPS are being intro­
duced that have most of the function­
ality of microcontrollers. In the future,
the functionality of DSP devices may
be indistinguishable from that of ordi­
nary microcontrollers.

Microcontrollers were designed to
replace hardwired logic; DSPs were
designed for signal processing. As
system costs of DSPS goes down,
they will eventually replace analog
systems and microcontrollers in most
servo control applications. 0

REFERENCES.
1. R. Lessmeier, W. Schumacher, and W. Leon~
hard, "Microprocessor controlled ae servo
drives with synchronous or induction motors:

which is preferable?" IEEE-lAS Conference Ps­

pers, 1985 pp. 529

2. S. Meshkat, Motion Research Servo Design
Tutorisl, Motion Research Inc., Plymouth. Minn.
3. S. Meshkat, E. Persson, "Optimum current

vendor control of ae amplifiers using micropro­
cessors." IEEE-lAS Conference Papers, 1984
pp.451

305

306

Microprocessor-Controlled AC-Servo Drives with
Synchronous or Induction Motors: Which is

Preferable?
R. LESSMEIER, W. SCHUMACHER, AND W. LEONHARD, SENIOR MEMBER, IEEE

Abstract-With the ruent advances of power transistors and micro­
processors it has b~ome possible to design high-dynBmic-performance
ae-servo drives free of moving contacts using synchronous or asynchron­
ous motors. Both schemes have their particular strengths. A general
control principle, based on field or rotor orientation, is described which
has been realized with a state-of-the-art microcomputer, where all the
signal processing, including modulation of the inverter, is performed by
software. Extensive tests have been carried out with different motors to
compare the characteristics of the various types of drives.

INTRODUCTION

CONTROLLED electrical drives with high dynamic
performance are today almost invariably dc drives fed by

power electronic converters. At larger ratings and in station­
ary applications the converters are of the line-commutated
type, presenting an acceptable compromise between dynamic
performance, efficiency, and cost. The dc motors, with their
transparent control structure, are well suited for high-perform­
ance duty: the separately excited field affords flexibility and
permits an enlarged speed range at reduced torque, similar to a
continuously variable gear.

For servo applications between 1-10 kW, the motors are
normally fed from dc-link transistor converters switching at
higher frequency (1-5 kHz) to improve the response; the dc
link is supplied from a line-side rectifier or a battery. The field
winding is usually replaced hy permanent magnets, thus
excluding the possibility of field-weakening.

To minimize motor inertia, which is important for rapid
acceleration, two types of dc-servo motors have evolved: the
slim-drum type motor of otherwise conventional design and
the disk motor, having an iron-free armature and axial
magnetic field. The first is often used for machine tool feed
drives, while the second is preferred on robots because of its
compact design and short axial length.

Paper IPCSD 86-8. approved by the Industrial Drives Committee of the
IEEE Industry Applications Society for presentation at the 1985 Industry
Applications Society Annual Meeting, Toronto, ON. Canada, October 6-11.
Manuscript released for publication March 19, 1986. This paper is based on
work suported by a grant from Deutsche Forschungsgemeinschaft.

R. Lessmeier is with Technische Universitat Braunschweig, Department of
Control Engineering, Hans-Sommer-Strasse 65/66, 3300 Braunschweig, West
Germany.

W. Schumacher is with Technische Universitat Braunschweig, Institute of
Applied Microelectronics. Hans-Sommer-Strasse 65/66. 3300 Braunschweig,
West Germany.

W. Leonhard is with Technische Universitat Braunschweig, Institut fur
Regelungslechnik, Hans-Sommer-Strasse 65/66. 3300 Braunschweig, West
Germany.

IEEE Log Number 8609876.

The motor is normally coupled to the mechanical load
through gears because, with an electrical drive, a large power­
to-weight ratio calls for high rotational speed. Of course the
mechanical commutator sets a limit, often at 3000 min-I;
furthermore there are restrictions on temporary torque over­
load, particularly at very low speed or standstill, which is a
frequent mode of operation with position-controlled servo
drives.

It is for these reasons that there is intense interest in
commutatorless ac-servo drives where these restrictions are
lifted; it could eventually open the way to lightweight motors
operating at very high speed, for example beyond 10 000
min - I, or to high-torque gearless direct drives.

The obstacles for controlled ac drives for servo applications
have in the past been twofold:

• the cost of the power converters and
• the complexity of an ac motor as a nonlinear multi varia­

ble control plant.

With the rapid development of semiconductors, solutions
for both problems are in sight.

• Fast-switching bipolar and field-effect power transistors
requiring minimal snubbing circuits and in cost-saving
modular assemblies are becoming available.

• The complex control systems necessary with ac motors
can be realized through software on ever more powerful
microelectronic components.

This has resulted in accelerated research and has led to the
emergence of prototype and early commercial high-perform­
ance ac drives. It is the aim of this paper to assess the control
aspects of ac-servo drives and to compare the relative merits of
different types of ac motors.

AC-Servo Drive with Transistor Inverter and
Microcomputer Control

The tasks of electromechanical power and ac/dc conversion,
which are jointly carried out in the armature of a dc motor are
separated in the ac drive, resulting in greater flexibility ~ith
regard to motor design. The magnetic flux necessary for
producing torque is set up either by permanent magnets in the
rotor or by magnetizing current in the stator windings. Thus
synchronous or induction motors result, both of which can be
designed as slim-drum or short -disk type motors.

Synchronous motors with permanent-magnet excitation may
be further classified in those having an approximately sinusoi-

© 1986 IEEE. Reprinted, with pemlission, from IEEE Transactions onlndllstr.\' Applimtiolls,
Vol. IA-22, No.5, Sept./Oct. 1986. 307

dal flux distribution in the airgap and sinusoidal stator currents
and the so-called brushless dc motors with built-in position
sensor, having a trapezoidal flux distribution and a current­
source dc link. Only the synchronous motor with approxi­
mately sinusoidal stator currents (below voltage limit) and the
induction motor will be discussed here. Both are supplied from
a voltage-source transistor inverter with pulsewidth modula­
tion; best dynamic performance is obtained by employing
constant link voltage. Both drives permit field-weakening and
four-quadrant operation, even though the power generated
during dynamic braking is usually absorbed in a ballast
resistor to simplify the line-side collverter.

A digital pulsewidth modulator may be directly coupled to
the microcomputer controlling the drive. If the sampling
frequency at which the complete control algorithm is repeated
is identical with the pulse frequency of the power inverter,
there is the additional benefit that the ripple on the current
signals may be greatly reduced without the need for smoothing
filters. If the desirable stator frequency is 200 Hz, this calls for
a switching frequency of the inverter of about 4 kHz, leaving
250 /LS for performing the control algorithm. This is feasible
with a higb-speed microcomputer containing a signal proces­
sor.

Another feature of a purely digital control scheme is that the
stator currents can be impressed by current control loops that
are closed in transformed coordinates so that the software
current controllers are processing dc quantities in steady state.
This is explained in more detail later.

To arrive at a valid comparison of the different types of
drives, the same inverter and microcomputer hardware will be
used for all the tests. The control algorithm is identical, with
the exception that the synchronous motor is controlled in rotor
coordinates while the induction motor control is performed in
field coordinates, based on rotor flux. This calls for a flux
model, which is bypassed in the case of the synchronous
motoT. Obviously, when designing a control scheme for
exclusive use with synchronous motors, the program could be
simplified or 'a slower processor would suffice.

For measuring motor speed and position, an optical incre­
mental sensor with 1024 lines/r is attached to the motor shaft.
To achieve smooth operation at very low speed and standstill,
the analogue sin-, cos-signals are evaluated with AID con­
verters prior to quantization so that more than a quarter million
(2 18) increments/r are available for interpolation; outside the
low-speed range (± 150 min-I) the additional bits for high
resolution become meaningless and are disregarded.

MATIlEMATICAL MODEL OF SYMMETRICAL AC MOTORS

All the motors employed for the tests show rotational
symmetry including constant effective airgap. In the case of
the synchronous motor this is achieved by placing rare-earth
magnets directly on the circumference of the rotor. Since these
magnets exhibit low permeability to external fields and higb
resistivity, they may be considered as part of the airgap. It has
been shown [18]-[21] that with the usual simplifications, such
as symmetrical three~phase windings and sinusoidal MMF
distribution (no spatial harmonics), smooth stator and rotor
surfaces (no slots), neglecting saturation and iron losses, a

308

two-pole motor with symmetrical stator and rotor windings
can be described by a set of four nonlinear differential
equations:

. dis d."
RSIS+Ls -=-+Lo - (IRe))=us(t),

- dt dt - -
(1)

(2)

(3)

dE
-=w.
dt

(4)

The instantaneous phase currents and voltages are combined
to form complex time-varying vectors in the plane perpendicu­
lar to the motor axis:

~s(t) = isl(t) + idt)eh + is3 (t)eJ2" l' = 2311" (5)

and

'!s(t) = USI(t) + uS2(t)eh + uS3(t)eJ2,. (6)

Corresponding definitions hold for the rotor currents and
voltages. The following symbols are used.

J

w

Winding resistances per phase.
Stator, rotor, and mutual inductances per
phase, assuming same number of turns in
stator and rotor.
Inertia of motor.
Electrical driving, torque and load torque at
motor coupling.
Angular velocity.
Angle of rotation.
Conjugate complex vector of ~R •

The model equations are valid for any waveform of currents
and voltages as long as the condition for isolated neutral, e.g.,

iSI +is2 +is3 =O, (7)

is maintained.
This unified model may be adapted to the constraints of an

induction motor with cage rotor by introducing the short­
circuit condition at the rotor terminals UR = O. The mOdel of a
synchronous motor with permanent-nmgnet excitation is ob­
tained when the fictitious rotor windings are supplied from
assumed de sources, !ft = 2/3 Ip , rendering the rotor voltage
equation superfluous. Further simplifications result when the
stator currents are impressed by current sources, even though
the current control loops may in fact be closed in a
transformed coordinate system as is shown in the next
paragraph. This finally leaves (2)-(4) as the dynamical models
for controlling the induction motor and (3), (4) for controlling
the synchronous motor.

CONTROL OF AC MOTORS IN MOVING COORDINATES

The principle of field orientation as formulated by Blaschke
[2] has emerged as a very effective method for controlling ac

machines with high dynamic performance; it may be applied to
asynchronous as well as synchronous motors. With a stator­
fed machine, it calls for transformation of the stator current
vector into a moving frame of reference given by the rotor
current vector (or rotor flux vector-whichever is more
convenient to access). By splitting the transformed stator
current vector into direct and quadrature components isd , is.,
respectively, inputs for decoupled control of flux and torque
are obtained as is the case with a dc machine.

Control oj Synchronous Motor

With a permanently excited synchronous motor this princi­
ple is easy to apply, because the fictitious rotor current vector
is fixed to the rotor position,

(8)

Hence the mechanical equation (3) becomes

(9)

where Ii ~ - f is the load angle and

iSq= is sin Ii (10)

the quadrature current in a rotor-based coordinate system (Fig.
1). Maximum torque for a given stator current is obtained for Ii
= ± 'lr/2, i.e., purely quadrature current. In the base speed
range this is the optimal mode of operation but at higher speed;
where the maximum inverter voltage would be exceeded a
negative direct component iSd < 0 may be introduced for
limiting the terminal voltage of the motor.

Control oj Induction Motor

Field-oriented control of an induction motor is much more
difficult because the rotor flux moves across the rotor at slip
speed and the rotor currents cannot be measured directly. The
rotor flux may be characterized by an equivalent stator-based
magnetizing current containing a component for magnetic
leakage

~mR(t) = ~s + (1 + I1R)~Rej, = imRe jp , (II)

where I1R is the coefficient representing rotor leakage. The
angle p may be used as a frame of reference for field
orientation. Instead of direct flux-sensing schemes (Hall
sensors, search coils, etc.) it was found to be more effective to
compute the magnetizing current in a dynamic model on the
basis of terminal quantities and speed [11], [15], [21]; no
modifications of the motor are then required. The model
remains operative even at standstill, which is an important
condition for servo drives. Combining (2) and (II) results in

T dimR • R [. -;] .
R&+lmR= e!se P =IStb (12)

dp 1 1 . _; is.
-=WmR=W+- --. -Im[~se P]=w+--. -, (13)
dt TR TRlmR TRlmR

= ___ ~_stQtor QJ(i~
Fig. 1. Coordinates for controlling synchronous motor.

Rotor Qxis

"",,::r:....-L-L ___ Stator Qxis

(0)

iSJ

- tS2

iSl

(b)
Fig. 2. Induction motor. (a) Coordinates for motor control. (b) Flux model

for motor control.

which represent' a flux model with the stator currents and
speed serving as input signals (Fig. 2a, 2b). By solving these
equations with the microcomputer in real time and with
adequate precision, estimates for the modulus and angle of the
magnetizing current, as well as the components of the
transformed stator current vector and the electrical torque, are
obtained.

The only uncertain parameter is the rotor time constant TR ,

which depends on rotor temperature and saturation. T~mpera­
ture effects are quite slow, but the degree of saturation changes
rapidly when the motor accelerates into the field-weakening
range. It has been shown [12], [16], [31], [35] that an
estimate of TR may be obtained by utilizing terminal voltages
except at very low speed, where all voltage measurements
become uncertain due to the large resistive component. The TR
adaptation is performed by comparing the vector of the
measured stator voltages with that derived from the flux
model; if differences are detected, the model parameter TR is
changed accordingly.

Measuring the fundamental components of the terminal
voltages proves difficult with a PWM inverter because of the
highly distorted waveforms. However, considerable simplifi­
cations result when the current control loops are closed within
the microcomputer, because the voltage reference signals are
then available in the computer program and there is no need
for voltage sensors.

Realization oj the Control Scheme with a
Microcomputer

An overview of the control scheme is shown in Fig. 3,
containing the hardware and software structure in the usual

309

Microcomputer TMS 99105!TMS 320 --t------ ~~dc~:~ter
I
I
I
I

Fig. 3. Block diagram for ac motor control in moving frame of coordinates.

form of a block diagram. Compared with an earlier realization
[32] the following features have been implemented.

• Totally digital control by employing a single signal
processor.

• Sampling period of 256 I-'S for all control loops.
• Improved resolution of current and voltage signals.
• TR adaptation in case of the induction motor.
• Minimum control delay between the sampling instant of

the currents and the center of the subsequent stator
voltage pUlse.

The Microcomputer

Both the complex control algorithms already discussed and
the short sampling period necessary for achieving a high
dynamic performance drive call for considerable computing
power (see Fig. 4). In particular. the two transformations from
stator to field coordinates and the reverse (each requiring four
multiplications with sin p, cos p, as well as the flux model for
the induction motor, are computationally demanding, but a
cost-effective microelectronic solution has become possible
with signal processors [30]. This method has been further
advanced by performing all arithmetic operations necessary
for controlling the motors in a single-signal processor: TMS
32010. This arithmetic unit is tied by two-port RAM to a
control processor, TMS 99105, which handles the I/O
interface and the communication with an operator's console.
The double processor card (233 x 160 mm) is suitable for
connection to a multiprocessor bus to accommodate multi-axis
drives such as found on machine tools and robots. A local bus
connects each processor card to an interface card containing
the AID converters and modulator.

The Interface Card

As explained earlier, control of a high-performance ac­
servo drive requires the measurement of instantaneous stator
currents, rotor velocity, and rotor position. Both mechanical
signals are derived from an optical incremental sensor with
1024 lineslr, which has been augmented by analogue tech­
niques to the very high resolution necessary for smooth

310

operation at very low speed and standstill. With the 256 I-'S
sampling period, the speed increment is 0.2 min -I [33].

Two of the stator currents are measured by commercial
magnetic sensors employing Hall devices. They provide
electrical insulation and approximately 50-kHz bandwidth.
The output signals of the sensors are sampled by two 12-bit
AID converters with 12-l-'s settling time.

The output signals of the controller, representing reference
values for the three-phase voltages, are transferred to a digital
pulsewidth modulator, which is designed with transistor­
transistor logic (TTL) providing pulsewidth increments of
1116 I-'s, which corresponds to 12-bit resolution of the 256-l-'s
sampling period.

All these I/O channels are placed on the interface card.

The Transistor Inverter

The voltage-source three-phase transistor inverter is sup­
plied with a constant dc link voltage U D = 300 V, generating
a maximum sinusoidal line-to-line voltage U,m, = 220 V.
Several bipolar transistors are parallel-connected in each leg of
the inverter bridge circuit, allowing a maximum sinusoidal
output current of I,m, = 40 A. Of course the maximum output
power of 15 kV A is not always used during the tests where the
current limit is set to a value compatible with each machine.
The switching frequency of the inverter can be raised to 20
kHz, i.e., beyond the audible range; but to achieve synchro­
nous operation with the control unit, the frequency was set at 4
kHz.

List of Motors

To demonstrate the flexibility of the microprocessor control
unit, six different ac motors were used during the tests
(corresponding to rotors shown in Fig. 5).

I) A specially designed low-inertia synchronous motor
with SmCo magnets attached to a slim rotor [23]. The
four-pole machine has a continuous rating of about 1.2
kW at 2000 min-I

2) A specially designed low-inertia induction motor em­
ploying the same stator as for I).

US,

US,

US,

iSl
iS2
lineA
lineB
from

encoder

Fig. 4. Microcomputer for ae motor control.

(a)

(b)
Fig. 5. Rotors of motors used during tests. (a) Synchronous and induction
motor rotors (shown as 1) and 2). respectively), (b) Induction motor rotors.

3) A standard induction machine (4 poles, 1.5 kWat 1420
min-i).

4) A special induction machine (4 poles, 1.5 kWat 1420
min-I), which had roughly the shape of two axially
joined standard motors.

5) An industrial high-speed induction motor (2 poles, I kW
at 12 000 min -i) designed for intermediate-frequency
power tools.

6) A disk -type induction motor (4 poles) consisting of a
commercial stator for a synchronous disk motor (1.5 kW
at 6000 min-i) and an aluminum rotor disk [30).

Test Results

To simplify the comparison, only the results with moto~s I)
and 2), which are identical in shape and employ the same
stator with a two-layer three-phase winding skewed by one slot
(to avoid lock-in effects), will be discussed. In view of the
higher flux density possible with induction motor 2), the dc
link voltage was raised to 450 V.

Figs. 6 and 7 show the results of tests in steady state, where
the rms stator currents are plotted against no-load speed and
torque at standstill. The synchronous motor with permanent
magnets has a linear current -torque characteristic and a very
low no-load current below rated speed; this is due to the
absence of rotor losses and magnetizing current. However,
when the motor is operated into the field-weakening region,
which may be desirable for rapid traversing, the motor is
overexcited and draws huge reactive current from the inverter,
causing high stator losses. The reason is the relatively wide
airgap of the synchronous motor. This large reactive current is
in contrast to the magnetizing current of the induction motor,
which is reduced above rated speed.

The test indicates that the absence of a magnetizing current
in case of the synchronous motor below rated speed should not
be overemphasized, because with a servo motor this is only a
small fraction of the maximum current which may be required
during temporary overload conditions; also, when the motors
are loaded, reactive power is caused not only by magnetizing
current but also by armature reaction and magnetic leakage,
which is present with both motors. None of the motors can
operate with unity power factor under load.

The overall steady-state performance of the two motors at
rated torque is described by Fig. 8, which shows the efficiency
between the de link and the mechanical output measured by a
dynamometer; hence the losses of the inverter are included.
Clearly the synchronous motor is superior, which is due
mainly to the rotor losses of the induction motor. At higher
speed, where the stator losses of the synchronous motor rise,
the differences tend to become smaller. The rotor losses are a
definite disadvantage of the induction motor for servo applica-

311

A
15

10

Stater current at no load

PH .",d ... nw.

0±0--=-::,000P-'o!:...---:±:--==---,I,QQQ=:----::!50·00 min-I

Speed

Fig. 6. Stator currents versus no-load speed for drives I) and 2).

Torque

Fig. 7. Stator currents versus torque at standstill for drives I) and 2).

Efficienc), = pP fMCh at 5.4. ~m (rated torque)
DC link

1000 2000 300J min-1

Speed

Fig. 8. Efficiency of drives 1) and 2) at rated torq~e.

tions because they may necessitate forced cooling while in the
other case natural cooling might suffice.

The dynamic performance of the two drives with speed
control at no-load is exemplified by the two frequency
response curves shown in Fig. 9. The measurements were
taken at small amplitude to avoid nonlinearities. The curves
show flat resl'0nse up to aboq! 100 Hz. The difference
between the two motors is not characteristic for the synchro­
nous and induction motor drive, but depends also on slightly
different controller settings.

Finally, large signal transients are depicted in Figs. 10 and
11, again for the motors 1) and 2). They show speed­
reversing transients of the speed-controlled drives at no-load,
where the maximum current was limited to 2S A, correspond-

312

o --.. --'~-------r-~~-~--'
o 10 50 100 150 zoo Hz

frequency

Fig. 9. Frequency response curves of speed-controlled drives I) and 2) at
no-load .

.JL
lIin-1

1800

-1800

/--­
I

zo

<a)

tlms
"~"F 1800 I

o 'zo. II.,

-1800

tIllS

t/lll'

t/ms

Fig. 10. No-load reversing transients for speed-controlled drives. (a) Drive
1). (b) Drive 2).

ing to approximately S times rated current. The curves show
very rapid response; at 1000 min - 1 the braking distance is
about 20·, roughly one slot division. The difference between
the motors is minimal, even though the inertia of the induction
motor is larger due to the copper cage winding. At higher
speed the response of the induction motor is somewhat delayed
because of the field lag, which becomes effective When
the field is weakened.

Finally in Fig. 12 large signal step responses are shown;
with the pOsition control loops closed; the position controllers
used for these tests were of the nonlinear, time-optimal
response type. The differences between the two drives are
again negligible. The performan(le pf these drives is' quite
remarkable; following a change in' position reference, the
torque responds within one sampling period of the controller,
i.e., after 250 p.s.

As a result of these tests it can be stated that very high­
performance ac-servo drives can be designed with pulsewidth­
modulated transistor inverters and microcomputer control.
Synchronous motors with permanent-magnet excitation and

;L ;;.j,f1

1~~
-1 I)

m~-'~
2000

I
o --------

-2000 2) I

.JL.
min-l

3000

-300

-6ms- -10ms-

Fig. 11. No-load reversing transients for speed-controlled drives 1) and 2)
below and above rated speed.

Position
rev.

16

4
2
0

n

0 100

~hn
0 100

200 tim.

~6rev.
200 t/ms

<.)

Position
16

4
2
00 100

n

'::61)
a 100

200 11m.

\~ ..
200 t/ms

(b)

Fig. 12. Step response of position-controlled drives employing time-optimal
conlrol. <a) Drive I). (b) Drive 2).

induction motors are both suitable. In our view, the choice is
still open because it depends on a number of factors that can
only be determined with fully optimized designs and more
industrial experience. The main points to be taken into
consideration are as follows.

• With regard to the rating of the inverter, the synchronous
motor has a slight advantage as long as field-weakening is
avoided. This is mainly due to the rotor losses in the
induction motor; the fact that the synchronous motor
needs no magnetizing current seems less important in
view of the fact that servo drives are normally rated for
intermittent duty and high short-time overload.

• There will be borderline cases where the synchronous
motor can be operated without forced cooling while the
induction motor would normally need forced cooling.

• The induction motor permits easy field-weakening over a
wide speed range with constant power; this makes this
'motor particularly attractive for spindle drives, but it is
also applicable for position-controlled feed drives.

• The induction motor, even when specially designed for
low inertia and leakage, is likely to be less expensive than
the synchronous motor with rare-earth permanent mag­
nets. The design would take advantage of the fact that full
line voltage starts do not occur with inverter-fed motors.
Also, the induction motor can be designed for higher flux
density than the synchronous motor with permanent
magnets.

• The microcomputer can be simpler for the synchronous
motor because no signal processor is required. In
principle it could be designed without a microprocessor
at all, given the capabilities of VLSI custom design, but

the additional flexibility in the speed and position-control
function are a definite asset of control by software.

CONCLUSIONS

Extensive laboratory tests have been conducted to explore
the design of microcomputer-controlled ac-servo motors with
synchronous and induction motors fed by a pulsewidth
modulated transistor inverter. The control is all digital,
employing 4-kHz sampling frequency and synchronous
switching of the inverter. The results obtained thus far show
that both types of motor are applicable even though there are
special strengths and weaknesses with each of them. One
criterion could be the condition of a wide field-weakening
speed range, which would rule out the synchronous motor; on
the other hand the induction motor has rotor losses and is more
difficult to control.

Only time will tell which design will eventually prove
s~perior in the majority of applications; our belief is that there
wIll be a bright future for both of them.

REFERENCES

[I] A. ~bbondanti, "Meth~ of flux control in induction motors driven by
vaflable frequency, vaflable voltage supplies," in Proc. IEEEIIAS
Int. Semlcond. Power Conv., 1977.

[2J F. Blaschke, "The principle of field orientation as applied to the new
TRAN~~ECTOR closed-loop control system for rotating field rna­
chmes, Siemens Rev., p. 217, 1972.

[3J F. Blaschke and K. IIOhm, "Verfahren der FlulJerfassung be; der
Regelung stromrichtergespeister Asynchronmaschinen " prese ted
at .the IF ~C Symp., Control in Power Electronics a~d El~Cal
Dnves, Dusseldorf, VDIIVDE Ges. Mess-und Regelungstechnik p
635, 1974. ' .

[4J B. K. Bose, "Adjustable speed AC drives-A tech I
review," in Proc. IEEE, p. 116, 1982. no ogy status

[5J A. Brickwedde, D. Head, and H. Graham, "Microprocessor controlled

313

50 kVA PWM inverter motor drive," in Co",. Rec. 1981 Ann.
Meeting IEEE Ind. Appl. Soc., p. 660.

[6] G. Chollet, "Commande par microprocesseur d'un commutateur
de courant pour moteur asynchrone de traction," in Proc. Con­
umel83, Toulouse, pp. N-1.

[7] C. Conrath, "Commande a microprocesseur d'une machine asynch­
rone aU/api/alee. Application Q un systeme de [evoge," in Proc.
Conumel83, Toulouse, pp. N-7 .

. [8] R. Gabriel, "Antriebsregelung einer thyristorgespeisten Asynchron­
maschine dUTch einen Mikrorechner," diploma thesis, Control Eng.
Dept., Technical University of Braunschweig, 1978.

[9] R. Gabriel, W. Leonhard, and C. Nordby, "Regelung der stromrich­
tergespeisten Drehstrom-Asynchronmaschine mit einem Mi ...
krorechner," Regelungstechnik 27, p. 379, 1979.

[10] R. Gabriel, W. Leonhard, and C. Nordby, "Field-oriented control of a
standard AC-motor using microprocessors," IEEE Trans. Ind. Appl.,
IA-16, no. 2, p. 186, 1980.

[11] R. Gabriel and W. Leonhard, "Microprocessor control of induction
motor," in Proc. 1982 IEEE Int. Semicond. Power Conv. Co"'., p.
385.

[12] L. J. Garces, "Parameter adaption for the speed controlled static ac­
drive with squirrel cage induction motor," in the ConI. Rec. of the
1979 IEEE Ind. Appl. Soc. Ann. Meet., p. 843.

[13] M. Grotstollen and G. Pfaff, "Burstenloser Drehstrom-Servoantrieb
mit Erregung durch Dauermagnete," Elektrotech. Bd., 100 (1979),
p. 1382.

[14] K. Hasse, "Zur Dynamik drehzahlgeregeiter Antriebe mit
stromrichtergespeisten AsynchronkurzschluBliiu/ermaschinen.··
Ph.D. thesis, Technical University of Darmstadt, 1969.

[15] R.· Jotten and G. Mader, "Control methods for good dynamic
perfonnance induction motor drives based on current and voltage as
measured quantities," presented at the 1982 IEEE Int. Semicond.
Conv. Conf., p. 397.

[16] T. Irisa, S. Takata, R. Ueda, T. Sonoda, and T. Mochizuki, " A novel
approach on parameter self-tuning method in AC-servo systems, 'f

presented at the 1983 IFAC Symp. Control in Power Electron. and
Electric. Drives, Lausanne, p. 41.

[17] I. Iwakane, H. Inokuchi, T. Kai, and J. Hirai, "AC servo motor drive
for precise positioning control;" in 1983 Proc. Int. Power Electr.
Co",., Tokyo, p. 1453.

[18] K. P. Kovacz, and J. Racz, Transiente Vorgonge in Wechselstrom­
maschinen. Budapest: Hungarian Acad. of Science, 1959.

[19] W. Leonhard, Regelung in der elektrischen Antriebstechnik. Stutt­
gart: B. G. Teubner, 1974.

[20] W. Leonhard, "Control of ac machines with the help of microelec­
tronics: A survey" presented at the Control in Power Electron. and
Electric. Drives IFAC Symp., Lausanne, 1983. Oxford: Pergamon
Press, 1984. Published in Automatica 1986, p. \.

[21] W. Leonhard, Control oj Electrical Drives. Berlin, Heidelberg, New
York, Tokyo: Springer, 1985.

[22] H. H. Letas and W: Leonhard, "Dual axis servo drive in cylindrical
coordinates using permanent magnet synchronous motors with micro­
processor control," in Proc. Conumel83, Toulouse, p. 1\-23.

[23] H. H. Letas, "Mikrorechner-geregelter Synchron-Stellantrieb,·· Ph.D.
thesis, Technical University of Braunschweig, 1985.

[24] B. Mokrytzki, "Pulse width modulated inverters for ac motor drives,"
IEEE Trans. Ind. Appl., p. 312; 1968.

[25] J. M. D. Murphy, L. S. Howard; and R. G. Hoft, "Microprocessor
control of a PWM-inverter induction motor drive," in Con/. Rec. 1979
Power Electr. Spec. Co",., p. 344.

[26] A. Nabae, K. Otsuka, H. Uchino, and R. Kurosowa, "An approach to
flux control of induction motors operated with variable-frequency
power supply," IEEE Trans. Ind. Appl., p. 342, 1980.

[27] D. Pauly, G. Pfaff, and A. Weschta, "Brushless servo drives with
permanent magnet motors or squirrel cage induction motors-A
comparison," presented. at the 1984 IEEE/IAS Ann. Conf., p. 503.

[28] G. Pfaff, A. Weschta, and A. Wick, "Design and experimental results
of a brushless AC servo drive," in the Co"'. Rec. oj the 1982 IEEE
Ind. Appl. Ann. Meeting, p. 692.

314

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. B. Plunkett, "Direct flux and torque regulation in a PWM-inverter
induction motor drive," IEEE Trans. Ind. Appl., IA-13, no. 2,1977.
W. Schumacher, "Microprocessor controlled AC servo drive," in
Proc. Microelectronics in Power Electron. and Electric. Drives,
Darmstadt, 1982, p. 311.
W. Schumacher and W. Leonhard, "Transistor-fed AC servo drive
with microprocessor control," in Proc. 1983 Int. Power Electr.
Co",., Tokyo, p. 1465.
W. Schumacher, H. H. Letas, and W. Leonhard, "Microprocessor
controlled ac-servo drive," in Proc. 1984 lEE Co1!/. on Power
Electron. and Variable Speed Drives, London, p. 233.
W. Schumacher, P. Rojek, and H. H. Letas, "Hochaufliisende Lage­
und DrehzahlerJassung optischer Geber Jur schnelle Stellantriebe,"
Elektronik. p. 65, 1985.
W. Schumacher, o<Mikrorechner-geregelter Asynchron-Stellan­
trieb," Ph.D. thesis, Te~hnical University of Braunschweig, 1985.
Y. Yoshida, R. Ueda, and T. Sonoda, "A new inverter-fed induction
motor drive with a function of correcting rotor circuit time constant,"
in Proc. 1983 Int. Co1!/. on Power Electr., Tokyo, 1983, p. 672.

Rainer Lessnteier was born in 1956 at
Oerlinghausen, West Germany. From 1975 to 1984
he studied electrical engineering at the Technical
University of Braunschweig, Braunschweig, West
Germany, where·he received his Dip\. Ing. degree
in electrical engineering in 1984. .

Since then he has been a Research Associate in
the Department of Control Engineering, Technical
University of Braunschweig, working for the Dr.
Ing. degree.

Walter Schumacber was born in 1952 at Hamburg,
West Germany. From 1973 to 1979 he studied
electrical engineering at the Technical University of

. Braunschweig, Braunschweig, West Germany,
where he received the Dipl. Ing. degree in electrical
engineering in 1979.

From 1979 to 1984 he was with the Department
of Control Engineering, Technical University of
Braunschweig; where he received the Dr. Ing.
degree in 1985. Since 1984 he has been with the
Institute of Applied Microelectronics in Braunsch-

weig, West Germany.

Werner Leonhard (M'56-SM'SO) was born in
1926 at Weiden, Germany. From 1946 to 1951 he
studied electrical engineering at the Technical Uni­
versity of Stuttgart, West Germany, where he
received the Dip\. Ing. degree in 1951 and the Dr.
Ing. degree in 1954.

He was with Westinghouse Electric Corporation,
Pittsburgh, PA, from 1954 to 1958 and with
Siemens-Schuckert-Werke AG, Erlangen, West
Germany, from 1959 to 1963. Since then he has
been a Professor of control engineering at the

Technical University of Braunschweig, Gennany, where he has also served as
Head of the Electrical Engineering Department and Dean of the Mechanical
and Electrical Engineering Faculty.

Dr. Leonhard is the author seven textbooks on various aspects of control,
and was Chairman of the International Federation for Automatic Control
(IFAC) Symposia on Control in Power Electronics and Electrical Drives in
1974 and 1977, respectively, in Diisseldorf, West Germany, as well as
Chairman of the Verband Deutscher Elecktrotechniker (VDE) Conference
on Microelectronics in Power Electronics and Electrical Drives, in 1982 in
Dannstadt, West Germany. He is a co-founder of the European Power
Electronics Conference, first held in 1985 in Brussels, Belgium.

A Microcomputer-Based Control and Simulation of
an Advanced IPM Synchronous Machine Drive

System for Electric Vehicle Propulsion
BIMAL K. BOSE, SENIOR MEMBER, mEE, AND PAUL M. SZCZESNY

Abatract-Ad •• nced digital control .nd comput ld.d control .ys­
t.m design technlqu., are pl.ying k.y roles In tb. compl.x dri •• sy.t.m
design .nd control Implementation. The p.p.r describes a hlgb.perform.
IDee microcomputer-based control and digital simulation of an inverter ..
fed Interior permanent magnet (IPM) .ynchronou. m.cbine th.t uses •
Neodymlum·Iron·Boron magnet. The fully operatlon.1 four·qu.drant
drive system includes 8 cons18Dt .. torque region with zero speed operation
.nd I blgh-speed field· k.ning constant·po r region. Tb. control
uses tbe VMor or field-oriented technique in constant-torque region with
the direct axI. aligned to tb. stator fiux, ... here •• the constant·power
region control is bued on torque .ngie orientation of tb. Impressed
sq oltage. AD tbe key feedb.ck signal. for th. control .re
estimated with precision. Th. dri.e .yst.m is blslcaUy designed wltb .n
outer torque eoDtr~lloop for electric vehicle application, but speed and
position conlrolloop. c.n he added for otb.r Industrial .ppllcations. The
dl.trIbuted mlcrocomput.r·based control .y.tem is bued on Intel-8O%
microcontroU.r and TexiS Inslrom.nt. TMS32010 type digitll signal
p r. Th. complete dri •• sysIem has been .Imul.ted using tb. VAX·
based simulation Isnlul" SIMNON' to verify the feasability of the
control I s .nd to study tb. perform.nces of th. drive .yst.m. Tbe
slmulatiOll results are found to have .xceU.nt correl.tion with th.
I.boratory breadbo.rd t

I. INTRODUCTION

I NTERIOR OR buried type permanent magnet synchronous
machines are showing increasing promise for industrial

drive applications, and recently a considerable amount of
research and development effort is being made in that
direction. Because of buried magnet installation, IPM mao
chines are robust and thus permit higher operating speed. The
effective airgap in this class of machines is low and therefore
armature reaction effect is very dominant. This permits
control of the machine in constant ·torque region as well as in
field·weakening constant ·power region up to a high speed such
that the machine can be used for traction type applications.
Again, the saliency (X/p > X ds) in this type of machine permits
economical machine design because torque is contributed by
the magnet field as well as by the reluctance effect. In the past,
ferrite and Cobalt-Samarium magnets have generally been
used in PM machines. Recently, a Neodymium-Iron-Boron
(NeFeB) magnet has been introduced, which shows considera·

Manuscript received June 25, 1987; revised June 15, 1988. Thi. work was
supported by the Department of Energy under cost .hared contract (Contract
DE-AC07-85NVl04l8) with Ford Motor Company.

B. K. Bose was with the General Electric Research and Development
Center, Schenectady. He is now with the Department of Electrical Engineer·
ing, The Uni.ersity of Teones ... , Knoxville, TN 37996-2100, and also with
the Power Electronic. Applications Center (PEAC), Knoxville, TN.

IEEE Log Number 8823552.
, Simnon was developed by Loud In.titute of Technology, Sweden.

ble promise. The NeFeB magnet has much higher energy
density at reasonably "low cost" and therefore permits
economical machine design. However, one characteristic of
the magnet is that its field strength weakens as the temperature
increases. Considering the recent research and development
trends, it is expected that the price of the NeFeB magnet will
fall considerably and its characteristics will improve, thus
promoting extensive applications in the future.

In the past, induction motors have generally been consid·
ered as viable ac machines for electric vehicle drive applica·
tions. Although induction machines are simple, economical,
and satisfy all the performance needs of electric vehicle drives,
this type of machine has some additional loss penalties
compared to the PM synchronous machine because of rotor
copper loss. Besides conservation of energy, which is of
paramount importance in the EV drive system, extensive
analysis indicates that the life cycle cost of the !PM machine
drive system is generally lower than that with an induction
motor, not only for EV but for general industrial applications
also. An IPM machine can be operated near unity power factor
(unlike an induction machine), except at high speed and low
torque where the power factor becomes low (leading) because
of excessive counter emf.

The high performance requirements of the IPM machine
drive system for EV application demands a considerable
amount of control complexity and this is the subject of
discussion in this paper. Fortunately, microcomputer technol·
ogy and computer·aided control system design techniques
have advanced tremendously in recent years and advanced
control laws are being implemented easily in real time that
could not be done before. The paper will first review the
control principles of the IPM machine, which include con·
stant·torque and constant·power regions. Then, after review·
ing the salient features of the simulation language SIMNON,
the drive system simulation is described. The hardware and
software design features of the distributed microcomputer·
based control are then described. Finally, laboratory tests that
verify the simulation results are discussed.

II. DESCRIPTION OF CONTROL SYSTEM

The complete. drive control system of the IPM synchronous
machine is described in [1]. It will be briefly reviewed here for
completeness of the paper. Fig. 1 shows the simplified
schematic of the drive system power circuit. The traction
battery (204-V nominal) shown on the left is the lead·acid type

© 1988 IEEE. Reprinted, with permission, from IEEE Transactions on/nelustria/ E/ectronics.
315 Vol. 35, No.4, Nov_ 1988.

DC
LINK

CAPACITOR
PWM TRANSISTOR

INVERTER

DC
BATTERY
SOURCE

PHASE
CURRENT
FEEDBACK

ABSOLUTE
SHAFT

POSITION
ENCODER

TORQUE
COMMAND

INVERTERI MOTOR
CONTROLS

ROTOR ANGLE
FEEDBACK

Fig. 1. Simplified schematic of the drive system power circuit.

and supplies power to the PWM transistor inverter. The
inverter generates variable-frequency variable-voltage (or
current) power supply for the IPM machine. The machine
shaft power is transmitted to the drive axle through a two­
speed transmission. The drive system operates in all four
quadrants, and regenerative braking energy is easily absorbed
by the battery. The machine shaft has an analog resolver type
absolute position encoder that permits the drive system to be
controlled in the "brushless dc machine" mode. The drive
system has essentially two different modes of operation. In the
constant-torque region the inverter is current-controlled in the
PWM mode so that the desired flux -torque relationship can be
maintained. In an IPM machine, the flux can be controlled by
stator injected reactive current, which can be lagging (magnet­
izing) or leading (demagnetizing). As the inverter saturates at
higher speed, the current control is lost and then the drive
system enters into the field-weakening constant-power region.
With this condition, the inverter generates a six-step square­
wave voltage, which is phase-shifted to control·the developed
torque. As the machine speed increases in the constant-power
mode, the induced voltage increases proportionally with
speed, thus demanding more leading reactive current to
balance with the constant stator voltage. The invertor/motor
controls are shown as a block in Fig. 1 where transistor base
drive signals are generated from the operator torque command
and feedback signals.

A simplified control block diagram of the drive system in
the constant-torque region is shown in Fig. 2. The core drive
system in this region is current-controlled by. using the
hysteresis-band (bang-bang) PWM principle. The vector or
field-oriented control principle is used to enhance the system
transient performance. The IPM synchronous machine can be
considered as somewhat analogous to a wound-field synchro­
nous machine where the "field current" is controlled from the
slater s'dt Therefore in vector control the direct axis has been
aligned t.. the stator flux [2}, [3}, [16} instead of magnet flux.

316

In such a control mode, the in-phase or active component of
the stator current can be controlled to control the developed
torque, whereas the quadrature or reactive component of the
current can be controlled to control the stator flux. In Fig. 2,
the operator commanded torque is controlled by the close loop
and the torque component of current (It) is generated by the
torque loop. The drive system incorporates a flux control loop
to prevent flux drift due to parameter variation. The command
flux (9":) is programmed with torque (T:) to optimize the
core loss so that the overall drive efficiency is improved. The
flux is essentially controlled in the feed-forward manner with
the help of the current program ·as shown, except the
incremental 1!1It, from the flux loop supplements the current
program output. The current signals It and It,are processed
through the overlay current control loops (Fig. 3), and the
output current signals in the synchronously rotating reference
frame are then vector rotated to transform into stationary
frame phase current commands for the inverter current­
controller.

All the essential feedback signals for the control system as
shown in the feedback signal processing block are estimated
with precision. These signals include torque (T.), stator flux
(9",), torque angle (cos 8, sin 8), rotor position (cos 9" sin 9,),
and rotor temperature for magnet flux compensation. The
detailed description of feedback signal processing can be
found in [I}. Basically, the d' and q' components of stator flux
are described respectively as a function of magnet flux with
the stator d'-q' currents and the stator d'-q' currents. The
relations are derived by extensive. modeling and laboratory
calibration where parameter saturation and cross-coupling
effects have been taken into consideration. The torque and
torque angle are estimated by the equations

T,=K,[", dsiqa- "'qaids}

sin 8= "'qa
""'~ H~

(1)

(2)

where

T. cos (e,+Il).
SIN (e,+bI

V.

COS e,. SIN e,

• COS e,. SIN a,SYNTHESIS

• TORQUE (TJ ESTIMATION

• TORQUE A!'IGLE (II) ESTIMATION

..... -----------1. STATOR FLUX (P,) ESTIMATION

• TEMPERATURE COMPENSATION
OF MAGNET FLUX (")

e,

T,

.... ------------------1. VECTOR ROTATION OF i

STATOR
TEMPERATURE

FEEDBACK SIGNAL
PROCESSING

Fig. 2. Simplified control block diagram of the drive system in constant torque region (PWM mode).

'--.,...........,.-J" CURRENT

COS!) SIN!)

CO-ORDINATE
SHIFTER

sw _VECTOR---t

6=0 ROTATOR

rv
COS (e.+ !»)

~_....L.-.

PHASE
SHIFTER

L....r--;-...

COS/) SIN/)

~ cose.

~ SINe.

Fig. 3. Overlay active and reactive current control loops with forward vector rotation.

(3)
the help of magnet temperature information. A simplified
single time constant dynamic thermal model is solved to
compute the magnet temperature approximately from the
Stator temperature.

it~. it., are the stator de_qe flux components (rotating
frame) and ids, i., stator de_qe current components (rotating
frame).

Fig. 3 shows the overlay active and reactive current control
loops with forward vector rotation. These loops permit vector
control to be effective in partial saturation of the current­
controller (quasi-PWM) and help smooth transition between
the PWM and square-wave modes. The operati.on of the loops

It was mentioned before that the NeFeB magnet flux has some
negative temperature sensitivity that should be corrected with

317

can be considered as redundant in normal PWM operation. A
smaIl amount of coupling is introduced [5] in vector control by
the loops that tends to slow down the response, but this can be
ignored because of high loop gains. The current coordinate
shifter converts the d'-q' current components to 1M and Ir by
the relations

IM=iq, cos /j-ids sin /j

IT= iqs sin /j + ids cos /j.

(4)

(5)

The loops compare the respective command and feedback
currents and generate outputs through the PI compensators.
The PI control assures matching of command and feedback
currents as long as current control remains effective. The loop
outputs I~ and It, are vector rotated by the unit vector
signals cos (IJ. + /j) and sin (IJ. + /j) such that I~ and 1* are
aligned to phase voltage V, and stator flux v" respecti~ely.
In normal PWM mode, I~ signals remain identical to the
respective command signals. But, as speed increases in the
constant-torque region, the current-controller enters into the
quasi-PWM mode due to increasing counter emf. With this
condition, the loop outputs become higher than the respective
command inputs while assuring matching between the com­
mand and feedback signals. As speed increases, the number of
chops in the current-controller decreases and eventually at
square-wave output voltage, the loop outputs I~ and It,
saturate to the clamped values A and B, respectively. Then,
the control of the overlay loops is completely lost and the
switch is thrown to the "SW" position, as shown. The drive
system then enters into the constant-power region with square­
wave impressed voltage and the control block diagram shown
in Fig. 4 becomes valid. It should be mentioned here that
efficiency consideration dictated that the drive system should
operate in square-wave mode in the constant power region;
otherwise, vector control, which gives better transient re­
sponse (but demands PWM operation mode), could have been
implemented. The strocture change in Fig. 4 for the PWM
control mode is shown by the two switches. The torque loop
error generates the sin /j* command through a PI compensator,
which is then converted into the torque angle command /j*
through a look-up table. The /j* angie is then added with the
rotor position angie IJ. to generate the unit vector signals cos
(IJ. + /j) and sin (IJ. + /j). These signals permit phase shift
angle (/j) cpntrol of the machine input voltage by the same
vector rotator and current-controller as described before. In
fact, the control principle is essentially the saIile as shown in
Fig. 3 with the switch in "SW" position and considering cos /j
and sin /j as the command signals. Since the magnitude of A is
very high and B = 0, the vector rotated signals can be
expressed as

i:= V:o=A cos (IJ.+/j*) (6)

it= Vto=A cos (IJ.+/)*-1200) (7)

j~= V~o=A cos (IJ.+/j*+ 120°) (8)

where ¥;'O' vto' and ~o are the respective phase voltage

318

commands with respect to the hypothetical battery center
point.

Note that the steep sides of the current commands will force
the current-controller to switch only at the edges of the half­
cycle, thus generating square voltage waves. The above
equations indicate that the applied phase voltage will be
aligned at an angie /j with the respective induced voltage. Fig.
4 indicates an alternate /j* angle control loop where the three­
phase square command current waves are fabricated directly
from the IJ. + /j* angle. This control is implemented at higher
speed (forward direction only) where small computation
sampling time is needed for the desired torque resolution.
Although flux control loop is inactive in the square-wave
mode, the loop error, as shown, helps in the transition to the
PWM mode, which is explained later.

The transition between PWM and square-wave modes is
required to be fast. and smooth under all conditions of
operation of the drive system. The transition performance is
especially demanding if it overlaps with gear shifting. An UP
or DOWN shifting request placed independently by the higher
level vehicle control computer will cause a fast speed change
in the machine and therefore the control response should be
fast compared to the rate of speed change. The transition is
designed such that if gear shifting is requested during
transition, -it will be inhibited until transition is completed
successfully. However, transition should be successful if
initiated during gear shifting. Fig. 5 shows the sequence
diagram for the transition, which also indicates the criteria for
transitions and the corresponding actions. The transition from
the PWM to square-wave mode is initiated when the current­
controller is near saturation that is indicated by the transistor
base drive pulse transistion counts in two successive funda­
mental frequency cycles. As this condition is detected, sin /j*
control is activated with the initial value updated by computa­
tion and then the switch in Fig. 3 is transferred to the "SW"
position. For successful operation, the control requires that the
polarity of A is to be sensitive to the direction of machine
rotation (+ A for forward rotation). Once the system is
transitioned to the square-wave mode, a delay time is added to
settle the transients and then the look-up table control method
is activated (in forward direction only). The criterion for the
square-wave to PWM mode transition is determined by the
flux loop error as indicated in Fig. 4. As the error decreases
and eventually becomes negative, the PWM mode is activated
by enabling the overlay currents and flux control loops. Note
that a transition may occur at constant torque due to speed
variation, at constant speed due to torque variation, or due to

battery voltage variation at the same operating point on torque­
speed plane.

III. DRIVE SYSTEM SIMULATION

Computer-aided control system design tools are playing
increasingly impbrtant roles in the design of power electronic
and drive systems. These tools are becoming simple, economi­
cal to use, and more user-friendly day by day. A complex
newly developed control system can be conveniently designed
and simulated on a computer to verify the feasibility 'of the
control laws. The control system design parameters can be

TORQUE
COMMAND

T,

RESOLVER
WITH RID

CONVERTER

9,

'-________ ~ ___ _I-TORQUE (T,) ESTIMATION

-STATOR FLUX (~ESTIMATION

- TEMPERATURE COMPENSATION
OF MAGNET FLUX (-.>

FEEDBACK SIGNAL
PROCESSING

T,
STATOR
TEMPERATURE

Fig. 4. Simplified control block diagram of the drive system in constant power region (square-wave mode).

BASE DRIVE PULSE TRANSITIONS N<12 IN 2 CYCLES

• LOAD Ii = +A FOR +w,

= -A FOR -w,

.LOADI~=O

• ENABLE OVERLAY LOOPS WITH
INITIAL I T AND 1M

• ENABLE PWM MODE

• ENABLE TABLE MODE IF w,

IS POSITIVE (ELSE STAY IN VR MODE)

Fig. 5. Sequence diagram for PWM-square wave transitions.

iterated on simulation until the static and dynamic perform­
ances become optimal_ Besides, the' harmonics and the fault
performance of the system can be studied in considerable
detaiL The simulation approach is often time-saving and
economical and has less ,risk of damage than the trial-and-error
method of breadboard design_ However, it should be noted
that simulation performance of a system can be only as good as
its model description, and therefore, this approach should be
considered for preliminary study of a system_ An approximate
model simulation with a breadboard test is usually the
desirable approach because an accurate model description of a
physical system is often very involved_

A_ Review oj the Simulation Language SIMNON

SIMNON is a popular simulation language among a number
of computer-aided design tools that have been available
recently [17], [19]. This language has been used in the present
drive system simulation, and therefore its salient features will
be briefly reviewed. SIMNON is a command driven interac­
tive program for simulation of dynamical systems that can be
described by linear/nonlinear ordinary differential and differ­
ence equations. The commands, for example, can change
parameters of the model, perform simulation, graphically plot
results on a terminal, and modify the modeL With the macro

319

facility, the user can construct a command string. ThiS
compiler is included in the program and works in parallel with
an editor. This enables the user to correct the erroneous lines
of the program immediately.

For SIMNON simulation, a large system is normally
resolved into a number of subprograms. These subprograms
are then interconnected by input and output signals through a
connecting routine. The SIMNON programs can be connected
with specially formatted FORTRAN files. SIMNON offers a
sPecial advantage for a microcomputer-controlled system.
Here, the physical process, which is normally a continuous
system, can be modeled by differential equations, whereas the
controller, which is a discrete time system, can be described
by difference equations. All the system descriptions are in
state space form. Table I shows the general structure of a
SIMNON program, for a continuous system. The structure of
the discrete time system follows a similar pattern, and is
illustrated later. The program starts with a heading that defines
the type of system and gives a filename. The body of the
program consists of three sections: declarations, initial sec­
tion, and assignments, and then terminates with an END
statement. The sequence of program statements is arbitrary
and SIMNON automatically sorts them into proper order. The
INPUT and OUTPUT statements indicate the signals that link
with other programs. The TIME declaration is necessary if a
time related statement appears in the program. The STATE
and DER statements· relate to state variables and their
derivatives, respectively, of the state space equations, and
must be declared in the same order. The SORT statement is
required only if an INITIAL statement has been included and it
acts as the terminator lor the section. The assignment
statements are FORTRAN-like and these include' parameter
and state initial values. This section may include standard
functiOll8, such as SIN(X), SQRT(X), ABS(X) , etc. When
multiple programs are interconnected by INPUT and OUT­
PUT signals, a connecting system of the following structure
should be used:

CONNECTING SYSTEM <name>
Declarations
Connect section
END

For integration of state space equations in a continuous
system, one of the following algorithms can be selected:

HAMPC Hanuning predictor corrector (default)
RK Runge-Kutta variable step size
RKFIX' Runge-Kutta fixed step size
DAS Integration routine for stiff systems

Once the SIMNON program for the entire system is written, a
typical string of commands as follows can be exercised:

> SYST X Y Z Compiles the system containing.

> EDIT X
>STOREABC

X, Y, Zflles
Changes the program
Stores the variables

>ALGOR <name> Selects the algorithm
> SIMU 0 T Simulates the system for interval

T
>ASHOW A

320

Plots the stored variable A with
automatic scaling

TABLE I
GIlNERAL STRUCTURE OF SIMNON PROGRAM

ICOIITINDOOS niTA < •. yat •• identifier»
UDO"!! <1i1lP1. variabl.>
IOO"rpO"r <.illPl. varioble>
(TID <a1 .. 1 ••• riable>
(S"rA"rB <oiap1e .. riobl.>
IDBR <01111'1. variable>

COlIPutatlon of initial "alu •• for atate variabl •• ~I.ITIAL]

Coaputation of par •• ter. '
SOR"I!

[Coaput.tion of auxiliary .ariablee)
[Computation of output variablesl
(ColIPutation of derivatiye.]
(Parameter assignments]
(Initial value a •• ign.enta)
IIRD)

B. Drive System Simulation in SIMNON

The complete drive system including the inverter and the
machine was simulated in the computer using the VAX-based
SIMNON program. The purpose of simulation is to verify the
complex control algorithms, design the controller parameters,
and study the static and dynamic performances of the system
before building the laboratory breadboard. In fact, once the
initial simulation phase was completed, the iteration of
simulation and laboratory tests. went hand-in-hand whenever
the test results were not up to expectation. It may be of interest
to mention here that the simulation also included the study of
dc link harmonics and fault performance of the inverter­
machine system, but these aspects will not be described here.

Fig. 6 shows the simulation block diagram of the drive
system where each functional block can be identified from
Figs. 2 and 4. A SIMNON program is written for each
functional block with the program name as indicated, and then
all the blocks are interconnected with the 110 signals using the
connecting system CON. The nature of the system (continuous
or discrete time) is indicated in each block. The discrete time
systems use the actuaJ sampling times that are used for
microcomputer implementation. Thus, the design of sampling
times in multitasking microcomputer control could be verified
by simulation. The PWM and square-wave control modes
were simulated independently using the common program
modules as indicated, i.e., the simulation does not incorporate
the sequence diagram of Fig. 5. SIMNON has some limita­
tions in looping and sequencing operations and therefore
further study is needed to simulate the sequencing control. In
Fig. 6, the basic simulation functions are

1) Controller transfer functions-converted to difference
equations in state space form

2) Flux and current programs-described by segmented
straight lines

3) Algebraic relations
4) Standard functions
5) Inverter-described by ideal on-ilff switches
6) Machine-described by differential equations in state

space form

Table II illustrates the simulation program for the machine
(the machine rotor has negligible damping and therefore the
rotor eqnivalent circuits are considered open). It is developed
in the format described in Table I. The comments in each

VECTOR ROTATION ,..,
TORQUE CONTROL

OVERlAY CONTROL WITH, INVERTER WITH
LOOPS PHASE SHIFT CURRENT CONTROL IPM MACHINE

FWl CONTROL
FEEDBACK SIGNAL

PROCESSING

'OK

Fig. 6. Simulation block diagram of the drive system.

TABLE II
SIMULATION PROGRAM FOR THE MACHINE

CONTINUOUS SYSTEM IPMM
uIPM MACHINE MODEL IN SYNC. REF. FRAME(INERTIA LOAD)
INPUT VQSE VOSE "MODULE INPUT SIGNALS
OUTPUT IA IB Ie TE TEM WE X3 X4 IQS! rOSl
TIME T "IN SECONDS
STATE IQS IDS W TH
OER DIQS DIDS OW DTH "DERIVATIVE OF STATES

DIQS = (WB/XQS) * (VQSE-RS*IQS-WE*XDS*IDSjWB-WE*EFFjWB)
DIDS = (WB/xes) * (VDSE+WE*XQS*IQSjWB-RS*IDS)
FDSEP = IDS*XDS liD-AXIS ARMATURE REACTION
FQSE =- IQS*XQS
TE = (3/WB)" «FDSEP+EFF) *IQS-FQSE*IDS) "IN Hm.
ow = (2jJ)'" (TE-TL) 119PEED EQUATION
DTH '" W
WE = W
THE::: MOD(TH,6.2831) uROTOR ANGLE, 0-360 DEG.
X3 = cos (THE)
X4 = SIN (THE)
IQSS = IQS*X3+IDS*X4 "STA. FRAME Q-CURRENT
lOSS = -IQS*X4+IOS*X3
lA = lQSS "PHASE A CURRENT
IB = -(IDSS*SQRT(3)+IQSS)/2
IC "" -IA-IB
TEM = TE*.738 "TORQUE IN LB. FT.
IQSl = lQS "ROTATING FRAME Q-CURRENT
10Sl = IDS
WB:710.48
XQS:O.16
RS:O.00443
XOS;0.103
EFF:57.4
J: 1.2
W: 100
TH:O
END

"B4SE FREQUENCY (RAD. / S.)
"MACHINE PARAMETERS AT WB

"MAG. FLUX AT WB (VOLTS)
" INERTIA
II INITIAL SPEED
" 'INITIAL ANGLE

statement make the program self-explanatory. The program
inputs the voltages (from the program CC-see Table III) to
the synchronously rotating frame equivalent circuits and
solves the stator currents using the following sets of equations:

Machine equations

(9)

(10)

(II)

(12)

dWe
-=6e •
dt

Vector rotation equations

where

i~s = iqs cos 8e + ids sin 8e

ids= - iqs sin 8e+ ids cos Be

(13)

(14)

(15)

(16)

(17)

(18)

Vfo is the machine induced voltage at base speed Wb (in
radians per second)

P is the number of poles

All other quantities are given in standard notation [3]. The
machine parameters are given in the lower part of the table.

Table III illustrates the simulation program for the current
controller (CC), which is described as a discrete time system
with a sampling time of 0.1 ms. In laboratory breadboard, the
hysteresis-band current -controller has been designed by using
dedicated hardware. The format of a discrete time system is
similar to that of a continuous system except that the
statements STATE, NEW, TSAMP and TS characterize the
description of difference equations. In the program, the
command currents lAC, IBC, and ICC are compared with the
feedback currents lA, IB, and IC, respectively to generate the
current loop errors as shown. The state of the inverter switches
is generated by comparing the current error with the hysteresis
band HB. The inverter output voltages in the rotating frame
are then generated by the following equations [3]:

U",= VB' NA (19)

ubs= VB . NB (20)

Vcs= VB . NC (21)

2
v~s="3 vas -"3 Vbs-"3 Vcs (22)

I I
ud.,= - -J3 Ub,+ -J3 Ue, (23)

Vqs = v~s cos Be - vds sin (Je (24)

Vds = v~s sin 8e + v:U cos De (25)

where

VB is the Battery voltage
NA, NB, NC are the new states of the inverter phase legs

and all other variables are in standard symbols. The inverter
starts with the initial state shown in the table.

The simulation program of the whole drive system was built

321

TABLEll
SIMULATION PROORAM FOR THE CURRENT CONTROLLER

DISCRETE SYSTEM CC
"HYSTERESIS-BAND CURRENT-CONTROLLED PWM INVERTER
INPUT VB lAC ISC ICC IA IS IC X3 X4
OUTPUT VQSE VDSE
TIME T "IN SECONDS
STATE ABC "STATE OF A PHASE LEG: 1 OR 0
NEW NA NE Ne "NEW STATE
TSAMP TS "SAMPLING INSTANT

IS - T+O,1E-3
lAE .. IAC-lA "CURRENT LOOP ERROR
IBE .. IBC-,IB
ICE - ICC-IC
NA ... IF IAE>H8 THEN 1 ELSE IF IAE<-HB THEN 0 ELSE A
H8 - IF IBDHB THEN 1 ELSE IF IBE<-HB mEN 0 ELSE B
Ne .. IF leDHB THEN 1 ELSE IF ICE<-HB mEN 0 ELSE C
VQSS .. VB"'(NA*2-NB-NC)/3 "STA. FRAME Q-VOLTAGE
voss .. VB*(NC·NB)/SQRT(3)
VQSE - VQSS*X3.VDSS*X4 "ROTATING FRAME Q-VOLTAGE
VDSE - VQSS*X4+VDSS*X3
HE: 30 nHYSTERESIS BAND
A: 1 ~INlTIAL STATE DEFINATION
8:1
C:O
END

up step by step starting with the inner core drive elements.
Fig. 7 shows the typical simulation command and feedback
current waves in the PWM mode. The large sampling time of
the simulation often causes the current to exceed the 20-A band
of the command wave as evident in the figure. pig. 8 shows
the typical close loop torque response in PWM mode with a 25
lb ft step command. The ripple in the estimated torque was
found to be higher than that of the shaft output.

IV. MICROCOMPUTER CONTROL

Since the advent of microcomputers in the early 1970's, the
technology has gone through a dynamic evolution in the last
one and a half decades. Microcomputers are available today
with large word-size, high computation speed, and large
functional integration, and this trend will continue in the
future. Super microcomputers, based on the same principle as
the super computer (such as CRA Y 2) where parallel
processors add to the processing speed, look very promising
and will add tremendous capability for real time control of
systems in the future. The control system under consideration
uses state-of-the-art microcomputers and their hardware and
software design features are described as follows:

A. Hardware Design
The microcomputer-based control hardware uses two Texas

Instruments TMS32010 digital signal processors (DSP) and
one Intel-8097 (generic name 8096) microcontroller. The key
features of these devices are given in Tables IV and V,
respectively. Both are 16-bit high-performance microcompu­
ters and are ideally suitable for real time control applications.
The 16 x 16-bit dedicated parallel multiplier on the DSP chip
that multiples in 200 ns permits very time-critical 110 signal
processing (including vector rotation) in the drive control
system. The TMS32010 DSP chip was selected over the
alternate DSP chips based on performance benchmarks,
military spec. availability, and excellent hardwarel software
development support. Although the DSP chips are extremely
fast and allow software implementation for high-speed control
functions, they do not provide general purpose hardware
interfaces that allow simple connections to standard 110

322

388.

288.

lee.

e.

-lee.

-288.

'.1
Fig. 7. Typical command and feedback current waves.

....

..

...

/' COMKAND TORQUE

ESTIMATED
FEEDBACK l'OllQUE

~.~----~---.... ------------.. ----------~ ~--
TIME (aee.)

Fig. 8. Close loop torque response in PWM mode.

TABLEN
KEY FEATURES OF THE DiOlTAL SIGNAL PROCESSOR TMS32010

• l60-u in~~ion c)'Ck
• 144·word on-chip data RAM
• ROMltss \'Crsioa-TMS32OIO
• l.SK-word oa-chip pIOJI'am ROM-TMSll(lMIO
• E:tlcmal memory expansion to a total of 4K WO.D

.1 {uU spud
• 16-bit inst1'UCtionldata word
• 32-bit ALU/accum lor
• 16)(16-bil multiply in l60-ns
.0 to IS·bit barrel Wher
• EiJbt input and ciJht output channels
• 16-bil bidircdioDal data bus with SO-mc •• bilt-pCr·

secoad traasfer rate '
• IntemIpt willi full c:ontnt IIVC
• Sipcd lWeI" c:ompIcmcDl tied-poiDl aritIunetk
oNMOS-,y
o SiqIe 50 V sappty
• Two venioaI available

'IMS3201.0020 ••• 20.5 MHz Clock
TMS320100ZS ••• ZS.O MHz Clock

TABLE V
KEY.PEA TURES OF THE INTEL 8096 MICROCOMPUTER

• 8K-byte on-chip ROM
• 232-byte register .pace (RAM)
• lO-bit, eight-channel AID converter

• Five 8-bit YO porl1
• FuU-duple. serial pori
• High-speed pulse YO
• Pulse-width-modulated output
• Eight interrupt sources
• Four 16-bit software timers and two 16-bit hardware timers
• Watchdog timer
• Hardware siJlled and unsigned multiply/divide

RS-2)2

Fig. 9. Simplified block diagram of controller hardware.

devices. Furthermore, implementation of functions that do not
require high-speed processing becomes cumbersome because
of small stack size and limited program and data memory
spaces. The Intel-8097 microcontroller, which incorporates
the bulk of control functions, overcomes the above problems.
Besides an expansive instruction set, it has a high level of
functional integration.

Fig. 9 shows the simplified controller hardware architec­
ture. The two signal processors have the same core hardware
design and each is tailored to its specific tasks via the
respective I/O devices. The input signal processor (ISP) is
interfaced to A/D converters for acquiring the machine
current signals, whereas the output signal processor (OSP) has
D/ A converters to supply reference current waves to the
current-controller. The resolver-to-digital (RID) converter
provides 100bit (0.352° resolution) shaft angle (8.) informa­
tion up to the maximum tracking rate of 20 400 rpm. All
interprocessor communications are accomplished with 160bit
wide l6-location FIFO (first-in-first-out) registers. A key goal

in the DSP-hased I/O hardware design is to use the full
potential of the processors by minimi2ing the software
overhead required to perform 110.

The Intel-8097 consists of a powerful CPU tightly coupled
with program and data memory along with several 110 features
all integrated into a single chip. The 8097 chip incorporates a
lO-bit unipolar (0-5 V) AID converter and an 8~hannel
analog multiplexer on the same chip. This converter is used
for acquisition of signals required for drive system sequencing
and in-line monitoring functions.

B. Software Design

The distribution of control functions among the three
microcomputers and their processing rates were determined by
system analysis. The processing rate, i.e., the sampling time
interval of each task, was verified by SIMNON simulation.
Obviously, the control functions that require high sampling
rates (5-30 KHz) are executed by the signal processors
whereas the less time~ritical functions are executed in the

323

RESIT

1,..,
30 }IS

TASk
IIAI1DLER

* PHASE SHIrrING (PWK) * 8096 FIFO
~ COS(".~). SIN(,,"")SYNTHESIS (SW) COHKUNICATIOH

* OVERLAY CURUNT IDOPS (PWK)

• POItVARD VICTOR ROTATIOR
• CUIIIUIIIT CLAIIP
* CUIRBRT COIIIWQ)S GBlfERATION
* COIDIDN'ICATION WITH ISP

* CUIUlERT CO-ORD. SUIFla (PUll)
* DIAGNOSTICS AND TEST HODES

Fig. 10. Simplified structure of TMS32010 software (output DSP).

8097 microcomputer. The high throughput capability of the
DSP's is utilized for performing transformations from rotating
to stationary reference frame and vice-versa, regulation of the
active and reactive currents in the PWM mode, and generation
of the transistor switching commands in the. square-wave
mode. The table look-up capability of the TMS320 permits
easy synthesis of sin lie and COS lie functions from the input lie
signal. The ability to make decisions in software to reconfi­
gure the control schemes in real time provides a great
advantage over a dedicated hardware approach. Additionally,
diagnostic functions are incorporated to ease the development
process.

Software for all the three microcomputers is written in
assembly language (ASM-96, XASM) using scaled integer
arithmetic. An Intel Series IV development system and an Intel
SBE-96 board were used for the development of the 8096
software system. The software for the TMS32010 signal
processing systems was developed with the V AX-based cross­
assembler and bench tested with the TI TMS32010 simulator.
Real time testing of the DSP software was performed on the TI
EVM-32010 evaluation module boards.

A simplified structure chart of the output DSP is shown in
Fig. 10 that also indicates the key functions under each task
and the task processing intervals. The interrupt input to the
signal processor is connected to a 30-I's pulse train that serves
to set the basic sampling rate (33 KHz). Upon receipt of the
interrupt, the return address of the interrupted program is
saved on the processor stack, interrupts are disabled, and
control is passed to the task handler. Since the TMS32010
stack is only four words deep, another logic stack in data RAM
is utilized to save the status of key registers. The TASK 1 (30
I's) functions are executed and a counter to detect if TASK 3 is
ready is decremented. The state of the BIO input is polled to
determine if the 8096 processor is requesting an interaction. If
so the interrupt is enabled and TASK 2 is started. TASK 2
either loads (lSP) or unloads (OSP) the FIFO registers that are
interfaced to the 8096 computer system and serves to
synchfonize the inter-processor communications. If no inter-

324

action is requested or when TASK 2 is complete, the TASK 3
counter is tested to determine if TASK 3 should be executed.
Finally, whether or not TASK 3 is run, the status of the
registers is restored and execution of the interrupted program
is resumed. Task priorities are established by the sequence in
which the task handler schedules them (TASK 1 highest -->
TASK 3 lowest). A fourth lowest priority task called BACK­
GROUND task that never finishes (loops) serves to occupy the
CPU when all the essential tasks are completed.

The ISP software structure is similar to Fig. 10 and both
signal processors share the same operating system design,
except that the OSP is structured differently depending on the
mode of control. In other words, the ISP executes the same set
of software routines from power-up to power-down, whereas
the OSP software is configured by the 8096 to allow operation
in and transitions between the PWM and square-wave modes
of control. The two DSP's also share a common diagnostic 1/0
routine and data RAM initialization scheme.

The 8096 computer system is primarily responsible for
estimating and regulating the torque and flux of the IPM
machine. Inputs to the estimators are obtained from the input
signal proCessor and outputs from the regulators are trans­
formed into three-phase current references by the output signal
processor. Additional 8096 microcomputer system functions
include: vehicle control microcomputer interface, start-upl
shut-down sequencing, in-line monitoring functions, PWM <
---> square-wave mode transitions, and diagnostics.

An operating system similar to the one used for the DSP
systems serves to schedule the tasks at fixed sampiing rates.
The 8096 software timer interrupt is programmed to generate
the basic 2-ms clock ticks and software counters are main­
tained in RAM to generate the additional sampling intervals.
The 8096 architecture differs from most c\lmputers in that
there are no general purpose registers; any internal RAM
location can serve as the operand in instructions. In order to
maintain compatibility with the PUM-% language and
provide a more conventional environment, four 16-bit RAM
locations are defined as working registers. The statuses of

: !iro-~::.== In
• Component Flux

Est.
• Torque Loop • Signal Processor Out • Fault Checks

• Vehicle Control. • Flux Temp.
• Flux Loop • D/A Cony. Out • Drl ... Sequencins
• Current Program _ Vehicle Controls Out

Input Correction • Flux Program·
• Flux Calculation
• Torque CalculatJon

(E::::) (1I!1~;:)
• Report Routine • Square Root

• Arc Sine

Fig. 11. Simplified stnu:ture of Intel-8096 software.

these registers are preserved and restored every time it task is
perfonned. Once again task busy flags are used to prevent
stack overrun.

Fig. 11 shows the simplified structure chart of 8097
software, which also indicates the functions uoder various
tasks and task sampling intervals. Every 2 ms a new set of
inputs is obtained (input fullctions) and used for the
computation of the machine fluxes and torque. These estima­
tions are regulated to match the commanded values and the
data are output (output functions). Sequencing logic serves to
select the appropriate control algorithm for either the PWM or
square-wave mode and open loop modes are incorporated for
debugging. The output routines, feedback calculations, and
outpUt fullctions remain the same in all modes of control. The
software also permits various feedback loop configurations so
that the system can be debugged systematically starting with
the core drive elements. The configurations can be summa­
rized as follows:

Mode 0 Open all the loops with a = 0
Mode 1 Open all the loops and release a
Mode 2 Close ovetlay current loops and initialize torque

loop integrator
Mode 3 Close torque loop and use current program
Mode 4 Close torque loop and get loop gains from AID

channels
Mode 5 Initialize flux loop integrator
Mode 6 Close all PWM loops
Mode 7 Open vector rotator square-wave mode loop
Mode 8 Open table look-up square-wave mode loop
Mode 9 Close vectOr rotator square-wave mode
Mode 10 Close table look-up square-wave mode loop
Mode 11 Close all PWM modes and evaluate transition to

square-wave
Mode 12 PWM -- > square-wave mode transition
Mode 13 Square-wave --> PWM transition

V. Dms SYSTEM TESTS

The complete drive system with the microcomputer control­
ler was thoroughly tested in laboratory on a dynamometer and
performances were found to be excellent. The test also showed
genetal correlation with the simulation results. The 70-hp 4-
pole star-connected IPM machine under test was custom
designed using an NeFeB (Crumax 30A) magnet in segments.
The key machine parameters are included in the simulation
program shown in Table n. The machine luis a base or corner­
point speed of 3394 rpm, crossover speed (the speed at which
the machine countetemf balances the fundamental frequency
square-wave voltage) of 5044 rpm, and a maximum speed of
13750 rpm. the battery voltage varied from 135 to 265 V
corresponding to worst case motoring lind regeneration,
respectively. The inverter consists of three phase-leg modules
wbete each Darlington transistor was rated for 500 A, 500 V.
A Darlington transistor again consists of three component
matched transistors in parallel of200-A rating. The dynamom­
eter used for the tests could be operated in constant (but
programmable) speed or inettia mode. The test set-up includes
a computer-based data acquisition and analysis system [18],
where steady state waveforms can be captured and drive
performances, such as efficiencies, power factor, various
losses, etc., can be calculated and displayed on a video
terminal.

Once the drive system was simulated successfully and the
controller hardware and software were debugged, the syatem
was ready for extensive laboratory tests on the dynamometer.
A careful test procedure was formulated so that the task
becomes smooth and time efficient. The microcomputet­
controllet permitted various test modes where, starting with
the inlier core drive system, the outer loops could be added in
ateps and thoroughly tested. Initially, all the tests were
performed on the dynamometet in COIIstant speed mode, then

325

i.

Fig. 12. Waves at PWM forward motoring mode (Te = 25 Ib ft, 1000
rpm). Top: Command and feedback currents (50 Aid). Bottom: Rotor
position (ISO' Aid).

the inertia mode was exercised, and finally the transitions as
shown in Fig. 5 were tested.

Fig. 12 shows the typical command and feedback phase
current waves (top) in the PWM mode when the dynamometer
was operating at constant speed. The rotor position (Be)
obtained from the RID converter is also shown at the bottom.
The Be = 0 corresponds to alignment of the magnet north pole
with the stator phase a-axis. The figure indicates that the
current phasor leads the magnet flux by an obtuse angle. Fig.
13 shows the typical phase voltage (with respect to the battery
center-tap) and phase current waves in square-wave mode.
The current slightly leads the voltage wave, and the inverter
switching at each edge of the square-wave is evident. As the
speed increases at constant torque, the phase lead increases
because of increasing machine counter emf. Fig. 14 shows the
four-quadrant operation of the drive system with the dyna­
momete~ in inertia mode. The system starts at zero speed in
the forward direction with a constant motoring torque as
shown. As the speed increases beyond a critical value,
transition occurs smoothly from PWM to square-wave mode.
As the torque command is reversed, the drive system enters
into regeneration with immediate transition to PWM mode
because of increase of the battery voltage. The system then
goes through zero speed and eventually speed builds up in the
reverse direction. The performance in the reverse direction is
essentially symmetrical to that in the forward direction.

VI. CONCLUSION

An advanced digital control of a drive system that uses an
interior magnet synchronous machine with an Neodymium­
Iron-Boron permanent magnet has been described. The drive
system operated with full performance in the constant-torque
region as well as in the field-weakening constant-power
region. The drive system has been designed with close loop
torque control for electric vehicle application, but the control
can be easily extended for other industrial applications also.

The drive system has been extensively simulated using the
VAX-based simulation language SIMNON. The salient fea­
tures of SIMNON have been revieWed, and then the drive
simulation has beCn described. A simulation study of the
compl~" drive system was found to be extremely valuable to

326

Fig. 13. Phase voltage current waves at square wave motoring

T' .
21b. H./d

T.
21b. flJd

."

200 RPMld

mode (Te = 25 Ib ft, SOO4 rpm, SO Aid, V = 166 V).

Fig. 14. Four-quadrant operation of the drive system.

verify feasibility of the control laws and to design the
controller parameters.

The drive system uses a distributed. microcomputer-based
control system where state-of-the-art Intel-8096 microcontrol­
ler and Texas Instruments TMS32010 digital signal processors
are used. The 8096 is essentially responsible for feedback
control and signals estimation functions, whereas 32010
processors perform the time-critical 1/0 signal processing
functions. The hardware and software design features of the
controller have been discussed.

A 70-hp inverter-fed drive system has been extensively
tested in the laboratory with the help of a dynamometer, and
experimental results show good correlation with the simulation
results. The test results, including four-quadrant operation on a
dynamometer that was programmed in the inertia mode, have
heen discussed. The performance in transition between the
PWM and square-wave modes with and without gear shifting
was found to be excellent. The results of this study will help to
promote IPM synchronous machine drives for various indus­
trial applications in the future.

ACKNOWLEDGMENT

The authors are grateful to R. D. King for his help during
the experimentation phase of the project.

REFERENCIlS

[I] B. K. Bose, "A higb performance inverter-fed drive system of an

interior permanent magnet synchronous machine," in Coni. Rec.
IEBEflAS Annu. Meeting, pp. 269-276, 1987.

[2] T. Nakano, H. Ohsawa, and K. Endoh, "A high perfonnance
cycloconverter fed synchronous machine drive system," in Can/. Rec.
lEEEflAS Int. Sem. Power Converter Con/., pp. 334-341, 1982.

[3] B. K. Bose, Power Electronics and AC Drives. Prentice-Hall,
Englewood Cliffs, N.J. 1986.

[4] B. K. Bose, Ed., Microcomputer Control of Power Electronics and
Drives. New York: IEEE Press, 1987.

[5] K. Hasse, "Control of cycloconverters for feeding asynchronous
machines," in Proc. [FAC Symp. Control Power Electronics and
Elec. Drives, pp. 537-545, 1977.

[6] K. J. Astrom, A SIMNON Tutorial, Dept. Automatic Control, Lund
Institute of Technology, 1982.

[7J K. J. Astrom and B. Wittenmark, Computer Controlled Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[8] H. A. Spang, "The federated computer-aided control design system,"
Proc. IEEE, vol. 72, pp. 1724-1731, Dec. 1984.

[9] H. E1mqvist, "SIMNON: an interactive simultation program for
nonlinear systems," Proc. Simulation, 1977.

[\0] D. K. Frederick, SIMNON Reference Manual, General Electric Co.,

Schenectady, NY, 1982.
[II] B. K. Bose, "Sliding mode control of induction motors," in IEEEf

lAS Annu. Meeting Corif'. Rec., pp. 479-486, 1985.
[12] P. Katz, Digital Control Using Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1981.
[13] Intel Micracontroller Handbook, 1984.
[14] TMS320JO User's GUide, Texas Instruments, 1983.
[15] B. K. Bose, "Technology trends in microcomputer control of electrical

machines," IEEE Trans. Ind. Electron., vol. 35, pp. 160-ln, Feb.
1988.

[16] K. H. Bayer, H. Waldmann, and M. Weizbelzahl, "Field-oriented
close-loop control of a synchronous machine with the new transvector
control system," Siemens Review, vol. 39, pp. 220-223, 1972.

[17] D. K. Frederick, "Computer packages for the simulation and design of
control systems," Arab School on Science and Technology. 4th
Summer Session, Blouden, Syria, Sept. 1981.

[18] A. B. Plunkett, G. B. Kiiman, and M. J. Boyle, "Digital techniques in
the evaluation of high-efficiency induction motors for inverter drives,"
IEEE Trans. Ind. Appl., vol. IA-21, pp. 456-463, Mar.lApr. 1985.

[19] D. K. Frederick and C. J. Herget, "Tbe extended list of control
software," ELCS, U.S. Edition, no. 2, June 1986.

327

328

DSP-BASED ADAPTIVE CONTROL OF A BRUSHLESS MOTOR

Nobuyuki Matsui and Hironori Ohashi

Department of Electrical and Computer Engineering
Nagoya Institute of Technology

Gokiso, Showa, Nagoya 466, JAPAN.

ABSTRACT

The paper presents the software control
of the brushless DC motor with the parameter
identification. Not only speed and current
controls but a real time identification of the
motor parameter can be implemented by software
of the digital signal processor, TMS320C25.

The unique current control is performed
according to an instantaneous voltage equation
of the d-q model of the motor. In the system,
the control accuracy depends on the motor
parameters so the parameter identification in
regard to armature inductance and emf constant
is necessary. The identification algorithm
has been verified by both simulations and
experiments. The control program, including an
parameter identification is of 2.SK words and
the processing time is 99 ~s.

INTRODUCTION

The inverter drive of AC motors has many
advantages over the conventional DC motors and
high performance drives have increased in
popularity as AC servo motors. The required
control characteristics are becoming higher so
the introduction of modern control theories
and high performance processors is positively
tried to meet the requirements. Especially,
by using the high performance processor, it is
possible not only to implement the feedback or
feedforward control but to realize the various
compensating capabilities.

It is well known that the precise current
Control is the key technology to realize the
high performance AC drives such as brushless
:notors and vector controlled induction motors.
Consequently, the problem of obtaining precise
Current control has received much attention.
!t is requested that the motor current is
always coincident with the sinusoidal current
command under the steady state and transient
::onditions. In the existing current control
,lUng the voltage-fed inverter, the current
.lYsteresis controlled PWM and the sub-harmonic

r--::k;base

_1fT 4i
i * i

+ -

(a) (b)
Fig.1. Conventional current controls.
(a)current hysteresis controlled PWM,
(b) sub-harmonic PWM.

PWM shown in Fig.l have been widely used(~)(3) In
the current hysteresis controlled PWM, the
sinusoidal current is maintained within the
hysteresis band but a voltage waveform is not
necessarily desirable and the switching fre­
quency of the inverter changes according to
the operating condition of the motor. On the
other hand, the sub-harmonic PWM has no
problem associated with the voltage waveform
and the switching frequency but the steady
state phase lag is the problem to the high
frequency operation.

In this paper, a new current control for
brushless motors using the digital signal
processor, TMS320C25, is presented. In the
system, DSP performs not only the current
control but the necessary control processing
such as the rotor position sensing, the speed
calculation and the calculation of the torque
command through the speed control loop. The
current control is performed by selecting PWM
patterns for the inverter according to the on
line calculation of the ideal voltage. The
calculation is based on the d-q axis voltage
equation of the brushless motor. Two PWM
strategies are explained and compared. This
control leads to good coincidence of the motor
current with the current command under steady
state and transient conditions.

As the control presented in this paper is
based on the voltage equation of the motor,
the control error depends on the parameters
used in the controller. The dependency of the
current control error on the parameters is
investigated and the identification using the
reference model is explained. The simulations
and experiments show the effectiveness of the
proposed identification.

CURRENT CONTROL ALGORITHM(I)

Fig.2 shows the well known equivalent d-q
axis model of the brushless motor. The voltage
equation is obtained as follows;

v = (R + pL) X + E --------------(1)

In equation (1), w, n: and IE
respectively, the applied voltage,
the induced emf vectors which are
the following relations.

represent,
cur,rent and
defined by

vd, vq Jr, J[[id, iq { ----(2)

E e [L iq, Ke - L id JT ---------- (3)

In equation (1), Rand L are the armature
resistance and inductance and Ke(=Mif) is the
emf constant, respectively. These parameters

© 1988 IEEE. Reprinted, with pelmission. from COIl/i'renee R('('onl (!lth('
I 988 IEEE Illdusf1:v Applimtiolls Society. 329

i d

R. L

--.·iq v.

Fig.2. Equivalent d-q model of brush less motor

are reduced to the equivalent d-q axis model.
To perform the software control, the differ­
ence equation corresponding to equation (1) is
necessary. The instantaneous applied voltage,
current and induced emf are approximated to
the corresponding average values during the
sampling interval, that is;

w = W(n), 11: = K(n), IE = iE(n) -----(4)

and the derivative term in equation (I) is
approximated to the term given below:

pK = [K(n+l) - K(n) J I T -------(5)

where T is the sampling period. Using these
approximations, the difference equations below
are obtained.

Wen) = R '[en) + (LIT) [][(n+l) - K(n) J

+ iE(n) -------------(6)

E(n) i(n) [L Iq(n), Ke - L Id(n) f

-------------(7)

In Fig.2, it is noted that the torque of
the brushless motor is proportional to the q­
axis current and the d-axis current does not
contribute to the production of torque. There­
fore, the d-axis current is controlled to be
zero. Now, the ideal voltage V*(n) is defined.
This voltage is applied between the n-th and
n+l-th samplings to makes the motor current
][(n) equal to the current command 1I:*(n+l) at
the next sampling. Replacing J[(n+l) in
equation (6) with the current command][*(n+l),
the equation for the ideal voltage is obtained
below.

W*(n) = R '[en) + (LIT) [1I:*(n+l) - J[(n) J

+ E(n) ----------------------(8)
men) Sen) [L iq(n), Ke f ---------(9)

The current at the n-th sampling in
equation (8) can be predicted by voltage and
current prior to the n-th sampling using equa­
tions (6) and (7). Inserting this prediction
into equations (8) and (9), together with the
approximate relations below;

330

R E(n) ~ R E(n-l) ~ R][(n-l) -------(10)

(1/2) [E(n) + E(n-l) J ~ IE(n) ----(11)

(b)
Fig.3. Two PWM strategies. (a)vector

selection PWM, (b)average voltage PWM.

the ideal applied voltage is, therefore, given
by the following equations. .

W*(n) = 2 R K(n-l) - Wen-I) + 2 lE(n)

+ (LIT) [][*(n+l) -][(n-l) J (12)

lE(n) ,; 9(n-1) L iq(n-l) + T [vq(n-l)

- Ke 9(n-1) - R iq(n-I) J, Ke JT --(13)

These equations show that the ideal applied
voltage between the n-th and n+l-th samplings
can be calculated ,using the voltage and
current prior to the n-th sampling. This means
that the ideal applied voltage can be obtained
by on line calculations before the n-th sam­
pling and, therefore, it can be applied by the
PWM control of the inverter without sampling
delay.

PWM STRATEGY

The ideal voltage given by equations (12)
and (13) is the space vector in the d-q model.
Therefore, it should be transformed to the
three phase voltage to drive the inverter. The
transformed voltage 'vector W3*(n) and the
eight possible voltage vectors of the three
phase voltage-fed inverter are shown in Fig.3.
rt is noted that there are six vdltage vectors
with amplitude of (2/3)Vdc and two (called as
zero vectors, hereafter.) without amplitude.
Two PWM methods, vector selection PWM and
average voltage PWM, are proposed in order to
realize the V3*(n) with the inverter.

(l)Vector Selection PWM In the vector
selection PWM, one of the eight vectors is
selected during the sampling period. For
selecting the vectors, the space is divided
into eight regions [OJ-[6J as shown in Fig. 3
(a) and the vector may be selected depending
on the position of V3*(n); for example, V(1102)J

may be chosen when W3*(n) exists in region [.
and zero vector may be chosen for W3*(n) In
region [OJ. As a result, the selected voltagr
vector differs from the calculated ldea
voltage vector both in amplitude and phase.

(2lAverage voltage PWM In this PWM method,
~) is synthesized by two adjacent vectors

nd zero vectors}2) For example, V3*(n) in Fig.
~(bl can be synthesized by the combination of
V(lOO), V{llO) and zero vector as shown in the
figure. The time interval for each vector is
aasi1y calculated and is controlled by the
interrupt from the internal timer of the DSP.
the method is similar to the conventional sub­
harmonic PWM but the switching frequency would
be reduced to 2/3 when the ideal voltage is
~ithin a hexagon shown in Fig.3(b).

CURRENT CONTROL CHARACTERISTICS

Here, the experimental comparison of two
PWM strategies are briefly explained .. Fig.4
shoWS the steady state voltage and current
waveforms for the 1.5 kW, 4-pole brushless
motor under the rated current load. Fig.4(a)
was obtained when the inverter was operated by
the vector selection PWM, where the sampling
ceriod of the current control loop was 100 pSe
On the other hand, the waveforms in (b) were
obtained for the average voltage PWM, where
the sampling period was 100 MSe It is apparent
from the figures that the current waveform for
the average voltage PWM is better than that of

(a I
Vector selection
PWM.

(bl
Average vol tage
PWM.

Fig.4.

the vector selection PWMe However, it may be
concluded from the experiments that the vector
selection PWM can reduce the acoustic noise
compared with the average voltage PWM. Fig.5
Shows the comparisons of the harmonic analysis
between the two PWM methods under 25 Hz rated
current load when the sampling period is 100

Fig.5. Harmonic current.

2000
Motor speed [rpm]

Fige6. Switching frequency characteristics.

pSe Compared with the vector selection PWM,
the average voltage PWM has a reduced harmonic
contents below 5 KHz, thus improving the
current waveformse

In Fig.6 are shown the characteristics of
the switching frequency versus motor speede As
apparent from the figure, switching frequency
of the vector selection PWM varies according
to the motor speed and has the maximum near
1000 rpm. ,When the operating frequency is low
in the lower speed range, the required applied
voltage is also low and the zero vectors are
frequently selected in sequence. On the other
hand, the required voltage is high in the high
speed range and the,voltage vectors with an
amplitude are frequently selected in sequence
to produce the applied voltage. It is noted
that no switching occurs when the same vector
is selected i~ succession at every sampling.
However, in the intermediate speed range, the
zero vectors and the voltage vectors with an
amplitude are often selected alternately to
produce an intermediate applied voltage near
1000 rpm. This is the reason why the switching
frequency has the maximum near 1000 rpm.
However, the switching frequency for the
average voltage PWM are substantially constant
and nearly equal to (2/31*(1/2TI, where T is a
sampling periode

Fig.7 shows the step response of the q­
axis current for two types of PWM methods when
the stepwise change in the current command is
applied. These figures show that there is no
appreciable difference between the two PWM
methods in regard to the transient responsee
For a small change in the current command, the
motor current settles in one sampling because
the output voltage of the inverter does not
saturates. However, for the large change in
the current command, for example, from 2 A to
10 A as shown in the figure, the current can
not settle in one sampling and 3 - 4 samplings
(this corresponds to 300-400 ps) are required
since the inverter voltage saturates.

step response current.

331

the output voltage of the inverter saturates,
the settling time is as short as JOO or 400
ps, thus realizing the high speed transient
response of the motor current.

EFFECTS OF PARAMETER VARIATION

As stated, the proposed current control
is implemented by calculating the ideal
voltage based on equation (12) and the control
error would increase when the parameters used
in calculation differ from ,those of the motor.
The experiments were done to investigate the
variation of the motor parameters due to the
maqnetic saturation and temperature rise. The
results showed. that there was no appreciable
variation in armature inductance even when the
motor current was increased up to five times
the rated current, whereas the armature
resistance increased by about 50 percent. On
the other hand, the emf constant increased by
about 16 percent due to the temperature rise.

The effect of parameter variations on the
accuracy of current control characteristics
has been investigated by the simulation. In
simulating the system, the inverter has been
treated to perform the PWM strategy explained
in the preceding chapter but the dead time has
not been considered. The results obtained for
two kinds of PWMs have shown no appreciable
difference and, therefore, the results for the
average voltage PWM with sampling time of 100
ps are shown hereafter.

Steady State Characteristics Fig.8 shows the
current control error for the same current
command when parameters R, Land Ke of the
motor varies while parameters used in the DSP­
based controller are constant. Fig.S (a) gives
the result for low speed operation and (b) for
the rated speed. The variation coefficient k

.0

(a)

so
;;

(b) -50

O.S

O-L

O-x.
l>-R

N_ 500[rpm)

iq*·ll[A)

1.0 1.5 2.0

Variation coefficient X

O-L N.2000Irpal)
iq*.llIA)

1.0 1.S 2.0

Vazoiation coefficient X
Fig.8. Control error for parameter variation.

(a)sOO rpm, (b)2000 rpm.

332

is defined for each parameter as follows;

R/L/Ke of motor
k

R/L/Ke of controller
------- (14 1

and th~ control error is defined as follows;

Iqx - Iqo
e ----------------(151

Iqo

where Iqo means the average q-axis current
when the motor parameters are coincident witb
the controller parameters whereas Iqx is the
average q-axis current when there is the para_
meter disagreement in motor and controller
The conclusion is summarized as follows. •

(a)Armature Res'istance: The control error
is not hardly affected by the variation of the
armature resistance, regardless of the motor
speed.

(b)Armature Inductance: The effect of the
armature inductance variation on the control
error is somewhat different depending on the
mot~r speed, but not serious in the range of
k larger than 0.5, as shown in the figure.
Below k=O.s, the fluctuation of the motor
current increases because the inductance of
the motor is small compared with that used in
the controller, so approximations psed in the
development of the current control algoritro.
are assumed to be ineffective.

(c)EMF Constant(=torque constant): The
effect of the variation of the emf constant is
also somewhat different depending on the motor
speed and the error increases with an increase
of the motor speed. Due to the limitation of
the inverter voltage, the error increases with
the variation coefficient in the range of k
larger than 1.5 when the motor speed is high.

Transient Characteristics

1500 .,
· · ."
!i · 1000
0 c

= (a)
..
.3 .. 500 • ..

0.5

., SO

• ! 40

~ 30
c .

(b)
e 20
.3 ..
: 10

0.5

The q-axis current

O-L
O-Ie
l>-R

1.0

N.2000 I rpm)
iq*.O-.131Al

1.5 2.0

Variation coefficient It

O-L
0-[0
l>-l

1.0

N_ 4001rpmJ
1q*.O.-...3(Al

1.5 2.0

Vari.ation coefficient It

Fig.9. Performance index. (a)saturated volta~e
command, (b)un-saturated voltage cornman •

's used to estimate the effects of parameter
~ariation on the transient characteristics.
The performance index given by equation (16)
is introduced for a stepwise change of the
current command;

J = [[iq*(1) - lq(i)]' ---------(16)

For calculating equation (16), summation was
made from i=O to i=99, because the oscillatory
response might be obtained in some cases where
there were the disagreements in parameters but,
even in that case, an oscillation would settle
within 100 samplings. Fig.9 shows the perfor­
mance index, where in (a) the inverter voltage
is saturated for the large change of current
command and in (b) the change of the current
command is small so that the inverter voltage
does not saturate. It is concluded from these
estimations that the yariation of armature
resistance has no appreciable effect on the
transient characteristics whereas variations
of armature inductance and emf constant have
significant effects on the transient charac­
teristics.

IDENTIFICATION ALGORITHM

Parameter identification in regard to the
armature
performed
brushless
model is
equations
and;

inductance and the emf constant is
by using the reference model of the
motor. The mathematical reference

obtained by replacing n with n-2 in
(6) and (7) and solving for X(n-l)

lI(n-l) = (T/L)[V(n-2) - E(n-2) - RX(n-2)]

+ X(n-2) -----------------(17)

lE(n-2) = 9(n-2) [
L iq(n-2)

] -- (18)
Ke - L id(n-2)

where approximate relation ~(n-2) ~ E(n-2) was
used. Taking X(n-1) in equation above as the
reference output ~(n-1) and replacing Land Ke
with corresponding parameters to be identified
~(n-2) and Ke(n-2), the reference model is
finally given by the following relation.

E(n-1) = [T!L(n-2) J[V(n-2) - R 1I(n-2)]

-iq(n-2)
+ 9(n-2) T]

id(n-2) - Ke(n-2)/L(n-2)

+][(n-2) -----------------------(19)

Then, the difference dX(n-1) is obtained
as follows by using equations (17) and (19).

dlI(n-1)

x

x

Ke/L - Ke(n-2)!L(n-2)

9(n-2) T + T [1!L(n-2) - 1/L]

[V(n-2) - R 1I(n-2)] -----(20)

Equation (20) means that ~][(n-1) would be
Zero when the identified parameters should be
coincident with the motor parameters. When the
parameters should not be identified correctly,
dlI(n-1) • 0 would result.

According to the previous explanation, the
parameters could be identified by processing
the current error jx given by equation (20)
through the PI controller and by taking the d­
axis component as L(n-l) and q-axis component
as ~(n-1). Here, the d-axis component of
equation (20) is;

Llid(n-1) = Ad(n-2) [1/L(n-2) -1/L J

-----------------(21)

Ad(n-2) T [Vd(n-2) - R id(n-2)]

-----------------(22)

It is apparent from equations above that
L would converge to the motor inductance L
when the terms [1!E(n-2) - 1/L] and Llid(n-1)
would have the same sign. For the emf
constant, on the other hand, the relation for
identification would be obtained from the q­
axis component of equation (20) under the
assumption that the armature inductance should
have been identified as L = ~(n-1) using the
equations (21) and (22) and is given below.

./liqtn-1) Aq(n~2) [T/L(n-1)]

x [Ke - Ke(n-2)] ----(23)

Aq(n-~) = 9(n-2) ------------------(24)

Ke would converge when [Ke - Ke(n-2)] and
Lliq(n-1) would have the same sign. From the
discussion above, the identification algorithm
is, therefore, given as in equation (25).

where

L(n-1)
] = IKp Sgn[.QI.(n-2)] dll(n-1)

Ke(n-1)
n-I

+ IKi [[Sgn[./A(k-1)] ,1[(k) ----(25) ,

S,gn(x)
+ 1

o
- 1

x :> 0
x = 0
x <: 0

-------(26)

.QI.(k,l = [
Ad(k), 0

0, Aq(k)
---------------(27)

and IKp and IKi are the gain matrix of the
proportional integral type compensator and are
given as follows.

Kpd, 0 Kid, 0
IKp =], IKi] -- (28)

0, Kpq 0, Kiq

Fig.10. Adaptive current control system.

333

Fig.10 shows the block diagram of the
adaptive current control system including the
parameter identification. In the figure, the
current control algorithm, the reference model
and the identification algOrithm correspond,
respectively, to equations (12) and (13),
equation (19) and equations (25) through (28).
To verify the identification algorithm, simu­
lations were made. The results of simulations
have proved that the current control error can
be greatly reduced by adding the ability of
parameters identification to the precediqg
current control algorithm.

EXPERIMENTAL RESULTS

Fig.11 is the control system configuration
of the prototype of the 1.5 kW brushless motor
with 10X resolver. The configuration of the
controller is quite simple because TMS320C25
can perform all necessary controls such as the
position and speed calculations, identifi­
cation and current control by software. The
external electronics are necessary only for
the resolver, the current detection and the

1 OX resolver

Speed command
Fig.11. Control system configuration.

base amplifier. The position information is
received from the 10X resolver every 800 ps
and is interpolated every 100 ~s by using the
speed information to obtain the intermediate
position information for the current control.
The 16-bit speed information is obtained using
the difference of position divided by sampling
period. The motor current is detected every
100 ~s by a Hall-CT and transformed through a
12-bit AID converter. The control program was
of 2.5K words and the required processing time

Identification

't'[~6 stTrts

40

20

-20

-40

-60

Re[t1
60

40

20

-20

-40

-60

1.0

0.5 1.0

Fig.12. Convergence characteristics.

334

1.5

t(s1

1.5
t[sJ

D-without identification
(true parameters)

.6.-without identification
(false parameters)

1000 2000

Motor speed r rpm I

Fig.13. Current control characteristics.

was as short as 99 ps.

Fig.12 is the convergence characteristics
of the parameters identification where in (a)
the armature inductance and emf constant in
the DSP-based controller were set 1.5 times as
large as those of the motor, while in (b) the
parameters used in the controller were set 0.5
times ~the motor parameters.

The current control characteristics with
and. without identification are shown in Fig.13.
In the figure, 0 corresponds to the case where
the parameters in a controller are coincident
with those of the motor itself, ~ corresponds
to the case where inductance of the controller
is 70 percent of that of the motor and the emf
constant is 30 percent of that of the motor.

CONCLUSIONS

In this paper, the new current control
scheme for brushless DC motors using the high
performance digital signal processors has been

. described. The system has a feature that the
motor parameters used in the controller to
determine the voltage command are identified
at every sampling and, therefore, the current
control can be always attained with high
accuracy, regardless of the operating
conditions such as the temperature rise. The
algorithm has been verified by simulations and
experiments.

REFERENCES

(1)T. Takeshita, K. Kameda, H. Ohashi and N.
Matsui,"Digital Signal Processor-Based High"
Speed Current Control of Brushless Motor
Trans. Inst. Elect. Eng. Japan, vol-106B, No.
9, Sep. 1986.

(2)A. J. Pollmann, "Software Pulsewidth Modu­
lation for ~p Control of AC Drives" Trans.
on Ind. App. vol-IA-22, No.4, July/August,
1986.

(3)P.Enjeti, P. D. Ziogas, J. F. Lindsay, and
M. H. Rashid. " A New Current Control scheme
for AC Motor Drives" I.E.E.E. 1987 IAS Annual
Meeting Conf. Record, pp202-208.

HIGH PRECISION TORQUE CONTROL OF RELUCTANCE MOTORS

Nobuyuki Matsui, Norihiko Akao and Tomoo Wakino

Department of Electrical and Computer Engineering
Nagoya Institute of Technology

Gokiso, Showa, Nagoya 466, Japan.

ABSTRACT

This paper presents the high precision
torque control of the reluctance motor for
servo applications. The prototype is the 3-
phase, 8-pole reluctance motor driven by the
MOSFET inverter. The current control as well
as the speed control is performed by software
of the digital signal processor, TMS 32010.

The motor is supplied by the sinusoidal
current and two current control methods are
proposed. One is based on the vector control
principle to achieve the linearity between
current and torque and another is developed
to obtain the maximum torque/current ratio.

Due to the saliency, the instantaneous
torque 'contains a large amount of ripple
component. In case of the test motor, the
ripple torque was as much as 26% of the rated
torque under the sinusoidal current drive.
The experiment showed the ripple component
could be reduced to 6 % by superimposing the
compensation current component to the current
reference.

INTRODUCTION

Recently, the research on variable speed
control of the reluctance motor has been done
as "the switched reluctance motor" allover
the world. The reasons for tqis tendency is
that the motor is simple in construction and
economical compared to the synchronous motor
and the induction motor. In addition to that,
the unipolar drive of the reluctance motor is
possible and, therefore, the converter to
drive the motor requires fewer switching
devices compared to the inverter. From these
reasons, the drive system can be more simple,
economical and reliable.

Many papers have been reported on the
switched reluctance motor in the past, but
their main interests have been focused to the
analysis and design of the motor or the
drive circuit configurations. There are few
papers which discuss the control aspects of
the reluctance motor. In most of the control
discussed in the literature, the winding
current has the constant amplitude and is
supplied to the motor in accordance with the
rotor position.

This paper presents the digital signal
processor-based control of the reluctance
motor which is capable of operation as the
servo motor. The controller functions
include the computations of the rotor
position and the feedback speed, current
control and the compensation of the torque
ripple. The current control, wholly imple-

mented by software of the digital signal
processor(DSP), is performed to obtain the
linear relationship between current and
torque similar to the concept of the vector
controlled induction motor. In addition to
that, nnother current control is proposed to
obtain the maximum torque for the given
winding current. In any case, the winding
current is sinusoidal. However, due to the
saliency, motor produces the torque ripple
under the sinusoidal current excitation. The
current control can also perform the compen­
sation of the torque ripple by superimposing
the compensation component to the current
command. The amplitude and frequency of the
compensation component can be determined by
the information of the winding inductance.

The complete control system has been
constructed and tested and the test results
have been found excellent as a servo motor.

BASIC ANALYTICAL MODEL

Fig.1 is the configuration of the test
motor whose construction is the same as the
3-phase variable reluctance type stepping
motor. As the first approximation, the flux
distribution along the air gap is assumed to
be sinusoidal, then, the analytical model for
one pole pair of the motor is obtained as in
Fig.2. The inductance varies with the rotor
position and, therefore, the self inductance
is assumed as;

Rotor
Fig.1. Configuration of test motor.

(All dimensions are in mm.)

© 1989 IEEE. Reprinted, with permission. from C0/1ft'rellc£, Reconl of tile
19891£££ Industry Applications Society. 335

Fig.2. Analytical model for one pole pair of
test motor.

Lu LgO + Lg2 cos 29

Lv LgO + Lg2 cos 29 + 21r/3 ---(1)

Lw LgO + Lg2 cos 29 - 21(/3

where,

LgO Lmax + Lmin)/2
----------(2)

Lg2 Lmax - Lmin)/2

The mutual inductance between the stator
windings is also assumed as;

Muv MgO + Mg2 cos (29 - 2Tr/3)

Mvw MgO + Mg2 cos 29 --(3)

Mwu MgO + Mg2 cos (29 + 2Tr/3)

where,

MgO Mmax + Mmin)/2 - LgO/2

Mg2 Mmax - Mmin)/2 Lg2

Using these definitions, the voltage equation
of the motor is obtained as follows:

---------------(4)

Using the well known d-q axis defined in
Fig.2, the voltage equation (4) can be
transformed into;

vd R + pLd, -9 Lq id
) = [)[) (5) e Ld , R + pLq iq vq

where,

Ld 3(LgO + Lg2)/2

Lq 3(LgO - Lg2)/2
------------(6)

and, from this equation, the analytical model
of the reluctance motor is obtained as shown
in Fig.3, assuming that the flux distribution
is sinusoidal. The torque equation can be

336

Fig.3. Equivalent d-q axis model of test
motor.

obtained from Fig.3 and;

T = Ld - Lq) id iq -------------(7)

As a result, the two torque control
methods can be proposed as follows;

(1) Vector Control Based on the model, the
winding current can be controlled in the same
way as that of the vector controlled
induction motor, that is, the d-axis current
is controlled as the exciting component and
q-axis current as the torque component. In
this case, the q-axis inductance is generally
smaller than the d-axis inductance and,
therefore, q-axis current is chosen as the
torque component to achieve the fast response
of the torque. As a result, the motor torque
can be controlled to be proportional to the
q-axis current as follows;

T = K iq, K (Ld -Lq) id ------(8)

(2)Maximum Torgue Control For the given
winding current iw, the ratio id/iq can be
controlled. In this case, the linearity
between current and torque can not be
achieved and the torque is given by the
following relation;

T = (3/2) iw 2 (Ld - Lq) sin 2D ---(9)

where,

tanD

Neglecting the magnetic saturation
motor, the maximum torque is obtained
= 45(deg.)

CONTROL SYSTEM

--I 1 0)

of the
for D

Fig.4 shows the control system configu­
ration of the reluctance motor. Unlike the
many drives of the reluctance motor in the
literatures, the FET inverter supplies the
sinusoidal current to the motor. The simple
unipolar drive circuit for the sinusoidal
current drive is. now under consideration. The
current hysteresis controlled PWM implemented
by software was used to supply the sinusoidal
current, where current control program was of
1.4 k words and the processing time was as
short as 34 usec. The rotor position is
obtained by the incremental type encoder(1000
ppr, Nikon RX1000-22-1). The output of the
encoder is multiplied by four and is trans-

Voltage-fed inverter R.M.

Curro reference id*,iq*

3<1 8ple
Fig.4. Control

rated volt 11.6V

Fig.S. Torque

S 1.5 0 id=0.4(AJ

~ 1::1. 0.6
0> [J 0.8
J(

(:;' '" 1.0

Q)
¢ 1.2

"

i
measuring

UPHS66H-8
(Oriental

motor Co.)

system.

1.0 0 1.4
II' 11 ..
0
E-

1.6
D 1.8

0.5

(for rated curr.)

0.5 1.0 1.5 iq(AJ
Fig.6. Torque-current characteristics for

vector control.

formed into 12-bit digital quantity in the
position detecting circuit. The winding
current is detected by the Hall CT(NANA
Electronics, 20CA-W) and is also transformed
into 12-bit digital quantity.

The estimation of the motor torque was
performed by using the measuring system shown
in Fig.5. This system was used to estimate
both the steady state torque characteristics
and the instantaneous torque characteristics.
The steady state torque-speed characteristics
can be obtained when the load DC generator is
coupled with the axis. On the other hand, the
torque ripple can be measured by connecting
the stepping motor and the harmonic gear
(1:100) to the shaft in place of the load
generator. As the step angle of the stepping
motor is 0.36 deg/step, the resu'ltant
resolution is 0.0036 deg/step and, therefore,
it is possible to measure the instantaneous
torque with respect to every rotor position
by rotating the reluctance motor at very low
speed(1.9 rpm).

TORQUE CONTROL CHARACTERISTICS

The steady state torque-current curves
are shown in Fig.6 when the vector control is
performed. In the figure, the d-axis current
(exciting component) is the parameter and the
dashed line corresponds to the rated current.
Within the rated current region, the torque
can be controlled to be proportional to the
torque current.

Fig.7 shows the relation between torque
and the current ratio angle 0 for the rated
winding current. Two calculated curves
obtained from equation (9) are shown in the
figure, one is based on the motor inductances
measured by impedance method and another by
torque method. The details of the measurement
will be explained later. Fig.S shows torque­
winding current characteristics when the
maximum torque control is performed.

In Fig.4, the speed control loop can be
added by modifying the control software. Fig.
9 shows the step response of the motor speed
when the speed command is changed from -900
rpm to 900 rpm. In the figure, the current
limit of the winding current is 1(A) and (a)
was obtained according to the vector control
for id=1(A) and (b) was obtained according
to the maximum torque control.

e
u

" " go 0.5
o

E-<

-(a)

o (b)

o (c) 000 B

10 20 30 40 50 60 10 80 90
D(degJ

(a)Impedance method

(b)Torque method

(c) Experimented

Fig.7. Torque and current ratio angle for
the rated winding current.

337

e
u
tl' ...

e:;' 1.0
Q)

" 0'
k
o

Eo<

0.5

A Impedance method
o Torque method 0
o Experimented

1.0
Winding curro iw[A)

Fig.8. Torque-winding current characteristics
for the maximum torque control.

(a)

Speed command
900[rpm)

-900[rpm)

20(ms/divj
(b)

Fig.9. step response of the motor speed.
(For speed command change from
-900 to 900 rpm) (a) vector control
for id=IA (b) maximum torque control

Fig.l0 is the instantaneous output torque
characteristics versus rotor position when
the vector control is performed for id=I(A).
As expected, the torque ripple is notable. It
is observed from this figure that the shape
of instantaneous torque curves differs for
different torque current and that the torque
ripple exists even when the torque current
is zero(This corresponds to the detent torque
of the conventional stepping motor.).

MEASUREMENT OF INDUCTANCE

(I)Impedance Method In this method, the
winding impedance is measured at every rotor
position using the voltmeter, ammeter and

338

(a)

360

o

(b)

O[kg'cm)
(c)

0.4[kg·cm/div)

l[s/dlv)
(a)Rotor position elec. deg.[deg)

(b)Torque for iq=I[A)

(c)Torque for iq=O[A)

Fig.IO. Instantaneous torque current versus
rotor position.

wattmeter. The measurement was done at every
five mechanical degrees under the 60 Hz
commercial supply. It should be noted that
the current is distorted at a certain rotor
position, which may produce the measurement
error. The result is given in Fig.ll.

Lu(8) [mH]
60

o Impedance method

- Torque method

90 180 270 360
Rotor position 9(deg]

Fig.ll. Winding inductance versus rotor
position.

(2)Torque Method As is well known, the
developed torque is given by equation (11)
when, for example, only the U phase winding
is excited by the dc current Iu. When the
inductance Lu can be expressed as a
sinusoidal function of e, the developed
torque is also a sinusoidal function of e.
However, when the inductance Lti

Table 1. Results of harmonic analysis of
inductance.

(a)

(b)

(c)

(d)

2 3 4 5 6 7 8 9

3.99 5.34 2.96 0.11 1.64 0.15 0.60 0.04

3.35 5.03 2.78 0.12 1.51 0.23 0.64 0.06

3.93 5.57 2.11 0.15 0.65 - - -
Fundamental amplitude is 100%.

(a)Harmonic order

(b)Iu=0.5[A](Torque method)

(c)Iu=I.O[A)(Torque method)

(d)Iu=0.5(A] (impedance method)

10

0. 20

0.21

-

Tu : (Iu'/2) aLu/ ae -------------(11)

contains the harmonic components, equation
(1 2) should be used Lu in (11) ..

Lu(S) : LgO + Lg2 r hn cos2ne -----(12)
n:: 1

and, therefore,

Tu : -Iu'Lg2 I hn n sin2ne ---------(13)
n =1

is obtained. Equations (12) and (13)
that the frequency analysis of torque
the inductance as a function of the
position. The result is also shown in
by a straight line Table-l shows the
of the harmonics analysis.

mean
gives
rotor

Fig.ll
result

ESTIMATION AND COMPENSATION OF TORQUE RIPPLE

The mutual inductance of the reluctance
motor is relatively small compared to the
self inductance(in the test motor, it was 1-2
% of the self inductance) and, therefore, it
can be neglected for the estimation of the
developed torque. As a result, the torque
equation is given as follows.

T : r (ik' /2) aLk/ BG ----------- (14)
k=UVW

Considering the harmonic component of
inductance, equation (14) can be arranged as
follows by substituting equation (12) into
equation (14)

T : - Lg2 [I hn n { iu'sin2nG +
n= I

iv'sin n(2G+2lT/3) + iw'sin n(2G-21T/3)) J

-----------------------(15)

Here, the winding current is approximately
related to the d-q axis current as follows.

[

COSS

cos (G-2lT/ 3)

cos(9+21T/3)

-sinS J id
-sin(9-21T/3) [iq]

-sin(G+21T/3)

-----------------------(16)

Fig.12 shows the results of calculation for
iq:O[A) and iq:l(A) under the same excitation
id:l(A). It is noted that the higher harmonic

Torque T[kg.cm] - Torque method

1.0 id:l[A] iq:l[A] Impedance method

O.B

0.6

0.4

0.2

0+--f--\--1~1-i_+_+____;f-+_+-l

-0.4 Rotor position S[deg]

Fig.12. Calculated instantaneous torque.

e
u

~ O. 3

'" '0

() Before compensation
6. After compensa tion A

o After compensation B

~ O.2~ __ <r __ ~--~r-~~--v
a.
e
..:

~ 0.1

.~ ~~==~~===r~==~t}::::~:::::cJ
OJ
::>
0' ...
o
8

Fig.13.

O. 2 O. 4 O. 6 O. B I. 0

iqlA]

Amplitude of torque ripple versus
torque current before and after
compensation.

components of torque obtained by impedance
method are omitted due to the inaccuracy of
inductance. Fig.10 is the corresponding ex­
perimental result, which shows the calculated
and the experimental values are well in
accord. The amplitude of the torque ripple
was measured for the constant excitation(id=l
A) and the result is shown in Fig.13. From
this result, it is confirmed that the
amplitude of the torque ripple is nearly
proportional to the torque current. There­
fore, the torque ripple can be expressed by
equation (17), where the first term

flT : KO FO(e) + Kl iq Fl (9) -------(17)

represents the detent torque and the second
term is associated with the torque current.
In equation (17), KO and Kl are the constants
and FO(9) and Fl (9) are the torque ripple
functions which can be determined by equation
(15) or from Fig.13.

There are two stages to compensate the
torque ripple, compensation A and B.
(Compensation A) To compensate the detent
torque, the compensation current iqO defined
by the following relation should be supplied
to the motor.

T : K iqO + KO FO(S) : 0 -----------(18)

(Compensation B) Once the detent torque has
been compensated, the torque can be given by

T K iqO + Kl Fl (S) iqO

K iqO 1 + Kl F1(9)/K] -------(19)

equation (19) and, therefore, the compen­
sation current iql in equation (20) should be

iql

supplied
constant
position.

iqO

+ Kl Fl (9) /K

iqO 1 - Kl Fl (G) /K) ------- (20)

in place of iq for developing the
torque independently of the rotor

Fig.14 shows the result of compensation
A. From this figure, it is observed that the

339

(a)

360

o

(b)

O[kg·cm]
(c)

0.4[kg·cm/div]

(a)Rotor position elec. deg.[deg]

(b)Torque for iq=I(A]

(c)Torque for iq=O[A]

Fig.14. Result of torque ripple compensation.
(Compensation A)

(a)

360

o

(b)

O[kg·cm]
(c)

0.4[kg·cm/div]

(a)Rotor position elec. deg.(deg]

(b)Torque for iq=I[A]

(c)Torque for iq=O[A]

Fig.IS. Result of torque ripple compensation.
(Compensation B)

detent torque is compensated but the torque
ripple due to the torque current is still
remained. The amplitude of the torque ripple
is also shown in Fig.13., Fig.IS is the
result of compensation B. The amplitude of
the torque ripple is measured and plotted in
Fig.13.

The effect of compensation is largely
affected by the estimation of the torque. As
explained, the torque is calculated by
equation (IS) and the accuracy of inductance
is important. The amplitude of the torque
ripple has been reduced from 26 % to 6 % of
the rated torque when the inductance obtained
by the torque method has,been used, whereas
it has been only reduced to 10 % when the

340

inductance by the impedance method has been
used.

CONCLUSIONS

This paper describes the digital signal
processor-based high precision torque control
of the reluctance motor with the sinusoidal
current excitation. Based on the analytical
model, two types of the torque control are
proposed, one is the ~ector control and
another is the maximum torque control. In the
vector control, the developed torque is
proportional to the torque current as in the
conventional vector controlled induction
motor. In the maximum torque control, the
linearity between torque and current is not
achieved but the maximum torque is obtained
for the given winding current.

It is well known that the reluctance
motor produces the large amount of torque
ripple. In the test motor, the ampli tude of,
the torque ripple was as much as 26 % of the'
rated torque. For the estimation of the
torque ripple, the accuracy of the winding
inductance measurement is very important and,
therefore, the measurement is discussed in
the paper. Using the results, the torque
ripple is estimated and compared to the
experimental values. In addition, the
compensation of the torque ripple by the
current control is proposed. The prototype
was tested and the performances were to be
excellent.

REFERENCES

(I)P. J. Lawrenson
Reluctance Motors
No.4, July, 1980.

Variable-Speed Switched
IEE Proc. vol.127, Pt.B,

(2)J. R French: Switched Reluctance Motor
Drives for Rail Traction:Relative Assessment;
IEE Proc. vol.13l, Pt.B, No.5, Sep. 1984.

(3)A. Chiba, T. Fukao : A Control Method of
Super High Speed Reluctance Motor for Quick
Torque Response(in Japanese);Trans.IEE Japan
vol.107-D, No.10, Oct. 1987.

(4)B. K. Bose, T. J. Miller, P. M. Szczesny,
w. H. Bicknell: Microcomputer Control of
Switched Reluctance Motor; IEEE Trans. on
Ind. App., vol. IA-22, No.4, July/August,
1986.

high resolution position control under I s,c. of
an induction motor with full digitized met~ols

Isao Takahashi

Department of Electrical and Electronic
System Engineering

Nagaoka University of Technology
1603-1 Kamitomioka Nagaoka Japan 940-21

Abstract

The paper proposes a method of high resolution
position control using an induction motor drive system.
To get high resolution position control, it 1s combined
two control methods.

One is ultra-low speed control based on principles
of impulsive torque drives by using a high frequency
dither signal which can compensate standstill frictions
at low ·speed.

The other is linear control along an optimum sliding
line which is decided by free-run characteristics of
the mechanical load. The sliding line enables the
improvement of a response and robustness of the system,
and linear control area situated along this line
improves the accuracy and stability.

The control circuit is composed of a high resolution
position sensor (1296Kpulses/rev.), a controller using
by a Digital Signal Processor(DSP) and a PWM inverter
having optimized PWM switchinp. patterns. The PWM
pattern memorized in a ROM is made to generate the
impulsive torque. The nsp makes simple circuit
configurations, short calculation times and a speed
s"msorless system. Moreover it is marle to have
flexibiHty and intelligent abilt.ty such as auto tuning
control for a parameter variations of the load.

The accuracy of the position control obtained in the
experiment is 1/1296000 (rev.) which corresponds to
one second of the mechanical angle.

1. Introduction

Recently, factory automation systems such as
industrial robots and numerically controlled machines
became highly advanced. Owing to maintenance-free, the
use of an ac servo in the system would be most
desirable in todays industry servo applications. But
its complexity and expensiveness of the control circuit
disturb its popularization, therefore a dc servo is
still now widely applied for mechanical actuators.

Because' of having stronger structure and better
overload endurance, an induction motor is more
suitable to ove,rworked servo drive systems than de OJ;

ac motors using permanent magnets.
The requirements of high accuracy, quick response

and high stiffness characteristics are indispensable to
highly advanced servo mechanism. In higher resolution
position control systems, direct drives servo systems
become applied in exchange for servo systems with
reduction gears. But most of all these motors are
reluctance machines with a large number of poles to get
high position resolution. Therefore, the small size
ana light weight of the motor cannot expected and
smaller, air gap construction of the machine is also
necessary to get the larger torque.

In spite of' above merits, the induction motor has

Makoto Iwata

Power Supply Division
Sanken Electric Co., Ltd

677 Ohnohara SiJroakasaka Kawagoe Japan 356

not applied in these systems because of difficulty to
get the control accuracy. In the position control
system, the more high resolution is needed the more
affects stand-still frictions at low speed on the
resolution.

This paper proposes a method of high resolution
position control strategies using the induction motor
for improving the above problem. To reduce effects of
the stand-still friction at low speed control, the
pulsation torque generated by the PWM inverter is
employed for the torque dither signaL By using
principles of its impulsive torque drive, ultra-low
speed control of the induction motor under 1 rpd(day)
has been experimentally realized. (11

It combines the above ultra-low speed control with
an optimum sliding line which has linear control
regions near along the sliding line. The control can
make not only robust systems but also stabilized and
high resolution systems.

By the recent advancement of high speed and low
cost micro-processors, it becomes possible to replace
a conventional analog control circuit for a dizital
control one. The use of micro-processors makes the
circuit simpler as well as gives more sophisticated
functions such a intelligent control as auto tuning
adaptive control. The auto tuning control by the
optimum sliding line for a parameter variations of the
load is also proposed in this paper.

In the experiments, the accuracy of the position
control (1/1296000 (rev.», 1.e., one second is
achieved. which has never been realized by the usual
induction motor drive technique.

2. Principles of the high resolution position
control

Because of having robustness, a sliding mode has
become increasing. But I from the point of view of high
resolution control, the sliding mode control method
would not always be suitable because of its large
torque ripples or acoustic noises.

The control presented in this paper is somewhat
different from the usual switching type sliding mode
control as follows;
(1) A optimum sliding line

Figure 1 shows an optimum sliding line on a phase
plane. To achieve the mentioned characteristics, the
line is decided as close as to coincides with the free­
run decelerate characteristic curve at low speed
condition. And at the other speed region, to minimize
the setting time, the line has to be set up as maximull
deceleration curve as the drive system can generate.

Accordingly, because of the small torque ripple aD
the optimum sliding line near the target position, it
is not only suitable a high resolution position control
but also torque ripples or acoustic noises to minimum.

(2) Impulsive torque drive
In the linear control region, the impulsive torque

is generated by using a PWM torque modulator. In this
regions, the torque is proportional to the status error
S decided from the speed wand the position error 8e .a

© 1989 IEEE. Reprinted. with pennission. from COI/Jemlce R('c(ml (!frlle
19891£££ 1ndusfly Applications Society. 341

Figure I Optimum sliding control on a
phase plane

Unear region width Ar
T

o
for large Be

(a) Relation of status
error and torque

(b) Relation of position
:ia~~ and linear region

Figure 2 Control methods of the linear
control region

shown in figure 2(a). The status error S will be
discussed fully in next section. The saturation level
of the motor torque Ts varies with Se as shown in
figure 2(b). At low speed, the· system could have a
fairly large gain under stable states. Therefore, for
getting the good accuracy. it is better to use the high
gain at the low speed and small error position states.

It is known that a high frequency dither sIgnal
makes compensate a non-linearity of the control system
such as a static friction.C2J It can realize by
superimposing the high frequency torque generated by
inverter switchings to the mechanical load. As the
stand-still friction must be canceled in the high
resolution position servo mechanism, the high frequency
impulsive torque drive would be superior to the
linearly controlled one.

Figure 3 shows the schematic diagram of the ultra­
low speed control system by the impulsive torque drive.
Applying the high frequency and small amplitude
impulsive torque slightly larger than the static
friction, ul tra-Iow and smooth speed control can be
achieved. As shown in this figure, the motor speed wm
is measured by a dc tacho-generator and directly
feedbacked. Comparing the reference wm. with the speed
wm, the speed error wm*-wm is controlled to minimize by
• high-gain PI circuit. Superimposing the impulsive
triangular carrier, the non-linear .load is linearlized
and the system becomes more stable.

Figure 4 shows the inverter control circuit which

342

AAAli. i_Isive torque --vvv- carrier

Figure 3 Schematic diagram of an
ultra-low speed control

gives the impulsive torque to the induction motor. The
absolute value of the output of the PI circuit is pulse
width modulated with a impulsive triangular carrier
wave and makes run/stop(R/S) signal of the motor. The
carrier f.requency used in the experiment is 2.0 KHz.

The output of comparator CI which detects the
polarity of PI output, gives forward/backward(F/B)
signal of the motor and the output of C2 is RIS signal
which specifies the time ratio of the non zero and zero
voltage vector of the inverter. R/S signal gates 30 KHz
clock signal which drives a 9 bits up/down counter and
adjusts the inverter frequency. F/B signal is connected
to the up/down control terminal of the counter and
controls the direction of the phase rotation of the
inverter. The output of the counter is connected to the
address lines AO AS of a ROM •

. Figure 5 shows the relation of waveforms of the
impulsive carrier, the PI output and the motor control
signals, FIB and Rls signals.

The ROM is programmed to get Vlf constant control
and least torque ripple. The impulsive torque frequency

Figure System configuration of an
inverter controller

forward

stop

backward

Figure 5 Relation of the PI output, impul.sive
carriers and control signals

FIB
RiS

fran

RCM (2Kbyte)
r - - - - tON;rd - - - - - - ,
IAlOr - _ ... - _ i I

runlOCXle '3 I

counter

Figure 6 Schematic arrangement of PWM
switching patterns of the ROM

controlled by RIS signal specifies the amplitude of the
torque ripple. If the frequency is too low, the large
torque ripple causes the position error. But too high,
the system approaches to linear control and becomes
unstable.

Figure shows a schematic diagram of contents of
the ROM composed of four kinds of the optimum switching
patterns. The patterns are set for getting the minimum
harmonic current at steady states. It has four
switching patterns; run and stop modes for forward and
backward modes, respectively. The run mode patterns
generate the vectors to follow the circular locus of
the primary flux linkage WI as close as possible with
smallest number of switching. The patterns can reael
only by ac:cessing the address A9 to the high level.

The zero voltage vectors patterns are used to
decrease the vol tage and frequency of the output.
When the patterns are accessed, the flux is stopped
its rotation and the motor decreases its torque.
Accessing the signal of A9 to the low level, the
patterns corresponding address of the above switching
pattern can be read and simultaneously the counter is
stopped by closing the gate.

Figure 7 shows an experimental results of ultra-low
speed control characteristics of a conventional 0.75
KW induction motor. The speed control from I rpd (day)

to 1500 rpm .at no load condition is experimentally
obtained. The speed ripple will be under + 0.2 rpd. For
forward, locked, and backward control states, the speed
drift and unstable states are not observed even in the
loaded state.

Orpd

I rpd -I rpel

o ~------I~~------2~~~------JOCO~~

t (sec)

Figure 7 Experimental resul t of ul tra­
low speed motor control

3. Optimum sliding control line

The principles of ul tra-low speed control can be
applied to linear region control in the optimum sliding
control. But a design of a PI circuit in figure 3 is
very difficult to get a high stiffness and stability in
all the area of the phase plane.

The simple PI circui t in figure 3 is only composed
of the integrator wi th the constant gain of Ki and the
proportional component with the constant gain of Kp.
Since the output of the integrator lis corresponds to a
position error Be and the output of the proportional
component is the speed of the Diotor, those trajectory
can be expressed by the straight line on the phase
plane.

If the control is perfectly performed, it moves
along the switching line as follows;

Kpw + KiSe :::: 0 (1)

If the trajectory moves along the line, no output
vol tage is appeared in toe inverter terminal because of
no PI output voltage. But, in free-run condition, the
trajectory doesn't always draw a straight line as
equation (1).

Assuming that the load torque TL composed of the
constant stationary torque TLO, the damper component
Ow, and the moment of inertia Jw, the state equation of
the motion is

[~e 1 = [~ -D~J 1 [~e 1 + [-I~J j(TLO+Tm) (2)

where,
Tm ; motor torque

In the case of the low speed operation, the value IIp

is sm&ll in comparison with TLO so that equation (2) is
rewritten as follows;

ee + (1/2)(TLO/J)w2 = aeO (w>O)

ae - (1/2)(TLO/J)w2 = aeO
(3)

(w<O)

where,
SeQ; offset of the position

When the torque component of Dw is fairly large in
comparison with TLO such as 1n the high speed case, the
trajectory is expressed by a straight line as follows

ae + (J/D)w = eeO (4)

Accordingly, assuming the offset of the position is
zero, it may be considered that a optimum sliding line
which equals to the free-run trajectory of the system
at low speed as equation (3) is set to the curve 5::::0 in
equations (5).

Clee - C2(Kw)n (w<O)
(5)

= Clae + C2(Kw)n (w>O)

where,
n = 2, CI = I, C2 = (l/2)(TLO/J) ; at low speed
n ... I, CI = I, C2 = J/D ; a t high speed

The value of S is the status error. On the optimum
sliding line, there is no switching and torque ripple­
less operation is obtained.
But in the high speed region, the motor speed must be
operated at the maximum speed, and must generate
maximum braking torque if a minimum setting time is
desired. In linear region, according to the value of S
in equation (5), the torque is pulse-width modulated
with the impulsive triangular carrier. It makes not

343

nsp controller (TMS320l0)

Sa
reference

FIB
Switching
patterns
circuit

(Figure 4)

1296000 pulses/rev.

Figure 8 Schematic diagram of the DSP controller

only itnpulsive torque but also the linear control
along the optimum sliding line. The carrier frequency
used in the experiment 1s 2.0 KHz.

To co~pensate the error by the variation of the
stand still load torque, another PI control must be
also applied. The reference of the modulator
corresponding to the PI output is switched to the value
expressed by the following equation.

U = S + K' (8e)fSdt (6)

where,
K' variable function of Be

S status error in equation (5)

The second term can be used for compensation of a
small disturbance torque and it acts within only a
small ge region as I ee I < 32 (sec.). In the other
region, the integration is stopped and saturated to
reduce the extra transient phenomena. A time constant
KI(Be) of the integrator is a function of Be and the
value becomes larger as near 6e=O. For a disturbance
torque, the more works the integrator with high gain,
the more maximum position error becomes small and gets
higher response. The first term in equation (5) is a
proportional cotpponent to improve stability. (3)

4. System configuration and Software

Figure 8 shows a configuration of the proposed DSP
controller. As shown in this figure, the position 6a of
the induction motor is measured by a optical position
sensor (81000 pulses per revolution) I and one p~lse is
electrically divided into 16 to obtain the pulse train
of 1296000 pulses per revolution which corresponds to
one second of the mechanical angle.

Comparing 6a with the digital reference 6a* by a 24
bits up/down cOl!nter, the 24 bits position error e is
applied to the nsp (TMS320l0) controller. Inside of the
controller, the data calculated using upper 16bits, but
limited in 20 bits to simplify the calculation.

In this controller, calculating the status error
Uin equation (6), FIB signal and RIS time ratio data
is decided just as the same way as shown ~n figure 4.

344

The RIS time ratio data is transformed RIS signal by a
pres~table timer. But the amplituqe of the carrier is
modulated by AT shown in figure 2(b) and the PI gain is
changed according to the optimum sliding line. FIB
signal and R/S signal are applied to ttle switching
pattern control circuit as shown in figure 4, and
dri ves the PWM inverter by the optimum switching
pattern.

Figure 9 shows the flowchart of the proposed linear
sliding control algorithm of the nsp controller.

The motor speed w at (k+I)T is estimated in high
speed conditions by the following way.

s - CI6e - C2cJl
(w < 0)

S = CI6e + C2W n
(w > 0)

.... __ .-_---1 FIB, RIS

Figure 9 Flowchart of the DSP software

w«k+I)T) ~ Be«k+I)T) - Be(kT)/T

where,
8e ; position error
T ; sampling period

(7)

It is only calculated by the pulse number of the
position sensor during sampling period T. Sampling
period T in the experiment is 500 Vsec. (2.0KHz) which
is equal to the period of the impulsive triangular
carrier wave. Assuming that the output pulse of the
position sensor is 2.0 KHz, the minimum detectable
speed of the motor is 0.0926 (rpm).

When the nsp estimates the speed w as zero, another
measuring scheme must be applied under 0.0926 rpm. It
is realized by measuring the pulse duration of the
position sensor as shown in figure 8. When the value of
w«K+l)T) becomes zero, the low speed detector works by
switching SW to wLOW side. And when the counter data of
the .low speed detector is saturated, the speed W Is
regarded as zero. Be is limited 20 bits (+524288 ~ _
524288 pulses) in this controller.

To get the status error S, Be and ware substituted
in equation (5). When IBel < 60(32sec.), another PI
control expressed in equation (6) is applied. The
linear region width AT is decided by the position
error. It corresponds to amplitude of the" impulsive
triangular carrier wave.

The status error S calculated from equation (5) is
compared with zero and give FIB signal. The absolute
value of S is pulse width modulated with the impulsive
triangular carrier to get RIS time ratio, and gives Rls
time ratio data.

The optimum sliding line with auto tuning controlled
for a parameter variations will be discussed in next
section. The calculation time is accomplished within 60
llsec. It is so sm;U compared to T, but, considering
from the stability problem, it is better to set the
value as small as possible.

5. Auto tuning control

The recent development of a micro-processor enables
digital controllers with a high intelligent abilities.
Increasing the demands of complex servo mechanisms, it
becomes very difficul t to adj ust the gains of
controllers.

Accordingly, an auto tuning control is now a very
promising method to the 'motion control system. (5) In
this system, a simple auto tuning control 1s tried by
changing the slope of the optimum sliding line with a
parameter variations. The optimum Sliding line is
varied instantly by observing the relation of the phase
plane trajectory and the sliding line.

The phase plane trajectory usually varies along to
specified the sliding line as shown in figure 10(a).
But as shown it:l the trajectory (b), when the slope of

w
Speed

B"'().02J rad div.

""<J.185 rps div.

Figure 10 Phase plane trajectories for
various sliding lines

(simulation results)

the sliding line is larger than that of the trajectory,
the trajectory has some ripples. On the other hand, as
trajectory (e), when the slope of. the sliding line is
too smaller, the overshoot and the limit cycle is
observed. Accordingly, the optimum sliding line would
be able to specified by observing the motor and load
characteristics variation.

Figure 11 shows a control result using the tuned
optimum sliding line. As shown in this figure, two
auto tuning lines 5L"'O and 5H-0 are considered in both
sides of the optimum sliding line. When the trajectory
collides with the lower auto tuning line SL=O, it is
better to use the larger slope optimum 'sliding line to
get more stable response. On the other hand, the
trajectory doesn't reach the higher side of the auto
tuning line 5H=0, the slope'of the optimum, sliding line
must be increased.

The auto tuning lines 5L and 8H are specified in
this paper as follows;

SL ~ CI ee - C2(KLw)n (w<O)
(8)

SH - CIBe - C2(KHw)n (w>O)

where,
KL ; K - .6K , KH ; K + .6K
K ; the gain of equation (5)

In this region, only the gain of K in the optimum
sliding line is adjusted, whether the trajectory
collides with the optimum sliding line or not.

F,igure 11 (a) shows the trajectory with no auto
tuning where the ripple is observed in the phase plane
trajectory. Figure (b) is auto tuning where the ripple
is compensated. These real time control is easily
executed by the nsp controller.

Figure 12 shows a schematic diagram of the nsp
software of proposed auto tuning control. S in equation
(5) is calculated from Be and w by the sliding line
controller and SL and SH are by the auto tuning lines
controller. Comparing the value of S with the value of
SL and SH, the output of 3-state comparator is

Speed

Be'().023 rad div.

w'().185rps div.

Position
error

(a) no-auto tuning control

Speed
Position

error

Be ~ 0.023 rad div.

w '().185rps div.

Figure 11

(b) auto tuning control

Control resul ts using the tuned
optimum sliding line

(simulation results)

345

auto tuning controller

digitally integrated for calculating the optimum gain
factor K. At every sampling period, K 1s decided by
adding the adjusting coefficient Ac of K which
corresponds to the output of the- 3-state comparator,
6K, 0 or -.6K. Thus the optimum sliding line can be
adjusted if auto tuning lines are decided.

Figure 13 shows a flowchart of the auto tuning
control. Only the auto tuning control loop is expressed
by solid line. To get the values of S, SL and SH, ee
and 6J are substituted into equations (5) and (8).
Comparing the results S with SL and SH, the adjusting
coefficient Ac of the gain K is decided using above
method. When S is smaller than SL, the adjusting
coefficient Ac is -.o.K. When S is larger than SH, Ac is
+6K.

Accordingly, when S is situated between SL and SH,
the sliding line is recognized as an optimum sliding
line, and Ac is zero. Otherwise, K is modified by Ac
at next time. To decide the gain K of the optimum
sliding line, Ac is integrated at sampling period. The
adjusting coefficient .6K is set to 0.2K in this
software. The calculation for the auto tuning is
accomplished within 10 J..Isee ••

Be r······ --.. ~.
~~:.:?-'t ~:~:~) r.-- -.... I .. _ ,

: w(k)-ee(k+I)-Ile(k) .:

:::::::: ::1:::::: ::::
S = Clile - C2(Kw)n

Figure 13

346

Flowchart of
auto 'Luning
contro L

..... __ --....J interrupt signal

6. Experimental resul ts

Figure 14 (a) shows the step response at no load
condition and figure 14 (b) shows its phase plane
trajectory under the condition. The reference ea* is
1296000 pulses - 2w (rad.). In this figure (a).
because of the position error llmiter(20bits), it is
saturated from 1296000 pulses to 524288 pulses.

Figure 15 shows the transient response near the
target position. In this figure. the minimum 1 step of
the position error corresponds to II 1296000 (rev.) • 1
(sec.). The accuracy of the position control obtained
in the system is 1/1296000 (rev.) ~ 1 (sec.)

Figure 16 shows the distribution of the position
error of one hundred times tests. Considering the
allowable error of ±1 pulse, 90 % of the test results
are satisfied the error limit.

Figure 17 shows the response of the stepwise
disturbance torque input. As shown in this figure, the
position 'error is observed during 20 msec but it is
canceled by a disturbance compensator shown by equation
(6) •

Figure 18 shows the trajectories of the untuned and
tuned cases. If the sliding line is not optimum, a
trajectory ripple are observed 8S shown in figure (a).
It gives not only the torque vibration to the
mechanical load but also a bad response and accuracy.
Comparing with these figures, it is shown that the
trajectory ripple and the response are fairly improved
by auto tuning control as shown in figure (b).

pos~tion
error

ee

speed

w

I I
524288puise tl \

12%1XXlpulse \

1\ ea". 2w(tad.)

0
\

/ 3.0 rps~div.

IV--I--' 1~/iiv.

(a) Step response at no load

w

~~ eo

ea"-2w(r \.i) ~
ition
or

0

\
3.03 rps/d v. I"-1---..

I'-i

(b) Phase plane trajectory

Figure 14 Step response of 1 revo1utiqn
of the system

Figure 15 Transient response near the
target

" ···1··"···1
37 f test n~ri

ncmrer ,: :1-.... ..,. ,.; ,... """I.r.t.t.~~

(tiJres) 12e.I-+-I--v,49rn~01f'-+-l:----j

: .. 10 ."i .. ! !
o ! 0

Figure 16 Distribution of position
errors

7. Conclusion

In this paper, to get the high resolution position
control method of an induction motor t skillful control
techniques are applied. And the following resul ts are
obtained:

1) By using the impulsive torque drive at
region has a good stability and precision at low
area.

linear
speed

2) Optimum sliding mode control with the variable
gain which is different from conventional one, enables
the improvement of an accuracy, responses and
robustness.
3) For compensation of a disturbance torque at the

stand-still condition, the PI controller with the
variable time constant is also employed.

4) The use of the DSP makes simple circuit
configurations and a speed sensor less system.

S) The system' is made to have flexibility and
intelligent ability such as auto tuning control of
sliding mode switching line for parameter
variations in the motion control system.

As' the results, the proposed motion control method
would be available in a high resolution servo under 1
sec. resolution.

Through experimental resul ts, the validity of
proposed control is provided to be very promising and
skillful techniques to the high resolution position
control system.

Disturbance If I I I
torque

0

0

r 1 1/3 rated toque
I I

1 i I
1 1 1 1= I I

jX>Sition
error I ' .J;1lUl1:40 pulse I I 0.1 secldiv

Disturbance
torque

0
If3 rat~ 'torque

I--V

0

position I"- / ~ r--- T
error ~

nax:lnun:40 pulse IGnsec/div.

Figure 17 Response to the disturbance torque
input

ea :300: o pul s~1 eo

.185 f1's/di
(Xl ition

OF e ror

0
'~

(a),: unal o tlU 'ng \' ~ (a)

(b): aute tuni j,I

I'" r"""'"
(b)

~ II
Figure 18 Auto tuning control on a

phase plane

Acknow 1 edgmen t s

The authors 'Jould like to express thei·r appreciation
to Mr.S.Asakawa and Mr.S.Tanaka of Sanken Elec.Co.Ltd.
an1 the Power Electronics Laboratory m'~mbers of Nagaoka
University of Technology. Part of the work is supported
by Grant-in-Aid for Scientific Research of the Ministry
of Educ.aition and by the foundation of Highly Advanced
Mechat ronics Technology.

Reference

(1) I.Takahashi, S.Asakawa, II Ultra-wide speed control
of an induction motor covered 106 range IT IEEE-lAS
pp " (1987) "

(2) Olle I.Elgerd "CONTROL SYSTEMS THEORY •
International student edition, McGRAW-HILL INC.
1967

(3) I.Takahashi and M.lwata II High resolution servo
system of an induction m,::>tor using linear mode
sliding control" PCIM' 88 (INTELLIGENT MOTION).
Japan (1988) p. 254

(4) T.lwakane and T.kume II High performance vector
controlled ac motor drives (applications and new
technologies)" IEEE-lAS (1985)

(5) R.Lorenz "Tuning of Field-Oriented Induction
Motor Controllers for High-Performance Applications
" IEEE-lAS (1986)

347

348

A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator'

ILJ.Ch'lm:p Hnd J.A.Taufiq, Oept. Ele-ctronic A· El(>(:lrical En~., llni\"€'rsity of Birmingham, Birmingham SIS 2IT, UK

This papPI' d("scrit~s a gvst('m for' dyrvuni('al J~
calculating optimizf'd pulse ~idth mcxlulated tr\.~1)
~a\'f'forms for liSP lo.:ith volt.aq:e source im:erter (V51 l
ff'd induction motor drives in rai hmy traction
appl iCfltions. A DfS32010 siECnal procf'ssin~
microproc{'ssor, capable of fast ari t.hmetic is
i ntt.'rfac('d t.o R. nOH'1 random accE'SS memory based
wavefonn genE-rating hardv.:are. This pro\'idE's t.he
capabi Ii t;.· to control waveform detai 1 impossible wi th
more conventional microprocessor based systems.
Although the pap€"r concentrates on the implementation
of a parti cular algorithm, the design can implement
variable pulse widths in mul tiphase systems and in real
time. An important aspect of this work is the role
playiE"d by microprocessor simulation in testing the
design.

Nomenc la ture

m number of switching angles per quarter cycle of
PWM wavefonn.

cx..k kth switching angle
NPI modulation depth of PWM wavefonn
Vdc inverter de 1 ink vol tage
VSI voltage source inverter
f inverter output frequency

Introduction

With the increasing availability of high power gate
turn off (Gro) thyristors, there has been a renewed
interest in inverter drives for electric multiple Wlit,
metro and light rail applications. Comparing the GTO
inverter and GTO chopper from an economic viewpoint, it
is widely accepted that the GI'O voltage source inverter
(VS!) is the most favourable of all the inverter
configurations. The GIO VSI does not require a
preconditioning chopper and. input voltage fluctuation
is compensated by the VSI controller.

From a signalling vi~int, the main di fference
between the VSI and the fixed frequency chopper drives
is that the fonner can potentially generate components
over a wide range of frequencies as the VSI operates
from minimwn to maximum frequency. Previous experience
wi th chop~r generated interference suggests that
methods of control which can theoretically eliminate
components at the signalling frequencies will be
required. by most metro authorities when new equipment
like the GTO \.rSI is considered. In this respect, it has
been shown [1,2] that a harmonic elimination optimized
WM based ratio changing scheme which is tailored to
suit the type of signalling system used. is the best
solulion. Although other types of PWM scheme such as
regular sampled .and distortion minimised are more
commonly used in industrial AC drives, these are not
really the ideal in this particular application.

With these drivE'S, the problem of signalling
interference is more pronounced with power frequency
type track cireui ts. As in this case the signalling
frequenc.ies are relatively low, typically below 400 Hz,
any components at these frequencies generated by the
GTO \lSI will not be significantly attenuated by the
input fj 1 ter of t.he t.raction equipment. Therefore it is
essential t.o ensure that the Gro VSI does not generate
any components at these signalling frequencies. In the
case of audio frequency type track circlli ts, the range
1)[signalling frequencies used is usually around 2-10
KHz and with t.he t.ypical constraint on the maximum

im'ertpr ~\oo'itching: frequency, it is not possible to
('J iminatC' the> inverter generated hannonics in this
h,'md. IIm,:e\"(~r'l with typicR,l input filter values I it can
be> shown that the si~nalling frequency components in
the rails will bE" much less than the typical threshold
1",",'1s (1,2],

To date, the implementation of this type of optimized
P\-.:-'I scheme has been I imi ted to a look-up table of the
exact switching angle data, which is precomputed for a
given inverter input volta~e and ratio changing scheme.
A high incremental resolution of the angles may be
needed which could requi re substantial memory. Also
fluctuations in the OC input voltage can only be
compensated by perfonning an interpolation of exact
switching angle data. Therefore the preferred solution
would De to generate these switching angles on-line. It
has been shown [2] that it is possible to approximate
thE" exact swi tching angle . trajectories by an
algorithmic approach, which results in relatively
simple equations. This algorithm has also been shown to
generate near optimal switching angles for any number
of angles per quarter cycle, m. The equations to be
computed are derived in 11] and can be sumnarized as
follows:

For odd k, (k- 0.5) x 59.20

l!.k = 0.4 sin [m + 60.4°]

(k+1)x60° [1200 X4kXNP']
~ = (m + 15 - 0.8 (.1+ 15 .. 4Dk

where l1Dk = 0 for NP1 .:s 0.8

'3 (NP1_ 0.8) a 1800 X k]
6lJc = 0.Q9m. X siD [~ for NP1 > 0.8

For even k,
k 12.5Q

]

Ok = 0.4 sin [r.;:v (58.60 -1iii=2»)
kx60°1200 XAkXHP1]

~ = li+'iT + [0.8 (m+ 1) - Aile

(2)

where AIle "" 0 for NP1 < 0.8

14 (NP1_0:8)' [1800 • (k-',5)]
l!.Ik .. 0.09m aiD III for JfP1 > 0.8

Choice of microprocessor

This type of microprocessor based PWM wavefonn
generator design often uses a general purpose
microprocessor interrupted by a counter-timer as
described in [3]. Three different types of
microprocessor, ZBO, 8086 and TMS32010 were benchmarked

TABLE 1
PERFCJR.'lANCE OF 3 PJl(X;ESSORS FOR OPI'IMISED PI'M SCHEME

Z80(4MHz) 8086(5MHz) TMS32010(20 MHz)
multiply time
(16,,16 bit)
divide time
(16/8 bit)•..
memory/register
transfer time
(16 bit word) ...•
estimated time
to compute (2)

300

400

(NPI < .8)....... 3000
on chip RAo'i
(bytes).......... 0
timer peripheral

30

40

310

o

availability..... good good
multi-level
interrupts. good good
{all times are in microseconds}

0,2

4

0.2

20

288

poor

poor

© 1988 IEEE. Reprinted. with pennission. from Third Illfernatiol1ul C(IJlfc'r(,l1c(' 011 Power Electrol1ics
and Variable Speed Dril'es, Conference Publication Number 291, July 1988. 349

for this wa'"E'fonn ge-llE."rator as shown in tablE" 1.

Onl~' th£' 'r.-IS32010 can conn:'1ute all th(> S\.;i tching angles
with Ul(~ algol"ithm in lh~ desirf'd t i~ of 2 ms. It also
h.-"lS E.'noll~h random access mE"mor~· (H:\~1l on ch i p for
(>xcclllin~ th('> ah;orilhm. The main difficult~· ·ith the
TMS32010 is t.hf' lack of suitR..bl('> counter/timer
l-"I("riphE"I'f\ls. The~fore a lotall~' eJiff£'rC"nt approach has
~n usC'd for "avefonn generation.

On£' mE.~t.h()d of generating a "ave-fonn is to stOrE" it as a
binar~· patt.€'rn in RM-t. Thus a square wave, for example,
can ~ cI'E"ated by storing N binary one's followed by N
zeros and reading these locations at regular intervals.
The RAM address becomes in effect the wavefonn angle or
time which can be generated by a binary counter. This
method is not efficient for generating a changing
wavefonn because a large munber of RAM locations must
be continually updated. However the memory based
wavefonn generation hardware used here is based on the
storage of identifying codes only at the addresses
(switching edges) where a wavefonn state change occurs.
This reduces to a minimum the memory locations lIsed to
define the desired wavefonn. 4096 words of 8 bits are
used wi th two bits of each word per phase, so that six
bi ts can produce a three phase wavefonn. 1be wavefonn
is stored as a 'map' of switching angles or times as
illustrated in Fig. 1.

H --RAIl _ .. ----- ~
o 1 14

} bit~ 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 o 1 1 1 1 0
1 o 1 1 1 1 1
1 11 1 1 0 1

1 o 1 1 1
1 11 1 1
I" O' '1 1 1
1 11 1 1

1 1
0 1
1 1
0 1

:)
:)

3
2

bit 0

:::~"-1

:::~ z

:::~"""'3

--~~-----ongle

Fig.1 Codes to generate a three phase wavefonn from RAM

Each address location contains the two bits per·phase
coded as follows to load an output latch as the address
generator (binary counter) is incremented:

11 no change in latch state.
01 set output latch to '1'.
10 reset output latch to '0'.
00 not used.

The outputs of three such latches thus generate the
wavefonns for a three phase supply. Before using the
RAM, all locations are initialised to the 11 (no
change) condition. A wavefo~ is created. by writing
either a 01 or a 10 into RAM locations which correspond
to the desired switching angles. To change this
wavefom, the contents of these addresses must be reset
to the no change (11) state before new values are
written.

Two methods may be used to generate a wavefonn of
variable frequency. To drive the coWlter that supplies
the RAM address from a variable frequency source while
storing a complete wavefonn cycle or alternatively from
a fixed frequency source so that the RAM addresses
become equivalent to time delays. The first method

350

requirE'"S an inconveniently high frequency source of 70
MHz to givE" 'hE" 1% resolution required at 150 Hz. The
s~conrl fIlE'thod. rE"'qui res the RAM contents to be chRnged
several t i~s in on(' cycle and therefore to be ul~at.ed
frequently even when A constant output f['('{juf>nc:y is
genC"rated. ThE> potential accurac~{ of this generator is
high and is the one used here. This method of using RAM
external to the processor addrE'sS space for generating
the PWM wavefonns for a variable frequE'ncy VSJ is
apparantly "novel. Existing wavefonn generators usually

lise SOllIE" fonn of cOlmter-timE."r.

TMS32010 wavefonn generator interface

The implementation of this scheme is shown in Fig. 2.
The TMS32010 'CLKOOT' signal is divided from 5 MHz by a
prescaler to drive the 12 bit binary count,er. This rate
is current.ly 1.25 MHz. Thus external RAM address
updates by the counter are synchronised to processor
operations. During every machine cycle, the TMS32010
produces one of the following MlITUALLY EXCWSIVE
signals:

(1) MEN
(2) WE
(3) DEN

instruction fetch.
port wri te (output).
port read (input).

In a TMS32010 running at 20 HHz, MEN occurs at a 5 HHz
rate except during the input and output operations.
This makes it possible for the hardware cOWlter to
'steal t the MEl\!" cycles for updating the wavefonn from
the output RAM while allowing the TMS32010 to access
the RAM without constraint. In Fig.2 the following
operations are carried out:

Fig.2 Data pathways in the wavefonn generation hardware

* Output a new divider value (A)
* Input the current address (B,G).
* Output a new RAM address (C) to the buffer/latch.
* Input RAM contents (I,D) at the previously latched

address (H) .
* Output new RAM contents (E,J) from the TMS32010 at

the previously latched address (H).

The above TMS32010 operations all coincide with either
a DEN or WE TMS32010 machine cycle and are interleaved
wi th output latch updates performed in hardware during
the MEN (data path K ; address path F) time slots.

Software Overview

The 1MS320l0 software may be conveniently split into
four sections: obtaining m and NFl, calculation of
switching angles, conversion of angles to time delays
and output RAM update.

Obtaining m and NP1

The inverter output frequency and dc link voltage
values are obtained from two analog to digi tal
convertors. From these two inputs, the two varia,bles in
(1) and (2), namely m and NP1, need to be deduced. The

required value of m for a given value of inverter
output frequency is obtained from a look up table
equivalent to Fig.3.

(svitcbias freq. (Hi»

10 20 30 40 50 60 70 80 90 100

Fig.3 Ratio changing scheme for deriving m from
inverter output frequency

This particular ratio changing pattern has been devised
to ensure that the VSI drive does not produce any
components at typically used signall ing frequencies
over the entire inverter output frequency range [2].
The required variation of the VSI fundamental line
vol tage wi th inverter output frequency is also stored
as a table. In railway traction systems t Vdc is subject
to a +20% -30% variation. In order to keep the motor
line voltage constant, irrespective of this variation,
NP1 is altered to compensate.

Swi tching angle calculation

The angles are calculated from (1) and (2) using
integer arithmetic. The output of this stage is a list
of switching angles between zero and 1t /2 radians. Sine
and cosines are derived from a table.

Angle to time conversion

The switching angles must be divided by the inverter
output frequency f to give corresponding time delays. A
16 bit word does not give the required 1/300,000 time
resolution. This problem has been solved by a fonn of
block floating point [41 which may be efficiently used
on the THS32010. For frequencies above 12 Hz, times are
divided by 4,lbut below 12 Hz, they are divided by -64.

Updating wavefonn generation RAM

The expanded time value hss 22 bits. Bits 0-11 become
the RAM address, bits 12-21· represent the number of
times that the RAM must cycle through its 4096
addresses to reach the correct swi tching time.

Table 2 shows the updating of this RAM which is carried
out on ei ther the upper or the lower 2048 addresses.
While the lower addresses are being accessed by the
hardware which reads RAM contents to the output latch,
the upper ones can be updated by the 'IMS32010 and vice
versa. Before new switching times can be written to a
2048 word portion of RAM, the times from the previous
cycle must be deleted. Note thst the 1MS32010 hss
unrestricted access to the chosen half of the memory
and therefore updating does not have to be done in a
particular order. Addresses containing switching codes
for a particular half cycle are saved in 1MS32010

TABLE II
OUTPUT RI\M ACfIVITY WITH TIlE P.<\.<;SAGE OF THIE

RAM ADDRESS/ WAVEFORM DELETE OLD INSERT NEW
CUJNTER VALUE GENERATED CODES CODES

o - 2047 from RAM from RAM for RAM
cycle N c~'cle N-l cycle N

............... 0-2047 20~8-~095 2048-4095
20~8 - 4095 from RAM from R~M for RAM

cycle N c~·cle N cycle N+l
............... 2048-4095 0-2047 0-20~7

o - 2047 from RAM from RAM for RAM
cycle N+1 cycle N c~'cle N+l

............... 0-2047 20~8-4095 20~8-4095

2048 - 4095 from RAM from RAM for RAM
cycle N+l cycle N+l cycle N+2
2048-4095 0-2047 0-2047

internal data memory for deletion during the next
cycle. As the end of the ~ wavefonn will hardly ever
occur at RAN address zero, the address of this point
nlst be added t.o the swi tching t.imes for the next eye Ie
of the wavefonn.

Testing the System

Practically all the development of this project was
perfonned on simulated rather than real hardware.

The 1MS32010 simulator

A simulated TMS32010 [51 was used to test the software
to the point where it could be used with confidence in
the tsrget hardwsre (see appendix A). This si ... llator
has particularly versatile means of interfacing to
1MS32010 streams of test dsts held on the host
computer. Additionally, real or even non-existant
peripheral devi.ces can be simulated in the 'e'
'language. In this case, the wavefonn generator hardware
of Fig 2 was completely simulated in software.

TMS32010 eguaUon calculations

The scheme shown in Fig. 4 was used to check the
TMS32010 equation calculations perfome<l in integel'
ari thmetic against 'accurate' values carried out in
floating point. Values of NPI and m were ·supplied as
input dsts fUes to sinrulated 1MS32010 ports. Angles
computed by the simulated TMS32010 were saved on fUe.
'Ibis fi Ie was used as the input to a BASIC program
which computed the same angles in floating point
ari tiunetic, and thus the

CAILIJlATE
AllGlES

IAI

TI1SJlO
AIfi!IIIlHH -

CALt\JlATE
Al«jLES

181

Fig.4 Testing TMS32010 arithmetic for angle calculation

351

errors in the TMS32010 program. This comparison showed
that the worst case error was of t,he order of 0.03%.
Had this been perfonned in the target hardware, the
data (NPl & m) \<"ould have been deri~'ed from ,l\IX.::s and
been neither exact nor repeatable. Speed tests
conducted on the simulator show that the time to
compute (1) on the TMS32010 is 24.8 microseconds (odd
k) and for (2) (even k) is 32.4 microseconds with NPI
less than 0.8. The corrections for NPl > 0.8 add 23.-1
microseconds.

Simulating the wavefonn generation hard\<"are

The TMS32010 simulator allows thE' "cormection" of a
simulated peripheral device lIsually written in 'e'
(appendix A). In order to expedite testing of the
complete 'IMS32010 software, a simulation of the
wavefonn generation hardware was created and interfaced
to the simulator. It allows testing which would be
nearly impossible on the real hardware.

The wavefonn generation RAM is simulated by an array of
integers updated entirely by the TMS32010 program which
can be examined by the user or written to file. A COWlt
is kept of the number of times that the simulated RAM
address passes through zero allowing output pulse
widths to be computed and saved on file for test
purposes. Note that digital values of long times
(equivalent to more than 2048 RAM addresses) -are not
obtainable from the hardware. They could include errors
introduced outside the angle -computations e. g. due to
the block floating point representation or failure to
delete angles from the wavefonn generation RAM .

The speed of the TMS32010 program in perfonning the
hardware updates is of course very dependant upon the
type o-fwavefonn and the part of the cycle involved.
However as an indication, at 17 Hz, simulation shows
that 127 microseconds is necessary to update the
hardware during the worst case RAM half cycle. This
compares with 1.6 milliseconds which is available while
the RAM cycles through 2048 addresses,

Perfonnance in hardware

The functional integri ty of the hardware was tested
wi th small programs to excercise the various sections.
Thus, by the time the software described above was
transferred to the target system, the hardware was
known to be capable of executing a TMS32010 program,
generating a wavefonn from the wavefonn generation
hardware and correctly reading the analog to digital
converters used to input the dc link voltage and the
inverter output frequency. Waveforms produced by this
hardware on the first trial, agreed with expectations
predicted by simulation.

Design Adaptability

The high speed of the TMS32010 has resulted in spare
computing capacity which can be used in several ways.

Non-complementary wavefonns

The system described. so far can generate the three
phase pole switching waveforms to drive a three phase
inverter. In each phase, the complementary device can
only be switched on at a finite time after the other
device in the same phase has been switched off, thus
avoiding a dc link short circuit. Therefore, for a
definite time interval, both gate drive signals for a
phase are off. This delay time td must be greater than
the turn-off time tq of the GTO used. tq varies wi th
the type of GTO and the anode current being coovnutated.
Therefore, in this application, tq will vary depending
on the point in the inverter current waveform at which
t.he inverter current is turned off. However, for a

352

given application, it is IX>ssible to predict the
maximum value of tq , and td is set to a constant val ue
\<"hich is slightly greater than this. Having derived the
ideal complementary .gate drive wa\-eforms from the thr€'e
Th1!-f waveforms, the effect of td is to delay the turn-on
edge of these gate dri ve wave-forms and leave the
turn-off edge unaltered as shown in Fig. 5.
This dela:..' can be incor}XJrated in hardware but, \;o'ith
this RAM based method of generating the waveforms, the
delay can be incor}XJrated in software. This reduces the
hard",'are requirement especially if the delay must be
variable. All four binary codes are used wi th t\<,'o
output latches per phase in the swi tching angle map as
follows:

11 output latches remain unchanged
10 set output latch I, reset latch 2
01 reset output latch 1, set latch 2
00 reset both latches

With this system, a typical switching sequence might be
as follows:

10 device 1 on, device 2 off
11
00 both devices off
11
01 device 2 on,device 1 off

Of course twice as many RAM accesses need to be made
but this is no problem with the TMS32010. A PAL e.g.
the PAL 16R6 is ideal for implementing the Boolean
expressions to directly generate the 6 GTO gate drive
signals from the RAM contents.

=- flJ1J1 l' • I I, I

ileal JLnJ1
gate 0, ,',,'

drive 1LJUij
~SO, '1'1'
_, 1:ri :ri:ri
.~- .:J LLJ L!J L
gate 0, • I " I

drive 11 : r1 : r1 :
waveformsO~ -.. LJJ.U

td

Fig.5 Generation of G'IO gate drive signals

Due to the turn-off time tq , the G'ID inverter pole
switching waveform will be slightly different from the
generated PWM waveform. This small error in the power
electronics reproduction of these wavefonns will result
in a slight change in the harmonic spectrum measured. in
the power circuit compared with the ideal case. It is
possible to compensate for this effect if the variation
of tq with anode current is known [7]. The spare
computing capacity on the TMS32010 means that it will
be possible to incor}XJrate a closed loop controller to
compensate for the varying GTO turn-off time.

Practical Resul ts

After extensive testing and debugging of the software
using the simulation facility already described, the
software was evaluated in the target hardware. Prior to
interfacing the TMS32010 based waveform generator to a
G'ID inverter, the hannonic spectra of the near optimal
pWM wavefonn produced were analysed. Fig .. 6 shows this
ideal pole switching wavefonn spectrum for m = 5 and,
as expected, the 5th, 7th, 11th and 13th harmonics
(i.e. m-l harmonics) are almost zero. This confirms the
theoretical work carried out on evaluating the accuracy
of the algorithm [1]. As explained in [1] , thE'

IS

ID
II

,.,

I
II

.7

3

5 7
In AYG
6 Y'K SU

"HI VOL t •• s 11., .1 ••

.15

17

21

19

I
11 13 I 23 I

CAL ~JCURSOR FI 35
16.L..-~OLlS "-163. AI 625.[-3

0

Fig.6 Ideal pole switching waveform spectnUR for m = 5

algorithm is least accurate when m = 3, especially for
high NP1 values. This is clearly demonstrated by Fig. 7,
which shows the effect of the increase in the value of
NPl as Vdc decreases to its minimum value • .. , .7 I6t+1 VOlt ••• ... , ... :

In

11 o _

3

IS

13 19

5 I 17 I r~
III ~"YP", AYG !l CA~OLlS mR~~~. ~: 45
I.U SU 16 7".£-3

(a) Nominal Vdc

•• ,. HZ 528,[-3 YOU INS H:
In

11

11 3 15

17

7 19

11-
5]

I" AYG CAL CURSOR F I ".181 ~:.:I , YPK IU 16.L-.-v.!1!.!L !.!.Ji:i...!.!....k~

(b) Minimum Vdc

Fig.7 Ideal pole switching wavefonn spectra for m = 3
showing the effect of a decrease in Vdc

Using the algorithm, if the 7th harmonic in the m = 3
mode is unacceptably high in amplitude, then as
explained in [11 the situation can be easily improved
by using the exact switching angles instead. The
1MS32010 based wavefonn generator was finally

5 7 13 17 19

(a) Line current spectnun

6 12 18 24 30

(b) Link current spectrum

Fig.8 Measured spectrum for m = 5

interfaced to a 2kVA GTO VSI driving a small induction
motor. The measured. line current spectrum for m = 5 is
shown in Fig. 8a and the' first signi ficant hannonic
present is the 17th as expected. The corresponding
inverter OC link current wavefann spectnun is shown in
Fig.8b. As anticipated, the 6th and 12th DC side
hannonics are aIlIK>st zero and the first main hanoonic
is the 18th due to the 17th and 19th N:; side harmonics.
Similarly accurate results were also obtained for
higher ValuE'S of m.

Further tests were carried out to investigate the
transition during gear changes. Fig.9a & b show the
inverter line current wavefonn during the transition
from m = 5 to m = 3 and m = 1 to m = 0 (quasi-square)
respectively. As can be seen, the transitions occur
smoothl~' and there is no observable transient in the
inverter line current wavefann.

Conclusion

The use of a hannonic elimination optimized PWM ratio
changing scheme is essential if railway traction VSI
drives are to be compatible with signalling systems. In
particular lit is shown that it would be advantageous

353

if the switching anglE:"s could be computed OIl-line by a
g('fl€>ralized algorithm which gives nE:"ar optimal

(b) Transition from m = 1 to 0

Fig.9 Inverter line current during ratio changes

switching angles. This paper shows that a high speed
signal processing microprocessor can be used
efficiently in implementing such an algorithm. The
calculation time is extremely small when compared with
conventional processors. The fast cycle time makes it
desirable to use·novel methods for waveform generation.
The one described gives exceptional wavefom control
and a low chip count.

The use of an Wlusual TMS32010 simulator has not only
allowed the testing of TMS32010 algorithms using
integer arithmetic but also enabled the exact pulse
width output values to be analysed. Due to the Wlusual
output stage, this would have been di fficul t in real
hardware. It has allowed complete debugging of the
software before the final implement.ation.

In this implementation, the computation of E:"ach even or
odd swi tching angle takes 24 .8 liS or 32.4 ps
respectively. When the required flUldamental pole
switching amplitude is greater t.han O.8Vdc PI/2, the
correction factor equations add a further 23.4)lS.

References_

(1) J.A. Taufiq, B. Mellitt & C.J.Goodman "A Novel
algori thIn for generating near optimal Mt wavefonns
for ac traction drives", Proc. lEE vol 133,Pt B,
no. 2, pp 85-94 Mar. 1986.

12) J .A. Taufiq, C.J. Goodman & B.Mellitt "Railway
signalling compatibility of inverter fed induction
motor drives for rapid transit.", Proc. lEE vol 133,

354

no. 2,Pt B, pp 71-84.Mar 1986.
[3J S.R. Bowes & M.J. Mount "Microprocessor cont.rol of

PWM inverters", lEE PRCC., vol 128, rrr a, no. 6 pp
293-305 ,Nov. 1981.

(4] A.V. Oppenheim "Realisation of Digital filters
lIsing Block floating point arithmetic", IEEE Trans.
Audio Electroacoust. vol. AU-18,pp. 130-136, JWle
1970.

{5] R.J. Chance ., Simulation E. pcriences in the
dE:"velopnent of softwarE:" for digital signal
processors" Microproc. and Microsys, Vol 10 No 8
Pl'. 419-426, 1986.

[7] S. Sane, H.lrinatsu "Very preci.se turn-off timing
control of ga.te turn-off thyristors", lEE PEVD
conf. London, Pl'. 23-26,1-4 May 1984.

(8J R.J. Chance "TMS320 digital signal processor
development system" , Microprocessors and
Microsystems, vol. 9 no. 2, pp 50-56, Mar 1985.

(9) R.J. Chance & ·B.S.Jones "A Combined Software
/Hardwa~e Development tool for the TMS32020 Digital
Signal Processortl J. Micro. App., Vol 10, pp
179-197,1987.

AEE!1ndix A The TMS32010 Simulator

The Simulator used in this work [5,8] is part of a
TMS32010/20/C25 development syst.em written by one of
the authors (RJC). It includes a TMS32010 assembler and
simulator the normal host being an IBM Personal
Computer. 'The simulator accepts machine code created by
the assembler and allows simulated execution of
1MS32010 programs. The usual facilities such as break
point setting, access to user symbols, instruction
timing elc. are provided. This simulator is .
psrticularly intended to be used for linking digital
data streams to TMS32010 i/o ports or memory for test
purposes. One advantage is that values are precise
digi tal values rather than analog signals and are thus
repeatable and accurate. In addition, powerful software
tools on the host may be easily used to generate or
analyse i/o data.

The use of such a simulator would be limited. without
the ability to simulate essential peripheral hardware
e.g. the wavefonn. generation RAM. This simulator is
supplied in object library fonnat. The user may create
a software simulated peripheral 'device t, to be linked
at the object code level to the TMS320 simulator. Such
a simulated peripheral is usually written in '·C'. This
enormously extends the use of the simulator and allows
debugging methods impractical in hsrdware such as the
trapping of complex i/o data. Simulated peripherals
have been used not only to allow the use of real
hardware and imaginary hardware used only for testing.
The simulated peripheral concept has also been used (9)
in multiple TMS320 simulation, program execution in a
mixed real/simulated envirorunent and simulator
veri fication.

DESIGN AND IMPLEMENTATION OF AN EX1ENDED KALMAN FILTER FOR THE STATE ESTIMATION OF A
PERMANENT MAGNET SYNCHRONOUS MOTOR

Rar:hed Dhaouadi,
SI. member. IEEE

Ned Mohan.
Member. IEEE

Dept. of Electrical Engineering
University of Minnesota
Minneapolis. Minnesota SS4SS

ABSTRACT:

This paper discusses practical considerations for
implementing the discrete extended Kalman filter in real
time with a digital signal processor.

The system considered is a Permanent Magnet
Synchronous Motor (PMSM) without a position sensor.
and the extended Kalman Filter is designed for the on-line
estimation of the speed and rotor position by only using
measurements of the motor voltages and currents.

The algorithms developed to allow efficient
computation of the filter are presented. The computational
techniques used to simplify the filter equations and their
implementation in fixed-point arithmetic are discussed.
Simulation and experimental results using the TMS
320C2S digital signal processor are presented to
demonslrate the feasibility of this estimation process.

1. INTRODUCTION:

High performance motion control systems need more
computing power than today's standard microprocessors are
capable of delivering; sophisticated control laws such as
observer based schemes or Kalman filtering in real time
require a very fast signal processor specia1ized and optimized
to perform complex mathematical calculations and
manipulate large amounts of data.

The extended kalman filter algorithm is an optimal
recursive estimation algorithm for nonlinear systems. It
processes all available measurements regardless of their
precision. to provide a quick and accurate estimate of the
variables of interest, and also achieves a rapid convergence.
This is done using the following factors:

• A knowledge of the system and measurement device
dynamics.
• The statistical description of the system noises.
disturbances. measurement errors. and uncertainties in
the system model.
• Any available information about the initial
conditions of the variables of interest.
The algorithm is computationally intensive. and all of

the steps involved require a vector or a.matrix operation.
Therefore. an efficient formulation of the algorithm needs to
be made rather than a straightforward implementation.

LarsNorum
Member. IEEE

Dept. of Eleclrical Engineering
Norwegian Institute of Technology
Trondheim. Norway

Moreover. for a practical application of the filter in real
til!'~, different aspects of implementation have to be
addressed: Among these aspects are the computational
requirements for the filter and the constraints imposed by
the computer used.

The computational requirements include mainly the
computation time per filter cycle and the required memory
storage. Knowledge of these quantities in advance will
enable the choice of a meaningful data sampling rates and
the required memory size for the system. The constraints of
the computer to be used are defined by its speed (cycle
execution time). its calculation capability (instruction set),
the type of arithmetic used (fixed point or floating point),
and its wordlength (l6-bit or 32-bit).

The extended Kalman filter approach is ideally suited to
the state estimation of a Permanent Magnet Synchronous
Motor (PMSM). It appears to be a viable and
computationally efficient candidate for the on-line
estimation of the speed and rotor position. This is possible
since a mathematical model. describing the motor dynamics
is sufficiently well known. The terminal quantities like
voltages and currents can be measured easily and are suitable
for the determination of the rotor position and speed in an
indirect way.

The paper is organized in eight sections. Section I is
an introduction. In sections 2 and 3. the state space model
of the PMSM is developed. and the extended Kalman filter
algorithm is presented. Using these formulations, the
computational requirements of the filter and its
implementation with fixed point arithmetic are discussed in
sections 4 and S. The results and the practical aspects of
implementation are discussed in sections 6 and 7. Section 8
has the conclusion and the future research on the subject.

2. SYSTEM MODEL:

The system considered is a permanent magnet
synchronous motor having permanent magnets mounted on
the rotor, and a sinusoidal flux distribution. A dynamic
model for this motor in a stator-fIXed reference frame (a,/3),
by choosing the current components ia• ib' the rotor speed
CJ)r' and the rotor position ar as state variables is as
follows:

© 1990 IEEE. Reprinted, with permission, from Proceedings of Power EleC'tmnic Specialists
Conference, June 1990. 355

.!l . Rs. ~f V~
dt I~. - IS Ip - IS (Or COS(8r) + IS

d 3 !.t
dt (Or· 2 J (ip COS(8r) -Ia sln(8r))

B !J.. J (Or- J

where,
Rs: swa per-phase resistance
Ls: SIaIOr per-phase inductance
1Ilf. pennanent magnet flux linkage

J: rotor moment of inertia
B: viscous damping

(1)

(2)

(3)

(4)

The voltage components Va. Vp. and the average load
torque TL are the deterministic control inputs of the
system. Both the voltage and current components· are
measurable quantities. They are obtained from the three
phase stator components by a linear transformation: .

(5)

(6)

Similar equations hold for the voltages.
To summarize. the system is driven by the stator

voltages Va. Vp and the resulting outputs are the stator
clDTCnts ia • ip. The state space model [Eqs. I through 4] is
nonlinear due to the cross product of the state variables Olr.
ia.isand Or

The motor parameters used are listed in Appendix A of
the paper.

3. THE EXTENDED KALMAN FILTER ALGORITHM:

The Filter algorithm can be summarized as follows [9]:
Let the system of interest be described by the nonlinear
dynamic Slate space model

X(t) = f[X(t).U(t).t) + w(t) (7)

356

where the initial state vector X(I() is modeled as a gaussian
nmdom vector with mean Xo and covariance PO. U(t) is the
deterministic control input vector. and w(t) is a zero..mean
white gaussian noise independent of X(I(). and with a
covariance matrix Q(t).

Let the available discrete-time measurements be
modeled as:

Y(tj) = h[X(ti).ti] + v(tj) (8)

where v(lj) is a zero.mean white gaussian noise that is
independent of X(I() and w(t). and with a covariance matrix
R(tj).

1\
The optimal state estimate X(t) generated by the filter

is a minimum variance estimate of X(t). and is computed in
a recursive manner as shown in Pig.I. The filter has a
predictor-corrector SttUctlJli as tollows (superscripts - and +
refer to the time before and after the measurements have
been processed):

The optimal state estimate ~ and the state covariance
matrix P are propagated from measurement time (ti-I) to
measurement
time (ti). based on the previous values. the system
dynamics. and the previous control inlluts and errors of the
actual system. This is done by numerical integration of the
following equations:

X(t) = f (X(t) • U(t). t)

P(t) = pT .. p(t) + P(t) .. p + Q

starting from the initial conditions: X(~~I)' P(t7.1)

where:
p _ a f(X.U,1)

- ax

(9)

(10)

(11)

By comparing the measurement vector. Y. to the
1\ .

estimated one. Y. a correction factor is obtained and is used
to update the state vector.

The filter gain matrix K(ti) is defined as:

where: (13)

evalU8ledIlX .. X(ti)

The IllCllSURlment update equations for the state vector
and the covariance malrix are:

+ - -X(~) .. X(t i) + K(Ii~ (Y(Ii)-h[X(ti),lj]) (14)

P(t:') .. p(t.) - K(',)*H(t1·)*P(t.) (15)
1 1"1 1

where, X(~) represents the optimal state vector estimate.

4. COMPUTATIONAL REQUIREMENTS:

The objective of the design presented in this paper is to
minimize the filter cycle time. while obtaining a reasonable
accuracy in the fllter equations implementation. The method
used for the numerical integration of Eq. 9 from one sample
time to the next is the fust order Euler integration
technique:

..
'"'' H(X<i,>.', J

Q R p.

Fig. I Block diagram of the extended Kalman fllter

Iii order to achieve a reasonable accuracy. the
integration step size which is the sampling period T s
shCillld be appreciably smallez than the characteristic 'time
constants of the system. The choice of the sampling time
Ts should be made to meet both the total computation time
of the filter and a reasonable integration accuracy.
Integration accuracy can be improved by using a second
order integration technique. or by dividing the interval
[ti-I. ti] into N subintervals and applying a first order
Euler integration technique to each subinterval. This
howevez will result in increased computation time.

The time propagation equation for the state covariance
matrix p. (Eq.IO). can be solved using the transition matrix
technique [9]. This method preserves both the symmetry
and the positive defmiteness of p. and yields adequate
perfunnance:

where.

ti
Qd(tj,!j-I> = I 4I(ti.t)*Q(t)*4IT(ti.t) dt (18)

ti-I

4I(ti.t) denotes the state transition matrix associated
with F(t,x(t» for all tE [ti_l.ti).

Qd(ti.ti-I) is next evaluated using a trapezoidal
integration:

~(tj,ti_}) = [4I(ti.li_l)O<Q.4IT(ti.ti_})+Qj. ~ (19)

This form is atlnlCtive since it replaces having to know
4I(ti.t) for all t. by evaluating only 4I(ti.ti_I)'

(20)

Clearly. all of the steps involved above require a vector
or a matrix operation. These operations consist largely of
multiply or multiply-accumulates. Moreover. all these
computations must be performed within one sampling
interval of the system. This therefore motivates the need for
a very fast signal processor with dedicated arithmetic unit
and instruction set

Table I shows the different steps and the number of
operations needed for the filter computation. The defining
equations for the filter can be programmed as shown under
the column labeled "computation". The total number of
multiplications. additions and divisions for each
computation are also listed.

The total computation time of the filter is equal to the
total execution time of all multiplications. additions and
divisions. plus the total logic time which is the execution

357

· lime of the additional stepS required for properly coatlO11ing
and sequencing the different operations. The logic time is
Vf!CIJ sensitive to the order of.the system's model, and can be
substantially important since most of the openuions include
either a matrix multiplication or a matrix addition.

S. IMPLEMENTATION WITH FIXED_POINT
ARITHMETIC:

This section presents the methods of solving the
Kalman Filter equations, in a computationally efficient
IIIIUlIIeI' using fixed-point arithmetic. The microprocessor
coaside.red for this application is the TMS 320C2S digital
signal processor. It is a l(i-bit microconttoller specifically
designed and optimized for high speed processing, and is
shown to be well suited for high performance conttol
applications.

The dynamic range in fIXed point arithmetic with a 16-
bit word length is from 2-15 to 1. Therefore, to avoid the
overflow and underflow problems, all variables in the filter
equations (Eq. 9 - 15) must be scaled to values less than
one.

The state variables in Eqs. 1 through 4 are scaled with
respect to their maximum values. This results in scaled
differential equations where all variables are nonnaIized. The
subscript n denote a normalized variable:

d. Rsn . Cilfn . 1
~ Ian'" X Ian + y- CDrn sln(9rl + -X Van

sn '''Sn sn

d 3 Cilfn (. (I' . (~ CDrn = :2 . Tn . Ipn cos 9r - Ian sin 9rl I

~ CDrn
dt • 2,;"

where, 't = fl)n.t , is the normalized time, and fl)n is the
nonnalizing frequency.

The scaling factors of the covariance malrices were
determined tJuough computer simulation, by looking at the
maximum values of the malrices elements for different
simulation runs. .

However, the maximum values of the gain matrix
elements were found to have a large dynamic range and were
difficult to predict. To avoid this scaling problem, the
solution used was to update the state vector and the state

358

covariance matrix direcdy, without explicidy computing
the gain coefficient mattix K[1]. The measurement update
equations [Eqs. 14 and 15] are therefore transformed and
expressed as follows:

X(~)=X(9 + A*B-l*y (21)

P(t~) = P(l.) - A*B-l*AT
1 1

where, A=P(l.)*HT
1

B=H*A+R

Y .. Y(tj} - H*X(li)

(22)

(23)

(24)

(2S)

This formulation resulted in a simpler scaling
procedure and a greater numerical precision.

6. FILlER TUNING:

The critical step in a Kalman filter design is to obtain a
numerical evaluation of the flIter parameters specified by
the initial state Xo and the covariance matrices PO, Q and
R. This process is called tWIing and it involves an iterative
search for the coefficient values that yield the best
estimation performance possible.

The noise covariance Q accounts for the model
inaccuracy, the system disturbances and, the noise
introduced in the voltage measurements (sensor noise, AID
converters quantization). The rounding and truncation errors
in the computations due to the fixed word length of the
processor can corrupt the filter performance, and are
considered as additional sources of system noise. The noise
covariance R on the other hand, reflects the measurement
noise inttoduced by the current sensors, and the coding
effects of the AID converters.

Changing the covariance matrices Q and R affects both
the transient duration and the steady state operation of the
flIter. Increasing Q would indicate either stronger noises
driving the system or increased uncertainty in the model.
This will increase the values of the state covariance
elements. The filter gains will also increase thereby
weighting the measurements more heavily, and the filter
transient performance is faster. Similarly, increasing the
covariance R indicateS that the measurements are subjected
to a stronger corruptive noise and should be weighted less
by the filter. Consequendy the values of the gain matrix K
will decrease, and the transient performance is slower.

For the initial state covariance matrix PO, the diagonal
terms represent variances or mean squared errors in
knowledge of the initial conditions. Varying Po yields a
different magnitude transient characteristic. The transient
duration will be the same and the steady state conditions are
unaffected.

Table 1

Variable Defining equation Computation 'of , of Add 'ofDiv
Mult

X(~) + +
X(~) + Ts.f(X(~ » 14 11 3

F iJf 14 1
ax

~ I + Ts·P 16 4
Qs T Qo~T 16 0 (~Q.~T+Q) • .!l

2
~(Qo~T) 64 48

~(Qo~T)+Q 0 4

(~Q.~T+Q>- f 16 0 1

P(tj) ~.p(~).~T + Qd P(t~).4>T 64 48
1

4>.(p(~) .. ~T) 64 48

~.p(~).4>T + Qd 0 16

K(tj) P(tj).HT .(H.;.P(tj).HT + Rr 1 p(9HT 32 24

H"(P(l.).HT) 16 12
1

H"P(l.) .. HT + R 0 2
1

[H"P(lj)"H+T + Ryl
2 1 4

P(l.).HT .. [.r1 16 8
1

H.X(lj)
8 6

Y -H"X(li)
0 2

X(~+) X(tj) + K.(Y-H.X(tj » K.(Y-H.X(li»
8 4

X(ij) + K"(.) 0 4

P(~+) (1- K.;.H).p(l i)
K .. H 32 16

I-K .. H 0 4

(I - K"H)"P(li)
64 48

TOIal 446 311 8

The covariance matrices Q. R and Po are assumed to be
diagonal for Ihe lack of sufficient statistical information to
evaluate Iheir off-diagonal terms. In Ihe following
simulation. Ihe best filler performance was obtained wilh:

Q = 0.02.1(4) ; Po • 0.01.1(4) ; R .. 0.1"1(2)

where. 1(2) and 1(4) are the 2x2 and 4x4 identity matrices.

359

7. SIMULATION AND EXPERIMENTAL RESULTS:

Simulation results:

The filter algorithm was first simulated to get all the
influences of the system parameters on the filter
performance. The computer program developed simulates
fixed-point arithmetics with a l6-bit word length. The
control input voltages and motor currents are also
simulated. They are assumed to be real-time measured
values obtained from a PMSM running in steady state, as
shown in Fig. 2. A random noise was added to the currents
to simulate the measurement noise.

~'r----------------------------.

l<t··· ..
,.
10

-10"

I
-%OJ

I
·30>

I
-tOo 0.005 0.01 0.01' 0.02 0.02!! 0.03 0.03!! 0.04

Time (Iit()

10r-----------------

l···· .. ··\ i~ :[, \ ..

"
O~

, .,.
I .. ~
i :[
i

.IO~' ---__ -..".,..-__ ,--~,.,_~:::__::_:::_:__:_
o ~ ~ ~ w ~ ~ ~ ~

Fig. 2 Simulated voltages and currents for the PMSM
running at constant speed (1500 rpm).

The filter starts from rest with the motor already in steady
state. The initial values of the currents are assumed to be
known to the filter and are set equal to the initial measured
values. The starting value of the speed was set to zero, and

360

the simulation starts when the actual rotor position reaches
9r = O. The initial position used by the filter was used as a
variable.

1

I
o .

-0.10 O.OW: 0.01 0.015 0.02 0.0l! 0.03 0,035 0.04

0.'

0.'

0.7

.1 0 .•

1
'II 0.5 I O.

0.3

0.'

0.1 .. ~ ••••• /:
1

,.... (lee)

..

~ ~ ~ ~ ~ ~ = ~ ~
na. (ICe)

Fig. 3 Transient and steady state behavior of the estimated
speed and rotor position. 1) 9r(0) = 0 deg.
2) 9r(0) = 30 deg. 3) 9r(0) = 60 deg.

Figure 3 shows the behaviour of the estimated values
of the speed and the rotor position.The actual steady state
normalized speed is equal to CIlrn = 0.5. It can be seen that
even though the initial speed used by the filter is Cilr(O) = 0,
the estimated speed follows closely the actual speed after an
initial transient. Similarly, the estimated position go
through a transient and then converges to follow the actual
position. The magnitude and duration of the transient and
the steady state performance are adjusted by the values of

the covariance mlllrices Q. R and PO. The transient duration
is about IS msec.

It is clear that the Extended Kalman filter tracks very
well the speed and rotor position of the motor. The precise
modeling of the system. and a good estimate of the initial
conditions will improve further the performance of the
filter.

ExperimeDtal results:

Implementation of the Kalman filter in real time was
carried out using the TMS 320C2S digital signal processor.
The system hardware (data acquisition system) and software
was developed and tested using the XDS/22 Hardware
Emulator and its supporting program tools.

The total filter algorithm was performed in (284 msec).
Table 2 lists the various execution times for the different
steps involved in the filter computation. The processing
time of the measurement vector Y(ti) and the control input
vector U(ti-l) is not included in the filter computation.
These variables are assumed to be available to the filter at
no computing expense. Clearly. the largest execution time
is taken by the covariance matrix computations. This
computation time can be further reduced by computing only
the lower lriangular form of the symmettic mattices.

Table 2

Operation Execution time'
in usee

Compute the cosine of the position 7.2
angle

Compute the sine of the position S.3
angle

Compute the ttansition mattix 7.3

Time propagation of the state 4.4
vector

Time propagation of the state 99.0
covariance mattix

Measurement update of the state 160.7
vector and the state

Covariance matrix

Total 283.9

The filter can operate in a system having a maximum
sampling frequency of 3.52 kHz. or a theoretical system
bandwidth of 1.76 kHz. This high bandwidth allows the
Extended Kalman Filter implemented on the TMS 32OC25
to be used in high performance real-time motion control
systems.

Figure 4 shows the behaviour of the estimated values
of the speed and the rotor position. using numerically
simulated currents and voltages waveforms. These results
are comparable to the off-line simulation results in Fig. 3.

The above results show that the extended Kalman filter
can be efficiently implemented in real time to estimate the
speed and rotor position of the PMSM.

a)

b)

Fig. 4 Experimental results for the estimated speed and
rotor position with zero initial conditions.
a) Speed: 300 rpm/div. Time: 2 mscc/div
b) Position: 72 deg/div. Time: 5 msec/div.

361

8. CONCLUSION:

In Ihis paper, Ihe design and implementation of an
extended Kalman filter wilh a digital signal processor has
been investigated. A systematic and analytic approach for
developing the algoridlm was presented. The computational
techniques used to simplify Ihe filter equations and their
implementation in fixed-point arilhmetics are discussed.
The filter was tuned by varying the parameters Q, R, Po,
Xo , to meet the desired ttansient and steady state
perfonnance. The discrete Extended Kalman Filter have been
found to be well suited to Ihe speed and rotor position
estimation of a Permanent Magnet Synchronous Motor.
The proposed approach has been validated using computer
simulation and actual implementation in real time wilh Ihe
TMS320C25 digital signal processOr.

The next step in this research project will be to testlhe
filter wililhe actual currents and voltages of a PMSM drive
system, and use Ihe estimated position for the control of the
PMSM instead of a position sensor. This will be reported
in a following paper.

ACKNOWLEDGMENT

The aulhors wish to Ihank Texas Instruments Inc. for
providing the TMS32OC25 development tools. The
financial support of this project by the Uni versily of
Minnesota Center for Electric Energy is gratefully
acknowledged.

APPENDIX A

Motor parameters:
Maximum speed = 3000 rpm
Rsted torque = 2.2 N.m
Rs=0.70
Ls=5mH
4lf = 0.193 V.sec/rad
J = 9'10-5 kg.m2
B=O

REFERENCES:

[1] J. C. Wauer, "Practical Considerations in
Implementing Kalman Filters", AGARD-LS-82,
NATO Advisory Group for Aerospace Research and
Development, London, May 1976. pp. 2.1~2.11.

[2] J. M. Mendel, "Computational Requirements for a
discrete Kalman Filter", IEEE Transactions on
Automatic Control, Vol. AC-16, No.6, December
1971, pp. 748-758.

[3]U. Kirkberg, Ph. K. Sattler, "State Estimation of an
Inverter Fed Synchronous Motor", European
Conference on Power Electronics and Applications,
Brussels, October 1986, pp. 3.229 - 3.234.

362

[41 B. Gallwitz, F. Hillenbrand and Ch. Landgraph, "A
Proposal For Avoiding The Direct Measurement of
Speed And Angular Position of The Synchronous
Machine", IFAC Conn-ol in Power Electronics and
Elect. Drives, Lausanne, Switzerland,1983, pp. 63-
68.

[5] A. M. N. Lima, B. de Fornel, Mrs. Piettzak-David,
"On Stochastic Filtering Techniques and its
Applications to AC Numerical Drive Systems",
Proceeding of the EPE, 1987, pp. 683-688.

[6] J. Tan and N. Kyriakopoulos, "Implementation of a
Tracking Kalman Filter on a Digital Signal
Processor", IEEE Transactions on Industrial
Electronics, Vol. 35, No. I, February 1988.

[7] J. Sethuram, David Squires, "Application of Digital
Signal Processors in Motion Conn-ol", Conference

-on Applied Motion Control, June 1987.
[8] C. T. Leondes (ed.), "Theory and Application of

Kalman Filtering", AGARDograph No. 139, NATO
Advisory Group For Aerospace Research and
Development, London, Feb. 1970.

[9] P. S. Maybeck, "Stochastic Models, Estimation and
Control", Vol. 1 and Vol. 2, Academic Press, New
york,1982.

[10] W. Leonhard, "Control of Electrical Drives",
Springer-Verlag, Berlin, 1985.

[11] Texas Instruments Inc., "Digital Signal Processing
Applications with the TMS320 Family", 1986.

[12] Texas Instruments Inc., Second Generation TMS320
User's Guide, 1987.

[13] Texas Instruments Inc., XDS/22 TMS320C2x
Emulator User's Guide, 1987.

TRENDS DF DIGITAL SIGNAL PRDCESSING IN AUTOMOTIVE

KUN-SHAN LIN
Microprocessor Mlcrocontroller Products Division

Texas Instruments Inc.

ABSTRACT

The advent of single-chip programmable
digital signal processors (DSP) has
expanded dl glta 1 sl gna 1 processl ng Into
automotive applications. Digital signal
processors, compatible In cost to
general-purpose microcomputers, offer
much higher throughput In performing
computationally Intensive tasks.
Because of this advantage, closed loop
control, adaptive control, and digital
audio processing can now be Implemented
In a cost effective manner. Some of the
DSP automotive applications Include
combustion feedback engine control,
active suspension systems, anti-skid
brakes Incorporating traction control
and digital audio-based entertainment
systems. The availability of digital
signal processors is changing many
aspects of automotive designs. Early
adopters of thl s technology for
Innovative automotive products will
enjoy leadership and financial benefits
over their competition. The Impact of
DSP to the automobile has just begun and
will continue beyond the year 2000 (1).
Thl s new technology has al so presented
tremendous challenges to both automotive
and semiconductor industries.

This paper first discusses digital
signal processing characteristics.
After reviewing historical digital
signal processing solutions, the paper
focuses on single-chip programmable
digital signal processors and compares
thei r architectural desi gns to general­
purpose microprocessors and
mlcrocontrollers. Deficiencies of early
digital signal processors are discussed
and trends of DSP are explored.
Performance and cost benefits of using
DSPin digital control 'systems are
explained. Automotive applications of
digital signal processors are discussed
in areas of powertrain, body and chassis
control, and entertainment systems. The
last part of the paper discusses the
challenges presented to both automotive
industry and semiconductor vendors.

CHARACTERISTICS
PROCESSING

OF DIGITAL SIGNAL

Digital signal processing Is concerned

with the representation of signals by
sequences of numbers, and the
transformation, processing or
controlling of such signal
representations by numerical computation
procedures. Digital signal processing
encompasses a broad spectrum of
applications. Some application examples
include digital filtering, speech
coding, image processing, spectral
analysis, radar signal processing,
robotic control, and missile guidance.
The recent development of programmable
single-chip digital signal processors
has further expanded the field of DSP
applications Into high volume consum'er
products: digital audio, consumer toys,
and automotives.

These appl ications and those considered
digital signal processing (2-10) have
several characteristics in common:

-Mathematically Intensive algorithms,
-Realtime operation,
-Sampled data 'Implementation, and
-System flexibility.

let's illustrate these characteristics
in the following paragraphs:

Mathematically Intensive Algorithms

A common DSP equation that has to be
computed (and often repeatedly computed
in each time critical loop) takes the
form of (5-10):

N-l

yIn) =I:a(l) * x(n-i) +

I =D

M

Lb(k) * y(n-k)

k = 1

where yIn)
y(n-k)

x(n)
x (n -I)

a (i), b (k)

= present output,
past outputs,

= present input,
= past inputs, and

weighting factors.

This equation basically says that any
output y can be computed as a wei ghted

© 1988 IEEE. Reprinted, with permission, from Proceedings of Convel:r:ence . 88, Oct. 1988. 363

sum of the Input at the present time n'
past inputs x(n-i). and past output;
y(n-k). Terms a(i) and b(k) are the
weighting factors. If output y is
Independent of the past outputs. a
simplified version of the equation can
be obtained:

N-1

y(n) -La (i) * x(n-I)

1-0

- a(O) * x(n) + a(1) * x(n-l) +
+ a(N-l) * x(~-N+l)

In digital signal . processing
terminology. this Is the general form
for Finite Impulse Response (FIR) filter
and also the convolution of two
sequences of numbers. a(1) and x(i).
Both FIR filtering and convolution are
fundamental to di gital signal
processing. They also have some
physical significance. For example. an
FIR filter is a common technique used to
\!liminate the erratic nature of stock
market prices. When the day-to-day
closing prices are plotted. it Is
sometimes difficult to obtain the
desired information. such as the trend
~f the stock. because of the large
variations. A simple way of smoothing
the data is to calculate the average
closing values of the previous five
days. For the new average val ue each
day. the oldest value is dropped and the
newest value added. Each daily average
value would be the sum of the weighted
value of the latest five days. where the
weighting factor is 1/5. In equation
form. the stock average value is
determined by:

average(n) • - * x(n) + - * x(n-l) +
5 5

1
- * x(n-2) + - * x(n-3) + - * x(n-4}
555

where x(n-i} is the daily stock closing
price for the (n-i)th day. This
equation assumes the same fO'rm as the
FIR filter and sometimes is referred to
as the moving average.

A digital signal processor has to be
optimized to quickly compute N
multiplications and additions or sums of
products as indicated .in the above
equat i on s. Thi s capabi 1 i ty is enhanced
with OSP instructions. such as multiply
(MPy). addition (ADD). and multiply and

364

accumulate (MAC). Furthermore in recent
OSP. each of these instructions can be
executed in a single machine cycle.

Realtime Processing

In addition to being mathematically
intensive. DSP algorithms must be
performed in realtime. Realtime can be
defined as a process that is
accomplished by the DSP without creating
a delay noticeable to the user. In the
stock market example. as long as the new
average value can be computed prior to
the next day when it is needed. it is
considered to be completed in realtime.
In digital signal processing
applications. processes happen faster
than on a daily basis. In the FIR
filter example. the sum of products must
be computed usually within hundreds of
mi croseconds before the next sample
comes into the system. A second example
is in a speech recognition system where
a noticeable delay between a word being
spoken and being recognized would be
unacceptable and not considered
realtime. Another example is in image
processing. where it Is considered
realtime if the processor finishes the
processing within the frame update
period. If the pixel information cannot
be updated withi n the frame update
period. problems such as flicker.
smearing. or missing information will
occur.

Because of this realtime requirement. a
di gital si gnal processor often
implements DSP functions. such as MPY.
ADO and MAC. with on-chip hardware.
rather than software or microcode as in
general-purpose microprocessors and
microcomputers. This hardware intensive
approach allows most of the OSP
operations to be executed in single
machine cycles. To further increase the
processor capabil ity for realtime
processing. multiple instructions are
often being executed in parallel.
revealing a high degree of parallelism.

Sampled Data Implementation

The application must be capable of being
handled as a sampled data system in
order to be processed by digital
processors. such as digital signal
processors. The stock market is an
example of a sampled data system. That
is. a specific value (closing value) is
assigned to each sample period or day.
Other periods may be chosen. such as
hourly prices or weekly prices. In FIR
filter. the output y(n) is calculated to

be the weighted sum of the previous N
inputs. In other words. the input
signal. x(n). is sampled at periodic
intervals (1 over the sample rate).
multiplied by weighting factor. a(i).
and then added together to give the
output result of yIn). Examples of
sample rates for some typical sampled
data applications (2-5) are shown in
Table 1.

Table 1. Sample Rates vs. Applications

Norlal
Appl ication Sa.ple Rate

Control 1 KHz
TelecOilunications 8 KHz
Speech Processing 8-10 KHz
Audio Processing 4D-48 KHz
Video Frale Rate 25-3D Hz
Video Pixel Rate 14-18 MHz

In a typical DSP appl1catlon. the
processor must be able to effectively
handle (input. output. and store)
sampled data in large block quantity and
also perform arithmetic computations on
these data In realtime. Note that the
higher the sample rate required by the
application. the more demand on the
processor throughput to meet the
realtime requirement.

System Flexibility

The design of the digital Signal
processing system must be flexible
enough to allow improvements in the
state-of-the-art. We may find out after
several weeks of using the average stock
price as a means of measuring a
particular stock's value that we need to
adapt our methods to get better results.
Some of the adaptations may include a
different method of obtaining the dally
information. different daily weightings.
a di fferent number of periods over
which to average, and a different
procedure for calculating the result.
Enough flexibility in the system must be
available to allow for these variations.
In many DSP applications, techniques are
still in the developmental phase, and
therefore the algorithms tend to change
over time. As an example, speech
recognition is presently an Inexact

technl que
al gorithmlc
example we
flexibil ity
updated.

requiring continual
modification. From this

can see the need for system
so the DSP algorithm can be

A programmable DSP system can provide
this flexlb11 ity to the user. This
capabil ity Is further enhanced with
large on-chip EPROM for the ease of
prototyplng and field testing of new
products.

HISTORICAL DSP SOLUTIONS

Over the past several decades, di !lital
signal processing machines have gone
through several evolutions Incorporating
these characteristics. Large mainframe
computers were initially used to process
signals In the digital domain.
Typically. because of state-of-the-art
l1mitatlons. this was done In non­
realtime. As the state-of-the-art
advanced. array processors were added to
the processing task. Because of thel r
flexibil ity and speed. array processors
have become the accepted solution for
the research laboratory, and have been
extended to end-applications in many
Instances. However, integrated circuit
technology has matured, allowing the
design of faster microprocessors and
microcomputers. As a result, many
digital signal processing applications
have migrated from the array processor,
to microprocessors and microprocessor
subsystems (i.e., bit-slice machines).
This mi grat I on has brought the cost of
the DSP solution ijown to a point that
allows pervasive use of the technology.
The recent Introduction of single-chip
digital signal processors with their
increased performance and relatively low
cost have further expanded digital
signal processing from traditional
telecommunication ·and military to
consumer audio and automotive
appl1cations.

SINGLE-CHIP PROGRAMMABLE DIGITAL SIGNAL
PROCESSOR

As noted previously, the underlying
assumption regarding a digital signal
processor is fast arithmetic operati ons
and high throughput to handle
mathematically intensive algorithms in
realtime. In a typical single-chip
digital signal processor (11-15), this
is accomplished by using the following
basic concepts:

365

-Harvard architecture,
-Extensive pipelining,
-A dedicated hardware multiplier,
-Special DSP instructions, and
-A fast instruction cycle.

let's explain the benefit of
I ncorporat i ng these concepts In DSP
arch~tectural design:

Harvard Architecture

The Harvard architecture ·(16) is used
for speed and flexibility, in which the
on-chip program and data lie in two
separate spaces and are carried in
parallel by two separate buses. This
permits a full overlap of instruction
fetch and execution. In a typical
general-purpose microprocessor, Von
Neumann (16) architecture is used, where
program and data are carried
sequentially on the same bus.
Instructions are therefore executed in
seri al •

Extensive Pipelining

In conjunction with the Harvard
architecture, pipelining is used
extensively' to reduce the instructron
cycle time to its absolute minimum, and
to increase the throughput of the
processor. In pipeline operation, the
instruction prefetch, decode, and
execute operations are handled in
parallel, thus allowing the execution of
instructions to overlap. As a result of
this extensive pipelining, multiple OSP
operations, such as multiply, add,
shift, and data move (MACO), can be
executed in one single machine cycle.

Dedicated Hardware Multiplier

As we saw in the general form of an FIR
filter, multiplication is an important
part of digital signal processing. For
each fi 1 ter tap (denoted by i), a
multiplication and an addition (MAC)
must take place. The faster
multiplication can be performed, the
higher the performance of the digital
signal processor. In ge"neral-purpose
microprocessors, the multiplication
instruction is constructed by a series
of additions, therefore taking many
instruction cycles. In comparison, the
characteristic of every OSP device is a
dedicated hardware multiplier.
Important DSP operations, such as MPY
and MAC, can be executed in single
machine cycle as a result of the on-chip
multiplier and extensive piplining. In a
typical general-purpose microprocessor,
these operations are typically executed
in 30 to 40 machine cycles.

366

Special DSP Instructions

Special instructions resembling typical
DSP operations are created to ease DSP
algorithm development and speed up
machine throughput. Examples of these
DSP Instructions are: MAC (multiply and
accumulate), OMOV (data move, 1 OMOV
represents a delay of 1 sample period),
RPT (repeat, for repeating
instructions), BlKO (block move of data)
and BLKP (block move of program).

Fast Instruction Cycle

The realtime processing capability is
further enhanced by the raw speed of the
processor in executing instructions.
The characteristics which we have
discussed, combined with optimization of
the Integrated circuit design for speed,
give OSP devices instruction cycle times
approaching 5.0 nsec (nanosecond). This
includes executing complicated DSP
operations, such as MAC and MACD, within
one single machine cycle.

Since the invention of the single-chip
DSP in early 80's, many semiconductor
vendors have introduced generations of
digital signal processors into the
market. One of the most popular fami ly
of digital Jignal processors, TMS320,
now has three generations and over 15
members of devices available for the
automotive designer to choose from (11-
15). The early programmable digital
signal processors were designed in NMOS.
These devi ces now have been redesi gned
in CMOS to take advantage of lower power
consumption and increased speed. Newer
generations of DSP have also been added
with further improvements in speed,
throughput, and device density. As a
point of reference in comparing DSP to
general-purpose microprocessors, Table 2
lists the clock speed, throughput (in
MIPS, million instructions per second),
MAC execution, and device density for
the Texas Instruments TMS320 DSP fami ly
and Intel 80386 (ll-IS), one of the most
popular general-purpose microprocessors
in the market today.

Table 2. TMS320 asp vs. 80386
Microprocessor

ICllpl1 bit
dota lizl

TMS32010
1982

16
(J st glnlratl on) intlglr

TMS320C25 1986 16
C2nd glneratl an) Intlger

TMS320C30 32
1988 Integer/

C3rd generatl on) fltg. pt.

Intel 80386 1985 32
Integer

TRENDS OF SINGLE-CHIP PROGRAMMABLE
DIGITAL SIGNAL PROCESSOR

The early versions of digital signal
processors have made significant
contributions to telecommunication and
military applications (2-5). They also
exlhiblt some deficiencies:

- Unfamiliar architecture to
microprocessor designers

- Lack of friendly development support
tools

- Device too costly for large volume
applications

These early deficiencies haye started
being resol ved by some of the DSP
vendors. The following DSP improvements
and technology trends have begun and
will continue Into the 1990's.

- Merging with general-purpose
mlcroprocessor/microcontroller
features

- Lower cost. especially lower system
cost

- Higher performance

Merging with General-purpose Features

Dri Yen by the 1 atest I-u CMOS
semiconductor processing technology and
Improvement In the DSP architecture (14-
15). the latest digital signal
processors are now featuring 32 bit
architecture, fixed and floating-point
operations, 50-nsec cycle time, large

clock throughput MAC devlcI
splld IXlcution dlnslty

20 MHz 5 MIPS 400 nSlle 58.000
transistors

40 MHz 10 MIPS 100 osle 160.000
transistors

20 MIPS/
40 MHz 50 nsee 695.000

40 MFLOPS transistors

16 MHz 4 MIPS 1.375 nSlc 275.000
transistors

on-chip 4K x 32 ROM and 2K x 32 RAM,
instruction cache, concurrent Direct
Memory Access (DMA), and large 16M x 32
address area In one continuous memory
space. These devices offer more, and
expanded digital signal processing
functions and run at much higher speed
than thei r predecessors. The throughput
of these devices has reached 20 MIPS or
40 megaflops (millions floating-point
operations per second). previously
unobtainable except with supercomputers.
These architectural Improvements
coupled with more general-purpose
instruction set, high level language
support (1 ike C), added thi rd parties,
and installed software base are making
digital signal processors much easier to
use.

Another aspect of the development is
integrating more microprocessor and
microcontroller type of peripherals on­
chip for DSP spinoffs. These peripherals
include better memory management,
timers, serial ports, co-processor
interface, •• features quite familiar to
microprocessor desi gners. A few DSP
vendors have al so started offering
processors with on-chip EPROM (12) for
ease of prototype development, field
testing, and early production runs.

Lower Cost

Early digital signal processor chips
were sold for hundreds of dollars. Some

367

of these devices have been redesigned In
CMOS with small geometry. which offers a
reduction In size. cost and power
consumption. and also an Increase In
throughput. DSP devices are now
available In sub-fhe dollars range for
high volume applications. Further
syst~m cost reduction Is possible by
Integrating more peripherals on chip for
semi-custom sol ut Ions. This enabl es DSP
to be used I n cost sen s It ive
applications. such as compact discs
(CD). Intelligent toys. and computer
di sk dri vers.

Figure 1 shows the DSP price In dollars
per MIP (S/MIP) over a period of six
years using the first-generation of the
Texas Instruments TMS320 DSP (12) as an
example :

50

$
;10
M
I
P

\

'11

+---r---,---,----r--.---,-.--,-----r-
82 83 B4 85 86 B7 88

YEAR
Figure 1. First-generation TMS320 S/MIP

vs. Year

The cost cutting trend shown in Figure 1
will certainly be continued beyond the
1990's and will definitely benefit
automotive designers In choosing DSP as
solutions for their applications.

Higher Performance

Performance can be measured based on
cycle time. algorithm benchmarks.
applicatons throughput. or the
combination of several or all of them.

368

One of the major' DSP desl gn emphases is
to be able to compute MAC (multiply and
accumulate) quickly. This capability
has been Improved substantially over the
last few years. demonstrated In Figure 2
comparing the ,MAC (16-by-16 multiply and
add) execution speed between the TMS320
devices and some of the popular general­
purpose microcontrollers (GP uC) and
microprocessors (GP uP) (17-22). The
performance of DSP will continue to be
increased and remain one of the primary
driving forces for future DSP
generations.

10,000
A 8096

X 68000 A 68HCll

M
A

A 80CI96

C X 80386
1.000 168020

i
n I TMS32010

I TMS32020
n
s 100 I TMS320C25

e 50 HOSP
I

C I'"1GP uP TMS320C30

uCP uC

10 T-'-'-
79 80 81 82 83 84 BS 86 87 BB

YEAR
Figure 2. OSP and uC/uP MAC Execution

vs. Year

DSP IN DIGITAL CONTROL SYSTEMS

Control systems have traditionally been
implemented in analog form. With the
availability of microprocessors and
mlcrocontrollers. digital control
systems are taking over most
applications from analog systems.
Digital control systems have numerous
advantages over analog systems. Most
analog systems are limited to control
using single-purpose characteristics of

the error signal 11ke P (proportional).
I (Integral). or D (derivative). or a
combination of these characteristics.
Digital systems allow greater
computational activity. thus making it
possible to implement more sophisticated
algorithms. Since digital systems are
programmable. they can be used for
control systems requi ri ng onl i ne update
of a 1 gori thms and process pa rameters to
compensate for system changes. Di gltal
systems are insensitive to component
aging and temperature dri fts. They .1 so
allow the same processor to be used to
control multiple processes or implement
multiple functions.

Digital control systems are used for
applications In areas of robotiCS.
numerical control. di sk dri ye control.
and engine control. These applications
are increasingly requiring
implementation of sophisticated control
algorithms to meet their performance
requirements. However. traditional
8/l6-bit microprocessors and
microcontrollers lack the speed of
numerical calculations to meet some of
these requirements (23-27). This has
resulted in some compromise in control
system design. such as using table
lookup for· algorithms and open loop
controls •

AlIlIo PROtESSING.
DIGITAL RADIO

The digital signal processors introduced
previously have been specifically
designed for these demanding
appl i cat ions. and offer a new tool for
automotive deSign engineers. The
computational speed ayallable from a
digital signal processor allows
automotive deSigners to now execute
control algorithms mathematically
instead of using look-up tables. More
sophisticated control algorithms. such
as feedback control. multi -variable
control. observer model sand adapthe
control can all be implemented with a
single-chip digital signal processor
(23-27).

The benefits offered with thi s new
approach are

lower system cost:

- Because of the replacement of the
large lookup table and a
microcontroller with a single-chip
DSP. system cost can be reduced.

- Furthermore. when Observer Model (a
software model to estimate control
system parameters) is implemented.
some expensi ve sensors in the system
can be eliminated and replaced by
software estimation of these
parameters using DSP.

CDMPACT DIS!(CELLULAR PtlH.
GRAPHIC EIlUAllZER / yoICE DIAlING
SIlIIIl EJIIAHCEMEHT FIL TERINC

•
/

ACTIYE SUSPENSION SYSTEM.

yolt£ CIJIOW(J,

SPEED! RECIlQIITION !E.G. LIGHTS. IIN1lO11
SPEAKER YERIFlCATlON FOR S£OJRE LDCK

Figure 3. DSP Automo.tive Applications

HYDRAlLIC OR AIR PRESSURE tDNTRIl.
tAR ATTlT\IlE DYNAMIC t1lNTRIl.

369

and better system performance:

- More accurate control values can be
obtained with mathematical calculation
using a 16/32-bit DSP processor than
those obtained from an 8/16-bit
microcontroller. Interpolation between
two val ues from the lookup table is
not needed with DSP numerical
calculation.

- State-variable control is now
possible, while adaptive con.trol will
ensure the system performs optimally.
Realtime diagnostics can be added to
the DSP control software to check the
proper performance of the controller,
seniors and actuators.

- Much faster system response time can
be achieved with the DSP. This means
the vehicle can be designed to respond
to the driver or driving environment
more promptly, safely, and reliably.

DSP IN AUTOMOTIVE APPLICATIONS

Many automotive applications can benefit
from using digital signal processors.
This ranges, shown in Figure 3, from
engine/transmission control, active
suspension, adaptive ride control,
antiskid braking, traction control to
digital audio processing.

Powertrain Control Applications

The performance of the current
electronic engine control can be
improved by a closed-loop control system
incorporating a DSP and sensors, such as
in-cylinder pressure sensors reporting
the precise operating status of each
cylinder at every cycle (1,28).

ELECTRONIC OUTPUTS,
~-~ENGINE ENGINE

INPUTS: CONTROLLER
DRIVER & '---..-_-'
SENSORS

TORQUE,
'--.,----,SPEEO

Figure 4. DSP Closed-loop Engine
Control

370

The DSP in the system, Figure 4,
performs engine pressure waveform
analysi s and determines the best spark
timing, firing angles, and the optimal
air/fuel ratios. The closed loop
engine control scheme can tolerate
external turbulances, aging, wearing, ••
and maintains optimum engine performance
and fuel efficiency (28).

Vehicle Control Applications

One of the most exciting new concepts in
the vehicle control area is the active
suspension system (29-31). Conventional
vehicle suspension, utilizing dampers
and springs, is insufficient to control
the vehicle properly and incapable of
responding to the rapidly changing
forces inputted from the road conditions
and car attitude changes. Improvement
can be made with the programmed ride
control suspension by introducing
variable damping ratios into dampers.
This type of system, typically utilizing
an 8-bit microcontroller, has the
deficiency of slow system response time
and is unable to completely overcome
external forces inputted to the
vehicle.

The first active suspension system
introduced by Lotus incorporates a
TMS320 digital signal processor
controlling four hydraul ic actuators
(29-31). This system is described in
the following figure:

HUB DISPLMNT
.-_---,FORWD VELOC.r--__ --,

ANALOG FORWD SPEED

FRONT END LA TERAL AC
BODY ATTITUDE •..

TRANSDUCER INPUTS
FROM EACH WHEEL HOST

COMPUTER

HYDRAULIC
ACTUATOR

SERVOVALVE

Figure 5. lotus Active Suspension
System

The TMS3Z0 OSP takes into consideration
body dynamics. such as pitch, heave and
roll. and controls the 4 hydraulic
actuators independently and dynamically
to counter the external forces and car
attitude. changes. The TMS320 performs
control algorithms with system
parameters adaptively updated to achieve
optimal comfort ride and road handling.
Lotus race cars installed with the
active suspension won 1987 Grands Prix
In both Monaco and Detroit. The
excitement has spurred much interest in
introducing the active suspension design
Into commercially produced vehicles. As
the cost of the entire system (both
electronic and mechanical portions) Is
reduced, we can expect active suspension
to appear in many vehicles in the 90's
(1. 31) •

Another important vehicle control is the
anti-skid braking (ABS) system. In the
current ABS design, typically an 8-bit
mlcrocontroller ;s Incorporated to read
the wheel speed from sensors. calculate
the skid. and control the pressure In
the wheel brake cylinders. Traction
control has been experlmentaJly added to
the ABS to control the vehicle in
extreme conditions (wheel lock and
spinning) in order to further increase
vehicle stability. steerability and
drivabillty. Added new features to the
ABS. such as traction control and more
diagnostics software, will demand more
processing capability on the controller.
Since 8-bit microcontrollers are running
short of power. digital signal
processors will become a prime candidate
for the next generation ABS design.

It is interesting to note that the OSP
based control system for the active
suspension can be extended to control
the s'kid and spinning of the wheel s by
sfmply adding anti-skid and traction
control software. The OSP should have
enough processing capabi 1 ity to perform
all of these functions simultaneously.

Entertainment System Applications

The vehicle entertainment system has
evolved from the traditional radios
offering AM and AM/FM reception to the
added features, such as cassette tape
drives, graphics equalizers and power
amplifiers. Recent advancements in CD
(compact disc) and OAT (digital audio
tape) have started impacting the
entertainment system design. The audiO
systems produced for the 90's will be
r,equi red to have better sound qual ity
and hi gher bandwidth in order to
reproduce the high fidelty in CD (with

44 kHz sample rate) and OAT (with 48 kHz
sample rate). The entertainment system
for the 90's will al so evol ve to become
an Information center. Communication
between vehicles and stations. and
between vehicles will be Increased.
This will demand information processing
capability be built Into the
entertainment system. These requirements
wi 11 demand DSP be integrated into the
futu re enterta I nment/I nforma t i on center
as shown in the following block
diagram:

/
CD OAT

AMPS. I

SPEAKERS
OTHER COM­
MUNICATION
MEDIA

Figure 6. DSP Based Entertainment/
Information Center

Some of the functions performed by the
DSP in this system are:

current existing features:

- graphics eqalization
- tone, base. and volume control
- noise reduction

added new features:

- automatic volume control
acoustics noise cancellation

- radio personalization, such as
station search, music/speech
search, ••

- RDS (radio data system)
- speech recognition for controlling

non-critical functions
- speaker verification for anti-theft

371

The DSP based entertainment/information
center wll1 not only preserve high
fidelity in CD and DAT, but also add
friendliness, personalization,
communi cat ion, and securl ty to the
user.

Other DSP Applications

There are many other automot i ve
applications that could benefit from
DSP. Some of these are: image
processing for collision avoidance.
voice dialing and noise filtering for
cellular phones. Kalman filtering for
Global Positioning Systems (GPS).
realtime combustion analysis (32).
exhaust noise and vibration cancellation
(33), and acoustics noise suppresston
(34).

CHALLENGES TO THE AUTOMOTIVE INDUSTRY

While the DSP technology is becoming
more mature. it is presenting tremendous
challenges to the automotive industry.
Control desi gners. who are used to a
lookup table approach in designing a
system. are now having to adjust to a
new design practice. Elements in the
control lookup table are usually
generated by large computer simulat I on
or simply trial-and-error. DSP. being
an order of magnitude faster than 8/16-
bit microcontrollers. implements control
strategies in mathematical equations.
This means control engineers must have
the precise model or mathematical
description for the system that he is
controll ing.

In the current control system design,
designers are limited t"o simple control
strategies, such as open-loop control,
PID, and single or limited variable
control. With the speed improvement
offered by DSP, control designers can
now implement more sophisticated
algorithms: closed-loop control, state­
variable control and adaptl ve control.
10 take full advantage of DSP, control
designers must familiarize themselves
with these digital control algorithms.
The increased degree of freedom and
potential benefit will demand more R&D
effort to not only understand the engine
model and vehicle dynamics, but also
control them with better strategies to
achieve the optimal vehicle performance.

For the entertainment system deSigner,
the greatest challenge is not to replace
the current matured analog solution, but
Instead to use DSP for added
functionality. This additional

372

funct10nality must have a perceived
val ue by the user. Dtherw1se, the DSP
product w111 not be successful. A good
example of a misuse of the technology Is
to simply replace warn1ng 11ghts and
buzzers with 'annoying' speech
synthesis, and buttons and switches with
'1naccurate' speech recogn1tion.

CHALLENGES TD DSP VENDORS

Some vendors are able to provide
commercially available DSP In military
spec1ficat10ns (12-13). The same, If
not more stringent requirements, w111
a 1 so be needed to meet au t omot 1 ve
appl1catlons for the harsh underhood and
underbody environment. To be successful
In automotive electronics, vendors need
to be able to supply DSP devices 'with
military specification quality, but at a
consumer affordable price'.

Continual pressure from automotive
deSigners will push DSP vendors for more
support in documentation. software, and
development tools. More general­
purpose features will continue to be
added to the future DSP devices.
Semi custom DSP solutions will also be
needed for high volume, cost sensitive
automotive applications.

CONCLUSIONS

Digital signal processors offer an order
of magnitude higher performance than
general-purpose microcontrollers and
microprocessors for time critical and
numerical intensive tasks. Closed loop
control and more sophisticated control
and digital signal processing algorithms
can now be implemented fo·r automotive
applications. There are some learning
curves that both DSP vendors and the
automotive industry have to go through
in order to take full advantage of thi s
new technology. The benefits will lead
to more reliable, safer, higher
performance, better handling and
drivable vehicles.

REFERENCES

(I) J. G. Rivard, "Automotive
Electronics in the Year 2000," SAE Paper
, 861027, Proceedings of the
Convergence 1986.

(2) L. R. Rabiner and B. Gold, Theory
and Application of Digital Signal
Processing, Prentice-Hall, 1975.

(3) A. V. OppenheIm, ed., ApplIcatIons
of DIgItal SIgnal Processing,
Prentice-Hall, 1978.

(4) L. R. Rablnpr and
Digital Processing of
Prentice-Hall, 1978.

R. II.
Speech

Schafer,
Signals,

(5) K. S. LIn, ed., Digital Signal
Processing ApplicatIons with the TM5320
Family, Volume I, Prentice-Hall, 1987.

(6) A. V. Oppenhiem and R. II. Schafer,
Digital SIgnal Processing, Prentice­
Hall, 1975.

(7) T. Parks and C. Burrus, Digital
Filter Design, lilley, 1987.

(8) C. Burrus and T. Parks, DFT/HT and
Convolution Algorithms, lIiley, 1985.

(9) J. Treichler, C. Johnson, and M.
Larimore, A Practical Guide to Adapti ve
Filter Design, lIiley, 1987.

(10) P. Papamichalis, Practical
Approaches to Speech Coding, Prentice­
Hall,1987.

(11) K. S. LIn, et. aI., "The TMS320
Family of Digital Si9nal Processors,"
Proceedings of the IEEE, Vol. 75, No.9,
September 1987.

(12) First-generation 1M5320 User's
Guide, Prentice-Hall, 1988.

(13) Second -gene rat ion TMS 320 User's
Guide, Prentice-Hall, 1988.

(14) TMS320C30 User's Guide, Texas
Instruments, 1988.

(15) R. Simar, et. aI., "A 40 MFLOPS
Digital Signal Processor: The First
Supercomputer on a Chi p," Proc. of IEEE
Int. Conf. on AcoustIcs, Speech, and
Signal Processing, April 1987.

(16) H. Cragon, "The Elements of 5ingle­
Chip Microcomputer ArChitecture",
Computer Magazine, Vol-13, No. 10, pp.
27-41, Oct 1980.

(17) H. D. Toombs and F. H. Phail,
"Trends in VLSI and Its Affect on
Powertrain ElectroniCS," SAE Paper ,
861034, Proceedings of the Convergence,
1986.

(18) Microprocessor and Peripheral
Handbook, Volume I, Intel, 1987.

(19)
1986.

Microcontroller Handbook, Int e 1 ,

(20) Embedded Controller
Intel, 1988.

(21) MC68000 Programmer's
Manual, Prentice-Hall,

Handbook,

Reference
1984.

(22) MC68020 User's Manual, Prentice­
Hall, 1985.

(23) Y. liang, M. Andrews, S. Butner and
G. Beni, "Robot-Controller System,"
Symposium on Incremental Motion Control
Systems and Devices, pp. 17-26,
June, 1986.

(24) I. Ahmed and S. LIndquist, "Digital
Signal Processors," Machine DeSign,
September 10, 1987.

(25) I. Ahmed and S. Lindquist, "DSPs
Tame Adaptive Control," Machine Design,
November 26, 1987.

(26) H. Hanselmann, "Using Digital
Si gnal Processor for Control," Proc.
IEEE Industri al Electronic Conf.,
September, 1986.

(27) H. Hanselmann, "Implementation of
Digital Controllers A Survey,"
Automatica, Vol 23, 1987.

(28) C. Anastasia and G. Pestana, "A
Cyl inder Pressure Sensor for Closed
Loop Engine Control," SAE Paper'
870288, SAE Conference Record, 1987.

(29) P. G. Wright and O. A. Williams,
"The Application of Active Suspension
to High Performance Road Vehicles," SAE
Paper , C239/84, Proceedings of the
Convergence 1986.

(30) D. A. Williams and S. Oxley,
"Application of the Digital Signal
Processor to an Automotive Control
System;" Proceedings of the Sixth
International Conf' on Automotive
Electronics, (U.K.), October 1987

(31) C. Csere, "Lotus Active
Suspensi on, II Car and Dr; ver, June t

1988.

(32) E. Beck, K. Hahn, and M. Miller, "A
Realtime Combustion AnalysiS
Instrument," SAE Paper , 880689, Int' I
Congress and Exposition, 1988.

(33) G. Chaplin, "The Cancellation of
RepetItive Noise and Vibration by
Active Methods," Application Note, Noise
Cancellation Technologies Inc., Great
Neck, N.Y.

(34) S.
Barrier,"
19B8.

Cropley, "Breaking the Sound
Car Magazine (U.K.), January,

373

374

APPLICATION OF THE DIGITAL SIGNAL PROCESSOR TC AN AUTOMOTIVE CONTROL SYSTEM.

D.A. Williams.

Cranfield Institute of Technology.

INTRODUCTION.

A conventional vehicle suspension,
consisting of four dampers and four (or,
possibly, six) springs has two serious
deficiencies. Firstly, the number of
elements is insufficient to control
properly even the eight "ideal" vehicle
degrees of freedom; secondly, the
suspension reacts to all forces applied to
it. Improvements in performance can be made
by introducing non-linearities in both·
dampers and springs, and by adding passive
rubber "isolators" at the suspension
attachment points. However, none of these
features is free from undesirable side
effects. Essentially, a conventional
passive suspension achieves, at best, a
compromise solution to the problem of
controlling body and wheel responses to
external inputs. It is worth noting,
perhaps, that this criticism also applies
to most of the present generation of
I'active ll suspension systems.

The Lotus Active Suspension system
overcomes many of the deficiencies of a
conventional suspension by replacing the
springs, dampers, anti-roll bars, etc: by
four irreversible hydraulic actuators.
Measurements of a range of vehicle and
actuator parameters are then used to
control the position and velocity of each
aetuator in real time so as to synthesize
an "ideal" vehicle suspension.

Control over the actuators is achieved by
computing required actuator velocities, and
feeding the appropriate command to an
Electro-Hydraulic Servo Valve (EHSV)
connected to each actuator. The necessary
computations can be performed in one of
several ways. The most versatile method is
to implement the algorithms in a high speed
digital processor. All the controllers used
recently to implement the Lotus Active
Suspension system have been based upon a
family of Digital Signal Processors (DSP)
designed and produced by Texas Instruments
Inc.

This paper contains an outline history of
the Lotus system, a discussion of the
requirements for the controller, an
introduction to the family of DSP's
selected, and descriptions of two active
suspension controllers which incorporate
Digital Signal Processors. The paper
concludes with a description of a possible
production standard control system.

Reprinted, with permission from author.

S. Oxley.

Texas Instruments Ltd.

BACKGROUND.

The Lotus active suspension system was
conceived in 1981 as one way of providing a
ground effect racing car with a controlled
ride without the suspension reacting to
aerodynamic downforce, which at that time
had a maximum value of around three times
vehicle static weight. After their own
elegant (mechanical) solution to the
problem had been declared illegal, a
prototype active suspension system was
commissioned by Lotus. This was designed by
the Flight Systems and Measurement
Laboratories, cn', and installed in a Turbo
Esprit for evaluation. The prototype used
commercial hydraulic components and a
purpose buil t an.alogue computer to control
the actuators. Hydraulic power was provided
by an engine driven pump fitted with an
hydro-mechanical pressure control system.

AerodynamiC downforce was, of course, small
in the prototype installation. Therefore,
in order to demonstrate the' capability of
the system to respond to loads selectively,
the suspension was programmed to be
insensitive to inertial forces which
disturb a vehicle during manoeuvres.

It was clear from the start that· the
vehicle handled well when inertia
components were removed from load
measurements, allowing an average
improvement in cornering speed of around 10
percent. It was also discovered that
significant· improvements in primary ride
could be achieved without affecting
handling. The obvious disadvantages of the
system were increased complexity, weight
and power consumption.

Information gathered from the prototype was
used to specify a racing version of the
system. This featured an optimized
hydraulic system and a hybrid controller in
which the gains of hard wired analogue
control loops were set digitally by an
eight bit processor. The processor had
access to many of the measurements. and was
programmed to modify loop gains adaptively,
iterating at about 250 Hz. A single racing
system was produced and tested extensively.
It completed two Grands Prix before being
removed, primarily for financial reasons.
Although the car was not competitive in
absolute terms, the handling improvements
demonstrated in the prototype were
confirmed in the racing system.

375

The publicity given to the active
suspension race car resulted in contracts
to convert several types of road vehicle to
active suspension for research pur,poses.
The requirement to be able to modify
control laws stimulated the development of
• fully digital controller. The controller
developed for this application was based
upon a THS32010 Digital Signal Processor
(DSP). It has been fitted to a total of
seventeen cars during the past fouryears.
and continues to give reliable service.

Cert'atn installations have enhancements
such as four wheel steer and four wheel
drive. When such enhancements .re fitted,
these systems have a duplex version of the
controller. which gives the potential for
monitoring independently the performance of
the various systems.

One further development has taken place
during the last year. This is the
development of a "lightweight" controller
for the current generation of Lotus Formula
One racing cars. The controller for this
system, is based upon the THS32020 DSP. At
the time of writing, five vehicles have
been fitted with the system. All are
operating successfully in environments
where vibration levels exceed 20 gn RHS.

Development of the Lotus Active Suspension
System continues with the objective of
defining, under contract to a major
manufacturer, a version of the system for
installation in production vehicles.

CONTROLLER REQUIREMENTS.

A digital controller used in an active
suspension system is required to sample
analogue measurements in a chosen sequence
and with a precise time interval between
successive samples of a measurement. It
must be capable of transforming the samples
into actuator com~ands. and must. in
general. be capable of ,converting those
commands into analogue drive signals. The
controller must also have discrete control
over hydraulic fluid supply so that
hydraulic energy can be dissipated directly
by the controller in the event of a
detected fault. The controller was also
required to control' the swashplate angle of
the hydraulic pump in order to limit supply
pressure. with over-riding limits on flow
rate. and/or power consumption. The over­
ride facilities were provided to enable the
characteristics of different pumps to be
emulated. Although not strictly part of the
controller. transducer signal conditionipg
units were combined with the controller in
order to minimize size and weight of the
installation.

The sampling specification was dictated by
the requirement to minimize variations in
transport delay, between one channel and
another. and between the "frame" of samples
and the corresponding actuator commands.
The latter implied th~t interrupts should
be avoided during control law Calculations
and. inCidentally. control law code should
be structured so as to minimize both

376

transport delay and variations in transport
delay.

Frequency bandwidth requirements for the
system were unknown at the start of the
project. However. tests carried out on
conventional dampers revealed that the
performance of such devices could be
expected to deteriorate rapidly at
frequencies above 20 Hz. Further tests
carried out on a "Single corner" test rig
suggested that phase errors might be
detectable if the cut-off frequencies (two
pole) of certain transducers were to fall
much below 100 Hz. It was concluded from
the tests that an iteration interval of one
millisecond would be required. With a 32
channel multiplexer. this implied an ADC
sample rate in ~~e order of 50 KHz.

The dynamic range required of the
controller was dictated by a requirement to
achieve control down to frequencies of the
order 0.1 Hz. with a one millisecond
iteration interval. together with the
requirement for a load resolution of around
0.02 percent of full scale.

It was considered to be impractical to
achieve both the required load resolution
and the required full scale load. at least
outside the laboratory. The solution to the
difficulty was to scale load measurements
so that half full scale corresponded to the
ADC maximum. This arrangement gave a
resolution close to the ideal. The reduced
maximum observable load was not considered
to be a serious restriction. since a load
of this magn1tude would normally cause
maximum actuator velocity to be demanded.

It became clear from the above that s high
speed 16 bit processor would be required
fOl' the application. having the capablli ty
of working to 32 bits when integration was
required. The processor required the
capability of accessing several peripheral
channels. as well as handling at least two
types of interrupt (Power up RESET and ADC
End of Frame.) A secondary requirement was
for a processor which' could be integrated
into a practical system with a minimum
number of additional components.

THE DIGITAL SIGNAL PROCESSOR.

The processor chosen initially for
evaluation was a TMS32010. manufactured by
Texas Instruments. At the time hardware was
available in sample quantities only.
However. a proprietary Evaluation Board was
purchased. The board allowed the basic
performance of the processor to be
assessed, and enabled engineers to become
familiar with its internal architecture.
The processor was not actually designed for
real time process control applications. but
its capabilities appeared to match the
requirements for a suspension controller
almost exactly. The internal architecture
of the processor is shown in figure 1.

Evaluation of the processor showed that its
performance, in a typical control
application, was around 15 times that of an
Intel 80B6. However, certain factors could
reduce e!fective performance dramatically.
If the 144 internal registers were
insufficient for the application, then
additional workspace could be obtained by
interchanging blocks between internal and
external RAM. This turned out to be a
lengthy operation, requiring 7 cycles (1.4
microseconds) per word moved. The second
factor affecting performance would occur if
the 4K word program space became
insufficient for the control program. This
would require program segments to be
overlaid, and would make the processor
unattractive for control applications.

The TMS;2010 was incapable of "pausing" to
accommodate true dual porting, or slow
store. This feature presented difficulties
to the system deSigner, but not otherwise.
Overall, the processor has proved to be
remarkably easy to use, and is almost
completely immune to interference from
external sources.

Many of the constraints imposed by the
TMS;2010 were removed with the introduction
of the TMS;2020 processor. The latter has
544 internal registers, sixteen read and
sixteen write ports, can address 64 Kwords
of programme and data store, and can be
paused to accommodate various types of
store. In addition, the processor
incorporates a high speed serial port, an
internal timer, additional interrupt
vectoring, and has an enhanced i'nstruction
set. A diagram of the TMS32020 internal
architecture is shown in figure 2.

The TMS;2020 has the same clock rate as the
TMS;2010. However, the expanded internal
store and instruction set means that, in
the Active Suspension application, the
control algorithm executes in about half
the time required by the TMS;2010. The
sixteen bit address width and the ability
to pause gives the system designer much
improved flexibility in interfacing
peripherals.

The TMS;20 has been expanded into three
distinct generations of DSP'. (figure ;).
The move to CMOS technology provides the
designer with the advantages of low power
consumption, wide temperature range and
general suitability to the hostile
automotive environment. Another trend which
has increased the adapt~bility of the
family is the addition of internal timers
and se~i~l interfaces. What started as a
simple DSP with a small quantity of on-chip
memory has become a truly versatile micro­
controller.

CONTROLLER APPLICATION.

The logical arrangement of the Lotus
TMS;2010 controller is shown in figure 4.
The control algorithm is stored, togeth~r
with an initial set of parameters, 1n
EPROM, which is connected to the processor
via two ports. The EPROM b081'd contains an

address latch which is reset when Port 0 is
accessed, and which is incremented after
each word transfer. A ROM, mapped to the
first 32 words of program space, contains a
small program to transfer the control
program and parameters from EPROM into
external RAM whenever a RESET interrupt
occurs. An R-C network is used to £orce a
RESET whenever the controller is powered
up.

The sampling requirement is achieved with
an independent Analogue/Digital Converter
(ADC) SUb-system. The SUb-system includes
its own timing circuits and Dual Access
Random Access Memory (DARAM). The sub­
system samples each measurement in a preset
sequence, storing each sample in RAM at the
appropriate address. On completion of a
frame, the sub-system interrupts the
control processor and then idles for a
preset time before restarting the sampling
sequence exactly one millisecond after
starting the previous one.

The Control Processor (CP) executes an
"Idle" loop until interrupted by the ADC
sub-system. After receipt of the interrupt,
the CP transfers the last frame from DARAM
to internal memory, calculates new actuator
velocity commands and outputs these to the
Digital/Analogue Converters (DAC). The CP
continues to perform various "housekeeping"
chores such as updating transducer and EHSV
bias estimates before returning to the Idle
loop to await the next interrupt. A timing
diagram for the controller is shown in
figure 5.

The five Digital/Analogue Converters are
interfaced to the processor via two write
ports. Port 5 is used to set the address
latch to aCcess the appropriate DAC; Port 6
is used to output the data to the DAC.

An optional Pulse Code Modulation (PCM)
encoder is interfaced. to output Port x.
This allows the control program to output
any accessible set of data to an external
magnetic tspe recorder, PCM bit rate is
variable, but has been set to ;6 Kbits per
second for the present application. This
has been used to sample 28 channels (}O,
including two sync words) at a rate of 100
per second.

The controller includes a communications
routine which will accept Commands via an
eight bit latch, data from one sixteen bit
latch, and inputs data from another 16 bit
latch. The latches are interfaced to an
Intel 80}1 eight bit processor, which
controls an LCD display, and receives
commands either from an RS2;2C serial link
or from a Simple keyboard. The eO;l is
programmed to display any four TMS;2010
registers, and to pass on commands either
from the keyboard or from the serial link.
A simple communications protocol 1s used to
allow the operator to modify parameters, or
even code, on-11ne.

377

For formal tests, files of parameters are
stored in a portable general purpose
computer. A small BASIC program executing
in the portable computer is used to
communicate with the controller via the
RS232C link, and to transfer parameters
between files and the controller as
specified by the user.

The TMS32020 version of the Active
Suspension controller differs from the
earlier version in a number of respects.
The internal timer is used to clock the
ADC, and channel selection and conversions
are initiated from an Interrupt Service
Routine. Copies of suspension parameters
are held in EEPROM, and are transferred
during the RESET routine to internal RAM.
Parameters are then copied in sets to a
IIwork" page for execution. When a parameter
is changed, both the EEPROM master and the
internal copy are modified, so that the new
value is preserved even if the controller
is switched off. Each DAC is mapped
directly to an output port. Communication
with the controller is via a UART which is
mapped into a Data address area. A diagram
of the controller is shown in figure 6.

A novel feature of the controller is the
adoption of solid state memory for
recording data. This uses dynamic RAM
controlled by a second TMS32020 which is
programmed to refresh the RAM and, to
organize data storage. The two processors
communicate via the high speed serial link.
Data are transferred continuously until the
driver selects "data off l '. Data are
recovered, again via the high speed serial
link, to a similar, off-board, dynamic RAM
board, which is later interrogated by a
Hewlett Packard general purpose computer.
This fairly complicated arrangement
developed to minimize the time required to
transfer data from the vehicle. The entire
256 Ksamples are transferred from the
vehicle in about 5 seconds and plot. of the
data, scaled into engineering units, are
available within one minute.

The ACC arrangement used in the TMS32020
controller reduced the size of the system,
but i6 now considered to be inferior to the
arrangement used in the TMS32010
controller. The reasons are that time
jitter can be introduced because certain
instructions temporarily disable
interrupts, and that full context switching
is required within the service routine.
Context switching in the TMS32020 is a
relatively lengthy process.

Again, no serious difficulties have been
experienced in using the TMS32020 processor
in a (severe) automotive environment. The
time required to move the design from
inception to production prototype was
eround four months, and the production
prototype first worked some two months
before running in its first Grand Prix. By
then three vehicles were fully operational,
backed up by two complete sets of spares.
Since that time a similar system has been
fitted to another type of racing car.

378

FUTURE DEVELOPMENTS.

To date,. only IIresearch lf Active Suspension
systems have been designed. Work is
proceeding to develop a "production" system
to improve both performance and safety of
passenger cars. One possible arrangement
for such a system could be to integrate a
controller into each strut, complete with
transducers and signal conditioning.
Communicatioris between each strut
controller would be via serial links
attached to a fifth controller mounted
central~y. A diagram of a possible
arrangement is shown in figure 7.

Each strut controller would be programmed
to manage its strut in isolation, and the
central controller would be programmed to
modify strut parameters (when required) and
to modify strut responses as necessary; the
central controller would, for example,
simUlate the action of roll bars. The
failure mode, if serial communications were
lost, would thus be relatively "soft." The
central controller would also service any
driver controls, displays, etc. The five
controllers could be identical, each
comprising a processor, memory, an eight
channel ADC, two DAC's, five 100 KHz.
serial links, and a discrete output latch.
In a production system, signal conditioning
would be integrated into each transducer.

Quite clearly, the controller. would have to
be very small and rugged (ideally on a
single chip), and environmental sealing
WOuld have to be effective. Computing power
available, if ,TMS320 series DSP's were
used, would be considerable, and would
admit the possibility of integrating'other
vehicle functions, such as anti-lock
braking, engine management, four wheel
steer, torque control, etc. into a single,
distributed system.

Technologies under development at Texas
Instruments could make the proposed
arrangement feasible within the next five
years. These include Application Specific
Integrated Circuits (ASIC) which integrate
precise analogue functions with complex
digital circuits, and Application Oriented
Controllers (AOe). The latter is a new
family of standard modules which can be
combined in a single chip to produce custom
processors quickly and efficiently.

w

...
I5llI
MIll

'"' M",iD

lIlT ..

Ace • ..",,,,,,,,,,.101'
A"' di • .., "II;lIt'".;.".,
"'flO .. Au.iIi..,. ",'11" 0
AIII1_ iIi..,." ,
0" .. 0'11."_ , ••
PC .. "OI'.,..C_'.,
.. ·,,··ti".,
1 .. , •• """

IIoISTJlUCTICH

,"OO"A""
>OM

I'i3,.I&1

DATA IIAM
11&4 1161

..

Figure 1 Functional Block Diagram or the TMS32010

'''OORAM IUS

==-t

DAT "
alOC" It
IU" '"

" "

~ROG""M IUS

Figure 2 Functional Dlock Diagram or the TMS31020

",n6,
'i'TOO'61
iTiii'ii"
~
IJAfsL-

OUIl&l

TIMI16,

PiDiiii
iMiiii'"
GRTciii

D.

<1. ••
n.
DX

CLKX
FIX

~~I--~~--________ ~

P
E
A
F
o
A
M
A
N
C
E

380

THS320C3X

• 60nS INSTRUCTION CYCLE TIME

• 16M X 32 ADDRESS RANGE
• 32 BIT FULL FLOATING POINT

ARITHMETIC
• PARALLEL ARCHITECTURE

TICS320C2X - CONCURRENT OMA
- DUAL ACCESS MEMORY • lOOnS INSTRUCTION CYCLE TIME

• 12BK X 16 ADDRESS RANGE

• 16-BIT INTEGER ARITHMETIC WITH
BLOCK FLOATING POINT

• MULTIPROCESSING FEATURES
TXS320C1X - D !RECT MEMORY ACCESS

- GLOBAL MEMORY • 160nS INSTRUCTION CYCLE TIME
• 4K X 16 AODRESS RANGE

• 16-BIT INTEGER ARITHMETIC

• APPLICATION SPECIFIC DERIVATIVES
- EPROM VARIANTS
- SINGLE CHIP MASK OPTIONS
- DSP BUILDING BLOCKS

FIRST GENERATION SECOND GENERATION THIRD GENERATION

Figure 3. THS f ily

8 Dlscret ..
Outputs

6 Fhalogu ..
Outputs

figure 4. Schematic Diagram of TMS32010 Control System.

'" !If
N

~

" n.

" L ..
U
+'
C ...

1 msec I _ee

+'
Q.
:>
D ..
C ...

FIgure S. Centroller TImIng DIagram.

..
II
"0
0
u

o:!!
+' ..
0

Il.

FIgure 6. SchematIc DIagram of THS32020 Cootroller.

+'

~ ..
G
+'
C ...

B Discrete
o..otputs

B Discrete
Inputs

4 In.logue
o..otputs

B DIscrete
o..otput:r

381

Strut Controller 100 KHz Serial Link 100 KHz Serial Link Strut Controll .. r

(9 01. AIlC) (9 01. AIlC)
(2 01. [flC) (2 01. [flC)

Control " Central
Dlsp lay Controll .. r

Strut Contro l1 .. r Strut Controll .. r

(9 01. AIlC)
100 KHz Serl al Link 100 KHz Serial Link

(9 01. AIlC)
(2 01. [flC) (2 01. tAG)

Flgur .. 7. Sch .. matlc Diagram for· a Distributed Controll .. r.

382

Dual-Processor Controller with Vehicle Suspension
Applications

KAMAL N. MAJEED, MEMBER, IEEE

Alntnu:t-A -proassor coDlroIJer sallllllle for comp ... lioa-
llIIeIIIhe colllrol lpaI-processiag "gorlthms Is bod in tills
warl<. n. controlle. Is __ .mI aroaad -p.rp __

controller digital sip" _ (DSP). The!MI_ gnal of ..
daIp Is ellidelll pa .. _ of m.Ibe .. _, orIeIIIed algorithm.
with Ibe .1IIIi1J to _ with _n and actuators. The __

.... of coDlroIlen iacorporaliag DSP ddps Is demonstrated with

.pplkalioa. of 0 10. data treqllOllCl'-do_in ,...
state estbaation of • "quarter-ar" SlllJleDlion~test ril.

I. INTRODUCTION

T OW-COST general-purpose microcontrollers became
Lwidely used in the 1970's, in applications ranging from
vending machines to engine control. In the 1980's, a new
generation of microprocessors evolved: the general-purpose
digital signal processors (DSP). These processors were distin­
guished for their impressive speeds in nwnerical computations
such as multiplication and product accumulation. Also, the in­
struction set is designed for complex algorithms requiring in­
tensive numerical calculations. Initial use of these micro's has
been in the area of signal processing such as digital filters and
fast Fourier transforms. However, in recent years an increas­
ing number of advanced control algorithms has been imple­
mented using digital signal processors. In such applications,
the update loop time must be small enough for proper im­
plementation (one millisecond is not uncommon). To achieve
that goal, the dual-processor controller discussed in this work
was designed to optimally utilize each microprocessor in its
area of strength.

The paper is organized as follows. Section II contains the
controller architecture and design. Section III covers a fast
Fourier transform applied to road characterization. In Section
IV, a state estimator of a "quarter-car" test rig is described.

II. CONTROLLER ARCIDTECTURE AND DESIGN

The electronic controller is architectured around the digital
signal processor (Texas Instruments TMS32O(15) and micro­
controller (Motorola 68HCll) (Fig. 1). The 68HCll is used
most effectively in input/output (1/0) operations, data mov­
ing, and logical microcontroller functions. This results in re­
lieving the digital signal processor from any 110 overhead to
optimally utilize it in the algorithmic and numerical compu­
tations. The interprocessor communication is done through a
dual-port random-access memory (DP-RAM).

MaDuscript _ Jamwy IS, 1990; revised April 13, 1990.
The author Is with the DeJco Products Division, General Motors Corpo­

ration, P.O. Box 1042,.-Daytou, OH 4.5401.
IEEB Log Number 9036995.

Referring to Fig. I, the sensor signals are conditioned with
anti-a1iasing filters, then multiplexed through a 24-channel
multiplexer to a sample-and-hold (SIH) and a l2-bit analog­
to-digital (AID) converter. The analog signals are converted
by the 68HCll and then stored in the dual-port.RAM. The
TMS 320 reads this set of raw sensor data and processes the
algorithm computations. The resulting control signals are then
stored in the dual-port RAM. The 68HCll processor outputs
these signals to the system drivers. The 68HCll can out­
put any data memory as digital on/off pulse-width-modu1ated
(PWM) or as an analog signal through the digital-ro-analog
(D/A) converter. The 68HCll has a serial communication
port which is used to communicate with a portable personal
computer (PC) for system monitoring.

The analog signal conversion to digital form is shown in
Fig. 2. There are three degrees of pipelining (channels K + I,
K, and K - 1 are processed concurrently). This results in a
maximum of 9-,.s conversion time from analog signal at the
sensor to digital data in the DP-RAM. In Fig. 3, an opposite
operation is done for the analog outputs. Eight output channels
share the same DI A through the use of eight SIH integrated
circuits. Here again a maximum of 9 ,.s is achieved for total
conversion time.

The dual-port RAM data can be read from either port si­
multaneously. However, a write access to the same address
by both processors at the same time can have unpredictable
results. For this reason, the software program must ensure a
no-conftict access of the DP-RAM.

Fig. 4 shows the flowchart of a typical application program
for the dual-processor controller. The 68HCll starts tiy con­
verting all the analog sensor signals, then sends a synchro­
nization signal to the DSP processor. The TMS320 reads
the converted sensor signals from tbe !Iuai-port RAM and
processes them through the application algorithm. If a con­
trol signal is generated, the DSP stores it in the DP-RAM and
branches to the beginning of the loop. The 68HCll reads the
control signal and sends it to the appropriate drivers. After
processing the display and communication routines, the mi­
crocontroller waits to complete the specified loop time and
restarts another cycle.

m. FFT RoAl'.CHARAcrERJZATION

With the emergence of automatically variable damping ve­
hicles, there is a need for a damping adjusttnent mechanism.
The use of the frequency domain [1] has the desirable property
of distinguishing between the body and wheel-hop frequencies
(about 1 Hz and 10 Hz, respectively). The midrange frequen-

© 1990 IEEE. Reprinted, with permission. from IEEE Transactions on "ehiclllar Technology,
Vol. 39, No.3, Aug. 1990. 383

LEGEND:
.--------- ADDRESS/CONTROL
---OATA

ANLG MUX

AND
ANt
AN2
AN3
AN~
AN5
ANa
AN?

ANa
AN9
ANtO
ANtt
ANS2
ANtS
ANt ..
ANts

ANtS
ANt?
ANte
ANtS
AN20
AN2t
AN22
AN2:!

TMS320C15
(200nS)

DATA 0-15

Fig. I. CouIroller block diagram.

S/H A/D
_____ C.J:LJ.< ___ _ CH K-1

B ANALOG"
OUTPUt'S

DUAL
.. IN PORT

(12 BITS) RAM
IN HOLD (ANALOG)

9 uSEC MAX TO CONVERT FROM ANALOG
S/H INPUT TO STORE IN DPRAM

Fig. 2. Analog-kHligitai cllllWnioo.

AT~

cies (about 5 Hz), where the human sensitivity to vibrations
is high, can also be used to influence the damping adjustment.

wheel resonant frequencies. Thus the two peak at about I Hz
and 10 Hz (corresponding to the body and wheel resonance
frequencies, respectively). On the other hand, the "waves"
test road (at certain car speeds) excites mainly the body mode.
The "smooth concrete "test road has a flat spectrum, which
is obviously the result of ·the small displacements in the sus­
pension.

A fast Fourier ttansform (FFr) of a vehicle body-to-wheel
displacement was implemented in real time [I]. This was pos­
sible mainly due to the computing power of the TMS320 DSP
chip. Fig. 5 shows the results of ditferent test roads. It is n0-

ticed that the "chatterbumps" test road excites both body and

384

It-- 9 uSEe DUAL PORT RAM TO S/H OUTPUT----tI

Fis. 3. DigitaI-to-aDaios conversion.

Fig. 4. DuaI-proc:essor ftowchart.

Proper application of the FFT to produce an accurate spec- or
trum of a signal depends on a good parameter selection [2].
This selection is governed by the relationships outlined next. T < 1/2/h. (2)

T Sampling time.
I. Sampling frequency = lIT.
F Frequency resolution of the FFT.

The increment between the outpnt FFT spectral components
F is determined by the record length

t p Record length (effective signal period).
Ih Highest frequency in spectrum.
N Number of samples in record.

To avoid aliasing and the distortion of the FFT spectrum.
it is necessary thst

I. >2/h (1)

F = l/tp. (3)

Thus a long enough t p must be selected for the specified fre­
quency resolution. The number of time samples N (same as
FFT frequency components number) is

N = I./F = tpIT. (4)

385

1.0
0.9

A 0.8
II 0.7 r 0.8
I 0.5
TO.'
UG.3
D 0.2
I 0."

Chatterbumps

04~~~~~~~;=;=~

1.0
0.1

AU
II 0.7 r 0.8
I 0.5
TO.'
UG.3
D 0.2
E 0.1

o 2 .• 10 12 1.. I. 18

FllEQUBNCY (lIZ)

Smooth Concrete

04~~~~~~~~~

1.0
0.9

AU
IIG.7

'U Lo.s
~U

o 2

D 0.2 .
I 0.1

810121'1818
fRlQUlINCY (lIZ)

UO.3L
0.0 c;.:.:':';':':':'::;::;:::;;;;;;:;;;;;;;;;;;;=:;;;:;;;=;;;r

o 2 • 10 12 "
-(lIZ)

Fig. S. Road-leSt FFI'.

Equations (2)-(4) yield

I. I.

X2 Xl

II
Fig. 6. Quarter-car leSt rig.

lution of the FFT components (for the same number of points
N) in the frequency range of interest.

The processing of the 128-point FFT (using the TMS
320CIS processor) takes about 3 ms while it takes tp = 3.3S
s (at 38-Hz sampling frequency) to fill the 128-point time data
buffer. The frequency resolution of the resulting FFI' spec­
trum F is about 0.3 Hz.

IV. QuARTER-CAR TEsT RIo STATE EsTIMATION

Recently there has been increasing interest in electronically
controlled suspensions. One such suspension is the active sus­
pension where a force generator, usually a hydraulic actuator,
is commanded by a controller to achieve desired suspension
characteristics. A set of sensors is read and the appropriate
control is determined by an algorithm. Some control algo­
rithms use full state feedback control where the whole state
of the system is fed back: This approach is used in the works
of Thompson [5] and Chalassani and Alexandridis [6], where
the active suspension control law is derived using the linear

N >2/h/F. (5) quadratic Gaussian (LQG) optimal control theorY. Another
practical approach is to use limited state feedback to control
the active suspension system, as in the work of Majeed [7]. In
either case, some of the states of the system can be measured
while other states are estimated.

Thus for a given highest "appreciable" signal frequency
f. and a specified frequency resolution F, (S) detennines the
required number of time samples N.

The results of Fig. 5 are based on an N = 128 point FFI'.
The 256- and S12-pOint FFI"s were found to produce only
marginal road signature imprOvements when compared to the
128-point FFI'. A sampling frequency f. of 38 Hz was ad­
equate to process the signal frequencies in the range (0-10
Hz). This sampling frequency must be increased if the signal
level is appreciable at frequencies beyond 19 Hz (as mandated
by (I». Rlr this reason anti-aliasing low-pass filters were used
to prevent the distortion of the FFI' spectrum by attenuating
the spectrum beyond the wheel-hop frequency of 10 Hz. To
protect against the aliasing problem, (4) shows that one can
increase the sampling frequency at the expense of lower reso-

386

An experiment was performed using the dual-processor of
Section II and the quarter-car test rig of Fig. 6. The rig
consisted of a sprung mass (M = 500 kg), spring (Ks = 18
kN/m), passive damper (Cd = I kN·s/m), and the unsprung
whec!l (m = 70 kg) with a tire spring (Kt = 2SO kN/m». The
resonance frequencies of the sprung and unsprung masses are
about I Hz and 10 Hz, respectively. Simulated road inputs
were available and all system states were directly measured
for evaluation of the estimator results. The state estimator
was fed the measurementS of sprung and unsprung mass iner­
tial velocities XI and X2 (integrated accelerations), body-to­
wheel relative velocity (XI-X2) and disp1acement (XI-X2).

.ge~ __________________________________ ,

.?e

.50

.3"

5-· 1B

++iJ' ++
\ .

+ \

ACTUAL
+ +

+ + +

TIME:
Fig. 7. Slate estimator-sprung mass displacemenl.

2 ~--~--__________________________ ---.

1. se

l.era

TIME:

Fig. 8. Slate estimator- wheel displacement.

The two main estimated states of interest were the body (or
sprung mass) displacement Xl and the tire deflection (X2-r).

The full state estimator !est results are shown in Figs. 7
and 8. Fig. 7 shows the estimated sprung mass displacement
versus the actual (measured directIy to the floor) for a step
road input. Fig. 8 shows the wheel displacement for a IO-Hz
sine-wave road input.

The quarter-carsystem can be represented in a state space
form as follows:

where

X=AX+BU

Y=CX

X system states rate vector (4 x I),
X system states vector (4 xl),
A system matrix (4 x 4),
U actuators force vector (1 xl),
B control matrix (4 x 1),
Y system outputs vector (4 xl),
C output matrix (4 x 4).

(6)

(1)

The control vector U for the full-state feedback [5), [6) is
computed from

U=KcX (8)

while for limited-state or output feedback [7)

(9)

where K. is the optimal gain matrix.
To estimate the states of the system, a Luenberger observer

or a discrete Kalman filter is used [3).
The steady-state gain discrete Kalman filter is given by

where

X.+1 = rf>(T)X. +K,(Y. -CX.).

estimated state vector at time n + I,
sampling time,
steady-state Kalman filter gain,
system transition matrix,
measurement vector at time n.

(10)

The Kalman filter gainK, is computed using a control soft­
ware paclcage such as Matlab [11). The Kalman gain compu­
tation is based on the solution P of the Riccati equation:

The Riccati equation is solved with Q and R representing
the plant and sensor Gaussian noise processes of zero mean.
The Q and R values represent the compromise between the
plant noise and uncertainty and the sensor noise, respectively.

iii real-time implementations of state space equations, such
as (8)-(10), it is desirable to create vector and matrix-times­
vector macros. This greatly simplifies the programming task
and improves appreciably the execution speed compared to the
subroutine approach. The penalty of using macros is a larger
program memory requirement. Equation (10) is computed on­
line iteratively every loop time. One millisecond was used for
the quarter-car test.

V. CONCLUSION

A dual-processor controller incorporating a microcontroller
and a digital signal processor was successfully developed for
implementation of computation-intensive algorithms. The goal
of very short loop time was achieved by optimum use of the
two processors' resources. The effectiveness of such controller
was demonstrated by a real-time FFT application to road char­
acterization and by state estimation of a quarter-car test rig.
Also, the capability of such controllers to handle modem con­
trol theory requirements was shown by the quarter-car test-rig
state estimation.

ACKNOWLBOOMENT

The author is grateful to Nick Kapsokavathis, Reed Hanson,
Richard Longhouse, and Donald Graham for their support
during the period of this work.

387

REFERENCES

[1) K. N. Majeed and D. E. Graham, "Controlled vehicle suspension
using FFT," Research Diaclosure Pub., no. 28659, Feb. 1988.

(2) W. D. Stanley, Digital Signal Processing. Reston, VA: Reston Pub­
lisbing, 1984.

(3) R. G. Brown, Introduction to Rilndom Signal Analysis and Kalman
Filtering. New York: Wiley, 1983.

(4) J. J. D' Azzo and C. H. Hoopis, LinetJr Control System Analysis and
Design. New York: McGraw-Hill, 1981.

(5) A. G. Thompson, "An active suspension with optimal linear state feed­
back," Vehicle Syst. Dynam., vol. 5, pp. 187-203, 1976.

(6) R. M. Chalasaoi and A. A. Alexandridis, "Ride perfonnance potential
of active suspension systems, Part 2," ASME Monograph, AMD-vol.
80, DSCDSC-vol. 2, 1986.

[7) K. N. Majeed, "CentnilizedIlocal optimal output feedbnek control and
robustness with application to vehicle active suspension," Ph.D. dis­
sertation, University of Dayton, Dayton, OH, Dec. 1989.

(8) First Genemtion TMS320 User's Guide, Texas Instroments, 1987.
(9) MC68HCIIA8 HCMOS Single Chip Microcomputer Manual, Mo­

torola, 1985.
(10) K. N. Majeed, "Dual-processor automotive controller," presented at

mEE Workshop on Automotive Applications of Electronics, Dearborn,
MI, Oct. 1988.

388

[II) Mat\ab, Control System User's Guide- Version 2.2. The Math
Works Inc., South Natick, MA, Aug. 1986.

Kamol N, Majeed (M'86) received the B.S. degree
in electrical engineering from the University of
Basrah, Iraq, in 1976, the M.S. degree in electrical
engineering from The Ohio Stste University, Co­
lumbus, in 1982, and the Ph.D. degree in electrical
engineering from the University of Dayton, Dayton,
OH, in 1989.

From 1977 to 1980 he was a Lecturer in the
department of electrical engineering of Basrah
Technical Institute, Iraq. From 1980 to 1981 he
worked with Sehlumberger S.A. as a Wen Logging

Engineer, International Stsff. He is currently a Development Engineer with
Delco Products Division of General Motors Corporation, Dayton, OH, wbere
he has been working since 1983. He is currently an Adjunct Professor in the
Department of Electrical Engineering, University of Dayton. He has designed
and implemented a variety of control algorithms and electronic controUers for
advanced vehicle suspension systems and other automotive control applica­
tions. His interests are in microprocessor-based digital control, adaptive
control, optimal control, and digital signal processing applications.

An advanced racing ignition system

T MEARS, .BSe, AMI EE
Lucas Automotive, Birmingham
S J OXLEY, BSe
Texas Instruments, Bedford

SYNOPSIS This paper describes the rationale and development of a high performance
racing ignition controller based on a Digital Signal Processor. Applying new
techniques such as these in the high pressure racing environment allows companies
such as Lucas to develop strategies for production engine management systems in the
1990's. The vastly increased processing power available allows designers to begin
to consider control techniques previously considered impractical for low cost
production systems.

INTRODUCTION

The current generation of high
·performance racing engines have been
developed to such a degree that a 15000
r/min V12 engine is now a reality. Such
an engine, by its very nature, requires
full electronic control of both fuelling
and ignition in order to extract the
maximum performance. Traditional
electronic engine management systems
(EMS) are unable to provide accurate
control for such an engine - the main
barrier being processing speed. Lucas
have applied a single chip Digital
Signal Processor (DSP) from the Texas
Instruments TMS320 family to achieve
distributorless mapped ignition for high
performance racing engines. In future,
mapped sequential fuelling will be added
with the DSP controlling a slave
processor. The alternative to using a
DSP was to implement the system as a
multiprocessor configuration which is
both inelegant and difficult to develop
and maintain as a reliable system.

2 SYSTEM REQUIREMENTS

The system being described is required
to be able to control a Capacitor
Discharge Ignition (COl) system on a
variety of engines up to a V12, 15000
r/min Formula 1 version. Additionally,
the system must be able to be tailored
to a variety of engine geometries and
firing orders.

The dominant factor for such
engines is the operating speed of the
system - the V12 engine referred to
above, with a 40 degree V-angle and 10
degree timing markers, requires
processing of degree markers that are a
mere 111uS apart at full speed. It is
obvious that conventional microcomputers
with minimum instruction cycle times of
2 to 4uS (complex instructions such as
mUltiply may take 10 times this period

to execute) could not be used to
implement a single processor system.

The speed requirement is the reason
for using COlon racing engines -
conventional' inductive coil based sys­
tems would be unable to build up suffi­
cient energy in the time between sparks
at full engine speed.

In order to obtain the maximum
performance from an engine, the follow­
ing time critical operations must be
performed accurately in real-time:-

Record the period between adjacent
teeth on a timing wheel mounted on
the engine - typically at 10 degree.
intervals.

2 Recognise and maintain synchronisa­
tion with a missing tooth on the tim­
ing wheel and an independent TDC
marker.

Trigger the CD circuit at an angle
defined by a three-dimensional map
(16 by 64 points - throttle angle
against speed). Full interpolation
is provided between the discrete
points on the map with modifying
functions applied for temperature,
boost, pressure, etc.

Points 1 and 2 require precise
measurement of the tooth intervals
without latencies caused by interrupt
actions which can give an uncertainty at
least as long as the longest instruc­
tion. The output function, point 3,
requires rapid mathematical processing
to allow the ignition timing to be based
on the most up-to-date information as
possible. It then requires an output to
be driven at a precise time after a
specified tooth number.

In the short term a separate fuel­
ling controller is being used, with the

Reprinted by permission of the Council of the Institution of Mechanical Engineers from [MechE, 1989.
On behalf of the Institution of Mechanical Engineers. 389

ignition controller passing speed and
syncrronis?tion information to allow
map,ped sdquential injection to be
achieved.

In order to meet these requirements
without using a processor with the speed
of a DSP, a multiprocessor system would
be mandatory. Multiprocessing creates
many additional problems in terms of
synchronisation, data sharing and
overall maintainability. There are
systems available with up to 10 proces­
sors in one controller - a nightmare to
develop and use in the high pressure
racing world.

3 ATTRIBUTES OF THE DSP BASED
HICROeONTROLLER

The device at the heart of the ignition
system is the TMS320E14 from Texas
Instruments. This device takes the
first generation CMOS DSP core from the
industry standard TMS320 family and adds
the functions found in more complex
microcontrollers.

Firstly let us define a DSP (1) -
it is generally accepted that such a
device must be a single chip with on­
chip memory (RAM/ROM) and a single cycle
hardware multiplier. In its original
form the DSP was intended for real-time
digital processing of analogue signals.
In essence it was designed to perform
filter functions which can be treated
discretely as a sum of products. The
same mathematical functions are required
for many digital control systems used
today - see Fig 1, PID implementation.
What at first may appear rather odd
instructions, are in fact functions that
normally take several instructions to
implement in conventional microcontrol­
lers, i.e. LTD.

LTD - loads Register T with data from
memory

- adds Register P contents into
the Accumulator

data in memory is copied to next
higher address

This type of instruction is very
useful for map interpolations to derive
values between map sites.

The fact that all instructions
execute in a single cycle means that
with a 25MHz crystal each instruction
takes 160nS.

However, the reason that the DSP
has not been used in automotive systems
to any great extent is due to its pre­
vious requirement for several support
chips to handle I/O and timing funC­
tions. In the TMS320E14 an event
manager has been added that provides
input capture and output compare facili­
ties in hardware ~ this ensures that
criti~al time related functions occur l

390

~ndependently of the CPU, thus avoiding
the associated latencies. Additionally
there are 16 I/O lines which may be
manipulated independently under software
control. An on-chip serial port and
Watchdog timer complete the additions
that have turned the DSP into a micro­
controller - see Fig. 2, TMS320E14 block
diagram.

4 SYSTEM IMPLEMENTATION

The TMS320E14 is an EPROM device with
4K wo.rds of EPROM and 256 words of RAM.
Whilst the controller could easily be
implemented without additional memory,
the capability to address a further 4K
words of off-chip memory has been
exploited. The off-chip memory
comprises 2K words of EPROM, used for
map storage and 2K words of non­
volatile RAM for diagnostic and tele­
metry functions.

Outputs used to drive the CD
circuits are driven from 4 of the 6
output compare registers - the system
being able to multiplex in software
these 4 signals on to the 12 outputs
required.

A block diagram of the system is
given in Fig 3 which serves to high­
light the integration of I/O functions
on to the DSP chip, thus minimising the
requirement for support circuitry.

The programme is a conventional
'real time control implementation in
which time critical responses are
performed in the foieground (interrupt
driven) routine, and non-time critical
calculations and management tasks are
performed in the background routine.

The primary foreground task is an
interrupt routine triggereq by the
signal from a 36 tooth wheel with ten
degree tooth spacing. The flywheel has
one missing tooth situated at T.D.C. on
the reference cylinder. Since on a v8
engine, there are two crankshaft
revolutions for a complete firing of
each cylinder, it is not enough to
simply detect the missing tooth to syn­
chronise the engine. A second signal
derived from a half engine speed sensor
situated on the camshaft is used to
indicate the cycle.

The software is designed to operate
in the range of 51 to 16000 r/min on
engine configurations up to and
including V12. At high speeds the fre­
quency of interrupts from the crankshaft
sensor is given by:-

Engine speed 16000 r/min

(16000 X 6) degrees/s

Time for 10 degrees

Hence frequency 9600Hz

.A~ this speed, it is the phenomenal
processing power of the TMS320E14 that
enables c9ntrol to be achieved. Running
at 16MHz, single cycle execution is
250nS, enabling 416 instructions to be
executed in the tooth period. This
enables both the interrupt task and a
significant proportion of the background
task to be completed in one tooth
period. For example, on a V8 engine,
there are approximately 9 tooth periods
between sparks, the processor is easily
capable of cylinder by cylinder update
of the advance angle.

The background task uses engine
speed and throttle angle to address the
main ignition map. This map has 16 load
(throttle position) and 64 speed sites
making a lK map. Only 8 bits are
needed, but since the DSP is word
oriented, each memory location contains
two contiguous map values. This means
that the 16 by 64 site main 'ignition map
actually uses 512 words of memory. The
hardware uses an external 8 bit AID
converter to measUre the throttle angle.
This raw value is filtered using the
equation:

Filtered position

3 X previous filtered position)
+ measured position

4
The hardware multiplier plus very

simple divide mechanism enables extreme­
ly fast and reliable implementations of
the above type of algorithm. Since the
microprocessor does not have a right
shift instruction, the author tends,
where possible, to avoid using left
shifts to do division because the load
accumulator with shift instruction is
sign extended. This, where the dividend
has a one in bit 15, requires masking of
the extended bits. It is far simpler to
use the subtract with carry instruction
in this application. In general terms,
processing speed is high enough to use
slower algorithms in order to conserve
memory.

The filtered throttle position is
used to derive the load site and load
interpolation steps. These are both
numbers in the range 0 to 15, and fix
precisely the load sites accessed on the
ignition map. Load breakpoint preshap­
ing is programmable, enabling the load
breakpoints to be grquped closer toge­
ther in an area of the map in which
close throttle pre shaping is required.
Usually, the breakpoints are grouped
closer together where the throttle first
begins to open. The breakpoints are
spaced wider as the throttle is opened
further.

Engine speed is measured by timing
the tooth period and filtering in a
similar way to the throttle position.
This parameter is global to the back­
ground task and the speed site is calcu-

lated as a number between 0 and 64. For
a speed range of 16000 rlmin, the speed
breakpoints are fixed at 250 rlmin, but
for a reduced range, the breakpoint
separation is programmable. Basically,
the time for 250 rlmin is divided by the
tooth period to produce the speed site.
The subtract with carry divide instruc­
tion is very useful here, because the
remainder from the division is conve­
niently located in the high part of the
accumulator. This is then used to cal­
culate the speed interpolation steps.

Load and speed sites together with
the interpolation steps are fed into the
main ignition interpolation routine,
which uses the four surrounding map
sites to the engine operating position
to calculate the interpolated ignition
advance map value. This routine
contains eight mUltiply and 4 additions,
as well as data manipulation, and
executes in 63 cycles, which is 15.75uS.
For comparison this is 15 times faster
than the same algorithm on the Motorola
6805 running at 4MHz.

The background task also handles
diagnostics and telemetry via a serial
communications routine, and measurement,
filtering, and preshaping on the
following ignition modifiers.

1) Air temperature
2) Coolant temperature
3) Barometric pressure
4) Overall trim
5) Boost pressure
6) Air humidity

The foreground task performs time
critical control tasks, including the'
conversion of the ignition angle into a
timer value which is loaded into the
output compare structure. The primary
tasks carried out in the input capture
interrupt routine are as follows.

Synchronisation is initiated and
maintained using missing tooth detec­
tion. On receipt of the tooth inter­
rupt, the period between this tooth and
the previous tooth is read from the
input capture FIFO. If the missing
tooth has either not been initially
detected, or is expected then the
missing tooth detection algorithm is
implemented. A successful detection is
valid if

Tooth period < 5/8 X previous period.

After successful synchronisation,
the tooth is identified, and calcula­
tions for the engine cycle are perfor­
med. Basically, the first tooth after
TDC is called tooth 0, the next tooth 1
etc, up to tooth 9, on a v8 engine, when
the cycle repeats itself ,for the next
cylinder.

On tooth zero, the tooth to fire
count is calculated, and decremented on
each successive .interrupt, until the

391

firing tooth is arrived at. The tooth
to fire· counter is calculated from the
advance angle by dividing it by fifty.

The remainder from this division is
used to calculate the advance degrees.
When the tooth to fire count has decre­
mented to 1, the time for ten degrees at
this point is used to calculate the
timer value, by mUltiplying the advance
degrees by the period timer, and divid­
ing this result by ten.

When the tooth to fire count is
zero, the angle timer value is loaded
into the appropriate compare register,
and the action register is enabled, and
the correct channel selected. When the
timer mat~hes the compar~ register,
compare output will go high, triggering
the CO circuit, and sparking.

In conclusion, the input capture
interrupts are used for mathematical
manipulation, loading timer values,
counting teeth, and selecting the cor­
rect channel for the relevant cylinder.
The overhead of these tasks is easily
managed by the TMS320E14 at very high
speed, whereas other conventional micro­
processors simply cannot perform them in
time. Hence, a single DSP can be used
in place of a multiprocessor system.

5 FUTURE DEVELOPMENTS

Having achieved the ignition control
performance required by current racing
engines, Lucas are working on expanding
the system to full engine management.
With the current OSP microcontroller
there are insufficient output lines to
control 12 injectors as well as 12
channels of COl. Consequently, it is
the I/O limitation rather than CPU power
that requires a slave processor to
handle the fuel injector outputs. The
intention is to use a TMS370 8 bit
microcontroller to drive the injectors
sequentially under direct control of the
DSP controller. The majority of the
fuelling calculations will take place in
the current ignition controller with the
slave processor being passed the appro­
priate injection timing information.

Whilst we have concentrated on the
racing applications in this paper, Lucas
have used this programme to measure the
effectiveness of the OSP for Automotive
engine control. New control strategies
are being developed to enhance the per­
formance of engine control for passenger
cars in order to both increase efficien­
cy and decrease emissions.

One of these strategies is adaptive
ignition control whereby the control
system applies small perturbations to
the engine's running condition to deter­
mine the optimum torque/speed point.
Lucas have great experience of such a
technique and expect it to be applied in
future production systems (2).
392

Another technique yet to be ex~loi­
ted in production is that of cylinder
pressure sensing (3). In this case a
pressure waveform is used to provide
closed loop control of the engine. At
present the main barrier to this tech­
nique is the availability of a robust,
cost effective sensor. It is well known
that there are several developments
under way including ones internal to
Lucas. However, the pressure signal in­
side a cylinder is of a complex form
that requires much filtering and proces­
sing. OSP's have already been used in
research applications to extract the in­
formation contained in this complex sys­
tem - speed, combustion quality, engine
health, etc. Again it is the real-time
digital filtering ability of the OSP
that is its strength for this function.
The controller described appears to have
sufficient spare capacity to be able to
handle a cylinder pressure sensor - the
story is common, the electronics are
available and cost effective, but it i's
the sensor technology that is lacking.

6 CONCLUSIONS

It has been effectively demonstrated
that a microcontroller with OSP func­
tions included can provide the core for
a high performance ignition controller.
The efficiency of the instruction set
coupled with its speed of operation
would allow engine management to be car­
ried out on a single chip - the limiting
factor is the amount of timer driven I/O
available on the current device. The
merits of having a very fast processing
core can be summarised as:-

1) Control data updated closer to the
time it is used.

2) No tradeoff of control functions
against engine speed.

3) Opportunity to include new control
techniques in single processor sys­
tem, i.e. cylinder pressure sensing.

The TMS320E14 is the first step at
availing the OSP functionality in a
microcontroller device - it is expected
that the lessons learnt from this and
other automotive control projects will
further enhance its capability as new
devices are brought to production.

This system should not be viewed
solely as a faster versioh of current
systems, but rather one which may be
used to effectively apply the more com­
plex strategies required of engine
management systems in the 1990's (4) -
and in a reliable and cost effective
manner.

REFERENCES

(1) LIN, K. Trends of digital signal
processing in automotive. Interna­
tional Congress on Transportation
Electronics, Dearborn, 17-18 Octo­
ber, 1988.

(2) HOLMES, M. and COCKERHAM, K. Adap­
tive ignition control. 6th Inter­
national Conference on Automotive
Electronics, London, 12-15 October,
1987.

(3) ANASTASIA, C.M. and PESTANA, G.W.
A cylinder pressure sensor for
closed loop engine control. SAE
International Congress and Expo­
sition, Detro~t, 23-27 February,
1987.

(4) RATA, Y. and ASANO, M. New trends
in electronic engine control - to
the next stage. SAE International
Congress and Exposition, Detroit,
24-28 February, 1986.

eln)
pm

aJI1JDJ..EII

J It) = Kille It) + Ki e dt + lCdIde/dt

z
o
H

e (t) = error signal. Kp. Ki & Kd = PID constants.

Converting into discrete form (using rectangular approx.):

yin) = J 10-11 + KOie In) + Klle In-O + K2Ie 1n-2I

KO = Kp t Kd/T + KilT. KI = -Kp -2Kd/T. K2 = Kd/T

Where T = sampling interval.

Yin)

IN EO.PAD
II'YIC 0
LAC YN
LT E2
IFf JC2
LTD El
lIlY Kl
LTD EO
IFf KO
WAC
SADI YN
!lIT YII. PAl

GET NEW SAMPLE
CLEAR P REG
ACC=y (n-I)

ACC=y (n-I) tK2e (n-2)

ACC=y (n-1I tKle (n-1I t
K2e (n-2)

ACC=y (n-I) +KOe (n) t
Kle (n-I) +K2e (n-2)

EXEIlITIIII TIlE = 2.a.s @ 2!iIItz

Fig 1 PID control algorithm

393

AO-AU

00-015

RXDATA

TCLX!

TCLX2

CAPO

CAP!

CRANCSHAFT

CAMSHAFT

A

...
A

...

TaEMETRY

, ,
SEHSORS' , , ,

394

"-
" ,
~
~
~
"

I
N
P
U
T

P
R
0
T
E
C
T
I
0
N

IOPO IOP!5 t- --------!o - - - - - - _._$
16 "BIT I/O PORT

EPROM 320C10
WATCHDOG

RAM CPU

USART

TIMER/COUNTER 1 I TIMER/COUNTER 2

CAPTURE/COMPARE CONTROLLER

t t
CAP2/ CAP3/
CMP4 CMP5

Fig 2 TMS320E 14 hardware organisation

DSP

AID

~ig 3 Lucasracing CDr system

"-
"

,
"

,
4 :

,-

, ,
"

CO
IGNITION

COIL
DRIVERS

NRES

TXOATA

CMPO

CMP3

INTERFACE

TO
FIE. CONTROL

Active Reduction of
Low-Frequency Tire Impact Noise
Using Digital Feedback Control

Mark H. Costin and Donald R. Elzinga

ABSTRACT: Feedback control theory is
used to develop an active noise control sys­
tem to reduce transient-induced road noise
in a vehicle interior. The system consists of
a detector microphone, a high-speed digital
controller, amplifiers, an analog smoothing
filter, and a headphone. The digital control
algorithm uses the output of the microphone
combined with the past history of the control
signal to calculate the current value of the
control signal. This signal is passed through
a low-pass filter (to smooth the steps result­
ing from the digital-to-analog conversion)
and then amplified and sent to the headphone
near the driver's ear. Two control algorithms
are evaluated. A proportional-integral con­
troller reduced the noise by about 5 dB over
the 20-60 Hz range. A modified generalized
minimum variance controller was able to re­
duce the noise by about 10 dB for the 25-
60-Hz range.

Introduction

This paper presents a system for reducing
broadband, low-frequency noise. The partic­
ular application described here is the reduc­
tion of road noise in passenger vehicles;
however, the concept can be used for other
applications as well.

Typical noise-reducing strategies, such as
the use of acoustic absorbing material, work
well on high-frequency sounds, but have lit­
tle effect on noise in the 20-200 Hz range.
This frequency range is important because
the vehicle's tires and suspension act as low­
pass filters. This results in a rough road­
induced sound spectrum, which typically
peaks around 100Hz. The problem is es­
pecially acute in vehicles with large passen­
ger compartments and large amounts of body
structural motion, which create high levels

Mark H. Costin is with the Electrical and Elec­
tronics Engineering Department and Donald R.
Elzinga was with the Engineering Mechanics De­
partment, General Motors Research Laboratories.
Warren, MI48090. Donald Elzinga's current ad­
dress is CPC Engineering North, 895 Joslyn Road,
Pontiac, MI48058.

of low-frequency noise. Station wagons and
vans are good examples of such vehicles.

The method investigated here to reduce the
unwanted low-frequency sound is ,known as
active noise control. This technique consists
of broadcasting sound with the same ampli­
tude as, but 180 deg out of phase with, the
objectionable noise, thereby canceling it. In
actual practice, reductions of over 20 dB have
been obtained for periodic noise and for
broadband noise in a duct [I J. Reductions of
this magnitude require the canceling signal
to match the unwanted sound fairly pre­
cisely; small errors in the gain or phase rap­
idly degrade the performance of the system.

Active noise control has been imple­
mented for the case of periodic noise by as­
suming that the waveform within the upcom­
ing period is identical to that which preceded
it. In the case of a duct, feed forward control
can be used. The noise is measured at one
point upstream by a detector microphone;
the canceling signal is then sent to a speaker
positioned downstream. The noise reaches
the speaker just as its antiphase counterpart
is being generated.

In the case of nonperiodic broadband noise
in a vehicle's interior, there is no way to
measure the offending sound before it reaches
the driver. For this case, the use of a feed­
back controller to reduce the noise is ex­
amined. The use of a feedback controller for
this situation was first proposed by Olson
and May [2]; however, their feedback con­
sisted simply of an analog amplifier (gain),
which does not take into account any system
dynamics. Ffowcs Williams [31 reported that
attempts to duplicate Olson and May's ex­
perimental results have revealed severe in­
stability problems. The approach outlined
here tries to address the instability problem
by detailed system modeling, for both the
system electronics and noise characteristics,
and by designing a digital control algorithm
using minimum variance control theory.

System Configuration and Modeling

The experiments described in this report
were carried out in a midsized station wagon

passenger vehicle. A foam-rubber ball was
positioned where the driver's head would
normally be located. A microphone was
embedded in the ball at the driver's right ear
location. A production active noise control
system would normally use a speaker as the
canceling noise actuator. However, to sim­
plify the system for this feasibility study, a
headphone set was placed over the ball (and
microphone) to act as the canceling speaker.

The control algorithms were implemented
using a 320/PC digital signal processing
(OSP) board made by Atlanta Signal Pro­
cessors, Inc. This is an add-in board for the
IBM PC-AT. It includes a Texas Instruments
TMS 32010 OSP chip to perform the re­
quired high-speed arithmetic and a digital­
to-analog (01 A) converter and an analog-to­
digital (AID) converter for control input and
output. Modeling data and control results
were collected using a Metrabyte Oash-16
AID board.

All the experiments were performed with
the vehicle stationary in the lab. "Road
noise" was generated by striking the right
front tire with an air hammer. This generated
a repeatable input that approximately simu­
lated driving over a bump in the road about
the size of a 2-cm-high tar strip at 50 kml
hr.

The block diagram of the feedback control
system is given in Fig. 1, with a microphone
as the sensor and headphones as the actuator.
Figure I also includes a shaping filter after
the 01 A. This filter is necessary because the
output of the 01 A is a series of steps that
change in level at' the discrete sampling in­
tervals. If not removed, these discrete steps
create a buzzing noise. Therefore, an analog
low-pass filter (a fourth-order Bessel filter
with a cutoff frequency of 300 Hz) was used
in the system. The output of the filter goes
into an amplifier that is used to adjust the
gain of the system.

To produce the desired canceling signal,
models for the noise to be canceled and the
dynamics of the components shown in Fig.
I must be determined. U sing time-series
analysis, a discrete-time model of the fol­
lowing form can be developed [4], where

© 1989 IEEE. Reprinted, with permission. from IEEE Control Systems Mag(c;ne. Aug. 1989. 395

Fig. 1. System block diagram.

y(t) is the measured variable, u(t) the system
input, a(t) a random-noise component, t the
integer number of sampling intervals, and f
the integer-valued system delay. The func­
tions w(q), a(q), 6(q), and </>(q) are polyno­
mials in the backward shift opemtor q -I,
where q-IU(t) equals u(t - I).

y(t) = w(q) u(t _ f - I) + 6(q) a(t) (1)
o(q) </>(q)

The first term on the right-hand side of Eq.
(1) is referred to as the system tmnsfer func­
tion and the second term the noise tmnsfer
function.

The noise detected by the microphones re­
sulting from the "bump" (striking of the
right front tire) is given in Fig. 2. The noise
model, the second part of Eq. (1), was de­
tennined from these data at a data sampling
mte of 2 kHz using the commercial time­
series analysis package "SeA" [5). This
yielded Eq. (2), with 6 = 0.38, </>1 = 1.97,
and </>, = -0.98, whe1:" Po1(t) (open-loop
pressure) is the time series of the signals
measured by the microphones during the
"bump."

Po1(t) = Fa(q)a(t)

(1 - 6q-l) a(t) 2
(I - </>Iq 1- </>,q ') ()

.~.J
0.2 O.4-""TO~6· O.B 1.2 1.4

Time (sec)

Fig. 2. Response of microphone to
striking the tire twice, with the second tire
strike occurring at approximately 1.4 sec.

396

The physical interpretation of Eq. (2) is
that the time series a(t) is an impulse cor­
responding to striking the tire. Po1(t) is the
impulse response of the tmnsfer function,
which represents the filtering of the impulse
by the tire and the structure of the vehicle.

The denominator of Eq. (2) models a
damped sinusoid. Box and lenkins [4) give
the formulas below for determining the fre­
quency that the </> coefficients are modeling,
where fo is the frequency of the sinusoid in
cycles per sample and d the damping factor.

</>1 = 2d cos (hfo)

where

d = _(</>,)112

Therefore, the model given by Eq. (2) cor­
responds to a slightly damped sinusoid (d =
0.99) with a frequency of34.0 Hz. The mag­
nitude-versus-frequency plot for this model
is given in Fig. 3, which compares very well
to the same plot for the data of the tire strike,
Fig. 4. Note that the cutoff frequency is ap­
proximately 60 Hz.

Next, the system Imnsfer function (repre­
senting the shaping filter, canceling signal
amplifier, headphone, microphone, and mi­
crophone amplifier), the first part ofEq. (I),

Frequency (Hz)

Fig. 3. Magnitude-versus-frequency plot
of Eq. (3) (amplitude at 5 Hz normalized
to approximately the same value as in
Fig. 4).

Time ($&C)

Fig. 4. Spectrum of tire hit.

was modeled. Figure 5 shows the response
of this system to a 40-Hz square wave. To
identify this system, it was excited by white
noise filtered at 500 Hz, sampled at 2 kHz
(the sampling mte of the controller). A least­
squares analysis was performed between the
measured output and the input yielding Eq.
(3). A gain term represented by k was in­
cluded to represent the variable gains of the
amplifiers.

kF.(q)u(t - 2)

k(1 + 0.14q-1)(1 - O.99q-l)

(1 - 1.53q 1 + O.67q 2)

. u(t - 2) (3)

The denominator of Eq. (3) represents an
underdamped sinusoid with a natuml fre­
quency of 116.6 Hz. The first polynomial of
the numemtor (I + O.14q-l) models a par­
tial delay, which, along with the one whole
period of deadtime, models the shaping fil­
ter. The (I - 0.99q-') term is very close to
(1 - q-I), which corresponds to a derivative
in the model. The presence of a derivative
is expected because of the almost zero
steady-state gain observed in the square-wave
tests of Fig. 5.

The overall system model is obtained by
combining Eqs. (2) and (3), leading to the
following expression for y(t), where k and

Frequency (Hz) -

Fig. 5. Step response of shaping filter­
amplijier-headphone-microphone-amplijier
system.

tJte variance of a(t) depend on the gains of
the amplifiers.

y(t) = kF.(q).(t - 2) + F.(q) a(l) (4)

Minimum Variance Control Theory

For systems modeled in the form of Eq.
(I), an effective controller design method­
ology is minimum variance control theory
[6]. This technique finds the control that
minimizes the variance of the measurement
y(t).

The minimum variance controller for Eq.
(I) can be shown as

-o(q)T(q)
U(I) = w(q) <b(q) i'(q) y(/) (5)

The functions T(q) and if(q) are polyno­
mials derived from the identity

O(q) = '1'() + T(q)q -f-I (6)
<b(q) q <b(q)

where

i'(q). = I + i'lq-1 + ... + iffq-f

The minimum variance controller [Eq. (5)]
has the property of reducing y(t) to iJi(q)a(/).

The closed-loop controller described by
Eq. (5) also has its limitations. Equation (5)
has the term iJi(q) in its denominator. Ifi'(q)
has any roots in q -I inside the unit circle,
the controller will be unstable. This means
that, theoretically, to achieve minimum
variance control, the variance of U(/) will be
unbounded. In a practical implementation,
the high output energy of an unstable con­
troller will cause the entire system to be
unstable.

Unfortunately, for the model described by
Eq. (4), if(q) = (I + 1.96q-l) has its root
inside the unit circle. For cases with unstable
controllers, many modifications to minimum
variance control have been proposed. One of
the most popular is called the generalized
minimum variance (GMV) controller [7],
where the variance of P(q)y(/) is minimized
instead of the varianceofy(l) [P(q) = PN(q)!
Po(q) is a digital filter, and PN(q) and Po(q)
are polynomials in q -I].

The minimum variance controller [Eq. (5)]
also has the disadvantage that it minimizes
the measured signal with equal weighting on
all frequencies. This is not always desirable.
For example, since sounds below 20 Hz are
virtually inaudible and difficult to reproduce
with a small speaker, we are not interested
in controlling these frequencies. The P(q)
filter of the GMV algorithm can also be used
to selectively weight certain frequencies.
P(q) could, for example, be made to ap­
proximate the A-weighting curve, which ap-

proximates the filtering done by a typical hu­
man's auditory system. The controller would
then minimize the noise as sensed by the
vehicle's occupants.

The GMV controller can be shown as

U(I) = -o(q)T(q)y~) .
Po(q) w(q) <b(q) if (q)

(7)

The functions T(q) and Y (q) are polyno­
mials derived from the following identity,
which is similar to Eq. (6).

where

-It(q) = I + -Itlq-I + ... + -Itfq-f

The minimum variance controller [Eq. (5)]
is a special case of Eq. (7), where P(q) = I.

The application of controller (7), and also
a simple proportional-integral (PI) control­
ler, to the active noise control problem is
described in the following section.

Closed-Loop Control Results

To more easily describe and compare the
controllers, all the controllers were imple­
mented as U(I) = a(q)y(t)![3(q), where a(q)
and [3(q) are polynomials of controller pa­
rameters and Nand M are the maximum
number of controller coefficients.

In the remainder of this section, when de­
scribing an individual controller, a parame­
ter's value is zero unless it is indicated ex­
plicitly.

Two types of controllers were imple­
mented in the TMS 32010. The first con­
troller tried was a PI controller, where N =

I, M = I, [30 = I, and [31 = -1. The
parameters "'0 and al were determined by
trial and error as "'0 = 2.94 and al = -1.94.
The denominator was implemented as III =
-0.98 (as opposed to III = -I) to reduce
numerical round-off problems.

The second controller, a GMV controller,
was designed for Eq. (4) using Eq. '(7). P(q)
= (I - 0.6q-1)!(1 + 0.6q-1) was used to
force if(q) to be stable. This form for P(q)
was selected by computer simulation of sys­
tem model (4). The resulting controller was
determined to have the following parameter
values: "'0 = 0.955, al = -1.97, "'2

1.20, "'3 = 0.0014, "" = -0.151, [31 =
-1.83, [32 = -0.0361, 113 = 1.26, Il. =
-0.103, [3s = -0.263, and [3. = -0.0321.

Unfortunately, the GMV controller de-

signed for Eq. (4) performed very poorly.
When implemented, the system became
unstable even before the disturbance was in­
troduced by hitting the tire. The instability
is thought to be caused by the controller's
very high gain at low frequencies. This high
gain is due to the formulation of the mini­
mum variance controller, which inverts the
model transfer function. For the case of Eq.
(3), the term (I - 0.99q-l) mOdels very low
gains at low frequencies, resulting in a min­
imum variance controller with very high
gains at low frequencies. Because of this low
gain and the modeling technique used, the
low-frequency components of the system
probably were modeled inaccurately. This
could cause any minimum variance control­
ler designed from this model to exhibit un­
desirable properties at low frequencies (i.e.,
inadequate gain and phase margins).

To remedy this, an ad hoc controller de­
sign was performed that involved recalcu­
lating the GMV controller using Eq. (4) after
the (I - O. 99q - I) term was removed from
the transfer function. The result was a mod­
ified GMV controller with ao = 0.955, "'I

= -1.97, "'2 = 1.20, "'3 = 0.0014, "" =
-0.151, [30 = I, [31 = -0.839, 112 =
-0.867, [33 = 0.405, Il. = 0.298, and Ils
= 0.0325. This controller was stable and
provided good control. Although this mod­
ified GMV controller is probably not opti­
mal, as discussed later, it performed better
than the PI controller, demonstrating the fea­
sibility of the concept and the model-based
controller design.

Figure 6 shows the spectrum of the tire hit
for the uncontrolled sound, and PI and mod­
ified GMV controllers. The· PI controller
shows a reduction of 5-10 dB for the 20-60
Hz interval. The modified GMV controller
shows a 10-20 dB reduction between 25 and
60 Hz. The reduction is limited above 60 Hz
because striking the tire introduces very little
noise above this frequency (the cutoff fre-

Frequency (Hz)

Fig. 6. Comparison of open-loop, PI
control, and modified GMV control lire hil
spectra.

397

quency of Figs. 3 and 4). From about 15 to
20 Hz, the modified GMV controller ex­
hibits an amplification of 5-10 dB; however,
these frequencies are on the border of the
audible range and would not be heard by
most people.

Acknowledgments

The authors acknowledge the contribu­
tions to this work of L. J. Oswald, Section
Manager of the Engine Dynamics and
Acoustics Section, Engineering Mechanics
Department, who generously provided back­
ground and insight into this and other active
noise control problems.

References

[I] C. F. Ross, "A Demonstration of Active
Control of Broadband Sound, " J. Sound and
Vibration, vol. 74, no. 3, pp. 135-140, 1981.

[2] H. F. Olson and E. G. May, "Electronic
Sound Absorber," J. Acoustical Soc. Amer .•
vol. 25, no. 6, pp. 1130-1136, 1957.

(3] I. E. FfowcsWilliams, "Anti-Sound," Proc.
Roy. Soc. Lond., Ser. A, vol. 395, pp. 63-
88, 1984.

398

[4] G. E. P. Box and G. M. lenkins, Time Series
Analysis: Forecasting and Control, revised
edition, San Francisco, CA: Holden-Day,
1976.

[5] L.-M. Lui and G. B. Hudak, The SeA Sys­
tem for Univariate-Multivariate Time Series
and General Statistical Analysis, ver. II,
DeKalb, IL: Scientific Computing Associ­
ates, 1985.

(6] K. I. Astrom, Introduction to Stochastic
Control Theory. New York, NY: Academic
Press, 1970.

(7] D. W. Clarke and B. A. Gawthrop, "Se1f­
Tuning Control," Proc. lEE, vol. 126, pp.
633-640, 1979.

Mark H. Costin received
the B.Eng. degree in
chemical engineering with
a minor in computer sci­
ence from McGill Univer­
sity in 1979, the M.Eng.
degree in chemical engi­
neering from McMaster
University in 1981, and
the Ph.D. degree in sys­
tems engineering from
Case Western Reserve

University in 1984. Since 1984, he has been a
member of the Electrical and Electronics Engi­
neering Department, General Motors Research
Labomtories, where be has been perfomting re­
search in control theory and application for var­
ious automotive and manufacturing systems. His
cuiTent research interests concern system identi­
fication, adaptive control, and failure detection.

Donald R. Elzinga re­
ceived the B.S. and M.S.
degrees in mechanical en­
gineering from Michigan
Technological University
in 1984 and 1985, respec­
tively. From 1985 to
1987, he was a member of
the Engineering Mechan­
ics Department, General
Motors Resean:h Labora­
tories, working in the field

of vehicle noise and vibration. Since 1987, he has
worked at the CPC Division of General Motors.
His current professional interests include acoustics
and modal analysis.

Implementation of a Tracking Kalman Filter on a
Digital Signal Processor
JIMFRON TAN AND NICHOLAS KYRIAKOPOULOS

Abstract-A Kalman filter for tracking moving objects has been
implemented on a TMS32010 digital signal processor. Tracking accuracy
and quantization effects of the implementation have been measured by
comparing the filter to one implemented on a general purpose computer
with a 32-bit word length. The filter design has been optimized to
minimize the program memory requirements and execution speed.
Although the filter has been implemented on a specific signal processing
cbip, the design is general enough to be applicable to any other digital
signal processor. The filter can be used for tracking objects for industrial
or other applications where range and bearing measurements are
available. For motion on a plane, the filter caR be used to track objects
where the maximum system bandwidth is 1680 Hz; for three-dimensional
motion the system bandwidth is 1120 Hz. Using the approach presented in
this paper higher system bandwidths can be accommodated through
higher speed digital signal processors.

I. INTRODUCTION

THE theory of Kalman filters is by now well covered in the
literature [I], [2]. [3]; applications can be found in any

area where the problem can be modeled as a dynamic process.
Implementation of even the most efficient algorithms requires
rather heavy computational capacity. Memory requirements
are dominated by program instructions for systems with a
small number of states, and by matrix storage for large state
sizes. For program execution, the largest amount of time is
taken up by multiplications and additions in the computation of
the covariance matrix; in general, the number of these
mUltiplications is proportional to the third power of the state
size [4].

Recently, the trend in special purpose signal processing
devices has been toward the integration of array multipliers
with the ALU; as aresult, there has been an improvement in
the multiplication time compared to the software implementa­
tion of the multiply instruction. The improvement in the
instruction execution time makes the on-line, real-time imple­
mentation of Kalman filters for industrial applications a
realistic possibility. This paper discusses the implementation
of such a filter on a special purpose digital signal processor.
Some of the currently available devices such as the NEC
p.PD7720, and the Texas Instruments TMS320 are capable of
4.0 x 106 and 5.0 x 106 multiplications per second,
respectively. The Kalman filter described in this paper is
implemented on the TMS320.

Since the multiplication time and memory capacities of

Manuscript received April 25. 1986; revised March 5, 1987.
J. Tan is with the Harbin Shipbuilding Engineering Institute, Harbin,

Peoples Republic of China.
N. Kyriakopoulos is with George Washington University, Washington,

DC.
IEEE Log Number 8718157.

these devices are fixed, the objective ofthe design presented in
this paper is to minimize cycle time and maximize the state
size of the filter. At the same time, the arithmetic roundoff
errors are bounded.

The filter implemented in this paper is a tracking filter
where the state variables are position and velocity. Tracking
filters have a wide range of applications from perfonning
mechanical operations such as controlling the motion of robot
arms to the sensing of objects through radar or sonar. The
implementation presented in this paper is in tenns of a
normalized system of units; it is thus applicable to any
problem formulated as object tracking.

Section II describes the formulation of the tracking prob­
lem. Section III gives the development of the Kalman filter.
The details of the program design are given in Section IV,
while the evaluation of the program is described in Section V.

II. FORMULATION OF THE TRACKING PROBLEM

The tracking problem considered in this paper assumes
motion of an object on a plane; three-dimensional motion can
be handled through repeated use of the two-dimensional
system. The problem can be viewed either as an object moving
with respect to a sensor or the converse; the two situations are
handled through a simple coordinate transformation. It is
assumed that range and bearing are measured independently;
therefore, these two measurements are decoupled and the
polar coordinate system is used. This decoupling of states is
essential to the optimization of the computer program since the
number of multiplications for the covariance matrix is propor­
tional to the third power of the state size; thus the number of
multiplications for estimating position and velocity in three­
dimensional motion would be 63 = 216 for coupled systems
versus 3 X 23 = 24 for a decoupled one.

Consider an object moving on a plane. Let the sampling
frequency be high enough so that the object speed between any
two sequential sampling instances can be considered constant;
every change occurs at the sampling instances, and those
changes are disturbed by random accelerations. In the polar
system. along each coordinate, there is the associated variable
xl(k) and its corresponding rate of change xl(k) = x2(k). For
each coordinate the equations of motion are

~(k)

=F(k)x(k) + G(k)w(k) (I)

© 1988 IEEE. Reprinted, with pennission, from IEEE Transactions all Industrilll Electronics,
Vol. 35, No. I, Feb. 1988. 399

where T is the sampling period, w(k) is the random
acceleration disturbance, and

F(k)= [FII(k) Flz(k)] = [1 T]
FzI(k) Fzz(k) 0 1 .

The measurements consist of range and bearing readings;
each measurement variable z(k) is corrupted by additive noise
lI(k); therefore

where

z(k) = [I O]x(k) + lI(k)

=H(k)x(k) + lI(k)

H(k) = [HI (Ii) Hz(k)].

ill. DEVELOPMENT OF THE KALMAN FILTER

(2)

The equations describing the Kalman filter for the system
described by (1) and (2) have been developed in the literature
[1], [2]. The most time consuming process in the implementa­
tion of the filter is the multiplications required for computing
the error covariance matrix lind the filter gain. For the tracking
problem considered in this paper the number of operations is
minimized by converting the filter matrix equations into scalar
forms. These scalar equations require fewer assembly lan­
guage instructions than the original form of the filter.

. Designating the error covariance matrix as

P= [~:: ~~]
the extrapolated covariance matrix as

S= U:: ~~]
and the extrapolated state estimate as y, the filter equations are

y=Fi (3)

S=FPFT +GQGT (4)

r=s HT [H S HT+R]-I (5)
j

x=y+r[z-Hy] (6)

p=[I-rHlS (7)

where r is the filter again. The scalar equations (3)-(7) are the
basis for the assembly language program of the digital signal
processor. The flowchart for the filter implementation on the
TMS320 processor is shown in Fig. I.

IV. PROGRAM DESIGN

The development of the filter equations has been influenced
by the architecture of the digital signal processor. If the
Kalman filter is implemented in terms of array operations, a
single subroutine executing vector multiplication can be
defined; such a subroutine can be called whenever vector
operations are needed. If, on the other hand, the filter
equations are implemented in scalar form, the call and return
times for the subroutines are eliminated; the program memory

400

UP : MAIN PROGRAM
RIGHT : SUBROUTIIIE IKMFTl

Fig. I. Kalman filter implementation on the TMS320 digital signal
processor.

requirements for the scalar implementation are much greater
than those for the vector implementation. This imbalance is
corrected by the improvement in the execution time. The total
time required for generating an output data array can be
measured in instruction cycle times. For array multiplication
the total number of instruction cycle times consists of the time
required to operate on the array elements, the time required to
call and return the array subroutine, and the number of times
the array subroutine is called. For scalar operations, the call
and retl:rn times are saved. Thus if the total number of
instruction cycles for executing an array operation is compara­
ble to the instruction cycles required for calling and returning a
subroutine, the scalar formulation of the equations yields a
faster filter implementation. For example, the inner product of
two n-dimensional arrays requires n multiplications and (n -
1) additions. Since the instruction cycle times nT is typically
equal to the multiply time, the total time required for such an
operation is n T. If the inner product is programmed as a
subroutine, the call and return times require more than one
instruction cycle time, or aT where a > 1; the total time
required for calling and executing the subroutine is (nxa)T.
Consider now the multiplication of two n x n matrices using
the array multiplying subroutine; the total number of cycle
times would be n(n + alT. In a scalar implementation of the
same operation, the total number of cycle times would be nZT;,
thus the ratio of the scalar implementation execution time to
the vector implementation is n/(n + a). It is seen that as n iJ>
a the ratio tends to 1 and the saving in execution time is
insignificant compared to the increased amount of memory
required to store the instruction required for the scalar
implementation. For the two degrees of freedom under
consideration in this paper, n = 2, and the ratio becomes 2/(2
+ a); since a is always greater than I, the scalar implementa-

tion of the Kalman filter will be at least twice as fast as the
corresponding vector realization.

A. The Digital Signal Processor

The Texas Instruments TMS32010 [5] was chosen for the
implementation of the Kalman filter described in the previous
sections. The approach to the filter design described in this
paper is equally applicable to any other signal processing chip.
There are, however, some general observations that would be
useful in choosing a particular DSP chip for implementing a
filter. It has been seen that the decrease in processing time is
accompanied with an increase in program memory require­
ments. Some DSP chips partition the ROM into a program
ROM and a data ROM in addition to the data RAM; others
have only data RAM and program ROM. The Kalman filter
algorithm is instruction intensive with minimal requirements
for data storage; therefore a DSP architecture with a large
nonpartitioned ROM and relatively small RAM would allow
the implementation of a larger dimension Kalman filter in the
scalar form, thus decreasing the computation time for obtain­
ing the state estimates. From the faster available devices the
NEC ILpD7720 has 512 x 23 program ROM and 512 x 23
data ROM, while the TMS 32010 has 1536 x 16 program
ROM only; therefore, on the basis of the previous consider­
ations it was considered more suitable.

B. Word Length Considerations

The finite length registers of the DSP chip affect the
accuracy of the filter; the fixed point representation of the
numbers can cause overflow or underflow. The effects of
parameter quantization can be studied either analytically or by
comparing the performance of the filter to a similar one with
much larger word length. For this paper, the latter option has
been chosen; the reference filter has been implemented on a
32-bit general purpose machine in both integer and floating
point realizations; the results are discussed in a subsequent
section.

To avoid the overflow or underflow problems associated
with integer arithmetic the filter equations were scaled
appropriately. Proper scaling factors for each variable and
parameter were determined from the implementation of the
filter on the general purpose computer using floating point
arithmetic. The filter variables and parameters for each sample
point were printed out under a wide range of operating
conditions. Ideally, the statistics of these variables should be
determined using Monte Carlo simulation; in practice, how­
ever, reasonable values can be obtained. by operating the filter
under conditions close to the maximum range and bearing.
Once the ranges of values for the variables have been obtained
from the large word iength computer, considered the reference
standard, the scaling factors for the DSP implementation are
chosen by also taking into account the required accuracy for
each variable.

Let Xmax be the maximum value of a variable x, and ax the
corresponding accuracy. The number of bits, M, required to
accommodate Xmax would be log2 Xmax oS M; to obtain the
required accuracy, the number of necessary bits must satisfy
2 -N oS ax. For a 16-bit DSP, M + N = 15 since one bit is

TABLE I
INITIAL CONDmoNs, SCAUNG FACTORS AND THE NORMAUZED
VALUES USED IN IMPLEMENTING THE KALMAN FILTER IN THE TMS 320

ParameterS Initial Scaling Normalized
or Variables Values Factors Initial

Values

F11
, , ,

F,. 0
, 0

F., .. ' .' ,
F ••

, , ,
G,

,-, .' ,
G. ,'. •• ,
H, 0 ,

0

H.
, , ,

X, .x. 0 .1 0

P11 '00 .' 1600

p,. 0 .' 0

p •• '00 •• 25600

511 .4

s,. ,5 •• .'
'I,,~,2,V

.1

~,Il..'W
.4

~ (range) .00 ..' .6
a: (ranga)

, .' '6
O'~ (bearing) 360 2 .. ' 8100

(J~ (bearing) 9 " 144

reserved for sign. The dynamic range of the system is Xm • .I ax
= 2 IS = 32768. Obviously, there is a tradeoff between the
maximum range of a variable and the corresponding accuracy ..

For the system under consideration the maximum values for
the range and bearing were 200 units and 180·, respectiVely;
the corresponding accuracy was 0.01. Therefore, log2 200 <
8 = M, and 2 -7 < 0.01 so that N = 7. The scaling factors
for the computed variables are determined by examining the
range of these variables from the simulation runs. For
example, the maximum value of P II , (4) was approximately
1000 so that M <!: log2 1000, or M = 10 bits. The error
covariance at every sample point depends on the assumed
initial values for this variable; for the present simulation only a
few different values of initial conditions were used so that
there is a certain degree ofunceltainty for the value P II max' To
minimize possible computational errors due to this uncer­
tainty, M was increased to 11 bits, implying a P II max of 2048.
Under these conditions, N = 15 - M = 4 bits and the scaling
factor for P II is taken as 24 = 16. Similarly, the scaling factor
for SII has been computed as 24. The scaling factors for all the
variables are shown in Table I. Application of these factors to
the filter equations (3)-(7) yields the scaled version of the
Kalman filter given in Table II, which has been implemented
in the TMS320 DSP.

C. Reference Program

The performance of the filter has been evaluated by
comparing it to a filter implemented on an mM 370 machine.

401

TABLEll
NORMAUZEO KALMAN FILTER EQUATIONS

YI ::: FBXl + F12X2

Y2::: F12XI + Fnx2

2 2 2 2
Sn= FnPn+ Fn FI2PI7i8 + F12P22/16 + G1"Q

S12 = FI1P12Pll + P12F21P12/16 + FI1F22P12 + FIIF22P22 + GIG2iQ"2

S22 = Fi,Pl1!16 + F21F22PI7i8 + F2iP22 +G2~ci64

01 = Sl1H, + Sl2HzlI6

02= S 12H 1/16 + S22Hzl16

W=HIDI +H2D2 + 0';

v = z· (HtYt + H2Y2)

Pu= Sl1 - oiIW

P12 = S12 - 01Dz/(W'16)
2

P22 = S22 - Dz/(W.16)

:'"
: '"
I '"

: '" : "" NOMINAl. COURSE

: '" r '" !jK+1),Y,IK+ll --1------------,,----------

XIKl
a

" : I
I

Fig. 2. Effects of acceleration noise on a nominal course of an object.

X.

To make the two filters as similar as possible, the filter
equations in scalar f0111) given in Table II have also been
implemented on the general purpose machine; input range and
bearing data simulating the motion of the object being tracked
are generated by subroutine INPUT; these measurements are
corrupted by noise produced by a system subroutine.

The equations describing the object trajectory can easily be
derived with the help of Fig. 2. At the kth sampling instant,
the object is at position p(k), lI(k) with velocity p(k) and 9(k)
which have cartesian representations x(k) and velocity lI(k),
respectively. Assuming that the velocity is constant in magni­
tude and direction in the interval kT:$ t < (k + 1) T, at the

402

(k + 1)st instant the object would be in position

xo(k+ l)=x(k)+ TIJ(k). (8)

Consider now the object being subjected to an acceleration
noise; for example, an object moving on a conveyor belt is
subject to vibration, or an airplane is subject to wind effects.
Let the acceleration vector be g(k); then the actual position of
the object will be

1
x(k+ I)=xo(k+ 1)+- gT2.

2
(9)

To determine the estimation error, given p(k) and 8(k), we
need p(k + I) and 8(k + I) for comparison with p(k + I)
and 8(k + I) which are the outputs of the Kalman filter. Since
(8) and (9) involve vector addition, the polar coordinates for
the kth instant are converted into cartesian form and the noise­
free position given by (8) is obtained; then, the impact of the
acceleration vector g(k) is added and the actual position x(k
+ I) is obtained, which is subsequently converted to p(k + I)
and 8(k + I). These transformations are straightforward with
the help of Fig. 2.

Designating as 8,(k) and p,(k) the direction and magnitude,
respectively, of the velocity lJ(k) along the nominal course,
the noise-free position of the object is given by

xbo(k+ I) = p(k) cos 9(k) + Tp, cos 9,(k)

xbo(k+ I)=p(k) sin 9(k)+ Tp,(k) sin 9,(k). (10)

The actual position of the object is given by

where pg(k) and 8g(k) are the magnitude and direction,
respectively, of g(k).
The magnitude and direction of the acceleration disturbance
are uniformly distributed random variables in the ranges {O -
jgjmax} and the range and bearing at the (k + I)st instant are
found as

p(k+ I)=.jx~(k+ 1)+X~(k+ I)

xb(k+ 1)
9(k+I)=tan ---.

xa(k+ I)
(12)

Equations (10), (11), and (12) are used in the simulation
program to describe the trajectory of the object, and the
estimation error is determined by comparing the output of the
filter to the values obtained from (12).

V. PROGRAM VERIFICATION

The filter program is simu'Iated using the XDS/320 Macro
Assembler, Linker, and Simulator, which are the software

support programs for the TMS320 products [5], [6]. The
source program is compiled, linked, and loaded into the XDSI
320 simulator; input and output files may be attached to VO'
ports to simulate peripherals connected to the processor.

Verification of the filter operation involves 1) implementa­
tion of the filter equations on a 32-bit machine using floating
point arithmetic, 2) generation of actual object trajectory, with
a state vector X32, on a 32-bit machine using the model
described in Section IV, 3) generation of an estimated
trajectory with a state vector i 32 , and 4) generation of the
estimated state vector i l6 by the filter implemented on the
TMS320 using integer arithmetic.

The tracking properties of the reference filter are deter­
mined by computing the estimation error i32 = X32 - Xl2 for
various object trajectories. For testing purposes, eight differ­
ent trajectories have been generated, four along straight lines
and four containing midcourse changes in direction, The noise
variances used are listed in Table 1. Four of those trajectories
are shown in Figs. 3-6; each trajectory contains 50 sampling
points; course changes occur at the 26th sample. The
estimation error X32 is a measure of the optimal performance of
the reference filter; the equations of this filter are identical to
those implemented on the TMS320.

The effects of the 16-bit integer arithmetic on the filter
performance are determined by comparing the estimated state
vector Xl6 from the TMS320 simulator to the state estimate i32
from the reference filter; this difference forms the quantization
error xQ = i32 - i 16•

In Figs. 3-6, the actual position is given by the solid line
which contains the effects of noise on the object trajectory; the
crosses indicate the measured position determined from noisy
measurement, and the squares indicate the estimated positions.
The measurement system is located at the origin of the
coordinate system which is calibrated in unspecified distance
units. It should be noted that as the distance of the object from
the origin increases, both the measurement and estimation
error increase; this is due to the bearing measuring system
which is subject to a given noise power. At points close to the
origin the effects of the bearing measurement noise are small;
as the range increases, the effects become very significant thus
affecting the filter accuracy.

The performance of the filter during the entire tracking
period can be determined by considering the mean estimation
error for every sample point over a large number of different
trajectories, or

E[x(k)'tk=l, "',50

over a set of sample vectors xU, k», j = I, ... , 8, where
x(j, k) = X32(j, k) - XI6(j, k) is the estimation error at the
kth sample of jth trajectory. The means of the range and
bearing estimation errors, p(j, k) and iJ(j, k), respectively,
for the eight sample trajectories are shown in Fig. 7. From
these plots it is evident that the performance of the system is
consistent throughout the entire tracking period.

The quantization effect are similarly determined by consid­
ering the mean and variance of the range and bearing
quantization errors for each sample over the set of sample
trajectories. Fig. 8 shows E[pn(k) - PI6(k)] and var [Pdk)

403

0
0
iii on

0
0
d .,
8
iii ..
0
0
d ..

~~
ig .. '" en
g8
)or,!

g ..
0

~
0
0

2

8
iii

0
0
d O•OO

404

g
iii

POSITIONS OF OBJECT
--- , ACTIiAI. POSITION

+ ,MEASURED POSITION

C ,esnMA'!CD POSmON

+

+ +
+ oQ 0 C

++~

~
+

+ 0 +

+

g+-----~--_T----~----r_--~----_r----~--_,----_r----~
d O.OO 5.00

5.00

10.00 15.00 20.00 29.00 30.00 35.00 40.00 45.00 50.00
X IOIST ANCE UNITl

Fig. 3. Filter performance for a nominal straight line trajectory subject to
acceleration noise with initial position close to the origin.

POSITIONS OF OBJECT
--- , ACTUAL POSITION

• ,~ED POSITION

o , ESTIMA '!CD POSITION

+ +

+

+

o
+

o

dO

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 95.00 60.00 65.00
X IDISTANCE INTI

Fig. 4. Filter performance for a nominal straigbt line trajectory al some
diatsnce from !he origin and subject 10 acceleration noise.

c c
0
on

c c
iii ..
c
CI
0 ..

;::CI _CI

~l!i

~~
-CCI
~..,

en
ag
>:Q

CI
CI
0

'"
g
~

g
5!

CI
CI
iii

CI
CI
0 0.00

CI
CI
0 on

CI

~ ..
CI
CI
0 ..
CI
CI
iii

'"
CI
CI
0

;:::'"
~g
wlli
~N

~~ _CI
Q'"
>-CI

CI

~

CI
CI

5!

<> <>
iii

CI
CI

POSITIONS OF OBJECT
-- - : ACTUAL POSITION

• : MeASURED POSITION

[J : ESTIMATED POSITION

o
.I!I

• •
o

0 0.00 5.00 , 0.00 , 5.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00
X IOIST ANCE UNIT)

5.00

Fig. 5. Filter performance for a trajectory involving a 45" change from the
initial course.

POSITIONS OF OBJECT
--- : ACTUAL POSITION

• : MEASURED POSITION

o : ESTIMATED POSITION

•
• Ul •

, 0.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00
X tDIST ANCE UNIT)

Fig. 6. Filter performance for a l1'I\iectory involving 90" change from initial
course.

405

§

I!
~
~
8 ...
ID.DD

_ EST1MAllON BWlR OF RANGE

5.00 10.00 '''00 20.00 21.00 30.00 31.00 4O.oa 41.00 10.00
1M!

- ES'IIMAllON BWlR OF IIEARING

=+---~--~--~--~--~--~--~--~--~--~ 10.00 15.00 10.00 '1.00 ZQ.OO 21.00 30.00 31.00 .0.00 41.00 10.00
1M!

Fig. 7. Mean estimation error for each sampling point over a set of eight
sample trajectories.

II
cO

..
;;

I: ..
~
II
'f
iii
cO
'0.00

~
11
cO

g

I:
>i ,

11
'f

~
'o.QO

5.00

5.CO

MEAN OF RANGE

10.00 11.00 20.00 21.00 30.00 31.00 _0.00 41.00 So.OO
1M!

VARIANCE OF RANGE

'0.00 ts.oO 20.00 21.00 3Q.00 31.00 4Q.00 41.00 .0.00
1M!

Fig. 8. Quantization effects on range estimates for a sixteen bit implementa­
tion compared to a thirty-two bit implementation over a set of eight sample
trajectories.

406

..
;;

I! ..
~
II
'f
iii
cO
'0.00 LOO

MEAN OF BEARI'IG

10.00 11.00 20.00 21.00 30.00 31.00 40-00 .1.00 10.00
1M!

VARIANCE OF BEARING

~+-~---r--~--~~---r--~--r-~--~
10.00 1.00 ,o.oa 11.00 20.00 21.00 30.00 31.00 40.00 ."00 10.00

1M!

Fig. 9. Quantization effects on bearing estimates for a sixteen bit implemen­
tation compared to a thirty-two bit implementation over a set of eight
sample trajectories.

- PI6(k)] ." k =. 1, "', 50 over a sample trajectory range j
= 1, "',8. Fig. 9 shows similar information about bearing
quantization errors. From these figures it is evident that the
filter performance is not degraded due to quantization effects .

Anotl).er aspect of the filter performance is the maximum
system bandwidth under which the filter can operate in real
time. The filter implementation presented in this paper
requires 1488 instruction cycles to generate one sample
estimate. With an instruction cycle time of 0.2 I'S, the filter
can operate in a system having a maximum sampling fre­
quency of 3.36 kHz or a system bandwidth of 1.68 kHz. This
bandwidth is more than sufficient to allow the Kalman filter
implemented on the TMS32010 to be used in any application
where mechanical motion is involved. The latest signal
processing chips having instruction cycle times on the order of
0.1 I'S, and can be used in real time systems with bandwidths
up to 3.36 kHz. For three-dimensional motion the correspond­
ing systems bandwidths are 1.12 kHz and 2.24 kHz, respec­
tively. These bandwidths are derived by considering that the
filter estiniates a two-dimensional state vector for each
coordinate. The 1488 instruction cycles involve the calculation
of two state vector each of dimension 2 as shown in Fig. 1;
thus for the three-dimensional case, the total number of
instruction cycles required will be approximately equal to two­
thirds of these required for the two-dimensional system.

VI. CONCLUSION

This paper presents a detailed implementation of a tracking
Kalman filter on a special purpose digital signal processor.
Implementation of such a filter on a real time basis allows for

the design of distributed real time control systems for
applications involving multiple sensor tracking of moving
objects. Although the design of the fllter is based on a specific
signal processor, the principles involved, especia1\y in the
modeling of the system noise effects, are general enough to be
used for implementing the fllter on any other processor.

REFERENCES

[I) F. R. Castella, "An adaptive two-dimensional Kalman tracking filter,"
IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, pp.822-829,
Nov. 1980.

(2) B. Friedland, "Optimum steady-state position and velocity estimation
using noisy sampled position data," IEEE Trans. Aerosp. Electron.
Syst., vol. AES-9, pp. 906-911, Nov. 1913.

(3) B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

(4) A. Gelb, Applied Optimal Estimation. Cambridge, MA: MIT
Press, 1974.

[51 K. G. McDonough, and S. S. Magar, "A single chip microcomputer
architecture optimized for signal processing," in Proc. ICASSP'S2,
Paris, May 3-5, 1982.

(6) Texas Instruments Inc., TMS320 User's Guide, 1983.
(1) Texas Instruments inc., TMS320 Assembly Language Programmer's

Guide, 1983.

407

408

A STAND-ALONE DIGITAL PROTECTIVE RELAY
FOR POWER TRANSFORMERS

Ivi H.nnnnto. St.udent Mrmher IEEE, Y.V.V.S. Murty, Member IEEE; M.A. Rahman, Fdlow IEEE

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

St. John's, NFLD. AlB 3X5

ABSTRACT

This paper deals with the complete design of a stand-alone
prototype digital protective relay for three-phase power trans­
formers. The major emphasis of the paper will be on the de­
tailed description of the hardware and software of the proto­
type relay. The protection functions implemented include: a
percentage differential protection with a second-harmonic re­
straint for magnetizing inrush and a fifth-harmonic restraint for
overexcitation conditions, and a separate protection for high
impedance primary and secondary ground faults. The present
relay design is tested with the Fourier algorithm and any other
relay algorithm can be used by replacing only one subroutine.
The relay hardware consists of a data acquisition board and
a digital processing board which is based on the TMS320E15
processor. Sample real-time test cases arc included in the pa­
per. The results show that the relay never misoperated and
correctly identified all the faults that are applied.

Key words:

Digital Relay, Power Transformer, Signal Processing.

INTRODUCTION

The digital protection of electrical power apparatus has
been an active area of research for the past twenty years. These
research results are being utilized in some of the digital relay
designs in recent years [1]. Considerable amount of research
has been done on digital protection of power transformers. A
number of relay algorithms have been developed [2,3]. The
digital protection of power transformers requires complex cal­
culation and logic, hence the use of a digital processor seems
natural and attrnctive.

Transformers are usually protected by means of a differen­
tial scheme. Unlike in the bus differential scheme, the trans­
former differential relay should be designed such that it does
not misoperate during magnetizing inrush [4} and overexcita­
tion conditions which fools differential relay operation. Fortu­
nately these non~linear conditions are characterised by a heavy
harlnonic content in their current signals which can be used to
prevent the misoperation of the differential relay.

This paper describes the complete design details of the
hardware and software of the prototype digital protective re-

89 s:--t: 733-7 PWRD A paper rt!:commended .and appro"cd
by the IEEE POw.3r System Relaying CO[:)luittce of the (gEE
poW'er Engineering Soc1ety for present~tt.t)n at the I~g€1

:E~4~9~:8~~'~n:::~!:~' s~~:~~t:::C~;b~:!~!~~~1~98~~lY 9
made available for printltlg May 19, 1989.

lay for 3-phase power transformers. The following sections of
the paper describe the percentage differential and ground fault
protection, digital relay hardware and software design and real­
time test results.

PERCENTAGE DIFFERENTIAL
AND GROUND FAULT PROTECTION

Principles of differential protection of transformers is well
documented [5]. A typical percentage differential characteris­
tic (PDC) which is used for power transformer protection is
shown in Figure 1. The threshold Co should be selected based
on the magnitude of the magnetizing current, and the differ­
ential current resulting from the on-load tap-changing during
normal loading conditions of the transformer. During overex­
citation conditions the threshold Co should be increased to C~
in order to prevent relay misoperation. The slope (Cll of the
PDC should be adjusted to make the differential relay insen­
sitive to transformer tap-changing, C.T. saturation and ratio
errors during through fault conditions. In addition the relay
should also be equipped with a second-harmonic restraint for
inrush currents [6,7] and a fifth-harmonic restraint. for
O\'erexcitation condition.

The sensitivity of the differential protection is somewhat
limited for ground faults, due to the magnitude of ground fault
impedance. Sensitive protection for ground faults can be ob­
tained by providing a separate primary and secondary ground
fault protection.

In order to design the digital relay with the above features,
it is required to calculate the differential, through and ground
fault currents. From Figure 2, the differential currents are:

id.(t) i .. (t) - [i2.(t) - i.,(t)]n2/n, }
idO(t) = ilb(t) - [i,,(t) - i2.(t)]n./I1,
i",(t) = i,,(t) - [i.,(t) - i .. (t)]n./n,

the through currents are:

i,.(t) {i,.(t) + [i •• (t) - i.,(t)]n./n.}/2 }
i .. (t) = {ilbet) + [i .. (t) - i2.(t)]n./n.}/2
i,,(t) = {i,,(t) + [i.,(t) - i2b(t)]n./n.}/2

and the ground fault currents are:

(1)

(2)

i,,/(t) =, i,.(t) + ilb(t) + i,,(t) }
i.g/(t) = i 2.(t) + i .. (t) + i.,(t) + i.,(t) (3)

where n./n, is the turns ratio of the transformer.

The main signal processing required for a digital trans­
former protective relay is the calculation of fundamental and
harmonic components of the above current signals. There are
many digital .. elay algorithms available for this purpose [2,3J.
In this work an algorithm based on the discrete Fourier traIlS-

© 1991 IEEE. Reprinted, with pennission, from IEEE Transactions all Power Delil'eIY,
Vo1.6,No. l,Jan. 1991. 409

5 kVA., Z301550-S75~600 v. DELTA/STAR

Co-O.2pu
C'&-O.3pu
0,=0.25

CIACU~~I~~AKj .. =~-;::::;::;:':::-f'H::;AS:E:PO:;-"_'_T_"_.Sf-=-O'_NE:-· ___ --::::-___ l

i,'
1.
'i
~

'Iiipping zone

J. ~ 1-----'---~----7
i
~ cg 1----_./

Through current (/t!a.ltll aDd It!.>

Slope ofC/

Figure 1. Percentage differential characteristic.

'1.

form (OFT) is used [8,9]. When the recursive version of the
DFT [9] is used, the algorithm worked well in the digitalsim.
ulation, but when implemented, it showed convergence prob­
lems during very low signal magnitudes (overexcitation and
high impedance faults) due to quantization errors. Hence, the
direct implementation of the OFT is used and it is briefly de­
scribed here. Consider a sampled signal (sampling period T),
z(k), at kth instant (time t = kT), the Fourier sine and cosine
components of an n,h harmonic component are given as follows:

2 N-l) FSn(k) = Ii ~z(k - r)sin27rrIN

2 N-l
FCn(k) = Ii L,z(k-r)cos27rTIN

r=O

(4)

and the squared magnitude of the nth harmonic component at
any time. instant is given by: .

h! = FS! + FC! (5)
where hn is the nth harmonic component and N is the number
of samples in one fundamental cycle (N = 16 is used in the
present design).

In order to provide a secure harmonic restraint function
for inrush and overexcitation conditions, the harmonic compo­
nents of all the three phases (only the differential currents) are
combined as follows:

ID! = (Id!n + Itf,n + I,pm), n = 1,2 and 5 (6)

where Id.n,Id ... and Id"" are the nth harmonic components
of the three differential currents and I Dn is the nth harmonic
component of the combined differential current. The relay soft­
ware, given in a subsequent section, fully describes the actual
implementation of the percentage differential and the ground
fault protection.

DIGITAL RELAY HARDWARE DESIGN

The overall laboratory test set-up is shown in Figure 2.
A 3-phase transformer with t.IY connection is chosen (this
transformer and the C.T.s are obtained from the Newfound-

------------------------,
Data AcquiSItion Board Dlllltil ProCissinli Baird

Figure 2. LaboratQry test set-up.

for the secondary ground current. A triac-controlled circuit
breaker (C.B.) is used for tripping. The circuit breaker has
a built-in optiCal isolation between power and control circuits
which provides complete isolation, and the breaker can operate
within one half cycle. The digital relay hardware consists of
two different boards, namely, the data acquisition board (DAB)
and the digital processing board (DPB). The DAB consists of
seven identical circuits each having a scaling circuit, a sixth
order Chebyshev anti-aliasing filter (LPF) and a sample-and­
hold (S/H) circuit. These seven analog signals are then multi­
plexed (MPX) and the output of the MPX i. connected to the
AID converter which is on the DPB. The DPB consists of a
TMS320E15 digital signal processor, an AID converter, digital
1/0 ports and a sampling clock generator. The details of the
above are given as follows:

Daia Acquisition Board

The detailed circuit diagram of the data acquisition board is
shown in Figure 3. Since the board has seven identical circuits,
only two of them are shown in detail.

land and Labrador Hydro). Seven C.T.s are used, three for Figure 3. Circuit diagram of the data acquisition board (DAB).
the primary current., three for the secondary currents and one

410

Analog Scaling Circuit: Analog scaling circuit is used to
s<"le the C.T.'s output signal to be compatible with the AID
converter input voltage and also to tJ°im any gain errors be­
tween channels caused hy either the C.T. shunt resistor mis­
match or the gain mismatch of the LPFs. Figure 3 shows the
analog scaling circuit which utilizes one operational amplifier
(LM324AN) and is configured in non-inverting mode. The gain
of the amplifier is given as follows:

.!1=1+ R•
Vi R,

(7)

The voltage gain of the amplifier can be varied by adjusting
R •.

Anti-Aliasing Filter: If the analog signal cannot be sampled
at a rate higher than the Nyquist sampling frequency (twice the
highest frequency component in the signal), an error termed as
aliasing will occur. Aliasing er~or occurs due to the fact that
the sampled signal may contain low frequency components that
are not present in the signal. The aliasing problem can be mini­
mized by using an analog low-pass prefilter; the prefilter should
reject all frequency components beyond 1./2, where I. is the
sampling frequency. Since the relay logic utilizes up to fifth­
harmonic component of the current signals, the prefilter should
pass all frequency components up to fifth-harmonic (300 Hz).
Based on the time required for computations and other con­
siderations, a sampling' frequency of 960 Hz is chosen. To meet
the above-mentioned criteria a sixth-order lo\V-pass Chebyshev
filter i. designed[lOj,and it is shown in Figure 4. The filter con­
sists of three cascaded biquadratic sections. Each filter section
is a low-pass filter whose general transfer function is:

G. _ I
() - s·(C,C.R') + s(2RC.) + I (8)

The values of resistors and capacitors are obtained for the
required frequency response and they are given in Figure 4.
The frequency response of the filter is shown in Figure 5. The
amplitude gain is almost unity from 0 to 360 Hz and the fre­
quency components above 480 Hz are sufficiently attenuated.
The filter input and output signals are shown in Figure 6, which
indicates a delay of approximately 2 msec between the input
and output signals.

Sample-and-Hold Circuit: To achieve simultaneous sam­
pling of all the seven current signals, seven SIHs (LF398) are
used and they are shown in Figure 3. The LF39S holds the ana­
log input signal constant during the AID conversion to avoid
any conversion errors due to rapid fluctuation in the input sig­
nal. The hold capacitor is 1000 pF, polystyrene type, which
provides fast acquisition time. The dc offset of the SIH can
be adjusted by a voltage divider circuit connected to the offset

~~LI &.JOa4 Uf324 ~ UU24

Vii R R· ,A R· A R • Vo

I C12 R • tltoh. I C22 1 C32

tU • S .0158 uf
tli! • 0.1066 uF

t21· 1.3814 uF
C22 • 0.196 uF

e31 • 3.1923 uF
Cl2 • 0.0442 uF

Figure 4. Circuit diagram of the anti-aliasing filter (LPF).

1.2

~ .. O.B ..
" ." 0.6
~
0. 0'.4
• ...

0.2

0
0 200 400 600 BOO 1000

Frequency (Hz)

Figure 5. Frequency response of the anti-aliasing filter.

0.5

5msec

Figure 6. Input and output signals of the LPF: Inrush condition.

pin of the LF398. The acquisition time of the SIH is around 4
I'sec. The S/Ji pin of the LF39S is connected to the output of
the sampling clock generator which gen.erates a 50% duty cy­
cle square wave of period 1.04166 msec (960 Hz). During the
'high' state of tbe sampling clock, the SIH is put in the 'sam­
ple' mode and when the clock changes to 'low' state, the SIH
holds the sampled data. Since the S /Ji pins of all the seven
SIHs are tied to the sampling clock, simultaneous sampling of
all the seven signals is achieved. Figure 7 shows the input and
output signals of one of the sample-and-hold.

Analog Multiplexer: The connection of the analog multi­
plexer (MPX) is shown in Figure 3. The HI-50S is an eight
channel single-ended CMOS analog multiplexer. It has a fast
access time of 250 nsec, fast settling time of 600 nsec and the
break-before-make switching feature eliminates the chance of
channel corruption. The three digital control lines AD, A" and
A. are software controlled and they are interfaced directly to
the digital out.put port of the DPB (Fig. 8).

Figure 7. I put 1111<1 output signals of the sample-and-hold.
(Input and output signals are level shifted.)

411

Digital Processing Board

The detailed circuit diagram of the digital processing board
(DPB) is given in Figure 8. The heart of the DPD is a single­
chip digital signal processor (TMS320E15 [11)). TMS320 fam­
ily of signal processors utilizes a modified Harvard architectur~
for speed and flexibility. Pipelined multiply, accumulate and
data shift operations can be executed in two instruction cy­
cles (400 nsec) whichmakes it very attractive for digital signal
processing applications. If a general purpose microprocessor
is chosen, it would require a complex hardware with multiple
microprocessors to implement the transformer protective relay.
The TMS32oE15 has an on-chip program memory (EPROM)
of 4k words and a data memory (RAM) of 256 words, whicll is
quite sufficient to implement the transformer protective relay;
no external memory interfacing is used. The TMS320E15 is
interfaced with a digital output port (U2). D, to Da bits of U2

provide the channel address for the analog multiplexer, hit-Ds
is used to clear the interrupt generating latch (Us), bit-D. is
used to control the AID converter operation (RIG), bit-D. is
used to send the trip signal to the circuit breaker, and bits D.
and D7 are available for any future use. The DPB is also in­
terfaced with a 12-bit AID converter (U7). The AID converter
control logic is not fast enough to be directly interfaced with
the TMS320, hence it is connected through a tri-state buffer
(Ua, U.). The AID converter output is in offset binary form
and the TMS320 works with 2's complement numbers, hence
the bit~D'2 of the AID converter is complemented to obtain

U,: TMS320E15
U2 : 18212
Ua: 74LS245
U.: 74LS245
U.: 74LS175
U.: 74LS93

1r-----~....,A1

1~~~~l'2
A3
A.
A5
A6 U3
'7

the output in 2'8 complement representa.tion. Since the AID
converter has only 12-bit resolution, the remaining four bits
(B, to B. of U3) can be used as a digital input port for any fu­
ture expansion. The chip select (G) for the input port (Ua, U.)
is tied to the DEN and the chip select DS, for the output
port (U2) is tied to the WE. This does not create any con­
flict because only one input port and one output port are used
in the design. The clock generator circuit generates a square
wave of frequency 15.36 kHz and it is divided by 16 using a
4-bit counter (U.) to obtain a square wave offrequency 960 Hz
(sampling clock).

DIGITAL RELAY SOFTWARE

The overall flowchart of the relay software is given in Fig­
ure 9. The software starts by initializing all the variables. The
circuit breaker is closed by sending a logic 'high' through the
bit-D. of the output port (U2). At the falling edge of the
sampling clock the sampled current signals are held and at the
same time the I NT pin of U1 goes 'low' which inturn interrupts
the processor. One of the MPX channel is selected by sending
an appropriate address through the digital output port. Un­
til now the AID converter is in read mode, and a logic 'low' is
sent to the RIG pin of the AID converter to initiate conversion
of the selected channel. At the end of conversion (around 22
J-'sec), the STS line of the AID converter which is connected
to the BIO line of the processor goes 'low' and the proces­
sor then reads the converted data. When all the seven signals

..

U§~~'1il AO

~!
TRIP

ANALOG INPUT j; 10V)

U7 : HI-574AKD
Us: 74LS04

Power Supply Requirements
(including DAB)

+5 V,@O.4A
+15 V,@O.1 A
-15 V,@O.1 A

~----~~., el~~~~~~~~11j "2 82
A3 83
A4 84
A5 85

As U4 es ~ A7 87
A8 88

,.cLS245

Figure 8. Circuit diagram of the digital processing board (DPB).

412

Trip

~­

~
I Wait For Interrupt I

,- - - - - - - - - -J,.- - - - - - - - - - -.
I Se}ect MPX Channel

I Repeat , ,
I I Wait For End Of ConverSIon IBiD) I I 7 Tlees , ,

Input Converted Data ,
- -- - -- -- --- - - - - - - -- --

I Calculate Differential. Through
Ii Ground Fault Currents

Check For Instantaneous TripPing
No TriP

a) OFT tst, 2nd 6: 5th

< Check For 2nd Harflonic restraint

Call Ground Relay

< Check Any Fault Counter> Threshold
Yes

Send TrlJl Slonal

No L..c Rmt Button Pu,h., , ",

Inrush

Figure 9. Overall flowchart of the relay software.

have been read, the differential, through and ground fault cur­
rents (eqn.s (1) to (3)) are calculated. Then, the instantaneous
threshold is checked as follows: if anyone of the differential
currents exceeds an instantaneous threshold, Cit (C j ,= 10 pu is
used), and stays for two consequtive samples then a trip sig­
nal is sent, else, the program proceeds. A subroutine which is
based on the DFT is then called to compute the fundamental­
(IcI!.,IcP.. and I~.l second- (IcI!"IcP.. and I~.) and fifth­
harmonic (IcI!.,IcP..; and I~5) components of the three differ­
ential currents, fundamental components (1t~., It~. and It~.)
of the three through currents and fundamental (1: •• ,I~ ••) and
second-harmonic (rt •• , I:.,) components of eacb ground fault

current. Then the combined harmonic components (I D~, I D~,
and IDn are calculated using eqn. (6).

All the computed harmonic components are stored in the
data memory and the second harmonic restraint is checked
as follows: if C1 x ID~ exceeds ID: (C. = 0.1767, 17.67%
threshold) an inrush condition is declared, then the program
branches to the ground relay, else, the overexcitation condi­
tion is checked. The presence of a fifth-harmonic component
in the differential current, which indicates overexcitation, is
checked as follows: if Cl x ID~ exceeds ID~ (C. = 0.125,
12.5% threshold), then an overexcitation condition is declared
and the upper pick-up value (Ch is selected, else, the lower
value (CJ) i. selected. Then, using the fundamental compo­
nent. of the differential and through cunents the P DC (shown
il1 Figure 1) i. checked. The PDC is checked three times, once
for each phase. If tripping is declared, then the fault counter of

that particular phase is incremented, else, it is reset. The pro­
gram then proceeds to check for the presence of any primary
or secondary,ground fault. In addition to the level restraint
a second-harmonic restraint (8.8% threshold) is also used for
both the ground relays. The reason for using the harmonic
restraint is that the ground relay is found to operate when
the C.T.s saturate during inrush and through fault conditions.
During a through fault, a large second and higher order har­
monics are present in the ground fault current, whereas during
ground fault of either primary or secondary, the second and
higher order harmonics are very low. Hence with this har­
monic restraint, the ground rela.y is able to differentiate be­
tween a through fault and a ground fault. The sensitivity of
the ground relay, then, can be adjusted as desired by varying
the pick-up value C •• (C •• =O.1 pu is used). If a ground fault is
declared, then the program increments the corresponding fault
counter, else, it is reset. Finally the program checks all the
fault counters (differential a,b,c phases, and the primary and
secondary ground fault). If anyone of the fault counter exceeds
its threshold value, Td (Td= 1 for the differential relay and Td=5
for the ground relay), then a trip signal is sent to the circuit
breaker, else, the program returns and wai ts for the next in­
terrupt. If a trip signal is sent, then the program waits in a
loop until the reset button is pressed by the user to restart the
relay softwure. The entire software occupied around lk words
of program memory -Bnd 220 words of data memory. The worst
"ase execution time of the software (including data acquisition
time of 200 pscc) is around 750 psec which is well within one
sampling period (T=1.04166 msec).

REAkTIME TEST RESULTS

Various types of tests are conducted on the prototype digi­
tal relay in the laboratory over a three-month period. The re­
lay correctly identified all the faults that are applied and never
misoperated. The TMS320E15 does not have en~ugh mem­
ory (RAM) to store a large number of re-a1-time data samples
and test results. Hence, for the purpose of plotting the re­
sults at each sample, the DPB is disconnected from the rela.y
hardware and the TMS320EVM [12] and AlB [13] hardware is
used instead. At each sample the differential current signals,
ground fault current signals, calculated harmonic components
are stored in the program memory of the TMS32010 (EVM).
These results are up-loaded to an IBM-PC and they are s.hown
in the following figures.

Figures 10 to 13 show the performance of the relay during
real-time testing. Figure 10 shows the performance of the relay
during an inrush condition followed by an internal fault. The
relay does not operate during the inrush and it operates within
a cycle after the initiation of the fault. Figure 11 shows the
performance of the relay during switching on a high impedance

.internal fault condition. In this case, the tripping decision
is delayed due to the presence of a heavy second harmonic
content resulting from the inrush currents. Figure 12 gives
the performance of the ground relay during a high impedance
ground fault. The relay operation time is slightly more than
one cycle due to the use of 5 sample delay (Td=5 for ground
relay). Figure 13 gives the performance of the ground relay
during a through fault. In this case, tbe primary ground fault
current exceeded its threshold value (C,.=O.1 pu), but the relay
did not mjsoperate due to the 8econd~harmonic restraint.

413

I,
I,
I.

"

(a)

~

;2

~
" Ilo

..:-
GO co a

-500 ::s
Ilo

.~ -1000
0 20 40 60 80

>- (b) Samples

....
ClO

~
" Ilo

..:-
ClO co
,..;
C-
[100

.~ 20 40 60 80

>- (c). Samples

1
R •• = ID./ID.

0.8

0.6

0.4

0.2

a
a 20 40 60 80

(d) Samples

Figure 10. Inrush followed by an internal fault: phase a-b fault
on primary side.

(a) Actual differential currents recorded on the oscilloscope
(b) Calculated values of differential currents
(c) Calculated combined harmonic components
(d) Ratios of combined harmonic components

414

(a)

....
~

1
..:-
ClO
"'!
C

::s -500 I Ilo i I ,
.!! -1000
!;l a 20 (b) 40 60

;.:. Samples

....
~ 600

~ 500

" Ilo 400
..:-
00' JOO co

~ 200
::s
Ilo

100
;;
'a 20 40 60 ;.:. Samples (c)

1.2
R2• = ID./ID.

1
R .. = ID./ID.

0.8

0.6

0.4

0.2

0
a 20 40 60

Samples (d)

Figure 11. Switching on a high impedance internal fault:
phase a-b fault on 'primary side.

(a) Actual differential currents recorded on the oscilloscope
(b) Calculated values of differential current.
(c)' Calculated' combined harmonic components
(d) Ratios of combined har;"onic components

Trip
Signal

(a)

....
~ 30

~
20

" 10
'" ..:

00

'" E, -10

" '" -20

.§ -30
0 10 20 30 40

;>. Samples (b)
....
~ 25

~ 20

" '" ..: 15
00
co

E- 10

" '"
.~ 0

0 10 20 30 40
;>. (c) Samples

1.5

1
R'g" = I,g.II,g'

0.5

0
15 20 25 (d) 30 35

Samples

Figure 12. High impedance ground fault: phase a·g on primary.

(a) Actual differential CUl'l"ents recol'ded on the oscilloscope
(b) Calculated value of primary ground fault current
(c) Calculated harmonic components
(d) Ratio of harmonic components

....
~

~
" '" ..:

00
co

~
" '"
.~
;>.

....
~

~
" '" ..:

ClO
co

;
" '"
;;
.~

;>.
150

150

Figure 13. Through rault condition: performance of the
primary ground relay.

(a) Actual primary and secondary currents recorded
on the oscilloscope

(b) Calculated value of primary ground fault current
(c) Calculated harmonic components
(d) Ratio of harmonic components

415

Several other tests conducted on the relay in the labora~
tory include: faults between the primary and secondary wind~
iugs, faults between transformer tappings, and operation of the
transformer at different tap positions during normal loading,
overexcitation and through fault conditions. In all these cases
the relay performance was as expected.

CONCLUSION

The design of a stand-alone prototype digital protective re~
lay for power transformers is described. The major emphasis
of this paper has been the detailed description of the hard­
ware and software development of the relay. The relaying func­
tions implemented include: a percentage differential protection
with the second-harmonic restraint for inrush currents and a
fifth-harmonic restraint for overexcitation conditions, and pri­
mary and secondary ground fault protection. The ground relay
is also equipped with a second-harmonic" restraint to prevent
tripping during inrush and through fault conditions with C.T.
saturation.

The detailed circuit diagrams of the relay hard\vare which
is based on the TMS320E15 are included in the paper. The
relay had gone through an extensive real-time testing in the
laboratory and the results of the sample test cases are reported
in the paper. The relay is superior to its electromechanical
counterparts in terms of its performance and cost. Currently
plans are underway to install the developed relay at one of
the Newfoundland and Labrador Hydro substations for in-situ
testing and evaluation.

REFERENCES

1. :rvIicroprocessor Relays and Protection Systems. IEEE
Tutorial CO'ursc Tcxt, 88EH0269-1-PWR, Feb 1988.

2. M.A. Rahman and D. Jeyasurya, "A state-Of-the-Art Re­
view of Transformer Protection Algorithms". IEEE Tran ~
actions on Power Delivery, Vol 3, No.2,1988pp. 534-544

3. Y.V.V.S. Murty and W.J.-Smolinski, "A [{almltll Filter
based Digital Percentage Differential and Ground Fault
Relay for a 3-phase Power Transformer" , IEEE PES Win­
tcr Meeting, Paper No. 88 WM 121, 19S8, PP. 1-8.

4. M.A.ll.alunan and A. Gangopadhyay, "Digital Simulation
of magnetizing inrush currents in three phase transform~
ers" , IEEE Transactions on Power Delivery, Vol. PWRD-
1, No.4, October 19S6, PP.235-242.

5. Guide for Protective Relay Applications to Power Trans~
formers, C37.91, ANSI IEEE Standard, 19S5.

6. H.J. Li,"Powcr Transformer Characteristics and Their
Efffect on Protective Relays" I We.!ltingho1L.!Ie Silent Sen~
tinel. Publication RPL 76-1, April1D84.

7. K. Winick, \V. McNutt, "Transformer IvIagnetizing In­
rush Currents and Harmonic Restrained Differential "Re­
lays", General Electric Relaying the New.!!, RN letter No.8G,
Nov 26,1975

8. O.P. Malik, P.I<. Dash and G.S. Hope, "Digital Protec­
tion of Power Transformer" I IEEE PES Winter Meeting,
Paper No. A76 191-7, New York, Jan 1976, PP. 1-7.

9. J.S. Thorp and A.G. Phadke, "A Microprocessor based
Three-phase Transformer Differential Relay", IEEE Trans-

416

action on Power ApparatuJ and Systems, Vol. PAS-lOl,
No.2, 1982, PP. 426-432.

10. C.J. Savant, U.S. Roden and G.L. Carpenter, Electronic
Circuit Design: An Engineering Apl>l'oach, the Benjamin
Publishing Company, Inc., lIenlo Pro·k, California, 1987,
PP. 634-644.

11. First-Gcuc'ration TMS320 User's Guide, Digital Signal
Processor Products, Texas In3trument3, 11.ay 1987.

12. TUS32010 EynIuation Module User's Guide. Digital Sig­
nal Processor Products, Texas In~qtrument •• , !\tIarch 1085.

13. TMS32010 Analog Interface Doard User's Guide, Digital
Signnl Processor Products, Tcxa,q In3trmncnt3, 1984.

AUTHORS

Ivi Herillallto was born in Lampullg, Indonesia, on Novem~
her 27, 1962. He received the D. Engg. degree in electrical
engineering from the 11emorial University of Newfoundland,
Canada in 1 OS7. Currcnt.ly he is working towards the Master
of Engg. degree at ~lemorial University of Newfoundland. His
research work involves the design, development and testing of
a prototype digital relay for power transformer protection. He
has worked with several companies on a work-tenn basis dur­
ing his undergradua.te career. His interests are in Computer
Applications in Power S.ystems and Digital Signal Processing.

Yalla, V.V.S. Murty (S'S4, M'SO) was born in Dendamu­
rlanka, AP, India. He received the Diploma frOln Andhra Poly·
technic in 1976, the n: Tech degree from Jawaharlal Nehru
Technological University, Kakinada, in 1981, the ~L Tech de­
gree from the Indian Institute of Technology (IlT) [{anpur,
in 1983 and the Ph. D. degree from the University of New
Brullswick (UNB), Cannda in 1988, all in electrical engineer­
ing. From F(·bruary 1083 to December 1983, he was with the
Department of Electrical Engineering, IIT, Kanpur working as

a Research Engineer in the rvIicroprocessor Lab. He was a" post­
Doctoral Fellow at UND from December 1987 to March 1988.
Presently. he is a Post.-Doctora1 Fellow wit.h the Faculty of En­
gineering at ~-1('morial University of Newfoundland, Canada,
where he is involved in teaching of undergraduate courses in
electrical engineering and conducting research in Digital Pro­
tection of Power Apparatus.

M. Azizur Rahman (S'66, M'6S, SM'73, F'SS) was born
in Santahar, Bangladesh, on January 9, 1941. He received
the B. Sc. Engg. degree in electrical engineering from the
Bangladesh University of Engineering and Technology, Dhaka,
the M.A.Sc. degree from the University of Toronto, and the
Ph. D. degree from the Carleton University, Ottawa, Canada
in 1962, 1965, 1968, respectively. Currently, he is a full pro­
fessor at rvlemorial University of Nev.rfoundland, Canada. He
was the chairman of Newfoundland and Labrador IEEE sec­
tion. He is the chairman of Electrical 1Iachines Committee,
and a member of Industrial Drives committee of the Industry
Applications Society. and a member of the Rotating Machin­
ery committee and Induction ~1achines subcommittee of the
Power Engineering Society. He is a Fellow of the Institute of
Engineers, Bangladesh. His current interests are in Machiilf"R,
Power Systems, Digital "Protection and Power Electronits.

Diseusslon

E. A. Baumgartner. (Baumgartner & Associates. Beaumont. TX): The
authors point out in the paper that the sensitivity of the digital protective
scheme is somewhat limited for ground faults. It would be of interest to
know if the digital relay is sensitive enough to detect a tum to turn
winding fault in the secondary of a power transformer. A typical percent­
age differential relay in common use to protect large power transfonners is
somewhat insensitive to this type of winding failure, especially if the fault
current source from the secondary side is low in magnitude.

It would also be of interest to know what type of test equipment will be
needed in the field to check out the relay for operational testing after it is
installed in one of the Newfoundland and Labrador Hydro substations for
in-situ testing and evaluation as proposed by the authors in the paper.

P. K. Dash, J. K. Satpathy, (Regional Engineering College, Rourkela,
India): The authors are highly commended for writing an excellent paper
on transformer differential protection. The description of the practical
details regarding the hardware and software development of the relay is
very noteworthy. Rarely such details ate found in many relaying applica·
tion papers. The following points, however, need some clarifications:

I. The digital relay algorithm uses a OFf technique for computing the
magnitudes of the restraining and operating signals. It has been
shown earlier in the relaying literature that the DFT results in to to
15 % of error in the calculation of fundamental and harmonic compo­
nent magnitudes and its accuracy is very much prone to noise
magnitudes in the differential current signal.

2. The sampling frequency for this application is 960 Hz, although 720
Hz sampling frequency could have been adequate for this applica­
tion. Earlier Butterwonh filters were used for signal conditioning
and it will be interesting to get some co~parison regarding delay
introduced in case of these two types of filters.

3. The basis for the choice of c2 and c5 for computing the restraining
quantities for transformer protection is nol very clear. In cases
where the inrush current contains substantial components of load
current (when the transformer secondary is loaded) these quantities
(c2 and c5) need to be altered for providing restrain during inrush
and overexcitation conditions.

The prototype building of the relay along with real·time test results is
very interesting. It will be interesting to note the effect of a fault during
intialization period of this relay. The discusser has also noted with interest
the results for the high impedance ground fault on the performance of this
relay.

Once again the discusser commends the effons of the authors for an
excellent, well written paper on digital protection.

B. Jeyasurya (Indian Institute of Technology, Bombay): The authors have
presented a detailed paper on a digital relay for three~phase power
transfonners. The test results presented in the paper indicate that the relay
operation time is above one cycle. The Fourier algorithm, as implemented
by the authors (equation 4) use a data window of one cycle. It is possible
to obtain a faster estimate of the fundamental and harmonic components of
the input signals using a sub-cycle data window. The sensitiveness of this
method to the decaying de components in the current signals can be
minimised by modifying the reference sine/cosine wavefonns [AJ.

The authors use a sixth order low-pass Chebyshev filter to avoid
aliasing errors. Figure 2 indicates that this filter has introduced a delay of
about 5 mscc. A third order Butterworth filter could have provided a
maximally ftat response with significantly less delay between input and
output signals.

For the differential relay, the authors have used a fault counter threshold
value, Td = 1. How reliable is the tripping decision based on a single
count?

The authors must be commended for a well-written paper. The dis~
cusser looks forward to repons of field experience with this digital "relay.

Reference

[AJ. A. Wiszniewski. "How to Reduce Errors of Distance Fault Locat­
ing Algorithms", Trans. IEEE, Vol. PAS·IOO, No. 12, December
1981, pp. 4815-4820.

A. GANGOPAOHYAY (Federal Pioneer Ltd., Toronto,
Ontario,Canada): The authors are to be congratulated for
real time implementation of a 3-phase digital differential and
ground faull relay for power transformers. The algorithm
and the basic equations for differential protection are well­
known and I do not find any discussion is necessary in that
aspect of the paper, However, I would like to place Cew
suggestions to the authors regarding hardware part oC the
relay.

1. The author has used LM324AN op-amp Cor analog scaling
and low pass filter circuits. LM324 has an input ofCset
voltage oC maximum :1 7mv. Since the output of sealing and

. each stage oC LPF are cascaded together, the final ofCset
voltage may be predominant and will be reflected at the
input oC the SIH. Using LM124, which has much lower input
oCCset voltage, or using any other op-amp with lower offset
voltage will be an improvement.

2. It would be preferable to have LPF be Core scaling circuit.
There will be transient noises coming from power surge,
switching and other electrical disturbances in the input
circuit. The voltage gain of the scaling circuit will amplify
those noises. It is always better to attenuate a low
magnitude noise than an amplified one. Besides, any
unwanted noise should be arrested at the very input for a
better electronic design.

3. TMS320E15 is a powerCul machine for OFT calculation.
However, I do not agree with the authors that using other
micropoeessors will make the design more complex. There
are quite a few general purpose micro-controllers available in
the market which are much cheaper in price than
TMS320E15. With the proper selection of crystal Crequency
it is possible to compute the algorithms shown in the paper
with 16 samples/cycle.

4. The authors could have avoided an external sampling
clock. Instead of, a .precise sampling pulse could have been
generated from the microprocessor by software control in
either of the following manners.

a) SoCtware Timing Loop, if t!me is still available after
computation.

b) Internal timer of microprocessor.

The advantage is that the sampling interval is fully under
control of the designer by above method. The same relay
could be used in 50Hz system by mere changing the software,
to modify the sampling time at no extra cost of additional
hardware,

5. It Is shown in the Fig, 9 of the paper that the relay waits
for the Reset button to be pressed after issuing a trip signal.
This is not desired from practical viewpoint. What will
happen iC the circuit breaker fails to trip or the relay is
protecting a transformer in an unmanned substation? The
relay should be self reset in this case.

6. An addi tional feature can be supplemented to the design
by adding a LED or LCD display, ACter tripping the breaker
at a Cault, the relay can calculate the RMS value oC the fault
current Crom one cycle information that the relay has already
collected. It can keep the fault magnitude in it's memory and
can be displayed to the user at any time. This will give an
idea to the user about the extent of the fault current, i.e.
whether it is an interturn fault or it involves quite a Cew
number oC turns.

7. NOthing much has been mentioned about the design of the
power supply circuit. If it is intended to be taken Crom the
station battery supply, two dc to dc conversion circuits will
be needed. If it is to be taken from UPS, proper
consideration should be given to design two different VOltage
levels. It resolution Cor harmonic computation can be
sacrificed to certain extent, there are standard techniques

417

which can be employed to handle the bipolar signals by
unipolar AID converters. .

8. One would like to see an analog backup circui t in the
event.oi failure oi main processor or it's other electronic
accessories. Also, external noise suppression and overvoltage
protection due to open CT secondaries will be required to
meet several ANSI and IEEE standards beiore· the relay can
be used ior practical purposes.

Manuscript received July 20, 1989.

IVI HERMANTO, YALIA, V.V.S. HURTY and K.A. RAHIIAN: The
authors thank the discussers for their interest and
thoughtful comments on our paper.

Our response to the questions raised by Kr.
Baumgartner is as follows. The first question deals
with the performance of the relay for a turn~to-turn

fault on the secondary winding. Since the test
transformer did not have individual turn taps brought
out to create a turn-to-turn fault, it was not possible
to test for this condition. However. the tests
conducted on the transformer include a short cireui t
between the taps on the secondary side. Here. an
additional test case which represents a short circuit
between the. 575 V and 600 V taps on the phase.-a­
secondary is provided in Figure Flo This represents a
case when 4.166X of the phase·"a- secondary winding is
short circuited. The relay successfully operated within
one cycle. It can be seen froll Figure Fl (c) that the
value of IDI reaches about 0.95 pu. Vith the threshold
(CO) set at 002 pu, this shows that the relay will
operate even if a smaller percentage of the winding,
perhaps less than lX, is involved in the fault.

The second question deals with the type of test
equipment that will be required for operational testing
in the field. An IBK PC will be required in the
sub~tation which will be connected to the relay through
a serial link. The PC will continuously monitor the
relay operation and acquire the data during various
operating conditions. In order to completely isolate
the digital relay from the existing relay equipment of
the transfomer I additional current transformers will
be used.

Our reply to the questions raised by Professor
Dash and Mr. Satpathy is as follows. The first question
deals with the choice of the relay algorithm. As
mentioned in the paper, any relay algorithm. can be used
by simply modifying the appropriate subroutine. There
are various algorithms available with their own
advantages and disadvantages. and the user can select
the algorithm. suitable for any particular application.
Since the implementation of the discrete Fourier
transform (DFT) algorithm is considered to be
computationally more complex than most of the other
algorithms I it will be an easy task to replace it with
any other algorithm.

The second question deals with the choice of the
sampling frequency and the antialiasing filter design.
The execution time of the relay software is around 750
microseconds and the use of 960 Hz sampling frequency
leaves about 290 microseconds for any other tasks.
Of course, one can use 720 Hz sampling frequency but it
requires a very good antiallasing filter whose frequency
response has a very fast roll~off near its cut-off
frequency. The au~ors. used Butterworth filters in an
earlier design and the delay introduced by the Chebyshev
filter is nearly the same as the Butterworth filter if
both filters are of the same order and have the same
cut-,?ff frequency.

418

150
§ ,~

100

i do -
,

;;;-
, ,

Ii 50 ,
Co

,
.(0 ~- _...., =0.=-. ,

'" '" ide
I

S -50 I,

~
idb-!:

'" -100 " n
;;

-150 oj(.. 0 50 100 150
>- Samples (b)

:g 200

;;;- ID, .. 150
~
Co

.(

'" 100
'"
~
E. 50 • ID,
;; I,! ID ./... .
·S 0
>- 0 50 100 150

Samples (C)

Figure Fl. Internal fault condition: fault between
575.600 V taps on phase:a::

a) Experimental differential currents, b) Calculated
differential currents, c) Calculated harmonic components

The third question deals with the choice of relay
settings C2 and C5. The values selected are for the
test transformer and these c.an be changed to other
values depending on the application. The initialization
time for the relay software is around 250 microsecond,
and hence it does not introduce any major delay.

Our response to the questions of Hr. Gangopadhyay
is as follows:

L 'We agree with the discusser that the operational
amplifier used in the design has a high offset
voltage. However. the offset voltage is not a
major concern. since .the DFT algorithm effectively
filters out any de offset present.

2. The gain of the analog scaling circuit used· in the
design is very close to unity. Hence I it does not

3.

4.

amplify the noise. It is mainly used to trim any
gain errors between channels. Also. the analog
scaling circuit provIdes very high input.
impedance.

Considering the equation (4) of the paper. each
harmonic calculation requires 32 multiplications.
A total of 16 harmonic calculations (fundamental,
second and fifth harmonic components of three
differential currents. fundamental components and
second harmonic components of two ground fault
currents) were performed in each sampling
interval. This gives a total of 512
multiplications plus several additions and other
operations are required. In the opinion of the
aut.hors it is difficult to perform these
calculations on any presently available low cost
microcontroller within a reasonable sampling
interval.

The software generation of sampling interval is
not suitable for 'this type of application. The
authors agree that the sampling interval could
have been generated by a hardware timer wh~ch
would give flexibility in changing the sampling
clock for 50/60 Hz systems. In fact one could use
THS 320£17 processor which is software compatible
with THS320E15 and also has an intern~l 16·bit
timer.

5. The authors agree that in certain applications the
relay should be of self reset type. The software can
be easily modified to achieve this.

6-8. The authors agree that more work needs to be done
in developing the user interface I power supply and
other related hardwares compatible to ANSI/IEEE
standards.

Our response to the questions raised by Dr. B. Jeyasurya
is as follows:

The laboratory test shows that the relay operating
time was within one cycle of 60 Hz for various internal
faults except in the case of switching on a high
impedance faults. In the case of high :f..mpedance faults
t.he relay operating time was above one cycle due to the
presence of strong second harmonic component. One cycle
data window of the Fourier algor! thm was used in our
design. However. any other algorithms can be easily
implemented.

From Figure 6. it is quite clear that the delay
between the input and output signals of the antl~
aliasing filter is only 2 milliseconds not 5
milliseconds as mentioned by the discusser. Both
Chebyshev and Butterworth filters have nearly thie same
delay for a given order.

The authors agree with this discusser that a
tripping decision based on a single fault counter
threshold is not reliable. However. this fault counter
can be increased easily to any other safe threshold
value.

Manuscript received November 13, 1989.

419

420

A Real-Time Digital Simulation of Synchronous
Machines: Stability Considerations and

Implementation
JONATHAN P. PRATT AND SHELDON GRUBER, SENIOR MEMBER, IEEE

Abstract-The study of the transient bebavior of a large power system
has been difficult and time consuming even on mainframe computers.
One way to obtain real-time studies is to configure digital simulation
modules in B parallel processing network that corresponds to the physical
system. The foeus of this work is on tbe creation of a generator module
tbat is compatible with such a digital simulation network. To approacb
operation in real time, a fast and accurate state equation integrator is
required. Investigation has revealed thai the load Imposed on tbe
simulated generator plays a major role In the stability of the integration
routines. Tbe linearized stability limits of forwacd difference, modified
Euler, fourth-order Rung Kutla and Adams-Basbfortb-Moulton Int ...
gration methods were calculated for an impedance terminated generator.
These were found to agree closely with tbe corresponding experimentally
determined nonlinear limits. The TMS32010 digital signal processor was
chosen as the heart of the generator simulator module, and fixed-point
arithmetic routines were developed to make It a bigb-speed state equation
integrator. Operation in real time was achieved for an infinite bus-type
termination, but an impedance load led to a somewhat slower simulation.

1. INTRODUCTION

ELECTRIC POWER systems are particularly well suited
for simulation, as the infonnation gleaned in their study

would usually be sought in advance of their construction or
expansion. The expense of power system operation as well as
customer expectations require that reliability and efficiency be
assured under a variety of stressful conditions. Studies on
existing equipment are necessarily limited by the need to
maintain service, thus simulation becomes a realistic tool [1].

A primary concern in a power system's assembly is that it
will maintain stable operation for a reasonably wide range of
operating conditions. Two important types of instability
receive most of the attention in literature: dynamic and
transient [2]. The variables of power system stability are rotor
speeds are relative positions, and generator loads. Dynamic
stability is concerned with the usual smiill-speed variations
within a system which can become oscillatory and growing in
nature. Transient instability refers to the system response to a
major fault. In either case loss of synchronism may occur, an
event that tends to break up a system. Such considerations play
an important role in power system planning, even more in the
last 20 years than before, due to the "very extensive
interconnection of power systems with greater dependence on
finn power flow over ties" [2]-[4].

Manuscript received September 11, 1985; revised January 20, 1987.
The authors are with the Electrical Engineering and Applied Physics

Department, Case Institute of Technology, Case Western Reserve University,
Cleveland, OH 44106.

IEEE Log Number 8716649.

Any study not using actual equipment [5] requires a
mathematical model, and much work has been done to find the
least complicated models for power system components that
will still provide accurate results [2]-[7]. Once a model is
derived, implementing the simulation is a matter of choosing
between several methods, each with its own advantages and
disadvantages. Use of a mainframe computer has been the
dominant method. Flexibility and low cost per user make
mainframes attractive. Unfortunately, if the power system of
interest contains many elements-generators, exciters, loads,
etc.-the serial solution of the system equations is cumber­
some and slow. Speed is increased at the expense of the model,
and beyond a certain point the model becomes too simple to be
useful. Alternatively, a parallel solution is possible. This
exploits the system parallelism so that many smaller, inexpen­
sive units take the place of one fast computer. The choices for
this method are analog [8], digital, or a combination of the
two. A good discussion of the difficulties of an analog
simulation is found in [9]. Among these are achieving correct
scaling and avoiding a lack of flexibility. The usefulness of the
analog method lies in its ability operate in real time. Until
recently, reasonably priced digital hardware with sufficient
speed did not exist. The analog-digital hybrid approach of [9]
is an example of a useful intermediate step. Reas.onable real­
time results were obtained with a MC68000 microprocessor
interfaced with appropriate conversion hardware to an analog
bus.

The simulation method chosen here parallels the construc­
tion of the power system which is divided into blocks of
turbines, governors, generators, exciters, and loads. The
scheme is one in which all power system components are
replaced by digital hardware modules. These modules employ
the models of the components they replace to create an
accurate simulation. During each computation cycle the
generator modules calculate and supply the rotating frame
currents to a set of hardware matrix multipliers [10]. Follow­
ing the relation V = ZI the voltages of the power network are
obtained. These in tum are used by the generator modules to
compute the currents of the next cycle. Additionally, the
exciter modules employ both the voltages and currents of their
respective generators to apply appropriate regulation through
the field voltages. Turbines, having time constants longer than
those of interest, are simply represented as constant mechani­
cal powers within the generator modules. It should be noted
that load representation by constant impedance is certainly not

© 1987 IEEE. Reprinted, with pem1ission, from IEEE Transactions on Industrial Electronics,
Vol. IE-34. No.4, Nov. 1987. 421

ideal [l), [11), [12). Although variation of line frequency is
usually small enough to render corresponding impedance
variations negligible, the same does not hold true for line
voltage changes. In Kent et al. (1) typical loads are reported to
be distributed so that one-half are constant impedance and one­
half constant MV A. The latter is obviously not compatible
with the matrix multiplication scheme. The influence of load
representation on stability studies is not clear, but it can be
significant [12). In spite of the necessary simplifications, the
speed and flexibility of the completed simulation network will
undoubtedly render it a useful tool in the analysis of power
system behavior. The machine parameters used in the'remain­
der of this paper are typical of realistic machines. Those
quantities nsed by the generator simulation program are found
in Anderson and Fouad [6, ch. 4).

The next section is devoted to the stability of the required
integration routines, as this was found to be a significant
limitation in the quest for real-time operation. In particular,
the stability limits of forward difference, modified Euler,
fourth-order Runge-Kutta, and fourth-order Adarns-Bash­
forth-Moulton predictor-corrector (ABM4) integration meth­
ods were investigated. Choice of hardware, program develop­
ment, and results are discussed in Section m. Module
simulation data are compared to mainframe results. Suggested
improvements are also included. Appendixes I and II refer to
interlace hardware added to the TMS32010EVM board to
make it function within the simulation network, and design for
simplified generator modules employing the TMS32010 proc­
essor with the host processor interface that allows access to the
new modules.

II. INTEGRATOR STABIUTY

A. General Considerations

Table I is a summary of the seven state equations that model
the behavior of a generator. The inherent noulinearity of these
equations makes step-by-step numerical integration the only
viable method of obtaining a solution apart from analog
modeling. The transients to be studied by the simulation are
large enough to render continuous time linear' models inade­
quate. In this section a brief survey is taken of some commonly
used integration methods.

The foremost consideration in the simulation is a faithful
reproduction of generator's nonlinear behavior when it is
connected to a load. The load may not be linear and consists of
the transmission network and active sources which are also
nonlinear. That this simulation proceed in real time is a
requirement that makes compromises in the design necessary.

The transient behavior of the system will not be adequately
modeled if the sampling rate is lower than the Nyquist rate. An
estimate of the latter can be obtained by examination of the
eigenvalues of the linearized system. The magnitude of the
largest eigenvalue is typically that due to currents injected into
the rotor circuit needed to balance the constant stator flux and
is approximately 60 Hz [6J. Thus it is reasonable to use a time
interval of less than 8 ms.

This is the upper limit in time step from the point of view of
producing a model generator which must interact faithfully
with the rest of the power system. There remains the question

422.

TABLE!
SjJMMARY OF GENERATOR STATE EQUATIONS

ld kif-

~I w' kif- y, l.q= I
Lq kl1q

kilo 1\1 kilt! Lq

r· id + W· (Lq.lq + kilt!· iQl + vd I
V. = "F·IF

rp' io

V~ • -W· (Ld· id + kilo· (IF + loll + r· iq + Vq

"Q' iQ

~I
Id

I •• iF -!.I-1.V.
io

I •• ~I iq -I..-1.V~

ie

Pe • r· (i; + iq2) + "0' i02 +rQ'iQ2 + "'d' id + "'q' iq

l!!lI. • (Po - Pel/(6·H·WR·wl
dt

of stability of the integration method using this time step. A
recent paper [l3) presented a design technique which allows
for a simulation step size to be chosen independently of the
eigenvalues while maintaining stability of the integration.
Unfortunately, application of the results of that paper to this
problem is difficult in that the system at hand is nonlinear and
would require constant examination for stability region viola­
tion as the integration proeeds and the instantaneous eigen­
values change. One additional faCtor in not utilizing the
stability region approach is that the generator simulator must
operate into unknown and nonlinear loads which form part of
its system of equations in an indirect manner. That is, the
model requires the terminal voltage of the generator from
which it calculates the current vector. These currents com­
bined with those of the other generators in the simulated power
system produce the terminal voltage for calculating the next
time step. Thus the stability region idea is difficult to apply
because of the parallel operation of many simulators.

In keeping with the ultimate goal of this project, all effort
was to minimize the' computation time per step, maintain
reasonable accuracy, and insure stability. '

B. Parameter Representation

The parameters used in the remainder of the paper are
typical of realistic machines. Those quantities used are to be
found in Anderson and Fouad [t!, ch. 4). To improve machine
speed in the module, these parameters were rounded off to 16
bits and the resulting numbers were deemed "exact." This is
contrast to the parameters that are derived from the above
values, namely, the inverse inductance matrix whose elements

are only as accurate as the number of bits used to represent
them. The time increment, T, of the module state equation
integration is also treated as a 16-bit "exact" constant. Here it
should be noted that time in the equations shown in Table I is
normalized as are all the parameters in these equations. The
normalization entails multiplication of true time by the
nominal radian frequency, in this case 377 radls. This being
the case, T is also measured in radians at 60 Hz.

C. Integration Methods

If the equations involved were linear, simple backwards
differen<;e or trapezoidal integration methods could be applied.
The advantages of these are discussed in the next section. But
for a nonlinear system, the equivalent integration routines are
forward difference and modified Euler. Assuming state
equations of the form

dY/dt=f(Y.)

where Y is the vector of variables, then the methods compare
as follows: '

Backward Difference
Yn+1 = Yn+ T*f(Yn+l)

Trapezoidal

Forward Difference
Yn+1 = Yn+ T*f(Yn)

Modified Euler

(2.1)

Yn+l = Yn+ T*(f(Yn)
+f(Yn+l »

Yn+h p= Yn+ TI2 * f(Yn)
Yn+ 1= Yn + TI2 * (f(Yn)

+f(Yn+hP».

(2.2)

Forward difference integration may be termed first order,
and it has a global error term corresponding on the order of T,
O(T). Modified Euler is second order and has a global error of
O(T * T). The price of the improved accuracy is an additional
evaluation of the derivative functions. Model error and
integrator error should be approximately equal to obtain
maximum efficiency. One of the most commonly used
integration routines is fourth-order Runge-Kutta. Its global
error is O(T ** 4), and in this paper is was used as a
benchmark to provide the "definitive" answer. The particular
version used was taken from [141:

Yn+1 = Y.+ (kl +2k2+2k3+k4)/6

kl=T* ·f(Yn)

k2= T * f(Yn+kll2)

k3= T * f(Yn+ k212)

k4=T*f(Yn+ k3)· (2.3)

The independent variable, time, is left out because in the
generator model the state equations have no explicit time
dependence. Note that four derivative calculations are re­
quired per cycle. As evaluating the derivatives is the most time
consuming operation, it was worth investigating another
integration method that yields similar accuracy for only two

evaluations per cycle. In particular, the fourth order Adams­
Bashforth-Moulton predictor-corrector was explored. Known
as a multistep method, ABM-4 requires that the past three
derivatives be saved for use in a weighted average. Also from
[141

Predictor:

Corrector:

(2.4)

D. Load Considerations

With the state equations set up on terms of currents, the
rotating frame voltages, Vd and Vq , must be supplied to the
generator integration routines. For a mainframe simulation,
there are two obvious possibilities. The first is to have the
generator supply power to an infinite bus. The second is to
have the generator connected to a constant impedance. The
impedance can be chosen to maintain a steady state at the
initial angle-that is, to make all of the derivatives in the state
equations vanish. In either case, infinite bus or impedance, the
voltage calculations are placed directly within the derivative
evaluation routines. When the benchmark integration was
performed on the infinite bus configuration, anticipated results
were obtained. However, the impedance configuration proved
to be much less stable, and could not be integrated except at
much higher sample rates. From the system standpoint, this is
a cause of considerable concern. The infinite bus approxima­
tion is only valid when there is a great deal of generating
capacity on line, thus it is expected that the impedance results
could reflect the behavior of a small multi-generator system.
The desired integration sample rate determines the minimum
number of generators that create a stable solution. Because a
higher sample rate jeopardizes the ability of the simulation to
run in real time, the stability phenomenon was explored in
detail. It was discovered that there are fixed limits to the
sample rate, under which the integration variables grow
exponentially and invalidate the run. Even in cases where no
initial perturbation was applied, roundoff changes in the least
significant digits were enough to start the explosion. This was
evidence that the nonlinear aspects of the state equations are
not responsible, and indicated that it might be possible to apply
linear analysis to the problem. To support this assertion, the
moment of inertia of the generator was made infinite,
effectively removing the mechanical state equations. The
unstable behavior persisted. To find the cause of instability
from a qualitative standpoint, the linear state equation matrices
for infinite bus and impedance configurations were compared.
The state equation may be written as

dIldt=f(I)=M * I. (2.5)

The most significant difference between the two generator
loads is that the self-feedback terms for id and iq in the matrix,

423

M, become three orders of magnitude layer in the impedance
load case. Also, these new coefficients are of the same order
as the largest elements in their respective rows.

E. Discussion of Stability of Linear Systems

A brief discussion of stability considerations for linear
systems should help in understanding the behavior of integra­
tion methods in the nonlinear case at hand.

Most integrations of linear state equations based on a.
discrete-time system can be described by a mapping from the
complex s-plane of the Laplace transform to the complex z­
plane of the z-transform. To demons~te this, consider the
continuous time system dYldt = M' * I. The Laplace
transform of this results in the characteristic equation

sI-M=O

where I is the identity matrix of the same dimension as M.
All of the single step integration methods of the previous

section produce a sequence of the form Y.+ I = N * Y., which
is a discrete time description of the original system. Applying
the z-transform results in the characteristic equation

zI-N=O.

Because the matrix N is a function of M, an explicit mapping
exists between the z and s planes. In the case of multistep
integration methods, the p~ictor sequence includes more
previous value terms, e.g., Y._ h Y.- 2, Y.- 3, •••• Conse­
quently there are higher powers of Z in the z-transform rela­
tion and hence in the mapping. The s and z domainS have
the advantage of easily predicting the stability of systems. A
stable continuous-time system has all its roots or eigenvalues
in the left-half of the s-plane, wl1ile a stable discrete-time
system has all its roots inside the unit circle centered at the
origin of the z-plane [16]. A system with roots outsi4e of these
boundaries is unstable. It is now apparent that a necessary
feature of an integration method is its ability to map a stable
continuous-time system intp II stable discrete-time system.
That is, roots that were in the left half of the s-plane must map
into the z-plane unit circle. The backward difference maps the
left half of the s-plane into II subCircle within the z-plane unit
circle and the trapezoidal metl!od maps the left-half plane into
the interior of the unit circle. Both satisfy the stable-in stable­
out requirement. Unfortunately neither can be used for
nonlinear equations, except with approXimations as in [15].
This is because the derivative at the n +. I step is now known
exactly. Practical integration routines reply on predictions of
the n + I derivative and function. In general, a smaller step
size helps to squeeze the z-plane roots into the unit circle so
that stability can be achieved. As will be shown, parameters of
the function being integrated also play a role in determining
stability .

F. Some Results

In Fig. I the linear continuous-time stability of the generator
equations is demonstrated by a presentation of the system roots
closest to the border of instability. As is done throughout, the

. system parameters varied are generator angle and generator

424

open circuit voltage. Note that the roots move farther into
stable territory as the angle increases. Beginning with forward
difference, the linear stability of last section's four integration
methods is explored in detail. Combining (2.1) and (2.5)
yields Y.+ I = Y. + T * M * Y., which, after application of
the z-transform and use of Z(Y.)J = JY. = I. Y. reveals the
characteristic equation

(z-I)I- T * M=O.

A computer program was written to generate and solve the
characteristic polynomial in z. In this case there are terms up
to the fifth power of z. For given values of the angle and open
circuit voltage the stability limit was calculated in terms of T.
Thus in Fig. 2, integrator stability is achieved for values of T
below the appropriate Voc curve. Limits have been calculated
for five values of Voc. It is seen that at small angles an
extremely large sample rate is necessary to avoid instability.
Next the modified Euler method of integration is considered.
Unlike forward difference, where it was possible to calculate
directly the value of T that puts the z-plane roots on the unit
circle stability boundary, modified Euler equations (and the
other methods discussed) necessitate the use of a half-interval
search method. That is, a high and a low T are selected
initially, and the calculated stability of the average kt
determines the new search interv/ll. In this fashion it is
possible to converge on the correct limit to arbitrary accuracy.
The stability limits of the modified Euler system are graphed
in Fig. 3. Compared to forward difference this system is more
stable at every point, and the low angle problem is no longer as
severe. Fourth-order Runge-Kutta concludes the single step
methods. Fig. 4 reveals that tt." stability limits of the Runge­
Kutta method are the most favorable of all. The lines of
constant open-circuit voltage Voc , level out at small angles and
prevent the required sample rate from becoming excessively
large. Linearizing the ABM4 integration methOd is somewhat
more COmplicated, but the idea is the same. The fact that this
polynomial is of 20th degree and has roots of greatly different
magnitudes makes it difficult to compute the stability limits as
a smooth curve, even with double precision arithmetic. Fig. 5
shows the results of this effort. The limit lines, though
somewhat ragged, are very similar to those obtained with the
single step methods. In this instance it is likely that the Jury
test [16] would have been a better method of determining
stability than calculating the roots directly. To test the validity
of the calculated stability limits, values were determined
experimentally for several cases. Tilis was accomplished by
applying a small perturbation to the various integration
routines, an4 observing the response as a function of the time
increment. Since the generator equations were set up for
steady-state operation, exponential growth of the current
variables was taken to imply an unstable system. The stability
liInits are quite distinctive, and as Fig. 6 shows, they are in
good agreement with the calculated values. The irregular
notches iii the calculated limits are a product of the root­
finding algorithm and do not appear in the tested limits. Now it
is possible to make some observations about the results. One is
the correlation between stability IIIId open-circuit voltage. In

bt

R
A
0
I
A
N
S

-2
Xl •

•.•• -r---------r--------,---------,---------,---------,

.... ·1.8

-····~~~t_II
..... 1.0

-•.•• -+--------~--------_r--~~~~~~~--+_------__;

-•.•• -+--------~--------_r--------~--~~~+_------__;

-•.•• -+---------+--------_r--------4-------~~------__4

-•.•• -+--------~--------~--------~---------+-.\-----~

-O.lO-+----r---~----r_--~--_,----;---~----+_~~--~

2. 40 60 8.
• (DEGREES)

Fig. 1. Largest real roots of the continuous time system versus machine
angle. Open-circuit voltage, V OCI is the parameter .

•. I-r---------r--------,---------,---------,---------,
1.8

1.1\ ...
1.4

1.2 ...
1.0

...
•• 1

•.• ~~--r_---+----r_--_r--_,----~--~----+_--~--__;

•••

2. 40 60 80 ••• • (DEGREES)

Fig. 2. Stability limits of the forward difference integration method.
Normalized time step versus machine angle. Again, open-circuit voltage is
the parameter.

all cases, a larger open-circuit voltage corresponds with more
favorable stability conditions. Another feature of the results is
the inverse relation between stability and angle. This is a sharp
contrast to the stability behavior of real generators. The latter
are more stable at small angles, whereas the integration
routines are more stable at large angles. The relative merits of
the integration routines is displayed in Fig. 6 as well for an
open-circuit voltage of 1.8 per unit. Fourth-order Runge­
Kutta is the most stable, followed by modified Euler, forward
difference, and ABM4 taking a disappointing last place, To

pick the best method in terms of speed, it is necessary to
balance the additional computations of the fourth-order
Runge-Kutta method against the higher cycle rate required by
the other methods. If the number of derivative evaluations is
the judge of computational requirements, then for the sake of
example it may be written that:

T min (4th order RK) = 1.00 ms

T ... (Mod. Euler) =0.50 ms

425

.....
···~---------r---------r------~'---------'-----~1.8~-'

1.6
1'.4

···-+---------+--------~--------;-----~~~~~~1.2~~

1.0

R •.• -+--------_+--------~--~~~~~~~--;_------~
A
D
I
A N •• I-+--------~~~~--~~~~--;---------;-------~
S

At

R
A

•.• -+-r.~~~~~~----~--------;_--------;_--------~

•.• -+~--r_--_+----r_--_+--_,r_--~--_,r_--;_--_,--~
I. • •• (DEGREES)·· 8. .0.

Fig. 3. Slability limits for the Euler method. SWame parameter.

0.8~--------_r--------_r--------_r--------,_------__,

.....
I.B
1.6

···-+---------+--------~--------~------~~~~~1.4~~

1.2
1.0

Do .• -+--------_+--------_+~~~~~~~~~;_------~
I
A
N
S

o··-r.~==~~~~~~r_------t_------lr------_1

0.0-+~--r_--_+----r_--;_--_,r_--;_--_,----1_--~--__4

'0 40 CO 8.
I (DEGREES)

Fig. 4. Slability limits for the fourth-order Rung Kulla method. Again
normalized time step is shown versus rotor angle with open..,ircuit vollllge
as the parameter.

T min (ABM - 4) = 0.50 IDS

T min (Forward Diff) = 0.25 IDS

•• 0

where T min is Ihe time it takes an arbitrary computer to
calculate Ihe n + 1 set of variables. The ratio of T (stability
limit) to T min (computation time) for each me1hod can be taken
as a figure of merit. Unity and greater implies a real-time
simulation is possible. The problem wilh Ibis gauge of
efficiency is demonstrated by its application to Fig. 6. For all
angles greater !han 20 degrees forward difference is picked as
!he best me1hod. Not taken into account is !he difference in
accuracy between Ihe integration techniques. Stable integra-

tion is no guarantee that meaningful results are being
produced. In conclusion, it must be stated that a variety of
factors influence Ihe choice of an integration routine. It is
difficult to obtain all Ihe desired properties in one me1hod.
Some time was spend searching for more stable integration
routines, but most were too complex to be considered for use
in a real-time operation.

ID. GENERATOR IMPLEMENTATION AND REsuLTS

A. Mainframe Simulation

To provide a source of comparison data, and to test the
various me1hods of integrating Ihe generator state equations, a

426

•. 3_r---------r--------,---------,---------,---------,

1.6

M •. 2-+---------+--------~--------~~~~£-1_~--I-.4~_1
R
A
D
1
A
N

1.2

5 •. ,-+---------+~~~~4b~------4---------1-------~

•.• -+----r----+----r---~--_,r_--4---_,----+---~--~
2. •• •• e •

(DEGREES)

Fig.S. Stability limits for the fourth order Adams-Bashforth-Moulton with
predictor corrector .

, ..

•. e-r---------r---------r--------,---------,---------,

Runge Kutta

o •• -+---------+--------~--------1_------~~------~

At

R
A
D •.• -+---------+--------~~~~--1---~~~+-~~~~
I
A
N
5

•.• -+------~~~--~~~-------=~~~----+---~----;

o.o-f1---r----+----r---~--_,----1---~----+---_r----;

•• 40 &0 eo
I (DEGREES)

Fig. 6. Theoretical stability limits for all four methods of integrstion
considered with experimental results shown as points. The per unit open­
circuit Voltage is 1.8.

B. Choice oj Processor

100

Fortran program was developed on a DEC VAX 111782. Any
one of the four integration methods in Section II may be
employed: fourth order Runge-Kutta, modified Euler, ABM-
4, and a forward difference. The derivative evaluation routine
may be set to have the simulated generator supply power to
either a constant impedance load or an infinite bus. A power
transient of any duration and constant magnitude may be
applied to the simulated generator or a bus-voltage transient of
any duration and constant magnitude may be applied to the
simulated generator. This does not apply to the case of an
impedance load.

With the generator state equations established, it was
determined that a second order integration routine such as
modified Euler would make at least 88 multiplications and 64
additions/subtractions per cycle. Since real-time operation is
desired,a cycle time of I ms was targeted. All arithmetic and
bookkeeping must fit into this interval. Besides the speed
requirement, there are two other important considerations in
the choice of a processor: Namely cost and availability. The
simulation network is designed to handle as many as 100

427

.080

/"'\.

/ \
1\ -

.0"715

• • 070
R

·11
D
1. 0 ..

/ \ J "-~
II
N
5. 060

.. 055

.050

/
/ v

0.0

"'-'

0.5 LO .. 5 •• 0

TII'E (SECONDS)
Fig. 7. TMS320IO generator simulation as compared to a benchmark case

calculated using douJ>le-precision on a VAX IlnS2. The power transient is
+ 30 percent from a machine angle of 3 degrees and open-<:ircuit voltage of
1.5 into an infinite bus.

generator modules, and at this quantity expense is certain to
become a limitation. This makes the 'use of a mass-produced
commercially available board desirable. One early prospect
dismissed due to cost in time and money was having a
microproceSsor such as the Intel 8086 control an arbitrary
number of Intel 8232 floating-point units. The parallelism of
the state equations is such that several calculations could be
done simultaneously. However, the 8232 takes nearly lSI'S to
add or subtract and about 50 J'S to multiply, implying that at
least three would be required to even approach the target cycle
time of 1 ms [17]. A stronger contender was a board that
employed the 8086 microprocessor and the 8087 floating-point
coprocessor. The times boasted by this combination are 14/18
I'S for addition/subtraction and 19 I's for multiplication [18].
Although too slow, this looked like the best choice until the
TMS32010 digital signal processor was considered. This
processor can be programmed to do floating point arithmetic at
a ,speed comparable to the 8087, and has the additional
advantage of being able to ml!ltiply two 16-bit integers in 200
ns [19]. The hardwired multiplier makes the 32010 very
efficient at fixed-point arithmetic. MacMinn [9] showed that
with proper care, fixed-point arithmetic can be used success­
fully in a generator simulation. Texas Instruments offers a full
32010 development system for the relatively modest cost ,of
about $700. This and its ready availability lead to the choice of
the TMS32010EVM board as the generator module. This
board uses a TMS9995 processor in a master-slave relation­
ship with the 32010, a lUXUry that is not needed once the
generator module is successfully meshed in the simulation
network.

C. Implementation on the TMS32010

The first step of developing a generator simulation program
for the TMS32010 involved obtaining 32010 assembler and

428

simulation packages for the VAX. Programming in the VAX
environment was found to be both convenient and efficient.
The TMS32010 simulator allows YO through arbitrary files,so
that a Fortran program can be used to supply initial parameters
to the simulator; and output simulation data is readily
obtainable for use by a plotting package. The first version of
the generator simulation program employed fourth-order
Runge-Kutta and used only 16-bit variables. Unfortunately,
the precision was insufficient. Many of the state equation
variables had magnitudes large enough to pUsh any increments
out of the 16-bit range. Even when some of the key
summations (those involving the subtraction of large numbers
to yield small parameters) were done in double precision,
proper operation could not be obtained. The program was
rewritten to do most arithmetic in double precision (30 bits +
sign bit, also fixed point). Only constants that could be defined
as exact were left in l6-bit format (Section II-B). To
compensate for the loss in execution speed, second-order
Runge-Kutta integration was used. This method is essentially
the same as modified Euler, except that a different set of
constants is used. The linear stability of the two methods is the
same. Figs. 7 and 8 compare TMS32010 simulation data to the
benchmark fourth-order Runge-Kutta integration for power
transients of plus and minus ten percent respectively. As this is
for stand-alone operation, the generator program computes its
own infinite bus voltage. The same results were obtained when
the TMS32010 generator code was executed on one of the
TMS32010EVM boards. With an integration cycle time of
0.53 ms, the TMS32010 program can, simulate a generator on
an infinite bus at a sample rate of nearly 2 kHz. The above
results were reproduced at a sample rate of about a kilohertz,
implying the simulation was taking place at nearly double the
real-time rate. To see what is possible with an impedance load,
the 0.53 ms. is converted to 0.2 rad of simulation time. With

.054

.012

R ••••
A
D
I
A
N· 04 •

5

.041

.044

c.......

\
\ ~ '" '\ / '"

"= ./
.. o. .. 0.6 .. . I. •

TIME (SECONlS)

Fig. 8. Same as Fig. 7 but with a power transient of -10 percent.

reference to the stability limits of Section II, Fig. 3, it is seen
that real-time simulation is possible to generator angles greater
than about 9 degrees (Voc = 1.5).

IV. CONCLUSION

This paper has examined the design of a real-time digital
simulator of a synchronous generator which is to operate in a
network of such generators (parallel processors), a transmis­
sion system and nonlinear loads. It was determined that the
nonlinear load that the generator faces places a significant
constraint on the simulation time step. The design must use a
cOllS\lrvative estimate of time step in order for the simulation
to be stable in the presence of the a priori unknown loads. A
16-bit generator simulator has been proposed and tested which
uses the TMS32010 digital signal processing chip.

APPENDIX A

INTERFACE HARDWARE

To work within the digital simulation network, the genera­
tor module must have a means of communicating with other
elements of the network. specifically, the geneIiltor module
must transmit its currents to the exciter unit and to the voltage
determining matrix multiplier. In return, the generator re­
ceives its field voltage from the exciter, and its terminal
voltages from the multiplier.

Fig. 9. Generator module to network interface.

Fig. 9 is a schematic of an interface designed to connect
either the TMS32010EVM or the proposed generator module
of Appendix B to the network. This circuit features a 16-bit
bidirectional port betwee!1 the generator and exciter, a 16-bit
input port from the multiplier, and a 24-bit output port to a
Ii1aster controller. The controller is needed to orchestrate the
transfer of all the generator modules' currents to each
multiplier. Timing works as follows:

1) TMS32010 saves generator angle to memory with Table
Write (TBLW) instruction.

429

...
..,.

• • • • • IIIlI:f , .
• •

.... " - ,
-t>- -<J-

11m
..

Fig. 10. Proposed generator module using the TMS32010 chip.

2) TMS32010 clears exciter. input registers by a dummy
read ftom port 7.

3) In 12-bit increments the TMS32010 writes the 24 most
significant bits of id and iq to ports 0-3. Besides making
the currents available to the controller, this operation
also sends the currents to the exciter registers via a
second bus. Access to port 3 activates the GENRDY
signal.

4) TMS32010 disables the interrupt line in order to give the
controller free access to the exciter bus.

5) When all generators signal that they are ready, the
controller routes their currents to the multipliers. The
controller deactivates the GENRDY signals, and when
the' voltages have been calculated, it notifies the genera­
tors via the VLTRDY line.

6) TMS32010 waits until the VLTRDY signal is acrtivated,
and then enables the interrupt line. Next, the two
terminal voltages are read from the particular multiplier
assigned to this generator. This is accomplished by
reading two sets of 16, 16, and 6 bits from ports 0-5.

7) TMS32010 calculates machine variables for the next
time step, then repeats the process from the top.

8) When the exciter has calculated a new field Voltage for
the generator, it activates the interrupt line of the
TMS3201O. The interrupt service routine causes the
TMS32010 to read the 16-bit field voltage from port 6.
Reading from port 6 also clears the· interrupt holding
flip-flop. Should the interrupt line be disabled when the
exciter signals, then the TMS32010 will not respond
until after the voltages have been calculated.

APPENDIX B

PROPOSED GENERATOR MODULE AND HOST INTERFACE

Fig. 10 is a proposed design for future generator modules.
It is intended to yield a low cost and compact system.
The total chip count of this and the interface hardware of
Appendix A is 31, and the total cost is probably under $200.

430

.... " 1 __________ -,> MHlII

aM~<~. ____)aM"

+

Fig. 11. Proposed host computer interface.

The only expensive components are the TMS32010 processor
and the accompanying fast memory. The system features easy
direct memory access by a host computer. This facilitates the
downloading of programs and uploading of results. One the
host computer haS pulled the reset line iow it may treat the
generator memory just like any 4K block of its own memory.
The ,generator simulation program resides in the lower 2K
bytes of the external ram memory and calculated generator
angles are stored in the upper 2K bytes. The TMS320io is not
allowed to write to the program portion of memory in order to
prevent erasure of the first 8 bytes of memory by the OUT

instruction. (The external signals of the OUT and TBLW
instructions are indistinguishable.) Fig. II is an example of a
host computer interface that allows many generator modules to
be accessed. The reset lines of the generators are under
software control. By addressing one memory location the host
can reset all the generator modules and open up their
memories to full speed access. Expansion is simple, as the
addition of one 74LSI38 decoder chip allows another eight
generators to be mapped into a 32K block of host address
space.

REFERENCES

[I] M. H. Kent, W. R. Schumus, and F. A. McCrackin, "Dynamic
modeling of loads in stability studies," IEEE Trans. Power App.
Syst., vol. PAS-88, May 1969.

[2] R. T. Byerly and E. W. Kimhnrd, Stability of Large Electric Power
Systems. . New ,york: IEEE Press, 1974.

[3] P. L. Dandeno and R. L. Hauth, "Effects of synchronous machine
modeling in large scale system studie;," IEEE Trans. Power App.
Syst., vol. PAS-92, Mar.lApr. 1973.

[4] D. W. Olive, . 'Digital simulation of synchronous machine transients, ,.
IEEE Trans. Power App. Syst .. vol. PAS-87, Aug. 1968.

[5] Yoa-nan Yu, Jack H. Sawada, and M. D. Wvong, "A dynamic power
system model for teaching and research," IEEE Trans. Power App.,
Syst .. vol. PAS-95, July/Aug. 1976.

[6] P. M. Anderson and A. A. Fouad, Power System Control and
Stability. Ames, IA: Iowa State Univ., 1977.

[7] P. L. Dandeno, P. Kindur, and R. P. Schulz, "Recent trends and
progress in synchronous machine modeling in the electric utility
industry," Proc. IEEE, vol. 62, July 1974.

[8] R. Joetten, T. Weiss, J. Wolters, H. Ring, and B. Bjorensson, "A new
real-time simulator for power system studies, to presented at the PES
Winter Meeting, 1985.

[9] S. R. MilcMinn, "A digital model generator for real-time simulation,"
Ph.D. dissertation, Cornell Univ., Ithaca, NY, Aug. 1984.

[10] S. Wiryaman, "Modular implementation of a fast matrix-vector
multiplier," M.S. thesis, Case Western Reserve Univ., Jan. 1985.

[Ii] F. !liceto and A. Ceyhan, "Behavior of loads during voltage dips
encountered in stability studies. Field and laboratory tests," IEEE
Trans. Power App .. Syst., vol. 91, Nov.lDec. 1972.

[12] Computer Analysis of Power Systems Working Group of the Computer
and Analytical Methods Subcommittee-Power System Engineering
Committee, "System Load Dynamics-Simulation Effects and Deter­
minillion of Load Constants," IEEE Trans. Power App. Sysl., vol.
PAS-92, Mar.lApr. 1973.

[13] Tom T. Hartley and Guy O. Beale, "Integration operation design for
real-time digital simulation," IEEE Trans. Ind. Electron., vol. 1E"32,
Nov. 1985.

[14] Curtis F. Gerald, Applied Numerical Analysis. Reading, MA:
Addison-Wesley, May 1980.

[IS] H. W. Dommeland N. Sato, "Fast transient stability solutions," IEEE
Trans. Power App. Syst .. vol. PAS-9I, JulY/Aug. 1972.

[16] Charles L. Phillips and H. Troy Nagle, Jr., Digital Control Systems
Analysis and Design. Englewood Cliffs, NJ: Prentice-Hall.

[17] Intel Corp., Component Data Catalog, Jan. 1981.
[18] Intel Corp., iAPX 286 Programmer's Reference Manual, 1984.
[19] Texas Instruments, TMS32010 User's Guide, 1983.
[20] Texas Instruments, TMS32010 Evaluation Module User's Guide,

1984.

431

432

Real-Time Dynamic Control of an Industrial
Manipulator Using a Neural-Network-Based

Learning Controller
W. THOMAS MILLER, III, MEMBER, IEEE, ROBERT P. HEWES, j;TUDENT MEMBER, IEEE, FILSON H. GLANZ, MEMBER, IEEE,

AND L. GORDON KRAFT, III

Abstract-The overall complexity of many robotic control problems,
and the ideal of a truly general robotic system, have led to much
discussion of the use of neural networks In robot control. A learning
control technique is discussed wbich uses an extension of the CMAC
network developed by Albus, and results of real-time control experiments
are presented wbicb involved learning tbe dynamics of a five-axis
industrial robot (General Electric P-5) during high-sp .. d movements.
During each control cycle, a training scbeme was used to adjust the
weigbts in the network in order to form an approximate dynamic model
of tbe robot in appropriate regions of tbe control space. Simullaneously,
the network was used during each control cycle to predict the actuator
drives required to follow. desired trajectory, and these drives were used
as feedforward terms in parallel to a fixed gain linear feedback controller.
Trajectory tucking errors were found to converge to low values within a
few tnining trials, and to be relatil'ely insensitive to the cboice of control
system gains. The effects of network memory size and trajectory
characteristics on learning system performance were investigated.

I. INTRODUCTION

NUMEROUS manipulator control schemes have been
studied during the past decade. One approach involves

using a dynamic model of the robot to calculate the joint drive
torques for the specified trajectory (computed torque control­
lers) [1]-[5]. Recent work in this area has focused on efficient
techniques for implementing robot dynamic models [6]-[16],
custom parallel computer architectures suitable for high-speed
implementation of robot dynamic models [17]-[20], and
techniques for estimating dynamic model parameters [21].
While computed torque techniques are capable of providing
excellent results if the complete dynamic model is known, they
are generally inflexible in that the detailed model is highly
specific to a particular robot and payload.

Considerable work has also been reported concerning the
application of adaptive control techniques to the robotic
control problem [22]-[35]. These adaptive control schemes
have the advantage that in general they require no a priori
knowledge of the robot dynamics. A general drawback to

Manuscript received February 10, 1988; revised December 30, 1988. This
work was partially supported by the National Science Foundation. Division of
Information, Robotics and Intelligent Systems, under Grant IRI-881322S. Part
of the material in this paper was presented at the Intelligent Robots and
Computer Vision Conference, Cambridge, MA, November 7-11, 1988.

W. T. Miller,m, F. H. Glanz, and L. G. Kraft, m are with tbe Department
of Electrical and Computer Engineering, Kingsbury Hall. University of New
Hampshire, Durham, NH 03824.

R. P. Hewes is with Harvard University, Perkins Hall, Cambridge, MA
02138.

IEEE Log Number 8929804.

adaptive controllers is that the computational requirements for
real-time parameter identification, and the sensitivities to
numerical' precision and observation noise, tend to grow
undesirably as the number of system state variables increases
[36].

Several investigators have presented learning control
schemes for improving the performance in trajectory follow­
ing tasks over successive attempts at following the same
trajectory [37]-[39]. Typically, control torques for each time
instant in the trajectory are adjusted iteratively based on
observed trajectory errors at similar times during previous
attempts. In the results presented by these investigators, the
trajectories followed consistently converged on the ideal
trajectories over several repetitions. A drawback to such
control techniques is that they are only applicable to operations
which are repetitive.

Recently there has been considerable interest in learning in
the form of simple models of networks of neurons. The overall
complexity of many robotic control problems, and the ideal of
a truly general robotic system, have led to much discussion of
the use of neural networks in robot control [40]-[50]. The
basic theme of all such discussions is that of using the network
to learn the characteristics of the robot/sensor system, rather
than having to specify explicit robot system models. While
there seems to be widespread interest in this problem within
the neural network and robotics communities, relatively little
has been reported in the nature of actual robot control
experiments. This is due, at least in part, to the computational
speed and stability problems encountered when using typical
neural models in networks of sufficient complexity to be useful
for realistic robot control problems.

Albus [51]-[54] proposed a unique control scheme devel­
oped from models of human memory and neuromuscular
control. The control scheme was based on a neural model
called CMAC (Cerebellar Model Arithmetic Computer)
which, in a table look-up fashion, produced a vector output in
response to a state vector input. In the controller, the state
vector input was composed of position and velocity feedback
from the robot joints, as well as additional state variables
which provided a command input to the system. The output
vector was the drive signal to the robot actuators. Assuming
that the values in the table were adjusted correctly, the robot
would automatically follow the correct trajectory if put in the
correct initial state and given the correct command state (the

© 1990 IEEE. Reprinted, with permission, from IEEE Transactions on Rohotics and Alltomation,
Vol. 6, No. I, Feb. 1990. 433

Input
Sensors

State Space continuous-valued input vector and f(s) is the network scalar
Detectors output. Each component of the input vector s is fed to a series

t Weights of input sensors with overlapping receptive fields. Each input

'" r:--::-=-= _~ , sensor ~s a b~ry valued outpu~, ~ndicating whether or not
~ ~g::=--= ~~, the assocIated IDput value falls WlthID its receptive field. The 1 =~~--j:=::).i,,4.._g::::::;: ~~ width of the receptive field of each sensor produces input

13llO=:~""~~J---,n...--\-+';bI>----:;.· -: - '~ Outpul ~enera1IZati~n, ~ Ie. e. ouset of the adjacent field produces /
1"'''i=='<-'<-''<-+--rV [>--- ,,;S: Average .. h'l th ~ .

g:-----: - _.-:--- tI IDput quantization (slmliar to well-known coarse coding
Ii r -i -/-, -' f(§) techniques? Each component o~ th~ input yector s excites
\ g:--=--=--= ::- ;;;/ exactly C IDput sensors (C = 4 ID Fig. 1).

" .~ - - /'; The outputs (on or off) of the input sensors are combined in
i 13i~§F:==::!J §:;:::-= -- '/ a series of threshold logic units (called state-space detectors)

Multiple Field with thresholds adjusted to produce logical AND functions (the
Detectors output is on only if all inputs are on). Each of these units

o Logical AND unit
C,-.... logical OR unit

Fig. 1. A simple example of the network architecture with two inputs, one
output. and four active units per input (C = 4). Note that only a subset of
the state-space detectors is shown.

current input state would result in a set of actuator drives
which would cause the arm to move, generating a new input
state which would result in new actuator drives, and so on).
While the system was capable of generating such "learned
responses" once the memory was trained, training techniques
which would make the control approach suitable for use in
industrial robotics were not proposed.

During the past three years, we have been investigating a
learning technique for the control of robotic manipulators
[55]-[59] which utilizes a CMAC neural network similar to
that developed by Albus. However, the control scheme is quite
different from that proposed by Albus. The controller is
similar to the computed torque controllers discussed above,
with the robot dynamic model replaced by the neural network
niodel. A training scheme is used to adjust the weights in the
CMAC network on-line based on observations of the robot
input! output' relationships, in order to form an approximate
dynamic model of the robot in appropriate regions of the state
space. The CMAC network is used to predict the actuator
drives required to follow a desired trajectory ,and these drives
are used as feedforward terms in parallel to a fixed-gain linear
feedback controller.

The learning control technique developed in our laboratory
has been previously evaluated in a simulation study involving
learning the dynamics of a two-axis robot arm [55], and in
real-time control studies which successfully demonstrate the
ability to learn the kinematics of a robot/video camera system
interacting with randomly oriented objects on a moving
conveyor, during both repetitive and nonrepetitive operations
[56]-[59]. This paper presents the results of real-time experi­
ments which involved learning the dynamics of a five-axis
industrial robot (General Electric P-5), during high-speed
movements simuJating industrial tasks.

II. METHODS

A. The CMAC Network

receives one input from the group of sensors for each input
variable, and thus its input receptive field is the interior of a
hypercube in the input hyperspace. If the input sensors were
fully interconnected, a very large number of state-space
detectors wouJd be excited for each possible input. The input
sensors are interconnected in a sparse and regular fashion,
however, so that each input vector excites exactly C state­
space detectors. The details of this input mapping are
discussed elsewhere [52], [55].

The outputs of the state-space detectors are connected
randomly to a smaller set of threshold logic units (called
multiple-field detectors) with thresholds adjusted such that the
output will be on if any input is on (a logical OR function). The
receptive field of each of these units is thus the union of the
fields of many of the state-space detectors. Since exactly C
state-space detectors are excited by any input, at most C
multiple-field detectors will be excited by any input. The
converging connections between the large set of state-space
detectors and the smaller set of multiple-field detectors are
referred to as "collisions."

Finally, the output of each multiple-field detector is
connected, through an adjustable weight, to an output averag­
ing unit. The output for a given input is thus the average of the
weights selected by the excited muJtiple-field detectors.

For a practical control problem, the total number of state­
space detectors needed is large. However, since these units
perform logical AND functions, and their interconnections with
the input sensors are geometrically reguJar, they can be
implemented as virtual units, and it is only necessary to
consider a predictable set of C units for each input vector (C is
typically less that 100). If the random interconnections
between the state-space detectors and muJtiple-field detectors
can be presented using a hashing function, it is possible to
predict directly which weights are excited by a particuJar
multidimensional input via a simple algorithm, and without
analyzing all of the units in the network via a complete
connectivity table. Software iniplementation of the network is
thus very efficient, even for complex problems.

The CMAC network will produce an output f(s) for any
state vector s in the input space S, regardless of the number of
adjustable weights in the. memory. However, since the
memory is typically much smaller than the total number of

Fig. 1 shows a simple example of the CMAC network as possible discrete input states, it is unlikely that a set of weights
implemented in our laboratory, where s is a multidimensional, can be found which will produce the correct output for every

434

I.

.- <1.8.1> 10

Fig. 2. A block diagram of the learning controller.

possible input state. On the other hand, it is also unlikely that
every possible system state will be encountered in solving a
particular control problem (even one that is nonrepetitive).
Learning involves finding values for the weights which will
result in correct network output for input states in the regions
of interest.

B. Manipulator Control

Consider a multi-axis manipulator with drive electronics to
be an electromechanical system represented by the general
equation

V=m(/I, 6, ii) (I)

where V is a vector of the applied actuator drives, /I, (J, and ii,
are vectors of the joint positions, velocities, and accelerations,
respectively, and m represents a nonlinear vector function
describing the inverse robot dynamics and actuator drive
characteristics. If the function m is known, (I) can be used to
calculate the joint drives required to follow a desired trajec­
tory, and these estimated drives can be used as feedforward
terms in parallel with a feedback controller. For typical
manipulators, however, the function m is difficult to deter­
mine accurately and involves complex computations which are
difficult to implement as part of a real-time controller.

The CMAC network can be applied to the manipulator
control problem as follows (Fig. 2). Let the CMAC input state
vector S be formed from the vectors /I, (J, and ii, and let the
CMAC function !(s) correspond to the manipulator function
m(/I, (J, ii) (the CMAC network can produce a vector rather
than a scalar output if every weight in Fig. I is assumed to
contain a vector value). The only assumption being made is
that the drive signal for each axis is a function of the desired
positions, velocities, and accelerations of all of the axes. No
restrictions are placed on the forms of these functions, except
that they be single-valued.

At each control cycle, the trajectory planner determines the
desired state of the system Sd for the next control cycle (the
desired positions, velocities, and accelerations of the actua­
tors) based on the ideal trajectory. The desired next state Sd is
sent to the CMAC network which produces !(Sd). The
resulting vector value is assumed to be an estimate of the
actuator drives required to achieve the desired state Sd and is
added to the output of the fixed gain error feedback controller
to form the command vector V which is sent to the robot
actuator drivers.

At the end of each control cycle a training step is executed.

The observed state of the system So during the previous control
cycle is used as input to the CMAC network which produces
!(so). The difference between the predicted drive value !(so)
and the actual applied command vector Vo during the previous
control cycle is used to compute the weight vector adjustment
as follows:

(2)

where {3 is a training gain between 0 and 1. This correction
vector is added to each of the weight vectors excited by the
input state So. Note that this training procedure is similar to the
well-known Widrow-Hoff training procedure for linear adap­
tive elements [60], [61]. The nonlinear characteristics of the
CMAC neural network are embodied in the interconnections
of the input sensors, state-space detectors, and multiple-field
detectors, which perform a fixed nonlinear mapping of the
continuous-valued input vector S to a many-dimensional
binary-valued vector (the set of outputs from all of the
multiple-field detectors). The training is linear in this many­
dimensional space and the convergence theorems for linear
adaptive elements apply [61].

When the system is initialized, the weights contain all zeros
such that ftSd) is the null vector for any desired state Sd and the
command vector set to the robot is equal to the output of the
fixed gain controller alone. As the CMAC network is
continually trained following successive control cycles, the
CMAC function !(s) forms an approximation of the system
inverse dynamic transfer function m (/I, (J, ii) over particular
regions of the state space. If the future desired states are in
regions of the state space similar to previous observed states,
the CMAC network output will be similar to the actual
actuator drives required. As a result, the state errors will be
small and the CMAC network will take over from the fixed­
gain controller. The more experience the controller obtains,
the more closely the CMAC output !(s) approximates the
actual system tranfer function in the appropriate regions of the
state space. Note that while a repetitive trajectory may be the
easiest to learn, the technique is applicable to nonrepetitive
operations. The trained information is in the form of the
system transfer characteristics at individual points in the state
space, and is not explicitly related to the overall trajectory.

C. The Experimental Model

For this study, the learning control system was implemented
using a VAX-I 11730 minicomputer with a TMS32010 auxil­
iary processor. The basic control architecture is shown in Fig.
2. The robot was a General Electric P-5 five-axis articulated
robot. This robot was driven by five loo-V dc motors with
pulsewidth-modulated motor drivers. Feedback was available
to the digital controller in the form of a pulse train position
encoder for each axis. Maximum speed varied for each axis
but was on the order of 100· /s for each. The position encoder
resolution was on the order of 0.0 I· for each axis. Note that
the drive signal being learned was the input to analog motor
driver circuits containing analog tachometer and current sense
feedback loops.

A digital fixed-gain feedback controller was designed for
each axis, including position error (encoder count units) and

435

velocity error (1 count/cycle units) terms. Gains were adjusted
experimentally to give good performance. A fixed-gain
velocity feedforward term was included in the controller. This
term was added to the total drive after the training drive
observation (Fig. 2). Thus the network was trained to
represent the difference between the actual system and the
approximate model (fixed feedforward). The "tuned" gain for
the velocity feedforward term was obtained from a knowledge
of the gain in the tachometer feedback loop for the correspond­
ing axis.

In the learning module, the drive signal for each motor was
assumed to be a function of the desired positions (800 count
units), velocities (4 count/cycle units), and accelerations (2
count/cycle/cycle units) of all five axes. The neural network
thus had fifteen discrete numeric inputs and five discrete
numeric outputs, with approximately 1 000 000 virtual state­
space detector units and 32 active units per input (C = 32).
The number of multiple-field detector units and actual weight
vectors in the memory varied from 32 768 to 8, as indicated in
the results. The training gain was set to 0.05 in all experi­
ments.

As discussed above, the ideal components for the input state
vector s included the actuator positions at the beginning of a
control cycle, actuator velocities at the beginning of a control
cycle, and actuator accelerations during the control cycle. For
the P-5 robot, however, only direct measurements of position
were available to the digital controller. A symmetrical
quadratic least squares estimator was used to estimate velocity
from five sequential positions. A central difference estimator
was used to estimate acceleration from two sequential esti­
mated velocities. The actual input state vectors used were thus
functions of six sequential positions (three past and three
future) for each actuator. During control computations, the
future desired positions were readily available since the entire
desired trajectory was known in advance. During training, the
weight adjustment for a given control cycle was delayed by
three cycles such that "future" position measurements would
be available for the training computations.

The control cycle time was 20 ms, accommodating both one
learned feedforward computation (5.4 ms) and one training
computation (7.7 ms). This control cycle time was marginal
for the high-speed movements tested, but was possible because
of the analog velocity feedback loops in series with the PWM
motor drivers.

Two test trajectories were designed. The first (CIRCLES)
involved tracing ten tangential circles in three orthogonal
Cartesian planes, holding the wrist orientation constant rela­
tive to the upper arm. This smooth trajectory was considered
difficult in that the positions, velocities, and accelerations of
the five individual actuators (including the wrist axes) were
constantly changing during the 24-s exercise, and the peak
drive voltage required for each of the five actuators was at
least 80 % of the saturation drive. The second test trajectory
(SEGMENTS) involved a series of long constant high actuator
velocity moves (50% to 95% of maximum actuator velocity)
separated by abrupt changes in velocity (brief intervals of high
acceleration). The total trajectory duration was 6.6 s. This
trajectory was difficult in that only limited information about

436

Z 4 6 B
11-1,1

.\ lIZ A",. Er""
~CD \ \ ,. \ \
§'f \ \
o \ '
3" \ '-

Z 4 6 8
trial

Z 4 6 B
boial

-i M A",. z..-
0<. ' . \ , \ '
~ .. \ "
IN \ ,.
g \, -

Z 4 6 8
Trial

Z 4 6 8
Trial

Tuned. Gains

Fig. 3. The average position errors as a function of training trial for the 24-s
exercise (CIRCLES) described in the text. Trial 0 corresponds to the fixed­
gain controller without learning. Error curves are shown for each of the five
motors during experiments using the tuned-velocity feedforward, slightly
reduced velocity feedforward (10% maladjustment), and no velocity
feedforward (severe maladjustment).

the system dynamics was available during the long constant
actuator velocity intervals which dominated the trajectory in
terms of total control cycles, and yet good system dynamics
information was required in order to successfully achieve the
desired abrupt velocity changes.

III. RESULTS

Fig. 3 shows the average trajectory position error, in
position encoder units, for CIRCLES during each of ten
sequential trials. Error curves are shown for the optimal
velocity feedforward ("tuned gains"), for a 10 % reduction in
feedforward gain (" 10% maladjustment"), and for no veloc­
ity feedforward ("severe maladjustment"). In each case, the
intercept with the vertical axis (trial 0) indicates the average
trajectory error of the fixed gain controller without learning.
The maximum position error for each axis followed the same
trend during training as the average error. The position errors
for the fourth axis were higher because that motor was driven
by an 8-b D/ A converter, while the other four motors. were
driven by 12-b D/ A converters.

Control system performance improved significantly, even
when using the tuned fixed-gain controller, converging within
five training cycles. Detuning the fixed feedforward (approxi­
mate system model) by only 10 % had a large effect on
performance without learning, but had essentially no effect on
performance after five training trials. Without velocity feed­
forward, the average control errors for the five motors were
261,424,247,255, and 201 counts (about five times greater
than the plot vertical scale in Fig. 3) when using the fixed gain
controller without learning. Even for this severe detuning of
the fixed gain controller, average trajectory position error
converged to a low value within ten training trials. For all
actuators, the final error was similar to or less than the
trajectory error for the tuned controller without learning.

Fig. 4 shows the percentage of the total drive signal for each
motor which was provided by the combined feedforward terms
(fixed gain velocity feedforward and lea~ed feedforward) as a
function of training trial during the experiments depicted in

•••••••••••• M M ••• _ ••••••• _

4&8 4& 24&
Trill Trill Trill

2 4 &
TrI.1

2 4 & 8
Trill

Fig. 4. The average feedforward drive rJ.lagnitude as a percentage of the
average total drive magnitude during the three experiments depicted in Fig. 3.

Fig. 3. Percent drive was computed as follows:

FF% = 100 * IFFI
IFFI+IFBI

(3)

where IFF! represents the summed absolute drive signal from
the combined feedforward terms and jFBI represents the
summed absolute drive signal from the combined error
feedback term.

By this measure, the tuned velocity feedforward provided
over 90% of the total drive signal, even without learning. This
is consistent with both the nature of the mechanical system and
the presence of the analog tachometer feedback loops in the
motor drive electronics. Learning was able to increase this
percentage to 98 % or 99 % for each motor (the values for
motor five are lower due to the lower total average drive
magnitude for this motor). The 10% maladjustment of the
velocity feedforward reduced its contribution to the total drive
signal, but had almost no effect on the total feedforward
contribution after five training trials. With the velocity
feedforward gains set to zero, the learned feedforward term
still accounted for over 90 % of the total drive signal after ten
training trials.

In these trials, a network memory containing 32 768 weight
vectors was available (10 bytes per vector). After ten 24-s
training trials, each involving 10 circles in Carteisan planes,
2708 vectors had been accessed when using the tuned fixed
gain controller. This implies that practical length tasks can be
implemented using realistic amounts of memory. In order to
test the effect of memory size on performance, the experiment
was repeated using networks with memory sizes of 1024
weight vectors and 64 weight vectors. The results are shown in
Fig.5.

Learning controller performance was essentially the same
for the 1024-vector memory as for the 32 768-vector memory,
even though the 2708 vectors used for the same problem with
the larger memory imply that many collisions were certain.
This indicates the network's ability to resolve collisions in the
connections between the very large set of state-space detectors
and the much smaller set of multiple-field detectors. Perform­
ance was measurably impaired when using the network with

b;' - b ... ·- c· .. ·-~ ~ ~

~ ~ ~
~~ ,.-.-.-.-.-.-~.. t

~ ----.---.-. ~

24&8 24&8 24&8
'lPllI Trill Trial

M 1Io1,1ot I/octan

Fig. 5. The average position errors as a function of training trial for the 24-s
exercise (CIRCLES) described in the text. Trial 0 corresponds to the fixed­
gain controller without learning. Error curves are shown for each of the five
motors during experiments using network memories containing 32 768
weight vectors, 1024 weight vectors. and 64 weight vectors.

only 64 weight vectors, but after five training trials was still
significantly better than that obtained using the tuned fixed­
gain controller alone.

It is informative to consider individual weights from the
network memories. Given a sufficiently large memory, each
individual weight is influenced primarily by training data
corresponding to a particular region of the system state space.
After several training trials, each network weight would reach
a stable value, assuming that the system's properties are
constant. In a smaller memory, each weight is influenced by
training relative to multiple disjoint regions of the state space.
Within reason, however, such network collisions should be
resolved with sufficient training, resulting again in stable
weight values. For very small network memories, each weight
will be influenced by many or most regions of the state space,
and the continuous training is likely to act as a low-pass filter,
with each weight tracking the applied drive signal rather than
reaching a stable value.

In order to confirm these assumptions, individual weights
were monitored during training trials with networks including
32 768 weight vectors, 1024 weight vectors, 64 weight
vectors, and 8 weight vectors. Typical results are shown in
Fig. 6 for individnal weights as functions of the time during
the 16th training trial for each network. the weights shown in
the figure were deliberately chosen as having similar magni­
tudes (in order to facilitate comparison) but bore no other
relation to each other. As expected, the weights reached stable
values for both the large network memory (with relatively few
likely network collisions) and for the smaller inemory (where
many collisions were certain). Even for the very small
memory (64 vectors), a stable average value with only a small
deviation is clear. For the tiny network memory (8 weight
vectors), the magnitude varies constantly during the trial,
essentially tracking the applied drives as the result of the
training algorithm. Note that although this weight appears
unstable in the figure, the apparent oscillation was the direct
result of the varying actuator drive required to track the
sequence of circles, and did not reflect numerical training
instability .

437

327fi811oI.htUeclaN
~~

e~

'" j.

6 9 12 15 18 21 fl .. _)

1IZ411oI,ht_
~~ e:
~I----------

j.

36912151821 fl .. _)

~~

e~
• f.o
j.

811oI,ht_

Fig. 6. Individual network weights as functions of time during the 16th
training attempt for the CIRCLES trajectory in experiments using network
memories 32 768 weight vectors, 1024 weight vectors, 64 weight vectors,
and 8 weight vectors.

~~b'~~~~'~'-'-.~ .
~. I
.~ .
8N - ---------­
V"

, 2 4 6 8
11-1&1

::t" ~ -.-----. GAUl. Error

j~ I~~~ ___ -----
V"

Z 4 6 8
lPi.1

Z 4 6 8
&1.1

Z 4 6 8
tri.1

CA'I'-
~~

~.
i" ,
81n \

"\. -. -
2 4 6 8

!rial

1IZ41101ght_

641101.ht_

Fig. 7. The average position errors as a function of training trial for the 6.6-
s exercise (SEGMENTS) described in the text. Trial 0 corresponds to the
fixed-gain controller without learning. Error curves are shown for each
of the five motors during experiments using network memories containing
32768 weight vectors, 102~ weight vectors, and 64 weight vectors.

The same experiments were repeated for the SEGMENTS
trajectory. Fig. 7 shows the trajectory position errors for the
five actuators during a sequence of ten training trials for
networks containing 32 768, 1024, and 64 weight vectors.
For the larger network memory, performance converged
rapidly to a low error during the first five trials, similar to the
results for CIRCLES. Of the total available, only 1115 weight
vectors were modified during the trials, which again was
consistent with CIRCLES given the shorter duration of
SEGMENTS. However, when the memory size was decreased
to 1024 weight vectors, increasing the frequency of collisions,
the performance degraded noticeably relative to the larger
memory. When the network memory was further reduced to
64 weight vectors, the average trajectory position errors with
training were actually greater than when using the tuned fixed­
gain controller alone.

At first, these results seemed contradictory in that CIR­
cLEs used three times more weight vectors in the large
network than SEGMENTS, and yet CIRCLES mapped much
more successfully into the smaller networks. This difference

438

can be explained, however, by considering the nature of the
two trajectories. CIRCLES involved constantly and smoothly
varying accelerations for all five axes. As a result, the training
data were relatively rich in information ahout the system
dynamics, with substantial generalization between sequential
control cycle observations. Learned information was rein­
forced both during successive control cycles during each trial,
and from one trial to the next. The effects of the frequent
collisions in the network connections in the smaller memories
were thus able to be resolved.

On the other hand, SEGMENTS involved sequences of long
movements with constant actuator velocity, separated by short
intervals of high acceleration. The training data during the
long constant velocity intervals contained relatively little
dynamic information, and the short intervals of high accelera­
tion were quite different from the nearby control cycles,
providing little reinforcement of the necessary dynamic
information during each trial. When using the large network
there was sufficient reinforcement from one trial to the next,
with little destruction of information due to collisions, so that
the performance converged to low errors. When using the
smaller memories with large numbers of collisions, however,
the information about the trajectory comers was not reinforced
sufficiently during each trial to offset the destruction of
information hy collisions.

While trajectories which require moving all five axes
simultaneously are the best test of performance, it is difficult
to evaluate the results other than as error statistics. For this
reason, a simple trajectory demonstrating the advantage of the
learned feedforward term was devised. The arm was retracted
and then the base axis was rotated through 80· at approxi­
mately 70% of full speed. The desired acceleration was set to a
constant magnitude of 11 counts/cycle/cycle at the beginning
and end of the move. The arm was then extended, and an
opposite rotation of the base performed. The desired velocity
profile for the hase axis was the same for the retracted and
extended portions of the trajectory. However, the required
drive signal was quite different as the result of the configura­
tion-dependent inertial terms. Fixed gain velocity and acceler­
ation feedfprward terms could not possibly generate the
correct drive signals for hoth rotations.

Fig. 8(a) shows the base-axis trajectory errors during the
acceleration portions of the retracted and extended moves
using two different controllers: error feedback with optimal
velocity feedforWard, and error feedback with learned feed­
forward only (after 15 attempts). The fixed gain velocity
feedforward resnlted in low error for the retracted case, but
significant lag occurred for the extended arm during the
acceleration phase. Addition of acceleration feedforward
could have helped to reduce this lag, but at the cost of
overdriving the retracted arm. The controller with learned
feedforward showed small error for both the retracted and
extended cases.

Fig. 8(b) shows plots of the corresponding base drive
signals. The dashed lines correspond to the drive saturation
leveL The dotted lines indicate the drives that were (or wonld
have been) predicted by the fixed-gain velocity feedforward.
Note that for the retracted case, the velocity feedforward term

&+10------------------.-.---.------11 r.1Ac1ttd

i (
m '~-!!I-10~-.-.-.-.-.-.-.-... ----.- ... -

Velocity Feedforward

L2 II 0 I----'---'=~-
~-2

J ~4 Velocity Feedlorward

r:c:
l.aamed Feedforward

" 0.5 1:.0 lime (seconds)
0.5 1.0---"

Time (seconds)

(a) (b)

Fig. 8. Robot base axis position error (a) and drive voltage (b) as a function
of time during base rotations with the arm retracted and extended.
Corresponding data are shown for the controller with tuned-velocity
feedforward and with learned feedforward only (after 15 trials).

predicted nearly the correct drive signal. A similar drive signal
was learned by the learned feedforward term when the arm
was retracted. For the extended case, the velocity feedforward
term did not predict the large transient drive required to
accelerate the arm, thus the arm lagged behind the desired
trajectory until sufficient error drive was generated to acceler­
ate the arm. On the other hand, the learning controller learned
to apply a large drive signal immediately in order to accelerate
the extended arm, and then to decrease the drive at the
beginning of the fixed velocity phase.

IV. DISCUSSION

Computation time for the 15-input, 5-output nonlinear
learning problem posed was 5.5 ms for the feedforward
computation and 7.7 ms for the training computation (feed­
forward plus weight adjustment) using the VAX-1l1730-
TMS32010 processor pair. These times were adversely
affected by the relatively slow UNIBUS pathway between the
two processors (a factor-of-four improvement in speed for the
same size problem has been achieved in our laboratory using a
closely coupled 68000-TMS32010 processor pair). For gen­
eral use in the dynamic control of robotic manipulators,
overall control cycle times on the order of I ms or less would
be desirable. The natural parallel structure of the network
makes it well suited to parallel implementation, using multiple
RISC processors or special-purpose digital or analog hard­
ware. We are currently developing an implementation of the
CMAC neural network using standard cell arrays on a dual­
height VME module. This hardware network implementation
will include I 048 576 8-b adjustable weights and will be able
to perform control or training operations, similar in dimension
to those discussed in this paper, iII approximately 100 /LS.

The results presented clearly indicate that with sufficient
memory the learning controller converges to a low error
within a few trials. This observation is consisl!:nt with the
results of our previous simulation [55] and experimental
studies [56]-[59]. While good performance was generally
possible with the carefully adjusted fixed-gain controller,

control system performance without learning was highly
sensitive to controller maladjustment. In contrast, control
system performance with learning was relatively insensitive to
control parameter selection, resulting in control errors lower
than or comparable to the tuned fixed-gain controller, even for
severe parameter maladjustment.

While ihe learning controller was relatively insensitive to
the gains chosen for the fixed-gain controller, there was an
obvious symbiotic relationship between the learning system
and the fixed-gain error feedback. This is evident from the fact
that the low trajectory position errors achieved with learning
were well below the resolution of the position variables used in
the network input vector. After training, the learning system
formed a discrete ,model of the nonlinear system properties,
and the fixed gain error terms (which were implemented at the
full measurement resolution) served to correct remaining
differences between this discrete noulinear model and the real
system.

An obvious adjustment to achieve even better performance
might be to use the position, velocity, and acceleration terms
at their full resolutions in the network input vector. Increasing
input variable resolutions, however, decreases network gener­
alization, adversely affecting performance, unless the number
of active units per input state (the parameter C) is correspond­
ingly increased. In our current software implementation,
computation time is slightly less than proportional to C,
prohibiting the use of very large values. In parallel implemen­
tations, network response time could be made nearly indepen­
dent of C (if the amount of parallel hardware was proportional
to C), allowing large values and correspondingly increased
input variable resolutions.

Many learning control schemes are applicable only to
repetitive tasks [37]-[39]. The learning system being devel­
oped in our laboratory does not suffer from this restriction,
since the trained information is in the form of the system
transfer characteristics at individual points in the state space,
and is not explicitly associated with the trained trajectories
[57], [59]. Clearly, it would be difficult to train a system to
generate correct control outputs for every possible control
objective. However, it is also difficult to imagine a useful
nonrepetitive task that truly involved making random motions
spanning the entire control space' of the mechanical system.
The ability to learn to perform a variety of movements within a
reasonable operating window should be' sufficient for most
useful nonrepetitive operations. This follows the concept of an
"expert" robot as being one which is trained for a certain
class of operations, rather than one which is trained for
virtually all possible tools and applications.

The results obtained using the first trajectory demonstrate
that tasks of reasonable complexity can be learned successfully
using a network with relatively few weights. Thus it should be
possible to train a system for a variety of operations using a
network memory of practical size. The results obtained using
the second trajectory tested, however, illustrate the pitfalls
possible when trying to utilize a very small memory if
important information is seen infrequently in the training data.
The characteristics of the planned trajectories clearly have a
direct impact on the ability to learn and to retain previously

439

learned information. This relationship has yet to be clearly
defined.

Currently accepted approaches to handling the nonlineari­
ties of robot dynamics during high-speed movements are
generally related to the computed torque technique. In order to
obtain high speeds and sufficiently high control rates with
these techniques, computer code must be tailored to the
specific robot to such an extent that transportability is
impossible. Furthermore, attachment of a new tool requires
code modification. Although many different adaptive and
learning algorithms have been discussed recently in the
literature as being of potential use in robotics, few have been
tested in real time using an industrial manipulator. Some are
too difficult to apply to a realistic manipulator with five or
more axes (typically fifteen or more input variables). Others
aretoo complex to implement in real time on typical hardware
for suitable control cycle times. Investigation of these tech­
niques has typically been limited to simulation studies using
simplified models.

In contrast, the learning controller plesented here is well
suited for practical application to the control of industrial
robotic manipulators. The learning algorithm structure is
simple and is independent of the choice of learning system
parameters (the number of state variables, the size of the
weight vector memory, the number of weight vectors accessed
by each state, and so on). This makes adaptation of the control
software to accommodate system changes unnecessary or
relatively easy, and makes it possible to transport large
portions of the control software from one robot to another. In
addition, the algorithm is time-efficient, highly parallel, and
can be implemented in real time using current, low-cost
technology. Finally, the learning control system appears to
provide good dynamic performance relative to other adaptive
or learning control schemes.

While the focus of this research was the dynamic control of
industrial manipulators, the technique described is applicable
to a wide range of robotics control problems which will be
increasingly important in the future. For example, the use of
low-mass materials in the construction of robots, for applica­
tions in space or on mobile platforms, will almost certainly
require the use of high-performance learning controllers, since
the control characteristics will be highly payload/task depen­
dent. As another example, the problem of sensor data fusion
(combining information from multiple dissimilar sensors to
achieve a single control objective) makes it difficult to derive
explicit control transformations, but can be systematically
approached using learning techniques [56]-[58].

REFERENCES

[I] R. P. Paul, "Modelling, trajectory calculation and servoing of a
computer controlled arm," Stanford Artificial Intelligence Lab. Memo
AM-l17, Nov. 1972.

[2] J. Y. S. Luh, M. W. Walker, and R. P. Paul, "Resolved-acceleration
control of mechanical manipulators," IEEE Trans. Automat. Con­
trol., vol. AC-25, pp. 468-474, 1980.

[3] C. G. S. Lee, M. J. Chung, T. N. Mudge, and J. L. Tumey, "On the
control of mechanical manipulators," in Proc. 6th IF A C Symp. on
Identification and System Parameter Estimation (Washington, DC,
June, 1982), pp. 1454-1459.

[4] C. H. An, C. G. Atkeson, J. D. Griffiths, and J. M. Hollerbach,
"Experimental evalution of feedforward and computer torque COD-

440

trol," in Proc. IEEE Int. Co"'. on Robotics and Automation
(Raleigh, NC, Mar. 31-Apr. 3, 1987), pp. 165-168.

[5] C. P. Neuman and V. D. Tourassia, "Robust discrete nonlinear
feedback control for robotic manipulators," J. Rob(Jtic Syst., vol. 4,
pp. 115-143, feb. 1987.

[6] J. M. Hollerbach, "A recursive Lagrangian formulation ofmanipu1ator
dynamics and a comparative study of dynamics formulation complex­
ity," IEEE Trans. Syst., Man, Cybern., vol. SMC-IO, pp. 730-736,
1980.

[7] J. Y. S. Luh, M. W. Walker, and R. P. Paul, "On-line computational
scheme for mecbanical manipulators," Trans. ASME, J. Dyn. Syst.,
Meas. Contr., vol. 120, pp. 69-76, 1980.

[8] M. W. Walker and D. E. Orin, "Efficient dynamic computer
simulation of robotic mechanisms, t. in Proc. 1981 Joint Automatic
Control Corif'. (Iune 17-19, 1981), vol. I, pp. WP-2B/I-9.

[9] M. Vukobratovic, L. Shi-Gang, and N. Kircanski, "An efficient
procedure for generating dynamic manipulator models," Robotica,
vol. 3, pp. 147-152, 1985.

[10] C. A. Baiafoutis, P. Misra, and R. V. Patel, "Recursive evaluation of
linearized dynamic robot models," IEEE J. Robotics Automat., vol.
RA-2, pp. 146-155, Sept. 1986.

[II] I. Koplik and M. C. Leu, "Computer generation of robot dynamic
equations and related issues," J. Robotic Syst., vol. 3, pp. 301-319,
fall, 1986.

[12] C. P. Neuman and J. J. Murray, "Customized computational dy­
namics," J. Robotic Syst., vol. 4, pp. 503-526, Aug. 1987.

[13] --, "Symbolically efficient formulation for computational robot
dynamics," J. Robotic Syst., vol. 4, pp. 743-769, Dec. 1987.

[14] -,' 'The complete dynamic model and customized algorithms of the
Puma robot," IEEE Trans. Syst., Man, Cybern., vol. SMC-17, pp.
635-644, July/Aug. 1987.

[15] J. P. Wander and D. Tesar, "Piplined computation of manipulator
modeling matrices," IEEE J. Robotics Automat., vol. RA-3, pp.
556-566, Dec. 1987.

[16] G. Rodriguez, "Kalman filtering, smoothing, and recursive robot arm
forward and inverse dynamics," IEEE J. Robotics Automat., vol.
RA-3, pp. 624-639, Dec. 1987.

[17] H. Kasahara, and S. Narita, "Parallel processing of robot-arm control
computation on a multimicroprocessor system," IEEE J. Robotics,
Automat., vol. RA-I, pp. 104-113, Iune, 1985.

[18] R. Nigam and C. G. S. Lee, "A multiprocessor based controller for the
control of mecbanical manipulators," IEEE J. Robotics Automat.,
vol. RA-I, pp. 173-182, Dec. 1985.

[19] C. G. S. Lee and P. L. Cbang, "Efficient parallel algorithms for robot
forward dynamic computation," in Proc. IEEE Int. Corif'. on
Robotics and Automation (Raleigh, NC, Mar. 31-Apr. 3, 1987), pp.
654-659.

[20] Y. Wang and S. E. Butner, "A new architecture for robot controls," in
Proc. IEEE Int. Co"'. on Robotics and Automation (Raleigh, NC,
Mar. 31-Apr. 3, 1987), pp. 664-670.

[21] C. G. Atkeson, C. H. An, and J. M. Hollerbach, "Estimation of
inertial parameters of manipulator loads and links," Int. J. Robotics
Res., vol. 5, pp. 101-119, fall, 1986.

[22] S. Dubowsky and D. T. Desforges,' "The application of model
referenced adaptive control to robotic manipulators," Trans. ASME,
J. Dyn. Syst., Meas. Contr., vol. 101, pp. 193-200, 1979.

[23] M. Takegaki and A. Arimoto, "An adaptive trajectory control of
manipulators," Int. J. Contr., vol. 34, pp. 219-230, 1981.

[24] A. J. Koivo and T. H. Guo, "Adaptive linear controller for robotic
manipulators," IEEE Trans. Automat. Contr., vol. AC-28, pp. 162-
171,1983.

[25] G. G. Leininger, "Adaptive control of manipulators using self-tuning
methods, ,. in First International Symposium on Robotics Research,
M. Brady and R. Paul, Eds. Cambridge, MA: MIT Press, 1984.

[26] C. G. S. Lee and M. J. Chung, "An adaptive control strategy for
mecbanical manipulators," IEEE Trans. Automat. Contr., vol. AC-
29, pp. 837-840, 1984.

[27] J. J. Craig, P. Hsu, and S. S. Sastry, "Adaptive control oftnecbanical
manipulators," Int. J. Robotics Res., vol. 6, pp. 16-28, Summer
1987.

[28] C. W. deSilva and J. Van Winssem, "Least squares adaptive control
for trajectory following robotics," Trans. ASME, vol. 109, pp. 104-
110, June 1987.

[29] J.-Y. Han, H. Hemani, andS. Yurkovich, "Nonlinear adaptive control
of an N-liak robot with unknown load," Int. J. Robotics Res., vol. 6,
pp. 71-86, fall 1987.

[30] K. Y. Lim and M. Eslam, "Robust adaptive controller. designs for

(31)

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

robot manipulator systems," IEEE J. Robotics Automat., vol. RA-3,
pp. 54-66, Feb. 1987.
H. Seraji. "Direct adaptive control of manipulators in Cartesian
space," J. Robotic Syst., vol. 4, pp. 157-178, Feb. 1987.
--, •• An approach to multivariable control of manipulators, •• Trans.
ASME, vol. 109, pp. 146-154, June 1987.
--, "A new approach to adaptive control of manipulators, to Trans.
ASME, vol. 109, pp. 193-202, Sept. 1987.
J. E. Siotine and W. Li, "Adaptive manipulator control. A case
study," in Proc. IEEE Int. Con/. on Robotics and Automation
(Raleigh, NC, Mar. 31-Apr. 3, 1987), pp. 1392-1400.
--, "On the adaptive control of robot manipulators," Int. J.
Robotics Res., vol. 6, pp. 45-59, Fall 1987.
A. H. Levis, S. I. Marcus, W. R. Perkins, P. Kokotovic, M. Athans,
R. W. Brockett, and A. S. Willsky, "Challenges to control: A
collective view," IEEE Trans. Automat. Contr., vol. AC-32, pp.
275-285, 1987.
S. Arimoto, S. Kawamura, and F. Miyazaki, "Bettering operation of
robots by learning," J. Robotics Syst., vol. I, pp. 123-140, 1984.
C. O. Atkeson and J. McIntyre, "Robot trajectory learning through
practice," in Proc. IEEE Int. Co"'. on Robotics and Automation
(San Francisco, CA, Apr. 7-10, 1986), pp. 1737-1742.
M. Togai and O. Yamano, "Learning control and its optimality:
Analysis and its application to controlling industrial robots, I. in Proc.
IEEE Int. Conf. on Robotics and Automation (San Francisco, CA,
Apr. 7-10, 1986), pp. 248-253.
A. O. Barto, R. S. Sutton, and C. W. Anderson, "Neuronlike adaptive
elements that can solve difficult learning control problems," IEEE
Trans. Syst., Man, Cyhern., vol. SMC-13, pp. 834-846, Sept.lOct.
1983.
R. Ersu and H. Tolle. "A new concept for learning control inspired by
brain theory," inProc.IFAC9th WorldCongr. (Budapest, Hungary,
July 2-6, 1984).
H. Ritter and K. Schulten, "Topology conserving mappings for
learning motor tasks," in AlP Con/. Proc., no. 151, Neural
Networks for Computing (Snowbird, UT, Apr. 13-16, 1986), pp.
376-380.
M. Kuperstein, "Adaptive visual-motor coordination in multijoint
robots using parallel architecture," in Proc. 1987 IEEE Int. Con/. on
Robotics and Automation (Raleigh, NC, Mar. 31-Apr. 3, 1987), pp.
1595-1602.
A. Sideris, A. Yamamura. and D. Psaitis, • 'Dynamical neural networks
and their application to robot control," in IEEE Co"'. on Neural
I",ormation Processing Systems-Natural and Synthetic (Denver,
CO, Nov. 8-12, 1987), p. 29.
B. W. Mel, "MURPHY: A robot that learns by doing," in AlP Proc.
1987 Neural Information Processing System Con/. (Denver, CO,
1987), pp. 544-553.
D. Bullock and S. Grossberg, "A neural network architecture for
automatic trajectory formation and coordination of multiple effections
during variable-speed arm movements," in Proc. ICNN (San Diego,
CA, 1987), pp. 559-566.
M. Kawato, K. Furukawa, and R. Suzuki, "A hierarchical neural­
network model for control and learning of voluntary movement," Bioi.
Cyhern., vol. 57, pp. 169-185, 1987.
A. Guez and J. Selinsky ••• A trainable neuromorphic controller. t. J.
Robotic Syst., vol. 5, pp. 363-388, 1988.
M. Kuperstein, "Neural model of adaptive hand-eye coordination for
single postures," Science, vol. 239, pp. 1308-1311, 1988.
H. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki, "Feedback­
error leaming neural network for trajectory control of a robotic
manipulation," Neural Networks, vol. I, pp. 251-265, 1988.
J. S. Albus, "Theoretical and experimental aspects of a cerebellar
model," Ph.D. dissertation, University of Maryland, College Park,
Dec. 1972.
--, •• A new approach to manipulator control: The cerebellar model
articulation control (CMAC)," Trans. ASME, J. Dyn. Syst., Meas.
Conlr., vol. 97, pp. 220-227, Sept. 1975.
--, "Mechanisms of planning and problem solving in the brain,"
Math. Biosc., vol. 45, pp. 247-293, Aug. 1979.
--, Brain, Behavior, and Robotics. Peterborough, NH: BYTE
Books, 1981, pp. 139-179.
W. T. Miller, F. H. Olanz, and L. O. Kraft, "Application ofa general
learning algorithm to the control of robotic manipulators," Int. J.
Robotics Res., vol. 6.2, pp. 84-98, Summer, 1987.
W. T. Miller, •• A nonlinear learning controller for robotic manipula­
tors," in Proc. SPIE: Intell. Robots Comput. Vision, vol. 726, pp.
416-423, Oct. 1986.

[57] --," A learning controller for nonrepetitive robotic operations," in
Proc. Workshop on Space Telerobotics (Pasadena, CA, Jan. 19-22,
1987) (JPL Publ. 87-13), vol. n, pp. 273-281.

[58] --, "Sensor hased control of robotic manipUlators using a general
learning algorithm," IEEE J. Robotics Automat., vol. RA-3, pp.
157-165, Apr. 1987.

[59] W. T. Miller and R. P. Hewes, "Real time experiments in neural
network based learning control during high speed nonrepetitive robot
operations," in Proc. 3rd IEEE Int. Symp. on Intelligent Control
(Washington, DC, Aug. 1988), pp. 24-26.

[60] B. Widrow and M. E. Hoff, "Adaptive switching circuits," in 1960
Wescon Conv. Rec., pp. %-104, 1960.

[61] B. Widrow and S. Steams, Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

W. Thomas Miller, HI (M'79) received the B.S.
degree in electrical engineering and the M.S. and
Ph.D. degrees in bioengineering all from the Penn­
sylvania State University, University ParI<, in 1972,
1974, and 1977, respectively.

He served for two years as a Postdoctoral Fellow
in biomedical engineering at the Duke Medical
Center, and is currently an Associate Professor of
Electrical and Computer Engineering at the Univer­
sity of New Hampshire, Durham. During his
graduate and postgraduate studies he specialized in

bioelectric phenomena, including computer modeling, real-time processing,
and automatic interpretation of bioelectric signals. His current research is
focused on the design of neural network architectures for problems in control,
pattern recognition, and signal processing.

Robert p, Hewes (S'88) received the B.S. and
M.S. degrees in electrical engineering from the
University of New Hampshire, Durham, in 1986
and 1988, respectively. He is currently pursuing a
doctoral degree in Engineering Sciences at Harvard
University, Cambridge, MA.

His research interests include control system
theory and mbotics.

Mr. Hewes is an E.I.T. and a member of Tau
Beta Pi and Sig!"" Xi.

FIlson H. Glanz (S'59-M'70) received the B.S.
degree in mathematics, the M.S. degree in engi­
neering mechanics, and the Ph.D. degree in electri­
cal engineering from Stanford University, Stanford,
CA, in 1956, 1957, and 1965, respectively.

He has been with the Department of Electrical
and Computer Engineering at the University of New
Hampshire, Durham, since I%S. He has worked
for Librascope, inc., Stanford Research Institute,
and spent a year working on a project modeling the
Swedish Coniferous Forests. His professional inter­

ests include digital signal processing, nonunifonn sampling, robot control,
and learning systems.

Dr. Glanz is a member of Sigma Xi and Phi Kappa Phi.

L, Gordon Kraft, HI received the Ph.D. degree
from the University of Connecticut, Storrs, in 1977,
specializing in convergence properties of adaptive
control systems.

He has industrial experience at United Technolo­
gies and MIT Lincoln Laboratories, as well as ten
years of university level teaching of control system
concepts from classical servomechanisms to modern
optimal control/estimation theory. He is currently
as Associate Professor of Electrical and Computer
Engineering at the University of New Hampshire,

Durham. His current research interests include comparisons of neural network
hased controllers to more traditional adaptive systems such as self-tuning
regulators and Lapunov model reference control systems.

441

442

III
, 1T

BIBLIOGRAPHY
£ am L 2 !!:mnrmm m Ilf

TMS320 Bibliography ... 445

Automotive .. 445

Control .. 445

Industrial ...•........................ 445

i I

_ ~ i

Sf riff

TMS320 Bibliography

Since the TMS32010 was disclosed in 1982, the TMS320 family has received an ever-increasing amount
of recognition. The number of outside parties contributing to the extensive development support offered
by Texas Instruments is rapidly growing. Many technical articles are being written about TMS320 applica­
tions in the field of digital signal processing.

The following articles and papers have been published since 1982 regarding the Texas Instruments TMS320
Digital Signal Processors. They are divided into one of three application categories and, within each catego­
ry, are listed in reverse chronological order (most recent first). Those having the same publication date are
shown in alphabetical order by author's last name. The application categories are:

• Automotive

• Control
• Industrial

Readers who are interested in gaining further information about the TMS320 processors and applications
may obtain copies of the articles/papers from their local or university library.

Automotive
1) K.E. Beck, M.M. Hahn, "A Real-Time Combustion Analysis Instrument," SAE Technical Pa­

per Series, USA, February/March 1988.
2) M. Payne, "00 Not Disturb: Lotus in Action. (Lotus Racing Cars USe of an Active Suspension

System)," Electronics Weekly, USA, i20 1394, page 12, January 1988.
3) C.M. Anastasia, G. W. Pestana, "A Cylinder Pressure Sensor for Qosed Loop Engine Control,"

SAE Technical Paper Series, February 1987.

Control
1)

2)

3)

4)

5)

6)

7)

I. Ahmed, "16-Bit DSPMicrocontroller Fits Motion Control System Application," PCIM, Oc­
tober 1988.
D. Bursky, "Merged Resources Solve Control Headaches," Electronic Design, USA, pages
157-159, October 1988.
I. Ahmed, "Implementation of Self Tuning Regulators with TMS320 Family of Digital Signal
Processors," MOTORCON '88, pages 248-262, September 1988.
D. Dunnion, M. Stropoli, "Design a Hard-Disk Controller with DSP Techniques," Electronic
Design, USA, pages 117-121, September 1988.
S.W. Yates, R.D. Williams, "A Fault Tolerant Multiprocessor Controller For Magnetic Bear­
ings," IEEE Micro, USA, Volume 8, Number 4, page 6. August 1988.
y'V.V.S. Murty, W.J. Smolinski, S. Sivakumar, "Design of a Digital Protection Scheme For
Power Transformers Using Optimal State Observers," lEE Proc. C, Generation Transmission.
Distribution, Great Britain, Volume 135, Number 3, pages 224-230, May 1988.
R.D. Jackson, D.S. Wijesundera, "Direct Digital Control of Induction Motor Currents," lEE
Colloquim on Microcomputer Instrumentation and Control Systems i/l Power Electronics,
Great Britain, Digest Number 61, 1/1-3, April 1988.

445

446

8) A. Lovrich, G. Troullinos, R. Chirayil, "An All Digital Automatic Gain Control," Proceedings
ofICASSP '88, USA, VJlume D, page 1734, April 1988.

9) K. Bala, "Running on Imbedded Power," Electronics Engineering Times, USA, March 1988.
lO) I. Ahmed, S. Meshkat, "Using DSPs in Control," Control Engineering, February 1988.
11) M. Babb (Editor), "Solving Control Problems with Specialized Processors," Control Engineer­

ing, February 1988.
12) S. Meshkat, "High-Level Motion Control Programming Using DSPs," Control Engineering,

February 1988.
13) I. Ahmed, "DSP Architectures for Digital Control Systems," SATECH 1988,1988.
14) S. Meskat, "Advanced Motion Control Systems," lntertec Communications, Ventura, CA.,

1988.
15) I. Ahmed, S. Lundquist, "DSPs Tame Adaptive Control," Machine Design, USA, Volume 59,

Number 28, pages 125-129, November 1987.
16) Y. Dote, M. Shinojima; R.G. Hoft, "Digital Signal Processor (DSP)-Based Novel Variable

Structure Control For Robotic Manipulator," Proceedings of lECON '87, Volume I, pages
175-179, November 1987.

17) I. Ahmed, "Deadbeat Controllers and Observers with the TMS320," MOTORCON '87, pages
22-33, September 1987.

18) R.D. Ciskowski, C.H. Liu,H.H. Ottesen, S.U. Rahman, "System Identification: An Exper­
imental Verification," IBM Journalof Research Developments, Volume 31, Number 5, pages
571-584, September 1987.

19) E. Debourse, "Emergence of DSPs in Machine-Tool Axes Control Systems: Application of
Distributed Interpolation Concepts," Proceedings of the International Workshop on Industrial
Automation, February 1987.

20) C. Chen, "The Mathematical Model and Computer Simulation of an LCI Drive," Electrical
Machinery Power Systems, USA, Volume 13, Number 3, pages 195-206, 1987.

21) M.C. Stich, "Digital Servo Algorithm For Disk Actuator Control," Conference on AppliedMo­
tion Control, pages 35-41,1987.

22) T. Takeshita, K. Kameda, H. Ohashi, N. Matsui, "Digital Signal Processor Based High Speed
Current Control of Brush less Motor," Electronic Engineering, Japan, USA, Volume 106, Num­
ber 6, pages 42-49, NovemberlDecember 1986.

23) R. Alcantara, J. Prado, C Guegen, "Fixed-Point Implementation of the Fast Kalman Algorithm:
Using the TMS320lO Microprocessor," Proceedings of EUSlPCO '86, Volume 2, pages
1335-1338, September 1986.

24) B. Nowrouzian, M.H. Hamza, "DC Motor Control Using a Switched-Capacitor Circuit," Pro­
ceedings of the lASTED International Symposium on High Technology in the Power Industry,
pages 352-356, August 1986.

25) N. Matsui, T. Takeshita, "Digital Signal Processor-Based Controllers For Motors," SICE, July
1986.

26) R. Cushman, "Easy-ta-Use DSP Converter ICs Simplify Industrial-Control Tasks," Electronic
Design, USA, Volume 29, Number 17, pages 218-228, August 1984.

27) W. Loges, "Signal Processor as High-Speed Digital Controller," Elektronik Industrie, Germa­
ny, Volume 15, Number 5, pages 30-32, 1984.

28) W. Loges, "Higher-Order Control Systems with Signal ProcessorTMS320," Elektroniklndus­
trie, Germany, Volume 32, Number 25, 'pages 53-55; December 1983.

Industrial
1)

2)

3)

4)

5)

6)

7)

8)

9)

D.E. Luttrell. T.A. Dow. "Control of Precise Positioning System with Cascaded Colinear Ac­
tuators." American Control Conference. pages 121-126. June 1988.
M. Ruscio. M. Santoro. M. Adomi. A. Chiaraval1oti. "Digital Control System For The Coordi­
nated Boilerrrurbine Control in the ENEL Piombino Power Station," Elettrotencia, Italy, Vol­
ume 75, Number 3, pages 253-258, March 1988.
J.A. Taufiq, R.I. Chance, C.J. Goodman, "On-Line Implementation of Optimised PWM
Schemes For Traction Inverter Drives," International Conference oj'Electric Railway Systems
For a New Century' , Great Britain, Conference Publication Number 279, pages 63-ti7, Sep­
tember 1987.
Y. Dote, M.Shinojima, H. Hoshimura, "Microprocessor-Based Novel Variable Structure Con­
trol for Robot Manipulator," Proceedings of the 1 Olh IFAC World Congress, July 1987.
H. Henrichfriese, W. Moritz, H. Siemensmeyer, "Control of a Light, Elastic Manipulation De­
vice," Conference on Applied Motion Control, pages 57-{j6, 1987.
Y. Wang, M. Andrews, S. Butner, G. Beni, "Robot-Control1erSystem,"15IhAnnual Symposium
on Incremental Motion Control Systems & Devices, pages 17-26, June 1986.
R. Cushman, "Easy-to-Use DSP Converter ICs Simplify Industrial-Control Tasks," Electronic
Design, USA, Volume 29, Number \7, pages 218-228, August 1984.
P. Rojek and W. Wetzel, "Multiprocessor Concept for Industrial Robots: Multivariab1e Control
with Signal Processors," Elektronik Industrie, Germany, Volume 33, Number 16, pages
109-113, August 1984.
G. Farber, "Microelectronics-Developmental Trends and Effects on Automation Techniques,"
RegelungstechnikPraxis, Germany, Volume 24, Number 10, pages 326-336, October 1982.

447

448

Printed in U.S.A., May 1991

-I!J
TEXAS

INSTRUMENTS

SPRA019

