
Application Report

SPRA716 –November 2000

1

Achieving Zero Overhead With the TMS320 DSP Algorithm
Standard IALG Interface

Alan Campbell European Third Party Organization

The TMS320™ Algorithm Standard assists digital signal processor (DSP) system
designers by removing the barriers to integrating algorithms into all types of systems. A
key requirement of the standard is that all algorithms must implement the IALG interface
to define their memory requirements, enabling efficient use of on-chip data memories in
client applications. However standards are often associated with additional overhead of
CPU cycles and memory space. This application note describes the full spectrum of
flexibility versus overhead, concluding with an example of a zero overhead framework for
a highly static system.

The example chosen for this work was a Standard-Compliant TMS320C5000™ hashing
algorithm written by Microlink, a TI third party in Israel specializing in cryptography. Its low
memory usage, and MIPS consumption presented a significant challenge since any
overhead could noticeably impact the algorithm’s performance.

The intended audience is both system integrators and TI third parties. A method of
successively reducing overhead is outlined in a series of Code Composer Studio™ (CCS)
projects for the system integrator, whilst the third party benefits from the knowledge that
their algorithms can be written once and deployed widely.

 TMS320, TMS320C5000, and Code Composer Studio are trademarks of Texas Instruments.

Contents

1 Introduction.. 2
2 IALG Memory Interface Functions.. 3
3 The Algorithm Under Test... 6
4 Sequence of Builds ... 6
5 Build 2 – Worst-case IALG Interface Overhead ... 7
6 Build 3 – Removing Subsections in the Linker Command File .. 10
7 Build 4 – Removing the Algorithm Specific API Code .. 12
8 Build 5 – Creating the Object at Design Time Using a Priori Knowledge 13
9 Build 6 – Avoiding malloc() – Static Construction of the Memory Descriptor Table............... 15
10 Build 7 – Overlays – Reusing Data Memory ... 16
11 Build 8 – Overlaying Program and Data – Reclaiming algInit() Memory............................... 18
12 Build 9 – Achieving Zero Overhead... 21
13 Summary of Algorithm Standard Performance Improvements ... 23
14 Conclusion.. 25
15 References.. 25

SPRA716

2 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

Figures

Figure 1. Overview of Successive Overhead Optimizations Performed ... 3
Figure 2. Different Levels of Algorithm Interface ... 5
Figure 3. Memory Map for C5402 Highlighting On-chip DARAM in Data and Program Space 19
Figure 4. Program Memory Optimizations .. 23
Figure 5. Data Memory Optimizations ... 24
Figure 6. MIPS Optimizations... 24

Tables

Table 1. Application Side Generic APIs... 5
Table 2. Performance Figures for the Standard-Compliant MD5 Algorithm.................................. 6
Table 3. Microlink’s Application Side MD5 Specific APIs... 7
Table 4. Additional Overhead for IALG Interface Usage... 8
Table 5. Build 2 Project File List .. 9
Table 6. Additional Overhead for IALG Interface Usage... 12
Table 7. Specific Code Savings Made in Build 3... 12
Table 8. Additional Overhead for IALG Interface Usage... 13
Table 9. Additional Overhead for IALG Interface Usage... 14
Table 10. Additional Overhead for IALG Interface Usage... 16
Table 11. Additional Overhead Savings .. 16
Table 12. Additional Overhead for IALG Interface Usage... 18
Table 13. Additional Overhead for IALG Interface Usage... 20
Table 14. Additional Overhead for IALG Interface Usage... 22

1 Introduction

The TI TMS320 Algorithm Standard was officially launched in October 1999 for the C5000 and
C6000 platforms. As part of the eXpressDSP software initiative its primary goal is to enable DSP
system integrators to better construct applications consisting of algorithm components from
potentially different vendors. For TI’s third party software vendors, it was also a requirement for a
single version of an algorithm to be useful in virtually any application. Many algorithms have now
passed the TI DSP Algorithm Compliance procedure and customers are keen to design in the
software components. However the question has often been raised “How much overhead does
the Standard add?” This application report addresses this issue in relation to the IALG memory
interface, which all algorithms must implement.

The IALG interface is a set of functions to define a DSP algorithm’s memory resource requirements.
It is intended to provide system integrators more freedom in the placement of data buffers – some
may be critical and should be placed on-chip, while other less used buffers might be deferred to
external memory. This uniform memory management scheme enables multiple algorithms to co-
exist without contention in a single application. The aim of this report is to prove that the overhead
incurred in implementing these functions can be eliminated in certain types of systems.

The algorithm under test is a C5000 Message Digest 5 (MD5) hashing algorithm often used in the
encryption domain. It was written by Microlink, a TI third Party in Israel, and passed compliance
checking in July 2000. The reason for choosing this particular algorithm to benchmark was that its

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 3

MIPS consumption, program memory and data memory usage, are all very low. Any additional
overhead presented by the Standard would clearly be a cause for concern.

The work done in producing this application report focuses on a series of CCS projects, with
each new build reducing overhead in a particular area. It follows on from the work of Reference
1 using the same techniques in Builds 2-5 for consistency. There is no build 1 as this was
reserved for a non-Standard version, which was not available.

Build 2 demonstrates the worst-case overhead in a flexible, fully dynamic system where
algorithms may be created or deleted at any time. Builds 3-5 make several simple optimizations
based on the assumption that the intended framework is purely static i.e. memory is allocated
once and is used for the remainder of the system’s life.

Builds 6-9 demonstrate new advanced techniques of reclaiming the program and data memory
after the initialization phase is complete.

Figure 1. Overview of Successive Overhead Optimizations Performed

2 IALG Memory Interface Functions

The IALG memory interface defines various types and constants with the key element being a
global structure of type IALG_Fxns. It contains a set of function pointers, commonly denoted as
the v-table. Some of the functions are optional while algAlloc(), algInit(), and algFree() must
always be implemented.

typedef struct IALG_Fxns {

 Void *implementationId;

 Void (*algActivate)(IALG_Handle);

 Int (*algAlloc)(const IALG_Params *, struct IALG_Fxns **, IALG_MemRec *);

 Int (*algControl)(IALG_Handle, IALG_Cmd, IALG_Status *);

 Void (*algDeactivate)(IALG_Handle);

 Int (*algFree)(IALG_Handle, IALG_MemRec *);

 Int (*algInit)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const IALG_Params *);

 Void (*algMoved)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const IALG_Params *);

 Int (*algNumAlloc)(Void);

} IALG_Fxns;

Create
Process
Delete

Build 2 -
fully

dynamic

Create
Process

Builds 3-5
semi-static

systems

Process

Builds 6-9
fully static

systems

Create

function

Reclaim

for data

SPRA716

4 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

The algAlloc function returns a table of memory records that describe the size, alignment, type,
and memory space of all buffers required by an algorithm.

Int MODULE_VENDOR_alloc(const IALG_Params *algParams,

 IALG_Fxns **pf, IALG_MemRec memTab[])

{

 /* Request memory for MODULE object */

 memTab[0].size = sizeof(MODULE_VENDOR_Obj);

 memTab[0].alignment = 0;

 memTab[0].space = IALG_EXTERNAL;

 memTab[0].attrs = IALG_PERSIST;

 /*Request memory for additional processing buffers */

 memTab[1].size = (LEN) * sizeof(Int);

……………………

 return (NUMBUFS);

}

Based on the information retrieved from the memTab[] descriptor structure, the application
allocates the requested memory before calling the algInit() initialization function.

It is the application’s responsibility to initialize a pointer, usually of type IALG_Handle, to point to
the v-table structure when creating an instance of the algorithm. This provides access to each of
the algorithm methods through the function table, without necessarily exposing the vendor’s
specific function names. The algorithm enables this operation by specifying an instance object
containing all of the code’s state or context information. Its first field is always of type IALG_Obj
which, in turn, makes the IALG functions accessible to the client. The reserved field memTab[0]
allows the application to point to the instance object thus implying re-entrancy since all
read/write algorithm data memory is encapsulated in a per-channel structure.

algInit() performs all the initialization necessary to complete the run-time creation of an
algorithm’s instance object. After a successful return from algInit(), the object is ready to be used
to process data.

algFree() is the last of the required functions. It is the algorithm’s responsibility to make the client
aware of the current base addresses and size of each memory block previously requested in
algAlloc(), such that the application can delete the instance object and all its buffers, without
creating memory leaks. Restoring the memTab[] descriptor structure is also essential
housekeeping in the case where the user elects to delete it after initialization.

Clearly it is advisable to have a corresponding set of application side APIs to communicate with
TMS320 Standard Algorithms. Two levels of access are defined – generic APIs and specific
APIs. The generic APIs are supplied as part of the Developers Kit as an example framework to
interface with any compliant algorithm.

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 5

Table 1. Application Side Generic APIs

ALG_activate() Prepare the algorithm to run

ALG_control() Command and Status mechanism

ALG_create() Allocate memory and initialize a new algorithm instance

ALG_deactivate() Prepare the algorithm to be inactive or possibly deleted

ALG_delete() Remove algorithm instance and deallocate the memory used

ALG_init() Initialize module other than creating algorithm instance

ALG_exit() Finalize module other than deleting algorithm instance

The specific API is defined by the algorithm vendor or application writer and is therefore not
included in the kit. It typically provides the most convenient access to a particular algorithm as it
offers compiler type-safety. The example below shows Microlink’s implementation of the
application-side MD5_create() function. It is apparent that MD5_create() is simply a wrapper
around the ALG_create() function.

/* Create an MD5 instance object (using parameters specified by prms) */

MD5_Handle MD5_create(const IMD5_Fxns *fxns, const MD5_Params *prms)

{

 return ((MD5_Handle)ALG_create((IALG_Fxns *)fxns, NULL, NULL /*(IALG_Params

)prms/));

}

Figure 2. Different Levels of Algorithm Interface

Application

Standard Module Vendor

Algorithm

Standard Interface:

Abstract Template

Defined by TI

IALG table only

Module Interface:

Required for compliance

Defined by Vendor

IALG + Alg Fxns

Vendor Interface:

Optional Method

Defined by Vendor

eg: “shortcuts”

Interface Options

SPRA716

6 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

Clearly it is an advantage to use these APIs. Compliance with the Standard’s naming
conventions makes it immediately clear to the user that he/she is dealing with a Standard-
compliant software component.

However the key issue is that all of these application-side APIs are entirely optional. The
Standard makes no requirement to use particular framework APIs. It is therefore possible to
make several optimizations trading off features like type-safety for savings in program memory.
In critical static systems, such decisions are often made.

The final builds also make savings in data memory and MIPS via short-circuiting the v-table.
Instead of accessing the main process() function through the v-table, we call the vendor’s
implementation directly. Again this is a trade-off – the flexibility of potentially swapping in a new
vendor’s implementation is lost in favor of direct access, in order to gain precious cycles.

3 The Algorithm Under Test

The algorithm under test is a fully compliant C5000 MD5 hashing algorithm written by Microlink,
a TI third Party in Israel.

Message Digest 5 is a one-way hash function i.e., it takes an arbitrary length input and
generates a unique output. MD5 is used to hash the pass-phrase into the International Data
Encryption Algorithm (IDEA) key. MD5 was designed as a successor to MD4. It is slower but
more secure.

The performance figures for the algorithm library in isolation are:

Table 2. Performance Figures for the Standard-Compliant MD5 Algorithm

MIPS – Worst Case Cycles/Period Program Memory (words) Data Memory (words)

8500 1568 342

It is clear that the MIPS consumption, program memory, and data memory usage are all very
low.

The goal was to minimize the overhead (eventually to zero) incurred by conforming to the
Algorithm Standard. In addition, no modifications at all were allowed inside the algorithm – all of
the optimizations had to be made on the application side. This would demonstrate that the same
algorithm could indeed be used in a wide variety of systems.

4 Sequence of Builds

The sequence of optimizations made in successive Code Composer Studio projects will now be
described.

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 7

The plan of attack was to begin with the most flexible type of system, one in which algorithms
may be created or deleted during execution. This represents the worst-case overhead for the
Standard since all of the IALG functions implemented by the algorithm are necessary. Memory
needs to be allocated and freed at run-time thus consuming MIPS, and program memory for the
malloc() (or equivalent) memory allocation calls. Successive optimizations in each Build are then
made, as the tradeoff between flexibility and overhead is shifted towards the latter. Build 9
presents the final optimizations towards achieving zero overhead for a highly static (fixed
memory and algorithms) system.

To reiterate, Build 1 is omitted for consistency with spra577a.pdf. It shows a non-Standard
version for initial benchmarking. A non-Standard MD5 was not available from the vendor,
therefore the benchmarking efforts identify the elements particular to the Algorithm Standard and
present the reductions in figures at each stage.

All tests were run under Code Composer Studio 1.20 on the Texas Instruments C5402 DSP
Starter Kit (DSK) board.

5 Build 2 – Worst-case IALG Interface Overhead

We begin with the worst-case overhead for using the Standard with the MD5 algorithm.

This project uses the algorithm specific API functions both during initialization and execution of
the main processing functions. For example, MD5_getDigest() obtains the final message digest
after hash processing a block.

extern Void MD5_getDigest (MD5_Handle handle, XDAS_UInt16 *output);

By using algorithm specific types declared in header files, the compiler is able to perform full
data-type checking and report any mismatch errors. This provides a level of safety over casting
one type to another where bugs may go undetected, as the compiler has no foolproof method for
data-type tracking.

Another advantage of this API is the strict naming convention. All of the function prototypes,
constants, variables, and data types conform to the conventions enforced by Rule 10 “All
modules must follow the naming conventions of the DSP/BIOS for those external declarations
disclosed to the client”. The system integrator is immediately aware that he/she is dealing with
an Algorithm-Standard component, and the code is easy to read.

Four specific APIs are used in this Build:

Table 3. Microlink’s Application Side MD5 Specific APIs

Algorithm Specific API Description

MD5_create() Create an MD5 instance object. Allocate and initialize its data memory.

MD5_delete() Delete the MD5 instance object and buffers, specified by handle

MD5_process() Main MD5 processing function

MD5_getDigest() Obtain the final message digest

SPRA716

8 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

In a highly dynamic framework application-side create and delete functions must indeed be
present. For example, the system may choose to start a new algorithm on the occurrence of a
particular event (e.g. switching from voice to fax channels at the end of the working day). At that
time, it may wish to reclaim the data memory used by the algorithm being deactivated. A
free/delete function is therefore required.

The elements particular to the Algorithm Standard code were identified from the Project 2 map
file as exemplified below:

Origin Size

00001465 00000006 md5_snap_ialg.obj (.text:algDeactivate)

A detailed list of the items contributing to the IALG interface overhead is presented in the table
below. Successive builds described later will show the improvements made.

Table 4. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x2D4

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

MIPS N/A 164 cycles

The total size of the program is 9559 sixteen-bit words. This accounts for inclusion of the MD5
algorithm library (1568 words) and the application code to use it. In truth, much of the program
image is due to usage of the printf() function from the C5000 Run-Time Support (RTS) library. In
order to format its string arguments, printf pulls in a lot of code from other RTS object files and
therefore amounts to 7907 words in this example.

The Standard’s 724 words of program memory overhead therefore represents only an 8 percent
overhead in this case. However, in a production framework printf debugging information would
likely be removed and the overhead percentage would be more significant. It is clear that this
metric must be improved.

The MIPS overhead was calculated in simple fashion by comparing the process function MIPS
against a direct call to the vendor’s function, MD5_SNAP_process(). An overhead of 164 cycles
is incurred due to the additional level of function wrapper MD5_process(), and also as a result of
the v-table indirection from the handle via the function table, to the process() function itself.

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 9

Int MD5_process(IMD5_Handle handle,XDAS_UInt16 *block,XDAS_Int16 len)

{

 Int returnValue;

 returnValue = handle->fxns->process(handle,block,len);

 return ((Int)returnValue);

}

Data memory overhead is present in the .cinit section due to the static initialization of the v-table.
The algorithm fills in this structure with the names of the IALG and extended IALG functions
implemented. Nine words are also present in the .const section to provide default parameter
values in case the user does not specify any.

The file list in the CCS project is shown below :

Table 5. Build 2 Project File List

Filename Description

alg_create.c Default Developer’s Kit example APIs for IALG create and delete functions

alg_malloc.c Default Kit APIs to allocate and delete memory, and activate, deactivate

imd5.c Application-side file to provide default parameter values

md5_app.c Application specific APIs to create, delete, and execute processing functions

md5_main.c The test program

vectors.asm Boot and Interrupt vectors

md5_snap_ialg.c Algorithm-side. Implementation of the IALG and processing functions

md5_snap_initexit.c Algorithm-side. Initialization and Finalization functions. Stub functions.

md5_snap_vtab.c Algorithm-side. Fills in the v-table with functions which are implemented

It should be noted that the last 3 files were included in the project only to assist with any possible
debugging. These form part of the algorithm and are not visible in a typical application. Instead,
they are encapsulated in the vendor’s library for IP protection.

One point to consider in the dynamic case is the basis for comparison. In a system without the
Standard, a format similar to the example below would be required:

ALGO1_create() ALGO2_create()

ALGO1_process() ALGO2_process()

ALGO1_delete() ALGO2_delete()

A separate create function would need to be called for each algorithm since the software may
come from potentially different vendors. The same situation exists with deletion.

SPRA716

10 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

Now compare this to the Algorithm Standard. We also have algorithm specific create and delete
functions but these could easily be rewritten as static inline functions (this is done in a future
build)

static inline MD5_Handle MD5_create(const IMD5_Fxns *fxns, const MD5_Params *prms)

{

 return ((MD5_Handle)ALG_create((IALG_Fxns *)fxns, NULL, NULL/*(IALG_Params

)prms/));

}

Any references to MD5_create() are automatically replaced by ALG_create() with the same
efficiency as macro substitution. There are now only 2 functions in total for creating and deleting
both algorithms, compared to 4 in the non-Standard case.

This is not possible in the original case as there are no vendor-independent standard create, and
delete functions to depend upon.

A case could therefore be argued that the Algorithm Standard saves on Program Memory in a
highly dynamic system. The gains are greater as more algorithms are added to the system.

6 Build 3 – Removing Subsections in the Linker Command File

This build makes the first assumptions for a static system. As the system integrator we
determine our framework characteristics are such that algorithms will be allocated data memory
once, and use it forever. No attempts will be made to reclaim it. We can therefore skip the
program code for the delete functions.

We further determine that enough internal data memory is available for the algorithm at all times,
and that there will never be a need to relocate buffers. These factors allow us to save on the
program memory for certain functions.

The NOLOAD output section directive is specified in the linker command file to remove unused
code from the program image.

.notused {

 (.text:algActivate) / algo side only */

 (.text:algDeactivate) / algo side only */

 (.text:delete) / app side only */

 (.text:init) / MD5 module initialization as a whole */

 (.text:exit) / MD5 module finalization as a whole */

 (.text:algMoved) / algo side only */

 (.text:algFree) / algo side only */

 } type = NOLOAD > MYEXT PAGE 0

Note that all of these code blocks reside in input subsections e.g. .text:init. These were specified
by preprocessor pragma directives, an example of which is shown below:

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 11

#pragma CODE_SECTION(MD5_create, ".text:create")

The primary reason for such pragmas is to ensure that all of the interface functions are fully
relocatable, in accordance with Rule 13, “Each of the IALG methods implemented by an
algorithm must be independently relocatable”. This allows the system integrator to, for example,
defer initialization functions to slower external memory.

However, an additional advantage of pragmas is apparent in this build. They provide function
level resolution for the program image. Present linker technology (COFF Linker v3.50) is such
that if one function is referenced in a project file, all of the functions in that file are automatically
included in the program. The CODE_SECTION pragma combined with the NOLOAD directive
circumvents this restriction.

SPRA716

12 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

Table 6. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x21E

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

MIPS N/A 164 cycles

No changes were made in data memory or MIPS in this build. Only the program memory was
attacked (changed fields highlighted in gray). 182 words of program memory were recovered
from Build 2 to Build 3.

The detailed savings made are listed below.

Table 7. Specific Code Savings Made in Build 3

Category Memory Map Section
Size (words) or
Number Cycles

Program Memory (.notused) md5_snap_ialg.obj (.text:algActivate) 0x00000006

Program Memory (.notused) alg_malloc.obj (.text:algActivate) 0x00000018

Program Memory (.notused) md5_snap_ialg.obj (.text:algDeactivate) 0x00000006

Program Memory (.notused) alg_malloc.obj (.text:algDeactivate) 0x00000018

Program Memory (.notused) alg_create.obj (.text:delete) 0x00000018

Program Memory (.notused) md5_app.obj (.text:delete) 0x00000007

Program Memory (.notused) md5_snap_initexit.obj (.text:init) 0x00000001

Program Memory (.notused) alg_malloc.obj (.text:init) 0x00000001

Program Memory (.notused) md5_app.obj (.text:init) 0x00000001

Program Memory (.notused) md5_snap_initexit.obj (.text:exit) 0x00000001

Program Memory (.notused) alg_malloc.obj (.text:exit) 0x00000001

Program Memory (.notused) md5_app.obj (.text:exit) 0x00000001

Program Memory (.notused) md5_snap_ialg.obj (.text:algMoved) 0x00000012

Program Memory (.notused) md5_snap_ialg.obj (.text:algFree) 0x0000001a

7 Build 4 – Removing the Algorithm Specific API Code

In the fourth build, minor optimizations are made to improve both program memory and MIPS.
The file md5_app.c provided type-safe wrappers to the generic ALG functions and also called
the main processing functions through the v-table.

We now remove this file entirely from the build, and replace the 3 remaining calls with
preprocessor macros as shown below:

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 13

/* define some macros to replace higher level function calls */

#define MD5_CREATE(fxns, prms) \

 (MD5_Handle)ALG_create \

 ((IALG_Fxns *)fxns, NULL, (IALG_Params *)prms)

#define MD5_PROCESS(alg, block, len) \

 ((alg->fxns->process)((MD5_Handle)alg, block, len))

#define MD5_GETDIGEST(handle, digest, output) \

 ((handle->fxns->getDigest)((IALG_Handle)handle, (&digest))); \

 (memcpy(output, digest, (8*sizeof(short))))

Savings are made in program memory and also in CPU cycles since the overhead of a function
call is now removed (improvements compared to previous build are highlighted in gray).

Table 8. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x1EC

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

MIPS N/A 25 cycles

8 Build 5 – Creating the Object at Design Time Using a Priori Knowledge

This build makes important optimizations based on the assumption that we now have a
completely static system. We assume that the algorithm will only ever be instantiated with the
same options for data buffer sizes, alignment and type.

This is not an unreasonable assumption. Typical vocoder algorithms use fixed buffer sizes and
indeed so too does the Microlink MD5 hashing algorithm. An example in which this might not be
the case is a Line Echo Cancellor where the tailspan length parameter dictates the size of the
data buffers.

Given that the buffer characteristics are fixed, we now adopt a 2-step approach. The algAlloc()
function will always return the same results. It is therefore possible to run this function once a
priori, note the returned values, then apply them to the system. Instead of calling algAlloc() in the
main application, we simply plug the stored values directly into malloc() memory allocation calls.
The constants SIZE_INSTANCEOBJ and SIZE_ALGOCONTEXTBUF represent the values
returned by the memTab[].size fields previously returned from an off-line call to algAlloc().

SPRA716

14 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

 memTab = (IALG_MemRec *)malloc(NUM_ALGOBUFS_REQD * sizeof (IALG_MemRec));

/* I only set what I need to save code space. I know my framework so I don’t bother

setting space, attrs fields */

 memTab[0].base = (void *)malloc(SIZE_INSTANCEOBJ);

 memTab[1].base = (void *)malloc(SIZE_ALGOCONTEXTBUF);

 memTab[1].alignment = 2; /* Algo MD5 needs 32 bit align on context buf */

The overhead of the MD5_CREATE macro and consequently the ALG APIs has now been
removed. The two files alg_create.c and alg_malloc.c can now be removed from the Project
Build. Compared to a total of 9 files in Build 2, there are now only 6. In addition, the .text:algAlloc
and .text:algInitObj sections are sent to the NOLOAD section. If we forget to do this, the function
code still appears in the program image.

.notused {

 (.text:algActivate) / algo side only */

 (.text:algDeactivate) / algo side only */

/* *(.text:delete) */ /* app side only */

 (.text:init) / alg_create, md5_app, md5_snap_initexit share */

 (.text:exit) / alg_create, the init, exit section for ease */

 (.text:algMoved) / algo side only */

 (.text:algFree) / algo side only */

 (.text:algAlloc) / algo side only */

 (.text:algNumAlloc) / algo side only */

 } type = NOLOAD > MYEXT PAGE 0

One final improvement is made in this build. Calls to the process and getDigest functions are
changed from macros to static inline functions. This has no effect on MIPS – it is simply better
programming practice. Macros provide no type-safety and are notoriously error-prone, while
statically inlined functions take full advantage of the compiler’s type checking and syntax parser.
Note that inlining requires the –x2 option to be specified in the Compiler Build options.

Table 9. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x58

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

Data Memory memTab[] structure 0xa

MIPS N/A 25 cycles

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 15

A side-effect of the huge reduction in program code (highlighted in gray), is that the memTab[]
structure is no longer temporary allocation on the stack in ALG_create(). It is now overhead in
the data memory of the system, presently on the heap. This problem is resolved in future builds.

9 Build 6 – Avoiding malloc() – Static Construction of the Memory
Descriptor Table

The challenging goal of building a zero overhead IALG interface was initially set. New
techniques extending beyond Reference 1 must therefore be applied.

This build questions the need for dynamic memory allocation. malloc() (or equivalent) is a
complex and expensive operation, a fact which static system integrators are well aware of. The
previous build’s map file displayed the following entry for the memory module of the C5000 RTS
library.

Origin Size

0000261b 0000023e : memory.obj (.text)

At least 574 words of program memory must therefore be reserved for malloc, and possibly
more if it depends on other modules. In addition, if we remove the need for malloc, we remove
the need for a system data heap. The heap (.sysmem section) is reserved for dynamically
allocated data memory and is frequently rounded up to a value greater than our system needs.
Whilst no saving in real terms of data memory can be made, in practice we often gain simply by
having complete control of our static allocation. For example, the Code Generation Tools default
to a 1K word heap, which we no longer require.

Static allocation is now done in a new project file md5_offlinememtab.c. It contains no functions
hence does not add to the program image.

int memTab0Buf[SIZE_INSTANCEOBJ];

int memTab1Buf[SIZE_ALGOCONTEXTBUF];

/* good to use keyword const...helps the compiler out! */

const IALG_MemRec offLineMemTab[NUM_ALGOBUFS_REQD] =

{

{

 SIZEINSTANCEOBJ, /* memTab[0].size */

 0, /* memTab[0].alignment */

 IALG_EXTERNAL, /* memTab[0].space */

 IALG_PERSIST, /* memTab[0].attrs */

 &memTab0Buf, /* memTab[0].base */

},

{

SPRA716

16 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

SIZE_ALGOCONTEXTBUF, /* memTab[1].size */

 2, /* memTab[1].alignment */

 IALG_EXTERNAL, /* memTab[1].space */

 IALG_PERSIST, /* memTab[1].attrs */

 &memTab1Buf /* memTab[1].base */

}

};

The data buffers are statically allocated and their addresses are plugged directly into the
offLineMemTab[] structure. All other fields were known from an a priori call to algAlloc().

Table 10. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x58

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

Data Memory memTab[] structure 0xa

MIPS N/A 25 cycles

It may appear that no savings have been made. However, the gains have been made in the
system outside of the IALG interface.

Table 11. Additional Overhead Savings

Removed Category Memory Map Section
Size (words)
or Number Cycles

X Program Memory memory.obj >= 0x23E

X Data Memory .sysmem 0 to 0x400

In addition, 11 other words of .text were saved in the program itself simply by reducing the
number of lines required to do the job.

It is fair to say that non-Standard static memory frameworks also avoid the use of malloc() calls,
hence the savings may not be fully representative. The aim of this build was primarily to show
the final transition to a static system for later builds, and how to set up its memTab[] memory
context.

10 Build 7 – Overlays – Reusing Data Memory

Before discussing the optimizations made in this build, let us stop and assess exactly what IALG
interface overhead remains.

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 17

• Memory Descriptor Table (memTab[]) – despite removing the creation code, and performing
static initialization of memTab[], the structure itself is undeniably overhead. With 2 arrays of
5 descriptors, it presents an additional data memory of 10 words.

• Algorithm Instance Object initialization and reset (algInit) – the algorithm’s buffer pointers
need to point to the memory allocated by the client at memTab[N].base. This functionality
must always be present for the system to function as a Standard-based framework.
Although not directly related to IALG implementation, additional program memory is also
required to initialize the context of other MD5 instance object fields. The .text:algInit section
has a size of 88 words.

• Data memory to implement the algorithm’s v-table. Ten words in the .cinit section are still
occupied by initialization of the IMD5_Fxns global structure.

• Default constants for parameters in imd5.c consume 9 words of .const data memory.

• 25 extra cycles are necessary on each call to the processing functions as a result of v-table
indirection.

This build attacks the first item by applying an overlay technique. In a static system, the memory
descriptor table is no longer required after the call to algInit(). The instance object is self-
sufficient at that time, hence the memTab[] structure data memory can be reused for a different
purpose.

In the MD5 static framework it is apparent that the output buffer, an array of 8 words, is not used
until after algInit() has completed execution. memTab[] and output[] can therefore be overlayed
at the same base address, since they are never used simultaneously.

A C union does the job adequately.

typedef union mtabshare {

IALG_MemRec offLineMemTab[NUM_ALGOBUFS_REQD];

unsigned short output[8];

} mtabshare;

mtabshare memTabOverlay;

In order to view it separately in the map file, it was placed in a separate data section as follows

#pragma DATA_SECTION (memTabOverlay, ".secmTabShare")

The map file proves that space is allocated only for the larger or the 2 components, in this case,
the memTab[] structure. No additional data memory is allocated for the output[8] buffer.

SPRA716

18 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

.secmTabShare 1 00000b40 0000000a

 00000b40 0000000a md5_main.obj (.secmTabShare) [fill = beef]

Typically the framework will be larger and contain bigger buffers than in this MD5 example. If we
can find large enough application buffers, the entire memTab[] memory can be reclaimed.

Table 12. Additional Overhead for IALG Interface Usage

Category Memory map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x58

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

Data Memory memTab[] structure 0x2

MIPS N/A 25 cycles

11 Build 8 – Overlaying Program and Data – Reclaiming algInit() Memory

The largest contributing factor to the remaining Standard overhead is clearly in the program
memory of the algInit() function. It represents the only Standard program code element left to be
eliminated, however as stated previously, algInit() must always be called in all frameworks.

It therefore seems impossible to avoid the overhead of this function – yet there is indeed a
solution. It relies upon similar techniques applied in Build 7 i.e. given the knowledge that algInit()
will only be executed once at start-up of the static system, its program memory can be reused
for another purpose. In general, such overlays can be employed in any system possessing an
area of RAM – the option is not available with ROM or Flash memory.

The program image is built at link-time and clearly 2 functions cannot be loaded at the same
address. The objective is then to try and overlay program and data.

Once again, a block of data must be found which is not used until after the algInit() function has
finished execution. The array Dwords[] is used in the application to generate a block for the MD5
algorithm to hash. It is declared as

unsigned long Dwords[50];

On the C5000 an unsigned long constitutes a 32-bit word, hence the total size of Dwords[] is 100
sixteen-bit words.

The program code size of algInit() is only 88 words. Hence if we can overlay algInit() with
Dwords[] then all of its program memory can be reclaimed.

A technique specific to the C5000 architecture is applied to perform the overlay. All C5000
devices (including C54x) contain an area of on-chip DARAM, which is mapped into data space,
but may also be mapped into program space.

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 19

Figure 3. Memory Map for C5402 Highlighting On-chip DARAM in Data and Program Space

A prerequisite for overlays is to set the OVLY bit to 1 in the Processor Mode Status (PMST)
Register. OVLY enables on-chip dual-access data RAM blocks to be mapped into program
space. In CCS this can be done automatically in a Graphical Extension Language (GEL) file. On
CCS startup a value of 0xffe0 is automatically loaded in the PMST register. Bit 5 is the RAM
overlay bit hence overlays are enabled by default.

The smallest amount of C5000 on-chip memory is on the C541 which has 4992 words available.
It is highly unlikely that an algInit function will ever approach this size and hence, it is feasible to
use part of this space for overlays.

The solution was to use the PAGE keyword in the linker command file:

MEMORY

{

 PAGE 0: AOBJIMEM: origin = 0x1200, len = 0x200

…………………………

 PAGE 1: DWRDIMEM: origin = 0x1200, len = 0x200

…………………………

}

SECTIONS

{

.secDwords: align = 0x2 fill = 0xbeef {} > DWRDIMEM PAGE 1

.text:algInit: {} > AOBJIMEM PAGE 0

………………………

}

0x0000 – 0x007f
Reserved (OVLY=1) External
(OVLY=0)

Page 0 Program (MP/MC=1)

0x0080 – 0x3fff
On-chip DARAM (OVLY=1)
External (OVLY=0)

0x4000 – 0xff7f
External

0xff80 – 0xffff
Interrupts (External)

0x0000 – 0x005f
Mem mapped registers

Page 1 Data

0x0080 – 0x3fff
On-chip DARAM (16K x 16
bits)

0x4000 – 0xefff
External

0xff00 – 0xffff
Reserved or External

0x0060 – 0x007f Scratch RAM

0xf000 – 0xffef

ROM or External

SPRA716

20 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

The on-chip DARAM was split in both program (Page 0) and Data (Page 1) spaces. A small area
was reserved from address 0x1200 to perform the overlay of algInit program and Dwords[] data
memory.

Dwords[] was placed in its own data section to allow independent relocation of the array. It was
then linked to output section DWRDIMEM. An alignment of 2 is also specified since it must be
located on a 32 bit boundary. Filling the space with a known value (0xbeef) is performed simply
to aid debugging.

In program space, the .text:algInit section is mapped to output section AOBJIMEM. This is the
same address as DWRDIMEM and uses the same physical memory. Note that the order of
declaration is important since .text:algInit is an initialized section. If the Dwords array were linked
after the function, it would overwrite and destroy the algInit() program code.

The project map file demonstrates that overlay has been successful. The framework still
produced the correct results.

.secDwords 1 00001200 00000064

 00001200 00000064 md5_main.obj (.secDwords) [fill = beef]

.text:algInit 0 00001200 00000058

 00001200 00000058 md5_snap_ialg.obj (.text:algInit)

All of the TMS320 Algorithm Standard program code has now been either removed or reclaimed.

An obvious disadvantage of this technique is the fact that it is ISA dependent, in this case
C5000. The PAGE keyword does not exist on C6000 hence slightly different techniques would
need to be adopted. In addition, the internal RAM of present C6000 devices is strictly either
program or data, not both. Overlays could be applied in external memory however, as this may
well be mapped for both code and data e.g. TI’s C6211 DSK external memory has such a unified
memory map.

Improvements being made in linker technology, particularly within the Visual Linker, may
address such concerns in the future. This will also make it significantly easier to implement
overlays without detailed knowledge of command file syntax.

The overhead numbers now show a vast improvement.

Table 13. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x0

Data Memory .cinit 0xd

Data Memory .bss 0xb

Data Memory .const 0x9

Data Memory memTab[] structure 0x2

MIPS N/A 25 cycles

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 21

12 Build 9 – Achieving Zero Overhead

The final build reclaims or removes the remaining data memory overhead, and achieves the
theoretical best MIPS.

A preliminary step involved restoring the offLineMemTab[] structure used in Build 6. Build 7 was
actually a step sideways in this respect because this statically initialized structure was replaced
by an empty one to overlay the output buffer in a C union. We therefore required some extra
lines of code in Build 7 to set the fields of data in memTab[], since a union does not accept
initialized data.

In addition, a statically initialized structure is easier for the C compiler to optimize, so we should
allow for future improvements.

Instead of a union, a simple data overlay scheme is now used. Since memTab[] is no longer
useful after completion of algInit(), the output buffer may use the same memory. A one word
pointer is sufficient for the output. After memTab[] exhausts its usefulness, and before the output
is used, the following assignment is made to point the output to the correct memory:

outputPtr = (unsigned short *)&offLineMemTab;

Data memory overhead from the Algorithm Standard is still present in the .const section.
Removing the imd5.c file from the project can eliminate this. Its function is normally to provide
default parameter values when the user fails to supply any. This particular static framework does
not use parameters hence 9 words of data memory are recovered.

The final data memory under scrutiny is the entry in .cinit as shown in Build 8’s map file

.cinit 0 000034b9 000001c6

 000034b9 0000000d md5_snap_vtab.obj (.cinit)

The md5_snap_vtab.obj module adds 13 words of overhead. This occurs as a result of v-table
initialization. To comply with Rule 12 “All algorithms must implement the IALG interface”,
compliant algorithms must fill in a v-table. This typically appears as

#define IALGFXNS \

 &MODULE_VENDOR_IALG, /* module ID */ \

 MODULE_VENDOR_activate, /* activate */ \

 MODULE_VENDOR_alloc, /* algAlloc */ \

 NULL, /* control (NULL => no control ops) */\

 MODULE_VENDOR_deactivate, /* deactivate */ \

 MODULE_VENDOR_free, /* free */ \

 MODULE_VENDOR_initObj, /* init */ \

 MODULE_VENDOR_moved, /* moved (NULL => not suported) */ \

 MODULE_VENDOR_numAlloc /* numAlloc (NULL => IALG_DEFMEMRECS) */ \

/*

SPRA716

22 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

 * ======== MODULE_VENDOR_IMODULE ========

 * This structure defines VENDOR's implementation of the IMODULE interface

 * for the MODULE_VENDOR module.

 */

IMODULE_Fxns MODULE_VENDOR_IMODULE = { /* module_vendor_interface */

 IALGFXNS,

 MODULE_VENDOR_process,

 MODULE_VENDOR_getDigest,

};

The v-table allows us to access all of the algorithm’s functions through an interface independent
of the vendor. If two independent vendors comply with the same interface it is possible to swap
out one Standard compliant algorithm for another. It is an excellent feature which undoubtedly
gives system integrators more flexibility.

However, it is clear that indirection through the v-table takes extra cycles when calling the critical
process functions. If this cannot be tolerated, the framework is free to address the API directly i.e.

MD5_SNAP_getDigest((IALG_Handle)handle, &digest);

Instead of

Handle->fxns->getDigest((IALG_Handle)handle, &digest);

The flexibility of swapping one implementation of MD5 out for another is lost, but this is a
tradeoff the system designer has made to gain precious cycles.

The v-table has now been entirely bypassed so the file md5_snap_vtab.c can now be removed
from the project, bringing the .cinit section overhead to zero. Customers using Standard
algorithms archived into a single library will be able to verify this from a map file – no references
to functions or data will occur in the v-table implementation hence the corresponding object file
will not be included by the linker.

Calling MD5_SNAP_process(), and MD5_SNAP_getDigest() directly finally brings the MIPS
overhead incurred by the standard also to zero.

The final overhead table is as follows (changed fields in Build 9 are highlighted in gray):

Table 14. Additional Overhead for IALG Interface Usage

Category Memory Map Section
Size (words)
or Number Cycles

Program Memory .text + subsections 0x0

Data Memory .cinit 0x0

Data Memory .bss 0x1

Data Memory .const 0x0

Data Memory memTab[] structure 0x2

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 23

MIPS N/A 0 cycles

It was noted earlier that the 2 word overhead associated with memTab[] was simply a function of
this MD5 example framework. Typically, a large enough data buffer can be found to fully overlay
memTab[].

The only definite overhead in applying the Algorithm Standard is 1 word in the .bss data memory
section. This represents the channel handle pointer, which normally serves two purposes

• v-table traversal for vendor-independent access to both IALG and extended IALG functions
• type-safe, re-entrant access to the channel’s instance object.

Since the v-table is no longer used in this framework the first reason is not relevant. The second
reason relates to Rule 2 “All algorithms must be re-entrant within a pre-emptive environment”. All
references to the object are through this pointer to the object which in turn encapsulates all the
state information. This encourages re-entrant programming and is therefore enforced. Note that
the handle pointer is of type (IMD5_Obj *) i.e. a user defined type, thus providing a high degree
of type safety compared to, for example, (Void *).

The advantages the handle brings far outweigh the single word penalty. Indeed it could be
argued that even a non-Standard channel-based algorithm might address context data in this
fashion as good practice.

Whether or not we deem this to be overhead, it can still be said that the overhead of program
memory, data memory, and MIPS is now approximately zero.

13 Summary of Algorithm Standard Performance Improvements

The following diagrams illustrate the progress made in each build towards achieving the end
goal of zero overhead for the TMS320 Algorithm Standard.

TMS320 Algorithm Standard Program Memory Overhead

Reductions

0

100

200

300

400

500

600

700

800

Build 2 Build 3 Build 4 Build 5 Build 6 Build 7 Build 8 Build 9

CCS Project Sequence

S
ix

te
e
n

-b
it

 w
o

rd
s

Figure 4. Program Memory Optimizations

SPRA716

24 Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface

TMS320 Algorithm Standard Data Memory Overhead

Reductions

0

5

10

15

20

25

30

35

40

45

50

Build 2 Build 3 Build 4 Build 5 Build 6 Build 7 Build 8 Build 9

CCS Project Sequence

S
ix

te
e

n
-b

it
 w

o
rd

s

Figure 5. Data Memory Optimizations

TMS320 Algorithm Standard MIPS Overhead Reductions

0

20

40

60

80

100

120

140

160

180

Build 2 Build 3 Build 4 Build 5 Build 6 Build 7 Build 8 Build 9

CCS Project Sequence

P
ro

c
e
s
s
o

r
C

y
c
le

s

Figure 6. MIPS Optimizations

The most significant program memory gains were made in CCS Projects 3 and 5. The former
build relegated unused functions to a NOLOAD section thus removing them from the program
image, whilst Build 5 computed algAlloc() off-line, plugged the results into memTab[] directly,
and subsequently eliminated all of the supplementary client-side APIs.

SPRA716

Achieving Zero Overhead With the TMS320 DSP Algorithm Standard IALG Interface 25

The figures for data memory overhead were never particularly large. A typical real-world
situation arose in moving from Build 4 to 5; as a result of aggressive program memory
optimizations, a minor increase in data memory occurred. Overlay techniques and by-passing
the algorithm’s v-table rectified the situation bringing the end-result down to just 3 words.

Again the impact of implementing the standard was not significant in the performance of the
algorithm. Removing the overhead of function calls, and eventually bypassing the v-table to
directly address MD5_SNAP_process(), brought the CPU cycles overhead down from 164 to
zero.

14 Conclusion

There are three key conclusions that can be drawn from this application report:

1. Algorithms can indeed be written once and deployed widely. This is a huge advantage for
TI’s third Party software vendors. Any optimizations can be done entirely on the
application side.

2. The same algorithm can be efficiently used in virtually any application. Eight different
frameworks (builds 2 – 9) were constructed with each representing a slightly different
system. Again, the algorithm remains a constant factor.

3. The Algorithm Standard enables the system integrator to achieve zero overhead.
Dramatic optimization of MIPS, program and data memory can be made if the system
integrator is building a static system in which the memory configuration is fixed.
Alternatively, some overhead may be sacrificed to gain features such as vendor-
independence, fully type-safe APIs, and ease of code readability. The feature line is drawn
by the system integrator, not the algorithm vendor.

A further improvement to this work would be to simplify the build steps. Linker command file
syntax can be tricky, especially when dealing with page overlays, hence it would be
advantageous to make use of the graphical Visual Linker Tool.

15 References

1. Using the eXpressDSP Algorithm Standard in a Static DSP System, SPRA577

2. expressDSP Algorithms Standard Rules and Guidelines, SPRU352

3. expressDSP Algorithms Standard API Reference, SPRU360

4. Making DSP Algorithms Compliant with the eXpressDSP Algorithm Standard, SPRA579

5. The eXpressDSP Algorithm Standard - a White Paper, SPRA581

6. TMS320C54x Assembly Language Tools, SPRU102

7. TMS320C54x DSP Cpu and Peripherals, SPRU131

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue

any product or service without notice, and advise customers to obtain the latest version of relevant information

to verify, before placing orders, that information being relied on is current and complete. All products are sold

subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those

pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in

accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent

TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily

performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent

that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other

intellectual property right of TI covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information regarding any third

party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

