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Abstract 

Advances in digital signal processor (DSP) technology in the application areas of telephony,
imaging, video, and voice are often results of years of intensive research and development.  For
example, algorithm standards for telephony have taken years to develop.  The implementation of
these DSP algorithms is often very different from one application system to another because
systems have, for example, different memory management policies and I/O handling mechanisms.
Because of the lack of consistent system integration or programming standards, it is not possible
for a DSP implementation of an algorithm to be used in more than one system or application
without significant reengineering, integration, and testing.

This document targets these algorithms and assists the reader with making the algorithms

compliant with the TMS320 DSP Algorithm Standard which is part of  TI's eXpressDSP
technology initiative. Algorithms that comply with the standard are tested and awarded an
eXpressDSP compliant mark upon successful completion of the test.

It is assumed that the reader of this document has read or is familiar with the specifications of the
standard.
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Introduction

The eXpressDSP Algorithm Standard (XDAIS) activities can be divided into three
categories: clients (users) of algorithms, producers of algorithms, and creators of
algorithm-specific interfaces.  This application note focuses on the producers of
algorithms and assumes that the interface is defined.

In order for an algorithm to be compliant with the standard, the algorithm must implement
the IALG interface specified by the standard.  The IALG interface is an abstract interface
or a Service Provider Interface (SPI) and is defined in the ialg.h header file.  In addition
to implementing the IALG interface, the algorithm must obey a number of rules.  For
example, external identifiers need to follow the naming conventions, algorithms must
never directly access any peripheral device, and the algorithm code must be fully
relocateable.  See the TMS320 Algorithm Standard specification for the complete set of
rules.

The algorithm must also implement an algorithm-specific interface, defined by an
algorithm interface creator, who extends the IALG interface in order to run the algorithm.
This application note uses the IG723ENC interface, defined by TI, as an example, and
describes the process of making a TI version of the ITU G.723.1 annex A encoder
algorithm eXpressDSP compliant.

The client of the algorithm can manage an instance of the algorithm by calling into a table
of function pointers (v-table).  Every algorithm must create the v-table to be compliant
with the standard.  Through the v-table, the application can manage the algorithm
instance, for example, create and delete an instance object of the algorithm as well as
run the algorithm.  See Figure 1 for an illustration.

Figure 1. Application, Implementation and the v-table
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The IALG Interface

The IALG interface is the core interface defined by the standard that the algorithm is
required to implement.  It defines types and constants as well as the v-table, IALG_Fxns.

Every algorithm needs to define and initialize a variable of type, IALG_Fxns, to declare

the v-table.  Some of the functions in the v-table are optional, while algAlloc(),

algInit(), and algFree() are required.

algAlloc()

The algorithm must implement the algAlloc() function to declare its memory
requirements.  In the following example, we request one block of persistent memory.  The
size of this block must be large enough to hold the object definition of the algorithm as
well as any working buffers required during the execution of an instance of the algorithm.

Int G723ENC_TI_algAlloc(const IALG_Params *algParams, IALG_Fxns **pf,

IALG_MemRec memTab[])

{

    /* Request memory for G723ENC instance object */

    memTab[0].size = sizeof(G723ENC_TI_Obj);

    memTab[0].alignment = 0;

    memTab[0].space = IALG_DARAM0;

    memTab[0].attrs = IALG_PERSIST;

    return(1)    /* return number of memory blocks requested */

}

The algAlloc() implementation informs the application of its memory requirements by
filling the memTab structure.  Based on this information, the application allocates the
requested memory before it calls the function to initialize the object.

If your code is not organized as an object containing the state or context information, you
must do so.  This is good coding practice and motivates reentrant code since all
references to the object is now through a pointer to the object.  Consider the following
example of the G723ENC_TI_Obj:

typedef struct G723ENC_TI_Obj {

   IALG_Obj   ialg;            /* Points to the v-table */

   IG723_Rate workingRate;     /* 5.3 or 6.3 kbps */

   XDAS_Bool  hPFilter;        /* High Pass filter on/off */

   XDAS_Bool  VAD;             /* Voice activity detection on/off */

    …………………            /* specifics to the implementation */

} G723ENC_TI_Obj;

Notice that the first field in the object is IALG_Obj, which is a pointer to the v-table we
will create later.  This parameter must be the first field in any object definition. It is the
application’s responsibility to initialize this pointer to point to the v-table when creating an
instance of the algorithm.  Also, G723ENC_TI_Obj must occupy the first block of memory,
memTab[0].
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algInit()

The algorithm implements algInit() to initialize the instance persistent memory
requested in algAlloc().  After the application has called algInit(), the instance of
the algorithm pointed to by handle is ready to be used. See the example below:

Int G723ENC_TI_algInit(IALG_Handle handle, const IALG_MemRec

memTab[], IALG_Handle p, const IALG_Params *algParams)

{

    G723ENC_TI_Obj *enc = (Void *)handle;

    const IG723ENC_Params *params = (Void *)algParams;

    if (params == NULL) {

        params = &IG723ENC_PARAMS;  /* set default parameters */

    }

    /* Copy creation params into the object */

    enc->workingRate = params->rate;

    enc->hPFilter = params->hpfEnable;

    enc->VAD = params->vadEnable;

    g723EncInit(enc);  /* Initialize all other instance variables */

    return(IALG_EOK);

}

If the application passes in a NULL pointer for the creation parameters, the algorithm
should use a default set of creation parameters. The default set of parameters are
defined by the interface definer.

algFree()

The last of the required functions the algorithm needs to implement is algFree().  It is
the algorithm’s responsibility to set the addresses and the size of each memory block
requested in algAlloc() such that the application can delete the instance object without
creating memory leaks. See the example below:

Int G723ENC_TI_algFree(IALG_Handle handle, IALG_MemRec memTab[])

{

    G723ENC_TI_Obj *enc = (Void *)handle;

    algAlloc(NULL, NULL, memTab);      /* Fill the memTab struct */

    memTab[0].base = (Void *)&enc;

    return(1);

}

The call to algAlloc() will set all parameters in the memTab structure except the base
field which holds the address of the block of memory.
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Module-Specific Interface

So far, we have implemented three functions required to create, initialize, and delete the
instance object.  We also need to implement the IG723ENC interface, which is the SPI
for the TI version of the ITU G.723.1 annex A encoder interface.  The IG723ENC
interface is defined in the ig723enc.h header file.  IG723ENC_Fxns extends the

IALG_Fxns, as seen in the excerpt from the header file:

typedef struct IG723ENC_Fxns {

    IALG_Fxns  ialg;    /* IG723ENC extends IALG */

    XDAS_Bool  (*control)(IG723ENC_Handle handle, IG723_Cmd cmd,

                          IG723ENC_Status *status);

    XDAS_Bool  (*encode) (IG723ENC_Handle handle, XDAS_UInt16 *in,

                          XDAS_UInt16 *out);

} IG723ENC_Fxns;

The standard introduces algorithm standard data types, e.g., XDAS_UInt16, to ensure
type consistency. See xdas.h for the complete definitions of these data types.

You need to create both the control() and encode() functions in order to have a
complete algorithm that implements the IG723ENC interface.  Most often, these functions
are wrappers to existing implementations, as seen in the example below for the encode()
function:

XDAS_Bool G723ENC_TI_encode(IG723ENC_Handle handle, XDAS_UInt16 *in,

XDAS_UInt16 *out)

{

    G723ENC_TI_Obj   *enc = (Void *)handle;

    if(encoder(enc, in, out)      /* do the processing */

        return(XDAS_TRUE);

    return(XDAS_FALSE);

}

The IG723ENC interface defines the default creation parameters in the ig723enc.c
source file.  If the application wants to use creation parameters other than those provided
in the interface, the application will make a local copy of the default algorithm parameters
and modify the desired fields before creating an instance.  The application then needs to
pass this modified parameter structure to algAlloc() and algInit() to create an
instance with the modified parameters.

V-table

We now want to define and initialize the IG723ENC v-table. Since IG723ENC_Fxns
extends IALG_Fxns, the IG723ENC v-table must also include the functions in the IALG v-
table:

#define IALGFXNS \

    &G723ENC_TI_IALG,              /* module ID */     \

    NULL,                          /* activate */      \
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    G723ENC_TI_algAlloc,           /* alloc */         \

    NULL,                          /* control */       \

    NULL,                          /* deactivate */    \

    G723ENC_TI_algFree,            /* free */          \

    G723ENC_TI_algInit,            /* init */          \

    NULL,                          /* moved */         \

    NULL                           /* numAlloc */      \

IG723ENC_Fxns G723ENC_TI_IG723ENC ={

    IALGFXNS,    /* IALG functions */

    G723ENC_TI_control,

    g723ENC_TI_encode

} G723ENC_TI_IG723ENC;

asm(“_G723ENC_TI_IALG  .set _G723ENC_TI_IG723ENC”);

The first field in the v-table is the address of the table.  This field is used as a unique
identifier of the implementation.  Notice that only the three required IALG functions and
the module-specific functions are defined in the v-table.  All the other function pointers
are set to NULL.

The asm() statement defines the symbol G723ENC_TI_IALG to be equal to
G723ENC_TI_IG723ENC, which means that the IALG and the IG723ENC v-tables are
shared.

Notice the naming conventions used as the symbol for the v-tables.

� G723ENC_TI_IALG Reads: "TI's implementation of the IALG interface for the
G723ENC module"

� G723ENC_TI_IG723ENC Reads: "TI's implementation of the IG723ENC interface for
the G723ENC module"

If you make a call into the v-table with IALG_Handle, you will only be able to access
IALG_Fxns.  You will need to use IG723ENC_Handle to access the encode() and

control() functions.
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Algorithm Structure

Figure 2 illustrates how the object, the v-table, and the actual implementation are laid out
in memory.  The handle to the instance object is located on the stack for illustration.

Figure 2. TMS320 DSP Algorithm Standard Structure
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Notice that G723ENC_TI_IG723ENC and G723ENC_TI_IALG share the same v-table.

Summary of Some Important Rules

TI C Language Run-Time Conventions

This rule ensures that all algorithms can be called from the C language.  The entire
algorithm code can still be in assembly.  However, every function in the v-table is
required to follow the processor-specific conventions for interfacing C and assembly.  The
functions internal to the algorithm are not required to follow these conventions.
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Core Run-Time APIs

The core run-time support for the algorithm is the TI C-language run-time APIs with the
exception of heap management, I/O, and miscellaneous non-reentrant functions.  The
algorithm is also free to use the DSP/BIOS run-time support library except the scheduling
APIs.  This does not mean that an application using an algorithm with calls to DSP/BIOS
APIs needs to run DSP/BIOS.  The application can stub these APIs or replace them with
its own implementation of the APIs.  See the TMS320 DSP Algorithm Standard
Specifications, Appendix B, Core Run-Time APIs, for a complete overview of the core
run-time support APIs.
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Near/Far Models

Program model:

All the entry points for the module, i.e., the functions in the v-table, and the core runtime
support functions must be far calls/returns on c54x chips with extended addressing.
Functions internal to the algorithm can be either far or near calls/returns..

Data model:

All 'C6x algorithms must access all static and global data as far data.  However, this does
not imply that all look-ups in a static table will be far accesses.  Only the reference to the
look-up table will be a far access; the actual look-up will be an offset to the look-up table
address.

Cache

The algorithm should not assume that it will or will not be used in cache mode.  The
algorithm should work in either case.

Naming conventions

Every external identifier and type definition must follow the naming conventions with the
prefix <module>_<vendor>_.  The library and the header file following the library must
adhere to these naming conventions as well.

A simple way to check whether or not all the external identifiers follow the naming
conventions is to extract the library and run the nmti tool found in the /bin directory of the
TMS320 DSP Algorithm Standard Developer's Kit on every object file.  See the example
code below, where nmti is run on the example object file scale.obj:

[C:/test] nmti scale.obj

00000000 S .text

00000000 S .data

00000000 S .bss

0000000f A FP

0000002e A DP

0000002f A SP

00000000 T _Scale /* should be G723ENC_TI_Scale */

00000030 t RL0

000000f8 t L1

00000130 t L2

00000180 t RL1

0000018c t L3

00000000 t .text

00000000 d .data

00000000 b .bss

         U _Sqrt_LBC /* should be G723ENC_TI_Sqrt_LBC */

         U _Comp_En /* should be G723ENC_TI_Comp_EN */

We can identify an external symbol by looking at the letter in the second column.  The
letter is in uppercase if the symbol is external.  In other words, all the symbols with an
uppercase letter in the second column need to follow the naming conventions.
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Another convenient approach to satisfying the naming convention requirements is to use
the symbol hiding and renaming tool, rename, in the /bin directory of the TMS320 DSP
Algorithm Standard Developer's Kit.

Library and Header File

After implementing the required IALG_Fxns and IG723ENC_Fxns, and making sure we
are following all the rules in the specification, we are ready to create the object library,
g723enc_ti.a62.  This library and a header file are delivered to an application that uses
the eXpressDSP-compliant algorithm that implements the TI version of the G.723.1
encoder interface.

The header file g723enc_ti.h needs to declare the symbols to the v-table as in the
following line of code:

extern IG723ENC_Fxns G723ENC_TI_IG723ENC;

extern IALG_Fxns G723ENC_TI_IALG;

Examples

The following examples illustrate how an application can use your algorithm.  Notice how
the v-table appears as the indirection between the implementation of the algorithm and
the application using the algorithm.
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Dynamic Object Creation

Figure 3. Example of Dynamic Creation of an Instance of the TI G.723.1 Encoder
Module

SPI

API

G723ENC_TI_IG723ENC

G723ENC_TI_encode()

G723ENC_TI_algInit()

Int  G723ENC_TI_algInit() {

Int  G723ENC_TI_algAlloc() {

  fxns->algInit(...);

  malloc();

  n=fxns->algAlloc(...);

G723ENC_Handle G723ENC_create(const IG723ENC_Fxns *fxns, .. ) {

  h=G723ENC_create(&G723ENC_IG723ENC,.);

G723ENC_Handle h;

main() {

extern G723ENC_IG723ENC;

#include  <g723enc.h>

G723ENC_TI_algAlloc()

}

 }

 }

 }

The linker command file for the application has the following statements:

-u _G723ENC_TI_IG723ENC

-l g723enc_ti.a62

_G723ENC_IG723ENC = _G723ENC_TI_IG723ENC;

Notice that the binding of G723ENC_IG723ENC to the TI v-table G723ENC_TI_IG723ENC
happens at link time.  If the application wants to change to another implementation which
implements the same interface, it simply changes the binding of G723ENC_IG723ENC to
the v-table of the other implementation.  In other words, the application code stays
exactly the same and no recompilation is required.  Only a relink is required to switch to
another implementation.
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Multichannel Encoding

Figure 4. Example of a Multichannel System with TI G.723.1 Encoder Modules

G723ENC_TI_IG723ENC

G723ENC_TI_encode()

G723ENC_TI_algInit()

G723ENC_TI_algAlloc()

}

handle->fxns->encode(handle...);

G723ENC_encode(G723ENC_Handle handle, *in, *out) {

G723ENC_encode(handle_N, *in_N, *out_N);

G723ENC_encode(handle_1, *in_1, *out_1);

handle_N=G723ENC_create(&G723ENC_IG723ENC,..);

handle_1=G723ENC_create(&G723ENC_IG723ENC,..);

G723ENC_Handle handle_1 ... handle_N;

main() {

extern G723ENC_IG723ENC;

#include <g723enc.h>

*fxns

*fxns
G723ENC_TI_encode() {

}

Instance 1

data

Instance N

data

Notice the first field in the instances is a pointer to the v-table, i.e., they are running the
same program code.  The other parameters in the instances contain the interframe state
information.

The binding of G723ENC_IG723ENC to the TI v-table G723ENC_TI_IG723ENC happens
at link time as explained previously.
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Improvements

We now have an algorithm that has implemented the TI-defined IG723ENC interface and
is eXpressDSP-compliant.  However, the algorithm is not optimized to utilize the
mechanism provided in the standard for optimal memory utilization.

Scratch vs. Persistent Memory

THE TMS320 DSP Algorithm Standard labels the types of memory into two categories:
scratch and persistent.  Persistent memory is used to store state information while an
algorithm instance is not executing.  On the other hand, the algorithm uses scratch
memory as a working area during execution.  After the execution of the algorithm, the
application is free to assign the scratch memory to other algorithms in the system. In
other words, an algorithm instance cannot make any assumptions about the contents of
the scratch memory when it is being assigned to the instance of the algorithm by the
application.

In the G723ENC_TI_algAlloc() function, we requested one block of memory to hold the
state information and potential working buffers.  We recommend that an algorithm divide
its memory requirements into several blocks for two reasons.  First, it makes the memory
management more flexible for the application with regards to fragmentation issues.
Second, the application can make efficient use of the scratch memory since it can be
overlaid among instances of algorithms.

Because the algorithm uses the persistent memory to hold state information between
executions, this information should be assigned to slow external memory.  At the time the
algorithm has a frame of data for processing, the state information needed for processing
the frame needs to be copied into a scratch buffer in fast memory.  When the algorithm is
finished processing the buffer, the application may decide to assign the scratch buffer to
another instance.  The information in the scratch buffer required for processing the next
frame of data then needs to be copied back to the persistent memory.  The IALG
interface provides this mechanism through the functions algActivate() and
algDeactivate().  The application makes the decision if it wants to call

algActivate() and algDeactivate() for every frame of data, or if it wants to call e.g.,

algActivate()and never share the scratch memory with other instances until it calls
algDeactivate().

The IALG interface also provides the function algMoved()which enables the application
to move an instance’s memory block around at runtime.  This is a powerful capability for
some applications since they get even more flexibility in the management of the instance
objects.  An algorithm implementing this function is only responsible for updating the
internal references to its memory blocks.
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Stack Issues

One way to achieve reentrant code is to declare all scratch data on the stack. There are
at least two problems with this approach.  First, an algorithm has no control over the
placement of the system stack.  Second, it is very difficult for the application to share
scratch stack memory between instances.  We strongly recommend that algorithms avoid
using the system stack more than necessary and encourage algorithms to request
scratch memory blocks in algAlloc().

Conclusion

TMS320 DSP Algorithm Standard activities can be divided into three categories: clients
(users) of algorithms, producers of algorithms and creators of algorithm specific
interfaces. This application note focuses on the producers of algorithms.  It discusses the
necessary steps to make an algorithm eXpressDSP-compliant, and also highlights some
important rules that are often misunderstood and provides some tips for future
improvements.

A non-eXpressDSP-compliant algorithm can be made compliant by following the
recommended steps:

1) Implement algAlloc(), algInit() and algFree().

2) Implement the module-specific interface.

3) Create the v-table.

4) Make sure you follow all the rules in the standard.

5) Build the library and create the header file.

At this point, the algorithm should be eXpressDSP-compliant.  Other optional steps you
might consider are:

1) Divide memory requests into several block.

2) Implement other functions in the IALG interface (algActivate(),

algDeactivate(), etc)

3) Implement the IRTC interface.
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