
 

TMS320 DSP
DESIGNER’S NOTEBOOK

Linking C Data Objects
Separate From the .bss
Section

APPLICATION BRIEF:   SPRA258

 Leor Brenman
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 June 1995



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated



TRADEMARKS 

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.



CONTACT INFORMATION 

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com



Contents

Abstract......................................................................................................................... 7

Design Problem............................................................................................................ 8

Solution......................................................................................................................... 8



 

Linking C Data Objects Separate From the .bss Section 7

Linking C Data Objects Separately
From the .bss Section

Abstract 

The TMS320 DSP C compilers produce several relocatable blocks
of code and data when C code is compiled. These blocks are called
sections and can be allocated into memory in a variety of ways to
conform to a variety of system configurations. The .bss section is

used by the compiler for global and static variables. It is one of the
default COFF sections that is used to reserve a specified amount of
space in the memory map that can later be used for storing data. It
is normally uninitialized. All global and static variables in a C
program are placed in the .bss section. On the ’C80, PP static and

global variables are placed in the .pbss section that is assumed to

be on chip. The far keyword can be used to force static or global

variables to reside in the .bss section, which is assumed to be off
chip. However, often it is desirable to place some of your variables
separate from the .bss or .pbss section.

This document discusses how to implement this.



8 SPRA258

Design Problem 

How do I link a C data object, such as an array, separately from the
.bss section?

Solution 

The TMS320 DSP C compilers produce several relocatable blocks
of code and data when C code is compiled. These blocks are called
sections and can be allocated into memory in a variety of ways to
conform to a variety of system configurations. The .bss section is

used by the compiler for global and static variables. It is one of the
default COFF sections that is used to reserve a specified amount of
space in the memory map that can later be used for storing data. It
is normally uninitialized. All global and static variables in a C
program are placed in the .bss section. On the ’C80, PP static and

global variables are placed in the .pbss section that is assumed to

be on chip. The far keyword can be used to force static or global

variables to reside in the .bss section, which is assumed to be off

chip. However, often it is desirable to place some of your variables
separate from the .bss or .pbss section.

For example, on the floating-point DSPs you might want to link all of
your variables into off-chip memory but place a frequently used
array in on-chip RAM Block 0. On the fixed-point DSPs, for single-
cycle data moves (DMOV) to take place, as required for FIR filtering,
the data must reside in on-chip DARAM. However, not all of the
variables need to reside in on-chip DARAM. On the ’C80, most of
the data would be processed in PP on-chip data RAM blocks 1–3,
but tables for packet transfers might be created in on-chip parameter
RAM.

Method I

One method to accomplish this task is to declare the variable that is
to be separate from the .bss or .pbss section in a separate file. This
method works for the fixed-point, floating-point, and ’C80 DSP C
compilers. For example, declare a 32-word array, tapDelay[ ], in
a file called array.c as follows:

/* File: ARRAY.C */

int tapDelay[32];

/* End of file */

All files that reference the variable must declare it as extern.
Consider the following file, test.c, that makes a reference to the
array declared in file array.c as follows:

/* File: TEST.C */

.

extern int tapDelay[ ];



Linking C Data Objects Separate From the .bss Section 9

.

void main(void)

{

int i;

.

tapDelay[i] = 0;

.

}

/* End of file */

In the linker command file, link this variable separate from the .bss
section in the SECTIONS section. The following linker command file
segment illustrates how to link the array tapDelay[ ] onto the
TMS320C50’s DARAM B2 on-chip dual-access data RAM while
linking the rest of the global and static variables into part of on-chip
SARAM:

/* File: TEST.CMD */

.

test.obj

array.obj

.

MEMORY

{

.

PAGE 1: DARAMB2: origin = 0x0060, length 0x0020

PAGE 1: INTDATA: origin = 0x0c000, length 0x1800

.

}

SECTIONS

{

.

.bss : {} >INTDATA PAGE 1

.

tapdelayline : {array.obj(.bss)} >DARAMB2 PAGE 1

}

/* End of file */

Method II

Another method that is available in the floating-point DSP C
compiler version 4.60 and the ’C80 C compiler version 1.10 is to use
the pragma DATA_SECTION. This is described in the TMS320
Floating-Point DSP Code Generation Tools Release 4.60 Getting
Started document and the ’C80 Code Generation Tools User’s
Guide. Consider the example described in Method 1. The following
code segment uses the DATA_SECTION pragma to declare a 32-
word array, tapDelay[ ], that will be placed separate from the other
global and static variables:

/* File: TEST.C */

#pragma DATA_SECTION (tapDelay, “.tapdelayline”)

int tapDelay[32];



10 SPRA258

.

.

void main(void)

{

int i;

.

tapDelay[i] = 0;

.

}

/* End of file */

In the linker command file, use the section name .tapdelayline to
place the array tapDelay[ ] in RAM block 0 separate from the other
global and static variables that are in the .bss section as follows:

/* File: TEST.CMD */

.

test.obj

.

MEMORY

{

.

EXT0: org = 0x100 len = 0x3f00

RAM0: org = 0x809800 len = 0x400

.

}

SECTIONS

{

.

.bss : {} EXT0

.

.tapdelayline : {} RAM0

}

/* End of file */


