

Implementing Continuously
Programmable Digital Filters
with the TMS320C30/40 DSP

APPLICATION REPORT: SPRA190A

 Authors: Aaron Robinson - MS Team Leader
 Richard Hardie
Harry Heinisch

 Advisor: Dr. Fred O. Simons, Jr.; PE: Associate
 Director of the HCS Lab, Director of FEEDS,
and EE Professor

 Department of Electrical Engineering
 Florida A&M University and Florida State University

 Digital Signal Processing Solutions
 June 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

.

Contents
Abstract... 7
1. Introduction... 8
2. Optimum Algorithms for Implementing CPDFs .. 9
3. Implementing Optimum CPDF Algorithms in C Code .. 12
4. Interfacing Multiple TMS320C30 DSPs.. 14
5. Execution of a CPDF TMS320C30 Demonstration.. 16
6. Evaluating Design Specifications for CPDF Applications 20
7. Summary and Conclusions.. 21
8. Two Advanced CPDF Applications.. 22

8.1 CPDF Optimal Filter Design Procedure .. 22
8.2 A Kalman Filter Example .. 22

9. CPDF C Source Code Files .. 24
References.. 29

Figures
Figure 1. Interface Connections for Multiple TMS320C30 Architectures 14
Figure 2. Filter Update Rates... 17
Figure 3. CPDF Update Rates... 18
Figure 4. Fourth-Order Butterworth Plot.. 19

Table
Table 1. CPDF TMS320C30 Demonstration Results .. 17

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 7

Implementing Continuously
Programmable Digital Filters with the

TMS320C30/40 DSP

Abstract

Systems engineers must apply real-time digital hardware solutions
to signal processing problems to achieve the goals of reliability,
repeatability, and flexibility. DSP offers the only such solution for
many applications.

Digital filter components are an integral part of many DSP systems.
In particular, continuously programmable digital filters (CPDFs)
offer a broad range of high-tech applications, such as optimal
filter implementations, Kalman filter design, adaptive system
operation, and even the simulation or implementation of linear,
time-varying, and nonlinear systems.

This application report describes the implementation of a
general purpose CPDF on a Texas Instruments (TI)
TMS320C30/40 development board(s) using optimized
coefficient updating algorithms. The performance of a dual-
processor design is evaluated for coefficient updating and
processing rates as a function of CPDF complexity. As a
result, analysts can determine the design limitations for any
application. The CPDF implementations presented in this
design include IIR filters that are guaranteed to be stable, a
major advancement in CPDF design.

8 SPRA190A

1. Introduction

All digital filter implementations are based on algorithms designed to
implement difference equations in various cascade, parallel, ladder,
or other structures. The equations take the following form:

∑ ∑
= =

−=−
N

n

M

m
mn mkxcnkyd

0 0

)()(

The difference equation algorithms effectively generate the output
y(k) for k = 0,1,2,3... by iteratively evaluating as follows:

 −−−=− ∑ ∑

= =

M

m

N

n
nm nkydmkxc

d
nky

0 10

)()(
1

)(

In most cases the filters are time-invariant, which implies that the
dn,cm coefficients are constants. Digital filters can be implemented
by incorporating algorithms to vary the coefficients with time (to
implement time-varying systems). Nonlinear DSP component
models require digital filters to be implemented with coefficients that
are functions of x(k) and y(k), the inputs and outputs, respectively. In
either time-varying or nonlinear implementations, coefficients must
be updated continuously.

CPDFs might also be called continuously programmable digital
dynamic hardware, a term that better illustrates the wide-range of
benefits to be derived from these nonlinear and time-varying
devices. For example, problem classifications concerned with these
devices include adaptive filters, digital system compensators or
controllers, noise filters, etc.1 Specific applications include:

q Kalman filter controllers for optimizing control systems

q Matched filters to pre-condition signals from sensors, to minimize
measurement noise, or to extract transmitted signals of a priori
characteristics from noisy environments

q Adaptive system components to alleviate excessive changes in
system environmental effects due to wide-ranging changes in
pressure, temperature, etc

q Programmable window filters to minimize spectrum distortion
due to edge effects of acquired multiple data streams

q Network driven learning filters that improve with use based on a
formulated criterion

CPDFs can be incorporated into a wide range of high-tech
applications that will continue to expand as algorithm and
implementation problems are resolved.

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 9

2. Optimum Algorithms for Implementing CPDFs

Generating an H(z) from an H(s) with the bilinear transform
relationship can be shown to be equivalent to deriving a Simpson’s
Rule approximation difference equation model from a differential
equation model, which infers a prototype H(s) model.

Thus, although H(s) is defined only for linear time-invariant models,
time-varying and even nonlinear models can be approximated by
iteratively applying the bilinear transform relationship to update the
an,bm coefficients to their new values since the transformation is
equivalent to a valid time-domain operation. Thus, we seek the
algorithms for generating the dn and cm coefficients, respectively, for
the denominator D(z) and the numerator N(z) of H(z), which is
defined as:

∑

∑

=

=∆

+
−=

N

n

n
n

M

m

m

m

sa

sb
zH

z

z
s0

0)(

1

1

and can be expressed as:

)(

)(

)1()1(

)1()1(
)(

0

0

zD

zN

zza

zzb
zH

N nNn
n

m mNm
m ∆

+−

+−
=

∑
∑

−

−

where:

2/T is assumed to be 1 with no loss of generality because the scale
factor 2/T in the bilinear transformation can be handled by
bm ← (2/T)mbm and an ← (2/T)nan; that is, replace the an, bm

coefficients with the product of an, bm multiplied by the corresponding
powers of (2/T).

10 SPRA190A

To verify the Simons-Harden2
 algorithms for evaluating or obtaining

N(z) and D(z), consider the following definitions for D(z). If P(s) is
the denominator of H(s), then:

+
−+=

1

1
)1()(

z

z
PzzD N

Let

)2()(

1
)(

2

1
)(

1
)(

)1()(

zJzD

z
GzzJ

zFzG

z
EzzF

zPzE

N

N

∆

∆

 +∆

∆

−∆=

By successively applying the transformations defined by (2) through
(6), the algorithm is verified by showing:

+
−+=

1

1
)1()(

z

z
PzzD N

Thus, starting with:

+
−+=

 −

+
+=

+

 +=

 +=

=

=

1

1
)1()(

1
1

2
)1()(

1

2

2

1
)2()(

2

1

2

1
)2()(

2

1
)2()(

)2()(

z

z
PzzD

z

z
PzzD

z

z
E

z

z
zzD

z
FzzD

z
GzzD

zJzD

N

N

N
N

N

N

It is concluded that the defined transformations yield the desired
result.

(1)

(2)

(3)

(4)

(5)

(6)

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 11

To summarize the transformations required to implement the
algorithm, first observe from (1) that the coefficients of the original
H(s) denominator polynomial are the coefficients of polynomial P(s).
Therefore, implementation of the algorithm consists of the following
steps:

Step 1: Translate the original polynomial P(s) one unit to the right
(this can be accomplished by an algorithm consisting of a
series of syntactic divisions).3

Step 2: Reverse the order of the coefficients.

Step 3: Translate the coefficients 1/2 unit to the left.

Step 4: Reverse the order of the coefficients again.

Step 5: Multiply the nth coefficient by 2n.

With the algorithms presented, minimum memory and processing
are required to obtain a dynamic difference equation simulation
model from a linear shift-invariant continuous model. For example,
Medina used a MATLAB simulation to show that the Simons-Harden
algorithm(s) required 1200 FLOPS, whereas the direct MATLAB
bilinear transform algorithms required 12000 FLOPS to execute a
10th-order H(s) to H(z) conversion4. The transformation calculations
were duplicated on the TI TMS320C30 DSP.

Section 3 describes the 90 percent savings in processing required to
implement these algorithms in terms of the C source code shown in
the Appendix. This code was compiled and linked for execution on
the TMS320C30 DSP.

12 SPRA190A

3. Implementing Optimum CPDF Algorithms in C Code

Implementing the CPDF algorithms requires three distinct tasks:

1) Translating a polynomial

2) Reversing the order of coefficients

3) Multiplying each coefficient by a power of two

As described in Section 2, you can translate a polynomial using a
series of syntactic divisions. This process can be implemented with
the following standard difference equation:

aN ← aN aN-1 ← aN-1 + α aN

an ← an + α an+1 for n=N-2, … , 0

where:

N = order of the polynomial
a = vector containing the coefficients of the polynomial

This difference equation must be evaluated N times. The first time
the index n ranges from 0 to N-1, the second time n ranges from 0 to
N-2, and so on until the process is performed N times. The C code
implementation of the Step 1 translation algorithm is shown in
Example 1 (standard matrix notation is used here only to enhance
readability; pointers are used in the actual implementation).

Example 1. C Code Implementation of the Step 1 Translation Algorithm

Alpha = -1;
for (k=0; k< order; k++) {

for (n=l; n<=(Order-k); n++) {
Polynomial[n] = Polynomial[n] + Alpha * Polynomial[n+l];

}
 }

Step 2 in the CPDF algorithm implementation reverses the order of
the coefficients of the polynomial. Step 2 is not performed as a
separate task; instead, the coefficients are reversed indirectly in
Step 3 (translating the coefficients 1/2 unit to the left).

Step 3 is similar to Step 1 with two important modifications:

q The coefficients are accessed backwards to accomplish Step 2.

q Step 4, which consists of reversing the order of the coefficients,
is also accomplished.

As a result, Step 3 is a more manipulated version of Step 1 that
allows for a more efficient code by skipping Step 2 and Step 4.
Example 2 shows the C code implementation for Step 3:

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 13

Example 2. C Code Implementation for Step 3

Alpha = 0. 5;
for (k=0; k< Order; k++) I

for (n=0; n<=(Order-k-1); n++)
Polynomial[Order + n - 1] += Alpha @ Polynomial[Order - n];

}

}

Step 5 (multiplying the nth coefficient by 2n) multiplies the nth
coefficient by 2n. The following example shows the C code
implementation using the pow function, which returns 2n (note that
the trivial case of multiplying by 20 is skipped and the case of
multiplying by 21 is performed directly).

Example 3. C Code Implementation Using the pow Function

Polynomial[l] *= 2;
for (k=2; k < Order; k++)(

Polynomial[n] *= pow(2,n);
}

Recall that the scaling factor was assumed to be unity in the
derivation of the CPDF algorithms described in Section 2. The scale
factor 2/T, or C, is handled by multiplying the nth coefficient by Cn

before the above algorithm is applied.

Example 4. Handling the Scale Factor

Polynomial[l] *= C;
for (k=2; k <= Order; k++)

Polynomial[n] *= pow(C, n);

Section 3 describes the interfacing issues that occur between
multiple DSPs. These issues must be addressed before proceeding
with a CPDF application.

14 SPRA190A

4. Interfacing Multiple TMS320C30 DSPs

The prototype design uses a dual processor architecture that directly
connects two TMS320C30 DSPs via the serial ports in the
handshake mode by tying CLKX to CLKR, FSX to FSR, and DX to D
(see Figure 1).

Figure 1. Interface Connections for Multiple TMS320C30 Architectures

The handshake mode of dual processor operation was chosen over
other modes (for example, serial and parallel operation) for its
simplicity. The handshake mode requires no external hardware
setup and is the most rapid means of splitting up tasks for a dual
processor architecture.

In the handshake mode, data is transmitted from the
TMS320C30 #1 out of the serial port with a single leading 1.
TMS320C30 #2 receives the data and transmits a single 0 back to
the transmitting TMS320C30 #1 to acknowledge it has received the
data. This process is handled automatically. The C code used to
accomplish this task consisted of setting up the serial port global
control register for the handshake mode of operation and statements
to transfer the data across the serial link. Example 5 shows a brief
section of pseudo C code used to accomplish this task.

TMS320C30 #2TMS320C30 #1

CLKX

FSX

FSX

DX

CLKR

FSR

DR

CLKRCLKR

FSR

DR

CLKX

DX

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 15

Example 5. Section of Pseudo Code Used for Dual Processing

Transmit side (Processor 1)

spgr -> controlword = OxOEBC0064 /* handshake mode with 32 bit transfers */
while(1) {
while (!((spgr -> controlword) & OxO2)) /* wait for tx buffer emptv */
coeff-xmtd -> controlword = new-coeff.. /* txmt updated coefficient */

Receive side (Processor 2)

spgr -> controlword = OxOEBC0064; /* handshake mode with 32 bit transfers */
while(1){
while (!((spgr -> controlword) & OxOl)); /* wait for rcv data ready
coeff-rcvd = (rcv-reg -> controlword); /* read new coefficient
}

A single processor architecture was first attempted to operate the
CPDFs, but a certain amount of processor time was allotted to the
calculation of coefficients. A dual architecture was then tried to allow
one processor to stand alone and calculate coefficients while the
other implemented the CPDF. This approach freed up the filtering
processor for filter operations only while the other processor
updated coefficients.

16 SPRA190A

5. Execution of a CPDF TMS320C30 Demonstration

A demonstration program was written to measure the accuracy and
performance of the CPDF algorithms. The coefficients of two
s-domain, all-pole transfer functions were defined: one transfer
function was an implementation of a fourth-order Butterworth low-
pass filter; the other transfer function was an implementation of a
fourth-order Chebychev low-pass filter.

Starting with the Butterworth filter, the transfer function was
converted to a digital filter using the bilinear transform (CPDF)
algorithms. This filter uses a direct form structure to process input
data. The current filter (in analog form) was linearly interpolated
toward the Chebychev filter by a fixed increment. This new analog
filter was then converted to a digital filter and the process continued.
When the interpolation process reached the Chebychev filter, the
filter was interpolated back toward the Butterworth filter by the same
fixed increment. This process continued as long as data came in.

The demonstration program was written completely in C using a
standard editor. The TI TMS320C30 C Compiler and Linker (PC
release 4.60) generated the output file needed for the TI Evaluation
Module. The output file was debugged using the TMS320C30 EVM
C Source Debugger (release 5.0) running on a Gateway 2000 P5-
100 host computer equipped with a TI TMS320C30 Evaluation
Module. The program was checked for accuracy by comparing how
specific variables changed to hand-calculated values. The program
worked as specified after the errors were corrected.

The performance of the direct-form filtering function and the bilinear
transform (CPDF) function were determined with the debuggers clk
command. A breakpoint was set at the start of the filtering function
and at the end of the function. After running to the first breakpoint, a
runb command was executed to run to the next breakpoint. The
? clk command was then executed to determine the number of CPU
clock cycles consumed by the portion of code between the two
breakpointed C statements5. This procedure was repeated for the
bilinear transform function. To determine the requirements as a
function of filter complexity, the order of the filter was changed from
2 to 10 in increments of 1.

The program was compiled for each filter order. The number of CPU
clock cycles was determined for each filter order. CPU clock cycles
were converted to kHz by using the cycle time for the processor.
The TMS320C30 has a 60 ns, single-cycle execution time.
Frequency was calculated by taking the inverse of the product of the
number of CPU clock cycles required and the cycle time. The
resulting data is listed in Table 1 and shown in Figure 2 and Figure
3.

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 17

Table 1. CPDF TMS320C30 Demonstration Results

Order
Filter

(Clocks)
Filter
(kHz)

CPDF
(Clocks)

CPDF
(kHz)

2 134 124.0 1118 14.9

3 171 97.5 2022 8.24

4 208 80.1 2974 5.60

5 245 68.0 3974 4.19

6 282 59.1 5022 3.32

7 319 52.2 6118 2.72

8 356 46.8 7262 2.30

9 393 42:4 8454 1,97

10 430 38.8 9685 1.72

Figure 2. Filter Update Rates

18 SPRA190A

Figure 3. CPDF Update Rates

This demonstration was chosen as one familiar to DSP analysts. In
particular, the fourth-order IIR Chebychev and Butterworth filter H(z)
models were derived and implemented with the typical design cycle
from standard filter algorithms; C source code file generation (see
the Appendix); C file compilation, linking, and debugging;
downloading to a TMS320C30 SBE (single-board computer)
development system; and execution.

Although the usual development board system monitoring validated
program execution, a graphical output of the demonstration program
could not be captured using the TMS320C30 Evaluation Module on
a host PC. For this reason, the demonstration program was
simulated with MATLAB for Windows v4.2cl.

MATLAB was also used to evaluate the frequency response of the
CPDF. The MATLAB Notebook v1.0 program was used to import the
plot generated from the MATLAB simulation program. Figure 4
shows a fourth-order Butterworth plot linearly interpolated toward a
fourth-order Chebychev in five increments.

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 19

Figure 4. Fourth-Order Butterworth Plot

This basic demonstration was extended to variable order as
described earlier in this section to derive the set of CPDF design
curves presented in Figure 2 and Figure 3.

20 SPRA190A

6. Evaluating Design Specifications for CPDF Applications

To understand how to use the design curves, consider the
requirement to design a fifth-order CPDF. Based on the filter update
rate curve shown in Figure 2, the maximum sample rate is 7O kHz.
This implies that the filter bandwidth is limited to approximately
7 kHz, assuming a 10:1 sample-to-signal bandwidth rate.

Alternately, the coefficient update rate is limited to about 4 kHz,
based on the CPDF update rate curve shown in Figure 3. Thus,
coefficients can be updated once for every two sequential outputs. A
multitude of design specification combinations can be evaluated. For
example, if the update rate spec is @ 4 kHz, a coefficient update for
each filter output can be achieved.

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 21

7. Summary and Conclusions

The concept of continuously updating the coefficients of a digital
filter leads to the identification of a broad range of applications,
including high-tech (such as optimal filters, Kalman filters, and
adaptive filters). A dual architecture TMS320C30 configuration has
been proposed, demonstrated, and evaluated for implementing
CPDFs. Based on this presentation, the following conclusions apply:

q The Simons-Harden highly efficient coefficient updating
algorithms provide the basis for feasible real-time CPDFs.

q TMS320C30 architectural issues are addressed, which provides
a means of mapping CPDF algorithms onto dual DSP
configurations.

q CPDF processing requirements were used to formulate design
specification curves with which an analyst can evaluate CPDF
feasibility from complexity parameters and processing speed
requirements.

q A demonstration example was implemented and documented
which validated all CPDF steps.

22 SPRA190A

8. Two Advanced CPDF Applications

This section describes the following applications, both of which are
based on the CPDF concepts described in this application report:

q CPDF optimal filter design procedure6

q Kalman filter example7

8.1 CPDF Optimal Filter Design Procedure

The highly efficient updating algorithms present a new and
interesting CPDF application opportunity. Specifically, optimal H(z)
digital filters can be designed from analog H(s) prototype models to
meet frequency domain criteria in the z-domain while applying
optimization techniques to the s-domain coefficients.

The optimization process used to design an optimal digital filter
begins with the selection of an initial H(s) prototype approximation to
meet a specified error or cost function H(z) criteria in the frequency
domain (for example, a low-pass filter with the cutoff frequency
criteria provided if a low-pass type filter is the targeted design). Then
the highly efficient coefficient updating algorithms are used to derive
the H(z) (for the H(v) prototype) and evaluate the H(z) frequency
response.

In the remote case the cost function evaluation meets the design
criteria, the initial H(s) implies that the corresponding H(z) is the
optimal filter. Otherwise, iterative evaluations of the H(z) cost
functions are evaluated as a function of H(s) coefficient
perturbations so that parameter optimization techniques can be
applied to arrive at an optimal filter.

Robinson applied the method of undetermined coefficients to design
optimal digital filters.6 His optimal filter design process was adapted
to the CPDF architecture with the H(z) filter implemented on one
processor while the other processor performed all transformation
routines, error calculations, and error gradients. Thus, the dual DSP
CPDF architecture provided an efficient and optimal digital filter
design tool.

8.2 A Kalman Filter Example

The Kalman filter falls under the general class of CPDFs. The
Kalman filter is an optimal noise filter suited to a wide range of high-
tech applications and is commonly used in control systems both as a
state estimator and as a noise filter. New high-speed processors
have increased the number of possible real-time Kalman filter
applications.

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 23

As an aid in the application of real-time Kalman filters, Lamb
developed a method to determine the computational requirements of
a filter based on the order of the filter and the number of filter
inputs.7 This method allows the control system analyst to determine
the computational requirements of a proposed real-time Kalman
filter prior to actual filter formulation and testing. More importantly,
the analyst can use the Kalman filter order and the number of filter
inputs as complexity specifications to define a CPDF DSP
architecture suitable for implementing the time-varying or simplified
time-invariant Kalman filter in real time. Thus, the design curves in
Lamb’s thesis provide the means to determine quickly and easily the
feasibility of a prospective Kalman filter application.

24 SPRA190A

9. CPDF C Source Code Files

The demonstration program shown in Example 6 was written
completely in C using a standard editor. The Texas Instruments
TMS320C30 C Compiler and Linker (PC release 4.60) was used to
generate the output file needed for the Texas Instruments
Evaluation Module. The output file was debugged using the
TMS320C30 EVM C Source Debugger (release 5.0) running on a
Gateway 2000 P5-100 host computer equipped with a Texas
Instruments TMS320C30 Evaluation Module. The program was
checked for accuracy by comparing how specific variables changed
to hand-calculated values.

The requirements used to generate the output file were carefully
documented to ensure reproduction (for example, the software titles
with their revisions and hardware components, including the host
computer specifics).

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 25

Example 6. CPDF "C" SOURCE CODE LISTINGS

CPDF C Source File TI.C

/* Function Declarations */
void BilinearTx(double *, double *, int, double);
void GetFilter(double *, double *, double);
void Filter(double *, double *, int, float *, int);

/*Constants */
#define ORDER 4
#define BUFFERSIZE 10

main() {

double C, Input, Output;
double DigitalNum[ORDER+l] = [0), DigitalDen[ORDER+l] = {0};
float Buffer[BUFFERSIZE) = {0};
int BufferSize, n, Continue;
 Continue = 1;
Input = 1;

/*Calculate the constant for the Bilinear Transform, C */
/*Normalized frequency W = 1*/
/*Let the cutoff frequency w = 2*pi*0.75*/
/*Let the sample period T = 1/2 */
/*C = W cot(w T/2) = cot(2*4*atan(l)*O.75/2/2) =
cot(l.5*atan(l))

*/

C = 1/tan(l.5*atan(l));

/**/
/* Main Loop of Program

Get/Update Filter Coefs
Fill input buffer
Filter Buffer
Output Buffer
Repeat Until input buffer is empty */

BufferSize=BUFFERSIZE;
 do {

/*Get Filter Coefficients*/
GetFilter(DigitalNum, DigitalDen, C);

/*Read s samples into buffer. */
for(n = 0; n < BufferSize; n++) i

*(Buffer+n) = Input;
}

/*Filter Buffer
Filter(DigitalNum, DigitalDen, ORDER, Buffer,

BufferSize);

/*Output Buffer*/
for(n = 0; n < BufferSize; n++) {

Output = *(Buffer + n);
}
while(Continue);

}
/*************************End of Main() *************************************

26 SPRA190A

/*************************GetFilter () **************************************
void GetFilter(double *Num, double ’Den, double C) {

/*Analogl is a 4th ORDER ButterWorth normalized LP’/
/*Analogl is a 4th ORDER Chebyl normalized LPI/
/* These polynomials are arranged [aN aN-1... aO } (like Matl ab) */
double AnalogNuml[] ={O, 0, 0, 0, 1};
double AnalogDenl[] = {1, 2.6131259, 3.4142135, 2.6131259, 1};
double AnalogNum2[] ={0, 0, 0, 0, 0.245916};
double AnalogDen2[] = {1, 0.953, 1.454, 0.743, 0.276};
static int first call = 1, direction = 1, i=O;
const int Steps L-- 3;
int n;

/*If this is the first call then load the Analogl Coefs. */
if(first - call)

first - call = 0;
memcpy(Num, AnalogNuml, (ORDER+l)* sizeof (double));
memcpy(Den, AnalogDenl, (ORDER+l)* sizeof (double));

}

/* Otherwise, ramp the past coefs towards Analogl or 2 depending on
direction*/

else {

i += direction;
if(i==Steps) { /* Must be Analog2 */

direction = -1;
memcpy(Num, AnalogNum2, (ORDER+l)* sizeof (double));
memcpy(Den, AnalogDen2, (ORDER+l)* sizeof (double));

}
else if(!i) /* if i = 0 must be Analogl

direction = 1;
memcpy(Num, AnalogNuml, (ORDER+l)* sizeof (double));
memcpy(Den, AnalogDenl, (ORDER+l)* sizeof (double));

}
else { /*Otherwise between Analogl and 2*/

for(n = 0; n <= ORDER; n++) {
 Num[n) =*(AnalogNuml + n) + i * (*(AnalogNum2 + n)-

*(AnalogNuml + n)) /Steps;
*(Den + n) = *(AnalogDenl + n) + i * (*(AnalogDen2+

n) -
*(AnalogDenl + n)) /Steps;

)
}

}
/*Obtain Digital Filter from the analog coefs*/
BilinearTx(Num, Den, ORDER, C);

}
/************************ End of GetFilter () ******************************/

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 27

/************************* Bi1inear Tx () **********************************/
void BilinearTx(double *dNumCoefs, double *dDenCoe fs, int norder, double dC)

{
/* Note: the size of the array is norder + 1 */

int n, m;
float falpha;
double Temp;

/*an <- C’n * an */
*(dDenCoefs + nOrder-1) *= dC;
for (n=O; n<nOrder-1; n++)

*(dDenCoefs+n) *= pow(dc, nOrder-n);

/* E(z) = P(z - 1) */
falpha = -1;
for (n=O; n< nOrder; n++) {

for (m=l; m<=(nOrder-n); m++) {
*(dDenCoefs + m)+= falpha * *(dDenCoefs + m-1);
*(dNumCoefs + m)+= falpha * *(dNumCoefs + m-1);

}
}

/* F(z) = z^N E(l/z) */
/*Compensated for*/

/* G(z) = F(z + 112) */
falpha = (float)0.5;
for (n=O; n< norder; n++) {

for (m=O;.m<=(nOrder-n-1); m++) {
*(dDenCoefs + nOrder-m-l)+= fAlpha * *(dDenCoefs + norder-
m);
*(dNumCoefs + nOrder-m-l)+= fAlpha * *(dNumCoefs + nOrder-
m);

}
}
/* J(z) = z’N*G(l/z) */

/*Compensated for*/
/* D(z) = J(2*z) */
for (n=O; n < norder; n++){

*(dDenCoefs + n) *= pow(2,nOrder-n);
*(dNumCoefs + n) *= pow(2,nOrder-n);

}

/*Adjust coefs so a(O) = 1*/
Temp = *(dDenCoefs);
if(Temp != 1.) {

for (n=O; n<=nOrder; n++) {
*(dDenCoefs + n) /= Temp;
*(dNumCoefs + n) /= Temp;

}
}

}
/*************************End of Bilinear Tx () ****************************/

28 SPRA190A

/************************ Filter () **/
void Filter(double *b, double *a, int Order, float *Buffer,

int BufferSize) f

static double History[ORDER+1]; /* Use static so the History is
remebered

between

calls */
float temp;
int n, k;

for(n=O; n < BufferSize; n++) {
/*w(n) = x(n) - sum(k=l to N) of ak * w(n-k) */
temp = *(Buffer+n);
for(k=l; k<=Order; k++)

temp -= *(a + k) * History[k – 1};

/*Only need to keep N Histor y's {w(n - k)'s},
so shift them all down one
to reduce memory requirements, rather than keeping them
all.
All the w(n)'s that is */

for(k=Order; k > 0; k--)
History[k) = History[k – 1];

History[O] = temp;

/*Use the same buffer for input and output*/
*(Buffer+n) = 0;
/* y(n) = sum(k=O to L) of bk * w(n - k) */
for(k = 0; k<=Order; k++)

*(Buffer+n) += *(b+k) * History[k);
}

}
/**************************End of Filter () ********************************/

Implementing Continuously Programmable Digital Filters with the TMS320C30/40 DSP 29

References

1 Simons, Jr., F.O.; George, A.D.; Medina. J.; and Freatfiv, B.A.; "Design and Simulation of
Continuously Programmable Digital Filters", Proceedings Of the 26th Southeastern Symposium on
System Theory; University of Ohio; Athens, Ohio; March 20-22, 1994.

2 Simons, Jr., F.O. and Harden, R.C.; "An Optimized Simulation of Dynamic Continuous Models",
Proceedings of the 96th Annual ASEE Conference, Portland, Oregon, June 19-23, 1988.

3 D’Azzp, J.J. and Houpis, L.H., Feedback Control Systems Analysis and Synthesis. 2nd edition.
McGraw-Hill Book Co.. 1966

4 Medina. J., unpublished MATLAB work, HCS Research Lab, FAMU-FSU College of Engineering,
1994.

5 Edited, TMS320C3x C Source Debuggers Guide, Texas Instruments, Inc.. 1993.

6 Robinson. A., "The Design of Optimal Digital Filters Directly From Analog Prototypes", M.S.
Thesis, FAMU-FSU College of Engineering, Tallahassee, Florida. 1996.

7 Lamb, J.M., "Implementation of Kalman Filters on Microprocessor-based Digital Signal
Processors". M.A. Thesis, FAMU-FSU College of Engineering, Tallahassee, Florida, 1995.

