
��������	

User’s Guide

1996 Digital Signal Processing Solutions



SPRU063BPrinted in U.S.A., March, 1996
2564090-9761 revision C



1996

U
s
e
r’s

�
�
�
�
�
�
�
�
	

G
u

id
e



�	
������

������ ����

SPRU063

March 1996

Printed on Recycled Paper



IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to

discontinue any semiconductor product or service without notice, and advises its customers to

obtain the latest version of relevant information to verify, before placing orders, that the

information being relied on is current.

TI warrants performance of its semiconductor products and related software to current

specifications in accordance with TI’s standard warranty. Testing and other quality control

techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing

of all parameters of each device is not necessarily performed, except those mandated by

government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,

or systems. Use of TI product in such applications requires the written approval of the

appropriate TI officer. Certain applications using semiconductor devices may involve potential

risks of personal injury, property damage, or loss of life. In order to minimize these risks,

adequate design and operating safeguards should be provided by the customer to minimize

inherent or procedural hazards. Inclusion of TI products in such applications is understood to be

fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software

performance, or infringement of patents or services described herein. Nor does TI warrant or

represent that any license, either express or implied, is granted under any patent right, copyright,

mask work right, or other intellectual property right of TI covering or relating to any combination,

machine, or process in which such semiconductor products or services might be or are used.

Copyright   1996, Texas Instruments Incorporated



Preface

Read This First

About This Manual

This user’s guide serves as a reference book for the TMS320C40 and

TMS320C44 digital signal processors. Throughout the book, all references to

the TMS320C4x apply to both devices, except when otherwise noted.

How to Use This Manual

The following table summarizes the information contained in this user’s guide:

If you are looking for

information about: Turn to these chapters:

Addressing modes Chapter 6, Addressing Modes

ARAUs Chapter 2, Architectural Overview

Bootloader Chapter 10, The Bootloader

Bus Structure Chapter 2, Architectural Overview

Chapter 9, External Bus Operation

Cache Chapter 4, Memory and the Instruction Cache

Communication Ports Chapter 12, Communication Ports

CPU Architecture Chapter 2, Architectural Overview

Chapter 3, CPU Registers

DMA Chapter 11, The DMA Coprocessor

Data Formats Chapter 5, Data Formats and Floating-Point Op-
eration

Delayed Branches Chapter 7, Program Flow Control

Instruction set Chapter 14, Assembly Language Instructions



Style and Symbol Conventions

iv  

If you are looking for

information about: Turn to these chapters:

Interrupts Chapter 7, Program Flow Control

Memory Chapter 2, Architectural Overview

Chapter 4, Memory and the Instruction Cache

Peripherals Chapter 12, Communication Ports

Chapter 11, The DMA Coprocessor

Chapter 13, Timers

Overview of the ’C4x Chapter 1, Introduction

Program control Chapter 7, Program Flow Control

Pipeline Chapter 8, Pipeline Operation

Registers Chapter 3, CPU Registers

Chapter 12, Communication Ports

Chapter 11, The DMA Coprocessor

Chapter 13, Timers

Repeat Mode Chapter 7, Program Flow Control

Reset Chapter 7, Program Flow Control

Timers Chapter 13, Timers

Traps Chapter 7, Program Flow Control

Style and Symbol Conventions

This document uses the following conventions:

� Program listings, program examples, file names, and symbol names are

shown in a special font. Examples use a bold version of the special font

for emphasis. Here is a sample program listing segment:

*

LOOP1 RPTB MAX

CMPF *AR0,R0 ;Compare number to the maximum

MAX LDFLT *AR0,R0 ;If greater, this is a new max

B NEXT

LOOP2 RPTB MIN

CMPF *AR0++(1),R0 ;Compare number to the minimum

MIN LDFLT *–AR0(1),R0 ;If smaller, this is new minimum

NEXT .

.



 Style and Symbol Conventions

v  Read This First

� In syntax descriptions, the instruction is in bold face and the parameters

are in italic face. Portions of a syntax that are in bold face should be

entered as shown; portions of a syntax that are in italic face describe the

type of information that should be entered. Here is an example of an

instruction:

CMPF3 src2,src1

Notice that although the instruction mnemonic (CMPF3 in this example) is

in capital letters, the ’C4x assembler is not case sensitive — it can

assemble mnemonics entered in either upper or lower case.

CMPF3 is the instruction mnemonic. This instruction has two parameters,

indicated by src2 and src1.

� Square brackets ( [ and ] ) identify an optional parameter. If you use an

optional parameter, you must specify the information within the brackets;

however, you don’t enter the brackets themselves. Here’s an example of

an instruction that has an optional parameter:

[label] LDP src [,DP]

The LDP instruction is shown with two parameters; one is optional. The

first parameter, src, is required. The second parameter, DP, and the label,

are optional. As this syntax shows, if you use the optional second

parameter, you must precede it with a comma.

� Throughout this book MSB indicates the most significant bit and LSB

indicates the least significant bit. MS indicates the most significant byte

and LS indicates the least significant byte.



Information About Cautions and Warnings

vi  

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection.

Please read each caution and warning carefully.



 Related Documentation From Texas Instruments

vii  Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,

please identify the book by its title and literature number.

TMS320C4x General-Purpose Applications User’s Guide (literature
number SPRU159) describes software and hardware applications for
the ’C4x processor. Also includes development support information,
parts lists, and XDS510 emulator design considerations.

TMS320C4x Parallel Processing Development System Technical
Reference (literature number SPRU075) describes the TMS320C4x
parallel processing system, a system with four C4xs with shared and
distributed memory.

Parallel Processing with the TMS320C4x (literature number SPRA031)

describes parallel processing and how the ’C4x can be used in parallel

processing. Also provides sample parallel processing applications.

TMS320 Floating-Point DSP Assembly Language Tools User’s Guide

(literature number SPRU035) describes the assembly language tools

(assembler, linker, and other tools used to develop assembly language

code), assembler directives, macros, common object file format, and

symbolic debugging directives for the ’C3x and ’C4x generations of

devices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide
(literature number SPRU034) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the ’C3x and
’C4x generations of devices.

TMS320C4x C Source Debugger User’s Guide (literature number

SPRU054) tells you how to invoke the ’C4x emulator and simulator

versions of the C source debugger interface. This book discusses

various aspects of the debugger interface, including window

management, command entry, code execution, data management, and

breakpoints. It also includes a tutorial that introduces basic debugger

functionality.

TMS320C4x Technical Brief (literature number SPRU076) gives a
condensed overview of the ’C4x DSP and its development tools. It also
lists TMS320C4x third parties.



Related Articles and Books

viii  

TMS320 Family Development Support Reference Guide (literature number
SPRU011) describes the ’320 family of digital signal processors and the
various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also

lists related documentation, outlines seminars and the university
program, and gives factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that supply various
products that serve the family of ’320 digital signal processors—software
and hardware development tools, speech recognition, image

processing, noise cancellation, modems, etc.

TMS320 DSP Designer’s Notebook: Volume 1 (SPRT125). Presents

solutions to common design problems using ’C2x, ’C3x, ’C4x, ’C5x, and

other TI DSPs.

Related Articles and Books

A wide variety of related documentation is available on digital signal

processing. These references fall into one of the following application

categories:

� General-Purpose DSP

� Graphics/Imagery

� Speech/Voice

� Control

� Multimedia

� Military

� Telecommunications

� Automotive

� Consumer

� Medical

� Development Support

In the following list, references appear in alphabetical order according to

author. The documents contain beneficial information regarding designs,

operations, and applications for signal-processing systems; all of the

documents provide additional references. Texas Instruments strongly

suggests that you refer to these publications.

General-Purpose DSP:

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY:

McGraw-Hill Company, Inc., 1979.



 Related Articles and Books

ix  Read This First

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1974.

3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New

York, NY: John Wiley and Sons, Inc., 1984.

4) Chassaing, R., Horning, D.W., “Digital Signal Processing with Fixed and

Floating-Point Processors.” CoED, USA, Volume 1, Number 1, pages 1–4,

March 1991.

5) Defatta, David J., Joseph G. Lucas, and William S. Hodgkiss, Digital

Signal Processing: A System Design Approach, New York: John Wiley,

1988.

6) Erskine, C., and S. Magar, “Architecture and Applications of a

Second-Generation Digital Signal Processor.” Proceedings of IEEE

International Conference on Acoustics, Speech, and Signal Processing,

USA, 1985.

7) Essig, D., C. Erskine, E. Caudel, and S. Magar, “A Second-Generation

Digital Signal Processor.” IEEE Journal of Solid-State Circuits, USA,

Volume SC–21, Number 1, pages 86–91, February 1986.

8) Frantz, G., K. Lin, J. Reimer, and J. Bradley, “The Texas Instruments

TMS320C25 Digital Signal Microcomputer.” IEEE Microelectronics, USA,

Volume 6, Number 6, pages 10–28, December 1986.

9) Gass, W., R. Tarrant, T. Richard, B. Pawate, M. Gammel, P. Rajasekaran,

R. Wiggins, and C. Covington, “Multiple Digital Signal Processor

Environment for Intelligent Signal Processing.” Proceedings of the IEEE,

USA, Volume 75, Number 9, pages 1246–1259, September 1987.

10) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,

NY: McGraw-Hill Company, Inc., 1969.

11) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1977.

12) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal

Processing, New York, NY: IEEE Press, 1979.

13) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA:

Kluwer Academic Publishers, 1986.

14) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using

the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

15) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,

Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.



Related Articles and Books

x  

16) Lin, K., G. Frantz, and R. Simar, Jr., “The TMS320 Family of Digital Signal

Processors.” Proceedings of the IEEE, USA, Volume 75, Number 9, pages

1143–1159, September 1987.

17) Lovrich, A., Reimer, J., “An Advanced Audio Signal Processor.” Digest of

Technical Papers for 1991 International Conference on Consumer

Electronics, June 1991.

18) Magar, S., D. Essig, E. Caudel, S. Marshall and R. Peters, “An NMOS

Digital Signal Processor with Multiprocessing Capability.” Digest of IEEE

International Solid-State Circuits Conference, USA, February 1985.

19) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:

Carleton University, 1983.

20) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

21) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975 and 1988.

22) Oppenheim, A.V., A.N. Willsky, and I.T. Young, Signals and Systems,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

23) Papamichalis, P.E., and C.S. Burrus, “Conversion of Digit-Reversed to

Bit-Reversed Order in FFT Algorithms.” Proceedings of ICASSP 89, USA,

pages 984–987, May 1989.

24) Papamichalis, P., and R. Simar, Jr., “The TMS320C30 Floating-Point

Digital Signal Processor.” IEEE Micro Magazine, USA, pages 13–29,

December 1988.

25) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John

Wiley and Sons, Inc., 1987.

26) Peterson, C., Zervakis, M., Shehadeh, N., “Adaptive Filter Design and

Implementation Using the TMS320C25 Microprocessor.” Computers in

Education Journal, USA, Volume 3, Number 3, pages 12–16,

July–September 1993.

27) Prado, J., and R. Alcantara, “A Fast Square-Rooting Algorithm Using a

Digital Signal Processor.” Proceedings of IEEE, USA, Volume 75, Number

2, pages 262–264, February 1987.

28) Rabiner, L.R. and B. Gold, Theory and Applications of Digital Signal

Processing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

29) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to

Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,

Volume D, page 1678, April 1988.



 Related Articles and Books

xi  Read This First

30) Simar, Jr., R., T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Blalock, “A

40 MFLOPS Digital Signal Processor: the First Supercomputer on a Chip.”

Proceedings of ICASSP 87, USA, Catalog Number 87CH2396–0, Volume

1, pages 535–538, April 1987.

31) Simar, Jr., R., and J. Reimer, “The TMS320C25: a 100 ns CMOS VLSI

Digital Signal Processor.” 1986 Workshop on Applications of Signal

Processing to Audio and Acoustics, September 1986.

32) Texas Instruments, Digital Signal Processing Applications with the

TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

33) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide

to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Graphics/Imagery:

1) Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

2) Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

3) Papamichalis, P.E., “FFT Implementation on the TMS320C30.”
Proceedings of ICASSP 88, USA, Volume D, page 1399, April 1988.

4) Pratt, William K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

5) Reimer, J., and A. Lovrich, “Graphics with the TMS32020.” WESCON/85
Conference Record, USA, 1985.

Speech/Voice:

1) DellaMorte, J., and P. Papamichalis, “Full-Duplex Real-Time
Implementation of the FED-STD-1015 LPC-10e Standard V.52 on the
TMS320C25.” Proceedings of SPEECH TECH 89, pages 218–221, May
1989.

2) Frantz, G.A., and K.S. Lin, “A Low-Cost Speech System Using the
TMS320C17.” Proceedings of SPEECH TECH ’87, pages 25–29, April
1987.

3) Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

4) Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

5) Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

6) Papamichalis, P., and D. Lively, “Implementation of the DOD Standard
LPC–10/52E on the TMS320C25.” Proceedings of SPEECH TECH ’87,
pages 201–204, April 1987.



Related Articles and Books

xii  

7) Pawate, B.I., and G.R. Doddington, “Implementation of a Hidden Markov
Model-Based Layered Grammar Recognizer.” Proceedings of ICASSP
89, USA, pages 801–804, May 1989.

8) Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

9) Reimer, J.B. and K.S. Lin, “TMS320 Digital Signal Processors in Speech
Applications.” Proceedings of SPEECH TECH ’88, April 1988.

10) Reimer, J.B., M.L. McMahan, and W.W. Anderson, “Speech Recognition
for a Low-Cost System Using a DSP.” Digest of Technical Papers for 1987
International Conference on Consumer Electronics, June 1987.

Control:

1) Ahmed, I., “16-Bit DSP Microcontroller Fits Motion Control System

Application.” PCIM, October 1988.

2) Ahmed, I., “Implementation of Self Tuning Regulators with TMS320

Family of Digital Signal Processors.” MOTORCON ’88, pages 248–262,

September 1988.

3) Ahmed, I., and S. Lindquist, “Digital Signal Processors: Simplifying

High-Performance Control.” Machine Design, September 1987.

4) Ahmed, I., and S. Meshkat, “Using DSPs in Control.” Control Engineering,

February 1988.

5) Allen, C. and P. Pillay, “TMS320 Design for Vector and Current Control of

AC Motor Drives.” Electronics Letters, UK, Volume 28, Number 23, pages

2188–2190, November 1992.

6) Bose, B.K., and P.M. Szczesny, “A Microcomputer-Based Control and

Simulation of an Advanced IPM Synchronous Machine Drive System for

Electric Vehicle Propulsion.” Proceedings of IECON ’87, Volume 1, pages

454–463, November 1987.

7) Hanselman, H., “LQG-Control of a Highly Resonant Disc Drive Head

Positioning Actuator.” IEEE Transactions on Industrial Electronics, USA,

Volume 35, Number 1, pages 100–104, February 1988.

8) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel

Dekker, Inc., 1981.

9) Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1981.

10) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and

Winston, Inc., 1980.



 Related Articles and Books

xiii  Read This First

11) Lovrich, A., G. Troullinos, and R. Chirayil, “An All-Digital Automatic Gain

Control.” Proceedings of ICASSP 88, USA, Volume D, page 1734, April

1988.

12) Matsui, N. and M. Shigyo, “Brushless DC Motor Control Without Position

and Speed Sensors.” IEEE Transactions on Industry Applications, USA,

Volume 28, Number 1, Part 1, pages 120–127, January–February 1992.

13) Meshkat, S., and I. Ahmed, “Using DSPs in AC Induction Motor Drives.”

Control Engineering, February 1988.

14) Panahi, I. and R. Restle, “DSPs Redefine Motion Control.” Motion Control

Magazine, December 1993.

15) Phillips, C., and H. Nagle, Digital Control System Analysis and Design,

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Multimedia:

1) Reimer, J., “DSP-Based Multimedia Solutions Lead Way Enhancing Audio

Compression Performance.” Dr. Dobbs Journal, December 1993.

2) Reimer, J., G. Benbassat, and W. Bonneau Jr., “Application Processors:

Making PC Multimedia Happen.” Silicon Valley PC Design Conference,

July 1991.

Military:

1) Papamichalis, P., and J. Reimer, “Implementation of the Data Encryption

Standard Using the TMS32010.” Digital Signal Processing Applications,

1986.

Telecommunications:

1) Ahmed, I., and A. Lovrich, “Adaptive Line Enhancer Using the

TMS320C25.” Conference Records of Northcon/86, USA, 14/3/1–10,

September/October 1986.

2) Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution

Using DSP Processors for the Implementation of an ADPCM Transcoder.”

Proceedings of GLOBECOM ’89, pages 1267–1273, November 1989.

3) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice

Echo Canceller on a SINGLE TMS32020.” Proceedings of ICASSP 86,

USA, Catalog Number 86CH2243–4, Volume 1, pages 429–432, April

1986.

4) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice

Echo Canceller on a Single TMS32020.” Proceedings of IEEE



Related Articles and Books

xiv  

International Conference on Acoustics, Speech and Signal Processing,

USA, 1986.

5) Lovrich, A., and J. Reimer, “A Multi-Rate Transcoder.” Transactions on

Consumer Electronics, USA, November 1989.

6) Lovrich, A. and J. Reimer, “A Multi-Rate Transcoder.” Digest of Technical

Papers for 1989 International Conference on Consumer Electronics, June

7–9, 1989.

7) Lu, H., D. Hedberg, and B. Fraenkel, “Implementation of High-Speed

Voiceband Data Modems Using the TMS320C25.” Proceedings of

ICASSP 87, USA, Catalog Number 87CH2396–0, Volume 4, pages

1915–1918, April 1987.

8) Mock, P., “Add DTMF Generation and Decoding to DSP– µP Designs.”

Electronic Design, USA, Volume 30, Number 6, pages 205–213, March

1985.

9) Reimer, J., M. McMahan, and M. Arjmand, “ADPCM on a TMS320 DSP

Chip.” Proceedings of SPEECH TECH 85, pages 246–249, April 1985.

10) Troullinos, G., and J. Bradley, “Split-Band Modem Implementation Using

the TMS32010 Digital Signal Processor.” Conference Records of

Electro/86 and Mini/Micro Northeast, USA, 14/1/1–21, May 1986.

Automotive:

1) Lin, K., “Trends of Digital Signal Processing in Automotive.” International

Congress on Transportation Electronic (CONVERGENCE ’88), October

1988.

Consumer:

1) Frantz, G.A., J.B. Reimer, and R.A. Wotiz, “Julie, The Application of DSP

to a Product.” Speech Tech Magazine, USA, September 1988.

2) Reimer, J.B., and G.A. Frantz, “Customization of a DSP Integrated Circuit

for a Customer Product.” Transactions on Consumer Electronics, USA,

August 1988.

3) Reimer, J.B., P.E. Nixon, E.B. Boles, and G.A. Frantz, “Audio

Customization of a DSP IC.” Digest of Technical Papers for 1988

International Conference on Consumer Electronics, June 8–10 1988.

Medical:

1) Knapp and Townshend, “A Real-Time Digital Signal Processing System

for an Auditory Prosthesis.” Proceedings of ICASSP 88, USA, Volume A,

page 2493, April 1988.



 Related Articles and Books

xv  Read This First

2) Morris, L.R., and P.B. Barszczewski, “Design and Evolution of a

Pocket-Sized DSP Speech Processing System for a Cochlear Implant and

Other Hearing Prosthesis Applications.” Proceedings of ICASSP 88, USA,

Volume A, page 2516, April 1988.

Development Support:

1) Mersereau, R., R. Schafer, T. Barnwell, and D. Smith, “A Digital Filter

Design Package for PCs and TMS320.” MIDCON/84 Electronic Show and

Convention, USA, 1984.

2) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to

Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,

Volume 3, pages 1678–1681, April 1988.



If You Need Assistance.../Trademarks

xvi  

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about

Texas Instruments Digital Signal

Processing (DSP) products

Write to:

Texas Instruments Incorporated

Market Communications Manager

MS 736

P.O. Box 1443

Houston, Texas 77251–1443

Order Texas Instruments

documentation

Call the TI Literature Response Center:

(800) 477–8924

Ask questions about product

operation or report suspected

problems

Contact the DSP hotline:

Phone: (713) 274–2320

FAX: (713) 274–2324

Electronic Mail: 4389750@mcimail.com.

Obtain the source code in this

user’s guide.

Call the TI BBS:

(713) 274–2323

Ftp from:

ftp.ti.com

log in as user ftp

cd to /mirrors/tms320bbs

Visit TI online, including

TI&ME�, your own customized

web page.

Point your browser at:

http://www.ti.com

Report mistakes or make com-

ments about this or any other TI

documentation.

Send electronic mail to:

comments@books.sc.ti.com

Send printed comments to:

Texas Instruments Incorporated

Technical Publications Mgr., MS 702

P.O. Box 1443

Houston, Texas 77251–1443

Trademarks

MS is a registered trademark of Microsoft Corp.

MS-Windows is a registered trademark of Microsoft Corp.

MS-DOS is a registered trademark of Microsoft Corp.

OS/2 is a trademark of International Business Machines Corp.

Sun and SPARC are trademarks of Sun Microsystems, Inc.

VAX and VMS are trademarks of Digital Equipment Corp.



 Contents

xvii

Contents

1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introduces the TMS320 family and the TMS320C4x

1.1 TMS320C4x Devices 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1.1 The TMS320C40 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1.2 The TMS320C44 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1.3 The TMS320LC40 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Key Features of the TMS320C4x 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3 TMS320C40 and TMS320C44 Device Comparison 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Architectural Overview 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Briefly describes the architecture of the CPU, buses, interrupts, and peripherals of the ’C4x

2.1 Central Processing Unit (CPU) 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.1 Floating-Point/Integer Multiplier 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.2 Arithmetic Logic Unit (ALU) and Internal Buses 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.3 Auxiliary Register Arithmetic Units (ARAUs) 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.4 CPU Primary Register File 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.5 CPU Expansion Register File 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Memory Organization 2-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.1 RAM, ROM, and Cache 2-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.2 Memory Maps 2-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.3 Memory Aliasing (’C44 only) 2-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.4 Memory Addressing Modes 2-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Internal Bus Operation 2-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 External Bus Operation 2-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Interrupts 2-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6 Peripherals 2-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6.1 Communication Ports 2-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6.2 Direct Memory Access (DMA) Coprocessor 2-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6.3 Timers 2-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xviii  

3 CPU Registers 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lists and describes the contents of the CPU primary register file and the CPU expansion
register file

3.1 CPU Primary Register File 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.1 Extended-Precision Registers (R0–R11) 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.2 Auxiliary Registers (AR0–AR7) 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.3 Data-Page Pointer (DP) 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.4 Index Registers (IR0, IR1) 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.5 Block-Size Register (BK) 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.6 System Stack Pointer (SP) 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.7 Status Register (ST) 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.8 DMA Coprocessor Interrupt Enable Register (DIE) 3-8. . . . . . . . . . . . . . . . . . . . . . . 

3.1.9 CPU Internal Interrupt Enable Register (IIE) 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.10 IIOF Flag Register (IIF) 3-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.11 Block-Repeat (RS, RE) and Repeat-Count (RC) Registers 3-16. . . . . . . . . . . . . . . 

3.1.12 Program Counter (PC) 3-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.13 Reserved Bits and Compatibility 3-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 CPU Expansion Register File 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Memory and the Instruction Cache 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes the structure of the memory map and the architecture of the instruction cache

4.1 Memory Map 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Peripheral Bus Memory Map 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.1 Local and Global Memory Interface Control Registers 4-6. . . . . . . . . . . . . . . . . . . . 

4.2.2 Analysis Module Registers 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.3 Timer Registers 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.4 Communication Port Memory Map 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.5 DMA Coprocessor Registers 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Instruction Cache 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.1 Instruction Cache Architecture 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.2 Cache Control Bits 4-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.3 Using the Cache 4-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3.4 The LRU Cache Algorithm 4-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Data Formats and Floating-Point Operation 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes integer and floating-point data formats and discusses how some mathematical
operations are performed on floating-point numbers

5.1 Signed-Integer Formats 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.1.1 Short Integer Format 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.1.2 Single-Precision Integer Format 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Unsigned-Integer Formats 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2.1 Short Unsigned-Integer Format 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2.2 Single-Precision Unsigned-Integer Format 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Contents

xix  Contents

5.3 Floating-Point Formats 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3.1 Short Floating-Point Format 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3.2 Single-Precision Floating-Point Format 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3.3 Extended-Precision Floating-Point Format 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3.4 Determining the Decimal Equivalent of a Floating-Point Number 5-8. . . . . . . . . . . 

5.3.5 Conversion Between Floating-Point Formats 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Floating-Point Conversion (IEEE Std. 754) 5-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4.1 Converting IEEE Format to Twos-Complement ’C4x Floating-Point Format 5-14. 

5.4.2 Converting Twos-Complement ’C4x Floating-Point Format to IEEE Format 5-17. 

5.5 Floating-Point Multiplication 5-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.6 Floating-Point Addition and Subtraction 5-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.7 Normalization (NORM Instruction) 5-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.8 Rounding (RND Instruction) 5-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.9 Floating-Point-to-Integer Conversion (FIX Instruction) 5-31. . . . . . . . . . . . . . . . . . . . . . . . . . 

5.10 Integer-to-Floating-Point Conversion (FLOAT Instruction) 5-33. . . . . . . . . . . . . . . . . . . . . . . 

5.11 Reciprocal (RCPF Instruction) 5-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.11.1 Reciprocal Algorithm 5-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.12 Reciprocal Square Root (RSQRF Instruction) 5-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Newton-Raphson Algorithm 5-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Addressing Modes 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes addressing modes, using address registers, and stack managements in the ’C4x

6.1 Addressing Types 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Register Addressing 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Direct Addressing 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 Indirect Addressing 6-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.5 Immediate Addressing 6-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.6 PC-Relative Addressing 6-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7 Encoding of Addressing Modes 6-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7.1 General Addressing Modes 6-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7.2 Three-Operand Addressing Modes 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7.3 Parallel Addressing Modes 6-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7.4 Conditional-Branch Addressing Modes 6-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.8 Circular Addressing 6-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.9 Bit-Reversed Addressing 6-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 Program Flow Control 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes software and hardware features that control how a program flows

7.1 Repeat Mode 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.1 Control Bits 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.2 Repeat-Mode Operation 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.3 RPTB and RPTBD Instructions 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.4 RPTS Instruction 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.5 Repeat Mode Restriction Rules 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.1.6 RC Register Value After Repeat Mode Completes 7-7. . . . . . . . . . . . . . . . . . . . . . . 

7.1.7 Nesting Block Repeats 7-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xx  

7.2 Delayed Branches 7-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2.1 Delayed Branches Without Annulling 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2.2 Delayed Branches With Annulling 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Calls, Traps, Branches, Jumps, and Returns 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4 Interrupts 7-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4.1 Interrupt Vector Table and Prioritization 7-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4.2 CPU Interrupt Control Bits 7-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4.3 Interrupt Processing 7-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4.4 CPU Interrupt Latency 7-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.4.5 External Interrupts 7-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5 Traps 7-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5.1 Initialization of Traps and Interrupts 7-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5.2 Operation of Traps 7-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5.3 Overlapping the Trap and Interrupt Vector Tables 7-25. . . . . . . . . . . . . . . . . . . . . . . 

7.6 DMA Interrupts 7-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6.1 DMA Interrupt Control Bits 7-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6.2 DMA Interrupt Processing 7-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6.3 CPU/DMA Interrupt Interaction 7-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.7 Reset 7-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.7.1 Reset’s Effects on Pin States 7-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.7.2 Reset Vector Location 7-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.7.3 Additional Reset Operations 7-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8 Pipeline Operation 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes and explains the operation of the four pipeline stages in the ’C4x CPU

8.1 Pipeline Structure 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2 Pipeline Conflicts 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2.1 Branch Conflicts 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2.2 Register Conflicts 8-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2.3 Memory Conflicts 8-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.3 Memory Accesses for Maximum Performance 8-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.4 Clocking of Memory Accesses 8-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.4.1 Program Fetches 8-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.4.2 Data Loads and Stores 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9 External Bus Operation 9-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes the features and functions of the two ’C4x external buses

9.1 Overview 9-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.2 Memory Interface Signals 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.3 Memory-Interface Control Registers 9-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.3.1 Mapping Addresses to Strobes 9-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.3.2 Page Size Operation 9-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.4 Programmable Wait States 9-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.5 Memory Interface Timing 9-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Contents

xxi  Contents

9.6 Using Enable Signals to Control Signal Groups 9-38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.7 Interlocked Operations 9-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.7.1 LDFI and LDII 9-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.7.2 STFI and STII 9-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.7.3 SIGI 9-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.7.4 Interlocked Examples 9-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.7.5 Bus-Lock Pins and Bus Timing 9-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.8 IACK Timing 9-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10 The Bootloader 10-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes ’C4x bootloader operation and also lists the bootloader code

10.1 Bootloader Description 10-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.2 Mode Selection 10-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.3 Bootloading Sequence 10-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.4 Bootloading from External Memory (Examples) 10-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.5 Bootloading from a Communication Port (Examples) 10-16. . . . . . . . . . . . . . . . . . . . . . . . . . 

10.6 Modifying the IIOFx Pins After Bootloading 10-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.7 The Bootloader Program 10-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11 The DMA Coprocessor 11-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes and discusses operation of the ’C4x DMA coprocessor

11.1 Introduction 11-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.2 DMA Functional Description 11-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.2.1 DMA Basic Operation 11-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.3 DMA Registers 11-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.3.1 Control Register 11-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.3.2 Address and Index Registers 11-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.3.3 Transfer Counter and Auxiliary Transfer Counter Registers 11-16. . . . . . . . . . . . . 

11.3.4 Link Pointer and Auxiliary Link-Pointer Registers 11-17. . . . . . . . . . . . . . . . . . . . . . 

11.4 DMA Unified Mode 11-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.5 DMA Split Mode 11-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.6 DMA Internal Priority Schemes 11-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.6.1 Fixed Priority Scheme 11-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.6.2 Rotating Priority Scheme 11-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.6.3 Split Mode and DMA Channel Arbitration 11-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.7 CPU and DMA Coprocessor Arbitration 11-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.8 Data Transfer Modes 11-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.8.1 Running in TRANSFER MODE = 002 11-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.8.2 Running in TRANSFER MODE = 012 11-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.8.3 Running in TRANSFER MODE = 102 (Autoinitialization 1) 11-29. . . . . . . . . . . . . . 

11.8.4 Running in TRANSFER MODE = 112 (Autoinitialization 2) 11-31. . . . . . . . . . . . . . 



Contents

xxii  

11.9 Autoinitialization 11-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9.1 Unified Mode 11-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9.2 Split Mode 11-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9.3 Incrementing the Link Pointer 11-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9.4 Synchronization 11-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9.5 Effect on DMA Control Register Bits 11-38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9.6 Consecutive Autoinitializations 11-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.10 DMA and Interrupts 11-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.10.1 Interrupts and Synchronization of DMA Channels 11-43. . . . . . . . . . . . . . . . . . . . . . 

11.10.2 Synchronization Mode Bits 11-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.11 DMA Memory Transfer Timing 11-51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.11.1 Single DMA Memory Transfer Timing 11-51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.11.2 DMA Transfer Rate in Synchronization Mode 11-55. . . . . . . . . . . . . . . . . . . . . . . . . 

12 Communication Ports 12-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes and provides tips for using the communication ports

12.1 Features 12-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.2 Operational Overview 12-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.2.1 Token Transfer Operation 12-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.2.2 Data Transfer Operation 12-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.3 Memory Map and Registers 12-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.3.1 Communication-Port Control Register (CPCR) 12-8. . . . . . . . . . . . . . . . . . . . . . . . . 

12.3.2 Input-Port Register 12-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.3.3 Output-Port Register 12-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.3.4 Communication-Port Software Reset Register 12-10. . . . . . . . . . . . . . . . . . . . . . . . . 

12.4 Port Arbitration Units (PAUs) 12-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.5 Halting of Input and Output FIFOs 12-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.5.1 Input FIFO Halt Operation 12-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.5.2 Output FIFO Halt Operation 12-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.6 Coordinating Communication Ports With the CPU and DMA Coprocessor 12-17. . . . . . . . 

12.7 Token Transfer Operation 12-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.8 Word Transfer Operation 12-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CSTRB Width Restrictions 12-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.9 Synchronizers 12-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.10 Module Reset 12-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.11 Tips for Using Communication Ports 12-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13 Timers 13-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Describes and discusses operation of the two ’C4x on-chip timers

13.1 Overview of the Timers 13-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.2 Timer Pins 13-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Contents

xxiii  Contents

13.3 Timer Control Registers 13-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.3.1 Timer Control Register 13-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.3.2 Timer Period Register 13-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.3.3 Timer Counter Register 13-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.3.4 Boundary Conditions in the Control Registers 13-8. . . . . . . . . . . . . . . . . . . . . . . . . . 

13.4 Timer Pulse Generation 13-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.5 Timer Interrupts 13-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.5.1 Timer Interrupts and Their Vectors 13-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.5.2 Timer Interrupt Operation 13-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.5.3 Considerations When Using a Timer Interrupt 13-12. . . . . . . . . . . . . . . . . . . . . . . . . 

13.6 Selecting CLKSRC and FUNC Values 13-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.6.1 CLKSRC = 1 and FUNC = 0 13-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.6.2 CLKSRC=1 and FUNC=1 13-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.6.3 CLKSRC = 0 and FUNC = 0 13-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.6.4 CLKSRC = 0 and FUNC = 1 13-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.7 Using TCLKx as General-Purpose I/O Pins 13-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.8 Configuring a Timer 13-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14 Assembly Language Instructions 14-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lists the entire instruction set for the ’C4x

14.1 Instruction Set 14-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.1 Load-and-Store Instructions 14-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.2 Two-Operand Instructions 14-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.3 Three-Operand Instructions 14-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.4 Program Control Instructions 14-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.5 Interlocked Operations Instructions 14-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.6 Parallel Operations Instructions 14-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.1.7 Illegal Instructions 14-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.2 Condition Codes and Flags 14-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.3 Individual Instruction Descriptions 14-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.3.1 Symbols and Abbreviations 14-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.3.2 Optional Assembler Syntaxes 14-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.3.3 Individual Instruction Descriptions 14-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Glossary A-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xxiv  

Figures

2–1 TMS320C4x Block Diagram 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–2 Central Processing Unit (CPU) 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–3 Memory Organization 2-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–4 ’C40 Memory Map 2-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–5 ’C44 Memory Map 2-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–6 Peripheral Memory Map 2-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–7 Memory Aliasing (’C44 only) 2-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–8 Peripheral Modules 2-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–1 Extended-Precision Register Floating-Point Format 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–2 Extended-Precision Register Integer Format 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–3 Status Register (ST) 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–4 DMA Interrupt Enable Register Bit Functions for DMA Unified Mode 3-8. . . . . . . . . . . . . . . . . 

3–5 DMA Interrupt Enable Register Bit Functions for DMA Split Mode 3-10. . . . . . . . . . . . . . . . . . 

3–6 Internal Interrupt Enable Register (IIE) 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–7 Interrupt Flag Register (IIF) 3-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–1 ’C40 Memory Map 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–2 ’C44 Memory Map 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–3 Peripheral Memory Map 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–4 Memory Interface Control Registers 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–5 Timer Registers 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–6 Communication Port Memory Map 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–7 DMA Coprocessor Memory Map 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–8 Address Partitioning for Cache Control Algorithm 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–9 Instruction Cache Architecture 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–1 Short-Integer Format and Sign Extension of Short Integer 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . 

5–2 Single-Precision Integer Format 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–3 Short Unsigned-Integer Format and Zero Fill 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–4 Single-Precision Unsigned-Integer Format 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–5 General Floating-Point Format 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–6 Short Floating-Point Format 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–7 Single-Precision Floating-Point Format 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–8 Extended-Precision Floating-Point Format 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–9 Short Floating-Point Format Conversion to Single-Precision Floating-Point Format 5-11. . . 

5–10 Short Floating-Point Format Conversion to Extended-Precision Floating-Point Format 5-11. 

5–11 Single-Precision Floating-Point Format Conversion to 
Extended-Precision Floating-Point Format 5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Figures

xxv  Contents

5–12 Extended-Precision Floating-Point Format Conversion to
Single-Precision Floating-Point Format 5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–13 IEEE Single-Precision Std. 754 Floating-Point Format 5-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–14 ’C4x Single-Precision Twos-Complement Floating-Point Format 5-13. . . . . . . . . . . . . . . . . . . . 

5–15 Flowchart for Floating-Point Multiplication 5-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–16 Flowchart for Floating-Point Addition 5-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–17 Flowchart for NORM Instruction Operation 5-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–18 Flowchart for Floating-Point Rounding by the RND Instruction 5-30. . . . . . . . . . . . . . . . . . . . . 

5–19 Flowchart for Floating-Point-to-Integer Conversion by FIX Instruction 5-32. . . . . . . . . . . . . . . 

5–20 Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions 5-33. . . . . . . . . . . 

5–21 RCPF Instruction Algorithm 5-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–22 RSQRF Instruction Algorithm 5-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–1 Direct Addressing 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–2 Indirect Addressing Operand Encoding 6-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–3 Encoding for 24-Bit PC-Relative Addressing Mode 6-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–4 Encoding for General Addressing Modes 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–5 Encoding for Type 1 Three-Operand Addressing Modes (’C3x and ’C4x) 6-24. . . . . . . . . . . . 

6–6 Encoding for Type 2 Three-Operand Addressing Modes (’C4x Only) 6-24. . . . . . . . . . . . . . . . 

6–7 Encoding for Parallel Multiply With ADD/SUB 6-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–8 Encoding for Conditional-Branch Addressing Modes 6-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–9 Register Relationships in Circular Addressing 6-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–10 Circular Buffer Implementation 6-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–11 Circular Addressing Example 6-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–12 Data Structure for FIR Filters 6-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–1 CALL Response Timing 7-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–2 Interrupt-Vector Table (IVT) 7-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–3 IIF Register Modification 7-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–4 CPU Interrupt Processing 7-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–5 Flow of Traps 7-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–6 Trap Vector Table (TVT) 7-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–7 DMA Interrupt Processing 7-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–8 Parallel CPU and DMA Interrupt Processing 7-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–1 Pipeline Structure 8-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–2 Two-Operand Instruction Word 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–3 Three-Operand Instruction Word 8-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–4 Multiply or CPU Operation With a Parallel Store 8-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–5 Two Parallel Stores 8-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–6 Parallel Multiplies and Adds 8-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–1 Global and Local Memory Interface Control Signals 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–2 Location of the Memory-Interface Control Registers 9-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–3 Fields in the Memory-Interface Control Registers 9-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–4 Effects of STRB ACTIVE on Global Memory Bus Memory Map 9-12. . . . . . . . . . . . . . . . . . . . . 

9–5 STRBx PAGESIZE Fields Example 9-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–6 STRB and RDY Timing 9-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xxvi  

9–7 Read Same Page, Read Same Page, Write Same Page Sequence 9-18. . . . . . . . . . . . . . . . . 

9–8 Write Same Page, Write Same Page, Read Same Page Sequence 9-19. . . . . . . . . . . . . . . . . 

9–9 Read Same Page, Read Different Page, Read Same Page Sequence 9-20. . . . . . . . . . . . . . 

9–10 Write Same Page, Write Different Page, Write Same Page Sequence 9-21. . . . . . . . . . . . . . . 

9–11 Write Same Page, Read Different Page, Write Different Page Sequence 9-22. . . . . . . . . . . . 

9–12 Read Different Page, Read Different Page, Write Same Page Sequence 9-23. . . . . . . . . . . . 

9–13 Write Different Page, Write Different Page, Read Same Page Sequence 9-24. . . . . . . . . . . . 

9–14 Read Same Page, Write Different Page, Read Different Page Sequence 9-25. . . . . . . . . . . . 

9–15 Read Same Page, Idle One Cycle, Read Same Page Sequence 9-26. . . . . . . . . . . . . . . . . . . 

9–16 Write Same Page, Idle One Cycle, Write Different Page Sequence 9-27. . . . . . . . . . . . . . . . . 

9–17 Idle, Read Different Page, Idle Sequence 9-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–18 Idle, Write Same Page, Idle Sequence 9-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–19 Write Different or Same Page, Idle, Idle Sequence 9-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–20 Read Same Page on STRB1, STRB0, and on STRB1 Sequence When
STRB SWITCH = 0 9-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–21 Read Same Page on STRB1, STRB0, Read Different Page on STRB1
Sequence When STRB SWITCH = 0 9-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–22 Read Same Page on STRB1, STRB0, and on STRB1 Sequence When
STRB SWITCH = 1 9-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–23 Read Same Page on STRB1, STRB0, Read Different Page on STRB1
Sequence When STRB SWITCH = 1 9-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–24 Write Same Page on STRB1, STRB0, Read Same Page on STRB1
Sequence 9-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–25 Read With One Wait State 9-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–26 Write With One Wait State 9-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–27 Using Enable Signals to Put Signal Groups in a High-Impedance State 9-38. . . . . . . . . . . . . 

9–28 Multiple ’C4x Devices Sharing Global Memory 9-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–29 LDII or LDFI External Access 9-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–30 LDII or LDFI and STII or STFI External Access 9-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–31 SIGI External Access Timing 9-47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–32 SIGI When LOCK Is Already Low 9-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–33 IACK Timing 9-50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–1 Mode Selection Flow 10-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–2 Memory Load Flow 10-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–3 Communication-Port Load Mode Flow 10-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–4 Circuit for Generation of a Low IIOF Signal for Bootloader Selection 10-19. . . . . . . . . . . . . . . 

11–1 DMA Coprocessor Memory Map 11-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–2 DMA Channel Control Register 11-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–3 DMA Coprocessor Address Generation 11-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–4 Transfer Counter Registers 11-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–5 Link Pointer Registers 11-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–6 Typical Unified-Mode DMA Channel Configuration 11-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–7 Typical Split-Mode DMA Configuration 11-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–8 Rotating Priority Mode Example of the DMA Coprocessor 11-23. . . . . . . . . . . . . . . . . . . . . . . . 

11–9 Rotating Priority DMA Read and Write Sequence Example (Unified Mode) 11-23. . . . . . . . . . 



 Figures

xxvii  Contents

11–10 Example of a Priority Wheel 11-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–11 Example of a Channel Priority Scheme in Split Mode 11-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–12 Service Sequence for Split Mode Priority Example 11-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–13 DMA Channel Running in Transfer Mode 102 (Autoinitialization Method 1a) 11-29. . . . . . . . 

11–14 DMA Channel Running in Transfer Mode 102 (Autoinitialization Method 1b) 11-30. . . . . . . . 

11–15 DMA Channel Running in Transfer Mode 112 (Autoinitialization Method 2a) 11-31. . . . . . . . . 

11–16 DMA Channel Running in Transfer Mode 112 (Autoinitialization Method 2b) 11-33. . . . . . . . . 

11–17 Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 0) 11-35. . . . . . . 

11–18 Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 1
and Transfer Counter = 0) 11-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–19 Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 1
and Auxiliary Transfer Counter = 0) 11-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–20 DMA Channel Control Register Bits Modifiable by Autoinitialization in
Unified Mode 11-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–21 DMA Channel Control Register Bit Modifiable by Autoinitialization of the
Primary Channel in Split Mode 11-40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–22 DMA Channel Control Register Bits That Can Be Modified by
Autoinitialization of the Auxiliary Channel in Split Mode 11-40. . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–23 Self-Referential Link Pointer 11-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–24 Referring to a New Link Pointer 11-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–25 DIE Register Bit Functions for DMA Unified Mode 11-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–26 DIE Register Bit Functions for DMA Split Mode 11-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–27 No DMA Synchronization 11-47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–28 DMA Source Synchronization 11-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–29 DMA Destination Synchronization 11-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–30 Unified Mode DMA Source and Destination Synchronization 11-50. . . . . . . . . . . . . . . . . . . . . . 

11–31 Timing and Number of Cycles for DMA Transfers to On-Chip Destination 11-52. . . . . . . . . . . 

11–32 Timing and Number of Cycles for DMA Transfers to a Local-Bus Destination 11-53. . . . . . . . 

11–33 Timing and Number of Cycles for DMA Transfers to a Global-Bus Destination 11-54. . . . . . . 

11–34 Unified-Mode DMA Timing for Different Synchronizations 11-55. . . . . . . . . . . . . . . . . . . . . . . . . 

11–35 Split-Mode DMA Timing for Different Synchronizations 11-56. . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–1 Communication Port Block Diagram 12-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–2 ’C4x Communication-Port Interface-Connection Example 12-5. . . . . . . . . . . . . . . . . . . . . . . . . 

12–3 Communication-Port Memory Map 12-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–4 Communication-Port Control Register (CPCR) 12-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–5 Communication-Port Arbitration-Unit State Diagram 12-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–6 Token Transfer Operation 12-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–7 Word Transfer Operation 12-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–8 Type-One Synchronizer Minimum Delay 12-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–9 Type-One Synchronizer Maximum Delay 12-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–10 Type-Two Synchronizer Minimum Delay 12-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–11 Type-Two Synchronizer Maximum Delay 12-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–12 Type-Three Synchronizer Minimum Delay 12-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–13 Type-Three Synchronizer Maximum Delay 12-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–14 Post-Reset State for an Output Port 12-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

xxviii  

12–15 Post-Reset State for an Input Port 12-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–1 Timer Block Diagram 13-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–2 Memory-Mapped Timer Locations 13-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–3 Timer Control Register 13-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–4 Timer Pulse Mode and Clock Mode Timing 13-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–5 Timer Output Generation Examples 13-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–6 Timer Configuration With CLKSRC=1 and FUNC=0 13-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–7 Timer Configuration With CLKSRC = 1 and FUNC = 1 13-13. . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–8 Timer Configuration With CLKSRC = 0 and FUNC = 0 13-14. . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–9 Timer Configuration With CLKSRC = 0 and FUNC = 1 13-14. . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–10 TCLK as an Input (I/O = 0) 13-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–11 TCLK as an Output (I/O = 1) 13-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–1 Status Register 14-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Tables

xxix  Contents

Tables

1–1 Comparison of ’C40 and ’C44 Features 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2–1 CPU Primary Registers 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–1 CPU Primary Register File 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–2 Summary of the CE and CF Bits 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3–3 DMA Channels 0 and 1 (DMA0 and DMA1) Unified Mode Synchronization Interrupts 3-9. . 

3–4 DMA Channels 2 to 5 (DMA2 to DMA5) Unified Mode Synchronization Interrupts 3-9. . . . . . 

3–5 DMA Channels 0 and 1 (DMA0 and DMA1) Split-Mode Synchronization Interrupts 3-10. . . . 

3–6 DMA Channels 2 to 5 (DMA2 to DMA5) Split-Mode Synchronization Interrupts 3-11. . . . . . . 

3–7 CPU Expansion Registers 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4–1 Combined Effect of the CE and CF Bits 4-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–1 Converting IEEE Format to Twos-Complement Floating-Point Format 5-14. . . . . . . . . . . . . . . 

5–2 Converting Twos-Complement Floating-Point Format to IEEE Format 5-17. . . . . . . . . . . . . . . 

6–1 CPU Register/Assembler Syntax and Function 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–2 Indirect Addressing 6-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–3 Three-Operand Instruction Addressing Modes 6-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–4 Index Steps and Bit-Reversed Addressing 6-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–1 Repeat-Mode Registers 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–2 Interrupt Latency 7-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–3 Pin States At System Reset 7-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–4 RESET Vector Locations 7-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–1 One Program Fetch and One Data Access for Maximum Performance 8-17. . . . . . . . . . . . . . 

8–2 One Program Fetch and Two Data Accesses for Maximum Performance 8-18. . . . . . . . . . . . 

9–1 Global Memory Interface Signals 9-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–2 Global Memory Port Status for STRB0 and STRB1 Accesses 9-5. . . . . . . . . . . . . . . . . . . . . . . 

9–3 Page Size as Defined by STRB0/1 PAGESIZE Bits 9-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–4 Address Ranges Specified by STRB ACTIVE Bits 9-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–5 Address Ranges Specified by LSTRB ACTIVE Bits 9-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–6 Wait-State Generation for Each Value of SWW 9-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–7 Interlocked Operations 9-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–1 Bootloader Mode Selection Using Pins IIOF(3–0) 10-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–2 Structure of Source Program Data Stream 10-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–3 Byte-Wide Configured Memory 10-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–4 16-Bit Wide Configured Memory 10-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–5 32-Bit Wide Configured Memory 10-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–1 DMA PRI Bits and CPU/DMA Arbitration Rules 11-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–2 TRANSFER MODE (AUX TRANSFER MODE) Field Descriptions 11-12. . . . . . . . . . . . . . . . . 



Tables

xxx  

11–3 SYNC MODE Field Descriptions in Unified Mode 11-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–4 SYNC MODE Field Descriptions in Split Mode 11-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–5 START (AUX START) Field Descriptions 11-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–6 STATUS (AUX STATUS) Field Descriptions 11-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–7 DMA PRI Bits and CPU/DMA Arbitration Rules 11-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–8 TRANSFER MODE (AUX TRANSFER MODE) Field Descriptions 11-28. . . . . . . . . . . . . . . . . 

11–9 Effect of SYNC MODE and AUTOINIT MODE Bits in Autoinitialization 11-38. . . . . . . . . . . . . 

11–10 DMA Channels 0 and 1 (DMA0 and DMA1) Unified-Mode
Synchronization Interrupts 11-44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11–11 DMA Channels 2 to 5 (DMA2 to DMA5) Unified-Mode Synchronization Interrupts 11-45. . . . 

11–12 DMA Channels 0 and 1 (DMA0 and DMA1) Split-Mode Synchronization Interrupts 11-46. . . 

11–13 DMA Channels 2 to 5 (DMA2 to DMA5) Split-Mode Synchronization Interrupts 11-46. . . . . . 

12–1 Communication-Port Software Reset Address (’C44 and ’C40 � 5.0) 12-10. . . . . . . . . . . . . . 

12–2 PAU State Definitions 12-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–3 Summary of Input and Output FIFO Halting 12-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–4 Token Transfer Sequence 12-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–5 Word Transfer Sequence 12-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–6 Communication-Port Signals and Synchronizer Delays 12-28. . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–1 Load-and-Store Instructions 14-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–2 Two-Operand Instructions 14-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–3 Three-Operand Instructions 14-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–4 Program Control Instructions 14-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–5 Interlocked Operations Instructions 14-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–6 Parallel Instructions 14-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–7 Output Value Formats 14-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–8 Condition Codes and Flags 14-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–9 Instruction Symbols 14-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14–10 CPU Register Symbols 14-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Examples

xxxi  Contents

Examples

4–1 Enabling the Cache 4-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–1 Positive Number 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–2 Negative Number 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–3 Fractional Number 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–4 IEEE to ’C4x Conversion Within Block Memory Transfer 5-16. . . . . . . . . . . . . . . . . . . . . . . . . . 

5–5 ’C4x to IEEE Conversion Within Block Memory Transfer 5-18. . . . . . . . . . . . . . . . . . . . . . . . . . 

5–6 Floating-Point Multiply (Both Mantissas = –2.0) 5-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–7 Floating-Point Multiply (Both Mantissas = 1.5) 5-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–8 Floating-Point Multiply (Both Mantissas = 1.0) 5-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–9 Floating-Point Multiply Between Positive and Negative Numbers 5-22. . . . . . . . . . . . . . . . . . . 

5–10 Floating-Point Addition 5-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–11 Floating-Point Subtraction 5-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–12 Floating-Point Addition With a 32-Bit Shift 5-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–13 Floating-Point Addition/Subtraction and Zero 5-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–14 NORM Instruction 5-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5–15 Newton-Raphson Algorithm for Computing the Reciprocal 5-35. . . . . . . . . . . . . . . . . . . . . . . . . 

5–16 Newton-Raphson Algorithm for Computing the Reciprocal Square Root 5-38. . . . . . . . . . . . . 

6–1 Direct Addressing 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–2 Auxiliary Register Indirect 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–3 Indirect With Predisplacement Add 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–4 Indirect With Predisplacement Subtract 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–5 Indirect With Predisplacement Add and Modify 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–6 Indirect With Predisplacement Subtract and Modify 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–7 Indirect With Postdisplacement Add and Modify 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–8 Indirect With Postdisplacement Subtract and Modify 6-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–9 Indirect With Postdisplacement Add and Circular Modify 6-12. . . . . . . . . . . . . . . . . . . . . . . . . . 

6–10 Indirect With Postdisplacement Subtract and Circular Modify 6-13. . . . . . . . . . . . . . . . . . . . . . 

6–11 Indirect With Preindex Add 6-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–12 Indirect With Preindex Subtract 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–13 Indirect With Preindex Add and Modify 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–14 Indirect With Preindex Subtract and Modify 6-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–15 Indirect With Postindex Add and Modify 6-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–16 Indirect With Postindex Subtract and Modify 6-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–17 Indirect With Postindex Add and Circular Modify 6-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–18 Indirect With Postindex Subtract and Circular Modify 6-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–19 Indirect With Postindex Add and Bit-Reversed Modify 6-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Examples

xxxii  

6–20 Immediate Addressing 6-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–21 PC-Relative Addressing 6-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–22 FIR Filter Code Using Circular Addressing 6-31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6–23 Bit-Reversed Addressing Example 6-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–1 Repeat-Mode Control Algorithm 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–2 RPTB Operation 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–3 Incorrectly Placed Standard Branch 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–4 Incorrectly Placed Delayed Branch 7-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–5 Pipeline Conflict in a RPTB Instruction 7-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–6 Incorrectly Placed Delayed Branches 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7–7 Delayed Branch Execution 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–1 Standard Branch 8-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–2 Delayed Branch Without Annul Option 8-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–3 Using BcondAF and BcondAT Instructions 8-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–4 Write to an AR Followed by an AR for Address Generation 8-8. . . . . . . . . . . . . . . . . . . . . . . . . 

8–5 A Read of ARs Followed by ARs for Address Generation 8-9. . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–6 Program Wait Until CPU Data Access Completes 8-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–7 Program Wait Due to Multicycle Access 8-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–8 Multicycle Program Memory Fetches 8-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–9 Single Store Followed by Two Reads 8-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–10 Parallel Store Followed by Single Read 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–11 Busy External Port 8-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–12 Multicycle Data Reads 8-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8–13 Conditional Calls and Traps 8-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–1 Busy-Waiting Loop 9-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–2 Task Counter Manipulation 9-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–3 Implementation of V(S) 9-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9–4 Implementation of P(S) 9-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10–1 Booting a ’C4x Multiprocessor System 10-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12–2 Communication Port Reset 12-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13–1 Maximum Frequency Timer Clock Setup 13-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1-1  Chapter Title—Attribute Reference

Introduction

The TMS320C4x devices are 32-bit floating-point digital signal processors op-

timized for parallel processing. The ’C4x family combines a high performance

CPU and DMA controller with up to six communication ports to meet the needs

of multiprocessor and I/O-intensive applications. All ’C4x devices are compat-

ible with TI’s multi-chip development environment. Each device contains an

on-chip analysis module, which supports hardware breakpoints for parallel-

processing development and debugging. The ’C4x family is source-code com-

patible with the TMS320C3x family of floating-point DSPs.

Topic Page

1.1 TMS320C4x Devices 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Key Features of the TMS320C4x 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3 TMS320C40 and TMS320C44 Device Comparison 1-4. . . . . . . . . . . . . . . . 

Chapter 1



TMS320C4x Devices

 1-2

1.1 TMS320C4x Devices

The TMS320C4x family is made up of three different members: the

TMS320C40, the TMS320LC40, and the TMS320C44.

1.1.1 The TMS320C40

The TMS320C40 is the original member of the ’C4x family. It features a CPU

that can deliver up to 30 MIPS/60 MFLOPS with a maximum I/O bandwidth of

384M bytes/s. The ’C40 has 2K words of on-chip RAM, 128 words of program

cache and a bootloader. Two external buses provide an address reach of 4 gi-

gawords of unified memory space. The ’C40 is available in a 325-pin CPGA

package.

1.1.2 The TMS320C44

The TMS320C44 is a lower cost version of the ’C40, for parallel processing

applications that are more price sensitive. The ’C44 features four communica-

tion ports and has an external address reach of 32M words over two external

buses. To further reduce cost, the ’C44 comes in a 304-pin PQFP package.

The TMS320C44 can deliver up to 30 MIPS/60 MFLOPS performance with a

maximum I/O bandwidth of 384M bytes/s. The ’C44 is source-code compatible

with the ’C40.

1.1.3 The TMS320LC40

The TMS320LC40 is the newest member of the ’C4x family. It is a low-power

version of the ’C40 capable of delivering up to 40 MIPS/80 MFLOPS with a

maximum I/O bandwidth of 488M bytes/s for high performance multiproces-

sing applications. The ’LC40 is source-code compatible with the ’C40 and

’C44.

Note:

See the chapter, Development Support and Part Order Information, in the
TMS320C4x General-Purpose Applications User’s Guide for device speeds,
device availability information and part numbers.



 Key Features of the TMS320C4x

1-3  Introduction

1.2 Key Features of the TMS320C4x

The TMS320C4x has several key features:

� Up to 40 MIPS/80 MFLOPS performance with 488-Mbytes/s I/O capability

� IEEE floating-point conversion for ease of use

� Register-based CPU

� Single-cycle byte and half-word manipulation capabilities

� Divide and square root support for improved performance

� On-chip memory includes 2K words of SRAM, 128 words of program

cache, and bootloader

� Two external buses providing an address reach of up to 4 gigawords

� Two memory-mapped 32-bit timers

� 6 and 12 channel DMA

� Up to six communication ports for multiprocessor communication

� Idle mode for reduced power consumption



TMS320C40 and TMS320C44 Device Comparison

 1-4

1.3 TMS320C40 and TMS320C44 Device Comparison

Table 1–1 shows the major differences in features of the ’C40 and ’C44.

Table 1–1.Comparison of ’C40 and ’C44 Features

Feature ’C40 ’C44

External local address bus 31 pins 24 pins

External global address bus 31 pins 24 pins

Address reach 4G � 32 32M � 32

Number of comm ports 6 4

Commport direction pin no yes

NMI with bus grant feature yes

(for revisions � 5.0)

yes

Individual comm port reset yes

(for revisions � 5.0)

yes

Package 325-pin CPGA 304-pin PQFP



 Running Title—Attribute Reference

2-1  Chapter Title—Attribute Reference

Architectural Overview

The ’C4x’s high performance is achieved through the precision and wide dy-

namic range of the floating-point units, on-chip memory, a high degree of paral-

lelism, communication ports, and the DMA coprocessor.

This chapter gives an architectural overview of the ’C4x processor. Figure 2–1

is a block diagram of the ’C4x.

Topic Page

2.1 Central Processing Unit (CPU) 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Memory Organization 2-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Internal Bus Operation 2-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 External Bus Operation 2-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Interrupts 2-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6 Peripherals 2-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2



Block Diagram

 2-2

Figure 2–1. TMS320C4x Block Diagram

Cache 
 (512 bytes)

32 32

PDATA bus

DDATA bus

DADDR 1 bus

DADDR 2 bus

DMADATA bus

RAM block 0
(4K bytes)

32 32

RAM block 1
(4K bytes)

32 32

ROM block
(reserved)

32
32

PADDR bus

DMAADDR bus

M
U
X

D(31–0)

’C40: A(30–0)

’C44: A(23–0)

DE

AE

STAT(3–0)

LOCK

STRB0,1

R/W0,1

PAGE0,1

RDY0,1

CE0,1

IR

PC

X1

X2/CLKIN

ROMEN

RESET

RESETLOC0–1

NMI

IIOF(3–0)

IACK

H1

H3

CVSS

DVDD
DVSS

IVSS
LADVDD

LDDVDD
VDDL
VSSL

SUBS

32

C
o
n
t
r
o
l
l
e
r

32

40 40

40

40

32-bit barrel
shifter

40

40

ALU

Extended
precision

register
(R0–R11)

40
40

32

40

40

DISP, IR0, IR1

ARAU0 ARAU1
BK

Auxiliary 
registers 

(AR0–AR7)

Other 
registers (14)

CPU1

CPU2

32

32

32

32

32

32

32

32

REG1

REG2

32

MUX

C
P
U
1

R
E
G
1

R
E
G
2

Multiplier

C
o
n
ti
n
u
e
d
 o

n
 n

e
x
t 
p
a
g
e

32

32



 Block Diagram

2-3  Architectural Overview

Figure 2–1.TMS320C4x Block Diagram (Continued)

M
U
X

LD(31–0)

’C40: LA(30–0)

’C44: LA(23–0)

LDE

LAE

LSTAT(3–0)

LLOCK

LSTRB0,1

LR/W0,1

LPAGE0,1

LRDY0,1

LCE0,1

MUX

DMA channel 0

DMA channel 1

DMA channel 2

DMA channel 3

DMA channel 4

DMA channel 5

DMA coprocessor

6 DMA Channels

32 32

Global

Local

Port control

Global control register

Time period register

Timer 1

Timer counter register

TCLK1

Global control register

Time period register

Timer 0

Timer counter register

TCLK0

Port control registers

Output
FIFO

Input
FIFO

PAU

COM Port 0

CREQ0
CACK0
CSTRB0
CRDY0
CD0(7–0)

’C40:
6 communication
ports (0,1,2,3,4,5)

’C44:
4 communication
ports (1,2,4,5)P

e
r
i
p
h
e
r
a
l

D
a
t
a

B
u
s

P
e
r
i
p
h
e
r
a
l

A
d
d
r
e
s
s

B
u
s

C
o
n
ti
n
u
e
d
 f
ro

m
 p

re
v
io

u
s
 p

a
g
e

Port control registers

Output
FIFO

Input
FIFO

PAU

COM Port 5
CREQ5

CACK5
CSTRB5
CRDY5
CD5(7–0)

DDATA bus

DADDR 1 bus

DADDR 2 bus

DMADATA bus

PADDR bus

DMAADDR bus

PDATA bus

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32



Central Processing Unit (CPU)

 2-4

2.1 Central Processing Unit (CPU)

The ’C4x’s CPU has a register-based architecture. The CPU consists of the

several components:

� Floating-point/integer multiplier

� Arithmetic Logic Unit (ALU)

� 32-bit barrel shifter

� Internal buses (CPU1/CPU2 and REG1/REG2)

� Auxiliary register arithmetic units (ARAUs)

� CPU register file

Figure 2–2 shows the CPU’s components.

2.1.1 Floating-Point/Integer Multiplier

The multiplier performs single-cycle multiplications on 32-bit integer and 40-bit

floating-point values. The ’C4x implementation of floating-point arithmetic al-

lows for floating-point operations at fixed-point speeds via a 25-ns instruction

cycle and a high degree of parallelism. To gain even higher throughput, you

can use parallel instructions to perform a multiply and ALU operation in a single

cycle.

When the multiplier performs floating-point multiplication, the inputs are 40-bit

floating-point numbers, and the result is a 40-bit floating-point number. When

the multiplier performs integer multiplication, the input data is 32 bits and yields

either the 32 most-significant bits or the 32 least-significant bits of the resulting

64-bit product. See Chapter 5, Data Formats and Floating-Point Operation, for

detailed information on data formats and floating-point operation.

2.1.2 Arithmetic Logic Unit (ALU) and Internal Buses

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and

40-bit floating-point data, including single-cycle integer and floating-point con-

versions. Results of the ALU are always maintained in 32-bit integer or 40-bit

floating-point formats. The barrel shifter is used to shift up to 32 bits left or right

in a single cycle.

Four internal buses, CPU1, CPU2, REG1, and REG2, carry two operands from

memory and two operands from the register file, thus allowing parallel multi-

plies and adds/subtracts on four integer or floating-point operands in a single

cycle.



 Central Processing Unit (CPU)

2-5  Architectural Overview

Figure 2–2. Central Processing Unit (CPU)

DDATA BUS

D
A
D
D
R
1

D
A
D
D
R
2

DADDR1

DADDR2

40 40

40

40

32-bit barrel
shifter

40

40

ALU

Extended
precision

register
(R0–R11)

40
40

32

40

40

DISP, IR0, IR1

ARAU0 ARAU1
BK

Auxiliary 
Registers 

(AR0–AR7)

Other 
Registers

(14)

CPU1

CPU2

32

32

32

32

32

32

32

32

REG1

REG2

MUX

C
P
U
1

R
E
G
1

R
E
G
2

Multiplier

32

32

C
P
U
2



Central Processing Unit (CPU)

 2-6

2.1.3 Auxiliary Register Arithmetic Units (ARAUs)

The two auxiliary register arithmetic units (ARAU0 and ARAU1) can generate

two addresses in a single cycle. The ARAUs operate in parallel with the multi-

plier and ALU. They support addressing with displacements, index registers

(IR0 and IR1), and circular and bit-reversed addressing. See Chapter 6, Ad-

dressing Modes, for a description of addressing modes.

2.1.4 CPU Primary Register File

The ’C4x primary register file provides 32 registers in a multiport register file

that is tightly coupled to the CPU. Table 2–1 lists register names and functions,

followed by the section number and page of each description.

All of the primary register file registers can be operated upon by the multiplier

and ALU and can be used as general-purpose registers. However, the regis-

ters also have some special functions. For example, the 12 extended-preci-

sion registers are especially suited for maintaining floating-point results. The

eight auxiliary registers support a variety of indirect addressing modes and can

be used as general-purpose 32-bit integer and logical registers. The remaining

registers provide system functions such as addressing, stack management,

processor status, interrupts, and block repeat. See Chapter 3, CPU Registers,

for detailed information about CPU registers. See Chapter 6, Addressing

Modes, for information about register usage in addressing.

The extended-precision registers (R0–R11) are capable of storing and sup-

porting operations on 32-bit integer and 40-bit floating-point numbers. Any in-

struction that assumes that the operands are floating-point numbers uses bits

39–0. If the operands are either signed or unsigned integers, only bits 31–0

are used, and bits 39–32 remain unchanged. This is true for all shift operations.

See Chapter 5, Data Formats and Floating-Point Operation, for extended-pre-

cision register formats of floating-point and integer numbers.

The 32-bit auxiliary registers (AR0–AR7) can be accessed by the CPU and

modified by the two auxiliary register arithmetic units (ARAUs). The primary

function of the auxiliary registers is the generation of 32-bit addresses. They

can also be used as loop counters or as 32-bit general-purpose registers that

can be modified by the multiplier and ALU. See Chapter 6, Addressing Modes,

for detailed information and examples of the use of auxiliary registers in ad-

dressing.



 Central Processing Unit (CPU)

2-7  Architectural Overview

Table 2–1.CPU Primary Registers

Assembler

Syntax Assigned Function Name Subsection Page

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

Extended-precision register 0

Extended-precision register 1

Extended-precision register 2

Extended-precision register 3

Extended-precision register 4

Extended-precision register 5

Extended-precision register 6

Extended-precision register 7

Extended-precision register 8

Extended-precision register 9

Extended-precision register 10

Extended-precision register 11

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

Auxiliary register 0

Auxiliary register 1

Auxiliary register 2

Auxiliary register 3

Auxiliary register 4

Auxiliary register 5

Auxiliary register 6

Auxiliary register 7

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

DP

IR0

IR1

BK

SP

Data-page pointer

Index register 0

Index register 1

Block-size register

System stack pointer

3.1.3

3.1.4

3.1.4

3.1.5

3.1.6

3-4

3-4

3-4

3-5

3-5



Central Processing Unit (CPU)

 2-8

Table 2–1.CPU Primary Registers (Continued)

Assembler

Syntax Assigned Function Name Subsection Page

ST

DIE

IIE

IIF

Status register

DMA Coprocessor interrupt enable

Internal-interrupt enable register

IIOF flag register

3.1.7

3.1.8

3.1.9

3.1.10

3-5

3-8

3-11

3-13

RS

RE

RC

Repeat start address

Repeat end address

Repeat counter

3.1.11

3.1.11

3.1.11

3-16

3-16

3-16

The data page pointer (DP) is a 32-bit register. The 16 LSBs of the data page

pointer are used by the direct addressing mode as a pointer to the page of data

being addressed. The ’C4x can address up to 64K pages, each page contain-

ing 64K words. Use of the data page pointer is described in subsection 6.3,

Direct Addressing, on page 6-5.

The 32-bit index registers contain the value used by the auxiliary register

arithmetic unit (ARAU) to compute an indexed address. See Section 6.4, Indi-

rect Addressing, on page 6-6, and Section 6.9, Bit-Reversed Addressing, on

page 6-32, for more information about the ARAU.

The ARAU uses the 32-bit block size register (BK) in circular addressing to

specify the data block size. Circular addressing is described in Section 6.8, Cir-

cular Addressing, on page 6-27.

The system stack pointer (SP) is a 32-bit register that contains the address

of the top of the system stack. The SP always points to the last element pushed

onto the stack. A push performs a preincrement, and a pop performs a post-

decrement of the system stack pointer. The SP is manipulated by interrupts,

traps, calls, returns, and the PUSH/PUSHF and POP/POPF instructions. See

Section 1.4, System and User Stack Management, in the TMS320C4x Gener-

al-Purpose Applications User’s Guide for information about managing the

stacks.



 Central Processing Unit (CPU)

2-9  Architectural Overview

The status register (ST) contains global information related to the state of the

CPU. Typically, operations set the condition flags of the status register accord-

ing to whether the result is zero, negative, etc. This includes register load and

store operations as well as arithmetic and logical functions. When the status

register is loaded, however, a bit-for-bit replacement is performed with the con-

tents of the source operand, regardless of the state of any bits in the source

operand. Therefore, following a load, the contents of the status register are

identically equal to the contents of the source operand. This allows the status

register to be easily saved and restored. See subsection 3.1.7, Status Register

(ST), on page 3-5, for definitions of the status register bits.

The DMA coprocessor interrupt enable register (DIE) is a 32-bit register

containing 2- and 3-bit fields to designate the interrupt synchronization

scheme for each of the six DMA channels. It allows each DMA channel to ser-

vice a corresponding input communication port and output communication

port. Also, each DMA channel can be synchronized with external interrupts or

the on-chip timers. This register is described in subsection 3.1.8, DMA Copro-

cessor Interrupt Enable Register (DIE), on page 3-8.

The CPU internal interrupt enable register (IIE) is a 32-bit register that en-

ables/disables interrupts for the six communication ports, both timers, and the

six DMA coprocessor channels. The IIE is described in subsection 3.1.9, CPU

Interrupt Enable Register (IIE), on page 3-11.

The IIOF flag register (IIF) controls the function (general-purpose I/O or inter-

rupt) of the four external pins (IIOF0 to IIOF3). It also contains timer/DMA inter-

rupt flags. Subsection 3.1.10, IIOF Flag Register (IIF), on page 3-13, provides

further description of this register.

The 32-bit repeat counter (RC) register specifies the number of times a block

of code is to be repeated when a block repeat is performed. When the proces-

sor is operating in the repeat mode, the 32-bit repeat start address register

(RS) contains the starting address of the block of program memory to be re-

peated, and the 32-bit repeat end address register (RE) contains the ending

address of the block to be repeated. Further information about these registers

is in subsection 3.1.11, Block Repear (RS,RE) and Repeat Count (RC) Regis-

ters, on page 3-16.

The program counter (PC) is a 32-bit register containing the address of the

next instruction to be fetched. Although the PC is not part of the CPU register

file, it is a register that can be modified by instructions that modify the program

flow.



Central Processing Unit (CPU)

 2-10

2.1.5 CPU Expansion Register File

Besides the CPU primary register file, the expansion register file contains two

special registers that act as pointers:

� The IVTP register points to the interrupt-vector table (IVT), which defines

vectors for all interrupts.

� The TVTP register points to the trap vector table (TVT), which defines vec-

tors for 512 traps.

These two registers are fully described in Section 3.2, CPU Expansion Regis-

ter File on page 3-17.



 Memory Organization

2-11  Architectural Overview

2.2 Memory Organization

The total memory reach of the ’C4x is 4G 32-bit words. Program memory (on-

chip RAM or ROM and external memory) as well as registers affecting timers,

communication ports, and DMA channels are contained within this space. This

allows tables, coefficients, program code, and data to be stored in either RAM

or ROM. Thus, memory usage is maximized, and memory space allocated as

desired.

By manipulating one external pin (ROMEN), you can configure the first one-

megaword area of memory (0000 0000h to 000F FFFFh) to address the local

address bus or to address the on-chip ROM when you use the bootloader (with

remaining space reserved). This capability is further discussed in Section 4.1,

Memory Map, on page 4-2.

2.2.1 RAM, ROM, and Cache

Figure 2–3 shows how the memory is organized on the ’C4x. RAM blocks 0

and 1 are 4K bytes (1K × 32 bits) each. The ROM block is reserved and con-

tains a bootloader. Each RAM and ROM block is capable of supporting two ac-

cesses in a single cycle. The separate program buses, data buses, and DMA

buses allow for parallel program fetches, data reads and writes, and DMA op-

erations. For example: the CPU can access two data values in one RAM block

and perform an external program fetch in parallel with the DMA coprocessor

loading another RAM block, all within a single cycle.

The reserved ROM block (upper right in Figure 2–3) contains a bootloader.

This loader supports loading of program and data at reset time. Loading is from

8-, 16-, or 32-bit wide memories or any one of the six communication ports.

Chapter 10, The Bootloader, explains the bootloader in detail.

A 128 × 32-bit instruction cache is provided to store often-repeated sections

of code, thus greatly reducing the number of needed off-chip accesses. This

allows for code to be stored off-chip in slower, lower-cost memories. By using

the cache to execute your program, the external buses are freed for use by the

DMA controller or CPU.

For further information about memory and the instruction cache, see Section

4.1, Memory Organization, and Section 4.3, Cache Memory.



Memory Organization

 2-12

Figure 2–3. Memory Organization

M
U
X

M
U
X

DMAADDR bus

DMADATA bus

DADDR2 bus

DADDR1 bus

DDATA bus

PADDR bus

PDATA bus

Program counter/
instruction register

CPU DMA
coprocessor

32 32 32 32 32 32 32 32

32 32 32 32 32 32 32

Cache
(128 x 32)
(512 bytes)

RAM
block 0

(1K x 32)
(4K bytes)

RAM
block 1

(1K x 32)
(4K bytes)

ROM block
(bootloader)
(reserved)

LD(31–0)

’C40: LA(30–0)

’C44: LA(23–0)

LDE

LAE

LSTAT(3–0)

LLOCK

LSTRBx

LR/Wx

LPAGEx

LRDYx

LCEx

D(31–0)

’C40: A(30–0)

’C44: A(23–0)

DE

AE

STAT(3–0)

LOCK

STRBx

R/Wx

PAGEx

RDYx

CEx

MUX

P
e
r
i
p
h
e
r
a
l

B
u
s



 Memory Organization

2-13  Architectural Overview

2.2.2 Memory Maps

The memory map for each processor is shown in Figure 2–4 (’C40) and

Figure 2–5 (’C44); for each processor, the level at the external pin ROMEN de-

termines whether or not the first megaword of memory addresses the internal

ROM or external memory. The maps illustrate the entire address space of the

’C40 and ’C44.

The value of ROMEN affects only the first megaword of memory:

� A 1 at external pin ROMEN causes internal ROM to be enabled at 0000h

with the one-megaword space reserved (0000 0000h – 000F FFFFh).

This is shown in the right side of the figure.

� A 0 at ROMEN causes addresses 0000 0000h – 000F FFFFh to be acces-

sible on the local bus. This is shown in the left side of the figure.

The rest of the memory map is the same for either level of ROMEN:

� The second megaword of memory is devoted to peripherals (as shown in

Figure 2–6).

� The third megaword of memory contains the two 1K-word (4K-byte) blocks

of RAM (BLK0 and BLK1 as shown at 002F F800h – 002F FFFFh).

� The rest of the first 2 gigawords (0030 0000h – 7FFF FFFFh) is on the lo-

cal bus (external).

� The second 2 gigawords (8000 0000h – FFFF FFFFh) are on the global

bus (external).

Section 4.1, Memory Map, on page 4-2 describes the memory maps in greater

detail. Section 9.2, Memory Interface Signals on page 9-3, and Section 9.3,

Memory Interface Control Registers on page 9-6, discuss the local and global

interfaces to memory. The peripheral bus map and the vector locations for re-

set, interrupts, and traps are also explained in those sections.

Caution

Any access to a reserved area in the address space produces
unpredictable results. Do not attempt to access reserved areas.



Memory Organization

 2-14

Figure 2–4. ’C40 Memory Map

00000 0000h

00000 0FFFh
00000 1000h

0000F FFFFh
00010 0000h

00010 00FFh
00010 0100h

0001F FFFFh

00020 0000h

0002F F7FFh
0002F F800h

0002F FC00h
0002F FFFFh
00030  0000h

07FFF FFFFh

0002F FBFFh

0FFFF FFFFh

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (internal)

Reserved

1K RAM BLK 0 (internal)

Local bus
(external)

Global bus
(external)

1M

1M

1M

2G–3M

2G

S
tr

u
c
tu

re
 id

e
n
ti
c
a
l

S
tr

u
c
tu

re
d
e
p
e
n
d
s
 u

p
o
n

08000 0000h

Accessible
local bus
(external)

Bootloader ROM
(Internal)

Reserved

 

R
O

M
E

N
 b

it

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (internal)

Reserved

1K RAM BLK 0 (internal)

Local bus
(external)

Global bus
(external)

 

(a) Internal ROM disabled
(ROMEN = 0)

(b) Internal ROM enabled
(ROMEN = 1)

Microprocessor mode Microcomputer mode



 Memory Organization

2-15  Architectural Overview

Figure 2–5. ’C44 Memory Map

00000 0000h

00000 0FFFh
00000 1000h

0000F FFFFh
00010 0000h

00010 00FFh
00010 0100h

0001F FFFFh

00020 0000h

0002F F7FFh
0002F F800h

0002F FC00h
0002F FFFFh
00030  0000h

07FFF FFFFh

0002F FBFFh

0FFFF FFFFh

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (internal)

Reserved

1K RAM BLK 0 (internal)

Local bus
(external)

Global bus
(external)

1M

1M

1M

2G–16M

2G

S
tr

u
c
tu

re
 id

e
n
ti
c
a
l

S
tr

u
c
tu

re
d
e
p
e
n
d
s
 u

p
o
n

08000 0000h

Accessible
local bus
(external)

Bootloader ROM
(internal)

Reserved

 

R
O

M
E

N
 b

it

13M

16M

Global bus
(alias region)

(see section 2.2.3)

Local Bus
(alias region)

(see section 2.2.3)

Reserved

1K RAM BLK 1 (internal)

Reserved

1K RAM BLK 0 (internal)

Local bus
(external)

Global bus
(external)

 

Global bus
(alias region)

Local bus
(alias region)

Peripherals (internal)
(see Figure 2–6)

(a) Internal ROM disabled
(ROMEN = 0)

(b) Internal ROM enabled
(ROMEN = 1)

Microprocessor mode Microcomputer mode



Memory Organization

 2-16

Figure 2–6. Peripheral Memory Map

Address Peripheral Described in

0010 0000h

0010 000Fh

Local and global port control (16 words) Subsection 4.2.1,

Figure 4–4, page

4-6

0010 0010h

0010 001Fh

Analysis block registers (16 words)  Subsection 4.2.2.

0010 0020h

0010 002Fh

Timer 0 registers (16 words) Subsection 4.2.3,

Figure 4–5, page

4 7
0010 0030h

0010 003Fh

Timer 1 registers (16 words) 
4-7

0010 0040h

0010 004Fh

Communication port 0 (16 words)

(’C40 only)

Subsection 4.2.4,

Figure 4–6, page

4 8
0010 0050h

0010 005Fh

Communication port 1 (16 words)
4-8

0010 0060h

0010 006Fh

Communication port 2 (16 words)

0010 0070h

0010 007Fh

Communication port 3 (16 words)

(’C40 only)

0010 0080h

0010 008Fh

Communication port 4 (16 words)

0010 0090h

0010 009Fh

Communication port 5 (16 words)

0010 00A0h

0010 00AFh

DMA coprocessor channel 0 (16 words) Subsection 4.2.5,

Figure 4–7, page

4 9
0010 00B0h

0010 00BFh

DMA coprocessor channel 1 (16 words)
4-9

0010 00C0h

0010 00CFh

DMA coprocessor channel 2 (16 words)

0010 00D0h

0010 00DFh

DMA coprocessor channel 3 (16 words)

0010 00E0h

0010 00EFh

DMA coprocessor channel 4 (16 words)

0010 00F0h

0010 00FFh

DMA coprocessor channel 5 (16 words)



 Memory Organization

2-17  Architectural Overview

2.2.3 Memory Aliasing (’C44 only)

Memory aliasing occurs in the ’C44, since both the global and local ports on

that device have 24 pins, instead of the 31 pins on each port in the ’C40.

Memory aliasing causes the first 16 M of each address space to be repeated

in the memory map. Memory on the local bus occupies, and is aliased, in the

first 2 G of address space, and memory on the global bus occupies, and is

aliased, in the second 2 G of address space. Figure 2–7 shows the alias re-

gions on the local and global buses.

Figure 2–7. Memory Aliasing (’C44 only)

Alias n

Alias 1

Alias 2

Local bus

0x7F000000

0x02000000

0x02FFFFFF

0x01000000

0x7FFFFFFF

0x01FFFFFF

Alias n

Alias 1

Alias 2

Global bus

0xFF000000

0x82000000

0x82FFFFFF

0x81000000

0xFFFFFFFF

0x81FFFFFF

Base address
region

0x00000000

0x00FFFFFF

Base address
region

0x80000000

0x80FFFFFF



Memory Organization

 2-18

2.2.4 Memory Addressing Modes

The ’C4x supports a base set of general-purpose instructions as well as arith-

metic-intensive instructions that are particularly suited for digital signal pro-

cessing and other numeric-intensive applications. Refer to Chapter 6, Addres-

sing Modes, for detailed information on addressing.

Four groups of addressing modes are provided on the ’C4x. Each group uses

two or more of several different addressing types. The following list shows the

addressing modes with their addressing types.

� General addressing modes:

� Register. The operand is a CPU register.

� Immediate. The operand is a 16-bit immediate value.

� Direct. The operand is the contents of a 32-bit address

(concatenation of 16 bits of the data page pointer and a 16-bit

operand).

� Indirect. A 32-bit auxiliary register indicates the address of the

operand.

� Three-operand addressing modes:

� Register. (same as for general addressing mode).

� Indirect. (same as for general addressing mode).

� Immediate. The operand is an 8-bit immediate value.

� Parallel addressing modes:

� Register. The operand is an extended-precision register.

� Indirect. (same as for general addressing mode).

� Branch addressing modes:

� Register. (same as for general addressing mode).

� PC-relative. A signed 16-bit displacement or a 24-bit displacement is

added to the PC.



 Internal Bus Operation

2-19  Architectural Overview

2.3 Internal Bus Operation

A large portion of the ’C4x’s high performance is due to internal busing and par-

allelism. Separate buses allow for parallel program fetches, data accesses,

and DMA accesses:

� Program buses PADDR and PDATA

� Data buses DADDR1, DADDR2, and DDATA

� DMA buses DMAADDR and DMADATA

These buses connect all of the physical spaces (on-chip memory, off-chip

memory, and on-chip peripherals) supported by the ’C4x. Figure 2–3 shows

these internal buses and their connections to on-chip and off-chip memory

blocks.

The program counter (PC) is connected to the 32-bit program address bus

(PADDR). The instruction register (IR) is connected to the 32-bit program data

bus (PDATA). In this configuration, the buses can fetch a single instruction

word every machine cycle.

The 32-bit data address buses (DADDR1 and DADDR2) and the 32-bit data

data bus (DDATA) support two data memory accesses every machine cycle.

The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The

CPU1 and CPU2 buses can carry two data memory operands to the multiplier,

ALU, and register file every machine cycle. Also internal to the CPU are regis-

ter buses REG1 and REG2, which can carry two data values from the register

file to the multiplier and ALU every machine cycle. Figure 2–2 shows the buses

that are internal to the CPU section of the processor.

The DMA controller is supported with a 32-bit address bus (DMAADDR) and

a 32-bit data bus (DMADATA). These buses allow the DMA to perform memory

accesses in parallel with the memory accesses occurring from the data and

program buses.



External Bus Operation

 2-20

2.4 External Bus Operation

The ’C4x provides two identical external interfaces: the global memory inter-

face and the local memory interface. Each consists of a 32-bit data bus, a

31-bit (’C40) or 24-bit (’C44) address bus, and two sets of control signals. Both

buses can be used to address external program/data memory or I/O space.

The buses also have external RDY signals for wait-state generation with wait

states inserted under software control. Chapter 9, External Bus Operation,

covers external bus operation.

For multiple processors to access global memory and share data in a coherent

manner, arbitration is necessary. This arbitration (handshaking) is the purpose

of the ’C4x’s interlocked operations, handled through interlocked instruc-

tions. For more information about interlocked instructions, see Section 9.7 on

page 9-39, Interlocked Operations.



 Interrupts

2-21  Architectural Overview

2.5 Interrupts

The ’C4x supports four external interrupts (IIOF3–0), a number of internal in-

terrupts, a nonmaskable external NMI interrupt, and a nonmaskable external

RESET signal, which sets the processor to a known state. The DMA and com-

munication ports have their own internal interrupts. When the CPU responds

to the interrupt, the IACK pin can be used to signal an external interrupt ac-

knowledge. Section 7.4, on page 7-15, Interrupts, covers RESET and interrupt

processing.



Peripherals

 2-22

2.6 Peripherals

All ’C4x on-chip peripherals are controlled through memory-mapped registers

on a dedicated peripheral bus. This peripheral bus is composed of a 32-bit data

bus and a 32-bit address bus. This peripheral bus permits straightforward

communication to the peripherals. The ’C4x peripherals include two timers

and six (’C40) or four (’C44) communication ports. Figure 2–8 shows the pe-

ripherals with associated buses and signals.

Figure 2–8. Peripheral Modules

MUX

DMA channel 0

DMA channel 1

DMA channel 2

DMA channel 3

DMA channel 4

DMA channel 5

DMA Controller

6 DMA Channels

32 32

Global control register

Time period register

Timer 1

Timer counter register

TCLK1

Global control register

Time period register

Timer 0

Timer counter register

TCLK0

Port control registers

Output
FIFO

Input
FIFO

PAU

COM Port 0

CREQ0

CACK0

CSTRB0

CRDY0

CD0(7–0)

P
e
r
i
p
h
e
r
a
l

d
a
t
a

b
u
s

P
e
r
i
p
h
e
r
a
l

a
d
d
r
e
s
s

b
u
s

Port control registers

Output
FIFO

Input
FIFO

PAU

COM Port 5

CREQ5

CACK5

CSTRB5

CRDY5

CD5(7–0)

DDATA bus

DADDR 1 bus

DADDR 2 bus

PADDR bus

DMAADDR bus

PDATA bus

DMADATA bus

32

32

32

32

32

32

32

32

32

32

32

32

32

32

’C40:
6 communication
ports (0,1,2,3,4,5)

’C44:
4 communication
ports (1,2,4,5)



 Peripherals

2-23  Architectural Overview

2.6.1 Communication Ports

Six (’C40) or four (’C44) high-speed communication ports provide rapid pro-

cessor-to-processor communication through each port’s dedicated communi-

cation interfaces. Coupled with the ’C4x’s two memory interfaces (global and

local), this allows you to construct a parallel processor system that attains opti-

mum system performance by distributing tasks among several processors.

Each ’C4x can pass the results of its work to another ’C4x through a commu-

nication port, enabling each ’C4x to continue working. Chapter 12, Commu-

nication Ports, explains communication port operation in detail.

The communication ports offer several features:

� 160-megabits/s (20-Mbytes or 5-Mwords per second) bidirectional data

transfer operations (at 40-ns cycle time)

� Simple processor-to-processor communication via eight data lines and

four control lines

� Buffering of all data transfers, both input and output

� Automatic arbitration to ensure communication synchronization

� Synchronization between the CPU or the direct-memory access (DMA)

coprocessor and the six communication ports via internal interrupts and

internal ready signals.

� Port direction pin (CDIR) to ease interfacing (’C44 only)

2.6.2 Direct Memory Access (DMA) Coprocessor

The six channels of the on-chip DMA coprocessor can read from or write to any

location in the memory map without interfering with the operation of the CPU.

This allows interfacing to slow external memories and peripherals without re-

ducing throughput to the CPU. The DMA coprocessor contains its own ad-

dress generators, source and destination registers, and transfer counter. Ded-

icated DMA address and data buses allow for minimization of conflicts be-

tween the CPU and the DMA coprocessor. A DMA operation consists of a

block or single-word transfer to or from memory. A key feature of the DMA

coprocessor is its ability to automatically reinitialize each channel following a

data transfer. See Chapter 11, The DMA Coprocessor, for detailed information

on the DMA coprocessor.



Peripherals

 2-24

2.6.3 Timers

The two timer modules are general-purpose 32-bit timer/event counters with

two signaling modes and internal or external clocking. They can signal inter-

nally to the ’C4x or externally to the outside world at specified intervals, or they

can count external events. Each timer has an I/O pin that can be used as an

input clock to the timer, as an output signal driven by the timer, or as a general-

purpose I/O pin. The timers are described in detail in Chapter 13, The Timers.



 Running Title—Attribute Reference

3-1  Chapter Title—Attribute Reference

CPU Registers

The CPU primary register file contains 32 registers that can be used as oper-

ands by the multiplier and ALU (arithmetic logic unit). The register file includes

the auxiliary registers, extended-precision registers, and index registers.

These registers support addressing, floating-point/integer operations, stack

management, processor status, block repeats, branching, and interrupts.

The CPU expansion register file contains two registers — the interrupt vector

table pointer (IVTP) and the trap vector table pointer (TVTP).

This chapter describes each of the CPU registers.

Topic Page

3.1 CPU Primary Register File 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 CPU Expansion Register File 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 3



CPU Primary Register File

 3-2

3.1 CPU Primary Register File

The ’C4x provides 32 registers in a multiport register file that is tightly coupled

to the CPU. The PC (program counter) is not included in the register file.

The contents of the register file are listed in Table 3–1.

Table 3–1.CPU Primary Register File

Register

Symbol

Register

Machine

Value (hex) Assigned Function Name Subsection Page

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

00

01

02

03

04

05

06

07

1C

1D

1E

1F

Extended-precision register 0

Extended-precision register 1

Extended-precision register 2

Extended-precision register 3

Extended-precision register 4

Extended-precision register 5

Extended-precision register 6

Extended-precision register 7

Extended-precision register 8

Extended-precision register 9

Extended-precision register 10

Extended-precision register 11

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

08

09

0A

0B

0C

0D

0E

0F

Auxiliary register 0

Auxiliary register 1

Auxiliary register 2

Auxiliary register 3

Auxiliary register 4

Auxiliary register 5

Auxiliary register 6

Auxiliary register 7

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

DP

IR0

IR1

BK

SP

10

11

12

13

14

Data-page pointer

Index register 0

Index register 1

Block-size register

System stack pointer

3.1.3

3.1.4

3.1.4

3.1.5

3.1.6

3-4

3-4

3-4

3-5

3-5



 CPU Primary Register File

3-3  CPU Registers

Table 3–1.  CPU Primary Register File (Continued)

Register

Symbol

Register

Machine

Value (hex) Assigned Function Name
See

Subsection

On

Page

ST

DIE

IIE

IIF

15

16

17

18

Status register

DMA coprocessor interrupt en-

able

Internal-interrupt enable register

IIOF flag register (IIOF3–0 pins,

timers, DMA)

3.1.7

3.1.8

3.1.9

3.1.10

3-5

3-8

3-11

3-13

RS

RE

RC

19

1A

1B

Repeat start address

Repeat end address

Repeat counter

3.1.11

3.1.11

3.1.11

3-16

3-16

3-16

All of these registers can be used both as operands by the multiplier and ALU,

and as general-purpose 32-bit registers. However, the registers also perform

some special functions. For example, the 12 extended-precision registers

maintain extended-precision floating-point results. The eight auxiliary regis-

ters support a variety of indirect addressing modes and can be used as gener-

al-purpose 32-bit integer and logical registers. The remaining registers pro-

vide system functions such as addressing, stack management, processor sta-

tus, interrupts, and block repeat. Refer to Chapter 6, Addressing Modes, for

detailed information and examples of how CPU registers are used in address-

ing.

3.1.1 Extended-Precision Registers (R0–R11)

The 12 extended-precision registers (R0–R11) can store and support opera-

tions on 32-bit integer and 40-bit floating-point numbers.

For floating-point numbers, these registers consist of two separate and distinct

fields:

� Bits 39–32: store the exponent (e) of a floating-point number.

� Bits 31–0: store the mantissa of a floating-point number:

� Bit 31: sign bit (s),

� Bits 30–0: the fraction (f).

Any instruction that assumes that the operands are floating-point numbers

uses bits 39–0. Figure 3–1 illustrates the storage of 40-bit floating-point num-

bers in the extended-precision registers.



CPU Primary Register File

 3-4

Figure 3–1. Extended-Precision Register Floating-Point Format

mantissa

fraction (f)s 

39 32 31 30 0

e

For integer operations, bits 31–0 of the extended-precision registers contain

the integer (signed or unsigned). Any instruction that assumes that the oper-

ands are either signed or unsigned integers uses only bits 31–0. Bits 39–32

remain unchanged. This is true for all shift operations. The storage of 32-bit

integers in the extended-precision registers is shown in Figure 3–2.

Figure 3–2. Extended-Precision Register Integer Format

signed or unsigned integerunchanged

39 32 31 0

3.1.2 Auxiliary Registers (AR0–AR7)

The eight 32-bit auxiliary registers (AR0–AR7) can be accessed by the CPU

and modified by the two auxiliary register arithmetic units (ARAUs). The prima-

ry function of the auxiliary registers is the generation of 32-bit addresses. How-

ever, they can also operate as loop counters in indirect addressing or as 32-bit

general-purpose registers that can be modified by the multiplier and ALU. See

Chapter 6, Addressing Modes, for detailed information and examples of the

use of auxiliary registers in addressing.

3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register whose 16 LSBs are used by the

direct addressing mode as a pointer to the page of data being addressed. Data

pages are 64K words long with a total of 64K (65,536) pages. Bits 31–16 are

reserved; they are always read as zeros and should not be modified by writing

to the register. The DP can be loaded by using the LDP pseudoinstruction or

the LDI instruction. Figure 6–1, on page 6-5, describes this register’s func-

tions.

3.1.4 Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the auxiliary register arith-

metic unit (ARAU) for indexing the address. IR0 is also used for bit-reversed

addressing. See Chapter 6, Addressing Modes, for detailed information and

examples of the use of index registers in addressing. Section 6.4, Indirect Ad-

dressing, on page 6-6, discusses and provides examples of using IRn in indi-

rect addressing. Section 6.9, Bit-Reversed Addressing, on page 6-32, de-

scribes using IRn with bit-reversed addressing.



 CPU Primary Register File

3-5  CPU Registers

3.1.5 Block-Size Register (BK)

The 32-bit block-size register (BK) is used by the ARAU in circular addressing

to specify the data block size (see Section 6.8, Circular Addressing, on page

6-27, for more information about the use of the BK register).

3.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of

the top of the system stack. The SP always points to the last element pushed

onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and

the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the stack

perform preincrement and postdecrement, respectively, on all 32 bits of the SP.

3.1.7 Status Register (ST)

The status register (ST) contains global information about the CPU’s state.

Typically, load, store, arithmetic, and logical operations affect the ST’s condi-

tion flags. When the ST is loaded, the contents of the load instruction’s source

operand replace the ST’s current contents, regardless of the state of any bit(s)

in the source operand. Therefore, following an ST load, the contents of the ST

are identical to the contents of the source operand. This allows the status reg-

ister to be saved easily and restored. At system reset, 0 is written to the ST;

after reset, the CF bit is set to 1. The format of the ST is shown in Figure 3–3.

The text following the figure describes each field in the ST.

Figure 3–3. Status Register (ST)

NOTE: xx = reserved bit. R = read, W = write.

SC PGIE GIE CC CE CF PCF RM OVM LUF LV UF N Z V C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx xx xx xx xx xx xx xx xx xx xx xx NMI bus grant xx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/WR/W R/W

ANALYSIS

R/WR/W R/W

RRR/WRRRRRRRRRRRR

C Carry-condition flag.

V Overflow condition flag.

Z Zero condition flag.

N Negative condition flag.

UF Floating-point underflow condition flag.

LV Latched overflow condition flag.

LUF Latched floating-point underflow condition flag.



CPU Primary Register File

 3-6

OVM Overflow mode (OVM) flag. This flag affects only integer operations.

If OVM = 0, the overflow mode is turned off.

If OVM = 1, integer results overflowing in the positive direction are set to the
most positive 32-bit twos-complement number (7FFF FFFFh), and integer
results overflowing in the negative direction are set to the most negative
32-bit twos-complement number (8000 0000h).

Note that the functions of bits V and LV are independent of the setting of OVM.

RM Repeat mode (RM) flag. If RM = 1, the PC is modified in either the repeat-
block or repeat-single mode.

PCF Previous state of bit CF. When a trap executes or an interrupt is taken, the
CF bit is set to 1 and the PCF bit is set to the CF bit’s previous value.

The RETI and RETID instructions, explained in chapter 14, Assembly Lan-
guage Instructions, copy PCF to the CF bit.

CF Cache freeze (CF). Enables or disables updating of the cache.

Set CF = 1 to freeze the cache. If CF = 1 and CE = 1, fetches from the cache
and cache clearing (CC = 1) are allowed, but modification of the cache con-
tents is not allowed. At reset, this bit is cleared to zero; it is set to 1 after reset.

When CF = 0, the cache is automatically updated by instruction fetches from
external memory and cache clearing (CC = 1) is allowed. Traps and interrupts
set CF. The RETI and RETID instructions copy the PCF bit to the CF bit.

Table 3–2 summarizes the CE and CF bits.

CE Cache enable (CE). CE enables or disables the instruction cache.

Set CE = 1 to enable the cache, allowing the cache to be used according to
the LRU (least recently used) cache algorithm.

Set CE = 0 to disable the cache, preventing cache modifications and fetches.
Cache clearing (CC = 1) is allowed when CE = 0. At reset, 0 is written to CE.

CC Cache clear. CC = 1 invalidates all entries in the cache (contents not guaran-
teed). This bit is always cleared after it is written to and thus always read as
0. At reset, 0 is written to this bit. All cache P flags = 0 when cache is cleared.



 CPU Primary Register File

3-7  CPU Registers

Table 3–2.Summary of the CE and CF Bits

CE CF Effect

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen

1 1 Cache enabled but frozen (cache read only)

GIE Global interrupt enable. Enables or disables all maskable interrupts.

If GIE = 1, the CPU responds to any enabled interrupts.

If GIE = 0, the CPU does not respond to any enabled interrupts. This bit does
not affect NMIs. The IDLE, LAT, RETI, RETID, and TRAP instructions affect this
bit’s value. GIE is cleared to 0 when a trap is executed or an interrupt is taken.

PGIE Previous state of bit GIE. When a trap executes or an interrupt is taken, bit
GIE is cleared to 0. When this occurs, the PGIE bit is set to the GIE bit’s value
before the trap or interrupt. Note that the RETIcond and RETIcondD instruc-
tions copy PGIE to the GIE bit. At reset, this bit is cleared to 0.

SET COND
(SC)

This bit determines how condition flags (ST bits 0–6) are set.

If SET COND = 0, condition flags are set if the operation’s target is any ex-
tended-precision register (R0–R11). This setting makes the ’C4x similar to
the ’C3x, regarding condition flag settings. This bit is cleared to 0 at reset.

If SET COND = 1, condition flags are set if the target of the operation is any
register in the primary register files except the status register. Condition flags
are always set when a CMPF, CMPI, CMPF3, CMPI3, TSTB, or TSTB3 in-
struction is executed, regardless of the value of SET COND.

ANALYSIS This read-only bit is used in analysis mode to provide state information for
emulation.

NMI bus
grant

(’C44 and ’C40 revision �5.0 only)

The NMI bus-grant feature is useful in correcting communication-port errors
when used with the communication-port software reset feature. If bit 19 = 1
and bit 18 = 0, an internal peripheral bus-grant signal is forced on the falling
edge of NMI. If NMI is asserted when the peripheral bus is in a stall condition,
the NMI breaks the pending cycle and then jumps to the NMI service routine.
A stall condition may occur when writing to a full output FIFO, or when read-
ing from an empty input FIFO.

xx Reserved. Value undefined. These bits are read-only.



CPU Primary Register File

 3-8

3.1.8 DMA Coprocessor Interrupt Enable Register (DIE)

The 32-bit DMA interrupt enable register (DIE) is broken into six subfields that de-

termine which interrupts can be used to control the synchronization for each of

the six DMA coprocessor channels. Synchronization controls when a DMA chan-

nel reads or writes. At reset, zeros are written to all register bits.

Each DMA channel looks not only at the DMA synchronous interrupts selected

but also at the synchronization mode that the channel is currently using (see

Table 11–3). The synchronization mode is specified by the SYNC MODE field

in the DMA channel control registers located in the DMA coprocessor.

By using interrupt synchronization, each DMA channel can (for example) service

a corresponding communication port. Note that DMAi can be synchronized only

to signals coming from communication port i (where 0 ≤ i ≤ 5). Also, each DMA

channel can be synchronized to external interrupts and to the on-chip timers.

3.1.8.1 Unified Mode

Figure 3–4 shows the DMA interrupt enable register for unified mode.

Table 3–3 summarizes the interrupt activity for each of the four possible com-

binations of DMA0 and DMA1 for unified mode. Table 3–4 summarizes the in-

terrupts enabled by three-bit values in DMA2 through DMA5 for unified mode.

Figure 3–4. DMA Interrupt Enable Register Bit Functions for DMA Unified Mode

31 30 29 28 27 26 25 24 23 22 21 20

DMA5 Write DMA5 Read DMA4 Write DMA4 Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

19 18 17 16 15 14 13 12 11 10 9 8

DMA3 Write DMA3 Read DMA2 Write DMA2 Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

DMA1 Write DMA1 Read DMA0 Write DMA0 Read

R/W R/W R/W R/W R/W R/W R/W R/W

R = Read W = Write



 CPU Primary Register File

3-9  CPU Registers

Table 3–3.DMA Channels 0 and 1 (DMA0 and DMA1) Unified Mode Synchronization Interrupts

Bi V l (i

Interrupt Enabled at DMA0 or DMA1

Bit Value (in

DMA0 or DMA1)

DMA0

Read

DMA0

Write

DMA1

Read

DMA1

Write

Interrupt Source for

DMA Synchronization

0 0† None None None None – –

0 1‡ ICRDY0 OCRDY0 ICRDY1 OCRDY1 From communication port

1 0 IIOF0 IIOF1 IIOF2 IIOF3 From external pins IIOF0–IIOF3

1 1 TIM0 TIM0 TIM0 TIM0 From timer TIM0

† DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.
‡ This option is not available for DMA0 and DMA3 in the ’C44.

Table 3–4.DMA Channels 2 to 5 (DMA2 to DMA5) Unified Mode Synchronization Interrupts

Bit Value
Interrupt Enabled at DMA2–DMA5†

Interrupt Source for DMABit Value

(in DMA2 to DMA5) DMAx Read DMAx Write
Interrupt Source for DMA

Synchronization

0 0 0‡ None None – –

0 0 1§ ICRDYx† OCRDYx† From communication port

0 1 0 IIOF0 IIOF0 From external pins IIOF0–IIOF3

0 1 1 IIOF1 IIOF1

1 0 0 IIOF2 IIOF2

1 0 1 IIOF3 IIOF3

1 1 0 TIM0 TIM0 From timers TIM0 and TIM1

1 1 1 TIM1 TIM1

† The x in DMAx is the DMA channel number, which is also the number for the corresponding ICRDYx and OCRDYx interrupts.

For example, an 0012 in both DMA2 READ and DMA5 WRITE would enable interrupts ICRDY2 and OCRDY5, respectively.

All other viable bit values (0102 to 1112) are the same (as shown in the table) for DMA2 through DMA5.
‡ DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.
§ This option is not available for DMA0 and DMA3 in the ’C44.

Note: DMA Coprocessor Uses Signals to Synchronize

The interrupts in Table 3–3 and Table 3–4 (ICRDYx, OCRDYx, TIM0, etc.)
are not vectored. The DMA coprocessor uses these as signals to synchro-
nize DMA coprocessor transfers. This process is explained in Section 11.10.



CPU Primary Register File

 3-10

3.1.8.2 Split Mode

Figure 3–5 shows the DMA interrupt enable register for split mode. Table 3–5

summarizes the interrupt activity for each of the four possible combinations of

DMA0 and DMA1 for split mode. Table 3–6 summarizes the interrupts enabled

by three-bit values in DMA2 through DMA5 for split mode.

Figure 3–5. DMA Interrupt Enable Register Bit Functions for DMA Split Mode

31 30 29 28 27 26 25 24 23 22 21 20

DMA5 Primary Write DMA5 Auxiliary Read DMA4 Primary Write DMA4 Auxiliary Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

19 18 17 16 15 14 13 12 11 10 9 8

DMA3 Primary Write DMA3 Auxiliary Read DMA2 Primary Write DMA2 Auxiliary Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

DMA1 Primary Write DMA1 Auxiliary Read DMA0 Primary Write DMA0 Auxiliary Read

R/W R/W R/W R/W R/W R/W R/W R/W

R = Read W = Write

Table 3–5.DMA Channels 0 and 1 (DMA0 and DMA1) Split-Mode Synchronization
Interrupts

Bit Value
Interrupt Enabled at DMA0 or DMA1

Bit Value

(in DMA0

or

DMA1)

DMA0

Auxiliary

Read

DMA0

Primary

Write

DMA1

Auxiliary

Read

DMA1

Primary

Write
Interrupt Source for DMA

Synchronization

0 0† None None None None – –

0 1‡ ICRDY0 OCRDY0 ICRDY1 OCRDY1 From communication port

1 0 IIOF0 IIOF1 IIOF2 IIOF3 From external pins IIOF0–IIOF3

1 1 TIM0 TIM0 TIM0 TIM0 From timer TIM0

† DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.
‡ This option is not available for DMA0 and DMA3 in the ’C44.



 CPU Primary Register File

3-11  CPU Registers

Table 3–6.DMA Channels 2 to 5 (DMA2 to DMA5) Split-Mode Synchronization Interrupts

Bi V l

Interrupt Enabled at DMA2–DMA5†

I S f DMABit Value

(in DMA2 to DMA5)

DMAx Auxiliary

Read†
DMAx Primary

Write†
Interrupt Source for DMA

Synchronization

0 0 0‡ None None – –

0 0 1§ ICRDYx† OCRDYx† From communication port

0 1 0 IIOF0 IIOF0 From external pins IIOF0–IIOF3

0 1 1 IIOF1 IIOF1

1 0 0 IIOF2 IIOF2

1 0 1 IIOF3 IIOF3

1 1 0 TIM0 TIM0 From timers TIM0 and TIM1

1 1 1 TIM1 TIM1

† The x in DMAx is the DMA channel number, which is also the number for the corresponding ICRDYx and OCRDYx interrupts.

For example, an 0012 in both DMA2 READ and DMA5 WRITE would enable interrupts ICRDY2 and OCRDY5, respectively.

All other viable bit values (0102 to 1112) are the same (as shown in the table) for DMA2 through DMA5.
‡ DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.
§ This option is not available for DMA0 and DMA3 in the ’C44.

3.1.9 CPU Internal Interrupt Enable Register (IIE)

The 32-bit internal interrupt enable register, shown in Figure 3–6, enables/dis-

ables the following interrupts for the CPU:

� Timers 0 and 1

� For communication ports 0–5:

� Input-buffer full

� Input-buffer ready

� Output-buffer ready

� Output-buffer empty

� DMA coprocessor channels 0–5

Figure 3–6 shows the IIE register bits. A 1 means the corresponding interrupt

is enabled; a 0 indicates disabled. At reset, zeros are written to all register bits.



CPU Primary Register File

 3-12

Figure 3–6. Internal Interrupt Enable Register (IIE)

31 30 29 28 27 26 25 24 23 22 21

ETINT1 EDMA
INT5

EDMA
INT4

EDMA
INT3

EDMA
INT2

EDMA
INT1

EDMA
INT0

EOC–
EMPTY5

EOC–
RDY5

EIC–
RDY5

EIC–
FULL5

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

20 19 18 17 16 15 14 13 12 11 10 9

EOC
EMPTY4

EOC
RDY4

EIC
RDY4

EIC
FULL4

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

EOC
EMPTY3

ÉÉÉ
ÉÉÉ
ÉÉÉ

EOC
RDY3

ÉÉÉ
ÉÉÉ
ÉÉÉ

EIC
RDY3

ÉÉÉ
ÉÉÉ
ÉÉÉ

EIC
FULL3

EOC
EMPTY2

EOC
RDY2

EIC
RDY2

EIC
FULL2

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

8 7 6 5 4 3 2 1 0

EOC
EMPTY1

EOC
RDY1

EIC
RDY1

EIC
FULL1

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

EOC
EMPTY0

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

EOC
RDY0

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

EIC
RDY0

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

EIC
FULL0

ETINT0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

R = Read, W = Write, R/W = Read/Write

Notes:

1) In the figure, the shaded boxes are reserved bits in the ’C44. Zero should

be written to each of these bits.

2) The fields corresponding to each unit are separated by double lines.

The following are definitions for each of the bits in the IIE.

EICFULLx Comm. port x input-buffer full interrupt 

EICRDYx Comm. port x input-buffer ready interrupt 

EOCRDYx Comm. port x output-buffer ready interrupt

EOCEMPTYx Comm. port x output-buffer empty interrupt

EDMAINTx DMA coprocessor channel x interrupt

ETINT0 Timer 0 interrupt 

ETINT1 Timer 1 interrupt 

In each field label, the x represents a communication port number (0 – 5) or

a DMA coprocessor channel number (0–5). For example, a 1 in bit 5 causes

interrupts to be generated when communication port number 1’s input buffer

becomes full. Or, a 1 in bit 26 enables channel 1 of the DMA coprocessor to

respond to interrupts. A 1 enables each interrupt; a 0 disables it.



 CPU Primary Register File

3-13  CPU Registers

3.1.10 IIOF Flag Register (IIF)

The IIF register controls the external interrupt pins IIOF(3–0). Use it to specify:

� Which IIOF pins are used for general-purpose I/O and which are used for

interrupts

� Whether a general-purpose pin is input (read only) or output (read/write)

� Whether an interrupt pin is for edge-triggered or level-triggered interrupts,

� Whether an external interrupt is enabled or disabled

The IIF register also contains timer, DMA and NMI interrupt flags. Figure 3–7

shows the IIF register’s bits. The text following the figure explains these bits

in detail.

The IIF register bits can be read from or written to under software control. This

provides access to the IIOFx pins, which can be treated as general-purpose

I/O or as interrupt pins. For example, if at the IIF register, FUNCx = 0 (I/O pin)

and TYPEx = 1 (output pin), then by writing into the FLAGx bit, you can also

write to the external pin IIOFx. If FUNCx = 1 (interrupt pin), writing a 1 to the

IIF register FLAGx bit has the same effect as an incoming interrupt received

on the corresponding pin. Consequently, all interrupts can be triggered and/or

cleared through software. Since the interrupt bits also can be read from, the

interrupt pins can be polled in software when an interrupt-driven interface is

not required.

Internal interrupts operate in a similar manner. In the IIF register, the bit corre-

sponding to an internal interrupt (e.g., TINT0, TINT1) can be read from and

written to through software. Writing a 1 sets the interrupt latch, and writing a

0 clears it. All internal interrupts are one H1/H3 cycle in length. Modify the IIF

by using logic operations (AND, OR, etc.) as shown:

correct incorrect

LDI @MASK,R0 LDI IIF, R1

AND R0, IIF AND @MASK, R1

LDI R1, IIF

Traps and interrupts are described briefly in Section 3.2, CPU Expansion Reg-

ister File, on page 3-17, and in detail in Section 7.4, Interrupts, on page 7-15,

and Section 7.5, Traps, on page 7-24.



CPU Primary Register File

 3-14

Figure 3–7. Interrupt Flag Register (IIF)

31 30 29 28 27 26 25 24

TINT1 DMAINT5 DMAINT4 DMAINT3 DMAINT2 DMAINT1 DMAINT0 TINT0

R/W R/W R/W R/W R/W R/W R/W R/W

23 22 21 20 19 18 17 16

xx xx xx xx xx xx xx NMI

R R R R R R R R

15 14 13 12 11 10 9 8ÇÇÇÇ
ÇÇÇÇEIIOF3

ÇÇÇ
ÇÇÇFLAG3

ÇÇÇÇ
ÇÇÇÇTYPE3

ÇÇÇ
ÇÇÇFUNC3

ÇÇÇÇ
ÇÇÇÇEIIOF2

ÇÇÇ
ÇÇÇFLAG2

ÇÇÇÇ
ÇÇÇÇTYPE2

ÇÇÇÇ
ÇÇÇÇFUNC2

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0
ÇÇÇÇ
ÇÇÇÇ

EIIOF1
ÇÇÇ
ÇÇÇ

FLAG1
ÇÇÇÇ
ÇÇÇÇ

TYPE1
ÇÇÇ
ÇÇÇ

FUNC1
ÇÇÇÇ
ÇÇÇÇ

EIIOF0
ÇÇÇ
ÇÇÇ

FLAG0
ÇÇÇÇ
ÇÇÇÇ

TYPE0
ÇÇÇÇ
ÇÇÇÇ

FUNC0

R/W R/W R/W R/W R/W R/W R/W R/W

R = Read, W = Write, R/W = Read/Write

FUNCx Mode of pin IIOFx. If FUNCx = 0, pin IIOFx is a general-purpose I/O (R/W)
pin. If FUNCx = 1, pin IIOFx is an interrupt pin.

TYPEx Type of function for pin IIOFx.
If pin IIOFx is a general-purpose I/O pin (FUNCx = 0):

TYPEx = 0 makes IIOFx an input pin.
TYPEx = 1 makes IIOFx an output pin

If pin IIOFx is an interrupt pin (FUNCx = 1):
TYPEx = 0 makes IIOFx an edge-triggered latched interrupt,
TYPEx = 1 makes IIOFx a level-triggered unlatched interrupt.

FLAGx Flag for pin IIOFx.
If pin IIOFx is a general-purpose input pin (FUNCx = 0, TYPEx = 0),

FLAGx = the value of pin IIOFx and is read only.
If pin IIOFx is a general-purpose output pin (FUNCx = 0, TYPEx = 1),

FLAGx = the value on pin IIOFx and is R/W.
If pin IIOFx is an interrupt pin (FUNCx = 1):

FLAGx = 0 if interrupt is not asserted.
FLAGx = 1 if interrupt is asserted.

If 0 (zero) is written to FLAGx, the corresponding interrupt is cleared unless
an interrupt is on the same pin; in that case, the interrupt will remain set.

EIIFOx Disable/enable external interrupt.
EIIOFx = 0 disables external interrupts at pin IIOFx.
EIIOFx = 1 enables external interrupts at pin IIOFx.



 CPU Primary Register File

3-15  CPU Registers

NMI Nonmaskable Interrupt flag (NMI). The NMI interrupt (on the external NMI
pin) behaves like other interrupts, except that it cannot be masked (disabled)
by the GIE bit (ST bit 13) or by writing to the NMI bit. It is temporarily masked
during delayed branches and multicycle CPU operations. At reset, this bit is
cleared. An asserted interrupt is cleared only by servicing the interrupt. NMI
is a negative-going, edge-triggered, latched interrupt. It is read-only.

Reading NMI as 0 indicates that the interrupt is not asserted.

Reading NMI as 1 indicates that the interrupt is asserted.

Reserved Reserved; read as zeros.

TINT0 Timer interrupt flags 0 and 1.

TINT1 Reading TINTx as 0 indicates that the timer interrupt is not asserted.
Reading TINTx as 1 indicates that the timer interrupt is asserted.
A zero written to this bit clears the interrupt unless the interrupt is asserted
at the same time; in that case, the interrupt will be shown as asserted.

DMAINTx Interrupt flag for DMA coprocessor channels 0 to 5. Reading DMAINTx as
0 indicates that the channel interrupt is not asserted. Reading DMAINTx as
1 indicates that the channel interrupt is asserted. A zero written to this bit
clears the interrupt unless the interrupt is asserted at the same time; in that
case, the interrupt is shown as asserted. 

Notes:

1) Shaded IIF bits 0, 1, 2, 3 apply to pin IIOF0; shaded IIF bits 4, 5, 6, 7 apply

to IIOF1, etc.

2) The x represents the corresponding IIOF interrupt pin (IIOF0–3)



CPU Primary Register File

 3-16

3.1.11 Block-Repeat (RS, RE) and Repeat-Count (RC) Registers

The 32-bit repeat start address register (RS) contains the starting address of

the block of program memory to be repeated when the CPU is operating in the

repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of

the block of program memory to be repeated when the CPU is operating in the

repeat mode.

Note:

If RE < RS, the block of program memory is not repeated, and the code does
not loop backwards. However, the ST(RM) bit remains set to 1.

The repeat-count register (RC) is a 32-bit register that specifies the number

of times a block of code is to be repeated when a block repeat is performed.

If RC contains the number n, the loop is executed n + 1 times.

3.1.12 Program Counter (PC)

The program counter (PC) is a 32-bit register containing the address of the

next instruction to fetch. While the program counter is not part of the CPU reg-

ister file, it can be modified by the same instructions that modify the program

flow.

3.1.13 Reserved Bits and Compatibility

To retain compatibility with future members of the ’C4x family of microproces-

sors, reserved bits that are read as zero must be written as zero. Reserved bits

that have an undefined value must not have their current value modified. In

other cases, maintain the reserved bits as specified.



 CPU Expansion Register File

3-17  CPU Registers

3.2 CPU Expansion Register File

This expansion register file contains two special control registers:

� Interrupt-vector table pointer (IVTP)

� Trap-vector table pointer (TVTP)

Table 3–7.CPU Expansion Registers

Assembler

Syntax

Register

Machine

Value (Hex) Function Name

IVTP 00 Interrupt-vector table pointer. Points to start of the

interrupt-vector table.

TVTP 01 Trap-vector table pointer. Points to start of the

trap-vector table.

Use the LDEP instruction to load (copy) an expansion register to a primary

register (e.g., to any of the auxiliary registers AR0–AR7; see Table 3–1 on

page 3-2). For example:

LDEP IVTP,AR5 ; IVTP contents to AR5

Likewise, use the LDPE instruction to load (copy) a primary register to an ex-

pansion register. Neither of these instructions affects the status register condi-

tion flags.

LDPE AR5,IVTP ; AR5 contents to IVTP

Note that both the interrupt-vector table and the trap-vector table are required
to lie on a 512-word boundary; thus, the nine least significant bits of these
pointers are zeros (i.e., 10 0000 00002 = 512 = 200h). Write only zeros to
these bits (though the register forces these to zeros).

The 32-bit IVTP register points to (is essentially the base address for) the in-
terrupt-vector table (IVT) in memory.

The 32-bit TVTP register is essentially the base address for the trap-vector
table (TVT) in memory. This table contains the vectors for the TRAP instruc-
tion’s 512-trap addresses (TRAP0–TRAP511).

The interrupt and trap vector tables can share the same 512-byte space in

memory. In this configuration, you can place trap vectors where there are no

interrupt vectors. For example, since interrupt vector 02Ch is unused, you

could place a trap vector at IVTP + 02Ch (which is also TVTP + 02Ch if the

tables overlap) and then call that trap by specifying 02Ch in the TRAP instruc-

tion.

At reset, IVTP and TVTP are both set to zero.



 3-18



4-1  Memory and the Instruction Cache

Memory and the Instruction Cache

The ’C40 accesses a total memory space of 4G 32-bit words (16G bytes) of

program, data, and I/O space; the ’C44 accesses a total memory space of 32M

32-bit words (128M bytes).

Two internal RAM blocks of 1K × 32 bits each (4K bytes) and an internal ROM

block containing a bootloader permit two accesses per block in a single cycle.

A 128 × 32-bit instruction cache allows code to be stored off-chip in slower, low-

er-cost memories without degrading performance. The cache also speeds

data fetches to the same physical space as the program because it does not

burden the bus with program instruction fetches.

This chapter describes the memory maps and the instruction cache.

Topic Page

4.1 Memory Map 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Peripheral Bus Memory Map 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Instruction Cache 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4



Instructions
cannot be

loaded from
these 2 areas.

Memory Map

 4-2

4.1 Memory Map

The ’C4x memory space of 4 gigawords (4G × 32 bits where 1G = 230) is shown

in the memory maps in Figure 4–1 and Figure 4–2. The contents of the first

segment of address space, at 0000 0000h to 000F FFFFh, is selected by the

value of the ROM enable (ROMEN) pin:

� ROMEN = 1. Addresses 0000 0000h–0000 0FFFh are an on-chip ROM

block (reserved for bootloader operations), and addresses

0000 1000h–000F  FFFFh are reserved.

� ROMEN = 0. The on-chip (reserved) ROM is disabled, and addresses

0000  0000h–000F FFFFh are mapped to the local bus.

Memory starting at 0010 0000h is not affected by ROMEN. The following is a

general summary of address ranges:

� 0000 0000h–000F FFFFh: Can be local bus or on-chip (reserved) ROM,

depending on the value of ROMEN. If ROMEN=0, these addresses are

mapped to the local bus. If ROMEN=1, these addresses are mapped to

the on-chip ROM.

� 0010 0000h–0010 00FFh: Internal peripherals (DMA

coprocessor, communications ports, timers, etc.).

� 0010 0100h–002F F7FFh: Reserved.

� 002F F800h–002F FBFFh: 1K RAM Block 0.

� 002F FC00h–002F FFFFh: 1K RAM Block 1.

� 0030 0000h–7FFF FFFFh: Local bus. These addresses are mapped to

the local bus.

� 8000 0000h–0FFFF FFFFh: Global bus. These addresses are mapped

to the global bus.

CPU data accesses and DMA accesses can be made from any unreserved

part of the ’C4x memory map. Instruction fetches can take place from any unre-

served area of the ’C4x memory map, except from the peripheral space (ad-

dresses 0010 0000h–0010 00FFh).

Note:

The ’C4x internal ROM is generally reserved for TI internal use only. Howev-
er, for high-volume applications, you can request that TI install your code in
the internal ROM.



 Memory Map

4-3  Memory and the Instruction Cache

Figure 4–1. ’C40 Memory Map

00000 0000h

00000 0FFFh
00000 1000h

0000F FFFFh
00010 0000h

00010 00FFh
00010 0100h

0001F FFFFh
00020 0000h

0002F F7FFh
0002F F800h

0002F FC00h
0002F FFFFh
00030 0000h

07FFF FFFFh

0002F FBFFh

0FFFF FFFFh

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (Internal)

Reserved

1K RAM BLK 0 (Internal)

Local bus
(external)

Global bus
(external)

1M

1M

1M

2G–3M

2G

S
tr

u
c
tu

re
 id

e
n
ti
c
a
l

S
tr

u
c
tu

re
d
e
p
e
n
d
s
 u

p
o
n

08000 0000h

Accessible
local bus
(external)

Bootloader ROM 
(internal)

Reserved

 

R
O

M
E

N
 b

it

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (Internal)

Reserved

1K RAM BLK 0 (Internal)

Local bus
(external)

Global bus
(external)

 

(a) Internal ROM disabled
(ROMEN = 0)

(b) Internal ROM enabled
(ROMEN = 1)

Microprocessor Mode Microcomputer Mode



Memory Map

 4-4

Figure 4–2. ’C44 Memory Map

00000 0000h

00000 0FFFh
00000 1000h

0000F FFFFh
00010 0000h

00010 00FFh
00010 0100h

0001F FFFFh

00020 0000h

0002F F7FFh
0002F F800h

0002F FC00h
0002F FFFFh
00030  0000h

07FFF FFFFh

0002F FBFFh

0FFFF FFFFh

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (internal)

Reserved

1K RAM BLK 0 (internal)

Local bus
(external)

Global bus
(external)

1M

1M

1M

2G–16M

2G

S
tr

u
c
tu

re
 id

e
n
ti
c
a
l

S
tr

u
c
tu

re
d
e
p
e
n
d
s
 u

p
o
n

08000 0000h

Accessible
local bus
(external)

Bootloader ROM
(internal)

Reserved

 

R
O

M
E

N
 b

it

13M

16M

Global bus
(alias region)

Local bus
(alias region)

Peripherals (internal)
(see Figure 2–6)

Reserved

1K RAM BLK 1 (internal)

Reserved

1K RAM BLK 0 (internal)

Local bus
(external)

Global bus
(external)

 

Global bus
(alias region)

Local bus
(alias region)

(a) Internal ROM disabled
(ROMEN = 0)

(b) Internal ROM enabled
(ROMEN = 1)

Microprocessor Mode Microcomputer Mode



 Peripheral Bus Memory Map

4-5  Memory and the Instruction Cache

4.2 Peripheral Bus Memory Map

The peripheral bus memory map resides in addresses 0010 0000h–

0010 00FFh. Each peripheral requires a 16-word area. Figure 4–3 shows the

locations of registers for each peripheral in the memory map.

Figure 4–3. Peripheral Memory Map

0010 0000h

0010 000Fh
Local and Global Port Control (16 words) 

(See subsection 4.2.1 and Figure 4–4)

0010 0010h

0010 001Fh
Analysis Module Block Registers (16 words) 

(See subsection 4.2.2)

0010 0020h

0010 002Fh
Timer 0 Registers (16 words) 

(See subsection 4.2.3 and Figure 4–5)

0010 0030h

0010 003Fh

Timer 1 Registers (16 words)

(See subsection 4.2.3 and Figure 4–5)

0010 0040h

0010 004Fh
Communication Port 0 (16 words) (’C40 only)

(See subsection 4.2.4 and Figure 4–5)

0010 0050h

0010 005Fh

Communication Port 1 (16 words)

(See subsection 4.2.4 and Figure 4–5)

0010 0060h

0010 006Fh
Communication Port 2 (16 words)

(See subsection 4.2.4 and Figure 4–5)

0010 0070h

0010 007Fh
Communication Port 3 (16 words) (’C40 only)

(See subsection 4.2.4 and Figure 4–5)

0010 0080h

0010 008Fh
Communication Port 4 (16 words)

(See subsection 4.2.4 and Figure 4–5)

0010 0090h

0010 009Fh
Communication Port 5 (16 words)

(See subsection 4.2.4 and Figure 4–5)

0010 00A0h

0010 00AFh
DMA Coprocessor Channel 0 (16 words)

(See subsection 4.2.5 and Figure 4–6)

0010 00B0h

0010 00BFh

DMA Coprocessor Channel 1 (16 words)

(See subsection 4.2.5 and Figure 4–6)

0010 00C0h

0010 00CFh
DMA Coprocessor Channel 2 (16 words)

(See subsection 4.2.5 and Figure 4–6)

0010 00D0h

0010 00DFh
DMA Coprocessor Channel 3 (16 words)

(See subsection 4.2.5 and Figure 4–6)

0010 00E0h

0010 00EFh
DMA Coprocessor Channel 4 (16 words)

(See subsection 4.2.5 and Figure 4–6)

0010 00F0h

0010 00FFh
DMA Coprocessor Channel 5 (16 words)

(See subsection 4.2.5 and Figure 4–6)



Peripheral Bus Memory Map

 4-6

4.2.1 Local and Global Memory Interface Control Registers

These registers control the local and global memory interfaces. They occupy

the first 16-word block of the peripheral bus memory map, shown in

Figure 4–3. The registers themselves are shown in Figure 4–4. Chapter 9, Ex-

ternal Bus Operation, covers the operation of these registers.

These registers define several settings:

� The page sizes used for the two strobes of each port

� Address ranges over which the strobes are active

� Wait states

� Other similar operations that compose the memory interfaces

Figure 4–4. Memory Interface Control Registers

Global Memory Interface Control Register0010 0000h

0010 0001h

0010 0003h

0010 000Fh

Local Memory Interface Control Register

Reserved

0010 0005h

0010 0004h

Reserved

4.2.2 Analysis Module Registers

The second lowest 16-word block in the peripheral bus memory map, as

shown in Figure 4–3, contains part of the analysis module registers. These

registers are reserved for emulation functions. The TMS320C4x C Source De-

bugger User’s Guide (literature number SPRU054) describes the analysis

module user interface provided by the ’C4x debugger.



 Peripheral Bus Memory Map

4-7  Memory and the Instruction Cache

4.2.3 Timer Registers

This group of registers occupies the 0010 0020h–0010 003Fh range in the

peripheral bus memory map shown in Figure 4–3, on page 4-5. Timers and

their registers are covered in detail in Chapter 13, Timers.

Figure 4–5. Timer Registers

Timer 0 counter register

Timer 1 period register

Timer 0 control register0010 0020h

0010 0024h

0010 0028h

0010 0030h

0010 0034h

0010 0038h

0010 003Fh

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Timer 0 period register

Timer 1 counter register

Timer 1 control register

Timer 0

Timer 1

0010 0021h

0010 0023h

0010 0025h

0010 0027h

0010 0031h

0010 0033h

0010 0035h

0010 0037h



Peripheral Bus Memory Map

 4-8

4.2.4 Communication Port Memory Map

Figure 4–6 illustrates the communication-port control registers (CPCR) and

input and output FIFO buffers. This is the central group of registers in the pe-

ripheral bus memory map shown in Figure 4–4, on page 4-6. These registers

are described in more detail in Chapter 12, Communication Ports.

Figure 4–6. Communication Port Memory Map

0010 0040h

0010 0041h

0010 0042h

0010 009Fh

CPCR 0 (’C40 only)

input port 0, FIFO position 0

output port 0, FIFO position 7

Port 0 software reset0010 0043h

0010 0050h

0010 0051h

0010 0052h

CPCR 1

input port 1, FIFO position 0

output port 1, FIFO position 7

Port 1 software reset0010 0053h

0010 0060h

0010 0061h

0010 0062h

CPCR 2

input port 2, FIFO position 0

output port 2, FIFO position 7

Port 2 software reset0010 0063h

0010 0070h

0010 0071h

0010 0072h

CPCR 3 (’C40 only)

input port 3, FIFO position 0

output port 3, FIFO position 7

Port 3 software reset0010 0073h

0010 0080h

0010 0081h

0010 0082h

CPCR 4

input port 4, FIFO position 0

output port 4, FIFO position 7

Port 4 software reset0010 0083h

0010 0090h

0010 0091h

0010 0092h

CPCR 5

input port 5, FIFO position 0

output port 5, FIFO position 7

Port 5 software reset0010 0093h



 Peripheral Bus Memory Map

4-9  Memory and the Instruction Cache

4.2.5 DMA Coprocessor Registers

The DMA registers (shown in Figure 4–7) are the bottom block of registers in

the peripheral bus memory map (Figure 4–3 on page 4-5). These registers

are described in Chapter 11, The DMA Coprocessor.

Figure 4–7. DMA Coprocessor Memory Map 

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

0010 00A0h

0010 00A8h
0010 00A9h

0010 00AFh
0010 00B0h

0010 00B8h
0010 00B9h

0010 00BFh
0010 00C0h

0010 00C8h
0010 00C9h

0010 00CFh
0010 00D0h

0010 00D8h
0010 00D9h

0010 00DFh
0010 00E0h

0010 00E8h
0010 00E9h

0010 00EFh
0010 00F0h

0010 00F8h
0010 00F9h

0010 00FFh

x
010 00z0h

010 00z1h

010 00z2h

010 00z3h

010 00z4h

010 00z5h

010 00z6h

010 00z7h

010 00z8h

Control register x

Source address x

Source address index x

Transfer counter x

Destination address x

Destination address index x

Link pointer x

Auxiliary transfer counter x

Auxiliary link pointer x

Exploded View of Each Channel

Register

Channel
registers

(see exploded
view)

Channel
registers

(see exploded
view)

Channel
registers

(see exploded
view)

Channel
registers

(see exploded
view)

Channel
registers

(see exploded
view)

Channel
registers

(see exploded
view)

x = channel number (e.g., x = 1 for channel 1, x = 2 for

channel 2, etc.)

z = corresponding hexadecimal digit for channel address

(e.g., substitute an A for DMA channel 0, B for

DMA channel 1, etc.)

DMA Ch 0

DMA Ch 1

DMA Ch 2

DMA Ch 3

DMA Ch 4

DMA Ch 5

DMA
Ch.



Instruction Cache

 4-10

4.3 Instruction Cache

The 128 × 32-bit instruction cache speeds instruction fetches and lowers sys-

tem cost. The instruction cache allows the use of slow external memories while

still achieving single-cycle access performance. The cache also frees the ex-

ternal buses from program fetches, thus, allowing the use of these buses for

DMA or other system needs. The cache can operate in a completely automatic

fashion without the need for external intervention. It uses a form of the LRU

(least recently used) cache update algorithm.

4.3.1 Instruction Cache Architecture

The instruction cache (see Figure 4–9 on page 4-11 ) contains 128 32-bit

words of RAM, enough to hold 128 words of program memory. It is divided into

four 32-word segments. Associated with each segment is a 27-bit segment

start address (SSA) register. For each word in the cache, there is a corre-

sponding single-bit present (P) flag.

When the CPU requests an instruction word, a check is made to determine

whether the word is already in the instruction cache. The partitioning of an in-

struction address as used by the cache control algorithm is shown in

Figure 4–8. The 27 most significant bits (MSBs) of the instruction address se-

lect the segment, and the five least significant bits (LSBs) define the address

of the instruction word within the pertinent segment. The 27 MSBs of the in-

struction address are compared with the four SSA registers. If a match is

found, the relevant P flag is checked. The P flag indicates whether the word

within a particular segment is already present in cache memory:

� P = 1: the word is already present in cache memory.

� P = 0: location in cache is invalid (e.g., contains garbage).

Figure 4–8. Address Partitioning for Cache Control Algorithm

Instruction word
address within segment

5 431 0

Segment start address
(SSA)

If there is no match, one of the segments must be replaced by the new data.

The segment replaced in this circumstance is determined by the LRU (least

recently used) algorithm. The LRU stack (see the upper-right portion of

Figure 4–9) is maintained for this purpose.



 Instruction Cache

4-11  Memory and the Instruction Cache

Figure 4–9. Instruction Cache Architecture 

Segment start
address registers Segment Words LRU

Stack

SSA Register 0 Segment word 0

Segment word 1

Segment word 30

Segment word 31

Segment word 0

Segment word 1

Segment word 30

Segment word 31

Most recently
usedsegment
 number

 Least recently
 used segment
 number

Segment 0

Segment 1

P
Flags

0

1

30

31

0

1

30

31

SSA Register 1

SSA Register 0

SSA Register 1

2 bits

1 bit

SSA Register 2 Segment word 0

Segment word 1

Segment word 30

Segment word 31

Segment word 0

Segment word 1

Segment word 30

Segment word 31

Segment 2

Segment 3

0

1

30

31

0

1

30

31

SSA Register 3

SSA Register 2

SSA Register 3

27 bits

32 bits



Instruction Cache

 4-12

The LRU stack keeps track of which segment (0–3) qualifies as the least re-

cently used after each access to the cache. Each time a segment is accessed,

its segment number is removed from the LRU stack and pushed onto the top

of the LRU stack. Therefore, the number at the top of the stack is the most re-

cently used segment number, and the number at the bottom of the stack is the

least recently used segment number.

At reset, the following occur in the instruction cache:

� Cache is disabled (ST(CE) = 0). After reset cache is frozen (ST(CF) = 1).

See section 3.1.7, Status Register (ST), on page 3-5, for details.

� All P flags are set to zero.

� The LRU stack is initialized with segment 0 at the top, followed by seg-

ments 1, 2, and 3 at the bottom. If any two SSA registers are equal (due

to reset conditions) and a cache hit occurs, the instruction word is fetched

from the most recently used segment.

When a replacement is necessary, the least recently used segment is selected

for replacement. Also, the 32 P flags for the segment to be replaced are set

to 0, and the segment’s SSA register is replaced with the 27 MSBs of the new

instruction’s address.

4.3.2 Cache Control Bits

Four cache control bits are located in the CPU status register (ST): the cache

clear bit (CC), the cache enable bit (CE), the cache freeze bit (CF), and the

previous cache freeze bit (PCF). The status register is shown in Figure 3–3.

Cache Clear Bit (CC). Set CC = 1 to invalidate all entries in the cache. This

bit is always cleared after it is written to; thus, it is always read as 0. At reset,

0 is written to this bit. The cache P flag = 0 when the cache is cleared.

Cache Enable Bit (CE). Set CE = 1 to enable the cache, allowing the cache

to be used according to the LRU (least recently used) cache algorithm. Set

CE = 0 to disable the cache; this prevents cache updates or modifications

(thus, no cache fetches can be made). At reset, 0 is written to this bit. Cache

clearing (CC = 1) is allowed when CE = 0.

Cache Freeze Bit (CF). Set CF = 1 to freeze the cache including freezing of

LRU (least recently used) stack manipulation. If the cache is enabled (CE =

1) and the cache is frozen (CF = 1), fetches from the cache are allowed, but

modification of the cache contents is not allowed. Cache clearing (CC = 1) is

allowed when CF = 1. At reset, this bit is cleared to 0 and after reset it is set

to 1. When CF = 0, cache clearing (CC=1) is allowed. CF is set to one when

a trap or interrupt is taken. Also, the RETI and RETID instructions copy PCF

to the CF bit.



 Instruction Cache

4-13  Memory and the Instruction Cache

Table 4–1 summarizes the effects of the CE and CF bits.

Table 4–1.Combined Effect of the CE and CF Bits

CE CF Effect

0 0 Cache not enabled

0 1 Cache not enabled

1 0
Cache enabled and not

frozen

1 1 Cache enabled and frozen

Previous Cache Freeze Bit (PCF). When an interrupt or trap vector is taken,

the CF value is copied to the PCF bit, and the CF bit is set to 1. This protects

the cache during interrupt processing and is particularly useful when code

loops are interrupted. The interrupt service routine may optionally use the

cache under software control. Interrupts may also be nested, providing that the

status register is saved before the interrupts are enabled. When the instruc-

tions RETIcond and RETIcondD are executed to complete interrupt process-

ing, the contents of the PCF bit are copied to the CF bit.

4.3.3 Using the Cache

Only instructions may be fetched from the program cache. All reads and writes

of data to and from memory, bypass the cache. Program fetches from internal

memory do not modify the cache and do not generate cache hits or misses.

The program cache is a single-access memory block. Dummy program

fetches (i.e., following a branch) can generate cache misses and cache up-

dates. Example 4–1 shows a typical way to clear and enable the cache.

Example 4–1.Enabling the Cache

...

OR 1800h,ST

...

To use the cache more efficiently, take two precautions:

Avoid using self-modifying code. If an instruction resides in the cache and

the corresponding location in primary memory is modified, the copy in the in-

struction in the cache is not modified.

Align program code. Use the .align directive when coding assembly lan-

guage to align code on 32-word address boundaries.



Instruction Cache

 4-14

4.3.4 The LRU Cache Algorithm

When the ’C4x requests an instruction word from external memory, the two

possible actions are a cache hit or a cache miss:

� Cache Hit. The cache contains the requested instruction, and the follow-

ing actions occur:

� The instruction word is read from the cache.

� The number of the segment containing the word is removed from the

LRU stack and pushed to the top of the LRU stack (if it is not already at

the top), thus moving the other segment numbers toward the bottom of

the stack.

� Cache Miss. The cache does not contain the instruction. There are two

types of cache misses:

� Subsegment miss. The segment address register matches the in-

struction address, but the relevant P flag is not set. The following ac-

tions occur:

� The instruction word is read from memory and copied into the

cache.

� The number of the segment containing the word is removed from

the LRU stack and pushed to the top of the LRU stack (if it is not

already at the top), thus moving the other segment numbers to-

ward the bottom of the stack.

� The relevant P flag is set.

� Segment miss. None of the segment addresses matches the instruc-

tion address. The following actions occur:

� The least recently used segment is selected for replacement and

the P flags for all 32 words are cleared.

� The SSA register for the selected segment is loaded with the 27

MSBs of the address of the requested instruction word.

� The instruction word is fetched and copied into the cache. It goes

into the appropriate word of the least recently used segment. The

P flag for that word is set to 1.

� The number of the segment containing the instruction word is re-

moved from the LRU stack and pushed to the top of the LRU

stack, thus moving the other segment numbers toward the bottom

of the stack.



 Running Title—Attribute Reference

5-1  Chapter Title—Attribute Reference

Data Formats and Floating-Point Operation

In the ’C4x architecture, data is organized into three fundamental types: inte-

ger, unsigned-integer, and floating-point. Note that the terms, integer and

signed-integer, are considered to be equivalent. The ’C4x supports short and

single-precision formats for signed and unsigned integers. It also supports

short, single-precision and extended-precision formats for floating-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-

putations. Specifically, the ’C4x implementation of floating- point arithmetic fa-

cilitates floating-point operations at integer speeds while preventing problems

with overflow, operand alignment, and other burdensome tasks common in in-

teger operations.

This chapter discusses in detail the data formats and floating-point operations

supported on the ’C4x.

Topic Page

5.1 Signed-Integer Formats 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Unsigned-Integer Formats 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Floating-Point Formats 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Floating-Point Conversion (IEEE Std. 754) 5-13. . . . . . . . . . . . . . . . . . . . . 

5.5 Floating-Point Multiplication 5-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.6 Floating-Point Addition and Subtraction 5-23. . . . . . . . . . . . . . . . . . . . . . . 

5.7 Normalization (NORM Instruction) 5-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.8 Rounding (RND Instruction) .5-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.9 Floating-Point to-Integer Conversion (FIX Instruction) 5-31. . . . . . . . . . 

5.10 Integer-to-Floating-Point Conversion (FLOAT Instruction) 5-33. . . . . . . 

5.11 Reciprocal (RCPF Instruction) 5-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.12 Reciprocal Square Root (RSQRF Instruction) 5-36. . . . . . . . . . . . . . . . . . . 

Chapter 5



Signed-Integer Formats

 5-2

5.1 Signed-Integer Formats

The ’C4x supports two signed-integer formats: a 16-bit short format and a

32-bit single-precision format. The term integer is used throughout this chapter

to refer to a signed integer.

Note:

When extended-precision registers are used as integer operands, only bits
31–0 are used; bits 39–32 remain unchanged and unused.

5.1.1 Short Integer Format

The 16-bit twos-complement short integer format is used for immediate integer

operands. For those instructions that assume integer operands, this format is

sign extended to 32 bits (see Figure 5–1). The range of an integer si,

represented in the short integer format, is:

–215 ≤ si ≤ 215 –1

In Figure 5–1 and other figures in this chapter, s = sign bit.

Figure 5–1. Short-Integer Format and Sign Extension of Short Integer

15 0

151631 0
(a) Short integer format

(b) Sign extension of a short integer format

s s s s s s s s s s s s s s s s

s

Short integer

5.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in twos-com-

plement notation. The range of an integer sp, represented in the single-preci-

sion integer format, is –231 ≤ sp ≤ 231 –1. Figure 5–2 shows the single-preci-

sion integer format.

Figure 5–2. Single-Precision Integer Format

31 0

s



 Unsigned-Integer Formats

5-3  Data Formats and Floating-Point Operation

5.2 Unsigned-Integer Formats

Two unsigned-integer formats are supported on the ’C4x: a 16-bit short format

and a 32-bit single-precision format. In this chapter, the term unsigned integer

is used to refer to an unsigned integer.

Note:

When extended-precision registers are used, the unsigned-integer oper-
ands use only bits 31–0; bits 39–32 remain unchanged.

5.2.1 Short Unsigned-Integer Format

Figure 5–3 shows the16-bit short unsigned-integer format used in immediate

unsigned-integer operands. For instructions that use unsigned-integer oper-

ands, the format is filled with zeros to 32 bits. The range of a short unsigned

integer is 0�si�216.

Figure 5–3. Short Unsigned-Integer Format and Zero Fill

15 0

1531 0

Short unsigned-integer format

Zero fill of a short unsigned-integer format

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a)

(b)

16

Short Unsigned Integer

5.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented as

a 32-bit value, as shown in Figure 5–4. The range of a single-precision un-

signed-integer is 0�sp�232.

Figure 5–4. Single-Precision Unsigned-Integer Format

31 0



Floating-Point Formats

 5-4

5.3 Floating-Point Formats

The ’C4x supports three floating-point formats:

� A short floating-point format (for immediate floating-point operands) con-

sisting of a 4-bit exponent, one sign bit, and an 11-bit fraction

� A single-precision format consisting of an 8-bit exponent, one sign bit, and

a 23-bit fraction

� An extended-precision format consisting of an 8-bit exponent, one sign bit,

and a 31-bit fraction

All ’C4x floating-point formats consist of three fields: an exponent field (e), a

single-bit sign field (s), and a fraction field (f ). The sign field and fraction field

may be considered as one unit and referred to as the mantissa field (man).

Each format is divided into these fields as shown in Figure 5–5.

Figure 5–5. General Floating-Point FormatÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Á
Á

Exponent Sign Fraction
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mantissa
Á
Á
ÁThe general equation for calculating the value in a floating point number is giv-

en by Equation 5–1. In the equation, s is the value of the sign bit, s is the in-

verse of the value of the sign bit, f is the binary value of the fraction field, and

e is the decimal equivalent of the exponent field.

Equation 5–1. Value in a Floating Point Number

x = ss.f2 � 2e

The mantissa represents a normalized twos-complement number. In a nor-

malized representation, a most significant nonsign bit is implied, thus provid-

ing an additional bit of precision. The implied sign bit is used as follows:

� If s = 0, then the leading two bits of the mantissa are 01.

� If s = 1, then the leading two bits of the mantissa are 10.

If the sign bit, s, is equal to 0, the mantissa becomes 01.f2, where f is the binary

representation of the fraction field. If s is 1, the mantissa becomes 10.f2, where

f is the binary representation of the fraction field.

For example, if f = 000000000012 and s = 0, the value of the mantissa (man)

would be 01.000000000012. If s = 1 for the same value of f, the value of man

would be 10.000000000012.



 Floating-Point Formats

5-5  Data Formats and Floating-Point Operation

The exponent field is a twos-complement number that determines the factor

of two by which the number is multiplied. Essentially, the exponent field shifts

the binary point in the mantissa. If the exponent is positive, then the binary

point is shifted to the right. If the exponent is negative, then the binary point

is shifted to the left.

For example, if man = 01.000000000012 and the e = 1110, then the binary point

is shifted eleven places to the right, producing the number: 01000000000012,

which is equal to 2049 decimal.

5.3.1 Short Floating-Point Format

In the short floating-point format, floating-point numbers are represented by

a twos-complement 4-bit exponent field (e) and a twos-complement 12-bit

mantissa field (man) with an implied most significant nonsign bit.

Figure 5–6. Short Floating-Point Format

Á
Á
ÁÁÁÁ
ÁÁÁÁ

15 12ÁÁÁ
ÁÁÁ

11ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

10 0ÁÁ
ÁÁÁ

Á
Á

Expo-

nent

Sign Fraction ÁÁ
ÁÁ
ÁÁÁ

Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Mantissa

ÁÁ
ÁÁ
ÁÁ

You must use the following reserved values to represent zero in the single-pre-

cision floating-point format:

e = –8

s = 0

f = 0

Operations are performed with an implied binary point between bits 11 and 10.

The floating-point twos-complement number x in the short floating-point for-

mat is given by:

x = 01.f2 × 2e  if s = 0

x = 10.f2 × 2e  if s = 1

x = 0  if e = –8, s = 0, f = 0

The following examples illustrate the range and precision of the short float-

ing-point format:

Most Positive: x = (2 – 2–11) × 27 = 2.5594 × 102

Least Positive: x = 1 × 2–7 = 7.8125 × 10– 3

Least Negative: x = (–1–2–11) × 2–7 = –7.8163 × 10–3

Most Negative: x = –2 × 27 = –2.5600 × 10 2



Floating-Point Formats

 5-6

5.3.2 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an

8-bit exponent field (e) and a twos-complement 24-bit mantissa field (man)

with an implied most significant nonsign bit.

Operations are performed with an implied binary point between bits 23 and 22.

When the implied most significant nonsign bit is made explicit, it is located to

the immediate left of the binary point. The floating-point number x is given by

x = 01.f × 2e if s = 0

x = 10.f × 2e if s = 1

x = 0 if e = –128, s = 0, f = 0

Figure 5–7. Single-Precision Floating-Point FormatÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

31 24
ÁÁ
ÁÁ

23
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

22 0
Á
Á

Exponent Sign Fraction
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mantissa
Á
Á
ÁYou must use the following reserved values to represent zero in the single-pre-

cision floating-point format:

e = –128

s = 0

f = 0

The following examples illustrate the range and precision of the single-preci-

sion floating-point format.

Most Positive: x  =  (2 – 2–23) × 2127 = 3.4028234 ×1038

Least Positive: x  =  1 × 2–127 = 5.8774717 × 10– 39

Least Negative: x  =  (–1–2–23) × 2–127 = – 5.8774724 ×10– 39

Most Negative: x  =  –2 × 2127 = – 3.4028236 ×1038



 Floating-Point Formats

5-7  Data Formats and Floating-Point Operation

5.3.3 Extended-Precision Floating-Point Format

In the extended-precision format, the floating-point number is represented by

an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied

most significant nonsign bit.

Operations are performed with an implied binary point between bits 31 and 30.

When the implied most significant nonsign bit is made explicit, it is located to

the immediate left of the binary point. The floating-point number x is given by:

x = 01.f × 2e if s = 0

x =10.f × 2e if s = 1

x = 0 if e = –128, s = 0, f = 0

Figure 5–8. Extended-Precision Floating-Point FormatÁ
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

39 32
ÁÁÁ
ÁÁÁ

31
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

30 0
ÁÁ
ÁÁ

Exponent Sign Fraction
Á
Á
Á

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Mantissa
ÁÁ
ÁÁ
ÁÁYou must use the following reserved values to represent zero in the exten-

ded-precision floating-point format:

e = –128

s = 0

f = 0

The following examples illustrate the range and precision of the extended-pre-

cision floating-point format:

Most Positive: x  =  (2 – 2–31) ×2127 = 3.4028236683 ×1038

Least Positive: x  =  1 × 2–127 = 5.8774717541 × 10–39

Least Negative: x  =  (–1–2–31) × 2–127 = –5.8774717569 × 10–39

Most Negative: x  =  –2 × 2127 = –3.4028236691 × 1038



Floating-Point Formats

 5-8

5.3.4 Determining the Decimal Equivalent of a Floating-Point Number

There are two basic steps in determining the value stored in floating point for-

mat:

1) Determine the values of the exponent and mantissa.

2) Shift the binary point in the mantissa according to the value of the expo-

nent field and then convert the number to decimal.

5.3.4.1 Step 1: Determine the Values of the Exponent and Mantissa

The exponent field is a twos-complement number whose range depends on

the type of floating-point number you are converting. Record the decimal

equivalent of this value as e.

For example, if you are converting a single-precision floating-point number

and the binary value of the exponent field is 00000100, then the decimal value

of the exponent would be 4 since a 1 in the third bit from the right corresponds

to 4.

If, on the other hand, the binary value of the exponent field is 111111002, then

the decimal value of the exponent would be –4. Since the first bit on the left

is 1, you know that the number is negative. You calculate the value of the num-

ber by taking the one’s complement of 111111002, which is 000000112 and

then by adding 1 to that result.

Note:

If the value of the exponent matches the value reserved for zero, then the
floating point number is equal to zero. The reserved value for each floating
point type is given with the type descriptions in Section 5.3.

The mantissa is a binary number with an implied binary point between the sign

bit and the fraction field. Form the mantissa in one of two ways:

� If s = 0, form the mantissa by writing 01. and appending the bits in the frac-

tion field after the binary point.

For example, if f = 101000000002, then man = 01.101000000002:

S Fraction

0 . 1 0 1 0 0 0 0 0 0 0 0

Rewrite the mantissa as:

Mantissa

0 1 . 1 0 1 0 0 0 0 0 0 0 0



 Floating-Point Formats

5-9  Data Formats and Floating-Point Operation

� If s = 1, form the mantissa by writing 10. and appending the bits in the frac-

tion field after the binary point.

For example, if f = 101000000002, then man = 10.101000000002.

S Fraction

1 . 1 0 1 0 0 0 0 0 0 0 0

Rewrite the mantissa as:

Mantissa

1 0 . 1 0 1 0 0 0 0 0 0 0 0

5.3.4.2 Step 2: Shift the Decimal Point in the Mantissa and Convert to Decimal

If the exponent (e) has a positive value, then you shift the binary point e places

to the right.

If the exponent (e) has a negative value, then you shift the binary point e places

to the left.

For example, if e = 210 and the man = 01.110000000002, then the shifted man-

tissa becomes 0111.0000000002, which is equivalent to 7 in decimal.

If, on the other hand, e = –210 and man =01.100000000002, then the shifted

mantissa becomes .01100000000002, which is equivalent to 3/8 in decimal.

The following examples illustrate how you can obtain the equivalent floating-

point value of a number in ’C4x floating-point format. Each of the examples

uses the single-precision floating point format.

Example 5–1. Positive Number

 0    2    4    0    0    0    0     0 Hex value

0000 0010 0100 0000 0000 0000 0000 0000 Binary value

Exponent = 0000 00102 = 2
Sign = 0
Fraction = .100002

Value = 01.12 × 22 = 01102. = 6

Fraction

Implied

Sign



Floating-Point Formats

 5-10

Example 5–2. Negative Number

 0    1    C    0    0    0     0    0 Hex value

0000 0001 1100 0000 0000 0000 0000 0000 Binary value

Exponent = 0000 00012 = 1
Sign = 1
Fraction = .100002

Value = 10.12 × 21 = 1012. = –3

Fraction

Implied

Sign

Example 5–3. Fractional Number

 F    B    4    0    0    0     0    0 Hex value

1111 1011 0100 0000 0000 0000 0000 0000 Binary value

Exponent = 1111 10112 = –5
Sign = 0
Fraction = .100002

Value = 01.12 × 2–5 = .0000112 = 3/64

Fraction

Implied

Sign

2–5

2–6



 Floating-Point Formats

5-11  Data Formats and Floating-Point Operation

5.3.5 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-

puts. These formats often require conversion from one floating-point format to

another (for example, from short floating-point format to extended-precision

floating-point format). Format conversions occur automatically in hardware,

with no overhead, as a part of floating-point operations. Examples of the four

conversions are shown in Figure 5–9 through Figure 5–12 (s = sign bit of the

exponent). When a floating-point format zero is converted to a different format,

it is always converted to a valid representation of zero in that format.

Figure 5–9. Short Floating-Point Format Conversion to Single-Precision Floating-Point
Format

Single-precision floating-point format

y y 0 0sxs s

31 27 24 23 22 12 11 0

(b)

s s s x x

Short floating-point format

s y yxxs

15 12 11 10 0

(a)

x

In converting from short format to single-precision format, the exponent field is

sign extended and the rightmost 12 bits of the fraction field are filled with zeros.

Figure 5–10. Short Floating-Point Format Conversion to Extended-Precision
Floating-Point Format

Short floating-point format

Extended-precision floating-point format

y 0 0s

s y y

15 12 11 10 0

39 35 32 3031 20 19 0

y

(a)

(b)

xs s

xxs x

s s x x x

In converting from short format to extended-precision format, the exponent

field is sign extended and the rightmost 20 bits of the fraction field are filled with

zeros.



Floating-Point Formats

 5-12

Figure 5–11. Single-Precision Floating-Point Format Conversion to Extended-Precision
Floating-Point Format

Single-precision floating-piont format

Extended-precision floating-point format

0sxx

s y yxx

31 24 23 22 0

39 32 3031 0

y y 0

8 7

(a)

(b)

In converting from single-precision format to extended-precision format, the

rightmost eight bits of the fraction field are filled with zeros.

Figure 5–12. Extended-Precision Floating-Point Format Conversion to Single-Precision
Floating-Point Format

Extended-precision floating-point format

zsx

39 32 3031 0

y y z

8 7

Single-precision floating-point format

s y yxx

31 24 23 22 0

(a)

(b)

x

In converting from extended-precision format to single-precision format, the

eight rightmost bits of the fraction field are truncated.



 Floating-Point Conversion (IEEE Std. 754)

5-13  Data Formats and Floating-Point Operation

5.4 Floating-Point Conversion (IEEE Std. 754)

The ’C4x floating-point format is not compatible with the IEEE standard 754

format. However, the ’C4x has instructions to directly convert to and from IEEE

format (TOIEEE and FRIEEE, respectively). The conversion process is ex-

plained in subsections 5.4.1 and 5.4.2. Figure 5–13 shows the IEEE floating-

point format, and Figure 5–14 shows the floating-point ’C4x format.

Figure 5–13. IEEE Single-Precision Std. 754 Floating-Point Format

e f

31 23 22 0

s

30

man

The following five cases define the value v of a number expressed in the IEEE

format:

1) If e = 255 and f ≠ 0, then v = NaN

2) If e = 255 and f = 0, then v = (–1)s infinite

3) If 0 < e < 255, then v = (–1)s × 2e–127(1.f )

4) If e = 0 and f ≠ 0, then v = (–1)s × 2–126(0.f )

5) If e = 0 and f = 0, then v = (–1)s × 0 (zero).

where s = sign bit; e = the exponent field; f = the fraction field; NaN = Not a number

For the above five representations, e is treated as an unsigned integer. Case

1 generates NaN (not an number) and is primarily used for software signaling.

Case 4 represents a denormalized number. Case 5 represents positive and

negative zero.

Figure 5–14. ’C4x Single-Precision Twos-Complement Floating-Point Format‡

e f

31 23 22 024

s

‡ Same format as for the ’C3x

In comparison, Figure 5–14 shows the the ’C4x twos-complement floating-

point format. In this format, two cases can be used to define value v of a num-

ber:

1) If e = –128 and f ≠ 0, then v = 0

2) If e ≠ –128 then v = ss.f2 � 2e

where s = sign bit; e = the exponent field; f = the fraction field.



Floating-Point Conversion (IEEE Std. 754)

 5-14

For this representation, e is treated as a twos-complement integer. The frac-

tion and sign bit form a normalized twos-complement mantissa.

Note: Differentiating Symbols for IEEE and ’C4x Formats

To differentiate between the symbols that define these two formats, all IEEE
fields are subscripted with an IEEE (e.g., eIEEE, sIEEE, etc.). Similarly, all
twos-complement fields are subscripted with two (i.e., etwo, stwo, ftwo).

5.4.1 Converting IEEE Format to Twos-Complement ’C4x Floating-Point Format

The most common conversion is the IEEE-to-twos-complement format. This

conversion is done according to rules in the following table:

Table 5–1.Converting IEEE Format to Twos-Complement Floating-Point Format

If These Values Are Present Then These Values Equal

Case eIEEE sIEEE fIEEE etwo stwo ftwo sIEEE

1 255 1 7Fh 1 00 0000h

2 255 0 7Fh 0 7F FFFFh

3 0< eIEEE <255 0 eIEEE–7Fh fIEEE 0

4 0< eIEEE <255 1 ≠0 eIEEE–7Fh f IEEE+1† 1

5 0< eIEEE <255 1 0 eIEEE–80h 0 1

6 0 80h 0 00  0000h

† f IEEE  = ones complement of fIEEE .



 Floating-Point Conversion (IEEE Std. 754)

5-15  Data Formats and Floating-Point Operation

Case 1 maps the IEEE positive NaNs and positive infinity to the single-preci-

sion twos-complement most positive number. Overflow is also signaled to al-

low you to check for these special cases.

Case 2 maps the IEEE negative NaNs and negative infinity to the single-

precision twos-complement most negative number. Overflow is also signaled

to allow you to check for these special cases.

Case 3 maps the IEEE positive normalized numbers to the identical value in

the twos-complement positive number.

Case 4 maps the IEEE negative normalized numbers with a nonzero fraction

to the identical value in the twos-complement negative number.

Case 5 maps the IEEE negative normalized numbers with a zero fraction to

the identical value in the twos-complement negative number.

Case 6 maps the IEEE positive and negative denormalized numbers and posi-

tive and negative zeros to a twos-complement zero.

The ’C4x assumes that an IEEE number is stored as an integer in memory or

in a register. When the ’C4x converts an IEEE number, it places the number

in an extended-precision register by using the exponent and fraction fields of

the register. The eight LSBs of the extended-precision register are set to zero.

Any arithmetic operations that are performed on the fraction field of the IEEE

number should be performed only on the IEEE fraction field. In the case of a

block memory transfer, a no-penalty data format conversion can be executed

by using parallel instructions with STF. Example 5–4 illustrates how this can

be accomplished.



Floating-Point Conversion (IEEE Std. 754)

 5-16

Example 5–4.IEEE to ’C4x Conversion Within Block Memory Transfer

* TITLE IEEE TO ’C4x CONVERSION WITHIN BLOCK MEMORY

* TRANSFER

*

* PROGRAM ASSUMES THAT INPUT FIFO OF COMMUNICATION PORT 0

* IS FULL OF IEEE FORMAT DATA. EIGHT DATA WORDS ARE

* TRANSFERRED FROM COMMUNICATION PORT 0 TO INTERNAL RAM

* BLOCK 0 AND THE DATA FORMAT IS CONVERTED FROM IEEE FORMAT

* TO ’C4x FLOATING-POINT FORMAT.

*

.

.

.

LDI @CP0_IN,AR0 ;Load comm port0 input FIFO address

LDI @RAM0,AR1 ;Load internal RAM block 0 address

FRIEEE*AR0,R0 ;Convert first data

RPTS 6

FRIEEE*AR0,R0 ;Convert next data

|| STF R0,*AR1++(1) ;Store previous data

STF R0,*AR1++(1) ;Store last data

.

.

.



 Floating-Point Conversion (IEEE Std. 754)

5-17  Data Formats and Floating-Point Operation

5.4.2 Converting Twos-Complement ’C4x Floating-Point Format to IEEE Format

This conversion is performed according to the following table:

Table 5–2.Converting Twos-Complement Floating-Point Format to IEEE Format

If These Values Are Present Then These Values Equal

Case etwo stwo ftwo eIEEE sIEEE fIEEE

1 –128 00h 0 00  0000h

2 –127 00h 0 00  0000h

3 –126≤ etwo  ≤127 0 etwo+7Fh 0 ftwo

4 –126≤ etwo  ≤127 1 ≠0 etwo+7Fh 0 f two+1†

5 –126≤ etwo  ≤127 1 0 etwo+80h 1 00  0000h

6 127 1 0 FFh 1 00  0000h

† ftwo  = ones complement of ftwo .

Case 1 maps a twos-complement zero to a positive IEEE zero.

Case 2 maps the twos-complement numbers that are too small to be repre-

sented as normalized IEEE numbers to a positive IEEE zero.

Case 3 maps the positive twos-complement numbers that are not covered by

case 2 into the identically valued IEEE number.

Case 4 maps the negative twos-complement numbers with a nonzero fraction

that are not covered in case 2 into the identically valued IEEE number.

Case 5 maps all the negative twos-complement numbers with a zero fraction,

except for the most negative twos-complement number and those that are not

covered in case 2, into the identically valued IEEE number.

Case 6 maps the most negative twos-complement number to the IEEE nega-

tive infinity.

The ’C4x assumes that the twos-complement numbers are in memory or are

in an extended-precision register in the exponent and fraction field of the regis-

ter (shown in Figure 5–14 on page 5-13). If the value is in an extended-preci-

sion register, then only the 24 MSBs of the fraction field are manipulated as

the fraction field and for detection of the special cases. The result of the con-

version goes into the 32 MSBs of an extended-precision register. In the case

of a block memory transfer, a no-penalty data format conversion can be

executed by using parallel instructions with STF. Example 5–5 illustrates how

this can be accomplished.



Floating-Point Conversion (IEEE Std. 754)

 5-18

Example 5–5.’C4x to IEEE Conversion Within Block Memory Transfer

* TITLE ’C4x TO IEEE CONVERSION WITHIN BLOCK MEMORY 

* TRANSFER

*

* PROGRAM ASSUMES THAT OUTPUT FIFO OF COMMUNICATION PORT 0

* IS EMPTY. EIGHT DATA WORDS ARE TRANSFERRED FROM

* INTERNAL RAM BLOCK 0 TO COMMUNICATION PORT 0 AND THE 

* DATA FORMAT IS CONVERTED FROM ’C4x FLOATING-POINT FORMAT

* TO IEEE FORMAT.

*

.

.

.

LDI @CP0_OUT,AR0 ;Load comm port0 output FIFO

; address

LDI @RAM0,AR1 ;Load internal RAM block 0

; address

TOIEEE*AR1++(1),R0 ;Convert first data

RPTS 6

TOIEEE*AR1++(1),R0 ;Convert next data

|| STF R0,*AR0 ;Store previous data

STF R0,*AR0 ;Store last data

.

.

.



 Floating-Point Multiplication

5-19  Data Formats and Floating-Point Operation

5.5 Floating-Point Multiplication

A floating-point number α can be written in floating-point format as in the fol-

lowing formula, where α(man) is the mantissa and α(exp) is the exponent:

α = α(man) × 2α(exp)

The product of α and b is c, defined as:

c = α × b = α(man) × b(man) × 2(α(exp)+b (exp))

Thus:

c(man) = α(man) x b(man)

c(exp) = α(exp) + b(exp)

During floating-point multiplication, the source operands are always in the ex-

tended-precision floating-point format. If the source operands are in short or

single-precision format, they are converted to extended-precision format.

These conversions occur automatically in hardware with no overhead. All re-

sults of floating-point multiplications are returned in the extended-precision

format.

A multiplication occurs in a single cycle.

Figure 5–15 is a flowchart showing the steps involved in a floating-point multi-

plication. Each step is labelled with a number in parentheses. 

� In step 1, the 32-bit source mantissas, α(man) and b(man), are multiplied,

producing a 64-bit result, c(man). (Note that input and output data are al-

ways represented as normalized numbers.)

� In step 2, the exponents, α(exp) and b(exp), are added, yielding c(exp).

� Step 3 checks whether or not c(man) is equal to zero. If c(man) is zero,

step 7 sets c(exp) to –128, thus yielding the representation for zero.

� Steps 4 and 5 normalize the result.

� If a right shift of one is necessary, then in step 8, c(man) is right-shifted one

bit, and 1 is added to c(exp).

� If a right shift of two is necessary, then in step 9, c(man) is right-shifted two

bits, and 2 is added to c(exp). step 6 occurs when the result is normalized.

� In step 10, c(man) is set in the extended-precision floating-point format.

� Steps 11 through 16 check for special cases of c(exp).

� In step 14, if c(exp) has overflowed (detected in step 11) in the positive di-

rection, then c(exp) is set to the most positive extended-precision format

value. If c(exp) has overflowed in the negative direction, then c(exp) is set

to the most negative extended-precision format value.



Floating-Point Multiplication

 5-20

� If c(exp) has underflowed (detected in step 12), then c is set to zero in step

15; i.e., c(man) = 0 and c(exp) = –128.

Figure 5–15. Flowchart for Floating-Point Multiplication

α(man) b(man) α(exp) b(exp)

(1) (2)

Multiply mantissas Add exponents

c(man) = α(man) x b(man)
(50-bit result)

c(exp) = α(exp) + b(exp)

Put c(man) in extended-precision
floating-point format

Test for special cases of c(man)

c(man) > > 1

c(exp) = c(exp) + 1

c(man) > > 2

c(exp) = c(exp) + 2

c(exp) =–128

(4)
Right-shift 1
to normalize

(5)
Right-shift 2
to normalize

(3)
c(man) = 0

(6)
No shift

to normalize

Dispose of extra bits

Test for special cases of c(exp)

(12)
c(exp) underflow

(13)
c(exp) in range

(11)
c(exp) overflow

If c(man) > 0, set c to
most positive value.

If c(man) < 0, set c to
most negative value.

c(exp) = –128

c(man) = 0

Set c to final result

c = α x b

(14)

(15)

(16)

(10)

(9)(8)(7)



 Floating-Point Multiplication

5-21  Data Formats and Floating-Point Operation

Example 5–6 through Example 5–9 illustrate how floating-point multiplication

is performed on the ’C4x. For these examples, the implied most significant

nonsign bit is made explicit.

Example 5–6. Floating-Point Multiply (Both Mantissas = –2.0)

Let

α = –2.0 × 2α(exp) = 10.00000000000000000000000 × 2α(exp)

b = –2.0 × 2b(exp) = 10.00000000000000000000000  × 2b(exp)

where a and b are both represented in binary form according to the normalized

single-precision floating-point format.

To place this number in the proper normalized format, it is necessary to shift

the mantissa two places to the right and add 2 to the exponent. This yields

    10.00000000000000000000000 ×  2α(exp)

× 10.00000000000000000000000  ×  2b(exp)

    01.0000000000000000000000000000000000000000000000 ×  2 ( α(exp) +b(exp) +2)

In floating-point multiplication, the exponent of the result may overflow when

the exponents are initially added or when the exponent is modified during nor-

malization.

Example 5–7. Floating-Point Multiply (Both Mantissas = 1.5)

Let

α = 1.5 × 2α(exp) = 01.10000000000000000000000  × 2α(exp)

b = 1.5 × 2b(exp) = 01.10000000000000000000000  × 2b(exp)

where α and b are both represented in binary form according to the single-pre-

cision floating-point format. Then

     01.10000000000000000000000 × 2α(exp)

× 01.10000000000000000000000 × 2b(exp)

     0010.0100000000000000000000000000000000000000000000 ×  2 (α(exp) +b(exp))

To place this number in the proper normalized format, it is necessary to shift

the mantissa one place to the right and add 1 to the exponent. This yields

   01.10000000000000000000000 ×  2α(exp)

× 01.10000000000000000000000  ×  2b(exp)

   01.00100000000000000000000000000000000000000000000 × 2 (α(exp) +b(exp) +1)



Floating-Point Multiplication

 5-22

Example 5–8. Floating-Point Multiply (Both Mantissas = 1.0)

Let

α = 1.0 × 2α(exp) = 01.00000000000000000000000 × 2α(exp)

b = 1.0 × 2b(exp) = 01.00000000000000000000000 × 2b(exp)

where a and b are both represented in binary form according to the single-pre-

cision floating-point format. Then

    01.00000000000000000000000 ×  2α(exp)

× 01.00000000000000000000000  ×  2b(exp)

  0001.0000000000000000000000000000000000000000000000 ×  2 (α(exp) +b(exp))

This number is in the proper normalized format. Therefore, no shift of the man-

tissa or modification of the exponent is necessary.

The previous three examples show cases in which the product of two normal-

ized numbers can be normalized with a shift of zero, one, or two. The float-

ing-point format of the ’C4x makes this possible.

Example 5–9. Floating-Point Multiply Between Positive and Negative Numbers

Let

α = 1.0 × 2α(exp) = 01.00000000000000000000000 × 2α(exp)

b = –2.0 × 2b(exp) = 10.00000000000000000000000 × 2b(exp)

Then

    01.00000000000000000000000 × 2α(exp)

× 10.00000000000000000000000 × 2b(exp)

  1110.0000000000000000000000000000000000000000000000 ×  2 (α(exp) +b(exp))

The result is c = –2.0 × 2(α(exp) + b(exp))

Floating-Point Multiply by Zero

All multiplications by a floating-point zero yield a result of zero (f = 0, s = 0, and

exp = –128).



 Floating-Point Addition and Subtraction

5-23  Data Formats and Floating-Point Operation

5.6 Floating-Point Addition and Subtraction

In floating-point addition and subtraction, two floating-point numbers α and b

can be defined as

α = α(man) × 2 α(exp)

b = b(man) × 2 b(exp)

The sum (or difference) of α and b can be defined as

c = α ± b

= (α(man) ± (b(man) × 2 –(α(exp)–b(exp)))) × 2 α(exp),

if α(exp) ≥ b(exp)

= ((α(man) × 2 –(b(exp)–α(exp))) ± b(man)) × 2 b(exp),

if α(exp) < b(exp)

Figure 5–16 is the flowchart for floating-point addition. Because this flowchart

assumes signed data, it is also appropriate for floating-point subtraction. In this

figure, it is assumed that α(exp) ≤ b(exp). Steps are shown as numbers in pa-

rentheses in the figure.

� In step 1, the source exponents are compared, and c(exp) is set equal to

the largest of the two source exponents.

� In step 2, d is set to the difference of the two exponents.

� In step 3, the mantissa with the smallest exponent, in this case α(man),

is right-shifted d bits in order to align the mantissas.

� In step 4, after the mantissas have been aligned, they are added.

� In steps 5 through 7 check for a special case of c(man). If c(man) is zero

(step 5), then c(exp) is set to its most negative value (step 8) to yield the

correct representation of zero. If c(man) has overflowed c (step 6), then

in step 9, c(man) is right-shifted one bit, and 1 is added to c(exp). In step

10, the result is normalized.

� In steps 11 and 12, special cases of c(exp) are tested. If c(exp) has over-

flowed, then c is set to the most positive extended-precision value if it is

positive; if it is negative, it is set to the most negative extended-precision

value.



Floating-Point Addition and Subtraction

 5-24

Figure 5–16. Flowchart for Floating-Point Addition

α(man) b(man) α(exp) b(exp)

(3)

(2)

Align mantissas

Subtract exponents

α(man) = α(man) > > d

Discard LSBs to keep
α(man) in
extended-precision
floating-point format d = b(exp) ± α(exp)

c(man) = c(man) > > 1
c(exp) = c(exp) + 1
Discard LSBs to keep in
extended-precision
floating-point format

Test for special cases of c(man)

c(exp) = –128

(6)

Overflow of c(man)

(7)
k = # leading
nonsignificant
sign bits

(5)

c(man) = 0

Test for special cases of c(exp)

(12)
c(exp) underflow

(11)
c(exp) overflow

If c(man) > 0,
set c to most
positive value.

If c(man) < 0,
set c to most
negative value.

set c to zero
c(exp) = –128
c(man) = 0

Set c to final result

c = α + b

(14) (15)

(16)

(8)

(1)

Compare exponents

If α(exp) < = b(exp) 
 c(exp) = b(exp)

else
c(exp) = α(exp)

[Assume for simplicity
that α(exp) < = b(exp)]

(4) Add mantissas

c (man) = α(man) + b(man)

c(man) < < k
c(exp) = c(exp) –k

(10)

(13)
c(exp) in range

(9)

The following examples describe the floating-point addition and subtraction

operations. It is assumed that the data is in the extended-precision

floating-point format.



 Floating-Point Addition and Subtraction

5-25  Data Formats and Floating-Point Operation

Example 5–10. Floating-Point Addition

Let

 α = 1.5 = 01.1000000000000000000000000000000 × 20

 b = 0.5 = 01.0000000000000000000000000000000 × 2–1

It is necessary to shift b to the right by one so that α and b have the same expo-

nent. This yields

 b = 0.5 = 00.1000000000000000000000000000000 × 20

Then

    01.10000000000000000000000000000000 ×  20

+ 00.10000000000000000000000000000000  ×  20

  010.00000000000000000000000000000000 ×  20

As in the case of multiplication, it is necessary to shift the binary point one place

to the left and to add 1 to the exponent. This yields

    01.10000000000000000000000000000000 ×  20

+ 00.10000000000000000000000000000000  ×  20

  01.00000000000000000000000000000000 ×  21

Example 5–11. Floating-Point Subtraction

Let

  α = 01.0000000000000000000000000000001 ×  20

b = 01.0000000000000000000000000000000  ×  20

The operation to be performed is α –b. The mantissas are already aligned be-

cause the two numbers have the same exponent. The result is a large cancel-

lation of the upper bits, as shown below.

    01.0000000000000000000000000000001 ×  20

– 01.0000000000000000000000000000000  ×  20

  00.0000000000000000000000000000001 ×  20



Floating-Point Addition and Subtraction

 5-26

The result must be normalized. In this case, a left shift of 31 is required. The

exponent of the result is modified accordingly. The result is

    01.0000000000000000000000000000001 ×  20

– 01.0000000000000000000000000000000  ×  20

  01.0000000000000000000000000000000 × 2–31

Example 5–12. Floating-Point Addition With a 32-Bit Shift

This example illustrates a situation in which a full 32-bit shift is necessary to

normalize the result. Let

1111111111111111111111111111111 

0000000000000000000000000000000 

01.

10.

α ×  2127

×  2127=b

=

The operation to be performed is α + b.

1111111111111111111111111111111 

0000000000000000000000000000000 

01.

10.

×  2127

×  2127+

1111111111111111111111111111111 11. ×  2127

Normalizing the result requires a left shift of 32 and a subtraction of 32 from

the exponent. The result is

1111111111111111111111111111111 

0000000000000000000000000000000 

01.

10.

×  2127

×  2127+

0000000000000000000000000000000 10. ×  295

Example 5–13. Floating-Point Addition/Subtraction and Zero

When floating-point addition and subtraction are performed with a float-

ing-point 0, the following identities are satisfied:

α ± 0 = α (assuming that α ≠ 0)

0 ± 0 = 0

0 – α = –α (assuming that α ≠ 0)



 Normalization (NORM Instruction)

5-27  Data Formats and Floating-Point Operation

5.7 Normalization (NORM Instruction)

The NORM instruction normalizes an extended-precision floating-point num-

ber that is assumed to be unnormalized. Since the number is assumed to be

unnormalized, no implied most significant nonsign bit is assumed. The NORM

instruction executes three steps:

1) Locates the most significant nonsign bit of the floating-point number

2) Left shifts to normalize the number

3) Adjusts the exponent

Given the extended-precision floating-point value α to be normalized, the nor-

malization is performed as shown in Figure 5–17.

Figure 5–17. Flowchart for NORM Instruction Operation

Test for special cases of c (man)

c(exp) = –128

(1)
α (man) = 0

Test for special cases of c (exp)

(6)
c (exp)

underflow

(7)

c (exp) in
range

c (exp) = –128
No change to c (man)

Set c to final result

c = norm(α)

(8)

(9)

(3)

Sign-expended α(man) 1 bit
c (man) = α(man) < < k
c (exp) = α(exp) –k

(4)

k = # leading
nonsignificant
sign bits

α

Remove most significant nonsign bit (5)

Leading nonsignificant
sign bits

(2)



Normalization (NORM Instruction)

 5-28

Example 5–14. NORM Instruction

Assume that an extended-precision register contains the value:

 man = 00000000000000000001000000000001, exp = 0

When the normalization is performed on a number assumed to be unnormal-

ized, the binary point is assumed to be:

 man = 0.0000000000000000001000000000001, exp = 0

This number is then sign extended one bit so that the mantissa contains 33

bits:

 man = 00.0000000000000000001000000000001, exp = 0

Here is the intermediate result after the most significant nonsign bit is located

and the shift is performed:

 man = 01.0000000000010000000000000000000, exp = –19

The final 32-bit value output after removing the redundant bit is:

 man = 00000000000010000000000000000000, exp = –19

The NORM instruction is useful for counting the number of leading zeros or

leading ones in a 32-bit field. If the exponent is initially zero, the absolute value

of the final value of the exponent is the number of leading ones or zeros. This

instruction is also useful for manipulating unnormalized floating-point num-

bers.



 Rounding (RND Instruction)

5-29  Data Formats and Floating-Point Operation

5.8 Rounding (RND Instruction)

The RND instruction rounds a number from the extended-precision float-

ing-point format to the single-precision floating-point format in a single cycle.

Rounding (rnd) is similar to floating-point addition. Given the number α to be

rounded, the following operation is performed first.

 c = α(man) × 2α(exp) + (1 × 2α(exp)–24)

Next, a conversion from extended-precision floating-point to single-precision

floating-point format is performed. Given the extended-precision floating-point

value, rounding is performed as shown in Figure 5–18.

Note:

RND src, dst — where (src) = 0 — does not set the zero condition flag (bit
2 in the status register). Instead, it sets the underflow condition flag (bit 4 in
the status register). When required, check for the underflow condition
instead of the zero condition.



Rounding (RND Instruction)

 5-30

Figure 5–18. Flowchart for Floating-Point Rounding by the RND Instruction

Test for special cases of c(man)

c (exp) = –128

c (man) = 0 No special case

Test for special cases of c (exp)

c (exp) overflow c (exp) in range

Set 8 LSBs of c(man) to zero

c = rnd(α)

c (man) = c (man) < < 1
c (exp) = α (exp) + 1

α

If c (man) > 0,
set c to most positive
single-precision value.

If c (man) < 0,
set c to most negative
single-precision value.

Overflow of c (man)

Add α(man) and 1/2 an LSB

c(man) = α (man) + 2–24

1 × 2
α(exp) –24



 Floating-Point to Integer Conversion (FIX Instruction)

5-31  Data Formats and Floating-Point Operation

5.9 Floating-Point-to-Integer Conversion (FIX Instruction)

Using the FIX instruction, you can convert an extended-precision float-

ing-point number to a single-precision integer in a single cycle. The float-

ing-point to integer conversion of the value x is referred to here as fix(x). The

conversion does not overflow if α, the number to be converted, is in the range

 –231 ≤ α ≤ 231 – 1

First, you must be certain that:

 α(exp) ≤ 30

If these bounds are not met, an overflow occurs. If an overflow occurs in the

positive direction, the output is the most positive integer. If an overflow occurs

in the negative direction, the output is the most negative integer. If α(exp) is

within the valid range, then α(man), with implied bit included, is sign-extended

and right-shifted (rs) by the amount:

 rs = 31 – α(exp)

This right shift (rs) shifts out those bits corresponding to the fractional part of

the mantissa. For example:

 If 0 ≤ × < 1, then fix(x) = 0.

 If –1 ≤ × < 0, then fix(x) = –1.

The flowchart for the floating-point-to-integer conversion is shown in

Figure 5–19.



Floating-Point to Integer Conversion (FIX Instruction)

 5-32

Figure 5–19. Flowchart for Floating-Point-to-Integer Conversion by FIX Instruction

Test for special cases of α(exp)

α(exp) > 30
α(exp) in range
rs = 31 – α(exp)

Overflow Shift

If α(man) > 0,
c = most positive integer

If α(man) < 0,
c = most negative integer

c = α(man) > > rs

Set c to final result

α

c = fix(α)



 Integer-to-Floating-Point Conversion (FLOAT Instruction)

5-33  Data Formats and Floating-Point Operation

5.10 Integer-to-Floating-Point Conversion (FLOAT Instruction)

Integer-to-floating-point conversion performed by the FLOAT instruction al-

lows a single-precision integer to be converted to an extended-precision float-

ing-point number in a single cycle. The flowchart for this conversion is shown

in Figure 5–20.

Figure 5–20. Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions

Test for special cases of c (man)

c (exp) = –128

c (man) = 0

Leading nonsignificant
sign bits.

Set c to final result

c = float (α)

c (man) = c (man) < < k
c (exp) = 30 –k

k = # leading
nonsignificant
sign bits

α

Remove most significant nonsign bit

c (man) = α
c (exp) = 30



Reciprocal (RCPF Instruction)

 5-34

5.11 Reciprocal (RCPF Instruction)

The RCPF instruction generates a satisfactory estimate of the reciprocal of a

floating-point number in a single cycle. The estimate has the correct exponent,

and the mantissa is accurate to the eighth binary position (mantissa error is

thus < 2–8) giving a 16-bit representation of the result (8-bit exponent plus 8-bit

mantissa). Also, this estimate can be used as a seed for an algorithm to com-

pute the reciprocal to even greater accuracy. (The Newton-Raphson algo-

rithm, described in this section, is one such case.)

Figure 5–21 below depicts the algorithm used by instruction RCPF.

� The input is assumed to be v = vman × 2vexp.

� The output is assumed to be x = xman × 2xexp.

� vexp is negated.

� If vexp = –128, the result is saturated to the most positive number, and the

overflow flag is set. The N condition flag is set to the same sign as vsign.

Figure 5–21. RCPF Instruction Algorithm

vexp vsign vfrac(22 – 15)

x

If vexp = –128, set overflow flag and
saturate to most positive number.

xexp xman

xfrac(22 – 15)

Negate vexp
Look-up Table

(512 × 8)

Form xman.
xfrac(14 . . 0) = 0

xsign = vsign



 Reciprocal (RCPF Instruction)

5-35  Data Formats and Floating-Point Operation

The look-up table is read by forming a nine-bit address consisting of vsign and

bits 22–15 of vfrac. The eight-bit output of the look-up table forms bits 22–15

of xfrac. Bits 14–0 of xfrac are cleared to zero. xsign is set to vsign.

The look-up table values are generated from simulation results.

5.11.1 Reciprocal Algorithm

The RCPF instruction provides the reciprocal of a number. The estimate has

the correct exponent and a mantissa accurate to the eighth binary place (i.e.,

the error of the mantissa is < 2–8). The Newton-Raphson algorithm (shown be-

low) can be used to further extend the mantissa’s precision:

x[n+1] = x[n](2 – vx[n])

where v = the number whose reciprocal is to be found.

x[0], the seed for the algorithm, is given by RCPF. For each iteration of the algo-

rithm, the number of accurate bits in the mantissa doubles. Using RCPF, you

can start with an estimate accurate to eight bits. With one iteration, accuracy

is 16 bits in the mantissa, and with a second iteration, accuracy is 32 bits.

The ’C4x program to implement this algorithm is shown in Example 5–15.

Each step of the algorithm is labeled along with the corresponding accuracy

achieved at the end of the step. The algorithm takes only seven machine

cycles.

Example 5–15. Newton-Raphson Algorithm for Computing the Reciprocal

RCPF R0,R1 ; R0 = v, R1 = x[0]

;

MPYF R1,R0,R2

SUBRF 2.0,R2

MPYF R2,R1 ; end of first iteration (16-bit accuracy)

;

MPYF R1,R0,R2

SUBRF 2.0,R2

MPYF R2,R1 ; end of second iteration (32-bit accuracy)

;

; ; R1 = 1/v

;



Reciprocal Square Root (RSQRF Instruction)

 5-36

5.12 Reciprocal Square Root (RSQRF Instruction)

In many applications, normalization of data values is necessary. Often, the

normalizing factor is the square root of another quantity. For example, when

one vector is given, you can find the unit vector in the same direction by divid-

ing the original vector by its own length. This involves division by a square root.

The RSQRF instruction provides a simple way to directly determine this quan-

tity instead of going through a two-step approach of finding the square root and

then finding the reciprocal of the square root.

Given the result of this algorithm, the square root is found by a simple multi-

plication:

v � vx[n]

where x[n] is the estimate of 
1

v�  as determined by the Newton-Raphson algo-

rithm or some other algorithm.

The RSQRF instruction generates an estimated reciprocal of the square root

of a floating-point number in a single cycle. It parallels some of the operational

characteristics of the RCPF instruction in these ways:

� RSQRF generates an estimate (in this case, the reciprocal of the square

root of a floating-point number).

� The mantissa is accurate to the eighth binary place (mantissa error is

<  2–8).

� Often, this is a satisfactory estimate of the reciprocal of a number’s square

root; in other cases, it may be used as a seed for an algorithm that com-

putes the reciprocal square root to an even greater accuracy.

Figure 5–22 depicts the RSQRF algorithm. In the algorithm:

� The input is assumed to be v = vman × 2vexp.

� The output is assumed to be x = xman × 2xexp.

� vexp + 1 is negated and shifted right one bit with sign extension.

� If vexp = –128, the result is saturated to the most positive number, and the

overflow flag is set.



 Reciprocal Square Root (RSQRF Instruction)

5-37  Data Formats and Floating-Point Operation

Figure 5–22. RSQRF Instruction Algorithm

vexp vexp(0) vfrac(22 . . 15)

x

If vexp = –128, set overflow flag and
saturate to most positive number.

xexp xman

xfrac(22 . . 15)

Look-up Table
(512 × 8)

Form xman.
xfrac(14 . . 0) = 0

xsign = 0

–(vexp + 1) shifted
right one bit and 

sign extended

The look-up table is read by forming a nine-bit address consisting of the least

significant bit of vexp and bits 22–15 of vfrac. The eight-bit output of the look-

up table forms bits 22–15 of xfrac. Bits 14–0 of xfrac are cleared to zero. xsign

is set to 0. There is no provision for negative values of v.

The look-up table values are generated from simulation results.

Given the result of this algorithm, division is performed by a simple multiplica-

tion:

y/v = yx[n]

In the equation, x[n] is the estimate of 1/v as determined by the Newton-Raph-

son algorithm or another algorithm.

Newton-Raphson Algorithm

The RSQRF instruction provides the reciprocal of the square root of a number.

The estimate has the correct exponent and a mantissa accurate to the eighth

binary place (i.e., the error of the mantissa is < 2–8). The Newton-Raphson al-

gorithm (shown below) can be used to further extend the mantissa’s precision:

x[n+1] = x[n](1.5–(v/2)x[n]x[n])

where v = the number whose reciprocal is to be found.



Reciprocal Square Root (RSQRF Instruction)

 5-38

The seed for the algorithm, x[0], is given by RSQRF. For each iteration of the

algorithm, the number of accurate bits in the mantissa doubles. Using RSQRF,

you can start with an estimate accurate to eight bits. With one iteration, accura-

cy is 16 bits in the mantissa, and with a second iteration, accuracy is 32 bits.

The ’C4x program to implement this algorithm is shown in Example 5–16.

Each step of the algorithm is labeled, and the corresponding accuracy

achieved is noted at the end of the step. The algorithm takes only ten machine

cycles (compared to 30 cycles on the ’C3x without a look-up table).

Example 5–16. Newton-Raphson Algorithm for Computing the Reciprocal Square Root

RSQRF R0,R1 ; R0 = v, R1 = x[0]

MPYF 0.5,R0 ; R0 = v/2

;

MPYF R1,R1,R2

MPYF R0,R2

SUBRF 1.5,R2

MPYF R2,R1 ; end of first iteration (16-bit accuracy)

;

MPYF R1,R1,R2

MPYF R0,R2

SUBRF 1.5,R2

MPYF R2,R1 ; end of second iteration (32-bit accuracy)

;

; ; R1 = 1/(v**0.5)

;



 Running Title—Attribute Reference

6-1  Chapter Title—Attribute Reference

Addressing Modes

The ’C4x supports five types of addressing to access data from memory, regis-

ters, and the instruction word. This chapter details the operation, encoding,

and implementation of the addressing modes.

Topic Page

6.1 Addressing Types 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Register Addressing 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Direct Addressing 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 Indirect Addressing 6-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.5 Immediate Addressing 6-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.6 PC-Relative Addressing 6-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.7 Encoding of Addressing Modes 6-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.8 Circular Addressing 6-27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.9 Bit-Reversed Addressing 6-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 6



Addressing Types

 6-2

6.1 Addressing Types

You can access data from memory, registers, and the instruction word by using

five types of addressing:

� Register addressing

� Direct addressing

� Indirect addressing

� Immediate addressing

� PC-relative addressing

Not all addressing types are appropriate for all instructions. Addressing types

are classified into four groups, depending upon the encoding method used:

� General addressing modes (G)

� Three-operand addressing modes (T)

� Parallel addressing modes (P)

� Conditional-branch addressing modes (B)

For use in filters and FFTs, there are two specialized modes:

� Circular addressing

� Bit-reversed addressing



 Register Addressing

6-3  Addressing Modes

6.2 Register Addressing

In register addressing, a CPU register contains the operand, as shown in this

example:

ABSF R1 ; R1 = |R1|

The machine address for the CPU registers, the assembler syntax (register

name), and the assigned function for those registers are listed in Table 6–1.

Table 6–1.CPU Register/Assembler Syntax and Function

(a) CPU Primary Registers

Register

Name

Machine

Address

Assigned

Function

R0 00h Extended-precision register 0

R1 01h Extended-precision register 1

R2 02h Extended-precision register 2

R3 03h Extended-precision register 3

R4 04h Extended-precision register 4

R5 05h Extended-precision register 5

R6 06h Extended-precision register 6

R7 07h Extended-precision register 7

R8 1Ch Extended-precision register 8

R9 1Dh Extended-precision register 9

R10 1Eh Extended-precision register 10

R11 1Fh Extended-precision register 11

A0 08h Auxiliary register 0

A1 09h Auxiliary register 1

A2 0Ah Auxiliary register 2

A3 0Bh Auxiliary register 3

A4 0Ch Auxiliary register 4

A5 0Dh Auxiliary register 5

A6 0Eh Auxiliary register 6



Register Addressing

 6-4

Table 6–1.CPU Register/Assembler Syntax and Function (Continued)

Register

Name

Machine

Address

Assigned

Function

A7 0Fh Auxiliary register 7

DP 10h Data-page pointer

IR0 11h Index register 0

IR1 12h Index register 1

BK 13h Block-size register

SP 14h Active stack pointer

ST 15h Status register

DIE 16h DMA coprocessor interrupt enable

IIE 17h Internal interrupt enable register

IIF 18h IIOF pins and interrupt flag register

RS 19h Repeat start address register

RE 1Ah Repeat end address register

RC 1Bh Repeat counter register

(b) CPU Expansion Registers

Register

Name

Machine

Address

Assigned

Function

IVTP 00h Interrupt-vector table pointer

TVTP 01h Trap-vector table pointer



 Direct Addressing

6-5  Addressing Modes

6.3 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the

16 least significant bits of the data page pointer (DP) with the 16 least signifi-

cant bits of the instruction word (expr). The use of 16 bits for the DP results in

65536 pages (64K words per page), allowing you to access a large address

space without changing the value of the DP. The syntax and operation for di-

rect addressing are listed below.

Syntax: @expr

Operation: address = DP concatenated with expr

Figure 6–1 shows the formation of the data address. Example 6–1 gives an

instruction example with data before and after instruction execution.

Figure 6–1. Direct Addressing 

0

031 16 15

0

31

Address

Operand

Page

Expr

31 16 15 0

31

DP

Instruction word

(Data page pointer)

16 15

Example 6–1. Direct Addressing

ADDI @0BCDEh,R7

Before Instruction: After Instruction:

DP = 108Ah DP = 108Ah

R7 = 11h R7 = 1234 5689h

Data at 108A BCDEh = 1234 5678h Data at 108A BCDEh = 1234 5678h



Indirect Addressing

 6-6

6.4 Indirect Addressing

Indirect addressing specifies the address of an operand in memory through

the contents of an auxiliary register, optional displacements, and index regis-

ters. The auxiliary register arithmetic units (ARAUs) perform this unsigned

arithmetic. (All 32 bits of the auxiliary and index registers are used in indirect

addressing.)

The flexibility of indirect addressing is possible because the ARAUs on the

’C4x modify auxiliary registers in parallel with operations within the main CPU.

Indirect addressing is specified by a five-bit field in the instruction word, re-

ferred to as the mod field (shown on the left side of Table 6–2 on as well as in

the examples that follow). A displacement is either an explicit unsigned 5-bit

or 8-bit integer contained in the instruction word or an implicit displacement of

one. Two index registers, IR0 and IR1, can also be used in indirect addressing,

enabling the use of 32-bit indirect displacements (IR0 and IR1 are treated as

signed integers). In some cases, an addressing scheme using circular or bit-

reversed addressing is optional. Generating addresses for circular addressing

is discussed in Section 6.8, and for bit-reversed addressing in Section 6.9.

Table 6–2 lists the various kinds of indirect addressing, along with the value

of the modification (mod) field, assembler syntax, operation, and function for

each. Figure 6–2 shows the format of the indirect addressing operand in the

instruction encoding. The disp field does not exist for some instructions.

Figure 6–2. Indirect Addressing Operand Encoding

MSB LSB

mod ARn disp

5 bits 3 bits 0, 5, or 8 bits

Note:

The auxiliary register (ARn) to be used is encoded in the instruction word ac-
cording to its binary representation, n (i.e., AR3 is encoded as 112), not its
register machine address (as shown in Table 6–1).



 Indirect Addressing

6-7  Addressing Modes

Table 6–2. Indirect Addressing

(a) Indirect Addressing With Displacement

Mod Field Syntax Operation Description

00000 *+ARn(disp) addr = ARn + disp With predisplacement add

00001 *–ARn(disp) addr = ARn – disp With predisplacement subtract

00010 *++ARn(disp)
addr = ARn + disp

ARn = ARn + disp
With predisplacement add and modify

00011 *––ARn(disp)
addr = ARn – disp

ARn = ARn – disp
With predisplacement subtract and modify

00100 *ARn++(disp)
addr = ARn

ARn = ARn + disp
With postdisplacement add and modify

00101 *ARn––(disp)
addr = ARn

ARn = ARn – disp
With postdisplacement subtract and modify

00110 *ARn++(disp)%
addr = ARn

ARn = circ(ARn + disp)

With postdisplacement add and circular

modify

00111 *ARn––(disp)%
add = ARn

ARn = circ(ARn – disp)

With postdisplacement subtract and circular

modify

(b) Indirect Addressing With Index Register IRO

Mod Field Syntax Operation Description

01000 *+ARn(IR0) addr = ARn + IR0 With preindex (IR0) add

01001 *–ARn(IR0) addr = ARn – IR0 With preindex (IR0) subtract

01010 *++ARn(IR0)
addr = ARn + IR0

ARn = ARn + IR0
With preindex (IR0) add and modify

01011 *––ARn(IR0)
addr = ARn – IR0

ARn = ARn – IR0
With preindex (IR0) subtract and modify

01100 *ARn++(IR0)
addr = ARn

ARn = ARn + IR0
With postindex (IR0) add and modify

01101 *ARn––(IR0)
addr= ARn

ARn = ARn – IR0
With postindex (IR0) subtract and modify

01110 *ARn++(IR0)%
addr = ARn

ARn = circ(ARn + IR0)
With postindex (IR0) add and circular modify

01111 *ARn––(IR0)%
addr = ARn

ARn = circ(ARn– IR0)

With postindex (IR0) subtract and circular

modify

LEGEND:

addr = memory address

ARn = auxiliary register AR0 – AR7

IRn = index register IR0 or IR1

disp = displacement

++ = add and modify

 –– = subtract and modify

 circ( ) = address in circular addressing

 % = where circular addressing is performed

 B = where bit-reversed addressing is performed



Indirect Addressing

 6-8

Table 6–2. Indirect Addressing (Continued)

(c) Indirect Addressing With Index Register IR1

Mod Field Syntax Operation Description

10000 *+ARn(IR1) addr = ARn + IR1 With preindex (IR1) add

10001 *–ARn(IR1) addr = ARn – IR1 With preindex (IR1) subtract

10010 *++ARn(IR1)
addr = ARn + IR1

ARn = ARn + IR1
With preindex (IR1) add and modify

10011 *––ARn(IR1)
addr = ARn – IR1

ARn = ARn – IR1
With preindex (IR1) subtract and modify

10100 *ARn++(IR1)
addr = ARn

ARn = ARn + IR1
With postindex (IR1) add and modify

10101 *ARn––(IR1)
addr = ARn

ARn = ARn – IR1
With postindex (IR1) subtract and modify

10110 *ARn++(IR1)%
addr = ARn

ARn = circ(ARn + IR1)
With postindex (IR1) add and circular modify

10111 *ARn––(IR1)%
addr = ARn

ARn = circ(ARn – IR1)

With postindex (IR1) subtract and circular

modify

(d) Indirect Addressing (Special Cases)

Mod Field Syntax Operation Description

11000 *ARn addr = ARn Indirect

11001 *ARn++(IR0)B
addr = ARn

ARn = B(ARn + IR0)

With postindex (IR0) add and bit-reversed

modify

LEGEND:

addr = memory address

ARn = auxiliary register AR0 – AR7

IRn = index register IR0 or IR1

disp = displacement

++ = add and modify

 –– = subtract and modify

 circ( ) = address in circular addressing

 % = where circular addressing is performed

 B = where bit-reversed addressing is performed



 Indirect Addressing

6-9  Addressing Modes

Example 6–2 through Example 6–19 show the operation for each type of indi-

rect addressing.

Example 6–2. Auxiliary Register Indirect

An auxiliary register (ARn) contains the address of the operand to be fetched.

Operation: operand address = ARn

Assembler Syntax: *ARn

Modification Field: 11000

Address

031

ARn

31 0

Operand

Example 6–3. Indirect With Predisplacement Add

The address of the operand to be fetched is the sum of an auxiliary register

(ARn) and the displacement (disp). The displacement is either a 5-bit or 8-bit

unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn+disp

Assembler Syntax: *+ARn(disp)

Modification Field: 00000

ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈ

ÇÇ
ÇÇ
ÇÇ

(+)

0

031

AddressARn

31 0

31

Operand

7 4 0

Remaining 27 or 24 bits are zero filled

8-bit or 5-bit unsigned integer displacement



Indirect Addressing

 6-10

Example 6–4. Indirect With Predisplacement Subtract

The address of the operand to be fetched is the contents of an auxiliary register

(ARn) minus the displacement (disp). The displacement is either an 8-bit un-

signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn –disp

Assembler Syntax: *–ARn(disp)

Modification Field: 00001

(–)

0

031

AddressARn

31

disp 0 0

0

31

8 7

Integer

Operand

0 . . . . 0

Example 6–5. Indirect With Predisplacement Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register

(ARn) and the displacement (disp). The displacement is either an 8-bit un-

signed integer contained in the instruction word or an implied value of 1. After

the data is fetched, the auxiliary register is updated with the generated ad-

dress.

Operation: operand address = ARn +disp

ARn = ARn + disp

Assembler Syntax: *++ ARn(disp)

Modification Field: 00010

(+)

0

031

AddressARn

31

disp 0 0

0

31

8 7

Integer

Operand

0 . . . 0



 Indirect Addressing

6-11  Addressing Modes

Example 6–6. Indirect With Predisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn) minus the displacement (disp). The displacement is either an 8-bit un-

signed integer contained in the instruction word or an implied value of 1. After

the data is fetched, the auxiliary register is updated with the generated ad-

dress.

Operation: operand address = ARn –disp
ARn =  AR n–disp

Assembler Syntax: *––ARn(disp)
Modification Field: 00011

(–)

0

031

AddressARn

31

disp 0 0

0

31

8 7

Operand

0 . . . 0 Integer

Example 6–7. Indirect With Postdisplacement Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the displacement (disp) is added to the

auxiliary register. The displacement is either an 8-bit unsigned integer con-

tained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn+disp

Assembler Syntax: *ARn ++ disp

Modification Field: 00100

(+)

0

031

Address

31

disp 0 0

0

31

8 7

Integer

Operand

0 . . . 0

ARn



Indirect Addressing

 6-12

Example 6–8. Indirect With Postdisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the displacement (disp) is subtracted from

the auxiliary register. The displacement is either an 8-bit unsigned integer con-

tained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn –disp

Assembler Syntax: *ARn –– disp

Modification Field: 00101

(–)

0

031

AddressARn

31

disp 0 0

0

31

8 7

Integer

Operand

0 . . . 0

Example 6–9. Indirect With Postdisplacement Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the displacement (disp) is added to the

contents of the auxiliary register through circular addressing. This result is

used to update the auxiliary register. The displacement is either an 8-bit un-

signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn +disp)

Assembler Syntax: *ARn ++(disp)%

Modification Field: 00110

(+)

0

031

AddressARn

31

disp 0 0

0

31

8 7

Integer

Operand

0 . . . 0

(%)



 Indirect Addressing

6-13  Addressing Modes

Example 6–10. Indirect With Postdisplacement Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the displacement (disp) is subtracted from

the contents of the auxiliary register through circular addressing. This result

is used to update the auxiliary register. The displacement is either an 8-bit un-

signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn =  circ(ARn –disp)

Assembler Syntax: *ARn ––(disp)%

Modification Field: 00111

(–)

0

031

AddressARn

31

disp 0 0

0

31

8 7

Integer

Operand

0 . . . 0

(%)

Example 6–11. Indirect With Preindex Add

The address of the operand to be fetched is the sum of an auxiliary register

(ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn+IR m

Assembler Syntax: *+ARn (IRm)

Modification Field: 01000 if m=0
10000 if m=1

(+)

0

031

AddressARn

31

IRm

0

31

Index

Operand



Indirect Addressing

 6-14

Example 6–12. Indirect With Preindex Subtract

The address of the operand to be fetched is the difference between an auxiliary

register (ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn –IRm

Assembler Syntax: *–ARn (IRm)

Modification Field: 01001 if m=0
10001 if m=1

(–)

0

031

AddressARn

31

IRm

0

31

Index

Operand

Example 6–13. Indirect With Preindex Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register

(ARn) and an index register (IR0 or IR1). After the data is fetched, the auxiliary

register is updated with the generated address.

Operation: operand address = ARn+IRm
 ARn = ARn+IRm

Assembler syntax: *++ARn (IRm)

Modification Field: 01010 if m=0
 10010 if m=1

(+)

0

031

AddressARn

31

IRm

0

31

Index

Operand



 Indirect Addressing

6-15  Addressing Modes

Example 6–14. Indirect With Preindex Subtract and Modify

The address of the operand to be fetched is the difference between an auxiliary

register (ARn) and an index register (IR0 or IR1). The resulting address be-

comes the new contents of the auxiliary register.

Operation: operand address = ARn –IRm
ARn = ARn–IRm

Assembler Syntax: *––ARn(IRm)

Modification Field: 01011 if m=0

10011 if m=1

(–)

0

031

AddressARn

31

IRm

0

31

Index

Operand

Example 6–15. Indirect With Postindex Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, an index register (IR0 or IR1) is added to

the auxiliary register.

Operation: operand address = ARn
ARn = ARn+IRm

Assembler Syntax: *ARn++(IRm)

Modification Field: 01100 if m=0
10100 if m=1

IRm

(+)

0

031

AddressARn

31 0

31

Index

Operand



Indirect Addressing

 6-16

Example 6–16. Indirect With Postindex Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the index register (IR0 or IR1) is sub-

tracted from the auxiliary register.

Operation: operand address = ARn
ARn = ARn– IRm

Assembler Syntax: *ARn––(IRm)

Modification Field: 01101 if m = 0

10101 if m =1

(–)

0

031

AddressARn

31

IRm

0

31

Index

Operand

Example 6–17. Indirect With Postindex Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the index register (IR0 or IR1) is added

to the auxiliary register. This value is evaluated through circular addressing

and replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn + IRm)

Assembler Syntax: *ARn++(IRm)%

Modification Field: 01110 if m=0
10110 if m=1

(+)

0

031

AddressARn

31 0

31

Index

Operand

(%)

IRm



 Indirect Addressing

6-17  Addressing Modes

Example 6–18. Indirect With Postindex Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the index register (IR0 or IR1) is sub-

tracted from the auxiliary register. The result is evaluated through circular ad-

dressing and replaces the contents of the auxiliary register.

Operation: operand address = ARn
 ARn = circ(ARn –IRm)

Assembler Syntax: *ARn ––(IRm)%

Modification Field: 01111 if m= 0
10111 if m =1

IRm (–)

0

031

AddressARn

31 0

31

Index

Operand

(%)

Example 6–19. Indirect With Postindex Add and Bit-Reversed Modify

The address of the operand to be fetched is the contents of an auxiliary register

(ARn). After the operand is fetched, the index register (IR0) is added to the

auxiliary register. This addition is performed with a reverse-carry propagation

and can be used to yield a bit-reversed (B) address. This value replaces the

contents of the auxiliary register.

Operation: operand address = ARn

ARn = B(ARn+IR0)

Assembler Syntax: *ARn++(IR0)B

Modification Field: 11001

(+)

0

031

AddressARn

31 0

31

Index

Operand

(B)
IR0



Immediate Addressing

 6-18

6.5 Immediate Addressing

In immediate addressing, the operand is an 8- or 16-bit immediate value con-

tained in the 8 or 16 least significant bits of the instruction word (expr). Depend-

ing on the data types assumed for the instruction, the immediate operand may

be a twos-complement integer, an unsigned integer, a signed integer, or a floa-

ting-point number. The syntax for this mode is as follows:

Syntax: expr

Example 6–20 gives an instruction example with data from before and after

the instruction is executed. Notice that AND and AND3 produce different re-

sults.

Example 6–20. Immediate Addressing

Instruction Before After

SUBI 1,R0 R0=0h R0=00 FFFF FFFFh

LDI 0FFFFh,R0 R0=0h R0=00 FFFF FFFFh

LDF 5.0,R0 R0=0h R0=02 2000 0000h

OR 0FFFFh,R0 R0=0h R0=00 0000 FFFFh

AND3 80h,R0,R0 R0=00 FFFF FFFFh R0=00 FFFF FF80h

AND 80h,R0 R0=00 FFFF FFFFh R0=00 0000 0080h



 PC-Relative Addressing

6-19  Addressing Modes

6.6 PC-Relative Addressing

PC-relative addressing is used for branching. It adds the contents of the 16 or

24 least significant bits of the instruction word to the PC register. The assem-

bler takes the src (a label or address) specified by the user and generates a

displacement. If the branch is a standard branch, this displacement is equal

to [label  – (instruction address +1)]. If the branch is a delayed branch, this dis-

placement is equal to [label – (instruction address+3)].

The displacement is stored as a 16-bit or 24-bit signed integer in the least sig-

nificant bits of the instruction word. The displacement is added to the PC during

the pipeline decode phase. Notice that because the PC is incremented by one

in the fetch phase, the displacement is added to this incremented PC value.

Syntax: expr (label or address)

Example 6–21 gives an instruction example with before- and after-instruction

data.

Example 6–21. PC-Relative Addressing

BU NEWPC ; address of BU instruction=1,

... ; NEWPC label =5, displacement = 3

NEWPC ... ; displacement = 5 – (1 + 1)

Before Instruction After Instruction

Decode Phase Execution Phase:

PC = 2h PC = 5h

The 24-bit addressing mode is used to encode the program control instruc-

tions (e.g., BR, BRD, CALL, RPTB, RPTBD, LAJ). Depending on the instruc-

tion, the new PC value is derived by adding a 24-bit signed value in the instruc-

tion word with the present PC value. Bit 24 determines the type of branch (D

= 0 for a standard branch or D = 1 for a delayed branch). Some of these instruc-

tions are encoded in Figure 6–3.



PC-Relative Addressing

 6-20

Figure 6–3. Encoding for 24-Bit PC-Relative Addressing Mode

(a) BR, BRD: unconditional branches (delayed and not delayed)

31 25 23 0

0 1 1 0 0 0 0 D src

(b) CALL: unconditional subroutine call

31 23 0

0 1 1 0 0 0 1 0 src

(c) RPTB, RPTBD: repeat block (not delayed and delayed)

31 23 0

0 1 1 1 1 0 0 D src

(d) LAJ: link and jump (return address in extended-precision

register R11)

31 23 0

0 1 1 0 0 0 1 1 src



 Encoding of Addressing Modes

6-21  Addressing Modes

6.7 Encoding of Addressing Modes

The five addressing types form four groups of addressing modes:

� General addressing modes (G) (subsection 6.7.1)

� Three-operand addressing modes (T) (subsection 6.7.2)

� Parallel addressing modes (P) (subsection 6.7.3)

� Conditional-branch addressing modes (B) (subsection 6.7.4)

6.7.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose in-

structions, such as ADDI, MPYF, and LSH. Such instructions usually have the

following syntax:

dst operation src → dst

In the syntax, the destination operand is signified by dst and the source oper-

and by src; operation defines an operation to be performed with the general

addressing modes to specify certain operands. Bits 31–29 are zero, indicating

general addressing mode instructions. Bits 22 and 21 specify the general ad-

dressing mode (G) field, which defines how bits 15 through 0 are to be inter-

preted for addressing the src operand.

Options for bits 22 and 21 (G field) are as follows:

G Mode

00 register (all CPU registers unless specified otherwise)

01 direct

10 indirect

11 immediate

If the src and dst fields contain register specifications, the value in these fields

contains the CPU register addresses as defined by Table 6–1. For the general

addressing modes, the following values of ARn are valid for indirect address-

ing:

ARn, 0  ≤ n ≤ 7

Figure 6–4 shows the encoding for the general addressing modes. The nota-

tion modn indicates the modification field that goes with the ARn field. Refer

toTable 6–2 for further information.



Encoding of Addressing Modes

 6-22

Figure 6–4. Encoding for General Addressing Modes

G Destination Source Operands

31 29 28 23 22 21 20 16 15 11 10 8 7 5 4 0

0 0 0 operation 0 0  dst 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 operation 0 1  dst direct

0 0 0 operation 1 0  dst modn ARn disp

0 0 0 operation 1 1  dst Immediate

6.7.2 Three-Operand Addressing Modes

The 19 three-operand instructions on the ’C4x use the eight addressing modes

listed in Table 6–3:

Table 6–3.Three-Operand Instruction Addressing Modes

Type 1†

T src1 addressing modes src2 addressing modes dst ‡

00
Register mode (any CPU

register)

Register mode (any CPU

register)
Rx

01
Indirect mode (disp = 0, 1,

IR0, IR1)

Register mode (any CPU

register)
Rx

10
Register mode (any CPU

register)

Indirect mode (disp = 0, 1,

IR0, IR1)
Rx

11
Indirect mode (disp = 0, 1,

IR0, IR1)

Indirect mode (disp = 0, 1,

IR0, IR1)
Rx

† The ’C4x recognizes either type 1 or type 2 modes; the ’C3x recognizes only type 1.
‡ Rx = any register in the CPU (primary) register file for the respective processor.

Type 2†

T src1 addressing modes src2 addressing modes dst ‡

00
Register mode (any CPU

register)
8-bit signed immediate Rx

01
Register mode (any CPU

register)

Indirect mode *+ARn(5-bit

unsigned displacement)
Rx

10
Indirect mode *+ARn(5-bit

unsigned displacement)
8-bit signed immediate Rx

11
Indirect mode *+ARn1(5-bit

unsigned displacement)

Indirect mode *+ARn2(5-bit

unsigned displacement)
Rx

† The ’C4x recognizes either type 1 or type 2 modes; the ’C3x recognizes only type 1.
‡ Rx = any register in the CPU (primary) register file for the respective processor.



 Encoding of Addressing Modes

6-23  Addressing Modes

The object values differ for three-operand instructions, depending on the as-

sembler used:

� The ’C3x assembler recognizes only type 1 modes and sets bits 31–28 to

00102 .

� The ’C4x assembler recognizes both types and sets bits 31–28 to 00102
for type 1 and to 00112  for type 2.

The three-operand instructions MPYSHI3 and MPYUHI3 are unique to the

’C4x.

All instructions except four can use all of the type 2 address modes shown in

Table 6–3. The exceptions, which can use only the second and fourth address

modes in type 2, are the floating-point instructions ADDF3, CMPF3, MPYF3,

and SUBF3.

The remaining 15 three-operand instructions are ADDC3, ADDI3, AND3,

ANDN3, ASH3, CMPI3, LSH3, MPYI3, MPYSHI3, MPYUHI3, OR3, SUBB3,

SUBI3, TSTB3, and XOR3.

Note:

The suffix 3 can be omitted from a three-operand instruction mnemonic.

Bits 22 and 21 specify the three-operand addressing mode (T) field, which de-

fines how to interpret bits 15–0 for addressing the src operands. Bits 15–8 de-

fine the src1 address, and bits 7–0 define the src2 address.

Figure 6–5 and Figure 6–6 show the encoding for ’C4x three-operand ad-

dressing (the ’C3x recognizes only the format in Figure 6–5). The notation

modm or modn indicates the modification field that goes with the ARm or ARn

(auxiliary register) field, respectively. Refer to Table 6–2 for further informa-

tion.

The 8-bit signed immediate value supports left shifts, right shifts, and memory

increment and decrement operations. The immediate value is not available for

floating-point operations.

These instructions greatly help reduce code size, both assembled and com-

piled. They also improve performance notably in DSP and other computation-

ally intensive applications and general-purpose code.



Encoding of Addressing Modes

 6-24

Figure 6–5. Encoding for Type 1 Three-Operand Addressing Modes (’C3x and ’C4x)

T Destination src1 src2

31 28 27 23 22 21 20 16 15 13 12 11 10 8 7 5 4 3 2 0

0 0 1 0 operation 0 0 dst 0 0 0 src1 0 0 0 src2

0 0 1 0 operation 0 1 dst modn ARn 0 0 0 src2

0 0 1 0 operation 1 0 dst 0 0 0 src1 modn ARn

0 0 1 0 operation 1 1 dst modn ARn modm ARm

Figure 6–6. Encoding for Type 2 Three-Operand Addressing Modes (’C4x Only)

T Destination src1 src2

31 28 27 23 22 21 20 16 15 13 12 11 10 8 7 5 4 3 2 0

0 0 1 1 operation 0 0 dst 0 0 0 Rn Immediate

0 0 1 1 operation 0 1 dst 0 0 0 Rn disp ARn

0 0 1 1 operation 1 0 dst disp ARn immediate

0 0 1 1 operation 1 1 dst disp ARn disp ARm

6.7.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by || (two vertical bars), al-

low for the greatest amount of parallelism possible. The destination operands

are indicated as d1 and d2, signifying dst1 and dst2, respectively (see Figure

6–4). The source operands, signified by src1 and src2, use the extended-pre-

cision registers. The parallel operation to be performed is called operation.

Figure 6–7. Encoding for Parallel Multiply With ADD/SUB

31 30 29 26 25 24 23 22 21 19 18 16 15 11 10 8 7 3 2 0

1 0 operation P d1 d2  src1 src2 modn ARn modm ARm

The parallel addressing mode (P) field specifies how to use the operands, i.e.,

whether they are source or destination. The specific relationship between the

P field and the operands is detailed in the description of the individual parallel

instructions (see Chapter 14 for more information). However, the operands are

always encoded in the same way. Bits 31 and 30 are set to the value of 10,

indicating parallel addressing mode instructions. Bits 25 and 24 specify the

parallel addressing mode (P) field, which defines how bits 21– 0 are to be inter-

preted for addressing the src operands. Bits 21–19 define the src1 address,

bits 18–16 define the src2 address, bits 15–8 the src3 address, and bits 7–0

the src 4 address. The notations modn and modm indicate the modification



 Encoding of Addressing Modes

6-25  Addressing Modes

field that goes with the ARn or ARm (auxiliary register) field, respectively. The

parallel addressing operands are listed below.

src1 = Rn (0 ≤ n ≤ 7 for extended-precision registers R0–R7)

src2 = Rn (0 ≤ n ≤ 7 for extended-precision registers R0–R7)

d1 If 0, dst1 is R0. If 1, dst1 is R1.

d2 If 0, dst2 is R2. If 1, dst2 is R3.

P 0 ≤ P ≤ 3

src3 indirect (disp = 0, 1, IR0, IR1)

src4 indirect (disp = 0, 1, IR0, IR1)

Note:

Only registers R0–R7 are used in parallel instructions. R8–R11 are not used
in parallel instructions.

As in the three-operand addressing mode, indirect addressing in the parallel

addressing mode allows for displacements of 0 or 1 and the use of the index

registers (IR0 and IR1). The displacement of 1 is implied and is not explicitly

coded in the instruction word.

In the encoding shown for this mode in Figure 6–7, if the src3 and src4 fields

use the same auxiliary register, both addresses are correctly generated, but

only the value created by the src3 field is saved in the specified auxiliary regis-

ter. The assembler issues a warning if you specify the same auxiliary register

src3 and src4.

6.7.4 Conditional-Branch Addressing Modes

Instructions using the conditional-branch addressing modes (Bcond, BcondD,

CALLcond, DBcond, and DBcondD) can perform a variety of conditional oper-

ations. Bits 31–27 are set to the value of 01101, indicating conditional-branch

addressing mode instructions. Bit 26 is set to 0 or 1; 0 selects DBcond, and

1 selects Bcond. Bit 25 determines the conditional-branch addressing mode

(B). If B = 0, register addressing is used; if B = 1, PC-relative addressing is

used. Bit 21 sets the type of branch: D = 0 for a standard branch, and D = 1

for a delayed branch. The condition field(cond) specifies the condition

checked to determine what action to take — for example, whether or not to

branch (see Table 14–8 on page 14-14 for a list of condition codes). Figure 6–6

shows the encoding for conditional-branch addressing.



Encoding of Addressing Modes

 6-26

Figure 6–8. Encoding for Conditional-Branch Addressing Modes

DBcond (D):

3 26 25 24 22 21 20 16 15 5 4 0

0 1 1 0 1 1 B ARn D cond 0 0 0 0 0 0 0 0 0 0 0 src reg

0 1 1 0 1 1 B ARn D cond Immediate (PC relative)

 Bcond (D):

31 26 25 24 22 21 20 16 15 5 4 0

0 1 1 0 1 0 B 0 0 0 D cond 0 0 0 0 0 0 0 0 0 0 0 src reg

0 1 1 0 1 0 B 0 0 0 D cond Immediate (PC relative)

 CALLcond:

31 26 25 24 22 21 20 16 15 5 4 0

0 1 1 1 0 0 B 0 0 0 D cond 0 0 0 0 0 0 0 0 0 0 0 src reg

0 1 1 1 0 0 B 0 0 0 D cond Immediate (PC relative)



 Circular Addressing

6-27  Addressing Modes

6.8 Circular Addressing

Many DSP algorithms require a circular buffer in memory. In convolution and

correlation, a circular buffer acts as a sliding window that contains the most

recent data to be processed. As new data is brought in, the new data over-

writes the oldest data. The key to using a circular buffer is the implementation

of a circular addressing mode. This section describes the circular addressing

mode of the ’C4x.

The block-size register (BK) specifies the size of the circular buffer. If the most

significant bit equal to 1 in the BK register is labeled bit N, with N � 15, the

address immediately following the bottom of the circular buffer can be found

by concatenating bits 31 through N+1 of a user-selected register (ARn) with

bits N through 0 of the BK register. The address of the top of the buffer is re-

ferred to as the effective base (EB) and can be found by concatenating bits 31

through N+1 of ARn. Bits N through 0 of EB are zero.

Figure 6–9 illustrates the relationships among the block-size register (BK), the

auxiliary registers (ARn), the bottom of the circular buffer, the top of the circular

buffer, and the index into the circular buffer.

A circular buffer of size R must start on a K-bit boundary (that is, the K LSBs

of the starting address of the circular buffer must be zeros), where K is an inte-

ger such that 2K > R. Since the value R must be loaded into the BK register,

K � N+1. For example, a 31-word circular buffer must start at an address

whose five LSBs are 0 (that is, xxx...x00000), and the value must be loaded

into the BK register.

Note:

If the BK register has a value of 0, circular addressing is not performed. The
effect will be the generation of a conventional linear address.



Circular Addressing

 6-28

Figure 6–9. Register Relationships in Circular Addressing

 

         

31 N + 1 N 0

H . . . H L′ . . . L′

H . . . H

0 . . . 0

0 . . . 0

H . . . H 0 . . . 0

0 . . . 0

H . . . H

Circular

Addressing

Algorithm

Logic

New
ARn

New
Index

ARn

EB

BK

31 N + 1 N 0 31 N + 1 N 0

31 N + 1 N 0

31 N + 1 N 0

First 1 at Location N

31 N + 1 N 0

Index

1 (N LSBs

of BK)

1 (N LSBs
of BK)

Bottom of Buffer + 1 (High Address)

L′ . . . L′

L . . . L

L . . . L

Top of Buffer + 1 (Low Address)

LEGEND:

ARn = auxiliary register n L = low-order bits

BK = block-size register L′ = new low-order bits

EB = effective base LSB = least significant bit

H = high-order bits N = location of the MSB equal to 1 in the BK register



 Circular Addressing

6-29  Addressing Modes

In circular addressing, index refers to the N LSBs of the auxiliary register

selected, and step is the quantity being added to or subtracted from the

auxiliary register. When you use circular addressing, follow two basic rules:

� The step used must be less than or equal to the block size and is treated

as an unsigned integer.

� The first time the circular queue is addressed, the auxiliary register must

be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 ≤ index + step < BK:
index = index + step.

Else if index + step ≥ BK:
index = index + step – BK.

Else if index + step < 0:
index = index + step + BK.

Figure 6–10 shows how the circular buffer is implemented. It illustrates the

relationship of the generated quantities and the elements in the circular buffer.

Figure 6–10. Circular Buffer Implementation

Top of Circular Buffer

H . . . H 0 . . . 0

H . . . H

H . . . H

L . . . L

LSBs BK

Element 0

Element 1

Element (N LSBs of ARn)

Last Element

Last Element + 1

31 N + 1 N 0

31 N + 1 N 0

31 N 0N + 1

Address Data

Effective
Base
(EB)

Auxiliary
Register

(ARn)



Circular Addressing

 6-30

Figure 6–11 gives an example of the operation of circular addressing. Assum-

ing that all registers are four bits, let BK = 01102 (block size of 6) and

AR0 =  00002 (at least the 3 LSBs of AR0 should be 0). This example shows

a sequence of modifications and the resulting value of AR0. It also shows how

the pointer steps through the circular queue with a variety of step sizes (both

incrementally and decrementally).

Figure 6–11. Circular Addressing Example

*AR0++(5)% ; AR0 = 0 (0th value)

*AR0++(2)% ; AR0 = 5 (1st value)

*AR0– –(3)% ; AR0 = 1 (2nd value)

*AR0++(6)% ; AR0 = 4 (3rd value)

*AR0– –% ; AR0 = 4 (4th value)

*AR0 ; AR0 = 3 (5th value)

Element 0

Element 1

Element 2

Element 3

Element 4

Element 5 (Last Element)

Last Element + 1

0

1

2

3

4

5

6

0th

2nd

5th

4th, 3rd

1st

Value Data Address



 Circular Addressing

6-31  Addressing Modes

Circular addressing is especially useful for the implementation of FIR filters.

Figure 6–12 shows one possible data structure for FIR filters. Note that the ini-

tial value of AR0 points to h(N–1), and the initial value of AR1 points to x(0).

Circular addressing is used in the ’C4x code for the FIR filter shown in

Example 6–22.

Figure 6–12. Data Structure for FIR Filters

h(N–1)

h(N–2)

h(2)

h(1)

h(0)

x(N–1)

x(N–2)

x(2)

x(1)

x(0) AR1

Impulse Response Input Samples

.

.

.

.

.

.

ARO

Example 6–22. FIR Filter Code Using Circular Addressing

* Initialization

*

LDI N,BK ; Load block size.

LDI H,AR0 ; Load pointer to impulse response.

LDI X,AR1 ; Load pointer to bottom of input

* ; sample buffer.

*

TOP LDF IN, R3 ; Read input sample.

STF R3,*AR1++% ; Store with other samples.

; and point to top of buffer.

LDF 0,R0 ; Initialize R0.

LDF 0,R2 ; Initialize R2.

*

* Filter

*

RPTS N –1 ; Repeat next instruction.

MPYF3 *AR0++%,*AR1++%,R0

|| ADDF3 R0,R2,R2 ; Multiply and accumulate.

ADDF R0,R2 ; Last product accumulated.

*

STF R2,Y ; Save result.

B TOP ; Repeat.



Bit-Reversed Addressing

 6-32

6.9 Bit-Reversed Addressing

The ’C4x can implement fast Fourier transforms (FFT) with bit-reversed ad-

dressing. If the data to be transformed is in the correct order, the final result

of the FFT is in bit-reversed order. To recover the frequency-domain data in

the correct order, certain memory locations must be swapped. The bit-rev-

ersed addressing mode makes swapping unnecessary. The next time data

must be accessed, it is accessed in a bit-reversed manner rather than sequen-

tially. In the ’C4x, this bit-reversed addressing can be implemented with both

the CPU and DMA.

For correct CPU (or DMA) bit-reverse operation, the base address of bit-re-

versed addressing must be located on a boundary of the size of the FFT table.

The CPU bit-reverse operation can be illustrated by assuming an FFT table

of size N = 2n. When real and imaginary data are stored in separate arrays,

the n LSBs of the base address must be zero, and IR0 must be equal to 2n–1

(half of the FFT size). When real and imaginary data are stored in consecutive

memory locations (Re–Im–Re–Im) , the n + 1 LSBs of the base address must

be zero, and IR0 must be equal to 2n (FFT size).

For CPU bit-reversing, one auxiliary register (AR2 in this case) points to the

physical location of a data value. When you add IR0 to this auxiliary register

by using bit-reversed addressing, addresses are generated in a bit-reversed

fashion (reverse carry propagation). The largest index for bit-reversed addres-

sing is 0008 0000h; this index is treated as an unsigned integer.

To illustrate bit reversed addressing, assume 8-bit auxiliary registers. Let AR2

contain the value 0110 00002 (9610). This is the base address of the data in

memory. Let IR0 contain the value 0000 10002 (810). Example 6–23 shows a

sequence of modifications of AR2 and the resulting values of AR2.

Example 6–23. Bit-Reversed Addressing Example

*AR2++(IR0)B ; AR2= 0110 0000 (0th value)

*AR2++(IR0)B ; AR2= 0110 1000 (1st value)

*AR2++(IR0)B ; AR2= 0110 0100 (2nd value)

*AR2++(IR0)B ; AR2= 0110 1100 (3rd value)

*AR2++(IR0)B ; AR2= 0110 0010 (4th value)

*AR2++(IR0)B ; AR2= 0110 1010 (5th value)

*AR2++(IR0)B ; AR2= 0110 0110 (6th value)

*AR2 ; AR2= 0110 1110 (7th value)



 Bit-Reversed Addressing

6-33  Addressing Modes

Table 6–4 shows the relationship of the index steps and the four LSBs of AR2.

You can find the four LSBs by reversing the bit pattern of the steps.

Table 6–4. Index Steps and Bit-Reversed Addressing

Step Bit Pattern
Bit-Reversed

Pattern

Bit-Reversed

Step

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

Note:

Bit-reverse operation of the DMA coprocessor is covered in Chapter 11 of
this user’s guide and in the TMS320C4x General-Purpose Applications
User’s Guide.



 6-34



 Running Title—Attribute Reference

7-1  Chapter Title—Attribute Reference

Program Flow Control

The ’C4x provides a complete set of constructs that allow software and hard-

ware control of the program flow. Software control includes repeats, branches,

calls, traps, and returns. Hardware control includes interrupts. You can select

the constructs best suited for your particular application.

Topic Page

7.1 Repeat Mode 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 Delayed Branches 7-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Calls, Traps, Branches, Jumps, and Returns 7-12. . . . . . . . . . . . . . . . . . . 

7.4 Interrupts 7-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.5 Traps 7-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.6 DMA Interrupts 7-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.7 Reset 7-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7



Repeat Mode

 7-2

7.1 Repeat Mode

The repeat mode of the ’C4x can implement zero-overhead looping. For many

algorithms, most execution time is spent in an inner kernel of code. Using the

repeat modes allows these time-critical sections of code to be executed in the

shortest possible time.

The ’C4x provides three instructions to support zero-overhead looping: RPTB

(repeat a block of code), RPTBD (repeat a block of code delayed) and RPTS

(repeat a single instruction):

� RPTB and RBTBD cause a block of code to be repeated a specified num-

ber of times.

� RPTS causes a single instruction to be repeated a number of times and

reduces bus traffic by fetching the instruction only once.

RPTB and RPTS are four-cycle instructions; these four cycles of overhead are

incurred only on the first pass through the loop. All subsequent passes through

the loop are accomplished with zero cycles of loop overhead. RPTBD is a one-

cycle instruction.

Three registers (RS, RE, and RC) control the updating of the program counter

when it is updated in a repeat mode, as described in Table 7–1 below.

Table 7–1.Repeat-Mode Registers

Register Function

RS Repeat start address register. Holds the address of the first

instruction of the code block to be repeated.

RE Repeat end address register. Holds the address of the last instruc-

tion of the code block to be repeated. RE should be greater than

or equal to RS (see subsection 7.1.2).

RC Repeat-count register. Contains one less than the number of

times remaining for the code block to be repeated.

Correct operation of the repeat modes requires that all of the above registers

and status register fields be initialized correctly. RPTB, RPTBD, and RPTS

perform this initialization in slightly different ways (see subsection 7.1.3 and

subsection 7.1.4 for more information).



 Repeat Mode

7-3  Program Flow Control

7.1.1 Control Bits

Two bits are important to the operation of RPTB, RPTBD and RPTS:

� The RM (repeat-mode flag) bit in the status register specifies whether or

not the processor fetches instructions during the repeat mode.

� If RM = 0, fetches are not made in repeat mode.

� If RM = 1, fetches are made in repeat mode.

� The S bit is internal to the processor and cannot be programmed, but this

bit is necessary to fully describe the operation of RPTB, RPTBD, and

RPTS.

� If RM = 1 and S = 0, RPTB or RPTBD is executing. Program fetches

occur from memory.

� If RM = 1 and S = 1, RPTS is executing. After the first fetch (from

memory), program fetches occur from the instruction register (IR).

7.1.2 Repeat-Mode Operation

Information in the repeat-mode registers and associated control bits is used

to control the modification of the PC when instruction fetches are being made

in repeat mode. The repeat modes compare the contents of the RE register

(repeat end address register) with the program counter (PC) after the execu-

tion of each instruction. If they match and the repeat counter is nonnegative,

the repeat counter is decremented, the PC is loaded with the repeat start ad-

dress, and processing continues. The fetches and appropriate status bits are

modified as necessary. Note that the repeat counter (RC) is never modified

when the repeat-mode flag (RM) is 0.

The repeat counter should be loaded with a value one less than the number

of times to execute the block; for example, an RC value of 4 would execute the

block five times. The detailed algorithm for the update of the PC is shown in

Example 7–1.

Notes:

1) The maximum number of repeats occurs when RC = 8000 0000h. This

results in 8000 0001h repetitions. The minimum number of repeats oc-

curs when RC = 0. This results in one repetition.

2) RE should be greater than or equal to RS (RE ≥ RS). Otherwise, the code

will not repeat even though the RM bit remains set to 1.

3) By writing a 0 into the repeat counter or writing 0 into the RM bit of the

status register, you can stop the the loop before it completes.



Repeat Mode

 7-4

Example 7–1. Repeat-Mode Control Algorithm

if RM == 1 ;If in repeat mode (RPTB or RPTS)

if S == 1 ;If RPTS

if first time through ;If this is the first fetch

fetch instruction from memory ;Fetch instruction from memory

else ;If not the first fetch

fetch instruction from IR ;Fetch instruction from IR

RC – 1 → RC ;Decrement RC

if RC < 0 ;If RC is negative

;Repeat single mode completed

0 → ST(RM) ;Turn off repeat mode bit

0 → S ;Clear S

PC + 1 → PC ;Increment PC

else if S == 0 ;If RPTB

fetch instruction from memory ;Fetch instruction from memory

if PC == RE ;If this is the end of the block

RC – 1 → RC ;Decrement RC

if RC ≥ 0 ;If RC is not negative

RS → PC ;Set PC to start of block

else if RC < 0 ;If RC is negative

0 → ST(RM) ;Turn off repeat mode bits

0 → S ;Clear S

PC + 1 → PC ;Increment PC

7.1.3 RPTB and RPTBD Instructions

The RPTB and RPTBD instructions repeat a block of code a specified number

of times. RPTBD is a delayed form of the RPTB instruction that allows placing

three instructions after it. These three instructions are not part of the block that

is repeated, but they execute before the block repeat is started. This way, the

pipeline remains full, and the RPTBD instruction can execute in one cycle.

The number of times to repeat the block is the RC (repeat count) register value

plus one. Because the execution of RPTB and RPTBD does not load the RC,

you must load this register yourself. The RC register must be loaded before

the RPTB/RPTBD instruction is executed. The RC register should not be

loaded in the 3 instructions after RPTBD. Example 7–2 shows a typical setup

of the block repeat operation.

Example 7–2. RPTB Operation

LD 15,RC ; Load repeat counter with 15

RPTB ENDLOP; Execute the block of code

STLOOP ;from STLOOP to ENDLOP 16 times

.

.

.

ENDLOP



 Repeat Mode

7-5  Program Flow Control

All block repeats initiated by RPTB or RPTBD can be interrupted. However,

interrupts are disabled during the execution of the three instructions following

an RPTBD. None of the three instructions after the RPTBD instruction should

modify the PC register or program flow. This restriction also applies to delayed

branches, as explained in Section 7.2.

When RPTB src or RPTBD src execute, they perform a sequence of four op-

erations:

1) Load the start address of the block into RS (repeat start address register).

� For RPTB, this is the next address following the instruction:

PC of RPTB + 1 → RS

� For RPTBD, this is the fourth address following the instruction:

PC of RPTBD + 4 → RS

2) Load the end address of the block into RE (repeat end address register).

� For RPTB, in PC-relative mode, the 24-bit src operand plus RS is the

end address:

src + PC of RPTB + 1 → RE

� For RPTBD, in PC-relative mode, the 24-bit source operand plus RS

is the end address:

src + PC of RPTBD + 3 → RE

3) In register mode, the contents of the src register is the end address:

contents of src register → RE

4) Set the status register to indicate the repeat mode of operation.

1 → RM status register bit (repeat mode flag)

5) Indicate that this is the repeat block mode of operation.

0 → S bit (bit is internal to the processor and not programmable)

7.1.4 RPTS Instruction

A RPTS src instruction repeats the instruction following the RPTS (src +1)

times. Repeats of a single instruction initiated by RPTS are not interruptible

since RPTS fetches the instruction word only once and then keeps it in the

instruction register for reuse. An interrupt in this situation would cause the

instruction word to be lost. Refetching the instruction word from the instruction

register reduces memory accesses and, in effect, acts as a one-word program

cache. If you need a single instruction that is repeatable and interruptible, you

can use the RPTB/RPTBD instruction.



Repeat Mode

 7-6

When RPTS src is executed, a sequence of five operations occurs:

1) PC + 1 → RS

2) PC + 1 → RE

3) 1 → RM (status register bit)

4) 1 → S

5) src → RC (repeat count register)

The RPTS instruction loads all registers and mode bits necessary for the op-

eration of the single instruction repeat mode. Step 1 loads the start address

of the block into RS. Step 2 loads the end address into the RE (end address

of the block). Since this is a repeat of a single instruction, the start address and

the end address are the same. Step 3 sets the status register to indicate the

repeat mode of operation. Step 4 indicates that this is the repeat single-instruc-

tion mode of operation. Step 5 loads src into RC.

7.1.5 Repeat Mode Restriction Rules

Because the block repeat modes modify the program counter, other instruc-

tions cannot modify the program counter at the same time. Two rules apply:

Rule 1: The last instruction in the block (or the only instruction in a block of size

one) cannot be a Bcond, DBcond, CALL, CALLcond, TRAPcond, RETIcond,

RETScond, IDLE, RPTB, or RPTS. Example 7–3 shows an incorrectly placed

standard branch.

Rule 2: None of the last four instructions from the bottom of the block (nor the

only instruction in a block of size one) can be a BcondD, BRD, or DBcondD,

RPTBD, LAJ, LAJcond, LATcond, BcondAF, BcondAT, or RETIcondD.

Example 7–4 shows an incorrectly placed delayed branch.

If either of these rules is violated, the PC will be undefined.

Example 7–3. Incorrectly Placed Standard Branch

LDI 15,RC ; Load repeat counter with 15

RPTB ENDLOP ; Execute block of code

STLOOP ; from STLOOP to ENDLOP 16 times

.

.

.

ENDLOP BR OOPS ; This branch violates rule 1



 Repeat Mode

7-7  Program Flow Control

Example 7–4. Incorrectly Placed Delayed Branch

LDI 15,RC ; Load repeat counter with 15

RPTB ENDLOP ; Execute block of code

STLOOP ; from STLOOP to ENDLOP 16 times

.

.

.

BRD OOPS ; This branch violates rule 2

ADDF

MPYF

ENDLOP SUBF

7.1.6 RC Register Value After Repeat Mode Completes

For the RPTB/RPTBD instruction, the RC register normally decrements to

0000 0000h, unless the block size is 1; in that case, it decrements to

FFFF FFFFh. However, if the RPTB/RPTBD instruction with a block size of 1

has a pipeline conflict in the instruction being executed, the RC register decre-

ments to 0000 0000h. Example 7–5 illustrates a pipeline conflict. Refer to

Chapter 8 for pipeline information.

RPTS normally decrements the RC register to FFFF FFFFh. However, if the

RPTS has a pipeline conflict on the last cycle, the RC register decrements to

0000 0000h.

In any case, the number of repetitions is always RC + 1, regardless of the final

value of RC.

Example 7–5. Pipeline Conflict in a RPTB Instruction

EDC .word 40000000h ; Program is located in 4000000Fh

LDP EDC

LDI @EDC,AR0

LDI 15,RC ; Load repeat counter with 15

RPTB ENDLOP ; Execute block of code

ENDLOPLDI *AR0,R0 ; The *AR0 read conflicts with

; the instruction fetching.

; Then RC decrements to 0. If

; cache is enabled, RC decrements

; to FFFF FFFFh



Repeat Mode

 7-8

7.1.7 Nesting Block Repeats

Block repeats (RPTB and RPTBD) are nestable. Because all of the control of

a block repeat is defined by the RS, RE, RC, and ST registers, these registers

must be saved and stored to nest block repeats. For example, if you write an

interrupt service routine that requires the use of RPTB or RPTBD, it is possible

that the interrupt associated with the routine may occur during another block

repeat. The interrupt service routine can check the RM bit to determine wheth-

er the block repeat mode is active. If RM is set, the interrupt routine should

save ST, RS, RE and RC, in this order. The interrupt routine can then perform

a block repeat. Before returning from the interrupted routine, the interrupt rou-

tine should restore RC, RE, RS, and ST, in this order. If the RM bit is not set,

you do not need to save and restore these registers.

The RPTS instruction can also be used in a block repeat loop if the proper reg-

isters are saved.

Because the program counter is modified at the end of the loop according to

the contents of registers RS, RE, and RC, no operation should attempt to

modify the repeat counter or the program counter to a different value at the end

of the loop.

It takes four cycles of overhead to save and restore these registers. Hence,

sometimes, it may be more economical to implement a nested loop by the

more traditional method of using a register as a counter and then using a

delayed branch, rather than by using the nested repeat block approach. Often,

implementing the outer loop as a counter and the inner loop as a RPTB/

RPTBD instruction produces the fastest execution.

Note:

The order in which the registers are saved/restored is important to guarantee
correct operation. The ST register should be restored last, after the RC, RE,
and RS registers. ST should be restored after restoring RC, because the RM
bit cannot be set to one if the RC register is 0 or –1. For this reason, if you
execute a POP ST instruction (with ST(RM) = 1) while RC = 0, the POP
instruction recovers all of the ST register bits except the RM bit, which stays
at 0 (repeat mode disabled). Also, RS and RE should be correctly set before
you activate the repeat mode.

Section 1.7, Repeat Modes, in the TMS320C4x General-Purpose Applications

User’s Guide contains examples of how to use repeat-mode instructions.



 Delayed Branches

7-9  Program Flow Control

7.2 Delayed Branches

The ’C4x offers two main types of branches: standard and delayed.

Standard branches empty the pipeline before performing the branch; this

guarantees correct management of the program counter and results in a ’C4x

branch taking four cycles. Included in this class are standard branches

(Bcond), repeats, calls, returns, and traps.

Delayed branches do not empty the pipeline but guarantee that the next three

instructions will execute before the program counter is modified by the branch.

The result is a branch that requires only a single cycle, thus making the speed

of the delayed branch very close to speed of the optimal block repeat modes

of the ’C4x. However, unlike block repeat modes, delayed branches can be

used in situations other than looping. Every delayed branch has a standard

branch counterpart that is used when a delayed branch cannot be used.

Conditional delayed branches use the conditions, reflected in the status regis-

ter, that existed at the end of the instruction preceding the branch. They do not

depend upon the instructions following the delayed branch. The execution

time of a conditional delayed branch instruction is the same regardless of

whether or not the branch is taken.

When a delayed branch is fetched, it remains pending until the three instruc-

tions that follow are executed. None of the three instructions immediately after

a delayed branch can be any of the following:

DBcond

DBcondD

CALL

CALLcond

IDLE

LAJ

LAJcond

LATcond

RETIcond

RETIcondD

RETScond

RPTB

RPTBD

RPTS

TRAPcond

Bcond

BcondD

BcondAF

BcondAT

BR

BRD

This restriction also applies to the RPTBD instruction, covered in subsection

7.1.3.

Delayed branches disable interrupts until the three instructions following the

delayed branch are completed. This is independent of whether or not the

branch is taken.

Incorrectly used delayed branches can leave the PC undefined.

Example 7–6 illustrates an incorrectly-placed delayed branch.



Delayed Branches

 7-10

Example 7–6. Incorrectly Placed Delayed Branches

B1:BD L1

NOP

NOP

B2:B L2 ; This branch is incorrectly placed

NOP

NOP

NOP

 .

 .

 .

Sometimes, a branch is necessary for the program flow when fewer than three

instructions can be placed after a delayed branch. For faster execution, it is

still advantageous to use a delayed branch. This is shown in Example 7–7,

with a NOP taking the place of the third unused instruction. The tradeoff is

more instruction words for less execution time.

Example 7–7.Delayed Branch Execution

* TITLE DELAYED BRANCH EXECUTION

.

.

.

.

LDF*+AR1(5),R2 ; Load contents of memory to R2

BGED SKIP ; If loaded number >=0, branch

  (delayed)

LDFN R2,R1 ; If loaded number <0, load it to R1

SUBF 3.0,R1 ; Subtract 3 from R1

NOP ; Dummy operation to complete

  delayed branch

MPYF 1.5,R1 ; Continue here if loaded number < 0

.

.

.

SKIP LDF R1,R3 ;Continue here if loaded number >=0

There are two types of delayed branches: branches without annulling and

branches with annulling.

7.2.1 Delayed Branches Without Annulling

Delayed branches without annulling do not empty the pipeline but guarantee

that the next three instructions execute before the program counter is modified

by the branch. The delayed branches without annulling are BcondD, BRD, and

DBcondD.



 Delayed Branches

7-11  Program Flow Control

7.2.2 Delayed Branches With Annulling

Delayed branches with annulling may conditionally annul the next three

instructions. The delayed branches with annulling are BcondAT and BcondAF:

� BcondAF

If the condition is true, the BcondAF instruction executes the three instruc-

tions following the branch and then branches. If the condition is false, the

processor does not take the branch and it annuls the effects of the execute

phase of the first following instruction and the effects of the read and

execute phases of the second and third following instructions.

� BcondAT

If the condition is true, the BcondAT instruction causes a branch and an-

nuls the effects of the execute phase of the first following instruction and

the effects of the read and execute phases of the second and third follow-

ing instructions. If the condition is false, the instruction causes the execu-

tion of the three instructions following the branch and does not cause a

branch.



Calls, Traps, Branches, Jumps, and Returns

 7-12

7.3 Calls, Traps, Branches, Jumps, and Returns

Calls and traps can execute a subroutine or function while providing a return

to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC

on the stack before changing the PC’s contents. The RETScond or RETIcond

(standard or delayed) instructions use the value on the stack to return execu-

tion from traps and calls.

CALL is a four-cycle instruction, while CALLcond and TRAPcond are five-

cycle instructions. ’C4x delayed instructions LAJ, LAJcond, and LATcond pro-

vide equivalent functionality, respectively, but in a single cycle.

� CALL places the next PC value on the stack and places the src (source)

operand into the PC. The src is a 24-bit PC-relative or register value.

Figure 7–1 shows CALL response timing.

� CALLcond is similar to the CALL instruction (above) except for two differ-

ences:

� It executes only if a specific condition is true (the 20 conditions — in-

cluding unconditional — are listed in Section 14.2 on page 14-12).

� The src is either a 24-bit PC-relative displacement or in register ad-

dressing mode.

� TRAPcond executes only if a specific condition is true (same conditions

as for the CALLcond instruction). When it executes, a four-step sequence

occurs:

1) The values of the GIE and CF status register bits are saved into the

PGIE and PCF status register bits.

2) Interrupts are disabled (GIE = 0) and the cache is frozen (CF bit = 0).

3) The next PC value is stored on the stack.

4) The specified vector is retrieved from the trap vector table and is

loaded into the PC. The vector address corresponds to a trap number

in the instruction.

Using RETIcond or RETIcondD to return re-enables interrupts if the status

register’s GIE bit was set previously and recovers the previous CF bit.

� RETScond returns execution from any of the above three instructions by

popping the top of the stack to the PC. For RETScond to execute, the spe-

cified condition must be true. The conditions are the same for RETScond

as for the CALLcond instruction.



 Calls, Traps, Branches, Jumps, and Returns

7-13  Program Flow Control

� RETIcond returns from traps or calls in the same way that RETScond

does with the addition that RETIcond also copies the PGIE and PCF bit

values into the GIE and CF bits of the status register. The conditions for

RETIcond are the same as for the CALLcond instruction.

� RETIcondD returns from traps or calls in the same way that RETIcond

does with the addition that RETIcondD first executes the three instructions

immediately following RETIcondD. The conditions for RETIcondD are the

same as for the CALLcond instruction.

� Link and jump (LAJ), link and jump conditional (LAJcond), and link and

trap conditional (LATcond) each provide a return address in extended-

precision register R11.

� After it executes the three instructions that follow it, LAJ jumps to an

address derived by a 24-bit PC-relative addressing mode (see sub-

section 6.6 for more information).

� The LAJcond destination address is either PC-relative (a displace-

ment) or the contents of a specified register. If the condition is true,

LAJcond first executes the three instructions following the LAJcond

before making the jump. If the condition is not true, execution contin-

ues immediately after the LAJcond instruction.

� After it executes the three instructions that follow it, LATcond calls one

of the 512 available trap vectors pointed to by the trap vector table

pointer (see Section 3.2, on page 3-17, for more information about the

TVTP).

Functionally, calls and traps accomplish the same task—a subfunction is

called and executed, and control is then returned to the calling function. Traps

offer two advantages over calls:

� Interrupts are automatically disabled when a trap is executed. This allows

critical code to execute without risk of being interrupted. Thus, traps are

usually terminated with a RETIcond or RETIcond D instruction to re-en-

able interrupts if the status register GIE bit was set previously.

� You can use traps to indirectly call functions. This is particularly beneficial

when a kernel of code contains the basic subfunctions to be used by ap-

plications. In this case, you can modify the functions in the kernel and relo-

cate them without recompiling each application.



Calls, Traps, Branches, Jumps, and Returns

 7-14

Figure 7–1. CALL Response Timing

Read CALL

H3

H1

ADDR

Data

Fetch CALL Fetch first
subroutine
 instruction

Vector address
First instruction

address

Execute CALL
(store PC
on stack)

Decode CALL

PC Inst 1



 Interrupts

7-15  Program Flow Control

7.4 Interrupts

The ’C4x supports multiple internal and external interrupts, which can be used

for a variety of applications. Internal interrupts are generated by the DMA con-

troller, the timers, and the communication ports. The five external interrupt pins

include four external maskable interrupt pins (IIOF0–IIOF3) and one non-

maskable interrupt (NMI) pin. Interrupts can be sent to both the CPU and the

DMA controller.

Interrupts on the ’C4x are automatically prioritized. This allows interrupts that

occur simultaneously to be serviced in a predefined order.

This section discusses the operation of these interrupts. Additional information

regarding internal interrupts can be found in Section 12.6, Coordinating Com-

munication Ports with the CPU and DMA Processor, on page 12-17, Section

11.10, DMA and Interrupts, on page 11-42, and Chapter 13, Timers. See Sec-

tion 7.6, DMA Interrupts, on page 7-26, for more information about interrupts

to the DMA controller.

7.4.1 Interrupt Vector Table and Prioritization

The interrupt vector table (IVT) shown in Figure 7–2 contains the interrupt vec-

tors. An interrupt vector is an address of an interrupt service routine that should

start executing when an interrupt is received. The IVT table must be placed on

a 512-word memory boundary. The table location is determined by the value

that is stored in the IVTP register (see Section 3.2, CPU Expansion Register

File, on page 3-17).

Prioritization means that an interrupt in a higher position in the interrupt vector

table (Figure 7–2) is serviced before one in a lower position when both are re-

ceived in the same clock cycle or when two previously received interrupts are

waiting to be serviced . It does not mean, for example, that IIOF3 must wait

until service routines for IIOF2, IIOF1, and IIOF0 are completed (when

ST(GIE) = 1).

The priority of interrupts is handled by the CPU according to the interrupt vec-

tor table. Priority is set according to position in the table — those with displace-

ments closest to the IVTP base address are higher in priority (i.e., NMI is higher

than TINT0, which is higher than IIOF0, etc.). Note that interrupt TINT0 is lo-

cated at IVTP + 2, while the TINT1 vector is located at IVTP + 2Bh after the

communication port and DMA coprocessor interrupts.



Interrupts

 7-16

Figure 7–2. Interrupt-Vector Table (IVT)

IVTP+ IVTP+

000h Reserved Note 1 01Dh ICFULL4

001h NMI Note 2 01Eh ICRDY4

002h TINT0 Note 3 01Fh OCRDY4

003h IIOF0 020h OCEMPTY4

004h IIOF1
Note 4

021h ICFULL5 Note 5

005h IIOF2

Note 4

022h ICRDY5

006h IIOF3 023h OCRDY5

007h

U d

024h OCEMPTY5

. Unused 025h DMA INT0

00Ch 026h DMA INT1

00Dh ICFULL0 027h DMA INT2
Note 6

00Eh ICRDY0 028h DMA INT3
Note 6

00Fh OCRDY0 029h DMA INT4

010h OCEMPTY0 02Ah DMA INT5

011h ICFULL1 02Bh TINT1 Note 3

012h ICRDY1 02Ch Unused

013h OCRDY1 .

U d

014h OCEMPTY1
Note 5

.

U d

015h ICFULL2
Note 5

.

U d

016h ICRDY2 .

U d017h OCRDY2 . Unused

018h OCEMPTY2 .

019h ICFULL3 .

01Ah ICRDY3 .

01Bh OCRDY3 03Eh

01Ch OCEMPTY3 03Fh Reserved

Notes: 1) Reserved for the reset vector. See Table 7–4.

2) NMI (the nonmaskable interrupt) is discussed in subsection 7.4.5.

3) Timer interrupts TINT0 and TINT1 are enabled by the IIE register (subsection 3.1.9, page 3-11) and monitored at

the IIF register (subsection 3.1.10, page 3-13).

4) External pins IIOF0—IIOF3 are programmed in the IIF register (subsection 3.1.10, page 3-13).

5) The communication port I/O buffers full/empty/ready interrupts are enabled by the IIE register and are also de-

scribed in Figure 12–4, on page 12-8, (OUTPUT LEVEL and INPUT LEVEL bits).

6) Interrupts from the DMA are enabled at the IIE register and DMA channel control register at bits TCC and AUX TCC

(see Figure 11–2, on page 11-8, for bit descriptions).

7) In the ’C44, the interrupts for communication ports 0 and 3 are active. If you enable them with the IE bit, the ISR

will be executed.



 Interrupts

7-17  Program Flow Control

7.4.2 CPU Interrupt Control Bits

Three CPU registers contain bits used to control CPU interrupt operation:

� The CPU status register (ST). The CPU global interrupt enable bit (GIE),

located in the ST, controls all maskable CPU interrupts. When this bit is

set to 1, CPU interrupts are globally enabled. When this bit is cleared to

0, all CPU interrupts are disabled (except NMI, the nonmaskable inter-

rupt). Refer to subsection 3.1.7, Status Register (ST), on page 3-5.

� Internal interrupt enable register (IIE). The IIE is used to enable CPU

internally-generated interrupts (from timers, communication ports, and

DMA channels). See subsection 3.1.9, CPU Internal Interrupt Enable

Register (IIE), on page 3-11, for more information.

� IIOF flag register (IIF). The IIF contains interrupt flag bits and bits to deter-

mine the function of the external-interrupt pins (IIOF0 – IIOF3).

The IIF Register

When an external interrupt or most of the internal interrupts are received, a

corresponding bit in the IIF register is set to 1. The only internally generated

interrupts that do not have a flag bit in the IIF register are the communication

port interrupts.

When the CPU services an interrupt that has an interrupt flag bit in the IIF regis-

ter, or when the DMA controller latches this type of interrupt into a DMA internal

signal, this flag bit is cleared by the internal interrupt acknowledge signal. How-

ever, for level-triggered interrupts, if IIOFn is still low when the interrupt ac-

knowledge signal occurs, the interrupt flag bit is cleared for only one cycle and

then set to 1 again. For this reason, it is theoretically possible that, depending

on when the IIF register is read, the interrupt flag bit may be zero, even though

IIOFn is low. After reset, zero is written to the interrupt flag register, thereby

clearing all pending interrupts.

The IIF register bits can be read or written under software control. This pro-

vides access to the IIOFx pins, which can be treated as general-purpose I/O

or as interrupt pins. For example, if at the IIF register, FUNCx = 0 (I/O pin) and

TYPEx = 1 (output pin), then by writing into the FLAGx bit, you can also write

to the external pin IIOFx. If FUNCx = 1 (interrupt pin), writing a 1 to the IIF regis-

ter FLAGx bit has the same effect as an incoming interrupt received on the cor-

responding pin. In this way, all interrupts can be triggered and/or cleared

through software. Since the interrupt bits also can be read, the interrupt pins

can be polled in software when an interrupt-driven interface is not required.



Interrupts

 7-18

Internal interrupts operate in a similar manner. In the IIF register, the bit corre-

sponding to an internal interrupt (e.g., TINT0, TINT1) can be read and written

to through software. Writing a 1 sets the interrupt latch, and writing a 0 clears

it. All internal interrupts are one H1/H3 cycle in length. If any previous bit values

of the IIF register need to be preserved, a modification to IIF should be per-

formed with logic operations (AND, OR, etc), directly to the IIF register.

Figure 7–3. IIF Register Modification

correct incorrect

LDI @MASK,R0 LDI IIF, R1

AND R0, IIF AND @MASK, R1

LDI R1, IIF

7.4.3 Interrupt Processing

For an interrupt to occur, at least two conditions must be met:

� All interrupts must be enabled globally by setting the GIE bit to 0 in the CPU

status register (ST).

� The interrupt must be enabled by setting the corresponding bit in the IIE

register.

The CPU interrupt processing cycle (shown in Figure 7–4) involves several

events. The corresponding interrupt flag in the IIF register is cleared, the val-

ues of the GIE and CF status register bits are preserved, the cache is frozen

(CF = 1), interrupts are globally disabled (GIE = 0), and the CPU completes

all fetched instructions. Then, the interrupt vector is fetched and loaded into

the PC, and the CPU continues execution of the first instruction in the interrupt

service routine (ISR). When you use RETIcond or RETIcondD to return from

the interrupt service routine, the previous GIE and CF bit values are recovered.

If you wish to make the interrupt service routine interruptible, you can set the

GIE bit to 1 after entering the ISR. In addition, you can enable the cache. Be

aware that because the PGIE and PCF status register bits are one deep, they

preserve only the previous GIE and CF bits.

Note:

The GIE, and CF are preserved and loaded with new values after the
completion of the last instruction that was fetched before the interrupt was
flushed. This guarantees later restoration of correct flag values.



 Interrupts

7-19  Program Flow Control

Figure 7–4. CPU Interrupt Processing

Is an enabled

interrupt set

? 

If enabled in the IIE or IIF

registers, the interrupt Is

a CPU Interrupt

CPU starts executing ISR routine

Complete all fetched instructions

PC ← Interrupt vector

No

Yes

*(++SP)
PGIE
PCF
GIE
CF

PC
GIE
CF
0
1

Disable interrupts temporarily

Return executed
(RETI/RETIcond)

PGIE
PCF

GIE
CF

Clear interrupt flag (CPU)



Interrupts

 7-20

CPU interrupts (including NMI) are only acknowledged (responded to by the

CPU) on instruction fetch boundaries. If instruction fetches are halted because

of pipeline conflicts or when an RPTS loop is executing, CPU interrupts are not

acknowledged until the next instruction fetch.

The interrupt acknowledge (IACK) instruction can be used to signal externally

that an interrupt has been serviced. If external memory is specified in the oper-

and, IACK drives the IACK pin and performs a dummy read. The read is per-

formed from the address specified by the IACK instruction operand. IACK is

typically placed in the early portion of an interrupt service routine. However,

depending on your application, it may be better suited at the end of the interrupt

service routine or at another location. You are not required to use the IACK

instruction in interrupt service routines.

Note the following situations:

� Interrupts are disabled during a RPTS and during a delayed branch (until

the 3 instructions following a delayed branch are completed). Interrupts

are held until after the branch.

� When an interrupt occurs, instructions currently in the decode and read

phases continue regular execution. This is not the case for an instruction

in the fetch phase:

� If the interrupt occurs in the first cycle of the fetch of an instruction, the

fetched instruction is discarded (not executed), and the address of

that instruction is pushed to the top of the system stack.

� If the interrupt occurs after the first cycle of the fetch (in the case of a

multicycle fetch due to wait states), that instruction is executed, and

the address of the next instruction to be fetched is pushed to the top of

the system stack.

� If no program fetch is occurring, then no new fetch is performed.

7.4.4 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the

interrupt to the execution of the first instruction of the interrupt service routine

(ISR), is at least 8 cycles. This is explained in Table 7–2 where the interrupt

is treated as an instruction, assuming that all the instructions are single-cycle

instructions.



 Interrupts

7-21  Program Flow Control

Table 7–2. Interrupt Latency

Cycle Description Fetch Decode Read Execute

1 Recognize interrupt in single-cycle fetched (prog

a+1) instruction.

prog a+1 prog a prog a–1 prog a–2

2 Temporarily disable interrupt until GIE is cleared.

Clear the corresponding IIF flag (if applicable).

— interrupt prog a prog a–1

3 Read the interrupt vector table. — — interrupt prog a

4 Store return address to stack; save the GIE bit into

PGIE and CF into PCF. Then, clear the GIE bit and

set the CF bit to 1.

— — — interrupt

5 Pipeline begins to fill with ISR instruction. isr1 — — —

6 isr2 isr1 — —

7 isr3 isr2 isr1 —

8 Execute first instruction of interrupt service routine. isr4 isr3 isr2 isr1

7.4.5 External Interrupts

The five external interrupt pins include four external maskable interrupt pins

(IIOF0–IIOF3) and one nonmaskable interrupt (NMI) pin.

The four external maskable interrupts (IIOF0–IIOF3) are enabled at the IIF

register (subsection 3.1.10 page 3-13) and are synchronized internally. They

are sampled on the falling edge of H1 and passed through a series of H1/H3

delays internally. Once synchronized, the interrupt input will set the corre-

sponding interrupt flag register (IIF) bit if the interrupt is active. The list below

shows the external interrupts and their corresponding interrupt vectors:

IIOF Pin and Interrupt
Interrupt Vector Location

IIOF0 IVTP + 003h

IIOF1 IVTP + 004h

IIOF2 IVTP + 005h

IIOF3 IVTP + 006h



Interrupts

 7-22

These interrupts are prioritized by the selection of one over the other if both

come on the same clock cycle (IIOF0 the highest, IIOF1 next, etc.). When an

interrupt is taken, the status register ST(GIE) bit is reset to 0, disabling any oth-

er incoming interrupt (except NMI). This prevents any other interrupt

(IIOF0–IIOF3) from assuming program control until the ST(GIE) bit is set back

to 1. In addition, the ST(GIE) bit is saved into ST(PGIE) and the ST(CF) bit into

ST(PCF). On a return from an interrupt routine, the RETI and RETIcond

instructions place the value that is in the ST(PGIE) bit into the ST(GIE) bit and

ST(PCF) bit into the ST(CF) bit, returning them to their previous values.

External interrupts can be either edge- or level-triggered, depending on how

the TYPE fields are set in the IIF register (see subsection 3.1.10, IIOF Flag

Register (IIF), on page 3-13, for more information about the IIF).

For an edge-triggered interrupt to be detected by the ’C4x, the external pin

must transition from 1 to 0. And then, it needs to be held low for at least one

H1/H3 cycle (but it could be held low longer).

For a level-triggered interrupt to be detected by the ’C4x, the external pin

needs to be held low for between one and two cycles (1 � low-pulse width �

2). If the interrupt is held low for more than two cycles, more than one interrupt

might be recognized. There is no need to provide an edge in this case.

Note:

Level-triggered interrupts are unlatched. The ’C4x will only detect them if the
low-level is present during a fetch-to-decode pipeline transition. This means
that during a pipeline halt, the level-triggered interrupts might be missed
even if they are held low between one and two cycles. This is not the case
for an edge-triggered interrupt because they are latched (they will get recog-
nized regardless if the pipeline is halted).

NMI

The nonmaskable interrupt, NMI (an incoming low on pin AJ5, signal NMI), is

not masked by the ST(GIE) bit. Even though the NMI is nonmaskable, its pro-

cessing is temporarily postponed during delayed branches and multicycle

CPU operations. NMI is a negative-going, edge-triggered, latched interrupt.

Take special care when using an NMI as a second level interrupt. When the

’C4x services an interrupt, interrupts are disabled except for the NMI. This

creates a problem because the ST register may end up with the wrong value

if the NMI is executed before the first level ISR that preserves the ST register’s

value.

The TMS320C44 and the TMS320C40 (revision 5.0 and greater) has a soft-

ware-configurable feature that allows the forcing ready of the internal peripher-



 Interrupts

7-23  Program Flow Control

al bus when the NMI signal is asserted. This NMI bus-grant feature is enabled

when bits 18 and 19 in the status register (ST) are set to 102. When enabled,

a peripheral bus-grant signal is generated on the falling edge of NMI. If NMI

is asserted and this feature is not enabled, the CPU stalls on an access to the

peripheral bus if the bus is not ready. A stall condition occurs when writing to

a full output FIFO or reading an empty input FIFO. This feature is useful in cor-

recting communication-port errors when used in conjunction with the commu-

nication-port software-reset feature.



Traps

 7-24

7.5 Traps

A trap is the equivalent of a software-triggered interrupt. In the ’C4x, traps and

interrupts are treated identically, except in the way in which they are initialized.

7.5.1 Initialization of Traps and Interrupts

Traps and interrupts are initialized differently in the ’C4x.

Traps are always triggered by a software mechanism, by the TRAPcond

(conditional trap) and LATcond (link and trap conditionally delayed) instruc-

tions.

Interrupts are always triggered by hardware events (for example, by external

interrupts, DMA interrupts, or communication channel interrupts).

These GIE bit in the ST register and the mask bits in the IIE do not apply to

traps.

7.5.2 Operation of Traps

Figure 7–5 shows the general flow of traps (and also of interrupts).

Figure 7–5. Flow of Traps

Trap Executed 
(TRAPcond or LATcond)

(1)

(2)

(3)

PGIE 
PCF
GIE 
CF

GIE
CF

0
1

Trap or Interrupt Service Routine

PGIE
PCF

GIE
CF

Return Executed
(RETIcond or RETIcondD)

The RETIcond and RETIcondD instructions manipulate the status flags as

shown in block (3) in Figure 7–5. RETIcond/RETIcondD provides a return/

delayed return from a trap or interrupt.



 Traps

7-25  Program Flow Control

In general, you should not directly modify the PGIE or PCF status register bits

except when putting the status register on a stack for recursive interrupts or

traps.

The ’C4x supports 512 different traps. When a TRAPcond n or LATcond n

instruction is executed, the ’C4x jumps to the address stored in the memory

location pointed to by TVTP + n , where TVTP is the Trap Vector Table Pointer

register. The 32–bit TVTP register is essentially the base address for the trap–

vector table (TVT) in memory. This table, shown in Figure 7–6, contains the

addresses of the trap service routines that are executed by the CPU.

Figure 7–6. Trap Vector Table (TVT)

TVTP + 000h

TVTP + 001h

TVTP + 1FEh

TVTP + 1FFh

TRAP0

TRAP1

to

TRAP510

TRAP511

As with the interrupt vector table (IVT), the trap vector table (TVT) must begin

on a 512-word memory boundary. The TVT pointer register (TVTP) points to

the beginning of the TVT. See Section 3.2, CPU Expansion Register File, on

page 3-17, for more information about the TVTP.

The TRAP or LATcond instructions can be used to generate a trap and manipu-

late the status flags as shown in block (1) in Figure 7–5. LATcond (link and trap

conditionally) provides a single-cycle trap that is very useful for error detection

and correction.

Note:

Because LATcond is a delayed instruction, the three instructions following
LATcond should not modify the GIE or CF status register bits (this could re-
sult in storing incorrect values of these two bits).

7.5.3 Overlapping the Trap and Interrupt Vector Tables

The interrupt and trap vector tables can share the same 512-byte space in

memory. In this configuration, you can place trap vectors where there are no

interrupt vectors. For example, since interrupt vector 02Ch is unused, you

could place a trap vector at IVTP+02Ch (which is also TVTP+02Ch if the tables

overlap) and then call that trap by specifying 02Ch in the TRAP instruction.



DMA Interrupts

 7-26

7.6 DMA Interrupts

Interrupts can trigger DMA read and write operations. This is called DMA syn-

chronization. The DMA interrupt processing cycle is similar to that of the CPU.

After the pertinent interrupt flag is cleared, the DMA coprocessor proceeds ac-

cording to the status of the SYNC bits in the DMA coprocessor global control

register.

If the interrupt in the DMA Interrupt Enable (DIE) register is enabled, the inter-

rupt controller automatically latches the interrupt and saves it for future DMA

use. In the case of the flag interrupts (timer, external interrupt), the IIF flags are

cleared when the interrupt controller latches the interrupt, not when the DMA

responds to it. Even if the DMA has not been started, the interrupt latch occurs,

except when the start bits in the DMA control register have the reset value 002
in START (AUX START) bits. DMA reset clears the interrupt internal latch.

7.6.1 DMA Interrupt Control Bits

Two registers contain bits used to control DMA interrupt operation:

� DMA interrupt enable register (DIE). All DMA interrupts are controlled by

bits in the DIE and by the SYNC bits of the DMA channel control registers

(described in Figure 11–2). The DMA interrupts are not dependent upon

ST(GIE) and are local to the DMA.

� The DMA channel control register. Each DMA coprocessor channel uses

a channel control register to determine its mode of operation. This register

is shown in Figure 11–2.

The DIE is broken into six subfields that determine which interrupts can be

used to control the synchronization for each of the six DMA channels. For ex-

ample, the bits in these each of these fields allow you to select whether a DMA

channel is synchronized to a communication port, a timer, or an external inter-

rupt pin.

See subsection 3.1.8, DMA Coprocessor Interrupt Enable Register (DIE), on

page 3-8, for a description of the DIE.



 DMA Interrupts

7-27  Program Flow Control

7.6.2 DMA Interrupt Processing

Figure 7–7 shows the general flow of interrupt processing by the DMA copro-

cessor.

Figure 7–7. DMA Interrupt Processing

DMA Proceeds According

 to DMA control register

SYNC Bits

Is an Enabled

Interrupt Set

? 

If Enabled in the DIE

register, the interrupt Is

a DMA Interrupt

Clear Interrupt Flag

DMA Continues

No

Yes

For more information about DMA interrupts, see Section 11.10, DMA and Inter-

rupts.



DMA Interrupts

 7-28

7.6.3 CPU/DMA Interrupt Interaction

The ’C4x DMA coprocessor is not affected by the processing of CPU inter-

rupts, even when the DMA is using interrupts for synchronization of transfers.

In addition, the DMA is be affected, even when pipeline fetches are halted.

The ’C4x allows the CPU and DMA controller to respond to and process inter-

rupts in parallel. Figure 7–8 shows the sequence of events in interrupt proces-

sing for both the CPU and the DMA controller; for the exact sequence of

events, see Table 7–2.

It is therefore possible to interrupt the CPU and DMA coprocessors simulta-

neously with the same or different interrupts and, in effect, synchronize their

activities. However, because the DMA coprocessor and CPU share the same

set of interrupt flags, in some instances the DMA coprocessor can clear an in-

terrupt flag before the CPU can respond to it. For example, if CPU interrupts

are disabled or if instruction fetches have been halted, the DMA can latch the

interrupt and thus clear the associated interrupt flag. If the interrupt is enabled

in the DIE register, the CPU will never be able to “steal” a DMA interrupt, be-

cause the DMA responds to an interrupt as fast as or faster than the CPU.

Figure 7–8. Parallel CPU and DMA Interrupt Processing

Does

GIE=1 and

is the interrupt

enabled in the

IIE or IIF

register?

Process the CPU interrupt

as shown in Figure 7–4.
Process the DMA interrupt

as shown in Figure 7–7.

No

Yes

Interrupt

Is the

interrupt enabled

in the DIE

register?

No

Yes

DMA CoprocessorCPU



 Reset

7-29  Program Flow Control

7.7 Reset

The ’C4x supports a nonmaskable external reset signal (RESET), which is

used to perform system reset. This section discusses the reset operation.

After powerup, the state of the ’C4x processor is undefined. You can use the

RESET signal to put the processor in a known state. This signal must be as-

serted low for 10 or more H1 clock cycles to guarantee a system reset (See

Chapter 1, Processor Initialization, in the TMS320C4x General-Purpose Ap-

plications User’s Guide for the recommended reset circuit). H1 is an output

clock signal generated by the ’C4x.

Reset affects several aspects of ’C4x operation:

� Some device pins

� Some device registers

� Program execution

7.7.1 Reset’s Effects on Pin States

Reset affects the other pins on the device in either a synchronous or an

asynchronous manner. The synchronous reset is gated by the ’C4x’s internal

clocks. The asynchronous reset directly affects the pins and is faster than the

synchronous reset. Reset timing details are included in the ’C4x data sheets.

Table 7–3 shows the state of the ’C4x’s pins during RESET = 0 and after RE-

SET goes back to 1. Each pin is described according to whether the pin is reset

synchronously or asynchronously.

Table 7–3.Pin States At System Reset

(a) Clock (4 pins)

Signal Pins I/O§ Type† Description

H1 1 O S
Begins clocking when RESET makes a

1-to-0 transition

H3 1 O S
Begins clocking when RESET makes a

1-to-0 transition

X1 1 O – No effect

X2/CLKIN 1 I – No effect

† A = Asynchronous, S = Synchronous
‡ Recommended decoupling capacitors are one multiple 0.1 µF and 4.7 µF around the device.

Number depends on specific board noise conditions.
§ I=Input, O=Output, Z=High-impedance state.



Reset

 7-30

Table 7–3.Pin States After System Reset (Continued)

(b) Communication Port 0 Interface (12 pins)

Signal Pins I/O§ Type† Description

C0D(7–0) 8 I/O S Set to undefined value

CACK0 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CRDY0 1 I/O A Set to high-impedance

CREQ0 1 I/O A Set to high-impedance

CSTRB0 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

(c) Communication Port 1 Interface (12 pins)

Signal Pins I/O§ Type† Description

C1D(7–0) 8 I/O S Set to undefined value

CACK1 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CRDY1 1 I/O A Set to high-impedance

CREQ1 1 I/O A Set to high-impedance

CSTRB1 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

(d) Communication Port 2 Interface (12 pins)

Signal Pins I/O§ Type† Description

C2D(7–0) 8 I/O S Set to undefined value

CACK2 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CRDY2 1 I/O A Set to high-impedance

CREQ2 1 I/O A Set to high-impedance

CSTRB2 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

† A = Asynchronous, S = Synchronous
‡ Recommended decoupling capacitors are one multiple 0.1 µF and 4.7 µF around the device.

Number depends on specific board noise conditions.
§ I=Input, O=Output, Z=High-impedance state.



 Reset

7-31  Program Flow Control

Table 7–3.Pin States After System Reset (Continued)

(e) Communication Port 3 Interface (12 pins)

Signal Pins I/O§ Type† Description

C3D(7–0) 8 I/O S Set to high-impedance

CACK3 1 I/O A Set to high-impedance

CRDY3 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CREQ3 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CSTRB3 1 I/O A Set to high-impedance

(f) Communication Port 4 Interface (12 pins)

Signal Pins I/O§ Type† Description

C4D(7–0) 8 I/O S Set to high-impedance

CACK4 1 I/O A Set to high-impedance

CRDY4 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CREQ4 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CSTRB4 1 I/O A Set to high-impedance

(g) Communication Port 5 Interface (12 pins)

Signal Pins I/O§ Type† Description

C5D(7–0) 8 I/O S Set to high-impedance

CACK5 1 I/O A Set to high-impedance

CRDY5 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CREQ5 1 I/O A
Set high-impedance when reset goes low

and then set to one when reset goes high

CSTRB5 1 I/O A Set to high-impedance

† A = Asynchronous, S = Synchronous
‡ Recommended decoupling capacitors are one multiple 0.1 µF and 4.7 µF around the device.

Number depends on specific board noise conditions.
§ I=Input, O=Output, Z=High-impedance state.



Reset

 7-32

Table 7–3.Pin States After System Reset (Continued)

(h) Emulation (7 pins)

Signal Pins I/O§ Type† Description

EMU0 1 I/O – Undefined

EMU1 1 I/O – Undefined

TCK 1 I – No effect

TDI 1 I – No effect

TDO 1 O – No effect

TMS 1 I – No effect

TRST 1 I – No effect

(i) Global Bus External Interface (80 pins)

Signal Pins I/O§ Type† Description

A(30–0) 31 O/Z S Set to high-impedance

AE 1 I – No effect

CE0 1 I – No effect

CE1 1 I – No effect

D(31–0) 32 I/O/Z S Set to high-impedance

DE 1 I – No effect

LOCK 1 O S Set to one

PAGE0 1 O/Z S Set to zero

PAGE1 1 O/Z S Set to zero

RDY0 1 I – No effect

RDY1 1 I – No effect

R/W0 1 O/Z S Set to one

R/W1 1 O/Z S Set to one

STAT(3–0) 4 O S Set to all ones

STRB0 1 O/Z S Set to one

STRB1 1 O/Z S Set to one

† A = Asynchronous, S = Synchronous
‡ Recommended decoupling capacitors are multiple 0.1 µF and 4.7 µF around the device. Number

depends on specific board noise conditions.
§ I=Input, O=Output, Z=High-impedance state.



 Reset

7-33  Program Flow Control

Table 7–3.Pin States After System Reset (Continued)

(j) Local Bus External Interface (80 pins)

Signal Pins I/O§ Type† Description

LA(30–0) 31 O/Z S Placed in high-impedance state

LAE 1 I – Reset has no effect

LCE0 1 I – Reset has no effect

LCE1 1 I – Reset has no effect

LDE 1 I – Reset has no effect

LLOCK 1 O S Set to one

LPAGE0 1 O/Z S Set to zero

LPAGE1 1 O/Z S Set to zero

LRDY0 1 I – Reset has no effect

LRDY1 1 I – Reset has no effect

LR/W1 1 O/Z S Set to one

LSTAT(3–0) 4 O S Set to all ones

LSTRB0 1 O/Z S Set to one

LSTRB1 1 O/Z S Set to one

(k) Interrupts, I/O Flags, Reset, Timer (12 pins)

Signal Pins I/O§ Type† Description

IACK 1 I S Set to one

IIOF(0–3) 4 I/O A Set to high-impedance

NMI 1 I – No effect

RESET 1 I – RESET input pin

RESETLOC(1,0) 2 I – No effect

ROMEN 1 I – No effect

LD(31–0) 32 I/O/Z S Set to high-impedance

TCLK0 1 I/O A Set to high-impedance

TCLK1 1 I/O A Set to high-impedance

† A = Asynchronous, S = Synchronous
‡ Recommended decoupling capacitors are one multiple 0.1 µF and 4.7 µF around the device.

Number depends on specific board noise conditions.
§ I=Input, O=Output, Z=High-impedance state.



Reset

 7-34

Table 7–3.Pin States After System Reset (Continued)

(l) Power (70 pins)

Signal Pins I/O§ Type† Description

SUBS 1 I –
Substrate pin (tie to ground). Set to

high-impedance.

VSSL 4 I – Ground pins. Set to high-impedance.

CVSS 15 I – Ground pins. Set to high-impedance.

DVSS 15 I – Ground pins. Set to high-impedance.

IVSS 6 I – Ground pins. Set to high-impedance.

DVDD 13 I –
+5VDC supply pins. Set to high-imped-

ance.‡

GADVDD 3 I –
+5VDC supply pins. Set to high-imped-

ance.‡

GDDVDD 3 I –
+5VDC supply pins. Set to high-imped-

ance.‡

LADVDD 3 I –
+5VDC supply pins. Set high-imped-

ance.‡

LDDVDD 3 I –
+5VDC supply pins. Set to high-imped-

ance.‡

VDDL 4 I –
+5VDC supply pins. Set to high-imped-

ance.‡

† A = Asynchronous, S = Synchronous
‡ Recommended decoupling capacitors are one multiple 0.1 µF and 4.7 µF around the device.

Number depends on specific board noise conditions.
§ I=Input, O=Output, Z=High-impedance state.



 Reset

7-35  Program Flow Control

7.7.2 Reset Vector Location

When RESET is released, the ’C4x begins executing the application program.

The initial address of the program is stored in the reset vector. The ’C4x per-

mits selection of any one of four reset vector locations. Selection of the reset

vector location that is used is determined by the levels on the RESETLOC1

and RESETLOC0 pins at reset. Table 7–4 shows the possible configurations

of these pins.

Table 7–4.RESET Vector Locations

Value at RESETLOCx Pin
Get Reset Vector From

CRESETLOC1 RESETLOC0
Get Reset Vector From

Hex Memory Address Comment

0 0 00000  0000 Local Bus

0 1 07FFF  FFFF† Local Bus

1 0 08000  0000† Global Bus

1 1 0FFFF  FFFF† Global Bus

† This corresponds to the 32-bit address that the processor accesses. However, in the ’C44 only

the 24-LSBs of the reset address will be driven on pins A0–A23 or pins LA0–LA23. The corre-

sponding LSTRBx pins will also be activated.

7.7.3 Additional Reset Operations

After system reset (after RESET goes back from 0 to 1), the following addition-

al operations are performed:

� Timer registers are set.

� The timer global control register is set to 0, except that bit DATIN is set

to the value on pin TCLK.

� The timer counter and timer period registers set to zeros.

� Control registers for communication ports 0–2 (subsection 12.3.1 on page

12-8) are set to zeros (output operation), and control registers for commu-

nication ports 3–5 are set to 04h (input operation).

� External memory interface control registers (Section 9.3 on page 9-6) are

set to 3E39 FFF0h. (7 wait states)

� DMA channel control register, DMA transfer counter, and DMA auxiliary

transfer counter (subsection 11.3.1 on page 11-7) are set to zeros.



Reset

 7-36

� The following CPU registers are loaded with zeros (each described in

Chapter 3):

� IIE (CPU internal interrupt enable register)

� IIF (interrupt flag register)

� DIE (DMA internal enable register)

� IVTP (interrupt-vector table pointer)

� TVTP (trap-vector table pointer)

� The CPU status register (ST) is set to 0400h, which puts the on-chip cache

in cache freeze mode.

� The reset vector is read from its location and loaded into the PC.

� If ROMEN=1 (Internal ROM enabled), the RESETLOC(1,0) pins are low,

and the IIOF0 pin is high, the ’C4x will start execution of the bootloader

code. Otherwise, the ’C4x will start execution of the routine which is

pointed to by the reset vector corresponding to the RESETLOC(1,0) pins.

Multiple ’C4xs driven by the same system clock can be reset and synchro-

nized. See Reset Signal Generation in the TMS320C4x General-Purpose

User’s Guide for information about resetting multiple ’C4xs.



 Running Title—Attribute Reference

8-1  Chapter Title—Attribute Reference

Pipeline Operation

Two characteristics of the ’C4x that contribute to its high performance are pipe-

lining and concurrent I/O and CPU operation.

Four functional units control ’C4x pipeline operation: fetch, decode, read, and

execute. Pipelining is the overlapping or parallel operations of the fetch, de-

code, read, and execute levels of a basic instruction.

The DMA coprocessor decreases pipeline interference and enhances the

CPU’s computational throughput by performing input/output operations.

Topic Page

8.1 Pipeline Structure 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2 Pipeline Conflicts 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.3 Memory Accesses for Maximum Performance 8-17. . . . . . . . . . . . . . . . . . 

8.4 Clocking of Memory Accesses 8-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 8



Pipeline Structure

 8-2

8.1 Pipeline Structure

The four major units of the ’C4x pipeline structure and their functions are as

follows:

Fetch Unit (F) Fetches the instruction words from memory
and updates the program counter (PC).

Decode Unit (D) Decodes the instruction word and performs ad-

dress generation. Also, controls modification of
the ARn registers in the indirect addressing
mode, and of the stack pointer when PUSH to/
POP from the stack occurs.

Read Unit (R) If required, reads the operands from memory.

Execute Unit (E) If required, reads the operands from the regis-
ter file, performs the necessary operation, and
writes results to the register file. If required, re-
sults of previous operations are written to
memory.

A basic instruction has four levels: fetch, decode, read, and execute.

Figure 8–1 illustrates these four levels of the pipeline structure. The levels are

indexed according to instruction and execution cycle. In the figure, perfect

overlap in the pipeline, where all four units operate in parallel, occurs at cycle

(m). Levels about to be executed are at m +1, and those just executed are at

m–1. The ’C4x pipeline controller supports a high-speed processing rate of

one execution per cycle. It also manages pipeline conflicts so that they are

transparent to the user. You do not need to take any special precautions to

guarantee correct operation.



Perfect overlap

 Pipeline Structure

8-3  Pipeline Operation

Figure 8–1. Pipeline Structure

CYCLE Fetch Decode Read Execute

m–3 W — — —

m–2 X W — —

m–1 Y X W —

m Z Y X W

m+1 — Z Y X

m+2 — — Z Y

m+3 — — — Z

Notes: 1) W, X, Y, and Z represent instructions.

2) F, D, R, E = fetch, decode, read, and execute, respectively.

Priorities from highest to lowest have been assigned to each of the functional

units of the pipeline and to the DMA controller as follows:

� DMA (if configured as highest priority)

� Execute

� Read

� Decode

� Fetch

� DMA (if configured as lowest priority).

When the processing of an instruction is ready to pass to the next higher pipe-

line level and that level is not ready to accept a new input, a pipeline conflict

occurs. In this case, the lower priority unit waits until the higher priority unit

completes its currently executing function.



Pipeline Conflicts

 8-4

8.2 Pipeline Conflicts

Pipeline conflicts in the ’C4x can be grouped into the following three main cate-

gories:

Branch Conflicts Involve most of those instructions or operations that
read and/or modify the PC.

Register Conflicts Involve delays that can occur when reading from or writ-

ing to registers that are used for address generation,
such as: AR0–AR7, IR0, IR1, BK, DP and SP.

Memory Conflicts Occur when the internal units of the ’C4x compete for
memory resources.

Each of these three types is discussed in the following subsections. Examples

are included. Note in these examples, when data is refetched or an operation

is repeated, the symbol representing the stage of the pipeline is appended with

a number. For example, if a fetch is performed again, the instruction mnemonic

is repeated. The symbol RDY is used to indicate that a unit is not ready and

the symbol RDY is used to indicate that a unit is ready.

8.2.1 Branch Conflicts

Branch conflicts involve most of the instructions or operations that read and/or

modify the PC.

8.2.1.1 Standard Branches

Pipeline conflicts occur with standard (nondelayed) branches, i.e., BR, Bcond,

DBcond, CALL, IDLE, RPTB, RPTS, RETIcond, RETScond, interrupts, and

reset, because their execution is all the pipeline can handle. Other information

fetched into the pipeline is discarded or refetched, or the pipeline becomes in-

active; this is referred to as flushing the pipeline. Flushing the pipeline is neces-

sary in these cases to prevent partial execution of succeeding instructions.

The branches discussed here are loads; TRAP cond and CALLcond are

treated as conditional stores and are shown in Example 8–13.

Example 8–1 shows the code and pipeline operation for a standard branch.

Note that one dummy fetch is performed (MPYF instruction), and then after the

branch address is available, a new fetch (OR instruction) is performed. This

dummy fetch introduces the MPYF instruction into the cache.



Fetch held for
new PC value

THREE → PC

 Pipeline Conflicts

8-5  Pipeline Operation

Example 8–1.Standard Branch

BR THREE ; Unconditional branch

MPYF ; Not executed

ADD ; Not executed

SUBF ; Not executed

AND ; Not executed

.

.

.

 THREE OR ; Fetched after BR is taken

STI

.

.

PIPELINE OPERATION

PC Fetch Decode Read Execute

n BR — — —

n+1 MPYF BR — —

n+1 (nop) (nop) BR —

n+1 (nop) (nop) (nop) BR

THREE OR (nop) (nop) (nop)

STI OR (nop) (nop)

Note:

Both RPTS and RPTB flush the pipeline, allowing the RS, RE, and RC regis-
ters to be loaded at the proper time. If these registers are loaded without the
use of RPTS or RPTB, no flushing of the pipeline occurs. Thus, RS, RE, and
RC can be used as general-purpose 32-bit registers without pipeline con-
flicts. When RPTB is nested because of nested interrupts, it may be neces-
sary to load and store these registers directly while using the repeat modes.
Since up to four instructions can be fetched before the repeat mode is en-
tered, loads should be followed by a branch to flush the pipeline. If the RC
is changing when an instruction is loading it, the direct load takes priority over
the modification made by the repeat mode logic.



THREE → PC

No execute delay

Pipeline Conflicts

 8-6

8.2.1.2 Delayed Branches Without Annul Option

Delayed branches are implemented to assure that the next three instructions

are fetched and executed. The delayed branches without annul option include

BRD, BcondD, and DBcondD. Example 8–2 shows the code and pipeline op-

eration for a delayed branch.

Example 8–2.Delayed Branch Without Annul Option

BRDTHREE ; Unconditional delayed branch

MPYF ; Executed

ADD ; Executed

SUBF ; Executed

AND ; Not executed

.

.

.

 THREE MPYF ; Fetched after SUBF is fetched

.

.

.

PIPELINE OPERATION

PC Fetch Decode Read Execute

n BRD — — —

n+1 MPYF BRD — —

n+2 ADDF MPYF BRD —

n+3 SUBF ADDF MPYF BRD

THREE MPYF SUBF ADDF MPYF



 Pipeline Conflicts

8-7  Pipeline Operation

8.2.1.3 Delayed Branches With Annul Option

The ’C4x supports delayed branches with an annulling option: BcondAT

(branch conditional, annul if true) and BcondAF(branch conditional, annul if

false). The true or false status of the condition controls whether or not a branch

is performed (as in a delayed branch). The annulling operation cancels the

effect of the execute phase of the first instruction and of the read and execute

phases of the second and third instructions following the BcondAT or Bcon-

dAF.

� If the condition is true, BcondAT performs a branch, and the annulling

operation takes place. Otherwise, the branch is not taken and the annul-

ling operation does not take place.

� If the condition is false, BcondAF does not perform a branch, and the

annulling operation takes place. Otherwise, the branch is taken and the

annulling operation does not take place.

See subsection 7.2.2 for more information about delayed branches with annul-

ling. Example 8–3 uses both BcondAT and BcondAF.

Example 8–3.Using BcondAF and BcondAT Instructions

LDI *AR1,R0

BNAT bottom ; If negative, branch and

ADDI *++AR2,R3 ; annul the execute phase

MPYF ; of ADDI, MPYF, and NOT.

NOT ; Otherwise, don’t annul and

top: SUBF ; continue with SUBF.

  .

  .

SUBI 1,R0

BNNAF top ; If not negative, branch and

ADDI *++AR2,R3 ; do not annul the execute

MPYF ; phase of ADDI, MPYF, and 

NOT ; NOT. Otherwise, annul ADDI,

bottom:XOR ; MPYF, and NOT, and continue

  . ; with XOR.

At the start of Example 8–3, if the result of the load is negative (a true

condition), the BcondAT instruction causes a branch and also annuls the

execute phase of the three instructions that follow it. As a result, the execute

phase of the ADDI instruction does not occur, and register R3 is not updated

by addition. However, AR2 is incremented, and data at the corresponding

address is read because these operations are in the decode and read phases

of the pipeline, respectively, and thus cannot be annulled.



Decode/address
generation held
for a new AR value

AR2 loaded

Pipeline Conflicts

 8-8

Two types of operations can be annulled:

� All writes to the register file that occur in the execute phase (ADDs, LDs,

etc., but not LDA, LDPK, etc.)

� All stores to memory

8.2.2 Register Conflicts

A register conflict occurs if you read from or write to a register used for ad-

dressing purposes (AR0–AR7, IR0, IR1, BK, DP, and SP) when the register

is not ready to be used. For example, if an instruction writes to one of these

registers, the decode unit cannot use that same register until the write is com-

plete (which occurs in the execute stage).

In Example 8–4, an auxiliary register is loaded, and the same auxiliary register

is used on the next instruction. Since the decode stage needs the result of the

write to the auxiliary register, the decode of this second instruction is delayed

two cycles. Every time the decode is delayed, a refetch of the program word

is performed; i.e., ADDF is fetched three times. Because these are actual re-

fetches, they can cause not only conflicts with the DMA controller, but also

cache hits and misses. If the AR register used in the MPYF instruction were

different from the one used in the LDI instruction, no delay would occur.

Example 8–4.Write to an AR Followed by an AR for Address Generation

LDI 7,AR2 ; 7 → AR2

NEXT MPYF *AR2,R0 ; Decode delayed 2 cycles

ADDF

FLOAT

PIPELINE OPERATION

PC Fetch Decode Read Execute

n LDI — — —

n+1 MPYF LDI — —

n+2 ADDF MPYF LDI —

n+2 ADDF MPYF (nop) LDI 7,AR2

n+2 ADDF MPYF (nop) (nop)

n+3 FLOAT ADDF MPYF (nop)



Decode/address
generation held
until AR is read

ARs read

 Pipeline Conflicts

8-9  Pipeline Operation

Conflicts involving reads are similar to those involving writes. If an instruction

must read registers AR0–AR7 or SP, the use of those particular registers by

the decode stage for the following instruction is delayed until the read is com-

plete. The registers are read at the start of the execute cycle and therefore re-

quire only a one-cycle delay of the following decode. For four registers (IR0,

IR1, BK, or DP), no delay is incurred upon a read.

In Example 8–5, two auxiliary registers are added together with the result go-

ing to an extended-precision register. The next instruction uses one of the

same auxiliary registers as an address register. If the MPYF instruction used

an AR register other than AR0 or AR2, no delay would occur.

Example 8–5.A Read of ARs Followed by ARs for Address Generation

ADDI AR0,AR2,R1 ; AR0 + AR2 → R1

NEXT MPYF *++AR2,R0 ; Decode delayed 1 cycle

ADDF

FLOAT

PIPELINE OPERATION

PC Fetch Decode Read Execute

n ADDI — — —

n+1 MPYF ADDI — —

n+2 ADDF MPYF ADDI —

n+2 ADDF MPYF (nop) ADDI

n+3 FLOAT ADDF MPYF (nop)

Note:

The DBR (decrement and branch) instruction’s use of auxiliary registers for
loop counters is treated the same as if the use were for addressing. There-
fore, the operation shown in the two previous examples can also occur for
this instruction.



Pipeline Conflicts

 8-10

8.2.3 Memory Conflicts

Memory conflicts can occur when the memory bandwidth of a physical

memory space is exceeded. RAM  blocks 0 and 1 and the ROM block can sup-

port only two accesses per cycle. The external interface can support only one

access per cycle. Some conditions under which memory conflicts can be

avoided are discussed in Section 8.3, on page 8-17.

Memory pipeline conflicts consist of the following four types:

Program Wait A program fetch is prevented from beginning.

Program Fetch Incomplete A program fetch has begun but is not yet com-
plete.

Execute Only An instruction sequence requires three CPU
data accesses in a single cycle.

Hold Everything A global or local bus operation must complete

before another one can proceed.

These four types of memory conflicts are illustrated in examples and dis-

cussed in the paragraphs that follow.

8.2.3.1 Program Wait

Two conditions can delay an instruction fetch:

� Too many accesses to the same memory at the start of a CPU data access

can occur in two cases:

� Two CPU data accesses are made to an internal RAM or ROM block,

and a program fetch from the same block is necessary.

� One of the external ports is starting a CPU data access, and a program

fetch from the same port is necessary.

� A multicycle CPU data access or DMA data access over the external bus

is needed.



Fetch held until
ARs are read

ARs read

 Pipeline Conflicts

8-11  Pipeline Operation

Example 8–6 illustrates a program wait until a CPU data access completes.

In this case, *AR0 and *AR1 are both pointing to data in RAM block 0, and the

MPYF instruction will be fetched from RAM block 0. This results in the conflict

shown. Since no more than two accesses can be made to RAM block 0 in a

single cycle, the program fetch cannot begin and must wait until the CPU data

accesses are complete.

Example 8–6.Program Wait Until CPU Data Access Completes

ADDF3 *AR0,*AR1,R0

FIX

MPYF

ADDF3

NEGB

PIPELINE OPERATION

PC Fetch Decode Read Execute

n ADDF3 — — —

n+1 FIX ADDF3 — —

n+2 (wait) FIX ADDF3 —

n+2 MPYF (nop) FIX ADDF3

n+3 ADDF3 MPYF (nop) FIX

n+4 NEGB ADDF3 MPYF (nop)

Example 8–7 shows a program wait due to a multicycle data-data access or

a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from some

portion in memory other than the external port the DMA requires. The DMA be-

gins a multicycle access. The program fetch corresponding to the CALL is

made to the same external port that the DMA is using.

Even if the DMA is configured as the lowest priority, a multicycle access can-

not be aborted. The program fetch must therefore wait until the DMA access

completes.



2–cycle DMA access

1 wait state required

Pipeline Conflicts

 8-12

Example 8–7.Program Wait Due to Multicycle Access

PIPELINE OPERATION

PC Fetch Decode Read Execute

n ADDF — — —

n+1 MPYF ADDF — —

n+2 SUBF MPYF ADDF —

n+3 (wait) SUBF MPYF ADDF

n+3 CALL (nop) SUBF MPYF

n+4 — CALL (nop) SUBF

8.2.3.2 Program Fetch Incomplete

A program fetch incomplete occurs when an instruction fetch takes more than

one cycle to complete because of wait states. In Example 8–8, the MPYF and

ADDF are fetched from memory that supports single-cycle accesses. The

SUBF is fetched from memory requiring one wait state. One example that

demonstrates this conflict is a fetch across a bank boundary on the external

port.

Example 8–8.Multicycle Program Memory Fetches

PIPELINE OPERATION

PC Fetch Decode Read Execute

n MPYF — — —

n+1 ADDF MPYF — —

n+2 RDY SUBF ADDF MPYF —

n+2 RDY SUBF (nop) ADDF MPYF

n+3 ADDI SUBF (nop) ADDF



Write must
complete
before the
2 reads can
complete.

 Pipeline Conflicts

8-13  Pipeline Operation

8.2.3.3 Execute Only

The Execute Only type of memory pipeline conflict occurs when a sequence

of instructions requires three CPU data accesses in a single cycle. There are

two cases in which this occurs:

� An instruction performs a store and is followed  by an instruction that per-

forms two memory reads.

� An instruction performs two stores and is followed by an instruction that

performs at least one memory read.

The first case is shown in Example 8–9. Since this sequence requires three

data memory accesses and only two are available, only the execute phase of

the pipeline is allowed to proceed. The dual reads required by the LDF || LDF

are delayed one cycle. Note that in this case a refetch of the next instruction

can occur, which could cause an additional access to memory.

Example 8–9.Single Store Followed by Two Reads

STFR0,*AR1 ; R0 → *AR1
LDF*AR2,R1 ; *AR2 → R1 in parallel with

 LDF*AR3,R2 ; *AR3 → R2

PIPELINE OPERATION

PC Fetch Decode Read Execute

n STF — — —

n+1 LDF LDF STF — —

n+2 W LDF LDF STF —

n+3 X W LDF LDF STF

n+4 X W LDF LDF (nop)

n+4 Y X W LDF LDF



Read must wait
until the writes 
are complete

Pipeline Conflicts

 8-14

Example 8–10 shows a parallel store followed by a single load or read. Since

two parallel stores are required, the next CPU data memory read must wait one

cycle before beginning. One program memory refetch may occur.

Example 8–10. Parallel Store Followed by Single Read

STF R0,*AR0 ; R0 → *AR0 in parallel with
 STF R2,*AR1 ; R2 → *AR1

ADDF @SUM,R1 ; R1 + @SUM → R1

IACK

ASH

PIPELINE OPERATION

PC Fetch Decode Read Execute

n STF STF — — —

n+1 ADDF STF STF — —

n+2 IACK ADDF STF STF —

n+3 ASH IACK ADDF STF STF

n+4 ASH IACK ADDF (nop)

n+4 — ASH IACK ADDF



write access
2-cycle external bus

 Pipeline Conflicts

8-15  Pipeline Operation

8.2.3.4 Hold Everything

Three types of conditions cause Hold Everything memory pipeline conflicts:

� A CPU data load or store cannot be performed because an external port

is busy.

� An external load takes more than one cycle.

� The execution of conditional calls and traps, which take one more cycle

than conditional branches.

The first type of Hold Everything conflict occurs when one of the external ports

is busy because of an access that has started but is not complete. In

Example 8–11, the first store is a two-cycle store. The CPU writes the data to

an external port. The port control then takes two cycles to complete the data-

data write. The LDF is a read over the same external port. Since the store is

not complete, the CPU continues to attempt processing the LDF until the port

is available.

Example 8–11. Busy External Port

STF R0,@DMA1

LDF @DMA2,R0

PIPELINE OPERATION

PC Fetch Decode Read Execute

n STF — — —

n+1 LDF STF — —

n+2 W LDF STF —

n+2 W LDF (nop) STF

n+2 W LDF (nop) (nop)

n+3 X W LDF (nop)

n+4 Y X W LDF

The second type of Hold Everything conflict involves multicycle data reads. In

this case, the read has begun and continues until completed. In

Example 8–12, the LDF is performed from an external memory that requires

several cycles to access.



2-cycle external bus
read access

PC store
cycle

Pipeline Conflicts

 8-16

Example 8–12. Multicycle Data Reads

LDF @DMA,R0

PIPELINE OPERATION

PC Fetch Decode Read Execute

n LDF — — —

n+1 I LDF — —

n+2 J I LDF —

n+3 K(dummy) I LDF —

n+3 K2 J I LDF

The final type of Hold Everything conflict deals with conditional calls

(CALLcond) and traps (TRAPcond), which are different from other branch in-

structions. Whereas other branch instructions are conditional loads, the condi-

tional calls and traps are conditional stores, which take one more cycle to com-

plete than conditional branches (see Example 8–13). The added cycle pushes

the return address after the call condition is evaluated.

Example 8–13. Conditional Calls and Traps

PIPELINE OPERATION

PC Fetch Decode Read Execute

n CALLcond — — —

n+1 I CALLcond — —

n+1 (nop) (nop) CALLcond —

n+1 (nop) (nop) (nop) CALLcond

n+1 (nop) (nop) (nop) CALLcond

n+2/CALLaddr I (nop) (nop) (nop)



 Memory Accesses for Maximum Performance

8-17  Pipeline Operation

8.3 Memory Accesses for Maximum Performance

If program fetches and data accesses are performed in such a manner that the

resources being used cannot provide the necessary bandwidth, the pipeline

is stalled until the accesses are complete. Certain configurations of program

fetch and data accesses yield conditions under which the ’C4x can achieve

maximum throughput.

Table 8–1 shows how many accesses can be performed from the different

memory spaces when it is necessary to do a program fetch and a single data

access, and still achieve maximum performance (one cycle). Four cases

achieve one-cycle maximization.

Table 8–1.One Program Fetch and One Data Access for Maximum Performance

Case 

No.

Global Bus

Accesses

Accesses From

Dual-Access

Internal Memory

Local Bus

Or Peripheral

Accesses

1 1 1 —

2 1 — 1

3 —
2 from any combination

of internal memory
—

4 — 1 1



Memory Accesses for Maximum Performance

 8-18

Table 8–2 shows how many accesses can be performed from the different

memory spaces when it is necessary to do a program fetch and two data ac-

cesses, still achieving maximum performance (one cycle). Six cases achieve

this maximization.

Table 8–2. One Program Fetch and Two Data Accesses for Maximum Performance

Case 

No.

Global Bus

Accesses

Accesses From Dual-Access

Internal Memory

Local Or

Peripheral

Bus

Accesses

1 1
2 from any combination of internal

memory
—

2† 1 program 1 data 1 data

3† 1 data 1 data 1 program

4 1 data 1 program, 1 data 1 DMA

5 —

2 from same internal memory block

and1 from a different internal memory

block

—

6 — 3 from different internal memory blocks 1 DMA

7 —
2 from any combination of internal

memory
1

8 1 program 2 data 1 DMA

9 1 DMA 2 data 1 program

† For Cases 2 and 3, see Three-Operand Instruction Memory Reads on page 8-20.



 Clocking of Memory Accesses

8-19  Pipeline Operation

8.4 Clocking of Memory Accesses

This section discusses the role of internal clock phases (H1 and H3) in the way

the ’C4x handles multiple memory accesses. Whereas the previous section

discussed the interaction between sequences of instructions, this section dis-

cusses the flow of data on an individual instruction basis.

Each major clock period of 40 ns is composed of two minor clock periods of

20 ns, labeled H3 and H1 (these times assume a 50-MHz ’C40). The active

clock period for H3 and H1 is the time when that signal is high.

H1

H3

Major Clock Period

The precise operation of memory reads and writes can be defined according

to these minor clock periods. The types of memory operations that can occur

are program fetches, data loads and stores, and DMA accesses. Internal DMA

data accesses always start during the H3 cycle.

8.4.1 Program Fetches

Internal program fetches are always performed during H3 unless a single data

store must occur at the same time because of another instruction in the pipe-

line. In that case, the program fetch occurs during H1 and the data store occurs

during H3.

External program fetches always start at the beginning of H3 with the address

being presented on the external bus. At the end of H1, the fetches are com-

pleted with the latching of the instruction word.



Clocking of Memory Accesses

 8-20

8.4.2 Data Loads and Stores

Four types of instructions perform loads, memory reads, and stores: two-oper-

and instructions, three-operand instructions, multiplier/ALU operation with

store instructions, and parallel multiply and add instructions. See Chapter 6 for

detailed information on addressing modes.

As discussed in Chapter 9, the number of bus cycles for external memory

accesses differs in some cases from the number of CPU execution cycles. For

external reads, the number of bus cycles and CPU execution cycles is identi-

cal. For external writes, there are always at least two bus cycles, but unless

there is a port access conflict, there is only one CPU execution cycle. In the

following examples, any difference in the number of bus cycles and CPU

cycles is noted.

8.4.2.1 Two-Operand Instruction Memory Accesses

Figure 8–2. Two-Operand Instruction Word

31

0 X 0 Operation dst(src)G src(dst)

24 23 16 15 8 7 0

Two-operand instructions include all those instructions with bits 31–29 being

0002 or 0102 (see Figure 8–2). In the case of a data read, bits 15–0 represent

the src operand. Internal data reads are always performed during H1. External

data reads always start at the beginning of H3 with the address presented on

the external bus, and they complete with the latching of the data word at the

end of H1.

In the case of a data store, bits 15–0 represent the dst operand. Internal data

stores are performed during H3. External data stores always start at the

beginning of H3 with the address and data presented on the external bus.

8.4.2.2 Three-Operand Instruction Memory Reads

Figure 8–3. Three-Operand Instruction Word

Operation

31 2423 16 8 7 015

0 0 1 dstT src2src1

Three-operand instructions include all instructions with bits 31–29 being 0012
(see Figure 8–3). The source operands, src1 and src2, come from either regis-

ters or memory. When one or more of the source operands are from memory,

these instructions are always memory reads.

If only one of the source operands is from memory (either src1 or src2) and is

located in internal memory, the data is read during H1. If the single memory



 Clocking of Memory Accesses

8-21  Pipeline Operation

source operand is in external memory, the read starts at the beginning of H3,

with the address presented on the external bus, and completes with the latch-

ing of the data word at the end of H1.

If both source operands are to be fetched from memory, then memory reads

can occur in several ways:

� If both operands are located in internal memory, the src1 read is per-

formed during H3 and the src2 read during H1, thus completing two

memory reads in a single cycle.

� If src1 is in internal memory and src2 is in external memory, the src2 ac-

cess begins at the start of H3 and latches at the end of H1. At the same

time, the src1 access to internal memory is performed during H3. Again,

two memory reads are completed in a single cycle.

� If src1 is in external memory and src2 is in internal memory, two cycles are

necessary to complete the two reads. In the first cycle, the internal src2

access is performed. The src1 is also performed, but not latched until the

next H3.

� If src1 and src2 are both from external memory, two cycles are required

to complete the two reads. In the first cycle, the src1 access is performed

and loaded on the next H3; in the second cycle, the src2 access is per-

formed and loaded on that cycle’s H1.

8.4.2.3 Operations with Parallel Stores

Figure 8–4. Multiply or CPU Operation With a Parallel Store

31 24 23 16 8 7 015

1 1 src1 dst2src3dst1Operation src2

The next class of instructions includes all instructions that have a store in paral-

lel with another instruction. Bits 31 and 30 for these instructions are equal to

112.

For operations that perform a multiply or ALU operation in parallel with a store,

the instruction word format is shown in Figure 8–4. If the store operation to dst2

is external or internal, it is performed during H3. Two bus cycles are required

for external stores, but only one CPU cycle is necessary to complete the write.

If the memory read operation is external, it starts at the beginning of H3 and

latches at the end of H1. If the memory read operation is internal, it is

performed during H1. Note that memory reads are performed by the CPU

during the read (R) phase of the pipeline, and stores are performed during the

execute (E) phase.



Clocking of Memory Accesses

 8-22

The instruction word format for instructions that have parallel stores to memory

is shown in Figure 8–5. If both destination operands, dst1 and dst2, are lo-

cated in internal memory, dst1 is stored during H3 and dst2 during H1, thus

completing two memory stores in a single cycle.

Figure 8–5. Two Parallel Stores

31 24 23 16 8 7 015

1 1 dst1src1src2ST||ST dst20 0 0

If dst1 is in external memory and dst2 is in internal memory, the dst1 store be-

gins at the start of H3. The dst2 store to internal memory is performed during

H1. Two bus cycles are required for the external store, but only one CPU cycle

is necessary to complete the write. Again, two memory stores are completed

in a single cycle.

If dst1 is in internal memory and dst2 is in external memory, an additional bus

cycle is necessary to complete the dst2 store. Only one CPU cycle is neces-

sary to complete the write, but the port access requires three bus cycles. In the

first cycle, the internal dst1 store is performed during H3, and dst2 is written

to the port during H1. During the next cycle, the dst2 store is performed on the

external bus, beginning in H3, and executes as normal through the following

cycle.

If dst1 and dst2 are both written to external memory, a single CPU cycle is still

all that is necessary to complete the stores. In this case, four bus cycles are

required.

1) In the first cycle, both dst1 and dst2 are written to the port, and the external

bus access for dst1 begins.

2) The store for dst1 is completed on the second cycle.

3) The store for dst2 begins on the third external bus cycle.

4) Finally, the store for dst2 is completed on the fourth external bus cycle.



 Clocking of Memory Accesses

8-23  Pipeline Operation

8.4.2.4 Parallel Multiplies and Adds

Memory addressing for parallel multiplies and adds is similar to that for three-

operand instructions. The parallel multiplies and adds include all instructions

with bits 31–30 equal to 102 (see Figure 8–6).

Figure 8–6. Parallel Multiplies and Adds

31 2423 16 8 7 015

1 0 src1POperation d1 d2 src2 src3 src4

For these operations, src3 and src4 are both located in memory. If both oper-

ands are located in internal memory, src3 is performed during H3, and src4 is

performed during H1, thus completing two memory reads in a single cycle.

If src3 is in internal memory and src4 is in external memory, the src4 access

begins at the start of H3 and latches at the end of H1. At the same time, the

src3 access to internal memory is performed during H3. Again, two memory

reads are completed in a single cycle.

If src3 is in external memory and src4 is in internal memory, two cycles are nec-

essary to complete the two reads. In the first cycle, the internal src4 access

is performed. During the H3 of the next cycle, the src3 access is performed.

If src3 and src4 are both from external memory, two cycles are necessary to

complete the two reads. In the first cycle, the src3 access is performed; in the

second cycle, the src4 access is performed.



 8-24



 Running Title—Attribute Reference

9-1  Chapter Title—Attribute Reference

External Bus Operation

The ’C4x has two identical external bus interfaces. One bus is called the global

memory interface and the other bus is called the local memory interface.

These buses are designed to allow higher throughput by permitting simulta-

neous loads and stores to different external memories.

The information in this chapter applies to both the global memory interface and

the local memory interface; however, in some sections, only the global

memory interface is shown. Examples of memory interfacing are provided in

the TMS320C4x General-Purpose Applications User’s Guide.

Topic Page

9.1 Overview 9-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.2 Memory Interface Signals 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.3 Memory Interface Control Registers 9-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.4 Programmable Wait States 9-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.5 Memory Interface Timing 9-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.6 Using Enable Signals to Control Signal Groups 9-38. . . . . . . . . . . . . . . . 

9.7 Interlocked Operations 9-39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.8 IACK Timing 9-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 9



Overview

 9-2

9.1 Overview

The ’C4x has two identical parallel external interfaces: the global memory in-

terface and the local memory interface. Each interface has the following fea-

tures:

� Separate configurations, each with its own 32-bit data bus and 31-bit ad-

dress bus (24 pin address bus in the ’C44)

� Single-cycle reads and pipelined writes

� Independent enable signals for data, address, and control lines

� Bus-request and bus-lock signaling for shared memory parallel proces-

sing

� User-controlled mapping of addresses to either of two sets of independent

strobes for different speed memories

� Look-ahead bus status signals for defining current and requested bus op-

erations for parallel processing arbitration

� Selectable wait states (both software- and hardware-controlled)

� Signals that indicate when memory-page boundaries are crossed.

Note:

The global-memory interface is identical in every way to the local memory
interface except that (1) they have different positions in the memory map,
and (2) the control signals for the local memory interface are labeled an addi-
tional “L” prefix (as described in Figure 9–1 on page 9-3).

Throughout this chapter, no distinction is made between global and local in-
terface signals and between STRB0 and STRB1, except for clarity.

The signals that indicate when memory-page boundaries are crossed support

three main types of memory:

� page-mode and static-column decode DRAMs

� high-speed SRAM banks

� slow speed memory banks and I/O devices



 Memory Interface Signals

9-3  External Bus Operation

9.2 Memory Interface Signals

As shown in Figure 9–1, the global-memory interface has two sets of control

signals, STRB0 and STRB1. The global-memory port control-registers (Sec-

tion 9.3 on page 9-6) define which set of registers is active.

Figure 9–1. Global and Local Memory Interface Control Signals

R/W0
STRB0
PAGE0

RDY0
CE0

D(31–0)
DE

A(30–0)
AE

STAT(3–0)
LOCK

R/W1
STRB1
PAGE1

RDY1
CE1

32

31

STRB0 Control Signals

STRB1 Control Signals

4

Note: The signals used in this figure are for the global-memory interface. The local-memory interface signals have the same

configuration and an additional “L” prefix is added for each signal (for example, STRB0 becomes LSTRB0, etc.).



Memory Interface Signals

 9-4

Table 9–1.Global Memory Interface Signals

Signal† Type§ Description
Value After

Reset

Idle

Status||

AE¶ I

Address bus enable signal for global-memory interface.

When high (set to 1), places address lines A30–0 in the high-

impedance state.

N.A.# ignored

CE(0,1)¶ I

Control signal enable for R/Wx, STRBx, and PAGEx signals.

When high (set to 1), it places the corresponding R/Wx,

STRBx, and PAGEx signals in high-impedance state (x = 0

for CE0 and x = 1 for CE1).

N.A. ignored

DE¶ I

Data bus enable signal for global memory interface. When

high (set to 1), places data lines D31–0 in the high-imped-

ance state. Reads can still occur but writes cannot.

N.A. ignored

LOCK‡ O

Lock signal for global bus interface. Indicates whether an

interlocked access is underway (0 = access underway;

1 = access not underway). LOCK is changed only by the in-

terlocked instructions.

1 1

PAGE(0,1) O/Z Memory-page enable signal for STRB(0,1) accesses 0 0

RDY(0,1) I Indicates external memory is ready to be accessed N.A. ignored

R/W(0,1) O/Z Specifies memory read (active high) or write (active low) mode 1 1

STAT(3–0)
‡ O

Four lines that define the status or function of the memory

port as shown in Table 9–2 (next page).
all 1s all 1s

STRB(0,1) O/Z Interface access strobe 1 1

A(30–0) O/Z
Address bus. The address lines are always driven. They keep

the address of the last access.
Hi–Z

address

of last

access

D(31–0) I/O/Z
Data bus. These signals go to high impedance between write

accesses.
Hi–Z Hi–Z

† The numbers in parentheses mean that either a 0 (zero) or a 1 can follow the prefix shown to the left of the parenthesis. A zero

indicates STRB0 control signals (shown in Figure 9–1), and a one indicates STRB1 control signals.
‡ STAT(3–0) and LOCK cannot be controlled by an external control signal.
§ O=output; I=input; Z=high-impedance state.
¶ This signal can be used in a shared bus configuration to hold the ’C4x off the shared bus while another ’C4x accesses the shared

memory and peripherals.
# N.A. means not affected.
|| Idle status = no external memory access

Table 9–2 shows how pins STAT3 to STAT0 define the current status of the

global-memory port. For bus accesses, these signals provide information

about the access that is about to begin. The code for a SIGI instruction read

is useful for distinguishing between a SIGI read and a LDII or LDFI read.



 Memory Interface Signals

9-5  External Bus Operation

The bus idle status code is 11112 (given at the bottom of Table 9–2). This sim-

plifies modular shared-bus multiprocessor interfaces because pull-up resis-

tors can be used to signal the idle condition when processor cards are not at-

tached to the shared bus.

Table 9–2.Global Memory Port Status for STRB0 and STRB1 Accesses

Value at Pins †

STAT3 STAT2 STAT1 STAT0 Status

0 0 0 0 STRB0 access, program read

0 0 0 1 STRB0 access, data read

0 0 1 0 STRB0 access, DMA read

0 0 1 1 STRB0 access, SIGI (instruction) read

0 1 0 0 Reserved

0 1 0 1 STRB0 access, data write

0 1 1 0 STRB0 access, DMA write

0 1 1 1 Reserved

1 0 0 0 STRB1 access, program read

 1 0 0 1 STRB1 access, data read

1 0 1 0 STRB1 access, DMA read

1 0 1 1 STRB1 access, SIGI (instruction) read

1 1 0 0 Reserved

1 1 0 1 STRB1 access, data write

1 1 1 0 STRB1 access, DMA write

1 1 1 1 Idle

† This table applies to both the global-memory interface and local-memory interface (for local

memory interface signals, add an L prefix to form LSTAT3, LSTAT2, etc.).



Memory-Interface Control Registers

 9-6

9.3 Memory-Interface Control Registers

Figure 9–2 shows the memory map for both the global- and local-memory in-

terface-control registers. Figure 9–3 shows the fields in each register. Each

register can be programmed to control its respective memory interface by de-

fining the:

� Page size used for the two strobes at each port

� Address ranges over which the strobes are active

� Wait states

� Other operations that control the memory interface

Figure 9–3 lists the fields in these registers.

At reset, the binary values shown above each bit in Figure 9–2 are written to

the global memory interface control register. Values in bits 3–0 are the values

at these bits’ respective pins (AE, DE, CE1, and CE0). Reset has the following

effects (for both the local bus and the global bus):

� The PAGESIZE fields for STRB0 (bits 18–14) and STRB1 (bits 23–19) are

set to 001112, which corresponds to 256 words.

� The WTCNT fields for STRB0 (bits 10–8) and STRB1 (bits 13–11) are set

to 1112, which corresponds to seven wait states.

� The ACTIVE field for STRB0 (bits 28–24) is set for all addresses over the

global (or local for LSTRB0) memory interface.

� The STRB SWITCH field (bit 29) is set to 1 to insert a cycle between back-

to-back reads that switch from STRB0 to STRB1 (or STRB1 to STRB0).

� The SWW fields for STRB0 (bits 5–4)  and STRB1 (bits 7–6) are both set

to 112 to set the internal ready signal to be the logical AND of the external

READY signal (RDY) and the ready signal generated by the on-chip wait-

state counter (RDYwtcnt).



 Memory-Interface Control Registers

9-7  External Bus Operation

Figure 9–2. Location of the Memory-Interface Control Registers

Global memory interface control register

Local memory interface control register

Reserved

00010  0000h

00010  0001h

00010  0003h

00010  0004h

Figure 9–3. Fields in the Memory-Interface Control Registers
31 30 29 28 24 23 19

xx xx STRB
SWITCH

STRB ACTIVE
(Table 9–4, Table 9–5)

STRB1 PAGESIZE
(Table 9–3)

R
0

R
0

RW
1

RW
1

RW
1

RW
1

RW
1

RW
0

RW
0

RW
0

RW
1

RW
1

RW
1

18 14 13 11 10 8 7 6 5 4 3 2 1 0

STRB0 PAGESIZE
(Table 9–3)

STRB1 WTCNT STRB0WTCNT STRB1 SWW
(Table 9–6)

STRB0 SWW
(Table 9–6)

AE DE CE1 CE0

R
W
0

RW
0

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

RW
1

R R R R

Notes: 1) The register cell figure contains global-memory interface-control register mnemonics. For local-memory interface-

control register mnemonics, add an L prefix to each mnemonic in the figure (e.g., LSTRB SWW, LCE0, etc.).

2) The 1s and 0s below each bit are the binary values written to the register at reset. The values at bits 3–0 are defined

by the values of their respective external pins (AE, DE, CE1, and CE0).

3) These registers are shown in the overall memory map in Figure 4–1 and Figure 4–3.

4) RW=read/write; R=read.

Note:

Mnemonics used are for the global memory interface control register. For the
local-memory interface-control register, add the prefix L to each mnemonic
(e.g., LCEO, LCE1, LSTRB1, etc. The description remains the same for the
local-memory interface-control register.

CE0 Value of external pin CE0 (after it passes through an internal synchronizer).
The value is not latched.

CE1 Value of external pin CE1 (after it passes through an internal synchronizer).
The value is not latched.

DE Value of external pin DE (after it passes through an internal synchronizer).
The value is not latched.

AE Value of external pin AE (after it passes through an internal synchronizer).
The value is not latched.



Memory-Interface Control Registers

 9-8

STRB0 SWW Software wait states for STRB0 access. In conjunction with STRB0 WTCNT,
this field defines the mode of wait-state generation. Actual wait states are
explained in Section 9.4 and in Table 9–6.

STRB1 SWW Software wait states for STRB1 access. In conjunction with STRB1 WTCNT,
this field defines the mode of wait-state generation. Actual wait states are
explained in Section 9.4 and in Table 9–6.

STRB0
WTCNT

Software wait-state count for STRB0 accesses. Specifies the number of
cycles to use when software wait states are active. Three-bit range is from
0002 (zero) to 1112 (seven).

STRB1
WTCNT

Software wait-state count for STRB1 accesses. Specifies the number of
cycles to use when software wait states are active. Three-bit range is from
0002 (zero) to 1112 (seven).

STRB0
PAGESIZE

Page size for STRB0 accesses. Specifies the number of MSBs of the ad-
dress to use to define the bank size for STRB0 accesses. See ranges in
Table 9–3 and subsection 9.3.2.

STRB1
PAGESIZE

Page size for STRB1 accesses. Specifies the number of MSBs of the ad-
dress to use to define the bank size for STRB1 accesses. See ranges in
Table 9–3 and subsection 9.3.2.

STRB
ACTIVE

Specifies address ranges over which STRB0† and STRB1† are active. See
ranges in Table 9–4 on for STRB ACTIVE and Table 9–5 for LSTRB ACTIVE.

STRB
SWITCH

Inserts a single cycle between back-to-back reads that switch from STRB0
to STRB1 (or vice versa).
When a 1, insert cycle.
When a 0, don’t insert cycle.

Reserved Read as zeros.



 Memory-Interface Control Registers

9-9  External Bus Operation

Table 9–3.Page Size as Defined by STRB0/1 PAGESIZE Bits†

STRBx PAGESIZE

(Bits 14–18,

19–23)‡

External Address

Bus Bits Defining

the Current Page

External Address

Bus Bits Defining

Address on a

Page

Page Size

(32-Bit Wds)

00000–00110 Reserved Reserved Reserved

00111¶ 30–8 7–0 28=256

01000 30–9 8–0 29=512

01001 30–10 9–0 210=1K

01010 30–11 10–0 211=2K

01011 30–12 11–0 212=4K

01100 30–13 12–0 213=8K

01101 30–14 13–0 214=16K

01110 30–15 14–0 215=32K

01111 30–16 15–0 216=64K

10000 30–17 16–0 217=128K

10001 30–18 17–0 218=256K

10010 30–19 18–0 219=512K

10011 30–20 19–0 220=1M

10100 30–21 20–0 221=2M

10101 30–22 21–0 222=4M

10110§ 30–23 22–0 223=8M

10111 30–24 23–0 224=16M

11000 30–25 24–0 225=32M

11001 30–26 25–0 226=64M

11010 30–27 26–0 227=128M

11011 30–28 27–0 228=256M

11100 30–29 28–0 229=512M

11101 30 29–0 230=1G

11110 None 30–0 231=2G

11111 Reserved Reserved Reserved

† Mnemonics used are for the global-memory interface-control register. For the local-memory in-

terface-control register, add the prefix L to the beginning of each mnemonic (e.g., LSTRB0 PA-

GESIZE, LSTRB1 PAGESIZE, etc.). The description is the same for the local-memory interface-

control register.
‡ The x in STRBx means that the data in the columns are for STRB0 or STRB1.
§ A STRBx PAGESIZE field of 101102 is depicted in Figure 9–5 on page 9-13.
¶ Value at reset.



Memory-Interface Control Registers

 9-10

Table 9–4.Address Ranges Specified by STRB ACTIVE Bits†

STRBx AC-

TIVE Field

(Bits 24–28)
STRB0 ACTIVE

Address Range

Size of

STRB0 ACTIVE

Address Range
STRB1 ACTIVE

Address Range

00000–01110 Reserved Reserved Reserved

01111 8000 0000–8000  FFFF 216=64K 8001 0000–FFFF FFFF

10000 8000 0000–8001  FFFF 217=128K 8002 0000–FFFF FFFF

10001 8000 0000–8003  FFFF 218=256K 8004 0000–FFFF FFFF

10010 8000 0000–8007  FFFF 219=512K 8008 0000–FFFF FFFF

10011 8000 0000–800F FFFF 220=1M 8010 0000–FFFF FFFF

10100 8000 0000–801F  FFFF 221=2M 8020 0000–FFFF FFFF

10101 8000 0000–803F  FFFF 222=4M 8040 0000–FFFF FFFF

10110 8000 0000–807F  FFFF 223=8M 8080 0000–FFFF FFFF

10111 8000 0000–80FF  FFFF 224=16M 8100 0000–FFFF FFFF

11000 8000 0000–81FF  FFFF 225=32M 8200 0000–FFFF FFFF

11001 8000 0000–83FF  FFFF 226=64M 8400 0000–FFFF FFFF

11010 8000 0000–87FF  FFFF 227=128M 8800 0000–FFFF FFFF

11011 8000 0000–8FFF  FFFF 228=256M 9000 0000–FFFF FFFF

11100 8000 0000–9FFF  FFFF 229=512M A000 0000–FFFF FFFF

11101 8000 0000–BFFF FFFF 230=1G C000 0000–FFFF FFFF

11110‡ 8000 0000 –FFFF FFFF 231=2G None

11111 Reserved Reserved Reserved

† Address ranges specified by the LSTRB ACTIVE bits are listed in Table 9–5.
‡ Value at reset.



 Memory-Interface Control Registers

9-11  External Bus Operation

Table 9–5.Address Ranges Specified by LSTRB ACTIVE Bits†

LSTRBx 

ACTIVE

Field (Bits

24–28)

LSTRB0 ACTIVE

Address Range

Size of

LSTRB0 ACTIVE

Address Range
LSTRB1 ACTIVE

Address Range

00000–01110 Reserved Reserved Reserved

01111 0000 0000 –0000 FFFF 216=64K 0001 0000 –7FFF FFFF

10000 0000 0000 –0001  FFFF 217=128K 0002 0000 –7FFF FFFF

10001 0000 0000 –0003  FFFF 218=256K 0004 0000 –7FFF FFFF

10010 0000 0000 –0007  FFFF 219=512K 0008 0000 –7FFF FFFF

10011 0000 0000 –000F  FFFF 220=1M 0010 0000 –7FFF FFFF

10100 0000 0000 –001F  FFFF 221=2M 0020 0000 –7FFF FFFF

10101 0000 0000 –003F  FFFF 222=4M 0040 0000 –7FFF FFFF

10110 0000 0000 –007F  FFFF 223=8M 0080 0000 –7FFF FFFF

10111 0000 0000 –00FF  FFFF 224=16M 0100 0000 –7FFF FFFF

11000 0000 0000 –01FF  FFFF 225=32M 0200 0000 –7FFF FFFF

11001 0000 0000 –03FF  FFFF 226=64M 0400 0000 –7FFF FFFF

11010 0000 0000 –07FF  FFFF 227=128M 0800 0000 –7FFF FFFF

11011 0000 0000 –0FFF  FFFF 228=256M 1000 0000 –7FFF FFFF

11100 0000 0000 –1FFF  FFFF 229=512M 2000 0000 –7FFF FFFF

11101 0000 0000 –3FFF  FFFF 230=1G 4000 0000 –7FFF FFFF

11110‡ 0000 0000 –7FFF  FFFF 231=2G None

11111 Reserved Reserved Reserved

† Address ranges below 0030 0000h are valid only in microprocessor mode (ROMEN=0). Access to reserved, peripheral, and

on-chip memory areas does not activate LSTRB signals.
‡ Value at reset.



Memory-Interface Control Registers

 9-12

9.3.1 Mapping Addresses to Strobes

Figure 9–4 demonstrates the relationship between the STRB ACTIVE bits

(see Figure 9–3 on page 9-7 for more information) and the address ranges

over which the signals, STRB0 and STRB1, are active. Note that the address

ranges of STRBx and LSTRBx also govern the ranges of associated sig-

nals—RDYx, LRDYx, R/Wx, LR/Wx, PAGEx, LPAGEx, etc. (where x=1 or 0).

Figure 9–4. Effects of STRB ACTIVE on Global Memory Bus Memory Map

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

4M Words

STRB0
Active

STRB1
Active

2G Words

8000 0000h

FFFF FFFFh

8000 0000h

FFFF FFFFh

803F FFFFh

8040 0000h

2G minus
4M Words

NOTE: Shown here are two examples for the global memory map. The entire ’C40 memory

map (local and global) is shown in Figure 4–1 on page 4-3. Note that the highest ad-

dress for LSTRB1 (local bus) is 7FFF FFFFh.

(a) STRB Active=111102 (b) STRB Active=101012

STRB0
Active

Example (a) of Figure 9–4 shows the reset condition (STRB ACTIVE=111102).

In this case, signal STRB0 is active over the entire address range of the global

memory bus (see Table 9–4 for fields and address ranges of STRB ACTIVE).

Example (b) of Figure 9–4 shows the global memory bus memory map when

STRB ACTIVE=101012. In this case, STRB0 is active from addresses

8000 0000h–803F FFFFh, and STRB1 is active from addresses

8040 0000h–FFFF FFFFh (as shown in Table 9–4 for a STRB ACTIVE of

101012).



 Memory-Interface Control Registers

9-13  External Bus Operation

9.3.2 Page Size Operation

Within the memory range selected by any of the four strobe lines, the ’C4x ex-

ternal interface allows you to further divide the range into pages of selected

length. This capability gives you great flexibility in the design of high-speed,

high-density memory systems combined with slower peripheral devices; each

time a page boundary is crossed, a cycle is inserted to allow external logic to

reconfigure itself.

Each PAGESIZE field in the memory interface control register (shown in

Figure 9–2 on page 9-7) works in the same manner to specify the page size

for its corresponding strobe. Table 9–3 on page 9-9 illustrates the relation-

ship between the PAGESIZE field and the bits of the address used to define

the current page and the resulting page size. Page size begins at 256 words

(with external address-bus bits 7–0 defining the address on a page, and

ranges of up to 2G words (’C40) with external address bus bits 30–0 (’C40)

defining the location on a page. The example in Figure 9–5 shows how a

pagesize field value of 101102 is translated into bits 30–23  defining the cur-

rent page and bits 22–0 defining an address on a page.

Figure 9–5. STRBx PAGESIZE Fields Example

30 23 22 0

External address
bus bits defining 
the current page

External address
bus bits defining 

 address on a page

Note: This figure represents a STRBx PAGESIZE field value of 101102 (as shown in Table 9–3).

Changing from one page to another causes a cycle to be inserted in the exter-

nal access sequence, allowing external logic to reconfigure itself appropriate-

ly. For example, the extra cycle allows time for slower devices to get off the bus,

thereby eliminating bus contention. The memory interface control logic keeps

track of the address used for the last access for each STRB. When an access

begins, the PAGE signal corresponding to the active STRB goes inactive

(high) if the access is to a new page. The PAGE0 and PAGE1 signals are inde-

pendent of one another, each having its own page-size logic.

At reset, the page-control logic is initialized so that the extra cycle is inserted

for the first access to the two strobe interfaces.

The control registers for the local memory interface function in the same way

as the control registers for the global memory interface.



Programmable Wait States

 9-14

9.4 Programmable Wait States

The ’C4x has its own internal software-configurable ready-generation capabil-

ity for each strobe. This software wait-state generator is controlled by configur-

ing two fields in the global or local interface control register. Use the STRBx

WTCNT field (bits 8–10 and 11–13) to specify the number of software wait

states to generate, and use the STRBx SWW field (bits 6–7, and 4–5) to select

one of the following four modes of wait-state generation:

� External RDY (SWW = 0). Wait states are generated solely by the external

RDY line (software wait-states ignored).

� WTCNT-generated RDYwtcnt (SWW = 012). Wait states are generated

solely by the software wait-state generator (external RDY ignored).

� Logical-OR of RDY and RDYwtcnt (SWW = 102). Wait states are generated

with a logical OR of internal and external ready signals. Either signal can

generate ready.

� Logical-AND of RDY and RDYwtcnt (SWW = 112). Wait states are gener-

ated with a logical AND of internal and external ready signals. Both signals

must occur.

The four modes are used to generate the internal ready signal, RDYint, that

controls accesses. As long as RDYint = 1, the current external access is ex-

tended. When  RDYint = 0, the current access completes. Since the use of

programmable wait states for both external interfaces is identical, only the

global-bus interface is described in this section.

RDYwtcnt is an internally-generated ready signal. When an external access is

begun, the value in WTCNT is loaded into a counter. WTCNT can be any value

from 0 through 7. The counter is decremented every H1/H3 clock cycle until

it becomes 0. Once the counter is cleared to 0, it remains cleared to 0 until the

next access. When the counter is nonzero, RDYwtcnt=1. When the counter is

0, RDYwtcnt=0.

Table 9–6 is the truth table for each value of SWW, showing the different val-

ues at RDY, RDYwtcnt, and RDYint.

Note:

At reset, the ’C4x inserts seven wait states for each access to external
memory. These wait states are inserted to ensure that the system can func-
tion with slow memories. To increase system performance when using fast
external memories, you will need to decrease the number of wait states.



 Programmable Wait States

9-15  External Bus Operation

Table 9–6.Wait-State Generation for Each Value of SWW

SWW

Value RDY RDYwtcnt RDYint RDYint

00

00

00

00

0

0

1

1

0

1

0

1

0

0

1

1

RDY int is dependent only upon RDY.
RDYwtcnt is ignored.

01

01

01

01

0

0

1

1

0

1

0

1

0

1

0

1

RDY int is dependent only upon
RDYwtcnt. RDY is ignored.

10

10

10

10

0

0

1

1

0

1

0

1

0

0

0

1

RDY int is the logical-OR (electrical
AND because these signals are low
true) of RDY and RDYwtcnt.

11

11

11

11

0

0

1

1

0

1

0

1

0

1

1

1

RDY int is the logical-AND (electrical
OR because these signals are low
true) of RDY and RDYwtcnt.



Memory Interface Timing

 9-16

9.5 Memory Interface Timing

Except for some cases that are covered in detail later in this chapter, the ’C4x

offers a one-cycle external read and a pipeline external write. A write is consid-

ered a two-step operation: one cycle writes the data into the external memory

port buffer and then another cycle moves the data from there to external

memory.

Note:

From the perspective of the DMA or CPU, the write operation finishes in one
cycle, and the DMA or CPU can proceed. However, if the next DMA or CPU
access is to the same external bus, the DMA or CPU must wait, and the write
is considered a two-cycle operation.

Figure 9–6. STRB and RDY Timing

H1

STRB

RDY

Note: The dotted lines emphasize the relationships between the signals.

As shown in Figure 9–6, STRB changes on the falling edge of H1, and RDY

is sampled on the falling edge of H1. Throughout the other timing diagrams in

this section, the following general rules apply to the logical timing of the parallel

external interfaces:

� Changes of R/W are always framed by STRB.

� A page boundary crossing for a particular STRB results in the correspond-

ing PAGE signal going high for one cycle.

� R/W transitions always occur on the rising edge of H1.

� STRB transitions always occur on the falling edge H1.

� RDY is always sampled on the falling edge H1.

� Data is always sampled during a read on the falling edge of H1.

� Data is always driven out during a write on the falling edge of H1.



 Memory Interface Timing

9-17  External Bus Operation

� Data is always stopped from being driven during a write on the rising edge

of H1.

� The status and PAGE signals, following a read, change on the falling edge

of H1. The address also changes on H1’s falling edge.

� The status and PAGE signals, following a write, change on the falling edge

of H1; the address changes on the rising edge of H1.

� The fetch of an interrupt vector over an external interface is identified by

the status signals for that interface (STAT or LSTAT) as a data read.

� The interlocked operation status signals (LOCK and LLOCK) have the

same timing as the STAT and LSTAT status signals, respectively.

� Any time PAGE goes high, STRB goes high.

Note:

When no external port is accessing memory (idle status), the control lines are
inactive (RDY is ignored, STRB is high, and the STATx lines become high),
the address lines keep the last value used in the pins, and the data lines be-
come high-impedance. This can be seen in Figure 9–16.

Figure 9–7 illustrates a read, read, write sequence. This figure assumes that

all three accesses are to the same page and that they are STRB1 accesses.

This timing diagram illustrates that:

� Back-to-back reads to the same page are single-cycle accesses.

� STRB stays low during back-to-back reads.

� When the transition from a read to a write is done, STRB goes high for one

cycle to frame the R/W signal changing.



Memory Interface Timing

 9-18

Figure 9–7. Read Same Page, Read Same Page, Write Same Page Sequence

STAT3–
STAT0,
LOCK

A30–A0

D31–D0

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB1 read)(STRB1 read)

Read Read Write

Note: Strobe and Ready Further Defined

Strobe and ready are discussed from the application viewpoint in
TMS320C4x General-Purpose Applications User’s Guide.



 Memory Interface Timing

9-19  External Bus Operation

Figure 9–8 shows that:

� To prevent unwanted writes, STRB goes high between back-to-back

writes to disable the memory while the address changes.

� As in Figure 9–7, STRB goes high between a write and a read, and it

frames the R/W transition.

� A read following a write on the same bus takes two cycles. This happens

regardless of whether or not the read is on the same strobe and/or page.

� Consecutive writes take two cycles.

Figure 9–8. Write Same Page, Write Same Page, Read Same Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB1 write)(STRB1 write)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write Write Read



Memory Interface Timing

 9-20

Figure 9–9 shows that going from one page to another on back-to-back reads

causes:

� An extra cycle to be inserted to allow the next memory to be selected

� The transition to be signaled by PAGE going high for one cycle

� STRB1 to go high for one cycle

Figure 9–9. Read Same Page, Read Different Page, Read Same Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB1 read)(STRB1 read)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Read Read



 Memory Interface Timing

9-21  External Bus Operation

Figure 9–10 shows that on back-to-back writes, when a page switch occurs:

� PAGE1 signals this occurrence by going high for one cycle.

� No extra cycle is inserted, because write cycles exhibit an inherent one-

half H1 cycle setup of address information before STRB goes low.

Figure 9–10. Write Same Page, Write Different Page, Write Same Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB read)(STRB1 write)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write Write W



Memory Interface Timing

 9-22

Figure 9–11. Write Same Page, Read Different Page, Write Different Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB1 read)(STRB1 write)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write Read Write



 Memory Interface Timing

9-23  External Bus Operation

Figure 9–12. Read Different Page, Read Different Page, Write Same Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB1 read)(STRB1 read)

STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read WRead



Memory Interface Timing

 9-24

Figure 9–13. Write Different Page, Write Different Page, Read Same Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB1 write)(STRB1 write)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write Write R



 Memory Interface Timing

9-25  External Bus Operation

Figure 9–14. Read Same Page, Write Different Page, Read Different Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB1 read) (STRB1 read)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Write R



Memory Interface Timing

 9-26

Figure 9–15 through Figure 9–19 illustrate idle bus cycles. Idle bus cycle tim-

ing is similar to read cycle timing. The primary differences are that no data is

read, STRB is held high, and RDY is ignored.

Figure 9–15. Read Same Page, Idle One Cycle, Read Same Page Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)idle(STRB1 read)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0

idle

Read Read



 Memory Interface Timing

9-27  External Bus Operation

Figure 9–16. Write Same Page, Idle One Cycle, Write Different Page Sequence

(STRB1 write)

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(idle)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write Write



Memory Interface Timing

 9-28

Figure 9–17. Idle, Read Different Page, Idle Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(idle)(STRB1 read)(idle)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read



 Memory Interface Timing

9-29  External Bus Operation

Figure 9–18. Idle, Write Same Page, Idle Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(idle)(STRB1 write)(idle)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write



Memory Interface Timing

 9-30

Figure 9–19. Write Different or Same Page, Idle, Idle Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(idle)(idle)(STRB1 write)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write



 Memory Interface Timing

9-31  External Bus Operation

Figure 9–20 illustrates a STRB1 read followed by a STRB0 read when

STRB SWITCH=0. This mode allows the reads to be back-to-back, with no

cycles inserted between them when they are activating different strobes.

Figure 9–20. Read Same Page on STRB1, STRB0, and on STRB1 Sequence When
STRB SWITCH = 0

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB0 read)(STRB1 read)STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Read R



Memory Interface Timing

 9-32

Figure 9–21 is similar to Figure 9–20 except that the second STRB1 read is

from a different page than the first.

Figure 9–21. Read Same Page on STRB1, STRB0, Read Different Page on STRB1
Sequence When STRB SWITCH = 0

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB0 read)(STRB1 read)

STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Read R



 Memory Interface Timing

9-33  External Bus Operation

Figure 9–22 illustrates a STRB1 read followed by a STRB0 read when

STRB SWITCH=1. In this mode, a cycle is inserted between back-to-back

reads that activate different strobes. Some memory configurations require this

cycle between strobe transitions to prevent bus conflicts during back-to-back

reads on different strobes.

Figure 9–22. Read Same Page on STRB1, STRB0, and on STRB1 Sequence When
STRB SWITCH = 1

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB0 read)(STRB1 read)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Read R



Memory Interface Timing

 9-34

Figure 9–23 is similar to Figure 9–22 except that the second STRB1 read is

from a different page than the first.

Figure 9–23. Read Same Page on STRB1, STRB0, Read Different Page on STRB1
Sequence When STRB SWITCH = 1

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB0 read)(STRB1 read) (STRB1 read)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Read



 Memory Interface Timing

9-35  External Bus Operation

Figure 9–24. Write Same Page on STRB1, STRB0, Read Same Page on STRB1 
Sequence

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)(STRB0 write)(STRB1 write)
STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Write Write R



Memory Interface Timing

 9-36

Figure 9–25 and Figure 9–26 show one wait-state read and write operations,

respectively.

Figure 9–25. Read With One Wait State

(STRB1 read)

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 read)

extra cycle

STAT3–
STAT0,
LOCK

A30–A0

D31–D0 Read Read



 Memory Interface Timing

9-37  External Bus Operation

Figure 9–26. Write With One Wait State

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)

extra cycle

STAT3–
STAT0,
LOCK

A30–A0

D31–D0



Using Enable Signals to Control Signal Groups

 9-38

9.6 Using Enable Signals to Control Signal Groups

Figure 9–27. Using Enable Signals to Put Signal Groups in a High-Impedance State

Signal
Group

Signal
Group

Enable

(1) (2)

Figure 9–27 shows an enable signal controlling the corresponding signal

group. For example, signal DE controls the global external-interface data sig-

nals. The enable signals are unsynchronized inputs that turn off the corre-

sponding output buffers. After the enable signal goes high plus timing (1) in

Figure 9–27, the corresponding signal group goes into high-impedance. Then,

after the enable signal goes low plus timing (2) in Figure 9–27, the signal group

comes out of high-impedance. If the signal group is already in a high-impe-

dance state before the enable signal goes high, the group will come out of the

high-impedance state (when the enable signal goes low ) only if the signal

group is in a state requiring it to do so. For example, a data bus that was not

being driven will be driven after being enabled, if an access is pending for the

data bus.

Note:

If you intend to use internally generated wait states, be certain that no data
is read from or written to the bus when it is disabled. This is because it is pos-
sible for a bus to be in the high-impedance state with internally generated
wait states. In this case, data that is written will not be seen externally, and
data that is read will be whatever value is sampled on the high-impedance
bus.



 Interlocked Operations

9-39  External Bus Operation

9.7 Interlocked Operations

One of the most common parallel processing configurations is the sharing of

global memory by multiple processors. For multiple processors to access this

global memory and share data in a coherent manner, some sort of arbitration

or handshaking is necessary. ’C4x interlocked operations meet this require-

ment for arbitration. More details are given in Section 9.7.5 on page 9-44.

Five ’C4x instructions are referred to as interlocked operations. Through the

use of external signals, these instructions provide powerful synchronization

mechanisms. They also guarantee integrity of communication and result in a

high-speed operation. The interlocked-operation instruction group is listed in

Table 9–7.

Table 9–7. Interlocked Operations

Instruction Description Operation

LDFI Load floating-point value from memory into a

register; interlocked when external memory

accessed

Signal interlocked

src → dst

LDII Load integer from memory into a register; in-

terlocked when external memory accessed

Signal interlocked

src → dst

SIGI Load floating-point value from memory into a

register; interlocked when external memory

accessed

Signal interlocked

Clear interlock

STFI Store floating-point value from a register to

memory; interlocked when external memory

accessed

src → dst

Clear interlock

STII Store integer from a register to memory; inter-

locked when external memory accessed

src → dst

Clear interlock

The interlocked operations use the global- and local-bus pins, LOCK and

LLOCK, to reflect a currently executing interlocked operation. This signal is ac-

tive (low) when any of the interlocked instructions in Table 9–7 are executing.



Interlocked Operations

 9-40

The external timing for interlocked loads and stores is the same as for standard

loads and stores. You can extend interlocked loads and stores like standard

accesses by using the appropriate ready signal (RDYx or LRDYx).

9.7.1 LDFI and LDII

The LDFI and LDII instructions perform the following actions:

1) Pull (L)LOCK low.

2) Execute an LDF or LDI instruction.

3) Extend the read cycle until the appropriate ready signal is received. Com-

plete the instruction.

4) Leave (L)LOCK active low until changed by an STFI, STII, or SIGI.

The read/write operation is identical to any other read/write cycle except for

the special use of (L)LOCK. The src operand for LDFI and LDII is always a di-

rect or indirect memory address. (L)LOCK is set to 0 only if the src is located

off-chip (i.e., STRB or LSTRB is active). If on-chip memory is accessed, then

(L)LOCK is not asserted, and the operation is as an LDF or LDI from internal

memory.

9.7.2 STFI and STII

The STFI and STII instructions perform the following operations:

1) Begin a write cycle. The state of (L)LOCK does not change. If it is low, an

interlocked operation occurs. If high, the operation is as if an STF or STI

is performed (not interlocked).

2) Execute an STF or STI instruction and extend the write cycle until the ap-

propriate ready is signaled.

3) After the write cycle, bring (L)LOCK inactive (high).

As in the case for LDFI and LDII, the dst of STFI and STII affects (L)LOCK. If

dst is located off-chip (STRB(0,1) or LSTRB(0,1) is active), (L)LOCK is set to

a 1. If on-chip memory is accessed, then (L)LOCK is not asserted, and the op-

erations are as a STF or STI to internal memory.



 Interlocked Operations

9-41  External Bus Operation

9.7.3 SIGI

The SIGI instruction can be used in a variety of ways. In some applications,

you may wish to modify semaphores externally, perhaps with special-purpose

logic. If so, SIGI can be used to perform a single-cycle interlocked access of

the semaphore. The SIGI instruction can also be used simply to perform an

external read and to signal that a particular point in your code has been

reached.

The SIGI instruction functions as follows:

1) Pulls (L)LOCK low

2) Executes an LDI instruction

3) Extends the read cycle until the appropriate ready signal is received. Com-

pletes the instruction

4) Brings (L)LOCK back inactive high

Interlocked operations can be used to implement a busy-waiting loop, to ma-

nipulate a multiprocessor counter, to implement a simple semaphore mecha-

nism, or to perform synchronization between two ’C4xs. The following exam-

ples illustrate the usefulness of the interlocked operations instructions.

9.7.4 Interlocked Examples

Examples in this section show you how interlocked operations can be used to

implement:

� A busy-waiting loop to synchronize processors at the software level

(Example 9–1, page 9-42)

� A counter shared between cooperative processors that defines the num-

ber of times a task should be done by the processors (Example 9–2 on

page 9-42)

� Semaphores to ease the programming of critical sections (Example 9–3

and Example 9–4 on page 9-43)

Example 9–1 shows the implementation of a busy-waiting loop. The ’C4x

stays in this loop until another processor writes a 0 in @LOCK. If location

LOCK is the interlock for a critical section of code, and a nonzero means the

lock is busy, the algorithm for a busy-waiting loop can be used as shown.



Interlocked Operations

 9-42

Example 9–1. Busy-Waiting Loop

LDI 1,R0 ;Put 1 in R0

L1: LDII @LOCK,R1 ;Load lock value into R1

STII R0,@LOCK ;Set lock value to 1

BNZ L1 ;If R1 (previous lock value) is not

;0, read it again

Example 9–2 shows how a location COUNT may contain a count of the num-

ber of times a particular operation must be performed. This operation may be

performed by any processor in the system. If the count is zero, the processor

waits until it is nonzero before beginning processing. The example also shows

the algorithm for modifying COUNT correctly.

Example 9–2. Task Counter Manipulation

LDI 0,R0

WAIT LDII @COUNT,R1 ;Read current value of counter

BZD WAIT ;If COUNT = 0, try again

LDNZ 1,R0 ;If COUNT not zero, decrement it

SUBI R0,R1

STII R1,@COUNT ;Update COUNT

Figure 9–28 illustrates multiple ’C4xs sharing global memory and using inter-

locked instructions as shown in Example 9–3 and Example 9–4.

Figure 9–28. Multiple ’C4x Devices Sharing Global Memory 

Global Memory

Arbitration Logic

’C4x #2

Local

Memory

Local

Memory

’C4x #1

(L) LOCK (L)A

(L)D

CTRL

(L)A

CTRL

Lock, Count, or S

A
D

D
R

C
T

R
L

D
A

T
A

(L) LOCK

(L)D



 Interlocked Operations

9-43  External Bus Operation

Example 9–3. Implementation of V(S)

V: LDII @S,R0

ADDI 1,R0

STII R0,@S ; S + 1 → S

Example 9–4. Implementation of P(S)

LDI 0,R0

P: LDII @S,R1 ;Read semaphore’s current value

BZD P ;If S = 0, go to P and try again

LDNZ 1,R0 ;If S is not 0, decrement it 

SUBI R0,R1

STII R1,@S ;Update S

Sometimes it may be necessary for several processors to access some

shared data or other common resources. The portion of code that must access

the shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.

Semaphores are variables that can take only nonnegative integer values. Two

primitive, indivisible operations are defined on semaphores (with S being a

semaphore):

V(S): S + 1 → S

P(S): P: if (S == 0), go to P

else S – 1 → S

Indivisibility of V(S) and P(S) means that when these processes access and

modify the semaphore S, they are the only processes doing so.

To enter a critical section, a P operation is performed on a common sema-

phore, for example, on S (S is initialized to 1). The first processor performing

P(S) will be able to enter its critical section. All other processors are blocked

because S has become 0. After leaving its critical section, the processor per-

forms a V(S), thus allowing another processor to execute P(S) successfully.

The ’C4x code for V(S) is shown in Example 9–3, and code for P(S) is shown

in Example 9–4. Compare the code in Example 9–4 to the code in

Example 9–2, which does not use semaphores.



Interlocked Operations

 9-44

9.7.5 Bus-Lock Pins and Bus Timing

The timing of the LOCK and LLOCK pins is the same as the timing of the

STAT(3–0) and LSTAT(3–0) pins. The LDII, LDFI, ,STII, STFI, and SIGI

instructions manipulate the bus-lock signals only when an external memory

access is made.

LDII, LDFI, and SIGI all clear LOCK or LLOCK to zero at the beginning of the

read cycle with H1 falling. STII, STFI, and SIGI all set LOCK or LLOCK to one

at the end of the access cycle on the falling edge of H1. Interlocked instructions

are explained in Section 9.7.

Figure 9–29 through Figure 9–32 show bus timing characteristics for several

external accesses using STII, LDII, STFI, LDFI, and SIGI.



 Interlocked Operations

9-45  External Bus Operation

Figure 9–29 is an example of an LDII or LDFI external access.

Figure 9–29. LDII or LDFI External Access

LDII or LDFI external access

LOCK

STAT3–
STAT0

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB1 read)(STRB1 read)

A30–A0

D31–D0 Read Read Write



Interlocked Operations

 9-46

Figure 9–30 is an example of STII or STFI external access following the pre-

vious interlocked load (shown in Figure 9–29) and an idle cycle. This is the tim-

ing for an interlocked load/interlocked store sequence.

Figure 9–30. LDII or LDFI and STII or STFI External Access

STII or STFI external access

LDII or LDFI external access

LOCK

STAT3–
STAT0

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)idle(STRB1 read)(STRB1 read)

A30–A0

D31–D0 Read Read Write



 Interlocked Operations

9-47  External Bus Operation

Figure 9–31 is an example of a SIGI external access.

Figure 9–31. SIGI External Access Timing

SIGI external access

LOCK

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 write)(STRB1 SIGI read)(STRB1 read)STAT3–
STAT0

A30–A0

D31–D0 Read Read Write



Interlocked Operations

 9-48

Figure 9–32 illustrates timing for SIGI if the LOCK signal is already low. This

could occur when a SIGI follows an LDII instruction. Since LOCK is already

low, the only effect SIGI has on LOCK is to bring it high.

Figure 9–32. SIGI When LOCK Is Already Low

LOCK

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

SIGI access

LDII access

(STRB1 read)(STRB1 read)(STRB1 read)STAT3–
STAT0

A30–A0

D31–D0 Read Read Read



 IACK Timing

9-49  External Bus Operation

9.8 IACK Timing

The IACK pin is affected by the IACK (interrupt acknowledge) instruction. The

timing of the pin is similar to that of the LOCK pin when used by the SIGI in-

struction. In all respects (timing, extension with wait states, etc.) the IACK be-

haves like a LOCK or STAT signal. The only difference is that there is only one

IACK pin.

The timing for the IACK pin is shown in Figure 9–33. Like the interlocked in-

structions, the IACK instruction affects IACK only for an external access.



IACK Timing

 9-50

Figure 9–33. IACK Timing

IACK external access

IACK

PAGE1

RDY1

STRB1

R/W1

PAGE0

RDY0

STRB0

R/W0

H1

(STRB1 IACK read)(STRB1 read)
STAT3–

STAT0

A30– A0

D31 – D0 Read Read



 Running Title—Attribute Reference

10-1  Chapter Title—Attribute Reference

The Bootloader

The bootloader provided in the on-chip ROM of the ’C4x can load and execute

source programs that are received from a host processor, an EPROM, or a

standard memory device. The ’C4x bootloader functions primarily as either a

memory bootloader or as a communication port bootloader. 

Topic Page

10.1 Bootloader Description 10-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.2 Mode Selection 10-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.3 Bootloading Sequence 10-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.4 Bootloading from External Memory (Examples) 10-10. . . . . . . . . . . . . 

10.5 Bootloading from a Communication Port (Examples) 10-16. . . . . . . . . 

10.6 Modifying the IIOFx Pins After Bootloading 10-19. . . . . . . . . . . . . . . . . 

10.7 The Bootloader Program 10-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 10



Boot Loader Description

 10-2

10.1 Bootloader Description

The bootloader code starts at location 0x11bc in the on-chip ROM in both the

’C40 and ’C44. For ’C44 device revisions ≤ 1.0, the ’C44 bootloader code is

identical to the ’C40 bootloader code. For ’C44 device revisions > 1.0, the ’C44

bootloader code differs in three memory locations from the ’C40 bootloader.

These three locations are noted in the code. The bootloader program is listed

in Section 10.7, The Bootloader Program.



 Mode Selection

10-3  The Bootloader

10.2 Mode Selection

The ’C4x bootloader functions primarily as either a memory bootloader or a

communication port bootloader. Bootloader mode selection is determined by

the IIOF(3–0) pins, as described in Table 10–1 and shown in Figure 10–1.

� The memory bootloader supports user-definable byte, half-word, and full-

word data formats, which allow the flexibility to load a source program from

memories having widths of 8 bits, 16 bits, or 32 bits. The source programs

to be loaded must reside in one of six predefined memory locations, as

listed in Table 10–1. STRB0 (LSTRB0) should be used because they are

the active strobes after reset. Figure 10–2 shows the flow for the memory

bootloader.

� The communication port bootloader waits for the first data input from one

of the six (’C40) or four (’C44) communication port channels and uses that

channel to perform the bootload. The format of the incoming data stream

is similar to that for a memory data stream, except that the source memory

width is excluded (the format is described in Table 10–2). Figure 10–3

shows the flow of the communication port bootloader.

Table 10–1. Bootloader Mode Selection Using Pins IIOF(3–0)

External Pin Source Program Location

IIOF3 IIOF2 IIOF1 IIOF0 ’C40 ’C44

1 1 0 1 0030 0000h 0030 0000h

1 0 1 1 4000 0000h 4000 0000h†

1 0 0 1 6000 0000h 0080 0000h

0 1 1 1 8000 0000h 8000 0000h†

0 1 0 1 A000 0000h 8040 0000h†

0 0 1 1 C000 0000h 8080 0000h†

0 0 0 1
Reserved (the boot-

loader terminates)

Reserved (the boot-

loader terminates)

1 1 1 1 Communication port Communication port

† The ’C44 external-address buses each have only the low 24 bits of the internal address bus.

Thus, the internal address 4000000h maps to 0h on the local bus. Any address at or above

80000000h is mapped to the global bus; 80800000, for example, maps to address 00800000h

on the global bus.



Mode Selection

 10-4

Figure 10–1. Mode Selection Flow

Memory load
from 4000 0000h

Check comm. port 0

No

Yes

Yes

Reset with ROMEN=1, IIOF0 = 1 and
RESETLOC(0,1) = 002

Begin

Memory load
from 0030 0000h

Register
IIF(3–1) = 1102

?

Register
IIF(3–1) = 1012

?

No

Yes

Yes
Memory load
from 6000 0000h (C40)
from 0080 0000h (C44)

Register
IIF(3–1) = 1002

?

Memory load
from 8000 0000h

Register
IIF(3–1) = 0112

?

No

No

Yes

Yes
Memory load
from A000 0000h (C40)
8040 0000h (C44)

Register
IIF(3–1) = 0102

?

Memory load
from C000 0000h (C40)
8080 0000h (C44)

Register
IIF(3–1) = 0012

?

No

Comm. port load

Data in
comm. port

IFIFO?

No

Check next comm. port

No

All
comm. ports

checked?Yes

No

Yes

No

YesRegister
IIF(3–1) = 0002

?
Exit bootloader code



 Bootloading Sequence

10-5  The Bootloader

10.3 Bootloading Sequence

Here is the general sequence of events in bootloading a source program:

1) Select the bootloader by resetting the ’C4x while driving the

RESETLOC(1,0) pins low, the on-chip ROM enable pin (ROMEN) high,

and the IIOF0 pin high. The ROMEN pin must be high during bootloader

execution, but it can be changed anytime after bootloading.

2) The status of external pins IIOF(3–1) indicates where to find the source

program to be loaded (memory or communication port). These options are

listed in Table 10–1. Pins IIOF(3–1) are read as the IIOF flags in the CPU

IIF register. The bootloader takes the following steps to determine the

source program’s location, as is shown in Figure 10–1.

a) If an IIF(3–1) value of from 1102 to 0012 (6 to 1) is found, the source

program is loaded from the corresponding memory address shown in

the top six lines of Table 10–1. See Figure 10–2 for details on boot-

loader memory flow.

b) The IIF(3–1) value of 0002 (0) is reserved. You should not use this

mode.

c) If none of the combinations 0002 – 1102 are found, the bootloader

program assumes that loading will be via a communication port, and

it starts checking communication port input channels (in the order port

0 through port 5). If it finds no inputs from a communication port, the

program returns to checking the status of the IIOF(3–1) pins again.

See Figure 10–3 for details on bootloader communication port flow.

3) When the source program’s data stream is found, the program is loaded

at the address found in the fifth word of the data stream (the format is

shown in Table 10–2), using the bus width specified in the first word (8, 16,

or 32 bits wide). The bootloader cannot load the source program to any

location below 0000 1000h, unless the address decode logic is remapped.

The first five words of the source program specify its loading and execution

criteria. Remaining words are the source program(s) and vector table

pointers as shown in Table 10–2.

4) An IACK instruction is executed, indicating the completion of the bootload

sequence. This indication can then be used to switch from microcomputer

(ROMEN = 1) to microprocessor mode (ROMEN = 0). You do not need to

reset the ’C4x to change the ROMEN pin. However, ensure that the ’C4x

will not access addresses 0000 0000h to 0000 0FFFh during the change.

5) The source program is executed (entry point is the first word of the first

loaded program).



Bootloading Sequence

 10-6

Figure 10–2. Memory Load Flow

Branch to destination
address of first
block loaded

Transfer 32-Bit data from
source to destination

Yes

Yes

address
Load destination

Set global bus
control register

Determine mode
8, 16, or 32 bits?

Branch to source
 program address

No

End of block ?

Block size= 0?

Memory load

Set local bus
control register

Load block size

Set IVTP register

Set TVTP register

Execute IACK

Begin program execution

No



 Bootloading Sequence

10-7  The Bootloader

Figure 10–3. Communication-Port Load Mode Flow

Begin program execution

No

Set TVTP register

Transfer one word from
comm. port to

destination address

port input
Wait for comm.

Load destination
address

port input
Wait for comm.

Block size=0?

No

Yes

block loaded
address of first

Branch to destination

Load block size

Wait for comm.
port input

Set global bus control register

End of block?

Comm. port load

Set local bus control register

Set IVTP register

Execute IACK

Yes

Wait for comm. port input

Wait for comm. port input



Bootloading Sequence

 10-8

The data stream with its source program(s) should be in the format shown in

Table 10–2. The contents of words 4 through n vary for the different source

programs loaded throughout the entire data stream.The first three words and

the last three words are nonvariables that affect each of the source-program

blocks. The eight least significant bits (LSBs) of the first word specify the

memory width. If byte or half-word wide is selected, the loading sequence is

from LSBs to MSBs.

Table 10–2. Structure of Source Program Data Stream

Word Contents

1 Memory width where source program resides (8, 16, or 32 bits wide)

2 Value to set in the global memory interface control register (shown in Figure 9–2).

3 Value to set in the local memory interface control register (shown in Figure 9–2).

4 Block size in 32-bit words of the first program block to be loaded (after the number of words is

loaded, the next word should be all zeros; if not, another block is assumed to follow).

5 Address where the source program is to be loaded.

6 First word of source program.

n Last word of source program (the program organized as words 4 through n — these shaded

words).

n+1 Word of all zeros. (Note that if several source-program blocks were sent, word n above would be

the last word of the last source-program block. Each source-program block would have the format

shown in words 4 through n. This word of all zeros follows the last source program block).

n+2 IVTP value (interrupt vector table pointer, see Section 3.2).

n+3 TVTP value (trap vector table pointer, see Section 3.2).

n+4 Memory location for IACK instruction (see IACK instruction in Chapter 14).

Note: The shaded area identifies the source program block.

Each source program in a multiple block program transfer can be loaded to dif-

ferent specified destinations. Each program block specifies its program’s size

and destination address at the beginning of the block. End the entire block pro-

gram loader function by following the last block with an all-zero word

(0000 0000h).



 Bootloading Sequence

10-9  The Bootloader

The second and third last words of the source memory define the interrupt vec-

tor table pointer (IVTP) and the trap vector table pointer (TVTP). The last word

of the source memory defines the memory location for the IACK instruction.

The IACK instruction brings the IACK signal low as data is read, if the memory

location specified in the IACK instruction is in external memory that is available

in the system. Finally, the processor begins execution of the first code block.

It is assumed that at least one block of source will be loaded when
the bootloader is invoked. Initial loader invocation with a block size
of 0000 0000h produces unpredictable results.



Bootloading from External Memory (Examples)

 10-10

10.4 Bootloading from External Memory (Examples)

When the ’C4x’s ROMEN input pin is high and RESETLOC(1,0)=002 during

reset, the memory bootloader can load programs stored in off-chip memory

(typically 8-, 16-, or 32-bit ROMs) at an address determined by the IIOF pins

to any valid external or internal memory in the ’C4x’s memory map.

Because address zero (0) is reserved for the bootloader, address
zero should not be used for the reset vector when a user-defined,
internal ROM-code mask is used.

The 8 LSBs of the first word of data read stream specify the memory width (8,

16, or 32 bits) as shown in Table 10–3, Table 10–4, and Table 10–5.

� 8-bit memories: 08h

� 16-bit memories: 0010h

� 32-bit memories: 0000 0020h

If 8- or 16-bit external memories are used, the loading sequence is from LSBs

to MSBs. The bootloader reads the contents of 16-bit wide memories (least

significant half word first) and packs each pair of 16-bit half words to make a

32-bit word before loading each word to memory. Accordingly, the bootloader

reads the contents of byte-wide memories (least significant byte first) and

packs each group of four bytes into a 32-bit word before loading each word to

memory. Because the bootloader packs bytes before loading, no external

hardware is needed to pack the loaded bytes into a 32-bit word. For 32-bit wide

external memories, no byte packing is necessary, because the memory data

width matches that of the ’C4x.

For 16-bit memories, the data read is expected to be in bit positions 0–15.

Thus, the half-word memory’s data lines should be interfaced to ’C4x data lines

(L)D15–0. For byte-wide memories, the data read is expected to be in bit posi-

tions 0–7. Hence, the byte-wide memory’s data lines should be interfaced to

’C4x data lines (L)D7–0. Even though the ’C4x does not require that unused

data lines be pulled up to VCC, it is recommended that each unused data line

be pulled up through separate 22 KΩ resistors to 5 volts for minimum power

dissipation.

Table 10–3, Table 10–4, and Table 10–5 show example data streams for 8-bit,

16-bit, and 32-bit wide configured memories, respectively.



 Bootloading from External Memory (Examples)

10-11  The Bootloader

These examples assume that:

� The status of the IIOF(0–3) pins is 1102 after reset is deasserted (memory

load from 0030 0000h — see Table 10–1).

� The source program resides at memory location 0030 0000h and defines

the following:

� Memory width for bootloader: 8, 16, or 32 bits

� Global bus memory with one software wait state, external RDY (SWW

= 11), page size = 64K words for both STRB0 and STRB1, and an ac-

tive address range = 1G words for both STRB0 and STRB1.

� Local memory bus that requires two software wait states (SWW = 01),

page size = 32K words, and active address range = 1G words for both

STRB0 and STRB1.

� First block program of 294 words in length and whose destination ad-

dress is at 002F F840h.

� Second block program of 64 words in length and whose destination

address is at 002F F800h.

� IVTP and TVTP, which are overlapped and point to the beginning of

the on-chip RAM.

� Memory location of 0030 0000h for IACK instruction.

Table 10–3. Byte-Wide Configured Memory

Word Address Value Comments

1 0030 0000h 08h Memory width = 8 bits

0030 0001h 00h

0030 0002h 00h

0030 0003h 00h

2 0030 0004h F0h Global memory bus control word = 1D7B C9F0h

0030 0005h C9h (Described in Figure 9–2 on page 9-7)

0030 0006h 7Bh

0030 0007h 1Dh



Bootloading from External Memory (Examples)

 10-12

Table 10–3.Byte-Wide Configured Memory (Continued)

Word Address Value Comments

3 0030 0008h 50h Local memory bus control word = 1D73 9250h

0030 0009h 92h (Described in Figure 9–2 on page 9-7)

0030 000Ah 73h

0030 000Bh 1Dh

4 0030 000Ch 26h 1st source program block size = 126h

0030 000Dh 01h

0030 000Eh 00h

5 0030 0010h 40h 1st source program block starting addr = 002F F840h

0030 0011h F8h

0030 0012h 2Fh

0030 0013h 00h

6

to

299

0030 0014h

•
•
•
0030 04ABh

1st source program block starts here (first word)

•
•
•
1st source program block ends here (last word)

300 0030 04ACh 40h 2nd source program block size = 40

0030 04ADh 00h

0030 04AEh 00h

0030 04AFh 00h

301 0030 04B0h 00h 2nd source program block starting addr = 002F F800h

0030 04B1h F8h

0030 04B2h 2Fh

0030 04B3h 00h

302

to

365

0030 04B4h

•
•
•
0030 05B3h

2nd source program block starts here (first word)

•
•
•
2nd source program block ends here (last word)

Note: The shaded area identifies the source program block.



 Bootloading from External Memory (Examples)

10-13  The Bootloader

Table 10–3.Byte-Wide Configured Memory (Continued)

Word Address Value Comments

366 0030 05B4h 00h Value 0 to terminate the program block load

0030 05B5h 00h

0030 05B6h 00h

0030 05B7h 00h

367 0030 05B8h 00h IVTP = 002F F800h

0030 05B9h F8h

0030 05BAh 2Fh

0030 05BBh 00h

368 0030 05BCh 00h TVTP = 002F F800h

0030 05BDh F8h

0030 05BEh 2Fh

0030 05BFh 00h

369 0030 05C0h 00h Memory location for IACK instruction =0030 0000h

0030 05C1h 00h

0030 05C2h 30h

0030 05C3h 00h (This is the final word in the data stream.)

Note: The shaded area identifies the source program block.



Bootloading from External Memory (Examples)

 10-14

Table 10–4.16-Bit Wide Configured Memory

Word Address Value Comments

1 0030 0000h 0010h Memory width = 16 bits

0030 0001h 0000h

2 0030 0002h C9F0h Global memory bus control word = 1D7B C9F0h

0030 0003h 1D7Bh

3 0030 0004h 9250h Local memory bus control word = 1D73 9250h

0030 0005h 1D73h

4 0030 0006h 0126h 1st program block size = 126h

0030 0007h 0000h

5 0030 0008h F840h 1st program block starting addr.= 002F F840h

0030 0009h 002Fh

6

to

299

0030 000Ah
•
•
•
0030 0255h

1st program block starts here (first word)
•
•
•
1st program block ends here (last word)

300 0030 0256h 0040h 2nd program block size = 40h

0030 0257h 0000h

301 0030 0258h F800h 2nd program block starting addr.= 002F F800h

0030 0259h 002Fh

302

to

365

0030 025Ah
•
•
•
0030 02D9h

2nd program block starts here (first word)
•
•
•
2nd program block ends here (last word)

366 0030 02DAh 0000h Value 0 to terminate the program block load

0030 02DBh 0000h

367 0030 02DCh F800h IVTP = 002F F800h

0030 02DDh 002Fh

368 0030 02DEh F800h TVTP = 002F F800h

0030 02DFh 002Fh

Note: The shaded area identifies the source program block.



 Bootloading from External Memory (Examples)

10-15  The Bootloader

Table 10–4.16-Bit Wide Configured Memory (Continued)

Word Address Value Comments

369 0030 02E0h 0000h Memory location for IACK instruction = 0030 0000h

0030 02E1h 0030h (This is the final word in the data stream.)

Note: The shaded areas identify the source program blocks.

Table 10–5.32-Bit Wide Configured Memory

Word Address Value Comments

1 0030 0000h 0000 0020h Memory width = 32 bits

2 0030 0001h 1D7B C9F0h Global memory bus control word = 01D7B C9F0h

3 0030 0002h 1D73 9250h Local memory bus control word = 01D73 9250h

4 0030 0003h 0000 0126h 1st program block size = 126h

5 0030 0004h 002F F840h 1st program block starting addr = 002F F840h

6

to

299

0030 0005h

•
•
•
0030 012Ah

1st program block starts here (first word)

•
•
•
1st program block ends here (last word)

300 0030 012Bh 0000 0040h 2nd program block size = 40h

301 0030 012Ch 002F F800h 2nd program block starting addr = 002F F800h

302

to

365

0030 012Dh

•
•
•
0030 016Ch

2nd program block starts here (first word)

•
•
•
2nd program block ends here (last word)

366 0030 016Dh 0000 0000h Value 0 to terminate the program block load

367 0030 016Eh 002F F800h IVTP = 002F F800h

368 0030 016Fh 002F F800h TVTP = 002F F800h

369 0030 0170h 0030 0000h Address location for IACK instruction = 00030 0000h

Note: The shaded areas identify the source program blocks.



Bootloading from a Communication Port (Examples)

 10-16

10.5 Bootloading from a Communication Port (Examples)

A value of all 1s on IIOF(0–3) signals that the source program is being trans-

mitted via a communication port. Bringing all four of the IIOF(0–3) pins high

also allows the pins to be used as interrupt lines without any external decode

logic. With pins IIOF(0–3) all high at reset, the ’C4x polls the input level of each

port to determine which channel contains the program. The input data se-

quence of the communication bootloader is the same as that of the memory

bootloader except that it lacks the source memory width definition (because

the memory width of the communication port bootloader is fixed).

Example 10–1 is a program listing for booting a multiprocessor system.

After a 32-bit boot from external memory, the master ’C4x boots — via a com-

munication port—another ’C4x (slave processor) connected to communica-

tion port 0 of the master processor. Both processors stay in an infinite loop after

booting. The code should be loaded in the master ’C4x EPROM in the correct

memory location according to the IIOF settings of the master ’C4x. All IIOF pins

of the slave processor should be set to 1. The ROMEN pin is enabled

(ROMEN=1) and the RESETLOC(1,0) pins are low in both processors. For a

description of how to convert an executable COFF file into an EPROM pro-

grammer format, see the hex conversion utility in the TMS320 Floating Point

Assembly Language Tools User’s Guide (literature number SPRU035).



 Bootloading from a Communication Port (Examples)

10-17  The Bootloader

Example 10–1. Booting a ’C4x Multiprocessor System

*––––––––––––––––––––––––––––––––––––––––––––––––––––

*       MASTER PROCESSOR BOOT TABLE

*––––––––––––––––––––––––––––––––––––––––––––––––––––

        .text

        .word   32                ; memory width

        .word   3003c000h          ; MASTER global control register

                                    ; (system specific !!)

        .word   3d79c210h           ; master local control register

                                    ; (system specific !!)

*––––––––––––––––––––––––––––––––––––––––––––––––––––

*       MASTER PROCESSOR PROGRAM BLOCK

*––––––––––––––––––––––––––––––––––––––––––––––––––––

        .word   10                 ; block size

        .word   2ff800h             ; block dest addr

* Code for master processor: this code sends boot table to slave processor

        ldi 8,rc                ; loop 9 times: size of slave processor

                                 ; boot table

        rptbd  endb1

        ldp src                 ; src in external memory

        ldi @src,ar0

        ldi @dst,ar1

        ldi *ar0++(1),r0        ; block start

endb1:  sti r0,*ar1

        bu  $                   ; master processor loops forever

src     .word BOOT_TABLE2        ; address of boot table of slave

                               ; processor

dst     .word   100042h         ; address of OFIFO connected to slave

                               ; processor

*––––––––––––––––––––––––––––––––––––––––––––––––––––

*       END OF ALL BLOCKS

*––––––––––––––––––––––––––––––––––––––––––––––––––––

        .word   0             ; master end of bootload sequence

        .word   2ffd00h         ; master IVTP value

        .word   2ffd00h          ; master TVTP value

        .word   40000000h       ; master address for iack

*––––––––––––––––––––––––––––––––––––––––––––––––––––

*       END OF MASTER PROCESSOR BOOT TABLE : size = 9 words

*––––––––––––––––––––––––––––––––––––––––––––––––––––



Bootloading from a Communication Port (Examples)

 10-18

Example 10–1. Booting a ’C4x Multiprocessor System (Continued)

*––––––––––––––––––––––––––––––––––––––––––––––––––––

*       SLAVE PROCESSOR BOOT TABLE

*––––––––––––––––––––––––––––––––––––––––––––––––––––

BOOT_TABLE2:                          ; slave BOOT TABLE

        .word   3003c000h           ; slave global control register

                                   ; (system specific !!!)

        .word   3d79c210h           ; slave local control register

                                   ; (system specific !!!)

        .word   1                   ; block size

        .word   2ff800h             ; dst load address

        bu      $                  ; slave processor loops forever

        .word   0                   ; slave end of bootload sequence

        .word   2ffd00h             ; slave IVTP value

        .word   2ffd00h             ; slave TVTP value

        .word   40000000h            ; slave address  for iack

*––––––––––––––––––––––––––––––––––––––––––––––––––––

*       END OF EPROM CODE

*––––––––––––––––––––––––––––––––––––––––––––––––––––



 Modifying the IIOFx Pins After Bootloading

10-19  The Bootloader

10.6 Modifying the IIOFx Pins After Bootloading

The load options are based upon the status of IIOF(3–0) as general-purpose

input pins. Therefore, to select the correct bootloader mode, pins IIOF(3–0)

must be kept at a constant valid status value (see Table 10–1 for a list of val-

ues).

After the bootload is complete, the IACK signal is brought low until the read

phase in the pipeline finishes. Figure 10–4 shows an example circuit that gen-

erates the IIOF(3–0) signals for bootload selection and, after bootload opera-

tion, allows incoming external interrupts. In this example, after reset, the IIOF

pins stay low until the IACK signal is received.

Figure 10–4. Circuit for Generation of a Low IIOF Signal for Bootloader Selection

RESET

IACK

’C4x

IIOFn

(n =0 1, 2, or 3)

74S174

D

+ 5 V

>

Q

22 kΩ External
Interrupt

CLR
IACK



The Bootloader Program

 10-20

10.7 The Bootloader Program

************************************************************

*

* C40BOOT – TMS320C40 BOOTLOADER PROGRAM

* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1990

*

* NOTE 1. AFTER THE DEVICE IS RESET, THE PROGRAM IS CHECKING THE INPUT STATUS

* OF IIOF0–3 PINS AND COMMUNICATION PORT INPUT FLAGS TO CONFIGURE ITSELF WHEN

* THE ON–CHIP ROM IS ENABLED (ROMEN=1). THE IIOF0 PIN IS ASSUMED TO BE HIGH.

*

* NOTE 2. THE FUNCTION SELECTION OF IIOF0–3 IS LISTED AS:

*

*

IIOF

3

IIOF

2

IIOF

1

IIOF

0

FUNCTION

* 1 1 0 1 Memory bootloader from 00300000H

* 1 0 1 1 Memory bootloader from 40000000H

* 1 0 0 1 Memory bootloader from 60000000H

* 0 1 1 1 Memory bootloader from 80000000H

* 0 1 0 1 Memory bootloader from A0000000H

* 0 0 1 1 Memory bootloader from C0000000H

* 0 0 0 1 Reserved

* 1 1 1 1 Communication port bootloader

*

* THE PROGRAM ASSUMES THE COMMUNICATION PORT BOOTLOADER IS THE DEFAULT

* FUNCTION. IF NO OTHER FUNCTION IS SELECTED,THE PROGRAM STARTS CHECKING

* THE COMMUNICATION PORT INPUT CHANNELS. IF THERE IS NO INPUT FROM A

* COMMUNICATION PORT, THE PROGRAM RECHECKS THE IIOF(3–0) STATUS AGAIN.

* NOTE 3.MEMORY BOOTLOADER LOADS WORD, HALF–WORD, OR BYTE WIDE PROGRAM TO

* DIFFERENT SPECIFIED LOCATIONS. THE 8 LSBs OF THE FIRST MEMORY SPECIFIES THE

* MEMORY WIDTH. IF THE HALF–WORD OR BYTE WIDE PROGRAM IS SELECTED, THE LSBs

* ARE LOADED FIRST AND THEN THE MSBs. THE NEXT 2 WORDS CONTAIN THE CONTROL

* WORD FOR THE GLOBAL AND LOCAL MEMORY INTERFACE CONTROL REGISTERS. NEXT COME

* THE PROGRAM BLOCKS. THE FIRST TWO WORDS OF EACH PROGRAM BLOCK CONTAIN THE

* BLOCK SIZE AND DESTINATION ADDRESS WHERE THE PROGRAM IS TO BE LOADED. WHEN

* THE ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK LOADING IS TERMINATED. THE

* NEXT TWO WORDS ARE THE INITIAL VALUES FOR THE IVTP AND TVTP REGISTERS.

* AFTER THE BOOTLOADING IS COMPLETED, THE IACK SIGNAL IS SENT OUT ACCORDING

* TO THE LAST WORD OF THE SOURCE MEMORY, AND THE PROGRAM COUNTER WILL BRANCH

* TO THE STARTING ADDRESS OF THE FIRST PROGRAM BLOCK.

* NOTE 4.IF IIOF(3–0) ARE SET FOR COMMUNICATION PORT BOOTLOADER, THE PROCESSOR

* WAITS FOR THE FIRST INPUT FROM AN INPUT COMMUNICATION CHANNEL AND USE THAT

* CHANNEL TO PERFORM THE DOWNLOAD. THE BEGINNING TWO WORDS SHOULD CONTAIN THE

* GLOBAL AND LOCAL BUS CONTROL WORDS. SIMILAR TO THE MEMORY LOADER, THE

* PROGRAM CAN BE LOADED INTO DIFFERENT MEMORY BLOCKS. THE FIRST TWO WORDS OF

* EACH PROGRAM BLOCK CONTAINS THE BLOCK SIZE AND MEMORY ADDRESS TO BE LOADED

* INTO. WHEN THE ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK LOADING IS

* TERMINATED. IN OTHER WORDS, TO TERMINATE THE PROGRAM BLOCK LOADING, A

* ZERO HAS TO BE ADDED AT THE END OF PROGRAM BLOCK. THE FOLLOWING TWO WORDS

* ARE THE INITIAL VALUES FOR THE IVTP AND TVTP REGISTERS. AFTER THE BOOT–

* LOADING IS COMPLETED, THE IACK SIGNAL IS SENT OUT ACCORDING TO THE LAST

* WORD OF THE SOURCE MEMORY AND THE PROGRAM COUNTER BRANCHES TO THE STARTING

* ADDRESS OF THE FIRST PROGRAM BLOCK.



 The Bootloader Program

10-21  The Bootloader

           .sect ”boot”

**************************************************************

*              TMS320C4x PROCESSOR BOOTLOADER               *

**************************************************************

BOOT:      LDI    COM_LOAD,R10    ; Comm. port load subroutine address –> R10

           LDHI   0010H,AR0       ; Load peripheral mem. map start addr 100000H

*

*    CHECK THE IIOF1–3 FOR THE BOOTLOADER

*

CHECK:     LDHI   0030H,AR1       ; Load memory address = 00300000H

           CMPI   04404H,IIF      ; Test function 110 condition

           BEQ    MEMORY          ; If true, execute memory bootloader

           LDHI   04000H,AR1      ; Load memory address = 40000000H

           CMPI   04044H,IIF      ; Test function 101 condition

           BEQ    MEMORY          ; If true, execute memory bootloader

                                  ;

           LDHI   06000H,AR1      ; Load memory address = 6000000H

           ; ’C44: LDHI 00080h,AR1; replace previous line with this line (’C44)

                                  ;

           CMPI   04004H,IIF      ; Test function 100 condition

           BEQ    MEMORY          ; If true, execute memory bootloader

           LDHI   08000H,AR1      ; Load memory address = 80000000H

           CMPI   00444H,IIF      ; Test function 011 condition

           BEQ    MEMORY          ; If true, execute memory bootloader

                                  ;

           LDHI   0A000H,AR1      ; Load memory address = A0000000H

           ; ’C44: LDHI 08040,AR1 ; replace previous line with this line (’C44)

                                  ;

           CMPI   00404H,IIF      ; Test function 010 condition

           BEQ    MEMORY          ; If true, execute memory bootloader

                                  ;

           LDHI   0C000H,AR1      ; Load memory address = C0000000H

           ; ’C44: LDHI 08080H    ; replace previous line with this line (’C44)

                                  ;

           CMPI   00044H,IIF      ; Test function 001 condition

           BEQ    MEMORY          ; If true, execute memory bootloader

           CMPI   00004H,IIF      ; Test function 000 condition

           BEQ    STATRAM         ; If true, branch to STATIC RAM TEST

*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*                     COMMUNICATION PORT BOOTLOADER

*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*

*    CHECK COMMUNICATION PORT INPUT CHANNEL

*

           ADDI   040H,AR0,AR3    ; Point to comm. port 0 control register addr

           LDI    5,AR1           ; Set loop counter for CHECK_CH loop

CHECK_CH:  LSH3   –9,*AR3,R1      ; Check comm port input

           BNZ    LOAD0           ; If input exist, start comm port loader

           ADDI   010H,AR3        ; Point to next comm. port channel addr

           DBU    AR1,CHECK_CH    ; Check next comm. port channel input

           B      CHECK           ; Recheck the input flags



The Bootloader Program

 10-22

*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*                          MEMORY BOOTLOADER

*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*

*    TEST MEMORY WORD WIDTH

*

MEMORY:    LDI    *AR1++(1),R1    ; Load the memory word width

           LDI    W_WIDE,R10      ; Full–word size subroutine address –> R10

           LSH    26,R1           ; Test bit5 of mem. width word

           BN     LOAD0           ; If ’1’ start PGM loading (32 bits width)

           NOP    *AR1++(1)       ; Jump last half word from mem. word

           LDI    H_WIDE,R10      ; Half–word size subroutine address –> R10

           LSH    1,R1            ; Test bit4 of mem. width word

           BN     LOAD0           ; If ’1’ start PGM loading (16 bits width)

           NOP    *AR1++(1)       ; Jump last 1 bytes from mem. word

           LDI    B_WIDE,R10      ; Byte size subroutine address –> R10

           NOP    *AR1++(1)       ; Jump last 1 bytes from mem. word

*

*    START PROGRAM LOADING

*

LOAD0:     LAJU   R10             ; Load new word according to mem. width

           LDHI   0010H,AR0       ; Load peripheral mem. map start addr 100000H

           LDI    1,R0            ; Set start address flag off

           NOP

           LAJU   R10             ; Load new word according to mem. width

           STI    AR2,*AR0        ; Set global bus control register

           NOP

           NOP

           STI    AR2,*+AR0(4)    ; Set local bus control register

LOAD2:     LAJU   R10             ; Load new word according to mem. width

           ADDI   1,R0            ; Set start address flag off

           NOP

           NOP

           CMPI   0,AR2           ; If 0 block size start PGM

           BEQ    IVTP_LOAD

           LAJU   R10             ; Load new word according to mem. width

           SUBI3  1,AR2,RC        ; Set block size for repeat loop

           NOP

           SUBI   1,R10           ; Sub address with loop

           LDI    R0,R0           ; Test start address loaded flag

           LDIP   AR2,R9          ; Load start address if flag off

           LAJU   R10             ; Load block words according to mem. width

           LDI    AR2,AR0         ; Set destination address

           LDI    –1,R0           ; Set start & dest. address flag on

           ADDI   1,R10           ; Sub address without loop

           B      LOAD2           ; Jump to load a new block when loop completed



 The Bootloader Program

10-23  The Bootloader

*

*    INITIALIZE IVTP AND TVTP REGISTERS

*

IVTP_LOAD: LAJU   R10             ; Load new word according to mem. width

           NOP

           NOP

           NOP

TVTP_LOAD: LAJU   R10             ; Load new word according to mem. width

           LDPE   AR2,IVTP        ; Load the IVTP pointer

           NOP

           NOP

           LAJU   R10             ; Load new word according to mem. width

           LDPE   AR2,TVTP        ; Load the TVTP pointer

           NOP

           NOP

           IACK   *AR2            ; Send out IACK signal out

           BU     R9              ; Branch to the start of the program

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

;          BYTE–WIDE MEMORY BOOTLOADER SUBROUTINE           ;

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

LOOP_B:    RPTB   LOAD_B          ; PGM load loop

B_WIDE:    LWL0   *AR1++(1),AR2   ; Load byte 0 (LSB)

           NOP                    ; Nop for STRB to go high

           LWL1   *AR1++(1),AR2   ; Join byte 1 with byte 0

           NOP                    ; Nop for STRB to go high

           LWL2   *AR1++(1),AR2   ; Join byte 2 with byte 0 & 1

           NOP                    ; Nop for STRB to go high

           LWL3   *AR1++(1),AR2   ; Join byte 3 with byte 0, 1, & 2

           LDI    R0,R0           ; Test load address flag

           BNN    B_END

LOAD_B:    STI    AR2,*AR0++(1)   ; Store new word to dest. address

B_END:     BU     R11             ; Return from subroutine

 

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

;       HALF–WORD WIDE MEMORY BOOTLOADER SUBROUTINE         ;

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

LOOP_H:    RPTB   LOAD_H          ; PGM load loop

H_WIDE:    LWL0   *AR1++(1),AR2   ; Load LSB half–word

           NOP                    ; Nop for STRB to go high

           LWL2   *AR1++(1),AR2   ; Join MSB half–word with LSB half–word

           LDI    R0,R0           ; Test load address flag

           BNN    H_END

LOAD_H     STI    AR2,*AR0++(1)   ; Store new word to dest. address

H_END      BU     R11             ; Return from subroutine

 

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

;        FULL–WORD WIDE MEMORY BOOTLOADER SUBROUTINE        ;

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

LOOP_W     RPTB   LOAD_W          ; PGM load loop

W_WIDE     LDI    *AR1++(1),AR2   ; Read a new 32 bits word

           LDI    R0,R0           ; Test load address flag

           BNN    W_END

LOAD_W     STI    AR2,*AR0++(1)   ; Store new word to dest. address

W_END      BU     R11             ; Return from subroutine

 



The Bootloader Program

 10-24

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

;          COMMUNICATION PORT BOOTLOADER SUBROUTINE         ;

;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––;

LOOP_C     RPTB   LOAD_C          ; PGM load loop

COM_LOAD   LSH3   –9,*AR3,R1      ; Check comm port input

           BZ     COM_LOAD        ; Wait for comm port input

           LDI    *+AR3(1),AR2    ; Read a new 32 bits word

           LDI    R0,R0           ; Test load address flag

           BNN    C_END

LOAD_C     STI    AR2,*AR0++(1)   ; Store new word to dest. address

C_END      BU     R11             ; Return from subroutine

           .end



 Running Title—Attribute Reference

11-1  Chapter Title—Attribute Reference

The DMA Coprocessor

The direct memory access (DMA) coprocessor is a programmable on-chip de-

vice that allows simultaneous memory transfer and CPU operation with mini-

mum CPU overhead. This chapter describes the DMA coprocessor and also

offers suggestions for programming the device.

Topic Page

11.1 Introduction 11-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.2 DMA Functional Description 11-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.3 DMA Registers 11-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.4 DMA Unified Mode 11-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.5 DMA Split Mode 11-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.6 DMA Internal Priority Schemes 11-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.7 CPU and DMA Coprocessor Arbitration 11-27. . . . . . . . . . . . . . . . . . . . . . . 

11.8 Data Transfer Modes 11-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.9 Autoinitialization 11-34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.10 DMA and Interrupts 11-42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.11 DMA Memory Transfer Timing 11-51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 11



Introduction

 11-2

11.1 Introduction

The DMA coprocessor is a self programmable peripheral that transfers blocks

of data by maximizing sustained CPU performance and by alleviating the CPU

of burdensome I/O duties.

� Transfers to and from anywhere in the processor’s memory map. For ex-

ample, transfers can be made to and from on-chip memory, off-chip mem-

ory, and any of the six on-chip communication ports.

� Six DMA channels for memory-to-memory transfers in unified mode; a

special split mode supports 12 DMA channels for communication port to/

from memory transfers.

� Automatic initialization of registers via linked lists stored in memory, allow-

ing the DMA to run continuously without intervention by the CPU.

� Concurrent CPU and DMA coprocessor operation with DMA transfers at

the same rate as the CPU (supported by separate internal DMA address

and data buses)

� Source and destination address registers with variable indices, making it

possible to step through matrices by row or column

� Bit-reversed addressing for FFTs

� Synchronization of data transfers via external and internal interrupts



 DMA Functional Description

11-3  The DMA Coprocessor

11.2 DMA Functional Description

The DMA coprocessor supports six DMA channels that perform transfers to

and from anywhere in the ’C4x memory map.

Each DMA channel is controlled by nine registers that are mapped in the ’C4x

peripheral address space, as shown in Figure 11–1. The major DMA registers

are described in Section 11.3.

The DMA coprocessor has dedicated on-chip address and data buses (see

Figure 2–8 for a block diagram of the peripherals of the ’C4x). All accesses

made by the six DMA channels are arbitrated in the DMA coprocessor and take

place over these dedicated buses. The six DMA channels transfer data in a

sequential time-slice fashion, rather than simultaneously, because they share

common buses.

The DMA channels can run constantly or can be triggered by external

(IIOF3–0) or internal (on-chip timers and communication ports) interrupts.

The DMA coprocessor can transfer data in a bit-reversed fashion (for FFT ap-

plications) or in a linear fashion; it can also transfer matrix data in a row or col-

umn fashion.

The DMA coprocessor has two basic operational modes:

� Unified Mode: Used for memory-to-memory transfers. The unified mode

is described in Section 11.4, DMA Unified Mode. The unified block transfer

sequence is presented in subsection 11.2.1, Block Transfer Sequence.

� Split Mode: Used for two-way, memory-to-communication port transfers.

The split mode is described in Section 11.5, DMA Split Mode.



DMA Functional Description

 11-4

Figure 11–1. DMA Coprocessor Memory Map

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

0010 00A0h

0010 00A8h
0010 00A9h

0010 00AFh
0010 00B0h

0010 00C0h

0010 00C8h
0010 00C9h

0010 00CFh
0010 00D0h

0010 00D8h
0010 00D9h

0010 00DFh
0010 00E0h

0010 00E8h
0010 00E9h

0010 00EFh
0010 00F0h

0010 00F8h
0010 00F9h

0010 00FFh

010 00z0h

010 00z1h

010 00z2h

010 00z3h

010 00z4h

010 00z5h

010 00z6h

010 00z7h

010 00z8h

Source Address x

Source Address Index x

Transfer Counter x

Destination Address x

Destination Address Index x

Link Pointer x

Auxiliary Transfer Counter x

Auxiliary Link Pointer x

Exploded View Of Each Channel
Register

z = corresponding hexadecimal digit for 
channel address (e.g., substitute an 
“A” for DMA channel 0; “B” for DMA 
channel 1, etc.).

DMA Ch. 0
Registers

(See exploded
view)

DMA Ch.1
Registers

(See exploded
view)

DMA Ch. 2
Registers

(See exploded
view)

DMA Ch. 3
Registers

(See exploded
view)

DMA Ch. 4
Registers

(See exploded
view)

DMA Ch. 5
Registers

(See exploded
view)

x = channel number (e.g., a 1 for all 
registers in channel 1, a 2 for all 
registers in channel 2, etc.).

0010 00B8h
0010 00B9h

0010 00BFh Control Registers x

DMA Ch 0

DMA Ch 1

DMA Ch 2

DMA Ch 4

DMA Ch 5

DMA Ch 3

DMA

Ch.

x



 DMA Functional Description

11-5  The DMA Coprocessor

11.2.1 DMA Basic Operation

If a block of data is to be transferred from one region in memory to another re-

gion in memory (unified mode), the following sequence is performed:

DMA Registers Initialization

1) The source address register of a DMA channel is loaded with the address

of the memory location to read from.

2) The destination address register of the same DMA channel is loaded with

the address of the memory location to write to.

3) The transfer counter is loaded with the number of words to be transferred.

4) The source/destination index register is loaded with the step size of

source/destination register update. If sequential memory accesses are re-

quired, the source address index register and the destination address in-

dex register must be set to 1.

5) The DMA channel control register is loaded with the appropriate modes

to synchronize the DMA coprocessor reads and writes with interrupts. The

DIE register determines which interrupt to use for synchronous transfer.

DMA Start

6) The DMA coprocessor is started via the DMA START field in the DMA

channel control register.

Word Transfers

7) The DMA channel reads a word from the source address register and

writes it to a temporary register within the DMA channel.

8) After a read by the DMA channel, the source-index register is added to the

source address register.

9) After the read operation completes, the DMA channel writes the temporary

register value to the destination address pointed to by the destination ad-

dress register.

10) After the destination address has been fetched, the transfer counter regis-

ter is decremented and the destination-index register is added to the desti-

nation-address register.

Note:

Both of the index registers (source and destination) contain signed values.
This allows for variable step sizes or continuous reads from and/or writes to
memory. When an index register equals zero, the DMA coprocessor trans-
fers data to or from a fixed location.



DMA Functional Description

 11-6

11) During every data write, the transfer counter is decremented. The block

transfer terminates when the transfer counter reaches zero and the write

of the last transfer is completed. The DMA channel sets the transfer count-

er interrupt (TCINT) flag in the DMA channel control register.

After the completion of a block transfer, the DMA coprocessor can be pro-

grammed to do several things:

� Stop until reprogrammed (TRANSFER MODE bits = 012)

� Continue transferring data (TRANSFER MODE bits = 002)

� Generate an interrupt to signal the CPU that the block transfer is complete

(TCC bit = 12)

� Autoinitialize itself to start the next block transfer (TRANSFER MODE 

bits = 102 or 112).

Each DMA channel reads new DMA register values from memory, loads these

values into its register file, and, according to the values loaded, begins another

block transfer. Whether or not the CPU must initialize transfers is determined

by the value of the transfer mode bits:

� Autoinitialization under transfer mode bits = 102 is done without any

intervention by the CPU.

� Autoinitialization under transfer mode bits =112 requires the CPU to start

the DMA.



 DMA Registers

11-7  The DMA Coprocessor

11.3 DMA Registers

Each DMA channel has nine registers designated as follows:

� Control register: contains the status and mode information about the

associated DMA channel.

� Source address register: contains the memory address of data to be

read.

� Source address-index register: contains the step size (a signed 32-bit

number) used to increment or decrement the source address register. 

� Destination address register: contains the memory address where data

is written.

� Destination address-index register: contains the step size (a signed

32-bit number) used to increment or decrement the destination address

register. 

� Transfer counter register: contains the block size to move in unified

mode or in split mode (primary channel).

� Auxiliary transfer-counter register: contains the block size to move in

split mode (auxiliary channel).

� Link pointer register: contains the memory address of data to autoinitial-

ize the DMA channel registers. Used for unified mode or primary channel

in split mode.

� Auxiliary link-pointer register: contains the memory address of data to

autoinitialize the DMA channel registers. Used for auxiliary channel in split

mode.

After reset, the control register, the transfer counter, and the auxiliary transfer

counter registers are set to zeros and the other registers are undefined.

11.3.1 Control Register

The format of the DMA-channel control register is shown in Figure 11–2. The

text following the figure describes the functions of each field in the register.

At reset, each DMA-channel control register is set to zero. This makes the

DMA channels lower-priority than the CPU, sets up the source address and

destination address to be calculated via linear addressing, and configures the

DMA channel in the unified mode.



DMA Registers

 11-8

Figure 11–2. DMA Channel Control Register

RWSA

31 30 29 27 24 23 21 20

AUX 
STATUS

R

STATUS

R RW-A

START

RW

AUX
START

TCINT
FLAG

19

AUX TCC

18

TCC

17

AUX TCINT
FLAG

RR RWSA RWS

RW-A

1416 15

RW-A RW-A

SPLIT
MODE

13

RWSA

WRITE BIT
REV

RWSA

READ BIT
REV

12

RWS

11 10

RWS

AUTOINIT
SYNC

9 68 7 5 4 3 2

AUX AUTOINIT
STATIC

AUTOINIT
STATIC

SYNC MODE
AUX TRANSFER

 MODE
TRANSFER

 MODE

RWSA RWS RWSA RWS RWSA RWS

1 0

DMA PRI

RWS

xx

AUX AUTOINIT
SYNC

28 26 25 22

RWSRWSRWSA

COM PORT

R – Bit may be read.
W – Bit may be written.
S – Bit is shadowed during autoinitialization (no changes take place until autoinitialization is complete.)
A – Bit is auxiliary for autoinitialization.
xx – Reserved.ÉÉ
ÉÉ

RW

ÉÉÉÉ
ÉÉÉÉ
PRIORITY

MODE

DMA Channel 0 only

DMA PRI Sets DMA coprocessor priority. Defines the arbitration rules to be used when
a DMA channel and the CPU are requesting the same resource. Affects all
DMA coprocessor modes. The rules are listed in Table 11–1.

TRANSFER
MODE

Defines the transfer mode used by the DMA channel. Affects unified mode
and the primary channel in split mode. The bits are defined in Table 11–2.

AUX
TRANSFER
MODE

Defines the transfer mode used by the DMA channel. Affects the auxiliary
channel in split mode only. The bits are defined in Table 11–2.

SYNC MODE Determines the mode of synchronization for performing data transfers,
These bits work differently in unified and split modes. See Table 11–3 and
Table 11–4 for bit descriptions for unified and split modes.

Note: If a DMA channel is interrupt driven for both reads and writes, and the
interrupt for the write comes before the interrupt for the read, the interrupt
for the write is latched by the DMA channel. After the read is complete, the
write can be executed.

AUTOINIT
STATIC

This bit affects unified mode and the primary channel in split mode. It keeps
the auxiliary link pointer constant during autoinitialization from the on-chip
communication ports or other stream-oriented devices (such as first-in first-
out (FIFO) memory buffers). If bit=0, the link pointer is incremented during
autoinitialization. If bit=1, the link pointer is not incremented (it is static) dur-
ing autoinitialization.



 DMA Registers

11-9  The DMA Coprocessor

AUX
AUTOINIT
STATIC

Acts like the AUTOINIT STATIC bit above, except that it affects the auxiliary
channel in split mode only.

AUTOINIT
SYNC

This bit has an effect only in the DMA coprocessor sync mode (bits 6–7
above). It affects the interrupt that is enabled by the DMA interrupt enable
register (shown in Figure 11–25) used for DMA reads: If bit = 0, the interrupt
is ignored, and the autoinitialization reads are not synchronized with any in-
terrupt signals. If bit = 1, then the interrupt is recognized and is also used to
synchronize the autoinitialization reads. This affects the unified mode and
the primary channel in split mode (see the SPLIT MODE bit). The effect of
this bit and the SYNC MODE bit in autoinitialization is summarized in
Table 11–9.

AUX
AUTOINIT
SYNC

Acts the same as the AUTOINIT SYNC bit above, except that it affects the
auxiliary channel in split mode. The effect of this bit and the SYNC MODE
bits in autoinitialization is summarized in Table 11–9.

READ
BIT REV

Selects type of addressing for modifying the source address. If bit=0, the
source address is modified using 32-bit linear addressing. If bit = 1, the
source address is modified using 24-bit bit-reversed addressing. The bit af-
fects unified mode and primary channel reads (source) in split mode.

WRITE
BIT REV

Selects the type of addressing for modifying the destination address. If
bit = 0, the destination address is modified using 32-bit linear addressing. If
bit=1, the destination address is modified using 24-bit bit-reversed addres-
sing. The bit affects unified mode and auxiliary channel writes (destination)
in split mode.

SPLIT MODE This bit controls the DMA coprocessor mode of operation. If bit = 0, DMA
transfers are from memory to memory. This is referred to as unified mode.
If bit = 1, split mode is entered with each DMA channel split into two chan-
nels, allowing a single DMA channel to perform memory-to-communication-
port and communication-port-to-memory transfers. The split mode can be
modified by autoinitialization in unified mode or by autoinitialization by the
auxiliary channel in split mode. Split mode is further described in Section
11.4, DMA Split Mode.

COM PORT These bits define a communication port (0002 to 1012) to be used for DMA
transfers. If SPLIT MODE = 0, COM PORT has no affect on the operation
of the DMA channel. If SPLIT MODE = 1, COM PORT defines which of the
six communication ports to use with the DMA channel. The COM PORT may
be modified by autoinitialization in unified mode or by autoinitialization by the
auxiliary channel in split mode.



DMA Registers

 11-10

TCC Transfer counter interrupt control. If TCC = 1, a DMA channel interrupt pulse
is sent to the CPU after the transfer counter makes a transition to zero and
the write of the last transfer is complete.

If enabled, the corresponding DMA interrupt (DMA INT0–INT5) occurs at the
vector shown in Figure 7–2. If TCC = 0, a DMA channel interrupt pulse is not
sent to the CPU when the transfer counter transitions to zero. This bit affects
unified mode and the primary channel in split mode.

AUX TCC Auxiliary transfer counter interrupt control. If bit = 1, a DMA channel interrupt
pulse is sent to the CPU after the auxiliary transfer counter makes a transi-
tion to zero and the write of the last transfer is complete. If enabled, the corre-
sponding DMA interrupt (DMA INT0–INT5) occurs as shown in Figure 7–2.
If bit = 0, a DMA channel interrupt pulse is not sent to the CPU when the auxil-
iary transfer counter transitions to zero. This bit affects the auxiliary channel
in split mode only.

TCINT FLAG Transfer counter interrupt flag. This flag is set to 1 whenever the transfer
counter makes a transition to zero and the write of the last transfer is com-
pleted. Whenever the DMA channel control register is read, this flag is
cleared, unless the flag is being set by the DMA in the same cycle as the
read. The TCINT FLAG is affected by the unified mode and the primary chan-
nel in split mode.

AUX
TCINT FLAG

Auxiliary transfer counter interrupt flag. This flag is set to 1 whenever the
auxiliary transfer counter makes a transition to zero and the write of the last
transfer is completed. Whenever the DMA control register is read, this flag
is cleared, unless the flag is being set by the DMA coprocessor in the same
cycle as the read. The AUX TCINT FLAG is affected by the auxiliary channel
in split mode. Since only one interrupt is available for a DMA channel, you
can determine what event had set the interrupt by examining the TCINT
FLAG and the AUX TCINT FLAG.

START Starts and stops the DMA channel in several different ways (as are listed in
Table 11–5). START affects the unified mode and the primary channel in split
mode. If they is used to hold a channel in the middle of an autoinit sequence,
the START and AUX START bits will hold the autoinit sequence. If the
START or AUX START bits are being modified by the DMA channel (for ex-
ample, to force a halt code of 102 on a transfer-counter terminated block
transfer) and a write is being performed by an external source to the DMA
channel control register, internal modification of the START or AUX START
bits by the DMA channel has priority. See TRANSFER MODE bits value of
012 in Table 11–2 for more information.

AUX START Starts and stops the DMA channel in several different ways (as are listed in
Table 11–5). AUX START affects the auxiliary channel in split mode only.



 DMA Registers

11-11  The DMA Coprocessor

STATUS Indicates the status of the DMA channel as listed in Table 11–6. STATUS is
updated in the unified mode and by the primary channel in the split mode.
Updates are performed every cycle. The STATUS and AUX STATUS bits
also determine if the DMA channel has halted or has been reset after writing
to the START or AUX START bits.

AUX STATUS Indicates the status of the DMA channel as listed in Table 11–6. STATUS is
updated by the auxiliary channel in split mode only. Updates are performed
every cycle.

PRIORITY
MODE

Priority mode of DMA channel access: If bit = 0, priority rotates as shown in
Section 11.6. If bit = 1 priority is fixed as shown in Section 11.6. This bit is
available only at DMA channel zero.



DMA Registers

 11-12

Table 11–1. DMA PRI Bits and CPU/DMA Arbitration Rules

DMA PRI

Bit Nos:

1 – 0 Description

0 0 DMA coprocessor access is lower priority than CPU access. If the DMA channel and

the CPU are requesting the same resource, then the CPU will proceed. These bits are

set this way at reset.

0 1 This setting selects rotating arbitration, which sets priorities between the CPU and DMA

channel by alternating their accesses, but not exactly equally. Priority rotates between

CPU and DMA accesses when they conflict during consecutive instruction cycles. The

first time the DMA channel and the CPU request the same resource, the CPU has prior-

ity. If, in the following instruction cycle, the DMA coprocessor and the CPU again re-

quest the same resource, the DMA has priority. Alternate access continues as long as

the CPU and DMA requests conflict in consecutive instruction cycles. When there is no

conflict in a previous instruction cycle, the CPU has priority.

1 0 Reserved.

1 1 DMA coprocessor access is higher priority than CPU access. If the DMA channel and

the CPU are requesting the same resource, then the DMA will proceed.

Table 11–2. TRANSFER MODE (AUX TRANSFER MODE) Field Descriptions

TRANSFER

MODE

Bit Nos:

3 – 2 / (5 – 4) Description

0 0 Transfers are not terminated by the transfer counter, and no autoinitialization is

performed. TCINT (transfer counter interrupt) and AUX TCINT can still be used to

cause an interrupt when the transfer counter makes a transition to zero. The DMA

channel continues to run. Note that the address continues to increment while the

transfer count rolls over to its maximum value of 0FFFF FFFFh.

0 1 Transfers are terminated by the transfer counter. No autoinitialization is performed. A

halt code of 102 is placed in the START (or AUX START) field when transfers are

completed.

1 0 Autoinitialization is performed when the transfer counter goes to zero without waiting

for CPU intervention.

1 1 The DMA channel is autoinitialized when the CPU restarts the DMA coprocessor by

using the DMA register in the CPU. When the transfer counter goes to zero,

operation is halted until the CPU starts the DMA coprocessor by using the START

(AUX START) field in the DMA channel control register (bits 22–23 and 24–25,

Table 11–5). A halt code of 102 is placed in the START (or AUX START) field by the

DMA coprocessor.



 DMA Registers

11-13  The DMA Coprocessor

Table 11–3. SYNC MODE Field Descriptions in Unified Mode

SYNC MODE

Bit Nos:

7 – 6 Description

0 0 No synchronization. Interrupts are ignored, see Figure 11–27.

0 1 Source synchronization. A read is not performed until an enabled interrupt occurs

(see Figure 11–28a). The interrupt is specified by the DMAx READ field of the DMA

interrupt enable (DIE) register (see subsection 11.10.1, Interrupts and Synchroniza-
tion of DMA Channels, for more information).

1 0 Destination synchronization. A write is not performed until an enabled interrupt oc-

curs (see Figure 11–29a). The interrupt is specified by the DMAx WRITE field of the

DMA interrupt enable (DIE) register (subsection 11.10.1, Interrupts and Synchroniza-
tion of DMA Channels, for more information).

1 1 Source and destination synchronization. A read is performed when an enabled inter-

rupt (specified by the DMAx READ field) occurs. Then, a write is performed when an

enabled interrupt (specified by the DMAx WRITE field) occurs (as shown in

Figure 11–30). These fields are part of the DMA interrupt enable (DIE) register (see

subsection 11.10.1, Interrupts and Synchronization of DMA Channels, for more in-

formation).

Table 11–4. SYNC MODE Field Descriptions in Split Mode

SYNC MODE

Bit Nos:

7 – 6 Description

0 0 No synchronization. Interrupts are ignored see Figure 11–27.

0 1 Destination synchronization. A primary channel write to the communication-port out-

put FIFO is not performed until an enabled interrupt occurs (see Figure 11–29b). The

interrupt is specified by the DMAx PRIMARY WRITE field of the DMA interrupt en-

able (DIE) register (see subsection 11.10.1, Interrupts and Synchronization of DMA
Channels, for more information).

1 0 Source synchronization. An auxiliary-channel read from the communication-port in-

put FIFO is not performed until an enabled interrupt occurs (see Figure 11–28b). The

interrupt is specified by the DMAx AUXILIARY READ field of the DMA interrupt en-

able (DIE) register (see subsection 11.10.1, Interrupts and Synchronization of DMA
Channels, for more information).

1 1 Source and destination synchronization. A read from the communication-port input

FIFO is performed when an enabled interrupt (specified by the DMAx AUXILIARY

READ field) occurs. A write to the communication port output FIFO is performed

when an enabled interrupt (specified by the DMAx PRIMARY WRITE field) occurs.

These fields are part of the DMA interrupt enable (DIE) register (see subsection

11.10.1, Interrupts and Synchronization of DMA Channels, for more information).



DMA Registers

 11-14

Table 11–5. START (AUX START) Field Descriptions

START (AUX START)

Bit Nos:

23 – 22

(25 – 24) Description

0 0 DMA channel reset. DMA-channel read or write cycles in progress are completed

(not aborted); any data read is ignored. Any pending (not started) read or write is

canceled. The auxiliary (AUX START =002) and primary (START=002) transfer

counters are set to zero. The DMA channel is reset so that when it starts, a new

transaction begins; that is, a read is performed. In this mode, stopping is immediate

with no other registers loaded.

0 1 DMA halt on read or write boundary. Halts the DMA channel on the first available

read or write boundary. If a read or write has begun, the read or write is completed

before stopping. If a read or write has not begun, no read or write is started. In this

mode, stopping is immediate with no other registers loaded).

1 0 DMA halt on transfer boundary. Halts the DMA channel on the first available transfer

boundary. If a DMA transfer has begun, the entire transfer is completed, including

both cycles (both read and write operations), before stopping. If a transfer has not

begun, none is started. In this mode, stopping is immediate with no other registers

loaded. This is also the value after a DMA transfer completes.

1 1 DMA start. Writing 112 to this field starts the DMA process using the values in the

channel’s DMA channel registers (Figure 11–1). If the DMA is in autoinitialization, all

DMA registers are loaded before starting the operation. The DMA coprocessor starts

from reset if previously reset (START or AUX START bits = 002) or restarts from the

previous state if previously halted (START or AUX START bits = 012 or 102).

Table 11–6. STATUS (AUX STATUS) Field Descriptions

STATUS (AUX
 STATUS)
Bit Nos:
27 – 26

(29 – 28) Description

0 0 The DMA channel is held on the boundary of the DMA transfer (the write is com-

plete, and the read has not begun). This is the value at RESET after a halt on a

transfer boundary or after a block transfer.

0 1 The DMA channel is being held in the middle of a DMA transfer; (the read is com-

plete, and the write has not begun). This occurs only if the START (or AUX START)

field = 012.

1 0 Reserved.

1 1 The DMA channel is not being held or reset.



 DMA Registers

11-15  The DMA Coprocessor

11.3.2 Address and Index Registers

As shown in Figure 11–3, both the DMA coprocessor source-address and des-

tination-address registers have an associated index register. After each DMA-

channel read (source address) or write (destination address), the correspond-

ing (source or destination) address generator adds the index register to the ad-

dress register and places the result in the address register. In this way, the ad-

dress register acts as an accumulator because it retains its own sum and the

sum of its index register, as is shown by the following equation:

Address Register + Index Register → Address Register

The values in these registers are undefined at reset.

Depending upon bits 12 and 13 (READ BIT REV and WRITE BIT REV) of the

DMA channel control register, the addition may be either:

� Linear (normal addition): READ BIT REV = 0 or WRITE BIT REV = 0, or

� Bit reversed (reverse carry propagation): READ BIT REV = 1 or WRITE

BIT REV = 1.

Both index values (source or destination) are signed values.



DMA Registers

 11-16

Figure 11–3. DMA Coprocessor Address Generation

Dest. address 0

Dest. address 2

Dest. index 0

Source address 1

Source address 2

Source address 3

Source address 4

Source address 5

Source address 0 Source index 0

Source index 1

Source index 2

Source index 3

Source index 4

Source index 5

Source address generator

DMA address
bus

+

Dest. address 3

Dest. index 2

Dest. index 4

Dest. address generator

DMA address
bus

(a) Source address register operation

(b) Destination address register operation

+
+
+
+
+

+
+
+

+
+
+

Read bit-reverse bit

Write bit-reverse bit

Dest. address 4

Dest. address 5

Dest. address 1

Dest. index 3

Dest. index 5

Dest. index 1

11.3.3 Transfer Counter and Auxiliary Transfer Counter Registers

These registers contain the number of words to be transmitted.

Figure 11–4 shows the six transfer counters and the six auxiliary transfer

counters. A DMA channel in split mode (described in Section 11.4, DMA Split

Mode) uses the auxiliary transfer counter for the auxiliary channel and the pri-

mary transfer counter for the primary channel. The values in these registers

are set to zero at reset.

The counters are decremented after completing the address fetch for the write

portion of a transfer. The TCINT FLAG and AUX TCINT FLAG (bits 20 and 21



 DMA Registers

11-17  The DMA Coprocessor

of the DMA channel control register, as shown in Figure 11–2) are not set until

the counter is decremented and the write of the last transfer is completed. Cor-

respondingly, the interrupt will not be seen by the CPU interrupt controller until

the transfer counter is decremented and the write of the last transfer is com-

pleted.

The decrementer checks whether the transfer counter equals zero after the

decrement is performed. As a result, if the counter register has a value of 1,

then the DMA channel can be halted after only one transfer is performed. Thus,

by setting the transfer counter to 1, the DMA channel transfers the minimum

possible number of words (1 time). The count is treated as an unsigned integer.

Transfers can be halted when a zero count is detected after a decrement. If

the DMA coprocessor channel is not halted after the transfer reaches zero, the

counter will continue decrementing below zero. Thus, by setting the transfer

counter to zero, the DMA channel transfers the maximum possible number of

words (10000 0000h times).

Figure 11–4. Transfer Counter Registers

Transfer counter x †

Auxiliary transfer counter x †

Decrementer

† x = DMA channel number (0–5)

11.3.4 Link Pointer and Auxiliary Link-Pointer Registers

The link pointers specify the address from which to load the new DMA channel

register values when autoinitialization is performed. When a channel has ex-

hausted its counter (transfer counter = 0), it will (if appropriately configured)

use the link pointer to reload itself. Figure 11–5 illustrates the DMA coproces-

sor link address registers. The values in these registers are undefined at reset.



DMA Registers

 11-18

For example, under autoinitialization, the steps to load the channel registers

for DMA channel 0 (as shown in Figure 11–1) are:

1) Get the link pointer for the next DMA operation. The pointer is the memory

address containing the contents of the first DMA channel 0 register (the

channel control register as shown in Figure 11–1).

2) Bring in the contents pointed to by the pointer and write to address

0010 00A0h (first word of DMA channel 0 registers as shown in

Figure 11–1).

3) Increment the link pointer. (Skip this step if the AUTOINIT STATIC bit = 1.)

4) Bring in the next word and write to address 0010 00A1h.

5) Repeat until the entire block of registers is loaded for DMA channel 0 (7

registers in unified mode; 5 registers in split mode).

Figure 11–5. Link Pointer Registers 

Auxiliary pointer x †

Increment as 
specified in the 

AUTOINIT STATIC
and AUX

AUTOINITIC STATIC
bits

Link pointer x †

DMA address bus

† x = DMA channel number (0–5)



 DMA Unified Mode

11-19  The DMA Coprocessor

11.4 DMA Unified Mode

Unified mode is the default DMA operational mode. It is used for memory-to-

memory transfers. To select unified mode, clear the SPLIT MODE bit (bit 14

of the DMA channel control register, which is shown in Figure 11–2). Thus,

write a zero to this bit (zero is the reset value of this bit).

The block transfer sequence under unified mode is covered in subsection

11.2.1. DMA channel arbitration in unified mode is described in Section 11.6.

DMA synchronization with interrupts is covered in Section 11.10, DMA and In-

terupts. Autoinitialization in unified mode is covered in subsection 11.9.1, Uni-

fied Mode.

A unified DMA word transfer consists of two steps, as shown in Figure 11–6:

1) The DMA channel reads the source data value from the address pointed

to by the source address register and stores it in a temporary register.

2) The DMA channel reads the temporary register value and writes it to the

address pointed to by the destination address register.

You can use unified mode to perform communication port transfers, especially

unidirectional transfers. Using split mode is more advantageous in bidirection-

al transfers.

Figure 11–6. Typical Unified-Mode DMA Channel Configuration

Memory pointed to by DMA
source address register

Memory pointed to by DMA
destination address register

DMA
channel

Temporary register

External or Internal
 memory

External or Internal
 memory



DMA Split Mode

 11-20

11.5 DMA Split Mode

The DMA split mode (see Figure 11–7) allows one DMA channel to be used

for both reading and writing data to a communications port. Split mode essen-

tially transforms one DMA channel into two DMA channels:

� Primary Channel: dedicated to reading data from a location in the

memory map (external/internal) and writing it to a communication port out-

put FIFO.

� Auxiliary Channel: dedicated to receiving data from a communication

port input FIFO and writing it to a location in the memory map.

To select split mode, set the SPLIT MODE bit (bit 14 of the DMA channel con-

trol register, Figure 11–2) to one.

All six DMA channels support this split mode to accommodate all of the com-

munication ports. The COM PORT field (bits 15–17 as shown in Figure 11–2)

of the DMA channel control register defines which communication port is used

(port 0–5). A DMA channel in split mode can be used with any communication

port; however, read/write synchronization is restricted to signals from the com-

munication port with the same number as the DMA channel being used; in oth-

er words, DMAi can synchronize only with signals coming from communication

port i (see Section 11.10, DMA and Interrupts, for more information).

Figure 11–7 shows typical split mode operation with one communication port.

A split mode word transfer is similar to that of the unified mode except for the

following differences:

� The primary channel reads a word from the address pointed to by the

source address register and writes it to a temporary register within the

DMA coprocessor. It then writes the temporary register value to the output

FIFO on the communication port specified in the COM PORT field. The

registers that control the primary channel are the DMA channel control

register, source address register, source index register (added to source

address register), transfer-counter register, and link pointer register.

� The auxiliary channel reads a word from the input FIFO on the commu-

nication port specified in the COM PORT field and writes it to a temporary

register within the DMA coprocessor. It then writes the temporary register

value in the address pointed to by the destination address register. The

registers that control the auxiliary channel are the DMA channel control

register, destination address register, destination index register (added to

the destination address register), auxiliary transfer-counter register, and

auxiliary link pointer register.



 DMA Split Mode

11-21  The DMA Coprocessor

DMA channel arbitration in split mode is described in subsection 11.6.3, Split

Mode and DMA Channel Arbitration. DMA synchronization with interrupts is

covered in Section 11.10, DMA and Interrupts. Autoinitialization in split mode

is covered in subsection 11.9.2, Split Mode.

Figure 11–7. Typical Split-Mode DMA Configuration

Memory pointed to by DMA
source address register

Memory pointed to by DMA
destination address register

 Communication
port

Input FIFO

Output FIFO

Auxiliary
channel

DMA
channel

Temporary register
Primary
channel

External or Internal
 memory

External or Internal
 memory

ÊÊ
ÊÊ
ÊÊ
ÊÊ

CREQ
CACK

CSTRB
CRDY

CD(7–0)

Notice that there is only one temporary register in each DMA channel. There-

fore, a primary channel operation must complete before an auxiliary channel

operation can begin, and vice versa.

Primary and auxiliary channels share some of the DMA channel control regis-

ters and exclusively use others:

� PRIORITY MODE, COM PORT, SPLIT MODE, and DMA PRI are fields

that both primary and auxiliary channels use.

� AUX STATUS, AUX START, AUX TCINT flag, AUX TCC, WRITE BIT REV,

SYNC MODE (bit 7), and AUX TRANSFER MODE are used exclusively

by the auxiliary channel.

� STATUS, START, TCINT flag, TCC, READ BIT REV, SYNC MODE (bit 6),

and TRANSFER MODE are used exclusively by the primary channel.



DMA Internal Priority Schemes

 11-22

11.6 DMA Internal Priority Schemes

Because all accesses made by the six DMA channels take place over one

common internal DMA data and address bus, a priority scheme for bus arbitra-

tion is required. Within the DMA coprocessor, two priority schemes are used

to designate which channel is serviced next:

� A fixed priority scheme with channel 0 always having the highest priority

and channel 5 the lowest.

� A rotating priority scheme that places the most recently serviced channel

at the bottom of the priority list (default setup after reset).

11.6.1 Fixed Priority Scheme

This scheme provides a fixed (unchanging) priority for each channel as fol-

lows:

0
1
2
3
4
5

Highest priority

Lowest priority

To select fixed priority, set the PRIORITY MODE bit (bit 30) of channel 0’s

DMA-channel control register to 1 (one).

11.6.2 Rotating Priority Scheme

In a rotating priority scheme, the last channel serviced becomes the lowest pri-

ority channel. The other channels sequentially rotate through the priority list

with the lowest channel next to the last-serviced channel becoming the highest

priority on the following request. The priority rotates every time the channel

most recently granted priority completes its access. Figure 11–8 and

Figure 11–10 illustrate the rotation of priority across several DMA coprocessor

accesses. At system reset, the channels are ordered from highest to lowest

priority (0, 1, 2, 3, 4, 5).

To select this scheme, set the PRIORITY MODE bit (bit 30) of channel 0’s

DMA control register to 0 (zero).



 DMA Internal Priority Schemes

11-23  The DMA Coprocessor

Figure 11–8. Rotating Priority Mode Example of the DMA Coprocessor

0
1
†2
3
†4
†5

†5
0
1
†2
3
†4

0
1

†2
3

†4
†5

3
†4
†5
0
1
†2

4th Service3rd Service2nd Service1st Service

Highest priority

Lowest priority

†DMA channel requesting an access

Each service is one read access or one write access. See
Figure 11–9 for an example of a read/write sequence.

service
service

service

At the start of the example in Figure 11–8, channels 2, 4, and 5 are requesting

service. Because channel 2 has the highest priority, it is serviced first. It then

becomes the lowest priority channel. The highest priority channel then be-

comes channel three. On the following services, channels 4 and 5 are taken

care of in a similar fashion. Figure 11–9 shows the entire read and write se-

quence.

Note:

Each service means one read access or one write access. The DMA
coprocessor handles channel arbitration on an access-by-access basis; that
is, a DMA channel must contend for both the read and the write access in
both unified and split modes.

Figure 11–9. Rotating Priority DMA Read and Write Sequence Example (Unified Mode)

0
1
†2
3
†4
†5

0
1
†2
3
†4
†5

†5
0
1
†2
3
†4

3
†4
†5
0
1
†2

4th
Service

3rd
Service

2nd
Service

1st
Service

†DMA channel requesting an access

†5
0
1
†2
3
†4

0
1

†2
3

†4
†5

3
†4
†5
0
1
†2

5th
Service

6th
Service

7th
Service

DMA
R

DMA
R

DMA
R

DMA
W

DMA
W

DMA
W

Figure 11–10 shows the same results in a different way as in Figure 11–8 in

a rotating priority scheme. Priority decreases from highest to lowest in a clock-

wise direction. The priority rotates in a counter clockwise direction with the

most recently serviced channel becoming the lowest in priority.



DMA Internal Priority Schemes

 11-24

Figure 11–10.Example of a Priority Wheel

4th
service

3rd
service

2nd
service

1st
serviceHighest 

priority
channel

Lowest
priority
channel

† DMA channel requesting an access

0
1

2†

3
4†

5†

0
1

2
3

4†

5†

0

1
2

3

4
5† 0

1

2
3

4

5

With the rotating priority scheme, any DMA channel requesting service is guar-

anteed to be recognized after a number of higher priority requests have been

serviced. The maximum number of requests are:

� Five in unified mode

� Eleven in split mode

This provides a way of preventing a channel from monopolizing the system.

DMA channels that are running and are not synchronized via interrupts are al-

ways requesting service.

11.6.3 Split Mode and DMA Channel Arbitration

When a DMA channel is running in split mode, arbitration between channels

is similar to rotating priorities. A split-mode DMA channel has the same priority

as a unified DMA channel. The only issue is how to arbitrate between the pri-

mary split channel and the auxiliary split channel. The split channels alternate

priorities via a rotating priority scheme.

When a DMA channel is in split mode and both paths are simultaneously

started via the START and AUX START bits, the output (primary) channel has

priority over the input (auxiliary) channel. Both the START and AUX START

bits must be written at the same time in order to achieve this reset condition.



 DMA Internal Priority Schemes

11-25  The DMA Coprocessor

The priority scheme for split mode channels is slightly different from the

scheme for unified mode channels:

� For unified channels, the priority changes after a read or a write.

� For the primary and auxiliary channels within a split channel, priority

changes after a complete read and write. This is because there is only one

temporary register for both DMA channels (primary and auxiliary) to store

the read value.

Figure 11–11 shows two channels contending for the DMA bus: channel 2 (a

split channel) and channel 4.

Figure 11–11.Example of a Channel Priority Scheme in Split Mode 

0
1

‡[2pri
2aux]

3
†4

5

Highest priority channel

Lowest priority channel

†DMA channel requesting an access

2pri = the primary split channel of channel 2
2aux = the auxiliary split channel of channel 2

‡Split channels requesting access

The channel priority scheme in Figure 11–11 is shown sequentially in

Figure 11–12. In words, the scheme follows eight steps:

1) The first service is a request by the primary split channel of channel 2

(2pri). 2pri reads, and then channel 2 is moved to the lowest priority level,

but 2pri remains the higher priority channel of channel 2.

2) On the second service, channel 4, now a higher priority than channel 2,

reads its source address and becomes the lowest priority.

3) On the third service, the value read by 2pri is written to its destination ad-

dress, and channel 2 is moved to the lowest priority level. Also, 2pri is

moved to a lower priority than 2aux. Note that the split channel that just

completed a read retains a higher priority than the other split channel until

the data is written to the destination address.

4) On the fourth service, the value read by channel 4 in service 2 is now writ-

ten to its destination address and the channel becomes the lowest priority.



DMA Internal Priority Schemes

 11-26

Figure 11–12.Service Sequence for Split Mode Priority Example

DMA
R

5
0
1

‡[2aux
2pri]

3
†4

0
1

‡[2pri
2aux]

3
†4
5

5
0
1

‡[2pri
2aux]

3
†4

3
†4
5
0
1

‡[2aux
2pri]

3
†4
5
0
1

‡[2pri
2aux]

4th
Service

3rd
Service

2nd
Service

1st
Service

†DMA channel requesting an access

3
†4
5
0
1

‡[2aux
2pri]

6th
Service

2pri = the primary split channel of channel 2
2aux = the auxiliary split channel of channel 2

5th
Service

5

0
1

‡[2aux

2pri]

3
†4

DMA
R

7th
Service

3
†4
5
0
1

‡[2pri
2aux]

8th
Service

DMA
W

5
0
1

‡[2pri
2aux]

3
†4

9th
Service

Repeat
Sequence

DMA
W

DMA
R

‡Split channels requesting access

DMA
R

DMA
R

DMA
W

DMA
W

5) In the fifth service, 2aux is read and channel 2 becomes the lowest priority.

6) On the sixth service, channel 4 is read again, and it becomes the lowest

priority.

7) On the seventh and eighth services, the 2aux and channel 4 values that

were read in services 5 and 6 are now written to their destination address-

es. After the channel is written, it assumes the lowest priority.

8) In the ninth service, 2pri is read again as in the first service, and the read/

write cycle continues as begun in the first service.



 CPU and DMA Coprocessor Arbitration

11-27  The DMA Coprocessor

11.7 CPU and DMA Coprocessor Arbitration

The DMA coprocessor transfers data on its own internal buses. Arbitration is

necessary only when a resource conflict exists between the DMA coprocessor

and the CPU. The arbitration causes no delay. When there is no conflict, the

CPU and DMA coprocessor accesses proceed in parallel.

All arbitration between the CPU and the DMA coprocessor is on an access ba-

sis; that is,the DMA coprocessor must contend for read and write accesses in

both unified and split modes. DMA coprocessor internal memory access starts

during H3 (See Section 8.4, Clocking of Memory Accesses, on page 8-19, for

more information).

When the CPU and DMA coprocessor request the same resource, the DMA

channel’s DMA PRI bits (bits 0 and 1 of the channel control register) define the

arbitration rules (as shown in Table 11–7). The CPU has higher priority than

the DMA when DMA PRI=002; it has lower priority than the DMA when DMA

PRI = 112. They rotate priority when DMA PRI = 012.

Table 11–7. DMA PRI Bits and CPU/DMA Arbitration Rules

DMA PRI

(Bits 1–0) Description

0 0 DMA access is lower priority than the CPU access. If the DMA chan-

nel and the CPU are requesting the same resource, then the CPU

will proceed. (DMA PRI bits are set to 002 at reset.)

0 1 This setting selects rotating arbitration, which sets priorities between

the CPU and DMA channel by alternating their accesses, but not

exactly equally. Priority rotates between CPU and DMA accesses

when they conflict during consecutive instruction cycles. The first

time the DMA channel and the CPU request the same resource, the

CPU has priority. If, in the following instruction cycle, the DMA co-

processor and the CPU again request the same resource, the DMA

has priority. Alternate access continues as long as the CPU and

DMA requests conflict in consecutive instruction cycles. When there

is no conflict in a previous instruction cycle, the CPU has priority.

1 0 Reserved

1 1 DMA access is higher priority than the CPU access. If the DMA

channel and the CPU are requesting the same resource, the DMA
will proceed.



Data Transfer Modes

 11-28

11.8 Data Transfer Modes

Each DMA channel can operate in four types of data transfer modes. These

modes differ in:

� Whether or not they use autoinitialization

� How they operate if autoinitialization is in effect or not

Table 11–8 and the following paragraphs describe these data transfers.

Table 11–8. TRANSFER MODE (AUX TRANSFER MODE) Field Descriptions

TRANSFER MODE

(AUX TRANSFER

MODE)

Bits 3–2 (5–4) Description

0 02 Transfers are not terminated by the transfer counter. No autoinitialization is per-

formed. The TCINT (transfer count interrupt) bits can still be used to cause an

interrupt when the transfer counter makes a transition to zero. The DMA channel

continues to run.

0 12 Transfers are terminated by the transfer counter. No autoinitialization is per-

formed. A halt code of 102 is placed in the START or AUX START field (bits

22–23 or bits 24–25 of the DMA channel control register) when transfers are com-

plete.

1 02 Autoinitialization 1. Autoinitialization is performed when the transfer counter goes

to zero without waiting for CPU intervention.

1 12 Autoinitialization 2. The DMA channel is autoinitialized when the CPU restarts the

DMA coprocessor by using the DMA channel control register in the CPU. When

the transfer counter goes to zero, operation is halted until the CPU starts the DMA

coprocessor by using the START (or AUX START) field in the DMA channel con-

trol register. A halt code of 102 is placed in the START (or AUX START) field by

the DMA.

11.8.1 Running in TRANSFER MODE = 002

When TRANSFER MODE = 002, transfers are not terminated when the trans-

fer counter goes to zero, and no autoinitialization is performed. Even though

the transfer counter does not halt transfers, an interrupt can be generated on

the transfer counter transition to zero, setting the TCINT FLAG bit to 1. If the

DMA coprocessor channel is not halted after the transfer reaches zero, the

counter will continue decrementing below zero.



 Data Transfer Modes

11-29  The DMA Coprocessor

11.8.2 Running in TRANSFER MODE = 012

When TRANSFER MODE = 012, transfers are terminated when the transfer

counter goes to zero, and no autoinitialization is performed. When the transfer

counter goes to zero, the DMA channel is halted by forcing 102 into the START

or AUX START field.

11.8.3 Running in TRANSFER MODE = 102 (Autoinitialization 1)

This transfer mode allows the DMA channel to run continuously, change point-

ers and synchronization by the autoinitialization procedure, and turn itself off.

Two different autoinitialization methods are supported:

Autoinitialization method 1a always starts after a system reset, after a DMA

channel is reset (002 written to the START or AUX START bits), or after a DMA

channel halts (012 or 102 written to START or AUX START bits). To select

transfer mode 102 (autoinitialization method 1a), follow the steps listed here

and shown in Figure 11–13.

1) Initialize the DMA control register to transfer mode 102, and reset or halt

the DMA channel to be autoinitialized.

2) Initialize the transfer counter to 0 (resetting the DMA channel does this).

3) Initialize the DMA channel link pointer with the address where the autoin-

itialization values reside. No initialization of the other DMA channel regis-

ters is required, because they are automatically set up during the autoin-

itialization process.

4) Start the DMA channel by writing 112 to the START (or AUX START) bits.

5) The DMA channel performs the sequence, autoinitialize and block trans-

fer.

Figure 11–13.DMA Channel Running in Transfer Mode 102 (Autoinitialization Method 1a)

CPU initializes DMA link 
pointer and control register

DMA coprocessor autoinitializes

DMA channel performs block transfers.
Reads and writes can be synchronized.

Start DMA channel

DMA is reset or halted and transfer counter= 0



Data Transfer Modes

 11-30

Autoinitialization method 1b starts when the transfer counter is not zero.

The DMA starts a regular DMA transfer and autoinitializes after this transfer

completes (when the transfer counter becomes zero). To select transfer mode

102 (autoinitialization method 1b), follow the steps listed here and shown in

Figure 11–14.

1) Initialize the DMA control register to transfer mode 102 , and reset or halt

the DMA channel for the first transfer operation.

2) Initialize all the other DMA channel registers (source address, destination

address, transfer counter, etc.) according to the transfer operation de-

sired. Note that the transfer counter now reflects the number of words to

be transferred (normally a nonzero value) before the autoinitialization pro-

cess.

3) Initialize the DMA channel link pointer with the address where the autoin-

itialization values for subsequent transfer operations reside.

4) Start the DMA channel by writing 112 to the START (or AUX START) bits.

5) The DMA channel performs this sequence: block transfer and autoinitial-

ize (reverse order of method 1a).

Note that if a DMA channel is programmed to perform n block transfers, autoin-

itialization method 1a requires n DMA autoinitialization values. Autoinitializa-

tion method 1b requires only n–1 autoinitialization values because the first

transfer can be accomplished during the initial DMA transfer. This represents

some memory saving, but successive identical DMA operations require extra

CPU cycles to set the initial DMA registers values again.

Figure 11–14.DMA Channel Running in Transfer Mode 102 (Autoinitialization Method 1b)

CPU initializes DMA registers
and DMA link pointer

DMA coprocessor autoinitializes

DMA channel performs block transfers.
Reads and writes can be synchronized.

Start DMA channel

DMA is reset or halted



 Data Transfer Modes

11-31  The DMA Coprocessor

11.8.4 Running in TRANSFER MODE = 112 (Autoinitialization 2)

This transfer mode, besides having all of the advantages of autoinitialization,

allows the CPU to coordinate its operation very easily with the operation of the

DMA channels. Two different autoinitialization methods are supported:

Autoinitialization method 2a always starts after a system reset, after a DMA

channel reset (002 written to the START or AUX START bits), or after a channel

halts (012 or 102 written to the START or AUX START bits). To select transfer

mode 112 and use autoinitialization method 2a, follow the steps listed here and

shown in Figure 11–15.

1) Initialize the DMA control register to transfer mode 112 and reset or halt

the DMA channel to be autoinitialized.

2) Initialize the transfer counter to 0 (resetting the DMA channel does this).

3) Initialize the DMA channel link pointer with the address where the autoin-

itialization values reside. No initialization of the other DMA channel regis-

ters is required, because they are automatically set up during the autoin-

itialization process.

4) Start the DMA channel by writing 112 to the START or AUX START bits.

5) The DMA channel autoinitializes itself and performs a block transfer.

6) When the transfer counter goes to zero, the DMA waits for the CPU to write

a 112 to the START(or AUX START) field of the DMA channel control regis-

ter and autoinitialize.

7) Repeat the sequence autoinitialize, transfer, and wait.

8) When the transfer counter goes to zero, you can halt the DMA channel by

forcing 102 into the START (or AUX START) field.

Figure 11–15.DMA Channel Running in Transfer Mode 112  (Autoinitialization Method 2a)

CPU initializes DMA link
pointer and control register

DMA coprocessor autoinitializes

DMA channel performs block transfers.
Reads and writes can be synchronized.

DMA channel waits for CPU to start it

DMA is reset or halted and transfer counter = 0



Data Transfer Modes

 11-32

Autoinitialization method 2b starts when the transfer counter is not zero.

The DMA starts with a regular DMA transfer and autoinitializes after this trans-

fer completes (when the transfer counter becomes zero). To select transfer

mode 112 and use autoinitialization mode 2b, follow the steps listed here and

shown in Figure 11–16.

1) Initialize the DMA control register to transfer mode 112 and reset or halt

the DMA channel for the first transfer operation.

2) Initialize the other DMA channel registers (source address, destination ad-

dress, transfer counter, etc.) accordingly. Note that the transfer counter

now reflects the number of words to be transferred (normally a nonzero

value) before the autoinitialization process.

3) Initialize the DMA channel link pointer with the address where the autoin-

itialization values for subsequent transfer operations reside.

4) Start the DMA channel by writing 112 to the START( or AUX START) bits.

5) The DMA channel performs the initial block transfer. When the transfer

counter goes to zero, the DMA waits for the CPU to write a 112 to the

START or AUX START field of the DMA channel control register and auto-

initialize.

6) Repeat the sequence transfer, wait, and autoinitialize,.

Note that if a DMA channel is programmed to perform n block transfers, using

autoinitialization method 2a requires n DMA autoinitialization values. Autoin-

itialization method 2b requires only n–1 autoinitialization values because the

first transfer can be accomplished during the initial DMA transfer. This repre-

sents some memory saving, but successive identical DMA operations require

extra CPU cycles to set the initial DMA register values again.



 Data Transfer Modes

11-33  The DMA Coprocessor

Figure 11–16.DMA Channel Running in Transfer Mode 112  (Autoinitialization Method 2b)

CPU initializes DMA registers and
DMA link pointer

DMA channel waits for CPU to start it

DMA channel performs block transfers.
Reads and writes can be synchronized

Start DMA channel

DMA is reset or halted

DMA coprocessor autoinitializes



Autoinitialization

 11-34

11.9 Autoinitialization

Autoinitialization is a method for reloading a DMA channel register file when

the transfer counter goes to zero. When the DMA channel is operating in

autoinitialization mode, the link pointer register and auxiliary link pointer regis-

ter are used to initialize the registers that control the operation of the DMA

channel. These pointers are memory address locations for blocks of data that

are to be loaded into the DMA register file, shown in Figure 11–1. Link pointers

are covered in subsection 11.3.4, Link Pointer and Auxiliary Link–Pointer Reg-

isters.

Autoinitialization is a regular DMA block transfer operation in which the des-

tination is the DMA coprocessor’s register file. The DMA reads the value

pointed to by the link pointer and writes it to the DMA register over the periph-

eral bus on the next available cycle. Consequently, autoinitialization read/write

accesses are also subject to any normal CPU/DMA access conflict.

Autoinitialization can happen:

� Without CPU intervention when the TRANSFER MODE bits = 102 (autoin-

itialization 1). Refer to subsection 11.8.3, Running in TRANSFER MODE

= 102  (Autoinitialization 1).

� With CPU intervention when the TRANSFER MODE bits = 112 (autoinitial-

ization 2). In this case, the CPU should restart the DMA channel before the

autoinitialization proceeds. Refer to subsection 11.8.4, Running in

TRANSFER MODE = 112  (Autoinitialization 2).

� Before any block transfer (autoinitialization method a). The DMA starts

with the transfer counter at zero, then autoinitializes and performs a block

transfer.

� After a block transfer (autoinitialization method b). The DMA starts with a

regular block transfer, and, when the transfer counter register goes to

zero, it autoinitializes.

Autoinitialization 1 or 2 can use methods a or b.

Autoinitialization depends on the DMA channel’s current mode: split or unified

mode. The mode of operation is controlled by the SPLIT MODE bit (bit 14 in

Figure 11–2). When autoinitializing the DMA coprocessor, do not change the

SPLIT MODE bit. This bit should be changed only when the DMA coprocessor

has been reset and halted (see DMA START bit description in Table 11–5 for

more information).



 Autoinitialization

11-35  The DMA Coprocessor

11.9.1 Unified Mode

If the DMA channel is running in unified mode (SPLIT MODE = 0), the link

pointer is used and the DMA-channel registers are loaded in the following order:

1) DMA-channel control register

2) Source-address register

3) Source-address index register

4) Transfer-counter register

5) Destination-address register

6) Destination-address index register

7) Link-pointer register

The storage of new values for these registers in memory is illustrated in

Figure 11–17.

Figure 11–17.Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 0)

Link pointer (+0)

Source address

Source address index

Transfer counter

Destination address

Destination address index

Link pointer

+1

+2

+3

+4

+5

+6

Map of New Register Values in Memory

DMA channel control

11.9.2 Split Mode

If the DMA channel is running in split mode (SPLIT MODE = 1), then the

autoinitialize sequence depends upon which counter has terminated.

If the transfer counter register has gone to zero with SPLIT MODE = 1, then

the link-pointer register is used for autoinitialization. In this case, the DMA

channel registers are loaded in the following order:

1) DMA-channel control register

2) Source-address register

3) Source-address index register

4) Transfer-counter register

5) Link-pointer register

The storage of the new values for these registers in memory is illustrated in

Figure 11–18.



Autoinitialization

 11-36

Figure 11–18.Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 1
and Transfer Counter = 0)

Link pointer (+0)

Source address

Source address index

Transfer counter

Link pointer

+1

+2

+3

+4

Map of New Register Values in Memory

DMA channel control

If the auxiliary transfer counter register has gone to zero with SPLIT MODE=1,

then the auxiliary link pointer register is used for autoinitialization. In this case,

the DMA channel registers are loaded in the following order:

1) DMA channel control register

2) Destination address register

3) Destination address index register

4) Auxiliary transfer count register

5) Auxiliary link pointer register

The storage of the new values of these registers in memory is illustrated in

Figure 11–19.

Figure 11–19.Store New Values of DMA Channel Registers in Memory (SPLIT MODE = 1
and Auxiliary Transfer Counter = 0)

 Auxiliary link pointer (+0)

Destination address

Destination address index

Auxiliary transfer counter

Auxiliary link pointer

+1

+2

+3

+4

Map of New Register Values in Memory

DMA channel control

11.9.3 Incrementing the Link Pointer

During autoinitialization, the link pointer can be incremented or held constant:

� When the link pointer is incremented, the autoinitialization values are

stored in sequential memory locations, and the link pointer or auxiliary link

pointer is incremented in order to access each of these locations.



 Autoinitialization

11-37  The DMA Coprocessor

� When you autoinitialize the DMA channel from a stream-oriented device,

such as the on-chip communication ports or external FIFOs, you should

hold the link pointer constant.

This can be controlled by the AUTOINIT STATIC and the AUX AUTOINIT

STATIC bits of the DMA control register as follows:

� In unified mode, the AUTOINIT STATIC bit controls the link pointer.

� In split mode, the AUTOINIT STATIC bit controls the link pointer (primary

channel), and the AUX AUTOINIT STATIC controls the auxiliary linker

pointer.

When the AUTOINIT STATIC (AUX AUTOINIT STATIC) bit is zero, the link

pointer is incremented. When it is one, the link pointer is held constant.

11.9.4 Synchronization

Usually, autoinitialization data is stored in memory, and synchronization is not

necessary. In some cases, you may wish to transfer autoinitialization data in

the same way as in the synchronized data reads and writes.

Autoinitialization synchronization is a function of the:

� SYNC MODE bits (DMA channel control register bits 6 and 7) that control

synchronization of data transfers, and

� AUTOINIT SYNC bits (DMA channel control register bits 10 and 11) that

affect only autoinitialization synchronization.

If the SYNC MODE bits are not set to synchronize data transfers (i.e., if the

preceding data transfer is not synchronized on interrupts), then the DMA chan-

nel autoinitialization sequence is not synchronized either. If the SYNC MODE

bits are set to transfer data synchronously (if the preceding data transfer is syn-

chronized), then the upcoming data channel autoinitialization sequence can

be synchronized on reads or writes or both (depending on whether the DMA

coprocessor is in unified or split mode) as shown in Table 11–9. Note that when

both modes show ”no sync” for a bit setting in the table, the DMA channel auto-

initialization sequence is not synchronized on interrupts.

In unified mode, there is no write synchronization for autoinitialization opera-

tion, because the destination is the DMA register, which is always ready.

In split mode, bit 6 of the DMA control register controls the autoinitialization

synchronization of the DMA primary channel, and bit 7 controls the autoinitial-

ization synchronization of the DMA auxiliary channel.



Autoinitialization

 11-38

If primary channel autoinitialization synchronization is used, the DMA read of

autoinitialization values from memory does not proceed until the interrupt spe-

cified in the DMAx primary write field in the DIE register is received.

If auxiliary channel autoinitialization synchronization is used, the DMA read of

autoinitialization values from memory does not proceed until the interrupt spe-

cified in the DMAx auxiliary read field in the DIE register is received.

Table 11–9. Effect of SYNC MODE and AUTOINIT MODE Bits in Autoinitialization

SYNC MODE AUTOINIT SYNC

Bit Numbers

7 – 6

Bit Numbers

11 – 10 Unified Mode Split Mode

0 0 0 0 No synchronization No synchronization

0 0 0 1 No synchronization No synchronization

0 0 1 0 No synchronization No synchronization

0 0 1 1 No synchronization No synchronization

0 1 0 0 No synchronization No synchronization

0 1 0 1 Read Primary channel

0 1 1 0 No synchronization No synchronization

0 1 1 1 Read Primary channel

1 0 0 0 No synchronization No synchronization

1 0 0 1 No synchronization No synchronization

1 0 1 0 No synchronization Auxiliary channel

1 0 1 1 No synchronization Auxiliary channel

1 1 0 0 No synchronization No synchronization

1 1 0 1 Read Primary channel

1 1 1 0 No synchronization Auxiliary channel

1 1 1 1 Read Auxiliary and primary chan-

nels

11.9.5 Effect on DMA Control Register Bits

In unified mode, all of the writable control register bits are affected by

autoinitialization. These bits are labeled in Figure 11–20.



 Autoinitialization

11-39  The DMA Coprocessor

In split mode during autoinitialization of the primary DMA channel, the writable,

nonauxiliary bits can be modified, but auxiliary bits are protected (as shown

in Figure 11–21). In other words, only nonauxiliary bits are allowed to be modi-

fied by the CPU or DMA coprocessor. Also, if the auxiliary DMA channel is

autoinitialized, the writable auxiliary bits can be modified, but nonauxiliary bits

are protected. These bits are labeled in Figure 11–22.

Even though the shadowed bits (designated by s in Figure 11–20) are modified

during autoinitialization, they do not have an effect until autoinitialization is

complete. Unshadowed bits take effect immediately, affecting the

autoinitialization sequence. In other words, at autoinitialization, new shad-

owed bit values are entered last after all registers are loaded (as specified by

the link pointer).

Regardless of whether the DMA channel is running in unified mode or split

mode, if the CPU or another external source writes to the DMA channel control

register, this affects all writable bits, including the shadow bits.

Note:

If the CPU writes to the DMA control register during DMA autoinitialization,
the CPU write takes effect after the autoinitialization sequence completes.
Even though the autoinitialization operation on the DMA registers is not af-
fected, the subsequent data transfer may be affected.

Figure 11–20.DMA Channel Control Register Bits Modifiable by Autoinitialization in
Unified Mode

31 30 29 27 24 23 21 20

START
AUX

START

19

AUX TCC

18

TCC

17 1416 15

SPLIT
MODE

13

WRITE BIT
REV

READ BIT
REV

12 11 10

AUTO INIT
SYNC

9 68 7 5 4 3 2

AUX AUTO
STATIC

AUTO INIT
STATIC

SYNC MODE
AUX TRANSFER

 MODE
TRANSFER

 MODE

1 0

DMA PRI

xx

AUX AUTO
SYNC

28 26 25 22

xx xx xx xx xx xx xx

s s

S S S S S

S S S S S S S S S S

COM PORTS

R/W R/W R/W

R/W R/W R/W R/W

s — These shadowed bits do not take effect until autoinitialization is complete.

xx — Write protected during autoinitialization.



Autoinitialization

 11-40

Figure 11–21.DMA Channel Control Register Bit Modifiable by Autoinitialization of the
Primary Channel in Split Mode

31 30 29 27 24 23 21 20

START

19 18

TCC

17 1416 15 13

READ BIT
REV

12 11 10

AUTO INIT
SYNC

9 68 7 5 4 3 2

AUTO INIT
STATIC

TRANSFER
 MODE

1 0

DMA PRI

xx

28 26 25 22

xx xx xx xx xx xx xxxx xx xx

R/W R/W

xx xx xx xx xx

SYNC
 MODE

xx

xx xx xx xx

s

s s

S S S S S S

s — These shadowed bits do not take effect until autoinitialization is complete.

xx — Write protected during primary channel autoinitialization.

Figure 11–22.DMA Channel Control Register Bits That Can Be Modified by
Autoinitialization of the Auxiliary Channel in Split Mode

31 30 29 27 24 23 21 20

AUX START

19 18

AUX TCC

17 1416 15 13

WRITE BIT
REV

12 11 10

9 68 7 5 4 3 2

AUX TRANSFER
 MODE

1 0

xx

28 26 25 22

xx xx xx xx xx xx xxxx xx xx

R/W R/W

SYNC
 MODE

xx

SPLIT
MODE

xxxx

AUX AUTO
STATIC

xx xx xx xx xx

R/W R/W R/W S S S

S S S S

s

COM PORT

s — These shadowed bits do not take effect until autoinitialization is complete.

xx — Write protected during auxiliary channel autoinitialization.

AUX AUTO
SYNC

11.9.6 Consecutive Autoinitializations

For many applications, it is sufficient to autoinitialize the DMA channel with the

same data each time. In this case, the new link-pointer value points to the start

of the same block of data containing the new link pointer, as illustrated in

Figure 11–23. This particular example assumes that the DMA channel is not

running in split mode.



 Autoinitialization

11-41  The DMA Coprocessor

If you want, you can make the new link pointer point to a new set of register

values, as illustrated in Figure 11–24. This can be continued to any level.

Figure 11–23.Self-Referential Link Pointer

Link pointer DMA channel control reg.

Source address

Source address index

Transfer counter

Destination address

Destination address index

Link pointer

+1

+2

+3

+4

+5

Map of New Register Values in Memory

Figure 11–24.Referring to a New Link Pointer

Link pointer DMA channel control

Source address

Source address index

Transfer counter

Destination address

Destination address index

Link pointer

+1

+2

+3

+4

+5

Map of New Register Values in Memory

Source address

Source address index

Transfer counter

Destination address

Destination address index

Link pointer

DMA channel control reg.

+1

+2

+3

+4

+5

+6

+6



DMA and Interrupts

 11-42

11.10 DMA and Interrupts

The DMA coprocessor uses interrupts in the following way:

� It can send interrupts to the CPU when a block transfer finishes. See the

TCC and AUX TCC bits in Figure 11–2.

� It can receive interrupts from the external interrupt pins (IIOF3–0), the tim-

ers, or the communication port (ICRDY, OCRDY).

This section explains how the DMA receives interrupts. This process is called

synchronization.

All of the interrupts that the DMA coprocessor can see are first received by the

CPU interrupt controller. Edge-triggered interrupts are latched by the CPU in

the appropriate interrupt flag register; level-triggered interrupts are not.

When an external interrupt (IIOF3–0) is used for DMA coprocessor transfer

synchronization, the CPU is responsible for configuring external interrupts as

edge- or level-triggered interrupts (as set in the FUNCx and TYPEx bits of the

interrupt flag register (discussed in subsection 3.1.10, IIOF Flag Register

(IIF)), on page 3-13.

Edge-triggered interrupts are timer interrupts, DMA interrupts, and external in-

terrupts that are configured as edge-triggered interrupts. Detailed information

on interrupts is provided in Section 7.4, Interrupts, on page 7-15, and Section

7.6, DMA Interrupts, on page 7-26. When the interrupt controller determines

that an edge-triggered interrupt that a DMA channel is waiting on (DIE regis-

ters bits set) has been latched into the interrupt flag, the CPU clears the inter-

rupt flag and sends an interrupt pulse to the DMA channel. The DMA channel

latches the interrupt locally until it can service the interrupt. At that time, the

latched interrupt is cleared by the DMA coprocessor for two cycles.

Level-triggered interrupts generated by communication ports and external in-

terrupts that are configured as level-triggered interrupts are handled differently

by the CPU interrupt controller. When the interrupt controller determines that

a level-triggered interrupt that a DMA channel is waiting for (DIE register bits

set) has been received, the CPU sends an interrupt pulse to the DMA channel.

The DMA channel latches the interrupt locally until it can service the interrupt.

At that time, the locally latched interrupt is cleared by the DMA coprocessor

for two cycles.

The interrupt reset signal generated by the DMA coprocessor after a DMA in-

terrupt is serviced has priority over the interrupt set signal. Thus, the interrupt

signal will not be continuously set, even if the CPU is continuously sending the

interrupt set signal. Therefore, when the DMA-set priority scheme is used and



 DMA and Interrupts

11-43  The DMA Coprocessor

a higher priority DMA channel is driven by continuous interrupt signals, the

lower priority DMA channel can be serviced in between the higher priority DMA

services.

Unlike the ’C3x, the ’C4x DMA processor is not affected by processing the

CPU interrupts, even when pipeline fetches are being halted. When interrupts

are enabled in the DIE register, the interrupt is latched automatically by the

CPU interrupt controller and saved for future DMA use. When a flag interrupt

(timer, external interrupt) is latched, the IIF flag is cleared. Note that IIF flags

are cleared when the CPU interrupt controller latches the interrupt, not when

the DMA responds to it. Even if the DMA has not been started, the interrupt

latch occurs, except when the start bits in the DMA control register have the

reset value (002 in the START or AUX START bits). DMA reset clears the inter-

rupt internal latch. To avoid losing previously received interrupts, it is recom-

mended that you initialize DIE register after starting the DMA, when the DMA

start bits have the value 112. Note that when the DMA completes a transfer,

the start (AUXSTART) bits are set to 102. For this reason, the DMA will not miss

any interrupt between transfers.

The DMA and the CPU can respond to the same interrupt if the CPU is not in-

volved in any pipeline conflict or in any instruction that halts instruction fetch-

ing. Refer to subsection 7.4.1, Interrupt Vector Table and Prioritization, on

page 7-15 for more details. It is also possible for different DMA channels (in-

cluding auxiliary and primary channels) to respond to the same interrupt. If the

same interrupt is selected for source and destination synchronization, both

read and write cycles are enabled with a single incoming interrupt.

The internal circuitry of the ’C4x guarantees proper operation between a com-

munication port that generates level-triggered interrupts and the DMA channel

that is synchronizing with those level-triggered interrupts.

Note:

When you synchronize the DMA channels with external interrupts, it is better
to configure the interrupt lines as edge-triggered interrupts to ensure that
only one interrupt is recognized.

11.10.1 Interrupts and Synchronization of DMA Channels

You can use interrupts to synchronize DMA channel transfers. To set up the

DMA for a synchronous data transfer mode requires two steps:

1) Set the DMA SYNC MODE bits (bits 6,7) in the DMA channel control regis-

ter to the value for the source, destination, or source and destination syn-

chronization desired. See subsection 11.10.2, Synchronization Mode Bits,

for more information.



DMA and Interrupts

 11-44

2) Set the DIE register to enable the corresponding interrupt for the DMA

transfer synchronization desired. Figure 11–25 and Figure 11–26 show

the DIE register for the split and unified modes, respectively. Table 11–10

and Table 11–11 lists the different synchronization interrupts for unified

mode, and Table 11–12 and Table 11–13 list them for split mode.

It is recommended that you initialize the DIE register after starting the

DMA, when the start bits have the value 112. This prevents losing pre-

viously received interrupts, which may occur if you enable the DIE register

when the start bits are 002 (reset value).

Figure 11–25.DIE Register Bit Functions for DMA Unified Mode

31 30 29 28 27 26 25 24 23 22 21 20

DMA5 Write DMA5 Read DMA4 Write DMA4 Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

19 18 17 16 15 14 13 12 11 10 9 8

DMA3 Write DMA3 Read DMA2 Write DMA2 Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

 7 6 5 4 3 2 1 0

DMA1 Write DMA1 Read DMA0 Write DMA0 Read

R/W R/W R/W R/W R/W R/W R/W R/W

R = Read W = Write

Table 11–10. DMA Channels 0 and 1 (DMA0 and DMA1) Unified-Mode Synchronization
Interrupts

Bit Value

(in DMA0
Interrupt Enabled at DMA0 or DMA1

(in DMA0

or

DMA1)
DMA0

Read

DMA0

Write

DMA1

Read

DMA1

Write Interrupt Source for DMA Synchronization

0 0† None None None None – –

0 1 ICRDY0 OCRDY0 ICRDY1 OCRDY1 From communication port

1 0 IIOF0 IIOF1 IIOF2 IIOF3 From external pins IIOF0–IIOF3

1 1 TIM0 TIM0 TIM0 TIM0 From timer TIM0

† DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.



 DMA and Interrupts

11-45  The DMA Coprocessor

Table 11–11. DMA Channels 2 to 5 (DMA2 to DMA5) Unified-Mode Synchronization
Interrupts

Bit Value
Interrupt Enabled at DMA2–DMA5†

Interrupt Source for DMABit Value

(in DMA2 to DMA5) DMAx Read† DMAx Write†
Interrupt Source for DMA

Synchronization

0 0 0‡ None None – –

0 0 1 ICRDYx† OCRDYx† From communication port

0 1 0 IIOF0 IIOF0

F l i IIOF0 IIOF3
0 1 1 IIOF1 IIOF1

From external pins IIOF0–IIOF3
1 0 0 IIOF2 IIOF2

From external pins IIOF0–IIOF3

1 0 1 IIOF3 IIOF3

1 1 0 TIM0 TIM0
From timers TIM0 and TIM1

1 1 1 TIM1 TIM1
From timers TIM0 and TIM1

† The x in DMAx represents the DMA channel number and also the number for the corresponding ICRDY x and OCRDYx inter-

rupts. For example, an 0012 in both DMA2 READ and DMA5 WRITE would enable interrupts ICRDY2 and OCRDY5, respective-

ly. All other viable bit values (0102 to 1112) are the same (as shown in the table) for DMA2 through DMA5.
‡ DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.

Figure 11–26.DIE Register Bit Functions for DMA Split Mode

31 30 29 28 27 26 25 24 23 22 21 20

DMA5 Primary Write DMA5 Auxiliary Read DMA4 Primary Write DMA4 Auxiliary Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

19 18 17 16 15 14 13 12 11 10 9 8

DMA3 Primary Write DMA3 Auxiliary Read DMA2 Primary Write DMA2 Auxiliary Read

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

 7 6 5 4 3 2 1 0

DMA1 Primary Write DMA1 Auxiliary Read DMA0 Primary Write DMA0 Auxiliary Read

R/W R/W R/W R/W R/W R/W R/W R/W

R = Read W = Write



DMA and Interrupts

 11-46

Table 11–12. DMA Channels 0 and 1 (DMA0 and DMA1) Split-Mode Synchronization
Interrupts

Bit Value Interrupt Enabled at DMA0 or DMA1Bit Value

(in DMA0

or

DMA1)

DMA0

Auxiliary

Read

DMA0

Primary

Write

DMA1

Auxiliary

Read

DMA1

Primary

Write Interrupt Source for DMA Synchronization

0 0† None None None None – –

0 1 ICRDY0 OCRDY0 ICRDY1 OCRDY1 From communication port

1 0 IIOF0 IIOF1 IIOF2 IIOF3 From external pins IIOF0–IIOF3

1 1 TIM0 TIM0 TIM0 TIM0 From timer TIM0

† DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.

Table 11–13. DMA Channels 2 to 5 (DMA2 to DMA5) Split-Mode Synchronization 
Interrupts

Bi V l

Interrupt Enabled at DMA2–DMA5†

I S f DMABit Value

(in DMA2 to DMA5)

DMAx Auxiliary

Read†

†DMAx Primary

Write†
Interrupt Source for DMA

Synchronization

0 0 0‡ None None – –

0 0 1 ICRDYx† OCRDYx† From communication port

0 1 0 IIOF0 IIOF0

F l i IIOF0 IIOF3
0 1 1 IIOF1 IIOF1

From external pins IIOF0–IIOF3
1 0 0 IIOF2 IIOF2

From external pins IIOF0–IIOF3

1 0 1 IIOF3 IIOF3

1 1 0 TIM0 TIM0
From timers TIM0 and TIM1

1 1 1 TIM1 TIM1
From timers TIM0 and TIM1

† The x in DMAx represents the DMA channel number and also the number for the corresponding ICRDY x and OCRDYx inter-

rupts. For example, an 0012 in both DMA2 READ and DMA5 WRITE would enable interrupts ICRDY2 and OCRDY5, respective-

ly. All other viable bit values (0102 to 1112) are the same (as shown in the table) for DMA2 through DMA5.
‡ DMA channel halts (no read or write operation proceeds) if DMA synchronous transfer is used.

11.10.2 Synchronization Mode Bits

Table 11–3 and Table 11–4 describe how the bit values of the SYNC MODE

field of the DMA channel control register determine synchronization in unified

and split mode, respectively:



 DMA and Interrupts

11-47  The DMA Coprocessor

� No synchronization (SYNC MODE = 002)

� Source synchronization

� for unified mode (SYNC MODE = 012)

� for split mode (SYNC MODE = 102)

� Destination synchronization

� for unified mode (SYNC MODE = 102)

� for split mode (SYNC MODE = 012)

� Source and destination synchronization (SYNC MODE = 112)

When the ’C4x DMA is in split mode, the primary channel supports write (or

destination) synchronization transfers only, and the auxiliary channel supports

read (or source) synchronization transfers only. In split mode, bits 6 and 7 of

the DMA channel control register (as shown in Table 11–3) are used to control

channel synchronization:

� Bit 6 controls primary write channel synchronization (destination synchro-

nization).

� Bit 7 controls auxiliary read channel synchronization (source synchro-

nization).

DMA transfer rate in synchronization mode is explained in subsection 11.11.2,

DMA Transfer Rate in Synchronization Mode, on page 11-55.

No Synchronization

When SYNC MODE = 002, no synchronization is performed. The DMA per-

forms reads and writes whenever it has the priority to use the DMA bus. All in-

terrupts are ignored. Note the difference between this mode and having the

zero value in the DIE read or write fields. Having zeros in the DIE register read/

write fields results in a total DMA halt if synchronization is used, whereas

SYNC MODE = 002 leaves the DMA channel running freely. Figure 11–27

shows the mechanism used when SYNC MODE = 002.

Figure 11–27.No DMA Synchronization

Start

DMA channel performs a read

DMA channel performs a write

Go to start

(SYNC MODE = 002)



DMA and Interrupts

 11-48

Source Synchronization

When SYNC MODE = 012 (for unified mode) or when SYNC MODE = 102 (for

auxiliary channel in split mode), the DMA coprocessor is synchronized to the

source (see Figure 11–28). A read will not be performed until an interrupt is

received by the DMA channel. Then, all DMA interrupts are disabled globally.

However, no bits in the DMA interrupt enable register are changed.

Figure 11–28.DMA Source Synchronization

Start

Disable DMA interrupts globally

DMA channel performs a read

DMA channel performs a write

Go to start

Enable DMA interrupts globally

Idle until enabled interrupt is received

a) DMA Channel in Unified Mode

(SYNC MODE = 012)

Disable DMA interrupts globally

DMA channel performs a write

Enable DMA interrupts globally

Idle until enabled interrupt is received

Read data from
communication port input FIFO

Start

Go to start

b) Auxiliary Channel in Split Mode
Sync on Read

(SYNC MODE = 102)

Destination Synchronization

When SYNC MODE = 102 (for unified mode) or when SYNC MODE = 012 (for

primary channel in split mode), the DMA channel is synchronized to the des-

tination. A write is not performed until an interrupt is received by the DMA chan-

nel. Figure 11–29 shows the synchronization mechanism.

In unified mode, the read is performed without waiting for the interrupt. Howev-

er, in split mode, the read occurs only when the interrupt enabling the write is

received. This avoids a lock situation that could happen if the primary channel



 DMA and Interrupts

11-49  The DMA Coprocessor

reads but never writes out of the temporary register, because it does not re-

ceive the write interrupt. In this case, the auxiliary channel could not proceed,

because the DMA internal temporary register is busy.

Figure 11–29.DMA Destination Synchronization

DMA channel performs a read

DMA channel performs a write

Idle until enabled interrupt is received

Start

Go to start

a) DMA Channel in Unified Mode

Enable DMA interrupts globally

DMA channel performs a read

Idle until enabled interrupt is received

Go to start

Disable interrupts globally

Start

b) Primary Channel in Split Mode
Sync on Write

Write data to communication port output FIFO

Enable DMA interrupts globally

(SYNC MODE = 012)(SYNC MODE = 102)

Disable DMA interrupts globally

Source and Destination Synchronization

When SYNC MODE = 112, a read is performed when a read interrupt is re-

ceived, and a write is performed on the write interrupt. If a write interrupt is re-

ceived before a read interrupt, the write interrupt is latched, and the DMA data

write is not executed until the read is completed. Unified mode source and des-

tination synchronization (SYNC MODE = 112) is shown in Figure 11–30.

If DMA split mode is selected, it reacts as two independent synchronizations

for the primary (write synchronization) and auxiliary (read synchronization)

channels. Figure 11–28b and Figure 11–29b show this.

When the same interrupt is selected for read and write synchronization (in ei-

ther split or unified mode), one single interrupt will enable both read and write

operations.



DMA and Interrupts

 11-50

Figure 11–30.Unified Mode DMA Source and Destination Synchronization

Start

Disable DMA interrupts globally

DMA channel performs a read

DMA channel performs a write

Idle until enabled interrupt is received

Enable DMA interrupts globally

Idle until enabled interrupt is received

Disable DMA interrupts globally

Enable DMA interrupts globally

Go to start

(SYNC MODE = 112)



 DMA Memory Transfer Timing

11-51  The DMA Coprocessor

11.11 DMA Memory Transfer Timing

The ’C4x provides six DMA channels (twelve DMA channels if they are all in

split mode) with a fixed/rotating priority arbitration scheme and configurable

CPU/DMA priority scheme (for detailed information, see Section 11.6 for DMA

internal priority schemes and Section 11.7, CPU and DMA Coprocessor Ar-

bitration, for CPU and DMA priority arbitration).

The maximum data transfer rate that the ’C4x DMA sustains is one word every

two cycles. The six DMA channels transfer data in a sequential time-slice fash-

ion, rather than simultaneously, because they share common buses.

DMA memory transfer timing can be very complicated, especially if bus re-

source conflicts occur. However, some rules help you calculate the transfer

timing for certain DMA setups. For simplification, the following subsection fo-

cuses on a single-channel DMA memory transfer timing with no conflict with

the CPU or other DMA channels. You can obtain the actual DMA transfer tim-

ing by combining the calculations for single-channel DMA transfer timing with

those for bus resource conflict situations.

11.11.1 Single DMA Memory Transfer Timing

When the DMA memory transfer has no conflict with the CPU or any other

DMA channels, the number of cycles of a DMA transfer depends on whether

the source and destination location are designated as on-chip memory, pe-

ripheral, or external ports. When the external port is used, the DMA transfer

speed is affected by two factors: the external bus wait state and the read/write

conflict (for example, if a write is followed by a read, the read takes two cycles).

Figure 11–31 through Figure 11–33 show the number of cycles a DMA transfer

requires from different sources to different destinations. Entries in the table

represents the number of cycles required to do the T transfers, assuming that

there are no pipeline conflicts. A timing diagram for the DMA transfers accom-

panies each figure.



DMA Memory Transfer Timing

 11-52

Figure 11–31.Timing and Number of Cycles for DMA Transfers to On-Chip Destination

Cycles T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Source on-chip
9

R R R R R R R R R

Destination on-chip
9

W W W W W W W W W

Source local bus

4

R R R R R R R R R R R R

4 Cr Cr Cr Cr

Destination on-chip W W W W

Source global bus

4

R R R R R R R R R R R R

4 Cr Cr Cr Cr

Destination on-chip W W W W

Source Destination: On-chip

On-chip (1+1)T

Local bus [(1+Cr)+1]T

Global bus [(1+Cr)+1]T

Legend:
T = Number of transfers
Cr = Source-read wait states
R = Single-cycle reads
W = Single-cycle writes
R R = Multicycle reads



 DMA Memory Transfer Timing

11-53  The DMA Coprocessor

Figure 11–32.Timing and Number of Cycles for DMA Transfers to a Local-Bus Destination

Cycles T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Source on-chip

4

R R R R

Destination local bus 4 W W W W W W W W W W W W W W W W

Cw Cw Cw Cw

Source local bus

2

R R R R R R R

2
Cr Cr

Destination local bus
2

W W W W W W W W

Cw Cw

Source global bus

3

R R R R R R R R R

3
Cr Cr Cr

Destination local bus
3

W W W W W W W W W W W W

Cw Cw Cw

Source Destination: Local Bus

On-chip 1+(2+Cw)T

Local bus [(2+Cr)+(2+Cw)]T–1

Global bus [(1+Cr)+(2+Cw)]+[2+max(Cr,Cw)](T–1)

Legend:
T = Number of transfers
Cr = Source-read wait states
Cw = Destination-write wait states
R = Single-cycle reads
R R = Multicycle reads
W W = Multicycle writes



DMA Memory Transfer Timing

 11-54

Figure 11–33.Timing and Number of Cycles for DMA Transfers to a Global-Bus Destination

Cycles T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Source on-chip

4

R R R R

Destination global bus 4 W W W W W W W W W W W W W W W W

Cw Cw Cw Cw

Source local bus

3

R R R R R R R R R

3
Cr Cr Cr

Destination global bus
3

W W W W W W W W W W W W

Cw Cw Cw

Source global bus

2

R R R R R R R

2
Cr Cr

Destination global bus
2

W W W W W W W W

Cw Cw

Source Destination: Global Bus

On-chip 1+(2+Cw)T

Local bus [(1+Cr)+(2+Cw)]+[2+max(Cr,Cw)](T–1)

Global bus [(2+Cr)+(2+Cw)]T–1

Legend:
T = Number of transfers
Cr = Source-read wait states
Cw = Destination-write wait states
R = Single-cycle reads
R R = Multicycle reads
W W = Multicycle writes

Externally, on the global and local buses, writes take at least two cycles. How-

ever, internally, the CPU/DMA requires one cycle to perform the write to exter-

nal memory. Therefore, the DMA/CPU can transfer data on the next cycle if it

is not to the same external bus. For example, the DMA transfers 1024 words

from internal memory RAM block 1 to a 1-wait-state memory on the global bus

while the CPU runs from memory on the local bus and fetches operands from

RAM block 0. The DMA transfer time is calculated from Figure 11–32 as

1 + (2+1)1024 = 1 + 3072 = 3073 cycles.



 DMA Memory Transfer Timing

11-55  The DMA Coprocessor

11.11.2 DMA Transfer Rate in Synchronization Mode

The synchronization mode used for transfers also affects the DMA data trans-

fer rate. The DMA data transfer rate is slower if synchronization is used be-

cause it takes two cycles to reset the request from the interrupt. However,

these two extra cycles can be absorbed if multiple DMAs are running at the

same time.

In unified mode, the maximum transfer rate is one word every three cycles, us-

ing synchronization. Figure 11–34 shows the number of cycles a DMA transfer

requires under unified mode with different types of synchronization. For simpli-

fication, a single-channel DMA memory transfer timing with no conflict with

CPU or other DMA channels, no memory wait states, and interrupts always

active, is considered.

Figure 11–34.Unified-Mode DMA Timing for Different Synchronizations

Cycles T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

No synchronization 9
R R R R R R R R R

No synchronization 9
W W W W W W W W W

R d h i i 6

R R R R R R

Read synchronization 6 Rr Rr Rr Rr Rr Rr

W W W W W W

W i h i i

R R R R R

Write synchronization 5 W W W W W

Wr Wr Wr Wr Wr

R d d i

R R R R R

Read and write 5
Rr Rr Rr Rr Rr

synchronization
5

W W W W W

Wr Wr Wr Wr Wr

Synchronization Timing

No synchronization 2T

Read synchronization 3T

Write synchronization 1 + 3T

Read and write synchronization 1 + 3T

Legend:
T = Number of transfers
R = Single-cycle reads
W = Single-cycle writes
Rr = Read flag-reset (2 cycles)
Wr = Write-flag reset (2 cycles)



DMA Memory Transfer Timing

 11-56

In split mode, the maximum transfer rate for either the primary or auxiliary

channel is one word every four cycles, using synchronization. When auxiliary

and primary channels are running at the same time, the two-cycle overhead

for interrupt reset is absorbed, and the maximum transfer rate can be one word

every two cycles. Figure 11–35 shows the number of cycles a DMA transfer

requires in split mode with different types of synchronization. For simplifica-

tion, a single-channel DMA memory transfer timing with no conflict with CPU

or other DMA channels, no wait states, and interrupts always active, is consid-

ered.

Figure 11–35.Split-Mode DMA Timing for Different Synchronizations

Cycles T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N h i i
8

R R R R

No synchronization
(both channels 8

W W W W
(both channels
running)

8
R’ R’ R’ R’g)

W’ W’ W’ W’

Primary channel
synchronization 4

R R R R

synchronization 
(auxiliary channel

4 W W W W
(auxiliary channel
not running) Pr Pr Pr Pr

Auxiliary channel
synchronization 4

R’ R’ R’ R’

synchronization
(primary channel

4 W’ W’ W’ W’
(primary channel
not running) Ar Ar Ar Ar

P i d ili

8

R R R R

Primary and auxiliary

8

W W W W
Primary and auxiliary
channel
synchronization 8

Pr Pr Pr Pr
synchronization
(both channels

i )

8
R’ R’ R’ R’

running) W’ W’ W’ W’

Ar Ar Ar Ar

Synchronization Timing

No synchronization (both channels running) 2T

Primary channel synchronization (auxiliary channel not running) 4T

Auxiliary channel synchronization (primary channel not running) 4T

Primary and auxiliary channel synchronization (both channels running) 2T + 2

Legend:
T = Number of transfers
R = Single-cycle reads primary channel
R’ = Single-cycle reads auxiliary channel
W = Single-cycle writes primary channel
W’ = Single-cycle writes auxiliary channel
Pr = Primary channel flag reset (2 cycles)
Ar = Auxiliary channel flag reset (2 cycles)



 Running Title—Attribute Reference

12-1  Chapter Title—Attribute Reference

Communication Ports

The ’C4x offers six (’C40) or four (’C44) on-chip communication ports for inter-

facing with other ’C4xs and peripherals. One important feature of the ports is

that they can work with the DMA coprocessor to transfer data without CPU in-

tervention, allowing the CPU to perform other tasks.

This chapter describes the key features, memory map and registers, and op-

erations of the communication ports of the ’C4x digital signal processor.

Topic Page

12.1 Features 12-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.2 Operational Overview 12-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.3 Memory Map and Registers 12-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.4 Port Arbitration Units (PAUs) 12-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.5 Halting of Input and Output FIFOs 12-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.6 Coordinating Communication Ports With the CPU and
DMA Coprocessor 12-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.7 Token Transfer Operation 12-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.8 Word Transfer Operation 12-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.9 Synchronizers 12-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.10 Module Reset 12-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.11 Tips for Using Communication Ports 12-32. . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 12



Features

 12-2

12.1 Features

Each ’C4x communication port has several key features:

� 160-MB per second bidirectional peak data transfer rates (at 40-ns cycle

time)

� Simple processor-to-processor communication via eight data lines and

four control lines

� FIFO buffering of all data transfers

� Automatic arbitration and handshaking to ensure communication syn-

chronization

� Synchronization between the CPU or direct-memory access (DMA)

coprocessor and the six communication ports via internal interrupts and

internal ready signals

� Support of a wide variety of multiprocessor architectures, including rings,

trees, hypercubes, bidirectional pipelines, two-dimensional Euclidean

grids, hexagonal grids, and three-dimensional grids

� Communication-port software reset (’C40 revisions ≥ 5.0 and ’C44 only)



 Operational Overview

12-3  Communication Ports

12.2 Operational Overview

The ’C4x contains six (’C40) or four (’C44) identical high-speed communica-

tion ports, each of which provides a bidirectional communication interface to

one other ’C4x or external peripheral. Figure 12–1 shows the internal architec-

ture of a single communication port. Each port contains the following compo-

nents:

� Input FIFO channel — provides an 8-level, 32-bit wide first-in-first-out

(FIFO) input buffer that isolates the ’C4x from the port communication data

bus and buffers data received from an external device via the bus.

� Output FIFO channel — provides an 8-level, 32-bit wide FIFO output

buffer that isolates the ’C4x from the port communication data bus and

buffers data to be sent to an external device via the bus.

� Port arbitration unit (PAU) — handles the arbitration tasks associated

with the movement of data between a ’C4x and an external device via the

port communication data bus. The PAU is described in detail in Section

12.4, Port Arbitration Units (PAUs), on page 12-11.

� Communication port control register (CPCR) — allows you to control

the communication port functions and data transfer operations between

a ’C4x and an external device via the communication port data bus.

� Communication-port software reset register (’C44 and ’C40 rev � 5.0) —

allows you to flush the input FIFO and output FIFO levels of a communica-

tion port. This is explained in subsection 12.3.4, Communication Port Soft-

ware Reset Register, on page 12-10.

A communication port transmits each of the 32-bit words stored in its output

FIFO on a byte-to-byte basis. Because the control and data lines are bidirec-

tional, each ’C4x must have ownership of the communication port data bus be-

fore starting a word transfer. A simulated token is used to designate bus owner-

ship: the communication port that has the token owns the communication port

data bus and can transmit data.



Operational Overview

 12-4

Figure 12–1. Communication Port Block Diagram

P
e
ri
p
h
e
ra

l 
d
a
ta

 b
u
s

1 20 3 4 5 6 7

Port arbitration unit
(PAU)

12 034567

Buffer
register
for word
being

input or
output

Input/output
data shifter 

and 
multiplexer

Input channel full flag (ICFULL)

Input channel ready flag (ICRDY)

Input channel halt

Output channel empty flag (OCEMPTY)

Output channel ready flag (OCRDY)

Output channel halt

Input channel level

Output channel level

Port direction

CREQx

CACKx

Communication
port 

control
registers

Input FIFO 
channel

Output FIFO
Channel

4

(8 levels)

4

FIFO control

FIFO positions

(8 levels)

FIFO control

FIFO positions

32

32

32

In
te

rf
a
c
e

TMS320C4x

CSTRBx

CRDYx
CxD(7–0)

32

32



 Operational Overview

12-5  Communication Ports

Figure 12–2. ’C4x Communication-Port Interface-Connection Example

CREQ1

CACK1

CSTRB1

CRDY1

 C1D(7–0)

CREQ4

CACK4

CSTRB4

CRDY4

C1D(7–0)

Processor
 A

Processor
 B

8

Figure 12–2 is an example of two ’C4x DSPs connected via their communica-

tion ports. This simple communication interface consists of the following

bidirectional control and data lines:

� CREQx — communication-port token request. A ’C4x activates this signal

to request the use of the communication-port data bus.

� CACKx — communication-port token acknowledge. A ’C4x activates this

signal to relinquish ownership of the communication-port data bus upon

receiving a CREQx from another ’C4x.

� CSTRBx — communication-port strobe. A sending ’C4x activates this sig-

nal to indicate that it has placed a valid data byte on the communication

port data bus.

� CRDYx — communication-port ready. A receiving ’C4x activates this sig-

nal to indicate that it has received a data byte via the communication port

data bus.

� CxD(7–0) — communication-port data bus. This bus carries data bidirec-

tionally, one byte at a time, between two ’C4xs or between a ’C4x and

some other device.

12.2.1 Token Transfer Operation

To transfer a token, the PAUs in the two ’C4xs cooperate to generate the sig-

nals and control sequences necessary to ensure orderly data transfers at the

highest possible rate. To avoid conflicts on the bus, the PAUs arbitrate bus

ownership, allowing only one DSP to transmit at any given time. The PAU that

owns the token can relinquish bus ownership when the other ’C4x has data to

send.



Operational Overview

 12-6

The signals CREQx and CACKx handle the handshaking arbitration between

the two DSPs in two steps:

1) The PAU that does not own the data bus (CxD(7–0)) activates CREQx to

request bus ownership.

2) The PAU owning the bus then activates CACKx to acknowledge the re-

quest and relinquish bus ownership to the requesting PAU.

In this manner, these signals transfer a token (or priority) from one PAU to an-

other, and the PAU receiving the token gains ownership of the bus. See Sec-

tion 12.7, Token Transfer Operation, for a detailed description of token trans-

fer.

12.2.2 Data Transfer Operation

A data transfer operation takes four basic steps to complete:

1) The CPU or DMA coprocessor of the sending DSP writes a 32-bit data

word to the output FIFO (of a communication port) via a memory-mapped

address (listed in Figure 12–3).

2) The communication port then places the 32-bit data word on CxD(7–0) on

a byte-to-byte basis (LS byte first), activating CSTRBx to signal the receiv-

ing communication port that the bus contains a valid data byte.

3) Upon receiving each data byte, the receiving communication port acti-

vates CRDYx to indicate that it has received the data byte.

4) After receiving the 4 bytes of a 32-bit word, the CPU or DMA coprocessor

of the receiving DSP can then read the data from the input FIFO via a

memory-mapped address (listed in Figure 12–3).

Each of the input and output FIFOs can buffer a maximum of eight 32-bit

words.

Buffering provided by the input and output FIFOs is essential. This buffering

allows for a high degree of decoupling of computation and communication

overhead. When ’C4xs A and B are connected via their communication ports,

the effective length of the FIFOs becomes 16 levels. This occurs because the

output path from A to B is the concatenation of the eight levels of the output

FIFO of A with the eight levels of the input FIFO of B. This also applies for the

output path from B to A.



 Memory Map and Registers

12-7  Communication Ports

12.3 Memory Map and Registers

Figure 12–3 shows the memory map for the ’C4x communication-port control

registers (CPCRs) and their associated input FIFOs and output FIFOs. The

lowest three addresses of each port’s 16-address block are mapped to a corre-

sponding CPCR, and its associated input and output FIFOs. Fields (bits) within

a CPCR are shown in Figure 12–4.

Figure 12–3. Communication-Port Memory Map

0010 0040h

0010 0041h

0010 0042h

CPCR 0 (’C40 only)

input port 0, FIFO position 0

output port 0, FIFO position 7

Port 0 software reset†0010 0043h

0010 0050h

0010 0051h

0010 0052h

CPCR 1

input port 1, FIFO position 0

output port 1, FIFO position 7

Port 1 software reset†0010 0053h

0010 0060h

0010 0061h

0010 0062h

CPCR 2

input port 2, FIFO position 0

output port 2, FIFO position 7

Port 2 software reset†0010 0063h

0010 0070h

0010 0071h

0010 0072h

CPCR 3 (’C40 only)

input port 3, FIFO position 0

output port 3, FIFO position 7

Port 3 software reset†0010 0073h

0010 0080h

0010 0081h

0010 0082h

CPCR 4

input port 4, FIFO position 0

output port 4, FIFO position 7

Port 4 software reset†0010 0083h

0010 0090h

0010 0091h

0010 0092h

CPCR 5

input port 5, FIFO position 0

output port 5, FIFO position 7

Port 5 software reset†0010 0093h

† This feature is only available on the ’C44 and on the ’C40 (revision 5.0 and above).



Memory Map and Registers

 12-8

12.3.1 Communication-Port Control Register (CPCR)

Figure 12–4 shows the format of a ’C4x CPCR, which contains control and

status bits for its associated communication port. The text following the figure

lists the CPCR bits and fields and describes their functions.

Figure 12–4. Communication-Port Control Register (CPCR)

ÉÉÉ
ÉÉÉ
ÉÉÉ

13

12 11 10 9 8 7 6 5 4 3 2 1 0

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R/WRRRRRRRR

15 14

xx xx xx xx

INPUT LEVEL OUTPUT LEVEL OCH ICH
PORT
DIR xx xx

R/W R

Notes: 1)  xx = reserved bit (read/write as zero).

2) R = read, W = write.

Reserved Undefined

PORT DIR Port Direction. This bit determines the direction of data transfer operations
for the communication port.

PORT DIR =  0: port is in the output mode.

PORT DIR = 1: port is in the input mode.

This is a read-only bit. It is not possible to change the port direction under
software control.

ICH Input Channel Halt.
Write a 1 to ICH to halt the input channel.

Clear ICH to 0 when the input channel is to be unhalted.

The input channel cannot signal externally when it is ready to receive.

OCH Output Channel Halt.
Write a 1 to this bit to halt the output channel immediately.

However, the communication port is still able to accept a token request from
the input channel.

Clear this bit to 0 to allow the output channel to transfer data.



 Memory Map and Registers

12-9  Communication Ports

OUTPUT
LEVEL

Output FIFO Level. Contents of this 4-bit field:
00002 (0): indicates an empty output FIFO.

00012 (1) through 01112 (7): indicates the number of full positions in the
 output FIFO.

11112 (15): indicates a full output FIFO.

An empty output buffer (OUTPUT LEVEL = 00002) sends an unlatched,
positive level-triggered interrupt (OCEMPTY = 1) to the CPU. When the CPU
or DMA coprocessor writes to the empty output FIFO, OCEMPTY is cleared
to 0 and remains in that state until the buffer is again empty. An output FIFO
with one or more empty levels also sends an unlatched, positive level-trig-
gered interrupt (OCRDY = 1) to the CPU and the DMA coprocessor. This
condition causes a READY/NOT READY signal to be generated when the
CPU or DMA coprocessor attempts to write to the output FIFO. See Section
12.6, Coordinating Communication Ports With the CPU and DMA Coproces-
sor, on page 12-17, for details.

INPUT
LEVEL 

Input FIFO level. Contents of this 4-bit field:
00002 (0): indicates an empty input FIFO.

00012 (1) through 01112 (7): indicates the number of full positions in the input
FIFO.

11112 (15): indicates a full input FIFO.

A full input FIFO (INPUT LEVEL = 11112) sends an unlatched, positive level-
triggered interrupt (ICFULL = 1) to the CPU. When the CPU or DMA
coprocessor reads from the full input FIFO, ICFULL is cleared to 0 and re-
mains in that state until the FIFO is again full. An input FIFO with one or more
full levels also an unlatched, positive level-triggered interrupt (ICRDY = 1)
to the CPU and the DMA coprocessor. This condition causes a READY/NOT
READY signal to be generated when the CPU or DMA coprocessor attempts
to read from the input FIFO.

Reserved Undefined.

12.3.2 Input-Port Register

This read-only register contains the contents of position 0, the oldest value of

the input FIFO. If this register is written to, its contents remain unchanged.

Reading from an empty input FIFO causes the CPU or DMA operation to stall

and to halt the peripheral bus.

12.3.3 Output-Port Register

This write-only register interfaces to position 7 (the newest value) of the output

FIFO. If this register is read, its contents remain unchanged, and the value

read is undefined.



Memory Map and Registers

 12-10

If an output FIFO that is full is written to, the peripheral-bus interface latches

the word, and returns a not ready signal. This condition disappears when an

empty position appears in the output FIFO and the data on the bus is trans-

ferred to the FIFO.

12.3.4 Communication-Port Software Reset Register

The input and output FIFO levels for a communication port can be flushed by

writing at least two back-to-back values to its communication-port-software re-

set address as specified in Table 12–1. The communication port reset feature

does not affect the status of the external pins.

Table 12–1.Communication-Port Software Reset Address (’C44 and ’C40 � 5.0)

COMMUNICATION PORT SOFTWARE RESET ADDRESS

0† 0x0100043

1 0x0100053

2 0x0100063

3† 0x0100073

4 0x0100083

5 0x0100093

† These ports are available only in the ’C40.

Example 12–1 shows a method for resetting a communication port.

Example 12–2. Communication Port Reset

; –––––––––––––––––––––––––––––––––––––––––––––-–––;

; RESET1:Flushes FIFOs data for communication port 1;

; –––––––––––––––––––––––––––––––––––––––––––––-–––;

RESET1push AR0 ; Save registers

push R0 ;

push RC ;

ldhi 010h,AR0 ; Set AR0 to base address of COM 1

or 050h,AR0 ;

FLUSH:rpts 1 ;Flush FIFO data with back-to-back write

sti R0,*+AR0(3) ;

rpts 10 ; Wait

nop ;

ldi *+AR0(0),R0 ; Check for new data from other port

and 01FE0h,R0 ;

bnz FLUSH ;

pop RC ; Restore registers

pop R0 ;

pop AR0 ;

rets ; Return



 Port Arbitration Units (PAUs)

12-11  Communication Ports

12.4 Port Arbitration Units (PAUs)

The PAU arbitrates between two devices to determine which device has pos-

session of the communication port data bus at any given time. This arbitration

uses CREQ and CACK signals to pass the bus ownership token back and forth

between two devices connected via their communication ports. Token transfer

operation is covered in detail in Section 12.7, Token Transfer Operation.

After system reset, half of the communication channels associated with a par-

ticular ’C4x have token ownership (communication ports 0, 1, 2), and the other

half (communication ports 3, 4, 5) do not.

The PAU is a synchronous state machine with four states, as shown in

Table 12–2. These states are not software-accessible by the CPU or the DMA

coprocessor.

Table 12–2.PAU State Definitions

PAU State Summary PAU Status

State 0:

Idle with token

1.PAU has token (PORT DIR = 0).

2.Channel not in use.

The PAU currently has possession of the bus own-

ership token, and its associated communication

channel is not in use. Under this condition, the

PORT DIR bit of the associated CPCR is 0

(output). This is the state of communication ports

0, 1, and 2 after system reset.

State 1:

Idle without

token

1.PAU does not have token

(PORT DIR = 1).

2.Token not requested by PAU

(OUTPUT LEVEL = 0).

The PAU currently does not have possession of

the bus ownership token and has not requested

the token. Under this condition, the PORT DIR bit

equals 1 (input), and the OUTPUT LEVEL field

equals 0 (empty output FIFO). This is the state of

communication ports 3, 4, and 5 after system re-

set.

State 2:

Active

1.PAU has token (PORT   DIR= 0).

2.Channel is in use (OUTPUT

LEVEL ≠ 0).

The PAU currently has possession of the bus own-

ership token, and its associated communication

channel is in use. Under this condition, the PORT

DIR bit equals 0 (output), and the OUTPUT LEVEL

field does not equal 0).

State 3:

Waiting for

token

1.PAU does not have token 

(PORT DIR = 1).

2.Token requested by PAU

(OUTPUT LEVEL ≠ 0).

The PAU currently does not have the bus owner-

ship token but has requested it. Under this condi-

tion, the PORT DIR bit equals 1 (input), and the

OUTPUT LEVEL field does not equal 0.



Port Arbitration Units (PAUs)

 12-12

Figure 12–5 shows the state diagram and controlling equations for state tran-

sitions.

To place data on the communication port data bus, the PAU must arbitrate be-

tween two types of requests:

� On-chip requests to output data in the output FIFO (shown as BUSRQ =

1 in Figure 12–5), and

� External requests received via the CREQ line (shown as TOKRQ = 1 in

Figure 12–5).

Figure 12–5. Communication-Port Arbitration-Unit State Diagram

0 2

1 3

(Other PAU requests token; token
released and passed using CACK)

TOKRQ = 1

Owns token

Does not own token

(Transmit a word)
BUSRQ = 1

(Finished a one-word transfer)
BUSRQ = 0

BUSRQ = 0 BUSAK = 0

BUSAK = 1
(Token received
from other PAU

over CACK)

BUSRQ = 1
(Request token from other PAU using CREQ)

BUSRQ = 1
(Bus being used)

BUSRQ = 0;
TOKRQ = 0

To further examine the port arbitration scheme represented in Figure 12–5,

consider a data transfer operation from ’C4x A to ’C4x B. The transfer begins

with PAU A in state 0 (idle with token) and PAU B in state 1 (idle without token).

If PAU A receives a request (BUSRQ = 1) from its output buffer to use the com-

munication-port data bus, it allows the output buffer to transmit one word im-

mediately and enter state 2 (active). After the output buffer transmits one word,

it removes the bus request (BUSRQ = 0), and PAU A returns to state 0 (idle

with token).



 Port Arbitration Units (PAUs)

12-13  Communication Ports

If PAU B receives a request from its output buffer to use the bus, it activates

CREQ to request the token from PAU A. PAU A detects this request via the

state variable TOKRQ=1 and then activates the CACK line to transfer the bus

ownership token to PAU B. PAU B then generates an internal bus acknowledge

(BUSAK = 1) to indicate that it has gained bus ownership. As a result of this

token transfer operation, PAU A enters state 1 (idle without token), and PAU

B starts the word transfer and enters state 2 (active).

To prevent any communication port from monopolizing the communication-

port bus, the PAU always returns to state 0 (idle with token) and checks for a

token request (CREQ active) from the external device after each word transfer.

If the token request is active, the token is passed to the requesting device so

that it can transmit a word. As long as ’C4x A and ’C4x B have information to

send in their output FIFOs, they alternate use of the data bus to provide a bi-

directional data path.

If a token request is received at the end of a word transfer and the sender ’C4x

has another word in the output FIFO to send, two situations can occur:

� If the CREQ going low signal is received before CRDY low is received for

the last byte, the sender ’C4x releases the token at the end of the current

word transfer.

� If the CREQ going low signal is received after or at the same time as CRDY

goes low from the last byte, the sender ’C4x continues owning the token;

only after transferring the next word, will it release token ownership.

In summary, token transfer occurs only on word boundaries. The ’C4x will not

release the token until the transfer of the four bytes completes.



Halting of Input and Output FIFOs

 12-14

12.5 Halting of Input and Output FIFOs

The ’C4x can halt the input FIFO, or the output FIFO, or both at word bound-

aries.

To halt an input FIFO, write a 1 to bit 3 (ICH) of the communication port control

register (CPCR). This bit also can be read to determine if the port is halted or

is able to receive. Write a 0 to the ICH bit to unhalt the input FIFO.

To halt an output FIFO, write a 1 to bit 4 (OCH) of the communication port con-

trol register (CPCR). This bit also can be read to determine whether the port

is halted or is able to transmit. Write a 0 to the OCH bit to unhalt the output

FIFO. The halt/unhalt operations are discussed in the following subsections.

A summary is provided in Table 12–3.

Table 12–3.Summary of Input and Output FIFO Halting

Halted/Unhalted If the Port Has Token If the Port Does Not Have Token

Input halted

Output unhalted

a. Will not release token

b. Will transmit data

a. If the halt signal is present when the input

FIFO finishes receiving a word, the port will not

signal ready when the first byte of a new word is

received (transfer frozen). If the halt signal is

received with no word reception in progress, the

port receives one word and then halts.

b. If halted after the first byte is received, the

port receives the rest of the word and then halts

the input.

Input unhalted

Output halted

a. Will not transmit data

b. If halted after the first byte is

sent, it completes the word transfer

and then halts the output.

c. Will release token

a. Will receive data

b. Will not request token

Input halted

Output halted

a. Will not release token

b. Will not transmit data

c. If halted after the first byte is

sent, it completes the word transfer

and then halts the output

a. If the halt signal is present when the input

FIFO finishes receiving a word, the port will not

signal ready when the first byte of a new word

is received (transfer frozen). If the halt signal is

received with no word reception in progress,

the port receives one word and then halts.

b. If halted after the first byte is received, if the

port receives the rest of the word and then halts

the input.

c. Will not request token



 Halting of Input and Output FIFOs

12-15  Communication Ports

12.5.1 Input FIFO Halt Operation

The goal of input FIFO halting is to halt the input FIFO as soon as possible,

without losing the data being input.

A communication port with an input FIFO that is either halted or is full does not

respond to CSTRB low with CRDY low or acknowledge a token request with

CACK low when CREQ low is received. This assures that the communication

port’s output channel remains open.

The communication-port logic checks whether an input FIFO halt signal has

been written to the CPCR register only after finishing receiving a word. This

implies:

� If the communication port receives an input halt signal when there is no

word reception in progress, the input FIFO does not halt immediately; it

waits to receive one word and then halts. This is the case of an input FIFO

halt after reset.

� If the halt signal is written to the CPCR register while a word is being re-

ceived, the input FIFO receives the rest of the current word and then halts

the input. At this point, the data transfer is frozen until the input FIFO is un-

halted or a system reset occurs. If the input FIFO is unhalted later, the

transfer continues without any loss of data.

Notice that even when an input FIFO is halted, you can still read the words pre-

viously stored in the input FIFO.

If a communication port’s input FIFO is halted during a token request from the

communication port to which it is connected, then the token request is ac-

knowledged before the input FIFO halts.

12.5.2 Output FIFO Halt Operation

Output FIFO halting is analogous to input FIFO halting and occurs also at word

boundaries. Assume that ’C4x A’s output FIFO has OCH = 1. Then the output

FIFO will be halted on the basis of its current state.

If communication port A does not have the token:

� The output FIFO is halted immediately, and no request is made for the to-

ken.

� If the communication port requesting the token is halted after sending the

CREQ signal low, the communication port still accepts the token and halts

immediately after that.



Halting of Input and Output FIFOs

 12-16

If communication port A has the token:

� If it is currently transmitting a word, then after the current word is trans-

mitted, the output FIFO is halted and no new transfers occur.

� If it is not currently transmitting a word, then the output FIFO halts immedi-

ately and no transfer occurs.

� If the input FIFO is not halted and the output FIFO is halted, then commu-

nication port A transfers the token when requested by communication port

B.

� If the input FIFO is halted and the output FIFO is halted, then communica-

tion port A does not transfer the token when requested by communication

port B.

If the communication port still has the token when it comes out of the halted

state, it can transmit data if necessary. If it needs the token, it will arbitrate for

the token as usual.

In summary, a halted output FIFO does not transmit but releases the token if

the input FIFO is not halted.



 Coordinating Communication Ports With the CPU and DMA Coprocessor

12-17  Communication Ports

12.6 Coordinating Communication Ports With the CPU and DMA Coprocessor

The communication ports support synchronization with two types of signals:

� A ready/not ready signal that can halt CPU and DMA accesses to a com-

munication port

� Interrupts that can be used to signal the CPU and DMA

The simplest form of synchronization is based on a ready/not-ready signal. If

the DMA or CPU attempt to read an empty input FIFO or write to a full output

FIFO, a not-ready signal is returned, and the DMA or CPU continues to read

or write (halting the peripheral bus) until a ready signal is received. The ready

signal for the output channel is OCRDY (output channel ready), which is also

an interrupt signal. The ready signal for the input channel is ICRDY (input

channel ready), which is also an interrupt signal.

In the interrupt form of synchronization, each communication port generates

four different interrupt signals, as listed below (interrupt vector locations for

these are shown in Figure 7–2):

� ICFULL (input channel full): indicates that the input FIFO has eight words.

� ICRDY (input channel ready): indicates that at least one word is in the input

FIFO.

� OCRDY (output channel ready): indicates that at least one word space is

available in the output FIFO.

� OCEMPTY (output channel empty): Indicates that the output FIFO is

empty.

The CPU can respond to all four of these interrupt signals. The DMA coproces-

sor can respond only to the ICRDY and OCRDY interrupt signals. Each DMA

channel can respond only to the ICRDY and OCRDY signals coming from its

own communication port; that is, DMA channel i can synchronize only with

ICRDYi and OCRDYi.

Notice that none of the four communication-port interrupt signals has flags in

the IIF register. These four communication-port status signals (ICFULL,

ICRDY, OCRDY, and OCEMPTY) can be obtained by checking the input and

output levels in the communication port control register (CPCR) with logical

instructions. For example, to poll for an ICFULL condition, bit 12 can be tested

for a bit value equal to 1. See subsection 12.3.1, Communication-Port Control

Register (CPCR), on page 12-8, for more information about checking for

communication-port conditions.



Coordinating Communication Ports With the CPU and DMA Coprocessor

 12-18

Maximum Communication Port Sustained Transfer Rate. The maximum

data transfer rate of any single communication port in a 50-MHz ’C4x is 20 M

Bytes/s. This rate can be easily achieved under CPU or DMA coprocessor con-

trol, as long as data is sent to the output FIFO at least at this rate. However,

when multiple communication ports are transmitting simultaneously, this may

not be the case. For example, the DMA memory-to-memory maximum transfer

rate is 50 M bytes/s (one read-write sequence every two cycles). The DMA can

handle up to two communication ports transmitting at their full speed. For more

than two communication ports, the DMA becomes the bottleneck, regardless

of how many DMA channels are used. The CPU can perform two reads and

two writes in two cycles by using parallel instructions, achieving a 100-M By-

tes/s transfer rate. For more than five communication ports, the CPU becomes

the bottleneck.



 Token Transfer Operation

12-19  Communication Ports

12.7 Token Transfer Operation

Token transfer operation requires handshaking of signals through pins CREQ

and CACK. This is illustrated in Figure 12–6. For clarity, a suffix identifies the

signals at each processor end. For example, CREQb denotes the CREQ sig-

nal at the processor B end. Table 12–4 lists the handshaking events. Steps in

the table are shown by numbers in Figure 12–6.

Notice that an overlap feature is built into CREQ, CSTRB, and CRDY when a

token is transferred between two ’C4x communication ports. This overlap will

cause these signals to drive high (at both ends), ensuring that neither end is

susceptible to floating or low-noise signals. For example, in Figure 14–23,

CSTRB is an output before CREQ goes high, and in Figure 14–24, CSTRB be-

comes an input only after CREQ goes high. Both ’C4xs drive communication

port lines for a period of 0.5 H1/H3, but this is not a problem, because they are

both driving high; as a result, there is no current from one device to the other.

For this reason, the clocks of two ’C4xs connected together must be within a

2:1 ratio (at most, one ’C4x can be twice as fast as the other). If this guideline

is not followed, the overlap will last too long, and the ’C4x with the faster clock

may start driving low before the current bus master has relinquished that line.

This will cause signal contention that could damage communication port driv-

ers.

There is no limit on the time period between CREQ and CACK. The ’C4x can

perform token transfer with a slow non-’C4x device, as long as correct hand-

shaking of CREQ and CACK is maintained and there is no signal contention.

To avoid bus contention problems, you should understand which event trig-

gers the switch of the direction (input-to-output or output-to-input) of each of

the communication port bidirectional lines. This is especially important when

you attempt to build a communication port interface to a non-’C4x device or

when you work with very long ’C4x links. For example, the data lines and

CSTRB should not be driven after CACK goes low. If they are, this could cause

a bus conflict.

An implementation of a hardware token forcer can be found in the Commu-

nication Ports chapter of the TMS320C4x General-Purpose Applications

User’s Guide.



Token Transfer Operation

 12-20

Figure 12–6. Token Transfer Operation

type 1 delay

PROCESSOR A (initial token owner)

CDa

CRDYa

CSTRBa

CACKa

CREQa

CDb

CRDYb

CSTRBb

CACKb

CREQb

PROCESSOR B (token requester)

undefined

byte 0undefined

10

92
11

123

5

13 21

22
6

20

type 1 delay

14
8

1

4

15

19

7

16

17

= When signal is an input (clear = when signal is an output).

18

0

Note: For an explanation of Type 1 delay, see Section 12.9, Synchronizers.



 Token Transfer Operation

12-21  Communication Ports

Table 12–4.Token Transfer Sequence

Event

No.† Description

0 Initially, A has the token and is idle.

1 B wants to send data and requests the token by bringing CREQb low.

2 After a transmission line time delay, A sees the token request when CREQa goes low.

3 After a type 1 delay from CREQa falling, A releases token ownership and acknowledges the re-

quest by bringing CACKa low.

4 After a transmission line time delay, B sees the acknowledgement from A when CACKb goes low.

5 A switches CRDYa from high impedance to high after CACKa falling.

6 A puts CDa(7–0) in high impedance after CACKa falling.

7 B switches CSTRBb from high impedance to high after CACKb falling.

8 B brings CREQb high after a type 1 delay from CACKb falling.

9 After a transmission line time delay, A sees CREQa go high.

10 A switches CREQa from high impedance to high after receiving a high on CREQa.

11 A brings CACKa high after CREQa goes high.

12 A puts CACKa in high impedance after CREQa goes high and after CACKa goes high.

13 A puts CSTRBa in high impedance after CREQa goes high.

14 B puts CREQb in high impedance after CREQb goes high.

15 B switches CACKb from high impedance to high after CREQb goes high.

16 B puts CRDYb in high impedance after CREQb goes high.

17 B switches CDb from input to output after CREQb goes high and starts driving an undefined value.

18 B drives the first byte onto CDb(7–0) on H1 rising (plus analog delay) after CREQb goes high.

19 B brings CSTRBb low on the second H1 rising (plus analog delay) after CREQb rising.

20 After a transmission time delay, A sees the first byte on CDa(7–0).

21 After a transmission time delay, A sees CSTRBa go low, signaling valid data.

22 A reads the data and then brings CRDYa low.

† Event numbers correspond to numbers in Figure 12–6.



Word Transfer Operation

 12-22

12.8 Word Transfer Operation

The C4x communication ports transfer words on a byte-to-byte basis (LS byte

is transmitted first). Byte transfer operation requires handshaking of signals

through pins CSTRB and CRDY. This is illustrated in Figure 12–7. For clarity,

a suffix identifies the signals at each processor end. For example, CSTRBb

denotes the CSTRB signal at the processor B end. Table 12–5 lists the hand-

shaking events. Steps in the table are shown by numbers in Figure 12–7.

Byte transmission is totally asynchronous, and the communication-port trans-

fer rate can be higher than one byte per cycle. The exception is for the first byte.

Notice that on the first byte, the data lines are set up in relation to an H1 syn-

chronization (output FIFO advance). The first byte appears on a different H1

edge, depending on the transmit mode used. If the communication port is in

continuous transmit mode (no token exchanged), the first data byte appears

synchronous to the H1 falling edge before CSTRB going low. That is, the data

appears one half of one H1 cycle before CSTRB falls. If a token transfer oc-

curs, the first byte appears synchronous to the rising edge of H1 before

CSTRB going low. That is, data appears one H1 cycle before CSTRB falls.

Subsequent bytes and CSTRB high become valid from the falling edge of

CRDY. Because both of these signals are caused by the same event but have

different internal paths, their delay values are not exactly the same but are very

close.

During back-to-back write cycles, a type 2 synchronizer is used between

CRDY low to CSTRB low before byte 0 (first byte) of the next word is trans-

mitted. Communication port synchronizers are explained in Section 12.9, Syn-

chronizers, on page 12-26.

Even if the availability of data is granted, do not tie CSTRB or CRDY to ground.

For each byte transfer, there must be a CSTRB and CRDY handshake. The

’C4x must see the transitions in the CSTRB and CRDY signals to advance its

internal byte counter.

If an input buffer becomes full, it will not activate CRDY at the beginning of the

transmission of the first byte that would overflow the buffer. This condition pre-

vents data transfer operations until the situation is resolved. When the receiver

reads the full input buffer, CRDY falls, and the next FIFO position is made avail-

able.

Notice in Figure 12–7 that after CRDYb goes low (byte 3 has been received),

B drives an undefined value temporarily on CDb (7–0) (event 12 in

Figure 12–7) before driving byte 0 of the new word.



 Word Transfer Operation

12-23  Communication Ports

Figure 12–7. Word Transfer Operation

undefined

undefined

H1

CREQb

CACKb

CSTRBb

CRDYb

CDb

CREQa

CACKa

CSTRBa

CRDYa

CDa

2

6 2

11

127771

5 5

6

11

6

5

B0 B1 B2 B3 undefined B0’

B0 B1 B2 B3 undefined B0’

8

3

88

33

8

3

4

PROCESSOR B (sender)

PROCESSOR A (receiver)

6

11 type two delay

5

9

4

9

4

9

4

9

10 10 10 10

= When signal is an input (clear = when signal is an output).

0

Note: B0’ = byte 0 of a new word.



Word Transfer Operation

 12-24

Table 12–5.Word Transfer Sequence

Event

No.† Description

0 B owns the token and has data to transmit.

1 B drives the first byte onto CDb(7–0) on H1 falling (plus analog delay)‡.

2 B brings CSTRBb low on H1 rising (plus analog delay)§.

3 After a transmission line time delay, A sees CSTRBa go low, signaling valid data.

4 A reads the data and then brings CRDYa low

5 After a transmission line time delay B sees CRDYb go low, signaling data has been read.

6 B brings CSTRBb high after CRDYb goes low.

7 B drives the next byte on CDb(7–0) after CRDYb goes low.

8 After a transmission line time delay, A sees CSTRBa go high.

9 A brings CRDYa high after CSTRBa goes high.

10 After a transmission line time delay, B sees CRDYb go high.

11 B brings CSTRBb low after CRDYb goes high.

Events 3 through 11 repeat twice for bytes 2 and 3 (asynchronous handshaking)

12 B drives an undefined byte on CDb(7–0) after CRDY goes low.

† Event numbers correspond to numbers in Figure 12–7.
‡ If this is the first word the token is received, this transition occurs after CREQb goes high (See event 18 in Table 12–4).
§ If this is the first word after the token is received, this transition occurs on the second H1 rising after CREQb goes high (See

event 19 in Table 12–4).



 Word Transfer Operation

12-25  Communication Ports

CSTRB Width Restrictions

In ’C4x device revisions lower than 3.0, the width of the CSTRB low pulse be-

tween word boundaries should not exceed 1.0 H1/H3 at the receiving ’C4x

end. If it does, the receiver ’C4x byte counter that has looped back to byte 0

between word boundaries will see this low and recognize CSTRB as the next

valid byte, effectively slipping a byte. This is not a problem unless you are

working with very long distances or with external devices. If you are, use flip-

flops to locally shorten the CSTRB at the receiver end while returning a valid

CRDY width to the sender. Wide widths at the sender are not a problem. Chap-

ter 7, Interfacing Communication Ports, the TMS320C4x General-Purpose

Applications User’s Guide shows a circuit to shorten the CSTRB low pulse. In

’C4x device revisions 3.0 or higher, no CSTRB width restriction exists.

Note:

See Chapter 7, Interfacing Communication Ports, in the TMS320C4x Gener-
al-Purpose Applications User’s Guide for a detailed description of the word
transfer operation when interfacing a ’C4x communication port with a
non-’C4x device.



Synchronizers

 12-26

12.9 Synchronizers

H1/H3 synchronization is required during word transfer boundaries and during

token transfers. Three types of synchronizers are used in the port arbitration

unit:

� Type-one synchronizers cause delays that vary from 1 to 2 machine

clock from the receiving of an input on a pin until the response on output

pin (ignoring analog delays). An input is recognized when H1 is high; then

it is passed through an H3-high/H1-high series of delays. The response

occurs at the start of the following time H3 is high.

The minimum type-one synchronizer delay of 1 machine clock will occur when

the input changes just before H1 goes low. This delay is shown in Figure 12–8.

The maximum type-one synchronizer delay of 2 machine clocks will occur

when the input changes just after H1 goes low. This delay is shown in

Figure 12–9.

Figure 12–8. Type-One Synchronizer Minimum Delay

Response

Input

H3

H1

1 Clock

Figure 12–9. Type-One Synchronizer Maximum Delay

H1

H3

Input

Response

2 Clocks

� Type-two synchronizers cause delays that vary from 1.5 to 2.5 machine

clock from the receiving of an input on a pin until the response on an output

pin (ignoring analog delays). An input is recognized when H1 is high; then

it is passed through an H3-high/H1-high/H3-high series of delays. The re-

sponse occurs at the start of the following time H1 is high.

The minimum type-two synchronizer delay of 1.5 machine clocks occurs when

the input changes just before H1 goes low. This delay is shown in

Figure 12–10.



 Synchronizers

12-27  Communication Ports

The maximum type-two synchronizer delay of 2.5 machine clocks occurs

when the input changes just after H1 goes low. This delay is shown in

Figure 12–11.

Figure 12–10. Type-Two Synchronizer Minimum Delay

H1

H3

Input

Response

1.5 Clocks

Figure 12–11.Type-Two Synchronizer Maximum Delay

Response

Input

H3

H1

2.5 Clocks

� Type-three synchronizers cause delays that vary from 0.5 to 1.5 ma-

chine clocks from the receiving of an input on a pin until the response on

output pin (ignoring analog delays). An input is recognized when H1 is

high; then it is passed through an H3-high delay. The response occurs at

the following time H1 is high.

The minimum type-three synchronizer delay of 0.5 machine clock cycles will

occur when the input changes just before H1 goes low. This delay is shown

in Figure 12–12.

The maximum type-three synchronizer delay of 1.5 machine clocks will occur

when the input changes just after H1 goes low. This delay is shown in

Figure 12–13.

Figure 12–12. Type-Three Synchronizer Minimum Delay

Response

Input

H3

H1

0.5 Clock



Synchronizers

 12-28

Figure 12–13. Type-Three Synchronizer Maximum Delay

H1

H3

Input

Response

1.5 Clocks

Table 12–6 shows the types of synchronizer delays for communication port

signals.

Table 12–6.Communication-Port Signals and Synchronizer Delays

Input Signal to Output Signal
Delay

Type

Min. Delay

(clock cycles)

Max. Delay

(clock cycles)

CREQ↓ to CACK↓ One 1 2

CACK↓  to CREQ↑ One 1 2

CRDY↓  to CD valid between back-to-back word transfers One 1 2

CRDY↓  to CSTRB↓  between back-to-back word trans-

fers
Two 1.5 2.5

CACK↓  to CSTRB switch from input to an output high. Three 0.5 1.5



 Module Reset

12-29  Communication Ports

12.10 Module Reset

This section explains the status of the ’C4x communication ports after power-

up and during and after system reset.

The recommended reset sequence in a multiprocessing system is described

in Chapter 1, Processor Initialization and Program Control, in the TMS320C4x

General-Purpose Applications User’s Guide.

After powerup, the status depends on the RESET pin:

If RESET is low, the ’C4x is in reset immediately, and the description under ”at

reset” (below) applies.

If RESET is not low, the ’C4x device is in an unknown stage. The communica-

tion port signals can be in a combination of states.

At reset (while RESET = 0), the communication port pins are all put in the

high-impedance state. The input and output channels both assume an empty

state, causing all values in the input and output buffers to be lost. Pullup resis-

tors should be used on all control lines to ensure that they are logic high if reset

is not applied at the same time in interconnected ’C4xs.

After reset (after the rising edge of RESET), communication ports 0,1, and

2 are configured as output ports and assume the following states:

� The PAU is reset to state 0: The PAU has the bus ownership token and is

idle.

� The pin status (see Figure 12–14) is set as follows:

� The CxD(7–0) signals start driving an undefined value.

� The CACK and CSTRB signals go to 1 (inactive). CREQ and CRDY

continue to be high-impedance.

Note:

The individual communication port software reset feature only flushes the FI-
FOs, but does not have any effect on the communication port external pins.



Module Reset

 12-30

� The communication port control register gets a 0h value:

� PORT DIR = 0: the communication port is configured for an output op-

eration.

� INPUT LEVEL = 0: The input FIFO is empty.

� OUTPUT LEVEL = 0: The output FIFO is empty.

� ICH = 0: The input FIFO is not in its halted state.

� OCH = 0: The output FIFO is not in its halted state.

� ICRDY = 0: The input FIFO is empty and is not ready to be read from.

� OCRDY = 0: The input FIFO is not full and is ready to be written to.

Figure 12–14. Post-Reset State for an Output Port

CD(7–0)

CRDY

CSTRB

CACK

CREQ

H3

H1

Undefined

After reset (after rising edge of RESET), communication ports 3,4, and 5 are

configured as input ports and assume the following states:

� PAU is reset to state 1: The PAU does not have the bus ownership token,

and the token is not requested.

� The pin status (see Figure 12–15) is set as follows:

� CxD(7–0) continue to be high-impedance.

� CREQ and CRDY signals go to 1 (inactive). CACK and CSTRB contin-

ue in high impedance.

� The communication port control register gets a value of 04h.



 Module Reset

12-31  Communication Ports

� PORT DIR = 1: the communication port is configured for an input operation:

� INPUT LEVEL = 0: The input FIFO is empty.

� OUTPUT LEVEL = 0: The output FIFO is empty.

� ICH = 0: The input FIFO is not in its halted state.

� OCH = 0: The output FIFO is not in its halted state.

� ICRDY = 0: The input FIFO is empty and is not ready to be read from.

� OCRDY = 0: The input FIFO is not full and is ready to be written to.

Figure 12–15. Post-Reset State for an Input Port

H1

CREQ

CACK

CSTRB

CRDY

CD(7–0)

H3

At reset, ports 0, 1, and 2 are configured as output ports (PORT DIR
= 0), and ports 3, 4, and 5 are configured as input ports (PORT DIR
= 1). When you interconnect the ports of two ’C4x devices, connect
the port of one ’C4x to a port of the other ’C4x that would be in the
opposite direction at reset in other words, connect any one of port
0, 1, or 2 connected to any one of port 3, 4, or 5.

If your system configuration requires connection of input-to-input communica-

tion ports or output-to-output communication ports, refer to Chapter 7, Inter-

facing Communication Ports, in the TMS320C4x General-Purpose Applica-

tions User’s Guide for an implementation of a token forcer.



Tips for Using Communication Ports

 12-32

12.11 Tips for Using Communication Ports

When you design systems that use the communication ports, there are consid-

erations to keep in mind:

� At reset, ports 0–2 are set for transmit and ports 3–5 are set for receive.

When connecting communication ports between ’C4x devices, make sure

you connect transmit ports to receive ports and receive ports to transmit

ports. Otherwise, unpredictable results may occur.

� Signal quality is very important. Make sure you design your board to mini-

mize noise from other components. See the section entitled Signal Con-

siderations in the communications port chapter of the TMS320C4x Gener-

al-Purpose Applications User’s Guide for more information.

� Do not read from an empty input FIFO. This will cause the CPU or DMA

operation to stall and to halt the peripheral bus.

� Do not write to an unconnected communication port. If a port’s transmit

FIFO is full and the port can’t transmit, an additional write to the port’s FIFO

will halt the peripheral bus.

� The clocks of two ’C4xs connected together must be within a 2:1 ratio (at

most, one ’C4x can be twice as fast as the other). If this guideline is not

followed, the ’C4x with the faster clock may start driving low before the cur-

rent bus master has relinquished that line. This will cause signal conten-

tion that could damage communication port drivers. This restriction does

not apply when connecting to a non-’C4x device.

� When you design an interface to a non-’C4x device, the non-’C4x device

should mimic the asynchronous handshaking operation of a ’C4x commu-

nication port. See Word Transfer Considerations in the TMS320C4x Gen-

eral-Purpose Applications User’s Guide for more information on interfac-

ing to non-’C4x devices.

Note:

See Section 7.4, Design Tips, in the TMS320C4x General-Purpose Applica-
tions User’s Guide for more tips for using communication ports.



 Running Title—Attribute Reference

13-1  Chapter Title—Attribute Reference

Timers

The ’C4x has two general-purpose timer modules that time events, generate

pulses, and interrupt the CPU or DMA coprocessor.

This chapter provides you with information about:

� The components of the timers

� The control registers of the timers

� The operation of the timers

� The interrupts generated by the timers

Topic Page

13.1 Overview of the Timers : 13-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.2 Timer Pins : 13-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.3 Timer Control Registers : 13-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.4 Timer Pulse Generation : 13-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.5 Timer Interrupts : 13-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.6 Selecting CLKSRC and FUNC Values : 13-13. . . . . . . . . . . . . . . . . . . . . . 

13.7 Using TCLKx as General-Purpose I/O Pins : 13-15. . . . . . . . . . . . . . . . . 

13.8 Configuring a Timer : 13-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 13



Overview of the Timers

 13-2

13.1 Overview of the Timers

The ’C4x has two 32-bit general-purpose timer modules. Each timer has two

signaling modes and can be clocked by an internal or an external source. The

timer modules can be used to send periodic signals to the ’C4x or to devices

in the external world; or they can be used to count external events. Each timer

has an I/O pin (TCLK) that functions as an input clock, as an output clock, or

as a general-purpose I/O pin.

With an internal clock, for example, the timer can signal an external A/D con-

verter to start a conversion, or it can interrupt the ’C4x DMA controller to begin

a data transfer.

With an external clock, for example, the timer can count external events and

interrupt the CPU after a specified number of events.

Each timer consists of a 32-bit counter, a comparator, an input clock selector,

a pulse generator, and supporting hardware.

A timer in the ’C4x counts the cycles of a timer input clock. When that count

(counter register) equals the value stored in the timer period register, it rolls

over the counter to zero and produces a transition in the timer output signal.

The timer input clock can be either the H1/2 internal clock frequency of the ’C4x

or an external clock on the TCLKx pin. This is determined by the CLKSRC bit

in the timer control register. If an external clock is used, the timer can counter

either 0-to-1 or 1-to-0 transitions depending on the value of the INV bit.

The timer output signal depends on the signalling mode selected by the C/P

bit (clock or pulse mode). See Section 13.4, Timer Pulse Generation, on page

13-9, for more information about this bit.

The timer output can be routed to the TCLKx pin that can also be used as a

general-purpose I/O pin.

Figure 13–1 shows the block diagram of a ’C4x timer module.



 Overview of the Timers

13-3  Timers

Figure 13–1. Timer Block Diagram

Period register (31–0)

Comparator

Counter (32-bit)

Counter register
(31–0)

Pulse generator

TSTAT bit

Internal Clock/2 = H1 / 2

External (TCLKx)§

INV bit

INV bit

32
32

period = counter ?

Input clock
selector‡

Timer
Input
Clock

CLKSRC bit

† If CLKSRC =1 and FUNC = 1, this signal goes into the TCLK pin.
‡ Selector controlled by the CLKSRC bit.
§ Maximum frequency = f(H1) / 2.6

Timer Output Signal†

Output clock
selector

C/P bit

CLKSRC bit

FUNC bit

TCLKx pin

DATAOUT
bit



Timer Pins

 13-4

13.2 Timer Pins

Each timer has one pin associated with the timer clock signal (TCLK) pin.

� TCLK. This pin is used as a general-purpose I/O signal, as a timer output,

or as an input for an external clock for a timer. Each timer has a TCLK pin:

TCLK0 is connected to timer 0 and TCLK1 is connected to timer 1.



 Timer Control Registers

13-5  Timers

13.3 Timer Control Registers

The timers are controlled through three registers, as shown in Figure 13–2,

that are mapped into the peripheral address space:

� Control register. This register determines the operating mode of the tim-

er, monitors the timer status, and controls the function of the I/O pin

(TCLK) of the timer.

� Period register. This register contains the number of timer input clock

cycles to count. This number controls the timer output signal frequency.

� Counter register. Contains the current value of the incrementing counter.

The 32-bit counter counts timer input clock cycles.

Figure 13–2. Memory-Mapped Timer Locations

Register Peripheral Address

Timer 0 Timer 1

Timer Control 100020h 100030h

Reserved 100021h 100031h

Reserved 100022h 100032h

Reserved 100023h 100033h

Timer Counter 100024h 100034h

Reserved 100025h 100035h

Reserved 100026h 100036h

Reserved 100027h 100037h

Timer Period 100028h 100038h

Reserved 100029h 100039h

Reserved 10002Ah 10003Ah

Reserved 10002Bh 10003Bh

Reserved 10002Ch 10003Ch

Reserved 10002Dh 10003Dh

Reserved 10002Eh 10003Eh

Reserved 10002Fh 10003Fh



Timer Control Registers

 13-6

13.3.1 Timer Control Register

The timer control register is located at 100020h for timer 0 and at 100030h for

timer 1.

The 32-bit timer global control register contains two sets of bits:

� The timer global control bits (bits 11–6) control timer mode and monitor

timer status (TSTAT).

� The TCLK pin control bits (bits 3–0) control the function of the TCLK pin,

which can be used as a timer pin or as a general-purpose I/O pin.

Figure 13–3 shows the 32-bit timer global control register. Note that at reset

all bits are set to 0, except for DATIN, which is set to the value read on TCLK.

Figure 13–3. Timer Control RegisterÁ
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

32 12
ÁÁÁÁ
ÁÁÁÁ

11
ÁÁÁ
ÁÁÁ

10
ÁÁÁ
ÁÁÁ

9
ÁÁÁ
ÁÁÁ

8
ÁÁÁ
ÁÁÁ

7
ÁÁÁ
ÁÁÁ

6
ÁÁÁ
ÁÁÁ

5 4
ÁÁÁÁ
ÁÁÁÁ

3
ÁÁÁ
ÁÁÁ

2
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁ
ÁÁÁ

0
Á
ÁÁ

Á
ÉÉÉÉÉ
ÉÉÉÉÉ

xx
ÁÁÁÁ
ÁÁÁÁ

TSTAT
ÁÁÁ
ÁÁÁ

INV
ÁÁÁ
ÁÁÁ

CLKSRC
ÁÁÁ
ÁÁÁ

C/P
ÁÁÁ
ÁÁÁ

HLD
ÁÁÁ
ÁÁÁ

GO
ÉÉÉ
ÉÉÉ

xx
ÁÁÁÁ
ÁÁÁÁ

DATIN
ÁÁÁ
ÁÁÁ

DATOUT
ÁÁÁÁ
ÁÁÁÁ

I/O
ÁÁÁ
ÁÁÁ

FUNC
Á
ÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

R/W
ÁÁÁ
ÁÁÁ

R/W
ÁÁÁ
ÁÁÁ

R/W
ÁÁÁ
ÁÁÁ

R/W
ÁÁÁ
ÁÁÁ

R
ÁÁÁ
ÁÁÁ

R
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

R
ÁÁÁ
ÁÁÁ

R
ÁÁÁÁ
ÁÁÁÁ

R
ÁÁÁ
ÁÁÁ

R
Á
ÁNote: R=Read, W=Write

FUNC Function bit. The FUNC bit controls the function of the TCLK pin. If FUNC
= 0, TCLK is configured as a general-purpose digital I/O pin. If FUNC = 1,
TCLK is configured as a timer pin.

I/O Input/output bit. If I/O = 1 and FUNC = 0, then TCLK is configured as an
input pin. If I/O = 0 and FUNC = 0, then TCLK is configured as an output pin.

DATOUT Data output bit. DATOUT drives TCLK when the ’C4x is in I/O port mode.
DATOUT can also be used as an input to the timer.

DATIN Data input bit. Reads data from TCLK or DATOUT. A write to this bit has no
effect.

GO GO bit. Resets and starts the timer counter. When GO = 1 and the timer is
not held, the counter is zeroed and begins incrementing on the next rising
edge of the timer input clock. The GO bit is cleared on the same rising edge.
When GO = 0, the timer is not affected. Section 13.8, Configuring A Timer,
further defines this bit.

HLD Counter hold bit. When HLD = 0, the counter is disabled and held in its cur-
rent state. If the timer is driving TCLK, the state of TCLK is also held. The
internal divide-by-two counter is also held so that the counter can continue
where it left off when HLD is set to 1. The timer registers can be read and
modified while the timer is being held. RESET has priority over HLD. Section
13.8, Configuring A Timer, shows the effect of writing to GO and HLD, and
shows the result of a write using specified values of the GO and HLD bits in
the timer global control register.



 Timer Control Registers

13-7  Timers

GO

(Bit 6)

HLD

(Bit 7) Result

0 0 All timer operations are held. No reset is performed.

0 1 Timer proceeds from state before write.

1 0
All timer operations are held, including zeroing of the counter.

The GO bit is not cleared until the timer is taken out of hold.

1 1 Timer resets and starts.

C/P Clock/pulse mode control. When C/P = 1, clock mode is chosen, and the
signaling of the TSTAT status bit and TCLK pin will have a 50 percent duty
cycle. When C/P = 0, the TSTAT status bit and TCLK pin will be active for one
H1 cycle during each timer period (see Figure 13–4).

CLKSRC Timer input clock source select bit. Specifies the source of the timer input
clock. When CLKSRC = 1, an internal clock with frequency equal to one-half
the H1 frequency is used as the timer input clock, and the INV bit has no ef-
fect. When CLKSRC = 0, an external signal from the TCLK pin is used as the
timer input clock. The external clock is synchronized internally, thus allowing
external asynchronous clock sources that do not exceed the specified maxi-
mum allowable external clock frequency of f(H1)/2.6.

INV Inverter control bit. If an external clock is used as the timer input clock and
INV= 1, the external clock is inverted as it goes into the counter. If the output
of the pulse generator (TSTAT) is routed to TCLK and INV = 1, the output is
inverted before it goes to TCLK. If INV = 0, no inversion is performed on the
input or output of the timer. The INV bit has no effect, regardless of its value,
when TCLK is used in I/O port mode.

TSTAT Timer status bit. This bit tracks the output of the timer and sets a CPU inter-
rupt on a transition from 0 to 1. A write has no effect.

13.3.2 Timer Period Register

The timer period register is located at 100028h for timer 0 and at 100038h for

timer 1.

The 32-bit timer period register contains the number of timer input clock cycles

to count. This number controls the frequency of the timer output signal.



Timer Control Registers

 13-8

The frequency of timer signaling is determined by the frequency of the timer

input clock and the period register. The following equations are valid with either

an internal or an external timer clock:

f(pulse mode) = f(timer clock) � period register

f(clock mode) = f(timer clock) � (2 × period register)

This register is cleared to 0 at reset.

13.3.3 Timer Counter Register

The timer period register is located at 100024h for timer 0 and at 100034h for

timer 1.

The 32-bit timer counter register increments with each cycle of the timer input

clock. The timer counter can be incremented on the rising edge (INV = 0) or

on the falling edge (INV = 1) of an externally generated timer input clock

(CLKSRC = 0). With an internally generated timer input clock (CLKSRC = 1),

the timer counter increments on the rising edge only. The timer counter is

zeroed whenever its value equals that of the period register.

This register is cleared to 0 at reset.

13.3.4 Boundary Conditions in the Control Registers

Certain boundary conditions, such as a zero in the period register and an over-

flow of the counter, affect timer operation. These conditions are listed as

follows:

� When the period and counter registers are zero, the operation of the timer

depends on the C/P mode selected. In pulse mode (C/P = 0), TSTAT is set

and remains set. In clock mode (C/P = 1), the width of a cycle is 2/f(H1),

and external clocks are ignored.

� When the counter register is not 0 and the period register = 0, the counter

will count until it reaches its maximum 32-bit value (0FFFF FFFFh), roll

over to 0, and then function as described in the preceding bullet.

� When the counter register is set to a value greater than the value of the

period register, the counter reaches its maximum 32-bit value

(0FFFF FFFFh), rolls over to 0, and continues.

Note:

Writes from the peripheral bus override register updates from the counter
and new status updates to the control register.



 Timer Pulse Generation

13-9  Timers

13.4 Timer Pulse Generation

The timer pulse generator (see Figure 13–1) can generate several different

TSTAT signals. These signals can be inverted (set by the INV bit) into the timer

output signal. The two basic pulse generation modes are pulse mode and

clock mode, as shown in Figure 13–4. You can select the mode with the C/P

bit of the timer global control register. In both modes, an internal clock source

has a frequency of f(H1)�2, and an external clock source has a maximum fre-

quency of f(H1)�2.6. In pulse mode (C/P = 0), the width of the pulse is 1/f(H1).

In clock mode (C/P=1), the width of the pulse is the period register divided by

the frequency of the timer input clock.

Figure 13–4. Timer Pulse Mode and Clock Mode Timing

1/f(H1)

1/f(CLKSRC)

Period register � f(CLKSRC)

1/f(CLKSRC)

Period register � f(CLKSRC)

2 × Period register/f(CLKSRC)

(a) TSTAT and timer output (INV = 0) when C/P = 0 (pulse mode)

(b) TSTAT and timer output (INV = 0) when C/P = 1 (clock mode)

TINT TINT TINT

TINT TINT

(counter=period) (counter=period) (counter=period)

Note: TINT is the timer interrupt signal generated whenever TSTAT transitions from 0

to 1.

(counter=period) (counter=period) (counter=period)



Timer Pulse Generation

 13-10

The rate of the timer output (TSTAT) is determined by the frequency of the tim-

er input clock and the period register. The following equations are valid with

either an internal or an external timer clock:

In pulse mode: f(TSTAT) = f(timer input clock) � period register

In clock mode: f(TSTAT) = f(timer input clock) � (2 × period register)

If the period register equals zero, refer to subsection 13.3.2, Timer Period Reg-

ister.

Figure 13–5 provides some examples of TSTAT and timer output (INV = 0)

when the period register is set to various values and clock or pulse mode is

selected. Timer input clock is generated internally (f(H1�2)).

Figure 13–5. Timer Output Generation Examples

2H1

2H1

H1

(a) Pulse mode with timer period = 1 or 
Clock mode with timer period = 0

4H1

H1

(b) Pulse mode with timer period =2

6H1

H1

(c) Pulse mode with timer period = 3

4H1

(d) Clock mode with timer period = 1

8H1

4H1

(e) Clock mode with timer period = 2

12H1

6H1

(f) Clock mode with timer period = 3



 Timer Interrupts

13-11  Timers

13.5 Timer Interrupts

Each timer can send an interrupt to the CPU when the TSTAT signal transitions

from 0 to 1. Timer 0 sends TINT0 and timer 1 sends TINT1.

TINT0. This interrupt uses the interrupt vector at IVTP + 002h. It has a priority

level of two, which is second only to NMI and RESET.

TINT1. This interrupt uses the interrupt vector at IVTP + 02Bh. It has a the low-

est priority level of all interrupts.

13.5.1 Timer Interrupts and Their Vectors

TINT0 corresponds to timer 0. This interrupt uses the interrupt vector at IVTP

+ 002h. It has a priority level of two, which is second only to NMI and RESET.

TINT1 corresponds to timer 1. This interrupt uses the interrupt vector at IVTP

+ 02Bh. It has a the lowest priority level of all interrupts.

13.5.2 Timer Interrupt Operation

A timer interrupt is generated whenever TSTAT transitions from a zero to a

one. The frequency of timer interrupts depends on whether the timer is set up

in pulse mode or clock mode.

In pulse mode, the interrupt frequency is:

f(interrupt)=f(input timer clock) � period register

In clock mode, the interrupt frequency is:

f(interrupt)=f(input timer clock) � (2 × period register)

If the period register equals zero, see subsection 13.3.4, Boundary Conditions

in the Control Registers, on page 13-8, for more information.

The timer interrupt can be used to interrupt either the CPU or the DMA copro-

cessor.

The timer interrupt enable bits for the CPU are found in the IIE register. Bit 0

in the IIE corresponds to TINT0, and bit 1 corresponds to TINT1. For more in-

formation about the IIE register, see subsection 3.1.9, CPU Internal Interrupt

Enable Register (IIE), on page 3-11.

The timer interrupt enable bits for the DMA control register are found in the DIE

register. Several bits in this register control how each DMA channel responds



Timer Interrupts

 13-12

to the timers. For more information about the DIE register, see subsection

13.3.4, Boundary Conditions in the Control Registers.

13.5.3 Considerations When Using a Timer Interrupt

The main consideration when using a timer to interrupt the CPU is the priority

needed for the operation. If the timer operation has a low priority compared to

other devices, then use timer 1, since that timer’s interrupt has the lowest prior-

ity of all interrupts. If, on the other hand, the timer operation has a high priority

compared to other devices, then use timer 0, since that timer’s interrupt is se-

cond in priority only to an NMI.



 Selecting CLKSRC and FUNC Values

13-13  Timers

13.6 Selecting CLKSRC and FUNC Values

The timer can receive its input and send its output in several different modes,

depending on the setting of CLKSRC, FUNC, and I/O. The four timer modes

of operation are defined by the values of CLKSRC and FUNC in the global con-

trol register.

13.6.1 CLKSRC = 1 and FUNC = 0.

If CLKSRC = 1 and FUNC = 0 (see Figure 13–6), the timer input comes from

the internal clock. Interrupts can still be generated during the transition of

TSTAT from 0 to 1. The internal clock is not affected by the INV bit in the global

control register. In this mode, TCLK is connected to the I/O port control and can

be used as a general-purpose I/O pin. If I/O = 0, TCLK is configured as a gener-

al-purpose input pin whose state can be read in DATIN. DATOUT has no effect

on TCLK or DATIN. If I/O = 1, TCLK is configured as a general-purpose output

pin. DATOUT is placed on TCLK and can be read in DATIN.

Figure 13–6. Timer Configuration With CLKSRC=1 and FUNC=0

Timer input

Timer output

Timer

I/O port

control

Internal

clock

Internal

TCLK

TSTAT

CLKSRC = 1 (Internal)
FUNC = 0 (I/O pin)

External

13.6.2 CLKSRC=1 and FUNC=1.

If CLKSRC = 1 and FUNC = 1 (see Figure 13–7), the timer input comes from

the internal clock, and the timer output goes to TCLK. You can invert the value

on TCLK by setting INV to 1. Also, the value of TCLK can be read in DATIN.

Figure 13–7. Timer Configuration With CLKSRC = 1 and FUNC = 1

Timer input

Timer output

Timer
Internal

clock
TCLK

TSTAT DATIN

CLKSRC = 1 (Internal)
FUNC = 1 (Timer pin)

Internal External



Selecting CLKSRC and FUNC Values

 13-14

13.6.3 CLKSRC = 0 and FUNC = 0

If CLKSRC = 0 and FUNC = 0 (see Figure 13–8), the timer can still generate

interrupt signals and is driven according to the status of the I/O bit:

� If I/O = 0, the timer input comes from TCLK. You can invert the value read

from TCLK by setting INV to 1, and the value of TCLK can be read through

DATIN.

� If I/O = 1, TCLK is an output pin; both TCLK and the timer are driven by

DATOUT. All 0-to-1 transitions of DATOUT increment the counter. INV has

no effect on DATOUT. The value of DATOUT can be read through DATIN.

Figure 13–8. Timer Configuration With CLKSRC = 0 and FUNC = 0

Timer

I/O port

control

TCLK

TSTAT

CLKSRC = 0 (External)
FUNC = 0 (I/O pin)

Internal External

Timer input

Timer output

13.6.4 CLKSRC = 0 and FUNC = 1

If CLKSRC = 0 and FUNC = 1 (see Figure 13–9), TCLK drives the timer. If INV

= 0, all 0-to-1 transitions of TCLK increment the counter. If INV= 1, all 1-to-0

transitions of TCLK increment the counter. The value of TCLK can be read

through DATIN.

Figure 13–9. Timer Configuration With CLKSRC = 0 and FUNC = 1

Timer

TCLK

TSTAT DATIN

CLKSRC = 0 (External)
FUNC = 1 (Timer pin)

Internal External

Timer input

Timer output



 Using TCLKx as General-Purpose I/O Pins

13-15  Timers

13.7 Using TCLKx as General-Purpose I/O Pins

When FUNC = 0, TCLKx can be used as an I/O pin. Figure 13–10 and

Figure 13–11 show how the TCLKx is connected when it is configured as a

general-purpose I/O pin. In Figure 13–10, the I/O bit equals 0 and TCLK is con-

figured as an input pin whose value can be read in the DATIN bit. In

Figure 13–11, the I/O bit equals 1 and TCLK is configured as an output pin that

outputs the value you wrote in the DATOUT bit.

Figure 13–10. TCLK as an Input (I/O = 0)

DATOUT (NC)

DATIN

I/O = 0

TCLK

ExternalInternal

Figure 13–11.TCLK as an Output (I/O = 1)

DATOUT

Internal

DATIN

I/O = 1

TCLK

External



Configuring a Timer

 13-16

13.8 Configuring a Timer

Configuring a timer requires three basic steps:

1) Halt the timer by clearing to 0 the GO and HLD bits of the timer global-con-

trol register. To do this, write a 0 to the timer global-control register. Note

that the timers are halted on RESET.

2) Configure the timer via the timer global-control register (with GO=HLD=0),

the timer counter register, and timer period register, if necessary.

3) Start the timer by setting the GO and HLD bits of the timer global-control

register to 1.

Example 13–1 shows how to set up the ’C4x timer to generate the maximum

frequency clock through the TCLKx pin.

Example 13–1. Maximum Frequency Timer Clock Setup

* TITLE MAXIMUM FREQUENCY TIMER CLOCK SETUP

*

* THIS EXAMPLE SHOWS HOW TO SET UP TIMER TO GENERATE MAXIMUM

* FREQUENCY TIMER CLOCK USING INTERNAL CLOCK. WHERE 

* “TIMER_REGISTER” SECTION IS LOCATED FROM 100020h.

*

TIM0_CTL_REG .usect “TIMR_REGISTER”,4

TIM0_CNT_REG .usect “TIMR_REGISTER”,4

TIM0_PRD_REG .usect “TIMR_REGISTER”,8

.text

.

.

.

LDI 0,R0

STI R0,@TIM0_PRD_REG

LDI 3C1H,R0

STI R0,@TIM0_CTL_REG

.

.

.

.end



 Running Title—Attribute Reference

14-1  Chapter Title—Attribute Reference

Assembly Language Instructions

The ’C4x assembly language instruction set supports numeric-intensive,

signal processing, and general-purpose applications. The instructions are

organized into these major groups: load-and-store, two- or three-operand

arithmetic/logical, parallel, program control, and interlocked operations

instructions. The addressing modes used with the instructions are described

in Chapter 6.

The ’C4x instruction set can also use one of 20 condition codes with any of the

10 conditional instructions, such as LDFcond. This chapter defines the

condition codes and flags.

The assembler allows optional syntax forms to simplify the assembly language

for special-case instructions. These optional forms are listed and explained.

Each of the individual instructions is described and listed in alphabetical order.

An example instruction (on pages 14-23 through 14-25) demonstrates the

special format used and explains its content.

This chapter discusses these topics:

Topic Page

14.1 Instruction Set 14-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.2 Condition Codes and Flags 14-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.3 Individual Instruction Descriptions 14-16. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 14



Instruction Set

 14-2

14.1 Instruction Set

The ’C4x instruction set is exceptionally well-suited to digital signal processing

and other numeric-intensive applications. All instructions are a single machine

word long, and most instructions take a single cycle to execute. In addition to

multiply and accumulate instructions, the ’C4x possesses a full complement

of general-purpose instructions.

The instruction set contains 145 instructions organized into the following func-

tional groups:

� Load-and-store

� Two-operand arithmetic/logical

� Three-operand arithmetic/logical

� Program control

� Interlocked operations

� Parallel operations

Each of these groups is discussed in the succeeding subsections.

14.1.1 Load-and-Store Instructions

The ’C4x supports 24 load-and-store instructions (see Table 14–1). These in-

structions can:

� Load a word from memory into a register

� Store a word from a register into memory

� Manipulate data on the system stack

� Transfer data between primary register and expansion register

Two of these instructions can load data conditionally. This is useful for locating

the maximum or minimum value in a data set. See Section 14.2 for detailed

information on condition codes.



 Instruction Set

14-3  Assembly Language Instructions

Table 14–1.Load-and-Store Instructions

Instruction Description Instruction Description

LBb† Load byte (signed) LDPK† Load DP register immediate

LBUb† Load byte (unsigned) LHw† Load half-word signed

LDA† Load address register LHUw† Load half-word unsigned

LDE Load floating-point exponent LWLct† Load word left-shifted

LDEP† Load integer, expansion-file register to

primary register
LWRct† Load word right-shifted

LDF Load floating-point value POP Pop integer from stack

LDFcond Load floating-point value conditionally POPF Pop floating-point value from stack

LDHI†
Load 16-bit unsigned immediate into 16

MSBs
PUSH Push integer on stack

LDI Load integer PUSHF Push floating-point value on stack

LDIcond Load integer conditionally STF Store floating-point value

LDM Load floating-point mantissa STI Store integer

LDPE† Load integer, primary register to expan-

sion file register
STIK† Store integer immediate

† The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.



Instruction Set

 14-4

14.1.2 Two-Operand Instructions

The ’C4x supports a complete set of 43 two-operand arithmetic and logical in-

structions. The two operands are the source and destination. The source oper-

and can be a memory word, a register, or a constant. The destination oper-

and is always a register.

These instructions provide integer, floating-point, or logical operations,

and multiprecision arithmetic. Table 14–2 lists these instructions.

Table 14–2.Two-Operand Instructions

Instruction Description Instruction Description

ABSF Absolute value of a floating-point number MPYF† Multiply floating-point values

ABSI Absolute value of an integer MPYI† Multiply integers

ADDC† Add integers with carry MPYSHI†‡ Multiply signed integer, 32-MSB

product

ADDF† Add floating-point values MPYUHI†‡ Multiply unsigned integer, 32-MSB

product

ADDI† Add integers NEGB Negate integer with borrow

AND† Bitwise logical-AND NEGF Negate floating-point value

ANDN† Bitwise logical-AND with complement NEGI Negate integer

ASH† Arithmetic shift NORM Normalize floating-point value

CMPF† Compare floating-point values NOT Bitwise logical-complement

CMPI† Compare integers OR† Bitwise logical-OR

FIX Convert floating-point value to integer RCPF‡ Reciprocal floating point

FLOAT Convert integer to floating-point value RND Round floating-point value

FRIEEE‡ Convert IEEE floating-point format to 2s-

complement floating-point format
ROL Rotate left

LSH† Logical shift ROLC Rotate left through carry

MBct‡ Merge byte, left shifted ROR Rotate right

MHct‡ Merge half-word, left shifted RORC Rotate right through carry

† Two- and three-operand versions
‡ The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.



 Instruction Set

14-5  Assembly Language Instructions

Table 14–2.Two-Operand Instructions (Continued)

Instruction Description Instruction Description

RSQRF‡ Reciprocal of square root, floating-point SUBRF
Subtract reverse floating-point

value

SUBB† Subtract integers with borrow SUBRI Subtract reverse integer

SUBC Subtract integers conditionally TOIEEE‡ Convert 2s complement to IEEE

format

SUBF† Subtract floating-point values TSTB† Test bit fields

SUBI† Subtract integer XOR† Bitwise exclusive-OR

SUBRB
Subtract reverse integer with

borrow

† Two- and three-operand versions.
‡ The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.



Instruction Set

 14-6

14.1.3 Three-Operand Instructions

Most instructions contain two or three operands. The 19 three-operand in-

structions allow the ’C4x to read two operands from memory or the CPU regis-

ter file in a single cycle and store the results in a register. The following differen-

tiates the two- and three-operand instructions:

� Two-operand instructions have one source operand (or shift count) and a

destination operand.

� Three-operand instructions may have two source operands (or one

source operand and a count operand) and a destination operand. A

source operand can be a memory word, a register or a constant. The desti-

nation of a three-operand instruction is always a register.

Table 14–3 lists the instructions that have three-operand versions. Note that

the 3 in the mnemonic can be omitted from three-operand instructions

(see subsection 14.3.2).

Table 14–3.Three-Operand Instructions

Instruction Description Instruction Description

ADDC3 Add with carry MPYI3 Multiply integers

ADDF3 Add floating-point values MPYSHI3† Multiply signed integer, 32-MSB product

ADDI3 Add integers MPYUHI3† Multiply unsigned integer, 32-MSB product

AND3 Bitwise logical-AND OR3 Bitwise logical-OR

ANDN3
Bitwise logical-AND with comple-

ment
SUBB3 Subtract integers with borrow

ASH3 Arithmetic shift SUBF3 Subtract floating-point values

CMPF3 Compare floating-point values SUBI3 Subtract integers

CMPI3 Compare integers TSTB3 Test bit fields

LSH3 Logical shift XOR3 Bitwise exclusive-OR

MPYF3 Multiply floating-point values

† The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.



 Instruction Set

14-7  Assembly Language Instructions

14.1.4 Program Control Instructions

The program-control instruction group consists of all of those instructions (24)

that affect program flow. The repeat mode allows repetition of a block of code

(RPTB and RPTBD) or of a single line of code (RPTS). Both standard and

delayed (single-cycle) branching are supported. Several of the program con-

trol instructions are capable of conditional operations (see Section 14.2 for de-

tailed information on condition codes). Table 14–4 lists the program control in-

structions.

Table 14–4.Program Control Instructions

Instruction Description Instruction Description

Bcond Branch conditionally (standard) LAJ† Link and jump

BcondAF† Branch conditionally delayed and annul

if false
LAJcond† Link and jump conditional

BcondAT† Branch conditionally delayed and annul

if true
LATcond† Link and trap conditional

BcondD Branch conditionally (delayed) NOP No operation

BR‡ Branch unconditionally (standard) RETIcond Return from interrupt conditionally

BRD‡ Branch unconditionally (delayed)
RETI-

condD†
Return from trap or interrupt, delayed

CALL‡ Call subroutine RETScond Return from subroutine conditionally

CALLcond Call subroutine conditionally RPTB‡ Repeat block of instructions

DBcond
Decrement and branch conditionally

(standard)
RPTBD Repeat block, delayed

DBcondD
Decrement and branch conditionally

(delayed)
RPTS Repeat single instruction

IACK Interrupt acknowledge SWI Software interrupt

IDLE Idle until interrupt TRAPcond Trap conditionally

† The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.
‡ Operand addressing mode is incompatible with ’C3x.



Instruction Set

 14-8

14.1.5 Interlocked Operations Instructions

The interlocked operations instructions support multiprocessor communica-

tion and the use of external signals to allow for powerful synchronization mech-

anisms. They also guarantee the integrity of the communication and result in

a high-speed operation. Refer to Chapter 7 for examples of the use of inter-

locked instructions.

Table 14–5.Interlocked Operations Instructions

Instruction Description Instruction Description

LDFI Load floating-point value, interlocked STFI Store floating-point value, interlocked

LDII Load integer, interlocked STII Store integer, interlocked

SIGI Signal, interlocked



 Instruction Set

14-9  Assembly Language Instructions

14.1.6 Parallel Operations Instructions

The parallel-operations instructions group makes a high degree of parallelism

possible. Some of the ’C4x instructions can occur in pairs that are executed

in parallel. These instructions offer the following features:

� Parallel loading of registers

� Parallel store

� Parallel arithmetic operations

� Arithmetic/logical instructions used in parallel with a store instruction.

Each instruction in a pair is entered as a separate source statement. The sec-

ond instruction in the pair must be preceded by two vertical bars (||).

Table 14–6 lists the valid instruction pairs.

Table 14–6.Parallel Instructions

(a) Parallel Arithmetic With Store Instructions

Mnemonic Description

ABSF|| STF Absolute value of a floating-point number and store floating-point value

ABSI|| STI Absolute value of an integer and store integer

ADDF3|| STF Add floating-point values and store floating-point value

ADDI3|| STI Add integers and store integer

AND3|| STI Bitwise-logical AND and store integer

ASH3|| STI Arithmetic shift and store integer

FIX|| STI Convert floating-point to integer and store integer

FLOAT|| STF Convert integer to floating-point value and store floating-point value

FRIEEE|| STF† Convert IEEE floating-point format and store

LDF|| STF Load floating-point value and store floating-point value

LDI|| STI Load integer and store integer

† The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.



Instruction Set

 14-10

Table 14–6. Parallel Instructions (Concluded)

(a) Parallel Arithmetic With Store Instructions (Continued)

Mnemonic Description

LSH3|| STI Logical shift and store integer

MPYF3|| STF Multiply floating-point values and store floating-point value

MPYI3|| STI Multiply integer and store integer

NEGF|| STF Negate floating-point value and store floating-point value

NEGI|| STI Negate integer and store integer

NOT|| STI Complement value and store integer

OR3|| STI Bitwise-logical OR value and store integer

STF|| STF Store floating-point values

STI|| STI Store integers

SUBF3|| STF Subtract floating-point value and store floating-point value

TOIEEE|| STF† Convert to IEEE format and store

SUBI3|| STI Subtract integer and store integer

XOR3|| STI Bitwise-exclusive OR values and store integer

(b) Parallel Load Instructions

Mnemonic Description

LDF|| LDF Load floating-point

LDI|| LDI Load integer

(c) Parallel Multiply and Add/Subtract Instructions

Mnemonic Description

MPYF3|| ADDF3 Multiply and add floating-point

MPYF3|| SUBF3 Multiply and subtract floating-point

MPYI3|| ADDI3 Multiply and add integer

MPYI3|| SUBI3 Multiply and subtract integer

† The ’C4x instruction set is a superset of the ’C3x instruction set. The instructions marked are ’C4x-specific.



 Instruction Set

14-11  Assembly Language Instructions

14.1.7 Illegal Instructions

The ’C4x has no illegal instruction detection mechanism. Fetching an illegal

(undefined) code may result in the execution of an undefined operation. If TI

TMS320 floating-point software tools are used, no illegal opcodes can be gen-

erated. An illegal opcode can only be generated by the misuse of the tools, by

an error in the ROM code, or by a defective RAM.



Condition Codes and Flags

 14-12

14.2 Condition Codes and Flags

The ’C4x provides 20 condition codes (00000–10100, excluding 01011) that

can be used with any of the conditional instructions, such as RETScond or

LDFcond. The conditions include signed and unsigned comparisons, compari-

sons to zero, and comparisons based on the status of individual condition

flags. Note that all conditional instructions can also accept the suffix U to indi-

cate unconditional operation.

Seven condition flags provide information about properties of the result of

arithmetic and logical instructions. The condition flags are stored in the status

register (ST); the effect of an instruction on a condition flag depends on the val-

ue of the SET COND field (bit 15 of the status register). The value of SET

COND (0 or 1) does not affect the nature of the compare instructions (CMPF,

CMPF3, CMPI, CMPI3, TSTB, or TSTB3).

� If SET COND = 0, the ST condition flags are set if the operation’s target

is any extended-precision register (R0–R11) .

� If SET COND = 1, the ST condition flags are also set if the operation’s tar-

get is any register in the primary register file except the status register.

The condition flags can be modified by most instructions when either of the

preceding conditions is established and either of the following two cases oc-

curs:

� A result is generated when the specified operation is performed to infinite

precision. This is appropriate for compare-and-test instructions that do not

store results in a register. It is also appropriate for arithmetic instructions

that produce underflow or overflow.

� The output is written to the destination register as shown in Table 14–7.

This is appropriate for other instructions that modify the condition flags.

Table 14–7.Output Value Formats

Type of

Operation Output Format

Floating-point 8-bit exponent, 1 sign bit, 31-bit fraction

Integer 32-bit integer

Logical 32-bit unsigned integer



 Condition Codes and Flags

14-13  Assembly Language Instructions

Figure 14–1 shows the condition flags in the low-order bits of the status regis-

ter. Following the figure is a list of status register condition flags and descrip-

tions on how the flags are set by most instructions. For specific details of the

effect of a particular instruction on the condition flags, see the description of

that instruction in subsection 14.3.3.

Figure 14–1. Status Register

NOTE: xx = reserved bit.

R = read, W = write.

GIE CC CE CF RM OVM LUF LV UF N Z V C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx Analysis

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

SET COND PGIE PCF

R R R R R R R R R R R R R R R R

R/WR/W R/W

LUF Latched Underflow Condition Flag. LUF is set whenever UF (floa-

ting-point underflow flag) is set. LUF can be cleared only by a proces-

sor reset or by modifying it in the status register (ST).

LV Latched Overflow Condition Flag. LV is set whenever V (overflow

condition flag) is set. Otherwise, it is unchanged. LV can be cleared

only by a processor reset or by modifying it in the status register (ST).

UF Floating-Point Underflow Condition Flag. A floating-point under-

flow occurs whenever the exponent of the result is less than or equal

to  –128. If a floating-point underflow occurs, UF is set, and the output

value is set to 0. UF is cleared if a floating-point underflow does not

occur.

N Negative Condition Flag. Logical operations assign N (the state of

the MSB of the output value). For integer and floating-point opera-

tions, N is set if the result is negative, and cleared otherwise. Zero is

positive.

Z Zero Condition Flag. For logical, integer, and floating-point opera-

tions, Z is set if the output is 0, and cleared otherwise.

V Overflow Condition Flag. For integer operations, V is set if the result

does not fit into the format specified for the destination (i.e., – 2 32 ≤
result ≤ 2 32 – 1). Otherwise, V is cleared. For floating-point operations,

V is set if the exponent of the result is greater than 127; otherwise,V is

cleared. Logical operations always clear V.



Condition Codes and Flags

 14-14

C Carry Flag. When an integer addition is performed, C is set if a carry

occurs out of the bit corresponding to the MSB of the output. When an

integer subtraction is performed, C is set if a borrow occurs into the bit

corresponding to the MSB of the output. Otherwise, for integer opera-

tions, C is cleared. The carry flag is unaffected by floating-point and

logical operations. For shift instructions, this flag is set to the final val-

ue shifted out; for a zero shift count, this is set to zero.

Table 14–8 lists the condition mnemonic, code, description, and flag for each

of the 19 condition codes.

Table 14–8.Condition Codes and Flags

(a) Unconditional Compares

Condition Code Description Flag†

U 00000 Unconditional Don’t care

(b) Unsigned Compares

Condition Code Description Flag†

LO

LS

HI

HS

EQ

NE

00001

00010

00011

00100

00101

00110

Lower than 

Lower than or same as

Higher than

Higher than or same as

Equal to

Not Equal to

C

C OR Z

∼ C AND ∼ Z

∼ C

Z

∼ Z

(c) Signed Compares

Condition Code Description Flag†

LT

LE

GT

GE

EQ

NE

00111

01000

01001

01010

00101

00110

Less than

Less than or equal to

Greater than

Greater than or equal to

Equal to

Not equal to

N

N OR Z

∼ N AND ∼ Z

∼ N

Z

∼ Z

(d) Compare to Zero

Condition Code Description Flag†

Z

NZ

P

N

NN

00101

00110

01001

00111

01010

Zero

Not zero

Positive

Negative

Nonnegative

Z

∼ Z

∼ N AND ∼ Z

N

∼ N

† The ∼  means logical complement (“not true” condition).



 Condition Codes and Flags

14-15  Assembly Language Instructions

(e) Compare to Condition Flags

Condition Code Description Flag†

NN

N

NZ

Z

NV

V

NUF

UF

NC

C

NLV

LV

NLUF

LUF

ZUF

01010

00111

00110

00101

01100

01101

01110

01111

00100

00001

10000

10001

10010

10011

10100

Nonnegative

Negative

Nonzero

Zero

No overflow

Overflow

No underflow

Underflow

No carry

Carry

No latched overflow

Latched overflow

No latched floating-point underflow

Latched floating-point underflow

Zero or floating-point underflow

∼ N

N 
∼ Z

Z 
∼ V

V 
∼ UF

UF 
∼ C

C 
∼ LV

LV 
∼ LUF

LUF 
Z OR UF 

† The ∼  means logical complement (“not true” condition).



Individual Instruction Descriptions

 14-16

14.3 Individual Instruction Descriptions

This section contains the individual assembly language instructions for the

’C4x. The instructions are listed in alphabetical order. Information for each in-

struction includes assembler syntax, operation, operands, encoding, descrip-

tion, cycles, status bits, mode bit, and examples.

Definitions of the symbols and abbreviations, as well as optional syntax forms

allowed by the assembler, precede the individual instruction description sec-

tion. Also, an example instruction shows the special format used and explains

its content.

You can find a functional grouping of the instructions, as well as a complete

instruction set summary in Section 14.1. See Chapter 7, Addressing and Stack

Management, for information on memory addressing.

14.3.1 Symbols and Abbreviations

Table 14–9 lists the symbols and abbreviations used in the individual instruc-

tion descriptions.



 Individual Instruction Descriptions

14-17  Assembly Language Instructions

Table 14–9.Instruction Symbols

Symbol Meaning

src

src1

src2

src3

src4

Source operand

Source operand 1

Source operand 2

Source operand 3

Source operand 4

dst

dst1

dst2

disp

cond

count

Destination operand

Destination operand 1

Destination operand 2

Displacement

Condition

Shift count

G

T

P

B

General addressing modes

Three-operand addressing modes

Parallel addressing modes

Conditional-branch addressing modes

ARn

IRn

Rn

RC

RE

RS

ST

Auxiliary register n

Index register n

Extended-precision register address n

Repeat count register

Repeat end address register

Repeat start address register

Status register

C

GIE

N

PC

RM

SP

Carry bit of status register

Global interrupt enable bit of status register

Trap vector

Program counter

Repeat mode flag

System stack pointer

|x|

x → y

x(man)

x(exp)

Absolute value of x

Assign the value of x to destination y

Mantissa field (sign + fraction) of x

Exponent field of x

op1|| op2 Operation 1 performed in parallel with operation 2

x AND y

x OR y

x XOR y

∼ x

Bitwise-logical AND of x and y

Bitwise-logical OR of x and y

Bitwise-logical XOR of x and y

Bitwise-logical complement of x

x << y

x >> y

*++SP

*SP– –

Shift x to the left y bits

Shift x to the right y bits

Increment SP and use incremented SP as address

Use SP as address and decrement SP



Individual Instruction Descriptions

 14-18

14.3.2 Optional Assembler Syntaxes

The assembler allows a relaxed syntax form for some instructions. These op-

tional forms simplify the assembly language so that special-case syntax can

be ignored. The following is a list of these optional syntax forms.

� The destination register can be omitted on unary arithmetic and logical op-

erations when the same register is used as a source. For example,

ABSI R0,R0 can be written as ABSI R0

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI,

NORM, NOT, RND.

� All three-operand instructions can be written without the 3. For example,

ADDI3 R0,R1,R2 can be written as ADDI R0,R1,R2

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3,

LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3,

MPYSHI3, MPYUHI3.

This also applies to all the pertinent parallel instructions.

� All three-operand comparison instructions can be written without the 3.

For example,

CMPI3 R0,*AR0 can be written as CMPI R0,*AR0

Instructions affected: CMPI3, CMPF3, TSTB3.

� Indirect operands with an explicit 0 displacement are allowed. In three-op-

erand or parallel instructions, operands with 0 displacement are automati-

cally converted to no-displacement mode. For example:

LDI *+AR0(0),R1 is legal

Also

ADDI3 *+AR0(0),R1,R2 is equivalent to ADDI3 *AR0,R1,R2

� Indirect operands can be written with no displacement; in which case, a

displacement of 1 is assumed. For example,

LDI *AR0++(1),R0 can be written as LDI *AR0++,R0

� All conditional instructions accept the suffix U to indicate unconditional op-

eration. Also, the U can be omitted from unconditional short branch in-

structions. For example:

BU label can be written as B label

� Labels can be written with or without a trailing colon. For example:

label0: NOP

label1 NOP

label2: (label assembles to next source line)



 Individual Instruction Descriptions

14-19  Assembly Language Instructions

� Empty expressions are not allowed for the displacement in indirect mode:

LDI *+AR0(),R0 is not legal

� Immediate-mode destination operands of BR and CALL can be writ-

ten with an at (@) sign :

BR label can be written as BR @label

� The LDP pseudo-op can be used to load a register (DP by default) with the

16 MSBs of a relocatable address as follows:

LDP addr,REG or LDP @addr,REG or LDP addr

The at (@) sign is optional.

LDP generates an LDIU instruction. An immediate operand with a special

relocation type is used.

� Parallel instructions can be written in either order. For example:

ADDI

|| STI

can be written as

STI

|| ADDI

� The parallel bars indicating part two of a parallel instruction can be written

anywhere on the line from column 0 to the mnemonic. For example:

ADDI

|| STI

can be written as

ADDI

|| STI

� If the second operand of a parallel instruction is the same as the third (des-

tination register) operand, the third operand can be omitted. This allows

the writing of three-operand parallel instructions that look like normal two-

operand instructions. For example,

ADDI *AR0,R2,R2

|| MPYI *AR1,R0,R0

can be written as

ADDI *AR0,R2

|| MPYI *AR1,R0

Instructions affected (applies to all parallel instructions that have a register

as the second operand): ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI,

SUBF, XOR.



Individual Instruction Descriptions

 14-20

� All commutative operations in parallel instructions can be written in either

order. For example, the ADDI part of a parallel instruction can be written

in either of two ways:

ADDI *AR0,R1,R2 or ADDI R1,*AR0,R2

The instructions affected are parallel instructions containing any of the fol-

lowing: ADDI, ADDF, MPYI, MPYF, AND, OR, XOR.

� Use the syntax in Table 14–10 to designate CPU registers in operands.

14.3.3 Individual Instruction Descriptions

Each assembly language instruction for the ’C4x is described in this section

in alphabetical order. The description includes the assembler syntax, opera-

tion, operands, encoding, description, cycles, status bits, mode bit, and exam-

ples. Table 14–10 shows the CPU register symbols.



 Individual Instruction Descriptions

14-21  Assembly Language Instructions

Table 14–10. CPU Register Symbols

Register

Symbol

Register

Machine

Value

(hex) Assigned Function Name Subsection Page

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

00

01

02

03

04

05

06

07

1C

1D

1E

1F

Extended-precision register 0

Extended-precision register 1

Extended-precision register 2

Extended-precision register 3

Extended-precision register 4

Extended-precision register 5

Extended-precision register 6

Extended-precision register 7

Extended-precision register 8

Extended-precision register 9

Extended-precision register 10

Extended-precision register 11

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3.1.1

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

3-3

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

08

09

0A

0B

0C

0D

0E

0F

Auxiliary register 0

Auxiliary register 1

Auxiliary register 2

Auxiliary register 3

Auxiliary register 4

Auxiliary register 5

Auxiliary register 6

Auxiliary register 7

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3.1.2

3-4

3-4

3-4

3-4

3-4

3-4

3-4

3-4

DP

IR0

IR1

BK

SP

10

11

12

13

14

Data-page pointer

Index register 0

Index register 1

Block-size register

System stack pointer

3.1.3

3.1.4

3.1.4

3.1.5

3.1.6

3-4

3-4

3-4

3-5

3-5



Individual Instruction Descriptions

 14-22

Table 14–10. CPU Register Symbols (Continued)

Register

Symbol

Register

Machine

Value

(hex) Assigned Function Name Subsection Page

ST

DIE

IIE

IIF

15

16

17

18

Status register

DMA coprocessor interrupt enable

Internal-interrupt enable register

IIOF pins and interrupt flag register

3.1.7

3.1.8

3.1.9

3.1.10

3-5

3-8

3-11

3-13

RS

RE

RC

19

1A

1B

Repeat start address

Repeat end address

Repeat counter

3.1.11

3.1.11

3.1.11

3-16

3-16

3-16

IVTP

TVTP

00

01

Interrupt-vector table pointer

Trap-vector table pointer

3.2

3.2

3-17

3-17



 Example Instruction EXAMPLE

14-23  Assembly Language Instructions

Syntax INST src, dst

or

INST1 src2, dst1

|| INST2 src3, dst2

Each instruction begins with an assembler syntax expression. Labels may be

placed either before the command (instruction mnemonic) on the same line or

on the preceding line in the first column. The optional comment field that con-

cludes the syntax is not included in the syntax expression. A space is required

between fields (label, command, operand, and comment fields).

The syntax examples illustrate the common one-line syntax and the two-line

syntax used in parallel addressing. Note that the two vertical bars || that indi-

cate a parallel addressing pair can be placed anywhere before the mnemonic

on the second line. The first instruction in the pair can have a label, but the sec-

ond instruction cannot have a label.

Operands src general-addressing modes (G):

dst register (R0 – R11)

The operands segment lists the types of operands that the instruction uses.

Opcode

31 2324 16 0

0 0 0 dst

15 8 7

G srcINST

31 2324 16 0

1 1 src2dst1

15 8 7

src3 dst2INST1 INST2 0 0 0

Encoding examples are shown for general addressing and parallel address-

ing. The instruction pair for the parallel addressing example consists of INST1

and INST2. Note that two separate opcodes are listed in this case; each

instruction is 32-bits in length in the ’C4x.

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate



EXAMPLE Example Instruction

14-24  

The word fields segment describes the addressing mode that corresponds to

each value of a word field in the opcode. The word field listed in the table corre-

sponds to the field listed under operands.

Operation |src | → dst

or

|src2 | → dst1

|| src3 → dst2

The instruction operation sequence describes the processing that takes place

when the instruction is executed. For parallel instructions, the operation se-

quence is performed in parallel. Conditional effects of status register specified

modes are listed for conditional instructions such as Bcond.

dst register (any register in CPU primary-register file)

or

src2 indirect (disp = 0, 1, IR0, IR1)

dst1 register (R0–R7)

src3 register (R0–R7)

dst2 indirect (disp = 0, 1, IR0, IR1)

Operands are defined according to the addressing mode and/or the type of ad-

dressing used. Note that indirect addressing uses displacements and the in-

dex registers. See Chapter 6, Addressing, for detailed information on addres-

sing.

Description Instruction execution and its effect on the rest of the processor or memory con-
tents are described in this segment. Any constraints on the operands imposed
by the processor or the assembler are discussed. The description parallels

and supplements the information given by the operation block.

Status Bits

LUF Latched Floating-Point Underflow Condition Flag. 1 if a float-

ing-point underflow occurs, unchanged otherwise.

LV Latched Overflow Condition Flag. 1 if an integer or floating-point

overflow occurs, unchanged otherwise.

UF Floating-Point Underflow Condition Flag. 1 if a floating-point un-

derflow occurs, 0 otherwise.

N Negative Condition Flag. 1 if a negative result is generated, 0 other-

wise. In some instructions, this flag is the MSB of the output.

Z Zero Condition Flag. 1 if a zero result is generated, 0 otherwise. For

logical and shift instructions, 1 if a zero output is generated, 0 other-

wise.



 Example Instruction EXAMPLE

14-25  Assembly Language Instructions

V Overflow Condition Flag. 1 if an integer or floating-point overflow oc-

curs, 0 otherwise.

C Carry Flag. 1 if a carry or borrow occurs, 0 otherwise. For shift instruc-

tions, this flag is set to the value of the last bit shifted out; 0 for a shift

count of 0.

The seven condition flags are stored in the status register (ST). They provide

information about the properties of the result or output of arithmetic or logical

operations.

Mode Bit OVM Overflow Mode Flag.  In general, integer operations are affected by the

OVM bit value.

Cycles 1

The digit specifies the number of cycles required to execute the instruction.

Example INST @98AEh,R5

Before Instruction After Instruction

DP 80h DP 80h

R5 07 6690 0000h 2.30562500e + 02 R5 00 6690 0000h 1.80126593e + 00

Memory at 0080 98AEh Memory at 80 98AEh
5CDFh 1.00001107e + 00 5CDFh 1.00001107e + 00

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

The sample code presented in the above format shows the effect of the code

on system pointers (e.g., DP or SP), registers (e.g., R1 or R5), memory at spe-

cific locations, and the seven status bits. The values given for the registers in-

clude the leading zeros to show the exponent in floating-point operations. Dec-

imal conversions are provided for all register and memory locations. The

seven status bits are listed in the order in which they appear in the assembler

and simulator (see Section 14.2, Condition Codes and Flags, and Table 14–8

on page 14-14 for further information on these seven status bits).



ABSF Absolute Value of Floating-Point Number

14-26  

Syntax ABSF src, dst

Operands src: general-addressing modes
dst: register (R0 – R11)

Opcode

31 2123 16 0

0 0 0 0 0 0 src0 dstG00

29

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation |src| → dst

Description The absolute value of the src operand is loaded into the dst register. The src
and dst operands are assumed to be floating-point numbers.

An overflow occurs if src (man) = 8000 0000h and src (exp) = 7Fh. The result

is dst (man) = 7FFF FFFFh and dst (exp) = 7Fh.

Status Bits LUF Unaffected
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 0
N 0
Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise

C Unaffected

Mode Bit OVM operation is affected by the OVM bit’s value.

Cycles 1

Example ABSF R4,R7

Before Instruction After Instruction

R4 05C8000F971h   –9.90337307e + 27 R4 05C8000F971h –9.9033737e + 27

R7 07D251100AEh     5.48527255e + 37 R7 05C7FFF068Fh 9.90337307e + 27

LV 0 LV 0

Z 0 Z 0

V 0 V 0



 Parallel ABSF and STF ABSF||STF

14-27  Assembly Language Instructions

Syntax ABSF src2, dst1
|| STF src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 0 1 0 src20

29

dst1 0 0 0 dst2src3

15 8 7

Word Fields None.

Operation |src2 | → dst1
|| src3 → dst2

Description A floating-point absolute value and a floating-point store are performed in par-
allel. All registers are read at the beginning and loaded at the end of the ex-

ecute cycle. This means that if one of the parallel operations (STF) reads from
a register and the operation being performed in parallel (ABSF) writes to the
same register, then STF accepts as input the contents of the register before
it is modified by the ABSF.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

If src3 and dst1 point to the same register, src3 is read before the write to dst1.

An overflow occurs if src (man) = 8000 0000h and src (exp) = 7Fh. The result

is dst (man) = 7FFF FFFFh and dst (exp) = 7Fh.

Status Bits LUF Unaffected
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 0
N 0
Z 1 if a zero result is generated, 0 otherwise

V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



ABSF||STF Parallel ABSF and STF

14-28  

Example ABSF *++AR3(IR1) ,R4

 STF R4,*–AR7(1)

Before Instruction After Instruction

AR3 80 9800h AR3 80 98AFh

IR1 0AFh IR1 0AFh

R4 733C0 0000h 1.79750e + 02 R4 574C0 0000h 6.118750e + 01

AR7 80 98C5h AR7 80 98C5h

Data at 80 98AFh Data at 80 98AFh
58B 4000h –6.118750e + 01 58B 4000h –6.118750e + 01

Data at 80 98C4h Data at 80 98C4h
0h 733 C000h 1.79750e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Absolute Value of Integer ABSI

14-29  Assembly Language Instructions

Syntax ABSI src, dst

Operands src: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 1 src00 G dst

15 8 7

0

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation |src| → dst

Description The absolute value of the src operand is loaded into the dst register. The src
and dst operands are assumed to be signed integers.

An overflow occurs if src = 8000 0000h. If ST(OVM) = 1, the result is

dst=7FFF FFFFh.   If ST(OVM) = 0, the result is dst = 8000 0000h.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 0
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise

C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



ABSI Absolute Value of Integer

14-30  

Example 1 ABSI R0,R0

or ABSI R0

Before Instruction After Instruction

R0 0FFFF FFCBh –53 R0 035h 53

Example 2 ABSI *AR1,R3

Before Instruction After Instruction

AR1 20h AR1 20h

R3 0h R3 35h 53

Data at 20h Data at 20h
0FFFF FFCBh –53 0FFFF FFCBh –53



 Parallel ABSI and STI ABSI||STI

14-31  Assembly Language Instructions

Syntax ABSI src2, dst1
|| STI src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 0 1 src210 dst1

15 8 7

0 0 0 src3 dst2

Word Fields None

Operation |src2 | → dst1
|| src3 → dst2

Description An integer absolute value and an integer store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.

This means that if one of the parallel operations (STI) reads from a register and
the operation being performed in parallel (ABSI) writes to the same register,
then STI accepts as input the contents of the register before it is modified by
the ABSI.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

An overflow occurs if src = 8000 0000h. If ST(OVM) = 1, the result is dst =

7FFF FFFFh. If ST(OVM) = 0, the result is dst = 8000 0000h.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise

UF 0
N 0
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



ABSI||STI Parallel ABSI and STI

14-32  

Example ABSI *–AR5(1),R5

|| STI R1,*AR2––(IR1)

Before Instruction After Instruction

AR5 80 99E2h AR5 80 99E2h

R5 0h R5 35h 53

R1 42h 66 R1 42h 66

AR2 80 98FFh AR2 80 98F0h

IR1 0Fh IR1 0Fh

Data at 80 99E1h Data at 80 99E1h
0FFFF FFCBh –53 0FFFF FFCBh –53

Data at 80 98FFh Data at 80 98FFh
2h 2 42h 66

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Add Integer With Carry ADDC

14-33  Assembly Language Instructions

Syntax ADDC src, dst

Operands src: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 src00 dst

15 8 7

1 0 G

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst + src + C → dst

Description The sum of the dst and src operands and the C (carry) flag is loaded into the

dst register. The dst and src operands are assumed to be signed integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise

C 1 if a carry occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



ADDC Add Integer With Carry

14-34  

Example ADDC R1,R5

Before Instruction After Instruction

R1 00FFFF 5C25h –41 947 R1 00FFFF 5C25h –41 947

R5 00FFFF 019Eh –65 122 R5 00FFFE 5DC4h –107 068

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Add Integer With Carry, 3 Operands ADDC3

14-35  Assembly Language Instructions

Syntax ADDC3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src100 dst

15 8 7

0 0 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src100 dst

15 8 7

0 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

10
indirect mode *+ARn(5-bit unsigned
displacement)

8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 + src2 + C → dst



ADDC3 Add Integer With Carry, 3 Operands

14-36  

Description The sum of the src1 and src2 operands and value of the C (carry) flag is loaded
into the dst register. The src1, src2, and dst operands are assumed to be
signed integers.

Status Bits If ST (SET COND) = 0, the condition flags are modified if the destination regis-

ter is R0 – R11. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise

U 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a carry occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example None



 Add Floating-Point Values ADDF

14-37  Assembly Language Instructions

Syntax ADDF src, dst

Operands src: general-addressing modes
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 0 src00 dst

15 8 7

1 1 G

Word Fields

G src addressing modes

00 register (R0-R11)

01 direct

10 indirect

11 immediate

Operation dst + src → dst

Description The sum of the dst and src operands is loaded into the dst register. The dst and
src operands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an floating-point overflow occurs, 0 otherwise

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



ADDF Add Floating-Point Values

14-38  

Example ADDF *AR4++(IR1),R5

Before Instruction After Instruction

AR4 80 9800h AR4 80 992Bhh

IR1 12Bh 66 IR1 12Bh

R5 057980 0000h 6.23750e + 01 R5 09052C 0000h 5.3268750e + 02

Data at 80 9800h Data at 80 9800h
86B 2800h 4.7031250e + 02 86B 2800h 4.7031250e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Add Floating-Point Values, 3 Operands ADDF3

14-39  Assembly Language Instructions

Syntax ADDF3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (R0 – R11)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src100 dst

15 8 7

0 1 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src100 dst

15 8 7

0 1 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (R0 – R11) register mode (R0 – R11)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (R0 – R11)

10 register mode (R0 – R11) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 + src2 → dst



ADDF3 Add Floating-Point Values, 3 Operands

14-40  

Description The sum of the src1 and src2 operands is loaded into the dst register. The src1,
src2, and dst operands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise

UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example ADDF3 *+AR1(2),*+AR1(8),R4

Before Instruction After Instruction

AR1 2FF820h AR1 2FF820h

R4 0h R4 070DB2 0000h 1.41695313e + 02

Data at 22F F822h Data at 22F F828h
700 F000h 1.28940e + 02 34C 2000h 1.27590e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel ADDF3 and STF ADDF3||STF

14-41  Assembly Language Instructions

Syntax ADDF3 src2, src1, dst1
|| STF src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 0 src211 dst1

15 8 7

0 src1 dst2

Word Fields None

Operation src1 + src2 → dst1
|| src3 → dst2

Description A floating-point addition and a floating-point store are performed in parallel. All

registers are read at the beginning and loaded at the end of the execute cycle.
This means that if one of the parallel operations (STF) reads from a register
and the operation being performed in parallel (ADDF3) writes to the same reg-
ister, then STF accepts as input the contents of the register before it is modified
by the ADDF3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



ADDF3||STF Parallel ADDF3 and STF

14-42  

Example ADDF3 *+AR3(IR1),R2,R5

|| STF R4,*AR2

Before Instruction After Instruction

AR3 80 9800h AR3 80 9800h

IR1 0A5h IR1 0A5h

R2 070C80 0000h 1.4050e + 02 R2 070C80 0000h 1.4050e + 02

R5 0h R5 082020 0000h 3.20250e + 02

R4 057B40 0000h 6.281250e + 01 R4 057B40 0000h 6.281250e + 01

AR2 80 98F3h AR2 80 98F3h

Data at 80 98A5h Data at 80 98A5h
733 C000h 1.79750e + 02 733 C000h 1.79750e + 02

Data at 80 98F3h Data at 80 98F3h
oh 57B 4000h 6.28125e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Add Integer ADDI

14-43  Assembly Language Instructions

Syntax ADDI src, dst

Operands src: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 10 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst + src → dst

Description The sum of the dst and src operands is loaded into the the dst register. The

dst and src operands are assumed to be signed integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise

C 1 if a carry occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles None



ADDI Add Integer

14-44  

Example ADDI R3,R7

Before Instruction After Instruction

R3 0FFFF FFCBh –53 R3 0FFFF FFCBh –53

R7 35h 53 R7 0h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0



 Add Integer, 3 Operands ADDI3

14-45  Assembly Language Instructions

Syntax ADDI3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes

dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src100 dst

15 8 7

1 0 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src100 dst

15 8 7

1 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

10
indirect mode *+ARn(5-bit unsigned
displacement)

8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 + src2 → dst



ADDI3 Add Integer, 3 Operands

14-46  

Description The sum of the src1 and src2 operands is loaded into the dst register.The src1,
src2, and dst operands are assumed to be signed integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination

registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a carry occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example None



 Parallel ADDI3 and STI ADDI3||STI

14-47  Assembly Language Instructions

Syntax ADDI3 src2, src1, dst1
|| STI src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 0 1 src211 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src1 + src2 → dst1
|| src3 → dst2

Description An integer addition and an integer store are performed in parallel. All registers

are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (ADDI3) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
ADDI3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a carry occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



ADDI3||STI Parallel ADDI3 and STI

14-48  

Example ADDI3 *AR0––(IR0),R5,R0

 STI R3,*AR7

Before Instruction After Instruction

AR0 80 992Ch AR0 80 9920h

IR0 0Ch IR0 0Ch

R5 0DCh 220 R5 0DCh 220

R0 0h R0 208h 520

R3 35h 53 R3 35h 53

AR7 80 983Bh AR7 80 983Bh

Data at 80 992Ch Data at 80 992Ch
12Ch 300 12Ch 300

Data at 80 983Bh Data at 80 983Bh
0h 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Bitwise Logical-AND AND

14-49  Assembly Language Instructions

Syntax AND src, dst

Operands src: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 10 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst AND src → dst

Description The bitwise-logical AND between the dst and src operands is loaded into the

dst register. The dst and src operands are assumed to be unsigned integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



AND Bitwise Logical-AND

14-50  

Example AND R1,R2

Before Instruction After Instruction

R1 80h R1 80h

R2 0AFFh R2 80h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 1



 Bitwise Logical-AND, 3 Operands AND3

14-51  Assembly Language Instructions

Syntax AND3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src100 dst

15 8 7

1 1 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src100 dst

15 8 7

1 1 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

10
indirect mode *+ARn(5-bit unsigned
displacement)

8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 & src2 → dst



AND3 Bitwise Logical-AND, 3 Operands

14-52  

Description The bitwise logical-AND between the src1 and src2 operands is loaded into
the dst register. The src1, src2, and dst operands are assumed to be unsigned
integers. The immediate src2 addressing mode is sign-extended.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition

flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected

UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example Notice the difference between AND and AND3, in this example:

AND3 80h, R0, R0 R0=FFFF FFFFh R0=FFFF FF80h

AND 80h, R0 R0=FFFF FFFFh R0=0000 0080h



 Parallel AND3 and STI AND3||STI

14-53  Assembly Language Instructions

Syntax AND3 src2, src1, dst1
|| STI src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 0 src200 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src1 AND src2 → dst1
|| src3 → dst2

Description A bitwise-logical AND and an integer store are performed in parallel. All regis-

ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (AND3) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
AND3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



AND3||STI Parallel AND3 and STI

14-54  

Example AND3 *+AR1(IR0),R4,R7

|| STI R3,*AR2

Before Instruction After Instruction

AR1 80 99F1h AR1 80 99F1h

IR0 8h IR0 8h

R4 0A323h R4 0A323h

R7 0h R7 03h

R3 35h 53 R3 35h 53

AR2 80 983Fh AR2 80 983Fh

Data at 80 99F9h Data at 80 99F9h
5C53h 5C53h

Data at 80 983Fh Data at 80 983Fh
0h 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Bitwise Logical-AND With Complement ANDN

14-55  Assembly Language Instructions

Syntax ANDN src, dst

Operands src: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 10 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst AND ∼ src → dst

Description The bitwise-logical AND between the dst operand and the bitwise-logical com-

plement (∼ ) of the src operand is loaded into the dst register. The dst and src
operands are assumed to be unsigned integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise

V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



ANDN Bitwise Logical-AND With Complement

14-56  

Example ANDN @980Ch,R2

Before Instruction After Instruction

DP 80h DP 80h

R2 0C2Fh R2 042Dh

Data at 80 980Ch Data at 80 980Ch
0A02h 0A02h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Bitwise Logical-ANDN, 3 Operands ANDN3

14-57  Assembly Language Instructions

Syntax ANDN3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes

dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src110 dst

15 8 7

0 0 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src110 dst

15 8 7

0 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

10
indirect mode *+ARn(5-bit unsigned
displacement)

8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 AND ~ src2 → dst



ANDN3 Bitwise Logical-ANDN, 3 Operands

14-58  

Description The bitwise-logical AND between the src1 operand and the bitwise-logical
complement (∼ ) of the src2 operand is loaded into the dst register. The src1,
src2, and dst operands are assumed to be unsigned integers. The immediate
src2 addressing mode is sign-extended.

Status Bits LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Arithmetic Shift ASH

14-59  Assembly Language Instructions

Syntax ASH src_count, dst

Operands src_count: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 10 dst

15 8 7

1 1 G src_count

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation count = 7 LSBs of src_count
If (count ≥ 0):

dst << count → dst
Else:
dst >> |count | → dst

Description The seven least-significant bits of the src_count operand constitute the 2s-
complement shift count of up to 32 bits.

If count is greater than 0, the dst operand is left-shifted by the value of count.

Low-order bits shifted in are zero-filled, and high-order bits are shifted out

through the C (carry) bit.

Arithmetic left-shift:

0dstC

If count is less than 0, the dst operand is right-shifted by the absolute value of

count. The high-order bits of the dst operand are sign-extended as it is right-

shifted. Low-order bits are shifted out through the C (carry) bit.

Arithmetic right-shift:

sign of
dst dst C



ASH Arithmetic Shift

14-60  

If count  is 0, no shift is performed, and the C (carry) bit is set to 0. The

src_count and dst operands are assumed to be signed integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination

registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Set to the value of the last bit shifted out. 0 for a shift count of 0

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example 1 ASH R1,R3

Before Instruction After Instruction

R1 10h 16 R1 10h

R3 0A E000h R3 0E000 0000h

LUF 0 LUF 0

LV 0 LV 1

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

Example 2 ASH @98C3h,R5

Before Instruction After Instruction

DP 80h 16 DP 80h

R5 0AEC0 0001h R5 0FFFF FFAEh

Data at 80 98C3h Data at 80 98C3h
0FFE8 –24 0FFE8 –24

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1



 Arithmetic Shift, 3 Operands ASH3

14-61  Assembly Language Instructions

Syntax ASH3 src_count, src, dst

Operands src, src_count type 1 or type 2 three-operand addressing modes
dst register mode (any register in CPU primary register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src10 dst

15 8 7

0 1 T1 src_count

Type 2

31 2324 16 0

0 0 1 0 src10 dst

15 8 7

0 1 T1 src_count

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

10
indirect mode *+ARn(5-bit unsigned
displacement)

8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation count = 7 LSBs of src_count
if (count  ≥ 0)

 src < < count → dst

Else:
 src > >  count  → dst



ASH3 Arithmetic Shift, 3 Operands

14-62  

Description The seven least-significant bits of the src_count operand constitute the 2s-
complement shift count.

If count is greater than 0, the src operand is left-shifted by the value of count.

Low-order bits shifted in are zero-filled, and high-order bits are shifted out

through the status register’s C (carry) bit.

Arithmetic left-shift:

0srcC

If count is less than 0, the src operand is right-shifted by the absolute value of

count (e.g. –4 =  right-shift 4). The high-order bits of the src operand are sign-

extended as they are right-shifted. Low-order bits are shifted out through the

C (carry) bit.

Arithmetic right-shift:

CsrcSign of src

If count is 0, no shift is performed, and the C (carry) bit is set to 0. The

src_count, src, and dst operands are assumed to be signed integers.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Set to the value of the last bit shifted out. 0 for a shift count of 0

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Parallel ASH3 and STI ASH3||STI

14-63  Assembly Language Instructions

Syntax ASH3 src_count, src2, dst1
|| STI src3, dst2

src2 << count → dst1

Else:

src2 >> |count| → dst1

|| src3 → dst2

Operands src_count register (R0 – R7)

src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register  (R0 – R7)

src3: register  (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 0 src210 dst1

15 8 7

src3 dst2src_count

Word Fields None

Operation count = 7 LSBs of src_count
If (count ≥ 0):

Description The seven least-significant bits of the src_count operand register constitute

the 2s-complement shift count of up to 32 bits.

If count is greater than 0, the dst operand is left-shifted by the value of count.

Low-order bits shifted in are zero-filled, and high-order bits are shifted out

through the C (carry) bit.

Arithmetic left-shift:

0scr2C

If count is less than 0, the dst operand is right-shifted by the absolute value of

count. The high-order bits of the dst operand are sign-extended as it is right-

shifted. Low-order bits are shifted out through the C (carry) bit.

Arithmetic right-shift:

sign of src2 Csrc2

If count is 0, no shift is performed, and the C (carry) bit is set to 0. The src_count

and dst operands are assumed to be signed integers.



ASH3||STI Parallel ASH3 and STI

14-64  

All registers are read at the beginning and loaded at the end of the execute

cycle. This means that if one of the parallel operations (STI) reads from a regis-

ter and the operation being performed in parallel (ASH3) writes to the same

register, then STI accepts as input the contents of the register before it is modi-

fied by the ASH3. If src2 and dst2 point to the same location, src2 is read before

the write to dst2.

Status Bits LUF Unaffected

LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Set to the value of the last bit shifted out. 0 for a shift count of 0

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example ASH3 R1,*AR6++(IR1),R0

|| STI R5,*AR2

Before Instruction After Instruction

AR6 80 9900h AR6 80 998Ch

IR1 8Ch IR1 8Ch

R1 0FFE8h –24 R1 0FFE8h –24

R0 0h R0 0FFFF FFAEh

R5 35h 53 R5 35h 53

AR2 80 98A2h AR2 80 98A2h

Data at 80 9900h Data at 80 9900h
0AE00 0000h 0AE00 0000h

Data at 80 98A2h Data at 80 98A2h
0h 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



 Branch Conditionally (Standard) Bcond

14-65  Assembly Language Instructions

Syntax Bcond src

Operands src: conditional-branch-addressing modes (B)

Opcode

31 2324 16 0

0 1 1 0 1 00

15 8 7

0 0B 0 cond register or displacement

Word Fields

B src addressing modes

0 register

1 PC relative

Operation If cond is true:
If src is in register-addressing mode (any register in CPU primary-

register file),
src → PC.

If src is in PC-relative mode (label or address), displacement + PC + 1 → PC.
Else, continue.

Description Bcond signifies a standard branch that executes in four cycles. A branch is per-
formed if the condition is true (since a pipeline flush also occurs on a true condi-
tion; see Section 8.2 on page 8-4). If the src operand is expressed in register-
addressing mode, the contents of the specified register are loaded into the PC.
If the src operand is expressed in PC-relative mode, the assembler generates
a displacement: displacement = label – (PC of branch instruction + 1). This dis-

placement is stored as a 16-bit signed integer in the 16 least-significant bits
of the branch instruction word. This displacement is added to the PC of the
branch instruction plus 1 to generate the new PC.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 14.2 for a list of condition mnemonics, encoding, and flags).

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4 (Regardless of whether or not the branch is taken)



Bcond Branch Conditionally (Standard)

14-66  

Example BZ R0

Before Instruction After Instruction

PC 2B00h PC 3FF00h

R0 0003 FF00h R0 0003 FF00h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 1 Z 1

V 0 V 0

C 0 C 0

Note:

If a BZ instruction is executed immediately following a RND instruction with
a zero operand, the branch is not performed, because the zero flag is not set.
To circumvent this problem, execute a BZUF instead of a BZ instruction.



 Branch Conditionally Delayed and Annul If False BcondAF

14-67  Assembly Language Instructions

Syntax BcondAF src

Operands src: conditional-branch-addressing modes

Opcode

31 2324 16 0

0 1 1 0 1 00

15 8 7

1 0B cond register or displacement1

Word Fields

B src addressing modes

0 register

1 PC relative

Operation If (cond is true)
If (src is a register)

src → PC
If (src is in PC-relative mode)

displacement + PC of branch + 3 → PC
Else:
If (cond is false)

annul the effect of the execute phase of the first following instruction and the
effect of the read and execute phases of the second and third following
instructions and continue.

Description If the condition is true, a branch and the three instructions following the branch
instruction are executed. If the condition is false, no branch is performed, and
the effect of the execute phase of the first following instruction and of the read
and execute phases of the second and third following instructions is annulled.
The three instructions following BcondAF do not affect the cond. If the src oper-
and is in register mode, then the contents of the specified register are loaded
into the PC. If the src operand is in PC-relative mode, then the sum of the PC
of the branch instruction + 3 and the displacement is loaded into the PC. In PC-

relative mode the displacement field is interpreted as a 16-bit signed integer.

None of the three instructions following the BcondAF can be an instruction that

modifies the program flow. Interrupts are disabled for the duration of the

BcondAF instruction.

BcondAF especially is useful for controlling the exit at the bottom of a loop. Use

caution when using instructions such as PUSH/POP, LDPK, or LDA that can

modify registers like ARn, SP, and DP in the decode and/or read phase. This

also applies when using instructions to perform indirect addressing with ARn

modification.



BcondAF Branch Conditionally Delayed and Annul If False

14-68  

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Branch Conditionally Delayed and Annul If True BcondAT

14-69  Assembly Language Instructions

Syntax BcondAT src

Operands src conditional-branch-addressing modes

Opcode

31 2324 16 0

0 1 1 0 1 00

15 8 7

0 1B cond register or displacement1

Word Fields

B src addressing modes

0 register

1 PC relative

Operation If (cond is true)

If (src is a register)
src → PC
annul the effect of the execute phase of the first following instruction and of
the read and execute phases of second and third following instructions.

If (src is in PC-relative mode)
displacement + PC of branch +3 → PC
annul the effect of the execute phase of the first following instruction and of
the read and execute phases of second and third following instructions.

Else, continue.

Description If the condition is true, a branch is performed, and the effect of the execute
phase of the first following instruction and of the read and execute phases of
second and third following instructions is anulled. The three instructions fol-
lowing BcondAT do not affect the cond. If the src operand is expressed in regis-
ter mode, then the contents of the specified register are loaded into the PC.
If the src operand is in PC-relative mode, then the sum of the PC of the branch
instruction + 3 and the displacement are loaded into the PC. In PC-relative
mode, the displacement field is interpreted as a 16-bit signed integer.

None of the three instructions following BcondAT can be an instruction that

modifies the program flow. Interrupts are disabled for the duration of BcondAT.

The BcondAT instruction does not annul the status signals at the external inter-

faces. Be especially careful when using instructions such as PUSH/POP,

LDPK, or LDA that can modify registers like ARn, SP, and DP in the decode

and/or read phase. This also applies when you use instructions to perform indi-

rect addressing with ARn modification. BcondAT particularly is useful for con-

trolling the entry at the top of the loop.



BcondAT Branch Conditionally Delayed and Annul If True

14-70  

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Branch Conditionally (Delayed) BcondD

14-71  Assembly Language Instructions

Syntax BcondD src

Operands src: conditional-branch-addressing modes (B)

Opcode

31 2324 16 0

0 1 1 0 1 00

15 8 7

0 0B 1 cond register or displacement

Word Fields

B src addressing modes

0 register

1 PC relative

Operation If cond is true:
If src is in register-addressing mode (any register in CPU primary-

register file)
src → PC.

If src in PC-relative mode (label or address), displacement + PC + 3 → PC.
Else, continue.

Description BcondD signifies a delayed branch, allowing the three instructions after the
delayed branch to be performed before the PC is modified. The effect is a sing-
le-cycle branch, and the three instructions following BcondD do not affect the
cond.

None of the three instructions following BcondD should be an instruction that

modifies program flow. Interrupts are disabled for the duration of BcondD.

A branch is performed if the condition is true. If the src operand is expressed

in register-addressing mode, the contents of the specified register are loaded

into the PC. If the src operand is expressed in PC-relative mode, the assembler

generates a displacement: displacement = src – (PC of branch instruction +

3). This displacement is stored as a 16-bit signed integer in the 16 least-signifi-

cant bits of the branch instruction. This displacement is added to the PC of the

branch instruction plus 3 to generate the new PC. The ’C4x provides 20 condi-

tion codes that can be used with this instruction (see Section 14.2 for a list of

condition mnemonics, encoding, and flags).

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected



BcondD Branch Conditionally (Delayed)

14-72  

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example BNZD 36 (36 = 24h)

Before Instruction After Instruction

PC 50h PC 77h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 1 Z 1

V 0 V 0

C 0 C 0



 Branch Unconditionally (Standard) BR

14-73  Assembly Language Instructions

Syntax BR src

Operands src: in PC-relative mode

Opcode

31 2324 16 0

0 1 1 0 0 00

15 8 7

0 displacement

Word Fields None

Operation PC + 1 + displacement → PC

Description Performs an unconditional branch. The assembler generates a displacement:
displacement = src – (PC of branch instruction + 1). This displacement is
stored as a 24-bit signed integer in the 24 least-significant bits of the branch
instruction. This displacement is added to the PC of the branch instruction plus
1 to generate the new PC.

Status Bits LUF Unaffected

LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4

Example None



BRD Branch Unconditionally (Delayed)

14-74  

Syntax BRD src

Operands src: in PC-relative mode

Opcode

31 2324 16 0

0 1 1 0 0 00

15 8 7

1 displacement

Word Fields None

Operation PC + 3 + displacement → PC

Description Performs an unconditional delayed branch. The assembler generates a dis-
placement: displacement = src – (PC of branch instruction + 3). This displace-
ment is stored as a 24-bit signed integer in the 24 least significant bits of the
branch instruction. This displacement is added to the PC of the branch instruc-
tion plus 3 to generate the new PC. Interrupts are disabled during the BRD
instruction.

The three instructions following the BRD instruction are fetched and executed.

None of these three instructions should modify the program flow (e.g., affect

the PC value).

Status Bits LUF Unaffected

LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Call Subroutine CALL

14-75  Assembly Language Instructions

Syntax CALL src

Operands src: in PC-relative mode

Opcode

31 2324 16 0

0 1 1 0 0 10

15 8 7

0 displacement

Word Fields None

Operation Next PC → *(++SP)

PC + 1 + displacement → PC

Description Performs a call. The next PC value is pushed onto the system stack. The as-
sembler generates a displacement: displacement = src – (PC of branch in-
struction + 1). This displacement is stored as a 24-bit signed integer in the 24
least significant bits of the branch instruction. This displacement is added to
the PC of the branch instruction plus 1 to generate the new PC.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4

Example None



CALLcond Call Subroutine Conditionally

14-76  

Syntax CALLcond src

Operands src: conditional-branch-addressing modes (B)

Opcode

31 2324 16 0

0 1 1 1 0 00

15 8 7

0 0B 0 cond register or displacement

Word Fields

B src addressing modes

0 register

1 PC relative

Operation If cond is true:
Next PC → *++SP
If src is in register-addressing mode (any register in CPU primary-

register file),

src → PC.
If src in PC-relative mode (label or address), displacement + PC + 1 → PC.

Else, continue.

Description A call is performed if the condition is true. If the condition is true, the next PC
value is pushed onto the system stack. If the src operand is expressed in regis-
ter-addressing mode, the contents of the specified register are loaded into the
PC. If the src operand is expressed in PC-relative mode, the assembler gener-
ates a displacement: displacement = label – (PC of call instruction + 1). This

displacement is stored as a 16-bit signed integer in the 16 least-significant bits
of the call instruction word. This displacement is added to the PC of the call
instruction plus 1 to generate the new PC.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 14.2 for a list of condition mnemonics, encoding, and flags).

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 5 (Regardless of whether the condition is true or not)



 Call Subroutine Conditionally CALLcond

14-77  Assembly Language Instructions

Example CALLNZ R5

Before Instruction After Instruction

PC 123h PC 789h

SP 80 9835h SP 80 9836h

R5 789h R5 789h

Data at 9836h

124h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



CMPF Compare Floating-Point Values

14-78  

Syntax CMPF src, dst

Operands src: general-addressing modes (G):
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 0 01 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation dst – src

Description The src operand is subtracted from the dst operand. The result is not loaded
into any register; this allows for nondestructive compares. The dst and src op-
erands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Compare Floating-Point Values CMPF

14-79  Assembly Language Instructions

Example CMPF *+AR4,R6

Before Instruction After Instruction

AR4 80 98F2h AR4 80 98F2h

R6 070C80 0000h 1.4050e + 02 R6 070C80 0000h 1.4050e + 02

Data at 80 98F3h Data at 80 98F3h
070C 8000h 1.4050e + 02 070C 8000h 1.4050e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 1 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



CMPF3 Compare Floating-Point Values, 3 Operands

14-80  

Syntax CMPF3 src2, src1

Operands src1 – src2  type 1 or type 2 three-operand addressing modes

Opcode

Type 1

31 2324 16 0

0 0 0 0 src110

15 8 7

1 0 T1 src20 0 00 0

Type 2

31 2324 16 0

0 0 1 0 src110

15 8 7

1 0 T1 src20 0 00 0

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (R0 — R11) register mode (R0 — R11)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (R0 — R11)

10 register mode (R0 — R11) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

01 register mode (R11–R0)
indirect mode *+ARn(5-bit unsigned
displacement)

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 – src2

Description The src2 operand is subtracted from the src1 operand. The result is not loaded
into any register. This allows for nondestructive compares. The src1 and src2
operands are assumed to be floating-point numbers. 

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise

LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.



 Compare Floating-Point Values, 3 Operands CMPF3

14-81  Assembly Language Instructions

Cycles 1

Example CMPF3 *AR2,*AR3–(1)

Before Instruction After Instruction

AR2 809831h AR2 809831h

AR3 809852h AR3 809851h (decrement)

Data at 809831h Data at 809831h
77A7000h 2.5044e + 02 77A7000h 2.5044e + 02

Data at 809852h Data at 809852h
57A2000h 6.253125e + 01 57A2000h 6.253125e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



CMPI Compare Integer

14-82  

Syntax CMPI src, dst

Operands src: general-addressing modes
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 01 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst – src

Description The src operand is subtracted from the dst operand. The result is not loaded

into any register; this allows for nondestructive compares. The dst and src op-
erands are assumed to be signed integers.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Compare Integer CMPI

14-83  Assembly Language Instructions

Example CMPI R3,R7

Before Instruction After Instruction

R3 898h 2200 R3 898h 2200

R7 3E8h 1000 R7 3E8h 1000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



CMPI3 Compare Integer, 3 Operands

14-84  

Syntax CMPI3 src2, src1

Operands src1 – src2 type 1 or type 2 three-operand addressing modes

Opcode

Type 1

31 2324 16 0

0 0 0 0 src110

15 8 7

1 1 T1 src20 0 00 0

Type 2

31 2324 16 0

0 0 1 0 src110

15 8 7

1 1 T1 src20 0 00 0

Word Fields

Type1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned
displacement)

10
indirect mode *+ARn(5-bit unsigned
displacement)

8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 – src2

Description The src2 operand is subtracted from the src1 operand. The result is not loaded
into any register. This allows for nondestructive compares. The src1 and src2
operands are assumed to be signed integers. Although this instruction has
only two operands, it is designated as a three-operand instruction because op-
erands are specified in the three-operand format.



 Compare Integer, 3 Operands CMPI3

14-85  Assembly Language Instructions

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise

V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



DBcond Decrement and Branch Conditionally (Standard)

14-86  

Syntax DBcond ARn, src

Operands src: conditional-branch-addressing modes (B)
ARn: auxiliary register

Opcode

31 2324 16 0

0 1 1 0 1 1

15 8 7

B 0 cond register or displacementARn

Word Fields

B src addressing modes

0 register

1 PC relative

Operation ARn – 1 → ARn
If cond is true and ARn ≥ 0 :

If src is in register-addressing mode (any register in CPU primary-

register file),
src → PC.

If src in PC-relative mode (label or address), displacement + PC + 1 → PC.
Else, continue.

Description DBcond signifies a standard branch that executes in four cycles because the
pipeline must be flushed if cond is true. If the condition is true and the specified
auxiliary register is greater than or equal to 0, the specified auxiliary register
is decremented and a branch is performed.

The auxiliary register is treated as a 32-bit signed integer. Note that the branch

condition does not depend on the auxiliary register decrement.

If the src operand is expressed in register-addressing mode, the contents of

the specified register are loaded into the PC. If the src operand is expressed

in PC-relative addressing mode, the assembler generates a displacement:

displacement = label – (PC of branch instruction + 1). This integer is stored as

a 16-bit signed integer in the 16 least-significant bits of the branch instruction

word. This displacement is added to the PC of the branch instruction plus 1 to

generate the new PC.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 11.2 for a list of condition mnemonics, encoding, and flags).



 Decrement and Branch Conditionally (Standard) DBcond

14-87  Assembly Language Instructions

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4

Example DBLT AR3,R2

Before Instruction After Instruction

PC 5Fh PC 9Fh

AR3 12h AR3 11h

R2 9Fh R2 9Fh

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 1 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



DBcondD Decrement and Branch Conditionally (Delayed)

14-88  

Syntax DBcondD ARn, src

Operands src: conditional-branch-addressing modes (B)
ARn: auxiliary register

Opcode

31 2324 16 0

0 1 1 0 1 1

15 8 7

B 1 cond register or displacementARn

Word Fields

B src addressing modes

0 register

1 PC relative

Operation ARn – 1 → ARn
If cond is true and ARN ≥ 0:

If src is in register addressing mode (any register in CPU primary-
register file),
src → PC

If src is in PC-relative mode (label or address) displacement + PC + 3 → PC.
Else, continue.

Description DBcondD signifies a delayed branch that allows the three instructions after the
delayed branch to be fetched before the PC is modified. The effect is a single-
cycle branch. If the condition is true and the specified auxiliary register is great-
er than or equal to zero, the specified auxiliary register is decremented and a
branch is performed. (The three instructions following the DBcondD must not
affect the cond).

The auxiliary register is treated as a 32-bit signed integer. None of the three

instructions following DBcondD should modify the program flow. Interrupts are

disabled for the duration of the DBcondD instruction. Note that the branch con-

dition does not depend on the auxiliary register decrement.

If the src operand is expressed in register addressing mode, the contents of

the specified register are loaded into the PC. If the src  is expressed in PC-rela-

tive addressing, the assembler generates a displacement: displacement = la-

bel – (PC of branch instruction + 3). This displacement is added to the PC of

the branch instruction plus 3 to generate the new PC. Note that bit 21 = 1 for

a delayed branch.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 14.2 for a list of condition mnemonics, encoding, and flags).



 Decrement and Branch Conditionally (Delayed) DBcondD

14-89  Assembly Language Instructions

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example DBZD  AR5, $+110h

Before Instruction After Instruction

PC 0h PC 110h

AR5 67h AR5 66h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 1 Z 1

V 0 V 0

C 0 C 0



FIX Floating-Point to Integer Conversion

14-90  

Syntax FIX src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 0 01 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation fix(src) → dst

Description The floating-point operand src is converted to the nearest integer less than or
equal to it in value, and the result is loaded into the dst register. The src oper-
and is assumed to be a floating-point number and the dst operand is assumed
to be a signed integer.

The exponent field of the result register (if it has one) is not modified.

Integer overflow occurs when the floating-point number is too large to be rep-

resented as a 32-bit 2s-complement integer. In the case of integer overflow,

the result is saturated in the direction of overflow.

Status Bits If ST (SET COND) = 0 and the destination register is R0–R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Floating-Point to Integer Conversion FIX

14-91  Assembly Language Instructions

Example FIX R1,R2

Before Instruction After Instruction

R1 0A2820 0000h 1.3454e + 3 R1 0A2820 0000h 1.3454e + 3

R2 0h R2 541h 1345

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



FIX||STI Parallel FIX and STI

14-92  

Syntax FIX src2, dst1
|| STI src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 0 src201 dst1

15 8 7

src3 dst20 0 0

Word Fields None

Operation fix(src2 ) → dst1
|| src3 → dst2

Description A floating-point-to-integer conversion is performed. All registers are read at
the beginning and loaded at the end of the execute cycle. This means that if

one of the parallel operations (STI) reads from a register and the operation be-
ing performed in parallel (FIX) writes to the same register, then STI accepts
as input the contents of the register before it is modified by FIX.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Integer overflow occurs when the floating-point number is too large to be rep-

resented as a 32-bit 2s-complement integer. In the case of integer overflow,

the result is saturated in the direction of overflow.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel FIX and STI FIX||STI

14-93  Assembly Language Instructions

Example FIX *++AR4(1),R1

|| STI R0,*AR2

Before Instruction After Instruction

AR4 80 98A2h AR4 80 98A3h

R1 0h 66 R1 0B3h 179

R0 0DCh 220 R0 0DCh 220

AR2 80 983Ch AR2 80 983Ch

Data at 80 98A3h Data at 80 98A3h
733 C000h 1.79750e + 02 733 C000h 1.79750e + 02

Data at 80 983Ch Data at 80 983Ch
0h 2 0DCh 220

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



FLOAT Integer to Floating-Point Conversion

14-94  

Syntax FLOAT src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 0 01 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation float (src) → dst

Description The integer operand src is converted to the floating-point value equal to it, and

the result loaded into the dst register. The src operand is assumed to be a
signed integer, and the dst operand is assumed to be a floating-point number.

Status Bits LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Integer to Floating-Point Conversion FLOAT

14-95  Assembly Language Instructions

Example FLOAT *++AR2(2),R5

Before Instruction After Instruction

AR2 80 9800h AR2 80 9802h

R5 034C 2000h 1.27578125e + 01 R5 072E0 0000h 1.74e + 02

Data at 80 9802h Data at 80 9802h
0AEh 174 0AEh 174

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



FLOAT||STF Parallel FLOAT and STF

14-96  

Syntax FLOAT src2, dst1
|| STF src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: register (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 0 src211 dst1

15 8 7

src3 dst20 0 0

Operation float(src2 ) → dst1
|| src3 → dst2

Description An integer-to-floating-point conversion is performed. All registers are read at
the beginning and loaded at the end of the execute cycle. This means that if

one of the parallel operations (STF) reads from a register and the operation
being performed in parallel (FLOAT) writes to the same register, then STF ac-
cepts as input the contents of the register before it is modified by FLOAT.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0

C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Parallel FLOAT and STF FLOAT||STF

14-97  Assembly Language Instructions

Example FLOAT *+AR2(IR0),R6

|| STF R7,*AR1

Before Instruction After Instruction

AR2 80 98C5h AR2 80 98C5h

IR0 8h IR0 8h

R6 0h R6 072E00 0000h 1.740e + 02

R7 034C20 0000h 1.27578125e + 01 R7 034C20 0000h 1.27578125e + 01

AR1 80 9933h AR1 80 9933h

Data at 80 98CDh Data at 80 98CDh
0AEh 174 0AEh 174

Data at 80 9933h Data at 80 9933h
0h 034C 2000h 1.27578125e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



FRIEEE Convert From IEEE Format

14-98  

Syntax FRIEEE src, dst

Operands src: direct- or indirect-addressing modes
dst: extended-precision register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 1 1 01 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

01 direct

10 indirect

Operation convert src from IEEE format → dst

Description The src operand is converted from the IEEE floating-point format to the 2s-
complement floating-point format.

The src operand comes from memory. The converted result goes into an ex-

tended precision register as a single-precision floating-point number.

Status Bits LUF Unaffected
LV Set if overflow, otherwise unchanged
UF 0
N Sign of the result

Z 1 if result is 0, 0 otherwise
V 1 if overflow, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Parallel FRIEEE and STF FRIEEE||STF

14-99  Assembly Language Instructions

Syntax FRIEEE src2, dst1
|| STF src3, dst2

Operands src2: indirect mode (disp = 0, 1, IR0, IR1)
dst1: register mode (R0 – R7)

src3: register mode (R0 – R7)
dst2: indirect mode (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 1 0 src210 dst1

15 8 7

src3 dst20 00

Operation convert src2 from IEEE format → dst1
in parallel with src3 → dst2

Description The src2 operand is converted from the IEEE floating-point format to the 2s-
complement format. The converted result goes into an extended-precision

register dst1 as a single-precision floating-point number.

A floating-point store is done in parallel.

If src2 and dst2 point to the same location, then src2 is read before the write

to dst2.

Status Bits LUF Unaffected
LV Set if overflow, otherwise unchanged
UF 0
N Sign of the result
Z 1 if result is 0, 0 otherwise

V 1 if overflow, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



IACK Interrupt Acknowledge

14-100  

Syntax IACK src

Operation src: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 1 1 10

15 8 7

1 0 G src0 00 0 0

Word Fields

G src addressing modes

01 direct

10 indirect

Operation Perform a dummy-read operation with IACK = 0.
At end of dummy read, set IACK to 1.

Description A dummy-read operation at address pointed by src is performed with IACK =0.
At the end of the dummy read, IACK is set to 1 if off-chip memory is speci-
fied. This instruction can be used to generate an external-interrupt acknowl-
edge. The IACK signal and the address can then be used to signal interrupt
acknowledge to external devices. The data read by the processor is unused.
Note that the IACK signal is extended with multicycle reads.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected

N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Interrupt Acknowledge IACK

14-101  Assembly Language Instructions

Example IACK *AR5

Before Instruction After Instruction

IACK 1 IACK 1

PC 300h PC 301h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



IDLE Idle Until Interrupt

14-102  

Syntax IDLE

Operands None

Opcode

31 2324 16 0

0 0 0 0 11

15 8 7

0 00 0 0 00 0 0 0 00 00 00 0 0 0 00 0 0 0 00 0 0 0 00 00 00 0 0 0 00 0 00 000 0

Word Fields None

Operation 1 → ST(GIE)

Next PC → PC
Idle until interrupt

Description The global-interrupt enable bit is set, the next PC value is loaded into the PC,
and the CPU idles until an unmasked interrupt is received. When the interrupt
is received, the contents of the PC are pushed onto the active system stack,
and the processor jumps to execute the interrupt service routine.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Idle Until Interrupt 2 IDLE2

14-103  Assembly Language Instructions

Syntax IDLE2 (’C40 revision ≥ 5.0 and ’C44 only)

Operands None

Opcode

31 2324 16 0

0 0 0 0 11

15 8 7

0 00 0 0 00 0 0 0 00 00 00 0 0 0 00 0 0 0 00 0 0 0 00 00 00 0 0 0 00 0 00 000 1

Word Fields None

Operation 1 → ST(GIE)
Next PC → PC

Idle until interrupt

Description The IDLE2 instruction performs the same function as IDLE, except that it re-
moves the functional clock input from the internal device. This allows for an
extremely low-power mode. The PC is incremented once, and the device re-
mains in an idle state until one of the external interrupts (NMI or IIOFx) is as-
serted.

In IDLE2 mode, the ’C4x behaves as follows:

� The CPU, peripherals, and memory retain their previous states.

� When the device is in the functional (nonemulation) mode, the clocks stop

with H1 high and H3 low.

� The ’C4x remains in IDLE2 until one of the external interrupts (NMI or

IIOFx) is asserted for at least two H1 clock cycles. Then, the clocks start

after a delay of one H1 cycle. The clocks can start up in the phase opposite

that in which they were stopped (that is, H1 might start high when H3 was

high before stopping, and H3 might start high when H1 was high before

stopping). However, the H1 and H3 clocks remain 180° out of phase with

each other.

� During IDLE2 operation, for one of the external interrupts to be recognized

and serviced by the CPU, it must be asserted for at least two H1 cycles.

For the processor to recognize only one interrupt when it restarts opera-

tion, the interrupt pin must be configured for edge-triggered mode or as-

serted for less than three cycles in level-triggered mode.

� When the ’C4x is in the emulation mode, the H1 and H3 clocks continue

to run normally, and the CPU operates as if an IDLE instruction had been

executed. The clocks continue to run for correct operation of the emulator.

� Any external interrupt pin can wake up the device from IDLE2; but for the

CPU to recognize that interrupt, the interrupt must also be enabled. If an

interrupt is recognized and executed by the CPU, the instruction following

the IDLE2 instruction is not executed until after a return is executed.



IDLE2 Idle Until Interrupt 2

14-104  

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Link and Jump LAJ

14-105  Assembly Language Instructions

Syntax LAJ src

Operands src: in PC-relative mode

Opcode

31 2324 16 0

0 1 1 0 0 0

15 8 7

1 1 displacement

Word Fields None

Operation PC of LAJ + 4 → extended-precision register R11

displacement + 3 + PC of LAJ → PC

Description LAJ performs a single-cycle delayed subroutine call that allows the three in-
structions following the LAJ instruction to be performed before branching. The
return address (address of the LAJ instruction + 4) is placed in extended-preci-
sion register R11. The assembler generates a displacement: displacement =
src – (PC of branch instruction + 1). This displacement is stored as a 24-bit
signed integer in the 24 least significant bits of the branch instruction. This dis-

placement is added to the PC of the branch instruction plus 1 to generate the
new PC. See Section 6.6 on page 6-19 for details.

None of the three instructions following the LAJ instruction should

modify R11 or the program flow. Interrupts are disabled for the duration of

the LAJ instruction.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



LAJcond Link and Jump Conditionally

14-106  

Syntax LAJcond src

Operands src: conditional-branch addressing modes

Opcode

31 2324 16 0

0 1 1 1 0 00

15 8 7

0 0B 1 cond register or displacement

Word Fields

B src addressing modes

0 register

1 PC relative

Operation If (cond is true)
If (src is a register)

PC of LAJcond + 4 → extended-precision register R11

src → PC
If (src is in PC-relative mode)

PC of LAJcond + 4 → extended-precision register R11
displacement = src –(PC of LAJ + 3)
displacement + PC of the LAJ + 3 → PC

Else, continue.

Description LAJcond performs a conditional single-cycle delayed subroutine call that al-
lows the three instructions following the LAJcond instruction to be performed
before branching, without affecting the cond. The return address (address of
the LAJ instruction + 4) is placed in extended-precision register R11. The ad-
dress branched to is formed by either register mode or PC-relative mode.

None of the three instructions following the LAJcond instruction should

modify R11 or the program flow. Interrupts are disabled for the duration of

the LAJcond instruction.

Status Bits LUF Unaffected
LV Unaffected

UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Link and Trap Conditionally LATcond

14-107  Assembly Language Instructions

Syntax LATcond N

Operands N immediate mode – trap number (0 ≤ N ≤ 511)

Opcode

31 2324 16 0

0 1 1 1 0 01

15 8 7

0 1 0 cond0 0 0 0 0 0 00 N

Word Fields None

Operation If (cond is true)

ST(GIE) → ST(PGIE)
ST(CF) → ST(PCF)
0 → ST(GIE)
1 → ST(CF)
PC of LAcond + 4 → extended-precision register R11 trap vector N → PC

Else, continue.

Description The LATcond instruction performs a conditional delayed single-cycle trap. If

the condition is true, ST bits GIE and CF are saved in PGIE and PCF in the
status register. Then all interrupts are disabled (0 → GIE), and the cache is fro-
zen (1 → CF). The contents of the PC of the LATcond + 4 are placed in R11,
and the PC is loaded with the contents of the specified trap vector (N). If the
condition is not true, then continue normal operation. If traps are to be nested,
you may need to save the status register before executing LATcond.

The three instructions following LATcond are fetched and executed, but they

do not affect the cond. They should not modify the program flow or directly

modify the status register. Interrupts are disabled for the duration of the

LATcond N instruction.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected

Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



LBb Load Byte

14-108  

Syntax LBb src, dst

Operands src: register, direct, 16-bit immediate, or indirect-addressing modes

dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 0 00 dst

15 8 7

B srcG

Word Fields

G src addressing modes B src byte

00 register mode 00 byte 0 LS byte

01 direct mode 01 byte 1

10 indirect mode 10 byte 2

11 immediate mode (16 bits) 11 byte 3 MS byte

Operation Sign-extended byte (3, 2, 1, 0) of src → dst

b = byte to load (3, 2, 1, 0)

3 2 1 0 = b (byte designator 3 – 0)

Description The specified byte of the src operand is sign-extended and right-shifted into
the eight LSBs of the dst register. The src byte is signed. When immediate
mode is specified and byte 2 (B =10) or byte 3 (B =10) is selected, the LBb
instruction performs sign extension of the 16-bit value. Consequently, the val-
ue of 00h or FFh is stored into the eight LSBs of the dst register.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Byte LBb

14-109  Assembly Language Instructions

Example LB2 R1, R2 ; sign extended byte 2 of R1 → R2

Before Instruction After Instruction

R1 00AB 0000h R1 00AB 0000h

R2 0000 0000h R2 FFFF FFABh



LBUb Load Byte Unsigned

14-110  

Syntax LBUb src, dst

Operands src: register, direct, 16-bit immediate, or indirect-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 0 10 dst

15 8 7

B srcG

Word Fields

G src addressing modes B src byte

00 register mode 00 byte 0 LS byte

01 direct mode 01 byte 1

10 indirect mode 10 byte 2

11 immediate mode (16 bits) 11 byte 3 MS byte

Operation Byte (3, 2, 1, 0) of src → dst

b =  byte to load (3, 2, 1, 0)

3 2 1 0 = b (byte designator 3 – 0)

Description The specified byte of the src operand is right-shifted, without sign extension,
into the eight LSBs of the dst register. The src byte is unsigned. When immedi-
ate mode is specified and byte 2 (B =10) or byte 3 (B =10) is selected, the LBUb

instruction performs sign extension of the 16-bit value. Consequently, the val-
ue of 00h or FFh is stored into the eight LSBs of the dst register.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N 0

Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LBU2 R1, R2

Before Instruction After Instruction

R1 00AB 0000h R1 00AB 0000h

R2 0000 0000h R2 0000 00ABh



 Load Address Register LDA

14-111  Assembly Language Instructions

Syntax LDA src, dst

Operands src: general-addressing modes
dst: register mode (address registers only)

Opcode

31 2324 16 0

0 0 0 1 1 11 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation src → dst

Description The src operand is loaded into the dst register. The dst register can be any of
the address registers: AR0 – AR7, IR0, IR1, DP, BK, or SP. The load is com-
plete by the end of the read phase of the pipeline. As a result, LDA is one cycle
faster than LDI for loading these registers. (All operands are treated as signed
integers.)

The src and dst operands cannot be the same register.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected

Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



LDE Load Floating-Point Exponent

14-112  

Syntax LDE src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 0 11 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation src(exp) → dst(exp)

Description The exponent field of the src operand is loaded into the exponent field of the
dst register. No modification of the dst register mantissa field is made unless
the value of the exponent loaded is the reserved value of the exponent for zero
as determined by the precision of the src operand. Then, the mantissa field of

the dst register is set to 0. The src and dst operands are assumed to be floa-
ting-point numbers. Immediate values are evaluated in the short floating-point
format.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected

N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Floating-Point Exponent LDE

14-113  Assembly Language Instructions

Example LDE R0,R5

Before Instruction After Instruction

R0 020005 6F30h 4.00066337e + 00 R0 020005 6F30h 4.00066337e + 00

R5 0A056F E332h 1.06749648e + 03 R5 02056F E332h 4.16990814e + 00

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDEP Load Integer From Expansion Register File to Primary Register File

14-114  

Syntax LDEP src, dst

Operands src: expansion register file register (IVTP or TVTP)
dst: register mode (any register in CPU primary register file)

Opcode

31 2324 16 0

0 1 1 0 dst11

15 8 7

0 01 src0 0 00 0 00 0 0 00 0

Word Fields None

Operation src → dst

Description The LDEP instruction loads a CPU register with the contents of the IVTP regis-
ter (interrupt-trap table pointer) or the TVTP register. These registers are de-
scribed in Section 3.2.

The src operand register from the expansion-register file is loaded into the dst

register in the primary register file. The dst register content is assumed to be

an integer.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected

N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Load Floating-Point Value LDF

14-115  Assembly Language Instructions

Syntax LDF src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 0 11 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation src → dst

Description The src operand is loaded into the dst register. The dst and src operands are
assumed to be floating-point numbers.

Status Bits LUF Unaffected

LV Unaffected
UF 0
N 1 if a negative result is loaded, 0 otherwise
Z 1 if a zero result is loaded, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



LDF Load Floating-Point Value

14-116  

Example LDF  @9800h,R2

Before Instruction After Instruction

DP 80h DP 80h

R2 0h R2 010C52 A000h 2.19254303e + 00

Data at 80 9800h Data at 80 9800h
10C5 2A00h 2.19254303e + 00 10C5 2A00h 2.19254303e + 00

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Load Floating-Point Value Conditionally LDFcond

14-117  Assembly Language Instructions

Syntax LDFcond  src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 1 0 0

15 8 7

Gcond srcdst

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation If cond is true:
src → dst.

Else:
dst is unchanged.

Description If the condition is true, the src operand is loaded into the dst register. Other-
wise, the dst register is unchanged. The dst and src operands are assumed
to be floating-point numbers.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 14.2 on page 14-12 for a list of condition mnemonics, encoding,

and flags). Note that an LDFU (load floating-point unconditionally) instruction

is useful for loading R0 – R11 without affecting condition flags.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



LDFcond Load Floating-Point Value Conditionally

14-118  

Example LDFZ  R3,R5

Before Instruction After Instruction

R3 2CFF2C D500h 1.77055560e +13 R3 2CFF2C D500h 1.77055560e +13

R5 5F0000 003Eh 3.96140824e +28 R5 2CFF2C D500h 1.77055560e +13

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 1 Z 1

V 0 V 0

C 0 C 0



 Load Floating-Point Value, Interlocked LDFI

14-119  Assembly Language Instructions

Syntax LDFI src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 0 11 dst

15 8 7

1 1 G src

Word Fields

G
src addressing

modes

01 direct

10 indirect

Operation Signal interlocked operation.

src → dst

Description The src operand is loaded into the dst register. An interlocked operation is sig-
naled over LOCK or LLOCK. The src and dst operands are assumed to be floa-
ting-point numbers. Only direct and indirect modes are allowed. Refer to Sec-
tion 9.7 (page 9-39) for a detailed description.

Status Bits LUF Unaffected

LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



LDFI Load Floating-Point Value, Interlocked

14-120  

Example LDFI *+AR2,R7

Before Instruction After Instruction

AR2 8098F1h AR2 8098F1h

R7 0h R7 0584C0 0000h –6.28125e + 01

Data at 80 98F2h Data at 80 98F2h
584 C000h -6.28125e + 01 584 C000h -6.28125e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel LDF and LDF LDF||LDF

14-121  Assembly Language Instructions

Syntax LDF src2, dst2
|| LDF src1, dst1

Operands src1: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 — R7)

src2: indirect (disp = 0, 1, IR0, IR1)
dst2: register (R0 — R7)

Opcode

31 2324 16 0

1 1 0 0 0 src201 dst2

15 8 7

dst1 src10 0 0

Word Fields None

Operation src2 → dst2
|| src1 → dst1

Description Two floating-point loads are performed in parallel. If the LDFs load the same
register, the assembler issues a warning. The result is that of LDF src2, dst2.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



LDF||LDF Parallel LDF and LDF

14-122  

Example LDF *– – AR1(IR0),R7

|| LDF *AR7++(1),R3

Before Instruction After Instruction

AR1 80 985Fh AR1 80 9857h

IR0 8h IR0 8h

R7 0h R7 070C80 0000h 1.4050e + 02

AR7 80 988Ah AR7 80 988Bh

R3 0h R3 057B40 0000h 6.281250e + 01

Data at 80 9857h Data at 80 9857h
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

Data at 80 988Ah Data at 80 988Ah
57B 4000h 6.281250e + 01 57B 4000h 6.281250e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel LDF and STF LDF||STF

14-123  Assembly Language Instructions

Syntax LDF src2, dst1
|| STF src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 1 src200 dst1

15 8 7

src3 dst20 00

Word Fields None

Operation src2 → dst1
|| src3 → dst2

Description A floating-point load and a floating-point store are performed in parallel.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected

UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



LDF||STF Parallel LDF and STF

14-124  

Example LDF *AR2– –(1),R1

|| STF R3,*AR4++(IR1)

Before Instruction After Instruction

AR2 80 98E6h AR2 80 98E6h

R1 0h R1 070C80 0000h 1.4050e + 02

R3 057B40 0000h 6.28125e + 01 R3 057B40 0000h 6.28125e + 01

AR4 80 9900h AR4 80 9910h

IR1 10h IR1 10h

Data at 80 98E7h Data at 80 98E7h
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

Data at 80 9900h Data at 80 9900h
0h 57B 4000h 6.28125e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Load 16 MSBs With 16-Bit Immediate LDHI

14-125  Assembly Language Instructions

Syntax LDHI src, dst

Operands src: 16-bit unsigned immediate
dst: register mode

Opcode

31 2324 16 0

0 0 0 1 1 1

15 8 7

1 dst src (immediate value)1 1 1 1 1

Word Fields None

Operation src →  16 MSBs of dst

Description The 16-bit unsigned src immediate value is loaded into the 16 MSBs of the dst
register, and 0 is loaded into the 16 LSBs of the dst register. The dst register
is assumed to be an integer.

Status Bits LUF Unaffected
LV Unaffected

UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LDHI 44h, R2

Before Instruction After Instruction

R2 ABCD EF12h R2 0044 0000h



LDI Load Integer

14-126  

Syntax LDI src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 00 dst

15 8 7

0 0 G src

Word Fields None

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation src → dst

Description The src operand is loaded into the dst register. The dst and src operands are

assumed to be signed integers.

Status Bits LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise

V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Integer LDI

14-127  Assembly Language Instructions

Example LDI *–AR1(IR0),R5

Before Instruction After Instruction

AR1 2Ch AR1 2Ch

IR0 5h IR0 5h

R5 3C5h 965 R5 26h 38

Data at 27h Data at 27h
26h 38 26h 38

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDIcond Load Integer Conditionally

14-128  

Syntax LDIcond src, dst

Operands src: general addressing modes (G)
dst: register (any register in CPU primary register file)

Opcode

31 2324 16 0

0 1 0 1 dst

15 8 7

G srccond

Word Fields

G src addressing modes

00 register (any register in

CPU primary register file)

01 direct

10 indirect

11 immediate

Operation If cond is true:

src → dst,
Else: dst is unchanged.

Description If the condition is true, the src operand is loaded into the dst register. Other-
wise, the dst register is unchanged. The dst and src operands are assumed
to be signed integers.

LDP (an alternate form of LDIU) loads the data-page pointer register (DP) or

any other register with the 16 MSBs of a relocatable address.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 14.2 for a list of condition mnemonics, encoding, and flags). Note

that a load integer unconditionally (LDIU) instruction is useful for loading a se-

lected CPU register without affecting the condition flags that the LDI instruction

affects.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Integer Conditionally LDIcond

14-129  Assembly Language Instructions

Example LDIZ R4,R6

Before Instruction After Instruction

R4 027Ch 636 R4 027Ch 636

R6 0FE2h 4066 R6 0FE2h 4066

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDII Load Integer, Interlocked

14-130  

Syntax LDII src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 00 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

01 direct

10 indirect

Operation Signal interlocked operation.
src → dst

Description The src operand is loaded into the dst register. An interlocked operation is sig-

naled over LOCK or LLOCK. The src and dst operands are assumed to be
signed integers. Note that only the direct and indirect modes are allowed. Re-
fer to Section 9.7 on page 9-39 for a detailed description.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected

LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Integer, Interlocked LDII

14-131  Assembly Language Instructions

Example LDII @985Fh,R3

Before Instruction After Instruction

DP 80 DP 80

R3 0h R3 0DCh

Data at 80 985Fh Data at 80 98F5h
0DCh 0DCh

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDI||LDI Parallel LDI and LDI

14-132  

Syntax LDI src2, dst2
|| LDI src1, dst1

Operands src1: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src2: indirect (disp = 0, 1, IR0, IR1)
dst2: register (R0 – R7)

Opcode

31 2324 16 0

1 1 0 0 0 src211 dst2

15 8 7

dst1 0 0 0 src1

Word Fields None

Operation src2 → dst2
|| src1 → dst1

Description Two integer loads are performed in parallel. A warning is issued by the assem-
bler if the LDIs load the same register. The result is that of LDI src2, dst2.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel LDI and LDI LDI||LDI

14-133  Assembly Language Instructions

Example LDI *–AR1(1),R7

|| LDI *AR7++(IR0),R1

Before Instruction After Instruction

AR1 80 9826h AR1 80 9826h

R7 0h R7 0FAh 250

AR7 80 98C8h AR7 80 98D8h

IR0 10h IR0 10h

R1 0h R1 02EEh 750

Data at 80 9825h Data at 80 9825h
0FAh 250 0FAh 250

Data at 80 98C8h Data at 80 98C8h
2EEh 750 2EEh 750

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDI||STI Parallel LDI and STI

14-134  

Syntax LDI src2, dst1
|| STI src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 1 src210 dst1

15 8 7

src3 dst20 0 0

Word Fields None

Operation src2 → dst1
|| src3 → dst2

Description An integer load and an integer store are performed in parallel. If src2 and dst2
point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel LDI and STI LDI||STI

14-135  Assembly Language Instructions

Example LDI *–AR1(1),R2

|| STI R7,*AR5++(IR0)

Before Instruction After Instruction

AR1 80 98E7h AR1 80 98E7h

R2 0h R2 0DCh 220

R7 35h 53 R7 35h 53

AR5 80 982Ch AR5 80 9834h

IR0 8h IR0 8h

Data at 80 98E6h Data at 80 98E6h
0DCh 220 0DCh 220

Data at 80 982Ch Data at 80 982Ch
0h 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDM Load Floating-Point Mantissa

14-136  

Syntax LDM src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 1 00 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (R0 – R11)

01 direct

10 indirect

11 immediate

Operation src (man) → dst (man)

Description The mantissa field of the src operand is loaded into the mantissa field of the
dst register. The dst exponent field is not modified. The src and dst operands
are assumed to be floating-point numbers. If immediate addressing mode is
used, bits 15 –12 of the instruction word are forced to 0 by the assembler. If

the source is in the memory, the 32-bit data are loaded into the mantissa field.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Floating-Point Mantissa LDM

14-137  Assembly Language Instructions

Example LDM 156.75,R2  (156.75 = 07 1CC0 0000h)

Before Instruction After Instruction

R2 0h R2 00 1CC0 0000h 1.22460938e + 00

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



LDP Load Data Page Pointer

14-138  

Syntax LDP src[,DP]

Operands src: 16 MSBs of the absolute 32-bit source address (src).

dst: optional (data-page pointer understood if “,DP” left out of operand)

Opcode

31 2324 16 0

0 1 1 0 00

15 8 7

0 00 src1 0 00 01 1

Word Fields None

Operation src → Data-page pointer

Description This pseudo-op is an alternate form of the LDIU instruction, except that LDP
is always in the immediate addressing mode (bits 22 – 21 = 112). The16 MSBs
of the src absolute 32-bit value (note that an src less than 32 bits is zero filled
to make the 32 bits) are loaded into the 16 LSBs of the data-page pointer.

The 16 LSBs of the pointer are used in direct addressing as a pointer to the

page of data being addressed. There is a total of 64K pages, each page 64K

words long. Bits 31–16 of the pointer are reserved and should be kept to zero.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected

N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LDP @809900h, DP

or

LDP @809900h

Before Instruction After Instruction

DP 6465h DP 0080h 16MSBs of 32-bit 

src, zeros extended

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Load Integer From Primary Register File to Expansion Register File LDPE

14-139  Assembly Language Instructions

Syntax LDPE src, dst

Operands src: register mode (any register in CPU primary-register file)
dst: expansion-register file register (IVTP or TVTP)

Opcode

31 2324 16 0

0 1 1 0 dst11

15 8 7

0 11 src0 0 00 00 0 0 0 00 0 0

Word Fields None

Operation src →  dst

Description This is a means to load the interrupt vector table pointer (IVTP) register or trap-
vector table pointer (TVTP) register. These registers are described in Section
3.2 on page 3-17.

The src operand register from the primary-register file is loaded into the dst

register in the expansion register file. The dst operand is assumed to be an

integer.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected

N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LDPE AR0, TVTP  ; set trap-vector pointer



LDPK Load Data-Page Pointer Immediate

14-140  

Syntax LDPK src

Operands src: 16-bit unsigned immediate

Opcode

31 2324 16 0

0 0 0 1 1 src11

15 8 7

1 0 1 1 1 0 0 0 0

Word Fields None

Operation src →  DP

Description The 16-bit unsigned immediate value is loaded into the DP register. This oper-
ation is completed by the end of the decode phase of the LDPK instruction;
thus, the value loaded is ready for the next instruction for immediate address-
ing. Use caution when using the DP register in the instruction that precedes
the LDPK. For example:

PUSH DP

LDPK new_value

pushes the DP new value into the stack instead of saving the old DP value.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Load Half-Word LHw

14-141  Assembly Language Instructions

Syntax LHw src, dst

Operands src: register, direct, 16-bit immediate, or indirect-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 1 10 dst

15 8 7

0 G srcH

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

H src half-word

0 half-word 0 (LS half-word)

1 half-word 1 (MS half-word)

Operation Sign-extended half-word (0, 1) of src → dst

w =  half-word to load (0, 1)

1 0 = w designator

Description The specified half-word of the src operand is sign-extended and right-shifted
into the 16 LSBs of the dst register. The src half-word is signed. When immedi-
ate mode is specified and a half-word 1 (H = 1) is selected, the LHw instruction
performs sign extension of the 16-bit value into a 32-bit value. Consequently,
the corresponding half-word value (0000h or FFFFh) is stored into the 16 LSBs

of the dst register.



LHw Load Half-Word

14-142  

Status Bits If ST (SET COND) = 0 and the destination register is R0–R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected 
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LH0 R1, R2

Before Instruction After Instruction

R1 ABCD EF12h R1 ABCD EF12h

R2 1234 5678h R2 FFFF EF12h



 Load Half-Word Unsigned LHUw

14-143  Assembly Language Instructions

Syntax LHUw src, dst

Operands src: register, direct, 16-bit immediate-, or indirect- addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 1 10 dst

15 8 7

1 G srcH

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

H src half-word

0 half-word 0 (LS half-word)

1 half-word 1 (MS half-word)

Operation Unsigned half-word (0, 1) of src → dst

w =  half-word to load (0, 1)

1 0 = w designator

Description The specified half-word of the src operand is unsigned and right-shifted into
the 16 LSBs of the dst register. The src half-word is unsigned. When immediate
mode is specified and a half-word 1 (H = 1) is selected, the LHw instruction
performs sign extension of the 16-bit value into a 32-bit value. Consequently,
the corresponding half-word value (0000h or FFFFh) is stored into the 16 LSBs

of the dst register.



LHUw Load Half-Word Unsigned

14-144  

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0

N 0
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Cycles 1

Mode Bit OVM operation is not affected by OVM bit value.

Example LHU0 R1, R2

Before Instruction After Instruction

R1 ABCD EF12h R1 ABCD EF12h

R2 1234 5678h R2 0000 EF12h



 Logical Shift LSH

14-145  Assembly Language Instructions

Syntax LSH  src_count, dst

Operands src_count: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 00 dst

15 8 7

1 1 G src_count

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation count = 7 LSBs of src_count
If count ≥ 0:

dst << count → dst
Else:

dst >> |count | → dst

Description The seven LSBs of the src_count operand constitute the 2s-complement-shift
count. If count is greater than 0, the dst operand is left-shifted by the value of
count. Low-order bits shifted in are zero-filled, and high-order bits are shifted
out through the C (carry) bit.

Logical left-shift:

C ← dst ← 0

If count is less than 0, the dst is right-shifted by the absolute value of the count

operand. The high-order bits of the dst operand are zero-filled as they are

shifted to the right. Low-order bits are shifted out through the C (carry) bit.

Logical right-shift:

0 → dst → C

If count is 0, no shift is performed, and the C (carry) bit is cleared to 0.

If count is greater than 32, the C (carry) bit gets the LSB. If count is less than

–32, the C bit is cleared to 0.



LSH Logical Shift

14-146  

The src_count operand is assumed to be a signed integer, and the dst operand

is assumed to be an unsigned integer.

Status Bits If ST (SET COND) = 0 and the destination register is R0–R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Set to the value of the last bit shifted out. 0 for a shift count of 0

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example 1 LSH  R4,R7

Before Instruction After Instruction

R4 018h 24 R4 018h 24

R7 02ACh R7 0AC00 0000h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

Example 2 LSH *–AR5(IR0),R5

Before Instruction After Instruction

AR5 80 9908h AR5 80 9908h

IR0 4h IR0 4h

R5 00 12C0 0000h R5 00 0001 2C00h

Data at 80 9904h Data at 80 9904h
0FFF FFFF4h –12 0FFF FFFF4h –12

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Logical Shift, 3 Operands LSH3

14-147  Assembly Language Instructions

Syntax LSH3 src_count, src, dst

Operands src, src_count: both type 1 or type 2 three-operand addressing modes

dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src01 dst

15 8 7

0 0 T1 src_count

Type 2

31 2324 16 0

0 0 1 0 src01 dst

15 8 7

0 0 T1 src_count

Word Fields

Type 1

T src addressing modes src_count addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src addressing modes src_count addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation count = 7 LSBs of src_count
If count  ≥ 0:

src << count → dst
Else:

src >> |count | → dst



LSH3 Logical Shift, 3 Operands

14-148  

Description The seven LSBs of the src_count operand constitute the 2s-complement shift
count.

If count is greater than 0, a copy of the src operand is left-shifted by the value

of count, and the result is written to the dst (the src is not changed). Low-order

bits shifted in are zero-filled, and high-order bits are shifted out through the C

(carry) bit.

Logical left-shift:

C  ← src  ← 0

If count is less than 0, the src operand is right-shifted by the absolute value of

count. The high-order bits of the dst operand are zero-filled as shifted to the

right. Low-order bits are shifted out through the C (carry) bit.

Logical right-shift:

0  →  src → C

If count is 0, no shift is performed and the C (carry) bit is set to 0.

If count is greater than 32, the carry (C) bit is set to the LSB. If count is less

than 32, the carry bit is cleared to 0. This also applies to LSH.

The src_count operand is assumed to be a signed integer. The src and dst op-

erands are assumed to be unsigned integers.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output

Z 1 if a zero output is generated, 0 otherwise
V 0
C Set to the value of the last bit shifted out. 0 for a shift count of 0

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Parallel LSH3 and STI LSH3||STI

14-149  Assembly Language Instructions

Syntax LSH3 src_count, src2, dst1
|| STI src3, dst2

Operands src_count: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 1 src201 dst1

15 8 7

src3 dst2src_count

Word Fields None

Operation count = 7 LSBs of src_count
If count ≥ 0:

src2 << count → dst1
Else:

src2 >> |count | → dst1
|| src3 → dst2

Description The seven LSBs of the src_count operand constitute the 2s-complement shift
count.

If count is greater than 0, a copy of the src2 operand is left-shifted by the value

of count and the result is written to dst1 (src2 is not changed). Low-order bits

shifted in are zero-filled, and high-order bits are shifted out through the C

(carry) bit.

Logical left-shift:

C ← src2 ← 0

If count is less than 0, a copy of the src2 operand is right-shifted by the absolute

value of count. The high-order bits of the dst operand are zero-filled as shifted

to the right. Low-order bits are shifted out through the C (carry bit).

Logical right-shift:

0 → src2 → C

If count is 0, no shift is performed and the carry bit is set to 0.

The src_count operand is assumed to be a signed integer, and the src2 and

dst1 operands are assumed to be unsigned integers. All registers are read at

the beginning and loaded at the end of the execute cycle. This means that if

one of the parallel operations (STI) reads from a register and the operation be-



LSH3||STI Parallel LSH3 and STI

14-150  

ing performed in parallel (LSH3) writes to the same register, then STI accepts

as input the contents of the register before it is modified by the LSH3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero output is generated, 0 otherwise

V 0
C Set to the value of the last bit shifted out. 0 for a shift count of 0

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example 1 LSH3 R2,*++AR3(1),R0

|| STI R4,*–AR5

Before Instruction After Instruction

R2 18h 24 R2 18h 24

AR3 8098C2h AR3 8098C3h

R0 0h R0 0AC00 0000h

R4 0DCh 220 R4 0DCh 220

AR5 80 98A3h AR5 80 98A3h

Data at 80 98C3h Data at 80 98C3h
0ACh 0ACh

Data at 80 98A2h Data at 80 98A2h
0h 0DCh 220

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel LSH3 and STI LSH3||STI

14-151  Assembly Language Instructions

Example 2 LSH3 R7,*AR2––(1),R2

|| STI R0,*+AR0(1)

Before Instruction After Instruction

R7 0FFFFF FF4h –12 R7 0FFFFF FF4h –12

AR2 80 9863h AR2 80 9862h

R2 0h R2 2C000h

R0 12Ch 300 R0 12Ch 300

AR0 80 98B7h AR0 80 98B7h

Data at 80 9863h Data at 80 9863h
2C00 0000h 2C00 0000h

Data at 80 98B9h Data at 80 98B8h
0h 12Ch 300

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



LWLct Load Word Left-Shifted

14-152  

Syntax LWLct src, dst

Operands ct: the count of bytes {0, 1, 2, or 3} to shift left (ct × 8 = shift in bits)
src: register, direct, 16-bit immediate-, or indirect- addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 0 01 dst

15 8 7

G srcB

Word Fields

G src addressing modes

00 register (any register in

CPU primary register file)

01 direct

10 indirect

11 immediate

B src byte

00 no shift

01 shift left 1 byte space

10 shift left 2-byte spaces

11 shift left 3-byte spaces

Operation src << {0, 1, 2, or 3} bytes and merged with dst → dst

Description The src operand is left-shifted the specified number of bytes and merged with
the bytes of the dst register that are below the left-shifted LSB of the src oper-
and. When immediate mode is selected, this instruction performs a sign exten-
sion of the 16-bit immediate value into a 32-bit value; then, this 32-bit value is
shifted and merged.



 Load Word Left-Shifted LWLct

14-153  Assembly Language Instructions

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LWL2 R1, R2

Before Instruction After Instruction

R1 ABCD EF12h R1 ABCD EF12h

R2 1234 5678h R2 EF12 5678h



LWRct Load Word Right-Shifted

14-154  

Syntax LWRct  src, dst

Operands ct : the count of bytes {0, 1, 2, or 3} to shift right (ct × 8 = shift in bits)
src: register, direct, 16-bit immediate-, or indirect-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 0 11 dst

15 8 7

G srcB

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

B src byte

00 no shift

01 shift left 1 byte space

10 shift left 2-byte spaces

11 shift left 3-byte spaces

Operation src >> {0, 1, 2, or 3} bytes and merged with dst → dst

Description The src operand is right-shifted the specified number of bytes and merged with
the bytes of the dst register that are above the right-shifted MSB of the src op-
erand. Sign is not extended. When immediate mode is selected, this instruc-
tion performs a sign extension of the 16-bit immediate value into a 32-bit value;
then, this 32-bit value is shifted and merged.



 Load Word Right-Shifted LWRct

14-155  Assembly Language Instructions

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example LWR1 AR1, R2

Before Instruction After Instruction

AR1 ABCD EF12hEF AR1 ABCD EF12h

R2 1234 5678h R2 12AB CDEFh



MBct Merge Byte, Left-Shifted

14-156  

Syntax MBct  src, dst

Operands ct: the count of bytes {0, 1, 2, 3} to shift left (ct × 8 = shift in bits)
src: register-, direct-, or indirect-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 1 00 dst

15 8 7

G srcB

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

B src byte

00 no shift

01 shift left 1 byte space

10 shift left 2-byte spaces

11 shift left 3-byte spaces

Operation 8 LSBs of src << {0, 1, 2, or 3} bytes and merged with dst → dst

Description The eight LSBs of the src operand are left shifted 0, 1, 2, or 3 bytes and merged
with the bits of the dst register that are below the left-shifted LSB of the src op-
erand. When immediate mode is selected, this instruction performs a sign ex-
tension of the 16-bit immediate value into a 32-bit value; then, this 32-bit value
is shifted and merged.



 Merge Byte, Left-Shifted MBct

14-157  Assembly Language Instructions

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example MB2 AR1, AR2

Before Instruction After Instruction

AR1 ABCD EF12h (0012 0000h) AR1 ABCD EF12h

AR2 1234 5678h AR2 1212 5678h



MHct Merge Half-Word, Left-Shifted

14-158  

Syntax MHct  src, dst

Operands ct: the count of half-word (16-bit) shifts

src: register-, direct-, 16-bit immediate-, or indirect-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

1 0 1 1 1 01 dst

15 8 7

G srcH0

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

H src half-word

0 half-word 0 (LS half-word)

1 half-word 1 (MS half-word)

Operation 16 LSBs of src << {0, 1} half-words and merged with dst → dst

Description The 16 LSBs of the src operand are left shifted 0 or 1 half-words and merged
with the bits of the dst register that are below the left-shifted LSB of the src op-
erand. When immediate mode is selected, this instruction performs a sign ex-
tension of the 16-bit immediate value into a 32-bit value; then, this 32-bit value

is shifted and merged.

Status Bits If ST (SET COND) = 0 and the destination register is R0–R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected



 Merge Half-Word, Left-Shifted MHct

14-159  Assembly Language Instructions

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example MH1 AR1, AR2

Before Instruction After Instruction

AR1 ABCD EF12h (EF12 0000h) AR1 ABCD EF12h

AR2 1234 5678h AR2 EF12 5678h



MPYF Multiply Floating-Point Values

14-160  

Syntax MPYF src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 1 10 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (R0–R11)

01 direct

10 indirect

11 immediate

Operation dst × src → dst

Description The product of the dst and src operands is loaded into the dst register. The val-
ues at src (if in register mode (R0–R11)) and dst are treated as extended-preci-
sion floating-point numbers. For nonregister mode, src is treated as single-
precision floating-point number.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point is overflow occurs, 0 otherwise

C  Unaffected.

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Multiply Floating-Point Value MPYF

14-161  Assembly Language Instructions

Example MPYF R0,R2

Before Instruction After Instruction

R0 07 0C80 0000h 1.4050e + 02 R0 07 0C80 0000h 1.4050e + 02

R2 03 4C20 0000h 1.27578125e + 01 R2 0A 600F 2000h 1.79247266e + 03

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



MPYF3 Multiply Floating-Point Values, 3 Operands

14-162  

Syntax MPYF3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes

dst: register mode (R0 – R11)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src101 dst

15 8 7

0 1 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src101 dst

15 8 7

0 1 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (R0 — R11) register mode (R0 — R11)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (R0 — R11) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

01 register mode (R0 — R11)
indirect mode *+ARn(5-bit unsigned
displacement)

11
indirect mode *+ARn1(5-bit unsigned
displacement)

indirect mode *+ARn2(5-bit unsigned
displacement)

Operation src1 � src2 → dst

Description The product of src1 and src2 is loaded into the dst register. The values at src1,
src2 (if src1 and src2 are in register mode (R0–R11)), and dst are treated as
extended-precision floating-point numbers. If src1 and src2 are in nonregister

mode, they are assumed to be single-precision floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise

V 1 if a floating-point is overflow occurs, 0 otherwise
C  Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Parallel MPYF3 and ADDF3 MPYF3||ADDF3

14-163  Assembly Language Instructions

Syntax MPYF3 srcA, srcB, dst1
|| ADDF3 srcC, srcD, dst2

Operands

srcA
srcB
srcC
srcD

any two must be register (R0 – R7).
Any two must be indirect (disp = 0, 1, IR0, IR1), and

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (R0 – R7)
src2 register (R0 – R7)
src3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)

P parallel-addressing modes (0 ≤ P ≤ 3)

Operation  (P Field)

00 src3 × src4, src1 + src2
01 src3 × src1, src4 + src2
10 src1 × src2, src3 + src4
11 src3 × src1, src2 + src4

Opcode

31 2324 16 0

1 0 0 0 0 src40

15 8 7

src2src1P d1 d2 src3

Word Fields None

Operation srcA × srcB → dst1
|| srcC + srcD → dst2

Description A floating-point multiplication and a floating-point addition are performed in
parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (MPYF3) reads
from a register and the operation being performed in parallel (ADDF3) writes
to the same register, then MPYF3 accepts as input the contents of the register
before it is modified by the ADDF3.



MPYF3||ADDF3 Parallel MPYF3 and ADDF3

14-164  

You can code any combination of addressing modes for the four possible

source operands as long as you code two as indirect and two as register. The

assignment of the source operands srcA – srcD to the src1 – src4 fields va-

ries, depending on the combination of addressing modes used; the P field is

encoded accordingly. The assembler may, when not significant, change the

order of operands in commutative operations to simplify processing.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise

N 0
Z 0
V 1 if a floating-point overflow occurs, 0 otherwise
C  Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example MPYF3 *AR5++(1),*– – AR1(IR0),R0

|| ADDF3 R5,R7,R3

Before Instruction After Instruction

AR5 80 98C5h AR5 80 98C6h

AR1 80 98A8h AR1 80 98A4h

IR0 4h IR0 4h

R0 0h R0 04 6718 000h 2.88867188e + 01

R5 07 33C0 0000h 1.79750e + 02 R5 07 33C0 0000h 1.79750e + 02

R7 07 0C80 0000h 1.4050e + 02 R7 07 0C80 0000h 1.4050e + 02

R3 0h R3 08 2020 0000h 3.20250e + 02

Data at 80 98C5h Data at 80 98C5h
34C 0000h 1.2750e + 01 34C 0000h 1.2750e + 01

Data at 80 98A4h Data at 80 98A4h
111 0000h 2.265625e + 0 111 0000h 2.265625e + 0

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel MPYF3 and STF MPYF3||STF

14-165  Assembly Language Instructions

Syntax MPYF3 src2, src1, dst1
|| STF src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 1 1 src211 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src1 × src2 → dst1
|| src3 → dst2

Description A floating-point multiplication and a floating-point store are performed in paral-

lel. All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (MPYF3) writes to a reg-
ister and the operation being performed in parallel (STF) reads from the same
register, then the STF accepts as input the contents of the register before it is
modified by the MPYF3.

If src2 and dst2 point to the same location, then src2 is read before the write

to dst2.

Status Bits LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise
C  Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



MPYF3||STF Parallel MPYF3 and STF

14-166  

Example MPYF3 *–AR2(1),R7,R0

|| STF R3,*AR0– –(IR0)

Before Instruction After Instruction

AR2 80 982Bh AR2 80 982Bh

R7 05 7B40 0000h 6.281250e + 01 R7 05 7B40 0000h 6.281250e + 01

R0 0h R0 0D 09E4 A000h 8.82515625e + 03

R3 08 6B28 0000h 4.7031250e + 02 R3 08 6B28 0000h 4.7031250e + 02

AR0 80 9860h AR0 80 9858h

IR0 8h IR0 8h

Data at 80 982Ah Data at 80 982Ah
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

Data at 80 9860h Data at 80 9860h
0h 86B28 0000h 4.7031250e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel MPYF3 and SUBF3 MPYF3||SUBF3

14-167  Assembly Language Instructions

Syntax MPYF3 srcA, srcB, dst1
|| SUBF3 srcC, srcD, dst2

srcA
srcB
srcC
srcD

any two must be register (R0 –
R7).

Any two must be indirect (disp = 0, 1, IR0, IR1), and

Operands None

Opcode

31 2324 16 0

1 0 0 0 0 src41

15 8 7

src2src1P d1 d2 src3

Word Fields None

Operation srcA × srcB → dst1
|| srcD – srcC → dst2

dst1 register (d1):

0 = R0

1 = R1

dst2 register (d2):

0 = R2

1 = R3

src1 register (R0 – R7)

src2 register (R0 – R7)

src3 indirect (disp = 0, 1, IR0, IR1)

src4 indirect (disp = 0, 1, IR0, IR1)

P parallel-addressing modes (0 ≤ P ≤ 3)

Operation (P Field)

00 src3 × src4, src1 – src2

01 src3 × src1, src4 – src2

10 src1 × src2, src3 – src4

11 src3 × src1, src2 – src4

Description A floating-point multiplication and a floating-point subtraction are performed
in parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. This means that if one of the parallel operations (MPYF3) reads
from a register, and the operation being performed in parallel (SUBF3) writes
to the same register, then MPYF3 accepts as input the contents of the register
before it is modified by the SUBF3.



MPYF3||SUBF3 Parallel MPYF3 and SUBF3

14-168  

You can code any combination of addressing modes for the four possible

source operands as long as you code two as indirect and two as register. The

assignment of the source operands srcA – srcD to the src1 – src4 fields va-

ries, depending on the combination of addressing modes used; the P field is

encoded accordingly. The assembler may, when not significant, change the

order of operands in commutative operations to simplify processing.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 0
Z 0

V 1 if a floating-point overflow occurs, 0 otherwise
C  Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example MPYF3 R5,*++AR7(IR1),R0

|| SUBF3 R7,*AR3– –(1),R2

or
MPYF3 *++AR7(IR1), R5,R0

|| SUBF3 R7,*AR3– –(1),R2

Before Instruction After Instruction

R5 03 4C00 0000h 1.2750e + 01 R5 03 4C00 0000h 1.2750e + 01

AR7 80 9904h AR7 80 990Ch

IR1 8h IR1 8h

R0 0h R0 04 6718 0000h 2.88867188e + 01

R7 07 33C0 0000h 1.79750e + 02 R7 07 33C0 0000h 1.79750e + 02

AR3 80 98B2h AR3 80 98B1h

R2 0h R2 05 E300 0000h –3.9250e + 01

Data at 80 990Ch Data at 80 990Ch
111 0000h 2.250e + 00 111 0000h 2.250e + 00

Data at 80 98B2h Data at 80 98B2h
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Multiply Integer MPYI

14-169  Assembly Language Instructions

Syntax MPYI src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 10 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst × src → dst

Description The product of the dst and src operands is loaded into the dst register. The src
and dst operands, when read, are assumed to be 32-bit signed integers. The
result is assumed to be a 64-bit signed integer. The output to the dst register

is the 32 LSBs of the result.

Integer overflow occurs when any of the 32 MSBs of the 64-bit result differs

from the MSB of the 32-bit output value.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition

flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unchanged
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



MPYI Multiply Integer

14-170  

Example MPYI R1,R5

Before Instruction After Instruction

R1 00 0033 C251h 3 392 081 R1 00 0033 C251h 3 392 081

R5 00 0078 B600h 7 910 912 R5 00 E21D 9600h –501 377 536

LUF 0 LUF 0

LV 0 LV 1

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

The result overflows and R5 contains the 32 LSBs of the result. To obtain the

32 MSBs, use the MPYSHI3 or the MPYUHI3 instructions.



 Multiply Integer, 3 Operands MPYI3

14-171  Assembly Language Instructions

Syntax MPYI3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src101 dst

15 8 7

1 0 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src101 dst

15 8 7

1 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 × src2 → dst

Description The product of the numbers at src1 and src2 is loaded into the dst register. The
multiplied numbers are assumed to be 32-bit signed integers. The result is as-
sumed to be a signed 64-bit integer. The output to the dst register is the 32
least-significant bits of the result.

Integer overflow occurs when any of the 32 MSBs of the 64-bit result differs

from the MSB of the 32-bit dst value.



MPYI3 Multiply Integer, 3 Operands

14-172  

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unchanged.
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example None



 Parallel MPYI3 and ADDI3 MPYI3||ADDI3

14-173  Assembly Language Instructions

Syntax MPYI3 srcA, srcB, dst1
|| ADDI3 srcC, srcD, dst2

Operands

srcA
srcB
srcC
srcD

any two must be register (R0 – R7).
Any two must be indirect (disp = 0, 1, IR0, IR1), and

dst1 register (d1):

0 = R0

1 = R1

dst2 register (d2):

0 = R2

1 = R3

src1 register (R0 – R7)

src2 register (R0 – R7)

src3 indirect (disp = 0, 1, IR0, IR1)

src4 indirect (disp = 0, 1, IR0, IR1)

P parallel-addressing modes (0 ≤ P ≤ 3)

Operation (P Field)

00 src3 × src4, src1 + src2

01 src3 × src1, src4 + src2

10 src1 × src2, src3 + src4

11 src3 × src1, src2 + src4

Opcode

31 2324 16 0

1 0 0 0 1 src40

15 8 7

src2src1P d1 d2 src3

Word Fields None

Operation srcA × srcB → dst1
|| srcD + srcC → dst2

Description An integer multiplication and an integer addition are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
This means that if one of the parallel operations (MPYI3) reads from a register
and the operation being performed in parallel (ADDI3) writes to the same reg-
ister, then MPYI3 accepts as input the contents of the register before it is modi-
fied by the ADDI3.



MPYI3||ADDI3 Parallel MPYI3 and ADDI3

14-174  

You can code any combination of addressing modes for the four possible

source operands as long as you code two as indirect and two as register. The

assignment of the source operands srcA – srcD to the src1 – src4 fields va-

ries, depending on the combination of addressing modes used; the P field is

encoded accordingly. The assembler may, when not significant, change the

order of operands in commutative operations to simplify processing.

Status Bits LUF Unchanged

LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 0
Z 0
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example MPYI3 R7,R4,R0

|| ADDI3 *–AR3,*AR5––(1),R3

Before Instruction After Instruction

R7 14h 20 R7 14h 20

R4 64h 100 R4 64h 100

R0 0h R0 07D0h 2000

AR3 80 981Fh AR3 80 981Fh

AR5 80 996Eh AR5 80 996Dh

R3 0h R3 0h

Data at 80 981Eh Data at 80 981Eh
0FFFF FFCBh –53 0FFFF FFCBh –53

Data at 80 996Eh Data at 80 996Eh
35h 53 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel MPYI3 and STI3 MPYI3||STI

14-175  Assembly Language Instructions

Syntax MPYI3 src2, src1, dst1
|| STI src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 0 src200 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src1 × src2 → dst1
|| src3 → dst2

Description An integer multiplication and an integer store are performed in parallel. All reg-

isters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (MPYI3) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
MPYI3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Integer overflow occurs when any of the 32 MSBs of the 64-bit result differs

from the most significant bit of the 32-bit dst1 value.

Status Bits LUF Unchanged

LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



MPYI3||STI Parallel MPYI3 and STI3

14-176  

Example MPYI3 *++AR0(1),R5,R7

|| STI R2,*–AR3(1)

Before Instruction After Instruction

AR0 80 995Ah AR0 80 995Bh

R5 32h 50 R5 32h 50

R7 0h R7 2710h 10000

R2 0DCh 220 R2 0DCh 220

AR3 80 982Fh AR3 80 982Fh

Data at 80 995Bh Data at 80 995Bh
0C8h 200 0C8h 200

Data at 80 982Eh Data at 80 982Eh
0h 0DCh 220

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel MPYI3 and SUBI3 MPYI3||SUBI3

14-177  Assembly Language Instructions

Syntax MPYI3 srcA, srcB, dst1
|| SUBI3 srcC, srcD, dst2

Operands

srcA
srcB
srcC
srcD

any two must be register (R0 – R7).
Any two must be indirect (disp = 0, 1, IR0, IR1), and

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (R0 – R7)
src2 register (R0 – R7)
src3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)

P parallel-addressing modes (0 ≤ P ≤ 3)

Operation (P Field)

00 src3 × src4, src1 – src2
01 src3 × src1, src4 – src2
10 src1 × src2, src3 – src4
11 src3 × src1, src2 – src4

Opcode

31 2324 16 0

1 0 0 0 1 src41

15 8 7

src2src1P d1 d2 src3

Word Fields None

Operation srcA × srcB → dst1
|| srcD – srcC → dst2

Description An integer multiplication and an integer subtraction are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (MPYI3) reads from a
register and the operation being performed in parallel (SUBI3) writes to the
same register, then MPYI3 accepts as input the contents of the register before
it is modified by the SUBI3.

You can code any combination of addressing modes for the four possible

source operands as long as you code two as indirect and two as register. The



MPYI3||SUBI3 Parallel MPYI3 and SUBI3

14-178  

assignment of the source operands srcA– srcD to the src1– src4 fields varies,

depending on the combination of addressing modes used; the P field is en-

coded accordingly. The assembler may, when not significant, change the order

of operands in commutative operations in order to simplify processing.

Integer overflow occurs when any of the 32 MSBs of the 64-bit result differs

from the MSB of the 32-bit output value.

Status Bits LUF Unchanged
LV 1 if an integer overflow occurs, unchanged otherwise
UF 1 if an integer underflow occurs, 0 otherwise
N 0
Z 0
V 1 if an integer overflow occurs, 0 otherwise

C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example MPYI3 R2,*++AR0(1),R0

|| SUBI3 *AR5– –(IR1),R4,R2

or
MPYI3 *++AR0(1),R2,R0

|| SUBI3 *AR5– –(IR1),R4,R2

 

Before Instruction After Instruction

R2 32h 50 R2 320h 800

AR0 80 98E3h AR0 80 98E4h

R0 0h R0 01324h 4900

AR5 80 99FCh AR5 80 99F0h

IR1 0Ch IR1 0Ch

R4 07D0h 2000 R4 07D0h 2000

Data at 80 98E4h Data at 80 98E4h
62h 98 62h 98

Data at 80 99FCh Data at 80 99FCh
4B0h 1200 4B0h 1200

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Multiply Signed Integer and Produce 32 MSBs MPYSHI

14-179  Assembly Language Instructions

Syntax MPYSHI src, dst

Operands src: general-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 01 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst × src → dst

Description The 32 MSBs of the product of the numbers at dst and src are loaded into the
dst register. These numbers, when read, are assumed to be signed 32-bit inte-
gers. The result is assumed to be a signed 64-bit integer. The output to the dst
register is the 32 MSBs of the result. The MPYI instruction provides the 32
LSBs of the result.

Status Bits If ST (SET COND) = 0 and the destination register is R0–R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unchanged
LV Unchanged
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if all 64 bits of the product are 0, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



MPYSHI3 Multiply Signed Integer Producing 32 MSBs, 3 Operands

14-180  

Syntax MPYSHI3 src2, src1, dst

Operands src1: type 1 or type 2 three-operand addressing modes
src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 1 src100 dst

15 8 7

0 1 T1 src2

Type 2

31 2324 16 0

0 0 1 1 src100 dst

15 8 7

0 1 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 × src2 → dst

Description The product of the numbers at the src1 and src2 operands is loaded into the
dst register. The numbers at the src1 and src2 operands are assumed to be
32-bit signed integers. The result is assumed to be a signed 64-bit integer. The
output to the dst register is the 32 MSBs of the result. The MPYI3 instruction
provides the 32 LSBs of the result.



 Multiply Signed Integer Producing 32 MSBs, 3 Operands MPYSHI3

14-181  Assembly Language Instructions

Status Bits If ST (SET COND) = 0 and the destination register is R0–R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unchanged
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



MPYUHI Multiply Unsigned Integer and Produce 32 MSBs

14-182  

Syntax MPYUHI  src, dst

Operands src: general-addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 11 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst × src → dst

Description The 32 MSBs of the product of the numbers at dst and src operands are loaded
into the dst register. These numbers, when read, are assumed to be unsigned
32-bit integers. The result is assumed to be an unsigned 64-bit integer. The
output to the dst register is the 32 MSBs of the result. The MPYI instruction
provides the 32 LSBs of the result.

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unchanged
LV Unchanged
UF 0
N 0
Z 1 if all 64 bits of the product are 0, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Multiply Unsigned Integer Producing 32 MSBs, 3 Operands MPYUHI3

14-183  Assembly Language Instructions

Syntax MPYUHI3  src2, src1, dst

Operands src1, src2: both type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 1 src100 dst

15 8 7

1 0 T1 src2

Type 2

31 2324 16 0

0 0 1 1 src100 dst

15 8 7

1 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 × src2 → dst

Description The product of the numbers at the src1 and src2 operands is loaded into the
dst register. The numbers at the src1 and src2 operands are assumed to be
32-bit signed integers. The result is assumed to be an unsigned 64-bit integer.
The output to the dst register is the 32 MSBs of the result. The MPYI3 instruc-
tion provides the 32 LSBs of the result.



MPYUHI3 Multiply Unsigned Integer Producing 32 MSBs, 3 Operands

14-184  

Status Bits If ST (SET COND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SET COND) = 1, they are modified for all destination
registers.

LUF Unchanged
LV Unchanged
UF 0

N 0
Z 1 if all 64 bits of the product are 0, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Negate Integer With Borrow NEGB

14-185  Assembly Language Instructions

Syntax NEGB src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 10 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation 0 – src – C → dst

Description The difference of the 0, src, and C operands, calculated as shown, is loaded

into the dst register. The dst and src are assumed to be signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



NEGB Negate Integer With Borrow

14-186  

Example NEGB R5,R7

Before Instruction After Instruction

R5 0FFFF FFCBh –53 R5 0FFFF FFCBh –53

R7 0h R7 34h 52

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 1



 Negate Floating-Point Value NEGF

14-187  Assembly Language Instructions

Syntax NEGF src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 1 10 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary–register file)

01 direct

10 indirect

11 immediate

Operation 0 – src → dst

Description The difference of the 0 and src operands is loaded into the dst register. The

dst and src operands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise

V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



NEGF Negate Floating-Point Value

14-188  

Example NEGF *++AR3(2),R1

Before Instruction After Instruction

AR3 80 9800h AR3 80 9802h

R1 05 7B40 0025h 6.28125006e + 01 R1 07 F380 000h –1.4050e + 02

Data at 80 9802h Data at 80 9802h
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Parallel NEGF and STF NEGF||STF

14-189  Assembly Language Instructions

Syntax NEGF src2, dst1
|| STF src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 0 src210 dst1

15 8 7

src3 dst20 0 0

Word Fields None

Operation 0 – src2 → dst1
|| src3 → dst2

Description A floating-point negation and a floating-point store are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute

cycle. This means that if one of the parallel operations (STF) reads from a reg-
ister and the operation being performed in parallel (NEGF) writes to the same
register, then STF accepts as input the contents of the register before it is mo-
dified by the NEGF.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF 1 if a floating-point underflow occurs, 0 unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



NEGF||STF Parallel NEGF and STF

14-190  

Example NEGF *AR4––(1),R7

|| STF R2,*++AR5(1)

Before Instruction After Instruction

AR4 80 98E1h AR4 80 98E0h

R7 0h R7 05 84C0 0000h –6.281250e + 01

R2 07 33C0 0000h 1.79750e + 02 R2 07 33C0 0000h 1.79750e + 02

AR5 80 9803h AR5 80 9804h

Data at 80 98E1h Data at 80 98E1h
57 B40 0000h 6.281250e + 01 57 B40 0000h 6.281250e + 01

Data at 80 9804h Data at 80 9804h
0h 733 C000h 1.79750e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Negate Integer NEGI

14-191  Assembly Language Instructions

Syntax NEGI src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 01 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation 0 – src → dst

Description The difference of the 0 and src operands is loaded into the dst register. The

dst and src operands are assumed to be signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



NEGI Negate Integer

14-192  

Example NEGI 174,R5 (174 = 0AEh)

Before Instruction After Instruction

R5 0DCh 220 R5 0FFFFFF52 –174

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1



 Parallel NEGI and STI NEGI||STI

14-193  Assembly Language Instructions

Syntax NEGI src2, dst1
|| STI src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 0 src201 dst1

15 8 7

src3 dst20 0 1

Word Fields None

Operation 0 – src2 → dst1
|| src3 → dst2

Description An integer negation and an integer store are performed in parallel. All registers
are read at the beginning and loaded at the end of the execute cycle.This

means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (NEGI) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
NEGI.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



NEGI||STI Parallel NEGI and STI

14-194  

Example NEGI *–AR3,R2

|| STI R2,*AR1++

Before Instruction After Instruction

AR3 80 982Fh AR3 80 982Fh

R2 19h 25 R2 0FFFF FF24h –220

AR1 80 98A5h AR1 80 98A6h

Data at 80 982Eh Data at 80 982Eh
0DCh 220 0DCh 220

Data at 80 98A5h Data at 80 98A5h
0h 19h 25

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1



 No Operation NOP

14-195  Assembly Language Instructions

Syntax NOP src

Operands src: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 0 1 01 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (no operation)

10 indirect (modify ARn, 0 ≤ n ≤ 7)

Operation No ALU or multiplier operations.
ARn is modified if src is specified in indirect mode.

Description If the src operand is specified in the indirect mode, the specified addressing
operation is performed, and a dummy memory read occurs. If the src operand

is omitted, no operation is performed.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example 1 NOP

Before Instruction After Instruction

PC 3Ah PC 3Bh

Example 2 NOP *AR3––(1)

Before Instruction After Instruction

PC 5h PC 6h

AR3 80 9900h AR3 80 98FFh



NORM Normalize

14-196  

Syntax NORM src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 0 1 01 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation norm (src) → dst

Description The src operand is assumed to be an unnormalized floating-point number; for
example, the implied bit is set equal to the sign bit. The dst is set equal to the
normalized src operand with the implied bit removed. The dst operand expo-
nent is set to the src operand exponent minus the size of the left-shift neces-

sary to normalize the src. The dst operand is assumed to be a normalized floa-
ting-point number.

For values of src:

� If src (exp) = –128 and src (man) = 0, then dst = 0, Z = 1, and UF = 0.

� If src (exp) = –128 and src (man) ≠ 0, then dst = 0, Z = 0, and UF = 1.

� For all other cases of the src, if a floating-point underflow occurs, then

dst (man) is forced to 0 and dst (exp) = –128. If src (man) = 0, then

dst (man) = 0 and dst (exp) = –128. Refer to Section 5.7 on page 5-27.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV Unaffected
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Normalize NORM

14-197  Assembly Language Instructions

Example NORM R1,R2

Before Instruction After Instruction

R1 04 0000 3AF5h R1 04 0000 3AF5h

R2 07 0C80 0000h R2 F2 6BD4 0000h 1.12451613e – 04

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



NOT Bitwise Logical Complement

14-198  

Syntax NOT src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 0 1 01 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation ∼ src → dst

Description The bitwise-logical complement of the src operand is loaded into the dst regis-

ter. The complement is formed by a logical NOT of each bit of the src operand.
The dst and src operands are assumed to be unsigned integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected

UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Bitwise Logical Complement NOT

14-199  Assembly Language Instructions

Example NOT @982Ch,R4

Before Instruction After Instruction

DP 80h DP 80h

R4 0h R4 0FFFF A1D0h

Data at 80 982Ch Data at 80 982Ch
5E2Fh 5E2Fh

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



NOT||STI Parallel NOT and STI

14-200  

Syntax NOT src2, dst1
|| STI src3, dst2

Operands src2: indirect (disp = 0, 1, IR0, IR1)
dst1: register (R0 – R7)

src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 0 src211 dst1

15 8 7

src3 dst20 0 0

Word Fields None

Operation ∼ src2 → dst1
|| src3 → dst2

Description A bitwise-logical NOT and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This

means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (NOT) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
NOT.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF 0
N MSB of the output

Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel NOT and STI NOT||STI

14-201  Assembly Language Instructions

Example NOT *+AR2,R3

|| STI R7,*–– AR4 (IR1)

Before Instruction After Instruction

AR2 80 99CBh AR2 80 99CBh

R3 0h R3 0FFFF F3D0h

R7 0DCh 220 R7 0DCh 220

AR4 80 9850h AR4 80 9840h

IR1 10h IR1 10h

Data at 80 99CCh Data at 80 99CCh
0C2Fh 0C2Fh

Data at 80 9840h Data at 80 9840h
0h 0DCh 220

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 1

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



OR Bitwise Logical OR

14-202  

Syntax OR src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 00 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst OR src → dst

Description The bitwise-logical OR between the src and dst operands is loaded into the dst
register. The dst and src operands are assumed to be unsigned integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Bitwise Logical OR OR

14-203  Assembly Language Instructions

Example OR *++AR1(IR1),R2

Before Instruction After Instruction

AR1 80 9800h AR1 80 9804h

IR1 4h IR1 4h

R2 01256 0000h R2 01256 2BCDh

Data at 80 9804h Data at 80 9804h
2BCDh 2BCDh

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



OR3 Bitwise Logical OR, 3 Operands

14-204  

Syntax OR3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src101 dst

15 8 7

1 1 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src101 dst

15 8 7

1 1 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 OR src2 → dst



 Bitwise Logical OR, 3 Operands OR3

14-205  Assembly Language Instructions

Description The bitwise-logical OR between the numbers at the src1 and src2 operands
is loaded into the dst register. The numbers at the src1, src2, and dst operands
are assumed to be unsigned integers. The src2 immediate-addressing mode
is sign extended.

Status Bits If ST (SETCOND) = 0, the condition flags are modified if the destination regis-
ter is R0 — R11. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



OR3||STI Parallel OR3 and STI

14-206  

Syntax OR3 src2, src1, dst1
|| STI src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 1 src200 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src1 OR src2 → dst1
|| src3 → dst2

Description A bitwise-logical OR and an integer store are performed in parallel. All regis-

ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (OR3) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
OR3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel OR3 and STI OR3||STI

14-207  Assembly Language Instructions

Example OR3 *++AR2,R5,R2

|| STI R6,*AR1– –

Before Instruction After Instruction

AR2 80 9830h AR2 80 9831h

R5 80 0000h R5 80 0000h

R2 0h R2 80 9800h

R6 0DCh 220 R6 0DCh 220

AR1 80 9833h AR1 80 9882h

Data at 80 9831h Data at 80 9831h
9800h 9800h

Data at 80 9883h Data at 80 9883h
0h 0DCh 220

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



POP POP Integer

14-208  

Syntax POP dst

Operands dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 dst11

15 8 7

0 00 0 1 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation  *SP–�– → dst

Description The top of the current system stack is popped and loaded into the 32 LSBs of
the dst register. The top of the stack is assumed to be a signed integer. The

POP is performed with a post decrement of the stack pointer. The eight MSBs
(exponent) of an extended-precision dst register (R11–R0) are left unmodified.
If required they can be recovered with a POPF instruction.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition

flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example POP R3

Before Instruction After Instruction

SP 80 9856h SP 80 9855h

R3 012DAh 4 826 R3 0FFFF 0DA4h –62 044

Data at 80 9856h Data at 80 9856h
0FFFF 0DA4h –62 044 0FFFF 0DA4h –62 044

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0



 POP Floating-Point Value POPF

14-209  Assembly Language Instructions

Syntax POPF dst

Operands dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 1 dst11

15 8 7

0 10 0 1 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation *SP–– → dst

Description The top of the current system stack is popped and loaded into the dst register
(32 MSBs). The eight LSBs of the dst register mantissa are set to 0. For this
reason, POPF must be executed before the POP instruction when you are pre-

serving the entire 40 register bits. The top of the stack is assumed to be a floa-
ting-point number. The POP is performed with a postdecrement of the stack
pointer.

Status Bits LUF Unaffected
UF 0
LV Unaffected
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 0

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example POPF R4

Before Instruction After Instruction

SP 80 984Ah SP 80 9849h

R4 02 5D2E 0123h 6.91186578e + 00 R4 5F 2C13 0200h 5.32544007e + 28

Data at 80 984Ah Data at 80 984Ah
5F2C 1302h 5.32544007e + 28 5F2C 1302h 5.32544007e + 28

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



PUSH PUSH Integer

14-210  

Syntax PUSH src

Operands src: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 src11

15 8 7

1 00 0 1 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation src → *++SP

Description The contents of the src register (32 LSBs) are pushed onto the current system
stack. The integer or mantissa portion of an extended-precision register
(R0–R11) is saved with this instruction. The 8 MSBs (exponent) can be pushed
with the PUSHF instruction. The src is assumed to be a signed integer. The
PUSH is performed with a preincrement of the stack pointer.

Status Bits LUF Unaffected

LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example PUSH R6

Before Instruction After Instruction

SP 80 98AEh SP 80 98AFh

R6 815Bh 33 115 R6 815Bh 33 115

Data at 80 98AFh Data at 80 98AFh
0h 815Bh 33 115

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 PUSH Floating-Point Value PUSHF

14-211  Assembly Language Instructions

Syntax PUSHF src

Operands src: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 1 src11

15 8 7

1 10 0 1 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation src → *++SP

Description The contents of the src register (32 MSBs) are pushed onto the current system
stack. The src is assumed to be a floating-point number. The PUSH is per-
formed with a preincrement of the stack pointer. The eight LSBs of the mantis-

sa are not saved (notice the difference in R2 and the value on the stack in the
example below), but they can be saved with the PUSH instruction. PUSHF
should be executed after the PUSH instruction.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example PUSHF R2

Before Instruction After Instruction

SP 80 9801h SP 80 9802h

R2 02 5C12 8081h 6.87725854e + 00 R2 02 5C12 8081h 6.87725854e + 00

Data at 80 9802h Data at 80 9802h
0h 025C 1280h 6.87725830e + 00

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



RCPF Reciprocal of Floating-Point Value

14-212  

Syntax RCPF src, dst

Operands src: extended-precision register-, direct- and indirect-addressing modes
dst: R0 – R11

Opcode

31 2324 16 0

0 0 0 1 1 01 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation 16-bit reciprocal of src → dst

Description The 16-bit approximation of the reciprocal of the src operand is loaded into the
dst register. The dst and src operands are assumed to be floating-point num-
bers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise

LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 is a zero result, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Return From Interrupt or Trap Conditionally RETIcond

14-213  Assembly Language Instructions

Syntax RETIcond

Operands None

Opcode

31 2324 16 0

0 1 1 1 1 00

15 8 7

0 0 cond0 0 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation If (cond is true)

*(SP) → PC
ST(PGIE) → ST(GIE)
ST(PCF) → ST(CF)

Else, continue

Description If the condition is true, then the top of the stack is popped to the PC, PGIE is
copied to GIE, and PCF is copied to CF. If the condition is not true, then contin-
ue normal operation (see Section 14.2 on page 14-12 for a list of condition

mnemonics, encoding, and flags).

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4

Example None



RETIcondD Return From Interrupt or Trap Conditionally Delayed

14-214  

Syntax RETIcondD

Operands None

Opcode

31 2324 16 0

0 1 1 1 1 00

15 8 7

0 0 cond0 1 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation If (cond is true)

*(SP) → PC
ST(PGIE) → ST(GIE)
ST(PCF) → ST(CF)

Else, continue

Description Performs a delayed return from an interrupt or trap.

Because this is a delayed return, the three instructions following the

RETIcondD are fetched and executed. These three instructions should not

modify the program flow, load the status register, or modify the stack pointer

(SP) register. See Section 14.2 for a list of condition mnemonics, encoding,

and flags.

Interrupts are disabled for the duration of the RETIcondD.

Status Bits LUF Unaffected
LV Unaffected

UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Return From Subroutine Conditionally RETScond

14-215  Assembly Language Instructions

Syntax RETScond

Operands None

Opcode

31 2324 16 0

0 1 1 1 1 00

15 8 7

0 1 cond0 0 00 0 00 0 00 0 00 0 0 00 0

Word Fields None

Operation If cond is true:
*SP–– → PC.

Else, continue.

Description A conditional return is performed. If the condition is true, the top of the stack
is popped to the PC.

The ’C4x provides 20 condition codes that can be used with this instruction

(see Section 14.2 for a list of condition mnemonics, encoding, and flags).

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles  4

Example RETSGE

Before Instruction After Instruction

PC 123h PC 456h

SP 80 983Ch SP 80 983Bh

Data at 80 983Ch Data at 80 983Ch
456h 456h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



RND Round Floating-Point Value

14-216  

Syntax RND src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 1 0 00 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation rnd(src) → dst

Description The result of rounding the src operand is loaded into the dst register.The src
operand is rounded to the nearest single-precision floating-point value. If the
src operand is exactly halfway between two single-precision values, it is
rounded to the most positive of those values. Notice that the rounding of 0 does
not set the zero (z) status bit but the underflow bit.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if a floating-point overflow occurs, unchanged otherwise

UF 1 if a floating-point underflow occurs or the src operand is zero, 0
otherwise

N 1 if a negative result is generated, 0 otherwise
Z Unaffected
V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Round Floating-Point Value RND

14-217  Assembly Language Instructions

Example RND R5,R2

Before Instruction After Instruction

R5 07 33C1 6EEFh 1.79755599e + 02 R5 07 33C1 6EEFh 1.79755599e + 02

R2 0h R2 07 33C1 6EEFh 1.79755600e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



ROL Rotate Left

14-218  

Syntax ROL dst

Operands dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 00

15 8 7

1 1 dst1 1 00 0 00 0 00 0 00 0 0 00 1

Word Fields None

Operation dst left-rotated 1 bit → dst

Description The contents of the dst operand are left-rotated one bit and loaded into the dst
register. This is a circular rotate with the MSB transferred into the LSB.

Rotate left:

 dstC

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example ROL R3

Before Instruction After Instruction

R3 8002 5CD4h R3 0004 B9A9h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 1



 Rotate Left Through Carry ROLC

14-219  Assembly Language Instructions

Syntax ROLC dst

Operands dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 10

15 8 7

0 0 dst1 1 00 0 00 0 00 0 00 0 0 00 1

Word Fields None

Operation dst left-rotated 1 bit through carry bit → dst

Description The contents of the dst operand are left-rotated one bit through the carry bit
and loaded into the dst register. The MSB is rotated to the carry bit, at the same

time the carry bit is transferred to the LSB.

Rotate left through carry bit:

 dstC

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output

Z 1 if a zero output is generated, 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example 1 ROLC R3

Before Instruction After Instruction

R3 0000 0420h R3 00000 0841h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0



ROLC Rotate Left Through Carry

14-220  

Example 2 ROLC R3

Before Instruction After Instruction

R3 8000 4281h R3 0000 8502h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 1



 Rotate Right ROR

14-221  Assembly Language Instructions

Syntax ROR dst

Operands dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 10

15 8 7

0 1 dst1 1 11 1 11 1 11 1 11 1 1 11 1

Word Fields None

Operation dst right-rotated 1 bit → dst

Description The contents of the dst operand are right-rotated one bit and loaded into the
dst register. The LSB is rotated into the carry bit and also transferred into the
MSB.

Rotate right:

dst C

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) =1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output

Z 1 if a zero output is generated, 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example ROR R7

Before Instruction After Instruction

R7 00000421h R7 80000210h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1



RORC Rotate Right Through Carry

14-222  

Syntax RORC dst

Operands dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 10

15 8 7

1 0 dst1 1 11 1 11 1 11 1 11 1 1 11 1

Word Fields None

Operation dst right-rotated 1 bit through carry bit → dst

Description The contents of the dst operand are right-rotated one bit through the status
register’s carry bit. This could be viewed as a 33-bit shift. The carry bit value
is rotated into the MSB of the dst; at the same time, the dst LSB is rotated into
the carry bit.

Rotate right through carry bit:

dstC

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition

flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example RORC R4

Before Instruction After Instruction

R4 8000 0081h R4 4000 0040h

LUF 0 LUF 0

LV 0 LV 0

UF 1 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 1



 Repeat Block RPTB

14-223  Assembly Language Instructions

Syntax RPTB src

Operands src: 24-bit signed immediate displacement or register mode

Opcode

For 24-bit signed immediate or register mode:

31 2324 16 0

0 1 1 0 0 src (displacement)01

15 8 7

0

For register mode:

31 2324 16 0

0 1 1 1 1 00

15 8 7

1 0 00 00 00 00 00 00 00 00 00 src

Word Fields None

Operation src + PC +1 → RE
1 → ST (RM)

Next PC → RS

Description RPTB allows a block of instructions to be repeated a number of times without
any penalty for looping.

It activates the block repeat mode of updating the PC. The src operand can

be a 32-bit register value or a 24-bit signed immediate value (displacement).

The resulting src address is the end address of the block to be repeated. This

address is loaded into the repeat end address (RE) register. A 1 is written into

the repeat mode bit of status register [ST(RM)] to indicate that the PC is to be

updated in the repeat mode. The address of the next instruction is loaded into

the repeat-start address (RS) register.

RE should be greater than or equal to RS (RE ≥ RS). Otherwise, the code does

not repeat, even though the RM bit remains set to 1.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4

Example None



RPTBD Repeat Block Delayed

14-224  

Syntax RPTBD src

Operands src: 24-bit signed immediate displacement or register mode

Opcode

For 24-bit signed immediate or register mode:

31 2324 16 0

0 1 1 0 0 src (displacement)01

15 8 7

1

For register mode:

31 2324 16 0

0 1 1 1 1 00

15 8 7

1 1 00 00 00 00 00 00 00 00 00 src

Word Fields None

Operation if src is an immediate value (displacement)
src + PC + 3 → RE

Else:
src → RE
1 → ST(RM)
PC of RPTBD + 4 → RS

Description RPTBD allows a block of instructions to be repeated a number of times without
any penalty for looping and with single-cycle execution of the RPTBD instruc-
tion. It activates the block repeat mode of updating the PC. The src operand
can be a 32-bit register value or a 24-bit signed immediate value (displace-
ment). The resulting src address is loaded into the repeat-end address (RE)
register (block-end address). A 1 is written to the status-register repeat mode
bit [ST(RM)], indicating the PC is to be updated in the repeat mode. The ad-
dress of the next instruction +3 is loaded into the repeat-start address (RS)

register.

RE should be greater than or equal to RS (RE ≥ RS). Otherwise, the code will

not repeat, even though the RM bit remains set to 1.

RPTBD does not flush the pipeline. The three instructions following RPTBD

are executed and should not modify the program flow. These three instructions

are not part of the block that is repeated. The RC register must be loaded be-

fore the RPTBD instruction executes. It should not be loaded in the three

instructions after RPTBD.

Interrupts are disabled during the next three instructions after RPTBD.



 Repeat Block Delayed RPTBD

14-225  Assembly Language Instructions

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



RPTS Repeat Single

14-226  

Syntax RPTS src

Operands src: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 1 0 10

15 8 7

1 1 G src1 1 10 1

Word Fields

G src addressing modes

00 register

01 direct

10 indirect

11 immediate

Operation src → RC
1 → ST (RM)

1 → S
Next PC → RS
Next PC → RE

Description The RPTS instruction allows a single instruction to be repeated a number of
times without any penalty for looping. Fetches also can be made from the in-
struction register (IR), thus avoiding repeated memory access.

The src operand is loaded into the repeat counter (RC). A 1 is written into the

repeat mode (RM) bit of the status register (ST). A 1 also is written into the re-

peat single bit (S). This indicates that the program fetches are to be performed

only from the instruction register. The next PC is loaded into the repeat-end

address (RE) register and the repeat-start address (RS) register.

For the immediate mode, the src operand is assumed to be an unsigned inte-

ger and is not sign-extended.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 4



 Repeat Single RPTS

14-227  Assembly Language Instructions

Example RPTS AR5

Before Instruction After Instruction

PC 123h PC 124h

ST 0h ST 100h

RS 0h RS 124h

RE 0h RE 124h

RC 0h RC 0FFh

AR5 0FFh AR5 0FFh

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

The RPTS instruction is not interruptable. Interrupts are held
pending until the RPTS instruction is finished executing. In
timing-critical applications, this could cause timings to be
inaccurate; thus, in timing-critical applications, use caution when
using the RPTS instruction.



RSQRF Reciprocal of Square Root Floating-Point Value

14-228  

Syntax RSQRF src, dst

Operands src: extended-precision register, direct-, and indirect addressing modes
dst: extended-precision register

Opcode

31 2324 16 0

0 0 0 1 1 01 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 extended-precision register

01 direct

10 indirect

11 16-bit immediate

Operation 16-bit reciprocal of the square root of src → dst

Description The 16-bit approximation of the reciprocal of the square root of the number at
the src operand is loaded into the dst register. The number at the src operand
is assumed to be positive. The operation for negative inputs is undefined.

The value at the dst and src operands are assumed to be floating-point num-

bers.

Status Bits LUF Unchanged
LV 1 if input is zero unchanged otherwise
UF 0
N 0
Z 0

V 1 if input is zero, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Signal, Interlocked SIGI

14-229  Assembly Language Instructions

Syntax SIGI src, dst

Operands src: direct- and indirect-addressing modes (assumed to be signed integer)
dst: register mode (assumed to be signed integer)

Opcode

31 2324 16 0

0 0 0 1 0 11 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

01 direct

10 indirect

Operation LOCK (or LLOCK) pin brought low

src → dst
LOCK (or LLOCK) pin brought high

Description An interlocking operation is signaled by the appropriate bus-lock signal (LOCK
or LLOCK) if, and only if, an external-memory access is performed. The src
and dst operands are assumed to be signed integers. After the read is per-
formed, the bus-lock signal is deasserted. If an internal-memory access is per-

formed, SIGI performs the read but does not assert a bus-lock signal. Refer
to Section 9.7 on page 9-39 for a detailed description.

The numbers at the src and dst operands are treated as signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



STF Store Floating-Point Value

14-230  

Syntax STF src, dst

Operands src: register (R0 – R11)
dst: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 1 0 01 src

15 8 7

0 0 G dst

Word Fields

G src addressing modes

01 direct

10 indirect

Operation src → dst

Description The src register is loaded into the dst memory location. The src and dst oper-
ands are assumed to be floating-point numbers.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Store Floating-Point Value STF

14-231  Assembly Language Instructions

Example STF R2,@98A1h

Before Instruction After Instruction

DP 80h DP 80h

R2 052 C501 900h 4.30782204e + 01 R2 052 C501 900h 4.30782204e + 01

Data at 80 98A1h Data at 80 98A1h
0h 052 C5019h 4.30782204e + 01

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



STFI Store Floating-Point Value, Interlocked

14-232  

Syntax STFI src, dst

Operands src: register (R0 – R11)
dst: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 1 0 01 src

15 8 7

0 1 G dst

Word Fields

G src addressing modes

01 direct

10 indirect

Operation src → dst
Signal end of interlocked operation.

Description The src register is loaded into the dst memory location. An interlocked opera-

tion is signaled over LOCK or LLOCK. The src and dst operands are assumed
to be floating-point numbers. Refer to Section 9.7 on page 9-39 for detailed
information.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected

Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Store Floating-Point Value, Interlocked STFI

14-233  Assembly Language Instructions

Example STFI R3,*–AR4

Before Instruction After Instruction

R3 07 33C0 0000h 1.79750e + 02 R3 07 33C0 0000h 1.79750e + 02

AR4 80 993Ch AR4 80 993Ch

Data at 80 993Bh Data at 80 993Bh
0h 733 C000h 1.79750e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



STF||STF Parallel Store Floating-Point Value

14-234  

Syntax STF src2, dst2
|| STF src1, dst1

Operands src1; register (Rn1, 0 ≤ n1 ≤ 7)
dst1: indirect (disp = 0, 1, IR0, IR1)
src2: register (Rn2, 0 ≤ n2 ≤ 7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 0 0 dst200 src2

15 8 7

src1 dst10 00

Word Fields None

Operation src2 → dst2
|| src1 → dst1

Description Two STF instructions are executed in parallel. Both src1 and src2 are assumed
to be floating-point numbers.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example STF R4,*AR3– –

|| STF R3,*++AR5
Before Instruction After Instruction

R4 07 0C80 0000h 1.4050e + 02 R4 07 0C80 0000h 1.4050e + 02

AR3 80 9835h AR3 80 9834h

R3 07 33C0 0000h 1.79750e + 02 R3 07 33C0 0000h 1.79750e + 02

AR5 80 99D2h AR5 80 99D3h

Data at 80 9835h Data at 80 9835h
0h 070C 8000h 1.4050e + 02

Data at 80 99D3h Data at 80 99D3h
0h 0733 C00000h 1.79750e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Store Integer STI

14-235  Assembly Language Instructions

Syntax STI src, dst

Operands src: register (any register in CPU primary-register file)
dst: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 1 0 01 src

15 8 7

1 0 G dst

Word Fields

G src addressing modes

01 direct

10 indirect

Operation src → dst

Description The src register is loaded into the dst memory location. The src and dst oper-
ands are assumed to be signed integers.

Status Bits LUF Unaffected

LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example STI R4,@982Bh

Before Instruction After Instruction

DP 80h DP 80h

R4 42BD7h 273 367 R4 42BD7h 273 367

Data at 80 982Bh Data at 80 982Bh
0E5FCh 58 876 42BD7h 273 367

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



STII Store Integer, Interlocked

14-236  

Syntax STII src, dst

Operands src: register (any register in CPU primary-register file)
dst: general-addressing modes (G)

Opcode

31 2324 16 0

0 0 0 1 0 01 src

15 8 7

1 1 G dst

Word Fields

G src addressing modes

01 direct

10 indirect

Operation src → dst
Signal end of interlocked operation.

Description The src register is loaded into the dst memory location. An interlocked opera-

tion is signaled over LOCK or LLOCK. The src and dst operands are assumed
to be signed integers. Refer to Section 9.7 on page 9-39 for detailed informa-
tion.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected

Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example STII R1,@98AEh

Before Instruction After Instruction

DP 80h DP 80h

R1 78Dh R1 78Dh

Data at 80 98AEh Data at 80 98AEh
25Ch 78Dh



 Parallel STI and STI STI||STI

14-237  Assembly Language Instructions

Syntax STI src2, dst2
|| STI src1, dst1

Operands src1: register (Rn1, 0 ≤ n1 ≤ 7)
dst1: indirect (disp = 0, 1, IR0, IR1)

src2: register (Rn2, 0 ≤ n2 ≤ 7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 0 0 0 dst210 src2

15 8 7

dst10 0 0 src1

Word Fields None

Operation src2 → dst2
|| src1 → dst1

Description Two integer stores are performed in parallel. If both stores are executed to the
same address, the value written is that of STI src2, dst2.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



STI||STI Parallel STI and STI

14-238  

Example STI R0,*++AR2(IR0)

||STI R5,*AR0

Before Instruction After Instruction

R0 0DCh 220 R0 0DCh 220

AR2 80 9830h AR2 80 9838h

IR0 8h IR0 8h

R5 35h 53 R5 35h 53

AR0 80 98D3h AR0 80 98D3h

Data at 80 9838h Data at 80 9838h
0h 0DCh 220

Data at 80 98D3h Data at 80 98D3h
0h 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



 Store Integer Immediate Value STIK

14-239  Assembly Language Instructions

Syntax STIK src, dst

Operands src; 5-bit signed integer
dst: direct and indirect mode

Opcode

31 2324 16 0

0 0 0 1 0 01 src

15 8 7

1 0 G dst

Word Fields

G src addressing modes

00 direct

11 indirect

Operation src → dst

Description The 5-bit signed integer src value is loaded into the dst memory location. The
src and dst operands are assumed to be signed integers.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



SUBB Subtract Integer With Borrow

14-240  

Syntax SUBB src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 11 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst – src – C → dst

Description The difference of the dst, src, and C operands, as calculated above, is loaded

into the dst register. The dst and src operands are assumed to be signed inte-
gers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Subtract Integer With Borrow SUBB

14-241  Assembly Language Instructions

Example SUBB *AR5++(4),R5

Before Instruction After Instruction

AR5 80 9800h AR5 80 9804h

R5 0FAh 250 R5 032h 50

Data at 80 9800h Data at 80 9800h
0C7h 199 0C7h 100

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0



SUBB3 Subtract Integer With Borrow, 3 Operands

14-242  

Syntax SUBB3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src111 dst

15 8 7

0 0 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src111 dst

15 8 7

0 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 – src2 – C → dst



 Subtract Integer With Borrow, 3 Operands SUBB3

14-243  Assembly Language Instructions

Description The difference of the src1 and src2 operands and the C (carry) flag is loaded
into the dst register. The src1, src2, and dst operands are assumed to be
signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition

flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise

UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow is generated, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example None



SUBC Subtract Integer Conditionally

14-244  

Syntax SUBC src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 0 11 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation If (dst – src ≥ 0):
(dst – src << 1) OR 1 → dst
Else:
dst << 1 → dst

Description The src operand is subtracted from the dst operand. The dst operand is loaded
with a value that depends upon the result of the subtraction. If (dst – src) is
greater than or equal to zero, then (dst – src) is left-shifted one bit, the least-sig-
nificant bit is set to 1, and the result is loaded into the dst register. If (dst – src)
is less than zero, dst is left-shifted one bit and loaded into the dst register. The
dst and src operands are assumed to be unsigned integers.

SUBC can be used to perform a single step of a multibit-integer division.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Subtract Integer Conditionally SUBC

14-245  Assembly Language Instructions

Example 1 SUBC @98C5h,R1

Before Instruction After Instruction

DP 80h DP 80h

R1 04F6h 1270 R1 0C9h 201

Data at 80 98C5h Data at 80 98C5h
492h 1170 492h 1170

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Example 2 SUBC 3000,R0 (3000 = 0BB8h)

Before Instruction After Instruction

R0 07D0h 2000 R0 0FA0h 4000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SUBF Subtract Floating-Point Value

14-246  

Syntax SUBF src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 1 0 11 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register (R0-R11)

01 direct

10 indirect

11 immediate

Operation dst – src → dst

Description The result of the dst operand minus the src operand is loaded into the dst regis-

ter. The dst and src operands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if an floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise

V 1 if an floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Subtract Floating-Point Value SUBF

14-247  Assembly Language Instructions

Example SUBF *AR0––(IR0),R5

Before Instruction After Instruction

AR0 80 9888h AR0 80 9808h

IR0 80h IR0 80h

R5 07 33C0 0000h 1.79750000e + 02 R5 05 1D00 0000h 3.9250e + 01

Data at 80 9888h Data at 80 9888h
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SUBF3 Subtract Floating-Point Value, 3 Operands

14-248  

Syntax SUBF3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (R0 – R11)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src111 dst

15 8 7

0 1 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src111 dst

15 8 7

0 1 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (R0–R11) register mode (R0–R11)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (R0–R11)

10 register mode (R0–R11) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 – src2 → dst



 Subtract  Floating-Point Value, 3 Operands SUBF3

14-249  Assembly Language Instructions

Description The difference of the src1 and src2 operands is loaded into the dst register. The
src1, src2, and dst operands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if an floating-point overflow occurs, unchanged otherwise

UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



SUBF3||STF Parallel SUBF3 and STF

14-250  

Syntax SUBF3 src1, src2, dst1
|| STF src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 1 src210 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src2 – src1 → dst1
|| src3 → dst2

Description A floating-point subtraction and a floating-point store are performed in parallel.

All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STF) reads from a reg-
ister and the operation being performed in parallel (SUBF3) writes to the same
register, then STF accepts as input the contents of the register before it is mo-
dified by the SUBF3.

If src3 and dst1 point to the same location, src3 is read before the write to dst1.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise
LV 1 if an floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel SUBF3 and STF SUBF3||STF

14-251  Assembly Language Instructions

Example SUBF3 R1,*–AR4(IR1),R0

|| STF R7,*+AR5(IR0)

Before Instruction After Instruction

R1 05 7B40 0000h 6.28125e + 01 R1 05 7B40 0000h 6.28125e + 01

AR4 80 98B8h AR4 80 98B8h

IR1 8h IR1 8h

R0 0h R0 06 1B60 0000h 7.768750e + 01

R7 07 33C0 0000h 1.79750e + 02 R7 07 33C0 0000h 1.79750e + 02

AR5 80 9850h AR5 80 9850h

IR0 10h IR0 10h

Data at 80 98B0h Data at 80 98B0h
70C 8000h 1.4050e + 02 70C 8000h 1.4050e + 02

Data at 80 9860h Data at 80 9860h
0h 733 C000h 1.79750e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SUBI Subtract Integer

14-252  

Syntax SUBI src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 00 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst – src → dst

Description The result of the dst operand minus the src operand is loaded into the dst regis-

ter. The dst and src operands are assumed to be signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise

C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Subtract Integer With Borrow SUBI

14-253  Assembly Language Instructions

Example SUBI 220,R7

Before Instruction After Instruction

R7 226h 550 R7 14Ah 330

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SUBI3 Subtract Integer, 3 Operands

14-254  

Syntax SUBI3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes

dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 0 src111 dst

15 8 7

1 0 T1 src2

Type 2

31 2324 16 0

0 0 1 0 src111 dst

15 8 7

1 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 – src2 → dst



 Subtract Integer, 3 Operands SUBI3

14-255  Assembly Language Instructions

Description The result of the src1 operand minus the src2 operand is loaded into the dst
register. The src1, src2, and dst operands are assumed to be signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination

registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow is generated, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1

Example None



SUBI3||STI Parallel SUBI3 and STI

14-256  

Syntax SUBI3 src1, src2, dst1
|| STI src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 1 src201 dst1

15 8 7

src3 dst2src1

Word Fields None

Operation src2 – src1 → dst1
|| src3 → dst2

Description An integer subtraction and an integer store are performed in parallel. All regis-

ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (SUBI3) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
SUBI3.

If src3 and dst1 point to the same location, src3 is read before the write to dst1.

Status Bits LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0

N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Parallel SUBI3 and STI SUBI3||STI

14-257  Assembly Language Instructions

Example SUBI3 R7,*+AR2(IR0),R1

|| STI R3,*++AR7

Before Instruction After Instruction

R7 14h 20 R7 14h 20

AR2 80 982Fh AR2 80 982Fh

IR0 10h IR0 10h

R1 0h R1 0C8h 200

R3 35h 53 R3 35h 53

AR7 80 983Bh AR7 80 983Ch

Data at 80 983Fh Data at 80 983Fh
0DCh 220 0DCh 220

Data at 80 983Ch Data at 80 983Ch
0h 35h 53

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SUBRB Subtract Reverse Integer With Borrow

14-258  

Syntax SUBRB src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 00 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation src – dst – C → dst

Description The difference of the src, dst, and C operands, as calculated above, is loaded

into the dst register. The dst and src operands are assumed to be signed inte-
gers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise

V 1 if an integer overflow occurs, 0 otherwise
C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Subtract Reverse Integer With Borrow SUBRB

14-259  Assembly Language Instructions

Example SUBRB R4,R6

Before Instruction After Instruction

R4 03CBh 971 R4 03CBh 971

R6 0258h 600 R6 0172h 370

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0



SUBRF Subtract Reverse Floating-Point Values

14-260  

Syntax SUBRF src, dst

Operands src: general-addressing modes (G)
dst: register (R0 – R11)

Opcode

31 2324 16 0

0 0 0 1 1 00 dst

15 8 7

1 0 G src

Word Fields

G src addressing modes

00 register (R0-R11)

01 direct

10 indirect

11 immediate

Operation src – dst → dst

Description The result of the src operand minus the dst operand is loaded into the dst regis-
ter.The dst and src operands are assumed to be floating-point numbers.

Status Bits LUF 1 if a floating-point underflow occurs, unchanged otherwise

LV 1 if a floating-point overflow occurs, unchanged otherwise
UF 1 if a floating-point underflow occurs, 0 otherwise
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if a floating-point overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Subtract Reverse Floating-Point Values SUBRF

14-261  Assemlby Language Instructions

Example SUBRF @9905h,R5

Before Instruction After Instruction

DP 80h DP 80h

R5 05 7B40 0000h 6.281250e + 01 R5 06 69E0 0000h 1.16937500e + 02

Data at 80 9905h Data at 80 9905h
733 C000h 1.79750e + 02 733 C000h 1.79750e + 02

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SUBRI Subtract Reverse Integer

14-262  

Syntax SUBRI src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 00 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation src – dst → dst

Description The result of the src operand minus the dst operand is loaded into the dst regis-

ter. The dst and src operands are assumed to be signed integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV 1 if an integer overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an integer overflow occurs, 0 otherwise

C 1 if a borrow occurs, 0 otherwise

Mode Bit OVM operation is affected by OVM bit value.

Cycles 1



 Subtract Reverse Integer SUBRI

14-263  Assembly Language Instructions

Example SUBRI *AR5++(IR0),R3

Before Instruction After Instruction

AR5 80 9900h AR5 80 9908h

IR0 8h IR0 8h

R3 0DCh 220 R3 014Ah 330

Data at 80 9900h Data at 80 9900h
226h 550 226h 550

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



SWI Software Interrupt

14-264  

Syntax SWI

Operands None

Opcode

31 2324 16 0

0 1 0 0 11

15 8 7

0 01 00 00 0 00 0 00 0 00 0 0 00 000 0 00

Word Fields None

Operation Performs an emulation interrupt

Description The SWI instruction performs an emulator interrupt. This is a reserved instruc-
tion and should not be used in normal programming.

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected

Z Unaffected
V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles  4

Example None



 Convert to IEEE Format TOIEEE

14-265  Assembly Language Instructions

Syntax TOIEEE src, dst

Operands src: extended-precision register (R0 – R11),
direct- and indirect-addressing modes

dst: extended-precision register

Opcode

31 2324 16 0

0 0 0 1 1 10 dst

15 8 7

1 1 G src

Word Fields

G src addressing modes

00 register [extended-precision

register (R0-R11)]

01 direct

10 indirect

11 immediate

Operation convert src to IEEE format → dst

Description The src operand is converted from a 2s-complement floating-point format to
the IEEE floating-point format.

The src operand is assumed to be a single-precision floating-point number, ex-

cept for the immediate mode that is considered a short 16-bit floating point for-

mat. The converted result goes into the 32 MSBs of the dst register. STF can

be used to store the result to memory.

Status Bits LUF Unaffected
LV 1 if an overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise
Z 1 if a zero result is generated, 0 otherwise
V 1 if an overflow occurs, 0 otherwise

C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



TOIEEE||STF Parallel TOIEEE and STF

14-266  

Syntax  TOIEEE src2, dst1
|| STF src3, dst2

Operands src2: indirect mode (disp = 0, 1, IR0, IR1)
dst1: register mode (Rn1, 0 ≤ n1 ≤ 7)

src3: register mode (Rn1, 0 ≤ n1 ≤ 7)
dst2: indirect mode (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 1 0 src200 dst1

15 8 7

src3 dst20 00

Word Fields None

Operation convert src2 to IEEE format → dst1
in parallel with
src3→ dst2

Description The src2 operand is converted from a 2s-complement floating-point format to

the IEEE floating-point format.

The src2 operand is assumed to be a single-precision floating-point number.

The converted result goes into the 32 MSBs of the dst1 register. A floating-

point store is done in parallel.

If src2 and dst2 point to the same location, then src2 is read before the write

to dst2.

Status Bits LUF Unaffected
LV 1 if an overflow occurs, unchanged otherwise
UF 0
N 1 if a negative result is generated, 0 otherwise

Z 1 if a zero result is generated, 0 otherwise
V 1 if an overflow occurs, 0 otherwise
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



 Trap Conditionally TRAPcond

14-267  Assembly Language Instructions

Syntax TRAPcond N

Operands N: immediate mode (0 ≤ N ≤ 511)

Opcode

31 2324 16 0

0 1 1 1 0 01

15 8 7

0 0 0 cond0 0 0 0 0 0 0 0 N

Word Fields None

Operation If (cond is true)

ST(GIE) → ST(PGIE)
ST(CF) → ST(PCF)
0 → ST(GIE)
1 → ST(CF)

next PC → *(++SP)
trap vector N → PC

Else, continue.

Description If the condition is true, then GIE and CF are saved in PGIE and PCF in the sta-
tus register, all interrups are disabled (0 → GIE), and the cache is frozen (1 →
CF). Then, the contents of the PC are pushed onto the system stack, and the
PC is loaded with the contents of the specified trap vector (N). If the condition
is not true, then continue normal operation.

If traps are to be nested, you may need to save the status register before ex-

ecuting TRAPcond.

Status Bits GIE Set to 0 if TRAP executes
LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected

V Unaffected
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 5

Example None



TSTB Test Bit Fields

14-268  

Syntax TSTB src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 10 dst

15 8 7

0 0 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst AND src

Description The bitwise-logical AND of the dst and src operands is formed, but the result

is not loaded in any register. This allows for nondestructive compares. The dst
and src operands are assumed to be unsigned integers.

Status Bits These condition flags are modified for all destination registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Test Bit Fields TSTB

14-269  Assembly Language Instructions

Example TSTB *–AR4(1),R5

Before Instruction After Instruction

AR4 80 99C5h AR4 80 99C5h

R5 898h 2200 R5 898h 2200

Data at 80 99C4h Data at 80 99C4h
767h 1895 767h 1895

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0



TSTB3 Test Bit Fields, 3 Operands

14-270  

Syntax TSTB3 src2, src1

Operands src1, src2: type 1 or type 2 three-operand addressing modes

Opcode

Type 1

31 2324 16 0

0 0 0 0 src111

15 8 7

1 1 T1 src20 00 0 0

Type 2

31 2324 16 0

0 0 1 0 src111

15 8 7

1 1 T1 src20 00 0 0

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 AND src2

Description The bitwise-logical AND between the src1 and src2 operands is performed but
is not loaded into any register. This allows for nondestructive compares. The
src1 and src2 operands are assumed to be unsigned integers. The src2 im-
mediate-addressing mode is sign-extended.

Although this instruction has only two operands, it is designated as a three-op-

erand instruction because operands are specified in the three-operand format.



 Test Bit Fields, 3 Operands TSTB3

14-271  Assembly Language Instructions

Status Bits LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



XOR Bitwise Exclusive OR

14-272  

Syntax XOR src, dst

Operands src: general-addressing modes (G)
dst: register (any register in CPU primary-register file)

Opcode

31 2324 16 0

0 0 0 1 1 10 dst

15 8 7

0 1 G src

Word Fields

G src addressing modes

00 register (any register in

CPU primary-register file)

01 direct

10 indirect

11 immediate

Operation dst XOR src → dst

Description The bitwise-exclusive OR of the src and dst operands is loaded into the dst
register. The dst and src operands are assumed to be unsigned integers.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition
flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Bitwise Exclusive OR XOR

14-273  Assembly Language Instructions

Example XOR R1,R2

Before Instruction After Instruction

R1 0F FA32h R1 0F F412h

R2 0F F5C1h R2 00 0FF3h

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



XOR3 Bitwise Exclusive OR, 3 Operands

14-274  

Syntax XOR3 src2, src1, dst

Operands src1, src2: type 1 or type 2 three-operand addressing modes
dst: register mode (any register in CPU primary-register file)

Opcode

Type 1

31 2324 16 0

0 0 0 1 src100 dst

15 8 7

0 0 T1 src2

Type 2

31 2324 16 0

0 0 1 1 src100 dst

15 8 7

0 0 T1 src2

Word Fields

Type 1

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) register mode (any CPU register)

01 indirect mode (disp = 0, 1, IR0, IR1) register mode (any CPU register)

10 register mode (any CPU register) indirect mode (disp = 0, 1, IR0, IR1)

11 indirect mode (disp = 0, 1, IR0, IR1) indirect mode (disp = 0, 1, IR0, IR1)

Type 2

T src1 addressing modes src2 addressing modes

00 register mode (any CPU register) 8-bit signed immediate

01 register mode (any CPU register)
indirect mode *+ARn(5-bit unsigned

displacement)

10
indirect mode *+ARn(5-bit unsigned

displacement)
8-bit signed immediate

11
indirect mode *+ARn1(5-bit unsigned

displacement)

indirect mode *+ARn2(5-bit unsigned

displacement)

Operation src1 XOR src2 → dst



 Bitwise Exclusive OR, 3 Operands XOR3

14-275  Assembly Language Instructions

Description The bitwise-exclusive OR between the src1 and src2 operands is loaded into
the dst register. The src1, src2, and dst operands are assumed to be unsigned
integers. The src2 immediate-addressing mode is sign-extended.

Status Bits If ST (SETCOND) = 0 and the destination register is R0 – R11, the condition

flags are modified. If ST (SETCOND) = 1, they are modified for all destination
registers.

LUF Unaffected
LV Unaffected

UF 0
N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1

Example None



XOR3||STI Parallel XOR3 and STI

14-276  

Syntax XOR3 src2, src1, dst1
|| STI src3, dst2

Operands src1: register (R0 – R7)
src2: indirect (disp = 0, 1, IR0, IR1)

dst1: register (R0 – R7)
src3: register (R0 – R7)
dst2: indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2324 16 0

1 1 1 0 1 src211 dst

15 8 7

src3 dst2src1

Word Fields None

Operation src1 XOR src2 → dst1
|| src3 → dst2

Description A bitwise-exclusive XOR and an integer store are performed in parallel. All reg-

isters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (XOR3) writes to the same register, then
STI accepts as input the contents of the register before it is modified by the
XOR3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Status Bits LUF Unaffected
LV Unaffected
UF 0

N MSB of the output
Z 1 if a zero output is generated, 0 otherwise
V 0
C Unaffected

Mode Bit OVM operation is not affected by OVM bit value.

Cycles 1



 Parallel XOR3 and STI XOR3||STI

14-277  Assembly Language Instructions

Example XOR3 *AR1++,R3,R3

|| STI R6,*–AR2(IR0)

Before Instruction After Instruction

AR1 80 987Eh AR1 80 987Fh

R3 85h R3 0h

R6 0DCh 220 R6 0DCh 220

AR2 80 98B4h AR2 80 98B4h

IR0 8h IR0 8h

Data at 80 987Eh Data at 987Eh
85h 85h

Data at 80 98ACh Data at 80 98ACh
0h 0DCh 220

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0



14-278  



A-1

Appendix A

Glossary

A

A0–A30: External address pins for data/program memory or I/O devices.

These pins are on the global bus. See also LA0–LA30.

address:  The location of program code or data stored in memory.

addressing mode: The method by which an instruction interprets its oper-

ands to acquire the data it needs.

ALU: See Arithmetic logic unit.

analog-to-digital (A/D) converter: A successive-approximation converter

with internal sample-and-hold circuitry used to translate an analog signal

to a digital signal.

ARAU: See auxiliary-register arithmetic unit.

arithmetic logic unit (ALU): The part of the CPU that performs arithmetic

and logic operations.

auxiliary registers (ARn): A set of registers used primarily in address gen-

eration.

auxiliary-register arithmetic unit (ARAU): Auxiliary-register arithmetic

unit. A 32-bit arithmetic logic unit (ALU) used to calculate indirect ad-

dresses using the auxiliary registers as inputs and outputs.

B

bit-reversed addressing: Addressing in which several bits of an address

are reversed in order to speed processing of algorithms, such as Fourier

transforms.

BK: See block-size register.

Appendix A



Glossary

A-2  

bootloader: An on-chip code that transfers code from an external memory

or from a communication port to RAM at power-up.

C

carry bit: A bit in status register ST used by the ALU for extended arithmetic

operations and accumulator shifts and rotates. The carry bit can be

tested by conditional instructions.

circular addressing: An addressing mode in which an auxiliary register is

used to cycle through a range of addresses to create a circular buffer in

memory.

context save/restore: A save/restore of system status (status registers, ac-

cumulator, product register, temporary register, hardware stack, and

auxiliary registers, etc.) when the device enters/exits a subroutine such

as an interrupt service routine.

CPU: Central processing unit. The unit that coordinates the functions of a

processor.

CPU cycle: The time it takes the CPU to go through one logic phase (during

which internal values are changed) and one latch phase (during which

the values are held constant).

cycle: See CPU cycle.

D

D0–D31: External data-bus pins that transfer data between the processor

and external data/program memory or I/O devices. See also LD0–LD31.

data-address generation logic: Logic circuitry that generates the address-

es for data-memory reads and writes. This circuitry can generate one ad-

dress per machine cycle. See also program address generation logic.

data-page pointer: A 32-bit register used as the 16 MSBs in addresses gen-

erated using direct addressing.

decode phase: The phase of the pipeline in which the instruction is decoded

(identified).

DIE: See DMA interrupt enable register.

DMA coprocessor: A peripheral that transfers the contents of memory loca-

tions independently of the processor (except for initialization).



 Glossary

A-3  Glossary

DMA controller: See DMA coprocessor.

DMA interrupt enable register (DIE): A register (in the CPU register file)

that controls which interrupts the DMA coprocessor responds to.

DP: See data-page pointer.

dual-access RAM: Memory that can be accessed twice in a single clock

cycle. For example, your code can read from and write to a dual-access

RAM in one clock cycle.

E

external interrupt: A hardware interrupt triggered by a pin.

extended-precision floating-point format: A 40-bit representation of a

floating-point number with a 32-bit mantissa and an 8-bit exponent.

extended-precision register: A 40-bit register used primarily for extended-

precision floating-point calculations. Floating-point operations use bits

39–0 of an extended-precision register. Integer operations, however, use

only bits 31–0.

F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is

stored and then retrieved in the same order in which it was stored. Thus,

the first word stored in this buffer is retrieved first. The ’C4x’s communica-

tion ports each have two FIFOs: one for transmit operations and one for

receive operations.

H

hardware interrupt: An interrupt triggered through physical connections

with on-chip peripherals or external devices.

hit: A condition in which, when the processor fetches an instruction, the

instruction is available in the cache.

I

IACK: Interrupt acknowledge signal. An output signal that indicates that an

interrupt has been received and that the program counter is fetching the

interrupt vector that will force the processor into an interrupt service rou-

tine.



Glossary

A-4  

IIE: See internal interrupt enable register.

IIF: See IIOF flag register.

IIOF flag register (IIF): Controls the function (general-purpose I/O or inter-

rupt) of the four external pins (IIOF0 to IIOF3). It also contains timer/DMA

interrupt flags.

index registers: Two registers (IR0 and IR1) that are used by the ARAU for

indexing an address.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal interrupt enable register: A register (in the CPU register file) that

determines whether or not the CPU will respond to interrupts from the

communication ports, the timers, and the DMA coprocessor.

interrupt: A signal sent to the CPU that (when not masked) forces the CPU

into a subroutine called an interrupt service routine. This signal can be

triggered by an external device, an on-chip peripheral, or an instruction

(TRAP, for example).

interrupt acknowledge (IACK): A signal that indicates that an interrupt has

been received, and that the program counter is fetching the interrupt vec-

tor location.

interrupt vector table (IVT): An ordered list of addresses which each corre-

spond to an interrupt; when an interrupt occurs and is enabled, the pro-

cessor executes a branch to the address stored in the corresponding

location in the interrupt vector table.

interrupt vector table pointer (IVTP): A register (in the CPU expansion

register file) that contains the address of the beginning of the interrupt

vector table.

ISR: Interrupt service routine. A module of code that is executed in

response to a hardware or software interrupt.

IVTP: See interrupt vector table pointer.

L

LA0–LA30: External address pins for data/program memory or I/O devices.

These pins are on the local bus. See also A0–A30.

LD0–LD31: External data bus pins that transfer data between the processor

and external data/program memory or I/O devices. See also D0–D31.



 Glossary

A-5  Glossary

LSB: Least significant bit. The lowest order bit in a word.

M

machine cycle: See CPU cycle.

mantissa: A component of a floating-point number consisting of a fraction

and a sign bit. The mantissa represents a normalized fraction whose

binary point is shifted by the exponent.

maskable interrupt: A hardware interrupt that can be enabled or disabled

through software.

memory-mapped register: One of the on-chip registers mapped to ad-

dresses in memory. Some memory-mapped registers are mapped to

data memory, and some are mapped to input/output memory.

MFLOPS: Millions of floating point operations per second. A measure of

floating-point processor speed that counts of the number of floating-point

operations made per second.

microcomputer mode: A mode in which the on-chip ROM (bootloader) is

enabled. This mode is selected via the MP/MC pin. See also MP/MC pin;

microprocessor mode.

microprocessor mode: A mode in which the on-chip ROM is disabled. This

mode is selected via the MP/MC pin. See also MP/MC pin; microcomput-

er mode.

MIPS: Million instructions-per-second.

miss: A condition in which, when the processor fetches an instruction, it is

not available in the cache.

MSB: Most significant bit. The highest order bit in a word.

multiplier: A device that generates the product of two numbers.

N

NMI: See Nonmaskable interrupt.

nonmaskable interrupt (NMI): A hardware interrupt that uses the same

logic as the maskable interrupts but cannot be masked.



Glossary

A-6  

O

overflow flag (OV) bit: A status bit that indicates whether or not an arithme-

tic operation has exceeded the capacity of the corresponding register.

P

PC: See program counter.

peripheral bus: A bus that is used by the CPU to communicate the DMA co-

processor, communication ports, and timers.

pipeline: A method of executing instructions in an assembly-line fashion.

program counter: A register that contains the address of the next instruc-

tion to be fetched.

R

RC: See repeat counter register.

read/write (R/W) pin: This memory-control signal indicates the direction of

transfer when communicating to an external device.

register file: A bank of registers.

repeat counter register: A register (in the CPU register file) that specifies

the number of times minus one that a block of code is to be repeated

when a block repeat is performed.

repeat mode: A zero-overhead method for repeating the execution of a

block of code.

reset: A means to bring the central processing unit (CPU) to a known state

by setting the registers and control bits to predetermined values and

signaling execution to fetch the reset vector.

reset pin: This pin causes the device to reset.

ROMEN: ROM enable. An external pin that determines whether or not the

the on-chip ROM is enabled.

R/W: See read/write pin.

S



 Glossary

A-7  Glossary

short floating-point format: A 16-bit representation of a floating point num-

ber with a 12-bit mantissa and a 4-bit exponent.

short integer format: A twos-complement,16-bit format for integer data.

short unsigned-integer format: A 16-bit unsigned format for integer data.

sign-extend: Fill the high order bits of a number with the sign bit.

single-precision floating-point format: A 32-bit representation of a float-

ing-point number with a 24-bit mantissa and an 8-bit exponent.

single-precision integer format: A twos-complement 32-bit format for in-

teger data.

single-precision unsigned-integer format: A 32-bit unsigned format for

integer data.

software interrupt: An interrupt caused by the execution of a TRAP instruc-

tion.

split mode: A mode of operation of the DMA coprocessor. This mode allows

one DMA channel to service both the receive and transmit portions of a

communication port.

ST: See status register.

stack: A block of memory reserved for storing and retrieving data on a first-in

last-out basis. It is usually used for storing return addresses and for pre-

serving register values.

status register: A register in the CPU register file that contains global in-

formation related to the CPU.

T

Timer: A programmable peripheral that can generate pulses or time events.

Timer-Period Register: Timer-period register. A 32-bit memory-mapped

register that specifies the period for the on-chip timer.

trap vector table (TVT): An ordered list of addresses which each corre-

spond to an interrupt; when a trap is executed, the processor executes

a branch to the address stored in the corresponding location in the trap

vector table.

trap vector table pointer (TVTP): A register in the CPU expansion register

file that contains the address of the beginning of the trap vector table.



Glossary

A-8  

TVTP: See trap vector table pointer.

U

unified mode: A mode of operation of the DMA coprocessor. The mode is

used mainly for memory-to-memory transfers. This is the default mode

of operation for a DMA channel. See also split mode.

W

wait state: A period of time that the CPU must wait for external program,

data, or I/O memory to respond when reading from or writing to that ex-

ternal memory. The CPU waits one extra cycle for every wait state.

wait-state generator: A program that can be modified to generate a limited

number of wait states for a given off-chip memory space (lower program,

upper program, data, or I/O).

Z

zero fill: Fill the low or high order bits with zeros when loading a number into

a larger field.



 Index

Index-1

Index

Numbers
16-bit wide configured memory

table 10-14

32-bit wide configured memory

table 10-15

A
A/D converter

definition A-1

A0-A30

definition A-1

abbreviations 14-16

ABS||STI instruction 14-31

ABSF instruction 14-26

ABSF||STF instruction 14-27

ABSI instruction 14-29

ADDC instruction 14-33

ADDC3 instruction 14-35

ADDF instruction 14-37

ADDF3 instruction 14-39

ADDF3||STF instruction 14-41

ADDI instruction 14-43

ADDI3 instruction 14-45

ADDI3||STI instruction 14-47

addition

floating-point 5-23

address

definition A-1

address buses

external 2-20

address partitioning

figure 4-10

address pins

external A-4

address range

LSTRB0 9-11

STRB0 9-10

address space

caution 2-13

addressing modes

bit-reversed addressing 6-32

circular 6-27

conditional branch 2-18

definition A-1

encoding 6-21

conditional branch 6-25
general 6-21
parallel 6-24
three-operand 6-22

general 2-18

groups 6-21

parallel 2-18

three operand 2-18, 6-22

addressing types 6-2

direct addressing 6-5

immediate 6-18

indirect addressing 6-6 to 6-21

PC relative 6-19

register 6-3

AE bit 9-7

aliasing 2-17

ALU. See arithmetic logic unit; arithmetic logic unit

(ALU)

analysis bit 3-7

analysis module

registers 4-6

AND instruction 14-49

AND||STI instruction 14-53

AND3 instruction 14-51

ANDN instruction 14-55

ANDN3 instruction 14-57



Index

Index-2  

application(s)

automotive viii, xiv

consumer viii, xiv

control viii, xii

development support viii, xv

general-purpose viii

graphics/imagery viii, xi

medical viii, xiv

military viii, xiii

multimedia viii, xiii

speech/voice viii, xi

telecommunications viii, xiii

ARAUs. See auxiliary register arithmetic units

(ARAUs)

architectural overview

introduction 2-1

architecture

peripheral bus 2-22

arithmetic logic unit (ALU) 2-4

definition A-1

ASH instruction 14-59

ASH3 instruction 14-61

ASH3||STI instruction 14-63

assembly language instructions 14-2 to 14-11

condition codes

flags 14-12
example instruction 14-23

illegal instructions 14-11

interlocked operation 14-8

load and store 14-2

parallel operation 14-9

program control 14-7

register symbols 14-21 to 14-22

symbols 14-17 to 14-22

syntax options 14-18 to 14-22

three-operand 14-6

two-operand 14-4

autoinitialization 11-34

consecutive 11-40

situations 11-34

synchronization 11-37

automotive applications viii, xiv

auxiliary link-pointer register 11-7

auxiliary register

indirect 6-9

auxiliary register arithmetic units (ARAUs) 2-6

auxiliary registers (AR0–7) 2-6, 3-4

auxiliary registers (ARn)

definition A-1

auxiliary transfer-counter register 11-7

auxiliary-register arithmetic unit (ARAU)

definition A-1

B
Bcond instruction 14-65

BcondAF instruction 7-11, 8-7, 14-67

example 8-7

BcondAT instruction 7-11, 8-7, 14-69

example 8-7

BcondD instruction 14-71

bit-reversed addressing 6-32

definition A-1

example 6-32

index steps 6-33

block diagram

’C4x 2-2

communication ports 12-4

peripheral modules 2-22

timers 13-3

block repeat

nesting 7-8

registers (RC, RE, RS) 3-16, 7-2

block size (BK) register 3-5

block transfer completion 11-6

block transfer sequence 11-5

bootloader

definition A-2

description 10-2

from communication port 10-3

from memory 10-3

introduction 10-1

mode selection 10-3

operation 10-5

setting the IIOF pins 10-19

source code 10-20 to 10-25

source structure 10-8

bootloader mode selection

table 10-3

bootloading

from a comm port 10-16

from memory 10-10

sequence 10-5

BR instruction 14-73

branch conflicts 8-4



 Index

Index-3

branch execution

delayed 7-10

branches 7-9, 7-12

BRD instruction 14-74

bus operation

external 2-20, 9-1 to 9-50

internal 2-19

busy-waiting example 9-42

byte-wide configured memory

table 10-11 to 10-14

C
C flag 3-5

’C40 memory map

figure 2-14, 4-3

’C40/’C44 features

table 1-4

’C44 memory aliasing

figure 2-17

’C44 memory map 4-4

figure 2-15

’C4x multiprocessor system

booting example 10-17

’C4x to IEEE conversion

example 5-18

’C4x-specific instructions 14-3 to 14-8

cache 4-1

cache clear (CC) bit 4-12

cache enable (CE) bit 4-12

cache freeze (CF) bit 4-12

cache memory 2-11, 4-13

architecture 2-11, 4-10

control bits 4-12

enabling 4-13

hit 4-14

instruction cache 4-10

LRU algorithm 4-14

miss 4-14

segment miss 4-14

subsegment miss 4-14

CALL instruction 7-12, 14-75

CALL response timing

figure 7-14

CALLcond instruction 7-12, 14-76

calls 7-12

carry bit

definition A-2

CC bit 3-6, 4-12

CE and CF bits

combined effect

table 4-13
table 3-7

CE bit 3-6, 4-12

CE0 bit 9-7

CE1 bit 9-7

central processing unit. See CPU

CF bit 3-6, 4-12

channel control register. See DMA channel control

register

channel priority scheme

split mode 11-25

circular addressing

definition A-2

example 6-30

FIR filters 6-31

register relationships

figure 6-28

circular addressing mode 6-27

circular buffer

implementation 6-29

CLKSRC = 0 and FUNC = 0 13-14

CLKSRC = 0 and FUNC = 1 13-14

CLKSRC = 1 and FUNC = 0 13-13

CMPF instruction 14-78

CMPF3 instruction 14-80

CMPI instruction 14-82

CMPI3 instruction 14-84

communication port load mode

flow chart 10-7

communication port memory map

figure 12-7

communication port reset

example 12-10

communication port software register 12-3

communication ports

arbitration unit 12-3, 12-11

block diagram 12-4

control register 12-3

coordination with CPU/DMA 12-17

CSTRB width restrictions 12-25

features 2-23, 12-2

H1/H3 synchronization 12-26

input FIFO halt 12-15



Index

Index-4  

communication ports (continued)

input port post-reset state 12-31

input port register 12-9

interconnection 12-5

introduction 12-1

memory map 4-8, 12-7

figure 4-8
output FIFO halt 12-15

output port post-reset state 12-30

output port register 12-9

reset 12-29

tips 12-32

token transfer 12-19

communication-port control register (CPCR) 12-8

field descriptions 12-8

figure 12-8

ICH 12-8

INPUT LEVEL 12-9

OCH 12-8

OUTPUT LEVEL 12-9

PORT DIR 12-8

communication-port software

reset address

table 12-10
reset register 12-10

condition codes

flags 14-14

conditional-branch addressing modes 2-18, 6-25

encoding 6-26

consecutive autoinitializations 11-40

consumer applications viii, xiv

context save/restore

definition A-2

control applications viii, xii

control bits

repeat mode 7-3

control registers 7-35, 11-7, 13-5

conversion of format

’C4x floating-point to integer 5-31

extended-precision floating-point to single-preci-

sion floating-point 5-12

FRIEEE instruction 14-98

IEEE single precision std. 754 5-13

IEEE to ’C4x floating-point 5-14

integer to floating-point 5-33

short floating-point to extended-precision floating-

point 5-11

short floating-point to single-precision floating-

point 5-11

single-precision ’C4x floating-point 5-13

single-precision floating-point to extended-preci-

sion floating-point 5-12

TOIEEE instruction 14-265

converting IEEE format

table 5-14

converting twos complement

table 5-17

counter register 13-5

CPU 2-4

arbitration 11-27

block diagram 2-5

buses 2-19

components 2-4

communication ports coordination 12-17

definition A-2

internal interrupt enable register (IIE) 2-9, 3-11

primary register file 2-6

CPU cycle

definition A-2

CPU expansion register file

definition 3-1

CPU primary register file 3-2

definition 3-1

CPU registers 2-7, 3-8, 7-36

auxiliary (AR0–AR7) 2-6, 3-4

block repeat (RC, RE, RS) 3-16

block size (BK) 2-8, 3-5

data page pointer (DP) 2-8, 3-4, 6-5

DMA interrupt enable (DIE) 2-9, 3-8, 11-44

expansion register file 2-10, 3-17

extended precision (R0-R11) 2-6, 3-3

IIE 3-11

IIOF flag register (IIF) 2-9, 3-13

index (IR1, IR0) 2-8, 3-4

internal interrupt enable (IIE) 2-9, 3-11, 3-12

introduction 3-1

program counter (PC) 2-9, 2-19, 3-16

repeat count (RC) 2-9, 3-16, 7-2

repeat end address (RE) 3-16, 7-2

See also repeat block (RC, RE, RS)

repeat start address (RS) 3-16, 7-2

See also repeat block (RC, RE, RS)
stack pointer (SP) 2-8, 3-5

status register (ST) 2-9, 3-5, 14-13

table 3-2, 6-3

timer 4-7

CSTRB width restrictions 12-25



 Index

Index-5

D
D0-D31

definition A-2

data buses

external 2-20

data formats

introduction 5-1

data page pointer (DP) 2-8, 3-4, 6-5

data structure

FIR filters 6-31

data transfer modes 11-28

data transfer operation 12-6

data-address generation logic

definition A-2

data-page pointer

definition A-2

DBcond instruction 14-86

DBcondD instruction 14-88

DBR instruction 8-9

DE bit 9-7

decode phase

definition A-2

delayed branches 7-9

conditional 7-9

disabled interrupts 7-9

example 7-10

incorrectly placed 7-10

example 7-7
with annul option 8-7

with annulling 7-11

without annul option 8-6

example 8-6
without annulling 7-10

destination address register 11-7

destination address-index register 11-7

development support applications viii, xv

DIE register bit functions

DMA split mode 11-45

direct addressing 6-5

example 6-5

figure 6-5

direct memory access. See DMA coprocessor

displacement

indirect addressing

table 6-7

displacements 6-6 to 6-21

DMA channel control register 7-35, 11-7

bit definitions 11-8

data transfer modes 11-28

field descriptions 11-8

modifiable by autoinitialization in split

mode 11-40

modifiable by autoinitialization in unified

mode 11-39

modifiable by autoinitialization of auxiliary chan-

nel 11-40

DMA channel control register bit definitions

AUTOINIT STATIC 11-8

AUTOINIT SYNC 11-9

AUX AUTOINIT STATIC 11-9

AUX AUTOINIT SYNC 11-9

AUX START 11-10

AUX STATUS 11-11

AUX TCC 11-10

AUX TCINT FLAG 11-10

AUX TRANSFER MODE 11-8

COM PORT 11-9

DMA PRI 11-8

PRIORITY MODE 11-11

READ BIT REV 11-9

SPLIT MODE 11-9

START 11-10

STATUS 11-11

SYNC MODE 11-8

TCC 11-10

TCINT FLAC 11-10

TRANSFER MODE 11-8

WRITE BIT REV 11-9

DMA channel registers

(SPLIT MODE=1, auxiliary transfer counter = 0)

figure 11-36
storage in memory (SPLIT MODE=0)

figure 11-35
storage in memory (SPLIT MODE=1)

figure 11-36

DMA channel running

transfer mode 102

figure 11-29, 11-30
transfer mode 112

figure 11-31, 11-33

DMA control register bits

effect 11-38

DMA controller 2-19



Index

Index-6  

DMA coprocessor 2-23

address generation

figure 11-16
address registers 11-15

arbitration 11-27

autoinitialization 11-34

auxiliary channel 11-20

block transfer sequence 11-5

buses 2-19

channel arbitration 11-24

channel configuration

figure 11-19
channel register map 4-9, 11-4

channel synchronization 11-43 to 11-46

communication ports coordination 12-17

definition A-2

destination synchronization 11-48

features 11-2

functional description 11-3

index registers 11-15

interrupts 11-42

introduction 11-2

link-pointer register 11-17

memory map 11-4

operational modes 11-3

primary channel 11-20

priorities 11-22

priority wheel 11-24

registers 11-5, 11-7

six channels 2-23

source and destination synchronization 11-49

source synchronization 11-48

split mode 3-10, 11-20

timing 11-51

transfer count register 11-16

transfer modes 11-28

unified mode 3-8, 11-19

DMA coprocessor memory map

figure 4-9

DMA destination synchronization

figure 11-49

DMA interrupt enable register (DIE) 2-9, 3-8, 11-44

bit functions 3-10

definition A-3

DMA interrupts 7-26

control bits 7-26

CPU interaction 7-28

processing 7-27

DMA memory transfer timing

single 11-51

DMA PRI and CPU/DMA arbitration rules 11-27

table 11-12

DMA registers intialization 11-5

DMA source and destination sync

unified mode 11-50

DMA source synchronization

figure 11-48

DMA start 11-5

DMA timing for different synchronizations

split mode

figure 11-56
unified mode

figure 11-55

DMA transfers

timing and number of cycles to global bus

figure 11-54
timing and number of cycles to local bus

figure 11-53
timing and number of cycles to on-chip

figure 11-52

DMAINTx flag 3-15

documentation vii

dual-access RAM

definition A-3

E
edge-triggered interrupts 7-15

EDMAINTx bit 3-12

EICFULLx bit 3-12

EICRDYx bit 3-12

EIIFOx bit 3-14

EOCEMPTYx bit 3-12

EOCRDYx bit 3-12

ETINT0 bit 3-12

ETINT1 bit 3-12

execute only 8-10, 8-13

parallel store 8-14

single store 8-13

expansion register file 2-10, 3-17

interrupt vector table (IVT) 7-16

exponent field

definition 5-8

extended precision registers 3-3

extended-precision floating-point format

definition A-3



 Index

Index-7

extended-precision register

definition A-3

floating-point format 3-4

integer format 3-4

external bus

control registers. See memory interface control

registers

interface signals 9-3

external bus operation 9-1 to 9-50

overview 9-2

external buses (global, local), wait states 9-14

external interrupts 2-21, 7-21

definition A-3

external memory interface registers 7-35

F

features comparison 1-4

FIFO buffer

definition A-3

FIFOS

halting 12-14

FIR filters

circular addressing 6-31

data structure 6-31

FIX instruction 5-31, 14-90

FIX||STI instruction 14-92

fixed priority 11-22

FLAGx bit 3-14

FLOAT instruction 5-33, 14-94

FLOAT||STF instruction 14-96

floating point

addition 5-23

conversion to integer 5-31

extended-precision format 5-7

format conversion 5-11

formats 5-4

normalization 5-23, 5-27

reciprocal 5-34

register format 3-4

rounding value 5-29

single-precision format 5-6

floating point (continued)

subtraction 5-23

underflow 5-24

floating-point

determining decimal equivalent 5-8

extended-precision format 5-7

general format 5-4

multiplication 5-19

short format 5-5

figure 5-5
single-precision format

figure 5-6

floating-point addition

32-bit shift 5-26

example 5-25

floating-point addition/subtraction

example 5-26

floating-point formats

IEEE Std. 754 5-13

supported types 5-4

floating-point multiplication

chart 5-20

floating-point multiply

mantissa = 1.0 5-22

mantissa = 1.5 5-21

mantissa = 2.0 5-21

positive and negative numbers 5-22

floating-point operation

introduction 5-1

floating-point rounding

flowchart 5-30

floating-point subtraction

example 5-25

floating-point to integer conversion

flowchart 5-32

floating-point values

fractional 5-10

negative 5-10

positive 5-9

floating-point/integer multiplier 2-4

format

conversion

’C4x to IEEE 5-17
conversions

IEEE std. 754 5-13

formats

conversion

floating-point 5-11
See also conversion of formats

formats (continued)

signed integer 5-2

unsigned integer 5-3



Index

Index-8  

FRIEEE instruction 14-98

FRIEEE||STF instruction 14-99

FUNCx bit 3-14

G
general addressing modes 2-18, 6-21

encoding 6-22

general-purpose applications viii

GIE bit 3-7

global and local memory

interface control signals 9-3

global memory 9-39, 9-41, 9-43

interface 2-20, 9-2

table 9-4

global memory port status

STRB0 and STRB1 accesses 9-5

graphics/imagery applications viii, xi

H
halting of FIFOs 12-14

hardware interrupt

definition A-3

hit

cache 4-14

definition A-3

hold everything 8-10, 8-15

busy external port 8-15

conditional calls and traps 8-16

multicycle data reads 8-16

I
IACK

definition A-3

IACK instruction 9-49, 14-100

IACK pin 9-49

timing 9-49

ICFULL interrupt

description 12-17

enabling 3-12

ICRDY flag

interrupt use 11-46

ICRDY interrupt

description 12-17

enabling 3-12

interrupt use 3-9, 3-10, 11-44, 11-45

IDLE instruction 14-102, 14-103

IEEE std. 754 (conversions) 5-13

IEEE to ’C4x conversion

example 5-16

IIE register 3-11

IIF register 7-17

IIF register modification 3-13

figure 7-18

IIOF flag register (IIF) 2-9, 3-13

definition A-4

IIOF pins

boot loader use 10-5

modification 10-19

immediate addressing 6-18

example 6-18

index registers (IR0, IR1) 2-8, 3-4, 11-15

definition A-4

indirect addressing 6-6

displacement 6-7

flexibility 6-6

index register IR1 6-8

index register IRO 6-7

operand coding

figure 6-6
postdisplacement add and circular modify 6-12

postdisplacement add and modify 6-11

postdisplacement subtract and circular

modify 6-13

postdisplacement subtract and modify 6-12

postindex add and bit-reversed modify 6-17

postindex add and circular modify 6-16

postindex add and modify 6-15

postindex subtract and circular modify 6-17

postindex subtract and modify 6-16

predisplacement add 6-9

predisplacement add and modify 6-10

predisplacement subtract 6-10

predisplacement subtract and modify 6-11

preindex add 6-13

preindex add and modify 6-14

preindex subtract 6-14

preindex subtract and modify 6-15

special cases 6-8

individual instruction descriptions 14-20

input and output FIFO halting

summary 12-14

input FIFO channel 12-3



 Index

Index-9

instruction cache 4-10

architecture 4-10

figure 4-11
reset 4-12

instruction register (IR) 2-19

instruction set summary 14-2 to 14-11

functional groups 14-2

instructions

See also assembly language

interlocked 9-44

integer

short format 5-2

short unsigned format 5-3

signed formats 5-2

single-precision unsigned format 5-3

single-precision format 5-2

unsigned formats 5-3

integer formats

short integer 5-2

signed 5-2

interlocked instructions 2-20, 9-39, 9-44

interlocked operations 9-39

interlocked operations instructions

table 14-8

internal buses 2-4, 2-19

internal interrupt

definition A-4

internal interrupt enable register (IIE) 2-9, 3-11

definition A-4

internal interrupts 7-18

interrupt

definition A-4

interrupt acknowledge (IACK)

definition A-4

interrupt acknowledge (IACK) instruction 7-20

interrupt flag register (IIF)

figure 3-14

interrupt latency

table 7-21

interrupt service routine (ISR)

definition A-4

interrupt vector table (IVT) 7-15

boot loader use 10-8

definition A-4

interrupt vector table pointer (IVTP)

definition A-4

interrupts 2-21

control bits 7-17

DMA 7-28, 11-42

DMA interaction 7-28

edge triggered 11-42

edge-triggered 11-42

external 2-21, 7-21

initialization 7-24

initiation condition 7-15

latency 7-20

level triggered 11-42

level-triggered 11-42

NMI 7-22

overlapping the IVT and TVT 7-25

prioritization 7-15

processing 7-18, 7-19, 7-27, 7-28

timer 13-12

vector table 7-16

vectors 7-28, 13-11

ISR. See interrupt service routine (ISR)

IVTP. See interrupt vector table (IVT)

IVTP register 2-10, 3-17

J
jumps 7-12

L
LA0-LA30

definition A-4

LAJ instruction 7-13, 14-105

LAJcond instruction 7-13, 14-106

LATcond instruction 7-13, 7-25, 14-107

LBb instruction 14-108

LBUb instruction 14-110

LD0-LD31

definition A-4

LDA instruction 14-111

LDE instruction 14-112

LDEP instruction 14-114

LDF instruction 14-115

LDF||LDF instruction 14-121

LDF||STF instruction 14-123

LDFcond instruction 14-117

LDFI instruction 9-39, 9-45, 14-119

LDHI instruction 14-125



Index

Index-10  

LDI instruction 14-126

LDI||LDI instruction 14-132

LDI||STI instruction 14-134

LDIcond instruction 14-128

LDII instruction 9-39, 9-45, 14-130

LDM instruction 14-136

LDP instruction 14-138

LDPE instruction 14-139

LDPK instruction 14-140

level-triggered interrupts 7-15

LHUw instruction 14-143

LHw instruction 14-141

link pointer

incrementing 11-36

reference to 11-41

self referential 11-41

link pointer registers 11-7

figure 11-18

literature vii

LLOCK signal 9-44

load and store instructions

table 14-3

loading sequence

bootloader 10-10

local memory interface 2-20, 9-2

LOCK signal 9-44

low IIOF signal

circuit diagram 10-19

LRU algorithm 4-14

LRU stack 4-12

LSB

definition A-5

LSH instruction 14-145

LSH3 instruction 14-147

LSH3||STI instruction 14-149

LUF flag 3-5

LV flag 3-5

LWLct instruction 14-152

LWRct instruction 14-154

M
machine values 14-21

mantissa

definition 5-8, A-5

mapping addresses to strobes 9-12

maskable interrupt

definition A-5

MBct instruction 14-156

medical applications viii, xiv

memory 2-11, 8-10

See also memory interface

accesses

pipeline 8-19
timing 8-19

addressing modes 2-18

aliasing 2-17

block diagram 2-12

cache 4-10, 4-13

communication ports memory map 12-7

control registers. See memory interface

global 9-39, 9-41, 9-43

introduction 4-1

maps 2-13, 4-2

maximizing pipeline performance 8-17

memory maps

communication ports 4-8
DMA 11-4
timer registers 4-7, 13-5

organization 2-11, 4-2

parallel multiplies and adds 8-23

parallel stores 8-21

pipeline conflicts 8-10

ranges 9-10

registers. See memory interface control registers

ROMEN pin 4-2

sharing 9-42

signal-group control 9-38

space 2-11

three-operand accesses 8-20

timing 8-19, 9-16

two-operand accesses 8-20

memory accesses

data access 8-17

data loads and stores 8-20

external program fetches 8-19

internal clock 8-19

internal program fetches 8-19

program fetch 8-17

two data accesses 8-18

memory cache

rules for efficient usage 4-13



 Index

Index-11

memory conflicts 8-4

memory interface

address ranges 9-11

control registers 9-6

control signals 9-3

page size 9-9

PAGESIZE field. See memory interface control

registers

memory interface (local, global)

features 9-2

ready generation 9-14, 9-16

timing 9-16

wait states 9-14

memory interface control registers 4-6

address ranges 9-10

bit contents 9-7

fields

figure 9-7
figure 4-6

reset effect 9-6

STRBx SWW field 9-15

timing 9-16

wait states 9-14

memory load

flow chart 10-6

memory map 4-2

analysis module registers 4-6

’C44 2-15

communication ports 4-8, 12-7

DMA coprocessor

figure 4-9
DMA 4-9, 11-4

global memory bus 9-12

peripheral 2-16

timer registers 4-7, 13-5

memory-mapped register

definition A-5

MFLOPS

definition A-5

MHct instruction 14-158

microcomputer mode

definition A-5

microprocessor mode

definition A-5

military applications viii, xiii

MIPS

definition A-5

miss

cache 4-14

definition A-5

mode selection

bootloader 10-3

mode selection flow

figure 10-4

module reset 12-29

MPYF instruction 14-160

MPYF3 instruction 14-162

MPYF3||ADDF3 instruction 14-163

MPYF3||STF instruction 14-165

MPYF3||SUBF3 instruction 14-167

MPYI instruction 14-169

MPYI3 instruction 14-171

MPYI3||ADDI3 instruction 14-173

MPYI3||STI instruction 14-175

MPYI3||SUBI3 instruction 14-177

MPYSHI instruction 14-179

MPYSHI3 instruction, 14-180

MPYUHI instruction 14-182

MPYUHI3 instruction 14-183

MSB

definition A-5

multimedia applications viii, xiii

multiplication

floating-point 5-19

multiplier

definition A-5

multiply or CPU operation

parallel store 8-21

N
N flag 3-5

NEGB instruction 14-185

NEGF instruction 14-187

NEGF||STF instruction 14-189

NEGI instruction 14-191

NEGI||STI instruction 14-193

Newton-Raphson algorithm

example 5-35

reciprocal square root 5-38

NMI 7-22

NMI bus grant field 3-7

NMI flag 3-15



Index

Index-12  

no DMA synchronization

figure 11-47

nonmaskable interrupt (NMI)

definition A-5

NOP instruction 14-195

NORM instruction 5-27, 14-196

execution 5-28

flowchart 5-27

normalization

floating point value 5-23, 5-27

NOT instruction 14-198

NOT||STI instruction 14-200

O
object values

three-operand instructions 6-23

OCEMPTY interrupt

description 12-17

enabling 3-12

OCRDY flag

interrupt use 11-46

OCRDY interrupt

description 12-17

enabling 3-12

interrupt use 3-9, 3-10, 11-44, 11-45

operational overview

communication ports 12-3

OR instruction 14-202

OR3 instruction 14-204

OR3||STI instruction 14-206

output FIFO channel 12-3

output value formats 14-12

overflow 5-24, 5-31

overflow flag (OV) bit

definition A-6

OVM flag 3-6

P
P flag (cache) 4-10

page size 9-9

page size operation 9-13

parallel addressing modes 2-18, 6-24

parallel instructions

table 14-9

parallel multiplies and adds

figure 8-23

parallel multiply with ADD/SUB

encoding 6-24

PAU. See port arbitration unit

PAU state definitions 12-11

PCF bit 3-6

PC-relative addressing

encoding 6-20

example 6-19

period register 13-5

peripheral

memory map 4-5

peripheral  modules

figure 2-22

peripheral bus 2-22

definition A-6

general architecture 2-22

memory map 4-5

peripheral memory map 2-16

peripherals

communication port 2-23

PGIE bit 3-7

pin states

table 7-29 to 7-35

pipeline

conflicts 8-4

branch 8-4
memory 8-10
register 8-8
resolving (memory) 8-17

decode unit 8-2

definition A-6

execute unit 8-2

fetch unit 8-2

four major units 8-2

introduction 8-1

memory accesses 8-19

read unit 8-2

structure 8-2

pipeline structure

figure 8-3

POP instruction 14-208

POPF instruction 14-209

port arbitration unit 12-3, 12-11

previous cache freeze (PCF) bit 4-13

primary register file (CPU) 2-6, 3-2

prioritization 7-15



 Index

Index-13

priority wheel (DMA) 11-24

program

buses 2-19

program control instructions

table 14-7

program counter (PC) 2-9, 2-19, 3-16

definition A-6

program fetch

multicycle program memory fetches 8-12

program fetch incomplete 8-10, 8-12

program wait 8-10

due to multicycle access 8-12

wait until CPU data access completes 8-11

PUSH instruction 14-210

PUSHF instruction 14-211

R
RAM 2-11

RC register 7-4

RCPF instruction 5-34, 5-35, 14-212

RCPF instruction algorithm

figure 5-34

read of AR 8-9

read/write (R/W) pin

definition A-6

ready

generation 9-14

timing 9-16

reciprocal (RCPF instruction) 5-34

reciprocal algorithm 5-35

reciprocal square root (RSQRF instruction) 5-36

register addressing 6-3

register bit functions

DMA unified mode

figure 3-8

register buses 2-19

register conflicts 8-4

register file

definition A-6

registers 2-6, 2-7

auxiliary (AR0–AR7) 2-6, 3-4

block repeat (RC, RE, RS) 3-16

block size (BK) 2-8, 3-5

data page pointer (DP) 2-8, 3-4, 6-5

DMA interrupt enable (DIE) 2-9, 3-8

expansion register file 2-10

extended precision 3-3

extended precision (R0–R11) 2-6

IIOF flag register (IIF) 2-9, 3-13, 7-17, 7-26

index (IR1, IR0) 3-4

input port 12-9

internal interrupt enable (IIE) 2-9, 3-11, 3-12

output port 12-9

pipeline conflicts 8-8

program counter (PC) 2-9, 2-19, 3-16

repeat count (RC) 2-9, 3-16, 7-2

repeat end address (RE) 3-16, 7-2

See also repeat block (RC, RE, RS)
repeat mode 7-2

repeat start address (RS) 3-16, 7-2

See also repeat block (RC, RE, RS)
stack pointer (SP) 2-8, 3-5

status register (ST) 2-9, 3-5, 14-13

timer counter 13-8

timer global control 13-6

repeat count register (RC) 2-9, 3-16, 7-2

definition A-6

repeat end address register (RE) 7-2

repeat mode 7-2

block (RPTB) 7-2

block delayed (RPTBD) 7-2

control bits 7-3

definition A-6

nesting 7-8

operation 7-3

RC value after completion 7-7

restriction rules 7-6

RPTB instruction 7-4

RPTBD instruction 7-4

RPTS instruction 7-5

single instruction (RPTS) 7-2

repeat mode flag 3-6

repeat mode registers 7-2

repeat start address register (RS) 7-2

repeat-mode control algorithm

example 7-4

reserved bits 3-16

reset 7-29

additional operations 7-35

communication ports 12-29

definition A-6



Index

Index-14  

reset (continued)

memory interface control registers 9-6

pin states 7-29

vector location 7-35

vectors 7-28

RESET pin 12-29

reset pin

definition A-6

RESETLOC pins 10-10

RETIcond instruction 7-13, 7-24, 14-213

RETIcondD instruction 7-13, 7-24, 14-214

RETScond instruction 7-12, 14-215

returns 7-12

RM bit 7-3

RM flag 3-6

RND instruction 5-29, 14-216

ROL instruction 14-218

ROLC instruction 14-219

ROM 2-11, 2-13

ROMEN 2-13

definition A-6

ROMEN pin 2-11, 4-2

ROR instruction 14-221

RORC instruction 14-222

rotating priority 11-22

rotating priority DMA

read and write sequence 11-23

rotating priority mode

figure 11-23

rounding of floating-point value 5-29

RPTB instruction 7-2, 7-8, 8-5, 14-223

pipeline conflict 7-7

RPTB operation

example 7-4

RPTBD instruction 7-2, 7-8, 14-224

RPTS execution

steps 7-6

RPTS instruction 7-2, 8-5, 14-226

RSQRF instruction 5-36, 14-228

algorithm

figure 5-37

S
S bit 7-3

semaphores 9-43

service sequence

split mode priority 11-26

SET COND bit 3-7

short floating-point format

definition A-7

short integer format

definition A-7

short unsigned-integer format

definition A-7

SIGI instruction 9-39, 9-47, 14-229

signed-integer formats 5-2

sign-extend

definition A-7

single-precision floating-point format

definition A-7

single-precision integer format

definition A-7

single-precision unsigned-integer format

definition A-7

software interrupt

definition A-7

source address register 11-7

source address-index register 11-7

source and destination synchronization 11-49

source synchronization 11-48

speech/voice applications viii, xi

split mode 3-10

definition A-7

split mode (DMA) 11-20, 11-35

split-mode DMA configuration

figure 11-21

split-mode synchronization interrupts

table 3-11

stack

definition A-7

stack pointer (SP) 2-8, 3-5

standard (nondelayed) branches 8-4

standard branch 7-9

example 8-5

START field descriptions

table 11-14

state diagram

port arbitration unit 12-12

STATUS field descriptions

table 11-14



 Index

Index-15

status register (ST) 2-9, 3-5, 14-13

definition A-7

figure 3-5

STF instruction 14-230

STF||STF instruction 14-234

STFI instruction 9-39, 9-46, 14-232

STI instruction 14-235

STI||STI instruction 14-237

STII instruction 9-39, 9-46, 14-236

STIK instruction 14-239

STRB ACTIVE 9-8

STRB SWITCH 9-8

STRB0 PAGESIZE 9-8

STRB0 SWW 9-8

STRB0 WTCNT 9-8

STRB1 PAGESIZE 9-8

STRB1 SWW 9-8

STRB1 WTCNT 9-8

STRBx PAGESIZE fields

figure 9-13

strobe settings 9-7

strobes 9-12

timing 9-16

style (manual) iv

SUBB instruction 14-240

SUBB3 instruction 14-242

SUBC instruction 14-244

SUBF instruction 14-246

SUBF3 instruction 14-248

SUBF3||STF instruction 14-250

SUBI instruction 14-252

SUBI3 14-254

SUBI3||STI instruction 14-256

SUBRB instruction 14-258

SUBRF instruction 14-260

SUBRI instruction 14-262

subtraction

floating-point 5-23, 5-25

SWI instruction 14-264

symbols 14-16

symbols (used in manual) iv

sync mode

transfer rate 11-55

SYNC MODE and AUTOINIT MODE bits

autoinitialization

table 11-38

SYNC MODE bits 11-46

SYNC MODE field descriptions

split mode

table 11-13
unified mode

table 11-13

synchronization 11-37

destination 11-48

DMA channels 11-43

source 11-48

source and destination 11-49

synchronization interrupts

DMA channels 3-9

synchronizer delays 12-28

synchronizers 12-26

T
task counter example 9-42

TCLK 13-4

TCLK as an input

figure 13-15

TCLK as an output

figure 13-15

technical assistance xvi

telecommunications applications viii, xiii

three-operand addressing modes 2-18, 6-22

encoding for type 1 6-24

three-operand instruction word 8-20

three-operand instructions

table 14-6

timer

definition A-7

interrupts

considerations 13-12

timer clock setup

maximum setup 13-16

timer configuration

CLKSRC = 0 and FUNC = 0 13-14

CLKSRC = 0 and FUNC = 1 13-14

CLKSRC = 1 and FUNC = 0 13-13

CLKSRC = 1 and FUNC = 1 13-13

timer control register bit summary

C/P 13-7

CLKSRC 13-7

DATIN 13-6



Index

Index-16  

timer control register bit summary (continued)

DATOUT 13-6

FUNC 13-6

GO 13-6

HLD 13-6

I/O 13-6

INV 13-7

TSTAT 13-7

timer global control register

diagram

bit summary 13-6

timer output generation

examples 13-10

timer pins 13-4

timer pulse mode

clock mode timing 13-9

timer registers 4-7, 7-35

figure 4-7

timer-period register

definition A-7

timers 2-24, 13-2, 13-2 to 13-3

boundary conditions 13-8

control registers 13-5

counter register 13-2, 13-8

global control register 13-6

I/O pin 2-24

initialization 13-16

interrupts 13-11

operation 13-11
introduction 13-1

operation nodes 13-10

period register 13-2, 13-7

pulse generation 13-9

selecting CLKSRC 13-13

selecting FUNC 13-13

TCLK

general-purpose I/O 13-15

timing

DMA channels 11-51

IACK pin 9-49

memory access 9-16

STRB, RDY 9-16

TINT0 flag 3-15

TINT1 flag 3-15

TMS320C40

introduction 1-2

TMS320C44

introduction 1-2

TMS320C4x

features comparison 1-4

introduction 1-1

key features 1-3

TMS320C4x devices 1-2

TMS320LC40

introduction 1-2

TOIEEE instruction 14-265

TOIEEE||STF instruction 14-266

token 12-3

token transfer

figure 12-20

operation 12-5, 12-19

token transfer sequence

table 12-21

transfer counter registers

figure 11-17

TRANSFER MODE = 002

running 11-28

TRANSFER MODE = 012

running 11-29

TRANSFER MODE = 102

running 11-29

TRANSFER MODE = 112

running 11-31

TRANSFER MODE field descriptions 11-28

table 11-12

transfer rate

sync mode 11-55

trap flow

figure 7-24

TRAP instruction 7-25

trap vector table (TVT)

boot loader use 10-9 to 10-10

definition A-7

trap vector table pointer (TVTP)

definition A-7

TRAPcond instruction 7-12, 14-267

traps 7-12, 7-24

initialization 7-24

operation 7-24

overlapping the TVT and IVT 7-25

vector table 7-25

TSTB instruction 14-268

TSTB3 instruction 14-270

TVTP 3-17

See also trap vector table (TVT)



 Index

Index-17

TVTP register 2-10

two parallel stores

figure 8-22

two-operand instruction word 8-20

two-operand instructions

table 14-4

type one synchronizer

maximum delay 12-26

minimum delay 12-26

type three synchronizer

maximum delay 12-28

minimum delay 12-27

type two synchronizer

maximum delay 12-27

minimum delay 12-27

TYPEx bit 3-14

U
UF flag 3-5

underflow 5-23

unified mode

definition A-8

unified mode (DMA) 11-19, 11-35

unsigned-integer formats 5-3

V
V flag 3-5

value in a floating-point number

equation 5-4

vector locations

table 7-35

vectors (reset, interrupts) 7-28

W

wait state

definition A-8

wait states 9-14, 9-36, 9-37

bus disabled 9-38

wait-state generator

definition A-8

word transfer

operation 12-22, 12-23

word transfer sequence

table 12-24

word transfers 11-5

write to AR 8-8

X

XOR instruction 14-272

XOR3 instruction 14-274

XOR3||STI instruction 14-276

Z

Z flag 3-5

zero fill

definition A-8



Index-18  



A-19  Chapter Title—Attribute Reference

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATE

PERF

BIND THIS EDGE



Running Title—Attribute Reference

A-20  

PERF

BIND THIS EDGE

Reader Response Card: TMS320C4x User’s Guide

Please respond to a few questions to help us provide you
with the best documentation possible.

What is your primary use for the in-

formation in this manual?

� Designing ’C4x-based hardware

� Designing ’C4x-based software

How have you used this manual?

�To look up specific information or procedures when
needed (as a reference)

�To read chapters about subjects of interest

�To read from front to back before using the information

Have you found any mistakes or un-

clear information in this manual

(please describe and include page

numbers)?

Which topics should be described in

greater detail?

Which topics were difficult to find

and why (for example, the topic

wasn’t not in a logical location)?

What any other suggestions do you

have for improving this book?

Name

Title

Company

Address

City

State

Zip/Country

Phone number

Can we call you to collect further in

formation for improving our docu

mentation?  � yes  � no

Thank you. March, 1996



IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor

product or service without notice, and advises its customers to obtain the latest version of relevant information

to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at

the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are

utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each

device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or

severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED

TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI

products in such applications requires the written approval of an appropriate TI officer. Questions concerning

potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating

safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or

infringement of patents or services described herein. Nor does TI warrant or represent that any license, either

express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property

right of TI covering or relating to any combination, machine, or process in which such semiconductor products

or services might be or are used.

Copyright   1996, Texas Instruments Incorporated


