
��
������� �
	�
������ ���

User’s Guide

1996 Digital Signal Processing Products

Printed in U.S.A., March 1996
D413004-9761 revision*

SPRU163

TMS320C3x DSP Starter Kit
User’s Guide

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

iii Read This First

Preface

Read This First

About This Manual

This book describes the DSP (digital signal processing) Starter Kit (DSK) and

how to use the DSK with these tools:

� The DSK assembler

� The DSK debugger

How to Use This Manual

The goal of this book is to help you learn how to use the DSK assembler and

debugger. This book is divided into four distinct parts:

� Part I: Hands-On Information is presented first so that you can start

using your DSK the same day you receive it.

� Chapter 1 describes the features and provides an overview of the

TMS320C3x DSP Starter Kit.

� Chapter 2 contains installation instructions for your assembler and

debugger. It lists the hardware and software tools you’ll need to use

the DSK and tells you how to set up its environment.

� Chapter 3 lists the key features of the assembler and debugger and

tells you the steps you need to take to assemble and debug your

program.

� Part II: Functional Description contains a functional overview of the

DSK, which includes the TMS320C3x DSK functional diagram, a descrip-

tion of the DSK hardware components and software operation.

� Part III: Assembler Description contains detailed information about

using the assembler.

� Chapter 5 explains how to create DSK assembler source files and

invoke the assembler.

� Chapter 6 discusses the valid directives and gives you an alphabetical

reference to these directives.

Notational Conventions

iv

� Part IV: Debugger Description contains detailed information about using

the debugger. Chapter 7 explains how to invoke the DSK debugger, and

use its function keys, and debugger commands.

� Part V: Appendices contains a description of the communications kernel

source code, the DSK circuit board dimensions and schematic diagrams,

the data sheet of the TLC32040 that provides all specifications of the

analog interface circuit, and a glossary.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown

in a special typeface similar to a typewriter’s. Examples use a bold

version of the special typeface for emphasis; interactive displays use a

bold version of the special typeface to distinguish commands that you

enter from items that the system displays (such as prompts, command

output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2

0012 0005 0003 .field 3, 4

0013 0005 0006 .field 6, 3

0014 0006 .even

Here is an example of a system prompt and a command that you might

enter:

C:\dsk3d testa

� In syntax descriptions, the instruction, command, or directive is in a bold

typeface font and parameters are in an italic typeface. Portions of a syntax

that are in bold should be entered as shown; portions of a syntax that are

in italics describe the type of information that should be entered. Syntax

that is entered on a command line is centered in a bounded box. Syntax

that is used in a text file is left-justified in an unbounded box. Here is an

example of command-line syntax:

dsk3a filename

dsk3a is a command. The command invokes the assembler and has one

parameter, filename, which is required. When you invoke the assembler,

you supply the name of the file that the assembler uses as input.

 Notational Conventions/Information About Cautions and Warnings

v Read This First

� In assembler syntax statements, column 1 is reserved for the first charac-

ter of a label or symbol. If the label or symbol is optional, it is usually not

shown. If it is a required parameter, it is shown starting against the left mar-

gin of the shaded box, as in the example below. No instruction, command,

directive, or parameter, other than a symbol or label, should begin in col-

umn 1.

symbol .set value

The symbol is required for the .set directive and must begin in column 1.

The value is also required.

� Square brackets ([and]) identify an optional parameter. If you use an

optional parameter, you specify the information within the brackets; you

don’t enter the brackets themselves. Here’s an example of a directive that

has an optional parameter:

.entry [value]

The .entry directive has one parameter, which is optional.

� Some directives can have a varying number of parameters. For example,

the .int directive can have up to 100 parameters. The syntax for this direc-

tive is:

.int value1 [, ... , valuen]

This syntax shows that .int must have at least one value parameter, but

you have the option of supplying additional value parameters, each sepa-

rated from the previous one by a comma.

Information About Cautions and Warnings

This book may contain warnings.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

Note that .int does not
begin in column 1.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C3x and related support tools. To

obtain a copy of any of these TI documents, call the Texas Instruments Litera-

ture Response Center at (800) 477–8924. When ordering, please identify the

book by its title and literature number.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x

32-bit floating-point microprocessor (developed for digital signal proces-

sing as well as general applications), its architecture, internal register

structure, instruction set, pipeline, specifications, and DMA and serial

port operation. Software and hardware applications are included.

TMS320C32 Addendum to the TMS320C3x User’s Guide (literature num-

ber SPRU132) describes the TMS320C32 floating-point microprocessor

(developed for digital signal processing as well as general applications).

Discusses its architecture, internal register structure, specifications, and

DMA and serial port operation. Hardware applications are also included.

TMS320 Floating-Point DSP Assembly Language Tools User’s Guide (lit-

erature number SPRU035) describes the assembly language tools (as-

sembler, linker, and other tools used to develop assembly language

code), assembler directives, macros, common object file format, and

symbolic debugging directives for the ’C3x and ’C4x generations of de-

vices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide (litera-

ture number SPRU034) describes the TMS320 floating-point C compiler.

This C compiler accepts ANSI standard C source code and produces

TMS320 assembly language source code for the ’C3x and ’C4x genera-

tions of devices.

TMS320C3x C Source Debugger User’s Guide (literature number

SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,

and simulator versions of the C source debugger interface. This book

discusses various aspects of the debugger interface, including window

management, command entry, code execution, data management, and

breakpoints. It also includes a tutorial that introduces basic debugger

functionality.

TMS320C30 Evaluation Module Technical Reference (literature number

SPRU069) describes board-level operation of the TMS320C30 EVM.

TMS320 DSP Designer’s Notebook Volume 1 (literature number SPRT125)

collection of designer’s notebook pages.

 If You Need Assistance / Trademarks

vii Read This First

If You Need Assistance. . .

If you want to. . . Do this. . .

Obtain software updates and
more example applications

Call the TMS320 BBS:
(713) 274-2323
or
Anonymous FTP on the Internet

ftp.ti.com
In directory:

/mirrors/tms320bbs

Request more information
about Texas Instruments
Digital Signal Processing
(DSP) products

Write to:
Texas Instruments Incorporated
DSP Market Communications Manager, MS 737
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477–8924

Ask questions about product
operation or report
suspected problems

Contact the DSP hotline:
(713) 274–2320
FAX: (713) 274–2324
Email: dsph@msg.ti.com

Report mistakes in this
document or any other TI
documentation

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

Trademarks

AT is a trademark of International Business Machines Corp.

IBM, PC, and PC-DOS are trademarks of International Business Machines

Corp.

MS-DOS is a registered trademark of Microsoft Corporation.

viii

 Contents

ix

Contents

Part I: Hands-On Information

1 Introduction 1-1.

Describes the key features and provides an overview of the TMS320C3x DSP Starter Kit

1.1 Key Features of the DSK 1-2.

1.2 DSK Overview 1-3.

2 Installing the DSK Assembler and Debugger 2-1.

Lists the hardware and software you’ll need to install the DSK assembler and debugger; pro-
vides installation instructions for PC systems running DOS

2.1 What You’ll Need 2-2.

Hardware checklist 2-2.

Software checklist 2-3.

DSK module connections 2-3.

2.2 Step 1: Connecting the DSK to Your PC 2-4.

2.3 Step 2: Installing the DSK Software 2-5.

2.4 Step 3: Modifying Your CONFIG.SYS File 2-5.

2.5 Step 4: Modifying the PATH Statement 2-6.

2.6 Step 5: Verifying the Installation 2-7.

Installation errors 2-8.

3 Overview of a Code Development and Debugging System 3-1.

Provides an overview of the assembler and debugger, and describes the overall code develop-
ment process

3.1 Description of the DSK Assembler 3-2.

Key features of the assembler 3-2.

3.2 Description of the DSK Debugger 3-2.

Key features of the debugger 3-3.

3.3 Developing Code for the DSK 3-4.

3.4 Getting Started 3-5.

Contents

x

Part II: Functional Description

4 Functional Overview 4-1.

Describes the DSK hardware and software functionality

4.1 DSK Hardware Interface 4-2.

Host hardware interface 4-2.

Host communications 4-4.

TLC32040 AIC hardware interface 4-6.

DSK memory map 4-7.

4.2 DSK Communications Kernel 4-8.

Data packets 4-8.

Commands 4-9.

Debugging functions 4-10.

4.3 TLC32040 AIC Initialization 4-14.

Resetting the AIC 4-14.

Initializing the ’C31 timer 4-14.

Initializing the ’C31 serial port 4-15.

Initializing the AIC 4-16.

Primary communications 4-17.

Secondary communications 4-18.

4.4 Host Software 4-23.

Host communications target routines 4-24.

Host communications driver routines 4-27.

Host communications object routines 4-29.

Part III: Assembler Description

5 Using the DSK Assembler 5-1.

Tells you how to invoke and use the DSK assembler; describes valid source file formats

5.1 Creating DSK Assembler Source Files 5-2.

Using valid labels 5-3.

Using the mnemonic field 5-4.

Using the operand field 5-5.

Commenting your source file 5-7.

5.2 Constants 5-8.

Binary integers 5-8.

Decimal integers 5-8.

Hexadecimal integers 5-8.

Floating-point constants 5-9.

Character constants 5-9.

5.3 Character Strings 5-10.

 Contents

xi Contents

5.4 Symbols 5-11.

Labels 5-11.

Constants 5-11.

Predefined symbolic constants 5-11.

5.5 Expression Analyzer 5-12.

5.6 Assembling Your Program 5-15.

5.7 Placing Code Sections in Memory Locations 5-16.

6 Assembler Directives 6-1.

Tells you how to use assembler directives and describes the available DSK directives

6.1 Using the DSK Assembler Directives 6-2.

6.2 Directives That Define Sections 6-5.

6.3 Directives That Initialize Constants 6-8.

6.4 Directives That Reference Other Files 6-9.

6.5 Directives That Enable Conditional Assembly 6-10.

6.6 Directives That Align the Section Program Counter 6-11.

6.7 Directives That Define Symbols at Assembly Time 6-11.

6.8 Miscellaneous Directives 6-12.

6.9 Directives Reference 6-13.

Part IV: Debugger Description

7 Using the DSK Debugger 7-1.

Tells you how to invoke and use the debugger and describes the debugger environment. Dis-
cusses valid debugger commands

7.1 Invoking the Debugger 7-2.

Displaying a list of available options (? or Help option) 7-2.

Selecting the parallel printer port (LPT = 3 or LPT# option) 7-3.

Select the parallel printer port at a particular address (PORT option) 7-3.

Selecting communication mode (BW option) 7-3.

Automatically search for a printer port (TEST option) 7-3.

Add extra I/O cycles to each transfer 7-3.

7.2 Understanding the Debugger Windows 7-4.

DISASSEMBLY window 7-4.

CPU REGISTER window 7-5.

MEMORY window 7-6.

COMMAND window 7-7.

7.3 Using the Help Menu 7-8.

7.4 Using Software Breakpoints 7-9.

Setting a software breakpoint 7-9.

Clearing a software breakpoint 7-9.

Finding the software breakpoints that are set 7-9.

7.5 Debugger Commands 7-10.

7.6 Quick Reference Guide 7-13.

Contents

xii

Part V: Appendices

A Communications Kernel Source Code A-1.

Contains the source code for the TMS320C3x DSK communications kernel

B DSK Circuit Board Dimensions and Schematic Diagrams B-1.

Contains the circuit board dimensions and the schematic diagrams for the DSP Starter Kit

Hardware Component Overview B-3.

C TLC32040 Data Sheet C-1.

Contains the complete data sheet for the TLC32040 Analog Interface Circuit

D Glossary D-1.

Defines acronyms and key terms used in this book

 Running Title—Attribute Reference

xiii Contents

Figures

1–1 TMS320C3x DSK Block Diagram 1-3.

2–1 Connecting Your Parallel Printer Port Cable and Transformer Into Your DSK Board 2-4. . . .

2–2 DOS Command Setup for the DSK Environment (Sample autoexec.bat file) 2-6.

2–3 Basic Debugger Display 2-7.

3–1 The Basic Debugger Display 3-3.

3–2 DSK Software Development Flow 3-4.

4–1 TMS320C3x DSK Functional Circuit Diagram 4-3.

4–2 Parallel Port Control Register (0x37A) 4-4.

4–3 Parallel Port Status Register (0x379) 4-4.

4–4 DSK Memory Map 4-7.

4–5 Data-Packet Structure 4-8.

4–6 Single-Step Flow Diagram 4-12.

4–7 Primary Communication Data Format 4-17.

4–8 Secondary Communication Data Format 4-18.

4–9 Control Register Bit Fields 4-19.

7–1 DISASSEMBLY Window 7-4.

7–2 CPU REGISTER Window 7-5.

7–3 MEMORY Window 7-6.

7–4 COMMAND Window 7-7.

7–5 The Monitor Information Screen 7-8.

B–1 TMS320C3x DSP Starter Kit (DSK) Circuit Board Dimensions B-2.

Running Title—Attribute Reference

xiv

Tables

4–1 Single-Step Pipeline Flow 4-13.

4–2 Primary Communications Mode Selection 4-18.

5–1 Indirect Addressing 5-6.

5–2 ANSI C Math Library Functions Supported by the DSK Assembler 5-12.

5–3 Operators Used in Expressions 5-14.

5–4 Summary of Assembler Options 5-15.

6–1 Assembler Directives Summary 6-2.

7–1 Summary of Debugger Options 7-2.

7–2 Editing Command Keys 7-7.

7–3 Command-Line Editing 7-10.

7–4 Command-Line Buffer Manipulation 7-10.

7–5 Running Programs 7-10.

7–6 Displaying and Changing Data 7-11.

7–7 Managing Breakpoints 7-11.

7–8 Loading Programs 7-11.

7–9 Performing System Tasks 7-12.

7–10 Function Key Shortcuts for Command Window Active 7-13.

7–11 Function Key Shortcuts for CPU Window Active 7-13.

7–12 Function Key Shortcuts for Memory Window Active 7-14.

7–13 Function Key Shortcuts for Disassembler Window Active 7-14.

 Running Title—Attribute Reference

xv Contents

Examples

2–1 Port Selection Display 2-9.

3–1 File rand.asm 3-5.

4–1 Initialize the Serial Port Global Control Register 4-16.

4–2 Setting the TA and TB Registers 4-20.

6–1 Sections Directives 6-6.

xvi

1-1

Introduction

This chapter provides an overview of the TMS320C3x DSP Starter Kit (DSK).

The ’C3x DSK is a low-cost, simple, high-performance stand-alone application

development board that lets you experiment with and use TMS320C3x DSPs

for real-time signal processing. The DSK has a TMS320C31 on board to allow

full-speed verification of the TMS320C3x code. The DSK also gives you the

freedom to build new boards, create your own software on a host PC, down-

load the software to the DSK, and run the software on the DSK board. The

supplied debugger is windows-oriented, simplifying code development and

debugging capabilities.

Topic Page

1.1 Key Features of the DSK 1-2.

1.2 DSK Overview 1-3.

Chapter 1

Key Features of the DSK

 1-2

1.1 Key Features of the DSK

This section details the key features of the TMS320C3x DSP Starter Kit.

� Industry-standard TMS320C31 floating-point DSP

� 40 ns instruction cycle time, 50 MFLOPS, 25 MIPS

� Standard or enhanced parallel printer port interface which connects to a

host PC and allows the TMS320C31 to communicate with PC programs

� Voice quality analog data acquisition via the TLC32040 analog interface

circuit (AIC):

� 14-bit dynamic range ADC and DAC

� Variable ADC and DAC sampling rate up to 20 000 samples per

second

� Output reconstruction filter and bypassable, switched-capacitor anti-

alias input filter

� Standard RCA plug connectors for analog input and output that provide

a direct connection to microphone and speaker

� XDS510 emulator connector

� Expansion connectors, which route all the TMS320C31 pins for use with

daughterboards

 DSK Overview

1-3 Introduction

1.2 DSK Overview

Figure 1–1 depicts the block diagram of the TMS320C3x DSK hardware. The

basic components are the TMS320C31 DSP, the TLC32040 AIC, expansion

connectors, system clock, parallel printer port interface, and tri-color LED. The

parallel printer port connects the DSK to a host PC and allows the TMS320C31

to communicate with PC programs.

All of the signals for the ’C3x are routed to expansion connectors. The expan-

sion connectors include four 32-pin headers, an 11-pin jumper block, and a

10-pin XDS510 header.

The TLC32040 AIC interfaces to the TMS320C3x serial port. A jumper block

allows removal of this connection to route the serial port to a daughtercard that

you supply. Two RCA connectors provide analog input and output on the

board.

Figure 1–1. TMS320C3x DSK Block Diagram

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Á

Á
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Á
Á

Á
Á
Á

Á
ÁÁ
ÁÁ
Á

Á
Á
Á

Á
Á

Á
I/O

expansion
connector

Parallel
port

interface

Serial port

A23–A0

D31–D0

Control

TMS320C31–50

Emulation port

TLC32040
AIC

XDS510
MPSD port

Analog
in

Analog
out

See Appendix B, DSK Circuit Board Dimensions and Schematic Diagrams, for

an explanation of the basic DSK components.

 1-4

2-1

Installing the DSK
Assembler and Debugger

This chapter describes how to install the DSP Starter Kit (DSK) on a PC system

running under DOS .

Topic Page

2.1 What You’ll Need 2-2.

2.2 Step 1: Connecting the DSK to Your PC 2-4.

2.3 Step 2: Installing the DSK Software 2-5.

2.4 Step 3: Modifying Your CONFIG.SYS File 2-5.

2.5 Step 4: Modifying the PATH Statement 2-6.

2.6 Step 5: Verifying the Installation 2-7.

Chapter 2

What You’ll Need

 2-2

2.1 What You’ll Need

The following checklists detail items that are shipped with the DSK assembler

and debugger and any additional items you’ll need to use this tool. The DSK

module connections with a parallel printer port are also discussed in this

section.

Hardware checklist

host An IBM PC/AT or 100% compatible PC with a hard disk system
and a 1.2 megabyte floppy-disk drive and parallel printer port
communication link

memory Minimum of 640K bytes

display Monochrome or color (color recommended)

power requirements A UL Class II power supply with a 2.1-mm power jack connector that
provides 7–12 Vdc or 6–9 Vac and at least 400–1500 mA, which is
common to most wall-mounted DC transformers. For DC power
supplies, the polarity of the 2.1 mm power jack does not matter.
However, laboratory type power supplies are not recommended
since they can create ground loops and possibly create a short
circuit through the DSK full-wave rectifier.

Note:

� You may want to use the DSK’s on-board power supply and regulators

for external circuits. If so, you must not overload the circuit. External

loads will cause the regulators to operate at a higher temperature. Loads

>50 mA are not recommended.

� If you are using an external power supply, be sure you connect it

correctly; the DSK is not warranted after you make modifications to it.

To minimize risk of electric shock and fire hazard, the power supply
adapter should be rated class 2 or safety extra-low voltage. The
adapter and personal computer providing energy to this product
should be certified by one or more of the following: UL, CSA, VDE,
TUV.

board DSK circuit board

cable Pass-through parallel printer port cable

 What You’ll Need

2-3 Installing the DSK Assembler and Debugger

optional hardware An EGA- or VGA-compatible graphics display card and monitor.

miscellaneous
materials

Blank, formatted disks

Software checklist

operating system MS-DOS or PC-DOS (version 5.0 or later), Windows or OS/2

files dsk3a.exe is an executable file for the DSK assembler.

dsk3d.exe is an executable file needed for running the DSK
debugger interface.

miscellaneous files Other files are included in your DSK package, such as sample
source files and additional documentation. You can find a brief
description of these files in the Readme file included on your disk.
Be sure to check the Readme file for the latest information on soft-
ware changes and DSK operation.

Note:

Other applications for the DSK can also be downloaded from the TMS320
BBS or Internet FTP site. See the If You Need Assistance subsection on
page vii, for the Internet address.

DSK module connections

You need a parallel printer port cable to connect your PC to your DSK board.

The DSK board is designed with a DB25 parallel printer port connection

mounted on the board.

Step 1: Connecting the DSK to Your PC

 2-4

2.2 Step 1: Connecting the DSK to Your PC

Follow these steps to connect your DSK board to your PC:

1) Turn off your PC’s power.

2) Connect your parallel printer port cable to the parallel communication port

(LPT) on your PC. This port can be identified by its size and pin type, which

should be the female matching equivalent to the DSK. (RS232 ports which

use DB25 connectors use the opposite pin configuration).

3) Plug the parallel printer port cable into the DSK DB25 connector.

4) Plug 7–12 Vdc or 6–9 Vac power supply into the DSK power supply

connector. See Figure 2–1 for details.

Figure 2–1. Connecting Your Parallel Printer Port Cable and Transformer Into Your DSK
Board

System clock
Power
supply
connector

RCA jack
analog out

RCA jack
analog in

Plug your RS-232 cable into this socket (DB25 female)

PAL 22V10

TLC32040

LED

5) Plug the transformer into a wall socket.

6) Turn on your PC’s power.

7) The LED will illuminate either red or green.

Note:

Some manufacturers of plug-in cards may also use DB25 connectors that
appear to be of the same type. If this is the case, be sure to check the PC
configuration thoroughly before continuing.

 Step 2: Installing the DSK Software / Step 3: Modifying Your CONFIG.SYS File

2-5 Installing the DSK Assembler and Debugger

2.3 Step 2: Installing the DSK Software

This section explains how to install the debugger software on a hard disk

system.

1) Make a backup copy of the product disk. (If necessary, refer to the DOS

manual that came with your computer).

2) On your hard disk or system disk, create a directory named dsktools. This

directory will contain the DSK assembler and debugger software. To

create this directory, enter:

md c:\dsktools

3) Insert your product disk into drive A. Copy the contents of the disk using

the following command:

copy a:*.*c:\dsktools*.*/v

2.4 Step 3: Modifying Your CONFIG.SYS File

When using the debugger, you can have only 20 files open or active at one

time. To tell the system not to allow more than 20 active files, you must add the

following line to your config.sys file:

FILES=20

Once you edit your config.sys file and add the line, invoke the file by rebooting

the PC (press the reset switch, or turn off the PC’s power and turn it on again).

Step 4: Modifying the PATH Statement

 2-6

2.5 Step 4: Modifying the PATH Statement

To ensure that your debugger and assembler are invoked from any directory

in your PC, you must modify the PATH statement to identify the dsktools direc-

tory. Not only must you do this before you invoke the debugger for the first time,

you must do it any time you power up or reboot your PC.

You can accomplish this by entering individual DOS commands, but it’s

simpler to put the commands in your system’s autoexec.bat file. The general

format for doing this is:

PATH=C:\dsktools;pathname2 ;pathname3

This allows you to invoke the debugger without specifying the name of the

directory that contains the debugger executable file.

If you are modifying your autoexec.bat file and it already contains the PATH

statement, simply include ;C:\dsktools at the end of the statement as shown

in Figure 2–2.

Figure 2–2. DOS Command Setup for the DSK Environment (Sample autoexec.bat file)

DATE

TIME

ECHO OFF

PATH=c:\dos;c:\dsktools

CLS

PATH statement

If you modify the AUTOEXEC.BAT file, be sure to invoke it before invoking the

debugger for the first time. To invoke this file, enter:

autoexec

 Step 5: Verifying the Installation

2-7 Installing the DSK Assembler and Debugger

2.6 Step 5: Verifying the Installation

To ensure that you have correctly installed your DSK board, assembler, and

debugger, enter the following command at the system prompt:

dsk3d

After entering the dsk3d command, you should see a display similar to the one

shown in Figure 2–3.

Figure 2–3. Basic Debugger Display

PC 00809c03 SP 008098de
R0 00000000 R1 00000000
R2 00000000 R3 00000000
R4 00000000 R5 00000000
R6 00000000 R7 00000000
AR0 00000000 AR1 00000000
AR2 00000000 AR3 00000000
AR4 00000000 AR5 00000000
AR6 00000000 AR7 00000000
IR0 00000000 IR1 00000000
ST 00000000 RC 00000000
RS 00000000 RE 00000000
DP 00000000 BK 00000000
IE 00000000 IF 00000000

C31 DSP STARTERS KITDISASSEMBLY

COMMAND MEMORY

809c03 50700080 startLDIU 00080h,DP
809c04 08349c2c LDI @09c2cH,SP
809c05 07608000 LDF 0.000000e+00,R0
809c06 c610c1c0 LDI *AR0,R0 || LDI *AR
809c07 c610c1c0 LDI *AR0,R0 || LDI *AR
809c08 08600100 LDI 256,R0
809c09 09a09c00 LSH @09c00H,R0
809c0a 61809c0e BRD jump
809c0b 07618000 LDF 0.000000e+00,R1
809c0c 07628000 LDF 0.000000e+00,R2
809c0d 07630000 LDF 1.000000e+00,R3
809c0e 07640000 jump LDF 1.000000e+00,R4
809c0f 087b0003 loop LDI 3,RC
809c10 64809c1a RPTB block
809c11 02640001 ADDI 1,R4

Texas Instruments 1994

load testa

809800 00000007 fffffffc 00809802 00809827
809804 0080982c 00809839 0080983c 0080983f
809808 00809843 00809842 00809868 0080989a
80980c 008098a9 10800000 0f350000 0f300000
809810 0f200000 0f320000 0f280000 0f290000
809814 1a770004 6a050006 628098a9 50700080

Note:

When the communications kernel is first loaded, the on-chip timers are initial-
ized causing the LED to cycle through several colors. The sequence is red–
yellow–green–yellow–red etc.

Step 5: Verifying the Installation

 2-8

If you see a display similar the one shown in Figure 2–3, you have correctly

installed your DSK board, assembler, and debugger. If you see the display

shown in Example 2–1, then your software or cable may not be installed prop-

erly. Go through the installation instructions again and make sure that you

have followed each step correctly; then re-enter the command above.

Installation errors

If you still do not see the debugger display, one or more of the following condi-

tions may be the cause:

� You may have used an incorrect communication port (LPT1 versus LPT2).

� A printer driver or other software may be using the same communication

port that you are attempting to use with the DSK. If so, try another commu-

nication port for the DSK.

� Your printer port cable and connectors may not be connected snugly.

� Your power transformer may not be plugged in on both ends. If the DSK

is receiving power, then the LED will illuminate either red or green.

Some operating systems do not use conventional AT I/O port addresses when

mapping port names to addresses. For example, an EISA PC or IBM PS/2

might consider port 0x3BC to be LPT1 instead of LPT3. If this is the case, you

should use LPT3 to start the DSK since the DSK works from a physical address

instead of the port name LPTx. The last three lines of Example 2–1 show the

operating system’s lookup table (located at RAM address 0000 0040) that

maps physical addresses to port names. This may help you to determine which

ports are in use and which name is associated with each port for a particular

address. The information in the lookup table in Example 2–1 may not accurate

since network and OS software use this table for redirecting printer output.

 Step 5: Verifying the Installation

2-9 Installing the DSK Assembler and Debugger

Example 2–1.Port Selection Display

 TESTING TMS320C3x DSK RESET AT PORT 0x378 (LPT1)

 >>>> HPACK (ERROR pin) did not go high during reset

 SELECT: 1) LPT1 0x378 (alternate LPT2)

 2) LPT2 0x278 (alternate LPT3)

 3) LPT3 0x3BC (alternate LPT1)

 H) Additional online help

 CHECK: TARGET POWER (LED IS RED OR GREEN)

 PORT SELECTION

 I/O CONNECTIONS AND CABLES

 POWER CONSERVATION SOFTWARE (LAPTOPS!)

 AUTOEXEC.BAT, CONFIG.SYS AND BIOS

 DAUGHTER CARDS

 VERY OLD PRINTER PORTS WITHOUT PULLUPS (PRE 1986)

 IF THE LED IS CYCLING R–Y–G THE KERNEL HAS LOADED

–––

 The LPTx name or handle for a port address depends on the operating

system and installed drivers. The DSK uses standard port conventions so

you might need to use a different port name to get the correct port address.

For reference, the systems LPT cross reference table is given below

 SYSTEM TABLE LOCATED AT LPT1 @0x378

 RAM ADDRESS 0000:0400 LPT2 @0x278

 LPT3 @0x002

 2-10

3-1 Chapter Title—Attribute Reference

Overview of a Code
Development and Debugging System

The DSP Starter Kit (DSK) lets you experiment with and use a DSP for real-

time signal processing. The DSK gives you the freedom to create your own

software to run on the board as is or to build new boards and expand the

system in any number of ways.

The DSK assembler and debugger are software interfaces that help you to
develop, test, and refine DSK assembly language programs.

This chapter provides an overview of the assembler and debugger and
describes the overall code development process.

Topic Page

3.1 Description of the DSK Assembler 3-2

3.2 Description of the DSK Debugger 3-2

3.3 Developing Code for the DSK 3-4

3.4 Getting Started 3-5

Chapter 3

Description of the DSK Assembler / Description of the DSK Debugger

 3-2

3.1 Description of the DSK Assembler

The DSK assembler is a simple and easy to use tool. Only the most significant

features of an assembler have been incorporated. However, if you want, you

can create and load COFF files by using the TMS320 floating-point DSP as-

sembly language tools that will load and run on the DSK.

Key features of the assembler

� Quick. The DSK assembler differs from many other assemblers in that it

does not go through a linker phase to create an output file. Instead, the

DSK uses special directives to assemble code at an absolute address

during the assembly phase. As a result, you can create small programs

quickly and easily.

� Easy-to-use. If you want to create larger programs, you can do this by

simply chaining files together with the .include directive.

3.2 Description of the DSK Debugger

The debugger is easy to learn and use. Its friendly window-oriented interface

reduces learning time and eliminates the need to memorize complex com-

mands. The debugger is capable of loading and executing code with single-

step, breakpoint, and run time halt capabilities.

 Description of the DSK Debugger

3-3 Overview of a Code Development and Debugging System

Figure 3–1 identifies several features of the debugger display. When you

invoke the debugger, you should see a display similar to this one (it may not

be exactly the same, but it should be close).

Figure 3–1. The Basic Debugger Display

PC 00809c03 SP 008098de
R0 00000000 R1 00000000
R2 00000000 R3 00000000
R4 00000000 R5 00000000
R6 00000000 R7 00000000
AR0 00000000 AR1 00000000
AR2 00000000 AR3 00000000
AR4 00000000 AR5 00000000
AR6 00000000 AR7 00000000
IR0 00000000 IR1 00000000
ST 00000000 RC 00000000
RS 00000000 RE 00000000
DP 00000000 BK 00000000
IE 00000000 IF 00000000

DISASSEMBLY

MEMORY

Texas Instruments 1994

load testa

�

809800 00000007 fffffffc 00809802 00809827
809804 0080982c 00809839 0080983c 0080983f
809808 00809843 00809842 00809868 0080989a
80980c 008098a9 10800000 0f350000 0f300000
809810 0f200000 0f320000 0f280000 0f290000
809814 1a770004 6a050006 628098a9 50700080

F3 FLOAT F4 Srce F5 Run F6 DispBP F7 ClrAll F8 SStep F9 Grow F10 FStep

COMMAND

809c03 50700080 startLDIU 00080h,DP
809c04 08349c2c LDI @09c2cH,SP
809c05 07608000 LDF 0.000000e+00,R0
809c06 c610c1c0 LDI *AR0,R0 || LDI *AR
809c07 c610c1c0 LDI *AR0,R0 || LDI *AR
809c08 08600100 LDI 256,R0
809c09 09a09c00 LSH @09c00H,R0
809c0a 61809c0e BRD jump
809c0b 07618000 LDF 0.000000e+00,R1
809c0c 07628000 LDF 0.000000e+00,R2
809c0d 07630000 LDF 1.000000e+00,R3
809c0e 07640000 jump LDF 1.000000e+00,R4
809c0f 087b0003 loop LDI 3,RC
809c10 64809c1a RPTB block
809c11 02640001 ADDI 1,R4

F1 Help F2 REG40

REGISTER window

C31 DSP STARTERS KIT

DISASSEMBLY window

MEMORY windowCOMMAND windowCommand line

Key features of the debugger

� Easy-to-use, window-oriented interface. The DSK debugger separates

code, data, and commands into manageable portions.

� Powerful command set. Unlike many other debugging systems, this

debugger doesn’t force you to learn a large, intricate command set. The

DSK debugger supports a small but powerful command set.

� Flexible command entry. There are two main ways to enter commands.

You can enter commands at the command line or use the function keys;

choose the method that you like better.

Developing Code for the DSK

 3-4

3.3 Developing Code for the DSK

Figure 3–2 illustrates the DSK code development flow.

Figure 3–2. DSK Software Development Flow

debugger

DSK
target

system

assembler
source

assembler

executable
file

The following list describes the tools shown in Figure 3–2.

The assembler translates DSK assembly language source files into machine

language object files for the TMS320C3x family of processors. Only the most

essential features of an assembler have been incorporated. This is not a

COFF assembler, although executable object files created by the TI TMS320

floating-point DSP assembly language tools will also load and run on the DSK.

The main purpose of the development process is to produce a module that can

be executed in a DSK target system. You can use the debugger to refine and

correct your code.

assembler

debugger

 Getting Started

3-5 Overview of a Code Development and Debugging System

3.4 Getting Started

This section provides a quick walkthrough so that you can get started without

reading the whole user’s guide. These examples show the most common

methods for invoking the assembler and debugger.

1) Create a source file to use for the walkthrough; call it rand.asm. You do not

need to enter the information following a semicolons; such information is

comments to help you understand what the program is doing.

Example 3–1.File rand.asm

;–––;

; RAND.ASM ;

; This example shows nested loops with a call to a random number ;

; within the inner loop. ;

; ;

; NOTE: This file can be loaded either by using the debugger or a ;

; bootloader. This example does not use 0x809800 and 0x809801 since ;

; the bootloader uses these locations for stack space. ;

;–––;

 .start ”CODE”,0x809802 ; Start assembling CODE section here

 .sect ”CODE” ;

 .entry SAMPLE ; Debugger entry point

 ;––––––––––––––––––––––

SAMPLE ldp @stack ; Load a data page

 ldi @stack,SP ; Load a stack pointer

 ;––––––––––––––––––––––

 ldi 0,R0 ; Start with SEED = 0

 ldi 0,R1 ; Inner loop counter

 ldi 0,R2 ; Outer loop counter

 ;––––––––––––––––––––––

OUTER ldi 3,RC ; Start ’OUTER’ loop

 rptb INNER ; Repeat block ’INNER’ (RC+1) times

 call RAND ; Call function

 addi 1,R1 ; Count ’INNER’ loops

INNER addi 1,R2 ; Count ’OUTER’ loops

 b OUTER ; Do it again!

;––

; Fast 32 bit random number generator

;––

RANDX: ldi @SEED,R0 ; Calculate RAND(SEED)

RAND: mpyi @A,R0 ; Calculate RAND(R0)

 addi @C,R0 ;

 sti R0,@SEED ; Result is returned in R0

 rets ;

 ;––––––––––––––––––––––

A .word 0107465h ; Constants needed for RAND

C .word 0234567h ;

SEED .word 0 ;

;––––––––––––––––––––––––––––––

stack .word $+1 ; Begin stack here

 .end

Getting Started

 3-6

2) Enter the following command to assemble rand.asm:

dsk3a rand

This command invokes the TMS320C3x DSK assembler. If the input file

extension is .asm (for example, rand.asm), you don’t have to specify the

extension; the assembler uses .asm as the default. For more information

about invoking the assembler, refer to Section 5.6.

When you enter this command, the assembler creates an executable file

called rand.dsk. This file is used for directly loading executable code into

the DSK.

The executable file includes a listing of all errors and warnings that may

have occurred during assembly of your program. This listing is helpful

because it contains a list of all unresolved symbols and opcodes.

3) Now you are ready to debug your program. Enter the following command

to invoke the debugger:

dsk3d

4) This command brings up the TMS320C3x DSK debugger on your screen.

From here, you can load your rand.dsk sample program by using the

LOAD command. For more information on using the debugger, refer to

Chapter 7.

4-1

Functional Overview

The TMS320C3x DSK hardware and software work together to create a low-

cost development platform that lets you develop real-time signal processing

applications. In addition to performing full-speed verification of your

TMS320C3x code, the DSK allows you to build new daughterboards to expand

your system.

This chapter details the functionality of the hardware and the software.

Topic Page

4.1 DSK Hardware Interface 4-2.

4.2 DSK Communications Kernel 4-8.

4.3 TLC32040 AIC Initialization 4-14.

4.4 Host Software 4-23.

Chapter 4

DSK Hardware Interface

 4-2

4.1 DSK Hardware Interface

The ’C3x DSK starts up by responding to a host reset command and boot-load-

ing a communications kernel or a program that you supply. The communica-

tions kernel provides the necessary I/O for interfacing the DSK board and the

host system. Host communications occur through the parallel bus of the ’C31,

while analog I/O is handled by the TLC32040 analog interface circuit (AIC) and

sent to the ’C31’s serial port.

See Appendix A, Communications Kernel Source Code, for more information.

Host hardware interface

The host interface connects the ’C31 parallel bus to the host PC parallel printer

port. It consists of three devices:

� A programmable array logic (TICPAL22V10Z)

� Two high-speed octal bus transceivers with tri-state outputs (74ACT245)

The programmable array logic (PAL) determines when the ’C31 is accessing

the host interface by using the STROBE A23, A22, A21, and A20 signals to

decode the address of the ’C31.

The PAL provides one input (TRI) that disconnects the host interface by tri-

stating the PAL INT2 and READY signals. The PAL provides five address

decode outputs: USER_IOR, USER_IOW, USER_IO, USER_RAM,

USER_BOOT; and three outputs: READY, INT2, and EN signals. When the

DEMO signal is pulled high, two of the address decode outputs, USER_IO and

USER_BOOT, drive the tri-color LED.

The bus transceivers buffer data between the PC parallel printer port and the

’C31 parallel bus. The host interface supports two types of transfers:

� The 8-bit bidirectional mode allows faster transfers on parallel printer ports

that support bidirectional transfers.

� Unidirectional printer ports support an 8-bit transfer from the host to the

’C31 while supporting 4-bit transfers from the ’C31 to the host.

Figure 4–1 shows a high-level circuit diagram of the ’C3x DSK.

 DSK Hardware Interface

4-3 Functional Overview

Figure 4–1. TMS320C3x DSK Functional Circuit Diagram

ÁÁ
Á

Á
Á
Á

Á
Á

ÁÁ
ÁÁÁÁ
ÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

Á
Á

Á

Á
ÁÁÁ
ÁÁÁ

Á
Á
Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁ
ÁÁ

13

2

USER_IOR
USER_IOW

USER_RAM

USER_IO

USER_BOOT

Á

15

19

VCC

VCC
DEMO

LTICPAL22V10Z–25

D Q0 D Q1

HPIA TRI

NC

Address
decode

TRI

0

1

10

11

8

74HCT245

74HCT245

Á
Á
Á
Á

0

1

4

EN

EN

DIR

DIR

TLC32040

IN+

IN–

OUT–

OUT+

MCLK
RESET

DR

DX

FSX

FSR
SCLK

RESET

INT2

READY

H1

A20

A21

A23

A23

STROBE

TCLK1

R/W

D7–D0

TCLKO

XFO

DR

DX

FSX

FSR

CLKX
CLKR

INIT
(RESET)

PSTROBE
(HPSTB)

PD7–PD0

ERROR
(HPACK)

SLCT

PE
ACK

BUSY

A IN

A OUT

DSK Hardware Interface

 4-4

Host communications

The host communicates with the ’C31 through the parallel printer port. The PC

manipulates the parallel port’s signals by writing to and reading from the host’s

parallel port control and status registers. Figure 4–2 and Figure 4–3 show the

parallel port control and status register bit fields used by the DSK host soft-

ware. (The labels within the following figures in parentheses refer to signals

of the DSK board as shown in Figure 4–1.)

Figure 4–2. Parallel Port Control Register (0x37A)

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁÁ
ÁÁÁÁÁ

3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIR0 ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

DIR1 ÁÁÁÁ
ÁÁÁÁ

INT ÁÁÁÁÁ
ÁÁÁÁÁ

SLCTIN ÁÁÁÁ
ÁÁÁÁ

INIT ÁÁÁÁÁ
ÁÁÁÁÁ

AUTOFD ÁÁÁÁÁ
ÁÁÁÁÁ

PSTROBE Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

RESETÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

HPSTB Á
Á

Figure 4–3. Parallel Port Status Register (0x379)

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁÁ
ÁÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

3 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUSY
ÁÁÁÁÁ
ÁÁÁÁÁ

ACK
ÁÁÁÁ
ÁÁÁÁ

PE
ÁÁÁÁÁ
ÁÁÁÁÁ

SLCT
ÁÁÁÁ
ÁÁÁÁ

ERROR
ÁÁÁÁÁ
ÁÁÁÁÁ

ACK
ÁÁÁÁ
ÁÁÁÁ

X
ÁÁÁÁÁ
ÁÁÁÁÁ

X
Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

D3
ÁÁÁÁÁ
ÁÁÁÁÁ

D2
ÁÁÁÁ
ÁÁÁÁ

D1
ÁÁÁÁÁ
ÁÁÁÁÁ

D0
ÁÁÁÁ
ÁÁÁÁ

HPACK
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á

The host initializes the ’C31 by pulsing the INIT signal (writes a 0 followed by

a 1 to the INIT bit field of the parallel port control register). This signal resets

the ’C31 and activates the bootload mode. The host then downloads your pro-

gram or the communications kernel to the ’C31. The parallel port is mapped

into the ’C31 memory to the address range 0xFFF000–0xFFFFFF, as shown

in Figure 4–4, page 4-7.

The host sends data to the ’C31 in the following way:

1) The host writes the byte to be transmitted to the I/O-mapped area of the

host’s parallel port data lines (I/O address 0x378 for LPT 1).

2) The host drives the HPSTB signal low and waits for an acknowledgement.

The HPSTB signal interrupts the ’C31 by pulsing the INT2 signal, indicat-

ing that the host is requesting the transfer of a packet. The INT2 signal is

needed only for the initial packet transfer request and is ignored during the

transmission of the packet.

3) The ’C31 starts a one-wait-state read access to location 0xFFF000. The

PAL decodes this address as the host interface active (HPACK) signal,

drives the host’s ERROR signal low, and drives the ’C31’s READY signal

high. This prevents the ’C31 from completing its read access. The host

uses the ERROR (HPACK) signal to acknowledge that the ’C31 is ready

to receive the data.

 DSK Hardware Interface

4-5 Functional Overview

4) The host drives the HPSTB signal high, indicating to the ’C31 that the data

is ready. The PAL detects the raising edge of HPSTB and drives the ’C31’s

READY signal low, concluding the ’C31 read cycle.

5) This process is repeated until all four bytes are transferred (least signifi-

cant byte first). At each transfer, the ’C31 pieces the bytes together to form

a 32-bit word.

The host receives data in a similar manner:

1) The host waits for the HPACK signal that indicates the ’C31 has under-

stood the host request for a packet transfer.

2) The ’C31 starts a one-wait-state write access to location 0xFFF000. The

PAL decodes this address as the HPACK signal, drives the host’s ERROR

signal low, and drives the ’C31’s READY signal high. This prevents the

’C31 from completing its write access. The host uses the ERROR signal

to acknowledge that the ’C31 is already sending data.

3) When the host receives the HPIA signal, it drives PSTROBE low and the

host reads a byte or 4-bit nibble, depending on whether a bidirectional par-

allel printer is present in the host.

4) The host drives the HPSTB signal high, indicating to the ’C31 that the data

was read. The PAL detects the raising edge of HPSTB and drives the

’C31’s READY signal low, concluding the ’C31 write cycle. This completes

the ’C31 read cycle.

5) This process is repeated until all four bytes or eight nibbles are transferred

(least significant byte first). During each transfer, the host pieces the bytes

together to form a 32-bit word.

Note:

During the boot load process, the ’C31 does not read the third and fourth
bytes of the first 32-bit word. The boot loader acts as if it is reading from an
EPROM and skips these bytes.

DSK Hardware Interface

 4-6

TLC32040 AIC hardware interface

The TLC32040 analog interface circuit (AIC) on the DSK provides:

� A single-channel, input/output, voice-quality analog interface with 14-bit

dynamic range ADC and DAC

� Variable ADC and DAC sampling rate of up to 20 000 samples per second

� Output reconstruction filter

� Bypassable, switched-capacitor, anti-aliasing input filter

� Auxiliary analog input channel, selectable

The DSK connects the TLC32040 AIC to the ’C31 serial port through a header

and 200 Ω isolation resistors. The header lets you disconnect the AIC and use

the ’C31’s serial port in the daughterboard. Two additional pins from the ’C31

control resetting and clocking signals to the AIC:

� The ’C31’s TIMER0 pin drives the master input clock to the AIC

� The ’C31’s XF0 signal resets the AIC

The AIC’s analog input and output are connected to RCA plugs. These signals

are line-level compatible (+/–3V peak) and can be connected to audio

line-level inputs and outputs.

The output can also be connected directly to a speaker but will not have signifi-

cant output level as the output drive is limited by the AIC output driver and

series isolation register. For best results, use an external amplifier or high im-

pedance speaker, such as a headphone.

Note:

If the AIC is used with parameters outside the tested range, the AIC perfor-
mance may be degraded from that specified in the data sheet. See Appendix
C, TLC32040 Data Sheet, for more information.

 DSK Hardware Interface

4-7 Functional Overview

DSK memory map

Since host communications occur through the ’C31 parallel bus, the PAL

decodes the address of the ’C31 to determine when it is accessing the host

interface according to the memory map shown in Figure 4–4.

Figure 4–4. DSK Memory Map

ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ

0h

FFFh

1000h

7FFFFF
80000h

400000h

7FFFFFh
800000h

807FFFh
808000h

809800h

809BFFh
809C00h

809F00

809FC0h
809FC1h

809FFFh
80A000h

0x0BFFFFFh
0x0C00000h

0x0DFFFFFh
0x0E00000h

0x0EFFFFFh
0x0FFF000h

0x0FFFFFFh

Reserved for boot loader
operations

Boot 1

External
USER_BOOT

Boot 2

Reserved
(32K)

Peripheral bus
memory-mapped registers

(6K internal)

RAM block 0
(1K internal)

Interrupt and trap branches

External USER_RAM

RAM block 1
(1K internal)

External USER_IO

External HPI
(non interlocking)

Boot 3
External HPI
(interlocking)

Kernal and Vectors occupy last
256 words of RAM 1

DSK Communications Kernel

 4-8

4.2 DSK Communications Kernel

Upon reset, the host downloads a communications kernel to the ’C31 using the

boot loader. This communications kernel provides a set of low-level routines

that allow the host and the ’C31 to exchange information and perform debug-

ging functions.

Data packets

The host and the ’C31 communicate by exchanging packets of data.

Figure 4–5 shows the structure for data packets. The data-packet headers

typically consist of four fields: command, data-stream length, target address,

and target index. This header is followed by the data stream as shown in

Figure 4–5. The header fields are described as follows:

� Command directs the handling of the packets. See the Commands sec-

tion for more information.

� Data-stream length indicates the length of data in the data stream.

� Target address points to the memory location where data is read from or

written to.

� Target index post-increments the value of the target address after a read

or write of a single data item.

Figure 4–5. Data-Packet Structure

Command

Data-stream length

Target address

Target index
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Data stream

 DSK Communications Kernel

4-9 Functional Overview

Commands

When the ’C31 receives an interrupt from the host (INT2), the ’C31 saves the

current state of the CPU and then receives a packet. Once the ’C31 receives

a packet, the communications kernel analyzes the command entry in the

header to direct the handling of the packet. The command entry provides the

low-level routines necessary to communicate with the host and debug the sys-

tem. The communications kernel supports these commands:

XWRIT Write a block of data from the host to the DSK. This command
takes data-stream-length items from the host and writes them
into the ’C31’s memory location pointed to by the target address.
The target address is incremented by the target index after each
write operation.

XREAD Read a block of data from the DSK to the host. This command
reads data-stream-length items from the ’C31’s memory location
pointed by the target address and sends them to the host. The
target address is incremented by the target index after each read
operation.

XCTXT Get the ’C31 context save buffer address.

XRUNF Restore the context of the CPU and execute code until a
breakpoint is encountered or a halt command is issued. This
command is used for debugging.

XSTEP Restore the context of the CPU, execute a single instruction, and
then save the context of the CPU. This command is used for
debugging.

XHALT Save the context of the CPU and wait for a new command. This
command is used for debugging.

DSK Communications Kernel

 4-10

Debugging functions

Several debugging functions are implemented within the communications ker-

nel by building upon the low-level communications commands. The kernel’s

debugging functions can execute as a background task that is integrated into

the system. Debugging does not halt the system, but allows concurrent execu-

tion of other tasks. Debugging is fast and efficient and requires only a host in-

terface. However, it does consume some amount of processor memory and

bandwidth.

In contrast, scan-based emulation, which is another popular debugging meth-

odology, is extremely helpful since it does not consume system memory and

it provides a snapshot in time of the processors in the system. The DSK board

has an MPSD header that allows the use of the XDS510 scan-based emulator.

However, scan-based emulation is a non real-time emulation that requires the

complete system to halt. Due to the low data-transfer rates, it is often inade-

quate for application data transfers. Also, external interrupts are often

masked, and can effectively freeze communications and other interrupt-driven

tasks. Halting and restarting the processor causes many breaks in the CPU

pipeline, which defeats the purpose of real-time operation.

Since the debugging functions provided in the communications kernel operate

as a background task, they never disable the CPU or force a pipeline flush. For

example, single-stepping an opcode in scan-based emulation executes the

opcode, flushes the pipeline, and freezes the timers and DMA. On the other

hand, real-time debugging follows standard interrupt service routine rules for

context switching.

Due to the real-time nature of the debugging session, debugging functions

save and restore the context of the CPU before and after executing the debug-

ging function. The kernel implements this context save as a typical interrupt

service routine that saves and restores all CPU registers (28 registers).

Peripheral control registers are not preserved, because the communications

kernel does not modify them. Note that the extended-precision CPU registers

require two memory locations to store the most significant 8 bits and the least

significant 32 bits. After saving the context, the CPU enters a spin mode, where

it waits for additional commands. During this time, the context area can be

downloaded, displayed, or modified, usually under the supervision of a host

debugger routine. An XRUNF or XSTEP command indicates to the CPU that

it needs to restore the context area to its correct running state and then

continue execution. The host accesses the ’C31’s context-save area by

looking up the pointer to the context through the XCTXT command.

 DSK Communications Kernel

4-11 Functional Overview

The communications kernel implements breakpoints by replacing the code at

the desired location with a TRAPn opcode. When the CPU encounters a

TRAP, the context-save routine is invoked, the CPU enters spin mode, writes

an acknowledge to the host, and waits for a new command. While in spin

mode, the CPU can receive new interrupts.

The communications kernel implements CPU halt (XHALT) in a manner similar

to breakpoint halts, but the interrupt source originates from the host, not a

TRAP opcode. The main difference is that the registers used by the commu-

nications kernel are restored before invoking a full context save and falling into

spin mode.

The kernel implements XRUN by restoring the context followed by a standard

return from interrupt. The processor is then free to execute code.

The communications kernel implements the opcode XSTEP by using a

reserved interrupt in the ’C31: Serial Port 1 transmit interrupt (XINT1).

Figure 4–6, on page 4-12, shows the single-step routine flow diagram. The

communications kernel:

� Restores the context of the CPU

� Places the program counter into R5

� Clears INT2

� Sets the XINT1 interrupt

� Restores the status register

� Sets a delayed branch on R5

The delayed branch executes the next three instructions:

1) Setting the global interrupt enable

2) Restoring R5

3) Restoring the data page pointer

By coordinating the setting of the XINT1 interrupt and the branch-to-the-user

program, the kernel allows only a single instruction to execute before servicing

the pending interrupt. When the interrupt is recognized, the kernel saves the

CPU context, sends an acknowledge to the host, branches to the spin mode,

and waits for a new command.

DSK Communications Kernel

 4-12

Figure 4–6. Single-Step Flow Diagram

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Context restore

ldi

and

tstb

bnz

ldiu

BUD

or

ldi

ldiu

@_PC,R5

CINT2,IF

4,IF

$–3

@_ST,ST

R5

2000h,ST

@_R5,R5

@_DP,DP

;

;

;

;

;

;

;

;

;

return to PC from TOS return

Clear/Poll INT2 before SSTEP or RUNF

Set XINIT1 interrupt

restore Status

turn on INT’s

restore DP

XINIT1 occurs

Context save

Send trap
acknowledge to host

Wait in spin loop

 DSK Communications Kernel

4-13 Functional Overview

Table 4–1.Single-Step Pipeline Flow

Cycle Description Fetch Decode Read Execute

1 BUD R5

2 or 2000h,ST BUD R5

3 ldi @_R5,

R5

or 2000h,ST BUD R5

4 ldp @_DP,DP ldi @_R5,R5 or 2000h,ST BUD R5

5 Set Global Interrupt Enable USER1 ldp @_DP,DP ldi @_R5,R5 or 2000h,ST

6 Interrupt recognized USER2 USER1 ldp @_DP,DP ldi @_R5,R5

7 Jam interrupt in pipeline
(discard USER2 fetch)

– – – XINT1 USER1 ldp @_DP,DP

8 Execute USER1 instruction – – – – – – XINT1 USER1

9 Clear interrupt flag; clear
GIE; store return address on
stack; read vector table

– – – – – – – – – XINT1

10 Pipeline begins to fill with
interrupt service routine

XSTEP ISR – – – – – – – – –

11 Pipeline continues to fill with
ISR

ISR2 XSTEP ISR – – – – – –

12 Pipeline continues to fill with
ISR

ISR3 ISR2 XSTEP ISR – – –

13 Execute first instruction of
ISR

ISR4 ISR3 ISR2 XSTEP ISR

Table 4–1 describes the pipeline flow that sets the XINT1 interrupt and

branches to your code. This table shows that the activities in the pipeline are

coordinated so that the code is fetched at the same time global interrupts are

enabled. In this way, the interrupt is placed in the pipeline right after fetching

the second instruction. This instruction is discarded and the pipeline is filled

with the interrupt service routine (ISR).

Another way of interpreting CPU interrupts is to treat them as a special kind

of opcode that is inserted into the pipeline. Instructions that are in the pipeline

before the interrupt occurs must complete execution.

TLC32040 AIC Initialization

 4-14

4.3 TLC32040 AIC Initialization

To use the TLC32040 analog interface circuit (AIC), you must follow a se-

quence of steps to initialize and set up the ’C31’s timer and serial port, and to

reset and program the AIC. The following subsections describe this process.

Resetting the AIC

As shown in Figure 4–1, page 4-3, the ’C31’s XF0 signal is connected to the

RESET signal of the AIC. By toggling the RESET signal, the ’C31 can reset

the AIC. This is achieved by executing the following instructions:

ldi 2h,IOF ; Pull AIC into reset

ldi 6h,IOF ; Pull AIC out of reset

Initializing the ’C31 timer

As shown in Figure 4–1, page 4-3, the ’C31’s timer (TCLKO) signal is con-

nected to the AIC’s master clock (MCLK) signal. The MCLK signal drives all

the key logic signals of the AIC, such as the shift clock, the switched-capacitor

filter clocks, and the A/D and D/A timing signals. The timer pulses the TCLK0

signal whenever the ’C31 timer counter register (memory mapped to

0x0080 8024h) counts up to the timer period register (memory mapped to

0x0080 8028h) value. Then, the timer counter registers reset to zero and re-

peat. (For a detailed description of the ’C31 timer, refer to the TMS320C3x

User’s Guide). Because of differences between the maximum frequency of the

’C31’s timer and the maximum and minimum frequencies of the AIC, the fol-

lowing constraints should be observed:

� Minimum Timer Period Register Value.The ’C31 50 MHz can generate

a maximum timer frequency of 12.5 MHz (CLKIN/4), which is above the

AIC’s master clock frequency maximum of 10 MHz. Therefore, the ’C31’s

timer counter register’s minimum value should be 1, for a master clock fre-

quency of 6.25 MHz (CLKIN/8). If you sample at higher frequencies than

those specified for the AIC (greater than 20 kHz), the minimum value of

the timer counter register should be 0. However, these higher frequencies

are beyond the specifications of the TLC32040 data sheet and resulting

performance is not described. See Appendix C, TLC32040 Data Sheet,

for more information.

 TLC32040 AIC Initialization

4-15 Functional Overview

� Maximum Timer Period Register Value. The AIC’s minimum master

clock frequency is 75 kHz. Taking into account the ’C31 maximum timer

frequency of 12.5 MHz and the AIC’s minimum master clock frequency,

the ’C31’s timer counter register maximum value should be 165 (12.5 MHz

/ 75 kHz = 166.7). The ’C31’s timer counts down to 0, therefore, you need

to subtract 1 from this number (166 – 1 = 165). Note that the TLC32040

specification describes a minimum clock frequency since the internal sig-

nals of the AIC are stored in capacitors that must be periodically updated.

� Timer Initialization. The following ’C31 assembly code shows how to set

up the timer with a timer counter of 1 and the timer global control register

(TGCR0) set with TCLK0 as the timer pin, start the timer

(GO and HLD = 1), start the internal clock source, and start the clock

mode:

TGCR0 .set 808020h ; Timer 0 global control register

TCNT0 .set 808024h ; Timer 0 counter register

TPR0 .set 808028h ; Timer 0 period register

TIMVAL .word 3c1h ; Timer global control register value

ldp @TGCR0 ; Set Data Page

ldi 0h,R4 ; Initialize R4 to zero

ldi 1h,R0 ; Initialize R0 to 1

sti R4,@TGCR0 ; Reset timer0

sti R0,@TPR0 ; Store timer0 period

sti R4,@TCNT0 ; Reset timer0 counter

ldi @TIMVAL,R7 ; Load timer control value

sti R7,@TGCR0 ; Start timer 0

Initializing the ’C31 serial port

This subsection explains how to initialize the following:

� ’C31 serial port

� ’C31 serial-port control register (memory-mapped to 0x0080 8040h)

� FSX/DX/CLKX control register (memory-mapped to 0x0080 8042h)

� FSR/DR/CLKR control register (memory-mapped to 0x0080 8043h)

For a detailed description of the ’C31 serial port, see the TMS320C3x User’s

Guide.

TLC32040 AIC Initialization

 4-16

The ’C31 assembly code in Example 4–1 initializes the serial port global con-

trol register (SGCR0) in the following manner:

� By issuing transmit and receive resets

� Enabling receive and transmit interrupts

� Setting 16-bit receive and transmit transfers

� Setting FSX and FSR, CLKX and CLKR active low

� Setting continuous mode

� Setting variable data rate transfers:

Example 4–1.Initialize the Serial Port Global Control Register

SGCR0 .set 808040h ; Serial port 0 global control register ;

SPCX0 .set 808042h ; Serial port 0 FSX/DX/CLKX control reg. ;

SPCR0 .set 808043h ; Serial port 0 FSR/DR/CLKR control reg. ;

SINIT0 .word 0e973300h ; Enable RINT & 16–bit transfers

SINIT1 .word 111h ; Configure as serial port pins

ldp @SGCR0 ; Set Data Page

ldi 0h,R4 ; Initialize R4 to zero

sti R4,@SGCR0

ldi @SINIT1,R7 ; Reset and

sti R7,@SPCX0 ; initialize serial port

sti R7,@SPCR0 ; initialize serial port

ldi @SINIT0,R7 ; Reset and

sti R7,@SGCR0 ; initialize serial port

Also refer to the example code supplied with the DSK for help on setting up

the AIC.

Initializing the AIC

Once the ’C31 supplies MCLK, has its serial port initialized, and resets the AIC,

you can initialize the AIC to a specified sample rate. The AIC sampling rate is

determined by the values of two registers called A and B in the AIC’s transmit

and receive sections. These values are loaded into the respective counter

whenever the counter counts down to 0. Tx counter A and B determine the D/A

conversion timing, Rx counter A and B determine the A/D conversion timing.

For more information, refer to Appendix C, TLC32040 AIC Data Sheet. The

formula for the conversion frequency is given in Equation 4–1.

Equation 4–1. Conversion Frequency

Conversion frequency
MCLK

A B
_ =

2 ��

 TLC32040 AIC Initialization

4-17 Functional Overview

To ensure that the switched-capacitor lowpass and bandpass filters meet their

transfer function characteristics, the frequency of the clock inputs of the

switched-capacitor filter must be 288 kHz; otherwise, the upper and lower cut-

off frequencies of the low-pass and band-pass are sealed accordingly. The

switched capacitor filter frequency is given in Equation 4–2.

Equation 4–2. Switched Capacitor Filter Frequency

SCF Clock frequency
MCLK

A
_ _ =

2�

For example, using this equation for an 8-kHz sampling rate with a MCLK of

6.25 MHz, leads to a Tx counter A of 11 [A = MCLK/(2 � SCF)]. Using

Equation 4–2, Tx counter B results in 36 [B = MCLK/(2 � A � Conver-

sion_Frequency)].

To initialize the AIC’s Tx counter A and B registers, you must send a primary

communication followed by a secondary communication (explained in the Pri-

mary communications subsection below, and Secondary communications

subsection, on page 4-18.) Primary communications load values into the D/A

while secondary communications load A/D internal registers, such as the con-

trol register, Tx counters A and B, and Rx counters A and B.

Primary communications

Primary communications have a data value in the 14 MSBs (D15–D2) of data

and a mode selection in the two LSBs (D1–D0). This format is shown in

Figure 4–7.

Figure 4–7. Primary Communication Data Format

ÁÁÁ
ÁÁÁ

D15 ÁÁ
ÁÁ

D14ÁÁÁ
ÁÁÁ

D13ÁÁÁ
ÁÁÁ

D12ÁÁÁ
ÁÁÁ

D11ÁÁÁ
ÁÁÁ

D10 ÁÁ
ÁÁ

D9ÁÁÁ
ÁÁÁ

D8ÁÁÁ
ÁÁÁ

D7ÁÁÁ
ÁÁÁ

D6 ÁÁÁ
ÁÁÁ

D5 ÁÁ
ÁÁ

D4ÁÁÁ
ÁÁÁ

D3ÁÁÁ
ÁÁÁ

D2ÁÁÁ
ÁÁÁ

D1 ÁÁÁ
ÁÁÁ

D0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D/A converter value

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

mode
selection

The AIC sends the data value to the D/A converter and enables one of the

modes shown in Table 4–2 depending on the two LSBs.

TLC32040 AIC Initialization

 4-18

Table 4–2.Primary Communications Mode Selection

LSBs Mode

00 Tx Counter A � TA, Rx Counter A � RA
Tx Counter B � TB, Rx Counter B �� RB

01 Tx Counter A� TA + TA’, Rx Counter A � RA + RA’
Tx Counter B �TB, Rx Counter B � RB

10 Tx Counter A �TA - TA’, Rx Counter A � RA + RA’
Tx Counter B �TB, Rx Counter B � RB

11 Tx Counter A � TA, Rx Counter A � RA
Tx Counter B �TB, Rx Counter B � RB

The second and third modes use TA’ and RA’ registers to advance or slow

down the sampling frequency by shortening or lengthening the sample period.

This is particularly useful in modem applications. It can also enhance the sig-

nal-to-noise performance, perform frequency-tracking functions, and gener-

ate nonstandard modem frequencies.

Secondary communications

Secondary communication follows a primary communication that has the two

LSBs set to 11. This secondary communication programs the AIC by loading

the A, A’, B, or control registers. Figure 4–8 shows the secondary communica-

tion data format. The TA, RA, TB, and RB values are unsigned. The TA’ and

RA’ values are in signed 2s-complement format. The control register enables

and disables auxiliary inputs, bandpass filters, etc.

Figure 4–8. Secondary Communication Data Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X TA register value (unsigned) X X RA register value (unsigned) 0 0

X
TA’ register value (signed 2s

complement) X
RA’ register value (signed 2s

complement) 0 1

X TB register value (unsigned) X RB register value (unsigned) 1 0

X X X X X X X X Control register 1 1

 TLC32040 AIC Initialization

4-19 Functional Overview

Figure 4–9 describes the control register bit fields.

Figure 4–9. Control Register Bit Fields

D7 D6 D5 D4 D3 D2

Input Gain Transmit/Receive AUX IN Pins
Loopback
Function

Bandpass
Filter

0 0 = 1X for � 6V analog input 0 = asynchronous 0 = disables 0 = disables 0 = deletes

0 1 = 2X for � 3V analog input 1 = enables 1 = enables 1 = enables 1 = inserts

1 0 = 4X for � 1.5V analog input

1 1 = 1X for � 6V analog input

The assembly code in Example 4–2 sets the TA and TB registers of the AIC.

This code transmits a 16-bit word to the AIC and then waits until the transmit

interrupt is generated by the serial port. Four commands are transmitted start-

ing with a 0, then the TB and RB values, followed by the TA and RA values,

and finally the control word. TA and RA values should be the last values trans-

mitted, since they change the AIC sample rate. By transmitting these values

last, the sample rate is not changed until the AIC receives the last program

word. In this way, very high sample rates can be achieved. Each command

transmits three 16-bit words: a primary communication, a secondary commu-

nication, and a 0-data word.

TLC32040 AIC Initialization

 4-20

Example 4–2.Setting the TA and TB Registers

;–––

; LOOPAIC.ASM is an example program which shows how to initialize and use

; the TLC32040. The analog output (DAC output) is either a ramp signal

; (RAMPEN=1) or a loopback of the analog input (RAMPEN=0).

;–––

 .start ”AICTEST”,0x809802 ; Start assembling here

 .sect ”AICTEST” ;

;––––––––––––––––––––––––––––––––––––

; Define constants used by program

;––––––––––––––––––––––––––––––––––––

RAMPEN .set 1 ; Set to 1 to generate ramp at AOUT

T0_ctrl .set 0x808020 ; TIM0 gl control

T0_count .set 0x808024 ; TIM0 count

T0_prd .set 0x808028 ; TIM0 prd

S0_gctrl .set 0x808040 ; SP 0 global control

S0_xctrl .set 0x808042 ; SP 0 FSX/DX/CLKX port ctl

S0_rctrl .set 0x808043 ; SP 0 FSR/DR/CLKR port ctl

S0_xdata .set 0x808048 ; SP 0 Data transmit

S0_rdata .set 0x80804C ; SP 0 Data receive

TA .set 12 ; AIC timing register values

TB .set 15 ;

RA .set 12 ;

RB .set 15 ;

GIE .set 0x2000 ; This bit in ST turns on interrupts

;––––––––––––––––––––––––––––––––––––

; Define some constant storage data

;––––––––––––––––––––––––––––––––––––

A_REG .word (TA<<9)+(RA<<2)+0 ; A registers

B_REG .word (TB<<9)+(RB<<2)+2 ; B registers

C_REG .word 10000011b ; control

S0_gctrl_val .word 0x0E970300 ; Serial port control register values

S0_xctrl_val .word 0x00000111 ;

S0_rctrl_val .word 0x00000111 ;

RAMP .word 0 ; RAMP count value

ADC_last .word 0 ; Last received ADC value

 TLC32040 AIC Initialization

4-21 Functional Overview

Example 4–2.Setting the TA and TB Registers (Continued)

;**

; Begin main code loop here

;**

main or GIE,ST ; Turn on INTS

 ldi 0x34,IE ; Enable XINT/RINT/INT2

 b main ; Do it again!

;–––––––––––––––––––––––––––––––

DAC2 push ST ; DAC Interrupt service routine

 push R3 ;

 .if RAMPEN ; If RAMPEN=1 assemble this code

 ldi @RAMP,R3 ;

 addi 256,R3 ; Add a value to RAMP

 sti R3,@RAMP ;

 .else ; Else assemble this

 ldi @ADC_last,R3 ;

 .endif ;

 andn 3,R3 ;

 sti R3,@S0_xdata ; Output the new DAC value

 pop R3 ;

 pop ST ;

 reti ;

;–––––––––––––––––––––––––––––––

ADC2 push ST ;

 push R3 ;

 ldi @S0_rdata,R3 ;

 sti R3,@ADC_last ;

 pop R3 ;

 pop ST ;

 reti ;

;***;

; The startup stub is used during initialization only ;

; and can be safely overwritten by the stack or data ;

;***;

 .entry ST_STUB ; Debugger starts here

ST_STUB ldp T0_ctrl ; Use kernel data page and stack

 ldi 0,R0 ; Halt TIM0 & TIM1

 sti R0,@T0_ctrl ;

 sti R0,@T0_count ; Set counts to 0

 ldi 1,R0 ; Set periods to 1

 sti R0,@T0_prd ;

 ldi 0x2C1,R0 ; Restart both timers

 sti R0,@T0_ctrl ;

 ;–––––––––––––––––––––

 ldi @S0_xctrl_val,R0;

 sti R0,@S0_xctrl ; transmit control

 ldi @S0_rctrl_val,R0;

 sti R0,@S0_rctrl ; receive control

 ldi 0,R0 ;

 sti R0,@S0_xdata ; DXR data value

 ldi @S0_gctrl_val,R0; Setup serial port

 sti R0,@S0_gctrl ; global control

TLC32040 AIC Initialization

 4-22

Example 4–2.Setting the TA and TB Registers (Continued)

;==;

; This section of code initializes the AIC ;

;==;

AIC_INIT LDI 0x10,IE ; Enable only XINT interrupt

 andn 0x34,IF ;

 ldi 0,R0 ;

 sti R0,@S0_xdata ;

 RPTS 0x040 ;

 LDI 2,IOF ; XF0=0 resets AIC

 rpts 0x40 ;

 LDI 6,IOF ; XF0=1 runs AIC

 ;–––––––––––––––––––––

 ldi @C_REG,R0 ; Setup control register

 call prog_AIC ;

 ldi 0xfffc ,R0 ; Program the AIC to be real slow

 call prog_AIC ;

 ldi 0xfffc|2,R0 ;

 call prog_AIC ;

 ldi @B_REG,R0 ; Bump up the Fs to final rate

 call prog_AIC ; (smallest divisor should be last)

 ldi @A_REG,R0 ;

;–––––––––––––––––––––––––––––––

prog_AIC ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy

 sti R1,@S0_xdata ;

 idle

 ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy

 or 3,R1 ; Request 2 ndy XMIT

 sti R1,@S0_xdata ;

 idle ;

 sti R0,@S0_xdata ; Send register value

 idle ;

 andn 3,R1 ;

 sti R1,@S0_xdata ; Leave with original safe value in DXR

 ;–––––––––––––––––––––

 ldi @S0_rdata,R0 ; Fix the receiver underrun by reading

 b main ; the DRR before going to the main loop

;**;

; Install the XINT/RINT ISR handler directly into ;

; the vector RAM location it will be used for ;

;**;

 .start ”SP0VECTS”,0x809FC5

 .sect ”SP0VECTS”

 B DAC2 ; XINT0

 B ADC2 ; RINT0

 Host Software

4-23 Functional Overview

4.4 Host Software

The DSK software includes three source code files that manipulate the parallel

printer port and perform the necessary functions to communicate with the

’C31. The commands in each of the source-code files are summarized in the

following subsections. The source files are:

target.cpp includes the low-level routines that manipulate the data
transmissions into packets that are recognized by the
’C31 communications kernel.

driver.cpp includes driver-level routines that control the host’s
parallel printer port interface.

object.cpp uses the target- and driver-level routines to initialize
and download programs to the ’C31.

The following subsections describe the routines contained in each of these

files.

The DSK software also includes an assembler and a debugger. These are de-

scribed in Chapter 5, Using the DSK Assembler, and Chapter 7, Using the DSK

Debugger.

getmem, putmem Host Software

4-24

Host communications target routines

The communications kernel resident in the ’C31 assumes that data transfers

to and from the host are organized into packets as shown in Figure 4–5 on

page 4-8. The target.cpp file includes routines that manipulate data transmis-

sions between the host and the ’C31 into this packet structure. These routines

read and write blocks of data from the ’C31 memory, send commands to the

’C31, perform context save and restores, and provide debugging commands,

such as run, single-step, and halt.

Get Memorygetmem

Syntax MSGS getmem (ulong addr, ulong length, ulong *data)

Description The getmem routine reads a block of data from the ’C31 memory.

Arguments addr Address of the data to be read

length Size of memory block to read

data Pointer to host memory address in which to place data read from the

’C31

Return Value NO_ERR Block read completed successfully

RECV_ERR Failed reception

XMIT_ERR Failed transmission

Put Memoryputmem

Syntax MSGS putmem (ulong addr, ulong length, ulong *data)

Description The putmem routine writes a block of data into ’C31 memory.

Arguments addr Starting address to write the data to

length Size of memory block to write

data Pointer to host memory address to read data from. The data is then

placed into ’C31 memory.

Return Value NO_ERR Block write completed successfully

XMIT_ERR Failed transmission

 Host Software SSTEP_CPU, RUN_CPU, HALT_CPU

4-25 Functional Overview

Single-Step CommandSSTEP_CPU

Syntax MSGS SSTEP_CPU (void)

Description The SSTEP_CPU routine single-steps one instruction by restoring the context

of the CPU, executing one instruction, and then saving the CPU context. This

command places the CPU in command mode.

Arguments None

Return Value NO_ERR Command and data completed successfully

XMIT_ERR Failed transmission

RECV_ERR Failed reception

Run CommandRUN_CPU

Syntax MSGS RUN_CPU (void)

Description The RUN_CPU routine executes instructions starting at the program counter

obtained from the CPU context save area and ending at a breakpoint, if one

has been set.

Arguments None

Return Value NO_ERR Command and data completed successfully

XMIT_ERR Failed transmission

Halt CommandHALT_CPU

Syntax MSGS HALT_CPU (void)

Description The HALT_CPU routine halts the execution of instructions. This command

places the CPU in command mode and saves the CPU context.

Arguments None

Return Value NO_ERR Command completed successfully

RECV_ERR Failed reception

GET_DEBUG_CTXT Host Software

4-26

Return CPU Context Save AddressGET_
DEBUG_CTXT

Syntax MSGS GET_DEBUG_CTXT (void)

Description The GET_DEBUG_CTXT routine retrieves the ’C31 context save location

starting address.

Arguments None

Return Value NO_ERR Command completed successfully

RECV_ERR Failed reception

XMIT_ERR Failed transmission

 Host Software DSK_reset, input_rdy, recv_long_byte

4-27 Functional Overview

Host communications driver routines

To facilitate the data transfer from the host to the ’C31, the DSK software in-

cludes several driver-level routines in the file driver.cpp. This file includes rou-

tines that manipulate the hardware interface circuitry of the host to reset, send,

and receive data through unidirectional and bidirectional parallel printer ports.

ResetDSK_reset

Syntax MSGS DSK_reset (void)

Description The reset routine resets the DSK by toggling the INIT signal.

Arguments None

Return Value NO_ERR Reset sequence completed

RESET_ERR Reset has failed

Input Readyinput_rdy

Syntax char input_rdy (void)

Description The input_rdy routine indicates that the DSK is ready to receive

Arguments None

Return Value 0 DSK ready to receive data

1 DSK not responding to host command

Receive Long Byterecv_long_byte

Syntax MSGS recv_long_byte (ulong * rcv_data)

Description The recv_long_byte routine receives a 32-bit value in four 8-bit data transfers

(to be used only in bidirectional parallel printer ports).

Arguments rcv_data Address of the value to receive

Return Value NO_ERR Successful reception

RECV_ERR Failed reception

recv_long, xmit_long, xmit_byte Host Software

4-28

Receive Longrecv_long

Syntax ����� � ��
������ ������ ��
���	�	�

Description The recv_long routine receives a 32-bit value in eight 4-bit data transfers (to

be used in bidirectional and unidirectional parallel printer ports).

Arguments rcv_data Address of the value to receive

Return Value NO_ERR Successful reception

RECV_ERR Failed reception

Transmit Longxmit_long

Syntax MSGS xmit_long (ulong snd_data)

Description The xmit_long routine transmits a 32-bit value in four 8-bit data transfers (to

be used in bidirectional and unidirectional parallel printer ports).

Arguments snd_data Value to transmit

Return Value NO_ERR Successful transmission

XMIT_ERR Failed transmission

Transmit Bytexmit_byte

Syntax MSGS xmit_byte (char snd_data)

Description The xmit_byte routine transmits an 8-bit value in a single data transfer (to be

used in bidirectional and unidirectional parallel printer ports)

Arguments snd_data Value to transmit

Return Value NO_ERR Successful transmission

XMIT_ERR Failed transmission

 Host Software LF_Cmd, Init_System

4-29 Functional Overview

Host communications object routines

Using the low-level driver routines, the DSK software provides several high-

level routines that allow the loading of programs or data from dsk3a files or

COFF (Common Object File Format), that move binary data from the host to

the DSK, and that initialize the DSK system. These routines assume an active

communications kernel resident on the ’C31 to send and receive packets of

data. See Appendix A of the TMS320 Floating-Point Assembly Language

Tools User’s Guide for a detailed description of the COFF format.

Load COFFLF_Cmd

Syntax MSGS LF_Cmd (char *infilename)

Description The LF_Cmd routine transmits a file with DSK formatted output or COFF data

into the ’C31’s memory.

When invoking the TMS320 optimizing C compiler use the following switches:

–c (ROM model) and –e c_int00.

Arguments infilename Pointer to the character string containing the COFF filename

Return Value NO_ERR Successful transmission

OPEN_ERR Cannot open file

ACCESS_ERR File not found

INV_COFF_MGC COFF file not created for a TMS320C31

MAX_SECTN More than 64 sections

BAD_OPTN_HDR Incorrect optional COFF header

COM_ERR Communication failure

Initialize SystemInit_System

Syntax MSGS Init_System (char *filename)

Description The Init_System routine initializes the DSK by checking for the presence of

power on the DSK board, resetting the ’C31, and loading the given boot source

file created by hex30.

Arguments Filename pointer to character string containing the boot source filename

Return Value NO_ERR Successful initialization

INIT_ERR Initialization failure

4-30

5-1

Using the DSK Assembler

This chapter tells you how to use the DSK assembler and describes valid DSK

source files.

Topic Page

5.1 Creating DSK Assembler Source Files 5-2.

5.2 Constants 5-8.

5.3 Character Strings 5-10.

5.4 Symbols 5-11.

5.5 Expression Analyzer 5-12.

5.6 Assembling Your Program 5-15.

5.7 Placing Code Sections Memory Locations 5-16.

Chapter 5

Creating DSK Assembler Source Files

 5-2

5.1 Creating DSK Assembler Source Files

To create a DSK assembler source file, you can use almost any ASCII program

editor. Be careful using word processors; these files contain various formatting

codes and special characters.

DSK assembly language source programs consist of source statements that

can contain assembler directives, assembly language instructions, and

comments. Your source statement lines can be up to 80 characters per line.

The next several lines show examples of source statements:

C_REG .set ((10100b)<<2)+3 ; Control word

 .text

start ldi 2h, IOF ; Pull AIC into reset

 ldi 0h, T4 ; Clear R4

 ldp SGCR0

 sti R4, @SGCR0 ; Reset serial port

 ldi @SINIT1, R7 ; Load initialization value 1 into R7

 sti R7, @SPCX0 ; Initialize FSX/DX/CLKX control reg.

 sti R7, @SPCR0 ; Initialize FSR/DR/CLKR control reg.

 ldi @SINIT0, R7 ; Load initialization value 0 into R7

 sti R7, @SGCR0 ; Enable RINT and 16–bit transfers

 sti R4, @DTX0 ; Transmit 0

 sti R4, @TGCR0 ; Reset timer 0

 ldi TIMERPER, R7

 sti R7, @TPR0 ; Store timer 0 period

Your source statement can contain four ordered fields. The general syntax for

source statements is as follows:

[label] [:] mnemonic [operand list] [;comment]

Follow these guidelines:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if you use them, they must begin in column 1.

� One or more blanks must separate each field. Note that tab characters are

equivalent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with

an asterisk or a semicolon (* or ;), but comments that begin in any other

column must begin with a semicolon.

 Creating DSK Assembler Source Files

5-3 Using the DSK Assembler

Using valid labels

Labels are optional for all assembly language instructions and for most (but

not all) assembler directives. When you use them, a label must begin in col-

umn 1 of a source statement. A label can contain up to eight alphanumeric

characters (A–Z, a–z, 0–9, and _). Labels are case-sensitive, and the first

character cannot be a number. For example:

 .start ”.text”,0x809C00

 .entry start

CTRL .set 0

IN .set 1

OUT .set 2

 .text

WSHIFT .word –8

start ldp @stack ; Load data page

 ldi @stack,SP ; Initialize the stack

 ldf 0.0,R0

 ldi 0x100,R0

 lsh @WSHIFT,R0

 BRD jump

 ldf 0.0,R1

 ldf 0.0,R2

 ldf 1.0,R3

jump ldf 1.0,R4

 b start

stack .word $ + 1

 .end

In the preceding example, the colon is optional. The DSK assembler does not

require a label terminator.

When you use a label, its value is the current value of the section program

counter (the label points to the statement it’s associated with). If, for example,

you use the .int directive to initialize several words, a label would point to the

first word. In the following example, the label Begin has the value 0x00809800.

0x00809800 directive Begin .int 0Ah,3,7

0x00809800 0x0000000a <int>

0x00809801 0x00000003 <int>

0x00809802 0x00000007 <int>

When a label appears on a line by itself, it points to the instruction on the next

line:

0x0080981f nocode XMIT

0x0080981f 0x10760010 or 10h, IE

0x00809820 0x06000000 idle

When an opcode or directive references a label, the label is substituted with

the address of the label’s location in memory. The only exception to this is the

.set directive, which assigns a value to a label. If you don’t use a label, the first

character position must contain a blank, a semicolon, or an asterisk.

Creating DSK Assembler Source Files

 5-4

Using the mnemonic field

The mnemonic field follows the label field. The mnemonic field cannot start in

column 1, or it would be interpreted as a label. The mnemonic field can contain

one of the following opcodes:

� Machine-instruction mnemonic (such as ADDI, MPYF)

� Assembler directive (such as .data, .set, .entry)

If you have a label in the first column, a space, colon, or tab must separate the

mnemonic field (opcode) from the label. For example:

;==

 .start ”AICTEST”,0x809900

 .sect ”AICTEST”

GIE .set 0x2000

;==

A_REG .word (TA<<9)+(RA<<2)+0 ; 0x809902

B_REG .word (TB<<9)+(RB<<2)+2 ; 0x809903

C_REG .word 10000011b ; 0x809904 +/– 1.5 V

;

S0_gctrl_val .word 0x0E970300

S0_xctrl_val .word 0x00000111 ;

S0_rctrl_val .word 0x00000111 ;

;

prog_AIC push R1

 push IE

 ldi 0x10,IE

 andn 0x30,IF

 ldi @S0_xdata,R1

 sti R1,@S0_xdata

 idle

 ldi @S0_xdata,R1

 or 3,R1

 sti R1,@S0_xdata

 idle

 sti R0,@S0_xdata

 idle

 andn 3,R1

 sti R1,@S0_xdata

 pop IE

 pop R1

 rets

Refer to the TMS320C3x User’s Guide for syntax specifications on individual

opcodes.

It is necessary to resolve all fields in an opcode. If an opcode field (such as the

section name in a .sect opcode) is omitted, the assembler generates the error

statement, “Invalid, Undefined, or Missing Operand”.

 Creating DSK Assembler Source Files

5-5 Using the DSK Assembler

Using the operand field

The operand field is a list of operands that follow the mnemonic field. An

operand can be a constant (see Section 5.2, page 5-8), a symbol (see Sec-

tion 5.4, page 5-11), or a combination of constants and symbols in an expres-

sion. You must separate operands with commas.

The assembler lets you specify that a constant, or symbol should be used as

an immediate value, a direct address or an indirect address. The following

rules apply to the operands of instructions.

� No prefix — the operand is a well-defined immediate value. The

assembler expects a well-defined immediate value, such as a register

symbol or a constant. For floating-point operations, use an extended reg-

ister (R0–R7). For integer operations, use any register. For example:

Label:ADDI 0x0, R4

This instruction adds the integer value 0 to the extended-precision register

R4.

� @ prefix — the operand is direct address. If you use the @ sign as a

prefix, the assembler treats the operand as the contents of a 32-bit

address, specified by @addr. The 16 MSBs of the address are specified

by the DP register; the 16 LSBs are specified by the instruction word. For

example:

Label:LDP 0x0080

ADDI @0x9800, R0

The first line of this code sets the DP register to 0x0080. The second line

uses the concatenated value of DP and 0x9800 to form an address of

0x0080 9800. The value stored at 0x0080 9800 to is then added the value

stored in R0.

� * prefix — the operand is a register indirect address. If you use the *

sign as a prefix, the assembler treats the operand as an indirect address;

that is, it uses the operand as an address. For example:

Label:ADDI *AR3, R0

This instruction adds the integer stored in the location pointed to by AR3 to

the value stored in R0.

Table 5–1 lists the various forms that indirect operands may take. The

displacement can be specified as a value from 0–255 or as one of the

index registers (IR0 or IR1). It is not necessary to specify the displacement

if it is 1, because the assembler assumes a default displacement of 1. For

example, *++ARn is equivalent to *++ARn(1).

Creating DSK Assembler Source Files

 5-6

Table 5–1. Indirect Addressing

Operand Description

*ARn Indirect with no displacement

*+ARn(disp) Indirect with predisplacement or preindex add

*–ARn(disp) Indirect with predisplacement or preindex subtract

*++ARn(disp) Indirect with predisplacement or preindex add and modifica-
tion

*––ARn(disp) Indirect with predisplacement or preindex subtract and
modification

*ARn++(disp)[%] † Indirect with postdisplacement or postindex add and modifi-
cation

*ARn––(disp)[%] † Indirect with postdisplacement or postindex subtract and
modification

*ARn++(IR0)B Indirect with postindex (IR0) and bit-reversed modification

† Optional circular modification (specified by %)

For more information on indirect addressing and bit-reversed addressing,

refer to the TMS320C3x User’s Guide.

 Creating DSK Assembler Source Files

5-7 Using the DSK Assembler

Commenting your source file

A comment can begin in any column and extends to the end of the source line.

A comment can contain any ASCII character, including blanks. Comments are

printed in the assembly source listing, but they do not affect the assembly.

You can comment your source file in one of two ways. The most common way

is to place a semicolon anywhere on the line you want to comment. All text

placed after the semicolon is ignored by the DSK assembler. For example:

* Memory map register locations

SGR0 .set 0x808040 ; Serial port 0 global control register

SPCX0 .set 0x808042 ; Serial port 0 FSX/DX/CLKX control reg.

SPCR0 .set 0x808043 ; Serial port 0 FSR/DR/CLKR control reg.

DTX0 .set 0x808048 ; Serial port 0 data transmit register

DRX0 .set 0x80804c ; Serial port 0 data receive register

TGCR0 .set 0x808020 ; Timer 0 global control register

TCNT0 .set 0x808024 ; Timer 0 counter register

TPR0 .set 0x808028 ; Timer 0 period register

Another way to comment your source file is to use an asterisk in column 1 of

your code.

If the asterisk is not in column 1, the assembler assumes it is part of your code

and may generate an error.

A source statement that contains only a comment is valid.

Constants

 5-8

5.2 Constants

The assembler supports five types of constants:

� Binary integer constants

� Decimal integer constants

� Hexadecimal integer constants

� Floating-point constants

� Character constants

The assembler maintains each constant internally as a 32-bit quantity.

Constants are not sign extended. For example, the constant 0FFh is equal to

00FF (base 16) or 255 (base 10); it does not equal –1.

Binary integers

A binary integer constant is a string of 0s and 1s followed by the suffix B (or

b). Examples of valid binary constants include:

0101b Constant equal to 5

10101B Constant equal to 21

–0101b Constant equal to –5

Decimal integers

A decimal integer constant is a string of decimal digits, ranging from

–2 147 483 647 to 4 294 967 295. Examples of valid decimal constants in-

clude:

1000 Constant equal to 1 00010 or 3E816

–32768 Constant equal to –32 76810 or 800016

25 Constant equal to 2510 or 1916

Hexadecimal integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits

followed by the suffix H (or h) or preceded by the prefix 0x. Hexadecimal digits

include the decimal values 0–9 and the letters A–F or a–f. A hexadecimal

constant must begin with a decimal value (0–9). Examples of valid hexadeci-

mal constants include:

78H Constant equal to 12010 or 007816

0x0f Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

 Constants

5-9 Using the DSK Assembler

Floating-point constants

A floating-point constant is a string of decimal digits, followed by an optional

decimal point, fractional portion, and exponent portion. Examples of floating-

point numbers include:

1.75e–10 represented internally as 2202 629A16

4 represented internally as 0200 000016

–3.5 represented internally as 01A0 000016

3.2e5 represented internally as 12E3 C00016

A floating-point constant can be preceded with a + or – sign.

Character constants

A character constant is a single character enclosed in single quotes. The

characters are represented as 8-bit ASCII characters. Examples of valid char-

acter constants include:

‘ab’ represented internally as 0000 006116

‘C’ represented internally as 0000 004316

Note the difference between character constants and character strings. A

character constant represents a simple integer value; a string is a list of char-

acters.

Character Strings

 5-10

5.3 Character Strings

A character string is a string of characters enclosed in double quotes. The

maximum length of the string varies and is defined for each directive that re-

quires a character string. Examples of valid character strings include:

“sample program” defines a 14-character string, sample program

“temp.asm” defines an 8-character string, temp.asm

Character strings are used for the following:

� Filenames as in .copy “filename”

� Section names as in .sect “section name”

� Operand of a .string directive

 Symbols

5-11 Using the DSK Assembler

5.4 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol

name is a string of up to eight alphanumeric characters (A–Z, a–z, 0–9, $, –,

and +); symbols cannot contain embedded blanks. The first character in a

symbol cannot be a number or special character. The symbols you define are

case-sensitive; for example, the assembler recognizes ABC, Abc, and abc as

three unique symbols.

Labels

Symbols that are used as labels become symbolic addresses that are

associated with locations in the program. A label must be unique. Note that you

should not use register names as labels.

Constants

Symbols can be set to constant values. By using constants, you can equate

meaningful names with constant values. The .set directive enables you to set

constants to symbolic names. Symbolic constants cannot be redefined. The

following example shows how these directives can be used:

.text ; initialize PC

K .set 12 ; constant definition K=12

K*2 .set 24 ; constant definition K*2=24

BIN .set 01010101b ; BIN = 055h

max_buf .set K*2 ; max_buf = K*2 = 24

LDI K, R0 ; loads 12

LDI –K, R0 ; loads –12

LDI K*2, R0 ; loads 24

LDI max_buf,R0 ; loads 24

LDI !BIN, R0 ; loads 0AAh

Predefined symbolic constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section pro-

gram counter (SPC).

� Register symbols, including

AR0–AR7 IF PC RS

BK IOF R0–R7 SP

DP IR0 RC ST

IE IR1 RE

Expression Analyzer

 5-12

5.5 Expression Analyzer

The expression analyzer used in the DSK assembler includes ANSI C math

library functions that aid in the generation of tables and constants. These func-

tions eliminate the tedious work of calculating tables and constants before in-

cluding them in the assembly process. The functions are shown in Table 5–2.

Note:

If any of these functions are used, a post-assembly warning is generated to
remind you that these functions are not supported by the TMS320 floating-
point code generation COFF tools. If you want to use these functions with the
COFF toolset, then extract the resulting hexadecimal values from the DSK
listing file.

Table 5–2.ANSI C Math Library Functions Supported by the DSK Assembler
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Function
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

long abs(long);

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Absolute value

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

long labs(long); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Absolute value

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double fabs(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Floating-point absolute
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double cos(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Cosine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double acos(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arc cosine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double cosh(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hyperbolic cosine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double sin(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sine
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double asin(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arc sine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double sinh(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hyperbolic sine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double tan(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tangent

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁdouble atan(double);

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁArc tangentÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double tanh(double);

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hyperbolic tangent

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

long ceil(long); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ceiling operator

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double floor(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Floor operator
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double exp(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Natural exponent (e) raised to the power of a valueÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double log(double);

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Natural logarithm (ln)

 Expression Analyzer

5-13 Using the DSK Assembler

Table 5–2.ANSI C Math Library Functions Supported by the DSK Assembler (Continued)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Function ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double log10(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logarithm (based–10)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double pow10(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10 raised to the power of a valueÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double sqrt(double);

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Square root

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double log2(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logarithm (based–2)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double pow(double,double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

First value raised to the power of the second value
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

long br(long, long);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Align the first value to the next address located by
raising the second value to the power of 2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

long circ(long,long);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Align the first value to the next address located by
raising the second value to the power of 2

A table of values can be generated using certain assembler directives. To gen-

erate a table of values use the .loop/.endloop directives and the math library

functions listed in Table 5–2. For example, to create the twiddle table for an

FFT, use the following directives:

TWlength .set 16 ; Table size is 16

.brstart ”TwiddleTable”,2*TWlength ; Align to valid br–address

TWstart: ; create label OUTside loop

.loop TWlength ; 16 pairs of complex numbers

.float sin(($–TWStart)*2*pi/TWlength) ; sin(n*pi/N)

.float cos(($–TWStart)*2*pi/TWlength) ; cos(n*pi/N)

.endloop

Table 5–3 shows the operators recognized by the DSK assembler.

Expression Analyzer

 5-14

Table 5–3.Operators Used in Expressions

Operator Description Operator Description

+ Addition != Not equal

- Subtraction = Equal to

* Multiplication == Equal to

/ Division & Logical AND

% Modulo Division | Logical OR

> Greater than ^ Logical XOR

>= Greater than or equal to ~ Bitwise negation
(1s complement)

< Less than ! Logical NOT. If expression = 0
then 1 is returned, else 0 is
returned.

<= Less than or equal to << Shift left

<> Not equal >> Shift right

 Assembling Your Program

5-15 Using the DSK Assembler

5.6 Assembling Your Program

Before you attempt to debug your programs, you must first assemble them.

Here’s the command for invoking the assembler when preparing a program for

debugging:

dsk3a [filenames] [options]

dsk3a is the command that invokes the assembler.

filenames are one or more assembly language source files. Filenames
are not case-sensitive. If you do not specify an extension, the
assembler assumes the default extension .asm.

options affect the way the assembler processes input files.

You can specify options and filenames in any order on the command line.

Table 5–4 lists the assembler options; the following subsections describe the

options.

Table 5–4.Summary of Assembler Options

Option Description

Exxx Stops assembling after xxx error messages occur (5 is the default)

Q Suppresses the banner and all progress information (quiet)

Wxxx Stops assembling after xxx warning messages occur

Placing Code Sections in Memory Locations

 5-16

5.7 Placing Code Sections in Memory Locations

The assembly source contains several sections that need to be placed in ‘C31

memory locations. Since the DSK assembler includes several new directives

that control the starting address of the sections, a linker is not needed.

In the following code example, an output section named Mysect is placed be-

ginning at address 000x80 9800. The entry (execution start) point is then de-

fined at the label START. Next, a simple code loop that increments R0 is placed

into the current section.

.start ”Mysect”,0x809800 ; Mysect begins at 0x809800

 .sect ”Mysect” ; Assemble code into Mysect

.entry START ; Execution START point

START LDI 0,R0 ; Initialize R0=0

LOOP ADDI 1,R0 ; Increment R0

B LOOP ; Do it again

To place two sections of code that leave a hole of unused memory, look at the

following code. The first section, Mysect, which starts at location 0x0080 9800,

is followed by a second section, jumpback, which starts at location

0x0080 9900.

.start ”Mysect”,0x809800 ; Mysect begins at 0x809800

.sect ”Mysect” ; Assemble code into Mysect

.entry START ; Execution START point

START LDI 0,R0 ; Initialize R0=0

LOOP ADDI 1,R0 ; Increment R0

B JUMP1

;––––––––––––––––––––––––––––––

.start ”jumpback”,0x809900 ; jumpback begins at 0x809900

.sect ”jumpback” ; Assemble code into jumpback

JUMP1 ADDI 1,R0 ; Increment R0

B JUMP2

;––––––––––––––––––––––––––––––

.sect ”Mysect” ; Add more code to Mysect

JUMP2 ADDI 1,R0 ; Increment R0

B LOOP ; Finish LOOP

 Placing Code Sections in Memory Locations

5-17 Using the DSK Assembler

To simulate a linker command file such as the one used in the TMS320 code

generation tools, you can use a single file to control the starting address of all

sections and then use the .include directive to append all assembly source

files. For example consider the following build file where three source files are

appended to each other using a common block statement for several .start

directives.

;BUILD.ASM

;–––––––––

.start ”.text”,0x809800 ; Initialize start address for

; each section

.start ”.data”,0x809C00 ;

.start ”sect1”,0x809900 ;

.start ”sect2”,0x809A00 ;

.include ”FILE1.ASM” ; Include source files

.include ”FILE2.ASM” ;

.include ”FILE3.ASM” ;

 5-18

6-1

Assembler Directives

Assembler directives supply program data and control the assembly process.

They allow you to do the following:

� Assemble code and data into specified sections

� Reserve space in memory for uninitialized variables

� Initialize memory

� Assemble conditional blocks

Topic Page

6.1 Using the DSK Assembler Directives 6-2.

6.2 Directives That Define Sections 6-5.

6.3 Directives That Initialize Constants 6-8.

6.4 Directives That Reference Other Files 6-9.

6.5 Directives That Enable Conditional Assembly 6-10.

6.6 Directives That Align the Section Program Counter 6-11.

6.7 Directives That Define Symbols at Assembly Time 6-11.

6.8 Miscellaneous Directives 6-12.

6.9 Directives Reference 6-13.

Chapter 6

Using the DSK Assembler Directives

 6-2

6.1 Using the DSK Assembler Directives

Table 6–1 summarizes the assembler directives. Note that all source state-

ments that contain a directive may have a label and a comment. To improve

readability, they are not shown as part of the directive syntax.

Table 6–1.Assembler Directives Summary

(a) Directives that define sections

Mnemonic and Syntax Description Page

.data Assemble source code into data memory 6-18

.sect ”section name” Assemble source code into a named (initialized) sec-
tion

6-27

.text Assemble source code into program memory 6-32

(b) Directives that initialize constants (data and memory)

Mnemonic and Syntax Description Page

.byte value1 [,..., valuen] Initialize one or more 8-bit integers 6-16

.fill size in words Reserve size words in the current section; note that
a label points to the beginning of the reserved space

6-29

.float expression Initialize a 32-bit TMS320C3x floating-point constant 6-21

.float16 expression Initialize a 16-bit TMS320C3x floating-point constant 6-21

.float8 expression Initialize an 8-bit TMS320C3x floating-point constant 6-21

.ieee expression Initialize one or more 32-bit, IEEE single-precision,
floating-point constants

6-22

.int value1 [,..., valuen] Initialize one or more 16-bit integers 6-16

.long value1 [, ... , valuen] Initialize one or more 32-bit integers 6-16

.pfloat16 Initialize 16-bit TMS320C3x floating-point constants
into a single word

.pfloat8 Initialize 8-bit TMS320C3x floating-point constants
into a single word

6-21

.qxx value1 [,..., valuen] Initialize a 16-bit, signed 2s-complement integer,
whose decimal point is displaced xx places from the
LSB

6-25

.space size in words Reserve size words in the current section; note that
a label points to the beginning of the reserved space

6-29

 Using the DSK Assembler Directives

6-3 Assembler Directives

(b) Directives that initialize constants (data and memory) (Continued)

Mnemonic and Syntax Description Page

.string “string1” [,..., “stringn”] Initialize one or more text strings 6-31

.word value1 [, ... , valuen] Initialize one or more 32-bit integers 6-16

(c) Directives that reference other files

Mnemonic and Syntax Description Page

.copy [”]filename[”] Include source statements from another file 6-17

.include [”]filename[”] Include source statements from another file 6-17

(d) Directives that enable conditional assembly

Mnemonic and Syntax Description Page

.else Optional conditional assembly 6-23

.endif End conditional assembly 6-23

.if well-defined expression Begin conditional assembly 6-23

.loop [well-defined expression] Begin repeatable assembly of a code block; the loop
count is determined by the well-defined expression.

6-24

.endloop End .loop code block 6-24

(e) Directives that modify the section program counter (SPC)

Mnemonic and Syntax Description Page

.align [size in bytes] Align the SPC on a boundary specified by size in bytes,
which must be a power of 2; default to byte boundary

6-14

.entry [address] Initialize the starting address of the SPC when loading
a file

6-20

Directives Summary

 6-4

(f) Directives that define symbols at assembly time

Mnemonic and Syntax Description Page

.set value Equate a value with a local symbol 6-28

.sdef value Equate a value with a local symbol multiple times 6-26

(g) Miscellaneous Directives

Mnemonic and Syntax Description Page

.brstart “section name”, n Align the named section to the next 2n address bound-
ary.

6-15

.end Program end 6-19

.start “section name”, address Links the named section to start assembling at the
location address.

6-30

 Directives That Define Sections

6-5 Assembler Directives

6.2 Directives That Define Sections

These directives associate the various portions of an assembly language pro-

gram with the appropriate sections:

� The .data directive identifies portions of code to be placed in data memory.

Data memory usually contains initialized data.

� The .sect directive defines an initialized named section and associates

subsequent code or data with that section. A section defined with .sect can

contain code or data.

� The .text directive identifies portions of code in the .text section. The .text

section usually contains executable code.

Example 6–1 shows how you can use sections directives to associate code

and data with the proper sections. This is an output listing; column 1 shows,

the SPC value and column 2 shows the memory contents, if affected by the

previous line, or a comment. (Each section has a section program counter

(SPC). The .start directive for a section determines that section’s initial SPC

value. When you resume assembling into a section, its SPC resumes counting

as if there had been no intervening code.

After the code in Example 6–1 is assembled, the sections contain:

.text Bytes with the values 1, 2, 3, 4, 5, and 6

.data Bytes with the values 9, 10, 11, and 12

mysect Bytes with the values 21, 22, 23, 24

Note:

The .text and .data directives are short hand representations of .sect state-
ments for that section name.

.text is equivalent to .sect ”.text”

.data is equivalent to .sect ”.data”

Directives That Define Sections

 6-6

Example 6–1.Sections Directives

0x00809800 directive .start ”.text”,0x809800

0x00809800 directive .start ”.data”,0x809900

0x00809800 directive .start ”mysect”,0x809a00

0x00809800 nocode

0x00809800 nocode ; Start assembling into .text

0x00809800 nocode

0x00809800 directive .text

0x00809800 directive .byte 1,2

0x00909800 0x00000001 <byte>

0x00809801 0x00000002 <byte>

0x00809802 directive .byte 3,4

0x00809802 0x00000003 <byte>

0x00809803 0x00000004 <byte>

0x00809804 nocode

0x00809804 nocode ; Start assembling into .data

0x00809804 nocode

0x00809804 directive .data

0x00809900 directive .byte 9,10

0x00809900 0x00000009 <byte>

0x00809901 0x0000000a <byte>

0x00809902 directive .byte 11,12

0x00809902 0x0000000b <byte>

0x00809903 0x0000000c <byte>

0x00809904 nocode

0x00809904 nocode ; Resume assembling into .text

0x00809904 directive .text

0x00809804 directive .byte 5,6

0x00809804 0x00000005 <byte>

0x00809805 0x00000006 <byte>

0x00809806 nocode

0x00809806 nocode ; Start assembling into mysect

0x00809806 nocode

0x00809806 directive .sect ”mysect”

0x00809a00 nocode

0x00809a00 directive .byte 21,22

0x00809a01 0x00000015 <byte>

0x00809a01 0x00000016 <byte>

0x00809a02 directive .byte 23,24

0x00809a02 0x00000017 <byte>

0x00809a02 0x00000018 <byte>

0x00809a04 nocode

0x00809a04 nocode

0x00809a04 nocode

 Directives That Define Sections

6-7 Assembler Directives

Example 6–1.Sections Directives (Continued)

>>>>

>>>> PASS 2 Complete

>>>> Errors: 0 Warnings: 0

>>>>

>>>> ENTRY 0x00809800

>>>>

>>>> Symbol reference table Type Addressable

>>>> ref Default–Start 0x00809800 1 1

>>>> ref 0x00000001 1 2

>>>> ref .text 0x00809800 1 1

>>>> ref .data 0x00809900 1 1

>>>> ref mysect 0x00809a00 1 1

>>>> ref 0x00000001 1 2

>>>>

>>>> Output section start end length

>>>> sect Default_Start 0x00809800 0x00809800

0x00000000

>>>> sect .text 0x00809800 0x00809806

0x00000006

>>>> sect .data 0x00809900 0x00809904

0x00000004

>>>> sect mysect 0x00809a00 0x00809a04

0x00000004

>>>>

>>>>

>>>> END DSK

Directives That Initialize Constants

 6-8

6.3 Directives That Initialize Constants

Several directives assemble values for the current section.

� The .byte directive places one or more 8-bit values into consecutive words

in the current section. A byte in this case uses all 32 bits of the word placing

0s into the upper 24 bits.

� The .fill directive reserves a specified number of words in the current

section with a value. The assembler advances the SPC and skips the re-

served words. When you use a label with .fill, it points to the first word of

the reserved block.

� The .float directive converts an expression value into a 32-bit

TMS320C3x floating-point constant. This format has an 8-bit exponent

and a 24-bit mantissa.

� The .float16 directive converts an expression value into a 16-bit

TMS320C3x floating-point constant. This format has an 8-bit exponent

and an 8-bit mantissa. The format is identical to that used by the .sfloat

directive of the TMS320C32. The upper 16 bits are not used and are filled

with 0s.

� The .float8 directive converts an expression value into an 8-bit

TMS320C3x floating-point constant. This format has a 4-bit exponent and

a 4-bit mantissa. This format can be used for a quick logarithm approxima-

tion. The upper 24 bits are not used and are filled with 0s.

� The .ieee directive calculates the 32-bit IEEE floating-point representation

of a single precision floating-point value.

� The .int directive places one or more 16-bit values into consecutive words

in the current section. The upper 16 bits are not used and are filled with

0s.

� The .long directive places one or more 32-bit values into consecutive by-

tes in the current section.

� The .pfloat16 directive converts an expression value into a 16-bit floating-

point constant. The values are packed into consecutive fields of memory.

� The .pfloat8 directive converts an expression value into an 8-bit floating-

point constant. The values are packed into consecutive fields of memory.

� The .qxx directive places one or more 16-bit, signed 2s-complement val-

ues into consecutive words in the current section. Note that the decimal

point is displaced xx places from the LSB (least significant bits.)

 Directives That Initialize Constants / Directives That Reference Other Files

6-9 Assembler Directives

� The .space directive reserves a specified number of bits in the current

section. The assembler advances the SPC and skips the reserved words.

When you use a label with .space, it points to the first word of the reserved

block.

� The .string directive places 8-bit characters from one or more character

strings into the current section.

� The .word directive places one or more 32-bit values into consecutive

bytes in the current section.

6.4 Directives That Reference Other Files

The .copy and .include directives tell the assembler to begin reading source

statements from another file. When the assembler finishes reading the source

statements in the copy/include file, it resumes reading source statements from

the current file.

Directives That Enable Conditional Assembly

 6-10

6.5 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to as-

semble certain sections of code according to a true or false evaluation of an

expression. Two sets of directives allow you to assemble conditional blocks of

code:

� The .if/.else/.endif directives tell the assembler to assemble a block of

code according to a true or false evaluation of an expression. Note that you

cannot nest if statements.

.if well-defined expression marks the beginning of a conditional
block and assembles code if the .if well-
defined expression is true.

.else marks a block of code to be assembled
if the .if well-defined expression is
false.

.endif marks the end of a conditional block
and terminates the block.

� The .loop/.break/.endloop directives tell the assembler to repeatedly as-

semble a block of code according to the evaluation of an expression.

.loop well-defined expression marks the beginning a repeatable
block of code. The optional expression
evaluates to the loop count.

.endloop marks the end of a repeatable block.

 Directives That Align the Section Program Counter / Directives That Define Symbols at Assembly Time

6-11 Assembler Directives

6.6 Directives That Align the Section Program Counter

These directives affect the section program counter (SPC).

� The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This

ensures that the code following the directive begins on the byte value that

you specify. If the SPC is already aligned at the selected boundary, it is not

incremented.

� The .entry directive identifies the starting address of the section program

counter. By default, the current address is used, or, you can specify an op-

tional address.

6.7 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to

constant values or strings.

� The .set directive equates meaningful symbol names to constant values

or strings. The symbol is stored in the symbol table and cannot be rede-

fined; for example:

bval .set 0100h

.byte bval

b bval

� The .sdef directive equates meaningful symbol names to constant values

or strings; the symbol name can be redefined.

MIscellaneous Directives

 6-12

6.8 Miscellaneous Directives

These directives enable miscellaneous functions or features:

� The .brstart directive aligns the named section to the next 2n address

boundary following the current section.

� The .end directive terminates assembly. It should be the last source state-

ment of a program. This directive has the same effect as an end-of-file.

� The .start. directive links the named section to start assembling at the

location address. This effectively gives the DSK assembler the func-

tionality of a linker.

 Directives Reference

6-13 Assembler Directives

6.9 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are orga-

nized alphabetically, one directive per page; however, related directives (such

as .if/.else/.endif) are presented together on one page. Here is an alphabetical

table of contents for the directive reference:

Directive Page Directive Page

.align 6-14 .include 6-17

.brstart 6-15 .int 6-16

.byte 6-16 .long 6-16

.copy 6-17 .loop 6-24

.data 6-18 .pfloat16 6-21

.else 6-23 .pfloat8 6-21

.end 6-19 .qxx 6-25

.endif 6-23 .sdef 6-26

.endloop 6-24 .sect 6-27

.entry 6-20 .set 6-28

.fill 6-29 .space 6-29

.float 6-21 .start 6-30

.float8 6-21 .string 6-31

.float16 6-21 .text 6-32

.ieee 6-22 .word 6-16

.if 6-23

.align Align to a 32-Word Boundary

6-14

Syntax .align

Description The .align directive aligns the current section to a 32-word boundary, filling the

hole with NOPs. If the hole is greater than 2 words, .align places a branch to

the newly-aligned address. This directive is useful for placing critical code

blocks on the boundaries that best use the cache resources of the ’C3x archi-

tecture.

Example Here is an example of the .align directive.

;

; Slightly modified FIR filter example from C3x Users Guide

;––

 .start ”ISR”,0x809808 ; Create an output section which is

 .sect ”ISR” ; not on a 32-word boundary for demo

 .align ;

FIRLENG .set 64 ; Size of FIR filter

Critical ldp @FIRCOEF ;

 ldi @FIRCOEF,AR0 ; AR0=address of h(N–1)

 ldi @FIRDATA,AR1 ; AR1=address of x(n–(N–1))

 mpyf3 *AR0++(1),*AR1++(1)%,R1 ;

 ldf 0.0,R2 ;

 ldi FIRLENG–2,RC ; Be sure to unroll length by 2

 rptb FIR ; Begin block repeat

 mpyf3 *AR0++(1),*AR1++(1)%,R1 ;

FIR || addf3 R0,R1,R2 ;

 b $; Done, result is in R2

FIRCOEF .word 0x809900 ; Address for coefficient storage

FIRDATA .word 0x809A00 ; Address for input data storage

 Align to Address Boundary .brstart

6-15 Assembler Directives

Syntax .brstart “section name”, n

Description The .brstart directive aligns the section name to the next 2n address boundary

immediately following the current section. This directive aligns data buffers in

order to use the ’C3x circular and bit-reversed addressing modes. Another

method for creating a section whose start is bit-reversed, is to use the br() func-

tion within the .start directive’s address field.

Example Here is an example of the .brstart directive.

.word $; The present address is

.brstart “Twiddle”, 128 ; Create a new section on a new 128 word boundary

.word $; The new address is

.byte, .int., .long, .word Initialize a 32-bit Integer

6-16

Syntax .byte value1 [,..., valuen]

.int value1 [,..., valuen]

.long value1 [, ... , valuen]

.word value1 [, ... , valuen]

Description These directives place one or more values into the current section.

� The .byte directive places 8-bit values into consecutive words in the

current section. The value must be an expression that evaluates to a

number within –128 and 127. The upper 24 bits are 0.

� The .int directive places 16-bit values into consecutive words in the

current section. The value must be an expression that evaluates to a

number within the range of –32768 and 32767. The upper 16 bits are

always 0.

� The .long and .word directives place 32-bit values into consecutive words

in the current section. The value is an expression that the assembler eval-

uates and treats as a 32-bit signed number.

A value must be absolute. You can use as many values as fit on a single line

(80 characters). If you use a label, it points to the first word that is initialized.

Example 1 Here is an example of these directives.

.word ’A’, ’B’, ’C’, 1, 0x1234, 0320C31h

.int 111b, 1<<4

.long 0x87654321, 1<<31

.byte 0x20, ’A’, ’B’, ’C’

.hword 32765,l –32768, –2, 2

 Copy Source File .copy, .include

6-17 Assembler Directives

Syntax .copy “filename”

.include “filename”

Description The .copy and .include directives tell the assembler to read source state-

ments from a different file. The assembler:

1) Stops assembling statements in the current source file

2) Assembles the statements in the copied/included file

3) Resumes assembling statements in the main source file, starting with the

statement that follows the .copy or .include directive

The filename is a required parameter that names a source file. The filename

must be enclosed in double quotes and must follow operating system conven-

tions. You can specify a full pathname (for example, c:\dsktools\file1.asm). If

you do not specify a full pathname, the assembler searches for the file in the

current directory.

The .copy and .include directives can be nested within a file being copied or

included. The assembler limits this type of nesting to eight levels; the host

operating system may set additional restrictions.

Example This example shows how the .include directive is used to tell the assembler

to read and assemble source statements from other files, then to resume

assembling into the current file.

Source file: (source .asm)

; Filename: source.asm

.space 10h ; Filename: source.asm

.include “byte.asm” ; Filename: source.asm

; Filename: source.asm

.space 20h ; Filename: source.asm

First copy file: (byte.asm)

; Filename: byte.asm

.byte ’a’, 0ah, 32 ; Filename: byte.asm

.include “word.asm” ; Filename: byte.asm

.byte 11,12,13 ; Filename: byte.asm

; Filename: byte.asm

Second copy file: (word.asm)

; Filename: word.asm

.word oabcdh, 56 ; Filename: word.asm

; Filename: word.asm

.data Assemble Into .data Section

6-18

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into

data memory. The .data section normally contains tables of data or preinitial-

ized variables.

Note that the assembler assumes that .text is the default section. Therefore,

at the beginning of an assembly, the assembler assembles code into the .text

section unless you specify a section control directive.

Example This example shows the assembly of code into the .data and .text sections.

.start “.data”, 0x809900

.entry BEGIN

BEGIN ldi 0, R0 ; Initialize R0 and R1

ldi 1, R1

.data

value .int 0, 1, 2, 3, 4, 5 ; Integer values

 End Assembly .end

6-19 Assembler Directives

Syntax .end

Description The .end directive is an optional directive that terminates assembly. It should

be the last source statement of a program. The assembler ignores any source

statements that follow an .end directive.

Example This example shows how the .end directive terminates assembly.

 ldi 1,R1 ; Assemble this code

 mpyi 5,R1 ;

 .end ; Stop assembler

 subi 2,R1 ; does not assemble

.entry Define Entry Point

6-20

Syntax .entry [value]

Description The .entry directive tells the assembler the address of the section program

counter when a file is loaded. If you do not use the value parameter, the current

program memory address, determined by the .text section, becomes the start-

ing address. If you have more than one .entry directive in your file, then the last

.entry directive encountered becomes the starting address of your code.

Example Here is an example of the .entry directive.

 .start ”code”,0x809800 ; Create a named section to assemble to

 .sect ”code” ; use the new section

 .entry BEGIN ; Start program at BEGIN

BEGIN: ldi 80h,AR0 ; Initialize ARx pointers to RAM0

 lsh 16,AR0 ;

 ldi AR0,AR1 ;

 ldi 0,R3 ; R3 is used as loop counter

LAB0 ldi *+AR0(0),R0 ; Both labels resolve to the same address

LAB1: || ldi *+AR1(1),R1 ; Colon ’:’ is recongized as a WS character

 ;–––––––––––––––––––––––––––––––––––;

 ; R0 contains the opcode at BEGIN ;

 ; R1 contains the opcode at BEGIN+1 ;

 ;–––––––––––––––––––––––––––––––––––;

count: addi 1,R3 ; Add 1 to count

 b count ; Wait in count loop forever

 Initialize TMS320C3x Floating-Point Value .float, .float16, .float8, .pfloat16, .pfloat8

6-21 Assembler Directives

Syntax .float value1 [,..., valuen]

.float16 value1 [,..., valuen]

.float8 value1 [,..., valuen]

.pfloat16 value1 [,..., valuen]

.pfloat8 value1 [,..., valuen]

Description These directive convert one or more values into TMS320C3x floating-point

constants.

� The .float directive converts a value into a 32-bit TMS320C3x floating-

point constant. This format has an 8-bit exponent and a 24-bit mantissa.

� The .float16 directive converts a value into a 16-bit TMS320C3x floating-

point constant. This format has an 8-bit exponent and an 8-bit mantissa.

� The .float8 directive converts a value into an 8-bit TMS320C3x floating-

point constant. This format has a 4-bit exponent and a 4-bit mantissa.

When properly scaled, this format can be used for quick logarithm approxi-

mations.

� The .pfloat16 directive converts a value into a 16-bit floating-point

constant. The values are packed into consecutive fields of memory.

� The .pfloat8 directive converts a value into an 8-bit floating-point

constant. The values are packed into consecutive fields of memory.

The value is a required parameter; it is an expression that is evaluated and

placed in the constant. The value must be absolute.

Note that the ’C31 expects floating-point numbers to have the 32-bit format.

Example Here is an example of these directives.

PI .set 3.1415926 ;.set remembers PI is float

 .float –10/3, –0.1, 0, 0.1, PI,2*PI ;Some easy to compare values

 .float8 –10/3, –0.1, 0, 0.1, PI,2*PI ;

 .pfloat8 –10/3, –0.1, 0, 0.1, PI,2*PI ;

 .float16 –10/3, –0.1, 0, 0.1, PI,2*PI ;

 .pfloat16 –10/3, –0.1, 0, 0.1, PI,2*PI ;

 .ieee –10/3, –0.1, 0, 0.1, PI,2*PI ;

.ieee Initialize IEEE Format Floating-Point Value

6-22

Syntax .ieee expression

Description The .ieee directive places the IEEE single-precision floating-point representa-

tion of a single floating-point constant into three bytes in the current section.

The expression is a required parameter; it is an expression that must evaluate

to a floating-point constant. Each constant is converted to a floating-point

value in IEEE single-precision 32-bit format.

Example Here is an example of the .ieee directive.

.ieee –10/3, –0.1, 0, 0.1, PI, 2*PI ;Some values

 Assemble Conditional Block .if, .else, .endif

6-23 Assembler Directives

Syntax .if well-defined expression

.else

.endif

Description Three directives provide conditional assembly:

� The .if directive marks the beginning of a conditional block. The expres-

sion is a required parameter.

� If the expression evaluates to true (nonzero), the assembler as-

sembles the code that follows it (up to an .else, or an .endif).

� If the expression evaluates to false (0), the assembler assembles

code that follows an .else (if present), or an .endif.

� The .else directive identifies a block of code that the assembler assembles

when the .if expression is false (0). This directive is optional in the condi-

tional block; if an expression is false and there is no .else statement, the

assembler continues with the code that follows the .endif.

� The .endif directive terminates a conditional block.

Nested .if/.else/.endif directives are not valid.

Example Here is an example of conditional assembly:

TRUE .set 1

FALSE .set 0

.if TRUE ;

nop ; Assembles ’nop’ since TRUE

.else ;

B $; Never assembles

.endif ;

.loop/.break/.endloop Assemble Code Block Repeatedly

6-24

Syntax .loop well-defined expression

.endloop

Description Two directives enable you to repeatedly assemble a block of code:

� The .loop directive begins a repeatable block of code. The optional

expression evaluates to the loop count (the number of loops to be

performed). If there is no expression, the loop count defaults to 246.

� The .endloop directive terminates a repeatable block of code; it executes

when the number of loops performed equals the loop count given by .loop.

Example This example shows the .loop directive.

;==

; Create an FFT Twiddle table

;==

 .start ”TABLES”,0x809A00

 .sect ”TABLES”

pi .set 3.1415926

N .set 4

 ;–––––––––––––––––––––––––;

TR ; REAL twiddles

 ;–––––––––––––––––––––––––;

 .loop N/2

 .float cos(($–TR)*pi/N);

 .endloop

 ;–––––––––––––––––––––––––;

TI ; IMAG twiddles ;

 ;–––––––––––––––––––––––––;

 .loop N/2

 .float –1*sin(($–TI)*pi/N)

 .endloop

 Initialize 2s-Complement Integers .qxx

6-25 Using the DSK Assembler

Syntax .qxx value1 [,..., valuen]

Description The .qxx directive generates signed, 2s-complement fractional integers and

long integers whose decimal point is displaced xx places from the LSB.

Example Here’s an example of the .qxx directive. The value of xx can be either positive

or negative.

.q0 3.1415926 ; All upper 32 bits are integers

.q1 3.1415926 ; One fractional bit (left shift 1

.q2 3.1415926 ; Two fractional bits (left shift 2)

.q16 3.1415926 ; Upper 16 are whole integers,

; lower 16 are fractional

.sdef Define Assembly-Time Constant

6-26

Syntax symbol .sdef value

Description The .sdef directive functions in the same manner as the .set directive;

however, .sdef can redefine the symbol name multiple times without generat-

ing an error. All instances of .sdef symbols are stripped from the symbol table

at the end of pass 1 analysis. When used with the .if directive, .sdef can condi-

tionally assemble included blocks of code. This is useful for turning on and off

included library functions.

� The symbol must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the

expression must be previously defined in the current source module.

Example This shows how symbols can be assigned with .sdef.

VarA .set 15 ;

VarB .sdef 0xAAAA ;

.word VarA, VarB ;

VarB .sdef 0x5555 ;

.word VarA, VarB ; Note the VarB value change

 Assemble Into Named Section .sect

6-27 Assembler Directives

Syntax .sect “section name”

Description The .sect directive begins assembling source code into the named section.

The .sect directive defines named sections that are used like default .text and

.data sections.

The section name identifies the section. The section name is significant to 80

characters and must be enclosed in double quotes.

Example Here’s an example of the .sect directive.

.start ”Mysect_1”,0x809800 ; Create two output sections

.start ”Mysect_2”,0x809880 ; at different addresses

.sect ”Mysect_1” ; Begin assembling into Mysect_1

.word $,1,1,1 ; $ gives present address

.sect ”Mysect_2” ; Begin assembling into Mysect_2

.word $,2,2,2 ;

.sect ”Mysect_1” ; Go back to assembling into Mysect_1

.word $,1,1,1 ;

.set Define Assembly-Time Constant

6-28

Syntax symbol .set value

Description The .set directive equates a constant value to a symbol. The symbol can then

be used in place of the value in assembly source. This allows you to equate

meaningful names with constants and other values.

� The symbol must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the

expression must be previously defined in the current source module.

Example This example shows how symbols can be assigned with .set.

TA .set 1

TB .set 5

 ldi *AR0++(TA),R0

 ldi *AR0++(TB),R0

 Reserve Space .space, .fill

6-29 Assembler Directives

Syntax .space size in words

.fill size in words

Description Two directives reserve space in the current section.

� The .space directive reserves size number of words in the current section

and fills them with 0s. The SPC is incremented to point to the word follow-

ing the reserved space.

� The .fill directive reserves size number of words in the current section and

fills them with value. The value must be an absolute value. The SPC is

incremented to point to the word following the reserved space.

When you use a label with the .space or .fill directive, it points to the first word

reserved.

Example This example shows how the .space and .fill directives reserve memory.

 .space 12 ; Fill 12 locations with the value 0x0

 . fill 3,0x5555 ; Fill three words with 0x5555

 .start ”Mysect”,0x809800 ; Initialize start of Mysect

 .sect ”Mysect” ;

 .text

 .data

.start Link Section to Address

6-30

Syntax .start “section name”, address

Description The .start directive links the section name to start at location address. This

directive effectively gives the DSK assembler the same functionality as a linker

command file when used only to create runtime executable modules. For the

specified section to have a valid starting address, the .start statement for the

section must precede the .text, .data, or .sect directive that defines the section

name. Note that by using an include file with an imbedded .if/.sdef/.endif, the

.start directive can effectively be used in place of the linker.

Example Here is an example of the .start directive.

 .entry START

 .start ”MAIN”,0x809800 ; Create an output sections

 .sect ”MAIN” ; Begin assembling into MAIN

LOOP: addi 1,R0 ; Top of loop

 addi 1,R1

START: ldi 0,R0 ; Initialize R0,R1

 ldi 0,R1

 b LOOP ; Go to top of loop

 Initialize Text .string

6-31 Assembler Directives

Syntax .string “string1 ” [,..., “stringn ”]

Description The .string directive places one or more 8-bit character strings into consecu-

tive bytes of the current section.

The character string must be enclosed in double quotes. Each character in a

string represents a separate value.

The .string directive places the 8-bit values into memory in a packed form in

the order they are encountered. If a word is not filled, the remaining bits are

filled with 0s.

Example This example shows several 8-bit values placed into consecutive bytes in

memory. The label Str_3 has the value 0h, which is the location of the first ini-

tialized byte.

Str_3:.string “ABCD”

.string 51h, 52h, 53h, 54h

.string “Hoston”

.string 36+12

.text Assemble Into .text Section

6-32

Syntax .text

Description The .text directive tells the assembler to begin assembling into the .text sec-

tion. The .text section usually contains executable code. The section program

counter (SPC) is set to 0, if nothing has been assembled into the .text section.

If code has already been assembled into the .text section, the SPC is restored

to its previous value in the section.

Note that the assembler assumes that .text is the default section. Therefore,

at the beginning of an assembly, the assembler assembles code into the .text

section unless you specify one of the other sections directives (.data, .entry,

or .sect).

Example This example shows the assembly of code into the .data and .text sections.

.start “.text”, 0x809800

.entry START

START ldi 0, R0 ; Initialize R0 and R1

ldi 1, R1

.text

value .int 0, 1, 2, 3, 4, 5 ; integer values

7-1

Using the DSK Debugger

This chapter tells you how to invoke the DSK debugger and use its function

keys and commands.

Topic Page

7.1 Invoking the Debugger 7-2.

7.2 Understanding the Debugger Windows 7-4.

7.3 Using the Help Menu 7-8.

7.4 Using Software Breakpoints 7-9.

7.5 Debugger Commands 7-10.

7.6 Quick Reference Guide 7-13.

Chapter 7

Invoking the Debugger

 7-2

7.1 Invoking the Debugger

Here’s the command for invoking the debugger:

dsk3d [options]

dsk3d is the command that invokes the debugger.

options supply the debugger with additional information.

Table 7–1 lists the debugger options; the following subsections describe the

options.

Table 7–1.Summary of Debugger Options

Option Brief Description

? or HELP Displays a listing of the available options

AUTO Automatically detects if the parallel port supports 8- or 4-bit mode

BW=4, Nibble Selects communication through the parallel port in standard 4-bit
unidirectional mode

BW=8, Byte Selects communication base through the parallel port in 8-bit
bidirectional mode

LPTx, LPT=x Selects a parallel printer port (LPT1 is default)

PORT=0x378 Selects any port address

RESET Resets (cold boots) the DSK

TEST Searches automatically through LPT1, LPT2, and LPT3 for the
presence of a DSK

T=xx Adds extra xx I/O bus cycles to each transfer for long or noisy
cables

WIN=1 Enables Windows Time Slice management

WIN=0 Disables Windows Time Slice management and enables STI/CLI

Displaying a list of available options (? or Help option)

You can display the contents of Table 7–1 on your screen by using the ? or Help

option. For example, enter:

dsk3d ?

 Invoking the Debugger

7-3 Using the DSK Debugger

Selecting the parallel printer port (LPT = 3 or LPT# option)

The LPT option selects a parallel printer port from the host to communicate

with the DSK.

� LPT1 or LPT = 0x378

� LPT2 or LPT = 0x278

� LPT3 or LPT = 0x3BC

Note:

Some EISA machines and IBM PS/2s use a different naming convention for
the LPTx.

AT Convention EISA and PS/2
LPT1 LPT2
LPT2 LPT3
LPT3 LPT1

Select the parallel printer port at a particular address (PORT option)

The port option selects the parallel printer port at the given address. For

example:

port = 0x378

selects the host’s parallel port mapped to the address 0x378.

Selecting communication mode (BW option)

Use the bw option to select 8-bit bidirectional or 4-bit unidirectional commu-

nication between DSK and host’s parallel printer port.

Automatically search for a printer port (TEST option)

Use the test option to systematically search for a parallel port that has a DSK

connected. The search commences at LPT1 and ends.

Add extra I/O cycles to each transfer

Use the t option to add extra I/O cycles to each transfer if you have very long

parallel port cables that have noisy signals.

Understanding the Debugger Windows

 7-4

7.2 Understanding the Debugger Windows

DISASSEMBLY window

The DISASSEMBLY window shows the reverse assembly of memory con-

tents. As shown in Figure 7–1, this window displays several lines of code.

Each line shows the instruction address, instruction opcode, label, and instruc-

tion mnemonic. The highlighted line corresponds to the next instruction to be

executed.

Figure 7–1. DISASSEMBLY Window

809c03 50700080 start LDIU 00080h,DP
809c04 08349c2c LDI @09c2cH,SP
809c05 07608000 LDF 0.000000e+00,R0
809c06 c610c1c0 LDI *AR0,R0 || LDI *AR
809c07 c610c1c0 LDI *AR0,R0 || LDI *AR
809c08 08600100 LDI 256,R0
809c09 09a09c00 LSH @09c00H,R0
809c0a 61809c0e BRD jump
809c0b 07618000 LDF 0.000000e+00,R1
809c0c 07628000 LDF 0.000000e+00,R2
809c0d 07630000 LDF 1.000000e+00,R3
809c0e 07640000 jump LDF 1.000000e+00,R4
809c0f 087b0003 loop LDI 3,RC
809c10 64809c1a RPTB block
809c11 02640001 ADDI 1,R4

Instruction mnemonicInstruction opcodeInstruction address

DISASSEMBLY

Label

To select the DISASSEMBLY window, press ALT D . While in the DIS-

ASSEMBLY window, you can use the cursor to select a line and then use a

function key to set or clear a breakpoint. Refer to Table 7–10 for more informa-

tion about function keys.

 Understanding the Debugger Windows

7-5 Using the DSK Debugger

CPU REGISTER window

The CPU REGISTER window displays the content of all CPU registers as

shown in Figure 7–2. The register’s contents are normally displayed in hexa-

decimal format. You can press F3 to display the extended-precision registers

in floating-point decimal format. You can press F2 to display the extended-

precision registers in 40-bit hexadecimal format.

Figure 7–2. CPU REGISTER Window

PC 00809c03 SP 008098de
R0 00000000 R1 00000000
R2 00000000 R3 00000000
R4 00000000 R5 00000000
R6 00000000 R7 00000000
AR0 00000000 AR1 00000000
AR2 00000000 AR3 00000000
AR4 00000000 AR5 00000000
AR6 00000000 AR7 00000000
IR0 00000000 IR1 00000000
ST 00000000 RC 00000000
RS 00000000 RE 00000000
DP 00000000 BK 00000000
IE 00000000 IF 00000000

C31 DSP STARTERS KIT

Register names

Register contents

To modify the contents of a register, activate the CPU REGISTER window by

pressing ALT C . You can type over the highlighted data and press ENTER to

accept the changes when you are satisfied with them. Use the following keys

to select the data you want to edit:

→ ↑ ↓ ← PAGE UP PAGE DOWN TAB

Understanding the Debugger Windows

 7-6

MEMORY window

The MEMORY window shows the contents of a range of memory as shown in

Figure 7–3. The MEMORY window has two parts:

� Addresses. The first column of numbers identifies the addresses of the

first column of display data. No matter how many columns of data you dis-

play, only one address column is displayed. Each address in this column

identifies the address of the data immediately to its right.

� Data. The remaining columns display values at the listed addresses.

For example, the MEMORY window below has four columns of data, so each

new address is incremented by 4. Although the window shows four columns

of data, there is still only one column of addresses; address 0x0080 9800 con-

tains 0x0000 0007, address 0x0080 9801 contains 0xFFFF FFFC, address

0x0080 9804 (the first value in the second row) contains 0x0080 982C, ad-

dress 0x0080 9805 contains 0x0080 9839, etc.

Figure 7–3. MEMORY Window

809800 00000007 fffffffc 00809802 00809827
809804 0080982c 00809839 0080983c 0080983f
809808 00809843 00809842 00809868 0080989a
80980c 008098a9 10800000 0f350000 0f300000
809810 0f200000 0f320000 0f280000 0f290000
809814 1a770004 6a050006 628098a9 50700080

MEMORY

Address column Data columns

To modify the contents of the MEMORY window, press ALT M to activate the

window and then type over the data. To select a cell, you can use the following

keys:

→ ↑ ↓ ← PAGE UP PAGE DOWN TAB

 Understanding the Debugger Windows

7-7 Using the DSK Debugger

COMMAND window

The COMMAND window provides an area for entering commands, echoing

commands, and displaying command output errors and messages. The

COMMAND window has two parts:

� Command line. This area is where you enter commands. When you want

to enter a command, just type – no matter which window is active.

� Display area. This area echoes the commands that you enter, shows any

output from your commands, and displays debugger error messages.

Figure 7–4 shows the window command line and display area.

Figure 7–4. COMMAND Window

>
>load testa

�

COMMAND

Display area

Command line

You can use the ↑ and ↓ keys to select a previously entered command from

the buffer (a > is used to indicate the buffer). The editing command keys are

shown in Table 7–2.

Table 7–2.Editing Command Keys

To do this Use this command

Move through the command ← →

Toggle the insert and type over mode INS

Delete the character at the cursor DEL

Move to the beginning of the line HOME

Move to the end of the line END

Clear the command ESC

Select a command from the buffer ↑ ↓

Using the Help Menu

 7-8

7.3 Using the Help Menu

You can press the F1 or H key to bring up the Help Window Display shown

in Figure 7–5. Choose from the menu selections listed below to find additional

information.

Figure 7–5. The Monitor Information Screen

KEYBOARD COMMANDS

F1 Help Screen
F2 40-bit hex display
F3 FLOAT display
F4 Source/DASM debug toggle
F5 Run
F6 Display breakpoints
F7 Clear all breakpoints
F8 Singlestep
F9 Toggle DASM window size
F10 Step over function

ALT+D Selects Disassembly Window
ALT+M Selects Memory Window

H–Xtra help S–save help to fileMove Up/Dn/Pup/Pdn

To move through the help window, you can use:

� PGUP to move ahead a page

� PGDN to move back a page

� HOME to return to the first page of the help menu

� END to go to the last page of the help menu

� S to save help text to a file

� ESC to exit the help menu and return to the debugger

� H to enter a second help level. The second help level is more hardware-

oriented and deals less with debugger-specific commands.

 Using Software Breakpoints

7-9 Using the DSK Debugger

7.4 Using Software Breakpoints

This section describes how to set and clear software breakpoints and how to

obtain a listing of all the breakpoints that are set.

While debugging, you may want to halt execution temporarily so that you can

examine the contents of selected variables, registers, and memory locations

before continuing with program execution. You can do this by setting software

breakpoints in the assembly language code. A software breakpoint halts any

program execution, whether you’re running or single-stepping through code.

Setting a software breakpoint

When you set a software breakpoint, the debugger highlights the breakpointed

line in a bolder or brighter font. The highlighted statement appears in the DIS-

ASSEMBLY window.

After execution is halted by a breakpoint, you can continue program execution

by reissuing any of the run or single-step commands.

You can set a software breakpoint by entering the SB command.

sb addr If you know the address where you’d like to set a software breakpoint, you can

use the SB command. This command is useful because it doesn’t require you

to search through code to find the desired line. When you enter the SB com-

mand, you enter an absolute address (addr). (Once you have entered the ad-

dress, you are asked to choose the line number you want the breakpoint set

on.) Note that you cannot set multiple breakpoints at the same statement.

Clearing a software breakpoint

cb addr If you’d like to clear a breakpoint, you can use the CB command. You can use

the CB command to clear a specific address by entering an absolute address

(addr) after the command. You can clear all breakpoints by entering the CB

command without an address.

Finding the software breakpoints that are set

db Sometimes, you may need to know where software breakpoints are set. The

DB command provides an easy way to get a complete listing of all the software

breakpoints that are currently set in your program.

Debugger Commands

 7-10

7.5 Debugger Commands

The following tables provide a summary of the debugger function keys and

commands.

Table 7–3.Command-Line Editing

To do this Use this command

Move the cursor to the beginning of the command line HOME

Move the cursor to the end of the command line END

Delete the character to the left of the cursor DEL

Delete the character to the right of the cursor SHIFT END

Move the cursor to the left →

Move the cursor to the right →

Table 7–4.Command-Line Buffer Manipulation

To do this Use this command

Recall the last command typed ↑PAGE UP or

Recall the first command in the command-line buffer PAGE DOWN or ↓

Reexecute the last command typed TAB

Table 7–5.Running Programs

To do this Use this command

Step through the instructions one at a time (single-
step)

SS

Execute n instructions XN n

Single-step through the instructions until you reach
address addr

XG addr

Execute the program until a breakpoint is encoun-
tered

RUN

Execute the program and ignore breakpoints (run-
free)

RUNF

 Debugger Commands

7-11 Using the DSK Debugger

Table 7–6.Displaying and Changing Data

To do this Use this command

Display the contents of memory starting at address
addr in the MEMORY window

MEM addr

Modify memory at address addr MM addr

Fill leng locations of memory starting at address addr
with value val. If val is expressed in a floating-point
format (with a decimal point), it will be converted into
a TMS320 floating-point format.

MM addr leng val

Display assembly language code starting at address
addr in the DISASSEMBLY window

DASM addr

Display extended-precision registers in 40-bit hexade-
cimal format in the register window

REG40

Display extended-precision registers in floating-point
decimal format in the register window

FLOAT

Modify reg register in the CPU REGISTER window
with the value from expression. For example
PC = 0x809800
R0 = 1.34

reg = expression

Table 7–7.Managing Breakpoints

To do this Use this command

Set a breakpoint at address addr SB addr

Clear a breakpoint at address addr CB addr

Clear all the breakpoints CB

Display a list of all the breakpoints that are set DB

Table 7–8.Loading Programs

To do this Use this command

Load an object file LOAD filename

Load symbols SLOAD filename

Load binary only BLOAD filename

Clear symbols SCLEAR

Debugger Commands

 7-12

Table 7–9.Performing System Tasks

To do this Use this command

Reset the DSK RESET

Quit or exit the debugger QUIT or EXIT

Enter the DOS shell and optionally execute the ex-
pression. Enter EXIT to return to debugger

DOS (expression to Run)

Enter the DOS shell and execute the editor to edit
filename. (If no filename is given, the name of the
presently loaded file is used).

EDIT filename

Enter the DOS shell and execute the DSK assembler
to assemble file

dsk3a filename.asm

 Quick Reference Guide

7-13 Using the DSK Debugger

7.6 Quick Reference Guide

The following tables provide a quick-reference guide of the function key defini-

tions.

Table 7–10.Function Key Shortcuts for Command Window Active

Function Key Description

F1 Displays a list of commands

F2 Displays extended-precision registers in 40-bit hex-
adecimal format

F3 Displays extended-precision registers in floating-
point decimal format

F4 Toggles between displaying the source file and the
memory disassembly.

F5 Executes your program to the next breakpoint

F6 Displays all breakpoints

F7 Clears all breakpoints

F8 Single-steps your program

F9 Toggles the DISASSEMBLY window size

F10 Single-steps your program and steps past calls

ALT D Selects the DISASSEMBLY window

ALT M Selects the MEMORY window

ALT C Selects the CPU REGISTER window

ESC Exits the active window

Table 7–11. Function Key Shortcuts for CPU Window Active

Function Key Description

F1 This help screen

ESC Exit CPU window

HOME Move to top

END Move to bottom

↑ or ↓ Move cell vertical

TAB Move cell horizontal

Quick Reference Guide

 7-14

Table 7–12.Function Key Shortcuts for Memory Window Active

Function Key Description

F1 This help screen

F9 Toggle window size

ESC Exit memory window

HOME Move to top

END Move to bottom

PAGE UP or PAGE DOWN Move by page up/down

↑ or ↓ Move cell vertical

TAB Move cell horizontal

Table 7–13.Function Key Shortcuts for Disassembler Window Active

Function Key Description

F1 Help screen

F2 Set breakpoint at cursor

F3 Clear breakpoint at cursor

F4 Run to cursor

F5 Run

F6 Display breakpoints

F7 Clears all breakpoints

F8 Single-steps your program

F9 Grow window

F10 Step over

SHIFT F9 Selects the DISASSEMBLY window

ESC or ENTER Escape

A-1

Appendix A

Communications Kernel Source Code

This appendix contains the source code for the TMS320C3x DSK communica-

tions kernel.

Appendix A

Communications Kernel Source Code

A-2

;–––;

; TMS320C3x DSK COMMUNICATIONS AND DEBUG MONITOR KERNAL ;

; Texas Instruments Incorporated ;

; (C) 1995,1996 ;

;–––;

 .start ”vectors”,0x809FC1

 .start ”kernel” ,vectors–0xAB ; Use size report from DSK3A

 .start ”sstack” ,0x809F00 ; output to pack to end of RAM

 .entry START

;===;

; COMMUNICATION MONITOR START ;

; ;

; STACK SPACE ;

; ––––––––––– ;

; A section of unoccupied free memory of STACKSIZE size words just ;

; below the kernel is used on startup for initialization and stack ;

; space. If more (or less) stack space is required, a new stack ;

; pointer value can be initialized within the users applications code ;

; to any location, or by re–assembling this code with a new STACKSIZE ;

; ;

; When initialization is complete, the startup stub can be safely ;

; overwritten since it is no longer needed. In this case the startup ;

; stub is placed after the stack. Another ’safe’ location would be ;

; a section of memory which is used for I/O or uninitialized data. ;

; ;

; This section of code also initializes the timers which are used by ;

; the PAL to create the PWM signal which drives the LED. The rate ;

; at which the LED changes color is F0–F1 where F0 and F0 are the two ;

; timer output frequencies. (See the Users Guide ;

;===;

 .sect ”sstack”

stack: .word stack–1 ; start of kernel stack

MMRBASE .word 0x00808000 ;

PRD0 .word 0x0000A000 ;

PRD1 .word 0x0000A060 ;

TSTART .word 0x000003C3 ;

START ldp @START ; Set up stack and other params

 ldi @stack,SP ;

 ;=======================

 ldi @MMRBASE,AR0 ; Init timers for slow PWM modulation

 ldi 3,R0 ; HALT timers

 sti R0,*+AR0(0x20) ;

 sti R0,*+AR0(0x30) ;

 sti R0,*+AR0(0x24) ; Init count registers

 sti R0,*+AR0(0x34) ;

 ldi @PRD0,R0 ; Init periods

 sti R0,*+AR0(0x28) ;

 ldi @PRD1,R0 ;

 sti R0,*+AR0(0x38) ;

 ldi @TSTART,R0 ; Start timers

 sti R0,*+AR0(0x20) ;

 sti R0,*+AR0(0x30) ;

 b spin0 ;

 Communications Kernel Source Code

A-3 Communications Kernel Source Code

;==;

; DEBUGGER COMMANDS ;

; The debugger commands are assembled into the lowest available kernel ;

; memory. If an application were to overgow this section the debugger ;

; functions would be corrupted, but the application would continue to ;

; run so long as the debugger functions were not used. ;

;==;

; XSTEP/XRUNF ;

; ;

; These functions restore the CPU registers from the context save area ;

; before returning to the code pointed to by the program counter value. ;

; The only difference is that XSTEP purposely sets the interrupt flag ;

; used for single stepping before returning to the users code. ;

; ;

; SINGLE STEPPING ;

; The tail end of this function is written such that a pending ;

; interrupt will not be serviced until one opcode has been fetched from ;

; the return address and executed (there may be other dummy fetches). ;

; This ’pending’ interrupt then causes the processor to return back to ;

; the context save routine, effectively singlestepping the CPU. ;

; ;

;==;

S0_xdata .set 0x808048 ; SP 0 Data transmit

S0_rdata .set 0x80804C ; SP 0 Data receive

 .sect ”kernel”

 .word 0x00320C31 ; Prepend a few easily recognizable markers

 .word 0x00320C31 ;

XSTEP or 0x40,IF ; set XINT1 (safe INT for C31/C32 debug!)

XRUNF or 0xC4,IE ; set EXINT1 (safe INT for C31/C32 debug!)

 ;–––––––––––––––––––––––

 ldi @CPUCTXT,AR0 ; Use parallel opcodes for squeeze

 ldi AR0,AR1 ;

 addi 1,AR1 ;

 ldi 2,IR0 ;

 ;–––––––––––––––––––––––

 ldi @S0_rdata,R0 ; Clear under/overrun conditions before exit

 ldi 0,R0 ; 0 ensures low bits during SP recovery

 sti R0,@S0_xdata ; XSR resends – should all be zero

 ldf *AR0++(IR0),R0 ; load floats (exponents)

 || ldf *AR1++(IR0),R1 ;

 ldf *AR0++(IR0),R2 ;

 || ldf *AR1++(IR0),R3 ;

 ldf *AR0++(IR0),R4 ;

 || ldf *AR1++(IR0),R5 ;

 ldf *AR0++(IR0),R6 ;

 || ldf *AR1++(IR0),R7 ;

 ;– – – – – – – – – – – –

 ldi *AR0++(IR0),R0 ; load longs (mantissa)

 || ldi *AR1++(IR0),R1 ;

 ldi *AR0++(IR0),R2 ;

 || ldi *AR1++(IR0),R3 ;

 ldi *AR0++(IR0),R4 ;

 || ldi *AR1++(IR0),R5 ;

 ldi *AR0++(IR0),R6 ;

 || ldi *AR1++(IR0),R7 ;

Communications Kernel Source Code

A-4

 ;– – – – – – – – – – – –

 ldi @_AR0,AR0 ; load ARx

 ldi @_AR1,AR1 ;

 ldi @_AR2,AR2 ;

 ldi @_AR3,AR3 ;

 ldi @_AR4,AR4 ;

 ldi @_AR5,AR5 ;

 ldi @_AR6,AR6 ;

 ldi @_AR7,AR7 ;

 ldi @_IR0,IR0 ;

 ldi @_IR1,IR1 ;

; or @_IF,IF ; CPU interrupt flags

 ldi @_IOF,IOF ; IO flags

 ldi @_RS,RS ; Repeat start

 ldi @_RE,RE ; Repeat end

 ldi @_RC,RC ; Repeat counter

 ldi @_BK,BK ; Block size

 ldi @_SP,SP ; get user SP

 ;– – – – – – – – – – – –

 ldi @_PC,R5 ; return to PC from TOS return

 andn 0x4,IF ; Clear/Poll INT2 before SSTEP or RUNF

 tstb 4,IF ;

 bnz $–3 ;

 ldiu @_ST,ST ; restore Status

 or @_IE,IE

 BUD R5 ;

 or 2000h,ST ; turn on INT’s

 ldiu @_R5,R5 ;

 ldiu @_DP,DP ; restore DP

;==;

; XHALT ;

; When called this function restores the temporary use registers used ;

; for quick returns from the XWRITE/XREAD before falling into a full ;

; context save, followed by waiting for a new command. ;

;==;

XHALT pop AR1 ; restore original registers before save

 pop AR0 ;

 pop IR1 ;

 pop R0 ;

 pop DP ;

 pop ST ; User PC now at TOS

 Communications Kernel Source Code

A-5 Communications Kernel Source Code

;==;

; SSTEP ;

; This section of code is executed after the pending interrupt, which ;

; was set in XSTEP, has feteched the ISR vector and begun execution. ;

; This code performs a full CPU context save before going to the spin ;

; loop to await further commands. ;

;==;

SSTEP push DP ; temp storage of user DP

 ldp @_ST ; DP for kernal

 sti ST,@_ST ; store ST

 sti IR0,@_IR0 ; IR0 used as temp, later for indexed store

 pop IR0 ; save user DP

 sti IR0,@_DP ;

 pop IR0 ; save user PC

 sti IR0,@_PC ;

 sti SP,@_SP ; save user SP

 sti BK,@_BK ; Block size

 sti IE,@_IE ; Internal int enable

 sti IF,@_IF ; CPU interrupt flags

 sti IOF,@_IOF ; IO flags

 sti RS,@_RS ; Repeat start

 sti RE,@_RE ; Repeat end

 sti RC,@_RC ; Repeat counter

 ; sti IR0,@_IR0 ; Keep everything <– IR0 Saved previously

 sti IR1,@_IR1 ;

 ;– – – – – – – – – – – –

 sti AR0,@_AR0 ; Use parallel opcodes for squeeze

 sti AR1,@_AR1 ;

 ldi @CPUCTXT,AR0 ;

 ldi AR0,AR1 ;

 addi 1,AR1 ;

 ldi 2,IR0 ;

 ;– – – – – – – – – – – –

 stf R0,*AR0++(IR0) ; Store floats

 || stf R1,*AR1++(IR0) ;

 stf R2,*AR0++(IR0) ;

 || stf R3,*AR1++(IR0) ;

 stf R4,*AR0++(IR0) ;

 || stf R5,*AR1++(IR0) ;

 stf R6,*AR0++(IR0) ;

 || stf R7,*AR1++(IR0) ;

 ;– – – – – – – – – – – –

 sti R0,*AR0++(IR0) ; Store longs

 || sti R1,*AR1++(IR0) ;

 sti R2,*AR0++(IR0) ;

 || sti R3,*AR1++(IR0) ;

 sti R4,*AR0++(IR0) ;

 || sti R5,*AR1++(IR0) ;

 sti R6,*AR0++(IR0) ;

 || sti R7,*AR1++(IR0) ;

Communications Kernel Source Code

A-6

 ;– – – – – – – – – – – –

 sti AR2,@_AR2 ; AR0 & AR1 Already saved

 sti AR3,@_AR3 ;

 sti AR4,@_AR4 ;

 sti AR5,@_AR5 ;

 sti AR6,@_AR6 ;

 sti AR7,@_AR7 ;

;–––––––––––––––––––––––––––––––

 ldi @_PC,AR1 ; Send ACK (value of PC at time of halt)

 ldi *–AR1(1),R0 ; to the host processor to indicate that

TRAP_AK call W_HOST ; a halt/spin condition has been entered

 ldi 07000h,AR0 ;

 ldi *AR0,AR0 ;

 ; b spin0 ; <– Branch is removed (spin0 is inline)

;––;

; The spin0 code loop is used by the kernel as a known program loop ;

; when a process is halted. While in the spin loop, commands can be ;

; processed. This code loop is primarily used while debugging or ;

; during startup as a known useable code loop. ;

;––;

spin0 or 4,IE ; Enable DSK31 HPI interrupt

 and 4,IE ; Shut down all interrupts except host

 ; ldi 0,R0 ; Pump the DXR with 0 to prevent underflow

 ; sti R0,@S0_xdata ;

 idle ; IDLE saves power but prevent S.P. refresh

 b spin0 ;

;–––––––––––––––––––––––––––––––

S0xdata .word 0

GIE .set 0x2000

 Communications Kernel Source Code

A-7 Communications Kernel Source Code

;===;

; REGISTER CONTEXT STORAGE ;

; This block of memory holds the register values when a process is ;

; stopped. Essentially the registers displayed in the debugger are ;

; the contents of this memory block. ;

;===;

context ;

_F0 .word 0 ; R0

_F1 .word 0 ; R1

_F2 .word 0 ; R2

_F3 .word 0 ; R3

_F4 .word 0 ; R4

_F5 .word 0 ; R5

_F6 .word 0 ; R6

_F7 .word 0 ; R7

_R0 .word 0 ; F0

_R1 .word 0 ; F1

_R2 .word 0 ; F2

_R3 .word 0 ; F3

_R4 .word 0 ; F4

_R5 .word 0 ; F5

_R6 .word 0 ; F6

_R7 .word 0 ; F7

_AR0 .word 0 ; AR0

_AR1 .word 0 ; AR1

_AR2 .word 0 ; AR2

_AR3 .word 0 ; AR3

_AR4 .word 0 ; AR4

_AR5 .word 0 ; AR5

_AR6 .word 0 ; AR6

_AR7 .word 0 ; AR7

_DP .word 0 ; Data page

_IR0 .word 0 ; Index register 0

_IR1 .word 0 ; Index register 1

_BK .word 0 ; Block size

_SP .word stack–1 ; Stack pointer (initial DSK3D value)

_ST .word 0 ; Status

_IE .word 0 ; Internal int enable

_IF .word 0 ; CPU interrupt flags

_IOF .word 0 ; I/O flags

_RS .word 0 ; Repeat start

_RE .word 0 ; Repeat end

_RC .word 0 ; Repeat counter

_PC .word 0 ; program counter

CPUCTXT .word context ;

Communications Kernel Source Code

A-8

;**;

; KERNEL COMMANDS ;

; ––––––––––––––– ;

; These commands are the primary functions required by the kernel ;

; to perform host based communications. They have been packed into ;

; the avalable memory in such a way as to minimize the kernels size. ;

; The non–debugger functions have also been placed after the debugger;

; commands making it easier to simply allow the application to ;

; ’overwrite’ the debugger commands. ;

;**;

;==;

; INTx is the starting point for all host generated commands. ;

; A host generated command is received when INT2 goes active (driven ;

; low) indicating HPSTB has gone low and that the host would like to ;

; transfer a piece of data or command. ;

;==;

INTx ; maxspeed

 push ST ; Push ISR variables

 push DP ;

 push R0 ; NOTE: A HALT command pops these

 push IR1 ; values followed by a full save

 push AR0 ;

 push AR1 ;

 ldp @JUMP ; Get address of command from JUMP table

 ldi @S0_xdata,R0 ; Put a zero in the DXR making startup

 sti R0,@S0xdata ; from a stalled port safe for the AIC

 ldi 0,R0 ; which cannot accept ’garbage’ which

 sti R0,@S0_xdata ; would reprogram it.

 tstb 4,IF ; Get here by driving INT2 low

 bz SR2 ; Make sure INT2 is active

 call R_HOST ; R0==command

 ldi R0,AR1 ;

 addi @JUMP,AR1 ;

 ldi *AR1,AR1 ;

 b AR1 ; execute command

;**

; COMN is used by both the XWRIT and XREAD functions to receive the

; block transfer length, address and address increment value.

;**

COMN call R_HOST ;

 ldi R0,AR1 ; data packet length

 call R_HOST ;

 ldi R0,AR0 ; source address

 call R_HOST ;

 ldi R0,IR1 ; source index

 subi 1,AR1 ;

 rets ;

 Communications Kernel Source Code

A-9 Communications Kernel Source Code

;==;

; The XCTXT command returns the address of the context save area to ;

; the host. Subsequently, the host can use this address to ’get’ ;

; and put the CPU registers to modify the exectution of the processor;

;––;

XCTXT ldi @CPUCTXT,R0 ; Transmit location of context to CPU

 call W_HOST ;

 ; b SR2 ;

;==;

; SR2 is the short ’common’ return sequence used by most commands. ;

; when executed, the return will send the CPU back to the users code ;

;==;

SR2 ldi 07F00h,AR0 ; Dummy non–HPI read releases READY

 ldi *AR0,AR0 ;

 pop AR1 ; restore ISR variables

 pop AR0 ;

 pop IR1 ;

 pop R0 ;

 pop DP ;

 ; andn 0x4,IF ;

 ; or 4,IE ;

 pop ST ;

 reti ; return to original code

;==;

; TMS320C31 SECONDARY VECTOR TABLE ;

; –––––––––––––––––––––––––––––––– ;

; When the TMS320C31 receives an interrupt it first fetches an ;

; address from the primary vector table (located in the bootloader ;

; ROM). This 32 bit value is then used as an address where the ;

; new execution begins. ;

; ;

; Since it is impossible to relocate the vector table, or modify ;

; the contents of the bootloader ROM, a ’secondary’ or ’branch’ ;

; vector table is used to direct execution to the correct routines. ;

; In this case the C31’s primary vector table has been filled with ;

; interrupt routine addresses which point to the upper memory of ;

; internal RAM beginning at 0x809FC0. Since these locations are ;

; were execution actually begins, and can be modified, a branch ;

; opcode can be used to direct execution to the desired location. ;

;==;

 .sect ”vectors”

INT0 b $; 0x809FC1 0x001

INT1 b $; 0x809FC2 0x002

INT2 b INTx ; 0x809FC3 0x004 <– HPI

INT3 b $; 0x809FC4 0x008

XINT0 b $; 0x809FC5 0x010

RINT0 b $; 0x809FC6 0x020

XINT1 b SSTEP ; 0x809FC7 0x040 <– SSTEP

RINT1 b SSTEP; TRAPFIX ; 0x809FC8 0x080 <– ETRAP 0x74000008

TINT0 b $; 0x809FC9 0x100

TINT1 b $; 0x809FCA 0x200

DINT b $; 0x809FCB 0x400

Communications Kernel Source Code

A-10

;==;

; HOST HPI communications routines packed into himem ;

; ;

; NOTE: These routines can be called from a high level langauge ;

; compiler using the C31s TRAP commands, by directly linking their ;

; resolved addresses or by using the jump table. ;

;==;

; W_HOST performs an interlocked Host Port write of the contents ;

; of R0 to the host using the HPSTB/HPACK protocol. When called the ;

; host PC should be waiting for this function to send data. ;

;==;

W_HOST push AR0 ; Used for HPI address

 push AR1 ; Used for loop counter

 push ST ; Keep flags

 push DP ; Might not be on same page

 ldp WSCOUNT ;

 ldi 0xF000,AR0 ; HPI address sign extends to 0xFFF000

 ldi @WSCOUNT,AR1 ;

WH sti R0,*AR0++(16) ; Store lsbs to HPI

 lsh @WSHIFT,R0 ; shift to next lsbs

 db AR1,WH ; loop until done

 pop DP ;

 b COMNHST ;

;==;

; R_HOST performs an interlocked Host Port read from the printer ;

; port interface and places the result into R0. ;

;==;

R_HOST push AR0 ; HPI Address

 push AR1 ; loop counter

 push ST ;

 push R1 ; temp register

 ldi 0xF000,AR0 ; HPI address sign extends to 0xFFF000

 ldi 3,AR1 ; bytes–1 to receive

RH lsh –8,R0 ; shift result right one byte

 ldi *AR0++,R1 ; Load byte

 lsh 24,R1 ; shift to upper byte

 or R1,R0 ; or w/result

 db AR1,RH ; loop until done

 pop R1 ; restore

 ;;;; b COMNHST ; <– Branch can be saved

COMNHST pop ST ; Next 4 opcodes common to W_HOST/R_HOST

 pop AR1 ;

 pop AR0 ;

 rets ;

;==;

; XWRIT is a host port command designed to transfer a block of ;

; data from the host to the C31’s memory. ;

;==;

XWRIT call COMN ;

XW1 call R_HOST ;

 sti R0,*AR0++(IR1) ;

 db AR1,XW1 ;

 b SR2 ;

 Communications Kernel Source Code

A-11 Communications Kernel Source Code

;==;

; XREAD is a host port command designed to transfer a block of ;

; data from C31 memory to the host. ;

;==;

XREAD call COMN ;

XR1 ldi *AR0++(IR1),R0 ;

 call W_HOST ;

 db AR1,XR1 ;

 b SR2 ;

;==;

; There are a few leftover traps that can be used by appliactions ;

; The number of TRAPs coincides with the amount of available unused ;

; memory before the JUMP table is encountered and was adjusted by ;

; hand by looking at the assembler listing ;

;==;

TRAP00 b $; Leftover TRAPs which can be

TRAP01 b $; used by applictions

;==;

; A JUMP table can also be used to access the DSK3 routines from ;

; other applications that require host communications. In this case ;

; the contents of the loaction specified can be used in a register ;

; call or branch. ;

;==;

; .start ”JMPTBL”,0x809FF4

; .sect ”JMPTBL”

JUMP .word JUMP ;0x809FF4 Jump table base address

 .word XWRIT ;1 ;0x809FF5 for DSK3 routines

 .word XREAD ;2 ;0x809FF6

 .word XCTXT ;3 ;0x809FF7

 .word XRUNF ;4 ;0x809FF8

 .word XSTEP ;5 ;0x809FF9

 .word XHALT ;6 ;0x809FFA

 .word W_HOST ;7 ;0x809FFB

 .word R_HOST ;8 ;0x809FFC

 .word spin0 ;10 ;0x809FFD Use for spare command

;==;

; The last two locations of internal memory hold the two parameters ;

; which define the printer ports bus return width. Depending on the ;

; values, either 8 bit bi–directional or 4 bit nibble returns can ;

; be implimented. These values control the loop count and shift ;

; value needed to place the correct bits on the proper return buffer ;

; inputs. ;

; ;

; DO NOT OVERWITE THESE VALUES unless you are performing buswidth ;

; verification or setup. For more details, see the communications ;

; initialization routines within the host side code. ;

;==;

WSCOUNT .word 7 ;0x809FFE These locations hold the W_HOST

WSHIFT .word –4 ;0x809FFF buswidth parameters (Nibble/Byte)

 .end

Communications Kernel Source Code

A-12

B-1

Appendix A

DSK Circuit Board Dimensions
and Schematic Diagrams

This appendix contains the circuit board dimensions and the schematic

diagrams for the TMS320C3x DSP Starter Kit.

Appendix B

Circuit Board Dimensions

B-2 Part/Module Identifier

F
ig

u
re

 B
–
1
.T

M
S

3
2
0
C

3
x

D
S

P
 S

ta
rt

e
r

K
it

(D
S

K
)

C
ir
cu

it
B

o
a
rd

 D
im

e
n
si

o
n
s

T
L
C

3
2
0
4
0
C

F
N

3
.2

0
0

0

2
.1

2
5

0

1
.0

7
5

0

0
.0

0
0

0

1
.6

5
6
0

–
0
.1

5
0
0

3
.3

5
0
0

3
.2

0
0
0

2
.5

8
2
0

0
.7

3
0
0

0
.0

5
0
0

0
.0

0
0
0

3
.5

0
0

0

5
.0

0
0

 Hardware Component Overview

B-3 DSK Circuit Board Dimensions and Schematic Diagrams

Hardware Component Overview

This section describes the basic functions of the DSK components:

� Expansion Connectors — The four 32-pin headers allow you to develop

add-on cards that can directly interface to all of the ’C31 signals.

� Jumper block header — An 11-pin jumper block connects the ’C31 serial

port to the TLC32040 AIC. Removal of the jumpers disconnects the AIC

from the ’C31 serial port, so that a daughtercard can use the serial port

signals.

� Host Interface Logic — The host interface logic consists of a program-

mable array logic (PAL) 22V10Z and two high-speed octal bus transceiv-

ers with tri-state outputs (74ACT245). These devices interface the ’C31

with the host parallel printer port. This interface logic supports 8-bit bidirec-

tional or 4-bit unidirectional data modes of the PC host.

� Oscillator — The on-board 50Mhz oscillator drives the ’C31 clock input.

The ’C31 internal clock value is divided by 1 (same frequency).

� Parallel Printer Port Connector — The DB25 25-pin connector connects

directly to the host parallel printer port.

� RCA Jacks — The RCA jacks supply analog input or output and are

routed to the I/O pins of the AIC.

� Resettable Fuses — The polyswitch resettable fuses interrupt the flow of

excessive current. The fuses reset after they cool down and the faulty

condition is corrected. The fuses require no manual resetting or replace-

ment.

� TLC32040 AIC — The analog interface circuit provides the ’C31 access

to the analog world. The AIC samples analog data and converts it into a

digital stream for ’C31 analysis. The ’C31 operates on this digital data and

returns the “transformed” digital data to the AIC for conversion into an ana-

log signal.

� TMS320C31 — The main processor is a 32-bit, floating-point digital signal

processor. You develop application code and load it to the on-chip memory

of the ’C31. This code can be executed, single-stepped, and viewed in the

debugger.

Hardware Component Overview

B-4

� Voltage Regulators - The DSK uses a 7–12 Vdc or 6–9 Vac wall mount

power supply. The 7–12 Vdc supply voltage is full-wave rectified and then

regulated up to 5 volts by the LM7805. It is also converted to –5 volts by

the capacitive switching circuit LT1054, and then regulated by the

LM7905. The 6–9 Vac supply is full-wave rectified and then regulated by

the LM7805 and LM7905 to +5V and –5V, respectively. The +5V and –5V

supplies are used to power all of the DSK on-board circuitry. The

TLC32040 AIC requires a negative poser supply of –5 volts.

� XDS Emulator Port — An 11-pin header that connects the XDS510 emu-

lator to the ’C31. The emulator allows you to upgrade to the full-featured

XDS debugger to debug your application code while using the DSK as the

XDS target board.

Schematics

B-5DSK Circuit Board Dimensions and Schematic Diagrams

Schematics

B-6

Schematics

B-7DSK Circuit Board Dimensions and Schematic Diagrams

Schematics

B-8

Schematics

B-9DSK Circuit Board Dimensions and Schematic Diagrams

Schematics

B-10

 Host Interface Control Design Notes

B-11 DSK Circuit Board Dimensions and Schematic Diagrams

Host Interface Control Design Notes

TITLE HOST INTERFACE CONTROL

DWG. NAME TMS320C3X DSK

ASSY # D600335–0001

PAL # U7

COMPANY TEXAS INSTRUMENTS INCORPORATED

ENGR KEITH LARSON

DATE 3/7/96

;

; DESIGN NOTES:

;

; The power consumption of the TMS320C31 DSK was considerably lowered by

; the use of a CMOS TIBPAL22V10Z. When clocked at 25MHz (H1 rate) the

; TIBPAL22V10Z typicaly consumes 40mA (80mA max) as compared to 200mA for

; bipolar PAL devices. If lower consumption is needed the TMS320C31 can be

; programmed to use the LOPOWER or IDLE2 when full speed execution is not

; required. LOPOWER essentially runs the DSP at 1/16 of full speed and

; IDLE2 shuts the the clock completely off. This results in 1/16 and

; practically zero power for these modes respectively for both the PAL

; and the DSP. However due to the 25nS propogation delay through the

; TIBPAL22V10Z a wait state is required for host and peripheral decodes.

;

; Memory access times for the /SRAM decoded output are as follows

;

; TIBPAL22V10Z (CMOS) at 50MHz, H1 = 40ns:

;

; t–access = H1 * (1 + WS) – Tpal – (Td(H1L–A) – Tsu(D)R)

; t–access = H1 * (1 + WS) – 25ns – 19ns

;

; wait states ==> 0 1 2 3 4 ...

; t–access read ==> –4 36 76 116 156 ...

;

; IDLE2 wakeup is initiated by asserting the INT2 pin low. Since the

; clock is stopped during IDLE2, gating with synchronized signals cannot

; be used. A buffer is used with INT2 to avoid differences in the logic

; thresholds of the PAL22V10 and the C31 and to improve the rise and fall

; time of that signal.

;

; TRI–COLOR LED (POWER AND PWM)

; –––––––––––––––––––––––––––––

; If a logic high is applied to PWM (default state), the outputs /UBOOT

; and /USERX become an XOR and /XOR of T0 and T1. The XOR gate in this

; case is being used to detect the phase angle between T0 and T1. Therefor

; if T0 and T1 are configured as outputs, such as when the debugger is

; started, the color can be controled by adjusting the timers.

;

;

; USING THE PWM AS A DAC:

; –––––––––––––––––––––––

; If the output is filtered to a DC level by a low pass filter the

; DC level can be controlled by setting the two timers to identical

; freqencies seperated by a constant phase angle (delay). Since both the

; XOR and /XOR are provided a differential signal is also available.

;

Host Interface Control Design Notes

B-12

; If T0=T1 the output is a DC level proportional to the phase difference

;

; T0 ––––––______––––––______––––––______––––––______––––––______––––––____

; T1 ––––______––––––______––––––______––––––______––––––______––––––______

; XOR____––____––____––____––____––____––____––____––____––____––____––____

;

; USING THE PWM AS A TRIANGLE WAVE GENERATOR

; ––

; If T0 and T1 are set to different frequencies a PWM modulated triangle

; wave at a frequency of F0_t0 – F1_t1 is produced. Since the two XOR

; outputs are compliments a bridged output is created. This then allows the

; current in the LED to reverse resulting in an ; alternating color sequence

; of R–Y–G–Y–R–Y–G–Y...

;

; If T0!=T1 the output is a continuous triangle wave

;

; T0 ––––––______––––––______––––––______––––––______––––––______––––––____

; T1 –––––_____–––––_____–––––_____–––––_____–––––_____–––––_____–––––_____

; XOR_____–____––___–––__––––_––––––––––_––––__–––___––____–__________–____

;

; If an H bridge drive circuit is used with these signals an AC motor can

; be driven with an DSP controlled frequency. By using an external PAL to

; provide additional references signals and phase detectors a 3–phase PWM

; driver can be easily constructed. In this case the external PAL would

; contain a counter whose output is decoded to provide one of the reference

; frequencies in three phases seperated by 2*pi/3 radians. By then using

; one of the DSP timers for the other reference a variable frequency

; 3 phase output can be constructed.

;

; NOTE: The amplitude of the PWM triangle wave cannot be controlled from

; the timers alone. Either the DSP would have to continuously

; calculate the ouptuts as a DC reference or an external circuit

; would have to chop the output.

;––

;

; STRB Q0

; A23 | H1 VCC| Q1

; | | | | | |

; /––––+––+––+––+––+––+––+–––+

; | 4 3 2 1 28 27 26 |

; | |

; A22–|5 25|–UW

; A21–|6 24|–UX

; A20–|7 23|–SRAM

; |8 22|

; DEMO–|9 21|–RDY

; TCK1–|10 20|–INT2

; TCK0–|11 19|–UBOOT

; | |

; | 12 13 14 15 16 17 18 |

; +––––+––+––+––+––+––+––+–––+

; | | | | | |

; R/W |GND HPS |HPA

; TRI UR

;

 Host Interface Control Design Notes

B-13 DSK Circuit Board Dimensions and Schematic Diagrams

NC CLK STRB A23 A22 A21 A20 NC DEMO T1 T0 RW TRI GND

NC HPIS USERR HPIA UBOOT INT2 READY NC SRAM USERX USERW Q1 Q0 VCC

global

;– –

EQUATIONS ;

READY.TRST = TRI ;

INT2.TRST = TRI ;

INT2 = HPIS ;

HPIA = /(A23 * A22 * A21 * /STRB) + /TRI ; 245 enable and HPIA

Q0 := INT2 ; 1st tap

Q1 := Q0 ; 2nd tap for pulse gen

READY = /(Q0*/Q1) * (A23*A22*A21*A20*/STRB) ;

;

; A23 A22 A21 A20 /STRB

;

SRAM = /(A23*/A22 */STRB)

USERR = /(A23* A22*/A21 */STRB* RW)

USERW = /(A23* A22*/A21 */STRB* /RW)

USERX =(/DEMO* /(A23* A22*/A21 */STRB)) +(DEMO* ((T0*/T1)+(/T0*T1)))

UBOOT =(/DEMO* /(/A23*/A22*/A21*/A20*/STRB)) +(DEMO*/((T0*/T1)+(/T0*T1)))

;– –

; The decoded address ranges are as follows

; NOTE: By using A23 as an enable, it is possible to use external

; zero wait state RAM. Essentialy by ignoring decoded outputs

;– –

; USER_BOOT 000000 0FFFFF EPROM boot or uP mode operation

; 100000 7FFFFF No decode

; SRAM 0x800000 0xBFFFFF 1ws decoded external memory

; USER_R 0xC00000 0xDFFFFF > Read access

; USER_W 0xC00000 0xDFFFFF > Write access

; USER_X 0xC00000 0xDFFFFF > Read or Write access

; HPI(asynch) 0xE00000 0xEFFFFF DSP access to bus w/o host lock

; HPI(host locked) 0xF00000 0xFFFFFF Must pulse HPIS to advance DSP state

;

SIMULATION

TRACE_ON CLK HPIS STRB HPIA READY INT2 T0 T1 DEMO RW USERX UBOOT SRAM USERR USERW

;

; Simulate access outside decoded range

;

setf /HPIS STRB A23 A22 A21 A20 TRI DEMO T0 T1 RW

clockf CLK

setf HPIS STRB A23 A22 A21 A20

clockf CLK

clockf CLK

setf /HPIS STRB A23 A22 A21 A20

clockf CLK

clockf CLK

setf HPIS STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

;

; Simulate access inside decoded range

;

setf HPIS /STRB A23 A22 A21 A20

Host Interface Control Design Notes

B-14

clockf CLK

clockf CLK

clockf CLK

clockf CLK

setf /HPIS /STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

setf HPIS /STRB A23 A22 A21 A20

clockf CLK

setf HPIS STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

;

; Simulate access outside decoded range

;

setf HPIS /STRB /A23 /A22 /A21 /A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

setf /HPIS /STRB /A23 /A22 /A21 /A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

setf HPIS /STRB /A23 /A22 /A21 /A20

clockf CLK

setf HPIS STRB /A23 /A22 /A21 /A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

;

; Second access occurs with little delay

;

setf HPIS /STRB A23 A22 A21 A20

clockf CLK

setf /HPIS /STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

setf HPIS /STRB A23 A22 A21 A20

clockf CLK

setf HPIS STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

;

; Second access occurs with little delay

;

 Host Interface Control Design Notes

B-15 DSK Circuit Board Dimensions and Schematic Diagrams

setf HPIS /STRB A23 A22 A21 A20 /TRI

clockf CLK

setf /HPIS /STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

clockf CLK

setf HPIS /STRB A23 A22 A21 A20

clockf CLK

setf HPIS STRB A23 A22 A21 A20

clockf CLK

clockf CLK

clockf CLK

setf /T0 T1

setf T0 /T1

setf T0 /T1

setf /T0 T1

setf /T0 T1

setf T0 /T1

setf T0 /T1

setf /T0 /T1

setf /T0 /T1

setf T0 T1

setf T0 T1

setf /T0 /T1

setf /T0 /T1

setf /T0 T1

setf /T0 /T1

setf T0 /T1

setf T0 /T1

setf T0 T1

setf T0 T1

setf T0 /T1

setf T0 /T1

setf /T0 /T1

setf /T0 /T1

setf /T0 T1

setf /T0 T1

setf T0 T1

setf T0 T1

setf /A23 /A22 /A21 /A20 /DEMO /STRB RW

setf /A23 /A22 /A21 /A20 /DEMO /STRB/RW

setf /A23 /A22 /A21 /A20

setf /A23 /A22 /A21 /A20 /DEMO /STRB RW

setf /A23 /A22 /A21 A20

setf /A23 /A22 A21 /A20

setf /A23 /A22 A21 A20

setf /A23 A22 /A21 /A20

setf /A23 A22 /A21 A20

setf /A23 A22 A21 /A20

setf /A23 A22 A21 A20

setf A23 /A22 /A21 /A20

setf A23 /A22 /A21 A20

setf A23 /A22 A21 /A20

setf A23 /A22 A21 A20

B-16

C-1

Appendix A

TLC32040 Data Sheet

Appendix C contains the TLC32040 data sheet. This data sheet provides all

specifications of the analog interface circuit used by the ’C3x DSK.

Appendix C

C-2

D-1

Appendix A

Glossary

A

absolute address: An address that is permanently assigned to a memory

location.

assembler: A software program that creates a machine-language program

from a source file that contains assembly language instructions, direc-

tives, and macro directives. The assembler substitutes absolute opera-

tion codes for symbolic operation codes, and absolute or relocatable ad-

dresses for symbolic addresses.

assignment statement: A statement that assigns a value to a variable.

autoexec.bat: A batch file that contains DOS commands for initializing your

PC.

B

batch file: A file that contains DOS commands for the PC to execute.

block: A set of declarations and statements that are grouped together with

braces.

breakpoint: A point within your program where execution will halt because

of a previous request from you.

byte: A sequence of eight adjacent bits operated upon as a unit.

Appendix D

Glossary

D-2

C

code-display windows: Windows that show code, text files, or code-

specific information.

command line: The portion of the COMMAND window where you can enter

commands.

command-line cursor: A block-shaped cursor that identifies the current

character position on the command line.

comment: A source statement (or portion of a source statement) that is

used to document or improve readability of a source file. Comments are

not assembled.

common object file format (COFF): An object file that promotes modular

programming by supporting the concept of sections.

constant: A numeric value that can be used as an operand.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that

is used as a pointing device. The cursor is usually under keyboard con-

trol.

D

D_DIR: An environment variable that identifies the directory containing the

commands and files necessary for running the debugger.

debugger: A windows-oriented software interface that helps you to debug

DSK programs running on a DSK board.

directive: Special-purpose commands that control the actions and func-

tions of a software tool like an assembler (as opposed to assembly lan-

guage instructions, which control the actions of a device).

disassembly: Assembly language code formed from the reverse-assembly

of the contents of memory.

DSP: Digital signal processing.

 Glossary

D-3 Glossary

E

EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

entry point: The starting execution point in target memory.

expression: A constant, a symbol, or a series of constants and symbols

separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but

defined in a different program module.

F

file header: A portion of a COFF object file that contains general informa-

tion about the object file (such as the number of section headers, the type

of system the object file can be downloaded to, the number of symbols

in the symbol table, and the symbol table’s starting address).

G

global: A kind of symbol that is either: 1) defined in the current module and

accessed in another or 2) accessed in the current module but defined in

another.

I

input section: A section from an object file that will be linked into an

executable module.

L

label: A symbol that begins in column 1 of a source statement and corre-

sponds to the address of that statement.

listing file: An output file created by the assembler that lists source state-

ments, their line numbers, and any unresolved symbols or opcodes.

LSB: Least significant bit.

LSByte: Least significant byte.

Glossary

D-4

M

member: An element or variable of a structure, union, or enumeration.

memory map: A map of target system memory space that is partitioned into

functional blocks.

mnemonic: An instruction name that the assembler translates into machine

code.

MSB: Most significant bit.

MSByte: Most significant byte.

N

named section: 1) An initialized section that is defined with a .sect directive,

or 2) an uninitialized section that is defined with a .usect directive.

O

object file: A file that has been assembled and contains machine-language

object code.

operand: The arguments or parameters of an assembly language instruc-

tion, assembler directive, or macro directive.

options: Command parameters that allow you to request additional or spe-

cific functions when you invoke a software tool.

P

PC: Personal computer or program counter, depending on the context and

how it’s used. In this book, installation instructions or in information relat-

ing to hardware and boards, PC means Personal Computer (as in IBM

PC). In general debugger and program-related information, PC means

Program Counter, which is the register that identifies the current state-

ment in your program.

parallel port: The parallel printer port interface is primarily used for connect-

ing printers to the computer system, although the parallel port can also

be used for other peripherals. In this case, the ’C3x DSK is connected

to the parallel printer port.

 Glossary

D-5 Glossary

R

raw data: Executable code or initialized data in an output section.

S

section: A relocatable block of code or data that will ultimately occupy con-

tiguous space in the memory map.

serial port: The serial port that the DSK uses for communicating with the

analog interface circuit (AIC). The port address is selected, based on

which communcation port the AIC is attached to.

single-step: A form of program execution that allows you to see the effects

of each statement. The program is executed statement by statement; the

debugger pauses after each statement to update the data-display

windows.

source file: A file that contains C code or assembly language code that will

be assembled to form a temporary object file.

symbol: A string of alphanumeric characters that represents an address or

a value.

V

VGA: Video Graphics Array. An industry standard for video cards.

W

window: A defined rectangular area of virtual space on the display.

word: A 32-bit addressable location in target memory.

D-6

 Glossary

D-1 Glossary

This template is for the “See” and “See also” references in your index. Since these en-
tries do not have a page number associated with them, it’s extremely difficult to locate
one if you need to modify or delete it and you don’t remember which chapter it’s in.
By using this template, you can alphabetize your entries according to the first letter
of the first level entry.

A

B

C

D

E

F

G

H

I

J

Glossary

D-2

K

L

M

N

O

P

Q

R

S

T

U

V

 Glossary

D-3 Glossary

W

X

Y

Z

 Index

Index-1

Index

? debugger option, 7-2

; in assembly language source, 5-7

$ symbol for SPC, 5-11

@ operand prefix, 5-5

* in assembly language source, 5-7

* operand prefix, 5-5

A

absolute address
definition D-1

adding a software breakpoint 7-9

AIC
hardware interface 4-6

AIC Initialization 4-14
AIC reset 4-14
’C31 timer initializing 4-14 to 4-15

example code 4-15
initializing AIC 4-16 to 4-17
primary communications 4-17 to 4-18
secondary communications 4-18 to 4-22

control register bit fields 4-19
data format 4-18

serial port initializing 4-15 to 4-16

.align directive 6-11, 6-14

assembler 3-4, 5-15
–l option 3-5
constants 5-8
definition D-1
description of 3-2
key features 3-2
options 5-15
source

listings 5-2
source statement format 5-2
symbols 5-11

assembler directives
aligning the section program counter 6-11
alphabetical reference 6-13 to 6-32
conditional assembly 6-10
defining assembly-time symbols 6-11
defining sections 6-5 to 6-7
enabling conditional assembly

.endloop 6-24

.loop 6-24
initializing constants 6-8 to 6-9
miscellaneous 6-12
referencing other files 6-9
summary table 6-2

assembling your program 5-15

assignment statement
definition D-1

autoexec.bat file
definition D-1

B
BA command 7-9

batch files
definition D-1

BD command 7-9

binary integers 5-8

BL command 7-9

block
definition D-1

block diagram of TMS320C3x DSK 1-3

board requirements 2-2

breakpoints. See software breakpoints

breakpoints (hardware)
definition D-1

breakpoints (software)
definition D-1

.brstart directive 6-12, 6-15

byte
definition D-1

Index

Index-2

.byte directive 6-8, 6-16

C
c or com debugger option 7-3

’C31 serial port
initializing 4-15 to 4-16

’C31 timer
initializing 4-14 to 4-15

example code 4-15
maximum timer period register value 4-15
minimum timer period register value 4-14

cable requirements 2-2

character
constants 5-9

circuit diagram 4-3

clearing software breakpoints 7-9

code-display windows
definition D-2

COFF
definition D-2

command line
definition D-2

comment
definition D-2

comments 5-7 to 5-18
in assembly language source code 5-7

communications kernel 4-8 to 4-13
commands 4-9
data packets 4-8

structure 4-8
debugging functions 4-10 to 4-13

flow diagram 4-12
pipeline flow 4-13

source code A-1

conditional assembly 6-10

conditional block
definition D-1

config.sys file 2-5

connecting the DSK 2-4

constant
definition D-2

constants 5-8, 5-11
assembly-time 5-8
binary integers 5-8
character 5-9
decimal integers 5-8

constants (continued)
hexadecimal integers 5-8
symbols as 5-8

.copy directive 6-9, 6-17

cursors
command-line cursor
definition D-2

D
D_DIR environment variable

definition D-2

.data directive 6-5, 6-18

data packets 4-8
structure 4-8

debugger
definition D-2
description of 3-2 to 3-3
display

basic 3-3
key features 3-3
options 7-2

? 7-2
c or com 7-3
h 7-2

debugging functions
communications kernel 4-10 to 4-13
single-step flow diagram 4-12
single-step pipeline flow 4-13

decimal integer constants 5-8

developing code 3-4

directives
assembler

binary integers 5-8
character constants 5-9
hexadecimal integers 5-8

definition D-2

disassembly
definition D-2

display directory
function key method 7-13

display requirements 2-2

driver.cpp 4-23

DSK
schematics B-5

DSK assembler
using 5-1 to 5-18

DSK host software 4-23

 Index

Index-3

DSK overview 1-3

dsk3a.exe command 2-3

dsk3d.exe command 2-3

dska command 3-5, 5-15

dskd command 3-5, 7-2

DSP
defined D-2

E
EGA

definition D-3

.else directive 6-10, 6-23

.end directive 6-12, 6-19

.endif directive 6-10, 6-23

.endloop directive 6-10, 6-24

.entry directive 6-11, 6-20

entry point
definition D-3

execute program to breakpoint
function key method 7-13

external symbol
definition D-3

F
file header

definition D-3

.fill directive 6-8, 6-29

.float directive 6-8, 6-21

.float16 directive 6-8, 6-21

.float8 directive 6-8, 6-21

functional overview 4-1

G
GET DEBUG_CTXT D-26

getmem D-24

getting started 3-5

global symbol, definition D-3

H
h debugger option 7-2

HALT_CPU D-25

hardware
checklist 2-2

hardware component overview B-3

hardware interface 4-2
AIC 4-6
host 4-2 to 4-3
host communications 4-4 to 4-5
memory map 4-7
TLC32040 4-6

hardware overview 4-1

hardware requirements
optional 2-3

hexadecimal integers 5-8

host requirements 2-2

host software 4-23

I
.ieee directive 6-8, 6-22

.if directive 6-10, 6-23

.include directive 6-9, 6-17

Init_System D-29

input section
definition D-3

input_rdy D-27

installing the DSK software 2-1 to 2-10
instructions 2-5
possible errors 2-8

.int directive 6-8, 6-16

introduction 1-1

invoking
assembler 5-15

K
key features of the DSK 1-2

L
–l option 3-5

label
definition D-3

labels 5-3 to 5-18
case sensitivity 5-3
in assembly language source 5-2
syntax 5-2

LF_Cmd D-29

Index

Index-4

listing file
definition D-3

listing software breakpoints 7-9

.long directive 6-8, 6-16

.loop directive 6-10, 6-24

LSB
defined D-3

LSByte
defined D-3

M
member

definition D-4

memory map 4-7
definition D-4

memory requirements 2-2

miscellaneous files 2-3

mnemonic
definition D-4

mnemonic field 5-4
syntax 5-2

MSB 5-3
definition D-4

MSb
definition D-4

N
named section

definition D-4

O
object file

definition D-4

object.cpp 4-23

opcodes
defining 5-4 to 5-18

operand
definition D-4

operands 5-5
label 5-11
prefixes 5-5

operating system 2-3

options
assembler 5-15
debugger 7-2
definition D-4

overview
DSK system 1-3

P
PATH statement 2-6

PC
definition D-4

.pfloat16 directive 6-21

.pfloat8 directive 6-8, 6-21

power requirements 2-2

predefined symbols 5-11

primary communications 4-17 to 4-18

print screen
function key method 7-13

program
assembling 5-15
entry point

definition D-3

putmem D-24

Q
.qxx directive 6-8, 6-25

R
raw data

definition D-5

recv_long D-28

recv_long_byte D-27

required files 2-3

reset D-27

RUN_CPU D-25

S
schematics B-5

.sdef directive 6-11, 6-26

secondary communications 4-18 to 4-22
control register bit fields 4-19
data format 4-18

 Index

Index-5

.sect directive 6-5, 6-27

section
definition D-5

section program counter. See SPC

serial port
definition D-5
identifying 7-3

.set directive 6-11, 6-28

single-step
definition D-5

singlestep
function key method 7-13, 7-14

single-step flow diagram 4-12

single-step pipeline flow 4-13

software breakpoints 7-9
BA command 7-9
BD command 7-9
BL command 7-9
clearing 7-9
listing 7-9
setting 7-9

software checklist 2-3

source
listings 5-2
statement

format 5-2
comment field 5-7

label field 5-3

mnemonic field 5-4

operand field 5-5

number (source listing) 5-2

source file
definition D-5

source files 5-2 to 5-7
commenting 5-7 to 5-18
labeling 5-3 to 5-18
opcodes 5-4 to 5-18

.space directive 6-9, 6-29

SPC
assigning a label to 5-3
value

associated with labels 5-3

SSTEP_CPU D-25

.start directive 6-12, 6-30

.string directive 6-9, 6-31

symbol
definition D-5

symbolic constants 5-11

symbols 5-11
predefined 5-11

T
target.cpp 4-23

.text directive 6-5, 6-32

timer period register value
maximum 4-15
minimum 4-14

TLC32040
hardware interface 4-6

TLC32040 AIC initialization 4-14 to 4-22
See also AIC initialization

V
VGA

definition D-5

W
windows

definition D-5

word
definition D-5

.word directive 6-9, F-16

X
xmit_long D-28

Index-6

