
��
������ ��������	������
�����������

User’s Guide

1998 Digital Signal Processing Solutions

Printed in U.S.A., January 1998
SDS

SPRU194

TMS320C3x
General-Purpose Applications

User’s Guide

Literature Number: SPRU194
January 1998

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This user’s guide serves as a reference book for the TMS320C3x generation
of digital signal processors, which includes the TMS320C30, TMS320C31,
TMS320LC31 and TMS320C32. Throughout the book, all references to ’C3x
refer collectively to ’C30, ’C31, and ’C32 and the TMS320C30, TMS320C31,
and TMS320C32 refer to all speed variations unless an exception is noted.
This document provides information to assist managers and hardware/soft-
ware engineers in application development.

Specifically, this book complements the TMS320C3x User’s Guide by provid-
ing information to assist you in application development. It includes example
code and hardware connections for various appliances.

This guide presents examples of frequently used applications and discusses
more involved examples and applications. It also defines the principles in-
volved in many applications and gives the corresponding assembly language
code for instructional purposes and for immediate use. Whenever a detailed
explanation of the underlying theory is too extensive to be included in this
manual, appropriate references are given for further information.

Notational Conventions

iv

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface that is similar to that of a typewriter. Examples
use a bold version of the special typeface for emphasis. Interactive
displays use a bold version of the special typeface to distinguish com-
mands that you enter from items that the system displays (such as
prompts, command output, error messages, etc.).

The following is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

The following is an example of a system prompt and a command you might
enter:

C: csr –a /user/ti/simuboard/utilities

� Any string within angle brackets is considered to be a variable. In syntax
descriptions, the variable is written in a typeface similar to that of the text.
The following is an example of a variable syntax:

<file name> Path name of a UNIX file
<signal> Name of a signal

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown below. Portions of a syntax
that are in italics describe the type of information that should be entered.
The following is an example of a directive syntax:

.asect ” section name”, address

In the preceding example, “.asect” is the directive. This directive has two
parameters, indicated by section name and address. When you use
“.asect,” the first parameter must be an actual section name, enclosed in
double quotes; the second parameter must be an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you must specify the information within the brackets;
you must not enter the brackets themselves. The following is an example
of an instruction that has an optional parameter:

LALK 16–bit constant [, shift]

 Notational Conventions

v Read This First

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames. In this case, the brackets are actually part of the path-
name (they are not optional).

� In assembler syntax statements, column 1 is reserved for the first char-
acter of a label or symbol. If the label or symbol is optional, it is usually not
shown. If it is a required parameter, it is shown starting against the left
margin of the shaded box, as in the example below. No instruction, com-
mand, directive, or parameter, other than a symbol or label, can begin in
column 1.

symbol .usect ” section name”, size in bytes [, alignment]

The symbol is required for the .usect directive and must begin in column 1.
The section name must be enclosed in quotes and the parameter size in
bytes must be separated from the section name by a comma. The align-
ment is optional and, if used, must be separated by a comma.

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. The following is an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, each sepa-
rated from the previous one by a comma.

Note that .byte does not begin
in column one.

Information About Cautions and Warnings

vi

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

 Related Documentation From Texas Instruments

vii Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

JTAG/MPSD Emulation Technical Reference (literature number SPDU079)
provides the design requirements of the XDS510 emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.

Setting Up TMS320 DSP Interrupts in C Application Report (literature
number SPRA036) describes methods of setting up interrupts for the
TMS320 family of processors in C programming language. Sample code
segments are provided, along with complete examples of how to set up
interrupt vectors.

TLC32040C, TLC32040I, TLC32041C, TLC32041I Analog Interface
Circuits
(literature number SLAS014E) data sheet contains the electrical and
timing specifications for these devices, as well as signal descriptions and
pinouts for all of the available packages.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature num-
ber SPRU035) describes the assembly language tools (assembler, link-
er, and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C3x and ’C4x generations of devices.

TMS320C3x/C4x Code Generation Tools Getting Started Guide (literature
number SPRU119) describes how to install the TMS320C3x/C4x
assembly language tools and the C compiler. Installation instructions are
included for MS–DOS , Windows 3.x, Windows NT, Windows 95,
SunOS , Solaris, and HP–UX systems.

TMS320C3x/C4x Optimizing C Compiler User’s Guide (literature number
SPRU034) describes the TMS320 floating-point C compiler. This C com-
piler accepts ANSI standard C source code and produces TMS320 as-
sembly language source code for the ’C3x and ’C4x generations of de-
vices.

TMS320C3x C Source Debugger (literature number SPRU053) describes
the ’C3x debugger for the emulator, evaluation module, and simulator.
This book discusses various aspects of the debugger interface, including
window management, command entry, code execution, data manage-
ment, and breakpoints. It also includes a tutorial that introduces basic de-
bugger functionality.

Related Documentation From Texas Instruments

viii

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature
number SPRU035) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C3x and ’C4x generations of devices.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
32-bit floating-point microprocessor (developed for digital signal proces-
sing as well as general applications), its architecture, internal register
structure, instruction set, pipeline, specifications, and DMA and serial
port operation. Software and hardware applications are included.

TMS320C3x/C4x Code Generation Tools Getting Started Guide (literature
number SPRU119) describes how to install the TMS320C3x/C4x
assembly language tools and the C compiler. Installation instructions are
included for MS–DOS , Windows 3.x, Windows NT, Windows 95,
SunOS , Solaris, and HP–UX systems.

TMS320C30 Digital Signal Processor (literature number SPRS032A) data
sheet contains the electrical and timing specifications for this device, as
well as signal descriptions and pinouts for all of the available packages.

TMS320C31, TMS320LC31 Digital Signal Processors (literature number
SPRS035) data sheet contains the electrical and timing specifications for
these devices, as well as signal descriptions and pinouts for all of the
available packages.

TMS320C32 Digital Signal Processor (literature number SPRS027C) data
sheet contains the electrical and timing specifications for this device, as
well as signal descriptions and pinouts for all of the available packages.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

TMS320 Family Development Support Reference Guide (literature number
SPRU011E) describes the TMS320 family of digital signal processors
and the various products that support it. This includes code-generation
tools (compilers, assemblers, linkers, etc.) and system integration and
debug tools (simulators, emulators, evaluation modules, etc.). This book
also lists related documentation, outlines seminars and the university
program, and provides factory repair and exchange information.

 Related Documentation from Texas Instruments / References

ix Read This First

TMS320 Third-Party Support Reference Guide (literature number
SPRU052C) alphabetically lists over 100 third parties who supply vari-
ous products that serve the family of TMS320 digital signal processors,
including software and hardware development tools, speech recogni-
tion, image processing, noise cancellation, modems, etc.

References

The publications in the following reference list contain useful information re-
garding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The reference list is organized into categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

� General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Bateman, A., and Yates, W., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, T.W., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. I.
Texas Instruments, 1986; Prentice-Hall, Inc., 1987.

Digital Signal Processing Applications with the TMS320 Family, Vol. II.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. III.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New York,
NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

Hutchins, B., and Parks, T., A Digital Signal Processing Laboratory Using
the TMS320C25. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal
Processing. New York, NY: IEEE Press, 1979.

References

x

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V., and Schafer, R.W., Discrete-Time Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989.

Oppenheim, Alan V., and Willsky, A.N., with Young, I.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Sorensen, H. V., et al, Real-Valued Fast Fourier Transform Algorithms,
IEEE Transform on ASSP, June 1987.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and Design
of Adaptive Filters. New York, NY: John Wiley and Sons, Inc., 1987.

� Speech:

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant, N.S., and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Parsons, Thomas., Voice and Speech Processing. New York, NY:
McGraw Hill Company, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Shaughnessy, Douglas., Speech Communication. Reading, MA:
Addison-Wesley, 1987.

 References

xi Read This First

� Image Processing:

Andrews, H.C., and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley and
Sons, 1978.

� Multirate DSP:

Crochiere, R.E., and Rabiner, L.R., Multirate Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Vaidyanathan, P.P., Multirate Systems and Filter Banks. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

� Digital Control Theory:

Dote, Y., Servo Motor and Motion Control Using Digital Signal Processors.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dek-
ker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensa-
tors. Cambridge, MA: The MIT Press, 1983.

Phillips, C., and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

� Adaptive Signal Processing:

Haykin, S., Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1991.

Widrow, B., and Stearns, S.D. Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1985.

� Array Signal Processing:

Haykin, S., Justice, J.H., Owsley, N.L., Yen, J.L., and Kak, A.C. Array
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Hudson, J.E. Adaptive Array Principles. New York, NY: John Wiley and
Sons, 1981.

Monzingo, R.A., and Miller, J.W. Introduction to Adaptive Arrays. New
York, NY: John Wiley and Sons, 1980.

Trademarks

xii

Trademarks

ABEL is a trademark of DATA I/O.

CodeView, MS, MS-DOS, MS-Windows, and Presentation Manager are registered trademarks of
Microsoft Corporation.

DEC, Digital DX, Ultrix, VAX, and VMS are trademarks of Digital Equipment Corporation.

HPGL is registered trademark of Hewlett Packard Company.

Macintosh and MPW are trademarks of Apple Computer Corp.

Micro Channel, OS/2, PC-DOS, and PGA are trademarks of International Business Machines Corpora-
tion.

SPARC, Sun 3, Sun 4, Sun Workstation, SunView, and SunWindows are trademarks of Sun Microsys-
tems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

 If You Need Assistance

xiii Read This First

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

xiv

 Contents

xv

Contents

1 Processor Initialization 1-1.
Provides examples for initializing the processor.

1.1 Reset Process 1-2.
1.2 Reset Signal Generation 1-3.
1.3 How to Initialize the Processor 1-4.

1.3.1 Processor Initialization Under Assembly Language 1-4.
1.3.2 Processor Initialization Under C Language 1-8.

1.4 Low-Power Mode Interrupt 1-9.

2 Program Control 2-1.
Provides examples for initializing the processor and discusses program control features.

2.1 Subroutines 2-2.
2.2 Stacks and Queues 2-5.

2.2.1 System Stacks 2-5.
2.2.2 User Stacks 2-6.
2.2.3 Queues and Double-Ended Queues 2-8.

2.3 Interrupt Service Routines 2-9.
2.3.1 Correct Interrupt Programming 2-9.
2.3.2 Software Polling of Interrupts 2-9.
2.3.3 Interrupt Priority 2-10.

2.4 Context Switching in Interrupts and Subroutines 2-11.
2.5 Delayed Branches 2-17.
2.6 Repeat Modes 2-18.

2.6.1 Block Repeat 2-18.
2.6.2 Single-Instruction Repeat 2-20.

2.7 Computed GOTOs 2-22.

3 Logical and Arithmetic Operations 3-1.
Provides examples for performing logical and arithmetic operations.

3.1 Bit Manipulation 3-2.
3.2 Block Moves 3-4.
3.3 Bit-Reversed Addressing 3-5.
3.4 Integer and Floating-Point Division 3-6.

3.4.1 Integer Division 3-6.
3.4.2 Floating-Point Inverse and Division 3-10.

Contents

xvi

3.5 Square Root Computation 3-13.
3.6 Extended-Precision Arithmetic 3-16.
3.7 IEEE/TMS320C3x Floating-Point Format Conversion 3-20.

3.7.1 IEEE-to-TMS320C3x Floating-Point Format Conversion 3-22.
3.7.2 TMS320C3x-to-IEEE Floating-Point Format Conversion 3-26.

4 Memory Interfacing 4-1.
Provides examples for ’C3x system configuration, memory interfaces, and reset.

4.1 System Configuration 4-2.
4.2 External Interfaces 4-3.
4.3 Primary Bus Interface 4-4.
4.4 Zero-Wait-State Interface to Static RAMs 4-5.
4.5 Wait States and Ready Signal Generation 4-10.

4.5.1 ORing the Ready Signals 4-10.
4.5.2 ANDing the Ready Signals 4-11.
4.5.3 External Ready Signal Generation 4-11.
4.5.4 Ready Control Logic 4-13.
4.5.5 Example Circuit 4-14.
4.5.6 Bank-Switching Techniques 4-15.

4.6 Interfacing Memory to the TMS320C32 DSP 4-21.
4.6.1 Functional Description of the Enhanced Memory Interface 4-24.
4.6.2 Logical Versus Physical Address 4-33.
4.6.3 32-Bit Memory Configuration Design Examples 4-35.
4.6.4 16-Bit and 8-Bit Memory Configuration Design Examples 4-41.
4.6.5 One Bank /Two Strobes (32-Bit-Wide Memory) Design Examples 4-49.
4.6.6 RDY Signal Generation 4-57.
4.6.7 Address Decode for Multiple Banks 4-64.

4.7 How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface 4-67. .
4.7.1 C Compiler Interaction With the TMS320C32 Memory Interface 4-69.
4.7.2 C Compiler and Assembler Switch 4-72.
4.7.3 Linker Switches 4-73.
4.7.4 Debugger Configuration 4-73.
4.7.5 TMS320C32 Configuration Examples 4-74.

4.8 Booting a TMS320C32 Target System in a C Environment 4-86.
4.8.1 Generating a COFF File 4-86.
4.8.2 Loading the COFF File to the Target System 4-91.
4.8.3 Debugger Boot 4-91.
4.8.4 EPROM Boot 4-95.
4.8.5 Boot Table Memory Considerations 4-99.
4.8.6 Host Load 4-102.

4.9 TMS320C30 Addressing up to 68 Gigawords 4-107.

 Contents

xvii Contents

5 Programming Tips 5-1.
Provides hints for writing more efficient C and assembly language code.

5.1 Hints for Optimizing C Code 5-2.
5.2 Hints for Assembly Coding 5-5.
5.3 Low-Power Mode Wakeup Example 5-7.
5.4 Bit-Reversed Addressing in C 5-9.
5.5 Sharing Header Files in C and Assembly 5-10.
5.6 Addressing Peripherals as Data Structures in C 5-11.
5.7 Linking C Data Objects Separate From the .bss Section 5-13.
5.8 Interrupts in C 5-16.

6 DSP Algorithms 6-1.
Describes common algorithms and provides code for implementing them.

6.1 Companding 6-2.
6.2 FIR, IIR, and Adaptive Filters 6-7.

6.2.1 FIR Filters 6-7.
6.2.2 IIR Filters 6-9.
6.2.3 Adaptive Filters (Least Mean Squares Algorithm) 6-15.

6.3 Lattice Filters 6-18.
6.4 Matrix-Vector Multiplication 6-24.
6.5 Vector Maximum Search 6-26.
6.6 Fast Fourier Transforms (FFTs) 6-28.

6.6.1 FFT Definition 6-29.
6.6.2 Complex Radix-2 DIF FFT 6-30.
6.6.3 Complex Radix-4 DIF FFT 6-36.
6.6.4 Real Radix-2 FFT 6-42.

6.7 TMS320C3x Benchmarks 6-78.
6.8 Sliding FFT 6-80.

6.8.1 SFFT Theory: A Better Way to Use the Impulse Response 6-80.
6.8.2 Frequency Response Calculation 6-82.
6.8.3 Visualizing the SFFT 6-83.
6.8.4 Fbin Convergence and Stability 6-84.
6.8.5 SFFT Windowing 6-84.
6.8.6 Using SFFT.ASM for Spectrum Analysis 6-85.
6.8.7 Using SFFT.ASM for Hilbert Transforms and

Arbitrary Phase Angles Filters 6-85.
6.8.8 Raised Cosine Windowed Filters 6-86.
6.8.9 Non-Windowed SFFT 6-88.
6.8.10 Performance 6-88.
6.8.11 Loop Unrolling for High Speed Filtering 6-89.
6.8.12 Fitting the Code and Data Into Memory 6-89.
6.8.13 Using This Code With ’C’ 6-90.
6.8.14 TLC32040 ADC and DAC Considerations 6-90.
6.8.15 SFFT Summary 6-90.
6.8.16 SFFT Algorithm 6-91.

Contents

xviii

7 Programming the DMA Channel 7-1.
Provides examples for programming on-chip peripherals for the TMS320C3x.

7.1 Hints for DMA Programming 7-2.
7.2 When a DMA Channel Finishes a Transfer 7-3.
7.3 DMA Assembly Programming Examples 7-4.

8 Analog Interface Peripherals and Applications 8-1.
Describes the analog input/output devices that interface to the ’C3x.

8.1 Analog-to-Digital Converter Interface to the TMS320C30 Expansion Bus 8-2.
8.2 Digital-to-Analog Converter Interface to the TMS320C30 Expansion Bus 8-6.
8.3 Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x 8-10.
8.4 TLC32040 Interface to the TMS320C3x 8-21.

8.4.1 Resetting the Analog Interface Circuit 8-21.
8.4.2 Initializing the TMS320C31 Timer 8-22.
8.4.3 Initializing the TMS320C31 Serial Port 8-23.
8.4.4 Initializing the AIC 8-24.

8.5 TLC320AD58 Interface to the TMS320C3x 8-30.
8.6 CS4215 Interface to the TMS320C3x 8-39.
8.7 Software UART Emulator for the TMS320C3x 8-66.

8.7.1 Hardware 8-66.
8.7.2 Software 8-66.

8.8 Hardware UART for TMS320C3x 8-70.

9 Clock Oscillator and Ceramic Resonators 9-1.
Provides general background on oscillators and resonators and their frequency characteristics.

9.1 Oscillators 9-2.
9.1.1 Recommendations for Oscillator Use 9-2.

9.2 Quartz Crystal and Ceramic Resonators 9-3.
9.2.1 Behavior and Operation of Quartz Crystal and Ceramic Resonators 9-4.
9.2.2 Crystal Response to Square-Wave Drive 9-7.

9.3 Pierce Oscillator Circuit 9-9.
9.3.1 Oscillator Operation 9-10.
9.3.2 Pierce Oscillator Configuration for the TMS320C30 and TMS320C31 9-13.
9.3.3 Overtone Operation of the Oscillator 9-14.

9.4 Design Considerations 9-17.
9.4.1 Crystal Series Resistance (Rx) 9-17.
9.4.2 Load Capacitors 9-17.
9.4.3 Loop Gain 9-18.
9.4.4 Drive Level/Power Dissipation 9-18.
9.4.5 Startup Time 9-20.
9.4.6 Frequency-Temperature Characteristics of Crystals 9-20.
9.4.7 Crystal Aging 9-21.

9.5 Oscillator Solutions for Common Frequencies 9-22.

 Contents

xix Contents

10 XDS510 Emulator Design Considerations 10-1.
Describes the JTAG emulator cable. Tells you how to construct a 12-pin connector on your
target system and how to connect the target system to the emulator.

10.1 Designing the MPSD Emulator Connector (12-Pin Header) 10-2.
10.2 Emulator Cable Pod Logic 10-3.
10.3 MPSD Emulator Cable Signal Timing 10-4.
10.4 Connections Between the Emulator and the Target System 10-5.
10.5 Mechanical Dimensions for the 12-Pin Emulator Connector 10-8.
10.6 Diagnostic Applications 10-10.

11 Development Support and Part Ordering Information 11-1.
Describes ’C3x support available from TI and third-party vendors.

11.1 Development Support 11-2.
11.1.1 Development Tools 11-2.
11.1.2 TMS320 Third Parties 11-4.
11.1.3 Technical Training Organization (TTO) TMS320 Workshop 11-5.
11.1.4 TMS320 Literature 11-5.
11.1.5 DSP Hotline 11-5.
11.1.6 Bulletin Board Service (BBS) 11-6.

11.2 TMS320C3x Part Ordering Information 11-7.
11.2.1 Device and Development Support Tool Prefix Designators 11-9.
11.2.2 Device Suffixes 11-10.

12 TMS320C30 Power Dissipation 12-1.
Explains the current consumption of the TMS320C30 under different operating conditions.

12.1 Power Dissipation Characteristics 12-2.
12.1.1 Power Supply Factors 12-2.
12.1.2 Power Supply Consumption Dependencies 12-2.
12.1.3 Determining Algorithm Partitioning 12-4.
12.1.4 Test Setup Description 12-4.

12.2 Current Requirements for Internal Circuitry 12-5.
12.2.1 Quiescent Current 12-5.
12.2.2 Internal Operations 12-5.
12.2.3 Internal Bus Operations 12-5.

12.3 Current Requirement for Output Driver Circuitry 12-9.
12.3.1 Primary Bus Current 12-10.
12.3.2 Expansion Bus Current 12-13.
12.3.3 Data Dependency Factors 12-14.
12.3.4 Capacitive Load Dependence 12-16.

12.4 Calculation of Total Supply Current 12-17.
12.4.1 Combining Supply Current from All Factors 12-17.
12.4.2 Supply Voltage, Operating Frequency, and

Temperature Dependencies 12-18.
12.4.3 Total Current Equation Example 12-19.
12.4.4 Peak Versus Average Current 12-20.
12.4.5 Thermal Management Considerations 12-21.

Contents

xx

12.5 Example Supply Current Calculations 12-24.
12.5.1 Processing 12-24.
12.5.2 Data Output 12-25.
12.5.3 Average Current 12-25.
12.5.4 Experimental Results 12-26.

A TMS320C32 Boot Table Examples A-1.
Provides boot table examples for the ’C32.

B TMS320C32 Boot Loader Operations B-1.
Describes the on-chip boot loader program that initializes the DSP system after power up or
reset of the ’C32.

B.1 TMS320C32 Boot Loader Source Code Description B-2.
B.2 TMS320C32 Boot Loader Opcodes B-4.
B.3 Boot Loader Source Code Listing B-6.

C Memory Access for C Programs C-1.
Describes two memory models used to access data when programming in C.

D Memory Interface and Address Translation D-1.
Describes the memory interface and address translation for the ’C32.

 Figures

xxi Contents

Figures

1–1 Reset Circuit 1-3.
1–2 Interrupt Generation Circuit for Use With IDLE2 Operation 1-9.
2–1 System Stack Configuration 2-5.
2–2 Implementations of High-to-Low Memory Stacks 2-7.
2–3 Implementations of Low-to-High Memory Stacks 2-7.
3–1 Long Division and SUBC Method 3-7.
4–1 Possible System Configurations 4-2.
4–2 External Interfaces on the TMS320C3x 4-3.
4–3 TMS320C3x Interface to Cypress Semiconductor’s CY7C186 CMOS SRAM 4-7.
4–4 Read Operations Timing 4-8.
4–5 Write Operations Timing 4-8.
4–6 Circuit for Generation of Zero, One, or Two Wait States for Multiple Devices 4-14.
4–7 Bank Switching for Cypress Semiconductor’s CY7C185 SRAM 4-17.
4–8 Bank-Memory Control Logic 4-18.
4–9 Timing for Read Operations Using Bank Switching 4-19.
4–10 STRB0 and STRB1 Control Registers and the PRGW Pin 4-23.
4–11 STRB0 and STRB1 Data Access: Data Size = Memory Width 4-26.
4–12 STRB0 and STRB1 Data Access: Data Size � Memory Width 4-28.
4–13 Program Fetch From 16-Bit STRB0 Memory 4-30.
4–14 Program Fetch From 32-Bit STRB1 Memory 4-32.
4–15 Description of Terms Involved In TMS320C32 Memory Interface 4-34.
4–16 32-Bit Memory Configuration (STRB0 and IOSTRB) 4-36.
4–17 32-Bit Memory Configuration (STRB0 and IOSTRB) 4-37.
4–18 32-Bit Memory Configuration (STRB0 and STRB1) 4-39.
4–19 32-Bit Memory Address Translation: Data Size < Memory Width 4-40.
4–20 16-Bit and 8-Bit Memory Configuration: A Complete Minimum Design 4-42.
4–21 16-Bit and 8-Bit Memory Address Translation: Data Size = Memory Width 4-44.
4–22 16-Bit and 8-Bit Memory Address Translation: Data Size > Memory Width 4-46.
4–23 16-Bit and 8-Bit Memory Address Translation: Data Size < Memory Width 4-48.
4–24 One Bank/Two Strobes Memory Configuration: Memory Width = 32 Bits 4-50.
4–25 One Bank/Two Strobes Address Translation: Data Size = 16 and 8 Bits 4-52.
4–26 One Bank/Two Strobes Address Translation: Data Size = 32 and 8 Bits 4-54.
4–27 One Bank/Two Strobes Address Translation: Data Size = 16 and 32 Bits 4-56.
4–28 RDY Signal Timing for STRB0 and STRB1 Cycles 4-59.
4–29 RDY Signal Generation for STRB0 Cycles 4-61.
4–30 RDY Signal Generation Timing Waveforms 4-63.

Figures

xxii

4–31 Address Decode for Multiple Memory Banks 4-65.
4–32 TMS320C32 Memory Address Spaces 4-69.
4–33 Zero-Wait-State Interface for 32-Bit and 8-Bit SRAM Banks 4-75.
4–34 Zero-Wait-State Interface for 32-Bit SRAMs with 16- and 32-Bit Data Accesses 4-81.
4–35 External Memory Map 4-82.
4–36 TMS320C32 Memory Map 4-83.
4–37 Compile, Assemble, and Link Flow 4-89.
4–38 Loading C Object File into TMS320C32 Memory (Linker –cr Option) 4-93.
4–39 Loading C Object File into TMS320C32 Memory (Linker –c Option) 4-94.
4–40 32-Bit EPROM Boot in the Microprocessor Mode (Linker –c Option) 4-97.
4–41 8-Bit EPROM Boot Using the On-Chip Boot Loader (Linker –cr Option) 4-98.
4–42 Memory Configuration for Normal Program Execution 4-100.
4–43 Boot Table Memory Configuration 4-101.
4–44 Boot From Host Using Serial Port (Linker –cr Option) 4-104.
4–45 Boot From Host Using an 8-Bit Latch (Linker –cr Option) 4-105.
4–46 Boot From Host Using Asynchronous Communications Port (Linker –cr Option) 4-106.
4–47 TMS320C30 Combination of Primary and Expansion Busses to

Address 68 Gigawords 4-107.
5–1 Bit-Reversed Addressing in C Code 5-9.
5–2 Input File defs.h 5-10.
5–3 Output File defs.asm 5-10.
6–1 Data Memory Organization for an FIR Filter 6-7.
6–2 Data Memory Organization for a Single Biquad 6-10.
6–3 Data Memory Organization for N Biquads 6-12.
6–4 Structure of the Inverse Lattice Filter 6-18.
6–5 Data Memory Organization for Forward and Inverse Lattice Filters 6-19.
6–6 Structure of the (Forward) Lattice Filter 6-21.
6–7 Data Memory Organization for Matrix-Vector Multiplication 6-24.
6–8 Decimation in Time for an 8-Point FFT 6-29.
6–9 Decimation in Frequency for 8-Point FFT 6-30.
6–10 Input Signal Sample Buffer 6-81.
6–11 Frequency Bin Diagram (Equivalent to an IIR Filter) 6-83.
6–12 Raised Cosine Window 6-85.
6–13 Raised Cosine Window Function (Length = 1 Bin) 6-86.
6–14 Raised Cosine Window Function (Length = 2 Bins) 6-87.
6–15 Raised Cosine Window Function (Length = 3 Bins) 6-87.
6–16 Raised Cosine Window Function (Length = 4 Bins) 6-87.
6–17 N/2 SFFT R/I Bins 6-88.
8–1 Interface Between the TMS320C30 and the AD1678 8-3.
8–2 Read Operations Timing Between the TMS320C30 and the AD1678 8-4.
8–3 Interface Between the TMS320C30 and the AD565A 8-7.
8–4 Timing Diagram for Write Operation to the DAC 8-8.
8–5 TMS320C31 Zero Glue-Logic Interface to Burr-Brown ADC and DAC 8-10.
8–6 TM320C3x-to-TLC32040 Interface 8-21.

 Figures

xxiii Contents

8–7 Primary Communication Data Format 8-25.
8–8 Secondary Communication Data Format 8-26.
8–9 TLC320AD58C Serial Interface 18-bit Master Mode “100” Timing Diagram 8-30.
8–10 Interface Between the-TMS320C3x and the TLC320AD58C 8-32.
8–11 TMS320C3x-to-CS4216 Interface 8-39.
8–12 TMS320C3x Serial Port to UART Interface 8-70.
8–13 Transmit Circuitry 8-71.
8–14 Receive Circuitry 8-72.
9–1 Series-LC Schematic 9-3.
9–2 Crystal Equivalent Circuit Model 9-5.
9–3 Impedance Characteristics of Crystal 9-5.
9–4 Reactance Characteristics of Crystal 9-6.
9–5 Crystal Response to a Square-Wave Drive 9-8.
9–6 Simple Form of an Oscillator Circuit 9-9.
9–7 Pierce Circuit: Ideal Operation 9-10.
9–8 Pierce Circuit: Actual Operation 9-11.
9–9 Pierce Circuit for Square-Wave Output 9-12.
9–10 TMS320C3x Oscillator Circuitry 9-13.
9–11 Digital Inverter Circuit and Its Transfer Characteristic 9-14.
9–12 Impedance Characteristics of a Crystal 9-15.
9–13 Oscillator Circuit for Overtone Crystal Operation 9-16.
9–14 Addition of Rd to Limit Drive Level of the Crystal 9-19.
9–15 Oscillator Startup 9-20.
9–16 Example Frequency-Temperature Characteristic of AT-Cut Crystals 9-21.
9–17 Fundamental-Mode Circuit 9-22.
9–18 Third-Overtone Circuit 9-23.
10–1 12-Pin Header Signals and Header Dimensions 10-2.
10–2 Emulator Cable Pod Interface 10-3.
10–3 Emulator Cable Pod Timings 10-4.
10–4 Connections Between the Emulator and the TMS320C3x With

No Signals Buffered 10-5.
10–5 Connections Between the Emulator and the TMS320C3x With

Transmission Signals Buffered 10-6.
10–6 Connections Between the Emulator and the TMS320C3x With

All Signals Buffered 10-7.
10–7 Pod/Connector Dimensions 10-8.
10–8 12-Pin Connector Dimensions 10-9.
10–9 TBC Emulation Connections for TMS320C3x Scan Paths 10-10.
11–1 TMS320 Device Nomenclature 11-10.
12–1 Current Measurement Test Setup for the TMS320C30 12-4.
12–2 Internal Bus Current Versus Transfer Rate (AAAAAAAAh to 55555555h) 12-6.
12–3 Internal Bus Current Versus Data Complexity Derating Curve 12-7.
12–4 Primary Bus Current Versus Transfer Rate and Wait States 12-11.
12–5 Primary Bus Current Versus Transfer Rate at Zero Wait States 12-12.

Figures

xxiv

12–6 Expansion Bus Current Versus Transfer Rate and Wait States 12-13.
12–7 Expansion Bus Current Versus Transfer Rate at Zero Wait States 12-14.
12–8 Primary Bus Current Versus Data Complexity Derating Curve 12-15.
12–9 Expansion Bus Current Versus Data Complexity Derating Curve 12-15.
12–10 Current Versus Output Load Capacitance 12-16.
12–11 Current Versus Frequency and Supply Voltage 12-18.
12–12 Current Versus Operating Temperature Change 12-19.
12–13 Load Currents 12-22.
12–14 Photo of IDD for FFT 12-26.
A–1 Boot From a 32-Bit-Wide ROM to 8-, 16-, and 32-Bit-Wide RAM A-2.
A–2 Boot From a 16-Bit-Wide ROM to 8-, 16-, and 32-Bit-Wide RAM A-3.
A–3 Boot From a Byte-Wide ROM to 8-, 16-, and 32-Bit-Wide RAM A-4.
A–4 Boot From Serial Port to 8-, 16-, and 32-Bit-Wide RAM A-5.
B–1 TMS320C32 Boot Loader Program Flowchart B-3.
C–1 Memory Allocation in C Programs C-2.
C–2 Dynamic Memory Allocation for TMS320C32 (One Block of 32-Bit Memory) C-4.
C–3 Dynamic Memory Allocation for TMS320C32 (One Block of 16-Bit Memory) C-5.
C–4 Dynamic Memory Allocation for TMS320C32 (One Block Each of 32-, 16-,

and 8-Bit Memory) C-6.
D–1 Data and Program Packing (Program and a Single Data Size) D-2.
D–2 Data and Program Packing (Program and Two Different Data Sizes) D-3.
D–3 Address Translation for 32-Bit Data Stored in 32-Bit-Wide Memory D-6.
D–4 Address Translation for 16-Bit Data Stored in 32-Bit-Wide Memory D-7.
D–5 Address Translation for 8-Bit Data Stored in 32-Bit-Wide Memory D-8.
D–6 Address Translation for 32-Bit Data Stored in 16-Bit-Wide Memory D-9.
D–7 Address Translation for 16-Bit Data Stored in 16-Bit-Wide Memory D-10.
D–8 Address Translation for 8-Bit Data Stored in 16-Bit-Wide Memory D-11.
D–9 Address Translation for 32-Bit Data Stored in 8-Bit-Wide Memory D-12.
D–10 Address Translation for 16-Bit Data Stored in 8-Bit-Wide Memory D-13.
D–11 Address Translation for 8-Bit Data Stored in 8-Bit-Wide Memory D-14.

 Tables

xxv Contents

Tables

4–1 Bank-Switching Interface Timing for the TMS320C3x-33 4-20.
4–2 STRB0 and STRB1 Data Access: Data Size = Memory Width 4-25.
4–3 STRB0 and STRB1 Data Access: Data Size � Memory Width 4-27.
4–4 Program Fetch From 16-Bit STRB0 Memory 4-29.
4–5 Program Fetch From 32-Bit STRB1 Memory 4-31.
4–6 RDY Signal Generation 4-59.
4–7 Data Sizes Supported by Sections Created by the C Compiler 4-69.
6–1 TMS320C3x Application Benchmarks 6-78.
6–2 TMS320C3x FFT Timing Benchmarks (Assumes Data On Chip and

No Bit Reversing) 6-79.
8–1 Key Timing Parameters for DAC Write Operation 8-9.
8–2 Primary Communications Mode Selection 8-25.
8–3 Control Register Bit Fields 8-26.
8–4 Master-Clock-to-Sample-Rate Conversion 8-31.
9–1 Comparison of Resonator Types 9-4.
9–2 Oscillator Solutions by Frequency 9-22.
10–1 12-Pin Header Signal Descriptions and Pin Numbers 10-2.
10–2 Emulator Cable Pod Timing Parameters 10-4.
11–1 TMS320C3x Digital Signal Processor Part Numbers 11-7.
11–2 TMS320C3x Support Tool Part Numbers 11-8.
12–1 Current Equation Variables 12-20.
B–1 TMS320C32 Boot Loader Opcodes B-5.
D–1 Variable Memory Width D-4.
D–2 Variable Data Size D-5.

Examples

xxvi

Examples

1–1 TMS320C3x Processor Initialization 1-5.
1–2 Enabling the Cache 1-8.
1–3 State Machine and Equations for the Interrupt Generation 16R4 PLD 1-10.
2–1 Subroutine Call (Dot Product) 2-3.
2–2 Use of Interrupts for Software Polling 2-9.
2–3 Interrupt Service Routine 2-10.
2–4 Context Save for the TMS320C3x 2-13.
2–5 Context Restore for the TMS320C3x 2-15.
2–6 Delayed Branch Execution 2-17.
2–7 Loop Using Block Repeat 2-19.
2–8 Use of Block Repeat to Find a Maximum 2-20.
2–9 Loop Using Single Repeat 2-21.
2–10 Computed GOTO 2-22.
3–1 Use of TSTB for Software-Controlled Interrupt 3-2.
3–2 Copy a Bit From One Location to Another 3-3.
3–3 Block Move Under Program Control 3-4.
3–4 Bit-Reversed Addressing 3-5.
3–5 Integer Division 3-8.
3–6 Inverse of a Floating-Point Number 3-11.
3–7 Square Root of a Floating-Point Number 3-14.
3–8 64-Bit Addition 3-16.
3–9 64-Bit Subtraction 3-17.
3–10 32-Bit-by-32-Bit Multiplication 3-18.
3–11 IEEE-to-TMS320C3x Conversion (Fast Version) 3-22.
3–12 IEEE-to-TMS320C3x Conversion (Complete Version) 3-24.
3–13 TMS320C3x-to-IEEE Conversion (Fast Version) 3-26.
3–14 TMS320C3x-to-IEEE Conversion (Complete Version) 3-28.
4–1 8-Bit Dynamic Buffer Allocation 4-76.
4–2 Linker Command File 4-77.
4–3 Debugger Batch File 4-78.
4–4 8-Bit Static Buffer Allocation 4-79.
4–5 Linker Command File 4-79.
4–6 16-Bit Dynamic Buffer Allocation 4-84.
4–7 Linker Command File 4-85.
4–8 Debugger Batch File 4-85.

 Examples

xxvii Contents

5–1 Exchanging Objects in Memory 5-2.
5–2 Optimizing a Loop 5-3.
5–3 Allocating Large Array Objects 5-4.
5–4 Setup of IDLE2 Power-Down Mode Wakeup 5-8.
6–1 �-Law Compression 6-3.
6–2 �-Law Expansion 6-4.
6–3 A-Law Compression 6-5.
6–4 A-Law Expansion 6-6.
6–5 FIR Filter 6-8.
6–6 IIR Filter (One Biquad) 6-10.
6–7 IIR Filters (N > 1 Biquads) 6-13.
6–8 Adaptive FIR Filter (LMS Algorithm) 6-16.
6–9 Inverse Lattice Filter 6-19.
6–10 Lattice Filter 6-22.
6–11 Matrix Times a Vector Multiplication 6-25.
6–12 vecmax.asm 6-27.
6–13 Complex Radix-2 DIF FFT 6-31.
6–14 Table With Twiddle Factors for a 64-Point FFT 6-34.
6–15 Complex Radix-4 DIF FFT 6-36.
6–16 Real Forward Radix-2 FFT 6-42.
6–17 Real Inverse Radix-2 FFT 6-61.
6–18 SFFT.ASM 6-94.
7–1 Array Initialization With DMA 7-4.
7–2 DMA Transfer With Serial-Port Receive Interrupt 7-6.
7–3 DMA Transfer With Serial-Port Transmit Interrupt 7-7.
8–1 TMS320C3x / BB – DSP102/202 Driver Header File 8-12.
8–2 TMS320C3x – BB DSP102/202 Driver 8-14.
8–3 General Macro Definitions 8-18.
8–4 Common Driver Header File 8-20.
8–5 Initialize the Serial Port Global Control Register 8-23.
8–6 Setting the TA and TB Registers 8-27.
8–7 Interfacing the 18-bit TLC320AD58 to TMS320C3x 8-33.
8–8 C3x.h, Header File Listing 8-36.
8–9 TMS320C3x Interrupt Vector Table Listing 8-38.
8–10 vecs.asm 8-40.
8–11 C_int.asm 8-41.
8–12 General.h 8-44.
8–13 Commdrvr.h 8-46.
8–14 Commdrvr.c 8-47.
8–15 CS4215.h 8-49.
8–16 CS4215.c 8-59.
8–17 Full Duplex UART Emulator for TMS320C3x 8-67.

xxviii

1-1

Processor Initialization

Before you execute a DSP algorithm, you must initialize the processor. Initializa-
tion brings the processor to a known state. Generally, this occurs anytime after
the processor is reset. This chapter reviews the concepts of processor initializa-
tion explained in the user’s guide and provides examples.

Topic Page

1.1 Reset Process 1-2.

1.2 Reset Signal Generation 1-3.

1.3 How to Initialize the Processor 1-4.

1.4 Low-Power Mode Interrupt 1-9.

Chapter 1

Reset Process

 1-2

1.1 Reset Process

You can reset the processor by applying a low level to the RESET input for at least
ten H1 cycles. The ’C3x terminates execution and puts the reset vector (the
contents of memory location 0) in the program counter. The reset vector nor-
mally contains the address of the system-initialization routine. The hardware
reset also initializes various registers and status bits.

In order to reset the ’C3x correctly, you need to comply with several hardware
and software requirements:

� If the ’C31 or ’C32 is in microcomputer mode, set the INTx pins (as dis-
cussed in Using the TMS320C31 and TMS320C32 Boot Loaders chapter
of the TMS320C3x User’s Guide) so that the boot loader works properly.

� Provide the correct reset vector value; the reset vector normally contains
the address of the system initialization routine.

� In microcomputer mode, the reset vector is initialized automatically by
the processor to point to the beginning of the on-chip boot loader code.
No user action is required.

� In microprocessor mode, the reset vector is typically stored in an
EPROM. Example 1–1 on page 1-5 shows how you can initialize that
vector.

� Apply a low level to the RESET input (see section 1.2).

Reset Signal Generation

1-3Processor Initialization

1.2 Reset Signal Generation

The reset input controls the initialization of internal ’C3x logic and also causes
the execution of the system initialization software. For proper system initializa-
tion, the reset signal must be applied for at least ten H1 cycles, that is, 600 ns
for a ’C3x operating at 33.33 MHz. Upon power up, however, it can take 20 ms
or more before the system oscillator reaches a stable operating state. There-
fore, the power-up reset circuit should generate a low pulse on the reset line for
100 to 200 ms. Once a proper reset pulse has been applied, the processor
fetches the reset vector from location 0, which contains the address of the system
initialization routine, Figure 1–1 shows a circuit that generates an appropriate
power-up reset circuit.

Figure 1–1. Reset Circuit

’C3x

RESET

74ALS34

5 V

R1 = 100 k�

C1 = 4.7 µF

How to Initialize the Processor

 1-4

1.3 How to Initialize the Processor

After reset, the ’C3x jumps to the address stored in the reset vector location
and starts execution from that point. The reset vector normally contains the ad-
dress of the system initialization routine.

The initialization routine typically performs several tasks:

� Sets the data-page pointer (DP) register
� Sets the stack pointer
� Sets the interrupt vector table
� Sets the trap vector table
� Sets the external memory control register
� Clears/enables cache

Note:

When running under microcomputer mode (MCBL/MP=1), the on-chip boot-
loader automatically initializes the external memory-control register values
from the bootloader table.

The ’C3x can be initialized using assembly language or C.

1.3.1 Processor Initialization Under Assembly Language

If you are running under an assembly-only environment, Example 1–1 on
page 1-5 provides a basic initialization routine. This example shows code for
initializing the ’C3x to the following machine state:

� All interrupts are enabled.
� The overflow mode is disabled.
� The program cache is enabled.
� The DP register is initialized to 0.
� The memory-mapped control registers are initialized.
� The internal memory is filled with 0s.

How to Initialize the Processor

1-5Processor Initialization

Example 1–1. TMS320C3x Processor Initialization

*

* TITLE PROCESSOR INITIALIZATION

*
.global RESET,INIT,BEGIN
.global INT0,INT1,INT2,INT3
.global ISR0,ISR1,ISR2,ISR3
.global DINT,DMA
.global TINT0,TINT1,XINT0,RINT0,XINT1,RINT1
.global TIME0,TIME1,XMT0,RCV0,XMT1,RCV1
.global TRAP0,TRAP1,TRAP2,TRP0,TRP1,TRP2

*
* PROCESSOR INITIALIZATION FOR THE TMS320C3x
*
* RESET AND INTERRUPT VECTOR SPECIFICATION. THIS
* ARRANGEMENT ASSUMES THAT DURING LINKING, THE FOLLOWING
* TEXT SEGMENT WILL BE PLACED TO START AT MEMORY
* LOCATION 0.

*
.sect “init” ; Named section

RESET .word INIT ; RS ± load address INIT to PC
INT0 .word ISR0 ; INT0 ± loads address ISR0 to PC
INT1 .word ISR1 ; INT1 ± loads address ISR1 to PC
INT2 .word ISR2 ; INT2 ± loads address ISR2 to PC
INT3 .word ISR3 ; INT3 ± loads address ISR3 to PC

XINT0 .word XMT0 ; Serial port 0 transmit interrupt processing
RINT0 .word RCV0 ; Serial port 0 receive interrupt processing
XINT1 .word XMT1 ; Serial port 1 transmit interrupt processing
RINT1 .word RCV1 ; Serial port 1 receive interrupt processing
TINT0 .word TIME0 ; Timer 0 interrupt processing
TINT1 .word TIME1 ; Timer 1 interrupt processing
DINT .word DMA ; DMA interrupt processing

.space 20 ; Reserved space
TRAP0 .word TRP0 ; Trap 0 vector processing begins
TRAP1 .word TRP1 ; Trap 1 vector processing begins
TRAP2 .word TRP2 ; Trap 2 vector processing begins

.space 29 ; Leave space for the other 29 traps
*
* IN THE FOLLOWING SECTION, CONSTANTS THAT CANNOT BE REPRESENTED
* IN THE SHORT FORMAT ARE INITIALIZED. THE NUMBERS IN PARENTHESES
* AT THE END OF EACH COMMENT REPRESENT THE OFFSET OF THE
* REGISTER FROM 808000H (CTRL)

How to Initialize the Processor

 1-6

Example 1–1. TMS320C3x Processor Initialization (Continued)

.data
MASK .word 0FFFFFFFFH
BLK0 .word 0809800H ; Beginning address of RAM block 0
BLK1 .word 0809C00H ; Beginning address of RAM block 1
STCK .word 0809F00H ; Beginning of stack
CTRL .word 0808000H ; Pointer for peripheral ±bus memory map
DMACTL .word 0000000H ; Init for DMA control (0)
TIM0CTL .word 0000000H ; Init of timer 0 control (32)
TIM1CTL .word 0000000H ; Init of timer 1 control (48)
SERGLOB0 .word 0000000H ; Init of serial 0 glbl control (64)
SERPRTX0 .word 0000000H ; Init of serial 0 xmt port control (66)
SERPRTR0 .word 0000000H ; Init of serial 0 rcv port control (67)
SERTIM0 .word 0000000H ; Init of serial 0 timer control (68)
SERGLOB1 .word 0000000H ; Init of serial 1 glbl control (80)
SERPRTX1 .word 0000000H ; Init of serial 1 xmt port control (82)
SERPRTR1 .word 0000000H ; Init of serial 1 rcv port control (83)
SERTIM1 .word 0000000H ; Init of serial 1 timer control (84)
PARINT .word 0000000H ; Init of parallel interface control (100)
IOINT .word 0000000H ; Init of I/O interface control (96)
*

.text

*
* THE ADDRESS AT MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE
* FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET
* IS APPLIED, THE FOLLOWING REGISTERS ARE INITIALIZED TO 0:
*

* ST –– CPU STATUS REGISTER
* IE –– CPU/DMA INTERRUPT ENABLE FLAGS
* IF –– CPU INTERRUPT FLAGS
* IOF –– I/O FLAGS
*
* THE STATUS REGISTER HAS THE FOLLOWING ARRANGEMENT:

* BITS: 31–14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* FUNCTION: RESRV GIE CC CE CF RESRV RM OVM LUF LV UF N Z V C
*

INIT LDP 0,DP ; Point the DP register to page 0
LDI 1800H,ST ; Clear and enable cache, and disable OVM
LDI @MASK,IE ; Unmask all interrupts

*
INTERNAL DATA MEMORY INITIALIZATION TO FLOATING POINT 0

*

LDI @BLK0,AR0 ; AR0 points to block 0
LDI @BLK1,AR1 ; AR1 points to block 1
LDF 0.0,R0 ; 0 register R0
RPTS 1023 ; Repeat 1024 times ...
STF R0,*AR0++(1) ; Zero out location in RAM block 0 and ...

|| STF R0,*AR1++(1) ; Zero out location in RAM block 1

How to Initialize the Processor

1-7Processor Initialization

Example 1–1.TMS320C3x Processor Initialization (Continued)

*
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION–
* DEPENDENT PART OF THE SYSTEM (BOTH ON– AND OFF–CHIP) SHOULD
* NOW BE INITIALIZED.
*
* FIRST, INITIALIZE THE CONTROL REGISTERS. IN THIS EXAMPLE,
* EVERYTHING IS INITIALIZED TO 0, SINCE THE ACTUAL INITIALIZATION IS
* APPLICATION-DEPENDENT.
*

LDI @CTRL,AR0 ; Load in AR0 the pointer to control
* ; registers

LDI @DMACTL,R0

STI R0,*+AR0(0) ; Init DMA control

LDI @TIM0CTL,R0
STI R0,*+AR0(32) ; Init timer 0 control
LDI @TIM1CTL,R0
STI R0,*+AR0(48) ; Init timer 1 control
LDI @SERGLOB0,R0
STI R0,*+AR0(64) ; Init serial 0 global control
LDI @SERPRTX0,R0
STI R0,*+AR0(66) ; Init serial 0 xmt control
LDI @SERPRTR0,R0
STI R0,*+AR0(67) ; Init serial 0 rcv control
LDI @SERTIM0,R0
STI R0,*+AR0(68) ; Init serial 0 timer control
LDI @SERGLOB1,R0
STI R0,*+AR0(80) ; Init serial 1 global control
LDI @SERPRTX1,R0
STI R0,*+AR0(82) ; Init serial 1 xmt control
LDI @SERPRTR1,R0
STI R0,*+AR0(83) ; Init serial 1 rcv control
LDI @SERTIM1,R0
STI R0,*+AR0(84) ; Init serial 1 timer control
LDI @PARINT,R0
STI R0,*+AR0(100) ; Init parallel interface

; control (C30 only)
LDI @IOINT,R0
STI R0,*+AR0(96) ; Init I/O interface control

*
LDI @STCK,SP ; Init the stack pointer
OR 2000H,ST ; Global interrupt enable

*
BR BEGIN ; Branch to the beginning of application

.end

How to Initialize the Processor

 1-8

1.3.2 Processor Initialization Under C Language

If you are running under a C environment, your initialization routine is typically
boot.asm (from the RTS30.LIB library that comes with the floating-point com-
piler). In addition to initializing global variables, boot.asm initializes the DP reg-
ister (pointing to the .bss section) and the stack pointer (SP) register (pointing
to the .stack section). You must enable the cache, as shown in Example 1–2,
and set up your interrupts inside your main routine before you enable inter-
rupts. See the application report, Setting Up TMS320 DSP Interrupts in C, for
more information.

Example 1–2. Enabling the Cache

main()
{
asm(” or 1800,st”) ; enable cache
/* asm(” or 3800,st”) */ ; enable cache and interrupts
}

Low-Power Mode Interrupt

1-9Processor Initialization

1.4 Low-Power Mode Interrupt

This section explains how to generate interrupts when the IDLE2 power-down
mode is used.

The execution of the IDLE2 instruction causes the H1 and H3 processor clocks
to be held at a constant level until the occurrence of an external interrupt. To
use the IDLE2 power management feature effectively, interrupts must be gen-
erated with or without the presence of the H1 clock. For normal (non-IDLE2)
operation, however, the interrupt inputs must be synchronized with the falling
edge of the H1 clock. An interrupt must satisfy the following conditions:

� It must meet the setup time on the falling edge of H1.
� It must be at least one cycle and less than two cycles in duration.

For an interrupt to be recognized during IDLE2 operation and to turn the clocks
back on, it must first be held low for one H1 cycle. The logic in Figure 1–2 can
be used to generate an interrupt signal to the ’C3x with the correct timing dur-
ing non-IDLE2 and IDLE2 operation. Figure 1–2 shows the interrupt circuit,
which uses a 16R4 programmable logic device (PLD) to generate the ap-
propriate interrupt signal.

Figure 1–2. Interrupt Generation Circuit for Use With IDLE2 Operation

TIBPAL16R4’C3x

CLK

2 12

H1

INTx source
Interrupt

Example 1–3 shows the PLD equations for the 16R4 using the ABEL lan-
guage. This implementation makes the following assumptions regarding the
interrupt source:

� The interrupt source is a low-going pulse or a falling edge. If the interrupt
source stays active for more than one H1 cycle, it is regarded as the same
interrupt request and not a new one.

� The interrupt source is at least one H1 cycle in duration. One H1 cycle is
required to turn the H1 clock on again.

Low-Power Mode Interrupt

 1-10

The interrupt is driven active as soon as the interrupt source goes active. It
goes inactive again on detection of two H3 rising edges. These two rising
edges ensure that the interrupt is recognized during normal operation and af-
ter the end of IDLE2 operation (when the clocks turn on again). The interrupt
goes inactive after the two H3 clocks are counted and does not go inactive
again until after the interrupt source again goes inactive and returns to active.

Example 1–3. State Machine and Equations for the Interrupt Generation 16R4 PLD

MODULE INTERRUPT_GENERATION
TITLE’ INTERRUPT_GENERATION FOR IDLE2 AND NON-IDLE2 TMS320C31A

TMS320C31’

c3xu5 device ’P16R4’;

”inputs
h3 Pin 1;
intsrc_Pin 2; ”Interrupt source

”output
intx_ Pin 12; ”Interrupt input signal to the TMS320C31

sync_src_Pin 14; ”Internal signal used to synchronize the
 ”input to the H1 clock

same_ Pin 15; ”Keeps track if the new interrupt source
 ”has occurred. If active, no new interrupt
 ”has occurred.

”This logic makes the following assumptions:
”The duration of the interrupt source is at least one H1
”cycle in duration. It takes one H1 cycle to turn the H1
”clock on again.

”The interrupt source is pulse- or level-triggered. If the
”source stays active after being asserted, it is regarded
”as the same interrupt request and not a new one.

”Name Substitutions for Test Vectors and Equations

c,H,L,X = .C.,,1,0,.X.;

source = !intsrc_;
sync = !sync_src_;
samesrc= !same_;
c3xint = !intx_;

”state bits
outstate = [samesrc,sync];

idle = ^b00;
sync_st= ^b01;”synchronize state
wait = ^b10;”wait for interrupt source to go inactive

state_diagram outstate*

Low-Power Mode Interrupt

1-11Processor Initialization

Example 1–3.State Machine and Equations for the Interrupt Generation 16R4 PLD
(Continued)

state idle:
if (source) then sync_st
else idle;

state sync_st:
if (source) then wait
else idle;

state wait:
if (source) then wait
else idle;

equations
!intx_ = (source # sync) & !samesrc;

@page

”Test interrupt generation logic
test_vectors
([he, source] –> [outstate,c3xint])
[c, L] –> [idle, L]; ”check start from idle
[L, H] –> [idle, H]; ”test normal interrupt operation
[c, H] –> [sync_st, H];
[c, L] –> [idle, L];
[c, L] –> [idle, L];
[L, H] –> [idle, H]; ”test coming out of idle2 operation
[L, H] –> [idle, H];
[c, H] –> [sync_st, H];
[c, L] –> [idle, L];
[c, H] –> [sync_st, H]; ”test same source
[c, H] –> [wait, L];
[c, H] –> [wait, L];
[c, L] –> [idle, L];
[L, H] –> [idle, H]; ”test idle2 operation
[L, H] –> [idle, H];
[L, H] –> [idle, H];
end interrupt_generation

 1-12

2-1

Program Control

This chapter discusses a group of ’C3x instructions that provide program control
and facilitate all types of high-speed processing. These instructions handle:

� Regular calls
� Software stack
� Interrupts
� Delayed branches
� Single- and multiple-instruction loops without any overhead

Topic Page

2.1 Subroutines 2-2.

2.2 Stacks and Queues 2-5.

2.3 Interrupt Service Routines 2-9.

2.4 Context Switching in Interrupts and Subroutines 2-11.

2.5 Delayed Branches 2-17.

2.6 Repeat Modes 2-18.

2.7 Computed GOTOs 2-22.

Chapter 2

Subroutines

 2-2

2.1 Subroutines

The ’C3x has a 24-bit program counter (PC) and a practically unlimited soft-
ware stack. The CALL and CALLcond instructions cause the stack pointer to
increment and store the contents of the next value of the program counter on
the stack. At the end of the subroutine, the RETScond instruction performs a
conditional return.

Example 2–1 illustrates how to use a subroutine to determine the dot product
between two vectors. Given two vectors of length N, represented by the arrays
a [0], a [1],..., a [N –1] and b [0], b [1],..., b [N –1], the dot product is computed
from the expression

d = a [0] b [0] + a [1] b [1] + ... + a [N –1] b [N –1]

Processing proceeds in the main routine to the point at which the dot product
is to be computed. It is assumed that the arguments of the subroutine have been
appropriately initialized. At this point, a CALL is made to the subroutine, transfer-
ring control to that section of the program memory for execution, then returning
to the calling routine through the RETS instruction when execution has com-
pleted. For Example 2–1, it would suffice to save only register R2. However,
many registers are saved for demonstration purposes. The saved registers are
stored on the system stack. This stack must be large enough to accommodate
the maximum anticipated storage requirements. You can use other methods of
saving registers, also.

Subroutines

2-3Program Control

Example 2–1. Subroutine Call (Dot Product)

*
* TITLE SUBROUTINE CALL (DOT PRODUCT)
*
*
* MAIN ROUTINE THAT CALLS THE SUBROUTINE ‘DOT’ TO COMPUTE THE
* DOT PRODUCT OF TWO VECTORS

* .
* .
* .
* LDI @blk0,AR0 ; AR0 points to vector a
* LDI @blk1,AR1 ; AR1 points to vector b
* LDI N,RC ; RC contains the number of elements

* CALL DOT
* .
* .
* .

*
* SUBROUTINE DOT
*
*
* EQUATION: d = a(0) * b(0) + a(1) * b(1) + ... + a(N ±1) * b(N ±1)
*
* THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER R0. N MUST
* BE GREATER THAN OR EQUAL TO 2.
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* AR0 | ADDRESS OF a(0)
* AR1 | ADDRESS OF b(0)
* RC | LENGTH OF VECTORS (N)
*

* REGISTERS USED AS INPUT: AR0, AR1, RC
* REGISTER MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*
*
*

.global DOT

*
DOT PUSH ST ; Save status register

PUSH R2 ; Use the stack to save R2’s
PUSHF R2 ; Lower 32 and upper 32 bits
PUSH AR0 ; Save AR0
PUSH AR1 ; Save AR1
PUSH RC ; Save RC

Subroutines

 2-4

Example 2–1. Subroutine Call (Dot Product) (Continued)

* ; Initialize R0:
MPYF3 *AR0,*AR1,R0 ; a(0) * b(0) ±> R0
LDF 0.0,R2 ; Initialize R2
SUBI 2,RC ; Set RC = N ±2

*

* DOT PRODUCT (1 <= i < N)

*
RPTS RC ; Setup the repeat single

MPYF3 *++AR0(1),*++AR1(1),R0 ; a(i) * b(i) ±> R0
|| ADDF3 R0,R2,R2 ; a(i ±1)*b(i ±1) + R2 ±> R2
*

ADDF3 R0,R2,R0 ; a(N ±1)*b(N ±1) + R2 ±> R0
*

* RETURN SEQUENCE
*

POP RC ; Restore RC
POP AR1 ; Restore AR1
POP AR0 ; Restore AR0
POPF R2 ; Restore top 32 bits of R2
POP R2 ; Restore bottom 32 bits of R2
POP ST ; Restore ST
RETS ; Return

*

* end

*
.end

Stacks and Queues

2-5Program Control

2.2 Stacks and Queues

The ’C3x provides a dedicated stack pointer (SP) register for building stacks
in memory. Also, the auxiliary registers can be used to build user stacks and
a variety of more general linear lists. This section discusses the implementa-
tion of the following types of linear lists:

Stack A linear list for which all insertions and deletions are made
at one end of the list

Queue A linear list for which all insertions are made at one end of
the list, and all deletions are made at the other end.

Dequeue A double-ended queue for which insertions and deletions
are made at either end of the list.

2.2.1 System Stacks

A stack in the ’C3x fills from a low-memory address to a high-memory address,
as shown in Figure 2–1. A system stack stores addresses and data during sub-
routine calls, traps, and interrupts.

Figure 2–1. System Stack Configuration

Bottom of stack

Top of stack

(Free)

High memory

SP

.

.

.

The stack pointer is a 32-bit register that contains the address of the top of the
system stack. The SP always points to the last element pushed onto the stack.
A push performs a preincrement, and a pop performs a postdecrement of the
SP. Make provisions to accommodate your software’s anticipated storage re-
quirements.

The stack pointer can be read from as well as written to; multiple stacks can
be created by updating the SP. The SP is not initialized by the hardware during

Stacks and Queues

 2-6

reset; it is important to remember to initialize its value so that it points to a pre-
determined memory location. Example 1–1 on page 1-5 shows how to initial-
ize the SP. You must initialize the stack to a valid free memory space. Other-
wise, use of the stack can corrupt data or program memory.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The PUSH,
POP, PUSHF, and POPF instructions push and pop the system stack. The
stack can be used inside subroutines for temporary storage of registers, as in
Example 2–1 on page 2-3.

Two instructions, PUSHF and POPF, are for floating-point numbers. These
instructions can pop and push floating-point numbers to registers R0–R7. This
feature is very useful for saving the extended-precision registers (see
Example 2–1 and Example 2–2). PUSH saves the lower 32 bits of an
extended-precision register, and PUSHF saves the upper 32 bits. To recover
this extended-precision number, execute a POPF followed by POP. It is
important to perform the integer and floating-point PUSH and POP in the
above order, since POPF forces the last eight bits of the extended-precision
registers to 0.

2.2.2 User Stacks

User stacks can be built to store data from low-to-high memory or from high-to-
low memory. Two cases for each type of stack are shown. You can build stacks
by using the preincrement/decrement and postincrement/decrement modes
of modifying the auxiliary registers (AR).

You can implement stack growth from high to low memory in two ways:

1) Store to memory using *––ARn to push data onto the stack and read from
memory using *ARn++ to pop data off the stack.

2) Store to memory using *ARn–– to push data onto the stack and read from
memory using *++ARn to pop data off the stack.

Figure 2–2 illustrates these two cases. The only difference is that in
Figure 2–2 (a), the AR always points to the top of the stack, and in
Figure 2–2 (b), the AR always points to the next free location on the stack.

Stacks and Queues

2-7Program Control

Figure 2–2. Implementations of High-to-Low Memory Stacks

Bottom of stack

Top of stack

(Free)

High memory

ARn

(a) Store to memory using *–ARn and
read from memory using *ARn++

Low memory

Bottom of stack

Top of stack

(Free)

High memory

ARn

Low memory

(b) Store to memory using *ARn– and
read from memory using *++ARn

You can implement stack growth from low to high memory in two ways:

1) Store to memory using *++ARn to push data onto the stack and read from
memory using *ARn–– to pop data off the stack.

2) Store to memory using *ARn++ to push data onto the stack and read from
memory using *––ARn to pop data off the stack.

Figure 2–3 illustrates these two cases. In Figure 2–3 (a), the AR always points
to the top of the stack, and in Figure 2–3 (b), the AR always points to the next
free location on the stack.

Figure 2–3. Implementations of Low-to-High Memory Stacks

Bottom of stack

Top of stack

(Free)

High memory

ARn

(a) Store to memory using *++ARn and
read from memory using *ARn–

Low memory

Bottom of stack

Top of stack

(Free)

High memory

ARn

Low memory

(b) Store to memory using *ARn++ and
read from memory using *–ARn

Stacks and Queues

 2-8

2.2.3 Queues and Double-Ended Queues

The implementation of queues and double-ended queues is based on the ma-
nipulation of the auxiliary registers for user stacks.

For queues, two auxiliary registers are used: one to mark the front of the queue
from which data is popped and the other to mark the rear of the queue to where
data is pushed.

For double-ended queues, two auxiliary registers are also necessary. One
register marks one end of the double-ended queue, and the other register
marks the other end. Data can be popped from or pushed onto either end.

Interrupt Service Routines

2-9Program Control

2.3 Interrupt Service Routines
Interrupts on the ’C3x are prioritized and vectored. When an interrupt occurs,
the corresponding flag is set in the interrupt flag (IF) register. If the correspond-
ing bit in the interrupt enable (IE) register is set and interrupts are enabled by
having the global interrupt enable (GIE) bit in the status register set to 1, interrupt
processing begins. You can also write to the IF register, allowing you to force
an interrupt by software or to clear interrupts without processing them.

2.3.1 Correct Interrupt Programming

For interrupts to work properly you must execute the following sequence of
steps, as shown in Example 1–1:

1) Create and place an interrupt-vector table in the appropriate memory
location.

2) Initialize the ITTP bit field (’C32 only).
3) Create a software stack.
4) Enable the specific interrupt.
5) Enable global interrupts.
6) Generate the interrupt signal.

2.3.2 Software Polling of Interrupts

The interrupt flag register can be polled and action can be taken, depending
on whether an interrupt has occurred. This is true even when maskable inter-
rupts are disabled. This can be useful when an interrupt-driven interface is not
implemented. Example 2–2 shows the case in which a subroutine is called
when external interrupt 1 has not occurred.

Example 2–2. Use of Interrupts for Software Polling

* TITLE INTERRUPT POLLING

.

.

.
TSTB 40H,IF ; Test if interrupt 1 has occurred
CALLZ SUBROUTINE ; If not, call subroutine
.
.
.

When interrupt processing begins, the program counter (PC) is pushed onto the
stack, and the interrupt vector is loaded into the PC. Interrupts are then disabled
by clearing the GIE bit to 0, and the program continues from the address loaded
in the PC. Since all interrupts are disabled, interrupt processing can proceed
without further interruption, unless the interrupt service routine reenables inter-
rupts.

Interrupt Service Routines

 2-10

2.3.3 Interrupt Priority

Interrupts on the ’C3x are automatically prioritized. This allows interrupts that
occur simultaneously to be serviced in a predefined order. Infrequent (but
lengthy) interrupt service routines (ISRs) might need to be interrupted by more
frequently occurring interrupts. In Example 2–3, the ISR for INT2 temporarily
modifies the IE register to permit interrupt processing when an interrupt to
INT0 (but no other interrupt) occurs. When the routine finishes processing, the
IE register is restored to its original state. The RETIcond instruction not only
pops the next program counter address from the stack, but also sets the GIE
bit of the status register. This enables all interrupts that have their interrupt en-
able bit set.

Example 2–3. Interrupt Service Routine

* TITLE INTERRUPT SERVICE ROUTINE

* .global ISR2

ENABLE .set 2000h

MASK .set 1

*
* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2±
*
ISR2:

PUSH ST ; Save status register
PUSH DP ; Save data page pointer
PUSH IE ; Save interrupt enable register
PUSH R0 ; Save lower 32 bits and
PUSHF R0 ; upper 32 bits of R0
PUSH R1 ; Save lower 32 bits and
PUSHF R1 ; upper 32 bits of R1
LDI MASK,IE ; Unmask only INT0
OR ENABLE,ST ; Enable all interrupts

*
* MAIN PROCESSING SECTION FOR ISR2

.

.

.
XOR ENABLE,ST ; Disable all interrupts
POPF R1 ; Restore upper 32 bits and
POP R1 ; lower 32 bits of R1
POPF R0 ; Restore upper 32 bits and
POP R0 ; lower 32 bits of R0
POP IE ; Restore interrupt enable register
POP DP ; Restore data page register
POP ST ; Restore status register

*
RETI ; Return and enable interrupts

Context Switching in Interrupts and Subroutines

2-11Program Control

2.4 Context Switching in Interrupts and Subroutines

Context switching is commonly required during the processing of subroutine
calls or interrupts. It can be extensive or simple, depending on system require-
ments. On the ’C3x, the program counter is automatically pushed onto the
stack. Important information in other ’C3x registers, such as the status, auxilia-
ry, or extended-precision registers, must be saved by special commands. To
preserve the state of the status register, push it first and pop it last. This keeps
the restoration of the extended-precision registers from affecting the status
register.

Example 2–4 on page 2-13 and Example 2–5 on page 2-15 show saving and
restoring the context of the ’C3x. In both examples, the stack expands towards
higher addresses and is used for saving the registers. If you do not want to use
the stack pointed at by SP, you can create a separate stack by using an auxilia-
ry register as the stack pointer. Registers saved in these examples are:

� Extended-precision registers (R7 through R0)
� Auxiliary registers (AR7 through AR0)
� Data-page pointer (DP)
� Index registers (IR0 and IR1)
� Block-size register (BK)
� Status register (ST)
� Interrupt-related registers (IE and IF)
� I/O flag (IOF)
� Repeat-related registers (RS, RE, and RC)

You must preserve only the registers that are modified inside of your subrou-
tine or interrupt/trap service routine and that could potentially affect the pre-
vious context environment.

Context Switching in Interrupts and Subroutines

 2-12

If the previous context environment was in C, then your program must perform
one of two tasks:

� If the program is in a subroutine, it must preserve the dedicated C registers
as follows:

Save as Integers Save as Floating-Point

R4 RS R6 R7

AR4 AR5

AR6 AR7

FP DP (small model only)

SP

� If the program is in an interrupt service routine, it must preserve all of the
’C3x registers (see Example 2–6 on page 2-17).

If the previous context environment was in assembly language, you must de-
termine which registers to save, based on the operations of your assembly-
language code.

Note:

The status register must be saved first and restored last to preserve the proc-
essor status without further change caused by other context-switching in-
structions.

Context Switching in Interrupts and Subroutines

2-13Program Control

Example 2–4. Context Save for the TMS320C3x

* TITLE CONTEXT SAVE FOR THE TMS320C3x

*
*

.global SAVE
*

* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT
*
SAVE:

PUSH ST ; Save status register
*
* SAVE THE EXTENDED PRECISION REGISTERS
*

PUSH R0 ; Save the lower 32 bits
PUSHF R0 ; and the upper 32 bits of R0
PUSH R1 ; Save the lower 32 bits
PUSHF R1 ; and the upper 32 bits of R1
PUSH R2 ; Save the lower 32 bits
PUSHF R2 ; and the upper 32 bits of R2
PUSH R3 ; Save the lower 32 bits
PUSHF R3 ; and the upper 32 bits of R3
PUSH R4 ; Save the lower 32 bits
PUSHF R4 ; and the upper 32 bits of R4
PUSH R5 ; Save the lower 32 bits
PUSHF R5 ; and the upper 32 bits of R5
PUSH R6 ; Save the lower 32 bits
PUSHF R6 ; and the upper 32 bits of R6
PUSH R7 ; Save the lower 32 bits
PUSHF R7 ; and the upper 32 bits of R7

*

* SAVE THE AUXILIARY REGISTERS

*
PUSH AR0 ; Save AR0
PUSH AR1 ; Save AR1
PUSH AR2 ; Save AR2
PUSH AR3 ; Save AR3
PUSH AR4 ; Save AR4
PUSH AR5 ; Save AR5
PUSH AR6 ; Save AR6
PUSH AR7 ; Save AR7

*

Context Switching in Interrupts and Subroutines

 2-14

Example 2–4.Context Save for the TMS320C3x (Continued)

* SAVE THE REST REGISTERS FROM THE REGISTER FILE

*

PUSH DP ; Save data page pointer
PUSH IR0 ; Save index register IR0
PUSH IR1 ; Save index register IR1
PUSH BK ; Save block ±size register
PUSH IE ; Save interrupt enable register
PUSH IF ; Save interrupt flag register
PUSH IOF ; Save I/O flag register
PUSH RS ; Save repeat start address
PUSH RE ; Save repeat end address
PUSH RC ; Save repeat counter

*

* SAVE IS COMPLETE
*

Context Switching in Interrupts and Subroutines

2-15Program Control

Example 2–5. Context Restore for the TMS320C3x

*

* TITLE CONTEXT RESTORE FOR THE TMS320C3x

*
.global RESTR

*

* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR INTERRUPT
*

RESTR:
*

* RESTORE THE REST REGISTERS FROM THE REGISTER FILE

*
POP RC ; Restore repeat counter
POP RE ; Restore repeat end address
POP RS ; Restore repeat start address
POP IOF ; Restore I/O flag register
POP IF ; Restore interrupt flag register
POP IE ; Restore interrupt enable register
POP BK ; Restore block ±size register
POP IR1 ; Restore index register IR1
POP IR0 ; Restore index register IR0
POP DP ; Restore data page pointer

*

* RESTORE THE AUXILIARY REGISTERS
*

POP AR7 ; Restore AR7
POP AR6 ; Restore AR6
POP AR5 ; Restore AR5
POP AR4 ; Restore AR4
POP AR3 ; Restore AR3
POP AR2 ; Restore AR2
POP AR1 ; Restore AR1
POP AR0 ; Restore AR0

*

* RESTORE THE EXTENDED PRECISION REGISTERS
*

Context Switching in Interrupts and Subroutines

 2-16

Example 2–5. Context Restore for the TMS320C3x (Continued)

POPF R7 ; Restore the upper 32 bits and
POP R7 ; the lower 32 bits of R7
POPF R6 ; Restore the upper 32 bits and
POP R6 ; the lower 32 bits of R6
POPF R5 ; Restore the upper 32 bits and
POP R5 ; the lower 32 bits of R5
POPF R4 ; Restore the upper 32 bits and
POP R4 ; the lower 32 bits of R4
POPF R3 ; Restore the upper 32 bits and
POP R3 ; the lower 32 bits of R3
POPF R2 ; Restore the upper 32 bits and
POP R2 ; the lower 32 bits of R2
POPF R1 ; Restore the upper 32 bits and
POP R1 ; the lower 32 bits of R1
POPF R0 ; Restore the upper 32 bits and
POP R0 ; the lower 32 bits of R0
POP ST ; Restore status register

*

* RESTORE IS COMPLETE
*

Delayed Branches

2-17Program Control

2.5 Delayed Branches

The ’C3x uses delayed branches to create single-cycle branching. The
delayed branches operate like regular branches but do not flush the pipeline.
Instead, the three instructions following a delayed branch are also executed.
As discussed in the Program Flow Control chapter of the TMS320C3x User’s
Guide, the only limitations are that none of the three instructions following a
delayed branch may be a:

� Branch (standard or delayed)
� Call to a subroutine
� Return from a subroutine
� Return from an interrupt
� Repeat instruction
� TRAP instruction
� IDLE instruction

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. Sometimes a branch
is necessary in the flow of a program, but fewer than three instructions can be
placed after a delayed branch. For faster execution, it is still advantageous to
use a delayed branch. This is shown in Example 2–6, with no operations per-
formed (NOPs) taking the place of the unused instructions. The trade-off is
more instruction words for less execution time.

Example 2–6. Delayed Branch Execution

* TITLE DELAYED BRANCH EXECUTION .
.
.
.
LDF *+AR1(5),R2 ; Load contents of memory to R2
BGED SKIP ; If loaded number >=0, branch (delayed)
LDFN R2,R1 ; If loaded number <0, load it to R1
SUBF 3.0,R1 ; Subtract 3 from R1
NOP ; Dummy operation to complete delayed

* ; branch
MPYF 1.5,R1 ; Continue here if loaded number <0
.
.
.

SKIP LDF R1,R3 ; Continue here if loaded number >=0

Repeat Modes

 2-18

2.6 Repeat Modes

The ’C3x supports looping without any overhead. For that purpose, there are
two instructions: RPTB, which repeats a block of code, and RPTS, which re-
peats a single instruction. There are three control registers: repeat start-ad-
dress (RS), repeat end-address (RE), and repeat counter (RC). These contain
the parameters that specify loop execution. See the Program Flow Control
chapter in the TMS320C3x User’s Guide for a complete description of RPTB
and RPTS. The code automatically sets RS and RF registers RPTB and RPTS
when instructions are excluded; however, you must set the repeat counter reg-
ister.

2.6.1 Block Repeat

Example 2–7 shows an application of the block repeat construct. In this exam-
ple, an array of 64 elements is flipped over by exchanging the elements that
are equidistant from the end of the array. In other words, the original array is:

a(1), a(2),..., a(31), a(32),..., a(64)

The final array after the rearrangement is as follows:

a(64), a(63),..., a(32), a(31),..., a(1)

Because the exchange operation is performed on two elements simultaneously,
it requires 32 operations. The repeat counter register is initialized to 31. In gener-
al, if RC contains the number N, the loop is executed N + 1 times. The loop is
defined by the RPTB instruction and the EXCH label.

Repeat Modes

2-19Program Control

Example 2–7. Loop Using Block Repeat

* TITLE LOOP USING BLOCK REPEAT

*
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY ELEMENTS THAT ARE
* SYMMETRIC AROUND THE MIDDLE OF THE ARRAY.

*
.
.
.
LDI @ADDR,AR0 ; AR0 points to the beginning of the array
LDI AR0,AR1
ADDI 63,AR1 ; AR1 points to the end of the

* ; 64 ±element array
LDI 31,RC ; Initialize repeat counter

*
RPTB EXCH ; Repeat RC+1 times between here and

* ; EXCH
LDI *AR0,R0 ; Load one memory element in R0,

|| LDI *AR1,R1 ; and the other in R1
EXCH STI R1,*AR0++(1) ; Then, exchange their locations
|| STI R0,*AR1 ––(1)

.

.

.

The Program Flow Control chapter in the TMS320C3x User’s Guide discusses
restrictions in the block-repeat construct. According to the contents of regis-
ters RS, RE, and RC, the program counter is modified at the end of the loop.
Therefore, no operation should attempt to modify the repeat counter or the pro-
gram counter at the end of the loop.

It is possible to nest repeat blocks; however, there is only one set of control
registers: RS, RE, and RC. It is necessary to save these registers before entering
an inside loop. You can implement a nested loop by using a register as a count-
er and then using a delayed branch, rather than using the nested repeat block
approach.

Example 2–8 shows how to use the block repeat to find a maximum of 147
numbers.

Repeat Modes

 2-20

Example 2–8. Use of Block Repeat to Find a Maximum

*
*
* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM
*
* THIS ROUTINE FINDS THE MAXIMUM OF N = 147 NUMBERS.
*

.

.

.
LDI 146,RC ; Initialize repeat counter to 147 ±1
LDI @ADDR,AR0 ; AR0 points to beginning of array
LD *AR0++(1),R0 ; Initialize MAX to the first value

*
RPTB LOOP
CMPF *AR0++(1),R0 ; Compare number to the maximum

LOOP LDFLT *±AR0(1),R0 ; If greater, this is a new maximum
.
.
.

2.6.2 Single-Instruction Repeat

The single-instruction repeat uses the control registers RS, RE, and RC in the
same way as the block repeat. The advantage over the block repeat is that the
instruction is fetched only once, and then the buses are available for moving
operands. The single-instruction repeat construct is not interruptible; the block
repeat is interruptible.

Example 2–9 shows an application of the single-repeat construct. In this ex-
ample, the sum of the products of two arrays is computed. The arrays are not
necessarily different. If the arrays are a(i) and b(i), each of length N = 512,
then register R0 contains this quantity after computation:

a (1) b (1) + a (2) b (2) +...+ a (N) b (N)

The value of the RC is specified to be 511 in the instruction. If RC contains the
number N, the loop is executed N + 1 times.

Repeat Modes

2-21Program Control

Example 2–9. Loop Using Single Repeat

* TITLE LOOP USING SINGLE REPEAT
*
* THIS CODE SEGMENT COMPUTES SUM[a(i)b(i)] FOR i = 1 to N.
*
*

.

.

.
LDI @ADDR1,AR0 ; AR0 points to array a(i)
LDI @ADDR2,AR1 ; AR1 points to array b(i)

*
LDF 0.0,R0 ; Initialize R0

*
MPYF3 *AR0++(1),*AR1++(1),R1

* ; Compute first product
RPTS 511 ; Repeat 512 times

*

MPYF3 *AR0++(1),*AR1++(1),R1 ; Compute next product
|| ADDF3 R1,R0,R0 ; and accumulate the

; previous one
*

ADDF R1,R0 ; One final addition
.
.
.

Computed GOTOs

 2-22

2.7 Computed GOTOs

It is occasionally convenient to select the subroutine to be executed during run
time (and not during assembly). The ’C3x’s computed GOTO instruction sup-
ports this selection. The computed GOTO is implemented using the CALLcond
instruction in the register-addressing mode. This instruction uses the contents
of the register as the address of the call. Example 2–10 shows a computed
GOTO for a task controller.

Example 2–10. Computed GOTO

* TITLE COMPUTED GOTO

*
* TASK CONTROLLER

*
* THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION (6 TASKS
* IN THE PRESENT EXAMPLE). TASK0 THROUGH TASK5 ARE THE NAMES OF
* SUBROUTINES TO BE CALLED. THEY ARE EXECUTED IN ORDER, TASK0,
* TASK1, . . .TASK5. WHEN AN INTERRUPT OCCURS, THE INTERRUPT
* SERVICE ROUTINE IS EXECUTED, AND THE PROCESSOR CONTINUES
* WITH THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS
* ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT CYCLE,
* CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE
* TO WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK
* HAS COMPLETED EXECUTION. R0 HOLDS THE OFFSET FROM THE BASE
* ADDRESS OF THE TASK TO BE EXECUTED.
*
*

LDI 5,R0 ; Initialize R0
LDI @ADDR,AR1 ; AR1 holds base address of the table

WAIT IDLE ; Wait for the next interrupt
ADDI3 *AR1,R0,AR2 ; Add the base address to the table

* ; Entry number
SUBI 1,R0 ; Decrement R0
LDILT 5,R0 ; If R0<0, reinitialize it to 5
LDI *AR2,R1 : Load the task address
CALLU R1 ; Execute appropriate task
BR WAIT

*
TSKSEQ .word TASK5 ; Address of TASK5

.word TASK4 ; Address of TASK4

.word TASK3 ; Address of TASK3

.word TASK2 ; Address of TASK2

.word TASK1 ; Address of TASK1

.word TASK0 ; Address of TASK0
ADDR .word TSKSEQ

3-1

Logical and Arithmetic Operations

This chapter describes the ’C3x instruction set, which supports both integer and
floating-point arithmetic and logical operations. These instructions can be com-
bined to form more complex operations.

Topic Page

3.1 Bit Manipulation 3-2.

3.2 Block Moves 3-4.

3.3 Bit-Reversed Addressing 3-5.

3.4 Integer and Floating-Point Division 3-6.

3.5 Square Root Computation 3-13.

3.6 Extended-Precision Arithmetic 3-16.

3.7 IEEE/TMS320C3x Floating-Point Format Conversion 3-20.

Chapter 3

Bit Manipulation

 3-2

3.1 Bit Manipulation

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR,
can be used with the shift instructions for bit manipulation. A special instruction
called TSTB tests bits. TSTB performs the same operation as AND, but the
result of the logical AND is only used to set the condition flags and is not written
anywhere. Example 3–1 and Example 3–2 demonstrate the use of these in-
structions for bit manipulation and testing.

Example 3–1. Use of TSTB for Software-Controlled Interrupt

* TITLE USE OF TSTB FOR SOFTWARE ±CONTROLLED INTERRUPT
*
* IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY
* RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN
* INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE
* PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR
* WHEN IT DETECTS THAT INT2 ± HAS OCCURRED.

.

.

.
TSTB 0100b,IF ; Check if bit 2 of IF is set,
CALLNZ INTR ; and, if so, call subroutine INTR
.
.
.

Bit Manipulation

3-3Logical and Arithmetic Operations

Example 3–2. Copy a Bit From One Location to Another

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER
*
* BIT I OF R1 NEEDS TO BE COPIED TO BIT J OF R2.
* AR0 POINTS TO A LOCATION HOLDING I, AND IT IS ASSUMED THAT THE
* NEXT MEMORY LOCATION HOLDS THE VALUE J.

.

.

.
LDI 1,R0
LSH *AR0,R0 ; Shift 1 to align it with bit I
TSTB R1,R0 ; Test the Ith bit of R1
BZD CONT ; If bit = 0, branch delayed
LDI 1,R0
LSH *+AR0(1),R0 ; Align 1 with Jth location
ANDN R0,R2 ; If bit = 0, reset Jth bit of R2
OR R0,R2 ; If bit = 1, set Jth bit of R2

CONT .
.
.
.

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

I

I

J

R2

R1

*AR0

*(AR0+1)

*

↓

J

↓

Block Moves

 3-4

3.2 Block Moves

Since the ’C3x addresses a large amount of memory, blocks of data or pro-
gram code can be stored off-chip in slow memories and then loaded on-chip
for faster execution. Data can also be moved from on-chip to off-chip memory
for storage or for multiprocessor data transfers.

You can use direct memory access (DMA) in parallel with CPU operations to
accomplish such data transfers. The DMA operation is explained in detail in
Programming the DMA Coprocessor chapter later in the book. An alternative
to DMA is to perform data transfers under program control using load and store
instructions in a repeat mode. Example 3–3 shows the transfer of a block of
512 floating-point numbers from external memory to block 1 of the on-chip
RAM.

Example 3–3. Block Move Under Program Control

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL
*

extern .word 01000H
block1 .word 0809C00H

.

.

.
LDI @extern,AR0 ; Source address
LDI @block1,AR1 ; Destination address

LDF *AR0++,R0 ; Load the first number

RPTS 510 ; Repeat following instruction 511 times
LDF *AR0++,R0 ; Load the next number, and...

|| STF R0,*AR1++ ; store the previous one

STF R0,*AR1 ; Store the last number
.
.
.

Bit-Reversed Addressing

3-5Logical and Arithmetic Operations

3.3 Bit-Reversed Addressing

The ’C3x can implement fast Fourier transforms (FFTs) with bit-reversed
addressing. If the data to be transformed is in the correct order, the final result
of the FFT is presented in bit-reversed order. To recover the frequency-domain
data in the correct order, you must swap certain memory locations. The
bit-reversed addressing mode makes swapping unnecessary. The next time
data needs to be accessed, the access is performed in a bit-reversed manner
rather than sequentially. The base address of bit-reversed addressing must be
located on a boundary the size of the table. For example, if IR0 = 2n–1, the n
least significant bits (LSBs) of the base address must be 0.

In bit-reversed addressing, IR0 holds a value equal to one half the size of the
FFT if real and imaginary data are stored in separate arrays. During accessing,
the auxiliary register is indexed by IR0, but with reverse carry propagation.
Example 3–4 illustrates a 512-point complex FFT being moved from the place
of computation (pointed at by AR0) to a location pointed at by AR1. In this ex-
ample, real and imaginary parts, XR(i) and XI(i), of the data are not stored in
separate arrays. They are interleaved as XR(0), XI(0), XR(1), XI(1), ...,
XR(N-1), XI(N-1). Because of this arrangement, the length of the array is 2N
instead of N, and IR0 is set to 512 instead of 256.

Example 3–4. Bit-Reversed Addressing

*
* TITLE BIT ±REVERSED ADDRESSING
*
* THIS EXAMPLE MOVES THE RESULT OF THE 512 ±POINT FFT
* COMPUTATION POINTED AT BY AR0 TO A LOCATION POINTED AT
* BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING.

.

.

.

LDI 512,IR0
LDI 2,IR1
LDI 511,RC ; Repeat 511+1 times
LDF *+AR0(1),R1 ; Load first imaginary point
RPTB LOOP

*
LDF *AR0++(IR0)B,R0 ; Load real value (and point

|| STF R1,*+AR1(1) : to next location) and store
* ; the imaginary value
LOOP LDF *+AR0(1),R1 ; Load next imaginary point and store
|| STF R0,*AR1++(IR1) ; previous real value

.

.

.

Integer and Floating-Point Division

 3-6

3.4 Integer and Floating-Point Division

Although division is not implemented as a single instruction in the ’C3x, the
instruction set can perform an efficient division routine. Integer and floating-
point division are examined separately because a different algorithm is used for
each.

3.4.1 Integer Division

Division is implemented on the ’C3x by repeated subtractions using SUBC, a
special conditional subtract instruction. Consider the case of a 32-bit positive
dividend with i significant bits (and 32 – i sign bits), as well as a 32-bit positive
divisor with j significant bits (and 32 – j sign bits). The repetition of the SUBC
command i – j + 1 times produces a 32-bit result in which the lower
i – j + 1 bits are the quotient and the upper 31 – i + j bits are the remainder
of the division.

SUBC implements binary division in the same manner as long division. The
divisor, which is assumed to be smaller than the dividend, is shifted left i – j
times to align it with the dividend. Using SUBC, the shifted divisor is subtracted
from the dividend. For each subtraction that does not produce a negative an-
swer, the dividend is replaced by the difference. It is then shifted to the left, and
a 1 is put in the LSB. If the difference is negative, the dividend is simply shifted
left by 1, leaving a zero in the LSB. This operation is repeated i – j + 1 times.

Integer and Floating-Point Division

3-7Logical and Arithmetic Operations

As an example, consider the division of 33 by 5, using both long division and
the SUBC method (see Figure 3–1). In this case, i = 6 and j = 3, so that the
SUBC operation is repeated 6 – 3 + 1 = 4 times.

Figure 3–1. Long Division and SUBC Method

Quotient

00000000000000000000000000000110
Quotient

00000000000000000000000000000101
–101
1101

–101
11 Remainder

SUBC method:

00000000000000000000000000100001
00000000000000000000000000101000

Negative difference
↓

00000000000000000000000000100010
00000000000000000000000000101000

↓
00000000000000000000000000011010

00000000000000000000000000110101
00000000000000000000000000101000

00000000000000000000000000001101
↓

00000000000000000000000000011011
00000000000000000000000000101000

00000000000000000000000000110110

Remainder

↓

↓

Negative difference

00000000000000000000000000100001

Dividend
Divisor (aligned)
(First SUBC command)

New dividend + quotient
Divisor
Difference (> 0) (second SUBC command)

New dividend + quotient
Divisor
Difference (> 0) (third SUBC command)

New dividend + quotient
Divisor
(Fourth SUBC command)

Final result
↓

Long division

When the SUBC command is used, both the dividend and the divisor must be
positive. Example 3–5 shows an example of integer division in which the sign
of the quotient is properly handled. The last instruction before returning modi-
fies the condition flag, in case subsequent operations depend on the sign of
the result.

Integer and Floating-Point Division

 3-8

Example 3–5. Integer Division

*
* TITLE INTEGER DIVISION
*

SUBROUTINE DIVI
*
*
* INPUTS: SIGNED INTEGER DIVIDEND IN R0,
* SIGNED INTEGER DIVISOR IN R1
*
* OUTPUT: R0/R1 into R0
*
* REGISTERS USED: R0±R3, IR0, IR1
*
* OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND
* 2. REPEAT SUBC
* 3. QUOTIENT IS IN LSBs OF RESULT
*
* CYCLES: 31 ±62 (DEPENDS ON AMOUNT OF NORMALIZATION)
*

.globl DIVI

SIGN .set R2
TEMPF .set R3
TEMP .set IR0
COUNT .set IR1

* DIVI ± SIGNED DIVISION

DIVI:
*
* DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS.
*

XOR R0,R1,SIGN ; Get the sign
ABSI R0
ABSI R1

CMPI R0,R1 ; Divisor > dividend ?
BGTD ZERO ; If so, return 0

*

* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT
* FOR DIVISOR AND AS REPEAT COUNT FOR ’SUBC’.
*

FLOAT R0,TEMPF ; Normalize dividend
PUSHF TEMPF ; PUSH as float
POP COUNT ; POP as int
LSH ±24,COUNT ; Get dividend exponent

Integer and Floating-Point Division

3-9Logical and Arithmetic Operations

Example 3–5. Integer Division (Continued)

FLOAT R1,TEMPF ; Normalize divisor
PUSHF TEMPF ; PUSH as float
POP TEMP ; POP as int
LSH ±24,TEMP ; Get divisor exponent
SUBI TEMP,COUNT ; Get difference in exponents
LSH COUNT,R1 ; Align divisor with dividend

*

* DO COUNT+1 SUBTRACT & SHIFTS.

RPTS COUNT
SUBC R1,R0

*

* MASK OFF THE LOWER COUNT+1 BITS OF R0.
*

SUBRI 31,COUNT ; Shift count is (32 ± (COUNT+1))
LSH COUNT,R0 ; Shift left
NEGI COUNT
LSH COUNT,R0 ; Shift right to get result

*

* CHECK SIGN AND NEGATE RESULT IF NECESSARY.
*

NEGI R0,R1 ; Negate result
ASH ±31,SIGN ; Check sign
LDINZ R1,R0 ; If set, use negative result
CMPI 0,R0 ; Set status from result
RETS

*

* RETURN 0.
*
ZERO:

LDI 0,R0
RETS
.end

If the dividend is less than the divisor and you want fractional division, you can
perform a division after you determine the desired accuracy of the quotient in
bits. If the desired accuracy is k bits, shift the dividend left by k positions. Then
apply the algorithm described above, with i replaced by i + k. It is assumed that
i + k is less than 32.

Integer and Floating-Point Division

 3-10

3.4.2 Floating-Point Inverse and Division

This section explains how to implement floating-point division on the ’C3x. Since
the algorithm outlined here computes the inverse of a number v, to perform y / v,
multiply y by the inverse of v.

The computation of 1 / v is based on the following iterative algorithm. At the
ith iteration, the estimate x [i] of 1 / v is computed from v and the previous esti-
mate x [i–1] according to the following formula:

x [i] = x [i – 1] � (2.0 – v � x [i – 1])

To start the operation, an initial estimate x [0] is needed. If v = a � 2e, a good
initial estimate is:

x [0] = 1.0 � 2 –e–1

Example 3–6 shows the implementation of this algorithm on the ’C3x, where
the iteration has been applied five times. Both accuracy and speed are af-
fected by the number of iterations. The accuracy offered by the single-preci-
sion floating-point format is 2 –23 = 1.192E – 7. If you want more accuracy, use
more iterations. If you want less accuracy, reduce the number of iterations to
decrease the execution time.

This algorithm properly treats the boundary conditions when the input number
either is 0 or has a very large value. When the input is 0, the exponent
e = –128. Then the calculation of x[0] yields an exponent that is equal to
– (–128) –1 = 127, and the algorithm overflows and saturates. On the other
hand, in the case of a very large number with e = 127, the exponent of x[0] is
–127 – 1 = –128. This causes the algorithm to yield 0, which is reasonable for
handling that boundary condition.

Integer and Floating-Point Division

3-11Logical and Arithmetic Operations

Example 3–6. Inverse of a Floating-Point Number

*
* TITLE INVERSE OF A FLOATING ±POINT NUMBER
*
*
* SUBROUTINE INVF
*
*
* THE FLOATING-POINT NUMBER v IS STORED IN R0. AFTER THE
* COMPUTATION IS COMPLETED, 1/v IS ALSO STORED IN R0.
*
* TYPICAL CALLING SEQUENCE:
* LDF v,R0
* CALL INVF
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO FIND THE RECIPROCAL OF (UPON THE CALL)
* R0 | 1/v (UPON THE RETURN)
*
* REGISTER USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2, R3
* REGISTER CONTAINING RESULT: R0

*
* CYCLES: 35 WORDS: 32
*
*

.global INVF
*
INVF: LDF R0,R3 ; v is saved for later

ABSF R0 ; The algorithm uses v = |v|
*
* EXTRACT THE EXPONENT OF v.
*

PUSHF R0
POP R1
ASH ±24,R1 ; The 8 LSBs of R1 contain the exponent

* ; of v
*
* x[0] FORMATION IS GIVEN THE EXPONENT OF v.
*

NEGI R1
SUBI 1,R1 ; Now we have ±e±1, the exponent of x[0]
ASH 24,R1
PUSH R1
POPF R1 ; Now R1 = x[0] = 1.0 * 2**(±e±1)

*

Integer and Floating-Point Division

 3-12

Example 3–6. Inverse of a Floating-Point Number (Continued)

* NOW THE ITERATIONS BEGIN.
*

MPYF R1,R0,R2 ; R2 = v * x[0]
SUBRF 2.0,R2 ; R2 = 2.0 ± v * x[0]
MPYF R2,R1 ; R1 = x[1] = x[0] * (2.0 ± v * x[0])

*
MPYF R1,R0,R2 ; R2 = v * x[1]
SUBRF 2.0,R2 ; R2 = 2.0 – v * x[1]
MPYF R2,R1 ; R1 = x[2] = x[1] * (2.0 ± v * x[1])

*
MPYF R1,R0,R2 ; R2 = v * x[2]
SUBRF 2.0,R2 ; R2 = 2.0 ± v * x[2]
MPYF R2,R1 ; R1 = x[3] = x[2] * (2.0 ± v * x[2])

*
MPYF R1,R0,R2 ; R2 = v * x[3]
SUBRF 2.0,R2 ; R2 = 2.0 ± v * x[3]
MPYF R2,R1 ; R1 = x[4] = x[3] * (2.0 ± v * x[3])

*
RND R1 ; This minimizes error in the LSBs

*
* FOR THE LAST ITERATION WE USE THE FORMULATION:
* x[5] = (x[4] * (1.0 ± (v * x[4]))) + x[4]
*

MPYF R1,R0,R2 ; R2 = v * x[4] = 1.0..01.. => 1
SUBRF 1.0,R2 ; R2 = 1.0 ± v * x[4] = 0.0..01... => 0
MPYF R1,R2 ; R2 = x[4] * (1.0 ± v * x[4])
ADDF R2,R1 ; R2 = x[5] = (x[4]*(1.0 ±(v*x[4])))+x[4]

*
RND R1,R0 ; Round since this is followed by a MPYF

*
* NOW THE CASE OF v < 0 IS HANDLED.
*

NEGF R0,R2
LDF R3,R3 ; This sets condition flags
LDFN R2,R0 ; If v < 0, then R0 = ±R0

*
RETS

*
* END
*

.end

Square Root Computation

3-13Logical and Arithmetic Operations

3.5 Square Root Computation

An iterative algorithm is used to compute a square root on the ’C3x and is simi-
lar to the one used for computation of the inverse. This algorithm computes the
inverse of the square root of a number v, 1 / SQRT(v). To derive SQRT(v), mul-
tiply this result by v. Since in many applications division by the square root of
a number is desirable, the output of the algorithm saves the effort to compute
the inverse of the square root.

At the ith iteration, the estimate x[i] of 1 / SQRT(v) is computed from v and the
previous estimate x[i-1] according to this formula:

x [i] = x [i – 1] � (1.5 – (v / 2) � x [i – 1] � x [i – 1])

To start the operation, an initial estimate x[0] is needed. If v = a � 2e, a good
initial estimate is:

x [0] = 1.0 � 2 – e/2

Example 3–7 shows the implementation of this algorithm on the ’C3x, where
the iteration is applied five times. Both accuracy and speed are affected by the
number of iterations. If you want more accuracy and less speed, increase the
number of iterations. If you want less accuracy and more speed, reduce the
number of iterations.

Square Root Computation

 3-14

Example 3–7. Square Root of a Floating-Point Number

*
* TITLE SQUARE ROOT OF A FLOATING ±POINT NUMBER
*
*
* SUBROUTINE SQRT
*
* THE FLOATING POINT NUMBER v IS STORED IN R0. AFTER THE
* COMPUTATION IS COMPLETED, SQRT(v) IS ALSO STORED IN R0. NOTE
* THAT THE ALGORITHM ACTUALLY COMPUTES 1/SQRT(v).
*
*
* TYPICAL CALLING SEQUENCE:

*
* LDF v, R0
* CALL SQRT

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO FIND THE SQUARE ROOT OF
* | (UPON THE CALL)
* R0 | SQRT(v) (UPON THE RETURN)
*
* REGISTER USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2, R3
* REGISTER CONTAINING RESULT: R0
*
* CYCLES: 50 WORDS: 39
*

.global SQRT
*
* EXTRACT THE EXPONENT OF v.
*

SQRT: LDF R0,R3 ; Save v
RETSLE ; Return if number is non ±positive
PUSHF R0
POP R1
ASH ±24,R1 ; The 8 LSBs of R1 contain exponent of v
ADDI 1,R1 ; Add a rounding bit in the exponent
ASH –1,R1 ; e/2

*
* X[0] FORMATION GIVEN THE EXPONENT OF v.
*

NEGI R1
ASH 24,R1
PUSH R1
POPF R1 ; Now R1 = x[0] = 1.0 * 2**(±e/2)

Square Root Computation

3-15Logical and Arithmetic Operations

Example 3–7. Square Root of a Floating-Point Number (Continued)

*
* GENERATE v/2.
*

MPYF 0.5,R0 ; v/2 and take rounding bit out
*
* NOW THE ITERATIONS BEGIN.
*

MPYF R1,R1,R2 ; R2 = x[0] * x[0]
MPYF R0,R2 ; R2 = (v/2) * x[0] * x[0]
SUBRF 1.5,R2 ; R2 = 1.5 ± (v/2) * x[0] * x[0]

MPYF R2,R1 ; R1 = x[1] = x[0] *
* ; (1.5 ± (v/2)*x[0]*x[0])

RND R1
MPYF R1,R1,R2 ; R2 = x[1] * x[1]
MPYF R0,R2 ; R2 = (v/2) * x[1] * x[1]
SUBRF 1.5,R2 ; R2 = 1.5 ± (v/2) * x[1] * x[1]
MPYF R2,R1 ; R1 = x[2] = x[1] *

* ; (1.5 ± (v/2)*x[1]*x[1])
RND R1
MPYF R1,R1,R2 ; R2 = x[2] * x[2]
MPYF R0,R2 ; R2 = (v/2) * x[2] * x[2]
SUBRF 1.5,R2 ; R2 = 1.5 ± (v/2) * x[2] * x[2]
MPYF R2,R1 ; R1 = x[3] = x[2]

* ; *(1.5 ± (v/2)*x[2]*x[2])
RND R1

*

MPYF R1,R1,R2 ; R2 = x[3] * x[3]
MPYF R0,R2 ; R2 = (v/2) * x[3] * x[3]
SUBRF 1.5,R2 ; R2 = 1.5 ± (v/2) * x[3] * x[3]
MPYF R2,R1 ; R1 = x[4] = x[3]

* ; * (1.5 ± (v/2) * x[3] * x[3])
RND R1

*
MPYF R1,R1,R2 ; R2 = x[4] * x[4]
MPYF R0,R2 ; R2 = (v/2) * x[4] * x[4]
SUBRF 1.5,R2 ; R2 = 1.5 ± (v/2) * x[4] * x[4]
MPYF R2,R1 ; R1 = x[5] = x[4]

* ; * (1.5 ± (v/2) * x[4] * x[4])
*
*

RND R1,R0 ; Round
*

MPYF R3,R0 ; Sqrt(v) from sqrt(v**(±1))
*

RETS
*
* end
*

.end

Extended-Precision Arithmetic

 3-16

3.6 Extended-Precision Arithmetic

The ’C3x offers 32 bits of precision for integer arithmetic and 24 bits of preci-
sion in the mantissa for floating-point arithmetic. For higher precision in float-
ing-point operations, the eight extended-precision registers R7 to R0 contain
eight additional bits of accuracy. Since no comparable extension is available
for fixed-point arithmetic, this section shows how you can achieve fixed-point
double precision by using the processor. The technique consists of performing
the arithmetic by parts (which is similar to performing longhand arithmetic).

In the instruction set, operations ADDC (add with carry) and SUBB (subtract
with borrow) use the status carry bit for extended-precision arithmetic. The
carry bit is affected by the arithmetic operations of the arithmetic logic unit
(ALU) and by the rotate and shift instructions. It can also be manipulated direct-
ly by setting the status register to certain values. For proper operation, the
overflow mode bit should be reset (OVM = 0) so that the accumulator results
are not loaded with the saturation values. Example 3–8 and Example 3–9
show 64-bit addition and 64-bit subtraction. The first operand is stored in regis-
ters R0 (low word) and R1 (high word). The second operand is stored in R2
and R3. The result is stored in R0 and R1.

Example 3–8. 64-Bit Addition

* TITLE 64 ±BIT ADDITION
*
* TWO 64±BIT NUMBERS ARE ADDED TO EACH OTHER, PRODUCING
* A 64 ±BIT RESULT. THE NUMBERS X (R1,R0) AND Y (R3,R2) ARE
* ADDED, RESULTING IN W (R1,R0).
*

* R1 R0

* + R3 R2
* –––––––––

* R1 R0

*
ADDI R2,R0
ADDC R3,R1

Extended-Precision Arithmetic

3-17Logical and Arithmetic Operations

Example 3–9. 64-Bit Subtraction

* TITLE 64 ±BIT SUBTRACTION
*
* TWO 64±BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER
* PRODUCING A 64 ±BIT RESULT. THE NUMBERS X (R1,R0) AND
* Y (R3,R2) ARE SUBTRACTED, RESULTING IN W (R1,R0).
*

* R1 R0

* – R3 R2
* –––––––––

* R1 R0

*
SUBI R2,R0
SUBB R3,R1

When two 32-bit numbers are multiplied, a 64-bit product results. The proce-
dure for multiplication is to split the 32-bit magnitude values of the multiplicand
X and the multiplier Y into two parts (X1, X0) and (X3, X2), respectively, with
16 bits each. The operation is done on unsigned numbers, and the product is
adjusted for the sign bit. Example 3–10 shows the implementation of a 32-bit
by 32-bit multiplication.

Extended-Precision Arithmetic

 3-18

Example 3–10. 32-Bit-by-32-Bit Multiplication

*
* TITLE 32 BIT X 32 BIT MULTIPLICATION
*
*
* SUBROUTINE EXTMPY
*
* FUNCTION: TWO 32 ±BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64 ±BIT
* RESULT. THE TWO NUMBERS (X and Y) ARE EACH SEPARATED INTO TWO
* PARTS (X1 X0) AND (Y1 Y0), WHERE X0, X1, Y0, AND Y1 ARE 16 BITS.
* THE TOP BIT IN X1 AND Y1 IS THE SIGN BIT. THE PRODUCT IS
* IN TWO WORDS (W0 AND W1). THE MULTIPLICATION IS PERFORMED ON
* POSITIVE NUMBERS, AND THE SIGN IS DETERMINED AT THE END.

*
*

* X1 X0 BITS OF PRODUCTS

* X Y1 Y0 (NOT COUNTING SIGN) PRODUCT
* –––––––––––

* X0*Y0 16+16 P1

* X0*Y1 16+16 P2

* X1*Y0 16+16 P3

* X1*Y1 16+16 P4

* ––––––––––––––

* W1 W0

*
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | MULTIPLIER AND LOW WORD OF THE PRODUCT
* R1 | MULTIPLICAND AND UPPER WORD OF THE PRODUCT
*
*

* REGISTERS USED AS INPUT: R0, R1
* REGISTERS MODIFIED: R0, R1, R2, R3, R4, AR0, AR1
* REGISTER CONTAINING RESULT: R0,R1
*
*

Extended-Precision Arithmetic

3-19Logical and Arithmetic Operations

Example 3–10. 32-Bit-by-32-Bit Multiplication (Continued)

* CYCLES: 28 (WORST CASE) WORDS: 25
*

.global EXTMPY
*
EXTMPY XOR3 R0,R1,AR0 ; Store sign

ABSI R0 ; Absolute values of X
ABSI R1 ; and Y

*
* SEPARATE MULTIPLIER AND MULTIPLICAND INTO TWO PARTS
*

LDI ±16,AR1
LSH3 AR1,R0,R2 ; R2 = X1 = upper 16 bits of X
AND 0FFFFH,R0 ; R0 = X0 = lower 16 bits of X
LSH3 AR1,R1,R3 ; R3 = Y1 = upper 16 bits of Y
AND 0FFFFH,R1 ; R1 = Y0 = lower 16 bits of Y

*
* CARRY OUT THE MULTIPLICATION
*

MPYI3 R0,R1,R4 ; X0*Y0 = P1

MPYI R3,R0 ; X0*Y1 = P2
MPYI R2,R1 ; X1*Y0 = P3
ADDI R0,R1 ; P2+P3
MPYI R2,R3 ; X1*Y1 = P4

*
LDI R1,R2
LSH 16,R2 ; Lower 16 bits of P2+P3
CMPI 0,AR0 ; Check the sign of the product
BGED DONE ; If >0, multiplication complete

; (delayed)
LSH –16,R1 ; Upper 16 bits of P2+P3
ADDI3 R4,R2,R0 ; W0 = R0 = lower word of the product
ADDC3 R1,R3,R1 ; W1 = R1 = upper word of the product

*
* NEGATE THE PRODUCT IF THE NUMBERS ARE OF OPPOSITE SIGNS
*

NOT R0
ADDI 1,R0
NOT R1
ADDC 0,R1

*
DONE RETS

.end

IEEE/TMS320C3x Floating-Point Format Conversion

 3-20

3.7 IEEE/TMS320C3x Floating-Point Format Conversion

The fast version of the IEEE-to-’C3x conversion routine was originally devel-
oped by Apollo Computer, Inc. Other routines are based on this algorithm.

In fixed-point arithmetic, the binary point that separates the integer from the
fractional part of the number is fixed at a certain location. For example, if a
32-bit number has the binary point after the most significant bit (MSB), which
is also the sign bit, only fractional numbers (numbers with absolute values less
than 1) can be represented. A number having 31 fractional bits is called a Q31
number. All operations assume that the binary point is fixed at this location.
The fixed-point system, although simple to implement in hardware, imposes
limitations in the dynamic range of the represented number. This causes scal-
ing problems in many applications. You can avoid this difficulty by using float-
ing-point numbers.

In a floating-point system, each integer or fraction is represented by three
fixed-point numbers that constitute a floating-point number. Therefore, a float-
ing-point number consists of a mantissa, m, multiplied by base b raised to an
exponent e:

 m � be

To provide the greatest resolution, the mantissa is typically a normalized num-
ber with an absolute value between 1 and 2. Although the mantissa is repre-
sented as a fixed-point number, the position of the actual value is determined
by the exponent e.

To achieve greater efficiency in hardware implementation, the ’C3x uses a
floating-point format that differs from the IEEE standard. This section briefly
describes the two formats and presents software routines that show how to
make conversions between the two formats.

’C3x floating-point format:

8 1 23

fse

IEEE/TMS320C3x Floating-Point Format Conversion

3-21Logical and Arithmetic Operations

In a 32-bit word representing a floating-point number in the ’C3x, the first eight
bits correspond to the exponent, expressed in twos-complement format.
There is one bit for sign and 23 bits for the mantissa. The mantissa is ex-
pressed in twos-complement form, with the binary point after the most signifi-
cant nonsign bit. Since this bit is the complement of the sign bit s, it is sup-
pressed; the mantissa actually has 24 bits. A special case occurs when
e = –128. In this case, the number is interpreted as 0, independently of the
values of s and f (which are set to 0 by default). The values of the represented
numbers in the ’C3x floating-point format are as follows:

2e � (01.f) if s = 0
2e � (10.f) if s = 1
0 if e = –128

IEEE floating-point format:

81 23

fes

The IEEE floating-point format uses sign-magnitude notation for the mantissa,
and the exponent is biased by 127. In a 32-bit word representing a floating-
point number, the first bit is the sign bit. The next eight bits correspond to the
exponent, which is expressed in an offset-by-127 format (the actual exponent
is e–127). The following 23 bits represent the absolute value of the mantissa
with the most significant 1 implied. The binary point is after this most significant
1. The mantissa actually has 24 bits. Several special cases are summarized
below.

These are the values of the numbers represented in the IEEE floating-point
format:

(–1)s � 2e –127 * (01.f) if 0 < e < 255

Special cases:

(–1)s � 0.0 if e = 0 and f = 0 (zero)
(–1)s � 2 –126 * (0.f) if e = 0 and f < > 0 (denormalized)
(–1)s � infinity if e = 255 and f = 0 (infinity)
NaN (not a number) if e = 255 and f < > 0

Based on these definitions of the formats, two versions of the conversion rou-
tines were developed. One version handles the complete definition of the for-
mats. The other ignores some of the special cases (typically the ones that are
rarely used), but has the benefit of executing faster than the complete conver-
sion. For this discussion, the two versions are referred to as the complete ver-
sion and the fast version, respectively.

IEEE/TMS320C3x Floating-Point Format Conversion

 3-22

3.7.1 IEEE-to-TMS320C3x Floating-Point Format Conversion

Example 3–11 shows the fast conversion from IEEE to ’C3x floating-point for-
mat. It properly handles the general case when 0 < e < 255 and also handles
0s (that is, e = 0 and f = 0). The other special cases (denormalized, infinity,
and NaN) are not treated and, if present, give erroneous results.

Example 3–11. IEEE-to-TMS320C3x Conversion (Fast Version)

* TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION)
*
*
* SUBROUTINE FMIEEE
*
* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE
* TMS320C3x FLOATING-POINT FORMAT. THE NUMBER TO
* BE CONVERTED IS IN THE LOWER 32 BITS OF R0.
* THE RESULT IS STORED IN THE UPPER 32 BITS OF R0.
* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE
* FOLLOWING TABLE:
*

* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* –––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*
* CYCLES: 12 (WORST CASE) WORDS: 12
*

.global FMIEEE
*

IEEE/TMS320C3x Floating-Point Format Conversion

3-23Logical and Arithmetic Operations

Example 3–11. IEEE-to-TMS320C3x Conversion (Fast Version) (Continued)

FMIEEE AND3 R0,*AR1,R1 ; Replace fraction with 0
BND NEG ; Test sign
ADDI R0,R1 ; Shift sign

; and exponent inserting 0
LDIZ *+AR1(1),R1 ; If all 0, generate C30 0
SUBI *+AR1(2),R1 ; Unbias exponent
PUSH R1
POPF R0 ; Load this as a flt. pt. number
RETS

*
NEG PUSH R1

POPF R0 ; Load this as a flt. pt. number
NEGF R0,R0 ; Negate if orig. sign is negative
RETS

Example 3–12 shows the complete conversion between the IEEE and ’C3x
formats. In addition to the general case and the 0s, it handles the special cases
as follows:

� If NaN (e = 255, f< >0), the number is returned intact.

� If infinity (e = 255, f = 0), the output is saturated to the most positive or
negative number, respectively.

� If denormalized (e = 0, f< >0), two cases are considered. If the MSB of
f is 1, the number is converted to ’C3x format. Otherwise, an underflow oc-
curs, and the number is set to 0.

IEEE/TMS320C3x Floating-Point Format Conversion

 3-24

Example 3–12. IEEE-to-TMS320C3x Conversion (Complete Version)

* TITLE IEEE TO TMS320C3x CONVERSION (COMPLETE VERSION)
*
*
* SUBROUTINE FMIEEE1
*

* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE LOWER 32 BITS OF R0. THE RESULT IS STORED
* IN THE UPPER 32 BITS OF R0.
*
*
* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:
*

* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
* (5) 0x7F800000
* (6) 0x00400000
* (7) 0x007FFFFF
* (8) 0x7F7FFFFF
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* –––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*
* CYCLES: 23 (WORST CASE) WORDS: 34
*

.global FMIEEE1
*
FMIEEE1 LDI R0,R1

AND *+AR1(5),R1
BZ UNNORM ; If e = 0, number is either 0 or

* ; denormalized
XOR *+AR1(5),R1
BNZ NORMAL ; If e < 255, use regular routine

IEEE/TMS320C3x Floating-Point Format Conversion

3-25Logical and Arithmetic Operations

Example 3–12. IEEE-to-TMS320C3x Conversion (Complete Version) (Continued)

* HANDLE NaN AND INFINITY

TSTB *+AR1(7),R0
RETSNZ ; Return if NaN
LDI R0,R0

LDFGT *+AR1(8),R0 ; If positive, infinity =
; most positive number

LDFN *+AR1(5),R0 ; If negative, infinity =
RETS ; most negative number RETS

* HANDLE 0s AND UNNORMALIZED NUMBERS

UNNORM TSTB *+AR1(6),R0 ; Is the MSB of f equal to 1?
LDFZ *+AR1(3),R0 ; If not, force the number to 0
RETSZ ; and return

XOR *+AR1(6),R0 ; If MSB of f = 1, make it 0
BND NEG1
LSH 1,R0 ; Eliminate sign bit

; & line up mantissa
SUBI *+AR1(2),R0 ; Make e = ±127
PUSH R0
POPF R0 ; Put number in floating point format
RETS

NEG1 POPF R0
NEGF R0,R0 ; If negative, negate R0
RETS

* HANDLE THE REGULAR CASES
*
NORMAL AND3 R0,*AR1,R1 ; Replace fraction with 0

BND NEG ; Test sign
ADDI R0,R1 ; Shift sign and exponent inserting 0
SUBI *+AR1(2),R1 ; Unbias exponent
PUSH R1
POPF R0 ; Load this as a flt. pt. number
RETS

NEG POPF R0 ; Load this as a flt. pt. number
NEGF R0,R0 ; Negate if original sign negative
RETS

IEEE/TMS320C3x Floating-Point Format Conversion

 3-26

3.7.2 TMS320C3x-to-IEEE Floating-Point Format Conversion

The majority of the numbers represented by the ’C3x floating-point format are
covered by the general IEEE format and the representation of 0s. The only
special case is e = –127 in the ’C3x format; this corresponds to a denormal-
ized number in IEEE format. It is ignored in the fast version but treated properly
in the complete version. Example 3–13 shows the fast version, and
Example 3–14 shows the complete version of the ’C3x-to-IEEE conversion.

Example 3–13. TMS320C3x-to-IEEE Conversion (Fast Version)

*
* TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION)
*
*
* SUBROUTINE TOIEEE
*
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE UPPER 32 BITS OF R0. THE RESULT WILL BE IN
* THE LOWER 32 BITS OF R0.
*

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:
*
* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*

* NOTE: SINCE THE STACK POINTER ‘SP’ IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*

IEEE/TMS320C3x Floating-Point Format Conversion

3-27Logical and Arithmetic Operations

Example 3–13. TMS320C3x-to-IEEE Conversion (Fast Version) (Continued)

* CYCLES: 14 (WORST CASE) WORDS: 15
*

.global TOIEEE
*
TOIEEE LDF R0,R0 ; Determine the sign of the number

LDFZ *+AR1(4),R0 ; If 0, load appropriate number
BND NEG ; Branch to NEG if negative (delayed)
ABSF R0 ; Take the absolute value of the number
LSH 1,R0 ; Eliminate the sign bit in R0
PUSHF R0
POP R0 ; Place number in lower 32 bits of R0
ADDI *+AR1(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Add the positive sign
RETS

NEG POP R0 ; Place number in lower 32 bits
; of R0

ADDI *+AR1(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Make space for the sign
ADDI *+AR1(3),R0 ; Add the negative sign
RETS

IEEE/TMS320C3x Floating-Point Format Conversion

 3-28

Example 3–14. TMS320C3x-to-IEEE Conversion (Complete Version)

*
* TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION)
*
*
* SUBROUTINE TOIEEE1
*
*
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE UPPER 32 BITS OF R0. THE RESULT WILL BE
* IN THE LOWER 32 BITS OF R0.
*
*

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:
*

* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
* (5) 0x7F800000
* (6) 0x00400000
* (7) 0x007FFFFF
* (8) 0x7F7FFFFF
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*
* NOTE: SINCE THE STACK POINTER ’SP’ IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*

* CYCLES: 31 (WORST CASE) WORDS: 25
*

.global TOIEEE1

IEEE/TMS320C3x Floating-Point Format Conversion

3-29Logical and Arithmetic Operations

Example 3–14. TMS320C3x-to-IEEE Conversion (Complete Version) (Continued)

*
TOIEEE1 LDF R0,R0 ; Determine the sign of the number

LDFZ *+AR1(4),R0 ; If 0, load appropriate number
BND NEG ; Branch to NEG if negative (delayed)
ABSF R0 ; Take the absolute value

; of the number
LSH 1,R0 ; Eliminate the sign bit in R0
PUSHF R0
POP R0 ; Place number in lower 32 bits of R0
ADDI *+AR1(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Add the positive sign

CONT TSTB *+AR1(5),R0
RETSNZ ; If e > 0, return
TSTB *+AR1(7),R0
RETSZ ; If e = 0 & f = 0, return
PUSH R0
POPF R0
LSH ±1,R0 ; Shift f right by one bit
PUSHF R0
POP R0
ADDI *+AR1(6),R0 ; Add 1 to the MSB of f
RETS

NEG POP R0 ; Place number in lower 32 bits of R0
BRD CONT
ADDI *+ARI(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Make space for the sign
ADDI *+AR1(3),R0 ; Add the negative sign
RETS

 3-30

4-1

Memory Interfacing

The ’C3x interfaces connect to many device types. Each of these interfaces
is tailored to a particular family of devices.

Topic Page

4.1 System Configuration 4-2.

4.2 External Interfaces 4-3.

4.3 Primary Bus Interface 4-4.

4.4 Zero-Wait-State Interface to Static RAMs 4-5.

4.5 Wait States and Ready Signal Generation 4-10.

4.6 Interfacing Memory to the TMS320C32 DSP 4-21.

4.7 How TMS320 Tools Interact With the TMS320C32’s
Enhanced Memory Interface 4-67.

4.8 Booting a TMS320C32 Target System in a C Environment 4-86.

4.9 TMS320C30 Addressing up to 68 Gigawords 4-107.

Chapter 4

System Configuration

 4-2

4.1 System Configuration

The devices that can be interfaced to the ’C3x include memory, DMA devices,
parallel and serial peripherals, and I/O devices. Figure 4–1 illustrates a typical
configuration of a ’C3x system with various external devices and the interfaces
to which they are connected.

Figure 4–1. Possible System Configurations

TLC3204x
AIC

analog I/O

Primary bus

Interrupt
interface

External flags

System
control

Serial
ports

Timer interface

Expansion bus

External DMA interface

TMS320C3x

DMA devices Memory

Peripherals

I/O devices

TCM29C13
codec

Clock and
reset

generators,
etc.

Bit I/O

Peripherals

Peripherals

Memory

Serial
ports

This block diagram represents a fully expanded system. In an actual design, you
can use any subset of the illustrated configuration that is appropriate.

External Interfaces

4-3Memory Interfacing

4.2 External Interfaces

The ’C3x interface type depends on the device to which it is to be connected.
Each interface comprises one or more signal lines that transfer information and
control its operation. Figure 4–2 shows the signal line groupings for each of
these interfaces.

Figure 4–2. External Interfaces on the TMS320C3x

Data
Address

Control

ROM enable
(’C30 only)

Boot load enable
(’C31 and
’C32 only)

Primary
bus

System
control Serial port 0

D31–D0
A23–A0

R/W
STRB
RDY

RESET

X1
X2/CLKIN

H1

MC/MP

MCBL/MP

H3

XD31–XD0
XA12–XA0
XR/W
XRDY

HOLD
HOLDA

INT3–0
IACK

XF1–0

TCLK1

CLKX0
DX0

FSX0
CLKR0

DR0
FSR0

32
24

IOSTRB
MSTRB

Serial port 1
(’C30 only)

CLKX1
DX1

FSX1
CLKR1

DR1
FSR1

TCLK0

External flags

System reset

Master clock

Clock outputs

Data
Address

32
13

Control

Expansion bus
(’C30 only)

External DMA interface

External interrupt
interface

Timer interface

4

TMS320C3x

All of the interfaces are independent of one another, and you can perform dif-
ferent operations simultaneously on each interface.

The primary and expansion buses implement the memory-mapped interface
to the device. The external direct memory access (DMA) interface allows ex-
ternal devices to cause the processor to relinquish the primary bus and allow
direct memory access.

Primary Bus Interface

 4-4

4.3 Primary Bus Interface

The ’C3x uses the primary bus to access the majority of its memory-mapped
locations. When a large amount of external memory is required in a system, it
is interfaced to the primary bus. The ’C30 expansion bus (discussed in the Ex-
ternal Memory Interface chapter of the TMS320C3x User’s Guide) actually
comprises two mutually exclusive interfaces, controlled by the MSTRB and
IOSTRB signals. Cycles on the expansion bus that are controlled by the MSTRB
signal are equivalent to cycles on the primary bus, except that bank switching
is not implemented on the expansion bus. Accordingly, the discussion of primary
bus cycles in this section applies equally to MSTRB cycles on the expansion
bus.

Although you can use both the primary bus and the expansion bus to inter-
face to a wide variety of devices, those most commonly interfaced to these
buses are memory devices. This section presents detailed examples of
memory interface.

Zero-Wait-State Interface to Static RAMs

4-5Memory Interfacing

4.4 Zero-Wait-State Interface to Static RAMs

Zero-wait-state read access time for the ’C3x is determined by the difference
between the cycle time and the sum of the delay time for the interface signal
H1 low to address valid and the data setup time before the next H1 low. (For
more information, see the appropriate TMS320C3x Digital Signal Processor
data sheet.)

tc(H) – �td(H1L – A) � tsu(D)R
�

where:

tc(H) = H1/H3 cycle time

td(H1L – A) = H1 low to address valid

tsu(D)R = data valid before next H1 low (read)

For example, for full-speed, zero-wait-state interface to any device, the 60-ns
’C3x requires a read access time of 30 ns from address valid to data valid. For
most memories, access time from a chip-select pin is the same as access time
from address valid; therefore, it is possible to use 30-ns memories at full speed
with the ’C3x-33. This requires that there are no delays between the processor
and the memories. However, because of interconnection delays and because
some gating is normally required for chip-select generation, this is usually not
the case. Slightly faster memories are required in most systems.

There are two distinct categories among currently available RAMs:

� RAMs without output enable (OE) control lines, which include the
1-bit-wide organized RAMs and most of the 4-bit-wide RAMs

� RAMs with OE controls, which include the byte-wide RAMs and a few of
the 4-bit-wide RAMs

Many of the fastest RAMs do not provide OE control; they use chip-select
(CS)-controlled write cycles to ensure that data outputs do not turn on for write
operations. In CS-controlled write cycles, the write control line (WE) goes low
before CS goes low, and internal logic holds the outputs disabled until the cycle
is completed. Using CS-controlled write cycles is an efficient way to interface
fast RAMs without OE controls to the ’C30 at full speed.

Zero-Wait-State Interface to Static RAMs

 4-6

In the case of RAMs with OE controls, using this signal can add flexibility to
many systems. Additionally, many of these devices can be interfaced by using
CS-controlled write cycles with OE tied low, in the same manner as with RAMs
without OE controls. There are, however, two requirements for interfacing to
OE RAMs in this manner:

� The RAM’s OE input must be gated internally with the chip-select pin and
WE so that the device’s outputs do not turn on unless a read is being per-
formed.

� The RAM must allow its address inputs to change while WE is low; some
RAMs specifically prohibit this.

Figure 4–3 shows the ’C3x interface to Cypress Semiconductor’s CY7C186
25-ns 8K � 8-bit CMOS static RAM with the OE control input tied low and a
CS-controlled write cycle.

Zero-Wait-State Interface to Static RAMs

4-7Memory Interfacing

Figure 4–3. TMS320C3x Interface to Cypress Semiconductor’s CY7C186 CMOS SRAM

STRB

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

R/W
8 D7–D0

I/O
(7–0)

8 D15–D8

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

CS1

CS2

WE

OE I/O
(7–0)

I/O
(7–0)

8 D23–D16

D31

D30

D29

D28

D27

D26

D25

D24

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

4 × CY7C186-25

A23

74AS04

Primary data bus D31–D0

A23–A0

Primary
address bus

In this circuit, the two chip-select pins on the RAM are driven by the STRB and
A23 pins, which are ANDed together internally. A23 locates the RAM at ad-
dresses 00000h through 03FFFh in external memory, and STRB establishes
the CS-controlled write cycle. The WE control input is then driven by the ’C3x
R/W signal. The OE input is not used and is connected to ground.

Zero-Wait-State Interface to Static RAMs

 4-8

The timing of read operations, shown in Figure 4–4, is very straightforward
because the two chip-select inputs are driven directly. The read access time
of the circuit is the inverter propagation delay added to the RAM’s chip-select
access time (t1 + t2 = 5 + 25 = 30 ns). This access time meets the ’C3x-33’s
specified 30-ns read access time requirement.

Figure 4–4. Read Operations Timing

H1

A23–A0

D31–D0

CS1 = STRB

Valid

Valid

t2

CS2

t1

During write operations, shown in Figure 4–5, the RAM’s outputs do not turn
on at all, because of the chip-select controlled write cycles. The chip-select
controlled write cycles are generated because R/W goes active (low) before
the STRB term of the chip-select input. Because the RAM’s output drivers are
disabled whenever the WE input is low (regardless of the state of the OE input),
bus conflicts with the ’C3x are automatically avoided with this interface. The
circuit’s data setup and hold times (t1 and t2 in Figure 4–5) of approximately
50 ns and 20 ns easily meet the RAM’s minimum timing requirements of 10 ns
and 0 ns.

Figure 4–5. Write Operations Timing

H1

A23–A0

D31–D0

t1
t2

WE = R/W

CS1 = STRB

Zero-Wait-State Interface to Static RAMs

4-9Memory Interfacing

If you require more complex chip-select decode than can be accomplished in
time to meet zero-wait-state timing, you can use wait states (see section 4.5,
Wait States and Ready Signal Generation) or bank-switching techniques (see
section 4.5.6).

The CY7C186 SRAM’s OE control is gated internally with a CS pin; the RAM’s
outputs are not enabled unless the device is selected. This is critical if there
are any other devices connected to the same bus. If there are no other devices
connected to the bus, OE does not need not to be gated internally with a chip-
select pin.

To interface RAM without OE controls to the ’C3x with a single memory bank
and no other devices present on the bus, connect the memory’s CS input to
STRB directly. If several devices must be selected, an additional gate is re-
quired to AND the device select and STRB pins in order to drive the CS input
that generates the chip-select controlled write cycles. In either case, the WE
input is driven by the ’C3x R/W signal. If sufficient fast gating is used, 25-ns
RAMs can be used.

As with RAM with OE control lines, this approach works well only if a few banks
of memory are implemented and if the chip-select decode can be accom-
plished with only one level of gating. If many banks are required to implement
very large memory spaces, bank switching can be used to provide for multiple
bank select generation and still maintain full-speed accesses within each
bank. Bank switching is discussed in detail in section 4.5.6 on page 4-15.

Wait States and Ready Signal Generation

 4-10

4.5 Wait States and Ready Signal Generation

Wait states can greatly increase system flexibility and reduce hardware
requirements. The ’C3x can generate wait states on either the primary bus or
the expansion bus; both buses have independent sets of ready control logic.
This section discusses ready signal generation from the perspective of the
primary bus interface. However, since wait-state operation on the expansion
bus is similar to that on the primary bus, these discussions also pertain to
expansion bus operation. Ready signal generation is not included in
discussions of the expansion bus interface. See the TMS320C3x User’s Guide
for more information.

Wait states are generated on the basis of the:

� Internal wait-state generator
� External ready input (RDY)
� Logical AND or OR of the two

When enabled, internally generated wait states affect all external cycles,
regardless of the address accessed. If different numbers of wait states are
required for various external devices, the external RDY input may be used for
wait-state generation to specific system requirements.

If the logical AND (electrical OR) of the wait count and external ready signals
is selected, the latter of the two signals controls the internal ready signal. Both
signals must occur. Accordingly, external ready control must be implemented
for each wait-state device, and the wait count ready signal must be enabled.

If the logical OR (or electrical AND, since the signals are low true) of the exter-
nal and internal wait-count ready signals is selected, the earlier of the two sig-
nals generates a ready condition and allows the cycle to be completed. Both
signals do not need to be present.

4.5.1 ORing the Ready Signals

Performing an OR of the two ready signals can implement wait states for de-
vices that require a greater number of wait states than are implemented with
external logic (up to seven). This is useful, for example, if a system contains
both fast and slow devices. In this case, fast devices can externally generate
a ready signal with a minimum of logic, and slow devices can use the internal
wait counter for larger numbers of wait states. When fast devices are ac-
cessed, the external hardware responds promptly with a ready signal that ter-
minates the cycle. When slow devices are accessed, the external hardware
does not respond and the cycle is terminated after the internal wait count.

Wait States and Ready Signal Generation

4-11Memory Interfacing

You can perform an OR of the two ready signals if conditions require the ter-
mination of bus cycles before the number of wait states implemented when ex-
ternal logic takes place. In this case, the wait count that is specified internally
is shorter than the number of wait states implemented with the external ready
logic, and the bus cycle is terminated after the wait count. This technique can
also safeguard against inadvertent accesses to nonexistent memory that
would never respond with a ready signal and would lock up the ’C3x.

If an OR of the two ready signals is used and the internal wait-state count is
less than the number of wait states implemented externally, the external ready
generation logic resets its sequencing to allow a new cycle to begin immediate-
ly following the end of the internal wait count. This requires that consecutive
cycles come from independently decoded areas of memory and that the exter-
nal ready generation logic restarts its sequence as soon as a new cycle begins.
Otherwise, the external ready generation logic can lose synchronization with
bus cycles and generate improperly timed wait states.

4.5.2 ANDing the Ready Signals

Performing an AND of the two ready signals can implement wait states for de-
vices that are equipped to provide a ready signal but cannot respond quickly
enough to meet the ’C3x’s timing requirements. Specifically, if these devices
normally indicate a ready condition and respond, when accessed, with a wait
state until they are ready, using the logical AND of the two ready signals lowers
the chip count in the system. In this case, the internal wait counter provides
wait states initially and becomes ready after the external device has had time
to send a not ready indication. The internal wait counter then remains ready
until the external device also becomes ready, which terminates the cycle.

In addition, performing an AND of the two ready signals can extend the number
of wait states for devices that already have external ready logic implemented
but require additional wait states under certain circumstances.

4.5.3 External Ready Signal Generation

The technique for implementing external ready generation hardware depends
on the characteristics of the system. The optimum approach to ready signal
generation varies, depending on the relative number of wait-state and non-
wait-state devices in the system and on the maximum number of wait states
required for any one device. The approach discussed here is general enough
for most applications and can easily be modified and applied to many different
system configurations.

Wait States and Ready Signal Generation

 4-12

Ready signal generation involves the following steps:

1) Segmenting the address space to distinguish fast and slow devices

2) Generating properly timed ready indications

3) Logically ORing all of the separate ready timing signals together to con-
nect to the physical ready input

Segmenting the address space, which is commonly performed by chip-select
generation, is required to obtain a unique indication of each area within the
address space that requires wait states. You can use chip-select signals to
initiate wait states; however, chip-select decoding considerations may
occasionally provide signals that do not meet ready input timing requirements.
In this case, you can use a small number of address lines to segment coarse
address space. The simpler gating allows signals to be generated more
quickly. In either case, the signal that indicates a particular area of memory is
being addressed normally initiates a ready or wait-state indication.

Once the region of address space being accessed has been established, a
timing circuit provides a ready indication to the processor at the appropriate
point in the cycle.

Finally, since indications of ready status from multiple devices are typically
present, the signals are logically ORed by using a single gate to drive the RDY
input.

Wait States and Ready Signal Generation

4-13Memory Interfacing

4.5.4 Ready Control Logic

You can take one of two basic approaches to implement ready control logic,
depending on the state of the ready input between accesses:

� If RDY is low between accesses, the processor is always ready unless a
wait state is required.

Control of full-speed devices is straightforward; no action is necessary be-
cause the ready signal is always active unless otherwise programmed.
Devices requiring wait states, however, must drive ready high fast enough
to meet the input timing requirements. Then, after an appropriate delay, a
ready indication must be generated. This can be difficult in many circum-
stances, because wait-state devices are inherently slow and often require
complex select decoding.

� If RDY is high between accesses, the processor enters a wait state unless
a ready indication is generated.

Zero-wait-state devices, which tend to be inherently fast, can usually re-
spond immediately with a ready indication. Wait-state devices can delay
their select signals to generate a ready indication. Typically, this approach
results in the most efficient implementation of ready control logic.
Figure 4–6 shows a circuit of this type, which can be used to generate
zero, one, or two wait states for multiple devices in a system.

Wait States and Ready Signal Generation

 4-14

Figure 4–6. Circuit for Generation of Zero, One, or Two Wait States for Multiple Devices

J

CLR

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

PREJ

K

Q

’74ACT112

PRE

K

Q

’74ACT112

CLR
Q

RDY

’74AS21

A
B
C

G1

G2A

G2B

’74ALS138

Device
selects

’C30
address bus

STRB

5 V

4.7 kΩ

H1

Reset

Other 0-
wait-state
devices

A23

’74AS20

Other 1-
wait-state
devices

’74AS20

A23

STRB

’74AS32

Other 2-
wait-state
devices

4.5.5 Example Circuit

In the circuit in Figure 4–6, full-speed devices drive ready signals directly
through the ’74AS21 NOR gate, and the two flip-flops delay wait-state devices’
select signals one or two H1 cycles to provide one or two wait states.

Considering the ’C3x-33’s ready signal delay time of 8 ns following the ad-
dress, zero-wait-state devices must use ungated address lines directly to drive
the input of the ’74AS21, since this gate contributes a maximum propagation
delay of 6 ns to the RDY signal. Zero-wait-state devices must be grouped to-
gether within a memory address range if other devices in the system require
wait states.

With this circuit, devices requiring wait states might take up to 36 ns to provide
inputs to the ’74AS20 OR gate’s inputs from a valid address on the ’C3x. This
usually allows sufficient time for any decoding required in generating select
signals for slower devices in the system. For example, the 74ALS138 multi-

Wait States and Ready Signal Generation

4-15Memory Interfacing

plexer, driven by the address bus and STRB pin, can generate select decodes
in 22 ns, which easily meets the ’C3x-33’s timing requirements.

With this circuit, unused inputs to either the ’74AS20 OR gates or the ’74AS21
NOR gate must be tied to a logic high level to prevent noise from generating
spurious wait states.

If more than two wait states are required by devices within a system, other ap-
proaches can be used for ready signal generation. If between three and seven
wait states are required, additional flip-flops can be included in the same man-
ner shown in Figure 4–6, or internally generated wait states can be used in
conjunction with external hardware. If more than seven wait states are re-
quired, an external circuit using a counter can be used to supplement the capa-
bilities of the internal wait-state generators.

4.5.6 Bank-Switching Techniques

The ’C3x’s programmable bank-switching feature can greatly ease conflicts
on system design circuits when large amounts of memory are required. Nor-
mally, devices take longer to release the bus than they take to drive the bus;
bank switching provides a period of time for disabling all device selects that
are not present otherwise. During this interval, slow devices are allowed time
to turn off before other devices have the opportunity to drive the data bus, thus
avoiding bus contention. (See the TMS320C3x User’s Guide for further infor-
mation on bank switching.)

When a portion of the high order address lines changes (as defined by the con-
tents of the BNKCMPR register) and bank switching is enabled, STRB goes
high for one full H1 cycle. If STRB is included in chip-select decodes, this
causes all devices to be disabled during this period. The next bank of devices
is not enabled until STRB goes low again.

In general, bank switching is not required during writes because write cycles
always exhibit an inherent one-half H1 cycle setup of address information be-
fore STRB goes low. When you use bank switching for read/write devices, a
minimum of one-half H1 cycle of address setup is provided for all accesses.
Therefore, large amounts of memory can be accessed without requiring wait
states or extra hardware for isolation between banks. Access time for cycles
with bank switching is the same as that for cycles without bank switching. Ac-
cordingly, full-speed accesses can still be accomplished within each bank.

Wait States and Ready Signal Generation

 4-16

When you use bank switching to implement large multiple-bank memory sys-
tems, you must consider address line fanout/loading. Besides parametric
specifications which must be accounted for, ac characteristics are crucial in
memory system design. With large memory arrays, which commonly require
large numbers of address line inputs to be driven in parallel, capacitive loading
of address outputs is often quite large. Because all ’C3x timing specifications
are guaranteed up to a capacitive load of 80 pF, using greater loads invalidates
guaranteed ac characteristics. It is often necessary to provide buffering for ad-
dress lines when using large memory arrays. The ac timing specifications for
buffer performance can then be derated according to manufacturer specifica-
tions to accommodate a wide variety of memory array sizes.

The circuit shown in Figure 4–7 illustrates the use of bank switching with
Cypress Semiconductor’s CY7C185 25-ns 8K × 8-bit CMOS static RAM. This
circuit implements 32K 32-bit words of memory with one-wait-state accesses
for each bank.

The bank memory requires a wait state with this implementation because of
the added propagation delay presented by the address bus buffers used in the
circuit. The wait state is not a function of the memory organization of multiple
banks or the use of bank switching. Memory access speeds are the same with
and without bank switching, once bank boundaries are crossed. No speed
penalty is incurred by using bank switching, except for the occasional extra
cycle inserted when bank boundaries are crossed. If this extra cycle impacts
software performance significantly, you can often restructure code to minimize
bank boundary crossings and reduce the effect of these boundary crossings
on software performance.

The wait state for this bank memory is generated by using the wait-state gener-
ator circuit described in section 4.5.5 on page 4-14. Because the A23 signal
enables the entire bank memory system, the inverted version of this signal is
ANDed with STRB to derive a one-wait-state device select. This signal is then
connected in the circuit along with the other one-wait-state device selects. Any
time a bank memory access occurs, one wait state is generated.

Wait States and Ready Signal Generation

4-17Memory Interfacing

Figure 4–7. Bank Switching for Cypress Semiconductor’s CY7C185 SRAM

D31–D0

BANKSEL3

BANKSEL2

BANKSEL1

BR/W
BSTRB

BANKSEL0

BA12
BA11
BA10
BA9
BA8
BA7
BA6
BA5
BA4
BA3
BA2
BA1
BA0

A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

CS1
CS2
WE
OE

D0
D1
D2
D3
D4
D5
D6
D7

BA0–12

VCC

15 V

BANKSEL
BSTRB

GND

BA12
BA11
BA10
BA9
BA8
BA7
BA6
BA5
BA4
BA3
BA2
BA1
BA0

A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

CS1
CS2
WE
OE

D0
D1
D2
D3
D4
D5
D6
D7

15 V

BANKSEL
BSTRB

GND

BA12
BA11
BA10
BA9
BA8
BA7
BA6
BA5
BA4
BA3
BA2
BA1
BA0

A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

CS1
CS2
WE
OE

D0
D1
D2
D3
D4
D5
D6
D7

VCC

15 V

BANKSEL
BSTRB

GND

BA12
BA11
BA10
BA9
BA8
BA7
BA6
BA5
BA4
BA3
BA2
BA1
BA0

A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

CS1
CS2
WE
OE

D0
D1
D2
D3
D4
D5
D6
D7

VCC

15 V

BANKSEL
BSTRB

GND

Bank 1
32

Bank 2
32

Bank 3
32

8 8 8 8

Data bus D31–D0

Bank 0

VCC

Each of the four banks in this circuit is selected by decoding signals A15–A13
generated by the ’74ALS138 multiplexer (see Figure 4–8). With the
BNKCMPR register set to 0Bh, the banks are selected on even 8K-word
boundaries, starting at location 080A000h in external memory space.

Wait States and Ready Signal Generation

 4-18

Figure 4–8. Bank-Memory Control Logic

A1

A2

A3

A4

A5

A6

A7

A8

G1

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

G2

’74ALS254

BA0
BA1
BA2
BA3
BA4
BA5
BA6
BA7

A0
A1
A2
A3
A4
A5
A6
A7

A1

A2

A3

A4

A5

A6

A7

A8

G1

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

G2

’74ALS254

BA8
BA9
BA10
BA11
BA12
BR/W

A8
A9

A10
A11
A12
R/W

C

B

A

G1

G2A

G2B

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

G2

’74ALS138

BANKSEL0
BANKSEL1
BANKSEL2
BANKSEL3

A15
A14
A13

A23

BSTRBSTRB

’74AS04

The ’C3x rated capacitive loading is 80 pF. The ’74ALS254 buffers used on the
address lines are necessary in this design because the total capacitive load
presented to each address line is a maximum of 16 × 10 pF or 160 pF (bank
memory plus zero-wait-state static RAM). Using the manufacturer’s derating
curves for these devices at a load of 80 pF (the load presented by the bank
memory) predicts propagation delays at the output of the buffers to a maximum
of 16 ns. The access time of a read cycle within a bank of the memory is the
sum of the memory access time and the maximum buffer propagation delay
(25 + 16 = 41 ns). Since this propagation delay falls between 30 and 90 ns, it
requires only one wait state on the ’C3x-33.

The ’74ALS254 buffers offer an additional system-performance enhance-
ment—they include 25-Ω resistors in series with each buffer output. These re-
sistors greatly improve the transient response characteristics of the buffers,
especially when driving CMOS loads, such as the memories used here. The
effect of these resistors is to reduce overshoot and ringing, which are common

Wait States and Ready Signal Generation

4-19Memory Interfacing

when driving predominantly capacitive loads, such as for CMOS devices. The
result is reduced noise and increased immunity in the circuit, which, in turn,
results in a more reliable memory system. Having these resistors included in
the buffers eliminates the need to put discrete resistors in the system, which
is often required in high-speed memory systems.

This circuit cannot be implemented without bank switching because the data
output’s turn-on and turn-off delays cause bus conflicts. The propagation delay
of the ’74ALS138 multiplexer is involved only during bank switches, when
there is sufficient time between cycles to allow new chip-selects to be
decoded.

Figure 4–9 shows the timing of this circuit for read operations using bank
switching. With the BNKCMPR register set to 0Bh, when a bank switch occurs,
the bank address on address lines A23–A13 is updated during the extra H1
cycle while STRB is high. Then, after chip-select decodes have stabilized and
the previously selected bank has disabled its outputs, STRB goes low for the
next read cycle. Further accesses occur at normal bus timings with one wait
state, as long as another bank switch is not necessary. Write cycles do not re-
quire bank switching because of the inherent address setup provided in their
timings. This timing is summarized in Table 4–1.

Figure 4–9. Timing for Read Operations Using Bank Switching

t4

H1

A23–A13

A12–A0

STRB

BANKSEL0

D31–D0

BANKSEL1

Bank 0 on bus Bank 1 on bus

t6

t5

t2

t3

Valid

Valid

t1

Wait States and Ready Signal Generation

 4-20

Table 4–1. Bank-Switching Interface Timing for the TMS320C3x-33

Timer Interval Event Time Period

t1 H1 falling to address valid/STRB rising 14 ns

t2 Address valid to select delay 10 ns

t3 Memory disable from STRB 10 ns

t4 H1 falling to STRB 10 ns

t5 STRB to select delay 4.5 ns

t6 Memory output enable delay 3 ns

Interfacing Memory to the TMS320C32 DSP

4-21Memory Interfacing

4.6 Interfacing Memory to the TMS320C32 DSP

The ’C32 accesses external memory with one 24-bit address bus, one 32-bit
data bus, and three strobes: IOSTRB, STRB0, and STRB1. The strobes are
mapped to selected portions of the memory map as shown in Figure 4–10 on
page 4-23. For example, if the CPU is reading data from location 881234h, the
active strobe during the read bus cycle is STRB0. Unlike the other two strobes,
STRB0 is assigned to two noncontiguous address spaces within the memory
map to provide extra flexibility in address decoding for glueless memory inter-
faces.

The behavior of IOSTRB is similar to that of its counterpart in the ’C30. Its tim-
ing characteristics are slightly relaxed in comparison with STRB0 and STRB1
cycles to better accommodate slower I/O peripherals. In contrast to STRB0
and STRB1, IOSTRB uses a single signal line and accesses the external data
one full 32-bit word at a time. STRB0 and STRB1 are composed of four signal
lines each. The multiple signal lines per strobe enable the STRB0 and STRB1
cycles to access external memory one byte, one half-word, or one full word at
a time. For example, to read a single byte from a 32-bit-wide external memory
location mapped to STRB0, the address on the address bus points to the se-
lected 32-bit word and only one STRB0 signal is activated (driven low) to select
the desired byte. To access two bytes of data at the memory location mapped
to STRB1, two STRB1 signal lines are asserted during the bus cycle. Full
32-bit bus cycles involving STRB0 or STRB1 memory space result in four
strobe signals simultaneously accessing four bytes of data. The 32-bit STRB0
and STRB1 bus cycles are no different functionally from the IOSTRB cycles
but simply have tighter timing parameters.

The STRB0 and STRB1 cycles are not limited to just selecting bytes out of
32-bit memory locations. There are two strobe control registers that configure
the data size and memory width for STRB0 and STRB1 bus cycles (one control
register per strobe). With proper initialization of the strobe control registers, the
bus cycles can be configured to encompass any combination of data size and
physical memory width. For example, a byte can be read from a 16-bit-wide
memory or a 32-bit word can be written to an 8-bit-wide memory by configuring
the memory width and data size fields of the corresponding strobe control reg-
isters (see Figure 4–10).

Like other members of the ’C3x generation, the ’C32 program, as well as the
data, can reside in any portion of the memory map. The ’C32 program fetches
from address space mapped to IOSTRB are indistinguishable from IOSTRB
data reads or writes. However, the STRB0 and STRB1 cycles are configured
slightly differently for program fetches than for data accesses. Program and
data can still share the same portions of the memory map, but instead of set-

Interfacing Memory to the TMS320C32 DSP

 4-22

ting the memory width and data size fields in STRB0 and STRB1 control regis-
ters, the program fetch cycles from the memory spaces mapped to STRB0 and
STRB1 are configured by hardwiring the PRGW (program memory width se-
lect) pin. There is no need to use the data size fields, because all program
fetches apply only to instruction words that are 32 bits wide. The memory width
field of the strobe control register is useless at reset, when the processor is
fetching the reset vector from memory. At that point the strobe control register
is always configured in the same way, but different systems can have different
memory widths. The PRGW pin indicates to the memory interface whether the
program memory is 16 or 32 bits wide. Program memory that is 8 bits wide is
not supported, because four cycles per instruction degrade the performance
too much for it to be useful for most applications.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-23
M

em
ory Interfacing

Figure 4–10. STRB0 and STRB1 Control Registers and the PRGW Pin

Logical
memory

map

FFFFFFh

880000h

8FFFFFh
900000h

82FFFFh

810000h

7FFFFFh

0h

VCC

STRB0 control register

STRB0_B2
STRB0_B1
STRB0_B0

IOSTRB

STRB1_B3
STRB1_B2
STRB1_B1
STRB1_B0

STRB1 control register

STRB0

STRB0

STRB1

Applies only to
data access cycles

to/from memory
addresses mapped

to STRB0

Applies only to
program fetch

cycles from memory
addresses mapped
to STRB0, STRB1

Applies only to
data access cycles

to/from memory
addresses mapped

to STRB0

IOSTRB cycles
are always
32 bits wide

(data access or
program fetch)

External
memory

bank
1

External
memory

bank
2

External
memory

bank
3

Memory
width

Data
size

Memory
width

Data
size

STRB
Config

Physical
memory

32-bit
program
memory

16-bit
program
memory

TMS320C32 enhanced memory interface

IOSTRB

STRB0_B3

PRGW pin

D0–D31

A0–A23

Note: Heavy lines indicate multiple signals.

Interfacing Memory to the TMS320C32 DSP

 4-24

4.6.1 Functional Description of the Enhanced Memory Interface

The enhanced memory interface controls all data and program traffic between
data buses inside the chip and the 32-bit external memory bus as shown in
Figure 4–10 through Figure 4–13. For any bus cycle involving a logical
memory address range mapped to IOSTRB, the memory interface simply con-
nects the external data bus with an appropriate internal data bus without fur-
ther data manipulation.

The memory interface is much busier when the ’C32 is accessing logical
memory addresses mapped to STRB0 and STRB1. Depending on the data
size and external memory width (as defined by corresponding strobe control
registers), data can be packed, unpacked, truncated, or shifted on its way to
and from the chip.

Section 4.6.1.1 through section 4.6.1.4 illustrate how the data is manipulated
when the interface has to match variable-size data with 8-, 16-, and 32-bit-wide
physical memories. In these sections, five lines of code are included in the pro-
gram space in each figure:

LDI 4,RC

RPTB L1

LDI *AR0++, R0

FLOAT R0,R1

L1 STF R1, *AR1++

These lines of code read five integers from one data space, convert them to
floating-point format, and write them to another memory space that is assigned
to a different strobe. Each example has a different combination of data sizes
and external memory widths to illustrate the range of possible combinations.

For data access and program fetch cycles in which the data size exceeds the
physical memory width, the least significant bytes/half-words are always
transferred first.

Interfacing Memory to the TMS320C32 DSP

4-25Memory Interfacing

4.6.1.1 STRB0 and STRB1 Data Access: Data Size = Memory Width

In the case of STRB0 and STRB1 data access, where data size equals
memory width, the data size and memory width for STRB0 and STRB1 data
access cycles are configured in the corresponding strobe control registers
(see Table 4–2).

The short program stored in the internal RAM0 memory begins with the load
integer (LDI) instruction reading an 8-bit integer from 8-bit-wide STRB0
memory (see Figure 4–11). As the integer data passes through the memory
interface, it is sign extended to 32 bits and loaded to R0 as a 32-bit integer.
Next, the integer-to-floating-point conversion (FLOAT) instruction converts the
integer in R0 to a 40-bit floating-point number and loads it into R1. Finally, the
store floating-point value (STF) instruction truncates the 40-bit contents of R1
to 32 bits and stores it in the 16-bit-wide STRB1 memory. As the data passes
through the memory interface, the 24-bit mantissa is truncated to eight bits (the
8-bit exponent remains unmodified).

Table 4–2. STRB0 and STRB1 Data Access: Data Size = Memory Width

Data Access Strobe Data Size Memory Width

Input data STRB0 8 8

Output data STRB1 16 16

Program RAM0 32 32

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-26 Figure 4–11.STRB0 and STRB1 Data Access: Data Size = Memory Width

STRB1

Physical memory Logical address

Physical memory Logical address

0 1 0 1

32 bits

32 bits

RAM0

Memory
width

16 bits 16 bits

size
Data

STRB1
control
register

LDI
RPTB
LDI
FLOAT

L1

data write

STRB0

STRB
config

0

data read

FPU

DataMemory

map

Logical

8 bits

1002h
1001h

87FE81h

1004h
1005h

1003h
102
101

104
105

32 bits

101.0

STRB0

8 bits

RAM0
program

fetch

87FE83h
87FE84h
87FE85h

910005h
910004h
910003h
910002h
910001h

105.0
104.0

16 bits

16 bits

102.0

87FE82h

32 bits
32 bits
103R0

STRB0

memory

TMS320C32

IR

Control

ALU

PC

AR1

103.0R1

00 00
8 bits

width

32 bits

size

8 bits

40 bits

IOSTRB

STRB1

STRB0

910003h

STRB0
control
register

1003h AR0

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
0)

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
1)

103.0

STF

4,RC
L1
*AR0++,R0
R0,R1
R1,*AR1++

103

87FE83h

Interfacing Memory to the TMS320C32 DSP

4-27Memory Interfacing

4.6.1.2 STRB0 and STRB1 Data Access: Data Size � Memory Width

The input and/or output data does not have to be the same size as the memory
it is being read to or written from (see Table 4–3). The data size and memory
width for STRB0 and STRB1 data access cycles are configured in the corre-
sponding strobe control registers.

The short program stored in the RAM1 memory begins with the LDI instruction
reading an 8-bit integer from 16-bit-wide STRB0 memory (see Figure 4–12).
Since each address contains two data bytes, the memory interface uses differ-
ent STRB0 lines to differentiate between the high byte and the low byte. (Both
STRB0 and STRB1 comprise four signals each, one for each byte of the 32
bits.) Next, the FLOAT instruction converts the integer in R0 to a 40-bit floating-
point number and loads it to R1. Finally, the STF instruction stores the contents
of R1 to 16-bit-wide memory as a 32-bit number. Before the data arrives at the
memory interface, the 32-bit mantissa is truncated to 24 bits (the 8-bit expo-
nent remains unmodified). The memory interface then stores the 24-bit man-
tissa and the 8-bit exponent in 16-bit-wide memory, two bytes at a time, using
two cycles and two physical memory addresses.

Table 4–3. STRB0 and STRB1 Data Access: Data Size � Memory Width

Data Access Strobe Data Size Memory Width

Input data STRB0 8 16

Output data STRB1 32 16

Program RAM1 32 32

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-28 Figure 4–12. STRB0 and STRB1 Data Access: Data Size � Memory Width

16 bits

IOSTRB

Logical
memory

map

32 bits

32 bits

16 bits 32 bits

size
Data

data write

STRB0

STRB
config

data read

FPU

DataMemory 16 bits

102 1001h

Logical address

87FF81h

1005h
1003h

32 bits

Physical memory

STRB0
8 bits

Logical address

87FF83h
87FF84h
87FF85h

910005h

910004h

910003h

910002h

910001h

16 bits

Physical memory

STRB1

16 bits

87FF82h

32 bits32 bits
104R0

TMS320C32

IR

Control
ALU

PC

AR1

104.0R1

width

32 bits

size

8 bits

40 bits

1004h AR0

STRB0

STRB1

STRB0

RAM1
M

em
or

y
in

te
rf

ac
e

(S
T

R
B

0)

LDI
RPTB
LDI
FLOAT

L1 STF

4,RC
L1
*AR0++,R0
R0,R1
R1,*AR1++

104
101
103
105

102.0

103.0

104.0

105.0

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
1)

0 111

87FF83h

910004h

STRB0
control
register

STRB1
control
register

Memory
width

RAM1
program

fetch

101.0

0 0 0 01

Interfacing Memory to the TMS320C32 DSP

4-29Memory Interfacing

4.6.1.3 Program Fetch From 16-Bit STRB0 Memory

Table 4–4 shows program memory mapped to 16-bit-wide STRB0 or STRB1
memory. By hardwiring the PRGW pin to a high state, 32-bit data transfers to
and from the 32-bit-wide external memory do not involve any data operations
in the memory interface.

The short program stored in STRB0 memory begins with the LDI instruction
reading a 32-bit integer from 32-bit-wide IOSTRB memory and loading it to R0
(see Figure 4–13). Next, the FLOAT instruction converts the integer in R0 to
a 40-bit floating-point number and loads it into R1. Finally, the STF instruction
truncates the 40-bit contents of R1 to 32 bits and stores it in the 32-bit-wide
STRB1 memory. The data is not modified as it passes through the memory in-
terface.

The program controlling the data conversion in this example is stored in the
32-bit-wide memory bank mapped to STRB0. As discussed earlier, program
fetch cycles do not reference the strobe control register to determine the width
of the program memory. Instead, the memory interface checks the state of the
PRGW pin to determine the memory width. Because the program memory is
16 bits wide, the PRGW pin should be pulled up to VCC, effectively directing
the memory interface to fetch instructions in two bus cycles per instruction (16
bits at a time).

Table 4–4. Program Fetch From 16-Bit STRB0 Memory

Data Access Strobe Data Size Memory Width

Input data STRB0 32 32

Output data STRB1 32 32

Program IOSTRB 32 16

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-30 Figure 4–13. Program Fetch From 16-Bit STRB0 Memory

Logical address

data read
IOSTRB

32 bits

DataMemory

data write

ALU

16 bits

Logical address

820001h
820002h
820003h

Physical memory

103

101
102

32 bits

16 bits

1001h

1002h

1003h

1004h

1005h

820004h
820005h

910005h
910004h
910003h
910002h
910001h

105
104

32 bits

Physical memory

STRB1

103.0
102.0

104.0
105.0

101.032 bits

VCC

PRGW pin

32 bits

IR

103
32 bits

R0

AR0820003h

ControlFPUPC

AR1

103.0R1

width size

40 bits 32 bits

910003h

1003h

STRB1
control register

TMS320C32

1 1 1 1

map

Logical

STRB0

memory

IOSTRB

STRB1

STRB0

LDI

RPTB

LDI

Float

L1 STF

4,RC

L1

*AR0++,R0

R0,R1

R1,*AR1++

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
0)

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
1)

32 bits 32 bits

32 bits

STRB0
program
fetch

Interfacing Memory to the TMS320C32 DSP

4-31Memory Interfacing

4.6.1.4 Program Fetch From 32-Bit STRB1 Memory

Table 4–5 shows program memory mapped to 32-bit-wide STRB0 or STRB1
memory. By hardwiring the PRGW pin to a low state, 32-bit data transfers to
and from the 32-bit-wide external memory do not involve any data operations
in the memory interface.

The small program stored in STRB1 memory begins with the LDI instruction
reading a 32-bit integer from 32-bit-wide STRB0 memory and loading it into
R0 (see Figure 4–14). Next, the FLOAT instruction converts the integer in R0
to a 40-bit floating-point number and loads it into R1. Finally, the STF instruc-
tion truncates the 40-bit contents of R1 to 32 bits and stores it in the 32-bit-wide
IOSTRB memory. The data is not modified as it passes through the memory
interface.

The program controlling the data conversion in this example is stored in the
32-bit-wide memory bank mapped to STRB1. Program fetch cycles do not ref-
erence the strobe control register to determine the width of the program
memory. Instead, the memory interface checks the state of the PRGW pin to
determine the memory width. Because the program memory is 32 bits wide,
the PRGW pin should be grounded, effectively directing the memory interface
to fetch instructions in one bus cycle per instruction (32 bits at a time).

Table 4–5. Program Fetch From 32-Bit STRB1 Memory

Data Access Strobe Data Size Memory Width

Input Data STRB0 32 32

Output Data STRB1 32 32

Program IOSTRB 32 32

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-32 Figure 4–14. Program Fetch From 32-Bit STRB1 Memory

Physical memory

Physical memory

STRB0

STRB
configuration

data read

FPU

DataMemory

32 bits

1002h
1001h

Logical address

820001h

1004h
1005h

1003h
102
101

104
105

32 bits

STRB0

32 bits

data write

103

Logical address

820003h
820004h
820005h

910005h
910004h
910003h
910002h
910001h

105.0
104.0

103.0

32 bits

32 bits

102.0 820002h

PRGW pin

32 bits
32 bits
103R0

TMS320C32

IR

ControlALU
PC

AR1

103.0R1

32 bits

width

32 bits

size

32 bits

40 bits

820003h

910003h

1003h AR0

STRB0

IOSTRB

STRB1

STRB0
LDI
RPTB
LDI
Float

L1 STF

4,RC
L1
*AR0++,R0
R0,R1
R1,*AR1++

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
1)

11 110

M
em

or
y

in
te

rf
ac

e
(S

T
R

B
0)

32 bits

32 bits

101.0
102.0

104.0
105.0

IOSTRB

Logical
memory

map

STRB0
control
register

STRB1
program
fetch

Interfacing Memory to the TMS320C32 DSP

4-33Memory Interfacing

4.6.2 Logical Versus Physical Address

The ’C32 is a 32-bit processor. Its instruction set operates on 32-bit registers;
the CPU alone does not read 8- or 16-bit data or data transfers. When a ’C32
instruction writes to a physical address, it sends all 32 bits of data to the
memory interface unit through an internal bus. It is only in the memory interface
that the internal 32-bit data can assume 8-bit or 16-bit form, provided that the
address is in the STRB0 or STRB1 range of the memory map. The data size
field of the STRB0 or STRB1 control register determines the actual size of the
data portion that is placed on the external memory bus of the ’C32. Likewise,
when a ’C32 instruction reads a portion of data from external memory, the
memory interface always converts it to 32 bits as it enters the chip. What hap-
pens to the external data as it goes through the memory interface on the way
to the CPU depends on the contents of the STRB0 and STRB1 control regis-
ters. Again, only the data whose address falls within the STRB0 or STRB1
range of the memory map can be manipulated inside the memory interface
unit.

Throughout this document, the term logical address applies to a memory loca-
tion that is referenced by ’C32 instructions; the logical address is a part of the
processor’s logical memory map. The physical address refers to the address
that appears at the ’C32 address pins. The valid ranges of the logical memory
map that the program instructions can reference are determined by:

� The external memory available in the system

� The manner in which the external memory address pins are matched with
the ’C32 address pins (which depends on physical memory width)

� The contents of the STRB0 and STRB1 registers (which define physical
memory width and the data size)

The logical memory map shown in Figure 4–15 always contains 32-bit data as
far as the CPU is concerned. It is only when the data passes through the
memory-interface block that the data size can actually change to 8 or 16 bits,
as directed by the appropriate strobe control register. For example, when the
processor reads a byte (eight bits) from external memory, the 8-bit data is sign-
extended or padded with 0s as it passes through the memory interface so that
it becomes 32-bit data inside the ’C32. Likewise, when the processor writes
the contents of a 32-bit register to 16-bit-wide external memory, the internal
32-bit data is truncated to 16 bits as it passes through the memory interface.
The dashed lines inside the logical memory map in Figure 4–15 show the inter-
nal 32-bit representation of the external data that has a physical size of 8 or
16 bits.

Figure 4–15 explains logical/physical addresses and other terms related to the
’C32 memory interface.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-34 Figure 4–15. Description of Terms Involved In TMS320C32 Memory Interface

16 bitsCS

Address

CS

Address

DataData

Strobes

AddressAddress

CPU

DMA

TMS320C32

Data

PRGW pin

Data

STRB0 control register
STRB1 control register

E
xt

er
na

l m
em

or
y

in
te

rf
ac

e

In
te

rn
al

 m
em

or
y

For 16-bit-wide memory,
STRBx_B3 pin is assigned

to address bit A-1.
For 8-bit-wide memory,

STRBx_B3 and STRBx_B2
pins are assigned to address

bits A-1 and A-2.

Logical memory map
(addresses as seen
by the 32-bit CPU)

24-bit logical
address (as
seen by the

CPU)

Multiple strobe signals
can select individual
bytes from physical

memory.

24-bit physical ad-
dress (as present-
ed on the proces-
sor’s address pins

Physical memory map
(valid addresses as

presented on the proc-
essor’s address pins)

Memory width = 16 bits
(for this example)

STRB0, STRB1 control registers
and the PRGW pin control logical
to physical address mapping and

data packing/unpacking.

Internal data
buses are always

32 bits wide

External data bus can
be 32, 16, or 8 bits wide

Byte-wide external
memory devices

Data size =
32 bits

Data size =
8 bits

Data size =
16 bits

Data bus

Address bus

Interfacing Memory to the TMS320C32 DSP

4-35Memory Interfacing

4.6.3 32-Bit Memory Configuration Design Examples

The following sections describe examples of interfacing the ’C32 to 32-bit-
wide external memory from both the hardware and software-addressing view-
points.

4.6.3.1 32-Bit Memory Address Translation for Data Size = Memory Width

When both data size and memory width are 32 bits, the STRB0 memory inter-
face behaves like the IOSTRB memory interface. The only difference between
the two is the number of strobe lines connected to the respective memory
banks: four for STRB0 and one for IOSTRB.

Figure 4–16 is a schematic diagram of a 32-bit interface consisting of two
memory banks, each controlled by a separate strobe. The four signal lines of
STRB0 are assigned to the chip-select pins of four 32K × 8 15-ns SRAMs. The
single IOSTRB signal line is connected to the chip-enable pins of four
32K × 8 30-ns EPROMs. For the 60-MHz version of the ’C32, the 15-ns
SRAMs operate with zero wait states and the 30-ns EPROMs require one wait
state. (Software wait states can be programmed in the strobe control regis-
ters.)

The hardware memory configuration is depicted in Figure 4–16. Figure 4–17
illustrates the programmer’s view of the hardware memory configuration. The
logical addresses (appearing in program instructions) are represented in the
context of the entire memory map to identify the respective strobes. The physi-
cal addresses are the values that actually appear at the pins of the processor.
Since IOSTRB operates exclusively on 32-bit data types, the memory inter-
face does not modify the address going in and out of the CPU; the logical and
physical addresses are identical. In this example, STRB0 also operates on
32-bit data since the memory width field of the STRB0 control register contains
a binary value of 11. Since the STRB0 physical memory width is also 32 bits
(see data size field in Figure 4–17), there is no need for address translation
from the logical address to its physical representation.

Interfacing Memory to the TMS320C32 DSP

4-36

F
ig

ur
e

4–
16

.
32

-B
it

M
em

or
y

C
on

fig
ur

at
io

n
(S

T
R

B
0

an
d

IO
S

T
R

B
)

W
E

O
E

D
7

D
4

D
5

D
3

D
2

D
6

D
0

D
1

A
14

A
11

A
12

A
13

W
E

O
E

A
11

W
E

O
E

A
12

A
14

A
13

A
10

A
9

A
7

A
6

A
8

A
4

A
5

A
2

A
1

A
3

D
15

D
13

D
12

D
10

D
11

D
14

A
0

D
8

C
S

D
9

A
10

A
9

A
7

A
6

A
8

A
5

A
4

A
2

A
1

A
3

D
23

D
20

D
21

D
19

D
18

D
22

A
0

D
16

C
S

D
17

C
S

D
7

D
6

D
3

D
4

D
2

D
1

D
5

D
0

D
14

D
15

D
11

D
12

D
9

D
10

D
13

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

D
23

D
22

D
5

D
7

D
6

D
19

D
20

D
18

D
17

D
0

D
4

D
2

D
1

D
3

D
21

A
12

A
14

A
13

D
16

D
8

A
14

A
13

A
12

A
11

W
E

O
E

A
14

A
11

A
12

A
13

H
O

LD
A

R
/W

H
O

LD

R
D

Y

P
R

G
W

V
C

C

A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

D
7

D
6

A
9

A
10

A
7

A
6

A
8

D
5

D
4

D
2

D
1

D
3

A
5

A
4

A
2

A
1

A
3

D
26

D
27

D
28

D
29

D
30

D
31

D
0

A
0

C
S

D
24

D
25

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

3

A
10

A
0–

A
23

S
H

Z

M
C

B
L/

M
P

R
E

S
E

T

IN
T

0

IN
T

2
IN

T
3

IN
T

1

IA
C

K

X
F

0

X
F

1

C
LK

IN

H
3

H
1

D
25

D
31

D
28

D
29

D
27

D
26

D
30

S
T

R
B

0_
B

0

IO
S

T
R

B

C
E

D
24

T
M

S
32

0C
32

E
M

U
3

E
M

U
0

E
M

U
1

E
M

U
2

T
C

LK
0

T
C

LK
1

F
S

R
0

D
R

0

D
X

0

C
LK

R
0

C
LK

X
0

F
S

X
0

D
0–

D
31

S
T

R
B

1_
B

3
/A

–1
S

T
R

B
1_

B
2

/A
–2

S
T

R
B

1_
B

1
S

T
R

B
1_

B
0

A
6

A
2

A
1

A
0

A
5

A
4

A
3

A
9

A
8

A
7

A
12

A
11

A
10

A
14

A
13

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

D
7

D
6

D
5

D
4

D
2

D
1

D
3

D
0

D
7

D
6

D
5

D
4

D
2

D
1

D
3

D
0

D
7

D
6

D
5

D
4

D
2

D
1

D
3

D
0

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

C
E

C
E

C
E

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

A
12

A
14

A
13

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

A
12

A
14

A
13

D
5

D
7

D
6

D
0

D
4

D
2

D
1

D
3

D
5

D
7

D
6

D
0

D
4

D
2

D
1

D
3

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

A
12

A
14

A
13

D
5

D
7

D
6

D
0

D
4

D
2

D
1

D
3

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

SRAM (32K x 8) EPROM (32K x 8)

SRAM (32K x 8) EPROM (32K x 8)

SRAM (32K x 8) EPROM (32K x 8)

SRAM (32K x 8) EPROM (32K x 8)

O
E

O
E

O
E

O
E

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-37
M

em
ory Interfacing

Figure 4–17. 32-Bit Memory Configuration (STRB0 and IOSTRB)

STRB0

control

register

CONFIG
STRB

10h

2

3

7FFFh

10h

32768

32767

32766

3

32766

2

7FFFh
32767

32768

1 10

32 bitsSTRB0 32 bits

Logical address

Physical address

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0h1

2

3

1 0 0 1 0 0 0 0 0

Logical / physical address

1

7FFFh

810000h

3

2

32-bit data size – address not shifted

IOSTRB – address not shifted

817FFFh

32766

32767

32767

32766

1 0 0 1 0 0 0 0 0

1 1

1 0 0 0 0 0 0 1 0

32768

32768

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

A14 A0

A14 A0

A14 A0

Note: 32-bit memory address translation: data size = memory width

Logical
memory

map

Logical
address

Physical
address

Data
size

Memory
width

Interfacing Memory to the TMS320C32 DSP

 4-38

4.6.3.2 32-Bit Memory Address Translation for Data Size < Memory Width

One memory location can store 2 or 4 data values. Therefore, if the data re-
quires 16 or 8 bits of precision, the effective addressing range of the same
physical 32-bit memory is doubled or quadrupled by simply changing the data
size field of the appropriate strobe control register before the transfers begin.
The logical-to-physical address translation involves a 2-bit address shift if the
data size is 8 bits and a 1-bit shift if the data size is 16 bits. The memory inter-
face automatically performs address shifts and the activation of selected ex-
ternal memory bytes with appropriate strobe control lines (as directed by the
strobe control registers).

Figure 4–18 is the schematic diagram of a 32-bit interface consisting of two
memory banks, each controlled by a separate strobe. The four signal lines of
STRB0 are assigned to the chip-select pins of four 32K × 8 15-ns SRAMs, and
the four signal lines of STRB1 are connected to the chip-enable pins of four
32K × 8 30-ns EPROMs. For the 60-MHz version of the ’C32, the 15-ns SRAMs
operate at zero wait states and the 30-ns EPROMs require one wait state.
(Software wait states can be programmed in strobe control registers.)

Figure 4–19 illustrates the programmer’s view of the hardware memory con-
figuration depicted in Figure 4–18. The logical addresses (appearing in pro-
gram instructions) are represented in the context of the entire memory map to
identify the respective strobes. In this case, the STRB0 memory transfers op-
erate on 16-bit data to and from 32-bit-wide memory, as defined in the STRB0
control register. STRB1 accesses 8-bit data to and from 32-bit-wide memory,
as defined by the STRB1 control register. Since two 16-bit data types can fit
in a single 32-bit-wide memory location referenced by a single physical ad-
dress, a mechanism is needed to distinguish between the 16-bit data portions.
This is accomplished by using the least significant bit (LSB) of the logical ad-
dress to activate a different pair of the four STRB0 signal lines for each access,
leaving the second LSB of the logical address to become the LSB of the physi-
cal address and effectively shifting the logical address by one bit. Similarly,
STRB1 8-bit data transfers to the 32-bit-wide external memory cause the ad-
dress to be shifted by two bits, because the two LSBs of the logical address
are used to select one out of four bytes sharing the same physical 32-bit
memory location.

Interfacing Memory to the TMS320C32 DSP

4-39Memory Interfacing

F
ig

ur
e

4–
18

.
32

-B
it

M
em

or
y

C
on

fig
ur

at
io

n
(S

T
R

B
0

an
d

S
T

R
B

1)

V
C

C

T
M

S
32

0C
32

D
0

–
D

31

S
T

R
B

1_
B

3
S

T
R

B
1_

B
2

S
T

R
B

1_
B

1
S

T
R

B
1_

B
0

W
E

O
E

D
7

D
4

D
5

D
3

D
2

D
6

D
0

D
1

A
14

A
11

A
12

A
13

W
E

O
E

A
11

W
E

O
E

A
12

A
14

A
13

A
10

A
9

A
7

A
6

A
8

A
4

A
5

A
2

A
1

A
3

D
15

D
13

D
12

D
10

D
11

D
14

A
0

D
8

C
S

D
9

A
10

A
9

A
7

A
6

A
8

A
5

A
4

A
2

A
1

A
3

D
23

D
20

D
21

D
19

D
18

D
22

A
0

D
16

C
S

D
17

C
S

O
E

D
7

D
6

D
3

D
4

D
2

D
1

D
5

D
0

O
E

D
14

D
15

D
11

D
12

D
9

D
10

D
13

A
10

A
11

O
E

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

D
23

D
22

D
5

D
7

D
6

D
19

D
20

D
18

D
17

D
0

D
4

D
2

D
1

D
3

D
21

A
12

A
14

A
13

D
16

D
8

A
14

A
13

A
12

A
11

W
E

O
E

A
14

A
11

A
12

A
13

A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

D
7

D
6

A
9

A
10

A
7

A
6

A
8

D
5

D
4

D
2

D
1

D
3

A
5

A
4

A
2

A
1

A
3

D
26

D
27

D
28

D
29

D
30

D
31

D
0

A
0

C
S

D
24

D
25

A
10

O
E

D
25

D
31

D
28

D
29

D
27

D
26

D
30

C
E

D
24

A
6

A
2

A
1

A
0

A
5

A
4

A
3

A
9

A
8

A
7

A
12

A
11

A
10

A
14

A
13

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

D
7

D
6

D
5

D
4

D
2

D
1

D
3

D
0

D
7

D
6

D
5

D
4

D
2

D
1

D
3

D
0

D
7

D
6

D
5

D
4

D
2

D
1

D
3

D
0

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

C
E

C
E

C
E

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

A
12

A
14

A
13

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

A
12

A
14

A
13

D
5

D
7

D
6

D
0

D
4

D
2

D
1

D
3

D
5

D
7

D
6

D
0

D
4

D
2

D
1

D
3

A
10

A
11

A
9

A
8

A
6

A
5

A
7

A
4

A
3

A
1

A
0

A
2

A
12

A
14

A
13

D
5

D
7

D
6

D
0

D
4

D
2

D
1

D
3

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

A
13

A
12

A
11 A
9

A
8

A
7

A
6

A
4

A
3

A
0

A
1

A
2

A
5

A
10

A
14

H
O

LD
A

R
/W

H
O

LD

R
D

Y

P
R

G
W

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

3

S
H

Z

M
C

B
L/

M
P

R
E

S
E

T

IN
T

0

IN
T

2
IN

T
3

IN
T

1

IA
C

K

X
F

0

X
F

1

C
LK

IN

H
3

H
1

S
T

R
B

0_
B

0

IO
S

T
R

B

E
M

U
3

E
M

U
0

E
M

U
1

E
M

U
2

T
C

LK
0

T
C

LK
1

F
S

R
0

D
R

0

D
X

0

C
LK

R
0

C
LK

X
0

F
S

X
0

SRAM (32K x 8) EPROM (32K x 8)

SRAM (32K x 8) EPROM (32K x 8)

SRAM (32K x 8) EPROM (32K x 8)

SRAM (32K x 8) EPROM (32K x 8)

A
0

–
A

23

Interfacing Memory to the TMS320C32 DSP

4-40

F
ig

ur
e

4–
19

.
32

-B
it

M
em

or
y

A
dd

re
ss

 T
ra

ns
la

tio
n:

 D
at

a
S

iz
e

<
M

em
or

y
W

id
th

13
10

71

91
F

F
F

F
h

2

13
10

70

31

65
53

5

65
53

4

90
00

00
h

Lo
gi

ca
l a

dd
re

ss

P
hy

si
ca

l a
dd

re
ss

321
0h

P
hy

si
ca

l a
dd

re
ss

Lo
gi

ca
l a

dd
re

ss

8
bi

ts

0
 0

32
 b

its

1
 1

0

16
 b

its

0
 1

32
 b

its

1
 1

13
10

68

7F
F

F
h

13
10

67

13
10

71
13

10
70

13
10

66

13
10

69

13
10

65

65
53

1

65
53

5

65
53

3

8
6

7

13
10

64
13

10
63

13
10

62

11
12

10

0h

7F
F

F
h

3
4

2

65
53

4

65
53

2

5

13
10

61

91

64

53

0h
2

1

65
53

6

13
10

72

S
T

R
B

0
_B

0
S

T
R

B
0

_B
1

S
T

R
B

0
_B

2
_B

3
S

T
R

B
0

P
hy

si
ca

l a
dd

re
ss

si
ze

D
at

a
w

id
th

M
em

or
y

co
nf

ig
ur

at
io

n
S

T
R

B

S
T

R
B

0
co

nt
ro

l r
eg

is
te

r

S
T

R
B

1
co

nt
ro

l r
eg

is
te

r

S
T

R
B

1
_B

0
S

T
R

B
1

_B
1

S
T

R
B

1
_B

2
_B

3
S

T
R

B
1

S
T

R
B

0

13
10

72

F
F

F
F

h

1
 1

 1
 1

 1

 1
 1

 1

 1
 1

 1
 1

 1

 1
 1

 1

1
 1

 1
 1

 1

 1
 1

 1

 1
 1

 1
 1

 1

 1
 1

 1
0

 0
 0

 0

 0
 0

 0
 0

0
 0

 0
 0

 0

 0
 0

 0

S
T

R
B

0

IO
S

T
R

B

S
T

R
B

1

S
T

R
B

0

A
15

A
1

A
14

A
0

A
16

A
2

A
14

A
0

1
1

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

65
53

6
16

-b
it

da
ta

 s
iz

e
–

ad
dr

es
s

sh
ift

ed
 b

y
1

bi
t

8-
bi

t d
at

a
si

ze
 –

 a
dd

re
ss

 s
hi

fte
d

by
 2

 b
its

Lo
gi

ca
l

m
em

or
y

m
ap

Lo
gi

ca
l

ad
dr

es
s

Interfacing Memory to the TMS320C32 DSP

4-41Memory Interfacing

4.6.4 16-Bit and 8-Bit Memory Configuration Design Examples

This section describes how to interface the ’C32 to both 8- and 16-bit-wide ex-
ternal memories in the same design from both the hardware and software-ad-
dressing perspectives.

Figure 4–20 contains a schematic diagram of the external memory interface
consisting of two banks, each controlled by a separate strobe. Two of four
STRB0 signal lines are assigned to the chip-select pins of two 32K × 8 15-ns
SRAMs; one of four STRB1 signals is connected to a chip-enable pin of one
32K × 8 30-ns EPROM. For the 60-MHz version of the ’C32, the 15-ns SRAMs
operate at zero wait states and the 30-ns EPROMs require one wait state.
(Software wait states can be programmed in strobe control registers.) Any time
the external memory is less than 32 bits wide, some of the strobe pins switch
functions and become additional address pins. For 16-bit-wide memory,
STRB0_B3 becomes A–1; for 8-bit-wide memory, STRB1_B3 and STRB1_B2
become A–1 and A–2, respectively. This is the only external change that differ-
entiates the 32-bit-wide memory interface from the 16- and 8-bit-wide memory
interfaces. This feature can be considered transparent to the software pro-
grammer, except that the programmer must configure the strobe control regis-
ters appropriately. The memory interface automatically drives the additional
address lines with correct values, depending on the size of the data being
transferred.

The following three sections illustrate how the physical addresses are derived
from the logical addresses when the data size is equal to, greater than, and
less than the width of the physical memory. Though address translation is com-
pletely automatic, these cases provide insight into the range of physical ad-
dresses actually affected during transfer of 32-, 16-, and 8-bit data.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-42 Figure 4–20. 16-Bit and 8-Bit Memory Configuration: A Complete Minimum Design

header
port

Serial

header
cable

Emulator 60 MHz
Oscillator

jumpers
configuration
Boot loader WE

OE

D7
D6

D6
D7

D5
D4

D2
D1

D3
D3
D4

D0
D1
D2

D5

D0

A13
A14

A11
A12

WE

OE

A11

A12

A9
A10
A11

A13VCC

VCC A12

A14
A13

A8
A9

A7
A6

A3
A4

A0
A1
A2

A5D14
D15

D7
D6

D13
D12

D9
D10
D11

D4
D3

D0
D1
D2

D5

D8
CS

A9
A8
A7
A6

A5
A4

A6
A7

A4
A3

A0
A1
A2

A2

A0
A1

A3 A5

A8 A10 A10

CS

OE

D7
D6
D5

D7
D6
D5
D4

D3
D2

D0
D1

D2
D1
D0

D3 D4

A14

A12
A11

A9
A10

A13

A6
A7

A5
A4

A1
A2

A0

A3

A8

CE

R/W

HOLDA

PRGW

RDY

HOLD
SHZ
RESET

INT0

INT1

VCC

VCC MCBL / MP

A–1

STRB0_B2

STRB0_B1

STRB0_B0

INT2

INT3

IACK

XF0

XF1

H1

CLKIN

H3

System reset

TMS320C32

IOSTRB

EMU2

EMU3

EMU0

EMU1

TCLK0

TCLK1

DR0

FSR0

A–1

A–2

STRB1_B1

STRB1_B0D0–D31

CLKR0

FSX0

DX0

CLKX0

VCCkey

VCC

A0 – A23

A12

A9
A10
A11

A13

A5
A4

A6
A7

A2

A0
A1

A3

A8

A12

A9
A10
A11

A5
A4

A6
A7

A2

A0
A1

A3

A8

S
R

A
M

 (
32

K
 x

 8
)

S
R

A
M

 (
32

K
 x

 8
)

E
P

R
O

M
 (

32
K

 x
 8

)

Note: The EPROM is connected for data access (shifted address) and not for boot table access. This system is booted from the serial port (see INT3 signal).

Interfacing Memory to the TMS320C32 DSP

4-43Memory Interfacing

4.6.4.1 16-Bit and 8-Bit Memory Address Translation for Data Size = Memory Width

As shown in Figure 4–21, when the external memory width matches the size
of data being transferred, the physical address also matches the logical ad-
dress with one exception: the physical address is shifted relative to the logical
address by one bit for 16-bit transfers and by two bits for 8-bit transfers. This
means that the address bit that would normally be expected on pin A0 actually
appears on pin A–1 or A–2. As Figure 4–21 shows, there is one-to-one corre-
spondence between logical data and its counterpart in physical memory.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-44 Figure 4–21. 16-Bit and 8-Bit Memory Address Translation: Data Size = Memory Width

8 bits 8 bits

0 1

0 0

0 1

0 0

address
Physical

10h

2

3
A0

A-1

1

3

32766

2

7FFFh

0h

A0

A-2

32767

32766

32767

327687FFFh

16 bits 16 bits
0

STRB0
STRB0 control register

A14

A13

Logical address

Physical address

STRB1 control register

0h1

2

3

A14

A12

Physical address

Logical address

7FFFh

900000h

32766

32767

32768

1

3

32766

2

907FFFh

32767

32768

16-bit data size – address shifted by 1 bit

8-bit data size – address shifted by 2 bits

32768

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0
S

T
R

B
1_

B
0

Data
size

Memory
width

STRB
configuration

Logical
memory

map

Logical
address

Interfacing Memory to the TMS320C32 DSP

4-45Memory Interfacing

4.6.4.2 16-Bit and 8-Bit Memory Address Translation for Data Size > Memory Width

Figure 4–22 depicts what happens when data is transferred that is larger than
the physical memory in which it is to reside. As shown by the contents of the
strobe control registers, STRB0 controls transfers of 32-bit data to and from
16-bit-wide physical memory and STRB1 controls transfers of 16-bit data to
and from byte-wide memory. When an instruction stores 32-bit data to logical
address 0h, the memory interface must perform two write cycles to 16-bit-wide
external memory. These two write cycles involve two consecutive addresses,
0h and 1h. A 16-bit portion of data logically referenced with a single address
actually requires two physical addresses to be stored in 8-bit-wide physical
memory (as is the case with the STRB1 transfer shown at the bottom of
Figure 4–22). To implement these extra bus cycles, the memory interface ap-
pends an extra address bit to the least significant end of both addresses. As
in section 4.6.4.1, the LSBs of the STRB0 and STRB1 addresses appear at
pins A–1 and A–2, respectively, because they represent 16- and 8-bit-wide me-
mories.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-46 Figure 4–22. 16-Bit and 8-Bit Memory Address Translation: Data Size > Memory Width

7FFFh
7FFEh

7FFFh

1h
0h

1h
0h

0h

900000h

3FFFh

16-bit data size – address shifted by 1 bit

32-bit data size – address not shifted

Logical address

Physical address

7FFEh
903FFFh

Logical address

Physical address

1

3

2

16382

16383

1

2

16382

16383

16384

3

16384
16384
16383

16383 (lw)
16383 (hw)

16383

2 (hb)
2 (lb)
1 (hb)
1 (lb)

1 (lw)
1 (hw)

2 (hw)
2 (lw)

8 bits 16 bits

1 1

0 1

0 1

0 0

address
Physical

width size
Memory Data

configuration
STRB

16 bits 32 bits
0

STRB0
STRB0 control register
STRB1 control register

16384 (lw)
16384 (hw)

1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16384

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A13 A0

A13 A-1

A13 A0

A12 A–2

STRB0

IOSTRB

STRB1

STRB0

1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0
S

T
R

B
1_

B
0

Note : lw = low word, hw = high word
 lb = low byte, hb = high byte

Logical
memory

map

Logical
address

Interfacing Memory to the TMS320C32 DSP

4-47Memory Interfacing

4.6.4.3 16-Bit and 8-Bit Memory Address Translation for Data Size < Memory Width

The example in Figure 4–23 is, in a way, an inverse of that in Figure 4–22. The
8-bit data is transferred to and from 16-bit-wide external memory. To put this
example in perspective, assume that the data transfer is triggered by the fol-
lowing ’C32 instruction: STI R0,@7FFFh. While in R0, the data is sized at 32
bits, but when it arrives at the memory interface, the STRB0 control register
data size field indicates 8-bit-wide data. So, the 32-bit data is truncated to 8
bits. The now byte-sized data is transferred to address 7FFFh of the 16-bit-
wide external memory. In this case, the LSB of the logical address (as refer-
enced by the instruction) is actually rerouted to control one of the two STRB0
lines assigned to the 16-bit physical memory. If the LSB is 1 (as in this case),
STRB0_B1 is asserted during the write cycle. If the LSB is 0, STRB0_B0 is as-
serted during the write cycle. The remaining bits of the original logical address
are placed on the external address bus starting at pin A–1 (because the
memory width is 16 bits).

4.6.4.4 Design Considerations

While designing the external memory interface to the ’C32, a hardware engi-
neer must remember to match address pin A–1 with the A0 pin of a 16-bit-wide
memory, or to match the A–2 address pin with the A0 pin of a byte-wide
memory. If the external memory is 32 bits wide, the pins are not shifted relative
to each other and, therefore, match perfectly at A0.

When writing code for the ’C32, the programmer does not have to be con-
cerned about the structure of the physical memory. The programmer must sim-
ply be aware of the logical memory map and the configuration of the two strobe
control registers. The ’C32 memory interface automatically performs all of the
address translation tasks and byte packing/unpacking necessary to match
variable-size data with physical memories of different widths; they are con-
trolled by the data size and memory width fields of the STRB0 and STRB1 con-
trol registers.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-48 Figure 4–23. 16-Bit and 8-Bit Memory Address Translation: Data Size < Memory Width

1

3

5

20h

4

6

A0

A-1

65531

65535

65533
65532
65534

7FFFh

A15

A14

Physical address

Logical address

0h1

2

3

FFFFh

65534

65535

8-bit data size – address shifted by 2 bits

8 bits16 bits

1 10 1

address
Physical

0

STRB0

65536
65536

STRB0

IOSTRB

STRB1

STRB0

0 00 0 0 00 0 1 11 1 1 11 1 1 11 1 1 11 1

0 00 0 0 00 0 1 11 1 1 11 1 1 11 1 1 11 1

STRB0
control
register

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Data
size

Memory
width

STRB
configuration

Logical
memory

map

Logical
address

Interfacing Memory to the TMS320C32 DSP

4-49Memory Interfacing

4.6.5 One Bank /Two Strobes (32-Bit-Wide Memory) Design Examples

This section describes how to use two strobes in interfacing the ’C32 to a single
physical bank of memory. Such configuration enables the access to 32-bit pro-
grams and to two differently sized portions of data out of the same bank of
memory with no speed penalty. This feature is implemented by internally AND-
ing STRB0 and STRB1 and outputting the combined strobes on STRB0 (a total
of four lines). The one bank/two strobes memory configuration is useful in sys-
tems in which, for example, the program requiring 32-bit instruction words for
maximum execution speed operates on data that needs only 16 bits of preci-
sion (see Figure 4–27 on page 4-56).

Figure 4–24 is the schematic diagram of a 32-bit-wide external memory con-
figuration arranged as one bank with two separate logical control strobes shar-
ing the same STRB0 physical signal lines. The four STRB0 signals are as-
signed to the chip-select pins of four 32K × 8 15-ns SRAMs, one signal per
chip. For the 60-MHz version of the ’C32, the 15-ns SRAMs operate at zero
wait states. (For slower devices, additional software wait states can be pro-
grammed in the appropriate fields of the strobe control registers.) Because the
total memory width is 32 bits, there is no mismatch between the processor’s
and the memory’s address pins. Therefore, the ’C32 pin A0 is matched with
memory pin A0, A1 is matched with A1, and so on. As mentioned earlier, both
STRB0 and STRB1 signals appear together on the four STRB0 control pins.
This behavior is selected by setting the strobe configuration bit of the STRB0
control register to 1 (see Figure 4–24). Since both STRB0 and STRB1 are
mapped to different ranges of the logical memory map, the strobe that actually
appears on the physical STRB0 pins depends on the internal address of the
data/program being accessed. The two strobes effectively split the physical
memory into two, with the high memory address bit selecting either the STRB0
or STRB1 address space. For example, if all program instructions are fetched
from logical addresses 880000h–881000h and all data reads/writes are con-
fined between 980000h and 981000h, the program fetches are associated
with STRB0 and all data accesses are driven by STRB1 (see Figure 4–10 on
page 4-23 for strobe/memory mapping). Since the behavior of each strobe is
determined by a different control register, the program fetches and data reads/
writes, in each case, can vary in the number of STRB0 lines that are simulta-
neously driven and in the number of bus cycles required per access. This is
shown on the following pages.

Interfacing Memory to the TMS320C32 DSP

4-50

F
ig

ur
e

4–
24

.
O

ne
 B

an
k/

Tw
o

S
tr

ob
es

 M
em

or
y

C
on

fig
ur

at
io

n:
 M

em
or

y
W

id
th

 =
 3

2
B

its

bi
t

co
nf

ig
ur

at
io

n
S

T
R

B

D
7

D
4

D
5

D
3

D
2

D
6

D
0

D
1

D
15

D
13

D
12

D
10

D
11

D
14

D
8

D
9

D
23

D
20

D
21

D
19

D
18

D
22

D
16

D
17

W
E O

E

A
11

A
12

A
13

A
14

A
17

A
13

A
12 A
11

V
C

C

D
7

D
6

A
9

A
10

A
7

A
6

A
8

D
5

D
4

D
2

D
1

D
3

A
5

A
4

A
2

A
1

A
3

D
26

D
27

D
28

D
29

D
30

D
31

D
0

A
0

C
S

D
24

D
25

A
9

A
8

A
7

A
6

A
4

A
3

A
1

A
0

A
2

A
5

S
T

R
B

0_
B

3

S
T

R
B

0_
B

1

S
T

R
B

0_
B

2

A
10

A
0–

A
23

1

S
T

R
B

1_
B

3
 &

 S
T

R
B

0_
B

3

S
T

R
B

1_
B

2
 &

 S
T

R
B

0_
B

2

S
T

R
B

1_
B

1
 &

 S
T

R
B

0_
B

1

S
T

R
B

0
co

nt
ro

l r
eg

is
te

r

S
T

R
B

0_
B

0

IO
S

T
R

B

T
M

S
32

0C
32

D
0–

D
31

S
T

R
B

1_
B

3
/A

–1
S

T
R

B
1_

B
2

/A
–2

S
T

R
B

1_
B

1
S

T
R

B
1_

B
0

S
T

R
B

1_
B

0
 &

 S
T

R
B

0_
B

0

SRAM (32 x 8)

W
E O

E

A
11

A
12

A
13

A
14

A
17

A
13

A
12 A
11

D
7

D
6

A
9

A
10

A
7

A
6

A
8

D
5

D
4

D
2

D
1

D
3

A
5

A
4

A
2

A
1

A
3

D
0

A
0

C
S

A
9

A
8

A
7

A
6

A
4

A
3

A
1

A
0

A
2

A
5

A
10

SRAM (32 x 8)

W
E O

E

A
11

A
12

A
13

A
14

A
17

A
13

A
12 A
11

D
7

D
6

A
9

A
10

A
7

A
6

A
8

D
5

D
4

D
2

D
1

D
3

A
5

A
4

A
2

A
1

A
3

D
0

A
0

C
S

A
9

A
8

A
7

A
6

A
4

A
3

A
1

A
0

A
2

A
5

A
10

SRAM (32 x 8)

W
E O

E

A
11

A
12

A
13

A
14

A
17

A
13

A
12 A
11

D
7

D
6

A
9

A
10

A
7

A
6

A
8

D
5

D
4

D
2

D
1

D
3

A
5

A
4

A
2

A
1

A
3

D
0

A
0

C
S

A
9

A
8

A
7

A
6

A
4

A
3

A
1

A
0

A
2

A
5

A
10

SRAM (32 x 8)

S
H

Z
R

E
S

E
T

IN
T

0

IN
T

1

M
C

B
L

/M
P

IN
T

2

IN
T

3

IA
C

K

X
F

0

X
F

1

H
1

C
LK

IN

H
3

E
M

U
2

E
M

U
3

E
M

U
0

E
M

U
1

T
C

LK
0

T
C

LK
1

D
R

0

F
S

R
0

C
LK

R
0

F
S

X
0

D
X

0

C
LK

X
0

R
/W

H
O

LD
A

P
R

G
W

R
D

Y

H
O

LD

Interfacing Memory to the TMS320C32 DSP

4-51Memory Interfacing

4.6.5.1 One Bank/Two Strobes Address Translation for Data Size = 16 and 8 Bits

Figure 4–25 illustrates how a single physical block of memory can be split into
two separate logical halves, one with 16-bit data and the other with 8-bit data.
The access to each half is controlled by a separate strobe control register with
corresponding memory width and data size fields. Another STRB0 control reg-
ister field, STRB CONFIG (strobe configuration), is set to 1 to indicate that both
STRB0 and STRB1 are mapped to the same set of four STRB0 pins. The high
memory address pin (in this case, A14) selects between the two halves of the
memory. For this example, the ’C32 address pin A17 drives the memory pin
A14.

The state of the A17 bit of the physical address is derived from the logical ad-
dress (logical as seen by the instruction). The state of the A17 bit also depends
on the logical/physical address shift as determined by the size of the program/
data that is being accessed. In this case, the logical STRB0 address range
drives the physical address bit A17 to 0 (after accounting for a 1-bit address
shift due to the 16-bit width of the data). Similarly, the logical STRB1 range
drives the physical address bit A17 to 1 (after accounting for a 2-bit address
shift due to the 8-bit width of the data). The logical STRB0 and STRB1 address
ranges selected to drive the physical address pin A17 to 0 and 1, respectively,
must still conform to the logical memory map that assigns fixed blocks of ad-
dresses to different strobe spaces.

An STI R0,*AR0 instruction (with AR0 = 887FFFh) results in a STRB0 data ac-
cess (data size = 16 bits) driving the STRB0_B2 and STRB0_B3 control pins
to write the contents of the 32-bit register R0 into a 16-bit data location in the
lower half of the external memory addressed by 3FFFh. Similarly, an LDI
*AR1,R1 instruction (with AR1 = 98FFFFh) results in a STRB1 data access
(data size = 8 bits) driving the STRB0_B3 control pin (STRB CONFIG = 1) to
read the contents of an 8-bit data location in the upper half of the external
memory addressed by 7FFFh to the 32-bit R1 register. The ’C32 automatically
performs all address translation; the programmer merely monitors the logical
memory map and the two strobe control registers.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-52 Figure 4–25. One Bank/Two Strobes Address Translation: Data Size = 16 and 8 Bits

16 bitsSTRB0&1

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

IOSTRB

Data

120h
3

5

4

6
A1

A0

1

5

9

65525

32766

32764

2

6

4
32768

8 7

3
3FFFh

4000h

1012 11

655266552765528

32765

32767

32763

65529
65533

65530

6553465535

65531

7FFFh

65532

65536

A14

A13A17

Logical address

Physical address

880000h1

2

3
A18

A2A15

A13

Physical address

Logical address

887FFFh

980000h

32766

32767

1

3

65534

2
A19

A17

98FFFFh

65535

16-bit data size – address shifted by 1 bit

8-bit data size – address shifted by 2 bits

A0

32 bits 8 bits

0 1

0 0

1 1

1 1

address
Physical

width size
Memory

configuration
STRB

32 bits
1STRB0 control register

STRB1 control register

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

65536

32768

STRB0

STRB1

STRB0

1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Logical
memory

map

Logical
address

Interfacing Memory to the TMS320C32 DSP

4-53Memory Interfacing

4.6.5.2 One Bank/Two Strobes Address Translation for Data Size = 32 and 8 Bits

Figure 4–26 illustrates how a single physical block of memory can be split into
two separate logical halves, one with 32-bit data and the other with 8-bit data.
The access to each half is controlled by a separate strobe control register with
corresponding memory width and data size fields. Another STRB0 control reg-
ister field, STRB CONFIG, is set to 1 to indicate that both STRB0 and STRB1
are mapped to the same set of four STRB0 pins. The high memory address
pin (in this case, A14) selects between the two halves of the memory. For this
example, the ’C32 address pin A17 drives the memory pin A14.

The state of the A17 bit of the physical address is derived from the logical ad-
dress (logical as seen by the instruction). The state of the A17 bit also depends
on the logical/physical address shift as determined by the size of the program/
data that is being accessed. In this case, the logical STRB0 address range
drives the physical address bit A17 to 0. Similarly, the logical STRB1 range
drives the physical address bit A17 to 1 (after accounting for a 2-bit address
shift due to the 8-bit width of the data). Additionally, the logical STRB0 and
STRB1 address ranges that drive the physical address pin A17 to 0 and 1, re-
spectively, must still conform to the logical memory map that assigns fixed
blocks of addresses to different strobe spaces.

An STI R0,*AR0 instruction (with AR0 = 883FFFh) results in a STRB0 data ac-
cess (data size = 32 bits) driving the STRB0_B0, STRB0_B1, STRB0_B2, and
STRB0_B3 control pins to write the contents of the 32-bit register R0 into a
32-bit data location in the lower half of the external memory addressed by
3FFFh. Similarly, an LDI *AR1,R1 instruction (with AR1 = 98FFFFh) results in
a STRB1 data access (data size = 8 bits) driving the STRB0_B3 control pin
(because STRB CONFIG = 1) to read the contents of an 8-bit data location in
the upper half of the external memory addressed by 7FFFh to the 32-bit R1
register. The ’C32 automatically performs all address translation; the program-
mer merely monitors the logical memory map and the two strobe control regis-
ters.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-54 Figure 4–26. One Bank/Two Strobes Address Translation: Data Size = 32 and 8 Bits

STRB0&1

65536

10h
2

3
A0

A0

1

5

9

65525

16383

16382

2

6

4

8 7

3
3FFFh

4000h

1012 11

6552665527

A0
65528

65529

65533

65530

6553465535
65531

7FFFh

65532

A13A17

A13A17

Logical address

Physical address

880000h1

2

3

A2A15

A13A17

Physical address

Logical address

883FFFh

980000h

16382
16383

1

3

65534

2

32-bit data size – address not shifted

A19

98FFFFh

65535

8-bit data size – address shifted by 2 bits

65536

32 bits 8 bits

1 1

0 0

1 1

1 1

Address
Physical

width size
Memory Data

configuration
STRB

32 bits32 bits
1STRB0 control register

STRB1 control register

1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16384
16384

1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

1 0 10 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 10 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Logical
memory

map
Logical
address

Interfacing Memory to the TMS320C32 DSP

4-55Memory Interfacing

4.6.5.3 One Bank/Two Strobes Address Translation for Data Size = 16 and 32 Bits

Figure 4–27 illustrates how a single physical block of memory can be split into
two separate logical halves, one with 16-bit data and the other with 32-bit data.
The access to each half is controlled by a separate strobe control register with
corresponding memory width and data size fields. Another STRB0 control reg-
ister field, STRB CONFIG, is set to 1 to indicate that both STRB0 and STRB1
are mapped to the same set of four STRB0 pins. The high memory address
pin (in this case, A14) selects between the two halves of the memory. For this
example, the ’C32 address pin A17 drives the memory pin A14.

The state of the A17 bit of the physical address is derived from the logical ad-
dress (logical as seen by the instruction). The state of the A17 bit also depends
on the logical/physical address shift as determined by the size of the program/
data that is being accessed. In this case, the logical STRB0 address range
drives the physical address bit A17 to 0 (after accounting for a 1-bit address
shift due to the 16-bit width of the data). Similarly, the logical STRB1 range
drives the physical address bit A17 to 1. The logical STRB0 and STRB1 ad-
dress ranges that drive the physical address pin A17 to 0 and 1, respectively,
must still conform to the logical memory map that assigns fixed blocks of ad-
dresses to different strobe spaces.

An STI R0,*AR0 instruction (with AR0 = 887FFFh) results in a STRB0 data ac-
cess (data size = 16 bits) driving the STRB0_B2 and STRB0_B3 control pins
to write the contents of the 32-bit register R0 into a 16-bit data location in the
lower half of the external memory addressed by 3FFFh. Similarly, an LDI
*AR1,R1 instruction (with AR1 = 923FFFh) results in a STRB1 data access
(data size = 32 bits) driving the STRB0_B0, STRB0_B1, STRB0_B2, and
STRB0_B3 control pins (because STRB CONFIG = 1) to read the contents of
a 32-bit data location in the upper half of the external memory addressed by
7FFFh to the 32-bit R1 register. The ’C32 automatically performs all address
translation; the programmer merely monitors the logical memory map and the
two strobe control registers.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-56 Figure 4–27. One Bank/Two Strobes Address Translation: Data Size = 16 and 32 Bits

STRB0&1

120h
3

5

4

6

A0

32764
32766

1

2

3FFFh

4000h

3

16382

A0

A0

32765

32767

32763

16383

7FFFh

A14A18

A13A17

Logical address

Physical address

880000h1

2

3

A13A17

A13A17

Physical address

Logical address

887FFFh

920000h

32766

32767

1

3

16382

2

32-bit data size – address not shifted

923FFFh

16383

A1

16-bit data size – address shifted by 1 bit

32 bits 32 bits

0 1

1 1

1 1

1 1

address
Physicalwidth size

Memory Data
configuration

STRB

16 bits32 bits
1

STRB0 control register
STRB1 control register

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16384

32768

16384

32768

1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

IOSTRB

STRB1

STRB0

1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Logical
memory

map

Logical
address

Interfacing Memory to the TMS320C32 DSP

4-57Memory Interfacing

4.6.5.4 Example Summary

The one bank/two strobes memory interface to the ’C32 supports any com-
bination of data size pairs (16/8, 32/8, and 16/32 bits) with no speed penalty.
(The strobe control registers do not have to be reconfigured each time the data
size changes.) Likewise, 16-bit external memory can be divided into two
halves, each containing data of a different size (8, 16, or 32 bits). The same
holds true for 8-bit external memory. All address translation information given
in section 4.6.1 through section 4.6.4 also applies to the one bank/two strobes
examples.

To configure the external memory for one bank/two strobes access mode, use
the following steps:

1) Set the strobe configuration field in the STRB0 control register to 1.

2) Set the memory width field in both the STRB0 and STRB1 control registers
to reflect the width of the physical memory.

3) Set the data size field in both the STRB0 and STRB1 control registers to
reflect the size of the data portions chosen for each strobe.

4) Choose one of the high physical address bits to split the physical memory
into two halves.

5) For the two memory halves, choose the STRB0 and STRB1 logical ad-
dress ranges to drive the chosen bit to 0 and 1, respectively. The chosen
STRB0 and STRB1 address ranges must fit inside the legal STRB0/
STRB1 address spaces, as defined by the memory map.

4.6.6 RDY Signal Generation

The ’C32 uses the RDY pin to determine whether the current bus cycle finishes
at the end of the current clock cycle or requires additional clock cycles to com-
plete. Even though the ’C32 can fetch instructions and access data in one
clock cycle, a slow memory may need additional clock cycles (wait states) to
complete the bus cycle. The RDY signal can be handled in one of three ways:

� The RDY pin can be permanently grounded, indicating to the CPU that the
external memory is always ready for the next cycle. This is used where all
external memory is fast enough to preclude wait states.

� The wait states can be programmed in software by setting bits in corre-
sponding strobe control registers, if there is only one device per strobe.
This method can be used even if there are external devices that require
wait states. The RDY pin must be permanently grounded.

Interfacing Memory to the TMS320C32 DSP

 4-58

� The active generation of the RDY signal is required only if a single strobe
controls two or more external memory banks or peripherals requiring dif-
ferent numbers of wait states.

The remainder of this section describes the active generation of the RDY sig-
nal. The example involves three memory banks controlled by STRB0, each re-
quiring a different number of wait states. This example directly applies to RDY
signal generation involving STRB1 and is similar to the case of IOSTRB, which
involves a more relaxed set of timing parameters.

4.6.6.1 RDY Signal Timing Parameters for STRB0 and STRB1

Figure 4–28 and Table 4–6 contain STRB0 and STRB1 timing parameters that
are typically used to generate the RDY signal. As evident in the read and write
timing waveforms, the RDY signal generated by the external logic is clocked
into the ’C32 on the falling edge of the H1 clock. The associated setup time is
represented by parameter 17 and the hold time by parameter 18. Thus, for the
60-MHz ’C32, the RDY signal must arrive at the RDY pin at least 17 ns before
the falling edge of H1 and remain valid at least until H1 goes low. Timing pa-
rameters 11 and 12 represent the STRB0 and STRB1 low and high delays from
the falling edge of H1. Timing parameter 14 represents the address valid delay
from the falling edge of H1. For back-to-back write cycles, timing parameter
22 represents the address valid delay from the rising edge of H1. Parameters
11, 12, 14, and 22 do not directly apply to RDY setup and hold, but are never-
theless involved in the generation of the RDY signal.

Interfacing Memory to the TMS320C32 DSP

4-59Memory Interfacing

Figure 4–28. RDY Signal Timing for STRB0 and STRB1 Cycles

(11)

(14)

(17)
(18)

(11)
(12)

(12)

(14) (22)

(18)
(17)

R/W

STRB1
STRB0,

RDY

H1

H3

A

D

STRB0, STRB1, read cycle STRB0, STRB1, write cycle

Table 4–6. RDY Signal Generation

Parameter

’C32-40†

(50 ns)
’C32-50†

(40 ns)
’C32-60†

(33 ns)Parameter
number Description Min Max Min Max Min Max Unit

11 td(H1L-SL) Delay time, H1 low to STRBx low 0 11 0 9 0 8 ns

12 td(H1L-SH) Delay time, H1 low to SRBx high 0 11 0 9 0 8 ns

14 td(H1L-A) Delay time, H1 low to A valid 0 11 0 9 0 8 ns

17 tsu(RDY) Setup time, RDY before H1 low 21 19 17 ns

18 th(RDY) Hold time, RDY after H1 low 0 0 0 ns

22 td(H1H-A)
Delay time, H1 high to A valid on back-
to-back write cycles (write) 11 9 8 ns

† These timing specifications are subject to change without notice. See the TMS320C32 Digital Signal Processor data sheet
for current timing information.

Interfacing Memory to the TMS320C32 DSP

 4-60

4.6.6.2 RDY Signal Generation for STRB0 Signals

Figure 4–29 shows three memory banks controlled by a single strobe
(STRB0). The first bank is composed of four 8-bit-wide SRAMs requiring zero
wait states to operate at 60 MHz (15-ns devices). Bank 2 is composed of two
1-wait-state SRAMs, and bank 3 contains one 3-wait-state EPROM (which is
8 bits wide). The RDY pin is normally high, indicating a not-ready state. It goes
low if either RDY_BANK1 or RDY_BANK23 goes low.

The RDY_BANK1 signal is asserted only if two conditions are satisfied:

� At least one of the four STRB0 signal lines must be active.
� The three address decode bits must match the bank 1 space.

Since no wait states are involved, the RDY_BANK1 signal does not have to
be synchronized with the H1/H3 clocks, and, therefore, it can directly drive the
RDY pin after being gated with its bank 2/bank 3 counterpart.

The STRB0_BANK23 signal becomes active (high) if the three address de-
code bits match bank 2 or bank 3 address spaces while STRB0_B0 and/or
STRB0_B1 are active (low). The STRB0_BANK23 signal, when high, sets a
high data state in a synchronous progression through a chain of four registers.
Depending on which point in the chain is tapped, a RDY signal delay ranging
from zero to three wait states can be achieved. In this case, both 1-wait-state
and 3-wait-state taps assert the RDY_B23YES signal to reflect bank 2 or bank
3 access. Finally, a 2-register circuit removes the trailing active low edge of the
RDY_B23YES signal by ORing it with RDY_23NOT (see Figure 4–30). The
resulting RDY_BANK23 is ANDed with its bank 1 counterpart to drive the RDY
pin.

Interfacing Memory to the TMS320C32 DSP

4-61Memory Interfacing

F
ig

ur
e

4–
29

.
R

D
Y

 S
ig

na
l G

en
er

at
io

n
fo

r
S

T
R

B
0

C
yc

le
s

B
an

k
1

B
an

k
3

(3
2K

 x
 8

 E
P

R
O

M
)

B
an

k
2

(3
2K

 x
 8

 x
 2

 S
R

A
M

)
B

an
k

1
(3

2K
 x

 8
 x

 4
 S

R
A

M
)

A
0–

14
D

0–
15

A
–2

D
0–

7

de
co

de
B

an
k

3
A

23

A
17

A
18

B
an

k
2

de
co

de

A
17

A
18

A
23

A
17

A
18

A
23

de
co

de

st
at

es
0

w
ai

t
V

C
C

de
la

y
5

ns

S
T

R
B

0_
B

an
k2

3

S
T

R
B

0_
B

an
k3

S
T

R
B

0_
B

an
k2

V
C

C

3
w

ai
t

st
at

es
st

at
e

1
w

ai
t

R
D

Y
_B

23
Y

E
S

R
D

Y
_B

23
N

O
T

H
O

LD
A

R
/W

H
O

LD

P
R

G
W

V
C

C
A

0–
A

23

S
T

R
B

0_
B

0

S
T

R
B

0_
B

3
/A

–1

S
T

R
B

0_
B

2
/A

–2

S
T

R
B

0_
B

1

IO
S

T
R

B

C
LK

IN H
3

H
1

R
D

Y
_B

an
k1

R
D

Y
_B

an
k2

3

R
D

Y

T
M

S
32

0C
32

D
0–

D
31

S
T

R
B

1_
B

3
/A

–1
S

T
R

B
1_

B
2

/A
–2

S
T

R
B

1_
B

1
S

T
R

B
1_

B
0

Q Q
P

R

D

C
E

A
–1

A
0–

12

O
E

A
–1

A
0–

13
D

0–
31

O
EC
S

W
E

S
H

Z
R

E
S

E
T

IN
T

0

IN
T

1

M
C

B
L

/M
P

IN
T

2

IN
T

3

IA
C

K

X
F

0

X
F

1

E
M

U
2

E
M

U
3

E
M

U
0

E
M

U
1

T
C

LK
0

T
C

LK
1

D
R

0

F
S

R
0

C
LK

R
0

F
S

X
0

D
X

0

C
LK

X
0

O
EC
S

W
E

O
EC
S

W
E

O
EC
S

W
E

O
EC
S

W
E

O
EC
S

W
E

C
LR

Q Q
P

R

D
C

LR
Q Q

P
R

D
C

LR
Q Q

P
R

D

O
sc

ill
at

or
60

 M
H

z

C
LR

Interfacing Memory to the TMS320C32 DSP

 4-62

Figure 4–30 contains timing waveforms for RDY signal generation. It illus-
trates how the RDY signal is generated for a series of external back-to-back
memory read cycles in which the first cycle accesses bank 1 (zero wait states),
the second cycle accesses bank 2 (one wait state), the third cycle accesses
bank 3 (three wait states), and the fourth and fifth cycles access bank 1 (zero
wait states). For each read cycle, the RDY waveform is marked with a resulting
setup time. For the 60-MHz device, the RDY signal must become valid at least
17 ns before every falling edge of the H1 clock.

In the 0-wait-state cycle, the address and strobe signals become valid 8 ns
from the falling edge of H1. An additional 5 ns are needed for a single pass
through a fast combinational logic device for a total setup time of the resulting
RDY signal equal to 20 ns. This leaves 3 ns for board delays and a modest
safety factor.

For the 1- and 3-wait-state cycles, the bank decode and strobe signals do not
directly drive the RDY signal. They are instead combined into the
STRB0_BANK23 signal that, when active, releases the clear condition on the
3-register delay chain driven by the H3 clock. The register chain is then free
to propagate a high state at the rate of one register per clock cycle. The two
taps in the register chain (at the first and third registers, representing one wait
state and three wait states, respectively) are ORed with their corresponding
bank select signals to result in the RDY_B23YES signal synchronous to H1/H3
clocks. The RDY_B23YES leading-edge 10-ns delay is caused by two passes
through a fast PAL device (such as a 22V10). The trailing edge of this signal
is caused by bank 2 or bank 3 decode circuits going inactive after the RDY sig-
nal is recognized by the processor. The address decode (8 ns) plus two passes
through the PAL (5 + 5 ns) combine for a total delay of 18 ns that can cut into
the next cycle’s RDY setup requirement (33 – 18 = 15 ns) if not modified. To
deactivate the RDY signal sooner, a single-register circuit is added to generate
the RDY_B23NOT, which, when ORed with the RDY_B23YES, yields the
RDY_BANK23 signal that satisfies the RDY setup time for the next cycle. Fi-
nally, RDY_BANK1 and RDY_BANK23 are ANDed together to produce the fi-
nal RDY signal that is wired to the processor’s RDY pin.

Interfacing M
em

ory to the T
M

S
320C

32 D
S

P

4-63
M

em
ory Interfacing

Figure 4–30. RDY Signal Generation Timing Waveforms

10 ns

33 ns

5 ns5 ns

10 ns

5 ns5 ns

10 ns

10 ns

5 ns

10 ns
10 ns

5 ns 5 ns

5 ns

8 ns8 ns8 ns8 ns8 ns

8 ns

H1

RDY

RDY_Bank23

RDY_B23NOT

RDY_B23YES

RDY_Bank1

STRB0_Bank23

A0–A23

STRB0_BX

H3

0 wait
(bank 1)

0 wait
(bank 1)

3 wait states
(bank 3)

1 wait state
(bank 2)(bank 1)

0 wait

33 ns33 ns 20 ns23 ns23 ns20 ns20 ns 23 ns

Actual RDY
setup time

33 ns cycle
time (60 MHz)

17 ns RDY
setup required

Interfacing Memory to the TMS320C32 DSP

 4-64

4.6.7 Address Decode for Multiple Banks

Figure 4–31 illustrates the logical-to-physical address translation for the three
memory banks used in the RDY signal generation example in section 4.6.6.
Each memory bank is a different physical width, as shown by the physical ad-
dress column on the right side of the figure. The left side of the figure repre-
sents the internal (logical) address ranges for each of the three memory banks.
Logical-to-physical address translation is controlled by strobe control registers
and by their data size and memory width fields. The middle column of
Figure 4–31 shows the logical address field (top row) over the physical ad-
dress (bottom row) for each address translation case. The active address
fields are shaded gray, and the inactive address bits are white. The black fields
are special address bits that can selectively control multiple strobe lines or
choose between individual portions of a data word that is larger than the physi-
cal memory it is accessing.

For example, in bank 2, the right side of the figure indicates that the physical
memory width for this bank is 16 bits. The left side indicates that, regardless
of the physical memory width, 32-, 16-, and 8-bit data can be moved by pro-
gramming the STRB0 control register. The low-order (shaded) bits of logical/
physical address rows show how many bits are actually used for addresses
so that the correct high-order address bits can be assigned to bank decode.
Physical address bits A17 and A18 are chosen for bank decode because they
lie outside the used address bits. A17 and A18 decode between banks 1, 2,
and 3, with A18–A17 = (0,1) assigned to bank 1, (1,0) assigned to bank 2, and
(1,1) assigned to bank 3. Address bit A23 is set to 0 to isolate the STRB0 ad-
dress space from the STRB1 and IOSTRB memory maps.

The dotted lines bounding the bank decode bits allow you to see that the exter-
nal address bits, A18–A17, line up perfectly, but their logical address counter-
parts do not. The amount of reverse shift between the logical and physical ad-
dresses depends on the size of the data being accessed and the width of the
physical memory. Each of the three address translation cases for each of the
three banks translates physical address bits A18–A17 into two contiguous
logical address bits that can lie anywhere between A20 and A17. Once the log-
ical images of the external bank decode bits are identified along with low-order
address bits and the A23 strobe decode bit, they define the final logical
memory map for the three STRB0 banks together.

Interfacing Memory to the TMS320C32 DSP

4-65Memory Interfacing

Figure 4–31. Address Decode for Multiple Memory Banks

Physical address

A–1

16 bits wide

Memory Bank 3

7FFFh

0h

7FFFh

0h

7FFFh

0h

7FFFh

0h

7FFFh

0h

7FFFh

0h

0h

7FFFh

7FFFh

0h

0h

7FFFh

32 bits wide

8 bits wide

A18
A17 A–2

0

0

0

11
1 1

0
0

110

A23

1100

1 1
11

0
00

61FFFh

60000h

C0000h

C3FFFh

187FFFh

180000h

32 bits wide

Memory Bank 2

01
1 0

0
0

010
0100

1 0
01

0
00

43FFFh

40000h

80000h

87FFFh

10FFFFh

100000h

32 bits wide

32 bits wide

Memory Bank 1
Logical address

27FFFh

20000h

40000h

4FFFFh

9FFFFh

80000h

1
10

00
0

0 0 1
10

0
0

A0A23

1
10

00
0

0

Note: Active address fields are shaded gray; inactive address bits are white. The black fields are special address bits that con-
trol multiple strobe lines or choose between portions of a data word that is larger than the physical memory it is accessing.

Interfacing Memory to the TMS320C32 DSP

 4-66

Each memory bank actually has three logical memory maps, depending on the
size of the data being accessed and the setting of the corresponding bits in the
STRB0 control register.

The address ranges in these logical memory maps are all different, yet all three
maps translate perfectly into a single physical address map that identifies the
bank. In using the three logical memory maps, the programmer must exercise
caution to prevent overwriting 8-bit data with 16-bit data (or 16-bit data with
32-bit data) that may have a different logical address but still occupy the same
place in physical memory. To be certain that the logical address maps
associated with 8-, 16-, and 32-bit data sizes do not overlap within a single
physical memory bank, the three logical maps must be further divided into
mutually exclusive areas before they are used by the programmer. Further-
more, when a program jumps from one physical memory bank to another of
a different width, the memory width configuration bits in the appropriate strobe
register must be changed.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-67Memory Interfacing

4.7 How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory
Interface

The ’C32’s memory interface accesses external memory through one 24-bit
address bus and one 32-bit data bus. The data bus is shared by three mutually-
exclusive strobes: STRB0, STRB1, and IOSTRB. Depending upon the ad-
dress accessed, the ’C32 activates one of these strobes. (See the
TMS320C3x User’s Guide for more information about memory maps.)

STRB0 and STRB1 can access 8-, 16-, or 32-bit data quantities from 8-, 16-,
or 32-bit-wide memory. Access is achieved by four signals within each strobe.
These signals are:

� STRBx_B3/A–1
� STRBx_B2/A–2
� STRBx_B1
� STRBx_B0

The listed signals serve as byte-enable pins for accessing a byte, half-word,
or full-word from external memory. The first two signals also serve as addition-
al address pins when performing two or four consecutive accesses in 8- or
16-bit-wide external memory. The data accessed is truncated, packed, or un-
packed accordingly, with no additional overhead. The following list shows the
behavior of these pins, as dictated by the data size and memory-width bit
fields.

The default value of a strobe control register depends on the program memory
width select (PRGW) pin level.

� 8-bit-wide memory
� STRBx_B3/A–1 and STRBx_B2/A–2 are address pins.
� STRBx_B0 is a byte-enable/chip-select signal.
� STRBx_B1 is not used.

� 16-bit-wide memory
� STRBx_B3/A–1 are address pins.
� STRBx_B1 and STRBx_B0 are byte-enable signals.
� STRBx_B2/A–2 are not used.

� 32-bit-wide memory
� STRBx_B3/A–1, STRBx_B2/A–2, STRBx_B1, and STRBx_B0 are

byte-enable signals.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-68

� Data size:
� 8-bit data: The physical address is the logical address shifted right by

2.
� 16-bit data: The physical address is the logical address shifted right

by 1.
� 32-bit data: The physical address is the logical address.

IOSTRB can access 32-bit data from 32-bit-wide memory. However, IOSTRB
does not have the flexibility of STRB0 and STRB1 because it is composed of
a single signal. IOSTRB bus cycles differ from STRB0 and STRB1 bus cycles.
(See the Interlocked Operations section in the Program Flow Control chapter
of the TMS320C3x User’s Guide for more information.) This timing difference
accommodates slower I/O peripherals.

The ’C32 also supports program execution from 16- and 32-bit external
memory widths. Execution is controlled through the status of the PRGW pin.
When this pin is pulled high, the ’C32 executes from 16-bit-wide memory.
When the PRGW pin is pulled low, the ’C32 executes from 32-bit-wide
memory. For 16-bit-wide zero-wait-state memory, the ’C32 takes two instruc-
tion cycles to fetch a single 32-bit instruction. The lower 16 bits of the instruc-
tion are obtained during the first cycle; the upper 16 bits are retrieved and con-
catenated with the lower 16 bits during the second cycle. The ’C32’s 32-bit
memory fetches are identical to those of the ’C30 and ’C31.

In summary, the ’C32 memory interface parallel bus implements three mutual-
ly exclusive address spaces that are distinguished through the use of three
separate control signals (see Figure 4–32). STRB0 and STRB1 support 8-,
16-, and 32-bit data access in 8-, 16-, and 32-bit-wide external memory and
32-bit program access in 16/32-bit-wide external memory. IOSTRB address
space supports 32-bit data/program access in 32-bit-wide external memory.
Internally, the ’C32 has a 32-bit architecture; accordingly, the memory inter-
face packs and unpacks the data accessed. Three strobe control registers ma-
nipulate the variable-width memory interface of the ’C32. (See the
TMS320C3x User’s Guide for a detailed description of the ’C32 memory inter-
face.)

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-69Memory Interfacing

Figure 4–32. TMS320C32 Memory Address Spaces

TMS320C32

Strobe
control

registers

32-bit
CPU

PRGW pin

STRB0

STRB1

IOSTRB

Memory
interface

8/16/32-bit data in
8/16/32-bit-wide memory

Program in 16/32-bit-wide
memory

32-bit data in 32-bit-wide
memory

Program in 32-bit-wide
memory

8/16/32-bit data in
8/16/32-bit-wide memory

Program in 16/32-bit-wide
memory

4.7.1 C Compiler Interaction With the TMS320C32 Memory Interface

The ’C32’s internal 32-bit architecture allows the C compiler’s data types to re-
main 32 bits wide. However, the C compiler’s runtime-support library includes
pragma directives and new dynamic-allocation routines (malloc, realloc, cal-
loc, bmalloc, free, etc.) that support the creation of data sections. These data
sections serve as memory pools for storing 8- and 16-bit data. These sections
can reside in 8-, 16-, and 32-bit-wide memory. The programmer must ensure
that the appropriate strobe control register is loaded with the correct data size
and memory width. The ’C32’s memory interface truncates, packs, or unpacks
the data in the manner specified by the settings of the strobe control register.
Table 4–7 lists the data sizes supported by the sections created by the C com-
piler.

Table 4–7. Data Sizes Supported by Sections Created by the C Compiler

Section Type 32 Bits 16 Bits 8 Bits

Initialized .text
.cinit
.const
.user_section

.user_section .user_section

Uninitialized .bss
.stack
.sysmem
.user_section

.sysm16

.user_section
.sysm8
.user_section

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-70

The contents of the named sections are as follows:

� .text : executable code and/or string literals

� .cinit : tables for variable and constant initialization

� .const : string literals and switch tables

� .bss : global variables and statically allocated variables

� .stack : system stack used to pass function arguments and to allocate local
function variables

� .sysmem : memory pool for dynamic allocation of 32-bit data

� .sysm16 : memory pool for dynamic allocation of 16-bit data

� .sysm8 : memory pool for dynamic allocation of 8-bit data

� .user_section : section created using the #pragma DATA_SECTION di-
rective

The following sections describe the C compiler’s preprocessor pragma and
modules in the runtime-support library that support 8- and 16-bit memory
pools. The 32-bit memory pools are handled through the standard minit(), mal-
loc(), smalloc(), calloc(), realloc(), and free() routines, which operate on the
.sysmem section.

4.7.1.1 DATA_SECTION Pragma Directive

To support additional memory pools, the C compiler uses a data section prag-
ma directive. This directive instructs the C compiler to allocate space for sym-
bol_name in the section specified by section_name of size symbol_size. (See
the TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide for addi-
tional information.) The syntax for DATA_SECTION is as follows:

#pragma DATA_SECTION(symbol_name, “section_name”)

type symbol_name ;

For example, define a new section called .mydata as an array of 1K integer
values in the following manner:

#pragma DATA_SECTION(dataBuf, “.mydata”)

int dataBuf[1024];

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-71Memory Interfacing

4.7.1.2 MEMORY8.C Module

The MEMORY8.C module contains functions that implement dynamic
memory management routines for using 8-bit data with the ’C32. (See the
TMS320C3x/C4x Optimizing C Compiler User’s Guide for more information on
8-bit runtime-support functions.)

The pragma directive in the MEMORY8.C module defines a .sysm8 section.
The size of this memory pool in words (system memory or heap) is set at link
time by using the -heap8 option. If the -heap8 option is not used, the compiler
does not allocate an 8-bit system memory area. If arguments are not used in
conjunction with this switch, the size of the 8-bit system memory area defaults
to 1K 8-bit words. The following functions operate in the 8-bit .sysm8 section:

� minit8() : initializes and resets the 8-bit dynamic memory management
system

� malloc8() : allocates 8-bit words from the 8-bit memory pool and returns
a pointer to the allocated space

� calloc8() : allocates 8-bit words from the 8-bit memory pool, clears allo-
cated memory locations, and returns a pointer to the allocated space

� realloc8() : reallocates 8-bit words from previously unallocated areas in
the 8-bit memory pool; a pointer to the allocated space is returned

� free8() : frees previously allocated space from the 8-bit memory pool

� bmalloc8() : allocates 8-bit words from the 8-bit memory pool. The allo-
cated words are aligned to a boundary that is suitable for the ’C32’s circu-
lar and bit-reversed buffers; a pointer to the allocated space is returned.

� _SYSMEM8_SIZE: an external label that contains the size, in words, of
the 8-bit system memory pool

4.7.1.3 MEMORY16.C Module

The MEMORY16.C module contains functions that implement dynamic
memory management routines for the ’C32’s 16-bit data. (See the
TMS320C3x/C4x Optimizing C Compiler User’s Guide for more information on
16-bit runtime-support functions.)

The pragma directive in the MEMORY16.C module defines a .sysm16 section.
The size of this memory pool in words (system memory or heap) is set at link
time by using the -heap16 option. If the -heap16 option is not used, the
compiler does not allocate a 16-bit system memory area. If arguments are not
used in conjunction with this switch, the size of the 16-bit system memory area

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-72

defaults to 1K 16-bit words. The following functions operate in the 16-bit
.sysm16 section.

� minit16() : initializes and resets the 16-bit dynamic memory management
system

� malloc16() : allocates 16-bit words from the 16-bit memory pool and re-
turns a pointer to the allocated space

� calloc16() : allocates 16-bit words from the 16-bit memory pool, clears al-
located memory locations, and returns a pointer to the allocated space

� realloc16() : reallocates 16-bit words from previously unallocated areas
in the 16-bit memory pool; a pointer to the allocated space is also returned

� free16() : frees previously allocated space from the 16-bit memory pool

� bmalloc16() : allocates 16-bit words from the 16-bit memory pool. The al-
located words are aligned to a boundary that is suitable for the ’C32’s cir-
cular- and bit-reversed buffers; a pointer to the allocated space is also re-
turned.

� _SYSMEM16_ SIZE: an external label that contains the size, in words,
of the 16-bit system memory pool

4.7.1.4 Memory Pool Limitations

The ’C32 has only three strobes: STRB0, STRB1, and IOSTRB. This means
a programmer cannot have more than three memory pools; one memory pool
assigned to each strobe. IOSTRB can hold only 32-bit data and can only ac-
commodate the 32-bit memory pool .sysmem. Conversely, STRB0 and
STRB1 can hold 8-, 16-, and 32-bit data and can accommodate the 8-, 16-, and
32-bit memory pools .sysm8, .sysm16, and .sysmem.

All pointers and constants must be stored in memory configured to hold 32-bit
data. Hence, the .bss, .stack, .cinit, and .const sections must reside in memory
with data size configured to 32 bits.

4.7.2 C Compiler and Assembler Switch

To create code for the ’C32, the assembler and C compiler use the -v32 version
specification switch. The following example demonstrates the use of this
switch with the assembler and C compiler, respectively:

asm30 -v32 myfile.asm

cl30 -v32 myfile.c

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-73Memory Interfacing

4.7.3 Linker Switches

To support the ’C32’s 8- and 16-bit memory pools, the linker uses the following
switches: -heap8, -heap16, and -heap. These switches set the size, in words,
of the respective 8-, 16-, and 32-bit memory system areas .sysm8, .sysm16,
and .sysmem. The user must link these sections into the appropriate address-
es, thereby activating strobes that are configured to access 8-, 16-, or 32-bit
data.

The following example demonstrates the link-time sizing of an 8-bit memory
pool to 256K words:

lnk30 -heap8 0x4000

The linker creates these memory system areas using an input file that contains
the .sysmem, .sysm8, and .sysm16 data-section definitions. If the input file
does not exist, the linker is unable to perform memory area processing.

The linker also creates the global symbols _SYSMEM_SIZE, _SYS-
MEM8_SIZE, and _SYSMEM16_SIZE and subsequently assigns each a val-
ue equal to the respective -heap, -heap8, and -heap16 size. The default size
for each memory system area is 1K words (word size depends on system
memory width).

4.7.4 Debugger Configuration

For the debugger to properly disassemble and read/write external memory,
the user must configure the strobe control registers before loading and execut-
ing code. Because the ’C32 supports code execution from 16- or 32-bit
memory, the debugger may need to temporarily set the strobe control register
to a 32-bit data size in order to write an instruction (either by loading code or
patching code) or to read an instruction with the objective of disassembling a
range of program memory.

To support code execution from 16- and 32-bit memory, the memory map add
(ma) command includes a new type parameter that directs the debugger to
treat .text sections as 32-bit data. While reading or writing .text sections, the
debugger does the following:

� Temporarily stores the configuration of the appropriate strobe control
register

� Temporarily sets the data size to 32 bits

� Reads or writes the targeted portion of the .text section

� Restores the strobe control register to its previous value

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-74

The syntax for the memory map add command is:

ma address, length, type

where:

address defines the starting address of a range of memory

length defines the length of the memory range

type identifies the read/write characteristic of the memory range de-
pending upon one or more of the following keywords:

� R: read only
� W: write only
� WR or RAM: read/write
� PROTECT: no-access memory
� TX: memory that stores .text (code) section

4.7.5 TMS320C32 Configuration Examples

Ths section describes the possible ’C32 memory interface configurations, in-
cluding instructions on how to allocate buffers, build link files, and configure
the debugger for each memory configuration.

4.7.5.1 Two External Memory Banks

The ’C32’s external memory interface allows the use of two zero-wait-state ex-
ternal memory banks with different widths without requiring additional logic or
incurring access penalty costs. These external memory banks provide flexibil-
ity in balancing performance and system cost (performance and system cost
increase with wider memory chips). For example, the programmer can
execute code from 32-bit wide memory while storing data in 8-bit memory (see
Figure 4–33). This approach is advantageous for applications with large
amounts of 8-bit data that require execution at the fastest speed of the device.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-75Memory Interfacing

Figure 4–33. Zero-Wait-State Interface for 32-Bit and 8-Bit SRAM Banks

A14
A13
A12
A11

.

.

.
A1
A0

R/W

STRB1_B3

STRB0_B2

STRB0_B1

STRB0_B0

D(31–24)
D(23–16)
D(15–8)
D(7–0)

STRB1_B3/A-1
STRB1_B2/A-2

TMS320C32

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
 .
 .
 .
A3
A2
A1
A0

WE
CS

I/O(7–0)

STRB1_B0

32-bit-wide memory banks

8-bit-wide
memory bank

In Figure 4–33, a bank of 32K × 32 bits is mapped to STRB0, and a bank of
32K × 8 bits is mapped to STRB1. For this configuration, the programmer must
set the following:

� STRB0 control register physical memory width to 32 bits and the data type
size to 32 bits

� STRB config bit field to 0, that is, STRB0 control register = 000F0000h
(banks are separate)

� STRB1 control register physical memory width to 8 bits and the data type
size to 8 bits, that is, STRB1 control register = 00000000h

Additionally, the PRGW pin must be pulled low to indicate 32-bit program
memory width.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-76

Figure 4–33 also maps the 32-bit-wide bank’s external memory address pins,
A14A13...A1A0, to the ’C32’s A14A13A12...A1A0 pins. Conversely, the 8-bit-wide
bank’s memory address pins, A14A13...A1A0, are mapped to the ’C32’s
A12...A1A0A-1 pins. Because STRB1 is configured for 8-bit memory width, the
external address presented on ’C32 pins is shifted right by two bits. As a result
of this mapping, external memory accesses in the range 0h through 7FFFh
read or write 32-bit data to the 32-bit-wide bank (STRB0). Memory accesses
in the range 900000h through 907FFFh read or write 8-bit data to the 8-bit-
wide bank (STRB1).

Two banks of different memory widths must not be connected to the same
STRB without external decode logic. Different memory widths require
STRBx_Bx signals to be configured as address pins. These address pins are
active for any external memory access, that is, STRB0, STRB1, IOSTRB, and
program fetches.

8-bit Dynamic Memory Allocation

This section contains C code examples of 8-bit dynamic buffer allocation, link-
er configuration, and a debugger batch file.

Example 4–1 demonstrates the allocation of two buffers (1K and 4K 8-bit
words) using the 8-bit dynamic memory allocation routines.

Example 4–1. 8-Bit Dynamic Buffer Allocation

void main()
{
 int *buffer1;
 float *buffer2; /* Configure the STRB0 control register for 32-bit wide

memory, 32-bit data size. */
 0x808064 = 0xF0000; / Configure the STRB1 control register for 8-bit wide

memory, 8-bit data size. */
 0x808068 = 0x00000; / Allocate 1K 8-bit words in the 8-bit memory pool. */
 buffer1 = malloc8(1024 * sizeof(int)); /* Allocate 4K 8-bit floats in the 8-bit

memory pool. */
 buffer2 = malloc8(4096 * sizeof(float)); /* Process buffers. */
 callDSPoperation(buffer1, buffer2);
 /* Free buffers. */
 free8(buffer2);
 free8(buffer1);
}

Note:

The TMS320 floating-point C compiler sizeof function returns 1 for both inte-
ger and float data types.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-77Memory Interfacing

Example 4–2 allocates sections of the preceding code into the desired
memory configuration.

Example 4–2. Linker Command File

sample.obj /* Input filename */
–heap8 32768 /* Set 8-bit memory pool size. */
–stack 8704 /* Set C system stack size. */
–o sample.out /* Specify output file. */
–m sample.map /* Specify map file. */
MEMORY
{

PRGRAM : org = 0x0000, len = 0x2000
STRB0RAM : org = 0x2000, len = 0x6000
ONCHIRAM : org = 0x87Fe00, len = 0x200
STRB1RAM : org = 0x900000, len = 0x8000

}
SECTIONS
{

.text > PRGRAM /* 32-bit data section */

.cinit > STRB0RAM /* 32-bit data section */

.const > STRB0RAM /* 32-bit data section */

.bss > STRB0RAM /* 32-bit data section */

.stack > STRB0RAM /* 32-bit data section */

.sysm8 > STRB1RAM /* 8-bit memory pool mapped to
 STRB1 */

}

The debugger batch file shown in Example 4–3 executes initialization com-
mands that configure the C source debugger to handle a ’C32 with the memory
configuration shown in Figure 4–33 on page 4-75.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-78

Example 4–3. Debugger Batch File

mr
sconfig init.clr
; Define memory configuration.
ma 0x0000, 0x2000, R|W|TX ; Inform debugger that this section holds code

 (.text).
ma 0x2000, 0x6000, RAM ; No code here, STRB0
ma 0x87FE00, 0x200, RAM ; On-chip
ma 0x808000, 0x10, RAM ; Peripheral Bus Control – DMA
ma 0x808020, 0x20, RAM ; Peripheral Bus Control – Timers
ma 0x808040, 0x10, RAM ; Peripheral Bus Control – Serial Port 0
ma 0x808060, 0x10, RAM ; Peripheral Bus Control – External Memory Interface
ma 0x900000, 0x8000, RAM ; STRB1
;
reset
map on ; Make emulator aware of this memory configuration.
;
?*0x808064 = 0xF0000 ; Set STRB0 control register to 32-bit memory width,

; 32-bit data size.
?*0x808068 = 0x00000 ; Set STRB1 control register to 8-bit memory width,

; 8-bit data size.
;
load sample.out ; Configure STRB0 and STRB1 control registers before

; loading code.

8-Bit Static Memory Allocation

This section provides examples of 8-bit static buffer allocation and associated
linker configuration. The debugger batch file is identical to the batch file in
Example 4–3 and, therefore, is not shown.

The C code in Example 4–4 demonstrates the static allocation of two buffers
(1K and 4K 8-bit words) by defining a user section called .mydata8. This sec-
tion is used to hold a structure consisting of two arrays of data values.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-79Memory Interfacing

Example 4–4. 8-Bit Static Buffer Allocation

#pragma DATA_SECTION(buffer8, “.mydata8”)
struct bufferStruct {

in[1024];
out[4096];

} buffer8;
void main()
{

/* Configure the STRB0 control register for 32-bit wide memory, 32-bit
data size. */
*0x808064 = 0xF0000;
/* Configure the STRB1 control register to 8-bit wide memory, 8-bit data
size. */
*0x808068 = 0x00000;
/* Process buffers. */
callDSPoperation(buffer8.in, buffer8.out);

}

The linker command file in Example 4–5 allocates sections of the above C
code into the desired memory configuration.

Example 4–5. Linker Command File

sample.obj /* Input filename */
–stack 8704 /* Set C system stack size. */
–o sample.out /* Specify output file. */
–m sample.map /* Specify map file. */
MEMORY
{

PRGRAM : org = 0x0000, len = 0x2000
STRB0RAM : org = 0x2000, len = 0x6000
ONCHIRAM : org = 0x87Fe00, len = 0x200
STRB1RAM : org = 0x900000, len = 0x8000

}
SECTIONS
{

.text > PRGRAM /* 32-bit data section */

.cinit > STRB0RAM /* 32-bit data section */

.const > STRB0RAM /* 32-bit data section */

.bss > STRB0RAM /* 32-bit data section */

.stack > STRB0RAM /* 32-bit data section */

.mydata8 > STRB1RAM /* 8-bit memory pool mapped to STRB1 */
}

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-80

4.7.5.2 Single External Memory Bank

Consider the case of a typical audio compression application written in C that
requires 32-bit data for the system stack and 16-bit data for the audio buffers.
In this case, the programmer can interface the ’C32, as shown in Figure 4–34.
This example assumes 32K 32-bit words of external memory. This memory is
further defined as containing 8.5K 32-bit words of stack and 8K 32-bit words
of program space; both areas are mapped to STRB0 (program space includes
constants and global/static variables). Also, external memory contains 32K
16-bit word data buffers that are mapped into STRB1.

Due to this mapping, the programmer must set the following:

� STRB0 control register physical memory width to 32 bits and the data type
size to 32 bits

� STRB configuration bit field to 1 (STRB0 control register = 002F0000h)

� STRB1 control register physical memory width to 32 bits and the data type
size to 16 bits, that is, STRB1 control register = 000D0000h

Additionally, the PRGW pin must be pulled low to indicate 32-bit program
memory width.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-81Memory Interfacing

Figure 4–34. Zero-Wait-State Interface for 32-Bit SRAMs with 16- and 32-Bit Data
Accesses

A22
A13
A12
A11

.

.

.
A1
A0

R/W

STRB0_B3

STRB0_B2

STRB0_B1

STRB0_B0

D(31–24)
D(23–16)
D(15–8)
D(7–0)

TMS320C32

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

A14
A13
A12
A11
 .
 .
 .
A1
A0

WE
CS

I/O(7–0)

32-bit-wide memory banks

The external memory address pins A14A13...A1A0 are mapped to the ’C32’s
A22A13A12...A1A0 pins. This mapping was selected to position the system
stack immediately after the ’C32’s internal RAM. Performance is improved be-
cause the top of the stack resides in internal RAM, and the stack is allowed to
grow into external RAM. With this mapping, external memory accesses in the
range 4000h through 7FFFh read or write 16-bit data; memory accesses in the
range 0h through 3FFFh read or write 32-bit data. The PRGW pin controls the
program fetches.

Figure 4–35 shows the contents of external memory. Because of the address
shift of the ’C32’s external memory interface, the memory map for the ’C32
CPU is slightly different (see Figure 4–36).

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-82

Figure 4–35. External Memory Map

System stack area
(8K x 32 bits)

Program word 0

Data1

.

.

.

0h

1FFFh

2000h

3FFFh

4000h

4001h

7FFFh

Program word 1

Program word 8191

Data0

Data3 Data2

Data32767 Data32766

.

.

.

.

.

.

Physical
address Contents

Note: For 32-bit data, physical address = logical address.
For 16-bit data, physical address = logical address shifted left by 1.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-83Memory Interfacing

Figure 4–36. TMS320C32 Memory Map

.

.

.

.

.

.

.

.

.

Internal RAM
(512 x 32 bits)

System stack
(8K x 32 bits)

0h

2000h

3FFFh

87FE00h

87FFFFh
880000h

881FFFh

900000h

907FFFh

FFFFFFh

Program
(8K x 32 bits)

Data buffers
(32K x 16 bits)

Logical
address Contents

.

.

.

4000h

Note: For 32-bit data, physical address = logical address.
For 16-bit data, physical address = logical address shifted left by 1.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

 4-84

16-Bit Dynamic Memory Allocation

This section contains C code examples of 16-bit dynamic buffer allocation,
linker configuration, and a debugger batch file.

The following C code demonstrates the allocation of two buffers (1K and 4K,
16-bit words) using the 16-bit dynamic memory allocation routines provided
by the runtime-support library.

Example 4–6. 16-Bit Dynamic Buffer Allocation

include <bus30.h>
void main()
{

int *buffer1;
float *buffer2;
/* Configure the STRB0 control register to STRB0 and STRB1 overlay. */
/* 32-bit wide memory, 32-bit data size */
/* If using the PRTS30 headers,

BUS_ADDR–>STRB0_gcontrol = STRB0_1_CNFG | MEMW_32 | DATA_32; */
*0x808064 = 0x2F0000;
/* Configure STRB1 control register to 32-bit wide memory, 16-bit data
size. */
/* If using the PRTS30 headers,

BUS_ADDR–>STRB1_gcontrol = MEMW_32 | DATA_16; */
*0x808068 = 0xD0000;
/* Allocate 1K 16-bit words in the 16-bit memory pool. */
buffer1 = malloc16(1024 * sizeof(int));
/* Allocate 4K 16-bit floats in the 16-bit memory pool. */
buffer2 = malloc16(4096 * sizeof(float));
/* Process buffers. */
callDSPoperation(buffer1, buffer2);
/* Free buffers. */
free16(buffer2);
free16(buffer1);

}

The linker command file in Example 4–7 allocates sections of the preceding
C code into the memory configuration depicted in Figure 4–35 on page 4-82.

How TMS320 Tools Interact With the TMS320C32’s Enhanced Memory Interface

4-85Memory Interfacing

Example 4–7. Linker Command File

sample.obj /* Input filename */
–heap16 32768 /* Set 16-bit memory pool size. */
–stack 8704 /* Set C system stack size. */
–o sample.out /* Specify output file. */
–m sample.map /* Specify map file. */
MEMORY
{

STRB0RAM : org = 0x2000, len = 0x2000
STACKRAM : org = 0x87Fe00, len = 0x2200
STRB1RAM : org = 0x900000, len = 0x8000

}
SECTIONS
{

.text > STRB0RAM /* 32-bit data section */

.cinit > STRB0RAM /* 32-bit data section */

.const > STRB0RAM /* 32-bit data section */

.bss > STRB0RAM /* 32-bit data section */

.stack > STACKRAM /* 32-bit data section */

.sysm16 > STRB1RAM /* 16-bit memory pool mapped to STRB1 */
}

The debugger batch file in Example 4–8 executes initialization commands that
configure the C source debugger to handle a ’C32 with the memory configura-
tion shown in Figure 4–36 on page 4-83.

Example 4–8. Debugger Batch File

mr
sconfig init.clr
; Define memory configuration.
ma 0x2000, 0x2000, R|W|TX ; Inform debugger that this section holds code
(.text).
ma 0x87FE00, 0x2000, RAM
ma 0x900000, 0x8000, RAM
map on ; Make emulator aware of this memory configuration.
?*0x808064 = 0x2F0000 ; Set STRB0 control register to STRB0 and STRB1

; overlay.
; 32-bit memory width, 32-bit data size
;

?*0x808068 = 0xD0000 ; Set STRB1 control register.
; 32-bit memory width, 16-bit data size
;

load sample.out ; C onfigure STRB0 /STRB1 control registers before
 loading code.

Booting a TMS320C32 Target System in a C Environment

 4-86

4.8 Booting a TMS320C32 Target System in a C Environment

A DSP system uses a boot procedure following power-up or reset to initialize
the system volatile memory (such as SRAM) with the application program/data
and to start execution of the application code. The SRAM loads from a nonvol-
atile medium (EPROM) or from a PC development platform using a debugger/
loader program. The loader uses an emulator cable to move the load file from
the PC hard disk to the SRAM on the DSP target board. An EPROM boot
causes the DSP to start program execution directly from 16- or 32-bit EPROM
(microprocessor mode). A hard-wired on-chip boot loader program copies the
boot table from the 8-bit EPROM to internal or external SRAM and then starts
execution from the SRAM (microcomputer/boot loader mode).

TI supports four ways to boot a DSP system following power-up/reset. Each
boot procedure uses a different combination of ’C32 silicon features, software,
and hardware tools. Each combination forms an integrated development envi-
ronment that includes features to support most system boot requirements.

A boot development flow includes two major tasks:

1) Use C source debugger and assembly level tools to compile, assemble
and link the boot code/data to create a binary common object file format
(COFF) executable object.

2) Load the COFF file into the DSP target system.

Generating the COFF file (linker output .out file) uses the same flow for all boot
methods.

4.8.1 Generating a COFF File

Generating a COFF file requires compiling the source code with the C compil-
er, then assembling and linking the resulting assembly files, with the assembly
level tools. A text editor creates additional assembly files or the files are ex-
tracted from the RTS30 library. The linking process resolves all external refer-
ences between program files and generates the .out COFF file subject to spe-
cified options (such as –c or –cr boot options).

Booting a TMS320C32 Target System in a C Environment

4-87Memory Interfacing

4.8.1.1 Compiler

Figure 4–37 on page 4-89 shows how one or more C files are compiled into
multiple assembly files. Each assembly file is constructed from former C func-
tions that were individually decomposed into standard logical sections:

� The program code is assigned to .text.
� The stack is assigned to .stack.
� Dynamically allocated memory is assigned to .sysmem.
� The switch tables are assigned to .const.
� Uninitialized variables are assigned to .bss.
� initialized variables are assigned to .cinit.

If, following system reset, the program executes directly out of EPROM (micro-
processor mode), a separate assembly file holds the reset vector (and possi-
bly other interrupt vectors). The reset vector points to the address contained
in the c_int00 symbol that the linker resolves with the beginning of the
BOOT.ASM routine (from the RTS30 library).

4.8.1.2 Assembler

The assembler assembles all .asm files into their respective .obj files. Since
each .asm file may have a .text section fragment for each function in the file,
its .obj counterpart groups all the fragments into a single .text section. This ap-
plies to all sections in that file. The results of the assembler process are multi-
ple .obj files composed of single instances of all standard C sections. In addi-
tion to the object files generated by the user, the subsequent boot procedures
require another .obj file. The boot.asm file can be extracted from the RTS30
library and assembled separately into boot.obj. The boot.obj is the first routine
executed following reset. It initializes the C environment by setting up the sys-
tem stack, processing initialized variables, setting up the page pointer, and
calling the main function. While boot.asm file is required for a C program, other
files may be extracted from the library, such as malloc.asm, which is used to
allocate additional memory at run time.

Booting a TMS320C32 Target System in a C Environment

 4-88

4.8.1.3 Linker

The linker assigns physical addresses to logical program sections from .obj
files. A linker command file defines the available physical memory segments
using the MEMORY directive, assigns one or more sections to individual
memory segments using the SECTIONS directive, and lists all object files con-
taining sections to be processed. The order in which object files are listed is
important and reflects the order in which individual sections are stacked in
physical memory. For that reason, the boot.obj file must always be the first one
listed, since it represents the execution entry point for every C program. The
boot.obj global symbol c_int00 provides the entry address that can be resolved
to other files that are linked with boot.obj (for example, the vector file that needs
an address for the reset vector). Depending on the method, the linker can be
invoked with the –c or –cr option. These two options control how a C program’s
initialized variables are handled during the later stages of the boot process.
See the TMS320C3x/C4x Assembly Language Tools User’s Guide for more
information.

B
ooting a T

M
S

320C
32 Target S

ystem
 in a C

 E
nvironm

ent

4-89
M

em
ory Interfacing

Figure 4–37. Compile, Assemble, and Link Flow

file1.c

func1

funcN

Compile Assemble Link

.const

.text
.cinit
.bss

.stack

.sysmem

.const

.text
.cinit
.bss

.stack
.sysmem

file1.asm

file1.c file1.asm

file2.asm

Compile Assemble

file1.obj

Assemble.vectors .vectors

file0.asm file0.obj

.vectors

.const

.text

.cinit

.bss

.stack

.sysmem

file0.asm

file2.c file2.asm

file2.obj

-heap
-c
-cr

.text

.text

malloc.obj

boot.obj

rts30.lib

boot.obj
malloc.obj
file0.obj
file1.obj
file2.obj

.vectors section

.const section
starting address

.text section
starting address

.cinit section
starting address

starting address

data

opcode

opcode

opcode

length
address

data

length

length
address

data

.bss section
starting address

.stack section
starting address
.sysmem section
starting address

address

data

file.out

lnk.cmd

lnk.cmd

file1.obj

file2.obj

lnk.cmd

boot.obj

file1.obj

file2.obj

lnk.cmd

file1.obj

file2.obj

lnk.cmd

lnk.cmd

lnk.cmd

COFF formatASCII formatASCII format

vectors.obj

data

file2.c

Global symbol
c_int00 defined in
boot.asm may be
used by file0.asm
to represent the

reset vector.
COFF format

data

Booting a TMS320C32 Target System in a C Environment

 4-90

4.8.1.4 The .out (COFF) File

After resolving the external references among all program sections, the linker
builds the .out file. The .out file is constructed in the binary COFF format, and
it contains all the sections listed in the linker SECTIONS directive. It contains
information about the program, information about how to load it into the target
DSP system, and symbol information for the debugger that is later used to
verify the code. All C and assembly symbols, such as subroutine labels, etc.,
can be made visible in the debugger window (by embedding them in the COFF
file), provided that they are declared as global symbols and the appropriate op-
tions are used with the code generation tools.

Some .out sections contain only the starting addresses and no code or data.
They include the .stack section for the system stack, the .sysmem section for
dynamically allocated memory, and the .bss section for uninitialized data. The
boot process also uses the .bss section as a destination for the initialized vari-
ables that are originally stored in the .cinit section of the .out file. Although they
contain no data, the .stack and .sysmem sections are included in .out to allow
the debugger tools to verify that the physical memory for those sections exists
on the target board. Other sections in the COFF file, such as .vectors, .const,
and .text, contain the starting addresses and the contents of the sections.
When the debugger loads the .text section into the target system, for example,
the opcodes for all assembly instructions for the entire program are copied, be-
ginning at the section starting address.

The .cinit section is different because it contains initialized variables. Once the
.out file is generated, it can be burned into a 16- or 32-bit-wide EPROM, and
the program can start executing directly from that EPROM following reset (in
the microprocessor mode). But if the initialized variables reside in the same
EPROM, they are not really variables, since one cannot write to an EPROM
device and actually change the values of those variables. For that reason, be-
fore user program execution begins, the boot.asm library routine copies the
initialized variables from the EPROM .cinit section to the SRAM .bss section,
one array of data at a time. Figure 4–37 on page 4-89 shows that the .cinit sec-
tion is divided into individual array records; each array has a length, data con-
tent, and destination address in the SRAM .bss section. The .bss section is the
final destination for initialized variables, while the .cinit EPROM section is a
temporary holding place for use before power-up/reset. The .cinit section also
stores the –c/–cr linker option selection for use in the later stages of the boot
process.

Booting a TMS320C32 Target System in a C Environment

4-91Memory Interfacing

4.8.2 Loading the COFF File to the Target System

When the COFF file is loaded into the DSP target system, program and data
content, as well as control information, are extracted. Then the control infor-
mation is used to place the program/data content in target memory. Some con-
trol information embedded in the COFF file may not apply directly to the pro-
gram/data content. For example, the COFF file may include a symbol table for
the debugger or a memory width control word for the on-chip boot loader.

Using the debugger to load the COFF file to target memory requires connect-
ing the target board to the PC (on which the debugger is running) with an emu-
lator cable and pod and then transferring the COFF file with the LOAD com-
mand. The linker –c/–cr options control processing of the .cinit section during
the load operation.

The COFF file can also be loaded to a target system from an EPROM. The
Hex30 utility converts the COFF file to an EPROM-programmer-compatible
file that can be programmed to the EPROM. In the microprocessor mode, the
program executes directly from the EPROM. In the microcontroller/boot loader
mode, the on-chip boot loader first expands the EPROM contents into target
SRAM and the program executes from SRAM. In either case, the C program
begins execution at the start of the boot.asm library routine to initialize the C
environment before the rest of the C program runs.

4.8.3 Debugger Boot

Figure 4–38 on page 4-93 and Figure 4–39 on page 4-94 show how to load
the COFF file into the target system using the debugger load command.

The debugger is a standard TI software development tool that runs on a PC
platform. The debugger accesses the target board through the PC emulator
card and cable. The cable connects to the target board through a 12-pin con-
nector that routes the signals to the DSP’s emulation pins. The emulation pins
control the operation of the modular port scan device (MPSD) scan chain in
the processor. Depending on the command issued by the debugger, the
emulation circuitry in the scan chain stops or resumes processor operation,
examines/loads registers or memory, sets breakpoints, or executes code one
instruction at a time (called single-step execution). The debugger LOAD com-
mand reads the COFF file from the PC hard drive, extracts program/data con-
tent, and transfers it through the emulator cable to the target board’s memory.

Booting a TMS320C32 Target System in a C Environment

 4-92

4.8.3.1 RAM Model (Linker –cr Option)

When the COFF file is loaded into the target board’s memory, most sections
in the file are processed by copying the program/data to the address defined
at the beginning of each section; however, the initialized variables in the .cinit
section are processed differently. If the COFF file is generated by the linker us-
ing a –cr option, the .cinit section of the file is loaded using the RAM model (see
Figure 4–38). The RAM model assumes that the target memory is composed
exclusively of SRAM devices. Thus, the initialized variables can be directly co-
pied to the SRAM .bss section, one array at a time, without first placing them
in a temporary EPROM .cinit section. Once the initialized variables have been
loaded into SRAM, they can be read or written to by the CPU without further
initialization steps by boot.asm at the beginning of C program execution.

4.8.3.2 ROM Model (Linker –c Option)

If the COFF file is created with the linker –c option, the loader places the .cinit
section in the target memory according to the ROM model. The ROM model
copies the .cinit section as one block to the address specified at the beginning
of the same .cinit section. Following the load operation, the ROM model
expects the boot.asm routine (at the beginning of the C program) to further
process the .cinit section by copying its contents to the SRAM .bss section, one
array at a time. After the COFF load operation, the memory content is the same
as that created by the RAM model with one exception: the target SRAM still
contains the temporary .cinit section, which serves no purpose after it is
processed by boot.asm. The ROM model can still be useful; for example, it is
useful to simulate the microprocessor-mode EPROM boot (see Figure 4–39).
During the development cycle, instead of burning a new EPROM each time the
code is modified, the EPROM can be removed and replaced with an equivalent
SRAM device (by reconfiguring jumpers). The ROM model allows use of the
loader to quickly load and debug the modified code while preserving the bus
activity at power up to simulate an EPROM boot.

B
ooting a T

M
S

320C
32 Target S

ystem
 in a C

 E
nvironm

ent

4-93
M

em
ory Interfacing

Figure 4–38. Loading C Object File into TMS320C32 Memory (Linker –cr Option)

Loader

file.out

MPSD emulation

(binary file)

(boot.asm)

.text section
File1

.text section
File2

.cinit section
File1

.cinit section
File2

SRAM1

32 bits wide

(boot.asm)

.text section
File1

.text section
File2

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ
C boot

.text section
C boot

.text section

EMU

CPU

SRAM2

32 bits wide

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

data
File2

data
File1

(.bss section)

(.bss section)

Emulation cable
and pod

connector

TMS320C32
DSPOn-chip

emulation
scan chain

The emulator uses
CPU write cycles to
load the program
code into SRAM1.

The CPU executes the C Boot
code to copy initialized variables
from .cinit to .bss spaces. The emulator uses CPU write

cycles to load the initialized data
directly into SRAM2.

The debugger’s loader program
uses the on-chip emulation logic
to load the .out file to the target.
The program/data is transferred
over the emulation cable from the
PC to the target system.

COFF format

c_int00 is the execution
entry point.

B
ooting a T

M
S

320C
32 Target S

ystem
 in a C

 E
nvironm

ent

4-94 Figure 4–39. Loading C Object File into TMS320C32 Memory (Linker –c Option)

Loader

file.out

(boot.asm)

.text section
File1

.text section
File2

.cinit section
File1

.cinit section
File2

SRAM1

(boot.asm)

.text section
File1

.text section
File2

C boot
.text section

C boot
.text section

EMU

CPU

SRAM2

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

data
File2

data
File1

(.bss section)

(.bss section)

TMS320C32
DSP

data/cntrl
File1

data/cntrl
File2

The CPU executes the C boot
code to copy initialized data from
.cinit to .bss section spaces.

On-chip
emulation
scan chain

The CPU executes the C boot
code to copy initialized variables
from .cinit to .bss spaces.

c_int00 is the execution
entry point.

MPSD emulation
connector

Emulation cable
and pod

The emulator uses CPU
write cycles to load the
program code into SRAM1.

The debugger’s loader program
uses the on-chip emulation logic
to load the .out file to the target.
The program/data is transferred
over the emulation cable from the
PC to the target system.

COFF format
(binary file)

32 bits wide 32 bits wide

Booting a TMS320C32 Target System in a C Environment

4-95Memory Interfacing

4.8.4 EPROM Boot

Booting a DSP target board from C code stored in nonvolatile memory and ac-
cessible to the DSP can be done in two ways. If the DSP is powered up in the
microprocessor mode, the reset causes the program to start execution from
32- or 16-bit EPROM by fetching the reset vector from memory address
000000h and branching to the reset interrupt service routine (ISR) pointed to
by that vector.

On the other hand, if the DSP is powered up in the microcomputer/boot loader
mode, program execution starts with the on-chip boot loader program. The
boot loader reads the COFF file from an 8-bit EPROM and expands it to the
system SRAM from which it can be executed (16 or 32 bits wide). In either
case, program entry occurs at the beginning of the boot.asm library routine to
initialize the C environment prior to execution of the C code.

4.8.4.1 Microprocessor Mode (Linker –c Option)

Before the binary COFF file can be burned into an EPROM, it must be con-
verted to an ASCII format that an EPROM programmer can recognize (see
Figure 4–40 on page 4-97). The hex conversion utility converts COFF files to
a programmer object file format such as Intel Hex. The EPROM programmer
uses the converted files to program one or more EPROMs that can be inserted
into the DSP target board.

If the linker –c option is used to create the COFF file (ROM model), the hex
utility copies the .cinit section directly into the programmer object file without
processing its content. In other words, the .cinit section in the programmed
EPROM contains the initialized data as well as destination addresses and
lengths in .bss for individual .cinit data arrays. To start program execution from
EPROM at power up, the DSP must be configured in the microprocessor mode
by pulling the MCBL/MP pin low. Triggered by the low-to-high transition of the
RESET pin, the DSP executes the reset vector fetch read cycle. The reset vec-
tor points to the boot.asm routine, which is executed next. The linker –c option
sets a control bit in the .cinit section of the COFF file.

When the boot.asm program executes the .cinit section, it checks the –c/–cr
control bit. The –c option (ROM model) causes boot.asm to copy the contents
of each array within the .cinit section to its destination in the .bss section
mapped to SRAM. The initialized variables must be copied from EPROM to
SRAM at the beginning of program execution, because they cannot be modi-
fied in EPROM (variable data must be changeable during program execution).

Booting a TMS320C32 Target System in a C Environment

 4-96

4.8.4.2 Microcomputer/Boot Loader Mode (Linker –cr Option)

The ’C32 features an on-chip hardwired boot loader program in the internal
programmable logic array (PLA). The boot loader reduces the DSP target
board cost by replacing multiple fast EPROMs with a single 8-bit slow (inex-
pensive) EPROM. Because the ’C32 cannot execute code from memory that
is only 8 bits wide, the on-chip boot loader program reads the boot table from
the byte-wide EPROM and reconstructs all sections of the original COFF file
one byte at a time before placing the program/data in SRAM (see Figure 4–41
on page 4-98).

To power up the DSP in the boot loader mode, the MCBL/MP pin must be held
high when the RESET signal is deasserted. At that stage, the DSP starts
executing the boot loader code from internal address 000045h. Immediately
after it starts execution, the boot loader checks the interrupt flag (IF) register.
All interrupts are disabled and remain disabled until the application program
enables them. Depending on which external interrupt is asserted, the boot
loader looks for the boot table at one of three external memory locations or at
the serial port. The interrupt pins carry a message to the boot loader telling it
where to get the boot table after reset.

The boot table structure resembles the COFF file from which it was derived by
the hex conversion utility. The main feature that distinguishes the boot table
from a regular hex utility output (such as the microprocessor mode boot exam-
ple) is that in addition to the contents of the COFF sections, the boot table in-
cludes special control words for the on-chip boot loader program to instruct it
on how to assemble and load those sections. Each section is built into a block
preceded by three control words: block size, destination address, and destina-
tion memory width/data size. Multiple blocks can be transferred to selected
parts of the DSP memory map. To format the COFF file into the boot table, the
program section to be booted must be identified to the hex conversion utility
with the SECTIONS directive. The boot table is constructed of the COFF sec-
tions identified in the SECTIONS directive and marked with the boot option
(see Figure 4–41).

If the linker uses the –cr option to create the COFF file, the hex utility processes
the COFF .cinit section and assigns the addresses in the .bss section to the
corresponding .cinit arrays in the boot table. Every C program starts execution
with the boot.asm routine, but because one of the boot.asm control flags indi-
cates that the COFF file was created with the linker –cr option, the code skips
transfer of .cinit contents to .bss. The hex utility performs that task by placing
all the initialized variables in .bss while creating the boot table without relying
on boot.asm to make the transfer at run time (see Figure 4–41).

B
ooting a T

M
S

320C
32 Target S

ystem
 in a C

 E
nvironm

ent

4-97
M

em
ory Interfacing

Figure 4–40. 32-Bit EPROM Boot in the Microprocessor Mode (Linker –c Option)

Hex

(boot.asm)

.text section
File1

.text section
File2

.cinit section
File1

.cinit section
File2

(boot.asm)

code
File1

code
File2

C Boot
.text section

C Boot
code

CPU

SRAM

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

data
File2

data
File1

(.bss section)

(.bss section)

TMS320C32
DSP

data/cntrl
File1

data/cntrl
File2

vectors
File0

file.out

EPROM

(boot.asm)

code
File1

code
File2

data/cntrl
File1

data/cntrl
File2

C Boot
code

vectors
File0

file.b1 EPROM

vectors
File0

c_int00

programmer

COFF format
(binary file)

32 bits wide

32 bits wide

Intel hex format
(ASCII file)

The CPU executes the C boot
code to copy variables from .cinit
to .bss section spaces.

The CPU uses the reset vector to
branch to the reset routine (the C
boot code in a C program).

Low-to-high transition of the RESET pin
(while in microprocessor mode) causes the
CPU to execute a single read cycle to fetch
the reset vector.

The hex utility converts the
binary COFF file to a standard
format ASCII file that an
EPROM programmer can
understand.

c_int00 is the
execution
entry point.

The EPROM programmer burns
the 32-bit EPROM device with
the EPROM programmer object
file.

System reset

Reset vector

MCBL/MP

RESET

Grounding the MCBL/MP
pin while coming out of
reset causes the processor
to start operation in the
microprocessor mode.

B
ooting a T

M
S

320C
32 Target S

ystem
 in a C

 E
nvironm

ent

4-98 Figure 4–41. 8-Bit EPROM Boot Using the On-Chip Boot Loader (Linker –cr Option)

file.out

(boot.asm)

.text section
File1

.text section
File2

.cinit section
File1

.cinit section
File2

SRAM1

(boot.asm)

code
File1

code
File2

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

C Boot
.text section

C boot
code

CPU

SRAM2

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

data
File2

data
File1

(.bss section)

(.bss section)

TMS320C32
DSP

On-chip

Hex

(boot.asm)

code
File1

code
File2

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

ÊÊÊÊÊ

C boot
code

data
File1

data
File2

EPROM

file.b1 EPROM

programmerconv utility

Bootloader
control

Bootloader
control

Bootloader
control

(boot.asm)

code
File1

code
File2

ÊÊÊÊ

ÊÊÊÊ

ÊÊÊÊ

ÊÊÊÊ

ÊÊÊÊ

C boot
code

data
File1

data
File2

Bootloader
control

Bootloader
control

Bootloader
control

VCCbootloader

System Reset

The hex conversion utility does the
following:

� Converts the binary COFF file to
a standard format ASCII file that
an EPROM programmer can
understand.

� Identifies the sections to be
booted and adds extra control
words to those sections to
instruct the on-chip boot loader
program how to load them to
SRAM.

The EPROM programmer burns
the 8-bit EPROM device with the
boot table (consists of program
opcodes, initialized data, plus
special control instructions for
the boot loader).

The CPU executes the on-chip
boot loader code to copy the boot
table from 8-bit EPROM to 32-bit
SRAM.

Boot loader execution is triggered
by a high state on MCBL/MP and a
low on one INTx pin during
low-to-high transition of RESET.

MCBL/MP

RESET

INTx

Depending on which
INTx is low when
RESET goes high,
boot loader starts
reading the boot table
from one of three
memory locations or
from the serial port.

The on-chip boot
loader uses the CPU to
assemble individual
bytes of the boot table
and to load them
directly into SRAM.

c_int00 is the
execution
entry point.

32 bits wideCOFF format
(binary file)

Intel hex format
(ASCII file)

32 bits wide

8 bits wide

Sections:
.text: boot
.cinit: boot

Booting a TMS320C32 Target System in a C Environment

4-99Memory Interfacing

4.8.5 Boot Table Memory Considerations

There is a significant difference in the methods of interfacing the external
memory holding the boot table and the program/data memory used during nor-
mal code execution. The address presented on the ’C32’s pins may be shifted
by one or two bits, depending on the size of the memory bank (see
Figure 4–42), but the external memory holding the boot table must have no ad-
dress shift relative to the ’C32 address pins, regardless of the width of the boot
memory (see Figure 4–43). The boot loader program reads the boot table
memory width from the first word of the boot table. It reads the boot table con-
tents as 32-bit data, and, depending on the memory width, it reconstructs the
program and data before sending them to the memory map. Because of this
difference in the address shift, the byte-wide EPROM containing the boot table
is not best suited to store normal data unless special hardware is added to han-
dle the address shift.

Booting a TMS320C32 Target System in a C Environment

 4-100

Figure 4–42. Memory Configuration for Normal Program Execution

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

32-bit data bus

CSCS CS CS

CSCS

CS

M
em

or
y

STRB0_B3/A-1
STRB0_B2/A-2

STRB0_B1
STRB0_B0

STRB0_B3/A-1
STRB0_B2/A-2

STRB0_B1
STRB0_B0

STRB0_B3/A-1
STRB0_B2/A-2

STRB0_B1
STRB0_B0

Data

Data

Data Data

Data Data

Data Data Data Data

A0
A1
A2

A14
A13

A14
A13

A2
A1
A0

A14
A13

A2
A1
A0

16-bit data bus

16 8 8

8-bit data bus

88

Memory bank
32 bits wide

Memory bank
16 bits wide

Memory bank
8 bits wide

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

32 8 8

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

8 8

TMS320C32

TMS320C32

TMS320C32

Note: The boot table memory used by the on-chip boot loader should be connected to the ’C32 with no address shift, regardless
of the width of the memory bank.

Booting a TMS320C32 Target System in a C Environment

4-101Memory Interfacing

Figure 4–43. Boot Table Memory Configuration

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

32-bit data bus

CSCS CS CS

CSCS

CS

M
em

or
y

STRB0_B3/A-1
STRB0_B2/A-2

STRB0_B1
STRB0_B0

STRB0_B3/A-1
STRB0_B2/A-2

STRB0_B1
STRB0_B0

STRB0_B3/A-1
STRB0_B2/A-2

STRB0_B1
STRB0_B0

Data

Data

Data Data

Data Data

Data Data Data Data

A0
A1
A2

A14
A13

A14
A13

A2
A1
A0

A14
A13

A2
A1
A0

16-bit data bus

16 8 8

8-bit data bus

88

Memory bank
32 bits wide

Memory bank
16 bits wide

Memory bank
8 bits wide

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

32 8 8

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

A0
A1
A2

A14
A13

8 8

TMS320C32

TMS320C32

TMS320C32

Note: For external memory used during normal program execution, the amount of external address shift depends only on the
width of the memory bank.

Booting a TMS320C32 Target System in a C Environment

 4-102

4.8.6 Host Load

While some DSP systems stand alone, others may be embedded DSPs con-
trolled by a host, such as a microcontroller or another DSP. During system
power up, the DSP boot table may be transferred from the host to the DSP
through a serial port or through a byte-wide latch. This eliminates the need for
a dedicated boot EPROM on the DSP side of the system. On the host side, the
DSP boot table may be temporarily stored in an EPROM, prior to the DSP boot.
Following reset, the host transfers the boot table to the DSP to initialize it and
start program execution.

4.8.6.1 Boot From Serial Port

If the DSP powers up in the microcomputer/boot loader mode (MCBL/MP
high), the low on the INT3 pin and high on all other INTx pins causes the on-
chip boot loader program to read the boot table from the serial port. Most mi-
crocontrollers also feature a serial port, and in many cases the two ports can
be connected directly without additional glue logic for an economical host/DSP
interface. Following the boot, the serial channel can also be used by the host
to send/receive data and to control the operation of the DSP (see Figure 4–44
on page 4-104). Generating the boot table requires linking the object files with
the –cr option (RAM model) and then appending the hex utility’s SECTIONS
directive with the boot keyword to identify the COFF sections to be included
in the boot table.

4.8.6.2 Boot From a Latch

If the host processor does not have a serial port, the DSP can be booted from
the host using an 8-bit latch. During the boot operation, the host feeds the boot
table bytes to the latch on one side, while the DSP reads the data from the oth-
er. Following reset, interrupts 0, 1, and 2 direct the DSP boot loader to the latch
address. The same interrupts cause the boot loader to read from the parallel
port, so some control/decode logic is required to make the DSP read from
memory instead of from a latch. The same glue logic must also be connected
to the host side of the latch to ensure proper data-transfer synchronization be-
tween two asynchronous systems (see Figure 4–45 on page 4-105). At power
up, the DSP boot table most likely resides in the host’s EPROM, and the host
outputs the boot table to the latch one byte at a time following reset. Creating
the boot table for this operation uses the same linker/COFF options as for the
host/serial boot and the direct EPROM boot.

Booting a TMS320C32 Target System in a C Environment

4-103Memory Interfacing

4.8.6.3 Asynchronous Boot From a Communications Port

If the host processor has an asynchronous communications capability, then
the ’C32 can make a glueless connection to the host’s communication port
(see Figure 4–46 on page 4-106). In addition to the data bus, three ’C32 pins
are involved in the asynchronous boot: XF0, XF1, and IACK. The XF1 pin
serves as the data ready input to the ’C32, and XF0 is the data acknowledge.

The IACK pin pulses when there is no valid data present on the data lines
(which are needed for the ’C4x comm-port interface). For boot loader mode,
it is assumed that the host (such as a ’C4x) connects directly to the data ready
and data acknowledge control lines. The host drives the data ready signal low
to indicate to the DSP that the next byte of the boot table has been placed on
the data lines. The DSP responds by pulling the data acknowledge signal low
after reading the data. When the host sees the data acknowledge signal, it
stops driving the data bus and brings the data ready line high. To complete the
handshaking transaction, the DSP brings the data acknowledge signal high to
request the next byte from the host. The boot table for this type of boot opera-
tion is created with the linker –cr option (RAM model) and hex conversion utility
SECTIONS directive boot keyword — the same options used for other boot
load procedures involving the on-chip boot loader program.

Booting a TMS320C32 Target System in a C Environment

4-104

F
ig

ur
e

4–
44

.
B

oo
t F

ro
m

 H
os

t U
si

ng
 S

er
ia

l P
or

t (
Li

nk
er

 –
cr

 O
pt

io
n)

fil
e.

ou
t

(b
oo

t.a
sm

)

.te
xt

 s
ec

tio
n

F
ile

1

.te
xt

 s
ec

tio
n

F
ile

2

.c
in

it
se

ct
io

n
F

ile
1

.c
in

it
se

ct
io

n
F

ile
2

S
R

A
M

1

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

C
 b

oo
t

.te
xt

 s
ec

tio
n

C
 B

oo
t

co
de

C
P

U

S
R

A
M

2

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

da
ta

F
ile

2

da
ta

F
ile

1

(.
bs

s
se

ct
io

n)

(.
bs

s
se

ct
io

n)

T
M

S
32

0C
32

D
S

P

O
n-

ch
ip

H
E

X

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

C
 B

oo
t

co
de

da
ta

F
ile

1

da
ta

F
ile

2

E
P

R
O

M

fil
e.

b1
E

P
R

O
M

pr
og

ra
m

m
er

co
nv

 u
til

ity

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

C
 B

oo
t

co
de

da
ta

F
ile

1

da
ta

F
ile

2

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

V
C

C
bo

ot
lo

ad
er

S
ys

te
m

 R
es

et
S

er
ia

l
po

rt

S
er

ia
l

po
rt

P
ar

al
le

l p
or

t

H
os

t
C

P
U

pr
oc

es
so

r c
od

e
H

os
t

T
he

 h
ex

 c
on

ve
rs

io
n

ut
ili

ty
 d

oe
s

th
e

fo
llo

w
in

g:

�
C

on
ve

rt
s

th
e

bi
na

ry
 C

O
F

F
 fi

le
to

 a
 s

ta
nd

ar
d

fo
rm

at
 A

S
C

II
fil

e
th

at
 a

n
E

P
R

O
M

 p
ro

gr
am

m
er

ca
n

un
de

rs
ta

nd
.

�
Id

en
tif

ie
s

th
e

se
ct

io
ns

 t
o

be
bo

ot
ed

 a
nd

 a
dd

s
ex

tr
a

co
nt

ro
l

w
or

ds

to

th
os

e
se

ct
io

ns

to
in

st
ru

ct

th
e

on
-c

hi
p

bo
ot

lo
ad

er
 p

ro
gr

am
 h

ow
 t

o
lo

ad
th

em
 to

 S
R

A
M

.

T
he

E

P
R

O
M

pr

og
ra

m
m

er
bu

rn
s

th
e

8-
bi

t E
P

R
O

M
 d

ev
ic

e
w

ith
 th

e
bo

ot
 ta

bl
e

(c
on

si
st

s
of

pr
og

ra
m

op

co
de

s,

in
iti

al
iz

ed
da

ta
,

pl
us

sp

ec
ia

l
co

nt
ro

l
in

st
ru

ct
io

ns

fo
r

th
e

bo
ot

lo
ad

er
).

T
he

C

P
U

ex

ec
ut

es
th

e
on

-c
hi

p
bo

ot
lo

ad
er

 c
od

e
to

 c
op

y
th

e
bo

ot

ta
bl

e
fr

om
8-

bi
t E

P
R

O
M

 to
 3

2-
bi

t
S

R
A

M
.

B
oo

t
lo

ad
er

 e
xe

cu
tio

n
is

 t
rig

ge
re

d
by

 a
hi

gh
 o

n
M

C
B

L/
M

P
 a

nd
 a

 lo
w

 o
n

on
e

IN
T

x
pi

n
du

rin
g

lo
w

-t
o-

hi
gh

tr

an
si

tio
n

of
R

E
S

E
T.

D
ep

en
di

ng

on

w
hi

ch
IN

T
x

is
 lo

w
 w

he
n

R
E

S
E

T
go

es

hi
gh

,
bo

ot

lo
ad

er
st

ar
ts

re

ad
in

g
th

e
bo

ot
ta

bl
e

fr
om

 o
ne

 o
f

th
re

e
m

em
or

y
lo

ca
tio

ns
 o

r f
ro

m
th

e
se

ria
l p

or
t.

T
he

on

-c
hi

p
bo

ot

lo
ad

er
us

es
 th

e
C

P
U

 to
 a

ss
em

bl
e

in
di

vi
du

al
 b

yt
es

 o
f t

he
 b

oo
t

ta
bl

e
an

d
to

lo

ad

th
em

di
re

ct
ly

 in
to

 S
R

A
M

.

c_
in

t0
0

is
 th

e
ex

ec
ut

io
n

en
tr

y
po

in
t.

R
E

S
E

T

M
C

B
L/

M
P

IN
T

x

C
O

F
F

 fo
rm

at
(b

in
ar

y
fil

e)

In
te

l h
ex

 fo
rm

at
(A

S
C

II
fil

e)

8
bi

ts
 w

id
e

32
 b

its
 w

id
e

32
 b

its
 w

id
e

T
he

 D
S

P
 s

ys
te

m
 u

se
s

ho
st

 E
P

R
O

M
 to

 s
to

re
 th

e
bo

ot
 ta

bl
e

fo
r r

ed
uc

ed
 s

ys
te

m
 c

os
t a

s
co

m
pa

re
d

to
 a

 D
S

P
 b

oa
rd

 w
ith

an
 8

-b
it

E
P

R
O

M
.

S
ec

tio
ns

:
.te

xt
: b

oo
t

.c
in

it:
 b

oo
t

Booting a TMS320C32 Target System in a C Environment

4-105Memory Interfacing

F
ig

ur
e

4–
45

.
B

oo
t F

ro
m

 H
os

t U
si

ng
 a

n
8-

B
it

La
tc

h
(L

in
ke

r
–c

r
O

pt
io

n)

fil
e.

ou
t

(b
oo

t.a
sm

)

.te
xt

 s
ec

tio
n

F
ile

1

.te
xt

 s
ec

tio
n

F
ile

2

.c
in

it
se

ct
io

n
F

ile
1

.c
in

it
se

ct
io

n
F

ile
2

S
R

A
M

1

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

C
 b

oo
t

.te
xt

 s
ec

tio
n

C
 b

oo
t

co
de

C
P

U

S
R

A
M

2

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

da
ta

F
ile

2

da
ta

F
ile

1

(.
bs

s
se

ct
io

n)

(.
bs

s
se

ct
io

n)

T
M

S
32

0C
32

D
S

P

O
n-

ch
ip

H
E

X

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

C
 b

oo
t

co
de

da
ta

F
ile

1

da
ta

F
ile

2

E
P

R
O

M

fil
e.

b1
E

P
R

O
M

pr
og

ra
m

m
er

co
nv

 u
til

ity

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

C
 b

oo
t

co
de

da
ta

F
ile

1

da
ta

F
ile

2

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

V
C

C
bo

ot
lo

ad
er

S
ys

te
m

 R
es

et

P
ar

al
le

l p
or

t

H
os

t
C

P
U

pr
oc

es
so

r c
od

e
H

os
t

8-
bi

t l
at

ch

S
ec

tio
ns

:
.te

xt
: b

oo
t

.c
in

it:
 b

oo
t

T
he

 h
ex

 c
on

ve
rs

io
n

ut
ili

ty
 d

oe
s

th
e

fo
llo

w
in

g:

�
C

on
ve

rt
s

th
e

bi
na

ry
 C

O
F

F
 fi

le
to

 a
 s

ta
nd

ar
d

fo
rm

at
 A

S
C

II
fil

e
th

at
 a

n
E

P
R

O
M

 p
ro

gr
am

m
er

ca
n

un
de

rs
ta

nd
.

�
Id

en
tif

ie
s

th
e

se
ct

io
ns

 t
o

be
bo

ot
ed

 a
nd

 a
dd

s
ex

tr
a

co
nt

ro
l

w
or

ds

to

th
os

e
se

ct
io

ns

to
in

st
ru

ct

th
e

on
-c

hi
p

bo
ot

lo
ad

er
 p

ro
gr

am
 h

ow
 t

o
lo

ad
th

em
 to

 S
R

A
M

.

T
he

E

P
R

O
M

pr

og
ra

m
m

er
bu

rn
s

th
e

8-
bi

t E
P

R
O

M
 d

ev
ic

e
w

ith
 th

e
bo

ot
 ta

bl
e

(c
on

si
st

s
of

pr
og

ra
m

op

co
de

s,

in
iti

al
iz

ed
da

ta
,

pl
us

sp

ec
ia

l
co

nt
ro

l
in

st
ru

ct
io

ns

fo
r

th
e

bo
ot

lo
ad

er
).

T
he

 C
P

U
 e

xe
cu

te
s

th
e

on
-c

hi
p

bo
ot

 lo
ad

er
 c

od
e

to
 c

op
y

th
e

bo
ot

 t
ab

le
 f

ro
m

 8
-b

it
la

tc
h

to
 3

2-
bi

t
S

R
A

M
.

B
oo

t
lo

ad
er

 e
xe

cu
tio

n
is

 t
rig

ge
re

d
by

 a
hi

gh
 o

n
M

C
B

L/
M

P
 a

nd
 a

 lo
w

 o
n

on
e

IN
T

x
pi

n
du

rin
g

lo
w

-t
o-

hi
gh

tr

an
si

tio
n

of
R

E
S

E
T.

D
ep

en
di

ng
 o

n
w

hi
ch

IN
T

x
is

lo

w

w
he

n
R

E
S

E
T

go

es

hi
gh

,
bo

ot

lo
ad

er

st
ar

ts
re

ad
in

g
th

e
bo

ot
 ta

bl
e

fr
om

on

e
of

th

re
e

m
em

or
y

lo
ca

tio
ns

 o
r

fr
om

 th
e

se
ria

l p
or

t.

T
he

on

-c
hi

p
bo

ot

lo
ad

er
us

es
 th

e
C

P
U

 to
 a

ss
em

bl
e

in
di

vi
du

al
 b

yt
es

 o
f t

he
 b

oo
t

ta
bl

e
an

d
to

lo

ad

th
em

di
re

ct
ly

 in
to

 S
R

A
M

.

c_
in

t0
0

is
 th

e
ex

ec
ut

io
n

en
tr

y
po

in
t.

C
O

F
F

 fo
rm

at
(b

in
ar

y
fil

e)

In
te

l h
ex

 fo
rm

at
(A

S
C

II
fil

e)

8
bi

ts
 w

id
e

32
 b

its
 w

id
e

32
 b

its
 w

id
e

T
he

 D
S

P
 s

ys
te

m
 u

se
s

ho
st

 E
P

R
O

M
 to

 s
to

re
 th

e
bo

ot
 ta

bl
e

fo
r r

ed
uc

ed
 s

ys
te

m
 c

os
t a

s
co

m
pa

re
d

to
 a

 D
S

P
 b

oa
rd

 w
ith

an
 8

-b
it

E
P

R
O

M
.M

C
B

L/
M

P

IN
T

x

R
E

S
E

T

Booting a TMS320C32 Target System in a C Environment

4-106

F
ig

ur
e

4–
46

.
B

oo
t F

ro
m

 H
os

t U
si

ng
 A

sy
nc

hr
on

ou
s

C
om

m
un

ic
at

io
ns

 P
or

t (
Li

nk
er

 –
cr

 O
pt

io
n) Ê

Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

fil
e.

ou
t

(b
oo

t.a
sm

)

.te
xt

 s
ec

tio
n

F
ile

1

.te
xt

 s
ec

tio
n

F
ile

2

.c
in

it
se

ct
io

n
F

ile
1

.c
in

it
se

ct
io

n
F

ile
2

S
R

A
M

1

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê

C
 b

oo
t

.te
xt

 s
ec

tio
n

C
 b

oo
t

co
de

C
P

U

S
R

A
M

2

da
ta

F
ile

2

da
ta

F
ile

1

(.
bs

s
se

ct
io

n)

(.
bs

s
se

ct
io

n)

T
M

S
32

0C
32

D
S

P

O
n-

ch
ip

H
E

X

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

C
 b

oo
t

co
de

da
ta

F
ile

1

da
ta

F
ile

2

E
P

R
O

M

fil
e.

b1
E

P
R

O
M

pr
og

ra
m

m
er

co
nv

 u
til

ity

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

(b
oo

t.a
sm

)

co
de

F
ile

1

co
de

F
ile

2

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

Ê
Ê
Ê
Ê
Ê

C
 b

oo
t

co
de

da
ta

F
ile

1

da
ta

F
ile

2

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

B
oo

tlo
ad

er
co

nt
ro

l

V C
C

bo
ot

lo
ad

er

S
ys

te
m

 r
es

et

P
ar

al
le

l p
or

t

T
M

S
32

0C
4X

pr
oc

es
so

r
H

os
t

C
om

m
 p

or
t

ho
st

8-
bi

t d
at

a

H
an

ds
ha

ke
co

nt
ro

l

co
de

S
ec

tio
ns

:
.te

xt
: b

oo
t

.c
in

it:
 b

oo
t

T
he

 h
ex

 c
on

ve
rs

io
n

ut
ili

ty
 d

oe
s

th
e

fo
llo

w
in

g:

�
C

on
ve

rt
s

th
e

bi
na

ry
C

O
F

F
 f

ile
 t

o
a

st
an

da
rd

fo
rm

at
 A

S
C

II
fil

e
th

at
 a

n
E

P
R

O
M

 p
ro

gr
am

m
er

 c
an

un
de

rs
ta

nd
.

�
Id

en
tif

ie
s

th
e

se
ct

io
ns

 t
o

be
 b

oo
te

d
an

d
ad

ds
 e

xt
ra

co
nt

ro
l

w
or

ds

to

th
os

e
se

ct
io

ns

to

in
st

ru
ct

th

e
on

-c
hi

p
bo

ot

lo
ad

er
pr

og
ra

m

ho
w

to

lo

ad
th

em
 to

 S
R

A
M

.

T
he

 E
P

R
O

M
 p

ro
gr

am
m

er
bu

rn
s

th
e

8-
bi

t
E

P
R

O
M

de
vi

ce
 w

ith
 th

e
bo

ot
 ta

bl
e

(c
on

si
st

s
of

pr

og
ra

m
op

co
de

s,
 i

ni
tia

liz
ed

 d
at

a,
pl

us

sp
ec

ia
l

co
nt

ro
l

in
st

ru
ct

io
ns

 f
or

 t
he

 b
oo

t
lo

ad
er

).

T
he

D

S
P

ex

ec
ut

es

th
e

on
-c

hi
p

bo
ot

 lo
ad

er
 c

od
e

to
co

py
 th

e
bo

ot
 ta

bl
e

fr
om

 th
e

se
ria

l p
or

t
to

 3
2-

bi
t S

R
A

M
.

B
oo

t l
oa

de
r e

xe
cu

tio
n

is
 tr

ig
ge

re
d

by
a

hi
gh

 o
n

M
C

B
L/

M
P

 a
nd

 a
 l

ow
 o

n
on

e
IN

T
x

pi
n

du
rin

g
lo

w
-t

o-
hi

gh
tr

an
si

tio
n

of
 R

E
S

E
T.

If
IN

T
3

an
d

an
ot

he
r

IN
T

x
ar

e
as

se
rt

ed
,

th
e

bo
ot

lo

ad
er

re
ad

s
th

e
bo

ot
 ta

bl
e

in
 t

he
 h

an
ds

ha
ki

ng
m

od
e

us
in

g
X

F
0,

X
F

1,
 a

nd
 I

A
C

K
 t

o
sy

nc
hr

on
iz

e
da

ta
tr

an
sf

er
 c

yc
le

s.

T
he

 o
n-

ch
ip

 b
oo

t
lo

ad
er

 u
se

s
th

e
C

P
U

 to
 a

ss
em

bl
e

in
di

vi
du

al
 b

yt
es

of
 th

e
bo

ot
 ta

bl
e

an
d

to
 lo

ad
 th

em
di

re
ct

ly
 in

to
 S

R
A

M
.

c_
in

t0
0

is
 th

e
ex

ec
ut

io
n

en
tr

y
po

in
t.

C
O

F
F

 fo
rm

at
(b

in
ar

y
fil

e)

In
te

l h
ex

 fo
rm

at
(A

S
C

II
fil

e)

8
bi

ts
 w

id
e

32
 b

its
 w

id
e

32
 b

its
 w

id
e

T
he

 D
S

P
 s

ys
te

m
 u

se
s

ho
st

 E
P

R
O

M
 to

 s
to

re
 th

e
bo

ot
 ta

bl
e

fo
r r

ed
uc

ed
 s

ys
te

m
 c

os
t a

s
co

m
pa

re
d

to
 a

 D
S

P
 b

oa
rd

 w
ith

an
 8

-b
it

E
P

R
O

M
.

M
C

B
L/

M
P

IN
T

x

R
E

S
E

T

IA
C

K
X

F
0

X
F

1

TMS320C30 Addressing up to 68 Gigawords

4-107Memory Interfacing

4.9 TMS320C30 Addressing up to 68 Gigawords

The ’C30 primary bus has 24 address lines which allow addressing up to
16 megawords of memory. The ’C30 expansion bus has 13 address lines
addressing 8K words. These two busses, expansion bus address lines
[XA(12-0)] and the primary lines [A(23-0)], can be used simultaneously to
extend the address to 36 bits. This is accomplished by using the feature of the
’C3x family that holds the past address bits on an external bus until a new
external access occurs. That means, the address bus works as a latch.
Figure 4–47 shows how these two busses are combined together. The
following parallel instruction accomplishes this task:

STI Rx,*ARn ; address MSTRB while loading a
; value from STRB memory

|| LDI *ARp,Rq ;

where:
Rx and Rq designate registers R0 to R7 (but not the same register)
ARn and ARp designate auxiliary registers AR0 to AR7 (but not the same
register).

Note:

ARn contains the 8-Mword segment address plus 800000h. ARp contains
the address within the 8-Mword segment and is between 0 and 7FFFFFh.

Figure 4–47. TMS320C30 Combination of Primary and Expansion Busses to Address 68
Gigawords

 No connectA(23)

XA(12:0)

MSTRB
STRB

A(22:0)

Memory array

A(12:0)

CS

A(22:0)

’C30

 4-108

5-1

Programming Tips

Programming style reflects personal preference. The purpose of this chapter
is not to impose any particular style, but to highlight features of the ’C3x that
can produce faster and/or shorter programs. The tips cover the C compiler, as-
sembly language programming, and low-power mode wakeup.

Topic Page

5.1 Hints for Optimizing C Code 5-2

5.2 Hints for Assembly Coding 5-5

5.3 Low-Power Mode Wakeup Example 5-7

5.4 Bit-Reversed Addressing in C 5-9

5.5 Sharing Header Files in C and Assembly 5-10

5.6 Addressing Peripherals as Data Structures in C 5-11

5.7 Linking C Data Objects Separate From the .bss Section 5-13

5.8 Interrupts in C 5-16

Chapter 5

Hints for Optimizing C Code

 5-2

5.1 Hints for Optimizing C Code

The ’C3x was designed with a large register file, software stack, and memory
space that easily supports the floating point C compiler. The C compiler trans-
lates ANSI C programs into assembly language source code. It also increases
code portability and decreases application porting time.

After writing your application in C language, debug the program and determine
whether it runs efficiently. If the program does not run efficiently:
� Use the optimizer with –o2 or –o3 options when compiling
� Use registers to pass parameters (–ms compiling option)
� Use inlining (–x compiling option)
� Remove the –g option when compiling
� Follow some of the efficient code generation tips listed below

Identify places where most of the execution time is spent and optimize these areas
by writing assembly language routines that implement the functions. Call the rou-
tines from the C program as C functions.

The efficiency of the code generated by the floating-point compiler depends
to a large extent on the compiler options used when writing your C code. There
are specific constructs that can vastly improve the compiler’s effectiveness:

� Use register variables for often-used variables. This is particularly true
for pointer variables. Example 5–1 shows a code fragment that ex-
changes one object in memory with another.

Example 5–1. Exchanging Objects in Memory

register float *src,*dest, temp

do
 {
 temp = *++src;
 *src = *++dest;
 *dest = temp;
 }
while (––n) ;

� Precompute subexpressions. This especially applies to array refer-
ences in loops. Assign commonly used expressions to register variables,
where possible.

� Use *++ to step through arrays rather than using an index to recalculate
the address each time through a loop.

Hints for Optimizing C Code

5-3Programming Tips

As an example of the previous two points, consider the loops in Example 5–2.

Example 5–2. Optimizing a Loop

/* loop 1 */
 main()
 {

float a[10], b[10];
int i;
for (i = 0; i < 10; ++i)

a[i] = (a[i] * 20) + b[i];
 }

/* loop 2 */
 main()
 {

float a[10], b[10];
int i;
register float *p = a, *q = b;
for (i = 0; i < 10; ++i)

*p++ = (*p * 20) + *q++;
 }

Loop 1 executes in 19 cycles. Loop 2, which is the equivalent of loop 1, exe-
cutes in 12 cycles.

� Use structure assignments to copy blocks of data. The compiler gen-
erates very efficient code for structure assignments, so nest objects within
structures and use simple assignments to copy them.

� Avoid large local frames and declare the most often used local vari-
ables first. The compiler uses indirect addressing with an 8-bit offset to
access local data. To access objects on the local frame with offsets greater
than 255, the compiler must first load the offset into an index register. This
requires one extra instruction and incurs two cycles of pipeline delay.

Hints for Optimizing C Code

 5-4

� Avoid the large model. The large model is inefficient because the compil-
er reloads the data-page pointer (DP) before each access to a global or
static variable. If you have large array objects, use malloc() to dynamically
allocate them and access them via pointers rather than declaring them
globally. Example 5–3 illustrates two methods for allocating large array
objects.

Example 5–3. Allocating Large Array Objects

/* Inefficient Method */
 int a[1000000]l; /* Inefficient */
 ...
 a[i] = 10;

/* Efficient Method */

 int *a = (init *)malloc(1000000) ; /* Efficient */;
 ...
 a[i] = 10;

Hints for Assembly Coding

5-5Programming Tips

5.2 Hints for Assembly Coding

Each program has unique requirements. Not all possible optimizations are
appropriate in every case. You can use the suggestions in this section as a
checklist of available software tools.

� Use delayed branches. Delayed branches execute in a single cycle; reg-
ular branches execute in four cycles. The next three instructions are exe-
cuted whether the branch is taken or not. If fewer than three instructions
are required, use the delayed branch and append No-operation instruc-
tions (NOPs). A reduction in machine cycles still occurs.

� Apply the repeat single/block construct. In this way, loops are achieved
with no overhead. Nesting such constructs does not normally increase
efficiency, so try to use the feature on the most often performed loop. Note
that the RPTS instruction is not interruptible and the executed instruction
is not refetched for execution. This frees the buses for operand fetches.

� Use parallel instructions. It is possible to perform a multiply in parallel
with an add (or subtract) and to execute stores in parallel with any multiply
or arithmetic logic unit (ALU) operation. This increases the number of
operations executed in a single cycle. For maximum efficiency, observe
the addressing modes used in parallel instructions and arrange the data
appropriately. It is possible to have loads in parallel with any multiply or add
(or subtract) by multiplying by 1 or adding a 0. Therefore, to implement
parallel instructions with a data load, substitute a multiply or an add
instruction with one extra register containing 1 or 0, respectively, in place
of a load instruction.

� Maximize the use of registers. The registers are an efficient way to
access scratch-pad memory. Extensive use of the register file facilitates
the use of parallel instructions and helps avoid pipeline conflicts when you
use the registers in addressing modes.

� Use the cache. This is especially important in conjunction with slow exter-
nal memory. The cache is transparent to the user, so make sure that it is
enabled.

� Use internal memory instead of external memory. The internal
memory (2K x 32 bits RAM and 4K x 32 bits ROM) is considerably faster
to access. In a single cycle, two operands can be brought from internal
memory. You can maximize performance if you use the direct memory ac-
cess (DMA) in parallel with the CPU to transfer data to internal memory
before you operate on it.

� Avoid pipeline conflicts. For time-critical operations, make sure you do
not miss any cycles because of pipeline conflicts.

Hints for Assembly Coding

 5-6

The preceding checklist is not exhaustive, and it does not address the detailed
features outlined in other chapters of this manual. To learn how to exploit the
full power of the ’C3x, study the architecture, hardware configuration, and
instruction set of the device described in the TMS320C3x User’s Guide.

Low-Power Mode Wakeup Example

5-7Programming Tips

5.3 Low-Power Mode Wakeup Example

There are two instructions by which the ’C31, ’LC31, and ’C32 are placed in
the low-power consumption mode:

� IDLE2
� LOPOWER

The LOPOWER instruction slows down the H1/H3 clock by a factor of 16 dur-
ing the read phase of the instruction. The MAXSPEED instruction wakes the
device from the low-power mode and returns it to full frequency during
MAXSPEED’s read cycle. However, the H1/H3 clock may resume in the phase
opposite to the one it was in before the clocks were shut down.

The IDLE2 instruction has the same functions that the IDLE instruction has,
except that the clock is stopped during the execute phase of the IDLE2 instruc-
tion. The clock pin stops with H1 high and H3 low. The status of all the signals
remains the same as in the execute phase of the IDLE2 instruction. In emula-
tion mode, however, the clocks continue to run, and IDLE2 operates identically
to IDLE. The external interrupts INT(0–3) are the only signals that start up the
processor from the mode the device was in. Therefore, you must enable the
external interrupt before going to IDLE2 power-down mode (see
Example 5–4). If the proper external interrupt is not set up before executing
IDLE2 to power down, the only way to wake up the processor is with a device
reset.

Low-Power Mode Wakeup Example

 5-8

Example 5–4. Setup of IDLE2 Power-Down Mode Wakeup

*
* TITLE IDLE2 POWER-DOWN MODE WAKEUP ROUTINE SETUP
*
* THIS EXAMPLE SETS UP THE EXTERNAL INTERRUPT 0, INT0, BEFORE
* EXECUTING THE IDLE2 INSTRUCTION. WHEN THE INT0 SIGNAL IS RECEIVED
* LATER, THE PROCESSOR WILL RESUME FROM ITS PREVIOUS
* STATE. NOTE: THE “INTRPT ” SECTION IS MAPPED FROM THE
* ADDRESS 0 FROM THE RESET AND INTERRUPT VECTORS.
*

.sect “INTRPT ”
RESET .word START ; Reset vector
INT0 .word INT0_ISR ; INT0 interrupt vector
INT1 .word INT1_ISR ; INT1 interrupt vector
INT2 .word INT2_ISR ; INT2 interrupt vector
INT3 .word INT3_ISR ; INT3 interrupt vector

: :
: :
.text
: :
: :

LDP @SP_ADR
LDI @SP_ADR,SP ; Set up stack pointer
OR 01h, IE ; Enable INT0
IDLE2 ; Set GIE = 1 and stop clock

: :
: :
: :
: :

INT0_ISR RETI ; Return to instruction after IDLE2 #define N 16

There is one cycle of delay while waking up the processor from the IDLE2
power-down mode before the clocks start up. This adds one extra cycle from
the time the interrupt pin goes low until the interrupt is taken. The interrupt pin
needs to be low for at least two cycles. The clocks may start up in the phase
opposite the phase that they were in before the clocks were stopped.

Bit-Reversed Addressing in C

5-9Programming Tips

5.4 Bit-Reversed Addressing in C

The C language does not have any construct to take advantage of the bit-
reversed addressing feature of the ’C3x. To take advantage of this feature,
Figure 5–1 shows the assembly instructions added to the C code to use bit-
reversed addressing.

Figure 5–1. Bit-Reversed Addressing in C Code

#define N 16
int x[N] = { 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 };
int y[N] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
/* int bitrev(int m, intn); */

void main()
{

int i;
asm(” PUSH AR5”);
asm(” PUSH AR0”);
asm(” LDI 8,IR0; ; Initialize IR0 TO 1/2 N”);
asm(” LDI @CONST+0,AR5 ; AR5 <– address of X[] ”);
asm(” LDI @CONST+1,AR0 ; AR0 <– address of Y[] ”);

for (i=0; i<n; i++){
/* y[bitrev(i,N)] = x[i]; */
asm(” LDI *AR5++(IR0)b, R0”);
asm(” STI R0, *AR0++”);
}

asm(” POP AR0”);
asm(” POP AR5”);

}
 /* These statements place x and y in .bss and make their
 addresses available via the CONST table. */
asm(” .bss CONST,2 ”);
asm(” .sect \”.cinit\” ”);
asm(” .word 2,CONST ”);
asm(” .word _x ”);
asm(” .word _y ”);

Sharing Header Files in C and Assembly

 5-10

5.5 Sharing Header Files in C and Assembly

Sometimes it is useful to be able to define named constants that can be used
in both C and assembly language.

One method is to have separate header files that define the same symbols:
a C include file with #define directives and an assembler include file with .set
or .asg directives. However, it is more convenient to have a single, shared
header file that defines symbols once for C and assembly.

Figure 5–2 shows how a file can be used normally as a C include file and also
to generate an assembler include file. By compiling it and defining ASMDEFS,
an assembler include file is generated from this file with the following com-
mand:

c130 –dASMDEFS –k defs.h

Figure 5–2. Input File defs.h

#define PI 3.14
#define E 2.72
#ifdef ASMDEFS /* IF DEFINED, CREATE .asg DIRECTIVES */
#define ASM_ASG(sym) asm(”\t.asg\t” VAL(sym) ”.” #sym
#define VAL(sym) #sym
ASM_ASG(PI);
ASM_ASG(E);
#endif /*ASMDEFS*/

The output is the file defs.asm, which contains .asg directives for your symbols
(see Figure 5–3).

Figure 5–3. Output File defs.asm

; ... <compiler–generated header stuff> ...
.asg 3.14,PI
.asg 2.72,E

You can then use .include in your assembly modules. The same technique can
be used to create .set directives rather than .asg.

Addressing Peripherals as Data Structures in C

5-11Programming Tips

5.6 Addressing Peripherals as Data Structures in C

A data structure is usually assigned to the .bss section by the C compiler. A
.bss section stores global and statically allocated variables. A peripheral, such
as a serial port, has memory-mapped control registers with addresses differ-
ent from .bss. To manipulate a memory-mapped peripheral register in C, follow
one of the methods listed below.

� Method 1: Use a pointer to the peripheral.

Pointer

Peripheral as memory locations

Address = 0x808000

1) Declare a structure that logically represents the memory locations of
the peripheral.

struct controller {
 unsigned int status;
 ...
};

2) Declare a pointer to the structure and initialize it to the peripheral’s ad-
dress.

 struct controller *IFperipheral = (struct controller *)0x808000;

3) In your code, access the peripheral’s memory values indirectly.

IFperipheral–>status = 0;

� Method 2: Place the structure in its own section.

1) Declare a peripheral instead of a pointer.

struct controller IFperiph;

2) Use inline assembly to give the structure its own section.

asm(”_IFperiph .usect \”periph\”, 128);

/* 128 is size of struct */

This creates a user-defined section that can be linked to any ad-
dress.

3) Use your linker command file to map the section to memory.

periph: load = 0x808000

4) Address the structure elements directly.

IFperiph.status = 0;

Addressing Peripherals as Data Structures in C

 5-12

Method 1 is very useful for addressing peripheral or memory buffers that are
device specific. Method 2 is preferred for addressing peripherals or memory
buffers which are not device specific (that is, peripherals are user specified).
This method ensures the task of mapping and aligning user-specific peripher-
als and/or memory buffers to the linker. The choice depends on your individual
application.

See section 5.7 for another method of placing the structure in its own section
using #pragma directives.

Linking C Data Objects Separate From the .bss Section

5-13Programming Tips

5.7 Linking C Data Objects Separate From the .bss Section

The TMS320 DSP C compilers produce several relocatable blocks of code
and data when C code is compiled. These blocks are called sections and can
be allocated into memory in a variety of ways to conform to a variety of system
configurations. The .bss section is used by the compiler for global and static
variables; it is one of the default COFF sections that is used to reserve a speci-
fied amount of space in the memory map that can later be used for storing data.
It is normally unitialized. All global and static variables in a C program are
placed in the .bss section. For example, on the floating-point DSPs, you might
want to link all of your variables into off-chip memory but place a frequently-
used array in on-chip RAM block 0.

� Method A: Declare variable in a separate section.

1) Declare the variable that is to be separated from the .bss section in a
separate file. For example, declare a 32-word array, tapDelay [], in a
file called array.c as follows:

 /* File: ARRAY.C */
 int tapDelay[32]
 /* End of file */

2) Declare the variable as extern in any file that makes a reference to it.
Consider the following file, test.c, that makes a reference to the array
declared in file array.c as follows:

 /* File: TEST.C */
 .
 extern int tapDelay[];
 .
 void main(void)
 {
 int i;
 .
 tapDelay[i] = 0;
 .
 }
 /* End of file */

Linking C Data Objects Separate From the .bss Section

 5-14

3) In the linker command file, link this variable separate from the .bss
section in the SECTIONS section. The following linker command file
segment illustrates how to link the array tapDelay [] onto the ’C3x on-
chip, dual-access data RAM block 0 while linking the rest of the global
and static variables into part of a similar data RAM block 1:

 /* File: TEST.CMD */
 .
 test.obj
 array.obj
 .
 MEMORY
 {
 .
 RAMB0: origin = 0x809800, length = 0x400
 RAMB1: origin = 0x809c00, length = 0x400
 .
 }

 SECTIONS
 {
 .
 .bss :{} >RAMB1
 .
 tapdelayline : {array.obj(.bss) } > RAMB0

 }
 /* End of file */

� Method B: Declare variable in a #pragma DATA_SECTION.

1) Declare the variable that is to be separated from the .bss section in a
#pragma DATA_SECTION. Consider the example described in Meth-
od A. The following code segment uses the DATA_SECTION pragma
to declare a 32-word array, tapDelay [], that is placed separate from
the other global and static variables:

 /* File: TEST.C */
 #pragma DATA_SECTION (tapDelay, ”.tapdelayline”)
 int tapDelay[32];
 .
 .
 void main(void)
 {
 int i;
 .
 tapDelay[i] = 0;
 .
 }
 /* End of file */

Linking C Data Objects Separate From the .bss Section

5-15Programming Tips

2) In the linker command file, use the section name .tapdelayline to place
the array tapDelay [] in RAM block 0. Separate it from the other global
and static variables that are in the .bss section as follows:

 /* File: TEST.CMD */
 .
 test.obj
 array.obj
 .
 MEMORY
 {
 .
 EXT0: origin = 0x100, len = 0x3f00
 RAM0: origin = 0x809800, len = 0x400
 .
 }

 SECTIONS
 {
 .
 .bss : {} EXT0
 .
 .tapdelayline : {} RAM0

 }
 /* End of file */

Method B is available in the floating-point DSP C compiler version 4.60 or
greater. It is described in the TMS320 Floating-Point DSP Code Generation
Tools Release 4.70 Getting Started Guide.

Interrupts in C

 5-16

5.8 Interrupts in C

To use interrupts in C, you must write an interrupt service routine (ISR), initial-
ize the interrupt vector table, and link these parts with the linker command file.
These steps are described below.

Step 1: Write a C language interrupt service routine (ISR).

The C compiler requires that each ISR be named as follows:

void c_int0n(void) /* n is the int number */
{

/* a C function that is an ISR */
}

The interrupt routine must not return a value and has no arguments.
The C compiler recognizes this naming convention and treats it as
a normal ISR. This means it performs a context save of the neces-
sary registers and returns from the routine via an RETI instruction.

A good practice is to include the interrupts in a separate file called
ints.c or something similar. This allows a modular style, simpler
maintenance, and software that is easy to understand.

Step 2: Initialize the interrupt vector table using either C or assembly lan-
guage.

In microprocessor mode of ’C30 and ’C31, the first 0x40 addresses
are reserved for the interrupt and trap vectors. Address 0 (zero)
holds the address of the reset routine. If using the –C linker option,
the RTS30.lib function boot.asm takes care of defining the reset
function, but the vector table initialization is left to the user.

An assembly language routine might look like this:

; file name is vectors.asm
; .sect ”vectors” ; a new section begins here
 .word _c_int00 ; the address of the reset
vector
 .word _c_int01 ; the ISR for interrupt 0
 .word _c_int02 ; the ISR for interrupt 1
; etc.
; end

This routine creates a new section that is merely a list of addresses
where the interrupt routines can be found. It can be written in C by
encapsulating each line in an asm statement.

For example:

asm(” .sect \”vectors\” ”);
A C function that is an ISR.

Interrupts in C

5-17Programming Tips

Step 3: Link the interrupt service routine (ISR) and the initialized interrupt
vector table with the linker command file.

The linker command file provides the mechanism for including the
vectors.asm object and the ints.c object.

/* file name == mylink.cmd */
vectors.obj
ints.obj

The MEMORY section needs to identify the location of the int vec-
tors.

MEMORY
{

VECTORS: origin = 0h, length = 40h
...

}

The SECTIONS section needs to map the user-defined section
called vectors to the memory location.

SECTIONS
{ vectors: > VECTORS

...
}

 5-18

6-1

DSP Algorithms

Certain features of the ’C3x architecture and instruction set facilitate the solu-
tion of numerically intensive problems. This chapter presents examples of
applications using these features, such as companding, filtering, fast Fourier
transforms (FFTs), and matrix arithmetic.

Topic Page

6.1 Companding 6-2

6.2 FIR, IIR, and Adaptive Filters 6-7

6.3 Lattice Filters 6-18

6.4 Matrix-Vector Multiplication 6-24

6.5 Vector Maximum Search 6-26

6.6 Fast Fourier Transforms (FFTs) 6-28

6.7 TMS320C3x Benchmarks 6-78

6.8 Sliding FFT 6-80

Chapter 6

Companding

 6-2

6.1 Companding

In telecommunications, conserving channel bandwidth while preserving
speech quality is a primary concern. This is achieved by quantizing the speech
samples logarithmically. An 8-bit logarithmic quantizer produces speech quali-
ty equivalent to a 13-bit uniform quantizer. The logarithmic quantization is
achieved by companding (COMpress/exPANDing). Two international stan-
dards have been established for companding: the µ-law standard (used in the
United States and Japan), and the A-law standard (used in Europe). Detailed
descriptions of µ law and A law companding are included in Volume 1 of the
book Digital Signal Processing Applications With the TMS320 Family.

During transmission, logarithmically compressed data in sign-magnitude form
is transmitted along the communications channel. If any processing is neces-
sary, you must expand this data to a 14-bit (for µ law) or 13-bit (for A law) linear
format. This operation is performed when the data is received at the digital sig-
nal processor (DSP). After processing, the result is compressed back to 8-bit
format and transmitted through the channel to continue transmission.

Example 6–1 and Example 6–2 show µ-law compression and expansion (that
is, linear to µ-law and µ-law to linear conversion), while Example 6–3 and
Example 6–4 show A-law compression and expansion. For expansion, using
a look-up table is an alternative approach. A look-up table trades memory
space for speed of execution. Since the compressed data is eight bits long, you
can construct a table with 256 entries containing the expanded data. If the
compressed data is stored in the register AR0, the following two instructions
put the expanded data in register R0:

ADDI @TABL,AR0 ; @TABL = BASE ADDRESS OF TABLE
LDI*AR0,R0 ; PUT EXPANDED NUMBER IN R0

You could use the same look-up table approach for compression, but the re-
quired table length would be 16384 words for µ-law and 8192 words for A-law.
If this memory size is not acceptable, use the subroutines presented in
Example 6–1 or Example 6–3.

Companding

6-3DSP Algorithms

Example 6–1. µ-Law Compression

*
* TITLE U ±LAW COMPRESSION
*
* SUBROUTINE MUCMPR
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* –––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2, SP
* REGISTER CONTAINING RESULT: R0
*
* NOTE: SINCE THE STACK POINTER ’SP’ IS USED IN THE COMPRESSION
* ROUTINE ‘MUCMPR’, MAKE SURE TO INITIALIZE IT IN THE
* CALLING PROGRAM.
*
* CYCLES: 20 WORDS: 17
*
* .global MUCMPR
*
MUCMPR LDI R0,R1 ; Save sign of number

ABSI R0,R0
CMPI 1FDEH,R0 ; If R0>0x1FDE,
LDIGT 1FDEH,R0 ; saturate the result
ADDI 33,R0 ; Add bias

FLOAT R0 ; Normalize: (seg+5)0WXYZx...x
MPYF 0.03125,R0 ; Adjust segment number by 2**(±5)
LSH 1,R0 ; (seg)WXYZx...x
PUSHF R0
POP R0 ; Treat number as integer
LSH ±20,R0 ; Right-justify

LDI 0,R2
LDI R1,R1 ; If number is negative,
LDILT 80H,R2 ; set sign bit
ADDI R2,R0 ; R0 = compressed number
NOT R0 ; Reverse all bits for transmission
RETS

Companding

 6-4

Example 6–2. µ-Law Expansion

* TITLE U-LAW EXPANSION
*
* SUBROUTINE MUXPND

* ARGUMENT ASSIGNMENTS:
*

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2, SP
* REGISTER CONTAINING RESULT: R0
*
* CYCLES: 20 (WORST CASE) WORDS: 14

.global MUXPND
*
MUXPND NOT R0,R0 ; Complement bits

LDI R0,R1
AND 0FH,R1 ; Isolate quantization bin
LSH 1,R1
ADDI 33,R1 ; Add bias to introduce 1xxxx1
LDI R0,R2 ; Store for sign bit
LSH ±4,R0
AND 7,R0 ; Isolate segment code
LSH3 R0,R1,R0 ; Shift and put result in R0
SUBI 33,R0 ; Subtract bias
TSTB 80H,R2 ; Test sign bit
RETSZ
NEGI R0 ; Negate if a negative number
RETS

Companding

6-5DSP Algorithms

Example 6–3. A-Law Compression

* TITLE A ±LAW COMPRESSION
*
* SUBROUTINE ACMPR

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED

* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2, SP
* REGISTER CONTAINING RESULT: R0

* NOTE: SINCE THE STACK POINTER ‘SP’ IS USED IN THE COMPRESSION
* ROUTINE ‘ACMPR’, MAKE SURE TO INITIALIZE IT IN THE
* CALLING PROGRAM.

* CYCLES:22 WORDS: 19

.global ACMPR

ACMPR LDI R0,R1 ; Save sign of number
ABSI R0,R0
CMPI 1FH,R0 ; If R0<0x20,
BLED END ; do linear coding
CMPI 0FFFH,R0 ; If R0>0xFFF,
LDIGT 0FFFH,R0 ; saturate the result
LSH ±1,R0 ; Eliminate rightmost bit

FLOAT R0 ; Normalize: (seg+3)0WXYZx...x
MPYF 0.125,R0 ; Adjust segment number by 2**(±3)
LSH 1,R0 ; (seg)WXYZx...x
PUSHF R0
POP R0 ; Treat number as integer
LSH ±20,R0 ; Right ±justify

END LDI 0,R2
LDI R1,R1 ; If number is negative,
LDILT 80H,R2 ; set sign bit
ADDI R2,R0 ; R0 = compressed number
XOR 0D5H,R0 ; Invert even bits

; for transmission
RETS

*

Companding

 6-6

Example 6–4. A-Law Expansion

* TITLE A-LAW EXPANSION
*
* SUBROUTINE AXPND
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
*

* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2, SP
* REGISTER CONTAINING RESULT: R0
*

* CYCLES: 25 (WORST CASE) WORDS: 16
*

.global AXPND
*

AXPND XOR D5H,R0 ; Invert even bits
LDI R0,R1
AND 0FH,R1 ; Isolate quantization bin
LSH 1,R1
LDI R0,R2 ; Store for bit sign
LSH ±4,R0
AND 7,R0 ; Isolate segment code
BZ SKIP1
SUBI 1,R0
ADDI 32,R1 ; Create 1xxxx1

SKIP1 ADDI 1,R1 ; OR 0xxxx1
LSH3 R0,R1,R0 ; Shift and put result in R0
TSTB 80H,R2 ; Test sign bit
RETSZ
NEGI R0 ; Negate if a negative number
RETS

FIR, IIR, and Adaptive Filters

6-7DSP Algorithms

6.2 FIR, IIR, and Adaptive Filters

Digital filters are a common requirement for DSPs. There are two types of digi-
tal filters: finite impulse response (FIR) and infinite impulse response (IIR).
Both of these types can have either fixed or adaptable coefficients. This sec-
tion presents the fixed-coefficient filters first, followed by the adaptive filters.

6.2.1 FIR Filters

If the FIR filter has an impulse response h [0], h [1],..., h [N – 1], and x [n] repre-
sents the input of the filter at time n, the output y [n] at time n is given by this
equation:

y [n] = h [0] x [n] + h [1] x [n –1] + ... + h [N –1] x [n – (N –1)]

Two features of the ’C3x that facilitate the implementation of the FIR filters are
parallel multiply/add operations and circular addressing. The former permits
the performance of a multiplication and an addition in a single machine cycle,
while the latter makes a finite buffer of length N sufficient for the data x.

Figure 6–1 shows the arrangement of memory locations necessary to imple-
ment circular addressing, while Example 6–5 presents the ’C3x assembly
code for an FIR filter.

Figure 6–1. Data Memory Organization for an FIR Filter

•
•
•

•
•
•

•
•
•

Impulse
response

Initial
input samples

Final
input samples

Oldest input

Newest input

Low
address

High
address

Circular
queue

x(n)
x[n – (N – 1)]x[n – (N – 2)]

x(n – 2)
x(n – 1)

x(n – 1)
x(n)

h(N – 1)
h(N – 2)

h(1)
h(0)

x[n – (N – 1)]

To set up circular addressing, initialize the block-size register BK to block
length N. Start the locations for signal x from a memory location whose ad-
dress is a multiple of the smallest power of 2 that is greater than N. For
instance, if N = 24, the first address for x is a multiple of 32 (the lowest five
bits of the beginning address are 0). See the Circular Addressing section in the
Addressing chapter of the TMS320C3x User’s Guide for more information.

FIR, IIR, and Adaptive Filters

 6-8

In Example 6–5, the pointer to the input sequence x is incremented and is as-
sumed to be moving from an older input to a newer input. At the end of the sub-
routine, AR1 points to the position for the next input sample.

Example 6–5. FIR Filter

* TITLE FIR FILTER
*
* SUBROUTINE FIR
*
* EQUATION: y(n) = h(0) * x(n) + h(1) * x(n ±1) +
* ... + h(N ±1) * x(n ±(N ±1))
*
* TYPICAL CALLING SEQUENCE:
*

* LOAD AR0
* LOAD AR1
* LOAD RC
* LOAD BK
* CALL FIR
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* AR0 | ADDRESS OF h(N ±1)
* AR1 | ADDRESS OF x(n–(N ±1))
* RC | LENGTH OF FILTER ± 2 (N ±2)
* BK | LENGTH OF FILTER (N)
*

* REGISTERS USED AS INPUT: AR0, AR1, RC, BK
* REGISTERS MODIFIED: R0, R2, AR0, AR1, RC
* REGISTER CONTAINING RESULT: R0
*

* CYCLES: 11 + (N ±1) WORDS: 6
*

.global FIR

* ; Initialize R0:
FIR MPYF3 *AR0++(1),*AR1++(1)%,R0

* ; h(N ±1) * x(n ±(N ±1)) ±> R0
LDF 0.0,R2 ; Initialize R2

*

* FILTER (1 <= i < N)
*

FIR, IIR, and Adaptive Filters

6-9DSP Algorithms

Example 6–5. FIR Filter (Continued)

RPTS RC ; Set up the repeat cycle
MPYF3 *AR0++(1),*AR1++(1)%,R0 ; h(N ±1±i)*x(n ±(N ±1±i)) ±>R0

|| ADDF3 R0,R2,R2 ; Multiply and add operation

*
ADDF R0,R2,R0 ; Add last product

*

* RETURN SEQUENCE

*
RETS ; Return

*

* end

*
.end

6.2.2 IIR Filters

The transfer function of the IIR filters has both poles and 0s. Its output depends
on both the input and the past output. As a rule, the IIR filters need less com-
putation than an FIR with similar frequency response, but the filters have the
drawback of being sensitive to coefficient quantization. Most often, the IIR fil-
ters are implemented as a cascade of second-order sections, called biquads.
Example 6–6 shows the implementation for one biquad.

This is the equation for a single biquad:

y [n] = a1 y [n – 1] + a2 y [n – 2] + b0 x [n] + b1 x [n –1] + b2 x [n – 2]

However, the following two equations are more convenient and have smaller
storage requirements:

d [n] = a2 d [n – 2] + a1 d [n –1] + x [n]
y [n] = b2 d [n – 2] + b1 d [n – 1] + b0 d [n]

Figure 6–2 shows the memory organization for this two-equation approach,
and Example 6–7 shows the implementation for any number of biquads.

FIR, IIR, and Adaptive Filters

 6-10

Figure 6–2. Data Memory Organization for a Single Biquad

Newest delay
Low

address

High
address

Newest delay Newest delay
node values node values

Filter
coefficients

a2
b2

a1

b1

b0

Oldest delay

d(n)

d(n –1)

d(n – 2) d(n)
Circular queue

d(n –1)

d(n – 2)

As in the case of FIR filters, the address for the start of the d values must be
a multiple of 4; that is, the last two bits of the beginning address must be 0. The
block-size register BK must be initialized to 3.

Example 6–6. IIR Filter (One Biquad)

* TITLE IIR FILTER
*
* SUBROUTINE IIR 1
*
* IIR1 == IIR FILTER (ONE BIQUAD)
*
* EQUATIONS: d(n) = a2 * d(n ±2) + a1 * d(n ±1) + x(n)
* y(n) = b2 * d(n ±2) + b1 * d(n ±1) + b0 * d(n)
*
* OR y(n) = a1*y(n ±1) + a2*y(n ±2) + b0*x(n)
* + b1*x(n ±1) + b2*x(n ±2)
*
* TYPICAL CALLING SEQUENCE:
*

* load R2
* load AR0
* load AR1
* load BK
* CALL IIR1
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R2 | INPUT SAMPLE X(N)
* AR0 | ADDRESS OF FILTER COEFFICIENTS (A2)
* AR1 | ADDRESS OF DELAY MODE VALUES (D(N ±2))
* BK | BK = 3
*

FIR, IIR, and Adaptive Filters

6-11DSP Algorithms

Example 6–6. IIR Filter (One Biquad) (Continued)

* REGISTERS USED AS INPUT: R2, AR0, AR1, BK
* REGISTERS MODIFIED: R0, R1, R2, AR0, AR1
* REGISTER CONTAINING RESULT: R0
*

* CYCLES: 11 WORDS: 8
*

* FILTER

*
.global IIR1

*
IIR1 MPYF3 *AR0,*AR1,R0
* ; a2 * d(n ±2) ±> R0

MPYF3 *++AR0(1),*AR1 ––(1) % ,R1
* ; b2 * d(n ±2) ±> R1
*

MPYF3 *++AR0(1),*AR1,R0 ; a1 * d(n ±1) ±> R0
|| ADDF3 R0,R2,R2 ; a2*d(n ±2)+x(n) ±> R2

*
MPYF3 *++AR0(1),*AR1 ––(1)%,R0 ; b1 * d(n ±1) ±> R0

|| ADDF3 R0,R2,R2 ; a1*d(n ±1)+a2*d(n ±2)+x(n) ±> R2

*
MPYF3 *++AR0(1),R2,R2 ; b0 * d(n) ±> R2

|| STF R2,*AR1++(1)%
*
* ; Store d(n)and point to d(n ±1)
*

ADDF R0,R2 ; b1*d(n ±1)+b0*d(n) ±> R2
ADDF R1,R2,R0 ; b2*d(n ±2)+b1*d(n ±1)

; +b0*d(n) ±> R0
*
* RETURN SEQUENCE
*

RETS ; Return
*

* end
*

.end

FIR, IIR, and Adaptive Filters

 6-12

In the more general case, the IIR filter contains N>1 biquads. The equations
for its implementation are given by the following pseudo-C language code:

y [0,n] = x [n]
for (i = 0; i < N; i ++){

d [i,n] = a2 [i] d [i, n – 2] + a1 [i] d [i,n –1] + y [i – 1,n]
y [i,n] = b2 [i] d [i – 2] + b1 [i] d [i,n – 1] + b0 [i] d [i,n]

}
y [n] = y [N – 1,n]

Figure 6–3 shows the corresponding memory organization, while Example 6–7
shows the ’C3x assembly-language code.

Figure 6–3. Data Memory Organization for N Biquads

Newest delay
Low

address

High
address

Initial delay Final delay
node values node values

Filter
coefficients

a2(0)
b2(0)

a1(0)

b1(0)

b0(0)

Oldest delay

d(0, n)
d(0, n –1)
d(0, n – 2)

d(0, n – 2)
d(0, n –1)

d(0, n)
Circular queue

b2(N –1)

a1(N –1)

b1(N –1)

b0(N –1)

Empty Empty

•
•
•

•
•
•

•
•
•

d(N –1, n)
d(N –1, n –1)

d(N –1, n – 2)

d(N –1, n – 2)
d(N –1, n –1)

d(N –1, n)

Empty Empty

Circular queue
a2(N –1)

You must initialize the block register BK to 3; the beginning of each set of d val-
ues (that is, d [i,n], i = 0 ... N – 1) must be at an address that is a multiple of
4 (where the last two bits are 0).

FIR, IIR, and Adaptive Filters

6-13DSP Algorithms

Example 6–7. IIR Filters (N > 1 Biquads)

* TITLE IIR FILTERS (N > 1 BIQUADS)

* SUBROUTINE IIR2
*
* EQUATIONS: y(0,n) = x(n)
*
* FOR (i = 0; i < N; i++)

* {

* d(i,n) = a2(i) * d(i,n ±2) + a1(i) * d(i,n ±1) * y(i ±1,n)
* y(i,n) = b2(i) * d(i,n ±2) + b1(i) * d(i,n ±1) * b0(i) * d(i,n)

* TYPICAL CALLING SEQUENCE:
* }

* y(n) = y(N ±1,n)
*
* TYPICAL CALLING SEQUENCE:
*

* load R2
* load AR0
* load AR1
* load IR0
* load IR1
* load BK
* load RC
* CALL IIR2
*

* ARGUMENT ASSIGNMENT:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R2 | INPUT SAMPLE x(n)
* ARO | ADDRESS OF FILTER COEFFICIENTS (a2(0))
* AR1 | ADDRESS OF DELAY NODE VALUES (d(0,n ±2))
* BK | BK = 3
* IR0 | IR0 = 4
* IR1 | IR1 = 4*N ±4
* RC | NUMBER OF BIQUADS (N) ±2
*

* REGISTERS USED AS INPUT; R2, AR0, AR1, IR0, IR1, BK, RC
* REGISTERS MODIFIED; R0, R1, R2, AR0, AR1, RC
* REGISTERS CONTAINING RESULT: R0
*

FIR, IIR, and Adaptive Filters

 6-14

Example 6–7. IIR Filters (N > 1 Biquads) (Continued)

* CYCLES: 17 + 6N WORDS: 17
*

.global IIR2
*

IIR2 MPYF3 *AR0, *AR1, R0
* ; a2(0) * d(0,n ±2) ±> R0

MPYF3 *AR0++(1), *AR1 ––(1)%, R1
* ; b2(0) * d(0,n ±2) ±> R1

*
MPYF3 *++AR0(1),*AR1,R0 ; a1(0) * D(0,n ±1) ±> R0

|| ADDF R0, R2, R2 ; First sum term of d(0,n)
*

MPYF3 *++AR0(1),*AR1 ––(1)%,R0 ; b1(0) * d(0,n ±1) ±> R0
|| ADDF3 R0, R2, R2 ; Second sum term of d(0,n)

MPYF3 *++AR0(1),R2 ; b0(0) * d(0,n) ±> R2
|| STF R2, *AR1 ––(1)%
*
* ; Store d(0,n) ;

; point to;
; d(0,n ±2)

RPTB LOOP ; Loop for 1 <= i < n
*

MPYF3 *++AR0(1),*++AR1(IR0),R0 ; a2(i) * d(i,n ±2) ±> R0
|| ADDF3 R0,R2,R2 ; First sum term of y(i ±1,n)
*

MPYF3 *++AR0(1),*AR1 –– (1)%R1 ; b2(i) * D(i,n ±2) ±> R1
|| ADDF3 R1,R2,R2 ; Second sum term

; of y(i ±1,n)
*

MPYF3 *++AR0(1),*AR1,R0 ; a1(i) * d(i,n ±1) ±> R0
|| ADDF3 R0,R2,R2 ; First sum of d(i,n)
*

MPYF3 *++AR0(1),*AR1 ––(1)%,R0 ; b1(i) * d(i,n ±1) ±> R0
|| ADDF3 R0,R2,R2 ; Second sum term of d(i,n)
*

STF R2, *AR1 ––(1)%
* ; Store d(i,n) ;

; point to d(i,n ±2)
LOOP MPYF3 *++AR0(1), R2,R2
* ; b0(i) * d(i,n) ±> R2
*

* FINAL SUMMATION
*

FIR, IIR, and Adaptive Filters

6-15DSP Algorithms

Example 6–7. IIR Filters (N > 1 Biquads) (Continued)

ADDF R0,R2 ; First sum term of y(n ±1,n)
ADDF3 R1,R2,R0 ; Second sum term

; of y(n ±1,n)
*

NOP *AR1––(IR1) ; Return to first biquad
NOP *AR1––(1)% ; Point to d(0,n ±1)

*

* RETURN SEQUENCE
*

RETS ; Return

* end
*

.end

6.2.3 Adaptive Filters (Least Mean Squares Algorithm)

In some applications in digital signal processing, you must adapt a filter over
time to keep track of changing conditions. This is accomplished by adapting
a coefficient to a filter and creating a new coefficient by means of a least mean
squares (LMS) algorithm. The equations for this process are described below.

The book Theory and Design of Adaptive Filters presents the theory of adap-
tive filters. Although, in theory, both FIR and IIR structures can be used as
adaptive filters, the stability problems and the local optimum points that the IIR
filters exhibit make them less attractive for such an application. Hence, until
further research makes IIR filters a better choice, only the FIR filters are used
in adaptive algorithms of practical applications.

In an adaptive FIR filter, the filtering equation takes this form:

y [n] = h [n,0] x [n] + h [n,1] x [n – 1] + ... + h [n,N – 1] x [n – (N – 1)]

The filter coefficients are time-dependent and updated through LMS algo-
rithms. In a LMS algorithm, the coefficients are updated by an equation in this
form:

h [n + 1,i] = h [n,i] + βc[n] x [n – i], i = 0, 1, ..., N – 1

where c[n] = d[n] – y[n] β is a constant for the computation and d[n] is the de-
sired signal. You can interleave the updating of the filter coefficients with the
computation of the filter output so that it takes three cycles per filter tap to do
both. The updated coefficients are written over the old filter coefficients.

FIR, IIR, and Adaptive Filters

 6-16

Example 6–8 shows the implementation of an adaptive FIR filter on the ’C3x.
The memory organization and the positioning of the data in memory follows
the same rules that apply to the FIR filter described in section 6.2.1 on page
6-7.

Example 6–8. Adaptive FIR Filter (LMS Algorithm)

; LMS == LMS ADAPTIVE FILTER

; EQUATIONS: y(n) = h(n,0)*x(n) + h(n,1)*x(n ±1) + ...+ h(n,N ±1)*x(n ±(N ±1))
; e(n) = d(n) – y(n)
; for (i = 0; i < N; i++)
; h(n+1,i) = h(n,i) + mu * e(n) * x(n ±i)

; TYPICAL CALLING SEQUENCE:

; load R4
; load AR0
; load AR1
; load AR6
; load RC
; load BK
; CALL FIR

; ARGUMENT ASSIGNMENTS:

; ARGUMENT | FUNCTION

; ––––––––––+–––––––––––––––––––––––––––––––––––––

; R4 | scale factor (2 * mu * err)
; AR0 | address of h(n,N ±1)
; AR1 | address of x(n ±(N ±1))
; AR6 | address of d(n)
; RC | length of filter ± 2 (N ±1)
; BK | length of filter (N)

; REGISTERS USED AS INPUT: R4, AR0, AR1, RC, BK
; REGISTERS MODIFIED: R0, R1, R2, R5, AR0, AR1, RC
; REGISTER CONTAINING RESULT: R0

; PROGRAM SIZE: 11 words

; EXECUTION CYCLES: 13 + 3N

;===

FIR, IIR, and Adaptive Filters

6-17DSP Algorithms

Example 6–8. Adaptive FIR Filter (LMS Algorithm) (Continued)

; setup (i = 0)

. .text
LMS:

ldf *ar6++,r5 ; Get desired sample
mpyf3 *ar0––%, *ar1++(1)%,r0 ; h(n,N–1) * x(n–(N–1)) –> R0

|| subf r2,r2,r2 ; init r2
* ; Initialize R0:

LMS MPYF3 *AR0, *AR1, R0
* ; h(n,N ±1) * x(n ±(N ±1)) ±> R0

LDF 0.0,R2 ; Initialize R2
*
* ; Initialize R1:

MPYF3 *AR1++(1)%, R4, R1 ; x(n ±(N ±1)) * tmuerr ±> R1

ADDF3 *AR0++(1), R1, R1
* ; h(n,N ±1) + x(n ±(N ±1)) *
* ; tmuerr ±> R1
*

* FILTER AND UPDATE (1 <= I < N)
*

RPTB LOOP ; Set up the repeat block
*
* ; Filter:

MPYF3 *AR0––(1),*AR1,R0 ; h(n,N ±1±i)
; * x(n ±(N ±1±i)) ±> R0

|| ADDF3 R0,R2,R2 ; Multiply and add operation
*
* ; UPDATE:

MPYF3 *AR1++(1)%,R4,R1 ; x(n,N ±(N ±1±i)) * tmuerr ±> R1
|| STF R1,*AR0++(1) ; R1 ±> h(n+1,N ±1±(i ±1))

*
LOOP ADDF3 *AR0++(1), R1, R1

* ; h(n,N ±1±i) + x(n ±(N ±1±i))
; *tmuerr ±> R1

*
ADDF3 R0,R2,R0 ; Add last product
STF R1,* ±AR0(1) ; h(n,0) + x(n)

; * tmuerr ±> h(n+1,0)
*

* RETURN SEQUENCE

*
RETS ; Return

*

* end
*

.end

Lattice Filters

 6-18

6.3 Lattice Filters

The lattice form is an alternative way of implementing digital filters. It has found
applications in speech processing, spectral estimation, and other areas. In this
discussion, the notation and terminology from speech processing applications
are used.

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 1/H(z)
is a filter having only 0s, and is called the inverse filter. The inverse lattice filter
is shown in Figure 6–4. These equations describe the filter in mathematical
terms:

f (i,n) = f (i – 1,n) + k (i) b (i – 1,n – 1)
b (i,n) = b (i – 1,n – 1) + k (i) f (i – 1,n)

Initial conditions:

f (0,n) = b (0,n) = x (n)

Final conditions:

y (n) = f (p,n)

In the above equation, f (i,n) is the forward error, b (i,n) is the backward error,
k (i) is the i-th reflection coefficient, x (n) is the input, and y (n) is the output
signal. The order of the filter (that is, the number of stages) is p. In the linear
predictive coding (LPC) method of speech processing, the inverse lattice filter
is used during analysis, and the (forward) lattice filter during speech synthesis.

Figure 6–4. Structure of the Inverse Lattice Filter

x(n) f(0, n) f(1, n) f(p –1, n) f(p, n) = y(n)

K1 K2 Kp

K1 K2 Kp

b(0, n) b(1, n) b(p–1, n)
z –1 z –1 z –1

Figure 6–5 shows the data memory organization of the inverse lattice filter on
the ’C3x.

Lattice Filters

6-19DSP Algorithms

Figure 6–5. Data Memory Organization for Forward and Inverse Lattice Filters

•
•
•

•
•
•

coefficients
Backward

propagation terms
Low

address

High
address

b(0, n –1)

b(1, n –1)

b(p –1, n –1)

k(1)

k(2)

k(p)

Reflection

Example 6–9 shows the implementation of an inverse lattice filter.

Example 6–9. Inverse Lattice Filter

* TITLE INVERSE LATTICE FILTER
*
* SUBROUTINE LATINV
*
* LATINV == LATTICE FILTER (LPC INVERSE FILTER ± ANALYSIS)
*
* TYPICAL CALLING SEQUENCE:
*

* load R2
* load AR0
* load AR1
* load RC
* CALL LATINV
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION

* ––––––––––+–––––––––––––––––––––––––––––––––––––

* R2 | f(0,n) = x(n)
* AR0 | ADDRESS OF FILTER COEFFICIENTS (k(1))
* AR1 | ADDRESS OF BACKWARD PROPAGATION
* | VALUES (b(0,n ±1))
* RC | RC = p ± 2
*

* REGISTERS USED AS INPUT: R2, AR0, AR1, RC
* REGISTERS MODIFIED: R0, R1, R2, R3, RS, RE, RC, AR0, AR1

* REGISTER CONTAINING RESULT: R2 (f(p,n))
*

Lattice Filters

 6-20

Example 6–9. Inverse Lattice Filter (Continued)

*
* PROGRAM SIZE: 10 WORDS
*
* EXECUTION CYCLES: 13 + 3 * (p ±1)
*

.global LATINV
*
* i = 1
*
LATINV MPYF3 *AR0, *AR1, R0

* ; k(1) * b(0,n ±1) ±> R0
* ; Assume f(0,n) ±> R2.

LDF R2,R3 ; Put b(0,n) = f(0,n) ±> R3.
MPYF3 *AR0++(1),R2,R1

* ; k(1) * f(0,n) ±> R1
*

* 2 <= i <= p

*
RPTB LOOP
MPYF3 *AR0,*++AR1(1),R0 ; k(i) * b(i ±1,n ±1) ±> R0

|| ADDF3 R2,R0,R2 ; f(i ±1±1,n)+k(i ±1)
* ; *b(i ±1±1,n ±1)
* ; = f(i ±1,n) ±> R2
*
* ; b(i ±1±1,b ±1)+k(i ±1)*f(i ±1±1,n)

ADDF3 *±AR1(1), R1, R3 ; = b(i ±1,n) ±> R3
|| STF R3, * ±AR1(1) ; b(i ±1±1,n) ±> b(i ±1±1,n ±1)
*
LOOP MPYF3 *AR0++(1),R2,R1
* ; k(i) * f(i ±1,n) ±> R1
*
* I = P+1 (CLEANUP)

ADDF3 R2,R0,R2 ; f(p ±1,n)+k(p)*b(p ±1,n ±1)
* ; = f(p,n) ±> R2
*
* ; b(p ±1,n ±1)+k(p)*f(p ±1,n)

ADDF3 *AR1, R1, R3 ; = b(p,n) ±> R3
|| STF R3, *AR1 ; b(p ±1,n) ±> b(p ±1,n ±1)

*

* RETURN SEQUENCE
*

RETS ; RETURN

*
* end
*
.end

Lattice Filters

6-21DSP Algorithms

The forward lattice filter is similar in structure to the inverse filter, as shown in
Figure 6–6.

Figure 6–6. Structure of the (Forward) Lattice Filter

y(n)f(1, n)f(2, n)x(n)

– K1– K2– Kp

K1K2Kp

b(1, n)b(2, n)
z –1 z –1 z –1

f(p–1, n)

b(p–1, n)

These corresponding equations describe the lattice filter:

f (i – 1,n) = f (i,n) – k (i) b (i – 1,n – 1)
b (i,n) = b (i – 1,n – 1) + k (i) f (i – 1,n)

Initial conditions:

f (p,n) = x (n), b (i,n – 1) = 0 for i = 1, ..., p

Final conditions:

y (n) = f (0,n)

The data memory organization is identical to that of the inverse filter, as shown
in Figure 6–5 on page 6-19. Example 6–10 shows the implementation of the
lattice filter on the ’C3x.

Lattice Filters

 6-22

Example 6–10. Lattice Filter

* TITLE LATTICE FILTER
*
* SUBROUTINE LATICE
*

* LOAD AR0
* LOAD AR1
* LOAD RC
* CALL LATICE
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION

* ––––––––––+–––––––––––––––––––––––––––––––––––––

* R2 | F(P,N) = E(N) = EXCITATION
* AR0 | ADDRESS OF FILTER COEFFICIENTS (K(P))
* AR1 | ADDRESS OF BACKWARD PROPAGATION VALUES (B(P±1,N ±1))

IR0 | 3
* RC | RC = P ± 3
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, RC
* REGISTERS MODIFIED: R0, R1, R2, R3, RS, RE, RC, AR0, AR1
* REGISTER CONTAINING RESULT: R2 (f(0,n))

*

* STACK USAGE: NONE
*
* PROGRAM SIZE: 12 WORDS
*
* EXECUTION CYCLES: 15 + 3 * (P ±2)
*

.global LATICE
*
LATICE MPYF3 *AR0,*AR1,R0
* ; K(P) * B(P ±1,N ±1) ±> R0

; Assume F(P,N) ±> R2
SUBF3 R0,R2,R2 ; F(P,N) ±K(P)*B(P ±1,N ±1)

; = F(P ±1,N) ±> R2
|| MPYF3 * ––AR0(1),* ––AR1(1),R0

; K(P–1) * B(P ±2,N ±1) ±> R0
SUBF3 R0,R2,R2 ; F(P–1,N) ±K(P–1)*B(P ±2,N ±1)

; = F(P ±2,N) ±> R2

Lattice Filters

6-23DSP Algorithms

Example 6–10. Lattice Filter (Continued)

|| MPYF3 * ––AR0(1),* ––AR1(1),R0
; K(P–2) * B(P–3,N–1) ±> R0

MPYF3 R2,*+AR0(1),R1 ; F(P–2,N) * K(P–1) ±> R1
ADDF3 R1,*+AR1(1),R3 ; F(P ±2,N) * K(P–1) + B(P ±2,N–1)

; = B(P–1,N) ±> R3
; 1 <= I <= P–2

*
RPTB LOOP
SUBF3 R0,R2,R2 ; F(I,N) – K(I) * B(I–1,N–1)

; = F(I–1,N) ±> R2
|| MPYF3 * ––AR0(1),* ––AR1(1),R0

; K(I–1) * B(I ±2,N ±1) ±> R0
STF R3,*+AR1(IR0) ; B(I+1,N) ±> B(I+1,N–1)

|| MPYF3 R2,*+AR0(1),R1 ; F(I–1,N) * K(I) ±> R1
LOOP ADDF3 R1,*+AR1(1),R3 ; F(I–1,N) * K(I) + B(I–1,N–1)

; = B(I,N) ±> R3
STF R3,*+AR1(2) ; B(1,N) ±> B(1,N ±1)
STF R2,*+AR1(1) ; F(0,N) ±> B(0,N ±1)

* RETURN SEQUENCE
*

RETS
*

* END
*

.end

Matrix-Vector Multiplication

 6-24

6.4 Matrix-Vector Multiplication

In matrix-vector multiplication, a K x N matrix of elements m(i,j) having K rows
and N columns is multiplied by an N x 1 vector to produce a K x 1 result. The
multiplier vector has elements v(j), and the product vector has elements p(i).
Each one of the product-vector elements is computed by the following expres-
sion:

p (i) = m (i,0) v (0) + m (i,1) v (1) + ... + m (i,N – 1) v (N – 1) i = 0,1,...,K – 1

This is essentially a dot product, and the matrix-vector multiplication contains,
as a special case, the dot product presented in Example 2–1 on page 2-3. In
pseudo-C format, the computation of the matrix multiplication is expressed by:

for (i = 0; i < K; i + +) {
p (i) = 0
for (j = 0; j < N; j + +)

p (i) = p (i) + m (i,j) * v (j)
 }

Figure 6–7 shows the data memory organization for matrix-vector multiplica-
tion, and Example 6–11 shows the ’C3x assembly code that implements it.
Note that in Example 6–11, K (number of rows) must be greater than 0 and N
(number of columns) must be greater than 1.

Figure 6–7. Data Memory Organization for Matrix-Vector Multiplication

•
•
•

•
•
•

•
•
•

Matrix storage
Input

vector storage
Result

vector storage
Low

address

High
address

p(0)
p(1)

v(0)
v(1)

p(K – 1)v(N – 1)

m(0, 0)

m(0, 1)

m(0, N – 1)
m(1, 0)
m(1, 1)

•
•
•

Matrix-Vector Multiplication

6-25DSP Algorithms

Example 6–11. Matrix Times a Vector Multiplication

*
* TITLE MATRIX TIMES A VECTOR MULTIPLICATION
*
* SUBROUTINE MAT

* MAT == MATRIX TIMES A VECTOR OPERATION
*
* TYPICAL CALLING SEQUENCE:*
* load AR0
* load AR1
* load AR2
* load AR3
* load R1
* CALL MAT
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION

* ––––––––––+–––––––––––––––––––––––––––––––––––––

* AR0 | ADDRESS OF M(0,0)
* AR1 | ADDRESS OF V(0)
* AR2 | ADDRESS OF P(0)
* AR3 | NUMBER OF ROWS ± 1 (K ±1)
* R1 | NUMBER OF COLUMNS ± 2 (N ±2)
*

* REGISTERS USED AS INPUT: AR0, AR1, AR2, AR3, R1
* REGISTERS MODIFIED: R0, R2, AR0, AR1, AR2, AR3, IR0,
* RC, RSA, REA
*
* PROGRAM SIZE: 11
*
* EXECUTION CYCLES: 6 + 10 * K + K * (N ± 1)
*

.global MAT

*
* SETUP

*
MAT LDI R1,IR0 ; Number of columns ±2 ±> IR0

ADDI 2,IR0 ; IR0 = N

*
* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS
*

Vector Maximum Search

 6-26

Example 6–11. Matrix Times a Vector Multiplication (Continued)

ROWS LDF 0.0,R2 ; Initialize R2
MPYF3 *AR0++(1),*AR1++(1),R0

* ; m(i,0) * v(0) ±> R0
*

* FOR (j = 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS
*

RPTS R1 ; Multiply a row by a column
*

MPYF3 *AR0++(1),*AR1++(1),R0 ; m(i,j) * v(j) ±> R0
|| ADDF3 R0,R2,R2 ; m(i,j ±1) * v(j ±1) + R2 ±> R2
*

DBD AR3,ROWS ; Counts the no. of rows left
*

ADDF R0,R2 ; Last accumulate
STF R2,*AR2++(1) ; Result ±> p(i)

NOP *––AR1(IR0) ; Set AR1 to point to v(0)

* !!! DELAYED BRANCH HAPPENS HERE !!!
*
* RETURN SEQUENCE
*

RETS ; Return

* end
*

.end

6.5 Vector Maximum Search

In vector maximum search, a vector of N elements is searched for its greatest
element:

max { p(i) }

In pseudo-C format, the search is expressed by:

max = 0
max location = 0
for (i=0; i < N; itt) }

if (max < p [i]}
max = p[i];
max location = i;

}
}

Example 6–12 shows an example.

Matrix-Vector Multiplication / Vector Maximum Search

Vector Maximum Search

6-27DSP Algorithms

Example 6–12. vecmax.asm

; Vector maximum search

; EQUATIONS: max = max {p(i) }

; TYPICAL CALLING SEQUENCE:

; load AR0
; load RC
; load R1
; CALL vecmax

; ARGUMENT ASSIGNMENTS:

; argument | function

; ––––––––––+–––––––––––––––––––––––––––––––––––––

; AR0 | address of vector
; RC | length of filter ± 2 (N ±2)
; R1 | length of filter – 1 (N–1)

; REGISTERS USED AS INPUT: AR0, R1, RC
; REGISTERS MODIFIED: R0, R1, AR0, RC
; REGISTER CONTAINING RESULT:
; R0 maximum value
; R1 index of maximum value

; PROGRAM SIZE: 5 words

; EXECUTION CYCLES: 2 + 3N

;===

.text
vecmax ldf *ar0––,r0 ; last value

rptb loop ;

cmpf3 *ar0,r0 ; Compare input value to maximum

ldile rc,r1 ; Write index of loop

loop ldfle *ar0––,r0 ; Load new max value

end

Fast Fourier Transforms (FFTs)

 6-28

6.6 Fast Fourier Transforms (FFTs)

Fourier transforms are an important tool often used in digital signal processing
(DSP) systems. The purpose of the transform is to convert information from
the time domain to the frequency domain. The inverse Fourier transform con-
verts information back to the time domain from the frequency domain. Imple-
mentation of Fourier transforms that are computationally efficient are known
as fast Fourier transforms (FFTs). The theory of FFTs can be found in books
such as DFT/FFT and Convolution Algorithms, and Digital Signal Processing
Applications With the TMS320 Family.

Fast Fourier transform is a label for a collection of algorithms that implement
efficient conversion from time to frequency domain. Distinctions are made
among FFTs based on the following characteristics:

� Radix-2 or radix-4 algorithms (depending on the size of the FFT butterfly)
� Decimation in time or frequency (DIT or DIF)
� Complex or real FFTs
� FFT length, etc.

Certain ’C3x features that increase the efficiency of numerically intensive algo-
rithms are particularly well suited for FFTs. The high speed of the device (33-ns
cycle time) makes implementation of real-time algorithms easier, while float-
ing-point capability eliminates the problems associated with dynamic range.
The powerful indirect-addressing indexing scheme facilitates the access of
FFT butterfly legs with different spans. The repeat block implemented by the
RPTB instruction reduces the looping overhead in algorithms heavily depen-
dent on loops (such as FFTs). This construct provides the efficiency of in-line
coding in loop form. The FFT reverses the bit order of the output; therefore,
the output must be reordered. This reordering does not require extra cycles,
because the device has a special mode of indirect addressing (bit-reversed
addressing) for accessing the FFT output in the original order.

The examples in this section are based on programs contained in the DFT/FFT
and Convolution Algorithms book and in the paper Real-Valued Fast Fourier
Transform Algorithms.

Fast Fourier Transforms (FFTs)

6-29DSP Algorithms

6.6.1 FFT Definition

The FFT is an efficient implementation of the discrete fourier transform (DFT)
equation:

�������
���

���

���� �	 �
�

�

�

The inverse DFT equation is:

������
�
�
�
���

��

����� �	 �
�

�
�

The FFT takes advantage of the periodic nature of the complex exponential

�	 �
�

� to reduce redundancy and number of calculations. The FFT expresses the

original DFT using two smaller DFTs of length �
�

. This definition is applied until

the original DFT has been expressed in terms of a 2-point DFT, which is nor-
mally referred to as radix-2 FFT.

There are two ways this decomposition process occurs:

� By decimation in time where the signals are split into several shorter inter-
leaved sequences (see Figure 6–8).

� By decimation in frequency where the signals are split into several smaller
interleaved frequency components (see Figure 6–9).

Figure 6–8. Decimation in Time for an 8-Point FFT

Stage 1Stage 2Stage 3

X(4)x(1)

X(5)

X(6)

X(7)

–W1

–W2

–W3

W2

–W0

–W2

–W0

W0

–W0

x(5)

x(3)

x(7)

W0 W0 –W0

X(2)x(2)

X(3)
W3–W2–W0

x(6)
W0 –W0 W2

X(1)x(4)
–W0 W2 W1

X(0)
W0W0W0

x(0)

Fast Fourier Transforms (FFTs)

 6-30

Figure 6–9. Decimation in Frequency for 8-Point FFT

–1

–1

–1

–1

–1

W2
–1

W0

–1

W2
–1

W0

W0

W1
–1

W2
–1

–1

W3
–1

Stage 3Stage 2Stage 1

X(1)
x(1)

X(5)

X(3)

X(7)

x(5)

x(3)

x(7)

X(2)
x(2)

X(6)
x(6)

X(4)
x(4)

X(0)
x(0)

��
� �� �

�

�
�

6.6.2 Complex Radix-2 DIF FFT

Example 6–13 and Example 6–14 show the implementation of a complex
radix-2 DIF FFT on the ’C3x. Example 6–13 contains the generic code of the
FFT, which can be used with a FFT of any length. However, for the complete
implementation of an FFT, you need a table of twiddle factors (sines/cosines);
the length of the table depends on the size of the transform. A table with twiddle
factors (containing 1-1/4 complete cycles of a sine) is presented separately in
Example 6–14 as a 64-point FFT. This retains the generic form of the radix-2
DIF FFT in Example 6–13. A full sine wave must have an equal number of
samples as the length of the FFT. Example 6–14 uses two variables: N, which
is the FFT length, and M, which is the logarithm of N to a base equal to the
radix. In other words, M is the number of stages of the FFT. For example, in
a 64-point FFT, M = 6 when using a radix-2 algorithm, and M = 3 when using
a radix-4 algorithm. If the table with the twiddle factors and the FFT code are
kept in separate files, they will be connected at link time.

Fast Fourier Transforms (FFTs)

6-31DSP Algorithms

Example 6–13. Complex Radix-2 DIF FFT

*
* TITLE COMPLEX, RADIX–2, DIF FFT
*
* GENERIC PROGRAM FOR LOOPED±CODE RADIX±2 FFT COMPUTATION IN TMS320C3x
*
* THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111.
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION
* IS DONE IN PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY
* SECTION TO DEMONSTRATE THE BIT±REVERSED ADDRESSING.
*
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA
* SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE
* GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF
* THE FFTN AND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED
* DURING LINKING.
*
*

.globl FFT ; Entry point for execution

.globl N ; FFT size

.globl M ; LOG2(N)

.globl SINE ; Address of sine table

INP .usect “IN”,1024 ; Memory with input data
.BSS OUTP,1024 ; Memory with output data

.text

* INITIALIZE

FFTSIZ .word N
LOGFFT .word M
SINTAB .word SINE
INPUT .word INP
OUTPUT .word OUTP

FFT: LDP FFTSIZ ; Command to load data page pointer

LDI @FFTSIZ,IR1
LSH ±2,IR1 ; IR1 = N/4, p ointer for SIN/COS table
LDI 0,AR6 ; AR6 holds the current stage number
LDI @FFTSIZ,IR0
LSH 1,IR0 ; IR0 = 2*N1 (because of real/imag)
LDI @FFTSIZ,R7 ; R7 = N2
LDI 1,AR7 ; Initialize repeat counter

; of first loop
LDI 1,AR5 ; Initialize IE index (AR5 = IE)

Fast Fourier Transforms (FFTs)

 6-32

Example 6–13. Complex Radix-2 DIF FFT (Continued)

* OUTER LOOP

LOOP: NOP *++AR6(1) ; Current FFT stage
LDI @INPUT,AR0 ; AR0 points to X(I)
ADDI R7,AR0,AR2 ; AR2 points to X(L)
LDI AR7,RC
SUBI 1,RC ; RC s hould be one less than desired #

* FIRST LOOP

RPTB BLK1
ADDF *AR0,*AR2,R0 ; R0 = X(I)+X(L)
SUBF *AR2++,*AR0++,R1 ; R1 = X(I) ±X(L)
ADDF *AR2,*AR0,R2 ; R2 = Y(I)+Y(L)
SUBF *AR2,*AR0,R3 ; R3 = Y(I) ±Y(L)
STF R2,*AR0–– ; Y(I) = R2 and...

|| STF R3,*AR2–– ; Y(L) = R3
BLK1 STF R0,*AR0++(IR0) ; X(I) = R0 and...
|| STF R1,*AR2++(IR0) ; X(L) = R1 and AR0,2 = AR0,2 + 2*n

* IF THIS IS THE LAST STAGE, YOU ARE DONE

CMPI @LOGFFT,AR6
BZD END

* MAIN INNER LOOP

LDI 2,AR1 ; Init loop counter for
; inner loop

LDI @SINTAB,AR4 ; Initialize IA index (AR4 = IA)
INLOP: ADDI AR5,AR4 ; IA = IA+IE; AR4 points to

; cosine
LDI AR1,AR0
ADDI 2,AR1 ; Increment inner loop counter
ADDI @INPUT,AR0 ; (X(I),Y(I)) pointer
ADDI R7,AR0,AR2 ; (X(L),Y(L)) pointer
LDI AR7,RC
SUBI 1,RC ; RC s hould be 1 less than

; desired #
LDF *AR4,R6 ; R6 = SIN

* SECOND LOOP

RPTB BLK2
SUBF *AR2,*AR0,R2 ; R2 = X(I) ±X(L)
SUBF *+AR2,*+AR0,R1

* ; R1 = Y(I) ±Y(L)
MPYF R2,R6,R0 ; R0 = R2*SIN and...

|| ADDF *+AR2,*+AR0,R3
* ; R3 = Y(I)+Y(L)

MPYF R1,*+AR4(IR1),R3 ; R3 = R1*COS and ...
|| STF R3,*+AR0 ; Y(I) = Y(I)+Y(L)

SUBF R0,R3,R4 ; R4 = R1 * COS ±R2 * SIN
MPYF R1,R6,R0 ; R0 = R1 * SIN and...

Fast Fourier Transforms (FFTs)

6-33DSP Algorithms

Example 6–13. Complex Radix-2 DIF FFT (Continued)

|| ADDF *AR2,*AR0,R3 ; R3 = X(I) + X(L)
MPYF R2,*+AR4(IR1),R3 ; R3 = R2 * COS and...

|| STF R3,*AR0++(IR0)
* ; X(I) = X(I)+X(L) and AR0 = AR0+2*N1

ADDF R0,R3,R5 ; R5 = R2*COS+R1*SIN
BLK2 STF R5,*AR2++(IR0) ; X(L) = R2 * COS+R1 * SIN,

; incr AR2 and...
|| STF R4,*+AR2 ; Y(L) = R1*COS ±R2*SIN

CMPI R7,AR1
BNE INLOP ; Loop back to the inner loop

LSH 1,AR7 ; Increment loop counter for next time
BRD LOOP ; Next FFT stage (delayed)
LSH 1,AR5 ; IE = 2*IE
LDI R7,IR0 ; N1 = N2
LSH ±1,R7 ; N2 = N2/2

* STORE RESULT OUT USING BIT-REVERSED ADDRESSING

END: LDI @FFTSIZ,RC ; RC = N
SUBI 1,RC ; RC s hould be one less than desired #
LDI @FFTSIZ,IR0 ; IR0 = size of FFT = N
LDI 2,IR1
LDI @INPUT,AR0
LDI @OUTPUT,AR1

RPTB BITRV
LDF *+AR0(1),R0

|| LDF *AR0++(IR0)B,R1
BITRV STF R0,*+AR1(1)
|| STF R1,*AR1++(IR1)

SELF BR SELF ; Branch to itself at the end
.end

Fast Fourier Transforms (FFTs)

 6-34

Example 6–14. Table With Twiddle Factors for a 64-Point FFT

*
*TITLE TABLE WITH TWIDDLE FACTORS FOR A 64 ±POINT FFT
*
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64–POINT, RADIX ±2 FFT *

.globl SINE

.globl N

.globl M

N .set 64
M .set 6

.data

SINE
.float 0.000000
.float 0.098017
.float 0.195090
.float 0.290285
.float 0.382683
.float 0.471397
.float 0.555570
.float 0.634393
.float 0.707107
.float 0.773010
.float 0.831470
.float 0.881921
.float 0.923880
.float 0.956940
.float 0.980785
.float 0.995185

COSINE
.float 1.000000
.float 0.995185
.float 0.980785
.float 0.956940
.float 0.923880
.float 0.881921
.float 0.831470
.float 0.773010
.float 0.707107
.float 0.634393
.float 0.555570
.float 0.471397
.float 0.382683
.float 0.290285
.float 0.195090
.float 0.098017

Fast Fourier Transforms (FFTs)

6-35DSP Algorithms

Example 6–14. Table With Twiddle Factors for a 64-Point FFT (Continued)

.float 0.000000

.float ± 0.098017

.float ± 0.195090

.float ± 0.290285

.float ± 0.382683

.float – 0.471397

.float –0.555570

.float – 0.634393

.float – 0.707107

.float – 0.773010

.float – 0.831470

.float – 0.881921

.float – 0.923880

.float – 0.956940

.float – 0.980785

.float – 0.995185

.float –1.000000

.float – 0.995185

.float – 0.980785

.float – 0.956940

.float – 0.923880

.float – 0.881921

.float – 0.831470

.float – 0.773010

.float – 0.707107

.float – 0.634393

.float – 0.555570

.float – 0.471397

.float – 0.382683

.float – 0.290285

.float – 0.195090

.float – 0.098017

.float 0.000000

.float 0.098017

.float 0.195090

.float 0.290285

.float 0.382683

.float 0.471397

.float 0.555570

.float 0.634393

.float 0.707107

.float 0.773010

.float 0.831470

.float 0.881921

.float 0.923880

.float 0.956940

.float 0.980785

.float 0.995185

Fast Fourier Transforms (FFTs)

 6-36

6.6.3 Complex Radix-4 DIF FFT

The radix-2 algorithm has tutorial value because the functioning of the FFT
algorithm is relatively easy to understand. However, radix-4 implementation
can increase execution speed by reducing the amount of arithmetic required.
Example 6–15 shows the generic implementation of a complex DIF FFT in
radix-4. A companion table, such as the one in Example 6–14, must have a
value of M equal to the logN, where the base of the logarithm is 4.

Example 6–15. Complex Radix-4 DIF FFT

*
* TITLE COMPLEX, RADIX-4, DIF FFT
*
* GENERIC PROGRAM TO PERFORM A LOOPED±CODE RADIX±4 FFT COMPUTATION
* IN THE TMS320C3x
*
* THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 117.
* THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY, AND THE COMPUTATION
* IS DONE IN PLACE.
*
* THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE THAT IS PUT IN A .DATA
* SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE
* GENERIC NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF
* THE FFT N AND LOG4(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND
* SPECIFIED DURING LINKING.
*
* IN ORDER TO HAVE THE FINAL RESULT IN BIT ±REVERSED ORDER, THE TWO
* MIDDLE BRANCHES OF THE RADIX±4 BUTTERFLY ARE INTERCHANGED DURING
* STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM IN
* P. 117 OF THE BURRUS AND PARKS BOOK.
*

*
.globl FFT ; Entry point for execution
.globl N ; FFT size
.globl M ; LOG4(N)
.globl SINE ; Address of sine table

.usect “IN”,1024 ; Memory with input data

.text

* INITIALIZE

TEMP .word $+2
STORE .word FFTSIZ ; Beginning of temp storage area

.word N

.word M

.word SINE

.word INP

Fast Fourier Transforms (FFTs)

6-37DSP Algorithms

Example 6–15. Complex Radix-4 DIF FFT (Continued)

.BSS FFTSIZ,1 ; FFT size

.BSS LOGFFT,1 ; LOG4(FFTSIZ)

.BSS SINTAB,1 ; Sine/cosine table base

.BSS INPUT,1 ; Area with input data to process

.BSS STAGE,1 ; FFT stage #

.BSS RPTCNT,1 ; Repeat counter

.BSS IEINDX,1 ; IE index for sine/cosine

.BSS LPCNT,1 ; Second ±loop count

.BSS JT,1 ; JT counter in program, P. 117

.BSS IA1,1 ; IA1 index in program, P. 117

FFT:

* INITIALIZE DATA LOCATIONS

LDP TEMP ; Command to load data page counter
LDI @TEMP,AR0
LDI @STORE,AR1
LDI *AR0++,R0 ; Xfer data from one memory to the other
STI R0,*AR1++
LDI *AR0++,R0
STI R0,*AR1++
LDI *AR0++,R0
STI R0,*AR1++
LDI *AR0,R0
STI R0,*AR1

LDP FFTSIZ ; Command to load data page pointer
LDI @FFTSIZ,R0
LDI @FFTSIZ,IR0
LDI @FFTSIZ,IR1
LDI 0,AR7
STI AR7,@STAGE ; @STAGE holds the current stage number
LSH 1,IR0 ; IR0 = 2*N1 (because of real/imag)
LSH ±2,IR1 ; IR1 = N/4, pointer for SIN/COS table
LDI 1,AR7
STI AR7,@RPTCNT ; Init repeat counter of first loop
STI AR7,@IEINDX ; Init. IE index
LSH ±2,R0 ; JT = R0/2+2
ADDI 2,R0
STI R0,@JT
SUBI 2,R0
LSH 1,R0 ; R0 = N2

* OUTER LOOP

LOOP:
LDI @INPUT,AR0 ; AR0 points to X(I)
ADDI R0,AR0,AR1 ; AR1 points to X(I1)
ADDI R0,AR1,AR2 ; AR2 points to X(I2)
ADDI R0,AR2,AR3 ; AR3 points to X(I3)
LDI @RPTCNT,RC
SUBI 1,RC ; RC s hould be one less than desired #

Fast Fourier Transforms (FFTs)

 6-38

Example 6–15. Complex Radix-4 DIF FFT (Continued)

* FIRST LOOP

RPTB BLK1
ADDF *+AR0,*+AR2,R1

* ; R1 = Y(I)+Y(I2)
ADDF *+AR3,*+AR1,R3

* ; R3 = Y(I1)+Y(I3)
ADDF R3,R1,R6 ; R6 = R1+R3
SUBF *+AR2,*+AR0,R4

* ; R4 = Y(I) ±Y(I2)
STF R6,*+AR0 ; Y(I) = R1+R3
SUBF R3,R1 ; R1 = R1 ±R3
LDF *AR2,R5 ; R5 = X(I2)

|| LDF *+AR1,R7 ; R7 = Y(I1)
ADDF *AR3,*AR1,R3 ; R3 = X(I1)+X(I3)
ADDF R5,*AR0,R1 ; R1 = X(I)+X(I2)

|| STF R1,*+AR1 ; Y(I1) = R1 ±R3
ADDF R3,R1,R6 ; R6 = R1+R3
SUBF R5,*AR0,R2 ; R2 = X(I) ±X(I2)

|| STF R6,*AR0++(IR0) ; X(I) = R1+R3
SUBF R3,R1 ; R1 = R1 ±R3
SUBF *AR3,*AR1,R6 ; R6 = X(I1) ±X(I3)
SUBF R7,*+AR3,R3 ; ±R3 = Y(I1) ±Y(I3)

|| STF R1,*AR1++(IR0) ; X(I1) = R1 ±R3
SUBF R6,R4,R5 ; R5 = R4 ±R6
ADDF R6,R4 ; R4 = R4+R6
STF R5,*+AR2 ; Y(I2) = R4 ±R6

|| STF R4,*+AR3 ; Y(I3) = R4+R6
SUBF R3,R2,R5 ; R5 = R2 ±R3
ADDF R3,R2 ; R2 = R2+R3

BLK1 STF R5,*AR2++(IR0) ; X(I2) = R2 ±R3
|| STF R2,*AR3++(IR0) ; X(I3) = R2+R3

* IF THIS IS THE LAST STAGE, YOU ARE DONE

LDI @STAGE,AR7
ADDI 1,AR7
CMPI @LOGFFT,AR7
BZD END
STI AR7,@STAGE ; Current FFT stage

* MAIN INNER LOOP

LDI 1,AR7
STI AR7,@IA1 ; Init IA1 index
LDI 2,AR7
STI AR7,@LPCNT ; Init loop counter for inner loop

; INLOP:
LDI 2,AR6 ; Increment inner loop counter
ADDI @LPCNT,AR6
LDI @LPCNT,AR0
LDI @IA1,AR7

Fast Fourier Transforms (FFTs)

6-39DSP Algorithms

Example 6–15. Complex Radix-4 DIF FFT (Continued)

ADDI @IEINDX,AR7 ; IA1 = IA1+IE
ADDI @INPUT,AR0 ; (X(I),Y(I)) pointer
STI AR7,@IA1
ADDI R0,AR0,AR1 ; (X(I1),Y(I1)) pointer
STI AR6,@LPCNT
ADDI R0,AR1,AR2 ; (X(I2),Y(I2)) pointer
ADDI R0,AR2,AR3 ; (X(I3),Y(I3)) pointer
LDI @RPTCNT,RC
SUBI 1,RC ; RC s hould be one less than desired #
CMPI @JT,AR6 ; If LPCNT = JT, go to
BZD SPCL ; special butterfly
LDI @IA1,AR7
LDI @IA1,AR4
ADDI @SINTAB,AR4 ; Create cosine index AR4
SUBI 1,AR4 ; Adjust sine table pointer
ADDI AR4,AR7,AR5
SUBI 1,AR5 ; IA2 = IA1+IA1 ±1
ADDI AR7,AR5,AR6
SUBI 1,AR6 ; IA3 = IA2+IA1 ±1

* SECOND LOOP

RPTB BLK2
ADDF *+AR2,*+AR0,R3

* ; R3 = Y(I)+Y(I2)
ADDF *+AR3,*+AR1,R5

* ; R5 = Y(I1)+Y(I3)
ADDF R5,R3,R6 ; R6 = R3+R5
SUBF *+AR2,*+AR0,R4

* ; R4 = Y(I) ±Y(I2)
SUBF R5,R3 ; R3 = R3 ±R5
ADDF *AR2,*AR0,R1 ; R1 = X(I)+X(I2)
ADDF *AR3,*AR1,R5 ; R5 = X(I1)+X(I3)
MPYF R3,*+AR5(IR1),R6 R6 = R3*CO2

|| STF R6,*+AR0 ; Y(I) = R3+R5
ADDF R5,R1,R7 ; R7 = R1+R5
SUBF *AR2,*AR0,R2 ; R2 = X(I) ±X(I2)
SUBF R5,R1 ; R1 = R1 ±R5
MPYF R1,*AR5,R7 ; R7 = R1*SI2

|| STF R7,*AR0++(IR0) ; X(I) = R1+R5
SUBF R7,R6 ; R6 = R3*CO2 ±R1*SI2
SUBF *+AR3,*+AR1,R5

* ; R5 = Y(I1) ±Y(I3)
MPYF R1,*+AR5(IR1),R7 ; R7 = R1*C02

|| STF R6,*+AR1 ; Y(I1) = R3*CO2 ±R1*SI2
MPYF R3,*AR5,R6 ; R6 = R3*SI2
ADDF R7,R6 ; R6 = R1*CO2+R3*SI2
ADDF R5,R2,R1 ; R1 = R2+R5
SUBF R5,R2 ; R2 = R2 ±R5
SUBF *AR3,*AR1,R5 ; R5 = X(I1) ±X(I3)
SUBF R5,R4,R3 ; R3 = R4 ±R5
ADDF R5,R4 ; R4 = R4+R5
MPYF R3,*+AR4(IR1),R6 ; R6 = R3*CO1

Fast Fourier Transforms (FFTs)

 6-40

Example 6–15. Complex Radix-4 DIF FFT (Continued)

|| STF R6,*AR1++(IR0) ; X(I1) = R1*CO2+R3*SI2
MPYF R1,*AR4,R7 ; R7 = R1*SI1
SUBF R7,R6 ; R6 = R3*CO1 ±R1*SI1
MPYF R1,*+AR4(IR1),R6 ; R6 = R1*CO1

|| STF R6,*+AR2 ; Y(I2) = R3*CO1 ±R1*SI1
MPYF R3,*AR4,R7 ; R7 = R3*SI1
ADDF R7,R6 ; R6 = R1*C O1+R3*SI1
MPYF R4,*+AR6(IR1),R6 ; R6 = R4*CO3

|| STF R6,*AR2++(IR0) ; X(I2) = R1*CO1+R3*SI1
MPYF R2,*AR6,R7 ; R7 = R2*SI3
SUBF R7,R6 ; R6 = R4*CO3 ±R2*SI3
MPYF R2,*+AR6(IR1),R6 ; R6 = R2*CO3

|| STF R6,*+AR3 ; Y(I3) = R4*CO3 ±R2*SI3
MPYF R4,*AR6,R7 ; R7 = R4*SI3
ADDF R7,R6 ; R6 = R2*CO3+R4*SI3

BLK2 STF R6,*AR3++(IR0)
* ; x(i3) = R2*CO3+R4*SI3

CMPI @LPCNT,R0
BP INLOP ; Loop back to the inner loop
BR CONT

* SPECIAL BUTTERFLY FOR W = J

SPCL LDI IR1,AR4
LSH±1,AR4 ; Point to SIN(45)
ADDI @SINTAB,AR4 ; Create cosine index AR4 = CO21

RPTB BLK3
ADDF *AR2,*AR0,R1 ; R1 = X(I)+X(I2)
SUBF *AR2,*AR0,R2 ; R2 = X(I) ±X(I2)
ADDF *+AR2,*+AR0,R3

* ; R3 = Y(I)+Y(I2)
SUBF *+AR2,*+AR0,R4

* ; R4 = Y(I) ±Y(I2)
ADDF *AR3,*AR1,R5 ; R5 = X(I1)+X(I3)
SUBF R1,R5,R6 ; R6 = R5 ±R1
ADDF R5,R1 ; R1 = R1+R5
ADDF *+AR3,*+AR1,R5

* ; R5 = Y(I1)+Y(I3)
SUBF R5,R3,R7 ; R7 = R3 ±R5
ADDF R5,R3 ; R3 = R3+R5
STF R3,*+AR0 ; Y(I) = R3+R5

|| STF R1,*AR0++(IR0) ; X(I) = R1+R5
SUBF *AR3,*AR1,R1 ; R1 = X(I1) ±X(I3)
SUBF *+AR3,*+AR1,R3

* ; R3 = Y(I1) ±Y(I3)
STF R6,*+AR1 ; Y(I1) = R5 ±R1

Fast Fourier Transforms (FFTs)

6-41DSP Algorithms

Example 6–15. Complex Radix-4 DIF FFT (Continued)

|| STF R7,*AR1++(IR0) ; X(I1) = R3 ±R5
ADDF R3,R2,R5 ; R5 = R2+R3
SUBF R2,R3,R2 ; R2 = ±R2+R3
SUBF R1,R4,R3 ; R3 = R4 ±R1
ADDF R1,R4 ; R4 = R4+R1
SUBF R5,R3,R1 ; R1 = R3 ±R5
MPYF *AR4,R1 ; R1 = R1*CO21
ADDF R5,R3 ; R3 = R3+R5
MPYF *AR4,R3 ; R3 = R3*CO21

|| STF R1,*+AR2 ; Y(I2) = (R3 ±R5)*CO21
SUBF R4,R2,R1 ; R1 = R2 ±R4
MPYF *AR4,R1 ; R1 = R1*CO21

|| STF R3,*AR2++(IR0) ; X(I2) = (R3+R5)*CO21
ADDF R4,R2 ; R2 = R2+R4
MPYF *AR4,R2 ; R2 = R2*CO21

BLK3 STF R1,*+AR3 ; Y(I3) = ±(R4 ±R2)*CO21
|| STF R2,*AR3++(IR0) ; X(I3) = (R4+R2)*CO21

CMPI @LPCNT,R0
BPD INLOP ; Loop back to the inner loop

CONT LDI @RPTCNT,AR7
LDI @IEINDX,AR6
LSH 2,AR7 ; Increment repeat counter for

* ; next time
STI AR7,@RPTCNT
LSH 2,AR6 ; IE = 4*IE
STI AR6,@IEINDX
LDI R0,IR0 ; N1 = N2
LSH –3,R0
ADDI 2,R0
STI R0,@JT ; JT = N2/2+2
SUBI 2,R0
LSH 1,R0 ; N2 = N2/4
BR LOOP ; Next FFT stage

* STORE RESULT USING BIT ±REVERSED ADDRESSING

END: LDI @FFTSIZ,RC ; RC = N
SUBI 1,RC ; RC s hould be one less than desired #
LDI @FFTSIZ,IR0 ; IR0 = size of FFT = N
LDI 2,IR1
LDI @INPUT,AR0
LDP STORE
LDI @STORE,AR1

RPTB BITRV
LDF *+AR0(1),R0

|| LDF *AR0++(IR0)B,R1
BITRV STF R0,*+AR1(1)
|| STF R1,*AR1++(IR1)

SELF BR SELF ; Branch to itself at the end
.end

Fast Fourier Transforms (FFTs)

 6-42

6.6.4 Real Radix-2 FFT

In many cases, the data to be transformed is usually a sequence of real num-
bers. This real input data has properties that reduce the computational load of
the FFT algorithm even further. The FFT algorithm that exploits such properties
is called a real radix-2 FFT. Example 6–16 shows the generic implementation
of a real-valued, forward radix-2 FFT. For such an FFT, the total storage required
for a length-N transform is only N locations; in a complex FFT, 2N locations are
necessary. Recovery of the rest of the points is based on the symmetry condi-
tions.

Example 6–16. Real Forward Radix-2 FFT

* FILENAME : ffft_rl.asm
*
* WRITTEN BY : Alex Tessarolo
* Texas Instruments, Australia
*
* DATE : 23rd July 1991
*
* VERSION : 2.0
*

* VER DATE COMMENTS
* ––– –––––––––––– –––
* 1.0 18th July 91 Original release.
* 2.0 23rd July 91 Most stages modified.
* Minimum FFT size increased from 32 to 64.
* Faster in place bit reversing algorithm.
* Program size increased by about 100 words.
* One extra data word required.

* SYNOPSIS: int ffft_rl(FFT_SIZE, LOG_SIZE, SOURCE_ADDR, DEST_ADDR,
* SINE_TABLE, BIT_REVERSE);
*
* int FFT_SIZE ; 64, 128, 256, 512, 1024, ...
* int LOG_SIZE ; 6, 7, 8, 9, 10, ...
* float *SOURCE_ADDR ; Points to location of source data.
* float *DEST_ADDR ; Points to where data will be
* ; operated on and stored.
* float *SINE_TABLE ; Points to the SIN/COS table.
* int BIT_REVERSE ; = 0, bit reversing is disabled.
* ; <> 0, input bit is provided, reversed

; is enabled.
*
* NOTE: 1) If SOURCE_ADDR = DEST_ADDR, then in-place bit
* reversing is performed, if enabled (more
* processor intensive).
* 2) FFT_SIZE must be >= 64 (this is not checked).
*

Fast Fourier Transforms (FFTs)

6-43DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

* DESCRIPTION: Generic function to do a radix–2 FFT computation on the C30.
* The data array is FFT_SIZE–long with only real data. The out-
* put is stored in the same locations with real and imaginary
* points R and I as follows:
*
* DEST_ADDR[0] R(0)
* R(1)
* R(2)
* R(3)
* .
* .
* R(FFT_SIZE/2)
* I(FFT_SIZE/2 – 1)
* .
* .
* I(2)
* DEST_ADDR[FFT_SIZE – 1] I(1)
*
* The program is based on the FORTRAN program in the
* paper by Sorensen et al., June 1987 issue of Trans.
* on ASSP.
*
* Bit reversal is optionally implemented at the begin-
* ning of the function.
* If bit reversal is selected (bit reverse � 0), the data
* input is expected in bit-reverse order
* The sine/cosine table for the twiddle factors is ex-
* pected to be supplied in the following format:
*
* SINE_TABLE[0] s sin(0*2*pi/FFT_SIZE)
* sin(1*2*pi/FFT_SIZE)
* .
* .
* sin((FFT_SIZE/2–2)*2*pi/FFT_SIZE)
* SINE_TABLE[FFT_SIZE/2 – 1] sin((FFT_SIZE/2–1)*2*pi/FFT_SIZE)
*
* NOTE: The table is the first half period of a sine wave.
*
* Stack structure upon call:
*
*
* –FP(7)
* –FP(6)
* –FP(5)
* –FP(4)
* –FP(3)
* –FP(2)
* –FP(1)
* –FP(0)
*
*

BIT_REVERSE
SINE_TABLE
DEST_ADDR
SOURCE_ADDR
LOG_SIZE
FFT_SIZE
returne
addr
old FP

Fast Fourier Transforms (FFTs)

 6-44

Example 6–16. Real Forward Radix-2 FFT (Continued)

*
* NOTE: Calling C program can be compiled using either large
* or small model.
*
* WARNING: DP initialized only once in the program. Be wary
* with interrupt service routines. Make sure interrupt
* service routines save the DP pointer.
*
* WARNING: The DEST_ADDR must be aligned such that the first
* LOG_SIZE bits are zero (this is not checked by the
* program).
*

*

* REGISTERS USED: R0, R1, R2, R3, R4, R5, R6, R7
* AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
* IR0, IR1
* RC, RS, RE
* DP
*
* MEMORY REQUIREMENTS: Program = 405 Words (approximately)
* Data = 7 Words
* Stack = 12 Words
*

*

* BENCHMARKS: Assumptions – Program in RAM0
* – Reserved data in RAM0
* – Stack on primary/expansion bus RAM
* – Sine/cosine tables in RAM0
* – Processing and data destination in RAM1.
* – Primary/expansion bus RAM, 0 wait state.
*
* FFT Size Bit Reversing Data Source Cycles(C30)
* –––––––– ––––––––––––– ––––––––––– –––––––––––
* 1024 OFF RAM1 19816 approx.
* Note: This number does not include the C callable overheads.
* Add 57 cycles for these overheads.
*

FP .set AR3

.global _ffft_rl ; Entry execution point.

FFT_SIZE: .usect ”.fftdata”,1 ; Reserve memory for arguments.
LOG_SIZE: .usect ”.fftdata”,1
SOURCE_ADDR: .usect ”.fftdata”,1
DEST_ADDR: .usect ”.fftdata”,1
SINE_TABLE: .usect ”.fftdata”,1
BIT_REVERSE: .usect ”.fftdata”,1
SEPARATION: .usect ”.fftdata”,1

Fast Fourier Transforms (FFTs)

6-45DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Initialize C function.
;

.sect ”.ffttext”

_ffft_rl: PUSH FP ; Preserve C environment.
LDI SP,FP
PUSH R4
PUSH R5

 PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP

LDP FFT_SIZE ; Init. DP pointer.

LDI *–FP(2),R0 ; Move arguments from stack.
STI R0,@FFT_SIZE
LDI *–FP(3),R0
STI R0,@LOG_SIZE
LDI *–FP(4),R0
STI R0,@SOURCE_ADDR
LDI *–FP(5),R0
STI R0,@DEST_ADDR
LDI *–FP(6),R0
STI R0,@SINE_TABLE
LDI *–FP(7),R0
STI R0,@BIT_REVERSE

;
 ; Check bit reversing mode (on or off).

;
 ; BIT_REVERSING = 0, then OFF

; (no bit reversing).
; BIT_REVERSING <> 0, Then ON.
;

LDI @BIT_REVERSE,R0
CMPI 0,R0
BZ MOVE_DATA

;
; Check bit reversing type.
;
; If SourceAddr = DestAddr, then in place
; bit reversing.
; If SourceAddr <> DestAddr, then
; standard bit reversing.
;

Fast Fourier Transforms (FFTs)

 6-46

Example 6–16. Real Forward Radix-2 FFT (Continued)

LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ IN_PLACE

;
; Bit reversing Type 1 (from source to
; destination).
;
;NOTE: abs(SOURCE_ADDR – DEST_ADDR)
; must be > FFT_SIZE, this is not
; checked.
;

LDI @FFT_SIZE,R0
SUBI 2,R0
LDI @FFT_SIZE,IR0
LSH –1,IR0 ; IRO = half FFT size.
LDI @SOURCE_ADDR,AR0
LDI @DEST_ADDR,AR1

LDF *AR0++,R1

RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++(IR0)B

STF R1,*AR1++(IR0)B

BR START

;
; In-place bit reversing.
;

; Bit reversing on even locations,
; 1st half only.

IN_PLACE: LDI @FFT_SIZE,IR0
LSH –2,IR0 ; IRO = quarter FFT size.
LDI 2,IR1

LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 3,RC
LDI @DEST_ADDR,AR0
LDI AR0,AR1
LDI AR0,AR2

NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
CMPI AR1,AR0 ; X change locs only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1

Fast Fourier Transforms (FFTs)

6-47DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

RPTB BITRV1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV1: LDFGT *AR1++(IR0)B,R0

STF R0,*AR0
STF R1,*AR2

; Perform bit reversing on odd
; locations, 2nd half only.

LDI @FFT_SIZE,RC
LSH –1,RC
LDI @DEST_ADDR,AR0
ADDI RC,AR0
ADDI 1,AR0
LDI AR0,AR1
LDI AR0,AR2
LSH –1,RC
SUBI 3,RC

NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
CMPI AR1,AR0 ; Xchange locs only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1

RPTB BITRV2
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV2: LDFGT *AR1++(IR0)B,R0

STF R0,*AR0
STF R1,*AR2

; Perform bit reversing on odd
; locations, 1st half only.

Fast Fourier Transforms (FFTs)

 6-48

Example 6–16. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,RC
LSH –1,RC
LDI RC,IR0
LDI @DEST_ADDR,AR0
LDI AR0,AR1
ADDI 1,AR0
ADDI IR0,AR1
LSH –1,RC
LDI RC,IR0
SUBI 2,RC

LDF *AR0,R0
LDF *AR1,R1

RPTB BITRV3
LDF *++AR0(IR1),R0

|| STF R0,*AR1++(IR0)B
BITRV3: LDF *AR1,R1

|| STF R1,*–AR0(IR1)

STF R0,*AR1
STF R1,*AR0

BR START

;
; Check data source locations.
;
; If SourceAddr = DestAddr, then
; do nothing.
; If SourceAddr <> DestAddr, then move

data.
;

MOVE_DATA: LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ START

LDI @FFT_SIZE,R0
SUBI 2,R0
LDI @SOURCE_ADDR,AR0
LDI @DEST_ADDR,AR1

LDF *AR0++,R1

RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++

STF R1,*AR1

Fast Fourier Transforms (FFTs)

6-49DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Perform first and second FFT loops.
;
;
;
;
;
;
;
;

START: LDI @DEST_ADDR,AR1
LDI AR1,AR2
LDI AR1,AR3
LDI AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDI 4,IR0
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 2,RC

LDF *AR2,R0 ; R0 = X(I2)
|| LDF *AR3,R1 ; R1 = X(I3)

ADDF3 R1,*AR4,R4 ; R4 = X(I3) + X(I4)
SUBF3 R1,*AR4++(IR0),R5 ; R5 = –[X(I3) – X(I4)]
SUBF3 R0,*AR1,R6 ; R6 = X(I1) – X(I2)
ADDF3 R0,*AR1++(IR0),R7 ; R7 = X(I1) + X(I2)
ADDF3 R7,R4,R2 ; R2 = R7 + R4
SUBF3 R4,R7,R3 ; R3 = R7 – R4

;
RPTB LOOP1_2 ;
LDF *+AR2(IR0),R0 ;

|| LDF *+AR3(IR0),R1 ;
ADDF3 R1,*AR4,R4 ;

|| STF R3,*AR3++(IR0) ; X(I3)
SUBF3 R1,*AR4++(IR0),R5 ;

|| STF R5,*–AR4(IR0) ; X(I4)
SUBF3 R0,*AR1,R6 ;

|| STF R6,*AR2++(IR0) ; X(I2)
ADDF3 R0,*AR1++(IR0),R7 ;

|| STF R2,*–AR1(IR0) ; X(I1)
ADDF3 R7,R4,R2

LOOP1_2: SUBF3 R4,R7,R3

STF R3,*AR3
|| STF R5,*–AR4(IR0)

STF R6,*AR2
|| STF R2,*–AR1(IR0)

AR1 I1 0 [X(I1) + X(I2)] + [X(I3) + X(I4)]

AR2 I2 1 [X(I1) – X(I2)]

AR3 I3 2 [X(I1) + X(I2)] – [X(I3) + X(I4)]

AR4 I4 3 –[X(I3) – X(I4)]

AR1 4

Fast Fourier Transforms (FFTs)

 6-50

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Perform third FFT loop.
; Part A:
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @DEST_ADDR,AR1
LDI AR1,AR2
LDI AR1,AR3
ADDI 4,AR2
ADDI 6,AR3
LDI 8,IR0
LDI @FFT_SIZE,RC
LSH –3,RC
SUBI 2,RC

SUBF3 *AR2,*AR1,R1
ADDF3 *AR2,*AR1,R2
NEGF *AR3,R3

RPTB LOOP3_A
LDF *+AR2(IR0),R0 ; R0 = X(I3)

|| STF R2,*AR1++(IR0)
SUBF3 R0,*AR1,R1 ; R1 = X(I1) – X(I3)

|| STF R1,*AR2++(IR0) ;
 ADDF3 R0,*AR1,R2 ; R2 = X(I1) + X(I3)

|| STF R3,*AR3++(IR0) ;
LOOP3_A: NEGF *AR3,R3 ; R3 = –X(I4)
 ;

STF R2,*AR1 ; X(I1)
STF R1,*AR2 ; X(I3)
STF R3,*AR3 ; X(I4)

AR1 I1 0 X(I1) + X(I3)

1

I2 2

3

AR2 I3 4 X(I1) – X(I3)

5

AR3 I4 6 –X(I4)

7

AR1 8

9

Fast Fourier Transforms (FFTs)

6-51DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Part B:
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @FFT_SIZE,RC
LSH –3,RC
LDI RC,IR1
SUBI 3,RC
LDI 8,IR0
LDI @DEST_ADDR,AR0
LDI AR0,AR1
LDI AR0,AR2
LDI AR0,AR3
ADDI 1,AR0
ADDI 3,AR1
ADDI 5,AR2
ADDI 7,AR3

LDI @SINE_TABLE,AR7 ; Initialize table pointers.

LDF *++AR7(IR1),R7 ; R7 = COS(2*pi/8)
; *AR7 = COS(2*pi/8)

MPYF3 *AR7,*AR2,R0 ; R0 = X(I3)*COS

MPYF3 *AR3,R7,R1 ; R5 = X(I4)*COS
ADDF3 R0,R1,R2 ; R2 = [X(I3)*COS + X(I4)*COS]
MPYF3 *AR7,*+AR2(IR0),R0

|| SUBF3 R0,R1,R3 ; R3 = –[X(I3)*COS – X(I4)*COS]
SUBF3 *AR1,R3,R4 ; R4 = –X(I2) + R3
ADDF3 *AR1,R3,R4 ; R4 = X(I2) + R3

|| STF R4,*AR2++(IR0) ; X(I3)
SUBF3 R2,*AR0,R4 ; R4 = X(I1) – R2

|| STF R4,*AR3++(IR0) ; X(I4)
ADDF3 *AR0,R2,R4 ; R4 = X(I1) + R2

|| STF R4,*AR1++(IR0) ; X(I2)
 ;

RPTB LOOP3_B ;
MPYF3 *AR3,R7,R1 ;

|| STF R4,*AR0++(IR0) ; X(I1)
ADDF3 R0,R1,R2
MPYF3 *AR7,*+AR2(IR0),R0

0
AR0 I1 1 X[I1] + [X(I3)*COS+ X(I4)*COS]

2
AR1 I2 3 X[I1] – [X(I3)*COS+ X(I4)*COS]

4
AR2 I3 5 –X[I2] – [X(I3)*COS– X(I4)*COS]

6
AR3 I4 7 X[I2] – [X(I3)*COS– X(I4)*COS]

8
AR0 9 NOTE: COS(2*pi/8) = SIN(2*pi/8)

Fast Fourier Transforms (FFTs)

 6-52

Example 6–16. Real Forward Radix-2 FFT (Continued)

|| SUBF3 R0,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4

 || STF R4,*AR2++(IR0)
SUBF3 R2,*AR0,R4

 || STF R4,*AR3++(IR0)
LOOP3_B: ADDF3 *AR0,R2,R4
 || STF R4,*AR1++(IR0)

MPYF3 *AR3,R7,R1
 || STF R4,*AR0++(IR0)

ADDF3 R0,R1,R2
SUBF3 R0,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4

 || STF R4,*AR2
SUBF3 R2,*AR0,R4

 || STF R4,*AR3
ADDF3 *AR0,R2,R4

 || STF R4,*AR1

STF R4,*AR0

Fast Fourier Transforms (FFTs)

6-53DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Perform fourth FFT loop.
;
; Part A:
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @DEST_ADDR,AR1
LDI AR1,AR2
LDI A R1,AR3
ADDI 8,AR2
ADDI 12,AR3
LDI 16,IR0
LDI @FFT_SIZE,RC
LSH –4,RC
SUBI 2,RC

SUBF3 *AR2,*AR1,R1
ADDF3 *AR2,*AR1,R2
NEGF *AR3,R3

RPTB LOOP4_A
LDF *+AR2(IR0),R0 ; R0 = X(I3)

|| STF R2,*AR1++(IR0)
SUBF3 R0,*AR1,R1 ; R1 = X(I1) – X(I3)

|| STF R1,*AR2++(IR0) ;
ADDF3 R0,*AR1,R2 ; R2 = X(I1) + X(I3)

|| STF R3,*AR3++(IR0) ;
LOOP4_A: NEGF *AR3,R3 ; R3 = –X(I4)
 ;

STF R2,*AR1 ; X(I1)
|| STF R1,*AR2 ; X(I3)

STF R3,*AR3 ; X(I4)

AR1 I1 0 X(I1) + X(I3)
1
2
3

I2 4
5
6
7

AR2 I3 8 X(I1) – X(I3)
9
10
11

AR3 I4 12 –X(I4)
13
14
15

AR1 I5 16
17

Fast Fourier Transforms (FFTs)

 6-54

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Part B:
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @FFT_SIZE,RC
LSH –4,RC
LDI RC,IR1
LDI 2,IR0
SUBI 3,RC
LDI @DEST_ADDR,AR0
LDI AR0,AR1
LDI AR0,AR2
LDI AR0,AR3
LDI AR0,AR4
ADDI 1,AR0
ADDI 7,AR1
ADDI 9,AR2
ADDI 15,AR3
ADDI 11,AR4

LDI @SINE_TABLE,AR7
LDF *++AR7(IR1),R7 ; R7 = SIN(1*[2*pi/16])

; *AR7 = COS(3*[2*pi/16])
LDI AR7,AR6
LDF *++AR6(IR1),R6 ; R6 = SIN(2*[2*pi/16])

; *AR6 = COS(2*[2*pi/16])
LDI AR6,AR5
LDF *++AR5(IR1),R5 ; R5 = SIN(3*[2*pi/16])

; *AR5 = COS(1*[2*pi/16])

LDI 16,IR1

0
AR0 I1 (3rd) 1 X[I1] + [X(I3)*COS+ X(I4)*SIN]

I1 (2nd) 2 .
I1 (1st) 3 .

4
I2 (1st) 5 .
I2 (2nd) 6 .

AR1 I2 (3rd) 7 X[I1] – [X(I3)*COS+ X(I4)*SIN]
8

AR2 I3 (3rd) 9 –X[I2] – [X(I3)*COS– X(I4)*COS]
I3 (2nd) 10 .

AR4 I3 (1st) 11 .
12

I4 (1st) 13 .
I4 (2nd) 14 .

AR3 I4 (3rd) 15 X[I2] – [X(I3)*SIN– X(I4)*COS]
16

AR0 17

Fast Fourier Transforms (FFTs)

6-55DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

MPYF3 *AR7,*AR4,R0 ; R0 = X(I3)*COS(3)

MPYF3 *++AR2(IR0),R5,R4 ; R4 = X(I3)*SIN(3)
MPYF3 *––AR3(IR0),R5,R1 ; R1 = X(I4)*SIN(3)
MPYF3 *AR7,*AR3,R0 ; R0 = X(I4)*COS(3)

|| ADDF3 R0,R1,R2 ; R2 = [X(I3)*COS + X(I4)*SIN]
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3 ; R3 = – [X(I3)*SIN – X(I4)*COS]
SUBF3 *––AR1(IR0),R3,R4 ; R4 = –X(I2) + R3
ADDF3 *AR1,R3,R4 ; R4 = X(I2) + R3
STF R4,*AR2–– ; X(I3)
SUBF3 R2,*++AR0(IR0),R4 ; R4 = X(I1) – R2
STF R4,*AR3 ; X(I4)
ADD F3 *AR0,R2,R4 ; R4 = X(I1) + R2
STF R4,*AR1 ; X(I2)

 ;
 MPYF3 *++AR3,R6,R1 ;
 || STF R4,*AR0 ; X(I1)

ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF
STF R4,*AR1

MPYF3 *––AR2,R7,R4
|| STF R4,*AR0

MPYF3 *++AR3,R7,R1
 || MPYF3 *AR5,*AR3,R0

ADDF3 R0,R1,R2
MPYF3 *AR7,*++AR4(IR1),R0

 || SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4
STF R4,*AR2++(IR1)
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3++(IR1)
ADDF3 *AR0,R2,R4

|| STF R4,*AR1++(IR1)

RPTB LOOP4_B
MPYF3 *++AR2(IR0),R5,R4

|| STF R4,*AR0++(IR1)
MPYF3 *––AR3(IR0),R5,R1
MPYF3 *AR7,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3
SUBF3 *––AR1(IR0),R3,R4
ADDF3 *AR1,R3,R4

Fast Fourier Transforms (FFTs)

 6-56

Example 6–16. Real Forward Radix-2 FFT (Continued)

|| STF R4,*AR2––
SUBF3 R2,*++AR0(IR0),R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1

MPYF3 *++AR3,R6,R1
|| STF R4,*AR0

ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1

MPYF3 *––AR2,R7,R4
|| STF R4,*AR0

MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR7,*++AR4(IR1),R0

|| SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR1)
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3++(IR1)
LOOP4_B: ADDF3 *AR0,R2,R4

|| STF R4,*AR1++(IR1)

MPYF3 *++AR2(IR0),R5,R4
|| STF R4,*AR0++(IR1)

MPYF3 *––AR3(IR0),R5,R1
MPYF3 *AR7,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3
SUBF3 *––AR1(IR0),R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2––
SUBF3 R2,*++AR0(IR0),R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1

MPYF3 *++AR3,R6,R1
|| STF R4,*AR0

ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

Fast Fourier Transforms (FFTs)

6-57DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4
STF R4,*AR1

MPYF3 *––AR2,R7,R4
|| STF R4,*AR0

MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

|| ADDF3 R0,R1,R2
SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4
STF R4,*AR1

STF R4,*AR0

Fast Fourier Transforms (FFTs)

 6-58

Example 6–16. Real Forward Radix-2 FFT (Continued)

;
; Perform remaining FFT loops (loop 4 onwards).
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @FFT_SIZE,IR0
LSH –2,IR0
STI I R0,@SEPARATION
LSH –2,IR0
LDI 5,R5
LDI 3,R7
LDI 16,R6
LDI @DEST_ADDR,AR5
LDI @DEST_ADDR,AR1
LSH –1,IR0
LSH 1,R7

 LOOP
1st 2nd

X’(I1) 0 0 X’(I1)+ X’(I3)
AR1 X(I1) (1st) 1 1 X(I1) + [X(I3)*COS + X(I4)*SIN]

X(I1) (2nd) 2 2 .
X(I1) (3rd) 3 3 .

.

.
A

X’(I2) 8 16
B .

.

X(I2) (3rd) 13 29 .
X(I2) (2nd) 14 30 .

AR2 X(I2) (1st) 15 31 X[I1] – [X(I3)*COS + X(I4)*SIN]
X’(I3) 16 32 X’(I1)– X’(I3)

AR3 X(I3) (1st) 17 33 –X[I2]– [X(I3)*SIN – X(I4)*COS]
X(I3) (2nd) 18 34 .
X(I3) (3rd) 19 35 .

.

.
C

X’(I4) 24 48 –X’(I4)
D .

.

X(I4) (3rd) 29 61 .
X(I4) (2nd) 30 62 .

AR4 X(I4) (1st) 31 63 X[I2] – [X(I3)*SIN – X(I4)*COS]
32 64

AR1 33 65

Fast Fourier Transforms (FFTs)

6-59DSP Algorithms

Example 6–16. Real Forward Radix-2 FFT (Continued)

LOOP: ADDI 1,R7
LSH 1,R6
LDI AR1,AR4
ADDI R7,AR1 ; AR1 points at A.
LDI A R1,AR2
ADDI 2,AR2 ; AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ; AR4 points at D.
LDI AR4,AR3
SUBI 2,AR3 ; AR3 points at C.

LDI @SINE_TABLE,AR0 ; AR0 points at SIN/COS table.
LDI R7,IR1
LDI R7,RC

INLOP: ADDF3 *– –AR1(IR1),*++AR2(IR1),R0 ; R0 = X’(I1) + X’(I3)
SUBF3 *––AR3(IR1),*AR1++,R1 ; R1 = X’(I1) – X’(I3)
NEGF *––AR4,R2 ; R2 = –X’(I4)

|| STF R0,*–AR1 ; X’(I1)
STF R1,*AR2–– ; X’(I3)

|| STF R2,*AR4++(IR1) ; X’(I4)

LDI @SEPARATION,IR1 ; IR1=SEPARATION
BETWEEN SIN/COS TBLS

SUBI 3,RC

MPYF3 *++AR0(IR0),*AR4,R4 ; R4 = X(I4)*SIN
MPYF3 *AR0,*++AR3,R1 ; R1 = X(I3)*SIN
MPYF3 *++AR0(IR1),*AR4,R0 ; R0 = X(I4)*COS
MPYF3 *AR0,*AR3,R0 ; R0 = X(I3)*COS

|| SUBF3 R1,R0,R3 ; R3 = –[X(I3)*SIN – X(I4)*COS]
MPYF3 *++AR0(IR0),*–AR4,R0

|| ADDF3 R0,R4,R2 ; R2 = X(I3)*COS + X(I4)*SIN
SUBF3 *AR2,R3,R4 ; R4 = R3 – X(I2)
ADDF3 *AR2,R3,R4 ; R4 = R3 + X(I2)

|| STF R4,*AR3++ ; X(I3)
SUBF3 R2,*AR1,R4 ; R4 = X(I1) – R2

|| STF R4,*AR4–– ; X(I4)
ADDF3 *AR1,R2,R4 ; R4 = X(I1) + R2

|| STF R4,*AR2–– ; X(I2)
 ;

RPTB IN_BLK ;
LDF *–AR0(IR1),R3 ;
MPYF3 *AR4,R3,R4 ;

|| STF R4,*AR1++ ; X(I1)
MPYF3 *AR3,R3,R1
MPYF3 *AR0,*AR3,R0

|| SUBF3 R1,R0,R3
MPYF3 *++AR0(IR0),*–AR4,R0

|| ADDF3 R0,R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4

|| STF R4,*AR3++
SUBF3 R2,*AR1,R4

|| STF R4,*AR4––

Fast Fourier Transforms (FFTs)

 6-60

Example 6–16. Real Forward Radix-2 FFT (Continued)

IN_BLK: ADDF3 *AR1,R2,R4
 || STF R4,*AR2––

LDF *–AR0(IR1),R3
MPYF3 *AR4,R3,R4

 || STF R4,*AR1++
MPYF3 *AR3,R3,R1
MPYF3 *AR0,*AR3,R0

 || SUBF3 R1,R0,R3
LDI R6,IR1
ADDF3 R0,R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4

 || STF R4,*AR3++(IR1)
SUBF3 R2,*AR1,R4

 || STF R4,*AR4++(IR1)
ADDF3 *AR1,R2,R4

 || STF R4,*AR2++(IR1)

STF R4,*AR1++(IR1)

SUBI3 AR5,AR1,R0
CMPI @FFT_SIZE,R0
BLTD INLOP ; LOOP BACK TO THE

 INNER LOOP
LDI @SINE_TABLE,AR0 ; AR0 POINTS TO

 SIN/COS TABLE
LDI R7,IR1
LDI R7,RC

ADDI 1,R5
CMPI @LOG_SIZE,R5
BLED LOOP
LDI @DEST_ADDR,AR1
LSH –1,IR0
LSH 1,R7

; Return to C environment.
;

POP DP ; Restore C environment
; variables.

POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS

.end

Fast Fourier Transforms (FFTs)

6-61DSP Algorithms

Example 6–17 shows the implementation of a radix-2 real inverse FFT. The in-
verse transformation assumes that the input data is in the same order as the
output of the forward transformation. It also produces a time signal in the proper
order. In other words, bit reversing takes place at the end of the program.

Example 6–17. Real Inverse Radix-2 FFT

* Real Inverse FFT

*
* FILENAME : ifft_rl.asm
*
* WRITTEN BY : Daniel Mazzocco
* Texas Instruments, Houston
*
* DATE : 18th Feb 1992
*
* VERSION : 1.0
*

* VER DATE COMMENTS
* ––– –––––––––––– –––
* 1.0 18th Feb 92 Original release. Started from forward real FFT
* routine written by Alex Tessarolo, rev 2.0 .
*

*
* SYNOPSIS: int ifft_rl(FFT_SIZE, LOG_SIZE, SOURCE_ADDR,
* DEST_ADDR, SINE_TABLE, BIT_REVERSE);
*
* int FFT_SIZE ; 64, 128, 256, 512, 1024, ...
* int LOG_SIZE ; 6, 7, 8, 9, 10, ...
* float *SOURCE_ADDR ; Points to where data is originated
* ; and operated on.
* float *DEST_ADDR ; Points to where data will be stored.
* float *SINE_TABLE ; Points to the SIN/COS table.
* int BIT_REVERSE ; = 0, bit reversing is disabled.
* ; <> 0, bit reversing is enabled.
*
* NOTE: 1) If SOURCE_ADDR = DEST_ADDR, then in place bit
* reversing is performed, if enabled (more
* processor intensive).
* 2) FFT_SIZE must be >= 64 (this is not checked).
*

Fast Fourier Transforms (FFTs)

 6-62

Example 6–17. Real Inverse Radix-2 FFT (Continued)

* DESCRIPTION: Generic function to do an inverse radix–2 FFT computation
* on the C30.
* The data array is FFT_SIZE long with real and imaginary
* points R and I as follows:
*
* SOURCE_ADDR[0] R(0)
* R(1)
* R(2)
* R(3)
* .
* .
* R(FFT_SIZE/2)
* I(FFT_SIZE/2 – 1)
* .
* .
* I(2)
* SOURCE_ADDR[FFT_SIZE–1] I(1)
*
* The output data array will contain only real values.
* Bit reversal is optionally implemented at the end
* of the function.
*
* The sine/cosine table for the twiddle factors is expected
* to be supplied in the following format:
*
* SINE_TABLE[0] sin(0*2*pi/FFT_SIZE)
* sin(1*2*pi/FFT_SIZE)
* .
* .
* sin((FFT_SIZE/2–2)*2*pi/FFT_SIZE)
* SINE_TABLE[FFT_SIZE/2–1] s in((FFT_SIZE/2–1)*2*pi/FFT_SIZE)
*
* NOTE: The table is the first half period of a sine wave.
*
* Stack structure upon call:
*
*
* –FP(7)
* –FP(6)
* –FP(5)
* –FP(4)
* –FP(3)
* –FP(2)
* –FP(1)
* –FP(0)
*
*

BIT_REVERSE
SINE_TABLE
DEST_ADDR
SOURCE_ADDR
LOG_SIZE
FFT_SIZE
returne
addr
old FP

Fast Fourier Transforms (FFTs)

6-63DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

* NOTE: Calling C program can be compiled using either large
* or small model.
*
* WARNING: DP initialized only once in the program. Be wary
* with interrupt service routines. Make sure interrupt
* service routines save the DP pointer.
*
* WARNING: The SOURCE_ADDR must be aligned such that the first
* LOG_SIZE bits are zero (this is not checked by the
* program).
*

*
* REGISTERS USED: R0, R1, R2, R3, R4, R5, R6, R7
* AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
* IR0, IR1
* RC, RS, RE
* DP
*
* MEMORY REQUIREMENTS: Program = 322 words (approximately)
* Data = 7 words
* Stack = 12 words
*

*
* BENCHMARKS: Assumptions – Program in RAM0
* – Reserved data in RAM0
* – Stack on primary/expansion bus RAM
* – Sine/cosine tables in RAM0
* – Processing and data destination in RAM1
* – Primary/expansion bus RAM, 0 wait state
*
* FFT Size Bit Reversing Data Source Cycles(C30)
* –––––––– ––––––––––––– ––––––––––– –––––––––––
* 1024 OFF RAM1 25892 approx.
* Note: This number does not include the C callable overheads.
* Add 57 cycles for these overheads.

FP .set AR3

.global _ifft_rl ; Entry execution point.

FFT_SIZE: .usect ” .ifftdata”,1 ; Reserve memory for arguments.
LOG_SIZE: .usect ” .ifftdata”,1
SOURCE_ADDR: .usect ” .ifftdata”,1
DEST_ADDR: .usect ” .ifftdata”,1
SINE_TABLE: .usect ” .ifftdata”,1
BIT_REVERSE: .usect ” .ifftdata”,1
SEPARATION: .usect ” .ifftdata”,1

Fast Fourier Transforms (FFTs)

 6-64

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; Initialize C Function.
;

.sect ”.iffttext”

_ifft_rl: PUSH FP ; Preserve C environment.
LDI SP,FP
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP

LDP FFT_SIZE ; Initialize DP pointer.

LDI *–FP(2),R0 ; Move arguments from stack.
STI R0,@FFT_SIZE
LDI *–FP(3),R0
STI R0,@LOG_SIZE
LDI *–FP(4),R0
STI R0,@SOURCE_ADDR
LDI *–FP(5),R0
STI R0,@DEST_ADDR
LDI *–FP(6),R0
STI R0,@SINE_TABLE
LDI *–FP(7),R0
STI R0,@BIT_REVERSE

Fast Fourier Transforms (FFTs)

6-65DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; Perform last FFT loops first (loop 2 onwards).
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI 1,IR0 ; Step between two consecutive sines
LDI 4,R5 ; Stage number from 4 to M.
LDI @FFT_SIZE,R7
LSH –2,R7 ; R7 is FFT_SIZE/4–1 (ie 15 for 64 pts)
SUBI 1,R7 ; and will be used to point at A & D.
LDI @FFT_SIZE,R6 ; R6 will be used to point at D.
LSH 1,R6
LDI @SOURCE_ADDR,AR5
LDI @SOURCE_ADDR,AR1

LOOP: LSH –1,R6 ; R6 is FFT_SIZE at the 1st loop.
LDI AR1,AR4
ADDI R7,AR1 ; AR1 points at A.

 LOOP
1st 2nd

X’(I1) 0 0 X’(I1)+ X’(I3)
AR1 X(I1) (1st) 1 1 X(I1) + [X(I2)

X(I1) (2nd) 2 2 .
X(I1) (3rd) 3 3 .

.

.
A

X’(I2) 8 16 X’(12)* 2
B .

.

X(I2) (3rd) 13 29 .
X(I2) (2nd) 14 30 .

AR2 X(I2) (1st) 15 31 X[I4] – [X(I3)
X’(I3) 16 32 X’(I1)– X’(I3)

AR3 X(I3) (1st) 17 33 [X(I1)–X(I2)]*COS–[X(I3)+X(I4)]*SIN
X(I3) (2nd) 18 34 .
X(I3) (3rd) 19 35 .

.

.
C

X’(I4) 24 48 –X’(I4)*2
D .

.

X(I4) (3rd) 29 61 .
X(I4) (2nd) 30 62 .

AR4 X(I4) (1st) 31 63 [X(I2)–X(I2)]*SIN+[X(I3)+X(I4)]*COS
32 64

AR1 33 65

Fast Fourier Transforms (FFTs)

 6-66

Example 6–17. Real Inverse Radix-2 FFT (Continued)

LDI AR1,AR2
ADDI 2,AR2 ; AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ; AR4 points at D.
LDI AR4,AR3
SUBI 2,AR3 ; AR3 points at C.

LDI R7,IR1
LDI R7,RC

INLOP: ADDF3 *––AR1(IR1),*
––AR3(IR1),R0 ; R0 = X’(I1) + X’(I3)

SUBF3 *AR3,*AR1,R1 ; R1 = X’(I1) – X’(I3)
LDF *––AR4,R2

|| STF R0,*AR1++ ; X’(I1)
MPYF –2.0,R2 ; R2 = –2*X’(I4)
LDF *––AR2,R3

|| STF R 1,*AR3++ ; X’(I3)
MPYF 2.0,R3 ; R3 = 2*X’(I2)
STF R3,*AR2++(IR1) ; X’(I2)

|| STF R2,*AR4++(IR1) ; X’(I4)

LDI @FFT_SIZE,IR1 ; IR1=separation between SIN/
; COS tbls

LDI @SINE_TABLE,AR0 ; AR0 points at SIN/COS table.
LSH –2,IR1
SUBI 3,RC

SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2)
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN
LDF *AR4,R4 ; R4 = X(I4)
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS

|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3)
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4)

|| STF R2,*AR1++ ; X(I1)
MPYF3 R2,*AR0––(IR1),R4 ; R4 = R2*COS

|| STF R3,*AR2–– ; X(I2)
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN

|| STF R3,*AR4–– ; X(I4)
SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN

RPTB IN_BLK

Fast Fourier Transforms (FFTs)

6-67DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2)
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN

 || STF R4,*AR3++ ; X(I3)
LDF *AR4,R4 ; R4 = X(I4)
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS

 || SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3)
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4)

 || STF R2,*AR1++ ; X(I1)
MPYF3 R2,*AR0––(IR1),R4 ; R4 = R2*COS

 || STF R3,*AR2–– ; X(I2)
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN

 || STF R3,*AR4–– ; X(I4)
IN_BLK: SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN

SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2)
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN

 || STF R4,*AR3++ ; X(I3)
LDF *AR4,R4 ; R4 = X(I4)
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS

 || SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3)
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4)

 || STF R2,*AR1 ; X(I1)
MPYF3 R2,*AR0––(IR1),R4 ; R4 = R2*COS

 || STF R3,*AR2 ; X(I2)
LDI R6,IR1 ; Get prepared for the next
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN

 || STF R3,*AR4++(IR1) ; X(I4)
SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN
NEGF *AR1++(IR1),R2 ; Dummy

 || STF R4,*AR3++(IR1) ; X(I3)

SUBI3 AR5,AR1,R0
CMPI @FFT_SIZE,R0
BLTD INLOP ; Loop back to the inner loop
NOP *AR2++(IR1) ; Dummy
LDI R7,IR1
LDI R7,RC

ADDI 1,R5
CMPI @LOG_SIZE,R5 ; Next stage if any left
BLED LOOP
LDI @SOURCE_ADDR,AR1
LSH 1,IR0 ; Double step in sinus table
LSH –1,R7

Fast Fourier Transforms (FFTs)

 6-68

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; Perform third FFT loop.

; Part A:
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @SOURCE_ADDR,AR1
LDI AR1,AR2
LDI AR1,AR3
LDI AR1,AR4
ADDI 2,AR2
ADDI 4,AR3

 ADDI 6,AR4
 LDI 8,IR0

LDI @FFT_SIZE,RC
LSH –3,RC
SUBI 1,RC
LDI @SINE_TABLE,AR0 ; AR0 points at SIN/COS table.

RPTB LOOP3_A
LDF *AR3,R3
ADDF3 R3,*AR1,R0 ; R0 = X’(I1) + X’(I3)
SUBF3 R3,*AR1,R1 ; R1 = X’(I1) – X’(I3)
LDF *AR4,R2 ;

 || STF R0,*AR1++(IR0) ; X’(I1)
MPYF –2.0,R2 ; R2 = –2*X’(I4)
LDF *AR2,R3 ;

 || STF R1,*AR3++(IR0) ; X’(I3)
MPYF 2.0,R3 ; R3 = 2*X’(I2)

LOOP3_A: STF R3,*AR2++(IR0) ; X’(I2)
 || STF R2,*AR4++(IR0) ; X’(I4)

AR1 I1 0 X (I1) + X(I3)

1

AR2 I2 2 2 * X(I2)

3

AR3 I3 4 X (I1) – X(I3)

5

AR3 I4 6 –2 * X(I4)

7

AR1 8

9

Fast Fourier Transforms (FFTs)

6-69DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; Part B:
;
;
;
;
;
;
;
;
;
;
;
;
;
;

LDI @SOURCE_ADDR,AR1
LDI A R1,AR2
LDI A R1,AR3
LDI A R1,AR4
ADDI 1,AR1
ADDI 3,AR2
ADDI 5,AR3
ADDI 7,AR4
LDI @SINE_TABLE,AR7 ; AR7 points at SIN/COS table.
LDI @FFT_SIZE,RC
LSH –3,RC
LDI RC,IR1
SUBI 2,RC

0
AR1 I1 1 X(I1) + X(I2)

2
AR2 I2 3 X(I1) – X(I3)

4
AR3 I3 5 [X(I1)– X(I2)]*COS– [X(I3)+ X(I4)]*SIN

6
AR4 I4 7 [X(I1)– X(I2)]*SIN+ [X(I3)+ X(I4)]*COS]

8
AR1 9 NOTE: COS(2*pi/8) = SIN(2*pi/8)

Fast Fourier Transforms (FFTs)

 6-70

Example 6–17. Real Inverse Radix-2 FFT (Continued)

LDF *AR2,R6 ; R6 = X(I2)
LDF *AR3,R0 ; R0 = X(I3)
ADDF3 R6,*AR1,R5 ; R5 = X(I1)+X(I2)
SUBF3 R6,*AR1,R4 ; R4 = X(I1)–X(I2)
SUBF3 R0,R4,R3 ; R3 = X(I1)–X(I2)–X(I3)
ADDF3 R0,R4,R2 ; R2 = X(I1)–X(I2)+X(I3)
SUBF3 R0,*AR4,R1 ; R1 = X(I4)–X(I3)

 || STF R5,*AR1++(IR0) ; X(I1)
ADDF3 R2,*AR4,R5 ; R5 = X(I1)–X(I2)+X(I3)+X(I4)

 || STF R1,*AR2++(IR0) ; X(I2)
MPYF3 R5,*++AR7(IR1),R1 ; R1 = R5*SIN

 || SUBF3 *AR4,R3,R2 ; R2 = X(I1)–X(I2)–X(I3)–X(I4)
MPYF3 R2,*AR7,R0 ; R0 = R2*SIN

 || STF R1,*AR4++(IR0) ; X(I4)

RPTB LOOP3_B

LDF *AR2,R6 ; R6 = X(I2)
 || STF R0,*AR3++(IR0) ; X(I3)

ADDF3 R6,*AR1,R5 ; R5 = X(I1)+X(I2)
LDF *AR3,R0 ; R0 = X(I3)
SUBF3 R6,*AR1,R4 ; R4 = X(I1)–X(I2)
SUBF3 R0,R4,R3 ; R3 = X(I1)–X(I2)–X(I3)
ADDF3 R0,R4,R2 ; R2 = X(I1)–X(I2)+X(I3)
SUBF3 R0,*AR4,R1 ; R1 = X(I4)–X(I3)

 || STF R5,*AR1++(IR0) ; X(I1)
ADDF3 R2,*AR4,R5 ; R5 = X(I1)–X(I2)+X(I3)+X(I4)

 || STF R1,*AR2++(IR0) ; X(I2)
MPYF3 R5,*AR7,R1 ; R1 = R5*SIN

 || SUBF3 *AR4,R3,R2 ; R2 = X(I1)–X(I2)–X(I3)–X(I4)
LOOP3_B: MPYF3 R2,*AR7,R0 ; R0 = R2*SIN
 || STF R1,*AR4++(IR0) ; X(I4)

STF R0,*AR3 ; X(I3)

Fast Fourier Transforms (FFTs)

6-71DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; Perform first and second FFT loops.
;
;
;
;
;
;
;
;
;

LDI @SOURCE_ADDR,AR1
LDI AR1,AR2
LDI AR1,AR3
LDI AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDI 4,IR0
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 2,RC

AR1 I1 0 X(I1) + X(I3) + 2*X(I2)
AR2 I2 1 X(I1) + X(I3) – 2*X(I2)
AR3 I3 2 X(I1) – X(I3) – 2*X(I4)
AR4 I4 3 X(I1) – X(I3) + 2*X(I4)
AR1 4

Fast Fourier Transforms (FFTs)

 6-72

Example 6–17. Real Inverse Radix-2 FFT (Continued)

LDF *AR4,R6 ; R6 = X(I4)
LDF *AR2,R7 ; R7 = X(I2)

 || LDF *AR1,R1 ; R1 = X(I1)
MPYF 2.0,R6 ; R6 = 2 * X(I4)
MPYF 2.0,R7 ; R7 = 2 * X(I2)
SUBF3 R6,*AR3,R5 ; R5 = X(I3) – 2*X(I4)
SUBF3 R5,R1,R4 ; R4 = X(I1)–X(I3)+2X(I4)
SUBF3 R7,*AR3,R5 ; R5 = X(I3) – 2*X(I2)

 || STF R4,*AR4++(IR0) ; X(I4)
ADDF3 R5,R1,R3 ; R3 = X(I1)+X(I3)–2X(I2)
ADDF3 R6,*AR3,R4 ; R4 = X(I3) + 2*X(I4)

 || STF R3,*AR2++(IR0) ; X(I2)
SUBF3 R4,R1,R4 ; R4 = X(I1)–X(I3)–2X(I4)
ADDF3 R7,*AR3,R0 ; R0 = X(I3) + 2*X(I2)

 || STF R4,*AR3++(IR0) ; X(I3)
ADDF3 R0,R1,R0 ; R0 = X(I1)+X(I3)+2X(I2)

;
RPTB LOOP1_2 ;
LDF *AR4,R6 ; R6 = X(I4)

 || STF R0,*AR1++(IR0) ; X(I1)
MPYF 2.0,R6 ; R6 = 2 * X(I4)
LDF *AR2,R7 ; R7 = X(I2)

 || LDF *AR1,R1 ; R1 = X(I1)
MPYF 2.0,R7 ; R7 = 2 * X(I2)
SUBF3 R6,*AR3,R5 ; R5 = X(I3) – 2*X(I4)
SUBF3 R5,R1,R4 ; R4 = X(I1)–X(I3)+2X(I4)
SUBF3 R7,*AR3,R5 ; R5 = X(I3) – 2*X(I2)

 || STF R4,*AR4++(IR0) ; X(I4)
ADDF3 R5,R1,R3 ; R3 = X(I1)+X(I3)–2X(I2)
ADDF3 R6,*AR3,R4 ; R4 = X(I3) + 2*X(I4)

 || STF R3,*AR2++(IR0) ; X(I2)
SUBF3 R4,R1,R4 ; R4 = X(I1)–X(I3)–2X(I4)
ADDF3 R7,*AR3,R0 ; R0 = X(I3) + 2*X(I2)

 || STF R4,*AR3++(IR0) ; X(I3)
LOOP1_2: ADDF3 R0,R1,R0 ; R0 = X(I1)+X(I3)+2X(I2)

;
 STF R0,*AR1 ; LAST X(I1)

Fast Fourier Transforms (FFTs)

6-73DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; Check bit reversing mode (on or off).
;
; BIT_REVERSING = 0, then OFF (no bit reversing).
; BIT_REVERSING <> 0, then ON.
;

LDI @BIT_REVERSE,R0
CMPI 0,R0
BZ MOVE_DATA

;
; Check bit reversing type.
;
; If SourceAddr = DestAddr, then in place bit reversing.
; If SourceAddr <> DestAddr, then standard bit reversing.
;

LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ IN_PLACE

;
; Bit reversing type 1 (from source to destination).
;
; NOTE: abs(SOURCE_ADDR – DEST_ADDR) must be > FFT_SIZE, this is not checked.
;

LDI @FFT_SIZE,R0
SUBI 2,R0
LDI @FFT_SIZE,IR0
LSH –1,IR0 ; IRO = half FFT size.
LDI @SOURCE_ADDR,AR0
LDI @DEST_ADDR,AR1

LDF *AR0++,R1

RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++(IR0)B

STF R1,*AR1++(IR0)B

BR DIVISION

Fast Fourier Transforms (FFTs)

 6-74

Example 6–17. Real Inverse Radix-2 FFT (Continued)

;
; In-place bit reversing.
;

; Bit reversing on even locations, 1st half
; only.

IN_PLACE: LDI @FFT_SIZE,IR0
LSH –2,IR0 ; IRO = quarter FFT size.
LDI 2,IR1

LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 3,RC
LDI @DEST_ADDR,AR0
LDI A R0,AR1
LDI A R0,AR2

NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
CMPI AR1,AR0 ; Xchange locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1

RPTB BITRV1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV1: LDFGT *AR1++(IR0)B,R0

STF R0,*AR0
STF R1,*AR2

; Perform bit reversing on odd locations,
; 2nd half only.

LDI @FFT_SIZE,RC
LSH –1,RC
LDI @DEST_ADDR,AR0
ADDI RC,AR0
ADDI 1,AR0
LDI AR0,AR1
LDI AR0,AR2
LSH –1,RC
SUBI 3,RC

NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0

Fast Fourier Transforms (FFTs)

6-75DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

LDF *AR1,R1
CMPI AR1,AR0 ; Xchange locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1

RPTB BITRV2
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV2: LDFGT *AR1++(IR0)B,R0

STF R0,*AR0
STF R1,*AR2

; Perform bit reversing on odd
; locations, 1st half only.

LDI @FFT_SIZE,RC
LSH –1,RC
LDI RC,IR0
LDI @DEST_ADDR,AR0
LDI AR0,AR1
ADDI 1,AR0
ADDI IR0,AR1
LSH –1,RC
LDI RC,IR0
SUBI 2,RC

LDF *AR0,R0
LDF *AR1,R1

RPTB BITRV3
LDF *++AR0(IR1),R0

|| STF R0,*AR1++(IR0)B
BITRV3: LDF *AR1,R1

|| STF R1,*–AR0(IR1)

STF R0,*AR1
STF R1,*AR0

BR DIVISION

;
; Check data source locations.
;
; If SourceAddr =
; DestAddr, then do nothing.
; If SourceAddr <>
; DestAddr, then move data.
;

Fast Fourier Transforms (FFTs)

 6-76

Example 6–17. Real Inverse Radix-2 FFT (Continued)

MOVE_DATA: LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ D IVISION

LDI @FFT_SIZE,R0
SUBI 2,R0
LDI @SOURCE_ADDR,AR0
LDI @DEST_ADDR,AR1

LDF *AR0++,R1

RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++

STF R1,*AR1

DIVISION: LDI 2,IR0
LDI @FFT_SIZE,R0
FLOAT R0 ; exp = LOG_SIZE
PUSHF R0 ; 32 MSB’S saved
POP R0
NEGI R0 ; Neg exponent
PUSH R0
POPF R0 ; R0 = 1/FFT_SIZE
LDI @DEST_ADDR,AR1
LDI @DEST_ADDR,AR2
NOP *AR2++
LDI @FFT_SIZE,RC
LSH –1,RC
SUBI 2,RC
MPYF3 R0,*AR1,R1 ; 1st location
RPTB LAST_LOOP
MPYF3 R0,*AR2,R2 ; 2nd,4th,6th,... location

|| STF R1, *AR1++(IR0)
LAST_LOOP: MPYF3 R0,*AR1,R1 ; 3rd,5th,7th,... location

|| STF R2,*AR2++(IR0)

MPYF3 R0,*AR2,R2 ; Last location
|| STF R1,*AR1

STF R2,*AR2

Fast Fourier Transforms (FFTs)

6-77DSP Algorithms

Example 6–17. Real Inverse Radix-2 FFT (Continued)

; Return to C environment.
;

POP DP ; Restore C environment variables.
POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS

.end

*
* No more.
*

*

The ’C3x quickly executes FFT lengths up to 1024 points (complex) or 2048
(real), covering most applications. It performs this task almost entirely in on-
chip memory. See Table 6–2 on page 6-79 for the number of CPU clock cycles
and the execution time required for FFT lengths between 64 and1024 points
for the four algorithms.

TMS320C3x Benchmarks

 6-78

6.7 TMS320C3x Benchmarks

Table 6–1 provides benchmarks for common DSP operations. Table 6–2 sum-
marizes the FFT execution time required for FFT lengths between 64 and 1024
points for the algorithms in Example 6–13, Example 6–15, Example 6–16,
and Example 6–17 beginning on page 6-31.

The benchmarks are given in clock cycles (the H1 internal processor cycle).
To get the benchmark (time), multiply the number of cycles by the processor’s
internal clock period. For example, for a 60 MHz ’C3x, multiply by 33 ns.

Table 6–1. TMS320C3x Application Benchmarks

Application Words Cycles

Inverse of a floating-point number
(32-bit precision)

31 31

Square root 38 46

Double precision integer add/subtract 2 2

Double precision integer multiply 24 24

IEEE to ’C3x format conversion (fast) 12 9

IEEE to ’C3x format conversion (complete) 33 19

’C3x to IEEE format conversion (fast) 14 10

’C3x to IEEE format conversion (complete) 24 27

FIR filter 5 6+N

IIR filter (one biquad) 7 7

IIR filter (N >1 biquads) 16 13+6N

LMS adaptive FIR filter 11 13+3N

Matrix-vector multiplication 10 2+10K+K (N–1)

Vector dot product 6 N+4

Vector maximum 5 2+3N

Forward LPC lattic filter 11 5+3P

Inverse LPC lattice filter 9 6+3P

µ-law (A-law) compression 16(18) 16(18)

µ-law (A-law) expansion 13(15) 16(21)

TMS320C3x Benchmarks

6-79DSP Algorithms

Table 6–2. TMS320C3x FFT Timing Benchmarks (Assumes Data On Chip and
No Bit Reversing)

Number of CPU Clock Cycles

Number of
Points

Radix-2
(Complex)

Radix-4
(Complex)

Radix–2
(Real)

Radix-2
(Real Inverse)

64 1481 2050 791 1064

128 3445 – 1746 2369

256 7865 10400 3925 5282

512 17 709
17 709 (’C31)
42 210 (’C32)

– 8840 11731

1024 39 600 (’C30)
40 100 (’C31)
94 519 (’C32)

50 670 19 820 25 900

512 25 688 (’C32)

1024 64 781 (’C32)

2048 11 611 (’C30)
117 400 (’C31)

4096 280 800 (’C30)
283 600 (’C31)

These benchmarks include C overhead: they represent the number of cycles
between the standard C-compiler _main and _exit labels.

These benchmarks do not include the final bit-reversing stage. If bit-reversing
is required, it is implemented in a serial fashion in off-chip memory.

Sliding FFT

 6-80

6.8 Sliding FFT

SFFT.ASM uses a technique known as a sliding FFT (SFFT) to calculate the
spectrum of a signal on a sample-by-sample basis. The SFFT is particularly
well-suited for applications where signal analysis, filtering, modulation,
demodulation, or other forms of signal manipulation in the frequency domain
must be performed in real time. The SFFT algorithm is similar to the discrete
Fourier transform (DFT). The SFFT is equivalent to overlapped FFTs with an
overlap of 1 sample, in that the past frequency data is reused to calculate the
frequency spectra of the next sample window. The calculation is performed by
adding the frequency domain spectra of a new sample, while simultaneously
subtracting the frequency domain spectra of the oldest sample. The SFFT
does not require first-hand knowledge of the DFT or FFT. In addition, the SFFT
can be used to derive the DFT equation, which can be used by DSP beginners
or by DSP experts looking for a different approach to solve a problem.

6.8.1 SFFT Theory: A Better Way to Use the Impulse Response

The SFFT is based on the following simple concepts:

1) The property of superposition allows two or more signals to be added lin-
early to create a new signal. A sampled time domain signal is the summa-
tion of a series of individual input samples or impulses of varying magni-
tude (Figure 6–10a). Similarly, signals, or impulses, can be subtracted.

If an input signal sample buffer (Figure 6–10a) of data is kept in memory, a
sliding rectangular window of data samples (Figure 6–10b and
Figure 6–10d) can be constructed by adding the newest sample and
subtracting the oldest sample (Figure 6–10c) from the previous original
windowed signal (Figure 6–10b). The following diagram shows how the
addition and subtraction of samples can ’slide’ a window of data samples
from those shown in Figure 6–10b to those shown in Figure 6–10d.

Sliding FFT

6-81DSP Algorithms

Figure 6–10. Input Signal Sample Buffer

Older Newer
a) Input signal sample buffer

c) New–old sample window

Window is time-shifted 1 sample

T = 0

T = 0
Add new

Subtract old
T = N

b) Original windowed signal

d) Next windowed signal

Note: T = time

2) The frequency domain response of an impulse, or single sample point
where all other data points are zero, results in a flat frequency response
with a magnitude in each frequency bin equal to the impulse input magni-
tude. Conversely, the impulse is the additive result of many sinusoidal fre-
quency components. The time when the impulse occurs within the sample
window is determined by the phase angles of the individual component
frequencies. An impulse’s time of arrival is determined by a linear phase
shift between each frequency bin.

Sliding FFT

 6-82

3) In the frequency domain, the addition of frequency samples also follows
the rules of superposition.

The spectra of Figure 6–10c, the new–old sample window, is added to the
spectra of Figure 6–10b, the original windowed signal, to create the new
spectra of Figure 6–10d. The difference is that complex data is used in the
frequency domain to represent the phase information of the individual
component frequencies.

4) The summation of a series of simple impulse transforms, which have cor-
respondingly simple frequency domain transforms, results in the compos-
ite frequency domain transform of the signal.

5) A sliding rectangular window is created by subtracting the Nth oldest sam-
ple, which, in the frequency domain, will have gone through a multiple of
2 � pi radian rotations.

Note:

In some applications, complex time domain inputs may also useful. For this
application, only the REAL data from an ADC is used.

6.8.2 Frequency Response Calculation

If an impulse sample occurs at T = 0, the frequency response calculation is fur-
ther simplified since the response contains only REAL and no IMAG compo-
nents. The transform of an impulse at T = 0 is simply to store the magnitude
of the impulse into each REAL bin, and zero the IMAG bin.

If T != 0, the time shift creates a phase shift or complex vector rotation within
each frequency bin. The phase rotation angle is proportional to the time shift
and the frequency of interest.

If the time shift is one sample period, as used in the SFFT, special conditions
can be applied. At low frequencies, the amount of phase shift from sample to
sample is low, or in the case of 0 Hz, zero radians of phase. At higher frequen-
cies, the phase rotation is greatest. At the Nyquist frequency, the vector rota-
tion is pi/2 radians per sample, which corresponds to 2 samples per sine wave
cycle. Vector rotation for bins between DC and the Nyquist rate are proportion-
al to the bin frequency.

Sliding FFT

6-83DSP Algorithms

A Fourier transform also produces both negative and positive frequencies,
which are mirror images of each other. Only positive frequencies need to be
computed. This is suitable for spectrum analysis and filtering. The ranges for
n and the resulting complex rotation vectors (twiddle factors) for each bin are:

Positive frequencies 0 <= n < N/2

Negative frequencies –N/2 <= n < 0

complex(R_phase,I_phase) = exp –j*2*pi*n/N

REAL_tw[n] = cos(n*2*pi/N)

IMAG_tw[n] = sin(n*2*pi/N)

The basic SFFT operation is a vector rotate of each previous bin value; that
is, add the newest sample and subtract the oldest sample. Although it is a sim-
ple operation, all bins must be computed before the next input sample is ready.

NewBinVal = (New – Old) + (OldBinval * vect_rotate)

Bin[n] = (Sample[0]–Sample[N–1]) + (Bin[n] * exp –j*2*pi*n/N)

6.8.3 Visualizing the SFFT

The easiest way to visualize the SFFT is to consider that each new sample
occurs at T = 0, making each new sample all REAL in the frequency domain.
Then, since the past summation is time-shifted by one sample, a vector rota-
tion proportional to the frequency is applied. A schematic representation for
an SFFT bin is shown in Figure 6–11.

Figure 6–11.Frequency Bin Diagram (Equivalent to an IIR Filter)

IN

N delay X
More bins

X

+

–

Complex vector
“rotation rate,”
Twiddle, etc...

K2� K12�N

K1� exp�j2�n
N

Fbin OUT

Where: Vector_rotation_rate[n–th Freq] = 2*PI * n / (N*Fs)
 K1 & K2 force convergence (see section 6.8.4)

Sliding FFT

 6-84

6.8.4 Fbin Convergence and Stability

One aspect of the SFFT is that there is a feedback loop which affects the stabil-
ity of the bin values. This is similar to an IIR filter where, in the Z domain, a pole
sites on the unit circle. To maintain stability and keep the bin values from grow-
ing out of control, the magnitude of the complex vector rotation twiddles must
be set to slightly less than 1, placing the pole inside the unit circle. This causes
the impulse energy magnitude in each bin to decay exponentially towards
zero. By adding a stability factor, by Nth bin rotation an impulse decays to K1N

of its original magnitude. To subtract the Nth oldest sample, the Nth oldest
sample is scaled by a second coefficient K2 = K1N. A side effect of the expo-
nential decay is that the SFFT is now windowed by an exponentially decaying
window. To minimize this effect, keep K1 close to 1.000 (0.999, for example).

6.8.5 SFFT Windowing

Unlike the FFT and DFT, SFFT windowing cannot be performed in the time do-
main; the input window is moving in time and, therefore, the window function
must also move in time. The SFFT windowing operation is performed in the
frequency domain using a technique known as convolution. The desirable
effect of windowing is a multiplicative process in the time domain whereby the
sharp discontinuities at the endpoints, that accompany a rectangular data win-
dow, are smoothed out. Without a smoothing window, these abrupt changes
smear the frequency spectrum over many bins. In the frequency domain, the
coefficients of most windowing functions are simple and do not require large
storage arrays. For the raised cosine window function, the coefficients are par-
ticularly simple (–.5, +1.0, –.5) and are easily imbedded into the code as addi-
tion and subtraction. However, frequency domain (or convolutional window
filtering) is applied to the REAL and IMAG data separately before the REAL/
IMAG data is combined into a magnitude. The operation is fast and only occurs
during output. Furthermore, other window functions are rapidly and easily
implemented by selecting different convolution coefficients.

Sliding FFT

6-85DSP Algorithms

Figure 6–12. Raised Cosine Window

Time domain Frequency domain

1.0

0.5

0 N
� N

2
N
2

1.0

–.5 –.5

0 0 0 00 0

W[n]� 1� cos
2� n

N

2

6.8.6 Using SFFT.ASM for Spectrum Analysis

If the SPECT_EN variable is set to 1 (true), the DSK analog output is config-
ured to be the computed spectrum of the analog input beginning at
BIN_START and ending at BIN_END. The output is then viewed using an oscil-
loscope, which is triggered on a positive synch pulse. The DAC output voltage
is proportional to the log magnitude of each frequency bin.

To help pass impulses with minimal magnitude errors, each DAC output sam-
ple can be repeated up to DAC_RPT times. Also, the AIC TA register value can
be programmed to have a very high pass band. This increases the DAC output
distortion, which is a problem if used for audio applications, but is acceptable
for visual purposes.

Also, the BIN_START and BIN_END values do not need to begin at zero or end
at SFFTSIZE/2. This can be used to show that the frequency bins repeat in the
frequency domain, as predicted by the discrete Fourier transform. The only
restrictions are the availability memory and CPU processing power.

6.8.7 Using SFFT.ASM for Hilbert Transforms and Arbitrary Phase Angles Filters

If SPECT_EN is set to 0, the output is configured to be the summation of the
reconstructed REAL and IMAG components.

An arbitrary output phase angle is implemented by performing a complex mul-
tiplication of the REAL and IMAG components by a complex vector determined
by the ANGLE parameter. If ANGLE = 90°, the Hilbert transform is recon-
structed from the pass-band SFFT bins covering BIN_START to BIN_END. If
ANGLE = 0.0, no phase shift occurs.

Sliding FFT

 6-86

The 0° and matched 90° phase shift Hilbert transform is useful in telecommu-
nications applications, where the quadrature outputs are used to shift the
spectrum of a signal or in radio and modem modulation schemes.

6.8.8 Raised Cosine Windowed Filters

By applying the raised cosine window to the summation of bin values, the
REAL or IMAG filter response ripple is improved.

The method implemented uses a series of coefficients that are applied to each
frequency bin and then added much like an FIR filter, except in the frequency
domain.

The coefficient values result from both:

� The convolution of the response of a raised cosine function with the signal
response

� The multiplication of a rectangular bandpass filter, also applied in the
frequency domain

A group delay, or time shift, is also seen which is equal to N/2 plus the time it
takes a signal to make it through the ADC/DAC conversion process.

In Figure 6–13 through Figure 6–16, the number of bins required is actually
WIDTH + 2 for a given pass-band bandwidth and the signs of the coefficients
alternate (+, –, +, –). The endpoints, which are also scaled by 50%, are the
result of the window coefficients and define the edge characteristics of the
filter.

Figure 6–13. Raised Cosine Window Function (Length = 1 Bin)

1.0

–.5 –.5

Sliding FFT

6-87DSP Algorithms

Figure 6–14. Raised Cosine Window Function (Length = 2 Bins)

1.0

–.5
–1.0

0.5

Figure 6–15. Raised Cosine Window Function (Length = 3 Bins)

1.0

–.5

–1.0

1.0

–.5

Figure 6–16. Raised Cosine Window Function (Length = 4 Bins)

1.0

–.5

–1.0

1.0

–.5

0.5

Sliding FFT

 6-88

6.8.9 Non-Windowed SFFT

A special case occurs when the SFFT is used to compute the all pass 0’ and
90’ Hilbert transforms of a non-windowed synchronized signal. Frequency bin
spreading occurs if the signal is not harmonically related to the sample window.

For REAL summations, the input is reconstructed by scaling the 0 or DC bin
by 50%. This scaling compensates for a 2:1 rise in signal level since all bin data
energy, except for the 0 bin, is split equally between the positive and negative
frequencies.

At the 0 bin, there is no IMAG information, since no phase shift is applied to
that bin. A DC component for an IMAG reconstruction, therefore, does not
exist.

Figure 6–17. N/2 SFFT R/I Bins

IN 0 1 2
N
2
� 1

+ + + + + +

+ + + + + +

REALSUM

IMAGSUM

0 bin

6.8.10 Performance

Since the SFFT needs only to compute the bins of interest within the span of
one time sample, narrow band analysis or filtering is very efficient, even when
the effective FFT size is very large. If large numbers of bins and/or high sam-
pling rates are impractical for a single processor, a traditional block style FFT
or filter may be more practical.

For example, in a filter application, only a few frequency bins may be required;
the unused bins are zero since they are not needed for reconstruction. The
maximum sampling rate (or the number of bins that can be calculated) is
shown in the following equation.

Ts(min) = (SFFT_cycles_per_bin * bins + loop_overhead) * nS/cycle Ts(min)
 = (7 * N/2 + 52) 40 nS

Sliding FFT

6-89DSP Algorithms

Note:

The loop overhead value is the time consumed by interrupt routines, data for-
matting, input, and output. SFFT.ASM is not highly optimized, since it is for
educational purposes.

The loop can be optimized by inlining the three major functions—Input,
SFFT, and Output— to remove 3 calls and 3 returns (or 24 cycles) from the
loop overhead.

6.8.11 Loop Unrolling for High Speed Filtering

The inner loop of the SFFT consumes 5 computational cycles, but executes
in 6 cycles. The conflict occurs from a data bus bandwidth limitation and results
from the STF||STF operation immediately preceding a double load of data for
the MPYF3 instruction.

This null cycle is filled by moving the filter summations within the loop. The
summation can be done entirely within registers and requires no data path
access.

The +1, –1 convolutional filter coefficients for raised cosine windowing can be
hard coded within the loop by performing subtractions that invert the sum each
time it goes through the loop. This avoids fetching coefficients from the data
bus.

Overall, the forward and reverse SFFT are computed at 6–7 cycles per bin,
depending on whether both REAL and IMAG outputs are required. The gener-
al case educational example SFFT.ASM is slightly slower, while SFFT2.ASM
which is written for filtering.

6.8.12 Fitting the Code and Data Into Memory

If the effective desired SFFT/FFT size is 512 points, then only 256 positive fre-
quencies need to be computed. With R/I twiddle and R/I SFFT data associated
with each bin, 1024 words of memory are required. In addition, 512 words of
input buffer data are needed.

To maximize speed, the inner loop of the SFFT uses dual access on-chip
memory to access data at the rate of two data moves per CPU cycle. To avoid
program fetch conflicts, the SFFT code is loaded into the second on-chip
SRAM block, which also holds the data buffer.

If off-chip memory is available, excellent performance is achieved by placing
as much SFFT bin data on-chip as possible. The input window sample buffer
and code can be external since the main code loop easily fits inside the cache
and the sample buffer is only accessed twice per SFFT cycle.

Sliding FFT

 6-90

Note:

The SFFT only needs to calculate the difference of the input of the most
recent and the oldest data sample one time. This value is reused for all bin
calculations and is kept in a register.

If circular or bit-reversed data storage is used, the data and twiddle buffers are
forced to 2N word boundaries. In addition, the circular addressing registers are
consumed. Since the overhead of checking and reloading the buffer pointers
is minimal and allows non-2N sizes, explicit pointer testing is used in
SFFT.ASM.

6.8.13 Using This Code With ’C’

To use the functions in this code with a high level language such as C, you must
perform context save and restore operations at the beginning and end of each
function.

6.8.14 TLC32040 ADC and DAC Considerations

The application file SFFT.ASM is written to use a TLC32040 analog interface
chip (AIC) connected as used in a TMS320C31 DSP Starter Kit or DSK
(TMDS3200031). Further documentation for the DSK is available in the DSK
or by downloading from the Texas Instruments FTP site.

Files Location

Main TMS320 FTP mirror site ftp://ftp.ti.com/mirrors/tms320bbs

C3x DSK files subdirectory ftp://ftp.ti.com/mirrors/tms320bbs/c3xdskfiles

6.8.15 SFFT Summary

� A time signal is comprised of a series of samples.

� Each sample is an impulse.

� The time signal is a time summation of a series of impulses.

� The frequency spectra of a single impulse at T = 0 is trivial to calculate,
since it is only a REAL component in each frequency bin whose magnitude
is that of the impulse.

� The frequency spectra of a signal is the summation of the individual im-
pulse responses.

Sliding FFT

6-91DSP Algorithms

� A shift in time is a shift in phase (or phase rotate) in the frequency domain.

� Consider each new impulse as occurring at T = 0 and perform the time shift
on the past summation of samples as a whole.

� At each bin, the amount of phase rotation or twiddle factor that is applied
to each bin is proportional to the frequency of the bin. The phase shift is
zero at DC (n = 0) and pi radians at Fnyq (n = N/2).

� After phase rotating each bin, simply add the new sample/impulse value.
(Don’t forget to start with each bin magnitude as zero.)

� At this point, the Fourier transform is a forever expanding series in both
the time and frequency domains.

� The Nth oldest sample is rotated n multiples of 2 � pi radians, making the
Nth oldest sample completely REAL with no IMAG component.

� At N samples of age, phase rotation = N � (n � 2 � pi/N) = n � 2 � pi.

� A sliding rectangular window is created by subtracting the T = Nth oldest
sample while adding the newest T = 0 sample. At T = N, each frequency
bin has rotated N times and is back to 0 radians of phase and can be prop-
erly subtracted.

6.8.16 SFFT Algorithm

SFFT.ASM (Example 6–18 on page 6-94) is written for the DSP beginner, but
contains features that also make it useful to the experienced DSP program-
mer. SFFT.ASM implements a continuous time Fourier transform which can
be used to construct filters and analyze spectra. It can also be used as a gener-
al-purpose DSP teaching platform.

SFFT.ASM uses a technique known as a sliding FFT (SFFT) to efficiently cal-
culate the spectrum of a signal on a sample-by-sample basis. The SFFT is par-
ticularly well-suited for applications where signal analysis, filtering, modula-
tion, demodulation, or other forms of signal manipulation in the frequency
domain must be performed in real time. The SFFT algorithm is similar to the
DFT.

Further reading and other information includes:

� Designer Notebook page 22 ’Fast Logrithms on a Floating Point Device’

� APPHELP1.TXT and APPHELP2.TXT included with the DSK software

Sliding FFT

 6-92

� Texas Instruments’ FTP site:

Files Location

Main TMS320 FTP mirror site ftp://ftp.ti.com/mirrors/tms320bbs

C3x DSK files subdirectory ftp://ftp.ti.com/mirrors/tms320bbs/c3xdskfiles

TMS320C3x code examples ftp://ftp.ti.com/mirrors/tms320bbs/c3xfiles

TMS320C4x code examples ftp://ftp.ti.com/mirrors/tms320bbs/c4xfiles

The following section sets the SFFT parameters which determine the SFFT
output characteristics. The following rules apply:

� BIN_LEN = BIN_END – BIN–START > 0

� ((SFFTBINS � 4) + SFFTSIZE) < Free data space

� Sampling period < time to compute all bins

Be careful not to set the sampling rate too high while calculating many bin
values. The SFFT must finish calculating all of its bin values within the time
span of one sample.

The effective Fourier series size is determined by the size of the time window
of samples. Although this does not affect the calculation rate, it does consume
internal memory.

Creating a pass band around a particular signal is easy, since the signal can
be viewed either in frequency or time by changing the setting of SPECT_EN.
With practice, you can you can zoom in on particular segments of frequency
by changing the start and stop bins, window size, and sampling rate.

The DAC output signal fidelity is largely determined by the TA register value
that is programmed into the AIC. No one value seems to fit all applications.
However, the following rules generally apply. If TA is small, the DAC recon-
struction filter is clocked at a faster rate. This pushes the upper pass-band limit
higher in frequency, resulting in faster slew times. This is desireable for a spec-
trum analyzer output where fast impulse response to frequency peaks are
needed for suitable viewing. For audio applications, a larger TA value is
desired, since the overclocking of the DAC reconstruction filter results in signif-
icant distortions.

The AIC master clock input is derived from the timer output pin of internal timer
0. If the timer reference is set higher than the TLC32040 maximum clock rate
of 10 MHz, additional distortion occurs.

A TLC32040 analog interface circuit is used on the DSK since it responds
favorably when used beyond its tested limits. However, predicting perfor-
mance depends on many factors; experimentation may be required.

Sliding FFT

6-93DSP Algorithms

AIC setup registers are programmed into the AIC using a data word which is
tagged with xxxx11b in the bottom 2 LSBs to signal the AIC to accept a secon-
dary transmit (or register program) word.

The DAC switch cap filter rate high is set by the TA divisor. A low TA value, used
to overclock the DAC reconstruction filter, trades signal fidelity for faster
impulse response times.

This application was designed and tested using a 50 MHz TMS320C31 DSP
Starter Kit (TMDS3200031) which includes a TLC32040 14-bit ADC/DAC.

Sliding FFT

 6-94

Example 6–18. SFFT.ASM

;===
; SFFT2.ASM
; Keith Larson
; TMS320 DSP Applications
; (C) Copyright 1996,1997,1998
; Texas Instruments Incorporated
;
; This is unsupported freeware with no implied warranties or
; liabilities. See the C3x DSK disclaimer document for details
;===
; Default setup
; –––––––––––––
; SPECT_EN = 1
; Fs = 20.8 khz (4.8 uS)
; Hz/bin = 40.7 hz
; Range = 1.3 Khz – 3.9 Khz
;
; If this file is re–assembled with SPECT_EN set to 0, this will give a
; bandpass filter from 1.3 – 3.9 Khz having 90 degrees phase shift at all
; frequencies.
;===
SFFTSIZE .set 512 ; Sample Window length (FFT size)
BIN_START .set 32 ; Start computing SFFT at this bin
BIN_END .set 96 ; End computing SFFT at this bin
;– – – – – – – – – – – – – – – – – – –
ANGLE .set 90.0 ; Filter reconstruction angle (degrees)
;– – – – – – – – – – – – – – – – – – –
SPECT_EN .set 1 ; Enable spectrum analyzer output
RATE .set 2 ; Write display points RATE times each
;– – – – – – – – – – – – – – – – – – –
TIM0_prd .set 2 ; AIC reference clock is TIM0
TA .set 6 ; DAC setup
TB .set 25 ;
RA .set 10 ; ADC setup
RB .set 15 ;
;===
; PARAMETERS BELOW THIS LINE ARE COMPUTED FROM THE INFORMATION
; ABOVE. THERE IS NO NEED TO MODIFY ANYTHING BELOW THIS POINT
;===
BIN_LEN .set BIN_END–BIN_START ; Filter length in bins
SFFTBINS .set BIN_LEN+1 ;
N .set SFFTSIZE ; ’N’ used as shorthand for SFFTSIZE
TR .set 0 ; Real twiddle offset in each cell
TI .set 1 ; Imag
DR .set 0 ; Real data offset in each cell
DI .set 1 ; Imag
RIBINSIZE .set 2 ; Size of R/I element pair
pi .set 3.14159265 ; Useful in making apple pie
w .set 2.0*pi/N ; angle = F * 2*pi/Fs
OVM .set 0x80 ; Use overflow mode to saturate results

Sliding FFT

6-95DSP Algorithms

Example 6–18. SFFT.ASM (Continued)

;===
; If the input parameters won’t work, generate a descriptive error
; for the user letting them know what to look for and maybe fix
;===
 .if (BIN_LEN < 1)
APP MESSAGE: Calculated BIN_LEN must be >1
 .endif
 .if ((SFFTBINS*4) + SFFTSIZE) > (0xE40–0x800)
APP MESSAGE: The Fbin and data storage buffers are too big for the DSK
 .endif
;==;
; The SFFT twiddles, data, and input buffer arrays are allocated ;
; to be placed into RAM0 to avoid bus conflicts with program fetching;
;==;
 .include ”C3XMMRS.ASM” ;
 .start ”DATA”,0x809800 ; Data arrays are placed at start of RAM0
 .sect ”DATA” ;
TWIDCOEF ;––––––––––––––––––––––––– ;
n .set BIN_START ;
 .loop SFFTBINS ; R/I phase or twiddle coefficients
 .float K1*cos(n*w) ;
 .float K1*sin(n*w) ;
n .sdef n+1.0 ; next ’n’
 .endloop ;
SFFTDATA ;–––––––––––––––––––––––––––;
 .loop SFFTBINS ; R/I frequency bin data
 .float 0,0 ; Pre–Zeroing bin data removes
 .endloop ; startup glitches
BUF ;–––––––––––––––––––––––––––;
 .loop N/2 ; N samples of ADC input delay data
 .float 0,0 ;
 .endloop ;
;==;
; The application code begins here, beginning with constants that ;
; are used in various routines. ;
;==;
Tbase .word TWIDCOEF ; Location of twiddle coefficients
Bbase .word SFFTDATA ; Location of R/I SFFT Bin data
CircAddr .word BUF ; Current pointer into sample data
BUFSTART .word BUF ; Start address of sample data
BUFEND .word BUF+N ; End address of sample data
OutBin .float 0 ; Current spectrum analyzer bin
MAX .float 32000.0 ; Used synch pulse and scaling
 ;– – – – – – – – – – – – – –
A_REG .word (TA<<9)+(RA<<2)+0 ; Packed AIC register values
B_REG .word (TB<<9)+(RB<<2)+2 ;
C_REG .word 00000011b ;
;0gctrl .word 0x0E970300 ; Sport setup, noninverted clkx/clkr
S0gctrl .word 0x0E973300 ; Sport setup, inverted clkx/clkr
S0xctrl .word 0x00000111 ;

Sliding FFT

 6-96

Example 6–18. SFFT.ASM (Continued)

S0rctrl .word 0x00000111 ;
NewMnsOld .word 0 ;
K1 .set 0.99995 ; Use a value slightly less than 1.0
K2 .float pow(K1,N) ; K1^N oldest sample scale factor
FILTEROUT .float 0.0 ; Temp storage for SFFT filter output
Scale .float 4.0/N ; SFFT growth scale factor
REAL_VEC .float –cos(pi*ANGLE/180.0); filtered REAL scale factor
IMAG_VEC .float –sin(pi*ANGLE/180.0); filtered IMAG scale factor
FLOG2SC .float pow(2.0,–24.0) ; Scale factor for log2 calculations
bigval .word 0x00010000 ; Used in overflow mode saturation
;==;
; The main loop consists of waiting for a new ADC sample. ;
; When an receive interrupt occurs, the new data is loaded into the ;
; data delay line buffer, followed by the SFFT and output routines. ;
; Four dummy writes to the external bus have been added in the main ;
; loop to allow real time benchmarking of the three functions using ;
; and oscilloscope to monitor the address bus LSB’s ;
;==;
 .start ”CODE”,0x809E40 ; Start in last 512 words of RAM0
 .sect ”CODE” ; (also includes DSK kernel)
main ldi 0xE4,IE ; Enable XINT/RINT/INT2
 idle ; Wait for Receive Interrupt
 ;– – – – – – – – – – – – – –
 ldi @S0_rdata,R0 ; The first interrupt occurs shortly
 ldi 0,R0 ; after AIC init is complete, which
 sti R0,@S0_xdata ; will not leave enough time for SFFT
 ;– – – – – – – – – – – – – –
loop idle ; Wait for Receive Interrupt
 sti R0,@0x80A000 ;<1
 call Input ; Put ADC sample in delay buffer
 sti R0,@0x80AF03 ;<2
 call SFFT ; Calculate SFFT
 sti R0,@0x80AF0F ;<3
 call Output ; Output result
 sti R0,@0x80AF3F ;<4
 b loop ; Loop back and do forever
;==;
; The ADC data is read and buffered here ;
;==;
Input ldi @S0_rdata,R0 ; get ADC data
 ash –16,R0 ; Sign extend previous sample in MSB’s
 float R0,R0 ; Convert the ADC data to float
 ldi @CircAddr,AR0 ; Load present circ buf address
 ldf *AR0,R7 ; Multiply by ’K2’ for bin stability
 mpyf @K2,R7 ; (see text)
 stf R0,*AR0++ ;
 cmpi @BUFEND,AR0 ; If at end of buffer, point to start
 ldige @BUFSTART,AR0 ;
 subrf R0,R7 ; R7 = X[–N] – X[0]
 sti AR0,@CircAddr ; save new ’circular’ modified ptr
 stf R7,@NewMnsOld ;
 rets ;

Sliding FFT

6-97DSP Algorithms

Example 6–18. SFFT.ASM (Continued)

;==;
; The forward and reverse SFFT are calculated within this one loop ;
; The loop itself is unrolled to achieve an inner loop cycle count ;
; of 7 cycles per bin calculation. The inner loop contains both the ;
; REAL and IMAG filter summations, so if the output is for spectrum ;
; analysis or only one filter sum is required, one or both summations;
; can be removed giving an inner loop speed of 6 cycles/bin ;
;==;
SFFT ldi @Tbase,AR0 ; R/I twiddle ptr
 ldi @Bbase,AR1 ; R/I SFFT array ptr
 ldi @Bbase,AR2 ; SFFT output (usualy in place)
 ldi SFFTBINS–1,RC ; Number of bins to calculate
 ldi RIBINSIZE,IR0 ; Size of R/I pair in array
 ldf @NewMnsOld,R7 ; R7 = (New – K2*Old)
 ;– – – – – – – – – – – – – –
 ldf 0,R4 ; Zero the REAL filter sum
 ldf 0,R5 ; Zero the IMAG filter sum
 ;– – – – – – – – – – – – – – – –
 mpyf3 *+AR0(TR),*+AR1(DR) ,R0 ; TR*DR <– unroll from main loop
 rptb EndSFFT ;
 ;– – – – – – – – – – – – – – – –
Loop mpyf3 *+AR0(TR) ,*+AR1(DI) ,R1 ; TR*DI
 mpyf3 *+AR0(TI) ,*+AR1(DI) ,R0 ; TI*DI
 || addf3 R7,R0 ,R3 ; (TR*DR + DELTA)
 mpyf3 *+AR0(TI) ,*+AR1(DR) ,R0 ; TI*DR
 || subf3 R0,R3 ,R3 ; TR*DR – TI*DI + DELTA
 mpyf3 *++AR0(IR0),*++AR1(IR0),R0 ; TR*DR (used in next loop)
 || addf3 R1,R0 ,R2 ; TR*DI + TI*DR
 stf R2,*+AR2(DI) ; Save the new Fbin values
 || stf R3,*AR2++(IR0) ;
 ;– – – – – – – – – – – – – – – –
 subf3 R4,R3,R4 ;REAL sum; sum’=R–sum alternates sign of
EndSFFT subf3 R5,R2,R5 ;IMAG sum; raised cosine window coeficients
 ;–––
 ; For raised cosine window filters the endpoint bin values
 ; are scaled to 1/2 relative to the pass bins
 ;–––
 addf R4,R4 ; Double inner +/–1 sum loop
 addf R5,R5 ;
 subf R3,R4 ; Subtract endpoints at 50%
 subf R2,R5 ;
 ldi @Bbase,AR1 ; ptr to start of R/I SFFT array
 ldf *+AR1(DI),R2 ;
 || ldf *+AR1(DR),R3 ;
 .if SFFTBINS&1 ; If the loop count was odd, the
 mpyf –1,R4 ; +,–,+,– sum result is negative
 mpyf –1,R5 ;
 .endif ;
 addf R3,R4 ;
 addf R2,R5 ;

Sliding FFT

 6-98

Example 6–18. SFFT.ASM (Continued)

 ;–––
 ; When the SFFT is finished, the REAL/IMAG sums are scaled
 ; accordingly for the desired output phase angle. A ’growth’
 ; scale factor is also applied since the summation occurs
 ; over N data points.
 ;–––
ExitSFFT mpyf @REAL_VEC,R4 ; Rotate to desired output phase
 mpyf @IMAG_VEC,R5 ;
 addf3 R4,R5,R0 ; Sum the R/I into a REAL output
 mpyf @Scale,R0 ; inverse of N/2 growth
 stf R0,@FILTEROUT ;
 rets ;
;==;
; The output section is written for both Spectrum analyzer output ;
; as well as REAL/IMAG filter sum outputs ;
;==;
Output: .if SPECT_EN=0 ; If SPECT_EN=0 (disable) output either
 ldf @FILTEROUT,R0 ; Output REAL/IMAG bin sum
 .else ;
 ;––
 ; The Spectrum analyzer output section is bypassed
 ; if the spectrum analyzer is not enabled
 ;––
 ldf @OutBin,R0 ; Point to next output bin
 addf 1.0/RATE,R0 ; increment analyzer output pointer
 cmpf BIN_LEN,R0 ;
 ldfge 0,R0 ;
 stf R0,@OutBin ;
 fix R0,R0 ;
 bzd Out ;
 mpyi RIBINSIZE,R0 ; Fbins are 2 words (R/I) per bin
 ldfz @MAX,R0 ; If at base Fbin 0 Hz, output a synch
 ldi @Bbase,AR0 ;
 subi 2,AR0 ; point to output bin–1 to perform
 addi R0,AR0 ; –.5,1.0,–.5 convolutional window
 ;– – – – – – – – – – – – –
 ldf *+AR0(DI+0),R0 ; Perform convolutional window filter
 || ldf *+AR0(DR+0),R2 ; on the R/I pairs for this output
 addf *+AR0(DI+4),R0 ;
 addf *+AR0(DR+4),R2 ;
 mpyf –0.5,R0 ; Scaling coefficient for –1,+1 bins
 mpyf –0.5,R2 ;
 addf *+AR0(DI+2),R0 ;
 addf *+AR0(DR+2),R2 ;
 ;– – – – – – – – – – – – –

Sliding FFT

6-99DSP Algorithms

Example 6–18. SFFT.ASM (Continued)

 mpyf R0,R0 ; Calculate REAL^2 + IMAG^2 magnitude
 mpyf R2,R2 ;
 addf R2,R0 ;
 call FLOG2 ; Convert to log2(), then scale
 mpyf 32,R0 ; and shift for best display
 mpyf 32,R0 ;
 subf @MAX,R0 ;
 ;– – – – – – – – – – – – –
 .endif ;
Out fix R0,R0 ; Convert to integer DAC output
 mpyi @bigval,R0 ; Use Overflow mode ALU saturation
 ash –16,R0 ;
 andn 3,R0 ; Do not request a 2nd xmit
 sti R0,@S0_xdata ; Output DAC value to serial port
 rets ;
;==;
; FLOG2() Ultra Fast LOG2 function ;
; computes log2(R0) and returns e8/s1/m4 accuracy float value in R0 ;
;==;
FLOG2: cmpf 0.0,R0 ; Exit if value is <= Zero
 ldfle –1,R0 ; if x<=0 return –1 (error)
 retsle ; return if X<=0
 lsh 1,R0 ; Concatenate mantissa to exponent
 pushf R0 ; Convert ’fast log’ to int, then float
 pop R0 ; Value is accurate but scaled by 2^24
 float R0,R0 ;
 mpyf @FLOG2SC,R0 ; Mpy by scale factor
 rets ;
;==;
; The startup stub is used during initialization only and can be ;
; overwritten by the stack or data after initialization is complete. ;
; Note: A DSK or RTOS communications kernel may also use the stack. ;
; In this case be sure to not put the stack here during debug. ;
;==;
 .entry ST_STUB ; Debugger starts here
ST_STUB ldp T0_ctrl ; Use kernel data page and stack
 ldi @stack,SP ;
 ldi 0,R0 ; Halt TIM0 & TIM1
 sti R0,@T0_ctrl ;
 sti R0,@T0_count ; Set counts to 0
 ldi TIM0_prd,R0 ; Set period
 sti R0,@T0_prd ;
 ldi 0x2C1,R0 ; Restart both timers
 sti R0,@T0_ctrl ;
 ;– – – – – – – – – – – – –

Sliding FFT

 6-100

Example 6–18. SFFT.ASM (Continued)

 ldi @S0xctrl,R0 ;
 sti R0,@S0_xctrl ; transmit control
 ldi @S0rctrl,R0 ;
 sti R0,@S0_rctrl ; receive control
 ldi 0,R0 ;
 sti R0,@S0_xdata ; DXR data value
 ldi @S0gctrl,R0 ; Setup serial port
 sti R0,@S0_gctrl ; global control
;==;
; This section of code initializes the AIC ;
;==;
AIC_INIT LDI 0x10,IE ; Enable only XINT interrupt
 andn 0x34,IF ;
 ldi 0,R0 ;
 sti R0,@S0_xdata ;
 RPTS 0x040 ;
 LDI 2,IOF ; XF0=0 resets AIC
 rpts 0x40 ;
 LDI 6,IOF ; XF0=1 runs AIC
 ;– – – – – – – – – – – – –
 ldi @C_REG,R0 ; Setup control register
 call prog_AIC ;
 ldi 0xfffc ,R0 ; Program the AIC to be real slow
 call prog_AIC ;
 ldi 0xfffc|2,R0 ;
 call prog_AIC ;
 ldi @B_REG,R0 ; Bump up the Fs to final rate
 call prog_AIC ; (smaller divisors should be sent last)
 ldi @A_REG,R0 ;
 call prog_AIC ;
 or OVM,ST ; Use the overflow mode for fast saturate
 b main ; the DRR before going to the main loop
;==;
; prog_AIC is used to transmit new timing configurations to the AIC. ;
; If you single step this routine, the AIC timing will be corrupted ;
; causing AIC programming to fail. ;
; STEP OVER THIS ROUTINE USING THE F10 FUNCTION STEP ;
;==;
prog_AIC ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy
 sti R1,@S0_xdata ;
 idle ;
 ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy
 or 3,R1 ; Request 2 ndy XMIT
 sti R1,@S0_xdata ;
 idle ;
 sti R0,@S0_xdata ; Send register value
 idle ;
 andn 3,R1 ;
 sti R1,@S0_xdata ; Leave with original safe value in DXR
 ;– – – – – – – – – – – – –
 ldi @S0_rdata,R0 ; Fix receiver underrun by dummy read
 rets ;

Sliding FFT

6-101DSP Algorithms

Example 6–18. SFFT.ASM (Continued)

;==;
; By placing the stack at the end of the users runtime code, the ;
; maximum space is made available for applications. Essentialy once ;
; used initialization code or data can be reclaimed after it is used.;
; However, use this configuration for debug purposes ;
;==;
 .start ”STACK”,$; This is a reminder to put the stack
 .sect ”STACK” ; stack in a safe place. $ places
stack .word stack ; section at the current assy address
;==;
; Install the XINT/RINT ISR branch vectors ;
;==;
 .start ”SP0VECTS”,0x809FC5; Place ISR returns directly into
 .sect ”SP0VECTS” ; secondary branch table
 reti ; XINT0
 reti ; RINT0

 6-102

7-1

Programming the DMA Channel

The direct memory access (DMA) coprocessor is an on-chip peripheral that
can read from or write to any location in the memory map without interfering
with the CPU operation. The DMA channel contains its own address genera-
tors, source and destination registers, and transfer counters. The DMA chan-
nel can be easily programmed in C or in assembly language.

The ’C30 and ’C31 coprocessors each have one DMA channel, while the ’C32
coprocessor has two DMA channels. Each channel of the ’C32 DMA channel
is similar to those of the ’C30 and ’C31, with the addition of user-configurable
priorities.

This chapter provides examples for programming the DMA for the ’C3x.

Topic Page

7.1 Hints for DMA Programming 7-2.

7.2 When a DMA Channel Finishes a Transfer 7-3.

7.3 DMA Assembly Programming Examples 7-4.

Chapter 7

Hints for DMA Programming

 7-2

7.1 Hints for DMA Programming

The Peripherals chapter of the TMS320C3x User’s Guide describes the DMA
channel and its operation in detail. Use the following techniques to program
your DMA more efficiently and to avoid unexpected results:

� Reset the DMA register before starting it. This clears any previously latched
interrupts that may no longer exist.

� After starting the DMA, set the IE register to enable interrupts for sync
transfer.

� If a conflict occurs when the CPU and DMA access the memory simulta-
neously on the ’C30 or ’C31, the CPU always prevails. Carefully allocate
the sections of the program in memory for faster execution. If a CPU pro-
gram access conflicts with a DMA access, enabling the cache helps if the
program is located in external memory. DMA on-chip access happens dur-
ing the H3 phase. Refer to the Pipeline Operation chapter in the
TMS320C3x User’s Guide for details on CPU accesses.

If a conflict occurs during CPU-DMA access on the ’C32, the priority set
between the CPU and DMA is used to arbitrate conflicts. If the DMA chan-
nel has lower priority than the CPU, the DMA may fail to finish a block
transfer if conflicts occur. To avoid this condition, use CPU/DMA rotating
priority in the corresponding DMA control register.

Note: Expansion and Peripheral Buses

The expansion and peripheral buses on the ’C30 cannot be accessed simul-
taneously because they are multiplexed into a common port. Therefore,
DMA access to the peripheral bus along with CPU access to the expansion
bus can cause CPU-DMA conflicts. (See the TMS320C3x User’s Guide for
more information.)

� When you use interrupt synchronization, ensure that interrupts are actual-
ly generated; otherwise, the DMA will never complete the block transfer.

� Use read/write synchronization when reading from or writing to serial ports
to guarantee data validity.

When a DMA Channel Finishes a Transfer

7-3Programming the DMA Channel

7.2 When a DMA Channel Finishes a Transfer

Many applications require that you perform certain tasks after a DMA channel
has finished a block transfer. The following are indications that the DMA has
finished a set of transfers:

� The DINT bit in the IIF register is set to 1 (interrupt polling) . This re-
quires that the TCINT bit in the DMA control register be set first. This inter-
rupt-polling method does not cause any additional conflict during CPU-
DMA access.

� The transfer counter has a zero value . The transfer counter is decrem-
ented after the DMA read operation finishes (not after the write operation).
Nevertheless, a transfer counter with a zero value can be used as an in-
dication of a transfer completion.

� The STAT bits in the DMA channel control register are set to 00 2. You
can poll the DMA channel-control register for this value. However,
because the DMA registers are memory-mapped into the peripheral bus
address space, this option can cause further conflicts during CPU-DMA
access.

DMA Assembly Programming Examples

 7-4

7.3 DMA Assembly Programming Examples

Example 7–1, Example 7–2, and Example 7–3 illustrate how to program the
DMA channel using assembly language.

When linking the examples, allocate section memory addresses carefully to
avoid CPU-DMA conflict. In the ’C30 or ’C31, the CPU always prevails in cases
of conflict. If a conflict occurs between a CPU program and DMA data, you can
enable the cache if the .text section is in external memory. For example, when
linking the code in Example 7–1, Example 7–2, and Example 7–3, allocate the
following sections into memory (RAM0 corresponds to on-chip RAM block 0 and
RAM1 corresponds to on-chip RAM block 1):

� .text section into RAM0
� .data section into RAM1
� .bss section into RAM1

Example 7–1. Array Initialization With DMA

* TITLE: ARRAY INITIALIZATION WITH DMA
*

.GLOBAL START

.DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
RESET .WORD 0C40H ; DMA GLOBAL CONTROL REG RESET VALUE
CONTROL .WORD 0C43H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD ZERO ; DATA SOURCE ADDRESS
DESTIN .WORD _ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER
ZERO .FLOAT 0.0 ; ARRAY INITIALIZATION VALUE 0.0 = 0X80000000

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION

.TEXT

START LDP DMA ; LOAD DATA PAGE POINTER
LDI @DMA,AR0 ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @RESET,R0 ; RESET DMA
STI R0,*AR0
LDI @SOURCE,R0 ; INITIALIZE DMA SOURCE ADDRESS REGISTER
STI R0,*+AR0(4)
LDI @DESTIN,R0 ; INITIALIZE DMA DESTINATION ADDRESS REGISTER
STI R0,*+AR0(6)
LDI @COUNT,R0 ; INITIALIZE DMA TRANSFER COUNTER REGISTER
STI R0,*+AR0(8)
OR 400H,IE ; ENABLE INTERRUPT FROM DATA TO CPU
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
LDI @CONTROL,R0 ; INITIALIZE DMA GLOBAL CONTROL REGISTER
BU $
.END

DMA Assembly Programming Examples

7-5Programming the DMA Channel

In Example 7–1, the DMA initializes a 128-element array to 0. The DMA sends
an interrupt to the CPU after the transfer is completed. This program assumes
previous initialization of the CPU interrupt vector table (specifically the DMA-to-
CPU interrupt). The ST and IE registers are initialized for interrupt processing.

In Example 7–2, the serial port 0 is initialized to receive 32-bit data words with
an internally generated receive-bit clock and a bit-transfer rate of
8H1 cycles/bit.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial-port interrupt directly affects
only the DMA; therefore, no CPU serial-port interrupt vector setting is required.

DMA Assembly Programming Examples

 7-6

Example 7–2. DMA Transfer With Serial-Port Receive Interrupt

* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT
*

.GLOBAL START

.DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
CONTROL .WORD 0D43H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD 80804CH ; DATA SOURCE ADDRESS: SERIAL PORT INPUT REG
DESTIN .WORD _ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER
IEVAL .WORD 002000400H ; IE REGISTER VALUE
RESET1 .WORD 0D40H ; DMA RESET

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

START LDP DMA ; LOAD DATA PAGE POINTER
* DMA INITIALIZATION

LDI @DMA,AR0 ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @SPORT,AR1
LDI @RESET,R0
STI R0,*+AR1(4) ; RESET SPORT TIMER
LDI @RESET1,R0
STI R0,*AR0 ; RESET DMA
LDI @SPRESET,R0
STI R0,*AR1 ; RESET SPORT
LDI @SOURCE,R0 ; INITIALIZE DMA SOURCE ADDRESS REGISTER
STI R0,*+AR0(4)
LDI @DESTIN,R0 ; INITIALIZE DMA DESTINATION ADDRESS REGISTER
STI R0,*+AR0(6)
LDI @COUNT,R0 ; INITIALIZE DMA TRANSFER COUNTER REGISTER
STI R0,*+AR0(8)
OR @IEVAL,IE ; ENABLE INTERRUPTS
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
LDI @CONTROL,R0 ; INITIALIZE DMA GLOBAL CONTROL REGISTER
STI R0,*AR0 ; START DMA TRANSFER

* SERIAL PORT INITIALIZATION

LDI @SRCTRL,R0 ; SERIAL-PORT RECEIVE CONTROL REG INITIALIZATION
STI R0,*+AR1(3)
LDI @STPERIOD,R0 ; SERIAL-PORT TIMER PERIOD INITIALIZATION
STI R0,*+AR1(6)
LDI @STCTRL,R0 ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STI R0,*+AR1(4)
LDI @SGCCTRL,R0 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STI R0,*AR1
BU $
END

DMA Assembly Programming Examples

7-7Programming the DMA Channel

Example 7–3 sets up the DMA to transfer data (128 words) from an array buff-
er to the serial-port-0 output register with serial-port transmit interrupt XINT0.
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial port 0 is initialized to transmit 32-bit data words with an internally generated
frame sync and a bit-transfer rate of 8H1 cycles/bit. The receive-bit clock is inter-
nally generated and equal in frequency to one half of the ’C3x H1 frequency.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial-port interrupt directly affects
only the DMA; therefore, no CPU serial-port interrupt vector setting is required.

Note: Serial Port Transmit Synchronization

The DMA uses serial port transmit interrupt XINT0 to synchronize transfers.
Because the XINT0 is generated when the transmit buffer has written the last
bit of data to the shifter, an initial CPU write to the serial port is required to
trigger XINT0 to enable the first DMA transfer.

Example 7–3. DMA Transfer With Serial-Port Transmit Interrupt

* TITLE: DMA TRANSFER WITH SERIAL PORT TRANSMIT INTERRUPT
* .GLOBAL START

.DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
CONTROL .WORD 0E13H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD (_ARRAY+1) ; DATA SOURCE ADDRESS
DESTIN .WORD 80804CH ; DATA DESTIN ADDRESS: SERIAL-PORT OUTPUT REG
COUNT .WORD 127 ; NUMBER OF WORDS TO TRANSFER =(MSG LENGHT–1)
IEVAL .WORD 00100400H ; IE REGISTER VALUE

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

RESET1 .WORD 0E10H ; DMA RESET
SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS
SGCCTRL .WORD 04880044H ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
SXCTRL .WORD 111H ; SERIAL-PORT TX PORT CONTROL REG INITIALIZA-
TION
STCTRL .WORD 00FH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00000002H ; SERIAL-PORT TIMER PERIOD
SPRESET .WORD 00880044H ; SERIAL-PORT RESET
RESET .WORD 0H ; SERIAL-PORT TIMER RESET

.TEXT
START LDP DMA ; LOAD DATA PAGE POINTER

DMA Assembly Programming Examples

 7-8

Example 7–3. DMA Transfer With Serial-Port Transmit Interrupt (Continued)

* DMA INITIALIZATION

LDI @DMA,AR0 ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @SPORT,AR1
LDI @RESET,R0
STI R0,*+AR1(4) ; RESET SPORT TIMER
STI R0,*AR0 ; RESET DMA
STI R0,*AR1 ; RESET SPORT
LDI @SOURCE,R0 ; INITIALIZE DMA SOURCE ADDRESS REGISTER
STI R0,*+AR0(4)
LDI @DESTIN,R0 ; INITIALIZE DMA DESTINATION ADDRESS REGISTER
STI R0,*+AR0(6)
LDI @COUNT,R0 ; INITIALIZE DMA TRANSFER COUNTER REGISTER
STI R0,*+AR0(8)
OR @IEVAL,IE ; ENABLE INTERRUPT FROM DMA TO CPU
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
LDI @CONTROL,R0 ; INITIALIZE DMA GLOBAL CONTROL REGISTER
STI R0,*AR0 ; START DMA TRANSFER

* SERIAL PORT INITIALIZATION

LDI @SXCTRL,R0 ; SERIAL-PORT TX CONTROL REG INITIALIZATION
STI R0,*+AR1(2)
LDI @STPERIOD,R0 ; SERIAL–PORT TIMER PERIOD INITIALIZATION
STI R0,*+AR1(6)
LDI @STCTRL,R0 ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STI R0,*+AR1(4)
LDI @SGCCTRL,R0 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STI R0,*AR1

* CPU WRITES THE FIRST WORD (TRIGGERING EVENT –––> XINT IS GENERATED)

LDI @SOURCE,AR0
LDI *–AR0(1),R0
STI R0,*+AR1(8)
BU $
.END

Other examples of DMA initialization include:

� Transfer a 256-word block of data from off-chip memory to on-chip
memory and generate an interrupt on completion. Maintain the memory
order.

DMA source address 800000h
DMA destination address 809800h
DMA transfer counter 00000100h
DMA global control 00000C53h
CPU/DMA interrupt enable (IE) 00000400h

DMA Assembly Programming Examples

7-9Programming the DMA Channel

� Transfer a 128-word block of data from on-chip memory to off-chip
memory and generate an interrupt on completion. Invert the order of
memory—the highest addressed member of the block becomes the low-
est addressed member.

DMA source address 809800h
DMA destination address 800000h
DMA transfer counter 00000080h
DMA global control 00000C93h
CPU/DMA interrupt enable (IE) 00000400h

� Transfer a 200-word block of data from the serial port 0 receive register
to on-chip memory and generate an interrupt on completion. Synchronize
the transfer with the serial-port-0 receive interrupt.

DMA source address 80804Ch
DMA destination address 809C00h
DMA transfer counter 000000C8h
DMA global control 00000D43h
CPU/DMA interrupt enable (IE) 00200400h

� Transfer a 200-word block of data from off-chip memory to the serial port
0 transmit register and generate an interrupt on completion. Synchronize
the transfer with the serial-port-0 transmit interrupt.

DMA source address 809C00h
DMA destination address 808048h
DMA transfer counter 000000C8h
DMA global control 00000E13h
CPU/DMA interrupt enable (IE) 00400400h

� Transfer data continuously between the serial port 0 receive register and
the serial-port-0 transmit register to create a digital loop back. Synchro-
nize the transfer with the serial-port-0 receive and transmit interrupts.

DMA source address 80804Ch
DMA destination address 808048h
DMA transfer counter 00000000h
DMA global control 00000303h
CPU/DMA interrupt enable (IE) 00300000h

 7-10

8-1

Analog Interface Peripherals and Applications

Analog interface peripherals are analog input/output devices that interface di-
rectly to the ’C3x. This chapter describes these devices and their applications
in ’C3x-based systems.

Topic Page

8.1 Analog-to-Digital Converter Interface to the TMS320C30
Expansion Bus 8-2

8.2 Digital-to-Analog Converter Interface to the TMS320C30
Expansion Bus 8-6

8.3 Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x 8-10

8.4 TLC32040 Interface to the TMS320C3x 8-21

8.5 TLC320AD58 Interface to the TMS320C3x 8-30

8.6 CS4215 Interface to the TMS320C3x 8-39

8.7 Software UART Emulation for TMS320C3x 8-66

8.8 Hardware UART for TMS320C3x 8-70

Chapter 8

Analog-to-Digital Converter Interface to the TMS320C30 Expansion Bus

 8-2

8.1 Analog-to-Digital Converter Interface to the TMS320C30 Expansion Bus

Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
are commonly required in DSP systems and interface efficiently to the I/O
expansion bus. These devices are available in many speed ranges and with
a variety of features. While some might require one or more wait states on the
I/O bus, others can be used at full speed. Figure 8–1 illustrates a ’C30 interface
to an Analog Device’s AD1678 ADC. The AD1678 is a 12-bit, 5-µs converter
that allows sample rates up to 200 kHz and has an input voltage range of 10 V,
bipolar or unipolar. The converter is connected according to manufacturer’s
specifications to provide 0–10-V operation. This interface illustrates a com-
mon approach to connecting such devices to the ’C30. Note that the interface
requires only a minimum amount of control logic.

The AD1678 is a very flexible converter and is configurable in a number of dif-
ferent operating modes. These operating modes include:

� Byte or word data format
� Continuous or noncontinuous conversions
� Enabled or disabled chip-select function
� Programmable end-of-conversion indication

This interface uses a data format of 12-bit words, rather than a byte format, to
be compatible with the ’C3x. Noncontinuous conversions are selected so that
variable sample rates can be used; continuous conversions occur at a fixed
rate of 200 kHz. With noncontinuous conversions, the host processor deter-
mines the conversion rate by initiating conversions through write operations
to the converter.

The chip-select input must be active when accessing the device. Enabling the
chip-select function is necessary to isolate the AD1678 from other peripheral
devices connected to the expansion bus. To establish the desired operating
modes, the SYNC and 12/8 inputs to the converter are pulled high and EOCEN
is grounded, as specified in the AD1678 Data Sheet.

In this application, the converter’s chip-select is driven by XA12, which maps
this device at 804000h in I/O address space. Conversions are initiated by writ-
ing any data value to the device. The conversion results are obtained by read-
ing from the device after the conversion is complete. To generate the device’s
start conversion (SC) and output enable (OE) inputs, the 74AS32 performs an
AND operation on IOSTRB and R/W (see Figure 8–1). Therefore, the conver-
ter is selected whenever XA12 is low; OE is driven when reads are performed,
and SC is driven when writes are performed.

Analog-to-Digital Converter Interface to the TMS320C30 Expansion Bus

8-3Analog Interface Peripherals and Applications

Figure 8–1. Interface Between the TMS320C30 and the AD1678

74AS32
74AS04

OE

SC

CS

12/8

SYNC

EOCEN

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

50 Ω

REFOUT

REFIN

200 Ω

BIPOFF

AIN

XA12

ONE

 12 V 5 V

IOSTRB
XR/W

IOW

IOR
VCC VDD

Analog
input

AD1678

20K Ω

EOC

 5 V

INT0

-12 V

PGND VEE AGND

2

4

6

8

11

13

15

17

1A1

2A1

1Y1

2Y1

18

16

14

12

9

XD0

XD1

XD2

XD3

XD4

7

5

3

XD5

XD6

XD7

74LS244

1G 2G

1Y118XD8

16

14

12

XD9

XD10

XD11

74LS244

2

4

6

8

19
ONE1G

1A1

74AS32

XA12

XD bus

As with many A/D converters, the AD1678 data output lines enter a high-
impedance state at the end of a read cycle. This occurs after the output enable
(OE) or read control line goes inactive. Furthermore, the data output buffer of-
ten requires a substantial amount of time to actually attain a full high-impe-
dance state. When used with the ’C30-33, device output must be fully disabled
no later than 65 ns following the rising edge of IOSTRB. This is because the
’C30 begins driving the data bus at this point if the next cycle is a write. If this
timing is not met, bus conflicts between the ’C30 and the AD1678 can occur.
This degrades system performance and may cause failure due to damaged
data bus drivers. The actual disable time for the AD1678 can be as long as
80 ns; therefore, 74LS244 buffers are used to isolate the converter outputs

Analog-to-Digital Converter Interface to the TMS320C30 Expansion Bus

 8-4

from the ’C30. The buffers are enabled when the AD1678 is read and are
turned off 30.8 ns after IOSTRB goes high, meeting the ’C30-33 requirement
of 65 ns.

When data is read following a conversion, the AD1678 takes 100 ns after its
OE control line is asserted to provide valid data at its outputs. Thus, including
the propagation delay of the 74LS244 buffers, the total access time for reading
the converter is 118 ns. This requires two wait states on the ’C30-33 expansion
I/O bus.

The two wait states required in this case are implemented using software wait
states. However, depending on the overall system configuration, you can im-
plement a separate wait-state generator for the expansion bus (for example,
in a case where multiple devices that require different numbers of wait states
are connected to the expansion bus). See section 4.5 Wait States and Ready
Generation on page 4-10.

Figure 8–2 shows the timing for read operations between the ’C30-33 and the
AD1678. At the beginning of the cycle, the address and XR/W lines become
valid at 10 ns (t1) following the falling edge of H1. Then, after 10 ns (t2) from
the next rising edge of H1, IOSTRB goes low. This begins the active portion
of the read cycle. After the control logic propagation delay at 5.8 ns (t3), the
IOR signal goes low, asserting the OE input to the AD1678. The 74LS244 buff-
ers take 30 ns (t4) to enable their outputs. Then, after the converter access
delay and the buffer propagation delay at 118 ns (t5 which equals 100 + 18),
data is provided to the ’C30. This provides approximately 46 ns of data setup
time before the rising edge of IOSTRB. Therefore, this design easily satisfies
the ’C30-33’s requirement of 15 ns of data setup time for reads.

Figure 8–2. Read Operations Timing Between the TMS320C30 and the AD1678

H1

XA12–XA0

IOSTRB

IOR

READO
DATA

t2t1

t3

t4
t5

Analog-to-Digital Converter Interface to the TMS320C30 Expansion Bus

8-5Analog Interface Peripherals and Applications

Unlike the primary bus, read and write cycles on the I/O expansion bus are
timed the same but have the following exceptions:

� XR/W is high for reads and low for writes
� The data bus is driven by the ’C30 during writes (reads are the same)

When writing to the AD1678, the 74LS244 buffers do not turn on and no data
is transferred. The purpose of writing to the converter is only to generate a
pulse on the converter’s SC input, which initiates a conversion cycle. When a
conversion cycle is completed, the AD1678’s end of conversion (EOC) output
generates an interrupt on the ’C30 to indicate that the converted data can be
read.

The TLC1225 is a self-calibrating 12-bit-plus-sign bipolar or unipolar conver-
ter, which features 10-µs conversion times. The TLC1550 is a 10-bit, 6-µs con-
verter with a high-speed DSP interface. Both converters are parallel-interface
devices.

Digital-to-Analog Converter Interface to the TMS320C30 Expansion Bus

 8-6

8.2 Digital-to-Analog Converter Interface to the TMS320C30 Expansion Bus

In many DSP systems, the requirement for generating an analog output signal
is a consequence of sampling an analog waveform with an ADC so that it can
be processed digitally. This digitally processed signal is then reproduced with
a digital-to-analog converter (DAC). Interfacing the DAC to the ’C30 on the
expansion I/O bus is also straightforward.

Various types of DACs may be distinguished by whether or not the converters
include:

� Latches to store the digital value to be converted to an analog quantity
� The interface to control those latches

When latches and control logic are included, interface design is often simpli-
fied; however, internal latches are often included only in slower DACs.

Although slower converters limit signal bandwidth, the converter design
described in Figure 8–3 allows a reasonably wide range of signal frequencies
to be processed and illustrates the technique of interfacing to a converter that
uses external data latches.

Figure 8–3 shows an interface to an Analog Device, AD565A DAC. This
device is a 12-bit, 250-ns current output DAC with an on-chip 10-V reference.
Using an off-chip current-to-voltage conversion circuit connected according to
the manufacturer’s specifications, the converter exhibits output signal ranges
of 0–10 V, which is compatible with the conversion range of the ADC discussed
in the previous section.

Because this DAC essentially performs continuous conversions based on the
digital value provided at its inputs, periodic sampling is maintained by updating
the value stored in the external latches at regular intervals. Therefore,
between updates, the digital value is stored and maintained at the latch out-
puts that provide the input to the DAC. This results in a stable analog output
until the next sample update is performed.

Digital-to-Analog Converter Interface to the TMS320C30 Expansion Bus

8-7Analog Interface Peripherals and Applications

Figure 8–3. Interface Between the TMS320C30 and the AD565A

REF. OUT

Bit 12 (LSB)

11

10

9

8

7

6

5

4

3

2

Bit 1 (MSB)

 12 V

VCC

AD565A

Power
GND

AGND

2

5

6

9

12

15

16

19

1Q

EN

1D

CLK

3

4

7

8

13

XD0

XD1

XD2

XD3

XD4

14

17

18

XD5

XD6

XD7

3XD8

4

7

8

XD9

XD10

XD11

2

5

6

9

XD bus

U26

U25

74LS377

74LS377

ENCLK

IOW

50 Ω

REF. IN
REF. GND

AGND

XA12

VEE -12 V

20 V SPAN

2.4 K

-12 V

 12 V

10 pF

Analog
out

10 V
SPAN

DACOUT
LM318

The external data latches are 74LS377 devices that have both clock and
enable inputs. These latches serve as a convenient interface with the ’C30; the
enable inputs provide a device select function and the clock inputs latch the
data. The enable input driven by inverted XA12 and the clock input driven by
IOW (which is the AND of IOSTRB and XR/W). Therefore, data is stored in the
latches when a write is performed to I/O address 805000h. Reading this
address has no effect on the circuit.

Figure 8–4 shows the timing diagram of a write operation to the DAC latches.

Digital-to-Analog Converter Interface to the TMS320C30 Expansion Bus

 8-8

Figure 8–4. Timing Diagram for Write Operation to the DAC

t1
t3

t4

t2

t5 t6

H1

XA12–XA0

XA12

IOSTRB

IOW

XD32–XD0

Because the data is written to the latches, rather than to the DAC, the timing
requirements for these devices are fundamental to the operation of the inter-
face. At a minimum, these latches require:

� Data setup time of 20 ns
� Enable setup time of 25 ns
� Disable setup time of 10 ns
� Data and enable hold times of 5 ns

This design provides approximately 60 ns of enable setup, 30 ns of data setup,
and 7.2 ns of data hold time. Therefore, the setup and hold times provided by
this design exceed those required by the latches. The key timing parameters
for this interface are summarized in Table 8–1.

Digital-to-Analog Converter Interface to the TMS320C30 Expansion Bus

8-9Analog Interface Peripherals and Applications

Table 8–1.Key Timing Parameters for DAC Write Operation

 Time
 Interval Event

Time
Period †

t1 H1 falling to address valid 10 ns

t2 XA12 to XA12 delay 5 ns

t3 H1 rising to IOSTRB falling 10 ns

t4 IOSTRB to IOW delay 5.8 ns

t5 Data setup to IOW 30 ns

t6 Data hold from IOW 7.2 ns

† Timing for the ’C30-33

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

 8-10

8.3 Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

Figure 8–5 shows how to interface the ’C3x with zero glue logic to Burr-
Brown’s DSP201/2 and DSP101/2 family of 16-bit DAC and ADC. Using a ’C3x
and the DSP202 and DSP102 dual-channel DAC and ADC chips provides an
efficient, low-cost, stereo, digital audio interface.

Figure 8–5. TMS320C31 Zero Glue-Logic Interface to Burr-Brown ADC and DAC
Burr-Brown DSP202 DACBurr-Brown DSP102 ADC

Use TCLK1

1 �

22 pF 22 pF

12.29 MHz

+/–2.75 V

+/–2.75 V

 5 V

 5 V

VINA

VINB

OSC0

OSC1
CONV

CASC

SSF

SYNC

SOUTA

XCLK

TCLK0

+/–3 V

+/–3 V

 5 V

 5 V

 5 V

TMS320C31

FSR0

DR0

CLKR0

FSX0

DX0

CLKX0

CONV

VOUTB

VOUTA

CASC

SWL

SSF

SYNC

SINB

SINA

XCLK

The DSP102 ADC is interfaced to the ’C3x serial port receive side; the DSP202
DAC is interfaced to the transmit side. The ADC and DAC are hard-wired to
run in cascade mode. In this mode, when the ’C3x initiates a convert command
(CONV) to the ADC through its TCLK0 pin, both analog inputs are converted
into two 16-bit words that are concatenated to form one 32-bit word. The ADC
signals the ’C3x that serial data from the last conversion is being transmitted
through the ADC’s SYNC signal. The 32-bit word is then serially transmitted,
most significant bit (MSB) first, through the SOUTA serial pin of the DSP102
to the DR0 pin of the ’C3x serial port. The ’C3x is programmed to drive the ana-
log interface bit clock from its CLKX0 pin. The bit clock drives both the ADC
and DAC XCLK input.

The ’C3x transmit clock can also act as the input clock on the receive side of
the ’C3x serial port. Since the receive clock is synchronous to the ’C3x’s inter-
nal clock, the receive clock can run at full speed (even though it is an external
clock).

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

8-11Analog Interface Peripherals and Applications

Similarly, upon receiving a convert command (CONV), the DAC converts the
last word received from the ’C3x. It signals the ’C3x, through the SYNC signal,
to begin transmitting a 32-bit word representing the two channels of data to be
converted. The data, transmitted from the ’C3x DX0 pin, is input to both the
SINA and SINB inputs of the DAC.

The ’C3x is set up to transfer bits at the maximum rate of about 8 Mbytes/s.
It uses a dual-channel sample rate of about 44.1 KHz by setting the following
registers (assuming a 32 MHz CLKIN):

Serial Port:

Port global control register 0x0EBC0040
FSX/DX/CLKX port control register 0x00000111
FSR/DR/CLKR port control register 0x00000111
Receive/transmit timer control register 0x0000000F

Timer :
Timer global control register 0x000002C1
Timer period register 0x000000B5

A synchronous receive interrupt service routine is sufficient for parsing and
transferring data between the serial ports and memory. Source code for setting
up the serial port and timers of the ’C3x for interfacing to the DSP102 and
DSP202 can be found on the TI BBS (file name: C3XBB.EXE). This code is
listed in Example 8–1 through Example 8–4.

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

 8-12

Example 8–1. TMS320C3x / BB – DSP102/202 Driver Header File

/**/
/* BB.H */
/* */
/* TMS320C3x – BB DSP102/202 DRIVER HEADER FILE */
/**/
#include <serprt30.h>
#include <timer30.h>
#include <dma30.h>
#include <bus30.h>
#include <general.h>
/**/
/* COMMON STRUCTURES */
/**/
typedef volatile int VI;
typedef volatile float VF;
typedef VF * volatile VPVF;
typedef VI * volatile VPVI;
/***/
/* FUNCTION PROTOTYPES */
/***/
void c_int99(void);
void heap_overflow(void);
void init_c30(void);
void error_in_real_time(void);
/***/
/* MACROS */
/***/
#define BLOCK_SIZE 64 /* BUFFER SIZE */
#define GEN_OSC OFF /* GENERATE OSCILLATOR */
#define GEN_CC ON /* GENERATE CONVERT COMMAND */
#define SER_NUM SERIAL_PORT_ONE
#define OSC_TIMER_NUM TIMER_ZERO
#define CC_TIMER_NUM TIMER_ONE
#define XF_NUM 1
#define ERROR_CHECK ON

#define WAIT_BUFFERS while(!buffer_rcvd || !buffer_xmtd);
#define RESET_FLAGS buffer_rcvd = buffer_xmtd = FALSE
#define INIT_ARRAYS init_arrays(t_buffer,r_buffer)
#if XF_NUM
#define RESET_BB asm(” AND 2Fh,IOF”); asm(” OR 20h,IOF”)
#define UN_RESET_BB asm(” OR 60h,IOF”)
#else
#define RESET_BB asm(” AND 0F2h,IOF”); asm(” OR 2h,IOF”)
#define UN_RESET_BB asm(” OR 6h,IOF”)
#endif

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

8-13Analog Interface Peripherals and Applications

Example 8–1.TMS320C3x / BB – DSP102/202 Driver Header File (Continued)

/* TIMER PERIOD VALUES ARE BASED ON AN INPUT CLOCK OF 30 MHz */
#define CD 0xAA
#define DAT 0x9C
#define TIMER_PERIOD CD

#define WAIT(A) for(i=0;i<A;i++);

/***/
/* STRUCTURES */
/***/
typedef union
{
 unsigned int _intval;
 struct {
 signed int chan0 :16;
 signed int chan1 :16;
 } _bitval;
} BB_CASC_WORD;
/***/
/* GLOBAL VARIABLES */
/***/
extern int t_buffer; /* OUTPUT BUFFER SIZE */
extern int r_buffer; /* INPUT BUFFER SIZE */
extern VPVF output0; /* OUTPUT DATA BUFFER FOR PROCESSOR */
extern VPVF input0; /* INPUT DATA BUFFER FOR PROCESSOR */
extern VPVF output_xfer0; /* OUTPUT DATA BUFFER FOR ISR/BB */
extern VPVF input_xfer0; /* INPUT DATA BUFFER FOR ISR/BB */
extern VPVF output1; /* OUTPUT DATA BUFFER FOR PROCESSOR */
extern VPVF input1; /* INPUT DATA BUFFER FOR PROCESSOR */
extern VPVF output_xfer1; /* OUTPUT DATA BUFFER FOR ISR/BB */
extern VPVF input_xfer1; /* INPUT DATA BUFFER FOR ISR/BB */
extern VI buffer_rcvd; /* CPU–ISR COMM FLAG (INPUT) */
extern VI buffer_xmtd; /* CPU–ISR COMM FLAG (OUTPUT) */
extern VI r_index; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
extern VI t_index; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
extern VI i; /* GENERIC COUNTER VARIABLE */
/***/
/* FUNCTION PROTOTYPES */
/***/
/***********************/
/* BB DRIVER FUNCTIONS */
/***********************/
void init_arrays(int t_buffer_size, int r_buffer_size);
void init_bb(int period_value);
#if SER_NUM
void c_int07(void);
#else
void c_int05(void);
#endif

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

 8-14

Example 8–2. TMS320C3x – BB DSP102/202 Driver

/**/
/* BBDRVR.C */
/* */
 /* TMS320C3x – BB DSP102/202 DRIVER
*/
/**/
#include <math.h>
#include <stdlib.h>
#include <bb.h>
/**/
/* GLOABL VARS */
/**/
int t_buffer = BLOCK_SIZE; /* OUTPUT BUFFER SIZE */
int r_buffer = BLOCK_SIZE; /* INPUT BUFFER SIZE */
VPVF output0; /* OUTPUT DATA BUFFER FOR PROCESSOR */
VPVF input0; /* INPUT DATA BUFFER FOR PROCESSOR */
VPVF output_xfer0; /* OUTPUT DATA BUFFER FOR ISR/BB */
VPVF input_xfer0; /* INPUT DATA BUFFER FOR ISR/BB */
VPVF output1; /* OUTPUT DATA BUFFER FOR PROCESSOR */
VPVF input1; /* INPUT DATA BUFFER FOR PROCESSOR */
VPVF output_xfer1; /* OUTPUT DATA BUFFER FOR ISR/BB */
VPVF input_xfer1; /* INPUT DATA BUFFER FOR ISR/BB */
VI buffer_rcvd = FALSE; /* CPU–ISR COMM FLAG (INPUT) */
VI buffer_xmtd = FALSE; /* CPU–ISR COMM FLAG (OUTPUT) */
VI r_index = 0; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
VI t_index = 0; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
VI i; /* GENERIC COUNTER VARIABLE */
/**/
/* FUNCTION DECLARATIONS */
/**/
/**/
/* VOID C_INT05() OR C_INT07(): */
/* ISR FOR HANDLING DATA TRANSFER BETWEEN C3X SERIAL PORT */
/* ONE AND THE A/D,D/A. ASSUMES SYNCHRONOUS OPERATION. */
/**/
#if SER_NUM
void c_int05(void) {}
void c_int07(void)
#else
void c_int07(void) {}
void c_int05(void)
#endif
{
 BB_CASC_WORD temp;
 VPVF swap;

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

8-15Analog Interface Peripherals and Applications

Example 8–2.TMS320C3x – BB DSP102/202 Driver (Continued)

 /* DSP102/202 TRANSFER TWO SIXTEEN BIT WORDS REPRESENTING */
 /* BOTH CHANNELS IN ONE THIRTYTWO BIT WORD. EXTRACT INTO */
 /* THE INPUT_XFER BUFFERS */
 temp._intval = SERIAL_PORT_ADDR(SER_NUM)–>r_data;
 input_xfer0[r_index] = temp._bitval.chan0;
 input_xfer1[r_index] = temp._bitval.chan1;

 /* WRITE OUTPUT_XFER BUFFER VALUE BY CASCADING BOTH CHANNELS */
 temp._bitval.chan0 = output_xfer0[t_index];
 temp._bitval.chan1 = output_xfer1[t_index];
 SERIAL_PORT_ADDR(SER_NUM)–>x_data = temp._intval;

 /* CHECK IF BUFFERS ARE FULL */
 if(++r_index == r_buffer)
 {
 /* CHECK CPU SYNCHRONIZATION FLAG */
#if ERROR_CHECK
/* if(buffer_rcvd == TRUE) error_in_real_time(); */
 if(buffer_rcvd == TRUE) for(;;);
#endif
 swap = input0;
 input0 = input_xfer0;
 input_xfer0 = swap;
 swap = input1;
 input1 = input_xfer1;
 input_xfer1 = swap;
 r_index = 0;
 buffer_rcvd = TRUE;
 }
 if(++t_index == t_buffer)
 {
 /* CHECK CPU SYNCHRONIZATION FLAG */
#if ERROR_CHECK
/* if(buffer_xmtd == TRUE) error_in_real_time(); */
 if(buffer_xmtd == TRUE) for(;;);
#endif
 swap = output0;
 output0 = output_xfer0;
 output_xfer0 = swap;
 swap = output1;
 output1 = output_xfer1;
 output_xfer1 = swap;
 t_index = 0;
 buffer_xmtd = TRUE;
 }
}

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

 8-16

Example 8–2.TMS320C3x – BB DSP102/202 Driver (Continued)

/**/
/* INIT_ARRAYS(): INITIALIZE DATA ARRAY PARAMETERS */
/**/
void init_arrays(int t_buffer, int r_buffer)
{
 int i;
 /***********************************/
 /* INITIALIZE AND ZERO FILL ARRAYS */
 /***********************************/
 if(!(input0 = (float *) calloc(r_buffer,sizeof(float))))
 heap_overflow();
 if(!(output0 = (float *) calloc(t_buffer,sizeof(float))))
 heap_overflow();
 if(!(input_xfer0 = (float *) calloc(r_buffer,sizeof(float))))
 heap_overflow();
 if(!(output_xfer0 = (float *) calloc(t_buffer,sizeof(float))))
 heap_overflow();
 if(!(input1 = (float *) calloc(r_buffer,sizeof(float))))
 heap_overflow();
 if(!(output1 = (float *) calloc(t_buffer,sizeof(float))))
 heap_overflow();
 if(!(input_xfer1 = (float *) calloc(r_buffer,sizeof(float))))
 heap_overflow();
 if(!(output_xfer1 = (float *) calloc(t_buffer,sizeof(float))))
 heap_overflow();

 for(i = 0; i < t_buffer; i++)
 {
 output0[i] = output_xfer0[i] = 0.0;
 output1[i] = output_xfer1[i] = 0.0;
 }
}

/**/
/* INIT_BB(): INITIALIZE COMMUNICATIONS TO DSP102/202 */
/**/
void init_bb(int period_value)
{
 /* RESET D/A, MAKE SURE RESET IS HELD LOW SUFFICIENTLY (?) LONG */
 RESET_BB;
 WAIT(50);

#if GEN_OSC
 /* CONFIGURE C3X TIMER AS BB A/D OSC */
 TIMER_ADDR(OSC_TIMER_NUM)–>gcontrol = 0x0;
 TIMER_ADDR(OSC_TIMER_NUM)–>counter = 0x0;
 TIMER_ADDR(OSC_TIMER_NUM)–>period = 0x0;
 TIMER_ADDR(OSC_TIMER_NUM)–>gcontrol = FUNC | GO | HLD_ | CP_ | CLKSRC;
#endif

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

8-17Analog Interface Peripherals and Applications

Example 8–2.TMS320C3x – BB DSP102/202 Driver (Continued)

 /* CONFIGURE SERIAL PORT */
 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = 0x0;
 SERIAL_PORT_ADDR(SER_NUM)–>s_x_control = CLKXFUNC | DXFUNC | FSXFUNC;
 SERIAL_PORT_ADDR(SER_NUM)–>s_r_control = CLKRFUNC | DRFUNC | FSRFUNC;
 SERIAL_PORT_ADDR(SER_NUM)–>s_rxt_control = 0x0F;
 SERIAL_PORT_ADDR(SER_NUM)–>s_rxt_period = 0x0;
 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = XCLKSRCE | XLEN_32 | RLEN_32 |
 XINT | XRESET | RRESET;
 /* CLEAR SERIAL TRANSMIT DATA */
 SERIAL_PORT_ADDR(SER_NUM)–>x_data = 0x0;

 /* TAKE A/D,D/A OUT OF RESET, (OPTIONALY) CLEAR THE INT FLAG REG, */
 /* ENABLE THE APPROPRIATE SERIAL PORT TRANSMIT INT AND ENABLE */
 /* GLOBAL INTERRUPTS */
 UN_RESET_BB;
 CL_INT_FL_REG;

#if SER_NUM
 EN_SER_PORT_XMT_INT_1;
#else
 EN_SER_PORT_XMT_INT_0;
#endif

 EN_GLOBAL_INTS;

#if GEN_CC
 /* CONFIGURE C3X TIMER 1 AS BB A/D,D/A CONVERT CLOCK */
 TIMER_ADDR(CC_TIMER_NUM)–>gcontrol = 0x0;
 TIMER_ADDR(CC_TIMER_NUM)–>counter = 0x0;
 TIMER_ADDR(CC_TIMER_NUM)–>period = period_value;
 TIMER_ADDR(CC_TIMER_NUM)–>gcontrol = FUNC | GO | HLD_ | CLKSRC;
#endif
}

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

 8-18

Example 8–3. General Macro Definitions

/***/
/* general.h v4.2 */
/* Copyright (c) 1991 Texas Instruments Incorporated */
/***/
#ifndef _GENERAL
#define _GENERAL
/***/
/* COMMON MACRO DEFINTIONS
/***/
#ifndef OFF
#define OFF 0x00
#endif

#ifndef ON
#define ON 0x01
#endif

#ifndef FALSE
#define FALSE 0x00
#endif

#ifndef TRUE
#define TRUE 0x01
#endif

#ifndef CLEAR
#define CLEAR 0x00
#endif

#ifndef SET
#define SET 0x01
#endif

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

8-19Analog Interface Peripherals and Applications

Example 8–3.General Macro Definitions (Continued)

/**/
/* GENERAL C3x MACROS */
/**/
#ifndef INIT_XF_PINS
#define INIT_XF_PINS asm(” LDI 00h,IOF”)
#endif

#ifndef CL_INT_FL_REG
#define CL_INT_FL_REG asm(” LDI 0h,IF”)
#endif

#ifndef EN_GLOBAL_INTS
#define EN_GLOBAL_INTS asm(” OR 2000h,ST”)
#endif

#ifndef EN_SER_PORT_XMT_INT_0
#define EN_SER_PORT_XMT_INT_0 asm(” OR 10h,IE”)
#endif

#ifndef EN_SER_PORT_RCV_INT_0
#define EN_SER_PORT_RCV_INT_0 asm(” OR 20h,IE”)
#endif

#ifndef EN_SER_PORT_XMT_INT_1
#define EN_SER_PORT_XMT_INT_1 asm(” OR 40h,IE”)
#endif

#ifndef EN_SER_PORT_RCV_INT_1
#define EN_SER_PORT_RCV_INT_1 asm(” OR 80h,IE”)
#endif

#ifndef ENABLE_CACHE
#define ENABLE_CACHE asm(” OR 800h,ST”)
#endif

#endif /* #ifndef _GENERAL */

Burr-Brown DSP101/2 and DSP201/2 Interface to TMS320C3x

 8-20

Example 8–4. Common Driver Header File

/**/
/* COMMDRVR.H */
/* */
/* TMS320C3x – COMMOM DRIVER HEADER FILE */
/**/
#include <c30_per.h>
/**/
/* COMMON STRUCTURES */
/**/
typedef volatile int VI;
typedef volatile float VF;
typedef VF * volatile VPVF;
typedef VI * volatile VPVI;

/**/
/* FUNCTION PROTOTYPES */
/**/
void c_int99(void);
void heap_overflow(void);
void init_c30(void);
void error_in_real_time(void);

TLC32040 Interface to the TMS320C3x

8-21Analog Interface Peripherals and Applications

8.4 TLC32040 Interface to the TMS320C3x

Figure 8–6 shows how to interface the ’C3x with zero glue logic to a Texas
Instruments’ TLC32040 14-bit analog interface circuit (AIC). The following
sections describe the steps required to initialize and set up the ’C3x timer and
serial port, and to reset and program the TLC32040.

Figure 8–6. TM320C3x-to-TLC32040 Interface

Analog in

Analog out

TLC32040C3x
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

In–

In+

Out+

Out–

SCLK

FSR

FSX

DX

DR

RESET

MCLK

CLKR0

CLKX0

FSR0

FSX0

DX0

DR0

XF0

TCLK0

’C3x TLC32040

8.4.1 Resetting the Analog Interface Circuit

The ’C31’s XF0 signal is connected to the RESET signal of the AIC. By toggling
the RESET signal, the ’C31 can reset the AIC. This is achieved by executing
the following instructions:

rpts 40 ; Execute next instruction 40x
ldi 2h,IOF ; Pull AIC into reset
ldi 6h,IOF ; Pull AIC out of reset

TLC32040 Interface to the TMS320C3x

 8-22

8.4.2 Initializing the TMS320C31 Timer

The ’C31’s timer (TCLK0) signal is connected to the AIC’s master clock
(MCLK) signal. The MCLK signal drives all the key logic signals of the AIC,
such as the shift clock, the switched-capacitor filter clocks, and the ADC and
DAC timing signals. The timer pulses the TCLK0 signal whenever the ’C31 tim-
er counter register (which is memory mapped to 0x808024) counts up to the
value in the timer period register (which is memory mapped to 0x808028).
Then, the timer counter register resets to 0 and repeats. (For a detailed
description of the ’C31 timer, see the TMS320C3x User’s Guide.) Because of
differences between the maximum frequency of the ’C31’s timer and the maxi-
mum and minimum frequencies of the AIC, observe the following constraints:

� Minimum Timer Period Register Value .The ’C31 running at 50 MHz can
generate a maximum timer frequency of 12.5 MHz (CLKIN/4), which is
above the AIC’s tested master clock frequency maximum of 10 MHz. If you
use frequencies beyond those listed in the TLC32040 Data Sheet, the re-
sulting performance can be unpredictable. If the timer is run in pulse mode
(control value is 0x2C1) the minimum period of 1 results in 12.5-MHz mas-
ter pulse rate and a period of 2 results in 6.25 MHz. See the TLC32040
Data Sheet for more information.

� Maximum Timer Period Register Value . The AIC’s minimum master
clock frequency is 75 kHz. Taking into account the ’C31 maximum timer
frequency of 12.5 MHz and the AIC’s minimum master clock frequency,
the maximum value in the ’C31’s timer counter register must be 165
(12.5 MHz / 75 kHz = 166.7). The ’C31’s timer counts down to 0; therefore,
you must subtract 1 from this number (166 – 1 = 165). The TLC32040
specification describes a minimum clock frequency, since the internal sig-
nals of the AIC are stored in capacitors that must be periodically updated.

The following ’C31 assembly code initializes the timer in clock mode with a tim-
er period of 1. The following code initializes timer 0 to generate a square wave
(clock mode) on the TCLK0 pin at a frequency of 6.25 MHz (timer period = 1):

TGCR0 .set 808020h ; Timer 0 global control register
TCNT0 .set 808024h ; Timer 0 counter register
TPR0 .set 808028h ; Timer 0 period register
TIMVAL .word 3c1h ; Timer global control register value

ldp @TGCR0 ; Set Data Page
ldi 0h,R4 ; Initialize R4 to zero
ldi 1h,R0 ; Initialize R0 to 1
sti R4,@TGCR0 ; Reset timer0
sti R0,@TPR0 ; Store timer0 period
sti R4,@TCNT0 ; Reset timer0 counter
ldi @TIMVAL,R7 ; Load timer control value
sti R7,@TGCR0 ; Start timer 0

TLC32040 Interface to the TMS320C3x

8-23Analog Interface Peripherals and Applications

A period of 0 is not allowed in pulse mode. If the timer is run in clock mode, the
resulting output is a square wave with a frequency of half that of pulse mode.
A period of 0 is allowed in clock mode resulting in a 12.5-MHz clock.

8.4.3 Initializing the TMS320C31 Serial Port

This section explains how to initialize the:

� ’C31 serial port
� ’C31 serial-port control register (memory mapped to 0x808040)
� FSX/DX/CLKX control register (memory mapped to 0x808042)
� FSR/DR/CLKR control register (memory mapped to 0x808043)

For a detailed description of the ’C31 serial port, see the TMS320C3x User’s
Guide.

Example 8–5 shows the assembly code to initialize the serial port global con-
trol register (SGCR0) for the ’C31 in the following manner:

1) Issue transmit and receive resets
2) Enable receive and transmit interrupts
3) Set 16-bit receive and transmit transfers
4) Set FSX and FSR, CLKX and CLKR active low
5) Set continuous mode
6) Set variable data rate transfers

See the example code supplied with the DSP for help on setting up the AIC.

Example 8–5.Initialize the Serial Port Global Control Register

SGCR0 .set 808040h ; Serial port 0 global control register ;
SPCX0 .set 808042h ; Serial port 0 FSX/DX/CLKX control reg. ;
SPCR0 .set 808043h ; Serial port 0 FSR/DR/CLKR control reg. ;
SINIT0 .word 0e973300h ; Enable RINT & 16–bit transfers
SINIT1 .word 111h ; Configure as serial port pins

ldp @SGCR0 ; Set Data Page
ldi 0h,R4 ; Initialize R4 to zero
sti R4,@SGCR0
ldi @SINIT1,R7 ; Reset and
sti R7,@SPCX0 ; initialize serial port
sti R7,@SPCR0 ; initialize serial port
ldi @SINIT0,R7 ; Reset and
sti R7,@SGCR0 ; initialize serial port

TLC32040 Interface to the TMS320C3x

 8-24

8.4.4 Initializing the AIC

Once the ’C31 supplies MCLK, initializes its serial port, and resets the AIC, you
can initialize the AIC to a specified sample rate. The AIC sampling rate is deter-
mined by the values of two registers (Tx counter A and Tx counter B) in the
AIC’s transmit and receive sections. These values are loaded into the respec-
tive counter whenever the counter counts down to 0. The Tx counters A and
B determine the D/A conversion timing. The Rx counters A and B determine
the A/D conversion timing. For more information, see the TLC32040 AIC Data
Sheet. The formula for the conversion frequency is given in Equation 8–1.

Equation 8–1. Conversion Frequency

Conversion frequency
MCLK

A B
_ =

2 ��

To ensure that the switched-capacitor lowpass and bandpass filters meet their
transfer function characteristics, the frequency of the clock inputs of the
switched-capacitor filter must be 288 kHz. Otherwise, the upper and lower cut-
off frequencies of the lowpass and bandpass are scaled accordingly.
Equation 8–2 shows the switched-capacitor filter frequency.

Equation 8–2. Switched Capacitor Filter Frequency

SCF Clock frequency
MCLK

A_ _ = 2 �

For example, using this equation for an 8-kHz sampling rate with an MCLK of
6.25 MHz results in a Tx counter A of 11 [A = MCLK / (2 � SCF)]. Using
Equation 8–2, Tx counter B results in 36 [B = MCLK / (2 � A � Conver-
sion_Frequency)].

To initialize the AIC’s Tx counter A and B registers, you must send a primary
communication followed by a secondary communication (as explained in the
following sections). Primary communications load values into the D/A while
secondary communications load A/D internal registers, such as the control
register, Tx counters A and B, and Rx counters A and B.

TLC32040 Interface to the TMS320C3x

8-25Analog Interface Peripherals and Applications

8.4.4.1 Primary Communications

Primary communications have a data value in the 14 MSBs (D15–D2) of data
and a mode selection in the two least significant bits (LSBs) (D1–D0). This for-
mat is shown in Figure 8–7.

The AIC sends the data value to the DAC and enables one of the modes shown
in Table 8–2, depending on the two LSBs.

Figure 8–7. Primary Communication Data Format

ÁÁÁ
ÁÁÁ

D15 ÁÁ
ÁÁ

D14ÁÁÁ
ÁÁÁ

D13ÁÁÁ
ÁÁÁ

D12ÁÁÁ
ÁÁÁ

D11ÁÁÁ
ÁÁÁ

D10 ÁÁ
ÁÁ

D9ÁÁÁ
ÁÁÁ

D8ÁÁÁ
ÁÁÁ

D7ÁÁÁ
ÁÁÁ

D6 ÁÁÁ
ÁÁÁ

D5 ÁÁ
ÁÁ

D4ÁÁÁ
ÁÁÁ

D3ÁÁÁ
ÁÁÁ

D2ÁÁÁ
ÁÁÁ

D1 ÁÁÁ
ÁÁÁ

D0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DAC value
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Mode
selection

Table 8–2.Primary Communications Mode Selection

LSBs Mode

00 Tx counter A � TA, Rx counter A � RA
Tx counter B � TB, Rx counter B �RB

01 Tx counter A� TA + TA’, Rx counter A � RA + RA’
Tx counter B �TB, Rx counter B � RB

10 Tx counter A �TA - TA’, Rx counter A � RA + RA’
Tx counter B �TB, Rx counter B � RB

11 Tx counter A � TA, Rx counter A � RA
Tx counter B �TB, Rx counter B � RB

The second and third modes use the TA’ and RA’ registers to advance or slow
down the sampling frequency by respectively shortening or lengthening the
sample period. This is particularly useful in modem applications, where it can
enhance the signal-to-noise performance, perform frequency-tracking func-
tions, and generate nonstandard modem frequencies.

8.4.4.2 Secondary Communications

Secondary communication follows a primary communication that has the two
LSBs set to 11 together. This secondary communication programs the AIC by
loading the A, A’, B, or control registers. Figure 8–8 shows the secondary com-
munication data format. The TA, RA, TB, and RB values are unsigned. The TA’
and RA’ values are in signed 2s-complement format. The control register
enables bandpass filters and asynchronous transmit/receive, enables and
disables auxiliary inputs, and changes input gain.

TLC32040 Interface to the TMS320C3x

 8-26

Table 8–3 describes the control register bit fields.

Figure 8–8. Secondary Communication Data Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X TA register value (unsigned) X X RA register value (unsigned) 0 0

X
TA’ register value (signed 2s

complement) X
RA’ register value (signed 2s

complement) 0 1

X TB register value (unsigned) X RB register value (unsigned) 1 0

X X X X X X X X Control register 1 1

Table 8–3. Control Register Bit Fields

D7 D6 D5 D4 D3 D2

Input gain Transmit/receive AUX IN pins
Loopback
function

Bandpass
filter

0 0 = 1X for � 6-V analog input 0 = asynchronous 0 = disables 0 = disables 0 = deletes

0 1 = 2X for � 3-V analog input 1 = enables 1 = enables 1 = enables 1 = inserts

1 0 = 4X for � 1.5-V analog in-
put

1 1 = 1X for � 6-V analog input

The assembly code in Example 8–6 sets the TA and TB registers of the AIC.
This code transmits a 16-bit word to the AIC and then waits until the transmit
interrupt is generated by the serial port. Four commands are transmitted start-
ing with a 0, then the TB and RB values, followed by the TA and RA values,
and finally the control word. TA and RA values should be the last values trans-
mitted, since they change the AIC sample rate. By transmitting these values
last, the sample rate is not changed until the AIC receives the last program
word. In this way, very high sample rates can be achieved. Each command
transmits three 16-bit words: a primary communication, a secondary commu-
nication, and a zero-data word.

TLC32040 Interface to the TMS320C3x

8-27Analog Interface Peripherals and Applications

Example 8–6.Setting the TA and TB Registers

;–––
; LOOPAIC.ASM is an example program which shows how to initialize and use
; the TLC32040. The analog output (DAC output) is either a ramp signal
; (RAMPEN=1) or a loopback of the analog input (RAMPEN=0).
;–––
;––––––––––––––––––––––––––––––––––––
; Define constants used by program
;––––––––––––––––––––––––––––––––––––
RAMPEN .set 1 ; Set to 1 to generate ramp at AOUT
T0_ctrl .set 0x808020 ; TIM0 gl control
T0_count .set 0x808024 ; TIM0 count
T0_prd .set 0x808028 ; TIM0 prd
S0_gctrl .set 0x808040 ; SP 0 global control
S0_xctrl .set 0x808042 ; SP 0 FSX/DX/CLKX port ctl
S0_rctrl .set 0x808043 ; SP 0 FSR/DR/CLKR port ctl
S0_xdata .set 0x808048 ; SP 0 Data transmit
S0_rdata .set 0x80804C ; SP 0 Data receive
TA .set 12 ; AIC timing register values
TB .set 15 ;
RA .set 12 ;
RB .set 15 ;
GIE .set 0x2000 ; This bit in ST turns on interrupts
;––––––––––––––––––––––––––––––––––––
; Define some constant storage data
;––––––––––––––––––––––––––––––––––––
A_REG .word (TA<<9)+(RA<<2)+0 ; A registers
B_REG .word (TB<<9)+(RB<<2)+2 ; B registers
C_REG .word 10000011b ; control
S0_gctrl_val .word 0x0E970300 ; Serial port control register

; values
S0_xctrl_val .word 0x00000111 ;
S0_rctrl_val .word 0x00000111 ;
RAMP .word 0 ; RAMP count value
ADC_last .word 0 ; Last received ADC value

TLC32040 Interface to the TMS320C3x

 8-28

Example 8–6.Setting the TA and TB Registers (Continued)

;**
; Begin main code loop here
;**
main or GIE,ST ; Turn on INTS
 ldi 0x3,IE ; Enable XINT/RINT
 call INIT
 b main ; Do it again!
;–––––––––––––––––––––––––––––––
DAC2 push ST ; DAC Interrupt service routine
 push R3 ;
 .if RAMPEN ; If RAMPEN=1 assemble this code
 ldi @RAMP,R3 ;
 addi 256,R3 ; Add a value to RAMP
 sti R3,@RAMP ;
 .else ; Else assemble this
 ldi @ADC_last,R3 ;
 .endif ;
 andn 3,R3 ;
 sti R3,@S0_xdata ; Output the new DAC value
 pop R3 ;
 pop ST ;
 reti ;
;–––––––––––––––––––––––––––––––
ADC2 push ST ;
 push R3 ;
 ldi @S0_rdata,R3 ;
 sti R3,@ADC_last ;
 pop R3 ;
 pop ST ;
 reti ;
;***;
; The startup stub is used during initialization only ;
; and can be safely overwritten by the stack or data ;
;***;
 .entry ST_STUB ; Debugger starts here
INIT ldp T0_ctrl ; Use kernel data page and stack
 ldi 0,R0 ; Halt TIM0 & TIM1
 sti R0,@T0_ctrl ;
 sti R0,@T0_count ; Set counts to 0
 ldi 1,R0 ; Set periods to 1
 sti R0,@T0_prd ;
 ldi 0x2C1,R0 ; Restart both timers in pulse mode
 sti R0,@T0_ctrl ;
 ;–––––––––––––––––––––
 ldi @S0_xctrl_val,R0;
 sti R0,@S0_xctrl ; transmit control
 ldi @S0_rctrl_val,R0;
 sti R0,@S0_rctrl ; receive control
 ldi 0,R0 ;
 sti R0,@S0_xdata ; DXR data value
 ldi @S0_gctrl_val,R0; Setup serial port
 sti R0,@S0_gctrl ; global control

TLC32040 Interface to the TMS320C3x

8-29Analog Interface Peripherals and Applications

Example 8–6.Setting the TA and TB Registers (Continued)

;==;
; This section of code initializes the AIC ;
;==;
AIC_INIT LDI 0x10,IE ; Enable only XINT interrupt
 andn 0x34,IF ;
 ldi 0,R0 ;
 sti R0,@S0_xdata ;
 RPTS 0x040 ;
 LDI 2,IOF ; XF0=0 resets AIC
 rpts 0x40 ;
 LDI 6,IOF ; XF0=1 runs AIC
 ;–––––––––––––––––––––
 ldi @C_REG,R0 ; Setup control register
 call prog_AIC ;
 ldi 0xfffc ,R0 ; Program the AIC to be real slow
 call prog_AIC ;
 ldi 0xfffc|2,R0 ;
 call prog_AIC ;
 ldi @B_REG,R0 ; Bump up the Fs to final rate
 call prog_AIC ; (smallest divisor should be last)
 ldi @A_REG,R0 ;

call prog_AIC ;
b main

;–––––––––––––––––––––––––––––––
prog_AIC ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy
 sti R1,@S0_xdata ;
 idle
 ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy
 or 3,R1 ; Request 2 ndy XMIT
 sti R1,@S0_xdata ;
 idle ;
 sti R0,@S0_xdata ; Send register value
 idle ;
 andn 3,R1 ;
 sti R1,@S0_xdata ; Leave with original safe value in DXR
 ;–––––––––––––––––––––
 ldi @S0_rdata,R0 ; Fix the receiver underrun by reading
 rets main ; the DRR before going to the main loop
;**;
; Install the XINT/RINT ISR handler directly into ;
; the vector RAM location it will be used for ;
;**;
 .start ”SP0VECTS”,0x809FC5
 .sect ”SP0VECTS”
 B DAC2 ; XINT0
 B ADC2 ; RINT0

TLC320AD58 Interface to the TMS320C3x

 8-30

8.5 TLC320AD58 Interface to the TMS320C3x

The TLC320AD58C serial interface provides several master and slave modes
for 16-bit or 18-bit data output. This allows it to be compatible to a wide range
of DSPs. To interface with the ’C3x 32-bit floating-point DSP, the 18-bit master
mode “100” was chosen to get an 18-bit resolution result and meet the ’C3x
serial port requirements. The timing diagram is shown in Figure 8–9.

Figure 8–9. TLC320AD58C Serial Interface 18-bit Master Mode “100” Timing Diagram

DOUT

LRCLK

FSYNC

SCLK

17011617011617

Á
’C3x serial port
receive interrupt

receive interrupt

Á
Á ’C3x serial port

32 SCLKs
32 SCLKs

64 SCLKs

Left channel MSB
Right channel MSB

The frame sync signal (FSYNC) is then used to designate valid data from the
ADC and is active for one shift clock period. After the falling edge of FSYNC,
the left channel data is shifted out on the falling edge of SCLK with the MSB
(D17) first. When the last data bit is shifted out, the output remains low for
another 14 SCLKs to get a total of 32 SCLK periods each channel. After 32
SCLKs, LRCLK goes low and the right channel data is then shifted out. FSYNC
and LRCLK frequency are fixed to the sampling frequency (Fs = MCLK/256 or
MCLK/384, depending on the status of the CMODE input pin). The conversion
cycle is synchronized to the rising edge of LRCLK and, therefore, to the falling
edge of FSYNC. Although data is shifted out in two separate time packets rep-
resenting the left and right channel digital outputs, the analog inputs are
sampled and converted simultaneously. In the master mode, SCLK, FSYNC,
and LRCLK are generated internally from MCLK, depending on the status of
the CMODE input pin, as shown in Table 8–4.

TLC320AD58 Interface to the TMS320C3x

8-31Analog Interface Peripherals and Applications

Table 8–4. Master-Clock-to-Sample-Rate Conversion

MCLK
(MHz) CMODE SCLK (MHz)

Sample Rate
(kHz)

12.288
18.432

Low
High

3.072 48

11.290
16.934

Low
High

2.8224 44.1

8.129
12.288

Low
High

2.048 32

0.256
0.384

Low
High

0.064 1

The ’C30 uses two bidirectional serial ports; the ’C31 and ’C32 each have one.
Each serial port controls six port pins for receiving/transmitting data:
FSR/FSX, CLKR/CLKX, and DR/DX. Figure 8–10 shows the glueless inter-
face to the TLC320AD58C using the SCLK, FSYNC, and DOUT signals. Mode
“100” is set by pulling the MODE1 and MODE2 pins low and the MODE0 pin
high. The master clock is derived from the ’C3x to make sure all clock signals
are synchronized. The ’C3x is running at 49.152 MHz and provides the
required MCLK frequency of 12.288 MHz at the timer 0 output pin in order to
get a 48-kHz sample rate. CMODE must be pulled low. If other sample rates
are required, see Table 8–4.

The TLC320AD58C analog function blocks are initialized together with the
DSP by a system reset after all supply voltages are stable. The digital function
blocks are initialized by pulling down DIGPD for several microseconds. After
the rising edge of DIGPD, the device resumes normal operation. When DIGPD
is low, the TLC320AD58C digital function blocks are shut down and power con-
sumption is reduced. However, if power down mode is not required, this signal
can be tied to ANAPD. In both cases, refer to the TI Data Acquisition Circuits
Data Book for setup timing requirements. All digital inputs and outputs of the
’C3x and the TLC320AD58C are 5-V TTL compatible. To reduce ringing and
overshot, a serial damping resistor (50 Ω) is recommended for the master
clock signal.

TLC320AD58 Interface to the TMS320C3x

 8-32

Figure 8–10. Interface Between the-TMS320C3x and the TLC320AD58C

DVSS

DVDD

DVDD

DVSS

12.288 MHz

TLC320AD58 TMS320C3x

49.152 MHZ

RESET

CMODE

MODE0

TEST1,2

MODE1

MODE2

CLKIN

DR

FSR

FSX

CLKR

CLKX

XF0

TOUTO

RESET

DOUT

FSYNC

LRCLK

SCLK

SYNC

DIGPD

MCLK

ANAPD

The ’C3x can be configured to receive a maximum of 32 bits of data per word.
But, the TLC320AD58C transmits a total of 64 bits after the FSYNC pulse
appears. This forces the DSP to read the left and right channels back-to-back.
To accomplish this, the ’C3x serial port configuration is toggled between con-
tinuous mode and burst mode. In burst mode, FSYNC indicates the start of a
new data transfer. In continuous mode, the new data transfer starts immedi-
ately after the last bit of the previous transfer has been shifted out. Both the
serial port and the timer registers are memory mapped. Eight memory-
mapped registers are provided for each serial port:

� One global control register—defines the serial port configuration

� Two control registers—set the function of the CLKX/CLKR and FSX/FSR
pins

� Three receive/transmit timer registers

� One data receive register

� One data transmit register

If the serial port shift clock (CLKR/CLKX) is generated externally, the corre-
sponding timer can be used as a general-purpose timer. See the TMS320C3x
User’s Guide for more information on the ’C3x serial port.

TLC320AD58 Interface to the TMS320C3x

8-33Analog Interface Peripherals and Applications

Example 8–7 shows the C code for interfacing a TLC320AD58 to the ’C3x.
Example 8–8 (page 8-36) shows the header file for the C code of
Example 8–7. Example 8–9 (page 8-38) shows the interrupt table vector list-
ing. These examples perform the following tasks:

� Initialize the TLC320AD58C and the ’C30 serial port 1 to meet the
TLC320AD58C serial interface timing requirements

� Set up the timer 0 period register to generate the required MCLK
frequency

On a serial port 1 receive interrupt, which occurs after receiving 32 bits from
either the left channel or right channel, the program reads from the serial port
receive register and converts the input signal into a floating-point number with-
in the range of –1.0 and 1.0. It then changes the serial port configuration from
burst to continuous mode when the right channel has been received, or from
continuous to burst mode when the left channel has been received. The trans-
mit port is configured as the receive port for connection to the 18-bit
TMS57014A stereo DAC. Remember that the data has to be written to the data
transmit register no later than three CLKX cycles before the FSYNC pulse
occurs (in burst mode) or the next transfers starts (in continuous mode).

Example 8–7. Interfacing the 18-bit TLC320AD58 to TMS320C3x

/***/
/* File: AD58. C */
/* interfacing the 18–Bit TLC320AD58 to TMS320C3x */
/***/

/*include files */
/*––––––––––––––*/
#include “vectors.h”
#include “c3x.h”

/* global variables */
/*––––––––––––––––––*/
float Ichannel;
float r_channel;

/*–––*/
/* main program */
/*–––*/
void main(void)

TLC320AD58 Interface to the TMS320C3x

 8-34

Example 8–7.Interfacing the 18-bit TLC320AD58 to TMS320C3x (Continued)

{
 asm(” ldi 1000h,ST”); /* clear and enable cache */
 asm(” ldi 0h,IE”); /* clear all interrupt masks*/
 asm(” ldi 0h,IF”); /* clear all pending interrupt*/
 init_t0(); /* Generate AD58 MCLK, if required */
 init_sl(); /* Initialize serial port 1 */
 init_ad58();
 asm(” ldi _ERINT1_CPU,IE”); /* enable serial port 1 receive int */
 asm(” or _GIEBIT,ST:); /* global enable interrupts */
 while(1); /* wait on interrupt */
}

/*–––*/
/* Subroutine to initialize Serial Port 1 to communicate with TLC320AD58 */
/*–––*/
void init_s1 (void)
{
serial_port[l][X_PORT] = X1_MODE;
serial_port[1][R_PORT] = R1_MODE;
serial_port[l][GLOBRL] = S1_CONFIG;
}

/*–––*/
/* Subroutine to initialize Timer 0 to generate TLC320AD58 MCLK */
/*–––*/

void init_t0(void)
{
 timer[0][GLOBAL] = T0_HOLD;
 timer[0][T_COUNTER] = 0X0;
 timer[0][T_PERIOD] = T0_PERIOD;
 timer[0][GLOBAL] = T0_HOLD;
}

/*–––*/
/* Serial Port Receive Interrupt Service Routine */
/*–––*/
void c_int08(void)
{
/* reconfigure serial port to receive both channels within one frame sync */
 if (serial_port[l][GLOBAL] & 0x0C00)
 {
 /* read LEFT channel and normalize within –1.0..1.0 */
 1_channel = ((float) (serial_port[l][R_DATA] >> 14))/(4.0*65536);
 /* switch to burst mode*/
 serial_port[1][GLOBAL] = serial_port[1][GLOBAL] & 0xFFFFF3FF;
 /* if transmitting to DAC, make sure to write to the transmit register no
 later than 3 SCLK=CLKX cycles before the rising edge of FSYNC */
 }

TLC320AD58 Interface to the TMS320C3x

8-35Analog Interface Peripherals and Applications

Example 8–7.Interfacing the 18-bit TLC320AD58 to TMS320C3x (Continued)

 else
 {
 /* read RIGHT channel and normalize within –1.0..1.0 */
 r_channel = ((float) (serial_port[l][R_DATA] >> 14))/4.0*65536

 /* switch to continuous made */
 serial_port[ll[GLOBAL] = serial_port[1][GLOBAL] | 0x0C00;

 /* if transmitting to DAC, make sure to write to the transmit register no
 later than 3 SCLK=CLKX cycles before the next transfer */
 }
}

/*–––*/
/* Subroutine to initialize TLC320AD58 */
/*–––*/
void init_ad58(void)

{
 asm(” ldi 0010b,IOF”); /* reset XF0, power down AD58 */
 asm(” rpts 2500 ”); /* wait for 100 usee before */
 asm(” nop ”); /* asserting DigPwd */
 asm(” ldi 0110b,IOF”); /* AD58 normal operation */
}

TLC320AD58 Interface to the TMS320C3x

 8-36

Example 8–8. C3x.h, Header File Listing

/*––*
/
/* FILE: C3X.H
*/
/* TMS320C3X CONTROL REGISTER SETTINGS TO SETUP INTERFACE WITH
*/
/* TLC320AD58 18 BIT MASTER MODE
*/
/*––*
/

/*––––––––––––––––––––––––––––––––––*/
/* Serial Port 1 Initialization */
/*––––––––––––––––––––––––––––––––––*/
#define X1_MODE 0x000000111 /* FSX/DX/CLKX are serial port pins */
#define R1 MODE 0x000000111 /* FSX/DX/CLKX are serial port pins */
#define S1_CONFIG 0x00EBC3C00 /* SerialPort Configutration */
 /* FSX/FSR input */
 /* FSX/FSR signals active high */
 /* external CLKX/R */
 /* CLIM/CLKR active low */
 /* fixed data rate mode */
 /* 32–bit data width */
 /* TX/RX interrupts are enabled */
 /* XRESET/RRESET set to O */
 /* (take out of reset) */

/*––––––––––––––––––––––––––––*/
/* Timer 0 Initialization */
/*––––––––––––––––––––––––––––*/
/T TOUT Frequency (clock mode) = 1/[8*CLKIN*TO_PERIOD], if TO_PERIOD period>0
*/
/* = 1/[4*CLKINI. if TO_PERIOD period ; 0 */
#define TO_PERIOD 0 /* TOUTO = 12.288 MHz for 49.152 MHz CLKIN */
#define TO_HOLD 0x0301 /* clock mode, 50% duty cycle */
#define TO_GO 0x03C1

/*–––––––––––––––––––*/
/* Interrupt Mask */
/*–––––––––––––––––––*/

asm(”_ERINT1_CPU .set 80h:); /* enable serial port 1 receive int */
asm(”_GIEBIT) .set 2000h”); /* global enable interrupts */

TLC320AD58 Interface to the TMS320C3x

8-37Analog Interface Peripherals and Applications

Example 8–8.C3x.h, Header File Listing (Continued)

/*––*
/
/* TMS320C3X CONTROL REGISTER LOCATIONS
*/
/*––*
/

/*––––––––––––––––*/
/* Serial Ports */
/*––––––––––––––––*/
/* SERIAL PORT BASE LOCATION */
volatile int (*serial_port)[16 = (volatile int (*)[16]) 0x808040;

/* SERIAL PORT CONTROL REGISTERS */
#define GLOBAL 0 /* GLOBAL CONTROL */
#define X_PORT 2 /* TRANSMIT CONTROL */
#define R_PORT 3 /* RECEIVE CONTROL */
Rdefine X_DATA 8 /* TRANSMIT DATA */
#define R_DATA 12 /* RECEIVE DATA */

/*––––––––––––––––*/
/* Timer */
/*––––––––––––––––*/
/* TIMER BASE LOCATION */
volatile int (*timer)[16] = (volatile int (*)[16]) 0x808020;
#define T_COUNTER 4
#define T_PERIOD 8

TLC320AD58 Interface to the TMS320C3x

 8-38

Example 8–9. TMS320C3x Interrupt Vector Table Listing

/*––*/
/* Filename: vectors.h Defines interrupt vectors and trap vectors */
/* for C programs */
/* */
/* Usage: #include vectors.h */
/*
/* Modifications: If you add interrupt service routines, modify */
/* this file to insert the vectors at the proper */
/* location in the vector table. */
/*––*/

 asm(” .global _c_int00 ”);
 asm(” .global _c_int08 ”);

 asm(” .sect \”vectors\” ”);
 asm(”RESET .word _c_int00 ; external RESET– ”);
 asm(”INT0 .word _c_int99 ; external INT0– ”);
 asmi(”INT1 .word _c_int99 ; external INT1– ”);
 asm(”INT2 .word _c_int99 ; external INT2– ”);
 asm(”INT3 .word _c_int99 ; external INT3– ”);
 asm(”XINTO .word _c_int99 ; Serial port 0 XMT ”);
 asm(”RINTO .word _c_int99 ; Serial port 0 RCV ”);
 asm(”XINT1 .word _c_int99 ; Serial port 1 XMT ”);
 asm(”RINT1 .word _c_int08 ; Serial port 1 RCV ”);
 asm(”TINTO .word _c_int99 ; Timer 0 ”);
 asm(”TINT1 .word _c_int99 ; Timer 1 ”);
 asm(”DINT .word _c_int99 ; DMA complete ”);

 asm(” .space 20 ; Reserved space ”);
 asm(”TRAPO ”);
 asm(” .loop 28 ; TRAPS 0–27 are ”);
 asm(” .word _c_int99 ; undefined traps ”);
 asm(” .endloop ”);

 asm(” .space 4 ; TRAPS 28–31 reserved”);

/*––*/
/* NOTE: Put all interrupt handlers AFTER this next statement! */
/* */
/*––*/

 asm(” .text ”);

void c_int99() { } /* Spurious interrupt handler */

CS4215 Interface to the TMS320C3x

8-39Analog Interface Peripherals and Applications

8.6 CS4215 Interface to the TMS320C3x

Figure 8–11 shows how to interface the ’C3x with zero glue logic to Crystal
Semiconductor’s CS4216 16-bit stereo codec.

Figure 8–11.TMS320C3x-to-CS4216 Interface

k�
20

CS4215C3x
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

RESET

DIC

TSIN

FSYNC

SCLK

SDIN

SDOUT

FSX

FSR

XF0

TCLK

CS4215C3x

Example 8–10 through Example 8–16 show the assembly and C language
codes with their respective header files that program and interface the ’C3x to
the CS4215. Example 8–10 shows the CS4215 driver interrupt vector table.
Example 8–11 (page 8-41) shows the ’C3x serial port transmit interrupt
service routine. Example 8–12 (page 8-44) and Example 8–13 (page 8-46)
display the C code header files. Example 8–14 (page 8-47) shows the C
language common driver routines. Example 8–15 (page 8-49) is the C code
header file for Example 8–16 (page 8-59), which displays the C language
driver routines for the CS4215.

These files can be downloaded from Texas Instrument’s BBS or ftp site (file-
name C3x4215.EXE).

CS4215 Interface to the TMS320C3x

 8-40

Example 8–10. vecs.asm

;**
;
; vecs.asm
;
; staff
;
; 01–03–92
;
; (C) Texas Instruments Inc., 1992
;
; Refer to the file ’license.txt’ included with this
; this package for usage and license information.
;
;**

* VECS.ASM *
* *
* C3x – CS4215 DRIVER INTERRUPT VECTOR TABLE *
* *
* (C) 1991 TEXAS INSTRUMENTS, HOUSTON *

* INTERRUPT AND RESET VECTORS *

 .sect ”vecs” ; interrupt and reset vectors

 .ref _c_int00 ; compiler defined C initialization reset
 .ref _c_int06 ; serial port transmit interrupt service routine
 .ref _c_int08 ; serial port transmit interrupt service routine
 .ref _c_int99 ; unexpected interrupt handler

reset: .word _c_int00
int0: .word _c_int99
int1: .word _c_int99
int2: .word _c_int99
int3: .word _c_int99
xint0: .word _c_int99
rint0: .word _c_int06
xint1: .word _c_int99
rint1: .word _c_int08
tint0: .word _c_int99
tint1: .word _c_int99
dint: .word _c_int99

CS4215 Interface to the TMS320C3x

8-41Analog Interface Peripherals and Applications

Example 8–11. C_int.asm

;**
; c_int.asm
;
; Leor Brenman
;
; 03–16–92
;
; (C) Texas Instruments Inc., 1992
;
; Refer to the file ’license.txt’ included with this
; this package for usage and license information.
;**
**
* C_INT08(VOID)
*
* Hand–coded assembly language interrupt service routine.
* This serial port transmitt ISR supports the CS4215 zero
* chip I/F to the C3x serial port
* This ISR has been hand–coded for speed optimization.
*
* Leor Brenman, DSP Applications
* (C) 1991 TEXAS INSTRUMENTS, HOUSTON
**

 .globl _c_int08

* global variables

 .global _first_half, _input_xfer0, _input_xfer1, _buffer_size
 .global _buffer_index, _output_xfer0
 .global _output_xfer1, _output0, _output1, _data_control
 .global _buffer_rdy, _input0, _input1

* global variables

 .data
SER_1 .word 808050h ;place in same page as .bss
 ;to eliminate push/pop of DP when loading
 ;serial port one’s base address

**
* FUNCTION DEF : _c_int08
**
 .text
_c_int08:
 PUSH ST
 PUSH R0
 PUSHF R0
 PUSH AR0

CS4215 Interface to the TMS320C3x

 8-42

Example 8–11. C_int.asm (Continued)

* if this is the first half of the transmission then goto FRST_HALF

 LDI @_first_half,R0
 BNZ FRST_HALF

**
* else, this the second half of the transmission
**
SCND_HALF:

* load AR0 with serial port base address
* do dummy read of serial port to empty control info from serial port

 LDI @SER_1,AR0
 LDI *+AR0(12),R0

**
* get control value and write to serial port while branching to end of ISR
* and set first_half flag to TRUE
**

 LDI @_data_control+1,R0
 BD FIN_S
 STI R0,*+AR0(8)
 LDI 1,R0
 STI R0,@_first_half

**
* This the second half of the transmission
**
FRST_HALF:

* push remaining registers

 PUSH R1
 PUSHF R1
 PUSH AR1
 PUSH IR0

CS4215 Interface to the TMS320C3x

8-43Analog Interface Peripherals and Applications

Example 8–11. C_int.asm (Continued)

* set first_half flag to FALSE

 LDI 0,R0
 STI R0,@_first_half

 C_int.asm

POP AR0
POPF R0
POP R0
POP ST

RETI

CS4215 Interface to the TMS320C3x

 8-44

Example 8–12. General.h

/***/
/* general.h v4.2 */
/* Copyright (c) 1991 Texas Instruments Incorporated */
/***/
#ifndef _GENERAL
#define _GENERAL

/**/
/* COMMON MACRO DEFINTIONS
/**/
#ifndef OFF
#define OFF 0x00
#endif

#ifndef ON
#define ON 0x01
#endif

#ifndef FALSE
#define FALSE 0x00
#endif

#ifndef TRUE
#define TRUE 0x01
#endif

#ifndef CLEAR
#define CLEAR 0x00
#endif

#ifndef SET
#define SET 0x01
#endif

CS4215 Interface to the TMS320C3x

8-45Analog Interface Peripherals and Applications

Example 8–12. General.h (Continued)

/**/
/* GENERAL C3x MACROS */
/**/
#ifndef INIT_XF_PINS
#define INIT_XF_PINS asm(” LDI 00h,IOF”)
#endif

#ifndef CL_INT_FL_REG
#define CL_INT_FL_REG asm(” LDI 0h,IF”)
#endif

#ifndef EN_GLOBAL_INTS
#define EN_GLOBAL_INTS asm(” OR 2000h,ST”)
#endif

#ifndef EN_SER_PORT_XMT_INT_0
#define EN_SER_PORT_XMT_INT_0 asm(” OR 10h,IE”)
#endif

#ifndef EN_SER_PORT_RCV_INT_0
#define EN_SER_PORT_RCV_INT_0 asm(” OR 20h,IE”)
#endif

#ifndef EN_SER_PORT_XMT_INT_1
#define EN_SER_PORT_XMT_INT_1 asm(” OR 40h,IE”)
#endif

#ifndef EN_SER_PORT_RCV_INT_1
#define EN_SER_PORT_RCV_INT_1 asm(” OR 80h,IE”)
#endif

#ifndef ENABLE_CACHE
#define ENABLE_CACHE asm(” OR 800h,ST”)
#endif

#endif /* #ifndef _GENERAL */

CS4215 Interface to the TMS320C3x

 8-46

Example 8–13. Commdrvr.h

/**/
/* COMMDRVR.H */
/* */
/* TMS320C3x – COMMOM DRIVER HEADER FILE */
/* :TMS320C3x CODE */
/* Compile and archive into appropriate driver library */
/* */
/* (C) 1991 TEXAS INSTRUMENTS, HOUSTON */
/**/
#include <c30_per.h>

/**/
/* COMMON STRUCTURES */
/**/
typedef volatile int VI;
typedef volatile float VF;
typedef VF * volatile VPVF;
typedef VI * volatile VPVI;

/**/
/* FUNCTION PROTOTYPES */
/**/
void c_int99(void);
void heap_overflow(void);
void init_c30(void);
void error_in_real_time(void);

CS4215 Interface to the TMS320C3x

8-47Analog Interface Peripherals and Applications

Example 8–14. Commdrvr.c

/**

 commdrvr.c

 staff

 01–15–92

 (C) Texas Instruments Inc., 1992

 Refer to the file ’license.txt’ included with this
 this package for usage and license information.

***/
/**/
/* COMMDRVR.C */
/* */
/* TMS320C3x – COMMOM DRIVER ROUTINES */
/* :TMS320C3x CODE */
/* Compile and archive into aic.lib */
/* */
/* (C) 1991 TEXAS INSTRUMENTS, HOUSTON */
/**/
#include <commdrvr.h>

/**/
/* C_INT99(): ERRONEOUS INTERRUPT SERVICE ROUTINE */
/* THIS ROUTINE IDLES AFTER RECEIVING AN UNEXPECTED INTERRUPT */
/**/
void c_int99(void)
{
 for(;;);
}
/**/
/* HEAP_OVERFLOW(): NOT ENOUGH MEMORY IN THE HEAP */
/* THIS ROUTINE IS AN ERROR HANDLER FOR WHEN MEMORY */
/* CANNOT BE ALLOCATED FROM THE HEAP */
/**/
void heap_overflow(void)
{
 for(;;);
}

/**/
/* INIT_C30(): INITIALIZE TMS320C30 */
/**/
void init_c30(void)

CS4215 Interface to the TMS320C3x

 8-48

Example 8–14. Commdrvr.c (Continued)

{
 BUS_ADDR–>exp_gcontrol = 0x0;
 BUS_ADDR–>prim_gcontrol = 0x0;
 INIT_XF_PINS;
 ENABLE_CACHE;
}

/**/
/* ERROR_IN_REAL_TIME(): ERROR HANDLER, PROCESSING TIME IS GREATER */
/* I/O TIME. */
/**/
void error_in_real_time(void)
{
 for(;;);
}

CS4215 Interface to the TMS320C3x

8-49Analog Interface Peripherals and Applications

Example 8–15. CS4215.h

/**/
/* CS4215.H */
/* */
/* TMS320C3x – CRYSTAL 4215 MM CODEC */
/* :TMS320C3x CODE */
/* */
/* Leor Brenman, DSP Applications */
/* (C) 1991 TEXAS INSTRUMENTS, HOUSTON */
/**/
#include <math.h>
#include <stdlib.h>
#include <c30_per.h>
#include <commdrvr.h>

/*==*/
/* MACROS *===*/
/*==*/
#define BLOCK_SIZE 64
#define SER_NUM SERIAL_PORT_ONE
#define TIMER_NUM TIMER_ONE
#define XF_NUM 1

#define INIT_ARRAYS init_arrays(buffer_size)
#define WAIT_BUFFERS while(!buffer_rdy);
#define RESET_FLAGS buffer_rdy = FALSE
#define RESET_CODEC TIMER_ADDR(TIMER_NUM)–>gcontrol = I_O | HLD_
#define UN_RESET_CODEC TIMER_ADDR(TIMER_NUM)–>gcontrol = I_O | HLD_ | DATOUT
#if XF_NUM
#define DCB_LOW asm(” AND 2fh,IOF”); asm(” OR 20h,IOF”)
#define DCB_HI asm(” OR 60h,IOF”)
#else
#define DCB_LOW asm(” AND 0F2h,IOF”); asm(” OR 2h,IOF”)
#define DCB_HI asm(” OR 6h,IOF”)
#endif

#define WAIT(A) for(i=0;i<A;i++);

#define C_ISR ON

CS4215 Interface to the TMS320C3x

 8-50

Example 8–15. CS4215.h (Continued)

/**/
/* CS4215 DATA COMMAND BIT FIELD DATA STRUCTURES */
/**/
/**/
/* CONTROL COMMAND */
/**/
typedef union
{
 unsigned int _intval[2];
 struct
 {
 /* Time slot 4 */
 unsigned int adl :1; /* Loopback mode */
 unsigned int enl :1; /* Enable loopback testing */
 unsigned int d_r5 :6; /* Unused – don’t care bits: 2 – 7 */

 /* Time slot 3 */
 unsigned int xen :1; /* Transmitter enable */
 unsigned int xclk :1; /* Transmit clock */
 unsigned int bsel :2; /* Select bit rate */
 unsigned int mckf :2; /* Clock source select */
 unsigned int d_r4 :2; /* Unused – don’t care bits: 6 – 7 */

 /* Time slot 2 */
 unsigned int df :2; /* Data format selection */
 unsigned int st :1; /* Stereo bit: 0–mono, 1–stereo */
 unsigned int dfr :3; /* Data conversion freq selection */
 unsigned int d_r3 :2; /* Unused – don’t care bits: 6 – 7 */

 /* Time slot 1 */
 unsigned int d_r1 :2; /* Unused – don’t cares bits: 0 – 1 */
 unsigned int dcb :1; /* Data control handshake bit */
 unsigned int d_r2 :5; /* Unused – don’t cares bits: 3 – 7 */

 /* Time slot 8 */
 unsigned int d_r9 :8; /* Unused – don’t care bits: 0 – 7 */

 /* Time slot 7 */
 unsigned int rv :4; /* Revision level of the CS4215 */
 unsigned int d_r8 :4; /* Unused – don’t care bits: 4 – 7 */

 /* Time slot 6 */
 unsigned int d_r7 :8; /* Unused – don’t care bits: 0 – 7 */

 /* Time slot 5 */
 unsigned int d_r6 :6; /* Unused – don’t care bits: 0 – 5 */
 unsigned int pio :2; /* Parallel port control */
 } _bitval;
} CONTROL;

CS4215 Interface to the TMS320C3x

8-51Analog Interface Peripherals and Applications

Example 8–15. CS4215.h (Continued)

/**/
/* DATA COMMANDS */
/**/
typedef union
{
 unsigned int _intval[2];
 struct
 {
 /* Time slots 3 & 4 */
 signed int right :16; /* Right channel 16 bit */

 /* Time slots 1 & 2 */
 signed int left :16; /* Left channel 16 bit */

 /* Time slot 8 */
 unsigned int rg :4; /* Right input gain settings */
 unsigned int ma :4; /* Monitor path selection */

 /* Time slot 7 */
 unsigned int lg :4; /* Left input gain settings */
 unsigned int is :1; /* Input selection */
 unsigned int ovr :1; /* Overange */
 unsigned int pio :2; /* Parallel I/O bits */

 /* Time slot 6 */
 unsigned int ro :6; /* Right output attenuation setting */
 unsigned int se :1; /* Speaker output enable control */
 unsigned int d_r1 :1; /* Unused – don’t care bit 7 */

 /* Time slot 5 */
 unsigned int lo :6; /* Left output attenuation setting */
 unsigned int le :1; /* Parallel output enable control */
 unsigned int he :1; /* Headphone output enable control */
 } _bitval;
} STEREO_16;

typedef union
{
 unsigned int _intval[2];
 struct
 {
 /* Time slots 3 & 4 */
 signed int d_r1 :16; /* Unused – don’t care bits 0 – 15 */

 /* Time slots 1 & 2 */
 signed int left :16; /* Left channel 16 bit */

 /* Time slot 8 */
 unsigned int d_r3 :4; /* Unused – don’t care bits: 0 – 3 */
 unsigned int ma :4; /* Monitor path selection */

CS4215 Interface to the TMS320C3x

 8-52

Example 8–15. CS4215.h (Continued)

 /* Time slot 7 */
 unsigned int lg :4; /* Left input gain settings */
 unsigned int is :1; /* Input selection */
 unsigned int ovr :1; /* Overange */
 unsigned int pio :2; /* Parallel I/O bits */

 /* Time slot 6 */
 unsigned int ro :6; /* Right output attenuation setting */
 unsigned int se :1; /* Speaker output enable control */
 unsigned int d_r2 :1; /* Unused – don’t care bit 7 */

 /* Time slot 5 */
 unsigned int lo :6; /* Left output attenuation setting */
 unsigned int le :1; /* Parallel output enable control */
 unsigned int he :1; /* Headphone output enable control */
 } _bitval;
} MONO_16;

typedef union
{
 unsigned int _intval[2];
 struct
 {
 /* Time slots 4 */
 signed int d_r2 :8; /* Unused – don’t care bits 0 – 7 */

 /* Time slot 3 */
 signed int right :8; /* Right channel 8 bit */

 /* Time slots 2 */
 signed int d_r1 :8; /* Unused – don’t care bits 0 – 7 */

 /* Time slot 1 */
 signed int left :8; /* Left channel 8 bit */

 /* Time slot 8 */
 unsigned int rg :4; /* Right input gain settings */
 unsigned int ma :4; /* Monitor path selection */

 /* Time slot 7 */
 unsigned int lg :4; /* Left input gain settings */
 unsigned int is :1; /* Input selection */
 unsigned int ovr :1; /* Overange */
 unsigned int pio :2; /* Parallel I/O bits */

 /* Time slot 6 */
 unsigned int ro :6; /* Right output attenuation setting */
 unsigned int se :1; /* Speaker output enable control */
 unsigned int d_r3 :1; /* Unused – don’t care bit 7 */

CS4215 Interface to the TMS320C3x

8-53Analog Interface Peripherals and Applications

Example 8–15. CS4215.h (Continued)

 /* Time slot 5 */
 unsigned int lo :6; /* Left output attenuation setting */
 unsigned int le :1; /* Parallel output enable control */
 unsigned int he :1; /* Headphone output enable control */
 } _bitval;
} STEREO_8;

typedef union
{
 unsigned int _intval[2];
 struct
 {
 /* Time slots 2 – 4 */
 signed int d_r1 :24; /* Unused – don’t care bits 0 – 23 */

 /* Time slot 1 */
 signed int left :8; /* Left channel 8 bit */

 /* Time slot 8 */
 unsigned int d_r3 :4; /* Unused – don’t care bits: 0 – 3 */
 unsigned int ma :4; /* Monitor path selection */

 /* Time slot 7 */
 unsigned int lg :4; /* Left input gain settings */
 unsigned int is :1; /* Input selection */
 unsigned int ovr :1; /* Overange */
 unsigned int pio :2; /* Parallel I/O bits */

 /* Time slot 6 */
 unsigned int ro :6; /* Right output attenuation setting */
 unsigned int se :1; /* Speaker output enable control */
 unsigned int d_r2 :1; /* Unused – don’t care bit 7 */

 /* Time slot 5 */
 unsigned int lo :6; /* Left output attenuation setting */
 unsigned int le :1; /* Parallel output enable control */
 unsigned int he :1; /* Headphone output enable control */
 } _bitval;
} MONO_8;

typedef union
{
 unsigned int _intval[2];
 CONTROL control;
 STEREO_16 stereo_16;
 MONO_16 mono_16;
 STEREO_8 stereo_8;
 MONO_8 mono_8;
} CS4215_WORD;

CS4215 Interface to the TMS320C3x

 8-54

Example 8–15. CS4215.h (Continued)

/*==*/
/* GLOBAL VARIABLES *===*/
/*==*/
extern int buffer_size; /* SIZE OF I/O BUFFER(S) */
extern VPVF output0; /* OUTPUT DATA BUFFER FOR PROCESSOR */
extern VPVF input0; /* INPUT DATA BUFFER FOR PROCESSOR */
extern VPVF output_xfer0; /* OUTPUT DATA BUFFER FOR ISR/AIC */
extern VPVF input_xfer0; /* INPUT DATA BUFFER FOR ISR/AIC */
extern VPVF output1; /* OUTPUT DATA BUFFER FOR PROCESSOR */
extern VPVF input1; /* INPUT DATA BUFFER FOR PROCESSOR */
extern VPVF output_xfer1; /* OUTPUT DATA BUFFER FOR ISR/AIC */
extern VPVF input_xfer1; /* INPUT DATA BUFFER FOR ISR/AIC */
extern VI buffer_rdy; /* CPU–ISR COMM FLAG (INPUT) */
extern VI buffer_index; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
extern VI i; /* GENERIC COUNTER VARIABLE */
extern VI first_half;

extern CS4215_WORD data_control;

/**/
/* FUNCTION PROTOTYPES */
/**/
/***************************/
/* CS4215 DRIVER FUNCTIONS */
/***************************/
void init_arrays(int buffer_size);
void init_4215(int crystal, int sample_rate);
#if SER_NUM
void c_int07(void);
#else
void c_int05(void);
#endif

/**/
/* CS4215 DATA COMMAND BIT FIELD MACROS */
/**/
/**/
/* CONTROL COMMAND MACROS */
/**/
#define DATA 1
#define COMM 0
#define SIXTEEN_BIT_LINEAR 0
#define EIGHT_BIT_U_LAW 1
#define EIGHT_BIT_A_LAW 2
#define MONO_MODE 0
#define STEREO_MODE 1

CS4215 Interface to the TMS320C3x

8-55Analog Interface Peripherals and Applications

Example 8–15. CS4215.h (Continued)

/* Data conversion Frequency Selections Assumes that XTAL1 = 24.576 MHz */
/* And XTAL2 = 16.9344 MHz. */
/* XTAL1 (kHz) | XTAL2 (kHz) */
/* ========================= */
#define CONV_FREQ_0 0 /* 8.00000 | 5.5125 */
#define CONV_FREQ_1 1 /* 16.00000 | 11.0250 */
#define CONV_FREQ_2 2 /* 27.42857 | 18.9000 */
#define CONV_FREQ_3 3 /* 32.00000 | 22.0500 */
#define CONV_FREQ_4 4 /* NA | 37.8000 */
#define CONV_FREQ_5 5 /* NA | 44.1000 */
#define CONV_FREQ_6 6 /* 48.00000 | 33.0750 */
#define CONV_FREQ_7 7 /* 9.60000 | 6.6150 */

#define CS_ENABLE 0 /* Data output enabled */
#define CS_DISABLE 1 /* Data output disabled*/

#define CS_TCLOCK_EXT 0 /* FSYNC and SCLK are inputs*/
#define CS_TCLOCK_INT 1 /* FSYNC and SCLK are outputs*/

#define BPF_64 0 /* 64 bits per frame */
#define BPF_128 1 /* 128 bits per frame */
#define BPF_256 2 /* 256 bits per frame */

#define CS_CLOCK_SCLK 0 /* Clock source select: SCLK */
#define CS_CLOCK_XTAL1 1 /* Clock source select: XTAL1*/
#define CS_CLOCK_XTAL2 2 /* Clock source select: XTAL2*/
#define CS_CLOCK_EXT 3 /* Clock source select: Ext */

#define DIGITAL_LOOPBACK 0
#define ANALOG_LOOPBACK 1

#define LOOP_ENABLE 1
#define LOOP_DISABLE 0

/**/
/* DATA COMMAND MACROS */
/**/
/* Output attenuation is 1.5 dB per unit integer value */
/* Attenuation (dB) */
/* ================ */
#define ATT_0 0 /* 0.0 */
#define ATT_1 1 /* 1.5 */
#define ATT_2 2 /* 3.0 */
#define ATT_3 3 /* 4.5 */
#define ATT_4 4 /* 6.0 */
#define ATT_5 5 /* 7.5 */
#define ATT_6 6 /* 9.0 */
#define ATT_7 7 /* 10.5 */
#define ATT_8 8 /* 12.0 */
#define ATT_9 9 /* 13.5 */
#define ATT_10 10 /* 15.0 */

CS4215 Interface to the TMS320C3x

 8-56

Example 8–15. CS4215.h (Continued)

#define ATT_11 11 /* 16.5 */
#define ATT_12 12 /* 18.0 */
#define ATT_13 13 /* 19.5 */
#define ATT_14 14 /* 21.0 */
#define ATT_15 15 /* 22.5 */
#define ATT_16 16 /* 24.0 */
#define ATT_17 17 /* 25.5 */
#define ATT_18 18 /* 27.0 */
#define ATT_19 19 /* 28.5 */
#define ATT_20 20 /* 30.0 */
#define ATT_21 21 /* 31.5 */
#define ATT_22 22 /* 33.0 */
#define ATT_23 23 /* 34.5 */
#define ATT_24 24 /* 36.0 */
#define ATT_25 25 /* 37.5 */
#define ATT_26 26 /* 39.0 */
#define ATT_27 27 /* 40.5 */
#define ATT_28 28 /* 42.0 */
#define ATT_29 29 /* 43.5 */
#define ATT_30 30 /* 45.0 */
#define ATT_31 31 /* 46.5 */
#define ATT_32 32 /* 48.0 */
#define ATT_33 33 /* 49.5 */
#define ATT_34 34 /* 51.0 */
#define ATT_35 35 /* 52.5 */
#define ATT_36 36 /* 54.0 */
#define ATT_37 37 /* 55.5 */
#define ATT_38 38 /* 57.0 */
#define ATT_39 39 /* 58.5 */
#define ATT_40 40 /* 60.0 */
#define ATT_41 41 /* 61.5 */
#define ATT_42 42 /* 63.0 */
#define ATT_43 43 /* 64.5 */
#define ATT_44 44 /* 66.0 */
#define ATT_45 45 /* 67.5 */
#define ATT_46 46 /* 69.0 */
#define ATT_47 47 /* 70.5 */
#define ATT_48 48 /* 72.0 */
#define ATT_49 49 /* 73.5 */
#define ATT_50 50 /* 74.0 */
#define ATT_51 51 /* 75.5 */
#define ATT_52 52 /* 77.0 */
#define ATT_53 53 /* 78.5 */
#define ATT_54 54 /* 80.0 */
#define ATT_55 55 /* 81.5 */
#define ATT_56 56 /* 83.0 */
#define ATT_57 57 /* 84.5 */
#define ATT_58 58 /* 87.0 */
#define ATT_59 59 /* 88.5 */
#define ATT_60 60 /* 90.0 */
#define ATT_61 61 /* 91.5 */

CS4215 Interface to the TMS320C3x

8-57Analog Interface Peripherals and Applications

Example 8–15. CS4215.h (Continued)

#define ATT_62 62 /* 93.0 */
#define ATT_63 63 /* 94.5 */

#define HEADPHONE_OFF 0
#define HEADPHONE_ON 1

#define LINE_OUT_OFF 0
#define LINE_OUT_ON 1

#define SPEAKER_OFF 0
#define SPEAKER_ON 1

/* Input gain is 1.5 dB per unit integer value */
/* Gain (dB) */
/* ========= */
#define GAIN_0 0 /* 0.0 */
#define GAIN_1 1 /* 1.5 */
#define GAIN_2 2 /* 3.0 */
#define GAIN_3 3 /* 4.5 */
#define GAIN_4 4 /* 6.0 */
#define GAIN_5 5 /* 7.5 */
#define GAIN_6 6 /* 9.0 */
#define GAIN_7 7 /* 10.5 */
#define GAIN_8 8 /* 12.0 */
#define GAIN_9 9 /* 13.5 */
#define GAIN_10 10 /* 15.0 */
#define GAIN_11 11 /* 16.5 */
#define GAIN_12 12 /* 18.0 */
#define GAIN_13 13 /* 19.5 */
#define GAIN_14 14 /* 21.0 */
#define GAIN_15 15 /* 22.5 */

#define LINE_IN 0
#define MIKE_IN 1

#define OVERANGE_ENABLE 1
#define OVERANGE_CLEAR 0

/* Monitor path attenuation = 6 dB per unit integer value */
/* Gain (dB) */
/* ========= */
#define MATT_0 0 /* 6.0 */
#define MATT_1 1 /* 12.0 */
#define MATT_2 2 /* 18.0 */
#define MATT_3 3 /* 24.0 */
#define MATT_4 4 /* 30.0 */
#define MATT_5 5 /* 36.0 */
#define MATT_6 6 /* 42.0 */
#define MATT_7 7 /* 48.0 */
#define MATT_8 8 /* 54.0 */
#define MATT_9 9 /* 60.0 */
#define MATT_10 10 /* 66.0 */

CS4215 Interface to the TMS320C3x

 8-58

Example 8–15. CS4215.h (Continued)

#define MATT_11 11 /* 72.0 */
#define MATT_12 12 /* 78.0 */
#define MATT_13 13 /* 84.0 */
#define MATT_14 14 /* 90.0 */
#define MATT_15 15 /* 96.0 (Mute Monitor Path) */

CS4215 Interface to the TMS320C3x

8-59Analog Interface Peripherals and Applications

Example 8–16. CS4215.c
/**

 cs4215.c

 staff

 05–13–92

 (C) Texas Instruments Inc., 1992

 Refer to the file ’license.txt’ included with this
 this package for usage and license information.

***/
/**/
/* CS4215.C */
/* */
/* TMS320C3x – CRYSTAL 4215 MM CODEC */
/* :TMS320C3x CODE */
/* Compile and archive into CS4215.lib */
/* */
/* Leor Brenman, DSP Applications */
/* (C) 1991 TEXAS INSTRUMENTS, HOUSTON */
/**/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <cs4215.h>

/**/
/* GLOBAL VARIABLES */
/**/
int buffer_size = BLOCK_SIZE; /* SIZE OF I/O BUFFER(S) */
VPVF output0; /* OUTPUT DATA BUFFER FOR PROCESSOR */
VPVF input0; /* INPUT DATA BUFFER FOR PROCESSOR */
VPVF output_xfer0; /* OUTPUT DATA BUFFER FOR ISR/CODEC */
VPVF input_xfer0; /* INPUT DATA BUFFER FOR ISR/CEDEC */
VPVF output1; /* OUTPUT DATA BUFFER FOR PROCESSOR */
VPVF input1; /* INPUT DATA BUFFER FOR PROCESSOR */
VPVF output_xfer1; /* OUTPUT DATA BUFFER FOR ISR/CEDEC */
VPVF input_xfer1; /* INPUT DATA BUFFER FOR ISR/CODEC */
VI buffer_rdy = FALSE; /* CPU–ISR COMM FLAG (INPUT) */
VI buffer_index = 0; /* INDEX INTO INPUT AND OUTPUT DATA ARRAYS */
VI first_half = TRUE;
VI i; /* GENERIC COUNTER VARIABLE */

CS4215_WORD data_control;

#if C_ISR

CS4215 Interface to the TMS320C3x

 8-60

Example 8–16. CS4215.c (Continued)

/**/
/* C_INT06() OR C_INT08() */
/* SERIAL PORT 0/1 RECEIVE INTERRUPT SERVICE ROUTINE */
/**/
#if SER_NUM
void c_int06(void) {}
void c_int08(void)
#else
void c_int08(void) {}
void c_int06(void)
#endif
{
 VPVF swap;
 CS4215_WORD in,out;

 if(first_half) /* First half of the 64 bit transmission */
 {
 first_half = FALSE;

 in._intval[0] = SERIAL_PORT_ADDR(SER_NUM)–>r_data;
 input_xfer0[buffer_index] = in.stereo_16._bitval.right;
 input_xfer1[buffer_index] = in.stereo_16._bitval.left;

 out.stereo_16._bitval.left = output_xfer1[buffer_index];
 out.stereo_16._bitval.right = output_xfer0[buffer_index];
 SERIAL_PORT_ADDR(SER_NUM)–>x_data = out._intval[0];

 if(++buffer_index == buffer_size)
 {
 swap = input0;
 input0 = input_xfer0;
 input_xfer0 = swap;

 swap = input1;
 input1 = input_xfer1;
 input_xfer1 = swap;

 swap = output0;
 output0 = output_xfer0;
 output_xfer0 = swap;

 swap = output1;
 output1 = output_xfer1;
 output_xfer1 = swap;

 buffer_index = 0;
 buffer_rdy = TRUE;
 }
 }

CS4215 Interface to the TMS320C3x

8-61Analog Interface Peripherals and Applications

Example 8–16. CS4215.c (Continued)

 else /* Second half of transmission */
 {
 SERIAL_PORT_ADDR(SER_NUM)–>r_data;
 SERIAL_PORT_ADDR(SER_NUM)–>x_data = data_control._intval[1];
 first_half = TRUE;
 }
}
#endif /* C_ISR */

/*==*/
/* INIT_ARRAYS(): INITIALIZE DATA ARRAY PARAMETERS */
/*==*/

void init_arrays(int buffer_size)
{
 int i;
 /*––*/
 /* INITIALIZE AND ZERO FILL ARRAYS */
 /*–– */
 if(!(input0 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(output0 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(input_xfer0 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(output_xfer0 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(input1 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(output1 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(input_xfer1 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();
 if(!(output_xfer1 = (float *) calloc(buffer_size,sizeof(float))))
 heap_overflow();

 for(i = 0; i < buffer_size; i++)
 {
 output0[i] = output_xfer0[i] = 0.0;
 output1[i] = output_xfer1[i] = 0.0;
 }
}

CS4215 Interface to the TMS320C3x

 8-62

Example 8–16. CS4215.c (Continued)

/**/
/* INIT_4215(): INITIALIZE COMMUNICATIONS TO CS4215 */
/* NOTE: i IS A VOLATILE TO FORCE TIME DELAYS AND TO FORCE */
/* READS OF SERIAL PORT DATA RECEIVE REGISTER TO CLEAR */
/* THE RECEIVE INTERRUPT FLAG */
/**/
void init_4215(int crystal, int sample_rate)
{
 VI i,j,dummy;
 CS4215_WORD temp,in,out;

 RESET_CODEC; /* RESET AIC */
 WAIT(50); /* KEEP RESET LOW FOR SOME PERIOD OF TIME */

 /**/
 /* CONFIGURE SERIAL PORT 1 */
 /**/
 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = 0x0;

 SERIAL_PORT_ADDR(SER_NUM)–>s_x_control = CLKXFUNC | DXFUNC | FSXFUNC;
 SERIAL_PORT_ADDR(SER_NUM)–>s_r_control = CLKRFUNC | DRFUNC | FSRFUNC;

 SERIAL_PORT_ADDR(SER_NUM)–>s_rxt_control = XGO | XHLD_ | XCP_ | XCLKSRC;

 /* THE FOLLOWING PERIOD REGISTER VALUE HAS BEEN TESTED ON A 50 MHz C30 */

 SERIAL_PORT_ADDR(SER_NUM)–>s_rxt_period_bit.x_period = 0x3;

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = XCLKSRCE | XLEN_32 | XFSM | RFSM |
 RLEN_32 | XINT | RINT |
 FSXOUT | RRESET | XRESET;

 /* BUILD CONTROL WORDS */
 /* ALL BITS ARE 0 EXCEPT THOSE DEFINED OTHERWISE */

 temp._intval[0] = temp._intval[1] = 0;
 temp.control._bitval.st = STEREO_MODE;
 temp.control._bitval.dfr = sample_rate;
 temp.control._bitval.xclk = 1;
 temp.control._bitval.mckf = crystal;
 temp.control._bitval.pio = 3;

 /* BUILD DATA CONTROL WORD */
 data_control._intval[0] = data_control._intval[1] = 0;
 data_control.stereo_16._bitval.lo = ATT_0;
 data_control.stereo_16._bitval.le = ON;
 data_control.stereo_16._bitval.ro = ATT_0;
 data_control.stereo_16._bitval.ovr = ON;
 data_control.stereo_16._bitval.ma = MATT_15;

CS4215 Interface to the TMS320C3x

8-63Analog Interface Peripherals and Applications

Example 8–16. CS4215.c (Continued)

 UN_RESET_CODEC; /* PULL 4215 OUT OF RESET */

 DCB_LOW;
 /* Write out control word until dcb bit is low */
 do
 {
 out = temp;
 for(i=0;i<5;i++)
 {
 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.xsrempty == 1);

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = 0x0;

 /* See note on XRESET/RRESET and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = XCLKSRCE | XLEN_32 | XFSM |
 RFSM | RLEN_32 | XINT | RINT |
 FSXOUT | RRESET | XRESET;

 dummy = SERIAL_PORT_ADDR(SER_NUM)–>r_data;

 SERIAL_PORT_ADDR(SER_NUM)–>x_data = out._intval[0];

 /* See note on XRDY and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.xrdy == 0);

 SERIAL_PORT_ADDR(SER_NUM)–>x_data = out._intval[1];

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.rrdy == 0);

 in._intval[0] = SERIAL_PORT_ADDR(SER_NUM)–>r_data;

 /* See note on RRDY and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.rrdy == 0);

 in._intval[1] = SERIAL_PORT_ADDR(SER_NUM)–>r_data;
 }
 } while(in.control._bitval.dcb != 0);

CS4215 Interface to the TMS320C3x

 8-64

Example 8–16. CS4215.c (Continued)

 /* Write out control word twice with the dcb bit high */
 temp.control._bitval.dcb = 1;
 out = temp;
 for(i=0;i<2;i++)
 {
 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.xsrempty == 1);

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = 0x0;

 /* See note on XRESET/RRESET and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = XCLKSRCE | XLEN_32 | XFSM |
 RFSM | RLEN_32 | XINT | RINT |
 FSXOUT | RRESET | XRESET;

 dummy = SERIAL_PORT_ADDR(SER_NUM)–>r_data;

 SERIAL_PORT_ADDR(SER_NUM)–>x_data = out._intval[0];

 /* See note on XRDY and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.xrdy == 0);

 SERIAL_PORT_ADDR(SER_NUM)–>x_data = out._intval[1];

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.rrdy == 0);

 in._intval[0] = SERIAL_PORT_ADDR(SER_NUM)–>r_data;

 /* See note on RRDY and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.rrdy == 0);

 in._intval[1] = SERIAL_PORT_ADDR(SER_NUM)–>r_data;
 }

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = 0x0;
 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol = XLEN_32 | RLEN_32 | XFSM | RFSM |
 RRESET | XRESET | XCLKSRCE;

CS4215 Interface to the TMS320C3x

8-65Analog Interface Peripherals and Applications

Example 8–16. CS4215.c (Continued)

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.xrdy == 0);
 SERIAL_PORT_ADDR(SER_NUM)–>x_data = 0;
 /* See note on XRDY and three cycle delay in C3x U.G. */
 for(j=0;j<3;j++);

 while(SERIAL_PORT_ADDR(SER_NUM)–>gcontrol_bit.xrdy == 0);

 SERIAL_PORT_ADDR(SER_NUM)–>x_data = data_control._intval[1];

 dummy = SERIAL_PORT_ADDR(SER_NUM)–>r_data;

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol |= XINT | RINT;

 SERIAL_PORT_ADDR(SER_NUM)–>gcontrol &= ~XCLKSRCE;

 SERIAL_PORT_ADDR(SER_NUM)–>s_rxt_control = 0;

 CL_INT_FL_REG;

#if SER_NUM
 EN_SER_PORT_RCV_INT_1;
#else
 EN_SER_PORT_RCV_INT_0;
#endif

 EN_GLOBAL_INTS;

 DCB_HI;
}

Software UART Emulator for the TMS320C3x

 8-66

8.7 Software UART Emulator for the TMS320C3x

By using the general-purpose I/O pins in conjunction with two timers and an
external interrupt, you can develop a very flexible full-duplex universal asyn-
chronous receive transmit (UART) emulator in software. This solution dis-
cusses the implementation of an interrupt-driven, 9 600-baud UART with eight
data bits, one stop bit, and no parity. This solution was contributed by Ted Fried
of Advanced Computer Communications.

8.7.1 Hardware

The hardware interface is relatively straightforward (see Figure 8–12). The re-
ceive line is connected to both the INT0 and IOF1 pins. This triggers an inter-
rupt on the falling edge of the start bit. The transmit line is connected to the
IOF0 pin and a pullup resistor.

8.7.2 Software

As shown in Example 8–17, the receive sequence begins when the start bit
triggers the external interrupt. At the interrupt service routine, RxINT0, timer0
is loaded with a value that results in a delay of one half of the bit time. The rou-
tine then loads the timer’s interrupt vector, enables it, then exits to the main
program. When the timer triggers its interrupt, Rx-TMR-INT, the main body of
the receive code executes. At this time, the line is in the middle of the start bit.
The CPU then samples IOF1 and verifies that the start bit has been read in.
If the start bit is verified, the timer is then loaded with the full-bit time and
started. The procedure then exits to the main program.

On successive timer0 interrupts, RxINT0, the received bits are shifted into a
storage area in memory until a byte is read in. On the ninth interrupt, if the stop
bit is verified, the routine executes a software trap to inform the main program
of the byte reception. If the stop bit is not verified, the BAD_STOP_BIT subrou-
tine is called where the appropriate action is taken. After the received byte is
processed, the external interrupt is then reenabled and the system waits for
the next start bit.

The transmit routine begins when the main program loads a byte into the hold-
ing register and then calls TX_MAIN. This procedure loads timer1 with the full-
bit time value, resets the transmit counter, sets the start bit, and enables the
timer’s interrupt. The routine then exits back to the main program. The main
program does not call for another byte transmit until it finds the transmit count-
er equal to 0. On each subsequent timer1 interrupt, Tx-INT, the routine shifts
out the transmit byte including the stop bit, until the transmit counter is 0.

Software UART Emulator for the TMS320C3x

8-67Analog Interface Peripherals and Applications

Example 8–17. Full Duplex UART Emulator for TMS320C3x

 half_bit_time set 01ADh ; assume 33–MHz TMS320C3x
 whole_bit_time set 0358h
 timer_go set 03Clh
 timer_setup set O?Dlh
 int_setup sec O301h
 iof_setup set 06h

 timer0_vector .word RX_TMR_INT ; interrupt vector addresses
 timerl_vector .word TX_TNT
 rx_int_vector .word RX_INTO
 timer0_period .word 0808028h ; on–chip RAM locations
 timerl_period .word 0808038h
 timer0_control .word 0808020h
 timerl_control .word 0808030h
 timer0_int_vect .word 0809FC9h
 timerl_int_vect .word 0809FCAh
 intO_vector .word 0809FC1h
 rx_byte .word 0809FF8h
 tx_byte .word 0809FF9h
 rx_counter .word 0809FFAh
 tx_counter .word 0809FFBh

 ; Main setup for asynchronous serial interface to be run at
 powerup.

 SETUP_ASYNCH: PUSH AR7
 OR iof_setup, IOF ; iof seetup and iof0=1
 LDI timer_setup, AR7 ; setup timer0 and timer1
 STI AR7, @timer0_control ;
 STI AR7, @timer1_control ;
 LDI rx_int_vector, AR7 ; load int0 interrupt vector
 STI AR7, @int0_vector ;
 OR int_setup, IE ; enable interrupts
 POP AR7
 RETS

 ; Start bit received. external interrupt service routine

 RX_INT0: PUSH AR7
 XOR 01h, Ie ; disable int0
 LDI half_bit_time, AR7 ;
 STI AR7, @timer0_period ; rx_timer period
 LDI timer0_vector, AR7 ;
 STI AR7, @timer0_int_vect ; rx_timer int vector
 LDI timer_go, AR7 ;
 STI AR7, @timer0_control ; start rx_timer
 LDI 0Ah, AR7 ;
 STI AR7, @rx_counter ; reset rx_counter
 POP AR7
 RETI

Software UART Emulator for the TMS320C3x

 8-68

Example 8–17. Full Duplex UART Emulator for TMS320C3x (Continued)

 ; Timer0 interrupt service routine for byte reception.

 RX_TMR_INT: PUSH AR7
 LDI @rx_counter, AR7
 CMPI 09h, AR7 ; are we at start bit?
 BNE STOP ; nope, check for stop bit
 CMPI 080h, IOF ; check rx_bit (IOF1)
 BLT OK ; if less than 80h (IOF1=0)?
 OR 01h, IE ; bad start bit, reenable
 INT0
 BR CLEANUP2 ; go back to main
 OK: SUBI 01h, AR7 ; decrement rx_counter
 STI AR7, @rx_counter ; update counter in memory
 LDI whole_bit_time, AR7 ;
 STI AR7 @timer0_period ; load bit time into rx_timer
 LDI timer_go, AR7 ;
 STI AR7, @timer0_crontrol ; start rx_timer
 POP AR7
 RETI
 STOP: PUSH AR6
 LDI @rx_byte, AR6
 DBNZ AR7, NEXT ; if rx_count !=0, get next bit
 CMPI 080h, IOF ; check rx_bit (IOF1)
 BLT BAD_STOP_BIT ; GO TO INVALID STOP BIT MODULE
 LSH –24, AR6 ; shift rx_byte 24 bits right
 STI AR6, @rx_byte ; TRAP RECEIVED BYTE!!
 OR 0lh, IE ; reenable INT0\
 BR CLEANUP ;
 NEXT: CMPI 080h. IOF ; check rx_bit (IOF1)
 OR 01h, ST ; force carry flag to 1
 BGE ONE ; if rx_bit = 1
 XOR 01h, ST ; set carry flag to 0
 ONE: RORC AR6 ; shift in carry bit
 STI AR6, @rx_byte ; update rx_byte in memory
 STI AR7, @rx_counter ; update counter in memory
 LDI timer_go, AR6 ;
 STI AR6, @timer0_control ; start rx_timer
 CLEANUP: POP AR6
 CLEANUP2: POP AR7 RETI

Software UART Emulator for the TMS320C3x

8-69Analog Interface Peripherals and Applications

Example 8–17. Full Duplex UART Emulator for TMS320C3x (Continued)

; Transmit byte main subroutine

 TX_MAIN: PUSH AR7
 LDI whole_bit_time, AR7
 STI AR7. @timer1_period ; load timer period
 LDI timer1_vector, AR7 ;
 STI AR7, @timer1_int_vect ; tx_timer int vector
 LDI @tx_byte, AR7 ;
 OR 0FF00h, AR7 ; mask stop bit to tx_byte
 STI AR7, @tx_byte ; update tx_byte
 AND 0FBh, IOF ; send out ’0’ to IOF0
 LDI 0Ah, AR7 ;
 STI AR7, @tx_counter ; load counter in memory
 LDI timer_go, AR7 ;
 STI AR7, @timer1_control ; start tx_timer
 POP AR7
 RETS

 ; Timer1 interrupt service routine for byte transmission.

 TX_INT: PUSH AR7
 LDI @tx_counter, AR7 ; load in tx_counter from mem
 DBNZ AR7, NEXT_OUT ; if tx_counter not zero
 POP AR7
 RETI
 NEXT OUT: PUSH AR6
 LDI timer_go, AR7
 STI AR7, @timer1_control ; start tx_timer
 LDI tx_byte, AR6 ; load in tx_byte from mem
 RORC AR6 ; next bit out is in carry
 BNC OUT ZERO ; carry=0. then send out ’0’
 OR 04h, IOF ; send out ’1’ to IOF0
 BR CLEANUP3 ;
 OUT ZERO: AND 0FBh, IOF ; send out ’0’ to IOF0
 CLEANUP3: STI AR6, @tx_byte ; update byte in memory
 STI AR7, @tx_counter ; update counter in memory
 POP AR6
 POP AR7
 RETI

Hardware UART for TMS320C3x

 8-70

8.8 Hardware UART for TMS320C3x

Section 8.7 discusses a software UART emulator, which allows the ’C3x to per-
form asynchronous communication. There are some applications that require
a hardware UART. This section describes one possible design for a hardware
UART (see Figure 8–12). This design, originally done in a field programmable
gate array (FPGA), can be easily transferred to an application specific inte-
grated circuit (ASIC). You can modify this design to accommodate faster data
rates or different communication protocols.

Figure 8–12. TMS320C3x Serial Port to UART Interface

H3

Oscillator
25 MHz

port
Serial

TMS320C30

RX

TX

RS-232 driverUART logic

D in

D out

logic
Receive

logic
Transmit

FSR0

DR0

CLKR0

FSX0

DX0

CLKX0

Hardware UART for TMS320C3x

8-71Analog Interface Peripherals and Applications

Figure 8–13 shows a 9,600-baud UART with one stop bit and one start bit. The
clock signal, H3, is supplied to the circuit from the ’C3x. The DSP uses a
25-MHz clock.

Figure 8–13. Transmit Circuitry

FSXR

Modulus 8 binary counter

R

CE

FSXR

H3

Stop bit

XEN

Q3

Q2

Q1

Stop bit

R

CE

D

H3

Q

XEN

H3

D Q
QDCLKX0

H3

D outQD

H3

Q

R

CE

D

FSXR

XEN

H3

FSXD

XEN

H3

DXD D Q
Stop bit

The ’C3x serial port transmit circuitry, shown in Figure 8–13, is configured to
output eight bits of data at a rate of approximately 9.6 kHz. This is achieved
by using one of the ’C30’s internal timers and programming it to the desired
9.6 kHz frequency. The transmitting port is configured in the first burst mode.
This allows the leading FSX signals to help initiate a start bit for the UART
protocols. The stop bit is generated at the end of the eighth bit by the UART
circuitry.

The receive circuitry of the UART, shown in Figure 8–14, is activated when the
circuit detects the start bit. The start bit is a logical 0. The delay circuit is acti-
vated on the falling edge of the start bit. The delay causes sampling of the
incoming data bits to occur in the middle of each bit, thus, increasing the
UART’s noise immunity.

Hardware UART for TMS320C3x

 8-72

Figure 8–14. Receive Circuitry

C256BCR

RS8C

DSR
H3/2
DIN

DR0

Q4
Q3
Q2
Q1

D Q5
Q6
Q7CE

 5 V

H3/2

Q1

C4BCRSEND
RS232BITIN

H3/2

SENDRISE
H3/2

CLKR0

C4CLK

Q1
Q2
TC

Q0

CE
R

Q0

CE

C
D
R RISE

H3/2
RS232BITIN FSR0D

CE
R

Q

RS232BITIN

C88CR

RS232BITIN
ON104U

RSD0

H3/2
TLCE

R

D

H3
DIN QD

H3
D

H3/2
R

QD
H3/2

RSENDQD

RSD0

C
CE
R

Q7
Q6
Q5
Q4

RSDD
ON104U

H3/2
CE
R

DSR
ON104U

SEND
RS232BITIN

Q1

TC
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

FSR0

R
CE

H3/2 Q0

H3

After the delay is performed, the timer is activated. The timer has a period of
104 µs, which corresponds to a baud rate of approximately 9.6 KHz. At each
bit time, a data value is sampled into an 8-bit shift register. After all eight bits
are received, the data is passed to the ’C30 over the serial port at 1/8 of the
H3 clock rate. The FPGA circuitry interfaces the ’C30 in the fixed burst mode
of operation to the serial port. Both the clock and the frame sync signals are
generated by the FPGA circuitry.

This UART circuitry can also easily be designed to function as an ASIC or can
be incorporated into a custom digital signal processor (cDSP). Modification to
this circuit can be done for different serial communication protocols or even
higher baud rates.

9-1

Clock Oscillator and Ceramic Resonators

This chapter provides a general background on oscillators as well as informa-
tion regarding crystal and ceramic resonators, their frequency characteristics,
and the type of oscillator circuit used on the ’C3x. Also covered are design as-
pects of the ’C3x oscillator, including appropriate configuration of the external
components, measured parameters for the on-board portion of the circuitry,
use of the oscillator with overtone crystals, and general design considerations
for choosing the external components for the oscillator. Finally, this chapter
shows some design solutions for common frequencies.

Topic Page

9.1 Oscillators 9-2.

9.2 Quartz Crystal and Ceramic Resonators 9-3.

9.3 Pierce Oscillator Circuit 9-9.

9.4 Design Considerations 9-17.

9.5 Oscillator Solutions for Common Frequencies 9-22.

Chapter 9

Oscillators

 9-2

9.1 Oscillators

The ’C3x is a member of the Texas Instruments’ family of high-speed DSPs.
The ’C3x is capable of performing operations at a rate of up to 30 million
instructions per second (MIPS). The wide variety of DSP applications requires
a wide range of clocking frequencies. The ’C3x allows considerable flexibility
in meeting these clocking requirements.

The ’C3x provides two modes for clock generation and control for use with dif-
ferent application needs. These include:

� External clock input with the capability to divide the clock frequency by 2

� Internal clock generation from an on-board oscillator with no external clock
necessary (’C30 and ’C31 only)

The built-in oscillator provides a method for accurate clock generation that re-
quires few external components (a crystal or ceramic resonator and two load
capacitors). This saves board space and reduces system cost.

On the ’C3x devices, the on-board oscillator operates in a divide-by-2 mode.
In this mode, the frequency of H1 or H3 (which indicates the actual machine
cycles of the processor) is one half of the oscillator frequency.

9.1.1 Recommendations for Oscillator Use

The ’C3x family of devices provides several clock generation options based
on cost, component count, and the required clock frequency for the applica-
tion. The oscillator clocking option on the ’C3x provides a low-cost method of
clock generation with as few as three external components (one crystal and
two load capacitors), which helps to minimize board space consumed for clock
generation. The crystal or ceramic resonator used determines the frequency
of operation. This frequency can extend up to 60 MHz with third-overtone crys-
tals.

CMOS-compatible integrated-circuit crystal oscillators are available across a
wide frequency range. These are more expensive than the internal oscillator
and usually consume more space on the board. CMOS oscillators also be-
come more expensive with higher operating frequency.

Quartz Crystal and Ceramic Resonators

9-3Clock Oscillator and Ceramic Resonators

9.2 Quartz Crystal and Ceramic Resonators

All oscillators require resonating components to determine the frequency of
oscillation. A resonating component reacts more strongly within a certain fre-
quency range than at other frequencies outside that range. A simple resonator
consists of an inductor (L) and a capacitor (C). These components resonate
or favor the frequency at which their individual reactances cancel each other.
Figure 9–1 shows a simple series-LC resonator with impedance equations.

Figure 9–1. Series-LC Schematic

Lx Cx

The impedance equations for the series-LC schematic are as follows:

ZL = j�L Zc = 1/j�C Zt = ZL + Zc = j(�L – 1/�C)

Zt is minimum where �L = 1/�C

so �s
2
�

1
LC

 � �s �
1
LC�

Consider the impedance of the series combination of these components. The
impedance of the inductor ZL = j�L, where � is the angular frequency (� = 2�f),
and the impedance of the capacitor Zc = 1/j�C. The total impedance of the
inductor-capacitor combination is Zt = ZL + Zc = j(�L – 1/�C). Therefore, the
magnitude of the combined impedance of these two components is a minimum
at the frequency where �L = 1/�C. This frequency (�s) is the resonant fre-
quency and is determined by �

�s �
1
LC�

Although oscillators frequently consist of different combinations of inductors
and capacitors as resonating elements, the accuracy of the frequency control
with these components is limited. Changes in the values of L and C due to tol-
erance limitations and changes in the environment (such as temperature)
strongly affect the frequency of the oscillator. Many applications in digital sys-
tems require precise clock timing and need more accurate resonators. Quartz
crystal and ceramic resonators can provide a more stable and precise fre-
quency control.

Quartz Crystal and Ceramic Resonators

 9-4

9.2.1 Behavior and Operation of Quartz Crystal and Ceramic Resonators

The oscillator circuitry built into the ’C3x devices is designed for use with a
quartz crystal or ceramic resonator as the frequency-controlling element.

Quartz crystal and ceramic resonators are resonating components made with
materials that have specific piezoelectric properties. Piezoelectric materials
deform mechanically in the presence of an electric potential; this mechanical
stress on the material produces a voltage. This property makes a very stable
resonator, since the frequency of mechanical vibration is controlled precisely
by the size, shape, and material properties of the crystal or ceramic used. In
fact, many quartz crystal resonators are so precise that they operate within
10 parts per million (ppm) of the intended frequency.

Ceramic resonators are similar to quartz crystal resonators in physical struc-
ture, but they are made from a polycrystalline ceramic instead of monocrystal-
line quartz. The production process for the ceramic is much less expensive
than for quartz, reducing the final cost of the resonator. However, the polycrys-
talline structure of the ceramic vibrates within a wider range of frequency than
a quartz crystal does, and consequently, the frequency control is not as precise
as it is with quartz. While quartz crystal resonators can operate within 10 ppm
of the intended frequency, ceramic resonators generally operate within
5000 ppm. However, if accuracy greater than 5000 ppm is not necessary, ce-
ramic resonators are a cost-effective alternative. Table 9–1 shows a compari-
son of three types of resonators.

Table 9–1. Comparison of Resonator Types

Type Relative Price Adjustment
Frequency
Tolerance

Long-Term
Stability

LC Very low Necessary ± 20000 ppm Fair

Ceramic Low Not necessary ± 5000 ppm Excellent

Crystal High Not necessary ± 10 ppm Excellent

This document assumes that a quartz crystal is being used as the resonator;
however, the information applies equally to ceramic resonators, unless other-
wise specified.

Figure 9–2 shows a circuit model that is equivalent to a crystal. The graphs il-
lustrate the behavior of the magnitude of the crystal impedance and the reac-
tance of the crystal with frequency. The three components, Lx, Rx, and Cx,
model the electrical behavior related to the mechanical vibration of the crystal.
Lx and Cx control the resonant frequency according to the same equation
shown in Figure 9–1. Rx models the mechanical energy loss in the crystal and

Quartz Crystal and Ceramic Resonators

9-5Clock Oscillator and Ceramic Resonators

is related to the power dissipation in the crystal. C0 is the capacitance of the
two electrodes. The dielectric of the quartz physically separates the two elec-
trodes. Together these components are a reasonably accurate electrical mod-
el for the behavior of the crystal. Values for these component models are usu-
ally available from the crystal manufacturer.

Figure 9–2. Crystal Equivalent Circuit Model

C0

Lx Rx Cx

Notes: 1) C0 is the capacitance of the two electrodes.

2) Lx, Rx, and Cx model the electrical behavior related to the mechanical vibration of
the crystal; Lx and Cx control the resonant frequency according to the same equation
shown in Figure 9–1 and Rx models the mechanical energy loss in the crystal.

Like the series LC resonator, crystals have an impedance minimum at a fre-
quency determined by Lx and Cx. This is the series-resonant frequency (fs).
The presence of C0 also introduces an impedance maximum at a frequency
determined by Lx and C0. This frequency is the parallel-resonant frequen-
cy (fp). A graph of impedance magnitude that illustrates this behavior is also
shown in Figure 9–3. The series-resonant frequency corresponds to the natu-
ral mechanical vibration frequency of the crystal. The parallel-resonant fre-
quency is basically an electrical measurement phenomenon that results from
the resonance between Lx and C0 in the electrical model of the crystal and does
not occur naturally. Consequently, all crystal oscillators operate at or near their
series-resonant frequency.

Figure 9–3. Impedance Characteristics of Crystal

Impedance

Frequency
fs fp

Notes: 1) fs = series-resonant frequency

2) fp = parallel-resonant frequency

Quartz Crystal and Ceramic Resonators

 9-6

The graph in Figure 9–3 illustrates the behavior of the magnitude of the imped-
ance of the crystal, but the crystal’s phase response is also important in oscilla-
tor design. Figure 9–4 shows the reactance of the crystal with frequency. The
reactance (and consequently the phase) is 0 at the series-resonant frequency
(fs), because at this frequency the reactances of Lx and Cx cancel each other.
At this frequency, the total impedance of the crystal is equal to the resistance
Rx.

Figure 9–4. Reactance Characteristics of Crystal
R

ea
ct

an
ce

+

–

0

Frequency

fs fp

Notes: 1) fs = series-resonant frequency

2) fp = parallel-resonant frequency

Below fs, the crystal appears capacitive (negative reactance). Between fs and
fp, the crystal appears inductive (positive reactance) and above fp the crystal
appears capacitive again. In an oscillator circuit, the crystal is always operated
at or slightly above the series-resonant frequency in the inductive region. The
capacitance C0 has little effect on the series-resonant point (fs), but in combina-
tion with the external load on the crystal, the capacitance C0 affects the paral-
lel-resonant point (fp). For simplification of the circuit analysis, C0 is sometimes
considered part of the external load on the crystal.

When ordering a crystal, you must tell the manufacturer whether a
series-resonant or parallel-resonant crystal is required. The nature of these
terms is slightly different from the serial- and parallel-resonant frequency
terms (fs and fp) previously described. A series-resonant crystal is intended to
operate in a circuit with a low-load impedance across its terminals and,
consequently, resonates very close to the series-resonant frequency (fs). A
parallel-resonant crystal is intended to operate in a circuit with a
high-impedance load across its terminals and operates at some frequency
slightly above fs where the crystal’s reactance is inductive. In this case, the

Quartz Crystal and Ceramic Resonators

9-7Clock Oscillator and Ceramic Resonators

crystal attempts to resonate at the frequency at which its own inductive
reactance exactly cancels the capacitive reactance of the combination of C0

and an external-capacitive load. If supplied with the desired frequency and the
external load to which the crystal will be connected, the manufacturer can
produce a crystal that meets both of these requirements. The oscillator circuit
used on the ’C3x devices requires a parallel-resonant crystal.

9.2.2 Crystal Response to Square-Wave Drive

Figure 9–5(a) shows the equivalent circuit model of a crystal driven by a step-
function voltage source in series with a resistive load. In this figure, the capaci-
tance, or C0, of the crystal model is ignored because it is usually considered
part of the load on the crystal and does not strongly affect the series-resonant
frequency. When a step function excites a crystal, the crystal produces
damped sinusoidal oscillation at its series-resonant frequency, as shown in
Figure 9–5(b). The magnitude of the damping on the output waveform is pro-
portional to the magnitude of Rx.

The lowest natural frequency of the crystal is the fundamental frequency. De-
pending on the design of the crystal, it can also have contributions to its output
waveform from odd multiples of the fundamental frequency, or overtones.
However, if the response at the fundamental frequency is considerably stron-
ger than the response at these overtone frequencies, the contribution of the
overtones to the output waveform is negligible.

If the step-function input is changed to a square-wave drive (a periodic set of
step functions) at the frequency of the fundamental, the output of the crystal
is sinusoidal, as shown in Figure 9–5(c). The source of the square wave pro-
vides enough energy to overcome the damping in each cycle. Although a
square wave has a high content of odd overtones, the crystal resonates at its
fundamental frequency and strongly attenuates all other frequencies. Conse-
quently, the output of a crystal driven by a square wave is sinusoidal. If this
sinusoidal output is fed back to the input of an appropriately designed amplifier,
as shown in Figure 9–5(d), sustained oscillation is generated.

Quartz Crystal and Ceramic Resonators

 9-8

Figure 9–5. Crystal Response to a Square-Wave Drive

+

–

+

–

0

0

+

+

–

0

0

+

+

–

amp

+ +

t

t

Crystal model

Lx Rx Cx
(a) Circuit

(b) Step function

(c) Square wave drive

(d) Amplifier

Rload

Vi

Vo

Vo

Vi

Vo

Vi

C0

Notes: 1) C0 is the capacitance of the two electrodes.

2) Lx, Rx, and Cx model the electrical behavior related to the mechanical vibration of
the crystal; Lx and Cx control the resonant frequency according to the same equation
shown in Figure 9–1 and Rx models the mechanical energy loss in the crystal.

Pierce Oscillator Circuit

9-9Clock Oscillator and Ceramic Resonators

9.3 Pierce Oscillator Circuit

Figure 9–6 shows an oscillator circuit in its simplest form: an amplifier and a
feedback network. This circuit must meet two requirements to sustain oscilla-
tion:

� The circuit must have positive feedback.
� The open loop gain must be greater than 1.

In Figure 9–6, A is the gain of the amplifier and B is the gain of the feedback
network. For the circuit to have open-loop gain greater than 1, A � B must be
greater than 1. For the circuit to have positive feedback, the phase shift around
the loop must be 0 degrees (or n360°, where n = 0, 1, 2, 3, ...). If these condi-
tions are met, the output oscillates at a frequency determined by the frequency
selective feedback network and the amplitude increases until it reaches the
linearity limitation of the amplifier.

Figure 9–6. Simple Form of an Oscillator Circuit

A

B

Output

Amplifier

Feedback network

Pierce Oscillator Circuit

 9-10

There are many possible combinations of amplifiers, crystals, and phase-
shifting components (inductors and capacitors) that meet the above-specified
conditions for oscillation. One of the most common is a circuit based on the
Pierce oscillator. Figure 9–7 shows an ideal version of this circuit. The Pierce
oscillator uses an inverting amplifier, a parallel-resonant crystal as a resonator,
and two capacitors as phase-shifting elements and load for the crystal. This
circuit is used for several reasons:

� It has a large frequency range, from approximately 1 kHz to 200 MHz.

� It has high Q (because the load impedances are mostly capacitive and not
resistive) and consequently exhibits very good stability.

� It maintains a high output signal while driving the crystal at a low-power
level. This is important at higher frequencies, where crystals are physical-
ly thinner and therefore have lower power-dissipation limits.

� The low-pass RC networks formed by the crystal and load capacitors tend
to filter transient noise spikes, giving the circuit good noise immunity.

Figure 9–7. Pierce Circuit: Ideal Operation

Crystal+ –

Inverting
amplifier

above series resonance

at series resonance

R1

C1 C2

180� 90�

� 90�

� 90�

90�

above series resonance

9.3.1 Oscillator Operation

The ideal circuit operates in the following manner. An input signal to the amplifi-
er appears at the output, phase-shifted by approximately 180°. If it is assumed
that at a certain frequency the impedance of C1 is much greater than R1, then
the phase shift of this RC network introduces another approximately 90° phase
shift. At the series-resonant frequency, the crystal appears to be a resistor and
forms another RC network with C2. If the impedance of C2 is much greater than

Pierce Oscillator Circuit

9-11Clock Oscillator and Ceramic Resonators

the series resistance (Rx) of the crystal, this network provides another
90° phase shift. The total phase shift around the loop is now
180° + 90° + 90° = 360°. This phase shift meets one of the conditions for os-
cillation. If the gain of the amplifier is high enough to overcome the losses in
the R1 – C1 – crystal(Rx) – C2 network for a total loop gain of greater than 1, then
the circuit meets both oscillation conditions and oscillates.

This explanation, however, is unrealistic because it ignores too many aspects
of real-world circuit effects. Figure 9–8 illustrates a more typical example of the
circuit behavior. In this case, the inverting amplifier has some phase delay,
which causes it to produce a phase shift somewhat longer than 180°, depend-
ing on the frequency of operation. If oscillation is to occur, the passive compo-
nents are forced to compensate for this phase difference. The only way the im-
pedance of the load capacitances can change is when the frequency of opera-
tion changes. The frequency of operation tends to move above the series-res-
onant frequency, lowering the impedance of the load capacitances and raising
the impedance of the crystal as it goes from being purely resistive to being both
resistive and inductive (see Figure 9–2 (c) on page 9-5). When the frequency
changes such that the loop phase shift once again equals 360°, the circuit os-
cillates at the higher frequency. For this reason, most Pierce circuits operate
5 – 40 ppm above the series-resonant frequency. This explanation clearly il-
lustrates the circuit’s actual behavior and explains why a parallel-resonant
crystal always operates slightly above the series-resonant frequency.

Figure 9–8. Pierce Circuit: Actual Operation

Crystal+ –

Inverting

amplifier

185� 73� 102�

R1

C1 C2

Pierce Oscillator Circuit

 9-12

When a square-wave output is desired (such as for a microprocessor clock
source) the Pierce circuit sometimes is implemented in the manner shown in
Figure 9–9. The crystal and load capacitances are in the same configuration
as the circuit shown in Figure 9–8, with the exception that R1 is replaced with
the output impedence of the inverter. In the linear region, the inverter behaves
like a linear inverting amplifier. The resistor (Rf) is introduced across the invert-
er to bias it into the linear region. This is the transition region between the two
digital states, as shown in Figure 9–11 on page 9-14. Otherwise, the inverter
output moves toward one of its two stable digital states and oscillation does
not start because there is no gain in these regions (the output characteristic
shown in Figure 9–11 on page 9-14 is flat).

Figure 9–9. Pierce Circuit for Square-Wave Output

Output

C1 C2

Rf

The removal of R1 from the circuit improves the loop gain and thus improves
the likelihood of oscillation. However, removing R1 also increases the drive lev-
el (power dissipation) on the crystal. The power dissipation limit of the crystal
must not be exceeded under these conditions (power dissipation issues are
discussed in section 9.4.4 on page 9-18.) Otherwise, the circuit operation is
identical to that described for Figure 9–8.

The second inverter is added as a buffer and a waveshaping device. Since the
output of the crystal is sinusoidal, the output of the first inverter also is sinusoi-
dal. The second inverter provides a rail-to-rail square-wave output at the
oscillation frequency to drive the microprocessor clock.

Pierce Oscillator Circuit

9-13Clock Oscillator and Ceramic Resonators

9.3.2 Pierce Oscillator Configuration for the TMS320C30 and TMS320C31

The ’C3x DSPs have two options for clocking the processor:

� Divide-by-2 operation of an externally supplied clock
� Divide-by-2 operation using the internal oscillator

To use the ’C3x internal oscillator, connect the crystal across the X2/CLKIN
and X1 pins of the ’C30 and ’C31 (the ’C32 does not support the internal oscil-
lator option.)

The ’C3x oscillator circuitry (with the exception of the crystal and the load ca-
pacitors) is integrated into the processor. Figure 9–10 shows the ’C3x oscilla-
tor circuitry, which is similar to the Pierce integrated circuit oscillator shown in
Figure 9–9. On the ’C3x, the waveshaping inverter (I2) takes its input from the
input side of the inverter being used as the amplifier (I1) rather than from the
output as in the Pierce oscillator. This has little effect on the oscillator other
than generating the digital complement of the clock that is generated in the cir-
cuit of Figure 9–9. Also, the feedback resistor in Figure 9–9 is integrated into
the ’C3x as an active-load transistor-feedback network, so an external-feed-
back resistor is unnecessary. This feedback network ensures that the inverter
I1 is biased in its linear region.

Figure 9–10. TMS320C3x Oscillator Circuitry

Transistor feedback network

To ’C3x internal clock circuitry

’C3x

I2

I1

X1

C1C2

X2/CLKIN

The inverters in the oscillator circuitry differ from the usual CMOS inverter con-
figuration (shown in Figure 9–11) in that the p-channel transistor is biased as
an active load instead of having the gate connected as the input of the inverter.
This difference is part of the biasing scheme, which helps to ensure that the
oscillator starts when power is applied. This design causes the rise and fall

Pierce Oscillator Circuit

 9-14

times to be asymmetrical (for example, the rise time is longer than fall time),
but since the oscillator output is divided by 2 before driving the internal-proces-
sor circuitry, the duty cycle of the final clock (H1 or H3) is 50%.

Figure 9–11.Digital Inverter Circuit and Its Transfer Characteristic

Linear
region

VDD

VIN

VIN VOUT

VOUT

9.3.3 Overtone Operation of the Oscillator

Although crystals are usually considered to vibrate at only one frequency, they
also resonate at odd multiples, or overtones, of the series-resonant frequency.
The series-resonant frequency is the fundamental frequency of the crystal,
and the odd overtones are odd multiples of the fundamental frequency (for ex-
ample: 3×, 5×, 7×, ...). For low frequencies, it is common to operate crystals at
their fundamental frequency. For higher frequencies, the crystal is made thin-
ner. The thinner the crystal is, the more fragile and expensive it becomes. Thin-
ner crystals also have a low-power dissipation limit and damage easily when
overdriven.

Most fundamental mode crystals operate at frequencies of 40 MHz or less. To
generate frequencies higher than 40 MHz, it is common to use overtone crys-
tals. Overtone crystals are optimized for operation at an overtone frequency
with the fundamental frequency attenuated. Figure 9–12 illustrates the imped-
ance of a crystal with respect to frequency. The strongest change in imped-
ance is at the fundamental frequency, but there is also a response at the third
and fifth overtones. If a crystal with the properties in Figure 9–12 is used in a
Pierce circuit, it oscillates at the fundamental frequency. However, if the funda-
mental frequency is attenuated, the crystal circuit oscillates at the next higher
odd overtone, in this case, the third overtone. High-frequency operation is
achieved by using an overtone crystal and attenuating the fundamental fre-
quency.

Pierce Oscillator Circuit

9-15Clock Oscillator and Ceramic Resonators

Figure 9–12. Impedance Characteristics of a Crystal

Impedance

Frequency

Fundamental Third Fifth
overtone overtone

Pierce Oscillator Circuit

 9-16

For the Pierce circuit used on the ’C3x, this attenuation of the fundamental fre-
quency is achieved by capacitively coupling an inductor (L1) in parallel with the
load capacitor (C1), as shown in Figure 9–13. The value of L1 is chosen to reso-
nate with C1 at some intermediate frequency between the frequency of the de-
sired overtone and the next lower odd overtone. At the desired overtone fre-
quency, the impedance of L1 is high enough compared to C1 that L1 is neglected
and the network of C1 and the inverter’s output impedance provides the
near-90° phase lag desired. Since the phase conditions are met, the circuit
oscillates at this frequency. At all lower overtones, L1 is a lower impedance
than C1 and causes a 90° phase lead instead of phase lag. At any of these low-
er frequencies, the total phase shift around the feedback loop is 180°, not 360°,
which is negative feedback, and stabilizes the circuit and prevents oscillation.
L1 is coupled with a 0.1 µF capacitor, which prevents the inductor from altering
the dc bias of the inverter while causing negligible additional impedance at the
oscillation frequency.

Figure 9–13. Oscillator Circuit for Overtone Crystal Operation

C2 C1
L1

0.1 µF

’C3x

X1X2/CLKIN

As an example, assume a 60-MHz third-overtone crystal is used with 10 pF
load capacitors. The fundamental for this crystal is at 60/3 = 20 MHz. L1 must
be chosen to resonate with C1 at a frequency between 20 and 60 MHz. If you
choose the frequency halfway in between, 40 MHz, the value of L1 is calculated
as follows:

L1 = 1/(ω2C1) = 1/(4π2f2C1) = 1/(4π2 (40 × 106)2 (10 × 10-12)) = 1.58 µH

Since the value of this inductance is not critical, the closest conveniently avail-
able inductor is used as long as the resonant frequency of L1 – C1 falls between
the desired overtone and the next lower overtone.

A variety of crystals have been evaluated in this circuit. Although at higher fre-
quencies, fifth-overtone crystals are more commonly available, they are not
recommended for this circuit. The available gain from the internal inverting am-
plifier limits this configuration to third-overtone crystals. Several third-overtone
crystal solutions for this circuit up to 60 MHz are listed in Table 9–2 on page
9-22.

Design Considerations

9-17Clock Oscillator and Ceramic Resonators

9.4 Design Considerations

This section discusses some of the aspects of the design of the oscillator and
their effects on its operation.

9.4.1 Crystal Series Resistance (R x)

The series resistance of the crystal has a strong effect on the design of the os-
cillator, primarily in loop gain. Rx limits the crystal’s minimum impedance value
(seen at series resonance). Since the impedances of Lx and Cx cancel each
other at this frequency, the impedance of the crystal is due entirely to Rx. The
voltage divider formed by the crystal and C2 influences the loop gain. As the
impedance of the crystal becomes larger, the loss of gain due to the voltage
divider becomes greater. Low-loop gain causes the oscillator to take longer to
start up and prevents oscillation if the overall loop gain falls below 1. Higher
crystal series resistance also reduces the overall oscillator circuit Q, resulting
in poorer frequency stability. For these reasons, it is desirable to use the lowest
Rx possible. Crystals with series resistance of 40 ohms or less are recom-
mended.

9.4.2 Load Capacitors

In the Pierce circuit used on the ’C3x, the load capacitors have a strong effect
on how far above the series-resonant frequency the crystal oscillates. The
crystal’s shunt-terminal capacitance, C0, is considered part of the crystal’s
external-load capacitance as far as the frequency controlling elements (Cx and
Lx) are concerned. A parallel-resonance oscillator circuit operates at the
frequency where the reactances of the crystal (Cx and Lx) cancel the
reactances from the load (C0, C1, C2). Consequently, changes in the
external-load capacitance cause the oscillator to change frequency to
compensate for the phase change. The following formula gives an
approximate value for the frequency shift from the series-resonant frequency:

�f �
fsCO

2r(CO� CL)
 where r� CO

Cx
 and CL� C1� C2

The derivative of this formula, as shown below, is useful for determining the
frequency variance due to changes in the load capacitance. This derivative is
applied to find the frequency range implied by a load capacitance with a given
tolerance. Also, if there is a need to adjust the operating frequency, use this
formula to determine the appropriate value of a variable load capacitor.

�fr �
�CLfsCO

2r(CO� CL)2

Design Considerations

 9-18

Crystal manufacturers often accommodate requests for specific values for
load capacitance to be used with their crystals. Values of 20 pF and 30 pF are
commonly available. These load capacitance values are represented by C1 +
C2, so for a crystal designed for load capacitance of 20 pF, C1 = C2 = 10 pF is
used. Capacitance values higher than 30 pF increase attenuation, lowering
the overall loop gain. Capacitance values this high can cause the circuit to stop
oscillating. A load capacitance of 20–30 pF is recommended for high-frequen-
cy crystals. Ceramic resonators usually require higher load capacitance than
high-frequency crystals (see the manufacturer’s recommendations). Load ca-
pacitance values are included in Table 9–2 on 9-22.

9.4.3 Loop Gain

Loop gain primarily affects the startup time of the oscillator. Overall loop gain
must be greater than 1 for oscillation to be sustained. Higher loop gain causes
the oscillation amplitude to increase rapidly, therefore reducing the time nec-
essary for the oscillator to reach its steady state.

The minimum gain measured for the ’C3x inverter is 5.6. To maintain an overall
loop gain of 1, the external component network of C1-crystal-C2 must not
introduce a loss of greater than 5.6. For this reason, the values of the load ca-
pacitance and crystal-series resistance have a strong effect on whether the cir-
cuit oscillates.

9.4.4 Drive Level/Power Dissipation

Another parameter specified when ordering a crystal is the drive level or power
dissipation. Higher frequency crystals generally have lower power dissipation
ratings because the crystal is physically thinner and is damaged by excessive
voltages. Power dissipation also affects frequency stability because the crys-
tal’s frequency of operation is dependent on temperature. Excessive power
dissipation causes crystal heating and results in frequency drift.

There is not a convenient way to measure the power dissipation in the crystal.
The series resistance (Rx) is the only power-dissipating component in the crys-
tal. Measuring the external voltage on the crystal includes the voltage across
Lx and Cx. Therefore, the power dissipation in Rx cannot be easily calculated
directly from the voltage on the crystal. It is necessary to measure the current
through the crystal using a current probe or to indirectly measure the current
by measuring the voltage across a small resistor in series with the crystal. You
can then calculate the power by using I2R.

Design Considerations

9-19Clock Oscillator and Ceramic Resonators

Once the drive level is known, if it is necessary to limit the drive level to the crys-
tal, one of the simplest ways to do so is shown in Figure 9–14. A resistor (Rd)
is added in series between X1 and the external components. This resistor
drops part of the voltage driven by the ’C3x and consequently lowers the drive
voltage on the crystal. The disadvantage to this method is that the voltage drop
reduces the overall loop gain of the oscillator circuit. The value of Rd must be
large enough to bring the power dissipation of the crystal within the manufac-
turer’s specification, but Rd must not be so large that the loop gain drops below
1 or the circuit no longer oscillates. Using crystals with minimum power dis-
sipation ratings of 1 mW is recommended.

The oscillator circuit solutions in Table 9–2, when operated without Rd, have
yielded crystal-power dissipation measurements near 1 mW. Differences in
circuit and crystal parameters can cause the power dissipation in the crystal
to slightly exceed 1 mW. If crystal-power dissipation is critical, adding a resistor
(Rd) with a value of 33 Ω to limit the crystal-power dissipation or obtaining crys-
tals with power dissipation ratings higher than 1 mW, is recommended. When
operated with Rd = 33 Ω, each of the circuit solutions shown in Table 9–2 have
exhibited less than 1 mW crystal power dissipation.

Figure 9–14. Addition of Rd to Limit Drive Level of the Crystal

’C5x

C2 C1

X1X2/CLKIN

Rd

Design Considerations

 9-20

9.4.5 Startup Time

Figure 9–15 shows that when the oscillator starts, low-amplitude oscillations
gradually build until the linearity limit of the amplifier is reached. You experi-
ence this startup time at power-up. Maximizing loop gain minimizes the startup
time for the oscillator.

Startup time depends on the external components used, but generally
requires at least 100 ms after power up for the oscillator to stabilize. For this
reason, a reset delay of 150–200 ms is recommended following power up.

Figure 9–15. Oscillator Startup

Oscillator
output

0 V

Power
applied

Startup
time

VDD

VDD

9.4.6 Frequency-Temperature Characteristics of Crystals

The actual operating frequency of a crystal depends on temperature. The ex-
tent to which frequency changes with respect to temperature strongly relates
to the cut of the crystal. AT- and SC-cut crystals behave differently from DT-,
CT-, and BT-cut crystals. Even slight changes in the cut angle of the crystal can
strongly affect the frequency-temperature characteristics.

Most crystals available in the frequency range of interest for DSPs are AT-cut
crystals. The frequency-temperature characteristic for AT-cut crystals is a
third-order function, similar to that shown in Figure 9–16. This graph shows the
general temperature-frequency behavior of AT-cut crystals. Similar informa-
tion is readily available from crystal manufacturers.

Design Considerations

9-21Clock Oscillator and Ceramic Resonators

Figure 9–16. Example Frequency-Temperature Characteristic of AT-Cut Crystals

–55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75 85 95 105
–30

–20

–10

0

10

20

30

F
re

qu
en

cy
 S

hi
ft,

 p
pm

Temperature °C

9.4.7 Crystal Aging

Crystal aging is the gradual change in the frequency of a crystal over time. This
change occurs due to stress relief between the mounting structure and the
electrodes and absorption (or deabsorption) of contaminants from the resona-
tor surfaces. Changes in temperature accelerate both of these mechanisms.
The major mechanism for aging in crystals above 1 MHz is mass transfer to
and from the resonator surfaces. The most rapid aging occurs early in the crys-
tal’s lifetime, and then aging tends to stabilize. For example, a crystal that ages
10–60 parts per million (ppm) in a year experiences 5 ppm of that aging in the
first month. Crystals are available (at additional expense) that have very low
aging rates, due to cleaner fabrication and packaging processes. These crys-
tals have aging characteristics as low as 1 × 10-8 ppm per year. Complete in-
formation on aging characteristics is available from crystal manufacturers.

Oscillator Solutions for Common Frequencies

 9-22

9.5 Oscillator Solutions for Common Frequencies

The oscillator solutions in this section were built and tested with samples from
the manufacturers listed in Table 9–2. These circuits were tested at room tem-
perature and verified to operate correctly within the recommended range of VDD

(4.75–5.25 V).

Table 9–2. Oscillator Solutions by Frequency

ÁÁÁÁÁ
ÁÁÁÁÁ

Frequency
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Mode
ÁÁÁÁ
ÁÁÁÁ

Type
ÁÁÁÁ
ÁÁÁÁ

Supplier
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Part Number
ÁÁÁÁ
ÁÁÁÁ

C1, C2
ÁÁÁ
ÁÁÁ

Rd
ÁÁÁÁ
ÁÁÁÁ

L1ÁÁÁÁÁ
ÁÁÁÁÁ40 MHz

ÁÁÁÁÁÁ
ÁÁÁÁÁÁFundamental

ÁÁÁÁ
ÁÁÁÁCrystal

ÁÁÁÁ
ÁÁÁÁSaRonix

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁHFX series crystals

ÁÁÁÁ
ÁÁÁÁ10 pF

ÁÁÁ
ÁÁÁ0/33†
ÁÁÁÁ
ÁÁÁÁ–ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

40 MHz
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Third overtone
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Crystal
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Anderson
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

011-668-04663
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10 pF
ÁÁÁ
ÁÁÁ
ÁÁÁ

0/33†
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3.3 µHÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

50 MHz

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Fundamental

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Crystal

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

SaRonix

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

HFX series crystals

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10 pF

ÁÁÁ
ÁÁÁ
ÁÁÁ

0/33†
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–

ÁÁÁÁÁ
ÁÁÁÁÁ

50 MHzÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Third overtoneÁÁÁÁ
ÁÁÁÁ

Crystal ÁÁÁÁ
ÁÁÁÁ

SaRonixÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SRX5223 ÁÁÁÁ
ÁÁÁÁ

10 pFÁÁÁ
ÁÁÁ

0/33†ÁÁÁÁ
ÁÁÁÁ

3.3 µH

ÁÁÁÁÁ
ÁÁÁÁÁ

60 MHzÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Third overtoneÁÁÁÁ
ÁÁÁÁ

Crystal ÁÁÁÁ
ÁÁÁÁ

AndersonÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

011-668-04725 ÁÁÁÁ
ÁÁÁÁ

10 pFÁÁÁ
ÁÁÁ

0/33†ÁÁÁÁ
ÁÁÁÁ

3.3 µH

† When these circuits are operated without Rd, they yield crystal power dissipation measurements near 1 mW. Differences in circuit
and crystal parameters can cause the power dissipation in the crystal to slightly exceed 1 mW. If crystal power dissipation is criti-
cal, it is recommended that 33 Ω of Rd be added to limit the crystal power dissipation or obtain crystals with power dissipation
ratings higher than 1 mW. When operated with Rd = 33 Ω, each of the circuits shown exhibited less than 1 mW crystal power dis-
sipation.

The following circuits are used for ceramic resonators and fundamental-mode
crystal resonators. The circuit in Figure 9–17 is used for all circuits marked fun-
damental mode in Table 9–2. The circuit in Figure 9–18 is used for all circuits
marked third-overtone mode in Table 9–2. Crystals used in these circuits must
be parallel resonant with a series resistance of 40 ohms or less and must have
a power dissipation rating of 1 mW or greater.

Figure 9–17. Fundamental-Mode Circuit

’C3x

C2 C1

X1X2/CLKIN

Rd

Oscillator Solutions for Common Frequencies

9-23Clock Oscillator and Ceramic Resonators

Figure 9–18. Third-Overtone Circuit

0.1 uF

’C3x

C2 C1

X1X2/CLKIN

Rd

L1

 9-24

10-1

XDS510 Emulator Design Considerations

This chapter explains the design requirements of the XDS510TM emulator and
discusses the Extended Development System (XDS) cable (manufacturing
part number 2617698–0001). This cable is identified by a label on the cable
pod marked JTAG3/5V and supports both standard 3-V and 5-V target system
power inputs.

The term JTAG emulation, as used in this book, refers to TI scan-based emula-
tion, which is based on the IEEE 1149.1 standard.

Topic Page

10.1 Designing the MPSD Emulator Connector (12-Pin Header) 10-2.

10.2 Emulator Cable Pod Logic 10-3.

10.3 MPSD Emulator Cable Signal Timing 10-4.

10.4 Connections Between the Emulator and the Target System 10-5.

10.5 Mechanical Dimensions for the 12-Pin Emulator Connector 10-8.

10.6 Diagnostic Applications 10-10.

Chapter 10

Designing the MPSD Emulator Connector (12-Pin Header)

 10-2

10.1 Designing the MPSD Emulator Connector (12-Pin Header)

The ’C3x uses modular port scan device (MPSD) technology to allow complete
emulation through a serial scan path of the ’C3x. To communicate with the
emulator, your target system must have a 12-pin header (2 rows of 6 pins) with
the connections that are shown in Figure 10–1.To use the target cable, supply
the signals shown in Table 10–1 to a 12-pin header with pin 8 cut out to provide
keying. For the latest information, see the JTAG/MPSD Emulation Technical
Reference.

Although you can use other headers, the recommended header is the un-
shrouded, straight header having the following DuPont connector systems
part numbers:

� 65610–112
� 65611–112
� 37996–112
� 67997–112

Figure 10–1. 12-Pin Header Signals and Header Dimensions

EMU1† 1 2 GND

PD(VCC) 7 No pin (key)‡

EMU0† 3 4 GND

EMU2† 5 6 GND

 EMU3 9 10 GND

 H3 11 12 GND

Header dimensions:

Pin-to-pin spacing: 0.100 in. (X,Y)
Pin width: 0.025-in. square post
Pin length: 0.235-in. nominal8

† These signals must be pulled up with separate 20-kΩ resistors to VCC.
‡ While the corresponding female position on the cable connector is plugged to prevent improper

connection, the cable lead for pin 8 is present in the cable and is grounded as shown in the
schematics and wiring diagrams in this document.

Table 10–1. 12-Pin Header Signal Descriptions and Pin Numbers

XDS510 Signal Description ’C30 Pin Number ’C31 Pin Number

EMU0 Emulation pin 0 F14 124

EMU1 Emulation pin 1 E15 125

EMU2 Emulation pin 2 F13 126

EMU3 Emulation pin 3 E14 123

H3 ’C3x H3 A1 82

PD

Presence detect. Indicates that the emulation cable is connected
and that the target is powered up. PD must be tied to VCC in the
target system.

Emulator Cable Pod Logic

10-3XDS510 Emulator Design Considerations

10.2 Emulator Cable Pod Logic

Figure 10–2 shows a portion of logic in the emulator cable pod. The 33-Ω resis-
tors have been added to the EMU0, EMU1, and EMU2 lines to minimize cable
reflections.

Figure 10–2. Emulator Cable Pod Interface

100 Ω
TL7705ARESIN

270 Ω

JP2

180 Ω

GND (pins 2, 4, 6, 8, 10, 12)

33 Ω

33 Ω

EMU0 (pin 2)

EMU1 (pin 1)

EMU3 (pin 9)

74LVT240

180 Ω

JP1

270 Ω 74F175

D

PD (VCC pin 7)

 5 V

 5 V

74AS1004

33 Ω
EMU2 (pin 3)

H3 (pin 11)

MPSD Emulator Cable Signal Timing

 10-4

10.3 MPSD Emulator Cable Signal Timing

Figure 10–3 shows the signal timings for the emulator cable pod. Table 10–2
defines the timing parameters. The timing parameters are calculated from val-
ues specified in the standard data sheets for the emulator and cable pod and
are for reference only. Texas Instruments does not test or guarantee these tim-
ings.

Figure 10–3. Emulator Cable Pod Timings

EMU3

EMU0
EMU1
EMU2

H3

5
4

3
2

1

6

Table 10–2. Emulator Cable Pod Timing Parameters

No. Reference Description Min Max Unit

1 tH3 min
tH3 max

H3 period 35 200 ns

2 tH3 high min H3 high pulse duration 15 ns

3 tH3 low min H3 low pulse duration 15 ns

4 td (EMU0, 1, 2) EMU0, 1, 2 valid from H3 low 7 23 ns

5 tsu (EMU3) EMU3 setup time to H3 high 3 ns

6 thd (EMU3) EMU3 hold time from H3 high 11 ns

Connections Between the Emulator and the Target System

10-5XDS510 Emulator Design Considerations

10.4 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the ’C3x on the target system. In many cases, the signal must be buffered
to produce high quality. The need for signal buffering can be divided into three
categories, depending on the placement of the emulation header:

� No signals buffered. In this situation, the distance between the emulation
header and the ’C3x should be no more than 2 inches (see Figure 10–4).

Figure 10–4. Connections Between the Emulator and the TMS320C3x With No Signals
 Buffered

Emulator header VCC

GND

12

10

8

6

4

7

GND

GND

GND

GND

GND

PD

H3

EMU3

EMU2

EMU1

EMU0

11

9

5

1

3

TMS320C3x

H3

EMU3

EMU2

EMU1

EMU0

2 inches or less

2
GND

Connections Between the Emulator and the Target System

 10-6

� Transmission signals buffered. In this situation, the distance between
the emulation header and the ’C3x is greater than 2 inches but less than
6 inches. The transmission signals, H3 and EMU3, are buffered through
the same package (see Figure 10–5).

Figure 10–5. Connections Between the Emulator and the TMS320C3x With Transmission
 Signals Buffered

Emulator header VCC

GND

12

10

8

6

4

7

GND

GND

GND

GND

GND

PD

H3

EMU3

EMU2

EMU1

EMU0

11

9

5

1

3

TMS320C3x

H3

EMU3

EMU2

EMU1

EMU0

2 to 6 inches

2
GND

Connections Between the Emulator and the Target System

10-7XDS510 Emulator Design Considerations

� All signals buffered. The distance between the emulation header and the
’C3x is greater than 6 inches but less than 12 inches. All ’C3x emulation
signals, EMU0, EMU1, EMU2, EMU3, and H3, are buffered through the
same package (see Figure 10–6).

Figure 10–6. Connections Between the Emulator and the TMS320C3x With All Signals
 Buffered

Emulator header VCC

GND

12

10

8

6

4

7

GND

GND

GND

GND

GND

PD

H3

EMU3

EMU2

EMU1

EMU0

11

9

5

1

3

TMS320C3x

H3

EMU3

EMU2

EMU1

EMU0
2

GND

Do not connect any devices between
the buffered H3 output and the header!
Otherwise, you will degrade the quality
of the signal.

H3 buffer restrictions

6 to 12 inches

CAUTION

Mechanical Dimensions for the 12-Pin Emulator Connector

 10-8

10.5 Mechanical Dimensions for the 12-Pin Emulator Connector

The ’C3x emulator target cable consists of a 3 foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet, 10 inches.
Figure 10–7 and Figure 10–8 show the mechanical dimensions for the target
cable pod and short cable. Note that the pin-to-pin spacing on the connector
is 0.10 inches in both the X and Y planes. The cable pod box is nonconductive
plastic with four recessed metal screws.

Figure 10–7. Pod/Connector Dimensions

0.90

2.70

4.50

 See Figure 10–8.

Emulator cable pod

Short, jacketed cable

Connector

9.50

Note: All dimensions are in inches and are nominal unless otherwise specified.

Mechanical Dimensions for the 12-Pin Emulator Connector

10-9XDS510 Emulator Design Considerations

Figure 10–8. 12-Pin Connector Dimensions

0.10
Key, pin 8

0.10

0.70

0.38

0.20

Pins 2, 4, 6, 8, 10, 12Pins 1, 3, 5, 7, 9, 11

Cable

Cable

Connector, side view

Connector, front view

Blocked
key

Note: All dimensions are in inches and are nominal unless otherwise specified.

Diagnostic Applications

 10-10

10.6 Diagnostic Applications

For system diagnostic applications or to embed emulation compatibility on
your target system, connect a ’C3x device directly to a TI ACT8990 test bus
controller (TBC) as shown in Figure 10–9. The TBC is described in the Texas
Instruments Advanced Logic and Bus Interface Logic Data Book. A TBC can
connect to only one ’C3x device.

Figure 10–9. TBC Emulation Connections for TMS320C3x Scan Paths

VCC

EMU6 (’C30 only)

EMU5 (’C30 only)

EMU3

H1 (clock)

EMU4 (’C30 only)

EMU2

EMU1

EMU0

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TD0

TCKI

22 kΩ

TBC ’C3x22 kΩ

22 kΩ

Notes: 1) In a ’C3x design, the TBC can connect to only one ’C3x device.

2) The ’C3x device’s H1 clock drives TCKI on the TBC. This is different from the
 emulation header connections where H3 is used.

11-1

Development Support and
Part Ordering Information

This chapter provides development support information, device part numbers,
and support tool ordering information for the ’C3x.

Each ’C3x support product is described in the TMS320 Family Development
Support Reference Guide. In addition, more than 100 third-party developers
offer products that support the TI TMS320 family. For more information, refer
to the TMS320 Third-Party Reference Guide.

For information on pricing and availability, contact the nearest TI field sales
office or authorized distributor.

Topic Page

11.1 Development Support 11-2.

11.2 TMS320C3x Part Ordering Information 11-7.

Chapter 11

Development Support

 11-2

11.1 Development Support

This section describes the development support provided by Texas Instru-
ments.

11.1.1 Development Tools

Texas Instruments offers an extensive line of development tools for the ’C3x
generation of DSPs, including tools to evaluate the performance of the proces-
sors, generate code, develop algorithm implementations, and fully integrate
and debug software and hardware modules. These tools are described below.

Code Generation Tools

There are two types of code generation tools:

� Optimizing ANSI C compiler. Translates ANSI C language directly into
highly optimized assembly code. You can then assemble and link this code
with the TI assembler/linker, which is shipped with the compiler. It supports
both ’C3x and ’C4x assembly code. This product is currently available for
the PC (DOS, DOS extended memory, and OS/2), VAX/VMS, and SPARC
workstations. See the TMS320 Floating-Point DSP Optimizing C Compiler
User’s Guide for detailed information.

� Assembler/linker. Converts source mnemonics to executable object code.
It supports both ’C3x and ’C4x assembly code. This product is currently
available for the PC (DOS, DOS extended memory, and OS/2). The
’C3x/’C4x assembler for the VAX/VMS and SPARC workstations is only
available as part of the optimizing ’C3x/’C4x compiler. See the TMS320
Floating-Point DSP Assembly Language Tools User’s Guide for detailed
information.

Development Support

11-3Development Support and Part Ordering Information

System Integration and Debug Tools

There are four types of system integration and debug tools:

� Simulator. Simulates through software the operation of the ’C3x and can
be used in C and assembly software development. This product is current-
ly available for the PC (DOS and Windows) and SPARC workstations. See
the TMS320C3x C Source Debugger User’s Guide for detailed informa-
tion.

� XDS510 emulator. Performs full-speed in-circuit emulation with the ’C3x,
providing access to all registers as well as to internal and external memory.
It can be used in C and assembly software development and has the capa-
bility of debugging multiple processors. This product is currently available
for the PC (DOS, Windows, and OS/2) and SPARC workstations. This
product includes the emulator board (emulator box, power supply, and
small computer system interface (SCSI) connector cables in the SPARC
version), the ’C3x C source debugger software, and the JTAG cable.

Because ’C3x and ’C5x XDS510� emulators also come with the same
emulator board (or box), you can buy the ’C3x C source debugger soft-
ware as a separate product called the ’C3x C Source Debugger Conver-
sion Software. This enables you to debug ’C3x/’C4x/’C5x applications with
the same emulator board. The emulator cable that comes with the ’C5x
XDS510 emulator is not compatible with the ’C3x. You need a JTAG
emulation conversion cable. See the TMS320C3x C Source Debugger
User’s Guide for detailed information on the ’C3x emulator.

� Evaluation module (EVM). Each EVM comes complete with a PC halfcard
and software package. The EVM board contains the following:

� A ’C30 and a 33-MFLOPS, 32-bit floating-point DSP

� A 16K-word, zero-state SRAM, allowing coding of most algorithms di-
rectly on the board

� A speaker/microphone-ready analog interface for multimedia,
speech, and audio applications development

� A multiprocessor serial port interface for connecting to multiple EVMs

� A host port for PC communications

The system also comes with all the software required to begin applications
development on a PC host. Equipped with a C and assembly language
source-level debugger for the DSP, the EVM has a window-oriented,
mouse-driven interface that enables the downloading, executing, and de-
bugging of assembly code or C code.

Development Support

 11-4

The ’C3x assembler/linker is also included with the EVM. For users who
prefer programming in a high-level language, an optimizing ANSI C com-
piler and an Ada compiler are offered separately.

� Emulation porting kit (EPK). Enables you to integrate emulation technolo-
gy directly into your system without the need of an XDS510 board. The
EPK is intended to be used by third parties and high-volume board
manufacturers and requires a licensing agreement with Texas Instru-
ments. The kit contains host (or PC) source and object code, which lets
you tailor ’C30 EVM-like capabilities to your ’C3x system through the
SM74ACT8990 test bus controller (TBC). The EPK can be used in such
applications as program download for system self test and initialization or
system emulation and debug to feature resident emulation support. EPK
software includes the TI high-level language (HLL) debugger in object as
well as source code for the TBC communication interface. The HLL code
is the windowed debugger found with many TI DSP simulators, EVMs, and
emulators. With the EPK, the HLL user interface can be ported directly to
the system board. The source code for the TBC communication interface
consists of such commands as read/write, memory run, stop, and reset
that communicate with the ’C3x device. Using the EPK reduces system
and development cost and speeds time to market. For more information
on the kit, call the DSP hotline at (281)274–2320.

11.1.2 TMS320 Third Parties

The TMS320 family is supported by product and service offerings from more
than 100 independent vendors and consultants, known as third parties. These
support products take various forms (both software and hardware) from cross-
assemblers, simulators, and DSP utility packages to logic analyzers and emu-
lators. Additionally, TI third parties offer more than 150 algorithms that are
available for license through the TMS320 software cooperative. These algo-
rithms can greatly reduce development time and decrease time to market. The
expertise of those involved in support services ranges from speech encoding
and vector quantization to software/hardware design and system analysis.

For a more detailed description of services and products offered by third par-
ties, See the TMS320 Third Party Support Reference Guide and the TMS320
Software Cooperative Data Sheet Packet. Call the Literature Response Cen-
ter at (800) 477–8924 to request a copy.

Development Support

11-5Development Support and Part Ordering Information

11.1.3 Technical Training Organization (TTO) TMS320 Workshop

The ’C3x DSP design workshop is tailored for hardware and software design
engineers and decision-makers who design and use the ’C3x generation of
DSP devices. Hands-on exercises throughout the course give participants a
rapid start in using ’C3x design skills. Microprocessor/assembly language ex-
perience is required. Experience with digital design techniques and C lan-
guage programming experience is desirable. The following topics are covered
in the ’C3x workshop:

� ’C3x architecture/instruction set
� Use of the PC-based ’C3x software simulator and EVM
� Floating-point and parallel operations
� Use of the ’C3x assembler/linker
� C programming environment
� System architecture considerations
� Memory and I/O interfacing
� ’C3x development support

For registration, pricing, or enrollment information on this and other TTO
TMS320 workshops, call (800) 336–5236, ext. 3904.

11.1.4 TMS320 Literature

Extensive DSP documentation is available, including data sheets, user’s
guides, and application reports. In addition, DSP textbooks that aid research
and education have been published by Prentice-Hall, John Wiley and Sons,
and Computer Science Press. To order literature or to subscribe to the DSP
newsletter Details on Signal Processing (for up-to-date information on new
products and services), call the Literature Response Center at (800)477–8924
or log on to the DSP Solutions web site at http://www.ti.com/dsps.

11.1.5 DSP Hotline

For answers to TMS320 technical questions on device problems, develop-
ment tools, documentation, upgrades, and new products, you can contact the
DSP hotline by:

� Phone at (281) 274–2320 Monday through Friday from 8:30 a.m. to
5:00 p.m. Central Time

� Fax at (281) 274–2324

� Electronic mail at dsph@ti.com

� European fax at 33–1–3070–1032

� Semiconductor Product Information Center (PIC) at (214) 644–5580

Development Support

 11-6

To ask about third-party applications and algorithm development packages,
contact the third party directly. See the TMS320 Third-Party Support Refer-
ence Guide for addresses and phone numbers.

The DSP hotline does not provide pricing information. Contact the nearest TI
field sales office or the TI PIC for prices and availability of TMS320 devices and
support tools.

11.1.6 Bulletin Board Service (BBS)

The TMS320 DSP Bulletin Board Service (BBS) is a telephone-line computer
service that provides information on TMS320 devices, specification updates
for current or new devices and development tools. The BBS also gives infor-
mation about silicon and development tool revisions and enhancements, new
DSP application software as it becomes available, and source code for pro-
grams from any TMS320 user’s guide.

You can access the BBS by:

� Modem: (300-, 1200-, or 2400-bps) dial (713)274–2323. Set your modem
to 8 data bits,1 stop bit, no parity.

� Internet: Use anonymous ftp to stp.ti.com (Internet port address
192.94.94.1). The BBS content is located in the subdirectory called mir-
rors.

To find out more about the BBS, see the TMS320 Family Development Support
Reference Guide.

TMS320C3x Part Ordering Information

11-7Development Support and Part Ordering Information

11.2 TMS320C3x Part Ordering Information

This section provides device and support tool part numbers. Table 11–1 lists
the part numbers for the ’C30 and ’C31; Table 11–2 gives ordering information
for ’C3x hardware and software support tools. An explanation of the TMS320
family device and development support tool prefix and suffix designators fol-
lows the two tables to assist in understanding the TMS320 product numbering
system.

Table 11–1. TMS320C3x Digital Signal Processor Part Numbers

Operating Typical Power
Device Technology

p g
Frequency Package Type

yp
Dissipation

TMS320C30GEL 0.8-µm CMOS 33 MHz Ceramic 181-pin PGA 1.00 W

TMS320C30GEL40 0.8-µm CMOS 40 MHz Ceramic 181-pin PGA 1.25 W

TMS320C31PQL/PQA 0.8-µm CMOS 33 MHz Plastic 132-pin QFP 0.75 W

TMS320C31PQL40 0.8-µm CMOS 40 MHz Plastic 132-pin QFP 0.90 W

TMS320LC31PQL 0.8-µm CMOS 33 MHz Plastic 132-pin QFP 0.50 W

TMS320C31PQL50 0.8-µm CMOS 50 MHz Plastic 132-pin QFP 1.00 W

SMJ320C316FA27
SMJ320C31HF627
SMJ320C316FA33
SMJ320C316HF633

0.8-µm CMOS 28 MHz Ceramic 141-pin PGA
Ceramic 132-pin QFP
Ceramic 141-pin PGA
Ceramic 132-pin PGA

0.60 W
0.60 W
0.75 W
0.75 W

SMJ320C306BM33
SMJ320C30HF633

0.8-µm CMOS 33 MHz Ceramic 181-pin PGA
Ceramic 196-pin QFP

1.10 W

SMJ320C30GBM28
SMJ320C30HF628
SMJ320C30HTM28

0.8-µm CMOS 28 MHz Ceramic 181-pin PGA
Ceramic 196-pin QFP

1.00 W
1.00 W

SMJ320C30GBM25
SMJ320C30HF625
SMJ320C30HTM25

0.8-µm CMOS 25 MHz Ceramic 181-pin PGA
Ceramic 196-pin QFP

1.00 W
1.00 W

TMS320C3x Part Ordering Information

 11-8

Table 11–2. TMS320C3x Support Tool Part Numbers

(a) Software

Tool Description Operating System Part Number

C Compiler & Macro Assembler/ Linker VAX/VMS
PC-DOS/MS-DOS
SPARC (Sun OS)†

TMDS3243255-08
TMDS3243855-02
TMDS3243555-08

Assembler/Linker PC-DOS/MS-DOS; OS/2 TMDS3243850-02

Simulator VAX VMS

PC-DOS/MS-DOS

SPARC (SUN OS)†

TMDS3243251-08

TMDS3243851-02

TMDS3243551-09

Digital Filter Design Package PC-DOS DFDP

TMS320C3x Emulation Porting Kit PC; SPARC TMDX3240030

(b) Hardware

Tool Description Operating System Part Number

XDS510 Emulator PC/MS-DOS TMDS3240130

Evaluation Module (EVM) PC/MS-DOS TMDS3260030

† Note that SUN UNIX supports ’C3x software tools on the 68 000 family-based SUN-3 series workstations and on the SUN-4
series machines that use the SPARC processor, but not on the SUN-386i series of workstations.

TMS320C3x Part Ordering Information

11-9Development Support and Part Ordering Information

11.2.1 Device and Development Support Tool Prefix Designators

Prefixes to TI part numbers designate phases in the product’s development
stage for both devices and support tools, as shown in the following definitions:

Device Development Evolutionary Flow

� TMX: Experimental device that is not necessarily representative of the
final device’s electrical specifications

� TMP: Final silicon device that conforms to the device’s electrical specifica-
tions but has not completed quality and reliability verification

� TMS: Fully qualified production device

Support Tool Development Evolutionary Flow

� TMDX: Development support product that has not yet completed TI’s
internal qualification testing for development systems

� TMDS: Fully qualified development support product

TMX and TMP devices and TMDX development support tools are shipped with
the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

Note: Prototype Devices

TI recommends that prototype devices (TMX or TMP) not be used in produc-
tion systems. Their expected end-use failure rate is undefined but predicted
to be greater than standard qualified production devices.

TMS devices and TMDS development support tools have been fully character-
ized, and their quality and reliability have been fully demonstrated. TI’s stan-
dard warranty applies to TMS devices and TMDS development support tools.

TMDX development support products are intended for internal evaluation pur-
poses only. They are covered by TI’s warranty and update policy for micropro-
cessor development systems products; however, they should be used by cus-
tomers only with the understanding that they are developmental in nature.

TMS320C3x Part Ordering Information

 11-10

11.2.2 Device Suffixes

The suffix indicates the package type (for example, N, FN, or GE) and temper-
ature range (for example, L).

Figure 11–1 presents a legend for reading the complete device name for any
TMS320 family member.

Figure 11–1.TMS320 Device Nomenclature

Prefix

Device Family

320 = TMS320 family

Technology

Device
1st-generation DSP:

10
14
15
16
17

2nd-generation DSP:
20
25
26

3rd-generation DSP:
30
31
32

4th-generation DSP:
 40
5th-generation DSP:
 50
 51

TMS 320 C 30 GE L

C = CMOS
E = CMOS EPROM
P = OTPEPROM

No letter = NMOS

TMX= Experimental device
TMP= Prototype device
TMS= Qualified device
SMJ = MIL-STD-883C

Temperature Range

Package Type

H = 0 to 50°C
L = 0 to 70°C
S = -55 to 100°C
M = -55 to 125°C
A†= -40 to 85°C

FD = Leadless ceramic chip
carrier

FJ = Ceramic leaded chip carrier
FN = Plastic leaded chip carrier
FZ = Ceramic leaded chip carrier
GB = Ceramic pin grid array
GE = Ceramic pin grid array,

glass seal
HT = Ceramic quad flatpack

(gull wing)
HU = Ceramic quad flatpack
JD = Ceramic dual in line

package side brazed
N = Plastic dual in line package
PQ = Plastic quad flatpack

† See electrical specifications for ’C31 PQA case temperature ratings

12-1

TMS320C30 Power Dissipation

This chapter presents the information necessary to determine the require-
ments for the power supply current for the ’C30 under different operating
conditions.

As device sophistication and levels of integration increase with evolving semi-
conductor technologies, actual levels of power dissipation vary widely. These
levels depend heavily on the particular application in which the device is used
and the nature of the program being executed. In addition, due to the charac-
teristics of CMOS technology, power requirements vary according to clock
rates and data values being processed. Using this information, you can deter-
mine the device’s power dissipation and, in turn, calculate thermal manage-
ment requirements.

Topic Page

12.1 Power Dissipation Characteristics 12-2.

12.2 Current Requirement for Internal Circuitry 12-5.

12.3 Current Requirement for Output Driver Circuitry 12-9.

12.4 Calculation of Total Supply Current 12-17.

12.5 Example Supply Current Calculations 12-24.

Chapter 12

Power Dissipation Characteristics

 12-2

12.1 Power Dissipation Characteristics

Generally, power supply current requirements are related to the system, for ex-
ample, operating frequency, supply voltage, temperature, and output load. As
devices become more complex, the specification must also be based on what
the device does. CMOS devices inherently draw current only during switching
through the linear region. Therefore, the power supply current is related to the
rate of switching. Furthermore, since the output drivers of the ’C30 are specified
to drive direct current (dc) loads, the power supply current resulting from exter-
nal writes depends not only on switching rate but also on the value of data writ-
ten.

12.1.1 Power Supply Factors

The power-supply current consists of four basic factors:

� Quiescent current
� Internal operations
� Internal bus operations
� External bus operations

12.1.2 Power Supply Consumption Dependencies

The power-supply current consumption depends on many factors. Four are
system-related:

� Operating frequency
� Supply voltage
� Operating temperature
� Output load

Several other factors are related to ’C30 operation. They include:

� Duty cycle of operations
� Number of buses used
� Wait states
� Cache usage
� Data value of internal and external bus

Power Dissipation Characteristics

12-3TMS320C30 Power Dissipation

The total power supply current for the device is described in the following equa-
tion, which applies the four basic power supply current factors and the depen-
dencies described above:

I = (Iq + Iiops + I ibus + Ixbus) � FV � T

where:

Iq = quiescent current

Iiops = current from internal operations

Iibus = current from internal bus usage, including data value and cycle time
dependencies

Ixbus = current from external bus usage, including data value, wait state,
cycle time, and capacitive load dependencies

FV = scale factor for frequency and supply voltage

T = scale factor for operating temperature

The application of this equation and the determination of all of the dependen-
cies are described in detail in this chapter.

If a less detailed analysis is sufficient, use the minimum, typical, and maximum
values to determine a rough estimate of the power supply current require-
ments:

� The minimum power supply current requirement is 110 mA.

� The typical and average current consumption is 200 mA, as described in
the TMS320C30 Digital Signal Processor data sheet. These are
associated with most algorithms running on the device unless data output
is excessive.

� If an extremely conservative approach is desired, use the maximum value.

Maximum Current Requirement
The maximum current requirement is 600 mA and occurs only
under worst case conditions. These include writing alternating
data (AAAAAAAAh to 55555555h) out of both external buses
simultaneously, every cycle, with 80 pF loads, and running at
33 MHz.

Power Dissipation Characteristics

 12-4

12.1.3 Determining Algorithm Partitioning

Each part of an algorithm has its own pattern with respect to internal and exter-
nal bus usage. To analyze the power supply current requirement, you must
partition an algorithm into segments with distinct concentrations of internal or
external bus usage. Analyze each program segment to determine its power
supply current requirement. You can then calculate the average power supply
current from the requirements of each segment of the algorithm.

12.1.4 Test Setup Description

All ’C30 supply current measurements were performed on the test setup
shown in Figure 12–1. The test setup consists of a ’C30, 8K words of zero-
wait-state Cypress Semiconductor SRAMs (CY7C186–25PC), and resistor/
capacitor (RC) loads on all data and address lines. A Tektronix� current probe
(P6042) measures the power supply current in all VDD lines of the device. The
supply voltage on the output load is 2.15 V. Unless otherwise specified, all
measurements are made at a:
� Supply voltage of 5.0 V
� Input clock frequency of 33 MHz
� Capacitive load of 80 pF
� Operating temperature of 25°C

Figure 12–1. Current Measurement Test Setup for the TMS320C30

TMS320C30

Primary Expansion

SRAM

Tektronix
current probe

(P6042)

VDD

2.15 V 2.15 V

C C

R = 825 Ω R = 825 Ω

32 D
24 A

32 D
13 A

CY7C186-25PC

VDD

VSS

Current Requirements for Internal Circuitry

12-5TMS320C30 Power Dissipation

12.2 Current Requirements for Internal Circuitry

The power supply current requirement for internal circuitry consists of the fol-
lowing factors: quiescent current, internal operations, and internal bus opera-
tions. Quiescent current and internal operations are constants, but the internal
bus operations vary with the rate of internal bus usage and the data values be-
ing transferred.

12.2.1 Quiescent Current

Quiescent current refers to the baseline supply current drawn by the ’C30 dur-
ing minimal internal activity. It includes the current required to fetch an instruc-
tion from on- or off-chip memory. Examples of quiescent current include:

� Maintaining timers and serial ports
� Executing the IDLE instruction
� ’C30 in HOLD mode pending external bus access
� ’C30 in reset
� Branching to self

The quiescent requirement for the ’C30 equals 110 mA.

12.2.2 Internal Operations

Internal operations include register-to-register multiplication, ALU operations,
and branches. It does not include external bus usage or significant internal bus
usage. Internal operations add a constant 55 mA above the quiescent current.
Therefore, the total contribution of quiescent current (110 mA) and internal
operations (55 mA) is 165 mA. During an RPTS instruction (repeat single
instruction), activity other than the instruction being repeated is suspended;
therefore, internal power supply current is related only to the operation per-
formed by the instruction being executed.

12.2.3 Internal Bus Operations

Internal bus operations include all operations that use the internal buses
extensively, such as internal RAM access every cycle. No distinction is made
between internal reads (such as instruction or operand fetches from internal
ROM or internal RAM banks) and internal writes (such as operand stores to
internal RAM banks); internally they are equal. Since power consumption
depends on the data value in the internal bus, significant use of internal buses
adds a data-dependent factor to the power supply current.

Current Requirements for Internal Circuitry

 12-6

Pipeline conflicts, use of cache, fetches from external wait-state memory, and
writes to external wait-state memory all affect the internal and external bus
cycles of an algorithm executing on the ’C30. Therefore, you must determine
the algorithm’s internal usage in order to accurately calculate the power supply
current requirements. The ’C30 software simulator and XDS� emulator both
provide benchmarking and timing capabilities that help you determine bus
usage.

The current resulting from internal bus usage varies exponentially with transfer
rates. Figure 12–2 shows the internal bus current requirements for transfer-
ring alternating data (AAAAAAAAh to 55555555h). A transfer rate less than 1
implies multiple accesses per single H1 cycle (that is, using direct memory ac-
cess (DMA), etc.). Transfer cycle times greater than 1 refer to single-cycle
transfers with one or more cycles between them. The minimum transfer cycle
time is one third, which corresponds to three accesses in a single H1 cycle.

Figure 12–2. Internal Bus Current Versus Transfer Rate (AAAAAAAAh to 55555555h)

100

80

60

40

20

0

–20

In
cr

em
en

ta
l

I D
D

Transfer cycle time (H1 cycles)

0 2 4 6 8 10 12 14

(m
A

)
f 1

= (in
te

rn
al

 b
us

 c
ur

re
nt

 fa
ct

or
)

The data set AAAAAAAAh to 55555555h exhibits the maximum current for
these types of operations. Less current is required for transferring other data
patterns, and current values can be derated accordingly.

As the transfer rate decreases (transfer cycle time increases), the incremental
IDD approaches 0 mA. Transfer rates corresponding to more than seven H1
cycles do not add any current and are considered insignificant. This figure rep-
resents the incremental IDD from internal bus operations and is added to quies-
cent and internal operations current values.

Current Requirements for Internal Circuitry

12-7TMS320C30 Power Dissipation

For example, the maximum transfer rate corresponds to three accesses every
cycle or one-third H1 transfer cycle time. At this rate, 85 mA is added to the
quiescent (110 mA) and internal operation (55 mA) current values for a total
of 250 mA.

Figure 12–3 shows the data dependence of the internal bus current require-
ment when the data is other than As followed by 5s. The shaded trapezoidal
region represents the internal bus current consumed for all possible data val-
ues transferred. The lower line represents the scale factor for transferring the
same data (all 0s or all Fs). The upper line represents the scale factor for trans-
ferring alternating data (all 0s to all Fs or all As to all 5s).

Figure 12–3. Internal Bus Current Versus Data Complexity Derating Curve

120

100

80

60

40

N
or

m
al

iz
ed

I D
D

Relative data complexity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alternating data

Same data

As to 5s

Fs to Fs

0s to 0s

0s to Fs

%
D

1
=

(in
te

rn
al

 b
us

 d
at

a
sc

al
e

fa
ct

or
)

The number of possible permutations of data values is quite large. The extent
to which data varies is referred to as relative data complexity. This term refers
to a relative measure of the extent to which data values are changing and the
extent to which the number of bits are changing state. Relative data complexity
ranges from 0, signifying minimal variation of data, to a normalized value of 1,
signifying greatest data variation.

Current Requirements for Internal Circuitry

 12-8

If a statistical knowledge of the data exists, Figure 12–3 can be used to deter-
mine the exact power supply requirement according to internal bus usage. For
example, Figure 12–3 indicates a 63% scale factor when all Fs are moved in-
ternally every cycle with two accesses per cycle. This scale factor is multiplied
by 55 mA (from Figure 12–2, at one-half H1 cycle transfer time), yielding 34.65
mA because of internal bus usage. Therefore, an algorithm running under
these conditions requires about 200 mA of power supply current
(110 + 55 + 34.65).

Since a statistical knowledge of the data may not be readily available, a nomi-
nal scale factor may be used. The median between the minimum and maxi-
mum values at 50% relative data complexity yields a value of 0.80 and can be
used as an estimate of a nominal scale factor. You can use this nominal data
scale factor of 80% for internal bus data dependency, adding 44 mA to 110 mA
(quiescent current) and 55 mA (internal operations) to yield 210 mA. As an up-
per bound, assume worst case conditions of three accesses of alternating data
every cycle, adding 85 mA (from Figure 12–2) to 110 mA (quiescent current)
and 55 mA (internal operations) to yield 250 mA.

Current Requirement for Output Driver Circuitry

12-9TMS320C30 Power Dissipation

12.3 Current Requirement for Output Driver Circuitry

The output driver circuits on the ’C30 are required to drive significantly higher
dc and capacitive loads than internal device logic. Therefore, they are de-
signed to drive larger currents than internal devices. Because of this, output
drivers impose higher supply current requirements than other sections of cir-
cuitry on the device.

Accordingly, the highest values of supply current are required when external
writes are performed at high speed. During reads, or when the external buses
are not in use, the ’C30 does not drive the data bus; this eliminates the most
significant factor of output buffer current. Furthermore, in typical cases, only
a few address lines change, or the whole address bus is static. Under these
conditions, an insignificant amount of supply current is consumed. When no
external writes are performed or when writes are performed infrequently, cur-
rent from output buffer circuitry can be ignored.

When external writes are performed, the current required to supply the output
buffers depends on several factors:

� Data pattern transferred

� Rate at which transfers are made

� Number of wait states implemented (because wait states affect rates at
which bus signals switch)

� External bus dc and capacitive loading

External operations involve writes external to the device and constitute the
major power supply current factor. The power supply current for the external
buses is made up of three factors and is summarized in the following equation:

Ibase + Iprim + Iexp = power supply current for the external buses

where:

Ibase = 60-mA baseline current

Iprim = primary bus current

Iexp = expansion bus current

The remainder of this section describes in detail the calculation of external bus
current factors.

Current Requirement for Output Driver Circuitry

 12-10

12.3.1 Primary Bus Current

The current from primary bus writes varies with both wait states and write cycle
time. Current factors from output driver circuitry are represented as offsets
from the previously computed value (quiescent + internal operations + internal
bus). Since the baseline value is related to internal current factors, negative
values for current offset are obtained under some circumstances. However,
negative current does not occur.

To obtain accurate current values, you must first establish the timing of write
cycles of the buses. To determine the rate and timings at which write cycles
to the external buses occur, you must analyze program activity, including any
pipeline conflicts that may exist. Information from this manual and the ’C30
emulator or simulator is useful in making these determinations. You must
account for the effects of cache use in these analyses because the cache can
affect whether instructions are fetched from external memory.

When evaluating external write activity in a given program segment, you must
consider whether a particular level of external write activity is significant. If
writes are performed at very slow rates on both the primary and the expansion
buses, the current from external writes can be ignored . If writes are performed
at high speed on only one of the two external buses, you should calculate cur-
rent requirements.

Although you can obtain negative incremental current values under some
circumstances, the total contribution for external buses, including baseline
current, is always positive. When external buses are not used much, the total
current requirements approach the current contribution from the internal fac-
tors, which is solely a function of internal activity. This places a lower limit on
current contributions from the primary and expansion buses, because the total
current from external buses is the sum of the 60-mA baseline value and the
primary and expansion bus factors. This effect is discussed in further detail in
the rest of this section.

Once you establish bus-write cycle timing, use Figure 12–4 to determine the
contribution to supply current from this bus activity. Figure 12–4 shows current
contributions from the primary bus for various numbers of wait states and H1
cycles between writes. This current contribution is exhibited when writes of al-
ternating 55555555h and AAAAAAAAh are performed at a capacitive load of
80 pF per output signal line. This condition exhibits the highest current values
on the device. The curve in the figure represents incremental or additional cur-
rent contributed by the primary bus output driver circuitry while writing alternat-
ing 55555555h and AAAAAAAAh. Current values obtained from this graph are
scaled and added to several other current values to calculate the total current
for the device. As indicated in the figure, the lower curve represents the current
contribution for 18 or more cycles between writes.

Current Requirement for Output Driver Circuitry

12-11TMS320C30 Power Dissipation

Figure 12–4. Primary Bus Current Versus Transfer Rate and Wait States

200

150

100

50

0

–50

Wait states

0 1 2 3 4 5 6 7

q = Number of cycles between writes

In
cr

em
en

ta
l

I D
D

(m
A

)

q = 1

q ≥ 18

q = 4

q = 2
I p

rim
=

(p
rim

ar
y

bu
s

op
er

at
io

ns
 fa

ct
or

)

The number of cycles between writes refers to the number of H1 cycles be-
tween the active portion of the write cycles (as defined in the TMS320C30 Digi-
tal Signal Processor data sheet), that is, when STRB, MSTRB, or IOSTRB and
R/W (or XR/W, as the case may be) are low between H1 cycles. As shown in
Figure 12–4, the minimum number of cycles between writes is 1, because with
back-to-back writes there is one H1 cycle between active portions of the writes.

To further illustrate the relationship between current and write cycle time,
Figure 12–5 shows the characteristics of current for various numbers of cycles
between writes for zero wait states. You can use the information on this curve
to obtain more precise values of current if zero wait states are used and the
number of cycles between writes does not fall on one of the curves in
Figure 12–4.

Current Requirement for Output Driver Circuitry

 12-12

Figure 12–5. Primary Bus Current Versus Transfer Rate at Zero Wait States

200

150

100

50

0

H1 cycles between writes

0 2 4 6 8 10 12 14 16 18 20

In
cr

em
en

ta
l

I D
D

(m
A

)

–50

I p
rim

=

(p
rim

ar
y

bu
s

op
er

at
io

ns
 fa

ct
or

)

Although these graphs contain negative current values, negative current has
not necessarily actually occurred. The negative values exist because the
graphs represent a current offset from the previously computed current value.
Using this approach to depict current contributions from different factors
breaks down the current calculations to allow you to make calculations inde-
pendently.

Figure 12–4 and Figure 12–5 show that the current consumption during exter-
nal bus writes is negative if writes are performed at intervals of more than 18
cycles. Under these conditions, use the incremental value of –30-mA current
contribution from the primary bus. You should use a value of –30 mA only if the
expansion bus is used extensively because the total contribution for external
buses, including baseline current, must always be positive. If the expansion
bus is not used and the primary bus is not used much, the current contribution
from the primary bus is always greater than or equal to 20 mA. This ensures
that the correct total current value is obtained when summing external bus fac-
tors. Once a current value has been obtained from Figure 12–4 or
Figure 12–5, this value can, if necessary, be scaled by a data dependency fac-
tor, as described in section 12.3.3 on page 12-14. This scaled value is then
summed along with several other current values to determine the total supply
current.

Current Requirement for Output Driver Circuitry

12-13TMS320C30 Power Dissipation

12.3.2 Expansion Bus Current

Currents from the primary and expansion buses differ slightly for several rea-
sons, including the fact that the expansion bus has 11 fewer address outputs
than the primary bus (13 rather than 24). This overall current contribution is
slightly lower from the expansion bus than from the primary bus.

Determining the expansion bus current uses the same premise as determining
the primary bus current. Figure 12–6 and Figure 12–7 show the same current
relationships for the expansion bus as Figure 12–4 and Figure 12–5 show for
the primary bus. The total external buses’ current contributions must be posi-
tive; if the primary bus is not used and the expansion bus is not used much,
the minimum current contribution from the expansion bus is –30 mA. The cur-
rent values obtained from these figures must be scaled by a data dependency
factor, as described in section 12.3.3 on page 12-14.

Figure 12–6. Expansion Bus Current Versus Transfer Rate and Wait States

100

50

0

–50

–100

Wait states

0 1 2 3 4 5 6 7

q = Number of cycles between writes

In
cr

em
en

ta
l

I D
D

(m
A

)

q = 1

q ≥ 18

q = 4

q = 2

I e
xp

=

(e
xp

an
si

on
 b

us
 o

pe
ra

tio
ns

 fa
ct

or
)

Current Requirement for Output Driver Circuitry

 12-14

Figure 12–7. Expansion Bus Current Versus Transfer Rate at Zero Wait States

100

50

0

–50

–100

H1 cycles between writes

0 2 4 6 8 10 12 14 16 18 20

In
cr

em
en

ta
l

I D
D

(m
A

)

–150

200

150

I e
xp

=

(e
xp

an
si

on
 b

us
 o

pe
ra

tio
ns

 fa
ct

or
)

12.3.3 Data Dependency Factors

Data dependency of current for the primary and expansion buses is expressed
as a scale factor that is a percentage of the maximum current of either of the
two buses. Data dependencies are shown in Figure 12–8 for the primary bus
and in Figure 12–9 for the expansion bus.

These two figures show normalized weighting factors that you can use to scale
current requirements on the basis of patterns in data being written on the exter-
nal buses. The range of possible weighting factors forms a trapezoidal pattern
bounded by extremes of data values. As can be seen from Figure 12–8 and
Figure 12–9, the minimum current is exhibited by writing all 0s, while the maxi-
mum current occurs when writing alternating 55555555h and AAAAAAAAh.
This condition results in a weighting factor of 1, which corresponds to using the
values from Figure 12–4 and/or Figure 12–5 directly.

As with internal bus operations, data dependencies for the external buses are
well defined, but accurate prediction of data patterns is often impractical. Un-
less you have precise knowledge of data patterns, you should use an estimate
of a median or average value for scale factor. If you assume that data is neither
5s and As, nor all 0s, and varies randomly, a value of 0.85 is appropriate.
Otherwise, if you prefer a conservative approach, you can use a value of 1.0
as an upper bound.

Current Requirement for Output Driver Circuitry

12-15TMS320C30 Power Dissipation

Figure 12–8. Primary Bus Current Versus Data Complexity Derating Curve

0.95

0.85

0.8

0.75

0.7

0.65

Data complexity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
im

ar
y

bu
s

da
ta

 s
ca

le
 fa

ct
or

0.6

0.9

1 As to 5s

Alternating data

Same data

Fs to Fs
0s to Fs

0s to 0sD
2

=

Figure 12–9. Expansion Bus Current Versus Data Complexity Derating Curve

0.9

0.8

0.75

0.7

0.65

0.6

Data complexity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.85

Alternating data

Same data

Fs to Fs

0s to Fs

0s to 0s

0.95

1 As to 5s

ex
pa

ns
io

n
bu

s
da

ta
 s

ca
le

 fa
ct

or
D

3
=

Current Requirement for Output Driver Circuitry

 12-16

Regardless of the approach you take for scaling, once you determine the scale
factors for primary and expansion buses, apply these scale factors to the cur-
rent values found by using the graphs in the previous two sections. For exam-
ple, if a nominal scale factor of 0.85 is used and the system uses zero wait
states with two cycles between accesses on both the primary and expansion
buses, the current contribution from the two buses is as follows:

Primary: 0.85 × 80 mA = 68 mA
Expansion: 0.85 × 40 mA = 34 mA

12.3.4 Capacitive Load Dependence

Once you account for cycle timing and data dependencies, calculate and apply
the capacitive loading effects. Figure 12–10 shows the scale factor to apply to
the current values obtained above as a function of actual load capacitance if
the load capacitance presented to the buses is less than 80 pF.

In the previous example, if the load capacitance is 20 pF instead of 80 pF, a
scale factor of 0.84 is used, yielding:

Primary: 0.84 × 68 mA = 57.12 mA
Expansion: 0.84 × 34 mA = 28.56 mA

The slope of the load capacitance line in Figure 12–10 is 26% normalized IDD
per pF. While this slope may be used to interpolate scale factors for loads
greater than 80 pF, the ’C30 is specified to drive output loads of less than
80 pF. Interface timings cannot be ensured at higher loads.

Figure 12–10. Current Versus Output Load Capacitance

100

95

90

85

80

75

Output load capacitance (pF)

0 10 20 30 40 50 60 70

ca
pa

ci
ta

nc
e

lo
ad

 s
ca

le
 fa

ct
or

C
2

80

C
3

an
d

=

Calculation of Total Supply Current

12-17TMS320C30 Power Dissipation

12.4 Calculation of Total Supply Current

The previous sections discuss currents contributed by several sources on the
’C30. Because actual current values are unique and independent for each
source, each current source is discussed separately. In an actual application,
however, the sum of the independent contributions from each current deter-
mines the total current requirement for the device. This current value is the
total current supplied to the device through all of the VDD inputs and returned
through the VSS connections.

Note that numerous VDD and VSS pins on the device are routed to a variety of
internal connections, not all of which are common. Externally, however, all of
these pins must be connected in parallel to a 5-volt source and use ground
planes with as little impedance as possible.

12.4.1 Combining Supply Current from All Factors

To determine the total supply current requirements for any given program
activity, calculate each of the appropriate factors and combine them in the fol-
lowing sequence:

1) Start with 110-mA quiescent current.

2) Add 55 mA for internal operations unless the device is dormant. Dormant
periods occur during the execution of IDLE, NOPs, branches to self, or
performance of internal and/or external bus operations using an RPTS
instruction (see section 12.2.2 on page 12-5). Internal or external bus
operations executed through RPTS do not contribute an internal opera-
tions power supply current factor. However, current factors in the next two
steps may still be required, even though the 55 mA is omitted.

3) If significant internal bus operations are performed, add the calculated cur-
rent value. (See section 12.2.3 on page 12-5.)

4) If external writes are performed at high speed, add 60 mA and then add
the values for primary and expansion bus current factors. (See sec-
tion 12.3 on page 12-9.) If only one external bus is used, the appropriate
incremental current for the unused bus must still be included because the
current offsets include factors required for operating both buses. The total
current contribution for external buses, including baseline, is always posi-
tive.

The current value obtained from summing these factors is the total device
current requirement for a given program activity.

Calculation of Total Supply Current

 12-18

12.4.2 Supply Voltage, Operating Frequency, and Temperature Dependencies

Current dependencies specific to each supply current factor (such as internal
or external bus operations) are discussed in section 12.1.2 on page 12-2.
Supply voltage level, operating temperature, and operating frequency affect
the requirements for the total supply current and must be maintained within the
required device specifications.

Once you determine the total current for a particular program segment, the
dependencies that affect the total current requirements are applied as a scale
factor in the same manner as data dependencies discussed in other sections.
Figure 12–11 shows the relative scale factors for the supply current values as
a function of both VDD and operating frequency.

Power supply current consumption does not vary significantly with operating
temperature. However, a scale factor of 2% normalized IDD per 50°C change
in operating temperature may be used to derate current within the specified
range noted in the TMS320C30 Digital Signal Processor data sheet. This tem-
perature dependence is shown graphically in Figure 12–12. A temperature
scale factor of 1.0 corresponds to current values at 25°C, which is the tempera-
ture for all references in the document.

Figure 12–11. Current Versus Frequency and Supply Voltage

0.9

0.7

0.6

0.5

0.4

0.3

f(CLKIN) (MHz)

0 5 10 15 20 25 30

fr
eq

ue
nc

y/
su

pp
ly

 v
ol

ta
ge

 s
ca

le
 fa

ct
or

0.2

0.8

1

1.1

1.2
VDD = 5.5 V

VDD = 5.25 V

VDD = 5.0 V

VDD = 4.75 V

VDD = 4.5 V

=
F

V VDD increments in 0.25 V

Calculation of Total Supply Current

12-19TMS320C30 Power Dissipation

Figure 12–12. Current Versus Operating Temperature Change

1.02

1.01

1

0.99

0.98

0.97

Change in operating temperature (°C)

–80 –60 –40 –20 0 20 40 60

T
 =

 te
m

pe
ra

tu
re

 s
ca

le
 fa

ct
or

80

1.03

12.4.3 Total Current Equation Example

The procedure for determining the power supply current requirement is sum-
marized in the following equation:

I = (Iq + Iiops + Iibus + Ixbus) � FV � T

where:

Iq = 110 mA

Iiops = 55 mA

Iibus = D1 � f1 (see Table 12–1 on page 12-20)

lxbus � lbase � lprim � lexp

with

Ibase = 60 mA

Iprim = D2 � C2 � F2 (see Table 12–1)

Iexp = D3 � C3 � F3 (see Table 12–1)

FV = scale factor for frequency and supply voltage

T = scale factor for operating temperature

Table 12–1 describes the variables used in the power supply current equation.
The table displays figure numbers from which the value can be obtained.

Calculation of Total Supply Current

 12-20

Table 12–1. Current Equation Variables

Variable Description Graph/Value

Iq Quiescent current 110 mA

Iiops Internal operations current 55 mA

Iibus Internal bus operations current †

D1 Internal bus data scale factor Figure 12–3

f1 Internal bus current requirement Figure 12–2

Ixbus External bus operations current †

Ibase External bus base current 60 mA

Iprim Primary bus operations current †

D2 Primary bus data scale factor Figure 12–8

C2 Primary bus capacitance load scale factor Figure 12–10

f2 Primary bus current requirement Figure 12–4 or
Figure 12–5

Iexp Expansion bus operations current †

D3 Expansion bus data scale factor Figure 12–9

C3 Expansion bus capacitance load scale factor Figure 12–10

f3 Expansion bus current requirement Figure 12–6 or
Figure 12–7

FV Frequency/supply voltage scale factor Figure 12–11

T Temperature scale factor Figure 12–12

† See power supply current equation on page 12-19.

12.4.4 Peak Versus Average Current

If current is observed over the course of an entire program, some segments usu-
ally exhibit significantly different levels of current required for different durations
of time. For example, a program may spend 80% of its time performing internal
operations, drawing a current of 250 mA; it may spend the remaining 20% of its
time performing writes at full speed to the expansion bus, drawing 300 mA.

While knowledge of peak current levels is important in order to establish power
supply requirements, some applications require information about average
current. This is particularly significant if periods of high peak current are short
in duration. Average current can be obtained by performing a weighted sum
of the currents from the various independent program segments over time. In
the example above, the average current can be calculated as follows:

I � 0.8 � 250 mA � 0.2 � 300 mA � 260 mA

Using this approach, you can calculate average current for any number of pro-
gram segments.

Calculation of Total Supply Current

12-21TMS320C30 Power Dissipation

12.4.5 Thermal Management Considerations

Heating characteristics of the ’C30 depend on power dissipation, which in turn
depends on power supply current. When you make thermal management cal-
culations, you must consider how power supply current contributes to power
dissipation and to the time constant of the ’C30 package thermal characteris-
tics.

Depending on sources and destinations of current on the device, some current
contributions to IDD do not constitute a factor of power dissipation at 5 V.
Accordingly, if you use the total current flowing into VDD to calculate power dis-
sipation at 5 V, you obtain erroneously large values for power dissipation.
Power dissipation is defined as:

P = I � V

where:

P = power

I = current

V = voltage

If device outputs are driving any dc load to a logic high level, only a minor con-
tribution is made to power dissipation, because CMOS outputs typically drive
to a level within a few tenths of a volt of the power supply rails. If this is the case,
subtract these current factors out of the total supply current value; then calcu-
late their contribution to power dissipation separately and add it to the total
power dissipation (see Figure 12–13). If this is not done, these currents result-
ing from driving a logic high level into a dc load cause unrealistically high power
dissipation values. The error occurs because the currents resulting from driv-
ing a logic high level into a dc load appears as a portion of the current used
to calculate power dissipation from VDD at 5 volts.

Calculation of Total Supply Current

 12-22

Figure 12–13. Load Currents

VDD

IDD

TMS320C30

IOH

Device output driven high

ISS

VDD

IDD

TMS320C30

IOL

Device output driven low

ISS

Furthermore, external loads draw supply-only current when outputs are driven
high because, when outputs are in the logic 0 state, the device is sinking cur-
rent that is supplied from an external source. The power dissipation from this
current factor does not have a contribution through IDD but contributes to pow-
er dissipation with a magnitude of:

P = VOL � IOL

where:

VOL = low-level output voltage

IOL = current being sunk by the output (as shown in Figure 12–13)

The power dissipation factor from outputs that are driven low must be calcu-
lated and added to the total power dissipation.

When outputs with dc loads are switched, the power dissipation factors from
outputs being driven high and outputs being driven low are averaged and add-
ed to the total device power dissipation. You should calculate power factors
from dc loading of the outputs separately for each program segment before
you calculate average power.

Any unused inputs that are left disconnected may float to a voltage level that
causes input buffer circuits to remain in the linear region and therefore contrib-
ute a significant factor to power supply current. Accordingly, you should deacti-
vate any unused inputs by grounding them or pulling them high if you desire
absolute minimum power dissipation. If you must pull several unused inputs
high, pull them high together using one resistor to minimize component count
and board space.

Calculation of Total Supply Current

12-23TMS320C30 Power Dissipation

When you use power dissipation values to determine thermal requirements,
you should use the average power unless the time duration of individual pro-
gram segments is long. The thermal characteristics of the ’C30 in the 181-pin
grid array (PGA) package are exponential in nature, with a time constant of
t = 4.5 minutes. When subjected to a change in power, the temperature of the
device package will, after 4.5 minutes, reach approximately 63% of the total
temperature change. Accordingly, if the time duration of program segments
exhibiting high power dissipation values is short (on the order of a few
seconds), you can use average power, calculated in the same manner as aver-
age current (as described in section 12.4.4 on page 12-20).

Otherwise, you should calculate maximum device temperature on the basis of
the actual time duration of the program segments involved. For example, if a
particular program segment lasts for seven minutes, you can calculate that a
device will reach approximately 80% of the temperature change from the total
power dissipation during the program segment.

You can determine average power by calculating the power for each program
segment (including the previous considerations) and performing a time aver-
age of these values, rather than simply multiplying the average current as de-
termined in the previous section by VDD.

Specific device temperature calculations are made using the ’C30 thermal
impedance characteristics in the TMS320C30 Digital Signal Processor data
sheet.

Example Supply Current Calculations

 12-24

12.5 Example Supply Current Calculations

A fast Fourier transform (FFT) is a typical DSP algorithm. The FFT code in the
example calculation processes data in the RAM blocks and writes the result
out to zero-wait-state external SRAM on the primary bus. The program
executes out of zero-wait-state external SRAM on the primary bus, and
enables the ’C30’s cache. The entire algorithm consists mainly of internal bus
operations and includes quiescent current and internal operations. At the end
of processing, the 1024 results are written to the primary bus. Therefore, the
algorithm exhibits a higher current requirement during the write portion, where
the external bus is used significantly.

12.5.1 Processing

The processing portion of the algorithm is 95% of the FFT execution. During
this portion, the power supply current is required only for the internal circuitry.
Data is processed in several loops. During these loops, two operands are
transferred on every cycle. The current required for internal bus operations is
55 mA, (see section 12.2.2 on page 12-5). The data is assumed to be ran-
dom. A data value scale factor of 0.8 is used from Figure 12–3 on page 12-7.
This value scales 55 mA, yielding 44 mA for internal bus operations. Adding
44 mA to the quiescent current requirement and internal operations current
requirement yields a current requirement of 209 mA for the major portion of the
algorithm.

I = Iq + Iiops + Iibus

I = 110 mA + 55 mA + (55mA)(0.8) = 209 mA

Example Supply Current Calculations

12-25TMS320C30 Power Dissipation

12.5.2 Data Output

The portion of the FFT corresponding to writing out data is approximately 5%
of the total processing time. Again, the data being written is assumed to be ran-
dom. From Figure 12–3 on page 12-7 and Figure 12–8 on page 12-15, scale
factors of 0.80 and 0.85 are used for derating from data value dependency for
internal and primary buses, respectively. During the data dump portion of the
code, a load and store are performed every cycle. The parallel load/store
instruction is in an RPTS loop, so there is no contribution from internal opera-
tions because the instruction is fetched only once. The only internal contribu-
tions are from quiescent current and internal bus operations. Figure 12–5 on
page 12-12 indicates a 170-mA current contribution from back-to-back zero-
wait-state writes, and Figure 12–7 on page 12-14 indicates a –80-mA con-
tribution when the expansion bus is idle (that is, with more than 18 H1 cycles
between writes). The total contribution from this portion of the code is:

I = Iq + Iibus + Ixbus

or

I = 110 + (55 mA)(0.8) + 60 mA – 80 mA + (170 mA)(0.85) = 278.5 mA

12.5.3 Average Current

The average current is derived from the two portions of the FFT. The proces-
sing portion takes 95% of the time and requires about 210 mA, and the data
dump portion takes the other 5% and requires about 280 mA. The average is
calculated as:

Iavg � (0.95)(210 mA) � (0.05)(280 mA) � 213.5 mA

From the thermal characteristics specified in the ’C30 data sheet, it can be
shown that this current level corresponds to a case temperature of 43°C. This
temperature meets the maximum device specification of 85°C and, hence,
requires no forced air cooling.

Example Supply Current Calculations

 12-26

12.5.4 Experimental Results

A photograph of the power supply current for the FFT is shown Figure 12–14.
During the FFT processing, the measured current varies between 180 and
220 mA. The peak of the current during external writes is 270 mA, and the
average current requirement, as measured on a digital multimeter, is 200 mA.
The calculations yield results that are extremely close to the actual measured
power supply current.

Figure 12–14. Photo of IDD for FFT

400

300

200

100

0

mA

500 µs/div

Note: Input clock frequency = 33 MHz, voltage level = 5.0 VDD

A-1

Appendix A

TMS320C32 Boot Table Examples

The ’C32 boot loader loads programs received from standard memory devices
or through the serial port. These programs have a particular data stream struc-
ture called a boot table. This appendix shows examples of different ’C32 boot
tables in 32-, 16-, and 8-bit-wide ROM that are transmitted through the serial
port.

Figure A–1 through Figure A–4 show four instances of the boot table, each
containing four blocks. The destination for the first and third block of each boot
table is 16-bit STRB0 memory. The second block is booted to the 32-bit
IOSTRB memory. Block 4 is destined for the 8-bit memory in the STRB1 por-
tion of the memory map.

Each figure represents a boot from a different source medium. In Figure A–1,
the boot table resides in the 32-bit IOSTRB memory. It is pointed to by the INT1
pin low after reset in the microcontroller/boot-loader mode. The boot table in
Figure A–2 is stored in the 16-bit STRB0 memory (pointed to by INT0). The
boot table in Figure A–3 resides in the 8-bit STRB1 memory (pointed to by
INT2). The final example, shown in Figure A–4, represents the boot table
stored in the host memory before being sent to the ’C32 over the serial port.
Unlike the boot from memory, the serial port boot table omits the memory width
control word from the beginning of the table.

The shaded areas of the boot table examples represent the contents of the in-
dividual blocks of code or data. The unshaded portions are the control words
that instruct the boot loader program to transfer the blocks to the memory map.

Appendix A

TMS320C32 Boot Table Examples

A-2

Figure A–1. Boot From a 32-Bit-Wide ROM to 8-, 16-, and 32-Bit-Wide RAM

Destination Block
address data

Source
address

810 000 0000 0020

810 001 1000 00F8

810 002 2005 10F8

810 003 3000 10F8

810 004 6

810 005 0000 1400

810 006 0510 F864

810 007 0000 BB1D 001 400 BB1D

810 008 0000 BB2D 001 401 BB2D

810 009 0000 BB3D 001 402 BB3D

810 00A 0000 BB4D 001 403 BB4D

810 00B 0000 BB5D 001 404 BB5D

810 00C 0000 BB6D 001 405 BB6D

810 00D 4
810 00E 0081 0400

810 00F 0000 F860

810 010 DDCC BB1E
810 400 DDCC BB1E

810 011 DDCC BB2E
810 401 DDCC BB2E

810 012 DDCC BB3E 810 402 DDCC BB3E
810 013 DDCC BB4E 810 403 DDCC BB4E

810 014 6

810 015 0088 0400

810 016 0510 F864

810 017 0000 BB1F 880 400 BB1D
810 018 0000 BB2F 880 401 BB2D

810 019 0000 BB3F 880 402 BB3D

810 01A 0000 BB4F 880 403 BB4D

810 01B 0000 BB5F 880 404 BB5D

810 01C 0000 BB6F 880 405 BB6D

810 01D 8

810 01E 0090 0400

810 01F 0010 F868

810 020 0000 0010 900 400 10
810 021 0000 0020 900 401 20
810 022 0000 0030 900 402 30
810 023 0000 0040 900 403 40
810 024 0000 0050 900 404 50
810 025 0000 0060 900 405 60
810 026 0000 0070 900 406 70
810 027 0000 0080 900 407 80

810 028 0

Boot
table

Block 1

Block 2

Block 3

Block 4

16-bit-wide external RAM

32-bit-wide on-chip RAM

16-bit-wide external RAM

8-bit-wide external RAM

 TMS320C32 Boot Table Examples

A-3 TMS320C32 Boot Table Examples

Figure A–2. Boot From a 16-Bit-Wide ROM to 8-, 16-, and 32-Bit-Wide RAM

Source Boot Destination Block Source Boot Destination
address table address data address table address data

001 000 001 022 6
001 001 001 023 0

001 002 001 024 0400

001 003 001 025 0088

001 004 001 026 F864

001 005 001 027 0510

001 006 001 028 EE11 880 400 EE11
001 007 001 029 EE22 880 401 EE22

001 008 001 02A EE33 880 402 EE33
001 009 001 02B EE44 880 403 EE44
001 00A 001 02C EE55 880 404 EE44
001 00B 001 02D EE66 880 405 EE55

001 00C 001 02E 8
001 00D 001 02F 0

001 00E 001 400 AA11 001 030 0400
001 00F 001 401 AA22 001 031 0090
001 010 001 402 AA33 001 032 F868
001 011 001 403 AA44 001 033 0010

001 012 001 404 AA55
001 034 00F1 900 400 F1

001 013 001 405 AA66
001 035 00F2 900 401 F2

001 014 001 036 00F2 900 402 F3

001 015 001 037 00F4 900 403 F4

001 016 001 038 00F5 900 404 F5

001 017 001 039 00F6 900 405 F6

001 018 001 03A 00F7 900 406 F7

001 019 001 03B 00F8 900 407 F8

001 01A 810 400 BBCC DD11 001 03C 0
001 01B 810 401 BBCC DD22 001 03D 0

001 01C 810 402 BBCC DD33
001 01D 810 403 BBCC DD44

001 01E
001 01F

001 020

001 021

Block

10
00

00F8

1000

10F8

2005

10F8
3000

6

0

1400

0000

F864
0510

AA11
AA22

AA33

AA44

AA55
AA66

4
0

0400

0081

F860
0000

DD11
BBCC

DD22
BBCC

DD33
BBCC

DD44

BBCC

Block 1

Block 2

Block 3

Block 4

T
M

S
320C

32 B
oot Table E

xam
ples

A
-4

T
M

S
320C

32 B
oot Table E

xam
ples

Figure A–3. Boot From a Byte-Wide ROM to 8-, 16-, and 32-Bit-Wide RAM

900 028
900 029
900 02A
900 02B
900 02C
900 02D
900 02E
900 02F
900 030
900 031
900 032
900 033

900 034
900 035
900 036
900 037
900 038
900 039
900 03A
900 03B
900 03C
900 03D
900 03E
900 03F
900 040
900 041
900 042
900 043

900 044
900 045
900 046
900 047
900 048
900 049
900 04A
900 04B
900 04C
900 04D
900 04E
900 04F

11
DD
CC
BB
22
DD
CC
BB
33
DD
CC
BB
44
DD
CC
BB

11
EE
22
EE
33
EE

44
EE
55
EE
66
EE

F1
F2
F3
F4
F5
F6
F7
F8

Destination

900 000 08 4
900 001 00 0
900 002 00 0
900 003 00 0
900 004 F8 00
900 005 00 04
900 006 00 81
900 007 10 00
900 008 F8 60
900 009 10 F8
900 00A 05 00
900 00B 20 00
900 00C F8 810 400 BBCC DD11
900 00D 10 810 401 BBCC DD22
900 00E 00 810 402 BBCC DD33
900 00F 30 810 403 BBCC DD44
900 010 6
900 011 0
900 012 0
900 013 0
900 014 00
900 015 14
900 016 00
900 017 00

64900 018
900 019 F8
900 01A 10
900 01B 05
900 01C 11 001 400 AA11 6
900 01D AA 001 401 AA22 0
900 01E 22 001 402 AA33 0
900 01F AA 001 403 AA44 0
900 020 33 001 404 AA55 00
900 021 AA 001 405 AA66 01
900 022 44 88
900 023 AA 00
900 024 55 64
900 025 AA F8
900 026 66 10
900 027 AA 05

900 050 880 400 AA11
900 051 880 401 AA22
900 052 880 402 AA33
900 053 880 403 AA44
900 054 880 404 AA55
900 055 880 405 AA66

900 056
900 057
900 058
900 059

900 05B

900 05C 8
900 05D 0
900 05E 0
900 05F 0
900 050 00
900 051 04
900 052 90
900 053 00
900 054 68
900 055 F8
900 056 10
900 057 00

900 058 900 400 F1
900 059 900 401 F2
900 05A 900 402 F3
900 05B 900 403 F4
900 05C 900 404 F5
900 05D 900 405 F6
900 05E 900 406 F7
900 05F 900 407 F8

900 050 0
900 051 0
900 052 0
900 053 0

900 05A

Source Boot

address table
Source Boot
address table

Source Boot

address table

Destination
address data

Block Destination

address data

Block

address data

Block

Block 1

Block 2

Block 3

Block 4

 TMS320C32 Boot Table Examples

A-5 TMS320C32 Boot Table Examples

Figure A–4. Boot From Serial Port to 8-, 16-, and 32-Bit-Wide RAM

0000 0010
0000 0020

0000 0030

0000 0040

0000 0050

0000 0060

0000 0070

0000 0080

0000 BB1F
0000 BB2F

0000 BB3F

0000 BB4F

0000 BB5F

0000 BB6F

808 04C 1000 00F8
808 04C 2005 10F8

808 04C 3000 10F8

808 04C 6

808 04C 0000 1400

808 04C 0510 F864

808 04C 0000 BB1D 001 400 BB1D

808 04C 0000 BB2D 001 401 BB2D

808 04C 0000 BB3D 001 402 BB3D

808 04C 0000 BB4D 001 403 BB4D

808 04C 0000 BB5D 001 404 BB5D

808 04C 0000 BB6D 001 405 BB6D

808 04C 4
808 04C 0081 0400

808 04C 0000 F860

808 04C DDCC BB1E 810 400 DDCC BB1E
808 04C DDCC BB2E 810 401 DDCC BB2E

808 04C DDCC BB3E 810 402 DDCC BB3E

808 04C DDCC BB4E 810 403 DDCC BB4E

808 04C 6
808 04C 0088 0400

808 04C 0510 F864

808 04C 880 400 BB1D
808 04C 880 401 BB2D

808 04C 880 402 BB3D

808 04C 880 403 BB4D

808 04C 880 404 BB5D

808 04C 880 405 BB6D

808 04C 8
808 04C 0090 0400

808 04C 0010 F868

808 04C 900 400 10

808 04C 900 401 20

808 04C 900 402 30

808 04C 900 403 40

808 04C 900 404 50

808 04C 900 405 60

808 04C 900 406 70

808 04C 900 407 80

808 04C 0000 0000

Source Boot Destination Block
address table address data

Block 1

Block 2

Block 3

Block 4

A-6

B-1

Appendix A

TMS320C32 Boot Loader Operations

This appendix contains the source code and boot loader opcodes for the ’C32.
It also describes the on-chip boot loader program that initializes the DSP sys-
tem following power up or reset.

Topic Page

B.1 TMS320C32 Boot Loader Source Code Description B-2.

B.2 TMS320C32 Boot Loader Opcodes B-4.

B.3 Boot Loader Source Code Listing B-6.

Appendix B

TMS320C32 Boot Loader Source Code Description

B-2

B.1 TMS320C32 Boot Loader Source Code Description

Figure B–1 shows the boot loader program flowchart. The shaded areas re-
present portions of code; the square shapes depict registers containing data.
The boot loader reads the boot table from one of three memory locations
(1000h, 810000h, 900000h) or from the serial port. The boot loader processes
each block of the boot table separately. First, the words of the program or data
are assembled from bytes (or half-words). The assembled words are then writ-
ten to their destinations one at a time. Each block can be transferred to any
memory address range within the memory map. The blocks in the boot table
are preceded by three control words: block size, destination address, and
strobe control register value. The boot loader ends execution when it finds a
0 for the size of the next block. At that point, it initializes the three strobe control
registers and branches to the first instruction of the first block. For that reason,
the first boot table block always contains program information and not data.
For information about the boot loader operation, see section B.3, Boot Loader
Source Code Listing, on page B-6 and the TMS320C3x User’s Guide.

 TMS320C32 Boot Loader Source Code Description

B-3 TMS320C32 Boot Loader Program

Figure B–1. TMS320C32 Boot Loader Program Flowchart

Save three strobe
registers

Serial boot

Initialize
IR0

AR7
SP

IF

Process interrupts,
set handshake flag;

force boot strobe
AR2

AR3

R2

Process first byte

Process block size RC

Tr
an

sf
er

 o
ne

 b
lo

ck
 o

f d
at

a
or

 p
ro

gr
am

Block size = 0

R5

AR0
Initialize

serial port

Load three
strobe control

registers

IR1

Block destination

IR0 = 0IR0

AR5

Destination STRB

IR0 0
IR1 AR5

AR4

R4

R3

Select read AR1R5

N

Y

N

Y

Y

N

R
ea

d
to

 a
ss

em
bl

e
a

si
ng

le
 w

or
d

R
ea

d
si

ng
le

 w
or

d
fr

om
 s

er
ia

l p
or

t

S
in

gl
e

m
em

or
y

re
ad

R
1

R
6

R3 R5

Stack is only two words deep and
resides in the peripheral area of the
memory map.

A specific interrupt tells the bootloader where
to look for the boot table.

Current boot table read pointer

Read strobe pointer

Read strobe value

Strobes are saved in three DMA peripheral
registers and are not loaded until the end of the
bootload process.

SRC
memory

width

SRC
memory

width

SRC
memory

width

Data
size

Data
size

Execution
start address

Execution
start

address flag

Memory
read
value

One word
of program
or data

Read

Read

Read

Read_m

_mb

Destination

pointer

Destination

Dest.

value

Subroutine
pointer for

reading boot
table control

words

Branch to user program
(first instruction of the
first boot table block).

Peripheral memory
pointer

Execution start
address flag

Current
block
length

_mc

address

_s0

Boot loader execution entry (caused by
MCBL/MP high after reset

STRB

STRB

†

† Handshake mode is enabled by setting the IOXF0 bit of IOF register to 1 when INT3 and any of INT2, INT1, or INT0 signals
are asserted following reset.

Note: Shaded boxes indicate operations; white boxes indicate registers.

TMS320C32 Boot Loader Opcodes

B-4

B.2 TMS320C32 Boot Loader Opcodes

Table B–1 lists the ’C32 boot loader opcodes (shown in boldface type). In most
cases, an opcode is the first byte of the machine code that describes the type
of operation and combination of operands interpreted by the central proces-
sing unit (CPU).

 TMS320C32 Boot Loader Opcodes

B-5 TMS320C32 Boot Loader Program

Table B–1. TMS320C32 Boot Loader Opcodes

ADDRESS OPCODE ADDRESS OPCODE ADDRESS OPCODE ADDRESS OPCODE

00000000 00000045 00000034 00000000 00000068 1a660001 0000009d 086800a7

00000001 00000000 00000035 00000000 00000069 6a060004 0000009e 08650000

00000002 00000000 00000036 00000000 0000006a 09e6ffff 0000009f 08620000

00000003 00000000 00000037 00000000 0000006b 09eeffff 000000a0 080a000f

00000004 00000000 00000038 00000000 0000006c 09e50001 000000a1 08600111

00000005 00000000 00000039 00000000 0000006d 6a00fffa 000000a2 15400743

00000006 00000000 0000003A 00000000 0000006e 186e0002 000000a3 08670a30

00000007 00000000 0000003B 00000000 0000006f 04ee0000 000000a4 09e70010

00000008 00000000 0000003C 00000000 00000070 6a070002 000000a5 15470740

00000009 00000000 0000003D 00000000 00000071 72000053 000000a6 6a00ffcc

0000000A 00000000 0000003E 00000000 00000072 6f80fffe 000000a7 1a770020

0000000B 00000000 0000003F 00000000 00000073 70000008 000000a8 6a05fffe

0000000C 00000000 00000040 00000000 00000074 15410704 000000a9 02f70fdf

0000000D 00000000 00000041 00000000 00000075 70000008 000000aa 0841074c

0000000E 00000000 00000042 00000000 00000076 15410706 000000ab 78800000

0000000F 00000000 00000043 00000000 00000077 70000008 000000ac 08630003

00000010 00000000 00000044 00000000 00000078 15410708 000000ad 08730001

00000011 00000000 00000045 086f4040 00000079 70000008 000000ae 09930005

00000012 00000000 00000046 09ef0009 0000007a 08010001 000000af 18730001

00000013 00000000 00000047 08740023 0000007b 6a060007 000000b0 080e0003

00000014 00000000 00000048 1014000f 0000007c 08400704 000000b1 026e0001

00000015 00000000 00000049 0871ffff 0000007d 15400760 000000b2 09ee0003

00000016 00000000 0000004a 08000017 0000007e 08400706 000000b3 08000005

00000017 00000000 0000004b 02e0000f 0000007f 15400764 000000b4 04e00001

00000018 00000000 0000004c 04e00008 00000080 08400708 000000b5 6a050003

00000019 00000000 0000004d 6a05004f 00000081 15400768 000000b6 09e0ffff

0000001A 00000000 0000004e 080a000f 00000082 68000012 000000b7 09eeffff

0000001B 00000000 0000004f 026a0060 00000083 081b0001 000000b8 6a00fffb

0000001C 00000000 00000050 1a600004 00000084 187b0001 000000b9 186e0001

0000001D 00000000 00000051 536b4080 00000085 70000008 000000ba 08600000

0000001E 00000000 00000052 6a060008 00000086 080d0001 000000bb 08610000

0000001F 00000000 00000053 026a0004 00000087 4f100000 000000bc 02740003

00000020 00000000 00000054 1a600001 00000088 5312000d 000000bd 72000007

00000021 00000000 00000055 536b0008 00000089 53710000 000000be 18740003

00000022 00000000 00000056 6a060004 0000008a 70000008 000000bf 21871306

00000023 00000000 00000057 026a0004 0000008b 08040001 000000c0 09870000

00000024 00000000 00000058 1a600004 0000008c 02e1006c 000000c1 10010007

00000025 00000000 00000059 536b4800 0000008d 258c010f 000000c2 02000005

00000026 00000000 0000005a 6a05ffef 0000008e 09e4fff8 000000c3 6f80fff8

00000027 00000000 0000005b 1a600008 0000008f 08030004 000000c4 78800000

00000028 00000000 0000005c 6a050002 00000090 09e3fff0 000000c5 1a780002

00000029 00000000 0000005d 1a780080 00000091 02e30003 000000c6 1542c200

0000002A 00000000 0000005e 08780006 00000092 1a61000c 000000c7 6a060002

0000002B 00000000 0000005f 0862000f 00000093 52e30003 000000c8 08462301

0000002C 00000000 00000060 09e20010 00000094 04e50000 000000c9 78800000

0000002D 00000000 00000061 1042c200 00000095 52e900a7 000000ca 1b40c700

0000002E 00000000 00000062 1542c200 00000096 536900ad 000000cb 1a780080

0000002F 00000000 00000063 09eb0009 00000097 6400009b 000000cc 6a06fffd

00000030 00000000 00000064 086800ac 00000098 70000009 000000cd 08462301

00000031 00000000 00000065 08650001 00000099 1544c400 000000ce 08780002

00000032 00000000 00000066 086e0020 0000009a 0c800000 000000cf 1a780080

00000033 00000000 00000067 7200005d 0000009b 15412501 000000d0 6a05fffe

0000009c 6a00ffdc 000000d1 08780006

000000d2 78800000

Boot Loader Source Code Listing

B-6

B.3 Boot Loader Source Code Listing

* C32BOOT – TMS320C32 BOOT LOADER PROGRAM (143 words) March–96
* (C) COPYRIGHT TEXAS INSTRUMENTS INCORPORATED, 1994 v.27
===
*
* NOTE:
*
* 1. Following device reset, the program waits for an external
* interrupt. The interrupt type determines the initial address
* from which the boot loader starts loading the boot table to the
* destination memory:

INTERRUPT PIN BOOT TABLE START ADDRESS BOOT SOURCE

INTR0

INTR1

INTR2

INTR3

INTR0 and INT3

INTR1 and INT3

INTR2 and INT3

1000h (STRB0 P_PORT

810000h (IOSTRB) P_PORT

P_PORT900000h (STRB1)

80804Ch (sport0 Rx)

1000h (STRB0) ASYNC

SERIAL

PPORT,XF0/XF1

810000h (IOSTRB) ASYNC PPORT,XF0/XF1

900000h (STRB1) ASYNC PPORT,XF0/XF1

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* If INT3 is asserted together with INT2, or INT1, or INT0 following
* reset, that indicates that the boot table is to be read
* asynchronously from EPROM using pins XF0 and XF1 for handshaking.
* The handshaking protocol assumes that the data ready signal
* generated by the host arrives through pin XF1. The data
* acknowledge signal is output from the C32 on pin XF0. Both
* signals are active low. The C32 continuously toggles the IACK
* signal while waiting for the host to assert data ready signal
* (pin XF1).
*
* 2. The boot operation involves transfer of one or more source
* blocks from the boot media to the destination memory. The block
* structure of the boot table serves the purpose of distributing
* the source data/program among different memory spaces. Each
* block is preceded by several 32-bit control words describing
* the block contents to the boot loader program.
*
* 3. When loading from the serial port, the boot loader reads the source
* data/program and writes it to the destination memory. There is
* only one way to read the serial port. When loading from EPROM,
* however, there are 4 ways to read and assemble the
* source contents, depending on the width of boot memory and the

 Boot Loader Source Code Listing

B-7 TMS320C32 Boot Loader Program

* size of the program/data being transferred. Because there is a
* possibility that reads and writes can span the same STRB space,
* the boot loader loads the appropriate STRB control registers
* before each read and write.
*
* 4. If the boot source is an EPROM whose physical width is less than
* 32 bits, the physical interface of the EPROM device(s) to the
* processor must be the same as that of the 32-bit interface.
* (This involves a specific connection to the C32’s strobe and
* address signals). The reason for such an arrangement is that
* to function properly, the boot loader program always expects
* 32-bit data from 32-bit wide memory during the boot load
* operation. Valid boot EPROM widths are : 1, 2, 4, 8, 16
* and 32 bits.

* 5. A single source block cannot cross STRB boundaries. For
* example, its destination cannot overlap STRB0 space and IOSTRB
* space. Additionally, all of the destination addresses of a
* single source block must reside in physical memory of the
* same width. It is not permitted to mix program and data in the
* same source block.
*
* 6. The boot loader stops boot operation when it finds a 0 in the
* block size control word. Therefore, each boot table must
* end with a 0, prompting the boot loader to branch to the
* first address of the first block and start program execution
* from that location.
*
===
* ’C32 boot loader program register assignments, and altered memory
* locations
===
*
* AR7 – peripheral memory map IOF – XF0 (handshake – data acknowledge)
* AR0 – read cntrl data subr pointer IOF – XF1 (handshake – data ready)
* AR1 – read block data/prg subr pointer
*
* R2 – read STRB value R4 – write STRB value
* AR2 – read STRB pointer AR4 – write STRB pointer
* AR3 – read data/prg pointer AR5 – write data/prg pointer
*
* read ––> R1 ––> write
*
* IR0 – EXEC start flag stack – 808024h – TIM0 cnt reg
* IR1 – EXEC start address 808028h – TIM0 per reg
* IOSTRB – 808004h – DMA0 dst reg
* R3 – data size STRB0 – 808006h – DMA0 dst reg
* R5 – mem width STRB1 – 808008h – DMA0 cnt reg

Boot Loader Source Code Listing

B-8

*
* R6 – memory read value AR6,R7,R0,BK – scratch registers
*
===

reset .word start ; reset vector
 .space 44h ; program starts @45h

===

* Initialize registers : 808000h ––> AR7, 808023h ––> SP, –1 ––> IR0
===

start LDI 4040h,AR7 ; load peripheral memory map
 LSH 9,AR7 ; base address = 808000h
 LDI 23h,SP ; initialize stack pointer to
 OR AR7,SP ; 808023h (timer counter – 1)
 LDI –1,IR0 ; reset exec start addr flag

===
* Test for INT3 and, if set exclusively, proceed with serial
* boot load. Else, load AR3 with 1000h if INT0, 810000h if INT1,
* 900000h if INT2. Also load the appropriate boot strobe pointer ––> AR2
* and force the boot strobe value to reflect 32-bit memory width.
* If (INT0 or INT1 or INT2) and INT3, turn on the handshake mode.
===
wait1 LDI IF,R0
 AND 0Fh,R0 ; clean
 CMPI 8,R0 ; test for INT3
 BEQ serial ;*******; serial boot load mode
 LDI AR7,AR2

 ADDI 60h,AR2 ; 808060h (IOSTRB) ––> AR2
 TSTB 2,R0 ; test for INT1
 LDINZ 4080h,AR3 ; 810000h / 2**9
 BNZ exit3 ;*******;

 ADDI 4,AR2 ; 808064h (STRB0) ––> AR2
 TSTB 1,R0 ; test for INT0
 LDINZ 8,AR3 ; 001000h / 2**9
 BNZ exit3 ;*******;

 ADDI 4,AR2 ; 808068h (STRB1) ––> AR2
 TSTB 4,R0 ; test for INT2
 LDINZ 4800h,AR3 ; 900000h / 2**9
 BZ wait1 ;*******;

 Boot Loader Source Code Listing

B-9 TMS320C32 Boot Loader Program

exit3 TSTB 8,R0 ;*; test#1 – INT3 asserted
 BZ exit2 ;*; test#2 – INXF1 low (not used)
 TSTB 80h,IOF ;*; enable handshake mode if
 LDI 6,IOF ;*; test#1 passed

exit2 LDI 0Fh,R2
 LSH 16,R2 ; force boot data size to 32
 OR *AR2,R2 ; force boot mem width to 32
 STI R2,*AR2
 LSH 9,AR3 ; boot mem start addr ––> AR3
* xx000001 – 1 bit
*== xx000010 – 2 bit
* Process MEMORY WIDTH control word (32 bits long) xx000100 – 4 bit
*== xx001000 – 8 bit
* xx010000 – 16 bit
* xx100000 – 32 bit
 LDI read_mc,AR0 ; use memory to read cntrl words
 ; read_mc ––> AR0
 LDI 1,R5 ; mem width = 1 (init)
 LDI 32,AR6 ; mem reads = 32 (init)
 CALLU read_m ; read memory once (1st read)

loop2 TSTB 1,R6
 BNZ label4
 LSH –1,R6 ; look at next bit
 LSH –1,AR6 ; decr mem reads
 LSH 1,R5 ; incr mem width ––> R5
 BU loop2 ;*******;

label4 SUBI 2,AR6
 CMPI 0,AR6 ; set flags
 BN strobes ;*******; total # of mem reads = 32/R5
label5 CALLU read_m ; read memory once
 DBU AR6,label5 ;****;

===
* Read and save IOSTRB, STRB0 & STRB1 (to be loaded at end of
* boot load)
===

strobes CALLU AR0
 STI R1,*+AR7(4) ; IOSTRB ––> (DMA src)
 CALLU AR0
 STI R1,*+AR7(6) ; STRB0 ––> (DMA dst)
 CALLU AR0
 STI R1,*+AR7(8) ; STRB1 ––> (DMA cnt)

===

Boot Loader Source Code Listing

B-10

* Process block size (# of bytes, half-words, or words after STRB
* cntrl)
===

block CALLU AR0 ; read boot memory cntrl word
 LDI R1,R1 ; is this the last block ?
 BNZ label2 ;*******; no, go around

 LDI *+AR7(4),R0 ; (DMA src)
 STI R0,*+AR7(60h) ; restore IOSTRB
 LDI *+AR7(6),R0 ; (DMA dst)
 STI R0,*+AR7(64h) ; restore STRB0
 LDI *+AR7(8),R0 ; (DMA cnt)
 STI R0,*+AR7(68h) ; restore STRB1
 BU IR1 ;*******; branch to start of program

label2 LDI R1,RC ; setup transfer loop
 SUBI 1,RC ; RC – 1 ––> RC

===
* Process block destination address, save start address of first
* block
===

 CALLU AR0 ; read boot memory cntrl word
 LDI R1,AR5 ; set dest addr ––> AR5
 CMPI 0,IR0 ; look at EXEC start addr flag
 LDINZ AR5,IR1 ; if –1, EXEC start addr ––> IR1
 LDINZ 0,IR0 ; set EXEC start addr flag

===
* (For internal destination, this word must be 0 or 60h. The first
* case results in 0 ––> DMA control register, in second case 0 ––>
* IOSTRB register).
* Process block destination strobe control (sss...sss 0110 xx00)
*== strb value ==== 00 – IOSTRB
* 01 – STRB0
 CALLU AR0 ; 10 – STRB1
 LDI R1,R4
 AND 6Ch,R1 ; dest mem strb pntr ––> AR4
 OR3 AR7,R1,AR4

 LSH –8,R4 ; dest memory strobe ––> R4

 LDI R4,R3
 LSH –16,R3

 Boot Loader Source Code Listing

B-11 TMS320C32 Boot Loader Program

 AND 3,R3 ; dest data size ––> R3
 TSTB 0Ch,R1 ; (IOSTRB case)
 LDIZ 3,R3

===
* Look at R5 and choose serial or memory read for block data/program
===

 CMPI 0,R5
 LDIEQ read_s0,AR1 ; read serial port0
 LDINE read_mb,AR1 ; read memory

===
* Transfer one block of data or program
===

 RPTB loop4
 CALLU AR1 ; read data/prg
 STI R4,*AR4 ; set write strobe
 NOP ; pipeline
loop4 STI R1,*AR5++ ; write data/prg!!!!!!!!!!
 BU block ;*******; process next block

===
* Load R5 with 0, load read_s0 to AR0 and initialize serial port_0
===

serial LDI read_s0,AR0 ; use serial to read cntrl words
 LDI 0,R5 ; memory WIDTH = serial
 LDI 0,R ; dummy
 LDI AR7,AR2 ; dummy

 LDI 111h,R0 ; 0000111h ––> R0
 STI R0,*+AR7(43h) ; set CLKR,DR,FSR as serial
 LDI 0A30h,R7 ; port pins
 LSH 16,R7 ; A300000h ––> R7
 STI R7,*+AR7(40h) ; set serial global cntrl reg
 BU strobes ;*******; process first block

===
* Read a single value from serial or boot memory. The number of
* memory reads depends on memory width and data size. R1 returns the
* read value. (Serial sim: NOP ––> BZ read_s0 & LDI @4000H,R1 ––> LDI
* *+AR7(4Ch),R1)
===

read_s0 TSTB 20h,IF ; look at RINT0 flag

Boot Loader Source Code Listing

B-12

 BZ read_s0 ; wait for receive buffer full
 AND 0FDFh,IF ; reset interrupt flag
 LDI *+AR7(4Ch),R1 ; read data ––> R1
 RETSU
*––
read_mc LDI 3,R3 ; data size = 32, 3 ––> R3

read_mb LDI 1,BK ; 00000001 (ex: mem width=8)
 LSH R5,BK ; 00000100
 SUBI 1,BK ; 000000FF = mask ––> BK

 LDI R3,AR6 ; 0 – 1 000 EXPAND
 ADDI 1,AR6 ; 1 – 10 000 DATA ––> AR6
 LSH 3,AR6 ; 11 – 100 000 SIZE
 LDI R5,R0
loop3 CMPI 1,R0
 BEQ exit1 ; DATA SIZE
 LSH –1,R0 ; ––––––––– – 1 ––> AR6
 LSH –1,AR6 ; MEM WIDTH
 BU loop3 ;*******;
exit1 SUBI 1,AR6

 LDI 0,R0 ; init shift value
 LDI 0,R1 ; init accumulator
loop1 ADDI 3,SP ; 808027h ––> SP
 CALLU read_m ; read memory once ––> R6
 SUBI 3,SP ; 808024h ––> SP
 AND3 R6,BK,R7 ; apply mask
 LSH R0,R7 ; shift
 OR R7,R1 ; accumulate ––> R1
 ADDI R5,R0 ; increment shift value
 DBU AR6,loop1 ;*****; decrement #of chunks ––> AR6
 RETSU

===
* Perform a single memory read from the source boot table.
* Handshake enabled if IOXF0 bit of IOF reg is set, disabled when
* reset. IACK will pulse continuously if handshake enabled and data
* not ready (to achieve zero–glue interface when connecting to a C40
* comm-port)
===

read_m TSTB 2,IOF ; handshake mode enabled ?
 STI R2,*AR2 ; set read strobe !!!!!!!!!!!!!
 BNZ loop5 ; yes, jump over
 LDI *AR3++,R6 ; no, just read memory & return
 RETSU
*–– (C40)

 Boot Loader Source Code Listing

B-13 TMS320C32 Boot Loader Program

loop5 IACK *AR7 ;*; intrnl dummy read pulses IACK
 TSTB 80h,IOF ;*; wait for data ready
 BNZ loop5 ;*; (XF1 low from host)

 LDI *AR3++,R6 ;*; read memory once ––> R6

 LDI 2,IOF ;*; assert data acknowledge
 ;*; (XF0 low to host)

loop6 TSTB 80h,IOF ;*; wait for data not ready
 BZ loop6 ;*; (XF1 high from host)

 LDI 6,IOF ;*; deassert data acknowledge
 ;*; (XF0 high to host)
 RETSU
===

B-14

C-1

Appendix A

Memory Access for C Programs

This appendix describes the two memory models that can be used to access
data when programming in C.

Two memory models can be used to access data when programming in C. In
the small model (default), the external bus cycles use direct addressing to ac-
cess data from memory. Direct addressing uses 16 bits of address in the
instruction opcode. The address is combined with the 8-bit data page (defined
beforehand) to access the data from memory. The 16-bit address limits the
number of words that the small model can access to 64K words. However, this
mode produces fast and compact code because each data access uses only
a single instruction (see Figure C–1).

The big model is not limited to 64K words because each data access in C ex-
plicitly sets the data page pointer (DP register). The 8-bit data page and 16-bit
direct address are combined for a total address reach of 16M words, but at a
price of two instructions per data access (see Figure C–1).

Dynamically allocated memory can be used if the application needs a large
address reach, compact code size, and fast execution. The MALLOC function
from the runtime support library (RTS) can be called at run time to reserve a
block of memory in the .SYSMEM section. Upon return, MALLOC returns a
pointer to the newly allocated block. Any reference to that block of memory
results in assembled code using indirect addressing, in which the opcode
contains a pointer to the auxiliary register that holds the address of the operand
(see Figure C–1). Code referring to the dynamically allocated memory is fast
and has a 16M-word address reach (24 bits). The price is a one-time call to
MALLOC for each dynamically allocated array. For that reason, MALLOC is
most efficient with large data arrays where the overhead associated with the
call is insignificant when compared to a large number of data accesses that
use the big arrays.

Appendix C

Memory Access for C Programs

C-2

Figure C–1. Memory Allocation in C Programs

STRB

.bss (small)

.text

TMS320C32 Memory

STRB

.text

TMS320C32 Memory

STRB

.text

TMS320C32 Memory

(a) Small model (default)

(b) Big model (-mb option)

(c) RTS library (MALLOC)

• Static memory – assigned at compile time
• Maximum size – 64K words
• Fast execution

• Static memory – assigned at compile time
• Maximum size – 64M words
• Slow execution

• Dynamic memory – assigned at execution time
• Maximum size – 64M words
• Fast execution
• Best for big arrays (one time overhead – MALLOC call)

C statement Equivalent assembly code

LDI @ 0FFFDh, R0
LDI @0FFFEh, R1
ADDI R0, R1
STI R1, @ 0FFFh

C = A + B

C statement Equivalent assembly code

LDP @ 880001h, DP
LDI @ 880001h, R0
LDP @ 1002h, DP
LDI @ 1002h, R1
LDP @ 8A0003, DP
STI R1, @ 8A0003

C = A + B

C statement Equivalent assembly code

LDI *AR0, R0
LDI *AR1, R1
ADDI R0, R1
STI R1, *AR2

C = A + B

.bss (big)

.sysmem

 Memory Access for C Programs

C-3 Memory Access for C Programs

Figure C–2 shows how to use MALLOC to allocate a block of 32-bit memory
at run time. In this example, MALLOC is called three times to allocate memory
from the heap.

After each MALLOC call, the newly allocated block of memory can be used by
other program functions by using the pointer BUFFER_32. The size of the
heap (representing all of dynamically allocated memory) is defined in the linker
command file by using the HEAP keyword followed by the size of the block.
Any portion of the heap allocated with the MALLOC call is added to the
.SYSMEM section. The SECTIONS directive can then be used to map the
dynamically allocated sections to an address range in the physical memory.
(For more information, see the TMS320C3x/C4x Assembly Language Tools
User’s Guide or TMS320C3x/C4x Optimizing C Compiler User’s Guide .)

Dynamically allocated memory provides the only method for a C program to
access 8- or 16-bit wide memory. This means that physical memory that is less
than 32 bits wide cannot be accessed using small or big model addressing.
Instead, the MALLOC8 and MALLOC16 RTS library functions can allocate
blocks of 8- and 16-bit wide memory. These routines work like the 32-bit
MALLOC by returning pointers to 8- or 16-bit memory blocks. These can be
used by code that follows the MALLOC call to access that memory (see
Figure C–3 and Figure C–4). The 8-bit data allocated by MALLOC8 is placed
in the .SYSM8 section by the linker, while the 16-bit data is deposited in the
.SYSM16 section. HEAP8 and HEAP16 linker keywords limit the total amount
of 8- or 16-bit memory that the C compiler can allocate into those sections. (For
more information, see the TMS320C3x/C4x Optimizing C Compiler User’s
Guide .)

Memory Access for C Programs

C-4

Figure C–2. Dynamic Memory Allocation for TMS320C32 (One Block of 32-Bit Memory)

(b) LINKER command file

(a) C code

int *BUFFER_32 /* declare a pointer to a pool of 32-bit memory */

BUFFER_32 = MALLOC (2048 * sizeof (int)) /* allocate 2K words of memory */
dsp_func4 (BUFFER_32) /* use the above memory */

BUFFER_32 = MALLOC (512 * sizeof (int)) /* allocate 0.5K words of memory */
dsp_func5 (BUFFER_32) /* use the above memory */

BUFFER_32 = MALLOC (1024 * sizeof (int)) /* allocate 1K words of memory */
dsp_func6 (BUFFER_32) /* use the above memory */

–heap 0x4000 /* set the size of the dynamic 32-bit memory section */

STRB_RAM org = 0x1000, len = 0x8000 /* define physical 32-bit memory */

.sysmem > STRB_RAM /* assign logical section to physical memory */

TMS320C32
’C31
’C30

32-bit wide
memory

.sysmem

.bss
STRB

.text

 Memory Access for C Programs

C-5 Memory Access for C Programs

Figure C–3. Dynamic Memory Allocation for TMS320C32 (One Block of 16-Bit Memory)

(a) C code

int *BUFFER_16 /* declare a pointer to a pool of 16-bit memory */

0x808064 = 0x5000 / STRB0 control register : data size = 16, memory width = 16 */

BUFFER_16 = MALLOC16(1024 * sizeof (int)) /* allocate 2K half-words of memory */
dsp_func4 (BUFFER_16) /* use the above memory */

BUFFER_16 = MALLOC16 (512 * sizeof (int)) /* allocate 1K half-words of memory */
dsp_func5 (BUFFER_16) /* use the above memory */

BUFFER_16 = MALLOC8 (2048 * sizeof (int)) /* allocate 4K half-words of memory */
dsp_func6 (BUFFER_16) /* use the above memory */

(b) LINKER command file

–heap 16 0x4000 /* set the size of the dynamic 16-bit memory section */

STRB0_RAM org = 0x880000, len = 0x8000 /* define physical 16-bit memory */

.sysm16 > STRB0_RAM /* assign logical section to physical memory */

.sysm16

.bss

16-bit wide memory

IOSTRB

STRB0

STRB1

TMS320C32

.text
32-bit wide memory

(c) ’C32 external memory contents

Memory Access for C Programs

C-6

Figure C–4. Dynamic Memory Allocation for TMS320C32 (One Block Each of 32-, 16-,
and 8-Bit Memory)

(a) C code

int *BUFFER_32 /* declare a pointer to a pool of 32-bit memory */
int *BUFFER_16 /* declare a pointer to a pool of 16-bit memory */
int *BUFFER_08 /* declare a pointer to a pool of 8-bit memory */

0x808064 = 0x5000 / STRB0 control register : data size = 16, memory width = 16 */
0x808068 = 0x0000 / STRB1 control register : data size = 8 , memory width = 8 */

BUFFER_32 = MALLOC (1024 * sizeof (int)) /* allocate 1K words of memory */
BUFFER_16 = MALLOC16(1024 * sizeof (int)) /* allocate 2K halfwords of memory */
BUFFER_08 = MALLOC8 (1024 * sizeof (int)) /* allocate 4K bytes of memory */
dsp_func1 (BUFFER_32, BUFFER_16, BUFFER_08) /* use the above memory */

BUFFER_32 = MALLOC (2048 * sizeof (int)) /* allocate 2K words of memory */
BUFFER_16 = MALLOC16 (512 * sizeof (int)) /* allocate 1K half-words of memory */
dsp_func2 (BUFFER_32, BUFFER_16) /* use the above memory */

BUFFER_08 = MALLOC8 (4096 * sizeof (int)) /* allocate 16K bytes of memory */
dsp_func3 (BUFFER_08) /* use the above memory */

(b) LINKER command file

–heap 0x4000 /* set the size of the dynamic 32-bit memory section */
–heap 16 0x4000 /* set the size of the dynamic 16-bit memory section */
–heap 8 0x4000 /* set the size of the dynamic 8-bit memory section */

IOSTRB_RAM org = 0x810000, len = 0x8000 /* define physical 32-bit memory */
STRB0_RAM org = 0x880000, len = 0x8000 /* define physical 16-bit memory */
STRB1_RAM org = 0x900000, len = 0x8000 /* define physical 8-bit memory */

.sysmem > IOSTRB_RAM /* assign logical section to physical memory */

.sysm16 > STRB0_RAM /* assign logical section to physical memory */

.sysm8 > STRB1_RAM /* assign logical section to physical memory */

.sysmem

.sysm16

.sysm8

32-bit wide memory

IOSTRB

STRB0

STRB1

TMS320C32

16-bit wide memory

8-bit wide memory

(c) ’C32 external memory contents

D-1

Appendix A

Memory Interface and Address Translation

This appendix describes how to use the ’C32’s memory interfaces to connect
to various external devices.

The ’C32 memory interface supports variable-width memory and variable-size
data. The physical width of a memory bank connected to the ’C32 can be 8,
16, or 32 bits wide. When connecting 16-bit external memory, the A–1 address
pin must be connected to the A0 pin of the memory device, causing a 1-bit shift
in the connection of the remaining address lines. For 8-bit memory, two extra
address pins are used (A–1 and A–2), effectively shifting the external address
by two bits. No external address shift is needed for connecting 32-bit wide
memory (or boot table memory, regardless of its width).

The ’C32 can access data of any size, regardless of the physical width of an
external memory bank. For example, byte-wide data can be packed in 16-bit
memory, or 32-bit data can be accessed from 8-bit wide memory. The latter
takes four cycles. The variable-data size feature is made possible by dividing
the STRB0 or STRB1 controls into four signals each. The four control signals,
in addition to being strobes, serve a byte-enable function.

Figure D–1 shows examples of three ’C32 systems, each connected to a
memory bank of a different width.

Regardless of memory width, the data inside each bank can be 8, 16, or 32
bits wide. Before data of a particular size can be accessed, the respective
strobe control register must be programmed for that size. While the data size
can vary, the program is always 32 bits wide. Even if they are different sizes,
program and data can reside within the same physical bank of memory.

Up to two data sizes can reside simultaneously alongside the 32-bit program
in a single bank (see Figure D–2 on page D-3).

Appendix D

Memory Interface and Address Translation

D-2

Figure D–1. Data and Program Packing (Program and a Single Data Size)

TMS320C32

32-bit program

16-bit data 16-bit data

32 8 8 8 8

TMS320C32

32-bit program

8-bit data

16-bit memory

16 8 8

8-bit data

32-bit memory

TMS320C32 16-bit data

8-bit memory

8 8

32-bit wide data bus

16-bit wide data bus

8-bit wide data bus

NOTE: 8-bit programs are not supported.

 Memory Interface and Address Translation

D-3 Memory Interface and Address Translation

Figure D–2. Data and Program Packing (Program and Two Different Data Sizes)

TMS320C32 32-bit program

16-bit data 16-bit data

32 8 8 8 8

TMS320C32 32-bit program

8-bit data

16-bit memory

16 8 8

8-bit data

32-bit memory

TMS320C32

16-bit data

8-bit memory

8 8

32-bit wide data bus

16-bit wide data bus

8-bit wide data bus

8-bit data

16-bit or 32-bit data

8-bit data 8-bit data 8-bit data 8-bit data

NOTE: 8-bit programs are not supported.

Memory Interface and Address Translation

D-4

Since there are two strobes that support flexible memory (STRB0 and
STRB1), they each can be programmed for a different data size using the re-
spective strobe control registers. By setting the strobe configuration bit in one
control register, both STRB0 and STRB1 strobes can be mapped to STRB0
control signals. This creates a section of physical memory that is mapped into
the same address range as another section of memory with a hardware switch
to determine which range is active. In this overlay mode, data accesses to and
from the STRB0 and STRB1 portions of the memory map drive the STRB0 sig-
nals to control a single memory bank. The access to the program and to two
different data sizes from a single memory bank with no additional logic devices
is a powerful ’C32 feature that minimizes system cost with no performance
penalty. See the TMS320C3x User’s Guide for more information on the ’C32
enhanced external memory interface.

The translation starts when an instruction requests a data read from a certain
external address. Address locations referenced by program instructions are
logical addresses. Before the logical address shows up on the external pins
of the ’C32, it may undergo a 1- or 2-bit shift to the right that depends only on
the size of the data being accessed. The address at the pins is a physical
address. Before it is presented at the pins of the memory device, the physical
address may again be shifted (this time to the left) if the memory is other than
32 bits wide. The physical-to-memory address shift is one bit for 16-bit wide
memory and two bits for 32-bit memory. The Table D–1 and Table D–2 sum-
marize the rules that apply to the variable data size and memory width for any
’C32 system.

Table D–1. Variable Memory Width

Memory
Width Strobes Valid

Physical Address
Lines Valid

Physical Address to
Memory Address Shift

(bits)

32 STRBx_B3
STRBx_B2
STRBx_B1
STRBx_B0

A23–A0 0

16 STRBx_B1
STRBx_B0

A23–A0
A–1

1

8 STRBx_B0 A23–A0
A–1
A–2

2

 Memory Interface and Address Translation

D-5 Memory Interface and Address Translation

Table D–2. Variable Data Size

Data Size
Logical to Physical
Address Shift (bits)

32 0

16 1

8 2

Figure D–3 through Figure D–11 show how the address changes when acces-
sing data of varying size from memory that is 32, 16, and 8 bits wide. The three
data sizes and three memory widths comprise the nine cases that cover all
possible combinations.

M
em

ory Interface and A
ddress Translation

D
-6 Figure D–3. Address Translation for 32-Bit Data Stored in 32-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

Data

32-bit data bus

A14
A13

A2
A1
A0

A14
A13

A2
A1
A0

Data Data

32 8 8 8 8

A14
A13

A2
A1
A0 CSCS

A14
A13

A2
A1
A0

Data

CS

A14
A13

A2
A1
A0

Data

CS
STRB0_B3
STRB0_B2
STRB0_B1
STRB0_B0

w32765

w32766

w32767

w32768

w1

w2

w3

w4

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

Logical address
space

Memory map

w32765

w32766

w32767

w32768

w1

w2

w3

w4

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh7FFFh

0 1

1 1 1 10

STRB
config

Memory
width

Data
size

STRB0 32 bits 32 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Memory address space

Logical address
shift = 0 bits

(32-bit data size)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STI R0, @ 7FFFh

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

STRB0

STRB1

IOSTRB

STRB0
control

register

CPU instruction:

Note: The amount of shift between logical and physical addresses depends only on the size of data being transferred.

M
em

ory Interface and A
ddress Translation

D
-7

M
em

ory Interface and A
ddress Translation

Figure D–4. Address Translation for 16-Bit Data Stored in 32-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

Data

32-bit data bus

A14
A13

A2
A1
A0

A14
A13

A2
A1
A0

Data Data

32 8 8 8 8

A14
A13

A2
A1
A0 CSCS

A14
A13

A2
A1
A0

Data

CS

A14
A13

A2
A1
A0

Data

CS
STRB0_B3
STRB0_B2
STRB0_B1
STRB0_B0

hw65533

hw65534

hw65535

hw65536

hw1

hw2

hw3

hw4

FFFCh

FFFDh

FFFEh

0h

1h

2h

3h

Logical address
space

Memory map

hw65529

hw65531

hw65533

hw65535

hw1

hw3

hw5

hw7

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFhFFFFh

0 1

1 1 0 10

STRB
config

Memory
width

Data
size

STRB0 32 bits 16 bits

Logical address (23 to 0)

Physical address (14 to 0)

Memory address (14 to 0)

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Memory address space

Logical address
shift = 1 bit

(16-bit data size)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STI R0, @ 0FFFFh

hw65530

hw65532

hw65534

hw65536

hw2

hw4

hw6

hw8

1

1

0

STRB enable

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STRB0

STRB0

STRB1

IOSTRB

STRB0
control

register

CPU instruction:

Note: The amount of shift between logical and physical addresses depends only on the size of data being transferred.

M
em

ory Interface and A
ddress Translation

D
-8 Figure D–5. Address Translation for 8-Bit Data Stored in 32-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

Data

32-bit data bus

A14
A13

A2
A1
A0

A14
A13

A2
A1
A0

Data Data

32 8 8 8 8

A14
A13

A2
A1
A0 CSCS

A14
A13

A2
A1
A0

Data

CS

A14
A13

A2
A1
A0

Data

CS
STRB0_B3
STRB0_B2
STRB0_B1
STRB0_B0

b131069

b131070

B131071

b131072

b1

b2

b3

b4

1FFFCh

1FFFDh

1FFFEh

0h

1h

2h

3h

Logical address
space

Memory map

b131059

b131063

b131067

b131071

b3

b7

b11

b15

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh1FFFFh

0 1

1 1 0 00

STRB
config

Memory
width

Data
size

STRB0 32 bits 8 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

0_
B

3

S
T

R
B

0_
B

2

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Memory address space

Logical address
shift = 1 bit

(8-bit data size)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b131060

b131064

b131068

b131072

b4

b8

b12

b16

1

00

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

1

01
10
11

b131058

b131062

b131066

b131070

b2

b6

b10

b14

b131057

b131061

b131065

b131069

b1

b5

b9

b13

STRB0

STRB0

STRB1

IOSTRB

STRB0
control

register

STRB enable

CPU instruction: STI R0, @ FFFh; DP = 01

Note: The amount of shift between logical and physical addresses depends only on the size of data being transferred.

M
em

ory Interface and A
ddress Translation

D
-9

M
em

ory Interface and A
ddress Translation

Figure D–6. Address Translation for 32-Bit Data Stored in 16-Bit-Wide Memory

STRB1

T
M

S
32

0C
32

M
em

or
y

M
em

or
y

Data

16-bit data bus

A14
A13
A12

A1
A0

A14
A13

A2
A1
A0

Data Data

16 8 8

A14
A13

A2
A1
A0 CSCS

A-1
STRB0_B2
STRB0_B1
STRB0_B0

w16381

w16382

w16383

w16384

w1

w2

w3

w4

88FFFCh

88FFFDh

88FFFEh

880000h

880001h

880002h

880003h

Logical address
space

Memory map

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh883FFFh

1 1

0 1 1 10

STRB
config

Memory
width

Data
size

STRB0 16 bits 32 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Memory address space

Logical address
shift = 0 bits

(32-bit data size)

0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

w16383 (ls)

w16383 (ms)

w16384 (ls)

w16384 (ms)

w1 (ls)

w1 (ms)

w2 (ls)

w2 (ms)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 x

Physical address
shift = 1 bit

(16-bit memory width)

0

0 x

Toggle

STRB0

STRB0

IOSTRB

STRB0
control

register

CPU instruction: STI R0, @ 3FFFh; DP = 88h

Notes: 1) The amount of shift between logical and physical addresses depends only on the size of data being transferred.

2) The amount of shift in the physical connection between the ’C32 and the external memory depends only on the width of the memory bank.

M
em

ory Interface and A
ddress Translation

D
-10

Figure D–7. Address Translation for 16-Bit Data Stored in 16-Bit-Wide Memory

STRB1

T
M

S
32

0C
32

M
em

or
y

M
em

or
y

Data

16-bit data bus

A14
A13
A12

A1
A0

A14
A13

A2
A1
A0

Data Data

16 8 8

A14
A13

A2
A1
A0 CSCS

A-1
STRB0_B2
STRB0_B1
STRB0_B0

hw32765

hw32766

hw32767

hw32768

hw1

hw2

hw3

hw4

88FFFCh

88FFFDh

88FFFEh

880000h

880001h

880002h

880003h

Logical address
space

Memory map

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh887FFFh

1 1

0 1 0 10

STRB
config

Memory
width

Data
size

STRB0 16 bits 16 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Memory address space

Logical address
shift = 1 bit

(16-bit data size)

0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

hw32765

hw32766

hw32767

hw32768

hw1

hw2

hw3

hw4

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Physical address
shift = 1 bit

(16-bit memory width)

1

1

1

0

STRB0

STRB0

IOSTRB

STRB0
control

register

CPU instruction: STI R0, @ 7FFFh; DP = 88h

Notes: 1) The amount of shift between logical and physical addresses depends only on the size of data being transferred.

2) The amount of shift in the physical connection between the ’C32 and the external memory depends only on the width of the memory bank.

M
em

ory Interface and A
ddress Translation

D
-11

M
em

ory Interface and A
ddress Translation

Figure D–8. Address Translation for 8-Bit Data Stored in 16-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

M
em

or
y

Data

16-bit data bus

A14
A13
A12

A1
A0

A14
A13

A2
A1
A0

Data Data

16 8 8

A14
A13

A2
A1
A0 CSCS

A-1
STRB0_B2
STRB0_B1
STRB0_B0

b65533

b65534

b65535

b65536

b1

b2

b3

b4

88FFFCh

88FFFDh

88FFFEh

880000h

880001h

880002h

880003h

Logical address
space

Memory map

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh88FFFFh

1 1

0 1 0 00

STRB
config

Memory
width

Data
size

STRB0 16 bits 8 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

0_
B

1

S
T

R
B

0_
B

0

Memory address space

Logical address
shift = 2 bits

(8-bit data size)

0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

b65530

b65532

b65534

b65536

b2

b4

b6

b8

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Physical address
shift = 1 bit

1

1

1

0

b65529

b65531

b65533

b65535

b1

b3

b5

b7

0
1

1
STRB0

STRB0

STRB1

IOSTRB

STRB0
control

register

STRB enable

CPU instruction: STI R0, @ 0FFFh; DP = 90h

Notes: 1) The amount of shift between logical and physical addresses depends only on the size of data being transferred.

2) The amount of shift in the physical connection between the ’C32 and the external memory depends only on the width of the memory bank.

M
em

ory Interface and A
ddress Translation

D
-12

Figure D–9. Address Translation for 32-Bit Data Stored in 8-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

Data

8-bit data bus

A14
A13
A12

A1
A0

A14
A13

A2
A1
A0

Data

8 8

CS
A-1
A-2

STRB0_B1
STRB0_B0

w8189

w8190

w8191

w8192

w1

w2

w3

w4

901FFCh

901FFDh

901FFEh

900000h

900001h

900002h

900003h

Logical address
space

Memory map

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh901FFFh

1 1

0 0 1 1

Memory
width

Data
size

8 bits 32 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

1_
B

0

Memory address space

Logical address
shift = 0 bits

(32-bit data size)

0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

w8192

w*192

w8192

w8192

w1 (b1)

w1 (b2)

w1 (b3)

w1 (b4)

1 1 1 1 1 1 1 1 1 1 1 1 1

Physical address shift = 2 bits

x

1

0 x

x x

(8-bit memory width)

Toggle

STRB0

STRB0

STRB1

IOSTRB

STRB1
control

register

CPU instruction: STI R0, @ 1FFFh; DP = 90h

Notes: 1) The amount of shift between logical and physical addresses depends only on the size of data being transferred.

2) The amount of shift in the physical connection between the ’C32 and the external memory depends only on the width of the memory bank.

M
em

ory Interface and A
ddress Translation

D
-13

M
em

ory Interface and A
ddress Translation

Figure D–10. Address Translation for 16-Bit Data Stored in 8-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

Data

8-bit data bus

A14
A13
A12

A1
A0

A14
A13

A2
A1
A0

Data

8 8

CS
A-1
A-2

STRB0_B1
STRB0_B0

hw16381

hw16382

hw16383

hw16384

hw1

hw2

hw3

hw4

903FFCh

903FFDh

903FFEh

900000h

900001h

900002h

900003h

Logical address
space

Memory map

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh903FFFh

1 1

0 0 0 1

Memory
width

Data
size

8 bits 16 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

1_
B

0

Memory address space

Logical address
shift = 1 bit

(16-bit data size)

0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

hw16383

hw16383

hw16384

hw16384

hw1 (ls)

hw1 (ms)

hw2 (ls)

hw2 (ms)

1 1 1 1 1 1 1 1 1 1 1 1 1

Physical address shift = 2 bits

1

1

0 x

1 x

(8-bit memory width)

Toggle

STRB0

STRB0

STRB1

IOSTRB

STRB1
control

register

CPU instruction: STI R0, @ 3FFFh; DP = 90h

Notes: 1) The amount of shift between logical and physical addresses depends only on the size of data being transferred.

2) The amount of shift in the physical connection between the ’C32 and the external memory depends only on the width of the memory bank.

M
em

ory Interface and A
ddress Translation

D
-14

Figure D–11. Address Translation for 8-Bit Data Stored in 8-Bit-Wide Memory

T
M

S
32

0C
32

M
em

or
y

Data

8-bit data bus

A14
A13
A12

A1
A0

A14
A13

A2
A1
A0

Data

8 8

CS
A-1
A-2

STRB0_B1
STRB0_B0

b32765

b32766

b32767

b32768

b1

b2

b3

b4

907FFCh

907FFDh

907FFEh

900000h

900001h

900002h

900003h

Logical address
space

Memory map

7FFCh

7FFDh

7FFEh

0h

1h

2h

3h

7FFFh907FFFh

1 1

0 0 0 0

Memory
width

Data
size

8 bits 8 bits

Logical address (23 to 0)

Physical address (23 to –2)

Memory address (14 to 0)

S
T

R
B

1_
B

0

Memory address space

Logical address
shift = 2 bits

(8-bit data size)

0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

b32765

b32766

b32767

b32768

b1

b2

b3

b4

1 1 1 1 1 1 1 1 1 1 1 1 1

Physical address shift = 2 bits

1

1

0 1

1 1

(8-bit memory width)

STRB0

STRB0

STRB1

IOSTRB

STRB1
control

register

CPU instruction: STI R0, @ 7FFFh; DP = 90h

Notes: 1) The amount of shift between logical and physical addresses depends only on the size of data being transferred.

2) The amount of shift in the physical connection between the ’C32 and the external memory depends only on the width of the memory bank.

Index

Index-1

Index

12-pin connector, dimensions 10-9
16/8-bit memory configuration design

examples 4-41
data size equals memory width 4-43
data size is greater than memory width 4-45
data size is less than memory width 4-47

16-bit dynamic memory allocation 4-84
32-bit memory configuration design examples 4-35

data size equals memory width 4-35
data size is less than memory width 4-38

8-bit static memory allocation 4-78

A
A-law

compression 6-5
expansion 6-6

adaptive filters 6-15
addition example, extended-precision

arithmetic 3-16
address space segmentation 4-12
AIC initialization

AIC reset 8-21
’C31 timer initializing 8-22
initializing AIC 8-24
primary communications 8-25

data format 8-25
mode selection 8-25

secondary communications 8-25
control register bit fields 8-26
data format 8-26

serial port initializing 8-23
algorithm partitioning, to determine power supply

requirement 12-4
algorithms, DSP 6-1 to 6-102
analog-to-digital converters (ADC), interface to the

’C30 expansion bus 8-2 to 8-5

ANDing of the ready signals 4-11

application-oriented operations
adaptive filters 6-15
companding 6-2 to 6-6
fast Fourier transforms (FFT) 6-28
FIR filters 6-7
IIR filters 6-9
lattice filters 6-18
matrix-vector multiplication 6-24

arithmetic operations
bit manipulation 3-2
bit-reversed addressing 3-5
block moves 3-4
extended-precision arithmetic 3-16
floating-point format conversion 3-20
integer and floating-point division 3-6
square root 3-13

assembler/linker 11-2

assembly language instructions
parallel instructions advantages 5-5
SUBC instruction, integer division 3-6

B
bank memory control logic 4-18

bank switching
external bus 4-15
for Cypress Semiconductor’s CY7C185

SRAM 4-17
techniques 4-15
timing for read operations 4-19

benchmarks, for common ’C3x operations 6-78

biquad 6-9

bit manipulation 3-2

bit-reversed addressing 3-5

bit-reversed addressing, in C 5-9

Index

Index-2

block
moves 3-4
repeat 2-18

in a loop 2-19
using to find a maximum 2-20

boot
from a byte-wide ROM A-4
from serial port, to 8-, 16-, and 32-bit-wide

RAM A-5

boot loader program, ’C32 B-1 to B-14
flowchart B-3
opcodes B-5
source code description B-2
source code listing B-6

boot table
’C32, examples A-1
’C32

host load 4-102
memory configuration 4-100, 4-101
memory considerations 4-99

branches, delayed 2-17

breakdown of numbers 11-10

.bss section, linking C data objects separate
from 5-13 to 5-15

buffered signals 10-7
MPSD 10-6

buffering 10-5

bulletin board service (BBS) 11-6

Burr-Brown DSP 101/2 and 201/2, interface to
’C3x 8-10 to 8-20

C
C compiler 11-2

’C30
power dissipation 12-1 to 12-26

photo of IDD for FFT 12-26
primary bus, addressing up to 68 giga-

words 4-107

’C31
serial port, initializing 8-23
timer

initializing 8-22
maximum timer period register value 8-22
minimum timer period register value 8-22

’C32
boot loader program B-1 to B-14
boot table

examples A-1
host load 4-102
memory configuration 4-101
memory considerations 4-99

booting in a C environment 4-86
configuration examples

2 external memory banks 4-74
single external memory bank 4-80

interfacing memory to
1 bank/2 strobes (32-bit-wide memory) 4-49
1 bank/2 strobes address translation for data

size equal to 16 and 32 bits 4-55
1 bank/2 strobes address translation for data

size equal to 16 and 8 bits 4-51
1 bank/2 strobes address translation for data

size equal to 32 and 8 bits 4-53
16/8-bit memory configuration design

examples 4-41
32-bit memory configuration design

examples 4-35
logical versus physical address 4-33
program fetch from 16-bit STRB0

memory 4-29
program fetch from 32-bit STRB1

memory 4-31
RDY signal generation 4-57
STRB0 and STRB1 data access 4-25, 4-27

memory, address spaces 4-69
memory configuration, for normal program

execution 4-100
TMS320 tools interaction with enhanced memory

interface 4-67
C compiler 4-69
C compiler and assembler switch 4-72
configuration examples 4-74
debugger configuration 4-73
linker switches 4-73

calculation of TMS320 power dissipation, photo of
IDD for FFT 12-26

C-callable routines 5-2

ceramic resonators 9-1 to 9-24

circular addressing, FIR filters 6-7

clock oscillator 9-1 to 9-24
circuitry 1-3

Index

Index-3

COFF file
generating 4-86

assembler 4-87
compiler 4-87
linker 4-88
.out file 4-90

loading to the target system 4-91

communications
primary 8-25
secondary 8-25

companding 6-2 to 6-6

compiler 11-2

compression
A-law 6-5
�-law 6-3

computed GOTO 2-22

connector
12-pin header 10-2
mechanical dimensions 10-8 to 10-9

context switching 2-11
context restore for ’C3x 2-15 to 2-17
context save for ’C3x 2-13 to 2-14

control registers, STRB0 and STRB1 4-23

conversion, time to frequency domain 6-28

converters
A/D

AD1678 8-2
interface to the ’C30 expansion

bus 8-2 to 8-5
read operations timing between the ’C30 and

AD1678 8-4
Burr-Brown DSP101/2 and DSP201/2, interface

to ’C3x 8-10 to 8-20
D/A

interface to the ’C30 expansion bus 8-6
timing diagram for write operation 8-8

CS4215, interface to the ’C3x 8-39 to 8-65

current calculations 12-24 to 12-26
average 12-25, 12-26
data output 12-25
processing 12-24

D
data objects, linking C separate from

.bss 5-13 to 5-15
DATA_SECTION pragma directive 4-70
debugger 11-3

boot 4-91
RAM model (linker –cr option) 4-92
ROM model (linker –c option) 4-92

configuration, for ’C32 external memory 4-73
delayed branches 2-17
development support 11-1 to 11-10
development support tools 11-2 to 11-6

bulletin board service 11-6
code generation tools 11-2

assembler/linker 11-2
C compiler 11-2
linker 11-2

documentation 11-5
hotline 11-5
literature 11-5
seminars 11-5
system integration and debug tools 11-3

debugger 11-3
emulation porting kit (EPK) 11-4
emulator 11-3
evaluation module (EVM) 11-3
simulator 11-3
XDS510 emulator 11-3

technical training organization (TTO) work-
shop 11-5

third parties 11-4
workshops 11-5

device
nomenclature (TMS320) 11-10
suffixes 11-10

diagnostic applications 10-10
digital-to-analog converters (DAC), interface to the

’C30 expansion bus 8-6 to 8-9
dimensions, 12-pin header 10-8 to 10-9
division, floating-point 3-10
DMA

block moves 3-4
programming hints 7-2
setup and use examples 7-4 to 7-10

documentation 11-5

Index

Index-4

E
emulation porting kit (EPK) 11-4
emulator 11-3

cable, signal timing, MPSD 10-4
connection to target system 10-5 to 10-7

MPSD mechanical dimensions 10-8 to 10-9
MPSD connector, 12-pin header 10-2
pod

MPSD timing 10-4
parameters 10-4

pod interface 10-3
signal buffering 10-5

enhanced memory interface, ’C32, functional
description 4-24

evaluation module (EVM) 11-3
example circuit, for wait states and ready

generation 4-14
expansion

A-law 6-6
�-law 6-4

expansion bus interface, ready
generation 4-10 to 4-20
functions 4-12

extended-precision
addition example 3-16
arithmetic 3-16
multiplication example 3-18
subtract example 3-17

external
buses (expansion, primary)

bank switching 4-15
primary bus interface 4-4
ready generation 4-10 to 4-20
wait states 4-10 to 4-20

devices 4-2
interfaces 4-3
ready generation 4-11

F
fast Fourier transforms (FFT) 3-5, 6-28, 12-24

complex radix-2 DIF 6-30
complex radix-4 DIF 6-36
definition 6-29
real radix-2 6-42

filters 6-7 to 6-17
adaptive 6-15

FIR 6-7
circular addressing 6-7

IIR 6-9
lattice 6-18
LMS algorithm 6-15

floating-point
division 3-6, 3-10
format

IEEE definition 3-21
IEEE-to-TMS320C3x conversion 3-22
TMS320C3x definition 3-20
TMS320C3x-to-IEEE conversion 3-26

IEEE to TMS320C3x conversion 3-20 to 3-29
inverse 3-10
square root 3-13

G
GOTO 2-22

H
hardware applications

primary bus interface 4-4
bank switching techniques 4-15
ready generation 4-10 to 4-20
zero-wait-state to static-RAMs 4-5 to 4-9

system configuration options
categories of external interfaces 4-3
typical block diagram 4-2

system control functions 1-4 to 1-8
reset signal generation 1-3 to 1-4

XDS target design considerations
connections between emulator and target

system 10-5 to 10-7
diagnostic applications 10-10
mechanical dimensions for emulator

connector 10-8 to 10-9
MPSD emulator cable signal timing 10-4
MPSD emulator connector 10-2

hardware reset 1-2
header

12-pin 10-2
dimensions

12-pin header 10-2
mechanical 10-8 to 10-9

files, sharing in C and assembly 5-10
signal descriptions, 12-pin header 10-2

hints for assembly coding 5-5 to 5-6
hotline 11-5

Index

Index-5

I
IIR filters 6-9

initialization, processor 1-2

input clock 1-3

integer division 3-6

interfaces
external 4-3
primary bus

See also primary bus interface
bank switching techniques 4-15
ready generation 4-10 to 4-20
zero-wait-state to static RAMs 4-5 to 4-9

system control, clock circuitry 1-3

internal circuitry current requirement
factors of 12-5
internal bus operations 12-5
internal operations 12-5
quiescent 12-5

interrupt
context switching 2-11 to 2-16

context restore for ’C3x 2-15
context save for ’C3x 2-13

correct programming of 2-9
prioritizing 2-10
service routines 2-9, 5-16

example 2-10
software polling of 2-9

interrupts, in C 5-16 to 5-18

inverse
floating-point 3-10
lattice filter, structure of 6-18

L
lattice filters 6-18

linker 11-2
–c option 4-92, 4-95
–cr option 4-92, 4-96
switches, to support C32 memory pools 4-73

literature 11-5

LMS algorithm filters 6-15

logical address 4-33

logical operations
bit manipulation 3-2
bit-reversed addressing 3-5
block moves 3-4

extended-precision arithmetic 3-16
floating-point format conversion 3-20
integer and floating-point division 3-6
square root 3-13

looping 2-18 to 2-21
block repeat 2-18
single-instruction repeat 2-20

low-power mode wakeup example 5-7 to 5-8

M
MALLOC function C-1
matrix-vector multiplication 6-24
memory

’C32
enhanced memory interface, functional

description 4-24
memory pool limitations 4-72

access, ’C32 C-1 to C-6
allocation

16-bit dynamic 4-84
8-bit dynamic 4-76
8-bit static 4-78
in C programs C-2

banks
address decode for multiple 4-64, 4-65
zero-wait-state interface for 32- and 8-bit

SRAM 4-75
zero-wait-state interface for 32-bit SRAMs

with 16- and 32-bit data accesses 4-81
cache 5-5
interfacing to the ’C32 4-21 to 4-22, D-1 to D-5

.out (COFF) file 4-90
1 bank/2 strobes (32-bit-wide design

examples 4-49
1 bank/2 strobes address translation for data

size equal to 16 and 32 bits 4-55
1 bank/2 strobes address translation for data

size equal to 16 and 8 bits 4-51
1 bank/2 strobes address translation for data

size equal to 32 and 8 bits 4-53
16/8-bit memory configuration design

examples 4-41
16-bit data stored in 16-bit-wide

memory D-10
16-bit data stored in 32-bit-wide memory D-7
16-bit data stored in 8-bit-wide memory D-13
32-bit data stored in 16-bit-wide memory D-9
32-bit data stored in 32-bit-wide memory D-6
32-bit data stored in 8-bit-wide memory D-12

Index

Index-6

32-bit memory configuration design
examples 4-35

8-bit data stored in 16-bit-wide memory D-11
8-bit data stored in 32-bit-wide memory D-8
8-bit data stored in 8-bit-wide memory D-14
booting in a C environment 4-86
data and program packing D-2
debugger boot 4-91
EPROM boot 4-95
generating a COFF file 4-86
loading a COFF file to the target

system 4-91
logical versus physical address 4-33
microcomputer/boot-loader mode 4-96
microprocessor mode 4-95
program fetch from 16-bit STRB0

memory 4-29
program fetch from 32-bit STRB1

memory 4-31
RAM model 4-92
RDY signal generation 4-57
ROM model 4-92
STRB0 and STRB1 data access 4-25, 4-27
TMS320 tools 4-67
variable memory width D-4

interfacing to the ’C3x 4-1 to 4-22
quick access 5-5

MEMORY16.C module 4-71
MEMORY8.C module 4-71
MPSD emulator

buffered transmission signals 10-6
cable signal timing 10-4
connector 10-2
no signal buffering 10-5

multiplication example, extended-precision
arithmetic 3-18

O
ordering information 11-7
ORing of the ready signals 4-10
oscillators

clock 9-2
design considerations 9-17 to 9-21

crystal aging 9-21
crystal series resistance 9-17
drive level/power dissipation 9-18
frequency-temperature characteristics 9-20
load capacitors 9-17

loop gain 9-18
startup time 9-20

operation 9-10
overtone operation 9-14
Pierce circuit 9-9 to 9-16
Pierce configuration 9-13
recommendations for use 9-2 to 9-3
solutions for common frequencies 9-22 to 9-24

.out (COFF) file 4-90

output driver circuitry
capacitive load dependence 12-16 to 12-17
current requirement 12-9 to 12-16
data dependency factors 12-14 to 12-16
expansion bus 12-13 to 12-14
primary bus 12-10 to 12-12

P
parallel instructions, advantages in using 5-5

part numbers 11-7
breakdown of numbers 11-10
device suffixes 11-10
prefix designators 11-9

part ordering 11-1 to 11-10

peripherals
addressing as data structures in C 5-11 to 5-12
analog interface 8-1 to 8-72
DMA controller

hints for programming 7-2
programming examples 7-4 to 7-10

physical address 4-33

pipeline conflicts, avoiding 5-5

pod interface, emulator 10-3

power dissipation
algorithm partitioning 12-4
calculation for ’C30 12-1 to 12-26
characteristics for ’C30 12-2 to 12-4
dependency 12-2
photo of IDD for FFT 12-26
test setup description 12-4 to 12-5

power supply current
factors of 12-2
internal circuitry 12-5

prefix designators 11-9

Index

Index-7

primary bus interface 4-4
’C30, addressing up to 68 gigawords 4-107
bank switching techniques 4-15
ready generation 4-10 to 4-20

ANDing of the ready signals 4-11
example circuit 4-14
external ready generation 4-11
ORing of the ready signals 4-10
ready control logic 4-13

zero-wait-state to static-RAMs 4-5 to 4-9

primary communications 8-25
data format 8-25
mode selection 8-25

processor initialization 1-2

program control 2-1 to 2-22
computed GOTOs 2-22
delayed branches 2-17
interrupt service routines 2-9 to 2-10

context switching 2-11
example 2-10
priority 2-10 to 2-18

repeat modes 2-18 to 2-21
block repeat 2-18
single-instruction repeat 2-20

software stack 2-5 to 2-8
subroutines 2-2 to 2-4

programming tips 5-1 to 5-18
C-callable routines 5-2 to 5-4
DMA 7-2
hints for assembly coding 5-5 to 5-6
low-power mode wakeup example 5-7 to 5-8

Q
queues 2-8

R
RDY signal generation, ’C32 4-57

STRB0 signals 4-60
timing parameters for STRB0 and STRB1 4-58

ready control logic 4-13

ready generation 4-10 to 4-20
ANDing of the ready signals 4-11
example circuit 4-14
external ready generation 4-11
functions 4-12
ORing of the ready signals 4-10

ready control logic 4-13

repeat, mode 2-18 to 2-21
block repeat 2-18
single-instruction repeat 2-20

in a loop 2-21

RESET signal, generation 1-3

reset vector 1-2

resonators
comparison of types 9-4
crystal response to square-wave drive 9-7
quartz crystal and ceramic 9-3 to 9-8

behavior and operation 9-4 to 9-7

S
scan paths, TBC emulation connections for

C3x 10-10

secondary communications 8-25
control register bit fields 8-26
data format 8-26

seminars 11-5

signals
buffered 10-2, 10-7
buffering for emulator connections 10-5 to 10-7
description, 12-pin header 10-2
no buffering 10-5
timing 10-4

simulator 11-3

single-instruction repeat 2-20
in a loop 2-21

software applications 3-1 to 3-29
application-oriented operations

adaptive filters 6-15
companding 6-2 to 6-6
fast Fourier transforms (FFT) 6-28
FIR filters 6-7
IIR filters 6-9
lattice filters 6-18

logical and arithmetic operations
bit manupulation 3-2
bit-reversed addressing 3-5
block moves 3-4
extended-precision arithmetic 3-16
floating-point format conversion 3-20
integer and floating-point division 3-6
square root 3-13

processor initialization 1-2

Index

Index-8

program control
computed GOTOs 2-22
delayed branches 2-17
interrupt service routines 2-9 to 2-10
repeat modes 2-18 to 2-21
software stack 2-5 to 2-8
subroutines 2-2 to 2-4

programming tips
C-callable routines 5-2 to 5-4
hints for assembly coding 5-5 to 5-6
low-power mode wakeup example 5-7 to 5-8

software development tools 11-2 to 11-6
bulletin board service (BBS) 11-6
code generation tools 11-2

assembler/linker 11-2
C compiler 11-2
compiler 11-2
linker 11-2

documentation 11-5
hotline 11-5
literature 11-5
seminars 11-5
system integration and debug tools 11-3

debugger 11-3
emulation porting kit (EPK) 11-4
emulator 11-3
evaluation module (EVM) 11-3
simulator 11-3
XDS510 emulator 11-3

technical training organization (TTO) work-
shop 11-5

third parties 11-4
workshops 11-5

software stack 2-5 to 2-8

square root 3-13

stack 2-5 to 2-8

subroutines
computed GOTO 2-22
context switching 2-11 to 2-16

context restore for ’C3x 2-15 to 2-17
context save for ’C3x 2-13 to 2-14

dot product 2-3
interrupt priority 2-10 to 2-18
program control 2-2 to 2-4
runtime select 2-20

subtract example, extended-precision
arithmetic 3-17

supply current calculations 12-24 to 12-26
average 12-25
data output 12-25
experimental results 12-26
processing 12-24

system
configuration

block diagram 4-2
categories of external interfaces 4-3

control functions 1-4 to 1-8
reset signal generation 1-3 to 1-4

stacks 2-5

T
target cable 10-2, 10-8

target system, connection to emulator 10-5 to 10-7

technical training organization (TTO) work-
shop 11-5

test bus controller 10-10

test setup description, for ’C30 power supply current
measurements 12-4

third parties 11-4

timer period register value
maximum 8-22
minimum 8-22

timing waveforms, RDY signal generation 4-63

TLC32040, interface to the ’C3x 8-21 to 8-29

TLC320AD58, interface to the ’C3x 8-30 to 8-38

TMS320 tools, interaction with ’C32 enhanced
memory interface 4-67
’C32 configuration examples 4-74
C compiler 4-69
C compiler and assembler switch 4-72
debugger configuration 4-73
linker switches 4-73

total supply current calculation 12-17 to 12-23
average current versus peak current 12-20
combining 12-17
dependencies 12-18 to 12-19
design equation 12-19 to 12-20
thermal management

considerations 12-21 to 12-23

12-pin header, MPSD 10-2

Index

Index-9

U
�-law compression 6-3

�-law expansion 6-4

UART emulator
hardware 8-70 to 8-72
software 8-66 to 8-69

user stacks 2-6

W
wait states

circuit for generation of 4-14
external bus 4-10 to 4-20
zero 4-5 to 4-9

workshops 11-5

X
XDS target design considerations

connections between emulator and target
system 10-5 to 10-7

designing MPSD emulator connector 10-2
diagnostic applications 10-10
mechanical dimensions of emulator

connector 10-8 to 10-9
MPSD emulator cable signal timing 10-4

XDS510 emulator 11-3

Z
zero-wait-states

’C3x interface to CY7C186 CMOS SRAM 4-7
interface to static RAM 4-5 to 4-9
read operations timing 4-8
write operations timing 4-8

Index-10

