
1992 Digital Signal Processing Products

TMS320C31 Embedded
Control

Technical Brief

SPRU083

�	
������ �������

������� ��������� �����

Literature Number SPRU083
February 1998

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1992, Texas Instruments Incorporated

 How to Use This Manual

iii Read This First

Read This First

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction
A general description of the TMS320C31, its key features, benefits,
embedded-controller requirements, compatible devices, and development
support.

Chapter 2 TMS320C31 Architectural Overview
Functional block diagram. TMS320C31 architecture description, hardware
components, and device operation. Instruction set summary.

Chapter 3 TMS320C31 Features/Performance Comparison
Comparison of TMS320C31 benchmark performance and feature values
versus those of other embedded controllers.

Chapter 4 Application Examples
Four application examples showing how the TMS320C30 and TMS320C31
have been used for system-control functions in several application areas.

Chapter 5 Development Support
Discussion of code-generation, debug, and system integration development
flow. Summarizes features of Texas Instruments simulation and emulation
development tools and describes available technical documentation and
technical assistance.

Chapter 6 TMS320C31 Third-Party Support
Alphabetical listing of third-party manufacturers and suppliers who provide
development support products for the TMS320C31 and description of their
products.

Appendix A TMS320 DSP Family
Description of DSP market, TI’s role in the DSP industry, TMS320 product
roadmap, and the five generations of TMS320 devices.

Appendix B Part Ordering Information
Listings of the hardware and software available from Texas Instruments to
support the TMS320C31 device.

Style and Symbol Conventions

iv

Style and Symbol Conventions

This document uses the following conventions.

� Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special typeface similar to a
typewriter’s. Examples use a bold version of the special typeface for
emphasis; interactive displays use a bold version of the special
typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ” section name”, address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

� Two vertical bars (||) identify a parallel instruction. An instruction that is
preceded by two vertical bars will be executed in parallel with the previous
instruction in the assembly language source file. Here is an example of a
parallel instruction:

MPYI3 R7, R4, R0
|| ADDI3 *AR3,*AR5––(1),R3

Since the ADDI3 is preceded with two vertical bars, the two lines of
assembly language are considered a single instruction where both an
integer multiply and integer add are performed.

 Style and Symbol Conventions

v Read This First

� An at character (@) preceding a label or expression in an instruction
indicates that direct addressing is being performed and that the label or
expression following the at character is used to form the data address.
Here is an example:

ADDI @0BCDEh, R7

In this instruction, the data address is formed by concatenating 0BCDEh
with the current value of the data page pointer. The contents of this
location is added to R7 and stored in R7.

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
(’C30 and ’C31) 32-bit floating-point microprocessors, developed for
digital signal processing as well as embedded-control applications.
Covered are its architecture, internal register structure, instruction set,
pipeline, specifications, and operation of its DMA and its two serial ports.
Software and hardware applications are included.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide
(literature number SPRU034) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the ’C3x and
’C4x generations of devices.

TMS320 Floating-Point DSP Assembly Language Tools User’s Guide
(literature number SPRU035) describes the assembly language tools
(assembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C3x and ’C4x generations of
devices.

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints, and includes a tutorial that introduces basic debugger
functionality.

TMS320C30 Hewlett-Packard 64776 Analysis Subsystem User’s Guide
(literature number SPRU071) describes the analysis subsystem, which
supplements the ’C30 emulator capabilities by providing realtime
breakpoint, trace, and timing features. The analysis subsystem can be
used only with the ’C30 emulator.

Trademarks

SPARC and S-bus are trademarks of Sun Microsystems, Inc.

Spirit 30 is a trademark of Sonitech International Inc.

SPOX is a trademark of Spectron Microsystems, Inc.

Tiger 30 is a trademark of DSP Research, Inc.

VPRO-4 is a trademark of Voice Processing Corporation.

Related Documentation from Texas Instruments / Trademarks

 If You Need Assistance

vii Read This First

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Call the CRC†:
(800) 336–5236

Or write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments
documentation

Call the CRC†:
(800) 336–5236

Ask questions about product
operation or report suspected
problems

Call the DSP hotline:
(713) 274–2320

Report mistakes in this document
or any other TI documentation

Fill out and return the reader response card at
the end of this book, or send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

† Texas Instruments Customer Response Center

viii

 Running Title—Attribute Reference

ix Contents

Contents

1 Introduction 1-1.
1.1 Embedded Controller Requirements 1-2.
1.2 TMS320C31 Key Features 1-3.
1.3 Compatible Devices 1-5.
1.4 TMS320C31 Development Support 1-6.
1.5 Benefits of a TMS320C31-Based Embedded System 1-8.

2 TMS320C31 Architectural Overview 2-1.
2.1 TMS320C31 Block Diagram 2-2.
2.2 Central Processing Unit (CPU) 2-4.

2.2.1 CPU Register File 2-6.
2.2.2 Auxiliary Register Arithmetic Units (ARAUs) 2-8.
2.2.3 Multiplier 2-8.
2.2.4 Arithmetic Logic Unit (ALU) 2-8.
2.2.5 CPU Memory Addressing Modes 2-8.
2.2.6 Instruction Set Summary 2-11.

2.3 Memory Organization 2-20.
2.3.1 RAM, ROM, and Cache 2-20.
2.3.2 Memory Maps 2-22.

2.4 Internal Bus Operation 2-24.
2.5 On-Chip Peripherals 2-25.

2.5.1 Timers 2-26.
2.5.2 Serial Port 2-26.

2.6 Direct Memory Access (DMA) 2-27.
2.7 External Bus Operation 2-28.

2.7.1 External Bus Control Features 2-28.
2.7.2 Multiprocessor Support 2-28.

2.8 Interrupts 2-29.
2.9 TMS320C31 Signal Descriptions 2-30.

3 TMS320C31 Features/Performance Comparison 3-1.
3.1 TMS320C31 Feature Comparison Versus Other Embedded Controllers 3-2.
3.2 TMS320C31 Benchmark Performance Versus Other Embedded Controllers 3-4.

3.2.1 Dhrystone Benchmark 3-5.
3.2.2 Bubble- and Quick-Sort Benchmarks 3-5.
3.2.3 matmult Benchmark 3-5.

Contents

x

3.2.4 anneal Benchmark 3-6.
3.2.5 Benchmark Summary 3-6.

4 Application Examples 4-1.
4.1 Telecommunications Example Using SPOX 4-2.

4.1.1 Speech Recognition With TMS320C31 and SPOX 4-2.
4.1.2 Lower Cost and More Recognizers 4-2.
4.1.3 VPRO-4: A Homogeneous Multi-DSP Architecture 4-3.
4.1.4 From Tiger 30 to Realtime Recognition 4-4.
4.1.5 A New Level of Interoperability 4-4.

4.2 Instrumentation Application and Processor Evaluation Example 4-5.
4.2.1 Background and System Description 4-5.
4.2.2 Archive Shuffle 4-7.
4.2.3 Waveform Processing 4-7.
4.2.4 Fast Fourier Transform 4-7.
4.2.5 Advantages of a TMS320C31 System 4-8.

4.3 Test Equipment Example Using SPOX 4-9.
4.3.1 TMS320C30 and SPOX—Merging DSP and Control 4-10.
4.3.2 From Proof-of-Concept to the Final Product 4-11.

5 Development Support 5-1.
5.1 TMS320C3x Optimizing ANSI C Compilers 5-2.

5.1.1 TMS320C31 Compiler Optimizations 5-3.
5.2 TMS320 Programmer’s Interface (C/Assembly Source Debugger) 5-15.
5.3 TMS320C31 Assembly Language Tools 5-19.
5.4 TMS320C3x Software Simulator 5-21.
5.5 TMS320C3x Evaluation Module 5-24.
5.6 TMS320C3x Emulator 5-26.
5.7 TMS320C3x Application Board With Software Demo 5-30.
5.8 HP 64776 Analysis Subsystem 5-31.
5.9 TMS320 Technical Support 5-33.

5.9.1 Technical Documentation 5-33.
5.9.2 Details on Signal Processing Newsletter 5-34.
5.9.3 TMS320 Bulletin Board Service 5-34.
5.9.4 TMS320 DSP Technical Hotline 5-34.
5.9.5 TMS320 Application Software 5-35.
5.9.6 Design Workshops 5-35.
5.9.7 Design Services 5-37.
5.9.8 RTC Locations 5-39.

6 TMS320C31 Third-Party Support 6-1.
6.1 Accelerated Technology, Inc. 6-2.
6.2 A.T. Barrett & Associates, Inc. 6-5.
6.3 Biomation 6-9.
6.4 Byte-BOS 6-12.

 Contents

xi Contents

6.5 Computer Motion, Inc. 6-13.
6.6 Electronic Tools GmbH 6-14.
6.7 Integrated Motion, Incorporated 6-15.
6.8 Loughborough Sound Images Ltd. 6-17.
6.9 Precise Software Technologies Inc. 6-19.
6.10 Spectron Microsystems Inc. 6-23.
6.11 Spectrum Signal Processing Inc. 6-31.
6.12 Tartan Inc. 6-33.
6.13 Tektronix 6-37.
6.14 Wintriss 6-40.

A TMS320 DSP Family A-1.
A.1 The DSP Market A-2.
A.2 The TI Role in the DSP Industry A-3.
A.3 The TMS320 Product Roadmap A-4.
A.4 TMS320C1x A-9.
A.5 TMS320C2x A-10.
A.6 TMS320C3x A-11.
A.7 TMS320C4x A-12.
A.8 TMS320C5x A-13.

B Part Ordering Information B-1.
B.1 Part Numbers B-2.
B.2 Device and Development Support Tool Prefix Designators B-4.
B.3 Device Suffixes B-5.

Running Title—Attribute Reference

xii

Figures

1–1 TMS320C31 Performance 1-4.
1–2 TMS320C3x Block Diagram 1-5.
1–3 TMS320C3x Development Environment 1-7.
1–4 Benefits of Replacing a Controller/Coprocessor With a TMS320C31-Based

Embedded System 1-9.
2–1 TMS320C31 Block Diagram 2-3.
2–2 Central Processing Unit (CPU) 2-5.
2–3 Memory Organization 2-21.
2–4 TMS320C31 Memory Maps 2-23.
2–5 Peripheral Modules 2-25.
2–6 DMA Controller 2-27.
4–1 VPRO-4 Hardware Architecture 4-3.
4–2 System Diagram 4-6.
4–3 Doble Test Set-Up 4-9.
4–4 The New Doble M Series System 4-10.
5–1 Data Flow Optimizations for TMS320C31 Compilers 5-6.
5–2 Copy Propagation and Control-Flow Simplification for TMS320C31 Compilers 5-8.
5–3 In-Line Function Expansion for TMS320C31 Compilers 5-9.
5–4 Register Variables and Register Tracking/Targeting 5-10.
5–5 Repeat Blocks, Autoincrement Addressing Modes, Parallel Instructions,

Strength Reduction, Induction Variable Elimination, Register Variables, and
Loop Test Replacement for Floating-Point Compilers 5-12.

5–6 TMS320C31 Compiler Delayed Branch Optimizations 5-13.
5–7 Loop Unrolling 5-14.
5–8 The Basic Debugger Display 5-15.
5–9 Debugger’s Data Display 5-17.
5–10 TMS320C3x EVM 5-24.
5–11 TMS320C3x XDS Emulator 5-28.
5–12 HP 64776 Analysis Subsystem 5-31.
6–1 Realtime Application Tasks 6-4.
6–2 MX31 Fitted With a Preliminary CCD Camera Interface Daughter Board 6-16.
6–3 SPOX Architecture 6-24.
6–4 SPOX Debug Support 6-28.
6–5 Open Signal Processing Architecture 6-29.

 Figures

xiii Contents

6–6 AdaScope Debugger Screen 6-36.
6–7 Logic Analyzer Family 6-38.
A–1 TMS320 Device Evolution A-5.
B–1 TMS320 Device Nomenclature B-5.

Running Title—Attribute Reference

xiv

Tables

2–1 CPU Registers 2-6.
2–2 Indirect Addressing 2-10.
2–3 System Control Instruction Summary 2-12.
2–4 Program Flow Control Instruction Summary 2-13.
2–5 Logical and Bit Manipulation Instruction Summary 2-14.
2–6 Load and Store Instruction Summary 2-15.
2–7 Arithmetic Instruction Set Summary 2-16.
2–8 Parallel Instruction Set Summary 2-18.
2–9 TMS320C31 Signal Descriptions 2-30.
3–1 Description of the Fields in Table 3–2 3-2.
3–2 Feature/Performance Comparison of Embedded Controllers 3-3.
3–3 Benchmark Comparison of the TMS320C31 With Embedded Controllers at the

Same Price Level 3-5.
5–1 RTC Worldwide Locations 5-39.
A–1 TMS320 Family Overview A-6.
A–2 TMS320 Family Features and Benefits A-8.
B–1 TMS320C3x Digital Signal Processor Part Numbers B-2.
B–2 TMS320C3x Support Tool Part Numbers B-2.

 Running Title—Attribute Reference

1-1 Chapter Title—Attribute Reference

Introduction

The Texas Instruments low-cost, high-performance TMS320C31 has defined
a new role for digital signal processors in embedded systems. Well-suited for
general-purpose use, the TMS320C31 is finding widespread acceptance as
an embedded controller in applications such as:

� Industrial automation
� Telecommunications
� Motor control
� Automotive
� Instrumentation
� Laser printers
� Scanners
� Voice mail

and is expanding the role of DSPs from math support to embedded control.

The topics covered in this chapter include:

Topic Page

1.1 Embedded Controller Requirements 1-2.

1.2 TMS320C31 Key Features 1-3.

1.3 Compatible Devices 1-5.

1.4 TMS320C31 Development Support 1-6.

1.5 Benefits of a TMS320C31-Based Embedded System 1-8.

Chapter 1

Embedded Controller Requirements

 1-2

1.1 Embedded Controller Requirements

An embedded controller is a dedicated processor used in systems or subsys-
tems such as laser printers, voice mail systems, and bar-code readers to con-
trol a specific set of functions. Unlike a PC or workstation host CPU, an em-
bedded controller is not accessible to the system user to run different software
packages or to be reprogrammed, but is used to cost-effectively control a pre-
determined set of functions. To make these types of systems successful, em-
bedded controllers must possess the following characteristics:

� High overall performance for peripheral device management and data
flow control

� Software compatibility (efficient compilers and realtime operating system
support)

� Mature development tools and third-party support
� Flexibility
� Reliability
� Availability
� Low device price
� Low system cost

The TMS320C31’s ability to satisfy these needs makes it an excellent choice
when compared to embedded RISC and high-end CISC embedded control-
lers.

The TMS320C31:

� Provides a low-cost solution
� Supports a general-purpose programming model
� Supports efficient C language compilation
� Enables high-performance system control
� Supports coprocessor math performance on-chip
� Integrates system peripherals on-chip
� Allows fast context switching

The TMS320C31 is an embedded controller with dedicated digital signal pro-
cessing support that provides low cost, high performance, system integration,
and ease of use. Due to these cost and performance advantages, the
TMS320C31 is displacing RISC and high-end CISC processors in a wide
range of applications across many industries.

 TMS320C31 Key Features

1-3 Introduction

1.2 TMS320C31 Key Features
The TMS320C31 includes the features normally associated with a general-
purpose embedded controller, so designing with it is very similar to designing
with RISC or CISC devices. But the ’C31 is distinguished by many high-perfor-
mance features not found on processors in its price range:

� High performance

� 50-ns instruction cycle
� 20 MIPS (million instructions per second)
� 40 MFLOPS (million floating-point operations per second)
� 220 MOPS (million operations per second) (see Figure 1–1 on

page 1-4)
� 80-Mbytes/second I/O bandwidth
� 0.200 µs interrupt response
� 60-ns and 74-ns devices also available

� Register-based, pipelined CPU

� Parallel multiply and arithmetic/logical operations on integer or float-
ing-point numbers in a single cycle

� Eight extended-precision registers
� 24-bit address space
� Two address generators with eight auxiliary registers, two index regis-

ters, and two auxiliary register arithmetic units
� 32-bit barrel shifter

� Powerful instruction set

� Single-cycle instruction execution
� System control and numeric operations
� Two and three operand instructions
� Zero-overhead looping
� Single-cycle branching
� Conditional calls and returns
� Flexible addressing modes including circular addressing and auto-

increment/decrement modes allow high-speed data accesses
� Single-cycle parallel math and memory operations
� Interlocked instructions for multiprocessing support

� Integrated peripherals

� DMA controller for concurrent I/O and CPU operation
� Two-way set associative instruction cache maximizes performance

while minimizing system cost
� Flexible serial port for 8/16/24/32-bit transfers which can be config-

ured for general-purpose bit I/O plus two 16-bit timers
� Two 32-bit timers which can also be configured for bit I/O

TMS320C31 Key Features

 1-4

� Extensive internal busing and parallelism for extremely fast data-move-
ment capability

� 8K bytes of single-cycle dual-access internal RAM support two accesses
per machine cycle—can act as program memory, data memory, cache to
external memory, or register file extensions

� Memory interface optimized for single-cycle SRAM accesses and static-
column decode DRAMs for high-speed external memory access while
maintaining low system cost

� Boot loader to load/execute programs from other processors or inexpen-
sive EPROMS

� On-chip emulation for true nonintrusive visibility and control during debug

� 132-pin plastic quad flat pack (PQFP) package

� Low price

The TMS320C31 is described in detail in Chapter 2.

Figure 1–1. TMS320C31 Performance

Sustained Processing:
• High-Performance CPU

• DMA Controller

Sustained I/O:
• Primary Bus

• DMA Controller

• Serial Port

CPU and DMA PERFORMANCE

CPU – 8 OPS/Cycle = 160 MOPS
• 2 Data Accesses 40 MOPS
• 1 FP Multiply 20 MOPS
• 1 FP ALU Operation 20 MOPS
• 2 Addr. Register Mods 40 MOPS
• 1 Loop Counter Update 20 MOPS
• 1 Branch 20 MOPS

DMA COPROCESSOR
 3 OPS/Cycle = 60 MOPS
 • 1 Data Access 20 MOPS

• 1 Addr. Register Mod. 20 MOPS
• 1 Transfer Counter 20 MOPS
 Update

 TOTAL MOPS = 220 MOPS

 DATA THROUGHPUT

Primary Bus 80M bytes/sec
Serial Port 2M bytes/sec

 TOTAL I/O = 82M bytes/sec

 50-ns
Cycle Time

 Compatible Devices

1-5 Introduction

1.3 Compatible Devices

The TMS320C31 is one of two members of the TMS320C3x generation of
DSPs. The other member is the TMS320C30, which is object-code compatible
with the ’C31. The ’C30 is identical to the ’C31 except that it has 4K words of
ROM, two serial ports, and a second external bus. For more information on the
TMS320C30, refer to the TMS320C3x User’s Guide (literature number
SPRU031). Figure 1–2 is a block diagram of the TMS320C3x devices. The
shaded areas highlight the features that apply only to the ’C30.

Figure 1–2. TMS320C3x Block Diagram

Available on
TMS320C30,
TMS320C30-27,
and
TMS320C30-40

A23–0
D31–0

R/W
STRB

HOLDA
HOLD

RDY

SHZ
VSS

VDD

X2/CLKIN
X1

MCBL/MP
XF1–0
IACK

INT3–0
RESET

12 Control Registers

8 Auxiliary Registers

Generator 1
Address

Generator 0
Address

Registers
8 Extended-Precision

ALU
Floating-Point

Integer/

Multiplier
Floating-Point

Integer/

CPU

Control Registers

Address Generators

DMA

Timer 1

Timer 0

Port 1
Serial

Port 0
Serial

MSTRB
XA12–0
XD31–0
XR/W
IOSTRB
XRDY

Data Buses

(4K x 32)
ROM Block 0

(1K x 32)
RAM Block 1

(1K x 32)
RAM Block 0

(64 x 32)
Cache

Program

C
on

tr
ol

le
r

P
er

ip
he

ra
l B

us

In addition, the ’C30 and ’C31 are both source-code compatible with the
TMS320C4x, which is the first DSP designed specifically for parallel proces-
sing. For more information on the ’C4x, refer to the TMS320C4x Technical
Brief (literature number SPRU076).

TMS320C31 Development Support

 1-6

1.4 TMS320C31 Development Support

The ’C31’s general-purpose, 32-bit architecture and TI’s comprehensive set
of development tools make designing systems with a ’C31 as easy as design-
ing with a traditional controller. These tools include

� ANSI-compatible optimizing C compiler
� Realtime operating system support
� The programmer’s interface—a window-based C-source/assembly de-

bugger
� Code profiler
� Software simulator
� Low-cost evaluation module (EVM)
� TMS320C3x XDS scan-based emulator
� ’C3x application board
� HP64700 analysis subsystem
� Extensive third-party support
� Hotline support
� Bulletin board support
� Thousands of pages of application notes and technical documentation

A complete description of TMS320C31 development support can be found in
Chapter 5. Figure 1–3 illustrates the ’C31 development flow.

 TMS320C31 Development Support

1-7 Introduction

Figure 1–3. TMS320C3x Development Environment

Macro
Source
Files

Assembler
Source

Source C

Assembler
SourceObject

FilesMacro
Library

Executable
Object
File

Library of
Object
Files

Archiver
Assembler C Compiler

ArchiverLinker

Object Format
Converter

EPROM
Programmer Simulator TMS320C3x

XDS
Emulator

TMS320C31 performance benchmarks can be found in Chapter 3 and de-
tailed system examples are shown in Chapter 4.

Benefits of a TMS320C31-Based Embedded System

 1-8

1.5 Benefits of a TMS320C31-Based Embedded System

The device price, development environment, external memory cost, and inte-
grated peripherals of the TMS320C31 are equivalent to those of 32-bit micro-
controller solutions. At the same time, the powerful instruction set and pipe-
lined CPU provide the system control performance of a RISC processor—at
a more affordable price. But the TMS320C31 is superior to RISC/CISC solu-
tions in numerical performance and emulation capability. This best-of-both-
worlds feature set delivers many benefits to next-generation embedded sys-
tems.

With a TMS320C31, many added-cost system features become reduced-cost
features. Traditional embedded-system architectures use a microcontroller for
system control and a coprocessor (companion math chip, programmable or
special-purpose DSP, or ASIC) for math support. This traditional system archi-
tecture has performance and time-to-market drawbacks because the designer
must learn two different architectures and development environments, and at-
tempt to implement efficient communications between different types of pro-
cessors. Today, designers are using a ’C31 to replace microcontrollers for
higher performance and to reduce system cost and time to market in dual-pro-
cessor designs. Also, for even higher performance and homogeneous sys-
tems, multiple ’C31s can be used. The ’C31 offers numerous advantages for
embedded-control applications such as voice mail, industrial automation,
instrumentation, audio, motor control, automotive, and laser printer systems.
Figure 1–4 shows the benefits of replacing a controller/coprocessor with a
TMS320C31.

 Benefits of a TMS320C31-Based Embedded System

1-9 Introduction

Figure 1–4. Benefits of Replacing a Controller/Coprocessor With a TMS320C31-Based
Embedded System

System Peripherals

RISC/CISC
With OS for

System Control

Numeric
Coprocessor
for Realtime

Algorithm
Execution

M
e
m
o
r
y

TMS320C31
With OS for

System Control
and Numeric
Processing

M
e
m
o
r
y

System Peripherals

Replacement Benefits:

� Simplified design
� Reduced data flow
� Greater design flexibility
� Small form factor

� Lower memory cost
� Lower device count & cost
� Fewer communication bottlenecks
� Single development environment

M
e
m
o
r
y

 1-10

 Running Title—Attribute Reference

2-1 Chapter Title—Attribute Reference

TMS320C31 Architectural Overview

This chapter provides an architectural overview of the TMS320C31 embedded
processor. An in-depth description of its features can be found in the
TMS320C3x User’s Guide.

Topics discussed in this chapter include:

Topic Page

2.1 TMS320C31 Block Diagram 2-2.

2.2 Central Processing Unit (CPU) 2-4.

2.3 Memory Organization 2-20.

2.4 Internal Bus Operation 2-24.

2.5 On-Chip Peripherals 2-25.

2.6 Direct Memory Access (DMA) 2-27.

2.7 External Bus Operation 2-28.

2.8 Interrupts 2-29.

2.9 TMS320C31 Signal Descriptions 2-30.

Chapter 2

TMS320C31 Block Diagram

 2-2

2.1 TMS320C31 Block Diagram

Figure 2–1 is a block diagram of the TMS320C31 architecture. Throughout
this chapter, refer to this block diagram to better understand the interface of
the components of the ’C31 embedded controller.

 TMS320C31 Block Diagram

2-3 TMS320C31 Architectural Overview

Figure 2–1. TMS320C31 Block Diagram

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Boot
ROM
Block

CACHE
(64 × 32)

RAM
Block 0

(1K × 32)

RAM
Block 1

(1K × 32)

M
U
X

M
U
X

RDY
HOLD

HOLDA
STRB

R/W
D31–D0
A23–A0

RESET

IR
PC

C
O
N
T
R
O
L
L
E
R

CPU1

REG1

REG2
C
P
U
1

R
E
G
1

R
E
G
2

P
E
R
I
P
H
E
R
A
L

D
A
T
A

B
U
S

P
E
R
I
P
H
E
R
A
L

A
D
D
R
E
S
S

B
U
S

MUX

40

32

32

32

32
32

32

32

24

24

24

24

BKARAU0 ARAU1

DISP0, IR0, IR1

Extended
Precision
Registers
(R7–R0)

Auxiliary
Registers

(AR0–AR7)

Other
Registers

(12)

40

40

40

40

Multiplier
32-Bit
Barrel
Shifter

ALU

DMA Controller

Global Control
Register

Source Address
Register

Destination
Address
Register

Serial Port 0

Port Control
Register

R/X Timer
Register

Data Transmit
Register

Data Receive
Register

FSX0
DX0
CLKX0
FSR0
DR0
CLKR0

Timer 0

Global Control
Register

Timer Period
Register

Timer Counter
Register

TCLK0

Timer 1

Global Control
Register

Timer Period
Register

Timer Counter
Register

TCLK1

Port Control

Primary

Transfer
Counter
Register

PDATA Bus

PADDR Bus

DDATA Bus

DADDR1 Bus

DADDR2 Bus

DMADATA Bus

DMAADDR Bus

24

40

32 32 24 24 32 24

INT3–0
IACK

MC/MP
XF(1,0)

VDD(3-0)
IODVDD(1,0)
ADVDD(1,0)

PDVDD
DDVDD(1,0)

MDVDD
VSS(3-0)

DVSS(3–0)
CVSS(1,0)

IVSS
VBBP
SUBS

X1
X2/CLKIN

H1
H3

EMU6-0
RSV10–0

32 24 24 24 2432 32 32

CPU2

32 32 40 40

Central Processing Unit (CPU)

 2-4

2.2 Central Processing Unit (CPU)

The TMS320C31 has a register-based, pipelined CPU architecture. The ’C31
CPU is similar to a RISC microprocessor CPU in that most instructions execute
in a single cycle. However, the ’C31 instruction set is more powerful—multiple
operations can be performed in a single-instruction cycle and the operands of
logical and arithmetic instructions can be read from memory and operated on
in a single cycle. Because its separate multiplier and ALU are incorporated into
the CPU, the ’C31 supports single-cycle logical and arithmetic operations.
These units do not require pipelined, staged execution to achieve maximum
performance, allowing the ’C31 to achieve low-latency execution of numeric
operations. In addition, the same multiplier and ALU are used for both integer
and floating-point math, providing you flexibility and equal performance for ei-
ther data format.

The TMS320C31 can perform a multiply and ALU operation in a single cycle,
allowing realtime DSP or other math and logical functions to be done in parallel
every cycle, without latency. Hence, 40 MFLOPS or 40 integer multiply-accu-
mulates operations can be sustained with a 40-MHz TMS320C31. In addition
to the integrated math support, the CPU architecture provides a high degree
of parallelism on-chip, allowing on- and off-chip resources to be utilized most
effectively.

Figure 2–2 is a block diagram of the ’C31 CPU.

 Central Processing Unit (CPU)

2-5 TMS320C31 Device Overview

Figure 2–2. Central Processing Unit (CPU)

Multiplier
32-Bit Barrel

Shifter

Extended
Precision
Registers
(R0–R7)

*Disp, IR0, IR1

ARAU0 ARAU1

Auxiliary
Registers

(AR0–AR7)

Other
Registers

(12)

32 32 40 40

40

40

40

40

40

32

24

24

32

32

32

32

24

24

32

32

BK

40

ALU

C
P
U
1

R
E
G
1

R
E
G
2

D
A
D
D
1

D
A
D
D
2

DADD1

DADD2

CPU1

CPU2

REG1

REG2

DDATA BUS

MUX

* Disp = an 8-bit integer displacement carried in a program control instruction

Central Processing Unit (CPU)

 2-6

2.2.1 CPU Register File

The TMS320C31 provides 28 registers in a multiport register file that is tightly
coupled to the CPU. All of these registers can be operated upon by the multipli-
er and ALU and can be used as general-purpose registers. However, the regis-
ters also have some special functions. For example, the eight extended-preci-
sion registers are especially suited for maintaining extended-precision float-
ing-point results. The eight auxiliary registers support a variety of indirect ad-
dressing modes and can be used as general-purpose 32-bit integer and logical
registers. The remaining registers provide system functions such as addres-
sing, stack management, processor status, interrupts, and block repeat.

The register names and assigned functions are listed in Table 2–1. Following
the table, the function of each register or group of registers is briefly described.

Table 2–1. CPU Registers

Register
Name

Assigned Function

R0
R1
R2
R3
R4
R5
R6
R7

Extended-precision register 0
Extended-precision register 1
Extended-precision register 2
Extended-precision register 3
Extended-precision register 4
Extended-precision register 5
Extended-precision register 6
Extended-precision register 7

AR0
AR1
AR2
AR3
AR4
AR5
AR6
AR7

Auxiliary register 0
Auxiliary register 1
Auxiliary register 2
Auxiliary register 3
Auxiliary register 4
Auxiliary register 5
Auxiliary register 6
Auxiliary register 7

DP
IR0
IR1
BK
SP

Data-page pointer
Index register 0
Index register 1
Block size
System stack pointer

ST
IE
IF

IOF

Status register
CPU/DMA interrupt enable
CPU interrupt flags
I/O flags

RS
RE
RC

Repeat start address
Repeat end address
Repeat counter

PC Program counter

 Central Processing Unit (CPU)

2-7 TMS320C31 Device Overview

The extended-precision registers (R7–R0) are capable of storing and sup-
porting operations on 32-bit integer and 40-bit floating-point numbers. Any
instruction that assumes the operands are floating-point numbers uses bits
39–0. If the operands are either signed or unsigned integers, only bits 31–0
are used; bits 39–32 remain unchanged. Bits 39–32 remain unchanged for all
shift operations.

The 32-bit auxiliary registers (AR7–AR0) can be accessed by the CPU and
modified by the two Auxiliary Register Arithmetic Units (ARAUs). The primary
function of the auxiliary registers is the generation of 24-bit addresses. They
can also be used as loop counters or as 32-bit general-purpose registers that
can be modified by the multiplier and ALU.

The data page pointer (DP) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64K words long with a total of 256
pages.

The 32-bit index registers (IR0, IR1) contain the value used by the Auxiliary
Register Arithmetic Unit (ARAU) to compute an indexed address.

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement, and a pop performs a post-
decrement of the system stack pointer. The SP is manipulated by interrupts,
traps, calls, returns, and the PUSH and POP instructions.

The status register (ST) contains global information relating to the state of the
CPU. Typically, operations set the condition flags of the status register accord-
ing to whether the result is zero, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, a bit-for-bit replacement is performed with the con-
tents of the source operand, regardless of the state of any bits in the source
operand. Therefore, following a load, the contents of the status register are
equal to the contents of the source operand. This allows the status register to
be easily saved and restored.

The CPU/DMA interrupt enable register (IE) is a 32-bit register. The CPU
interrupt enable bits are in locations 10–0. The DMA interrupt enable bits are
in locations 26–16. A 1 in a CPU/DMA interrupt enable register bit enables the
corresponding interrupt. A 0 disables the corresponding interrupt.

The CPU interrupt flag register (IF) is also a 32-bit register. A 1 in a CPU in-
terrupt flag register bit indicates that the corresponding interrupt is set. A 0 indi-
cates that the corresponding interrupt is not set.

The I/O flags register (IOF) controls the function of the dedicated external
pins, XF0 and XF1. These pins may be configured for input or output and may
also be read from and written to.

Central Processing Unit (CPU)

 2-8

The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
the processor is operating in the repeat mode, the 32-bit repeat start address
register (RS) contains the starting address of the block of program memory
to be repeated, and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, it is a register that can be modified by instructions that modify the program
flow.

2.2.2 Auxiliary Register Arithmetic Units (ARAUs)

Two auxiliary register arithmetic units (ARAU0 and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IR0
and IR1), and circular and bit-reversed addressing.

2.2.3 Multiplier

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit
floating-point values. The TMS320C31 implementation of floating-point arith-
metic allows for floating-point operations at fixed-point speeds via a 50-ns
instruction cycle and a high degree of parallelism. To gain even higher through-
put, you can use parallel instructions to perform a multiply and ALU operation
in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 40-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-bit result.

2.2.4 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and
40-bit floating-point data, including single-cycle integer and floating-point con-
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right
in a single cycle.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi-
plies and adds/subtracts on four integer or floating-point operands in a single
cycle.

2.2.5 CPU Memory Addressing Modes

The TMS320C31 supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications.

 Central Processing Unit (CPU)

2-9 TMS320C31 Device Overview

For use with the general-purpose and arithmetic instructions, five groups of
addressing modes are provided on the TMS320C31. Six types of addressing
may be used within the groups, as shown in the following list:

� General addressing modes:

� Register. The operand is a CPU register.

� Short immediate. The operand is a 16-bit immediate value.

� Direct. The operand is the contents of a 24-bit address.

� Indirect. An auxiliary register indicates the address of the operand.

� Three-operand addressing modes:

� Register. Same as for general addressing mode.

� Indirect. Same as for general addressing mode.

� Parallel addressing modes:

� Register. The operand is an extended-precision register.

� Indirect. Same as for general addressing mode.

� Long-immediate addressing mode:

� Long-immediate. The operand is a 24-bit immediate value.

� Conditional branch addressing modes:

� Register. Same as for general addressing mode

� PC-relative. A signed 16-bit displacement is added to the PC.

The various indirect addressing options available for the ’C31 are shown in
Table 2–2. The table shows the options, along with the value of the modifica-
tion (mod) field, assembler syntax, operation, and function for each.

Central Processing Unit (CPU)

 2-10

Table 2–2. Indirect Addressing

Mod Field Syntax Operation Description

Indirect Addressing With Displacement

00000 *+ARn(disp) addr = ARn + disp With predisplacement add

00001 *–ARn(disp) addr = ARn – disp With predisplacement subtract

00010 *++ARn(disp) addr = ARn + disp
ARn = ARn + disp

With predisplacement add and modify

00011 *––ARn(disp) addr = ARn – disp
ARn = ARn – disp

With predisplacement subtract and modify

00100 *ARn++(disp) addr = ARn
ARn = ARn + disp

With postdisplacement add and modify

00101 *ARn––(disp) addr = ARn
ARn = ARn – disp

With postdisplacement subtract and modify

00110 *ARn++(disp)% addr = ARn
ARn = circ(ARn + disp)

With postdisplacement add and circular
modify

00111 *ARn––(disp)
%

add = ARn
ARn = circ(ARn – disp)

With postdisplacement subtract and
circular modify

Indirect Addressing With Index Register IRO

01000 *+ARn(IR0) addr = ARn + IR0 With preindex (IR0) add

01001 *–ARn(IR0) addr = ARn – IR0 With preindex (IR0) subtract

01010 *++ARn(IR0) addr = ARn + IR0
ARn = ARn + IR0

With preindex (IR0) add and modify

01011 *––ARn(IR0) addr = ARn – IR0
ARn = ARn – IR0

With preindex (IR0) subtract and modify

01100 *ARn++(IR0) addr = ARn
ARn = ARn + IR0

With postindex (IR0) add and modify

01101 *ARn––(IR0) addr= ARn
ARn = ARn – IR0

With postindex (IR0) subtract and modify

01110 *ARn++(IR0)% addr = ARn
ARn = circ(ARn + IR0)

With postindex (IR0) add and circular
 modify

01111 *ARn––(IR0)% addr = ARn
ARn = circ(ARn)– IR0

With postindex (IR0) subtract and circular
modify

LEGEND:

addr = memory address
ARn = auxiliary register AR0 – AR7
IRn = index register IR0 or IR1
disp = displacement
++ = add and modify
–– = subtract and modify
circ() = address in circular addressing
% = where circular addressing is performed

 Central Processing Unit (CPU)

2-11 TMS320C31 Architectural Overview

 Table 2–2. Indirect Addressing (Concluded)

Mod Field Syntax Operation Description

Indirect Addressing With Index Register IR1

10000 *+ARn(IR1) addr = ARn + IR1 With preindex (IR1) add

10001 *–ARn(IR1) addr = ARn – IR1 With preindex (IR1) subtract

10010 *++ARn(IR1) addr = ARn + IR1
ARn = ARn + IR1

With preindex (IR1) add
and modify

10011 *––ARn(IR1) addr = ARn – IR1
ARn = ARn – IR1

With preindex (IR1) subtract
and modify

10100 *ARn++(IR1) addr = ARn
ARn = ARn + IR1

With postindex (IR1) add
and modify

10101 *ARn––(IR1) addr = ARn
ARn = ARn – IR1

With postindex (IR1) subtract
and modify

10110 *ARn++(IR1)% addr = ARn
ARn = circ(ARn + IR1)

With postindex (IR1) add
and circular modify

 10111 *ARn––(IR1)% addr = ARn
ARn = circ(ARn – IR1)

With postindex (IR1) subtract
and circular modify

Indirect Addressing (Special Cases)

11000 *ARn addr = ARn Indirect

11001 *ARn++(IR0)B addr = ARn
ARn = B(ARn + IR0)

With postindex (IR0) add
and bit-reversed modify

LEGEND:
addr = memory address
ARn = auxiliary register AR0 – AR7
IRn = index register IR0 or IR1
disp = displacement
++ = add and modify

 –– = subtract and modify
 circ() = address in circular addressing
 % = where circular addressing is performed
 B = where bit-reversed addressing is performed

2.2.6 Instruction Set Summary

The ’C31 offers instructions for both embedded control and numeric support.
The following tables show each instruction’s mnemonic, description, and op-
eration. Table 2–3 shows the system control instructions; Table 2–4 lists the
program flow control instructions; Table 2–5 shows the logical and bit-manipu-
lation instructions; Table 2–6 lists the load and store instructions; Table 2–7
shows the arithmetic instructions; and Table 2–8 summarizes the
TMS320C31 parallel instructions, which execute in a single cycle.

Central Processing Unit (CPU)

 2-12

Table 2–3. System Control Instruction Summary

Mnemonic Description Operation

IACK Interrupt acknowledge Dummy read of src
IACK toggled low, then high

IDLE Idle until interrupt PC + 1 → PC
Idle until next interrupt

NOP No operation Modify ARn if specified

POP Pop integer from stack *SP–– → Dreg

POPF Pop floating-point value from stack *SP–– → Rn

PUSH Push integer on stack Sreg → *++ SP

PUSHF Push floating-point value on stack Rn → *++ SP

RETIcond Return from interrupt conditionally If cond = true or missing:
*SP–– → PC
1 → ST (GIE)

Else, continue

RETScond Return from subroutine conditionally If cond = true or missing:
*SP–– → PC

Else, continue

SIGI Signal, interlocked Signal interlocked operation
Wait for interlock acknowledge
Clear interlock

SWI Software interrupt Perform emulator interrupt sequence

TRAPcond Trap conditionally If cond = true or missing:
Next PC → * ++ SP
Trap vector N → PC
0 → ST (GIE)

Else, continue

LEGEND:
src = general addressing modes Dreg = register address (any register)
src1 = three-operand addressing modes Rn = register address (R7 — R0)
src2 = three-operand addressing modes Daddr = destination memory address
Csrc = conditional-branch addressing modes ARn = auxiliary register n (AR7 — AR0)
Sreg = register address (any register) addr = 24-bit immediate address (label)
count = shift value (general addressing modes) cond = condition code (see Chapter 11)
SP = stack pointer ST = status register
GIE = global interrupt enable register RE = repeat interrupt register
RM = repeat mode bit RS = repeat start register
TOS = top of stack PC = program counter

C = carry bit

 Central Processing Unit (CPU)

2-13 TMS320C31 Architectural Overview

Table 2–4. Program Flow Control Instruction Summary

Mnemonic Description Operation

Bcond Branch conditionally (standard) If cond = true:
If Csrc is a register, Csrc → PC
If Csrc is a value, Csrc + PC → PC

Else, PC + 1 → PC

BcondD Branch conditionally (delayed) If cond = true:
If Csrc is a register, Csrc → PC
If Csrc is a value, Csrc + PC + 3 → PC

Else, PC + 1 → PC

BR Branch unconditionally (standard) Value → PC

BRD Branch unconditionally (delayed) Value → PC

CALL Call subroutine PC + 1 → TOS
Value → PC

CALLcond Call subroutine conditionally If cond = true:
PC + 1 → TOS
If Csrc is a register, Csrc → PC
If Csrc is a value, Csrc + PC → PC

Else, PC + 1 → PC

DBcond Decrement and branch conditionally
(standard)

ARn – 1 → ARn
If cond = true and ARn ≥ 0:

If Csrc is a register, Csrc → PC
If Csrc is a value, Csrc + PC + 1 → PC

Else, PC + 1 → PC

DBcondD Decrement and branch conditionally
(delayed)

ARn – 1 → ARn
If cond = true and ARn ≥ 0:

If Csrc is a register, Csrc → PC
If Csrc is a value, Csrc + PC + 3 → PC

Else, PC + 1 → PC

RPTB Repeat block of instructions src → RE
1 → ST (RM)

Next PC → RS

RPTS Repeat single instruction src → RC
1 → ST (RM)
Next PC → RS
Next PC → RE

LEGEND:
src = general addressing modes Dreg = register address (any register)
src1 = three-operand addressing modes Rn = register address (R7 — R0)
src2 = three-operand addressing modes Daddr = destination memory address
Csrc = conditional-branch addressing modes ARn = auxiliary register n (AR7 — AR0)
Sreg = register address (any register) addr = 24-bit immediate address (label)
count = shift value (general addressing modes) cond = condition code (see Chapter 11)
SP = stack pointer ST = status register
GIE = global interrupt enable register RE = repeat interrupt register
RM = repeat mode bit RS = repeat start register
TOS = top of stack PC = program counter

C = carry bit

Central Processing Unit (CPU)

 2-14

Table 2–5. Logical and Bit Manipulation Instruction Summary

Mnemonic Description Operation

AND Bitwise logical-AND Dreg AND src → Dreg

AND3 Bitwise logical-AND (3-operand) src1 AND src2 → Dreg

ANDN Bitwise logical-AND with complement Dreg AND src → Dreg

ANDN3 Bitwise logical-ANDN (3-operand) src1 AND src2 → Dreg

CMPF Compare floating-point values Set flags on Rn – src

CMPF3 Compare floating-point values
(3-operand)

Set flags on src1 – src2

CMPI Compare integers Set flags on Dreg – src

CMPI3 Compare integers (3-operand) Set flags on src1 – src2

NOT Bitwise logical-complement src → Dreg

OR Bitwise logical-OR Dreg OR src → Dreg

OR3 Bitwise logical-OR (3-operand) src1 OR src2 → Dreg

TSTB Test bit fields Dreg AND src

TSTB3 Test bit fields (3-operand) src1 AND src2

XOR Bitwise exclusive-OR Dreg XOR src → Dreg

XOR3 Bitwise exclusive-OR (3-operand) src1 XOR src2 → Dreg

LEGEND:
src = general addressing modes Dreg = register address (any register)
src1 = three-operand addressing modes Rn = register address (R7 — R0)
src2 = three-operand addressing modes Daddr = destination memory address
Csrc = conditional-branch addressing modes ARn = auxiliary register n (AR7 — AR0)
Sreg = register address (any register) addr = 24-bit immediate address (label)
count = shift value (general addressing modes) cond = condition code (see Chapter 11)
SP = stack pointer ST = status register
GIE = global interrupt enable register RE = repeat interrupt register
RM = repeat mode bit RS = repeat start register
TOS = top of stack PC = program counter

C = carry bit

 Central Processing Unit (CPU)

2-15 TMS320C31 Architectural Overview

Table 2–6. Load and Store Instruction Summary

Mnemonic Description Operation

LDE Load floating-point exponent src(exponent) → Rn(exponent)

LDF Load floating-point value src → Rn

LDFcond Load floating-point value conditionally If cond = true, src → Rn
Else, Rn is not changed

LDFI Load floating-point value, interlocked Signal interlocked operation src → Rn

LDI Load integer src → Dreg

LDIcond Load integer conditionally If cond = true, src → Dreg
Else, Dreg is not changed

LDII Load integer, interlocked Signal interlocked operation src → Dreg

LDM Load floating-point mantissa src (mantissa) → Rn (mantissa)

STF Store floating-point value Rn → Daddr

STFI Store floating-point value, interlocked Signal interlocked operation Rn → Daddr

STI Store integer Sreg → Daddr

STII Store integer, interlocked Signal interlocked operation Sreg → Daddr

LEGEND:
src = general addressing modes Dreg = register address (any register)
src1 = three-operand addressing modes Rn = register address (R7 — R0)
src2 = three-operand addressing modes Daddr = destination memory address
Csrc = conditional-branch addressing modes ARn = auxiliary register n (AR7 — AR0)
Sreg = register address (any register) addr = 24-bit immediate address (label)
count = shift value (general addressing modes) cond = condition code (see Chapter 11)
SP = stack pointer ST = status register
GIE = global interrupt enable register RE = repeat interrupt register
RM = repeat mode bit RS = repeat start register
TOS = top of stack PC = program counter

C = carry bit

Central Processing Unit (CPU)

 2-16

Table 2–7. Arithmetic Instruction Set Summary

Mnemonic Description Operation

ABSF Absolute value of a floating-point number |src| → Rn

ABSI Absolute value of an integer |src| → Dreg

ADDC Add integers with carry src + Dreg + C → Dreg

ADDC3 Add integers with carry (3-operand) src1 + src2 + C → Dreg

ADDF Add floating-point values src + Rn → Rn

ADDF3 Add floating-point values (3-operand) src1 + src2 → Rn

ADDI Add integers src + Dreg → Dreg

ADDI3 Add integers (3-operand) src1 + src2 + → Dreg

ASH Arithmetic shift If count ≥ 0:
(Shifted Dreg left by count) → Dreg

Else:
(Shifted Dreg right by |count|) → Dreg

ASH3 Arithmetic shift (3-operand) If count ≥ 0:
(Shifted src left by count) → Dreg

Else:
(Shifted src right by |count|) → Dreg

FIX Convert floating-point value to integer Fix (src) → Dreg

FLOAT Convert integer to floating-point value Float(src) → Rn

LSH Logical shift If count ≥ 0:
(Dreg left-shifted by count) → Dreg

Else:
(Dreg right-shifted by |count|) → Dreg

LSH3 Logical shift (3-operand) If count ≥ 0:
(src left-shifted by count) → Dreg

Else:
(src right-shifted by |count|) → Dreg

MPYF Multiply floating-point values src × Rn → Rn

MPYF3 Multiply floating-point value (3-operand) src1 × src2 → Rn

MPYI Multiply integers src × Dreg → Dreg

MPYI3 Multiply integers (3-operand) src1 × src2 → Dreg

NEGB Negate integer with borrow 0 – src – C → Dreg

NEGF Negate floating-point value 0 – src → Rn

NEGI Negate integer 0 – src → Dreg

NORM Normalize floating-point value Normalize (src) → Rn

RND Round floating-point value Round (src) → Rn

ROL Rotate left Dreg rotated left 1 bit → Dreg

 Central Processing Unit (CPU)

2-17 TMS320C31 Architectural Overview

Table 2–7. Arithmetic Instruction Summary (Concluded)

Mnemonic Description Operation

ROLC Rotate left through carry Dreg rotated left 1 bit through carry → Dreg

ROR Rotate right Dreg rotated right 1 bit → Dreg

RORC Rotate right through carry Dreg rotated right 1 bit through carry →
Dreg

SUBB Subtract integers with borrow Dreg – src – C → Dreg

SUBB3 Subtract integers with borrow (3-oper-
and)

src1 – src2 – C → Dreg

SUBC Subtract integers conditionally If Dreg – src ≥ 0:
[(Dreg – src) << 1] OR 1 → Dreg
Else, Dreg << 1 → Dreg

SUBF Subtract floating-point values Rn – src → Rn

SUBF3 Subtract floating-point values (3-operand) src1 – src2 → Rn

SUBI Subtract integers Dreg – src → Dreg

SUBI3 Subtract integers (3-operand) src1 – src2 → Dreg

SUBRB Subtract reverse integer with borrow src – Dreg – C → Dreg

SUBRF Subtract reverse floating-point value src – Rn → Rn

SUBRI Subtract reverse integer src – Dreg → Dreg

Central Processing Unit (CPU)

 2-18

Table 2–8. Parallel Instruction Set Summary
Mnemonic Description Operation

Parallel Arithmetic With Store Instructions

ABSF
|| STF

Absolute value of a floating-point |src2| → dst1
|| src3 → dst2

ABSI
|| STI

Absolute value of an integer |src2| → dst1
|| src3 → dst2

ADDF3
|| STF

Add floating-point src1 + src2 → dst1
|| src3 → dst2

ADDI3
|| STI

Add integer src1 + src2 → dst1
|| src3 → dst2

AND3
|| STI

Bitwise logical-AND src1 AND src2 → dst1
|| src3 → dst2

ASH3
|| STI

Arithmetic shift If count ≥ 0:
src2 << count → dst1

|| src3 → dst2
Else:

src2 >> |count| → dst1
|| src3 → dst2

FIX
|| STI

Convert floating-point to integer Fix(src2) → dst1
|| src3 → dst2

FLOAT
|| STF

Convert integer to floating-point Float(src2) → dst1
|| src3 → dst2

LDF
|| STF

Load floating-point src2 → dst1
|| src3 → dst2

LDI
|| STI

Load integer src2 → dst1
|| src3 → dst2

LSH3
|| STI

Logical shift If count ≥ 0:
src2 << count → dst1

|| src3 → dst2
Else:

src2 >> |count| → dst1
|| src3 → dst2

MPYF3
|| STF

Multiply floating-point src1 x src2 → dst1
|| src3 → dst2

MPYI3
|| STI

Multiply integer src1 x src2 → dst1
|| src3 → dst2

NEGF
|| STF

Negate floating-point 0– src2 → dst1
|| src3 → dst2

 Central Processing Unit (CPU)

2-19 TMS320C31 Architectural Overview

Table 2–8. Parallel Instruction Set Summary (Concluded)

Mnemonic Description Operation

Parallel Arithmetic With Store Instructions (Concluded)

NEGI
|| STI

Negate integer 0 – src2 → dst1
|| src3 → dst2

NOT
|| STI

Complement src1 → dst1
|| src3 → dst2

OR3
|| STI

Bitwise logical-OR src1 OR src2 → dst1
|| src3 → dst2

SUBF3
|| STF

Subtract floating-point src1 – src2 → dst1
|| src3 → dst2

SUBI3
|| STI

Subtract integer src1 – src2 → dst1
|| src3 → dst2

XOR3
|| STI

Bitwise exclusive-OR src1 XOR src2 → dst1
|| src3 → dst2

Parallel Load Instructions

LDF
|| LDF

Load floating-point src2 → dst1
|| src4 → dst2

LDI
|| LDI

Load integer src2 → dst1
|| src4 → dst2

Parallel Multiply And Add/Subtract Instructions

MPYF3
|| ADDF3

Multiply and add floating-point op1 x op2 → op3
|| op4 + op5 → op6

MPYF3
|| SUBF3

Multiply and subtract floating-point op1 x op2 → op3
|| op4 – op5 → op6

MPYI3
|| ADDI3

Multiply and add integer op1 x op2 → op3
|| op4 + op5 → op6

MPYI3
|| SUBI3

Multiply and subtract integer op1 x op2 → op3
|| op4 – op5 → op6

Parallel Store Instructions

STF
|| STF

Store floating-point src1 → dst1
|| src3 → dst2

STI
|| STI

Store integer src1 → dst1
|| src3 → dst2

LEGEND:
src1 = register addr (R7 — R0) src2 = indirect addr (disp = 0, 1, IR0, IR1)
src3 = register addr (R7 — R0) src4 = indirect addr (disp = 0, 1, IR0, IR1)
dst1 = register addr (R7 — R0) dst2 = indirect addr (disp = 0, 1, IR0, IR1)
op3 = register addr (R0 or R1) op6 = register addr (R2 or R3)

op1,op2,op4,op5 – Two of these operands must be specified using register addr, and two must be specified
using indirect.

Memory Organization

 2-20

2.3 Memory Organization

The total memory space of the TMS320C31 is 16 megawords (32 bits each).
Program, data, and I/O space are contained within this 16-megaword address
space, allowing tables, program code, or data to be stored in either RAM or
ROM. This single address space allows you to maximize the use of the
memory space and to partition it as desired.

2.3.1 RAM, ROM, and Cache

Figure 2–3 shows how the memory is organized on the TMS320C31. RAM
blocks 0 and 1 are 1K x 32 bits each. Each RAM and ROM block is capable
of supporting two CPU accesses in either RAM block. The ’C31 also has an
on-chip bootloader ROM, which allows program stored in off-chip memory or
transferred through the serial port to be loaded anywhere in the memory map.
The separate program buses, data buses, and DMA buses allow parallel pro-
gram fetches, data reads and writes, and DMA operations. For example, the
CPU can access a data value in one RAM block and perform an external pro-
gram fetch in parallel with the DMA loading another RAM block, all within a
single cycle.

A 64 x 32-bit instruction cache is provided to store frequent sections of code,
thus greatly reducing the number of off-chip accesses necessary. This allows
code to be stored off-chip in slower, lower-cost memories. The external buses
are also freed for use by the DMA, external memory fetches, or other devices
in the system.

 Memory Organization

2-21 TMS320C31 Device Overview

Figure 2–3. Memory Organization

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

RDY
HOLD

HOLDA
STRB

R/W
D31–D0
A23–A0

M
U
X

M
U
X

DMAADDR Bus

DMADATA Bus

DADDR2 Bus

DADDR1 Bus

DDATA Bus

PADDR Bus

PDATA Bus

Program Counter/
Instruction Register CPU

DMA
Controller

32 24 24 32 24 24 32

32 24 32 24 24 32 24

Cache
(64 x 32)

RAM
Block 0

(1K x 32)

RAM
Block 1

(1K x 32)

Boot
ROM
Block

32

P
e
r
i
p
h
e
r
a
l

B
u
s

Memory Organization

 2-22

2.3.2 Memory Maps

There are two TMS320C31 memory maps. Use of either one depends on
whether the processor is running in the microprocessor mode (MCBL/MP = 0)
or the bootloader mode (MCBL/MP = 1). The memory maps are similar (see
Figure 2–4). All of the memory-mapped peripheral registers are in locations
808000h through 8097ffh. In both modes, RAM block 0 is located at addresses
809800 through 809bFFh, and RAM block 1 is located at addresses 809c00
through 809fffh.

In microprocessor mode, the bootloader ROM is not mapped into the
TMS320C31 memory map. Locations 0h through 0BFh consist of interrupt
vector, trap vector, and reserved locations, all of which are accessed over the
external memory port (STRB active). Locations 0C0h through 07FFFFFh and
locations 80A000h through 0FFFFFFh are also accessed using STRB.

In bootloader mode, the bootloader ROM is mapped into locations 0h through
0FFFh. There are 192 locations (0h through 0BFh) within this block for the
’C31 bootloader program. Locations 1000h through 07FFFFFh and locations
80A000h through 0FFFFFFh are also accessed using STRB.

 Memory Organization

2-23 TMS320C31 Device Overview

Figure 2–4. TMS320C31 Memory Maps

Interrupt Locations
and Reserved
(192 Words)

(External STRB Active)

0h

0BFh
0C0h

External
STRB Active

(8M Minus 192 Words)

7FFFFFh

Reserved
(32K Words)

800000h

807FFFh

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

808000h

8097FFh

RAM Block 0
(1K Words Internal)

809800h

809BFFh

RAM Block 1
(1K Words Internal)

809C00h

809FFFh
80A000h

External
STRB Active

(8M Minus 40K Words)
FFFFFFh

0h

FFFh
1000h

7FFFFFh

Reserved
(32K Words)

800000h

807FFFh

Peripheral Bus
Memory-Mapped

Registers
(6K Words Internal)

808000h

8097FFh

RAM Block 0
(1K Words Internal)

809800h

809BFFh
809C00h

809FFFh
80A000h

External
STRB
Active

FFFFFFh

Boot 1

Boot 2400000h

RAM Block 1
(1K Minus 64 Words

Internal)809FC0h
80A9F1h

User Program Interrupt
and Trap Branches
(64 Words Internal)

Boot 3FFF000h

External
STRB
Active

Reserved for Boot
Loader Operations

(4K Words)

(a) Microprocessor Mode (b) Microcomputer/Boot Loader Mode

(8M Minus 40K Words)

(8M Minus 4K Words)

Internal Bus Operation

 2-24

2.4 Internal Bus Operation

A large portion of the TMS320C31’s high performance is due to internal busing
and parallelism. The separate program buses (PADDR and PDATA), data
buses (DADDR1, DADDR2, and DDATA), and DMA buses (DMAADDR and
DMADATA) allow for parallel program fetches, data accesses, and DMA ac-
cesses. These buses connect all of the physical spaces (on-chip memory, off-
chip memory, and on-chip peripherals) supported by the TMS320C31.
Figure 2–3 shows these internal buses and their connection to on-chip and off-
chip memory blocks.

The program counter (PC) is connected to the 24-bit program address bus
(PADDR). The instruction register (IR) is connected to the 32-bit program data
bus (PDATA). These buses can fetch a single instruction word every machine
cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are regis-
ter buses REG1 and REG2 that can carry two data values from the register file
to the multiplier and ALU every machine cycle. Figure 2–2 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.

 On-Chip Peripherals

2-25 TMS320C31 Device Overview

2.5 On-Chip Peripherals

All TMS320C31 peripherals are controlled through memory-mapped registers
on a dedicated peripheral bus. The peripheral bus is composed of a 32-bit data
bus and a 24-bit address bus. The peripheral bus permits straightforward com-
munication to the peripherals. The TMS320C31 peripherals include two timers
and one serial port. Figure 2–5 shows the peripherals with associated buses
and signals.

Figure 2–5. Peripheral Modules

M
e
m
o
r
y

S
p
a
c
e

P
e
r
i
p
h
e
r
a
l

D
a
t
a

B
u
s

P
e
r
i
p
h
e
r
a
l

A
d
d
r
e
s
s

B
u
s

Serial Port 0

Port Control Register

R/X Timer Register

Data Transmit Register

Data Receive Register

Timer 0

Global Control Register

Timer Period Register

Timer Counter Register

Timer 1

Global Control Register

Timer Period Register

Timer Counter Register

FSX0

DX0

CLKX0

FSR0

DR0

CLKR0

TCLK0

TCLK1

On-Chip Peripherals

 2-26

2.5.1 Timers

The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external clocking. Each timer has an I/O
pin that can be used as an input clock to the timer or as an output signal driven
by the timer. The pin may also be configured as a general-purpose I/O pin.

2.5.2 Serial Port

The TMS320C31 offers a full-duplex, synchronous serial port, which can be
used as a general system interface or glueless logic connection to an external
analog converter. The serial port can be configured to transfer 8, 16, 24, or 32
bits of data per word. The clock for each serial port can originate either internal-
ly or externally. An internally generated divide-down clock is provided. The se-
rial port can also be configured as timers or bit I/O pins. A special handshake
mode allows the TMS320C31s to communicate via their serial ports with auto-
matic synchronization.

 Direct Memory Access (DMA)

2-27 TMS320C31 Device Overview

2.6 Direct Memory Access (DMA)

The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the operation of the CPU. The DMA con-
troller can be configured to synchronize transfers with external, serial port or
timer interrupts. Therefore, the TMS320C31 can interface to slow memories
and to on-chip and system peripherals without reducing throughput to the
CPU. The DMA controller contains its own address generators, source and
destination registers, and transfer counter. Dedicated on-chip DMA address
and data buses minimize conflicts between the CPU and the DMA controller
for on-chip resources. A DMA operation consists of a block or single-word
transfer to or from memory. Figure 2–6 shows the DMA controller with
associated buses.

Figure 2–6. DMA Controller

DMAADDR Bus

DMADATA Bus P
e
r
i
p
h
e
r
a
l

D
a
t
a

B
u
s

P
e
r
i
p
h
e
r
a
l

A
d
d
r
e
s
s

B
u
s

DMA Controller

Global Control Register

Source Address Register

Destination Address
Register

Transfer Counter Register

External Bus Operation

 2-28

2.7 External Bus Operation

The TMS320C31 primary bus is the external memory interface. The primary
bus consists of a 24-bit address bus, 32-bit data bus, and a set of control sig-
nals. It can be used to address external program/data memory or I/O space.
The bus has an external ready signal (RDY), which can be used in conjunction
with the on-chip software for controlled wait-state generation. See Table 2–9
for a description of the TMS320C31 external signals.

2.7.1 External Bus Control Features

The TMS320C31 external bus provides flexibility to implement different types
of memory systems. The STRB control signal remains active between consec-
utive read cycles to the same bank of memory, allowing high-speed SRAM and
static-column decode accesses. In addition, the primary bus has a program-
mable bank switching feature, providing more time for address decoding and
memory turn-off, when a bank boundary is crossed.

2.7.2 Multiprocessor Support

The TMS320C31 supports shared-memory multiprocessor systems through
its HOLD and hold acknowledge (HOLDA) signals. When the HOLD input is
asserted, the primary bus control, address and data bus signals go into a high-
impedance state after the current bus cycle is complete. The HOLDA output
acknowledges that the ’C31 primary bus has gone into high-impedance state.

Interlocked operations ease the implementation of multiprocessor operations
such as busy-wait loops, shared counter manipulation, and semaphores. The
TMS320C31 supports interlocked operations through its XF0 and XF1 pins
and dedicated interlocked operation instructions. XF0 and XF1 can also be
used as bit I/O signals.

 Interrupts

2-29 TMS320C31 Architectural Overview

2.8 Interrupts

The TMS320C31 supports four external interrupts (INT3–INT0), a number of
internal peripheral interrupts, 28 software interrupts (traps), and a nonmask-
able external RESET signal. The external and internal peripheral interrupts
can be used to interrupt either the DMA or the CPU. When the CPU responds
to the interrupt, the IACK pin can be used to signal an external interrupt ac-
knowledge. Typical interrupt latency times are less than 1 µs for a 50-ns
TMS320C31.

TMS320C31 Signal Descriptions

 2-30

2.9 TMS320C31 Signal Descriptions

Table 2–9 describes the external signals of the TMS320C31. They are listed
according to the signal name; the number of pins allocated; the input (I), output
(O), or high-impedance state (Z) operating modes; a brief description of the
signal’s function; and the condition that places an output pin in high imped-
ance. A line over a signal name (for example, RESET) indicates that the sig-
nal is active low (true at a logic 0 level).

Table 2–9. TMS320C31 Signal Descriptions

Signal # Pins I/O/Z† Description Condition When
Signal Is in High Z ‡

Primary Bus Interface (61 Pins)

D31–D0 32 I/O/Z 32-bit data port. S H R

A23–A0 24 O/Z 24-bit address port.. S H R

R/W 1 O/Z Read/write signal. This pin is high when a read is per-
formed; low when a write is performed over the parallel
interface.

S H R

STRB 1 O/Z External access strobe. S H

RDY 1 I Ready signal. This pin indicates that the external de-
vice is prepared for a transaction completion.

HOLD 1 I Hold signal. When HOLD is a logic low, any ongoing
transaction is completed. The A23–A0, D31–D0,
STRB, and R/W signals are placed in a high-impe-
dance state, and all transactions over the primary bus
interface are held until HOLD becomes a logic high, or
the NOHOLD bit of the primary bus control register is
set.

HOLDA 1 O/Z Hold acknowledge signal. This signal is generated in
response to a logic low on HOLD. It signals that A23–
A0, D31–D0, STRB, and R/W are placed in a high-im-
pedance state and that all transactions over the bus will
be held. HOLDA will be high in response to a logic high
of HOLD, or the NOHOLD bit of the primary bus control
register is set.

S

† Input (I), output (O), high-impedance (Z)state.
‡ S = SHZ active, H = Hold active, R = Reset active.

 TMS320C31 Signal Descriptions

2-31 TMS320C31 Architectural Overview

Table 2–9. TMS320C31 Signal Descriptions (Continued)

Signal # Pins I/O/Z† Description Condition When
Signal Is in High Z ‡

Control Signals (10 Pins)

RESET 1 I Reset. When this pin is a logic low, the device is placed
in the reset condition. When reset becomes a logic 1,
execution begins from the location specified by the re-
set vector.

INT3 — INT0 4 I External interrupts.

IACK 1 O/Z Interrupt acknowledge signal. IACK is active during the
IACK instruction. This can be used to indicate the be-
ginning or end of an interrupt service routine.

S

MCBL/MP 1 I Microcomputer boot loader/microprocessor mode pin.

SHZ 1 I Shut down high Z. An active low shuts down the
TMS320C31 and places all pins in a high-impedance
state. This signal is used for board-level testing to en-
sure that no dual drive conditions occur. CAUTION: An
active low on the SHZ pin corrupts TMS320C31
memory and register contents. Reset the device with
an SHZ = 1 to restore it to a known operating condition.

XF1, XF0 2 I/O/Z External flag pins. They are used as general-purpose
I/O pins or to support interlocked processor instruc-
tions.

S R

Serial Port 0 Signals (6 Pins)

CLKR0 1 I/O/Z Serial port 0 receive clock. This pin serves as the serial
shift clock for the serial port 0 receiver.

S R

CLKX0 1 I/O/Z Serial port 0 transmit clock. This pin serves as the serial
shift clock for the serial port 0 transmitter.

S R

DR0 1 I/O/Z Data receive. Serial port 0 receives serial data via the
DR0 pin.

S R

DX0 1 I/O/Z Data transmit output. Serial port 0 transmits serial data
on this pin.

S R

FSR0 1 I/O/Z Frame sychronization pulse for receive. The FSR0
pulse initiates the receive data process over DR0.

S R

FSX0 1 I/O/Z Frame synchronization pulse for transmit. The FSX0
pulse initiates the transmit data process over pin DX0.

S R

† Input (I), output (O), high-impedance state (Z).
‡ S = SHZ active, H = Hold active, R = Reset active.

TMS320C31 Signal Descriptions

 2-32

Table 2–9. TMS320C31 Signal Descriptions (Concluded)

Signal # Pins I/O/Z† Description Condition When
Signal Is in High Z ‡

Timer Signals (2 Pins)

TCLK0 1 I/O/Z Timer clock 0. As an input, TCLK0 is used by timer 0 to
count external pulses. As an output pin, TCLK0 outputs
pulses generated by timer 0.

S

TCLK1 1 I/O/Z Timer clock 1. As an input, TCLK0 is used by timer 1 to
count external pulses. As an output pin, TCLK1 outputs
pulses generated by timer 1.

S

Supply and Oscillator Signals (49 Pins)

H1 1 O/Z External H1 clock. This clock has a period equal to
twice CLKIN.

S

H3 1 O/Z External H3 clock. This clock has a period equal to
twice CLKIN.

S

VDD 20 I +5-VDC supply pins. All pins must be connected to a
common supply plane. §

VSS 25 I Ground pins. All ground pins must be connected to a
common ground plane.

X1 1 O/Z Output pin from the internal crystal oscillator. If a crystal
is not used, this pin should be left unconnected.

S

X2/CLKIN 1 I The internal oscillator input pin from a crystal or a clock.

Reserved (4 Pins) ¶

EMU2 — EMU0 3 I Reserved. Use 20-kΩ pull-up resistors to +5 volts.

EMU3 1 O/Z Reserved. S

† Input (I), output (O), high-impedance state (Z).
‡ S = SHZ active, H = Hold active, R = Reset active.
§ Recommended decoupling capacitor value is 0.1 µF.
¶ Follow the connections specified for the reserved pins. 18- to 22-kΩ pull-up resistors are recommended. All +5 volt supply

pins must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

 Running Title—Attribute Reference

3-1 Chapter Title—Attribute Reference

TMS320C31 Features/Performance
Comparison

This chapter compares the device features and performance of the
TMS320C31 to other embedded controllers. The TMS320C31’s CPU pro-
vides higher system and numeric performance than CISC microprocessors
and microcontrollers and also provides higher sustained numeric performance
than RISC embedded controllers. The TMS320C31 also incorporates several
peripherals on-chip, which helps reduce system cost and complexity. It also
possesses a significant amount of on-chip memory, which facilitates the real-
time execution of time-critical routines, reducing the need for expensive, high-
speed external memory.

The topics discussed include:

Topic Page

3.1 TMS320C31 Feature Comparison Versus Other Embedded
Controllers 3-2.

3.2 TMS320C31 Benchmark Performance Versus Other Embedded
Controllers 3-4.

Chapter 3

TMS320C31 Feature Comparison Versus Other Embedded Controllers

 3-2

3.1 TMS320C31 Feature Comparison Versus Other Embedded Controllers

Table 3–1 lists and describes the fields shown in Table 3–2. Table 3–2 high-
lights the features and performance of several embedded controllers in the
same price range, including the TMS320C31.

Table 3–1.Description of the Fields in Table 3–2

Field Name Description

Device–MHz Device part number and speed in MHz

MIPS Millions of instructions executed per second

No. Buses, Number of external memory buses

Width Width of the external data buses

On-Chip RAM (Bytes) Amount of on-chip program, data and cache memory.

Serial Ports Number of on-chip serial ports.

Timer Number of on-chip counter timers.

DMA Chan Number of DMA controller channels.

Multiply Time (ns) Integ/Float The time the processor takes to perform a single, nonpipelined integer
multiply/ floating point multiply.

 TMS320C31 Feature Comparison Versus Other Embedded Controllers

3-3 TMS320C31 Feature and Performance Comparison

Table 3–2. Feature/Performance Comparison of Embedded Controllers

Device–MHz MIPS No. On-Chip
RAM

Peripherals Multiply
Time (ns)Buses,

Width

RAM

(Bytes)
Serial
Ports

Timer DMA Chan Time (ns)

 Integ/Float

TMS320C31–27 14 1 , 32 8352 1 2 1 74/74

TMS320C31–33 17 1 , 32 8352 1 2 1 60/60

TMS320C31–40 20 1 , 32 8352 1 2 1 50/50

MC68332–16 2–4 1 , 16 2048 2 5 2 180/NA

MC68331–16 2–4 1 , 16 0 2 4 1 180/NA

i960KA–16 8 1 , 32 512 0 0 0 540/NA

i960KA–25 12 1 , 32 512 0 0 0 360/NA

i960KB–16 8 1 , 32 512 0 0 0 540/660

i960KB–25 12 1 , 32 512 0 0 0 360/440

AMD29005–16 10–16 1 , 32 0 0 1 0 2640/21660

AMD29000–16 10–15 2 , 32 512 0 1 0 2640/21660

AMD29035–16 12–16 1 , 32 4096 0 1 0 1320/10830

Key:
NA — The device does not support this feature in hardware.

TMS320C31 Benchmark Performance Versus Other Embedded Controllers

 3-4

3.2 TMS320C31 Benchmark Performance Versus Other Embedded
Controllers

The best method to evaluate a processor’s performance in a given application
is to benchmark the execution time of the applications software under target
system constraints. The next best evaluation method is to benchmark the per-
formance of similar code or code that is representative of the target applica-
tion. However, due to short product development cycles, the processor evalu-
ation period is rarely long enough to do the code development and system
emulation necessary to perform such a rigorous performance analysis for
each candidate device. Consequently, many system designers use published
device benchmarks to obtain rough performance estimates for different
classes of algorithms.

Table 3–3 shows the published manufacturer benchmarks for several C lan-
guage programs. These benchmarks have been used by processor manufac-
turers to highlight the general performance of their devices and are a subset
of a group of benchmarks referred to as the “Intel Intro Benchmarks”. Even
though these benchmarks do not necessarily reflect controller performance for
many realtime applications, the results are presented here to illustrate that
high system-control performance can be achieved with the TMS320C31 using
high-level language code. “Intel Intro Benchmarks” results for embedded pro-
cessors at the same price level as the TMS320C31 are also shown in
Table 3–3 to show that the TMS320C31 is a low-cost, high-performance solu-
tion relative to other embedded controllers.

 TMS320C31 Benchmark Performance Versus Other Embedded Controllers

3-5 TMS320C31 Feature and Performance Comparison

Table 3–3. Benchmark Comparison of the TMS320C31 With Embedded Controllers at the
Same Price Level

Benchmark (Units) ’C3x(1)

60 ns
AMD29000
60 ns (2)

(YARC Board)

i960KA (3)

40 ns
68030(3)

30 ns

Dhrystones/(sec) *32,237 *24,388 *23,423 *9,049

Bubble-sort (msec) 67.875 122 109 176

Quick-sort (msec) 40.692 95 81.8 173

matmult (msec) 17.192 91.942 45.378 113.062

anneal (sec) 15.120 14.86 12.67 22.552

Notes: 1) The ’C31 benchmarks were run on the Texas Instruments ’C3x application board using zero wait-state SRAM. The
C code was compiled using the TMS320 Floating-Point DSP Optimizing C compiler. The benchmarks yield the same
results for both the ’C30 and ’C31.

2) AMD29000 results are taken from an AMD application note, Intel i960CA Benchmark Report Critique by Tim Olson.

3) The i960KA and 68030 numbers are from the February 1990 issue of Electronic Engineering.

4) An asterisk (*) denotes compiler in-lining of application functions. Without using in-lining, the TMS320C31 provides
24,876 Dhrystones/sec.

3.2.1 Dhrystone Benchmark

The Dhrystone benchmark was originally used to measure device perfor-
mance and compiler efficiency in typical host CPU integer applications. It does
not include input/output or operating system operations. In Table 3–3, the re-
sults for Dhrystone version 1.1 are shown due to the widespread availability
of processor benchmark results for version 1.1 over later versions of the
benchmark.

3.2.2 Bubble- and Quick-Sort Benchmarks

The bubble-sort program performs a bubble sort on an array of elements, and
the quick-sort program uses the quick-sorting algorithm to sort an array of ele-
ments.

3.2.3 matmult Benchmark

matmult is a routine that multiplies two 7×7 matrices together. The 7×7 ma-
trices are subsets of 8×8 matrices.

TMS320C31 Benchmark Performance Versus Other Embedded Controllers

 3-6

3.2.4 anneal Benchmark

anneal solves the travelling salesman’s problem—given a number of cities that
the salesman wants to visit, find the shortest route to visit all of the cities by
visiting each city only once. The problem is solved using simulated annealing
techniques.

3.2.5 Benchmark Summary

For the system control benchmarks described above, the TMS320C31 per-
forms at the same level as higher priced devices and overall, outperforms de-
vices at the same price level. For the matmult benchmark, the TMS320C31
offers superior results due to its single-cycle multiply support on-chip. These
benchmarks focus on CPU performance and do not reflect that the
TMS320C31 possesses more on-chip peripherals than the other processors
shown. On-chip peripheral integration reduces system cost and complexity
and is an important consideration in embedded controller selection.

 Running Title—Attribute Reference

4-1 Chapter Title—Attribute Reference

Application Examples

This chapter presents four application examples that show how the
TMS320C30 and TMS320C31 have been used to integrate system control
and signal-processing functions in several application areas. In two of the ex-
amples, SPOX, a realtime embedded operating system from Spectron Micro-
Systems, is used to facilitate the integration. For more information on SPOX,
refer to Chapter 6. The examples discussed are as follows:

Topic Page

4.1 Telecommunications Example Using SPOX 4-2.

4.2 Instrumentation Application and Processor Evaluation Example 4-5. .

4.3 Test Equipment Example Using SPOX 4-9.

Chapter 4

Telecommunications Example Using SPOX

 4-2

4.1 Telecommunications Example Using SPOX

4.1.1 Speech Recognition With TMS320C31 and SPOX

Voice Processing Corp. (VPC) of Cambridge, Massachusetts, a leader in
speech recognition technology, develops and markets proprietary technology
for speaker-independent continuous and discrete word recognition. VPC has
taken an approach to speech recognition that is particularly adept for handling
voices over the telephone. Telephone transactions is one area in which
speech recognition technology has a compelling market need.

VPC has been supplying speech recognition technology to telecom system
manufacturers and over-the-phone service providers for several years, allow-
ing these firms to replace human operators. VPC recognizers are being used
in a wide array of applications, such as credit card verification, operator inter-
cept, telephone order entry, and voice-mail.

4.1.2 Lower Cost and More Recognizers

The VPC recognition software requires a high-performance platform that can
execute both signal processing and general-purpose algorithms. Since such
hardware platforms did not exist on the market, in 1989 VPC developed and
built an ISA board with two different processors: the Intel i386 microprocessor
and Texas Instruments TMS320C25 signal processor. All of the cycles of the
ISA board were needed to execute one speaker-independent speech recog-
nizer in realtime. Since 1989, as their customers required more and more lines
of speech recognition to automate over-the-phone services, VPC needed a
new hardware platform that could provide more lines of recognizers at a lower
cost per line. VPC also needed a more powerful hardware platform to run new
recognition algorithms being developed in their research lab.

As VPC engineers saw it, there were two ways to reduce the cost of the speech
recognition hardware. They could go to faster hardware that would execute
multiple recognizers per chip or they could pack more recognizers onto a
single ISA board so they could amortize the board and system cost over more
recognizers. They also wanted this new platform to give them more power and
flexibility to handle new algorithms. Some of their customers wanted to port
different voice functions, such as speech synthesis, to the VPC hardware plat-
form. To ensure that the hardware platform could be easily reprogrammed,
VPC wanted to replace their heterogeneous architecture (viz i386 and ’C25)
with a homogeneous multiprocessing architecture, which makes it much easi-
er to partition functions across processors. Since the new processor had to
take on the functions of both the 386 and ’C25, the support of a multitasking
operating system was important.

 Telecommunications Example Using SPOX

4-3 Application Examples

The VPC criteria for selecting the processor for their next generation platform
were as follows:

1) The cost of hardware per recognizer.

2) The number of microprocessors (viz. recognizers) they can incorporate on
a board.

3) C compiler and operating system support for pre-emptive multitasking and
multiprocessing.

4.1.3 VPRO-4: A Homogeneous Multi-DSP Architecture

The new platform VPC developed, called the VPRO-4, is an ISA board with
four ’C31s and a shared-memory architecture. Each ’C31 has 512K bytes of
zero-wait-state local memory, and there is 1–8 megabytes of multiported
shared memory on the board. All four ’C31s and the PC host can read and write
into this shared memory. A robust set of tokens, semaphores, and interrupts
facilitates interprocessor communications via software-defined memory struc-
tures. Communications with the PC are streamlined by a PC bus I/O-mapped
control port which provides for unintrusive polling operations. Realtime voice
I/O to a standard voice bus (Dialogic PEB or Natural Microsystems MVIP) is
done over the serial port of the ’C31 via an ASIC interface chip.

Figure 4–1. VPRO-4 Hardware Architecture

’C31

512K-byte
SRAM

’C31

512K-byte
SRAM

’C31

512K-byte
SRAM

’C31

512K-byte
SRAM

MVIP

PEB

Auxiliary
Port

PCM
Interface

1 to 8M-byte
DRAM

Global
Resources

Control
Port

ISA
(PC/AT)
Bus

Telecommunications Example Using SPOX

 4-4

4.1.4 From Tiger 30 to Realtime Recognition

VPC developed software with the Tiger 30 development board from DSP Re-
search. Two discrete word recognizers could run on a single ’C31—eight rec-
ognizers on a single ISA board. They also used the board to experiment with
SPOX to help them understand its capabilities and performance better.

It took about six months to build the VPRO-4 hardware prototype using the
Tiger 30 and SPOX. Because the Tiger 30 board did not interface to the voice
bus, they tested their recognizer with canned voice data stored on the host file
system. After the VPRO-4 hardware and the necessary low-level software for
loading and interfacing to the board was completed, it took just one day to
move the SPOX realtime kernel and the recognizer software over to the
VPRO-4 hardware.

Each ’C31 on the VPRO-4 runs several tasks using the preemptive multitask-
ing capability of SPOX. A high-priority task moves time-critical voice data to
and from the voice bus. The bulk of the ’C31 cycles, however, are used for
speech recognition—it runs one recognition task for continuous word input or
two recognition tasks for discrete word input. There are also background tasks
for communicating with the host and other housekeeping functions.

4.1.5 A New Level of Interoperability

VPC’s ’C31-based platform gives them a higher performance system and it
lets them serve their customers better. Research continues at VPC to improve
the recognition algorithms and take advantage of the processing power of the
VPRO-4. In some customer applications, speech recognition has to be com-
plemented with other voice functions, such as speech synthesis. The VPRO-4
makes it easy to port third-party voice algorithms to the DSP platform, signifi-
cantly reducing total system costs by removing the need for multiple hardware
platforms. Other VPC customers have their own ’C31/SPOX hardware. The
commonality in the system environment makes it much easier for VPC to port
their recognition software to the customer’s hardware. This level of interoper-
ability is a significant milestone for speech recognition and signal processing
technology. Over-the-phone service providers can now quickly incorporate
new voice technology on either VPC’s hardware or their own hardware to suit
different applications.

 Instrumentation Application and Processor Evaluation Example

4-5 Application Examples

4.2 Instrumentation Application and Processor Evaluation Example

4.2.1 Background and System Description

Nicolet Instruments developed the first digital oscilloscope 20 years ago. They
have since developed and marketed a variety of other data-acquisition prod-
ucts based on the concept of digitizing analog waveforms. Although they de-
sign 8-bit digitizers that collect data at rates of up to 200 million samples/se-
cond, their product strength is in the higher-precision, lower-speed digitizers
(10 to 16 bits wide, 1–50 million samples/second) with very long memories
(greater than 1 million samples). Nicolet’s requirements for an embedded pro-
cessor were low system cost, and high data movement and numeric proces-
sing performance.

Figure 4–2 is a block diagram of a typical Nicolet high-precision data-acquisi-
tion system using a dual-processor architecture. The master CPU controls the
data-acquisition subsystem, which includes the analog converters, digitizer
memory and arbitration logic. In the current implementation of this architec-
ture, a CISC processor is used as the master CPU. The slave processor han-
dles high-speed data transfers within, in, and out of the system and performs
numeric operations on the digitized data. To perform these operations effi-
ciently, Nicolet wanted a slave processor that would allow low-system cost,
and high-data movement and numeric-processing performance using the C
language. Nicolet selected the ’C31 due to its balance of price and perfor-
mance over RISC solutions. In addition, for extremely cost-sensitive designs,
Nicolet is considering the ’C31 to integrate the functionality of both the master
and slave processors.

Instrumentation Application and Processor Evaluation Example

 4-6

Figure 4–2. System Diagram

A/D A/D A/D A/D

Device Under Test

1 2 3 4 Acquisition Memory

16

Arbitor

16/3216/32

16 16

CPU/Coprocessor
Shared Memory

Master
CPU

Slave
Coprocessor

For Nicolet’s data-acquisition equipment, the processor must move data and
complete calculations in realtime, and also have enough performance to dis-
play the information in a reasonable amount of time. To fulfill these require-
ments, the slave processor needed the following characteristics:

� High data-movement rate

� Fast address-generation capability

� Realtime calculation of waveform pulse parameters

� Floating-point Fast-Fourier transformation (FFT) of input samples to en-
able the frequency domain display of the data

� Performance of other realtime DSP operations including filtering, correla-
tion, and convolution

The importance of these device characteristics is illustrated in some of the al-
gorithms Nicolet uses in its data acquisition equipment—archive shuffle, wa-
veform processing and FFT.

 Instrumentation Application and Processor Evaluation Example

4-7 Application Examples

4.2.2 Archive Shuffle

When Nicolet’s equipment digitizes a waveform, the trigger or start point is not
necessarily at the first location in digitizer memory. The archive shuffle algo-
rithm moves the trigger point to the first location without using additional data
memory (in-place data movement). Even though the archive shuffle algorithm
did not take advantage of a DMA controller, the ’C31 is efficient at performing
the data shuffle due to its single cycle instructions and auxiliary register arith-
metic units, which can generate two pointer addresses every instruction cycle.
Nicolet modified the algorithm to use the ’C31’s on-chip DMA to move blocks
of data in and out of the ’C31, in parallel with the ’C31 CPU calculating the
source and destination addresses of subsequent blocks. With the use of the
DMA, Nicolet estimated that the time required to shuffle a block of data was
reduced to 35% of the time required for the non-DMA implementation.

4.2.3 Waveform Processing

Waveform processing involves calculating waveform parameters such as
area, rise time, root-mean-square (RMS), and standard deviation. The wave-
form processing must be performed on 1K samples fast enough to allow 5–10
user-screen updates/second. The ’C31 provided more than enough perfor-
mance to meet the screen update requirements. With its single-cycle multiply
capability, the ’C31 especially excels in operations that require multiplies in the
inner loop. In addition to the on-chip hardware math support, the ’C31 per-
forms the waveform calculations quickly due to its 2K words of on-chip, gener-
al-purpose memory and on-chip program cache.

4.2.4 Fast Fourier Transform

The requirements for the floating-point FFT are similar to those for waveform
processing. The processor must perform a 1K FFT fast enough to allow 10
screen updates/second. The ’C31 FFT performance far exceeded the user-
update requirement. And if greater FFT performance was needed, Nicolet ob-
served that they could use the C-callable, hand-optimized assembly-language
FFT routines available from Texas Instruments. This is not an option with many
RISC processors.

Instrumentation Application and Processor Evaluation Example

 4-8

4.2.5 Advantages of a TMS320C31 System

Nicolet explained their choice of a ’C31 as the embedded processor with the
following comments:

1) The ’C31 offers a good balance of data movement and numeric perfor-
mance for the price.

2) The ’C31’s performance is on par with more expensive processors, mak-
ing many of the extra-cost product options either no-cost options or extra-
margin options.

3) The ’C31 is very efficient at accessing arrays of data due to its ability to
do auto-increment indirect addressing.

4) The majority of their code consists of small loops, which makes good use
of the ’C31’s on-chip instruction cache.

5) The ’C31 allows the user to implement algorithms using either floating-
point or integer math, while achieving the same performance with either
data format.

6) C callable, optimized DSP algorithms are available for the ’C31.

7) Code development is not required to build a software monitor for the ’C31.
A target monitor plugs directly into the target system’s ’C31.

8) The ’C31 has a clear family road-map for higher performance with the
availability of the ’C3x and ’C4x generations of TMS320s.

 Test Equipment Example Using SPOX

4-9 Application Examples

4.3 Test Equipment Example Using SPOX

Developed by Doble Engineering in the 1930s, the Doble test is run routinely
by power utility companies to test insulation material used in power substa-
tions. Over time, the electrical insulation material can break down and can lead
to severe damage to the substation and interruptions to service if the problems
go undetected. The insulation test procedure involves applying an alternating
voltage across the material specimen and a reference sample. The electrical
current, capacitance, dielectric-loss, and power factor across the test speci-
mens are measured and analyzed in realtime. To make the test procedure
practical, Doble has designed their equipment to be quick and easy to operate
and able to make accurate measurements in the presence of a high level of
electrical interference.

Figure 4–3. Doble Test Set-Up

E

Current
and

Loss Meter

IC
IT

IR

Test
Specimen

IC IT

IR

E

Q

Power factor = cos θ

E = Test Voltage
CP = Equiv Parallel Capacitor
RP = Equiv Parallel Resistor

Doble Engineering upgraded their M-series test system from an all-analog de-
sign to an all-digital design to reduce production cost, provide portability, in-
crease accuracy, and provide expert advice to the operator. Elegantly simple,
the new system consists of an IBM-compatible PC-AT with an attached DSP.
The DSP replaces the analog signal processing hardware and executes pro-
prietary signal processing algorithms which produce more accurate measure-
ments. The PC host serves as an expert system and provides a graphical user
interface (GUI) complete with dials and meters for operator ease.

Test Equipment Example Using SPOX

 4-10

Figure 4–4. The New Doble M Series System

ÎÎÎÎ
DSP

Operator

ISA Bus

Realtime
Data

Control

PC

4.3.1 TMS320C30 and SPOX—Merging DSP and Control

By building an experimental DSP-based system using a fixed-point DSP,
Doble began the transition from analog to digital technology. Because the DSP
lacked many general-purpose functions and was difficult to program, they
used it as a black box to replace the analog circuitry that performed filtering
and modulation. The DSP code was kept short and was written entirely in as-
sembly language. Realtime I/O and instrument control were performed with an
existing attached microprocessor board (with an Intel 80186) running a com-
mercial realtime operating system. Problems with this black-box approach in-
dicated that what Doble needed was a more programmable DSP platform that
could handle both signal processing and realtime instrument control.

When Doble went from the experimental system to a production system, their
engineers evaluated six DSPs. The TMS320C30 offered a general-purpose
architecture that could perform both realtime control and signal-processing
functions. The floating-point arithmetic capability made data analysis easier
because it guaranteed sufficient accuracy in the analysis algorithms over a
wide dynamic range. Doble engineers also evaluated C compilers for the ’C30
and other DSPs—the ’C30 C compiler clearly generated better code. When
they learned of the Spectron Microsystems SPOX operating system, they
were ready to revise the architecture of the system: the realtime I/O and instru-

 Test Equipment Example Using SPOX

4-11 Application Examples

ment-control functions of the 80186 and the traditional signal-processing func-
tions of the fixed-point DSP would be performed by the TMS320C30. Using
SPOX would also allow Doble to use an object-oriented approach to all of their
software development and help them make their code maintainable and easy
to modify.

4.3.2 From Proof-of-Concept to the Final Product

To validate this new architecture, Doble purchased the Sonitech Spirit 30 de-
velopment board for the PC. Because SPOX had already been ported to the
Sonitech board, Doble completed a prototype of the new system in two
months. Doble then ported SPOX to their customer’s ’C30 platform using the
SPOX-OS component product. This effort involved reconfiguring SPOX and
writing a few device drivers for data I/O and host I/O. Because the two hard-
ware platforms had the same SPOX system software, almost all of the proto-
type code was reused in the product.

While all of Doble’s DSP code had been written in assembly language, the
TMS320C30 was programmed in C using the SPOX realtime kernel and math
library. Because the SPOX math library had been coded by Spectron in as-
sembly language, the signal-processing algorithms ran efficiently, using only
about 50% of the ’C30 cycles. This left enough cycles to perform realtime con-
trol functions and new signal processing algorithms. Because the resultant
DSP software architecture was more modular, new functions could be added
or changed easily. The multitasking capability of SPOX allowed math functions
to run concurrently as the DSP acquired data in realtime and communicated
with the PC host. Because of the flexibility of the DSP platform, Doble planned
to provide different services and products to their customers using the same
platform.

 4-12

 Running Title—Attribute Reference

5-1 Chapter Title—Attribute Reference

Development Support

Throughout the design of the TMS320C3x DSPs, hardware and software engi-
neers worked with device architects to create a processor ideally suited to
today’s development tool technologies. The result is a full set of hardware and
software tools. From the friendly Programmers Interface to TI’s unique scan-
based emulator, the development environment makes the design of em-
bedded systems fast and easy.

This chapter provides an overview of the development support products sup-
porting TMS320C3x design.

Note:

A floating-point compiler, assembler, and linker support the TMS320C31,
TMS320C30, TMS320C40, and all future spin-offs of the ’C3x and ’C4x gen-
erations. Complete support for all 32-bit TMS320 processors provides an ef-
ficient upgrade path without requiring the purchase of additional compilers,
assemblers, or linkers. Throughout this chapter, this compiler will be referred
to as the TMS320C31 compiler; the assembler/linker will be referred to as
the TMS320C31 assembler/linker.

Topic Page

5.1 TMS320 Optimizing ANSI C Compilers 5-2.

5.2 TMS320 Programmer’s Interface (C/Assembly Source Debugger) 5-15

5.3 TMS320C31 Assembly Language Tools 5-19.

5.4 TMS320 Software Simulators 5-21.

5.5 TMS320C3x Evaluation Module 5-24.

5.6 TMS320C3x Emulator 5-26.

5.8 HP 64776 Analysis Subsystem 5-31.

5.9 TMS320 Technical Support 5-33.

Chapter 5

TMS320C3x Optimizing ANSI C Compilers

 5-2

5.1 TMS320C3x Optimizing ANSI C Compilers

Fast code development and code maintenance over the life of a product are
concerns that all developers share. TI supports embedded system developers
with an optimizing compiler for the TMS320C31, which translates ANSI-stan-
dard, C language files into highly efficient TMS320C31 assembly language
source files, which are then input to a TMS320C31 assembler/linker. The com-
piler has been validated for conformance to the ANSI C specification, using the
industry-standard, Plum-Hall test suite.

The TMS320C31 compiler is complemented by the standard TMS320 Pro-
grammers Interface for debugging C and assembly source code. The C com-
piler produces a rich set of debugging information, which is used by the debug-
ger, allowing source-level debugging in C. This enhances productivity and
shortens the development cycle for embedded system designers.

Key features include:

� Complete and exact conformance with the ANSI C specification.

� Highly efficient code. The compiler incorporates state-of-the-art generic
and target-specific optimizations (described in detail within the succeed-
ing subsections). The TMS320C31 compiler performs both global opti-
mizations and loop optimizations such as strength reduction. Additionally,
it thoroughly analyzes code in order to optimize the usage of memory and
register variables.

� ANSI-standard runtime-support library.

� ROM-able, relocatable, and re-entrant code.

� The ability to link C programs with assembly language routines, allowing
hand coding of time-critical functions in assembly language.

� A full-featured, flexible linker that allows total control over memory alloca-
tion, memory configuration, and partial linking and contains features that
allow easy runtime relocation of code.

� A C shell program that facilitates one-step translation from C source to
executable code.

� Fast compilation to increase productivity.

� Unlimited symbol table space (up to the amount of available host
memory).

� Complete and useful diagnostics (error messages).

 TMS320C3x Optimizing ANSI C Compilers

5-3 Development Support

� An archiver utility that allows you to collect files into a single archive file
or library by adding new files or by extracting, deleting, or replacing files.
You can use a library of object files as input to the linker.

� Ability to expand in-line both runtime-support and user-defined functions.

� A utility that builds object libraries from source libraries.

� A variety of listing files, including:

� Assembly-source file, which can optionally include interlisted, C-
source code as well as register-usage information.

� Preprocessed output file useful for separating preprocessing/parsing
(if memory limitations dictate) and for troubleshooting macro defini-
tions.

� Assembly-listing file with line numbers and opcodes.

� A big memory model with unlimited space for global data, static data, and
constants. In the small (default) model, this space is limited to 64K words
for faster, more efficient coding/execution.

5.1.1 TMS320C31 Compiler Optimizations

The efficiency of a C compiler depends upon the scope and number of op-
timizations the C compiler performs, as well as upon the application. The
TMS320C31 compiler performs a wide variety of optimizations to improve the
efficiency of the compiled code. The following list and explanations that follow
describe some of the optimizations and highlight particular strengths of the C
compilers.

� General-Purpose C Optimizations

� Algebraic reordering, symbolic simplification, constant folding

� Alias disambiguation

� Data flow optimizations

� Copy propagation
� Common subexpression elimination
� Redundant assignment elimination

� Branch optimizations/control-flow simplification

� Loop induction variable optimizations, strength reduction

� Loop rotation

TMS320C3x Optimizing ANSI C Compilers

 5-4

� Loop-invariant code motion

� In-line expansion of function calls

� Optimizations Specific to the TMS320C31 compiler

� Register variables

� Register tracking/targeting

� Cost-based register allocation

� Autoincrement addressing modes

� Repeat blocks

� Delayed branches

� Use of registers for passing function arguments

� Parallel instructions

� Conditional instructions

� Loop unrolling

5.1.1.1 General-Purpose Optimizations

Algebraic Reordering, Symbolic Simplification, Constant Folding

For optimal evaluation, the compiler simplifies expressions into equivalent
forms requiring fewer instructions or registers. For example, the expression
(a + b) – (c + d) requires more instructions and registers to evaluate than the
equivalent expression ((a + b) – c) – d. Operations between constants are
folded into single constants. For example, a = (b + 4) – (c + 1) becomes
a = b – c + 3. See Figure 5–1.

Alias Disambiguation

Programs written in C generally use many pointer variables. Frequently, com-
pilers are unable to determine whether or not two or more l (lower case L) val-
ues (symbols, pointer references, or structure references) refer to the same
memory location. This aliasing of memory locations often prevents the compil-
er from retaining values in registers, because it cannot be sure that the register
and memory continue to hold the same values over time. Alias disambiguation
is a technique that determines when two pointer expressions cannot point to
the same location, allowing the compiler to freely optimize such expressions.

Data Flow Optimizations

Collectively, the following three data flow optimizations replace expressions
with less costly ones, detect and remove unnecessary assignments, and avoid

 TMS320C3x Optimizing ANSI C Compilers

5-5 Development Support

operations that produce values already computed. The compiler performs
these data flow optimizations both locally (within basic blocks) and globally
(across entire functions). See Figure 5–1 and Figure 5–2.

� Copy Propagation

Following an assignment to a variable, the compiler replaces references to
the variable with its value. The value could be another variable, a constant,
or a common subexpression. This may result in increased opportunities
for constant folding, common subexpression elimination, or even total
elimination of the variable.

� Common Subexpression Elimination

When the same value is produced by two or more expressions, the compil-
er computes the value once, saves it, and reuses it.

� Redundant Assignment Elimination

Often, copy propagation and common subexpression elimination op-
timizations result in unnecessary assignments to variables (variables with
no subsequent reference before another assignment or before the end of
the function). The compiler removes these dead assignments.

TMS320C3x Optimizing ANSI C Compilers

 5-6

Figure 5–1. Data Flow Optimizations for TMS320C31 Compilers

simp(int j)
{

int a = 3;
int b = (j * a) + (j * 2);
int c = (j << a);
int d = (j >> 3) + (j << b);

call(a,b,c,d);
...

}

TMS320C31 compiler output is:

_simp:
*
* RC is allocated to user var ’j’
* RS is allocated to temp var ’T$2’
* RE is allocated to temp var ’T$1’
*

...
LDI 2,R0 ; (j*a + 2j) == (3j + 2j) == (5j) ==(4j + j)
LSH R0,RC,R1 ; R1 = (4j) == (j << 2)
ADDI R1,RC,RE ; b = (4j + j) == 5j
LDI 3,R1 ; load shift count
LSH R1,RC,RS ; c = (j << a) == (j << 3)
LSH RE,RC,R2 ; R2 = (j << b)
ADDI RS,R2,R3 ; R3 = (j << b) + (j << a)
PUSH R3 ; push R3 (d)
PUSH RS ; push c
PUSH RE ; push b
PUSH R1 ; push a (tracked in R1)
CALL _call
...

The constant 3, assigned to a, is copy-propagated into all uses of a. a becomes a dead variable and
is removed completely. The sum of multiplying j by 3 (a) and 2 is simplified into a multiply by 5, which
is computed with a shift and add. The expression (j << a) is computed once for assignment to c and
then reused for calculating d. These optimizations are also performed across jumps.

Branch Optimizations, Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges
the linear sequences of operations (basic blocks) to remove branches or re-
dundant conditions. Unreachable code is deleted, branches to branches are
bypassed, and conditional branches over unconditional branches are simpli-
fied to a single conditional branch. When the value of a condition can be deter-
mined at compile time (through copy propagation or other data flow analysis),
a conditional branch can be deleted. Switch case lists are analyzed in the

 TMS320C3x Optimizing ANSI C Compilers

5-7 Development Support

same way as conditional branches and are sometimes eliminated entirely.
Some simple, control-flow constructs can be reduced to conditional instruc-
tions, totally eliminating the need for branches. See Figure 5–2.

Loop Induction Variable Optimizations, Strength Reduction

Loop induction variables are variables whose value within a loop is directly re-
lated to the number of executions of the loop. Array indices and control vari-
ables of FOR loops are very often induction variables. Strength reduction is
the process of replacing costly expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence
of array elements is replaced with code that increments a pointer through the
array. Loops controlled by incrementing a counter are written as repeat blocks,
or by using efficient decrement-and-branch instructions. Induction variable
analysis and strength reduction together often remove all references to the
programmer’s loop control variable, allowing it to be eliminated entirely.

Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving a cost-
ly extra branch out of the loop. In many cases, the initial entry conditional check
and the branch are optimized out.

Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute the
same value. The computation is moved in front of the loop, and each occur-
rence of the expression in the loop is replaced by a reference to the precom-
puted value.

In-Line Expansion of Function Calls

The special keyword inline directs the compiler to replace calls to a function
with in-line code, saving the overhead associated with a function call as well
as providing increased opportunities to apply other optimizations. See
Figure 5–2 and Figure 5–3.

TMS320C3x Optimizing ANSI C Compilers

 5-8

Figure 5–2. Copy Propagation and Control-Flow Simplification for TMS320C31 Compilers

 fsm()
 {

enum { ALPHA, BETA, GAMMA, OMEGA } state = ALPHA;
int *input;

while (state != OMEGA)

switch (state)
{

case ALPHA: state = (*input++ == 0) ? BETA : GAMMA; break;
case BETA : state = (*input++ == 0) ? GAMMA : ALPHA; break;
case GAMMA: state = (*input++ == 0) ? GAMMA : OMEGA; break;

}
 }

TMS320C31 compiler output is:
 _fsm:
 *
 * AR4 is allocated to user var ’input’
 *

 LDI *AR4++,R0 ; initial state == ALPHA.
 BZ L4 ; if input == 0 goto state BETA
 B L12 ; else goto state GAMMA

 L9: LDI *AR4++,R0 ; state == ALPHA.
 BNZ L12 ; if input != 0 goto state GAMMA

 L4: LDI *AR4++,R0 ; state == BETA.
 BNZ L9 ; if input != 0 goto state ALPHA
 LDI *AR4++,R0 ; state == GAMMA.
 BNZ EPI0_1 ; if input != 0 goto state OMEGA

 L12: LDI *AR4++,R0 ; state == GAMMA.
 BZ L12 ; if input == 0 goto state GAMMA

 EPI0_1:... ; state == OMEGA.
...

The switch statement and the state variable from this simple finite-state machine process are
optimized completely away, leaving a streamlined series of conditional branches.

 TMS320C3x Optimizing ANSI C Compilers

5-9 Development Support

Figure 5–3. In-Line Function Expansion for TMS320C31 Compilers

inline blkcpy (char *to, char *from, int n)
{ if (n > 0)

do *to++ = *from++; while (––n !=0);
}
struct s { int a,b,c[10]; } s;
initstr (struct s *ps, char t[12])
{ blkcpy((char *)ps, t, 12);
}

TMS320C31 compiler output is:
_initstr
* R2 assigned to variable ’t’
* AR2 assigned to variable ’blkcpy_1_to’
* AR4 assigned to variable ’blkcpy_1_from’
* BK assigned to variable ’ps’
* RC assigned to variable ’L$1’

LDI BK,AR2 ;blkcpy_1_to = ps
LDI R2,AR4 ;blkcpy_1_from = t
LDI *AR4++,R0 ;+––––––––––––––––––––––––––––––––––––
RPTS 10 ;| expansion of blkcpy:
STI R0,*AR2++ ;| copy 12 words

|| LDI *AR4++,R0 ;+––––––––––––––––––––––––––––––––––––
STI R0,*AR2++ ;

...

The special in-line declaration of blkcpy results in the call being replaced with the function’s
body. The compiler creates temporary variables blkcpy_1_to and blkcpy_1_from , corre-
sponding to the parameters of blkcpy . Often, copy propagation can eliminate assignments
to such variables when the argument expressions are not reused after the call.

TMS320C3x Optimizing ANSI C Compilers

 5-10

5.1.1.2 Optimizations Specific to the TMS320C31 Compiler

Register Variables

The compiler helps maximize the use of registers for storing local variables,
parameters, and temporary values. Variables stored in registers can be ac-
cessed more efficiently than variables in memory. This optimization is particu-
larly effective for pointers that arise when array index constructs are turned into
loop induction variables. See Figure 5–4 and Figure 5–5.

Figure 5–4. Register Variables and Register Tracking/Targeting

int gvar;
reg(int i, int j)
{

 gvar = call() & i;
 j = gvar + i;

}

TMS320C31 compiler output is:
_reg:
*
*R4 is allocated to user var ’i’
*R5 is allocated to user var ’j’
*

...
CALL _call ;R0 = call()
AND R4,R0 ;R0 &= i
STI R0,@_gvar ;gvar = R0
ADDI R4,R0,R5 ;tracks gvar in R0,

... ;targets result into R5 (j)

The compiler allocates local variables i and j into registers R4 and R5,
 as indicated by the comments in the assembly listing. Allocating i to
 R4 and tracking gvar in R0 allows the sum gvar + i to be computed
with a 3-operand instruction, targeting the result directly into j in R5.

Register Tracking/Targeting

The compiler tracks the contents of registers so that it avoids reloading values
if they are used again soon. Variables, constants, and structure references
such as (a.b) are tracked through both straight-line code and forward
branches. The compiler also uses register targeting to compute expressions
directly into specific registers when required, as in the case of assigning to reg-
ister variables or returning values from functions. See Figure 5–4.

 TMS320C3x Optimizing ANSI C Compilers

5-11 Development Support

Cost-Based Register Allocation

The compiler, when enabled, allocates registers to user variables and com-
piles temporary values according to their type, use, and frequency. Variables
used within loops are weighted to have priority over others, and those vari-
ables whose uses don’t overlap may be allocated to the same register. Vari-
ables with specific requirements are allocated into registers that can accom-
modate them.

Autoincrement Addressing Modes

For pointer expressions of the form *p++, *p– – , *++p, or *– –p, the compiler
uses efficient TMS320C31 autoincrement addressing modes. In many cases,
where code steps through an array in a loop, such as for (i = 0; i < N; ++i)
 a[i]..., the loop optimizations convert the array’s references to indirect refer-
ences through autoincremented register variable pointers. See Figure 5–5.

Repeat Blocks

The TMS320C31 compiler supports zero-overhead loops with the RPTS (re-
peat single) and RPTB (repeat block) instructions. The compiler can detect
loops controlled by counters and generate them by using the efficient repeat
forms: RPTS for single-instruction loops, or RPTB for larger loops. For both
forms, the iteration count can be either a constant or an expression. See
Figure 5–3 and Figure 5–5.

Induction variable elimination and loop test replacement allow the compiler to
recognize the loop as a simple counting loop and then generate a repeat block.
Strength reduction turns the array references into efficient pointer autoincre-
ments.

TMS320C3x Optimizing ANSI C Compilers

 5-12

Figure 5–5. Repeat Blocks, Autoincrement Addressing Modes, Parallel Instructions,
Strength Reduction, Induction Variable Elimination, Register Variables, and
Loop Test Replacement for Floating-Point Compilers

float a[10], b[10];
scale(float k)
{

int i;
for (i = 0; i < 10; ++i)

a[i] = b[i] * k;
...

TMS320C31 compiler output is:

_scale:
...

LDI @CONST+0,AR4 ; AR4 = &a[0]
LDI @CONST+1,AR5 ; AR5 = &b[0]
MPYF R4,*AR5++,R0 ; compute first product
RPTS 8 ; loop for next 9
STF R0,*AR4++ ; store this product...

|| MPYF R4,*AR5++,R0 ; ...and compute next
STF R0,*AR4++ ; store last product
...

This process shows general and floating-point-specific optimizations working together to generate
highly efficient code. Induction variable elimination and loop test replacement allow the compiler to
recognize the loop as a simple counting loop and then generate a repeat block. Strength reduction
turns the array’s references into efficient pointer autoincrements. The compiler unrolls the loop once
to separate the first multiply and last store, allowing the body of the loop to be written as a single
parallel instruction.

Delayed Instructions

The TMS320C31 compiler supports delayed branch instructions that can be
inserted three instructions early in an instruction stream, avoiding costly pipe-
line flushes associated with normal branches. The compiler uses uncondition-
al delayed branches wherever possible, and conditional delayed branches for
counting loops. See Figure 5–6.

 TMS320C3x Optimizing ANSI C Compilers

5-13 Development Support

Figure 5–6. TMS320C31 Compiler Delayed Branch Optimizations

wait(volatile int *p)
{
 for(;;)

 if (*p & 0x80) *p |= 0xF0;
}

TMS320C31 compiler output is:
_wait:
L6:

LDI *AR4,R0 ; R0 = *p (AR4 is allocated to p)
TSTB 128,R0 ; test *p & 0x80
BZ L6 ; false: loop back
BD L6 ; true: loop back (delayed)
LDI *AR4,R0 ; R0 = *p
OR 0f0h,R0 ; R0 = *p | 0xF0
STI R0,*AR4 ; *p = R0

*** B L6 ; branch occurs

The unconditional branch at the bottom of this loop is written as a delayed branch,
allowing it to execute in one machine cycle.

Use of Registers for Passing Function Arguments

The compiler supports a new, optional calling sequence that passes argu-
ments to registers rather than pushing them onto the stack. This can result in
significant improvement in performance, especially if calls are important in the
application. See Figure 5–2.

Parallel Instructions

Several floating-point or integer instructions such as load/load, store/operate,
and multiply/add can be paired with each other and executed in parallel. When
adjacent instructions match the addressing requirements, the compiler com-
bines them in parallel. Although the code generator performs this optimization,
the optimizer greatly increases effectiveness because operands are more like-
ly to be in registers. See Figure 5–3 and Figure 5–5.

Conditional Instructions

The load instructions in the ’C31 C compiler can be executed conditionally. For
simple assignments such as a = condition ? expr1 : expr2 or if (condition)
a = b, the compiler can use conditional loads to avoid costly branches.

TMS320C3x Optimizing ANSI C Compilers

 5-14

Loop Unrolling

When the compiler can determine that a short loop is executed a low, constant
number of times, it replicates the body of the loop rather than generating the
loop; note that low and short are subjective judgments made by the compiler.
This avoids any branches or use of the repeat registers. See Figure 5–7.

Figure 5–7. Loop Unrolling

add3(int a[3])
{

int i, sum = 0;
for (i = 0; i < 3; ++i) sum += a[i]

return sum;
}

TMS320C31 compiler output is:

_add3:
...
LDI *–FP(2),AR4 ; AR4 = &a[0]
LDI *AR4++,RC ; sum += a[0]
ADDI *AR4++,RC ; sum += a[1]
ADDI *AR4++,RC ; sum += a[2]
LDI RC,R0 ; return sum
...

The compiler determines that this loop is short enough to unroll, resulting
in a simple 3-instruction sequence and no branches.

 TMS320 Programmer’s Interface (C/Assembly Source Debugger)

5-15 Development Support

5.2 TMS320 Programmer’s Interface (C/Assembly Source Debugger)

The TMS320 Programmer’s Interface brings new levels of power and flexibility
to embedded systems development. The interface/debugger is now available
on virtually all TMS320 development tools, so moving to another tool or anoth-
er generation of processor is greatly simplified.

The debugger is an advanced software interface that runs on a PC and sup-
ports TI’s unique, scan-based, realtime, TMS320C3x XDS emulator. The de-
bugger provides complete control over programs written in C or assembly lan-
guage.

The debugger improves productivity by enabling you to debug a program in
the language in which it is written. Programs can be debugged in C, assembly
language, or both. The debugger also has profiling capabilities that show
where to focus development time by quickly identifying the “hot” or time-con-
suming sections of a program.

Figure 5–8. The Basic Debugger Display

pulldown
menus DISASSEMBLY

f0002d 62f00042 CALL xcall
f0002e 19840001 SUBI 1,SP
f0002f 6a00000c BU call+30
90xf0003c)
f00030 08510b02 LDI *_AR3(2),IR0
f00031 02f10003 AND 3,IR0
f00032 08282051 LDI @02051H,AR0
f00033 04f10003 CMPI 3,IR0
f00034 51f10004 LDIHI 4,IR0
f00035 08484011 LDI *+AR0(IR0),AR0
f00036 68000008 BU AR)
f00037 00f00021 ABSI 33,DP
f00038 00f00024 ABSI 36,DP
f00039 00f0
f0003a 00f0
f0003b 00f0
f0003c 0840
f0003d 1520

Brea

k

Watch Memory

CALLS

MoDe

2: call()
1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
PC 00f00035
SP 00f0207c
R0 00000001
R1 00f00009
R2 00000007
R3 00000003
R4 00000003
R5 00000000
R6 00000000
R7 00000000
AR0 00f00037
AR1 00000008
AR2 00000000
AR3 00f0207c
AR4 00000000
AR5 00000000
AR6 00000000
AR7 00000000
IR0 00000003
IR1 00000000
ST 00000024
RC 00000000
RS 00f00064
RE 00f00064
DP 000000f0
BK 00000000
IE 00000000
IF 00000000
IOF 00000088

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

FILE: sample.c
00052 }
00053
00054 call(newvalue)
00055 int newvalue;
00056 {
00057 static int value = 0;
00058
00059 switch (newvalue & 3)
00060 {
00061 case 0 : str.a = newvalue ; break;
00062 case 1 : str.b = newvalue + 1; return
00063 case 2 : str.c = newvalue * 2;
00064 case 3 : xcall(newvalue); break;
00065 }
00066

COMMAND

>>>

whatis str

struct xxx str;

step

DISP: astr[7]
a 123
b 555
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: astr[7].f4
[0] 0
[1] 9
[2] 7
[3] 54
[4] 3
[5] 3
[6] 4
[7] 123
[8] 4
[9] 789

MEMORY
f0207c 00f02076
f0207d 00000002
f0207e 00f0002e
f0207f 00f0207c
f02080 d363ae8a
f02081 379d0aaa
f02082 fe3567bb
f02083 9bfa3b3a
f02084 fb6a2e2a
f02085 32bababa
f02086 9cb5a158
f02087 fabe82a8
f02088 8ea99a24
f02089 8644d8a1
f0208a 8ab705b5
f0208b 52b9188c

disassembly
display

C source
display

interactive
command entry
and history
window

scrolling data
displays with

on-screen,
interactive

editing

function call
traceback

natural-format
data displays

The debugger is easy to learn and use. Its window-/mouse-/menu-oriented
interface reduces learning time and eliminates the need to memorize complex
commands. The debugger’s customizable displays and flexible command
entry let you develop a debugging environment that suits the system’s needs

TMS320 Programmer’s Interface (C/Assembly Source Debugger)

 5-16

(see Figure 5–8). A shortened learning curve and increased productivity re-
duce the software development cycle, speeding products to market.

Conditional execution and single-stepping (including single-stepping into and
over function calls) give you complete control over program execution. A
breakpoint can be set or cleared with a click of the mouse or by typing com-
mands. A memory map identifies the portions of target memory that the debug-
ger can access and that can be defined. You can load only the symbol tables’
portion of an object file to work with systems that have code in ROM. The de-
bugger can execute commands from a batch file, providing an easy method
for entering often-used command sequences. Key features include:

� Multilevel debugging . The debugger allows you to debug both C and as-
sembly language code. While debugging a C program, you can choose
to view the C source, the disassembly of the object code created from the
C source, or both.

� Fully configurable, state-of-the-art, window-oriented interface . The
debugger separates code, data, and commands into manageable in-
formation. You can select from several displays. Or, since the debugger’s
display is completely configurable, you can create the interface that best
suits the application. The display’s colors, physical appearance of dis-
played features (such as window borders), and window size and position
can be changed.

� Flexible command entry . Commands can be entered by using a mouse,
the function keys, or the pull-down menus. The debugger’s command his-
tory can be used to re-enter commands.

� On-screen editing . Any data value displayed in any window can easily
be changed by pointing (with the mouse) at the value, clicking, and enter-
ing the correct value.

� Continuous update . The debugger continuously updates information on
the screen, highlighting changed values.

� Comprehensive data display . You can easily create windows for display-
ing and editing the values of variables, arrays, structures, pointers — any
kind of data — in their natural format (float, int, char, enum, or pointer). En-
tire linked lists can be displayed (see Figure 5–9).

� Patch assembler . You can modify code from the debugger command line
without reassembling your assembly source.

 TMS320 Programmer’s Interface (C/Assembly Source Debugger)

5-17 Development Support

Figure 5–9. Debugger’s Data Display

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

DISP: str
a 123
b 0
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: *str.f3
a 8327
b 666
c 87213
f1 45
f2 27
f3 0x00f000a
f4 [...]

DISP: *str.f3–>f3
a 75
b 3212
c 782
f1 7
f2 9
f3 0x00f000a
f4 [...]

� Powerful command set . The TMS320 debugger supports a small but
powerful command set that makes full use of C expressions. One debug-
ger command performs actions that might require several commands in
another system.

� Compatibility . The TMS320C31 C source debugger runs on IBM PC/ATs
and compatible PCs. For the simulator, the debugger is available on Sun
workstations.

� Profiler. The C source debugger has an option for profiling software.
When you are deciding whether to convert portions of a program from C
to assembly, it is helpful to know which functions take the most time. A pro-
filer that measures the amount of execution time in different functions or
portions of a program is very helpful. The profiler is easy to use and pro-
vides a number of features, including

� Elegant user interface . The TI code profiler shares the same fully
configurable, window-oriented, and mouse-driven interface as the TI
C source debugger, so learning to profile is quick and easy.

� Multilevel profiling . An assembly window and a C window are dis-
played, so you can profile C code, assembly code, or both simulta-
neously.

� Powerful command set . A rich set of commands is available to select
and manipulate profile areas on the global, module, function, and ex-
plicit levels, so you can efficiently profile even the most complex ap-
plications.

TMS320 Programmer’s Interface (C/Assembly Source Debugger)

 5-18

� Comprehensive statistics . The profiler provides all the information
you need to identify bottlenecks in your code:

� The number of times each area was entered during the profile
session.

� The total execution time of an area, including or excluding the
execution time of any subroutines called from within that area.

� The maximum time for one iteration of an area, including or ex-
cluding the execution time of any subroutines called from within
that area.

� Versatile display . The ability to choose profile areas, the type of sta-
tistical data, and sorting criteria ensures an efficient, customized dis-
play of the statistics. The data can also be accompanied by histo-
grams to show the statistical relationship between profile areas.

� Disabled areas . You can disable portions of a profile area to prevent
them from adding to the statistics. This is convenient for removing the
timing impact of standard library functions or a fully optimized portion
of code.

� Simplicity . The profiler’s simple setup, default configurations,
“canned” commands, and inherent flexibility facilitate sophisticated
profiling within a short time.

 TMS320C31 Assembly Language Tools

5-19 Development Support

5.3 TMS320C31 Assembly Language Tools

The TMS320C31 assembly language tools are code-generation tools that
convert assembly language source files into executable object code. Key fea-
tures include:

� Macro capabilities and library functions

� Conditional assembly

� Relocatable modules

� Complete error diagnostics

� Symbol table and cross-references

The assembler translates assembly language source files into machine lan-
guage object files. Source files can contain instructions, assembler directives,
and macro directives. Assembler directives control various aspects of the as-
sembly process such as the source-listing format, symbol definition, and the
way the source code is placed into sections. The assembler has the following
features:

� Processes the source statements in a text file to produce a relocatable ob-
ject file

� Produces a source listing (if requested) and provides control over this list-
ing

� Appends a cross-reference listing to the source listing (if requested)

� Allows segmentation of user’s code

� Maintains an SPC (section program counter) for each section of object
code

� Defines and references global symbols

� Assembles conditional blocks

� Supports macros, allowing the user to define macros either in-line with or
within a macro library

TMS320C31 Assembly Language Tools

 5-20

The linker combines object files into a single executable object module. As it
creates the executable module, it performs relocation operations and resolves
external references. The linker accepts COFF (common object file format) ob-
ject files (created by the assembler) as its input. It can also accept archive li-
brary members and modules created by a previous linker run. Linker directives
allow you to combine object file sections, bind sections and symbols to specific
addresses, and define/redefine global symbols. The linker has these features:

� Defines a memory model that conforms to the target system’s memory

� Combines object file sections

� Allocates sections into specific areas within the target system’s memory

� Defines or redefines global symbols to specific values

� Relocates sections to final addresses

� Resolves undefined external references between the input files

� Allows separate load-time and runtime addresses for sections of code

The archiver makes it possible to collect a group of files into a single archive
file. For example, several macros can be collected together into a macro li-
brary. The assembler will search through the library and use the members that
are called as macros by the source file. Also, it is possible to use the archiver
to collect a group of object files into an object library. The linker will include the
members in the library that resolve external references during the link.

Most EPROM programmers do not accept COFF object files as their input. The
ROM30 object format converter must be utilized to convert the COFF object
file into Intel, Tektronix, or TI-tagged hex object format. ROM30 is part of the
assembler, linker, and archiver package. The converted file can then be down-
loaded into the EPROM programmer.

 TMS320C3x Software Simulator

5-21 Development Support

5.4 TMS320C3x Software Simulator

A simulator is a software program that simulates the TMS320C3x micropro-
cessor and microcomputer modes for cost-effective software development
and program verification in non-realtime. With the inexpensive software simu-
lator, you can debug without target hardware. Files can be associated with I/O
ports so that specific I/O values can be used during test and debug. Time-criti-
cal code, as well as individual portions of the program, can be tested. The
clock’s counter allows loop timing during code optimization. Breakpoints can
be established according to read/write executions (using either program or
data memory) or instruction acquisitions. The simulator uses the standard
C/assembly source debugger interface (described in Section 5.1), allowing the
user to debug code in C, assembly, or both.

Key features of the TMS320C3x software simulator include:

� Execution of user-oriented DSP programs on a host computer

� Inspection and modification of registers

� Data and program memory modification and display:

� Modification of an entire block at any time

� Initialization of memory before a program is loaded

� Simulation of peripherals, caches, and pipelined timings

� Extraction of instruction cycle timing for “device performance” analysis

� Programmable breakpoints on:

� Instruction acquisition

� Memory reads and writes (data or program)

� Data patterns on the data bus or the program bus

� Error conditions

� Trace on:

� Accumulator

� Program counter

� Auxiliary registers

� Single-stepping of instructions

� Interrupt generation at user-specified intervals

TMS320C3x Software Simulator

 5-22

� Error messages for:

� Illegal opcodes

� Invalid data entries

� Execution of commands from a journal file

� A branch to “self” is detected

� Execution is halted

Once program execution is suspended, the internal registers and both pro-
gram and data memories can be inspected and/or modified. The trace memory
can also be displayed. A record of the simulation session can be maintained
in a journal file so that it can be re-executed to regain the same machine state
during another simulation session.

� Simulation of the TMS320C31’s entire instruction set

� Simulation of the TMS320C31 peripheral’s key features

� Command entry from either menu-driven keystrokes (menu mode) or line
mode

� Help menus for all screen-displayed modes

� Interface that can be user-customized

� Simulation parameters quickly stored/retrieved from files to facilitate prep-
aration for individual sessions

� Reverse assembly for editing and reassembling source statements

� Memory that can be displayed (at the same time) as

� Hexadecimal 32-bit values

� Assembled source

 TMS320C3x Software Simulator

5-23 Development Support

� Execution modes

� Single/multiple instruction count

� Single/multiple cycle count

� Until condition is met

� While condition exists

� For set loop count

� Unrestricted run with halt by keyed input

� Trace execution with display choices

� Designated expression values

� Cache memory

� Instruction pipeline

� Simulation of cache utilization

� Cycle counting

� Display of the number of clock cycles in a single-step operation or in
the run mode

� Externally generated mode that can be configured with wait states for
accurate cycle counting

The simulator lets you verify and monitor the state of the processor. Simulation
speed can be either thousands of instructions per second (VAX VMS and
SUN-3 UNIX) or hundreds of instructions per second (PC-DOS/MS-DOS).

The TMS320C31 simulator is available for the IBM PC-DOS/MS-DOS
(5.25-inch floppy), the VAX/VMS (in backup format on 1600-bpi magnetic
tape), and the SUN-3/4 UNIX (in TAR format on 1600-bpi magnetic tape) oper-
ating systems. The PC configuration requires a minimum of 512K bytes for
the TMS320C31 simulator.

TMS320C3x Evaluation Module

 5-24

5.5 TMS320C3x Evaluation Module

The TMS320C3x evaluation module (EVM) is a low-cost development board
used for device evaluation, benchmarking, and limited system debug. The
TMS320C3x EVM (see Figure 5–10) eliminates the cost barrier to evaluating
and developing embedded systems based on the TMS320C31.

Features include:

� Assembler

� On-board memory

� Host upload/download capabilities

� I/O capability

Figure 5–10. TMS320C3x EVM

Insert Photo
D

Get this photo from the TMS320 Family Development Support Reference
Guide (job # 61136); page 5–16; Figure 5–4.

The TMS320C3x EVM enables you to benchmark and evaluate code in real-
time while the device is operating at 30 MHz in the rich development environ-
ment of the TMS320C3x assembler/linker and C/assembly source debugger
interface. Applications can be benchmarked and tested easily with the analog-
ready interface.

 TMS320C3x Evaluation Module

5-25 Development Support

The TMS320C3x EVM comes complete with a PC half-card and software
package. The EVM board contains:

� One TMS320C30 — a 33-MFLOP, 32-bit processor. TMS320C31 applica-
tions can be developed by using only those ’C30 features available on a
’C31

� 16K-word, zero wait-state SRAM, allowing coding of most algorithms di-
rectly on the board

� Analog interface for embedded systems development

� An external serial-port interface that can be used for connecting multiple
EVMs or for extra analog interfacing

� A host port for PC communications

� Embedded emulation support via the 74ACT8990 test bus controller

The system also comes with all of the software required to begin application
development on a PC host:

� The window-oriented, mouse-driven interface supports downloading,
executing, and debugging of assembly code or C code, including modifi-
cation/display of memory and registers, software single-step, and break-
point capabilities.

� The TMS320C3x assembler/linker is also included with the EVM. For
high-level language programming, the optimizing ANSI C and the Ada
compilers are offered separately.

The TMS320C3x EVM is supported on PC-AT/MS-DOS (version 3.00 or high-
er) platforms.

TMS320C3x Emulator

 5-26

5.6 TMS320C3x Emulator

The TMS320 Extended Development Systems (XDSs) are powerful, full-
speed emulators used for system-level integration and debug. TI developed
the world’s first in-system scan-based emulator (XDS) for TMS320C3x pro-
cessors.

Scan-based emulation is a unique, nonintrusive approach to system emula-
tion, integration, and debug. This approach was conceived and developed by
TI to address hardware/software characteristics (reduced internal bus visibili-
ty, highly pipelined architectures, faster cycle times, higher-density packaging)
that are inherent to sophisticated VLSI systems.

Scan-based emulation eliminates special “bond-out” emulation devices, tar-
get cable/buffer signal degradation, and the mechanical and reliability prob-
lems associated with target connectors and surface-mount packaging. With
scan-based emulation, your program can execute in realtime from internal or
external target memory — no extra wait states are introduced by the emulator
at any clock speed.

The TMS320C31’s architecture implements scan-based emulation through in-
ternal, shift-register, scan chains accessed by a single serial interface. The
scan chains provide access to internal device registers and state machines,
allowing complete visibility and control. This nonintrusive approach even oper-
ates in a production environment where the DSP is soldered into a target sys-
tem.

Since program execution takes place on the TMS320C31 in the target system,
there are no timing differences during emulation. This new design offers signif-
icant advantages over traditional emulators. These advantages include:

� No cable length transmission line problems

� Nonintrusive system

� No loading problems on signals

� No artificial memory limitations

� TMS320C3x C/assembly source debugger interface

� Easy installation

� In-system emulation

� No variance from device’s data sheet specifications

 TMS320C3x Emulator

5-27 Development Support

The TMS320C3x XDS emulator (see Figure 5–11) is a user-friendly, PC-
based development system that supports hardware development on the
TMS320C30 and TMS320C31. This emulator provides a means for develop-
ing the software and hardware within a target system. Access is provided to
every memory location and register of the TMS320C3x through the use of a
revolutionary scan path interface. The TMS320C3x XDS emulator board inter-
prets commands and converts these commands into the appropriate signal
sequences necessary to control the TMS320C3x in your target system. Key
features of the TMS320C3x XDS emulator include:

� Full-speed execution and monitoring of the TMS320C3x in your target
system via a 12-pin target connector

� TMS320 C/assembly source debugging (PC/MS-DOS) via TI’s standard
windowed Programmer’s Interface (see Section 5.2)

� 200 software breakpoints

� Software trace/timing

� Single-step execution

� Loading/inspecting/modification of all registers

� Uploading/downloading of program memory and data memory

� Benchmarking of execution time of clock cycles

TMS320C3x Emulator

 5-28

Figure 5–11. TMS320C3x XDS Emulator

Insert
Negative

F
Get this photo from the TMS320 Family Development Support Reference

Guide (job # 61136); page 5–28; Figure 5–10.

Software breakpoints allow program execution to be halted at a specified
instruction address. When a given breakpoint is reached, the program halts
execution. At this point, the status of the registers and of the CPU is available.
Their contents are visible in the appropriate windows; to view the contents of
other memory locations, only one command is required.

Software trace lets you view the state of the TMS320C3x when a breakpoint
is reached. This information can be saved in a file for future analysis. Software
timing allows you to track the clock cycles between breakpoints for bench-
marking of time-critical code.

Single-step execution gives you the capability to step through the program,
one instruction at a time. After each instruction, the status of the registers and
CPU are displayed. This provides greater flexibility during software debug and
helps reduce the development time.

Object code can be downloaded to any valid TMS320C3x memory location
(program or data) via the scan path interface. Downloading a 1K-byte object
program typically takes 100 ms. In addition, by inspecting and modifying the
registers while single-stepping through a program, you can examine and
modify program code or parameters.

The emulator’s configurability gives your system flexibility. You can configure
both memory and screen color. The address range, memory type, and access

 TMS320C3x Emulator

5-29 Development Support

type assigned to each location can also be configured. The memory map,
which may include EPROM, SRAM, DRAM, and on-chip memory and periph-
erals, can be configured to reflect the actual peripheral environment of the tar-
get system, including wait states and access privileges.

TMS320C3x XDS System Requirements

Host IBM PC-AT
Slot One and one-half 16-bit slots
Memory Minimum of 640K words
Storage One floppy drive and one hard drive
Operating System PC/MS-DOS 2.0 or later version
Power Supply Minimum; approximately 3 amps

 @ 5 volts (150 watts)

TMS320C3x Application Board With Software Demo

 5-30

5.7 TMS320C3x Application Board With Software Demo

Key features of the TMS320C3x application board are:

� 16K×32-bit, zero wait-state, full-speed SRAM on the primary bus

� Two selectable banks of 8K×32-bit, zero wait-state, full-speed SRAM on
the expansion bus

� TMS320C30 DSP

� 512K×32-bit DRAM (user-upgradable to 1M×32-bits)

The large amount of on-board SRAM affords realtime emulation and memory
storage flexibility for a variety of algorithms. The on-board SRAM provides
zero wait-state access to memory allowing read/write in realtime.

Three types of DRAM cycles are used on the TMS320C3x application board:
Single-word read, single-word write, and page-mode read. These operations
require four, two, and one wait state per access, respectively. Note that when
you invoke page mode read while accessing the emulator’s DRAM, fewer wait
states are required. Page-mode DRAM is often used to improve “bulk storage”
performance. Page-mode read cycles are automatically invoked when the
TMS320C3x performs two or more back-to-back read cycles on the same
memory page; one page of memory holds 256 words — the default memory
bank size for the TMS320C3x.

SPOX Operating System software is also available for the application board.

 HP 64776 Analysis Subsystem

5-31 Development Support

5.8 HP 64776 Analysis Subsystem

TI and Hewlett-Packard jointly designed and developed the HP 64776 Analy-
sis Subsystem, an emulator/analyzer for the TMS320C3x (see Figure 5–12).
(For TMS320C31 analysis, an adapter is available from HP to use the subsys-
tem with a surface-mounted TMS320C31.) The HP 64776 combines with the
TI TMS320C3x XDS emulator to yield a complete tool set for integrating hard-
ware with software, producing an extremely powerful debug environment.
HP’s active probe technology yields the maximum electrical and mechanical
transparencies, improved signal quality, and realtime control and debug of the
target system at full operating speed.

The complete analysis subsystem integrates the HP 64776, the TMS320C3x
XDS, and the C source debugger (described in Section 5.2) in a stand-alone
PC environment. The TI debugger acts as the user interface, and communica-
tions between the subsystem and the PC are handled through an RS-232C
connector. This powerful system provides software and hardware breakpoint
and trace, as well as sophisticated bus-cycle analysis.

Figure 5–12. HP 64776 Analysis Subsystem

Insert
Negative

H
Get this photo from the TMS320 Family Development Support Reference

Guide (job # 61136); page 5–34; Figure 5–12.

HP 64776 Analysis Subsystem

 5-32

Key features of the subsystem include:

� 64 analysis channels that can trace the TMS320C3x’s primary or expan-
sion bus as well as status information. Nonintrusive analysis lets you view
the processor’s bus cycles in realtime. Analysis can be performed on the
following signals:

� A0 – A23
(primary-bus address)

� XA0 – XA12
(expansion-bus address)

� INT0 – INT3

� D0 – D31
(primary-bus data)

� XD0 – XD32
(expansion-bus data)

� TCLK0

� STRB � MSTRB � TCLK1

� R/W � IOSTRB � XF0

� HOLDA � IACK � XF1

� Trace specifications that can be set up easily, using address, data, and
status-event comparators. A range comparator can also be used to qualify
addresses or data.

� Hardware breakpoint capabilities that enable you to detect a specified
event and stop the processor. Once the processor is stopped, the debug
capabilities of the TMS320C3x XDS facilitate isolation of target’s hard-
ware/software problems.

� The ability to drive triggered signals to and receive them from other instru-
ments such as logic analyzers and oscilloscopes, allowing synchronized
measurements between tools.

The HP 64776 operates on PC/AT platforms utilizing DOS (version 3.0 or
higher).

 TMS320 Technical Support

5-33 Development Support

5.9 TMS320 Technical Support

5.9.1 Technical Documentation

A wide variety of technical literature is available to assist you through the de-
sign cycle. These documents include product and preview bulletins, data
sheets, user’s and reference guides, over 2000 pages of application notes,
and textbooks offered by Prentice-Hall, John Wiley and Sons, and Computer
Science Press. To inquire about available TMS320 literature, call the Custom-
er Response Center (CRC):

(214) 995–6611

The following list describes the general contents of each major category of
technical documentation available through the Customer Response Center:

� Product and preview bulletins and product briefs give an overview of the
devices and development support within the TMS320 family, presenting
capabilities, diagrams, and hardware/software applications.

� User’s guides for TMS320 processors provide detailed information re-
garding the architecture of the device, its operation, assembly language
instructions, and hardware and software applications.

� Data sheets include electrical specifications, timing characteristics, and
mechanical data for a device.

� Application books/reports describe theory and implementation of selected
TMS320 applications, including algorithms, code, and block/schematic/
logic diagrams. Currently, there are over 2000 pages of application reports
to support the TMS320 family.

� Technology brochures provide an overview of various implementations of
DSP technology.

TMS320 Technical Support

 5-34

5.9.2 Details on Signal Processing Newsletter

The TMS320 newsletter, Details on Signal Processing, is published quarterly
to update TMS320 customers on product information and industry trends. It
covers TMS320 products, documentation, third-party support, application
boards, mini-application reports, development tool updates, contacts for sup-
port, design workshops, seminars, conferences, and the TMS320 university
program.

To be added to the mailing list, call the Customer Response Center:

(214) 995–6611

5.9.3 TMS320 Bulletin Board Service

The TMS320 Bulletin Board Service (BBS) is a telephone-line computer bulle-
tin board that provides access to information about the TMS320 family. The
BBS is an excellent means of communicating specification updates for current
or new TMS320 application reports as they become available. It also serves
as a means to trade programs with other TMS320 users.

The BBS contains TMS320 source code from the more than 2000 pages of
application reports written to date. These programs include macro definitions,
FFT algorithms, filter programs, ADPCM algorithms, echo cancellation, graph-
ics, control, companding routines, and sine-wave generators.

You can access BBS with a terminal or PC and a modem. The modem must
be able to communicate at a data rate of either 300, 1200, 2400, or 9600 bps.
A character length of eight bits is required, with one stop bit and no parity. The
telephone number of the bulletin board is (713) 274–2323. There is a 90-min-
ute access limit per day on the bulletin board. The BBS is open 24 hours a day.
ROM-code algorithms may be submitted by secure electronic transfer via the
TMS320 BBS.

5.9.4 TMS320 DSP Technical Hotline

The TMS320 group at Texas Instruments maintains a DSP Hotline to answer
TMS320 technical questions. Specific questions regarding TMS320 device
problems, development tools, third-party support, consultants, documenta-
tion, upgrades, and new products are answered.

The TMS320 DSP Technical Hotline is open five days a week from 8:00 AM
to 6:00 PM Central Time. It is staffed with engineers ready to provide the sup-
port needed for your TMS320 design or evaluation.

To assure the maximum support from this service, first consult your product
documentation. If your question is not answered there, gather all of the infor-

 TMS320 Technical Support

5-35 Development Support

mation that applies to your problem. With your information, manuals, and prod-
ucts close at hand, call:

TMS320 DSP Technical Hotline (713) 274–2320

 For realtime transmission of information, a facsimile machine is available:

FAX (713) 274–2324

or you may submit information via electronic mail:

The Hotline Internet address is

4389750@mcimail.com

The MCI mail address is

4389750 or TMS320 Hotline

Questions on pricing, delivery, and availability should be directed to the near-
est TI Field Sales Office.

5.9.5 TMS320 Application Software

To simplify development of applications, TI and its third parties offer a wide va-
riety of software that can be licensed. This software covers a range of DSP
functionality that includes vocoders, speech recognition, modems, audio cod-
ers, and image coders. The software available for license can provide a head-
start in the development of your final application. In addition, software applica-
tions that have been published in TI DSP user’s guides and application books
are available via the BBS.

Contact the DSP Hotline for a list of software available for the TMS320C31.

5.9.6 Design Workshops

Texas Instruments offers a wide array of up-to-date technical product semi-
nars and design workshops through its Technical Training Organization (TTO)
to assist designers in developing the skills needed to implement their ideas
quickly, produce a quality product, and shorten time to market. Applications as-
sistance is also offered through local Regional Technology Centers (RTCs).

The DSP design workshops give design engineers hands-on experience us-
ing the latest TMS320 products, development tools, and design techniques.
These workshops go beyond the standard lecture format. The exercises and
lab experiments start with the basics and move quickly into hands-on exer-
cises. In these workshops, the student learns by doing, not just listening or ob-

TMS320 Technical Support

 5-36

serving. The workshops are designed to help customers shorten the design
cycle, control development costs, and solve design challenges.

Further information on courses and schedules in North America can be ob-
tained by contacting the TTO Central Registration office at (800) 336-5236,
ext. 3904.

5.9.6.1 TMS320C3x Design Workshop

The TMS320C3x DSP design workshop introduces design engineers to the
powerful TMS320C3x generation of DSPs. Hands-on, EVM-based exercises
throughout the course give the designer a rapid start in utilizing TMS320C3x
design skills. Experience with digital design techniques is desirable. Assembly
language experience is required. C language programming experience is de-
sirable.

Topics covered in the TMS320C3x DSP design workshop include:

� TMS320C3x architecture/instruction set

� Use of the PC-based TMS320C3x EVM

� Floating-point and parallel operations

� Use of the TMS320C3x assembler/linker

� C programming environment

� System architecture considerations

� Memory and I/O interfacing

� TMS320C3x development support

5.9.6.2 Digital Control Design Workshop

The digital control design workshop covers all the fundamental issues involved
in the design and implementation of physical control systems using TMS320
DSPs. The workshop is divided into two major parts. The first part covers
theory and design of control systems and discusses practical aspects that a
control design engineer should be aware of before attempting to implement a
controller. The second part is devoted to hands-on experience with
TMS320C25 DSPs to demonstrate and practice control implementation ex-
amples. A design and implementation software package is used to test algo-
rithms on an actual motor positioning system.

Topics covered in the digital control design workshop include:

� System modeling

� Stability analysis

 TMS320 Technical Support

5-37 Development Support

� Analysis of numerical problems

� Quantization effects

� Truncation, rounding, and scaling issues

� Sampling rate selection

� Algorithm structural optimization

5.9.6.3 Applications in C Design Workshop

The Applications in C design workshop is an advanced, C programming
course, which is tailored for practical, hands-on applications using Turbo C
and the TI TMS320C3x C compiler. This course is for hardware and software
engineers with a background in programming and an introductory knowledge
of C. The course centers around data structure concepts illustrated with appli-
cation examples. Program examples include file filters, sorting, Huffman cod-
ing for data compression, memory management, graphics algorithms, and
other utilities.

Topics covered in the Applications in C design workshop include:

� Review of C language (syntax and conventions)

� Data structures, constructs, and concepts

� Optimization and efficiency techniques

� Arrays and pointers

� Portability issues

� Algorithms (FFT, discrete transforms, bit manipulation, etc.)

5.9.7 Design Services

The TI technical staff can offer applications assistance with customer designs
through local Regional Technology Centers. Services include:

� Design assistance

� Simulation

� Emulation

Each Regional Technology Center uses up-to-date development systems, in-
cluding workstations and personal computers, plus demonstration, test, and
evaluation equipment. TI staff designers use fully equipped laboratories to
provide efficient design assistance.

TMS320 Technical Support

 5-38

The first step to a successful design is an explanation of the project’s parame-
ter: production requirements, design function(s), and price. The results of
these discussions will allow TI and a customer to explore:

� Design/cost trade-offs

� Product implementation options

Once the various trade-offs/options are selected and approved, Texas Instru-
ments can provide further assistance in the design of a customer’s product,
sharing a mutual goal of bringing a successful product to market as quickly as
possible.

 RTC Locations

5-39 Development Support

5.9.8 RTC Locations

The following list gives the worldwide locations of the TI Regional Technology
Centers.

Table 5–1. RTC Worldwide Locations

North American Locations

ATLANTA
Texas Instruments
5515 Spalding Drive
Norcross, GA 30092
(404) 662–7950

NORTHERN CALIFORNIA
Texas Instruments
5353 Betsy Ross Drive
Santa Clara, CA 95054
(708) 748–2220

BOSTON
Texas Instruments
950 Winter Street, Suite 2800
Waltham, MA 02154–1263
(617) 895–9196

SOUTHERN CALIFORNIA
Texas Instruments
1920 Main St., Suite 900
Irvine, CA 92714
(714) 660–8140

CHICAGO
Texas Instruments
515 W. Algonquin Road
Arlington Heights, IL 60005
(708) 640–2909

OTTAWA
Texas Instruments Canada, Ltd
301 Moodie Drive, Suite 102
Nepean, Ontario
Canada, K2H 9C4
(613) 726–1970

DALLAS
Texas Instruments
7839 Churchill Way
Park Central V, MS 3984
Dallas, TX 75251
(214) 917–3881

MEXICO CITY
Texas Instruments de Mexico
Alfonso Reyes 115
Col. Hipodromo Condesa
Mexico, D.F., Mexico 06170
(52) (5) 515–6081
(52) (5) 515–6249

INDIANAPOLIS
Texas Instruments
550 Congressional Blvd., Suite 100
Carmel, IN 46032
(317) 573–6400

International Locations

AUSTRALIA
Texas Instruments Australia Ltd.
6–10 Talavera Road, North Ryde
New South Wales, Australia 2113
Tel: (61) (2) 8789000

JAPAN (Tokyo)
Texas Instruments Japan Ltd
Ms Shibaura Building 9F
4–13–23 Shibaura
Minato-Ku, Tokyo, JAPAN 108
Tel: (81) (3) 3769–8700

RTC Locations

 5-40

Table 5–1. RTC Worldwide Locations (Concluded)

International Locations

BRAZIL
Texas Instruments Electronicos do Brasil Ltda
Av. Eng. Luiz Carlos Berrini
1461–11o. andar
04571 Sao Paulo, SP, Brazil
Tel: (55) (11) 535–5133

JAPAN (Osaka)
Texas Instruments Asia LTD
Osaka Branch
Nissho-Iwai Bldg 5F
2–5–8 Imabashi Chuou-Ku
Osaka, Japan 541
Tel: (81) (6) 204–1881

FEDERAL REPUBLIC OF GERMANY
Texas Instruments
Deutschland GMBH
Kirchhorster Strasse 2
3000 Hannover 51, FR Germany
Tel: (49) (511) 648021

KOREA
Texas Instruments Korea Ltd.
28th Floor, Trade Tower
159 Samsung-Dong
Kangnam-Ku, Seoul
Trade Center P.O. Box 45
Seoul, Korea 135–729
Tel: (82) (2) 5512800

FEDERAL REPUBLIC OF GERMANY
Texas Instruments
Deutschland GMBH
Haggertystrasse 1
8050 Freising, FR Germany
Tel: (49) (8161) 80–0

SINGAPORE
Texas Instruments Singapore (Pte) Ltd.
Asia Pacific Division
101 Thomson Road #23–01
United Square
Singapore 1130
Tel: (65) 2519818

FRANCE (Paris)
Texas Instruments France
8–10 Avenue Morane Saulnier
Borte Postale 67
Velizy Villcoublay Cedex, France
Tel: (33) (13) 0701001

SWEDEN
Texas Instruments International Trade
Corporation
Box 30
S–164 93 Kista
Isafjordsgatan 7, Sweden
Tel: (8) 752–5800

HONG KONG
Texas Instruments Hong Kong Ltd.
8th Floor, World Shipping Centre
7 Canton Road
Kowloon, Hong Kong
Tel: (852) 7351223

TAIWAN
Texas Instruments Taiwan Ltd.
Taipei Branch
10 Floor, Bank Tower
205 Tung Hua N. Road
Taipei, Taiwan 105
Republic of China
Tel: (886) (2) 7139311

ITALY (Milan)
Texas Instruments Italia S.P.A.
Centro Direzionale Colleoni
Palazzo Perseo
Via Paracelso, North 12
20041 Agrate Brianza, MI, Italy
Tel: (39) (39) 63221

UNITED KINGDOM
Texas Instruments Ltd.
Regional Technology Center
Manton Lane
Bedford, England MK41 7PA
Tel: (44) (234) 270111

5-41 –

 Running Title—Attribute Reference

6-1 Chapter Title—Attribute Reference

TMS320C31 Third-Party Support

This chapter lists third-party manufacturers and suppliers alphabetically by
name and describes their current ’C31 products.

The third parties discussed in this chapter include:

Topic Page

6.1 Accelerated Technology, Inc. 6-2.

6.2 A. T. Barrett & Associates, Inc. 6-5.

6.3 Biomation 6-9.

6.4 Byte-BOS 6-12.

6.5 Computer Motion, Inc. 6-13.

6.6 Electronic Tools GmbH 6-14.

6.7 Integrated Motion, Incorporated 6-15.

6.8 Loughborough Sound Images Ltd. 6-17.

6.9 Precise Software Technologies Inc. 6-19.

6.10 Spectron Microsystems Inc. 6-23.

6.11 Spectrum Signal Processing Inc. 6-31.

6.12 Tartan Inc. 6-33.

6.13 Tektronix 6-37.

6.14 Wintriss 6-40.

Chapter 6

Accelerated Technology, Inc.

 6-2

6.1 Accelerated Technology, Inc.
P. O. Box 850245
Mobile, AL 36685
(800) 468–NUKE
(205) 661–5770

� Nucleus RTX

Nucleus RTX is a multitasking executive specifically designed for realtime
embedded applications using the TMS320C3x microprocessors. Nucleus
provides applications with advanced realtime facilities that encompass
management of task execution, task communication and synchronization,
system resources, predefined memory partitions, and dynamic-length
memory.

Nucleus RTX facilities are designed to operate in a consistent, reliable,
and efficient manner. Each task executing under Nucleus has a priority.
When multiple tasks are ready to execute, the task with the highest priority
is executed first. Tasks of the same priority execute in a first-in-first-out
(FIFO) manner. In addition to the many standard realtime facilities,
Nucleus also provides facilities such as task priority modification, task time
slicing, item sizes for communication queues defined by the user, suspen-
sion of full queues, suspension on multiple empty queues, both types of
memory management, suspension on unavailable memory, and event
flag consumption. Additionally, any Nucleus task suspension can be given
a maximum amount of time to stay suspended.

� Software Products

Accelerated Technology offers other realtime software products for use
with the TMS320C3x generation. These include a multitasking debugger,
a reentrant C library, an MS/DOS-compatible file system, and in the near
future networking support in the form of TCP/IP protocols.

The Nucleus debugger provides access to all Nucleus structures in a user-
readable fashion. Control structures for tasks, queues, semaphores,
event flags, and memory management are all available for inspection. Ad-
ditionally, the Nucleus debugger allows you to dynamically execute most
of the Nucleus RTX service calls.

The reentrant C libraries supplied by Accelerated Technology provide
standard ANSII interfaces for all functions, with the exception of file ser-
vices (file services are provided by the Nucleus file system). Because the
library routines are fully reentrant, application tasks running under
Nucleus can use them.

 Accelerated Technology, Inc.

6-3 TMS320C31 Third-Party Support

Nucleus File is an MS/DOS-compatible file system that is capable of reading
and writing standard floppy- and hard-disk formats. Nucleus File is specifically
designed for embedded applications.

Accelerated Technology’s realtime software products are primarily written in
ANSII C and are optimized for performance on the TMS320C3x DSPs. All soft-
ware products are delivered with complete source code and without any royal-
ties.

� Features of the Nucleus RTX Realtime Multitasking Executive

� Realtime, multitasking, executive for the TMS320C3x DSPs
� Complete source code
� No royalties
� Priority base with optional preemption and time slicing
� Task communication with user-defined public queues
� Item size of each queue defined by user
� Optional task suspension on full queues
� Optional task suspension on multiple queues
� Task synchronization with event flags
� Optional consumption of event flags
� Resource management with semaphores
� Predictable fixed-length memory management
� Flexible variable-length memory management
� Optional task suspension when memory is unavailable
� Optional timeout for any task suspension
� System history log
� Task performance analysis facilities
� Task-oriented debugger
� MS/DOS-compatible floppy file system
� TCP/IP network support (Q4 92)

� Technical Support

� Structured and documented source code
� Detailed programmer’s reference manual
� Detailed internal design manual
� Telephone consultation
� Warranty and maintenance service
� Extensive counseling and contract services

� Shipping Media —MS/DOS 5-1/4-inch diskette

Accelerated Technology, Inc.

 6-4

Figure 6–1. Realtime Application Tasks

Time Slice/
Timeout Clock

Management
Suspension

Timer

Management of:
Queues
Events

Resources
Fixed Memory

Variable Memory
Development Support

Task Scheduling Requests

Control of Application Task

(Task previously suspended by service call)

Control Relinquished to
Application Task

Schedule
Management

Realtime Application Task

Hardware Interrupt Handlers

Context Save/
Restore

Service
Requests

Control Relinquised to
Application Task

Service
Requests

Clock

Timer
Request

Schedule Management Development Support

NU_Start()
NU_Change_Priority()
NU_Change_Time_Slice()
NU_Control_Interruptor()
NU_Enable_Preemption()
NU_Disable_Preemption()
NU_Relinquish()
NU_Sleep()
NU_Stop()
NU_Reset()
NU_Retrieve_Task3 ()
NU_Current_Task_ID()

NU_Reset_Performance_Timer()
NU_Retrieve_Next_History_Entry()
NU_Retrieve_Performance_Info()
NU_Start_History_Saving()
NU_Start_Performance_Timer()
NU_Stop_History_Saving()
NU_Stop_Performance_Timer()

Clock Management Fixed-Size Memory Management

NU_Set_Time()
NU_Read_Timer()

NU_Alloc_Partition()
NU_Available_Partitions()
NU_Dealloc_Partition()

 Management Variable-Size Memory Management

NU_Send_Item()
NU_Force_Item_In_Front()
NU_Retrieve_Item()
NU_Retrieve_Item_Mult()
NU_Retrieve_Queue_Status()

NU_Alloc_Memory()
NU_Available_Memory()
NU_Dealloc_Memory()

 Management Resource Management

NU_Set_Events()
NU_Wait_For_Events()

NU_Request_Resource()
NU_Retrieve_Resource_Status()
NU_Release_Resource()

 A.T. Barrett & Associates, Inc.

6-5 TMS320C31 Third-Party Support

6.2 A.T. Barrett & Associates, Inc.
11501 Chimney Rock
Houston, Texas 77035
(800) 525–4302
(713) 728–9688
FAX: (713) 728–1049

� RTXC, Realtime Kernel for single processor systems
� RTXC/MP, Realtime Kernel for multiple processor systems

RTXC and RTXC/MP are fully preemptive, priority-driven, realtime kernels
written in ANSI C that enable you to tap the full power of the TMS320C3x
processors in realtime environments. Released in 1985, RTXC has been
continuously upgraded.

Demonstration and benchmark disks on RTXC and RTXC/MP are avail-
able free of charge. An evaluation package containing a full kernel, a spe-
cial user’s manual, and special utilities to assist in evaluation of the kernel
is also available. The package gives you the complete picture of the capa-
bilities, performance, scalability and ease of use of these realtime kernels.

RTXC and RTXC/MP are available for a one-time site license fee. All con-
figurations of processor and compiler bindings include full source code
and require no runtime royalties. Most compilers are supported.

The combination of RTXC and RTXC/MP address a broad range of ap-
plications. RTXC is aimed at embedded applications, which would typical-
ly use a single TMS320C2x, ’C3x, or ’C5x DSP. RTXC/MP is targeted at
applications employing multiple TMS320C3x or ’C4x processors.

RTXC and RTXC/MP share many of the same attributes and components.
Most importantly, both kernels use a similar application program interface
(API). However, RTXC/MP extends the RTXC API to include those func-
tions which are necessary for the special requirements of the multiproces-
sing environment. The API provides a wide range of kernel services such
as task management, timer management (including timeouts), intertask
communication and synchronization, memory and resource manage-
ment, and processor-specific ones. Intertask communication can occur
via semaphores, messages, and FIFO queues. Because of the com-
monality of the API, software developed for the RTXC single processor
system is highly portable to the multiprocessing world of RTXC/MP.

A set of high-end utilities help you configure, compile and fine-tune the ap-
plication. Both kernels use a system generation utility, RTXCgen, which
permits interactive definition of the system components, tasks, queues,
semaphores, memory partitions, and mailboxes. RTXCgen maintains the

A.T. Barrett & Associates, Inc.

 6-6

user-defined list of all application or topology-dependent attributes. For
example, resizing of a memory partition requires only the regeneration of
the C source file for memory partitions and no changes in the application
source code. RTXCgen automatically monitors changes made to the sys-
tem component definitions. When directed to generate C source code for
system tables, RTXCgen also produces header files only for those system
components that have been changed. Thus, RTXCgen promotes concor-
dance between the source code, representing the specified components
of the application, and the header files used for referencing members of
that application. In addition, RTXCgen provides listings of all system com-
ponents that serve as a primary source for system-level documentation.

A system-level debug utility, RTXCbug, is also common to both kernels.
RTXCbug examines the current state of the tasks, queues, and sema-
phores and presents a coherent picture, or snapshot, of the interaction be-
tween the system and the application tasks. It even permits manual task
management.

RTXC/MP includes two special utilities not found in the single processor
RTXC kernel. RTXC monitors the system and provides, on demand, a list
of the last 256 scheduled events, permitting you to trace the immediate
history of the application. The second utility, a built-in work load monitor,
acts to measure and to redistribute the workload at runtime.

RTXC and RTXC/MP address two important problems. First, the use of
ANSI standard C protects you from technology changes, thus preserving
the software development investment. The easy upgrade path from a
single processor version of RTXC to the multiple processor version of
RTXC/MP ensures that the software investment is future proof. Second,
the difficulties of parallel or distributed programming become less prob-
lematic through RTXC/MP’s use of a virtual single-processor model. The
implementation is geared towards maximum performance so that hard
realtime constraints are still satisfied even in a multiple-processor system
architecture.

 A.T. Barrett & Associates, Inc.

6-7 TMS320C31 Third-Party Support

� RTXC Specifics

With an implementation history dating from 1978, RTXC provides a sound
foundation for the solution of complex realtime systems. It is based on the
concept of preemptive multitasking that permits a system to make efficient
use of both time and system resources. RTXC is distributed in three
source code configurations defined by the set of kernel services embodied
in each. The different configurations are available to meet the real needs
of the embedded systems marketplace where there is a wide diversity of
functional capabilities required in a realtime kernel. RTXC allows you to
license the source code library that most closely fits your needs. If you
need more capabilities later on, there is a simple upgrade path.

The three source code libraries, basic, advanced, and extended are com-
patible with each other. All of the services in the Basic Library are included
in the advanced library. All of the advanced library is part of the extended
library. If you obtain a license to the basic library, you can upgrade to either
the advanced or extended library without changing the application pro-
grams developed with the basic library.

� RTXC/MP Specifics

The range of applications is vast, from single-processor-embedded sys-
tems to complex control systems with various degrees of fault-tolerance
and using tens of processors. Throughout the spectrum of applications,
RTXC/MP provides transparent distributed realtime processing without
the need to change any line of application source code when changing at-
tributes of system resources (for example, the location of tasks, queues,
semaphores, memory blocks, and priority of tasks).

The transparency simply means that any cluster of processors can be re-
garded as a single realtime-processing engine. While processors give you
scalable computing power, RTXC/MP gives you scalable realtime soft-
ware. Transparency is achieved by the implementation of a virtual single-
processor model. The model uses a global naming scheme in which all
system resources are known system wide. The use of the global naming
scheme relies on the embedded router in RTXC/MP. The RTXC/MP router
which supports up to 64K processor nodes and 64K tasks is attractive for
pure communication applications. The routing tables, automatically gen-
erated by RTXCgen from the link connections table, allow you to write all
communication between tasks as if they were located on the same proces-
sor. Under high communication loads, prioritized handling in the router
avoids lower priority messages blocking higher priority messages.

While the single processor kernel (RTXC) can be used with multiple pro-
cessors if you define your own communication protocols, the distributed

A.T. Barrett & Associates, Inc.

 6-8

version frees you from this burden. Moreover, because RTXC/MP uses a
message-based mechanism, ports to common-memory, local-memory,
and LAN-based systems can easily be done.

A distributed I/O library and graphics server is also available for RTXC/MP.

The design philosophy behind RTXC/MP has proven to be a major step
forward to shield software applications from technology changes. It offers
a future-proof environment for the transparent development of scalable
realtime software on scalable processor hardware.

 Biomation

6-9 TMS320C31 Third-Party Support

6.3 Biomation
19050 Pruneridge Ave.
Cupertino, CA 95014
(800) 944–2466
FAX: (408) 988–1647

� CLAS 2000 and CLAS 4000 Logic Analyzers

The CLAS 2000 and CLAS 4000 Logic Analyzers provide measurement
capability for examining high-speed CISC, RISC, ASIC, and general-logic
design including:

� 96-channel module with 50/100/200 MHz capture
� Measurement widths of up to 384 channels
� Configurations with 1 to 4 logic analyzers per CLAS 4000
� Configurations with 1 or 2 logic analyzers per CLAS 2000
� Full-speed triggering with multilevel trace control
� Time-stamped transitional recording
� Disassembling of all DSP instructions
� Full-speed operation for clock and data rates
� Monitoring of every ’C3x signal with a single-probe connection
� Small interface probes for dense boards
� Reliable high-speed probing
� Timing and state measurements made through the processor probe
� Full symbolic display and triggering for address, data, and control

groups
� Support for multiprocessor systems

� Operation

Operation is quick and simple. To connect to your target, just install the
probe board between the ’C3x CPU and its socket. Click on the icon repre-
senting the ’C3x disassembler setup and the entire logic analyzer will be
configured automatically. The setup assigns channels to all of the CPU’s
signals, arranges the channels into address, data, and status groups, and
sets up the clocking for the ’C3x. Predefined trigger patterns are also pro-
vided so that you can quickly specify which samples are captured.

� Display

Data captured on the CLAS can be viewed simultaneously in several win-
dows with each window displaying the data in different formats. Results
are displayed as symbolic, hex, octal, and binary radices in a state win-
dow; as waveforms in a timing window; and as decoded mnemonics in a
disassembly window. Display radices can be added or changed at any
time without taking a new measurement.

Biomation

 6-10

Decoded instructions for the TMS320C3x processor are displayed in the
disassembly window. The MAP hardware is capable of capturing all bus
cycles. The ’C3x must be executing out of external RAM in order for the
disassembler to operate effectively. Four disassembly display modes are
available: display all bus cycles, delete non-executed cycles, delete data
read/writes, and display executed code only. These modes allow the dis-
play to be tailored to your needs. Hardware engineers will appreciate “DIs-
play All Bus Cycles,” while the “Display Executed Code Only” will look
much like the program listing to which a software engineer is accustomed
(with symbolic labels for addresses).

� Passive Interface

Biomation uses passive interfaces in microprocessor probe adapters.
Passive interfaces bring the processor signals directly to the logic analyz-
er’s high-impedance data probes. Direct connection to the CPU allows
timing measurements to be made directly through the probe. Where load-
ing is critical, clock signals have an active buffer on the probe board to en-
sure proper operation of the system under test.

� Specifications

Signals Monitored: Two 96-channel pyramid measurement modules per
CPU support full TMS320C3x disassembly. Additional pyramid modules
can be added to monitor other system signals.

Input Impedance: The input impedance of all signals are 1 MΩ shunted
by 8 pF except STRB, RDY, MSTRB, IOSTRB, XRDY, and H1. Input im-
pedance on these signals are approximately 500 kΩ shunted by 16 pF.

� Sampling

External clock: DC to 50 MHz

Internal clock: 100 ms to 5 ns

Setup time: 7.0 ns-typical (reduced to 4 ns with timebase sync probe)

Hold time: 0 ns

� Power

All MAP power is provided by the CLAS chassis. No power is required from
the target system.

� Mechanical

Connection to the target is made using a 190-pin PGA package (15 × 15
grid) mounted on the MAP probe adapter. The probe adapter is placed be-
tween the CPU and its socket. A zero-insertion-force (ZIF) socket is in-
cluded, but can be removed when space is limited.

 Biomation

6-11 TMS320C31 Third-Party Support

� Probing Considerations

The MAP probe adapter is made as small as possible to allow an easy con-
nection when other chips are mounted next to the CPU. The probe adapter
extends a maximum of 1.5 cm (0.6 in) from the chip on the sides and 8.6
cm (3.4 in) along the back.

� Miscellaneous

Size: Interface Box 4.0 cm (1.6 in) high,
21.3 cm (8.4 in) wide,
22.9 cm (9.0 in) deep

Probe Adapter 2.1 cm (0.8 in) high (with ZIF)
6.5 cm (2.5 in) wide
13.7 cm (5.4 in) long

Cable 34 cm (13.5 in) long

Weight: 0.8 kg (1.75 lb) with cables
and probe adapter

Temperature: 0–50°C, noncondensing

Byte-BOS

 6-12

6.4 Byte-BOS
P.O. Box 3067
Del Mar, CA 92014
(800) 788–7288 or
(619) 755–8836

� Byte-BOS Multitasking Operating System

Byte-BOS Multitasking Operating System (BOS) is a low-cost, full-fea-
tured, realtime preemptive multitasking operating system and is available
for TMS320 DSPs. Byte-BOS brings the cost of multitasking within reach
of all embedded software applications by providing a common code base
across a wide range of processors, including the TMS320C3x DSPs. BOS
consists of a C library of realtime multitasking functions with the following
features:

� Preemptive and nonpreemptive prioritized task scheduling
� Task control and management
� Timer management
� Event synchronization
� Message passing
� Resource management
� Serial I/O management
� Interrupt stack and nested interrupt handling
� Low power management
� Function timeout, blocking, and nonblocking return
� TMS320 on-chip timer and serial port integration
� Application code for TMS320 embedded platform
� External UART serial I/O management (add-on library)
� Fixed block memory management (add-on library)
� Multiple programmable event timers (add-on library)
� Multiple message buffers (add-on library)
� BOSVIEW realtime operating system view port (add-on library)
� Library and applications code-compiler batch and make files
� Comprehensive reference manual with many examples
� Prototype and test TMS320 BOS applications on a PC
� Source code site license (unlimited product usage)
� No royalty executable code distribution
� One year of technical support and revision updates

BOS is optimized for all TMS320 DSPs and has excellent performance.
BOS is configured to work with the Texas Instruments C development sys-
tems and includes a working application.

 Computer Motion, Inc.

6-13 TMS320C31 Third-Party Support

6.5 Computer Motion, Inc.
270 Storke Rd., Suite 11
Goleta, CA 93117
(805) 685–3729
FAX: (805) 685–9277

� C++ Compiler

Computer Motion Inc. has introduced object-oriented programming using
C++ for the TI TMS320C30 and TMS320C31 DSPs. This compiler is
based on the GNU C++ retargetable compiler and executes on
SPARCstation platforms. This compiler translates programs directly to
TMS320 assembly language. The TI assembler and linker can then be
used to create the final executable code. The object code generated from
the assembly language output can be linked with other programs compiled
with both the TI C compiler and the runtime-support libraries. The package
includes documentaiton manuals and a quarter-inch cartridge tape that
contains both a C++ and a C compiler.

Electronic Tools GmbH

 6-14

6.6 Electronic Tools GmbH
Zum Blauen See7
4030 Ratingen
Germany
0049–2102–88010
FAX: 0049–2102–880123

� miniKit-320C31 Embedded DSP System

miniKit-320C31 is a complete embedded DSP system based on the Texas
Instrument’s TMS320C31 and is not larger than the size of a credit card.
The module addresses two significant areas of DSP-based system de-
sign: it can either be used as a fully functional development system on
which algorithms can be rapidly implemented and debugged or as a mod-
ule which is easily integrated into any user’s end-system. The module is
particularly attractive for low to medium volume embedded solutions re-
quiring a fast turnaround time as it may be designed into any industrial
product just like a large IC. This proven platform manufactured in SMD-
technology offers a number of standardized intefaces which allow full ac-
cess to all of the DSP’s features. Compatibility is guaranteed with other
products of Electronic Tool’s miniKit range. Debugging is performed on a
PC with the TI db30 source-level debugger which is linked to mini-
Kit-320C31 via a small PC controller board and the emulation port of the
TMS320C31. A rich set of software utilities ensure that all steps from algo-
rithm implementation in C- or assembler code right down to programming
miniKit’s boot EPROM can be achieved on the fly.

� Credit card sized DSP system: 85mm × 61mm
� TMS320C31 (33 MHz)
� 128K × 32 zero wait-state static RAM
� 64K × 8 boot EPROM; booting possible via EPROM, host
� Interface, RAM or serial interface
� Watchdog timer
� Power failure detection
� Battery backup
� miniBus interface: standardized 16-bit parallel bus for attaching pe-

ripherals
� HostBus interface: standardized 8-, 16-, 32-bit parallel interface for at-

taching microcontrollers; also available for bit I/O
� ExpansionBus interface: TMS320C31-specific bus (32-bit parallel) for

expanding memory and attaching peripherals
� Serial interface
� Timer interface
� Emulation interface

 Integrated Motion, Incorporated

6-15 TMS320C31 Third-Party Support

6.7 Integrated Motion, Incorporated
758 Gilman Street
Berkeley, California 94710
(510) 527–5810
FAX: (510) 527–7843

� MX31 Modular Embedded System

The MX31 is a low-cost, modular, small-footprint general-purpose em-
bedded controller with expansion daughter boards designed for applica-
tions involving motion control. The system is based on a motherboard/
daughter board architecture for flexibility and low cost. The motherboard is
a processor unit consisting of a 33-MHz TMS320C31 floating-point DSP,
ROM, RAM, and other support devices. Each daughter board provides the
peripherals required to control a two-axis servo-actuated mechanical sys-
tem. Up to four daughter boards can be stacked in a single system to con-
trol up to eight servo axes.

� Motherboard features

� 33-MHz TMS320C31 floating-point DSP
� 16- to 256K-word ROM
� Up to 256K-word zero-wait-state RAM
� RS232 serial port
� 16-bit parallel I/O

� Daughter board features

� 2-channel, 16-bit shaft encoder interface
� 2-channel, 16-bit analog output
� 12-bit digital input, 6-bit digital output
� Up to 32K bytes nonvolatile RAM
� All-digital I/O optically isolated

Daughter boards for other applications such as binary image acquisi-
tion and general-purpose I/O are currently under development. A seri-
al port-based software monitor program is available to aid with the de-
velopment of embedded control algorithms.

Integrated Motion, Incorporated

 6-16

Figure 6–2. MX31 Fitted With a Preliminary CCD Camera Interface Daughter Board

Insert photo
 H1

Get this photo from the TMS320 3rd
Party Support Reference Guide (job
61119); page 3–137; Figure 3–34.

 Loughborough Sound Images Ltd.

6-17 Third-Party Product Descriptions

6.8 Loughborough Sound Images Ltd.
The Technology Centre
Epinal Way, Loughborough
Leicestershire, LE11 OQE
England
(44) 509 231843

� TMS320C31 PC/AT Embedded DSP Board

The PC/C31 is a 3/4 length PC/AT-compatible board intended for em-
bedded signal processing and control applications. The board’s architec-
ture gives complete access to all of the TMS320C31’s facilities and adds a
variety of peripheral interface options.

The PC/C31 is ideal for a wide range of embedded applications, from real-
time closed loop control to online signal processing. The high-perfor-
mance, low-cost 32-bit floating-point TMS320C31’s features make it
ideally suited to application areas not previously considered. Coupled with
LSI’s range of peripherals, complete application systems can be as-
sembled quickly and easily.

Features include

� Complete TMS320C31 processing system
� Small, 3/4 length PC/AT board format
� Boot EPROM for standalone operation
� Zero wait-state SRAM up to 640K words
� Dual-port SRAM host interface
� High quality on-board analog interfaces
� Uprated DSPLINK parallel bus expansion
� Comprehensive software support

The board format has been designed to the familiar PC/AT specification to
ease initial evaluation and development work. Existing users of LSI
TMS320C30 products can quickly transfer code to the PC/C31 to imple-
ment a target system. The 3/4 length board format aids in keeping occu-
pied space to a minimum. True standalone operation is achieved by the
use of the boot EPROM. Using the built-in boot loader of the ’C31, the
board can be configured to self initialize and begin execution of applica-
tions.

The wide range of zero-wait-state SRAM options, from 32K to 640K
words, allows any size of system to be specifically configured for the re-
quired application. From an intelligent microcontroller in industrial use to a
multitasking signal processing design, all can be accommodated in a high-
speed solution. The 2K-word dual-port memory host interface allows rapid

Loughborough Sound Images Ltd.

 6-18

communication, allowing a host PC to transfer data to and from the
PC/C31 without halting the DSP. This facility is a great asset in systems
that use both the DSP and the host machine in a dual-processing arrange-
ment, where efficient communication between the two is needed.

The PC/C31 is fitted with two of LSI’s daughter module sites, giving it ac-
cess to the high-quality interfaces that make up the daughter module
range. This presently comprises both delta-sigma and successive approx-
imation devices and is continually expanding. Using the currently avail-
able successive approximation modules, it is possible to construct a 4-in-
put/4-output analog system with a maximum sampling frequency of 200
KHz on the inputs and 500 KHz on the outputs. The modules are designed
for quality of conversion. Signal-to-noise and distortion figures of 90 dB for
the delta-sigma part have been measured with modules mounted on DSP
boards and placed within a PC.

Parallel expansion is provided by an updated version of LSI’s DSPLINK
interface standard. The bus provides a standardized interface to all of
LSI’s DSP boards and allows the use of a range of readily available periph-
eral boards including multichannel analog I/O and AES/EBU pro-audio
digital interfaces. The DSPLINK specification is published, allowing users
to easily interface a custom design to the bus. Improvements to the origi-
nal DSPLINK include a 32-bit data bus and additional address lines.

Code development support will be provided by the Texas Instruments
floating-point DSP tools that include an optimizing ANSI C compiler, as-
sembler, and linker. These tools cover the whole TI floating-point DSP
range, making upgrades or changes to/from other devices a simple mat-
ter.

Debug of DSP code is supported by LSI’s command line MON31 and Win-
dows 3.0-compatible View31. Both provide a comprehensive range of de-
bug features. View31 allows multiple-board debug sessions, and the win-
dows display is configurable to meet the needs of the debug session. Sev-
eral memory areas can be viewed simultaneously while multiple-register
windows let you view just the registers of interest.

The LSI high-level language interface library allows the integration of the
DSP functionality into the host PC. Functions are provided to control and
pass data to and from the board, and the libraries are provided in both
Microsoft and Turbo C formats.

 Precise Software Technologies Inc.

6-19 TMS320C31 Third-Party Support

6.9 Precise Software Technologies Inc.
301 Moodie Drive, Suite 308
Nepean, Ontario
Canada, K2H 9C4
(613) 596–2251
(613) 596–6713

� Precise/MPX Realtime Multiprocessor Executive

Realtime-embedded control applications are increasingly being solved by
using DSPs instead of CISC-based 16- and 32-bit processors. The bene-
fits of using DSPs are increased performance, simpler designs, and cost-
effective multiprocessor applications. The TMS320C3x devices are cost
effective for many embedded applications such as voice or data commu-
nications controllers, LAN controllers, peripheral controllers, laser print-
ers, and biomedical devices. Applications that require additional proces-
sors to handle high throughput, high interrupt rates, or building block flexi-
bility, can easily use 2 or more TMS320C3x DSP chips to make simple,
easy-to-use multiprocessor systems.

The maximum capabilities of the hardware can be realized by using the
Precise/MPX executive. Precise/MPX is a library of primitives that are
used by a realtime software designer to extend the C language to a real-
time concurrent C language with transparent support for multiprocessor
applications. Designing applications using a concurrent programming
model is the simplest and most natural paradigm for expressing a realtime
problem in terms of a high-level programming language, and is the basis
for modern programming languages such as Ada, C++, Objective-C, and
Smalltalk. The Precise/MPX kernel has been designed such that the
benefits of this programming paradigm can be successfully applied to real-
time-embedded controller applications. These capabilities are provided in
a very efficient ROMable kernel that typically requires only 16K bytes.
Additional benefits of using Precise/MPX are

� Portability—the concurrent paradigm is hardware independent
� Reusability—task objects communicate with other task objects or

physical interrupts via specified interfaces
� Scalability—any application that uses Precise/MPX can be mapped

from one to any number of DSPs without any change to the application
software and no increase in the kernel overhead (in fact the overhead
decreases).

Precise Software Technologies Inc.

 6-20

� Concurrent Program Development

Precise/MPX provides over 90 primitives to support program develop-
ment. These can be grouped into the following major categories:

� Task management
� Inter-task communication
� Interrupt management
� Memory management
� Server management

A software designer uses the Precise/MPX tasking model, interrupt man-
agement primitives, and inter-task communications primitives to solve a
realtime problem by breaking it down into concurrent tasks that communi-
cate via well defined messages. A task is simply a C language function im-
plemented as an iterative loop. Inter-task communication primitives pass
messages between tasks and implicitly provide concurrency, which sim-
plifies realtime design and implementation.

� Task Management

Precise/MPX has the capability to completely manage the state of
tasks while an application is executing. This capability is especially im-
portant for realtime applications that require recovery, reconfigura-
tion, or have resource limitations.

Application tasks are defined to the Precise/MPX kernel through a
data structure which specifies priority, stack size, and the symbolic
name of the first function of the task. All application tasks except for
“main” tasks are managed explicitly by the application using the
_Create() and _Destroy() task management primitives.

Tasks are very lightweight. A task context is maintained in a 128-byte
task descriptor. An application can _Create() any number and any
type of tasks subject only to available memory.

After system initialization, the Precise/MPX kernel will _Create() a
user-specified “main” task and dispatch this task. The “main” task is
written by the user to create and dispatch all remaining components
of the realtime application.

Once a task has been created, it will execute subject to its own priority
and the actions it performs. Task switching occurs only when a task
executes a Precise/MPX primitive that “readies” a higher priority task
or when an interrupt event readies a higher priority task.

� Inter-Task Communication

Inter-task communication and task synchronization are supported
with messages passed between tasks. A software designer usually

 Precise Software Technologies Inc.

6-21 TMS320C31 Third-Party Support

uses the _Send(), _Receive(), or _Reply() primitives for message
passing. These three primitives are the core interface to the Precise/
MPX executive.

The structure of a design is represented by how the application uses
inter-task communication. _Send() is used to send a message to
another task and cause the kernel to ready that task and run it.
_Receive() is used by a task to request that a message be sent to it
and cause the kernel to ready another task. _Reply() is used to issue
a response from a receiving task to a sending task and to ready the
sending task. Thus, with three simple primitives a designer can speci-
fy all inter-task communication and all scheduling required for a con-
current application.

� Interrupt Management

Precise/MPX supports dynamic direct connection to interrupts. Inter-
rupts can be either exceptions generated by the DSP or external de-
vice interrupts. The software designer is responsible for writing the in-
terrupt service routine, called the notifier. Notifiers can be implement-
ed in C or in assembly language. Interrupts and notifiers can be de-
fined during executive initialization or they can be installed by any task
during execution.

Notifiers are equivalent to tasks except they do not require the over-
head of tasks and are not scheduled by the executive. A task that is
ready to receive an interrupt uses the _Await_interrupt() primitive. A
notifier needs only to perform two actions to reply to a waiting task.
First, it calls _Task_awaiting_interrupt() to determine which task is
waiting. Then, it calls _Add_ready() which readies the waiting task.

� Memory Management

Precise/MPX includes a dynamic memory manager that tasks use to
allocate extra temporary or private memory areas exclusive of the
tasks’ stack. The memory management algorithm is a first on request.
On release, it groups together the nearest neighbors to minimize
memory fragmentation.

� Server Management

Precise/MPX includes primitives that support Client/Server design
paradigms. The client/server model is a powerful design method for
developing robust reusable applications for communications and pe-
ripheral controllers. Clients and servers are Precise/MPX tasks. The
only difference is that a server is created with the _Server_create()
primitive, and after it is created, it initializes itself differently. Part of this

Precise Software Technologies Inc.

 6-22

initialization is registering the Server’s service with a registry so that
any client task can use the server.

� I/O Components

The Precise/MPX is augmented with optional I/O software components
that support the following services:

� SDLC
� LAPB
� Mil-Std 1553
� TCP/IP

These components are written almost entirely in C and are completely re-
usable for any new hardware configuration.

� Multiprocessing

The Precise/MPX kernel has been designed to support various commonly
used multiprocessor hardware configurations. It is a unique technology,
due to the support for multiprocessor applications using DSPs or mixes of
DSP and non-DSP processors.

Precise/MPX has been successfully used on multiprocessors based upon
VMEbus and NuBus hardware consisting of from two to 20 microproces-
sors and using the parallel backplane as a high speed interconnection net-
work. It has also been used in proprietary hardware applications where
from three to nine microprocessors are interconnected with memory or
high-speed serial data interfaces. In all cases, the applications software
has been designed independently of the underlying hardware or intercon-
nection network and the designer was able to reconfigure the application
to take advantage of the number and type of processors used in the hard-
ware without having to change the design or any applications source code.

 Spectron Microsystems Inc.

6-23 TMS320C31 Third-Party Support

6.10 Spectron Microsystems Inc.
5266 Hollister Avenue
Santa Barbara, CA 93111
(805) 967–0503
FAX: (805) 683–4995

� SPOX Architecture

SPOX is a highly modular and configurable runtime environment that sup-
ports the ’C3x hardware platforms and can be integrated with application
programs targeted for these systems. While it provides most of the func-
tionality found in many realtime executives used with general-purpose mi-
croprocessors, SPOX has been specifically designed for the more de-
manding environment of TMS320C3x-based DSP systems:

� Extensive numeric computation
� Realtime I/O
� High-frequency data rates
� Limited program memory
� Multi-DSP system architectures
� Integration with an adjoining host computer

Because of its modular software architecture, SPOX can address a wide
range of DSP applications—telecommunications, imaging, speech and
audio, test and measurement, and multimedia to name a few—without
comprising system functionality and performance. The SPOX runtime en-
vironment can be reduced to as little as a few thousand words of code for
small embedded applications requiring only a limited number of kernel
functions. SPOX can also be integrated into a more comprehensive envi-
ronment that supports larger applications executing a variety of numerical-
ly-intensive algorithms and performing system control and communica-
tion functions.

Spectron Microsystems Inc.

 6-24

Figure 6–3. SPOX Architecture

SPOX-MATH

SPOX-OS SPOX-DBUG
SPOX-
LIBC

SPOX-MP

Figure 6–3 depicts the overall architecture of SPOX, illustrating its major
functional capabilities along with their organization into the following dis-
tinct software components.

� SPOX OS is the foundation of SPOX that provides a set of system ca-
pabilities that include: memory management supplying dynamic al-
location of arrays from multiple-memory segments; hardware inter-
rupt handling; control of multiple-realtime tasks executing within a
single program; and a uniform device-independent stream I/O inter-
face to platform-specific drivers that manage peripherals used for sys-
tem I/O and communications. It serves as the foundation for the re-
maining application libraries and system components.

� SPOX LIBC is a library of standard C runtime environment that pro-
vides rudimentary file I/O capabilities on the DSP or seamless integra-
tion with adjoining host-computer-file system.

� SPOX MATH is a comprehensive library of optimized DSP math func-
tions that operate on vectors, matrices, and filters.

� SPOX DBUG extends the capabilities of DSP C source debuggers,
such as the Texas Instruments db30 to simplify the development of
realtime-multitasking SPOX-OS applications. It allows developers to
perform debug and profile functions from within the C debugger.

� SPOX MP is a set of software functions that provide a foundation for
multi-DSP applications. These include interprocessor communication

 Spectron Microsystems Inc.

6-25 TMS320C31 Third-Party Support

primitives, management of shared memory, and the ability to reassign
tasks across processor boundaries.

� Realtime Multitasking

The SPOX OS offers all of the features typically found in other realtime
multitasking kernels:

� Preemptive, event-driven scheduling
� Dynamically prioritized tasks
� Synchronization and communication facilities
� Timer services
� Handling of device interrupts

By offering these features, SPOX OS enables realtime-multitasking ap-
plications typically relegated to general-purpose microprocessors to
execute on the DSP. Older configurations with 16-bit DSPs, used as slave
processors controlled by a more intelligent, general-purpose master, can
now be replaced by single-chip 32-bit DSP solutions. Thus, SPOX man-
ages multiple tasks executing numerically-intensive algorithms in parallel
with other system control and communication functions.

� Memory Management, Device-Independent I/O, and Host Commu-
nication

While numerical processing may dominate DSP applications, memory al-
location, I/O, and communication are equally vital when turning a theoreti-
cal algorithm into a practical application. Where the data is located in
memory and how this data is input or output have just as much effect on
overall system performance as does the algorithm itself.

Using the SPOX memory management functions, application programs
create individual-array objects whose respective data buffers can be dy-
namically allocated and freed during the course of execution. Unlike the
standard C functions malloc() and free() , the SPOX array functions en-
able the application to supply a parameter specifying the segment of
memory in which these buffers will reside. Since production DSP hard-
ware platforms typically contain a hierarchy of memory types (on-chip
RAM, external SRAM, bulk DRAM, etc.) retaining explicit control over the
location of data becomes essential to meeting realtime constraints in
many applications.

SPOX OS supports device-independent I/O, meaning that a uniform set of
I/O operations are mapped into an otherwise diverse set of devices. The
high-level nature of device-independent I/O operations provides a consis-
tent programming interface for a number of off-the-shelf device drivers for
accessing and controlling each device within the system and insulates ap-
plications from the low-level details of managing these devices.

Spectron Microsystems Inc.

 6-26

SPOX OS also provides a mechanism for adding platform-dependent driv-
ers—software modules that encapsulate low-level hardware details by in-
terpreting device-independent I/O requests in a device-dependent fash-
ion. Device drivers are the key to customizing SPOX for a particular sys-
tem environment, and to ensuring portability of SPOX applications from
one system to the next.

Unlike virtually every other operating system or realtime executive, the de-
vice-independent I/O interface supported by SPOX does not include a
read() or write() function in the traditional sense. Rather than mandat-
ing one pair of general-purpose functions for all input and output, SPOX
allows for a broader set of I/O operations optimized for two fundamentally
different forms of program interaction with underlying devices found in
realtime DSP systems:

� Asynchronous data streaming, in which the program and device are in
a producer/consumer relationship and

� Synchronous message passing, in which the program and device are
in a client/server relationship.

� C Runtime Environment

The SPOX application libraries include many of the standard functions
which are typically not implemented by C compilers targeted for DSP pro-
cessors. Included among these are the routines comprising the C stdio

library together with other standard functions requiring operating system
support:

� Opening/closing named files (fopen, fclose , ...)
� Reading/writing byte streams (getc, putc , ...)
� Formatted I/O (printf, scanf, ...)
� Utility functions (system, time, ...)
� Program termination (exit, abort , ...)
� Memory management (malloc, free, ...)

By furnishing these functions, the SPOX application libraries enable many
standard C programs normally run on a host computer under UNIX or
MS-DOS to be literally recompiled and executed faster on attached DSP
hardware.

� DSP Math Functions

SPOX furnishes over 100 standard math functions that can be used as
building blocks for algorithms employed in advanced DSP applications,
such as:

 Spectron Microsystems Inc.

6-27 TMS320C31 Third-Party Support

� Vector functions—arithmetic and logical operations, dot product, con-
volution, correlation, FFT, windowing, LPC analysis

� Matrix functions—arithmetic and logical operations, row and column
manipulation, matrix multiplication, 2-D FFT

� Filter functions—FIR, IIR, and LMS adaptive filtering

The goal of the SPOX math library is to allow DSP application developers
to write as much of their program in C as possible without sacrificing over-
all system performance. To accomplish this goal, all SPOX math functions
are optimized in assembly language. Just as importantly, they are tightly
integrated into the SPOX memory management and I/O system so that
critical data operated by the math algorithms is situated in the appropriate
memory, and the overhead incurred in exchanging data between I/O
streams and math algorithms is kept to a minimum.

� Multiprocessing Systems

SPOX addresses the needs of multi-DSP applications with a set of func-
tions that extend the multi-tasking, I/O, and memory management capabil-
ities of SPOX OS from a uniprocessor to a multiprocessor architecture. In
a SPOX multiprocessing system, a copy of SPOX-OS is required at each
node of the system to manage load resources such as tasks and memory.
The following independent software modules are provides:

� Inter-task communication application programming interface (API)
� Multiprocessor global shared memory manager
� Shared memory interprocessor resource locks
� On-chip peripheral support

� Debug Support

The C source debugger can provide the following debug and profile capa-
bilities via additional runtime support to the SPOX OS and extensions to
the debugger, as shown in Figure 6–4:

� Display of SPOX OS objects
� Set task-specific breakpoints
� Monitor and display system performance characteristics
� Invoke SPOX OS system calls

Spectron Microsystems Inc.

 6-28

Figure 6–4. SPOX Debug Support
SPOX DBUG

Utilities

Development Host
With In-Circuit Emulation Controller

SPOX-OS

SPOX DBUG
Runtime

TMS320C3x/4x
Target

System

� SPOX Products

SPOX products that are generally used by application developers and
system integrators include:

� Software Components for Embedded Systems

For customers who build and develop realtime embedded DSP sys-
tems, SPOX is offered as a suite of software components (shown in
Figure 6–3) which can be configured and customized for the custom-
er’s hardware.

� Application Library Packages

All major suppliers of plug-in DSP boards offer the complete library of
SPOX application functions for C runtime environment, realtime
stream I/O, DSP math, and host-DSP communication. These SPOX
application library packages are transforming PCs and workstations
into signal-processing systems that integrate the flexibility of a host
computer with the power of attached DSP hardware.

� SPOX Evaluation Kit

The SPOX EVM evaluation system provides DSP system developers
with a low-cost, easy-to-use solution for evaluating the SPOX system
kernel on a TMS320C3x hardware platform. The SPOX EVM product

 Spectron Microsystems Inc.

6-29 TMS320C31 Third-Party Support

streamlines the evaluation process by integrating all of the necessary
hardware and software components into a single turnkey package:

� TMS320C3x EVM hardware platform
� TMS320C3x C compiler and assembly language tools
� SPOX-OS software

SPOX EVM can also serve as a development platform for building rap-
id prototypes of new DSP systems. All application software developed
initially under SPOX EVM can later be reused on any production hard-
ware platform using SPOX.

� Open Signal Processing Architecture (OSPA)

While improvements in application productivity and portability are proven
benefits of SPOX, the true power of a standard software interface to un-
derlying DSP hardware comes with bringing together a wide range of inter-
operable products. With SPOX serving as the common thread, application
developers and system integrators not only can apply these products to-
ward solving today’s problems, but are also afforded a bridge to future
DSP technologies through the SPOX OSPA (Open Signal Processing Ar-
chitecture). Figure 6–5 depicts the OSPA framework for interoperability.

Figure 6–5. Open Signal Processing Architecture

Laboratory Systems
Design Tools

Compilers,
Debuggers

SPOX
Tools

Host Operating System

Computer DSP Boards

Device
Drivers

Telecommunications
Library

SPOX

Speech Library

Image Library
Audio Library

Peripheral

Applications

� Board-Level Products

SPOX is rapidly proliferating across a wide variety of board-level prod-
ucts targeted for current and emerging bus architectures (VMEbus,
NuBus, EISA, SBus, etc.), allowing developers to buy off-the-shelf
DSP platforms and data-acquisition boards rather than building cus-
tom hardware.

Spectron Microsystems Inc.

 6-30

� Program Development Tools

SPOX supports development of application programs using high-lev-
el languages including C and Ada. Several source-level debuggers
are also being enhanced with knowledge of the SPOX runtime envi-
ronment.

� DSP Function Libraries

A growing number of vendors are offering “platform-independent”
DSP functions ranging from SPOX-compatible math libraries for au-
dio or image processing to complete implementations of system capa-
bilities such as FAX/modem, speech recognition, and image com-
pression.

� Integrated Host Applications

To facilitate integration of host application programs with realtime DSP
software, Spectron provides host computer software that transparent-
ly controls and communicates with SPOX tasks executing realtime al-
gorithms on attached DSP hardware.

 Spectrum Signal Processing Inc.

6-31 TMS320C31 Third-Party Support

6.11 Spectrum Signal Processing Inc.
250 ’H’ Street
P.O. Box 8110–25
Blaine, WA 98230
(800) 663–8986
FAX: (604) 438–3046

� DSP/PC Single-Board Computer

Designed for applications such as multimedia, the DSP/PC single-board
computer integrates PC technology with DSP technology on a full-size
IBM AT plug-in card. A 25-MHz 80386 provides a 100% PC/AT-compatible
platform for running DOS programs such as Microsoft Windows, Lotus
1-2-3, and Hypersignal Workstation, while a TMS320C31 provides up to
33 MFLOPS of DSP power.

Features include

� 2 megabytes of System DRAM, expandable to 8 megabytes
� High-performance SCSI interface with 32-bit bus-mastering DMA

controller
� Dual floppy disk controller
� Two serial RS-232 ports
� Parallel/printer port
� Realtime clock calendar
� Keyboard and speaker ports
� TMS320C31 32-bit floating-point DSP
� Media_Link high-speed bus expansion connector

� DSP-Link Peripherals

Spectrum’s DSP-Link peripherals are compatible with the DSP-Link sys-
tem expansion interface and can be connected to any DSP system or pro-
cessor board. DSP-Link specifications are available for custom interfac-
ing.

Following are brief descriptions of Spectrum DSP-Link peripherals:

� 4-Channel Analog I/O Board—Four 12-bit input channels (58 kHz/
channel) with quad synchronous sample-and-hold, two 12-bit output
channels, third-order low-pass resistor-programmed filters on input
and output, DSP-Link data transfer interface.

� 32-Channel Analog Input Board—32 12-bit input channels (7 kHz/
channel) with 4-channel synchronous sample-and-hold, 32 first-order

Spectrum Signal Processing Inc.

 6-32

low-pass resistor-programmed input filters, 32 input buffer amplifiers,
DSP-Link data transfer interface.

� Pro-Audio Board—AES/EBU interface, 48-/44.1-/32-kHz clock, word
sync, DSP-Link data transfer interface.

� Pro-Audio Board—AES/EBU interface, SONY PCM interface, MIDI
interface, 16×16 cascadeable RAM, 48-/44.1-/32-kHz clock, word
sync, DSP-Link data transfers interface.

� DSP-Link Prototype Module—DSP-Link slave wire-wrap interface for
easy design of custom peripherals, buffered data, decoded address,
R/W strobes.

� DSP-Link Dual-Processor Communications Module—Allows two pro-
cessors to communicate via DSP-Link.

 Tartan Inc.

6-33 TMS320C31 Third-Party Support

6.12 Tartan Inc.
300 Oxford Dr.
Monroeville, PA 15146
(412) 856-3600
FAX: (412) 856-3636

� Tartan Compilers

Tartan, Inc. develops full-function Ada optimizing compilation systems for
the TMS320C3x and TMS320C4x DSPs. The compiler targeted to the
’C30 has been validated by the U.S. Government’s Ada Compiler Valida-
tion Capability under test suite version 1.11.

Standard components of the compilation systems are:

� Highly optimizing compiler
� Ada Librarian
� Small, modular runtimes
� Standard, predefined Ada packages
� ARTclient package permitting access to tasking data structures and

operations
� Intrinsics package permitting access to hardware capabilities
� Math package of elementary functions
� Cross-reference facility
� AdaScope debugger
� Linker, object librarian, and utilities
� Help facility and documentation

The Ada compiler produces fast, compact code through Ada-specific opti-
mizations—optimizations that take advantage of the processor’s architec-
ture features, and a full range of classical optimizations. Five optimization
levels permit proper optimization strategy at each point in the develop-
ment cycle.

Support for Ada language features include:

� Representation specifications for type sizes, record layout, enumera-
tion values, object addresses, and interrupt entries

� Unchecked deallocation and conversion
� Insertion of routines written in machine code
� All Ada predefined pragmas and the implementation-defined prag-

mas Foreign_body and Linkage_name

’C3x- and ’C40-specific features include:

� Access to many processor-specific native instructions
� Circular and bit-reversed addressing
� Delayed branch functionality
� Repeat-block and repeat-single instructions

Tartan Inc.

 6-34

Compiler switches permit generation of 16-bit PC-relative conditional call
instructions, control of interrupt latency time using the RPTS instruction,
and specification of the number of wait states for the memory in which the
program is executed.

The Tartan Ada Librarian implements the Ada language requirements for
separate compilation and dependency control. It supports multiple li-
braries and multiple accesses. It also permits usage of non-Ada object
files within an Ada program.

The Tartan linker is a fast, flexible linker for embedded Ada programs. It
supports precise control over placement of code, data, and constants for
individual packages, modules, sections, and subprograms in memory. It
eliminates unused program sections from the executable program
images, including as much of the highly modularized Tartan Ada runtimes
as possible. An interface to the Texas Instruments TMS320C3x cross-as-
sembler is also provided, including conversion of the output to Tartan’s ob-
ject file format.

The Tartan AdaScope debugger provides complete window-oriented,
source-level, symbolic, and assembly-level debugging for Ada programs
using Ada-like commands. It operates remotely from the host system to
the DSP processor, using the TI XDS500 controller, or it can be run entire-
ly on the host using the simulator.

The Tartan Ada compilation systems can be hosted on either the Digital
Equipment Corporation VAX series equipment running the VMS operating
system (version 5.2 or later) or on the Sun SPARC platforms running the
SunOS operations system (version 4.1.1 or later).

Available options include an interface to Spectron’s SPOX-DSP vector,
matrix, and filter math functions; TI simulator; facilities for customizing the
runtimes; and the AdaScope retargeting kit to adapt to a different hard-
ware configuration or communications protocol.

� Ada Compiler for the TMS320C30

Tartan’s Ada compiler for the SMJ320C30, the military version of the
TMS320C30, supports VAX/VMS and Sun’s SPARC systems. The com-
piler implements Ada as defined in ANSI/MIL-STD-1815A-1983 and is val-
idated under the latest DOD ACVC test suite 1.11.

 Tartan Inc.

6-35 TMS320C31 Third-Party Support

Tartan Ada C30-targeted compilation systems produce highly optimized
application code that runs on the TMS320C30 processors. The compila-
tion system consists of:

� Full-function optimizing Ada compiler
� Tartan Ada Library that implements the Ada language requirements

for separate compilation and dependency control
� Tartan Ada Runtime System, including precompiled standard Ada

packages for I/O and other facilities and precompiled C30-specific
packages

� Tartan cross-reference facility, TXREF
� Tartan Ada Runtime Client Package, ARTClient, allowing on-site cus-

tomizing of the runtime
� Library of elementary math and trigonometric functions that fully

meets the specification of the SIGAda Numerics Working Group and
the Ada-Europe Numerics Working Group

� AdaScope, the Tartan Ada source-level, symbolic debugger
� Tartan Tool Set, consisting of the Tartan Ada linker, object file librarian,

file conversions, and other utilities
� Online help files for the compiler and library interfaces and AdaScope

commands

The Ada compiler produces fast, compact code through Ada-specific op-
timizations, optimizations that take advantage of ’C30 architecture fea-
tures, and a full range of classical optimizations. Five optimization levels
permit proper optimization strategy at each point in the development
cycle.

Code size is further reduced by Tartan’s compact, modular runtimes that
include only the runtime functionality needed by the application in the ex-
ecutable image. The Tartan linker reduces code size still further by elimi-
nating unused program sections from the executable image.

� ’C30-Specific Features

� Access to many ’C30 native instructions
� Circular addressing
� Bit-reversed addressing
� ’C30 delayed branch functionality
� Repeat-block and repeat-single instructions

Compiler switches permit generation of 16-bit PC-relative conditional call
instructions, control of interrupt latency time using the RPTS instruction,
and specification of the number of wait states for the memory in which the
program code is executed.

Tartan Inc.

 6-36

� Ada Language Features

� Representation specifications
� Unchecked deallocation and conversion
� Insertion of routines written in machine code

Available options include an interface to the Spectron SPOX-DSP vector, ma-
trix, and filter math functions; TI simulator; facilities for customizing the run-
times; and the AdaScope hardware interface.

Figure 6–6. AdaScope Debugger Screen

Insert photo
 M2

Get this photo from the TMS320 3rd Party
Support Reference Guide (job # 61119);
page 3–257; Fig.3–66.

 Tektronix

6-37 TMS320C31 Third-Party Support

6.13 Tektronix
P.O. Box 500
Beaverton, OR 97077
(800) 835-9433
(503) 627-7111

Tektronix offers realtime, symbolic debugging support for TMS320 develop-
ment with their comprehensive line of logic analyzers, including the DAS9200
and PRISM 300. Tektronix logic analyzers provide powerful fault-triggering ca-
pabilities coupled with comprehensive mnemonic disassembly support, in-
cluding performance, state, timing and analog analysis for hardware, soft-
ware, and integration applications. It is ideal for the testing and debugging of
algorithms on TMS320 hardware. See Figure 6–7.

� DAS9200

� Realtime symbolic debugging
� Support of up to 5000 symbols from your compiler/assembler

with LA-LINK
� Four disassembly display modes
� 8K, 32K, 128K trace buffers
� Automatic fetch prediction
� 200-MHz state analysis
� 2-GHz timing analysis
� 100-MHz pattern generation
� Time correlation of up to ten DSPs
� Hard disk for storage

Tektronix

 6-38

� PRISM 3000

� Realtime symbolic debugging
� Support of up to 1500 symbols from your compiler/assembly

with LA-LINK
� Realtime performance analysis
� Four disassembly display modes
� Automatic fetch prediction
� 200-MHz timing analysis
� Time correlation of up to four DSPs
� Choice of lab or field-portable units
� Integrated digital scope module
� Hard disk for storage

Figure 6–7. Logic Analyzer Family

Insert photo
 O2

Get this photo from the TMS320 3rd–Party Support Reference Guide (job # 61119)
page 3–266; Figure 3–71.

 Tektronix

6-39 TMS320C31 Third-Party Support

� 1240/1241 Logic Analyzer

Tektronix supports TMS320 development on their 1240/1241 Logic Ana-
lyzer. The 1240/1241 Logic Analyzer provides complete state and timing
analysis support for hardware, software, and integration applications. It is
ideal for the testing and debugging of algorithms on TMS320 hardware.
Powerful triggering, dual timebase, and mnemonic disassembly make the
1240/1241 a valuable tool for developing processor-based products.

Wintriss Engineering Corporation

 6-40

6.14 Wintriss
4715 Viewridge, #200
San Diego, CA 92123
(800) 733–8089

� EVB Evaluation Board

The WECO EVB is a complete, low-cost, PC/AT TMS320 evaluation
board. Models are available for the ’C31.

The EVB contains a wire wrap area for system prototyping purposes and
full access by standard PC I/O functions. Dual-ported memory provides for
convenient communications. Full debug monitor software is included for
dynamic debugging.

EVB features include

� 1-M static RAM
� Wire wrap area
� Dual-port memory
� Dynamic debug software
� C compiler
� Up to 40-MHz operation

6-41 TMS320C31 Third-Party Support

 Running Title—Attribute Reference

A-1 Chapter Title—Attribute Reference

Appendix A

TMS320 DSP Family

Digital signal processors are programmable microprocessors designed for
speed and flexibility. While they provide functionality similar to traditional mi-
croprocessors, they are distinguished by architectural differences which opti-
mize their ability to quickly process complex mathematical formulas.

This appendix describes the evolution of the DSP market and the role of TI in
this market. The TMS320 roadmap and a description of each generation of de-
vices are also presented.

Topic Page

A.1 The DSP Market A-2.

A.2 The TI Role in the DSP Industry A-3.

A.3 The TMS320 Product Roadmap A-4.

A.4 TMS320C1x A-9.

A.5 TMS320C2x A-10.

A.6 TMS320C3x A-11.

A.7 TMS320C4x A-12.

A.8 TMS320C5x A-13.

Appendix A

The DSP Market

A-2

A.1 The DSP Market

Over the last decade, DSP technology has made new products possible and
many applications affordable. In the early 1980s, DSPs provided an off-the-
shelf alternative to custom chips and bit-slice processors. They quickly won
acceptance in high-performance applications such as military systems. High-
volume applications such as modems soon followed, as the cost of TI DSPs
declined dramatically. A processor costing $500 in 1982 now costs $5 (quanti-
ty 1)—and as little as $3 in volume. Similar price reductions will transform for-
mer niche applications such as multimedia into a widespread standard in the
near future.

In addition to lower prices, improvements in ease-of-use and increased sys-
tem integration have enabled DSPs to displace traditional microcontrollers in
many applications. As systems become more numeric intensive, the DSP al-
ternative is increasingly attractive. Evidence of this trend can be seen in semi-
conductor manufacturers’ attempts to incorporate DSP-like functionality into
traditional controllers.

DSPs are clearly moving into the mainstream. The evidence suggests that
DSPs will be to the 1990s what general-purpose microprocessors were to the
1970s and 1980s.

 The TI Role in the DSP Industry

A-3 TMS320 DSP Family

A.2 The TI Role in the DSP Industry

Advanced technology products and extensive development support have
made Texas Instruments a dominant force in the DSP industry.

TI has played a vital role in educating new users and has made a substantial
investment in new product development since patenting their first digital signal
processor in 1982. In a dedicated effort to train upcoming designers in DSP
technology, TI provided students and professors at more than 200 universities
with resources to study the technology and offer suggestions for improve-
ments and new applications. University work, along with efforts of third-party
developers, helped define new applications far beyond the niche markets of
the early 80s.

A broad application base led to significant cost reductions by 1987, because
the higher volume enabled more efficiencies through mass production. Conti-
nous advances in fabrication process technology contributed to low-cost mass
production and enabled TI to incorporate numerous functions on a single DSP.
As the number of functions performed by a single processor increased, prod-
ucts could be designed to be lightweight and portable, which made the DSP
appeal to a growing number of consumer OEMs. Texas Instruments world-
class development support led to shorter design cycles and contributed to the
progress in customer product technologies. The market exploded.

Today more than 10,000 designers have gained the benefits that TMS320
DSPs bring to applications. More than 100 independent software and hard-
ware third parties support the development of products incorporating TI DSPs.
TI also offers seminars and workshops on product applications and assists po-
tential customers who want to incorporate DSPs in their products.

TI is firmly committed to the future of DSP, and will continue to develop new
devices and applications that will drive technology into the next century.

The TMS320 Product Roadmap

A-4

A.3 The TMS320 Product Roadmap

The TMS320 family of 16-/32-bit single-chip digital signal processors com-
bines the flexibility of a high-speed controller with the numerical capability of
an array processor, offering an inexpensive alternative to microcontrollers,
custom VLSI, and bit-slice processors.

The combination of the TMS320’s high degree of parallelism and its special-
ized digital signal processing instruction set provide speed and flexibility to
produce a CMOS microprocessor family that is capable of executing up to 50
MFLOPS or 275 MOPS. The TMS320 family optimizes speed by implement-
ing functions in hardware that other processors implement through software
or microcode. This hardware-intensive approach provides the design engi-
neer with power previously unavailable on a single chip. The newest TI gener-
ation of floating-point DSPs — TMS320C4x — is designed for high-perfor-
mance, parallel-processing applications.

The TMS320 family consists of five generations (three fixed-point and two floa-
ting-point) of digital signal processors. The fixed-point devices are members
of the TMS320C1x, TMS320C2x, or TMS320C5x generation, and the floating-
point devices belong to the TMS320C3x or TMS320C4x generation.
Figure A–1 shows the TMS320 family. Table A–1 provides a tabulated over-
view of each member’s memory capacity, number of I/O ports (by type), cycle
time, package type, technology, and availability.

Many features are common among these TMS320 processors. When the term
TMS320 is used, it refers to all five generations of DSP devices. When refer-
ring to a specific member of the TMS320 family (e.g.,TMS320C15), the name
also implies enhanced-speed in MHz (-14, -25, etc.), erasable/programmable
(TMS320E15), low-power (TMS320LC15), and one-time-programmable
(TMS320P15) versions. Specific features are added to each processor to pro-
vide different cost/performance alternatives. Software compatibility is main-
tained throughout the family to protect your investment. Each processor has
code-generation, system integration, and debug tools to facilitate the design
process.

 The TMS320 Product Roadmap

A-5 TMS320 DSP Family

Figure A–1. TMS320 Device Evolution

ÇÇ
ÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇ
ÇÇÇÇÇ

ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ

ÇÇÇÇÇ
ÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

TMS320C4x

 TMS320C3x

TMS320C30
TMS320C30-27
TMS320C30-40
TMS320C31
TMS320C31-27
TMS320C31-40

TMS320C2x

TMS320C25
TMS320E25
TMS320C25-33
TMS320C25-50
TMS320C26
TMS320C28

TMS320C5x

TMS320C50
TMS320C51
TMS320C53

 TMS320C1x

TMS320C10
TMS320C10-14/-25
TMS320C14
TMS320E14/P14
TMS320C15/LC15
TMS320E15/P15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C17/LC17
TMS320E17/P17

Fixed-Point Generations Floating-Point Generations

TMS320C40

P
E
R
F
O
R
M
A
N
C
E

M
I
P
S
/
M
F
L
O
P
S

GENERATION

TMS320C40-40

T
he T

M
S

320 P
roduct R

oadm
ap

A
-6 Table A–1. TMS320 Family Overview

Data Device Memory (words) I/O‡ On-Chip Cycle Package

Type On-Chip Off-Chip Ser Par DMA Com Timer Time Type

RAM ROM EPROM Dat / Pro (ns)

Fixed-
P i t

TMS320C10† 144 1.5K – – / 4K – 8×16 – – – 200 DIP/PLCC
Point
(16-bit

TMS320C10-14 144 1.5K – – / 4K – 8×16 – – – 285 DIP/PLCC
(6 b t
word
size)

TMS320C10-25† 144 1.5K – – / 4K – 8×16 – – – 160 DIP/PLCC
size)

TMS320C14 256 4K – – / 4K 1 7×16 – – 4 160 PLCC

TMS320E14† 256 – 4K – / 4K 1 7×16 – – 4 160 CERQUAD

TMS320P14 256 – 4K – / 4K 1 7×16 – – 4 160 PLCC

TMS320C15† 256 4K – – / 4K – 8×16 – – – 200 DIP/PLCC

TMS320C15-25† 256 4K – – / 4K – 8×16 – – – 160 DIP/PLCC

TMS320E15† 256 – 4K – / 4K – 8×16 – – – 200 DIP/CER-
QUAD

TMS320E15-25 256 – 4K – / 4K – 8×16 – – – 160 DIP/CER-
QUAD

TMS320LC15 256 4K – – / 4K – 8×16 – – – 250 DIP/PLCC

TMS320P15 256 – 4K – / 4K – 8×16 – – – 200 DIP/PLCC

TMS320C16 256 8K – – / 64K – 8×16 – – – 114 PQFP

TMS320LC16 256 8K – – / 64K – 8×16 – – – 250 PQFP

TMS320C17 256 4K – – / – 2 6×16 – – 1 200 DIP/PLCC

TMS320E17 256 – 4K – / – 2 6×16 – – 1 200 DIP/CER-
QUAD

TMS320LC17 256 4K – – / – 2 6×16 – – 1 278 DIP/PLCC

TMS320P17 256 – 4K – / – 2 6×16 – – 1 200 DIP/PLCC

† military version available/planned; contact nearest TI Field Sales Office for availability
‡ Ser = serial; Par = parallel; DMA = direct memory access (Int = internal; Ext = external); Com = parallel communication ports

T
he T

M
S

320 P
roduct R

oadm
ap

A
-7

T
M

S
320 D

S
P

 F
am

ily

Table A–1. TMS320 Family Overview (Concluded)

Data Device Memory (words) I/O‡ On-Chip Cycle Package

Type On-Chip Off-Chip Ser Par DMA Com Timer Time Type

RAM ROM EPROM Dat / Pro (ns)

Fixed-
Point
(i

TMS320C25† 544 4K – 64K / 64K 1 16×16 Ext – 1 100 PGA/PLCC/
PQFP

(16-bit
word

TMS320C25-33 544 4K – 64K / 64K 1 16×16 Ext – 1 120 PLCC/PQFP
word
size) TMS320C25-50† 544 4K – 64K / 64K 1 16×16 Ext – 1 80 PLCC/PQFP)

TMS320E25 544 – 4K 64K / 64K 1 16×16 Ext – 1 100 CERQUAD

TMS320C26† 1.5K – – 64K / 64K 1 16×16 Ext – 1 100 PLCC

TMS320C28 544 8K – 64K / 64K 1 16×16 Ext – 1 100 PQFP

TMS320C50† 10K 2K – 64K / 64K 2 64K×16¶ Ext – 1 35/50 PQFP

TMS320C51 2K 8K – 64K / 64K 2 64K×16¶ Ext – 1 35/50 PQFP

TMS320C53 4K 16K – 64K / 64K 2 64K×16¶ Ext – 1 35/50 PQFP

Floating-
P i

TMS320C30† 2K 4K – 16M# 2 16M×32* Int/Ext – 2(6)|| 60 PGA
Point
(32-bit

TMS320C30-27 2K 4K – 16M# 2 16M×32* Int/Ext – 2(6)|| 74 PGA
(32-bit
word TMS320C30-40 2K 4K – 16M# 2 16M×32* Int/Ext – 2(6)|| 50 PGA
size) TMS320C31† 2K § – 16M# 1 16M×32 Int/Ext – 2(4)|| 60 PQFP

TMS320C31-27 2K § – 16M# 1 16M×32 Int/Ext – 2(4)|| 74 PQFP

TMS320C31-40 2K § – 16M# 1 16M×32 Int/Ext – 2(4)|| 50 PQFP

TMS320C40 2K 4K§ – 4G# – 4G×32* Int/Ext 6 2 40 PGA

TMS320C40-40† 2K 4K§ – 4G# – 4G×32* Int/Ext 6 2 50 PGA

† military version available/planned; contact nearest TI Field Sales Office for availability
‡ Ser = serial; Par = parallel; DMA = direct memory access concurrent with CPU operation (Int = internal; Ext = external); Com = parallel

communication ports
¶ sixteen of these parallel I/O ports are memory-mapped
single logical memory space for program, data, and I/O; minus on-chip RAM, peripherals, and reserved spaces
|| includes the use of serial port timers
* Dual buses
§ Contains an on-chip bootloader ROM
Note: Programmed transcoders (TMS320SS16 and TMS320SA32) are also available.

The TMS320 Product Roadmap

A-8

Table A–2. TMS320 Family Features and Benefits

Feature Benefit

Five generations of more than 25 compatible devices. DSP to meet any application
need.

Cycle times as fast as 35 ns.
Choice of fixed-point or floating-point devices.
Hardware multiplier and barrel shifters.
Modified Harvard architecture.
Concurrent DMA, program cache.

Realtime DSP performance.

On-chip data RAM up to 8.5K words, program ROM/EPROM
up to 4K words.
Serial port, timer, multiprocessor interface, instruction cache,
DMA controller.
CMOS processing.

Reduced system cost, space,
and power consumption.

Large memory space up to 4 gigawords. Multiple DSP programs on a
single chip.

General-purpose and DSP-specific instructions.
EPROM and OTP versions.
High-level language support.
Operating system support.
Extensive development support.

Ease of design.
Fast time to market.

JTAG IEEE test bus.
Serial scan path for 99% fault grading.

System reliability.

 TMS320C1x

A-9 TMS320 DSP Family

A.4 TMS320C1x

The TMS320C1x DSPs provide cost-effective solutions for many needs.
TMS320C1x DSPs perform a multiply command at least 30 times faster than
a general-purpose microprocessor. An on-chip hardware multiplier allows the
TMS320C1x to produce results in a single instruction cycle. Instruction cycle
times range from 160 to 280 ns. Higher performance is achieved through inter-
nal parallelism and a unique Harvard architecture, which allows program fetch
to overlap data operations. The ’C1x generation includes DSPs optimized for
specific high-performance applications such as speech synthesis, high-speed
modems, and telephone systems. All TMS320C1x devices are software com-
patible for easy upgrade as application requirements change. TMS320C1x
ROM-code versions can be used to reduce system costs. On-chip serial ports,
companding hardware, and a coprocessor interface make the TMS320C17
ideal for telecommunications applications.

The TMS320C14 has been optimized for control applications such as disk
drives and servo control. The ’C14 is the industry’s first device to combine the
high performance of a DSP with the on-chip peripherals of a microcontroller.
Operating at 25.6 MHz, the TMS320C14 offers five to ten times the speed of
traditional 16-bit microcontrollers and can execute advanced control algo-
rithms (such as Kalman filters and state controllers) for analog-type perfor-
mance. On-chip peripherals (such as event manager with PWM, bit I/O, watch-
dog timer, serial port, and baud rate generator) reduce chip count, resulting in
space and cost savings.

With 4K words of on-chip EPROM, the TMS320E15, ’E17, and ’E14 support
realtime code development.

TMS320C2x

A-10

A.5 TMS320C2x

The TMS320C2x DSPs offer from two to four times the performance of the
’C1x devices. Since the TMS320C2x devices are source-code compatible with
TMS320C1x DSPs, they provide an ideal upgrade path for the world’s largest
installed base of signal processors. The TMS320C2x DSPs offer instruction
cycle times as fast as 80 ns, two to four times the amount of on-chip RAM, larg-
er external memory reach (160K), multiprocessor capabilities, and several
additional application-specific instructions and addressing modes. The ’E25
offers 4K words of on-chip EPROM for realtime code development and proto-
typing ease. The TMS320C2x ROM versions can be used for system cost re-
duction. The ’C2x DSPs vary in instruction time and memory size and type.
Specifically, the TMS320C25-50 supports 50-MHz (80-ns) operation. The
TMS320C26 offers 1.5K words of on-chip data RAM, 256 words of on-chip
ROM, and up to 128K words of data/program RAM.

 TMS320C3x

A-11 TMS320 DSP Family

A.6 TMS320C3x

The TMS320C3x DSPs incorporate floating-point arithmetic and offer the fea-
tures of a super computer on a single chip, executing more than 33 MFLOPS.
High performance is gained through large on-chip memories (2K words of
RAM and 4K words of ROM), a concurrent DMA controller, and instruction
cache (64 words). Two serial ports, two timers, a DMA controller, and large on-
chip system memory are achieved by using a high-density CMOS process in-
corporating 700,000 transistors. This high level of on-chip integration reduces
system cost, space, and power requirements. Because the ’C3x devices are
floating-point DSPs, numbers no longer need to be scaled, thereby simplifying
code development. Future ’C3x devices will support applications needing fast-
er cycle times, lower cost, and extreme temperature and reliability character-
ization. TMS320C3x development is supported by high-level language com-
pilers (C and Ada) and the SPOX realtime operating system. Scan-based
emulation is possible through a unique on-chip serial scan path, which pro-
vides access to all chip registers.

TMS320C4x

A-12

A.7 TMS320C4x

The TMS320C4x DSPs are the world’s first floating-point DSPs designed for
parallel processing. The ’C4x devices include 40- and 50-MHz versions. The
’C4x CPU features a 40-/50-ns single-cycle floating-point instruction execu-
tion time with 275/225 MOPS and 320/256 Mbytes/sec, respectively. There
are six communication ports for direct interprocessor or processor-I/O com-
munications peripherals. A self-programmable six-channel DMA coprocessor
maximizes sustained CPU performance. The 512-byte instruction cache
memory with two independent 32-bit memory interfaces support shared
memory configurations. The ’C4x 40-MHz version is designed for slower
speed DSP applications that would benefit from the attributes of a lower-
priced, floating-point TMS320C40 processor.

 TMS320C5x

A-13 TMS320 DSP Family

A.8 TMS320C5x

The TMS320C5x DSPs are the industry’s highest-performance fixed-point
DSPs. Designed to execute an instruction in 35 ns, the ’C5x is software up-
wardly compatible with all ’C1x and ’C2x DSPs, providing a fast performance
upgrade path. Fast cycle times, large on-chip memories, a parallel logic unit
(PLU), zero overhead context switching, and block repeats differentiate the
TMS320C5x. The ’C5x has 2 serial ports which can operate in normal or time
division multiplexed (TDM) modes. The integration of the JTAG IEEE test bus
standard increases system reliability, allowing 99% fault grade testing and on-
chip emulation. Spin-off devices can be developed rapidly because of the
modular design of the ’C5x.

–

A-14

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

Appendix A

Part Ordering Information

This chapter provides the device and support tool part numbers. Table B–1
lists the part numbers for the TMS320C30 and TMS320C31, and Table B–2
gives ordering information for TMS320C3x hardware and software support
tools. An explanation of the TMS320 family device and development support
tool prefix and suffix designators follows the two tables to assist you in under-
standing the TMS320 product numbering system.

The topics covered and their page numbers include:

Topic Page

B.1 Part Numbers B-2.

B.2 Device and Development Support Tool Prefix Designators B-4.

B.3 Device Suffixes B-5.

Appendix B

Part Numbers

B-2

B.1 Part Numbers

Table B–1. TMS320C3x Digital Signal Processor Part Numbers

Device Technology
Operating
Frequency

Package
Type

Typical Power
Dissipation

TMS320C30GEL 1.0-µm CMOS 33 MHz Ceramic 181-pin PGA 1.00 W

TMS320C30GEL27 1.0-µm CMOS 27 MHz Ceramic 181-pin PGA 0.88 W

TMS320C30GEL40 1.0-µm CMOS 40 MHz Ceramic 188-pin PGA 1.25 W

TMS320C31PQL 0.8-µm CMOS 33 MHz Plastic 132-pin QFP 0.75 W

TMS320C31PQL27 0.8-µm CMOS 27 MHz Plastic 132-pin QFP 0.63 W

TMS320C31PQL40 0.8-µm CMOS 40 MHz Plastic 132-pin QFP –

SMJ320C30GBM28
SMJ320C30HUM28
SMJ320C30HTM28

1.0-µm CMOS
28 MHz

Ceramic 181-pin PGA
or Ceramic 196-pin QFP

1.00 W
1.00 W

SMJ320C30GBM25
SMJ320C30HUM25
SMJ320C30HTM25

1.0-µm CMOS
25 MHz

Ceramic 181-pin PGA
or Ceramic 196-pin QFP

1.00 W
1.00 W

TMS320C31PQA 0.8-µm CMOS 33 MHz Plastic 132-pin QFP 1.00 W

Table B–2. TMS320C3x Support Tool Part Numbers

Tool Description Operating System Part Number

Software

C Compiler & Macro Assembler/ Linker VAXVMS
PC-DOS/MS-DOS
SUN UNIX†

MAC-MPW

TMDS3243255-08
TMDS3243855-02
TMDS3243555-08
TMDS3243565-01

Macro Assembler/Linker PC-DOS/MS-DOS; OS/2 TMDS3243850-02

Simulator VAX VMS
PC-DOS/MS-DOS
SUN UNIX†

TMDS3243251-08
TMDS3243851-02
TMDS3243551-09

SPOX OS Software for ’C3x Target Board PC-DOS/MS-DOS TMDS3240132

† Note that SUN UNIX supports TMS320C3x software tools on the 68000 family-based SUN-3 series workstations
and on the SUN-4 series machines that use the SPARC processor, but not on the SUN-386i series of workstations.

 Part Numbers

B-3 Part Ordering Information

Table B–2. TMS320C3x Support Tool Part Numbers (Concluded)

Tool Description Operating System Part Number

Hardware

Evaluation Module (EVM) PC-DOS/MS-DOS TMDS3260030

HP Subsystem PC-DOS/MS-DOS TMDX326HP30

’C31 Adapter for HP Subsystem PC-DOS/MS-DOS TMDX326HP31

TMS320C3x XDS Emulator PC/MS-DOS TMDS3260131

’C3x Application Board With Software Demo PC/MS-DOS TMDS3260132

† Note that SUN UNIX supports TMS320C3x software tools on the 68000 family-based SUN-3 series worksta-
tions and on the SUN-4 series machines that use the SPARC processor, but not on the SUN-386i series of
workstations.

Device and Development Support Tool Prefix Designators

B-4

B.2 Device and Development Support Tool Prefix Designators

Prefixes to Texas Instruments’ part numbers designate phases in the product’s
development stage for both devices and support tools, as shown in the follow-
ing definitions:

Device Development Evolutionary Flow:

TMX Experimental device that is not necessarily representative of the final
device’s electrical specifications.

TMP Final silicon die that conforms to the device’s electrical specifications
but has not completed quality and reliability verification.

TMS Fully qualified production device.

Support Tool Development Evolutionary Flow:

TMDX Development support product that has not yet completed Texas In-
struments’ internal qualification testing for development systems.

TMDS Fully qualified development support product.

TMX and TMP devices and TMDX development support tools are shipped with
the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

Note:

Texas Instruments recommends that prototype devices (TMX or TMP) not
be used in production systems because their expected end-use failure rate
is undefined but predicted to be greater than standard qualified production
devices.

TMS devices and TMDS development support tools have been fully character-
ized, and their quality and reliability have been fully demonstrated. Texas In-
struments’ standard warranty applies to TMS devices and TMDS development
support tools.

TMDX development support products are intended for internal evaluation pur-
poses only. They are covered by Texas Instruments’ Warranty and Update
Policy for Microprocessor Development Systems products; however, they
should be used by customers only with the understanding that they are devel-
opmental in nature.

 Device Suffixes

B-5 Part Ordering Information

B.3 Device Suffixes

The suffix indicates the package type (e.g., N, FN, or GB) and temperature
range (e.g., L).

Figure B–1 presents a legend for reading the complete device name for any
TMS320 family member.

Figure B–1. TMS320 Device Nomenclature

Prefix

Device Family

320 = TMS320 Family

Technology

Device
1st-generation DSP:

10
14
15
16
17

2nd-generation DSP:
20
25
26
28

3rd-generation DSP:
30
31

4th-generation DSP:
 40
5th-generation DSP:
 50
 51
 53

TMS 320 C 30 GB L

C = CMOS
E = CMOS EPROM
LC = Low-power CMOS
P = One-time programmable

TMX= Experimental Device
TMP= Prototype Device
TMS= Qualified Device
SMJ = MIL-STD-883C

Temperature Range

Package Type

H = 0 to 50°C
L = 0 to 70°C
S = -55 to 100°C
M = -55 to 125°C
A = -40 to 85°C

N = Plastic DIP
JD = Ceramic DIP Side-Brazed
FN = Plastic Leaded CC
GB = Ceramic PGA
FJ = Ceramic Leaded CC
FD = Leadless Ceramic CC
FZ = Ceramic Leaded CC
GE = Ceramic PGA, Glass Seal
HU = Ceramic quad flatpack
HT = Ceramic quad flatpack

(gull wing)
PQ = Plastic quad flatpack

–

B-6

 Index

Index-1

Index

A
A.T. Barrett & Associates, Inc., F-5–F-8
Accelerated Technology, Inc., F-2–F-4
addressing modes, 5-11

conditional branch, 2-9
long-immediate, 2-9
parallel, 2-9
three operand, 2-9

algebraic reordering, 5-4
analysis subsystem, 5-31
analyzer

HP 64776, 5-31
logic, 5-32
systematic, 5-31

ANSI C compiler, 5-2
application, examples, 4-1–4-12
application(s), software, 5-35–5-41
architectural overview, TMS320C31, 2-1–2-32
archiver, 5-20
arithmetic, instruction set summary, 2-16–2-17
arithmetic logic unit (ALU), 2-8
assembler, TMS320, 5-19
assembler/linker, Loughborough Sound Images Ltd.,

F-17
assemblers

Loughborough Sound Images Ltd., F-17
Tartan Inc., F-33

assembly source debugger, 5-15
autoincrement addressing modes, 5-11
auxiliary register ALUs, 2-8

B
BBS. See Bulletin Board Service
benefits, ’C31-based embedded system, 1-8–1-10

Biomation, F-9–F-11
block diagram, TMS320C31, 2-3
Bulletin Board Service, 5-34
bulletins, 5-33
bus operation

external, 2-28
internal, 2-24

Byte-BOS, F-12

C
C compiler, TMS320, 5-2
C source debugger, 5-15
C/assembly source debugger. See TMS320 pro-

grammers interface
cache memory, 2-20

See also memory
central processing unit, 2-4–2-19
code-generation tools

assembler, 5-19
C compiler, 5-2
linker, 5-19
macro assembler, 5-19

COFF, 5-19, 5-20
compatible devices, TMS320C3x, 1-5
compiler

addressing modes, 5-11
algebraic reordering, 5-4
branch optimizations, 5-6
code motion, 5-7
conditional instructions, 5-13
constant folding, 5-4
control-flow, 5-6
copy propagation, 5-5
data flow optimizations, 5-4
delayed instructions, 5-12
disambiguation, 5-4
function calls, 5-7

Index

Index-2

compiler (continued)
inline expansion, 5-7
loop induction variable optimizations, 5-7
loop rotation, 5-7
loop unrolling, 5-14
loop-invariant code motion, 5-7
parallel instructions, 5-13
redundant elimination, 5-5
register allocation, 5-11
register targeting, 5-10
register tracking, 5-10
register variables

fixed-point, 5-10
floating-point, 5-10

repeat blocks, 5-11
rotation, 5-7
strength reduction, 5-7
subexpression elimination, 5-5
symbolic simplification, 5-4
TMS320 optimizing ANSI C, 5-2
TMS320C25, 5-1
TMS320C26, 5-1
TMS320C50, 5-1
TMS320C51, 5-1
unrolling, 5-14

Computer Motion, Inc., F-13
conditional instructions, 5-13
conditional-branch addressing modes, 2-9
constant folding, 5-4
control, Tartan Inc., F-34
copy propagation, 5-5
CPU, 2-4
CPU registers, 2-6

auxiliary (AR0–AR7), 2-7
block size (BK), 2-7
data page pointer, 2-7
extended precision (R0–R7), 2-7
I/O flags (IOF), 2-7
index (IR1, IR0), 2-7
interrupt enable (IE), 2-7
interrupt flag (IF), 2-7
program counter (PC), 2-8, 2-24
repeat count (RC), 2-8
repeat end address (RE), 2-8
repeat start address (RS), 2-8
status register (ST), 2-7
system stack pointer (SP), 2-7

CPU1/2 buses, 2-24
Customer Response Center (CRC), 5-33

D
data sheets, 5-33
data-acquisition, equipment, 4-5
debug and system integration tools

analysis subsystem, 5-31
assembly source debugger, 5-15
C source debugger, 5-15
debugger, 5-15
emulators, 5-26
evaluation module (EVM), 5-24
HP 64776, 5-31
simulator, 5-21

debugger, 5-15
display, basic, 5-15

delayed instructions, 5-12
design assistance, 5-37
Details on Signal Processing, 5-34
disambiguation, 5-4
DMA

architecture, 2-27
buses, 2-24
general, 2-27

Doble M series system, 4-10
Doble test, 4-9–4-12
documentation, 5-33
DSP

Bulletin Board Services (BBS), 5-34
Details on Signal Processing (newsletter), 5-34
Hotline, 5-34
seminars, 5-35

DSP industry, TI role, A-3
DSP market, A-2

E
Electronic Tools GmbH, F-14
embedded systems, 1-1
embedded-controller, requirements, 1-2
embedded-systems, block diagram, 2-2
emulator

analysis subsystem, 5-31
HP 64776, 5-31
scan-based, 5-26
TMS320C3x Target Board, 5-30
XDS, 5-27
XDS tools, 5-26

 Index

Index-3

EPROM programmer, Loughborough Sound Images
Ltd., F-17

evaluation module (EVM), introduction, 5-24
external buses (expansion, primary), 2-28

external interrupts, 2-29

F
FAX services, 5-34
FFT, 4-6, 4-7

floating-point compiler, optimizations, 5-4

G
general addressing modes, 2-9

H
high-level language compiler

Loughborough Sound Images Ltd., F-17
Tartan Laboratories, Inc., F-33

hotline, 5-34

HP 64776 Analysis Subsystem, 5-31

I
indirect addressing, 2-10–2-11

inline expansion, 5-7
instruction register (IR), 2-24

instruction set, TMS320C31, 1-3

instruction set summary, 2-11–2-20
arithmetic, 2-16–2-17
load and store, 2-15
logical and bit manipulation, 2-14
parallel, 2-18–2-30
program flow control, 2-13

instructions
conditional, 5-13
delayed, 5-12
parallel, 5-13
repeat blocks, 5-11

instrumentation, application example, 4-5

Integrated Motion, Incorporated, F-15

integrated peripherals, TMS320C31, 1-3
interface, subsystem, 5-31

interfaces
expansion bus, 2-28
primary bus, 2-28

internal bus, 2-24
interrupts, 2-29

L
linker, TMS320, 5-19
literature, 5-33
load and store, instruction set summary, 2-15
logic analyzer, F-37
logical and bit manipulation, instruction set summa-

ry, 2-14
long-immediate addressing modes, 2-9
loop

code motion, 5-7
induction variable optimizations, 5-7
rotation, 5-7
unrolling, 5-14

Loughborough Sound Images Ltd., F-17–F-19

M
macro

archiver, 5-20
library, 5-19
object format converter, 5-20

memory, 2-20
cache, 2-20
general organization, 2-20
memory maps, 2-22

multi-DSP, architecture, 4-3
multiplier, 2-8
multitasking, realtime, F-25

N
newsletter, 5-34
Nicolet Instruments, 4-5

O
object format converter, 5-20
optimizations

branch, 5-6
data flow, 5-4

Index

Index-4

optimizations (continued)
fixed-point, 5-3
floating-point, 5-3, 5-4, 5-10
loop induction variable, 5-7

optimizing ANSI C, compiler, optimizations, 5-3

OSPA. See Open Signal Processing Architecture

P
parallel, instruction set summary, 2-18

parallel addressing modes, 2-9

parallel instructions, 5-13

part numbers
breakdown of numbers, B-5
prefix designators, B-4

part ordering, B-1–B-6

performance, TMS320C31, 1-3

peripheral bus, 2-25
general architecture, 2-25
peripherals on

serial port, 2-26
timers, 2-26

register diagram, 2-25

pipelined, CPU, 1-3

Precise Software Technologies Inc., F-19–F-22

preview bulletins, 5-33

processor evaluation, example, 4-5–4-8

product bulletins, 5-33

program buses, 2-24

program counter (PC), 2-24

program flow control, instruction set summary, 2-13

R
RAM, 2-20

See also memory

realtime multitasking, F-25

realtime recognition, 4-4

recognizers, 4-2

redundant elimination, 5-5

reference guides, 5-33

Regional Technology Center
locations, 5-39
services, 5-37

register
allocation, 5-11
targeting, 5-10
tracking, floating-point, 5-10
variables

fixed-point, 5-10
floating-point, 5-10

register buses, 2-24

register-based, CPU, 1-3

registers, 2-6
auxiliary (AR0–AR7), 2-7
block size (BK), 2-7
data page pointer, 2-7
extended precision (R0–R7), 2-7
I/O flags (IOF), 2-7
interrupt enable (IE), 2-7
interrupt flag (IF), 2-7
program counter (PC), 2-8, 2-24
repeat count (RC), 2-8
repeat end address (RE), 2-8
repeat start address (RS), 2-8
status register (ST), 2-7
system stack pointer (SP), 2-7

registers, general see also CPU registers, 2-6

repeat blocks, 5-11

ROM, 2-20
See also memory

RTC. See Regional Technology Center

S
scan-based emulators, 5-26

seminars, 5-35

simulator
Loughborough Sound Images Ltd., F-17
overview, 5-21
TMS320C3x, 5-22

software development, 1-6

Spectron Microsystems Inc., F-23–F-30

Spectrum Signal Processing Inc., F-31

speech recognition, 4-2

SPOX, 4-2, 4-10–4-11
architecture, F-23, F-24
C runtime environment, F-26
debug support, F-28
products, F-28

 Index

Index-5

subexpression elimination, 5-5
symbolic simplification, 5-4
system control, instruction summary, 2-12

T
Tartan Inc., F-33–F-36
Tartan Laboratories, Inc., F-33
technical assistance, 5-34
Technical Training Organization

Applications in C Design workshop, 5-37
Digital Control Design workshop, 5-36
TMS320C3x workshop, 5-36

Tektronix, F-37–F-39
telecommunications, application example, 4-2–4-4
test equipment, example, 4-9–4-12
third party

A.T. Barrett & Associates, Inc., F-5–F-8
Accelerated Technology, Inc., F-2–F-4
Biomation, F-9–F-11
Byte-BOS, F-12
Computer Motion, Inc., F-13
Electronic Tools GmbH, F-14
Integrated Motion, Incorporated, F-15–F-16
Precise Software Technologies Inc., F-19–F-22
Spectron Microsystems Inc., F-23–F-30
Spectrum Signal Processing Inc., F-31–F-32
Tartan Inc., F-33–F-36
Tektronix, F-37
Wintriss, F-40–F-41

three-operand addressing modes, 2-9
Tiger30, 4-4
timers, 2-26
TMS320

device evolution, A-5
family background, A-1–A-5
family features and benefits, A-8
product roadmap, A-4–A-5

TMS320 design workshops
applications in C, 5-37
digital control design, 5-36
TMS320C3x, 5-36

TMS320 DSP family, overview, A-6
TMS320 Programmer’s Interface. See C/assembly

source debugger

TMS320 programmers interface. See C/assembly
source debugger

TMS320 support
Bulletin Board Service (BBS), 5-34
custom-designed systems, 5-37
Customer Response Center (CRC), 5-34
design services, 5-37
Details on Signal Processing (newsletter), 5-34
hotline, 5-34
newsletter, 5-34
preview bulletins, 5-33
product bulletins, 5-33
RTC, 5-37

TMS320C1x, A-9

TMS320C2x, A-10

TMS320C2x/C5x compiler, introduction, 5-1

TMS320C31
architectural overview, 2-1–2-32
block diagram, 1-5, 2-2, 2-3
CPU, 2-4–2-19
development support, 1-6–1-7
features, 1-3–1-4
product objectives, 1-2

TMS320C3x, A-11
design workshop, 5-36
development environment, 1-7
simulator, 5-22

TMS320C3x Target Board, development environ-
ment, 5-30

TMS320C4x, A-12

TMS320C5x, A-13

U
user’s guides, 5-33

V
Voice Processing Corp. (VPC), 4-2

W
Wintriss, F-40

Index

Index-6

X
XDS

analysis subsystem, 5-31
emulator, 5-26, 5-27
HP 64776, 5-31
scan-based emulators, 5-26
system requirements, 5-29

