€IDT

DUAL-PORT SRAM
SIMPLIFIES
PC-TO-TMS320 INTERFACE

APPLICATION
NOTE
AN-68

by Jim Handy, Barry Seidner and Jon Bradley

This application note describes a “nohassles”interface betweenthe
IBM PC-style backplane and a TMS320C30 DSP chipviaan IDT dual-
port static RAM. The interface provides an extremely simple means of
downloading cross-compiled DSP code as well as sample data sets for
debugging a high speed TMS320 based systemin real time.

Thisexample also shows how easily interprocessor communications
hardware canbeimplementedvia the simpleinsertion of adual-port SRAM
betweena DSP chipandageneral purpose processorin astandard DSP
system. Asystemlike this one would typically use a standard CPU fordata
input/outputand ordering, and would pass complete data setstothe DSP
chipforintense calculation. Similar architectures are often usedin graphics
andimage processing, where an entireimage is manipulated as asingle
data set, in transform calculations (i.e. FFTs) for sonar and radar
processing. Certain systems even use this scheme several times with
numerous DSP chipsinorderto get processing speeds proportionaltothe
number of DSP chipsinthe system.

System Objective

Thedesignpresented hereisthe TMS320C30 Software Development
Board. Thisboardis one portion of a systemwhich helps the TMS320C30
programmer to download and debug code from an IBM PC or similar
computer. In order to support the special hardware needs of the
TMS320C30 programmer, anexpansion connector allows memory tobe
addedtothe DSP chip’s primary bus, while a target connector provides
afully bufferedversion of the chip’s expansion bus to allowits connection
tospecial purpose hardware. Most of the TMS320C30’s status signals are
alsoroutedto the expansion bus to make them available to the hardware
being debugged.

The majority of the control softwareis PC-resident, andis provided on
magnetic media. Thisincludes suchtools as the assembler,compilers, and
download and debug routines. A 2K x 32 EPROM array on the primary
bus ofthe TMS320 provides the host processor with a set of commands
toallowittoloadthe software developmentboard’s RAMs, to setand clear
breakpoints, to examine and preset internal status, and to load or store
valuesinindividual memory locations. All of these are controlled by the
host’s sendingacommandtothe TMS320, whichinterpretsthatcommand
andtakes appropriate action.

Ahighspeed 16K x 32 static RAMis attachedto each of the DSP chip’s
twobuses: the expansionbus, andthe primary bus. The expansion bus’
SRAM would typically be used to store a data set to be operated upon,

andthe primary bus’ RAM would be used to store code which would be
debugged usingthis board. Both ofthese SRAMs are zero wait-state (25ns
accesstimes at 33MHz) to allow real-time debugging andbenchmarks to
be performed. Since the TMS320's expansion bus only supports address-
ing of upto 8K locations, abank selectsignalis usedto switch betweenthe
upper and lower halves of this port’s 16K x 32 memory. This signal is
software-controlled fromthe processor’s expansionbus.

One design goal for this system was to move data into and out of the
DSP’sdedicated memory without taking an inordinate amount of time or
hardware. If standard memory were to be shared between the host and
the DSP chip, multiplexing logic would need to be inserted between each
processorandthe RAM’s address, data, and controllines. This logicwould
finditselfrightin the critical timing path of the memories onthe primary and
expansion buses, and would make zero wait-state operation nearly
unachievable. Anadditional headache would have been finding roomon
the board forthe large amount of multiplexing logic required. Should the
designhave usedasimplermethod of passing databack and forth between
processors either via a UART or a single byte-wide I/O buffer, the
developerwould have had to enduredlong delays during download and
other communication functions as the software on either side of the port
performed massive amounts of handshaking to pass eventhe smallest of
datasets.

[tbecame obvious early inthe design cycle that the simplest method
of performing fasthostto DSP communicationwouldbe touse a large high-
speedtrue dual-port static RAM to performinterprocessor communica-
tions. A dual-port RAM would allow both the host and the DSP chip to
transfer data in packets, rather than as individual bits or bytes, thus
accelerating downloading. The selected dual-port device would have to
be one which provided some means of signalling that data packets were
ready to be handed back and forth between processors.

AnIDT71342was chosenbecause of its speed, its depth (4K bytes),
the simplicity of its interface, and its ability to perform interprocessor
communicationsthroughits eightinternal semaphoreflags (see Appendix:
“Dual-Port Semaphores”). By using an IDT71342, the designers could
useasingle chiptoimplement4Kbyte high speedblock transfers between
the hostandthe TMS320, andto signal the completion of atransferwithout
additional hardware. Although the 45ns accesstime dual-portusedinthis
system does not support zero-wait data transfers at maximum CPU
speeds, datatransfers are notinthe critical path of the sort of software this
systemis usedtodebug. Atrue zero wait-state system could have been

MARCH 1999

©1999 Integrated Device Technology, Inc.

2694/4

Dual-Port RAM Simplifies PC-to-TMS320 Interface

Application Note AN-68

TARGET CONNECTOR
= —
PALS, o) 3
CONTROL, >3 15
AND = o
STATUS
LOGIC AV
IDT71342 TMS320C30
XDO-7 % SD0-7 D D ° CIOD0-31 10D CD0-31 . § DDo-31
2K X 32
3 g [L_EpRov Y
O 16K X 32 Z& B 16K X 32 T
w SRAM SRAM >
@ z
XA0-19 I> sao-19 |, | BOAO P IOA . CA0-31 6
N cionor2 " =
v9)
C
w
2694 drw 01

Figure 1. TMS320C30 Software Development Board Block Diagram

realized had the designers used a 25ns dual-port.
Figure 1 shows a block diagram of the complete system. The full
schematic of the systemis shownin Figure 6.

Interfacing to the Dual-Port SRAM

The IDT71342dual-port RAM uses aninterface whichis similarto any
standard single-port byte wide static RAM. Each of the two ports (leftand
right) uses aseparate setof control, address, and /O pins. Address inputs
arenotmultiplexedwithdata I/O. The controlinterface consists of three pins
on either side: read/write (R/W), output enable (OE), and chip enable
(CE). The R/W and OE pins also operate in conjunction with the
semaphore select pin (SEM), which imitates the functionality of the chip
enable pin, butratherthan allowing reads and writes of the memory array,
this pin routes the read and write control to the eight on-chip semaphore
flags.

Write cycles are controlled by the simultaneous application of alogic
LOW onboththe CE and R/Winputs for one side ofthe SRAM, and either
signal can be used to control the timing of awrite cycle. Ifthe CE signal is
held low and the timing is set by a LOW pulse on the R/W pin, itis called
a“R/W controlled write cycle” (figure 2). Write cycles where R/W stays
low while CE is pulsed low are called “CE controlled write cycles”
(figure 3). By offering both methods of communication, IDT’s dual-port
SRAMs can be easily connected between systems with greatly differing
bus interface specifications. An interesting point about this design is
thatwhile the PC or host side of the dual-port uses a R/W controlled write
cycle, the DSP writes toits side of the dual-port by using a CE controlled
write cycle.

The PC Bus Interface

Inthis design, the PCbus control signals are routed nearly directly from
the backplane tothe IDT71342's R/W and OE pins. The signal functions
andtiming of the backplane are anideal match with those of the dual-port
RAM. However, adecision was made to mapthe memory array into a4K
space in the PC’s memory space, while the semaphores were to be
mappedintothe PC’s /0 space, which forced the [Ow and MEMw signals
tobe ORed before driving themintothe IDT71342's R/Winput. Likewise
10RandMEMR signals are ORed before driving themintothe IDT71342's
OEinput.

Thedual-port's chipenable (CE) pinis drivenindirectly by an address
decoderconsisting of an eightbitcomparator 74ALS521 whichcompares
the outputofa 74LS377 register with addresses A12-A19. The 74LS377
isan I/O mapped register that allows the dual-port SRAMto be mapped
into any 4K-byte regioninthe PC’s main memory space. A PAL resident
controlregisterbiton the board allows the dual-port memory tobe disabled,
whichis its state at power-up or reset.

The semaphore enable pin (SEM) is driven by a 20L8 PAL which
decodes addresses fromthe PC Bus. This decoder determines whether
the hostis accessing memory or I/O space viathe MEMR, MEMw, IOR,
andIOwsignals, and enables the semaphores during an /O accessifthe
properaddress (Ao-A9) is applied to the inputs of the PAL. The PAL also
usesthe IOwand MEMw signals to generate aR/W controlled write cycle,
while using decoded addresses to drive the CE and SEM inputs.

Dual-Port RAM Simplifies PC-to-TMS320 Interface Application Note AN-68

Symbol Parameter
WRITE CYCLE
twe Write Cycle Time
tEw Chip Enable to End-of-Write
taw Address Valid to End-of-Write
tAs Address Set-up Time
twp Write Pulse Width
R Write Recovery Time
ow Data Valid to End-of-Write
tHz Output High-Z Time
tDH Data Hold Time
twz Write Enable to Output in High-Z
tow Output Active from End-of-Write
269% tbl 01
< twe >
ADDRESS >< ><
< tas © o Z—
OE 7
< taw >ie tyr >
N 4
CE or SEM" N 7
- twp @ > < tHz
b 4
RW AN /)
- tyz) —> <tz
Jz <+ tow >
DATAOUT @ @ —
< tpw—>| >| tDH
DATAIN
2694 drw 02

Figure 2. Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1 8),

NOTES:

R/W or CE must be HIGH during all address transitions.

A write occurs during the overlap (tew or twp) of either CE or SEM = ViL and RIW = ViL.

twr is measured from the earlier of CE or R/W going HIGH to the end-of-write cycle.

During this period, the I/0 pins are in the output state, and input signals must not be applied.

If the CE LOW transition occurs simultaneously with or after the RAW LOW transition, the outputs remain in the High-impedance state.

Timing depends on which enable signal (CE or R/W) is asserted last.

This parameter is guaranteed by device characterization, but is not production tested. Transition is measured +500mV from steady state with the Output Test Load

(Figure 2).

8. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twe or (twz + tow) to allow the I/O drivers to turn off data to be placed
on the bus for the required tow. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the
specified twp.

9. To access SRAM, CE =ViL and SEM = ViH. To access semaphore, CE = ViH and SEM = ViL. Either condition must be valid for the entire tew time.

No oo~ =

Dual-Port RAM Simplifies

PC-to-TMS320 Interface

Application Note AN-68

twc

Y

ADDRESS >

A /N4

taw

__ (6
CE or SEM

Y

RW N\

L
J}_ d
[— tas® tew® ——————— @ @ >

/

|¢—— {p\y — > —— {DH — >

DATAIN

2694 drw 03

(1:4)

Figure 3. Timing Waveform of Write Cycle No. 2, CE Controlled timing'":*.

NOTES:
RMW or CE must be HIGH during all address transitions.

Timing depends on which enable signal (CE or RW) is asserted last.

o 0w =

All data and address pins of the IDT71342 are isolated from the
backplane with TTL buffers. A detail of the PC to dual-port interface is
shown in Figure 4.

The reader should note that several considerations increased the
complexity of thisinterface. If this design had involved a dedicated host
processor ratherthan ageneral purpose PC, the need for bufferingwould
probably have been drastically reduced. Had boththe 4K byte SRAMand
the semaphoresbeen mappedintothe memory space ofthe host, no ORing

A write occurs during the overlap (tew or twp) of either CE or SEM = ViLand RIW = ViL.
twr is measured from the earlier of CE or R/W going HIGH to the end-of-write cycle.
If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.

To access SRAM, CE =ViL and SEM = ViH. To access semaphore, CE = ViH and SEM = VL. Either condition must be valid for the entire tew time.

would have beenrequired onthe MEMw, MEMR, IOW, and IOR signals.
Finally, avery complex address decoderwasimple-mentedinthis system
to allow the IDT71342’s RAM to be mapped anywhere within the PC’s
memory space. By using amore straightforward fixed-address scheme,
logic complexity could be significantly reduced. Itis conceivable thatthe
entireinterface including address decoding could have beenhandled with
asingle IC.

Dual-Port RAM

D7
De
Ds
D4
D3
D2
D1

Do

A11
A10
A9
As
A7
As
As

A4

ANV 1dMOVE FTALS-Od NGl

Simplifies PC-to-TMS320 Interface

Application Note AN-68

IDT71342S545
74ALS623 —
2 18 24
3 17 23 xgn
4 16 22 /v
5 15 21 11//°5L
6 14 20 1/84L
7 13 10 3L
8 12 18 1/02L

1 17 1/01L
9 1/00L
10 1
74ALS541
g 115; 4 A11L
5 AtoL
4 16 Py 16 AoL
5 15 . 150 AsL
6 14 14
7 13 ¢ 1 AL
8 12 ¢ 3 AsL
r L 2 124 Ast
9 @ 11 AdL
74ALS541
74AS08 10
g 13 ® 9 AsL
L 4 AL
4 16 ° 8 A
5 15 7] Mt
6 14 ® i Aol
® 3 2]
7 13 2 R/WL
8 12 *
11 ? 4
9 6] __
* 5 OEL
1 19
PAL20L8-15
1 1 O1 22 1
—d i 12 1/01 210 CEL
S Vo2[— SEML
5 14 1/03 913
5 18
5 1/04 17
le 1/05
7 16
17 1/06 15
;3 Is 02
ol 1,
1 111
13 12
14 |
rr)
114
2694 drw 04

Figure 4. PC Bus to IDT71342 Dual-Port Interface (Left-Hand Side of Dual-Port).

Dual-Port RAM Simplifies PC-to-TMS320 Interface

Application Note AN-68

IDT71342S35
4
xp7 —N 3 o
Q6 33
XDe M7 32 106R
XDs PG 31 105R
XDa4
Q5 30 104R
XD3 N6 29 103R
XDz 5 28 102rR
XD1 Qa 101R
XDo 27 \00r
74AS244 33Q
xao —A13 2 74 AAAE451 Aor
Al4 4 5 6 44
XA1 AV AR
D11 6 3 4 43
XAe — ® 5 NWWAZ—51 Aer
XAs g3 ¢ 11 7 81 41| AR
XA4 A ¢ \/\/\/\ A4R
5 13 5 6 40
XAs > VAL AsR
B15 15 3] aand4 39
XAs T4 17 1 2 ag| Ao
XA7 * VAVAYA A7R
1 |19 33Q
74AS244 33Q
XAs E12 ° 2 18 1 /W\I 2 37 AR
XA D13 ° 4 16 3 /\/\/\, 4 36 AoR
Ci15 6 14 5 6 47
XA10 ANNN AtoR
D14 8 12 7 8 48
XA11 E13 4 '\/\/\/ A11R
11 9 7 8
XA12 7 5 6
5 31 VAV 4
Fa 17 s VW, 74AS04
IOSTRe . VWM 5 6 | oEn
__ D1 1 |19 33Q 50
XR/W @ R/WR
PAL20L8-15 74AS32
1 22 1(b 8 49
2| s 9 SEMR
I2 1/01 20 2
Z I3 1/02 1o A 6 ST __
la /03 p CER
s nos| 18
=l 16
Qi 1/Os
8 Is 02 15
V
ol v 74AS32 74AS11
11 10
3 Dﬁg
12 1
14
I TIORDY ——
173 14 6 (from target
1/0s 3] D . ab connector)
o 74ALS74
B
H1 Eg Vee
MSTRB D2
XRDy

Figure 5. TMS320C30 to IDT71342 Dual-Port Interface (Right-Hand Side of Dual-Port).

2694 drw 05

Dual-Port RAM Simplifies PC-to-TMS320 Interface

The TMS320C30 Interface

The TMS320 interfaces to the dual-port SRAMthroughthe I/O strobe
onthe expansion bus. The same bus is used to interface to a 16K x 32
static RAM via its memory strobe signal. These two strobes signify two
different ranges on the DSP chip’s internal address map. A detailed
diagram of the TMS320 to IDT71342 interface is shown in Figure 5.

Asinthe PCbusinterface, the addresslines are buffered betweenthe
processor and the dual-port SRAM, howeverthe lightloading onthe data
bus removes the need for data buffering on this side. The only devices
connectedtothe datapins are:the dual-port SRAM, the DSP chip, a static
RAM, astatuslatch, and atransceiver. The address bus needed buffering
since all eight 16K x 4 RAM chips, as well as the dual-port, a PAL, and
anaddress buffer are attachedto these pins.

The TMS320's expansion bus uses a strobe to activate an /O cycle,
andaleveltodistinguish read cycles fromwrite cycles. Inthis design, the
expansion read/write (XR/W) output of the TMS320 is connected directly
tothe IDT71342dual-porttodrive the read/write (R/W) input, andis simply
inverted to drive the output enable (OE) input. This inverter is not truly
necessary, since the dual-port places its data outputs into a high-
impedence state automatically uponthe application of awrite (LOW) level
onthe R/Winput. The OE pin on this side could have been permanently
tied active (grounded).

A20L8 PAL is used to control the chip enable (CE) input for this side
ofthe dual-port SRAM. This signalis adecoding ofthe DSP’s expansion
bus address bits XAo-XAt2. The PAL used in this interface had too few
producttermsto allow the combination of the I/0 strobe with the decoded
address, so the buffered 1/0 strobe (BIOSTRB) has been externally
ANDed withthe decoded address output from the PAL before being fed
into the dual-port. The semaphore selectis handled the same way, buta
differentaddress decoding is used from the same PAL, and the I/O strobe
is ANDed through a different gate into the semaphore (SEM) input of the
dual-port. Both of these signals can be disabled by writing to the control
register.

The TMS320C30 writes tothe dual-port SRAM by implementinga CE
controlled write cycle. The CE and SEM inputs are driven by two-input
ORgates. One of theinputs of each of these gates represents adecoded
address output from a 20L8 PAL, while the second input is driven by a
buffered version of the I/O strobe. The only other qualifying input is the
read/write (R/W) input, which is directly driven by the expansion read/

Application Note AN-68

write (XR/W) signal onthe TMS320. Whenthe DSP chipwrites tothe dual-
port, the address and read/write signals are output first, followed by the
/Ostrobe. Since IOSTRBis usedto gate the CE or SEM signal, the timing
meets the criteria fora CE controlled write cycle.

The expansionready (XRDY)inputtothe TMS320, whichtells itthat
the expansion bus cycle is complete, is a combination of the decoded
address range from the PAL and a clock delay from the TMS320’s H1
(clock/2) output. This signalis required for systems using slower dual-port
RAMs, butis notnecessary in systems where faster dual-ports are used.
If the system designer choses a 25ns or faster part for use in a 33MHz
TMS320C30system, the XRDY inputcanbe generatedimmediately upon
accessing the dual-port RAM.

The gating used here generates a single wait-state onany /O strobe
withinthe address range of the IDT71342. This logic could be removed
ifafasterIDT71342were used. OnanIOSTRB output fromthe TMS320,
if the PAL decodes a dual-ported address, the strobe and decoded
address are combinedinthe second ofthe two AND gatesin Fig. 5. This
AND gate’s output is fed into the XRDY OR gate to extend
the expansion bus cycle. On the next rising edge of H1, the IOSTRB is
clockedintotheflipflop. Thisflipflop’s outputis connectedtothe first AND
gateand disablesthe IOSTRB from reaching the second AND gate. This
inturn allows the XRDY input to the TMS320to go active, and allows the
cycle to end. A single wait-state more than compensates for the 45ns
address access time ofthe dual-portusedinthis application. Othersignals
called target I/O ready (TIORDY) from the target connector, and the
MSTRBsignal fromthe DSP chipitself can also signal an expansion bus
ready state. Since the MSTRB signalis used onlyto control accessesto
the expansionbus’ 16K x 32 zero wait-state RAM, itis ORed directly back
tothe XRDY input through the 74AS11 gate as shown.

Conclusion

The TMS320C30 Software Development Board shows the simplicity
of designing aninterface betweena TMS320 DSP chipandthe IBMPC
bus using an IDT71342 dual-port RAM. The dual-port RAM serves to
reduce component count, increase interprocessor communications
throughput, and simplify design. Designers should be able to follow the
example given here to profitably use dual-port SRAMs to handle
communicationsinany similar dual processor system.

Dual-Port RAM Simplifies PC-to-TMS320 Interface

Application Note AN-68

Appendix

Dual-Port Semaphores

Eightextraaddresslocationsinthe IDT71342 4K x 8 dual-port RAM
are dedicated to binary semaphore flags. These flags allow either the
TMS320 orthe host processorto claim aprivilege over the other processor
forfunctions defined by the programmer’s software. As an example, the
semaphore can be used by the PC to inhibit the TMS320C30 from
accessing a portion of the dual-port SRAM, or some other shared
resource.

The dual-port SRAM features a fast access time, and both ports are
completelyindependent of each other. This means thatthe activity onthe
left portin no way slows the access time of the right port. Both ports are
identicalinfunctionto standard static RAMs and canbe read from, or written
to, at the same time with the only possible conflict arising from the
simultaneous writing of, or a simultaneous READ/WRITE of, a non-
semaphorelocation. Semaphores are protected against such ambiguous
situations and may be used by the system programto avoid any conflicts
inthe non-semaphore portion of the dual-port SRAM.

Multiple processor sytems like the TMS320C30 Software Develop-
ment Board can benefit from a performance increase by using these
semaphores, which provide a lockout mechanism without requiring
complex programming.

Software handshaking between processors offers the maximumin
systemflexibility by permitting shared resourcestobe allocatedin varying
configurations. The IDT71342 does notuseits semaphore flags to control
any resources through hardware, thus allowing the programmer to
determine each flag’s meaning.

How the Semaphore Flags Work

The semaphore logic s a set of eight latches which are independent
ofthedual-port SRAM. These latches canbe usedto pass aflag, ortoken,
fromone processortothe othertoindicate thata sharedresourceisinuse.
The semaphores provide a hardware assist for ause assignment called
“TokenPassing Allocation.” Inthis method, the state of asemaphore latch
isusedasatokenindicatingthatasharedresourceisinuse. Ifthe TMS320
wantstousethisresource, itrequests the tokenby writinga zerointothe
latch. The TMS320 then verifiesits successinwriting the latch by reading
it. If it was successful, it proceeds to assume control over the shared
resource. Ifitwas notsuccessfulinwritingazerointothe latch, itdetermines
thatthe PChad setthe latchfirst, isin posession ofthe token, andis using

the sharedresource. The TMS320 cantheneither repeatedly inquire the
status of the semaphore itrequested, oritcanremoveits request for that
semaphore by writingaoneintoitslocation. The TMS320 canthenperform
anothertask and occasionally attemptto gain control of the token viathe
set and test sequence. Once the PC has relinquished the token, the
TMS320 can succeed in gaining control of the shared resource.

The semaphore flags are active low. Atoken is requested by writing
a zero into a semaphore location, and is released when the same
processor writes aoneinto thatlocation.

The eight semaphore flags reside withinthe IDT71342in aseperate
memory space fromthe dual-port RAM. This address space is accessed
by placing a lowinput on the SEM pin (which is used as a chip select for
the semaphore flags), and using the other control pins (Address, OE, and
R/W) as they would be usedin accessing a standard static SRAM. Each
of the flags has a unique address which can be accessed by either side
through address pins Ao - A2. When accessing the semaphores, none of
the other address pins has any effect.

Whenwriting to a semaphore, only data pin DOis used. If alow level
is written into anunused semaphore location, that flag will be setto azero
onthatside and a one onthe other (see Table). That location can now
only be modified by the side showing the zero. Whenaoneis written into
the same location fromthe same side, the flag will be setto aone forboth
sides (unless a semaphore request from the other side is pending) and
then canbe writtento by both sides. The factthatthe side whichis able to
write azerointo a semaphore subsequently locks out writes fromthe other
sideiswhatmakes semaphore flags usefulininterprocessorcommunica-
tions. Azerowritteninto the samelocation fromthe other side will be stored
inthe semaphore request latch for that side until the semaphore is freed
bythefirstside.

Whenasemaphoreflagisread, its valueis spreadinto all databits, so
thata“set’flagreads asaoneinalldata bits and aflag containinga zero
readsasallzeros. Thereadvalueis latchedinto one side’s output register
whenthatside’s semaphore select (SEM) and output enable (OE) signals
goactive. This servestodisallow the semaphore from changing statein
the middle of aread cycle dueto awrite cycle fromthe other side. Because
ofthislatch, arepeatedread of asemaphoreinatestloopmustcause either
signal (SEM or OE) to go inactive, or the output will never change. This
isnotaconcerninthe TMS320C30 Software Development Board, since
either bus’ accesses to other memory locations between semaphore
accesses inactivate both of these signals for a relatively long period no
matter how tight of aloop is used to interrogate the device.

Dual-Port RAM Simplifies PC-to-TMS320 Interface

Application Note AN-68

PC BUS TM320

FUNCTION D0-D7 LEFT DO0-D7 RIGHT STATUS

No action 1 1 Semaphore free

PC writes “0” to semaphore 0 1 PC has semaphore token

TMS320 writes “0” to semaphore 0 1 No change. TMS320 has no write access to
semaphore

PC writes “1” to semaphore 1 0 TMS320 obtains semaphore token

PC writes “0” to semaphore 1 0 No change. PC has no write access
to semaphore.

TMS320 writes “1” to semaphore 0 1 PC obtains semaphore token

PC writes “1” to semaphore 1 1 Semaphore free

TMS320 writes “0” to semaphore 1 0 TMS320 has semaphore token

TMS320 writes “1” to semaphore 1 1 Semaphore free

PC writes “0” to semaphore 0 1 PC has semaphore token

PC writes “1” to semaphore 1 1 Semaphore free

2694 thl 02

Table 1. Example Semaphore Procurement Sequence

Asequence of WRITE/READ must be used to acquire asemaphore
inordertoguarantee thatno system level contentionwill occur. A processor
requests accessto shared resources by attempting towrite azerointoa
semaphore location. Ifthe semaphore is already in use, the semaphore
requestlatchwill contain a zero, yetthe semaphore flag willappearas a
one, afactwhich the processor will verify by the subsequent read (see
Tablel). Asanexample, assume the PCwritesazerototheleftportata
free semaphore location. On a subsequent read, the PC will verify that
ithas written successfully to that location and will assume control over the
resourceinquestion. Meanwhile, ifthe TMS320 attempts to write azero
tothe same semaphore flag, itwillfail, as will be verified by the fact that it
willread aone fromthat semaphore during a subsequentread cycle. Had
asequence of READ/WRITE been used instead, contention problems
could have occurred during the gap between the read and write cycles.

Itisimportantto note that a failed semaphore request mustbe followed
either by repeated reads, or by writing a one into the same location to
remove the semaphore request. The reason forthisis easily understood
by looking atthe simple logic diagram of a semaphore flag shownin Figure
6. Twosemaphorerequestlatchesfeedintoasemaphore flag. Whichever
latchis the firstto presentazero to the semaphore flag will force its side of
the semaphore flaglow, andthe other side high. This condition will continue
untilaone is writteninto the same semaphore request latch. Should the
other side’s semaphore request latch have been writtento azeroin the
meantime, the semaphore flag will flip over to the other side as soonas a
oneiswritteninto the firstside’s request latch. The second side’s flag will

now stay low until its semaphore request latch is written with a one. From
this it is easy to understand that, if a semaphore is requested and the
processor which requested it no longer needs the resource, the entire
system could hang up untila one is written into that semaphore request
latch.

The critical case of semaphore timing is when both sides request a
single token by attempting to write a zero into it at the same time. The
semaphore logicis specially designedtoresolve this problem. If simulta-
neousrequests are made, the logic guaranteesthatonly one sidereceives
thetoken. If one side s earlierthanthe otherin making the request, the first
side to make the request will receive the token. If both requests happen
atthe sametime, the assignmentwillbe arbitrarily made to one side orthe
other.

One caution that should be noted when using semaphores is that
semaphores alone do notguarantee that accessto aresource is secure.
Aswithany powerful programming technique, if semaphores are misused
ormisinterpreted a software error can easily happen. Code integrity is of
the utmostimportance when semaphores are usedinstead of hardware
handshaking.

Initialization of the semaphores is not automatic and mustbe handled
viatheinitialization program at power-up. Since any semaphore whichis
writtentoazeromustbe resettoaone, boththe TMS320 and the PC must
write aoneinto all semaphore locations atinitializationto assure thatthe
semaphores will be free when needed.

Dual-Port RAM Simplifies PC-to-TMS320 Interface

Application Note AN-68

R Port
Semaphore
RequestLatch

Q D Do

E b—— Write

L Port
Semaphore
RequestlLatch
Do ——D Q
Write ——— E
Semaphore =g
Read

Semaphore Latch

P Semaphore
Read

2694 drw 06

Figure 6. IDT71342 Semaphore Logic

Using Semaphores-Some Examples

Perhapsthe simplestapplication of semaphoresistheir application as
resource markers for the IDT71342’s dual-port SRAM. Say the 4K x 8
SRAMwastobedividedinto two 2K x 8 blocks, which were tobe dedicated
atany one time to servicing either the PC or the TMS320. Semaphore
0 could be used to indicate the side which would control
the lower section of memory, and Semaphore 1 could be defined as the
indicator for the upper section of memory.

Totakearesource, inthisexamplethe lower 2K of dual-port RAM, the
PC could write then read a zero into Semaphore 0. If this task was
successfully completed (azerowasreadback, ratherthanaone), the PC
would assume control of the lower 2K. Meanwhile, the TMS320 might
attemptto performthe same function. Since the TMS320 was attempting
to gain control of the resource after the PC, it would read back a one in
responsetothe zeroithadattemptedtowriteinto Semaphore 0. Atthis point,
the TMS320’s software could choose totry and gain control ofthe second
2K sectionby writing, thenreading azerointo Semaphore 1. Ifitsucceeded
ingaining control, itwould lock out the PC.

Oncethe PCwasfinishedwithitstask, itwouldwrite aoneto Semaphore
0,then may trytogainaccess to Semaphore 1. If Semaphore 1 was still
occupied by the TMS320, the PC could remove its semaphore request
and perform other tasks until it was able to write, then read
a zero into Semaphore 1. If the TMS320 performs a similar task with
Semaphore 0, this protocol would allow the two processors to swap 2K
blocks of dual-port RAM with each other.

The blocks do not have to be any particular size and could even be

of variable length, depending upon the complexity of the software using
the semaphoreflags. All eightsemaphores could be usedtodivide the dual-
port RAM or other shared resources into eight parts.

Semaphores are a useful form of arbitrationin real-time DSP applica-
tions, when the PC must be locked out of a section of memory during a
transfer, andthe TMS320 cannottolerate any wait states. With the use of
semaphores, once the two processors had determined which memory
areawas “offlimits"tothe PC, boththe PC and the TMS320 could access
their assigned portions of memory continuously without any wait states.
Both processors canaccess their assigned RAM segments at full speed.

Another application of semaphores is in the area of complex data
structures. In this case, block arbitration is very important to the main-
tenence of data integrity. For this application one processor may be
responsible for building and updating a data structure, which the other
processorthenreads andinterprets. Ifthe interpreting processor reads
anincomplete data structure, amajor errorcondition may exist. Therefore,
some sort of arbitration must be used between the TMS320 and the PC.
Software semaphores are aperfectfit. The building processor uses the
semaphoreto arbitrate forthe block and to lockit once that processor is
able to acquire the semaphore flag. This processorthenis able to goin
and update the data structure. When the update is completed, the
semaphore andthe corresponding data structure block are released. The
interpreting processor then acquires the semaphore which allows it to
come back and read the complete data structure, thereby guaranteeing
consistency.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138

€ IDT

for SALES: for Tech Support:
800-345-7015 or 408-284-8200 408-284-2794
fax: 408-284-2775 DualPortHelp@idt.com

www.idt.com

The IDT logo are registered trademarks of Integrated Device Technology, Inc.

