

This paper is a subset of material presented at IEEE ACC 1998, in Philadelphia, PA. N. Costescu
(ncostes@ces.clemson.edu), D. Dawson (ddawson@ces.clemson.edu) and M. Loffler (loffler@ces.clemson.edu) are
with the Control and Robotics group in the Department of Electrical and Computer Engineering at Clemson
University. Mailing address: 105 Riggs Hall, ECE Department, Clemson University, Clemson, SC 29634-0915.

QMotor 2.0 – A Real-Time PC Based Control
Environment

N. Costescu, D. Dawson, and M. Loffler

This paper describes QMotor 2.0, a QNX based single-processor software environment that

allows the implementation of real-time control programs on standard Intel processor based

personal computers (PCs). The control program, as well as the development tools and graphical

user interface (GUI) can all execute simultaneously on the PC due to the deterministic response

of the operating system (OS). This architecture replaces the traditional multiprocessor Host/DSP

board architecture used in control applications. Advantages of a single-processor system include

reduced cost and complexity, as well as increased flexibility and upgradability. Since its

development, QMotor 2.0 has been used successfully in all of the control experiments performed

by the Clemson Control and Robotics group, including motor and robot control, active magnetic

bearing experiments, web handling, vibration control in flexible structures, etc. Four of these

experiments are documented in [9-12].

Multiprocessor Systems
The traditional approach to implementing control algorithms as digital computer programs is to

use two computers. A typical system consists of a general-purpose computer (GPC) and an

embedded DSP board. See [1-4] for experiments using such a system.

Typical Architecture
Fig. 1 shows the typical Host/DSP architecture. The GPC may be a Mac, PC, Unix workstation,

etc., and is called the “host”. The DSP board is usually interfaced to the host via the host’s bus.

The control program is developed on the host using a cross development system. It is then

downloaded to the DSP board, where it executes. Data to be logged during the control run must

be transferred quickly to the host computer, since the DSP board has a very limited amount of

RAM (usually 32K or 64K words). The user interface, if present, executes on the host. The user

can start and stop the control program, modify control gains, and perform other monitoring

2

functions from this interface. All connections to the controlled system (input and output) are

made through the DSP board.

HOST COMPUTER
(Unix/PC/Mac)

USER
INTERFACE

DSP BOARD

LOG DATA
STATUS INFO

IS
A

 B
U

S
(D

U
A

L
 P

O
R

T
 R

A
M

 &
R

E
G

IS
T

E
R

S
)

CONTROL
PROGRAM

CONTROL
PARAMETERS

D
/A

C
H

A
N

N
E

L
S

E
N

C
O

D
E

R
IN

P
U

T
S

A
/D

C
H

A
N

N
E

L
S

CONTROLLED
SYSTEM

(MOTOR, ETC.)

Fig. 1. Typical Host/DSP Architecture

Advantages
Hanselmann gives a basic introduction to the advantages of DSP based computers for use in

control applications in [5]. One advantage of the Host/DSP architecture is that it guarantees

deterministic response. Not all multiprocessor systems can guarantee deterministic response (e.g.

MS-Windows NT, SMP-Linux, etc.) The Host/DSP system is an example of an asymmetric

multiprocessor system. Each processor is dedicated to a certain task. In this case, the DSP board

runs only the control program. The host computer executes all other functions that do not require

3

deterministic response (e.g. user interface, data plotting). Since the DSP board is dedicated to

running the control program, there are no stringent requirements for the host computer, either

with regard to processing power or deterministic response. It is for this reason that the host

computer can run a non real-time OS such as MS-DOS, MacOS, MS-Windows, etc.

The other advantage of the Host/DSP solution is that the DSP board is designed to execute

small programs that contain many floating point operations very quickly. In the past, the type of

GPCs available in a typical university control lab were not powerful enough to perform the

necessary floating point computations at reasonable control frequencies (e.g. 2KHz, depending

on the controlled system). For these reasons, the multiprocessor Host/DSP system has

traditionally been the choice of control engineers for the implementation of control programs.

Examples
WinMotor and QMotor 1.0, two examples of Host/DSP based systems, are examined below.

WinMotor

WinMotor was implemented by the Clemson University Controls and Robotics group in the

early 1990s. At that time, there were turnkey Host/DSP systems available for control

applications, but they were expensive (well over $10,000 per station for a system from dSpace),

and not modifiable (i.e. source code was not available). There were lower cost systems available,

but they did not provide user-friendly interfaces. Therefore, WinMotor was conceived with the

goals of developing a low-cost, flexible, user-friendly, user-modifiable (i.e. source code is

available) system.

The MS-DOS version of the TMS320C30 interface library was ported to MS-Windows 3.1,

and a graphical user interface (GUI) was developed as a native MS-Windows 3.1 application.

This GUI provides facilities for the user to edit, compile, download, start, and stop DSP control

programs. It also provides the ability to plot control variables during the control run. Log data

can be saved in Matlab format. A screenshot of the WinMotor GUI appears in Fig. 2.

4

Fig. 2. WinMotor Graphical User Interface

Control gains are entered in the “C30 Parameters” section of the GUI. Logged variables

appear in the “Datalog Variables” section of the GUI. The control period, logging period, and

number of log samples to be stored are all set from the GUI. Logged variables are plotted during

the control run in the lower part of the GUI window. Control programs are edited and compiled

through commands available on pull-down menus.

QMotor 1.0

The motivation for development of QMotor 1.0 was the desire to use a more robust multitasking

OS that would permit remote execution and display. MS-Windows 3.1 and MS-DOS were

replaced by QNX, a real-time microkernel based OS. The GUI was also reimplemented using

X/Motif to allow remote display on any computer capable of executing an X server. Aside from

minor software differences that enhanced performance or usability (e.g. interrupt-based data

logging, concurrent processing, remote execution, multiple data plots), QMotor 1.0 is

fundamentally the same system as WinMotor. Control programs developed with WinMotor can

be recompiled and executed with QMotor 1.0. A screen shot of the QMotor 1.0 GUI appears in

Fig. 3.

5

Fig. 3. QMotor 1.0 Graphical User Interface

The layout of the QMotor 1.0 GUI is very similar to that of the WinMotor GUI. Control gains

and log variables appear in the main window, as do the pull-down menus containing the

compilation and editing commands. The bottom window displays plots of the variables during

the control run. The upper right window is a new feature. After the control run is finished, any

number of “post-control” plot windows may be opened. These windows can display any number

of variables plotted against time, or even one variable plotted against another. The post-control

plot windows may be resized, panned, or zoomed.

Disadvantages
Multiprocessor systems have two major disadvantages: cost and complexity. Cost of the

hardware and software increases with the number of processors. The cost increase is intensified

since the processors in the Host/DSP architecture are heterogeneous and do not share the same

OS and development tools. A general-purpose host computer must be purchased, along with its

OS and development tools (e.g. a PC with MS-Windows and Visual C++). The DSP board must

also be purchased, along with its cross development tools (e.g. Spectrum C30 board with TI C

compiler).

6

A multiprocessor system is also more complex. System administration skills are required for

the host, as well as for the DSP board. For interactive control applications, the user must become

familiar with the host computer’s native development tools in addition to the DSP development

tools used to develop the control programs. This is necessary for development of the host

resident front-end of the application (e.g. the WinMotor or QMotor 1.0 GUIs). The transfer of

data between the DSP board and the host can also be an intricate process, requiring some

programming sophistication if real-time plotting and other dynamic interaction between host and

DSP must occur.

Single-Processor Systems

Motivation
The disadvantages listed above motivated the investigation of a possible single-processor

solution. Several recent advances in PC hardware and software technology have made the PC a

viable platform for a single-processor implementation.

The two advantages of multiprocessor systems listed in the previous section are deterministic

response and processing power. Until recently, the processing power necessary for the

computation of complex control algorithms in real-time was not available on GPCs. This was the

reason for pairing a DSP board with a GPC (instead of simply using multiple general-purpose

processors). This is no longer true.

One of the experiments being run with WinMotor and subsequently QMotor 1.0 was a direct-

drive two-link revolute planar robot with exaggerated joint flexibilities [6]. The control program

consists of twenty-six pages of DSP ‘C’ code (430 lines). By replacing writes to the D/A

channels and reads from the encoder and A/D channels with stubs, a platform independent

“control benchmark” was created. This control benchmark was representative of the complexity

of the control programs developed by our group at the time. Since the hardware specific I/O code

segments were removed from the benchmark, it is a measure of the time required for the

computation portion of the control program (including all software filtering). The control

benchmark was ported to 16-bit DOS, 32-bit DOS, MS-Windows 3.1, MS-Windows 95, and

MS-Windows NT. Execution times on various hardware platforms and OSs were compared.

Speedup relative to our C30 Host/DSP system was also computed. A speedup of 1.0 indicates the

7

system is as fast as the C30, a speedup of 2.0 indicates the system is twice as fast as the C30, etc.

Table 1 shows these results. Execution time is for one million iterations.

Table 1. Benchmark Execution Time (Seconds) and Speedup (Relative to Base C30 System)

OS CPU 32 bit DOS Execution
Time (sec)

16 bit DOS Execution
Time (sec)

32 bit DOS
Speedup

16 bit DOS
Speedup

- C30 548 1.00 1.00
Win 3.1 486DX2/66 398 514 1.38 1.07
Win 3.1 P5/133 36 61 15.22 8.98
Win95 P5/166 30 50 18.27 10.96
NT 4.0 P6/180 19 36 28.84 15.22
NT 3.51 P6/200 17 33 32.24 16.61
NT 4.0 PII/400 7 13 78.29 42.15

The C30 board computes the control at 1.82KHz. A 486DX2/66 computes the control 1.38 times

faster than the C30 DSP board (2.51KHz). A 400MHz Pentium II computes the same control

78.29 times faster than the C30 (142KHz). This performance agrees with the benchmarks

performed in [2]. These results indicate that modern GPCs have the processing power required to

implement complex control algorithms.

It is interesting to note that the C30 is rated at more than 33 MFLOPS (million floating-point

operations per second) by its manufacturer, while the 486DX2/66 is rated at only 3 MFLOPS. It

is naive to believe that this MFLOPS rating translates into useful speed when executing a control

program, as the control benchmark shows. Here, a 486DX2/66 beat a chip that was rated at over

10 times the 486DX2/66’s MFLOPS rating. This is partly due to the fact that a control program

consists of more than floating-point operations performed on operands that have been pre-

fetched into registers. It is also interesting that the Pentium family of processors showed roughly

double the performance increase when running the 32-bit version of the benchmark, when

compared to the 16-bit version. The 486DX2/66 was only 38% faster running the 32-bit

benchmark compared to the 16-bit benchmark.

The availability of hard real-time PC OSs such as QNX, LynxOS, RTLinux, etc. has also

eliminated the multiprocessor architecture’s other advantage, deterministic response. Using these

OSs, control programs and non real-time tasks can execute concurrently on one processor.

Combining the greater processing power of modern PC central processing units (CPUs) with

real-time OSs provides the basis for a single-processor architecture that can provide all the

functionality of multiprocessor architectures.

8

Examples
Single-processor PC based systems that claim to be able to run a control program at high

frequencies with deterministic response are becoming more common. Most couple a real-time

executive with a commercial (or free) non-deterministic OS. Examples include Hyperkernel and

RTLinux.

Hyperkernel

Hyperkernel provides a small real-time subsystem for MS-Windows NT. The main advantage of

Hyperkernel is that it uses standard MS-Windows NT development tools and executes

concurrently with the MS-Windows NT kernel. Disadvantages include cost ($5,000 for a non-

academic license, $2,500 for an academic license – not including the cost of MS-Windows NT

and development tools) and the fact that it is a fairly new product.

RTLinux

RTLinux is a patch for Linux, the popular free Unix-like OS. It provides a small executive that

lies between the hardware interrupts and the Linux kernel. This executive runs real-time tasks

(e.g. control programs), which are compiled with the standard Linux development tools. It also

runs the Linux kernel as one of these real-time tasks. Communication between real-time tasks

and standard Linux tasks is performed using first in first out queues (FIFOs).

RTLinux has many advantages. It is free, and can be downloaded on the World Wide Web

(http://rtlinux.cs.nmt.edu/~rtlinux). It can be incorporated into the symmetric multiprocessor

version of the Linux kernel (SMPLinux), which allows the use of dual-processor motherboards.

An SMP-RTLinux machine could conceivably use one processor to run the control program

while the other runs the Linux kernel, creating a system similar to traditional Host/DSP systems,

without their disadvantages (except for a slight increase in cost). RTLinux is also small and

efficient.

There are some disadvantages to RTLinux. As with most free software, it is not officially

supported. The mechanisms for communication between real-time tasks and non real-time Linux

tasks are quite limited. Some Unix system administration skills are required to install a Linux

system and then apply the RTLinux patch. Despite any disadvantages, RTLinux provides

adequate facilities for implementing a control program in real-time.

9

Design Considerations
A successful single-processor system should incorporate the advantages of traditional

multiprocessor systems (deterministic response, adequate computational capability), while also

eliminating their disadvantages (cost, complexity, lack of upgradability, lack of flexibility, etc.).

Deterministic response is achieved by using a real-time OS (QNX, LynxOS) or a real-time

patch/extension to a non real-time OS (Hyperkernel, RTLinux). Adequate computational

capability is provided by the use of modern PC CPUs like the Pentium and Pentium II. Cost, lack

of upgradability, and flexibility are addressed by choosing a consumer grade GPC, such as the

IBM PC compatible computer. Complexity is reduced by using the same OS and development

tools to implement both the control program and the user interface. Hardware interfacing is

simplified by using integrated motion control interface boards, such as Quanser Consulting’s

MultiQ board, which provides A/D, D/A, encoder inputs, digital I/O, and timers, all on one

board.

QNX

OS Selection

In the traditional Host/DSP architecture, there were no constraints placed on the host’s OS since

the control program ran on the DSP board. New concerns about the host’s OS are introduced by

the desire to execute the control and GUI on the same CPU. The OS requirements are listed

below.

1. Low Overhead: Context switch times and interrupt latency should be minimized.

2. Deterministic Response: Hard real-time response down to sub-millisecond

resolution is required. An interrupt can not be delayed by a variable amount of time,

depending on system load, as in soft real-time or non real-time OSs.

3. Priority Based Multitasking Preemptive Scheduling: Since the control program will

compete with the GUI and other processes for CPU time, the OS must provide a

priority based scheduler that can preempt low priority running processes to allow

higher priority processes to execute.

4. Priority Based Interrupt Service Routine (ISR) Nesting: Interrupt priorities should

be well defined, and high priority ISRs should preempt lower priority ISRs. This

10

allows a timer ISR to preempt a disk drive ISR, guaranteeing that the control

program will always run regardless of system hardware activity.

5. Network Interface: The system should provide standard network interfaces. Link

layer support should include Ethernet while the transport layer should include

TCP/IP. This allows remote operation over the Internet.

6. Remote Login: The ability to log in from a remote workstation is highly desirable

and available on most good OSs. This facilitates remote system administration and

allows remote operation.

7. Graphical User Interface: This is necessary if a user-friendly graphical interface

with which the user can interact is needed. It is preferable if the windowing system

has remote display capabilities built in (as do X and Photon).

8. Ease of Interfacing to Hardware: It should be fairly easy to write code that

interfaces to the hardware needed for control experiments (A/D, D/A boards, etc.).

The OS should not require kernel mode device drivers, as do Unix and MS-

Windows NT.

MS-DOS is a non real-time single-tasking monolithic kernel. MS-Windows 3.1 uses MS-DOS as

the underlying OS. MS-Windows 95 does not have real-time capabilities. MS-Windows NT has

no hard real-time capabilities, and makes interfacing to hardware very difficult and inefficient

due to its hardware abstraction layer. Unix style OSs do provide preemptive schedulers, though

due to the lack of kernel data structure protection (for historical reasons), a process executing in

kernel mode can not be preempted. Unix therefore does not provide the deterministic response

needed for hard real-time applications. Interfacing to hardware under Unix is also complicated,

requiring modification of the kernel. There are hacks and patches to these OSs that try to add

real-time capabilities, but they are not robust.

Key QNX Features

Many real-time OSs are currently available for PCs. QNX, a real-time microkernel OS

developed by QNX Software Systems Limited, was selected. QNX met all of the above

requirements, and was also very affordable due to an excellent educational program. Since QNX

is a microkernel, device drivers are not contained in the kernel. In fact, a device driver is not

11

necessary in order for a program to communicate with a hardware device. If a user program is

given sufficient privilege, it can directly access memory and I/O ports, attach hardware interrupt

service routines, etc. This makes writing hardware interface software very easy. QNX has very

low context switch times (6µsec on a 486DX2/66) and low interrupt latency (7µsec on a

486DX2/66). Photon is the native windowing system, and X/Motif is also available. QNX native

networking is built into the microkernel, but TCP/IP is also available. See [7] or [8] for more

details about the architecture of QNX.

QMotor 2.0
QMotor 2.0 is an implementation of the single-processor architecture for the development and

execution of control programs.

Overall Design
A block diagram of the overall design of QMotor 2.0 appears in Fig. 4.

QNX PC

(QG)
QMOTOR GUI

IS
A

 B
U

S

MATLAB

(QC)
CONTROL
PROGRAM

LOG DATA

D/A
CHANNELS

A/D
CHANNELS

MULTIQ
BOARD

(QS)
MULTIQ
SERVER

(QN)
 NETWORK
INTERFACE

LOG
DATA

CONTROL
PARAMS

ENCODER
INPUTS

CONTROLLED
SYSTEM

(MOTOR, ETC.)

D/A,
DIG OUT A/D,

ENCODERS,
DIG IN,
TIMER

LOG DATA
CONTROL
PARAMS

SAME QNX PC OR
OTHER X ENABLED

MACHINE

ETHERNET SOCKETS

12

Fig. 4. Overall QMotor 2.0 Design

Hardware Architecture
The hardware components of QMotor 2.0 are listed below.

1. Intel Pentium Family PC: An ISA bus based PC with an Intel Pentium or

equivalent processor is necessary because QNX only runs on Intel platforms. It is

possible to use a 486; however, performance will be limited. Memory requirements

depend on how frequently data is to be logged, the duration of the log, and the

number of variables logged. X also requires a fair amount of memory. Our PCs

usually have 32 or 64 megabytes of RAM, though 16 megabytes should suffice. If

the GUI is running on another PC or workstation, the PC running the control can

have as little as 1 megabyte of RAM.

2. MultiQ Board: The Quanser Consulting MultiQ board is the interface to the

controlled system. It provides 3 hardware timers, 8 A/D, 8 D/A, 8 digital I/O lines,

and 6 quadrature encoder channels. One of the hardware timers is used to generate

the control timer interrupt. Other interface boards may be used, however, the use of

other boards requires development of an interface library. Development of the

MultiQ interface library took us about one week.

3. Ethernet Network Interface: An Ethernet network interface card allows the GUI to

be either displayed remotely via the remote display capabilities of X, or remotely

executed on another hardware platform which supports native X.

Software Architecture
QMotor 2.0 is divided into four separate cooperating processes: QS (MultiQ server), QC (client –

control program), QN (network interface) and QG (GUI). QS accesses the MultiQ board

hardware, and handles the hardware timer interrupt. It virtualizes the MultiQ hardware by

providing shared memory global variables (see Table 2) that QC can access. QS updates these

variables each control cycle, in the timer ISR (see the next section).

Table 2. QS Virtualized MultiQ Hardware
MultiQ Hardware Device Global Variables in Shared Memory
Encoders (6 channels) int G_ENC[6];
A/D Converters (8 channels) int G_ADC[8];

13

Digital Input Word (8 bits) unsigned short *G_DIGIN;
D/A Converters (8 channels) int G_DAC[8];
Digital Output Word (8 bits) unsigned short *G_DIGOUT;

The user writes 5 functions (described below) that are embedded into QC. QN communicates

with QG via TCP/IP internet domain sockets. QG allows the user to edit, compile, and execute

the control program. It also provides for plotting in real-time and after the control run.

One Interrupt Cycle
Fig. 5 shows one complete interrupt cycle and how the four modules (QS, QC, QG, QN) interact.

Once a control program is loaded and the control parameters such as frequency, duration, gains,

etc. are set by the user, execution of the control program begins. One of the timers on the MultiQ

board is programmed to generate an ISA bus interrupt every control period. We will now step

through the sequence of events that takes place when the timer interrupt is triggered.

Control Loop Begins

Control
y(t)=F(x(t),x(t-1)...)

Control Loop Ends

ticks++

ticks ==
G_TICKS

Yes

Abort control

Report sequence
number

inconsistencyNo

ticks %
log period

== 0

ticks %
update period

== 0

Log variables

Trigger QN update
proxy

Yes

Start QN Update

Transfer
decimated log data

to GUI (QG)

No

No

Proxy

End QN Update

GUI Update
Begins

End GUI Update

Update VD
variable widgets
and real time plot

Socket
Msg

Proxy

QS ISR Begin

Write DAC,
DIO to
MultiQ

Read ADC,
ENC, DIO

from MultiQ

G_TICKS++
(shared memory)

QS ISR End
Trigger QC

Yes

Control Program (QC)MultiQ Server (QS)
Network Interface

(QN)

GUI (QG)

Fig. 5. One Interrupt Cycle

QS (QMotor MultiQ Server)

14

1. QS ISR: The ISR that has been attached to the MultiQ’s timer IRQ begins

execution. It preempts any executing process or lower priority hardware ISR.

2. Hardware Output: The output values written by QC during the last control period

(G_DAC[], G_DIGOUT) are written from the global shared memory locations to

the actual MultiQ hardware outputs.

3. Hardware Input: New values are read from the A/D channels, digital inputs, and

encoder registers. These values are stored in the global shared memory variables

where the control program accesses them (G_ADC[], G_DIGIN, G_ENC).

4. Increment Sequence Counter: If the control frequency is too high, the ISR will

begin to starve the control program. This condition is detected by a sequence

counter that is stored in the global shared variable G_TICKS.

5. Trigger Control Program: Sends a non-blocking proxy message to wake up QC.

 QC (QMotor Control Program)

6. Receive Proxy: Normally, the control program will be blocked waiting for a QNX

message to arrive. If this message is from the proxy process set up to receive proxy

messages from QS, the control program enters the main control loop. If the message

is from another process, this indicates the control has been terminated abnormally

(emergency stop, or some other exception condition).

7. Increment Sequence Counter: A local sequence counter is incremented. If the

difference between this sequence counter and the global shared G_TICKS sequence

counter has increased, a sequence error is reported and the control is terminated.

This indicates that the control frequency is too high, and that the timer ISR has been

starving the control program.

8. Input: The user’s input() function is executed. Filtering of input signals can be

performed here, along with unit conversion for the A/D and encoder channels. The

inputs are read by simply referencing the global shared variables G_ADC[],

G_ENC[], and G_DIGIN, which have been set by the QS ISR (see step 3 above).

9. Control: The control law is computed and generates the desired output variables.

15

10. Log: If this is a logging period, variables are logged. If this is an update period, QN

is notified via a proxy that it should send the decimated log data to QG.

11. Go to 6: One iteration through the control loop is finished, so the control program

blocks and awaits the next message.

 QN (QMotor Network Interface)

12. Transfer Decimated Log Data: Data can be logged at any frequency up to and

including the control frequency. Only a small fraction of this data is needed to

maintain a real-time plot. To minimize overhead during the control run, only as

much data as is needed to update the real-time plot and the displayed log variables

is sent. Once the control terminates, the full log is transferred to QG.

 QG (QMotor Graphical User Interface)

13. Update Real-Time Plots/Displays: QG is blocked and awaits a message from QN. If

the message contains real-time plot data, QG updates the displayed log variables as

well as the real-time plot. The other possibility is that an end-of-run message has

been received from QN. This would indicate either that the control duration has

expired or that an emergency stop has occurred.

This sequence is repeated each hardware timer interrupt period.

Using QMotor 2.0
Fig. 6 is a screenshot of the QMotor 2.0 GUI. In the upper left corner is the emergency stop

button. Control parameters (control frequency, log frequency, etc.) are entered in the top section

of the main window. The start button is also located in this section. The middle section is

divided into two vertical panes. The left pane contains the VF variables. These are control gains

and other variables that are used in the control program, which the user can modify from the

GUI. The right pane contains the VD variables. These are variables that can be logged and

plotted during the control run. The third section of the window contains the real-time plot.

Variables selected for plotting during the control run appear in this section. The plot is auto-

scaling along the Y axis (value) and the X axis (time). The bottom section of the main window is

a message area.

16

Fig. 6. QMotor 2.0 Graphical User Interface

A QMotor 2.0 control program is a C program written by the user. There are five C functions

that the user must provide.

• init_control() is an initialization function. It is called every time the user hits the start

button on the GUI.

• input(), control(), output(): The main control loop consists of the input(), control(), and

output() functions. They are called in that order, each control period. The division into

three functions is purely logical. Users generally perform their input (from encoders,

A/D, etc.) and filtering in the input() function, control computations in the control()

function, and output to D/A, etc. in the output() function.

17

• end_control() is called after the control run is ended. A control run will end after a pre-

determined period of time (e.g. 30 seconds) or when the user hits the stop button on the

GUI.

The control program is then compiled from the GUI. The standard QNX Watcom C/C++

compiler is used. This is the same compiler that was used to develop the GUI. Once all

compilation errors are corrected, the control program is started by the GUI. The user can then

modify the control parameters. Control variables (VF variables) can also be set by the user at this

time. The control program is started by pressing the start button. It will now run at the control

frequency until the control duration expires, or the user presses the stop button in the GUI. All of

our hardware interface boxes have a hardware emergency stop button, which kills power to the

amplifiers, etc., in addition to the software stop button in the GUI. During the control run, the

variables selected for real-time plotting are plotted in the main window of the GUI. After the

control run ends, the user may plot any of the variables that were logged.

Sample Control Program
The following sample control program reads an input voltage from A/D channel 3, multiplies it

by a scale factor, adds an offset, and writes the result out to D/A channel 3. The user can change

the scale factor and offset from the GUI at run time. Note that this program is extremely simple,

and is intended for instructional purposes only.

#include "qc.def"

#include <math.h>

extern float tsamp;

/* Log Variables */

float VD_Time, VD_InputVoltage, VD_OutputVoltage;

/* Control Variables */

float VF_ScaleFactor, VF_Offset;

init_control() {

}

input() {

 /* Increment time */

 VD_Time=VD_Time+tsamp;

18

 /* Read ADC channel 3, convert from*/

 /* A/D hex integer value to */

 /* floating pt. voltage. */

 VD_Input=IToV (G_ADC[3]);

}

control() {

 VD_OutputVoltage=VD_InputVoltage *

 VF_ScaleFactor +

 VF_Offset;

}

output() {

 /* Write DAC channel 3, converting */

 /* from voltage to hex integer */

 G_DAC[3] = VToI (VD_OutputVoltage);

}

end_control() {

 /* Zero DAC 3 */

 G_DAC[3] = VToI(0.0);

}

Conclusions and Future Work
This paper has compared the traditional multiprocessor Host/DSP architecture used in control

applications with QMotor 2.0, an implementation of the single-processor architecture. The

single-processor architecture is simpler, cheaper, more flexible, easier to upgrade, and powerful

enough to implement complex control algorithms.

QMotor 3.0 is currently under development. It will feature more graphing capabilities, object

oriented design (to allow easy extension to more hardware), and support high control frequencies

(in the 15KHz range, using a new PCI bus 200KHz A/D board). News about QMotor 3.0 can be

found at http://ece.clemson.edu/crb/qmotor/.

The authors would like to thank the anonymous reviewer for all of the hard work and time

spent in reviewing the original manuscript of this paper (CSM# 97-47). This reviewer generated

several pages of constructive comments, including a suggested new structure for the paper, all of

which were a great help in the rewriting of this paper. We appreciate his hard work and attention.

19

References
[1] K. Anderson, Integrator Backstepping Techniques for the Control of Brushless DC

Motors: Theory and Experimentation, Masters Thesis, Clemson University 1994

[2] S. Lim, D. Dawson, and P. Vedagarbha, “Advanced Motion Control of Mechatronic
Systems via High-Speed DSP and Parallel Processing Transputer Network”,
Mechatronics - An International Journal, Vol. 6, No. 1, pp. 101-122, 1996.

[3] S. Battilotti, and G. Ulivi, “An Architecture for High Performance Control Using Digital
Signal Processor Chips”, IEEE Control Systems Magazine, Vol. 10, No. 6, Oct. 1990, pp.
20-23.

[4] A. Jaritz, and M. W. Spong, “An Experimental Comparison of Robust Control
Algorithms on a Direct Drive Manipulator”, IEEE Transactions on Control Systems
Technology, Vol. 4, No. 6, Nov. 1996, pp. 627-640

[5] H. Hanselmann, “Guest Editorial - Introduction to the Special Issue on Digital Signal
Processors in Control”, IEEE Transactions on Control Systems Technology, Vol. 2, No.
4, Dec. 1994, pp. 277-278

[6] M.S. de Queiroz, S. Donepudi, T. Burg, and D.M. Dawson, “Experimental Evaluation of
Link Position Tracking Controllers for Rigid-Link Flexible-Joint Robots”, Proc. of the
IEEE Conference on Decision and Control, Kobe, Japan, Dec. 1996, pp. 4092-4097.

[7] D. Hildebrand, “An Architectural Overview of QNX”, Proc. of the Usenix Workship on
Micro-Kernels & Other Kernel Architectures, Seattle, April, 1992.

[8] http://www.qnx.com/docs/qnx/sysarch/index.html

[9] M. Feemster, D. Dawson, P. Aquino, and D. Haste, "Position Tracking of the Induction
Motor without Rotor Velocity or Rotor Flux Measurements'', Proc. of the IEEE
Conference on Control Applications, Trieste, Italy, Sept., 1998, pp 36-40.

[10] S.P. Nagarkatti, D.M. Dawson, M.S. de Queiroz, and B. Costic, "Boundary Control of a
Two-Dimensional Flexible Rotor'', Proc. of the IEEE Conference on Decision and
Control, Tampa, FL, Dec 1998, accepted, to appear.

[11] M. de Queiroz, D. Dawson, and M. Agarwal, "Adaptive Nonlinear Boundary Control of a
Flexible Link Robot Arm'', Proc. of the IEEE Conference on Decision and Control, San
Diego, CA, Dec. 1997, pp. 1327-1332.

[12] P. Vedagarbha, D. M. Dawson, and M. Feemster, "Tracking Control of Mechanical
Systems in the Presence of Nonlinear Dynamic Friction Effects", Proc. of the American
Control Conference, Albuquerque, NM, June 1997, pp. 2284-2288.

