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ABSTRACT 

Autoregressive analysis is used in modern signal processing applications for modeling 

and estimation of random signals. High speed digital signal processors with advanced 

architecture and special digital signal processing instructions, mostly compiled in C language, 

can be used in these applications to achieve realtime performance. A commercially available 

digital signal processor has been used in this work to estimate the AR parameters and power 

spectral density from the given input data by using the Levinson, Burg and Schur algorithms. 

This work produced a library file that contains the object files of the AR parameter estimation 

algorithms. The time required in terms of the cycle counts to execute each algorithm is listed 

for different data lengths and model orders. 
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I. INTRODUCTION 

Almost every field of science and engineering, such as acoustics, physics, 

telecommunications, data communications, control systems and radar, deal with signals. 

Digital Signal Processing (DSP) is concerned with the representation of signals using 

numerical techniques and digital processors. Several DSP micro processors have become 

commercially available in Very Large Scale Integration (VLSI) form. These devices, such as 

Texas Instruments TMS320, Analog Devices ADSP2100 and Motorola DSP56000 family of 

digital signal processors (however, this is not an endorsement of any of these products by the 

U.S. Government) are high speed micro processors, designed specifically to perform DSP 

algorithms. By taking advantage of their advanced architectures, parallel processing 

capabilities, and special DSP instructions, these devices can execute millions of DSP 

operations per second. One may find different kinds of DSP chips in the market today with 

different characteristics, including speed, cost and on-chip memory tailored to application 

areas. 

Autoregressive (AR) analysis and Linear Prediction (LP) are used in modern signal 

processing applications for modeling and estimation with random signals. The Linear 

Prediction is based on estimating the current sample of a given input signal using the linear 

combinations of its past samples. By minimizing the power of the error signal between the 

actual signal samples and the predicted ones, a set of predictor parameters can be found. 

There are many different methods of extracting reasonable estimates of the model parameters. 

Digital signal processors programmed in assembly or in C language can be used to perform 

various AR and LP algorithms in real time. In this study, we are mainly interested in 

implementation of the following algorithms for AR analysis on the TMS320C30 digital signal 

processor: 

1. Levinson Algorithm, 

2. Burg Algorithm, 

3. Schur Algorithm, 

4. AR Spectral Estimation. 
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The Levinson algorithm provides a computationally efficient way to obtain the 

prediction parameters of an AR process from its autocorrelation coefficients and can be 

used to find the appropriate model order. The Burg algorithm minimizes the sum of both 

forward and backward prediction error powers directly from the given input data without 

computing the autocorrelation values of the input to find the prediction parameters. The 

Schur algorithm is an alternative to the Levinson algorithm which takes advantage of gapped 

functions to find the prediction parameters from the autocorrelation function. The split Schur 

algorithm reduces the computation complexity 50% by computing only half of the 

multiplication terms. An estimate of the Power Spectral Density (PSD) of an AR process can 

be obtained by using the prediction coefficients and the prediction error variance from the 

AR algorithms. [Ref. 7-10] 

This work produced a library of real time parameter estimation algorithms and 

demonstrated their use with the TMS320C30 digital signal processor. The library contains 

the object files of the AR routines mentioned above. These subroutines may be called from 

any C language program by linking the library. 

In the next chapter, background information on the TMS320C30 digital signal 

processor's architecture is presented briefly. Chapter III describes the data transfer between 

the PC and the C30 board and the development tools for compiling the programs. The AR 

algorithms used in this work are presented in Chapter IV. The implementation of the 

algorithms in C language code using the C30 compiler utilities and the results in terms of the 

number of cycles to execute the AR routines are described in Chapter V. The conclusions and 

recommendations are discussed in Chapter VI. The C language code of the AR routines are 

listed in Appendix A and the assembly language code for the autocorrelation function is listed 

in Appendix B. All the batch files used to obtain the object files, to create the library, and to 

execute the C30 and the PC programs are listed in Appendix C. An example data transfer 

program to check the results of the AR routines using the C30 board and the PC is described 

in Appendix D, and an interrupt service routine example is described in Appendix E. The 

memory map file LSICMAP.CMD for the C30 board is listed in Appendix F. 



H. TMS320C30 (C30) ARCHITECTURE 

TMS320 is a generic name for a family of digital signal processors manufactured by 

Texas Instruments (TI) and designed to support a wide range of high speed applications. The 

TI TMS320 family consists of six generations: TMS320Clx, TMS320C2x, TMS320C3x, 

TMS320C4x, TMS320C5x and TMS320C8x. Some specific features are added in each 

generation to provide different cost/performance tradeoffs. 

The TMS320C3x generation has two different versions, the TMS320C30 and the 

TMS320C31. Each version is supplied with different rated clock speeds. The TMS320C30 

is available with these clock speeds: 

- TMS320C30: 60-ns single cycle execution time. 

- TMS320C30-27: 74-ns single cycle execution time. 

- TMS320C30-40: 50-ns single cycle execution time. 

All the processors in the TMS320C3x generation have the same instruction set, similar 

peripherals, and different timing and electrical characteristics. 

The TMS320C30 (C30) is a 32-bit digital signal processor with a 60-ns single cycle 

instruction execution time or 16.7 million instructions per second (MIPS). While an 

instruction is being executed, the next three instructions are being consequently fetched, 

decoded and read. The C30 can perform many instructions in parallel, such as multiply and 

add, in a single cycle producing a minimum instruction cycle time of 30-ns or 33.3 MIPS. 

Some of the important features of the C30 are: 

- 4K x 32 bit words of on-chip ROM. 

- 2K x 32 bit words of on-chip RAM. 

- 64 x 32-bit instruction cache. 

- 32-bit instruction and data words, 24-bit addresses. 

- 29 32-bit registers used for addressing stack management, processor status, 

interrupts and block repeat. 

- Integer, floating point and logical operations. 

- Parallel ALU and multiplier instructions in a single cycle. 



- Two and three operand instructions. 

- On-chip direct memory access (DMA) controller for concurrent I/O and CPU 

operation. 

- Conditional call and returns. 

- Two 32-bit timers. 

- Two serial ports to support 8/16/24/32-bit transfers. 

- Two general-purpose external flags and four external interrupts. 

The C30 can be programmed either in its special assembly language instructions or 

in C language and compiled by the C30 compiler. In many applications where execution time 

is critical, it may be necessary to write specific functions in assembly language. 

The C30 exhibits some common characteristics of general purpose processors, such 

as a rich instruction set and hardware/software interrupts, which make it easy to use. Because 

of these features, C30 has been used in a number of real time applications including 

communications, control, speech, and image processing. 

Some very basic information about the TMS320C30 architecture is presented in the 

following sections. More information and examples can be found in TMS320C3x User's 

Guide [Ref. 1], Digital Signal Processing with C and TMS320C30 by Rulph Chassaing 

[Ref. 4], and the course notes of EC 4930 - Digital Signal Processing Hardware [Ref. 5]. 

The memory organization is addressed first, followed by the CPU and registers, addressing 

modes, instruction set, and peripherals. 

A. MEMORY ORGANIZATION 

There is a total of 16 million 32-bit words of memory space containing program, data 

and input/output. The addresses of memory locations shown in Figure 2-1 are from Oh to 

OFTFFFFh. There are two RAM blocks of on chip memory each with IK words. There is one 

ROM block of memory with 4K words. The C30 can be used in microcomputer or 

microprocessor modes. Both modes are similar, except that the ROM block is not used in 

microprocessor mode. 
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OFFFFFFh 

Figure 2-1. Memory Locations of TMS320C30 

Memory addresses Oh through OBFh are for hardware and software interrupt vectors 

locations and other reserved locations. Locations from OCh to 800000h are mapped to the 

off-chip bus. In microcomputer mode, memory space from OCh to 10000h is assigned to the 

ROM block instead of the off-chip memory. [Ref. 1] 

Memory addresses from 800000h to 802000h and from 804000h to 806000h are 

mapped to expansion buses and used for external peripheral devices. The locations from 

808000h to 809800h are mapped to on-chip peripherals. Two timers, a DMA controller, and 

two serial ports and their control registers are contained in this section of the memory. 

Memory locations from 809800h to 80A000h are mapped to RAM blocks. The locations 

from 802000h to 804000h and from 806000h to 808000h are reserved and reads or writes 

are not allowed here. Memory locations from 80A000h to OFFFFFFh are mapped to the main 

off-chip bus and used for external memory. [Ref. 1] 



B. CENTRAL PROCESSING UNIT AND REGISTERS 

In order to execute the sophisticated DSP algorithms in real time, the C30 has a 

register based Central Processing Unit (CPU) architecture with nine buses associated with 

memory access. This allows the CPU to access independently each component of the 

memory. The CPU contains the Multiplier, Arithmetic Logic Unit (ALU), 32-bit Barrel 

Shifter, Internal Buses, Auxiliary Register Arithmetic Units and Register Files. 

The Multiplier performs single cycle multiplications on integer and floating point 

data. Single cycle operations on integer, logical and floating point data, and conversions of 

single cycle integer and floating points are performed by the ALU. The Auxiliary Register 

Arithmetic Units (ARAUs) generates two addresses in a single cycle. They support addressing 

with displacements and index registers by operating in parallel with the multiplier and ALU. 

The Barrel Shifter is used to shift up to 32 bits left or right in a single cycle. 

The Internal Buses connect the on-chip memory, off-chip memory, and on-chip 

peripherals. The separate program buses (PADDR and PDATA), data buses (DADDR1, 

DADDR2 and DDATA), and DMA buses (DMAADDR and DMADATA) allow for parallel 

program fetches, data accesses, and DMA accesses. These operations are performed by 

carrying two operands from memory and two operands from the register file at the same time. 

There are 28 registers in the CPU register file. These registers can be operated by the 

multiplier and ALU and can be used for addressing, stack management, processor status, 

interrupts, and block repeat. The C30 register file contains the following registers: 

1. R0-R7, extended precision registers, are used for storing and supporting 32-bit 

integer and 40-bit floating point numbers. 

2. AR0-AR7, auxiliary registers, are mainly used for holding address values. They are 

directly connected to two Auxiliary Register Arithmetic Units (ARAU) to update the two 

address values in every instruction cycle. These registers can also be used as loop counters 

or as general purpose registers. 

3. DP, data page pointer, are used in direct addressing as a pointer to the page of data 

being addressed. There are 256 data pages, each 64K words long. 

4. IRO andlRl, index registers, are used for indexing the address by the ARAUs. 



5. BK, block size register, are used by the ARAUs to specify the data block size in 

circular addressing. 

6. SP, system stack pointer, contains the address of the top of the stack. The SP 

always points to the last element pushed on to the stack, and is manipulated by interrupts, 

calls, returns, and PUSH, PUSHF, POP, POPF instructions. 

7. ST, status register, contains the status of the CPU. 

8. IE, interrupt enable register, is used to enable or disable the DMA or CPU 

interrupts. 

9. IF, interrupt flag register, is used to indicate whether a CPU interrupt is set or not. 

10. IOF, I/O flags register, is used to control the I/O external pins. 

11. RC, repeat count register, is used to specify how many times a block of code is 

to be repeated. 

12. RS, repeat start address register, contains the starting address of the block of 

code to be repeated. 

13. RE, repeat end address register, contains the ending address of the block of code 

to be repeated. 

14. PC, program counter, contains the address of the next instruction to be fetched. 

C. ADDRESSING MODES 

Some of the speed of the C30 for DSP applications comes from the effective use of 

addressing. Different types of memory addressing are supported for program and data 

memory access. Some of the addressing types will be illustrated by examples using different 

instructions: 

• Register Addressing: The operand is in a register. For example; 

ADDI R0,R1 

adds the integer value in register R0 to that in register Rl. 

• Immediate Addressing: The operand is contained in the instruction. For example; 

LDF 2.5, Rl 

loads the floating point number 2.5 into register Rl. 



• Direct Addressing: The operand is the address of a variable in memory, and the 

symbol "@" is used to indicate the direct addressing. In the following example, 

SUBI @808024h, RO 

the integer value at the memory location 808024h is subtracted from the value in register RO. 

• Indirect Addressing: The operand in indirect addressing is an auxiliary register 

containing the address of a variable in memory. Using the addresses stored in the registers 

ARO - AR7, it is possible to access the memory. The symbol "*" is used to indicate the 

indirect addressing. In the following instruction, 

LDI *+AR0(3), RO 

the number in the parenthesis is called the displacement. It can be any value between 0 and 

255. Most of the time, IRO and IR1 index registers are used as displacements. ARO points to 

the start of the address, and +AR0(3) points to the fourth (ARO+3) address location from the 

beginning. The above instruction copies the integer value at the location pointed to by ARO+3 

into register RO. The instruction, 

SUBF *-ARl(l), Rl 

subtracts the floating point value at the location pointed to by AR1-1 from the value in 

register Rl. The instruction, 

ADDF *+ARl(IR0), Rl 

adds the floating point value at the location pointed to by AR1+IR0 to the value in register 

Rl. IRO is supposed to be loaded before this instruction. In the following example, 

LDF *AR0++, RO 

the floating point value at the location pointed to by ARO is loaded into the register RO, and 

ARO is then incremented by one. After the instruction is executed , ARO points to the location 

AR0+1, not ARO. In the instruction, 

STF RO, *-AR0 

the location pointed to by ARO is updated first by decrementing by one, and then the floating 

point value in register RO is copied to the new location. 

• Bit-Reversed Addressing: The bit-reversed addressing is used for reordering a 

scrambled sequence, especially in Fast Fourier Transform for proper sequencing of the data 
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to enhance the execution speed. The bit-reversed addressing mode is indicated by a "B" 

following the "++" symbol. The following program segment is an example of reordering a 

scrambled sequence (xO, x2, xl, x3) as (xO, xl, x2, x3): 

LDI 2, IRO 

RPTB LOOP 

LDF *AR0++(IR0)B, RO 

LOOP     STF RO, *AR1++ 

ARO points to the scrambled array, and AR1 points to the reordered array. Index register IRO 

is set to two, half of the array size. The block of code until the line specified by the LOOP 

word is repeated. At the first instruction, xO is stored to the first location in AR1 via RO 

register. After the execution, ARO is updated in this way: ARO points to the location (000), 

and is incremented by IRO (010), (000 + 010) = (010). AR0 is updated to ARO+2 and points 

to the location which holds the xl. At the second instruction, xl is stored to the second 

location in AR1 via R0 register. After the execution AR0 is updated; AR0 points to the 

location (010), and is incremented by IRO (010). In the addition, the carry bit propagates to 

the right, not to the left. (010 +010) = (001), not (100). At the third instruction, AR0 points 

to the location of AR0+1, which holds x2. Then x2 is stored to the third location of AR1. 

AR0 is updated to (001+010) = (011). The next time ARO points to the location of AR0+3, 

which holds x3, and is stored to the fourth location of the AR1. In order to make it clear, y 

bits are required to perform size N ( N= 2y ) bit reversing. When y=2, the first and the 

second bit are swapped. If y=3, then the first and the third bit are swapped. For y=4, the first 

and the fourth and the second and the third bit would be swapped. 

• Circular Addressing: It is used in some algorithms, such as convolution and 

correlation, to implement the delays. The symbol "%" is used to indicate the circular 

addressing, and it performs modular arithmetic. The size of the array is loaded into block size 

register BK. As new data is brought into one side of the array, the oldest data at the other end 

is discarded. The following code segment illustrates the use of circular addressing for the 

array {3, 5, 2, 6} pointed to by AR1. 



LDI 4, BK 

LDI *ARl++(2)%, RO 

LDI *ARl++(3)%, Rl 

LDI *ARl++(2)%, R2 

LDI *AR1++(1)%, R3 

The array size four is loaded into the BK register. The first instruction loads 3 into register 

RO, and increments AR1 by two to point to 2 in the array. The second instruction loads 2 

into register Rl, and increments AR1 by three to point to 5. Because, 2 + 3 = 1 in modulo 4, 

the next instruction loads 5 into register R2, and increments AR1 by two to point to 6. The 

last instruction loads 6 into register R3, and increments AR1 by one to point to 3. 

D. INSTRUCTION SET 

There are 113 instructions in the C30 assembly language instruction set, and most of 

them are executed in a single cycle. These instructions are designed to support digital signal 

processing and numeric-intensive applications. Some of the instruction types are: Load and 

Store instructions, Two or Three Operand Math and Logical instructions, Input and Output 

instructions, Branch and Repeat instructions, and Parallel Operation instructions. Some 

simple examples are presented here to illustrate the use of these most common instructions. 

• Loadand Store Instructions: The 12 load and store instructions can load data into 

a register from another register or from a memory location, or store data from a register into 

the memory. Only registers R0-R7 are used for floating point instructions. For example, 

LDF RO, Rl 

loads the floating point value in register RO into register Rl, 

LDI 1, ARO 

loads the integer number 1 into register ARO, 

LDF *AR0, RO 

loads the floating point value in the location pointed to by ARO into register RO, 

STF RO, *AR0 

stores the floating point value in register RO to the location pointed to by register ARO, 
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STI RO, @TOTAL 

stores the integer value in register RO into the location assigned to variable TOTAL. 

• Two or Three Operand Math and Logical Instructions: The math and logical 

instructions are operated on two or three operands. If the source and destination operands 

are the same, it is not necessary to specify the operand two times. For two and three operand 

instructions, destination is always a register. The use of immediate or direct addressing is not 

allowed with three operand instructions. The instruction, 

ADDI *AR1++, ARO 

adds the integer value in the location pointed to by AR1 to register ARO, and then AR1 is 

incremented by 1 to point to the next memory location AR1+1. However, 

ADDI 3, RO, Rl 

is not a legal instruction, because immediate addressing is not allowed with three operand 

instructions. The three operand instruction, 

MPYF3 RO, Rl, R2 

multiplies the floating point value in register RO by the value in register Rl, and stores the 

result in register R2. This instruction could also be written as 

MPYF RO, R1,R2 

If the destination register is the same as the second source register, then it is not necessary 

to repeat the destination register again. It is also allowed to omit the number 3 after MPYF. 

The negation instruction, 

NEGI RO, R3 

gets the negative value of the integer number in register RO and stores the result in register 

R3. The absolute value instruction, 

ABSI RO 

gets the absolute value of the integer number in register RO, and stores it again in register RO. 

The instruction, 

SUBF *AR0++, *AR1++, R2 

subtracts the floating point value in the location pointed to by ARO from the floating point 

value in the location pointed to by AR1, and stores the result in R2. Then, ARO and AR1 are 

11 



incremented by one to point to the next memory location. The instruction 

NOT Rl, R2 

performs the bitwise logical complement of Rl, and loads the result into R2. The instruction 

OR RO, Rl 

performs bitwise logical OR between RO and Rl, and loads the result into Rl. 

• Input andOutput Instructions: An input data can be obtained, for example, from an 

oscilloscope, and after some mathematical operations on it, the result can be sent back to the 

oscilloscope for display. The following program block reads the data, multiplies it by two, and 

stores it: 

LDI @INADDR, ARO 

LDI @OUTADDR, AR1 

FLOAT *AR0, RO 

LDF 2.0, Rl 

MPYF Rl, RO, R2 

FIX R2 

STI R2, *AR1 

The first instruction loads the input address into ARO, and the second one loads the output 

address into AR1. The third instruction converts the integer value at the location pointed to 

by ARO to its floating point equivalent and stores the result in RO. Then, the floating point 

number 2.0 is loaded into Rl. The fifth instruction multiplies the floating point number in RO 

by that in Rl, and the result is stored in R2. The next instruction converts the floating number 

in R2 to its integer equivalent. The last instruction stores the integer value in R2 into the 

memory location pointed to by the output address. 

• Branch and Repeat Instructions: The branch instruction, BR, causes the program 

to jump to a specified location. Branches can be conditional and are executed in four cycles. 

The decrement-and-branch instruction (DB), which is very useful in looping, decrements an 

AR register and jumps to the specified location until the AR register becomes negative. The 

following program segment executes the loop five times and loads the memory location 

pointed to by ARO with {4, 8, 16, 32, 64}. 

12 



LDI 4, ARO 

LDI 2, RO 

LOOP       ADDI RO, RO 

STI RO, *AR1++ 

DB ARO, LOOP 

The auxiliary register ARO is loaded with 4 to execute the loop five times. Integer number 2 

is loaded into RO. The loop starts, adds RO to itself, and loads the result 4 to RO. Then, RO 

is stored in the first location pointed to by AR1. ARO is decremented by one and branched 

to the line LOOP. The second time in the loop, the integer number 4 in RO is added to itself, 

and the result 8 is loaded into the second location pointed to by AR1. ARO is decremented 

by two, and the loop is executed until the number in the ARO register becomes negative. 

Another type of branch instruction, delayed branch (BD), executes the next three 

instructions followed by the branch instruction before the branch instruction is executed. The 

result is four instructions in four cycles, or one-cycle delayed branch instruction instead of 

four-cycle branch instruction. For example, in the next program segment before the BD 

instruction is executed, LDI, ADDI and FLOAT instructions are executed respectively, and 

then the BD instruction takes place. In other words, before the program jumps to the line 

LOOP, the integer number in Rl is loaded into RO, integer 1 is added to the number in RO, 

and it is converted to its floating point equivalent; then the branch takes place. 

BD LOOP 

LDI Rl, RO 

ADDI 1, RO 

FLOAT RO 

LOOP   

The Repeat Instruction is used for repeating the next instruction, or a block of code 

for a number of times. The two repeat instructions, RPTS (repeat single instruction) and 

RPTB (repeat a block of instructions), are executed in four cycles. The RPTS instruction 

must be loaded one less than the number of times the next instruction is to be repeated. In the 

following example, the first element of array {1, 2, 3, 4, 5}pointed to by ARO is multiplied 
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by the second element, and the result is multiplied by the third one, and so on. The loop is 

executed four times, and the final result 120 is stored in R0. 

LDI *AR0++, RO 

RPTS 3 

MPYI *AR0++, RO 

The RPTB instruction executes a block of code one more time than the value in the 

repeat counter register RC. The RPTB instruction loads the address of the first instruction 

in RS register and the address of the last instruction in RE register. The following example 

loads the integer number 1 to Rl, and then loads the integer number 4 into RC to execute the 

loop five times. The first element of the array {1, 2, 3, 4, 5} pointed to by ARO is multiplied 

by the integer number in Rl, and the result is stored in RO. The number in RO is stored in the 

memory location pointed to by AR1, and then the number in Rl is incremented by one. The 

loop is executed five times. After the last instruction, AR1 points to the memory location 

proceeded by {1, 4, 9, 16, 25} respectively, RO holds 25, and Rl holds six. 

LDI 1, Rl 

LDI 4, RC 

RPTB LOOP 

MPYF *AR0++, Rl, RO 

STI RO, AR1++ 

LOOP ADDI 1, Rl 

• Parallel Instructions: The C30 is capable of executing multiply and add/subtract, 

load/store and arithmetic-store operations in parallel, thus increasing its performance to its 

peak value of 33.3 MIPS. The symbol "||" is used before the second operation to indicate the 

the parallel execution. There are some restrictions for parallel instructions, e. g., the multiply 

destination should be RO or Rl, and the addition destination should be R2 or R3; the updates 

of ARs should be zero, one, IRO or IR1; both instructions should be the same type, integer 

or floating point. For example, the destination registers in the following example are Rl and 

R3 in the MPYF and ADDF instructions, respectively. The displacement of ARO is one, and 

the displacement for AR1 is IR1. 
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MPYF RO, R4, Rl 

||   ADDF *ARO++(l), *AR1++(TR1), R3 

All registers are read at the beginning and loaded at the end of the execute cycle. If one of the 

parallel operations, ADDI in the following example, reads from a register, RO, and the 

operation being performed in parallel, MPYI, writes to the same register, then ADDI accepts 

as input the contents of RO before it is modified by MPYI. 

MPYI Rl, *AR1, RO 

||   ADDI *AR0,R0,R2 

In the next example, the integer number loaded from the address in ARO and stored to the 

address in AR1 is not the same. The number in RO at the beginning of the instruction 

execution is stored to the register AR1. 

LDI *AR0++, RO 

||   STI RO, *AR1++ 

The following code updates the register ARO first, then loads the contents into Rl. At the 

same time loads the contents of AR1 into R2, and then updates AR1 by the number stored 

inlRO. 

LDF *++AR0, Rl 

||   LDF *AR1++(IR0), R2 

Some arithmetic instructions can be executed in parallel with the store instruction. The 

following instruction negates the integer number pointed to by ARO, and at the same time 

stores the integer number in RO (previous integer number) into the location pointed to by 

AR1. After the operations AR1 is incremented by one, and ARO is incremented by the number 

stored in IR1. 

NEGI *AR0++(IR1), RO 

11   STI RO, *AR1++ 

The next code subtracts the integer number in register Rl from that in register R3 and stores 

the result in R2 while storing the integer number in RO into the location pointed to by AR2. 

After the operations, AR2 is decremented by one. 
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SUBI Rl, R3, R2 

||   STI RO, *AR2~ 

The repeat instructions can be used with parallel instructions to increase the performance. The 

following code segment multiplies the elements of two arrays of size five. 

LDI 0, Rl 

LDI 0, R3 

RPTS 4 

MPYI *AR1++, *AR2++, Rl 

||   ADDI R1,R3 

ADDI Rl, R3 

Register Rl holds the result of multiplication, andR3 holds the result of addition. Both of the 

registers are loaded with zero at the beginning. The loop is executed five times. At the first 

parallel instruction, ADDI adds Rl to R3. The value in Rl is not the result of the first 

multiplication, but the value zero from initialization. So, the first result in R3 is zero. At the 

second multiplication, the result of the first multiplication is added to R3. At the end of the 

second multiplication, the result of the first multiplication is stored. That is why an extra 

addition instruction is placed after the parallel instruction. It adds the result of the last 

multiplication with the previous result. 

E. PERIPHERALS 

The C30 communicates with the outside world using on-chip peripherals. These on- 

chip peripherals include two timers, two serial ports, and an on-chip Direct Memory Access 

(DMA) controller. The peripherals are controlled by the peripheral registers located from 

808000h to 809800h. The memory locations of these peripheral registers are shown in Figure 

2-2 (a). 

The two timers (TimerO and Timerl) can be used to signal events at specified intervals 

to count external events or to generate interrupts. With an internal clock, the timer can be 

used to signal an external A/D converter to start its operation, or it can interrupt the DMA 

controller to begin a data transfer. With an external clock, the timer can count external events 
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and interrupt the CPU after a specified number of events. There are three registers associated 

with each timer. The memory locations of these registers are shown in Figure 2-2 (b). The 

Timer Global Control Register monitors the timer mode. The Timer Period Register specifies 

the signal frequency. The Timer Counter Register contains the current timer count. The 

counter resets to zero whenever it reaches the value in the period register. 

The two serial ports, independent of each other, are used to transfer data in both 

directions. The clock for the ports can be generated either internally or externally. There are 

eight registers associated with each serial port. 

The DMA Controller is used to perform I/O operations without interfering with the 

operation of the CPU. The DMA controller can read and write to any location in the C30 

memory. There are four registers associated with the DMA controller. 

The TMS320C30 digital signal processor has 16 million words of total memory space 

and an instruction cycle time of 60 nsec. It is a 32 bit processor and supports both fixed and 

floating point operations. The advanced architecture, rich instruction set, and the high speed 

make the TMS320C30 digital signal processor very suitable to implement the DSP 

applications in real time. 

Timer 0       Timer 1 

DMA controller (16) 

Reserved (16) 

Timer 0(16) 

Timer 1 (16) 

SerialPort0(16) 

SerialPortl(16) 

Bus Control (16) 

Reserved 

808000h 
808010h 

808020h 

808030h 

808040h 

808050h 

808060h 

808070h 

8097FFh 

Timer global control 

Reserved 

Timer Counter 

Reserved 

Timer Register 

Reserved 

808020h  808030h 

808024h  808034h 

808028h  808038h 

(O 

80802Fh     80803Fh 

Figure 2-2 (a). Peripheral Memory Locations (b). Timer Memory Locations 
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m. THE TMS320C30 SYSTEM BOARD AND DEVELOPMENT TOOLS 

The previous chapter provided background information about the architecture of the 

TMS320C30 processor. This chapter provides background information on the specific system 

at the Naval Postgraduate School. Chapter III is divided into two sections. The first section 

describes the C30 system board. The second section describes the development tools and the 

runtime support functions. More information about the C30 system board and the C compiler 

can be found in TMS320C30 System Board Usefs Guide [Ref. 6] and in TMS320 Optimizing 

C Compiler User's Guide [Ref 3]. 

A. THE TMS320C30 BOARD 

The TMS320C30 system board, designed by Loughborough Sound Images Ltd., 

comes with a package including PC-C30 board interface libraries, TI Assembler linker, TI 

C Compiler, connection cables (board to PC), and the necessary documentation. The C30 

board used in this work is configured in microprocessor mode and has two A/D and two D/A 

converters, a parallel expansion system used as a memory mapped peripheral area, and two 

serial ports to transfer 8, 16, 24, or 32 bit data. 

The C30 board is placed in a 16-bit slot in a PC-AT expansion bus. The maximum 

number of boards that can be used with a PC is limited by the number of slots available. All 

communication from PC to the C30 board is performed via the PC's I/O space. The address 

of the slot in the PC's I/O space where the board is connected is referred as the BASE address 

of the board, and by factory default it is 290h. If that address in the PC is connected to 

another device, it is necessary to change the base address on the board. The other 

recommended base addresses are 390h, 690h, and 790h, but they can be any address not used 

by the PC's I/O space. [Ref 6] 

Since the C30 is a 32 bit processor placed in a 16-bit slot and the floating number 

representation of the C30 board and the PC are different, interface routines are necessary 

to transfer the data between the C30 board and the PC. An interface library containing the 

functions to perform these conversions is available. The following subsections describe the 
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communication or data transfer between the board and the PC and the interface libraries 

associated with it, the analog interfaces to obtain the data from other sources, and the 

interrupts to start/stop the input/output data transfer to/from the C30 memory. 

1. Communication Between PC and C30 Board 

Data is transferred to/from the C30 board via the 32-bit data registers in two steps 

because the board occupies a 16-bit slot in the PC I/O space. In order to write the data to 

the board, first, the least significant 16-bit word is written to the register at BASE+0. The 

most significant 16-bit word is then transferred to the register at address BASE+2. To read 

the data from the board, first, the least significant 16-bit word is read from the data register 

at address BASE+0. The upper 16 bit word is then read from the address BASE+2. [Ref. 6] 

The PC can read from and write to any memory location in the C30 board, with the 

exceptions explained in Chapter II, but unless it is dual access memory (on the board), the 

C30 must be held during the PC accesses which results in extra execution time. So, it is 

better to use the dual access memory locations to move the data between the PC and the 

board. The C30 board is supplied with 64K of memory in this dual access area, locations from 

30000h through 3FFFFh. 

Another problem between the PC and the C30 board is the floating number 

representation. The C30 has its own floating number format, and the PC stores floating point 

numbers in the IEEE format. It is therefore necessary to convert the floating numbers to C30 

or PC format before the transfer occurs. 

The interface library makes these problems easier to deal with. The interface library 

allows us to write high level language programs to perform the DSP applications using the 

C30 board and the PC together. It includes the functions that downloads object modules to 

the C30 board, to start/stop the execution, and to move the data to/from the PC. 

The source file for these interface functions is 30LIBRAR.C, and TMS30.H is the 

header file that includes the prototypes of the interface functions. The C source library is 

compiled with Borland C++ using the large memory model and put into library object format 

in LM30DEV.LIB. All the source files that use these interface functions should include the 
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TMS30.H header file and be linked with the LM30DEV.LB library file. The names of the 

interface functions in the source file 30LIBRAR.C and a brief description for each function 

are listed in Table 3-1. [Ref. 6] 

Table 3 -1. Interface Functions 

Function Name Function Description 
AssertReset asserts the hardware reset signal to the C30 board. 
AutoDec puts the address counters of the C30 board into autodecrement mode 
Autolnc puts the address counters of the C30 board into autoincrement mode 
CntrDis disables the address counter of the C30 board interface. 
CntrEnb enables the address counter of the C30 board interface. 
coffLoad takes an object file and downloads to board memory. 
GetFloat converts floating point value from the C30 format to IEEE format. 
Getlnt reads the integer value from the C30 memory location. 
Get32Bit takes the 32 bit value from the given C30 memory location. 
Held checks if the C30 board has held. 
Hold applies a hold request to the control register. 
HoldAndWait asserts hold to the chip and wait for acknowledgement. 
loadArgs is used to pass command line arguments to a program. 
LoadObiectFile downloads the object files from PC to the C30 memory 
PutFloat converts floating point value from IEEE format to the C30 format. 
Putlnt puts an integer into the C30 memory location. 
Put32Bit puts the 32 bit value to a given location in the C30 memory. 
RdBlkFlt fills an array with fit. values from the given C30 memory locations. 
RdBlklnt fills an array with integer values from given C30 memory locations. 
RdBlk32 reads the 32 bit values from the C30 memory into a given array. 
ReadStatReg reads the value of the Status Register. 
RelReset removes the hardware reset signal from the C30 board. 
Reset causes the C30 board to begin execution. 
ResetCond reads the state of the Reset bit from the Status Register. 
SelectBoard is used to initialize the board. 
SetAddr sets up the memory address register before a write or read. 
SetCtrlRee writes a new 8 bit value to the control register of the C30 board. 
UnHold removes the hold request from the control register. 
UnHoldAndWait releases a held and waits for acknowledgement. 
WaitForHold waits for the C30 to acknowledge a Hold request. 
WaitForUnHold waits for the C30 to acknowledge UnHolding of processor. 
WarmSelect is used to change from one C30 board to another in the PC. 
WrBlkFlt fills the C30 memory locations with fit.values from the given array. 
WrBlklnt fills the C30 memory locations with integer values from given array. 
WrBlk32 fills the C30 memory locations with 32 bit values from given array. 
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The two C language programs, a C30 program 30XCOR.C and a PC program 

RXCOR.CP (see Appendix D), illustrate the utility of interface functions and transferring the 

data back and forth between the C30 board and the PC. This process is described in the 

following paragraph and in Table 3-2. The C30 board and the PC communicate by using 

"flags". PCPROCEEDFLAG and PCproceedflag point to the dual access memory location 

30000h, and DSPPROCEEDFLAG and DSPproceedflag point to location 30001h. The PC 

program writes 1 to location 30001h if it wants the C30 program to start running, or the C30 

program writes 1 to location 30000h if it wants the PC program to start running. 

The PC program defines the board base address (0x290), two communication flags 

(PCPROCEEDFLAG and DSPPROCEEDFLAG), and two pointers for INPUT (30002h) and 

OUTPUT (30003h) arrays in the dual access memory area. The PC program starts and opens 

the data file DATA160.IN (holds the input data) and the result file COR.IN (to save the 

results), then reads the input data into "x" array. The PC program specifies the base address 

of the C30 board (0x290) and downloads the C30 program by "loadstat", and then sets the 

PCPROCEEDFLAG and DSPPROCEEDFLAG to 0 . The C30 program starts with "Reset", 

and assigns pointers PCproceedflag, DSPproceedflag, and x array to the CommO (30000h), 

Comml(30001h), and Comm2 (30002h) memory locations (defined in LSICMAP.CMD file), 

respectively. At the same time PC program waits for PCPROCEEDFLAG to be set to 1 

(PCPROCEEDFLAG-PCproceedflag and DSPPROCEEDFLAG-DSPproceedflag pairs point 

to the same memory location, so PC/DSPflag is going to be used for both cases). The PCflag 

is set to 1, and the C30 program waits until the DSPflag is set to 1. The PC program gets the 

starting address by "inloc = Get32Bit()n and downloads the input "x" array into the memory 

location starting at 30002h (specified by INPUT) by "WrBlkFlt", then sets the DSPflag to 

1 and waits for the PCflag to be set to 1. The C30 program initializes the Timer 1 registers, 

and the counter register starts counting. A call to function "xcor" is performed, and then 

Comm3 takes the starting address of the result array. PCflag is set to 1, and the PC program 

gets the starting address of the result by "outloc = Get32BitO" and downloads the output "ac" 

array into the memory starting from location 30003h (specified by OUTPUT) by "RdBlkFlt", 

and then displays the results on the PC screen and saves the results in COR.IN file. 
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Table 3-2. Program Flow Between PC and C30 Board. 

PC PROGRAM DSP PROGRAM 

Starts running, open files, selects the board 

address, downloads the DSP program, resets 

the DSP program and waits for the PCflag. 

Waits to be reset. 

Waits for the PCflag. 

DSP program starts running, assigns pointers 

to PC/DSPflags and input array. Sets the 

PCflag=l, and waits for the DSPflag. 

Downloads the input array into memory, sets 

the DSPflag=l, and waits for the PCflag. 

Waits for the DSPflag. 

Waits for the PCflag. 

Makes the computation, puts the result into 

the memory, sets the PCflag=l, and waits for 

the DSPflag (if necessary). 

Gets the output array, prints them on the 

screen, and saves them in a file. Sets the 

DSPflag=l (if necessary). 

Waits for the DSPflag. 

Note that, while PC or C30 is running, the other one is waiting for its turn for some 

amount of time. This is done in order to transfer the input array to the C30, or to transfer the 

output array to the PC in time. Otherwise, the C30 would start computing before it received 

the input array, and would cause the function to use the leftover values in the memory which 

would result in wrong output values. It is not always necessary to wait if there is something 

the processor can do that is independent of the PC. 

2. Analog Interfaces 

External devices (oscilloscope, microphone, etc.) can be connected directly to the 

ports on the C30 board, and using the A/D or D/A converters (ADC or DAC) on the board, 

signals from the external devices can be sampled, processed and the result sent back to the 

devices or to a PC for further applications. In order to use the analog signal I/O capabilities 

23 



of the board, output of the signal source must be in the range of ±3V. Signals from 

microphones require amplification. The outputs will not directly drive a loudspeaker, but can 

be monitored on an oscilloscope. 

There are two input and two output channels to interface with the analog signals. 

Three registers connected to the C30 expansion bus are used to access the ADC/DACs on 

the two analog I/O channels. Their address locations are: 

1. Read / write Channel A AID and D/A: 804000h. 

2. Read/write Channel B A/DandD/A:   804001h. 

3. Generate Software Conversion Trigger: 804008h. 

To input data from ADC on channel A, the value at the location 804000h is read, and 

to output the data to DAC on the same channel, the data is moved to the same location. The 

location 804008h accesses a register which can be used externally to start an AID or D/A 

conversion. [Ref. 1, 6] 

Conversions on both channels are initiated by either an external trigger signal or 

an on-chip timer. The following example describes how to set up on-chip peripheral Timer 

1: 

In order to set up Timer 1 in the correct mode, 6Clh is written to the location 

808030h, which enables Timer 1 to use internal clock. The sample rate is set by writing a 

value to the Timer 1 period register at location 808038h. The following formula is used to 

find the value to be loaded to the Timer 1 period register [Ref. 6]: 

The value to be loaded = Period in microseconds / 0.12 

where the period is the desired sampling period time (in microseconds) between samples. The 

value in the Timer 1 counter register is continuously incremented starting from zero once 

every 120 ns. When the value in the counter register becomes equal to the value in the period 

register, a pulse initiates the AID or D/A conversion and loads a zero starting count value to 

the counter register. For example, to have a sampling rate of 8192 Hz, 3F9h or 1017 is 

loaded into the period register. 
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3. Interrupts 

Interrupts are used to allow the processor to respond to the external as well as the 

internal events. The first twelve locations of the memory are reserved for the hardware 

interrupt vectors. These locations contain the address of an interrupt service routine which 

is to process the corresponding interrupt when it occurs. For the C30 to respond to interrupts, 

the appropriate bits in the ST and IE registers are set to 1. When the corresponding bit in the 

IE register is set and interrupts are enabled by setting the global interrupt register (GIE) bit 

in the ST register to 1, interrupt process begins. 

Interrupt service routines can be written in C language, and interrupts are enabled by 

using inline assembly language statements. C interrupt functions have names with this format: 

"c_intnn ( )" where nn is a two digit number between 00 and 99. A C interrupt routine like 

any other C function can have local variables and register variables. Interrupt names, 

corresponding sections, memory locations and their functions are described in Table 3-3. 

[Ref. 1,6] 

The C programs in Appendix E illustrate the use of ADC/DACs, and interrupt process 

to input and output data transfer. The input is a 1kHz sine wave (it can be any type of signal). 

There are two outputs: The first one is the sampled version of the input signal, and the second 

one is the same as the first one with a different amplitude. 

The sampling rate 8192 Hz is set by the Timer 1 registers as explained in the previous 

subsection. The interrupt is enabled by the following two inline assembly language statements, 

asm ("      OR 2h, IE "); 

asm ("      OR 2000h, ST "); 

The first statement sets the second bit in the IE register, corresponding to INT1 which 

enables the interrupt from Timer l.The second statement sets the global interrupt enable bit 

(bit 13) in the C30's status register. This bit must be set, or the C30 will not respond to any 

interrupts even if the IE register is enabled. 

There are three inline assembly language statements after the main program: 

asm("   .sect   \".int02\""); 

asm("   .word  _c_int02"); 
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asm("   .text "); 

The first statement tells the assembler to locate the program .int02 in the vector table. The 

memory locations of the vector table and their corresponding section names are defined in the 

map file LSICMAP.CMD, so it is essential to link the map file. The second statement contains 

the name of the interrupt service routine and tells the assembler to insert the vector to 

interrupt service routine. The third statement tells the assembler to put the rest of the code 

in the text code section. [Ref. 6] 

Table 3-3. Interrupt Names and Memory Locations 

Interrupt 
Name 

Section 
Name 

Location Function 

Reset .intOO Oh External interrupt (Power on) 

INTO .intOl lh External interrupt 0 (ADCs) 

INT1 .int02 2h External interrupt 1 

INT2 .int03 3h External interrupt 2 

INT3 .int04 4h External interrupt 3 

XINTO .int05 5h Internal serial port 0 transmit interrupt 

RINTO .int06 6h Internal serial port 0 receive interrupt 

XINT1 .int07 7h Internal serial port 1 transmit interrupt 

RINT1 .int08 8h Internal serial port 1 receive interrupt 

TINTO .int09 9h Internal timer 0 interrupt 

TINT1 .intlO Ah Internal timer 1 interrupt 

DINT         1 .intll Bh Internal DMA interrupt 

The value in the Timer 1 counter register is incremented once every 120 nsec, and 

when the value in the counter register is equal to or bigger than the value in the period 

register (3F9h or 1017), it resets itself to zero and initiates a pulse for A/D conversion. The 

A/D channel will perform the conversion and output an end-of-convert signal, which is linked 
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to the C30 as the INT1 interrupt request. Then the interrupt service routine, c_int02 (), will 

read the input from channel A, multiply the input by a constant and write the result in channel 

B, and write the input to channel A as output. Interrupts occur every 122 microsec. 

B. DEVELOPMENT TOOLS 

Whether the programs are written in C language or in assembly language, it is 

necessary to link them with the interface and runtime support libraries to obtain the executable 

files. This section describes the development tools (including compiler, assembler, linker and 

library built utilities) and how to invoke them with the required options and runtime support 

libraries. Although it is possible to invoke the compiler, assembler and linker individually, the 

cl30 compiler shell is introduced to perform all three of them in a single step. 

1. Compiler 

The TMS320 floating point C compiler produces the assembly codes from the C 

source code and conforms to the ANSI C standard. The compiler is made up of three separate 

programs: parser, optimizer and code generator. These programs can be invoked individually, 

but cl30 shell program invokes all three of them automatically. The cl30 program shell 

compiles, assembles and links the source files in a single step to obtain the executable file. 

Figure 3-1 shows the path cl30 takes. The general format for invoking the cl30 shell is [Ref. 

3]: 

cl30    [-options] [inputfilenames] -z [-link options] 

The input file names can be C files, assembly files, or object files. Files without extensions are 

assumed to be C files. If the -z is used, cl30 shell invokes the linker; however, it is optional. 

The options control the operation of the compiler. Some of the options are listed below: 

-c: compile and assemble, disable linking (negates -z). 

-z: enable linking. 

-n: compile only. 

-s: interlist C and asm statements; it inserts C source code as comments. 

-o: optimizes the code for efficiency; it is described in the next chapter. 

-mb: enables the big memory model. 

27 



-al: produces an assembly listing file. 

Linker options will be explained in the linker subsection. 

c C Source 
Files ) 

Compiler 

(    Parser 3 
C Optimizer  ^ 

(Code GeneratM 

( 

Assembly Language^ 
Files J 

Assembler 

c Object Files J 
Linker 

/Ixi :ecutable Object 
Files ) 

Figure 3-1. The Path of cl30 Command 

2. Assembler 

The assembler translates the assembly language files into machine language files. The 

general format for invoking the assembler is [Ref. 3]: 

asmSO    [inputfile [objectfile [listingfile] ]] [-options] 

The input file names are the assembly language file names. The generated object and listing 

file names get the same name as the source file with the extensions .obj and .1st, respectively, 

unless specified otherwise. Some of the options are listed below: 

-1: produces a listing file. 
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-mb: enables the big memory model. 

3. Linker 

By using the cl30 shell, we can compile, assemble and link in one step. It is also 

possible to link in a separate step, especially if we have multiple source files. We can compile 

and assemble individual files, and then link them together. The general format for invoking 

the linker is [Ref. 3]: 

lnk30    [-options] object files 

The object files are the files to be linked; some of the options are: 

-c: links the C code; the static data is copied from ROM into RAM. 

-cr: links C code; the static data is loaded directly into RAM. 

-heap xxxx: sets heap size to xxxx words, e. g., -heap 4096; the default is IK. 

-stack xxxx: setsstack size to xxxx words, e. g., -stack 4096; the default is IK. 

-i dir: defines the library search path if the libraries defined in -1 option are not in the 

current directory. 

-1 lib: links library files, e. g., -1 rts30b.lib links the library rts30b.lib with the object 

files. 

-o: generates an  executable  output file, e. g., -o rxcor names the output file as 

rxcor.out; if no names are specified, the default is a. out. 

4. Runtime Support Functions and Library Built Utilities 

The TMS320C30 compiler includes a library that contains the ANSI standard runtime 

support functions. This library contains the standard runtime support functions, compiler 

utility functions and math functions that can be called from C programs that have been 

compiled for the C30. All the functions are declared in the source file rts.src. This file 

contains all runtime support functions and the mathematical functions. Some of the 

mathematical functions (such as division and 24 bit integer multiplication) in the source file 

rts.src have been written in assembly language to speed up the execution. 

The header files that declare the runtime support functions (assert.h, ctype.h, errno.h, 

float.h, limits.h, math.h, stdarg.h, setjmp.h, stdlib.h, string.h, and time.h) must be included in 
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the main program if the program calls one or several of the functions declared by the header 

file. The functions and the header files are described in detail in TMS320 Optimizing C 

Compiler User's Guide, [Ref.3]. 

If the program uses one of these functions that are described in rts.src, object file of 

the program should be linked with the library created from the rts.src source file. The 

TMS320 C compiler contains a library file, rts30.lib, built from the source file rts.src with the 

highest optimization level (-o). This library can be linked with any file compiled for the C30 

with the small memory model. The compiler supports two memory models: the small memory 

model enables the compiler to access the memory by restricting the global data space to a 

single 64K word data page; the big memory model allows unlimited space, and the data can 

be placed anywhere in the memory. [Ref. 3] 

If the code is compiled with the large memory model, then it is essential to create 

another library from the source file. The library built utility is used to custom build runtime 

support libraries. The general format to invoke the library built utility mk30 is [Ref. 3]: 

mk30 [- options] [source library name] -I [ object library name] 

For instance, the following example builds the standard runtime support library rts.src as a 

library named rts30b.lib. The library is compiled for the C30 (-v30) with highest optimization 

(-o2 or -o) according to the big memory model (-mb). The example assumes that the runtime 

support header files are in the current directory (~u). 

mk30 ~u -v30 -o -mb rts.src -1 rts30b.lib 

We can also create our own object libraries. The C30 archiver allows us to collect 

individual object files into a single file called an archiver or a library. Once an archiver has 

been created, new files can be added, deleted, or modified. This archiver (library) can be used 

as a linker input during the compilation. The general format to invoke the archiver is [Ref 3]: 

ar30 [-option] library name [file names] 

Only one option can be used with each invokation. The library name is the desired name for 

the newly created library. The file names are the object files to be combined. Some of the 

options are: 
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-a: adds the specified file to the library; if there is another file with the same 

name, this option does not replace it, thus we may have several files with the 

same name. 

-d: deletes the files from the library. 

-r: replaces the files in the library; if the specified file is a new one, the archiver 

adds it in the library. 

The following example creates a library called dsplib.lib which combines the files xcor.obj, 

burg.obj, and schür, obj: 

ar30 -a dsplib.lib xcor.obj burg.obj schur.obj 

If it is necessary to make some changes in one of the subroutines and rebuild the library, first 

of all, after the modification is done, the function is compiled again to obtain the object file. 

Then, -r option is used to rebuild the library. The next example replaces or modifies the file 

xcor.obj with the old one and adds the rctopc.obj file to the library: 

ar30 -r dsplib.lib xcor.obj rctopc.obj 

The C30 has a powerful C compiler and development tools to compile and link the 

C language or assembly language programs. The compilation process is easy and performs 

multiple tasks in a single step.The interface library allows the programmer not to think about 

the details of the data transfer between the PC and the C30 board. Analog interfaces on the 

chip and interrupts enhance the capability of the C30 board to input/output the data from/to 

outside sources. 
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IV. AUTOREGRESSIVE PARAMETER ESTIMATION 

A. LINEAR PREDICTION 

Linear prediction is based on estimating the current sample of a given input signal 

from the linear combinations of its past samples. Consider a zero-mean, stationary, real signal 

x[n]. The estimate or the prediction of this signal takes the form 

M 

*M--E«* *[*-*] (i) 

This is referred as the M-th order predictor, and the coefficients { ava2,...aM } axe called the 

predictor coefficients. We define the prediction error, e[n], as 

e[n] = x[n] - x[n]  . (2) 

We want to find the optimal predictor coefficients. The prediction coefficients are chosen to 

minimize the power of the prediction error, 

o\ = &[\e[n] |2]  , (3) 

where «fis the expectation operator, and a) is the prediction error variance. Applying the 

orthogonality principle which states that the error is orthogonal to the previous observations, 

we can write [Ref. 7] 
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r [ x[n-k] e[n] ] =       2? [ x[n-k] ( x[n] - x[n] ) ] = 0 , k=l, 2, ..., M,    (4) 

and this leads us to 

M 

k=l,2,...,M,      (5) 

where   R£k] are the autocorrelation lags of the signal x[n]. The minimum prediction error 

variance can be obtained from 

M 

o\ =  ST [ x[n] e[n] ] =   RJO] + £  ak Rx[-k] 
k=i 

(6) 

Using the symmetry property of the Toeplitz autocorrelation matrix   ( Rj[k] = RJ.-k] ) and 

combining Equations (5) and ( 6 ) into (M+l) * (M+l) matrix equations, we obtain 

RJO]       Rx[l] RX[M\ 

RJM-1] 

RX[M]      RJM-1]  ...       RJO] 

r               n 

1 2 

a
l 

= 
0 

a
M 0 

(7) 

These equations are known as the normal equations of linear prediction. They provide the 

solution to both signal modeling and linear prediction problems. They help determine the 

prediction parameters { av a2, ..., aM; o) } of the signal x[n] directly in terms of the 

correlation function R [k].  [Ref. 7] 
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The prediction error filter in Figure 4-1 is an FIR filter with a transfer function of 

A(z) = 1 + flj z'
1
 + a2 z'

2
 +...+ aM z -M 

(8) 

which produces e[n] from the input x[n]. As M increases, more past information is taken into 

account, and we expect the prediction of x[n] to become better, thus yielding a smaller 

prediction error. 

Figure 4-1. Linear Prediction Error Filter 

Equation (1) predicts the current value of a signal based on the M previous samples. 

We can also predict the earlier sample of a signal using M samples in the future of the sample 

being predicted. Then the estimate takes the form 

x[n-M] = - bx x[n-M+l] - b2 x[n-M+2\ - ... - bM x[n] (9) 

where   b. are the backward prediction coefficients, and if we follow the same procedure as 

we did above, we conclude that for real random processes, forward and backward AR models 

are statistically identical. The prediction parameters   at and b.   are the same as well as the 

prediction error variance   a2.  [Ref. 7] 
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B. AUTOREGRESSIVE MODELING 

Autoregressive (AR) modeling is a very powerful approach for signal modeling. This 

is because accurate estimates of the AR parameters can be found by solving a set of linear 

equations. Suppose it is desired to represent the signal x[n] by an AR (M) model. In AR 

modeling, we attempt to predict x[n] on the basis of the previous M successive values of 

w[n], a zero-mean, white noise with variance    a2
w = a2

e. This excitation noise signal 

produces the desired signal x[n] through an IIR filter in Figure 4-2 with a transfer function 

of 1 / A(z). 

Figure 4-2. AR Model of Prediction Error Filter 

We can write the system output x[n] as the linear combination of its past samples and 

the excitation noise as follows: 

x[n] = - Äj JC[#I-1] - a2 x[n-2] - ... - aM x[n-M\ + w[n] , (10) 

and proceeding the same way we did in finding the normal equations in Equations (2) - (6), 

we obtain the following relation for AR models 
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tfJO]        Rx[l] RX[M\ 

RJM-1] 

RX[M]      RJM-1]  ...       Rx[0] 

,                 . r                _. 
1 «4 
a
l 

= 0 

"to 0 

(11) 

These equations are known as the Yule-Walker equations. We see that the above 

autocorrelation matrix,   RJk], is Toeplitz   since the elements along any diagonal are 

identical. Also the matrix is positive definite which follows from the positive definite property 

of the autocorrelation function [Ref. 7]. In order to find the AR parameters 

{ <ij, a2, .... a^ o\   }, one must solve Eq. (11)    with the M+l autocorrelation lags 

-Kx[0], Rß], ..., RX\M\. These equations are identical to Eq. (7). The optimal linear prediction 

coefficients are the AR parameters, and the minimum prediction error variance is just the 

excitation noise variance. This will only be true if the order of the AR process and the order 

of the linear predictor are the same. Therefore, AR parameter identification and linear 

prediction of an AR (M) process yield identical results. We notice that by choosing a 

sufficiently large order M, we can always obtain the exact parameter values when x[n] is an 

AR (M) process. 

In the normal or Yule-Walker equations, we simply replace the autocorrelation 

RJik]   by the corresponding autocorrelation lags computed from the given block of input 

data. 

N-l-k 

K [*1 = ^     E x[n] x[n+k] , for  k = 0, 1, ...,M 
»=o 

(12) 

where only the first M+l lags are needed in the autocorrelation matrix with the condition of 

M<N-1. 
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In practice, the normal equations provide a means of determining approximate 

estimates for the model parameters { ap a2,..., aM; o] }. Typically, a block of length N of 

recorded data is available { x[0], x[l], ..., x[N-l] }. There are many different methods of 

extracting reasonable estimates of the model parameters using this block of data. 

C. LEVINSON ALGORITHM 

The Levinson algorithm (sometimes referred as Levinson-Durbin algorithm) is a 

computationally efficient way to find the prediction and reflection coefficients and prediction 

error variance from the autocorrelation function. It can also be used to find the appropriate 

model order to reduce   a]   to a desired value when the correct model order is not known. 

In order to find the AR parameters, the Yule-Walker or Normal equations must be 

solved. These equations can be solved by the Gaussian elimination method which requires 

0(M3) operations or by the Levinson algorithm which requires 0(M2) operations. 

The solution of Yule-Walker equations, 

RX[M\ 

RJM-1] 

RX[M\      RJM-1)  ...       Rx[0) 

p -                               - 

1 o] 
a
l 

= 0 

a
M 0 

,    (13) 

provides the optimal set of coefficients to predict the x[n] as a linear combination of M past 

samples. If we wish to find not only the M-th order linear predictor coefficients, but also the 

predictor coefficients of the orders { M-l, M-2,..., 1 }, we need to solve Eq. (13) for each 

order separately. Since this procedure is computationally burdensome, we need to find an 

approach to compute the M-th order parameters recursively using the (M-l)-st order 

parameters. 
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The Levinson algorithm is based on estimating the AR parameters of order p from the 

parameters of order p-1. The Levinson algorithm recursively computes the parameter sets 

{a[l,l]; o* },{a[2,l],a[2,2]; o\ },...,{ a[M,l], a[M,2],..., a[M,M]; o2
M } where a[p,k] 

is the k-th coefficient of the p-th order predictor. It is important to note that { a[p,l], a[p,2], 

• •> a[p,p] ; a2
p } as obtained from the Levinson algorithm is the same as that would be 

obtained by solving the Yule-Walker equations with M = p. 

The algorithm [Ref. 7, 10] is as follows: 

STEP 0. a[0] =1 ; a[l,l] = - |^1      ;     o\ = (1- |«[1,1] f) RJO] 

STEPl. p = 2,...,M 

R
JP\ 

+
 £  i[p-l,n] RJp-n] 

»=i STEP 2. a\pj,} = -  2±-_  (14) 
2 

STEP 3.        a[pj\ = a\p-lj] + a\p#\ a\p-l#-i\ i = 1, 2,... p-1 (15) 

STEP 4. a* = ( 1  -  | a\p,p]  |2 ) o\_x (16) 

STEP 5. Go to step 1 and increase the order by 1 

In the algorithm, step 0 is the initialization, and steps 1-5 are the recursion steps. Steps 1-5 

are computed for p = 2 to M where a[p,p]'s are called the reflection coefficients and denoted 

by k[p], and a2
M is the noise variance. The Levinson algorithm provides the AR parameters 

for all order ( 1, 2, ..., M) AR models which is a useful outcome when we do not know a 

priori the correct model order. 
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Some of the properties of the Levinson algorithm assuming that the process is an 

AR(M) process are: [Ref. 7] 

1. a[M+l,p] = a[M,p] for p = 1, 2,.., M and a[M+l,M+l] - k[M+l] = 0. 

2- atp>p] = k[p] = 0 for p > M and hence    aj   =   o2
M    for p > M. 

3. The property that | k[p] |< 1 leads to o2
+1      <:      a2, which implies that     o2 

first gets its minimum value at the correct model order. 

4. If the process consists solely of p sinusoids, the recursion must terminate when 

I k[p] | =1; because at step 4, a2
p will be equal to 0. Since, in practice, signals are 

corrupted with noise, no attention was paid to this condition during the implementation of the 

algorithm. 

Given the reflection coefficients and forward and backward prediction errors for order 

p, we can obtain the forward and backward prediction errors for the order p+1 without 

solving the normal equations. 

The lattice filter representation, which can be used to compute the forward and 

backward prediction errors for the p-th order predictor based on the (p-l)-st order predictor 

and the reflection coefficients, k[p], is as follows: [Ref. 7] 

ef\p,n] = ef\p-\ji\ + k\p) eb\p-l,n-Y[ , (17) 

eb\p,n\ = eb\p-l,n-l] + k\p\ ef\p-l,n] , (18) 

where ef[0,n] = eb[0,n] = x[n] since no prediction is made, and ef[p,n] is the p-th 

order forward and e b]p,n] is the p-th order backward prediction errors. The lattice filter 

is shown in Figure 4-3 and is equivalent to the standard prediction error filter. 
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Figure 4-3. Lattice Realization of Prediction Error Filter 

D. BURG ALGORITHM 

One of the most popular approach to AR parameter estimation was introduced by 

Burg. Burg minimized the sum of the forward and backward prediction powers as opposed 

to the Levinson algorithm where only the forward prediction power was minimized. Burg 

algorithm guaranties a stable all-pole filter, and the magnitudes of the reflection coefficients 

are less than one. [Ref. 8] 

The Burg method estimates reflection coefficients directly from the data samples 

without estimating the autocorrelation values, and then uses the Levinson algorithm to 

estimate the AR parameters. In the Burg method, reflection coefficients for order p ,k[p], are 

estimated by minimizing the sum of the forward and backward prediction error powers, 

N-l 

PW - E (I ef\pri I2 + I eb\pri ? ) 
tt=p 

(19) 

Substituting Equations (17) and (18) into Eq. (19), differentiating with respect to k[p], 

setting the derivative to zero, and solving for the reflection coefficients, we obtain, [Ref. 7]: 
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N-l 

-2 £   ef\p-\,n\ eb\p-l,n-l] 

%] = — ^  • (20) 

£  ( | ef\p-hh\ |2 + | eb\p-l,n-l] |2 ) 
n=p 

In order to reduce the computations in the denominator of Eq. (20), we can use the following 

recursive relationship: 

DEN\p] = DENlp-1) ( 1 - \k\p]\2 ) - | ef\p-l#-l] |2 - | eb\p-lJV-l] |2 . 

(21) 

Burg algorithm [Ref. 7, 10] can be summarized as follows: 

STEP 0. RJO] = i- £   | x[n] |2 ; oj - tfJO] 

£?'[0,K] = x[n] n= 1,2,..., N-l 

eb[0,n] = x[n] n = 0, 1, ...,N-2 

STEP1. p = l,... ,M 

JV-l 

-2 J2  ef\p-hn] eb\p-l,n-l] 

STEP 2. k\p] =  ^2  (22) 

£   (| e'fe>-l,«] |2 + | eb[p-l,n-l] |2 ) 
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STEP 3. a\p4\ = a\p-14] + k\p\ a[p-l#-i\ i=l,2,... p-1 (23a) 

«M = k\p\ i = P (23b) 

STEP 4. o2
p = (1-1 AM  |2) o^ (24) 

STEP 5. e'[p,M] = e'\p-ln] + k\p] e
h
\p-\,n-\\ n = p+l, p+2, .... N-l (25a) 

e>,»] = e
b
\p-l,n-l] + %] e'fc-1,»] n = p, p+1, ...,N-2   (25b) 

STEP 6. Go to step 1 and increase the order by 1 

In the algorithm, step 0 is the initialization, and steps 1-6 are the recursion steps. Steps 1-6 

are computed for p = 1 to M. The reflection coefficients are computed in step 2, prediction 

coefficients in step 3, noise variance in step 4, and updates of forward and backward 

prediction error powers in step 5. Computations in step 5 are not necessary at the last order. 

E. SCHUR ALGORITHM 

In step 2 of the Levinson algorithm, one has to compute the inner product which is 

hard to implement on a parallel pipelined computer architecture. Schur algorithm [Ref. 10] 

is an efficient alternative method to Levinson algorithm and can be used to compute the 

reflection coefficients from the given autocorrelation lags without computing any inner 

products. 

We define the forward and backward gapped [Ref. 9] functions which are the 

crosscorrelation functions between the prediction error and the signal, of order p, 

g'\pji\ = r [ e'\p,h\ x[n-k] ]  = Re/]p] x[k] ,     k = 0, 1, ..., p,        (26) 
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and substituting Eq. (2) into Eq. (26), we obtain the following for the forward gapped 

function 

gf\P*\ = £  ÄJ/-A] *\PM , k = 0, l,...,p,      (27) 

and following the same procedure for backward gapped function, we obtain 

gb\pM = r [ eb\p,n] x[n-k] ] - Rei]p]x[k] (28) 

or 

b\pjc\ = £  RJp-l-k] b\pM , k = 0, 1, ...,p,      (29) 

where b[p,k] = a[p,p-k], and the backward gapped function is the reflected and delayed 

version of the forward one, 

gh\pM = g'lpf-k] (30) 

Therefore, we can now say that 

gf\pM = 0        k=l,2, ...,p ;     *W] = 0 k = 0, 1,..., p-1.      (31) 

Inserting Eq. (17) into Eq. (26) and Eq. (18) into Eq. (28 ), we obtain the lattice recursion 

of gapped functions for Schur algorithm, 

gf\p+lM ' gf\pM - k\p+l] gb\pji-l\  , (32) 

gb\p+ljc] = gb\pjk-l] - kip+1] gf\pM  . (33) 
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Eq. (4) can be rewritten in the form of crosscorrelation between the signal and its past 

forward and backward prediction errors, 

2?[x[n-k) e[n] ] = % [ (e^\p-l>n]-a[p] eb[p-l,n-l)) x[n-k] ] = 0 ,      (34) 

or 

*.Vi] *[k] ~ *M *. VIJ J*-l] =0      k = 1, 2,..., p. (35) 

Eq. (35) can be solved for the reflection coefficients 

k\p]   =       ^-H xlP]        =        gf\p-l#] 

From Equations (26) and (28), we can find the prediction error variance 

gf\p,0] = Re/]p]x[0) = a2[p] , 

g
h

\P#\ = *.»w*M = °2W ' 

We summarize the Schur algorithm as follows: 

STEPO.     H<U] = gb[0M = RJk] k = 0,1,...^/ 

STEP1.      p = 0 

STEP 2.   Jfcfe+l] = Sf[PJ>+l] 

gb\P#] 

(36) 

(37) 

(38) 
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STEP3.   gf\p+lji\ = gf\pjc\ - k\p+l] g
h
\pji-l\ k = p+l,p+2,...,M      (39) 

STEP 4.    gb
\p+lM = g

b
\p,k-l] - k\p+l] gf\pji\        k=p+l,p+2,...,M      (40) 

STEP 5.    Go to step 1 and increase the order by 1 

STEP 6.   At the last order of M: Prediction Error Variance 

o\ = g
b

[MM[ (41) 

The Schur algorithm computes the reflection coefficients as the ratio of two gapped 

functions, and most importantly, computations in steps 3 and 4 can be executed in parallel. 

F. SPLIT SCHUR ALGORITHM 

It can be shown that using a symmetric vector and computing only half of the terms, 

computation complexity can be reduced 50% in Schur algorithm. Since the new variables 

in split Schur algorithm are not related to basic linear prediction, only the algorithm will be 

presented here. Details of derivation of the parameters used in this algorithm can be found 

in [Ref 10]. 

The split Schur algorithm can be summarized as follows: 

STEP 0. k[0] = 0 ;    #[0,0] = RJp] 

g[0Jc] = 2 Rx[k]      ;     g[ljc] = Rx[k] + Rx[k-1) k = 1, 2,..., M 

STEP 1.   p=0 

STEP2.    a  = 8lP+1*+U (42) 
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STEP 3.   k\p+l) = -1 + " (43) 
1 - Afe>] 

STEP 4. sfr+2,*] = ^|p+U] + £[p+U-l] - a   ^M-l] 

k = p+2, p+3,..., M     (44) 

STEP 5. Go to step 1 and increase the order by 1 

STEP 6. At the final order of M:   o] = g[MJM\ (1 - k\M\) (45) 

We note that step 4 requires only one multiplication for each order whereas step 3 and 4 in 

Schur algorithm requires total two multiplications which reduces the computation by 50%. 

G. AR SPECTRAL ESTIMATION 

An estimate of the Power Spectral Density (PSD) of a process can be obtained by 

using the prediction coefficients and the variance obtained from the AR algorithms. Once the 

AR parameters have been obtained, the PSD of the model of order M can be determined by 

the equation [Ref. 7], 

*A* </> -  £ ^  - (46) 

| 1 + f^alMJc] exp (-j2itfk) \2 

The above PSD estimation is not the same as the true PSD obtained from the infinite 

autocorrelation lags. Since an assumption has been made that the signal is an AR (M) 

process, Eq. (46) is the best estimation, and is only valid for Gaussian random processes and 

known autocorrelation lags [Ref. 7]. In practice, if the Burg method is used for finding the 

model parameters, then the spectral estimation is called the Maximum Entropy Spectral 

Estimation [Ref. 10]. 
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It is always desired to extract the signal from the noise. The autoregressive estimation 

is one of the methods commonly used in the DSP applications. The algorithms discussed in 

previous sections provide fast methods to obtain the estimation parameters to model the 

signal from the given input data. 
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V. TEST PROCEDURES AND RESULTS 

The main goal of this work is to develop a library file that contains the AR routines 

to implement the AR algorithms discussed in Chapter IV. The first section in this chapter 

describes the subroutines implemented in this work. The second section lists the batch files 

that have been used to obtain the object files, to create the library, and to check the results 

of the subroutines by using the PC and the C30 programs. The results in terms of the cycle 

counts to execute the subroutines are discussed in the last section. 

A. SUBROUTINES 

The subroutines implemented in this work are listed in Table 5-1. All the AR routines 

have been written in C language. In addition, the subroutine that computes the autocorrelation 

function XCOR has been written in assembly code. Using the C30 compiler and library built 

utilities, a library file dsplib.lib was created. The C language codes for the subroutines and 

the batch files to obtain the object files and to create the library are listed in Appendix A. 

Appendix B contains the assembly language code for the subroutine XCOR, and the batch 

files to obtain the object files and to create the library are listed in Appendix C. 

Since the speed is the most important factor in real time applications, the following 

adjustments have been made in the subroutines and the main C30 program to speed up the 

execution. These adjustments simplify the subroutines by avoiding unnecessary loops. Here, 

loop refers to the process to find the AR parameters for each order from k=l to k=P, where 

P is the final prediction filter order. 

1. In all subroutines but XCOR and SPECTRA, the first leg of the loop (k=l) has 

been done prior to the loop, so the loop starts from k=2. In addition to this, the loop starts 

from k=3 for the subroutines LEVPRE and LEVREF, and from k=4 for the subroutine 

RCTOPC. For the subroutines SCHUR and SPSCHUR, the last leg of the loop (k=P) is 

executed outside the loop. 

2. The length of the arrays in the main program that return the results of the reflection 

or prediction coefficients must be P+l for all subroutines that compute the variance, because 
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the variance is placed as the last element in the array. The first P elements in the array 

correspond to the prediction or reflection coefficients, the (P+l)st element is the prediction 

error variance. 

Table 5-1. List of AR Routines 

SUBROUTINE 
NAME 

DESCRIPTION 

XCOR Calculates the autocorrelation lag values of a given input data. 

BURG Calculates the reflection coefficients and prediction error variance of the 
given order from the given input data using Burg algorithm. 

LEVPRE Calculates the prediction coefficients and prediction error variance of the 
given order from the given autocorrelation values using the Levinson 
algorithm. 

LEVREF Calculates the reflection coefficients and prediction error variance of the 
given order from the given autocorrelation values using the Levinson 
algorithm. 

RCTOPC Calculates the prediction coefficients from the given reflection 
coefficients using the Levinson algorithm. 

SCHUR Calculates the reflection coefficients and prediction error variance of the 
given order from the given autocorrelation values using the Schur 
algorithm. 

SPSCHUR Calculates the reflection coefficients and prediction error variance of the 
given order from the given autocorrelation values using the Split Schur 
algorithm. 

SPECTRA Calculates the power spectral density of a model from the given 
prediction coefficients and prediction error variance . 

3. Memory allocation for the local arrays in the subroutines takes considerable 

amount of time. In order to decrease the execution time, the C30 program for the subroutines 

LEVPRE, LEVREF, and RCTOPC allocates larger arrays for the variables that return the 

data from the C30. For example, the arrays "pc" and "re" return an array with (P*(P+l)/2)+l 

elements. The first P elements are the reflection or prediction coefficients, the (P+l)st element 
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for the subroutines LEVPRE and LEVREF is the prediction error variance. The rest of the 

elements in the arrays are ignored. 

B. BATCH FILES 

The batch files are small programs that contain the commands to compile, assemble 

and link in a single step. Typing the name of the batch file executes all the commands in the 

batch file. The following subsections describe the batch files that have been used to obtain the 

object files, to create the library, and to check the results of the subroutines by using the PC 

and the C30 programs. All the batch files are listed in Appendix C. 

1. Obtaining Object Files of Subroutine Codes 

The following batch file invokes the C30 compiler to obtain the executable object files 

by compiling and assembling the C codes in a single pass. The -o option enables the optimizer 

of the C30 compiler. 

MKOPT.BAT 

cl30 -o -s -alxcor.c burg.c levpre.c levref.c rctopc.c schur.c spschur.c spectrax 

-o: is the optimization level. It can be -oO, -ol, or -o2 (or -o). If-o option is not used, 

then the code is not optimized. The C compiler optimizer improves the execution 

speed by simplifiying loops, rearranging the statements and expressions and allocating 

variables into registers depending on the optimization level. [Ref. 3] 

-s: causes the compiler to produce the assembly language code of the C language 

program 30xcor.c with the name 30xcor.asm. 

-al: causes the assembler to produce a listing file 30xcor.lst in assembly language. The 

corresponding C program codes are placed as comments in .1st file which is used for 

debugging. 
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2. Creating Library 

The C30 archiver allows us to collect the individual object files into a single library 

file. The following batch file invokes the C30 archiver and puts the optimized object files 

obtained by the previous batch file into a library file, dsplib.lib. 

MKLIB.BAT 

arSO -r dsplib.lib xcor.obj burg.obj levpre.obj levref.obj rctopc.obj schur.obj spschur.obj spectra.obj 

3. Compiling and Linking C30 and PC Programs 

As described in Chapter HI, we can transfer the data back and forth between the C30 

board and the PC. This batch file can be used to compile, assemble and link the C30 and PC 

programs to check the result of the subroutines. The following batch file has been written 

specially for the programs listed in Appendix D. 

MKXCOR.BAT 

cl30 -s -al30xcor.c -z -cr -m SOxcor.map lsicmap.cmdIsiboot.obj-I dsplib.lib rts30b.lib -o 30xcor.out 

bcc -ml -P -CP -I c:\c30;c:\cpp\lib -i c:\30;c:\cpp\include -erxcor rxcor.cp lm30devlib 

The first line (cl30) compiles the C30 C code 30XCOR.C and links it with the libraries. The 

options are as follows. 

-z: causes the rest of the commands to pass to the linker. 

-cr: causes the linker to use the RAM model. It is essential to use the "cofifloadO" 

command in the PC program to load the C30 program when using -cr option. 

-m 30xcor.map: causes the linker to produce an output map file with the name 

30xcor.map which shows the memory locations that the linker has placed the code and 

the variables. 

The file lsicmap.cmd is a linker command file that tells the linker where to map the 

program in the memory of the C30 board. It also includes the memory locations of the 

interrupt vectors and the flags (Comm0-Comml5) that are used in data transfer between the 
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C30 board and the PC. Appendix F contains the LSICMAP.CMD memory map file used in 

this work. 

The file lsiboot.obj contains the code and data to initialize the C30 processor and calls 

the main 0 function. It has been written specially for the LSI C30 board, and it must be listed 

before the rts30b.lib. When the program starts running, it executes the lsiboot.obj first. 

-1 dsplib.lib rts30b.lib causes the linker to use the libraries dsplib and rts30b. The 

library dsplib.lib contains the object files obtained from the AR routine codes. The function 

call "xcor" in the C30 program requires the linker to link the dsplib library. The library 

rts30b.lib contains the object files of the runtime support functions obtained from the source 

file rts.src. The option -o 30xcor.out causes the linker to name the output object file as 

30xcor.out which is used in the PC program. 

The second line (bcc) contains the commands to compile the PC C code with Borland 

C compiler and link them with the LSI interface library lm30dev.lib. The option -ml causes 

the compiler to use the large memory model, -e option names the output executable object 

file as rxcor, and rxcor.cp is the name of the PC C program. 

4. Adding New Routines To Library 

The routines in the library can be modified to decrease the execution time or new 

routines can be added to the library. This can be done easily by executing the following steps: 

1. If the new or modified function, newfunc, has been written in C code, then the 

following batch file is used to obtain the object file. The optimization or other options 

described in previous subsections are optional. 

MKNEWFUN.BAT 

cl30 -o newfunc.c 

2. It is also possible that after using cl30 command shell with -s option to obtain the 

assembly code, modification can be done on the assembly language code. Then, new assembly 

code is reassembled to obtain the object file. 
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3. If the function has been written in assembly code, then the following batch file is 

used to obtain the object file. 

MKNEWFUN.BAT 

asm30 newfunc.asm newfunc.obj 

4. After having the object file, following batch file is used to add the new file to the 

library. 

MKNEWFUN.BAT 

ar30 -r dsplib.lib newfunc.obj 

C. RESULTS 

The major concern in creating the library is to keep the execution time for each 

subroutine as low as possible. One of the factors used to decrease the execution time is the 

optimizer of the C30 compiler. Enabling the C30 optimizer (-o option) reduces the execution 

time by simplifying the C code depending on the optimization level. The other factor is the 

64 words instruction cache. The instruction cache stores often repeated sections of code, thus 

reducing the number of off-chip accesses. The instruction cache is enabled by writing 1 to the 

11th bit in the status register (ST) by using inline assembly language code in the main C30 

program. The following code in the main program enables the cache. 

asm("    OR    800h, ST"); 

We know that while an instruction is being executed, the next three instruction are 

being consequently read, decoded, and fetched, thus improving the performance of the C30 

processor. But this may not be the case every time. The three conflicts, pipeline, register, and 

memory conflicts, cause delays or instructions to be executed in many cycles than it is 

expected. For example, during the execution of instructions, such as BR, DB, RPTS, and 

RPTB, the pipeline becomes inactive causing delay; if an auxiliary register (AR) is loaded and 

a different auxiliary register is used on the next instruction, decoding of the second instruction 
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is delayed two cycles (60 ns cycle); most of the instructions requiring an access (write or 

read) to an external memory area are executed in two cycles [Ref. 1]. These conflicts increase 

the execution time. 

The functional correctness of the subroutines has been tested using the input data 

saved in a PC file. The data has been transferred to the external dual access memory area 

(30000h) on the C30 board. The result computed by the C30 was sent back to the PC for 

display. 

Two approaches have been followed in this work to find the execution time. The first 

one is using Timer 0 in clock mode. The value in the counter register has been read right 

before and after the function call. The difference between the two values in the counter 

register is the execution time ofthat particular function after multiplied by 120 ns, since the 

value in the counter register is incremented once in every 120 ns. This is illustrated in the C30 

program in Appendix D. 

The numbers in Table 5-2 show the cycle counts for each subroutine without the 

optimization, with the highest optimization (-o) and with the cache enabled while -o option 

is in use. These numbers have been found using Timer 0 in clock mode (each cycle is 120 ns), 

and using the external dual access memory area of the C30. Note that the subroutine 

SPECTRA computes the estimate of the PSD for the positive frequencies by using 32 points. 

In many applications where the execution time is critical, it may be necessary to write 

functions in assembly language code. The number of cycles required to execute the assembly 

language code for the subroutine XCOR listed in Appendix B is 3664 (and 3607 with cache 

enabled), 34 cycles less than the optimized C code. This reduces the execution time by 120 

x 34 ns (4.08 microseconds). 
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Table 5-2. Cycle Numbers For AR Routines (N = 160, P = 10) 

SUBROUTINE 
NAME 

CYCLE 
COUNTS 
without 
optimization 

CYCLE 
COUNTS 
with highest 
optimization 

CYCLE 
COUNTS 
cache 
enabled 

XCOR 23484 3698 3641 

BURG 61595 15536 12391 

LEVPRE 2228 987 923 

LEVREF 1968 925 883 

RCTOPC 1210 512 412 

SCHUR 1904 983 923 

SPSCHUR 2313 1257 1211 

SPECTRA 45083 41280 41219 

The second way to find the total execution time of a function is to count the cycles 

of each instruction from the assembly language code. Since the cycles required to execute 

each instruction are known, we can count the cycles manually for each instruction by taking 

into account the loops. Note that here each cycle is 60 ns. But this is the ideal case where 

there is no pipeline, register or memory conflicts. 

The cycle counts obtained from the assembly code are listed in Table 5-3 for N=160 

and P=10. Since some of the subroutines use the functions malloc, free, sin, cos, and IogJO, 

and there is no accurate information about the cycle counts to execute these functions. We 

know from the rts.src source file that inverse of a number takes 36 cycles, but there is no 

information about the other functions. Texas Instruments reports that sin and cos functions 

take 22-23 cycles and loglO takes 27-40 cycles [Ref. 3]. We estimate that malloc and free 

functions take 45-50 cycles. 
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Table 5-3. Cycle Counts Obtained From Assembly Language Code 

SUBROUTINE 
NAME 

TMS320C30 DSP561xx 
(Note *) 

XCOR 2003 2282 

BURG 15859 13620 

LEVPRE 1157 1309 

LEVREF 1168 1306 

RCTOPC 410 492 

SCHUR 1347 619 

SPSCHUR 1519 * 

SPECTRA 23614 * 

Note *: There is no information about those two functions in Ref. 11. 

Table 5-3 also compares the cycle counts of the TMS320C30 and Motorola 

DSP561xx digital signal processors. Since there is not enough information about how these 

numbers were found [Ref. 11], it is assumed that these numbers were determined by counting 

the instruction cycles. The function prototypes are also not known, i.e., whether the variance 

is returned separately or as the last element after the AR parameters. The purpose of the 

comparison is to show the difference of the count cycles between the two processors, not to 

say that one of the processors is better than the other. 

The execution time for different data lengths and order sizes using the external dual 

access memory area on the C30 board with highest optimization level and cache enabled are 

listed in Table 5-4. 
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Table 5-4. Count Cycles For Different Data Length s N and Order Sizes P 

SUBROUTINE 

NAME 

N=160 

P=10 

N=256 

P=10 

N=256 

P=15 

N=512 

P=15 

N=512 

P = 20 

XCOR 3641 5789 8314 16644 21722 

BURG 12391 19489 28320 56230 73849 

LEVPRE 923 923 1626 1626 2504 

LEVREF 883 883 1584 1584 2446 

RCTOPC 412 412 777 777 1252 

SCHUR 923 923 1466 1466 2145 

SPSCHUR 1211 1211 1965 1965 2896 

SPECTRA 41219 41219 60777 60777 80480 

The functional correctness of the AR routines has been tested successfully using the 

PC, the C30 board, and the library file dsplib.lib. Since the data transfer between the PC and 

the C30 board are performed via the dual access external memory area (30000h), the numbers 

in Table 5-2 are higher than the numbers in Table 5-3 obtained directly by counting the 

instruction cycles from the assembly language codes. The cycle counts for different data 

lengths and order sizes are also listed in Table 5-4. 

If the library DSPLIB.LIB is desired to be used in some applications with a PC, then 

one should 

1. write a C source code for the C30 (.C) which must include the header file DSP.H, 

2. write a PC C source code (.CP), 

3. modify the batch file XCORl.BAT in Appendix C with new names. 

The library file DSPLIB.LIB should be linked, and the C30 source code should include the 

header file DSP.H every time these AR routines are used. 
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VL CONCLUSIONS AND RECOMMENDATIONS 

Autoregressive analysis is one of the methods commonly used in DSP applications for 

modeling and estimation of random signals. The Levinson, Burg and Schur algorithms, 

discussed in Chapter IV, provide fast methods to find the prediction and reflection coefficients 

and prediction error variance to model the signal from the given input data. High speed digital 

signal processors with specialized instruction sets are used in these applications to carry out 

desired computations in realtime; the Texas Instruments' TMS320C30 digital signal processor 

on the spectrum TMS320C30 System Board has been used in this work. 

The TMS320C30 digital signal processor has 16 million words of memory space and 

60 ns single cycle execution time or a 16.7 MIPS instruction rate. It is a 32-bit processor and 

supports both fixed and floating point operations. The advanced architecture, rich instruction 

set, and high speed make the TMS320C30 digital signal processor very suitable to implement 

the DSP applications in real time for up to 152 KHz sampling rate. 

The C30 has a powerful C compiler and development tools to compile and link C 

language and assembly language programs. The compilation process is easy and performs 

multiple compilations in a single step. The interface library allows the programmer to use the 

PC and the C30 board together to perform the DSP applications. Analog interfaces on the 

chip and interrupts enhance the capability of the C30 board to input/output the data from/to 

outside sources. 

This work created a library file that contains the object files of AR routines to 

compute the prediction and reflection coefficients and the prediction error variance from the 

given input data. The assembly language and C code programs and batch files listed in 

Appendices give an idea on how to use the PC and the C30 board together to implement the 

DSP applications. 

Although the split Schur algorithm theoretically decreases the computation cost 

almost 50% compared to the Schur algorithm, we could not obtain this result. As we see 

from Table 5-4, the split Schur algorithm takes more time than the Schur algorithm. 
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One of the interesting observations from Table 5-4 is that the Schur algorithm is 

executed in less time than the Levinson (LEVREF) algorithm as the prediction filter order P 

increases even though both algorithms use the autocorrelation values as input and compute 

the reflection coefficients and the variance. 

Table 5-2 shows how we can improve the execution time by using the C30 compiler 

optimizer. Enabling the C30 cache also helps to decrease the execution time by storing often 

repeated codes in its cache memory. The difference between the numbers without the 

optimization and with the optimization and cache enabled are quite noticeable. 

The functional correctness of the AR routines has been tested successfully using the 

PC, the C30 board, and the library file DSPLB.LIB. Since the data transfer between the PC 

and the C30 board are performed via the dual access external memory area (30000h), and by 

taking into account the pipeline and register conflicts, the numbers in Table 5-2 are higher 

than the numbers in Table 5-3 obtained directly by counting the instruction cycles from the 

assembly language codes. 

The AR routines in this library could be improved to decrease the execution time. The 

use of a simulator to determine conflicts and more accurately estimate execution time would 

be a good first step. Hand optimization of the assembly language code using the information 

from the simulator could reduce execution times by up to 50%. 
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APPENDIX A: TMS320C30 SOURCE CODE FOR AR ROUTINES 

This appendix contains the C language source code of the AR routines discussed in 

Chapter IV. The header file DSP.H that includes the function prototypes of the routines is 

listed at the end of the appendix. 

XCOR.C 

#include "dsp.h" 

/ void xcor (float *x, float *Rx, int N, int P) 
/ 
/ Calculates the normalized autocorrelation lag values of a given sequence 
/ 
/ x: input data x(0), x(l),..., x(N-l) 
/ Rx: autocorrelation values of input data such as R(0),R(1),...R(P) 
/ N: length of the data 
/ P: length of the filter; number of autocorrelation lag values. 

void xcor(float *x,float *Rx,int N,int P) 

{ 
int m,n,k; 
float z; 

/* Implements Eq. (12) in Chapter TV*/ 

for (m=0; m<=P; m++) { 
z = 0.0; 
k = N-m; 

for (n=0; n<k; n++) /* Inner loop in Eq. (12) */ 
z += *(x+n+m) * *(x+n); 

*Rx++ = z / N; /* Normalization step */ 
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BURG.C 

include "dsp.h" 

/ void burg (float *x, float *bpc, int P, int NM1) 
/ 
/ Calculates the reflection coefficients of the given order and the prediction error variance 
/ from the given input data using the Burg algorithm. 
/ 
/ x: input data x(0), x(l),..., x(N-l) 
/ bpc: reflection coefficients (re) and the variance (var) (rcl, rc2,..., rcP, var) 
/ P: length of the filter; order size 
/ NM1 :N (data length)-1 

void burg(float *x,float *bpc,int P,int NM1) 

{ 
int k,i,m,n; 
float num,den, * ef,temp,gamma, var, temp 1 ,temp2,temp3 ,temp4; 

n=NMl+l; /* n is the data length */ 
ef = (float *) malloc(2*n*sizeof(float));   /* Memory allocation for prediction error*/ 
var = 0.0; 

for (i=0; i<=NMl; i++) { /* Initialization (Step 0) in Burg algorithm*/ 
var = var + (*x * *x); /* var = R[0] */ 
*(ef+n+i) = *x; /* Backward (bw) prediction error     */ 
*(ef+i) = *x++; /* Forward (fw) prediction error        */ 

} 
var = var / n; 

/* Loop for order size of k = 1 */ 

num = 0.0; /* Initialization for numerator in Eq. (22)*/ 
den = 0.0; /* Initialization for denominator in Eq. (22)*/ 
for (m=l; m<=NMl; m++) { 

num += *(ef+m) * *(ef+n+m-l); /* Computes the numerator in Eq. (22)*/ 
den += *(ef+m) * *(ef+m);    /* Computes the denominator in Eq. (22)*/ 
den += *(ef+n+m-l) * *(ef+n+m-l); /* " */ 

} 
gamma = 2.0 * num; 
gamma = gamma / den; /* Eq. (22) , Step 2 */ 
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*bpc++= gamma; /* Reflection coefficient, k[l] */ 
temp = 1.0 - gamma * gamma; /* Eq. (24), Step 4 */ 
var = var * temp; /* Variance, Eq. (24), Step 4 */ 

for (i=NMl; i>=l; i—) { /* Updates the fw. and bw. prediction errors*/ 
temp3 = *(ef+i); /* Step 5 in Eq. (25a) and Eq. (25b)  */ 
temp4 = *(ef+n+i-l); 
*(ef+i) = temp3 - gamma * temp4;    /* Eq. (25a) */ 
*(ef+n+i) = temp4 - gamma * temp3;/* Eq. (25b) */ 

} 

/* Loop for order sizek = 2, 3,..., P */ 

for (k=2; k<=P; k++) { 
num = 0.0; 
for (m=k; m<=NMl; m++) 

num += *(ef+m) * *(ef+n+m-l); 

tempi = *(ef+k-l) * *(ef+k-l); 
temp2 = *(ef+n+NMl) * *(ef+n+NMl); 
den = temp * den - tempi - temp2;    /* Eq. (21) computes the denominator*/ 
gamma = 2.0 * num; /* recursively */ 
gamma = gamma / den; /* Eq. (22) */ 
*bpc++ = gamma; /* Reflection coefficients, k[k] */ 
temp = 1.0 - gamma * gamma; 
var = var * temp; /* Eq. (24) */ 

if ( k<P ) { /* Updating the fw. and bw. prediction*/ 
for (i=NMl; i>=k; i~) { /* errors in Eq. (25a) and Eq. (25b)*/ 

temp3 = *(ef+i); /* is not necessary for the last order */ 
temp4 = *(ef+n+i-l); /* size k = P */ 
*(ef+i) = temp3 - gamma * temp4; 
*(ef+n+i) = temp4 - gamma * temp3; 

} 
} 

} 
*bpc++ = var; /*Variance is returned back from the subroutine as the last*/ 

/* element of the array that holds the reflection coefficients*/ 
free(ef); 
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LEVPRE.C 

include "dsp.h" 

/ void levpre (float *ac, float *pc, int P, int size) 
/ 
/ Calculates the linear prediction coefficients of the given order and the prediction error 
/ variance from the given input autocorrelation values using the Levinson algorithm. 
/ 
/ ac: autocorrelation values R(0), R(l),..., R(P) 
/ pc: prediction coefficients (pc) and the variance (pel, pc2,..., pcP, var). The length of pc 
/       array is size. But the elements after the var, (P+l)st element, are ignored, not used. 
/ P: order size 
/ size:P*(P+l)/2+l 

void levpre (float *ac,float *pc, int P,int size) 

{ 
int i,n,k,c,m; 
float g,var,gamma; 

/* Loop for order size k = 1 

*(pc+l) = -(*(ac+l)) / *ac; 
var = 1.0 - *(pc+l) * *(pc+l); 
var = var * *ac; 

/* Loop for order size k = 2 

/* Step 0 in Levinson algorithm 

/* Variance 

*/ 

*/ 

*/ 

*/ 

/* Eq. (14), Step 2 in Levinson algorithm*/ g=*(pc+l)* *(ac+l); 
g = g + *(ac+2); 
*(pc+3) = - g / var; 
gamma = *(pc+3); 
var = var * (1.0 - gamma * gamma); /* Eq. (16), Step 4 
*(pc+2) = *(pc+l) + gamma * *(pc+l);        /* Eq. (15), Step 3 

*/ 

*/ 

c=2; 

/* Loop for order size k = 3, 4,..., P 

for (k=2; k<P; k++) { 
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g = 0.0; 
for (n=0; n<k; n++) 

g = g + *(pc+c+n) * *(ac+k-n);/* Numerator in Eq. (14)     */ 

g = g+*(ac+k+l); 
c = c+k; 
*(pc+c+k) = - g / var; /* Eq. (14) */ 
gamma = *(pc+c+k); 
var = var * (1.0 - gamma * gamma); /* Eq. (16) */ 

for (i=0; i<k; i++) /* Eq. (15) */ 
*(pc+c+i) = *(pc+c-k+i) + gamma * *(pc+c-l-i); 

} 

/* Prediction parameters are theses that were computed at the last order */ 

for(i=l;i<=P;i++) 
*(pc+P-i) = *(pc+size-i); 

*(pc+P) = var; /*Variance is returned back from the subroutine as the last*/ 
/* element of the array that holds the reflection coefficients*/ 

} 
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LEVREF.C 

include "dsp.h" 

/ void levref (float *ac, float *rc, int PM1) 
/ 
/ Calculates the reflection coefficients of the given order and the prediction error variance 
/ from the given input autocorrelation values using the Levinson algorithm. 
/ 
/ ac: autocorrelation function R(0), R(l),..., R(P) 
/ re: reflection coefficients (re) and the variance (rcl, rc2,..., rcP, var). The length of re 
/      array is size. But the elements after the var, (P+l)st element, are ignored, not used. 
/ PM1:P (order size)-1 

void levref (float *ac, float *rc, int PM1) 

{ 
int i,n,k,c,p; 
float g,var,gamma; 

/* Loop for order size k = 1 */ 

*(rc+l) = -(*(ac+l)) / *ac; 
*rc = *(rc+l); 
var=1.0-*(rc+l)**(rc+l); 
var = var * *ac; 

/* Step 0 in Levinson algorithm 
/* Reflection coefficient, k[l] 
/* Variance 

*/ 

*/ 

*/ 

*/ 

/* Loop for order size k = 2 

g = *(rc+l) * *(ac+l); 
g = g + *(ac+2); 
*(rc+3) = - g / var; 
gamma = *(rc+3); 
var = var * (1.0 - gamma * gamma); /* Variance, Eq. (16), Step 4 

/* Eq. (14), Step 2 
/* " 

/* Reflection coefficient, k[2] 

*/ 

*/ 

*/ 

*(rc+2) = *(rc+l) + gamma * *(rc+l); /* Eq.(15), Step 3 
*(rc+l) = gamma; /* Reflection coefficient, k[2] 
c=2; 

*/ 

*/ 
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/* Loop for order sizek = 3, 4, ..., P */ 

for (k=2; k<=PMl; k++) { 

g = 0.0; 
for (n=0; n<k; n++) 

g = g + *(rc+c+n) * *(ac+k-n); /* Numerator in Eq. (14)*/ 

g = g + *(ac+k+l); /* Numerator in Eq. (14) */ 
c=c+k; 
*(rc+c+k) = - g / var; /* Eq. (14) */ 
gamma = *(rc+c+k); /* Reflection coefficient, k[k] */ 
var = var * (1.0 - gamma * gamma) ; /* Eq. (16) */ 

if (k < PM1) { /* It is not necessary to execute Eq. (15)*/ 
for (i=0; i<k; i++)       /* at the last order */ 

*(rc+c+i) = *(rc+c-k+i) + gamma * *(rc+c-l-i);/* Eq. (15)*/ 

} 
*(rc+k) = gamma; /* Reflection coefficient, k[k] */ 

} 
p=PMl+l; 

*(rc+p)= var; /*Variance is returned back from the subroutine as the last*/ 
/* element of the array that holds the reflection coefficients*/ 

67 



RCTOPC.C 

include "dsp.h" 

/**************************************#**#* ******************* *********** 

/ void rctopc (float *rcof, float *pc, int P, int size) 
/ 

/ Calculates the linear prediction coefficients from the given reflection coefficients. 
/ 
/ rcof: reflection coefficients (rcl, rc2,..., rcP) 
/ pc: prediction coefficients (pel, pc2, ..., pcP). The length of pc array is size. But the / 

elements after the var, (P+l)st element, are ignored, not used. 
/ P: order size 
/ size: P * ( P + 1 ) / 2 + 1 
/*******************************************####:(:# fc*******:):***^ 

void rctopc (float *rcof,float *pc,int P,int size) 

{ 
int i,k,c,m; 
float temp; 

/* Loop for order size k = 1 

*(pc+l)= *rcof++; 

/* Loop for order size k = 2 

*(pc+3) = *rcof; 
*(pc+2) = *(pc+l) + *rcof++ * *(pc+l); 

/* Loop for order size k = 3 

*(pc+6) = *rcof; 
temp = *rcof++; 

*(pc+4)= *(pc+2) + temp * *(pc+3); 
*(pc+5)= *(pc+3) + temp * *(pc+2); 
c=4; 

/* Loop for order size k = 4, 5, ..., P 

*/ 

/* Reflection coefficient, k[l] */ 

*/ 

/* Reflection coefficient, k[2] */ 
/* Eq. (15) */ 

*/ 

/* Reflection coefficient, k[3] */ 

/* Eq. (15) 
/* ii 

*/ 

*/ 

for (k=3;k<P;k++) { 
c = c + k: 
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*(pc+c+k) = *rcof; /* Reflection coefficient, k[k] */ 
temp = *rcof++; 

for (i=0;i<k;i++) /*Eq. (15) */ 
*(pc+c+i)= *(pc+c-k+i) + temp * *(pc+c-l-i); 

} 

/* Prediction parameters are theses that were computed at the last order */ 

for(i=l;i<=P;i++) 
*(pc+P-i) = *(pc+size-i); 

} 
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SCHUR.C 

include "dsp.h" 

/ void schur(float *Rx, float *src,int P, int PM1) 
/ 
/ Calculates the reflection coefficients of the given order and the prediction error variance 
/ from the given input autocorrelation values using the Schur algorithm. 
/ 
/ Rx: autocorrelation values R(0), R(l),..., R(P) 
/ src: reflection coefficients (re) and the variance (rcl, rc2,.., rcP, var) 
/ P: order size 
/ PMLP-1 

void schur(float *Rx,float *src,int P,int PM1) 

{ 
int n,h,m,tempi; 
float *pt,*ptp, *en,ex,var,gamma,temp; 

en = (float *) malloc(2*P*sizeof(float));       /* Memory allocation for bw. and fw.*/ 
pt = en + P; 
ptp = en + PMl; 
for (n=0; n<=PMl; n++) { 

*(en+n) = *Rx++; 
*(pt+n) = *Rx; 

} 

/* prediction errors, "pt" is the last P */ 
/* location corresponding to the fw. pre. errors*/ 

/* Initialization; bw. prediction errors*/ 
/* Initialization; fw. prediction errors*/ 

/* Loop for order size k = 1 

var = *en; 
temp = *(pt+PMl); 
gamma = - *pt / var; 
"srcH ; gamma; 

var += gamma * *pt; 

/* Variance 

/* Reflection coefficient, k[l] 
/* Variance 

*/ 

*/ 

*/ 

*/ 

temp = temp + gamma * *ptp; 
for (m=l; m<PMl ;m++) { /* Updating the bw. and fw. 

ex = *(pt+m) + gamma * *(en+m);    /* prediction errors 
*(en+m) += gamma * *(pt+m); 
*(pt+m) = ex; 

*/ 

*/ 
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/* Loop for order size k = 2, 3,..., P-l 

for(h=l;h<PMl;h++){ 
gamma = - *(pt+h) / var; 
*src++ = gamma; 
var += gamma * *(pt+h); 

/* Reflection coefficient, k[k] 
/* Variance 

*/ 

*/ 

temp = temp + gamma * *(ptp-h); 
n = h+l; 
tempi = 1; 
for (m=n; m<PMl ;m++) { /* Updating bw. and fw.*/ 

ex = *(pt+m) + gamma * *(en+tempi);/* prediction errors   */ 
*(en+tempi) += gamma * *(pt+m); 
*(pt+m) = ex; 
tempi++; 

} 

/* Loop for order size k = P 

gamma = - temp / var; 
*src++ = gamma; 
var += gamma * temp; 

/* Variance 
/* Reflection coefficient, k[P] 
/* Variance 

*/ 

*/ 

*/ 

"srcH var; /*Variance is returned back from the subroutine as the last*/ 
/* element of the array that holds the reflection coefficients*/ 

free(en); 
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SPSCHUR.C 

#include "dsp.h" 

/ void spschur(float *Rx, float *src, int P) 
/ 
/ Calculates the reflection coefficients of the given order and the prediction error variance 
/ from the given input autocorrelation values using the Split Schur algorithm. 
/ 
/ Rx: autocorrelation values R(0), R(l),..., R(P) 
/ src: reflection coefficients (re) and the variance (rcl, rc2,..., rcP, var) 
/ P: order size 

void spschur (float *Rx, float *src, int P) 

{ 
int m, n; 
int k,i,L; 
float alpha, *vp,*pt,gamma,temp,nn; 

vp=(float *) malloc(2*P*sizeof(float)); /* Memory allocation V 

pt = vp + P; 
*pt = *Rx; 
*vp = *Rx + *(Rx+l); 

/* Initialization Step 0 in Split Schur */ 
/* algorithm */ 
/* » */ 

for(i=l;i<P;i++){ /* 
*(pt+i) = 2 * *(Rx+i); /* 
*(vp+i) = *(Rx+i) + *(Rx+i+l);/* 

} 
L = P: 

*/ 

*/ 

*/ 

/* Loop for order size k = 1 

alpha = *vp / *pt; 
gamma = 1.0 - alpha; 
L-; 
*src++ = gamma; 
for (n=0;n<L;n++) { 

*pt++ = *(vp+n); 
nn = *(vp+n) + *(vp+n+l); 
*(vp+n) = nn - alpha * *pt; 

/* Eq. (42), Step 2 
/* Eq. (43), Step 3 

/* Reflection coefficient, k[l] 
/* Updating, Eq. (44), Step 4 

*/ 

*/ 

*/ 

*/ 
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/* Loop for order size k = 2, 3,..., P-l */ 

(k=2;k<P;k++) { 
pt = vp+P; 
alpha = *vp / *pt; /* Eq. (42) */ 

temp = 1.0 + gamma; /* Eq. (43) */ 

gamma = alpha / temp; /*         » */ 
gamma = 1.0 - gamma; /*         » */ 
*src++ = gamma; 
T —• 

/* Reflection coefficient, k[k] */ 

for (n=0;n<L;n++) { /* Updating, Eq. (44) */ 

*pt++ = *(vp+n); 
nn = *(vp+n) + *(vp+n+l); 
*(vp+n) = nn - alpha * *pt; 

/* Loop for order size k = P 

pt = vp+P; 
alpha = *vp / *pt; 
temp = 1.0 + gamma; 
gamma = alpha / temp; 
gamma = 1.0 - gamma; 
*src++ = gamma; 
temp = 1.0 + gamma; 
*src++ = temp * *vp; 

free(vp); 

/* Eq. (42) */ 
/* Eq. (43) */ 
/* " */ 
/* ii */ 

/* Reflection coefficient, k[P] */ 
/* Variance, Eq. (45), is returned back */ 
/* from the subroutine as the last element*/ 
/* of the array that holds the reflection*/ 
/* coefficients */ 
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SPECTRA.C 

#include "dsp.h" 
#include <c:\tms_tool\math.h> 

/ void spectra (float *pc,float *arpsdlog,int P, int W, float freqres) 
/ 
/ Calculates the estimates of the power spectral density coeefficients of an input using 
/ the linear prediction coefficients and the variance obtained from the Levinson algorithm. 
/ 
/ pc: prediction coefficients (pc) and the variance (pel, pc2,..., pcP, var) 
/ arpsdlog : logarithmic power spectral density (PSD) coefficients. The size of this array is 
/ (freqres +1). 
/ P: order size 
/ W: 2*pi 
/ freqres: number of the PSD coefficients for the positive frequencies (0 - 0.5*fs) minus 1. 
/ For example; to have 32 points between 0 and 0.5fs, freqres must be 31. 

void spectra (float *pc,float *arpsdlog,int P, int W, float freqres) 

{ 
float f,w,den,power; 
int q,k,kk; 
COMPLEX e; 

q=0; 

/* Only the positive frequencies are computed */ 

for (£=0.0; f<0.5; f+= freqres) { 
e.real =1.0; /* Exponention term is divided*/ 
e.imag = 0.0; /* into its sin and cos terms*/ 
w = W*f; /* 2 * pi * f */ 

/* First P elements in the pc array are the prediction coefficients and the last element is the 
variance. */ 

for (k=0; k<P; k++) { 
kk = k+l; 
e.real += pc[k] * cos(w * kk); /* exp(-j*2*pi*f*k)     */ 
e.imag += pc[k] * sin(w * kk); /*        " */ 

} 
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den = e.real * e.real + e.imag * e.imag; /* absolute square      */ 
power = pc[P] / den; /*Eq (46) in Chapter IV*/ 
arpsdlog[q] = 10.0 * logl0(power); /* 10*logl0 */ 
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DSP.H 

/* Header file for the function prototypes defined above 

void xcor(float *x,float *Rx,int N,int P); 

void burg(float *x,float *bpc,int P,int NM1); 

void levpre (float *ac,float *pc, int P,int size); 

void levref (float *ac, float *rc, int PM1); 

void rctopc (float *rcof,float *pc,int P,int size); 

void schur(float *Rx,float *src,int P,int PM1); 

void spschur (float *Rx, float *src, int P); 

void spectra (float *pc,float *arpsdlog,int P, int W, float freqres) ; 
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APPENDIX B: TMS320C30 ASSEMBLY CODE FOR AUTOCORRELATION 

This appendix lists the TMS320C30 assembly language code for the autocorrelation 

function. The object file of this code is executed faster than the object file obtained from the 

routine XCOR.C in Appendix A. 

XCOR.ASM 

* TMS320C30 C COMPILER    Version 4.50 

.version 30 

FP       .set AR3 

.globl  _xcor 

* FUNCTION DEF : _xcor 

_xcor: 

PUSH FP 

LDI  SP,FP 

PUSH R4 

PUSH R5 

PUSHF R6 

PUSH AR4 

PUSH AR5 

LDI     *-FP(2),IRl ;x (input) 

LDI     *-FP(3),AR5 ; Rx (output) 

LDI     *-FP(4),BK ;N (data length) 
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LOOP 

LDI     *-FP(5),R4 ; P (lag size) 

FLOAT BK,R0 

CALL  INVJF30 ; 1/N 

LDF    R0,R6 

LDI     0,R3 ;m=0 

LDI    R4,AR6 

SUBI    1,AR6 

; for (m=0; m<(P+l)) 

LDF    0.0,R2 ;z=0 

SUBI  R3,BK,R5 , k=N-m 

LDI     IR1,AR2 ,x[n] 

ADDI R3,AR2,AR4 x[n+m] 

SUBI   1,R5 k-1 

LDF    0.0,R0 

RPTS R5 for (n=0; n<N-m) 

ADDF R0,R2 

MPYF *AR2++,*AR4++,R0 ; z += x[n] * x[n+ri] 

ADDF R0,R2                         ; end 

DBNZD   AR6,LOOP           ; end of LOOP 

MPYF R6,R2,R0                  ; z*l/N 

STF    R0,*AR5++               ; Rx[m] 

ADDI 1,R3                           ; m+1 

LDI     *-FP(l),Rl 

LDI     *FP,FP 
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POP AR5 

POP AR4 

POPF R6 

BD Rl 

POP R5 

POP R4 

SUBI  2,SP 

****************************************************** 

* UNDEFINED REFERENCES * 

****************************************************** 

.globl  INV_F30 

.end 
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APPENDIX C: BATCH FILES 

All the batch files used in this work are listed in this appendix. 

MKOPT.BAT 

rem     This batch file optimizes the AR routine codes listed in Appendix A, and then obtains 

rem     the executable object files. 

cl30 -o -s -al xcor.c burg.c levpre.c levref.c rctopc.c schür, c spschur.c spectra, c 

MKLIB.BAT 

rem     This batch file collects the optimized, executable object files obtained by the 

rem     MKOPT.BAT batch file in a single library file. The name of the library is dsplib.lib. 

ar30 -r dsplib.lib xcor.obj burg.obj levref.obj levpre.obj rctopc.obj schur.obj spschur.obj spectra.obj 

MKXCOR1.BAT 

rem This batch file is used to show the data transfer between the C30 board and the PC 

rem and to check the results of the functions. This is written specially for the programs 

rem described in Appendix D, and to check the functional correctness of the routine 

rem XCOR.C The first line compiles and links the C30 code with the DSPLIB.LIB library 

rem file and runtime support library RTS30.LIB. The second line compiles and links the 

rem PC C code with BCC and LSI PC libraries in the C30 directory. (Here, C30 is the 

rem name of the directory that holds the library files) 

cl30 -s -al txcor.c -z -cr -m txcor.map lsicmap.cmd lsiboot.obj xcor.obj -1 rts30.1ib -o txcor.out 

bcc -ml -P-CP -lc:\c30;c:\cpp\lib -ic:\c30;c:\cpp\include -erxcor rxcor.cp lm30dev.lib 
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MKXC0R2.BAT 

rem This batch file is used to obtain the executable object file of the functions written in 

rem TMS320C30 assembly code, to show the data transfer between the C30 board and 

rem the PC, and to check the results of the functions. This is written specially for the 

rem programs described in Appendix D, and to check the functional correctness of the 

rem routine XCOR.ASM listed in Appendix B. The first line obtains the executable object 

rem file of the assembly language code XCOR.ASM with the name xcor.obj. The name 

rem of the listing file is xcor.lst. The second line compiles and links the C30 code with the 

rem runtime support library RTS30.LEB. The third line compiles and links the PC C code 

rem with BCC and LSI PC libraries in the C30 directory. (Here, C30 is the name of the 

rem directory that holds the library files). Note that in the second line, xcor.obj is used 

rem before the -1 option. Because, we did not create the library dsplib.lib from this 

rem particular xcor.asm subroutine, which is actually faster than the one used in dsplib.lib. 

asm30 xcor.asm xcor.obj xcor.lst 

cl30 -s -al txcor.c -z -cr -m txcor.map lsicmap.cmd lsibootobj xcor.obj -1 rts30.1ib -o txcor.out 

bcc -ml -P-CP -lc:\c30;c:\cpp\lib -ic:\c30;c:\cpp\include -erxcor rxcor.cp lm30dev.lib 

MKINT_EX.BAT 

rem This batch file is used to show the interrupt service routine example. This is 

rem written specially for the programs described in Appendix E. The first line compiles and 

rem links the C30 code with the runtime support library RTS30.LIB. The second line 

rem compiles and links the PC C code with BCC and LSI PC libraries in the C3 0 directory, 

rem (Here, C30 is the name of the directory that holds the library files). 

cl30 -s -al int_ex.c -z -cr -m int_ex.map lsicmap.cmd lsibootobj -1 rts30.1ib -o int_ex.out 

bcc -ml -P-CP -LC:\c30;c:\cpp\lib -IC:\c30;c:\cpp\include -erint_ex rint_ex.cp lm30dev.lib 
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APPENDIX D: DATA TRANSFER BETWEEN PC AND C30 BOARD 

The following two programs illustrate the data transfer between the PC and the C30 

board as described in Chapter III. The first program, 30XCOR.C, is the C30 program, and 

the second program, RXCOR.CP, is the PC program. The PC program loads the input data 

into the C30 memory, the autocorrelation of the data is computed by the C30, and the result 

is sent back to the PC for display. MKXCOR1.BAT in Appendix C is the batch file to invoke 

the compiler and linker with necessary options. In order to run the program, type MKXCOR1 

to compile and link the program, then type RXCOR to execute the program.All the files 

should be in the current directory. The results are displayed on the PC screen. 

30XCOR.C 

/* This is a C program for the C30 board. The program finds the autocorrelation coefficients 

of the data passed down form the PC and passes the result back to the PC. It works in 

conjunction with the PC program RXCOR.EXE */ 

#include <c:\tms_tool\math.h> 
include "dsp.h" 

#define N    160 
#define P     10 
#define PP1 P+l 
#define PP3 P+3 

/* header file for the function 

/* data length 
/* autocorrelation lag size 

*/ 

*/ 

*/ 

float x[N]; 
float ac[PP3]; 

long   *PCproceedflag, *DSPproceedflag; 
extern long   CommO, Comml; 
extern float *Comm2, *Comm3; 

long *t0pr, *t0gc, *t0cr; 

/* input data from the PC 
/* output result to the PC 

*/ 

*/ 

/* PC communication flags */ 
/*location of the communicationflags */ 
/* pointers to the locations in dual */ 
/* access memory area for the input */ 
/* and output */ 
/* pointers to the Timer 0 registers    */ 
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main() 

{ 

asm("      OR   800h, ST"); 

PCproceedflag = &CommO; 
DSPproceedflag = &Comml; 

Comm2 = x; 

*PCproceedflag = 1; 

while (*DSPproceedflag = 0); 

*DSPproceedflag = 0; 

tOgc = (long *) 0x808020 
tOpr = (long *) 0x808028 
tOcr = (long *) 0x808024 

*t0gc = 0; 

*t0pr = 0X05B8D8; 

*t0gc = 0x0002Cl; 

ac[PPl] = *t0cr; 

xcor(x,ac,N,P); 

ac[P+2] = *t0cr; 

/* Enables the cache 

/* Assign meaningful names to */ 

/* pointers to flags used to */ 

/* communicate with PC */ 

/* Put starting address of input array */ 

/* in absolute location so the PC can */ 

/* find the arrays */ 

/* tell pc address is ready */ 

/* Wait for PC to download input */ 

/* array */ 

/* Initialize pointers to Timer 0 */ 
/* registers: global control register, */ 
/* period register, and counter register*/ 

/* Timer 0 control register resets the */ 
/* timer */ 
/* period register is set to a value big */ 
/* enough to complete the execution */ 
/* Start the timer. */ 

/* counter is read before the function */ 
/* starts */ 
/* function call */ 

/* counter is read after the function is*/ 
/* complete */ 

/* The difference of the value in the counter register before and after the function call is the 
execution time. Note that counter is incremented once in every 120 nsec. */ 

Comm3=ac: 

*PCproceedflag = 1; 
while (*DSPproceedflag: 

*DSPproceedflag = 0; 

} 

o); 

/* Put starting address of output array*/ 
/* in absolute location so the PC can */ 
/* find the array */ 
/* tell pc data ready */ 
/* Wait for PC to download an array */ 
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RXCOR.CP 

/* This is a PC program that downloads and runs 30XCOR.OUT on the C30 board.*/ 

include "tms30.h" 
#include <stdio.h> 
#include <stdlib.h> 
#include "mucoprt.cp" 

/* header file for the interface library */ 
/* runtime support header files */ 

/* PC function that prints an array and*/ 
/* a matrix */ 

#define BOARDADR    0x290 /* Factory default I/O address. */ 

#define COMM0 0x30000 /* Start of dual access memory area   */ 
#define PCPROCEEDFLAG   COMM0+0 /* addresses between the PC and the */ 
#define DSPPROCEEDFLAG COMM0+0   /* C30. These addresses are defined 
#define INPUT COMMO + 2 /* inLSICMAP.CMD map file. 
#define OUTPUT COMM0 + 3 

#define MAXCOUNT   200000 

#define N     160 
#define P      10 
#define PP3 P+3 

/* Max. delay while waitin 
/* C30 to response 
/* data length 
/* autocorrelation lag size 

ig for the 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

void main(void) 

{ 

unsigned short   loadstat; 
long a; 
unsigned long inloc,outloc; 
float x[N]; 
float ac[PP3]; 

FILE *fpi,*fpo; 
inti: 

/* input data 
/* autocorrelation lag values from 
/* R(0) to R(P), and the value in the 
/* Timer 1 counter register before 
/* and after the function call 

/* open file to read input data; DATA160.IN holds the input data 

if (( fpi = fopen ("DATA160.IN","r")) = NULL) { 

*/ 

*/ 

*/ 

*/ 

*/ 
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printf ("Unable to open input data file \n"); 
exit(O); 

} 

/* open file to read Correlation Coefficients; COR.IN will hold the results */ 

if ((fpo = fopen ("CORIN","w")) = NULL) { 
printf ( "Unable to open output file \n"); 
exit(O); 

} 

/* read data into x array */ 

for (1=0; i<N; i++) { 
if(!feof(fpi)) 

fscar^fpi,"%f,&x[i]); 
else { 

printf("End of input file before all data read\n"); 
exit(0); 

} 
} 
fclose(fpi); 

printf ("Successfully loaded DATA160.IN\n"); 

/* Initialize board:   */ 

SelectBoard(BOARDADR); 
loadstat = cofQLoad("30xcor.out"); /* Special load function; required*/ 

/* with -cr (RAM) linker option */ 
if(loadstat!=0){ 

printf("\n\nError During Program Load!!! !\n"); 
printfC'coffLoadO returned %x\n\n", loadstat); 
exit (0); 

} 

Put32Bit(PCPROCEEDFLAG,DUAL,0x0L); /* Make sure flag is set to zero*/ 
Put32Bit(DSPPROCEEDFLAG,DUAL,0x0L); /* Make sure flag is set to zero. */ 
Reset(); /* Start the DSP program running. */ 

/* Wait till DSP has pointers to output arrays ready */ 

for (a=0; a<MAXCOUNT && (Get32Bit(PCPROCEEDFLAG,DUAL) != OxlL); a++); 
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*/ 

*/ 

if (a=MAXCOUNT) { 
printf("Timeout waiting for array pointers!! !\n"); 
exit(O); 

} 

Put32Bit(PCPROCEEDFLAG,DUAL,0x0L); 

inloc=Get32Bit(INPUT,DUAL); 

WrBlkFlt(inloc, DUAL, N, x); /* Download the x vector. 

Put32Bit(DSPPROCEEDFLAG,DUAL,0xlL);        /* Tell DSP to start. 

/* Wait for DSP to finish calculation of XCOR then upload. */ 

for (a=0; a<MAXCOUNT && (Get32Bit(PCPROCEEDFLAG,DUAL) != OxlL); a++); 
/* Wait loop — till answer array is ready. */ 

if (a=MAXCOUNT) { 
printf("Timeout waiting for xcor to be calculated!! !\n"); 
exit(O); 

} 

Put32Bit(PCPROCEEDFLAG,DUAL,0x0L); 

outloc = Get32Bit(OUTPUT,DUAL); 

RdBlkFlt(outloc,DUAL,PP3 ,ac); 

printf("autocorrelation"); 
prtarray(ac,PP3); 

for (i=0; i<PP3; i++) 
fprintf(fpo/TogW^ac[i]); 

fclose(fpo); 

} 

/* Get actual starting addresses ofarray*/ 

/* Get result of output */ 

/* prints the result 

/* saves the result in a file 

*/ 

*/ 
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APPENDIX E: INTERRUPT SERVICE ROUTINE EXAMPLE 

The following two programs illustrate the use of interrupt service routines described 

in Chapter III. The first program, INTJEX.C, is the C30 program, and the second program, 

RINT_EX.CP, is the PC program that runs the "INT_EX.OUT\ the output file of the C30 

program. MKINT_EX.BAT in Appendix C is the batch file to invoke the compiler and linker 

in a single step. In order to run the program, first connect the channels A and B on the board 

to the channels A and B on the oscilloscope. Then, type MKINTJEX to compile and link the 

program, and then type RINT_EXto execute the program. Two sinusoid signals with different 

amplitudes will be seen on the oscilloscope screen. 

INT_EX.C 

/* The C program for the C30 board INTJEX.C echos the samples on the channel A of ADC 

onto the channel A of DAC and multiplies the signal on the channel A of ADC by three and 

echos onto the channel B of DAC. */ 

#include <c:\tms_tool\math.h> 
#define ADC_A 0x804000 
#define DAC_A 0x804000 
#define DAC B 0x804001 

/* Memory locations of the channels */ 
/* A and B of the C30 board */ 

long *tlcr, *tlpr, *tlgc; 

main() 

{ 

asm("   OR  800h, ST"); 

tlgc = (long *) 0x808030; 
tlpr = (long*) 0x808038; 

/* Enables the cache V 

/* Timer 1 Global Control Register   */ 
/* Timer 1 Period Register */ 

*tlgc = 0x601 
*tlpr = 0x3F9 
*tlgc = 0x6cl 

/* Sampling frequency is 8192 Hz 
/* start the Timer 1 

*/ 

*/ 
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asm("   OR  2h, IE"); /* set up the INT1 bit (second bit) in */ 
/* the IE register */ 

asm("   OR  2000h, ST"); /* set up the global interrupt enable   */ 
/* (13th bit) bit in the ST register      */ 

while(l); /* loop forever */ 

} 

asm(" .sect    \".int02\""); /* Locate next statement in vector table. */ 
asm (" .word _c_int02 "); /* Inserts vector to interrupt routine.       */ 
asm ("   .text "); /* Put rest of the code in ".text" section  */ 

INTERRUPT SERVICE ROUTINE: 

c_int02 0 /* A/D & D/A end-of-convert interrupt. (INT1) */ 

{ 

int sample; 

sample = *(int *) ADC_A; /* Read the current sample . */ 
*(int *) DAC_B = sample*3; /* Output value*3 to D/A B. */ 
*(int *) DAC_A = sample; /* Output value to D/A A. */ 

} 

2. RINT EX.CP 

/* This is a PC program that downloads and runs INTEX.OUT on the C30 board. */ 

^include "tms30.h" /* Header file for the interface library */ 
#include <stdio.h> 
#include <stdlib.h> 

void main(void) 

{ 

int loadstat: 
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/* Initialize board:   */ 
SelectBoard(0x290); 
loadstat = coffLoad("int_ex.out");     /* Special load function; required with -cr option*/ 

/* Start the C30 program.    */ 

Reset(); 

printf("C30 program (int_ex.out) is running.W'); 
printf("You should see an echo of ADC A on DAC A.\n"); 
printf("You should see (ADC A)*3 on DAC B.W); 

} 
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APPENDIX F: LSICMAP.CMD MEMORY MAP FILE 

/* LSICMAP.CMD: Memory map file for LSI TMS320C30 System Board, for use with the 

C Compiler. */ 

/* All memory is RAM. */ 

MEMORY /* This maps memory SECTIONS to the board hardware.    */ 

{ 

/* EXTERNAL SRAM ON THE MAIN BOARD: */ 

/* Locations 0 to COh are reserved for interrupt vectors and Debug Monitor usage.*/ 

/* Although you could start using memory at Clh, this map starts at 100h ~ to */ 

/* allow for future Monitor expansion, and for ease of adding hex addresses offsets*/ 

VECTS: origin=000000h length=00000ch /* Interrupt vectors. */ 

BANKO: origin=000100h length=O0ffO0h /* Standard SRAM (0-wait). */ 

BANKl:origin=010000h length=010000h /* SRAM upgrade option. */ 

BANK2: origin=020000h length=010000h /* SRAM upgrade option. */ 

BANK3: origin=030000h length=00f400h /* Std. dual access (1-wait) */ 

/* Bank 3 is dual-access between the C30 and the PC. The length shown is for the default 

64Rx4 devices, but 16Kx4 can be used. In both cases, the top cOOh locations are reserved 

for Debug Monitor use. If you will never use the debug monitor, your programs can use this 

area. */ 
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/* CACHED DRAM MEMORY EXPANSION ON THE DAUGHTER BOARD: */ 

EXPAND: origin=400000h length=400000h  /* One of various options. 

/* ON-CHIP MEMORY: 

BLOCKO: origin=809800h length=0000400h 

BLOCK1: origin=809c00h length=0000400h 

} 

SECTIONS     /* Assigns program sections to the MEMORY statement, above. 

/* The .data section, below, is not used by the linker to link C 

/* C compiler output files. It is used by the linker when it is 

/* linking Assembler output files. The section is included in this 

/* "map" file so that the same map can be used to link files 

/* produced by either the Assembler or C Compiler 

/* (useful if you write some functions in assembly language and 

/* happen to use the .data section). 

{ 

.text: 

.bss: 

{ 

_Comm0 =. 

Comml =. 

_Comm2 =. 

_Comm3 =. 

_Comm4 =. 

Comm5 =. 

Comm6 = 

{} >BANK0 

.+=1 

.+=1 

.+=1 

.+=1 

.+=1 

.+=1 

.+=1 

/* Define global address labels that can 

/* be used for communication between the 

/* PC and DSP programs. These locations 

/* will each occupy one 32-bit word 

/* starting at zero offset from the 

/* beginning of the .bss section. 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
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Comm7 =.; 

Comm8 = .; 

Comm9 = .; 

CommlO = 

Comml 1 = 

Comml 2 = 

Comml 3 = 

Comml 4 = 

Comml5 = 

+=1; 

+=1; 

+=1; 

.+=1 

.+=1 

.+=1 

.+=1 

.+=1 

.+=1 

/* If you need more locations, */ 

/* you could add more "Comm" locations */ 

/* or you could create a "hole" in memory */ 

/* here that you address using absolute */ 

/* pointers (instead of these labels). */ 

} >BANK3 

.data: 

.emit: 

.stack: 

{} >BANK3 

{} >BANK3 

{}        >BLOCK0 

/* .sysmem:        {}      >BANK2*/ 

/* Forces Reset and Interrupt Vectors to absolute locations: Your C source code */ 

/* should initialize these locations using "ASM" inline assembly macros (except for */ 

/* location 00, which is initialized in the LSIBOOT.OBJ startup file. */ 

intOO 00h {} 

intOl Olh {} 

int02 02h {} 

int03 03h {} 

int04 04h 0 
int05 05h {} 

int06 06h {} 

/* Reset (Power-on or otherwise). 

/* INTO 

/* INT1 (A/D & D/A end of convert). 

/* INT2 

I*  INT3 

/* XINTO 

/* RINTO 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
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.int07 07h: {} 

.int08 08h: {} 

.int09 09h: {} 

.int 10 Oah: {} 

.intll Obh: {} 

/* XINT1 

/* RINT1 

/* TINTO 

/* TINT1 

/* DINT 

*/ 

*/ 

*/ 

*/ 

*/ 

-heap 4096     /*Sets the size of the .sysmem section to 4K words. The default is IK. */ 
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