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Preface

Read This First

About This Manual

This user’s guide serves as a reference book for the TMS320C3x generation
of digital signal processors, which includes the TMS320C30, TMS320C30-27,
TMS320C30-40, TMS320C31, TMS320C31-27, TMS320C31-40,
TMS320C31-50, TMS320LC31, and TMS320C31PQA. Throughout the book,
all references to 'C3x refer collectively to 'C30 and 'C31, and the TMS320C30
and TMS320C31 refer to all speed variations unless an exception is noted.
This document provides information to assist managers and
hardware/software engineers in application development.

How to Use This Book

This revision of the TMS320C3x User’s Guide incorporates the following
changes:

Updated reference list of publications

Improved description of repeat modes and interrupts in Chapter 6
Description of power management modes in Chapter 6

Improved description of serial ports and DMA coprocessor in Chapter 8
Description of power management instructions in Chapter 10

Description of low-power-mode interrupt interface in Chapter 12

Iy T Iy Ny Ny

More detailed information on MPSD emulator interface, signal timings,
and connections between emulator and target system

[ Current timing specification in Chapter 13

[ TMS320C30PPM pinout, mechanical drawing, and timings in Chapter 13

(0 Development support description and device/tool part numbers in
Appendix B

[ Data sheet for current military versions of the 'C3x in Appendix E

Read This First iii



Notational Conventions

Notational Conventions
This document uses the following conventions:

(O Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special font. Examples use a bold version
of the special font for emphasis. Here is a sample program listing:

0011 0005 0001 field 1,2
0012 0005 0003 field 3,4

0013 0005 0006 field 6,3
0014 0006 .even

1 In syntax descriptions, the instruction, command, or directive is in a bold
face font and parameters are in jtalics. Portions of a syntax that are in
bold face should be entered as shown; portions of a syntax that are in
italics describe the type of information that should be entered. Here is an
example of a directive syntax:

.asect " section name”, address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

[ Square brackets ([ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don't enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

[ Braces( {and} )indicate alist. The symbol | (read as or) separates items
within the list. Here’'s an example of a list:

{110
This provides three choices: *, *+, or *—.

Unless the listis enclosed in square brackets, you must choose one item
from the list.
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[0 Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is

.byte valueg [, ..., value,]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters separated
by commas.

Information About Cautions

This book may contain cautions and warnings.

[ A caution describes a situation that could potentially cause your system
to behave unexpectedly.

This is what a caution looks like.

The information in a caution is provided for your information. Please read each
caution carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these Tl documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320 Floating-Point DSP Assembly Language Tools User’s Guide
(literature number SPRUO035) describes the assembly language tools
(assembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C3x and 'C4x generations of
devices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide
(literature number SPRU034) describes the TMS320 floating-point C
compiler. This C compiler accepts ANSI standard C source code and
produces TMS320 assembly language source code for the 'C3x and
'C4x generations of devices.

Read This First \Y;



Related Documentation from Texas Instruments / References

TMS320C3x C Source Debugger (literature number SPRU053) describes
the 'C3x debugger for the emulator, evaluation module, and simulator.
This book discusses various aspects of the debugger interface, including
window management, command entry, code execution, data
management, and breakpoints. It also includes a tutorial that introduces
basic debugger functionality.

TMS320 Family Development Support Reference Guide  (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also
lists related documentation, outlines seminars and the university
program, and provides factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties who supply various
products that serve the family of TMS320 digital signal processors,
including software and hardware development tools, speech
recognition, image processing, noise cancellation, modems, etc.

References

The publications in the following reference list contain useful information
regarding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The reference listis organized into categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

[ General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Bateman, A., and Yates, W., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, T.W., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. I.
Texas Instruments, 1986; Prentice-Hall, Inc., 1987.
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Chapter 1

Introduction

The TMS320C3x generation of digital signal processors (DSPs) are high-per-
formance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip digital signal processors. Since 1982, whenthe TMS32010 was in-
troduced, the TMS320 family, with its powerful instruction sets, high-speed
number-crunching capabilities, and innovative architectures, has established
itself as the industry standard. It is ideal for DSP applications.

The 40-ns cycle time of the TMS320C31-50 allows it to execute operations at
a performance rate of up to 60 million floating-point instructions per second
(MFLOPS) and 30 million instructions per second (MIPS). This performance
was previously available only on a supercomputer. The generation’s perform-
ance is further enhanced through its large on-chip memories, concurrent direct
memory access (DMA) controller, and two external interface ports.

This chapter presents the following major topics:

Topic Page
1.1  General DesCription . ........oiiiii et 1-2
1.2 TMS320C30 Key Features ...........c.iiniuiiiii e 1-6
1.3 TMS320C31l Key Features ..........uiiiiiiiiiininnnnn 1-8
1.4 Typical Applications ........ .ot 1-10

11
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1.1 General Description
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The TMS320 family consists of five generations: TMS320C1x, TMS320C2x,
TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1-1). The expan-
sion includes enhancements of earlier generations and more powerful new
generations of DSPs.

The TMS320's internal busing and special DSP instruction set have the speed
and flexibility to execute at up to 50 MFLOPS. The TMS320 family optimizes
speed by implementing functions in hardware that other processors imple-
ment through software or microcode. This hardware-intensive approach pro-
vides power previously unavailable on a single chip.

The emphasis on total system cost has resulted in a less expensive processor
that can be designed into systems currently using costly bit-slice processors.
Also, cost/performance selection is provided by the different processors in the
TMS320C3x generation:

0 TMS320C30: 60-ns, single-cycle execution-time

[0 TMS320C30-27: Lower cost; 74-ns, single-cycle execution time

[ TMS320C30-40: Higher speed; 50-ns, single-cycle execution time

[ TMS320C30-50: Highest speed; 40-ns, single-cycle execution time

[0 TMS320C31: Low cost; 60-ns, single-cycle execution time

[0 TMS320C31-27: Lower cost; 74-ns, single-cycle execution time

(0 TMS320C31-40: Low cost; 50-ns, single-cycle execution time

[0 TMS320C31PQA: Low cost; extended temperature; 60-ns, single-cycle
execution time

[0 TMS320C31-50: Highest speed; 40-ns, single-cycle execution time

1 TMS320LC31: Low power; 60-ns, single-cycle execution time,

3.3-volt operation

All of these processors are described in this user’s guide. Essentially, their
functionality is the same. However, electrical and timing characteristics vary
(as described in Chapter 13); part numbering information is found in Section
B.2 on page B-7. Throughout this book, TMS320C3x is used to refer to the
TMS320C30 and TMS320C31 and all speed variations. TMS320C30 and
TMS320C31 are used to refer to all speed variants of those processors where
appropriate. Special references, such as TMS320C30-40, are used to note
specific exceptions.



Figure 1-1. TMS320 Device Evolution
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The TMS320C30 and TMS320C31 can perform parallel multiply and arithme-
tic logic unit (ALU) operations on integer or floating-point data in a single cycle.
The processor also possesses a general-purpose register file, a program
cache, dedicated auxiliary register arithmetic units (ARAU), internal dual-ac-
cess memories, one DMA channel supporting concurrent I/0, and a short ma-
chine-cycle time. High performance and ease of use are products of those fea-
tures.

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait
states, two external interface ports (one on the TMS320C31), two timers, two
serial ports (one on the TMS320C31), and multiple interrupt structure. The
TMS320C3x supports a wide variety of system applications from host proces-
sor to dedicated coprocessor.

High-level language is more easily implemented through a register-based ar-
chitecture, large address space, powerful addressing modes, flexible instruc-
tion set, and well-supported floating-point arithmetic.



General Description

Figure 1-2 is a functional block diagram that shows the interrelationships be-
tween the various TMS320C3x key components.

Figure 1-2. TMS320C3x Block Diagram
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TMS320C30 Key Features

1.2 TMS320C30 Key Features
Some key features of the TMS320C30 are listed below.

(1 Performance
B TMS320C30 (33 MHz)

m  60-ns, single-cycle instruction execution time
m  33.3 MFLOPS
. 16.7 MIPS

B TMS320C30-27

®m  74-ns, single-cycle instruction execution time
m 27 MFLOPS
m 135 MIPS

B TMS320C30-40

m  50-ns, single-cycle instruction execution time

m 40 MFLOPS
. 20 MIPS
[ One 4K x 32-hit, single-cycle, dual-access, on-chip, read-only memory
(ROM) block
O Two 1K x 32-bit, single-cycle, dual-access, on-chip, random access
memory (RAM) blocks
[ 64-x 32-bit instruction cache
[ 32-bitinstruction and data words
[ 24-bit addresses
(1 40-/32-bit floating-point/integer multiplier and ALU
[ 32-bit barrel shifter
[0 Eight extended-precision registers (accumulators)
(1 Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units
[ On-chip DMA controller for concurrent I/0O and CPU operation
[ Integer, floating-point, and logical operations
(1 Two- and three-operand instructions
[ Parallel ALU and multiplier instructions in a single cycle

1-6
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TMS320C30 Key Features

Block repeat capability

Zero-overhead loops with single-cycle branches
Conditional calls and returns

Interlocked instructions for multiprocessing support

Two 32-bit data buses (24- and 13-bit address)

Two serial ports to support 8/16/24/32-bit transfers

Two 32-bit timers

Two general-purpose external flags; four external interrupts

181-pin grid array (PGA) package; 1-um CMOS

Introduction 1-7



TMS320C31 Key Features

1.3 TMS320C31 Key Features

The TMS320C31 is a low-cost 32-bit DSP that offers the advantages of a floa-
ting-point processor and ease of use. The TMS320C31 devices are object-
code compatible with the TMS320C30. Aside from lacking a ROM block and
having a single serial port, the TMS320C31 is functionally equivalent to the
TMS320C30 but differs in its respective electrical and timing characteristics.
Chapter 13 describes these differences in detail.

1-8

a

The TMS320C31 (33 MHz) features are identical to those of the
TMS320C30 device, except that the TMS320C31 uses a subset of the
TMS320C30’s standard peripheral and memory interfaces. This main-
tains the 33-MFLOPS performance of the TMS320C30’s core CPU while
providing the cost advantages associated with 132-pin plastic quad flat
pack (PQFP) packaging.

The TMS320C31-27 is the slower speed version of the TMS320C31. The
TMS320C31-27 delivers 27 MFLOPS and runs at 27 MHz. The reduced
speed allows you to realize an immediate system cost reduction by using
slower off-chip memories and a lower-cost processor.

The TMS320C31-40 is a high-speed version of the TMS320C31. The
40-MHz TMS320C31-40 runs with 50-ns cycle time and offers up to 40
MFLOPS in performance.

The TMS320C31-50is the highest-speed version of the TMS320C31. The
50-MHz TMS320C31-50 runs with 40-ns cycle time and offers up to 50
MFLOPS in performance.

The TMS320C31PQA (33 MHz) offers extended-temperature capabilities
to TMS320C31 performance. The TMS320C31PQA will operate at case
temperatures ranging from —40° C to +85° C, making it a lower-cost floa-
ting-point solution for industrial and extended-temperature commercial
applications.

The TMS320LC31 is the low-power version of the TMS320C31. The
TMS320LC31 runs with 60-ns cycle time and offers up to 33 MFLOPS in
performance at 3.3-volt operation.

Some key features of the TMS320C31, including those which differentiate it
from the TMS320C30, are summarized as follows:

a

Performance
B TMS320C31 (PQL/PQA)

m  60-ns, single-cycle instruction execution time
m  33.3 MFLOPS
m  16.7 MIPS (million instructions per second)



TMS320C31 Key Features

B TMS320C31-27

®m  74-ns, single-cycle instruction execution time
m 27 MFLOPS
m 135 MIPS

B TMS320C31-40

m  50-ns, single-cycle instruction execution time
40 MFLOPS
= 20 MIPS

B TMS320C31-50

m  40-ns, single-cycle instruction execution time
= 50 MFLOPS
= 25 MIPS

B TMS320LC31

60-ns, single-cycle instruction execution time

33.3 MFLOPS

16.7 MIPS

Low-power, 3.3 volt operation

Two power-down nodes; 2-MHz operation and idle

(1 Flexible boot program loader
[ One serial port to support 8-/16-/24-/32-bit transfers

1 132-pin PQFP package, .8 um CMOS

Introduction 1-9



Typical Applications

1.4 Typical Applications

The TMS320 family’s versatility, real-time performance, and multiple functions
offer flexible design approaches in a variety of applications, which are shown
in Table 1-1.

Table 1-1. Typical Applications of the TMS320 Family

General-Purpose DSP

Graphics/Imaging

Instrumentation

Digital Filtering
Convolution

Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Transformations Rendering
Robot Vision

Image Transmission/Compression
Pattern Recognition

Image Enhancement
Homomorphic Processing
Workstations

Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Voice/Speech

Control

Military

Voice Mail

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech
Neural Networks

Disk Control

Servo Control

Robot Control

Laser Printer Control
Engine Control
Motor Control
Kalman Filtering

Secure Communications
Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems
Sensor Fusion

Telecommunications

Automotive

Echo Cancellation

ADPCM Transcoders

Digital PBXs

Line Repeaters

Channel Multiplexing

1200- to 19200-bps Modems
Adaptive Equalizers

DTMF Encoding/Decoding
Data Encryption

FAX

Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)
X.25 Packet Switching
Video Conferencing
Spread Spectrum
Communications

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning
Navigation

Voice Commands
Digital Radio

Cellular Telephones

Consumer

Industrial

Medical

Radar Detectors

Power Tools

Digital Audio/TV

Music Synthesizer

Toys and Games

Solid-State Answering
Machines
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Robotics

Numeric Control
Security Access
Power Line Monitors
Visual Inspection
Lathe Control

CAM

Hearing Aids

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

MR Imaging



Chapter 2

TMS320C3x Architecture

This chapter gives an architectural overview of the TMS320C3x processor.

Major areas of discussion are listed below.

Topic Page
2.1 Architectural OVerview . ... ... it 2-2
2.2 Central Processing Unit (CPU) ... ... i, 2-4
2.3 Memory Organization  ....... ...ttt 2-11
2.4 Instruction Set Summary ... ... 2-17
2.5 Internal Bus Operation .............cuiiitiiii i 2-22
2.6 Parallel Instruction Set Summary ... 2-23
2.7 External Bus Operation ...............iiiiiiiiiii i, 2-26
2.8 Peripherals . ....... . 2-27
2.9 Direct Memory Access (DMA) ... i 2-29
2.10 TMS320C30 and TMS320C31 Differences ...................... 2-30
2.11 System Integration .............iiiii i 2-32
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Architectural Overview

2.1 Architectural Overview

2-2

The TMS320C3x architecture responds to system demands that are based on
sophisticated arithmetic algorithms and that emphasize both hardware and
software solutions. High performance is achieved through the precision and
wide dynamic range of the floating-point units, large on-chip memory, a high
degree of parallelism, and the direct memory access (DMA) controller.

Figure 2—1 is a block diagram of the TMS320C3x architecture.



Figure 2-1. TMS320C3x Block Diagram
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Central Processing Unit (CPU)

2.2 Central Processing Unit (CPU)
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The TMS320C3x has aregister-based central processing unit (CPU) architec-
ture. The CPU consists of the following components:

4
J

-
4
J
4

Floating-point/integer multiplier

Arithmetic logic unit (ALU) for performing floating-point, integer, and log-
ical-operations arithmetic

32-bit barrel shifter
Internal buses (CPU1/CPU2 and REG1/REG2)
Auxiliary register arithmetic units (ARAUS)

CPU register file

Figure 2—2 shows the various CPU components that are discussed in the
succeeding subsections.



Figure 2-2. Central Processing Unit (CPU)
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Central Processing Unit (CPU)

2.2.1 Multiplier

The multiplier performs single-cycle multiplications on 24-bitinteger and 32-bit
floating-point values. The TMS320C3x implementation of floating-point arith-
metic allows for floating-point operations at fixed-point speeds via a 50-ns in-
struction cycle and a high degree of parallelism. To gain even higher through-
put, you can use parallel instructions to perform a multiply and ALU operation
in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 40-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-hit result. Refer to Chapter 4 for detailed information on data formats and
floating-point operation.

2.2.2 Arithmetic Logic Unit (ALU)

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical, and
40-bit floating-point data, including single-cycle integer and floating-point con-
versions. Results of the ALU are always maintained in 32-bit integer or 40-bit
floating-point formats. The barrel shifter is used to shift up to 32 bits left or right
in a single cycle. Refer to Chapter 4 for detailed information on data formats
and floating-point operation.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi-
plies and adds/subtracts on four integer or floating-point operands in a single
cycle.

2.2.3 Auxiliary Register Arithmetic Units (ARAUS)

2-6

Two auxiliary register arithmetic units (ARAUO and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IR0
and IR1), and circular and bit-reversed addressing. Refer to Chapter 5 for a
description of addressing modes.



Central Processing Unit (CPU)

2.2.4 CPU Regqister File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupled to the CPU. All of these registers can be operated upon by the multipli-
erand ALU and can be used as general-purpose registers. However, the regis-
ters also have some special functions. For example, the eight extended-preci-
sion registers are especially suited for maintaining extended-precision float-
ing-point results. The eight auxiliary registers support a variety of indirect ad-
dressing modes and can be used as general-purpose 32-bitinteger and logical
registers. The remaining registers provide such system functions as address-
ing, stack management, processor status, interrupts, and block repeat. Refer
to Chapter 6 for detailed information and examples of stack management and
register usage.

The register names and assigned functions are listed in Table 2—1. Following
the table, the function of each register or group of registers is briefly described.
Refer to Chapter 3 for detailed information on each of the CPU registers.

TMS320C3x Architecture 2-7



Central Processing Unit (CPU)

Table 2—-1. CPU Registers

2-8

Register
Name Assigned Function
RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7
ARO Auxiliary register 0
AR1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
AR5 Auxiliary register 5
AR6 Auxiliary register 6
AR7 Auxiliary register 7
DP Data-page pointer
IRO Index register 0
IR1 Index register 1
BK Block size
SP System stack pointer
ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags
IOF I/O flags
RS Repeat start address
RE Repeat end address
RC Repeat counter

The extended-precision registers (R7—R0) are capable of storing and sup-
porting operations on 32-bit integer and 40-bit floating-point numbers. Any in-
struction that assumes the operands are floating-point numbers uses bits
39-0. If the operands are either signed or unsigned integers, only bits 31-0
are used; bits 39-32 remain unchanged. This is true for all shift operations.
Refer to Chapter 4 for extended-precision register formats for floating-point
and integer numbers.

The 32-bit auxiliary registers (AR7—ARQ0) can be accessed by the CPU and
modified by the two ARAUSs. The primary function of the auxiliary registers is
the generation of 24-bit addresses. They can also be used as loop counters
or as 32-bit general-purpose registers that can be modified by the multiplier
and ALU. Refer to Chapter 5 for detailed information and examples of the use
of auxiliary registers in addressing.



Central Processing Unit (CPU)

The data page pointer (DP ) is a 32-bit register. The eight LSBs of the data
page pointer are used by the direct addressing mode as a pointer to the page
of data being addressed. Data pages are 64K words long, with a total of 256
pages.

The 32-bitindex registers (IR0, IR1) contain the value used by the ARAU to
compute an indexed address. Refer to Chapter 5 for examples of the use of
index registers in addressing.

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system stack pointer (SP) is a 32-bit register that contains the address
ofthe top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement of the system stack pointer;
a pop performs a postdecrement. The SP is manipulated by interrupts, traps,
calls, returns, and the PUSH and POP instructions. Refer to Section 5.5 for in-
formation about system stack management.

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord-
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, a bit-for-bit replacementis performed with the con-
tents of the source operand, regardless of the state of any bits in the source
operand. Therefore, following a load, the contents of the status register are
identical to the contents of the source operand. This allows the status register
to be easily saved and restored. See Table 3-2 for a list and definitions of the
status register bits.

The CPU/DMA interrupt enable register (IE) is a 32-bit register. The CPU
interrupt enable bits are in locations 10-0. The DMA interrupt enable bits are
in locations 26—-16. A 1 in a CPU/DMA interrupt enable register bit enables the
corresponding interrupt. A O disables the corresponding interrupt. Refer to
subsection 3.1.8 for bit definitions.

The CPU interrupt flag register (IF) is also a 32-bit register (see subsection
3.1.9). Alin a CPU interrupt flag register bit indicates that the corresponding
interrupt is set. A O indicates that the corresponding interrupt is not set.

The 1/O flags register (IOF) controls the function of the dedicated external
pins, XFO and XF1. These pins may be configured for input or output and may
also be read from and written to. See subsection 3.1.10 for detailed informa-
tion.

TMS320C3x Architecture 2-9



Central Processing Unit (CPU)
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The repeat counter (RC) is a 32-bit register used to specify the number of
times a block of code is to be repeated when performing a block repeat. When
the processor is operating in the repeat mode, the 32-bit repeat start address
register (RS) contains the starting address of the block of program memory
to be repeated, and the 32-bit repeat end address register (RE) contains the
ending address of the block to be repeated.

The program counter (PC) is a 32-bit register containing the address of the
next instruction to be fetched. Although the PC is not part of the CPU register
file, itis a register that can be modified by instructions that modify the program
flow.



Memory Organization

2.3 Memory Organization

The total memory space of the TMS320C3x is 16M (million) 32-bit words. Pro-
gram, data, and I/O space are contained within this 16M-word address space,
thus allowing tables, coefficients, program code, or data to be stored in either
RAM or ROM. In this way, memory usage is maximized and memory space
allocated as desired.

2.3.1 RAM, ROM, and Cache

Figure 2—-3 shows how the memory is organized on the TMS320C3x. RAM
blocks 0 and 1 are each 1K x 32 bits. The ROM block, available only on the
TMS320C30, is 4K x 32 bits. Each RAM and ROM block is capable of support-
ing two CPU accesses in a single cycle. The separate program buses, data
buses, and DMA buses allow for parallel program fetches, data reads and
writes, and DMA operations. For example: the CPU can access two data val-
ues in one RAM block and perform an external program fetch in parallel with
the DMA loading another RAM block, all within a single cycle.

TMS320C3x Architecture 2-11
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Figure 2-3. Memory Organization

2-12

AN

/

Multiplexer

Multiplexer

RAM RAM ROM
(6C4a>(<:gez) Block 0 Block 1 Block
(1K x 32) (1K x 32) (4K x 32)
' N A A A ' N A ' N
32 |24 24 32 24 32 24 3
Ph: ﬁh: lJL-
PDATA Bus
PADDR Bus
DDATA Bus
[ ]
DADDRL1 Bus
[ ]
DADDR?2 Bus

DMADATA Bus

DMAADDR Bus

AN

I
32 JF24 32
v

Program Counter/
Instruction Register

: Available on TMS320C30

A 64 x 32-bit instruction cache is provided to store often-repeated sections of

24 24

—
CPU

32

4}24
v

DMA
Controller

N\

Peripheral Bus

+— XRDY
—» MSTRB

—~}—» 10STRB
“E5 xrRiw

<> XD31-XDO0
[—» XA12-XA0

code, thus greatly reducing the number of off-chip accesses necessary. This

allows for code to be stored off-chip in slower, lower-cost memories. The exter-
nal buses are also freed for use by the DMA, external memory fetches, or other

devices in the system.

Refer to Chapter 3 for detailed information about the memory and instruction

cache.
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2.3.2 Memory Maps

The memory map depends on whether the processor is running in micropro-
cessor mode (MC/MP or MCBL/MP = 0) or microcomputer mode (MC/MP or
MCBL/MP = 1). The memory maps for these modes are similar (see
Figure 2—4 and Figure 2-5). Locations 800000h—801FFFh are mapped to the
expansion bus. When this region, available only on the TMS320C30, is ac-
cessed, MSTRB is active. Locations 802000h—803FFFh are reserved. Loca-
tions 804000h—805FFFh are mapped to the expansion bus. When this region,
available only on the TMS320C30, is accessed, IOSTRB is active. Locations
806000h—-807FFFh are reserved. All of the memory-mapped peripheral bus
registers are in locations 808000h—8097FFh. In both modes, RAM block 0 is
located at addresses 809800h—809BFFh, and RAM block 1 is located at ad-
dresses 809C00h—809FFFh. Locations 80A000h—OFFFFFFh are accessed
over the external memory port (STRB active).

In microprocessor mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. Locations
0h—0BFh consist of interrupt vector, trap vector, and reserved locations, all of
which are accessed over the external memory port (STRB active). Locations
0COh—7FFFFFh are also accessed over the external memory port.

In microcomputer mode, the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Oh—0FFFh. There are 192 locations
(Oh—0BFh) within this block for interrupt vectors, trap vectors, and a reserved
space (TMS320C30). Locations 1000h—7FFFFFh are accessed over the ex-
ternal memory port (STRB active).

Section 3.2 on page 3-13 describes the memory maps in greater detail and
provides the peripheral bus map and vector locations for reset, interrupts, and
traps.

Be careful! Access to a reserved area produces unpredictable
results.
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Figure 2—4. TMS320C30 Memory Maps
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Figure 2-5. TMS320C31 Memory Maps
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2.3.3 Memory Addressing Modes
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The TMS320C3x supports a base set of general-purpose instructions as well
as arithmetic-intensive instructions that are particularly suited for digital signal
processing and other numeric-intensive applications. Refer to Chapter 5 for
detailed information on addressing.

Five groups of addressing modes are provided on the TMS320C3x. Six types
of addressing can be used within the groups, as shown in the following list:

[ General addressing modes:

B Register. The operand is a CPU register.

B Shortimmediate. The operand is a 16-bit immediate value.

W Direct. The operand is the contents of a 24-bit address.

W Indirect. An auxiliary register indicates the address of the operand.

(1 Three-operand addressing modes:

M Register. Same as for general addressing mode.
M Indirect. Same as for general addressing mode.

(1 Parallel addressing modes:

B Register. The operand is an extended-precision register.
B Indirect. Same as for general addressing mode.

[ Long-immediate addressing mode.

The Long-immediate operand is a 24-bit immediate value.

[ Conditional branch addressing modes:

M Register. Same as for general addressing mode.
W PC-relative. A signed 16-bit displacement is added to the PC.



2.4

Instruction Set Summary

Instruction Set Summary

Table 2-2 lists the TMS320C3x instruction set in alphabetical order. Each
table entry shows the instruction mnemonic, description, and operation. Refer
to Chapter 10 for a functional listing of the instructions and individual instruc-

tion descriptions.

Table 2-2. Instruction Set Summary

Mnemonic Description Operation
ABSF Absolute value of a floating-point number  |sr¢|] - Rn
ABSI Absolute value of an integer |src| — Dreg
ADDC Add integers with carry src + Dreg + C — Dreg
ADDC3 Add integers with carry (3 operand) srcl + src2 + C - Dreg
ADDF Add floating-point values src+ Rn - Rn
ADDF3 Add floating-point values (3 operand) srcl + src2 —» Rn
ADDI Add integers src + Dreg — Dreg
ADDI3 Add integers (3 operand) srcl + src2 + — Dreg
AND Bitwise logical AND Dreg AND src — Dreg
AND3 Bitwise logical AND (3 operand) srcl AND src2 — Dreg
ANDN Bitwise logical AND with complement Dreg AND src — Dreg
ANDN3 Bitwise logical ANDN (3 operand) srcl AND src2 — Dreg
ASH Arithmetic shift If count = 0:
(Shifted Dreg left by count) — Dreg
Else:
(Shifted Dreg right by |count|) — Dreg
ASH3 Arithmetic shift (3 operand) If count = 0:
(Shifted src left by count) — Dreg
Else:
(Shifted src right by |count|) — Dreg
Bcond Branch conditionally (standard) If cond = true:
If Csrcis a register, Csrc - PC
If Csrcis a value, Csrc + PC — PC
Else, PC+1 - PC
BcondD Branch conditionally (delayed) If cond = true:
If Csrcis a register, Csrc - PC
If Csrcis avalue, Csrc+ PC+3 - PC
Else, PC+1 - PC
BR Branch unconditionally (standard) Value - PC
BRD Branch unconditionally (delayed) Value - PC
CALL Call subroutine PC+1 - TOS
Value —» PC
Legend: C carry bit Csrc conditional-branch addressing modes
cond condition code count shift value (general addressing modes)
Dreg register address (any register) PC program counter
Rn register address (R7—R0) src general addressing modes
srcl three-operand addressing modes src2 three-operand addressing modes
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Instruction Set Summary

Table 2-2. Instruction Set Summary (Continued)

Mnemonic Description Operation
CALLcond Call subroutine conditionally If cond = true:
PC+1 - TOS

If Csrcis a register, Csrc — PC
If Csrcis a value, Csrc + PC —» PC
Else, PC+1 - PC

CMPF Compare floating-point values Set flags on Rn — src
CMPF3 Compare floating-point values Set flags on srcl — src2
(3 operand)
CMPI Compare integers Set flags on Dreg — src
CMPI3 Compare integers (3 operand) Set flags on srcl — src2
DBcond Decrement and branch conditionally ARNn-1 - ARn
(standard) If cond = true and ARn = 0:

If Csrcis a register, Csrc - PC
If Csrcis avalue, Csrc+PC+1 - PC
Else, PC+1 - PC

DBcondD Decrement and branch conditionally ARn—-1 - ARn
(delayed) If cond = true and ARn = 0:
If Csrcis a register, Csrc - PC
If Csrcis avalue, Csrc+ PC+3 - PC
Else, PC+1 - PC

FIX Convert floating-point value to integer Fix (src) — Dreg
FLOAT Convert integer to floating-point value Float(src) - Rn
IACK Interrupt acknowledge Dummy read of src
IACK toggled low, then high
IDLE Idle until interrupt PC+1 - PC
Idle until next interrupt
LDE Load floating-point exponent src(exponent) — Rn(exponent)
LDF Load floating-point value src - Rn
LDFcond Load floating-point value conditionally If cond = true, src - Rn
Else, Rn is not changed
LDFI Load floating-point value, interlocked Signal interlocked operation src — Rn
LDI Load integer src — Dreg
LDlcond Load integer conditionally If cond = true, src — Dreg
Else, Dreg is not changed
Legend: ARnN auxiliary register n (AR7—-ARO Rn register address (R7 — RO)
Csrc conditional-branch addressing modes src general addressing modes
cond condition code srcl three-operand addressing modes
Dreg register address (any register) src2 three-operand addressing modes
PC program counter TOS top of stack
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Table 2-2. Instruction Set Summary (Continued)

Instruction Set Summary

Mnemonic Description Operation
LDII Load integer, interlocked Signal interlocked operation src — Dreg
LDM Load floating-point mantissa src (mantissa) —» Rn (mantissa)
LSH Logical shift If count = 0:
(Dreg left-shifted by count) — Dreg
Else:
(Dreg right-shifted by |count|) — Dreg
LSH3 Logical shift (3-operand) If count = 0:
(src left-shifted by count) — Dreg
Else:
(src right-shifted by |count]) — Dreg
MPYF Multiply floating-point values src XxRn - Rn
MPYF3 Multiply floating-point value (3 operand) srcl X src2 —» Rn
MPYI Multiply integers src X Dreg — Dreg
MPYI3 Multiply integers (3 operand) srcl X src2 — Dreg
NEGB Negate integer with borrow 0-src—-C - Dreg
NEGF Negate floating-point value 0-src - Rn
NEGI Negate integer 0 - src — Dreg
NOP No operation Modify ARn if specified
NORM Normalize floating-point value Normalize (src) — Rn
NOT Bitwise logical complement src - Dreg
OR Bitwise logical OR Dreg OR src — Dreg
OR3 Bitwise logical OR (3 operand) srcl OR src2 — Dreg
POP Pop integer from stack *SP—— _, Dreg
POPF Pop floating-point value from stack *SP—— - Rn
PUSH Push integer on stack Sreg - *++ SP
PUSHF Push floating-point value on stack Rn - *++ SP
Legend: ARnN auxiliary register n (AR7—ARO0) SP stack pointer
C carry bit Sreg register address (any register)
Dreg register address (any register) src general addressing modes
PC program counter srcl 3-operand addressing modes
Rn register address (R7—R0) src2 3-operand addressing modes
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Table 2-2. Instruction Set Summary (Continued)

Mnemonic Description Operation
RETIcond Return from interrupt conditionally If cond = true or missing:
*SP—— - PC
1 - ST (GIE)
Else, continue
RETScond Return from subroutine conditionally If cond = true or missing:
*SP—— - PC
Else, continue
RND Round floating-point value Round (src) — Rn
ROL Rotate left Dreg rotated left 1 bit — Dreg
ROLC Rotate left through carry Dreg rotated left 1 bit through carry — Dreg
ROR Rotate right Dreg rotated right 1 bit — Dreg
RORC Rotate right through carry Dreg rotated right 1 bit through carry — Dreg
RPTB Repeat block of instructions src - RE
1 - ST (RM)
Next PC — RS
RPTS Repeat single instruction src - RC
1 - ST (RM)
Next PC — RS
Next PC - RE
SIGI Signal, interlocked Signal interlocked operation

Wait for interlock acknowledge
Clear interlock

STF Store floating-point value Rn - Daddr
STFI Store floating-point value, interlocked Rn - Daddr
Signal end of interlocked operation
STI Store integer Sreg — Daddr
STII Store integer, interlocked Sreg — Daddr
Signal end of interlocked operation
SUBB Subtract integers with borrow Dreg — src— C — Dreg
Legend: C carry bit RM repeat mode bit
cond condition code RS repeat start register
Daddr  destination memory address Rn register address (R7-R0)
Dreg register address (any register) SP stack pointer
GIE global interrupt enable register ST status register
PC program counter Sreg register address (any register)
RC repeat counter register src general addressing modes
RE repeat interrupt register
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Table 2-2. Instruction Set Summary (Concluded)

Instruction Set Summary

Mnemonic Description Operation
SUBB3 Subtract integers with borrow (3 operand) srcl —src2 — C — Dreg
SUBC Subtract integers conditionally If Dreg — src 2 0:
[(Dreg — src) << 1] OR 1 — Dreg
Else, Dreg <<1 — Dreg
SUBF Subtract floating-point values Rn—src - Rn
SUBF3 Subtract floating-point values (3 operand) srcl —sre2 - Rn
SUBI Subtract integers Dreg — src — Dreg
SUBI3 Subtract integers (3 operand) srcl — src2 — Dreg
SUBRB Subtract reverse integer with borrow src—Dreg — C — Dreg
SUBRF Subtract reverse floating-point value src—Rn - Rn
SUBRI Subtract reverse integer src —Dreg — Dreg
SWiI Software interrupt Perform emulator interrupt sequence
TRAPcond Trap conditionally If cond = true or missing:
Next PC - * ++ SP
Trap vector N — PC
0 - ST (GIE)
Else, continue
TSTB Test bit fields Dreg AND src
TSTB3 Test bit fields (3 operand) srcl AND src2
XOR Bitwise exclusive OR Dreg XOR src — Dreg
XOR3 Bitwise exclusive OR (3 operand) srcl XOR src2 — Dreg
Legend: C carry bit Rn register address (R7—R0)
cond condition code SP stack pointer
Dreg register address (any register) src general addressing modes
GIE global interrupt enable register srcl 3-operand addressing modes
N any trap vector 0-27 src2 3-operand addressing modes
PC program counter ST status register
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2.5 Internal Bus Operation

2-22

Much of the TMS320C3x’s high performance is due to internal busing and par-
allelism. The separate program buses (PADDR and PDATA), data buses
(DADDR1, DADDR2, and DDATA), and DMA buses (DMAADDR and
DMADATA) allow for parallel program fetches, data accesses, and DMA ac-
cesses. These buses connect all of the physical spaces (on-chip memory,
off-chip memory, and on-chip peripherals) supported by the TMS320C30.
Figure 2—3 shows these internal buses and their connection to on-chip and off-
chip memory blocks.

The PCis connected to the 24-bit program address bus (PADDR). The instruc-
tion register (IR) is connected to the 32-bit program data bus (PDATA). These
buses can fetch a single instruction word every machine cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are regis-
ter buses REG1 and REG2, which can carry two data values from the register
file to the multiplier and ALU every machine cycle. Figure 2-2 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bitdata bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.



Parallel Instruction Set Summary

2.6 Parallel Instruction Set Summary

Table 2-3 lists the 'C3x instruction set in alphabetical order. Each table entry
shows the instruction mnemonic, description, and operation. Refer to Section
10.3 on page -14 for a functional listing of the instructions and individual
instruction descriptions.
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Table 2-3. Parallel Instruction Set Summary

Mnemonic Description Operation
Parallel Arithmetic With Store Instructions

ABSF Absolute value of a floating point |sre2| — dstl

|| STF || sre3 - dst2

ABSI Absolute value of an integer |src2| — dstl

|| STI || sre3 - dst2

ADDF3 Add floating point srcl + src2 — dstl

|| STF || sre3 - dst2

ADDI3 Add integer srcl + src2 — dstl

|| STI || sre3 - dst2

AND3 Bitwise logical AND srcl AND src2 — dstl

|| STI || sre3 - dst2

ASH3 Arithmetic shift If count = 0:

|| STI src2 << count — dstl
|| sre3 — dst2
Else:
src2 >> |count| — dstl
|| sre3 — dst2

FIX Convert floating point to integer Fix(src2) — dstl

|| STI || sre3 - dst2

FLOAT Convert integer to floating point Float(src2) — dstl

|| STF || sre3 - dst2

LDF Load floating point src2 — dstl

|| STF || sre3 - dst2

LDI Load integer src2 - dstl

|| STI || sre3 - dst2

LSH3 Logical shift If count = 0:

|| STI src2 << count — dstl
|| sre3 — dst2
Else:
src2 >> |count| — dstl
|| sre3 - dst2

MPYF3 Multiply floating point srcl x src2 — dstl

|| STF || sre3 - dst2

MPYI13 Multiply integer srcl x src2 — dstl

|| STI || src3 — dst2

Legend: count register addr (R7—R0) srcl register addr (R7—-R0)

dstl register addr (R7—R0) src2 indirect addr (disp =0, 1, IR0, IR1)
dst2 indirect addr (disp = 0, 1, IRO, IR1) src3 register addr (R7-R0)
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Table 2-3. Parallel Instruction Set Summary (Continued)

Mnemonic Description Operation

Parallel Arithmetic With Store Instructions (Concluded)
NEGF Negate floating point 0—src2 - dstl
[| STF || sre3 - dst2
NEGI Negate integer 0-—src2 - dstl
[| STI || sre3 — dst2
NOT Complement srcl - dstl
[| STI || sre3 - dst2
OR3 Bitwise logical OR srcl OR src2 — dstl
[l STI || sre3 - dst2
STF Store floating point srcl - dstl
[| STF || sre3 - dst2
STI Store integer srcl - dstl
| STI || sre3 - dst2
SUBF3 Subtract floating point srcl — src2 — dstl
[| STF || src3 - dst2
SUBI3 Subtract integer srcl —src2 - dstl
[I STI || sre3 — dst2
XOR3 Bitwise exclusive OR srcl XOR src2 — dstl
[I STI || sre3 — dst2

Parallel Load Instructions
LDF Load floating point src2 — dstl
|| LDF || srcd - dst2
LDI Load integer src2 — dstl
[ LDI || srca - dst2
Parallel Multiply And Add/Subtract Instructions
MPYF3 Multiply and add floating point opl xop2 - op3
|| ADDF3 || op4 + op5 — op6
MPYF3 Multiply and subtract floating point opl xop2 - op3
|| SUBF3 || op4 — op5 — op6
MPYI3 Multiply and add integer opl x op2 — op3
|| ADDI3 || op4 + op5 - op6
MPYI3 Multiply and subtract integer opl x op2 — op3
|| SUBI3 || op4 — op5 — op6
Legend: dstl register addr (R7—-R0) op3 register addr (RO or R1)
dst2 indirect addr (disp =0, 1, IR0, IR1) op6 register addr (R2 or R3)
opl, op2, op4, and op5 Any two of these srcl register addr (R7-R0)
operands must be specified using src2 indirect addr (disp =0, 1, IR0, IR1)

register addr; the remaining two
must be specified using indirect.

src3 register addr (R7-R0)
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2.7 External Bus Operation

The TMS320C30 provides two external interfaces: the primary bus and the ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. Both primary and expansion buses consist of a 32-bit data bus and a set
of control signals. The primary bus has a 24-bit address bus, whereas the ex-
pansion bus has a 13-bit address bus. Both buses can be used to address ex-
ternal program/data memory or I/O space. The buses also have an external
RDY signal for wait-state generation. You can insert additional wait states un-
der software control. Refer to Chapter 7 for detailed information on external
bus operation.

2.7.1 External Interrupts

The TMS320C3x supports four external interrupts (INT3-INTO), a number of
internal interrupts, and a nonmaskable external RESET signal. These can be
used to interrupt either the DMA or the CPU. When the CPU responds to the
interrupt, the IACK pin can be used to signal an external interrupt acknowl-
edge. Section 6.5 (beginning on page 6-18) covers RESET and interrupt pro-
cessing.

2.7.2 Interlocked-Instruction Signaling
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Two external I/O flags, XFO and XF1, can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the TMS320C3x. The interlocked-operations instruction group supports
multiprocessor communication (see Section 6.4 on page 6-12 for examples of
the use of interlocked instructions).



2.8 Peripherals

Peripherals

All TMS320C3x peripherals are controlled through memory-mapped registers
on adedicated peripheral bus. This peripheral bus is composed of a 32-bit data
bus and a 24-bit address bus. This peripheral bus permits straightforward
communication to the peripherals. The TMS320C3x peripherals include two
timers and two serial ports (only one serial port is available on the
TMS320C31). Figure 2—6 shows the peripherals with associated buses and
signals. Refer to Chapter 8 for detailed information on the peripherals.

Figure 2—6. Peripheral Modules
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Peripherals

2.8.1 Timers

2.8.2 Serial Ports
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The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external clocking. Each timer has an I/O
pin that can be used as an input clock to the timer or as an output signal driven
by the timer. The pin can also be configured as a general-purpose 1/O pin.

The two bidirectional serial ports are totally independent. They are identical to
a complementary set of control registers that control each port. Each serial
port can be configured to transfer 8, 16, 24, or 32 bits of data per word. The
clock for each serial port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The serial port pins are confi-
gurable as general-purpose I/O pins. The serial ports can also be configured
as timers. A special handshake mode allows TMS320C3xs to communicate
over their serial ports with guaranteed synchronization.



Direct Memory Access (DMA)

2.9 Direct Memory Access (DMA)

The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the operation of the CPU. Therefore, the
TMS320C3x can interface to slow external memories and peripherals without
reducing throughput to the CPU. The DMA controller contains its own address
generators, source and destination registers, and transfer counter. Dedicated
DMA address and data buses minimize conflicts between the CPU and the
DMA controller. A DMA operation consists of a block or single-word transfer
to or from memory. Refer to Section 8.3 on page 8-43 for detailed information
on the DMA controller. Figure 2—7 shows the DMA controller with associated
buses.

Figure 2—-7. DMA Controller
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TMS320C30 and TMS320C31 Differences

2.10 TMS320C30 and TMS320C31 Differences

This section addresses the major memory access differences between the
TMS320C31 and the TMS320C30 devices. Observance of these consider-
ations is critical for achieving design goal success.

Table 2—4 shows these differences, which are detailed in the following subsec-
tions.

Table 2—4. Feature Set Comparison

Feature TMS320C31 TMS320C30

Data/program bus Primary bus: one bus composed of Two buses:
a 32-bit data and a 24-bit address e  Primary bus: a 32-bit data and a
bus 24-bit address

® Expansion bus: a 32-bit data and
a 13-bit address

Serial I/O ports 1 serial port (SPO) 2 serial ports (SPO, SP1)
User program/data ROM Not available 4K words/16K bytes
Program boot loader User selectable Not available

2.10.1 Data/Program Bus Differences

The TMS320C31 uses only the primary bus and reserves the memory space
that was previously used for expansion bus operations.

Be carefull Program access to a reserved area produces
unpredictable results.

2.10.2 Serial-Port Differences

Serial port 1 references in Section 8.2 are not applicable to the TMS320C31.
The memory locations identified for the associated control registers and buff-
ers are reserved.

2.10.3 Reserved Memory Locations
Table 2-5 identifies TMS320C31 reserved memory locations in addition to

those shown in Figure 3-8 on page 3-16.
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Table 2-5. TMS320C31 Reserved Memory Locations

Feature TMS320C31 TMS320C30
0x000000-0x000FFF Reserved?  Microcomputer program/data ROM mode™

0x800000-0x801FFF Reserved Expansion bus MSTRB space
0x804000—0x805FFF Reserved Expansion bus IOSTRB space
0x808050 Reserved SP1 global-control register
0x808052—-0x808056 Reserved SP1 local-control registers

0x808058 Reserved SP1 data-transmit buffer
0x80805C Reserved SP1 receive-transmit buffer
0x808060 Reserved Expansion bus control register

T Applies to the MCBL and MC modes only.

2.10.4 Effects on the IF and IE Interrupt Registers

The bits associated with serial port 1 in the IE (interrupt enable) register and
the IF (interrupt flag) register for the TMS320C30 are not applicable to the
TMS320C31. Write only logic 0 data to IE register bits 6, 7, 22, and 23 and to
IF register bits 6 and 7. Writing logic 1s to these bits produces unpredictable
results.

2.10.5 User Program/Data ROM

The user program/data ROM that is available for the TMS320C30 device does
not exist for the TMS320C31. Rather, the memory locations that were allo-
cated to support user program/data ROM operations have been reserved on
the TMS320C31 to support microcomputer/boot loader accessing. See
Chapter 3 for more information on using the microcomputer/boot loader func-
tion.

2.10.6 Development Considerations

If you are developing application code using a TMS320C3x simulator, XDS,
or ASM/LNK, Tl recommends that you modify the .cfm and .cmd files by re-
moving these memory spaces from the tool's configured memory. This
ensures that your developed application performs as expected when the
TMS320C31 device is used.
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System Integration

2.11 System Integration
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In summary, the TMS320C3x is a powerful DSP system that integrates an in-
novative, high-performance CPU, two external interface ports, large memo-
ries, and efficient buses to support its speed. A single chip contains this sys-
tem, along with peripherals such as a DMA controller, two serial ports, and two
timers. The TMS320C3x system is truly an affordable single-chip solution.



Chapter 3

CPU Registers, Memory, and Cache

The central processing unit (CPU) register file contains 28 registers that can
be operated on by the multiplier and arithmetic logic unit (ALU). Included in the
register file are the auxiliary registers, extended-precision registers, and index
registers. The registers in the CPU register file support addressing, float-
ing-point/integer operations, stack management, processor status, block re-
peats, and interrupts.

The TMS320C3x provides a total memory space of 16M (million) 32-bit words
containing program, data, and 1/0 space. Two RAM blocks of 1K x 32 bits each
and a ROM block of 4K x 32 bits (available only on the TMS320C30) permit
two CPU accesses in a single cycle. The memory maps for the microcomputer
and microprocessor modes are similar, except that the on-chip ROM is not
used in the microprocessor mode.

A 64- x 32-bit instruction cache stores often-repeated sections of code. This
greatly reduces the number of off-chip accesses and allows code to be stored
off-chip in slower, lower-cost memories. Three bits in the CPU status register
control the clear, enable, or freeze of the cache.

This chapter describes in detail each of the CPU registers, the memory maps,
and the instruction cache. Major topics are as follows:

Topic Page
3.1 CPURegister File . ... 3-2
3.2 MEBIMOIY 3-13
3.3 Instruction Cache . ..... ... .. .. . . 3-21
3.4 Using the TMS320C31 Boot Loader ...............cccoivvvenn.. 3-26
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CPU Register File

3.1 CPU Regqister File

The TMS320C3x provides 28 registers in a multiport register file that is tightly
coupled to the CPU. The program counter (PC) is not included in the 28 regis-
ters. All of these registers can be operated on by the multiplier and the ALU
and can be used as general-purpose 32-bit registers. However, the registers
also have some special functions for which they are particularly appropriate.
For example, the eight extended-precision registers are especially suited for
maintaining extended-precision floating-point results. The eight auxiliary reg-
isters support a variety of indirect addressing modes and can be used as gen-
eral-purpose 32-bit integer and logical registers. The remaining registers pro-
vide system functions, such as addressing, stack management, processor
status, interrupts, and block repeat. Refer to Chapter 5 for detailed information
and examples of the use of CPU registers in addressing.

Table 3-1 lists the registers names and assigned functions.

Table 3—1. CPU Registers
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Register Assigned Function Name
RO Extended-precision register O
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
R5 Extended-precision register 5
R6 Extended-precision register 6
R7 Extended-precision register 7
ARO Auxiliary register 0
AR1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
AR5 Auxiliary register 5
ARG Auxiliary register 6
AR7 Auxiliary register 7
DP Data-page pointer
IRO Index register 0
IR1 Index register 1
BK Block-size register
SP System stack pointer
ST Status register
IE CPU/DMA interrupt enable
IF CPU interrupt flags
IOF 1/0 flags
RS Repeat start address
RE Repeat end address
RC Repeat counter




CPU Register File

3.1.1 Extended-Precision Registers (R7—R0)

The eight extended-precision registers (R7—R0) are capable of storing and
supporting operations on 32-bit integer and 40-bit floating-point numbers.
These registers consist of two separate and distinct regions:

[ bits 39-32: dedicated to storage of the exponent (e) of the floating-point
number.

[ bits 31-0: store the mantissa of the floating-point number:

W bit 31: sign bit (s)
W Dbits 30-0: the fraction (f)

Any instruction that assumes the operands are floating-point numbers uses
bits 39-0. Figure 31 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Figure 3—1. Extended-Precision Register Floating-Point Format
39 32 31 30 0

e S fraction (f)

mantissa 4

For integer operations, bits 31-0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31-0. Bits 39-32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 3—-2.

Figure 3-2. Extended-Precision Register Integer Format

39 32 31 0

unchanged signed or unsigned integer

3.1.2 Auxiliary Registers (AR7-ARO)

The eight 32-bit auxiliary registers (AR7—AROQ) can be accessed by the CPU
and modified by the two Auxiliary Register Arithmetic Units (ARAUS). The pri-
mary function of the auxiliary registers is the generation of 24-bit addresses.
However, they can also be used as loop counters in indirect addressing or as
32-bit general-purpose registers that can be modified by the multiplier and
ALU. Refer to Chapter 5 for detailed information and examples of the use of
auxiliary registers in addressing.
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3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register that is loaded using the LDP
instruction. The eight LSBs of the data-page pointer are used by the direct ad-
dressing mode as a pointer to the page of data being addressed. Data pages
are 64K words long, with a total of 256 pages. Bits 31-8 are reserved; you
should always keep these set to O (cleared).

3.1.4 Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the ARAU for indexing
the address. Refer to Chapter 5 for detailed information and examples of the
use of index registers in addressing.

3.1.5 Block Size Register (BK)

The 32-bit block size register (BK) is used by the ARAU in circular addressing
to specify the data block size (see Section 5.3 on page 5-24).

3.1.6 System Stack Pointer (SP)

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The SP always points to the last element pushed
onto the stack. The SP is manipulated by interrupts, traps, calls, returns, and
the PUSH, PUSHF, POP, and POPF instructions. Pushes and pops of the
stack perform preincrement and postdecrement, respectively, on all 32 bits of
the stack pointer. However, only the 24 LSBs are used as an address. Refer
to Section 5.5 on page 5-31 for information about system stack management.

3.1.7 Status Register (ST)

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register accord-
ing to whether the result is 0, negative, etc. This includes register load and
store operations as well as arithmetic and logical functions. When the status
register is loaded, however, the contents of the source operand replace the
current contents bit-for-bit, regardless of the state of any bits in the source op-
erand. Therefore, following a load, the contents of the status register are iden-
tically equal to the contents of the source operand. This allows the status regis-
ter to be saved easily and restored. At system reset, 0 is written to this register.
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Figure 3—3 shows the format of the status register. Table 3-2 defines the sta-
tus register bits, their names, and their functions.

Figure 3-3. Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IxxIxxIxxIxxIxxIxxIxxIxxIxxIxxIxxIxxIxxIxxIxxIxxI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I xxI xxIGIEICCICEICFI XX IRMIOVMILUFI LVIUFI N I z I \ I C I
RW RW RW RW RW RMW RW RW RW RW RW RW RW

Notes: 1) xx =reserved bit, read as 0
2) R=read, W = write
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Table 3-2. Status Register Bits Summary

Bit Name Reset Value  Function

of C 0 Carry flag

1t \Y 0 Overflow flag

21 Z 0 Zero flag

3t N 0 Negative flag

4t UF 0 Floating-point underflow flag

5t LV 0 Latched overflow flag

6t LUF 0 Latched floating-point underflow flag

7 OVM 0 Overflow mode flag. This flag affects only the integer operations. If OVM
= 0, the overflow mode is turned off; integer results that overflow are
treated in no special way. If OVM =1,

a) integer results overflowing in the positive direction are set to the
most positive 32-bit twos-complement number (7FFFFFFFh), and
b)integer results overflowing in the negative direction are set to the
most negative 32-bit twos-complement number (80000000h).
Note that the function of V and LV is independent of the setting of OVM.

8 RM 0 Repeat mode flag. If RM = 1, the PC is being modified in either the
repeat-block or repeat-single mode.

9 Reserved 0 Read as 0

10 CF 0 Cache freeze. When CF =1, the cache is frozen. If the cache is enabled
(CE =1), fetches from the cache are allowed, but no modification of the
state of the cache is performed. This function can be used to save fre-
quently used code resident in the cache. At reset, 0 is written to this bit.
Cache clearing (CC =1) is allowed when CF = 0.

11 CE 0 Cache enable. CE =1 enables the cache, allowing the cache to be used
according to the least recently used (LRU) cache algorithm. CE = 0 dis-
ables the cache; no update or modification of the cache can be per-
formed. No fetches are made from the cache. This function is useful for
system debugging. At system reset, 0 is written to this bit. Cache clear-
ing (CC =1) is allowed when CE = 0.

12 CcC 0 Cache clear. CC = linvalidates all entries in the cache. This bitis always
cleared after it is written to and thus always read as 0. At reset, 0 is writ-
ten to this bit.

13 GIE 0 Global interrupt enable. If GIE = 1, the CPU responds to an enabled in-
terrupt. If GIE = 0, the CPU does not respond to an enabled interrupt.

15-14  Reserved 0 Read as 0
31-16 Reserved 0-0 Value undefined

T The seven condition flags (ST bits 6-0) are defined in Section 10.2 on page -10.
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3.1.8 CPU/DMA Interrupt Enable Register (IE)

The CPU/DMA interrupt enable register (IE) is a 32-bit register (see
Figure 3—4). The CPU interrupt enable bits are in locations 10-0. The direct
memory access (DMA) interrupt enable bits are in locations 26—-16. A 1 in a
CPU/DMA IE register bit enables the corresponding interrupt. A O disables the
corresponding interrupt. Atreset, 0 is written to this register. Table 3—3 defines
the register bits, the bit names, and the bit functions.

Figure 3—4. CPU/DMA Interrupt Enable Register (IE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

wxbsodhsod ol s EDINT | ETINTL | ETINTO | ERINTL | EXINTL| ERINTO| EXINTO| EINT3 | EINT2 | EINTZ | EINTO
omA) | oma) | oma) | oma) | omA) | oMa) | (DMA) | (OMA) | (DMA) | (DMA) | (DMA)

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
swxbxohsodd sl x| EDINT | ETINTL | ETINTO | ERINT1 [EXINT1| ERINTO|EXINTO | EINT3 | EINT2 | EINTL |EINTO
crPu) | ccrPu) | (cpu) |(cPu) |crPu) [(cpu) |ccrPu) |(cPu) |(cPu) |(cPu) |(cPu)

R/W R/W R/W R/IW R/W R/W R/IW R/W R/W R/W R/W

Notes: 1) xx =reserved bit, read as 0
2) R=read, W = write
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Table 3-3. IE Register Bits Summary

Bit Name Reset Value Function

0 EINTO 0 Enable external interrupt 0 (CPU)

1 EINT1 0 Enable external interrupt 1 (CPU)

2 EINT2 0 Enable external interrupt 2 (CPU)

3 EINT3 0 Enable external interrupt 3 (CPU)

4 EXINTO 0 Enable serial-port O transmit interrupt (CPU)

5 ERINTO 0 Enable serial-port O receive interrupt (CPU)

6 EXINT1 0 Enable serial-port 1 transmit interrupt (CPU)

7 ERINT1 0 Enable serial-port 1 receive interrupt (CPU)

8 ETINTO 0 Enable timer 0 interrupt (CPU)

9 ETINT1 0 Enable timer 1 interrupt (CPU)

10 EDINT 0 Enable DMA controller interrupt (CPU)
15-11 Reserved 0 Value undefined

16 EINTO 0 Enable external interrupt O (DMA)

17 EINT1 0 Enable external interrupt 1 (DMA)

18 EINT2 0 Enable external interrupt 2 (DMA)

19 EINT3 0 Enable external interrupt 3 (DMA)

20 EXINTO 0 Enable serial-port 0 transmit interrupt (DMA)

21 ERINTO 0 Enable serial-port O receive interrupt (DMA)

22 EXINT1 0 Enable serial-port 1 transmit interrupt (DMA)

23 ERINT1 0 Enable serial-port 1 receive interrupt (DMA)

24 ETINTO 0 Enable timer 0 interrupt (DMA)

25 ETINT1 0 Enable timer 1 interrupt (DMA)

26 EDINT 0 Enable DMA controller interrupt (DMA)
31-27 Reserved 0-0 Value undefined
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3.1.9 CPU Interrupt Flag Register (IF)

Figure 3-5 shows the 32-bit CPU interrupt flag register (IF). A1ina CPU IF
register bit indicates that the corresponding interrupt is set. The IF bits are set
to 1 when an interrupt occurs. They may also be set to 1 through software to
cause an interrupt. A 0 indicates that the corresponding interrupt is not set. If
a 0 is written to an IF register bit, the corresponding interrupt is cleared. At re-
set, 0 is written to this register. Table 3—4 lists the bit fields, bit-field names, and
bit-field functions of the CPU IF register.

Figure 3-5. CPU Interrupt-Flag Register (IF)

31 29 27 26 25 24 23 22 21 20 19 18 17 16
bodxododsodod xx | oxx | oxx b oxx | oxx | oxx b oxx | oxx | oxx | oxx | xx |
30 28

5 13 11 10 9 8 7 6 5 4 3 2 1 0
bodxxdxx] xxdxx] DINT| TINT1] TINTOJRINTLIXINTL|RINTOJ XINTO] INT INT2| INT1| INTQ|

14 12 RW RW RW RW RW RW RW R/W RW RW R/W

Notes: 1) xx =reserved bit, read as 0
2) R=read, W = write

Table 3—4. IF Register Bits Summary

Bit Name Reset Value Function

0 INTO 0 External interrupt O flag

1 INT1 0 External interrupt 1 flag

2 INT2 0 External interrupt 2 flag

3 INT3 0 External interrupt 3 flag

4 XINTO 0 Serial-port 0 transmit interrupt flag
5 RINTO 0 Serial-port 0 receive interrupt flag
6 XINT1T 0 Serial-port 1 transmit interrupt flag
7 RINT1T 0 Serial-port 1 receive interrupt flag
8 TINTO 0 Timer 0 interrupt flag

9 TINT1 0 Timer 1 interrupt flag

10 DINT 0 DMA channel interrupt flag

31-11 Reserved 0-0 Value undefined

T Reserved on TMS320C31
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3.1.10 I/O Flags Register (IOF)

The 1/O flags register (IOF) is shown in Figure 3—-6 and controls the function
of the dedicated external pins, XFO and XF1. These pins can be configured for
input or output. The pins can also be read from and written to. At reset, 0 is
written to this register. Table 3—5 shows the bit fields, bit-field names, and bit-
field functions.

Figure 3-6. I/O-Flag Register (IOF)

3-10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Iodbodsod sdoodxxdsodood xx ] xx | o bod  oxx o | oxx o xd

1514131211 109 8 7 6 5 4 3 2 1 0
boxbodod s sxexsxxfxx x| INxEL JouTxE1] 1oxF1 [xx] INxFo JouTxFo] 110xFo |xx]
R RW  R/W R RW  RMW

Notes: 1) xx =reserved bit, read as 0
2) R=read, W = write
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Table 3-5. I0F Register Bits Summary

Bit Name Reset Value Function

0 Reserved 0 Read as 0

1 1/OXFO 0 If I/OXFO = 0, XFO is configured as a general-purpose input pin.
If /OXFO =1, XFO0 is configured as a general-purpose output pin.

2 OUTXFO 0 Data output on XFO

3 INXFO 0 Data input on XFO0. A write has no effect.

4 Reserved 0 Read as 0

5 /OXF1 0 If I/OXFl =0, XF1 is configured as a general-purpose input pin.
If IOXF1 =1, XF1 is configured as a general-purpose output pin.

6 OUTXF1 0 Data output on XF1

7 INXF1 0 Data input on XF1. A write has no effect.

31-8 Reserved 0-0 Read as 0

3.1.11 Repeat-Count (RC) and Block-Repeat Registers (RS, RE)

The 32-bit repeat start address register (RS) contains the starting address of
the block of program memory to be repeated when the CPU is operating in the
repeat mode.

The 32-bit repeat end address register (RE) contains the ending address of
the block of program memory to be repeated when the CPU is operating in the
repeat mode.

Note: RE <RS

If RE < RS, the block of program memory will not be repeated, and the code
will not loop backwards. However, the ST(RM) bit remains set to 1.

The repeat-count register (RC) is a 32-bit register used to specify the number
of times a block of code is to be repeated when a block repeat is performed.
If RC contains the number n, the loop is executed n + 1 times.

3.1.12 Program Counter (PC)

The PC is a 32-hit register containing the address of the next instruction to be
fetched. While the program counter register is not part of the CPU register file,
it can be modified by instructions that modify the program flow.
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3.1.13 Reserved Bits and Compatibility

3-12

To retain compatibility with future members of the TMS320C3x family of micro-
processors, reserved bits that are read as 0 must be written as 0. A reserved
bit that has an undefined value must not have its current value modified. In oth-
er cases, you should maintain the reserved bits as specified.



3.2 Memory

Memory

The TMS320C3x’s total memory space of 16M (million) 32-bit words contains
program, data, and 1/O space, allowing tables, coefficients, program code, or
datato be stored in either RAM or ROM. In this way, you can maximize memory
usage and allocate memory space as desired.

RAM blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits. Each
on-chip RAM and ROM block is capable of supporting two CPU accesses in
a single cycle. The separate program buses, data buses, and DMA buses al-
low for parallel program fetches, data reads/writes, and DMA operations.
Chapter 9 covers this in detalil.

3.2.1 TMS320C3x Memory Maps

The memory map depends on whether the processor is running in micropro-
cessor mode (MC/MP or MCBL/MP = 0) or microcomputer mode (MC/MP or
MCBL/MP = 1). The memory maps for these modes are similar (see
Figure 3—7). Locations 800000h through 801FFFh are mapped to the expan-
sion bus. When this region, available only on the TMS320C30, is accessed,
MSTRB is active. Locations 802000h through 803FFFh are reserved. Loca-
tions 804000h through 805FFFh are mapped to the expansion bus. When this
region, available only on the TMS320C30, is accessed, IOSTRB is active. Lo-
cations 806000h through 807FFFh are reserved. All of the memory-mapped
peripheral registers are in locations 808000h through 8097FFh. In both
modes, RAM block 0 is located at addresses 809800h through 809BFFh, and
RAM block 1 is located at addresses 809C00h through 809FFFh. Memory lo-
cations 80A000h through OFFFFFFh are accessed over the primary external
memory port (STRB active).

In microprocessor mode , the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is not mapped into the TMS320C3x memory map. As shown
in Figure 3—7, locations 0Oh through 03Fh consist of interrupt vector, trap vec-
tor, and reserved locations, all of which are accessed over the primary external
memory port (STRB active). Interrupt and trap vector locations are shown in
Figure 3-9. Locations 040h—7FFFFFh and 80A0O00L—FFFFFFh are also ac-
cessed over the primary external memory port.
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In microcomputer mode , the 4K on-chip ROM (TMS320C30) or boot loader
(TMS320C31) is mapped into locations Oh through OFFFh. There are 192 lo-
cations (Oh through BFh) within this block for interrupt vectors, trap vectors,
and a reserved space. Locations 1000h—7FFFFFh are accessed over the pri-
mary external memory port (STRB active).

Reserved Spaces

Do not read and write to reserved portions of the TMS320C3x
memory space and reserved peripheral bus addresses. Doing so
might cause the TMS320C3x to halt operation and require a system
reset to restart.




Figure 3—-7. TMS320C30 Memory Maps

oh Reset, Interrupt, Trap Vector,
and Reserved Locations (64)
03Eh External STRB Active
040h
External
STRB Active
7FFFFFh
800000h ;
Expansion Bus
MSTRB Active
801FFFh (8K Words)
802000h
Reserved
(8K Words)
803FFFh
804000h )
Expansion Bus
IOSTRB Active
805FFFh (8K Words)
806000h
Reserved
(8K Words)
807FFFh
808000h
Peripheral Bus
Memory-Mapped
Registers
(6K Words Internal)
8097FFh
809800h
RAM Block 0
(1K Word Internal)
809BFFh
809C00h
RAM Block 1
(1K Word Internal)
809FFFh
80A000h
External
STRB Active
OFFFFFFh

(a) Microprocessor Mode

Memory

Oh
Reset, Interrupt, Trap Vector,
and Reserved Locations (192)
0BFh
ocohf— — — — T/ /]
ROM
(Internal)
OFFFh
1000h
External
STRB Active
7FFFFFh
800000h }
Expansion Bus
MSTRB Active
801FFFh (8K Words)
802000h
Reserved
(8K Words)
803FFFh
804000h .
Expansion Bus
IOSTRB Active
805FFFh (8K Words)
806000h
Reserved
(8K Words)
807FFFh
808000h
Peripheral Bus
Memory-Mapped
Registers
(6K Words Internal)
8097FFh
809800h
RAM Block O
(1K Word Internal)
809BFFh
809C00h
RAM Block 1
(1K Word Internal)
809FFFh
80A000h
External
STRB Active
OFFFFFFh

(b) Microcomputer Mode
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Figure 3-8. TMS320C31 Memory Maps

Oh

03Fh
040h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FFFh
80A000h

FFFFFFh

Reset, Interrupt, Trap Vector,
and Reserved Locations (64)
(External STRB Active)

External
STRB Active

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Words Internal)

RAM Block 0
(1K Word Internal)

RAM Block 1
(1K Word Internal)

External
STRB Active

(a) Microprocessor Mode

Boot 1-3 locations are used by the boot-loader function. See Section 3.4 for
a complete description. All reserved memory locations are described in

Table 2-5 on page 2-31.
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Oh

FFFh
1000h

400000h

7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

809BFFh
809C00h

809FCOh
809FC1h

809FFFh
80A000h

FFFO0Oh
FFFFFFh

Reserved for Boot
Loader Operations
(See Section 3.4.)

Boot 1

External
STRB
Active

Boot 2

Reserved
(32K Words)

Peripheral Bus
Memory-Mapped
Registers
(6K Words Internal)

RAM Block 0
(1K Word Internal)

RAM Block 1
(1K Word—63 Internal)

User Program Interrupt
and Trap Branches
(63 Words Internal)

External
Boot 3 STRB

Active

(b) Microcomputer/Boot Loader Mode
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3.2.2 TMS320C31 Memory Maps

Setting the TMS320C31 MCBL/MP pin determines the mode in which the
TMS320C31 can function:

0 Microprocessor mode (MCBL/MP = 0), or
(1 Microcomputer/boot loader mode (MCBL/MP = 1)

The major difference between these two modes is their memory maps_(see
Figure 3-8). The program boot load feature is enabled when the MCBL/MP pin
is driven high during reset.

Figure 3-8 shows the memory locations (internal and external) used by the
boot loader to load the source program.

3.2.3 Reset/Interrupt/Trap Vector Map

The addresses for the reset, interrupt, and trap vectors are 00h—3Fh, as shown
in Figure 3-9. The reset vector contains the address of the reset routine.

Microprocessor and Microcomputer Modes

In the microprocessor mode of the TMS320C30 and TMS320C31 and the
microcomputer mode of the TMS320C30, the interrupt and trap vectors stored
in locations 0h—3Fh are the addresses of the starts of the respective interrupt
and trap routines. For example, at reset, the content of memory location 00h
(reset vector) is loaded into the PC, and execution begins from that address.
See Figure 3-9.

Microcomputer/Boot Loader Mode

In the microcomputer/boot loader mode of the TMS320C31, the interrupt and
trap vectors stored in locations 809FC1h—809FFFh are branch instructions to
the start of the respective interrupt and trap routines. See Figure 3-10.
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Figure 3-9. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31
Microprocessor Mode

00h RESET

01h ﬁ

02h INT1

03h ﬁ

04h ﬁ

05h XINTO

06h RINTO

07h XINTLT

08sh RINT1Y

09h TINTO

0Ah TINT1

0Bh DINT

0Ch

1Fh RESERVED
20h ﬁ 0

3Bh ﬁ 27

3Ch TRAP 28 (Reserved)
3Dh TRAP 29 (Reserved)
3Eh TRAP 30 (Reserved)
3Fh TRAP 31 (Reserved)

T Reserved on TMS320C31

Note: Traps 28-31

Traps 28-31 are reserved; do not use them .
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Figure 3-10. Interrupt and Trap Branch Instructions for the TMS320C31 Microcomputer
Mode

809FC1h ﬁ
809FC2h ﬁ
809FC3h ﬁ
809FC4h ﬁ
809FC5h XINTO
809FC6h RINTO
809FC7h XINT1
809FC8h RINT1
809FC9h TINTO
809FCAh TINT1
809FCBh DINT
88%%';%% RESERVED
809FEOh TRAPO
809FE1h TRAP1
809FFBh TRAP27
809FFCh TRAP28 (Reserved)
809FFDh TRAP29 (Reserved)
809FFEh TRAP30 (Reserved)
809FFFh TRAP31 (Reserved)

Note: Traps 28-31

Traps 28-31 are reserved; do not use them .
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3.2.4 Peripheral Bus Map

The memory-mapped peripheral registers are located starting at address
808000h. The peripheral bus memory map is shown in Figure 3-11. Each pe-
ripheral occupies a 16-word region of the memory map. Locations 808010h
through 80801Fh and locations 808070h through 8097FFh are reserved.

Figure 3—-11. Peripheral Bus Memory Map

3-20

808000h DMA Controller Registers
80800Fh (16)
808010h
Reserved
80801Fh (16)
808020h Timer 0 Registers
80802Fh (16
808030h . ;
Timer 1 Registers
80803Fh (16)
808040h Serial-Port 0 Registers
80804Fh (16)
808050h Serial-Port 1 RegistersT
80805Fh (16)
808060h . i
Primary and Expansion Port
80806Fh Registers (16)
808070h
Reserved
8097FFh

T Reserved on TMS320C31
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3.3 Instruction Cache

A 64 x 32-bit instruction cache facilitates maximum system performance by
storing sections of code that can be fetched when the device repeatedly ac-
cesses time-critical code. This reduces the number of off-chip accesses nec-
essary and allows code to be stored off-chip in slower, lower-cost memories.
The cache also frees external buses from program fetches so that they can be
used by the DMA or other system elements.

The cache can operate automatically, with no user intervention. Subsection
3.3.2 describes a form of the least recently used (LRU) cache update algo-
rithm.

3.3.1 Cache Architecture

The instruction cache (see Figure 3—12) contains 64 32-bit words of RAM; it
is divided into two 32-word segments. Associated with each segment is a
19-bit segment start address (SSA) register. For each word in the cache, there
is a corresponding single bit: present (P) flag.
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Figure 3—-12. Instruction Cache Architecture

Segment Start P
Address Registers Flags Segment Words LRU
Stack
Most Recently Used
- Segment Number
I SSA Register 0 I 0 Segment Word 0
k— 19 —ﬂ 1 Segment Word 1 Least Recently Used
. . Segment Number
. Segment 0
30 Segment Word 30
31 Segment Word 31
— 32—
SSA Register 1 I 0 Segment Word 0
1 Segment Word 1
. . Segment 1
30 Segment Word 30
31 Segment Word 31

When the CPU requests an instruction word from external memory, the cache
algorithm checks to determine whether the word is already contained in the
instruction cache. Figure 3—13 shows the partitioning of an instruction address
as used by the cache control algorithm. The algorithm uses the19 most signifi-
cant bits (MSBs) of the instruction address to select the segment; the five least
significant bits (LSBs) define the address of the instruction word within the per-
tinent segment. The algorithm compares the 19 MSBs of the instruction ad-
dress with the two SSA registers. If there is a match, the algorithm checks the
relevant P flag. The P flag indicates whether a word within a particular segment
is already present in cache memory.

Figure 3—13. Address Partitioning for Cache Control Algorithm

23 54 0

segment start address instruction word
address within segment

If there is no match, one of the segments must be replaced by the new data.
The segment replaced in this circumstance is determined by the LRU algo-
rithm. The LRU stack (see Figure 3—12) is maintained for this purpose.
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The LRU stack determines which of the two segments qualifies as the least
recently used after each access to the cache; therefore, the stack contains ei-
ther 0,1 or 1,0. Each time a segment is accessed, its segment number is re-
moved from the LRU stack and pushed onto the top of the LRU stack. There-
fore, the number at the top of the stack is the most recently used segment num-
ber, and the number at the bottom of the stack is the least recently used seg-
ment number.

At system reset, the LRU stack is initialized with O at the top and 1 at the bot-
tom. All P flags in the instruction cache are cleared.

When areplacementis necessary, the least recently used segment is selected
for replacement. Also, the 32 P flags for the segment to be replaced are set
to 0, and the segment’s SSA register is replaced with the 19 MSBs of the in-
struction address.

3.3.2 Cache Algorithm

When the TMS320C3x requests an instruction word from external memory,
one of two possible actions occurs: a cache hit or a cache miss.

[J CacheHit. The cache contains the requested instruction, and the follow-
ing actions occur:

1) The instruction word is read from the cache.

2) The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack, thus moving the
other segment number to the bottom of the stack.

[ Cache Miss. The cache does not contain the instruction. Following are
the types of cache miss:

B Word miss. The segment address register matches the instruction ad-
dress, but the relevant P flag is not set. The following actions occur in
parallel:

m  The instruction word is read from memory and copied into the
cache.

®  The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack, thus mov-
ing the other segment number to the bottom of the stack.

m  The relevant P flag is set.
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B Segment miss. Neither of the segment addresses matches the in-
struction address. The following actions occur in parallel:

m  Theleastrecently used segmentis selected for replacement. The
P flags for all 32 words are cleared.

m  The SSA register for the selected segment is loaded with the 19
MSBs of the address of the requested instruction word.

m  Theinstruction word is fetched and copied into the cache. It goes
into the appropriate word of the least recently used segment. The
P flag for that word is set to 1.

m  The number of the segment containing the instruction word is re-
moved from the LRU stack and pushed to the top of the LRU
stack, thus moving the other segment number to the bottom of the
stack.

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (i.e.,
following a branch) are treated by the cache as valid program fetches and can
generate cache misses and cache updates.

Take care when using self-modifying code. If an instruction resides in cache
and the corresponding location in primary memory is modified, the copy of the
instruction in cache is not modified.

You can use the cache more efficiently by aligning program code on 32-word
address boundaries. Do this with the ALIGN directive when coding assembly
language.

3.3.3 Cache Control Bits
Three cache control bits are located in the CPU status register:

(1 Cache Clear Bit (CC) . Writing a 1 to the cache clear bit (CC) invalidates
all entries in the cache. All P flags in the cache are cleared. The CC bit is
always cleared after the cache is cleared. It is therefore always read as a
0. At reset, the cache is cleared and 0 is written to this bit.

[ Cache Enable Bit (CE) . Writing a 1 to this bit enables the cache. When
enabled, the cache is used according to the previously described cache
algorithm. Writing a 0 to the cache enable bit disables the cache; no up-
dates or modification of the cache can be performed. Specifically, no SSA
register updates are performed, no P flags are modified (unless CC = 1),
and the LRU stack is not modified. Writing a 1 to CC when the cache is
disabled clears the cache, and, thus, the P flags. No fetches are made
from the cache when the cache is disabled. At reset, 0 is written to this bit.
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[J Cache Freeze Bit (CF) . When CF = 1, the cache is frozen. If, in addition,
the cache is enabled, fetches from the cache are allowed, but no modifica-
tion of the state of the cache is performed. Specifically, no SSA register
updates are performed, no P flags are modified (unless CC = 1), and the
LRU stack is not modified. You can use this function to keep frequently
used code resident in the cache. Writing a 1 to CC when the cache is fro-
zen clears the cache, and, thus, the P flags. At reset, 0 is written to this bit.

Table 3—-6 defines the effect of the CE and CF bits used in combination.

Table 3—6. Combined Effect of the CE and CF Bits

CE CF Effect

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen
1 1 Cache enabled and frozen

CPU Registers, Memory, and Cache 3-25



Using the TMS320C31 Boot Loader

3.4 Using the TMS320C31 Boot Loader

This section describes how to use the TMS320C31 microcomputer/boot load-
er (MCBL/MP)function. This feature is unique to the TMS320C31 and is not
available on the TMS320C30 devices. The source code for the boot loader is
supplied in Appendix G.

3.4.1 Boot-Loader Operations

3.4.2
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The boot loader lets you load and execute programs that are received from a
host processor, inexpensive EPROMS, or other standard memory devices.
The programs to be loaded either reside in one of three memory mapped areas
identified as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 3-8),
or they are received by means of the serial port.

User-definable byte, half-word, and word-data formats, as well as 32-bit fixed
burst loads from the TMS320C31 serial port, are supported. See Section 8.2
on page 8-13 for a detailed description of the serial-port operation.

Invoking the Boot Loader

The boot-loader function is selected by resetting the processor while driving
the MCBL/MP pin high. Use interrupt pins INT3 — INTO to set the mode of the
boot load operation. Figure 3—14 shows the flow of this operation, which de-
pends on the mode selected (external memory or serial boot). Figure 3-15
shows memory load operations; Figure 3—16 shows serial port load opera-
tions.
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Figure 3-14. Boot-Loader-Mode Selection Flowchart
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Figure 3—-15. Boot-Loader Memory-Load Flowchart
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Figure 3—-16. Boot-Loader Serial-Port Load-Mode Flowchart
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3.4.3 Mode Selection

After reset, the loader mode is determined by polling the status of the
INT3-INTO bits of the IF register. The bits are polled in the order described in
the flowchart in Figure 3—-14 on page 3-27. Table 37 lists the mode options
and the interrupt that you can use to set the particular mode. The interrupt can
be driven any time after the RESET pin has been deasserted. Unless only one
interrupt flag bit is set (INTO, INT1, INT2, or INT3), the boot mode cannot be
guaranteed.
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Table 3—7. Loader Mode Selection

Active Interrupt Loader Mode Memory Addresses
INTO External memory Boot 1 address 0x001000
INT1 External memory Boot 2 address 0x400000
INT2 External memory Boot 3 address OxFFF000
INT3 32-bit serial Serial port 0

3.4.4 External Memory Loading

Table 3-8 shows and describes the information that you must specify to define
boot memory organization (8, 16, or 32 bits), the code block size, the load des-
tination address, and memory access timing control for the boot memory. You
must specify this information before a source program can be externally
loaded.

This information must be specified in the first four locations of the Boot 1, Boot
2, or Boot 3 areas. The header is followed by the data or program code that
is the block size in length.

Table 3-8. External Memory Loader Header

Location Description Valid Data Entries
0 Boot memory type (8, 16, or 32) 0x8, 0x10, or 0x20 specified as a 32-bit number
1 Boot memory configuration See Chapter 7 for valid bus-control register entries.
(defined # of wait states, etc.)
2 Program block size (blk) Any value 0 < blk < 224
3 Destination address Any valid TMS320C31 24-bit address
4 Program code starts here Any 32-bit data value or valid TMS320C3x instruction

The loader fetches 32 bits of data for each specified location, regardless of
what memory configuration width is specified. The data values must reside
within or be written to memory, beginning with the value of least significance
for each 32 bits of information.

3.4.5 Examples of External Memory Loads
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Example 3—-1, Example 3-2, and Example 3-3 show memory images for
byte-wide, 16-bit-wide, and 32-bit-wide configured memory.
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These examples assume the following:

(1 AnINTO signal was detected after reset was deasserted (signifying an ex-
ternal memory load from Boot 1).

(1 Theloader headerresides at memory location 0x1000 and defines the fol-
lowing:

Example 3—1.Byte-Wide Configured Memory

Boot memory type EPROMSs that require two wait states and SWW =11,

Aloader destination address at the beginning of the TMS320C31's in-
ternal RAM Block 1, and

A single block of memory that is Ox1FF in length.

Address Value Comments

0x1000 0x08 Memory width = 8 bits

0x1001 0x00

0x1002 0x00

0x1003 0x00

0x1004 0x58 Memory type = SWW = 11, WCNT = 2
0x1005 0x10

0x1006 0x00

0x1007 0x00

0x1008 OxFF Program code size = Ox1FF

0x1009 0x01

0x100A 0x00

0x100B 0x00

0x100C 0x00 Program load starting address = 0x809C00
0x100D 0x9C

0x100E 0x80

0x100F 0x00
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Example 3-2.16-Bit-Wide Configured Memory

Address Value Comments

0x1000 0x10 Memory width = 16

0x1001 0x0000

0x1002 0x1058 Memory type = SWW =11, WCNT = 2
0x1003 0x0000

0x1004 Ox1FF Program code size = Ox1FF

0x1005 0x0000

0x1006 0x9C00 Program load starting address = 0x809C00
0x1007 0x0080

Example 3—3.32-Bit-Wide Configured Memory
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Address Value Comments

0x1000 0x00000020 Memory width = 32

0x1001 0x00001058 Memory type = SWW = 11, WCNT =2
0x1002 0x000001FF Program code size = Ox1FF

0x1003 0x00809C00 Program load starting address = 0x809C00

After reading the header, the loader transfers blk, 32-bit words beginning at a
specified destination address. Code blocks require the same byte and half-
word ordering conventions. The loader can also load multiple code blocks at
different address destinations.

After loading all code blocks, the boot loader branches to the destination ad-
dress of the first block loaded and begins program execution. Consequently,
the first code block loaded should be a start-up routine to access the other
loaded programs.

Each code block has the following header:

BLK size 1st location
Destination address 2nd location

End the loader function and begin execution of the first code block by append-
ing the value of 0x00000000 to the last block.
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Itis assumed that at least one block of code will be loaded when the
loader is invoked. Initial loader invocation with a block size of
0x00000000 produces unpredictable results.

3.4.6 Serial-Port Loading

Boot loads, by way of the TMS320C31 serial port, are selected by driving the
INT3 pin active (low) following reset. The loader automatically configures the
serial port for 32-bit fixed-burst-mode reads. It is interrupt-driven by the frame
synchronization receive (FSR) signal. You cannot change this mode for boot
loads. Your hardware must externally generate the serial-port clock and FSR.

As in parallel loading, a header must precede the actual program to be loaded.
However, you need only apply the block size and destination address because
the loader and your hardware have predefined serial-port speed and data for-
mat (i.e., skip data words 0 and 1 from Table 3-8).

The transferred data-bit order must begin with the MSB and end with the LSB.

3.4.7 Interrupt and Trap-Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot-loader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests.
Dual vectoring was implemented to ensure code compatibility with future ver-
sions of TMS320C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than di-
rect-interrupt vectoring, are used. The normal interrupt and trap vectors are
definedto vector to the last 63 locations in the on-chip RAM, starting at address
809FC1h. When the loader is invoked, the last 63 locations in RAM Block 1 of
the TMS320C31 are assumed to contain branch instructions to the interrupt
source routines.

Take care to ensure that these locations are not inadvertently
overwritten by loaded program or data values.
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Table 3—-9 shows the MCBL/MP mode interrupt and trap instruction memory
maps.

Table 3-9. TMS320C31 Interrupt and Trap Memory Maps

Address Description
809FC1 INTO
809FC2 INT1
809FC3 INT2
809FC4 INT3
809FC5 XINTO
809FC6 RINTO
809FC7 Reserved
809FC8 Reserved
809FC9 TINTO
809FCA TINTL
809FCB DINTO
809FCC—-809FDF Reserved
809FEQ TRAPO
809FE1 TRAP1
809FFB TRAP27
809FFC—-809FFF Reserved
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3.4.8 Precautions

The boot loader builds a one-word-deep stack, starting at location 809801h.

Avoid loading code at location 809801h.

The interrupt flags are not reset by the boot-loader function. If pending inter-
rupts are to be avoided when interrupts are enabled, clear the IF register be-
fore enabling interrupts.

The MCBL/MP pin should remain high during the entire boot-loader execution,
but it can be changed subsequently at any time. The TMS320C31 does not
need to be reset after the MCBL/MP pin is changed. During the change, the
TMS320C31 should not access addresses Oh—FFFh.

CPU Registers, Memory, and Cache 3-35



3-36



Chapter 4

Data Formats and Floating-Point Operation

In the TMS320C3x architecture, data is organized into three fundamental
types: integer, unsigned-integer, and floating-point. The terms integer and
signed-integer are considered to be equivalent. The TMS320C3x supports
short and single-precision formats for signed and unsigned integers. It also
supports short, single-precision, and extended-precision formats for float-
ing-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-
putations. Specifically, the TMS320C3x implementation of floating-point arith-
metic facilitates floating-point operations at integer speeds while preventing
problems with overflow, operand alignment, and other burdensome tasks
common in integer operations.

This chapter discusses in detail the data formats and floating-point operations
supported in the TMS320C3x. Major topics in this section are as follows:

Topic Page
4.1 Integer FOrmats .. .........ouiiii e 4-2
4.2 Unsigned-Integer Formats —............ i 4-3
4.3 Floating-Point FOrmats  ........ ...ttt 4-4
4.4 Floating-Point Multiplication — ........... . ... . o ... 4-10
4.5 Floating-Point Addition and Subtraction P R I
4.6 Normalization Using the NORM Instruction  ................... 4-18
4.7 Rounding: The RND Instruction — .............. i .. 4-20
4.8 Floating-Point-to-Integer Conversion — ...........c..oovuinn.... 4:22
4.9 Integer-to-Floating-Point Conversion — ........................ 4:24
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4.1 Integer Formats

The TMS320C3x supports two integer formats: a 16-bit short integer format
and a 32-bit single-precision integer format. When extended-precision regis-
ters are used as integer operands, only bits 31-0 are used; bits 39—32 remain
unchanged and unused.

4.1.1 Short-Integer Format

The shortinteger formatis a 16-bit two’s complement integer format for imme-
diate integer operands. For those instructions that assume integer operands,
this format is sign-extended to 32 bits (see Figure 4-1). The range of an
integer si, represented in the short integer format, is —215 < si <2151, In
Figure 4-1, s = signed bit.

Figure 4-1. Short Integer Format and Sign Extension of Short Integers

15 0

S

(a) Short Integer Format

31 16 15 0

S SSSSSSSSSSSSSSS

(b) Sign Extension of a Short Integer

4.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in two’s com-
plement notation. The range of an integer sp, represented in the single-preci-
sion integer format, is —231 <sp <231 — 1. Figure 4-2 shows the single-preci-
sion integer format.

Figure 4-2. Single-Precision Integer Format

31 0

S
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4.2 Unsigned-Integer Formats

The TMS320C3x supports two unsigned-integer formats: a 16-bit short format
and a 32-bit single-precision format. In extended-precision registers, the un-
signed-integer operands use only bits 31-0; bits 39-32 remain unchanged.

4.2.1 Short Unsigned-Integer Format

Figure 4-3 shows the16-bit, short, unsigned-integer format for immediate un-
signed-integer operands. For those instructions that assume
unsigned-integer operands, this format is zero-filled to 32 bits. In Figure 4-3,
X = most significant bit (MSB) (1 or 0).

Figure 4-3. Short Unsigned-Integer Format and Zero Fill

15 0

(a)Short Unsigned-Integer Format

31 16 15 0

0000000000000O0O Q] x

(b) Zero Fill of a Short Unsigned Integer

4.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented as
a 32-bit value, as shown in Figure 4-4.

Figure 4-4. Single-Precision Unsigned-Integer Format

31 0
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4.3 Floating-Point Formats

All TMS320C3x floating-point formats consist of three fields: an exponent field
(e), asingle-bit signfield (s), and a fraction field (f). These are stored as shown
in Figure 4-5. The exponent field is a two’s complement number. The sign field
and fraction field may be considered one unit and referred to as the mantissa
field (man). The two’s complement fraction is combined with the sign bit and
the implied most significant bit to create the mantissa. The mantissa repre-
sents a normalized two’s complement number. A normalized representation
implies a most significant nonsign bit, thus providing additional precision. The
value of a floating-point number x as a function of the fields e, s, and f is given as

x =01.fx2¢€ if s = 0, or if the leading O is the sign bit and the
1 is the implied most significant nonsign bit

10.f x 2€ if s = 1, or if the leading 1 is the sign bit and the
0 is the implied most significant nonsign bit

0 if @ = most negative two’s complement
value of the specified exponent field width

Figure 4-5. Generic Floating-Point Format

e s f

Li man (mantissa) 44

Note: e = exponent field
s = single-bit sign field
f = fraction field

Three floating-point formats are supported on the TMS320C3x. The first is a
short floating-point format for immediate floating-point operands, consisting of
a 4-bit exponent, a sign bit, and an 11-bit fraction. The second is a single-preci-
sion format consisting of an 8-bit exponent, a sign bit, and a 23-bit fraction. The
third is an extended-precision format consisting of an 8-bit exponent, a sign
bit, and a 31-bit fraction.

4.3.1 Short Floating-Point Format
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In the short floating-point format, floating-point numbers are represented by
a two’'s complement 4-bit exponent field (e) and a two’s complement 12-bit
mantissa field (man) with an implied most significant nonsign bit. See
Figure 4-6.
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Figure 4—6. Short Floating-Point Format

1512‘11‘10 0

e S f

‘4— mantissa 44

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point two’s complement
number x in the short floating-point format is given by the following:

x = 01.f x 2¢€ ifs=0
10.f x 2¢€ ifs=1
0 ife=-8

You must use the following reserved values to represent 0 in the short float-
ing-point format:

=-8
s=0
f=0

The following examples illustrate the range and precision of the short float-
ing-point format:

Most Positive: x =(2-2-11) x 27 = 2.5594 x 102
Least Positive: Xx=1x2-7=7.8125x 103

Least Negative: X=(-1-2"11) x 2-7=_7.8163 x 103
Most Negative: x =-2x27=-25600 x 102
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4.3.2 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bit exponent field (e) and a two’s complement 24-bit mantissa field (man)
with an implied most significant nonsign bit. See Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

3124|2322

o

e s f

Li mantissa ———— |

Operations are performed with an implied binary point between bits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by

the following:
Xx=01.fx2¢ ifs=0
10.f x 2¢€ ifs=1
0 ife=-8

You must use the following reserved values to represent 0 in the single-preci-
sion floating-point format:

e=-128
s=0
f=0

The following examples illustrate the range and precision of the single-preci-
sion floating-point format.

Most Positive: X = (2 — 2—23) x 2127 = 3.4028234 x 1038
Least Positive: x=1x2-127 =5 8774717 x 1039

Least Negative: X = (-1-2-23) x 2-127 = _ 58774724 x 10—39
Most Negative: x =—2 x 2127 = _3.4028236 x 1038

4.3.3 Extended-Precision Floating-Point Format

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied
most significant nonsign bit. See Figure 4-8.
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Figure 4-8. Extended-Precision Floating-Point Format

39 32‘31‘30 0

e S f
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Operations are performed with an implied binary point between bits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by

the following:

x = 01.fx2¢€ ifs=0
10.f x 2€ ifs=1
0 ife=-128

You must use the following reserved values to represent 0 in the extended-pre-
cision floating-point format:

=-128
s=0
f=0

The following examples illustrate the range and precision of the extended-pre-
cision floating-point format:

Most Positive: X = (2 —2-23) x 2127 = 3,4028234 x 1038

Least Positive: x =1x2-127 = 58774717541 x 1038

Least Negative: x = (-1-2-31) x 2-127 = _ 58774717569 x 10—39
Most Negative: x = -2 x 2127 = _3,4028236691 x 1038
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4.3.4 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-
puts. These formats often require conversion from one floating-point format to
another (e.g., short floating-point format to extended-precision floating-point
format). Format conversions occur automatically in hardware, with no over-
head, as a part of the floating-point operations. Examples of the four conver-
sions are shown in Figure 4-9, Figure 4-10, Figure 4-11, and Figure 4-12.
When a floating-point format O is converted to a greater-precision format, it is
always converted to a valid representation of O in that format. In Figure 4-9,
Figure 4-10, Figure 4-11, and Figure 4-12, s = sign bit of the exponent.

Figure 4-9. Converting From Short Floating-Point Format to Single-Precision

Floating-Point Format

15 12 11 10
S X X X yly
(a) Short Floating-Point Format
31 27 24 23 22 12 11
S$SSSX XXX yly y|O

In this format, the exponent field is sign-extended, and the fraction field is filled

with Os.

Figure 4-10. Converting From Short Floating-Point Format to Extended-Precision

Floating-Point Format

39 35 32 31

(b) Single-Precision Floating-Point Format

30

15

12 11 10

X X1y ly

(a) Short Floating-Point Format

20 19

SSSS X XXX

y

y

y

0

The exponent field in this format is sign-extended, and the fraction field is filled

with 0s.
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(b) Extended-Precision Floating-Point Format
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Figure 4-11. Converting From Single-Precision Floating-Point Format to
Extended-Precision Floating-Point Format

31 24 23 22 0

X Xty lYy y

(a) Single-Precision Floating-Point Format

39 32 31 30 8 7 0

X xly|ly ylO 0

(b) Extended-Precision Floating-Point Format

The fraction field is filled with Os.

Figure 4-12. Converting From Extended-Precision Floating-Point Format to
Single-Precision Floating-Point Format

39 32 31 30 8 7 0

X x|y ly ylz z

(a) Extended-Precision Floating-Point Format

31 24 23 22 0

x x|y |y y

(b) Single-Precision Floating-Point Format

The fraction field is truncated.
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4.4 Floating-Point Multiplication

4-10

A floating-point number a can be written in floating-point format as in the fol-
lowing formula:

a = a(man) x 20(exp)

where:
a(man) is the mantissa and a(exp) is the exponent.

The product of a and b is c, defined as:
¢ =a x b = a(man) x b(man) x 2(a(exp) + b (exp))

where:
c(man) = a(man) x b(man), and
c(exp) = a(exp) + b(exp)

During floating-point multiplication, source operands are always assumed to
be in the single-precision floating-point format. If the source of the operands
is in short floating-point format, it is extended to the single-precision float-
ing-point format. If the source of the operands is in extended-precision float-
ing-point format, it is truncated to single-precision format. These conversions
occur automatically in hardware with no overhead. All results of floating-point
multiplications are in the extended-precision format. These multiplications oc-
cur in a single cycle.

A flowchart for floating-point multiplication is shown in Figure 4-13. In step 1,
the 24-bit source operand mantissas are multiplied, producing a 50-bit result
c(man). (Note that input and output data are always represented as normal-
ized numbers.) In step 2, the exponents are added, yielding c(exp). Steps 3
through 6 check for special cases. Step 3 checks for whether c(man) in exten-
ded-precision format is equal to 0. If c(man) is 0, step 7 sets c(exp) to —128,
thus yielding the representation for O.

Steps 4 and 5 normalize the result. If a right shift of 1 is necessary, then in step
8, c(man) is right-shifted 1 bit, thus adding 1 to c(exp). If a right shift of 2 is nec-
essary, then in step 9, c(man) is right-shifted 2 bits, thus adding 2 to c(exp).
Step 6 occurs when the result is normalized.

In step 10, c(man) is set in the extended-precision floating-point format. Steps
11 through 16 check for special cases of c(exp). If c(exp) has overflowed (step
11) inthe positive direction, then step 14 sets c(exp) to the most positive exten-
ded-precision format value. If c(exp) has overflowed in the negative direction,
then step 14 sets c(exp) to the most negative extended-precision format value.
If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is, c(man)
=0 and c(exp) = -128.



Figure 4-13. Flowchart for Floating-Point Multiplication

Floating-Point Multiplication
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Example 4-1, Example 4-2, Example 4-3, Example 4—4, and Example 4-5

illustrate how floating-point multiplication is performed on the TMS320C3x.

For these examples, the implied most significant nonsign bit is made explicit.
Example 4-1.Floating-Point Multiply (Both Mantissas = —2.0)

Let:
a =—2.0 x 20(exp) = 10 .00000000000000000000000 x 24(exp)
b =—2.0 x 2b(exp) = 10 .00000000000000000000000 x 2b(exp)

where:

o and b are both represented in binary form according to the normalized sing-
le-precision floating-point format.

Then:

10.00000000000000000000000 x 20(€Xp)
x 10.00000000000000000000000 x 2b(exp)

0100.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add 2 to the exponent. This yields:

10.00000000000000000000000 x 20(exp)
x 10.00000000000000000000000 x 2b(exp)

01.0000000000000000000000000000000000000000000000 x 2 (a(exp) +b(exp) +2)

In floating-point multiplication, the exponent of the result may overflow. This
can occur when the exponents are initially added or when the exponent is mo-
dified during normalization.

Example 4-2. Floating-Point Multiply (Both Mantissas = 1.5)

Let:

a = 1.5 x 20(exp) = 01.10000000000000000000000 x 24(exp)
b =1.5 x 2b(exp) = 01.10000000000000000000000 x 2b(eXP)

where a and b are both represented in binary form according to the single-pre-
cision floating-point format. Then:

01.10000000000000000000000 x 20 (€xp)
x 01.10000000000000000000000 x 2b(eXp)

0010.0100000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))

4-12
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To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:

01.10000000000000000000000 x 20(exp)
x 01.10000000000000000000000 x 2b(exp)

01.00100000000000000000000000000000000000000000000 x 2 (a(exp) +b(exp) + 1)

Example 4-3. Floating-Point Multiply (Both Mantissas = 1.0)
Let:
a = 1.0 x 20(exp) = 01.00000000000000000000000 x 20(eXp)
b = 1.0 x 2b(€xp) = 01.00000000000000000000000 x 2b(exp)

where a and b are both represented in binary form according to the single-pre-
cision floating-point format. Then:

01.00000000000000000000000 x 20(exp)
x 01.00000000000000000000000 x 2b(exp)

0001.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))

This number is in the proper normalized format. Therefore, no shift of the man-
tissa or modification of the exponent is necessary.

These examples have shown cases where the product of two normalized num-
bers can be normalized with a shift of 0, 1, or 2. For all normalized inputs with
the floating-point format used by the TMS320C3x, a normalized result can be
produced by a shift of 0, 1, or 2.

Example 4—-4. Floating-Point Multiply Between Positive and Negative Numbers

Let:
o =1.0 x 2a(exp) = 01 .00000000000000000000000 x 20 (€Xp)
b =—2.0 x 2b(exp) = 10 .00000000000000000000000 x 2b(exp)

Then:

01.00000000000000000000000 x 20(exp)
x 10.00000000000000000000000 x 20(exp)

1110.0000000000000000000000000000000000000000000000 x 2 (a(exp) + b(exp))
The result is ¢ = —2.0 x 2(a(exp) + b(exp))

Example 4-5. Floating-Point Multiply by 0

All multiplications by a floating-point 0 yield a result of 0 (f =0, s =0, and exp
= -128).

Data Formats and Floating-Point Operation 4-13



Floating-Point Addition and Subtraction

4.5 Floating-Point Addition and Subtraction

4-14

In floating-point addition and subtraction, two floating-point numbers a and b
can be defined as:

o = a(man) x 2 A(exp)
b = b(man) x 2 b(exp)

The sum (or difference) of a and b can be defined as:

c=azxb
= (a(man) % (b(man) x 2 —(a(exp)—-b(exp)))) x 2 a(exp),
if a(exp) = b(exp)
= ((a(man) x 2 —(b(exp)—a(exp))) + b(man)) x 2 b(EXp),
if a(exp) < b(exp)

The flowchart for floating-point addition is shown in Figure 4—-14. Since this
flowchart assumes signed data, it is also appropriate for floating-point subtrac-
tion. In this figure, it is assumed that a(exp) < b(exp). In step 1, the source ex-
ponents are compared, and c(exp) is set equal to the largest of the two source
exponents. In step 2, d is set to the difference of the two exponents. In step 3,
the mantissa with the smallest exponent, in this case a(man), is right-shifted
d bits to align the mantissas. After the mantissas have been aligned, they are
added (step 4).

Steps 5 through 7 check for a special case of c(man). If c(man) is 0 (step 5),
then c(exp) is set to its most negative value (step 8) to yield the correct repre-
sentation of 0. If c(man) has overflowed c (step 6), then c(man) is right-shifted
one bhit, and 1 is added to c(exp). Otherwise, step 10 normalizes c by left-shift-
ing c(man) and subtracting c(exp) by the number of leading non-significant
sign bits (step 7). Steps 11 through 13 check for special cases of c(exp). If
c(exp) has overflowed (step 11) in the positive direction, then step 14 sets
c(exp) to the most positive extended-precision format value. If c(exp) has over-
flowed (step 11) in the negative direction, then step 14 sets c(exp) to the most
negative extended-precision formatvalue. If c(exp) has underflowed (step 12),
then step 15 sets ¢ to O; that is, c(man) = 0 and c(exp) = —128.



Floating-Point Addition and Subtraction

Figure 4-14. Flowchart for Floating-Point Addition

a(man) b(man) a(exp) b(exp)
)
Compare exponents
If a(exp) < = b(exp)
3 c(exp) = b(exp)
( else
Align mantissas c(exp) = a(exp)
a(man) = a(man) > >d (Assume for simplicity
that a(exp) < = b(exp))
Discard LSBs to keep i ¢
a(man) in extended-
precision floating- (2) Subtract exponents
point format d = b(exp) * a(exp)
4) Add mantissas
c(man) = a(man) + b(man)
Test for special cases of c(man)
®) (6) (7
k = # of leading
c(man) =0 Overflow of ¢(man) non-significant
sign bits
v 9)
c(man) =c(man) >>1
c(exp) =c(exp) +1
Discard LSBs to keep in
extended-precision
floating-point format (10)

®)

c(man) <<k

o)~ i)

Test for special cases of c(exp)

(11) (12) (13)
c(exp) overflow c(exp) underflow c(exp) in range
v v v
(14) If cgmatn) > 0,t setcto0 (15)
S€ c; 0 mols c(exp) =-128
positive value c(man) =0

If ¢(man) <0,
set ¢ to most

negative value
} I (16)
|

| Set c to final result
c=a+b
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Example 4-6, Example 4-7, Example 4-8, and Example 4-9 describe the
floating-point addition and subtraction operations. It is assumed that the data
is in the extended-precision floating-point format.

Example 4—6. Floating-Point Addition

In the case of two normalized numbers to be summed, let

a= 1.5 = 01.1000000000000000000000000000000 x 20
b= 0.5 = 01.0000000000000000000000000000000 x 2~1

It is necessary to shift b to the right by 1 so that a and b have the same expo-
nent. This yields:

b = 0.5 = 00.1000000000000000000000000000000 x 20
Then:

01.10000000000000000000000000000000 x 20
+00.10000000000000000000000000000000 x 20

010.00000000000000000000000000000000 x 20

As inthe case of multiplication, itis necessary to shift the binary point one place
to the left and add 1 to the exponent. This yields:

01.1000000000000000000000000000000 x 20
+00.1000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 21

Example 4-7.Floating-Point Subtraction

A subtraction is performed in this example. Let

a = 01.0000000000000000000000000000001 x 20
b = 01.0000000000000000000000000000000 x 20

The operation to be performed is a—b. The mantissas are already aligned be-
cause the two numbers have the same exponent. The result is a large cancel-
lation of the upper bits, as shown below.

01.0000000000000000000000000000001 x 20
—01.0000000000000000000000000000000 x 20

00.0000000000000000000000000000001 x 20
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The result must be normalized. In this case, a left-shift of 31 is required. The
exponent of the result is modified accordingly. The result is:

01.0000000000000000000000000000001 x 20
—01.0000000000000000000000000000000 x 20

01.0000000000000000000000000000000 x 2-31

Example 4-8. Floating-Point Addition With a 32-Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to nor-
malize the result. Let

0=01111211112111211121212111211121111 x 2127
b = 10.0000000000000000000000000000000 x 2127

The operation to be performed is a + b.
0111111121111112121122112112111111111 x 2127

+10.0000000000000000000000000000000 * 2127
11.1111111111111111111111211111111 x 2127

Normalizing the result requires a left-shift of 32 and a subtraction of 32 from
the exponent. The result is:

011111121211121211121212211212112211111 x 2127
+10.0000000000000000000000000000000 x 2127
10.0000000000000000000000000000000 * 29

Example 4-9. Floating-Point Addition/Subtraction With Floating-Point O

When floating-point addition and subtraction are performed with a float-
ing-point 0, the following identities are satisfied:

ax0=a(az0)
0+0=0

0—-a=-a(az0)
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Normalization Using the NORM Instruction

4.6 Normalization Using the NORM Instruction

The NORM instruction normalizes an extended-precision floating-point num-
ber that is assumed to be unnormalized. See Example 4-10. Since the num-
ber is assumed to be unnormalized, no implied most significant nonsign bit is
assumed. The NORM instruction:

1) Locates the most significant nonsign bit of the floating-point number,
2) Left-shifts to normalize the number, and
3) Adjusts the exponent.

Example 4-10. NORM Instruction

4-18

Assume that an extended-precision register contains the value

man = 00000000000000000001000000000001, exp = 0

When the normalization is performed on a number assumed to be unnormal-
ized, the binary point is assumed to be:

man = 0.0000000000000000001000000000001, exp =0

This number is then sign-extended one bit so that the mantissa contains 33
bits.

man = 00.0000000000000000001000000000001, exp =0

The intermediate result after the most significant nonsign bit is located and the
shift performed is:

man = 01.0000000000010000000000000000000, exp =-19

The final 32-bit value output after removing the redundant bit is:

man = 00000000000010000000000000000000, exp = —-19

The NORM instruction is useful for counting the number of leading Os or lead-
ing 1sina 32-bitfield. If the exponentis initially 0, the absolute value of the final
value of the exponent is the number of leading 1s or Os. This instruction is also
useful for manipulating unnormalized floating-point numbers.

Given the extended-precision floating-point value a to be normalized, the nor-
malization, norm (), is performed as shown in Figure 4-15.
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Figure 4-15. Flowchart for NORM Instruction Operation

(©)

a

v

Test for special cases of c(man)

a(man)=0 Leading nonsignificant

D

@

sign bits

k = # of leading
nonsignificant

sign bits

c(exp)

. 2
=-128 | , _ Q)
Sign-extended a(man) 1 bit

i R

c(man) = a(man) <<k
c(exp) = a(exp) -k

| Remove most significant nonsign bit | ®)
Test for special cases of ¢ (exp)
(6) )

c(exp) c(exp) in

underflow range
i v

(8) c(exp) =-128
No change to c(man)

© |

Set ¢ to final result |

v

¢ = norm(a)
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Rounding: The RND Instruction

4.7 Rounding: The RND Instruction

4-20

The RND instruction rounds a number from the extended-precision float-
ing-point format to the single-precision floating-point format. Rounding is simi-
lar to floating-point addition. Given the number a to be rounded, the following
operation is performed first.

¢ = a(man) x 20(exp) + (1 x 20a(exp)—24)
Next, a conversion from extended-precision floating-point to single-precision

floating-point format is performed. Given the extended-precision floating-point
value, the rounding, rnd( ), is performed as shown in Figure 4-16.
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Figure 4-16. Flowchart for Floating-Point Rounding by the RND Instruction

o 1% 2ox(exp)—24

+

Add a(man) and 1/2 of LSB

c¢(man) = a(man) + 2-24

v

Test for special cases of c(man)
c(man) =0 Overflow of c(man) No special case
c(exp) =-128 c(man)=c(man)<<1

c(exp) =a(exp) +1

.

Test for special cases of c (exp)

c (exp) overflow c(exp) in range

If c(man) >0,

set ¢ to most positive

single-precision value
If c(man) <0,

set ¢ to most negative
single-precision value

-

I Set 8 LSBs of c(man) to 0 I

v
¢ =rnd(a)
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4.8 Floating-Point-to-Integer Conversion

4-22

Floating-point to integer conversion, using the FIX instructions, allows exten-
ded-precision floating-point numbers to be converted to single-precision inte-
gers in a single cycle. The floating-point to integer conversion of the value x
is referred to here as fix(x). The conversion does not overflow if a, the number
to be converted, is in the range

—231l<a<23l-1
First, you must be certain that
a(exp) <30

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If a(exp) is
within the valid range, then a(man), with implied bitincluded, is sign-extended
and right-shifted (rs) by the amount

rs =31 —a(exp)

This right-shift (rs) shifts out those bits corresponding to the fractional part of
the mantissa. For example:

If 0 < x <1, then fix(x) = 0.
If -1 < x <0, then fix(x) = -1.

The flowchart for the floating-point-to-integer conversion is shown in
Figure 4-17.
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Figure 4-17. Flowchart for Floating-Point-to-Integer Conversion by FIX Instructions

a

}

Test for special cases of a(exp)

a(exp) in range
rs = 31 — a(exp)

I |

a(exp) > 30

Overflow Shift
If a(man) >0, c=a(man)>>rs
¢ = most positive integer
If a(man) <0,

¢ = most negative integer

I '

Set c to final result

¢ = fix(a)
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4.9 Integer-to-Floating-Point Conversion

Integer to floating-point conversion, using the FLOAT instruction, allows sing-
le-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversion is shown in Figure 4-18.

Figure 4-18. Flowchart for Integer-to-Floating-Point Conversion by FLOAT Instructions
a

'

c(man) =a
c(exp) =30

v

Test for special cases of ¢c(man)

Leading nonsignificant

c(man)=0 sign bits
k = # leading
nonsignificant
ign bit
v sign bits
c(exp) =-128 c(man) =c(man) <<k
c(exp) =30 -k

:

I Remove most significant nonsign bit I

I Set c to final result I

’

¢ = float (a)
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Chapter 5

Addressing

The TMS320C3x supports five groups of powerful addressing modes. Six
types of addressing may be used within the groups, which allow access of data
from memory, registers, and the instruction word. This chapter details the op-
eration, encoding, and implementation of the addressing modes. It also dis-
cusses the management of system stacks, queues, and dequeues in memory.

These are the major topics in this chapter:

Topic Page
5.1 Types of Addressing ...t 5-2
5.2 Groups of Addressing Modes  ........... ... i 5-19
5.3 Circular ADdressing ...t 5-24
5.4 Bit-Reversed Addressing  ..........oouiiiiiiii e 5-29
5.5 System and User Stack Management ......................... 5-31




Types of Addressing

5.1 Types of Addressing

5-2

Six types of addressing allow access of data from memory, registers, and the
instruction word:

Uooooo

Register

Direct

Indirect
Short-immediate
Long-immediate
PC-relative

Some types of addressing are appropriate for some instructions but not others.
For this reason, the types of addressing are used in the five groups of address-
ing modes as follows:

a

General addressing modes (G):

B Register

Hm Direct

B Indirect

B Short-immediate

Three-operand addressing modes (T):

B Register
M Indirect

Parallel addressing modes (P):

B Register
W Indirect

Conditional-branch addressing modes (B):

B Register
B PC-relative

The six types of addressing are discussed first, followed by the five groups of
addressing modes.
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5.1.1 Register Addressing

In register addressing, a CPU register contains the operand, as shown in this
example:

ABSF R1 :R1=|R1|

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 5-1.

Table 5-1. CPU Register Address/Assembler Syntax and Function

Assembler Assigned
CPU Register Address Syntax Function
00h RO Extended-precision register
01lh R1 Extended-precision register
02h R2 Extended-precision register
03h R3 Extended-precision register
04h R4 Extended-precision register
05h R5 Extended-precision register
06h R6 Extended-precision register
07h R7 Extended-precision register
08h ARO Auxiliary register
09h AR1 Auxiliary register
0Ah AR2 Auxiliary register
0Bh AR3 Auxiliary register
0Ch AR4 Auxiliary register
0Dh AR5 Auxiliary register
OEh AR6 Auxiliary register
OFH AR7 Auxiliary register
10h DP Data-page pointer
11h IRO Index register 0
12h IR1 Index register 1
13h BK Block-size register
14h SP Active stack pointer
15h ST Status register
16h IE CPU/DMA interrupt enable
17h IF CPU interrupt flags
18h IOF I/O flags
19h RS Repeat start address
1Ah RE Repeat end address
1Bh RC Repeat counter

Addressing 5-3
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5.1.2 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight least significant bits of the data page pointer (DP) with the 16 least signifi-
cant bits of the instruction word (expr). This results in 256 pages (64K words per
page), giving the programmer a large address space without requiring a change
of the page pointer. The syntax and operation for direct addressing are:

Syntax: @expr
Operation: address = DP concatenated with expr

Figure 5-1 shows the formation of the data address. Example 5-1 is an
instruction example with data before and after instruction execution.

Figure 5—1. Direct Addressing

Example 5-1.Direct Addressing

5-4

31 16 15 0
Instruction
Word 4" expr
31 8 7 0
DP —®| x X...X X page
(Data
Page Pointer)
31 24 23 0
0 0...0 O address
31 i 0
operand
ADDI @O0BCDEh,R7
Before Instruction: After Instruction;
DP = 8Ah DP = 8Ah
R7 =0h R7 = 12345678h
Data at SBABCDEh = 12345678h Data at SBABCDEh = 12345678h
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5.1.3 Indirect Addressing

Indirect addressing is used to specify the address of an operand in memory
through the contents of an auxiliary register, optional displacements, and in-
dex registers. Only the 24 least significant bits of the auxiliary registers and in-
dex registers are used in indirect addressing. This arithmetic is performed by
the auxiliary register arithmetic units (ARAUS) on these lower 24 bits and is un-
signed. The upper eight bits are unmodified.

The flexibility of indirect addressing is possible because the ARAUs on the
TMS320C3x modify auxiliary registers in parallel with operations within the
main CPU. Indirect addressing is specified by a five-bit field in the instruction
word, referred to as the mod field. A displacement is either an explicit unsigned
eight-bit integer contained in the instruction word or an implicit displacement
of one. Two index registers, IR0 and IR1, can also be used in indirect address-
ing. In some cases, an optional addressing scheme using circular or bit-rev-
ersed addressing can be used. The mechanism for generating addresses in
circular addressing is discussed in Section 5.3 on page 5-24; bit-reversed is
discussed in Section 5.4 on page 5-29.

Note: Auxiliary Register

The auxiliary register (ARn) to be used is encoded in the instruction word ac-
cording to its binary representation n (for example, AR3 is encoded as 115),
not its register machine address (shown in Table 5-1).

Example 5-2. Auxiliary Register Indirect

An auxiliary register (ARN) contains the address of the operand to be fetched.

Operation : operand address = ARnN
Assembler Syntax : *ARN
Modification Field: 11000
31 24 23 0
ARNn —P x X address
31 0
operand

Table 5-2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 17 examples show the operation for each kind of indi-
rect addressing. Figure 5-2 shows the format in the instruction encoding.
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Table 5-2. Indirect Addressing

Description

With predisplacement add

Mod Field Syntax Operation
Indirect Addressing with Displacement
00000 *+ARn(disp) addr = ARn + disp
00001 *~ARnN(disp) addr = ARn — disp

00010 *++ARN(disp) addr = ARn + disp

ARnN = ARn + disp

00011 *——ARn(disp) addr = ARn — disp

ARn = ARn —disp

00100 *ARN++(disp)  addr = ARn

ARnN = ARn + disp

00101 *ARn——(disp) addr = ARn

ARn = ARn —disp

00110 *ARN++(disp)%  addr = ARn

ARnN = circ(ARn + disp)

00111 *ARn——(disp)% addr = ARn

ARnN = circ(ARn — disp)

With predisplacement subtract

With predisplacement add and modify

With predisplacement subtract and modify
With postdisplacement add and modify

With postdisplacement subtract and modify
With postdisplacement add and circular modify

With postdisplacement subtract and circular
modify

Indirect Addressing with Index Register IRO
01000 *+ARN(IRO) addr = ARn + IRO
01001 *~ARN(IRO) addr = ARn — IRO
01010 *++ARN(IR0) addr = ARn + IRO

ARn = ARn + IRO

01011 *—_ ARN(IRO) addr = ARn — IRO

ARn = ARn - IR0

01100 *ARn++(IR0) addr = ARn

ARn = ARn + IRO

01101 *ARNn——(IR0) addr= ARn

ARn = ARn - IR0

01110 *ARN++(IR0)%  addr = ARn

ARnN = circ(ARn + IR0)

01111 *ARN——(IR0)%  addr = ARn

ARnN = circ(ARN)— IRO

With preindex (IRO) add
With preindex (IRO) subtract
With preindex (IR0) add and modify

With preindex (IR0) subtract and modify
With postindex (IR0) add and modify
With postindex (IR0) subtract and modify
With postindex (IR0) add and circular

modify

With postindex (IR0) subtract and circular
modify

Legend: addr
ARnNn
circ()
disp

5-6

memory address

auxiliary register ARO-AR7
address in circular addressing
displacement

++ add and modify
- subtract and modify
% where circular addressing is performed



Table 5-2. Indirect Addressing (Continued)

Types of Addressing

Mod Field Syntax Operation Description
Indirect Addressing with Index Register IR1

10000 *+ ARn(IR1) addr = ARn + IR1 With preindex (IR1) add

10001 *~ARN(IR1) addr = ARn — IR1 With preindex (IR1) subtract

10010 *++ARN(IR1) addr = ARn + IR1 With preindex (IR1) add
ARn = ARn + IR1 and modify

10011 *——ARN(IR1) addr = ARn — IR1 With preindex (IR1) subtract
ARn = ARn - IR1 and modify

10100 *ARn++(IR1) addr = ARn With postindex (IR1) add
ARn = ARn + IR1 and modify

10101 *ARn——(IR1) addr = ARn With postindex (IR1) subtract
ARn =ARn -1IR1 and modify

10110 *ARn++(IR1)% addr = ARn With postindex (IR1) add
ARnN = circ(ARN + IR1) and circular modify

10111 *ARn——(IR1)% addr = ARn With postindex (IR1) subtract
ARN = circ(ARn — IR1) and circular modify
Indirect Addressing (Special Cases)

11000 *ARN addr = ARn Indirect

11001 *ARn++(IR0)B addr = ARn With postindex (IR0) add
ARnN = B(ARnN + IR0) and bit-reversed modify

Legend: addr memory address circ() address in circular addressing
ARnN auxiliary register ARO-AR7 ++ add and modify
B where bit-reversed addressing is performed % where circular addressing is performed

Example 5-3, Example 5-4, Example 5-5, Example 5-6, Example 5-7,
Example 5-8, Example 5-9, Example 5-10, Example 5-11, Example 5-12,
Example 5-13, Example 5-14, Example 5-15, Example 5-16,
Example 5-17, Example 5-18, and Example 5-19 exemplify indirect addres-
sing in Table 5-2.

Figure 5-2. Instruction Encoding Format

Most Significant Bit Least Significant Bit

MOD ARnN dispt

5 Bits 3 Bits 0, 5, or 8 Bits
T disp field may not exist in some instructions
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Example 5-3.Indirect With Predisplacement Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARnN) and the displacement (disp). The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn + disp
Assembler Syntax: *+ ARN(disp)
Modification Field: 00000
31 24 23 0
ARnN 4" X X address
31 8 7 0
disp| O 0..0 0 integer —»  (+)
31 0
operand

Example 5—4. Indirect With Predisplacement Subtract

The address of the operand to be fetched is the contents of an auxiliary register
(ARN) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn — disp
Assembler Syntax : *— ARnN(disp)
Modification Field: 00001
31 24 23 0
ARN 4D| X X address
31 8 7 0
disp|] O 0...0 0| integer —p =)
31 i 0
operand

5-8
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Example 5-5. Indirect With Predisplacement Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARnN) and the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.
After the datais fetched, the auxiliary register is updated with the address gen-

erated.
Operation:

Assembler Syntax:

operand address = ARn + disp
ARn = ARn + disp
*++ ARnN (disp)

Modification Field: 00010
31 24 23 0
ARn4P| X X address
31 8 7 0
disp| O 0...0 0| integer —p (+)
31 0
operand

Example 5—6. Indirect With Predisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARnN) minus the displacement (disp). The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1. Af-
terthe data is fetched, the auxiliary register is updated with the address gener-

ated.
Operation:

operand address = ARn — disp
ARn = ARn — disp

Assembler Syntax: *—— ARnN(disp)
Modification Field: 00011
31 24 23 0
ARN 4" X X address
31 8 7 0
disp] O 0..0 0| integer —p (o)
31 0

operand

Addressing 5-9
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Example 5-7.Indirect With Postdisplacement Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
auxiliary register. The displacement s either an eight-bit unsigned integer con-
tained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn + disp
Assembler Syntax: *ARN ++ (disp)
Modification Field: 00100
31 24 23 0

ARnN —PI X X address
31 8 7 0 T

disp| O 0..0 0] integer —p (+) ¢—o

31 v 0

operand

Example 5-8. Indirect With Postdisplacement Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the auxiliary register. The displacement is either an eight-bit unsigned integer
contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn — disp
Assembler Syntax : *ARN —— (disp)
Modification Field: 00101
31 24 23 0

ARnN 4D| X X address
31 8 7 0 T

disp| O 0..0 0| integert—p (-)

31 0

operand

5-10
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Example 5-9.Indirect With Postdisplacement Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an eight-bit un-
signed integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARnN
ARnN = circ(ARN+disp)
Assembler Syntax: *ARN ++ (disp)%
Modification Field: 00110
31 24 23 0
ARnN —Dlx X address
31 8 7 0 (%)
\
disp| O 0..0 0| integer|—» (+) €4
31 0
operand

Example 5-10. Indirect With Postdisplacement Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacement is either an eight-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARnN
ARn = circ(ARNn — disp)
Assembler Syntax: *ARn — (disp)%
Modification Field: 00111
31 24 23 0
ARnN —Dl X X address
31 8 7 0 (%)
disp] O 0..0 0| integer}—p (‘_)
31 0
operand

Addressing 5-11
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Example 5-11. Indirect With Preindex Add

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn + IRm
Assembler Syntax : *+ ARN(IRm)
Modification Field: 01000 ifm=0

10000 ifm=1

31 24 23 0
ARN —bl X X address
31 24 23 0
IRm4P| X X index —»  (+)
31 l 0
operand

Example 5-12. Indirect With Preindex Subtract

The address of the operand to be fetched is the difference of an auxiliary regis-
ter (ARnN) and an index register (IR0 or IR1).

Operation: operand address = ARn — IRm
Assembler Syntax: *~ ARn(IRm)
Modification Field: 01001 ifm=20

10001 ifm=1

31 24 23 0
ARN 4D| X X address
31 24 23 0 ‘
|Rm4’| X X index > (0
31 l 0
operand

5-12
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Example 5-13. Indirect With Preindex Add and Modify

The address of the operand to be fetched is the sum of an auxiliary register
(ARn) and an index register (IR0 or IR1). After the data is fetched, the auxiliary
register is updated with the address generated.

Operation : operand address = ARn + IRm
ARn = ARn + IRm

Assembler Syntax: *++ ARN(IRm)

Modification Field : 01010 ifm=0

10010 ifm=1

31 24 23 0
ARn—Dl X X address
31 24 23 0
IRmM—p{ x X index —»  (+)
31 0
operand

Example 5—-14. Indirect With Preindex Subtract and Modify

The address of the operand to be fetched is the difference between an auxiliary
register (ARn) and an index register (IR0 or IR1). The resulting address be-
comes the new contents of the auxiliary register.

Operation: operand address = ARn — IRm
ARn = ARn — IRm

Assembler Syntax: *~—ARN(IRm)

Modification Field: 01011 ifm=0

10011 ifm=1

31 24 23 0
ARnA.I X X address
31 24 23 0
IRm —¥ X index —» ()
31 0
operand

Addressing 5-13



Types of Addressing

Example 5-15. Indirect With Postindex Add and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added

to the auxiliary register.
Operation:

Assembler Syntax:
Modification Field:

operand address = ARn
ARNn = ARN + IRmM

*ARNn ++ (IRm)

01100 ifm=20
10100 ifm=1

31 24 23 0
ARN —'l X X address
31 24 23 0 T
IRm —»| x X index (+) €9
31 0
operand

Example 5-16. Indirect With Postindex Subtract and Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARnN). After the operand is fetched, the index register (IR0 or IR1) is sub-

tracted from the auxiliary register.

Operation: operand address = ARn
ARn = ARn — IRm
Assembler Syntax: *ARN —— (IRM)
Modification Field: 01101 ifm=20
10101 ifm=1
31 24 23 0
ARnN 4" X X address
31 24 23 0 T
IRm4'| X X index —» (-)
31 0
operand

5-14
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Example 5-17. Indirect With Postindex Add and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARN). After the operand is fetched, the index register (IR0 or IR1) is added
to the auxiliary register. This value is evaluated using circular addressing and
replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARnN = circ(ARn + IRm)

Assembler Syntax: *ARn ++ (IRM)%

Modification Field: 01110 ifm=20

10110 ifm=1

31 24 23 0
ARnN —bl X X address
31 24 23 0 (%)
IRm —» x X index (J‘r)
31 0
operand

Example 5-18. Indirect With Postindex Subtract and Circular Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARnN). After the operand is fetched, the index register (IRO or IR1) is sub-
tracted from the auxiliary register. This result is evaluated using circular ad-
dressing and replaces the contents of the auxiliary register.

Operation: operand address = ARnN
ARnN = circ(ARN — IRmM)

Assembler Syntax: *ARn —— (IRM)%

Modification Field: 01111 ifm=20

10111 ifm =1

31 24 23 0
ARn —¥ x X address
31 24 23 0 (%)
\
IRm —¥ x X index —» (-) <4
31 0
operand
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Example 5-19. Indirect With Postindex Add and Bit-Reversed Modify

The address of the operand to be fetched is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0O) is added to the
auxiliary register. This addition is performed with a reverse-carry propagation
and can be used to yield a bit-reversed (B) address. This value replaces the
contents of the auxiliary register.

Operation: operand address = ARn
ARn = B(ARn + IR0)
Assembler Syntax: *ARn ++ (IRO)B
Modification Field: 11001
31 24 23 0
ARNn — x X address
?
31 24 23 0 (E‘B)
IRm—¥ x X index —> () <
31 0
operand

5.1.4 Short-Immediate Addressing
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In short-immediate addressing, the operand is a 16-bit immediate value con-
tained in the 16 least significant bits of the instruction word (expr). Depending
on the data types assumed for the instruction, the short-immediate operand
can be a two’'s complement integer, an unsigned integer, or a floating-point
number. This is the syntax for this mode:

Syntax: expr
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Example 5-20 illustrates before- and after-instruction data.

Example 5-20. Short-Immediate Addressing

SUBI 1,R0
Before Instruction: After Instruction
RO = Oh RO = OFFFFFFFFh

5.1.5 Long-Immediate Addressing

In long-immediate addressing, the operand is a 24-bit immediate value con-
tained in the 24 least significant bits of the instruction word (expr). This is the
syntax for this mode:

Syntax: expr

Example 5-21 illustrates before- and after-instruction data.

Example 5-21. Long-Immediate Addressing

BR 8000h
Before Instruction: After Instruction:
PC =0h PC =8000h

5.1.6 PC-Relative Addressing

Program counter (PC)-relative addressing is used for branching. It adds the
contents of the 16 or 24 least significant bits of the instruction word to the PC
register. The assembler takes the src (a label or address) specified by the user
and generates a displacement. If the branch is a standard branch, this dis-
placement is equal to [label — (instruction address +1)]. If the branch is a
delayed branch, this displacement is equal to [label — (instruction ad-
dress+3)].

The displacement is stored as a 16-bit or 24-bit signed integer in the least sig-
nificant bits of the instruction word. The displacementis added to the PC during
the pipeline decode phase. Notice that because the PC is incremented by 1
in the fetch phase, the displacement is added to this incremented PC value.

Syntax: expr (src)

Example 5-22 illustrates before- and after-instruction data.

Addressing 5-17
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Example 5-22. PC-Relative Addressing

BU NEWPC ; pc=1001h, NEWPC label = 1005h, displacement = 3

Before Instruction After Instruction
decode phase : execution phase:
PC =1002h PC = 1005h

The 24-bit addressing mode encodes the program control instructions (for ex-
ample, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruction,
the new PC value is derived by adding a 24-bit signed value in the instruction
word with the present PC value. Bit 24 determines the type of branch (D =0
for a standard branch or D = 1 for a delayed branch). Some of the instructions
are encoded in Figure 5-3.

Figure 5-3. Encoding for 24-Bit PC-Relative Addressing Mode
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31

(a) BR, BRD: unconditional branches (standard and delayed)

25 24 23 0

B

1 1000 OIOI displacement I

31

(b) CALL: unconditional subroutine call

24 23 0

B

1 1000 1|0| displacement I

31

(c) RPTB: repeat block

25 2423 0

B

1100 1 OIOI displacement I
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5.2 Groups of Addressing Modes

Six types of addressing (covered in Section 5.1, beginning on page 5-2) form
these four groups of addressing modes:

General addressing modes (G)
Three-operand addressing modes (T)
Parallel addressing modes (P)
Conditional-branch addressing modes (B)

Uooo

5.2.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose in-
structions, such as ADDI, MPYF, and LSH. Such instructions usually have this
form:

dst operation src - dst

where the destination operand is signified by dst and the source operand by
src; operation defines an operation to be performed on the operands using the
general addressing modes. Bits 31-29 are 0, indicating general addressing
mode instructions. Bits 22 and 21 specify the general addressing mode (G)
field, which defines how bits 15-0 are to be interpreted for addressing the src
operand.

Options for bits 22 and 21 (G field) are as follows:

00 register (all CPU registers unless specified otherwise)

01 direct
10 indirect
11 immediate

If the src and dstfields contain register specifications, the value in these fields
contains the CPU register addresses as defined by Table 5-1 on page 5-3.
For the general addressing modes, the following values of ARn are valid:

ARNn,0 < n< 7

Figure 5-4 shows the encoding for the general addressing modes. The nota-
tion mod indicates the modification field that goes with the ARn field. Refer to
Table 5-2 on page 5-6 for further information.

Addressing 5-19
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Figure 5—4. Encoding for General Addressing Modes

31 2928 2322 2120 16 15 1110 87 54 0
00O operation 0 O dst 00000000O0O00O I src
00O operation 0 1 dst direct
000 operation 1 0 dst modn ARN disp
00O operation 1 1 dst immediate

| G | Destination Source Operands

5.2.2 Three-Operand Addressing Modes

5-20

Instructions that use the three-operand addressing modes, such as
ADDI3, LSH3, CMPF3. or XOR3, usually have this form:

SRC1 operation SRC2 - dst

where the destination operand is signified by dstand the source operands by
SRC1 and SRC2; operation defines an operation to be performed. Note that
the 3 can be omitted from three-operand instructions.

Bits 31-29 are set to the value of 001, indicating three-operand addressing
mode instructions. Bits 22 and 21 specify the three-operand addressing mode
(T) field, which defines how bits 15-0 are to be interpreted for addressing the
SRC operands. Bits 15-8 define the SRC1 address; bits 7-0 define the SRC2
address. Options for bits 22 and 21 (T) are as follows:

T SRC1 SRC2
00 register register
01 indirect register
10 register indirect
11 indirect indirect

Figure 5-5 shows the encoding for three-operand addressing. If the SRC1
and SRC2 fields use the same auxiliary register, both addresses are correctly
generated. However, only the value created by the SRC1 field is saved in the
auxiliary register specified. The assembler issues a warning if you specify this
condition.

The following values of ARn and ARm are valid:

ARnO<n< 7
ARMO0O<m<7
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The notation modm or modn indicates that the modification field goes with the
ARm or ARn field, respectively. Refer to Table 5-2 on page 5-6 for further
information.

In indirect addressing of the three-operand addressing mode, displacements
(if used) are allowed to be 0 or 1, and the index registers (IR0 and IR1) can be
used. The displacement of 1 is implied and is not explicitly coded in the instruc-
tion word.

Figure 5-5. Encoding for Three-Operand Addressing Modes

31 29 28 2322 2120 16 15 1312 11 10 87 54 3 2 0
0 01 operation 0 O dst 00O I srcl 000 src2
0 0 1 operation 0o 1 dst modn ARnN 00O src2
001 operation 1 0 dst 000 srcl modn ARnN
0 01 operation 1 1 dst modn I ARnN modm ARmM
| T | | SRC1 | SRC2

5.2.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by || (two vertical bars), al-
low the most parallelism possible. The destination operands are indicated as
d1 and d2, signifying dstl and dst2, respectively (see Figure 5-6). The source
operands, signified by srcl and src2, use the extended-precision registers.
Operation refers to the parallel operation to be performed.

Figure 5—-6. Encoding for Parallel Addressing Modes

31 3029 26 25 2423 2221 1918 16 15 mon 87 32 0

|1 0 Ioperationl P |d1|d2| srcll src2 I modn I ARnN I modm I ARmM I

| src3 | srcd |
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The parallel addressing mode (P) field specifies how the operands are to be
used, that is, whether they are source or destination. The specific relationship
between the P field and the operands is detailed in the description of the indi-
vidual parallel instructions (see Chapter 10). However, the operands are al-
ways encoded in the same way. Bits 31 and 30 are set to the value of 10, indi-
cating parallel addressing mode instructions. Bits 25 and 24 specify the paral-
lel addressing mode (P) field, which defines how bits 21-0 are to be interpreted
for addressing the src operands. Bits 21-19 define the srcl address, bits
18-16 define the src2 address, bits 15-8 the src3 address, and bits 7-0 the
src4 address. The notations modn and modm indicate which modification field
goes with which ARn or ARm (auxiliary register) field, respectively. Following
is a list of the parallel addressing operands:

srcl  0<srcl<7 (extended-precision registers RO—R7)
src2 0<src2<7 (extended-precision registers RO—R7)
dl If 0, dstl is RO. If 1, dstl is R1.

d2 If 0, dst2 is R2. If 1, dst2 is R3.

P 0<P<3

src3  indirect (disp =0, 1, IR0, IR1)

srcd  indirect (disp =0, 1, IR0, IR1)

Uououooo

As in the three-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of 0 or 1 and the use of the index
registers (IR0 and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 5-6 on page 5-21, if the src3
and src4 fields use the same auxiliary register, both addresses are correctly
generated, but only the value created by the src3 field is saved in the auxiliary
register specified. The assembler issues a warning if you specify this condi-
tion.



Groups of Addressing Modes

5.2.4 Conditional-Branch Addressing Modes

Instructions using the conditional-branch addressing modes (Bcond, BcondD,
CALLcond, DBcond, and DBcondD) can perform a variety of conditional oper-
ations. Bits 31-27 are set to the value of 01101, indicating conditional-branch
addressing mode instructions. Bit 26 is set to 0 or 1; 0 selects DBcond, 1 se-
lects Becond. Selection of bit 25 determines the conditional-branch addressing
mode (B). If B =0, register addressing is used; if B = 1, PC-relative addressing
is used. Selection of bit 21 sets the type of branch: D = 0 for a standard branch
or D =1 for a delayed branch. The condition field(cond) specifies the condition
checked to determine what action to take, that is, whether to branch (see
Chapter 10 for a list of condition codes). Figure 5-7 shows the encoding for
conditional-branch addressing.

Figure 5-7. Encoding for Conditional-Branch Addressing Modes

DBcond (D):

31 2726 25 24 22 21 20 16 15 5 4 0
01101 18] ArRn [D cond 00000000000 srcreg
01 1 0 1 1}B ARn |D cond immediate (PC relative)

Bcond (D):

31 2726 25 24 22 21 20 16 15 5 4 0
011 0 1 0BJO0O0OO |D cond OOOOOOOOOOOI srcreg

0 1 1 0 1 0fjBjoo00 |D cond immediate (PC relative)
CALLcond:

31 2726 25 24 22 21 20 16 15 5 4 0
01 1 1 0 OofgBjooo yo cond OOOOOOOOOOOI srcreg
01 1 1 0 ofgBjooo0 jo cond immediate (PC relative)
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5.3 Circular Addressing

5-24

Many algorithms, such as convolution and correlation, require the implemen-
tation of a circular buffer in memory. In convolution and correlation, the circular
buffer is used to implement a sliding window that contains the most recent data
to be processed. As new data is brought in, the new data overwrites the oldest
data. Key to the implementation of a circular buffer is the implementation of a
circular addressing mode. This section describes the circular addressing
mode of the TMS320C3x.

The block size register (BK) specifies the size of the circular buffer. By labeling
the most significant 1 of the BK register as bit N, with N <15, you can find the
address immediately following the bottom of the circular buffer by concatenat-
ing bits 31 through N + 1 of a user-selected register (ARnN) with bits N through
0 of the BK register. The address of the top of the buffer is referred to as the
effective base (EB) and can be found by concatenating bits 31 through N + 1
of ARn, with bits N through O of EB being 0.

Figure 5-8 illustrates the relationships between the block size register (BK),
the auxiliary registers (ARnN), the bottom of the circular buffer, the top of the cir-
cular buffer, and the index into the circular buffer.

A circular buffer of size R must start on a K-bit boundary (that is, the K LSBs
of the starting address of the circular buffer must be 0), where K is an integer
that satisfies 2K> R. Since the value R must be loaded into the BK register,
K = N + 1. For example, a 31-word circular buffer must start at an address
whose five LSBs are 0 (that is, XXXXXXXXXXXXXXXXXXXXXXXXXXX000005),
and the value 31 must be loaded into the BK register.



Figure 5-8. Flowchart for Circular Addressing

New
ARN

Legend: ARN

EB

LSB

Circular Addressing

Most significant 1 at location N, where N< 15

31 N+1 N 0 31 N+ 1 l N 0
ARN H...H L...L 1(NLSBs
BKl o...0 of BK)
31y N+1 N 0 31 l N+1 N l 0
1 (N LSBs
EB H...H
H...H 0...0 of BK)
Top of Buffer + 1 Bottom of Buffer + 1
31 N+1 N 0
Index H...H L...L
. 2
Circular
Addressing
Algorithm
Logic
New s ,
Index 0...0 L'...L
31 N+1 N 0

H...H L...L
auxiliary register n BK blocksize register
effective base H high-order bits
low-order bits L' new low-order bits
least significant bit N bit value

Addressing
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In circular addressing, index refers to the N LSBs of the auxiliary register se-
lected, and step is the quantity being added to or subtracted from the auxiliary
register. Follow these two rules when you use circular addressing:

(1 The step used must be less than or equal to the block size. The step size
is treated as an unsigned integer.

(O The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 <index + step < BK:
index = index + step.

Else if index + step = BK:
index = index + step — BK.

Else if index + step < O:
index = index + step + BK.

Figure 5-9 shows how the circular buffer isimplemented and illustrates the re-
lationship of the quantities generated and the elements in the circular buffer.

Figure 5-9. Circular Buffer Implementation

Address Data
31 N+1 N 0 Top of Circular Buffer
Effective Base (EB) H...H 0...0 - Element 0
MSBs of ARN Element 1
31 N+1 N 0
Auxiliary Register (ARN) H...H L...L - Element (N LSBs of ARn)

MSBs of ARn  LSBs of ARn

31 N+1 N 0 Last Element
H...H LSBs BK — Last Element + 1
MSBs of ARn
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Example 5-23 shows circular addressing operation. Assuming that all ARs
are four bits, let ARO = 0000, and BK = 0110 (block size of 6). Example 5-23
shows a sequence of maodifications and the resulting value of ARO.
Example 5-23 also shows how the pointer steps through the circular queue
with a variety of step sizes (both incrementing and decrementing).

Example 5-23. Circular Addressing

*ARO ++ (5)% ; ARO = 0 (Othvalue)

*ARO ++(2)% ; ARO = 5 (1stvalue)

*ARO——(3)% ; ARO = 1 (2ndvalue)

*ARO++(6)% ; ARO = 4 (3rd value)

*ARO—-% ; ARO = 4  (4th value)

*ARO ; ARO = 3 (6thvalue)

Value Data Address

Oth - Element 0 0
2nd - Element 1 1
Element 2 2
5th — Element 3 3
4th, 3rd - Element 4 4
1st — Element 5 (Last Element) 5
Last Element + 1 6
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Circular addressing is especially useful for the implementation of FIR filters.
Figure 5-10 shows one possible data structure for FIR filters. Note that the ini-
tial value of ARO points to h(N-1), and the initial value of AR1 points to x(0).
Circular addressing is used in the TMS320C3x code for the FIR filter shown

in Example 5-24.

Figure 5-10. Data Structure for FIR Filters

Impulse Response

Input Samples

ARO — h(N-1) X(N-1)
h(N-2) X(N-2)
h(2) X(2)
h(1) X(1)
h(0) X(0) — AR1

Example 5-24. FIR Filter Code Using Circular Addressing

* |nitialization
*

LDI N,BK
LDI H,ARO
LDI X,AR1

*

*

TOP LDF IN, R3
STF R3,*AR1++%

LDF 0,RO
LDF 0,R2
*
* Filter
*
RPTS N-1

: Load block size.

Load pointer to impulse response.
;Load pointer to bottom of input
;sample buffer.

;Read input sample.
;Store with other samples,
;and point to top of buffer.
;Initialize RO.
;Initialize R2.

;Repeat next instruction.

MPYF3 *ARO++%,*AR1++%,R0

I ADDF3 RO,R2,R2
ADDF  RO,R2

STF R2)Y
B TOP

5-28

;Multiply and accumulate.
;Last product accumulated.

;Save result.
;Repeat.
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5.4 Bit-Reversed Addressing

Bit-reversed addressing on the TMS320C3x enhances execution speed and
program memory for FFT algorithms that use a variety of radices. The base
address of bit-reversed addressing must be located on a boundary of the size
of the table. For example, if IR0 = 2"-1, the n LSBs of the base address must
be 0. The base address of the data in memory must be on a 2" boundary. One
auxiliary register points to the physical location of a data value. IRO specifies
one-half the size of the FFT; that is, the value contained in IRO must be equal
to 2"-1, where nis an integer and the FFT size is 2". When you add IR0 to the
auxiliary register by using bit-reversed addressing, addresses are generated
in a bit-reversed fashion.

To illustrate this kind of addressing, assume eight-bit auxiliary registers. Let
AR2 contain the value 0110 0000 (96). This is the base address of the data in
memory. Let IR0 contain the value 0000 1000 (8). Example 5-25 shows a se-
guence of modifications of AR2 and the resulting values of AR2.

Example 5-25. Bit-Reversed Addressing

*AR2++(IR0)B ; AR2 = 0110 0000 (Oth value)
*AR2++(IR0)B ; AR2 = 01101000 (1st value)
*AR2++(IR0)B ; AR2 = 0110 0100 (2nd value)
*AR2++(IR0)B ; AR2 = 0110 1100 (3rd value)
*AR2++(IR0)B ; AR2 = 01100010 (4th value)
*AR2++(IR0)B ; AR2 = 0110 1010 (5th value)
*AR2++(IR0)B ; AR2 = 0110 0110 (6th value)
*AR2 ; AR2 = 0110 1110 (7th value)

Table 5-3 shows the relationship of the index steps and the four LSBs of AR2.
You can find the four LSBs by reversing the bit pattern of the steps.
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Table 5-3. Index Steps and Bit-Reversed Addressing

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15

5-30



System and User Stack Management

5.5 System and User Stack Management

The TMS320C3x provides a dedicated system stack pointer (SP) for building
stacks in memory. The auxiliary registers can also be used to build a variety
of more general linear lists. This section discusses the implementation of the
following types of linear lists:

[J Stack
The stack is a linear list for which all insertions and deletions are made at
one end of the list.

1 Queue
The queueis alinear list for which all insertions are made at one end of the
list and all deletions are made at the other end.

(1 Dequeue

The dequeue is a double-ended queue linear list for which insertions and
deletions are made at either end of the list.

5.5.1 System Stack Pointer

The system stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 5-11). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The sys-
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and
POPF instructions.

Figure 5-11. System Stack Configuration

Low Memory

Bottom of Stack

Sp - Top of Stack

(Free)

High Memory
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5.5.2 Stacks

Stacks can be built from low to high memory or high to low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrement/
decrement and postincrement/decrement modes of modifying the auxiliary
registers (AR). Stack growth from high-to-low memory can be implemented in
two ways:

CASE 1: Stores to memory using *~—ARn to push data onto the stack and
reads from memory using *ARn++ to pop data off the stack.

CASE 2: Stores to memory using *ARn——to push data onto the stack and
reads from memory using * ++ ARn to pop data off the stack.

Figure 5-12 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top of the stack, and in case 2, the AR always points
to the next free location on the stack.

Figure 5-12. Implementations of High-to-Low Memory Stacks
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Case 1 Case 2
Low Memory Low Memory
(Free) ARNn — (Free)
ARn - Top of Stack Top of Stack
Bottom of Stack Bottom of Stack
High Memory High Memory

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3: Stores to memory using *++ARn to push data onto the stack and
reads from memory using *ARn——to pop data off the stack.

CASE 4: Stores to memory using *ARn++ to push data onto the stack and
reads from memory using *~—ARn to pop data off the stack.

Figure 5-13 shows these two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the
stack.
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Figure 5-13. Implementations of Low-to-High Memory Stacks

5,5.3 Queues

Case 3 Case 4
Low Memory Low Memory
Bottom of Stack Bottom of Stack
ARn - Top of Stack Top of Stack
(Free) ARn — (Free)
High Memory High Memory

A queueis like a FIFO. The implementation of queues is based on the manipu-
lation of auxiliary registers. Two auxiliary registers are used: one to mark the
front of the queue from which data is popped (or dequeued) and the other to
mark the rear of the queue where data is pushed. With proper management
of the auxiliary registers, the queue can also be circular. (A queue is circular
when the rear pointer is allowed to point to the beginning of the queue memory
after it has pointed to the end of the queue memory.)
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Chapter 6

Program Flow Control

The TMS320C3x provides a complete set of constructs that facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes operations,
reset, and interrupts. Because programming includes a variety of constructs,
you can select the one suited for your particular application.

Several interlocked operations instructions provide flexible multiprocessor
support and, through the use of external signals, a powerful means of
synchronization. They also guarantee the integrity of the communication and
result in a high-speed operation.

The TMS320C3x supports a nonmaskable external reset signal and a number
of internal and external interrupts. These functions can be programmed for a
particular application.

This chapter discusses the following major topics:

Topic Page
6.1 Repeat MOOES .. ...ttt 6-2
6.2 Delayed BranChes . ......... ...t 6-8
6.3 Calls, Traps,and Returns .......... ... i, 6-10
6.4 Interlocked Operations ...t 6-12
6.5 ResetOperation ... 6-18
6.6 INteImUPLS ... 6-23
6.7 TMS320LC31 Power Management Modes  ..................... 6-36

6-1



Repeat Modes

6.1 Repeat Modes

The repeat modes of the TMS320C3x can implement zero-overhead looping.
For many algorithms, most execution time is spent in an inner kernel of code.
Using the repeat modes allows these time-critical sections of code to be ex-
ecuted in the shortest possible time.

The TMS320C3x provides two instructions to support zero-overhead looping:

[0 RPTB (repeatablock of code). RPTB repeats execution of a block of code
a specified number of times.

(1 RPTS (repeatasingle instruction). RPTS fetches a single instruction once
and then repeats its execution a number of times. Since the instruction is
fetched only once, bus traffic is minimized.

RPTB and RPTS are four-cycle instructions. These four cycles of overhead
occur during the initial execution of the loop. All subsequent executions of the
loop have no overhead (zero cycle).

Three registers (RS, RE, and RC) are associated with the updating of the pro-
gram counter (PC) when it is updated in a repeat mode. Table 6—1 describes
these registers.

Table 6-1. Repeat-Mode Registers
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Register Function

RS Repeat Start Address Register. Holds the address of the first instruc-
tion of the block of code to be repeated.

RE Repeat End Address Register. Holds the address of the last instruc-
tion of the block of code to be repeated.

RC Repeat Count Register. Contains one less than the number of times
the block remains to be repeated. For example, to execute a block
N times, load N-1 into RC.

For correct operation of the repeat modes, you must correctly initialize all of
the above-mentioned registers.
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6.1.1 Repeat-Mode Control Bits
Two bits are important to the operation of RPTB and RPTS:

[ RM bit. The repeat-mode flag (RM) bit in the status register specifies
whether the processor is running in the repeat mode.

B RM =0 indicates standard instruction fetching mode.
B RM =1 indicates repeat-mode instruction fetches.

[d S bit. The S bit is internal to the processor and cannot be programmed,
but this bit is necessary to fully describe the operation of RPTB and RPTS.

B S =0 indicates standard instruction fetches.
B S =1andRM =1 indicates repeat-single instruction fetches.

6.1.2 Repeat-Mode Operation

Information in the repeat-mode registers and associated control bits controls
the modification of the PC during repeat-mode fetches. The repeat modes
compare the contents of the RE register (repeat end address register) with the
PC after the execution of each instruction. If they match and the repeat counter
(RC) is nonnegative, the RC is decremented, the PC is loaded with the repeat
start address, and the processing continues. The fetches and appropriate sta-
tus bits are modified as necessary. Note that the RC is never modified when
the RM flag is 0.

The repeat counter should be loaded with a value one less than the number
of times to execute the block; for example, an RC value of 4 would execute the
block five times. The detailed algorithm for the update of the PC is shown in
Example 6-1.

Note: Maximum Number of Repeats

The maximum number of repeats occurs when RC = 8000 0000h. This re-
sults in 8000 0001h repetitions. The minimum number of repeats occurs
when RC = 0. This results in one repetition.

RE should be greater than or equal to RS (RE = RS). Otherwise, the code
will not repeat even though the RM bit remains set to 1.

By writing a O into the repeat counter or writing 0 into the RM bit of the status
register, you can stop the repeating of the loop before completion.

Program Flow Control 6-3
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Example 6-1. Repeat-Mode Control Algorithm

if RM ==
if S ==
if first time through

fetch instruction from memory
else

; If in repeat mode (RPTB or RPTS)
; If RPTS
. If this is the first fetch
; Fetch instruction from memory
. If not the first fetch

fetch instruction from IR : Fetch instruction from IR
RC-1 - RC ; Decrement RC
ifRC<O0 ; If RC is negative
; Repeat single mode completed
0 - ST(RM) ; Turn off repeat-mode bit
0 -S ; Clear S
PC+1 - PC ; Increment PC
elseif S == ; IfRPTB
fetch instruction from memory ; Fetch instruction from memory
if PC == RE ; If this is the end of the block
RC-1 - RC : Decrement RC
fRC =0 ; If RC is not negative
RS - PC ;. Set PC to start of block
elseifRC < 0 ; If RC is negative
0 - ST(RM) ; Turn off repeat mode bits
0 -S ; Clear S
PC+1 - PC

; Increment PC

6.1.3 RPTB Instruction

The RPTB instruction repeats a block of code a specified number of times.

The number of times to repeat the block is the RC (repeat count) register value
plus one. Because the execution of RPTB does not load the RC, you must load
this register yourself. The RC register must be loaded before the RPTB instruc-

tion is executed. A typical setup of the block repeat operation is shown in
Example 6-2.

Example 6—2.RPTB Operation

LDI 15,RC ; Load repeat counter with 15

RPTB ENDLOOP ;. Execute the block of code
STLOOP ; from STLOOP to ENDLOOP 16 times
ENDLOOP
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Using the repeat-block mode of modifying the PC facilitates analysis of what
would happen in the case of branches within the block. Assume that the next
value of the PC will be either PC + 1 or the contents of the RS register. Itis thus
apparent that this method of block repeat allows much branching within the
repeated block. Execution can go anywhere within the user’s code via inter-
rupts, subroutine calls, etc. For proper modification of the loop counter, the last
instruction of the loop must be fetched. You can stop the repeating of the loop
prior to completion by writing a 0 to the repeat counter or writing a 0 to the RM
bit of the status register.

6.1.4 RPTS Instruction

An RPTS src instruction repeats the instruction following the RPTS src + 1
times. Repeats of a single instruction initiated by RPTS are not interruptible,
because the RPTS fetches the instruction word only once and then keeps it
in the instruction register for reuse. An interrupt would cause the instruction
word to be lost. Refetching the instruction word from the instruction register
reduces memory accesses and, in effect, acts as a one-word program cache.
If you need a single instruction that is repeatable and interruptible, you can use
the RPTB instruction.

When RPTS srcis executed, the following sequence of operations occurs:

1) PC+1 - RS

2) PC+1 - RE

3) 1 - RM status register bit

4) 1 - Shit

5) src - RC (repeat count register)

The RPTS instruction loads all registers and mode bits necessary for the oper-
ation of the single-instruction repeat mode. Step 1 loads the start address of
the block into RS. Step 2 loads the end address into the RE (end address of
the block). Since this is a repeat of a single instruction, the start address and
the end address are the same. Step 3 sets the status register to indicate the
repeat mode of operation. Step 4 indicates that this is the repeat single-instruc-
tion mode of operation. Step 5 loads src into RC.
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6.1.5 Repeat-Mode Restrictions

Since the block repeat modes modify the program counter, other instructions
cannot modify the program counter at the same time. There are two restric-
tions:

(1 The lastinstruction in the block (or the only instruction in a block of
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAPcond,
RETIcond, RETScond, IDLE, RPTB, or RPTS. Example 6—-3 shows an in-
correctly placed standard branch.

(1 None of the last four instructions from the bottom of the block (or the only
instruction in a block of size 1) can be a BcondD, BRD, or DBcondD.
Example 6—4 shows an incorrectly placed delayed branch.

Note: Rule Violation

If either of these rules is violated, the PC will be undefined.

Example 6-3.Incorrectly Placed Standard Branch

LDI 15,RC ; Load repeat counter with 15

RPTB  ENDLOOP ; Execute the block of code
STLOOP ; from STLOOP to ENDLOOP 16 times
ENDLOOP BR 00PS . This branch violates rule 1

Example 6—4.Incorrectly Placed Delayed Branch

LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOOP ; Execute block of code
STLOOP ; from STLOOP to ENDLOOP 16 times
BRD OO0OPS : This branch violates rule 2
ADDF
MPYF

ENDLOOP SUBF

6.1.6 RC Register Value After Repeat Mode Completes

For the RPTB instruction, the RC register normally decrements to 0000 0000h
unlessthe block sizeis 1; inthat case, it decrements to FFFF FFFFh. However,
if the RPTB instruction using a block size of 1 has a pipeline conflict in the
instruction being executed, the RC register decrements to 0000 0000h.
Example 6-5 illustrates a pipeline conflict. Refer to Chapter 9 for pipeline in-
formation.
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RPTS normally decrements the RC register to FFFF FFFFh. However, if the
RPTS has a pipeline conflict on the last cycle, the RC register decrements to
0000 0000h.

Note: Number of Repetitions

In any case, the number of repetitions is always RC + 1.

Pipeline Conflict in an RPTB Instruction

EDC .word40000000h; The program is located in 4000000Fh

LDP EDC
LDI @EDC,ARO
LDl 15,RC ; Load repeat counter with 15

RPTB ENDLOOP ; Execute block of code
ENDLOOPLDI *ARO,RO ; The *ARO read conflicts with
; the instruction fetching
; Then RC decrements to O
; If cache is enabled, RC decrements
: to FFFF FFFFh

6.1.7 Nested Block Repeats

Block repeats (RPTB) can be nested. Since the registers RS, RE, RC, and ST
control the repeat-mode status, these registers must be saved and restored
in order to nest block repeats. For example, if you write an interrupt service
routine that requires the use of RPTB, it is possible that the interrupt asso-
ciated with the routine may occur during repeated execution of a block. The
interrupt service routine can check the RM bit to determine whether the block
repeat mode is active. If this RM is set, the interrupt routine should save ST,
RS, RE, and RC, in that order. The interrupt routine can then perform a block
repeat. Before returning to the interrupted routine, the interrupt routine should
restore RC, RE, RS, and ST, inthat order. If the RM bitis not set, you don’t need
to save and restore these registers.

The order in which the registers are saved/restored is important to guarantee
correct operation. The ST register should be restored last, after the RC, RE,
and RS registers. ST should be restored after restoring RC, because the RM
bit cannot be setto 1 ifthe RC registeris 0 or—1. For this reason, if you execute
a POP ST instruction (with ST (RM bit) = 1) while RC = 0, the POP instruction
recovers all the ST register bits but not the RM bit that stays at O (repeat mode
disabled). Also, RS and RE should be correctly set before you activate the re-
peat mode.

The RPTS instruction can be used in a block repeat loop if the proper registers
are saved.
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6.2 Delayed Branches

6-8

The TMS320C3x offers three main types of branching: standard, delayed, and
conditional delayed.

Standard branches empty the pipeline before performing the branch; this
guarantees correct management of the program counter and results in a
TMS320C3x branch taking four cycles. Included in this class are repeats,
calls, returns, and traps.

Delayed branches on the TMS320C3x do not empty the pipeline, but rather
guarantee that the next three instructions will execute before the program
counter is modified by the branch. The result is a branch that requires only a
single cycle, thus making the speed of the delayed branch very close to that
of the optimal block repeat modes of the TMS320C3x. However, unlike block
repeat modes, delayed branches may be used in situations other than looping.
Every delayed branch has a standard branch counterpart that is used when
a delayed branch cannot be used. The delayed branches of the TMS320C3x
are BcondD, BRD, and DBcondD.

Conditional delayed branches  use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend on
the instructions following the delayed branch. The condition flags are set by
a previous instruction only when the destination register is one of the exten-
ded-precision registers (R0O-R7) or when one of the compare instructions
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed
branches guarantee that the next three instructions will execute, regardless
of other pipeline conflicts.

When a delayed branch is fetched, it remains pending until the three subse-
guent instructions are executed. None of the three instructions that follow a
delayed branch can be any of the following (see Example 6-6):

Bcond DBcondD
BcondD IDLE

BR RETIcond
BRD RETScond
CALL RPTB
CALLcond RPTS
DBcond TRAPcond

Delayed branches disable interrupts until the three instructions following the
delayed branch are completed. This is independent of whether the branch is
taken.
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Note: Incorrect Use of Delayed Branches

If delayed branches are used incorrectly, the PC will be undefined.

Example 6—6.Incorrectly Placed Delayed Branches

B1: BD L1
NOP
NOP
B2: B L2 ; This branch is incorrectly placed.
NOP
NOP
NOP
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6.3 Calls, Traps, and Returns

6-10

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
on the stack before changing the PC’s contents. The stack thus provides a re-
turn using either the RETScond or RETIcond instruction.

a

The CALL instruction places the next PC value on the stack and places
the src (source) operand into the PC. The srcis a 24-bit immediate value.
Figure 6—1 shows CALL response timing.

The CALL cond instruction is similar to the CALL instruction (above) ex-
cept for the following:

B It executes only if a specific condition is true (the 20 conditions—in-
cluding unconditional—are listed in Table 10-9 on page -13).

W The srcis either a PC-relative displacement or is in register-addres-
sing mode.

The condition flags are set by a previous instruction only when the destina-
tion register is one of the extended-precision registers (RO—R7) or when
one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or
TSTB3) is executed.

The TRAP cond instruction also executes only if a specific condition is true
(same conditions as for the CALLcond instruction). When executing, the
following actions occur:

1) Interrupts are disabled with O written to bit GIE of the ST.
2) The next PC value is stored on the stack.

3) A vector is retrieved from one of the addresses 20h to 3Fh and is
loaded into the PC.

The particular address is identified by a trap number in the instruction.
Using the RETIcond to return re-enables interrupts.

RETScond returns execution from any of the above three instructions by
popping the top of the stack to the PC. To execute, the specified condition
must be true. Conditions are the same as for the CALLcond instruction.

RETIcond returns from traps or calls like the RETScond (above) with the
addition that RETlcond also sets the GIE bit of the status register, which
enables all interrupts whose enabling bit is set to 1. Conditions are the
same as for the CALLcond instruction.
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Calls and traps accomplish the same functional task (that is, a subfunction is
called and executed, and control is then returned to the calling function). Traps
offer several advantages. Among them are the following:

(1 Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Thus, traps are
generally terminated with a RETIcond instruction to re-enable interrupts.

[d You can use traps to indirectly call functions. This is particularly beneficial
when a kernel of code contains the basic subfunctions to be used by appli-
cations. In this case, the functions in the kernel can be modified and relo-
cated without the need to recompile each application.

Figure 6-1. CALL Response Timing

Fetch CALL Decode CALL Read CALL Execute CALL Fetch First
(Store PC Subroutine
‘ ‘ ‘ ‘ on Stack) Instruction ‘

H3 _/_\_/_\_/_\_/_\_/_\_/_\_
ADDR / Vector Address X First Instruction
\ Address >

Data { PC Inst 1
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6.4 Interlocked Operations

Among the most common multiprocessing configurations is the sharing of
global memory by multiple processors. In order for multiple processors to ac-
cess this global memory and share data in a coherent manner, some sort of
arbitration or handshaking is necessary. This requirement for arbitration is the
purpose of the TMS320C3x interlocked operations.

The TMS320C3x provides a flexible means of multiprocessor support with five
instructions, referred to as interlocked operations. Through the use of external
signals, these instructions provide powerful synchronization mechanisms.
They also guarantee the integrity of the communication and result in a high-
speed operation. The interlocked-operation instruction group is listed in
Table 6-2.

Table 6-2. Interlocked Operations
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Mnemonic  Description Operation
LDFI Load floating-point value into a register, Signal interlocked
interlocked src — dst
LDII Load integer into a register, interlocked Signal interlocked
src — dst
SIGI Signal, interlocked Signal interlocked
Clear interlock
STFI Store floating-point value to memory, src — dst
interlocked Clear interlock
STII Store integer to memory, interlocked src — dst

Clear interlock

The interlocked operations use the two external flag pins, XFO and XF1. XFO
must be configured as an output pin; XF1 is an input pin. When configured in
this manner, XFO signals an interlock operation request, and XF1 acts as an
acknowledge signal for the requested interlocked operation. In this mode, XFO
and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores is the same as for stan-
dard loads and stores. The interlocked loads and stores may be extended like
standard accesses by using the appropriate ready signal (RDYjnt or XRDYjpy).
(RDYjnt and XRDYjqt are a combination of external ready input and software
wait states. Refer to Chapter 7, External Bus Operation, for more information
on ready generation.)
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The LDFI and LDII instructions perform the following actions:

1) Simultaneously set XFO to 0 and begin a read cycle. The timing of XFO is
similar to that of the address bus during a read cycle.

2) Execute an LDF or LDI instruction and extend the read cycle until XF1 is
set to 0 and a ready (RDYijnt of XRDY ) is signaled.

3) Leave XFO setto 0 and end the read cycle.

The read/write operation is identical to any other read/write cycle except for
the special use of XF0 and XF1. The src operand for LDFI and LDII is always
a direct or indirect memory address. XFO is set to 0 only if the src is located
off-chip; that is, STRB, MSTRB, or IOSTRB is active, or the srcis one of the
on-chip peripherals. If on-chip memory is accessed, then XFO is not asserted,
and the operation is as an LDF or LDI from internal memory.

The STFI and STII instructions perform the following operations:

1) Simultaneously set XFO to 1 and begin a write cycle. The timing of XFO0 is
similar to that of the address bus during a write cycle.

2) Execute an STF or STl instruction and extend the write cycle until a ready
(RDYjnt or XRDYjpy) is signaled.

As in the case for LDFI and LDII, the dst of STFI and STII affects XFO. If dst
is located off-chip (STRB, MSTRB, or IOSTRB is active) or the dstis one of
the on-chip peripherals, XFO0 is set to 1. If on-chip memory is accessed, then
XFO is not asserted and the operations are as an STF or STI to internal
memory.

The SIGI instruction functions as follows:

1) Sets XFOto 0.
2) Idles until XF1 is setto 0.
3) Sets XFO to 1 and ends the operation.

While the LDFI, LDII, and SIGI instructions are waiting for XF1 to be set to 0,
you can interrupt them. LDFI and LDII require a ready signal (Wim or'
XRDYijnt) in order to be interrupted. Because interrupts are taken on bus cycle
boundaries (see Section 6.6), an interrupt may be taken any time after a valid
ready. This allows you to implement protection mechanisms against deadlock
conditions by interrupting an interlocked load that has taken too long. Upon re-
turn from the interrupt, the next instruction is executed. The STFI and STII
instructions are not interruptible. Since the STFI and STII instructions com-
plete when ready is signaled, the delay until an interrupt can occur is the same
as for any other instruction.
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Interlocked operations can be used to implement a busy-waiting loop, to
manipulate a multiprocessor counter, to implement a simple semaphore
mechanism, or to perform synchronization between two TMS320C3xs. The
following examples illustrate the usefulness of the interlocked operations in-
structions.

Example 6—7 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waiting loop can be used as shown.

Example 6-7.Busy-Waiting Loop

LDI 1,RO ; Put1into RO
L1: LDl  @LOCK,R1 ; Interlocked operation begun
; Contents of LOCK - R1
ST RO,@LOCK ; PutRO (=1)into LOCK, XFO =1
; Interlocked operation ended
BNz L1 ; Keep trying until LOCK =0

Example 6—8 shows how a location COUNT may contain a count of the num-
ber of times a particular operation needs to be performed. This operation may
be performed by any processor in the system. If the count is 0, the processor
waits until it is nonzero before beginning processing. The example also shows
the algorithm for modifying COUNT correctly.

Example 6—8. Multiprocessor Counter Manipulation
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CT: OR 4,10F ; XFO=1
; Interlocked operation ended
LDII @COUNT,R1 ; Interlocked operation begun
; Contents of COUNT - R1
Bz CT ; If COUNT = 0, keep trying
SuBl 1,R1 ; Decrement R1 (= COUNT)
STII R1,@COUNT ; Update COUNT, XFO =1

; Interlocked operation ended

Figure 6-2 illustrates multiple TMS320C3xs sharing global memory and using
the interlocked instructions as in Example 6-9, Example 6-10, and
Example 6-11.
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Figure 6-2. Multiple TMS320C3xs Sharing Global Memory
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It might sometimes be necessary for several processors to access some
shared data or other common resources. The portion of code that must access
the shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only non-negative integer values.
Two primitive, indivisible operations are defined on semaphores (with S being
a semaphore):

V(S): S+1 - S
P(S): P: if(S==0),gotoP
elses-1 - S

Indivisibility of V(S) and P(S) means that when these processes access and
modify the semaphore S, they are the only processes accessing and modify-
ing S.

To enter a critical section, a P operation is performed on a common sema-
phore, say S (S is initialized to 1). The first processor performing P(S) will be
able to enter its critical section. All other processors are blocked because S
has become 0. After leaving its critical section, the processor performs a V(S),
thus allowing another processor to execute P(S) successfully.
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The TMS320C3x code for V(S) is shown in Example 6-9; code for P(S) is
shown in Example 6—-10. Compare the code in Example 6—10 to the code in
Example 6-8.

Example 6-9.Implementation of V(S)

V: LDl @S,RO ; Interlocked read of S begins (XFO = 0)
; Contents of S - RO
ADDI 1,RO ; Increment RO (= S)
STII RO,@S ; Update S, end interlock (XFO = 0)

Example 6—10. Implementation of P(S)

P: OR 4,10F ; End interlock (XFO = 1)
NOP ; Avoid potential pipeline conflicts when
; executing out of cache, on-chip memory
; Or zero wait-state memory

LDIl @S,RO ; Interlocked read of S begins
; Contents of S - RO
Bz P ; If S=0, goto P and try again
suBl  1,RO ; Decrement RO (= S)
STII RO,@S ; Update S, end interlock (XFO = 1)

The SIGI operation can synchronize, at an instruction level, multiple
TMS320C3xs. Consider two processors connected as shown in Figure 6-3.
The code for the two processors is shown in Example 6-11.

Figure 6-3. Zero-Logic Interconnect of TMS320C3xs

TMS320C3x #1 TMS320C3x #2
XFO > XF1
XF1 |« XEO

Processor #1 runs until it executes the SIGI. It then waits until processor #2
executes a SIGI. At this point, the two processors have synchronized and con-
tinue execution.

6-16



Interlocked Operations

Example 6-11. Code to Synchronize Two TMS320C3xs at the Software Level

Time  Code for TMS320C3x #1 Code for TMS320C3x #2

O [ ] [ ]
[ ] [ ]
[ ] [ ]
SIGI ®
[ J
[ J
| °
(WAIT) °
[ J
[ ]
) °

©® <«—— Synchronization Occurs — S|Gl
[ J [ J
[ J [ J
l . .
N [ ] [ ]
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6.5 Reset Operation
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The TMS320C3x supports a nonmaskable external reset signal (RESET),
which is used to perform system reset. This section discusses the reset opera-
tion.

At powerup, the state of the TMS320C3x processor is undefined. You can use
the RESET signal to place the processor in a known state. This signal must
be asserted low for ten or more H1 clock cycles to guarantee a system reset.
H1 is an output clock signal generated by the TMS320C3x (see Chapter 13
for more information).

Reset affects the other pins on the device in either a synchronous or asynchro-
nous manner. The synchronous reset is gated by the TMS320C3x’s internal
clocks. The asynchronous reset directly affects the pins and is faster than the
synchronous reset. Table 6-3 shows the state of the TMS320C3x’s pins after
RESET = 0. Each pin is described according to whether the pin is reset syn-
chronously or asynchronously.
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Table 6-3. Pin Operation at Reset

Signal # Pins Operation at Reset
Primary Interface (61 Pins)
D31-DO0 32 Synchronous reset; placed in high-impedance state
A23-A0 24 Synchronous reset; placed in high-impedance state
RIW 1 Synchronous reset; deasserted by going to a high level
STRB 1 Synchronous reset; deasserted by going to a high level
RDY 1 Reset has no effect.
HOLD 1 Reset has no effect.
HOLDA 1 Reset has no effect.
Expansion Interface (49 Pins) 1
XD31-XDO0 32 Synchronous reset; placed in high-impedance state
XA12-XA0 13 Synchronous reset; placed in high-impedance state
XRIW 1 Synchronous reset; placed in high-impedance state
MSTRB 1 Synchronous reset; deasserted by going to a high level
IOSTRB 1 Synchronous reset; deasserted by going to a high level
XRDY 1 Reset has no effect.
Control Signals (9 Pins)
RESET 1 Reset input pin
INT3—-INTO 4 Reset has no effect.
IACK 1 Synchronous reset; deasserted by going to a high level
MC/MP > or 1 Reset has no effect.
MCBL/MP
XF1-XFO 2 Asynchronous reset; placed in high-impedance state

T Present only on TMS320C30
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Table 6-3. Pin Operation at Reset (Continued)

Signal # Pins Operation at Reset
Serial Port 0 Signals (6 Pins)
CLKXO0 1 Asynchronous reset; placed in high-impedance state
DXO0 1 Asynchronous reset; placed in high-impedance state
FSX0 1 Asynchronous reset; placed in high-impedance state
CLKRO 1 Asynchronous reset; placed in high-impedance state
DRO 1 Asynchronous reset; placed in high-impedance state
FSRO 1 Asynchronous reset; placed in high-impedance state
Serial Port 1 Signals (6 Pins) t
CLKX1 1 Asynchronous reset; placed in high-impedance state
DX1 1 Asynchronous reset; placed in high-impedance state
FSX1 1 Asynchronous reset; placed in high-impedance state
CLKR1 1 Asynchronous reset; placed in high-impedance state
DR1 1 Asynchronous reset; placed in high-impedance state
FSR1 1 Asynchronous reset; placed in high-impedance state
Timer 0 Signal (1 Pin)
TCLKO 1 Asynchronous reset; placed in high-impedance state
Timer 1 Signal (1 Pin)
TCLK1 1 Asynchronous reset; placed in high-impedance state
Supply and Oscillator Signals (29 Pins)
Vpp (3-0) 4 Reset has no effect.
IODVpp (1,0) 2 Reset has no effect.
ADVpp (1,0) 2 Reset has no effect.
PDVpp 1 Reset has no effect.
DDVpp (1,0) 2 Reset has no effect.
MDVpp 1 Reset has no effect.
Vgg (3-0) 4 Reset has no effect.

T Present only on TMS320C30
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Table 6-3. Pin Operation at Reset (Continued)

Signal # Pins Operation at Reset

DVgs (3-0) 2 Reset has no effect.

CVss (1,0) 2 Reset has no effect.

IVss 1 Reset has no effect.

Veep 1 Reset has no effect.

SUBS 1 Reset has no effect.

X1 1 Reset has no effect.

X2/CLKIN 1 Reset has no effect.

H1 1 Synchronous reset. Will go to its initial state when RESET makes a 1t0 0
transition. See Chapter 13.

H3 1 Synchronous reset. Will go to its initial state when RESET makesa1to0
transition. See Chapter 13.

Emulation, Test, and Reserved (18 Pins)

EMUO 1 Undefined

EMU1 1 Undefined

EMU2 1 Undefined

EMU3 1 Undefined

EMU4/SHZ 1 Undefined

EMUsT 1 Undefined

EMU6T 1 Undefined

RSVOT 1 Undefined

RSV1T 1 Undefined

Rsv2t 1 Undefined

RSV3T 1 Undefined

RSv4T 1 Undefined

RSV5T 1 Undefined

RSV6T 1 Undefined

RSv7t 1 Undefined

Rsvaf 1 Undefined

RSVOT 1 Undefined

Rsviot 1 Undefined

1 Present only on TMS320C30
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At system reset, the following additional operations are performed:

(1 Theperipherals are reset. Thisis a synchronous operation. The peripheral
reset is described in Chapter 8.

[d Theexternal bus control registers are reset. The reset values of the control
registers are described in Chapter 7.

[ The following CPU registers are loaded with O:

ST (CPU status register)

IE (CPU/DMA interrupt enable flags)
IF (CPU interrupt flags)

IOF (1/O flags)

(1 Theresetvector is read from memory location Oh and loaded into the PC.
This vector contains the start address of the system reset routine.

(1 Execution begins. Refer to Example 11-1 on page 11-3 for an illustration
of a processor initialization routine.

Multiple TMS320C3xs driven by the same system clock may be reset and syn-
chronized. Whenthe 1 to O transition of RESET occurs, the processor is placed
on a well-defined internal phase, and all of the TMS320C3xs will come up on
the same internal phase.

Unless otherwise specified, all registers are undefined after reset.



6.6 Interrupts

Interrupts

The TMS320C3x supports multiple internal and external interrupts, which can
be used for a variety of applications. This section discusses the operation of
these interrupts.

A functional diagram of the logic used to implement the external interrupt
inputs is shown in Figure 6—4; the logic for internal interrupts is similar. Addi-
tional information regarding internal interrupts can be found in Chapter 8.

Figure 6—4. Interrupt Logic Functional Diagram

Internal Interrupt
Set Signal EINTN(CPU)

Interrupt GIE(CPU)

Flag (n)

INTh —

CLK

Set Q Internal To
DQ DQ Interrupt |—  Control

Processor Section
CLK

H1

H3

CLK
’— RESET

Internal Interrupt
Clear/Acknowledge GIE(DMA)
Signal

=

EINTR(DMA)

External interrupts are synchronized internally, as illustrated by the three flip-
flops clocked by H1 and H3. Once synchronized, the interrupt input will set the
corresponding interrupt flag register (IF) bit if the interrupt is active.

Externalinterrupts are latched internally on the falling edge of H1 (see Chapter
13 for timing information). An external interrupt must be held low for at least
one H1/H3 cycle to be recognized by the TMS320C3x. Interrupts should be
held low for only one or two H1 falling edges. If the interrupt is held low for three
or more H1 falling edges, multiple interrupts may be recognized.

6.6.1 Interrupt Vector Table

Table 6—4 and Table 6-5 contain the interrupt vectors. In the microprocessor
mode of the TMS320C30 and the TMS320C31 (Table 6—4) and the microcom-
puter mode of the TMS320C31 (Table 6-5), the interrupt vectors contain the
addresses of interrupt service routines that should start executing when an in-
terrupt occurs. On the other hand, in the microcomputer/boot loader mode of
the TMS320C31, the interrupt vector contains a branch instruction to the start
of the interrupt service routine.
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Table 6—4. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31
Microprocessor Mode

Address Routine

00h RESET

01h INTO

02h INT1

03h INT2

04h INT3

05h XINTO

06h RINTO

07h XINTLT

08h RINT1T

09h TINTO

OAh TINT1

0Bh DINT

0Ch

1Fh Reserved

20h TRAP O

3Bh TRAP 27

3Ch TRAP 28 (Reserved)
3Dh TRAP 29 (Reserved)
3Eh TRAP 30 (Reserved)
3Fh TRAP 31 (Reserved)

T Reserved on TMS320C31
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Table 6-5. Reset, Interrupt, and Trap-Vector Locations for the TMS320C31 Microcomputer
Boot Mode

Address Description
809FC1 INTO
809FC2 INT1
809FC3 INT2
809FC4 INT3
809FC5 XINTO
809FC6 RINTO
809FC7 Reserved
809FC8 Reserved
809FC9 TINTO
809FCA TINTL
809FCB DINTO

809FCC-809FDF Reserved

809FEO TRAPO
809FE1 TRAP1
809FFB TRAP27

809FFC—-809FFF Reserved

6.6.2 Interrupt Prioritization

When two interrupts occur in the same clock cycle or when two previously
received interrupts are waiting to be serviced, one interrupt will be serviced be-
fore the other. The CPU handles this prioritization by servicing the interrupt
with the least priority. Table 6—-6 shows the priorities assigned to the reset and
interrupt vectors.

The CPU controls all prioritization of interrupts (see Table 6—6 for reset and in-
terrupt vector locations and priorities).
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Table 6-6. Reset and Interrupt Vector Priorities

Reset or  Vector

Interrupt  Location  Priority Function

RESET Oh 0 External reset signal input on the RESET pin

INTO 1h 1 External interrupt on the INTO pin

INTL 2h 2 External interrupt on the INT1 pin

INT2 3h 3 External interrupt on the INT2 pin

INT3 4h 4 External interrupt on the INT3 pin

XINTO 5h 5 Internal interrupt generated when serial-port 0 transmit buffer is empty
RINTO 6h 6 Internal interrupt generated when serial-port 0 receive buffer is full
XINT1T 7h 7 Internal interrupt generated when serial-port 1 transmit buffer is empty
RINT1T 8h 8 Internal interrupt generated when serial-port 1 receive buffer is full
TINTO 9h 9 Internal interrupt generated by timer 0

TINT1 OAh 10 Internal interrupt generated by timer 1

DINT 0Bh 11 Internal interrupt generated by DMA controller O

T Reserved on TMS320C31

6.6.3
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Interrupt Control Bits

Four CPU registers contain bits used to control interrupt operation:

a

Status Register (ST)

The CPU global interrupt enable bit (GIE) located in the CPU status regis-
ter (ST) controls all maskable CPU interrupts. When this bitis setto 1, the
CPU responds to an enabled interrupt. When this bit is cleared to 0, all
CPU interrupts are disabled. Refer to subsection 3.1.7 on page 3-4 for
more information.

CPU/DMA Interrupt Enable Register (IE)

This register individually enables/disables CPU and DMA (external, serial
port, and timer) interrupts. Refer to subsection 3.1.8 on page 3-7 for more
information.

CPU Interrupt Flag Register (IF)

This register contains interrupt flag bits that indicate the corresponding in-
terrupt is set. Refer to subsection 3.1.9 on page 3-9 for more information.
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(1 DMA Global Control Register

Interrupts to the DMA are controlled by the synchronization bits of the
DMA global control register. DMA interrupts are independent of the ST
(GIE) bit.

Interrupt Flag Register Behavior

When an external interrupt occurs, the corresponding bit of the IF register is
setto 1. When the CPU or DMA controller processes this interrupt, the corre-
sponding interrupt flag bit is cleared by the internal interrupt acknowledge sig-
nal. It should be noted, however, that if INTn is still low when the interrupt ac-
knowledge signal occurs, the interrupt flag bit will be cleared for only one cycle
and then set again because INTn is still low. Accordingly, itis theoretically pos-
sible that, depending on when the IF register is read, this bit may be 0 even
though INTn is 0. When the TMS320C3x is reset, 0 is written to the interrupt
flag register, thereby clearing all pending interrupts.

The interrupt flag register bits may be read and written under software control.
Writing a 1 to an IF register bit sets the associated interrupt flag to 1. Similarly,
writing a 0 resets the corresponding interrupt flag to 0. In this way, all interrupts
may be triggered and/or cleared through software. Since the interrupt flags
may be read, the interrupt pins may be polled in software when an interrupt-dri-
ven interface is not required.

Internal interrupts operate in a similar manner. In the IF register, the bit corre-
sponding to an internal interrupt may be read and written through software.
Writing a 1 sets the interrupt latch; writing a O clears it. All internal interrupts
are one H1/H3 cycle in length.

The CPU global interrupt enable bit (GIE), located in the CPU status register
(ST), controls all CPU interrupts. All DMA interrupts are controlled by the DMA
global interrupt enable bit, which is not dependent on ST(GIE) and is local to
the DMA. The DMA global interrupt enable bit is dependent, in part, on the
state of the DMA SYNC bits. It is not directly accessible through software (see
Chapter 8). The AND of the interrupt flag bit and the interrupt enables is then
connected to the interrupt processor.

6.6.4 Interrupt Processing

The 'C3x allows the CPU and DMA coprocessor to respond to and process in-
terrupts in parallel. Figure 6-5 on page 6-28 shows interrupt processing flow;
for exact sequence, refer to Table 6—7 on page 6-29.

Program Flow Control 6-27



Interrupts

Figure 6-5. Interrupt Processing

Is an Enabled
Interrupt Set
2

Yes

If Enabled, If Enabled,
Interrupt Is Interrupt Is
a CPU Interrupt a DMA Interrupt
Disable Interrupts
Clear Interrupt Fla
GIE- 0 ; g
DMA Proceeds According
Clear Interrupt Flag to SYNC Bits
v l
PC - *(++SP) DMA Continues

Complete All Fetched Instructions

PC ~ Interrupt Vector

CPU Starts Executing ISR Routine

Note: CPU and DMA Interrupts

CPU and DMA interrupts are acknowledged (responded to by the CPU) on
instruction fetch boundaries only. If instruction fetches are halted because
of pipeline conflicts or execution of RPTS loops, CPU and DMA interrupts are
not acknowledged until instruction fetching continues.
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Table 6-7. Interrupt Latency

Cycle Description Fetch Decode Read Execute

1 Recognize interrupt in single-cycle fetched prog prog a proga-1 prog a—2
(prog a + 1) instruction. a+1

2 Temporarily disable interrupt until GIE is cleared. — interrupt  prog a prog a-1

3 Read the interrupt vector table. — — interrupt  prog a

4 Clear Interrupt flag; clear GIE bit; store return address — — — interrupt
to stack.

5 Pipeline begins to fill with ISR instruction. isrl — — —

6 Pipeline continues to fill with ISR instruction. isr2 isrl — —

7 Pipeline continues to fill with ISR instruction. isr3 isr2 isrl —

8 Execute first instruction of interrupt service routine.  isr4 isr3 isr2 isrl

Inthe CPU interrupt processing cycle (left side of Figure 6-5), the correspond-
ing interrupt flag in the IF register is cleared, and interrupts are globally dis-
abled (GIE = 0). The CPU completes all fetched instructions. The current PC
is pushed to the top of the stack. The interrupt vector is fetched and loaded into
the PC, and the CPU starts executing the first instruction in the interrupt ser-
vice routine (ISR).

If you wish to make the interrupt service routine interruptible, you can set the
GIE bit to 1 after entering the ISR.

The DMA interrupt processing cycle (right side of Figure 6-5) is similar to that
of the CPU. After the pertinent interrupt flag is cleared, the DMA coprocessor
proceeds according to the status of the SYNC bits in the DMA coprocessor
global control register.

The interrupt acknowledge (IACK) instruction can be used to signal externally
that an interrupt has been serviced. If external memory is specified in the oper-
and, IACK drives the IACK pin and performs a dummy read. The read is per-
formed from the address specified by the IACK instruction operand. IACK is
typically placed in the early portion of an interrupt service routine. However,
it may be better suited at the end of the interrupt service routine or be totally
unnecessary.

Note the following:

[ Interrupts are disabled during an RPTS and during a delayed branch (until
the three instructions following a delayed branch are completed). Inter-
rupts are held until after the branch.
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[ When an interrupt occurs, instructions currently in the decode and read
phases continue regular execution. This is not the case for an instruction
in the fetch phase:

W Iftheinterrupt occurs in the first cycle of the fetch of an instruction, the
fetched instruction is discarded (not executed), and the address of
that instruction is pushed to the top of the system stack.

W Iftheinterrupt occurs after first cycle of the fetch (in the case of a multi-
cycle fetch due to wait states), that instruction is executed, and the ad-
dress of the next instruction to be fetched is pushed to the top of the
system stack.

6.6.5 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the
interrupt to the execution of the first interrupt service routine (ISR) instruction,
is at least eight cycles. This is explained in Table 6—7 on page 6-29, where the
interrupt is treated as an instruction. It assumed that all of the instructions are
single-cycle instructions.

6.6.6 CPU/DMA Interaction

If the DMA is not using interrupts for synchronization of transfers, it will not be
affected by the processing of the CPU interrupts. Detected interrupts are re-
sponded to by the CPU and DMA on instruction fetch boundaries only. Since
instruction fetches are halted due to pipeline conflicts or when executing
instructions in an RPTS loop, interrupts will not be responded to until instruc-
tion fetching continues. It is therefore possible to interrupt the CPU and DMA
simultaneously with the same or different interrupts and, in effect, synchronize
their activities. For example, it may be necessary to cause a high-priority DMA
transfer that avoids bus conflicts with the CPU (that is, that makes the DMA
higher priority than the CPU). This may be accomplished by using an interrupt
that causes the CPU to trap to an interrupt routine that contains an IDLE
instruction. Then if the same interrupt is used to synchronize DMA transfers,
the DMA transfer counter can be used to generate an interrupt and thus return
control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags.
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6.6.7 TMS320C3x Interrupt Considerations

Give careful consideration to TMS320C3x interrupts, especially if you make
modifications to the status register when the global interrupt enable (GIE) bit
is set. This can result in the GIE bit being erroneously set or reset as described
in the following paragraphs.

The GIE bit is set to 0 by an interrupt. This can cause a processing error if any
code following within two cycles of the interrupt recognition attempts to read
or modify the status register. For example, if the status register is being pushed
onto the stack, it will be stored incorrectly if an interrupt was acknowledged two
cycles before the store instruction.

When an interrupt signal is recognized, the TMS320C3x continues executing
the instructions already in the read and decode phases in the pipeline. Howev-
er, because the interrupt is acknowledged, the GIE bit is reset to 0, and the
store instruction already in the pipeline will store the wrong status register
value.

For example, if the program is like this:

NOP

interrupt recognized —>LDI @V_ADDR, AR1
MPYI *AR1, RO
PUSH ST

POP ST

the PUSH ST instruction will save the ST contents in memory, which includes
GIE = 0. Since the device is expected to have GIE = 1, the POP ST instruction
will put the wrong status register value into the ST.

A similar situation may occur if the GIE bit = 1 and an instruction executes that
is intended to modify the other status bits and leave the GIE bit set. In the
above example, this erroneous setting would occur if the interrupt were recog-
nized two cycles before the POP ST instruction. In that case, the interrupt
would clear the GIE bit, but the execution of the POP instruction would set the
GIE bit. Since the interrupt has been recognized, the interrupt service routine
will be entered with interrupts enabled, rather than disabled as expected.

One solution is to use traps. For example, you can use TRAP 0 to reset GIE
and use TRAP 1 to set GIE. This is accomplished by making TRAP 0 and
TRAP 1 be the instructions RETS and RETI, respectively.
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Another alternative incorporates the following code fragment, which protects
against modifying or saving of the status register by disabling interrupts
through the interrupt enable register:

PUSH IE ; Save IE register * Added instructions to

LDl O, IE ; Clear IE register avoid pipeline problems
NOP X ¢ 2 NOPs or useful instructions
NOP X

AND ODFFFh, ST ; SetGIE=0 ¢ Instruction that reads or

POP IE : writes to ST register.

; Added instruction
; to avoid pipeline
: problems.

6.6.8 TMS320C30 Interrupt Considerations
The TMS320C30 has two unique exceptions to the interrupt operation.

[d The status register global interrupt enable (GIE) bit may be erroneously
reset to O (disabled setting) if all of the following conditions are true:

B A conditional trap instruction (TRAPcond) has been fetched,

B The condition for the trap is false, and

B A pipeline conflict has occurred, resulting in a delay in the decode or
read phases of the instruction.

During the decode phase of a conditional trap, interrupts are temporarily
disabled to ensure that the trap will execute before a subsequentinterrupt.
If a pipeline conflict occurs and causes a delay in execution of the condi-
tional trap, the interrupt disabled condition may become the last known
condition of the GIE bit. In the case that the trap condition is false, inter-
rupts will be permanently disabled until the GIE bit is intentionally set. The
condition does not present itself when the trap condition is true, because
normal operation of the instruction causes the GIE to be reset, and stan-
dard coding practice will set the GIE to 1 before the trap routine is exited.
Several instruction sequences that can cause pipeline conflicts have been

found:

H LDI mem,SP
TRAPcond n

H LDI mem,SP
NOP

TRAPcond n
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W STI SP,mem
TRAPcond n

m ST Rx,*ARy
LDI *ARX,Ry
[|ILDI *ARz,Rw

TRAPcond n

Other similar conditions may also cause a delay in the execution. There-
fore, the following solution is recommended to avoid or rectify the problem.

Insert two NOP instructions immediately prior to the TRAPcond instruc-
tion. One NOP is insufficient in some cases, as illustrated in the second
bulleted item, above. This eliminates the opportunity for any pipeline con-
flicts inthe immediately preceding instructions and enables the conditional
trap instruction to execute without delays.

[ Asynchronous accesses to the interrupt flag register (IF) can cause the
TMS320C3x to fail to recognize and service an interrupt. This may occur
when an interrupt is generated and is ready to be latched into the IF regis-
ter on the same cycle that the IF is being written to by the CPU. Note that
logic operations (AND, OR, XOR) may write to the IF register.

The logic currently gives the CPU write priority; consequently, the as-
serted interrupt might be lost. This is particularly true if the asserted inter-
rupt has been generated internally (for example, a direct memory access
(DMA) interrupt). This situation can arise as a result of a decision to poll
certain interrupts or a desire to clear pending interrupts due to along pulse
width. In the case of a long pulse width, the interrupt may be generated
after the CPU responds to the interrupt and attempts to automatically clear
it by the interrupt vector process.

The recommended solution is not to use the interrupt polling technique but
to design the external interrupt inputs to have pulse widths of between 1
and 2 instruction cycles. The alternative to strict polling is to periodically
enable and disable the interrupts that would be polled, thereby allowing
the normal interrupt vectoring to take place; that automatically clears the
interrupt flag without affecting other interrupts. If you need to clear a pend-
ing interrupt, itis recommended that you use a memory location to indicate
that the interruptis invalid. Then the interrupt service routine can read that
location, clear it (if the pending interrupt is invalid), and return immediately.
The following code fragments show how a dummy interrupt due to a long
interrupt pulse might be handled:

ISR_n: PUSH ST ;
PUSH DP ; Save registers
PUSH RO ;
LDl O, DP ; Clear Data Page Pointer
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ISR_n_START:

ISR_n_END:

LDI @DUMMY_INT, RO ; If DUMMY_INT is O or positive,

BNN ISR_n_START ; 9o to ISR_n_START

STI DP, @DUMMY_INT ; Set DUMMY_INT =0

POP RO ;

POP DP ;

POP ST ; Housekeeping, return from interrupt
RETI ;

; Normal interrupt service routine
. ; Code goes here
LDl INT_Fn, RO ;

AND IF, RO ; If ones in IF reg match

BZ ISR_n_END ; INT_Fn, exit ISR

LDI 0, DP : Otherwise clear

LDl OFFFFh, RO ; DP and set

STI RO, @DUMMY_INT ; DUMMY_INT negative & exit
POP RO ;

POP DP ; Exit ISR

POP ST ;

RETI ;

6.6.9 Prioritization and Control

6-34

The CPU controls all prioritization of interrupts (see Table 6-8 for reset and in-
terrupt vector locations and priorities). If the DMA is not using interrupts for
synchronization of transfers, it will not be affected by the processing of the
CPU interrupts. Detected interrupts are responded to by the CPU and DMA
on instruction fetch boundaries only. If instruction fetches are halted due to
pipeline conflicts or when executing instructions in an RPTS loop, interrupts
will not be responded to until instruction fetching continues. It is therefore pos-
sible to interrupt the CPU and DMA simultaneously with the same or different
interrupts and, in effect, synchronize their activities. For example, it may be
necessary to cause a high-priority DMA transfer that avoids bus conflicts with
the CPU, that is, make the DMA higher priority than the CPU. This may be ac-
complished by using an interrupt that causes the CPU to trap to an interrupt
routine that contains an IDLE instruction. Then if the same interrupt is used to
synchronize DMA transfers, the DMA transfer counter can be used to generate
an interrupt, thereby returning control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA can
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags.
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Table 6-8. Reset and Interrupt Vector Locations

Reset or Vector

Interrupt Location Priority Function

RESET Oh 0 External reset signal input on the RESET pin

INTO 1h 1 External interrupt input on the INTO pin

INT1 2h 2 External interrupt input on the INT1 pin

INT2 3h 3 External interrupt input on the INT2 pin

INT3 4h 4 External interrupt input on the INT3 pin

XINTO 5h 5 Internal interrupt generated when serial-port O transmit
buffer is empty

RINTO 6h 6 Internal interrupt generated when serial-port O receive
buffer is full

XINTL T 7h 7 Internal interrupt generated when serial-port 1 transmit
buffer is empty

RINTL T 8h 8 Internal interrupt generated when serial-port 1 receive
buffer is full

TINTO 9h 9 Internal interrupt generated by timer 0

TINT1 0Ah 10 Internal interrupt generated by timer 1

DINT 0Bh 11 Internal interrupt generated by DMA controller O

T Reserved on TMS320C31
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6.7 TMS320LC31 Power Management Modes

6.7.1

6-36

IDLE2

The TMS320LC31 CPU has been enhanced by the addition of two power man-
agement modes:

4
4

IDLE2, and
LOPOWER.

The H1 instruction clock is held high until one of the four external interrupts is
asserted. In IDLE2 mode, the TMS320C31 behaves as follows:

a

a

No instructions are executed.
The CPU, peripherals, and internal memory retain their previous states.

The primary bus output pins are idle:

B The address lines remain in their previous states,
M The data lines are in the high-impedance state, and
B The output control signals are inactive.

When the device is in the functional (nhon-emulation) mode, the clocks stop
with H1 high and H3 low (see Figure 6-6).

The 'C31 will remain in IDLE2 until one of the four external interrupts
(INT3—-INTO) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. When
the clocks restart, they may be in the opposite phase (that is, H1 may be
high if H3 was high before the clocks were stopped; H3 may be high if H1
was previously high). The H1 and H3 clocks will remain 180° out of phase
with each other (see Figure 6-7).

For one of the four external interrupts to be recognized and serviced by
the CPU during the IDLE2 operation, the interrupt must be asserted for
less than three cycles but more than two cycles.

The instruction following the IDLEZ2 instruction will not be executed until
after the return from interrupt instruction (RETI) is executed.

When the device is in emulation mode, the H1 and H3 clocks will continue
to run normally and the CPU will operate as if an IDLE instruction had been
executed. The clocks continue to run for correct operation of the emulator.
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Delayed Branch

For correct device operation, the three instructions after a delayed
branch should not be IDLE or IDLEZ2 instructions.

Figure 6—6. IDLEZ2 Timing

Idle 2 Execution

o /TN N\
TN TN/

ADDR
Data >
Figure 6-7. Interrupt Response Timing After IDLE2 Operation
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6.7.2 LOPOWER
In the LOPOWER (low power) mode, the CPU continues to execute instruc-
tions, and the DMA can continue to perform transfers, but at a reduced clock
rate of CLKIN frequency
16 '

A TMS320C31 with a CLKIN frequency of 32 MHz will perform identically to
a 2 MHz TMS320C31 with an instruction cycle time of 1,000 ns.

During the read phase of the . . . The TMS320C31. ..
LOPOWER instruction (Figure 6—8) slows to 1/16 of full-speed operation.
MAXSPEED instruction (Figure 6-9) resumes full-speed operation.

Figure 6—8. LOPOWER Timing

STV WA VA WA WA WA WA W AW VA WA

LOPOWER Read
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N/ N\
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v

Figure 6-9. MAXSPEED Timing
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Chapter 7

External Bus Operation

Memories and external peripheral devices are accessible through two external
interfaces on the TMS320C30:

[ the primary bus, and
] the expansion bus.

On the TMS320C31, one bus, the primary bus, is available to access external
memories and peripheral devices. You can control wait-state generation, per-
mitting access to slower memories and peripherals, by manipulating
memory-mapped control registers associated with the interfaces and by using
an external input signal.

Major topics discussed in this chapter are listed below.

Topic Page
7.1 External Interface Control Register — ............. .. ... ...t 1-2
7.2 External Interface TiIMiNg ... ot 7-6
7.3 Programmable Wait States ........... .. . i 7-28
7.4 Programmable Bank Switching  ........... .. ... .. .. .. 7-30
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7.1 External Interface Control Registers

The TMS320C30 provides two external interfaces: the primary bus and the ex-
pansion bus. The TMS320C31 provides one external interface: the primary
bus. The primary bus consists of a 32-bit data bus, a 24-bit address bus, and
a set of control signals. The expansion bus consists of a 32-bit data bus, a
13-bit address bus, and a set of control signals. Both buses support soft-
ware-controlled wait states and an external ready input signal, and both buses
are useful for data, program, and I/O accesses.

Access is determined by an active strobe signal (STRB, MSTRB, or IOSTRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the TMS320C30 supports two types of accesses:

[ Memory access signalled by MSTRB low. The timing for an MSTRB ac-
cess is the same as that of the STRB access on the primary bus.

[ External peripheral device access is signaled by IOSTRB low.

Each of the buses (primary and expansion) has an associated control register.
These registers are memory-mapped as shown in Figure 7-1.

Figure 7—-1. Memory-Mapped External Interface Control Registers

7-2

Register Peripheral

Address

Expansion-Bus Control (see subsection 7.1.2)Jr 808060h
Reserved 808061h

Reserved 808062h

Reserved 808063h

Primary-Bus Control (see subsection 7.1.1) 808064h
Reserved 808065h

Reserved 808066h

Reserved 808067h

Reserved 808068h

Reserved 808069h

Reserved 80806Ah

Reserved 80806Bh

Reserved 80806Ch

Reserved 80806Dh

Reserved 80806Eh

Reserved 80806Fh

t Reserved on the TMS320C31
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7.1.1 Primary-Bus Control Register

The primary bus control register is a 32-bit register that contains the control
bits for the primary bus (see Figure 7-2). Table 7-1 lists the register bits with
the bit names and functions.

Figure 7-2. Primary-Bus Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IXXIXXI XXIXXIXXIXXIXXIXXIXXIXXIXXIXXIXXIXXI XX I XX I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|xx |xx| xx| BNKCMP | WTCNT | SWW |H|Z|NOHOLD| HOLDSTI
R/W R/W R/W R/W RIW R/W R/W RW RIW RIW RW  RIW R

NOTE: xx =reserved bit, read as 0.
R =read, W = write.
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Table 7-1. Primary-Bus Control Register Bits Summary

Bit

Name Reset Value

Function

7-5

12-8

31-13

HOLDST xt

NOHOLD 0

HIZ 0

SWW 11

WTCNT 111

10000
BNKCMP

Reserved 0-0

Hold status bit. This bit signals whether the port is being held
(HOLDST = 1) or is not being held (HOLDST = 0). This status bit is valid
whether the port has been held via hardware or software.

Port hold signal. NOHOLD allows or disallows the port to be held by an
external HOLD signal. When NOHOLD = 1, the TMS320C3x takes over
the external bus and controls it, regardless of serviced or pending re-
quests hy external devices. No hold acknowledge (HOLDA) is asserted
when a HOLD is received. However, it is asserted if an internal hold is
generated (HIZ = 1). NOHOLD is set to O at reset.

Internal hold. When set (HIZ = 1), the port is put in hold mode. This is
equivalent to the external HOLD signal. By forcing a high-impedance
condition, the TMS320C3x can relinquish the external memory port
through software. HOLDA goes low when the port is placed in the
high-impedance state. HIZ is set to O at reset.

Software wait mode. In conjunction with WTCNT, this two-bit field de-
fines the mode of wait-state generation. It is setto 1 1 at reset.

Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT =000) to 7 (WTCNT=11 1) H1/H3
cycles. Itissetto 111 at reset.

Bank compare. This five-bit field specifies the number of MSBs of the
address to be used to define the bank size. It is setto 1 0 0 0 O at reset.

Read as 0.

tTx=0or1

7-4
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7.1.2 Expansion-Bus Control Register

The expansion-bus control register is a 32-bit register that contains control bits
for the expansion bus (see Figure 7-3 and Table 7-2).

Figure 7-3. Expansion-Bus Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
XX XX xx | oxx | oxx | oxx | oxx | oxx | oxx |oxx | oxx | oxx | oxx | oxx | xx | xx

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 O

|xx|xx| xx| xx| xx|xx|xx| xx| WTCNT | SWW |xx|xx|xx|

NOTE:

R/W R/W R/W R/IW R/W

xX = reserved bit, read as 0.
R =read, W = write.

Table 7-2. Expansion-Bus Control Register Bits Summary

Reset

Bit Name Value Function

2-0 Reserved 000 Read as 0.

4-3 SWW 11 Software wait-state generation. In conjunction with the WTCNT, this
two-bit field defines the mode of wait-state generation. Itissetto 1 1
at reset.

7-5 WTCNT 111 Software wait mode. This three-bit field specifies the number of cycles
to use when in software wait mode for the generation of internal wait
states. The range is 0 (WTCNT =000) to 7 (WTCNT =11 1) H1/H3
clock cycles. Itis setto 1 1 1 at reset.

31-8 Reserved 0-0 Read as 0.

External Bus Operation 7-5



External Interface Timing

7.2 External Interface Timing

This section discusses functional timing of operations on the primary bus and
the expansion bus, the TMS320C3x’s two independent parallel buses.
Detailed timing specifications for all TMS320C3x signals are contained in Sec-
tion 13.5 on page 13-30.

The parallel buses implement three mutually exclusive address spaces distin-
guished through the use of three separate control signals: STRB, MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB control accesses on the expansion bus. Since the two
buses are independent, you can make two accesses in parallel.

With the exception of bank switching and the external HOLD function (dis-
cussed later in this section), timing of primary bus cycles and MSTRB expan-
sion bus cycles are identical and are discussed collectively. The acronym
(M)STRB s used in references that pertain equally to STRB and MSTRB. Sim-
ilarly, (X)R/W, (X)A, (X)D, and (X)RDY are used to symbolize the equivalent
primary and expansion bus signals. The IOSTRB expansion bus cycles are
timed differently and are discussed independently.

7.2.1 Primary-Bus Cycles

7-6

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined to be from one falling edge of H1 to the next falling edge of H1. For
full-speed (zero wait-state) accesses, writes require two H1 cycles and reads
one cycle; however, if the read follows a write, the read requires two
cycles.This applies to both the primary bus and the MSTRB expansion bus ac-
cess. Recall that, internally (from the perspective of the CPU and DMA), writes
require only one cycle if no accesses to that interface are in progress. The fol-
lowing discussions pertain to zero wait-state accesses unless otherwise spe-
cified.

The (M)STRB signal is low for the active portion of both reads and writes. The
active portion lasts one H1 cycle. Additionally, before and after the active por-
tion ((M)STRB low) of writes only, there is a transition cycle of H1. This transi-
tion cycle consists of the following sequence:

1) (M)STRB is high.
2) If required, (X)R/W changes state on H1 rising.

3) Ifrequired, address changes on H1 rising if the previous H1 cycle was the
active portion of a write. If the previous H1 cycle was a read, address
changes on H1 falling.
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Figure 7—4 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The data is read as late in the cycle as possible to allow maximum
access time from address valid. Note that although external writes require two
cycles, internally (from the perspective of the CPU and DMA) they require only
one cycle if no accesses to that interface are in progress. In the typical timing
for all external interfaces, the (X)R/W strobe does not change until (M)STRB
or IOSTRB goes inactive.

Figure 7-4. Read-Read-Write for (M)STRB = 0

H3

H1

(X)RW
0A___ X
000 R Read p— Read St wirte Dt

(ORDY \

Note: Back-to-Back Read Operations

(M)STRB will remain low during back-to-back read operations.
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Figure 7-5 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately
one-half cycle after (M)STRB changes.

Figure 7-5. Write-Write-Read for (M)STRB =0

(M)STRB . , . / \ - / \ - |
N
A______ X X X

(X)D__< Write Data )—( Write Data

oRBY_ '\g/‘ | '\g/
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Figure 7—6 illustrates a read cycle with one wait state. Since (X)RDY =1, the
read cycle is extended. (M)STRB, (X)R/W, and (X)A are also extended one
cycle. The next time (X)RDY is sampled, it is O.

Figure 7-6. Use of Wait States for Read for (M)STRB =0

H3
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Figure 7—7 illustrates a write cycle with one Wait_state. Since initially (X)RDY =
1, the write cycle is extended. (M)STRB, (X)R/W, and (X)A are extended one
cycle. The next time (X)RDY is sampled, itis 0.

Figure 7—7. Use of Wait States for Write for (M)STRB = 0

R L L
(X)A X 'X

(X)D :—( Write Data )—( Write Data )—

e

i‘_ Ex.tra _,l

Cycle
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7.2.2 Expansion-Bus I/O Cycles

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are
both two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The IOSTRB signal always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 7-8 illustrates read and write cycles when IOSTRB is active and there
are no wait states. For IOSTRB accesses, reads and writes require a minimum
of two cycles. Some off-chip peripherals might change their status bits when
read or written to. Therefore, it is important to maintain valid addresses when
communicating with these peripherals. For reads and writes when IOSTRB is
active, IOSTRB is completely framed by the address.

Figure 7-8. Read and Write for IOSTRB = 0

XA

N/ N[
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Figure 7-9 illustrates a read with one wait state when IOSTRB is active, and
Figure 7-10 illustrates a write with one wait state when IOSTRB is active. For
each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

Figure 7-9. Read With One Wait State for IOSTRB =0

XD ) ' | . :\ /) . .

v __ TN\ /

7-12
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Figure 7-10. Write With One Wait State for IOSTRB = 0

XD Write Data

XRDY /
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Figure 7-11, Figure 7-12, Figure 7-13, Figure 7-14, Figure 7-15,
Figure 7-16, Figure 7-17, Figure 7-18, Figure 7-19, Figure 7-20, and
Figure 7-21 illustrate the various transitions between memory reads and
writes, and 1/O writes over the expansion bus.

Figure 7-11. Memory Read and I/O Write for Expansion Bus

-
T N
TN 7

XA Memory Address W I/O Address >@
— Read ) : VO Write >—
XRDY \ : / \ 4

-

XD . —\ I /) .

7-14
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Figure 7-12. Memory Read and I/O Read for Expansion Bus
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=N

XR/W | | | |

v Memory . .
XA @( Memory >< IO Address W

XD . {( R ) Read -

- —
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Figure 7-13. Memory Write and I/O Write for Expansion Bus

H3

H1

MSTRB

IOSTRB

XRIW

I/O Address

Memory Address

XA

1/0 Write

Memory Write

XD

XRDY

7-16



External Interface Timing

Figure 7-14. Memory Write and I/O Read for Expansion Bus
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Figure 7-15. /O Write and Memory Write for Expansion Bus
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Figure 7-16. I/0O Write and Memory Read for Expansion Bus
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Figure 7-17. I/O Read and Memory Write for Expansion Bus
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Figure 7-18. I/0O Read and Memory Read for Expansion Bus
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Figure 7-19. /O Write and I/O Read for Expansion Bus
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Figure 7-20. I/0O Write and I/O Write for Expansion Bus

MSTRB ; ; ; ; ; ; ; ; ;
IOSTRB E E ; ) é & ; E E
—_
" @< f f i X : : : >@
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Figure 7-21. /O Read and I/O Read for Expansion Bus
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Figure 7-22 and Figure 7-23 illustrate the signal states when a bus is inactive
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB,
MSTRB and IOSTRB) and (X)R/W) go to 1. The address is undefined, and the
ready signal (XRDY or RDY) is ignored.

Figure 7-22. Inactive Bus States for IOSTRB

XRIW

XA

XD —< Write Data
XRDY \ ' / XRDY Ignored

Yy

Y Y

Bus Inactive
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Figure 7-23. Inactive Bus States for STRB and MSTRB
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Figure 7—24 illustrates the timing for HOLD and HOLDA. HOLD is an external
asynchronousinput. There is a minimum of one cycle delay from the time when
the processor recognizes HOLD = 0 until HOLDA = 0. When HOLDA = 0, the
address, data buses, and associated strobes are placed in a high-impedance
state. All accesses occurring over an interface are complete before a hold is
acknowledged.

Figure 7-24. HOLD and HOLDA Timing

H3

Bus
Inactive
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7.3 Programmable

7-28

Wait States

You can control wait-state generation by manipulating memory-mapped con-
trol registers associated with both the primary and expansion interfaces. Use
the WTCNT field to load an internal timer, and use the SWW field to select one
of the following four modes of wait-state generation:

] External RDY

0 WTCNT-generated RDYwtcnt

1 Logical-AND of RDY and RDYwtcnt
1 Logical-OR of RDY and RDYwtcnt

The four modes are used to generate the internal ready signal, RDYjnt, that
controls accesses. As long as RDYj,t = 1, the current external access is
delayed. When RDYjy; = 0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the pri-
mary bus interface is described in the following paragraphs.

RDYytent is an internally generated ready signal. When an external access is
begun, the value in WTCNT is loaded into a counter. WTCNT can be any value
from O through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to O until the next ac-
cess. While the counter is nonzero, RDYycnt = 1. While the counter is 0,
RDYent = 0.
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When SWW = 0 0, RDYjyt depends only on RDY. RDY\icnt iS ignored.
Table 7-3 is the truth table for this mode.

Table 7-3. Wait-State Generation When SWW =00

RDY RDY ytent RDYit
0 0 0
0 1 0
1 0 1
1 1 1

When SWW = 0 1, RDYjy; depends only on RDYyicnt- RDY is ignored.
Table 7—4 is the truth table for this mode.

Table 7-4. Wait-State Generation When SWW =0 1

RDY RDY ytent RDYit
0 0 0
0 1 1
1 0 0
1 1 1

When SWW =1 0, RDYjpt is the logical-OR (electrical-AND, since these sig-
nals are low true) of RDY and RDY icnt (see Table 7-5).

Table 7-5. Wait-State Generation When SWW =10

RDY RDY ytent RDYit
0 0 0
0 1 0
1 0 0
1 1 1

When SWW =1 1, RDYju; is the logical-AND (electrical-OR, since these sig-
nals are low true) of RDY and RDYcnt- The truth table for this mode is
Table 7-6.

Table 7—-6. Wait-State Generation When SWW =1 1

RDY RDY wient RDYit
0 0 0
0 1 1
1 0 1
1 1 1
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7.4 Programmable Bank Switching

Programmable bank switching allows you to switch between external memory
banks without externally inserting wait states due to memories that require
several cycles to turn off. Bank switching is implemented on the primary bus
and not on the expansion bus.

The size of a bank is determined by the number of bits specified to be ex-
amined on the BNKCMP field of the primary bus control register (see
Table 7—1 on page 7-4). For example (see Figure 7-25), if BNKCMP = 16,
the 16 MSBs of the address are used to define a bank. Since addresses are
24 bits, the bank size is specified by the eight LSBs, yielding a bank size of 256
words. If BNKCMP = 16, only the 16 MSBs are compared. Bank sizes from 28
= 256 to 224 = 16M are allowed. Table 7-7 summarizes the relationship be-
tween BNKCMP, the address bits used to define a bank, and the resulting bank
size.

Figure 7-25. BNKCMP Example

v

lﬁ 24-bit address

23 8| 7 0

Fi Number of bits to compare 4*— Defines bank size —'f

Table 7—7. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)
00000 None 224=16M
00001 23 223=8M
00010 23—22 222=4M
00011 23—21 221=2Mm
00100 23—20 220=1Mm
00101 23—19 219=512K
00110 23—18 218= 256K
00111 23—17 217=128K
01000 23—16 216= 64K
01001 23—15 215= 32K
01010 23—14 214=16K
01011 23—13 213=8K
01100 23—22 212=4K
01101 23—11 211= 2K
01110 23—12 210=1K
01111 23—9 29 =512
10000 23—8 28 =256
10000—11111 Reserved Undefined
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The TMS320C3x has an internal register that contains the MSBs (as defined
by the BNKCMP field) of the last address used for a read or write over the pri-
mary interface. Atreset, the register bits are setto 0. If the MSBs of the address
being used for the current primary interface read do not match those contained
in this internal register, a read cycle is not asserted for one H1/H3 clock cycle.
During this extra clock cycle, the address bus switches over to the new ad-
dress, but STRB is inactive (high). The contents of the internal register are re-
placed with the MSBs being used for the current read of the current address.
If the MSBs of the address being used for the current read match the bits in
the register, a normal read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When aread is performed from a different memory bank, memory
conflicts are avoided by the insertion of an extra cycle. This feature can be dis-
abled by setting BNKCMP to 0. The insertion of the extra cycle occurs only
when a read is performed. The changing of the MSBs in the internal register
occurs for all reads and writes over the primary interface.

Figure 7-26 illustrates the addition of an inactive cycle when switches be-
tween banks of memory occur.

Figure 7-26. Bank-Switching Example

O

XX X
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Chapter 8

Peripherals

The TMS320C3x features two timers, two serial ports (one on the
TMS320C31), and an on-chip direct memory access (DMA) controller. These
peripheral modules are controlled through memory-mapped registers located
on the dedicated peripheral bus.

The DMA controller is used to perform input/output operations without interfer-
ing with the operation of the CPU. Therefore, it is possible to interface the
TMS320C3x to slow external memories and peripherals (A/Ds, serial ports,
etc.) without reducing the computational throughput of the CPU. The result is
improved system performance and decreased system cost.

Major topics discussed in this chapter on peripherals are listed below.

Topic Page
8.l TIMEIS ottt 8-2
8.2  Serial POMrS ... . 8-13
8.3 DMA Controller . ... 8-43
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8.1 Timers

The TMS320C3x timer modules are general-purpose, 32-bit, timer/event
counters, with two signaling modes and internal or external clocking (see
Figure 8—1). You can use the timer modules to signal to the TMS320C3x or the
external world at specified intervals or to count external events. With an inter-
nal clock, you can use the timer to signal an external A/D converter to start a
conversion, or it can interrupt the TMS320C3x DMA controller to begin a data
transfer. The timer interrupt is one of the internal interrupts. With an external
clock, the timer can count external events and interrupt the CPU after a speci-
fied number of events. Each timer has an I/O pin that you can use as an input
clock to the timer, an output clock signal, or a general-purpose I/O pin.

Figure 8—1. Timer Block Diagram
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Three memory-mapped registers are used by each timer:

(1 Global-Control Register

The global-control register determines the operating mode of the timer,
monitors the timer status, and controls the function of the I/O pin of the timer.

(4 Period Register

The period register specifies the timer’s signaling frequency.
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[ Counter Register

The counter register contains the current value of the incrementing count-
er. You can increment the timer on the rising edge or the falling edge of the
input clock. The counter is zeroed and can cause an internal interrupt
whenever its value equals that in the period register. The pulse generator
generates two types of external clock signals: pulse or clock. The memory
map for the timer modules is shown in Figure 8-2.

Figure 8-2. Memory-Mapped Timer Locations

Register Peripheral Address
Timer O Timer 1
Timer Global Control (See Table 8-1) 808020h 808030h
Reserved 808021h 808031h
Reserved 808022h 808032h
Reserved 808023h 808033h
Timer Counter (See subsection 8.1.2) 808024h 808034h
Reserved 808025h 808035h
Reserved 808026h 808036h
Reserved 808027h 808037h
Timer Period (See subsection 8.1.2) 808028h 808038h
Reserved 808029h 808039h
Reserved 80802Ah 80803Ah
Reserved 80802Bh 80803Bh
Reserved 80802Ch 80803Ch
Reserved 80802Dh 80803Dh
Reserved 80802Eh 80803Eh
Reserved 80802Fh 80803Fh

8.1.1 Timer Global-Control Register

The timer global control register is a 32-bit register that contains the global and
port control bits for the timer module. Table 8-1 defines this register’s bits,
names, and functions. Bits 3—0 are the port control bits; bits 11—6 are the tim-
er global control bits. Figure 8—-3 shows the 32-bit register. Note that at reset,
all bits are set to 0 except for DATIN (which is set to the value read on TCLK).
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Figure 8-3. Timer Global-Control Register

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16

| XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

[ xx | xx [ xx | xx | TsTAT [ INv [ cLksre | ¢ | HID | o [ xx [ xx | pbarin | patout |0 | Func |
R RW RW RW RW RW R RW  RW RW

R = Read, W =Write, xx =reserved bit, read as 0

Table 8-1. Timer Global-Control Register Bits Summary

Bits Name Reset Value Function

0 FUNC 0 FUNC controls the function of TCLK. If FUNC = 0, TCLK is confi-
gured as a general-purpose digital I/0 port. If FUNC = 1, TCLK is
configured as a timer pin (see Figure 8—4 for a description of the
relationship between FUNC and CLKSRC).

1 I/O 0 If FUNC = 0 and CLKSRC =0, TCLK is configured as a general-
purpose I/O pin. In this case,_if /O = 0, TCLK is configured as a
general-purpose input pin. If I/O = 1, TCLK is configured as a gen-
eral-purpose output pin.

2 DATOUT 0 DATOUT drives TCLK when the TMS320C3x is in I/0O port mode.
You can use DATOUT as an input to the timer.
3 DATIN xt Data input on TCLK or DATOUT. A write has no effect.
5-4 Reserved 0-0 Read as 0.
6 GO 0 The GO bit resets and starts the timer counter. When GO = 1 and

the timer is not held, the counter is zeroed and begins increment-
ing on the next rising edge of the timer input clock. The GO bit is
cleared on the same rising edge. GO = 0 has no effect on the
timer.

7 HLD 0 Counter hold signal. When this bit is 0, the counter is disabled and
held in its current state. If the timer is driving TCLK, the state of
TCLK is also held. The internal divide-by-two counter is also held
so that the counter can continue where it left off when HLD is set to
1. You can read and modify the timer_registers while the timer is
being held. RESET has priority over HLD. Table 8-2 shows the
effect of writing to GO and HLD.

8 C/IP 0 Clock/Pulse mode control. When C/P = 1, clock mode is chosen,
and the signaling of the TSTAT flag and external output will have a
50 percent duty cycle. When C/P = 0, the status flag and external
output will be active for one H1 cycle during each timer period (see
Figure 8-5 on page 8-7).

Tx=0or1
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Table 8-1. Timer Global-Control Register Bits Summary (Continued)

Bits Name

Reset Value

Function

9 CLKSRC

10 INV

11 TSTAT

31-12 Reserved

0

0-0

Specifies the source of the timer clock. When CLKSRC =1, an inter-
nal clock with frequency equal to one-half of the H1 frequency is
used to increment the counter. The INV bit has no effect on the inter-
nal clock source. When CLKSRC = 0, you can use an external signal
from the TCLK pin to increment the counter. The external clock is
synchronized internally, thus allowing external asynchronous clock
sources that do not exceed the specified maximum allowable exter-
nal clock frequency. This will be less than f(H1)/2. (See Figure 8—4
for a description of the relationship between FUNC and CLKSRC).

Inverter control bit. If an external clock source is used and INV =1, the
external clock is inverted as it goes into the counter. If the output of the
pulse generator is routed to TCLK and INV = 1, the output is inverted
before it goes to TCLK (see Figure 8-1). If INV = 0, no inversion is
performed on the input or output of the timer. The INV bit has no effect,
regardless of its value, when TCLK is used in I/O port mode.

This bit indicates the status of the timer. It tracks the output of the
uninverted TCLK pin. This flag sets a CPU interrupt on a transition from
0to 1. A write has no effect.

Read as 0.

tx=0or1
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Figure 8—4. Timer Modes as Defined by CLKSRC and FUNC

Internal | External

Timer
- Internal |
Timer In Clock |
Timer Out |— —|’ TCLK
v |
TSTAT 1/0 Port
Control

CLKSRC =1 (Internal)
FUNC = 0 (/O Pin)
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Timer Internal | External
Timer In |« < | » TCLK
Timer Out |— 4 |
v
TSTAT I/O Port
Control

CLKSRC = 0 (External)
FUNC = 0 (I/O Pin)
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Internal | External

Timer
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Timer Out TCLK
I
TSTAT DATIN
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FUNC = 1 (Timer Pin)

Timer

(b)

Internal | External

Timer In

Timer Out

: TCLK

.

TSTAT

DATIN

CLKSRC = 0 (External)
FUNC = 1 (Timer Pin)
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Figure 8-5. Timer Timing

2/f(H1)
— e Ui(HD)
| |

I

=¢—>l— 1(CLKSRC) :
e b period register/f(CLKSRC)
TINT TINT TINT

(a) TSTAT and timer output (INV = 0) when C/P=0 (pulse mode)

¥ 1/f(CLKSRC)
:1—’:—:— 2/f(H1)

=|| period register/f(CLKSRC) :
& 2 x period register/f(CLKSRC) — ¥

t 1

TINT TINT
(b) TSTAT and timer output (INV = 0) when C/P = 1 (clock mode)

L

The rate of timer signaling is determined by the frequency of the timer input
clock and the period register. The following equations are valid with either an
internal or an external timer clock:

f(pulse mode) = f(timer clock) / period register

f(clock mode) = f(timer clock) / (2 x period register)

Note: Period Register

If the period register equals 0, refer to Section 8.1.2.

Table 8-2 shows the result of a write using specified values of the GO and HLD
bits in the global control register.
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Table 8-2. Result of a Write of Specified Values of GO and HLD

GO HLD Result
0 0 Alltimer operations are held. No reset is performed. (Reset value)
0 1 Timer proceeds from state before write.
1 0 Alltimer operations are held, including zeroing of the counter. The

GO bit is not cleared until the timer is taken out of hold.

1 1 Timer resets and starts.

8.1.2 Timer Period and Counter Registers

The 32-bit timer period register is used to specify the frequency of the timer
signaling. The timer counter register is a 32-bit register, which is reset to 0
whenever it increments to the value of the period register. Both registers are
setto O at reset.

Certain boundary conditions affecttimer operation. These conditions are listed
below:

[ When the period and counter registers are 0, the operation of the timer is
dependent upon the C/P mode selected. In pulse mode (C/P = 0), TSTAT
is set and remains set. In clock mode (C/P = 1), the width of the cycle is
2/f(H1), and the external clocks are ignored.

[ When the counter register is not 0 and the period register = 0, the counter
will count, roll over to 0, and then behave as described above.

[0 Whenthe counter register is setto a value greater than the period register,
the counter may overflow when being incremented. Once the counter
reaches its maximum 32-bit value (OFFFFFFFFh), it simply clocks over to
0 and continues.

Writes from the peripheral bus override register updates from the counter and
new status updates to the control register.

8.1.3 Timer Pulse Generation

The timer pulse generator (see Figure 8—1 on page 8-2) can generate sever-
al external signals. You can invert these signals with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 8-5 on page 8-7.
In both modes, an internal clock source f (timer clock) has a frequency of
f(H1)/2, and an externally generated clock source f (timer clock) can have a
maximum frequency of f(H1)/2.6. Refer to timer timing in subsection 13.5.16
on page 13-66. In pulse mode (C/P = 0), the width of the pulse is 1/f(H1).
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Figure 8-6 provides some examples of the TCLKx output when the period reg-
ister is set to various values and clock or pulse mode is selected.

Figure 8—6. Timer Output Generation Examples

H— 2H1
e

(@) INV =0, C/P =0 (Pulse Mode)
Timer Period =1
Also, _
INV =0, C/P =1 (Clock Mode)
Timer Period =0

P—"—4H1
o |
mnrnnr

(b) INV =0, C/P =0 (Pulse Mode)
Timer Period = 2

|¢—6H1—'|
Hl—’l "— |
1 M M M [~

(c) INV =0, C/P =0 (Pulse Mode)
Timer Period =3

f— 4H1 ¥

—» 2H1e-
| 1 L L1 1

(d) INV =0, C/P =1 (Clock Mode)
Timer Period =1

fe—— 8H1 ——¥
f¢— 4H1 ®
(e) INV =0, C/P =1 (Clock Mode)
Timer Period = 2

f———— 12H1 ——
f—— 6H1 —»
() INV =0, C/P =1 (Clock Mode)
Timer Period =3
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8.1.4 Timer Operation Modes

The timer can receive its input and send its output in several different modes,
depending upon the setting of CLKSRC, FUNC, and I/O. The four timer modes
of operation are defined as follows:

a

If CLKSRC =1 and FUNC = 0, the timer input comes from the internal
clock. The internal clock is not affected by the INV bit. In this mode, TCLK
is connected to the 1/O port control, and you use TCLK as a general-pur-
pose /O pin (see Figure 8-7). If /O =0, TCLK is configured as a general-
purpose input pin whose state you can read in DATIN. DATOUT has no
effect on TCLK or DATIN. If I/O = 1, TCLK is configured as a
general-purpose output pin. DATOUT is placed on TCLK and can be read
in DATIN.

Figure 8—7. Timer I/O Port Configurations

8-10

Internal ‘ External
\
DATOUT (NC) —o© TCLK
|
DATIN
1/10=0
(a)
Internal ‘ External
\
DATOUT TCLK
|
DATIN
/10=1

(b)

If CLKSRC = 1 and FUNC = 1, the timer input comes from the internal
clock, and the timer output goes to TCLK. This value can be inverted using
INV, and you can read in DATIN the value output on TCLK.

If CLKSRC = 0 and FUNC =0, the timer is driven according to the status
of the 1/O bit. If /O = 0, the timer input comes from TCLK. This value can
be inverted using INV, and you can read in DATIN the value of TCLK. If /O
=1, TCLK is an output pin. Then, TCLK and the timer are both driven by
DATOUT. All 0-to-1 transitions of DATOUT increment the counter. INV has
no effect on DATOUT. You can read in DATIN the value of DATOUT.

If CLKSRC =0 and FUNC =1, TCLK drives the timer. If INV = 0, all 0-to-1
transitions of TCLK increment the counter. If INV = 1, all 1-to-0 transitions
of TCLK increment the counter. You can read in DATIN the value of TCLK.
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Figure 8—4 on page 8-6 shows the four timer modes of operation.

8.1.5 Timer Interrupts

Atimer interrupt is generated whenever the TSTAT bit of the timer control reg-
ister changes from a 0 to a 1. The frequency of timer interrupts depends on
whether the timer is set up in pulse mode or clock mode.

(1 In pulse mode, the interrupt frequency is determined by the following
equation:

f N
= __(timerclock) \\here

period register’
f(interrupty = timer frequency
ftimer clock) = interrupt frequency

f(interrupt)

1 Inclock mode, the interrupt frequency is determined by the following equa-
tion:

f(timer clock)
2 x period register’

f(interrupty = timer frequency
f(timer clock) = interrupt frequency

where

f(interrupt) =

The timer counter is automatically reset to O whenever it is equal to the value
in the timer period register. You can use the timer interrupt for either the CPU
or the DMA. Interrupt enable control for each timer, for either the CPU or the
DMA, is found in the CPU/DMA interrupt enable register. Refer to subsection
3.1.8 on page 3-7 for more information on the CPU/DMA interrupt enable
register.

When a timer interrupt occurs, a change in the state of the corresponding
TCLK pin will be observed if FUNC =1 and CLKSRC = 1 in the timer global-
control register. The exact change in the state depends on the state of the
C/P bit.
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8.1.6 Timer Initialization/Reconfiguration

The timers are controlled through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the timers:

1) Haltthetimer by clearing the GO/HLD bits of the timer global-control regis-
ter. To do this, write a 0 to the timer global-control register. Note that the
timers are halted on RESET.

2) Configure the timer via the timer global-control register (with GO = HLD
= 0), the timer counter register, and timer period register, if necessary.

3) Start the timer by setting the GO/HLD bits of the timer global-control
register.

8-12
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Serial Ports

The TMS320C30 has two totally independent bidirectional serial ports. Both
serial ports are identical, and there is a complementary set of control registers
in each one. Only one serial portis available on the TMS320C31. You can con-
figure each serial port to transfer 8, 16, 24, or 32 bits of data per word simulta-
neously in both directions. The clock for each serial port can originate either
internally, via the serial port timer and period registers, or externally, via a
supplied clock. An internally generated clock is a divide-down of the clockout
frequency, f(H1). A continuous transfer mode is available, which allows the se-
rial port to transmit and receive any number of words without new synchroniza-
tion pulses.

Eight memory-mapped registers are provided for each serial port:

Global-control register

Two control registers for the six serial 1/0 pins
Three receive/transmit timer registers
Data-transmit register

Data-receive register

Uoooo

The global-control register controls the global functions of the serial port and
determines the serial-port operating mode. Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete word to be transmitted. The receive buffer contains the last complete
word received. Three additional registers are associated with the transmit/re-
ceive sections of the serial-port timer. A serial-port block diagram is shown in
Figure 8-8 on page 8-14, and the memory map of the serial ports is shown in
Figure 8-9 on page 8-15.
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Figure 8-8. Serial-Port Block Diagram
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Figure 8-9. Memory-Mapped Locations for the Serial Ports

Register Peripheral Address

Serial Serial
Port 0 port1t
Serial-Port Global Control (See Figure 8-10) 808040h 808050h
Reserved 808041h 808051h
FSX/DX/CLKX Port Control (See Figure 8-11) 808042h 808052h
FSR/DR/CLKR Port Control (See Figure 8-12) 808043h 808053h
R/X Timer Control (See Figure 8-13) 808044h 808054h
R/X Timer Counter (See Figure 8-14) 808045h 808055h
R/X Timer Period (See Figure 8-15) 808046h 808056h
Reserved 808047h 808057h
Data Transmit (See Figure 8-16) 808048h 808058h
Reserved 808049h 808059h
Reserved 80804Ah 80805Ah
Reserved 80804Bh 80805Bh
Data Receive (See Figure 8-17) 80804Ch 80805Ch
Reserved 80804Dh 80805Dh
Reserved 80804Eh 80805Eh
Reserved 80804Fh 80805Fh

T Reserved locations on the TMS320C31

8.2.1 Serial-Port Global-Control Register

The serial-port global-control register is a 32-bit register that contains the glob-
al control bits for the serial port. Table 8-3 defines the register bits, bit names,
and bit functions. The register is shown in Figure 8-10.

Table 8-3. Serial-Port Global-Control Register Bits Summary

Bit Name Reset Value Function

0 RRDY 0 If RRDY = 1, the receive buffer has new data and is ready to be read. A
three H1/H3 cycle delay occurs from the loading of DRR to RRDY = 1. The
rising edge of this signal sets RINT. If RRDY= 0 at reset, the receive buffer
does not have new data since the last read. RRDY = 0 at reset and after
the receive buffer is read.

1 XRDY 1 If XRDY =1, the transmit buffer has written the last bit of data to the shifter
and is ready for a new word. A three H1/H3 cycle delay occurs from the
loading of the transmit shifter until XRDY is set to 1. The rising edge of this
signal sets XINT. If XRDY =0, the transmit buffer has not written the last
bit of data to the transmit shifter and is not ready for a new word. XRDY =
1 at reset.

2 FSXOUT 0 This bit configures the FSX pin as an input (FSXOUT = 0) or an output
(FSXOUT=1).
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued)

Bit

Name

Reset Value

Function

10

11

12

XSREMPTY

RSRFULL

HS

XCLKSRCE

RCLKSRCE

XVAREN

RVAREN

XFSM

RFSM

CLKXP

0

If XSREMPTY = 0, the transmit shift register is empty. If XSREMPTY =1,
the transmit shift register is not empty. Reset or XRESET causes this bit
to=0.

If RSRFULL = 1, an overrun of the receiver has occurred. In continuous
mode, RSRFULL is setto 1 when both RSR and DRR are full. In noncontin-
uous mode, RSRFULL is set to 1 when RSR and DRR are full and a new
FSR is received. A read causes this bit to be set to 0. This bit can be set
to 0 only by a system reset, a serial-port receive reset (RRESET = 1), or
aread. When the receiver tries to set RSRFULL to 1 at the same time that
the global register is read, the receiver will dominate, and RSRFULL is set
to 1. If RSRFULL = 0, no overrun of the receiver has occurred.

If HS = 1, the handshake mode is enabled. If HS = 0, the handshake mode
is disabled.

If XCLKSRCE = 1, the internal transmit clock is used. If XCLKSRCE =0,
the external transmit clock is used.

If RCLKSRCE = 1, the internal receive clock is used. If RCLKSRCE =0,
the external receive clock is used.

This bit specifies fixed (XVAREN = 0) or variable (XVAREN = 1) data rate
signaling when transmitting. With a fixed data rate, FSX is active for at least
one XCLK cycle and then goes inactive before transmission begins. With
variable data rate, FSX is active while all bits are being transmitted. When
you use an external FSX and variable data rate signaling, the DX pinis driv-
en by the transmitter when FSX is held active or when a word is being
shifted out.

This bit specifies fixed (RVAREN = 0) or variable (RVAREN = 1) data rate
signaling when receiving. With a fixed data rate, FSR is active for at least
one RCLK cycle and then goes inactive before the reception begins. With
variable data rate, FSR is active while all bits are being received.

Transmit frame sync mode. Configures the port for continuous mode oper-
ation(XFSM = 1) or standard mode (XFSM = 0). In continuous mode, only
the first word of a block generates a sync pulse, and the rest are simply
transmitted continuously to the end of the block. In standard mode, each
word has an associated sync pulse.

Receive frame sync mode. Configures the port for continuous mode
(RFSM =1) or standard mode (RFSM = 0) operation. In continuous mode,
only the first word of a block generates a sync pulse, and the rest are simply
received continuously without expectation of another sync pulse. In stan-
dard mode, each word received has an associated sync pulse.

CLKX polarity. If CLKXP =0, CLKX is active high. If CLKXP = 1, CLKX is
active low.
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Continued)

Bit Name Reset Value Function

13 CLKRP 0 CLKR polarity. If CLKRP = 0, CLKR is active (high). If CLKRP =1, CLKR
is active (low).

14 DXP 0 DX polarity. If DXP = 0, DX is active (high). If DXP =1, DX is active (low).

15 DRP 0 DR polarity. If DRP =0, DR is active (high). If DRP = 1, DR is active (low).

16 FSXP 0 FSX polarity. If FSXP = 0, FSX is active (high). If FSXP = 1, FSX is
active (low).

17 FSRP 0 FSR polarity. If FSRP = 0, FSR is active (high). If FSRP = 1, FSR is
active (low).

19-18 XLEN 00 These two bits define the word length of serial data transmitted. All data
is assumed to be right-justified in the transmit buffer when fewer than 32
bits are specified.

0 0--- 8 bits 1 0--- 24 bits
0 1--- 16 bits 1 1-- 32 bits
21-20 RLEN 00 These two bits define the word length of serial data received. All data is
right-justified in the receive buffer.
0 0--- 8 hits 1 0-- 24 bits
0 1--- 16 bits 1 1-- 32 bits
22 XTINT 0 Transmit timer interrupt enable. If XTINT = 0, the transmit timer interrupt
is disabled. If XTINT = 1, the transmit timer interrupt is enabled.
23 XINT 0 Transmit interrupt enable. If XINT = 0, the transmit interrupt is disabled. If
XINT= 1, the transmit interrupt is enabled. Note that the CPU receive flag
XINT and the serial port-to-DMA interrupt (EXINTO in the IE register) is the
OR of the enabled transmit timer interrupt and the enabled transmit inter-
rupt.
24 RTINT 0 Receive timer interrupt enable. If RTINT = 0, the receive timer interrupt is
disabled. If RTINT = 1, the receive timer interrupt is enabled.
25 RINT 0 Receive interrupt enable. If RINT = 0, the receive interrupt is disabled. If
RINT= 1, the receive interrupt is enabled. Note that the CPU receive flag
RINT and the serial-port-to-DMA interrupt (ERINTO in the |IE register) is the
OR of the enabled receive timer interrupt and the enabled receive inter-
rupt.
26 XRESET 0 Transmit reset. If XRESET = 0, the transmit side of the serial port is reset.

To take the transmit side of the serial port out of reset, set XRESET to 1.
However, do not set XRESET to 1 until at least three cycles after XRESET
goesinactive. This applies only to system reset. Setting XRESET to 0 does
not change the contents of any of the serial-port control registers. It places
the transmitter in a state corresponding to the beginning of a frame of data.
Resetting the transmitter generates a transmit interrupt. Reset this bit dur-
ing the time the mode of the transmitter is set. You can toggle XFSM with-
out resetting the global-control register.
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Table 8-3. Serial-Port Global-Control Register Bits Summary (Concluded)

Bit Name Reset Value Function

27 RRESET 0 Receive reset. If RRESET = 0, the receive side of the serial port is reset.
To take the receive side of the serial port out of reset, set RRESET to 1.
Setting RRESET to 0 does not change the contents of any of the serial-
port control registers. It places the receiver in a state corresponding to the
beginning of a frame of data. Reset this bit at the same time that the mode
of the receiver is set. RFSM can be toggled without resetting the global-
control register.

31-28 Reserved 0-0 Read as 0.

Figure 8-10. Serial-Port Global-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| XX | XX | XX | XX |RRESET| XRESETl RINTl RTINT | XINT | XTINT | RLEN XLEN | FSRP | FSXP |
RIW RW RW RW RIW RIW RIW RIW  R/W RIW RIW R/W
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DRP | DXP | CLKRP|CLKXP] RFSM|XFSM| RVAREN| XVAREN| RCLK| XCLK | HS] RSR XSR | FSXOUT| XRDY RRDY
SRCE | SRCE FULL] EMPTY
RW R/W RW RW RW R/W R/W R/W RW RW RW R R RIW R R

R = Read, W =Write, xx =reserved bit, read as 0

8.2.2 FSX/DX/CLKX Port-Control Register

This 32-bit port control register controls the function of the serial port FSX, DX,
and CLKX pins. Atreset, all bits are setto 0. Table 8—4 defines the register bits,
bit names, and functions. Figure 8—11 shows this port control register.
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Table 8—4. FSX/DX/CLKX Port-Control Register Bits Summary

Bit Name Reset Value Function

0 CLKXFUNC 0 CLKXFUNC controls the function of CLKX. If CLKXFUNC = 0,
CLKX is configured as a general-purpose digital 1/0 port. If
CLKXFUNC =1, CLKX is a serial port pin.

1 CLKXI/O 0 If CLKX 1/0 =0, CLKX is configured as a general-purpose input
pin. If CLKX 1/0 = 1, CLKX is configured as a general-purpose out-
put pin.

2 CLKXDATOUT 0 Data output on CLKX.

3 CLKXDATIN X Data input on CLKX. A write has no effect.

4 DXFUNC 0 DXFUNC controls the function of DX. If DXFUNC = 0, DX is config-

ured as a general-purpose digital I/O port. If DXFUNC = 1, DX is
a serial port pin.

5 DX 1/0 0 If DX /0 =0, DX is configured as a general-purpose input pin. If
DX 1/0 = 1, DX is configured as a general-purpose output pin.

6 DXDATOUT 0 Data output on DX.

7 DXDATIN xT Data input on DX. A write has no effect.

8 FSXFUNC 0 FSXFUNC controls the function of FSX. If FSXFUNC =0, FSXis

configured as a general-purpose digital I/O port. If FSXFUNC =1,
FSXis a serial port pin.

9 FSX 110 0 If FSX _T/O =0, FSX is configured as a general-purpose input pin.
If FSX1/0 =1, FSX s configured as a general-purpose output pin.
10 FSXDATOUT 0 Data output on FSX.
11 FSXDATIN xt Data input on FSX. A write has no effect.
31-12 Reserved 0-0 Read as 0.
tx=0o0r1

Figure 8-11. FSX/DX/CLKX Port-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
XX XX XX XX FSX FSX FESX FSX DX DX DX DX CLKX CLKX CLKX | CLKX
DATIN DATOUT 110 FUNC DATIN DATOUT 110 FUNC | DATIN DATOUT 110 FUNC
R R/W R/W RIW R R/W R/W R/W R RIW R/W R/W

R = Read, W =Write, xx =reserved bit, read as 0
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8.2.3 FSR/DR/CLKR Port-Control Register

This 32-bit port control register is controlled by the function of the serial port
FSR, DR, and CLKR pins. At reset, all bits are set to 0. Table 8-5 defines the
register bits, the bit names, and functions. Figure 8—12 illustrates this port con-
trol register.

Table 8-5. FSR/DR/CLKR Port-Control Register Bits Summary

Bit Name Reset Value  Function
0 CLKRFUNC 0 CLKRFUNC controls the function of CLKR. If CLKRFUNC=0,
CLKR is configured as a general-purpose digital I/O port. If
CLKRFUNC =1, CLKR is a serial port pin.
1 CLKRI/O 0 If CLKR_T/O =0, CLKR is configured as a general-purpose input pin.
If CLKRI/O =1, CLKR s configured as a general-purpose output pin.
2 CLKRDATOUT 0 Data output on CLKR.

CLKRDATIN X Data input on CLKR. A write has no effect.

DRFUNC DRFUNC controls the function of DR. If DRFUNC = 0, DR is
configured as a general-purpose digital I/0 port. f DRFUNC =1, DR
is a serial port pin.

5 DR I/0 0 If DRI/O:O, DR is configured as a general-purpose input pin.
If DRI/O=1, DR is configured as a general-purpose output pin.

DRDATOUT 0 Data output on DR

DRDATIN x 1 Data input on DR. A write has no effect.

FSRFUNC 0 FSRFUNC controls the function of FSR. If FSRFUNC = 0, FSR is
configured as a general-purpose digital /O port. |If
FSRFUNC=1, FSR is a serial port pin.

9 FSR 1/0 0 If FSR 1/0=0, FSR is configured as a general-purpose input pin. If
FSR 1/0=1, FSR is configured as a general-purpose output pin.
10 FSRDATOUT 0 Data output on FSR
11 FSRDATIN X Data input on FSR. A write has no effect.
31-12 Reserved 0-0 Read as 0.
Tx=0or1

Figure 8—12. FSR/DR/CLKR Port-Control Register

3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
I XX I XX I XX I XX I XX | XX I XX I XX I XX | XX I XX | XX | XX I XX | XX I XX I
15 14 13 12 u 10 9 8 7 6 5 4 3 2 1 0
o | | | | FsR FSR FSR FSR DR DR bR | bR | ckr | cikr | ckr | ckr
DATIN | paTout | 0 FuNc | paTiN | patout | o | Func | baTIN | paTouT | o | Func
R RIW RIW RIW R RW  RW RW R RW  RW RW

R = Read, W =Write, xx =reserved bit, read as 0
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8.2.4 Receive/Transmit Timer-Control Register

A 32-bit receive/transmit timer control register contains the control bits for the
timer module. At reset, all bits are set to 0. Table 8—6 lists the register bits, bit
names, and functions. Bits 5—0 control the transmitter timer. Bits 11-6 control
the receiver timer. Figure 8-13 shows the register. The serial port receive/
transmit timer function is similar to timer module operation. It can be consid-
ered a 16-bit-wide timer. Refer to Section 8.1 on page 8-2 for more informa-
tion on timers.

Table 8—-6. Receive/Transmit Timer-Control Register

Bit

Name

Reset Value

Function

XGO

XHLD

XCIP

XCLKSRC

Reserved
XTSTAT

RGO

RHLD

0

The XGO bit resets and starts the transmit timer counter. When XGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementing on the next rising edge of the timer input clock. The XGO
bit is cleared on the same rising edge. Writing 0 to XGO has no effect
on the transmit timer.

Transmit counter hold signal. When this bitis set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when XHLD
is set to 1. You can read and modify the_timer registers while the timer
is being held. RESET has priority over XHLD.

XClock/Pulse mode control. When XC/P =1, the clock mode is chosen.
The signaling of the status flag and external output has a 50 percent
duty cycle. When XC/P = 0, the status flag and external output are ac-
tive for one CLKOUT cycle during each timer period.

This bit specifies the source of the transmit timer clock. When
XCLKSRC =1, an internal clock with frequency equal to one-half the
CLKOUT frequency is used to increment the counter. When XCLKSRC
=0, you can use an external signal from the CLKX pin to increment the
counter. The external clock source is synchronized internally, thus al-
lowing for external asynchronous clock sources that do not exceed the
specified maximum allowable external clock frequency, that is, less
than f(H1)/2.6.

Read as zero.

This bit indicates the status of the transmit timer. It tracks what would
be the output of the uninverted CLKX pin. This flag sets a CPU interrupt
on a transition from 0 to 1. A write has no effect.

The RGO bit resets and starts the receive timer counter. When RGO
is set to 1 and the timer is not held, the counter is zeroed and begins
incrementing on the next rising edge of the timer input clock. The RGO
bit is cleared on the same rising edge. Writing 0 to RGO has no effect
on the receive timer.

Receive counter hold signal. When this bit is set to 0, the counter is dis-
abled and held in its current state. The internal divide-by-two counter
is also held so that the counter will continue where it left off when RHLD
is set to 1. You can read and modify the_timer registers while the timer
is being held. RESET has priority over RHLD.
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Table 8—6. Receive/Transmit Timer-Control Register (Concluded)

Bit Name Reset Value Function

8 RC/P 0 RClock/Pulse mode control. When RC/P = 1, the clock mode is cho-
sen. The signaling of the status flag and external output has a 50 per-
cent duty cycle. When RC/P = 0, the status flag and external output
are active for one CLKOUT cycle during each timer period.

9 RCLKSRC 0 This bit specifies the source of the receive timer clock. When
RCLKSRC =1, an internal clock with frequency equal to one-half the
CLKOUT frequency is used to increment the counter. When
RCLKSRC =0, you can use an external signal from the CLKR pin to
increment the counter. The external clock source is synchronized in-
ternally, thus allowing for external asynchronous clock sources that
do not exceed the specified maximum allowable external clock fre-
quency, that is, less than f(H1)/2.6.

10 Reserved 0 Read as zero.

11 RTSTAT 0 This bit indicates the status of the receive timer. It tracks what would
be the output of the uninverted CLKR pin. This flag sets a CPU inter-
rupt on a transition from 0 to 1. A write has no effect.

31—12 Reserved 0-0 Read as 0.

Figure 8—13. Receive/Transmit Timer-Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX |
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| XX | XX | XX | XX | RTSTAT | XX |RCLKSRC | RC/P | RHLD | RGO | XTSTAT | XX | XCLKSRC | XC/P |m | XGO |
R RIW RIW R RIW RIW R RW RW  RW

R = Read, W =Write, xx =reserved bit, read as 0

8.2.5 Receive/Transmit Timer-Counter Register

The receive/transmit timer counter register is a 32-bit register (see
Figure 8—14). Bits 15-0 are the transmit timer counter, and bits 31— 16 are the
receive timer counter. Each counter is cleared to 0 whenever it increments to
the value of the period register (see Section 8.2.6). It is also set to 0 at reset.

Figure 8—14. Receive/Transmit Timer Counter Register
31 16

‘ Receive Counter ‘

15 0
‘ Transmit Counter ‘

NOTE: All bits are read/write.
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8.2.6 Receive/Transmit Timer-Period Register

The receive/transmit timer period register is a 32-bit register (see
Figure 8-15). Bits 150 are the timer transmit period, and bits 31-16 are the
receive period. Each register is used to specify the period of the timer. Itis also
cleared to O at reset.

Figure 8-15. Receive/Transmit Timer-Period Register
31 16

| Receive Period |

15 0
| Transmit Period |

Note: All bits are read/write.

8.2.7 Data-Transmit Register

When the data-transmit register (DXR) is loaded, the transmitter loads the
word into the transmit shift register (XSR), and the bits are shifted out. The
delay from a write to DXR until an FSX occurs (or can be accepted) is two
CLKX cycles. The word is not loaded into the shift register until the shifter is
empty. When DXR is loaded into XSR, the XRDY bit is set, specifying that the
buffer is available to receive the next word. Four tap points within the transmit
shift register are used to transmit the word. These tap points correspond to the
four data word sizes and are illustrated in Figure 8—16. The shift is a left-shift
(LSB to MSB) with the data shifted out of the MSB corresponding to the appro-
priate tap point.

Figure 8-16. Transmit Buffer Shift Operation

~ Shift Direction

31 24 23 16 15 8 7 0
32-bit 24-bit 16-bit 8-bit
word tap word tap word tap word tap
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8.2.8 Data-Receive Register

When serial data is input, the receiver shifts the bits into the receive shift regis-
ter (RSR). When the specified number of bits are shifted in, the data-receive
register (DRR) is loaded from RSR, and the RRDY status bit is set. The receiv-
er is double-buffered. If the DRR has not been read and the RSR is full, the
receiver is frozen. New data coming into the DR pin is ignored. The receive
shifter will not write over the DRR. The DRR must be read to allow new data
in the RSR to be transferred to the DRR. When a write to DRR occurs at the
same time that an RSR to DRR transfer takes place, the RSR to DRR transfer
has priority.

Data is shifted to the left (LSB to MSB). Figure 8-17 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it is
assumed that an 8-bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left.
When the data receive register is read, both bytes a and b are read.

Figure 8-17. Receive Buffer Shift Operation

~ Shift Direction

31 24 23 16 15 8 7 0
After Byte a ‘ X X X a ‘

After Byte b ‘ X X a b ‘

8.2.9 Serial-Port Operation Configurations

8-24

Several configurations are provided for the operation of the serial port clocks
and timer. The clocks for each serial port can originate either internally or exter-
nally. Figure 8-18 shows serial port clocking in the /O mode (CLKRFUNC =
0) when CLKX is either an input or an output. Figure 8-19 shows clocking in
the serial-port mode (CLKRFUNC=1). Both figures use a transmit section for
an example. The same relationship holds for a receive section.



Figure 8-18. Serial-Port Clocking in I/0 Mode
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Figure 8-19. Serial-Port Clocking in Serial-Port Mode
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8.2.10 Serial-Port Timing

The formula for calculating the frequency of the serial-port clock with an inter-
nally generated clock is dependent upon the operation mode of the serial-port

timers, defined as
f (pulse mode) = f (timer clock)/period register

f (clock mode) = f (timer clock)/(2 x period register)

An internally generated clock source f(timer clock) has a maximum frequency
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLKX or
CLKR) has a maximum frequency of less than f(H1)/2.6. See serial port timing
in Table 13-27 on page 13-57. Also, see subsection 8.1.3 on page 8-8 for in-

formation on timer pulse/clock generation.
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Transmit data is clocked out on the rising edge of the selected serial-port clock.
Receive data is latched into the receive shift register on the falling edge of the
serial-port clock. All data is transmitted and loaded MSB first and right-justi-
fied. If fewer than 32 bits are transferred, the data are right-justified in the 32-bit
transmit and receive buffers. Therefore, the LSBs of the transmit buffer are
the bits that are transmitted.

The transmit ready (XRDY) signal specifies that the data-transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon as
the data is loaded into the transmit shift register (XSR). The last word may still
be shifting out when XRDY goes active. If DXR is loaded before the last word
has completed transmission, the data bits transmitted are consecutive; that s,
the LSB of the first word immediately precedes the MSB of the second, with
all signaling valid as in two separate transmits. XRDY goes inactive when DXR
is loaded and remains inactive until the data is loaded into the shifter.

The receive ready (RRDY) signal is active as long as a new word of data is
loaded into the data receive register and has not been read. As soon as the
data is read, the RRDY bit is turned off.

When FSX is specified as an output, the activity of the signal is determined
solely by the internal state of the serial port. If a fixed data rate is specified, FSX
goes active when DXR is loaded into XSR to be transmitted out. One serial-
clock cycle later, FSX turns inactive, and data transmission begins. If a variable
data rate is specified, the FSX pin is activated when the data transmission be-
gins and remains active during the entire transmission of the word. Again, the
data is transmitted one clock cycle after it is loaded into the data transmit
register.

Aninput FSXin the fixed data rate mode should go active for at least one serial
clock cycle and then inactive to initiate the data transfer. The transmitter then
sends the number of bits specified by the LEN bits. In the variable data-rate
mode, the transmitter begins sending from the time FSX goes active until the
number of specified bits has been shifted out. In the variable data-rate mode,
when the FSX status changes prior to all the data bits being shifted out, the
transmission completes, and the DX pin is placed in a high-impedance state.
An FSR input is exactly complementary to the FSX.

When using an external FSX, if DXR and XSR are empty, a write to DXR results
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs.
When the external FSX is received, the XSR begins shifting the data. If XSR
is waiting for the external FSX, a write to DXR will change DXR, but a DXR-to-
XSR transfer will not occur. XSR begins shifting when the external FSX is re-
ceived, or when it is reset using XRESET.
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Continuous Transmit and Receive Modes

When continuous mode is chosen, consecutive writes do not generate or ex-
pect new sync pulse signaling. Only the first word of a block begins with an ac-
tive synchronization. Thereafter, data continues to be transmitted as long as
new data is loaded into DXR before the last word has been transmitted. As
soon as TXRDY is active and all of the data has been transmitted out of the
shift register, the DX pinis placed in a high-impedance state, and a subsequent
write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data-receive buffer is not read before the next word is shifted in,
you will lose subsequentincoming data. You can use the RFSM bit to terminate
the receive-continuous mode.

Handshake Mode

The handshake mode (HS = 1) allows for direct connection between proces-
sors. In this mode, all data words are transmitted with a leading 1 (see
Figure 8—20). For example, if an eight-bit word is to be transmitted, the first bit
sent is a 1, followed by the eight-bit data word.

In this mode, once the serial port transmits a word, it will not transmit another
word until it receives a separately transmitted zero bit. Therefore, the 1 bit that
precedes every data word is, in effect, a request bit.

Figure 8-20. Data Word Format in Handshake Mode

F Data Word (8 Bits)
\

’/ ¥

DX

leading 1

After a serial port receives a word (with the leading 1) and that word has been
read from the DRR, the receiving serial port sends a single 0 to the transmitting
serial port. Thus, the single 0 bit acts as an acknowledge bit (see Figure 8-21).
This single acknowledge bitis sentevery time the DRRis read, evenifthe DRR
does not contain new data.

Figure 8-21. Single Zero Sent as an Acknowledge Bit
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When the serial port is placed in the handshake mode, the insertion and dele-
tion of aleading 1 for transmitted data, the sending of a 0 for acknowledgement
of received data, and the waiting for this acknowledge bit are all performed au-
tomatically. Using this scheme, itis simple to connect processors with no exter-
nal hardware and to guarantee secure communication. Figure 8-22 is a typi-
cal configuration.

Inthe handshake mode, FSX is automatically configured as an output. Contin-
uous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.

Figure 8-22. Direct Connection Using Handshake Mode

TMS320C3x #1 TMS320C3x #2
CLKX > CLKR
FSX > FSR
DX »{ DR
CLKR |« CLKX
FSR |« FSX
DR |« DX

8.2.11 Serial-Port Interrupt Sources
A serial port has the following interrupt sources:

[ Thetransmittimerinterrupt : The rising edge of XTSTAT causes a sing-
le-cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is
disabled.

(1 Thereceivetimerinterrupt :The rising edge of RTSTAT causes a single-
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is dis-
abled.

[ The transmitter interrupt : Occurs immediately following a DXR-to-XSR
transfer. The transmitter interrupt is a single-cycle pulse. When the
serial-port global-control register bit XINT is O, this interrupt pulse is dis-
abled.

[d The receiver interrupt : Occurs immediately following an RSR to DRR
transfer. The receiver interrupt is a single-cycle pulse. When the
serial-port global-control register bit RINT is 0, this interrupt pulse is
disabled.

The transmit timer interrupt pulse is ORed with the transmitter interrupt pulse to create
the CPU transmit interrupt flag XINT. The receive timer interrupt pulse is ORed with the
receiver interrupt pulse to create the CPU receive interrupt flag RINT.
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8.2.12 Serial-Port Functional Operation
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The following paragraphs and figures illustrate the functional timing of the vari-
ous serial-port modes of operation. The timing descriptions are presented with
the assumption that all signal polarities are configured to be positive, that is,
CLKXP =CLKRP =DXP =DRP = FSXP = FSRP = 0. Logical timing, in situa-
tions where one or more of these polarities are inverted, is the same except
with respect to the opposite polarity reference points, that is, rising vs. falling
edges, etc.

These discussions pertain to the numerous operating modes and configura-
tions of the serial-port logic. When it is necessary to switch operating modes
or change configurations of the serial port, you should do so only when
XRESET or RRESET are asserted (low), as appropriate. Therefore, when
transmit configurations are modified, XRESET should be low, and when re-
ceive configurations are modified, RRESET should be low. When you use
handshake mode, however, since the transmitter and receiver are interrelated,
you should make any configuration changes with XRESET and RRESET both
low.

All of the serial-port operating configurations can be broadly classified in two
categories: fixed data-rate timing and variable data-rate timing. The following
paragraphs discuss fixed and variable data-rate operation and all of their vari-
ations.

Fixed Data-Rate Timing Operation

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode, transfers of single words are separated by
periods of inactivity on the serial port. In continuous mode, there are no gaps
between successive word transfers; the first bit of a new word is transferred
on the next CLKX/R pulse following the last bit of the previous word. This oc-
curs continuously until the process is terminated.

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 8-23), transmission is initiated by loading DXR. In this mode,
there is a delay of approximately 2.5 CLKX cycles (depending on CLKX and
H1 frequencies) from the time DXR is loaded until FSX occurs. With an exter-
nal FSX, the FSX pulse initiates the transfer, and the 2.5-cycle delay effectively
becomes a setup requirement for loading DXR with respect to FSX. Therefore,
in this case, you must load DXR no later than three CLKX cycles before FSX
occurs. Once the XSR is loaded from the DXR, an XINT is generated.
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Figure 8-23. Fixed Burst Mode
cxr_ L L L M MM ruri
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FSR/FSX (External)

FSX (Internal) | |
DXDR—— e e ayN )C X AN )
DXR Loaded XINT RINT

In receive operations, once a transfer is initiated, FSR is ignored until the last
bit. For burst-mode transfers, FSR must be low during the last bit, or another
transfer will be initiated. After a full word has been received and transferred to
the DRR, an RINT is generated.

In fixed data-rate mode, you can perform continuous transfers even if R/ XFSM
= 0, as long as properly timed frame synchronization is provided, or as long
as DXR is reloaded each cycle with an internally generated FSX (see
Figure 8-24).

Figure 8-24. Fixed Continuous Mode With Frame Sync
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T XINT XINT
DXR Loaded XINT RINT RINT
DXR Loaded Load DXR Load DXR
Read DRR Read DRR
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For receive operations and with externally generated FSX, once transfers
have begun, frame sync pulses are required only during the last bit transferred
to initiate another contiguous transfer. Otherwise, frame sync inputs are ig-
nored. Therefore, continuous transfers will occur if frame sync is held high.
With an internally generated FSX, there is a delay of approximately 2.5 CLKX
cycles from the time DXR is loaded until FSX occurs. This delay occurs each
time DXR is loaded; therefore, during continuous transmission, the instruction
that loads DXR must be executed by the N-3 bit for an N-bit transmission.
Since delays due to pipelining may vary, you should incorporate a conserva-
tive margin of safety in allowing for this delay.

Once the process begins, an XINT and an RINT are generated at the begin-
ning of each transfer. The XINT indicates that the XSR has been loaded from
DXR and can be used to cause DXR to be reloaded. To maintain continuous
transmission in fixed rate mode with frame sync, especially with an internally
generated FSX, DXR must be reloaded early in the ongoing transfer.

The RINT indicates that a full word has been received and transferred into the
DRR. RINT is therefore commonly used to indicate an appropriate time to read
DRR.

Continuous transfers are terminated by discontinuing frame sync pulses or, in
the case of internally generated FSX, not reloading DXR.

You can accomplish continuous serial-port transfers without the use of frame
sync pulses if RF’XFSM are set to 1. In this mode, operation of the serial port
is similar to continuous operation with frame sync, except that a frame sync
pulse is involved only in the first word transferred, and no further frame sync
pulses are used. Following the first word transferred (see Figure 8-25), no in-
ternal frame sync pulses are generated, and frame sync inputs are ignored.
Additionally, you should set R/XFSM prior to or during the first word trans-
ferred; you must set R/’XFSM no later than the transfer of the N—1 bit of the first
word, except for transmit operations. For transmit operations in the fixed data-
rate mode, XFSM must be set no later than the N-2 bit. You must clear
R/XFSM no later than the N-1 bit to be recognized in the current cycle.



Figure 8-25. Fixed Continuous Mode Without Frame Sync
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Timing of RINT and XINT and data transfers to and from DXR and DRR, re-
spectively, are the same as in fixed data-rate continuous mode with frame
sync. This mode of operation also exhibits the same delay of 2.5 CLKX cycles
after DXR is loaded before an internal FSX is generated. As in the case of con-
tinuous operation in fixed data-rate mode with frame sync, you must reload

DXR no later than transmission of the N-3 bit.

When you use continuous operation in fixed data-rate mode, R/’XFSM can be
set and cleared as desired, even during active transfers, to enable or disable
the use of frame sync pulses as dictated by system requirements. Under most
conditions, the effect of changing the state of R/’XFSM occurs during the trans-
fer in which the R/XFSM change was made, provided the change was made
early enough in the transfer. For transmit operations with internal FSX in fixed
data-rate mode, however, a one-word delay occurs before frame sync pulse
generation resumes when clearing XFSM to 0 (see Figure 8-26). Therefore,
in this case, one additional word is transferred before the next FSX pulse is
generated. Also note that, as discussed previously, the clearing of XFSM is
recognized during the transmission of the word currently being transmitted as
long as XFSM is cleared no later than the N-1 bit. The setting of XFSM is rec-
ognized as long as XFSM is set no later than the N-2 bit.

Peripherals
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Figure 8-26. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal
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Variable Data-Rate Timing Operation

Variable data-rate timing also supports operation in either burst or continuous
mode. Burst-mode operation with variable data-rate timing is similar to burst-
mode operation with fixed data-rate timing. With variable data-rate timing (see
Figure 8-27), however, FSX/R and data timing differ slightly at the beginning
and end of transfers. Specifically, there are three major differences between
fixed and variable data-rate timing:

[0 FSX/R pulses typically last for the entire transfer interval, although FSR
and external FSX are ignored after the first bit transferred. FSX/R pulses
in fixed data-rate mode typically last only one CLKX/R cycle but can last
longer.

(1 Data transfer begins during the CLKX/R cycle in which FSX/R occurs,
rather than the CLKX/R cycle following FSX/R, as is the case with fixed
data-rate timing.

[ With variable data-rate timing, frame sync inputs are ignored until the end
of the last bit transferred, rather than the beginning of the last bit trans-
ferred, as is the case with fixed data-rate timing.
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Figure 8-27. Variable Burst Mode
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When you transmit continuously in variable data-rate mode with frame sync,
timing is the same as for fixed data-rate mode, except for the differences be-
tween these two modes as described under Variable Data-Rate Timing Opera-
tion. The only other exception is that you must reload DXR no later than the
N-4 bit to maintain continuous operation of the variable data-rate mode (see
Figure 8-28); you must reload DXR no later than the N-3 bit to maintain con-
tinuous operation of the fixed data-rate mode.

Figure 8-28. Variable Continuous Mode With Frame Sync
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Continuous operation in variable data-rate mode without frame sync (see
Figure 8-29) is also similar to continuous operation without frame sync in fixed
data-rate mode. As with variable data-rate mode continuous operation with
frame sync, you must reload DXR no later than the N—4 bit to maintain continu-
ous operation. Additionally, when R/ XFSM is set or cleared in the variable da-
ta-rate mode, you must make the modification no later than the N-1 bit for the
result to be affected in the current transfer.
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Figure 8-29. Variable Continuous Mode Without Frame Sync
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8.2.13 Serial-Port Initialization/Reconfiguration

The serial ports are controlled through memory-mapped registers on the dedi-
cated peripheral bus. Following is a general procedure for initializing and/or
reconfiguring the serial ports.

1) Haltthe serial port by clearing the XRESET and/or RRESET bits of the ser-
ial-port global-control register. To do this, write a 0 to the serial-port global-
control register. Note that the serial ports are halted on RESET.

2) Configure the serial port via the serial-port global-control register (with
XRESET =RRESET =0) and the FSX/DX/CLKX and FSR/DR/CLKR port-
control registers. If necessary, configure the receive/transmit registers:
timer control (with XHLD = RHLD = 0), timer counter, and timer period. Re-
fer to subsection 8.2.14 for more information.

3) Start the serial port operation by setting the XRESET and RRESET bits
of the serial-port global-control register and the XHLD and RHLD bits of
the serial-port receive/transmit timer-control register, if necessary.

8.2.14 TMS320C3x Serial-Port Interface Examples

In addition to the examples presented in this section, DMA/serial port initializa-
tion examples can be found in Example 8—6 and Example 8-7 on pages 8-59
and 8-61, respectively.
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8.2.14.1 Handshake Mode Example

When handshake mode is used, the transmit (FSX/DS/CLKX) and receive
(FSR/DR/CLKR) signals transmit and receive data, respectively. In other
words, even if the TMS320C3x serial port is receiving data only with hand-
shake mode, the transmit signals are still needed to transmit the acknowledge
signal. This is the serial port register setup for the TMS320C3x serial port
handshake communication, as shown in Figure 8-22 on page 8-29:

Global control = 011x0x0xxxx00000000xx01100100b
Transmit port control = 0111h

Receive port control = 0111h

S_port timer control = OFh

S_port timer count = Oh

S_port timer period > 01h (if two C3xs have the same

system clock)

X = user-configurable

Since the FSX s set as an output and continuous mode is disabled when hand-
shake mode is selected, you should set the XFSM and RFSM bits to 0 and the
FSXOUT bit to 1 in the global control register. You should set the XRESET,
RRESET, and HS bits to 1 in order to start the handshake communication. You
should set the polarity of the serial port pins active (high) for simplification. Al-
though the CLKX/CLKR can be set as either input or output, you should set
the CLKX as output and the CLKR as input. The rest of the bits are user-confi-
gurable as long as both serial ports have consistent setup.

You need the serial port timer only if the CLKX or CLKR is configured as an
output. Since only the CLKX is configured as an output, you should set the tim-
er control register to OFh. When the serial port timer is used, you should also
set the serial timer register to the proper value for the clock speed. The serial
port timer clock speed setup is similar to the TMS320C3x timer. Refer to Sec-
tion 8.1 on page 8-2 for detailed information on timer clock generation.

The maximum clock frequency for serial transfers is F(CLKIN)/4 if the internal
clock is used and F(CLKIN)/5.2 if an external clock is used. Therefore, if two
TMS320C3xs have the same system clock, the timer period register should
be set equal to or greater than 1, which makes the clock frequency equal to
F(CLKIN)/8.

Example 8-1 and Example 8-2 are serial port register setups for the above
case. (Assume two TMS320C3xs have the same system clock.)
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Example 8-1. Serial-Port Register Setup #1

Global control = O0EBCO0064h; 32 bits, fixed data rate, burst mode,
Transmit port control = 0111h ; FSX (output), CLKX (output) = F(CLKIN)/8
Receive port control = 0111h ; CLKR (input), handshake mode, transmit
S_port timer control = OFh; and receive interrupt is enabled.

S_port timer count = 0Oh

S_port timer period = 01h

Example 8-2. Serial-Port Register Setup #2

Global control = 0CO000364h; 8 bits, variable data rate, burst mode,
Transmit port control = 0111h; FSX (output), CLKX (output) = f(CLKIN)/24
Receive port control 0111h ; CLKR (input), handshake mode, transmit
S_port timer control OFh; and receive interrupt is disabled.

S_port timer count = 0Oh

S_port timer period > 01h

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand-
shake mode, the TMS320C3x serial port can distinguish between the data and
the acknowledge signal. Therefore, even if the TMS320C3x serial port re-
ceives the data before the acknowledge signal, the data will not be misinter-
preted as the acknowledge signal and be lost. In addition, the acknowledge
signal is not generated until the data is read from the data receive register
(DRR). Therefore, the TMS320C3x will not transmit the data and the acknowl-
edge signal simultaneously.

8.2.14.2 CPU Transfer With Serial-Port Transmit Polling Method

Example 8-3 sets up the CPU to transfer data (128 words) from an array buffer
to the serial port O output register when the previous value stored in the serial
port output register has been sent. Serial port O is initialized to transmit 32-bit
data words with an internally generated frame sync and a bit-transfer rate of
8H1 cycles/hit.
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*TITLE: CPU TRANSFER WITH SERIAL-PORT TRANSMIT POLLING METHOD
*
.GLOBAL START
.DATA
SOURCE .WORD _ARRAY
.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS
SPRESET .WORD 008C0044 ; SERIAL-PORT RESET
SGCCTRL .WORD 048C0044H ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
SXCTRL .WORD 111H ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION
STCTRL .WORD 00FH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00000002h ; SERIAL-PORT TIMER PERIOD
RESET .WORD OH ; SERIAL-PORT TIMER RESET VALUE

TEXT
START LDP RESET ; LOAD DATA PAGE POINTER

ANDN 10H,IE ; DISABLE SERIAL-PORT TRANSMIT INTERRUPT TO CPU

* SERIAL PORT INITIALIZATION
LDl @SPORT,AR1
LDI @RESET,R0
LDI 4,IR0
STIRO,*+AR1(IR0)  ; SERIAL-PORT TIMER RESET
LDl @SPRESET,R0
STI RO,*AR1 . SERIAL-PORT RESET
LDI @SXCTRL,RO : SERIAL-PORT TX CONTROL REG INITIALIZATON
STI RO,*+AR1(3)
LDI @STPERIOD,RO  ; SERIAL-PORT TIMER PERIOD INITIALIZATION
STI RO,*+AR1(6)

LDl @STCTRL,RO : SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STI RO,*+AR1(4)

LDl @SGCCTRL,R0 : SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STI RO,*AR1

* CPU WRITES THE FIRST WORD

LDl @SOURCE,ARO
LDI *ARO++,R1
STI R1,*+AR1(8)

* CPU WRITES 127 WORDS TO THE SERIAL PORT OUTPUT REG

LDI 8,IR0
LDI 2,RO
LDI 126,RC
RPTB LOOP
WAIT AND *AR1,R0,R2 ; WAIT UNTIL XRDY BIT =1
BZ WAIT
LOOP STIR1,*+AR1(IR0)
|| LDI *++ARO0(1),R1
BUS$

.END

Peripherals
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8.2.14.3 Serial AIC Interface Example

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a
zero-glue-logic interface to the TMS320C3x family of DSPs. The interface is
shown in Figure 8-30 as an example of the TMS320C3x serial-port configura-
tion and operation.

Figure 8-30. TMS320C3x Zero-Glue-Logic Interface to TLC3204x Example

TMS320C3x TMS320C4x
XFO > RESET WORD [ VCC
CLKRO :ji SCLK
CLKX0 OUT+ [—® Analog
FSRO [ FSR OouT- Out
DRO [+ DR
FSX0 [< FSX IN+ [4— Analog
DX0 > DX IN— In
TCLKO > MCLK ?7

GND

The TMS320C3x resets the AIC through the external pin XFO. It also gener-
ates the master clock for the AIC through the timer O output pin, TCLKO. (Pre-
cise selection of a sample rate may require the use of an external oscillator
rather than the TCLKO output to drive the AIC MCLK input.) In turn, the AIC
generates the CLKRO and CLKXO shift clocks as well as the FSR0 and FSX0
frame synchronization signals.

A typical use of the AIC requires an 8-kHz sample rate of the analog signal.
If the clock input frequency to the TMS320C3x device is 30 MHz, you should
load the following values into the serial port and timer registers.

Serial Port:

Port global control register: O0E970300h
FSX/DX/CLKX port control register 00000111h
FSR/DR/CLKR port control register 00000111h
Timer:

Timer global control register 000002C1h
Timer period register 00000001h

8.2.14.4 Serial A/D and D/A Interface Example
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The DSP201/2 and DSP101/2 family of D/As and A/Ds from Burr Brown also
offer a zero-glue-logic interface to the TMS320C3x family of DSPs. The inter-
face is shown in Example 8—4. This interface is used as an example of the
TMS320C3x serial-port configuration and operation.



Burr Brown DSP102 A/D

Serial Ports

Example 8—4. TMS320C3x Zero-Glue-Logic Interface to Burr Brown A/D and D/A

Burr Brown DSP202 D/A

CASC +5V +5V —— CASC
TMS320C3x
XCLK CLKRO CLKXO0| XCLK
SOUTA »1DRO DX0 SINA
+2.75V —»{ VINA VOUTA}—» +3V
SYNC SINB
»{ FSRO
+2.75V —»{ VINB Fsxole SYNC VOUTB}—» =3V
0SCo SSF |— +5V cy o
+ —]
— OSC1
+5V — SWL
1 MOhm CONV TCLKO CONV

12.29 MHz

T

i A

The DSP102 A/D is interfaced to the TMS320C3x serial port receive side; the
DSP202 D/A is interfaced to the transmit side. The A/Ds and D/As are hard-
wired to run in cascade mode. In this mode, when the TMS320C3x initiates a
convert command to the A/D via the TCLKO pin, both analog inputs are con-
verted into two 16-bit words, which are concatenated to form one 32-bit word.
The A/D signals the TMS320C3x via the A/D’s SYNC signal (connected to the
TMS320C3x FSRO pin) that serial data is to be transmitted. The 32-bit word
is then serially transmitted, MSB first, out the SOUTA serial pin of the DSP102
to the DRO pin of the TMS320C3x serial port. The TMS320C3x is programmed
to drive the analog interface bit clock from the CLKXO0 pin of the TMS320C3x.
The bit clock drives both the A/D’s and D/A's XCLK input. The TMS320C3x
transmit clock also acts as the input clock on the receive side of the
TMS320C3x serial port. Since the receive clock is synchronous to the internal
clock of the TMS320C3x, the receive clock can run at full speed (that is,
f(H1)/2).
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Similarly, on receiving a convert command, the pipelined D/A converts the last
word received from the TMS320C3x and signals the TMS320C3x via the
SYNC signal (connected to the TMS320C3x FSXO0 pin) to begin transmitting
a 32-bit word representing the two channels of data to be converted. The data
transmitted from the TMS320C3x DXO pin is input to both the SINA and SINB
inputs of the D/A as shown in the figure.

The TMS320C3x is set up to transfer bits at the maximum rate of about eight
Mbps, with a dual-channel sample rate of about 44.1 kHz. Assuming a 32-MHz
CLKIN, you can configure this standard-mode fixed-data-rate signaling inter-
face by setting the registers as described below:

Serial Port:

Port global-control register: OEBCO0040h
FSX/DX/CLKX port-control register 00000111h

FSR/DR/CLKR port-control register 00000111h

Receive/transmit timer-control register 0000000Fh
Timer:

Timer global-control register 000002C1h
Timer period register 000000B5h
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8.3 DMA Controller

The TMS320C3x has an on-chip direct memory access (DMA) controller that
reduces the need for the CPU to perform input/output functions. The DMA con-
troller can perform input/output operations without interfering with the opera-
tion of the CPU. Therefore, it is possible to interface the TMS320C3x to slow
external memories and peripherals (A/Ds, serial ports, etc.) without reducing
the computational throughput of the CPU. The result is improved system per-
formance and decreased system cost.

A DMA transfer consists of two operations: a read from a memory location and
a write to a memory location. The DMA controller can read from and write to
any location in the TMS320C3x memory map. This includes all
memory-mapped peripherals. The operation of the DMA is controlled with the
following set of memory-mapped registers:

(0 DMA global-control register

(1 DMA source-address register

(1J DMA destination-address register
[0 DMA transfer-counter register

Table 8—7 shows these registers, their memory-mapped addresses, and their
functions. Each of these DMA registers is discussed in the succeeding subsec-
tions.
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Table 8—7. Memory-Mapped Locations for a DMA Channel
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Peripheral
Register Address
DMA Global Control (See Table 8-8) 808000h
Reserved 808001h
Reserved 808002h
Reserved 808003h
DMA Source Address (see subsection 8.3.2) 808004h
Reserved 808005h
DMA Destination Address (see subsection 8.3.2) 808006h
Reserved 808007h
DMA Transfer Counter (see subsection 8.3.3) 808008h
Reserved 808009h
Reserved 80800Ah
Reserved 80800Bh
Reserved 80800Ch
Reserved 80800Dh
Reserved 80800Eh
Reserved 80800Fh
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Table 8-8. DMA Global-Control Register Bits

Bit Name Reset Value Function
1-0 START 0-0 These bits control the state in which the DMA starts and stops. The
DMA may be stopped without any loss of data (see Table 8-9).
3-2 STAT 0-0 These bits indicate the status of the DMA and change every cycle
(see Table 8-10).
4 INCSRC 0 If INCSRC = 1, the source address is incremented after every read.
5 DECSRC 0 If DECSRC = 1, the source address is decremented after every

read. If INCSRC = DECSRC, the source address is not modified
after a read.

6 INCDST 0 If INCDST = 1, the destination address is incremented after every
write.
7 DECDST 0 If DECDST = 1, the destination address is decremented after every

write. If INCDST = DECDST, the destination address is not modified
after a write.

9-8 SYNC 0-0 The SYNC bits determine the timing synchronization between the
events initiating the source and the destination transfers. The inter-
pretation of the SYNC bits is shown in Table 8-11.

10 TC 0 The TC bit affects the operation of the transfer counter. If TC = 0,
transfers are not terminated when the transfer counter becomes 0.
If TC = 1, transfers are terminated when the transfer counter be-
comes 0.

11 TCINT 0 If TCINT = 1, the DMA interrupt is set when the transfer counter
makes a transition to 0. If TCINT = 0, the DMA interrupt is not set
when the transfer counter makes a transition to 0.

31-12 Reserved 0-0 Read as 0.

Note:  Whenthe DMA completes a transfer, the START bits remain in 11 (base 2). The DMA starts when the START bits are set
to 11 and one of the following conditions applies:

[ The transfer counter is set to a value different from 0x0, or
[ The TC bitis setto 0.
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Table 8-9. START Bits and Operation of the DMA (Bits 0-1)

START

Function

00

01

10

11

DMA read or write cycles in progress will be completed; any data read will
be ignored. Any pending read or write will be cancelled. The DMA is reset
so that when it starts a new transaction begins; that is, a read is per-
formed. (Reset value)

If a read or write has begun, it is completed before it stops. If a read or
write has not begun, no read or write is started.

If a DMA transfer has begun, the entire transfer is completed (including
both read and write operations) before stopping. If a transfer has not be-
gun, none is started.

DMA starts from reset or restarts from the previous state.

Table 8-10. STAT Bits and Status of the DMA (Bits 2—-3)

STAT

Function

00

01

10
11

DMA is being held between DMA transfer (between a write and read).
This is the value at reset. (Reset value)

DMA is being held in the middle of a DMA transfer, that is, between a read
and a write.

Reserved.

DMA busy; that is, DMA is performing a read or write or waiting for a
source or destination synchronization interrupt.

Table 8-11. SYNC Bits and Synchronization of the DMA (Bits 8-9)

SYNC

Function

00
01

10

11

No synchronization. Enabled interrupts are ignored. (Reset value)

Source synchronization. A read is performed when an enabled interrupt
occurs.

Destination synchronization. A write is performed when an enabled inter-
rupt occurs.

Source and destination synchronization. A read is performed when an
enabled interrupt occurs. A write is then performed when the next en-
abled interrupt occurs.

8-46



DMA Controller

8.3.1 DMA Global-Control Register

The global-control register controls the state in which the DMA controller oper-
ates. This register also indicates the status of the DMA, which changes every
cycle. Source and destination addresses can be incremented, decremented,
or synchronized using specified global-control register bits. At system reset,
all bits in the DMA control register are cleared to 0. Table 8-8 on page 8-45
lists the register bits, names, and functions. Figure 8—-31 shows the bit config-
uration of the global-control register.

Figure 8-31. DMA Global-Control Register

3130 2028 27 26 25 24 23 22 21 20 19 18 17 16
‘ XX‘ XX‘ XX‘ XX‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘ XX ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ xx‘ xx‘ XX \ XX \ TCINT‘ TC \ SYNC \ DECDST‘ INCDST‘ DECSRC‘ INCSRC‘ STAT \ START \
RW RMW RW RW RW RIW RIW RIW R R RW RW

R = Read, W =Write, xx =reserved bit, read as 0

8.3.2 Destination- and Source-Address Registers

The DMA destination-and-source address registers are 24-bit registers whose
contents specify destination and source addresses. As specified by control
bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-control
register, these registers are incremented and decremented at the end of the
corresponding memory access, that is, the source register for a read and the
destination register for a write. On system reset, 0 is written to these registers.

8.3.3 Transfer-Counter Register

The transfer-counter register is a 24-bit register, controlled by a 24-bit counter
that counts down. The counter decrements at the beginning of a DMA memory
write. Inthis way, it can control the size of a block of data transferred. The trans-
fer counter register is set to 0 at system reset. When the TCINT bit of DMA
global-control register is set, the transfer-counter register will cause a DMA in-
terrupt flag to be set upon count down to 0.

8.3.4 CPU/DMA Interrupt-Enable Register

The CPU/DMA interrupt enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt enable bits are in locations 10-1. The
DMA interrupt-enable bits are in locations 26—-16. A 1 in a CPU/DMA interrupt-
enable register bit enables the corresponding interrupt. A 0 disables the corre-
sponding interrupt. At reset, 0 is written to this register.
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Table 8-12 lists the bits, names, and functions of the CPU/DMA interrupt en-
able register. Figure 8-32 shows the IE register. The priority and decoding
schemes of CPU and DMA interrupts are identical. Note that when the DMA
receives an interrupt, this interrupt is acted upon according to the SYNC field
of the DMA control register. Also note that an interrupt can affect the DMA but
not the CPU and can affect the CPU but not the DMA. Refer to subsection 3.1.8

on page 3-7 and to Chapter 6.

Table 8-12. CPU/DMA Interrupt-Enable Register Bits

8-48

Bit Name Function

0 EINTO Enable external interrupt 0 (CPU)

1 EINT1 Enable external interrupt 1 (CPU)

2 EINT2 Enable external interrupt 2 (CPU)

3 EINT3 Enable external interrupt 3 (CPU)

4 EXINTO Enable serial-port O transmit interrupt (CPU)
5 ERINTO Enable serial-port O receive interrupt (CPU)
6 EXINT1 Enable serial-port 1 transmit interrupt (CPU)
7 ERINT1 Enable serial-port 1 receive interrupt (CPU)
8 ETINTO Enable timer 0 interrupt (CPU)

9 ETINT1 Enable timer 1 interrupt (CPU)

10 EDINT Enable DMA controller interrupt (CPU)

15-11 Reserved Read as 0

16 EINTO Enable external interrupt O (DMA)

17 EINT1 Enable external interrupt 1 (DMA)

18 EINT2 Enable external interrupt 2 (DMA)

19 EINT3 Enable external interrupt 3 (DMA)

20 EXINTO Enable serial-port O transmit interrupt (DMA)
21 ERINTO Enable serial-port O receive interrupt (DMA)
22 EXINT1 Enable serial-port 1 transmit interrupt (DMA)
23 ERINT1 Enable serial-port 1 receive interrupt (DMA)
24 ETINTO Enable timer 0 interrupt (DMA)

25 ETINT1 Enable timer 1 interrupt (DMA)

26 EDINT Enable DMA controller interrupt (DMA)

31-27 Reserved Read as 0
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Figure 8-32. CPU/DMA Interrupt-Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
o | o | ol sl o | EDINT | ETINTL | ETINTO | ERINTL | EXINTL | ERINTO | EXINTO | EINT3 EINT2 EINT1 EINTO
(DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA)
RIW RIW RIW RIW RIW RIW RIW RIW RIW RIW RIW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o | x| sl sl x| EDINT | ETINTL | ETINTO | ERINTL | EXINTL | ERINTO | EXINTO | EINT3 EINT2 EINT1 EINTO
(CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU)
RIW RIW RIW RIW RIW RIW RIW RIW RIW RIW RIW

Note:

8.3.5

xx = Reserved bit, read as 0

R =read, W = write

DMA Memory Transfer Operation

Each DMA memory transfer consists of two parts:
(1 Read data from the address specified by the DMA source register

[ Write data that has been read to the address specified by the DMA desti-
nation register

Atransfer is complete only when the read and write are complete. You can stop
a transfer by setting the START bits to the desired value. When the DMA is re-
started (START =1 1), it completes any pending transfer.

At the end of a DMA read, the source address is modified as specified by the
SRCINC and SRCDEC bits of the DMA global-control register. At the end of
a DMA write, the destination address is modified as specified by the DSTINC
and DSTDEC bits of the DMA global control register. At the end of every DMA
write, the DMA transfer counter is decremented.

DMA on-chip reads and writes (reads and writes from on-chip memory and pe-
ripherals) are single-cycle. DMA off-chip reads are two cycles. The first cycle
is the external read, and the second cycle loads the DMA register. The external
read cycle is identical to a CPU read cycle. DMA off-chip writes are identical
to CPU off-chip writes. If the DMA has been started and is transferring data
over either external bus, you should not modify the bus-control register asso-
ciated with that bus. If you must modify the bus-control register (see Chapter
7), stop the DMA, make the modification, and then restart the DMA. Failure to
do this may produce an unexpected zero-wait-state bus access.

Peripherals 8-49



DMA Controller

Through the 24-bit source and destination registers, the DMA is capable of ac-
cessing any memory-mapped location in the TMS320C3x memory map.
Table 8-13, Table 8-14, and Table 8-15 show the number of cycles a DMA
transfer requires, depending on whether the source and destination are on-
chip memory and peripherals, the external port, or the 1/O port. T represents
the number of transfers to be performed, C; represents the number of wait-
states for the source read, and C, represents the number of wait-states for the
destination write. Each entry in the table represents the total cycles required
to do the T transfers, assuming that there are no pipeline conflicts.

Accompanying each table is a figure illustrating the timing of the DMA transfer.
|[R| and |W| represent single-cycle reads and writes, respectively. |R.R| and
|[W.W]| represent multicycle reads and writes. |C,| and |C,,| show the number
of wait cycles for a read and write.

Table 8-13. DMA Timing When Destination Is On-Chip

-
=
1
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Cycles (H1) 1 |2 |3 |4 |5 |6 |7 |8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19
Source On-Chip R| |R| R
Destination On-Chip |W| |W| |W|
Source Primary Bus R.R.R:I| |R.R.R:I| |R.R.R:I|
PG|« o G [0 [ G ]
Destination On-Chip oo wl s w] s w
Source Expansion Bus R-R-R:I| |R.R.R:I| |R.R.R:I|
| S| - - | S| . : | G|
Destination On-Chip (wl o wl o w
Source Destination On-Chip
On-Chip @a+ynT
Primary Bus @+ +1)T

Expansion Bus (2 + C+1)T

Number of transfers
Source-read wait states
Destination-write wait states
Single-cycle reads

= Single-cycle writes

Multicycle reads
Multicycle writes
Internal register cycle
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Table 8-14.DMA Timing When Destination Is a Primary Bus

Cycles (H1) 1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11 |12|13 |14 |15 |16|17|18|19
Source On-Chip R| |R| © o |R| o

lw wwwlwww. wwww.w|

Destination Primary Bus o lew!l oo lew | ool cw
Source Primary Bus R-R.R:I| ¢ R.R.R: I|
R N
lwwwwl : : : |lwwwwl| :
Destination Primary Bus oo | Cw | Lo : | Cw |
Source Expansion Bus R-R.R:I|] |R.R.R:I|] |R.R.R:1]
cale e

lwwww| |[www.w| |www.w|
Destination Primary Bus oo lew | Tew s | cwld

Source Destination Primary Bus

onChip  1+Q2+Cy)T

Primary @2+C+2+Cy)T
Bus

Expansion (2+ Ci+2+ Cy)

Bus +2+Cy+max(l,C — Gy +
H(T-1)
Legend:
T = Number of transfers
Cy = Source-read wait states
Cw = Destination-write wait states
IR = Single-cycle reads
W] = Single-cycle writes
IR.R| = Multicycle reads
[W.W| = Multicycle writes

Internal register cycle
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Table 8—15. DMA Timing When Destination Is an Expansion Bus
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IR-R|
[W.w|
[

Number of transfers
Source-read wait states
Destination-write wait states
Single-cycle reads
Single-cycle writes
Multicycle reads

Multicycle writes

Internal register cycle

Cycles (H1) 1 |2 |3 |4 |5 |6 |7 |8 |9 |10|1l|12|13 |14|15 |16|17|18 |19
Source On-Chip R | |R| |R | co
lw wwwlwwwwlww.ww|
Destination Expansion Bus | Cw | | Cw | | Cw |
Source Primary Bus R.R.R|I| IR-R.R: 1| |R-R.R:I|
I O B T B A
lwwww| |wwwwl |wwww|
Destination Expansion Bus | Cw | | Cw | | Cw |
Source Expansion Bus R.-R.-R:I| |R.R .R: il
| Cr | S R
[lw w.w. w| lw.w.w. w| :
Destination Expansion Bus lcw | | Cw |
Source Destination Expansion Bus
On-Chip 1+@+Cy)T
Primary 2+C+2+Cy)
Bus +(2+ Gy + max(1,Cy — Gy +
H)Y(T-1)
Expansion (2+ C+2+ Cy)T
Bus
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Table 8-16 shows the maximum DMA transfer rates, assuming that there are
no wait states (C; = C, = 0). Table 8-17 shows the maximum DMA transfer
rates, assuming there is one wait state for the read (C, = 1) and no wait states
for the write (G, = 0). Table 8-18 shows the maximum DMA transfer rates,
assuming there is one wait state for the read (C; = 1) and one wait state for the

write (Cy = 1).

In each table, the time for the complete transfer (the read and the write) is con-
sidered. Since one bus access is required for the read and another for the
write, internal bus transfer rates will be twice the DMA transfer rate. It is also
assumed that no conflicts with the CPU exist. Rates are listed in Mwords/sec.
A word is 32 bits (4 bytes).

Table 8—-16. Maximum DMA Transfer Rates When C. = G, =0

Source

Destination

Internal

Primary

Expansion

Internal
Primary

Expansion

8.33 Mwords/sec
5.56 Mwords/sec
5.56 Mwords/sec

8.33 Mwords/sec
4.17 Mwords/sec
5.56 Mwords/sec

8.33 Mwords/sec
5.56 Mwords/sec
4.17 Mwords/sec

Table 8—-17. Maximum DMA Transfer Rates When C, =1, C,, =0

Source

Destination

Internal

Primary

Expansion

Internal
Primary

Expansion

8.33 Mwords/sec
4.17 Mwords/sec
4.17 Mwords/sec

8.33 Mwords/sec
3.33 Mwords/sec
4.17 Mwords/sec

8.33 Mwords/sec
4.17 Mwords/sec
3.33 Mwords/sec

Table 8-18. Maximum DMA Transfer Rates When C, =1, C,, = 1

Source

Destination

Internal

Primary

Expansion

Internal
Primary

Expansion

8.33 Mwords/sec
4.17 Mwords/sec

4,17 Mwords/sec

5.56 Mwords/sec
2.78 Mwords/sec

4,17 Mwords/sec

5.56 Mwords/sec
4.17 Mwords/sec

2.78 Mwords/sec
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8.3.6 Synchronization of DMA Channels

You can synchronize a DMA channel with interrupts. Refer to Table 8-11 on
page 8-46 for the relationship between the SYNC bits of the DMA global con-
trol register and the synchronization performed. This section describes the fol-
lowing four synchronization mechanisms:

[ No synchronization (SYNC =0 0)

[ Source synchronization (SYNC =0 1)

(1 Destination synchronization (SYNC =1 0)

[ Source and destination synchronization (SYNC =1 1)

No Synchronization

When SYNC =00, no synchronization is performed. The DMA performs reads
and writes whenever there are no conflicts. All interrupts are ignored and
therefore are considered to be globally disabled. However, no bits in the DMA
interrupt-enable  register are changed. Figure 8-33 shows the
synchronization mechanism when SYNC =0 0.

Figure 8-33. No DMA Synchronization
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| Disable DMA Interrupts |

!

| DMA Channel Performs a Read |

!

| DMA Channel Performs a Write |

Go to Start

Source Synchronization

When SYNC=0 1, the DMA is synchronized to the source (see Figure 8-34).
A read will not be performed until an interrupt is received by the DMA. Then
all DMA interrupts are disabled globally. However, no bits in the DMA interrupt
enable register are changed.
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Figure 8-34. DMA Source Synchronization

| 1die Until Enabled Interrupt Is Received |

| Disable DMA Interrupts GIobaIIyl

| DMA Channel Performs a Read |

| Enable DMA Interrupts Globally |

| DMA Channel Performs a Write |

Destination Synchronization

When SYNC=10, the DMA is synchronized to the destination. First, all inter-
rupts are ignored until the read is complete. Though the DMA interrupts are
considered globally disabled, no bits in the DMA interrupt-enable register are
changed. A write will not be performed until an interrupt is received by the
DMA. Figure 8-35 shows the synchronization mechanism when SYNC=1 0.

Figure 8-35. DMA Destination Synchronization

il

|  DMA Channel Performs a Read |

| Idle Until Enabled Interrupt Is Received |

!

| Disable DMA Interrupts Globally |

v

| DMA Channel Performs a Write |

!

| DMA Interrupts Are Enabled Globally |

Source and Destination Synchronization

When SYNC =1 1, the DMA is synchronized to both the source and destina-
tion. A read is performed when an interrupt is received. A write is performed
on the following interrupt. Source and destination synchronization when
SYNC =1 1 is shown in Figure 8—36.

Peripherals 8-55



DMA Controller

Figure 8-36. DMA Source and Destination Synchronization

| Idle Until Enabled Interrupt is Received |

| Disable DMA Interrupts Globally |

il

| DMA Channel Performs aRead |

il

| Enable DMA Interrupts Globally |

il

| Idle Until Enabled Interrupt Is Received |

|  Disable DMA Interrupts Globally |

il

| DMA Channel Performs a Write |

il

| Enable DMA Interrupts Globally |

8.3.7 DMA Interrupts
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You can generate a DMA interrupt to the CPU whenever the transfer count
reaches 0, indicating that the last transfer has taken place. The TCINT bit in
the DMA global control register determines whether the interrupt will be gener-
ated. If TCINT =1, the DMA interruptis generated. If TCINT =0, the DMA inter-
rupt is not generated. If the DMA interrupt is generated, the EDINT bit, bit 10
in the interrupt enable register, must also be set to enable the CPU to be inter-
rupted by the DMA.

A second bit in the DMA global control register, the TC bit, is also generally
associated with the state of the TCINT bit and the interrupt operation. The TC
bit determines whether transfers are terminated when the transfer counter be-
comes 0 or whether they are allowed to continue. If TC = 1, transfers are termi-
nated when the transfer count becomes 0. If TC = 0, transfers are not termi-
nated when the transfer count becomes 0.

In general, if TCINT is O, TC should also be cleared to 0. Otherwise, the DMA
transfer will terminate, and the CPU will not be notified. IfF TCINTis 1, TC should
also be 1in most cases. In this case, the CPU will be notified when the transfer
completes, and the DMA will be halted and ready to start a new transfer.
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8.3.8 DMA Initialization/Reconfiguration

You can control the DMA through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the DMA.:

1) Haltthe DMA by clearing the START bits of the DMA global-control regis-
ter. You can do this by writing a 0 to the DMA global-control register. Note
that the DMA is halted on RESET.

2) Configure the DMA via the DMA global-control register (with START = 00),
as well as the DMA source, destination, and transfer-counter registers, if
necessary. Refer to subsection 8.3.10 on page 8-58 for more information.

3) Startthe DMA by setting the START bits of the DMA global-control register
as necessary.

8.3.9 Hints for DMA Programming

The following hints help you improve your DMA programming and avoid unex-
pected results:

(1 Reset the DMA register before starting it. This clears any previously
latched interrupt that may no longer exist.

g In the event of a CPU-DMA access conflict, the CPU always prevails.
Carefully allocate the different sections of the program in memory for fast-
er execution. If a CPU program access conflicts with a DMA access, enab-
ling the cache helps if the program is located in external memory. DMA on-
chip access happens during the H3 phase. Refer to Chapter 9 for details
on CPU accesses.

Note: Expansion and Peripheral Buses

The expansion and peripheral buses cannot be accessed simultaneously
because they are multiplexed into a common port (see Figure 2—-1 on page
2-3). This might increase CPU-DMA access conflicts.

(1 Ensurethateachinterruptis received when you use interrupt synchroniza-
tion; otherwise, the DMA will never complete the block transfer.

[ Useread/write synchronization when reading from or writing to serial ports
to guarantee data validity.

The following are indications that the DMA has finished a set of transfers:

[ The DINT bit in the IIF register is set to 1 (interrupt polling). This requires
that the TCINT bit in the DMA control register be set first. This interrupt-
polling method does not cause any additional CPU-DMA access conflict.
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[ The transfer counter has a zero value. However, notice that the transfer
counter is decremented after the DMA read operation finishes (not after
the write operation). Nevertheless, a transfer counter with a 0 value can
be used as an indication of a transfer completion.

[ The STAT bits in the DMA channel control register are set to 00,. You can
poll the DMA channel control register for this value. However, because the
DMA registers are memory-mapped into the peripheral bus address
space, this option can cause further CPU-DMA access conflicts.

8.3.10 DMA Programming Examples

Example 8-5, Example 8—6, and Example 8-7 illustrate initialization proce-
dures for the DMA.

When linking the examples, you should allocate section memory addresses
carefully to avoid CPU-DMA conflict. In the 'C3x, the CPU always prevails in
cases of conflict. In the event of a CPU program—DMA data conflict, the enab-
ling of the cache helps if the .text section is in external memory. For example,
when linking the code in Example 8-5, Example 8-6, and Example 8-7, the
.text section can be allocated into RAMO, .data into RAM1, and .bss into
RAM1, where RAMO and RAM1 correspond to on-chip RAM block 0 and block
1, respectively.

In Example 8-5, the DMA initializes a 128-element array to 0. The DMA sends
an interrupt to the CPU after the transfer is completed. This program assumes
previous initialization of the CPU interrupt vector table (specifically the DMA-
to-CPU interrupt). The program initializes the ST and IE registers for interrupt
processing.

Example 8-5.Array Initialization With DMA

* TITLE: ARRAY INITIALIZATION WITH DMA

*

.GLOBAL START

.DATA

DMA .WORD 808000H
RESET .WORD 0C40H
CONTROL .WORD 0C43H
SOURCE .WORD ZERO
DESTIN .WORD _ARRAY
COUNT .WORD 128
ZERO .FLOAT 0.0

.BSS _ARRAY,128

TEXT
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; DMA GLOBAL CONTROL REG ADDRESS
; DMA GLOBAL CONTROL REG RESET VALUE
; DMA GLOBAL CONTROL REG INITIALIZATION
; DATA SOURCE ADDRESS
; DATA DESTINATION ADDRESS
; NUMBER OF WORDS TO TRANSFER
; ARRAY INITIALIZATION VALUE 0.0 = 0x80000000
; DATA ARRAY LOCATED IN .BSS SECTION



START LDP DMA
LDI @DMA,ARO
LDl @RESET,RO
STI RO,*ARO
LDI @SOURCE,R0
STI RO,*+ARO(4)
LDI @DESTIN,RO
STI RO,*+ARO(6)
LDI @COUNT,R0
STI RO,*+ARO(8)
OR 400H,IE
OR 2000H,ST
LDI @CONTROL,R0O
STI RO,*ARO
BUS$
END

DMA Controller

; LOAD DATA PAGE POINTER
; POINT TO DMA GLOBAL CONTROL REGISTER
; RESET DMA

; INITIALIZE DMA SOURCE ADDRESS REGISTER
; INITIALIZE DMA DESTINATION ADDRESS REGISTER
; INITIALIZE DMA TRANSFER COUNTER REGISTER

; ENABLE INTERRUPT FROM DMA TO CPU
; ENABLE CPU INTERRUPTS GLOBALLY
; INITIALIZE DMA GLOBAL CONTROL REGISTER
; START DMA TRANSFER

Example 8-6 sets up the DMA to transfer data (128 words) from the serial port
0 input register to an array buffer with serial port receive interrupt (RINTO). The
DMA sends an interrupt to the CPU when the data transfer completes.

Serial port O is initialized to receive 32-bit data words with an internally gener-
ated receive-bit clock and a bit-transfer rate of 8H1 cycles/bit.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af-
fects only the DMA,; therefore, no CPU serial port interrupt vector setting is re-
quired.

Example 8—6.DMA Transfer With Serial-Port Receive Interrupt
* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT

*

.GLOBAL START

.DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
CONTROL .WORD 0D43H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD 80804CH ; DATA SOURCE ADDRESS: SERIAL PORT INPUT REG
DESTIN .WORD _ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER
IEVAL .WORD 00200400H ; IE REGISTER VALUE
RESET1 .WORD O0D40H ; DMA RESET

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION

; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

SPORT .WORD 808040H ; SERIAL PORT GLOBAL CONTROL REG ADDRESS
SGCCTRL .WORD 0A300080H ; SERIAL PORT GLOBAL CONTROL REG INITIALIZATION
SRCTRL .WORD 111H ; SERIAL PORT RX PORT CONTROL REG INITIALIZATION
STCTRL .WORD 3COH ; SERIAL PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00020000H ; SERIAL PORT TIMER PERIOD
SPRESET .WORD 01300080H ; SERIAL PORT RESET
RESET .WORD OH ; SERIAL-PORT TIMER RESET

TEXT
START LDP DMA ; LOAD DATA PAGE POINTER
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* DMA INITIALIZATION

LDl @DMA,ARO ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @SPORT,AR1
LDl @RESET,RO0

STI RO,*+AR1(4) : RESET SPORT TIMER

LDI @RESET1,R0

STI RO,*ARO . RESET DMA

LDI @SPRESET,R0

STI RO,*AR1 . RESET SPORT

LDl @SOURCE,R0 : INITIALIZE DMA SOURCE ADDRESS REGISTER
STI RO,*+ARO(4)

LDI @DESTIN,RO : INITIALIZE DMA DESTINATION ADDRESS REGISTER
STI RO,*+ARO(6)

LDI @COUNT,RO - INITIALIZE DMA TRANSFER COUNTER REGISTER
STI RO,*+ARO(8)

OR @IEVAL,IE : ENABLE INTERRUPTS

OR 2000H,ST . ENABLE CPU INTERRUPTS GLOBALLY

LDl @CONTROL,RO - INITIALIZE DMA GLOBAL CONTROL REGISTER
STI RO,*ARO . START DMA TRANSFER

* SERIAL PORT INITIALIZATION
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LDI @SRCTRL,R0 : SERIAL-PORT RECEIVE CONTROL REG INITIALIZATION
STI RO,*+AR1(3)

LDl @STPERIOD,RO  ; SERIAL-PORT TIMER PERIOD INITIALIZATION

STI RO,*+AR1(6)

LDl @STCTRL,RO : SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STI RO,*+AR1(4)

LDl @SGCCTRL,R0 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STI RO,*AR1

BUS$

END

Example 8—7 sets up the DMA to transfer data (128 words) from an array buff-
er to the serial port O output register with serial port transmit interrupt XINTO.
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial port O is initialized to transmit 32-bit data words with an internally gener-
ated frame sync and a bit-transfer rate of 8H1 cycles/bit. The receive-bit clock
is internally generated and equal in frequency to one-half of the 'C3x H1 fre-

quency.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly af-
fects only the DMA; therefore, no CPU serial port interrupt vector setting is re-

quired.

Note: Serial Port Transmit Synchronization

The DMA uses serial port transmit interrupt XINTO to synchronize transfers.
Because the XINTO is generated when the transmit buffer has written the last
bit of data to the shifter, an initial CPU write to the serial port is required to

trigger XINTO to enable the first DMA transfer.
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Example 8—7.DMA Transfer With Serial-Port Transmit Interrupt
* TITLE: DMA TRANSFER WITH SERIAL PORT TRANSMIT INTERRUPT

* .GLOBAL START
.DATA
DMA .WORD 808000H ; DMA GLOBAL CONTROL REG ADDRESS
CONTROL .WORD OE13H ; DMA GLOBAL CONTROL REG INITIALIZATION
SOURCE .WORD (_ARRAY+1) ; DATA SOURCE ADDRESS
DESTIN .WORD 80804CH ; DATA DESTIN ADDRESS: SERIAL-PORT OUTPUT REG
COUNT .WORD 127 ; NUMBER OF WORDS TO TRANSFER =(MSG LENGHT-1)
IEVAL .WORD 00100400H ; IE REGISTER VALUE

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

RESET1 .WORD OE10H ; DMA RESET
SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS
SGCCTRL .WORD 04880044H ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
SXCTRL .WORD 111H ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION
STCTRL .WORD 00FH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00000002H ; SERIAL-PORT TIMER PERIOD
SPRESET .WORD 00880044H ; SERIAL-PORT RESET
RESET .WORD OH ; SERIAL-PORT TIMER RESET

TEXT
START LDP DMA ; LOAD DATA PAGE POINTER
* DMA INITIALIZATION

LDI @DMA,ARO ; POINT TO DMA GLOBAL CONTROL REGISTER

LDl @SPORT,AR1
LDI @RESET,RO

STIRO,*+AR1(4) : RESET SPORT TIMER
STIR0,*AR0O : RESET DMA

STIRO,*AR1 : RESET SPORT

LDl @SOURCE,RO : INITIALIZE DMA SOURCE ADDRESS REGISTER
STIRO,*+AR0(4)

LDI @DESTIN,RO : INITIALIZE DMA DESTINATION ADDRESS REGISTER
STIRO,*+ARO0(6)

LDI @COUNT,RO - INITIALIZE DMA TRANSFER COUNTER REGISTER
STIR0,*+AR0(8)

OR @IEVAL,IE : ENABLE INTERRUPT FROM DMA TO CPU

OR 2000H,ST : ENABLE CPU INTERRUPTS GLOBALLY

LDl @CONTROL,R0 : INITIALIZE DMA GLOBAL CONTROL REGISTER
STIRO,*ARO : START DMA TRANSFER
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* SERIAL PORT INITIALIZATION

LDI @SXCTRL,RO : SERIAL-PORT TX CONTROL REG INITIALIZATION
STIRO,*+AR1(2)

LDI @STPERIOD,R0 . SERIAL-PORT TIMER PERIOD INITIALIZATION
STIRO,*+AR1(6)

LDI @STCTRL,RO : SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STIRO,*+AR1(4)

LDl @SGCCTRL,R0O : SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
STIRO,*AR1

* CPU WRITES THE FIRST WORD (TRIGGERING EVENT —> XINT IS GENERATED)

LDl @SOURCE,ARO
LDI*~ARO(1),RO
STIRO,*+AR1(8)

BU $

END

Other examples are as follows:

[ Transfer a 256-word block of data from off-chip memory to on-chip
memory and generate an interrupt on completion. The order of memory
is to be maintained.

DMA source address: 800000h
DMA destination address: 809800h
DMA transfer counter: 00000100h
DMA global control: 00000C53h

CPU/DMA interrupt enable (IE): 00000400h

[ Transfer a 128-word block of data from on-chip memory to off-chip
memory and generate an interrupt on completion. The order of memory
is to be inverted; that is, the highest addressed member of the block is to
become the lowest addressed member.

DMA source address: 809800h
DMA destination address: 800000h
DMA transfer counter: 00000080h
DMA global control: 00000C93h

CPU/DMA interrupt enable (IE): 00000400h

(1 Transfer a 200-word block of data from the serial-port-0 receive register
to on-chip memory and generate an interrupt on completion. The transfer
is to be synchronized with the serial-port-0 receive interrupt.

DMA source address: 80804Ch
DMA destination address: 809CO00h
DMA transfer counter: 000000C8h
DMA global control: 00000D43h

CPU/DMA interrupt enable (IE): 00200400h
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[ Transfera200-word block of data from off-chip memory to the serial-port-0
transmit register and generate an interrupt on completion. The transfer is
to be synchronized with the serial-port-0 transmit interrupt.

DMA source address: 809C00h
DMA destination address: 808048h
DMA transfer counter: 000000C8h
DMA global control: 00000E13h

CPU/DMA interrupt enable (IE): 00400400h

[ Transfer data continuously between the serial-port-0 receive register and
the serial-port-0 transmit register to create a digital loop back. The transfer
is to be synchronized with the serial-port-0 receive and transmit interrupts.

DMA source address: 80804Ch
DMA destination address: 808048h
DMA transfer counter: 00000000h
DMA global control: 00000303h

CPU/DMA interrupt enable (IE): 00300000h
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Chapter 9

Pipeline Operation

Two characteristics of the TMS320C3x that contribute to its high performance
are:

[ Pipelining, and
[ Concurrent I/O and CPU operation.

Five functional units control TMS320C3x operation:

Fetch

Decode

Read

Execute

Direct memory access (DMA)

Uoood

Pipelining is the overlapping or parallel operations of the fetch, decode, read,
and execute levels of a basic instruction.

By performing input/output operations, the DMA controller reduces the need
for the CPU to do so, thereby decreasing pipeline interference and enhancing
the CPU’s computational throughput.

Major topics discussed in this chapter are as follows:

Topic Page
9.1 Pipeline Structure . ... 9-2
9.2 Pipeline Conflicts ... ... 9-4
9.3 Resolving Register Conflicts  ......... .. ... ... L. 9-18
9.4 Resolving Memory Conflicts ... 9-21
9.5 Clocking of MemMOry ACCESSES .. v ittt 9-23
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9.1 Pipeline Structure

The five major units of the TMS320C3x pipeline structure and their functions
are as follows:

(4 Fetch Unit (F)

This unit fetches the instruction words from memory and updates the pro-
gram counter (PC).

[ Decode Unit (D)

This unit decodes the instruction word and performs address generation.
The unit also controls any modifications to the auxiliary registers and the
stack pointer.

(1 Read Unit (R)

This unit, if required, reads the operands from memory.

(O Execute Unit (E)

This unit, if required, reads the operands from the register file, performs
any necessary operation, and writes results to the register file. If required,
the unit writes results of previous operations to memory.

[ DMA Channel (DMA)

The DMA channel reads and writes to memory.

A basic instruction has four levels:

[ Fetch
(] Decode
] Read
(1 Execute

Figure 9-1 illustrates these four levels of the pipeline structure. The levels are
indexed according to instruction and execution cycle. The perfect overlap in
the pipeline, where all four units operate in parallel, occurs at cycle (m). Those
levels about to be executed are at m + 1, and those just executed are at m — 1.
The TMS320C3x pipeline control allows a high-speed execution rate of one
execution per cycle. It also manages pipeline conflicts so that they are trans-
parent to the user. You do not need to take any special precautions to guaran-
tee correct operation.



Pipeline Structure

Figure 9-1. TMS320C3x Pipeline Structure

CYCLE
m-3
m-2
m-1
m

m+1
m+ 2

m+3

Perfect overlap

N < X s

D = Decode, E = Execute, F = Fetch, R = Read; W, X, Y, Z = Instruction Representations

Priorities from highest to lowest have been assigned to each of the functional
units as follows:

1)
2)
3)
4)
5)

Execute (highest)
Read

Decode

Fetch

DMA (lowest)

When the processing of an instruction is ready to pass to the next higher pipe-
line level, but that level is not ready to accept a new input, a pipeline conflict
occurs. In this case, the lower-priority unit waits until the higher-priority unit
completes its currently executing function.

Despite the DMA controller’s low priority, you can minimize or even eliminate
conflicts with the CPU through suitable data structuring because the DMA con-
troller has its own data and address buses.
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9.2 Pipeline Conflicts

The pipeline conflicts of the TMS320C3x can be grouped into the following
categories:

[ Branch Conflicts

Branch conflicts involve most of those instructions or operations that read
and/or modify the PC.

[0 Register Conflicts

Register conflicts involve delays that can occur when reading from or writ-
ing to registers that are used for address generation.

[ Memory Conflicts

Memory conflicts occur when the internal units of the TMS320C3x com-
pete for memory resources.

Each of these three categories is discussed in the following sections. Exam-
ples are included. Note that in these examples, when data is refetched or an
operation is repeated, the symbol representing the stage of the pipeline is ap-
pended with a number. For example, if a fetch is performed again, the instruc-
tion mnemonic is repeated. When an access is detained for multiple cycles be-
cause of not ready, the symbols RDY and RDY are used to indicate not ready
and ready, respectively.

9.2.1 Branch Conflicts

9-4

The first class of pipeline conflicts occurs with standard (nondelayed)
branches, thatis, BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETIcond,
RETScond, interrupts, and reset. Conflicts arise with these instructions and
operations because during their execution, the pipeline is used only for the
completion of the operation; other information fetched into the pipeline is dis-
carded or refetched, or the pipeline is inactive. This is referred to as flushing
the pipeline. Flushing the pipeline is necessary in these cases to guarantee
that portions of succeeding instructions do not inadvertently get partially ex-
ecuted. TRAPcond and CALLcond are classified differently from the other
types of branches and are considered later.

Example 9-1 shows the code and pipeline operation for a standard branch.

Note: Dummy Fetch

One dummy fetch (an MPYF instruction) is performed, which affects the
cache. After the branch address is available, a new fetch (an OR instruction)
is performed.




Pipeline Conflicts

Example 9-1.Standard Branch

BR THREE ; Unconditional branch

MPYF ; Not executed

ADD : Not executed

SUBF ; Not executed

AND ; Not executed

THREE OR ; Fetched after BR is fetched
STI
PIPELINE OPERATION
PC F D R E
n BR - - -
n+1 MPYF BR - -
n+1 (nop) (nop) BR -
n+1 (nop) (nop) (nop) BR
THREE OR (nop) (nop) (nop)
STI OR (nop) (nop)

/'

THREE - PC Fetch held for

new PC value

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

RPTS and RPTB both flush the pipeline, allowing the RS, RE, and RC registers
to be loaded at the proper time relative to the flow of the pipeline. If these regis-
ters are loaded without the use of RPTS or RPTB, no flushing of the pipeline
occurs. Ifyou are not using any of the repeat modes, then you can use RS, RE,
and RC as general-purpose 32-bit registers and not cause any pipeline con-
flicts. In cases such as the nesting of RPTB due to nested interrupts, it might
be necessary to load and store these registers directly while using the repeat
modes. Since up to four instructions can be fetched before entering the repeat
mode, you should follow loads by a branch to flush the pipeline. If the RC is
changing when an instruction is loading it, the direct load takes priority over
the modification made by the repeat mode logic.
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Delayed branches are implemented to guarantee the fetching of the next three
instructions. The delayed branches include BRD, BcondD, and DBcondD.
Example 9-2 shows the code and pipeline operation for a delayed branch.

Example 9—2.Delayed Branch

BRD THREE ; Unconditional delayed branch
MPYF ; Executed
ADD ; Executed
SUBF ; Executed
AND ; Not executed
THREE MPYF : Fetched after SUBF is fetched

PIPELINE OPERATION

PC F D R E

n BRD — — —

n+1 MPYF BRD — — No execute delay
n+2 ADDF MPYF BRD —

n+3 SUBF ADDF MPYF BRD

THREE / MPYF SUBF ADDF MPYF

THREE - PC

D = Decode, E = Execute, F = Fetch, R = Read, PC = Program Counter
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9.2.2 Register Conflicts

Register conflicts involve reading or writing registers used for addressing.
These conflicts occur when the pertinent register is not ready to be used. Some
conditions under which you can avoid register conflicts are discussed in Sec-
tion 9.3 on page 9-18.

The registers comprise the following three functional groups:

1 Groupl

This group includes auxiliary registers (AR0—AR7), index registers (IR0,
IR1), and block size register (BK).

1 Group 2
This group includes the data page pointer (DP).

(1 Group3

This group includes the system stack pointer (SP).

If an instruction writes to one of these three groups, the decode unit cannot use
any register within that particular group until the write is complete, that is, in-
struction execution is completed. In Example 9-3, an auxiliary register is
loaded, and a different auxiliary register is used on the next instruction. Since
the decode stage needs the result of the write to the auxiliary register, the de-
code of this second instruction is delayed two cycles. Every time the decode
is delayed, a refetch of the program word is performed; that is, the ADDF is
fetched three times. Since these are actual refetches, they can cause not only
conflicts with the DMA controller but also cache hits and misses.
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Example 9-3. Write to an AR Followed by an AR for Address Generation

LDI 7,AR1 7 - AR1

NEXT MPYF *AR2,R0 ; Decode delayed 2 cycles
ADDF
FLOAT

PIPELINE OPERATION

PC F D R E

n LDI — — —
n+1 MPYF LDI — —
n+2 ADDF MPYF LDI —
n+2 ADDF MPYF (nop) LDI 7,AR1
n+2 ADDF MPYF (nop) (nop)
n+3 FLOAT ADDF MPYF (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

The case for reads of these groups is similar to the case for writes. If an
instruction must read a member of one of these groups, the use of that particu-
lar group by the decode for the following instruction is delayed until the read
is complete. The registers are read at the start of the execute cycle and there-
fore require only a one-cycle delay of the following decode. For four registers
(IRO, IR1, BK, or DP), there is no delay. For all other registers, including the
SP, the delay occurs.

In Example 9—4, two auxiliary registers are added together, with the result go-
ing to an extended-precision register. The next instruction uses a different aux-
iliary register as an address register.
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Example 9—4.A Read of ARs Followed by ARs for Address Generation

ADDI ARO,AR1,R1 : ARO + AR1 - R1
NEXT MPYF *++AR2,R0 ; Decode delayed one cycle

ADDF

FLOAT

PIPELINE OPERATION

PC F D R E

n ADDI — — —

n+1 MPYF  ADDI — _

n+2 ADDF  MPYF  ADDI —

n+2 ADDF  MPYF  (nop) ADDIARO,ARL,RO
n+3 FLOAT ADDF  MPYF  (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Loop counter auxiliary registers for the decrement and branch (DBR)) instruc-
tion are regarded in the same way as they are for addressing. Therefore, the
operation shown in Example 9—3 and Example 9—4 can also occur for this in-
struction.
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9.2.3 Memory Conflicts

9-10

Memory conflicts can occur when the memory bandwidth of a physical
memory space is exceeded. For example, RAM blocks 0 and 1 and the ROM
block can support only two accesses per cycle. The external interface can sup-
port only one access per cycle. Section 9.4 on page 9-21 contains some condi-
tions under which you can avoid memory conflicts.

Memory pipeline conflicts consist of the following four types:

[ Program wait

A program fetch is prevented from beginning.

[ Program fetch incomplete

A program fetch has begun but is not yet complete.

(1 Execute only

An instruction sequence requires three CPU data accesses in a single
cycle.

(1 Hold everything

A primary or expansion bus operation must complete before another one
can proceed.

These four types of memory conflicts are illustrated in examples and dis-
cussed in the paragraphs that follow.

Program Wait
Two conditions can prevent the program fetch from beginning:

[J The start of a CPU data access when:

B Two CPU data accesses are made to an internal RAM or ROM block,
and a program fetch from the same block is necessary.

B Oneofthe external portsis starting a CPU data access, and a program
fetch from the same port is necessary.

[ A multicycle CPU data access or DMA data access over the external bus
is needed.
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Example 9-5 illustrates a program wait until a CPU data access completes.
In this case, *ARO and *ARL1 are both pointing to data in RAM block 0, and the
MPYF instruction will be fetched from RAM block 0. This results in the conflict
shown in Example 9-5. Since no more than two accesses can be made to
RAM block 0 in a single cycle, the program fetch cannot begin and must wait
until the CPU data accesses are complete.

Example 9-5. Program Wait Until CPU Data Access Completes

n+3

n+4

ADDF3 *ARO,*AR1,R0O
FIX

MPYF

ADDF3

NEGB

PIPELINE OPERATION

Fl o | R | E |
ADDF3 — — —
FIX ADDF3 — —

(WAIT)  FIX  ADDF3 —
MPYF  (nop) FIX  ADDF3 *ARO0,AR1,RO
ADDF3  MPYF  (nop)  FIX

NEGB ADDF3 MPYF  (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Example 9-6 shows a program wait due to a multicycle data-data access or
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from a
portion of memory other than the external port that the DMA requires. The
DMA begins a multicycle access. The program fetch corresponding to the
CALL is made to the same external port that the DMA is using.

Either of two cases may produce this situation:

[ One of the following two memory boundaries is crossed:

B From 7F FFFFh to 80 0000h, or
B From 80 9FFFh to 80 AOOOh.

[ Code that has been cached is executed, and the instruction prior to the
ADDEF is one of the following (conditional or unconditional):

B a delayed branch instruction, or
B a delayed decrement and branch instruction.
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Even though the DMA has the lowest priority, multicycle access cannot be
aborted. The program fetch must therefore wait until the DMA access com-

pletes.

Example 9—6. Program Wait Due to Multicycle Access

PIPELINE OPERATION

PC F | o | R | E |
n ADDF — — —
n+1 MPYF ADDF — —
n+2 SUBF MPYF ADDF —
n+3 (WAIT) SUBF MPYF ADDF
n+3 CALL  (nop) SUBF MPYF
n+4 — CALL  (nop) SUBF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
Program Fetch Incomplete

A program fetch incomplete occurs when a program fetch requires more than
one cycle to complete due to wait states. In Example 9-7, the MPYF and
ADDF are fetched from memory that supports single-cycle accesses. The
SUBEF is fetched from memory, which requires one wait state. One example
that demonstrates this conflict is a fetch across a bank boundary on the
primary port. See Section 7.4 on page 7-30.

Example 9—-7.Multicycle Program Memory Fetches

9-12

PIPELINE OPERATION

PC F | o | R | E |
n MPYF — — —
n+1 ADDF  MPYF — —
n+2RDY SUBF  ADDF  MPYF —
n+ 2 RDY SUBF  (nop) ADDF  MPYF
n+3 ADDI  SUBF (nop) ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
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Execute Only

The execute only type of memory pipeline conflict occurs when performing an
interlocked load or when a sequence of instructions requires three CPU data
accesses in a single cycle. There are three cases in which this occurs:

[ Aninstruction performs a store and is followed by an instruction that does
two memory reads.

[ An instruction performs two stores and is followed by an instruction that
performs at least one memory read.

(1 Aninterlocked load (LDII or LDFI) instruction is performed, and XF1=1.

The first case is shown in Example 9-8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF || LDF
are delayed one cycle. Note that a refetch of the next instruction can occur.

Example 9-8.Single Store Followed by Two Reads

STF RO,*AR1 ;RO - *AR1
LDF *AR2,R1 i *AR2 — R1in parallel with
m LDF *AR3,R2 :*AR3 5 R2

PIPELINE OPERATION

PC F D R E

n STF — — —

n+1 LDF [ LDF STF — _

n+2 w LDF I LDF STF —

n+3 X W LDF [ LDF STF

n+4 X w LDFILDF  (nop)

n+4 Y X w LDFILDF *AR2,R1 and *AR3,R2

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter, W, X, Y =Instruction Representations
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Example 9-9 shows a parallel store followed by a single load or read. Since
the two parallel stores are required, the next CPU data memory read must wait
a cycle before beginning. One program memory refetch can occur.

Example 9-9.Parallel Store Followed by Single Read
STF RO,*ARO ;RO - *ARO in parallel with

il STF R2,*AR1 iR2 - *AR1
ADDF @SUM,R1 yR1+ @SUM - R1
IACK
ASH

PIPELINE OPERATION

PC F D) R E

n STF [MSTF — — _
n+1 ADDF STFIISTF — _
n+2 IACK ADDF STF I STF —
n+3 ASH IACK ADDF STFII STF
n+4 ASH IACK ADDF (nop)
n+4 — ASH IACK ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
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The final case involves an interlocked load (LDII or LDFI) instruction and XF1
= 1. Since the interlocked loads use the XF1 pin as an acknowledge that the
read can complete, the loads might need to extend the read cycle, as shown
in Example 9-10. Note that a program refetch can occur.

Example 9-10. Interlocked Load

PC

n+1

n+2

n+3

n+3

n+4

NOT R1,RO
LDl 300h,AR2
ADDI *AR2,R2
CMPI RO,R2

PIPELINE OPERATION

F D R E
NOT — — —
LDII NOT —_ —
ADDI LDII NOT —
CMPI ADDI LDl NOT
— CMPI ADDI LDIl
— CMPI ADDI LDIl

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Hold Everything
Three situations result in hold-everything memory pipeline conflicts:

(1 A CPU data load or store cannot be performed because an external port is
busy.

[ An external load takes more than one cycle.

(1 Conditional calls and traps are processed.
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The first type of hold everything conflict occurs when one of the external ports
is busy due to an access that has started but is not complete. In Example 9-11,
the first store is a two-cycle store. The CPU writes the data to an external port.
The port control then takes two cycles to complete the data-data write. The
LDF is a read over the same external port. Since the store is not complete, the
CPU continues to attempt LDF until the port is available.

Example 9—-11. Busy External Port

9-16

PC

n

n+1

n+2

n+2

n+2

n+3

n+4

STF RO,@DMA1
LDF @DMA2,R0

PIPELINE OPERATION

F | o | R | E |
STF — — —
LDF STF — —

w LDF STF —

w LDF (nop) STF

W LDF (nop) (nop)

X W LDF (nop)

Y X w LDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter, W, X, Y =Instruction Representations
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The second type of hold everything conflict involves multicycle data reads. The
read has begun and continues until completed. In Example 9-12, the LDF is
performed from an external memory that requires several cycles to complete.

Example 9—12. Multicycle Data Reads

n+2

n+3

n+3
D = Decode

LDF @DMA,RO

PIPELINE OPERATION

F | D | R E
LDF — — —
| LDF — —
J | LDF —
K,(dummy) | LDF _
Ko J | LDF

, E = Execute, F = Fetch, R = Read, PC =Program Counter, /, J, K =Instruction Representations

The final type of hold everything conflict involves conditional calls and traps,
which are different from the other branch instructions. Whereas the other
branch instructions are conditional loads, the conditional calls and traps are
conditional stores, which require one cycle more than a conditional branch
(see Example 9—-13). The added cycle is used to push the return address after
the call condition is evaluated.

Example 9—-13. Conditional Calls and Traps

PIPELINE OPERATION

PC F D R E

n9 CALLcond — — _
n+1 | CALL cond — —
n+1 (nop) (nop) CALL cond —
n+1 (nop) (nop) (nop) CALL cond
n+1 (nop) (nop) (nop) CALL cond
n+ 2/ CALLaddr [ (nop) (nop) (nop)

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter, /, =Instruction Representation
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9.3 Reso

lving Register Conflicts

If the auxiliary registers (AR7—ARO), the index registers (IR1-IR0), data page
pointer (DP), or stack pointer (SP) are accessed for any reason other than ad-
dress generation, pipeline conflicts associated with the next memory access
can occur. The pipeline conflicts and delays are presented in subsection 9.2
on page 9-4.

Example 9-14, Example 9-15, and Example 9-16 demonstrate either some
common uses of these registers that do not produce a conflict or ways that you
can avoid the conflict.

Example 9—14. Address Generation Update of an AR Followed by an AR for Address

Generation

9-18

LDF 70RO ;70 —RO
MPYF  *++ARO(IR1),RO

ADDF  *AR2,RO

FIX

MPYF

ADDF

PIPELINE OPERATION

PC F D R E
n LDF — — —
n+1 MPYF LDF — —
n+2 ADDF MPYF LDF —
n+3 FIX ADDF MPYF LDF
n+4 MPYF FIX ADDF MPYF
n+5 ADDF MPYF FIX ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter, W, X, Y, Z =Instruction Representations
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Example 9—-15. Write to an AR Followed by an AR for Address Generation Without a
Pipeline Conflict

LDI @TABLE,AR2
MPYF  @VALUE,R1
ADDF R2R1
MPYF  *AR2++,R1
SUBF

STF

PIPELINE OPERATION

PC F D R E

n LDI — — —

n+1 MPYF LDI — —

n+2 ADDF MPYF LDI —

n+3 MPYF ADDF MPYF LDI 7,
AR2

n+4 SUBF MPYF ADDF MPYF

n+5 STF SUBF MPYF ADDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Pipeline Operation 9-19



Resolving Register Conflicts

Example 9-16. Write to DP Followed by a Direct Memory Read Without a Pipeline Confilict

LDP  TABLE_ADDR

POP RO

LDF  *-AR3(2),R1

LDI  @TABLE_ADDR,ARO
PUSHF R6

PUSH R4

PIPELINE OPERATION

PC F D R E

n LDP — — —
n+1 POP LDP — —
n+2 LDF POP LDP —
n+3 LDI LDF POP LDP
n+4 PUSHF LDI LDF POP
n+5 PUSH PUSHF LDI LDF

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter
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9.4 Resolving Memory Conflicts

If program fetches and data accesses are performed in such a manner that the
resources being used cannot provide the necessary bandwidth, the program
fetch is delayed until the data access is complete. Certain configurations of
program fetch and data accesses vyield conditions under which the
TMS320C3x can achieve maximum throughput.

Table 9-1 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and a single data
access and still achieve maximum performance (one cycle). As shown in
Table 9-1, four cases achieve one-cycle maximization.

Table 9-1. One Program Fetch and One Data Access for Maximum Performance

Accesses From Expansion Bus T
Primary Bus Dual-Access Or Peripheral
Case # Accesses Internal Memory Accesses
1 1 1 -
2 1 - 1
2 from any
3 - combination -
of internal memory
4 — 1 1

T The expansion bus is available only on the TMS320C30.
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Table 9-2 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and two data ac-
cesses and still achieve maximum performance (one cycle). Six conditions

achieve this maximization.

Table 9-2. One Program Fetch and Two Data Accesses for Maximum Performance

Primary Bus
Case # Accesses

Accesses From
Dual-Access
Internal Memory

Expansion T Or
Peripheral Bus
Accesses

2t 1 Program
3f 1 Data

4 _

2 from any
combination
of internal memory

1 Data
1 Data

2 from same internal
memory block and
1 from a different
internal memory
block

3 from different
internal memory
blocks

2 from any
combination
of internal memory

1 Data
1 Program

tThe expansion bus is available only on the TMS320C30.
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9.5 Clocking of Memory Accesses

This section uses the relationships between internal clock phases (H1 and H3)
to memory accesses to illustrate how the TMS320C3x handles multiple
memory accesses. Whereas the previous section discusses the interaction
between sequences of instructions, this section discusses the flow of data on
an individual instruction basis.

Each major clock period of 60 ns is composed of two minor clock periods of
30 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time
when that signal is high.

Major Clock Period

H1

H3

The precise operation of memory reads and writes can be defined according
to these minor clock periods. The types of memory operations that can occur
are program fetches, data loads and stores, and DMA accesses.

9.5.1 Program Fetches

Internal program fetches are always performed during H3 unless a single data
store must occur at the same time due to another instruction in the pipeline.
In this case, the program fetch occurs during H1, and the data store during H3.

External program fetches always start at the beginning of H3, with the address
being presented on the external bus. At the end of H1, they are completed with
the latching of the instruction word.
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9.5.2 Data Loads and Stores

Four types of instructions perform loads, memory reads, and stores:

(1 Two-operand instructions,

(1 Three-operand instructions,

[ Multiplier/ALU operation with store instructions, and
(1 Parallel multiply and add instructions.

See Chapter 5 for detailed information on addressing modes.

As discussed in Chapter 7, the number of bus cycles for external memory
accesses differs in some cases from the number of CPU execution cycles. For
external reads, the number of bus cycles and CPU execution cycles is identi-
cal. For external writes, there are always at least two bus cycles, but unless
there is a port access conflict, there is only one CPU execution cycle. In the
following examples, any difference in the number of bus cycles and CPU
cycles is noted.

Two-Operand Instruction Memory Accesses

Two-operand instructions include all instructions whose bits 31-29 are 000 or
010 (see Figure 9-2). In the case of a data read, bits 15-0 represent the src
operand. Internal data reads are always performed during H1. External data
reads always start at the beginning of H3, with the address being presented
on the external bus; they complete with the latching of the data word at the end
of H1.

Figure 9-2. Two-Operand Instruction Word

31

X

0

) ) ) )
Operation

24 23 16 15 87 0
T

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
G dst(src) src(dst)

9-24

In the case of a data store, bits 15-0 represent the dst operand. Internal data
stores are performed during H3. External data stores always start at the begin-
ning of H3, with the address and data being presented on the external bus.

Three-Operand Instruction Memory Reads

Three-operand instructions include all instructions whose bits 31-29 are 001
(see Figure 9-3). The source operands, srcland src2, come from either regis-
ters or memory. When one or more of the source operands are from memory,
these instructions are always memory reads.
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Figure 9-3. Three-Operand Instruction Word

24 23 16 15 87 0
T T

1 1 1 1
Operation

1 1 1
T dst srcl src2

If only one of the source operands is from memory (either src1 or src2) and is
located in internal memory, the data is read during H1. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address being presented on the external bus, and completes with the
latching of the data word at the end of H1.

If both source operands are to be fetched from memory, several cases occur.
If both operands are located in internal memory, the src1 read is performed
during H3 and the src2 read during H1, thus completing two memory reads in
a single cycle.

If srclis in internal memory and src2 is in external memory, the src2 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src1 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

If src1isin external memory and src2is in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, both operands are ad-
dressed. Since src1takes an entire cycle to be read and latched from external
memory, the internal operation on src2 cannot be completed until the second
cycle. Ordering the operands so that src1 is located internally is necessary to
achieve single-cycle execution.

If src1and src2are both from external memaory, two cycles are required to com-
plete the two reads. In the first cycle, the src1 access is performed and loaded
on the next H3; in the second cycle, the src2 access is performed and loaded
on that cycle’s H1.

If src2is in external memory and srcl is in on-chip or external memory and is
immediately preceded by a single store instruction to external memory, a
dummy src2read can occur between the execution of the store instruction and
the src2 read, regardless of which memory space is accessed (STRB,
MSTRB, or IOSTRB). The dummy read can cause an externally interfaced
FIFO address pointer to be incremented prematurely, thereby causing the loss
of FIFO data. Example 9-17 illustrates how the dummy read can occur.
Example 9-18 offers an alternative code segment that suppresses the dummy
read. In the alternative code segment, the dummy read is eliminated by swap-
ping the order of the source operands.
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Example 9-17. Dummy src2 Read

STI RO,*AR6 ; ARG points to MSTRB space
ADDI3 *AR3,*AR1,R0 ; ARS3 points to on-chip RAM
; AR1 points to MSTRB space

H1 ] | ] | | L

H3 | 1 [ 1 [
PIPELINE OPERATION

PC | F | D | R
n STI
n+1 ADDI3 STI
n+2 ADDI3 STI
n+3 —
n+4 —
n+5 ADDI3
n+6 —
n+7 ADDI3
n+8

E

STI

ADDI3

RO,*AR6

The read of src2 cannot start
until the store is complete.
dummy load of src2

second cycle of dummy load

actual read of src2 and srcl

*AR3,*AR1,R0

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Two cycles are required for the MSTRB store. Two other cycles are required for the
dummy MSTRB read of *AR3 (because the read follows a write). One cycle is required

for an actual MSTRB read of *ARS3.
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Example 9—-18. Operand Swapping Alternative

Switch the operands of the three-operand instruction so that the internal read
is performed first.
STI RO,*AR6 ;ARG points to MSTRB space

ADDI3 *AR1,*AR3,R0 ;AR3 points to on-chip_ RAM
;AR1 points to MSTRB space

H1 | | L1 L |
H3 I I 1 1 |
PIPELINE OPERATION
PC F | D | R | E
n STI
n+1 ADDI3 STI
n+2 ADDI3 STI
n+3 — STI RO,*AR6
n+4 — — The read of src2 cannot start
until the store is complete.
n+5 ADDI3 — actual read of src2 and srcl
n+6 — — second cycle of src2 read
n+7 — ADDI3 *AR1,*AR3,R0

D = Decode, E = Execute, F = Fetch, R = Read, PC =Program Counter

Operations with Parallel Stores

The next class of instructions includes every instruction that has a store in par-
allel with another instruction. Bits 31 and 30 for these instructions are equal
tol1.

The instruction word format for those operations that perform a multiply or ALU
operation in parallel with a store is shown in Figure 9—4. If the store operation
to dst2 is external or internal, it is performed during H3. Two bus cycles are
required for external stores, but only one CPU cycle is necessary to complete
the write.

If the memory read operation is external, it starts at the beginning of H3 and
latches at the end of H1. If the memory read operation is internal, it is per-
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formed during H1. Note that memory reads are performed by the CPU during
the read (R) phase of the pipeline, and stores are performed during the ex-
ecute (E) phase.

Figure 9—4. Multiply or CPU Operation With a Parallel Store

31

24 23
L

1 1 1 1
Operation

dstl srcl src3 dst2 src2

16 15 87 0
T
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The instruction word format for those instructions that have parallel stores to
memory is shown in Figure 9-5. If both destination operands, dst1 and dst2,
are located in internal memory, dst1 is stored during H3 and dst2 during H1,
thus completing two memory stores in a single cycle.

If dstlis in external memory and dst2is in internal memory, the dst1 store be-
gins at the start of H3. The dst2 store to internal memory is performed during
H1. Two bus cycles are required for the external store, but only one CPU cycle
is necessary to complete the write. Again, two memory stores are completed
in a single cycle.

If dst1is in internal memory and dst2is in external memory, an additional bus
cycle is necessary to complete the dst2 store. Only one CPU cycle is neces-
sary to complete the write, but the port access requires three bus cycles. In the
first cycle, the internal dstl store is performed during H3, and dst2 is written
to the port during H1. During the next cycle, the dst2 store is performed on the
external bus, beginning in H3, and executes as normal through the following
cycle.

If dst1 and dst2 are both written to external memory, a single CPU cycle is still
all that is necessary to complete the stores. In this case, four bus cycles are
required.

1) Inthefirstcycle, both dstland dst2are written to the port, and the external
bus access for dst1 begins.

2) The store for dst1is completed on the second cycle, and the store for dst2
begins on the third external bus cycle.

3) Finally, the store for dst2 is completed on the fourth external bus cycle.
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Figure 9-5. Two Parallel Stores
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Parallel Multiplies and Adds

Memory addressing for parallel multiplies and adds is similar to that for three-
operand instructions. The parallel multiplies and adds include all instructions
whose bits 31-30 = 10 (see Figure 9-6).

For these operations, src3 and src4 are both located in memory. If both oper-
ands are located in internal memory, src3is performed during H3, and src4 is
performed during H1, thus completing two memory reads in a single cycle.

If src3is in internal memory and src4 is in external memory, the src4 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src3 access to internal memory is performed during H3. Again, two memory
reads are completed in one cycle.

If src3is in external memory and src4is in internal memory, two cycles are nec-
essary to complete the two reads. In the first cycle, the internal src4 access
is performed. During the H3 of the next cycle, the src3 access is performed.

If src3 and src4 are both from external memory, two cycles are necessary to
complete the two reads. In the first cycle, the src3 access is performed; in the
second cycle, the src4 access is performed.

Figure 9-6. Parallel Multiplies and Adds
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Chapter 10

Assembly Language Instructions

The TMS320C3x assembly language instruction set supports numeric-inten-
sive, signal-processing, and general-purpose applications. The instructions
are organized into major groups consisting of load-and-store, two- or three-op-
erand arithmetic/logical, parallel, program-control, and interlocked operations
instructions. The addressing modes used with the instructions are described
in Chapter 5.

The TMS320C3x instruction set can also use one of 20 condition codes with
any of the 10 conditional instructions, such as LDFcond. This chapter defines
the condition codes and flags.

The assembler allows optional syntax forms to simplify the assembly language
for special-case instructions. These optional forms are listed and explained.

Each of the individual instructions is described and listed in alphabetical order
(see subsection 10.3.2 on page 10-16). Example instructions demonstrate the
special format and explain its content.

This chapter discusses the following major topics:

Topic Page
10.1 INStruCtion Set . ... . i e 10-2
10.2 Condition Codesand Flags ............o i, 10-10
10.3 Individual InStructions . ....... ...t 10-14
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Instruction Set

10.1 Instruction Set

All of the instructions in the TMS320C3x instruction set are one machine word
long. Most require one cycle to execute. All instructions are a single machine
word long, and most instructions require one cycle to execute. In addition to
multiply and accumulate instructions, the TMS320C3x possesses a full com-
plement of general-purpose instructions.

The instruction set contains 113 instructions organized into the following func-
tional groups:

Load-and-store

Two-operand arithmetic/logical
Three-operand arithmetic/logical
Program control

Interlocked operations

Parallel operations

Uooooo

Each of these groups is discussed in the succeeding subsections.

10.1.1 Load-and-Store Instructions

The TMS320C3x supports 12 load-and-store instructions (see Table 10-1).
These instructions can:

[ Load a word from memory into a register,
(] Store a word from a register into memory, or
[ Manipulate data on the system stack.

Two of these instructions can load data conditionally. This is useful for locating
the maximum or minimum value in a data set. See Section 10.2 on page 10-10
for detailed information on condition codes.

Table 10-1. Load-and-Store Instructions

Instruction Description Instruction Description

LDE Load floating-point exponent POP Pop integer from stack

LDF Load floating-point value POPF Pop floating-point value from stack

LDFcond Load floating-point value PUSH Push integer on stack
conditionally

LDI Load integer PUSHF Push floating-point value on stack

LDlcond Load integer conditionally STF Store floating-point value

LDM Load floating-point mantissa STI Store integer

LDP Load data page pointer
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10.1.2 Two-Operand Instructions

Instruction Set

The TMS320C3x supports 35 two-operand arithmetic and logical instructions.
The two operands are the source and destination. The source operand can be
a memory word, a register, or a part of the instruction word. The destination
operand is always a register.

As shown in Table 10-2, these instructions provide integer, floating-point, or
logical operations, and multiprecision arithmetic.

Table 10-2. Two-Operand Instructions

Instruction Description Instruction Description
ABSF Absolute value of a floating- NORM Normalize floating-point value
point number
ABSI Absolute value of an integer NOT Bitwise logical-complement
ADDCT Add integers with carry ORT Bitwise logical-OR
ADDFT Add floating-point values RND Round floating-point value
ADDIT Add integers ROL Rotate left
ANDT Bitwise logical-AND ROLC Rotate left through carry
ANDNT Bitwise logical-AND with ROR Rotate right
complement
ASHT Arithmetic shift RORC Rotate right through carry
CMPFT Compare floating-point values suBBt Subtract integers with borrow
cMmPIT Compare integers SUBC Subtract integers conditionally
FIX Convert floating-point value to SUBF Subtract floating-point values
integer
FLOAT Convert integer to floating-point || SUBI Subtract integer
value
LSHT Logical shift SUBRB Subtract reverse integer with
borrow
MPYFT Multiply floating-point values SUBRF Subtract reverse floating-point
value
MPYIT Multiply integers SUBRI Subtract reverse integer
NEGB Negate integer with borrow TsTBT Test bit fields
NEGF Negate floating-point value XORT Bitwise exclusive-OR
NEGI Negate integer

T Two- and three-operand versions
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10.1.3 Three-Operand Instructions

Most instructions have only two operands; however, some arithmetic and log-
ical instructions have three-operand versions. The 17 three-operand instruc-
tions allow the TMS320C3x to read two operands from memory or the CPU
register file in a single cycle and store the results in a register. The following
factors differentiate the two- and three-operand instructions:

[ Two-operand instructions have a single source operand (or shift count)
and a destination operand.

[0 Three-operand instructions can have two source operands (or one source
operand and a count operand) and a destination operand. A source oper-
and can be a memory word or a register. The destination of a three-oper-
and instruction is always a register.

Table 10-3 lists the instructions that have three-operand versions. Note that
you can omit the 3 in the mnemonic from three-operand instructions (see sub-
section 10.3.2 on page 10-16).

Table 10-3. Three-Operand Instructions

Instruction Description Instruction Description

ADDC3 Add with carry MPYF3 Multiply floating-point values
ADDF3 Add floating-point values MPYI3 Multiply integers

ADDI3 Add integers OR3 Bitwise logical-OR

AND3 Bitwise logical-AND SUBB3 Subtract integers with borrow
ANDN3 Bitwise logical-AND with complement || SUBF3 Subtract floating-point values
ASH3 Arithmetic shift SUBI3 Subtract integers

CMPF3 Compare floating-point values TSTB3 Test bit fields

CMPI3 Compare integers XOR3 Bitwise exclusive-OR

LSH3 Logical shift
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10.1.4 Program-Control Instructions

The program-control instruction group consists of all of those instructions (17)
that affect program flow. The repeat mode allows repetition of a block of code
(RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle) branching are supported. Several of the program control instruc-
tions are capable of conditional operations (see Section 11.2 on page 11-6
for detailed information on condition codes). Table 104 lists the program con-
trol instructions.

Table 10-4. Program Control Instructions

Instruction Description Instruction Description

Bcond Branch conditionally (standard) IDLE Idle until interrupt

BcondD Branch conditionally (delayed) NOP No operation

BR Branch unconditionally (standard) RETIcond Return from interrupt conditionally

BRD Branch unconditionally (delayed) RETScond Return from subroutine

conditionally

CALL Call subroutine RPTB Repeat block of instructions

CALLcond Call subroutine conditionally RPTS Repeat single instruction

DBcond Decrement and branch SWiI Software interrupt
conditionally (standard)

DBcondD Decrement and branch TRAPcond Trap conditionally
conditionally (delayed)

IACK Interrupt acknowledge

10.1.5 Low-Power Control Instructions

The low-power control instruction group consists of three instructions that af-
fect the low-power modes. The low-power idle (IDLE2) instruction allows ex-
tremely low-power mode. The divide-clock-by-16 (LOPOWER) instruction re-
duces the rate of the input clock frequency. The restore-clock-to-regular-
speed (MAXSPEED) instruction causes the resumption of full-speed opera-
tion. Table 10-5 lists the low-power control instructions.

Table 10-5. Low-Power Control Instructions

Instruction Description || Instruction Description

IDLE2 Low-power idle MAXSPEED Restore clock to regular speed
LOPOWER Divide clock by 16
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10.1.6 Interlocked-Operations Instructions

The interlocked operations instructions (Table 10-6) support multiprocessor
communication and the use of external signals to allow for powerful synchroni-
zation mechanisms. The instructions also guarantee the integrity of the com-
munication and result in a high-speed operation. Refer to Chapter 6 for exam-
ples of the use of interlocked instructions.

Table 10-6. Interlocked Operations Instructions

Instruction Description Instruction Description

LDFI Load floating-point value, interlocked [ STFI Store floating-point value, inter-
locked

LDl Load integer, interlocked ST Store integer, interlocked

SIGI Signal, interlocked
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10.1.7 Parallel-Operations Instructions

The parallel-operations instructions group makes a high degree of parallelism
possible. Some of the TMS320C3x instructions can occur in pairs that will be

executed in parallel. These instructions offer the following features:

(1 Parallel loading of registers,
(1 Parallel arithmetic operations, or

(O Arithmetic/logical instructions used in parallel with a store instruction.

Each instruction in a pair is entered as a separate source statement. The sec-
ond instruction in the pair must be preceded by two vertical bars (|]).

Table 10-7 lists the valid instruction pairs.

Table 10-7.Parallel Instructions

Mnemonic Description
Parallel Arithmetic with Store Instructions
ABSF Absolute value of a floating-point number and store floating-point value
|| STF
ABSI Absolute value of an integer and store integer
|| STI
ADDF3 Add floating-point values and store floating-point value
|| STF
ADDI3 Add integers and store integer
|| STI
AND3 Bitwise logical-AND and store integer
|| STI
ASH3 Arithmetic shift and store integer
|| STI
FIX Convert floating-point to integer and store integer
|| STI
FLOAT Convert integer to floating-point value and store floating-point value
|| STF
LDF Load floating-point value and store floating-point value
|| STF
LDI Load integer and store integer
|| STI
LSH3 Logical shift and store integer
|| STI
MPYF3 Multiply floating-point values and store floating-point value
|| STF
MPYI3 Multiply integer and store integer
|| STI

Assembly Language Instructions
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Table 10-7.Parallel Instructions (Continued)

Mnemonic Description

Parallel Arithmetic with Store Instructions (Concluded)

NEGF Negate floating-point value and store floating-point value
[| STF
NEGI Negate integer and store integer
[| STI
NOT Complement value and store integer
[| STI
OR3 Bitwise logical-OR value and store integer
[| STI
STF Store floating-point values
[| STF
STI Store integers
[| STI
SUBF3 Subtract floating-point value and store floating-point value
[| STF
SUBI3 Subtract integer and store integer
[| STI
XOR3 Bitwise exclusive-OR values and store integer
[| STI
Parallel Load Instructions
LDF Load floating-point
|| LDF
LDI Load integer
[| LDI

Parallel Multiply and Add/Subtract Instructions

